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Preface 

The neutrophil is the first haemopoetic cell to arrive at the site of infection.  In acute 

respiratory distress syndrome (ARDS), dense neutrophilic infiltrates are found in the 

lung in response to bacterial infection as well as generalised inflammatory stimuli, 

such as pancreatitis.  At sites of infection, phagocytosis of bacteria by neutrophils 

enhances their subsequent apoptosis and clearance by macrophages however at 

inflammatory sites, the lifespan of the neutrophil is influenced by both pro- and anti-

apoptotic factors in the inflammatory milieu.  Furthermore subsequent macrophage 

phagocytosis of apoptotic neutrophils induces the macrophage to switch to an anti-

inflammatory phenotype thereby hastening resolution of inflammation. 

The Fas death receptor pathway is important in T lymphocyte apoptosis but its role 

in neutrophil apoptosis is controversial.  We have shown that neutrophils express the 

Fas receptor (CD95) on their surface but there is no evidence of expression of its 

natural ligand (FasL).  An agonistic anti-Fas monoclonal antibody (CH-11) 

accelerated neutrophil apoptosis under certain culture conditions.  

Lipopolysaccharide (LPS) originating from Gram-negative bacteria is often found at 

sites of inflammation.  We have shown that LPS attenuated CH-11 - induced 

neutrophil apoptosis unless the Fas/FasL death receptor pathway was activated prior 

to the LPS signalling pathway.  This LPS-mediated attenuation did not involve the 

p42/44 ERK, protein kinase C or phosphatidylinositol 3-kinase signalling pathway 

however the p38 MAPK and NF-κB pathway appeared to be partially involved.  We 

have shown that neutrophils express the protein cFLIPs and that CH-11 and 

inflammatory mediators altered its expression. 

Although macrophages are principally phagocytes, they are also important in 

determining the composition of the milieu at an inflammatory site.  Macrophages 

have been shown to express FasL which can be shed and may contribute to the pools 

of sFasL found in the bronchoalveolar lavage fluid (BALF) in ARDS patients.  We 

have shown that the conditioned supernatants from LPS-activated macrophages 

induced neutrophil apoptosis at early time points.  The pro-apoptotic activity was 

mediated by TNF-α and was found in the fraction containing proteins with molecular 
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weights greater than 50kD.  Macrophage phagocytosis of apoptotic neutrophils 

suppressed TNF-α production by LPS-activated macrophages and this was associated 

with loss of the pro-apoptotic activity. 

In summary, our data suggest that Fas/FasL fratricide does not appear to be involved 

in spontaneous neutrophil apoptosis.  However LPS attenuates Fas-induced apoptosis 

unless the Fas/FasL death receptor pathway is activated prior to LPS signalling 

pathways.  The signalling pathways involved in this attenuation are not clear but may 

involve cellular FLIP.  Furthermore, activated macrophages secrete inflammatory 

mediators and at early time points, TNF-α appears to be the most important in 

inducing neutrophil apoptosis. 
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Chapter 1 

 

Introduction 

 

1.1 The Cells 

Macrophages reside in the lung quiescent but armed to deal with invading organisms 

while neutrophils marginate in the lung vasculature, quiescent but ready to mobilise 

to sites of infection or inflammation.  The role of these cells, their response to 

inflammatory mediators and their role in the resolution of inflammation will be 

explored. 

1.2 The Lung 

The vertebrate lung is essential to life; physiologically, gas exchange is its main 

function however immunologically, its role in innate immunity is also important.  

The lung�s innate immune system is tightly regulated.  It has to remain quiescent to 

allow daily exposure to ubiquitous non-virulent organisms while at the same time 

being able to mount immune responses.  Furthermore, it must prevent over-zealous 

immune or inflammatory responses which result in tissue damage. 

Acute Respiratory Distress Syndrome (ARDS) is an example of lung inflammation 

secondary to both direct and indirect lung injury.  While pneumonia and aspiration of 

gastric contents are the commonest causes of direct lung injury, sepsis, severe trauma 

with shock and multiple transfusions are the commonest causes of indirect lung 

injury.  Overall sepsis is the leading cause of ARDS accounting for up to 40% of the 

total cases (Ware and Matthay, 2000).  Patients with ARDS, in the early stages, are 

profoundly hypoxaemic and refractory to oxygen therapy.  This reflects disruption of 

the blood-air barrier caused by the diffuse alveolar damage (figure 1.1).  In this acute 

or exudative phase, neutrophils, macrophages, erythrocytes, hyaline membranes and 

protein-rich oedema are found in the alveolar spaces.  This is largely secondary to 
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widespread injury to the endothelium and alveolar epithelium.  This inflammatory 

process can either resolve or progress to a fibrotic phase.  In the fibrotic phase, 

histologically there is evidence of fibrosis, an acute and chronic inflammatory cell 

infiltrate and only partial resolution of the pulmonary oedema. 

In ARDS and acute lung injury (ALI), which is a less severe form of ARDS, there is 

debate in the scientific community regarding the pathogenic role of the neutrophil.  It 

has been argued that they are merely, a stereotypical part of the inflammatory 

response.  However, on balance, the evidence suggests that the neutrophil plays a 

central role.  Although neutropenic patients develop ARDS (Laufe et al., 1986), their 

pulmonary function worsens during recovery from the neutropenia (Azoulay et al., 

2002).  Furthermore, in animal models, depletion of neutrophils prior to the 

pathogenic stimulus, reduces the extent of the lung injury (Heflin and Brigham, 

1981; Abraham et al., 2000). 

Neutrophils may exacerbate lung injury in several ways; secondary necrosis of 

neutrophils, due to delayed neutrophil clearance, results in release of their toxic 

granules and thereby exacerbation of the tissue injury and secondly, activated 

neutrophils in the inflamed tissue secrete pro-inflammatory mediators.  

Bronchoalveolar lavage fluid (BALF), from patients with ARDS, delays the 

apoptosis of peripheral blood neutrophils in vitro.  Blocking antibodies have shown 

that most of this anti-apoptotic activity is due to the cytokines granulocyte - colony 

stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor 

(GM-CSF) (Matute-Bello et al., 1997).  However BALF also contains other 

cytokines, including interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) 

which are the main pro-inflammatory cytokines secreted by an activated neutrophil 

(Park et al., 2001). 

In animal models, lung injury can be induced by several methods including 

intratracheal administration of endotoxin.  Anti-inflammatory strategies targeting the 

neutrophil, for example anti-oxidant therapies, inhibit the development of ALI after 

endotoxin administration by reducing neutrophil infiltration and secretion of pro-
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inflammatory cytokines.  In turn, this is associated with a reduction in oedema 

formation and extent of lung injury (Blackwell et al., 1996; Liu et al., 1997). 

In health, apoptotic neutrophils are only occasionally seen in peripheral blood or 

bronchoalveolar lavage fluid due to their rapid phagocytosis by macrophages.  

Neutrophil clearance appears to be important in resolution of ALI in vivo.  In the 

resolution phase of an oleic acid model of ALI in rats, apoptotic neutrophils were 

seen and were cleared, by phagocytosis, by alveolar macrophages (Hussain et al., 

1998). 

In the intensive care setting, it has been observed that ventilator-associated 

pneumonia is more common in patients with ARDS compared to those without 

ARDS (Dreyfuss and Ricard, 2005).  There is evidence to suggest that the systemic 

inflammatory response is also immunosuppressive and may therefore increase 

susceptibility to bacterial and fungal infections (Munford and Pugin, 2001).  This is 

supported by the observation that in an animal model of endotoxin-induced ALI, the 

alveolar macrophages retrieved in BALF from ALI animals exhibited poorer 

bacterial phagocytic activity than those retrieved from control animals (Jacobs et al., 

1986). 

1.3 The Neutrophil � a professional phagocyte 

The principal role of the neutrophil in the cellular orchestra of the innate immune 

system is that of a professional phagocyte, the importance of which was first realised 

by Elie Metchnikoff in the 1880�s.  The neutrophil phagocytoses invading bacteria 

and in so doing accelerates its own apoptosis (Watson et al., 1996). 

1.3.1 Neutrophil Maturation 

The neutrophil starts life in the bone marrow as a pluripotent cell of the myeloid 

lineage and over a two week period passes through six different stages of 

differentiation and maturation: myeloblast, promyeloblast, myelocyte, 

metamyelocyte, non-segmented (band) neutrophil and segmented neutrophil.  The 

segmented neutrophil is the mature, terminally differentiated, cell that exits the bone 
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marrow.  It contains cytoplasmic granules and a lobulated chromatin-dense nucleus 

with no nucleolus and is therefore also known as a polymorphonuclear leukocyte 

(PMN).  It remains in the circulation, in a quiescent state, for 4 to 10 hours before 

marginating and entering tissues where it survives for 1 to 2 days (Breton-Gorius and 

Reyes, 1976). 

1.3.2 Neutrophil Recruitment 

In quiescent states, there are two pools of neutrophils, a circulating pool and a 

marginated tissue pool.  Margination occurs in narrow, mainly pulmonary capillaries 

and in response to a vasodilating stimulus such as exercise the neutrophils re-enter 

the circulating pool resulting in a relative neutrophilia.  An inflammatory stimulus 

will also induce a leucocytosis by stimulating the bone marrow to produce more 

polymorphonuclear cells (Witko-Sarsat et al., 2000). 

In response to bacterial products and pro-inflammatory cytokines, neutrophils 

sequester in the lungs by inducing a conformational shape change such that the 

neutrophil becomes trapped even in vasodilated capillaries.  One hypothesis is that, 

in response to G-protein-coupled seven-transmembrane (�serpentine�) receptor 

ligation, soluble G-actin assembles into an outer ring of F-actin filaments (Worthen 

et al., 1989; Hogg and Walker, 1995) which reduces neutrophil deformability.  

Mature circulating neutrophils constitutively express L-selectin (CD62L) and it also 

appears to be important in pulmonary sequestration; in L-selectin deficient mice, 

there was only a transient neutropenia in response to infused complement fragments 

compared to the circulating neutropenia observed in wild type animals (Doyle et al., 

1997). Furthermore, an L-selectin blocking monoclonal antibody reduced alveolar 

capillary neutrophil sequestration in a rabbit endotoxin model of ALI (Kuebler et al., 

2000).  L-selectin signalling may also contribute to the change in neutrophil 

deformability.  In a recent study, L-selectin cross-linking induced actin assembly and 

increased neutrophil retention in an in vitro model of the microvascular capillary bed 

(Simon et al., 1999). 

At sites of inflammation, inflammatory mediators, including histamine, thrombin and 

oxygen radicals, induce the endothelial expression of P-selectin (CD62P) which 
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interacts primarily with P-selectin glycoprotein ligand-1 (PSGL-1) present on 

neutrophils (Moore et al., 1995; Hidari et al., 1997).  Later, locally produced TNF-α 

and interleukin-1 (IL-1) stimulate the endothelium to synthesize and express E-

selectin (CD62E) (Bevilacqua and Nelson, 1993; Cronstein and Weissmann, 1993).  

The endothelial selectins bind to their ligands on the neutrophil which include sialyl-

Lewisx (sLex, CD15s) and PSGL-1, forming a tight but rapidly dissociating bond, 

which along with the shear stress of blood flow gives rise to the intermittent tethering 

motion of neutrophil rolling (Bevilacqua and Nelson, 1993; Albelda et al., 1994).  In 

addition, inflammatory stimuli, including interleukin-8 (IL-8), fMet-Leu-Phe (fMLP, 

a bacterial cell wall-derived tripeptide) and complement factor C5, activate the 

neutrophil thereby inducing the surface expression of CD11/CD18 (β2 integrin).  At 

the same time, activation induces a conformational shape change of the ligand 

CD11/CD18 which then has greater avidity for its receptor, intercellular adhesion 

molecule type 1 (ICAM-1) (Williams and Solomkin, 1999).  ICAM-1 expression, on 

post-capillary venules and also capillary endothelial cells in the lung, is upregulated 

by the inflammatory stimuli.  This stable bond between β2-integrins and ICAM-1 

allows neutrophil adhesion to the endothelium. 

However the individual role of adhesion molecules in neutrophil recruitment appears 

to depend upon the stimulus.  In murine streptococcal pneumonia, neutrophil 

emigration is CD18-independent while in murine pneumonia secondary to  

Escherichia coli and Pseudomonas aeroginosa, it is CD-18 dependent (Mizgerd et 

al., 1999; Doerschuk et al., 2000).  Furthermore in murine streptococcal pneumonia 

neutrophil emigration was also independent of E-, P- and L-selectin (Mizgerd et al., 

1996).  In humans, the importance of adhesion molecules in neutrophil recruitment is 

apparent in patients who have leucocyte adhesion deficiency-I (LAD-I) due to a 

congenital deficiency of CD18.  These patients die prematurely (often before the age 

of 10) from recurrent skin and mucosal infections due to a paucity of tissue 

neutrophils while at the same time having a relative blood leucocytosis (Anderson et 

al., 1985; Lekstrom-Himes and Gallin, 2000).  It has also become apparent that 

neutrophils can respond heterogeneously.  Neutrophils released from bone marrow in 

response to acute streptococcal pneumonia express a higher concentration of L-
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selectin and migrate more slowly into the inflammatory site than circulating 

neutrophils (Lawrence et al., 1996). 

1.3.3 Neutrophil Priming 

Neutrophils can be �primed� such that subsequent stimulation provokes a larger 

response than a non-primed cell.  Priming can result in biochemical changes within 

the cell (Walker and Ward, 1992) including intracellular generation of cytokines or 

lipid mediators, for example, leukotriene B4 (LTB4) and platelet activating factor 

(PAF) (Doerfler et al., 1989) so that the cells have increased �ammunition� when 

activated.  Inflammatory mediators including lipopolysaccharide (LPS) and fMLP, 

prime neutrophils to induce a shape change as a result of modifications to their 

intracellular actin (Worthen et al., 1989).  This is a key step in making neutrophils 

less deformable.  However various processes involved in sequestration of neutrophils 

(Kitagawa et al., 1997) can themselves lead to priming including crosslinking of 

neutrophil adhesion receptors (Waddell et al., 1994; Liles et al., 1995). 

Neutrophils have many different types of receptor on their surface.  Serpentine 

receptors are G-protein-linked seven transmembrane receptors.  There are also single 

transmembrane domain receptors that require immobilization or crosslinking such as 

immunoglobulin (Fc) receptors and integrins and then there are single 

transmembrane receptors which bind growth-related cytokines such as TNF-α or 

GM-CSF.  Triggering of the former two receptor pathways often has a dual effect; 

priming at low concentrations of the ligand and activation at higher concentrations.  

However, triggering of the single transmembrane receptor pathway for growth-

related cytokines tends to result in priming alone (Hallett and Lloyds, 1995).  A two 

stage biological process however prevents inappropriate activation of neutrophils in 

the bloodstream. 

1.3.4 Transendothelial Migration 

In the lung, transendothelial neutrophil migration from the capillary bed, in response 

to inflammatory stimuli, occurs mainly by penetrating interendothelial junctions or at 

bicellular or tricellular corners of endothelial cells.  However a transcellular route has 

also been described (Burns et al., 2003).  Under the influence of a chemotactic 
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gradient, neutrophils penetrate the endothelial layer (diapedesis) and migrate through 

the interstitium.  Diapedesis occurs predominantly between endothelial cells and both 

in vitro and in vivo data suggest that platelet-endothelial cell adhesion molecule 1 

(PECAM-1, CD31) is important in this step.  CD31 is a member of the 

immunoglobulin superfamily and has now been linked to many biological functions 

(Jackson, 2003).  Its role in migration involves a homotypic interaction between 

CD31 on the neutrophil and CD31 on the endothelial cell resulting in transient 

remodelling of the junction (Muller et al., 1993).  The interaction of CD31 on 

endothelial cells with CD31 on transmigrating neutrophils also leads to upregulation 

of α6 integrins and recently both α6 integrins and neutrophil elastase have been 

shown to be important in neutrophil migration through the perivascular basement 

membrane (Wang et al., 2005). 

1.3.5 Phagocytosis 

Microorganisms can either be recognized directly by pattern recognition receptors on 

the neutrophil surface or more commonly the microorganisms are first opsonized by 

IgG antibodies or complement and then recognized by neutrophil Fcγ receptors and 

complement receptors (CR1, CR3) respectively.  Recognition of the microorganism 

and binding to the neutrophil surface stimulates phagocytosis. 

This involves a complex series of morphological and biochemical processes which 

differ depending whether phagocytosis is antibody-mediated or complement-

mediated.  The antibody-coated microorganism is initially engulfed by an 

invaginating plasma membrane to form a phagocytic vesicle.  Thereafter, the 

contents of neutrophil granules, usually in combination with toxic substances 

generated during the respiratory burst, kill the engulfed bacteria.  The importance of 

the respiratory burst can be seen in patients with chronic granulomatous disease who 

have an absence of or abnormality in, a component of the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase system.  The neutrophils of these patients 

are able to phagocytose bacteria but they are unable to kill their involuntary guests. 

Patients thus die prematurely from bacterial infections, particularly with catalase 
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positive bacteria such as Staphylococcus aureus that can intrinsically break down 

hydrogen peroxide (Winkelstein et al., 2000). 

More recently, it has been observed that mice deficient in two neutrophil granule 

proteases (cathepsin G and elastase) were more susceptible to fungal and bacterial 

infections.  Similarly in vitro, neutrophils treated with protease inhibitors were 

unable to kill ingested Candida albicans and Staphylococcal aureus   Furthermore, 

the mice lacking cathepsin G and elastase succumbed to infection with these 

organisms despite their neutrophils having a fully functional respiratory burst.  This 

challenged the accepted dogma that hypochlorous acid is the main microbicidal 

product in the phacocytic vesicle.  Reactive oxygen species (ROS), generated by the 

respiratory burst and released into the endocytic vacuole, create a highly negatively-

charged environment.  The accompanying release of the neutrophil acidic granules is 

insufficient for neutralisation and it is therefore accompanied by an influx of 

positively charged potassium ions in a pH dependent manner.  This increased ionic 

strength favours the release of the aforementioned cationic proteases from their 

resting state, bound to anionic proteoglycan matrix.  Furthermore, the resulting 

alkaline pH of the endocytic vacuole is optimal for the function of these proteases 

which in their activated state, contribute to microbial killing (Reeves et al., 2002).  

1.3.6 The Respiratory Burst 

Neutrophil activation results in a large increase in the concentration of cytosolic free 

calcium (Ca2+) that triggers NADPH oxidase to form from its membranous and 

cytosolic components.  This complex enzyme is composed of at least five members 

that are dissociated and thus inactive in quiescent neutrophils.  Upon activation, the 

cytosolic components translocate to the plasma membrane to assemble the active 

oxidase.  Activation of this oxidase requires a large increase in cellular oxygen 

consumption termed the respiratory burst (Clark, 1999).  During this process, oxygen 

is reduced by NADPH oxidase to the univalent superoxide anion.  This is converted 

by superoxide dismutase to hydrogen peroxide.  Although hydrogen peroxide is itself 

toxic, it can interact with myeloperoxidase (MPO) found in neutrophil azurophil 

granules to form hypochlorous acid that is metabolised to hypochlorite and chlorine.  
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Hypochlorous acid is 100 to 1000 times more effective then hydrogen peroxide.  

Hydrogen peroxide, catalysed by iron (Fe2+) also decomposes to the hydroxyl radical 

that is another powerful and important microbicidal reactive oxygen intermediate 

(ROI) but its importance in neutrophils is controversial (Rosen and Klebanoff, 1979; 

Ward et al., 1983). 

It is well documented that murine neutrophils generate nitric oxide (NO) in response 

to cytokines (Nathan and Hibbs, 1991) however it is controversial whether resting or 

activated human neutrophils produce reactive nitrogen species (Yan et al., 1994; 

Padgett and Pruett, 1995; Evans et al., 1996; Wheeler et al., 1997).  The differences 

in studies may be due to experimental conditions and technical difficulties in 

measuring NO in vitro.  

1.3.7 Neutrophil Granules 

Neutrophils contain three different types of granules and also secretory vesicles.  

Their content and function is shown in table 1.1.  The granules are formed 

sequentially during neutrophil maturation in the bone marrow with primary granules 

being formed first at the myeloblast stage, secondary at the myelocyte stage, tertiary 

at the band cell stage and secretory vesicles at the segmented stage, of development 

(Borregaard and Cowland, 1997). 

The ease with which these granules are subsequently mobilized in the mature cell is 

in the reverse order of their development.  Secretory vesicles are mobilized in 

response to inflammatory mediators to induce surface expression of receptors, for 

example the β2 integrins, which as discussed above are important in neutrophil 

adhesion to endothelium.  Thereafter the tertiary granules are mobilized; gelatinase is 

thought to be important in neutrophil migration as its substrates include collagen IV 

(found in basement membranes) and collagen V (an important constituent of 

extracellular matrix).  The primary granules can be further subdivided into those that 

contain defensins and those that do not.  The latter granules develop first during 

neutrophil bone marrow maturation and subsequently they are mobilized last.  It is 

likely that there is minimal extracellular release of the defensin-poor granules under 
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normal physiological conditions as they principally discharge their toxic contents 

into the phagosome (Sengelov et al., 1995). 

Two rare diseases with granule deficiencies illustrate their importance to normal host 

immunity.  Patients with Chediak-Higashi disease suffer from recurrent bacterial 

infections as a result of mutations in their Lyst gene that encodes a cytoplasmic 

protein important in lysosomal trafficking; their neutrophils contain giant granules 

that result from primary and secondary granule fusion.  Recurrent bacterial infections 

are also seen in patients suffering from specific granule deficiency; their neutrophils 

lack secondary granules and defensins (Lekstrom-Himes and Gallin, 2000). 

Table 1.1  Neutrophil Granules 

 Primary Granules Secondary Granules Tertiary 

Granules 

Secretory 

Vesicles 

Synonyms Azurophilic, non-
specific, 
basophilic 

Specific, eosinophilic, 
acidophilic 

C-Particles, 
Secretory 
vesicles 

 

Lysosomal acid 
hydrolases 

β-Glucuronidase, 
acid-phosphatase, 
cathepsin B, 
cathepsin D 

   

Neutral serine 
proteases 

Elastase,     
Cathepsin G,  
Proteinase 3 

Plasminogen activator   

Neutral 
metalloproteinases 

 Collagenase Gelatinase  

Microbicidal 
factors 

Myeloperoxidase, 
lysozyme, 
defensins, cationic 
proteins, BPI 

Lysozyme, 
cytochrome b 

NADPH oxidase  

Adhesion 
molecules/ 
chemotactic factor 
receptors 

 Receptors for laminin, 
fibrinogen, 
vitronectin, fMLP, 
TNF, C3 

 CD11b, 
CD16 

Miscellaneous  Vitamin B12-binding 
protein, lactoferrin 
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1.3.8 Neutrophils and Host Defense 

Bactericidal/permeability increasing protein (BPI) is a 55kDa protein, found in the 

primary granules, that has both LPS neutralizing activity (by binding to the Lipid A 

moiety of LPS) (Weersink et al., 1993) and bactericidal activity for specifically 

Gram-negative bacteria (Elsbach and Weiss, 1993).  BPI is bactericidal, as the name 

suggests, by enhancing bacterial membrane permeability and stimulating hydrolyses 

of membrane phospholipids by phospholipase (Elsbach, 1998). Furthermore BPI 

enhances Gram-negative bacteria phagocytosis (via neutrophil complement 

receptors) by accelerating their opsonisation by complement fragments (Nishimura et 

al., 2001).  Recombinant BPI has been used with some success, in Phase III clinical 

trials, in children with meningococcal septicaemia.  There were fewer amputations in 

the treatment group and the functional status of those in the treatment group was 

higher following the illness (Levin et al., 2000). 

Defensins are 3- to 5-kDa cationic peptides of which there are four α-defensins in the 

primary granules of human neutrophils.  They kill microorganisms by increasing 

their membrane permeability and act synergistically with BPI against Gram-negative 

bacteria.  Defensins may also be involved in the transition from innate to adaptive 

immunity.  Neutrophil α- and β-defensins are chemotactic for T cells and immature 

dendritic cells (Ganz et al., 1990).  Furthermore antigen-specific responses are 

enhanced by human α-defensins. 

Cathepsin G, in addition to its direct antimicrobial effect, has also been shown to 

have chemotactic activity for monocytes (MacIvor et al., 1999).  Furthermore, 

lysozyme not only cleaves peptidoglycans that form bacterial cell walls, it can also 

kill bacteria non-enzymatically (Ganz et al., 1986).  Lactoferrin from secondary 

granules sequesters iron essential for microbial respiration.  Secretory leukocyte 

protease inhibitor (SLPI) via its N-terminal domain has some antimicrobial activity 

in vitro against both Gram-negative and Gram-positive bacteria (Sallenave, 2002).  

The C-terminal domain is an inhibitor of neutrophil elastase and may also be 

involved in regulating intracellular responses to LPS (Williams et al., 2006). 
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1.4 Apoptosis 

Kerr, Wyllie and Currie in 1972 coined the term �apoptosis� to describe a distinctive 

type of cell death, programmed cell death.  The features of an apoptotic body are 

�marked condensation of both nucleus and cytoplasm, nuclear fragmentation and 

separation of protuberances that form on the cell surface to produce many 

membrane-bounded, compact but otherwise well-preserved cell remnants of greatly 

varying size� (Kerr et al., 1972).  The term apoptosis itself originates from the Greek 

word for falling leaf. 

Apoptosis is important both developmentally and in maintenance of normal tissue 

structure and function.  For example, disruption of normal apoptotic pathways is an 

important mechanism by which cells transform and acquire malignant potential.  

Furthermore, in the immune system, the mode of cell death induced by cytotoxic T 

lymphocytes is apoptotic.  The apoptotic mode of cell death is important as it allows 

senescent and potentially toxic cells to be cleared without inciting an inflammatory 

or immune response.  In contrast necrosis, classically illustrated in the form of red 

blood cells being placed in hypotonic medium, such as water, involves disruption of 

their cellular membranes and release of haemoglobin.  Loss of cellular membrane 

integrity allows release of potentially toxic intracellular contents, as described earlier 

in terms of the neutrophil (Haslett, 1992).  As with most scientific principles, 

necrosis and apoptosis are at two ends of the spectrum and there is probably a 

continuum with less definite modes of cell death in between. 

Mammalian cells have two main routes to apoptosis: the internal and the external 

pathway.  The external pathway is mediated upstream by death receptors while the 

internal pathway is mitochondria dependent.  Downstream the pathways converge on 

a group of proteins, �the final common pathway�. Some of these key proteins have 

been identified.  The DNA ladder nuclease (caspase-activated DNase or CAD) forms 

an inactive complex with an inhibitory subunit known as ICAD (Nagata, 2000).  

Caspase-3 cleaves ICAD resulting in the release and activation of CAD (Liu et al., 

1997; Enari et al., 1998; Sakahira et al., 1998).  Caspase-mediated cleavage of the 

nuclear lamins are responsible for nuclear shrinkage and budding (Rao et al., 1996; 
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Buendia et al., 1999) while cleavage of cytoskeletal proteins, fodrin and gelsolin, 

results in loss of cell shape (Kothakota et al., 1997).  Membrane blebbing is a 

function of p21-activated protein kinase 2 (PAK2), and it is activated by caspase 

cleavage between the negative regulatory subunit and the catalytic subunit (Rudel 

and Bokoch, 1997). 

1.4.1 Caspases 

Caspases, a group of cysteine proteases, are central to the neutrophil�s apoptotic 

machinery.  These proteins are phylogenetically conserved having CED homologues 

in the worm Caenorrhabis elegans.  Their catalytic centre has a highly conserved 

pentameric sequence, which includes a cysteine residue.  They cleave substrates after 

aspartic acid residues and the four residues amino-terminal to the cleavage site, 

confer substrate specificity (Earnshaw et al., 1999).  Caspases involved in apoptosis 

can be divided into two groups, initiator and effector caspases.  Initiator caspases 

include caspase-2, -8, -9 and -10; their autoactivation is tightly regulated.  Effector 

caspases include caspase-3, -6 and -7; they are activated by initiator caspases.  

However some caspases, including caspase-1 or interleukin-1β- converting enzyme 

(ICE), are involved in both apoptotic and inflammatory pathways (Rowe et al., 

2002).  Caspases, including caspase �1; �3; �4 ; �8 and �10 are present in neutrophils 

(Yamashita et al., 1999). 

1.4.2 The �internal� apoptotic pathway 

Mitochondria, the powerhouse of the cell, are important in apoptosis.  Furthermore 

cytochrome c, the electron carrier, is central to this pathway�s machinery.  It is 

released into the cytosol, in response to cellular damage and stress, where it interacts 

with apoptotic protease-activating factor 1 (Apaf-1) to form the �apoptosome� (Li et 

al., 1997).  This induces oligomerization of Apaf-1 and the complex is then able to 

recruit and subsequently activate caspase 9. Triggers include radiation and cytotoxic 

drugs. 

Neutrophils are known to have structures which resemble mitochondria (Maianski et 

al., 2002).  Recent research has confirmed that although human neutrophils have 
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only small amounts of cytochrome c, the Apaf-1 dependent pathway is important in 

their apoptosis (Murphy et al., 2003). 

Cytochrome c release from the mitochondria is regulated by the Bcl-2 family of 

proteins (Reed et al., 1996).  Although there are conflicting results in the literature, it 

is now generally agreed that human neutrophils constitutively express pro-apoptotic 

proteins, Bax, Bid, Bak and Bad but do not express the anti-apoptotic protein Bcl-2 

(Akgul et al., 2001). 

1.4.3 Death Receptors and the �external� apoptotic pathway 

Death receptors are a subset of the tumour necrosis factor receptor (TNFR) family 

characterized by an intracellular �death domain�.  The receptors are type-1 

membrane proteins while their ligands are type-2 membrane proteins. The 

extracellular C termini of the type-2 membrane proteins must homotrimerise to form 

the active ligand.  The ligands can exert their function in either a membrane-bound 

form or can be proteolytically cleaved to a soluble form.  Binding of the trimerised 

ligand to its receptor triggers an intracellular signalling cascade. 

1.4.4 The Fas/FasL death receptor pathway 

In 1989, a monoclonal antibody, anti-Fas antibody, was first described.  It had been 

raised against a human surface antigen using human diploid fibroblast FS-7 cells as 

the immunogen (Yonehara et al., 1989).  Subsequently, the Fas antigen (CD95) was 

found to be ubiquitously expressed in human cells.  In the same year, the monoclonal 

antibody Apo-1 was also described, although its antigen was initially found on only 

activated or malignant lymphocytes (Trauth et al., 1989).  Yonehara et al (1989) 

demonstrated that anti-Fas antibody, when combined with interferon-γ, killed cells 

expressing the Fas antigen. 

The nucleotide sequence of the Fas antigen was discovered using a complementary 

DNA (cDNA) library; the sequence molecularly coded for a 319 amino acid 

polypeptide (Itoh et al., 1991).  Its extracellular domain showed homology to human 

tumour necrosis factor receptors. When murine cells were transformed with human 

Fas antigen cDNA and treated with anti-Fas antibody, they underwent apoptosis.  In 
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1993, the ligand (FasL) was identified in a cytotoxic T lymphocyte hybridoma which 

killed Fas+ but not Fas- cells (Suda et al., 1993). 

Mutants of the MRL mouse strain which develop lymphadenopathy and 

splenomegaly have been described (Andrews et al., 1978); an autosomal recessive 

mutation on mouse chromosome 19 was found in the mutant referred to as lpr 

(Watanabe et al., 1991) while an autosomal recessive mutation on mouse 

chromosome 1 was found in the mutant referred to as gld (Ramsdell et al., 1994; 

Takahashi et al., 1994; Hahne et al., 1995).  It is now known that the lpr mutation 

truncates transcription of the gene encoding Fas while the gld point mutation, near 

the C terminus of the coding region for FasL, abolishes the ability of FasL to bind to 

Fas (Nagata and Suda, 1995).  A human lymphoproliferative syndrome has also been 

described associated with mutations in the Fas gene on human chromosome 10 

(Bettinardi et al., 1997). 

The Fas/FasL interaction is primarily important in T lymphocyte development and 

homeostasis.  Positive and negative selection in the thymus, as part of T cell 

development, appears to be normal in the lpr/gld mice however clonal deletion of 

autoreactive T cells in the periphery appears to be aberrant.  Furthermore, cytotoxic 

T lymphocytes (CTL) appear to use both the perforin/granzyme and Fas/FasL 

pathways to mediate their cytotoxic effect (Krammer, 2000). 

It has also been suggested that the expression of FasL in the eye and Sertoli cells of 

the testis confers immune privilege by killing invading immune cells (Bellgrau et al., 

1995; Griffith et al., 1995).  Transplant immunologists were obviously excited by 

this discovery and subsequently myoblasts expressing FasL were shown to �protect� 

transplanted pancreatic islet cells (Kang et al., 1997).  Furthermore, FasL expression 

on colonic tumour cells induced cell death in a human T-cell leukaemia cell line 

(Seino et al., 1997).  Several studies then emerged which refuted the established 

paradigm that FasL is important in immune privilege.  When pancreatic islet cells 

expressing FasL were transplanted, the FasL expressing cells rather than protecting 

the islet cells from rejection, resulted in more rapid rejection due to infiltrating 

neutrophils (Kang et al., 1997).  Membrane-bound FasL (40kda) is cleaved by matrix 
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metalloproteases to a 26-29kDa soluble form (sFasL) (Kayagaki et al., 1995).  It has 

been shown that while human sFasL is chemotactic for mouse and human 

neutrophils, it does not induce their apoptosis (Ottonello et al., 1999).  The 

generation of sFasL reduces expression of the active membrane-bound form and as 

sFasL can bind to Fas without inducing apoptosis, it is also a natural antagonist 

(Schneider et al., 1998).  Thus, it was proposed that sFasL, cleaved from the 

transplanted islet cells, induced neutrophil chemotaxis.  These neutrophils, in turn, 

were primarily responsible for the islet cell destruction.  It has also been suggested 

that FasL-tumour expressing cell lines indirectly augment neutrophil infiltration by 

inducing secretion of interleukin-1β (Il-1β) from neutrophils or by activating resident 

macrophages to secrete pro-inflammatory cytokines (Muzio et al., 1996).  FasL-

tumour expressing cell lines have also been shown to induce cytotoxic activity in 

neutrophils (Kang et al., 1998).  However the eye and testis may be protected from 

this neutrophilic infiltration due to the presence of transforming growth factor-β 

(TGF-β) in their cellular microenvironment (Chen et al., 1998). 

Neutrophils have been shown to express Fas and anti-Fas antibody accelerates their 

apoptosis (Iwai et al., 1994).  Initially they were shown to express FasL and release 

sFasL which was able to induce death in activated Jurkat cells (Liles et al., 1996).  

Furthermore blocking the Fas receptor, partially suppressed spontaneous neutrophil 

apoptosis suggesting that Fas/FasL may mediate neutrophil apoptosis by both an 

autocrine and paracrine pathway (Liles et al., 1996).  Fas-mediated induction of 

neutrophil apoptosis might therefore accelerate their clearance from sites of 

inflammation. At such sites cytokines and inflammatory mediators including GM-

CSF, LPS and complement factor C5a are known to prolong neutrophil survival 

(Haslett, 1997; Ward et al., 1999). 

1.5 The Macrophage 

Macrophages, large mononuclear phagocytes found in tissues, were first described 

by Elie Metchnikoff over 100 years ago (Karnovsky, 1981).  They originate in the 

bone marrow, move into the bloodstream as monocytes and finally into the tissues 

where they differentiate into macrophages (Territo and Cline, 1975).  Macrophages 
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function in the innate immune system primarily as phagocytes, phagocytosing not 

only airborne particulates that reach alveoli but also microorganisms. 

The macrophage has signalling pattern recognition receptors that respond to 

pathogen-associated molecular patterns e.g. mammalian Toll-like receptors (TLRs) 

that recognise bacterial lipopolysaccharide (LPS), viral double-stranded RNA, 

unmethylated CpG dinucleotides (common in bacterial DNA), mannans of yeast, 

glycolipids of mycobacteria, lipoproteins of bacteria and parasites and lipoteichoic 

acids of Gram-positive bacteria.  LPS is initially bound by lipopolysaccharide-

binding protein (LBP) and this complex binds to the membrane-anchored protein, 

CD14.  CD14 has no cytoplasmic domain and requires TLR4 for transduction of the 

LPS signal.  TLR4 activates nuclear factor-κB (NF-κB) and stimulates the 

expression of chemokines and cytokines, important in mediating inflammatory 

responses, including, interleukin-8 (IL-8), leukotriene B4 (LTB4), interleukin-1 and 

tumour necrosis factor-α (TNF-α) (Palsson-McDermott and O'Neill, 2004).  

Endocytic pattern recognition receptors are also found on the surface of macrophages 

and include the macrophage mannose receptor and the macrophage scavenger 

receptor.  These receptors enhance phagocytosis of microorganisms by the 

macrophage.  Phagocytosed bacterial antigens are then processed intracellularly and 

presented by these professional antigen-presenting cells to the adaptive immune 

system.  However macrophages also phagocytose apoptotic neutrophils and are 

therefore important in the resolution of inflammation (diagram 3.1). 

1.5.1 Alveolar macrophages 

Macrophages become highly specialized and specifically adapt to 

microenvironments.  In the lung, macrophages are exposed to inhaled microbes, 

toxic substances and fine particulate matter.  They must remain in a quiescent state in 

response to harmless antigens but be able to become activated in response to 

infectious microbes.  Alveolar macrophages, in their quiescent state, do not produce 

inflammatory cytokines and downregulate expression of the phagocytic receptor 

CD11b such that they display poor phagocytic activity (Holt, 1978).  Their 

importance in maintaining a tonic state was elegantly demonstrated when alveolar 
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macrophages were eliminated in vivo using clodronate-filled liposomes, this led to 

overt inflammatory reactions in response to harmless particulate and soluble antigens 

(Thepen et al., 1989).  Furthermore, when alveolar macrophages were mixed with 

dendritic cells in vitro, they suppressed T-cell activation through release of 

prostaglandins, interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) 

(Holt, 1993).   

In animal models of ALI, it has been shown that the rapid recruitment of neutrophils 

and later recruitment of blood monocytes to the lung is dependent on resident 

alveolar macrophages (Maus et al., 2002).  In response to intratracheal monocyte 

chemoattractant, the recruitment of alveolar monocytes was largely dependent on the 

β2 integrin CD11b/CD18 and CD54 as well as the β1 integrin CD49d while the co-

administration of intratracheal monocyte chemoattractant and LPS resulted in 

amplified monocyte recruitment dependent additionally on CD11a and CD106 (Maus 

et al., 2002).   

The lung microenvironment itself determines the macrophage phenotype.  The 

breakthrough in our understanding of this process came when it was shown that αvβ6 

integrin-deficient mice had activated alveolar macrophages due to a lack of TGF-β 

activation (Morris et al., 2003).  The αvβ6 integrin can activate latent TGF-β by 

binding to the latency-associated peptide, an N-terminal inactivating fragment of 

TGF-β.  This knowledge has recently been expanded.  Alveolar macrophages, in the 

quiescent state closely adhere to alveolar epithelial cells which induces expression of 

the αvβ6 integrin on the epithelial cells.  This leads to local activation of TGF-β 

which in turn binds to its receptor expressed on macrophages, inducing 

phosphorylation of SMAD-2 and -3 thereby suppressing macrophage phagocytosis 

and cytokine production.  When alveolar macrophages are exposed to infectious 

agents such as LPS, signalling through their Toll-like receptors leads to a rapid loss 

of contact with the alveolar epithelial cells, downregulation of αvβ6 integrin 

expression on the epithelial cells, loss of activation of TGF-β and priming of the 

macrophage to secrete pro-inflammatory cytokines (Takabayshi et al., 2006). 
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During the inflammatory process, as discussed earlier, monocytes are recruited to the 

alveolar space and these cells have an inflammatory phenotype (Warmington et al., 

1999).  It takes a few days before these cells acquire the suppressive phenotype of 

alveolar macrophages (Bilyk and Holt, 1995).  Recently the mechanism by which 

macrophages switch back to their suppressive phenotype after exposure to infectious 

agents was further elucidated; a few days after exposure to the infectious agent, 

lymphocytes secreting interferon-γ (IFN-γ) stimulated the production of matrix 

metalloproteinase-9 (MMP-9) by the alveolar macrophages.  MMP-9 can activate 

latent TGF-β and by the mechanism described above, this switches the macrophage 

back to its anti-inflammatory phenotype (Takabayshi et al., 2006). 

An elegant proteomic study has shown differential protein expression between 

human alveolar macrophages and their precursor blood monocytes which reflect their 

different phenotypes (Wu et al., 2005). 

1.6 The Macrophage, the Neutrophil and Inflammation 

At a cellular level, the processes involved in the resolution of inflammation have 

been further elucidated.  Neutrophils produce prostaglandins and leukotrienes from 

arachadonic acid (diagram 4.1.).  During neutrophil activation, the NF-κB signalling 

pathway induces transcription of genes encoding enzymes which switch the 

production of arachidonic acid metabolites to lipoxins (Levy et al., 2001).  Lipoxins 

are known to slow the entry of neutrophils to inflamed sites, reduce vascular 

permeability and stimulate macrophage phagocytosis of apoptotic neutrophils 

(Serhan et al., 1995; Takano et al., 1998; Godson et al., 2000).  Recently other 

groups of anti-inflammatory lipid mediators have been identified, including resolvins 

and protectins, which are metabolites of omega-3 polyunsaturated fatty acids (Serhan 

et al., 2002; Hong et al., 2003; Marcheselli et al., 2003). 

The ageing inflammatory neutrophil, as discussed previously, usually dies by 

apoptosis.  The macrophage recognizes several surface receptors on the apoptotic 

cell, including phosphatidylserine, the integrin αvβ3 and CD36, resulting in 

phagocytosis (Savill et al., 1989; Hart et al., 1996; Fadok et al., 1998).  In so doing, 
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the macrophage itself, switches to an anti-inflammatory phenotype (Fadok et al., 

1998).  Macrophages are themselves cleared from inflamed sites by the draining 

lymphatics (Bellingan et al., 1996). 

The Fas-FasL pathway may also be important in the interaction between 

macrophages and neutrophils at inflamed sites.  Macrophages express FasL and 

sFasL has been identified in the conditioned supernatants of activated macrophages 

(Brown & Savill, 1999).  The conditioned supernatants containing sFasL accelerated 

neutrophil apoptosis but other factors were also present which contributed to the 

observed induction of neutrophil apoptosis (Brown & Savill, 1999).  The nature of 

these factors will be explored further. 

1.7 Aims of this project 

Neutrophilic inflammation in the alveoli is the hallmark of acute lung injury 

(ALI)/adult respiratory distress syndrome (ARDS).  In early ARDS, bronchoalveolar 

lavage fluid (BALF) delays neutrophil apoptosis but this is largely due to 

granulocyte- colony stimulating factor (G-CSF) and granulocyte/macrophage - 

colony stimulating factor (GM-CSF) (Matute-Bello et al., 1997).  However in late 

ARDS, our group showed that BALF accelerated neutrophil apoptosis (Donnelly & 

Haslett, unpublished observation).   BALF from patients with ARDS has also been 

shown to contain soluble FasL (sFasL) (Matute-Bello et al., 1999).  The Fas/FasL 

pathway is important in cellular apoptosis and it is therefore proposed that Fas-

mediated induction of neutrophil apoptosis will accelerate resolution of inflammation 

by apoptotic clearance of neutrophils from the lung and their subsequent macrophage 

phagocytosis.  The role of this death pathway in regulating neutrophil longevity as 

well as the effect of �the inflammatory milieu� will be explored.  As 

sepsis/endoxaemia is the leading cause of ALI/ARDS in humans, the role of the 

LPS-activated macrophage in control of neutrophil longevity and the importance of 

the Fas/FasL pathway in this regard will be determined.  Thus, the role of Fas/FasL, 

inflammatory mediators and LPS-stimulated macrophages on human neutrophil 

apoptosis in vitro will be investigated. 
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Figure 1.1. The alveolus in normal l.ung and ARDS. 

In ARDS (right-hand side) there is damage to the bronchial and alveolar epithelium 
and pulmonary endothelium.  A hyaline membrane has formed next to the denuded 
membrane.  As a result of the leaky blood-air barrier, there is a protein-rich exudate 
in the alveolus.  Neutrophils have adhered to the damaged endothelium and activated 
neutrophils have transmigrated into the alveolus where they are producing 
inflammatory mediators.  The alveolar macrophage has been activated by 
macrophage inhibitory factor (MIF) to secrete cytokines (TNF-α, IL-1, IL-6, IL-8 
and IL-10) that are important in regulating the inflammatory response. 

(Adapted from Ware and Matthay, 2001) 
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Chapter 2 

 

Material and Methods 

 

2.1 Materials 

2.1.1 Biochemicals 

Unless otherwise stated, all chemicals were obtained from Sigma, Poole, UK.  All 

tissue culture reagents were purchased from Life Technologies, Paisley, UK. 

2.1.2 Antibodies and Pharmacological Inhibitors 

The antibodies used in this study are detailed in table 2.1.  The pharmacological 

inhibitors used in this study are detailed in table 2.2. 

2.2 Cell Biology Techniques 

2.2.1 Neutrophil and monocyte isolation from human peripheral blood  

Human polymorphonuclear leukocytes and mononuclear leukocytes were isolated 

from peripheral human blood (80-320ml) taken from healthy donors as previously 

described by Haslett et al., (1985).  This technique was carried out under sterile 

conditions using endotoxin-free reagents and tissue culture plastics to prevent 

inappropriate cell activation.  Unless otherwise stated it was carried out at room 

temperature.  The blood was citrated (0.38%) (Phoenix pharmaceuticals) to prevent 

clotting, mixed by gentle inversion and centrifuged (Sanyo Mistral 3000i centrifuge) 

for 20 minutes at 220G with zero brake.  Centrifugation separates the blood into a 

lower dense cellular layer, the packed cell volume (PCV), which constitutes 

approximately 45% of the circulating blood volume and contains the red blood cells, 

above which there is the buffy coat, rich in leukocytes, and the supernatant which is 

platelet-rich plasma (PRP).  The supernatant was carefully removed and 10ml of PRP 

was added to glass bottles with 220µl 1M calcium chloride.  At 37°C, the calcium 

activates the platelets to form a platelet plug and thus �autologous serum� was 
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obtained.  Dextran sedimentation of the packed cell volume (6ml of 6% dextran and 

19ml 0.9% (w/v) saline were added to the PCV), separated the residual red cells and 

leukocytes.  After 30 minutes at room temperature, the upper leukocyte rich layer 

was removed and washed at 220G for 6 minutes. 

The neutrophils/eosinophils and mononuclear cells were separated by centrifugation 

through discontinuous isotonic Percoll gradients (55/68/81%) at 700g for 20 minutes 

with zero brake.  The mononuclear cells were isolated from the 55/68% interface and 

washed twice in phosphate buffered saline (PBS) without cations before being 

resuspended at 4x106/ml in Iscove�s modified Dulbecco�s medium (IMDM) 

(GIBCO) containing 20IU/ml penicillin/streptomycin.  Monocytes were enriched by 

selective adherence to tissue culture plastic, a method previously demonstrated by 

Ackerman and Douglas (1978).  Non-adherent lymphocytes were removed by 

aspiration and the wells washed twice with Hank�s balanced salt solution (HBSS).  

Over a period of 5 days, when the adherent monocytes were cultured in IMDM 

containing 10% autologous serum, they differentiated into mature monocyte-derived 

macrophages (figure 2.1b).  As autologous serum contains variable cytokines, the 

adherent monocytes were also differentiated in serum-free media with 250U/ml 

recombinant human GM-CSF (R&D Systems) (Vincent et al., 1992).  The 

neutrophils were isolated from the 68/81% interface and washed twice in phosphate 

buffered saline (PBS) without cations.  The purity of the neutrophils was greater than 

97% as assessed by forward/side scatter analysis on a EPICS Coulter flow cytometer 

(purity of granulocyte population) and by morphology (figure 2.1a).  Cytospins of 

harvested cells were stained with Diff Quik and a minimum of 500 cells per slide 

were counted. 

2.2.2 Assessment of apoptosis and necrosis 

Apoptosis was assessed quantitatively by assessment of morphology and the 

differential binding of Annexin V to apoptotic cells.  Cytospins were prepared in 

duplicate or triplicate for each experimental condition; 120µl of cells centrifuged at 

300G onto glass slides, fixed in methanol and stained with Diff-Quik (Gamidor, 

Abingdon, UK).  Cells were counted using oil immersion microscopy (x100 
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objective lens) to determine the proportion of cells with distinctive apoptotic 

morphology i.e. cell shrinkage, nuclear condensation (figure 2.2a).  A minimum of 

500 cells/slide were counted and the results were expressed as the mean + SEM. 

Annexin V binds to phosphaditylserine exposed on the surface of apoptotic cells.  

Fluorescein isothiocyanate (FITC)-labelled recombinant human Annexin V (Bender 

Medsystems, Vienna, Austria) was diluted (1:200) in binding buffer and 180µl was 

added to 20µl of cells (5x106/ml) (in duplicate or triplicate) and incubated at 4°C for 

10 minutes before flow cytometric analysis on EPICS XL2 (figure 2.2b).  This is a 

previously validated method of assessment of apoptosis (Majewska et al., 2000; 

Vermes et al., 2000).  In the assessment of apoptosis using Annexin V, we used cells 

which had not undergone apoptosis as a negative control however other groups have 

used an EDTA control to indicate the calcium-dependent specific binding of Annexin 

V (Boas et al., 1998; Cederholm et al., 2005).  Necrosis was determined by assessing 

the integrity of cells (at least 500) by virtue of their exclusion of the vital dye trypan 

blue. 

Apoptotic rates assessed by morphology and Annexin V binding were highly 

correlated (n=12, r = 0.93, p<0.0001, data not shown). 

2.2.3 Cell Culture  

All cell culture was carried out with aseptic technique within a tissue culture hood 

(Envair Class II) and cultures were maintained in an incubator at 37°C/5% CO2.  

Heat-inactivated serum was prepared by heating serum at 56°C for 60 minutes. 

2.2.3.1 A549 cells 

A549 cells are derived from a human lung carcinoma (ECACC ref. 86012804).  

Media for use with the A549 cells was Dulbecco�s modified Eagles medium 

(DMEM) supplemented with 10% heat-inactivated foetal bovine serum (FBS), 2mM 

glutamine and 20IU/ml penicillin/streptomycin.  The cells were adherent and cultures 

were split (1:6) on reaching 70-90% confluency (approximately every 3 days) using 

trypsin (0.05% w/v)/ethylenediaminetetraacetic acid (EDTA) (0.02% w/v).  The 
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clones stably transfected with FasL were a kind gift from Dr Shirley O�Deas (MRC 

Centre for Inflammation). 

2.2.3.2 Jurkat E6.1 cells 

Jurkat cells are a human leukaemic T cell lymphoblastic cell line (ECACC ref. 

88042803). Media for the Jurkat T cell line was RPMI 1640 supplemented with 10% 

heat-inactivated FBS, 2mM glutamine and 20IU/ml penicillin/streptomycin.  The 

cells grew in suspension and cultures were maintained between 3-9 x 105/ml. 

2.2.3.3 K562/KFL9 cells 

The K562 cell line (ECACC ref. 89121407) was established from a pleural effusion 

of a patient with chronic myelogenous leukaemia in terminal blast crisis.  Media for 

the K562/KFL9 cell line was RPMI 1640 supplemented with 10% heat-inactivated 

FBS, 2mM glutamine and 20IU/ml penicillin/streptomycin.  The cells grew in 

suspension and cultures were maintained between 1-10 x 105/ml.  K562 cells stably 

transfected with FasL (KFL9) were a kind gift from Dr D. Kaplan (Case Western 

Reserve University, Cleveland, USA) to Dr Simon Brown (MRC Centre for 

Inflammation). 

2.2.3.4 THP-1 cells 

The THP-1 cell line (ECACC ref. 88081201) was established from the peripheral 

blood of a patient with acute monocytic leukaemia.  Media for the THP-1 cell line 

was RPMI 1640 supplemented with 10% heat-inactivated FBS, 2mM glutamine and 

20IU/ml penicillin/streptomycin.  The cells grew in suspension and cultures were 

maintained between 2-9 x 105/ml. 

2.2.4 The effect of inflammatory mediators on constitutive and Fas-induced 
neutrophil apoptosis and investigation of their signalling pathways using 
pharmacological inhibitors  

Freshly isolated neutrophils (5x106/ml) were initially cultured in IMDM with 10% 

autologous serum (AS) or 10% FBS or phosphate buffered saline (PBS).  The 

neutrophils were incubated in 96 flat-bottomed plastic flexi-well plates (Costar) with 

activating anti-Fas antibody (CH-11) (Upstate Cell Signalling Solutions, USA) and 
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recombinant FasL (SUPERFasL) (Alexis Biochemicals Corporation, USA) at 

varying concentrations for 3 hours and apoptosis assessed by morphology (n=2) and 

Annexin V binding (n=2).  Jurkat cells were used as a positive control as Fas 

stimulation is known to accelerate their apoptosis.  The neutrophils were also pre-

incubated for 1 hour in a shaking water bath with the poly-caspase inhibitor zVAD 

(100µM) (Calbiochem, UK) the agonistic anti-Fas antibody, ZB4 (500ng/ml) 

(Upstate Cell Signalling Solutions, USA) and the neutralising anti-FasL antibody 

NOK-1 (500ng/ml) (BD Biosciences, USA) prior to being plated out in 96 flat-

bottomed plastic (Costar) flexi-well plates with CH-11 (500ng/ml) for 3 hours.  

Apoptosis was assessed by morphology (n=2) and Annexin V binding (n=2). 

To assess the effect of inflammatory mediators, the freshly isolated neutrophils 

(5x106/ml) in PBS and 10% FBS were pre-incubated for 1 hour in a shaking water 

bath with LPS (0.1µg/ml) (E.coli 0127:B8, Sigma), fMLP (10nM) (Calbiochem) and 

GM-CSF (50U/ml) (R&D Systems) prior to being plated out in 96 flat-bottomed 

plastic flexi-well plates (Costar) with CH-11 (500ng/ml).  Apoptosis was assessed by 

morphology (n=2) and Annexin V binding (n=2) after a further 3 hours incubation. 

The different intracellular signalling pathways were assessed by pre-incubating the 

freshly isolated neutrophils for 1 hour in a shaking water bath with various 

pharmacological inhibitors prior to being plated out in 96 flat-bottomed flexi-well 

plates with CH-11 (500ng/ml) and apoptosis assessed as above. 

2.2.5 THP-1, transfer of conditioned media and its effect on human neutrophil 
apoptosis 

THP-1 cells (1x106/ml), in media as above, were activated with phorbol 12-myrisate 

13-acetate (PMA) (25ng/ml) and incubated on fibronectin-coated plates overnight.  

The cells were then washed and incubated in fresh media for a further 24 hours.  The 

differentiated THP-1 cells were then stimulated with LPS (1µg/ml) for varying time 

periods before being co-incubated with fresh neutrophils (2x106/ml) for 4 hours or 

their conditioned media being transferred to fresh neutrophils (2x106/ml) and 

incubated for 4 hours. 
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2.2.6 Human monocyte-derived macrophages, transfer of conditioned media 
and its effect on human neutrophil apoptosis 

The human monocyte-derived macrophages were differentiated for 5 days in either 

IMDM and 10% autologous serum or serum-free media supplemented with 250U/ml 

recombinant human GM-CSF (R&D Systems) before stimulation with 1µg/ml LPS 

(E.coli 0127:B8, Sigma) for the appropriate time.  The serum-free macrophages also 

required purified human lipopolysaccharide binding protein (found constitutively in 

serum) (Hycult Biotechnology, MA, USA). 

The conditioned supernatants were centrifuged at 300G for 5 minutes and then ultra 

centrifuged at 100 000G for 10 minutes before transfer to freshly isolated neutrophils 

at 2x106/ml and incubated for the appropriate time.  In some experiments, the 

conditioned media was further fractionated through Centricon 50kD filters according 

to the manufacturer�s instructions.  The freshly isolated neutrophils (5x106/ml) were 

also pre-incubated with an anti-TNF-α antibody (3µg/ml) (R&D Systems, USA) and 

antagonistic anti-Fas antibody (ZB4, 500ng/ml) (Upstate Cell Signalling Solutions, 

USA) for 1 hour in a shaking water bath before incubation with the conditioned 

media.  In addition, the conditioned media was itself heat-inactivated at 56°C for 1 

hour. 

In the experiments requiring apoptotic neutrophils, on day 4 of macrophage 

differentiation, fresh neutrophils (5x106/ml) were incubated overnight in 50ml tissue 

culture flasks and apoptosis assessed by morphology.  Macrophages were co-

incubated with the apoptotic neutrophils for 4 hours at 37°C.  For cytokine analysis 

and two-dimensional gel electrophoresis, the conditioned supernatant was stored at -

70°C. 

2.3 Biochemical assays and methods  

2.3.1 Receptor surface expression assessed using flow cytometry 

Flow buffer was prepared by adding 0.1% (w/v) azide and 0.2% (w/v) bovine serum 

albumin to 500ml phosphate buffered saline without cations.  Cells, 100µl 

(5x105/ml), were plated onto 96 well round-bottomed plastic flexi-well plates 
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(Costar) and centrifuged (200G) for 2 minutes at 4°C.  All subsequent steps were 

carried out at 4°C.  The supernatant was discarded and the cells resuspended by 

gentle vortexing.  Rabbit immunoglobulin, 10µl (1:20), was added for 5 minutes to 

block immunoglobulin receptors.  The plates were again centrifuged, the supernatant 

discarded and cells resuspended by gentle vortexing.  The primary antibody was 

appropriately diluted in flow buffer and added to the resuspended cells for 30 

minutes before washing off the non-bound antibody (twice).  The secondary FITC/ 

phycoerythrin (PE)-conjugated antibody was appropriately diluted and added to the 

resuspended cells for 30 minutes before washing off the non-bound antibody (twice).  

The cells were then resuspended in 200µl flow buffer and binding was assessed by 

flow cytometry. 

2.3.2 Preparation of cell lysates for Western blotting 

Lysates were prepared at 4°C.  Cells in suspension were pelleted by centrifugation 

and the supernatant discarded.  To minimize problems with proteolysis, lysates were 

prepared by methods normally used for electrophoretic mobility shift assay (EMSA) 

preparation (Ward et al., 1999).  The cell pellet was resuspended in 100µl lysis 

buffer (buffer A (10mM Tris-HCL, pH 7.8, 1.5mM EDTA, 10mM KCL), 0.5mM 

dithiothreitol, 1µg/ml aprotinin, leupeptin and pepstatin A, 1µM 4-(2-aminoethyl) 

benzenesulphonyl fluoride, 1mM sodium orthovanadate, 0.5mM benzamidine and 

2mM levamisole) and placed on ice for 10 minutes.  Following the addition of 0.1 

volumes of 10% Nonidet P-40 (w/v), the cells were vortexed briefly and centrifuged 

at 12000G for 2 minutes at 4°C.  The supernatants were transferred to clean 

Eppendorfs and the nuclear pellet discarded.  The protein content of the supernatants 

was estimated as below and the appropriate volume of 6x sample buffer (0.375M 

Tris-HCL, pH 6.8, 12% sodium dodecyl sulphate (SDS), 15% β-mercaptoethanol, 

40% glycerol and 0.03% bromophenol blue) was added to the supernatants prior to 

heating at 95°C for 5 minutes.  Lysates were stored overnight at 4°C prior to further 

usage. 
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2.3.3 Protein estimation 

The protein concentration of lysates was estimated using the Pierce protein assay 

system which is based on the Bradford Coomassie brilliant blue dye binding system.  

A range of bovine serum albumin standards was used to construct a standard curve 

using spectrophotometry and protein samples were diluted to fall within the linear 

range of this curve.  Protein concentrations of all samples were routinely measured in 

duplicate. 

2.3.4 Polyacrylamide gel electrophoresis 

A Bio-Rad mini trans-blot module (Protean II) was used.  In order to maximize 

resolution of the protein of interest, the appropriate percentage sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) separating gel was used.  

The appropriate quantity of 30% acrylamide/bis-acrylamide was added to the 

separating buffer (e.g. 20ml of 9% separating gel solution required 8.82ml of 

deionised water, 6ml of 30% acrylamide/bis-acrylamide , 5ml of 1.5M Tris base pH 

8.8, 0.08ml of 20% SDS, 0.08ml of 10% ammonium persulphate and 20ul TEMED).  

A 3% stacking gel solution was also prepared (for a final volume of 8ml, 5.51ml of 

deionised water, 0.8ml of 30% acrylamide/bis-acrylamide, 1ml of 0.5M Tris base, 

pH 6.8, 0.08ml of 10% SDS, 0.6ml of 12% ammonium persulphate and 8µl of 

TEMED were required) (Laemmli, 1970).  Standardised amounts of protein for each 

sample were loaded and the proteins resolved by electrophoresis at 150V. (The 

electrophoresis buffer was 250mM Tris/1.92M glycine (pH 8.3) and 0.1% SDS) 

2.3.5 Immunoblotting 

Proteins resolved by polyacrylamide gel electrophoresis were transferred to 

nitrocellulose membranes at 80V for 1 hour.  (The transfer buffer was 250mM 

Tris/1.92M glycine (pH 8.3) and 20% methanol).  Transfer efficiency and equality of 

loading were assessed by staining membranes with Ponceau S solution for 3 minutes 

followed by washing with distilled water.  Ponceau S was removed by washing with 

Tris buffered saline (TBS) (20mM Tris-HCl, pH 7.6, 136mM sodium chloride) 

containing 0.1% (v/v) Tween 20 (TBST). 
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The nitrocellulose membranes were then blocked in TBST with 5% (w/v) non-fat 

powdered milk (Marvel) for a minimum of 1 hour at room temperature.  Blots were 

incubated with primary antibodies at the recommended concentration in TBST or 

TBS with 1% (w/v) bovine serum albumen, overnight at 4°C.  Three washes of 10 

minutes each using TBST were then carried out prior to incubation with the 

appropriate horseradish peroxidase conjugated secondary antibody for 1 hour in 

TBST at room temperature.  Blots were washed with three washes of 10 minutes 

each using TBST prior to developing.  Protein bands were visualised by enhanced 

chemoluminescence (Amersham) and autoradiography. 

2.3.6 Re-probing with anti - β-actin antibody 

The immunoblots were stripped in buffer (62.5mM Tris base (pH 6.7), 0.075% β-

mercaptoethanol and 2% SDS) for 1 hour at 50°C.  Three washes of 10 minutes each 

using TBST were then carried out prior to blocking in TBST with 5% (w/v) non-fat 

powdered milk (Marvel) for a minimum of 1 hour at room temperature.  The blots 

were then incubated with 1:50 anti - β-actin antibody for 1 hour at room temperature.  

Three further washes of 10 minutes each using TBST were then carried out prior to 

incubation with 1:2000 horseradish peroxidase conjugated goat anti-mouse antibody 

for 1 hour in TBST at room temperature.  The blots were then washed and developed 

as above.  

2.3.7 Two-dimensional gel electrophoresis 

ExcelGel SDS gradient 8-18, ExcelGel buffer strips (Pharmacia Biotech), a 

Multiphor II electrophoresis unit and a MultiTemp II thermostatic circulator were 

used in these experiments which were carried out in duplicate.  The samples were 

dissolved in reducing SDS sample buffer and denatured as previously described.  

Light paraffin oil (1ml) was used as insulating fluid and placed on the thermostatic 

circulator at 15°C before the gel was placed on the cooling plate so that the polarity 

of the gel corresponded to that of the plate.  The cathodic and anodic buffer strips 

were applied to their respective sides of the gel.  The applicator strip was placed 

5mm from the cathodic buffer strip and 20ul of sample applied. 
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Electrophoresis was commenced at 300V, 2mA for 1 minute and gradually increased 

over the next 30 minutes to 3500V which was maintained for approximately 2 hours 

until the Bromophenol Blue front had reached the anode.  The gel was immediately 

fixed (40% ethanol, 10% acetic acid) for 30 minutes and incubated overnight at room 

temperature (250ml of incubation solution contained 75ml ethanol, 17g sodium 

acetate·3H2O, 1.3ml glutaraldehyde (25% w/v) 0.5g sodium thiosulphate and 

distilled water).  The gel was washed for 5 minutes, three times, in distilled water.  

The gel was stained for 40 minutes in silver solution (250ml contained 0.25g silver 

nitrate, 50µl formaldehyde and distilled water).  The protein bands were developed in 

developing solution (250ml contained 6.25g sodium carbonate, 25µl formaldehyde 

and distilled water) for approximately 15 minutes before stopping the reaction (  with 

3.65g EDTA-Na2·2 H2O in 250ml distilled water for 10 minutes.  The gel was 

washed for 5 minutes, three times, in distilled water and preserved in 10% glycerol. 

 
2.3.8 Quantitative analysis of inflammatory cytokines in cell supernatants 
using a flow cytometric bead array 

The bead array was purchased from Becton Dickinson (BD) and measured IL-8, IL-

1β, interleukin-6 (IL-6), interleukin-10 (IL-10) and TNF-α.  Initially the cytokine 

standards were reconstituted and diluted appropriately.  The standard curve covered 

concentrations from 20-5000pg/ml.  The capture beads for each cytokine are in 

individual bottles and were pooled at the start of the experiment.  To each assay tube, 

50µl of mixed capture beads, 50µl of PE detection reagent and 50µl of either a 

standard or test sample were added.  The samples were then incubated at room 

temperature, protected from light, for 3 hours.  The samples were then washed with 

1ml wash buffer and centrifuged at 200G for 5 minutes.  The supernatants were 

carefully removed and discarded and the cytokine beads resuspended in 300µl of 

wash buffer before being analysed on the BD flow cytometer.  
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2.4 Molecular Biology 

2.4.1 RNA isolation 

Cells (5x106/ml) were pelleted and resuspended in 1ml Tri reagent (Sigma).  

Chloroform (0.2ml) was added, the samples shaken vigorously for 15 seconds and 

allowed to stand for 5 minutes at room temperature.  The samples were then 

centrifuged at 12000G for 15 minutes at 4°C which separated the mixture into three 

phases; a red organic phase containing protein, interphase containing DNA and 

colourless upper phase containing RNA.  The aqueous phase was transferred to a 

fresh RNase-treated tube to which 0.5ml of isopropanol was added and allowed to 

stand for 5 minutes at room temperature.  The samples were then centrifuged at 

12000G for 10 minutes at 4°C.  The RNA pellet was washed with 1ml 75% ethanol 

and centrifuged at 7500G for 5 minutes at 4°C.  The RNA pellet was air dried and 

50µl formamide water added.  The quantity of RNA was measured on a 

spectrophotometer. 

2.4.2 First strand cDNA synthesis 

First strand cDNA synthesis was performed using a Superscript first strand synthesis 

system (Life Technologies).  RNA (0.5µg) was incubated with 1µl RNase inhibitor, 

1µl oligo dT (0.5µg/ml), and diethylpyrocarbonate (DEPC)-treated water (added to a 

final volume of 11 µl) at 70°C for 10 minutes.  Reaction mixture containing 10x 

reverse transcription buffer (2 µl), 0.1M DTT (2µl) and 25mM magnesium chloride 

(4 µl) were added and incubated at 42°C for 2 minutes.  Superscript II (1 µl) was 

added and gently mixed before the reverse transcription reaction was allowed to 

proceed at 42°C for 60 minutes before termination by heating to 70°C for 10 

minutes.  The cDNA was stored at -20°C until required. 

2.4.3 Purification of plasmid DNA 

The cDNA of the Fas receptor (GenBank: NM_000043) in the pCMV-SPORT6 

plasmid (GenBank: BC012479, ATCC: MGC-21432) was purchased from LGC 

Promochem, UK.  The freeze-dried colonies were initially grown in 1ml LB (Luria-

Bertani) with 50µg/ml ampicillin for 5 hours at 37°C with continuous shaking before 
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being added to 4ml LB with 50µg/ml ampicillin and grown overnight at 37°C with 

continuous shaking. 

DNA was purified using the QIAprep Miniprep system (Qiagen, Crawley).  The cells 

in 2ml bacterial culture were pelleted, the supernatant discarded and the cells 

resuspended in buffer P1 (250µl) containing RNase A.  Buffer P2 (250µl) was then 

added to lyse the bacteria under alkaline conditions and gently inverted 4-6 times to 

mix.  Lastly buffer N3 (350µl) was added to neutralise and adjust to high-salt binding 

conditions in one step.  The tube was gently inverted to mix and then centrifuged at 

13 000rpm for 10 minutes and the supernatant carefully transferred to the Qiaprep 

column.  The column was centrifuged at 13 000rpm for 1 minute and the flow-

through discarded.  The column was then washed with 0.75ml buffer PE and 

centrifuged for 1 minute.  The flow-through was again discarded before centrifuging 

for an additional 1 minute.  The DNA was eluted by adding 50µl buffer EB (10mM 

Tris·Cl, pH 8.5) and standing for 1 minute before centrifuging for 1 minute.  A 

Qiagen Plasmid Maxi kit was used for the purification of larger quantities of the 

plasmid DNA.  100µl of the bacterial broth was grown in 100ml volumes overnight.  

The cells were then pelleted by centrifugation at 6000G for 15 minutes at 4°C and 

resuspended in 4ml buffer P1. Buffer P2 (4ml) was added to lyse the bacteria , gently 

mixed and incubated at room temperature for 5 minutes.  Chilled buffer P3 was 

added (4ml), gently mixed, incubated for 15 minutes at 4°C and centrifuged at 

20000G for 30 minutes at 4°C.  The supernatant was removed and re- centrifuged at 

20000G for 30 minutes at 4°C.  A Qiagen-tip 100 was equilibrated by applying 4ml 

buffer QBT and allowing the column to empty by gravity.  The supernatant was 

applied to the column and allowed to enter the resin by gravity flow.  The Qiagen-tip 

was washed twice with 10ml buffer QC.  The DNA was then eluted with 5ml buffer 

QF and the DNA precipitated by adding 3.5ml isopropanol and centrifuging at 

15000G for 30 minutes at 4°C.  The DNA pellet was washed with 2ml 70% ethanol, 

centrifuged at 15000G for 10 minutes, allowed to air dry and dissolved in 10mM 

Tris·Cl, pH 8.5.  The DNA was quantified and assessed using spectrophotometry and 

agarose gel electrophoresis. 
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2.4.4 Polymerase chain reaction 

Mastermix (for FasL cytoplasmic tail) (total volume 50µl) containing 10x 

polymerase chain reaction (PCR) buffer (5µl) 50mM magnesium chloride (1.5µl), 

dNTP mix (final concentration 125µM of each dNTP) and forward and reverse 

primers (final concentration of each 500nM) was prepared and added to each 0.5ml 

Eppendorf tube.  For FasL, the forward primer was 5�-GGA TTG GGC CTG GGG 

ATG TTT CA-3� and the reverse primer 5�-TAA TAC GAC TCA CTA TAG GGT 

TGT GGC TCA GGG GCA GGT TGT TG-3�giving a product of 343kB.  For human 

GAPDH the forward primer was 5�-TGC CTC CTG CAC CAC CAA CTG C-3� and 

the reverse primer 5�-AAT GCC AGC CCC AGC GTC AAA G-3� giving a product 

of 456kB.  For the Fas cytoplasmic tail, the primers are shown in diagram 4.5b.  

Template cDNA (10ng/50µl) or distilled water as control was added prior to the 

addition of 1.25 units of the enzyme Taq DNA polymerase (GIBCO).  The following 

thermal cycling profiles were used.  For FasL and GAPDH, samples were denatured 

at 94°C for 3 minutes, then 35 cycles of: denaturation at 94°C for 45 seconds, primer 

annealing at 63°C for 30 seconds and DNA extension at 72°C for 1.5 minutes.  A 

final extension at 72°C was performed for 10 minutes.  For the Fas cytoplasmic tail, 

samples were denatured at 94°C for 2.5 minutes, then 25 cycles of: denaturation at 

94°C for 30 seconds, primer annealing at 51°C for 30 seconds and DNA extension at 

72°C for 40 seconds.  A final extension at 72°C was performed for 5 minutes.  

Oligonucleotide primers were synthesized by MWG-Biotech, Ebersberg, Germany.  

2.4.5 Agarose gel electrophoresis of DNA 

DNA samples were mixed with 6x blue loading buffer and run on 1% agarose gels 

with Tris-borate electrophoresis (TBE) buffer and ethidium bromide (2µl in 50ml) at 

100V for 30 minutes.  The bands were visualised on an ultraviolet transilluminator 

and images recorded on Polaroid film. 

2.4.6 Gel extraction and purification of DNA 

DNA extraction from agarose was performed using a QIAquick Gel Extraction kit 

(Qiagen, Crawley, UK).  The DNA fragment was excised from the agarose gel using 

a clean scapel blade and placed in an Eppendorf tube.  The fragment was then 



Chapter 2 

 35

incubated at 50°C for 10 minutes in buffer QG to dissolve the agarose.  Isopropanol 

(100µl) was added and each sample placed in a spin column.  DNA was applied to 

the membrane by centrifugation for 1 minute at 13000rpm in a microfuge.  The flow-

through was discarded and the membrane washed with 750µl of buffer PE before 

further centrifugation for 1 minute at 13000rpm.  The flow-through was again 

discarded and the column centrifuged to remove all traces of wash buffer.  The 

column was then placed in a clean Eppendorf tube and the bound DNA eluted by the 

addition of 50µl buffer EB followed by centrifugation at 13000rpm for 1 minute. 

2.4.7 Subcloning of DNA 

The PinpointTM Xa-1 T-Vector system (Promega, Madison, WI, USA) was used to 

subclone the DNA product into the PinpointTM Xa vector.  The PinpointTM Xa vector 

contains a biotin purification tag coding region upstream of the multiple cloning 

region (figure 4.4a): this encodes a peptide which becomes biotinylated in E. coli 

allowing the protein of interest to be purified. 

2.4.7.1 Ligation of DNA into vector 

The PinpointTM Xa vector system exploits the property of Taq DNA polymerase to 

add a single deoxyadenosine to the 3� end of the PCR product.  The linearised 

PinpointTM Xa vector has complimentary 3� overhanging deoxythymidine residues 

thus improving the efficiency of ligation of the PCR product into the plasmid.  

Promega supplied control DNA (368bp) which encodes the lacZ α-peptide.  When 

cloned into the vector a fusion protein is created between the biotinylation segment 

and the α-peptide.  For ligation, 7µl of fresh PCR product or 3µl of the control DNA 

or distilled water (negative control) were mixed with 1µl of vector, 1µl of 10x T4 

DNA ligase buffer and 1µl of T4 DNA ligase and incubated at 15°C overnight. 

2.4.7.2 Transformation of competent Escherichia coli 

High efficiency JM109 competent cells (Promega) were used.  Aliquots of competent 

cells (50µl) were gently mixed with 3µl of plasmid DNA from the ligation step and 

incubated on ice for 30 minutes.  Cells were then heat shocked at 42°C for 50 

seconds followed by incubation on ice for 2 minutes.  Following the addition of 
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500µl SOC medium (Invitrogen), the cells were gently mixed (225rpm) for 1 hour at 

37°C.  The cells were pelleted at 2500G for 3 minutes, the supernatant removed and 

the cells resuspended in 100µl SOC medium and spread onto prewarmed LB (Luria-

Bertani) agar (Life Technologies) selective plates containing 50µg/ml ampicillin.  

Plates were then incubated overnight at 37°C.  Eight colonies from the PCR insert 

plate were picked and incubated in 5ml LB with 50µg/ml ampicillin and grown 

overnight at 37°C with shaking.  The DNA was purified using the QIAprep Miniprep 

system (Qiagen, Crawley) as above.  

2.4.7.3 Restriction enzyme digest 

The purified plasmid DNA was digested in a 10µl volume containing 1µl 10x 

reaction buffer and 0.5µl enzyme (Promega) for 2 hours at 37°C.  The products of 

digestion were resolved on agarose gels and visualised using ultraviolet light as 

previously described. 

2.4.7.4 DNA sequencing 

The plasmid containing the insert in the correct orientation was identified using 

restriction enzyme digest.  A sample containing 2µg of the purified plasmid DNA 

was made up to 5µl with distilled water before 0.5µl 3M sodium acetate pH 5.2 

(check) and 12.5µl 100% ethanol were added.  Samples were left for 1 hour at -20°C.  

The precipitated DNA was spun down at 15000rpm at 4°C for 10 minutes and 

washed with 500µl 70% ethanol.  The pellet was air dried for 1 hour.  Using SP6 

primers, DNA encoding the �insert� was sequenced commercially by MWG Biotech.  

The cloned sequence was verified using DNA Strider 1.3f8 with the Fas receptor 

sequence in the NCBI nucleotide database (NM_000043). 

2.4.8 Protein Purification 

The biotinylated fusion product produced in E.Coli (JM109) was purified using the 

SoftLink� Soft Release Avidin Resin (Promega, Madison, USA).  This resin allows 

elution of the protein under non-denaturing conditions.  E. coli produce a single  
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endogenous biotinylated protein, biotin carboxyl carrier protein (BCCP), (22.5kDa) 

that, in its native conformation, does not bind to avidin.  This renders the affinity 

purification highly specific for the recombinant fusion protein.  The resin is 

monomeric avidin and the biotinylated fusion protein is eluted from the resin in a 

non-denaturing 5mM biotin solution. 

2.4.8.1 Large scale culture and induction 

A freshly isolated bacterial colony (clone 4) was incubated in 5ml of LB (Luria-

Bertani), containing biotin (2µM final concentration) and ampicillin (50µg/ml), 

overnight at 37°C with shaking.  The 5ml culture was then transferred to 500ml LB 

(Lubia-Bertani), containing biotin (2µM final concentration) and ampicillin 

(50µg/ml) and incubated for 2 hours at 37°C with shaking.  Protein expression was 

induced by adding isopropyl β-D-thiogalactopyranoside (IPTG) (100µM final 

concentration) and incubating for a further 5 hours at 37°C with shaking. 

2.4.8.2 Bacterial cell lysis 

The cells were pelleted at 4000G for 10 minutes and the supernatant discarded.  The 

cells were weighed and resuspended in 10 volumes (ml/gram cell paste) of cell lysis 

buffer (50mM Tris-HCl (pH 7.5), 50mM NaCl, and 5% glycerol) containing 

phenylmethylsulfonyl fluoride (PMSF) (final concentration 1mM) at 4°C. 

2.4.8.3 Lysozyme/Detergent method 

Lysozyme (final concentration of 1mg/ml) was added and the solution continuously 

stirred for 20 minutes at 4°C.  Triton X (final concentration 0.1%) was added and 

stirring continued for five minutes at 4°C.  DNase I (200U) was added to reduce the 

viscosity of the solution and stirring continued for an additional 10 minutes.  The 

crude lysate was centrifuged at 10000G for 15 minutes at 4°C to remove cellular 

debris. 
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2.4.8.4 Preparation and regeneration of SoftLink� Resin  

At room temperature, the column was equilibrated with 0.1M NaPO4 (pH 7.0).  The 

non-reversible binding sites on the fresh SoftLink� Resin were preabsorbed by 

washing with 5mM biotin in 100mM sodium phosphate buffer (pH 7.2) at a flow rate 

of 6ml biotin/hour/ml of SoftLink� Resin until two column volumes had passed 

through.  The flow was stopped for 15 minutes to allow biotin binding.  The column 

was then regenerated by washing the column with 8 column volumes of 10% acetic 

acid, then 8 column volumes of 100mM NaPO4 (pH 7.0).  The pH of the eluate was 

monitored until it reached pH 6.8. The flow was then stopped for 30 minutes to allow 

the avidin to refold and finally the column was re-equilibrated with cell lysis buffer. 

2.4.8.5 Resin column protein purification 

The supernatant (cell extract) was applied to the prepared resin column (6ml/hour) at 

4°C.  The column was then washed with five column volumes of cell lysis buffer and 

to elute the protein, a stabilizing buffer containing 5mM biotin was added.  Initially a 

0.5ml fraction was collected and the flow stopped for 15 min to increase the 

concentration of protein in the eluate before restarting collection of 0.5ml fractions.  

The fractions were tested and protein concentration quantified by monitoring the 

absorbance at A280.  Proteins from each fraction were then run on a 12% SDS gel, 

transferred to a nitrocellulose membrane and detected using HRP-Streptavidin 

(1:2500). 

2.5 Statistics 

All values are presented as mean + SEM.  The data were evaluated statistically as 

shown in the table below.  P values < 0.05 were considered to be statistically 

significant. 
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Figure Page Test Post-test 

3.1(c) 58 ANOVA Student-Neuman-Keuls 

3.2(b) 59 ANOVA Student-Neuman-Keuls 

3.3(b) 60 ANOVA Student-Neuman-Keuls 

4.1(a) 81 ANOVA Student-Neuman-Keuls 

4.1(b) 81 ANOVA Student-Neuman-Keuls 

4.2(a) 82 ANOVA Student-Neuman-Keuls 

4.2(b) 82 ANOVA Student-Neuman-Keuls 

4.3(a) 83 ANOVA Student-Neuman-Keuls 

4.3(b) 83 ANOVA Student-Neuman-Keuls 

4.3(c) 83 ANOVA Student-Neuman-Keuls 

4.4(b) 84 ANOVA Student-Neuman-Keuls 

4.5(a) 85 ANOVA Student-Neuman-Keuls 

5.1(b) 103 ANOVA Student-Neuman-Keuls 

5.2(a) 104 ANOVA Student-Neuman-Keuls 

5.4(b) 106 ANOVA Student-Neuman-Keuls 
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Figure. 2.1. Granulocytes and macrophages (a) Freshly isolated granulocytes (light 

microscopy under oil immersion, x100 objective,) (b) Human peripheral blood 

mononuclear cell-derived macrophages (day 5) cultured in IMDM with 10% 

autologous serum (phase contrast microscopy, x 40 objective) 
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ai)       aii) 
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Figure 2.2 Fresh and apoptotic neutrophils (a) Morphology (i) Fresh neutrophils (ii) 

Apoptotic neutrophils (light microscopy under oil immersion  x100 objective) (b) 

Apoptosis assessed by flow cytometry with apoptotic cells showing Annexin V 

binding (i) Fresh neutrophils (ii) Apoptotic neutrophils 
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Table 2.1. Antibodies used to assess receptor surface expression 

Hybridoma 

clone 

(antigen) 

Primary 

antibody 

Secondary 

antibody 

FITC/PE-

conjugated 

antibody 

Control 

antibody 

CH-11 

(Fas) 

1:25 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgM (1:25) 

ZB4 

(Fas) 

1:40 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgG1 (1:40) 

Alf2.1a 

(FasL) 

  1:50 FITC-

conjugated 

IgG1 (1:50) 

3G8 

(CD16) 

1:50 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgG1 (1:50) 

My4 

(CD14) 

1:50 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgG2b (1:50) 

10.1 

(CD64) 

1:50 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgG1 (1:50) 

HK14 

(HLA-DR) 

1:50 FITC-goat anti-

mouse Ig F(ab)2 

1:40 

 IgG2b (1:50) 
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Table 2.2 Antibodies used in immunoblotting 

 

Protein Source Primary Antibody Secondary Antibody 

Rabbit anti-

human IκB-α 

Cell Signalling 1:500 1:2500 HRP donkey anti-

rabbit 

Mouse anti-

human FasL 

(Clone 33) 

Transduction  1:2000 HRP goat anti-

mouse 

Rabbit anti-

human FLIP 

R & D Systems 1:1000 1:2000 HRP goat anti-rabbit

Mouse anti-

human 

caspase-8 

BD Pharmingen 1:125 1:2500 HRP goat anti-

mouse 
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Table 2.3 Antibodies 

Immunogen Antibody Application Manufacturer 

Human Fas (Apo-1, 

CD95) 

Mouse anti-human Fas, clone CH11 Activating Upstate 

Human Fas (Apo-1, 

CD95) 

Mouse anti-human Fas, clone ZB4 Antagonistic Upstate 

Human FasL (CD95L) Mouse anti-human FasL, clone 

NOK-1 

Inhibitory BD Biosciences 

Human FasL (CD95L) Mouse anti-human FasL, clone 33 WB BD Transduction 

Soluble human FasL Mouse anti-human FasL/FITC, 

clone Alf-2.1a 

FACS Ancell 

Human Caspase-8 Mouse anti-human caspase-8, clone 

4-1-20 

WB BD Pharmingen 

IκB-α Rabbit anti- IκB-α WB Cell Signalling  

Technology 

Human/mouse FLIP Rabbit anti-human/mouse FLIP WB R&D Systems 

Human TNF-α Mouse anti-human TNF-α Inhibitory R&D Systems 

Human CD16 Mouse anti-human CD16 FACS Beckman Coulter 

Human CD14 Mouse anti-human CD14 FACS Beckman Coulter 

Human CD64 Mouse anti-human CD64 FACS Ancell 

Human HLA-DR Mouse anti-human HLA-DR FACS Sigma 

FACS: Fluorescent activated cell sorting 

WB: Western Blotting 
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Table 2.4 Pharmacological Inhibitors 

 

Enzyme(s) Pharmacological Inhibitor Manufacturer 

Poly-caspase inhibitor z-Val-Ala-DL-Asp-

fluoromethylketone (zVAD) 

Calbiochem 

p38 MAPK SB 203580 Calbiochem 

p42/44 ERK PD 98059 Cell Signaling 

Phosphatidylinositol 3-

kinase (PI 3-kinase) 

LY 294002 Calbiochem 

Protein kinase C Ro-31-8220 Calbiochem 

Protein kinase Cδ Rottlerin Calbiochem 

Protein kinase Cα Go 6976 Calbiochem 

NF-κB 15-deoxy-∆12,14-

prostaglandinJ2 

Biomol 
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Table 2.5 Recombinant proteins 

 

Recombinant protein Manufacturer 

FLAG-tagged soluble human FasL (SUPERFas 

Ligand)  

Alexis Corporation 

Human GM-CSF R&D Systems 

Human TNF-α R&D Systems 
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2.5 Manufacturer 

Alexis Biochemicals Corporation, San Diego, CA, USA 

Ancell Corporation, North Bayport, MN, USA 

Bachem, Bubendorf, Switzerland 

BD Biosciences, San Jose, CA, USA 

Beckman Coulter, Fullerton, CA, USA 

Biomol, Plymouth Meeting, PA, USA 

Calbiochem, Nottingham, UK 

Cell Signaling Technology, Beverly, MA, USA 

R&D Systems, Minneapolis, MN, USA 

Upstate Cell Signaling Solutions, Lake Placid, NY, USA 
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Chapter 3 

 

Neutrophil Apoptosis and Fas/FasL 
 

3.1 Introduction  

During apoptosis, the neutrophil undergoes cell shrinkage, chromatin condensation, 

membrane blebbing and loses the multilobed shape of its nucleus.  The apoptotic 

bodies are then �eaten� by phagocytes such as macrophages (Savill et al., 1989).  If 

aged neutrophils are not effectively phagocytosed, they release their potentially 

injurious contents into the surrounding inflamed tissue which may potentiate tissue 

injury (Mecklenburgh et al., 1999).  Furthermore, when macrophages ingest 

apoptotic neutrophils, they switch to an �anti-inflammatory� phenotype (Fadok et al., 

1998).  The discovery of this mode of cell clearance explained how cells are 

effectively removed without inciting an inflammatory response (diagram 3.1.). 

At a molecular level, the apoptotic neutrophil displays different surface receptors.  

Immunoglobulin superfamily members including CD31 (PECAM-1), CD50 (ICAM-

3), CD63 and CD87 (urokinase plasminogen activator receptor) are downregulated.  

There is also reduced expression of receptors involved in the inflammatory process 

including CD32 (FcγRII), CD35 (CR1), and CD88 (C5a receptor).  CD16 (FcγRIII), 

CD15 (Lex) and CD120b (TNF-α receptor) are shed from the cell surface while the 

phosphatidylserine receptor becomes externally exposed and apoptotic neutrophils 

are therefore able to bind fluorescently-labelled- Annexin V (Dransfield et al., 1994; 

Homburg et al., 1995; Hart et al., 2000).  At a functional level, apoptotic neutrophils 

in vitro are less responsive to external stimuli including fMLP.  Other cellular 

functions including chemotaxis, adhesion, phagocytosis, enzyme secretion and 

generation of a respiratory burst are downregulated (Whyte et al., 1993; Dransfield et 

al., 1995). The DNA of apoptotic neutrophils also undergoes cleavage to form a 

characteristic nucleosomal ladder (Wyllie, 1980). 
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Neutrophils are short-lived and the majority undergo spontaneous apoptosis in less 

than 24 hours (Colotta et al., 1992; Squier et al., 1995).  They have been shown to 

express Fas and anti-Fas antibody accelerated their apoptosis (Iwai et al., 1994).  

Neutrophils also express FasL and release sFasL which can induce death in activated 

Jurkat cells (Liles et al., 1996).  Furthermore blocking the Fas receptor, partially 

suppressed spontaneous neutrophil apoptosis suggesting that the Fas/FasL may 

mediate neutrophil apoptosis by both an autocrine and paracrine pathway (Liles et 

al., 1996).  Therefore, this Fas-mediated fratricide in spontaneous neutrophil 

apoptosis will be further explored. 
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3.2  Results 

3.2.1 Fas is functionally expressed on the surface of human neutrophils 

The death receptor Fas is expressed in various tissues.  We demonstrated that it was 

expressed on neutrophils using indirect immunofluorescent labelling with the mouse 

anti-human Fas IgG monoclonal Ab (mAb), ZB4 (figure 3.1a).  This has previously 

been shown with the FITC-conjugated anti-human Fas mAb, UB2 (Liles et al., 1996; 

Renshaw et al., 2000).  The activating anti-Fas antibody, CH-11, induces apoptosis 

in Fas-expressing cells.  It also induced apoptosis in neutrophils at an optimum 

concentration of 500ng/ml (figure 3.1b).  Neutrophils were short-lived, in vitro, with 

70% of neutrophils undergoing apoptosis by 20 hours (figure 3.1c).  The levels of 

spontaneous and Fas-induced neutrophil apoptosis were highest at 3 hours in a 

serum-free system, (Pbs, 34.9 + 3.7%; CH-11, 64.5 + 7.4%, n=3, p<0.01) however 

by 20 hours, cells cultured in serum-free media were necrotic as assessed by their 

inability to exclude trypan blue.  In the presence of serum, the spontaneous rates of 

apoptosis were not affected by the type of serum however the induction of apoptosis 

by CH-11 was significantly greater at both 3 hours (As.CH-11, 26.1 + 4.4%; 

Fbs.CH-11, 57.1 + 6.8%, n=3, p<0.001) and 20 hours (As.CH-11, 69.1 + 4.8%; 

Fbs.CH-11, 89.2 + 2.6%, n=3, p<0.05) when the cells were cultured in the presence 

of foetal bovine serum (Fbs). 

3.2.2 Anti-Fas antibodies 

There are several anti-Fas antibodies (Komada et al., 1999).  The prototype agonistic 

anti-Fas antibody (CH-11) is an IgM antibody while the antagonistic antibody (ZB4) 

is an IgG antibody.  Both CH-11 and ZB4 bound to the Fas receptor (figure 3.2a) but 

the binding of CH-11 was not saturated at concentrations (500ng/ml) which 

maximally induced neutrophil apoptosis (figure 3.1b).  CH-11 and ZB4 have been 

shown to bind to the same epitope on the Fas protein however ZB4 has a much 

greater affinity (Komada et al., 1999).  It has been suggested that serial triggering of 

the Fas receptor, due to the IgM monoclonal antibody having a weak affinity, may 

explain the agonistic properties of CH-11 while the antagonistic IgG antibody has a 

strong affinity (Komada et al., 1999).  ZB4 (500ng/ml) had no effect on spontaneous 
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neutrophil apoptosis (control, 4.1 + 0.8%; ZB4, 4.8 + 1.0%) and when neutrophils 

were pre-incubated with ZB4 for 1 hour, it completely inhibited CH-11-induced 

apoptosis (CH-11, 30.5 + 3.1%; ZB4.CH-11, 4.7 + 1.1%, n=3, p<0.001) (figure 

3.3b).  This suggests that Fas/FasL is not an important mechanism of spontaneous 

neutrophil apoptosis and that CH-11 mediated its effect through the Fas death 

receptor alone.  Caspases are known to be important mediators downstream of death 

receptors.  The poly-caspase inhibitor, zVAD (control, 4.1 + 0.8%; zVAD 3.8 + 

0.4%) had no effect on spontaneous neutrophil apoptosis but completely inhibited 

CH-11-induced apoptosis (CH-11, 30.5 + 3.1%; zVAD, 3.7 + 0.5%, n=3, p<0.001).  

This suggests that caspases are important in the Fas/FasL death receptor pathway in 

neutrophils.  Contrary to our observations, there is also data suggesting that 

spontaneous neutrophil apoptosis is caspase dependent (Pongracz et al., 1999). 

3.2.3 FasL and Neutrophil Apoptosis 

Human FasL is physiologically active in its membrane-bound form.  When it is 

cleaved by metalloproteases to a soluble form, sFasL, its pro-apoptotic activity is 

downregulated (Schneider et al., 1998; Tanaka et al., 1998).  Furthermore only 

multimerized or membrane-bound FasL induced apoptosis of murine granulocytes 

(Villunger et al., 2000).  SUPERFasLigand (Alexis) is genetically engineered human 

soluble recombinant FasL with a FLAG-tag and is biologically active (Thilenius et 

al., 1997).  Preliminary results showed that SUPERFasLigand (rhFasL) induced 

apoptosis in both Jurkat cells (human leukaemic T lymphocyte cell line) and human 

neutrophils however Jurkat cells were more sensitive (figure 3.3a).  The agonistic 

antibody CH-11 (38.1% + 4.2%) induced significantly more neutrophil apoptosis 

than rhFasL (8.6% + 2.3 %, n=3, p<0.001).  The anti-human FasL monoclonal 

antibody, NOK-1, has been shown to neutralize the cytotoxic activity of FasL 

(Kayagaki et al., 1995; Orlinick et al., 1997; Oyaizu et al., 1997; Villunger et al., 

1997; Walker et al., 1997).  Pre-incubation with the anti-FasL antibody, NOK-1 and 

the anti-Fas antibody, ZB4 inhibited the cytotoxic effect of rhFasL (figure 3.3b).  

However, the effect of the agonistic anti-Fas antibody CH-11 (38.1 + 4.2%) was also 

significantly inhibited by NOK-1 (27.6 + 7.2%, n=3, p<0.05) and ZB4 (5.7 + 1.4%, 

n=3, p<0.001) (figure 3.3b).  Furthermore NOK-1 had no effect on spontaneous 
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neutrophil apoptosis.  This suggests that NOK-1 partially inhibits CH-11 � induced 

neutrophil apoptosis although the mechanism is not known.  Both NOK-1 and ZB4 

had no effect on spontaneous neutrophil apoptosis which suggests that the Fas/FasL 

pathway in neutrophils is unlikely to mediate suicide or fratricide. 

3.2.4 FasL expression on the neutrophil 

The seminal paper in this field suggested that neutrophils express Fas and FasL 

(Liles et al., 1996).  Initially, to assess cell surface FasL by flow cytometry and 

whole cell FasL by Western blotting, a gift of FasL stably transfected A549 (lung 

adenocarcinoma cell line) cells were used as a positive control while Jurkat cells 

(human T-cell leukaemia cell line) were used as negative control (Smith et al., 1998).  

Using an anti-human FasL monoclonal antibody, clone 33 (Transduction), FasL was 

shown to be present by Western blotting in Jurkat cells, control A549 cells and two 

stably transfected A549 cell lines (PC3 and PC4) (figure 3.4a).  As the negative 

control Jurkat cell line, the control A549 cells and the transfectants all expressed 

FasL, we compared messenger ribonucleic acid (mRNA) levels of FasL in these cells 

to those of the myeloid leukaemia cell line, K562 and its FasL stable transfectant, 

KFL9.  It has been shown that the K562 cell line does not express surface FasL while 

the stable transfectant KFL9 does express FasL (Renshaw et al., 2000).  Using RT-

PCR, we showed that neither the A549, PC3, PC4 nor K562 cell line expressed 

mRNA for FasL whilst the KFL9 cell line did express mRNA for FasL (figure 3.4b).  

Thus PC3 and PC4 were not stably transfected with FasL and the anti-FasL 

monoclonal antibody, clone 33 appears to bind non-specifically to a 37kDa protein. 

Monocytes have mRNA for FasL but only express it on the surface when activated 

(Lu et al., 2002).  Using the same primers as above, we showed using RT-PCR, that 

fresh neutrophils and K562 cells do not express mRNA for FasL whilst mononuclear 

cells and KFL9 cells do express mRNA for FasL (figure 3.5a).  Furthermore, using a 

FITC-conjugated anti-human FasL monoclonal antibody, Alf-2.1a (Ancell), KFL9 

cells expressed FasL on their surface but neither fresh neutrophils, mononuclear cells 

nor K562 cells expressed FasL on their surface (figure 3.5b). 
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3.3 Discussion 

Neutrophil death by apoptosis is important in resolution of inflammation.  If a 

neutrophil is allowed to die by primary or secondary necrosis, it will release its pro-

inflammatory granules and induce or exacerbate tissue injury. 

Human neutrophils undergo spontaneous apoptosis in vitro.  The mechanisms 

controlling constitutive neutrophil lifespan are not clear.  Akgul et al, (2000) 

proposed that control of the transcription and translation of short-lived, anti-apoptotic 

proteins, A1 and Mcl -1 may be important in determining neutrophil lifespan.  

Neutrophils are destined to die as they constitutively express the pro-apoptotic 

proteins Bax, Bid, Bak and Bad which have a long half-life and therefore the relative 

levels of the opposing anti-apoptotic proteins, A1 and Mcl-1 may be the key in 

determining the neutrophils� fate.  It has been suggested that the Fas/FasL pathway 

may be important in constitutive neutrophil apoptosis since the antagonistic anti-Fas 

monoclonal antibody, ZB4 delayed spontaneous neutrophil apoptosis in vitro (Liles 

et al., 1996).  However, we have shown that when neutrophils were cultured in 

phosphate buffered saline, ZB4 had no effect on constitutive neutrophil apoptosis.  In 

addition, the neutralizing anti-FasL antibody (NOK-1) had no effect on constitutive 

neutrophil apoptosis.  This confirmed that the Fas/FasL pathway is not important in 

spontaneous neutrophil apoptosis (Brown and Savill, 1999; Renshaw et al., 2000).  

Furthermore, both fresh and inflammatory neutrophils from Fas/FasL-deficient mice 

undergo constitutive apoptosis at the same rates as neutrophils from wild-type mice 

(Fecho et al., 1998; Villunger et al., 2000).  Although spontaneous neutrophil 

apoptosis was independent of the Fas death receptor, other groups have shown that 

caspase 8 is important (Khwaja and Tatton, 1999; Daigle et al., 2002).  Recently it 

was shown that as neutrophils age, reactive oxygen species accumulate and via acid 

sphingomyelinase trigger lipid raft clustering of the death-inducing signalling 

complex components, including caspase 8, thus initiating apoptosis (Scheel-Toellner 

et al., 2004). 

Death receptors belong to the tumour necrosis receptor family.  Currently seven 

receptors, namely TNF-R1, Fas, TRAMP/DR3, TNF-related apoptosis-inducing 
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ligand- receptors 1,-2, -3 (TRAIL-R1/ TRAIL-R2/TRAIL-R3) and decoy receptor 6 

(DR6) have been identified that signal through an intracellular �death domain�.  

TNF-α, induces neutrophil apoptosis in vitro at early time points (up to 8 hours) and 

survival at later time points (Murray et al., 1997).  Neutrophils have also been shown 

to be susceptible to �anti-Fas - mediated cell death� (Iwai et al., 1994).  We have 

shown that the activating anti-Fas antibody (CH-11) optimally activated neutrophil 

apoptosis in vitro at 500ng/ml and had a greater effect at earlier time points.  The 

anti-Fas antibody loses its potency over time hence the variability between 

experiments.  Within experiments, variability in anti-Fas antibody potency was 

minimized by repeating individual experiments in as short a period as possible. 

Autologous serum attenuated the effect of CH-11 at 3 hours while completely 

inhibiting its effect at 20 hours.  When peripheral blood neutrophils from post-

surgery patients were treated with CH-11 in vitro, autologous plasma significantly 

attenuated the effect of CH-11 (Iwase et al., 2006).  Some cytokines have been 

shown to delay neutrophil apoptosis (Ward et al., 1999) and the attenuation of the 

effect of CH-11 by autologous serum may be due to the presence of cytokines in the 

serum.  However, in the post-surgical patients, neutralization of either granulocyte-

macrophage colony stimulating factor (GM-CSF), interleukin-6 (IL-6) or interleukin-

8 (IL-8) had no effect on the attenuation of CH-11-induced apoptosis mediated by 

plasma (Iwase et al., 2006).  The mechanism by which serum attenuates Fas-

mediated neutrophil apoptosis requires further elucidation.  Interestingly, sera from 

patients with infection, has been shown to induce neutrophil apoptosis in vitro.  This 

was partially attenuated by anti-FasL antibody.  Infection was associated with 

increased monocyte expression of FasL and increased serum levels of FasL 

(Nwakoby et al., 2001).  The Fas-triggered neutrophil apoptosis was caspase-

dependent unlike TNF-α - induced neutrophil apoptosis which also has a caspase-

independent death pathway (Maianski et al., 2003).  Recently two more death 

receptors, TRAIL-R2 and TRAIL-R3 were found to be expressed on neutrophils and 

anti-TRAIL antibodies have been shown to induce neutrophil apoptosis (Renshaw et 

al., 2003). 
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The Fas/FasL pathway is important in peripheral deletion of activated T cells.  Fresh 

cytotoxic T cells do not express FasL but upon T receptor ligation, the Fas ligand 

gene on chromosome 1 is transcribed and translated (Suda et al., 1995; Tanaka et al., 

1995; Vignaux et al., 1995).  Jurkat cells (human leukaemic T lymphocyte cell line) 

have been shown to constitutively express FasL using the non-specific polyclonal 

anti-FasL (N20) antibody (Santa Cruz) (Martinez-Lorenzo et al., 1996) however 

using Alf1.2 and NOK-1 they do not express FasL (Smith et al., 1998).  We have 

also shown that Jurkat cells do not express mRNA for FasL.  However upon 

activation, cytotoxic T cells, which initially store newly synthesized FasL in their 

lytic granules, direct their lytic granules to the area of T cell surface in tight contact 

with the target cell by a process of �polarized degranulation� (Bossi and Griffiths, 

1999).  Furthermore, microvesicles expressing bioactive FasL and APO2 

ligand/TNF-related apoptosis-inducing ligand (TRAIL) are released from Jurkat cells 

upon mitogenic stimulation (Martinez-Lorenzo et al., 1999).  Macrophages, upon 

phagocytosis of opsonized zymosan, also release bioactive FasL in microvesicles 

(Brown and Savill, 1999). 

Soluble FasL (sFasL) is released from the membrane and it can block the apoptosis 

induced by the intact membranous form (Kayagaki et al., 1995; Suda et al., 1995; 

Tanaka et al., 1995).  While multimerized FasL induced Jurkat cell apoptosis, sFasL 

had minimal effects even at very high concentrations (Schneider et al., 1998).  

Furthermore, only multimerized sFasL has been shown to induce apoptosis of murine 

bone-marrow derived granulocytes (Villunger et al., 2000).  In these studies, 

SUPERFasLigand (rhFasL) (Alexis Biochemicals) was used and while it induced 

human neutrophil apoptosis, Jurkat cells were more sensitive.  The neutrophil 

apoptosis induced by rhFasL could be neutralized by the anti-FasL antibody, NOK-1 

or apoptosis inhibited by pre-incubation with the anti-Fas antibody ZB4.  We also 

found that, in human neutrophils, the agonistic anti-Fas antibody (CH-11) was a 

more potent inducer of apoptosis than rhFasL. 

We have shown that human neutrophils express Fas. This is widely accepted (Liles et 

al., 1996; Renshaw et al., 2000).  However the expression of FasL by human 

neutrophils and its role in mediating autocrine and paracrine cell death is 
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controversial.  Liles et al (1996), in their seminal paper, showed that neutrophils 

express FasL on their surface using a Fas-immunoglobulin (Fas-Ig) fusion protein 

and indirect immunofluorescence.  They also showed FasL protein expression by 

Western blotting using the anti-FasL monoclonal antibody, clone 33 (Transduction).  

Genetically-engineered antibodies are becoming more important as �tools� for 

scientists.  However badly engineered tools can give misleading results; using a 

polyclonal rabbit immunoglobulin raised against a C-terminal peptide from FasL 

(Santa-Cruz), neutrophils express FasL (Mincheff et al., 1998) however this antibody 

has been shown to bind non-specifically, when used in flow cytometry to detect 

surface expression of FasL (Smith et al., 1998).  Furthermore there have been 

conflicting results regarding FasL expression in thyrocytes; Stokes et al (1998) 

showed that when the anti-FasL monoclonal antibody, clone 33 (Transduction), is 

used in Western blotting, it binds non-specifically to FasL.  We have also shown that 

this mAb, clone 33, bound to a 37kDa protein in Jurkat cells and A549 cells, both of 

which are known to lack FasL expression (Smith et al., 1998).  A second anti-FasL 

monoclonal antibody, G247-4 (Transduction) has been used in Western blotting to 

show the upregulation of FasL expression in activated cytotoxic T cells (Bossi and 

Griffiths, 1999) however when we used this antibody, we were unable to block non-

specific protein binding.  The anti-FasL monoclonal antibodies, NOK-1 and Alf-2.1a 

bind specifically to FasL and have been used in flow cytometry to detect surface 

expression of FasL (Smith et al., 1998; Renshaw et al., 2000).  We have shown, 

using Alf-2.1a, that neutrophils do not express surface FasL. 

In view of these conflicting results, we also looked at the mRNA expression of FasL 

using the reverse transcription polymerase chain reaction (RT-PCR).  We showed 

that A549 cell lines, that were thought to be �stably-transfected� with FasL, did not 

in fact express mRNA for FasL.  Furthermore, neutrophils did not express mRNA for 

FasL but KFL9 cells and mononuclear cells did.  Previously, Brown & Savill (1999) 

have suggested that neutrophils do not express FasL, by Western blotting and RT-

PCR.  However they used the monoclonal antibody (clone 33) whose specificity for 

FasL has been challenged (Stokes et al, 1998) but they showed that clone 33 cross-

reacts with β-actin (Brown and Savill, 1999).  Subsequently Renshaw et al, (2000), 
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found that both fresh and ageing neutrophils, as well as activated neutrophils, do not 

express FasL using RT-PCR.  They also failed to show surface FasL expression on 

neutrophils using the monoclonal antibody, Alf-2.1.  Subsequently three studies, to 

date, have been published showing FasL expression on neutrophils (Jaber et al., 

2001; Kim et al., 2001; Hu et al., 2005).  Contaminating mononuclear cells which 

have mRNA for FasL may account for the neutrophil expression of FasL seen by 

Jaber et al (2001) and Hu et al (2005).  Although, Kim et al, (2001) used the non-

specific monoclonal antibody (clone 33), they also showed mRNA expression of 

FasL in highly purified neutrophil preparations.  The reason for this disparity is not 

clear. 

We have confirmed earlier findings that neutrophils do not have mRNA for FasL and 

do not express FasL on their surface.  Monoclonal antibodies with a high specificity 

for FasL were used in these experiments.  As a consequence, the Fas/FasL pathway 

does not have a role in mediating constitutive neutrophil apoptosis.  However 

triggering of the Fas death receptor pathway by anti-Fas monoclonal antibodies or 

multimerized recombinant FasL does accelerate neutrophil apoptosis but their effect 

is attenuated by factors in serum.  Furthermore, Fas-mediated induction of neutrophil 

apoptosis is caspase-dependent. 



Chapter 3 

 58

a) 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

 

 

 

Figure 3.1.  Fas and the neutrophil  

(a) Expression of Fas on neutrophil surface assessed by flow cytometry.  Isotype control 
antibody is shown as an outline curve.  Specific binding of Fas is shown as a shaded curve.  
Freshly isolated human neutrophils were labelled with anti-Fas antibody ZB4 (1:40) and 
detected with FITC-conjugated goat anti-mouse immunoglobulin (1:40). (b) PMN (5 x 
106/ml) were cultured in phosphate buffered saline (Pbs) with 10% foetal bovine serum (Fbs) 
with a control IgM antibody and varying concentrations of the agonistic anti-Fas antibody, 
CH-11.  Apoptosis was assesses at 3 hours by Annexin V binding.  (c) PMNs (5 x 106/ml) 
were cultured in Pbs with 10% autologous serum (As), 10% Fbs and CH-11 (500ng/ml).  
Apoptosis was assessed at 3, 8 and 20 hours by Annexin V. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 3.2.  Agonistic and antagonistic anti-Fas antibodies 

(a) Binding of CH-11 and ZB4 to Fas on neutrophils as assessed by flow cytometry. Freshly 
isolated human neutrophils were labelled with anti-Fas antibody (agonistic IgM antibody, 
CH-11 and antagonistic IgG antibody, ZB4) and detected with FITC-conjugated goat anti-
mouse immunoglobulin (1:40) (n=1).  (b) Neutrophils (5 x 106/ml) in Pbs, 10% Fbs were 
pre-incubated for 1 hour in a shaking water bath with either Pbs and 10% Fbs, ZB4 
(500ng/ml) or zVAD (100µM).  They were then incubated for a further 3 hours in flexi-well 
plates with or without CH-11 (500ng/ml) and apoptosis was assessed by Annexin V (n=3). 
***p<0.001. 
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Figure 3.3. FasL and the neutrophil 

(ai) Neutrophils (5 x 106/ml) in Pbs and 10% Fbs were incubated with varying 
concentrations of rhFasL for 3h and apoptosis assessed by Annexin V (n=1). (aii)  Jurkat 
cells (5 x 106/ml) in RPMI and 10% Fbs were incubated with varying concentrations of 
rhFasL and apoptosis assessed at 3h by morphology (n=1).  (b) Neutrophils (5 x 106/ml) in 
Pbs and 10% Fbs were pre-incubated for 1 hour in a shaking water bath with either Pbs and 
10% Fbs,  NOK-1(10µg/ml) or ZB4 (500ng/ml).  They were then incubated for a further 3 
hours in flexi-well plates with or without rhFasL (500ng/ml) or CH-11 (500ng/ml).  
Apoptosis was assessed by Annexin V (n=3). *p<0.05, ***p<0.001. 
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Figure 3.4 FasL protein and mRNA expression. 

(a) The Jurkat cell line was grown to 1 x 106/ml and the cells harvested.  The A549 cell line 
and FasL transfected A549 cell lines (PC3 and PC4) were grown to 90% confluency and 
harvested from plates using trypsin/EDTA.  The Jurkat, A549, PC3 and PC4 cells were 
lysed, quantity of protein estimated and Western blotting carried out using 5µg/ml Clone 33 
(Transduction) as described in the methods. (b) Total cellular RNA was extracted using the 
Trizol method from 5 x 106 cells: A549 cell lines stably transfected with FasL (PC1, PC3 
and PC4), the parent cell line K562 and the K562 cell line stably transfected with FasL 
(KFL9).  FasL and GAPDH mRNA was demonstrated by RT-PCR using specific primers.  
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a) mRNA levels by PCR 

 

 

b) FasL surface expression 

 

 

 

 

Figure 3.5. FasL expression by the neutrophil. 

(a) Total cellular RNA was extracted, using the Trizol method, from 10 x 106 cells (fresh 
neutrophils (PMN), mononuclear cells (mono), the parent cell line K562 and the K562 cell 
line stably transfected with FasL, (KFL9).  FasL and GAPDH mRNA was demonstrated by 
RT-PCR using specific primers.  (b) Surface expression of FasL on neutrophils (PMN), 
mononuclear cells, K562 and KFL9s by flow cytometry.  Isotype control antibody is shown 
as a blue curve.  Specific binding of FasL (Alf-2.1a) is shown as a purple curve.  Freshly 
isolated human cells were labelled with FITC-conjugated anti-human FasL antibody (Alf-
2.1a) (1 in 50) or FITC-conjugated isotype control (1 in 50). 
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Diagram 3.1 The fate of an inflammatory neutrophi 

The multilobed neutrophil accumulates at sites of inflammation.  It can either �die� by 
apoptosis or necrosis.  The apoptotic form of cell death results in cell shrinkage and DNA 
condensation but the plasma membrane remains intact.  The apoptotic neutrophil is usually 
phagocytosed by a tissue macrophage but if this process is delayed or perverted it will 
undergo secondary necrosis.  Necrosis is deleterious as it results in cell membrane damage 
and release of neutrophil granules which leads to tissue damage. 
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Chapter 4 

 

Signalling in the neutrophil: to live or die 

 
4.1  Introduction 

In acute respiratory distress syndrome (ARDS), the balance of pro-inflammatory and 

anti-inflammatory mediators will help determine the fate of the neutrophil.  In the 

inflammatory milieu, inflammatory mediators and cytokines are present which are 

produced locally by inflammatory cells, lung epithelial cells and fibroblasts (Ware 

and Matthay, 2000; Park et al., 2001).  In the bronchoalveolar lavage fluid (BALF) 

of patients with ARDS both pro- and anti-inflammatory mediators have been 

detected.  Pro-inflammatory cytokines include tumour necrosis factor-α (TNF-α), 

interleukin-1β (IL-1β) and IL-6 (Siler et al., 1989; Suter et al., 1992; Schutte et al., 

1996; Park et al., 2001) while anti-inflammatory mediators include interleukin-10 

(IL-10), soluble TNF receptor I (sTNF-RI), soluble TNF receptor II (sTNF-RII), 

interleukin-1 receptor antagonist (IL-1ra) and soluble interleukin-1 receptor II (sIL-

1RII) (Suter et al., 1992; Donnelly et al., 1996; Park et al., 2001). 

The balance appears to favour anti-inflammatory cytokines during the early acute 

phase of ARDS which may be important in dampening the initial intense 

inflammation (Park et al., 2001).  During this early phase, BALF from ARDS 

patients has also been shown to delay neutrophil apoptosis in vitro; this inhibitory 

effect was largely attenuated by neutralizing granulocyte - colony stimulating factor 

(G-CSF) and granulocyte-macrophage - colony stimulating factor (GM-CSF) 

(Matute-Bello et al., 1997).  However our group found that BALF from patients with 

established ARDS was markedly pro-apoptotic for neutrophils (Donnelly & Haslett, 

unpublished observation). 

Inflammatory agents, including the bacterial endotoxin, lipopolysaccharide (LPS) 

have also been found in BALF (Martin et al., 1997).  Endotoxin plays a major role in 

ARDS secondary to sepsis (Ware and Matthay, 2000).  In experimental models, 
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intratracheal instillation of LPS produces a well-characterized response resembling 

acute lung injury in humans (Brigham and Meyrick, 1986; Xing et al., 1994). 

The fate of the neutrophil at an inflamed site will thus depend on the balance of pro- 

and anti-inflammatory mediators.  Studies have investigated the effect of cytokines 

and bacterial products on neutrophil lifespan in vitro; most cytokines and bacterial 

products appear to prolong neutrophil survival but the studies sometimes differ in 

their results with respect to individual inflammatory mediators (Ward et al., 1999). 

In 1892, the bacterial product endotoxin was first discovered by Richard Pfeiffer, a 

co-worker of Robert Koch.  Lipopolysaccharide (LPS) is released from Gram-

negative bacteria and in large quantities, it can trigger a detrimental immune 

response leading to septic shock (Nogare and Yarbrough, 1990).  However humans 

are continuously exposed to low levels of LPS which as an immunostimulatory 

molecule may be beneficial. 

LPS binds to a TLR-4/MD-2 complex which transduces the signal intracellularly 

however this signal is amplified by the cellular receptor, CD14 (Miyake, 2004).  

Furthermore a serum component, LPS-binding protein, is an opsonin, enhancing the 

binding of LPS to CD14  (Wright et al., 1990; Schumann, 1992).  Although LPS has 

been shown to delay neutrophil apoptosis (Lee et al., 1993), this effect has not 

always been seen (Dibbert et al., 1999).  It has been suggested that contaminating 

monocytes, due to differences in neutrophil preparation from human blood, may 

mediate the anti-apoptotic effect of LPS (Sabroe et al., 2002). 

Bacteria also produce proteins with an amino-terminal N-formylated methionine; the 

f-Met-Leu-Phe (fMLP) peptide is an important chemotactic factor for neutrophils 

and its receptor is a member of the serpentine receptor family.  These are seven 

trans-membrane spanning, G-protein coupled receptors (Boulay et al., 1990).  In 

vitro, fMLP has variably been reported to have no effect or to prolong the neutrophil 

lifespan (Colotta et al., 1992; Kettritz et al., 1997; Ottonello et al., 2002). 

However, it is widely accepted that GM-CSF delays neutrophil apoptosis (Brach et 

al., 1992; Colotta et al., 1992; Lee et al., 1993).  At sites of inflammation, CD4+ 



Chapter 4 

 66

lymphocytes are usually the major source of GM-CSF which as well as activating 

macrophages locally, also has a distant action on bone marrow where it promotes the 

proliferation and differentiation of myeloid precursors (DeLamarter, 1988). 

4.1.1 Signal Transduction Pathways 

In the past 50 years, the field of signal transduction has been born and our knowledge 

has exploded.  In the 1950s, Earl Sutherland and his colleagues discovered that the 

pathway downstream of adrenalin and glucagon receptors (both �serpentine� 

receptors) involved activation of the enzyme adenylate cyclase to generate adenosine 

cyclic 3΄5΄ monophosphate (cAMP), the �second messenger�.  This in turn activated 

protein kinase A.  However, central to cell signalling was the discovery by Edwin 

Krebs and Ed Fischer, again in the 1950s, that the process of phosphorylation by 

kinases and dephosphorylation by phosphatases was pivotal to the control of cell 

behaviour (Hunter, 2000). 

Another �second messenger� pathway downstream of serpentine receptors involves 

hydrolysis of the membrane phospholipid, phosphatidylinositol 4,5 biphosphate by 

phospholipase C (until the 1970s, lipids were considered inert, structural components 

of cell membranes).  This generates water soluble inositol 1,4,5-triphosphate which 

triggers a rise in intracellular Ca2+ which in turn activates many intracellular 

pathways.  Phospholipase C also produces a second lipid soluble product, 1,2-

diacylglycerol which activates one or more of the protein kinases C. 

4.1.2 The protein kinase C pathway 

The protein kinase C pathway appears to be involved in regulating spontaneous 

neutrophil apoptosis (Pongracz et al., 1999).  There are at least 11 isoenzymes which 

are subclassified into three groups, classical, novel and atypical depending on their 

mode of activation; the classical isoenzymes are -α, -β and -γ  and their activation is 

dependent on diacylglycerol (DAG) and calcium, the novel isoenzymes are -δ, -ε, -η 

and -θ and they are activated by DAG alone while the activation of the atypical 

isoenzymes -ζ and -ι  / λ are independent of DAG (Kent et al., 1996). 
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4.1.3 The mitogen-activated kinase pathway 

The mitogen-activated protein (MAP) kinase (MAPK) pathway is known to be an 

important mechanism by which cells control transcription (Seger and Krebs, 1995).  

It was originally discovered as an insulin-activated protein-serine kinase.  Each 

pathway consists of a cascade of three protein kinases; a MAP kinase kinase kinase 

(MAP3K), which phosphorylates serine residues in the MAP kinase kinase 

(MAP2K) thereby activating it, to in turn phosphorylate both a serine and a tyrosine 

residue in the MAP kinase (Waskiewicz and Cooper, 1995).  Once the terminal MAP 

kinase is activated, it can migrate into the nucleus where it phosphorylates and 

activates transcription factors.  There are three known mammalian MAP kinase 

cascades: the stress activated protein kinase 1 (SAPK1)/C-Jun N-terminal kinase 

(JNK) cascade, the SAPK2/p38 cascade and the p42/p44 ERK cascade (Wallach et 

al., 1999).  The three MAP kinase cascades have been shown to be expressed in 

human neutrophils (Nick et al., 1996).  There are 4 isoforms of p38 MAPK (-α, -β, -δ 

and -γ) however human neutrophils, only express p38 MAPKα as the dominant 

isoform with lower levels of p38 MAPKδ (Nick et al., 1999).  LPS has been shown 

to stimulate the α isoform of p38 MAPK resulting in NF-κB activation which in turn 

stimulates adhesion and TNF-α synthesis (Nick et al., 1999). 

4.1.4 The phosphatidylinositol 3-kinase pathway 

In neutrophils, the phosphatidylinositol 3 (PI 3)-kinase pathway is important in the 

GM-CSF-mediated prolongation of their lifespan (Vlahos et al., 1995; Klein et al., 

2000; Cowburn et al., 2002).  PI-3 kinase activates protein kinase B/Akt which is an 

anti-apoptotic signalling pathway (Zundel and Giaccia, 1998).  Phosphorylated Akt 

functions as a serine-threonine kinase and can phosphorylate Bad (Bcl-2/Bcl-XL-

antagonist causing cell death), a member of the Bcl-2 (B-cell leukaemia/lymphoma 

2) family.  Normally Bad promotes apoptosis by forming an inhibiting heterodimer 

with anti-apoptotic members of the Bcl-2 family.  When Bad is phosphorylated, its 

inhibitory effect is lost as it dissociates from the heterodimer to leave the active anti-

apoptotic Bcl-2 family proteins (Yang et al., 1995).  Prolongation of neutrophil 

apoptosis by GM-CSF was associated with increased Bad phosphorylation and 

decreased expression of Bad mRNA and this was inhibited by LY294002, a PI 3-
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kinase inhibitor (Cowburn et al., 2002).  Furthermore, activation of the PI 3-kinase 

pathway, in a cell-dependent manner can also lead to p42/p44 ERK activation 

(Hawes et al., 1996; Kilgour et al., 1996). 

4.1.5 The NF-κB pathway 

The NF-κB pathway is evolutionarily conserved and is believed to be the central 

signalling pathway of activation in the innate immune system.  The transcription 

factor, NF-κB, consists of homo- or heterodimers of the Rel family proteins 

(p50/NF-κB1, p52/ NF-κB2, p65/Rel A and c-Rel) which are sequestered in the 

cytoplasm due to their physical association with an inhibitory protein subunit termed 

(IκB) (Henkel et al., 1993).  Phosphorylation of IκB leads to its proteolytic 

breakdown in the proteasome and allows NF-κB to translocate to the nucleus (Finco 

et al., 1994; Traenckner et al., 1994) where it regulates transcription of many genes 

including those for pro-inflammatory cytokines.  In the neutrophil, IκB-α has been 

found in the cytoplasm associated with p50/c-Rel, p50/Rel A and p65/c-Rel 

heterodimers however in the nucleus the complexes contained p65/Rel A and p50 

(McDonald et al., 1997). 

The inflammatory mediators, LPS, fMLP and TNF-α have been shown to activate 

NF-κB (McDonald et al., 1997).  Furthermore we have previously shown that by 

blocking the translocation of an inducible form of NF-κB, neutrophil apoptosis 

induced by TNF-α, is accelerated (Ward et al., 1999).  However it is not known if 

Fas ligation results in NF-κB activation in human neutrophils. 

Prostaglandins are traditionally thought to be pro-inflammatory mediators however 

cyclopentenone prostaglandins (∆12 PGJ2 and 15-deoxy-∆12, ∆14- PGJ2), which are 

natural metabolites of PGD2 (diagram 4.1), have anti-inflammatory activity including 

inhibition of TNF-α induced IκBα degradation (Rossi et al., 2000).  Furthermore the 

resolution phase of pleurisy induced by carageenin in rats is associated with the 

production of prostaglandin D2 (PGD2) and 15dPGJ2 (Gilroy et al., 2003). 
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4.1.6 The Fas/FasL Receptor pathway 

The Fas receptor (CD95, APO-1) is a member of the TNF receptor family.  These 

receptors are type I receptors and their cytoplasmic tails have a sequence motif 

termed the �death domain� (DD) (Feinstein et al., 1995; Hofmann and Tschopp, 

1995).  This death domain interacts with adapter proteins which also bear a �death 

domain�.  The adapter protein �Fas-associated protein with death domain� (FADD) 

(Chinnaiyan et al., 1995) has both a C-terminal DD and a N-terminal death-effector 

domain (DED) which allows it to interact with the DED of caspase 8 

(MACH/FLICE/Mch5) (Boldin et al., 1996; Fernandes-Alnemri et al., 1996; Muzio 

et al., 1996).  Fas receptor activation thus induces the formation of a complex of 

proteins which was termed the death-inducing signalling complex (DISC) (Kischkel 

et al., 1995).  The formation of the DISC itself leads to activation of caspase-8 

(Medema et al., 1997; Ashkenazi and Dixit, 1999).  Interestingly caspase-10 is also 

recruited to the DISC although its role in induction of apoptosis is less clear (Wang 

et al., 1999; Kischkel et al., 2001; Sprick et al., 2002).  Several other proteins have 

been shown to be recruited to the DISC including Daxx, FAP-1, FLASH, RIP, FAF1 

and Dap3 but their role at present is unclear (Peter and Krammer, 2003). 

Another protein with a DED, which has several names including FLIP, Casper and 

CASH, has been discovered (Bertin et al., 1997; Goltsev et al., 1997; Hu et al., 1997; 

Inohara et al., 1997; Irmler et al., 1997; Shu et al., 1997; Srinivasula et al., 1997; 

Thome et al., 1997; Rasper et al., 1998).  The γ-herpesviruses express a viral 

inhibitor, viral-FLICE - like inhibitory protein (v-FLIP) which was found to 

associate with Fas in the DISC but it inhibited apoptosis (Bertin et al., 1997; Hu et 

al., 1997; Thome et al., 1997).  Subsequently its cellular homologue termed c-FLIP 

was identified (Goltsev et al., 1997; Inohara et al., 1997; Irmler et al., 1997; Shu et 

al., 1997; Srinivasula et al., 1997; Rasper et al., 1998); it has both a short and a long 

form (c-FLIPS and c-FLIPL).  Both forms have tandem DED but c-FLIPL also has a 

domain which is homologous to the caspase-8 protease death domain however in c-

FLIPL this domain has mutations which render it inactive.  It would appear that c-

FLIPL is pro-apoptotic at low concentrations but inhibitory at high levels of 

expression (Peter and Krammer, 2003).  However c-FLIPS appeared to be only 
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inhibitory; its upregulation is associated with the development of resistance to Fas-

mediated apoptosis in T-cells (Kirchhoff et al., 2000).  It has also been suggested that 

c-FLIP may activate the NF-κB and extracellular signal related kinase (ERK) 

pathway (Kataoka et al., 2000). 

We have used pharmacological inhibitors of these signal transduction pathways to 

examine the mechanisms by which the Fas/FasL pathway induces apoptosis in 

neutrophils and the mechanisms by which the inflammatory mediators, especially 

LPS, mediate their anti-apoptotic effects. 
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4.2 Results 

4.2.1 Inflammatory mediators and signalling pathways 

The inflammatory mediators, LPS, fMLP and GM-CSF, can prime or activate 

neutrophils (Gougerot-Podicalo et al., 1996).  LPS (0.1µg/ml), fMLP (10ng/ml) or 

GM-CSF (50U/ml) had no effect on spontaneous neutrophil apoptosis in vitro at 3 

hours (figure 4.1a).  However when neutrophils were cultured in vitro for 20 hours, 

LPS (0.1µg/ml) (36.9 + 2.7%) and GM-CSF (50U/ml) (45.7 + 3.6%) delayed 

neutrophil apoptosis (control, 71.6 + 4.3%, p<0.01), while fMLP (10ng/ml) (79.1 + 

5.5%) had no significant effect on neutrophil apoptosis (control, 68.9 + 5.3%).  At 3 

hours, all three inflammatory mediators, LPS (0.1µg/ml) (5.8 + 1.4), fMLP 

(10ng/ml) (4.2 + 0.9) and GM-CSF (50U/ml) (4.3 + 0.8) attenuated CH-11- induced 

apoptosis (20.3 + 3.2, n=3, p<0.001)(figure 4.1a). 

4.2.2 The mitogen-activated protein kinase pathway 
The p38 MAPK and p42/p44 ERK pathways are involved in intracellular signal 

transduction in neutrophils in response to LPS, fMLP and GM-CSF (Nick et al., 

1996; Nick et al., 1997; Nolan et al., 1999; Villunger et al., 2000).  PD98059 at a 

concentration of 50µM is a selective p42/p44 ERK inhibitor (Alessi et al., 1995) 

while SB203580 at 10µM is a selective competitive inhibitor of the ATP-binding site 

on p38 MAPK (Cuenda et al., 1995; Young et al., 1997).  PD98059 (50µM) had no 

effect on CH-11 induced apoptosis or on the LPS, fMLP or GM-CSF- mediated 

attenuation of CH-11- induced apoptosis (figure 4.1b).  Initial results suggested that 

SB203580 (20µM) had no effect on the LPS, fMLP or GM-CSF- mediated 

attenuation of CH-11- induced apoptosis but SB203580 (11.2 + 1.5%) attenuated 

CH-11- induced apoptosis (20.3 + 3.2%, n=3, p<0.001) (fig 2a) suggesting that CH-

11 may signal through the p38 MAPK pathway.  However this was not reproducible; 

a fresh batch of SB203580 (54 + 2.0%) augmented CH-11 � induced apoptosis (50.6 

+ 1.6%, n=3, p<0.05) and SB203580 also partially reversed the LPS-mediated 

attenuation of CH-11 � induced apoptosis (control, 7.1 + 0.7%; SB203580, 13.5 + 

0.7%, n=3, p<0.001) (figure 4.2b).  The initial inhibition by SB203580 may have 

been due to contamination with endotoxin as it was an older batch.  It has been 
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suggested that 20µM SB203580 also inhibits the JNK pathway whereas 5µM is 

specific for p38 MAPK (Cuenda et al., 1995).  We therefore repeated the experiment 

and found that 5µM SB203580 had no significant effect on CH-11 � induced 

apoptosis (control, 39.2 + 7.7%; SB203580, 44.9 + 5.5%) but partially inhibited the 

LPS-mediated attenuation of CH-11 � induced apoptosis (control 5.4 + 1.1%, 

SB203580 9.1 + 0.7%, n=3, p<0.05).  In the neutrophil, the p38 MAPK may 

therefore be involved in LPS signalling while the JNK pathway may be an anti-

apoptotic pathway; further investigation is required. 

4.2.3 The phosphatidylinositol 3-kinase pathway 
The role of PI 3-kinase in CH-11 � mediated neutrophil apoptosis is not clear.  

LY294002 is a reversible, ATP-competitive inhibitor of recombinant PI 3-kinase 

(Vlahos et al., 1994).  The IC50 for inhibition of PI 3-kinase by LY294002 is 10µM 

therefore this concentration was used (Davies et al., 2000).  We have shown that 

when neutrophils were cultured for 3 hours, LY294002 had no significant effect on 

spontaneous, CH-11-induced apoptosis or on the LPS-mediated attenuation of CH-11 

� induced apoptosis (figure 4.3a).  In neutrophils, the PI 3-kinase pathway is 

involved in GM-CSF signalling (Vlahos et al., 1995; Klein et al., 2000; Cowburn et 

al., 2002) therefore we confirmed that LY294002 (10µM) did inhibit the GM-CSF 

mediated neutrophil survival at 20 hours (data not shown). 

4.2.4 The protein kinase C pathway 
Neutrophils have been shown to express the protein kinase C (PKC) isoenzymes �α, 

-β, -δ ((Majumdar et al., 1991; Smallwood and Malawista, 1992) and �ζ (Dang et al., 

1995).  However PKC-δ alone appears to be involved in the induction of spontaneous 

neutrophil apoptosis (Pongracz et al., 1999).  Ro318220 at 1µM is a broad-spectrum 

PKC inhibitor (Davis et al., 1992; Davies et al., 2000).  Ro318220 (1µM) accelerated 

CH-11- induced neutrophil apoptosis (CH-11, 44.6 + 8.9%; Ro318220 and CH-11, 

64.3 + 4.9%; n=3, p<0.05) and partially inhibited the LPS-mediated attenuation of 

CH-11- induced apoptosis (LPS.CH-11, 7.1 + 1.1%; Ro318220 and LPS.CH-11, 

44.2 + 6.7%; n=3, p<0.001) (figure 4.3bi).  This suggested that the PKC pathway 

was anti-apoptotic and that the inhibitory effect of LPS on neutrophil apoptosis was 

partially mediated by the PKC pathway.  We therefore investigated the effects of the 
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specific isoenzyme inhibitors; Gö6976 (10nM) inhibits the classical PKC isoenzymes 

-α, -β and -γ (Thorp et al., 1996) and Rottlerin (5µM) inhibits PKCδ (Gschwendt et 

al., 1994).  Rottlerin attenuated CH-11- induced apoptosis (control, 46 + 9.8%; 

Rottlerin, 27.1 + 11.7%; n=3, p<0.05) while Gö6976 had no effect (figure 4.2bii).  

However, neither Rottlerin nor Gö6976 had an effect on the LPS-mediated 

attenuation of CH-11- induced apoptosis (figure 4.2bii). 

4.2.5 The NF-κB pathway 

The inflammatory mediators, LPS, fMLP and TNF-α activate NF-κB in the 

neutrophil (McDonald et al., 1997).  Since IκB-α degradation is required for NF-κB 

translocation to the nucleus, we investigated the cytoplasmic protein levels of IκBα, 

in neutrophils, in response to inflammatory mediators and anti-Fas antibody, CH-11.  

At 30 minutes, LPS induced IκBα degradation whilst CH-11, fMLP and GM-CSF 

had no effect (figure 4.3a).  It has been shown that GM-CSF stimulation of 

neutrophils does not induce IκBα degradation at any time point up to 2 hours and 

fMLP only induces IκBα degradation after 60 minutes (McDonald et al., 1997).  CH-

11 had no effect on IκBα degradation when neutrophils were cultured for up to three 

hours (data not shown). 

Our group has shown that the prostaglandin D2 (PGD2) metabolite 15-deoxy-∆12, 

∆14-PGJ2 (15dPGJ2) at a concentration of 10µM inhibits both LPS-mediated IκBα 

degradation in the neutrophil and the LPS-mediated survival effect on neutrophil 

apoptosis (Ward et al., 2002).  We thus proposed that 15dPGJ2 would also inhibit the 

LPS-mediated attenuation of CH-11 - induced apoptosis.  However as 15dPGJ2 also 

activates perioxisome proliferating activating receptor-γ (PPAR-γ) (Jiang et al., 

1998; Ricote et al., 1998), the specific PPAR-γ agonist ciglitazone (10µM) was used 

to determine if the LPS-mediated attenuation of CH-11- induced apoptosis involved 

the PPAR-γ pathway.  Gliotoxin is also a potent and specific inhibitor of NF-κB 

(Pahl et al, 1996).  We have shown that 15dPGJ2 (29.7 + 8.8%) partially inhibited the 

LPS-mediated attenuation of CH-11- induced apoptosis (6.3 + 2.5%, p>0.05) while 

ciglitazone had no effect (figure 4.4b).  Furthermore, neither 15dPGJ2 nor ciglitazone 

affected CH-11- induced apoptosis (figure 4.4b).  Due to the formation of the DISC 
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in the death receptor pathways, caspase-8 which is produced as a proenzyme (55/50 

kDa doublet) is cleaved into smaller subunits of 40/36 kDa (doublet) and 23 kDa 

(Medema et al., 1997). We showed that CH-11 and TNF-α/Gliotoxin induced 

caspase-8 degradation in neutrophils (figure 4.4c).  The induction of caspase-8 

degradation by CH-11 was inhibited by LPS and this LPS-mediated inhibition was 

reversed by 15dPGJ2 (figure 4.4c). 

4.2.6 Expression of c-FLIP in the neutrophil 

Our data suggest that the inhibitory effect of LPS on CH-11- induced apoptosis is 

associated with inhibition of caspase 8 degradation.  Furthermore, pre-incubation 

with CH-11 reversed the anti-apoptotic effect of LPS (figure 4.5a).  This raised the 

possibility that the inhibitory effect of LPS on CH-11- induced apoptosis may be 

mediated by the protein c-FLIP at the level of the DISC (diagram 4.2).  Neutrophils 

constitutively expressed the 22kDa protein cFLIPs but did not express the 55kDa 

protein cFLIPL (figure 4.5b).  Furthermore, the anti-FLIP antibody appeared to bind 

to a second protein which is approximately 24kDa and this protein may represent 

cFLIPs which has been post-translationally modified.  After 15 minutes incubation, 

the 24kDa cFLIPs appeared to be degraded however autologous serum appeared to 

inhibit this degradation.  LPS, at the concentration used in these experiments 

(0.1µg/ml), requires the lipopolysaccharide binding protein (LBP) found in serum, 

for its activity.  Thus active LPS (LPS and Fbs) and fMLP appear to augment the 

levels of both the 22 and 24kda forms of cFLIPs at this time point (figure 4.5b).  The 

quantity of protein in each sample is demonstrated by reprobing the blot for β-actin 

protein levels (figure 4.5c).  The function of cFLIPs in the neutrophil is not known. 

4.2.7 A strategy to immunoprecipitate the DISC and any other bound proteins 

In order to investigate regulation of neutrophil apoptosis at the level of the DISC, we 

devised a strategy to use the cytoplasmic tail of the Fas receptor tagged to biotin to 

go �fishing� for proteins which bind to the Fas receptor in lysates of control 

neutrophils and LPS-stimulated neutrophils.  The biotin tagged proteins could then 

be immunoprecipitated using streptavidin beads (diagram 4.3). 
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The first part of this approach involved making the �fishing rod�.  The cloned Fas 

receptor was obtained in the pCMV.Sport6 plasmid from LGC Promochem, UK 

(diagram 4.4a).  Firstly we checked that the plasmid contained the Fas Receptor; 

using hind III restriction enzymes (diagram 4.4), we showed that the product 

obtained was the expected size 1342 base pairs (figure 4.6a).  Using PCR (with the 

primers shown in diagram 4.5b), DNA encoding the cytoplasmic tail of the Fas 

receptor was produced.  The DNA was then ligated into the Pinpoint Xa vector using 

the PinpointTM Xa-1 T-Vector system (Promega, Madison, WI, USA).  The Pinpoint 

Xa vector contains DNA encoding the Biotin purification tag (diagram 4.6).  

Competent E. coli, JM109, were then transformed as described previously.  Initially 

16 colonies were sampled and using Hind III restriction enzyme digest, �clone 4� 

was found to contain the FasR cDNA in the correct orientation (figure 4.5b).  The 

cDNA was purified and 2µg sent to MWGBiotech for sequencing.  The cloned 

sequence was verified as described in the methods. Protein production, by the 

transformed E. coli JM109 colonies grown up in Luria-Bertani broth, was induced by 

adding isopropyl β-D-thiogalactopyranoside (IPTG).  The E.coli containing no insert 

expressed a protein of 13kDa, those containing control cDNA expressed a protein of 

27kDa and �clone 4� E.coli containing the FasR insert expressed a protein of 32kDa 

(figure 4.6a).  The transformed E.coli were then cultured on a larger scale and 

induced to produce the biotinylated protein.  The bacteria were then lysed using the 

lysozyme and detergent method although some biotinylated protein was lost and 

detected in the lysed bacterial cell pellet (figure 4.7bi).  The bacterial cell lysate was 

applied to the prepared SoftLink� monomeric avidin column and a sample of the 

flow-through showed that there was good binding of the biotinylated protein to the 

column (figure 4.7bii).  Although the 1ml eluate contained 110µg protein there was 

significant degradation of the protein in the purification process and a large amount 

of the protein remained bound to the column (figure 4.7bii).  Future work would 

involve transformation of a different E.coli strain (BL21) which is deficient in 

proteases.  This may overcome the degradation problem and batch purification may 

overcome the problem with residual protein binding to the resin. 



Chapter 4 

 76

4.3 Discussion 

The neutrophil is a professional phagocyte however in the absence of bacterial 

infection and at sites of inflammation, its lifespan is regulated by factors within the 

inflammatory milieu.  If the neutrophils� lifespan is prolonged such that it undergoes 

secondary necrosis, this will exacerbate tissue injury.  A strategy, used 

therapeutically in drug development, targets the signalling pathways used by these 

inflammatory mediators.  We have explored these signalling pathways in human 

neutrophils particularly investigating those utilised by lipopolysaccharide (LPS) and 

the Fas/FasL pathway. 

We, and others, have shown that inflammatory mediators including LPS and GM-

CSF, not only prolong neutrophil survival in vitro, they also attenuate Fas-mediated 

neutrophil apoptosis (Colotta et al., 1992; Lee et al., 1993; Liles et al., 1996).  The 

LPS used in these studies was not purified therefore will contain a significant amount 

of bacterial lipopeptide (Hirschfeld et al., 2000).  The LPS will therefore signal 

through both TLR2 and TLR4 receptors on the neutrophil.  Furthermore during the 

process of neutrophil extraction from whole blood, contaminating monocytes were 

not removed by negative selection.  It has now been shown that purified LPS (a 

TLR4 agonist) also delays early constitutive apoptosis of purified neutrophils 

(Sabroe et al., 2003).  The mediator, fMLP had no effect on early (4h) or late (20h) 

spontaneous neutrophil apoptosis but attenuated Fas-induced neutrophil apoptosis.  

Protein kinases are differentially activated by inflammatory mediators.  While fMLP 

has been shown to activate p42/44 ERK and p38 MAPK (Nick et al., 1997), GM-

CSF strongly activated the ERK cascade and PI 3-kinase pathway (Klein et al., 2000; 

Cowburn et al., 2002).  However, we have shown that the p42/44 ERK pathway was 

not involved in the fMLP and GM-CSF-mediated attenuation of CH-11- induced 

apoptosis. 

Early spontaneous and Fas-mediated neutrophil apoptosis appears to be independent 

of p38 MAPK.  At a later time point (12 hours), other investigators have shown that 

the p38 MAPK inhibitor, SB203580, augments spontaneous and Fas-induced 

apoptosis; phosphorylated p38 MAPK was present constitutively in human 
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neutrophils and the activity of p38 MAPK was inhibited during spontaneous and CH-

11- induced apoptosis (Alvarado-Kristensson et al., 2002).  Subsequently they have 

shown that Fas receptor stimulation results in protein phosphatase 2A (PP2A) 

activation which dephosphorylates p38MAPK and caspase 3 resulting in decreased 

p38 MAPK activity but increased caspase 3 activity and thus neutrophil apoptosis 

(Alvarado-Kristensson and Andersson, 2005).  In murine neutrophils, SB203580 also 

accelerated spontaneous neutrophil apoptosis (Villunger et al., 2000).  Other groups 

have found differing results; Aoshiba et al (1999) found that SB203580 delayed 

spontaneous neutrophil apoptosis but had no effect on Fas-induced apoptosis.  

Furthermore, the p38 MAPK inhibitor SKF-86002, had no effect on spontaneous or 

Fas-induced apoptosis (Frasch et al., 1998) however this inhibitor appears be less 

specific for p38 MAPK, also activating cyclooxygenase and 5-lipoxygenase 

(Griswold et al., 1987).  

LPS has been shown to prolong neutrophil survival however this effect was not 

apparent at early time points (4 hours).  Our group and others have shown that this 

survival effect is partially mediated by p42/44 ERK (Nolan et al., 1999; Klein et al., 

2001; Ward et al., 2005).  At early time points, the p42/44 ERK inhibitor, PD98059, 

had no effect on spontaneous or LPS-mediated neutrophil apoptosis.   

The role of p38 MAPK in LPS-mediated neutrophil survival is less clear.  LPS has 

been shown to activate the α-isoform of p38 MAPK resulting in neutrophil adhesion, 

NF-κB stimulation and TNF-α synthesis (Nick et al., 1999). However two studies 

have shown LPS-mediated survival to be independent of p38 MAPK (Klein et al., 

2001; Ward et al., 2005) and a third study confirmed that LPS activated p38 MAPK 

but showed that it was pro-apoptotic (Nolan et al., 1999).  Furthermore, we have 

shown, at early time points, that 5µM and 20µM SB203580 partially reversed the 

LPS mediated attenuation of CH-11 - induced apoptosis suggesting that p38 MAPK 

mediates an anti-apoptotic pathway.  The inhibitor SB203580 at higher 

concentrations (20µM) also inhibits the JNK pathway (Cuenda et al., 1995).  It has 

been proposed, in human neutrophils, that JNK pathway activation, upon LPS 

stimulation, depends upon the physiological state of the neutrophil; in suspended 
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neutrophils LPS does not activate JNK (Nick et al., 1999) however in adherent 

neutrophils JNK is activated (Arndt et al., 2004). 

The PI 3-kinase pathway is important in mediating the survival effect of GM-CSF in 

neutrophils.  However at early time points it was not involved in LPS or Fas 

signalling (figure 4.4a).  At later time points, LY294002 (10µM) reversed the 

survival effect of LPS (Ward et al., 2005) and in murine PI 3 kinase-/- neutrophils 

both basal and LPS-stimulated cells showed increased rates of apoptosis compared to 

the wild type (Yang et al., 2003).  Although PI 3-kinase is usually considered an 

anti-apoptotic pathway in neutrophil biology, in one study LY294002 had no effect 

on LPS-mediated survival (Klein et al., 2001) and another group have shown that 

LY294002 inhibited CH-11-induced apoptosis at later time points (Alvarado-

Kristensson et al., 2002). 

The protein kinase C (PKC) pathway, in particular the PKCδ isoenzyme has been 

implicated in both spontaneous and Fas-induced neutrophil apoptosis (Khwaja and 

Tatton, 1999; Pongracz et al., 1999).  The PKC inhibitor, Ro318220(1µM), not only 

augmented spontaneous and CH-11- induced apoptosis, it also partially reversed the 

LPS-mediated attenuation of CH-11- induced apoptosis.  However, the specific 

PKCδ inhibitor, Rottlerin significantly attenuated CH-11 induced apoptosis but had 

no effect on the LPS-mediated attenuation.  These inhibitors have subsequently been 

shown to inhibit many protein kinases and therefore valid conclusions cannot be 

drawn from these data alone (Davies et al., 2000).  Other groups have shown that the 

protein kinase C pathway is important in spontaneous and Fas-induced neutrophil 

apoptosis by demonstrating that in the former, caspase 3 and in the latter, caspase 8 

mediate PKCδ cleavage and activation (Khwaja and Tatton, 1999; Pongracz et al., 

1999).  

The NF-κB family of transcription factors mediate many of the cellular responses to 

inflammatory mediators.  In the neutrophil, the prototypic TNF-α death receptor 

pathway induces both death in the neutrophil via the caspases and life via NF-κB 

activation (Ward et al., 1999).  In the neutrophil, LPS also activate NF-κB through 

p38 MAPKα (Nick et al., 1999) (diagram 4.2).  Furthermore in cell lines, both 
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sensitive and resistant to apoptosis induced by Fas ligation, anti-CD95 antibody 

activated NF-κB (Ponton et al., 1996).  In human bronchiolar epithelial cells and 

monocytes, Fas ligation has also been associated with NF-κB activation (Hagimoto 

et al., 1999; Park et al., 2003)  However in human neutrophils we have shown that 

while LPS induced IκBα degradation, CH-11 had no effect.  Thus Fas ligation in the 

neutrophil does not activate NF-κB.  The cytoplasmic adapter protein FLIP is 

thought to be important in regulating the apoptotic/non-apoptotic switch at the level 

of the DISC (Wajant et al., 2003).  In endothelial cells, cellular FLIP appears to 

protect against LPS-induced apoptosis and suppresses NF-κB activation (Bannerman 

D et al, 2004). We have shown that neutrophils only express the short form of 

cellular FLIP (cFLIPS) and its role at present is not clear.  

An alternative strategy looked at inhibiting the NF-κB pathway.  There are several 

natural and synthetic NF-κB inhibitors.  The PGD2 metabolite 15dPGJ2 is known to 

inhibit LPS-mediated IκBα degradation (Ward et al., 2002).  We found that 15dPGJ2 

partially inhibited the LPS-mediated attenuation of CH-11 � induced apoptosis and 

this was associated with 15dPGJ2 partially inhibiting the LPS-mediated attenuation 

of caspase-8 degradation.  Furthermore at early time points, the cellular 

concentration of cFLIPS was differentially regulated by LPS and CH11.  Our data 

suggested that LPS inhibited Fas signalling in the human neutrophil at the level of 

the DISC.  We therefore devised a strategy to determine the proteins which bind to 

the cytoplasmic tail of the Fas receptor upon Fas ligation and to determine if this 

protein binding is altered by LPS.  Initially DNA encoding the cytoplasmic tail of the 

Fas receptor was cloned into the Pinpoint Xa vector in order to produce a biotin-

tagged protein.  The 32kDa biotin-tagged Fas receptor cytoplasmic tail was 

successfully produced however we were subsequently unable to batch purify the 

protein without significant proteolytic breakdown.  Other investigators have 

subsequently managed to immunoprecipitate the neutrophil DISC using anti-Fas 

receptor monoclonal antibodies (Apo-1 and Fas B-10)  and protein A/G (Daigle et 

al., 2002; Scheel-Toellner et al., 2004).  This alternative strategy could therefore be 

utilised to examine the effects of LPS on the Fas signalling pathway. 
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We have shown that pre-incubation with GM-CSF inhibits Fas-mediated apoptosis: 

conversely GM-CSF-mediated survival is inhibited by simultaneous activation of the 

Fas receptor (Daigle et al., 2002).  Elegant studies have shown that the Fas receptor 

death domain contains a tyrosine residue which upon phosphorylation binds the 

inhibitory phosphatase Src homology domain 2 (SH-2)-containing tyrosine 

phosphatase-1 (SHP-1).  As previously described GM-CSF stimulates anti-apoptotic 

pathways which include tyrosine phosphorylation of Lyn; this is prevented by 

concurrent Fas receptor ligation and it is proposed that SHP-1 mediates this 

inactivation (Daigle et al., 2002).  On the other hand, pre-incubation with GM-CSF 

has been shown to interfere with the recruitment of FADD to the DISC upon Fas 

receptor ligation (Kotone-Miyahara et al., 2004). 

Thus the regulation of neutrophil lifespan is complex depending not only on factors 

within the inflammatory milieu but within the cell itself, there is cross-talk between 

survival and death pathways. 
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Figure 4.1. The p42/44 ERK pathway, CH-11, inflammatory mediators and 
neutrophil apoptosis 
 
(a) Effect of LPS, fMLP and GM-CSF on spontaneous and CH-11 induced neutrophil 
apoptosis. Neutrophils (5 x 106/ml) in Pbs and 10% Fbs were pre-incubated in a shaking 
water bath for 1 hour with LPS (0.1µg/ml), fMLP (10ng/ml) or GM-CSF (50U/ml).  They 
were then incubated for a further 3 hours in flexible well plates with CH-11 (500ng/ml) and 
apoptosis was assessed by Annexin V binding. * p<0.01 compared with CH-11 control 
values.  (b) The effect of pre-incubation with PD98059 (50µM) on the LPS, fMLP and GM-
CSF attenuation of CH-11 induced apoptosis. Neutrophils (5 x 106/ml) in Pbs were pre-
incubated for 1 hour in a shaking water bath with Pbs or PD98059 (50µM). They were then 
incubated for a further 3 hours in flexible well plates with 10% Fbs and either Pbs + CH-11 
(500ng/ml), LPS (0.1µg/ml) + CH-11 (500ng/ml), fMLP (10ng/ml) + CH-11 (500ng/ml) or 
GM-CSF (50U/ml) + CH-11 (500ng/ml).  Apoptosis was assessed by Annexin V binding.  
All values represent mean + SEM of n = 3 experiments; each performed in duplicate. 
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Figure 4.2. The p38 MAPK pathway, CH-11, inflammatory mediators and 
neutrophil apoptosis 
 
(a) The effect of pre-incubation with SB203580 (20µM) on the LPS, fMLP and GM-CSF- 
mediated attenuation of CH-11 induced apoptosis. Neutrophils (5 x 106/ml) in Pbs were pre-
incubated for 1 hour in a shaking water bath with Pbs or SB203580 (20µM). They were then 
incubated for a further 3 hours in flexible well plates with 10% Fbs and either Pbs + CH-11 
(500ng/ml), LPS (0.1µg/ml) + CH-11 (500ng/ml), fMLP (10ng/ml) + CH-11 (500ng/ml) or 
GM-CSF (50U/ml) + CH-11 (500ng/ml).  Apoptosis was assessed by Annexin V binding.  
(b) The effect of pre-incubation with a new batch of SB203580 (20µM) on the LPS � 
mediated attenuation of CH-11 induced apoptosis.  Neutrophils (5 x 106/ml) in Pbs were pre-
incubated for 1 hour in a shaking water bath with Pbs or SB203580 (20µM). They were then 
incubated for a further 3 hours in flexible well plates with 10% Fbs and either Pbs + CH-11 
(500ng/ml) or LPS (0.1µg/ml) + CH-11 (500ng/ml).  Apoptosis was assessed by Annexin V 
binding.  All values represent mean + SEM of n = 3 experiments; each performed in 
duplicate. *p<0.05, **p<0.001. 
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Figure 4.3. The PI3-K/PKC pathway, CH-11, LPS and neutrophil apoptosis 
 
The effect of pre-incubation with (a) the PI3-kinase inhibitor, LY294002, (bi) the PKC 
inhibitor, Ro318220, (bii) the PKCδ inhibitor, Rottlerin and PKC (classical isoenzyme) 
inhibitor, Go6976 on the LPS-mediated attenuation of CH-11 - induced apoptosis.  
Neutrophils (5 x 106/ml) in PBS were pre-incubated for 1 hour in a shaking water bath with 
PBS or (a) LY294002 (10µM) or (bi) Ro318220 (1µM) or (bii) Rottlerin (5µM), Go6976 
(10nM). They were then incubated for a further 3 hours in flexible well plates with 10% FBS 
and either PBS, CH-11 (500ng/ml), LPS (0.1µg/ml) or LPS (0.1µg/ml) and CH-11 
(500ng/ml).  Apoptosis was assessed by Annexin V binding.  All values represent mean + 
SEM of n = 3 experiments; each performed in duplicate. *p<0.05, **p<0.001. 
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Figure 4.4. The NF-κB pathway and neutrophil apoptosis 
 
(a) IκBα protein in neutrophils. Neutrophils (5 x 106/ml) in Pbs and 10% Fbs were incubated 
in a shaking water bath with PBS, LPS (0.1µg/ml), fMLP (10ng/ml), GM-CSF (50U/ml) or 
CH-11 (500ng/ml) for 30 minutes.  Cell lysates were prepared and Western blotting carried 
out using IκBα antibody (1:500). (b) Effect of the prostaglandin D2 metabolite, 15-deoxy-∆12, 
∆14- PGJ2 (15dPGJ2) on LPS-mediated attenuation of CH-11- induced neutrophil apoptosis.  
Neutrophils (5 x 106/ml) in Pbs were pre-incubated in a shaking water bath with 15dPGJ2 
(10µM) and ciglitazone (10µM) for 1 hour.  They were then incubated for a further 3 hours 
in flexible well plates with 10% FBS and either PBS, CH-11 (500ng/ml), LPS (0.1µg/ml) or 
LPS (0.1µg/ml) and CH-11 (500ng/ml).  Apoptosis was assessed by Annexin V binding. (c) 
Caspase 8 protein in neutrophils. Neutrophils (5 x 106/ml) in Pbs were pre-incubated in a 
shaking water bath for 30 min with Pbs or 15dPGJ2 (10µM). They were then incubated for a 
further 4 hours with 10% Fbs and either Pbs, CH-11 (500ng/ml) or LPS (0.1µg/ml) and CH-
11 (500ng/ml). Neutrophils (5 x 106/ml) in Pbs and 10% Fbs were incubated in a shaking 
water bath for 2 hours with TNF-α (10ng/ml) and gliotoxin (Glio) (2µg/ml). Cell lysates 
were prepared and Western blotting carried out using caspase-8 antibody (4µg/ml). 
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Figure 4.5. cFLIP, CH-11, inflammatory mediators and neutrophil apoptosis 
 
(a) The effect of pre-incubation with CH-11.  Neutrophils (5 x 106/ml) in Pbs and 10% Fbs 
were incubated in a shaking water bath with LPS (0.1µg/ml) or CH-11 (500ng/ml) for 60 
minutes. They were then incubated for a further 3 hours in flexible well plates with either 
CH-11 (500ng/ml) or LPS (0.1µg/ml).  Apoptosis was assessed by Annexin V binding.  All 
values represent mean + SEM of n = 3 experiments; each performed in duplicate. *p<0.01. 
(b) The effect of serum, anti-Fas antibody (CH-11) and inflammatory mediators on cFLIP 
protein levels in human neutrophils.  Neutrophils (5 x 106/ml) in Pbs + 10% Fbs or 10% 
autologous serum (As) were incubated in a shaking water bath for 15 min with CH-11 
(500ng/ml) or LPS (0.1µg/ml) or fMLP (10ng/ml).  Cell lysates were prepared and Western 
blotting carried out using (bi) anti-human FLIP (1:1000).  (bii) The blot was stripped and 
reprobed with anti-human β-actin (1:100).  
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Figure 4.6. Hind III restriction digest of cDNA 
 
(a) Hind III restriction digest of purified pCMV.Sport6 vector containing Fas receptor 
cDNA.  The predicted size of the linearised plasmid is 5808bp and the Fas receptor insert is 
1342bp (diagram 4.4).  (b) Hind III restriction digest of cDNA purified from transformed 
JM109 cells. The predicted size of the product is 451bp (diagram 4.6).  In lane 3, using PCR 
and the primer set shown in diagram 4.5, is the Fas receptor cytoplasmic tail DNA (436bp). 
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bi) 
 
 
 
 
 
 
 
 
 
bii) 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. Biotinylated Fas protein expression 
 
(a) Expression of biotinylated proteins by transformed E.Coli JM109.  E.Coli JM109 were 
transformed with PinpointTM Xa plasmid containing no insert, control DNA supplied by 
Promega and the FasR cytoplasmic tail DNA (clone 4, figure 4.6) and grown up in Luria-
Bertani broth.  Cell lysates were prepared and Western blotting carried out using HRP-
Streptavidin (1:2500).  (bi) E.Coli JM109 transformed with PinpointTM Xa plasmid 
containing FasR cytoplasmic tail DNA (+ve, lane 1) and no insert (-ve, lane 2) were cultured 
on a large scale having been induced with IPTG to produce protein (lanes 3 and 4).  The 
bacteria were lysed using lysozyme and detergent (lane 5) and cell debris pelleted (lane 6). 
Western blotting of the samples was carried out using HRP-Streptavidin (1:2500).  (bii) 
Protein purification using the SoftLink� monomeric avidin resin column.  The lysate (lane 
1) was applied to the column and a sample of the flow-through collected (lane 2).  The 
protein was then eluted (lane 3) from the column (lane 4).  Western blotting of the samples 
was carried out using HRP-Streptavidin (1:2500). 

 No             Control        FasR 
 Insert         DNA           Insert 
(13kDa)     (27kDa)      (32kDa) 

37 

26 
19 

14 

 lysate   flow-    eluate  column 
              through 

37 

26 
19 

14 

+ve  -ve     IPTG   lysate  pellet 



Chapter 4 

 88

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Diagram 4.1. The prostaglandin (PG) pathway 

 
Prostaglandins are primarily derived from arachidonate which phospholipases release from 
membrane phospholipids.  Arachidonate is converted to an unstable intermediate PGG2 by 
cyclooxygenase (COX).  This is subsequently converted by specific prostaglandin 
synthetases to PGD2, PGE2, PGF2α, prostacylin (PGI2) and thromboxane A2 (TxA2).  In vitro, 
PGD2 spontaneously converts into the cyclopentone prostaglandins of the J series, PGJ2, ∆12- 
PGJ2 and 15-deoxy-∆12, ∆14- PGJ2 (15d PGJ2).  (Schibata et al, 2002). 
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Diagram 4.2. Schematic diagram depicting proposed signalling pathway by 
which LPS inhibits the Fas receptor pathway in human neutrophils. 
 
LPS binds to a TLR4-MD-2 complex which transduces the signal intracellularly.  The 
cellular receptor, CD14 amplifies this signal (Miyake, 2004).  Furthermore a serum 
component, LPS-binding protein, enhances the binding of LPS to CD14 (Wright et al., 
1990).  This leads to the activation of the MKK3/p38αMAPK cascade which results in NF-
κB activation.  The pathway upstream of MKK3 (MEKK-X) is not yet known (Nick et al., 
1999).  The binding of FasL to Fas results in trimerization/oligomerization of the receptor 
and recruitment of the adaptor protein Fas-associated death domain containing protein 
(FADD) and caspase-8 to form the death-inducing signalling complex (DISC) (Kischkel et 
al., 1995) which in turn initiates the caspase cascade resulting eventually in activation of the 
effector caspases including caspase-3 (Earnshaw et al., 1999).  
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Diagram 4.3. Schematic diagram of the proposed experiment using a Fas 
receptor cytoplasmic tail tagged with biotin to discover what human neutrophil 
proteins bind to the cytoplasmic tail. 
 
In this proposed experiment, neutrophils would be incubated for 4h under control conditions 
and stimulated with LPS.  Cell lysates would then be prepared as described in the methods.  
Fas receptor stimulation results in the cytoplasmic tail forming a death-inducing signalling 
complex (DISC).  It is proposed that when the cells are stimulated with LPS the binding of 
cFLIPs or other �survival protein(s)� to the DISC is differentially regulated.  The biotin-
tagged proteins would then be immunoprecipitated using streptavidin-coated magnetic 
beads. 
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a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
b)  
 
 
 
 
 
 
 
 
 
Diagram 4.4. The pCMV.Sport6 plasmid and cloned Fas receptor 
 
(a) pCMV-Sport 6 vector map. (b) Schematic representation of human Fas receptor DNA.  
The open box represents the open reading frame within which the small box indicates the 
transmembrane region (Tm).  The Hind III restriction enzyme site is shown at 1305bp 
(GenBank: NM_000043). 
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Diagram 4.5. The cytoplasmic tail of the human Fas receptor 
 
(a) Schematic representation of the 436bp cytoplasmic tail of the human Fas receptor 
(GenBank: NM_000043) with a Hind III restriction enzyme site at 423bp. (b) The sequence 
of the cytoplasmic tail of the human Fas receptor (Itoh et al, 1991).  The primer sequences 
are shown in red. 
 
 
 
 
 
 
 
 

Tm
5� 3�

436bp

AAGAGAAAGGAAGTACAGAAAACATGCAGAAAGCACAGAAAGGA

AAACCAAGGTTCTCATGAATCTCCAACCTTAAATCCTGAAACAG

TGGCAATAAATTTATCTGATGTTGACTTGAGTAAATATATCACC

ACTATTGCTGGAGTCATGACACTAAGTCAAGTTAAAGGCTTTGT

TCGAAAGAATGGTGTCAATGAAGCCAAAATAGATGAGATCAAGA

ATGACAATGTCCAAGACACAGCAGACAGAAAGTTCAACTGCTTC

GTAATTGGCATCAACTTCATGGAAAGAAAGAAGCGTATGACACA

TTGATTAAAGATCTCAAAAAAGCCAATCTTGTACTCTTGCAGAG

AAAATTCAGACTATCATCCTCAAGGACATTACTAGTGACTCAGA

AAATTCAAACTTCAGAAATGAAATCCAAAGCTTGGTCTAG  

Hind III
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Diagram 4.6. Schematic representation of DNA ligation into the PinpointTM Xa 
vector 
 
(a) FasR cytoplasmic tail DNA (436bp), (b) control DNA and (c) no DNA. 
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Chapter 5 

 

The Macrophage and Neutrophil Apoptosis 

 

5.1 Introduction 

Lipopolysaccharide (LPS) is a common infectious trigger in the human lung and its 

action is utilized in animal models of acute lung injury.  LPS activates macrophages 

to produce cytokines however the cytokine milieu differs depending on the 

inflammatory trigger (Lucas et al., 2003). 

In addition to cytokines and other inflammatory mediators, the Fas-Fas ligand 

pathway may also be important at sites of inflammation.  Monocytes and 

macrophages constitutively express the Fas receptor (Liles et al., 1996; Kiener et al., 

1997; Kiener et al., 1997).  Mononuclear cells have mRNA for FasL (figure 3.5) and 

upon activation T-lymphocytes and monocytes express FasL (Kiener et al., 1997; 

Bossi and Griffiths, 1999).  Macrophages do not constitutively express FasL however 

when they phagocytose opsonized zymosan or apoptotic neutrophils, its surface 

expression is induced (Brown and Savill, 1999).  Furthermore sFasL was found in 

the supernatants from these stimulated macrophages and these conditioned 

supernatants also induced apoptosis in neutrophils (Brown and Savill, 1999). 

However the cytokine milieu produced by macrophages differs depending whether 

particulates or effete cells have been phagocytosed.  When macrophages 

phagocytosed latex beads although the conditioned supernatant contained sFasL, it 

was unable to induce apoptosis in neutrophils.  Furthermore the pro-apoptotic 

activity of the conditioned supernatant from macrophages which have phagocytosed 

apoptotic neutrophils was only partially due to sFasL (Brown and Savill, 1999). 

We have further explored the soluble factors produced by LPS-activated 

macrophages and studied their effect on neutrophil apoptosis.  
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5.2 Results 

Initially the experimental conditions were optimized using the monocytic cell line 

THP-1. 

5.2.1 THP-1 and neutrophil co-culture 

The THP-1 cells are derived from the peripheral blood of a 1 year old male with 

acute monocytic leukaemia (European Collection of Cell Cultures).  They are grown 

in suspension but can differentiate into a macrophage phenotype using fibronectin 

and phorbol 12-myristate 13-acetate (PMA) (Auwerx, 1991).  As PMA can trigger 

degranulation of neutrophils (Dewald et al., 1983), after 24 hours, the differentiated 

THP-1 cells were washed and grown for a further 24 hours in fresh medium (RPMI 

and 10% FBS).  The cells were activated with differing concentrations of LPS (0.01, 

0.1 and 1µg/ml) however no difference in activity of the conditioned media was seen.  

The cells were therefore stimulated with LPS (1µg/ml). 

Initially the cells were stimulated with LPS for 4 hours.  When neutrophils (PMN) 

were co-cultured with LPS-activated THP-1 cells, there was a non-significant trend 

suggesting that activated THP-1 cells induced neutrophil apoptosis maximally (10.9 

+ 2.8%; control, 3.0 + 1.3%) in the presence of their conditioned media (figure 5.1a).  

The conditioned media alone had no effect on neutrophil apoptosis (figure 5.1a).  

When the cells were stimulated with LPS for 20 hours and apoptosis assessed after 4 

hours incubation, activated THP-1 cells, significantly and maximally, induced 

neutrophil apoptosis (7.7 + 1.2 %; control, 3.2 + 0.8%, p<0.05) in the presence of 

their conditioned media (figure 5.1b).  In the presence of conditioned media alone, 

there was a non-significant trend suggesting that it increased neutrophil apoptosis 

(5.8 + 1.1%; control, 2.8 + 0.3%).  After 8 hours incubation, THP-1 cells prolonged 

neutrophil survival (THP, 1.2 + 0.7%; PMN, 6.4 + 0.6%, p<0.01) and both LPS-

activated THP-1 cells and conditioned media alone non-significantly attenuated 

neutrophil apoptosis (figure 5.1b).  After removing the cell supernatants, the plates 

were fixed with glutaraldehyde (2.5%) and the myeloperoxidase of neutrophils 

stained with 0.1mg/ml dimethoxybenzidine (DMB) and 0.03% (v/v) hydrogen 
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peroxide.  A limitation of these experiments is that viable neutrophils did adhere to 

THP-1 cells so rates of apoptosis in co-culture experiments are probably over-

estimated however there was no evidence of phagocytosis of apoptotic neutrophils. 

5.2.2. The effect of conditioned supernatants from LPS-stimulated, human 
peripheral blood-derived macrophages (HDM) 

Human peripheral blood-derived mononuclear cells (HDMC) differentiate in vitro 

into macrophages under certain experimental conditions.  After the HDMCs 

(4x106/ml in IMDM) have been plated onto plastic tissue culture ware for 1 hour, the 

monocytes adhere such the lymphocytes can be washed off.  In the presence of 

autologous serum, over 5 days, the monocytes differentiate into macrophages (figure 

5.2b).  When the cells are stimulated with LPS (1µg/ml) for 20 hours, transfer of the 

conditioned supernatants (CM) induces neutrophil apoptosis (45 + 3.6%; control, 3.3 

+ 0.4%, p<0.001).  If the CM is fractionated through 50kD filters, neutrophil 

apoptosis is induced entirely by the fraction containing proteins with a mass greater 

than 50kD (50kD+) (46.0 + 0.7%; 50kD-, 6.1 + 1.3%, p<0.001).  CM transferred 

from unstimulated HDM did not induce neutrophil apoptosis (1.76 + 0.65%, n=3, 

data not shown) 

In order to examine the proteins which are present in the conditioned media we 

entered the field of proteomics.  We planned to utilize two techniques to maximize 

resolution of the different proteins.  The first was 2D gel electrophoresis coupled 

with mass spectrometry to determine the protein identity.  At the same time, we had 

the opportunity to utilise the newer surface-enhanced lased desorption and ionization 

� time of flight (SELDI-TOF) technique which provides rapid protein profiling 

analysis (Ciphergan).  Serum contains many soluble proteins therefore to maximize 

resolution of the proteins produced by the LPS-stimulated macrophages, we 

optimized a serum-free experiment.  Macrophage-SFM supplemented with GM-CSF 

(500U/ml) has been shown to support human peripheral blood macrophage function 

comparable to conventional serum-based media (Geissler et al., 1989; Vincent et al., 

1992).  We have shown that human peripheral blood monocytes maintained in the 

presence of serum form more giant cells however the absence of serum does not alter 

their phenotype; both serum and serum-free macrophages expressed CD64, HLA-
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DR, FcγRI and CD14 receptors on their surface (figure 5.2b).  Lipopolysaccharide-

binding protein (LBP) was required in the absence of serum to enable LPS (1µg/ml) 

to activate the HDMs such that their conditioned supernatants induced neutrophil 

apoptosis (control mean, 7.7%; CM mean 23.9%, n=2) (figure 5.3a).  The optimal 

concentration of LBP was found to be 15.9µg/ml (data not shown).  The 50kD+ CM 

fraction from serum-free HDMs was again pro-apoptotic (mean 15.5%, control 

mean, 7.7%, n=2) (figure 5.3a).  These 50kD+ and 50kD- conditioned supernatants 

were stored at -70°C.  Subsequently 2D electrophoresis of the supernatants was 

carried out as described in the methods (figure 5.3b).  Unfortunately we do not 

currently have access to automated software to comprehensively analyze the 2D gels 

but our subsequent work suggested TNF-α was important.  The supernatants were 

also sent for SELDI-TOF mass spectrometry analysis but there was a problem with 

their software and they were unable to analyse the specimens. 

Our group has previously shown that the conditioned supernatant from macrophages 

which have phagocytosed apoptotic neutrophils is able to induce apoptosis in fresh 

neutrophils (Brown and Savill, 1999).  We therefore investigated the conditioned 

media of LPS-stimulated monocyte-derived macrophages which have phagocytosed 

apoptotic neutrophils.  The cytokine content of the conditioned supernatants was 

determined using flow cytometry and a cytokine bead assay, as described in the 

methods.  LPS-stimulated macrophages produced large quantities of TNF-α (3627 + 

717 pg/ml), IL-6 (2836 + 1093 pg/ml) and IL-8 (>5000 pg/ml) (n=3, figure 5.4a).  At 

this time point (20h), macrophages which have phagocytosed apoptotic neutrophils 

produced minimal amounts of these cytokines and phagocytoses of apoptotic 

neutrophils also appears to downregulate the LPS-induced secretion of TNF-α 

(range, 6.7-18.1 pg/ml), IL-6 (range, 14.9-169.5 pg/ml) and IL-8 (range, 789.5-5000 

pg/ml) (n=2, figure 5.4a).  Furthermore, at this time point the conditioned 

supernatants from neither control monocyte-derived macrophages, which had 

phagocytosed apoptotic neutrophils nor those which had been concurrently 

stimulated with LPS and phagocytosed apoptotic neutrophils, induced apoptosis in 

freshly isolated neutrophils (figure 5.4b). 
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As there was significant production of TNF-α by the LPS-activated macrophages and 

TNF-α (EC50 2.8ng/ml) can induce apoptosis in neutrophils at early time points 

(Murray et al., 1997), we used a neutralizing anti-human TNF-α antibody to try to 

block the activity of TNF-α in the conditioned supernatants.  The concentration of 

neutralizing antibody required to block neutrophil apoptosis induced by recombinant 

human TNF-α (50ng/ml) was determined to be 3 to 30µg/ml.  Anti-TNF-α antibody 

was therefore used at a concentration of 3µg/ml in subsequent experiments (figure 

5.5a).  Neutrophil apoptosis induced by the conditioned supernatants from LPS-

stimulated monocyte-derived macrophages was completely inhibited by neutralizing 

anti-TNF-α antibody (3µg/ml) (CM, 19.3 + 3.8%; anti-TNF.CM, 1.0 + 0.5%, 

p<0.001) (figure 5.5b).  The apoptotic effect of the conditioned media was also lost 

with heating (HI) at 95°C for 5 minutes (HI.CM, 0.4 + 0.2%, p<0.001) (figure 5.5b).  

However the neutralizing anti-Fas antibody, ZB4, had no effect (figure 5.5b).  At 

early time points (4h), the conditioned supernatant induced apoptosis however at 

later time points (8h), it induced survival (figure 5.5c).  Our group has previously 

shown this temporal effect on neutrophil apoptosis with recombinant TNF-α (Murray 

et al., 1997) therefore this is consistent with our finding that neutralizing anti-TNF-α 

antibody inhibits the effect of the conditioned supernatant. 

This suggests that TNF-α is important in the induction of neutrophil apoptosis by 

LPS-stimulated monocyte-derived macrophages.  However phagocytosis of apoptotic 

neutrophils downregulates TNF-α production and in association with adoption of this 

anti-inflammatory phenotype, its conditioned supernatant was no longer able to 

induce apoptosis in bystander neutrophils.  This is likely to be important as the 

neutrophil will have to function as the main defence against infection whilst the 

macrophage is �hypoimmune�. 
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5.3 Discussion 

It has been known for many years that macrophages are important in innate 

immunity however their role in inflammatory diseases has only recently become 

more apparent.  They appear to be central to the switch from inflammation to 

resolution and as we have shown, the inflammatory mediators which they produce 

and their effect on bystander neutrophils will vary depending on the macrophage 

stimulant. 

Lipopolysaccharide-stimulated monocyte-derived macrophages produced a �cytokine 

soup� which induced neutrophil apoptosis at early time points.  In this �soup�, 

soluble TNF-α appeared to be important in mediating this apoptotic effect which 

could be abolished by neutralizing anti-TNF-α antibodies.  To confirm the role of 

TNF-α, future work would assess the effect of blocking antibodies to the TNF 

receptors (TNFR1 and TNFRII) as these are also known to block TNF-α �stimulated 

neutrophil apoptosis (Murray et al., 1997).  

As TNF-α appears to be the soluble pro-apoptotic factor, it must be in its trimerized 

form in the �cytokine soup� as only the fraction containing proteins greater than 

50kD was able to induce apoptosis.  Wound-derived macrophages from rats have 

also been shown to induce neutrophil apoptosis mediated by TNF-α but cell to cell 

contact was required (Meszaros et al., 2000).  Furthermore in a murine model, 

intraperitoneal injection of Leishmania major induced neutrophil recruitment.  

Subsequent neutrophil apoptosis was shown to be induced by membrane-bound 

TNF-α present on macrophages (Allenbach et al., 2006).  

At later time points we showed that the �cytokine soup� from LPS-stimulated 

macrophages delayed neutrophil apoptosis which may be mediated by TNF-α since 

recombinant TNF-α also delays neutrophil apoptosis at later time points (Murray et 

al., 1997).  However in the lung, other cytokines including GM-CSF and 

macrophage migration inhibitory factor (MIF) may play a role.  MIF has recently 

been shown to delay neutrophil apoptosis (Baumann et al., 2003). 
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In the lung, GM-CSF appears to play a critical role in the normal functioning of 

alveolar macrophages.  It is important in the terminal differentiation of macrophages 

through induction of the transcription factor PU.1 (Shibata et al., 2001; Berclaz et 

al., 2002).  Furthermore, the alveolar macrophages of GM-CSF knockout mice are 

unable to produce TNF-α in response to LPS (LeVine et al., 1999) and have defects 

in cellular adhesion and phagocytosis (Paine et al., 2001).  Consequently the 

knockout mice have severely impaired clearance of pulmonary bacterial and fungal 

pathogens (LeVine et al., 1999; Paine et al., 2000).  The knockout mice also 

developed a condition that resembled human pulmonary alveolar proteinosis where 

eosinophilic lipoproteinaceous material and large foamy macrophages accumulate in 

the alveoli.  It is now known that this is due to defective catabolism of the surfactant 

proteins by alveolar macrophages and that the acquired form of pulmonary alveolar 

proteinosis in humans is due to GM-CSF neutralizing autoantibodies (Kitamura et 

al., 1999; Yoshida et al., 2001). 

If the LPS-stimulated monocyte-derived macrophages phagocytosed apoptotic 

neutrophils, the macrophages appeared to switch to a more quiescent phenotype and 

their �cytokine soup� was unable to induce neutrophil apoptosis.  The interaction of 

LPS, apoptotic cells and murine macrophages has been extensively studied.  LPS 

alone triggers TNF-α release over 24 hours.  While phagocytosis of apoptotic cells 

augments the TNF-α at early time points (4-6 hours), at later time points TNF-α 

production is inhibited (Lucas et al., 2003). 

Monocyte-derived macrophages which have phagocytosed apoptotic neutrophils 

express FasL (Brown and Savill, 1999) however the Fas/FasL pathway does not 

appear to be important in inducing neutrophil apoptosis when the macrophages are 

stimulated with LPS.  In neutrophils, Fas ligation does not lead to NF-κB activation 

(figure 4.4a) however in monocytes NF-κB is activated upon Fas ligation and Fas 

ligation in human macrophages stimulates TNF-α production (Park et al., 2003). 

It has been shown in primary human macrophages that interruption of Fas signalling, 

either at the Fas receptor or by expression of dominant-negative FADD, suppresses 

LPS-induced TNF-α secretion.  In the macrophage, LPS signals through the same 
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pathway as in the neutrophil (diagram 4.2).  FADD and MyD88 have death domains 

which promote protein-protein interaction and it was shown in primary macrophages 

that Fas ligation suppressed the interaction of FADD with MyD88 by sequestering 

FADD in the DISC (Ma et al., 2004).  The reverse may be true in neutrophils; 

perhaps MyD88 interacts with FADD preventing it forming the DISC and thus LPS 

inhibits Fas-induced neutrophil apoptosis. 

In rheumatoid arthritis (RA), macrophage number and cytokine expression, including 

TNF-α, strongly correlates with disease symptoms and joint destruction (Feldmann et 

al., 1996; Mulherin et al., 1996; Tak et al., 1997).  In keeping with this, inhibition of 

TNF-α by humanized monoclonal anti-TNF-α antibodies (infliximab) or neutralizing 

anti-TNF-α proteins (etanercept), ameliorate the symptoms and reduce joint 

destruction in RA (Bathon et al., 2000; Lipsky et al., 2000).  This has led to 

widespread use of these agents however the incidence of tuberculosis in treated 

patients has increased four-fold (Wolfe et al., 2004).  Mycobacterium tuberculosis 

finds a haven in macrophages and it is thought, by many in the field, that 

macrophage apoptosis is therefore required to initiate killing of the organism.  As 

this is a TNF-α -dependent process (Rojas et al., 1999), latent TB may become 

reactivated during anti-TNF-α treatment.  However in an animal model of 

immunosuppression-related gram-negative bacteraemia, anti-TNF-α treatment 

reduced circulating bioactive TNF-α but failed to reduce organ damage and mortality 

(Lechner et al., 1997).  It would be interesting to know why anti-TNF-α therapies 

have proved successful in rheumatoid arthritis, Crohn�s disease and inflammatory 

ocular diseases but so far have not shown benefit in pulmonary disorders including 

ARDS and sarcoidosis.  Is this a function of the phenotype of the alveolar 

macrophage? 

Proteomics in comparison to the study of the genome is in its infancy.  At a cellular 

level 2D gel databases for alveolar macrophages and human monocytes have been 

constructed.  This has allowed analysis of protein changes during differentiation and 

also the effect of smoking, on protein levels in alveolar macrophages, has been 

determined (Wu et al., 2005).  There is also increasing interest in the use of 

proteomics to find markers of disease.  In the field of respiratory medicine, 2D gel 
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electrophoresis has been used to examine differential protein expression in lung 

biopsies and samples from patients with cystic fibrosis, idiopathic pulmonary 

fibrosis, mesothelioma, asbestosis, hypersensitivity pneumonitis and acute lung 

injury (Lenz et al., 1993; Lindahl et al., 1996; Wattiez et al., 2000; Griese et al., 

2001; Bowler et al., 2003).  In idiopathic pulmonary fibrosis and hypersensitivity 

pneumonitis while there was a relative decrease in the quantity of surfactant-A, there 

was a relative increase in transferrin, transthyretin, α1-antitrypsin and 

immunoglobulin (Wattiez et al., 2000).  In cystic fibrosis patients there was a relative 

increase in α1-antitrypsin and lower molecular weight isoforms of surfactant-A 

(Griese et al., 2001).  In acute lung injury, as expected, due to loss of the alveolar-

capillary barrier, there was leakage of high molecular weight proteins such as 

albumin, transferrin and immunoglobulin into the BALF.  As there is loss of type II 

pneumocyte function in ALI, there was also a relative decrease in surfactant-A.  

Acute phase proteins such as serum amyloid A were increased.  Interestingly these 

investigators found that another acute phase protein orosomucoid was post-

translationally modified in ALI and putatively it may reduce neutrophil inflammation 

by binding E-selectin and P-selectin (Bowler et al., 2003). 

In summary, it would appear that TNF-α is important in the interaction between 

inflammatory neutrophils and macrophages.  In rodents, membrane-bound TNF-α is 

required for macrophages to induce neutrophil apoptosis however in a human in vitro 

system, we have shown that soluble TNF-α is important.  However alveolar 

macrophages have specialized to optimize their function for operating in a unique 

microenvironment.  It would therefore be interesting to study, in vitro and in vivo, the 

interaction between neutrophils and alveolar macrophages.  
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Figure 5.1. THP-1 and Neutrophil (PMN) Co-culture. 
 
THP-1 (1x106/ml) in RPMI and 10% Fbs adhered to fibronectin in 12-well plates and were 
stimulated with PMA (1ng/ml) for 24h.  Cells were washed and cultured for 24h in RPMI 
and 10% Fbs before stimulation with LPS (1µg/ml).  PMN (2x106/ml) were cultured with 
THP-1 (THP), LPS-stimulated THP-1 (L.THP.CM), LPS-stimulated THP-1 washed, with 
fresh media (LTHP.FM), control PMN (PMN) and PMN with conditioned media transferred 
from LPS-stimulated THP-1 (PMN.CM).  PMN apoptosis was assessed by Annexin V.  All 
values represent mean + SEM of n = 3 experiments; each performed in duplicate. *p<0.05. 
(a) THP-1 cells were stimulated with LPS for 4 hours. (b) THP-1 cells were stimulated with 
LPS for 20 hours and PMN apoptosis assessed after 4 and 8 hours incubation. 
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Figure 5.2. The effect on neutrophil (PMN) apoptosis of conditioned 
supernatants from LPS-stimulated human peripheral blood-derived 
macrophages (HDM) 
 
(a) Human peripheral blood-derived mononuclear cells (4x106/ml) differentiated in 48 well-
plates (IMDM with 10% AS) for 5 days, were stimulated with LPS (1µg/ml) for 20h.  The 
conditioned supernatants (CM) were fractionated through 50kD Centricon filters.  PMN 
(2x106/ml) were cultured in the 48-well plates with IMDM + conditioned supernatants for 4 
hours.  Apoptosis assessed by morphology (n=3). ***p<0.001. (b) HDMCs (4x106/ml) were 
differentiated in 48-well plates with IMDM and 10% autologous serum (serum) or 
macrophage serum-free medium supplemented with GM-CSF (500U/ml) for 5 days.  They 
were trypsinized and the cells were labelled with anti-CD64 (1:50), anti-DR (1:50), 3G8 
(1:50), My4 (1:50) and isotype control antibodies.  Binding was assessed by flow cytometry 
as described in the methods. 
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Figure 5.3. The effects of fractionation of the conditioned supernatants from 
LPS-stimulated HDM 

(a) Human peripheral blood-derived mononuclear cells (4x106/ml) were differentiated in 48 
well-plates in serum (IMDM with 10% AS) or serum-free conditions (Macrophage-SFM 
with GM-CSF (500U/ml) for 5 days and stimulated for 20 hours with LPS (1µg/ml) + 10% 
autologous serum (AS) or lipopolysaccharide-binding protein (LBP) (15.9µg/ml).  The 
conditioned supernatants (CM) were fractionated through 50kD Centricon filters.  PMN 
(2x106/ml) were incubated in 48-well plates with IMDM + conditioned supernatants for 4 
hours.  Apoptosis was assessed by morphology (n=2). (b) 2D electrophoresis of the 
conditioned supernatants was carried out as described in the methods.  This is a 
representative blot (n=2). 
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Figure 5.4. The effect of phagocytosis of aged human neutrophils by HDM. 

 

Human peripheral blood-derived mononuclear cells (4x106/ml) differentiated in 48 well-
plates (IMDM with 10% AS) for 5 days, were cultured for 20h + LPS (1µg/ml) + aged 
neutrophils (PMN (4x106/ml) in IMDM and 10% AS which had been incubated overnight) 
(Apop.PMN).  The supernatants were removed and centrifuged to remove cellular debris.  
(a) A cytokine bead assay was used to determine concentrations of various inflammatory 
cytokines in these supernatants as described in the methods. (b) PMN (2x106/ml) in IMDM 
and 10% AS were incubated with the supernatants for 4 hours and apoptosis assessed by 
morphology (n=3). 
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Figure 5.5. TNF-α, CM from LPS-stimulated HDM and neutrophil apoptosis 

(a) PMN (2x106/ml) in IMDM and 10% AS were pre-incubated with varying concentrations of anti-
human TNF-α antibody in a shaking water bath for 1 hour.  They were then incubated, in 96 well-
plates, with recombinant human TNF-α (50ng/ml) for 4 hours and apoptosis assessed by Annexin V 
(n=2).  (b) HDMCs (4x106/ml) differentiated in 48 well-plates (IMDM with 10% AS) for 5 days, were 
stimulated for 20h with LPS (1µg/ml).  The conditioned supernatants (CM) were harvested.  PMN 
(2x106/ml) in IMDM and 10% AS were pre-incubated with IMDM + anti-human TNF-α antibody 
(3µg/ml) or ZB4 (500ng/ml) in a shaking water bath for 1 hour.  They were then incubated, in 96 
well-plates, + IMDM or conditioned supernatant (CM) or heat-inactivated CM for 4 hours and 
apoptosis assessed by morphology (n=3, **p<0.01, *** p<0.001).  (c) PMN (2x106/ml) in IMDM and 
10% AS were incubated with CM for varying time points and apoptosis assessed by morphology 
(n=1). 
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Chapter 6 
 

General Discussion 

 

The alveolar milieu and the activation state of the neutrophil are important 

determinants of neutrophil apoptosis.  Inflammatory neutrophils from LPS treated 

rats were found to be resistant to the induction of apoptosis by anti-Fas antibody 

(Watson et al., 1997).  These studies have also shown in vitro that the inflammatory 

mediators fMLP, lipopolysaccharide (LPS) and GM-CSF inhibited Fas-induced 

neutrophil apoptosis by a mechanism independent of the ERK pathway.  At early 

time points, the LPS-inhibition of Fas-induced neutrophil apoptosis did not appear to 

involve the, PI3-kinase or PKC pathways but this inhibition may be partially 

mediated by p38 MAPK and NF-κB.  The natural prostaglandin metabolite, 

15dPGJ2, is an NF-κB inhibitor (Ward et al., 2002) and in vitro, these studies 

confirmed that 15dPGJ2 attenuated the LPS-mediated inhibition of Fas-induced 

neutrophil apoptosis and associated caspase-8 degradation.  Our studies of signalling 

pathways were limited by only using kinase inhibitors.  Although these inhibitors are 

widely used in scientific studies, their specificity for a particular enzyme is never 

100% (Davies et al., 2000).  Therefore these inhibitors should only be used as fishing 

tools and further work, using immunoblot analysis of phosphorylation of individual 

kinases and/or direct kinase assays, is required to elucidate whether individual 

signalling pathways are indeed involved.  In studying these pathways, it is also 

important to be aware of each inhibitors� mechanism of action.  As SB203580 is a 

competitive inhibitor of the ATP-binding site on p38 MAPK, it does not affect the 

phosphorylation of p38 MAPK but affects phosphorylation of its downstream target 

heat shock protein 27 (HSP27) (Cuenda et al., 1995).    

Consistent with this observation, 15dPGJ2 was shown to have a protective role in a 

carageenin model of ALI, (Mochizuki et al., 2005).  However, in a LPS model of 

ALI, although 15dPGJ2 reduced NF-κB activation, 15dPGJ2 enhanced lung injury 

(Inoue et al., 2003).  In endoxaemia-induced ALI, inflammatory neutrophils show 
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increased NF-κB activation compared to peripheral blood neutrophils which leads to 

their expression of pro-inflammatory mediators including IL-1β, IL-8 and TNF-α 

(Shenkar and Abraham, 1999).  In contrast to 15dPGJ2, in a LPS model of ALI, anti-

oxidants have been shown to suppress NF-κB activation and subsequent neutrophilic 

inflammation (Blackwell et al., 1996). 

In neutrophils, p38 MAPK partially mediated the anti-apoptotic effect of LPS on 

Fas-induced neutrophil apoptosis.  In murine models, inhibition of p38 MAPK prior 

to haemorrhagic shock or endotoxaemia, did not decrease lung injury (Arcaroli et al., 

2001) whereas systemic administration of a p38 MAPK inhibitor after intra-tracheal 

LPS reduced neutrophilic inflammation in the lung (Nick et al., 2000).  In humans, a 

p38 MAPK inhibitor has also prevented the deleterious effects of endotoxaemia 

(Branger et al., 2002). 

In studies of the Fas/FasL pathway, the most commonly used activating anti-Fas 

antibody is CH-11.  We found that the potency of individual batches of CH-11 

decreased over time even despite aliquoting the antibody to reduce freeze/thaw 

cycles.  Therefore a single experiment was repeated over a short period to minimize 

this effect.  This observation explains the wide variation in the apoptosis-inducing 

effect of CH-11 seen in our studies.  However there was less inter-subject variation 

in the neutrophil response to CH-11 unlike the large inter-subject variation in 

neutrophil response to TNF-α which other groups have found (Walmsley et al., 

2004). 

The inhibitory effect of LPS was prevented if the Fas-signalling pathway was first 

activated.  We have been unable to dissect the signalling pathways involved using a 

modified immunoprecipitation technique however the adapter molecule cFLIP is a 

potential candidate.  In acute lung injury, contrary to our hypothesis, other groups 

have now shown that the Fas/FasL pathway actually has a pro- rather than anti-

inflammatory role.  In a murine model, intratracheal instillation of a Fas-activating 

antibody induced neutrophilic lung inflammation.  There are several reasons why 

activation of the Fas/FasL pathway may be pro-inflammatory in vivo.  As well as 

inducing apoptosis, in human airway epithelial cells and human monocyte-derived 
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macrophages, Fas can activate NF-κB leading to secretion of pro-inflammatory 

cytokines including IL-8 (Hagimoto et al., 1999; Park et al., 2003).  The soluble 

form of FasL (sFasL) is also chemotactic for neutrophils and induces apoptosis in 

distal lung epithelial cells (Matute-Bello et al., 1999).  However a recent study 

suggests that the Fas-expressing alveolar epithelium appears to be the primary target 

in this model (Matute-Bello et al., 2005).  In patients with ALI/ARDS the expression 

of Fas/FasL is also upregulated in lung tissue (Albertine et al., 2002).  The lung 

injury induced by Fas/FasL can be ameliorated by the analogue of the natural FasL 

antagonist, decoy receptor 3 (Wortinger et al., 2003).  After haemorrhagic shock and 

sepsis, Fas-small interfering RNA (siRNA) but not caspase-8 siRNA, reduced the 

extent of lung injury including pulmonary epithelial cell apoptosis and neutrophilic 

inflammation (Perl et al., 2005).  Thus Fas-small interfering RNA (siRNA) might be 

a novel treatment for sepsis-induced ALI (Wesche et al., 2005). 

In the lung, the alveolar macrophage is not only important in bacterial phagocytosis, 

it also phagocytoses apoptotic neutrophils and is important in regulating the cytokine 

profile of the alveolar milieu.  We have shown that LPS-activated monocyte-derived 

macrophages induce neutrophil apoptosis at early time points due to their production 

of soluble TNF-α.  We have also confirmed that these LPS-activated macrophages 

which have phagocytosed apoptotic neutrophils downregulate their production of 

pro-inflammatory cytokines such that their conditioned supernatants are no longer 

able to induce neutrophil apoptosis.  In quiescent macrophages, phagocytoses of 

apoptotic neutrophils appears to stimulate FasL expression and their conditioned 

supernatants containing sFasL induce neutrophil apoptosis at later time points than 

studied here (Brown and Savill, 1999).  We found that Fas/FasL was not involved in 

the neutrophil apoptosis induced by LPS-activated monocyte-derived macrophages at 

early time points.  The cellular microenvironment may also be important in 

determining the pattern of cytokines released by LPS-activated macrophages and 

also their effect on neutrophil apoptosis.  In rat alveolar macrophages cultured in 

vitro, increasing the CO2 concentration decreased early TNF-α release (Lang et al., 

2005). It would be interesting to investigate the response of human alveolar 

macrophages under different culture conditions. 
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Elegant proteomic studies have not only shown how alveolar macrophages differ 

from their precursor blood monocytes but also how they differ in various lung 

diseases (Wu et al., 2005).  In ARDS, alveolar macrophages have been phenotyped 

and whilst there was no evidence of resident alveolar macrophage proliferation, early 

BALF samples showed abundant monocyte-like alveolar macrophages associated 

with elevated MCP-1 levels.  In patients who demonstrated less lung injury manifest 

by better gas exchange, MCP-1 levels declined earlier associated with a switch in the 

BALF from the predominance of monocyte-like alveolar macrophages to the mature 

alveolar macrophage phenotype (Rosseau et al., 2000).  In studying alveolar 

macrophages in vitro, mimicking their lung microenvironment is important.  For 

example, human alveolar macrophages have only been shown to express nitric oxide 

synthase type-2 (NOS2) when co-cultured with human alveolar type-II epithelial 

cells in the presence of IFN-γ.  Surfactant protein A (SP-A) is also important for 

alveolar macrophage function however its production of nitric oxide appeared to be 

independent of SP-A  (Pechkovsky et al., 2002).  Future work would therefore 

involve the study of human alveolar macrophages from different stages of ARDS, in 

the presence of different cytokines and to examine the effect of co-culture with 

human alveolar type-II epithelial cells.  

There are many large randomised clinical control trials investigating management 

options in the treatment of sepsis, ALI and ARDS.  In severe sepsis, recombinant 

activated protein C (rhAPC) has been shown to improve mortality (Ely et al., 2003).  

As well as being a natural anticoagulant, inhibiting activated factor V and VIII of the 

clotting cascade, activated protein C also has anti-inflammatory properties including 

inhibition of neutrophil adhesion to vascular endothelium (Uchiba et al., 1996) and 

reduction in LPS-stimulated production of TNF-α by monocytes (Grey et al., 1994).  

Recently the effect of rhAPC on neutrophil function after LPS has been instilled in a 

human lung segment was determined.  Neutrophil accumumation in response to 

endobronchial LPS was reduced and isolated blood and BALF neutrophils showed 

reduced chemotaxis in response to IL-8 in vitro.  Neutrophil function was otherwise 

normal in these healthy volunteers treated with rhAPC (Nick et al., 2004).  However 
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the main anti-inflammatory effect of rhAPC in sepsis is probably due to decreased 

endothelial cell stimulation. 

Mortality in ARDS has improved.  Lung protective ventilation strategies are now 

universally applied in the management of patients with ALI (ARDS, 2000).  The 

aetiology of ventilator-induced lung injury has largely been determined in the 

laboratory.  Application of physical forces to cultured alveolar epithelial cells 

stimulates production of cytokines, chemokines and other inflammatory mediators 

(Dreyfuss and Saumon, 1998).  A conservative strategy to fluid management has also 

proved beneficial in improving lung function and central nervous system function but 

there was no benefit in mortality (Wiedemann et al., 2006).  No benefit from prone 

ventilation or treatment with recombinant surfactant has been shown (Spragg et al., 

2004; Fan et al., 2005). 

In summary, we, like others, have refuted the earlier findings of FasL expression on 

neutrophils and the Fas/FasL pathway does not appear to be important in 

spontaneous neutrophil apoptosis.  At inflammatory sites, neutrophils are unlikely to 

be susceptible to Fas-induced apoptosis as inflammatory mediators inhibit Fas-

induced neutrophil apoptosis in vitro.  Furthermore there are many studies suggesting 

that activation of the Fas/FasL pathway on non-myeloid cells in the lung appears to 

be pro-inflammatory.  Cross-talk between intracellular survival and death pathways 

in the neutrophil and the role of cFLIPs is worthy of further study.  The use of small 

interfering RNA in the field of medical therapeutics is rapidly developing and these 

pathways are attractive targets to enhance neutrophil apoptosis in the inflamed lung.  

Further elucidation of the interaction between the alveolar macrophage and 

neutrophil at different time points in the course of acute lung injury may also lead to 

development of different therapeutic strategies. 



Bibliography 

  113

Bibliography 

 

Abraham E, Carmody A, Shenkar R and Arcaroli J. Neutrophils as early immunologic 
effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol 
Lung Cell Mol Physiol. 2000; 279: L1137-45. 

Akgul C, Moulding DA and Edwards SW. Molecular control of neutrophil apoptosis. 
FEBS Lett. 2001; 487: 318-22. 

Albelda SM, Smith CW and Ward PA. Adhesion molecules and inflammatory injury. 
Faseb J. 1994; 8: 504-12. 

Albertine KH, Soulier MF, Wang Z, Ishizaka A, Hashimoto S, Zimmerman GA et al. 
Fas and Fas ligand are up-regulated in pulmonary edema fluid and lung tissue of 
patients with acute lung injury and the acute respiratory distress syndrome. Am J 
Pathol. 2002; 161: 1783-1796. 

Alessi DR, Cuenda A, Cohen P, Dudley DT and Saltiel AR. PD 098059 is a specific 
inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in 
vivo. J Biol Chem. 1995; 270: 27489-94. 

Allenbach C, Zufferey C, Perez C, Launois P, Mueller C and Tacchini-Cottier F. 
Macrophages induce neutrophil apoptosis through membrane TNF, a process 
amplified by Leishmania major. J Immunol. 2006; 176: 6656-64. 

Alvarado-Kristensson M and Andersson T. Protein phosphatase 2A regulates 
apoptosis in neutrophils by dephosphorylating both p38 MAPK and its substrate 
caspase 3. J Biol Chem. 2005; 280: 6238-44. 

Alvarado-Kristensson M, Porn-Ares MI, Grethe S, Smith D, Zheng L and Andersson 
T. p38 Mitogen-activated protein kinase and phosphatidylinositol 3-kinase activities 
have opposite effects on human neutrophil apoptosis. Faseb J. 2002; 16: 129-31. 

Anderson DC, Schmalstieg FC, Shearer W, Becker-Freeman K, Kohl S, Smith CW et 
al. Leukocyte LFA-1, OKM1, p150,95 deficiency syndrome: functional and 
biosynthetic studies of three kindreds. Fed Proc. 1985; 44: 2671-7. 

Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ 
et al. Spontaneous murine lupus-like syndromes. Clinical and immunopathological 
manifestations in several strains. J Exp Med. 1978; 148: 1198-215. 



Bibliography 

  114

Arcaroli J, Yum HK, Kupfner J, Park JS, Yang KY and Abraham E. Role of p38 
MAP kinase in the development of acute lung injury. Clin Immunol. 2001; 101: 211-
9. 

ARDS. Ventilation with lower tidal volumes as compared with traditional tidal 
volumes for acute lung injury and the acute respiratory distress syndrome. The Acute 
Respiratory Distress Syndrome Network. N Engl J Med. 2000; 342: 1301-8. 

Arndt PG, Suzuki N, Avdi NJ, Malcolm KC and Worthen GS. Lipopolysaccharide-
induced c-Jun NH2-terminal kinase activation in human neutrophils: role of 
phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem. 2004; 279: 
10883-91. 

Ashkenazi A and Dixit VM. Apoptosis control by death and decoy receptors. Curr 
Opin Cell Biol. 1999; 11: 255-60. 

Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study 
of monocyte-macrophage differentiation. Experientia. 1991; 47: 22-31. 

Azoulay E, Darmon M, Delclaux C, Fieux F, Bornstain C, Moreau D et al. 
Deterioration of previous acute lung injury during neutropenia recovery. Crit Care 
Med. 2002; 30: 781-6. 

Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC et al. 
A comparison of etanercept and methotrexate in patients with early rheumatoid 
arthritis. N Engl J Med. 2000; 343: 1586-93. 

Baumann R, Casaulta C, Simon D, Conus S, Yousefi S and Simon HU. Macrophage 
migration inhibitory factor delays apoptosis in neutrophils by inhibiting the 
mitochondria-dependent death pathway. Faseb J. 2003; 17: 2221-30. 

Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A and Duke RC. A role for 
CD95 ligand in preventing graft rejection. Nature. 1995; 377: 630-2. 

Bellingan GJ, Caldwell H, Howie SE, Dransfield I and Haslett C. In vivo fate of the 
inflammatory macrophage during the resolution of inflammation: inflammatory 
macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol. 
1996; 157: 2577-85. 

Berclaz PY, Shibata Y, Whitsett JA and Trapnell BC. GM-CSF, via PU.1, regulates 
alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma -
mediated molecular connection between innate and adaptive immunity in the lung. 
Blood. 2002; 100: 4193-200. 



Bibliography 

  115

Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S et al. Death effector 
domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-
induced apoptosis. Proc Natl Acad Sci U S A. 1997; 94: 1172-6. 

Bettinardi A, Brugnoni D, Quiros-Roldan E, Malagoli A, La Grutta S, Correra A et al. 
Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative 
syndrome: a molecular and immunological analysis. Blood. 1997; 89: 902-9. 

Bevilacqua MP and Nelson RM. Selectins. J Clin Invest. 1993; 91: 379-87. 

Bilyk N and Holt PG. Cytokine modulation of the immunosuppressive phenotype of 
pulmonary alveolar macrophage populations. Immunology. 1995; 86: 231-7. 

Blackwell TS, Blackwell TR, Holden EP, Christman BW and Christman JW. In vivo 
antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic 
lung inflammation. J Immunol. 1996; 157: 1630-7. 

Boas FE, Forman L and Beutler E. Phosphatidylserine exposure and red cell viability 
in red cell aging and in hemolytic anemia. Proc Natl Acad Sci U S A. 1998; 95: 3077-
81. 

Boldin MP, Goncharov TM, Goltsev YV and Wallach D. Involvement of MACH, a 
novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced 
cell death. Cell. 1996; 85: 803-15. 

Borregaard N and Cowland JB. Granules of the human neutrophilic 
polymorphonuclear leukocyte. Blood. 1997; 89: 3503-21. 

Bossi G and Griffiths GM. Degranulation plays an essential part in regulating cell 
surface expression of Fas ligand in T cells and natural killer cells. Nat Med. 1999; 5: 
90-6. 

Boulay F, Tardif M, Brouchon L and Vignais P. The human N-formylpeptide 
receptor. Characterization of two cDNA isolates and evidence for a new subfamily of 
G-protein-coupled receptors. Biochemistry. 1990; 29: 11123-33. 

Bowler RP, Velsor LW, Duda B, Chan ED, Abraham E, Ware LB et al. Pulmonary 
edema fluid antioxidants are depressed in acute lung injury. Crit Care Med. 2003; 31: 
2309-15. 



Bibliography 

  116

Brach MA, deVos S, Gruss HJ and Herrmann F. Prolongation of survival of human 
polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor 
is caused by inhibition of programmed cell death. Blood. 1992; 80: 2920-4. 

Branger J, van den Blink B, Weijer S, Madwed J, Bos CL, Gupta A et al. Anti-
inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during 
human endotoxemia. J Immunol. 2002; 168: 4070-7. 

Breton-Gorius J and Reyes F. Ultrastructure of human bone marrow cell maturation. 
Int Rev Cytol. 1976; 46: 251-321. 

Brigham KL and Meyrick B. Endotoxin and lung injury. Am Rev Respir Dis. 1986; 
133: 913-27. 

Brown SB and Savill J. Phagocytosis triggers macrophage release of Fas ligand and 
induces apoptosis of bystander leukocytes. J Immunol. 1999; 162: 480-5. 

Buendia B, Santa-Maria A and Courvalin JC. Caspase-dependent proteolysis of 
integral and peripheral proteins of nuclear membranes and nuclear pore complex 
proteins during apoptosis. J Cell Sci. 1999; 112 ( Pt 11): 1743-53. 

Burns AR, Smith CW and Walker DC. Unique structural features that influence 
neutrophil emigration into the lung. Physiol Rev. 2003; 83: 309-36. 

Cederholm A, Svenungsson E, Jensen-Urstad K, Trollmo C, Ulfgren AK, 
Swedenborg J et al. Decreased binding of annexin v to endothelial cells: a potential 
mechanism in atherothrombosis of patients with systemic lupus erythematosus. 
Arterioscler Thromb Vasc Biol. 2005; 25: 198-203. 

Chen JJ, Sun Y and Nabel GJ. Regulation of the proinflammatory effects of Fas 
ligand (CD95L). Science. 1998; 282: 1714-7. 

Chinnaiyan AM, O'Rourke K, Tewari M and Dixit VM. FADD, a novel death 
domain-containing protein, interacts with the death domain of Fas and initiates 
apoptosis. Cell. 1995; 81: 505-12. 

Clark RA. Activation of the neutrophil respiratory burst oxidase. J Infect Dis. 1999; 
179 Suppl 2: S309-17. 

Colotta F, Re F, Polentarutti N, Sozzani S and Mantovani A. Modulation of 
granulocyte survival and programmed cell death by cytokines and bacterial products. 
Blood. 1992; 80: 2012-20. 



Bibliography 

  117

Cowburn AS, Cadwallader KA, Reed BJ, Farahi N and Chilvers ER. Role of PI3-
kinase-dependent Bad phosphorylation and altered transcription in cytokine-mediated 
neutrophil survival. Blood. 2002; 100: 2607-16. 

Cronstein BN and Weissmann G. The adhesion molecules of inflammation. Arthritis 
Rheum. 1993; 36: 147-57. 

Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF et al. SB 203580 is a 
specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses 
and interleukin-1. FEBS Lett. 1995; 364: 229-33. 

Daigle I, Yousefi S, Colonna M, Green DR and Simon HU. Death receptors bind 
SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nat Med. 
2002; 8: 61-7. 

Dang PM, Rais S, Hakim J and Perianin A. Redistribution of protein kinase C 
isoforms in human neutrophils stimulated by formyl peptides and phorbol myristate 
acetate. Biochem Biophys Res Commun. 1995; 212: 664-72. 

Davies SP, Reddy H, Caivano M and Cohen P. Specificity and mechanism of action 
of some commonly used protein kinase inhibitors. Biochem J. 2000; 351: 95-105. 

Davis PD, Hill CH, Lawton G, Nixon JS, Wilkinson SE, Hurst SA et al. Inhibitors of 
protein kinase C. 1. 2,3-Bisarylmaleimides. J Med Chem. 1992; 35: 177-84. 

DeLamarter JF. Hemopoietic colony stimulating factors. A physiological and 
pharmacological role in fighting infection? Biochem Pharmacol. 1988; 37: 3057-62. 

Dewald B, Bretz U and Baggiolini M. Exocytosis induced in neutrophils by 
chemotactic agents and other stimuli. Agents Actions Suppl. 1983; 12: 371-82. 

Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schoni MH, Blaser K et al. Cytokine-
mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general 
mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci U S A. 
1999; 96: 13330-5. 

Doerfler ME, Danner RL, Shelhamer JH and Parrillo JE. Bacterial 
lipopolysaccharides prime human neutrophils for enhanced production of leukotriene 
B4. J Clin Invest. 1989; 83: 970-7. 



Bibliography 

  118

Doerschuk CM, Tasaka S and Wang Q. CD11/CD18-dependent and -independent 
neutrophil emigration in the lungs: how do neutrophils know which route to take? Am 
J Respir Cell Mol Biol. 2000; 23: 133-6. 

Donnelly SC, Strieter RM, Reid PT, Kunkel SL, Burdick MD, Armstrong I et al. The 
association between mortality rates and decreased concentrations of interleukin-10 
and interleukin-1 receptor antagonist in the lung fluids of patients with the adult 
respiratory distress syndrome. Ann Intern Med. 1996; 125: 191-6. 

Doyle NA, Bhagwan SD, Meek BB, Kutkoski GJ, Steeber DA, Tedder TF et al. 
Neutrophil margination, sequestration, and emigration in the lungs of L-selectin-
deficient mice. J Clin Invest. 1997; 99: 526-33. 

Dransfield I, Buckle AM, Savill JS, McDowall A, Haslett C and Hogg N. Neutrophil 
apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J 
Immunol. 1994; 153: 1254-63. 

Dransfield I, Stocks SC and Haslett C. Regulation of cell adhesion molecule 
expression and function associated with neutrophil apoptosis. Blood. 1995; 85: 3264-
73. 

Dreyfuss D and Ricard JD. Acute lung injury and bacterial infection. Clin Chest Med. 
2005; 26: 105-12. 

Dreyfuss D and Saumon G. Ventilator-induced lung injury: lessons from experimental 
studies. Am J Respir Crit Care Med. 1998; 157: 294-323. 

Earnshaw WC, Martins LM and Kaufmann SH. Mammalian caspases: structure, 
activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999; 68: 
383-424. 

Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacterial host 
defense. J Leukoc Biol. 1998; 64: 14-8. 

Elsbach P and Weiss J. Bactericidal/permeability increasing protein and host defense 
against gram-negative bacteria and endotoxin. Curr Opin Immunol. 1993; 5: 103-7. 

Ely EW, Laterre PF, Angus DC, Helterbrand JD, Levy H, Dhainaut JF et al. 
Drotrecogin alfa (activated) administration across clinically important subgroups of 
patients with severe sepsis. Crit Care Med. 2003; 31: 12-9. 



Bibliography 

  119

Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A and Nagata S. A caspase-
activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 
1998; 391: 43-50. 

Evans TJ, Buttery LD, Carpenter A, Springall DR, Polak JM and Cohen J. Cytokine-
treated human neutrophils contain inducible nitric oxide synthase that produces 
nitration of ingested bacteria. Proc Natl Acad Sci U S A. 1996; 93: 9553-8. 

Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY and Henson PM. 
Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory 
cytokine production through autocrine/paracrine mechanisms involving TGF-beta, 
PGE2, and PAF. J Clin Invest. 1998; 101: 890-8. 

Fadok VA, Warner ML, Bratton DL and Henson PM. CD36 is required for 
phagocytosis of apoptotic cells by human macrophages that use either a 
phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol. 
1998; 161: 6250-7. 

Fan E, Needham DM and Stewart TE. Ventilatory management of acute lung injury 
and acute respiratory distress syndrome. Jama. 2005; 294: 2889-96. 

Fecho K, Bentley SA and Cohen PL. Mice deficient in fas ligand (gld) or fas (lpr) 
show few alterations in granulopoiesis. Cell Immunol. 1998; 188: 19-32. 

Feinstein E, Kimchi A, Wallach D, Boldin M and Varfolomeev E. The death domain: 
a module shared by proteins with diverse cellular functions. Trends Biochem Sci. 
1995; 20: 342-4. 

Feldmann M, Brennan FM and Maini RN. Role of cytokines in rheumatoid arthritis. 
Annu Rev Immunol. 1996; 14: 397-440. 

Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F et 
al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine 
protease containing two FADD-like domains. Proc Natl Acad Sci U S A. 1996; 93: 
7464-9. 

Finco TS, Beg AA and Baldwin AS, Jr. Inducible phosphorylation of I kappa B alpha 
is not sufficient for its dissociation from NF-kappa B and is inhibited by protease 
inhibitors. Proc Natl Acad Sci U S A. 1994; 91: 11884-8. 

Frasch SC, Nick JA, Fadok VA, Bratton DL, Worthen GS and Henson PM. p38 
mitogen-activated protein kinase-dependent and -independent intracellular signal 



Bibliography 

  120

transduction pathways leading to apoptosis in human neutrophils. J Biol Chem. 1998; 
273: 8389-97. 

Ganz T, Selsted ME and Lehrer RI. Antimicrobial activity of phagocyte granule 
proteins. Semin Respir Infect. 1986; 1: 107-17. 

Ganz T, Selsted ME and Lehrer RI. Defensins. Eur J Haematol. 1990; 44: 1-8. 

Geissler K, Harrington M, Srivastava C, Leemhuis T, Tricot G and Broxmeyer HE. 
Effects of recombinant human colony stimulating factors (CSF) (granulocyte-
macrophage CSF, granulocyte CSF, and CSF-1) on human monocyte/macrophage 
differentiation. J Immunol. 1989; 143: 140-6. 

Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA and 
Lawrence T. Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings 
about acute inflammatory resolution in rat pleurisy by inducing neutrophil and 
macrophage apoptosis. Faseb J. 2003; 17: 2269-71. 

Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N and Brady HR. Cutting edge: 
lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by 
monocyte-derived macrophages. J Immunol. 2000; 164: 1663-7. 

Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM and 
Wallach D. CASH, a novel caspase homologue with death effector domains. J Biol 
Chem. 1997; 272: 19641-4. 

Gougerot-Podicalo MA, Elbim C and Chollet-Martin S. [Modulation of the oxidative 
burst of human neutrophils by pro- and anti-inflammatory cytokines]. Pathol Biol 
(Paris). 1996; 44: 36-41. 

Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH and Hancock WW. Selective 
inhibitory effects of the anticoagulant activated protein C on the responses of human 
mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immunol. 1994; 
153: 3664-72. 

Griese M, von Bredow C and Birrer P. Reduced proteolysis of surfactant protein A 
and changes of the bronchoalveolar lavage fluid proteome by inhaled alpha 1-protease 
inhibitor in cystic fibrosis. Electrophoresis. 2001; 22: 165-71. 

Griffith TS, Brunner T, Fletcher SM, Green DR and Ferguson TA. Fas ligand-induced 
apoptosis as a mechanism of immune privilege. Science. 1995; 270: 1189-92. 



Bibliography 

  121

Griswold DE, Webb E, Schwartz L and Hanna N. Arachidonic acid-induced 
inflammation: inhibition by dual inhibitor of arachidonic acid metabolism, SK&F 
86002. Inflammation. 1987; 11: 189-99. 

Gschwendt M, Muller HJ, Kielbassa K, Zang R, Kittstein W, Rincke G et al. 
Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun. 1994; 199: 
93-8. 

Hagimoto N, Kuwano K, Kawasaki M, Yoshimi M, Kaneko Y, Kunitake R et al. 
Induction of interleukin-8 secretion and apoptosis in bronchiolar epithelial cells by 
Fas ligation. Am J Respir Cell Mol Biol. 1999; 21: 436-45. 

Hahne M, Peitsch MC, Irmler M, Schroter M, Lowin B, Rousseau M et al. 
Characterization of the non-functional Fas ligand of gld mice. Int Immunol. 1995; 7: 
1381-6. 

Hallett MB and Lloyds D. Neutrophil priming: the cellular signals that say 'amber' but 
not 'green'. Immunol Today. 1995; 16: 264-8. 

Hart SP, Haslett C and Dransfield I. Recognition of apoptotic cells by phagocytes. 
Experientia. 1996; 52: 950-6. 

Hart SP, Ross JA, Ross K, Haslett C and Dransfield I. Molecular characterization of 
the surface of apoptotic neutrophils: implications for functional downregulation and 
recognition by phagocytes. Cell Death Differ. 2000; 7: 493-503. 

Haslett C. Resolution of acute inflammation and the role of apoptosis in the tissue fate 
of granulocytes. Clin Sci (Lond). 1992; 83: 639-48. 

Haslett C. Granulocyte apoptosis and inflammatory disease. Br Med Bull. 1997; 53: 
669-83. 

Hawes BE, Luttrell LM, van Biesen T and Lefkowitz RJ. Phosphatidylinositol 3-
kinase is an early intermediate in the G beta gamma-mediated mitogen-activated 
protein kinase signaling pathway. J Biol Chem. 1996; 271: 12133-6. 

Heflin AC, Jr. and Brigham KL. Prevention by granulocyte depletion of increased 
vascular permeability of sheep lung following endotoxemia. J Clin Invest. 1981; 68: 
1253-60. 



Bibliography 

  122

Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y and Baeuerle PA. Rapid 
proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-
kappa B. Nature. 1993; 365: 182-5. 

Hidari KI, Weyrich AS, Zimmerman GA and McEver RP. Engagement of P-selectin 
glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-
activated protein kinases in human neutrophils. J Biol Chem. 1997; 272: 28750-6. 

Hirschfeld M, Ma Y, Weis JH, Vogel SN and Weis JJ. Cutting edge: repurification of 
lipopolysaccharide eliminates signaling through both human and murine toll-like 
receptor 2. J Immunol. 2000; 165: 618-22. 

Hofmann K and Tschopp J. The death domain motif found in Fas (Apo-1) and TNF 
receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett. 
1995; 371: 321-3. 

Hogg JC and Walker BA. Polymorphonuclear leucocyte traffic in lung inflammation. 
Thorax. 1995; 50: 819-20. 

Holt PG. Inhibitory activity of unstimulated alveolar macrophages on T-lymphocyte 
blastogenic response. Am Rev Respir Dis. 1978; 118: 791-3. 

Holt PG. Macrophage: dendritic cell interaction in regulation of the IgE response in 
asthma. Clin Exp Allergy. 1993; 23: 4-6. 

Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP 
and Roos D. Human neutrophils lose their surface Fc gamma RIII and acquire 
Annexin V binding sites during apoptosis in vitro. Blood. 1995; 85: 532-40. 

Hong S, Gronert K, Devchand PR, Moussignac RL and Serhan CN. Novel 
docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine 
brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 
2003; 278: 14677-87. 

Hu M, Lin X, Du Q, Miller EJ, Wang P and Simms HH. Regulation of 
polymorphonuclear leukocyte apoptosis: role of lung endothelium-epithelium bilayer 
transmigration. Am J Physiol Lung Cell Mol Physiol. 2005; 288: L266-74. 

Hu S, Vincenz C, Buller M and Dixit VM. A novel family of viral death effector 
domain-containing molecules that inhibit both CD-95- and tumor necrosis factor 
receptor-1-induced apoptosis. J Biol Chem. 1997; 272: 9621-4. 



Bibliography 

  123

Hunter T. Signaling--2000 and beyond. Cell. 2000; 100: 113-27. 

Hussain N, Wu F, Zhu L, Thrall RS and Kresch MJ. Neutrophil apoptosis during the 
development and resolution of oleic acid-induced acute lung injury in the rat. Am J 
Respir Cell Mol Biol. 1998; 19: 867-74. 

Inohara N, Koseki T, Hu Y, Chen S and Nunez G. CLARP, a death effector domain-
containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad 
Sci U S A. 1997; 94: 10717-22. 

Inoue K, Takano H, Yanagisawa R, Morita M, Ichinose T, Sadakane K et al. Effect of 
15-deoxy-delta 12,14-prostaglandin J2 on acute lung injury induced by 
lipopolysaccharide in mice. Eur J Pharmacol. 2003; 481: 261-9. 

Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al. Inhibition 
of death receptor signals by cellular FLIP. Nature. 1997; 388: 190-5. 

Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M et al. The 
polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate 
apoptosis. Cell. 1991; 66: 233-43. 

Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A et al. Differential 
expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral 
blood lymphocytes, monocytes, and neutrophils. Blood. 1994; 84: 1201-8. 

Iwase M, Kondo G, Watanabe H, Takaoka S, Uchida M, Ohashi M et al. Regulation 
of Fas-mediated apoptosis in neutrophils after surgery-induced acute inflammation. J 
Surg Res. 2006; 134: 114-23. 

Jaber BL, Perianayagam MC, Balakrishnan VS, King AJ and Pereira BJ. Mechanisms 
of neutrophil apoptosis in uremia and relevance of the Fas (APO-1, CD95)/Fas ligand 
system. J Leukoc Biol. 2001; 69: 1006-12. 

Jackson DE. The unfolding tale of PECAM-1. FEBS Lett. 2003; 540: 7-14. 

Jacobs RF, Kiel DP and Balk RA. Alveolar macrophage function in a canine model of 
endotoxin-induced lung injury. Am Rev Respir Dis. 1986; 134: 745-51. 

Jiang C, Ting AT and Seed B. PPAR-gamma agonists inhibit production of monocyte 
inflammatory cytokines. Nature. 1998; 391: 82-6. 



Bibliography 

  124

Kang SM, Hoffmann A, Le D, Springer ML, Stock PG and Blau HM. Immune 
response and myoblasts that express Fas ligand. Science. 1997; 278: 1322-4. 

Kang SM, Lin Z, Ascher NL and Stock PG. Fas ligand expression on islets as well as 
multiple cell lines results in accelerated neutrophilic rejection. Transplant Proc. 1998; 
30: 538. 

Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG et al. Fas ligand 
expression in islets of Langerhans does not confer immune privilege and instead 
targets them for rapid destruction. Nat Med. 1997; 3: 738-43. 

Karnovsky ML. Metchnikoff in Messina: a century of studies on phagocytosis. N Engl 
J Med. 1981; 304: 1178-80. 

Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M et al. The caspase-8 
inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr 
Biol. 2000; 10: 640-8. 

Kayagaki N, Kawasaki A, Ebata T, Ohmoto H, Ikeda S, Inoue S et al. 
Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995; 182: 
1777-83. 

Kent JD, Sergeant S, Burns DJ and McPhail LC. Identification and regulation of 
protein kinase C-delta in human neutrophils. J Immunol. 1996; 157: 4641-7. 

Kerr JF, Wyllie AH and Currie AR. Apoptosis: a basic biological phenomenon with 
wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239-57. 

Kettritz R, Falk RJ, Jennette JC and Gaido ML. Neutrophil superoxide release is 
required for spontaneous and FMLP-mediated but not for TNF alpha-mediated 
apoptosis. J Am Soc Nephrol. 1997; 8: 1091-100. 

Khwaja A and Tatton L. Caspase-mediated proteolysis and activation of protein 
kinase Cdelta plays a central role in neutrophil apoptosis. Blood. 1999; 94: 291-301. 

Kiener PA, Davis PM, Rankin BM, Klebanoff SJ, Ledbetter JA, Starling GC et al. 
Human monocytic cells contain high levels of intracellular Fas ligand: rapid release 
following cellular activation. J Immunol. 1997; 159: 1594-8. 

Kiener PA, Davis PM, Starling GC, Mehlin C, Klebanoff SJ, Ledbetter JA et al. 
Differential induction of apoptosis by Fas-Fas ligand interactions in human 
monocytes and macrophages. J Exp Med. 1997; 185: 1511-6. 



Bibliography 

  125

Kilgour E, Gout I and Anderson NG. Requirement for phosphoinositide 3-OH kinase 
in growth hormone signalling to the mitogen-activated protein kinase and p70s6k 
pathways. Biochem J. 1996; 315 ( Pt 2): 517-22. 

Kim JS, Kim JM, Jung HC, Song IS and Kim CY. Inhibition of apoptosis in human 
neutrophils by Helicobacter pylori water-soluble surface proteins. Scand J 
Gastroenterol. 2001; 36: 589-600. 

Kirchhoff S, Muller WW, Krueger A, Schmitz I and Krammer PH. TCR-mediated up-
regulation of c-FLIPshort correlates with resistance toward CD95-mediated apoptosis 
by blocking death-inducing signaling complex activity. J Immunol. 2000; 165: 6293-
300. 

Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. 
Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing 
signaling complex (DISC) with the receptor. Embo J. 1995; 14: 5579-88. 

Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P et al. Death 
receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence 
of caspase-8. J Biol Chem. 2001; 276: 46639-46. 

Kitagawa Y, Van Eeden SF, Redenbach DM, Daya M, Walker BA, Klut ME et al. 
Effect of mechanical deformation on structure and function of polymorphonuclear 
leukocytes. J Appl Physiol. 1997; 82: 1397-405. 

Kitamura T, Tanaka N, Watanabe J, Uchida, Kanegasaki S, Yamada Y et al. 
Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing 
antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 
1999; 190: 875-80. 

Klein JB, Buridi A, Coxon PY, Rane MJ, Manning T, Kettritz R et al. Role of 
extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in 
chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cell Signal. 2001; 
13: 335-43. 

Klein JB, Rane MJ, Scherzer JA, Coxon PY, Kettritz R, Mathiesen JM et al. 
Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive 
apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase 
pathways. J Immunol. 2000; 164: 4286-91. 

Komada Y, Inaba H, Li QS, Azuma E, Zhou YW, Yamamoto H et al. Epitopes and 
functional responses defined by a panel of anti-Fas (CD95) monoclonal antibodies. 
Hybridoma. 1999; 18: 391-8. 



Bibliography 

  126

Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K et al. Caspase-3-
generated fragment of gelsolin: effector of morphological change in apoptosis. 
Science. 1997; 278: 294-8. 

Kotone-Miyahara Y, Yamashita K, Lee K-K, Yonehara S, Uchiyama T, Sasada M et 
al. Short-term delay of Fas-stimulated apoptosis by GM-CSF as a result of temporary 
suppression of FADD recruitment in neutrophils: evidence implicating 
phosphatidylinositol 3-kinase and MEK1-ERK1/2 pathways downstream of classical 
protein kinase C. J Leukoc Biol. 2004; 76: 1047-1056. 

Krammer PH. CD95's deadly mission in the immune system. Nature. 2000; 407: 789-
95. 

Kuebler WM, Borges J, Sckell A, Kuhnle GE, Bergh K, Messmer K et al. Role of L-
selectin in leukocyte sequestration in lung capillaries in a rabbit model of 
endotoxemia. Am J Respir Crit Care Med. 2000; 161: 36-43. 

Lang CJ, Dong P, Hosszu EK and Doyle IR. Effect of CO2 on LPS-induced cytokine 
responses in rat alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2005; 
289: L96-L103. 

Laufe MD, Simon RH, Flint A and Keller JB. Adult respiratory distress syndrome in 
neutropenic patients. Am J Med. 1986; 80: 1022-6. 

Lawrence E, Van Eeden S, English D and Hogg JC. Polymorphonuclear leukocyte 
(PMN) migration in streptococcal pneumonia: comparison of older PMN with those 
recently released from the marrow. Am J Respir Cell Mol Biol. 1996; 14: 217-24. 

Lechner AJ, Johanns CA and Matuschak GM. A recombinant tumor necrosis factor-
alpha p80 receptor:Fc fusion protein decreases circulating bioactive tumor necrosis 
factor-alpha but not lung injury or mortality during immunosuppression-related gram-
negative bacteremia. J Crit Care. 1997; 12: 28-38. 

Lee A, Whyte MK and Haslett C. Inhibition of apoptosis and prolongation of 
neutrophil functional longevity by inflammatory mediators. J Leukoc Biol. 1993; 54: 
283-8. 

Lekstrom-Himes JA and Gallin JI. Immunodeficiency diseases caused by defects in 
phagocytes. N Engl J Med. 2000; 343: 1703-14. 

Lenz AG, Meyer B, Costabel U and Maier K. Bronchoalveolar lavage fluid proteins 
in human lung disease: analysis by two-dimensional electrophoresis. Electrophoresis. 
1993; 14: 242-4. 



Bibliography 

  127

Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD et al. 
Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive 
treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 
Meningococcal Sepsis Study Group. Lancet. 2000; 356: 961-7. 

LeVine AM, Reed JA, Kurak KE, Cianciolo E and Whitsett JA. GM-CSF-deficient 
mice are susceptible to pulmonary group B streptococcal infection. J Clin Invest. 
1999; 103: 563-9. 

Levy BD, Clish CB, Schmidt B, Gronert K and Serhan CN. Lipid mediator class 
switching during acute inflammation: signals in resolution. Nat Immunol. 2001; 2: 
612-9. 

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. 
Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates 
an apoptotic protease cascade. Cell. 1997; 91: 479-89. 

Liles WC, Kiener PA, Ledbetter JA, Aruffo A and Klebanoff SJ. Differential 
expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications 
for the regulation of apoptosis in neutrophils. J Exp Med. 1996; 184: 429-40. 

Liles WC, Ledbetter JA, Waltersdorph AW and Klebanoff SJ. Cross-linking of CD18 
primes human neutrophils for activation of the respiratory burst in response to specific 
stimuli: implications for adhesion-dependent physiological responses in neutrophils. J 
Leukoc Biol. 1995; 58: 690-7. 

Lindahl M, Ekstrom T, Sorensen J and Tagesson C. Two dimensional protein patterns 
of bronchoalveolar lavage fluid from non-smokers, smokers, and subjects exposed to 
asbestos. Thorax. 1996; 51: 1028-35. 

Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR et 
al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor 
Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study 
Group. N Engl J Med. 2000; 343: 1594-602. 

Liu SF, Ye X and Malik AB. In vivo inhibition of nuclear factor-kappa B activation 
prevents inducible nitric oxide synthase expression and systemic hypotension in a rat 
model of septic shock. J Immunol. 1997; 159: 3976-83. 

Liu X, Zou H, Slaughter C and Wang X. DFF, a heterodimeric protein that functions 
downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997; 
89: 175-84. 



Bibliography 

  128

Lu B, Wang L, Medan D, Toledo D, Huang C, Chen F et al. Regulation of Fas 
(CD95)-induced apoptosis by nuclear factor-kappaB and tumor necrosis factor-alpha 
in macrophages. Am J Physiol Cell Physiol. 2002; 283: C831-8. 

Lucas M, Stuart LM, Savill J and Lacy-Hulbert A. Apoptotic cells and innate immune 
stimuli combine to regulate macrophage cytokine secretion. J Immunol. 2003; 171: 
2610-5. 

Ma Y, Liu H, Tu-Rapp H, Thiesen HJ, Ibrahim SM, Cole SM et al. Fas ligation on 
macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic 
inflammation. Nat Immunol. 2004; 5: 380-7. 

MacIvor DM, Shapiro SD, Pham CT, Belaaouaj A, Abraham SN and Ley TJ. Normal 
neutrophil function in cathepsin G-deficient mice. Blood. 1999; 94: 4282-93. 

Maianski NA, Mul FP, van Buul JD, Roos D and Kuijpers TW. Granulocyte colony-
stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in 
neutrophils. Blood. 2002; 99: 672-9. 

Maianski NA, Roos D and Kuijpers TW. Tumor necrosis factor alpha induces a 
caspase-independent death pathway in human neutrophils. Blood. 2003; 101: 1987-95. 

Majewska E, Sulowska Z and Baj Z. Spontaneous apoptosis of neutrophils in whole 
blood and its relation to apoptosis gene proteins. Scand J Immunol. 2000; 52: 496-
501. 

Majumdar S, Rossi MW, Fujiki T, Phillips WA, Disa S, Queen CF et al. Protein 
kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a 
translocatable calcium- and phospholipid-dependent beta-protein kinase C and a 
phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl 
coenzyme A. J Biol Chem. 1991; 266: 9285-94. 

Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A et al. Novel 
docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and 
pro-inflammatory gene expression. J Biol Chem. 2003; 278: 43807-17. 

Martin TR, Rubenfeld GD, Ruzinski JT, Goodman RB, Steinberg KP, Leturcq DJ et 
al. Relationship between soluble CD14, lipopolysaccharide binding protein, and the 
alveolar inflammatory response in patients with acute respiratory distress syndrome. 
Am J Respir Crit Care Med. 1997; 155: 937-44. 



Bibliography 

  129

Martinez-Lorenzo MJ, Alava MA, Anel A, Pineiro A and Naval J. Release of 
preformed Fas ligand in soluble form is the major factor for activation-induced death 
of Jurkat T cells. Immunology. 1996; 89: 511-7. 

Martinez-Lorenzo MJ, Anel A, Gamen S, Monle n I, Lasierra P, Larrad L et al. 
Activated human T cells release bioactive Fas ligand and APO2 ligand in 
microvesicles. J Immunol. 1999; 163: 1274-81. 

Matute-Bello G, Lee JS, Liles WC, Frevert CW, Mongovin S, Wong V et al. Fas-
mediated acute lung injury requires fas expression on nonmyeloid cells of the lung. J 
Immunol. 2005; 175: 4069-75. 

Matute-Bello G, Liles WC, Radella F, 2nd, Steinberg KP, Ruzinski JT, Jonas M et al. 
Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit 
Care Med. 1997; 156: 1969-77. 

Matute-Bello G, Liles WC, Steinberg KP, Kiener PA, Mongovin S, Chi EY et al. 
Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury 
(ARDS). J Immunol. 1999; 163: 2217-25. 

Maus U, Huwe J, Ermert L, Ermert M, Seeger W and Lohmeyer J. Molecular 
pathways of monocyte emigration into the alveolar air space of intact mice. Am J 
Respir Crit Care Med. 2002; 165: 95-100. 

Maus UA, Koay MA, Delbeck T, Mack M, Ermert M, Ermert L et al. Role of resident 
alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. 
Am J Physiol Lung Cell Mol Physiol. 2002; 282: L1245-52. 

McDonald PP, Bald A and Cassatella MA. Activation of the NF-kappaB pathway by 
inflammatory stimuli in human neutrophils. Blood. 1997; 89: 3421-33. 

Mecklenburgh K, Murray J, Brazil T, Ward C, Rossi AG and Chilvers ER. Role of 
neutrophil apoptosis in the resolution of pulmonary inflammation. Monaldi Arch 
Chest Dis. 1999; 54: 345-9. 

Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH et al. 
FLICE is activated by association with the CD95 death-inducing signaling complex 
(DISC). Embo J. 1997; 16: 2794-804. 

Meszaros AJ, Reichner JS and Albina JE. Macrophage-induced neutrophil apoptosis. 
J Immunol. 2000; 165: 435-41. 



Bibliography 

  130

Mincheff M, Loukinov D, Zoubak S, Hammett M and Meryman H. Fas and Fas 
ligand expression on human peripheral blood leukocytes. Vox Sang. 1998; 74: 113-21. 

Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. 
Trends Microbiol. 2004; 12: 186-92. 

Mizgerd JP, Horwitz BH, Quillen HC, Scott ML and Doerschuk CM. Effects of CD18 
deficiency on the emigration of murine neutrophils during pneumonia. J Immunol. 
1999; 163: 995-9. 

Mizgerd JP, Meek BB, Kutkoski GJ, Bullard DC, Beaudet AL and Doerschuk CM. 
Selectins and neutrophil traffic: margination and Streptococcus pneumoniae-induced 
emigration in murine lungs. J Exp Med. 1996; 184: 639-45. 

Mochizuki M, Ishii Y, Itoh K, Iizuka T, Morishima Y, Kimura T et al. Role of 15-
deoxy delta(12,14) prostaglandin J2 and Nrf2 pathways in protection against acute 
lung injury. Am J Respir Crit Care Med. 2005; 171: 1260-6. 

Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS et al. P-selectin 
glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol. 
1995; 128: 661-71. 

Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G et al. Loss of 
integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent 
emphysema. Nature. 2003; 422: 169-73. 

Mulherin D, Fitzgerald O and Bresnihan B. Synovial tissue macrophage populations 
and articular damage in rheumatoid arthritis. Arthritis Rheum. 1996; 39: 115-24. 

Muller WA, Weigl SA, Deng X and Phillips DM. PECAM-1 is required for 
transendothelial migration of leukocytes. J Exp Med. 1993; 178: 449-60. 

Munford RS and Pugin J. Normal responses to injury prevent systemic inflammation 
and can be immunosuppressive. Am J Respir Crit Care Med. 2001; 163: 316-21. 

Murphy BM, O'Neill AJ, Adrain C, Watson RW and Martin SJ. The apoptosome 
pathway to caspase activation in primary human neutrophils exhibits dramatically 
reduced requirements for cytochrome C. J Exp Med. 2003; 197: 625-32. 

Murray J, Barbara JA, Dunkley SA, Lopez AF, Van Ostade X, Condliffe AM et al. 
Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for 
TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997; 90: 2772-83. 



Bibliography 

  131

Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. 
FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the 
CD95 (Fas/APO-1) death--inducing signaling complex. Cell. 1996; 85: 817-27. 

Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000; 256: 12-8. 

Nagata S and Suda T. Fas and Fas ligand: lpr and gld mutations. Immunol Today. 
1995; 16: 39-43. 

Nathan CF and Hibbs JB, Jr. Role of nitric oxide synthesis in macrophage 
antimicrobial activity. Curr Opin Immunol. 1991; 3: 65-70. 

Nick JA, Avdi NJ, Gerwins P, Johnson GL and Worthen GS. Activation of a p38 
mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J 
Immunol. 1996; 156: 4867-75. 

Nick JA, Avdi NJ, Young SK, Knall C, Gerwins P, Johnson GL et al. Common and 
distinct intracellular signaling pathways in human neutrophils utilized by platelet 
activating factor and FMLP. J Clin Invest. 1997; 99: 975-86. 

Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC et al. Selective 
activation and functional significance of p38alpha mitogen-activated protein kinase in 
lipopolysaccharide-stimulated neutrophils. J Clin Invest. 1999; 103: 851-8. 

Nick JA, Avdi NJ, Young SK, McDonald PP, Billstrom MA, Henson PM et al. An 
intracellular signaling pathway linking lipopolysaccharide stimulation to cellular 
responses of the human neutrophil: the p38 MAP kinase cascade and its functional 
significance. Chest. 1999; 116: 54S-55S. 

Nick JA, Coldren CD, Geraci MW, Poch KR, Fouty BW, O'Brien J et al. 
Recombinant human activated protein C reduces human endotoxin-induced 
pulmonary inflammation via inhibition of neutrophil chemotaxis. Blood. 2004; 104: 
3878-85. 

Nick JA, Young SK, Brown KK, Avdi NJ, Arndt PG, Suratt BT et al. Role of p38 
mitogen-activated protein kinase in a murine model of pulmonary inflammation. J 
Immunol. 2000; 164: 2151-9. 

Nishimura H, Gogami A, Miyagawa Y, Nanbo A, Murakami Y, Baba T et al. 
Bactericidal/permeability-increasing protein promotes complement activation for 
neutrophil-mediated phagocytosis on bacterial surface. Immunology. 2001; 103: 519-
25. 



Bibliography 

  132

Nogare AR and Yarbrough WC, Jr. A comparison of the effects of intact and 
deacylated lipopolysaccharide on human polymorphonuclear leukocytes. J Immunol. 
1990; 144: 1404-10. 

Nolan B, Duffy A, Paquin L, De M, Collette H, Graziano CM et al. Mitogen-activated 
protein kinases signal inhibition of apoptosis in lipopolysaccharide-stimulated 
neutrophils. Surgery. 1999; 126: 406-12. 

Nwakoby IE, Reddy K, Patel P, Shah N, Sharma S, Bhaskaran M et al. Fas-mediated 
apoptosis of neutrophils in sera of patients with infection. Infect Immun. 2001; 69: 
3343-9. 

Orlinick JR, Elkon KB and Chao MV. Separate domains of the human fas ligand 
dictate self-association and receptor binding. J Biol Chem. 1997; 272: 32221-9. 

Ottonello L, Frumento G, Arduino N, Bertolotto M, Dapino P, Mancini M et al. 
Differential regulation of spontaneous and immune complex-induced neutrophil 
apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3. J 
Leukoc Biol. 2002; 72: 125-32. 

Ottonello L, Tortolina G, Amelotti M and Dallegri F. Soluble Fas ligand is 
chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol. 1999; 
162: 3601-6. 

Oyaizu N, Adachi Y, Hashimoto F, McCloskey TW, Hosaka N, Kayagaki N et al. 
Monocytes express Fas ligand upon CD4 cross-linking and induce CD4+ T cells 
apoptosis: a possible mechanism of bystander cell death in HIV infection. J Immunol. 
1997; 158: 2456-63. 

Padgett EL and Pruett SB. Rat, mouse and human neutrophils stimulated by a variety 
of activating agents produce much less nitrite than rodent macrophages. Immunology. 
1995; 84: 135-41. 

Paine R, 3rd, Morris SB, Jin H, Wilcoxen SE, Phare SM, Moore BB et al. Impaired 
functional activity of alveolar macrophages from GM-CSF-deficient mice. Am J 
Physiol Lung Cell Mol Physiol. 2001; 281: L1210-8. 

Paine R, 3rd, Preston AM, Wilcoxen S, Jin H, Siu BB, Morris SB et al. Granulocyte-
macrophage colony-stimulating factor in the innate immune response to Pneumocystis 
carinii pneumonia in mice. J Immunol. 2000; 164: 2602-9. 

Palsson-McDermott EM and O'Neill LA. Signal transduction by the 
lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004; 113: 153-62. 



Bibliography 

  133

Park DR, Thomsen AR, Frevert CW, Pham U, Skerrett SJ, Kiener PA et al. Fas 
(CD95) Induces Proinflammatory Cytokine Responses by Human Monocytes and 
Monocyte-Derived Macrophages. J Immunol. 2003; 170: 6209-6216. 

Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella F, Park DR et al. 
Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am 
J Respir Crit Care Med. 2001; 164: 1896-903. 

Pechkovsky DV, Zissel G, Stamme C, Goldmann T, Ari Jaffe H, Einhaus M et al. 
Human alveolar epithelial cells induce nitric oxide synthase-2 expression in alveolar 
macrophages. Eur Respir J. 2002; 19: 672-83. 

Perl M, Chung CS, Lomas-Neira J, Rachel TM, Biffl WL, Cioffi WG et al. Silencing 
of Fas, but not caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, 
inflammation, and neutrophil influx after hemorrhagic shock and sepsis. Am J Pathol. 
2005; 167: 1545-59. 

Peter ME and Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death 
Differ. 2003; 10: 26-35. 

Pongracz J, Webb P, Wang K, Deacon E, Lunn OJ and Lord JM. Spontaneous 
neutrophil apoptosis involves caspase 3-mediated activation of protein kinase C-delta. 
J Biol Chem. 1999; 274: 37329-34. 

Ponton A, Clement MV and Stamenkovic I. The CD95 (APO-1/Fas) receptor 
activates NF-kappaB independently of its cytotoxic function. J Biol Chem. 1996; 271: 
8991-5. 

Ramsdell F, Seaman MS, Miller RE, Tough TW, Alderson MR and Lynch DH. 
gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol. 1994; 
24: 928-33. 

Rao L, Perez D and White E. Lamin proteolysis facilitates nuclear events during 
apoptosis. J Cell Biol. 1996; 135: 1441-55. 

Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL et al. Cell 
death attenuation by 'Usurpin', a mammalian DED-caspase homologue that precludes 
caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. 
Cell Death Differ. 1998; 5: 271-88. 

Reed JC, Zha H, Aime-Sempe C, Takayama S and Wang HG. Structure-function 
analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med 
Biol. 1996; 406: 99-112. 



Bibliography 

  134

Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al. Killing 
activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 
2002; 416: 291-7. 

Renshaw SA, Parmar JS, Singleton V, Rowe SJ, Dockrell DH, Dower SK et al. 
Acceleration of human neutrophil apoptosis by TRAIL. J Immunol. 2003; 170: 1027-
33. 

Renshaw SA, Timmons SJ, Eaton V, Usher LR, Akil M, Bingle CD et al. 
Inflammatory neutrophils retain susceptibility to apoptosis mediated via the Fas death 
receptor. J Leukoc Biol. 2000; 67: 662-8. 

Ricote M, Li AC, Willson TM, Kelly CJ and Glass CK. The peroxisome proliferator-
activated receptor-gamma is a negative regulator of macrophage activation. Nature. 
1998; 391: 79-82. 

Rojas M, Olivier M, Gros P, Barrera LF and Garcia LF. TNF-alpha and IL-10 
modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in 
murine macrophages. J Immunol. 1999; 162: 6122-31. 

Rosen H and Klebanoff SJ. Hydroxyl radical generation by polymorphonuclear 
leukocytes measured by electron spin resonance spectroscopy. J Clin Invest. 1979; 64: 
1725-9. 

Rosseau S, Hammerl P, Maus U, Walmrath HD, Schutte H, Grimminger F et al. 
Phenotypic characterization of alveolar monocyte recruitment in acute respiratory 
distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2000; 279: L25-35. 

Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M et al. Anti-inflammatory 
cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 2000; 
403: 103-8. 

Rowe SJ, Allen L, Ridger VC, Hellewell PG and Whyte MK. Caspase-1-deficient 
mice have delayed neutrophil apoptosis and a prolonged inflammatory response to 
lipopolysaccharide-induced acute lung injury. J Immunol. 2002; 169: 6401-7. 

Rudel T and Bokoch GM. Membrane and morphological changes in apoptotic cells 
regulated by caspase-mediated activation of PAK2. Science. 1997; 276: 1571-4. 

Sabroe I, Jones EC, Usher LR, Whyte MK and Dower SK. Toll-like receptor (TLR)2 
and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in 
leukocyte lipopolysaccharide responses. J Immunol. 2002; 168: 4701-10. 



Bibliography 

  135

Sabroe I, Prince LR, Jones EC, Horsburgh MJ, Foster SJ, Vogel SN et al. Selective 
roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil 
activation and life span. J Immunol. 2003; 170: 5268-75. 

Sakahira H, Enari M and Nagata S. Cleavage of CAD inhibitor in CAD activation and 
DNA degradation during apoptosis. Nature. 1998; 391: 96-9. 

Sallenave JM. Antimicrobial activity of antiproteinases. Biochem Soc Trans. 2002; 
30: 111-5. 

Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM and Haslett C. 
Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell 
death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989; 
83: 865-75. 

Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M et al. 
Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. 
Biochem Soc Trans. 2004; 32: 679-81. 

Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, Assi LK et al. 
Reactive oxygen species limit neutrophil life span by activating death receptor 
signaling. Blood. 2004; 104: 2557-64. 

Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A et al. Conversion of 
membrane-bound Fas(CD95) ligand to its soluble form is associated with 
downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med. 1998; 
187: 1205-13. 

Schumann RR. Function of lipopolysaccharide (LPS)-binding protein (LBP) and 
CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol. 1992; 143: 
11-5. 

Schutte H, Lohmeyer J, Rosseau S, Ziegler S, Siebert C, Kielisch H et al. 
Bronchoalveolar and systemic cytokine profiles in patients with ARDS, severe 
pneumonia and cardiogenic pulmonary oedema. Eur Respir J. 1996; 9: 1858-1867. 

Seger R and Krebs EG. The MAPK signaling cascade. Faseb J. 1995; 9: 726-35. 

Seino K, Kayagaki N, Okumura K and Yagita H. Antitumor effect of locally produced 
CD95 ligand. Nat Med. 1997; 3: 165-70. 



Bibliography 

  136

Sengelov H, Follin P, Kjeldsen L, Lollike K, Dahlgren C and Borregaard N. 
Mobilization of granules and secretory vesicles during in vivo exudation of human 
neutrophils. J Immunol. 1995; 154: 4157-65. 

Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G et al. Resolvins: 
a family of bioactive products of omega-3 fatty acid transformation circuits initiated 
by aspirin treatment that counter proinflammation signals. J Exp Med. 2002; 196: 
1025-37. 

Serhan CN, Maddox JF, Petasis NA, Akritopoulou-Zanze I, Papayianni A, Brady HR 
et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of 
human neutrophils. Biochemistry. 1995; 34: 14609-15. 

Shenkar R and Abraham E. Mechanisms of lung neutrophil activation after 
hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and 
cyclic AMP response element binding protein. J Immunol. 1999; 163: 954-62. 

Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA and Trapnell BC. GM-
CSF regulates alveolar macrophage differentiation and innate immunity in the lung 
through PU.1. Immunity. 2001; 15: 557-67. 

Shu HB, Halpin DR and Goeddel DV. Casper is a FADD- and caspase-related inducer 
of apoptosis. Immunity. 1997; 6: 751-63. 

Siler TM, Swierkosz JE, Hyers TM, Fowler AA and Webster RO. Immunoreactive 
interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with 
the adult respiratory distress syndrome. Exp Lung Res. 1989; 15: 881-94. 

Simon SI, Cherapanov V, Nadra I, Waddell TK, Seo SM, Wang Q et al. Signaling 
functions of L-selectin in neutrophils: alterations in the cytoskeleton and 
colocalization with CD18. J Immunol. 1999; 163: 2891-901. 

Smallwood JI and Malawista SE. Protein kinase C isoforms in human neutrophil 
cytoplasts. J Leukoc Biol. 1992; 51: 84-92. 

Smith D, Sieg S and Kaplan D. Technical note: Aberrant detection of cell surface Fas 
ligand with anti-peptide antibodies. J Immunol. 1998; 160: 4159-60. 

Spragg RG, Lewis JF, Walmrath HD, Johannigman J, Bellingan G, Laterre PF et al. 
Effect of recombinant surfactant protein C-based surfactant on the acute respiratory 
distress syndrome. N Engl J Med. 2004; 351: 884-92. 



Bibliography 

  137

Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA and Walczak H. 
Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-
inducing signalling complexes in a FADD-dependent manner but can not functionally 
substitute caspase-8. Embo J. 2002; 21: 4520-30. 

Squier MK, Sehnert AJ and Cohen JJ. Apoptosis in leukocytes. J Leukoc Biol. 1995; 
57: 2-10. 

Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y et al. FLAME-1, a 
novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced 
apoptosis. J Biol Chem. 1997; 272: 18542-5. 

Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S et al. Expression of the Fas 
ligand in cells of T cell lineage. J Immunol. 1995; 154: 3806-13. 

Suda T, Takahashi T, Golstein P and Nagata S. Molecular cloning and expression of 
the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993; 75: 
1169-78. 

Suter PM, Suter S, Girardin E, Roux-Lombard P, Grau GE and Dayer JM. High 
bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, 
interferon, and elastase, in patients with adult respiratory distress syndrome after 
trauma, shock, or sepsis. Am Rev Respir Dis. 1992; 145: 1016-22. 

Tak PP, Smeets TJ, Daha MR, Kluin PM, Meijers KA, Brand R et al. Analysis of the 
synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease 
activity. Arthritis Rheum. 1997; 40: 217-25. 

Takabayshi K, Corr M, Hayashi T, Redecke V, Beck L, Guiney D et al. Induction of a 
homeostatic circuit in lung tissue by microbial compounds. Immunity. 2006; 24: 475-
87. 

Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T et al. 
Generalized lymphoproliferative disease in mice, caused by a point mutation in the 
Fas ligand. Cell. 1994; 76: 969-76. 

Takano T, Clish CB, Gronert K, Petasis N and Serhan CN. Neutrophil-mediated 
changes in vascular permeability are inhibited by topical application of aspirin-
triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J Clin Invest. 
1998; 101: 819-26. 

Tanaka M, Itai T, Adachi M and Nagata S. Downregulation of Fas ligand by 
shedding. Nat Med. 1998; 4: 31-6. 



Bibliography 

  138

Tanaka M, Suda T, Takahashi T and Nagata S. Expression of the functional soluble 
form of human fas ligand in activated lymphocytes. Embo J. 1995; 14: 1129-35. 

Territo MC and Cline MJ. Mononuclear phagocyte proliferation, maturation and 
function. Clin Haematol. 1975; 4: 685-703. 

Thepen T, Van Rooijen N and Kraal G. Alveolar macrophage elimination in vivo is 
associated with an increase in pulmonary immune response in mice. J Exp Med. 1989; 
170: 499-509. 

Thilenius AR, Braun K and Russell JH. Agonist antibody and Fas ligand mediate 
different sensitivity to death in the signaling pathways of Fas and cytoplasmic 
mutants. Eur J Immunol. 1997; 27: 1108-14. 

Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F et al. Viral 
FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. 
Nature. 1997; 386: 517-21. 

Thorp KM, Verschueren H, De Baetselier P, Southern C and Matthews N. Protein 
kinase C isotype expression and regulation of lymphoid cell motility. Immunology. 
1996; 87: 434-8. 

Traenckner EB, Wilk S and Baeuerle PA. A proteasome inhibitor prevents activation 
of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is 
still bound to NF-kappa B. Embo J. 1994; 13: 5433-41. 

Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W et al. Monoclonal 
antibody-mediated tumor regression by induction of apoptosis. Science. 1989; 245: 
301-5. 

Uchiba M, Okajima K, Murakami K, Johno M, Okabe H and Takatsuki K. 
Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by 
inhibiting leukocyte activation. Am J Physiol. 1996; 271: L470-5. 

Vermes I, Haanen C and Reutelingsperger C. Flow cytometry of apoptotic cell death. 
J Immunol Methods. 2000; 243: 167-90. 

Vignaux F, Vivier E, Malissen B, Depraetere V, Nagata S and Golstein P. TCR/CD3 
coupling to Fas-based cytotoxicity. J Exp Med. 1995; 181: 781-6. 

Villunger A, Egle A, Kos M, Hartmann BL, Geley S, Kofler R et al. Drug-induced 
apoptosis is associated with enhanced Fas (Apo-1/CD95) ligand expression but occurs 



Bibliography 

  139

independently of Fas (Apo-1/CD95) signaling in human T-acute lymphatic leukemia 
cells. Cancer Res. 1997; 57: 3331-4. 

Villunger A, O'Reilly LA, Holler N, Adams J and Strasser A. Fas ligand, Bcl-2, 
granulocyte colony-stimulating factor, and p38 mitogen-activated protein kinase: 
Regulators of distinct cell death and survival pathways in granulocytes. J Exp Med. 
2000; 192: 647-58. 

Vincent F, Eischen A, Bergerat JP, Faradji A, Bohbot A and Oberling F. Human 
blood-derived macrophages: differentiation in vitro of a large quantity of cells in 
serum-free medium. Exp Hematol. 1992; 20: 17-23. 

Vlahos CJ, Matter WF, Brown RF, Traynor-Kaplan AE, Heyworth PG, Prossnitz ER 
et al. Investigation of neutrophil signal transduction using a specific inhibitor of 
phosphatidylinositol 3-kinase. J Immunol. 1995; 154: 2413-22. 

Vlahos CJ, Matter WF, Hui KY and Brown RF. A specific inhibitor of 
phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one 
(LY294002). J Biol Chem. 1994; 269: 5241-8. 

Waddell TK, Fialkow L, Chan CK, Kishimoto TK and Downey GP. Potentiation of 
the oxidative burst of human neutrophils. A signaling role for L-selectin. J Biol Chem. 
1994; 269: 18485-91. 

Wajant H, Pfizenmaier K and Scheurich P. Non-apoptotic Fas signaling. Cytokine 
Growth Factor Rev. 2003; 14: 53-66. 

Walker BA and Ward PA. Priming and signal transduction in neutrophils. Biol 
Signals. 1992; 1: 237-49. 

Walker PR, Saas P and Dietrich PY. Role of Fas ligand (CD95L) in immune escape: 
the tumor cell strikes back. J Immunol. 1997; 158: 4521-4. 

Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV and Boldin 
MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev 
Immunol. 1999; 17: 331-67. 

Walmsley SR, Cowburn AS, Sobolewski A, Murray J, Farahi N, Sabroe I et al. 
Characterization of the survival effect of tumour necrosis factor-alpha in human 
neutrophils. Biochem Soc Trans. 2004; 32: 456-60. 



Bibliography 

  140

Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M et al. Inherited human 
Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in 
autoimmune lymphoproliferative syndrome type II. Cell. 1999; 98: 47-58. 

Wang S, Dangerfield JP, Young RE and Nourshargh S. PECAM-1, alpha6 integrins 
and neutrophil elastase cooperate in mediating neutrophil transmigration. J Cell Sci. 
2005; 118: 2067-76. 

Ward C, Chilvers ER, Lawson MF, Pryde JG, Fujihara S, Farrow SN et al. NF-
kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J 
Biol Chem. 1999; 274: 4309-18. 

Ward C, Dransfield I, Chilvers ER, Haslett C and Rossi AG. Pharmacological 
manipulation of granulocyte apoptosis: potential therapeutic targets. Trends 
Pharmacol Sci. 1999; 20: 503-9. 

Ward C, Dransfield I, Murray J, Farrow SN, Haslett C and Rossi AG. Prostaglandin 
D2 and its metabolites induce caspase-dependent granulocyte apoptosis that is 
mediated via inhibition of I kappa B alpha degradation using a peroxisome 
proliferator-activated receptor-gamma-independent mechanism. J Immunol. 2002; 
168: 6232-43. 

Ward C, Murray J, Clugston A, Dransfield I, Haslett C and Rossi AG. Interleukin-10 
inhibits lipopolysaccharide-induced survival and extracellular signal-regulated kinase 
activation in human neutrophils. Eur J Immunol. 2005; 35: 2728-37. 

Ward PA, Till GO, Kunkel R and Beauchamp C. Evidence for role of hydroxyl 
radical in complement and neutrophil-dependent tissue injury. J Clin Invest. 1983; 72: 
789-801. 

Ware LB and Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 
2000; 342: 1334-1349. 

Warmington KS, Boring L, Ruth JH, Sonstein J, Hogaboam CM, Curtis JL et al. 
Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal 
antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and 
cytokine responses. Am J Pathol. 1999; 154: 1407-16. 

Waskiewicz AJ and Cooper JA. Mitogen and stress response pathways: MAP kinase 
cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol. 
1995; 7: 798-805. 



Bibliography 

  141

Watanabe T, Sakai Y, Miyawaki S, Shimizu A, Koiwai O and Ohno K. A molecular 
genetic linkage map of mouse chromosome 19, including the lpr, Ly-44, and Tdt 
genes. Biochem Genet. 1991; 29: 325-35. 

Watson RW, Redmond HP, Wang JH, Condron C and Bouchier-Hayes D. 
Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol. 
1996; 156: 3986-92. 

Watson RW, Rotstein OD, Parodo J, Jimenez M, Soric I, Bitar R et al. Impaired 
apoptotic death signaling in inflammatory lung neutrophils is associated with 
decreased expression of interleukin-1 beta converting enzyme family proteases 
(caspases). Surgery. 1997; 122: 163-71; discussion 171-2. 

Wattiez R, Hermans C, Cruyt C, Bernard A and Falmagne P. Human bronchoalveolar 
lavage fluid protein two-dimensional database: study of interstitial lung diseases. 
Electrophoresis. 2000; 21: 2703-12. 

Weersink AJ, van Kessel KP, van den Tol ME, van Strijp JA, Torensma R, Verhoef J 
et al. Human granulocytes express a 55-kDa lipopolysaccharide-binding protein on 
the cell surface that is identical to the bactericidal/permeability-increasing protein. J 
Immunol. 1993; 150: 253-63. 

Wesche DE, Lomas-Neira JL, Perl M, Chung CS and Ayala A. Leukocyte apoptosis 
and its significance in sepsis and shock. J Leukoc Biol. 2005; 78: 325-37. 

Wheeler MA, Smith SD, Garcia-Cardena G, Nathan CF, Weiss RM and Sessa WC. 
Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest. 
1997; 99: 110-6. 

Whyte MK, Meagher LC, MacDermot J and Haslett C. Impairment of function in 
aging neutrophils is associated with apoptosis. J Immunol. 1993; 150: 5124-34. 

Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B 
et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J 
Med. 2006; 354: 2564-75. 

Williams MA and Solomkin JS. Integrin-mediated signaling in human neutrophil 
functioning. J Leukoc Biol. 1999; 65: 725-36. 

Williams SE, Brown TI, Roghanian A and Sallenave JM. SLPI and elafin: one glove, 
many fingers. Clin Sci (Lond). 2006; 110: 21-35. 



Bibliography 

  142

Winkelstein JA, Marino MC, Johnston RB, Jr., Boyle J, Curnutte J, Gallin JI et al. 
Chronic granulomatous disease. Report on a national registry of 368 patients. 
Medicine (Baltimore). 2000; 79: 155-69. 

Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P and Halbwachs-Mecarelli L. 
Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000; 
80: 617-53. 

Wolfe F, Michaud K, Anderson J and Urbansky K. Tuberculosis infection in patients 
with rheumatoid arthritis and the effect of infliximab therapy. Arthritis Rheum. 2004; 
50: 372-9. 

Worthen GS, Schwab B, 3rd, Elson EL and Downey GP. Mechanics of stimulated 
neutrophils: cell stiffening induces retention in capillaries. Science. 1989; 245: 183-6. 

Wortinger MA, Foley JW, Larocque P, Witcher DR, Lahn M, Jakubowski JA et al. 
Fas ligand-induced murine pulmonary inflammation is reduced by a stable decoy 
receptor 3 analogue. Immunology. 2003; 110: 225-33. 

Wright SD, Ramos RA, Tobias PS, Ulevitch RJ and Mathison JC. CD14, a receptor 
for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990; 
249: 1431-3. 

Wu HM, Jin M and Marsh CB. Toward functional proteomics of alveolar 
macrophages. Am J Physiol Lung Cell Mol Physiol. 2005; 288: L585-95. 

Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with 
endogenous endonuclease activation. Nature. 1980; 284: 555-6. 

Xing Z, Jordana M, Kirpalani H, Driscoll KE, Schall TJ and Gauldie J. Cytokine 
expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis 
factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-
6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute 
lung inflammation. Am J Respir Cell Mol Biol. 1994; 10: 148-53. 

Yamashita K, Takahashi A, Kobayashi S, Hirata H, Mesner PW, Jr., Kaufmann SH et 
al. Caspases mediate tumor necrosis factor-alpha-induced neutrophil apoptosis and 
downregulation of reactive oxygen production. Blood. 1999; 93: 674-85. 

Yan L, Vandivier RW, Suffredini AF and Danner RL. Human polymorphonuclear 
leukocytes lack detectable nitric oxide synthase activity. J Immunol. 1994; 153: 1825-
34. 



Bibliography 

  143

Yang E, Zha J, Jockel J, Boise LH, Thompson CB and Korsmeyer SJ. Bad, a 
heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. 
Cell. 1995; 80: 285-91. 

Yang KY, Arcaroli J, Kupfner J, Pitts TM, Park JS, Strasshiem D et al. Involvement 
of phosphatidylinositol 3-kinase gamma in neutrophil apoptosis. Cell Signal. 2003; 
15: 225-33. 

Yonehara S, Ishii A and Yonehara M. A cell-killing monoclonal antibody (anti-Fas) 
to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. 
J Exp Med. 1989; 169: 1747-56. 

Yoshida M, Ikegami M, Reed JA, Chroneos ZC and Whitsett JA. GM-CSF regulates 
protein and lipid catabolism by alveolar macrophages. Am J Physiol Lung Cell Mol 
Physiol. 2001; 280: L379-86. 

Young PR, McLaughlin MM, Kumar S, Kassis S, Doyle ML, McNulty D et al. 
Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the 
ATP site. J Biol Chem. 1997; 272: 12116-21. 

Zundel W and Giaccia A. Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by 
stress. Genes Dev. 1998; 12: 1941-6. 
 


