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Abstract

I present the results o f an investigation into the spectral properties of stars and galaxies. Firstly 

I investigate methods for automatic MKK classification of stellar spectra, providing both a com ­

parative study o f some of the standard methods of automatic classification and a demonstration 

o f a state-of-the-art machine learning technique —  Support Vector M achines. Using this tech­

nique I obtain a classification accuracy of <x = 1.7.

One of the limitations in the classification of stellar spectra is the lack of good training 

data at high resolution. With this and also the application of population synthesis in mind, I 

present a high resolution (T/A/t = 250000) library of 6410 synthetic stellar spectra which I 

have generated from the Kurucz model atmospheres. The library covers the wavelength range 

3000 -  10 000 with 54 values of effective temperature in the range 5250 -  50 000 K, 11 values 

of log surface gravity between 0.0 and 5.0 and 19 metallicities in the range - 5 .0  to 1.0. By 

com paring the new synthetic spectra with the STELIB library of observed spectra (Le Borgne 

et al., 2003) I dem onstrate their suitability for the application of population synthesis.

I then extend this library by supplementing the Kurucz spectra with other synthetic spectra, 

to form a library for population synthesis sim ilar to that of Lejeune et al. (1998) but at higher 

resolution (2  ). I also investigate two methods of empirical population synthesis however I find 

that even with modern computational resources these methods are not suitable for the number 

and size of current spectra.

Finally I measure the Lick indices for a sample of Sloan Digital Sky Survey spectra and use 

these in conjunction with the 2dF groups catalogue to investigate the change in these parameters 

with the local density of galaxies. I find no strong trends in any of the Lick indices with group 

velocity dispersion.
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1

C h a p t e r  1

Introduction

This thesis is concerned with the nature of stars and galaxies (or stellar populations), specif­

ically, what we can determine from their spectra. To understand where galaxies fit into the 

overall picture of the universe we need to look both on smaller scales, at the individual stars 

that com prise galaxies, and on larger scales at the formation, evolution and distribution of 

galaxies in a cosmological context. The topics dealt with in this thesis are stellar spectral clas­

sification, population synthesis and how the spectral properties of galaxies vary with their local 

density. It involves both synthetic stellar and galaxy spectra as well as galaxy spectra from 

the Sloan Digital Sky Survey (SDSS) (York et ah, 2000). This introduction outlines the basic 

astrophysics necessary for each of these areas, before tying them together in the overall theme 

of the thesis. It is intended to be a very brief overview of the different fields, as specific details 

of each topic will be discussed further in the introductory sections of each individual chapter.



2 Chapter 1. Introduction

1.1 Stars and stellar evolution

In terms of scale, stars are the smallest astronomical phenomena I will be concerned with in 

this thesis. The nature of the light em itted by stars is determined by their surface area, surface 

temperature and chemical composition of the outer layers. These in turn are determ ined by 

the age, mass and the composition of the stellar interiors. To understand and model stellar 

populations it is necessary to have an understanding of stellar structure and evolution. The 

structure of stellar atmospheres will be discussed in Chapter 3. The definitive text for stellar 

atmospheres is M ilhalas (1978), however a more accessible account is given in Boehm-Vitense 

(1989). In this section I will outline what is known about stellar evolution, and how stars at 

each stage in their evolution contribute to the light emitted from a galaxy.

The fundamental observable property of a star is its flux1, the total energy received by 

the observer per second per square metre. The intrinsic property corresponding to flux is the 

luminosity which is the amount of energy the star emits per second. Assuming the star shines 

with equal brightness in all directions they are related by the inverse-square law

and hence the key to determining the luminosity is an accurate measurement of the distance, 

d, to the star. The Sun’s bolometric luminosity is L Q = 3.86 x  1026 W and stellar luminosities 

can range from 10- 4LG to > 106LG. The most important correlation in stellar properties is that 

between luminosity and effective temperature (or colour and absolute magnitude) which forms 

the Hertzsprung-Russell (HR) diagram (also known as the colour-magnitude diagram). Stars 

fall into distinctive groups on the HR diagram, which largely correspond to stars in different 

stages of their evolution. Figure 1.1 shows the HR diagram for a typical globular cluster.

The evolutionary process for normal stars is well known. Some of the main stages in stellar 

evolution are marked on the HR diagram in Figure 1.1. Stars start as protostellar objects which 

are formed when clouds of gas become dense enough to collapse under their own gravity. 

The collapse stops when the temperature in the core is hot enough for hydrogen to undergo

‘Flux (measured for a specific wavelength range) has SI units of W rn 3 but is usually quoted in units of 

erg s ' 1c m '2' 1
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Effective T em pera tu re  (°K)

Figure 1.1: The evolutionary stages in the stellar lifecycle. Left: an observed HR diagram  for 

the old, metal poor galactic cluster NGC1851. The main phases in the evolution are shown: 

M ain Sequence (MS), Sub Giant Branch (SGB), Red Giant Branch (RGB), Horizontal Branch 

(HB), Blue Stragglers (BS) and Asymptotic Giant Branch (AGB). Right: Theoretical HR dia­

gram of an old, m etal-poor Simple Stellar Population, up to the RGB-tip (isochrone from  Cassisi 

et al., 1999). The solid line shows the main sequence and the dotted line shows the post-main 

sequence evolution. The stellar masses at the turnoff (TO) and the RGB tip are annotated. Image 

source: M araston (2003), also available online at NASA’s Level 5.

nuclear fusion. A t this point the pressure from the nuclear reactions balances the force due to 

gravitational collapse and the star stabilises, becoming a main sequence (MS) star. Stars remain 

on the main sequence until their core hydrogen supply is exhausted. During this time they move 

from  the left hand boundary of the MS (the Zero Age M ain Sequence, z a m s ) across the main 

sequence band as their surface temperature decreases. W hen and where stars enter and exit the 

main sequence depends on their mass, but on average stars remain on the main sequence for 

about 90% o f their lives. M ore massive stars consume the hydrogen more quickly and hence 

have shorter MS lives (~  7 million years) whereas low mass stars can stay on the MS for much 

longer (over 10 billion years). The sun is about 4.5 x  10 9 years old and is approxim ately half 

way through its life.

Once stars ‘turn o ff’ the main sequence, their subsequent evolutionary paths differ greatly
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depending on their m ass2. In low mass stars (0.6M0  < M  < 2 MQ) the core starts to contract 

and the outer layers expand, causing the star to radiate over a much larger area than before. 

The surface tem perature decreases and the star moves on to the subgiant branch (SGB) which 

is populated by cool, red stars. The temperature in the hydrogen-burning shell surrounding the 

core rises, and the star ascends the red giant branch (RGB) as its luminosity increases. W hen the 

core of a red giant gets dense enough it becomes degenerate and can not expand. H ence when 

the temperature reaches a critical point (~  10 8 K) at which it is hot enough to ignite helium  the 

star undergoes what is known as the helium flash. Helium then replaces hydrogen as the main 

core fuel, with hydrogen fusion taking place in the surrounding shell. This continues until the 

core helium supply is exhausted at which point the core contracts and the shell expands again. 

The star moves onto the asymptotic giant branch (AGB) where both hydrogen and helium fusion 

occur in its outer shells. A t this point the star is more luminous but cooler than it was in the red 

giant phase. The star eventually ejects its outer layers of gas into a planetary nebula and only 

the hot core remains as a white dw arf star. From this point the white dw arf gradually cools, 

becoming increasingly faint.

Intermediate mass stars ( 2 M Q < M  < 8 MQ) move directly to the RGB once their core 

hydrogen is exhausted. Unlike in the low mass stars, in these stars the core does not become 

degenerate and so there is no helium  flash. After helium fusion has started the stars become 

bluer, moving across the HR diagram, but as the core helium is exhausted the stars becom e 

redder again. Then star then moves onto the AGB where, as with the lower mass stars, both 

hydrogen and helium  fusion occur it its outer shells. W hile on the AGB stellar winds carry heavy 

elements such as carbon and nitrogen away from the stellar surface. The outer layers of the 

star are shed (creating a planetary nebula) leaving a white dwarf, which becomes increasingly 

cooler and fainter.

M assive stars (M  > 8 M e ) becom e hot (blue and yellow) supergiants. As the core increases 

in temperature metals can bum, until iron is produced. At this point the fuel in the core is 

exhausted and the core collapses and becomes degenerate. The outer shells o f the core also 

collapse rapidly inward until they hit the core and then explode, forming a supernova. This 

releases large quantities o f metals into the interstellar medium, leaving the core of the star as a

2Mass is given in terms of the solar mass, where 1 M0 = 1.98892x 1030 kg.
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neutron star or black hole.

There are many other aspects o f stellar evolution that have not been discussed here as 

they are not necessary for the basic population synthesis done in Chapter 4. However, for 

accurate modelling of observed galaxy spectra their more subtle effects m ust be taken into 

account. M any of these issues, such as stellar winds, interacting systems and stellar mass loss 

are discussed in the conference proceedings by Lam bert (1991).

Different types of stars can be distinguished by the appearance of their spectra, both from 

the continuum  shape and line features. Broad classification schemes separate stars of different 

types such as carbon stars and white dwarfs from ‘norm al’ main sequence stars and giants. 

These more unusual types of stars have their own sub-classification schemes (see, for example, 

Keenan (1993) for carbon stars and Sion et al. (1983) for white dwarfs). Normal main sequence 

and giant stars are classified into discrete spectral types and lum inosity classes. The standard 

schem e for doing this is MKK classification (Morgan and Keenan, 1973). In the MKK system the 

main sequence stars, ranging from hot, blue stars to cool, red stars are all referred to as dwarfs 

and have luminosity class V. Supergiant, giant and subgiant stars have lum inosity classes I, II, 

III and IV. All stars are classified with a spectral type ranging from O (hot) to M (cool). Details 

of the MKK system are given in Section 2.2. An excellent resource for MKK classification in 

the modern era is the conference proceedings by Corbally et al. (1994).

The MKK system suits the traditional method of stellar classification where astronomers 

examine each spectrum by eye and make a decision about its category. An alternative to discrete 

classification systems is physical parameterisation, which aims to establish where the star lies 

on the three dimensional continuum of parameters: effective temperature, surface gravity and 

metallicity. Effective temperature is a measure of how much energy is em itted through a unit 

area of the star’s surface and is defined by the Stefan-Boltzmann Law

L = 4nR 2crT*ff (1.2)

where L  is the luminosity of the star, R is the radius and cr is the Stefan-Boltzm ann constant3.

V  = 5.6703 x 10_8W irf2K~4
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Surface gravity determines the pressure gradient in the star’s atmosphere and is defined as

where M  is the mass of the star, R is the radius and G is the gravitational constant 4. It is possi­

ble to measure these parameters directly for a small number of close stars (e.g. Hanbury Brown 

et ah, 1974), but for other stars they must be obtained indirectly. This has become possible with 

the development of stellar spectral synthesis packages such as ATLAS9 and SYNTHE (Kurucz, 

1992) and NextGen (Hauschildt et ah, 1999a,b). These packages allow the generation of a grid 

o f spectra covering a wide range of physical param eter space which can be used as templates 

for classifying observed spectra. Physical parameterisation can be calibrated against the MKK 

system using the effective temperature scale (i.e. the relationship between the effective temper­

ature of a star and its spectral type). M ethods for developing an effective temperature scale are 

summarised by Boehm-Vitense (1981). Physical parameterisation is addressed in Section 2.2.

Classification of stellar spectra by hand is not feasible when faced with the large number of 

spectra generated by modern surveys. The alternative is automatic classification. Progress in 

this field is summarised by Bailer-Jones (2001). The most successful methods so far have been 

machine learning methods, specifically artificial neural networks. In Chapter 2 I do a com par­

ative study of these methods and highlight their problems and limitations. I then demonstrate 

a machine learning method that has not been used extensively in astrophysics —  the Support 

Vector M achine (SVM). A complete coverage of the theory behind SVMs and their applica­

tions is given by Cristianini and Shawe-Taylor (2000). Automatic classification will become 

essential for classifying the large num ber of stars observed in future surveys such as GAIA 

(Lindegren and Perryman, 1996), for use in generating population synthesis models.

1.2 Stellar populations

The light from galaxies is to some approximation the integrated light from all of the com po­

nent stars. However, almost all galaxies are too far away to be able to separate out the light

4G = 6.672 x 10'n m3kg_1s_2
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from the different stars to study a galaxy’s composition. Instead we can synthesise models 

o f galaxies, match the resulting spectra to observations and hence infer the properties of the 

observed galaxy. This section outlines the basic principles behind evolutionary population syn­

thesis (EPS). Two good summaries of population synthesis are Bruzual (2001) and M araston 

(2003). A good resource for details o f all aspects of population synthesis is the conference 

proceedings by Leitherer et al. (1996b).

The term stellar population  refers to a group of stars bom  at the same time and having 

the same initial composition. It primarily refers to synthetically generated stellar populations 

which are designed to model globular star clusters or galaxies. Galaxies are a complex com bi­

nation of stellar populations —  most synthetic stellar populations are greatly simplified in some 

way. The simplest system is the Simple Stellar Population (SSP) which is a coeval (i.e. all stars 

formed at the same time) and chemically homogeneous group o f stars. An SSP is completely 

characterised by its age, chemical composition and initial mass function (IMF). Although these 

simple systems do not accurately reflect the properties of galaxies, their simplicity means that 

theories of stellar evolution can be used successfully to predict their global properties, as done 

by Tinsley and Gunn (1976) and Renzini and Buzzoni (1986).

Galaxies are usually referred to in terms of their morphological properties, i.e. ellipticals 

and spirals. Com parison of the galaxy spectra with stellar spectra led to the developm ent of em ­

pirical population synthesis, the precursor to evolutionary population synthesis. This approach 

involves working backward from the galaxy spectra to obtain the fractional contribution from 

each type of stellar spectrum (e.g. Faber, 1973; Pickles, 1985). I will discuss aspects of em ­

pirical population synthesis further in Section 4.3. M ost of the work in both empirical and 

evolutionary population synthesis is concerned with investigating the populations of ‘norm al’ 

spiral and elliptical galaxies, however there is also some work in other areas, for example star- 

burst galaxies (Poggianti et al., 2001) and W olf-Rayet galaxies (Conti, 2000).

The key feature o f  the EPS approach is the use of theoretical stellar evolutionary isochrones. 

An isochrone is made up of tracks, each of which plot the evolutionary path for a star o f a given 

mass, with time (specifically, the change in luminosity and effective temperature). Hence the 

isochrone shows the distribution of temperatures and luminosities for stars of a range of masses,
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at a given time. This is where an understanding of the evolutionary path of different types of 

stars is important for galaxy population synthesis. Each stage in the evolution must be included, 

from pre-main sequence stars to white dwarfs. Examples of commonly used stellar tracks 

are those from the Padova (Bressan et al., 1993), Geneva (Schaller et al., 1992; Charbonnel 

et al., 1996) and Yale (Yi et al., 2001) groups. The isochrones are a m ajor source of error in 

population synthesis results, as shown in a study by Chariot et al. (1996). Two of the main 

issues that cause differences between the sets of tracks are whether convective overshooting 

is accounted for and what mixing length is used (these will be defined in Section 3.2). The 

computational approach to EPS falls into one of two categories, either fuel consumption theory 

(Renzini and Buzzoni, 1986) or isochrone synthesis (Chariot and Bruzual, 1991).

EPS also requires a library of stellar spectra covering a range of different spectral types. 

These can be theoretical (e.g. Lejeune et al., 1997) or empirical (e.g. Le Borgne et al., 2003) 

or a combination of both. A wide range of spectra suitable for stellar population modelling is 

available as part o f a database described by Leitherer et al. (1996a). The quality of the final 

synthesised galaxy spectra is sensitive to the accuracy of the grid of input stellar spectra. Obser­

vational libraries have limited wavelength coverage, lim ited coverage of parameter space and 

observational and calibration uncertainties. Theoretical libraries can be created to cover any 

range of parameter space, but do not always match observed stellar spectra accurately (partic­

ularly for cooler stars where m olecular lines are important). Until recently neither observed or 

theoretical libraries of stellar spectra have been available at high resolution (over a reasonable 

wavelength range). This was of particular interest to me as I intended to com pare synthetic 

galaxy spectra with those from the SDSS. Synthetic grids of spectra over wide wavelength 

ranges were only available at a resolution of 20 , much lower than the SDSS (~  1 -  2 ). This 

issue is discussed further in Section 4.2 where I present a higher resolution library of synthetic 

stellar spectra.

Although there are still many issues to resolve in accurate modelling of galaxy spectra, 

there are some basic results that have come out o f evolutionary population synthesis. Some of 

these are:

•  populations become less luminous with increasing age;
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•  populations become redder with increasing age or metallicity;

•  neutral metal lines increase in strength with increasing age or metallicity;

•  after about 1 0 8 years, hydrogen lines decrease in strength with increasing age or abun­

dance;

•  most of the blue light in galaxies comes from the hotter stars (with spectral types of A, 

F a n d  G);

•  the extremely hot stars (with spectral types O and B) are rare and so do not contribute 

much to the total light, except when the galaxy has undergone recent star formation;

•  most o f the light at the red end of the spectrum comes from cool stars (typically with 

spectral type K).

1.3 Galaxies in a cosmological context

The final part of this thesis is concerned with how the spectral properties of galaxies relate 

to their environment. In particular I will investigate the dependence of galaxy properties on 

local density, i.e. the density of galaxies around a particular galaxy. Redshift surveys are the 

crucial tool in allowing us to build up a three dimensional picture of the way galaxies are 

distributed throughout the universe. The results from these surveys have to be inteipreted 

assuming a particular cosmological model, which specifies the geometry and dynam ics of the 

universe in which the observations have been made. Assum ing that on the largest scales the 

universe is homogeneous and that it is expanding isotropically, the geom etry of the universe can 

be described by the Robertson-W alker metric. The solutions to E instein’s general relativistic 

field equations, assuming this geometry, are the Friedmann cosmological models. This section 

outlines only the concepts and equations used in this thesis (specifically in Chapter 5). For 

a com plete discussion of cosmological issues and the derivations behind these equations, see 

Peebles (1993) and Peacock (2000).

In the local universe, measuring the distance to or between objects is quite straightforward.
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However, on cosmological scales it is complex, and dependent on the cosmological model 

adopted and the distance measure used. It is important to distinguish between the different 

ways of measuring distance, and clearly identify which one is being used. This section outlines 

the basic cosmological tools necessary to measure the distance to galaxies from their redshifts. 

Knowing the distance allows us to calculate properties such as the absolute magnitude of the 

galaxies. The absolute magnitude of a source is defined as the magnitude it would be if it 

were located at a distance of 10 parsecs from the observer. Hence the difference between the 

absolute and apparent magnitudes for a particular source is given by

m -  M = 51og10(D /1 0 p c) (1.4)

where D  is the distance, and assuming there is no obscuration by interstellar dust. On cosm o­

logical scales we have to choose an appropriate distance measure for D.

The recessional speed of the expanding universe is related to distance by the Hubble pa­

rameter, H

v = H 0D .  (1.5)

In general H  changes with time, so at the current time it is denoted H o (the Hubble constant) 

and has dimensions

Ho = 1 0 0 /7Ok m s _ 1M pc_1 (1.6)

where ho is a dimensionless parameter. The current best estimate for the Hubble constant comes 

from the Hubble Space Telescope Key Project by Freedman et al. (2001) which measured a

value of Ho = 72 ± 8 km s- l M pc-1 . The Hubble constant determines the scale of the universe

in terms of the Hubble time

tH s  7T0 (L7)

and the Hubble distance

° « s  if, ■ (L8)

The dynamical properties of the universe are determined by the matter and radiation densi­

ties and the cosmological constant A. In a universe with matter, radiation and a cosmological 

constant, the total density p  is given by

P -  Pm +  Pr + P a (1.9)
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To express these in terms of observable quantities we define a density param eter

=  ^  ( n o ,
Pc  3 / / 2

where p c is the critical density, for which the universe would have a flat geometry. If the density 

of the universe is less than the critical density, then the universe would have open geom etry (and 

hence, if the cosmological constant A = 0, would expand forever). Similarly if the density of 

the universe is greater than the critical density the universe would have closed geometry. The 

individual components of the density param eter (in the current epoch) are given by

_  8nGpmfi
° ~~ 3 H 2 t 1-11)

~  ~3Hf( U 2 )

Ac2

= 3//| (L13)

so that

Go = Qm,0 + + G A,o • (1-14)

Inflation theory predicts that the total density O  o = 1 - The contribution to Q o from the radiation 

energy density can be estimated from the Cosmic M icrowave Background (CMB). The CMB 

is almost isotropic in all directions on the sky (to one part in 10 5) and corresponds to a black 

body spectrum with a temperature of 2.728 K. It is found that the contribution from Q  ,%o can 

be neglected at the current time (the universe is A-dominated), however this is not the case for 

the very early stages of the universe when it was radiation dominated. Hence the parameters 

that are necessary to define the cosmological model that is being used are Q,„to, Qa.o and ho. 

The current best estimate parameters are (0.27, 0.73, 0.71) which are given by Bennett et al. 

(2003) in their presentation of the results from the first year of observations with the Wilkinson 

M icrowave Anisotropy Probe ( w m a p ). Throughout this thesis I will be using a model with 

parameters (Qm,o, G Aio, ho) = (0.3, 0.7, 0.7) which approximately correspond to those given by 

Bennett et al. (2003). This corresponds to a scenario in which the universe has open geometry 

and expands forever. In such a model, the age of the universe at the present time is to = 9.43h~l 

Gyr.

Once the cosmological model has been selected, the crucial property for calculating the 

distance to an object is its redshift, In terms of shifts observed in spectral lines the redshift is
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defined as

^  = l + z  (1.15)
v0

where ve is the frequency the light was emitted at and v0 is the frequency it appears to the 

observer. The observable quantity redshift, must now be converted into a distance measure 

suitable for use in Equation 1.4. The luminosity distance is defined as

<U6)

where L  is the bolometric luminosity and S  is the bolometric flux. In a flat cosm ology it can 

be written as

D L = ^ - ( l + Z )  f  j p r  
H0 Jo  E(z )

where E(z) is given by

(1.17)

H 0E(z) = H 0[n m( 1 + z f  + f i r(l + z T  + n A] 1/2 • (1.18)

Hence for a flat cosmology (D.r = 0) the luminosity distance is given by

dz
[ n w( l + z ) 3 + <TA]i/2

c Cz dz
D L = — ( l + z )  —  —----- „  -  (1.19)

n  o Jo

W hen an object is redshifted the amount of flux received in each waveband is also affected 

because the object is emitting flux in a different waveband to the one being observed. To 

account for this, the k-correction  is used. This correction factor modifies Equation 1.16 so that 

the flux in a given band is given by

s' = <1+z)̂ f ^ f  <‘-20>
where the ratio of luminosities accounts for the difference in flux between the observed and 

emitted bands, and the factor of (1 +z) accounts for the change in bandwidth due to the redshift. 

A useful reference for the definition of k-corrections and associated equations is the preprint 

by Hogg et al. (2002).

Now we can reconsider the relationship between absolute and apparent magnitudes, given 

in Equation 1.4, using the luminosity distance and applying the k-correction

U
m — M  =  5 log 10(£>i./TOpc) -  2.5 log (1 + z ) J ( ‘+z)v

Ly
( 1.21)

where the 5 log10(D z./10pc) term is usually referred to as the distance modulus.
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1.4 Motivation

The motivation for this thesis comes from the aim  of studying the way spectral properties of 

galaxies vary with their local environment, making use of the large num ber of spectra available 

as part of the SDSS. This problem can be approached from  a purely empirical point o f view 

(i.e. looking directly at the data and seeing what trends are evident) and from a theoretical point 

of view (i.e. studying the properties of systems we have complete knowledge o f —  synthetic 

galaxies). This thesis investigates both approaches, making use of high resolution stellar and 

galaxy spectra from the SDSS.

The SDSS is a large redshift survey which, when finished, will have observed around 1 

million objects covering a quarter of the sky. It consists o f both imaging and spectroscopic 

data. The spectroscopic survey is predominantly a survey for bright galaxies, luminous red 

galaxies and quasars. The wavelength coverage is A = 3800 -  9200 with a spectral resolution 

of T/AT ~  1800. So far there have been two data releases, the Early Data Release (EDR) 

(Stoughton et al., 2002) and Data Release 1 (DR1) (Abazajian et ah, 2003). The DR1, which 

is what I have been using, consists of 186 250 spectra of which 134000 are galaxy spectra, 

18 680 are quasars and 22 100 are stellar spectra. The SDSS will be discussed in Section 5.2.

As I will discuss in Chapter 4 the galaxy population synthesis tools have been limited by 

the completeness and resolution of the stellar spectra available as an input grid. To com pare the 

properties of SDSS resolution galaxies with synthetic galaxies it would be necessary to smooth 

the SDSS galaxies, which loses important fine grained information and hence does not fully 

utilise the SDSS spectra. With this limitation in mind, one of the aims of my thesis was to 

generate a grid of high resolution synthetic spectra to use in population synthesis. The Kurucz 

(1992) synthetic spectra are one of the main grids of spectra used for population synthesis, 

but these were only available at low resolution (20 ). The computational resources required to 

generate synthetic spectra at high resolution has so far limited the availability of such spectra. 

One of my aims was to investigate the process involved in generating high resolution synthetic 

spectra, and in Chapter 3 I present a new library of high resolution spectra generated from the 

Kurucz model atmospheres.
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Before studying the spectral properties of galaxies I decided to look at the spectral proper­

ties of their component objects, stars. Stars are much simpler systems than galaxies and they 

have an established spectral classification scheme. I have investigated the automatic classifi­

cation of stellar spectra, as a useful subject in its own right, and as a testbed of some of the 

tools that would later be useful for parameterising galaxy spectra. However, it became clear 

that the problem of stellar classification and galaxy classification are quite different. Although 

some of the tools, such as principal component analysis are applicable to both, automatic stel­

lar classification is a supervised machine learning problem whereas galaxy classification is, in 

general, not. In Chapter 2 I present a comparative study of stellar classification techniques, and 

demonstrate the use of a new technique, Support Vector Machines.

The final section of my thesis deals with how galaxy spectral properties change with their 

local environment. Large surveys allow the study of subtle statistical trends across a massive 

number of objects. The environmental factor I consider is local density, a measure of the 

number of galaxies in a galaxy’s immediate environment. There are clear differences in the 

nature of galaxies at both extremes: a lone field galaxy is generally different to a galaxy near 

the centre of a massive cluster. There are well known trends of metallicity with the properties of 

individual galaxies, for example more massive galaxies tend to be more metal rich. The aim of 

the final chapter is to see whether there are any trends between Lick index strength in galaxies 

and their environments. In future work this analysis could be compared to the predictions from 

semi-analytic galaxy formation scenarios, making use of the high resolution synthetic spectra 

that I discuss in Chapters 3 and 4.
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C h a p t e r  2

Automatic classification of stellar 

spectra

“The classification should describe the spectra not the stars; that is it should be 

based solely on what can be seen in the spectrum of a given star...”

I AU Com m ission 21, 1921

2.1 Introduction

A good classification system is central to most areas of science, often being developed very 

early on in the progress of the field. Stellar astrophysics is no exception to this and in the 

1860’s, around the same time spectroscopic instruments were being used for the first time, 

Angelo Secchi classified thousands of stars into four groups, based on their similarity to the sun. 

There are several reasons why classification is important. Firstly, particularly in astrophysics, 

empirical observations are the basis for much of the research in the field. They are the only
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guaranteed knowledge, and a classification based purely on observations will survive regardless 

of changes in theory. Secondly, the amount of information that we are forced to process if we 

treat each star as an individual, different to others, is so overwhelming as to be near useless. To 

draw meaningful conclusions from the data we are forced to group it into categories o f objects 

which share certain properties. Finally, and of most interest to the scientist, classification can 

lead to a deeper physical understanding of the data.

There are two general ways of approaching m odem  stellar spectral classification; MKK 

classification and physical parameterisation. The aim of MKK classification is to find a way of 

accurately classifying the spectra into the already established MKK classes. The aim of physical 

parameterisation is to establish where the star lies on the three dimensional continuum of phys­

ical parameters; effective temperate (Teff), surface gravity (log(g)) and metallicity ([M /H]). The 

MKK system suits the traditional way of doing stellar classification —  where astronomers ex­

amine each spectrum by eye, and make a decision about it category. Physical parameterisation 

has become possible with the development of reasonably accurate spectral synthesis packages 

such as ATLAS9 and SYNTHE (Kurucz, 1992) and NextGen (Hauschildt et al., 1999a,b). These 

packages allow the generation of a grid of spectra covering a wide range of physical parameters 

which can be used as templates for classifying observed spectra. I will discuss these classifi­

cation systems in more detail in Section 2.2. The Kurucz model atmospheres and spectra are 

discussed in detail in Chapter 3.

The automatic methods used to do the classification range from criterion evaluation, which 

conceptually is closest to what a human classifier would do, through to various machine learn­

ing methods such as artificial neural networks. To speed up, and sometimes improve the ac­

curacy of the automatic classification process, some kind of dimensionality reduction is often 

done. A stellar spectrum contains a lot of information, not all of which is necessary for clas­

sification (for example, some of it is noise). Human classifiers automatically ‘rem ove’ the 

unnecessary information, for example they might measure some line indices and ignore the 

rest of the spectrum. However, when using an automatic method of classification, you also 

need an automatic way of extracting the useful information from a spectrum. One method for 

doing this which has been used quite extensively in astronomy is principal component anal­

ysis (PCA), which I will discuss in Section 2.4.2. In Section 2.4.1 I experiment with wavelet
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analysis, which has been used less than PCA but also shows potential as a useful technique for 

this application. An alternative to these mathematical based techniques is to measure specific 

absorption lines in the spectra. Although I do not experiment with this for classifying stellar 

spectra I do use the Lick indices when considering galaxy spectra in Chapters 4 and 5. The 

principles of machine learning and the specific methods used will be described in Section 2.3.

Using state-of-the-art machine learning techniques could have a significant impact on many 

areas of astronom y that extract information from large quantities of data. There are many 

machine learning techniques available that perform well on a range of standard tests, that are 

yet to be applied to astronomy problems. These methods will be crucial as the size of the 

datasets increase. One such technique is Support Vector M achines, which I will discuss in 

Section 2.7. These have not been used extensively in astronomy and yet have been shown to 

outperform  neural networks in many standard machine learning tasks.

2.2 Stellar classification systems

2.2.1 The M K K  classification system

The MKK system (named after its developers, Morgan, Keenan and Kellman) provides a way 

of classifying stars into discrete boxes, based on properties that are essentially continuous. It 

was initially defined in Morgan et al. (1943) and subsequently revised by Johnson and M organ 

(1953) and then by M organ and Keenan (1973). A key feature of the system is that it is not 

based on any specific properties of the spectra, but the overall appearance, taking into account 

the lines, blends and bands in the ordinary photographic region (Morgan and Keenan, 1973). 

The aim  of the MKK system was to classify the stars based solely on their spectral features 

with respect to a set of standards. This has the advantage of avoiding any dependence on other 

factors, such as calibration, photometry or theory, hence making it robust against changes in 

any of those areas.

W hen the MKK system was first defined, photographic emulsions were only sensitive to
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Figure 2.1: Examples of the spectra used to define the MKK system. Image source: (Morgan 

et al., 1943), also available online at NASA’s Level 5.

the blue-violet region of the spectrum. As a result, the MKK system was defined based on 

that region. This has turned out to be particularly useful region as there is a high density of 

important atomic lines and molecular bands. Figure 2.1 shows some spectra used to define the 

MKK standards. A lm ost all modern classification is done using one-dimensional spectra rather 

than these two dimensional ones. Two spectral atlases published in the late 1970’s (Keenan 

and McNeil, 1976; M organ et al., 1978) summarise the MKK system up to that point. Since 

the publication of these atlases there have been many refinements and extensions of the MKK 

system. For example Gray (1989) extended the system to metal-weak F  and G type stars and 

Henry et al. (1994) and Kirkpatrick et al. (1995) extended the system to very cool stars (M type 

and L type dwarfs). A summary of the modern MKK classification system standards is given in 

‘A Digital Spectral Classification A tlas’ by R. G ray1.

'Available as part of NASA’s Level5 ( h t t p :  /  /nedwww. i p a c  . c a l t e c h .  e d u / l e v e ! 5 /).
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Figure 2.2: How the strength of the major lines changes with MKK spectral type. Image source: 

h t t p : /  / lh e a w w w . g s f  c  . n a s a . g o v / u s e r s / a l l e n / s t e l l a r J L i n e s  . g i f

The MKK system is a two dimensional system, with the two parameters being spectral 

class and luminosity class. The spectral class ranges from O to M (with the famous mnemonic 

Oh Be a Fine Guy/Girl Kiss M el). In the late 1800’s Pickering and Fleming developed a 

classification scheme corresponding to Hydrogen line strength (A, B, C, . . . ) .  Later Annie 

Cannon realised that by rearranging the spectral types (O, B, A, . . . )  it was possible to obtain 

a system in which all the line strengths changed continuously. This formed the basis of the 

current MKK system. The spectral type essentially maps effective temperature, ranging from 

hot stars at O ( 7 ^  > 25 000 K) to cool stars at M (Tes  < 3500 K). Due to the remains of some 

now obsolete theories of stellar evolution, the hot stars (O, B and A) are sometimes referred 

to as early spectral types and the cool stars (G, K and M) as late spectral types. Each spectral 

class is divided into 10 subclasses, labelled from 0 to 9 (i.e. A0, A l, ..., A9) to allow for finer 

grained classifications. Figure 2.2 shows roughly how the abundances of several m ajor lines 

change with spectral type and Table 2.1 outlines some basic properties of stars in each of the 

main classes. It is evident from Figure 2.2 that the rate of change of line strengths with spectral 

class is not uniform, so the error in classifying a star will depend on its class and subclass. The 

non-uniform ity in the spectral class as a function of the physical properties of a star complicates 

the evaluation of the success of any classification scheme. The second param eter in the MKK 

system is the luminosity class which reflects how the shape and strength of certain lines change, 

and roughly corresponds to the surface gravity of the stars. The luminosity class ranges from
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Type Approx. Teff Characteristics

0 > 25 000 K Singly ionised helium lines (emission & absorption). 

Strong ultraviolet continuum.

B 11 000 -  25 000 K Neutral helium lines in absorption.

A 7500 -  11 000 K Hydrogen lines at maximum strength for A0 stars 

and decrease thereafter.

F 6000 -  7500 K M etallic lines become noticeable.

G 5000 -  6000 K Solar-type spectra. Absorption lines of neutral 

metallic atoms and ions grow in strength.

K 3500 -  5000 K Metallic lines dominate. Weak blue continuum.

M < 3500 K M olecular bands of titanium oxide noticeable.

Table 2.1 : General properties of O -M  stars.

Class Description

la M ost luminous supergiants

lb Less luminous supergiants

II Luminous giants

III Normal giants

IV Subgiants

V Main sequence stars (dwarfs)

Table 2.2: Luminosity classes in the MKK system.

la for luminous supergiants to V for main sequence stars or dwarfs. The full scheme is shown 

in Table 2.2. So the full MKK classification of a spectrum is of the form G2V (for the sun).

One of the modern extensions to the system is the inclusion of peculiar types of stars. If the 

spectrum of a particular star mostly resembles that of a normal star, but with some peculiarities 

or irregularities, it is given a normal classification, plus a ‘peculiarity code’. For example, 

‘e ’ indicates the presence of emission lines (usually hydrogen) and ‘s’ indicates very narrow 

(sharp) lines. There are also stars with distinct spectra that are given separate classifications
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such as W olf-Rayet stars (given the symbol W) and T-Tauri stars (given the symbol T). Two 

other types of stars, carbon stars and white dwarfs are sufficiently numerous and varied to have 

their own sub-classification systems (see, for example Keenan (1993) for carbon stars and Sion 

et al. (1983) for white dwarfs). With the advent of large surveys such as SDSS and g a i a , the 

massive num ber of stars being observed will mean that even these rare stars will be observed 

frequently enough that they will need to be accommodated by any fully automatic classification 

system.

2.2.2 Physical parameterisation

Physical parameterisation is the process of determining the physical properties of a star from 

its spectrum. This is in contrast to the MKK system in which no deliberate physical links 

were made in determining the classification scheme. Each spectrum is classified with three pa­

rameters: effective temperature, (Teff), surface gravity (log(g)) and metallicity ([M/H]). These 

parameters determine the structure of the stellar atmosphere, and hence the spectrum of the 

star.

Effective temperature is a measure of how much energy is emitted through a unit area of 

the star’s surface and is defined as

Teff Ì attR2o)
(2 . 1)

where L  is the luminosity of the star, R is the radius and <r is the Stefan-Boltzmann constant 2. 

As a result, the effective temperature determines the shape of the continuum and, to a large 

extent, what absorption features are present in the spectrum. It is roughly equivalent to the 

spectral class in the MKK system. Surface gravity determines the pressure gradient in the star’s 

atm osphere and hence at what densities spectral lines are formed. It is defined as

« -  <2-2>

where M  is the mass of the star, R is the radius and G is the gravitational co n stan t3. The main 

effect o f the surface gravity is the strength of the absorption features. It is roughly equivalent

V  = 5.6703 x 1 O'8 W m ^ K '4
3G = 6.672 x  10-I1m3k g '1s-2
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to the luminosity class in the MKK system. Metallicity is an approximation for the chemical 

composition of the stellar atmosphere, which determines the relative strengths of the spectral 

lines of atomic and molecular species present. Often one particular metal (usually Iron) is 

used to estimate this, in which case the symbol used for metallicity is [Fe/H]. Specifically, 

[Fe/H] is defined as the base 10 logarithm of the abundance of Fe relative to H (by mass) in the 

atmosphere, relative to the solar abundance. M etallicity is not explicitly dealt with by the MKK 

system.

Crucial to physical parameterisation is being able to measure the parameters empirically, 

at least for some stars. The fundamental parameter is the stellar radius because for a given 

mass it determines the surface gravity and for a given luminosity it determines the effective 

temperature. To measure radii we need to measure the angular diameter and distance to the star. 

One way of doing this is using intensity interferometry as done by Hanbury Brown et al. (1974) 

with the Narrabri interferometer. This technique can only be used for close, hot stars and as a 

result, the main resource for empirical angular diameters is their catalogue of 32 stars. These 

primary stars are then used to calibrate systems for calculating Teg, such as the Infra-red Flux 

M ethod (Blackwell et al., 1979), resulting in a larger catalogue of semi-empirically determined 

physical parameters. The larger catalogues can then be used to calibrate synthetic spectra such 

as the Kurucz (1992) spectra. The most commonly quoted stellar effective temperatures have 

been determined by comparison of the spectrum with the grid of Kurucz (1992) spectra, as 

distinct from a true effective tem perature defined from Equation 2.1 with separately measured 

luminosity and radius. These Kurucz spectra are discussed in detail in Chapter 3.

The effective temperature scale (i.e. the relationship between physical parameters and MKK 

spectral types) has been studied by a number of people. A good summary of the methods used 

to determine the effective temperature scale is given by Boehm-Vitense (1981). One often 

cited comparison is that of Schm idt-Kaler (1982), part of which is shown in Table 2.3. Phys­

ical parameterisation has several advantages over the MKK system. It is in three dimensional 

parameter space, which means that changes in the spectrum can be isolated more easily. It al­

lows a more specific classification, since the parameters are continuous, rather than the discrete 

MKK classes. It is more suited to automatic classification, as once a grid of synthetic spectra 

has been calibrated they are a valuable resource as template spectra. For these reasons, a lot
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SpT T e (V) T eff  (HI) Teff (I) SpT Teff (V) Teff (HI) Teff (I)

0 3 52000 50000 47 300 A5 8 2 0 0 8 100 8510

0 5 44 500 42 500 40 300 F0 7 200 7 150 7 700

0 7 38 000 37 000 35 700 F5 6440 6470 6  900

0 9 33 000 32000 32 600 GO 6030 5 850 5 550

BO 30000 29 000 26500 G2 5 860 5 450 5 200

B2 2 2  0 0 0 20300 18 500 G5 5 770 5 150 4 850

B3 18 700 17100 16200 K0 5 250 47 5 0 4420

B5 15 400 15 000 13 600 K5 4 350 3 950 3 850

B7 13 000 13 2 0 0 1 2 2 0 0 MO 3 850 3 800 3 650

B 8 11900 12400 1 1 2 0 0 M5 3 240 3 330 2  800

AO 9 520 1 0 1 0 0 9730 M 8 2 640

Table 2.3: The effective temperature scale: relationship between the MKK spectral classes and 

Teff for three different luminosity classes. The left hand column is for dw arf stars, the middle 

colum n for giants and the right hand column for supergiants. All temperatures are in Kelvin.

of m odern  classification  w ork is focused on obtain ing the physical param eters o f  spectra rather 

than the MKK classes.

2.3 Classification methods

To solve a problem like stellar classification, the most intuitive approach for an astronom er is 

probably to design an algorithm that measures different features in a spectrum and makes some 

decision about its type based on pre-defined criteria. The ideal program of this type would 

mimic a human classifier in as much detail as possible —  an arbitrary number of rules could 

be added to the process. The difficulty with this approach is that it is hard to establish exactly 

what process a hum an does follow when classifying spectra.

This problem  is not unique to stellar classification, similar problems are found in other
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areas of astronomy (e.g. removal of artifacts from images, determining galaxy morphology), 

other sciences (e.g. detecting abnormal heartbeats on diagnostic screens) and business (e.g. face 

recognition, postcode recognition). There are many things that humans are so expert at that we 

can do without thinking, or do fairly easily after some degree of training, and yet are very hard 

to convert into a com puter algorithm. The field of com puter science that deals with this kind 

of problem is called machine learning. M achine learning is basically about designing systems 

which improve their performance through some kind of ‘learning’ process. There are two types 

of systems, supervised, in which the program has a set of pre-classified objects to work with, 

and unsupervised  in which the program discovers possible classes working only from the raw 

data. Since stellar spectra already have well defined classes, the methods used in this chapter 

will all fall into the category of supervised machine learning.

Regardless of what specific type of machine learning method is used (e.g. decision trees, 

artificial neural networks) the general method of applying them is similar. The initial data is 

a large set of unclassified objects. Crucial to supervised learning is that there is also a (much 

smaller) set of objects for which the classifications are known. These objects form the training 

and testing sets. First the system is trained  by giving it the raw inputs (in our case, the spectra) 

and their corresponding classes. The training set consists of a subset of the known spectra. 

Using a different subset o f the known spectra, the system is then tested and some measure of 

its accuracy obtained. By changing some of the systems parameters, and repeating this process, 

a good set o f parameters is found for the problem. After this fine-tuning, the system is then 

applied to the unknown spectra. In the rest of this section I will discuss the different methods 

that have been used for stellar spectral classification.

2.3.1 Criterion evaluation

It is widely recognised that humans are exceptionally good pattern matchers, far better than 

any current automatic techniques. The human classifier generally uses criterion evaluation. 

In the context o f stellar classification, this involves choosing specific properties of the spectra 

that appear to be good at distinguishing between different types. For example, the ratio of H el 

to H ell lines is used to distinguish between O type stars (Morgan and Keenan, 1973). The
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largest hom ogeneously classified group of stellar spectra is the M ichigan Catalogue (currently 

5 volumes, the latest being Houk and Swift, 1999), which have been classified by Houk and 

co-workers over the last 30 years. H ouk’s internal error is estimated to be 0.44 subtypes (Houk, 

1979), which sets a lim it to what automatic techniques can achieve.

It is not surprising that some of the early attempts at automatic classification used criterion 

evaluation techniques. West (1973) outlines a system for automatically classifying objective 

prism spectra and suggests some useful criteria: line depths, line-depth ratios, peak heights, 

equivalent widths and absence/presence of specific features. Zekl (1982) and M alyuto (1984) 

both experim ented with criteria evaluation, using line-depth ratios and equivalent widths.

Since these methods involve selecting only a small amount of data to use for comparison, 

they are com putationally fast. However, selecting which criteria to use and measuring them 

in a standard way can be a problem. Also the techniques do not automatically extend to other 

wavelength regions, since new criteria have to be chosen. In some ways it seems this method 

should best reflect the way that humans perform the classification. However, it is not always 

clear —  even to expert human classifiers —  exactly how they make their final decision. This is 

the problem that most machine learning methods are trying to overcome.

2.3.2 Minimum distance methods

The m inim um  distance method (m d m ) approach is probably the sim plest m achine learning 

method. It involves comparing a set of unknown spectra to a set o f known spectra and choosing 

the closest match. One advantage of this approach is that no training is needed, as the ‘training 

set’ is the set o f templates, kept throughout the process. However, to be successful it requires 

the training data to be dense in each parameter being classified (in particular, it is important 

that each subtype is represented).

Early research by Kurtz (1982) found that weighted metric distance methods were quite 

successful. The general metric distance between an unknown spectrum 5 /  and a template
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spectrum 7; is given by

dST = - Y a 2(i)(Si - T l)2 (2.3)
n i

where a (i) is a chosen weighting and n is the number of spectral points (pixels). W hen a(i) =  1 

then the equation reduces to the usual Euclidean metric distance. Kurtz initially found set­

ting a(i) = cr(/), the variance of pixel i over the set of templates, to be effective, since the 

most weight is given to the pixels carrying the most information. In 1984 Kurtz proposed an 

improved weighting factor

( 2 .4)
cr2(z)

where I  is the variance for each pixel calculated across the set of, for example, G stars and cr 

is calculated across the set of, for example, G2 stars. This weighting has the effect of selecting 

out those features that vary most across the larger group, but are very sim ilar within the final 

class. For example Kurtz classified a sample of B type stars into subtypes with a mean error 

o f 2.19 subtypes using the basic Euclidean distance. This improved to a mean error of 1.14 

subtypes when using the weighting given in Equation 2.4 (Kurtz and Lasala, 1991).

M inimum distance methods have the advantage that the results are easy to interpret physi­

cally. However, they can be hard to apply to multi-parameter problems (such as classification 

in both spectral type and luminosity class). Since every unknown has to be compared with 

every template spectrum and there needs to be a template representing every possible classifi­

cation, this method can be quite slow computationally. Bailer-Jones (2001) suggests it would 

be prohibitively slow to classify a large group of spectra in, say, five parameters.

2.3.3 Artificial neural networks

M ost of the recent attempts to automatically classify stellar spectra have used artificial neu­

ral networks (ANN). For example Weaver and Torres-Dodgen (1997), Singh et al. (1998) and 

Bailer-Jones et al. (1998a) have used them, with varying degrees of success. The most suc­

cessful result has been from the work of Bailer-Jones et al. (1998a) who achieved an accuracy 

of cr = 1.09 subtypes using his own neural network software package, s t a t n e t 4. Neural

4Available from h t t p : / / www.mpia-hd.mpg. d e /h o m e s /c a l j  /  s t a t n e t . htm l

http://www.mpia-hd.mpg
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networks are flexible tools, used in a wide range of fields on a very diverse set of applications. 

For an introduction or review of the theory of neural networks, see Bishop (1995). For a re­

view of their application to astronomy problems, specifically stellar spectral classification, see 

Bailer-Jones (2001).

The original artificial neural network algorithms were designed as simple models of brain 

function. The purpose of the neural network is to learn the relationship between some input 

data and its parameters. The network relies on intrinsic properties and patterns in the data, 

rather than externally constructed rules. Neural networks consist of a series of layers, each 

with a chosen num ber of nodes and connections between the nodes. The process of classifying 

with neural networks involves firstly training the network on a set of known spectra. Neural 

networks can be quite slow to train {i.e. adjusting node connections to optimise successful 

classification of training data), but are fast to apply, which is an advantage since the training 

only needs to be done once (provided the training set is chosen carefully). They can cope well 

with nonlinear trends in the sample, and can recognise intraclass and interclass differences.

Every source in the training set affects the classification of all of the other sources, and 

so it is im portant that the distribution of frequencies of objects in this training set is realistic. 

This can be a problem if the expected distribution is unknown. Also, neural networks are not 

as robust at dealing with missing data as some of the other methods. I believe that the main 

disadvantage of neural networks at the moment is the fine tuning required to get the best result. 

There are many parameters that have to be chosen, such as: number of layers, num ber of nodes 

in each layer, when to stop training and how to weight the nodes, just to name a few. The 

perform ance of the neural network can be very sensitive to some or all of these parameters, as 

well as the exact nature of the training data. However, they have produced the best results so 

far, and so are very important for automatic classification of stellar spectra.

2.3.4 Principal component analysis

PCA has mainly been used as a method for data compression (discussed later in Section 2.4), 

reducing the data to a number of principal components before applying a neural network. How­
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ever, there have been some attem pts to use PCA directly as a classification method. W hitney 

(1983) classified 53 A and F  type stars by doing a linear fit to the 3 most significant principal 

components. The accuracy of the classification proved to be no worse than when all 47 data 

points were used. Ibata and Irwin (1997) classified 1500 K stars into the discrete classes ‘gi­

ants’ and ‘dw arfs’. For the highest S/N spectra their success rate was about 90 -  95% but the 

lim ited nature of this work makes it hard to compare with other methods.

PCA has the advantage o f being a relatively fast procedure that can also account for incom­

plete spectra by projection onto the eigenvectors. Since the principal components themselves 

often have ambiguous physical interpretations, they are probably more suited to data com pres­

sion, rather than as a direct classification method.

2.4 Dimensionality reduction techniques

Automatic classification of astronomical sources is essential in the age of surveys such as SDSS 

and g a i a  —  clearly a com puter can perform many tasks much faster than a human. H ow ­

ever, even a relatively fast procedure (such as calculating correlation coefficients) can become 

impractical when applied to a million spectra.

Data compression can be used to significantly speed up the required calculations by reduc­

ing the num ber of dimensions needed to describe each spectrum. W hen compressing the data it 

is crucial that the important information in the spectrum is retained. Not all of the information 

available may be useful or necessary for classification and some of it is almost certainly not 

(e.g. noise). For example, when people classify stars, they select a certain number of features 

which are measured, as well as looking at the overall spectrum. We could do the same type of 

thing within the machine learning paradigm, select a small number of features, measure them 

and then make these inputs to the system. However, there are several disadvantages to this. 

Firstly deciding which features to use immediately adds an interactive element to classifica­

tion. Secondly, although there are standard absorption features that human classifiers measure, 

there is no clear way of taking into account the overall feeling they have about the spectrum.



2.4. D im ensionality reduction techniques 29

In this section I explain the principles behind the two methods of dim ensionality reduction 

that I use in this thesis; wavelet analysis and principal component analysis.

2.4.1 Wavelet analysis

In the last decade wavelets have become a popular tool for many astrophysics problems cov­

ering a wide range of areas from analysis of time-varying phenomena such as solar bursts 

(G im énez de Castro et al., 2001) to analysis of clustering and substructure in interstellar clouds 

(Langer et al., 1993). The wavelet transform is similar to the Fourier transform in that it allows 

a function, f (A) ,  to be represented by a set of orthonormal basis functions, tj/Jk(A)

where djk are the wavelet coefficients. However, unlike the Fourier transform (which is spa­

tially infinite), the wavelet function is localised in space (or time) and frequency, making it 

more efficient at representing discontinuities in the signal, or frequency behaviour that varies 

with time.

Every basis function within a given wavelet family ij/ jk(A) is obtained from a mother wavelet 

i//(A) (Figure 2.3) by shifting and scaling using the following formula

where j  and k are the scaling and shifting parameters respectively. This dual localisation in 

space and frequency means that wavelets can be used as a probe to determine the scale that 

the information is carried on. Some of the wavelet coefficients pick up fine structure in the 

spectra (such as noise) while others detect the coarser structure (such as changes in the shape 

of the continuum). It also results in many functions having a sparse representation to a high 

level o f accuracy, when transformed into the wavelet domain. Within a class o f wavelets (such 

as D aubechies or H aar wavelets) there are a range of different mother functions (Figure 2.3). 

D epending on the application, a function that is highly localised (compact) or one that is very 

smooth may be preferred. The Daubechies wavelets have proved to be particularly useful for 

signal com pression and for representing discontinuities in the signal (Meyer, 1993). Through­

out this thesis I will be using the Daubechies wavelet of order 20.

oo CO
(2.5)

i/rJk(A) =  2j/2>f,(2j A -  k) (2 .6)
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Wavelet number Wavelet number Wavelet number

Figure 2.3: Three examples of wavelet mother functions from the Daubechies family. These 

were created by inverse transforming a delta function. Left: Daubechies 4. Centre: Daubechies 

12. Right: Daubechies 20.

The w a v e l e t  c o e f f ic ie n ts  d ; j  given by Equation 2.5 are actually linear superpositions of the 

f u n d a m e n t a l  c o e f f ic ie n ts  that define the wavelets (this will be demonstrated in Equation 2.9). 

It is important to make the distinction between these two sets of coefficients, and so in this 

section I will refer to each explicitly. However, in the rest of this thesis, the term c o e f f ic ie n ts  

will mean dij —  the result of doing a wavelet transform.

A set of wavelets can be specified by a matrix of its fundamental coefficients and forms the 

basis of the Discrete Wavelet Transform (d w t) . The most compact Daubechies wavelet is of 

order 4 and so has four fundamental coefficients, c  o, c j, C2 , c 3 which form a matrix

Co Cl C l C3

C'3 - C l Cl - c ’o

co Cl C2 C3

C3 —C2 Cl -C o

(2.7)

Co Cl Cl C3

C3 -Cl Cl -Co

C2 C3 Co Cl

Cl -Co C3 —Cl .

By using the fact that the above matrix is orthogonal, and by requiring that the sequence 

C3 , - c 2 , c i , - c 0 has a certain number of vanishing moments, the values of the fundamental
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coefficients can be calculated. For the Daubechies 4 wavelets, these have the values

c0 = (1 + V 3 ) /4 a/ 2 ci = ( 3 +  V 3 ) /4 V 2
(2 .8)

C2 =  ( 3 -  V 3 ) / 4 V 2  c 3 =  ( 1 - V 3 ) / 4 V 2

Values for different wavelets can be found in tables, for example in Daubechies (1988). The 

matrix is actually comprised of two filters (quadrature mirror filters) which perform different 

operations when applied to the data. The output of the first filter ( c 0, c \, c2, c3) is the smooth 

information about the data. The output of the second filter (c 3 , — C2, c \ , —cq) is the detail infor­

mation about the data. So one application of matrix 2.7, to a data vector of length 8 gives a 

vector of interleaved smooth (s) and detailed (d) components

Co Cl C2 C3 X, s 1

C3 -Cl Cl -Co XI d,

CO Cl Cl C3 X3 Si

C3 —Cl Cl -Co x4 di

Co Cl C2 C3 X5 S3

C3 -C2 Cl -Co X6 dz

C2 C3 Co Cl X7 S4

Cl -Co C3 —C2 xs d4

However this has only operated on one resolution level —  extracting the 2 wavelet coef­

ficients that represent the finest structure. To access the next resolution level the matrix must 

be reapplied to the smoothed data. This is done hierarchically using the pyramid algorithm, 

separating the detail coefficients at each stage (by rearranging the vector), and reapplying the 

matrix to the remaining smooth coefficients. In this way, the number of smooth coefficients is 

reduced by a factor of two each time, until two final smooth coefficients are left, the mother- 

function coefficients. Hence the resulting vector consists of 2 residual smooth coefficients and 

2N -  2 wavelet coefficients, djj, and is the same length as the input data vector. In the case 

of the above example, only one more application is needed. In this thesis I calculate the DWT 

using the pyramid algorithm given in Press et al. (1992) and shown in Equation 2.10.
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X\ si ■ri Si ' 5,

X2 di si Di S i

*3

XA

*5

apply 
8x8 matrix

Sl

d2

S3

rearrange

Si

54

d\

apply 
4x4 matrix

S i

Di

di

rearrange

Di

Di

di

X6 d3 di d.2 di

Xl 54 di d3 d3

. *8 . ¿4 d\ dA d4 .

To help visualise this, Figure 2.4 shows an example of applying the DWT to a sine function 

and a slightly modified sine function. Comparing the two show how the wavelet transform 

probes structure on different scales. In both there are high amplitude wavelet coefficients at low 

wavelet numbers. These are caused by the sine curve itself. In the pure sine curve there is no 

structure at finer levels than this, and hence all the high wavelet numbers are zero. However, the 

transform of the modified curve shows some lower amplitude wavelet coefficients representing 

the fine scale structure —  in this case caused by the spike. Wavelet coefficients not only 

detect what frequencies are present, they also record the position of the various features at 

each resolution scale.

Data com pression

Many applications of wavelets are related to the fact that they can be used to compress data 

while still retaining most of the important information. The classification processes used in 

this thesis have linear time dependence on the number of data points. Hence, by using wavelets 

to compress the data by a factor of 1 0 , the time it takes to classify each spectra can potentially 

be reduced by a factor of 1 0 .

The power of wavelets as a method of data compression can be demonstrated using a typical 

stellar spectrum, as shown in the left panel of Figure 2.5. The wavelet transform is shown in the 

right panel. It is obvious that most of the coefficients are close to (although not equal to) zero, 

with most of the information being contained in a small number of coefficients. Truncating 

the vector of wavelet coefficients (keeping only the 1 0 % of the coefficients with the highest
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P ixel
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W avelet num ber

Pixel Wavelet num ber

Figure 2.4: Top: A 64 data point sine curve, and its wavelet transform. Bottom: The same sine 

curve, modified by adding a spike, and its wavelet transform.

4 0 0 0  5 0 00  6000  7000  8000  0 200 400  600 800  1000
Wavelength (À) Wavelet number

Figure 2.5: Left: A 1024 pixel section of an AOV stellar spectrum from the Pickles (1998) cat­

alogue (top) and below it, the spectrum created by inverse transforming the truncated wavelet 

coefficient vector (for clarity the spectrum has been shifted on the y-axis). The bottom line is 

the difference spectrum. Right: The wavelet transform of the spectrum. The low coefficient 

numbers represent information at coarsest levels, and the high coefficient numbers represent 

the finest structure.

absolute value and setting the rest to zero) and performing the inverse DWT results in the lower 

spectrum  in Figure 2.5. The truncated spectrum is remarkably close to the original, as shown 

by the difference spectrum.
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To make best use of this truncation, it would be preferable to avoid having to perform the 

inverse transform, since this requires keeping all the coefficients that have been set to zero as 

place markers. So what ever calculations that need to be performed in the classification process 

need to be carried out on the wavelet transformed spectra. One way of comparing two spectra,

/( /I)  and t(A), and an effective way of evaluating the effect of truncation is to use the correlation

function
f f (A ) t (A )d A

R = J . (2.11)
f  j2(A)dA)( f  t2(A)dA)

The two spectra, f(A) and t(A) can be represented by their wavelet decompositions

f(A) = ^  Ci^ij(A) (2 . 12 )
hj

t(A) = J ] d i j ilri j ( A ) .  (2.13)
i j

Now t(A) is truncated, keeping only a certain percentage of the coefficients

f(d) = dkii/zicijA) (2.14)
k,l

so that {k, I) is an appropriate subset of [i, j) . Substituting into Equation 2.11 gives

n f  Z iJ  Cijtyiji.ty Zjt,/ dkl^klitydA
R = Y =  (2.15)

- y ( / ( Z / j  Cijipij{A))2dA)( f  ( X k j  dkn//ki(A))2dA)

X lj  'Etk.l Cjdki J~ ij{A)t//ki{A)dA
C L i j  c ij)2C Lkj d ki)2 

but since the wavelets are an orthogonal set,

(2.16)

/ ikij(A)il/ki(A)dA = 6ik6ji (2.17)

which implies

R  _  Z kl ckldki
( Z i j c u n Z k j d k , ) 2 • (2-18)

This shows that calculating the correlation before and after the wavelet transform are equiv­

alent. Also, the calculations are only performed on the selected percentage of coefficients, 

significantly speeding up the process. Figure 2.6 shows the auto-correlation coefficient versus 

the percentage of wavelet coefficients removed (each time the auto-correlation coefficient is 

calculated using the truncated spectrum and the original spectrum.) It is clear from this Fig- 

uie that the spectrum can be highly compressed before there is any significant effect on its 

appearance.
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Percentage of coefficients removed

Figure 2.6: The change in correlation between the original and truncated spectra as more 

wavelet coefficients are removed. After 60% of the wavelet coefficients have been removed, 

the correlation with the original spectrum is still near perfect. It only decreases significantly 

after around 90% have been removed.

2.4.2 Principal component analysis

Principal component analysis (PCA ) is a well established data analysis technique that has been 

used widely in astrophysics. For example, it has been used in stellar classification by Bailer- 

Jones et al. (1998a) to reduce the dimensionality of the spectra before neural network classi­

fication. This is how I will be using PCA in the experiments described in Section 2.6. The 

discussion in this section is based on that in Murtagh and Heck (1987) and Folkes et al. (1999).

PCA is a process that transforms a large number of possibly correlated variables into a set 

of uncorrelated variables. M ost of the original information is contained in a small number of 

these independant variables and so it provides a way of representing a large amount of data 

with a few variables. We can see a set of n  spectra, each of length m  as an n x  m  array of data. 

For a typical set o f say, n ~  10000 of spectra, each with say, m  ~  1000 pixels (called attributes 

or variables), we are dealing with a very high dimensional dataset. PCA aims to find the best 

summarisation of this data.

Let us call the n x  rn matrix X  = {xu } where i is a spectrum (in ïv " ' space), and j  is an 

attribute of a spectrum (in space). The first step is to find an axis which accounts for the
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most variance within the dataset. The mean spectrum (r,-) is subtracted

Xij = n j - ? j  (2.19)

and then the covariance matrix is given by

I N
C j k = - Y j XijXik' 1 Zj * M, l <k<M  (2.20)

i- 1

Then the axis along which the variance is maximal is the eigenvector e \, of C i, which satisifies 

the equation

C \ e \ = A iei (2.21)

where d] is the largest eigenvalue (variance). The spectra are then projected onto this axis, 

and the process repeated to find the axis which accounts for the most variance. In this way, 

we obtain a set of eigenvectors and eigenvalues in order of what fraction of the variance they 

account for. The complete set o f eigenvectors form a set of orthogonal axes which describe the 

dataset completely. Each spectrum is then projected onto n axes and the eigenvalue obtained 

is the nth principal component (PC). A spectrum can be reconstructed from, say, x principal 

components by

S r = PC\e\  + PC2C2 + ■ ■ • + PCxex (2.22)

In practice very few of the principal components are needed for a good reconstruction of the

original spectrum, meaning a 1 0 0 0  pixel spectrum can be represented by as few as 3 to 5

principal components, without much information loss. This makes it an excellent method of 

data compression.

2.5 The data

A crucial part of any supervised machine learning task is the availability of a pre-classified data 

set. Ideally the data should have dense coverage of the parameter space, i.e. it should represent 

all the types likely to be found in the real data. The data should be complete, i.e. each spectrum 

should be a full spectrum over the range of the real data. And it should be accurately classified 

as any mistakes will be applied to the real data, resulting in mis-classifications.
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2.5.1 Data coverage

The lack of good training data is a stumbling block in the progress of automatic MKK classifi­

cation of stellar spectra. For physical parameterisation, grids of synthetic spectra can be used 

directly to obtain parameters for observed spectra. However, for m k k  classification, it is nec­

essary to have spectra classified by hand to use as the template set. As mentioned previously, 

the largest homogeneously classified group of stellar spectra is the M ichigan Henry Draper 

Catalogue, which has been classified by Houk and co-workers over the last 30 years. Until 

recently these have not been available as one dimensional spectra in a machine readable form. 

Hence typically people have used one of the following catalogues as template spectra.

Gunn-Stryker: The GS catalogue (Gunn and Stryker, 1983) consists o f 175 spectra at a res­

olution of 20/pix. The spectra cover the wavelength range A = 3130 -  10 800 .

Jacoby-Hunter: The JHC catalogue (Jacoby et al., 1984) consists of 161 spectra at a resolu­

tion of 4.5 /pix. The spectra cover the wavelength range A -  3510 -  7427 .

Silva-Cornell: The s c  catalogue (Silva and Cornell, 1992) consists of 72 spectra at a resolu­

tion of 11 /pix. The spectra cover the wavelength range A = 3510 -  8930 .

Pickles: The Pickles catalogue (Pickles, 1998) consists o f 131 spectra at a resolution of 5 /pix. 

The spectra cover the wavelength range A = 1150 -  10629 .

The spectral type distributions of the stars in each catalogue are shown in Figure 2.7. This 

figure clearly shows that the catalogues do not satisfy one of the major requirements of a 

stellar tem plate library — good coverage in parameter space. This is particularly clear when 

you consider that these plots group stars of different luminosity classes together, and yet still 

have a small num ber of spectra in most spectral class bins. This adds an unavoidable error into 

the automatic classification process.

The importance of having a larger and more homogeneous library of pre-classified spectra 

for use in autom atic classification has been recognised for some time. A big jum p forward 

was made by Bailer-Jones et al. (1998b) who extracted a set of digital objective prism spectra 

from the M ichigan catalogue. The plates were scanned in using the APM in Cambridge and
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Spectra l subtype Sp ectra l subtype

Spectra l subtype Spectra l subtype

Figure 2.7: The distribution of spectral types in each catalogue. W here the catalogue classifi­

cation covers more than one spectral subtype the average is used. The spectral classes are given 

a number ranging between 0 (for OO) to 69 (for M9). Top Left: GS. Top Right: SC. Bottom 

Left: JHC. Bottom Right: PI

the spectra then extracted into a one dimensional, machine readable format. The spectra are 

at a resolution of around 2 /pix and cover the wavelength range A = 3802 -  5186 . From the 

total of around 12000 spectra extracted, Bailer-Jones has created a sample of 5219 high quality 

spectra for use in automatic classification which are now publicly available. The distribution 

of these sources in spectral type is shown in Figure 2.8. The number of spectra in each spectral 

subtype is typically an order of magnitude larger than what was previously available in the 

much smaller pre-classified datasets.

2.5.2 Data preparation

Dealing with missing data is an important part of making a classification system robust. A 

system must be able to detect spectra with missing data, and then correct for this. For example, 

the wavelet transform requires a data vector of 2  N pixels and hence it is necessary to interpolate 

over missing sections so that the number of pixels is correct.
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Figure 2.8: The distribution of spectral types in the Bailer-Jones catalogue. The spectral classes 

are given a num ber ranging between 0  (for OO) to 69 (for M 9 ).

4 0 0 0  5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0
W avelength (À )

Figure 2.9: A F67V type spectra from the SC catalogue (solid line) with the dotted line showing 

the interpolated sections.

Som e spectra in the GS and SC catalogues had missing data. In the SC catalogue this was 

systematic with four narrow regions missing from every spectrum. In the GS catalogue, only 

the occasional source had data missing. After some experimentation with these spectra I found 

that a sim ple straight line interpolation was a sufficient solution to this problem as it was much 

faster than a full polynomial interpolation, and did not significantly affect the results. An 

exam ple is shown in Figure 2.9. Because the classification methods being used in this section 

do not depend on any specific spectral features, they are not significantly affected by small 

sections of missing data.
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Before spectra are classified, the continuum is generally removed by one of several spectral 

rectification techniques. The reason for this is that the shape of the continuum is affected 

by factors that are not intrinsic to the star itself, such as interstellar reddening, atmospheric 

extinction and instrumental effects. There have been many different methods of continuum 

removal, most based on either polynomial fitting of the continuum (Zekl, 1982), high pass 

filtering in the Fourier domain (Lasala and Kurtz, 1985) or median and boxcar filtering (Bailer- 

Jones et al., 1998b). For the purposes of classification, the particular method of continuum 

subtraction chosen is not crucial, as long as it is consistent, and produces line spectra of similar 

quality across the range in spectral types being used.

One of the problems with polynomial fitting is that the fit is influenced by the spectral 

lines, particularly strong ones. Two possible ways of avoiding this problem are to define line 

free regions in which to do the fit (Zekl, 1982) or to fit only the ‘high points’ in the spec­

trum. Flowever, both these methods require regions to be pre-defined and hence are not general 

enough for a fully automatic process. I experimented with several of these methods, includ­

ing using the wavelet transform to extract low frequency information (i.e. the continuum), and 

found the most effective solution to be iterative polynomial fitting. The first step was to fit a 

5th order polynomial to the spectrum. Then all points that fell below the fit, were set to be 

equal to the fit, and the process repeated. Iterating until the RMS error between the fit and the 

original data converged gave good results. Limiting the process to 5 iterations gave comparable 

results. Figure 2.10 shows the basic polynomial fit, and the improvement gained by iterating 

in this way. For the Bailer-Jones catalogue, the data are provided in two formats, the original 

spectra and a continuum subtracted version. The process used for continuum subtraction for 

that catalogue is discussed in detail in Bailer-Jones et al. (1998b).

2.5.3 The numbering of spectral types

When considering automatic classification results quoted in the literature, it is important to 

note that the way the spectral types are numbered is significant. In this work, I have assigned 

every spectral subtype a value, ranging from 0 to 69 and going up in increments of 1, as shown 

in Table 2.4. For cases where the spectral type given in the catalogue was a range the value
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5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  9 0 0 0
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Figure 2.10: Top: An AOIV type spectra from the Pickles catalogue and a 5th order polynomial 

fit. A lso plotted is the continuum-subtracted spectrum. Bottom: The same spectrum with the 

fit resulting from the iterative fitting method described in the text.

allocated was the average numerical value. So the source o7b 1 iii in the Silva-Cornell catalogue 

has value = 9. In Bailer-Jones et al. (1998a) the spectral types are assigned integer values,

0 1  0 2  0 3  ••• B9 A9 F9 G9 K9 M9

1 2 3 ••• 19 29 39 49 59 69

Table 2.4: The numerical value assigned to each spectral subtype.

going up by one for each spectral type. However, when one subtype is missing the number still 

goes up by one. For example, if the type F7 was missing, F5, F6 , F 8 would be assigned 35, 

36, 37 rather than 35, 36, 38 as in my numbering system. This results in different values for 

the quoted errors. For example, in the next section I obtain an error of crrms = 2.43 using basic 

correlation on the Pickles catalogue. Recalculating this using Bailer-Jones numbering scheme 

gives an error o f crnns = 1.37. This should be kept in mind when comparing the results in the 

next section.
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2.6 A comparison of basic automatic classifi­

cation methods

In this section I present the results from my experiments with different methods of automatic 

stellar classification using the MKK system. All of these are old methods that have been used 

previously for this purpose. After presenting the results I discuss the limitations for these

2.7. Firstly I summarise the past results that have been achieved.

2.6.1 Summary of past results

The performance of each system is assessed using some form of error measurement based on 

the difference between the obtained classifications S pT„b and the ‘real’ classifications S pT .

To do this, a decimal value is assigned to each spectral subtype as described in Section 2.5.3.

Then the RMS value of the residuals

is used as a measure of the accuracy of the system. Table 2.5 shows a summary of results for 

various automatic stellar spectral classification methods. When looking at the quoted error, 

ctrms- if is important to note that only a few of these experiments have been carried out on 

spectra encompassing the full range of spectral types (namely Weaver and Torres-Dodgen, 

1997; Bailer-Jones et al., 1998b; Singh et ah, 1998). Limiting the sample, for example using 

only hot or only cool stars, generally results in a higher classification accuracy than when the 

whole range of O -M  type spectra is used. Hence the most significant results are the ones that 

consider all main sequence stars from O -M . The current state-of-the-art system is s t a t n e t  

which obtained a classification accuracy of ctrms = 1.09.

methods, and the need for more advanced methods, one of which will be discussed in Section

(2.23)

or the mean absolute value of the residuals

(2.24)
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N SpT 4 ( ) € CT Ref

MDM 350 B - 1.14 Lasala (1994)

MDM 80 F 8 - G 8 3500^1800 - 0.4? Lasala (1994)

MDM 229 O 3-K 0 1150-3200 2 - 1.4 Vieira and Ponz (1995)

CE B0 - F 2 14 - 0.5 Schmidt-Kaler (1979)

CE 117 B -K 3 - 0.7 Zekl (1982)

GPM 671 A 5-K 0 10  lines - - - Christlieb et al. (1997)

ANN 817 O -M 5800-8900 15 0.56 - Weaver and Torres-Dodgen (1997)

ANN 5000 O -M 3500-5200 3 - 1.09 Bailer-Jones et al. (1998b)

ANN 213 O -M 3500-6800 11 - 2 .2 Singh et al. (1998)

ANN 229 O 3-K 0 1150-3200 2 - 1.1 Vieira and Ponz (1995)

PCA 53 A -F 3500^1000 - 1.6 Whitney (1983)

V - 0.44 Houk (1979)

Table 2.5: Sum m ary of classification results from the literature. Column 1: the general clas­

sification method used (M D M  = M inim um  Distance Method; CE = Criteria Evaluation; GPM  = 

Gaussian Probabilistic Method; ANN = Neural Network; PCA = Principal Com ponent Analy­

sis; V = Visual). Column 2: the number of spectra used. Column 3: the range in spectral types 

used. Column 4: the wavelength range. Column 5: the sampling. Columns 6 & 7 are given by 

equations 1.1 and 1.2 respectively. Column 8 gives the references.

2.6.2 Correlation

The m ost straightforward approach is to correlate each spectrum with every template spectrum 

and then assign the unknown spectrum the class of the spectrum with the highest correlation 

coefficient. I then tested the effect of wavelet transforming the spectra and truncating the 

wavelet coefficient vector so as to speed up the classification process. To do this, I selected the 

n  coefficients with the highest absolute value, and recalculated the correlation coefficient.

M inim um  distance methods have no interpolation potential. In other woids, a spectrum 

m ust be given the classification of one of the spectra in the template set. This is different to 

neural networks in which the class of the unknown spectrum can be found by inteipolating
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GS s c JHC PI BJ

0 " rms e Q~rms e 0" rms e rms e 0 "rms e

1 0 0 % 3.79 2.78 3.07 2.39 3.47 2.53 2.29 1 .68 1.56 1.05

50% 3.89 2.83 3.06 2.36 3.38 2.47 2.35 1.76 1.53 1.03

1 0 % 4.30 3.13 3.35 2.47 3.49 2.42 2.43 1.82 1.58 1.03

5% 4.53 3.38 3.07 2.42 3.54 2.50 2.36 1.77 1.67 1.07

Table 2.6: Results for truncated correlation: the error in classification as a function of the 

percentage of wavelet coefficients kept when calculating the correlation. The best result for 

each catalogue is shown in bold.

between two spectra in the template set. Since the pre-classified datasets I have are so small 

(with the exception of the Bailer-Jones catalogue) my method of testing the MDM’s is to take 

one spectrum out and treat it as the unknown, using all the other spectra as template spectra. 

In a sense this is cheating, as the results obtained will be better than if the data was split into 

disjoint training and testing sets. Because of this, the results in this section should not be 

compared with results obtained using the correct training/testing procedure.

Table 2.6 shows the variation in classification error with the percentage of wavelet coeffi­

cients kept. There are several points that come from these results:

•  There is significant variation in the results between catalogues. This is due to important 

differences such as the sampling resolution —  the GS catalogue classifications have the 

lowest accuracy and the catalogue has the coarsest sampling at 2 0  /pix; the initial classi­

fication of the sources —  in the SC catalogue, 22 out of 72 sources have a classification 

that covers more than one spectral subtype (e.g. o7b0v, g9k0v); coverage of the spectral 

types —  obviously not having a template available for each spectral type will make the 

classification accuracy worse. Since each time one spectrum is taken out as the test case, 

this problem effects all spectral subtypes where there is only one representative spectrum 

in the catalogue (see Figure 2.7).

•  The Bailer-Jones catalogue gives by far the best results, the most significant factors in 

this probably being the coverage and the quality of the classifications.
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GS

O' rms e

sc

O'rms e

JHC

rms £

PI

O' rms e

BJ

O'rms e

- 1 0 0 % 3.79 2.78 3.07 2.39 3.47 2.53 2.29 1.78 1.56 1.05

Var 50% 3.96 2.84 3.07 2.39 3.51 2.56 2.25 1.65 1.52 1 .0 2

Var 1 0% 4.05 2.93 3.07 2.36 3.32 2.43 2.30 1.78 1.60 1.03

Var 5% 4.46 3.22 3.09 2.39 3.29 2.47 2.72 1 .8 8 1 .6 6 1.07

Ent 50% 3.64 2.69 3.10 2.45 3.74 2.76 2.41 1.80 1.54 1.05

Ent 1 0 % 3.64 2.84 3.89 2.95 3.58 2.62 2.42 1.87 1.65 1.08

Ent 5% 3.95 2 .8 8 4.07 2.93 3.68 2.60 2.60 1.89 1.77 1.17

Table 2.7: Results for weighted correlation: the error in classification as a function of the 

percentage of wavelet coefficients kept when calculating the correlation.

•  Decreasing the num ber of wavelet coefficients kept when making the classification does 

not significantly reduce the accuracy of the classifications. This demonstrates that wavelet 

analysis is useful as a data compression and information extraction technique.

As an improvement to basic truncation and correlation, I tried to select the wavelet co­

efficients which carried the most information. One way of measuring the information is to 

calculate the variance of each pixel, over the set of templates t \ . . . t n

VarOi . . .  tn) = — - y \ t j  -  t f  . (2.25)
n -  1 "

A nother is to use the entropy of each pixel, i, calculated over the set of templates t \ . . . t n

S t  = - ^ g a fj (2.26)
j=  i

where

a y  =  (2 -2 7 )

and Wjj is the value of the wavelet coefficient at pixel i, in template j .  The pixels with the 

highest variance or entropy are kept and used to do the correlation as before. Results fiom 

these methods are shown in Table 2.7. Using the coefficients with the highest variance allows

a factor of 10  data compression without any significant change in the classification accuracy.
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The best result for each catalogue in this section are all equal or better than the best result for 

each catalogue using straight correlation.

It is interesting to see whether the wavelets with the greatest variance across the training 

set correspond to features that we would expect to be useful in classifying spectra. Figure 2.11 

shows a segment of a spectrum from the Bailer-Jones catalogue. Underneath it are plotted 

the variance values for wavelet coefficients at various resolution levels, where the variance is 

calculated across the set o f wavelet-transformed Bailer-Jones spectra. The variance is higher in 

regions with strong spectral lines —  each of the four main spectral lines marked can be clearly 

identified at one of the resolution levels —  showing that the wavelets do pick out important 

features.

2.6.3 Criterion evaluation + correlation

As discussed in Section 2.3.1, criterion evaluation is the approach taken by human classifiers 

and hence was the method used in the first automatic classification systems. Since an auto­

matic approach should be adaptable and fast, it is preferable to avoid calculating any specific 

properties of the spectra such as line widths or line ratios. However, I did test a slightly more 

general variation on the approach —  using a filter to select the sections of the spectrum known 

to have important features. Since the intensity of the major lines used to classify spectra varies 

greatly across the range of spectral types, it seems that they will provide good discrimination 

between types.

The method is straightforward. Each continuum subtracted spectrum is multiplied by a 

weighting vector, consisting of l ’s around the important features and 0 ’s everywhere else. 

Then the spectrum is wavelet transformed and cross-correlated with the template spectra as 

described earlier. To make the weighting vectors I used various combinations of the lines of H, 

Hel, H ell, 01, O il, Cal, Call, Fel, Fell and Felll. I obtained the best accuracy {crnns = 2.28) 

using a combination of H, Call, 01 and Fell lines. This is not as good as selecting the wavelet 

coefficients on the basis of those with the greatest variance, highlighting one of the problems 

with this method -  the difficulty of selecting the ‘best’ features for use in classification.
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16 18 20  22 24- 26  28  30
W avelet num ber

Figure 2.11 : The variance of the wavelet coefficients across the set of Bailer-Jones spectra. The 

top panel shows a section of spectrum (À = 3 8 0 1 -4 4 8 0  ) with four spectral lines labelled. The 

second panel shows variance values for wavelet coefficients at the highest resolution level. The 

variance is quite low as this level mainly picks out noise in the spectra. The following panels 

show the variance for the coefficients at increasingly coarse resolution levels.
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GS SC JHC PI BJ

C^rms e 0 rms 6 O" rms e O" rms e O" rms e

1 0 0 % 3 .5 6 2.56 3.62 2.73 3.57 2.56 2.31 1.78 1.62 1.06

50% 3.61 2.64 3.63 2.77 3.51 2.50 2 .3 1 1.78 1 .6 2 1.05

1 0 % 3.84 2.74 3 .6 0 2.75 3.52 2.40 2.38 1.80 1.65 1.06

5% 4.15 3.01 3.68 2.80 3 .4 1 2.36 2.38 1.81 1.76 1.13

Table 2.8: Results using the unweighted distance metric. The best result for each catalogue is 

shown in bold.

2.6.4 Distance metric

I tested the Euclidean distance metric (Equation 2.3 with a  -  1) with various levels of trunca­

tion based on the wavelet coefficients with the highest absolute values. These results are shown 

in Table 2.8. None of the results are as good as those obtained with cross-correlation using 

the variance selected wavelet coefficients. However, again they do demonstrate that little or no 

classification accuracy is lost by using only a small percentage of the data for classification.

2.6.5 Multi-tiered system

The best results from many of the neural network trials, for example Bailer-Jones et al. (1998a), 

are obtained by first classifying the spectra into general spectral type (O -M ) and then classi­

fying each class separately to obtain the spectral subtype. This has the advantage that the 

important information is reassessed, leading to a better classification. For example, a particular 

region of the spectrum may be useful for distinguishing between A and B stars, but not useful 

for distinguishing between A1 and A2 stars. To try and incorporate this into the basic meth­

ods, I developed a two-tier system which works as follows. The spectra are truncated based 

on the wavelet coefficients with the highest variance over the complete set of templates and 

then classified. Based on these initial classifications, the spectra are split into 7 groups, one 

for each spectral type, as shown in Table 2.9. Then the variance is calculated across each of 

these groups separately and each spectrum is reclassified using only the spectra in its group.
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0 0-10  09-20 19-30 29-40  39-50 49-60  59-69
Test spectra

OO-BO 09-A O  B 9-F0 A 9-G 0 F 9-K 0 G 9-M 0 K 9-M 9

I  i  i  I  I  I  i  I

Templates O B A F  G K M

Table 2.9: For the second classification stage, test spectra with types in the ranges shown in the 

top row are correlated with templates of the type shown in the bottom row.

There is a slight overlap between the groups of test spectra so that, say, an A1 spectrum that 

was wrongly classified as B9 has a chance to be reclassified correctly in the second round. 

Hence several spectra will end up going into two groups. To decide the final classification in 

these cases, the match with the highest correlation coefficient was chosen. W hen tested on the 

Pickles catalogue, this method gave the same accuracy as the variance weighting correlation. 

However, I think that with a template set that covered the spectral type space more evenly, this 

could give superior results.

2.7 Support Vector Machines

The use of Support Vector M achines (SVM) have been proposed and used for astronomical 

applications in several conference papers (Goderya and M cGuire, 2000; Humphreys et al., 

2001; W ozniak et al., 2001) but other than this have not yet been used in astronomy. However, 

SVMs are known to outperform ANNS on many standard machine learning tasks. In this section 

I will briefly outline the theory behind SVMs and explain why they have the potential to improve 

on the methods more commonly used in astronomy, such as neural networks and decision trees. 

Then I will show the results of my application of SVMs to stellar spectral classification.
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2.7.1 Theory

The basis of SVMs (and also ANNs) is the linear learning machine. As discussed earlier, in 

supervised learning the machine is given a training set which have already been classified 

by experts. The training set consists of the data (input) and the pre-assigned classifications 

(output). The learning process consists of finding a target function  that maps the input data to 

the resulting output. For input x e X  where X  is the set o f possible input vectors, the linear 

learning machine has the form

/(x )  = w • x + b (2.28)

where w is the weight vector for the linear combination and b is the bias { - b  is often called 

the threshold in neural networks), / ( x )  defines a hyperplane that divides the input space into 

two halves. Hence, the linear learning machine assigns inputs to the positive or negative class 

according to the sign of /(x ) .

The margin of an example (x,•,)>,•) where y; is the correct classification, measures the dis­

tance from the hyperplane defined by (w, b) and is given by

Mi = y,(w • x,- + b) . (2.29)

If Mi > 0 then the hyperplane correctly classifies example (x,-,y,-). The geometric margin is

defined in a similar way with the normalised hyperplane ( ¿ w ,  ^ ¿ 0  and gives the Euclidean

distance to the plane. The margin of a training set is the maximum geometric margin over all 

hyperplanes.

Frank Rosenblatt proposed the first iterative algorithm for setting the weights of a linear 

learning machine in 1956. This perceptron algorithm formed the basis of early neural net­

works and involved updating the weights vector and bias directly using misclassified training 

examples. The final weights vector is a linear combination of the training examples

m

w = XÌ  aiy'xi 
1=1

(2.30)
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Figure 2.12: Attributes (x and o) that are not separable in linear space X are transformed (by 

a kernel f) into a space F in which they are separable. Image source: Cristianini and Shawe- 

Taylor (2000)

We can therefore rewrite the linear learning machine in dual form

f{ x )  = w - x  + b (2.31)
111

= Y j a Jyj x j ' x + b  (2-32)
j=i
m

= ' Y j a iy i x j ' x  + b ■ (2-33)
j= i

Notice that / ( x )  is now defined solely in terms of inner products of input examples. The dual 

perceptron algorithm only uses inner products of training examples. An advantage of the dual 

representation is that it is not dependent of the number of input parameters.

Since linear learning machines consider only functions that form linear combinations of the 

input variables they have limited computational power, because in many real world situations 

the object attributes can not be separated linearly. One approach to solving this problem was 

to have m ultiple layers of thresholded linear functions, which led to the development of neural 

networks. An alternative approach is to introduce kernel representations which project the data 

into a high dim ensional space in which it is possible to separate the attributes linearly. This is 

dem onstrated in Figure 2.12.
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A concrete example (Example 3.1 from Cristianini and Shawe-Taylor, 2000) is the equation 

for Newton’s law of gravitation, which in the context of machine learning we would call the

target function, as it maps the input data (m \, m 2, r) to the output F

F { m \ ,m 2,r )  = ^  . (2.34)
r®

It its standard form it could not be learned by a linear learning machine as the input variables 

are related in a non-linear way. However, by transforming it into different coordinates

(m i,m 2, r) 1— » (x ,y ,z )  = ( ln n i] ,ln n i2 , ln r )  (2.35)

it is now in the form

g (x ,y ,z )  = In F (m u m 2,r)

= InC  + lnn ii + lnn i2 -  2 1 n r  

= c + x  + y  -  2z

which could be learned by a linear machine. This process can also be considered feature  

selection as a new set of quantities, features, are introduced to represent the original data. In 

this way, it is similar to transforming the data into its principal components before running a 

neural network. An advantage of s v m s  is that they allow more generality in how you do the 

feature selection.

In the dual form the training examples never appear isolated, but always in the form of inner 

products between pairs o f examples. By replacing this inner product by a kernel function, the 

mapping to higher dimensional feature space is done implicitly in the learning process without 

increasing the number of tunable parameters (weights). The definition of a kernel is a function 

K, such that for all x, z e  X

K(x, z) =  ■ ij/(z) (2.36)

where <A(x) is a mapping from X  to an inner product feature space F. Clearly the inner product 

is an example of a kernel by making the mapping ifr(x) the identity function. An example of a
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non linear m apping is the square of the inner product

1=1 
n n

(2.37)

= (2.38)
1=1 7=1 

(n,n)

X (W X Z iZ j )  ■ 
( i, j)= ( l,D

(2.39)

This is the same as taking the inner product of i//(x) and i//(z) where the mapping function is

In this case the new features are all of the products of the existing features. We have implicitly 

increased the feature space with very little additional computation. In practice kernels are often 

defined directly and the feature space is implicitly defined. However, it is possible to explicitly 

define a feature space and take the inner product.

The problem of finding a separating hyperplane has non-unique solutions. Support vec­

tor classification aims to efficiently select a good separating hyperplane in high dimensional 

feature space. There are many alternative definitions of ‘goodness’. The simplest example of 

an SVM algorithm is the M aximal Margin Classifier which aims to find the maximal marginal 

hyperplane. This reduces to a convex optimisation problem of minimising a quadratic function 

under linear inequality constraints.

Given a linearly separable training sample

This optim isation problem is solved using Langrangian multipliers on the dual representation. 

In practice the maximal margin classifier is not used because the data is generally noisy and so 

not linearly separable without very powerful kernel functions which tend to lead to overfitting

IA(x) = (x (2.40)

S = ( ( x i ,y i ) , . . . , ( x m,y,„)) (2.41)

find the hyperplane (w, b) that solves

min w ■ w
(w ,b)

(2.42)

subject to

y,(w • x,- + b) > 1 i = 1 , . . . ,  m (2.43)
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of the data. However, they form the basis of many other SVM methods. For more details of 

how the algorithm works and a complete treatment of this field see Cristianini and Shawe- 

Taylor (2000).

2.7.2 Results

The particular SVM software that I have chosen to use is SVMTorch (Collobert and Bengio, 

20 0 1)5 which I have used to do all my experiments. SVMTorch does multi-class classification 

and was chosen mainly because of ease of use. I used the Bailer-Jones catalogue for testing 

because, as discussed in Section 2.5, this is the only pre-classified catalogue currently available, 

with reasonable coverage of parameter space. There were a total of 5219 spectra which satisfied 

the quality flags that Bailer-Jones et al. (1998a) uses.

The most significant step in training the SVM is choosing the kernel to use. In an example 

like the one in Equation 2.34, there is a theoretical basis for choosing the transformation into a 

new space, since it obvious how the input quantities are related. However, for stellar classifi­

cation there is no obvious theoretical reason for choosing a particular mapping, and so as with 

many machine learning problems it is necessary to experiment empirically to find a successful 

one. I ran initial experiments with three standard kernels: the polynomial kernel

K (x,z)  = ( s x - z  + r)d (2.44)

where s.r and d  are constants, the Gaussian kernel

K(x,z)  = e~nx~z^ ,2(r (2.45)

where cr is the standard deviation and the sigmoidal kernel

K{x,z)  =  tanh(sx -y + r) (2.46)

where s and r  are constants. I also experimented with a%2 kernel

K (x,z)  = e -d^ /<r2 (2.47)

5 available from h t t p :  / /w w w .  t o r c h ,  c h / .
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where d(x, z) -  Ü/Li ' *¡+3 •  ̂ found that only the Gaussian kernel was successful for this task, 

and so I will use that throughout rest of this chapter.

For the initial testing I split the catalogue into a training set of 4696 spectra and a testing 

set of 523 spectra. Because the SVM uses the kernel representation, I hypothesised that doing 

dim ensionality reduction using wavelets or PCA would make very little, if  any difference to the 

results. However, I decided to test them anyway, and hence had 3 different forms for the input 

data:

Raw data Line only and line+continuum spectra, each with 820 pixels.

Principal components I used various numbers of project coefficients from the line only spec­

tra [5, 10, 15, 25, 40, 50, 75, 100] as the input vectors.

Wavelet coefficients I used various numbers of wavelet coefficients [25, 50] as input vectors, 

selected in terms of greatest variance across the training set.

For the Gaussian kernel the free parameter is the standard deviation, cr. The results for different 

values for cr for the Gaussian kernel, using various numbers of principal components as inputs 

are shown in Figure 2.13. The most successful result was RMS = 1.83, for cr =  2300 and 

npc = 100, as shown in the right hand panel of the figure. Similar plots in Figure 2.14 show 

the results using wavelet coefficients as inputs. The best result was RMS = 2.14 for n wvt = 50 

and cr -  15 as shown in the right hand panel of the figure. Figure 2.15 show the results using 

the raw 820 pixel spectra directly as inputs to the SVM. I experimented with both the line-only 

and line+continuum  data, with the best result being RMS = 1.729 for cr =  40 and using the 

line-only data. Pre-processing the data using principal components or wavelets did not improve 

the results, and in fact made them slightly worse than simply using the raw data.

To accurately com pare two machine learning systems it is necessary to carry out some 

form of cross-validation, as described by Mitchell (1997). In this, the data is partitioned into k 

subsets, o f equal size, where the size of each is at least 30. Then each learning system is trained 

and tested k  times, each time using one of the subsets as the test set and the rest as the training 

data. This allows an accurate estimate of the systems performance to be determined. Although
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Figure 2.13: Left: Results for the Gaussian kernel shown across the entire range of a  values 

that I experimented with. Right: A zoomed in portion of the plot in the region that the best 

results were obtained, with various values of cr for inputs of: 10  principal components (solid 

line), 25 principal components (dotted line), 50 principal components (dashed line) and 100 

principal components (dot-dash line).

Sigm a Sigm a

Figure 2.14: Results for the Gaussian kernel with various values of cr for inputs of: 25 wavelet 

components (solid line) and 50 wavelet components (dotted line). As in the previous plot, the 

left and right hand plots show the entire range of cr values and a zoomed in portion respectively.

none of the results above were as good as the s t a t n e t  results I have done cross-validation 

on both s t a t n e t  and SVMTorch to quantify how different the systems are. I divided the 

catalogue 5219 spectra into 20 different training and testing sets. Each training set consisted of 

4959 spectra and each testing set had 260 spectra. I then ran the neural network (with settings 

as close to those used by Bailer-Jones as possible) and the SVM (with a Gaussian kernel) on 

each training/test set pair. I used several different values of the cr for the Gaussian, based on 

which ones performed best in the initial experiments done above. The results are shown in
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Figure 2.15: Results for the Gaussian kernel with various values of cr and using the raw spectra 

directly as inputs. The results for the normal spectra are shown with the solid line and the line- 

only spectra with the dotted line. As in the previous plot, the left and right hand plots show the 

entire range of cr values and a zoomed in portion respectively.
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Figure 2.16: Cross-validation results for SVMTorch and s t a t n e t .  The results for each set 

are denoted by points and the average for each method by a line as follows: SVM, Gaussian 

with cr = 40 (diamonds and solid line); SVM, Gaussian with cr = 50 (crosses and dotted line); 

com m ittee of 10 ANN (triangles and dashed line).
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Figure 2.16. The average RMS over all the sets is RMS = 1.98 for the SVM with cr = 40 and 

RMS = 1.21 for the neural network.
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2.7.3 Discussion

Although the ANN results have consistently higher accuracy and hence are still clearly the 

better option, there are several interesting points to take away from these results. Firstly, the 

variation in the accuracy between each run shows the importance of proper comparisons on a 

range of test and training sets when testing any machine learning method. For example, the 

best result from the 20 trials of the ANN was RMS = 0.85 but the average over all the trials 

for the ANN was RMS = 1.21. In each case, only 260 spectra have been removed and yet the 

classification accuracy varies from between 0.85 and 1.79 for the neural network and between 

1.51 and 2.30 for the s v m . This demonstrates the sensitivity of the systems to the exact nature 

o f the training and testing data. Unless machine learning methods have been tested in this way, 

the quoted accuracy achieved is not necessarily reliable. Secondly, pre-processing the data 

by doing dimensionality reduction with wavelet coefficients or principal components does not 

improve the results for the SVM as it does for the ANN. This means that if these results can be 

improved upon, we would not need to worry about feature selection at all and could just use 

the raw data directly.

2.8 Future work

In this chapter I have shown that the traditional ways of classifying stellar spectra would not 

be practical for current and future datasets in which there may be millions of spectra. Old 

techniques such as m inimum distance methods are not successful enough compared with ma­

chine learning techniques such as neural networks. Neural networks have massively increased 

the classification accuracy achievable in stellar spectra classification, as well as many other 

areas of astronomy. However, even neural networks have their limitations —  one being their 

sensitivity to small changes in the training data or network parameters.

There are many other machine learning techniques, which have been underused in astron­

omy. I have demonstrated the use of one of these techniques, support vector machines, which, 

with further experimentation I believe will improve the results in stellar classification and other
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sim ilar problems. Some possible directions for future research on this topic are

•  to test support vector machines more extensively on a wider range of astrophysics clas­

sification problems;

•  to try different types of  SVM;

•  to look more deeply into the theoretical basis for selecting a good kernel;

A nother problem that exists in stellar classification is the difficulty with developing a robust 

classification system. M ost classification systems focus solely on main sequence stars, not 

including the more unusual stars such as Carbon stars and W hite Dwarfs. Any truly automatic 

system  will have to work across a range of spectral types. Hence I think another direction for 

this research would be to

•  design a system  that can handle all types of spectra - not just those of normal stars;

•  test this system on the SDSS and see how successful it is at finding the unusual stars that 

have already been discovered, for example by Harris et al. (2003).
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C h a p t e r  3

A library of high resolution Kurucz 

spectra

3.1 Introduction

Progress in population synthesis and automatic classification of stellar spectra has been limited 

by the spectral resolution of the available synthetic stellar spectra. The existing synthetic li­

braries are not at high enough resolution to be useful for classifying stars from recent surveys 

such as the SDSS (Stoughton et al., 2002) (d/A d ~  1800), or future surveys such as r a v e  

(Steinm etz, 2002) and GAIA (Lindegren and Perryman, 1996). M ost classification techniques 

sm ooth the observed spectra to the resolution of the synthetic spectra. This means much of 

the detailed information in the observed spectra is lost, which may reduce the quality of the 

classifications. Population synthesis packages such as PEGASE (Fioc and Rocca-Volmerange, 

1997) or GISSEL (Bruzual and Chariot, 1993) use a grid of stellar spectra to generate galaxy 

spectra. The resulting galaxy spectra are limited by the resolution of the input stellar spectra. 

To study the high resolution features, it is necessary to have a grid of observed or synthetic
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stellar spectra which match the resolution of the observed galaxy spectra. For example, galaxy 

spectra synthesised from 2 0  spectra cannot be used to measure standard line indices like the 

Lick indices.

Perhaps the most widely used library of synthetic spectra are the flux distributions from the 

Kurucz ATLAS9 model atmospheres (Kurucz, 1993a). It is important to note that while these are 

usually referred to as spectra, they are flux distributions predicted directly from the model at­

m ospheres, rather than spectra generated by a spectral synthesis program. This distinction will 

be made clearer in Section 3.2.4. The Kurucz atmospheres have several disadvantages which 

are discussed in various sources such as Kurucz (1992). However, one of their advantages is 

the wide range of parameter space that they cover, which is important for generating a grid of 

stellar spectra for population synthesis. The need for higher resolution spectra has been recog­

nised for some time but, because of the immense computational expense involved, the synthesis 

o f the spectra has been limited to partial wavelength ranges and specific regions of parameter 

space. Several groups have generated libraries of spectra from the Kurucz model atmospheres. 

For example, Chavez et al. (1997) provide a set of 711 Kurucz spectra at A/AA  = 250000 in 

the wavelength region 4 8 5 0 -5 4 0 0  and Castelli and Munari (2001) have generated a set of 698 

Kurucz spectra at A/AA  = 20000, in the wavelength region 7650 -  8750 for use with GAIA 

spectra. González Delgado and Leitherer (1999) have generated synthetic spectra in very small 

spectra regions necessary for a particular application. They created a grid of synthetic profiles 

of stellar H Balmer and H el lines at AT = 0.3 for the purposes of evolutionary synthesis.

There are also several libraries of observed spectra now available at much higher reso­

lution. For example, the ELOD1E database (Prugniel and Soubiran, 2001), consists of 709 

stars observed in the wavelength range 4100 -  6800 with a resolution of A/AA ~  42000. 

STELIB (Le Borgne et al., 2003) provides spectra for 249 stars observed in the wavelength 

range 3200 -  9500 with a resolution of A/AA ~  2000. These observed libraries are crucial for 

evaluating the accuracy of synthetic spectra and can also be used directly for population syn­

thesis and classification. STELIB has been used by Kauffmann et al. (2003) with a new version 

o f GISSEL, and e l o d i e  has been used to assign physical parameters to stars observed by the 

SDSS. However, a limitation of the observed spectral libraries is that they do not cover the full 

range in parameter space needed for galaxy population synthesis. Complete coverage of the
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param eter space is even more important for stellar spectral classification. The m ost successful 

approaches to classification have used methods from machine learning (Bailer-Jones, 2001). 

As discussed in Chapter 2, in these methods, the distribution of spectra in the training set has a 

direct im pact on the accuracy of the classification assigned to new spectra.

There are several efforts to generate higher resolution Kurucz spectra that are currently in 

progress. Bertone et al. (2002) have generated a grid of 832 spectra at A/AA  = 500000 over the 

wavelength range 3500 -  7000 . They intend to extend the wavelength range down to 850 at 

a resolution of A/AA = 50000. Zwitter et al. (2002) are in the process o f generating a grid of 

Kurucz spectra at A/AA = 20000 over the wavelength range 2500 -  10500 for use in radial 

velocity correction work.

I have generated a larger library of 6410 spectra from  the Kurucz model atmospheres at 

a resolution of A/AA  = 250 000. Previously these spectra were only available either at much 

lower resolution (20 ) or over small wavelength ranges. My spectra were generated from AT- 

LAS9 model atmospheres, using John Lester’s Unix version of the SYNTHE spectral synthesis 

package (Lester 2002, private communication). I have modified this package to improve the 

efficiency of the code, making it possible to generate the complete range of Kurucz spectra in 

a reasonable time.

In the next section I give some background to the theory of model stellar atmospheres and 

the atomic and molecular line data necessary for spectral synthesis. In Section 3.3 I describe 

the main characteristics of the new library of spectra. In Section 3.4 I com pare the spectra 

with the 20 Kurucz spectra from Kurucz (1993a). Finally, in Section 3.5 I com pare the spectra 

with observed spectra from the STELIB library. I will make this library of spectra available for 

general use on request.
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3.2 Theory of stellar atmosphere modelling

3.2.1 Model atmospheres

Grids of model atmospheres have been around since the 1970’s, starting with MARCS (Gustafs- 

son et al., 1975) and ATLAS9 (Kurucz, 1979). These original grids were used in a range of 

applications for the next couple of decades. However, the limitations of these systems (mainly 

due to inadequate line lists) became more obvious as observational techniques improved. The 

next generation of model atmospheres came with the release of ATLAS9 (Kurucz, 1993a) (a sub­

set of which were later improved by Castelli et al. (1997)) and NMARCS (Bessell et al., 1998). 

For a full derivation and analysis of the processes involve in modelling stellar atmospheres, the

definitive reference is M ilhalas (1978). Here I will give a greatly simplified summary, based

partly on Ostlie and Carroll (1996) and Boehm-Vitense (1989), to cover the main points it 

is necessary to understand when using synthetic atmospheres and spectra. I then give some 

specific details of the Kurucz software packages, ATLAS9 and SYNTHE and the data they use.

The series of emission and absorption processes that result in photons travelling from the 

centre of a star out to the surface are collectively referred to as radiative transfer. The spe­

cific intensity, /,(, is the amount of energy transported per unit of surface area, solid angle, 

wavelength and time

7,1 = E\dto~^ dcr~^dA~1 dt~ 1 . (3 .1)

For radiation travelling in a direction s, the change in specific intensity is the sum of the energy 

gains and losses along that path

d h  = ~ h h  ds  + S,\kAds  (3 .2 )

where S A is the source function

which is the ratio of emission and absorption coefficients (eA and kÀ respectively). Equation 3.2 

is the radiative transfer equation and solving it forms the backbone of all stellar atmosphere 

modelling. Usually it is not possible to solve the radiative transfer equation analytically and so 

the challenge of modelling stellar atmospheres is to solve it numerically, with the least number
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of assumptions. The assumptions fall into three main categories: approxim ations of the ther­

modynam ic state of the atmosphere, approximations of the opacity sources in the atm osphere 

and approxim ations of the geometry of the atmosphere.

The sim plest model of a star is the case of gas confined within a box. The gas particles and 

blackbody radiation will come into equilibrium and hence the system has a single temperature. 

The system  is in a steady state as there is no net flow of energy through the box, or between 

the m atter and the radiation. Every process occurs as the same rate as its inverse process {i.e. 

photons are absorbed and emitted at the same rate). This system is said to be in thermodynamic  

equilibrium. Obviously this system is far too simple, as in a star there is a net flow of energy 

from  the centre and the temperature changes with location. A t any given position there is a 

mixture of gas particles that have travelled there from hotter and cooler regions. However, 

if the scale on which the temperature changes is much larger than the mean free path of the 

particles and photons, the approximation of local thermal equilibrium (LTE) can be used. This 

assum ption makes the source function S a in the radiative transfer equation equal to the Planck 

function Ba where
2  he2 1

~ T5 ellcl /lkT -  1 '

In m ost cooler, main sequence stars model atmospheres which assume LTE are usually suf­

ficient. However, for hot stars or those with very low density atmospheres (supergiants) this 

assum ption breaks down, and non local thermal equilibrium (NLTE) models are required {e.g. 

the differences between LTE and NLTE are obvious for an O type star o f Teff ~  35 000 K).

The absorption coefficient k \  in Equation 3.2 is related to the opacity ka by

ka = hxip  (3.5)

where p  is the density. The opacity of a gas is a function of its com position, density and 

temperature. The slow variations in opacity with wavelength are what determ ines the shape of 

the continuum  in a stellar spectrum. The small scale variations result in the absorption features

in the spectrum. The four processes that contribute to the opacity are: bound-bound transitions,

bound-free absorption, free-free absorption and electron scattering, with the total opacity being 

the sum of these

K a  = KA,bb + KA,bf + KA,ff + KA,es ■ (3-6)
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In most stellar atmospheres the photo-ionisation of H~  ions is the main source of continuum 

opacity. For hotter stars (spectral types B and A) the photo-ionisation of hydrogen atoms and 

free-free absorption are the main sources of continuum opacity. In extremely hot stars (spectral 

type O), electron scattering becomes more important, as well as the photo-ionisation of helium. 

In cooler stars molecules contribute to the bound-bound and bound-free opacities. An example 

o f the effect o f opacity can be seen in the Balmer jum p at 3647 . To eject an electron from 

the n = 2 orbit of a hydrogen atom, a photon must have an energy of at least 3.40 eV which 

corresponds to a wavelength of A = 3647 . Hence at wavelengths /I < 3467 the opacity of the 

stellar atmosphere suddenly increases and the measured flux decreases, giving the observed 

jum p in the continuum.

The optical depth, r^ , is effectively how far into the stellar atmosphere you could ‘see’, and 

is given by

d r j  = -K,\pds  . (3.7)

It varies with wavelength because the opacity k , \  varies with wavelength. To simplify the sys­

tem so that each atmospheric level has a single optical depth, a wavelength independent opacity 

is assumed —  usually the Rosseland mean opacity which is the average opacity over all wave­

lengths. Models that use this assumption are referred to as gray atmospheres and are a good 

approximation for a majority of stars, in which photo-ionisation of H~  is the main source of 

opacity. However, this assumption is too limiting for more accurate modelling.

The main geometrical assumptions involve reducing the model atmosphere from a three- 

dimensional to a one or two-dimensional problem and using some kind of symmetry to further 

simplify the system. The most common assumption is of a plane-parallel atmosphere  with 

horizontally homogeneous layers. The horizontality assumption is made on the basis that the 

atmospheres of main sequence stars are very thin compared with the size of the star. Hence the 

atm osphere’s radius of curvature is much larger that its thickness and so it can be considered 

to be flat. The homogeneity assumption is made to simplify the system —  it does not have an 

empirical or theoretical basis, and in fact observational evidence suggests that the assumption 

of homogeneous layers is not valid. A more complex, but still one-dimensional model is that of 

spherical symmetry. This is necessary for stars with extended atmospheres (giants, supergiants 

and hot stars) for which the atmospheric thickness is not negligibly thin compared with the
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radius of the star. Current research focuses on modelling atm ospheres in 2D or 3D, which is 

extrem ely com putationally intensive.

3.2.2 Spectral lines

The shape of each spectral line is an indicator of the environment it form ed in. A t the central 

wavelength is the core of the spectral line and the sides, which curve up to the continuum , are 

its wings. The strength of the line is usually measured by its equivalent width

which is the width of a box, reaching the continuum, which has the sam e area as the line. 

Three main processes cause the broadening of spectral lines, each affecting the line shape in a 

different way. These are

Natural broadening which is a result of the uncertainty principle and gives rise to a Lorentzian 

line shape;

Doppler broadening which is due to the random motions of the atoms in the gas and results 

in a Gaussian line shape for a M axwellian velocity distribution;

Pressure broadening which is due to collisions with neutral atoms or close encounters with 

the electric field of ions and results in an approximately Lorentzian line shape. The 

specific case of collisions with ions and electrons is called Stark broadening.

Generally the D oppler profile is dom inant in the core of the absorption line and the Lorentzian 

is dom inant in the wings. The total line profile is a convolution of a Gaussian and a Lorentzian 

and is called a Voigt profile.

(3.8)

3.2.3 Atomic and molecular data

The success of model stellar atmospheres depends heavily on atomic physics. To produce a 

synthetic spectrum  it is necessary to have accurate values for energy levels, wavelengths, Gaunt
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factors1, damping constants, photo-ionisation cross-sections and collisional cross-sections for 

atomic and molecular lines. Kurucz has developed many of these resources, which are available 

in his line lists (see, for example Kurucz, 1995). Some of the data is empirical, however most 

o f the lines are ‘predicted’ lines, obtained theoretically.

Kurucz provides a range of different files with line lists for different purposes. All the 

atomic line information is grouped together in LOWLINES. This massive line list is necessary 

to reproduce the total opacity in a spectrum, however for individual lines this is not necessarily 

the most accurate source of spectral line information. There are more up to date line lists 

available in separate files, however these do not have all the predicted lines and so do not 

reproduce the opacity accurately.

An alternative source is the Vienna Atomic Line Database (VALD) (Kupka et al., 2000), 

which is a compilation of atomic line information from a wide range of sources. It was de­

veloped to provide a highly accurate set of line data in a standard format. Another source of 

line data is the Opacity Project (Seaton, 1995), which is concerned with calculating atomic 

properties for the large number of lines required to model opacity. Lines from these sources 

can be used to update or supplement the Kurucz line lists.

3.2.4 ATLA S9 and S Y N T H E

One of the main difficulties in calculating l t e  model atmospheres is that the absorption and 

emission coefficients ( j v and kv) depend heavily on frequency. This means that atoms like iron, 

which have millions of spectral lines, require radiative transfer equation to be solved for a mas­

sive number of different frequencies. The opacity resulting from all the spectral lines changes 

the temperature gradient in the atmosphere, an effect known as line blanketing. There are three 

possible approaches to calculating the opacity. The first is to calculate all of the spectral lines 

directly, but this is too computationally expensive as for a typical spectrum it would involve 

millions of points (Kurucz, 1996). The second approach is to tabulate statistical distribution 

functions for the opacity, in terms of temperature and pressure. The opacity spectrum is then

1 Gaunt factors (gf) are quantum mechanical corrections to the absorption coeffi cients.
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divided into small wavelength intervals and a distribution function calculated for each interval. 

This method is referred to as the opacity distribution function  (ODF) technique and is what is 

done in the ATLAS9 software. It is well suited to LTE models as all the opacity contributions 

from different sources can be combined. The standard grid of Kurucz model atmospheres have 

the opacity calculated in bins of 10 -  20 width. Hence the flux distributions produced directly 

from the atm osphere code are also at this resolution. The third method is to sam ple the spec­

trum at a small number of wavelength points and do a detailed calculation for these values. 

Then these are used to obtain the overall opacity distribution. This technique is called opacity  

sampling  and is used by the new Kurucz model atmosphere software a t l a s  12 (Kurucz, 1996).

Once the atmospheres have been calculated, high resolution spectra can be generated using 

the spectral synthesis package, SYNTHE (Kurucz, 1993c). In SYNTHE the spectral line pro­

files are calculated for each line (or wavelength region). Then the LTE opacity, NLTE opacity, 

continuum  opacity are added together to com pute the flux at each wavelength point and each 

line centre. Incorporating the line profiles and continuum information then results in the final 

synthesised spectrum. SYNTHE uses the same set o f line lists as ATLAS9, but obviously in 

spectral synthesis it is more important that specific line data is accurate than when calculating 

opacities in the model atmosphere process. ATLAS 12 will incorporate the model atmosphere 

and spectral synthesis procedures into one process.

3.3 Generating the Kurucz spectra

The library presented here has been created using the updated versions of the ATLAS9 model at­

m ospheres from Kurucz (1993a). These are available from K urucz’s website 2 (labelled . d a t ) .  

K urucz advises that the Kurucz (1993a) models (labelled . d a tC D ) should not be used as they 

have a discontinuity in the fluxes and colours as a function of 7 eff and log(g) that was corrected 

for the revised version.

The models assume plane parallel homogeneous layers in steady state and local thermal

2ht tp://kuruc z .harvard.edu
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Linelist Nr,nes included

NLTELINES 12283

LOWLINES 7 896400

DIATOMICS 3 549230

TIOLINES 31473 051

Table 3.1: Num ber of lines included from each linelist for a spectrum covering the wavelength 

range 3000 -  10000 . The TiO lines are from the Schwenke linelist on Kurucz (1999). Note 

that for the spectra I generated, the TiO lines were not actually included.

equilibrium. A microturbulence velocity of 2 km s-1  and a mixing-length value of C/Hp = 1.25 

are used. Castelli et al. (1997) give a detailed discussion of whether the mixing length theory for 

convection is dealt with adequately in the standard Kurucz atmospheres. They have calculated 

an alternative set of atmospheres in which the Kurucz ‘overshooting’ approximation is not 

used (NOVER models). These models have been shown to predict more accurate observable 

properties {e.g. colours) for some atmospheres (Heiter et al., 2002; Smalley and Kupka, 1997; 

Smalley et al., 2002). However, since they are currently available only for some metallicity 

values (-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, +0.5 dex) I decided not to use these atmospheres for 

population synthesis. I have generated a small subset of spectra from the n o v e r  models for 

comparison purposes.

The adopted atomic line lists for all my spectra are LOWLINES and NLTELINES from Ku­

rucz (1994), and the adopted molecular line list is DIATOMIC from Kurucz (1993b). I have 

included both predicted and measured lines. The inclusion of the predicted lines is necessary 

to reproduce accurate flux distributions. However, it does mean that care should be taken when 

using the high resolution spectra, as the properties of individual lines may not be as accurate 

as if K urucz’s more up to date linelists (which do not include predicted lines) were used. The 

m olecular lines have been included for spectra with Tefr < 7000 K. To give some idea of the 

number of lines involved in generating a spectrum in the wavelength range 3000 -  1 0 0 0 0  , 

Table 3.1 gives the numbers for each of the linelists used.

The original programs making up the Kurucz package were written in FORTRAN77 for
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the V A X .  John Lester has written a U n i x  version based on the original Kurucz code, in F O R ­

T R A N ?  7  and a more recent U n i x  version in F o r t r a n 9 0  (Lester 2 0 0 2 ,  private com m unica­

tion). However, this code could only be used to generate small sections o f a spectrum  at a time 

because it required massive quantities of disk space. The com plexities in generating spectra 

with SYNTHE has restricted researchers to creating either a small num ber of spectra, or a large 

num ber over a very small wavelength range. I have modified the Lester code to dram atically 

reduce the disk usage of SYNTHE which makes it feasible to generate large spectral ranges on 

standard hardware in a relatively short period of time. I have not yet generated spectra for val­

ues of Teff < 5 0 0 0  K. These spectra require TiO lines to be included which makes the program 

significantly slower (Table 3.1 shows that the number of TiO lines required in this wavelength 

range is an order of magnitude larger than the num ber o f other m olecular lines) and requires 

more disk space. I am investigating whether further optimisations may be made.

O f the 7216 model atmospheres available in K urucz’s standard distribution, I have gener­

ated a grid of 6410 spectra, which excludes the lowest temperature spectra (Figure 3.1). The 

spectra cover the wavelength range 3000 -  10000 which was chosen to be useful for com par­

isons with SDSS spectra. The spectra were generated at a resolution of A/AA = 250000, using 

the updated versions of the ATLAS9 model atmospheres from Kurucz (1993a). It is im portant 

to note these are not the same set of atmospheres as the ones from which the widely used 2 0  

Kurucz flux distributions were generated from.

3.4 Comparisons with the 20 Kurucz spectra

In this section I com pare my library of spectra with the revised version of the 20 Kurucz flux 

distributions. There have been several changes to the software and data between the original 

release of the 20 Kurucz flux distributions, and the present. Also, the flux distributions are 

predicted directly from the model atmosphere code, so it is not possible to com pare them 

directly with the spectra generated by spectral synthesis. Because of this, I did not expect the 

spectra I have generated to match the flux distributions exactly, but it is an important check to 

make sure there was broad agreement between the spectra.
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Figure 3.1: The distribution of my Kurucz spectra in log(T’eff) -  log(g) space (x). Also plotted 

is the distribution of the s t e l ib  spectra with T eg > 5000 K (+). The Kurucz spectra cover 19 

metallicities in the range -0.5 to 1.0. The STELIB spectra have metallicities ranging from -2.24 

to 2.07.

3.4.1 Direct comparisons

Firstly I compared the higher resolution Kurucz spectra with the 20 flux distributions. Figure

3.2 shows several examples of these comparisons. For the purposes of this comparison, I re­

binned the new spectra to 20 using a simple top-hat function. There are several differences 

between the two sets of spectra:

1. There is an extra dip in the new spectra at around 3700 . This is due to inadequate 

treatment of the Balmer jum p. In the model atmosphere code, the way the Balmer jum p is 

dealt with has been modified in order to remove the dip (Kurucz, private communication).

2. In some of the lower temperature spectra, the shape of the Ca H/K doublet is not identi­

cal. This is largely due to the fact that for the model atmospheres, the Stark broadening
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8500.0  1.5 - 2 .5  7500.0  2 .0 1.0

Figure 3.2: Com parison between a sample of the 20 Kurucz flux distributions (black) and the 

newly generated Kurucz spectra (red) top-hat smoothed to Ad = 20 . These spectra cover a 

range o f physical parameters: the title of each plot gives the values for T eff, log(g) and [M/H], 

The x-axis is the wavelength in and the y-axis is flux, F(A), in arbitrary units. Underneath each 

pair o f spectra is AF  -  F(A)new -  F (/i)0id-
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was artificially increased to make up for missing lines in computing the distribution func­

tion (Kurucz, private communication). This was changed back to generate the synthetic 

spectra, and also for the flux distributions generated from atmospheres more recent than 

the ones I used to generate my spectra.

3. In lower tem perature spectra (Tefr < 7000 K) there is a systematic difference in flux in 

the G-band. This is likely to be due to changes in the molecular line lists since the flux 

distributions were produced.

4. M ost o f the strong lines have slightly different depths. These small peaks are likely to be 

unresolved line cores, caused by the fact that the 2 0  flux distributions are undersampled, 

whereas my new synthetic spectra are generated at high resolution.

Probably the most significant o f these points for my applications is the difference in the G-band 

flux .3 This affects individual lines, and the U band magnitude of the spectra. In the following 

sections I will quantify this.

3.4.2 Colours

Comparing the U B V R I  magnitudes is important for checking that the broadband properties of 

the spectra are reproduced. I have used the Johnson-Cousins bandpasses, as defined by Bessell 

(1990) and shown in Figure 3.3. Figure 3.4 shows the offset in magnitudes calculated for the 

new spectra and the 20 flux distributions. The RMS errors for the magnitudes for the two sets of 

spectra are: AU = 0.05 mag, AB = 0.01 mag, A V  = 0.01 mag, AR = 0.01 mag and A/  = 0.01 

mag. The B, V, R  and I  magnitudes are in good agreement. However, the differences are greater 

for the U magnitudes at lower temperatures (Teff < 7000 K). For higher temperature spectra 

the U magnitudes are also in good agreement. The U band discrepancy is a consequence of the 

differences in the spectra noted in Section 3.4.1.

The question is how important these magnitude offsets are for the applications I am in­

terested in. A difference in measured colour is largely degenerate with a difference in T eff.

3Note that in recent literature, the term G-band has been reserved for the feature around 4300, which does not 

really stand out in Figure 3.2.
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Figure 3.3: The U V B R I  Johnson-Cousins bandpasses, as defined by Bessell (1990).

0.2 0.2
0.1 r 0.1 1

AU o o j i j I i ............... , ........................................................
<  o.o

-0 .1 -0 .1
-0 .2 -0 .2 =

3 .6  3 .8  4 .0  4 .2  4 .4  4 .6  4 .8
log io(Teff)

0 . 1  i

<  0.0  j 
- 0.1  | 

- 0 .2  I

3 .6  3 .8  4 .0  4 .2  4 .4  4 .6  4 .8
logio(Tefi)

0 . 2 |  0 . 2
I

0 . 1 - I 0 . 1 4

. m i n i  j................... "1 <3 O.U 1

- 0 . 1 j  - 0 . 1 ■I

- 0 . 2 ...................................................................................................................................... 1 - 0 . 2 I
3 .6  3 .8  4 .0  4 .2  4 .4  4 .6  4 .8

logio(Tef()

0.2 i ' ¥ ’----------------- -----

3 .6  3 .8  4 .0  4 .2  4 .4  4 .6  4 .8
log io(Teff)

3 .6  3 .8  4 .0  4 .2  4 .4  4 .6  4 .8
>ogio(Teff)

Figure 3.4: M agnitude offsets between my Kurucz spectra and the 20 flux distributions. The 

;c-axis is lo g 10(Teff) and the y-axis shows the difference (in magnitudes) between the Kurucz 

spectra I have generated and the 2 0  flux distributions.

For example, Lejeune et al. (1997) find that the colour versus temperature relations for Kurucz 

spectra do not match those derived empirically. To fix the problem, they developed a method 

for adjusting the shape of the continuum (in other words change the magnitudes) for spectra of 

a certain Teff (this will be discussed further in Section 4.2.2). However, an alternative approach 

is to leave the shape of the spectrum unchanged and reassign a Teff to the spectrum. For exam ­

ple, a solar metallicity spectrum with TeS -  7500 and log(g) = 1.0 has a U magnitude offset 

of 0.05. This difference in colour between my new spectrum and the Kurucz flux distribution
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corresponds to a change of Teff by less than 30 K. Since quoted errors for temperatures on 

observed spectra are typically around 40 -  100 K (see, for example Katz et al., 1998; Alonso 

et al., 1999), the spectra agree to within usual measurement errors. However, this approach 

may not be as successful when dealing with near-IR colours.

3.5 Comparisons with observed spectra

Having shown that the new spectra agree reasonably well with the 20 flux distributions, the 

next step is to evaluate them against observed spectra. This serves two purposes. Firstly, there 

are some differences between the two sets of Kurucz spectra, especially in the blue. However, if 

these differences are smaller than the differences between the Kurucz spectra and an observed 

spectrum with the same physical parameters, then they may be neglected. Secondly, I want 

to evaluate what kind of applications the synthetic spectra can be used for. The aim is to 

demonstrate that my new Kurucz spectra are as suitable for use in population synthesis as 

the commonly used 20 Kurucz flux distributions, but with the advantage of higher resolution. 

There are already various comparisons of Kurucz spectra with observed spectra in the literature. 

For example, the co lo u r-T eff correlation for the spectra has been analysed by Lejeune et al. 

(1997) and the 20 spectra have been compared with observed spectra by S traiiys et al. (1997) 

and Straizys et al. (2002). Here I make my own comparisons to focus on properties such as the 

Lick indices which are relevant to the specific applications I am interested in.

3.5.1 Direct comparisons

I have compared the spectra to those in the STELIB library (Le Borgne et al., 2003), which con­

sists of 250 spectra in the visible range (3200 -  9500 ) with a spectral resolution of Ad < 3 and 

covering a wide range in param eter space. As well as a direct comparison of the SEDs, I com ­

pare the measured colours and Lick indices to confirm that the spectra meet my requirements. 

Many of the STELIB stars do not have values for all three physical parameters (Teft, log(g) and 

[M/H]), have large sections of the spectrum missing, or do not lie close to a point on my grid of
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spectra. H ence I have selected a subset o f 125 o f the spectra that have tabulated values for 7 eff, 

log(g) and [M/H] in Le Borgne et al. (2003), Teff > 5000/f, and which have a good x 2 match 

to the corresponding Kurucz spectrum. The values for m ost o f the physical param eters were 

obtained from  the Cayrel de Strobel et al. (1997) and Cayrel de Strobel et al. (2001) catalogues. 

However, som e were obtained from the ELODIE database (Prugniel and Soubiran, 2001) and 

several were calculated using the TGMET method (Katz et al., 1998).

The s t e l i b  spectra have not been corrected for interstellar reddening, which is the ex­

tinction due to the intervening m atter in the M ilky Way. The extinction A x  o f an object in 

som e waveband X  is defined to be the difference between the observed m agnitude m{X)  in that 

waveband and the magnitude mo(X) that would be observed in the absence o f  dust

A x  = ( m -  m 0)x ■ (3.9)

The reddening or colour excess, E (X  -  Y), in some colour X  -  Y, is defined as the difference 

between the observed colour m{X) -  m(Y)  and the intrinsic colour m  o(A') - m o ( Y )

E (X  -  Y) = [m(X) -  m{Y)] -  [m0 (X) -  m0(T)] = A* -  Ay . (3.10)

The extinction is different along different lines o f sight and at different frequencies. Em pirically 

m easured extinction curves  give the relationship between the ratio A ^ / A j  (extinction at that 

wavelength over extinction in the Johnson J  band) and wavelength for any given line o f sight. 

The slope o f the extinction curve near the V  band is A y / (A jR y )  where

<3 - u >A b -  A y  E{B -  V)

Em pirical studies show that R y  & 3.1 for lines o f sight that do not pass through dense clouds4. 

I corrected the spectra for interstellar reddening using the values o f A y  from  Le Borgne et al. 

(2003) and the reddening curve from Cardelli et al. (1989), as im plem ented in the i d l  a s - 

TROLIB routine CCMJJNRED.PRO.

A selection o f the dereddened s t e l ib  spectra are plotted against the closest m atching K u­

rucz spectra (the Kurucz spectrum with the closest physical param eters) in Figure 3.5. W hen 

looking at these plots there are several points to note. Firstly, the param eters o f the Kurucz

4The preceding discussion and equations are based on that in Binney and Merrifi eld (1998).
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Figure 3.5: Comparison between a sample of the STELIB spectra (red) and the newly generated 

Kurucz spectra (black). These spectra cover a range of physical parameters: the title of each 

plot gives the values for Teff, log(g), [M/H] and Av for the STELIB spectrum. The annota­

tion gives the physical parameters for the Kurucz spectrum. The jc-axis is the wavelength in 

angstroms and the y-axis is flux, F(T), in arbitrary units.
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spectra do not match the STELIB parameters exactly (there is up to 100 K difference in tem per­

ature), they are just the closest match on the grid. Secondly, there are sections m issing from 

som e of the STELIB spectra, so I have not plotted these regions. Also, the STELIB spectra have 

not been corrected for atmospheric absorption, so they have strong absorption features (most 

noticeably in the Oxygen A-band around 7600 ) which are not present in the synthetic spectra.

3.5.2 Colours

I have calculated colours for all of the STELIB spectra and their closest Kurucz matches. Since 

the wavelength range of the STELIB spectra is 3200 -  9500 , I have calculated a modified U 

band magnitude (denoted U*) which is truncated at 3200 for both the STELIB and Kurucz 

spectra. Figure 3.6 shows the magnitude offsets between the STELIB spectra and their Kurucz 

matches. The RMS error between the two sets o f spectra are: AU* = 0.14 mag, AB  = 0.05 mag, 

A V  = 0.02 mag, AR = 0.03 mag and A/  = 0.04 mag. For comparison, I also calculated the 

magnitude offsets for the STELIB spectra and their closest Kurucz matches, using the 20 flux 

distributions. The RMS error between these two sets of spectra are: AU*  = 0.11 mag, AB = 

0.05 mag, AV = 0.02 mag, AR  = 0.03 mag and A/  = 0.04 mag. This dem onstrates that, with 

the exception of U*, the scatter in the magnitudes is no worse for my new spectra than for the 

2 0  spectra that are in standard use.

Som e differences are expected due to the mismatch between the STELIB tem peratures and 

those of the closest Kurucz match -  many of the spectra have a difference in tem perature of 

about 100 K, corresponding to a difference of a few hundredths in magnitude. However, the 

im portant point for this work is that my new spectra are as well matched to the observed spectra 

as the 20 spectra that are often used for population synthesis. Figure 3.7 shows various colour 

com parisons. There is some scatter in each of the plots and a slight systematic offset in R  -  /. 

Again however, this is no worse than when comparing the 20 spectra with the STELIB spectra.
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Figure 3.6: M agnitude offsets between the STELIB spectra and their closest matches from the 

Kurucz grid.

3.5.3 Line indices

I have calculated Lick indices for each of the 125 STELIB spectra in my sample, and for the 

matching Kurucz spectra. The process of calculating Lick indices will be discussed in detail 

in Section 4.5 so in this section I will just give the basic equations and bandpass definitions. 

There are two types of index, atomic (7a) and molecular (/,„) which I have calculated from the 

standard formulae

4
r 'k i

il 5(/l)l dA
JAcI C(T)J

(3.12)

rM  so i) 
A ,  C(A) dA

Im = -2 .5  lo g 10 ~y  —j—  (3.13)
Acl ~ Act

where Ac\ and Ac2 are the limits of the central bandpass defining the index, S(A )  is the object 

spectrum and C(T) is the linearly interpolated pseudo-continuum, defined by

r t  -  c  A  -  A A -  Ab
c(A ) = s b- — r  + S r ~>— r -  (3.14)Ar Ab Ar — Ab

Here,

_ f ^ 2S(A)dA
S b = ~Ah2- A h] ’ A b - ^ i + A b2) /2  (3.15)
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Figure 3.7: Top Left: U* -  B  vs. B - V  for STELIB spectra (+) and their Kurucz matches 

(o ) . Top Right: U* -  B  colours for STELIB spectra (x-axis) and their Kurucz m atches (y-axis). 

The solid line is the line lx  = y  for comparison. Bottom Left: Com parison of B - V  colours. 

Bottom  Right: Com parison of R - I  colours.

S r  =

¿ ‘ s w d A
3-r =  (Ar \ +  Ar l )!2 (3.16)

3-rl ~ 3-rl
and Ab\, Ab2, Ar \ and Ar2 are the limits of the blue and red continuum bands. The bandpass 

definitions for the Lick indices and the red and blue pseudo-continua are those defined in Trager

(1997) and are given in Table 3.2. These bandpasses have been refined since W orthey et al. 

(1994), and are also available on Guy W orthey’s website 5.

Figure 3.8 shows the correlation between the Lick indices calculated from the STELIB 

spectra and the Kurucz spectra. I have not calculated the two TiO indices since TiO lines are 

switched off in these spectra. The average absolute offsets (X  for the correlations are 

given in Table 3.3. It should be noted that the Kurucz spectrum paired with a given STELIB

5http://astro.wsu.edu/worthey/html/system.html

http://astro.wsu.edu/worthey/html/system.html
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Name Central Bandpass Blue Continuum Red Continuum Type

C N , 4142.125—4177.125 4080.125^4117.625 4244.125-1284.125 M

c n 2 4142.125^1177.125 4083.875-4096.375 4244.125-1284.125 M

Ca4227 4222.250-4234.750 4211.000-4219.750 4241.000-4251.000 A

G4300 4281.375^43 6.375 4266.375-1282.625 4318.875-4335.125 A

Fe4383 4369.125-4420.375 4359.125-4370.375 4442.875-4455.375 A

Ca4455 4452.125-1474.625 4445.875-1454.625 4477.125-1492.125 A

Fe4531 4514.250-1559.250 4504.250—1514.250 4560.500-1579.250 A

C 4668f 4634.000-1720.250 4611.500-4630.250 4742.750-4756.500 A

HyS 4847.875-1876.625 4827.875-4847.875 4876.625-4891.625 A

Fe5015 4977.750-5054.000 4946.500-1977.750 5054.000-5065.250 A

M g , 5069.125-5134.125 4895.125-1957.625 5301.125-5366.125 M

Mg 2 5154.125-5196.625 4895.125—4957.625 5301.125-5366.125 M

Mg b 5160.125-5192.625 5142.625-5161.375 5191.375-5206.375 A

Fe5270 5245.650-5285.650 5233.150-5248.150 5285.650-5318.150 A

Fe5335 5312.125-5352.125 5304.625-5315.875 5353.375-5363.375 A

Fe5406 5387.500-5415.000 5376.250-5387.500 5415.000-5425.000 A

Fe5709 5696.625-5720.375 5672.875-5696.625 5722.875-5736.625 A

Fe5782 5776.625-5796.625 5765.375-5775.375 5797.875-5811.625 A

N a D 5876.875-5909.375 5860.625-5875.625 5922.125-5948.125 A

T iO , 5936.625-5994.125 5816.625-5849.125 6038.625-6103.625 M

T i 0 2 6189.625-6272.125 6066.625-6141.625 6372.625-6415.125 M

Table 3.2: Bandpass definitions for the Lick indices calculated here (as defined in Trager, 

1997). Each index has a type A or M  signifying atomic and molecular indices, respectively. 

Atomic indices are measured in and molecular indices are measured in magnitudes. Note that 

these are air wavelengths. Also note that the Fe4668 index has been renamed C4668 as it is 

more sensitive to carbon that iron (Tripicco and Bell, 1995).
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spectrum  is not necessarily the best possible spectrum that could be synthesised to match the 

STELlB spectrum, but simply the spectrum from my grid with the closest match in physical 

parameters. This means it does not take into account any particular properties of the STELlB 

spectrum  that could in principle be modelled and which may affect the line indices. However, 

the comparison does give an indication of the level of mismatch to be expected when comparing 

observed stellar spectra with a grid of synthetic spectra like mine. Such m ism atches are an 

inevitable consequence of any automated comparisons between a grid of model spectra and the 

vast num ber of spectra being made available from large surveys like the SDSS.

1 have calculated Lick indices and their associated errors for a set of 9473 SDSS galaxies 

from the Early Data Release (Stoughton et al., 2002). The purpose of this was to com pare the 

scatter between the Lick index values for the STELlB and Kurucz spectra with the expected 

accuracy of the indices measured from observed galaxy spectra. I have found that the random 

emor (as calculated by Equations 4.17 and 4.18 in Chapter 4) associated with each index m ea­

sured in the SDSS spectra, is of the same order of magnitude as the average offset between the 

Kurucz and STELlB index measurement. This suggests that the indices m easured from galaxy 

spectra synthesised from the Kurucz spectra will have at least com parable accuracy to those 

measured with SDSS, and so my grid of stellar spectra is well matched to the SDSS galaxies.

3.6 Discussion

I have generated a grid of theoretical spectra from the Kurucz model atmospheres. Since the 

intended use of these spectra is in population synthesis and stellar classification, I have made 

several com parisons to check the validity of using the spectra for these purposes. The broad­

band properties of the spectra compare well with observed spectra, as do the line index m ea­

surements. The comparisons do not guarantee the detailed accuracy of the Kurucz spectra 

as models of observed stellar spectra. Rather, they dem onstrate that my new, high resolution 

Kurucz spectra are as good for use in population synthesis as the com m only used library of 

20 spectra. The advantage of these spectra over the previously available Kurucz spectra is that 

they allow the modelling of spectral line features such as the Lick indices.
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Figure 3.8: Each plot shows the correlation between the Lick index calculated on the STELIB 

spectrum (x-axis) and the closest matching Kurucz spectrum from my grid (y-axis). The solid 

line is the line ‘x = y ’ for comparison. I have not included the TiO indices for reasons discussed 

in the text. The offset for each index is given in Table 3.3.
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Name M ean value Av. Abs. Err. Med. Abs. Err. Type

CN i -0 .105 0.03 0.03 M

c n 2 -0 .0 5 5 0.03 0.01 M

Ca4227 0.552 0.25 0.03 A

G4300 2.350 1.49 0.42 A

Fe4383 2.724 0.86 1.01 A

Ca4455 0.599 0.22 0.30 A

Fe4531 1.880 0.74 0.05 A

C4668 1.794 0.96 2.38 A

w 4.456 0.68 0.60 A

Fe5015 3.444 1.35 0.09 A

M g , 0.004 0.01 0.00 M

M g 2 0.061 0.01 0.02 M

M g b 1.314 0.37 0.06 A

Fe5270 1.419 0.34 0.05 A

Fe5335 1.302 0.78 0.14 A

Fe5406 0.622 0.23 0.06 A

Fe5709 0.399 0.09 0.07 A

Fe5782 0.333 0.12 0.49 A

N a D 1.051 0.48 1.81 A

Table 3.3: Statistical comparison between the STELIB Lick indices and those of their Kurucz 

matches. Column 2 shows the mean value of the STELIB index. Column 3 shows the average 

absolute offset between the Kurucz and STELIB indices. Column 4  shows the median absolute 

offset between the Kurucz and STELIB indices.

One this to note is that these stellar spectra have been generated with scaled-solar abun­

dance ratios (i.e. based on the stars in the solar neighbourhood). Abundance ratios measure 

the proportions of specific elements with respect to each other and so give a more detailed in­

form ation about a galaxy, rather than just a overall metallicity (e.g. [Mg/Fe] and [Na/Fe] rather 

than [M/H]). As both observational and synthetic spectra have become available at higher res­

olutions, the more subtle effects o f varying abundance ratios have becom e apparent. This is
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important when using synthetic stellar spectra to model observed stellar populations as obser­

vational evidence shows that the abundance ratios in other galaxies (or in fact in other regions 

of our own galaxy) are often very different from those in the solar neighbourhood. For example, 

measurements of the Lick indices in elliptical galaxies showed that the relationship between 

magnesium and iron abundances is different to that obtained using population synthesis models 

which assumed solar abundance ratios (Worthey et al., 1992). Following studies also supported 

the fact that the abundance of magnesium for a given iron abundance was higher in elliptical 

galaxies than in the synthetic models. For a review of observational studies of abundance ratios 

in galaxies see Peletier (1999) and Worthey (1998). M ost current libraries of spectra have been 

generated with scaled-solar abundance ratios. However, producing grids of high resolution 

spectra with alternative abundance ratios (such as Oxygen-enhanced, light element enhanced 

or alpha-enhanced) is an important current area of research (see, for example Barbuy et al., 

2003; Houdashelt and Bell, 2003; Thomas et al., 2003).

W hen using my new spectra at high resolutions, it should be recognised that the spectra 

were generated using line lists that include ‘predicted’ lines. This is necessary to reproduce the 

broadband colours of the spectra accurately. However, it does mean that many of the individual 

lines present at high resolutions do not have measured properties. Also, the line lists that I 

used (such as LOWLINES) are known to have problems with the values for specific lines. As 

this mostly involves weak lines, it should not present any difficulties for population synthesis 

at the resolution of the SDSS. M ore accurate properties for these lines could be obtained using 

alternative values, for example from the Vienna Atomic Line Database (VALD) (Kupka et al., 

2000 ).

I intend to extend the library to the lower temperature models in which TiO lines become 

important and also generate spectra for the NOVER models as these are more accurate. In the 

next chapter I include the Kurucz spectra in a larger library for population synthesis —  a higher 

resolution version of that done by Lejeune et al. (1997).
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C h a p t e r  4

Properties of composite stellar systems

4.1 Introduction

In the first two chapters I have focused on stellar spectra. One of the main aims of generating 

the high resolution Kurucz spectra was to use them as input spectra in population synthesis soft­

ware and hence generate galaxies at a higher resolution that what has previously been available. 

In this chapter I investigate different methods of parameterising galaxies, taking advantage of 

these high resolution spectra. In this section I will give some background to different types 

o f param eterisation methods and how galaxy classification relates to stellar classification. In 

Section 4.2 I create a library of stellar spectra for use in population synthesis, which incorpo­

rates my high resolution Kurucz spectra as well as several other libraries. Then in Section 4.3 

I investigate two methods of empirical population synthesis for working out the stellar content 

o f a galaxy based on its spectrum: least squares minimisation and direct inversion. In Section 

4.4 I discuss the population synthesis package PEGASE. Finally, in Section 4.5 I discuss issues 

associated with measuring the Lick indices, in preparation for the applications in Chapter 5.

The aim  of galaxy parameterisation is to obtain useful physical information about a galaxy
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by studying its spectrum. This can range from measuring specific emission lines, to doing prin­

cipal component analysis. In Chapter 2 I investigated different methods of stellar classification, 

partly because it is an interesting problem in its own right and partly as a precursor to studying 

galaxy classification. However, although many of the same techniques can be applied to both 

problems, galaxy parameterisation is actually quite a different problem to stellar classification. 

Stars are sim pler systems than galaxies and have a well defined classification system (the MKK 

system) which means that classifying them is a supervised learning problem. If we want to 

obtain the physical parameters of stars, there is also a well defined three dimensional plane of 

effective temperature, surface gravity and metallicity in which all the stars lie. Hence, again, 

this is a supervised learning problem. However galaxies are much more complex systems, and 

the only comprehensive classification schemes (such as Hubble type) are based on morphol­

ogy. This makes parameterising and classification of galaxy spectra an unsupervised learning 

problem. In other words, it is necessary to discover or define parameters that will be useful for 

determining the properties of a galaxy from its spectrum.

Probably the most commonly used method of classifying galaxies is by morphology. The 

aim of morphological classification is to gain insight into the formation and evolution of galax­

ies. A lmost all morphological classification systems are based on the original scheme by H ub­

ble (1926) and involve looking at properties such as the presence and nature of bars, rings 

and spiral arms or measurements of the bulge-to-disk ratio and similar properties. A simplified 

schematic of the Hubble classification system is shown in Figure 4.1. A t one end of the scheme 

are elliptical galaxies and at the other are spiral galaxies. The usefulness of morphological clas­

sification is limited for a number of reasons: orientation of the galaxy relative to the observer 

can make it hard to establish the ellipticity; the quality of the image affects greatly the ability to 

pick out potentially faint features like bars and spiral arms; and when going to higher redshifts 

it also becomes much harder to determine the morphology of the galaxies. M odern morpho­

logical classification generally involves quantifying the morphology by some statistic, which 

is necessary to encompass the subtle variations that you get with a massive survey. See for 

example Abraham et al. (2003) who have morphologically classified galaxies from the SDSS.

Provided the signal to noise ratio is good enough, spectra provide a much more robust 

source of information than images for classifying galaxies. This is particularly true for large
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Figure 4.1: The Hubble tuning fo rk  diagram for m orphological classification of galaxies. Image 

source: h t t p : /  / b t c  . m o n ta n a  . e d u / c e r e s  / h t m l / g a l h u b b l e . h t m l .

surveys since spectra work equally well at any redshift. Also, galaxy morphology does not 

directly give us any information about what types of stars a galaxy is com prised of. M organ 

(1958) first proposed a classification scheme to unite morphological type and spectral type of 

galaxies. This system was based on how well the galaxies correlated with stars of different 

spectral types. In other words, it was a measure of what type of stars made up the greatest 

portion of the light emitted from the galaxy. One result from com bining H ubble’s scheme 

with spectral type was the observation that most of the light from giant elliptical galaxies came 

from red giant stars and most of the light from spiral galaxies came from  the younger hotter 

stars. Studies of large numbers of galaxies show a relatively tight relationship between colour 

and m orphology (Roberts and Haynes, 1994), with the colour going from red to blue as you 

move along the Hubble tuning fork from elliptical galaxies to spirals and irregulars. Using 

this relationship, the morphological class can be estimated from the photometric colours o f a 

galaxy, rather than having to analyse the morphology directly.

If we want to know in more detail what makes up a given galaxy we need to look at its spec­

trum. The spectrum  is essentially just the integrated light o f all the stars in a galaxy (as well 

as the effects o f dust absorption etc.) and so in principle contains all the information about the 

galaxy’s com position. In practice, the problem is how to extract this information effectively. 

M ost o f the work in this area focuses on trying to determine either the star formation histories 

or the stellar composition of the galaxies. M ethods for obtaining star formation histories range 

from  more traditional methods such as using absorption line indices (see, for example Kauff-
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mann et al., 2003) to methods based on information theory such as MOPED (Heavens et al., 

2000). I will not be looking at obtaining star formation histories, but focusing on determ in­

ing the stellar content of galaxies. There are many different standard ways of parameterising 

spectra, from broadband properties (such as colours) to high resolution properties (such as the 

Lick indices). Then, the usual way for determining their stellar composition or star formation 

history is through com parison with a grid of synthetic galaxy spectra for which these properties 

are known, for example, Kauffmann et al. (2003).

There are two different types of population synthesis, empirical population synthesis and 

evolutionary population synthesis. Empirical population synthesis was first done by W hipple 

(1935). Its main aim is to determ ine the relative proportions of stars of different spectral types 

and luminosities that make up the galaxy. Two different empirical population synthesis tech­

niques will be discussed in Section 4.3. Evolutionary population synthesis refers to the use of 

population synthesis code such as PEGASE (Fioc and Rocca-Volmerange, 1997) and GISSEL 

(Bruzual and Chariot, 1993, 2003). These start with an initial mass function and stellar evolu­

tionary tracks. These methods (specifically focusing on PEGASE) will be discussed further in 

Section 4.4.

4.2 A library of stellar spectra for population 

synthesis

A galaxy synthesis package can use either a grid of synthetic spectra, or a grid of observed 

spectra. Using synthetic spectra has the advantage that they have even coverage over a wide 

range of physical parameters. However, the galaxies generated are of course subject to any 

problems and inaccuracies with the input stellar spectra. Using observed spectra guarantees 

that they are representative of real spectra, but has the disadvantage that is it hard to get a 

homogeneous observed catalogue. Also, the spectra are subject to observational and calibration 

issues.

The two most commonly used population synthesis packages are p e g a s e  (Fioc and Rocca-
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Volmerange, 1997) and GISSEL (Bruzual and Chariot, 1993). Both o f these libraries allow the 

user to generate spectra with a resolution of 20 in the optical region. Very recently (during the 

writing of this thesis) there has been a new release of GISSEL, using higher resolution observed 

spectra (Bruzual and Chariot, 2003) from the STELIB library which was discussed in Section 

3.5. I will not be discussing the new GISSEL package in this thesis. O f the two software 

packages, I found the PEGASE code easier to understand and modify and hence I chose to work 

with this package.

PEGASE has two input libraries of synthetic stellar spectra. The first ( s t e l l i b L C B -  

c o r  . d a t )  is the Lejeune et al. (1997, 1998) library (referred to hereafter as L98). The L98 

library is a com pilation of several spectral libraries covering different ranges in param eter space 

and has 4422 spectra in total. The bulk of the main sequence stars are the model flux distri­

butions from  the grid of Kurucz atmospheres. The coverage of the Kurucz synthetic spectra 

is shown in Figure 3.1. For comparison, I have also plotted the coverage o f the new observa­

tional library used by Bruzual and Chariot (2003) in the latest release of GISSEL. The M -giants 

(low Teff, low log(g)) are constructed from the spectra of Bessell et al. (1989, 1991). The 

M -dw aifs (low Teff, high log(g)) are from the Allard and Flauschildt (1995) grid of spectra. 

The coverage of these three libraries is shown in Figure 4.2 which is taken from  Lejeune et al.

(1998). The second input library ( s t e l l i b C M .  d a t )  consists o f 31 extrem ely hot stars with 

Left- > 60 000 K, taken from Clegg and M iddlemass (1987). All the spectra in the PEGASE input 

library cover the wavelength range A = 91 -  1 600000 . The resolution of the spectra varies 

with wavelength, as shown in the top panel o f Figure 4.3. In the optical region the resolution is 

20 .

One limitation of the available libraries is that the resolution (20 ) is insufficient for com ­

parisons with high resolution observed galaxy spectra. To overcome this I attem pted to build a 

high resolution version of the L98 library, for use in population synthesis with PEGASE. W here 

possible I replaced the optical region of each spectrum (T = 3010 -  9990 ), which was previ­

ously at 20 resolution, with a 2 resolution section. This is dem onstrated in the bottom panel of 

Figure 4.3. Due to limitations in the 2 spectra available, this was possible for only 3538 out of 

the 4422 PEGASE spectra. I falsely interpolated the remaining spectra (884 from  L98, plus the 

31 extrem ely hot stars) to the higher resolution grid. The full grid of spectra used by PEGASE
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A l l a r d  &  H a u s c h i l d t  
m o d e ls

" B + F ”  m o d e ls

Figure 4.2: Coverage of the L98 library in stellar parameter space. The B+F models are M- 

giants and the Allard & H auschildt models are M -dwarfs. Image source: Lejeune et al. (1998).

is shown in Figure 4.4. The 884 spectra that are not available at the higher (2 ) resolution, and 

hence that have been interpolated, are shown in Figure 4.5. Most of the missing spectra are the 

low temperature Kurucz spectra. These spectra require the inclusion of TiO lines, and hence 

take a long time to generate (as discussed in Chapter 3). However, it is possible to generate 

these spectra, and I plan to do at a later date when I get the time and computing resources. I 

will discuss each of the catalogues that the spectra have been obtained from in the following 

section.
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Wavelength (A)

Wovelength (A)

Figure 4.3: Top panel shows a typical input spectrum for PEGASE (with param eters Teff =  9000, 

log(g) = 2.0, [Fe/H] = 1.0). The vertical lines divide sections with different resolutions. The 

bottom  panel shows the new spectrum, with the optical section (A = 3010 -  9990 ) replaced 

with a 2 spectrum.

4.2.1 The stellar spectra 

Kurucz spectra

M ost o f the PEGASE input spectra have been generated from  the Kurucz model atmospheres. 

As discussed in Chapter 3, I have generated a new grid o f high resolution (A/AA = 250 000) 

K urucz spectra. This covers most of the original grid of stellar spectra. D ue to the length of 

tim e needed to generate the spectra with TiO lines included (which affects all low tem perature 

spectra) I have not covered the entire grid and am still m issing spectra with T eff < 5000 K. 

The process of generating these spectra is described in detail in C hapter 3. Once generated at 

high resolution, the spectra were top-hat smoothed to 2 for use in PEGASE. A high resolution
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iog(T)

Figure 4.4: The coverage of the PEGASE input spectra in parameter space. The different colours 

show the metallicity for a given log(7) and log(g) as shown in the key. M ost of the spectra are 

from the Kurucz grid. The M -giants (bottom left) are the Fluks spectra, the M -dwarfs are from 

the NextGen grid.
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Figure 4.5: The same as the previous figure, but showing only the 884 spectra that were not 

available at the higher resolution.
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Figure 4.6: A high resolution Kurucz spectrum (top) and its smoothed versions at 2 (middle) 

and 20 . The spectrum has parameters (8200, 3.0, -1.5). The flux is in arbitrary units.

spectrum and its smoothed counterparts are shown in Figure 4.6.

Clegg and Middlemass spectra

The very hot stars with Tefi > 60000 K were obtained from Clegg and M iddlemass (1987). 

These are NLTE synthetic spectra, which were generated to model the central stars in planetary 

nebulae, where the assumptions of gray-like atmospheres and LTE are not valid. These spectra 

are essentially black body curves, as can be seem from the sample spectra in Figure 4.7. They 

were not available at higher resolution, however since they are almost featureless, I have simply 

resampled these spectra to 2 resolution for inclusion in my high resolution library.
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Figure 4.7: Three examples of NLTE spectra from the Clegg and M iddlem ass (1987) catalogue. 

The spectra have (Teff,log(g)) =  (60000, 5.0), (100000, 5.0) and (180000, 6.5) going from the 

bottom  curve to the top curve respectively. The flux is in arbitrary units.

H ausch ild t spectra

M ost of the M -dwarfs in L98 are synthetic spectra from Allard and Hauschildt (1995). These 

spectra are known as the ‘Extended (version 3.0)’ models and are now obsolete (see Peter 

H auschildt’s w ebpage1.) They have been superseded by the ‘NextGen (version 5 .0)’ models 

(Hauschildt et al., 1999a,b). The NextGen models with solar metallicity were available when 

L98 was created, and so they were incorporated into that library. M ore of the NextGen models 

are now available, but do not cover exactly the same range in param eter space as the old set 

of models. One possibility was to continue using the version 3.0 spectra but this was not rec­

om m ended (Hauschildt, private communication). Hence I decided to use the NextGen spectra 

where available. This does mean that some of the spectra are still being taken from  the old 

models. However, since many people use the current L98 catalogue for population synthesis, 

this will be no worse that what is already being done. Figure 4.8 dem onstrates the kind of 

differences between the Extended (version 3.0) models and the NextGen (version 5.0) mod­

els. The differences between the two sets of spectra are quite significant, particularly for the 

lower tem perature stars. The NextGen spectra are already on a 2 grid and so no smoothing or 

resam pling was required.

'http://dilbert.physast.uga.edu/~yeti/mdwarfs.html

http://dilbert.physast.uga.edu/~yeti/mdwarfs.html
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Figure 4.8: A comparison of the old ‘version 3.0’ (top) and new ‘version 5 .0’ (bottom) 

Hauschildt spectra. The spectrum has parameters (2200, 3.5, -2.0). Note that there is also 

a resolution difference: the old spectra are at 20 resolution whereas the new spectra are at 

2 resolution. The flux is in arbitrary units.

Bessell and Fluks spectra

The M -giants (covering the temperature range 2 5 0 0 -3 8 0 0  K) in L98 come from a combination 

of the Fluks et al. (1994) and Bessell et al. (1989, 1991) catalogues. These catalogues were 

combined by Lejeune et al. (1997) in order to compensate for the weaknesses in both of them. 

The Fluks et al. (1994) catalogue is based on observations of 97 M-giants. These spectra were 

observed between 3800 and 9000 at a resolution of 1300 < R < 9000 over that range. This is 

equivalent to sampling of 1 -  3 / pix. A set of synthetic spectra were then generated using the 

SOSMARCS and POSMARCS code (Plez et al., 1992; Plez, 1992) with 10912 sampling points 

between 990 and 125 000 . The observed spectra were used to calibrate the synthetic spectra, 

and then combined with them to create a grid of M -giant spectra over a wide wavelength 

range. The main limitation of the Fluks et al. (1994) library is that it is limited to stars of solar 

metallicity. The Bessell et al. (1989, 1991) spectra were computed from model atmospheres 

and have 405 wavelength points in the range 4910 -  40900 . The library covers a range of
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Figure 4.9: Exam ples of the B+F hybrid spectra made by com bining the Bessell and Fluks 

libraries. The spectra have physical parameters (7 eff, log(g), [M/H]) equal to solid line: (2800, 

-1.0, -1.5), dotted line: (3350, -0.3, -0.5) and dashed line: (3200, 0.6, 0.5) respectively.

metallicities and surface gravities, its main limitation being the wavelength range.

By interpolating over metallicities and making use of the overlapping wavelength ranges 

Lejeune et al. (1997) created a grid of ‘B +F’ hybrid spectra to cover the M -giants adequately. 

However, these spectra are not available at a high enough resolution for my requirements and 

so in this region of the parameter space I have falsely interpolated the spectra to 2 resolution. 

This is clearly not ideal, but M -giants only contribute a significant fraction of the total light 

from a galaxy in the latest stages of its evolution and so any errors caused by this will not 

significantly affect younger galaxies. Figure 4.9 shows examples of some of the B+F hybrid 

spectra that are used in L98. The spectra are dominated by TiO absorption, particularly in the 

red. Note that these spectra have already been corrected by Lejeune, as described in Section 

4.2.2 below.

I investigated the possibility of covering this region of param eter space with spectra from 

a different source, such as the Houdashelt et al. (2000) models. However, there were no spec­

tra with the appropriate resolution and wavelength coverage that covered the same region of 

physical param eters as the B+F spectra.
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4.2.2 The temperature-colour corrections

One of the main advantages of L98 over previous stellar libraries is that all the spectra were flux 

calibrated with empirical spectra so that the tem perature-colour relations were accurate. This 

was done by calculating a correction function that was applied to each solar-abundance syn­

thetic spectrum in order for it to match the empirical colour-temperature relations derived from 

observed spectra. The empirical colour-temperature relations were obtained from a variety of 

sources (see, for example, Ridgway et al. (1980) for giants and supergiants, Schm idt-Kaler 

(1982) for main sequence stars). Broadband U B V R I J H K L  magnitudes were measured for 

each of the synthetic spectra, and a pseudo-continuum fit to these points. Then a correction 

function was derived by dividing the pseudo-continuum obtained from the empirical cali­

brations by the pseudo-continuum for the appropriate synthetic spectrum. This correction was 

applied by convolving with the original synthetic spectrum to obtain the corrected synthetic 

spectrum. This process is outlined in Figure 4.10 which is taken from Lejeune et al. (1997). 

For most o f the main sequence spectra, this correction has a negligible effect. However, at 

lower temperatures there are significant changes to the shape of the continuum. This is dem on­

strated in Figure 4.11 which shows the result of correcting the spectra from a main sequence 

star and an M-dwarf.

In creating my high resolution library I have tried to maintain consistency with the 20 li­

brary as far a possible. Hence I experimented with an empirical correction procedure that 

would modify the continuum shape of the optical region of the spectrum to match that done 

by Lejeune et al. (1997). There are two versions of the L98 catalogue available, both the un­

corrected and corrected spectra2. I measured the UB V R I J  broadband magnitudes for each of 

the uncorrected and corrected spectra and created a pseudo-continuum for each spectrum by 

fitting the magnitude points with a polynomial function. I then defined a correction function 

by dividing the pseudo-continuum of the corrected spectrum by the pseudo-continuum for the 

uncorrected spectrum. I interpolated this correction function up to the same resolution as my 

new spectra (2 ) and then applied it by convolving it with the appropriate synthetic spectrum 

from my new library. Figure 4.12 shows a flow chart of this process.

2Data is available from the BaSeLftp site f t p : / / t a n g e r i n e . a s t r o . m a t . u c . p t / p u b / B a S e L

ftp://tangerine.astro.mat.uc.pt/pub/BaSeL
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Figure 4.10: Outline of the correction procedure used by Lejeune et al. (1997).

For the higher temperature spectra this process was quite successful as fitting the broad­

band fluxes gave pseudo-continua that accurately reflected the continuum shape. However, for 

lower tem perature spectra it was more problematic. Applying the correction function at these 

tem peratures resulted in the exaggeration of some features in the spectrum, which can be seen 

in Figure 4.12. This is because it is hard to fit an accurate continuum to the low temperature 

spectra, which are affected strongly by TiO absorption bands. This problem is also evident in 

the original corrections made by Lejeune et al. (1997) which, although resulting in agreement 

with the empirical temperature-colour relations, significantly modify the continuum shape of 

the low temperature stars (see Figure 4.11).

One alternative to these empirical corrections of the spectrum is to make a correction to the 

tem perature o f the spectrum. The problem with the synthetic spectra is that they do not fit the
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Figure 4.11: The effect of the Lejeune correction on the spectra. The original spectra are given 

by a solid lines and the corrected spectra by dashed lines. The top spectrum (from the Kurucz 

grid) has parameters (7’eff,log(g),[M/H]) = (9250, 5.0, -1.5) and the correction is minimal. 

The bottom spectrum (from the NextGen grid) has parameters (2200, 3.5, -1.5) and here the 

correction is significant.

temperature-colour relations accurately. L98 has dealt with this by correcting the colours of 

the spectrum by adjusting the continuum. However, this process is subject to errors, such as in 

fitting the pseudo-continua. One possible alternative I considered was to make a correction to 

the temperature of the input spectra, rather than the spectra themselves.

To do this I first determined what size temperature correction was equivalent to the con­

tinuum change made by Lejeune’s corrections. I took a corrected spectrum from L98 with 

parameters (Tetf, log(g), [M/H]) equal to (7500, 1.0, 0.0) and then compared it with uncor­

rected spectra of different temperatures (and the same values of log(g) and [M/H]) to find 

which was the closest match (in terms of x 1 difference). The corrected spectrum was closer to 

the uncorrected spectrum with the same temperature (7500 K) than to either of the neighbour­

ing spectra (with temperatures 7250 K and 7750 K). I then interpolated between the 7250 K 

and 7750 K spectra to create a finer grid of spectra (with Teff step equal to 50 K) and compared
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Figure 4.12: M y correction process for the high resolution spectra. This exam ple is for a 

spectrum  with param eters (2200, 3.5, -1.5). The crosses show the m easured broadband fluxes 

for the UBVR1  bands, as well as the end points for the section o f the spectrum  I am  correcting 

(3000 and 1 2 0 0 0 ).

the corrected spectrum  with each o f these. Figure 4.13 shows a set o f these interpolated spectra 

(between 7400 K and 7650 K) overplotted with the corrected spectrum  at 7500 K. It is clear 

from  visual inspection that the best matching spectrum  is the one with T eff = 7500 K, the same 

as the corrected spectrum. To quantify this I have also shown the value f o r ^ 2 for each pair of
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Figure 4.13: Kurucz tem perature-colour corrections. The black spectrum is the same in each 

plot —  a corrected spectrum from  L98, with parameters (7 eff, log(g), [M/H]) = (7500, 1.0, 

0.0). The red lines are uncorrected spectra for the same surface gravity and metallicity but for a 

different tem perature in each case (as given in the plot annotation). T h e ^ 2 difference between 

each pair of spectra is also given. The flux is in arbitrary units.

spectra,3 where

- Z
i= 0

( S j - C j ) 2
Ci (4.1)

These comparisons show that the difference introduced in the continuum is equivalent to a 

change in temperature o f less that 50 K, for a spectrum of this temperature.

For the higher tem perature spectra the L98 corrections correspond to a temperature change

3It should be noted this is not entirely accurate as a measure of goodness of fi t, since it assumes that the error is 

proportional to the square root of the signal which does not apply here. Hence, the values of x 2 shown here will be 

artifi daily lower for spectra with fi t better in the blue than for those that fi t better in the red.
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o f less that 50 K. In the context o f population synthesis this change is not significant com ­

pared with the errors from other sources. For lower tem perature spectra, which have massive 

m olecular absorption features it is not possible to do the sam e kind of analysis because their 

continuum  shape doesn’t change in the same way. I am not incorporating m ost of the lower 

tem perature stars at high resolution anyway, and so I have just used the L98 spectra as they are. 

Based on these factors, I decided not to correct my high resolution spectra when creating my 

library.

4.3 Empirical population synthesis

W hen you observe a galaxy, you are observing (to some approximation) the integrated light 

o f its com ponent stars. Hence in theory it is possible to decom pose the spectrum  of a galaxy 

into its stellar components. In practice this is more complicated. Firstly because factors such 

as the light absorption and emission by dust affect the spectrum. Secondly because there is 

alm ost certainly more that one combination of stellar spectra that can be added together to 

produce the same galaxy. However, it is still interesting to consider w hether it is possible to 

work backwards from the galaxy spectrum to obtain the stellar fractions it is made from, if only 

to dem onstrate that more sophisticated methods are needed.

Em pirical population synthesis was first proposed by W hipple (1935). Early work focused 

on determ ining the nature and distribution of the two main populations of stars (Population I 

and Population II) in each galaxy (Baade, 1944, see, for example). Population I stars tend to 

be luminous, hot and young, concentrated in the disks of spiral galaxies. They are particularly 

found in the spiral arms. Population II stars tend to be older, less luminous and cooler than 

Population I stars, and are found in globular clusters and in the central regions of galaxies. 

These efforts were developed later by various people including Faber (1972, 1973), Aaronson 

et al. (1978) and Gunn et al. (1981) so that a galaxy’s composition could be found in terms 

o f all different types of stars, rather than just Population I and II. The m ost successful results 

have been obtained by Pickles (1985). One more recent attempt at this type of approach is by 

Goerdt and Kollatschny (1998) who use a modified linear simplex algorithm to fit synthetic
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galaxy spectra. Another is presented in the series of papers by Pelat (1997, 1998); M oultaka 

and Pelat (2000) who also provide a form alism  for error analysis in the resulting solutions.

Empirical population synthesis is so named because it is based on working only with the 

spectra of the galaxies and of stars and hence is largely independent of theory. For example, the 

work by Pickles (1985) uses stellar evolution theory only to set limits on the acceptable ranges 

of good fits to the com posite population. This is in contrast to the evolutionary approach 

(discussed in the next section) which assumes perfect knowledge of stellar evolution. The 

biggest problem affecting both methods is trying to determine a unique solution. This problem 

is examined by Schmidt et al. (1991) in a review of the multi-minimisation procedures used 

by Bica (1988) and Schmidt et al. (1989). They find that input fractions can be reproduced 

reasonably well for some simple populations but worsen significantly when more complex 

populations (for example blue composite populations where spectral features below 3500 are 

important) are tried. The accuracy of the solutions obtained is determined primarily by the 

completeness of the stellar library and the accuracy of both the library spectra and the galaxy 

spectra.

In this section I discuss two methods for obtaining the stellar content of a galaxy spectrum, 

least squares minimisation  (LSM ) and direction matrix inversion. The least squares m inim i­

sation is essentially the same as that used by Pickles (1985), the aim being to see if  having a 

larger library of stellar spectra at higher resolution make a difference to the kind of results we 

can obtain. To evaluate the accuracy of these methods, I have modified the PEGASE software 

so that it is possible to obtain the fractional contribution of each input stellar spectm m  at any 

stage in the galaxy synthesis. There are 69 timesteps in the PEGASE evolutionary process and 

at each stage it is possible to get the galaxy (at a certain age) and also its stellar content at that 

age. For example, Figure 4.14 shows how the distribution of stars in Teff changes as a galaxy 

ages. Initially the galaxy is made up primarily from hot stars, but as it ages this population 

decreases and a population of cool stars starts to dominate the light of the galaxy. We can then 

take a ‘snapshot’ of the composition at various ages, as demonstrated in Figure 4.15. In this 

figure the distribution in Tef{ and log(g) is shown for a young galaxy and an older galaxy.
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o-5

Figure 4.14: The distribution of starlight in log(7eff) (y-axis) as it changes with the galaxy age, 

represented in PEGASE timesteps (x-axis). The r-axis gives the percentage o f light contributed 

to the total by stars at each point on the x  -  y  grid, i.e. summing all the points gives 100%.
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Figure 4.15: Two snapshots o f the distribution of starlight in T eff and log(g) for galaxies aged 

0.01 G yr (left) and 19 Gyr (right). The contour levels show the fraction of the galaxy’s total 

light that is contributed by spectra in that region of param eter space.
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4.3.1 Least squares minimisation

M y approach here is based on that in Pickles (1985). P ickles’ technique is to m inimise a merit 

function which is the root mean square o f the weighted flux residuals between the observed 

spectrum and the spectrum built up from a given combination o f stellar spectra

In these equations G  and S  are flux vectors for the observed galaxy spectrum and the synthetic 

spectrum respectively. W  is an optional weighting vector, specified at each flux point. A t each 

point the synthetic flux vector, S , is given by

where there are g stellar spectra, F y  is the flux at wavelength point i of stellar spectrum j  and 

X j  is the fractional light contribution o f the j th stellar spectrum. The weighting function W  can 

be used to make sure certain properties of the synthetic spectrum (such as the shape of parts of 

the continuum) are made the most important factor in producing a good match to the observed 

spectrum. The only astrophysical constraint that Pickles applied when minimising the merit 

function was to disallow negative values of the fraction vector X.

A typical synthesis for Pickles and Visvanathan (1985) involved 48 standard stellar spectra, 

each with 530 wavelength points (resolution 12 ). With this they were able to achieve conver­

gence after 50 -  100 iterations. I am considering higher resolution observed and synthetic 

spectra -  so there are many more wavelength points. The standard galaxy spectra generated 

with PEGASE have 1221 wavelength points and are made up from a grid o f 4422 stellar spectra. 

The spectra generated with my high resolution catalogue have 4361 wavelength points.

To perform the least-squares minimisation I used the NAG library routine E 0 4 N C F 4. This 

solves linearly constrained linear least-squares problems of the form:

(4.2)

where

(4.3)

g
(4.4)

m inim ise F(x)  subject to (4.5)

documentation at h t t p :  / / www.nag .c o . u k / n u m e r i c / f l / m a n u a l / p d f / E 0 4 / e 0 4 n c f  . p d f

http://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04ncf
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w here C is a constraints matrix with upper and lower bounds u and I respectively. I used two 

constraints to stop non-physical solutions, no negative values and no values greater than 1, and 

also the constraint that all the fractions m ust sum to 1. This routine requires you to specific an 

initial estim ate o f the solution. I found that specifying a random  distribution o f stellar fractions 

worked well.

The first step is to dem onstrate that this method works on the sim plest case: a synthetic 

spectrum  with no noise. For this purpose I used p e g a s e  to generate galaxies at several ages, 

using a sim ple SSP model with no dust. I used the entire wavelength range o f  the spectrum 

generated by p e g a s e  (T = 91 - 1  600000 ) to recover the com position. The results from  doing 

this least squares m inim isation are shown in Figures 4.16 and 4.17. Each figure shows the 

results for tw o galaxies, one young (PEGASE timestep 30 = >  0.16 Gyr) and one old (PEGASE 

tim estep 64 = >  15 Gyr). The galaxies in Figure 4.17 were generated using the standard L98 

input catalogue. The galaxies in Figure 4.16 were generated using my higher resolution cata­

logue, as described in Section 4.2. The galaxies recovered from  the least squares minim isation 

match the original galaxies well. However, the differences betw een the fractional distribu­

tion o f  light com ing from  the different stars is quite different, dem onstrating the fundam ental 

problem  with this technique: the difficulty o f finding a unique solution.

Having dem onstrated that some level o f success is possible for an ‘ideal’ galaxy I then 

tried to extend the technique to a more realistic galaxy. There are two main issues here. Firstly, 

a real galaxy is not just a SSP, things such as dust and noise affect the spectrum. Secondly, 

in the above test I used the entire wavelength range o f the spectrum  generated by PEGASE to 

recover the com position. However an observed galaxy will have a much sm aller wavelength 

range available. In my case I am interested in the SDSS spectra, and so the wavelength range 

will be approxim ately 3000 -  9000 . This results in about 3000 pixels, com pared to 4361 pixels 

when using the w hole range. Reducing the wavelength range used to do the least squares 

m inim isation drastically reduced the quality of the results and dem onstrated why this m ethod is 

not suitable for ‘real w orld’ problems. W hen using a small region o f the spectrum  the problem 

is too under constrained and so it is not possible to recover the overall distribution with great 

accuracy. The spectrum  and the recovered stellar com position are shown in Figure 4.18. This 

figure shows that although the recovered distribution does not reflect the real distribution in the
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Figure 4.18: Results when only a section of the spectrum is used (3000 -  9000 ). The left plot 

is the original distribution for a 13 G yr galaxy. The right plot shows the recovered distribution.

details, it may be possible to use this technique to discover the main features of the distribution. 

For example, the peak o f the distribution (around log(Te(f) = 3.6, log(g) = 5) shows that the 

majority o f the light in the galaxy spectrum comes from stars of this type.

4.3.2 Direct inversion

Perhaps the m ost intuitive way of trying to determine the stellar content of a galaxy is simply 

to invert the galaxy matrix S  to obtain the stellar vectors F  with their relative fractions X. Here, 

S  is the synthetic galaxy spectrum as is defined as before as:

s

s i = Y j X r p ij (4.6)
j =1

In other words it is an m  by n matrix where the number of stellar spectra (m) and the num ber 

of wavelength points in) will not typically be the same. The process of matrix inversion for a 

given matrix M  involves finding an inverse M ~ ] such that

M M ~ X = I  (4.7)

where I  is the identity matrix with size the same as M.  O f course, M  must be a square matrix, 

so some rearranging is required to obtain a square matrix to apply to the galaxy matrix S .
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Starting with equation 4.6 above we have

S = F X  ==> F*S = F * F X  (4.8)

w here F* denotes the adjoint (inverse, transpose) o f F.  Introducing a square m atrix M  = F * F  

gives

F*S = M X  . (4.9)

If  the square matrix M  can be inverted then

M ~ lF*S = M ~ ]M X  (4.10)

= >  X  = M ~ l F*S  (4.11)

and hence the vector of fractional coefficients can be obtained. Each stellar spectrum  has 4361 

wavelength points, and so the matrix M  is 4361 X4361 pixels square. The main difficulty, then, 

is whether it is possible to invert this matrix. If it is possible then the inverse m ust be unique, 

since if  A B  = I  and CA = I  then B = I B  = (CA) B  =  C(AB)  = C l  = C.

To do the matrix inversion I used the n a g  Library routines F 0 7 A D F 5 which form s the 

LU factorisation o f a real, m b y n  matrix, followed by F 07A G F 6 and finally F 0 7 A JF 7 which 

does the actual inversion, assuming the matrix has been factorised. I first tried this with a much 

sm aller m atrix than the ones I was interested in, by creating a test ‘galaxy’ at 20 resolution with 

a wavelength range 3 0 1 0 -8 9 9 0  . The galaxy was created by sum m ing together 3 stellar spectra 

(from  a subset o f 300 spectra from the PEGASE input catalogue) in the proportions I .O F jo  +  

0.5F26 + O.3 F 50 which when normalised, corresponds to fractions of A 10 =  0.556, X 26 = 0.278 

and X50 =  0.167. The original fractional contribution from  each spectrum  is shown in black in 

Figure 4.19. The fractional contribution of each o f the 300 spectra obtained from  inverting the 

m atrix are shown in red (shifted slightly along the x-axis for ease o f  com parison). The values 

for the 3 spectra that contributed to the galaxy are A 10 = 0.560, X 26 =  0.280 and X50 = 0.168, 

which are very close to the original values. This validates the method, albeit for a very small 

and sim ple system.

’ documentation at h t t p  : / / w w w .n a g . c o . u k / n u m e r i c /  f  1 / m a n u a l / p d f  / F 0 7  /  f  0 7 a d f . p d f  
docum enta t ion  at h t t p  : /  / w w w .n a g . c o . u k / n u m e r i c  /  f  1 / m a n u a l / p d f  / F 0 7  /  f  0 7 a g f . p d f  
’ documentation at h t t p :  /  / w w w . n a g . c o . u k / n u m e r i c / f l / m a n u a l / p d f / F 0 7 / f 0 7 a j f . p d f

http://www.nag
http://www.nag
http://www.nag.co.uk/numeric/fl/manual/pdf/F07/f07ajf.pdf
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Spectrum

Figure 4.19: Testing direct inversion on a small (300 x  300) matrix. The numbers of the x-axis 

correspond to each o f the 300 spectra in my test set. The black histogram shows the original 

fractional components o f my test ‘galaxy’ spectrum. The red histogram shows the recovered 

components (shifted along the x-axis by several points for comparison).

W hen I extended the set o f stellar spectra used to 400 the results were very poor, and 

when I extended the set further it became impossible to invert the matrix at all. Some of the 

computational problems could be solved by parallelising the matrix inversion, but although 

this would speed up the process it would not solve the problem of not being able to invert the 

matrix at all. I did not pursue this technique any further as it was clear that it is not practical for 

complicated systems. It is also very slow and so even if we were able to obtain more accurate 

results it would not be useful for working with large numbers of galaxies.

4.4 Evolutionary population synthesis

Evolutionary population synthesis (EPS) first appeared in the 1960’s, and the work of Tinsley 

in the 1970’s forms the basis of most of modem population synthesis (see, for example Tinsley 

and Gunn, 1976). EPS involves starting with some stars and evolving them into a galaxy in 

which the spectrum matches that o f an observed galaxy. Then, since the star formation history 

and stellar content o f the synthetic galaxy are known, these properties can be inferred for the 

observed galaxy.
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EPS models consist o f a library of stellar spectra and a set of stellar evolutionary tracks. 

Evolutionary tracks trace the evolution of stars o f a given mass and chemical com position (see 

Figure 1.1). In other words they give the physical parameters of the stars ( Teff, log(g), [M/H]) 

as a function of time. There are several standard sets of stellar tracks available, for example 

from  the Padova (Bressan et al., 1993), Geneva (Schaller et al., 1992; Charbonnel et ah, 1996) 

and Yale (Yi et ah, 2001) groups. The accuracy of these tracks is crucial to the accuracy 

o f the synthesised galaxies. A study by Chariot et ah (1996) showed that the main source 

of uncertainly in EPS is due to discrepancies in the stellar evolution tracks. A com parison 

of the Padova and Geneva tracks (at solar metallicity only) showed significant differences in 

their predictions, despite the fact that the tracks both used the sam e opacities, sim ilar mixing 

lengths, sim ilar helium  contents and sim ilar mass loss rates. The main cause of the differences 

was found to be the nature of the underlying stellar evolution models.

The basic inputs into any population synthesis system are: the Initial M ass Function (IM F) 

which provides the mass distribution of the original stellar population; the helium  enrichm ent 

law AT/AZ; and the am ount of stellar mass-loss. Once these assum ptions have been made, 

the process of calculating the synthesised spectrum usually involves one of two techniques, 

either fuel consum ption theory Renzini and Buzzoni (1986) or isochrone synthesis, a technique 

introduced by Chariot and Bruzual (1991). O ther issues that population synthesis packages 

deal with have less im pact on the final galaxy, but are still crucial in m atching observed galaxy 

spectra accurately. These include the nature of supernovae ejecta and stellar winds, galactic 

winds, the form ation of substellar objects, extinction and nebular emission.

The m ost sim ple type of evolutionary population synthesis model is the Simple Stellar  

Population (SSP) which assumes all the stars are coeval {i.e. they form ed at the same time and 

have evolved smoothly since that time) and have the same chemical com position. The SSP is 

generally a good model of globular star cluster systems. Normal galaxies are more complex 

than globular clusters, and are better modelled by the sum of several stellar populations of 

different ages. H ence they can be modelled by a sequence of instantaneous starburst models, 

where at certain times there is a burst o f star formation that then evolves smoothly with time.
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4.4.1 P E G A S E

The population synthesis package that I work with throughout this thesis is PEGASE —  Projet 

d ’Étude des GAlaxies par Synthèse Évolutive —  (Fioc and Rocca-Volmerange, 1997). The 

aim of PEGASE was to extend population synthesis into the UV region, rather than focusing 

solely on the optical region of the spectrum. The stellar evolutionary tracks are mainly from 

the Padova group (Bressan et al., 1993), supplemented with tracks from various sources to 

cover the AGB, post-AGB and white dw arf phases. The library of input stellar spectra is that 

created by Lejeune et al. (1997, 1998). PEGASE allows the user the freedom to choose from  a 

range of standard options for each of the population synthesis assumptions:

•  Initial M ass Function (e.g. Salpeter, Scalo, Kennicutt, . . .) ;

•  the star formation scenario (instantaneous burst, constant star formation rate, etc.);

•  nebular emission;

•  the type of supemovae ejecta;

•  the nature of the stellar winds;

•  the fraction of the star formation rate used to form substellar objects;

•  the nature of galactic winds;

•  extinction for different galaxy geometries.

I have modified PEGASE in several ways to incorporate the high resolution spectra and to 

provide information about the stellar content of the synthetic galaxies. I have rewritten the 

main spectral synthesis routine in C, factoring out all the array size dependent com ponents so 

that my high resolution library can be incorporated with a flag on the command line. I have 

also given it the functionality to print out the fractional composition of the synthetic galaxy at 

any stage in its evolution, as demonstrated in Figures 4.14 and 4.15.

One of my aims in creating a new input library for PEGASE was to be able to generate a 

grid of higher resolution synthetic galaxy spectra for comparison with galaxy spectra observed
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in the SDSS. As an exam ple o f what the higher resolution galaxy spectra are like, Figure 4.20 

com pares the high and low resolution spectra for galaxies at different ages. In this exam ple 

I have used the sim plest p e g a s e  model possible, an SSP with a Salpeter (1955) IM F and the 

default options for all other parameters (see the PEGASE r e a d m e  file for details o f  these). The 

agreem ent between these spectra appears to be good, by visual inspection at least. To quantify 

the broadband agreem ent between the two sets o f spectra I have plotted the U B V R I  m agnitude 

differences in Figure 4.21. The RMS errors for the m agnitudes for the tw o sets o f spectra are: 

A U -  0.02 mag, AB = 0.01 mag, A F = 0.00 mag, AR = 0.01 mag and A/  = 0.01 mag. In 

the U  and B  magnitudes there is an offset which increase with the galaxy age. This can be 

explained by com paring with the magnitude offset plots for the Kurucz spectra (Figure 3.4) in 

C hapter 3 in which the spectra for the lowest temperature stars have the greatest offsets. Since 

these stars begin to dom inate the light from  the galaxy at the latest stages o f evolution, this is 

w here we see the greatest magnitude offsets occurring in the synthetic galaxy spectra.

4.5 Lick indices

In this section I look at another way o f parameterising galaxy spectra, the L ick indices. The 

L ick Index system  was developed using observations o f stars at the Lick Observatory between 

1972 and 1984 using the Cassegrain Spectrograph and Im age D issector Scanner ( i d s ). The 

entire Lick sam ple consists o f 460 stars, 500 galaxies and 35 globular clusters, observed in the 

wavelength range 4000 -  6400 at a resolution of 8 -  11.5 /pix over that range.

The purpose o f developing the Lick system was to have a standard, well defined way of 

studying the old stellar populations o f galaxies and globular clusters; however, they have a 

much broader range o f applications. The definition o f each index is sim ilar to an equivalent 

w idth, but is m ade more robust by measuring a pseudo-continuum  based on neighbouring re­

gions o f the spectra. These regions were chosen so as to give a good representation o f the 

spectrum  continuum  at the point of the particular Lick index. There were originally 11 indices 

(defined in Faber et al., 1985) with another 10 added later, giving 21 standard indices. In total 

the indices m easure six molecular bands and 14 different atomic absorption lines. Full details
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Figure 4.20: PEGASE galaxies generated with my new input library (black) overlayed with the 

same galaxies generated at the original 20 resolution (red). The plots show the progression of 

an SSP from 2 -  19000 Myr.
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Figure 4.21: M agnitude comparisons between the galaxies generated with the original input 

library (20 ), and galaxies generated with my new input library (2 ).

o f the developm ent of the Lick system can be obtained from the series of papers: Burstein 

et al. (1984), Faber et al. (1985), Burstein et al. (1986), Gorgas et al. (1993), W orthey et al. 

(1994) and Trager et al. (1998). The standards are described in W orthey et al. (1994), which 

also sum m arises the previous work by the group. The latest version of the bandpass definitions 

is given in Trager (1997) and are available from Guy W orthey’s w ebsite8. These are a refined 

version of those given in Worthey et al. (1994). Properties of the indices, in particular how 

they change with abundance are studied in Tripicco and Bell (1995). In the rest of the section 

I outline how to calculate the Lick indices, and some of the problems that arise when trying to 

calculate them.

8http://astro.wsu.edu/worthey/html/system.html

http://astro.wsu.edu/worthey/html/system.html
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Name Central Bandpass Blue Continuum Red Continuum

H SA 4083.50CM-122.250 4041.600^1079.750 4128.500^1161.000

H yA 4319.750^1363.500 4283.500^1319.750 4367.250-4419.750

m F 4091.000-4112.250 4057.250-1088.500 4114.750-4137.250

H y F 4331.250-4352.250 4283.500-4319.750 4354.750^1384.750

Table 4.1: Bandpass definitions for four extra indices given by Worthey and Ottaviani (1997). 

These are all atomic indices, m easured in .

4.5.1 The Lick index definitions

The standard definitions of the atomic and molecular Lick indices are given by

dA (4.12)
r * c 2

Jac 1 CM ).

C MM
¡m =  -2 .5  logio , (4.13)

A c2 -  A c i

where Td and Ac2 are the limits of the central bandpass in , 5 (d) is the object spectrum and 

C(d) is the linearly interpolated pseudo-continuum. C(d) is defined by

Ar A A Aij
C(A)  =  S i,-y ——  + S r- ---- f  (4.14)

A r A), A r Ah

where
f / M S (A)dA

Sb = - 7 ------- 7— . dfc = {Ab\ + Aw )/2  (4.15)
Ab2 ~ Ab 1

f : lr2 S(A)dA
S r = — J   , dr = (dri + dr2)/2 (4.16)

4 r 2 -  / t r l

and dfci, dfc2> Ar\ and Ar2 are the limits of the blue and red continuum bands. The regions 

defined by these equations are illustrated in the right hand panel of Figure 4.22. In addition 

to the indices defined in Table 3.2, in this section I calculate four extra indices as defined by 

Worthey and Ottaviani (1997). The bandpasses for these indices are given in Table 4.1.

If you wish to use any of the actual Lick index results or relationships measured by the Lick 

group it is necessary to transform your spectra to the Lick system before making a m easure­

ment. Ideally, repeat observations of some of the Lick standard stars can be used to calibrate
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W avelength (A )

Figure 4.22: The top plot shows all the central regions of the Lick indices. The bottom plot 

gives an exam ple of the regions defined in Equations 4.12 to 4.16, for M g 2. The shaded regions 

lepiesent the blue (Ab\ — A¿2), central (4ci -  Ac2) and red (Ar\ -  Ar2) bandpasses. The straight 

line in the pseudo-continuum C(4).

your data against the Lick data. However, if this is not possible there are various other ways 

that some approximate calibration can be made. These issues are discussed in the Appendix 

of W orthey and Ottaviani (1997). In this work I am mainly concerned with measuring Lick 

indices for the SDSS galaxies. The SDSS pipeline m easurements of the Lick indices do not 

transform  to the Lick system and hence I will not be doing any kind of transform ation with my 

data.

4.5.2 Calculating errors on the Lick indices

Given an estim ate for the error on each pixel in the spectrum, cr(A), it is possible to calculate 

the random error on a Lick index using the analytic expressions derived by González (1993)
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where

cr[Im] =
2.5 x  IO047"' 

2.3026(2,-2 - 2 f])
(4.18)

<TSc
S c

O"

Ac

Cc

Sc

2

=  O ^ rl +  ^ r 2 ) / 2

C(Ac)
tc2

■ r  
£

S {A)dA

*  S 2(A)
dA

S b = s ;

rì r  ~= Si

to ^ 2U )

‘Ab2 S 2(A ) 

cr2(2) 
■Ar2 S 2(A )

cr2(2)

r*b:

JAb\

£j  Ar]

dA

dA

Cardiel et al. (1998) derive a more accurate pair of equations for calculating the errors, based 

on a full analysis of the error propagation throughout the calculation process. These are given 

by

v p ixe ls

![/„j =  2
/=!

C 2(A,)o-2(Aí) + S 2(Ai)cr2C{Á¡)

C \A i)

^ p ix e l s  ^ p ix e l s

Z I
¡'=1 j= \ , j± i  

for the atomic indices and

S(Aj)S(Aj)  2
: (Aio-s + A4o-c )

C2(A¡)C2(Aj) b 4

dA2 +

dA¡dA¡ (4.19)

a \ I m] = 2.5 log(g) 1
1Q-0.4/,,, Ac2 _  Aci cr[la\

for the molecular indices, where

(4.20)

Ai =

A4 =

U r  -  2,-)(2r -  Aj) 

Ur -  rib)2

(2; -  Ab)U j -  Ab)
U r -  rib)2

o C(A,)

crl =

^ s b +
rlr 2 ( \ ^ 2  , ( 4; — 2¿  

2r Ab

1

CT

bb,2 - 2 6l)2 ,=1

2r -  2¿

^ p ix e ls (b lu e )

2  ^ U i ) d A ]

Sr

(4.21)

(4.22)

(4.23)

(4.24)
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1
2  £r 2( A i ) d A j . (4.25)

(Ar2 - 4 n ) 2 i=i

N ote that Cardiel et al. (1998) assume the size of each pixel dA ( 0  in their notation) is fixed, 

and so take it out o f all the summations. However, in general (and in my case), dA is not fixed, 

and so is kept inside the summation signs.

4.5.3 Dealing with fractional pixels in the Lick indices

The Lick indices are a very sensitive measurement, and can depend greatly on the specific data 

being used, and the exact implementation of the above equations. Som e of the Lick indices are 

calculated over a relatively small wavelength range and hence, depending on the resolution of 

the spectra, over a small number of pixels. W hen the edge of the bandpass does not fall exactly 

on the edge of a pixel in the spectrum, you have to deal with a fractional pixel at each end of 

the band. A band such as Ca4227, for instance, has a central bandpass 4222.25 -  4234.75 , 

which is only ~  6 pixels at 2 sampling. In this section I investigate whether the way in which 

you deal with fractional pixels has a significant effect on the value of the Lick index.

The most basic way of dealing with the pixel at A\  with width A A and value y(T) is to view 

the pixel as a rectangular block, with height y(d), centred on position A. The block is cut at 

some point /!„„•„ (the edge of the bandpass). Then the fractional area of the pixel is

This is illustrated in Figure 4.23. A more accurate version is to take the value of the pixel to be 

the average of that pixel and the neighbouring pixel, so the fractional area of the pixel is

This is illustrated in Figure 4.24. The most accurate way is to calculate the exact area under 

each pixel, using the trapezoidal rule

(4.26)

(4.27)

(4.28)

This is illustrated in Figure 4.25.
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Figure 4.23: An illustration of the most straightforward way of dealing with fractional pixels. 

The dark vertical lines show the centre of each pixel (A\ ,A2 ■ ■ .)■ The thinner lines show the 

edges of each pixel (di + A d/2). The heavy solid line connects the measured value assigned 

to each pixel’s central wavelength. Each pixel is treated as a block with height y(d). The grey 

shaded area shows the fractional area of the pixel that will be counted toward the calculation 

of the Lick index.

Figure 4.24: An improved version of Figure 4.23, where the height of each pixel is taken to be 

the average of it and the neighbouring pixel. All notation is the same as in Figure 4.23.

Figure 4.25: The exact area of each pixel is calculated. All notation is the same as in Figure 

4.23.
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Figure 4.26: Two spectra from the W oithey test set, C HYA VB 112 (solid line) and C HYA VB 

111 (dotted line). The flux is in arbitrary units.

Guy W orthey provides a test set o f spectra on his website 9 that can be used to confirm you 

are calculating the Lick indices correctly. Two examples of these spectra are shown in Figure 

4.26. I calculated the Lick indices for each spectrum, experimenting with each of the methods 

of dealing with fractional pixels described above. W orthey’s calculated values for each of the 

test spectra are shown in Table 4.2. M y results are shown in the next three tables, specifically 

the block method in Table 4.3, average neighbouring pixels in Table 4.4, calculating exact area 

of fractional pixel in Table 4.5. The maximum differences between the different methods, for 

each index, are shown in Table 4.6. The random error on each index, as calculated by Equations 

4.17 and 4.18 is shown in Table 4.7. The maximum difference between the different methods is 

of the same order of magnitude as the random error in many cases, which suggests the method 

of dealing with fractional pixels is not insignificant. However, both these differences, and the 

random  error measurements, are likely to be significantly smaller than differences caused by 

system atics, such as the calibration of the spectra, so it is not clear if they will have much 

effect overall. I decided to calculate the exact area of the fractional pixels, as the computational 

expense was not significant with respect to the overall calculation.

9http://astro.wsu.edu/worthey/.

http://astro.wsu.edu/worthey/
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Object C-HYA -VB-112 C-HYA -VB-111 C-HYA-VB-103 C-HYA-VB-103 C-HYA-VB-95 S-HR-6770 S-HR-7429

C N , -0.2166

c n 2 -0.1537

Ca4227 0.3867

G4300 -1.7058

Fe4383 -1.3612

Ca4455 0.0937

Fe4531 1.4019

Fe4668 -0.2301

HJ3 7.9793

Fe5015 2.2638

M g , 0.0052

Mg 2 0.0368

Mg b 0.4981

Fe5270 0.9764

Fe5335 0.7577

Fe5406 0.6434

Fe5709 0.4204

Fe5782 0.5728

N a D 0.7528

TiO, 0.0113

T i 0 2 0.0004

H 5A 10.7413

H ta 11.5886

H<5/r 7.0310

Hy/- 8.2073

-0.1784 -0.1474

-0 .1208 -0.0837

0.7314 0.3261

-0.6097 -1.3522

-0 .9046 -0.5561

-0 .0860 0.0376

2.0045 1.7000

-0 .6610 1.1941

6.7960 6.9482

2.7791 2.1369

0.0003 0.0280

0.0294 0.0264

0.6761 0.2494

1.2326 2.3431

0.5729 -0.1757

0.3363 0.1579

0.2493 0.4228

0.3266 0.7415

0.8871 0.5196

0.0152 0.0344

-0 .0060 0.0165

9.2458 6.8251

9.3231 8.2097

6.0016 5.6658

6.9467 5.9631

-0.1345 -0.1845

-0.0759 -0.1206

0.2656 0.0179

-0.2306 -0.4444

0.3196 -1.0735

0.0277 0.0251

2.1937 1.5324

1.1886 0.1803

6.6314 7.3878

1.9241 3.1356

0.0207 -0.0144

0.0298 0.0181

0.4357 0.4532

1.3770 0.3502

0.3774 0.2472

0.0742 0.6556

0.0395 0.1280

0.7070 0.2567

0.6259 1.0093

0.0173 0.0074

0.0001 0.0011

6.8466 10.3301

7.1806 9.1983

5.0730 6.3271

5.6617 6.7501

0.1647 0.2582

0.1835 0.2968

0.6470 2.0157

6.2573 6.3599

5.2520 7.9968

1.3567 2.1084

3.2418 4.4061

5.4036 7.6690

1.6559 0.8861

6.0680 5.8463

0.0521 0.2033

0.1490 0.3599

2.4936 4.8288

3.4392 3.6879

2.5624 3.5034

1.8760 2.3421

0.9422 1.5064

0.9314 1.0773

1.9685 3.5152

0.0303 0.0220

0.0139 0.0285

-4.5433 -6.4895

-6.8469 -9.3953

41.8108 -1.2308

-1.8909 -3 .0677

Table 4.2: W orthey’s calculated values for the Lick indices for each of the 7 test galaxies.
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C-HYA-VB-112 C -H Y A -V B -U ! C-HYA-VB-103 C-HYA-VB-103 C-HYA-VB-95 S-H R-6770 S-HR-7429Object

CN i

C N 2

Ca4227

G4300

Fe4383

Ca4455

Fe4531

Fe4668

H e

Fe5015

M g ,

M g 2

M g b

Fe5270

Fe5335

Fe5406

Fe5709

Fe5782

N a D

T iO ,

T i 0 2

n s A

H y A

m F

H y F

-0 .2165

-0.1535

0.3875

-1.7018

-1.3527

0.0937

1.4102

-0.2231

7.9976

2.2721

0.0052

0.0370

0.4974

0.9814

0.7544

0.6434

0.4171

0.5754

0.7508

0.0112

0.0004

10.7591

11.6977

6.9790

8.2395

-0 .1784

-0.1207

0.7313

-0.6069

-0 .8894

-0 .0800

1.9996

-0 .6432

6.8148

2.7921

0.0003

0.0294

0.6764

1.2395

0.5661

0.3363

0.2496

0.3334

0.8970

0.0151

-0 .0060

9.3123

9.4317

5.9312

7.0210

-0.1467

-0.0828

0.3293

-1 .3480

-0.5752

0.0196

1.7602

1.1982

6.9642

2.1355

0.0279

0.0263

0.2476

2.3620

-0.1976

0.1579

0.4111

0.7530

0.5226

0.0344

0.0165

7.0262

8.3551

5.5918

6.0473

-0 .1342

-0 .0754

0.2672

-0.2207

0.3159

0.0257

2.2407

1.1893

6.6466

1.9391

0.0207

0.0297

0.4364

1.3766

0.3695

0.0742

0.0275

0.7209

0.6269

0.0173

0.0002

6.8772

7.3415

5.0222

5.7719

-0 .1844

-0 .1204

0.0171

-0 .4393

-1 .0867

0.0125

1.5474

0.1930

7.3931

3.1441

-0 .0144

0.0182

0.4535

0.3469

0.2542

0.6556

0.1175

0.2607

1.0162

0.0074

0.0010

10.3463

9.3696

6.2324

6.8340

0.1648

0.1840

0.6499

6.2671

5.2969

1.3597

3.2553

5.4209

1.6598

6.1209

0.0521

0.1491

2.5017

3.4455

2.5650

1.8817

0.9478

0.9371

1.9718

0.0303

0.0139

-4.7181

-6 .9022

-0 .8828

-1 .8542

0.2585

0.2979

2.0223

6.3711

7.9977

2.1083

4.4120

7.7337

0.8898

5.9026

0.2034

0.3598

4.8567

3.6910

3.5035

2.3644

1.5097

1.0786

3.5157

0.0220

0.0286

-6 .7715

-9.5006

-1 .4190

-3.0155

Table 4.3: M y values for the Lick indices, calculated using the method shown in Figure 4.23.
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Object C-HYA-VB-112 C-HYA-VB-l 11 C-HYA-VB-103 C-HYA-VB-103 C-HYA-VB-95 S-HR-6770 S-HR-7429

CN i -0.2165 —0.1785 —0.1481 -0.1347 —0.1 844 0.1641 0.2574

c n 2 -0 .1544 —0.1217 —0.0854 -0.0771 — 0 .1 2 1 2 0.1827 0.2956

Ca4227 0.3831 0.7271 0.3310 0.2687 0.0273 0.6342 1.9835

G4300 -1.7219 -0.6249 -1.3657 -0.2627 -0.4618 6.2438 6.3536

Fe4383 -1.3710 -0 .9284 -0.5578 0.3232 -1.0715 5.2230 7.9627

Ca4455 0.0902 -0.0865 0.0636 0.0332 0.0261 1.3234 2.0767

Fe4531 1.3942 1.9972 1.6751 2.1712 1.5256 3.2292 4.3816

Fe4668 -0 .2360 -0.6815 1.1862 1.1796 0.1662 5.3849 7.6552

HjB 7.9602 6.7796 6.9296 6.6138 7.3744 1.6542 0.8892

Fe5015 2.2491 2.7590 2.1185 1.9012 3.1144 6 .0 2 2 0 5.8220

M gj 0.0051 0 .0 0 0 2 0.0281 0.0207 -0.0144 0.0520 0.2031

M g 2 0.0367 0.0293 0.0264 0.0298 0.0180 0.1489 0.3597

Mg b 0.5009 0.6737 0.2589 0.4346 0.4507 2.4776 4.8117

Fe5270 0.9715 1.2287 2.3336 1.3721 0.3497 3.4236 3.6645

Fe5335 0.7509 0.5751 -0.1564 0.3801 0.2389 2.5257 3.4536

Fe5406 0.6287 0.3328 0.1553 0.0794 0.6412 1.8546 2.3167

Fe5709 0.4232 0.2501 0.4291 0.0472 0.1317 0.9396 1.5004

Fe5782 0.5677 0.3212 0.7308 0.6927 0.2531 0.9277 1.0736

N a D 0.7552 0.8839 0.5153 0.6234 1.0079 1.9624 3.5095

TiO i 0.0113 0.0153 0.0343 0.0172 0.0075 0.0303 0.0219

T i0 2 0.0003 -0.0061 0.0165 0 .0 0 0 0 0 .0 0 1 1 0.0139 0.0284

n s A 10.7477 9.3051 7.0219 6.8860 10.3477 -4.6887 -6 .7384

Hta 11.6920 9.4361 8.3532 7.3355 9.3661 -6.9089 -9 .5079

a s p 6.9590 5.9147 5.5560 4.9907 6.2259 -0.8905 -1 .4356

H y F 8.2199 6.9988 6.0287 5.7579 6.8175 -1.8453 -2.9991

Table 4.4: My values for the Lick indices, calculated using the method shown in Figure 4.24.
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Object C-HYA-VB-112 C -H Y A -V B -ll] C-HYA-VB-103 C-HYA-VB-103 C-HYA-VB-95 S-HR-6770 S-HR-7429

C N , —0.2189 —0.1808 —0.1497 —0.1366 —0.1866 0.1630 0.2562

c n 2 —0.1560 —0.1231 —0.0861 —0.07 80 —0.1226 0.1819 0.2948

Ca4227 0.3815 0.7254 0.3212 0.2589 0.0244 0.6161 1.9602

G4300 -1 .6206 -0 .5474 -1.2871 -0 .1849 -0 .3748 6.1780 6.2337

Fe4383 -1 .4228 -0 .9768 -0.6074 0.2857 -1 .1359 5.1880 7.9150

Ca4455 0.0909 -0.0905 0.0492 0 .0 2 2 1 0.0114 1.3062 2.0511

Fe4531 1.3977 1.9846 1 .6 8 8 8 2.1732 1.5267 3.2287 4.3807

Fe4668 -0.2370 -0 .6892 1.1657 1.1652 0.1415 5.3561 7.6204

H/3 7.9838 6.7913 6.9333 6.6257 7.3784 1.6617 0.8982

Fe5015 2.2601 2.7615 2.1070 1.9063 3.1067 6.0240 5.8263

M g i 0.0052 0 .0 0 0 1 0.0279 0.0205 -0 .0147 0.0516 0.2026

Mg 2 0.0368 0.0292 0.0262 0.0296 0.0178 0.1486 0.3593

M g b 0.5123 0.6828 0.2631 0.4429 0.4594 2.4794 4.7757

Fe5270 0.9707 1.2192 2.3405 1.3683 0.3396 3.4035 3.6410

Fe5335 0.7466 0.5635 -0 .1897 0.3549 0.2183 2.5194 3.4500

Fe5406 0.6439 0.3452 0.1426 0.0711 0.6457 1.8667 2.3172

Fe5709 0.4221 0.2387 0.4172 0.0340 0.1274 0.9252 1.4907

Fe5782 0.5746 0.3202 0.7330 0.7043 0.2548 0.9176 1.0625

N a D 0.7586 0.8839 0.5135 0.6149 1.0104 1.9588 3.5098

TiO i 0.0114 0.0152 0.0342 0.0171 0.0073 0.0301 0.0216

T i 0 2 0.0004 -0.0063 0.0163 - 0 .0 0 0 1 0.0009 0.0134 0.0281

H6a 10.7207 9.2683 6.9823 6.8447 10.3299 ^1.7500 -6 .7914

H y A 11.6714 9.3967 8.3115 7.2973 9.3286 -7 .0328 -9 .6510

H SF 6.9591 5.9034 5.5430 4.9824 6.2236 -0 .9175 -1.4571

H yF 8.2256 6.9990 6.0196 5.7468 6.8130 -1 .9204 -3 .0896

Table 4.5: M y values for the Lick indices, calculated using the method shown in Figure 4.25.
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Object C-HYA-VB-l 12 C-HYA-VB-l 11 C-HYA-VB-I03 C-HYA-VB-103 C-HYA-VB-95 S-HR-6770 S-HR-7429

CN i 0.0024 0.0024 0.0030 0.0024 0 .0 0 2 2 0.0018 0.0023

c n 2 0.0025 0.0024 0.0033 0.0026 0 .0 0 2 2 0 .0 0 2 1 0.0031

Ca4227 0.0060 0.0060 0.0098 0.0098 0 .0 1 0 2 0.0338 0.0621

G4300 0.1013 0.0775 0.0786 0.0778 0.0870 0.0891 0.1374

Fe4383 0.0701 0.0874 0.0513 0.0375 0.0644 0.1089 0.0827

Ca4455 0.0035 0.0105 0.0440 0 .0 1 1 1 0.0147 0.0535 0.0573

Fe4531 0.0160 0.0199 0.0851 0.0695 0.0218 0.0266 0.0313

Fe4668 0.0139 0.0460 0.0325 0.0241 0.0515 0.0648 0.1133

HJ3 0.0374 0.0352 0.0346 0.0328 0.0187 0.0075 0 .0 1 2 1

Fe5015 0.0230 0.0331 0.0299 0.0379 0.0374 0.0989 0.0806

M g j 0 .0 0 0 1 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0.0003 0.0005 0.0008

M g 2 0.0003 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0.0004 0.0005 0.0006

Mg b 0.0149 0.0091 0.0155 0.0083 0.0087 0.0241 0.0810

Fe5270 0.0107 0.0203 0.0284 0.0087 0.0106 0.0420 0.0500

Fe5335 0 .0 1 1 1 0.0116 0.0412 0.0252 0.0359 0.0456 0.0535

Fe5406 0.0152 0.0124 0.0153 0.0083 0.0144 0.0271 0.0477

Fe5709 0.0061 0.0114 0.0180 0.0197 0.0142 0.0226 0.0190

Fe5782 0.0077 0.0132 0 .0 2 2 2 0.0282 0.0076 0.0195 0.0161

N aD 0.0078 0.0131 0.0091 0 .0 1 2 0 0.0083 0.0130 0.0062

TiO i 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0.0004

T i0 2 0 .0 0 0 1 0.0003 0 .0 0 0 2 0.0003 0 .0 0 0 2 0.0005 0.0005

H SA 0.0384 0.0665 0 .2 0 1 1 0.0413 0.0178 0.2067 0.3019

H 7a 0.1091 0.1130 0.1454 0.1609 0.1713 0.1859 0.2557

H 6F 0.0720 0.0982 0.1228 0.0906 0.1035 0.1067 0.2263

H y F 0.0322 0.0743 0.0842 0 .1 1 0 2 0.0839 0.0751 0.0905

Table 4.6: The maximum difference in the results obtained between the three methods of deal­

ing with fractional pixels.



4.5. L ick  indices 131

Object C-HYA -VB-l 12 C -H Y A -V B -lll C-HYA-VB-103 C-HYA-VB-103 C-HYA-VB-95 S-HR-6770 S-HR-7429

C N , 0 .0 0 1 0 0 .0 0 1 2 0.0031 0.0025 0.0015 0.0014 0.0019

c n 2 0.0013 0.0015 0.0044 0.0029 0.0024 0 .0 0 2 0 0.0032

Ca4227 0 .0 1 1 2 0.0159 0.0377 0.0267 0.0260 0.0367 0.1003

G4300 0.0507 0.0596 0.0792 0.0665 0.0534 0.0729 0.0968

Fe4383 0.0456 0.0677 0.1089 0.0823 0.0738 0.0818 0.1013

Ca4455 0.0151 0.0234 0.0344 0.0385 0.0274 0.0689 0.0727

Fe4531 0.0283 0.0478 0.0831 0.0422 0.0320 0.0464 0.0555

Fe4668 0.0384 0.0405 0.0887 0.0501 0.0533 0.0509 0.0592

HJ3 0.1144 0.1067 0.1003 0.0965 0.1113 0.0371 0.0337

Fe5015 0.0486 0.0504 0.0879 0.0767 0.0570 0.1091 0.1050

M g , 0.0004 0.0004 0.0007 0.0006 0.0006 0.0009 0.0008

M g 2 0.0006 0.0006 0.0008 0.0007 0.0006 0.0016 0.0026

M g b 0.0253 0.0261 0.0390 0.0289 0.0256 0.0569 0.0973

Fe5270 0.0182 0.0199 0.0530 0.0285 0.0223 0.0571 0.0625

Fe5335 0.0301 0.0199 0.0389 0.0353 0.0296 0.0534 0.0586

Fe5406 0.0196 0.0182 0.0518 0.0366 0 .0 2 0 0 0.0163 0.0285

Fe5709 0.0216 0.0184 0.0483 0.0345 0.0139 0.0279 0.0236

Fe5782 0.0140 0.0166 0.0277 0.0213 0.0197 0.0234 0.0323

N a D 0.0180 0.0149 0.0278 0.0296 0.0236 0.0326 0.0520

T iO , 0.0004 0.0005 0 .0 0 1 0 0.0006 0.0003 0.0004 0.0003

T i 0 2 0.0004 0.0004 0.0009 0.0006 0.0004 0 .0 0 0 2 0.0003

H6a 0.0508 0.0579 0.1164 0.0822 0.0882 0.0476 0.0722

HyA 0.0994 0.0739 0.0819 0.0915 0.0761 0.0819 0.1036

Hd/r 0.1054 0.1052 0.1534 0.1183 0.0951 0.0289 0.0411

H y F 0.0991 0.1081 0.0707 0.0884 0.0974 0.0427 0.0606

Table 4.7: For comparison, this table shows the random error on the Lick indices.
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4.6 Future work

In this chapter I have experimented with a range of ways of parameterising galaxy spectra. 

I have also created a high resolution version of the Lejeune et al. (1998) library of stellar 

spectra for use in population synthesis. Since some of these spectra are not available at high 

resolution, it was not possible to completely finish this library. Hence it would be useful to 

get the complete grid of NextGen spectra to fill in the gaps in the M-dwarfs and also to find 

a library (if one exists) of M -giant spectra at higher resolution, to replace the low resolution 

Fluks et al. (1994) and Bessell et al. (1991) spectra.

With respect to parameterising the galaxy spectra, I found that the direct methods of em ­

pirical population synthesis (least squares fitting and direct inversion) were not practical for 

the large matrices I was dealing with. One possibility would be to parallelise the direct inver­

sion code so that it could cope with the larger matrices. However the other limitations of this 

method mean I do not think it would be worth doing this.

Once the high resolution library of stellar spectra is complete it will be an important re­

source for doing high resolution population synthesis. An obvious application would be to 

investigate the age-metallicity degeneracy using a grid of high resolution synthetic galaxies. 

Some of the Lick indices are already known to correlate better with age or with metallicity. A 

grid of synthetic spectra may allow further constraints to be placed on this.
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C h a p t e r  5

Galaxy stellar populations and their 

dependence on environment

5.1 Introduction

Large surveys allow the study of subtle statistical trends across a massive num ber of objects. 

This chapter is concerned with how the spectral properties of galaxy spectra change with their 

local density. The local density of a galaxy is a measure of the num ber of other galaxies 

in its im m ediate environment. There are clear differences in the nature of galaxies at both 

extremes: a lone field galaxy is generally different to a galaxy near the centre of a massive 

cluster. Davis and Geller (1976) showed that elliptical galaxies are more strongly clustered 

than spiral galaxies. Combining this with the observation that the fraction of elliptical galaxies 

in clusters increases as local density increases (Dressier, 1980) gives the morphology-density 

relation. M any studies of galaxy properties (particularly elliptical galaxies) focused mainly on 

galaxies in clusters. M easuring the local density of each galaxy in a large survey allows you 

to look at how the trends change as you move from the field galaxy, through galaxies in small



134 Chapter 5. Galaxy stellar populations

groups, to galaxies in much richer environments like clusters. Several large area surveys have 

allowed the study of trends as a function of local environment (e.g. Faber et al., 1989; da Costa 

et al., 2000), however these have had much smaller samples than the SDSS.

Although galaxies are very different from each other, their properties do form several well 

established correlations. Spiral galaxies show a good correlation between rotation and lum inos­

ity, the Tully-Fisher relation (Tully and Fisher, 1977). Elliptical galaxies form a Fundamental 

Plane of radius, luminosity, velocity dispersion and surface brightness (Djorgovski and Davis, 

1987; Dressier et al., 1987). The line index properties of elliptical galaxies provide some in­

sight into their homogeneity by showing that they have old stellar populations. This supports 

the theory that they formed early, rather than at late times as a result of mergers between less 

massive galaxies (see Worthey et al., 1994; Vazdekis et al., 1996; Tantalo et al., 1998). A good 

reference about the properties of galaxies in a cosmological context is Combes et al. (1995).

There is strong empirical evidence that galaxy properties are significantly affected by the 

density of their environment. In particular properties such as star formation rates (SFRs) 

(Dressier et al., 1985), gas content (Solanes et al., 2001) and morphology (Dressier, 1980) 

have strong trends with local density. Merchan and Zandivarez (2002) constructed a groups 

catalogue with the 100 K public data release from the 2dF. Using the PC A based 77 parameters 

of M adgwick et al. (2002) as a representation of star formation rate, Martinez et al. (2002) find 

that the fraction of galaxies with high star formation rates is strongly correlated with the virial 

mass of the group they are located in. Gomez et al. (2003) have studied star formation rate as 

it changes with local density in the SDSS. They used the equivalent width of Ho- as a measure 

of star formation rate and found that the SFR is lower in dense environments than in the field 

population.

In a theoretical context, whether we expect galaxy properties to be significantly affected by 

the density of their environment depends on our theories of galaxy formation. In the standard 

cosmological paradigm, the structure we observe in the universe today is the result of hierar­

chical clustering. In this scenario, small scale fluctuations in the initial density field (observed 

as tem peiatuie fluctuations in the CMB) collapse under their own gravity, forming dark matter 

haloes. Thiough a series of mergers these form increasingly massive systems. Galaxies then
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form when the gas cools and forms stars in the centre of the dark matter haloes. Hence in 

this paradigm, the structure, evolutionary history and large scale distribution of galaxies is de­

term ined by the structure, evolutionary history and large scale distribution o f the surrounding 

dark matter haloes. A study of the formation of evolution of dark matter haloes by Lemson and 

Kauffmann (.1999), using semi-analytic galaxy formation models in conjunction will A-body 

sim ulations, found that only the mass distribution of dark matter haloes varied as a function of 

environment. This led them to conclude that none of the other properties of dark m atter haloes 

were directly dependent on environment. In other words, and trends in the morphology, lumi­

nosity, surface brightness and star formation rate with environment arise because galaxies are 

preferentially found in higher mass haloes in overdense environments and lower mass haloes 

in underdense environments.

In this chapter I will be investigating how the Lick indices change with the local density 

o f galaxies. The purpose of the Lick indices and how they are defined have been described 

in Section 4.5. The Lick indices are sensitive to changes in a galaxy’s age and metallicity —  

although there is a well known degeneracy between age and metallicity in terms of their effect 

on galaxy spectra (see Worthey et al., 1994). Some good references about how local environ­

mental factors such as metallicity affect Lick indices (within globular clusters and synthetic 

populations) are Tripicco and Bell (1995), Puzia et al. (2002) and Thomas et al. (2003). There 

are well known trends of metallicity with the properties of individual galaxies, for example 

more massive galaxies tend to be more metal rich. The aim of this chapter is to see whether 

there is any trends between Lick index strength in galaxies and their environments.

Section 5.2 provides the relevant details of the SDSS from which my sample of galaxies has 

been drawn. The process of measuring local density, specifically in the 2dF groups catalogue 

is discussed in Section 5.3. Section 5.4 outlines the sample selection and basic properties of 

the sample. Because of the clear differences between elliptical and spiral (or red and blue) 

galaxies, trends for each group are considered separately as well as for the entire sample. The 

process of splitting the sample into these two groups is described in Section 5.5. Finally, the 

results are presented in Section 5.6 and ideas for future work in Section 5.7.
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Dr1 Spectroscopy Sky Coverage (Galactic Coordinates)

Figure 5 .1 :  The spectroscopic coverage of the SDSS DR1, in galactic coordinates. Image source: 

h t t p : / / w w w .s d s s . o r g / d r l /

5.2 The Sloan Digital Sky Survey

The SDSS is a large redshift survey which, when finished, will have observed around 1 million 

objects covering a quarter of the sky. It consists of both imaging and spectroscopic data. So far 

there have been two data releases, the Early Data Release ( e d r )  (Stoughton et al., 2002) and 

Data Release 1 ( D R I )  (Abazajian et al., 2003). Figure 5.1 shows the spectroscopic coverage of 

DR1. Figure 5.2 shows the distribution of the main sample of DR1 galaxies (a total o f 78 275) 

in redshift space.

This section outlines the basic properties of the SDSS, focusing on the spectra and m easured 

properties that are most relevant to this work. There are several publications from the SDSS 

collaboration that deal with each aspect of the survey in detail. The technical details o f the 

survey are given by York et al. (2000). The target selection procedure for the main galaxy 

sample is described by Strauss et al. (2002), the spectroscopic selection procedure is given by 

Blanton et al. (2003a) and the SDSS photometric system is described by Fukugita et al. (1996).

http://www.sdss.org/drl/
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Right Ascension a, -15° < 6 < 20°

Figure 5.2: The distribution of d r i galaxies in redshift space. Image source:

h t t p : / / w w w .s d s s . o r g / d r l /

5.2.1 Spectra

The spectroscopic survey is predominantly a survey for bright galaxies, luminous red galaxies 

and quasars and as a result, most of the fibres are allocated to one of three samples:

1. Bright galaxies (the Main Sample) with Petrosian r-band magnitude < 17.77

2. Lum inous red galaxies with Petrosian r-band magnitude down to 19.5

3. Quasars, targeting quasar candidates as faint as i < 20.2

http://www.sdss.org/drl/
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Plate diameter 3 degrees

Fibre diameter 3 arcsec

Wavelength coverage 3800 -  9200

Wavelength calibration better than 10  km/s

W avelength reference heliocentric vacuum wavelengths

Binning log-lambda, 69 km/s per pixel

Resolution 1850 to 2200

Flux Units 1 0 “ 17 erg/s/cm2/

Table 5.1: General properties of the SDSS spectra.

In addition to these primary goals there are also many stellar spectra and some ROSAT (Voges 

et al., 1999) and FIRST (Becker et ah, 1995) sources that are targeted. In this work, I will be 

using spectra from the Main Sample. The three main criteria for the selection of objects in the 

Main Sample are:

1- r P S F  ~  rmodel >  s  limit

2- Ppetro <  r limit

3- P 50  <  Id 50,limit

where rpsF  is an estimate of the magnitude using the local PSF as a weighted aperture, rm0(jei is 

an estimate of the magnitude using the better of a de Vaucouleurs and an exponential fit to the 

image, rpetro is a modified form of the magnitude described by Petrosian (1976) and pso  is the 

half-light surface brightness, defined as the average surface brightness within the radius that 

contains half of the Petrosian flux. The different magnitudes mentioned above are described in 

Section 5.2.2. For most of the survey, the values for these limits are: s =  0.3, r = 17.77 

mag and pso,limit = 24.5 mag in 1 arcsec2.

Table 5.1, reproduced from the SDSS w ebsite1, shows the main properties o f the SDSS spec­

tra. The spectroscopic pipeline consists of two stages —  s p e c t r o 2 d a n d  s p e c t r o l d .  The

'http://www.sdss.org/drl

http://www.sdss.org/drl
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Index Wavelength () Index Wavelength ()

M gll 2799.50 2800.32 OUI 5006.54 5008.24

O il 3727.24 3728.30 N il 6548.05 6549.86

H(5 4101.73 4102.89 H a 6562.80 6564.61

Hy 4340.46 4341.68 N il 6583.45 6585.27

Uß 4861.36 4862.68 SII 6716.44 6718.29

OUI 4958.91 4960.30 SII 6730.82 6732.67

Table 5.2: Emission lines measured in SDSS galaxies. The left hand value for each line is in air 

wavelengths and the right hand value is in vacuum wavelengths (see Equation 5.1).

s p e c t r o 2 d  pipeline reduces the raw data and calibration images from the red and blue CCD 

cam eras from each spectrograph and produces merged, co-added, calibrated spectra, noise esti­

mates, and mask arrays (see Table 5.4) for analysis by the s p e c t r o l d  pipeline. The s p e c -  

t r o l d  pipeline determines emission and absorption redshifts, classifies spectra by object type, 

and measures lines in each spectrum. Emission and absorption lines are both detected automat­

ically using wavelet analysis and by measuring the appropriate wavelength range based on the 

highest confidence redshift value for the spectrum. The emission lines that are measured for 

galaxy spectra are given in Table 5.2. All the spectra are given a rough classification as part of 

the pipeline. The distribution of these classifications for the 186250 DR1 objects with spectra 

is shown in Table 5.3.

5.2.2 Magnitudes

Dealing with the SDSS magnitudes can be confusing as several different magnitude systems 

have been used throughout the progress of the survey. The original magnitude system, as 

described by Fukugita et al. (1996), is denoted with primes (u' g' r' i' z')- The system used in 

the EDR and associated papers is denoted with asterisks (u * g* r* i* z )• The new system, used 

in the DR1 and associated papers has no superscript iu g r i z ) .  The differences between the 

different systems are small, typically no more that a few hundredths of a magnitude. The filter s 

for the DRl magnitude system are shown in Figure 5.3.
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Type Number

Galaxies 134000

Quasars (z < 2.3) 17 700

Quasars (z > 2.3) 980

Stars 17 600

M stars and later 4500

Sky spectra 9700

Unknown 1770

Total 186250

Table 5.3: Pipeline classifications of the DR1 spectra.

4 0 0 0  6 0 0 0  8 0 0 0  1 0 0 0 0
W avelength (À )

Figure 5.3: The SDSS (u g r i z ) magnitude filters.

There are also several different types of magnitudes, each of which is most appropriate for 

certain applications.

• PSF magnitudes: For isolated stars, which are well-described by the point spread func­

tion (PSF), the optimal measure o f  the total flux is determined by fitting a PSF model to 

the object.

•  fibre magnitudes: Defined as the flux contained within the aperture of a spectroscopic 

fiber (3" in diameter) for each waveband.

• Petrosian magnitudes: Measuring galaxy fluxes is more difficult than measuring stellar 

fluxes, because galaxies do not all have the same radial surface brightness profile. To
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avoid biases it is desirable to measure a constant fraction of the total light, independent 

of the position and distance of the object. To satisfy these requirements, the SDSS uses a 

modified form of the Petrosian (1976) system, measuring galaxy fluxes within a circular 

aperture whose radius is defined by the shape of the azimuthally averaged light profile.

• model magnitudes: Just as the PSF magnitudes are optimal measures of the fluxes of 

stars, the optimal measure of the flux of a galaxy would use a matched galaxy model. 

To measure model magnitudes each image is fitted with a de Vaucouleurs profile and 

an exponential profile. To ensure the colours can be measured accurately the flux is 

measured through equivalent apertures in all bands. Then the model (exponential or de 

Vaucouleurs) o f higher likelihood in the r filter is selected and applied (i.e. allowing only 

the amplitude to vary) in the other bands after convolving with the appropriate PSF in 

each band.

5.2.3 Line indices

The SDSS s p e c t r o l d  pipeline calculates the Lick indices plus some extra line indices as part 

of the standard reduction procedure. These indices are included in the released FITS data files 

for each source. W hen the EDR was released, several approximations were made in the way the 

Lick indices were calculated in the s p e c t r o l d  pipeline, and hence it is not recommended 

that the indices included in the EDR spectra files be used. I modified the pipeline code to 

calculate the indices and index errors according to the definitions given in Section 4.5 and 

these modifications have now been incorporated into the pipeline, so the indices and errors 

included with the d r i  spectra are correct.

The SDSS spectra have a mask array which gives information about the quality of each pixel 

in the spectrum. For example, if there are sky lines or other problems that affect the particular 

pixel they can be masked out. The full set of SDSS masks is given in Table 5.4. The Lick 

indices should only be calculated using good quality data, so in calculating the indices, the 

SDSS pipeline does not use pixels that have the masks FULLREJECT, NOSKY, BRIGHTSKY 

or NODATA. This means the equations defining the Lick indices (4.12, 4.13, 4.15 and 4.16) 

have to be adjusted so that they only sum over unmasked pixels. W hen calculating the Lick
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indices I found that there were still problems due to bad pixels near the index bandpass. Hence 

I also used the masks BADSKYCHI and NEARBADPIXEL. Also, if several pixels in the index 

bandpasses (or those used for calculating the pseudo-continuum) are masked, then the value of 

the index can be strongly affected. For this reason, I chose to calculate Lick indices only for 

those spectra with less than 3 pixels masked.

The SDSS spectra are all quoted in vacuum wavelengths, whereas most Lick index band­

passes (such as those in Table 3.2) are quoted in air wavelengths. Hence a small adjustment 

must be made to the index bandpasses (for an example of the magnitude of this adjustment, see 

Table 5.2 which gives air and vacuum wavelengths for some of the major emission lines). The 

standard formula for converting between vacuum and air wavelengths is (from M orton, 1991)

Also, when using the SDSS Lick indices, note that they are calculated using the bandpass def­

initions from Worthey et al. (1994) rather than the revised version from Trager (1997) which I 

use throughout this thesis.

At the time of starting this work, the SDSS had not finished their measurements of the local 

density distribution. However, the 2dF did have a groups catalogue in preparation, and so I 

have used this instead.

There are two distinct approaches to measuring the density distribution of a large sample of 

galaxies. One is to define a continuous parameter (such as the two-point correlation function) 

which results in a smooth map of changing density. The other is to consider discrete groups of 

galaxies which represent the various bound systems in the survey region. The method used here 

is the latter, i.e. I am using a group catalogue in which every galaxy in the 2dF survey has been 

assigned membership to a group of two or more galaxies, or determined to be an isolated galaxy 

and hence not in a group. This catalogue is the largest groups catalogue currently available, 

created from a sample of ~  190 000 galaxies. About 53% of the galaxies are placed into groups

A 1

/lair = /Ivac 1 “t" 2.735 x  10 H---------
131.4182 2.767 x l 0 8l 1
-------------  H------------------ ( 5 . 1 )

5.3 The 2dF groups catalogue
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# M ask name Description

0 N OPLUG Fiber not listed in plugmap file

1 BADTRACE Bad trace from routine TRACE320CRUDE

2 BADFLAT Low counts in fiberflat

3 BADARC Bad arc solution

4 M ANYBADCOLUM NS > 1 0 % pixels are bad columns

5 M ANYREJECTED > 1 0 % pixels are rejected in extraction

6 LA RG ESH IFT Large spatial shift between flat and object pos’n

7 BADSKYFIBER Sky Fiber shows extreme residuals

8 NEARW HOPPER Within 2 fibers o f a whopping fiber (inclusive)

10 SM EARIM AGE Smear available for red and blue cameras

11 SM EARHIGHSN S/N sufficient for full smear fit

12 SM EARM EDSN S/N only sufficient for scaled median fit

16 NEARBADPIXEL Bad pixel within 3 pixels of trace

17 LOW FLAT Flat field less than 0.5

18 FULLREJECT Pixel fully rejected in extraction (INVVAR^O)

19 PARTIALREJECT Some pixels rejected in extraction

2 0 SCATTEREDLIGHT Scattered light significant

21 CROSSTALK Cross-talk significant

2 2 NOSKY Sky level unknown at this wavelength (INVVAR=0)

23 BRIGHTSKY Sky level > flux + 10*(fluxerr) AND sky > 2.0 * median

24 NODATA No data available in combine B-spline (INVVAR=0)

25 COM BINEREJ Rejected in combine B-spline

26 BADFLUXFACTOR Low flux-calibration or flux-correction factor

27 BADSKYCHI Relative^ 2 >  3 in sky residuals at this wavelength

28 REDM ONSTER Contiguous region of bad x 2 in sky residuals

Table 5.4: M ask definitions for the SDSS spectra. W hen low numbered flags (< 16) are set, 

those will be set for half of the spectra -  either the blue or red spectrograph. The higher- 

numbered flags (> 16) are set for individual pixels. The masks that I used when calculating the 

Lick indices in this chapter are shown in bold text.
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containing at least two members (of which there are 28213). O f these, there are 6773 groups 

which contain at least four galaxies. This section outlines how the groups catalogue is created.

The 2dF Galaxy Redshift Survey (2dFGRS) (Colless et al., 2001) is a massive redshift 

survey covering approximately 1500 square metres of sky, carried out at the Anglo-Australian 

Observatory. It consists of spectra for 245 591 objects, mainly galaxies, above an extinction- 

corrected magnitude of by = 19.45. O f these, good quality redshifts have been m easured for 

221 414 galaxies. The survey details are described in Colless et al. (2001) and the final data 

release in Colless et al. (2003). M ore information and data products are available from the 

2dFGRS website 2.

A groups catalogue is created from the raw data (in this case a subset of ~  190000 galax­

ies from the 2dFGRS) using a groupfinder algorithm. Given a set of galaxies with angular 

positions and redshifts, the aim of the groupfinder algorithm is to create subsets o f galaxies 

that are the most likely to represent the bound structures that exist in the survey. It aims to 

minimise the amount of contamination by nearby, but physically separate, objects while at the 

same time trying not to miss any of the true group members. Which of these goals is most im ­

portant will depend on the specific application. In practice the groupfinder algorithm achieves 

a compromise between these two goals.

The groupfinder algorithm used to create this catalogue is a Friends-of-Friends ( f o f )  per­

colation algorithm, which is the standard class of algorithms used to find groups in redshift 

surveys. The algorithm works by linking together all the galaxies within a particular linking 

volume of each galaxy. The particular nature of the algorithm is specified by the shape and 

size of the linking volume and how it varies throughout the survey. Since the number density 

of galaxies varies as a function of redshift, it is necessary to scale the linking volume in order 

to produce galaxy groups of a similar overdensity, regardless of the redshift. The scale of the 

linking volume is chosen so that for a group of galaxies sampled at varying completeness, the 

edges of the recovered group are in the same place. In redshift space groups of galaxies will 

appear elongated along the line of sight and so the shape of the linking volume used is cylin­

drical (rather than spherical) to account for this. The optimal parameters for the groupfinder

2http://msowww.anu.edu.au/2 dFGRS/

http://msowww.anu.edu.au/2
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N

Figure 5.4: The distribution of group sizes in the NGP groups catalogue.

algorithm  were obtained by testing on a mock 2dFGRS catalogue constructed using N-body 

simulations. For more details of the groupfinder algorithm and the specific parameters used see 

Eke et al. (2003).

The resulting catalogue consists of a group size for each galaxy (i.e. how many galaxies 

are in the group it is located in) and a velocity dispersion cr for each group 3. The velocity 

dispersion is a measure of the spread of the individual galaxies velocities around the mean 

velocity of the group. It is calculated using

cr = y m ax (0 , -  o j rr) (5.2)

where

‘'-•T n fcvt'« *  (5-3>

and crerr is the redshift error. The g, terms are the differences between the recession velocities 

o f the N  galaxies in the group, in size order, i.e.

gi = v/+i -  i = 1 , 2 , . . . ,1V — 1 (5.4)

and the w; terms are weights given by

Wj =  i(N  -  i) .  (5.5)

The distribution of group sizes for the North Galactic Plane (NGP) is shown in Figure 5.4.

3I will use cr to mean group velocity dispersion throughout this chapter. Note that some studies of spectral 

properties with environment focus on the galaxy velocity dispersion (also cr).
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Figure 5.5: The region of overlap between the 2dF NGP groups catalogue (black) and the SDSS 

DR1 data (red).

5.4 Sample selection and selection effects

As I am using galaxies from the SDSS in conjunction with local density information from the 

2dF groups catalogue, I first had to cross-match the two catalogues. This restricted me to using 

the region of overlap between the 2dF catalogue and the SDSS d r i  catalogue. This overlap 

region is shown in Figure 5.5. Cross-matching the two catalogues resulted in an initial sample 

of 15 569 galaxies.

However, when any sample is selected like this, it is likely that it is magnitude limited. 

This means that the relative numbers of intrinsically bright and faint galaxies that we see may 

not correspond to the relative numbers per unit volume of space. Bright galaxies are over­

represented and the average luminosity of the galaxies we see increases with distance. This 

bias can be avoided by selecting a volume-limited sample. In the SDSS, the photometric limit
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Figure 5.6: Illustration of the luminosity bias as it affects my sample o f 15 569 galaxies. The 

lower panel shows apparent magnitude m r versus redshift. The cutoff, r/(„„-r is 17.77. The upper 

panel shows the absolute magnitude M r for the same galaxies. M oving to higher redshifts, only 

the brightest galaxies are visible. The red sources form a volume limited sample, as described 

in the text.

for spectroscopic targeting is r//„„v = 17.77, i.e. only galaxies with r < 11.11 are targeted 

spectroscopically. Figure 5.6 shows the affect of this bias in my sample o f 15 569 galaxies. The 

apparent magnitude cutoff o f 17.77 (bottom panel) means that as you go to higher redshifts, 

only the brightest galaxies are included in the sample (top panel). Selecting a volume limited 

sam ple reduces the size of the sample dramatically. The cuts shown by a red box in Figure 5.6 

(0.075 < z < 0.115 and -2 2 .5  < M r < -2 1 .0 ) result in a sample of 3873 spectra.

It is also necessary to consider selection effects resulting from magnitude limits on the 2dF 

groups catalogue. Because the survey is magnitude limited, all low luminosity galaxies will be 

missed, a bias that gets worse with increasing redshift. Groups are only detected if the number 

o f galaxies in a certain region is greater than 3 and hence at high redshifts only larger groups 

will tend to be selected. The group velocity dispersion is correlated with mass and so only 

groups with high velocity dispersion will be found at higher redshift. This is dem onstrated in 

Figure 5.7 which plots group velocity dispersion versus redshift for all spectra in the 2dF NGP 

groups catalogue. There is a clear trend of increasing group velocity dispersion with redshift.

0.05 0.10 0.15 0.20 0.25
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Figure 5.7: The group size (top) and velocity dispersion (bottom) for the groups in the NGP, 

plotted against redshift. Binned averages (for bin size of 0.013) are given by the crosses.
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The fraction of galaxies that are not detected because they fall below the apparent magnitude 

cutoff increases with redshift and hence the number of galaxies detected in each group will not 

be an accurate measure of the group size. The way the velocity dispersion is calculated makes 

it a much more robust measure of the group size and hence I will be using it throughout this 

chapter.

Any trends found between Lick indices and group velocity dispersion could be either en­

vironmental (genuinely due to velocity dispersion) or evolutionary (due to redshift). Using the 

volume limited sample described above should resolve this problem as the average velocity 

dispersion does not change significantly over the limited redshift range. This is demonstrated 

in Figure 5.8 and confirms that the volume limited sample chosen above is a reasonable one. 

The final step is to select those galaxies which are located in a group {i.e. are not isolated galax­

ies). I have done this by selecting galaxies which are in a group with cr t  0. O f the 15 569 

galaxies in the 2dF/SDSS overlap region, 5536 of these are located in groups with cr A 0. This 

corresponds to 1679 galaxies in the volume limited sample.

As discussed in Section 5.2.2 there are four different types of magnitudes in the SDSS sur­

vey. In the work following I use both Petrosian and model magnitudes. Figure 5.9 shows a
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Figure 5.8: Velocity dispersion with redshift for the 15 569 sources in my sample. The red 

sources form  a volume limited sample, as described in the text. O f the 15 569 galaxies 5536 

are located in groups with cr + 0 {i.e. 10033 sources are located at cr = 0 in this plot).
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Figure 5.9: A comparison of the Petrosian and model magnitudes for my sample. The different 

m agnitudes are described in Section 5.2.2.

com parison of these different magnitudes for the sample I have selected. The advantage o f the 

model magnitudes is that they give a higher signal-to-noise m easurement than the Petrosian 

magnitudes. The agreement between the two types of magnitudes is generally quite good, 

although the scatter is higher in the u band. This is mainly because the «-band flux is gen­

erally quite low and aperture photometry includes significant Poisson noise and background 

subtraction uncertainties.
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5.5 Colour magnitude separation

There is a well established bimodality in large galaxy samples, due to the presence of two 

different populations: early type galaxies (E/SO) and late type galaxies (Sa-Sd spirals and ir­

regulars). These two morphological types occupy different regions of the colour magnitude 

diagram (Tully et al., 1982). Treating these two distinct groups as one sample could hide any 

trends that may be present, and so it is important to separate them. Redshift surveys such as 

SDSS allow the colour bimodality to be quantified without using morphological information 

directly, which is an advantage since morphology becomes difficult to measure accurately as 

redshift increases. It is interesting to study the nature of the colour bimodality as it is likely 

that it is due to different physical processes in galaxy formation (Budavari et al., 2003). This 

has been done by several people for samples of SDSS galaxies. For example Strateva et al. 

(2001) show that the galaxies can be separated well into two groups, roughly corresponding to 

morphological types, using the g -  r versus u - g  colours, in conjunction with the g versus u - r  

colours.

I have separated the galaxies into two groups using the separation method proposed by 

Baldry et al. (2003). The main difference between the Baldry et al. (2003) method and previous 

methods is that they do not use a cut in morphology or in spectral type to divide the galaxies 

into two groups. The basis of their approach is to assume that the colour distribution of galaxies 

can be approximated by the sum of two ‘normal’ Gaussian functions, a bimodal function. They 

use the rest frame u - r  colour as their spectral-type indicator, which is defined by

where ku and kr are k-corrections to the magnitudes (see Equation 1.20). There is a clear 

bimodality in the galaxy distributions, obvious directly from plotting C ur versus M r.

The sample used by Baldry et al. (2003) is derived from the SDSS large scale structure 

s a m p le l l  which covers 2420 square degrees. It was then magnitude limited using 13.5 < 

r < 17.5 over 29% of the area and 13.5 < r < 17.77 over 71% of the area, resulting in a 

sample of 208 570 items This sample was further restricted by selecting a low redshift range 

(0.004 < z < 0.080) and making a cut in absolute magnitude (-23.5 < M r <  -15.5) resulting in

(5.6)
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a final sample of 6 6  846 galaxies. The method used by Baldry et al. (2003) can be summarised 

as follows. Firstly they corrected for sample incompleteness. Then they assumed that the 

bivariate distribution is the sum of two distinguishable distributions

^ comb =  ■ (5.7)

The red and blue distributions are parameterised by

®(M r, Cur) = <P(Mr)G[Cur,p (M r), o-(Mr)] (5.8)

where <p is the luminosity function and G  is the colour function. p (M r) and cr(Mr) are the mean 

and standard deviation of the Gaussian function in G, as shown in Equation 5.10 below. The 

luminosity functions were then fit with Schechter (1976) functions, which can be written in 

terms of magnitudes as

= C(p * e - c ^ M r - M ' ) e - e - W r - M P  (5  9)

where c = 0.41n(10), M* and <p* are the characteristic magnitude and number density, and a  

is the faint-end slope. The colour function, G, was parameterised using a Gaussian normal 

distribution
1  ( C i , r - r i 2

G(Cur,p ,  cr) = — — e 2,2 . (5 . 1 0 )
a yin

Both p  and cr were constrained to be contiguous functions of M  r, in particular a straight line 

and a hyperbolic tan function. The hyperbolic tan function was chosen as it was found fit the 

data better than polynomials with the same number of parameters.

To fit the functions to the distribution, the sample was divided into 16 absolute magnitude 

bins of with 0.5, from -2 3 .5  to -15 .5 . Each of these subsamples were divided into 28 colour 

bins of width 0.1 in Cur. Then double Gaussian functions were fitted to these colour distribu­

tions. For most o f the bins, the double Gaussian function is a good representation of the data. 

It was then assumed that the Gaussian parameters vary smoothly from one absolute magni­

tude bin to the next. The dispersion and mean of each distribution were fitted by the straight 

line as hyperbolic tan functions. The resulting colour divider (optimised by considering the

‘com pleteness’ C and ‘reliability’ K  of the sample following Strateva et ah, 2001) is given by

M r + 20.07
C 'X M r) =  2.06 -  0.243 tanh

1.09
(5.11)
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which is their Equation 11. There is some (of course unavoidable) overlap between the two 

distributions, but this is minimised by the chosen splitting function.

To apply this cut to my sample I first had to make several corrections to the magnitudes. The 

magnitudes in the SDSS database are corrected for atmospheric extinction but not for Galactic 

extinction. The extinction A x  of an object in some waveband X  is defined to be the difference 

between the observed magnitude in that waveband, m (X) and the waveband that would be 

observed in the absence of dust, m  o W

A x  = ( m - m 0) x -  (5-12)

The reddening or colour excess, E (X  -  Y ), in some colour X  -  Y is defined as the difference 

between the observed colour m (X) -  m (Y) and the intrinsic colour m 0(X) -  nio(Y)

E iX  -  Y) = [m(X) -  m (Y )] -  [m0(X) -  //;0(T)] = A* -  A r  . (5.13)

There is a reddening correction factor provided with each SDSS source, computed following 

Schlegel et al. (1998). The reddening corrections are given in magnitudes at the position of 

each object in the SDSS catalogue. Each correction factor is additive, i.e. subtracting it from 

the magnitudes in each band gives the corrected magnitude.

A k-correction must be applied to the galaxy magnitudes to account for the difference 

between emitted-frame and observed-frame bandpasses due to redshift. I calculated the k- 

corrections using k c o r r e c t  v l.16  by Blanton et al. (2003b) 4, following the definition of k- 

correction in Equation 1.20. When using k c o r r e c t  the s d s s f i x f l a g  was turned on to give 

more realistic errors on the magnitudes. The final equation for calculating absolute magnitude, 

taking into account the extinction correction and the k-correction is given by

M r = r — kr -  5 \og(DL/lO pc) (5.14)

where r is the extinction corrected Petrosian magnitude; D L is the luminosity distance for a 

cosmology with and kr is the k-correction using k c o r r e c t .

Figure 5.10 shows my sample, split with the dividing function in Equation 5.11. For the 

rest o f this work the sources above the thick line will be considered as red galaxies and the

4See also Michael Blanton’s k c o r r e c t  website h t t p :  / / c o s m o . n y u . e d u /~ m b l4 4 / k c o r r e c t /
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Figure 5.10: M y sample (as described in the text) split with Baldry’s optimal divider given by 

Equation 5.11. The x-axis gives the absolute r magnitude (Petrosian) and the y-axis gives u - r  

model magnitudes.

sources below the line considered as blue galaxies. From the 15 569 sources in the 2dF/SDSS 

overlap region, 7815 are red and 7754 are blue. In my volume limited sam ple o f 1679 galaxies 

in groups, 1075 are red galaxies and 597 are blue galaxies. The fraction o f red galaxies is 

greater because blue galaxies are more likely to be field galaxies and hence not included in my 

sample.

5.6 Results and discussion

First I consider the entire sample o f 15 569 spectra. Several o f the Lick indices split the galaxies 

into red and blue types quite well. Figure 5.11 shows Lick index versus absolute r  magnitude 

for four o f the indices. In two o f the plots (H/J and Fe4531) it is clear that the blue and red 

galaxies follow a sim ilar distribution. However, for the other two (G4300 and M g 2) the two 

populations are split reasonably well by the indices. The M g 2 index is known to correlate 

well with metallicity, and so this demonstrates that the redder galaxies have higher metallicity, 

which is what we would expect. The G4300 index corresponds to a region with a num ber of 

m olecular lines and so again it is not surprising that this is clearly stronger in the red galaxies
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Fe4531 G 4300

Figure 5.11: Lick indices versus Afr, demonstrating that several of the indices split the red and 

blue galaxies into two populations quite successfully (G4300 and Mg 2) whereas others do not 

(HjS, Fe4531).

than in the blue galaxies.

As mentioned in Section 5.2, indices can be greatly affected if they have 2 or more masked 

pixels in either their central bandpass or one of the bandpasses used to calculate the pseudo­

continuum. Because of this, there are small variations in the number of spectra in the sample 

that could have a particular index calculated successfully. The number of spectra in the final 

sample for each index is included in the results table.

Another issue is the effect o f emission lines on the measurement o f the Lick indices. 

The most extreme effect happens when an emission line swamps the actual Lick bandpass. 

However, the wings of nearby emission lines can be enough to dramatically change the mea­

sured value of an index. This can happen if the emission line in located near a Lick band­

pass or one of the bandpasses used to calculate the continuum. The emission lines measured 

in the SDSS pipeline are given in Table 5.2. Only Lick indices with bandpasses between 

4800 < A < 5100 are potentially affected (HIfi, Fe5015, Mg l and M g 2) .5 Clearly Hf3 is directly

5H(5̂  and Hy,, are also affected but I am not using them in this analysis.
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affected as H¡3 emission is relatively strong in galaxies with recent star formation. Fe5015 has 

the OIII 45008.24 emission line in the central bandpass used to calculate the index. This line 

falls between the central bandpass and blue continuum bandpass for the M g ] and M g 2 indices. 

It is not a strong enough line for the wings to affect either of these bandpasses and so the Mg j 

and M g 2 indices are also unaffected by emission lines.

To avoid the biases due to having a magnitude limited groups catalogue and a magnitude 

limited set o f galaxies from the SDSS I will use the volume limited sample of 1679 galaxies for 

the rest of this section. As mentioned above, any trends found could either be genuine trends of 

Lick index with velocity dispersion, or an evolutionary trend with redshift. Using this sample 

should resolve this problem but to be sure I used the Spearmann rank-order correlation test to 

rule out any correlation with redshift. This is a non-parametric test, using the rank of the values 

in each dimension. If R, is the rank of x, among the other x  values and 5,- is the rank of y-, 

among the other y  values then the correlation coefficient rs is given by

which is distributed approximately the same as the Student’s t distribution with N  -  2 degrees 

o f freedom. I used the i d l  r . c o r r e l a t e  routine (based on that in Press et al., 1992) which 

returns rs and the probability that the correlation found is random P(rs). A value of P(rs) close 

to 1.0 suggests the correlation is purely random (i.e. there is no correlation). A value of P (rs) 

close to 0 .0  suggests that the correlation is real.

M any of the indices show a trend with group velocity dispersion when the entire volume 

limited sample (1679 sources) is considered. For example, the G4300 index, shown in Figure 

5.12, has rs =  0.129 with P (rs) = 0.13 x  10~7, a highly significant trend. However, this trend 

is mainly due to the changing fraction of red and blue galaxies as group velocity dispersion 

increases. W hen considered individually the red sample has rs = 0.033 with P(rs) =  0.29 and 

the blue sample has rs = 0.113 with P(rs) = 0.01. Since the fraction of red galaxies increases 

with group size, and the red galaxies, have, on average a higher value for the G4300 index

Z i ( R i - R ) ( S i - S )
(5.15)

The significance of any correlation (i.e. non-zero value of rs) is tested using

(5.16)



156 Chapter 5. Galaxy stellar populations

Index N N r Red rs P(rs) N b Blue rs P(rs)

C N , 1652 1066 0.071 0 .0 2 586 - 0 .0 0 1 0.97

c n 2 1658 1068 0.073 0 .0 2 590 0.026 0.53

Ca4227 1666 1069 0.035 0.25 597 0.064 0 .1 2

G4300 1665 1071 0.033 0.29 594 0.113 0 .0 1

Fe4383 1657 1069 0.082 0 .0 1 588 0.081 0.05

Ca4455 1667 1072 0 .0 2 1 0.49 595 0.062 0.13

Fe4531 1667 1072 -0.024 0.42 595 0.034 0.40

C4668 1664 1070 0.055 0.07 594 0.039 0.35

Hy3f 1664 1069 0.009 0.77 595 0.024 0.56

F e S O ^ 1080 726 0.097 0 .0 1 354 0.013 0.80

M g, 820 548 0.089 0.04 272 0.018 0.77

Mg 2 1014 694 0 .1 0 0 0 .0 1 320 0.063 0.26

Mg b 1151 724 0.033 0.38 427 0.126 0 .0 1

Fe5270 1482 978 0.050 0 .1 2 504 0.095 0.03

Fe5335 1392 925 0.042 0 .2 0 467 0.077 0 .1 0

Fe5406 1508 980 0.003 0.93 528 0.054 0 .2 2

Fe5709 1155 773 0.036 0.32 382 -0.045 0.38

Fe5782 1245 807 -0.009 0.79 438 -0.017 0.73

NaD 1495 951 0.049 0.13 544 0.035 0.41

TiO i 1367 896 0.047 0.16 471 -0.005 0.91

T i0 2 1450 994 0.103 0 .0 0 456 0.030 0.52

Table 5.5: Spearmann rank-order correlation coefficients rs for each of the Lick index vs. group 

velocity dispersion plots. Indices with a significant trend (P(rs) < 5%) are shown in bold. The 

total sample size (N ) and the red and blue sample sizes (N r and N b) are also given. Indices 

marked with a dagger ( t)  may be affected by emission lines (see text).

then there is a stronger overall trend. For the rest of this section I will consider the red and 

blue samples separately to distinguish between cases where there is a trend within one of the 

samples and where there is a trend due to the fraction of red and blue galaxies changing.
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Figure 5.12: Trends for the G4300 index with group velocity dispersion, showing that the trend 

observed when considering both red and blue galaxies together is partly due to the changing 

fraction of red galaxies as velocity dispersion increases.

Figures 5.13 gives the results for each Lick index versus group velocity dispersion. Table 

5.5 gives the correlation coefficients and probabilities for each plot.

5.6.1 Comments on specific indices

Tripicco and Bell (1995) showed that the Lick indices fall into several different groups based 

on what is the primary effect on their value. The indices that correspond largely to one strong 

line (Ca4227, M g 2, M g b, and Na D) are dependent on the abundance of the elem ent forming 

the dom inant line. W hereas, indices that consist of a band of weaker lines (G4300 and some of 

the Fe indices) are mainly affected by the microturbulent velocity of the star. This information 

is im portant when considering what physical change underlies changes in the Lick indices (i.e. 

it does not always correspond directly to a change in the line strength of the line for which the 

index is named). M ost o f the indices in Table 5.5 show no significant trend with group velocity 

dispersion. This could suggest that local density does not correlate strongly with element 

abundances, or that it results in many effects, some of which cancel each other out, resulting in 

no strong trends. Following are some comments on specific indices.

•  The CN i and C N 2 indices cover almost the same wavelength ranges, the only difference 

being the range over which the blue continuum is defined (modified by W orthey et al., 

1994, so that C N 2 avoids H<5). Both measure the strength of CN 44150 and unsurpris-
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Figure 5.13: Lick index (y-axis) versus group velocity dispersion (x-axis). The red and blue 

samples are coloured accordingly. The crosses give binned averages for each sample.
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(Figure 5.13 continued.)

ingly the results for these two indices are very similar. The blue sample shows no trend 

with group velocity dispersion. The red sample shows a slight increase in the value of the 

index with increasing group velocity dispersion. Tripicco and Bell (1995) find that CN i 

and C N 2 are sensitive to changes in the carbon and nitrogen abundances, and Thomas 

et al. (2003) find that nitrogen abundance is the most significant factor. Nitrogen en­

hancem ent can occur when stars accrete nitrogen enriched ejecta from A G B  stars. Since 

this happens later in the stellar lifecycle it is more likely to have occurred in older, redder
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galaxies. Since these are found to be more common in rich clusters, this could explain 

why these indices increase with group velocity dispersion.

•  G4300 is primarily sensitive to carbon and oxygen abundances and to a lesser extent 

titanium and iron (Tripicco and Bell, 1995). It shows no significant trend for the red 

sample. The blue sample shows an increase in the value of the index with increasing 

group velocity dispersion.

•  Fe4383 is mainly affected by the strength of the dominant iron line, but also by carbon 

and magnesium (Tripicco and Bell, 1995). It shows trends with both the red and blue 

samples, both increasing with increasing group velocity dispersion.

•  The H/3 index shows no trend for red or blue galaxies. This is in agreement with the

results from a study of early type galaxies by Bemardi et al. (2003) who find that while 

H/? showed strong evolution with redshift it had no dependence on environment for a 

given redshift.

•  M g j and M g 2 are most sensitive to Mg abundance and to a lesser extent carbon and iron. 

They are two o f the best metallicity indicators of the Lick indices. They both show no 

significant trends in the blue sample, and show an increase with increasing group velocity 

dispersion in the red sample. Again, this could be explained by the increased fraction of 

old, metal-rich galaxies that are found in larger groups. Bemardi et al. (2003) find no 

evidence for a change in the strength of Mg 2 with local density for early type galaxies. 

Both this work and theirs is somewhat limited by sample size and until a sim ilar study is 

done with a larger sample the results are inconclusive.

•  Mg b shows no significant trend in the red sample, but for the blue sample increases with

increasing group velocity dispersion.

•  Fe5270 shows no significant trend in the red sample, but for the blue sample increases 

with increasing group velocity dispersion.

•  Both the T iO i and T i0 2 indices primarily measure the strength of the TiO absorption 

features. TiO lines are only present in the spectra of cool (M-type) stars. A study of 

Galactic globular clusters by Puzia et al. (2002) found that the clusters with the highest 

metallicity has the strongest TiO 2 absorption lines. TiO 2 increases with increasing group
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velocity dispersion, for the red sample. This is consistent with TiO 2 being strongest in 

high metallicity environments within galaxies. These galaxies are more likely to be 

found in older, rich groups. The TiO 1 index also shows a slight increase with increasing 

group velocity dispersion but the significance from the Spearmann test is greater than my 

cutoff (16% rather than < 5%). This weakens the conclusions that can be drawn from 

the TiO 2 trend as you would expect to find both increasing with increasing metallicity.

5.6.2 Discussion

In this section I have looked for trends between Lick indices, a very fine resolution spectral 

properties corresponding to absorption features in stars, and group velocity dispersion, a m ea­

sure of the size of groups of galaxies. There are several areas in which problems with this type 

of analysis can arise. Firstly there is the issues associated with an finding accurate measure of 

local density. I have used the group velocity dispersion as it can be approxim ated with equal 

accuracy regardless of the redshift. However, having to restrict my study to the galaxies that 

fall in the overlap between the SDSS and 2dF surveys means I have dram atically decreased my 

original sample.

Secondly there is the difficulty of calculating the Lick indices accurately. One advantage 

of the SDSS is that it has a resolution high enough to allow the study of these high resolution 

features. However, the signal to noise ratio is not always favourable for calculating indices that 

are very sensitive to any changes in the spectra. One way of overcoming this problem is to 

co-add spectra (such as done by Bernardi et al., 2003) but this has the disadvantage of many 

times less spectra (particularly after they have been binned into redshift and local density) and 

hence sm aller scale statistics. I chose not to do this, but am aware that the m easurem ent of 

the indices is probably the largest factor of error in this process. It is important to note that 

the systematic errors in calculating the indices usually exceed the random  errors discussed in 

Section 4.5.

Finally, once the indices have been measured and the trends plotted, there is the difficulty 

of assessing w hether an observed trend is due to the Lick index itself changing or a measured
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property that it depends on changing. For example, if the Lick index changes with redshift, and 

the group velocity dispersion changes with redshift, then a trend in Lick index versus group 

velocity dispersion might be a result of these other factors. I have tried to avoid these effects by 

choosing a volume limited sample and checking that there was no systematic change in group 

velocity dispersion over that redshift range.

M ost of the indices demonstrated some overall increase with increasing group velocity dis­

persion when considering red and blue galaxies together. This is due to the average index for 

the red sample generally being slightly higher than the average index for the blue sample, and 

the fraction of red galaxies increasing with group velocity dispersion. W hen considered sepa­

rately, several of the indices showed some increase with increasing group velocity dispersion 

for the red sample (CN i, C N 2, Fe4383, Fe5015, M g b M g2, T i0 2) and several for the blue 

sample (G4300, Fe4383, M g b, Fe5270). However, these are all fairly weak trends and would 

have to be tested on larger samples before any conclusions can be drawn. This is particularly 

evident because some indices which are known to correspond to very similar underlying phys­

ical phenomena have trends which are not in agreement. For example, TiO 2 shows a trend but 

TiO i does not.

Theoretical predictions by Lemson and Kauffmann (1999) suggest that for galaxies of a 

given mass, we would not expect to see any change in star formation history with group size. 

W hen considering galaxies with various masses, we may expect an overall change in star for­

mation history and metallicity with group size, due to the changing fraction of massive galaxies 

as the group size increases. However, work by De Propris et al. (2003) shows that although the 

galaxy luminosity function for galaxies in clusters is different to that of field galaxies, it is not 

highly dependent on the richness or size of the clusters. In other words, once we are consider­

ing galaxies located in groups or clusters, the size of the cluster does not seem to significantly 

affect the luminosity distribution. Hence we would not necessarily expect any change in the 

star formation history and metallicity properties of galaxies as local density increases. My re­

sults show that most of the Lick indices (which are tracers of metallicity and star formation) do 

not show any trend with group velocity dispersion, and those that do show a very weak trend. 

These results agree with there being no significant trend in star formation history with group 

size.
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5.7 Future work

Clearly the most significant improvement to these results would be gained by using a larger 

sample. The main limiting factor in my sample size was having to com bined the SDSS sources 

with the 2dF groups catalogue to get the local density information. Using a SDSS groups 

catalogue, when one becomes available, would avoid this limitation.

One aspect o f this research that would be interesting to follow up would be to com pare the 

Lick indices with principal components to get more idea of what the principal components tell 

us about the stellar populations in galaxies. The 2dF analysis (Folkes et al., 1999) and the SDSS 

analysis (Yip et al., 2003) show that the main principal components carry information about the 

em ission lines in the galaxies. Flowever, lower components may reveal information about the 

stellar populations, which would be useful since principal components are so easy to calculate. 

There has been some work in this area (e.g. Kong and Cheng, 2001) but it has mainly focused 

on first few principal components. A comprehensive study will com pare the advantages of 

human selected parameters (Lick indices) with mathematically optimal param eters (PCA) in 

tracing physical changes in the galaxy spectra. Since the principal com ponents are easier to 

calculate and more robust it would be useful to see if they reveal much information about the 

stellar populations.

A longer term project that ties together the work in Chapters 4 and 5 would be to use 

Lick indices and principal component analysis to test the predictions of semi-analytic galaxy 

formation models such as van Kampen et al. (1999). These models produce a distribution 

of galaxies, which used in conjunction with galaxy spectral synthesis packages produces a 

synthetic redshift survey. It would be interesting to test these models by investigating whether 

the predicted distributions of Lick indices corresponded to the observed distributions in the 

SDSS.
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C h a p t e r  6

Conclusions

The overall motivation for this thesis was to study the way spectral properties o f galaxies vary 

with their local environment. This is a question that, in an era of massive redshift surveys 

such as the 2dF and the SDSS, it is now possible to provide some answers to. I had available 

large datasets o f galaxies from the completed 2dF survey, and also from the continuing SDSS 

results. However, to make use of these it was necessary to develop better tools for comparison 

of synthetic spectra to the observational data.

One im portant aspect of dealing with large datasets is the ability to classify objects auto­

matically. This also requires some form of information extraction (preferably automatic) to 

take place before the classification stage. In Chapter 2 I have carried out a comparative study 

of different automatic classification methods that have been used in the literature. I highlighted 

some of the difficulties with these methods, probably the most significant one being the lack of 

good training data. Ideally training data should be a subset o f the data that is to be classified, 

and this is an issue that needs to be resolved before m achine learning methods can be used in 

‘real-w orld’ astronomy problems like classifying stellar spectra in the SDSS. The current state 

of the art in this field is neural network classification. In the final section of Chapter 2 I in­

troduce Support Vector M achines, which have not be used widely in astronomy, although they
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have been shown to be successful in other applications. While the results I get do not better 

the ones obtained using neural networks, this was only after a comparatively small amount of 

experimentation and so I think there is still potential for these to be useful in stellar classifi­

cation. Some possible directions for future research on this topic are; testing support vector 

machines more extensively on a wider range of astrophysics classification problems, trying 

different types of support vector machines and looking more deeply into the theoretical basis 

for selecting a good kernel.

Returning to the main aim, which was to generate synthetic galaxy spectra to compare 

with spectra from the SDSS, the resolution of existing libraries of synthetic spectra proved to 

be a limiting factor. To make full use of the SDSS spectra it was desirable to have synthetic 

galaxy (and hence stellar) spectra at a resolution of 2  (as opposed to the 2 0  spectra normally 

used). In Chapter 3 I present a library of 2 resolution Kurucz spectra that covers a wide range 

of physical parameters. To confirm the accuracy of these spectra I compare them to the old 

20 Kurucz spectra and also to a library of observed spectra at a similar resolution, STELIB. I 

found some differences between the colours of the 2 0  and 2  spectra, which are due to changes 

in the data and software between the generation of the two sets. The library I have produced 

covers the same range in physical parameters as the original library of Kurucz spectra, with 

the exception of the low temperature stars (Teff < 5000K). Due to the large number of TiO 

lines the low temperature spectra contain, they are very slow to generate and I did not have the 

resources to complete these during my PhD. However, the set that I have generated will be a 

useful resource for population synthesis and other applications.

These higher resolution Kurucz spectra cover a wide range of physical parameters, but to 

do population modelling it is necessary to supplement these spectra with libraries that cover 

the extremely high temperature and low temperature spectra. In Chapter 4 I attempt to do this, 

with some success, although it was not possible to complete the library due to the availability of 

spectra at higher resolution. This will soon become less of a problem now that the availability 

of computing resources has improved and higher resolution libraries can be produced.

The next stage was to look at the properties of composite stellar systems. In Chapter 4 I 

experimented with a range of ways of parameterising galaxy spectra. I found that the direct
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methods of empirical population synthesis (least squares fitting and direct inversion) were not 

practical for the large matrices I was dealing with. One possibility would be to parallelise 

the direct inversion code so that it could cope with the larger matrices. However the other 

limitations of this method mean I do not think it would be worth doing this. An alternative to 

these methods is the Lick indices which is a system that provides a standard way of measuring 

certain absorption line strengths in the spectra of stars and galaxies.

Finally, in Chapter 5 I investigate some of the spectral properties of observed galaxy spec­

tra, specifically how the Lick indices change with local density. This work primarily used the 

SDSS spectra. However the 2dF groups catalogue was used to get a measure of local density 

for each galaxy. M ost of the indices demonstrated some overall increase with increasing group 

velocity dispersion when considering red and blue galaxies together. This is due to the average 

index for the red sample generally being slightly higher than the average index for the blue 

sample, and the fraction of red galaxies increasing with group velocity dispersion. W hen con­

sidered separately, several of the indices showed some increase with increasing group velocity 

dispersion for the red sample (CN i, C N 2 , Fe4383, Fe5015, M g j, M g 2, T iO i) and several for 

the blue sample (G4300, Fe4383, Mg b , Fe5270). However, these are all fairly weak trends 

and would have to be tested on larger samples before any conclusions can be drawn. The 

main lim iting factor in my sample size was having to combined the SDSS sources with the 2dF 

groups catalogue to get the local density information. Using a SDSS groups catalogue, when 

one becomes available, would avoid this limitation.

The next step in this work would be to compare the results from the SDSS galaxies with pre­

dictions from synthetic spectra, using the best-match model galaxies from population synthesis 

(generated using the higher resolution synthetic spectra presented in Chapter 3). A longer term 

project that ties together the work in Chapters 4 and 5 would be to use Lick indices and princi­

pal com ponent analysis to test the predictions of semi-analytic galaxy formation models such 

as van Kampen et al. (1999). These models produce a distribution of galaxies, which used in 

conjunction with galaxy spectral synthesis packages produces a synthetic redshift survey. It 

would be interesting to test these models by investigating whether the predicted distributions 

of Lick indices corresponded to the observed distributions in the SDSS.
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