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Abstract

This thesis describes a numerical study of weak matrix elements of the vector 

and axial vector currents relevant to the semi-leptonic and leptonic decays of B 
and D mesons from Lattice QCD. The simulation was performed in Quenched 

QCD on a 243 x 48 lattice at (3 = 6.2. The fermionic degrees of freedom were 

calculated using a non-perturbatively O(a) improved action.

For a pseudoscalar final state in a semi-leptonic decay, only the vector current 

contributes and can be parameterised by two form factors which are functions 

of the momentum transfer squared. The main results for the form factors of the 

decays B —>  ir at zero momentum transfer are;

- 2 sys

The momentum dependence was found to be reasonably modelled by pole domi­ 

nance models. The decay rate for B — >  TT is calculated and compared to experi­ 

ment allowing the CKM matrix element V^b to be extracted,

T/,   n nf)9fi +1 +1 +4Vub — U.UUZU_ 2 stat -3 sys -5 exp

The form factors for D   > K, TT were calculated and the momentum dependence 

was found to be reasonably modelled by pole dominance.

For leptonic decays of pseudoscalar mesons, the axial current is parameterised 

by the decay constant, for B and D decays the results are

IB = H^-l stat til sys MeV 

sysfn = 194+* stat t™7 sys MeV

The soft pion relation for the B meson which relates the ratio fs/f-n- to /uv-imax^ 

is evaluated and found to be substantially violated.
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Errata

In the Abstract, the value for Kb should be

Kb = 0.003612 stat ±1 sys +-l exp.

On page 93, equation (5.20) should be

r _ Q 1+2.7 +3.2 1() 12 - 
|T/ |2 ~~ 3ll -1.8 stat -0.4 sys lu b 
I 'ub|

On page 94, equation (5.23) should be

Kb = 0.0036J* stat ±1 sys +_l exp -
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1, 2, 3, 4] has been in existence 

for 25 years. Based on the gauge group of 577(3) ® 577(2) <g> £7(1), it has had 

remarkable success at predicting phenomena over a huge range of scales. However, 

the SM has in total 19 free parameters, 22 including 2 masses and a mixing 

angle for the neutrinos [5]. This is too many for the theory to be thought of as 

fundamental. Despite the many successes of the SM some of these free parameters 

are not at all well known. In particular some of the quark mixing angles of 

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [6, 7] are amongst the least well 

known.

Our knowledge of some of the CKM matrix elements has large uncertainties 

coming from both experiment and theory, particularly those related to the 6 

quark. The experimental situation is about to be radically altered by the so called 

B-factory experiments, at KEK in Japan and BaBar at SLAC in the USA. This 

wealth of experimental data will make possible the accurate determination of the 

under-determined CKM matrix elements. However, the theoretical predictions 

from the SM must also be accurately known. In addition, some of the processes 

to be measured at the B-factories are sensitive to possible new physics beyond the 

SM. If the SM predictions are known sufficiently accurately then experimental 

deviations can be interpreted as signals of new physics. This thesis is concerned 

with the calculation of physical observables from the SM relevant to the semi-
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leptonic and leptonic decays of B and D mesons.

1.1 The Standard Model

The SM has two groups of particles, the half-integer spin fermions and the integer 

spin bosons. In the SM all the fermions are spin | and come from one of two 

families; quarks which feel the strong interaction, and leptons which do not. This 

pattern is repeated in 3 generations. The bosons are either gauge bosons which 

mediate the interactions, or the scalar Higgs boson. In this section the Glashow- 

Weinberg-Salam model of 577(2)i, ® U(l)y describing the electroweak interaction 

is considered. Quantum Chromodynamics, the 577(3) gauge theory of the strong 

interaction will be discussed in chapter 2.

The Lagrangian density of the electroweak interaction can be divided into 

three additive parts

C = CF + £G + £-H (1-1) 

where F stands for Fermion, G for gauge and H for Higgs.

The gauge boson piece of the Lagrangian is written as

CG = — ~rF^Fa 'J' 1/ — ~rG ̂ G^". (1.2) 4^4^

^ (a = 1,2,3)is the non-abelian 577(2) field strength tensor,Hi>

The Wa are isospin gauge fields, and g^ the coupling constant. The structure 

constant for SU(2) is the Levi-Cevita alternating tensor. Similarly, G^v is the 

field strength tensor for the abelian U(l) gauge group,

G^ = d»Bv - dvBp, (1.4) 

and BH is the weak hyper-charge gauge field.

Consider one generation of chiral fermions where only the left handed fermions 

transform non-trivially under SU(2)i of weak isospin. The fermion fields are

I I 
, UR , dR
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IL =

where it is assumed there is no right-handed neutrino.

Table 1.1: Quantum Numbers in the Standard Model

(1.5)

field/gn

VL
CL
CR
UL
dL
UR

dR

T
i
2
1
2

0
1
2
1 
2

0

0

T3
i
2
1
2

0
1
2
1
2

0

0

Y
-1

-1

_ 2
i
3
1 
3
4 
3
2 
3

ty em

0
-1
-1

2 
3
1
3
2 
3
1 
3

Particle states under SU(I}L®U(\}Y are specified by three quantum numbers, 

T and T3 of the weak isospin group and Y of the weak hyper-charge group. The 

fermion fields are assigned the quantum numbers in table 1.1. The electromag­ 

netic charge Q em is related to the hyper-charge and isospin quantum numbers

by
(1.6)-Y.

The Lagrangian density for the Fermion fields is given by

FL FR

where D^ is the covariant derivative and the sum over F is over all the fermion 

fields. Right-handed fields do not couple to the weak isospin gauge fields, so they 

only couple to the weak hyper-charge through their covariant derivative,

*. (1-8)

The covariant derivative for the left-handed fermions is

(1.9)
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Here the r's are the Pauli matrices, and I the identity matrix and

(i.io)

The third piece of the Lagrangian density is the Higgs sector. The Higgs inter­ 

action splits into two, the Higgs-fermion coupling and the Higgs-gauge coupling. 

Considering the latter, let $ be a complex scalar doublet, where both components 

have hyper-charge 1,
/V\* = ( ; ) (LID

then the Lagrangian density can be written as

CHG = D^D"® - V($). (1.12) 

The potential V($) is given by

V($) = -//2 $ t$ + A($t$) 2 , (1.13) 

and the covariant derivative is given by equation 1.9.

The fermion fields couple to the Higgs field by a Yukawa interaction. The 

Lagrangian density is

- QilL 3>lR + h.c. (1.14) 

where the Q's are the coupling constants and $ is defined as

(1.15)

1.1.1 Spontaneous Symmetry Breaking

Both the fermions and the gauge bosons acquire mass through the spontaneous 

breaking of the 5't/(2)i/ ®t/(l)r symmetry. The ground state Higgs configuration 

can be found by minimising the potential.

0. (1.16)



CHAPTER 1. INTRODUCTION 5

This has two solutions for the vacuum expectation value of the Higgs field. The 

trivial solution {$} = 0 and the non-trivial

where

(L18)
One vacuum expectation value for the Higgs field which satisfies 1.17 is

The Higgs field $ can be substituted by

$(x)->($) + &(x). (1.20) 

Firstly define the charged fields, W±, as

T ± ^2} • (1-21)

The Higgs Lagrangian density then contains the terms

(1.22)

The fermion fields now have masses which are proportional to their Yukawa cou­ 

plings,

mf = -=Qf (1.23)

and the W± fields have acquired a mass of

g^-. (1.24)

What has happened to the neutral fields is not so clear. Two new neutral fields 

can be defined which are linear combinations of the original two;

Z» = W% cos 6W - B» sin 9W (1.25) 

A" = W^sm9w + B^cos9w , (1.26)
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where 0\y is the weak-mixing angle defined as

0i
(1.27)

#2

In particular, if we use equations 1.25 and 1.26 to substitute into equation 1.22, 

the gauge part can be written as

Z"Z, . (1.28)

It can now be seen that the Z field has acquired a mass,

(1.29)
' 2 cos 6~w 

and

Mw = Mz cos 6w (1.30)

These mass terms break the gauge symmetry. Crucially there is no quadratic 

term in the neutral A field, so it has zero mass and that gauge group remains 

unbroken. This field is associated with the photon of electromagnetism, i.e.

SU(I}L <8> U(l)y  ^ U(l) em (1-31)

The interaction of fermion fields with the gauge fields comes through the 

covariant derivative (equation 1.9). Writing the covariant derivative in terms of 

the new fields, W±, Z^, and A* generates the weak and electromagnetic currents.

1.1.2 The CKM Matrix

The CKM matrix arises in the SM because the gauge basis states of the elec- 

troweak interaction are not the mass eigenstates. Generalising the above discus­ 

sion to three generations of quarks and leptons, consider the quark content of the 

electroweak sector in the gauge interaction basis.

+ h.c. (1.32)
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The Q's are now are coupling matrices. The quark fields are now

^ = (dR ,sR ,bR], (1.33)

where u, d,c,s,t,b are flavours of quark. Following Spontaneous Symmetry Break­ 

ing the Lagrangian 1.32 becomes

£qm = — V^M'Vfl — ^M'Vfl + h.C. (1-34)

where

M = -^=Q. (1.35)

and

V>£ = (uL ,cL ,tL )

(1.36)

In general these 3x3 mass matrices are not diagonal. They can be transformed 

to the mass basis where they are diagonal.

The fields can then be transformed, or rotated to the mass basis as follows

4^ 1>'R = R&'n- (1-37) 

The mass matrices then transform as

M/ -+ M;/ = RJLMf R}R . (1.38) 

This implies,

Lqm ^L'qm = -KM'U^ - ffiM'd 1>'R + h.c.

= -tlR[u RlMu R%RuRrR - &id RiMdR R̂ R̂ + h.c.

= - L̂ Mu R̂ -^dLMd^dR + h.c. (1.39)
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where M/jf are the diagonal mass matrices,

0 0 N
Mfu =

mu 
0 

0

mc 0 

0 mt

and M'd =
md 0 0

0 m. 0

0 0 mb /

(1.40)

The differentiation between the mass eigenstate basis and the gauge inter­ 

action basis has no effect until the coupling to the gauge fields is considered. 

Consider the gauge quark coupling in the electroweak sector, in particular the 

charged current.

where J& = J» +

and (1.42)

and similarly for the leptonic current. The current for quarks can be written in 

either basis

= ^PY^. (1.43)

That is the weak interaction sees a linear combination of the 'down type' mass 

eigenstates. ijj"d is,

^dL = Vafjip dg L . (1-44)

This V is the CKM matrix,

VCKM =
vud vus vub
vcd vcs vccb
vtd vts vttb

(1.45)

The unitarity of this matrix plus fermion phase invariance constrains the elements 

such that there are only 4 independent parameters. This matrix is often written 

in the Wolfenstein parameterisation [8]. To O(X4 }

I 1 A 2 \ A \3f „ «^,\ \

V -X

X
1 A2 1 ~ T

AX3 (l-p-iri) -AX2
AX 2 

1

(1.46)
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This takes account oft1- .; hierarchy in the matrix, A ~ 1, A ~ 0.22 (the Cabibbo 

angle), and the two least well known, p and 17. From equations 1.41, 1.43 and 

1.45, the transition b —>  uW~ or 6  t- uW+ is dependent on p and 77.

As the parameters of the CKM matrix are free parameters of the SM, they 

cannot be calculated in the SM. However, if we compute some observable which is 

dependent on the above transition, and measure experimentally that observable, 

the CKM matrix element can be determined.

1.2 Weak Matrix Elements

Calculating the above transitions in the weak interaction is relatively easy as 

they correspond to tree level diagrams (plus radiative corrections). However, 

quarks feel the strong interaction and are bound into hadrons, and this has to 

be accounted for in the calculation of such a transition. Figure 1.1 shows a 

schematic of the decay B°  > TT+/Z//. To calculate, for instance, the decay rate of 

such a transition,

Figure 1.1: B°
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2ERO J (2iv} . , (v __ .

~~ " (1-47)

where the sum over c is over the internal degrees of freedom, we must consider 

the transition amplitude, A.

(1.48) 

where H is the effective Hamiltonian discussed below.

For small momentum transfers (q2 /M^ < 1) then the SU(2)(g>U(l) La- 

grangian (equation 1.41) can be written as an effective Fermi Lagrangian,

'-/&, (1.49) 
yz

where the Fermi constant Gp is

°F 9l . (1.50)

The effective Hamiltonian in equation 1.48 is then

H = -£eff . (1.51)

The transition amplitude can then be written,

A — V, /"t fft^ (^ c^o^,/H — —~i= V U I}-L/ 12 . ^l.U^J

The amplitude A is factorized into purely leptonic and purely hadronic parts, 

where

IP = l(qi}^(l   75 )^(<?2) (1.53)

and

H» = ^+ (k} | J" B°(p)) (1.54)

where JM is the V — A current.

H^ is known as a weak matrix element. The name is something of a misnomer, 

as it describes the non-perturbative strong interaction effects of quarks bound 

together in hadrons. There are several methods for calculating this, and other 

matrix elements. However, this thesis is concerned with calculating this, and 

other weak matrix elements numerically using Lattice Gauge Field theory.
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1.3 Form Factors and Decay Constants

Equation 1.54 is not the only weak matrix element that can be used to extract 

Vub. In general any process that has a 6 quark decaying to a u quark can be used. 

For instance, the matrix element for B° —> p+ l~vi can be calculated. In this 

thesis, only pseudoscalar to pseudoscalar semileptonic transitions are calculated.

The weak matrix element can be parameterised by considering its Lorentz 

transformation properties. Consider the matrix element,

(PF (k) J» Pjtff) = (PF (k] V - A* P/(p)), (1.55) 

where Pi(p)} is the initial pseudoscalar state with momentum p, and (PF (k)\ is 

the final pseudoscalar state with momentum k. Then

PF (k) t
PF (k)\A" Pz (p)) = 0, (1.56)

where q = p — k and
Am2 = m/- m*-. (1.57)

The form factors /+ and /0 are both real, dimensionless functions of the four- 

momentum transfer squared.

The weak matrix element is a strong interaction quantity, and as such it 

contains no information about flavour. The only difference between quarks of 

different flavour in the strong interaction is their mass. Taking advantage of this 

property, several different matrix elements of different decays can be calculated 

by changing one parameter, the mass of the quark. The results presented in this 

thesis are for the decays

D -)  Klv 

D ->  TT/Z/

B -» 7T/f
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Other important weak matrix elements are for the leptonic decays of the 

pseudoscalar and vector mesons, in particular the leptonic decays of B, B*, D 
and D*.

Figure 1.2: B~ ->  lv\

B

Figure 1.2 shows the leptonic decay of a B meson. The decay rate is given by,

X

The amplitude A is

(1.58)

(1.59)

where again H is the effective Hamiltonian 1.51. The transition amplitude can 

again be written as equation 1.52 though the hadronic part of the current is given

by
(1.60)

This weak matrix element can be parameterised by considering the Lorentz 

transformations, as,

Similarly for the vector meson,

0> = £M ^> U- 62 )

where e^ is the polarisation vector of the vector state. Unlike the form factors 

f+(<J2 ) and /o^2 )) tne decay constants fy and fp are not functions of the momen­ 

tum transfer, fp is a dimensionful quantity with dimensions of mass, whereas fy 
is dimensionless. In principle Vuj, could be extracted from these decays as well.



Chapter 2

Numerical Calculations in Lattice 
QCD

2.1 QCD

Quantum Chromodynamics is the gauge field theory of the strong interaction. 

It is defined in terms of fundamental constituents, quarks and gluons. However 

the observed spectrum of states is made up of composite particles, mesons and 

baryons. To compute this spectrum one requires a non-perturbative approach. In 

this chapter I shall present a brief review of Lattice QCD and the construction of 

correlation functions from which hadronic quantities, such as the spectrum may 

be extracted. More detailed accounts can be found in [9, 10, 11]

The Lagrangian of the pure QCD sector of the standard model is given by

L = - l-F^F^- Y, ^P (x}(ilppq -rn5™}^(x} (2.1)
ip=u,d,c,s,t,b

where a = 1,2       , 8 are colour indices of the gluons and p, q = 1,2,3 the colour 

indices of the quarks. The gauge fields live in the adjoint representation of SU(3) 
and the fermion fields in the fundamental. The covariant derivative is defined as

Jp= D^^ and D» = d» - igA»(x} (2.2)

13
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The gauge fields are collected in the matrix

A,(x) = TaAl(x}. (2.3) 

The Ta 's are the 8 generators of the 577(3) group and satisfy the Lie algebra

[Ta ,Tfe ] = ifabcTc and Tr (TaT6) = -5ab (2.4)
£

The gauge field strength tensor is defined as

= --[£> ,£ ]

(2.5)

In the path integral formalism, the expectation value of an observable O can be 

written as

(O) = j- f VAV^V^OeiS , (2.6)

where Z is the partition function given by

Z = J VAVjV^J3 , (2.7) 

and S is the action given by

S=fjCd4 x. (2.*

The path integral is a functional integral. It is also complex and the integrand is 

strongly oscillating. The integrand cannot be interpreted as a probability, which 

is required for numerical simulations. The theory thus far has been formulated 

in Minkowski space-time, the complexity of the integrand can be removed by 

formulating the theory in Euclidean space-time.

2.1.1 Euclidean Field Theory

The following is a brief discussion of the Euclidean formulation. A more detailed 

discussion can be found in [9]. Euclidean field theory is formulated by simply 

rotating the time coordinate to imaginary time.

x° = -ix\ and z 4 6 R. (2.9)
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This results in a change in the metric tensor from g^ to 5^, and the action 

becomes

SB = -iSM - (2.10) 

The Dirac matrices are related to their Minkowski counter parts by

and satisfy the anti-commutation relations

{7M,7J = <V (2-12)

The path integral in equation 2.6 is now manifestly real and the oscillatory 

integrand has become damped. In general the observables in equation 2.6 are 

constructed from time ordered Green's functions

G( Xl , • • • , xn ) = (0 \T {</>( Xl ),     - , <£(xn )}| 0} . (2.13)

These Euclidean correlation functions can be analytically continued to Minkowski 

space-time by Wick rotation, provided that they obey reflection positivity.

Consider some Euclidean field </>, evolving according to,

<t>(x} = eHx*<j>(x^} e-Hx\ (2.14) 

Defining the Euclidean time reflection by

8(x,x4 ) = (x,-x4 ) (2.15) 

then the operator © can be defined as

&<j>(x) = </>(6x) (2.16)

where the bar indicates complex conjugation. The action of 0 is extended to 

arbitrary functions F by requiring anti-linearity,

Q(XF) = \QF (2.17)

and associativity

Q(FG) = QFQ G. (2.18)

This 6 can be thought of as roughly corresponding to Hermitian conjugation in 

Minkowski space. Now consider some function Fp which is a function of fields at 

positive times, then reflection positivity states

({®FP )FP } > 0. (2.19)
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2.2 Quantum Field Theory on a Lattice

Lattice QCD is a Euclidean field theory formulated on a hyper-cubic space-time 

lattice, of spacing a. This introduces a momentum cutoff of order the inverse lat­ 

tice spacing. Consider the finite volume case, with periodic boundary conditions, 

with the linear extent given by

L
- = N€Z. (2.20) a ^ '

The Fourier transform of a square integrable function f(x] is defined by 

Now consider the fourier transform when x  >  x — na, 0 < n < N,

k£B ^

where the momentum is restricted to the first Brillouin zone

TT 7T

a M ~ a

L _ ^ „ /z [n A/" — 11 (9 9^ HJU — , ii^ c: [u, i v ij \^Zj.ZjOj
a

The cutoff and indeed the lattice regulates the theory without recourse to per­ 

turbation theory, and as such is a non-perturbative regulator of the theory.

2.2.1 Gauge Fields

In order to construct the gauge fields on the lattice, the concept of parallel trans­ 

port must be considered. Parallel transport describes how a vector transforms 

along some curve in space time. Consider a curve C from x to y and some vector 

<j>(x) which is an element of the vector space Vx . Consider the case when the 

gauge group is 5/7(3). Let U £ 5t/(3) matrix, such that

U(C) :Vx ^Vy (2.24)

The U(C] now maps the vector <f>(x) onto the space Vy , along the curve C. In 

general each curve or path in space time will have its own parallel transporter.
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There are other conditions necessary for parallel transport U:

C/(0) = 1

(2.25) 

U(-C) = U

where C\ o C2 implies a path C\ followed by a path C2 .

Consider the parallel transporter and the vector under a local gauge transfor­ 

mation A(x)   577(3)

(2.26)

Gauge invariant objects can be built from closed loops of Us, or 2 vectors linked 

by a chain of Us.

For the case of an infinitesimal straight path x to x + dx, the corresponding 

parallel transporter can only deviate infinitesimally from the unit matrix,

U(Cx+dx<x ) = 1 + igA^(x)dx» (2.27)

where A^x) is an element of the algebra SU(3). The choice of symbol, A^x), is 

no coincidence; this is in fact the gauge field of equation 2.3. Indeed the parallel 

transport of a vector around a closed path can be used to obtain the Yang-Mills 

action. Again the reader is referred to [9]. By varying the path and then solving 

the resulting differential equation one arrives at the following result

(2.28)

where P denotes path ordering.

The smallest path of non-zero length on the lattice is the straight line of length 

a between two points of the lattice. Thus the elementary parallel transporters on 

the lattice are associated with a link.

(2.29)
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Figure 2.1: The Plaquette 
U^x+v)

Uj(x) UV (X+M,)

M-

where fi is a unit vector in the direction /u. The elementary closed path on the 

lattice is the plaquette, Figure 2.1. The plaquette variable is denned as

= Tr {V»(x)Uv (x + ^(x + v)Ul(x)}

where

(2.30)

(2.31)

from equation 2.25. The action proposed by Wilson [12] is denned in terms of 

plaquette variables

r 1 -\

(2.32)

where
2Nr

(2.33)

and Nc is the number of colours in SU(NC ). It can be shown [13] that this 

action reduces to the continuum Yang-Mills action in the classical continuum

limit, a   >  0

(2.34)
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2.2.2 Fermion Fields

The simplest discretisation of the fermionic part of the action is as follows. Place 

the ant i- commuting Grassmann four-component spinors ip on the lattice sites

 0(x)   >  if)(x} where x = an, n G Z (2.35)

where a is the lattice spacing. Replacing the derivative in the Dirac equation with 

a finite difference, and dropping the hats, the free field action can be written as

) . (2.36)
x /* J

In a more compact notation

(2.37)

where M is called the fermion matrix

M*y = ^ E^A* [<W,j/ - $B-P,I/] + m^- ( 2 - 38 )

Its inverse is the free field propagator, which can be computed by taking the 

Fourier transform and diagonalising

l J

where the hats denote quantities in lattice units

™ — wphys« and p = 7M sin(apM ). (2.40) 

Letting a   > 0 such that
oon

lim   = mphys (2-41) 
a-»o a

results in a pole in the propagator when p = i?ri associated with a fermion state. 

However, this occurs not only when

p = i sin(rn') = zm, (2.42) 

as expected in the naive continuum limit, but also when

p = isin(mrm) = im, (2.43)
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at the corners of the Brillioun zone. This is the well known fermion doubling 

problem. It results in 2d species of fermions where d is the number of dimensions.

In order to remove these doublers the Nielsen and Ninomiya [14] 'no-go' the­ 

orem must be considered. It states that:

// a lattice action is local and bilinear in the fermion fields and is 
translationally invariant, possesses continuous chiral symmetry and 
is hermitian, then in the continuum limit the fermion propagator con­ 
tains equal numbers of right-handed and left-handed fermions which 
are otherwise identical.

This essentially tells us that for every fermion on the lattice there is a partner 

with the opposite chirality. One method, known as staggered fermions [15] accepts 

these extra fermions by placing each component of the spinor on different lattice 

sites and interpreting the remaining doublers as different flavours. This will not 

be discussed here. The Nielsen-Ninomiya theorem does not say anything about 

the behaviour of the masses, nor their couplings in the continuum limit. The 

other main approach is to add an irrelevant term to the action which explicitly 
breaks the chiral symmetry of the action. This gives the extra fermion species 

a mass proportional to the cut-off and so they decouple from the low energy 

behaviour. This is known as the Wilson action [16].

The irrelevant term that Wilson added to the action is a 2nd derivative term 

which vanishes in the continuum limit.

)]| V>(*0 (2-44)
J

After a redefinition of the parameters it is more usual to express the Wilson action 

as

SWF =
x IJ-

(2.45) 

where re is the Hopping parameter,

. (2.46)^ '
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2.2.3 The Lattice Action

The action for lattice QCD for Wilson fermions can be expressed as

SLQCD = Sg + SWF (2.47) 

where Sg from equation 2.32 for the SU(3) gauge group is given by

(2.48)

where 5ZP means sum over plaquettes. Recalling from equation 2.26 that gauge 

invariant objects can be constructed from closed loops of links or chains of links 

connecting vectors (spinors), SWF in the presence of gauge fields can be written 

as

SWF = EJ^W^ + ^EN^K^-IW^ + M)
X ^ /J.

-Ufo-^ + lMx-iJ.)]} (2.49) 

choosing r = 1. It can be shown that the Wilson Fermion action is equivalent to

SWF = fd4 x$(fl + ig4 + m)^ + O(a] (2.50)

2.3 Improvement

This discussion follows a series of lectures [17, 18, 19] given at the NATO Ad­ 

vanced Study Institute as part of the Newton Institute; Non-Perturbative Aspects 

of QCD.

The leading discretisation errors in the action are O(a). In order to control 

the cutoff effects one has to compute at several lattice spacings and extrapolate to 

the continuum limit. However, as noted above, a lattice action which reduces to 

QCD in the continuum is not unique. In particular Symanzik [20, 21] proposed 

that at energies less than the cutoff, lattice QCD is equivalent to an effective 

continuum theory whose action is given by

SeK = S0 + aS1 + a2 S2 + ••• (2.51)
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where Si is the action constructed from a linear combination of dimension 5 

operators.

O4 =

(2.52)

In a similar fashion any any renormalised local lattice fields Z^ can be con­ 

structed from local continuum fields,

</>eff = <fo + a<^l + «^2 + ' ' ' (2.53)

The number of operators required can be reduced by considering on-shell quan­ 

tities only. O-2 and 04 then vanish by the field equations. Thus an O(a) counter 
term that cancels the Si term in the effective action 2.51 can be constructed by 

considering only three additional operators.

Sct = a 5 ^{cidi + c3d3 + c5 d5 } (2.54)
X

where On are a lattice representation of On . Terms proportional to O3 and O$ 
can be dropped as these correspond to a renormalisation of the bare coupling 

and mass. An O(a] on-shell improved action first proposed by Sheikholeslami 

and Wohlert [22]

), (2.55)

is known as the clover action due to the four plaquettes used to approximate 

Fav(x}. The coefficient GSW then has to be determined.

2.3.1 Improved Operators

If one wishes to compute matrix elements as well as spectral quantities one must 

also improve the corresponding lattice operators. In general five bare operators,
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bilinear in the quark fields, can be constructed:

K;(X) = ^(x)r^(x) (2.56)

Sa (x] = ^(X- 

P a x = x

where ra are the Pauli matrices. By considering the symmetry properties of the 

operators, the O(a) improved fields may be chosen to be

+

P1 = P

S1 = S (2.57)

where d is the symmeterised lattice derivative

1
dfj. = —— [8x+n,y — $x-n,y] (2.58)

These coefficients have to be calculated, usually in lattice perturbation the­ 

ory with the bare lattice coupling, aiatt, as the expansion parameter. At tree 

level GSW = 1 and CA = 0. This corresponds to removing discretisation errors to 

O(as a). These can be reduced further by calculating to higher orders in pertur­ 

bation theory. However, the notion that the bare coupling in a cut off theory is 

approximately the running coupling evaluated at the cut off badly underestimates 

the lattice coupling. This is a symptom of the 'Tadpole problem' [23].

All gluonic variables are built from the link variable, equation 2.29, which can 

be approximated to

Un(x) w eiagA". (2.59)

Consider the leading order coupling with the quark fields, t^U^^/a^ this has 

the desired g^A^ as well as all the higher order powers suppressed by the same
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power of the lattice spacing. For quantised fields, pairs of A^s contracted together 

generate factors of I/a2 which cancel the suppressing powers of a. These higher 

order vertices are suppressed by powers of g2 and are the so called 'tadpole' 

contributions which spoil naive perturbation theory. Fortunately they are process 

independent, and so they can be corrected for. The mean link operator consists 

only of tadpoles,

u0 = (-Tr([V(z))V (2.60) 
\ o /

or it can be evaluated as

3 L.G.
(2.61)

where the subscript L.G. stands for Landau Gauge which maximises the value of 

the mean link. The tadpole contributions can then be cancelled by dividing the 

link variables by the mean link value,

(2.62)
UQ

in the action.

The motivation for many lattice gauge theory calculations is that they are 

non-perturbative. A more consistent approach would be to calculate these im­ 

provement coefficients non-perturbatively. The Alpha collaboration have imple­ 

mented a program to calculate these improvement coefficients and the renor­ 

malisation constants in a mass independent renormalisation scheme [24, 25, 26] 

non-perturbatively. The renormalised improved operators are given by

OR = ZQ(\ + 60amg )O/ (2.63)

where O are the improved operators V, A, T, P, S. The renormalisation constants 

ZA and Zy are calculated by imposing the continuum chiral Ward identities at 

finite values of the cutoff.

In order to evaluate GSW and the other improvement coefficients to completely 

eliminate O(a) contributions to on-shell quantities one needs to impose some 

condition. The Alpha collaboration use the lattice PC AC relation

-O(an ] (2.64)
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and tune cgw and CA such that the error is reduced from O(a) to O(a2 ) for 
any product X of fields localised in a region not containing x. The operators 
are computed in the Schrodinger Functional scheme. This is formulated on a 
'hyper-cylinder' [0, T] x S1 x Sl x Sl with periodic boundary conditions in the 
spatial directions and Dirichlet boundary conditions at the caps t = 0,T. The 
Schrodinger functional is then the partition function with sources for the gauge 
and fermionic sources on the temporal boundaries.

The values for GSW and CA quoted by the Alpha collaboration are for go in the 
range 0 < g$ < 1

l-0.656ff02 -0.152g04 -0.054ff06 CSW(9° } = —————— 1 - 0.9920g —————— (2 ' 65)

cA (go ) = -0.00756 x g02 |~° (2.66)

2.4 The Quenched Approximation and Numer­ 

ical Integration

The expectation value of some operator (equation 2.6) re-expressed with the 
lattice action can be written as

(O) = -^ f[dUd^]Oe-s^CD (2.67)
-^ «/

where the partition function

Z= f[dUd^]e-s^CD . (2.68)

Denning
[dU]=l[dU (2.69)

where dU is the Haar measure over the gauge group G and obeys the following 

f[dU] = I and f[dU]F(U) = j[dU\F(UV] VV G G. (2.70)

The fermionic terms in the action are bilinear in the fermion fields, 2.49 and 

2.55
SF [U, V>, ^] = E t(y)M[U]i>(x) (2.71)
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where M[U] is the fermion matrix

M\U\ =8 II — —c cr F (r}\

The integral over the fermionic Grassmann variables is in fact Gaussian, and so 

the fermionic degrees of freedom can be integrated out (appendix A).

/\d^d^}e~Sr = det M[U]. (2.73) 

The action can now be re-written as an effective action

SeS [U] = Sg [U] - log det M[U] = Sg [U] - Tr log M[U] (2.74) 

The remaining integration can be carried out numerically.

The number of integration variables in

dUxa (2.75)

is rather large. The volume of typical lattices V ~ C*(106 ). This requires Monte. 

Carlo methods. Rather than generate gauge configurations [Un ] randomly, it is 

more efficient to use the configurations that contribute most to the integral. This 

achieved through importance sampling of the gauge configurations. An ensemble 

of configurations is an infinite number of gauge configurations, with the probabil­ 

ity of a configuration U being P[U] defined on the measure dU. For the Canonical 

ensemble the probability is proportional to the Boltzmann factor;

PC [U] oc e~ s[u] . (2.76)

Numerical algorithms have to generate a sample of a large number of gauge config­ 

urations [{£/n}| n = Ij2, • • • , N] such that the sample distribution approximates 

the canonical ensemble. The sample average O is given by

(2.77)
n=l

The configuration sample is generated as a sequence. This sequence is con­ 

structed by the repeated application of an algorithm. This updating is a stochas­ 

tic process, and in general a large number of updates is needed to generate inde­ 

pendent gauge configurations. In particular this updating is done by a Markov
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process. A Markov process is a stochastic process which generates a chain of 
states (configurations) such that the probability of getting a state Un from Un-\ 
depends only on Un and Un-i- i.e.

P(Un <- t/n-ilf/n-l <- Un-*, • • •) = 7>(^n *- ^-l) (2.78)

Considering again the fermion matrix (equation 2.72) one can see the order 
of the matrix is proportional to the volume and the internal degrees of freedom 
of the fermions. This results in a very large matrix, (9(107 ), which is in principle 
non-local. The amount of computation in constructing the sequence of gauge 
configurations can be greatly reduced by avoiding the need to calculate det M for 
every update. The Quenched approximation does this by setting this determinant 
to a constant. A perturbative expansion in the gauge coupling of the fermion 
determinant generates closed quark loops. The quenched approximation has the 
effect of ignoring closed quark loops. The gauge fields can then be integrated 
independently of the fermionic fields.

2.5 The Quark Propagator

The starting point for the construction of hadronic quantities is the two point 
Green's function, or quark propagator. Considering equation 2.67 and integrating 

out the fermionic fields

(tl>(x)$(Q)) = ^j[dU}M- l (x^-U} e-s* (2.79)

In the quenched approximation. The quark propagator is a gauge dependent 
quantity and is the inverse of the fermion matrix.

Mtf(x, y; U)G%(y, 0; U) = S(x, 0)*"^ (2.80)

where the Greek indices label the spin components, and the Latin indices label 
the colour components. The fermion matrix can be inverted by solving equation 
2.80. This is hard work, as it involves solving a large sparse system of linear 
equations, and the fermion matrix is very large. Equation 2.80 is solved for each 
spin-colour component on the point source. The twelve spin-colour components
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of G correspond to a quark propagating from the origin to any point y. This 
still requires an iterative solution using linear solvers and considerable computer 
power.

In order to simulate light quarks (i.e. u, of, or s) on the lattice the propagators 
are calculated for several different quark masses in the vicinity of ma . The results 
for physical quantities then have to be extrapolated to the physical quark masses. 
The main reason for this is that the linear equation solvers used to invert the 
fermion matrix equation 2.80 typically have a condition number Cn ,

(2.81)
|^|min

where A are the eigen values of the fermion matrix which is proportional the 

inverse of the quark mass. So the number of iterations required to invert the 
fermion matrix grows linearly as the quark mass decreases. This is computation­ 
ally very expensive. Whilst this is the limiting factor, finite size-effects are likely 
to be large for small pseudoscalar meson mass, i.e the 'pion' would not fit in the 

box.

The simulation of heavy quarks (c and 6) on the lattice can also present 

difficulties. Typical lattice spacings in simulations are of order a" 1 ~ 2.5 — 3 
Gev. The b quark has a mass of m& ~ 4.3 GeV, and so its Compton wavelength 

is smaller than the lattice spacing. The lattice is not sufficiently fine to resolve 
the wavefunction of the b quark. One method to solve this problem and used 
in this thesis is to simulate at several quark masses in the vicinity of charm and 

extrapolate the results to the physical quark mass.

2.5.1 Symmetries of the Quark Propagator

By applying the discrete Lorentz transformations, parity (P), charge conjugation 

(C),time reversal (T) and the hermiticity (H) transformation to the fermion 

matrices, it can be seen that

G(x,y;U) = Htf(y,x;U)H- 1 (2.82)

,xp ;Up )P- 1 (2.83)
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G(x,y;U) = CGT (yc ,xc -Uc )C- 1 (2.84) 

G(x,y;U] = TG(yT ,xT ; t/T)T- 1 (2.85)

where

H = 75

P = 74

C = 7472

T = 747 5 (2.86) 

These relations will be useful when considering the hadronic correlation functions.

2.6 Hadronic Correlation Functions

The spectrum and matrix elements can be extracted from lattice calculations by 

studying correlation functions of time-ordered products of operators, themselves 

constructed from gauge invariant products of quark and gauge fields. In general, 

there is no unique correspondence between particle states and operators; in order 

to measure the mass of a state A, all that is required is that the operators have 

a non-zero overlap with the state in question,

(0\0A \A) /O. (2.87)

This can be achieved by constructing operators that have the same quantum 

numbers as the state. The vacuum expectation values of the correlation functions 

can then be computed through equations 2.67 and 2.77.

2.6.1 Meson Correlation Functions

Meson operators are bilinear in the quark fields. The simplest operator is the 

local product.
x) (2.88)
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where F is a Dirac matrix such that fiyi(x) has the same quantum numbers as state 
A. This can be thought of as a meson annihilation operator. The corresponding 
meson creation operator is

z) (2.89) 

where

r = 74 rf74 (2.90)
Two-point correlation functions are constructed from a creation operator at source 
and an annihilation operator at sink. Using equation 2.67 the two-point correla­ 
tion function is

(2.91) 

Integrating out the fermion fields yields

-^. (2.92)

The quark propagators are evaluated on each gauge configuration using equation 
2.80. The hermiticity property (equation 2.82) is used to re-write the propagator

(2.93) 

The expectation value is then, by equation 2.77,

(O T{ai(z)fti(0)} O) = (Tr{75 rG(a (x,0;t/)r75 G'&t (x,0;t/)}} [/ (2.94) 

where the notation ()u means the average over gauge configurations.

To proceed further it is usual to take the Fourier transform. The two-point 

correlation function is then

C(p, t)w = /E e^'S {^Ga (x, 0; U}rfGb^(x, 0; 17)}) (2-95)
\ x I U

Two-point correlation functions of different operators at source and sink can be 

constructed in a similar fashion.
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Using the lattice completeness relation,

(2 . 96)v '
and inserting a complete set of states in the two-point function:

,,-ip-x

n,N,x
(2.97)

Now considering the (Minkowski) translation operator

0(x,t)) =

the two-point correlation function becomes

E

(2.98)

i(k"n -p)-x -iEN t

Defining the lattice delta function as

73 ^
(2-100)

then

The correlation function is calculated in Euclidean space, so the oscillating expo­ 
nential becomes exponential decay as r — )• it. In the limit t — > oo the groundstate 

will dominate.
ZA (p* (2.102)

where E is the ground state energy and ZA (p2 ) is the matrix element of the 

interpolating operator of equation 2.87

(2.103)



CHAPTER 2. NUMERICAL CALCULATIONS IN LATTICE QCD 32

Figure 2.2: The Three-Point Correlation Function

x,p

2.6.2 Three-Point Functions

A correlation function can be constructed which contains the matrix element of 
equation 1.54 in much the same way as for the two-point function. Define the 
three-point correlation function as

where

The creation, annihilation and current operators are defined by

(2.104)

(2.105)

(2.106)

where the Latin subscripts refer to different flavours of quark. The form of Tc 
depends on the current. For a vector current r° = 7^. From equation 1.54 the
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matrix element required is for a vector current between two pseudoscalar states. 
Thus

Tsrc = Tsnk = 75 (2.107) 

and

(2.108)

Note that the current operator is flavour changing.

Carrying out the integration over the fermionic degrees of freedom the three- 
point correlation function can be written as

(2.109)

As with the two-point correlation functions, point-to-all propagators can be cal­ 
culated, again using the hermiticity property of the propagators (equation 2.82) 
to express the correlation function in terms of point-to-all propagators. However 
the propagator labelled E is an all-to-all propagator. Calculating an all-to-all 
propagator can be avoided by defining an extended propagator.

(2.110)

The extended propagator can be calculated be considering the result of oper­ 
ating on the extended propagator by the fermion matrix (equation 2.72).

t.)e~¥" (2.111)

This is equation 2.80 with a non-point source. It is only necessary to calculate 
the extended propagator from one time-slice of the P propagator. The labels
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E, A, and P in figure 2.2 now become clear. E refers to the extended quark 
propagator, A to the active quark propagator, and P to the passive quark, as it 
takes no part in the weak decay.

If the hermiticity relation is used on both Gp and GE , equation 2.109 becomes

x , y; tf )7 V<ZA (0, y; U)}

(2.112) 

substituting the expression for the extended propagator in equation 2.112

Cgpt (p,tx ,q,ty ) = /^e-i^Tr{S\0,y;p,tx ;U)'y5rGA (0,y;U)}\ . (2.113) 
\ y ' u

Inserting a complete set of states between operators of equation 2.104 using 
the lattice completeness relation 2.96 the three-point function can be expressed
as

y> e-i(i!.£+f.fo__J:_______i x 
I,U^N,M 2EN (kn )L3 2EM (km )L3 

0|0B (x)|]V,4}(^,^|jtM (y)|M,O(M,fc77

(2.114)

Again using the translation operator, x, 2.98
1s -ip-x-iq-y _

2EN (kn )L3
x

M,^

x

o |nB (o)| N, kn N, kn

The lattice delta function defined by 2.100, gives

, km M, o) .
(2.115)

NM 2EM 2EN

(2.116)
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Again considering the correlation function in Euclidean space with the replace­ 
ment T —> it. In the limit in which ty —>• oo and (tx — ty ) -> oo only the 
groundstate contribution survives, i.e.

-q) ^ *' 1EB (p) °^' 
x(B,p\J^(0)\A,(p-q)), (2.117)

where the Z's are the matrix elements of the interpolating operators by equation 
2.87. Let the momentum of state A be fc, defining k as k = p — q. The matrix 
element in equation 2.117 is not the matrix element in equation 1.56 which defines 
the form factors, but its adjoint. For the vector current between two pseudoscalar 
states, the matrix element is Hermitian. i.e.

B,pf

= (A,k\J»(0)\B t p). (2.118)

2.7 Smearing

The simplest meson operator one can write down is the local product 2.88 of 
quark fields. It is certainly not the only operator. In general, a meson operator 
can be written as

ft(z, t) = $(x, t) £ T(x - y)V(£ *) (2-119)
y

This property can be used to try and improve the signal from the data by, for 
instance, increasing the overlap of the operator with the groundstate wavefunction 
by setting T to a function which approximates the groundstate. This is known as 
smearing. In this calculation two types of smearing were used, Fuzzing [27] and 

Boyling [28].

2.7.1 Fuzzing

The main source of contamination to the groundstate amplitude will come from 
the first excited state. By increasing the groundstate amplitude relative to the
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first excited state amplitude an operator can be constructed that more efficiently 

singles out the groundstate. Fuzzing is a method for constructing a hadronic 

operator non-local in both the fermion and gauge fields. The simple picture of 

the meson operator is of the quark and anti-quark separated by a distance R 

joined by a colour flux tube.

The gluon flux tubes are constructed by fuzzing [29] each link operator by 

combining it with the spatial staples, that is

^(x) -J- U£(x) = V \ cU^(x) + £ U,(x)U^x + v}Ul(x + n)\. (2.120)
I "v^ )

However, SU(3) is not closed under addition, so P projects the operator back onto 

SU(3); A matrix O can be projected onto U S SU(3) by iteratively maximising 

RTr(Ot/'t") using a Cabibbo-Marinari approach. In this calculation c = 2 is chosen 

and the fuzzing repeated 5 times over the whole lattice.

Meson operators can now be constructed with one of the fermion fields fuzzed

,t) (2.121)

where the sum over i is the sum over the 6 spatial directions and M is the product 

of the fuzzed links of length R
N-l

M(Ri,x,t,U)= l[U?(x + ni); N = R/a. (2.122)
n=0

So the purely local operator at x is replaced by a spatial average of the fermion 

fields at distance R from x joined by the fuzzed gauge fields.

In practice, it is actually fuzzed quark propagators that are computed. Defined 

here is a sink fuzzed propagator

)\. (2.123)
I

This is computationally advantageous as once calculated, it is no more expensive 

to construct correlation functions with fuzzed propagators than it is with purely 

local ones. With a combination of purely local and fuzzed operators, it is possible 

to extract efficiently both the groundstate and the first excited state. The R 

parameter can then be tuned such that the hadronic operator has no contribution 

from the first excited state.
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2.7.2 Boyling

The motivation for Boyling comes from the observation that for systems con­ 
taining heavy quarks, the mass of the heavy quark is much greater than typical 
momentum scales, A.QCD, associated with light degrees of freedom. This suggests 
non-relativistic behaviour for the heavy quark, see section 3. In particular this 
implies that the gluonic degrees of freedom can be approximated by a poten­ 
tial. This suggests that the physical states of hadrons can be approximated by 
non-relativistic wavefunctions, particularly those that factorize into radial and 
orbital parts. Consider the overlap of the smearing function T with the physical 
wavefunction i^(x)

Cmn = f m̂ (x)rn (x,Q)d3x. (2.124)
J f\9

Choosing the smearing function to be of the non-space filling form, i.e. the 
Domain of the function is a subspace of x,

Y {£ Q\ — v^ ^(t) fr \ v^ $(£ _L f?.\ (2 125)
r=0 i=l

where the sum over i is over the 6 forward and backward spatial directions and 
N is typically half the lattice size. Then the overlap is

n —v-/ 7nn —

r=0 
roo

~ 5mn (2.126) 

By choosing <j>n to approximate ?/>„, approximate orthogonality can be established.

The generalisation to include colour is

r=0

r-l

Ui(x + ni)
-n=0

(2.127)

where again the sum over i is over the six forward and backward spatial directions. 
The gauge link variables U are the fuzzed links described in section 2.7.1. This 
choice of smearing function has two main advantages. Firstly, the form of (f>n (x)
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can still be freely chosen, and thus can be chosen to efficiently project out the 
radially excited state without the need for gauge fixing. Secondly, equation 2.127 
is gauge invariant but is still relatively cheap to implement computationally as it 
is non-space filling.

One particular choice of (j) is the hydrogenic wavefunctions given by

hn (r) oc e-f Ln (f) (2.128) 

with
- (2.129) v '(n + I)r0 ' 

where r0 is the Bohr radius and Ln (r] are the Laguerre polynomials

MX) = ^ (xHe~^ (2 " 130)

Suppose the physical wavefunction V> is hydrogenic with Bohr radius r,/,. The trial 
smearing hydrogenic wavefunctions 0 has Bohr radius r^. Consider the overlap 
between the physical ground state, and the trial radially excited state.

CIQ = / r 2 t{>0 (r)(f>i(r)dr

oc / r2 1 — —— e r* e 2r* dr

/ I r 1 —'- ^ -*- / 3 —- ; re par — —— re par 
2rj, J

~ 2p3 — (2.131)
?>

where p = 2rf* and the last step is true for a small Ar = r$ — r^. So the overlap' r^+Zr^ r f Y i

between the physical ground state and the trial first excited state is proportional 
to the difference in the Bohr radii. Also note that

Ttj, > r^ =>• cmn > 0

r* < r^ =* cmn < 0. (2.132)

The change in sign can be used to tune the Bohr radius of the smearing function 
to orthogonalise the trial excited state to the groundstate. The physical wave- 
functions are not hydrogenic in form. However for reasonable physical ground
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states one should still see the same behaviour in the overlap when going from 
small to large Bohr radius. In general, because of the non-hydrogenic form of the 
wave functions one choice of the Bohr radius will not simultaneously minimise 
CIQ and CGI. An optimal radius for ground and excited states is chosen.

2.8 Statistical Analysis

The expectation value of some operator can be estimated by an average over 
an ensemble of gauge configurations (equation 2.77). Consider an ensemble of 
correlation functions {Ci(t} , i = 1, • • •, N}. The mean value is given by

i N
Ci(t) (2.133)

where N is the number of configurations. The variance of the sample is given by

<t=N^7E[CM-C(t)] 2 (2.134)
'/V i i=l

and the variance of the mean is of/A/".

The large t behaviour of the correlation function can be parameterised by 
some functional form in terms of a set of parameters {£„} (e.g. equations 2.102 
and 2.117). However, in general it is not possible to measure the {Cn} on each 
configuration and so calculate the mean and variance as above. The statistical un­ 
certainties in these fitted parameters are estimated using a resampling technique 
known as bootstrap [30].

In the bootstrap sampling technique, NB sub-ensembles of N configurations 
(including repetitions) are randomly selected from the set of N configurations. 
The mean of each sub-ensemble is then

f(t) (2.135)

The parameters {(„} can then be fitted to each sub-ensemble. The mean value 
of (n and its variance can then be estimated.

i NB
£C& (2-136)
k-l
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and the variance

(2.137)
k=l

The bootstrap sampling method has the advantage of not assuming any form 
for the distribution of the correlation functions, and so it is more useful to define 
68% confidence levels rather than <r B ((n ). The lower interval bound (^ is defined 
by 16% probability of

C& < CL (2.138) 

and similarly for the upper bound.

2.8.1 Fitting method

Consider the data set y» = {(?(£«)» CB (U}}. This data set is fitted to some func­ 
tional form y(tj, {Cn})- Defining the \2 as

X =£-[y*-2/(UCn})J • (2-139)
«' *'

The parameters {Cn} are then chosen to minimise the % 2 , that is maximise the 
probability of the fit. This is known as a least x2 squares fit. In general, the 
data on different time-slices are highly correlated. Define x2 for data on different 
time-slices,

x 2 = E [y< - yfa {Cn})]";;- 1 \vi - y(tj, {Cn})] (2.140)
where 0^- is the covariance matrix

1 N

The covariance matrix reduces to the variance for the diagonal elements. In 
practice, the correlation matrix, $, defined by

$,-,- = -^ (2.142)

is used as it is found to be more stable. The mean values, and the covariance 
matrix for each parameter are evaluated using equations 2.136 and 2.137. This
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is a correlated fit. The minimisation of x2 is implemented using the Marquardt- 

Levenberg algorithm [31].

For correlated fits x2 /dof ~ 1 (degree of freedom) signifies a very good fit. 

Another useful quantity is the Q value. It is the probability that the value of 

X2 the minimisation returns exceeds a particular x2 by chance. The Q value is 

determined by the incomplete gamma function,

Q(a,x) = (2.143)

In this case the Q value evaluated for a = N/2 and x = X2 /2 where N is the 

number of degrees of freedom. It assumes that the data is normally distributed. If 

this is not the case then Q values down to (9(10~3 ) do not necessarily signify a 

bad fit.



Chapter 3

Heavy Quark Symmetry

Consider a hadron containing a heavy quark. The typical momentum transfer 

in QCD is O(AQCD)- For a sufficiently heavy quark, MQ ^> AQCD, the non- 
perturbative light degrees of freedom, the so called 'brown muck' of glue and 
light quarks become independent of the heavy quark mass. In the static limit, 
MQ —>• oo, the heavy quark defines the centre of mass of the hadron. In this 

frame of reference the heavy quark acts as a static source of colour at the origin. 
The spin of the heavy quark also decouples from the light degrees of freedom. 
This SU(2Nf) symmetry (N/ is the number of heavy flavours) can be used to 
construct an effective theory [32, 33, 34, 35].

3.1 Heavy Quark Effective Theory

Consider a hadron containing a heavy quark such that the light degrees of freedom 
carry much less four-momentum than the mass of the heavy quark. The heavy 

quark is nearly on-shell, and so the four-momentum is,

P» = mQ v» + r^ (3.1)

where r M is small compared to rag and v^ is the four-velocity. The heavy quark 

propagator G(P) is

42
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In the heavy quark limit, the quark propagator becomes

(3 ' 3)

and

?+ = 5(1 + 10, (3-4)

where P+ is the positive energy projection operator. Now consider a Dirac matrix 

between two projection operators,

However,

and

This implies

2

1

?+P- = 0.

(3.5)

(3.6)

(3.7)

= P+P+v*

+. (3.8)

The effective theory can now be constructed from these elements. 

Consider the Lagrangian for heavy quarks,

C = Q(iJp-mQ }Q. (3.9)

Using an on-shell approximation for the fermion field,

Q = e-im Q v.x h^ ( 3-10 )

substituting this into the Lagrangian gives

£ = hv {mQ (i/-l) + if)}hv . (3.11)

Now

P+hv =\(tj + l}hv =hv (3.12)
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as

tfhv = hv , (3.13) 

by the Dirac equation. The heavy quark Lagrangian is then

£ = hv i]phv . (3.14) 

Again using equation 3.12 and 3.8 the heavy quark Lagrangian becomes

£ = hvP+ ipP+hv

= hviv • Dhv . (3.15)

There is no spin, or mass dependence in this Lagrangian and so there is an 
SU(2Nf ) symmetry.

In the case where rag -fa oo HQET can be expressed as a power series in 
1/mg.

£HQET=£O + £I- (3.16)

To (9(l/mg) there are two dimension 5 operators which can be added, a heavy 
quark kinetic term and a colour magnetic moment term,

hv ia^ [£", Dv ] hv (3.17)

where the coefficient C has to be calculated perturbatively.

3.2 Matrix Elements

It is convenient in HQET to work with meson states that are normalised to be 
independent of their mass. That is for a state fl

|n(u)) = ———|fl(p)). (3.18) 

The conventional, relativistic normalisation,

{fl(p')|fi(p)} = 2ES (p — p')i (3.19)

becomes
E ^(P-P')- (3-20)
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The advantage of this is that the mass independent normalised states can be 
thought of as eigenstates of the effective Lagrangian 3.15.

In the effective theory, any current operator can be expanded in terms of local 
operators of the effective theory [36, 37]

J" = q^Q = Cl (^)q^hv + C2 (^)qv»hv + O(-) (3.21) 
fj, fj, rnq

where the expansion of the axial current can be obtained by replacing q with 
— 975 . The coefficients (7(^a ) contain all the short distance physics and so are 
perturbative quantities at leading order in renormalisation group improved per­ 
turbation theory [38],

( / \ \ 2/A) ".(/*)

= 0 (3.22) 

where /3o is the one loop beta function,

(3.23)

The matrix element and form factors from equation 1.56 can now be written 
as [39]

^(ir(kMn»MB(v)) = f+ (q2 ) [mB v + k- Am2<jf + /0 (g2 )Aro2^ (3.24) 

where Am2 is defined in equation 1.57.

In HQET it is more natural to work with the four velocity of the heavy meson. 
Defining a new kinematic variable related to q2 by,

*- g2 . (3.25)

The matrix element can now be parameterised by form factors which are a func­ 
tion of this new kinematic variable.

B(v)) = 2[/!(t> • k)v» + h(v • fc)F], (3.26)

where
fc" = -——. (3.27)

V • K
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From equation 3.26 and equation 3.24 the relationship between the form factors 
can be found. Equating terms proportional to v^,

(3.28) 

and equating terms proportional to &,

2/a (« • *) = ^S(l + Am2 )u • k - ̂ Am^ - k (3.29)
V™B 

Using the expressions for Am2 and v • k.

v•k

(3.30)

In the heavy quark limit (mi, —± oo) the functions fi(v • k) and /2 (u • k) become in­ 

dependent of m6, apart from logarithmic matching dependence given by equation 

3.22. In this limit equation 3.30 implies the scaling relations [40]

and /0 ~ 1/v/rn^", (3.31) 

assuming v • k does not scale with

3.2.1 Pseudoscalar Decay Constant

A similar argument to the one employed above can be used to obtain the scaling of 

the pseudoscalar decay constant. Re-writing equation 1.61 with mass independent 

normalisation,

=*> (Q\A"\B(v)) = v^^/^fB (3.32)

In the case of the form factors, new form factors were constructed, that were 

functions of a more 'natural' variable, v • k. However, fg is a constant, so this
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is not necessary. In the limit in which m& — > oo, the quantity ^/TOB/B becomes 
independent of the heavy quark mass. This implies the scaling relation [41]

/B ~ I/X/^B". (3.33)

In the effective theory, mesons containing a heavy quark can be represented 
by covariant tensor wavefunctions [36, 42], determined by the Lorentz transfor­ 

mations and HQS. The ground state pseudoscalar and vector meson states can 
be written as

.<.>--
So the matrix element for the pseudoscalar decay constant can be written as [43],

B(v}}, (3.35)

where the low energy parameter F(//) is defined as

(3.36) 

Again CI(IJL) is denned in equation 3.22.

3.3 HQET In The Soft Pion Limit

One of the major successes of HQET is in deriving relations between various 

matrix elements. Relevant to this thesis are the soft pion relations [44, 39] between 

/o(<?2 ) at maximum momentum transfer and the ratio of the heavy and light 

pseudoscalar decay constants /B//TT-

Consider the weak matrix element 3.24, writing the current, and the interpo­ 

lating operators of equation 2.87 in terms of the heavy quark velocity field hv of 

equation 3.10,

0). (3.37) 

This can be evaluated using the Wick Contraction of time ordered products,

(3.38)
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From equation 3.3 the heavy quark propagator can be written, up to some overall 
constant as

GH = ^p. (3.39)

Again the matrix element can be written as the trace over such wavefunctions, 
that is at leading order in HQET

(Tr(k)\^Yhv \B(v)} = -Tr{T(u • k)TB(v)}. (3.40)

The matrix T(v • k] must transform like a pseudoscalar, and contains information 
about the light quark propagators. The most general decomposition is

T(u • k) = 75 [A(v -k,n) + IJB(v • k, fi)] . (3.41)

These universal functions depend on the kinematic variable v • k and the scale 
fj, at which the HQET operators are renormalised, but not on the heavy quark 
mass. These functions A and B are the equivalent of the Isgur-Wise function of 
heavy to heavy transitions.

Evaluating the traces and comparing equations 3.26 and 3.40 it can be seen 
that

-k,ii) = B(vk), (3.42) 

where the Ci(p,} coefficient is given by 3.22.

Now consider the form factors in equation 3.30, at leading order in HQET 
(i.e. no 1/mj corrections)

f0 (q2 ) = -J= (A(v k} + B(v • k}} . (3.43)

3.3.1 Soft Pion Relations In The Chiral Limit

The PCAC relation [45], relates the divergence of the axial current to the pion 

field,
d'A^x) = Am^+(z), ( 3 - 44)
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where 7r + (a;) is the pion field. The LSZ reduction formula can be be used to 
express the matrix element of a local operator 0(0) as,

(7r(k)\0(Q)\B(v)) =i B(v). (3.45)

The PCAC relation 3.44 can be used to substitute for the pion field.

(v). (3.46)

The derivative can be extracted from the time ordered product using the following 
relation,

a

+S(x0 - 0){a| [A°(x), 0(0)]

Integrating by parts gives, 

(TT(£) 0(0)|B(*)) =

where Q 5 denotes the axial charge,
cs-,5 __ 1 ,3 if 5V - J x 7 u. 

Performing the Wick contraction, the operator O becomes,

, (3.47)

B(v}}

(3.48)

(3.49)

(3.50)

where O'(0) is obtained by replacing u with d(—75 ).

In the limit where k^ —>• 0, assuming the matrix element does not vary much 
between its on-shell value and its value as the momentum vanishes, the first term 
in equation 3.48 is saturated with states degenerate with the ground state. In the 
case of B —> TT transitions, to leading order in HQET this state is theB* meson. 
In this limit, equation 3.48 becomes

TT(k) 0(0)B(V) =

±{ - l (0\0'(0)\B(v)) T(k • A(x)O(Q))

(3.51)
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The matrix element of the first term on the right hand side of equation 3.51 is 

given by equation 3.35. The second term in equation 3.51 requires the coupling of 

two heavy mesons to the axial current. Figure 3.1 shows the diagram B -» B*TT. 

The black boxes show the matrix elements, and the circled cross is the BB*n 

coupling, g [44]. Defining the matrix element for such a coupling as,

B'(v,k)\k • A\B(v,Q)) = g(v •

where

(3.52)

(3.53)\img(vk) = g(0) = g. 

Inserting a complete set of states, the second term in equation 3.51 can be written,

-!——(B<(v)\k.A\B( V )) = 

B'(v)}Tr{i5 tyB'(v)B(v)}. (3.54)F(fj,)g(v -k)
4v • k

The product of two traces can be combined into one trace by the following identity,

E '
B'=Ps,V

v)} = -2Tr{75 (# - v • k)XB(v)}, (3.55)

which is valid for any Dirac matrix X, with summation over polarisations if B' 

is a vector.

Figure 3.1: Feynman diagram for the coupling B —> B*K.



CHAPTER 3. HEAVY QUARK SYMMETRY 51

Combining this identity with equations 3.40, 3.51 and 3.54,

From this values for A and B can be read off in the soft pion limit,

Including the logarithmic matching factor, equation 3.22,

(3.56)

(3.57)

(3.58)

In the soft pion limit, in which the mass of the pion also vanishes, g2 is simply 
the mass of the heavy meson squared, q^&x . Substituting for A and B in equation 
3.43, in the soft pion limit, to leading order in HQET,

/B

(3.59)/o(?Lx) = J-- 
Jir

These relations still hold at sub-leading order in HQET [39].

3.4 Vector Decay Constant

The vector decay constant 1.62 can also be parameterised in HQET [46]. In 
particular the ratio of the matrix elements can be considered. In this case it is 
necessary to compute the matching coefficients to next-to-leading order in per­ 
turbation theory [38] as they are identical at leading order. The matrix elements 
for the decay constants, to leading order in HQET are

")} ( 3 - 6°)

as before. The matching can be written as

(1^440•lUO + ———A——— C'2(y"J 'M (3.61)
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where dp = 3 and dy = — 1. However, at NLO, C2 is non-zero,

\* /i , TV. ^ 4a,(mg )\
3 7T

2as (mQ) 
3 5r (3.62)

where F is some function of the coupling and beta functions. Thus, for the ratio 
of the matrix elements, the matching can be written as,

1 |
3 7T

(3.63)

Defining the quantity £7 in term of the ratio of the pseudoscalar and vector 
matrix elements

-) (3,4)v;

where M is the spin averaged mass

M = MP
(3.65)



Chapter 4

Results for D mesons

4.1 Simulation Details

The simulation was performed using 216 gauge configurations on a 243 x 48 
lattice at (3 = 6.2. The gauge configurations were generated by the UKQCD 
Collaboration using the standard Wilson gauge action on the T3D at EPCC at the 
University of Edinburgh using a combination of the over-relaxed algorithm [47, 48] 
and the Cabibbo-Marinari algorithm [49] with periodic boundary conditions.

Table 4.1: List of Propagators used in simulation. Source refers to smearing type. 
L=local, F=Fuzzed, and B=Boyled. a is the lattice spacing.

propagator

light

heavy

extended 

tx = 28

/c's

0.1346, 0.1351, 0.1353

0.1200, 0.1233, 0.1266 0.1299

0.1200, 0.1233, 0.1266, 0.1299

source

L, F(r = 8a)

B (R0 = 3.0a)

B p = 0, KI = 0.1346 
$= 1, KI = 0.1346 
j?=0, KI = 0.1351 
p = 1, K . = 0.1351

Three light propagators were generated by the UKQCD collaboration on each 
configuration using the non-perturbatively improved Sheikholeslami-Wohlert ac-

53
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Table 4.2: Momentum channels for three-point function p = 0 in lattice units of
12/aTT.

chan

1
2

5
8

11
14
15

<?

( 0, 0, 0)
(-1, 0, 0)
(-V1, 0)
(-1, i, o)
(-1,-lrl)
(-V1, l)
(-2, 0, 0)

chan <? chan 9

3

6
9
12

( 0,-1, 0)
(-1, o,-i)
( 1, 0,-1)

( 1,-lrl)

4

7
10
13

( o, o,-i)
( 0,-1,-1)
( 0,-1, 1)

( Irl, 1)

16 ( 0,-2, 0) 17 ( 0, 0,-2)

kl
0

vT
v/2

x/3

x/4

Table 4.3: Momentum channels for three-point function p = (1,0,0) in lattice 
units of 12/a7r

chan

1
2
3

4

6

8
10

12

14

16
18

20

<?

(-1, 0, 0)
( o, o, o)
(-2, 0, 0)
(-1, i, o)
(-1, 0, 1)
( 0, 1, 0)
( 0,-1, 0)
(-1, 1, 1)
(-Irl, 1)

(0,1,1)
( o, i,-i)
( 1, 0, 0)

k
( o, o, o)
( 1, 0, 0)
(-1, 0, 0)
( o, i, o)
( 0, 0, 1)
(1,1,0)
( i,-i, o)
(0,1,1)
( 0,-1, 1)
(1,1,1)
( 1, 1,-1)
( 2, 0, 0)

chan g k

5
7

9
11

13

15

17
19

(-!,-!, 0)
(-1, o,-i)
(0,0,1)
( o, o,-i)
(-1, Irl)
(-1,-lrl)

( o,-i, i)
( 0,-1,-1)

( 0,-1, 0)
( 0, 0,-1)
(1,0,1)
( i, o,-i)
( 0, 1,-1)
( 0,-1,-1)
( Irl, 1)
( 1,-lrl)

kl
VI
0

V4

V2

vT

x/3

V2

v7!

\k\
0

VI
vr
VT

v/2

v^

v/3

v/4

tion using the BiCGstab algorithm [50]. The extended and heavy propagators 
were generated by myself using UKQCD time on the T3D. They were also calcu­ 
lated using the non-perturbatively improved Sheikholeslami-Wohlert action and 
the BiCGstab algorithm. 16 extended and 4 heavy propagators were generated
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Table 4.4: Operators of the three-point function
N°_

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22

23
24
25
26

rc

7 1
72
73
74

<T34

a24

a23

a 14
CT 13

<7 12

7 1

7 1
71
7 1
7 2

72
72
72
73
73
73
73
74
74
74
74

r5
75
75
75
75
7 5
75
75
75
7 5
7 5
7 1
72
73
74
7 1

72
73
74
7 1
72
73
74
7 1

7 2
73
74

N°

27
28
29
30
31
32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52

53
54

rc

7V
7V
7V
7V
7V
7V
7V
7V
7V
7375

7V
7375
7475
7475
74 75

7475
<T34

a34

cr34

a34

<T 24

a24

a24

a24

CT 23

a23

a23

a23

r5
7 1
72
73
74
7 1
7 2
73

74
7 1
7 2
73

74
7 1
72
73

74
7 1
72
73
74
7 1
72
73
74
7 1
7 2
72
73

N°

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74

ra

C7 14

(7 14

(T 14

<J 14

a13

<7 13

<7 13

a13

a12
a 12
<r 12
CT 12

1
1
1
1

7 5
75
75
7 5

r5
7 1
72
73
74
7 1
72
73

74
7 1
72
73

74
71
72
73

74
7 1
72
73
74
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on each configuration. See Table 4.1.

The light-light two-point correlation functions were calculated on the T3D 
by the UKQCD collaboration. The number of operators totals 36, including 
all the operators necessary for the measuring the ground state masses of the 
pseudoscalar, vector and scalar mesons and the following matrix elements;

PS PS), V V,

and for 11 different momentum channels with modulii;

|p| = 0, Vl, V2, A/3, V^, (4.1)

in lattice units of 12 /an. The heavy-light two-point correlation functions were 
generated by myself with the same number of operators and momentum channels, 
as were the heavy-heavy two-point functions.

The three-point correlation functions were also generated by myself using 
UKQCD time in the T3D. The number of operators totals 74, see table 4.4, 
including all the operators necessary for the calculation of the following matrix 
elements, as well as operators necessary to improve the currents (equation 2.57);

PsVPs), (V (V-AY Ps), (V

The number of momentum channels is 17 for the p = 0 three-point function and 
20 for the p = 1, tables 4.2 and 4.3. In this thesis results are only presented for 
the matrix elements of the pseudoscalar to pseudoscalar improved vector current. 
That is channels 1-10 in table 4.4.

The improvement coefficient cy in equation 2.57 has been calculated to 1-loop 
in perturbation theory [51] by the Alpha collaboration.

cv = -0.01225^0 x CF + O(g%), (4.2)

(4.3)

where CF = (N2 - l)/2/V for SU(N). At ft = 6.2 this implies

cv = -0.015806.

The Alpha collaboration has presented preliminary results for a non-perturbative

calculation of cy [52].
^ 4P ~ -0.2. (4.4)
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This is an order of magnitude larger. As this unexpectedly large result is prelim­ 
inary, the 1-loop perturbative value of cy is used.

The improved current equation 2.57 can be written with the derivative of the 
tensor as the four-momentum. That is

V; + cvqyT^. (4.5)

where qv is the momentum transfer in lattice units which can be calculated from 
the two-point functions.

4.2 The Extension Time Slice

The time dimension on the lattice has periodic boundary conditions. That is 
to say the time slice 0 is the same as time slice 48. By considering the sym­ 
metry properties of the correlation functions under time reversal (equation 2.85) 
and periodic boundary conditions, it can be shown that, for instance two point 
functions are symmetric about the mid-point of the lattice. An averaging of the 
two halves of the lattice, known as folding, can be employed to reduce statistical 
noise.

There are two sources of contamination to the signal for a particular channel 
of a correlation function. Firstly, contamination can come from higher excited 
states, that is, from equation 2.102, if the time is not sufficiently large, then 
the higher excited exponentials can spoil the asymptotic behaviour. This can 
be controlled by ensuring that the operators are separated by large times and 
the use of smearing to improve the signal. The second source of contamination 
which is important for three-point functions comes from different time orderings. 
Recalling the definition of the three-point function equation, 2.104, it involves the 
time ordered product of operators. This correlation function has contributions 
from the matrix element of interest, but also potentially from different orderings 
of the operators, in particular the correlation function has a contribution from 
the matrix element;

(4.6)
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Figure 4.1: The time dimension on the lattice

t=0/48

In order to examine these two systematic sources of contamination of the 
matrix element, it was decided to move the extension time slice from, tx = 24, 
the mid-point of the lattice. The extension point tx = 28 (or equivalently tx = 20) 
was chosen. This means the correlation function can no longer be folded, but the 
fore and back sides of the lattice can be compared to examine these effects.

An analytical estimate of the different time orderings can be made by com­ 
paring the equations for the asymptotic behaviour of the two-point 2.102, and 
the three-point 2.117 correlation functions. Denning the ratio, /?,

, ty )

yn

'^B(PI( t^~ t yl r?2 I f>\ e~ BA( ki( t yl r?2 ( A\
^W—^B^) 2BA( ^) ^A(A)

.(4.7)

All the time dependence cancels leaving only a ratio of matrix elements

ZA (k}ZB (p]
(4.8)

The contribution to the above ratio from other time orderings can also be 
calculated. By considering Figure 4.1, it can be seen that V,p) propagates from
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ty to tx and that (A,k propagates from tx to 7Vt . 

DM/- . t + \ Cgt(p,tx ,k,tti (P, tx ,K,ty)v-).A = ————-^
C2pt(f>,tX —— ty)B

-BA (K)(Nt -tx ) /^

•2 f-^e-BA( k 1 ty rf2 /A

In this case not all the time dependence cancels,

F.r,(n\ (A,k\tia\V, V}ZV(K)
TA——• (4-10)

Assuming the ratio of matrix elements has the same order of magnitude as in 
equation 4.8, it is clear that the different time orderings are suppressed by some 
function of the masses of the states. The kappa values used in this simulation 
roughly correspond to that of charm and strange. This means that the exponen­ 
tial suppression factor can be evaluated. The experimental values of the masses 
for the K, Ds and D*a [53] in GeV are:

mK = 0.497 mDs = 1.986 mD? = 2.112. (4.11)

These masses can be re-written in lattice units, where a" 1 = 2.64GeV and is set 
from mp [54, 55]. An estimate of the suppression factor (sf) on different time 
slices can be made. With the extension point at tx = 28 c.f. the suppression 
factor at time slices t = 16 and t = 38.

~ 0(25%)

~ 0(3%) (4.12)

This analysis seems to agree with the data. Figure 4.2 shows the ratio of 
three-point to two-point correlation functions, and it can be clearly seen that the 
data on the fore side of the lattice has large uncertainties, whereas the ratios 
for ty > tx show reasonable plateaux. This also seems to suggest that either 
the contamination from excited states is small, or cancelled by the two-point 
functions. All the proceeding analysis is done with ty > tx . Equivalently this can 
be thought of as analysing the data with tx = 20.
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Figure 4.2: The ratios for (a) temporal and (b) spatial parts of the ratio R1*, 4.7 
KA = 0.1353, KP = 0.1351, and KE = 0.1233 andp = k = (1,0,0).
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4.3 Measuring

Matrix elements of currents measured on the lattice must be renormalised to 
compare with continuum values. Considering the equations for renormalised, 
improved currents 2.57, 2.63 and the parameterisation of the matrix element 
1.56, then the renormalised matrix element can be written.

(l + bvam q )(B(p) (4.13)

where Am 2 is defined in equation 1.56. An effective renormalisation constant can
be defined.

Zf = Zv (l + bv am q ) (4.14)

Consider the forward degenerate matrix element of the temporal component of 
the vector current. That is, the initial and final states are the same and at zero 
momentum transfer,

= /+ (0)(p4 + fc 4 ). (4.15)
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For a degenerate transition, the form factor of the forward matrix element is 
defined to be one, and so

yeff

D(0))
V ' I \a.tt

(4.16)

Figure 4.3: (a) The ratio, RZv for KH = 0.1200 and KP = 0.1346. (b) Zf vs. 
mass. The horizontal lines are the Alpha values and the KP = 0.1351 points are 
offset to the right.
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This matrix element is easily calculated by taking the ratio

C-2pt(t = tx )Rzv =
4M2

2MD V4 D(Q

D(0)\V4 D(0
(4.17)

This can be compared with a value for Z^ calculated from the Alpha Collab­ 
orations results for Zy and by [26],

1 - 0.7663#2 + I
- 0.6369#2

bv =
4 - Q.1136/

(4.18)
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Figure 4.3(a) shows Zy1 evaluated from the ratio of two-point to three-point 
correlation functions for each time slice. This can only be done for T > tx = 28, 
equivalent to T < tx = 20, due to the periodic boundary conditions of the lattice. 
i- e - Cf2pt(i = 28) = C*2pt(i = 20). As can be seen from the figure, all time 
dependence cancels out giving a very clean signal. Figure 4.3(b) shows Z f̂f 's 
variation with mass for the four different kappa combinations. There is excellent 
agreement between the Alpha predictions and the measured values.

4.4 Two-Point Correlation Functions

Recalling equation 2.102, and the periodic boundary conditions on the lattice, 
the asymptotic form of the two-point function can be parameterised by

C(t] = A [e~Et + e-E(T-')] , (4.19)

where T = 48, E is the energy of the state and the second term is the backward 
propagating meson. The amplitude A is then,

A = — , (4.20) 

where Z is given by equation 2.103.

These parameters are fitted to the two-point correlation functions, as de­ 
scribed in section 2.8. In order to ascertain the range of time slices on which the 
asymptotic form is valid, the effective mass is defined as

C(tn ) ]= In (4.21)

Considering the effective mass as a function of time slice, it will become constant 
when the time is sufficiently large that ground state dominates the exponentials. 
Figure 4.4 shows the effective mass plotted against time slice for pseudoscalar 
mesons. The horizontal line is the mass fitted between time slices 8 to 22 for the 
light-light meson and between 12-22 for the heavy-light, as there are plateaux for 
the effective mass in these ranges.

The notation used to denote the smearing combinations is as follows. F stands 
for Fuzzed B for Boyled and L for local. For a particular correlation function,
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Figure 4.4: Effective mass plots, (a) 
0.1233, «L = 0.1346 BB, LL
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the notation is Source\Sinki, Source?,, Sink^, where the subscripts refer to the 
propagators.

4.4.1 The Chiral Limit and Charm Mass

The pseudoscalar mesons are used in lattice QCD to define the kappa values 
which correspond to the quark masses. In this calculation three kappa values 
need to be defined for 'physical' quark masses. They are;

mu

mr

where the subscript s stands for strange and c for charm.

As previously discussed, algorithms fail to converge when trying to invert the 
fermion matrix with a really light quark mass, and so the calculation is done with 
several light kappas around strange which are then extrapolated to the chiral 
limit. There are many ways to define this limit. However in this thesis only 
the simplest is considered. The chiral limit is defined at vanishing pseudoscalar
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Figure 4.5: Linear Chiral Extrapolation of Light Pseudoscalar Meson

0.10 II | I , | , |

N 1= 0.05

0.00 [A-L
7.36 7.38 7.40 7.42 7.44

meson mass. PCAC [45] suggests the following dependence of pseudoscalar mass 
on quark mass,

M2PS oc mq . (4.22)

Thus Kcrit is defined as the kappa value for which the pseudoscalar mass vanishes. 
The data in Figure 4.5 can be found in table B.I and is fitted to the form

= a + b——. (4.23)

(4.24)

(4.25)

This fit has a rather large x2 - However, a more extensive investigation of the 
chiral behaviour in [55, 56] on the same data results in a consistent value for /ccrit 
with a variety functional forms.

The results are;

and

a =-8.592J3! 6 = 1.167+1°.

Kcrit = 0.135844+.
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The value for kappa strange can be defined from several quantities. In this 
thesis, the pseudoscalar meson K is chosen. Once again using the p mass to set 
the lattice spacing, this gives a value for kappa strange,

K S = 0.1347461?. (4.26)

Again this is consistent with previous UKQCD results using more sophisticated 
analysis. This is very close to one of the simulation kappas, KI = 0.1346.

For the heavy-light pseudoscalar meson there is no theoretical motivation for 
the form of the extrapolation. In this calculation there are only three light kappas, 
so this suggests as a first attempt a linear extrapolation in the meson mass. In 
fact there is only a small dependence of mps on the light quark mass, so a linear 
fit works rather well.

Figure 4.6: (a) Chiral extrapolation of heavy-light PS meson, KH = 0.1233. (b) 
heavy-light PS meson dependence on quark mass.

0.78

0.76

0.74

0.72

0.70

(a)

0.68
0.00

1.0

0.8

0.6

0.4

(b)

- O KL=3460 

O BL=3510 

D cL=3530 

X KL=/c,,=35B4

-(i)

-(11)

0>
A 
X

I I
0.05 
mq

0.10 2000 2500 3000

Figure 4.6(a) shows the linear chiral extrapolation. It is clear that this is 
a reasonable fit. Figure 4.6(b) shows the values of all 12 heavy-light pseu­ 
doscalar meson masses. The data is listed in table B.2. Also plotted are the 
4 chirally extrapolated values of the meson mass, which have the same valence 
quark content as mDo. These masses are listed in table B.5. Experimentally 
[53] mco = 1.8645Gev. Line (i) is the D° mass in lattice units with the lattice
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spacing defined by p mass. Line (ii) has the lattice spacing defined by r0 , [57] 
a ~ = 2.913GeV. As can be seen, line (i) is very close to the chirally extrapolated 
value of the pseudoscalar mass with KH — 0.1233. In this thesis the value of K 
which corresponds to the charm mass, kc , will be taken to be

KC = 0.1233. (4.27)

4.4.2 Vectors and Scalars

In order to fully analyse the momentum dependence of the form factors, it is 
necessary to analyse the scalar and vector heavy-light mesons, see section 4.6 for 
details The operator for the vector meson is

0£(x) = ^(x)^(x). (4.28)

The situation for vectors is slightly complicated for vectors by the polarisation 
vector c. The matrix element of the operator is

(4 - 29 )

where Zy(p) is the vector meson amplitude. Considering the polarisation sum 
for a massive vector meson

E^- = -^ + ^ (4.30)
3

and the large time behaviour the two-point correlation function can be written
f\ S

/ • tJ"nV P-EV(P]^

. ,4.31)

The polarisation averaged correlation function can then be defined as

for a Euclidean metric arid the on-shell condition. This differs from the pseu­ 
doscalar correlation function equation 2.102 by the factor —3. Only the spatial 
components of the vector current are considered as they have a non-zero overlap 
with the vector state at zero momentum. The operator for the scalar is

}. (4.33)
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Figure 4.7: Effective Mass Plots (a) Jp = 1~ and KH = 0.1233, KL = 0.1346, 
BB,LL. (b) Jp = 0+ and KH = 0.1233, KL = 0.1351, BB,LL. Both fitted 
12-22.
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The fit ranges for these states is also determined from effective mass plots.

The fitted masses and amplitudes and the results of their chiral extrapolations 
are displayed in tables B.3 - B.5.

4.5 Extracting the Form Factors

The form factors of a particular matrix element can be extracted from the data 
using the ratio defined in equation 4.7. All of the time dependence cancels leaving 
a ratio of matrix elements. The product of two matrix elements in the denomina­ 
tor can be extracted from the two-point correlation functions. The momentum of 
the initial state D meson is fixed to be either p = (0,0,0) or p = (1,0,0), but in 
order to reduce statistical noise, all equivalent momentum channels of the light 
state are averaged over. This leaves 6 momentum channels that have initial and 
final state momentum less than or equal to one, shown in table 4.5.

The form factors are simultaneously fitted to the temporal and spatial compo­ 
nents of the ratio of correlation function. All the kinetic factors can be calculated
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Table 4.5: Momentum channels, in units of -^-
chan

1

2

3
4
5
6

P
( o, o, o)
( 0, 0, 0)
( 1, 0, 0)
( i, o, o)
( 1, 0, 0)
( i, o, o)

k
( o, o, o)
( i, o, o)
( i, o, o)
( o, o, o)
( o, i, o)
(-1, 0, 0)

q = k — p

( o, o, o)
( 1, 0, 0)
( 0, 0, 0)
(-1, 0, 0)
(-1, i, o)
(-2, 0, 0)

from the masses of the two-point functions. The dispersion relation,

(4.34)

is used to calculate the energies of the initial and final state. States with higher 
momentum than one rapidly become very noisy, and whilst the dispersion relation 
could be used to calculate the energy from the mass, it could suffer from large 
violations coming from discretisation errors.

The ratios are plotted as a function of time to see in what range the data 
can be fitted to a plateau. The spatial and temporal ratios are plotted in figure 
4.8(a). There is a reasonable plateau for both spatial and temporal components 
on time slices 8-11. This is the fit range used for all the form factors except 
for channel 4 and channel 1 the forward matrix element. In figure 4.8(b) the 
temporal component momentum channel 4 is shown for all times. The back 
side of the lattice has a slow approach to a plateau. For time slices 40-42 it is 
approaching the plateau on the fore side. There appears to be no contamination 
from different time orderings for this channel. This could be explained by the 
fact that V4 (0)} has no overlap with the vector meson state. The fit range for 
this channel is then 40-42, which corresponds to 12-14 with tx = 20.

In the case of the forward matrix element, the spatial component vanishes, as 
does the kinetic term for f+ (q2 ). /0 (<? 2 ) is ntted to tne temporal component only, 
on time slices 12-16 with the extension point at tx = 28. The results of these fits 
are listed in tables C.I - C.24.
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Figure 4.8: Ratios for KP - 0.1351,^ = 0.1353 and KH - 0.1233. (a) Temporal 

and spatial components for p= (1,0,0), k = (1,0,0). (b) Ratio at all times for 

the temporal component of p = (1,0,0), Jb = (0,0,0).
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4.5.1 Chiral extrapolations of the Form Factors

Unlike the case of the pseudoscalar mesons, there is no field theoretic input like 

PC AC to suggest the dependence of the form factor on the light quark mass. 

However, a reasonable assumption is that the form factor behaves like a constant 

plus some small variation through the dependence of initial and final states on 

the light quark mass.

i, (4.35)

where F is either form factor. From the discussion above particularly figure 4.5 

and figure 4.6, this implies that

,-J_ /-y

\ J

and so

K A

Note that this is an extrapolation in two variables, KP and KA, or

F(q2 ) = a

(4.36)

(4.37)

(4.38)
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where meff is the effective quark mass of the light pseudoscalar state.

Figure 4.9: Chiral extrapolation of (a) /o(<?2 ) channel 1 and (b)/,(g2 ) channel 2.
1.2

i.o

o.a

0.6

I ' ' ' ' I ' ' ' ' I ' ' ' ' 
(a)

O K = 3460 O K = 3510

1.2

1.0

0.8

0.6

(b)
O Kp = 3460 O Kp = 3510

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

In figure 4.9 the chiral extrapolations are shown for two channels. Note that in 
figure 4.9(b) there are in fact two lines. This is because the figure is a projection 
of a two dimensional extrapolation onto the plane mp = meff. For D — > K, the 
data is extrapolated to

mP 

meff

0

(4.39)

and for D — )• TT
mp - meff -)• 0. (4.40)

The results of these extrapolations are listed in table 4.6 and table 4.7

It should be noted that in previous UKQCD publications [58, 59] the form of 
the chiral extrapolation included an extra term. This term is proportional to the 
change in the light pseudoscalar mass, so equation 4.36 becomes,

• ( ' }

This implies a term proportional to (meff ) 1/2 , equation 4.38 becomes

F(q2 } = a + (Imp + 7meff + 6m^. (4.42)
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Table 4.6: Chiral extrapolations of /+ (<?2 )-
mom

2
3
4
5
5

D-*K q2

0.8261^0 0.0691?
1.125l}eo 0.1761}
1.3211^ 0.2381?
0.7541^ 0.0391?
0.6471$ -0.0981?

D ->• TT g2
0.8491JJ? 0.1181?
1.212112 0.2301?
1.53411J 0.4811^
0.7951^2 0.0931?
0.6731^? -0.0461?

X*/dof Q
0.74838/3 0.86177
3.3736/3 0.33753
12.4013/3 0.006128
1.35883/3 0.715213
1.78304/3 0.618633

Table 4.7: Chiral extrapolations for /0 (g2 ).
mom

1
2
3
4

5
6

D -)• K q2

0.8741^ 0.2561?
0.764!2; 2 0.0691?
0.933!^5 0.1761?
0.972li 0.2381?
0.7031^ 0.0391?
0.7041^ -0.0981?

D^TV q2

0.914!^ 0.48llf
0.74411? 0.1181?
l.OOSlJ^ 0.2301?
0.9921^ 0.48lli
0.69411? 0.0931?
0.718l?jj -0.0451?

X2 /dof Q
8.43457/3 0.037835
1.22597/3 0.746782
4.78305/3 0.18839
3.53059/3 0.316816
1.19947/3 0.753132
1.78959/3 0.617203

This was motivated by writing down the most general form possible. This term 
makes very little difference for the results for D —)- A", which can be seen by 
comparing the results in [58]. However for D —> TT the derivative of this term
diverges

(4.43)
meff

meffett / oo.

This divergence can cause very rapid changes in the form factor as the chiral 
limit is approached. This behaviour is not consistent with the original ansatz 
for the chiral behaviour. There are also no terms proportional to Mps in chiral 
perturbation theory, from which the light quark mass dependence of the light 
pseudoscalar is modelled. The linear extrapolation is the only one considered in 

this thesis.
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4.6 Pole Mass Dominance Models

72

The results presented thus far are calculated from first principles. The form fac­ 

tors have been calculated as functions of q2 . One of the motivations for calculating 

the form factors on the lattice is to test model-dependent assumptions. In par­ 

ticular lattice data can be compared to pole dominance models [60, 61, 62]. They 

suggest the following forms for the momentum dependence of the form factors,

/ ( g2) = /+(°) / ( 2 ) = M°) (4 44)

where mjp denotes the mass of a sc (dc) meson for the decay D —> K (TT) with spin 

J and parity P. This model of the momentum dependence does have limitations, 

for instance the value of the form factor will vary very rapidly with q2 near the 

end point.

In order to fit these models to the lattice data, two different fits were tried. 

Firstly the form factor at zero momentum transfer and the mass of the pole 

are fitted to the data. This is fit A. Secondly the form factor at zero momentum 

transfer is fitted to the data and the mass of the pole fixed to be that as measured 

by the two-point functions (table B.5). Both fits are uncorrelated.

Figure 4.10: Pole mass fits fits for (a) f£(q2 ) (b) f£(q2 ). The solid line is fit A, 

the dotted line fit B. The burst points are the fitted values of /(O).
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Table 4.8: Fits To Pole Mass Dominance Model For D ->• Kfit
A
B

/+(0) mjl
0.7321^ 0.695i^
0.785^9 0.789J3

x*/d.o.f
0.470279
1.35071

/°(0) mgi
0.717^° 0.953j$!
0.694155 0.8841^

X2 /d.o.f

0.436369
0.680222

The momentum dependence for the form factors of the decay D —>• K are 
shown in figure 4.10 and the results of the fit in table 4.8. As can be seen from 
the figure, the data fits the pole mass dominance model rather well. The two 
form factor obey the kinematic constraint

= /0 (0) (4.45)

although the masses for vector poles differ somewhat. For the two parameter fit 
f+ (q2 ) and /0 (<?2 ) are also in agreement, although for the one parameter fit the 
agreement is worse.

Converting the lattice masses into physical ones from mp (r°), for the vector

£>*+ = 2.112 GeV

mpoie = 1.834^ (2.022) GeV

mC2pt = 2.082+1 (2 - 295) GeV. (4.46)

It can be seen that whilst the pole mass as a free parameter of the fit is not a 
particularly accurate measure of the mass of the vector, given the uncertainly in 
the lattice spacing, the mass of the pole is consistent with both the experimental 
measure of D*+ and the mass as measured by the two-point function. The scalar 
particle does not have an experimentally measured mass, so a similar comparison 
cannot be done.

The form factors are dimensionless quantities. However, as can be seen from 
figure 4.6, the variation in the value of the lattice spacing as measured by dif­ 
ferent quantities results in a different value of K C . This can be used to try and 
estimate some of the systematic errors coming from discretisation. Of course a 
more reliable estimate would be to compare at different lattice spacings, or even 
better at several different lattice spacings, then these effects can be extrapolated
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away. The matrix element must also be renormalised and Zy1 is calculated by 
taking an average of KA and KE- For D —> K, this implies

= Zv (l + bva\(mc + m,)) = 1.021.
\ Zi /

(4.47)

Taking these factors into account, a variation of up to 6% in the value of the 
form factor is found. Taking the two-parameter fit as the preferred result for the 
momentum dependence gives

fK( 
/+ 1

f JO

A'

+45 
—45 stat —45 sys

- (1711+41 +44— u.ioi_39 stat _ 44 syg . (4.48)

A similar analysis can be done of the momentum dependence of the form 
factors for the decay D —>• ir. In this case the one parameter fit, where the 
mass of the pole is fixed to be the same as the mass measured by the two-point 
function, fails badly. This is because the largest values of of <f are rather near the 
physical poles in equation 4.44. Thus only fit A is shown in figure 4.11. The pole 
dominance model is still a reasonable description of the momentum dependence. 
In table 4.9 the results of the fit are shown, as well as the mass as measured by 
the two-point function.

Figure 4.11: Pole mass fits for (a) /;(g2 ) (b) /0%2 ). The solid line is fit A. The 
burst points are the fitted values of /(O).
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r

fit

A
B

Fable 4.9: Fits To Po
/+(0) m«L

0.747+H 0.922i|
N/A 0.752l|

e Mass Dominance Models For 1
X*/d.o.f

0.851591
/°(0) m#

0.7001^4 1.246i||
N/A 0.840l|£

9->7T

X*/d.o.f

1.15931

The form factors again obey the kinematic constraint

(4.49)

within statistical uncertainty. The masses are clearly not in agreement. The 
growth in the form factor at high q2 is not sufficiently fast to accommodate a 
pole of mass as measured by the two-point functions. The pole mass dominance 
does not model the momentum dependence of the data particularly well. The 
two-parameter fit will be used to estimate /(O) as from the figures the data can 
be interpolated to q2 = 0. Again the matrix element must renormalised.

mcrit )) - 1.002. (4.50)

Again the systematic uncertainties can be estimated from the different mea­ 
sures of the lattice spacing. However the chiral extrapolations are over a longer 
range. This suggests a larger systematic uncertainty, of order 10%. This implies

fx(r\\ — 0 7AS+22 +75./ + V U / — U.l<±0_ 45 stat _75 sys

f7r/n\ __ A 7n1~l~46 +^0/O V U J ~~ U.(U1_44 stat -70 sys'

The 5"£/(3) flavour ratio can be computed,

(4.51)

- 1 001 +42— l.UUl_85 (4.52)

where it is believed systematic uncertainties cancel, although uncertainties from 
the chiral extrapolation could still contribute.

These results can be compared with experiment. Two experiments have re­ 
sults for the semileptonic decays of D mesons. Where two errors are quoted the
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first error is statistical, the second systematic. The E687 Collaboration [63, 64] 
find

/f (0) = 

mpole = GeV

/f(0)
- 1 nn+11+2— i.uu_n _ 2 .

The CLEO Collaboration [65, 66] find

/£(0) = 0.77±}±<

— 0— u.

where the mass of the pole in f+(q2 ) is assumed to be D*+ .

This calculation is in excellent agreement with both sets of results.

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

4.7 The Pseudoscalar Decay Constant

The pseudoscalar decay constant, defined by equation 1.61, is calculated by con­ 
sidering the time component of the current at zero momentum. The pseudoscalar 
decay constant is then defined by

(4.58)

This matrix element is calculated by considering the ratio of two-point correlation 
functions. Define the ratio,

CLA sP (t]
(4.59)

The superscripts refer to the smearing, and the subscripts to the operator in the 
correlation function. Then considering the asymptotic form of the correlation 
functions given by equation 2.102, this ratio becomes

CsPsP (t) PS (0)\P(Q
tanh[MF (T/2-t)] (4.60)



CHAPTER 4. RESULTS FOR D MESONS 77

The matrix element in the denominator, and the mass Mp can both be fixed from 

the Cpp(t] two-point correlation function. The matrix element parameterised by 

the pseudoscalar decay constant is the only unknown.

The improved axial current, equation 2.57 can also be written with the deriva­ 

tive as a four-momentum, that is

Zf (0|A,(0) + CA MP P(0)|P(0)) iatt = MP/P, (4.61) 

where CA is defined in equation 2.66 and Z"f is defined in equation 2.63

Zf = ZA (l + bA amq ). (4.62)

The Alpha collaboration [26] have calculated ZA non-perturbatively to be

1 - 0.8496<?2 + O.OeiOff4 
ZA = ———1 - 0.7332g»——— (4 ' 63)

where 0 < g < 1. Unlike by, ^)A is not known non-perturbatively. In this 

calculation a 1-loop perturbative estimate for \>A is used [51]

bA = 1 + 0.1522#2 + O(g4 ). (4.64)

The fit range is decided by plotting the ratio of correlation functions against 

time. In figure 4.12(a) the solid line is the fit to a tanh with the mass fixed to be 

that measured by Cpp(t). The fit range is 14-21. The data is deceptively smooth. 

It would appear that the fit range could be extended. In figure 4.12(b) it can be 

seen that the data starts to rise, if we consider time slices before 14. If we include 

time slices 22 and 23 in the fit, they dominate the tanh plot, and the fit is well 

below the plateau between time slices 14-21. The fits for all K combination of the 

heavy-light pseudoscalar decay constants are listed in table C.25.

The pseudoscalar decay constants must be extrapolated to physical quark 

masses, Kcrit and AC S . There are only three light quark kappas so this suggests 

a linear chiral extrapolation as with the heavy-light masses. In figure 4.13 the 

chiral extrapolation is plotted. The x2 squared is rather high, but the linear fit 

appears to work well. The data for the chiral extrapolations is listed in table 

C.26.
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Figure 4.12: The ratio of C^(t}/Cj,sP (t} vs time with KH = 0.1233 and KL = 

0.1346. The solid line is the tanhM dependence. Plot (a) shows the ratio over 

all timeslices, plot (b) is a close up of the fit range.
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Figure 4.13: Linear chiral extrapolation of the pseudoscalar decay constant, 
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The definition of the lattice spacing will affect the final answer. Once again 

the lattice spacing is fixed from mp and change in the value of fp when the lattice 

spacing is fixed from TO is considered an estimate of the systematic error. The 
results for the pseudoscalar decay constant are

fo = 194tLtat i'Lys MeV (4.65) 

fD. = 2203 stat ±22r sys MeV. (4.66)

The SU(3) breaking ratio is then,

^ = 1-14^3. (4.67) 
ID

The systematic errors arising from the uncertainty in the lattice spacing 

believed to cancel in such a ratio.
are

Experimental measures of /£> are only recently reported so it is also construc­ 

tive to compare these results with other calculations. The experimental number 

quoted for fus [67] is
/D, = 254 ± 31 MeV. (4.68)

This certainly in agreement with this calculation. There have been many calcu­ 

lations of the pseudoscalar decay constant. Two recent reviews of lattice calcula­ 

tions report on several calculations of the decay constants and quote an 'averaged' 

figure. The first [68] reports

fD = 191^ MeV 

fD . =

^ = 1.08 it 8. (4.69)
JD

The second [69] reports

/D = 200 ± 30 MeV 

/D, = 220 ± 30 MeV

^ = 1.10 ±8. (4.70) 
ID

This calculation lies in the middle of these quoted values. Finally it is worth 

comparing with a recent calculation [70] which uses the same non-perturbative
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action, although they quote a value of b^ slightly different as they have used a 
boosted coupling. The overall effect is small.

fD = 211 ± 14ij° MeV

D. = 231 ± 121? MeV

= 1.10 ±2. (4.71)
fo 

As one would expect, the agreement here is excellent.

4.8 The Vector Decay Constant

The vector decay constant denned in equation 1.62 can be measured on the lattice 
by considering the ratio of two-point functions with different smearing combina­ 
tions. Denning this ratio as

o;
(4.72)

Only the spatial components are considered as the temporal component has no 
overlap with the vector state. Considering the asymptotic time behaviour of the 
correlation functions, the ratio becomes

r<LS 
vv

f+\ (t) V(e v \.^

Cvv (t) 73

where Zy is defined in equation 4.29. Inserting the vector decay constant into 
this expression gives,

(474)'

Recalling the massive vector polarisation sum given by equation 4.30, the ratio

can be written _.,„.. _ _ 2
v . (4.75)

The vector mass and amplitude can be measured from the two-point functions, 
leaving fv as the only unknown.
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The vector current must be improved and renormalised. At zero momentum, 
the improved spatial vector current is given by

i + acvd4Ti4), (4.76)

where the derivative can again be written as a four-momentum and cy is defined 
in equation 4.3. The renormalisation constant is defined in equation 4.18.

Figure 4.14: The ratio of Cffi(t}/Cj,sp (t) vs time. The line is a fit to a plateau 
in the range 15-23.
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The fit range is determined by examining the time behaviour of the ratio. In 
figure 4.14(a) the ratio is plotted to see for what range the asymptotic behaviour 
is valid. The heavy-light vector decay constants for all K combinations are fitted 
in the range 15-23 and are listed in table C.27.

The light quark mass dependence of /y, as with all heavy-light meson quan­ 
tities is modelled by a linear function. In figure 4.14(b) the chiral extrapolation 
of fv is plotted. The fit appears reasonable and x 2 is cl°se to one. The results 
for the chiral extrapolation are listed in table C.28.

The same procedure as before of using different measures of the lattice spacing 
to estimate the systematic errors is used. The value of the charm quark mass is 
taken to be K C = 0.1233. After applying the renormalisations given by equation



CHAPTER 4. RESULTS FOR D MESONS 82

4.47 and equation 4.50 the results are,

f — Q 4fl+ 15 +59 JD* — y-^u_ 17 8ta{ _ 59 sys

fot = 8.68^ stat+^ sys . (4.77)

The systematic errors here are quite large as the decay constant has a strong 
dependence on the heavy quark mass (table C.28).

There are only two other calculations with which to compare. A previous 
UKQCD calculation [71] yields,

/a* = 9.09JH Statl34°? sys . (4.78)

This result on 60 configurations at /3 = 6.2 with the Sheikholeslami-Wohlert 
action with GSW = 1, is in reasonable agreement, even without the large error 
bars. The other calculation [70], as discussed in the previous section has the 
same non-perturbative action. They use a different definition of /v, similar to 
fp. Converting their definition to the one used in this calculation, their result is

f — s 14+81 +6 JD* — ».14_ 81 stat _ 0 sys

fDt = 7.76l« stat^7sy, (4.79)

These results agree within large errors. It is perhaps a little surprising that the 
central values are not so close, but give the size of the uncertainties, there is still 
good agreement.



Chapter 5

Results For B mesons

5.1 Form Factors For B —> 7T

In order to calculate the form factors at the B meson scale, the form factors are 
calculated at several different values of KH around charm. HQET is then used to 
motivate the form of the extrapolation to the B meson scale. In equation 3.25 
a new kinematic variable, v • k, is defined. The scaling of the form factors in 
equation 3.31 is then motivated at fixed v • k.

v • k = —————-——— 
2rriB

R n K_ — n-k
(5.1)

mB 

If momentum channels with p • k = 0 are chosen then,

( ~*2 \ 

!

Then v • k is independent of mg when the heavy quark is at rest and the light 
meson momentum is fixed. This means that channels 3 and 6 in table 4.5 cannot 
be used as they have p • k ^ 0. There are two sets of channels that have p • k = 0 
and k = \/2 in table 4.2 and table 4.3. These are are very noisy channels, 
because of the high values of momentum in the final state. They also have lower 
q2 than the other channels and so they do not constrain the q2 behaviour of the

83
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form factors for the decays of D mesons. For this reason they are not included 
in the analysis of the D decays. The situation is different for the form factors of 
B decays, as the q2 is very high after extrapolating to the B scale, so the lower 
values of q2 are advantageous.

Table 5.1: Momentum channels for the decays of B mesons. Momenta are in 
lattice units of 12/a7r.

chan

1

2

3
4

5

6

momentum
p 2 q 2 k 2

000

0 1 1

022

1 1 0
1 2 1
1 3 2

v • k for KH
0.1200 0.1233 0.1266 0.1299

0000
0.262 0.262 0.262 0.262
0.370 0.370 0.370 0.370
0000

0.276 0.280 0.288 0.306
0.390 0.397 0.408 0.432

(V • fc) ave

0

0.262
0.370

0
0.288
0.407

<? m,B

3.99

2.95
2.52

3.99
2.94

2.51

Table 5.1 shows the values of v • k and q2 for each momentum channel used. 
Channels 5 and 6 have a change in the value of v • k which is about 10% over the 
range of kappa values. This is comparable with the other systematic errors in the 
calculation from discretisation, quenching etc, so they are included.

The fit ranges of these extra channels have to be chosen carefully due to 
their noisy nature. Recall from equation 4.7 that in the ratio of the three-point 
function over the two-point functions all the time dependence cancels once the 
correlations have reached their asymptotic values, leaving only the ratio of the 
matrix element in question and matrix elements known from two point functions. 
Figure 5.1 shows the spatial and temporal ratios for channel 6. It is hard to 
extract any reliable signal from the spatial component. The temporal component 
has a peak close to T = 0 followed by a 'shoulder'. The fit range is chosen so that 
the fit is to the shoulder. The initial peak is believed to be a false plateau. This 
can be seen by considering the behaviour of the light-light two-point function in 
figure 5.2. It is not clear that the ground state dominates before time slice 9 or 
10. This is later than for zero momentum channels. The false peak in the ratio 
could be coming from contamination due to excited states. For this reason the fit
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Figure 5.1: The (a)spatial and (b) temporal ratio for kappa combination 
2330, KA = KP = 3460 momentum channel 6
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range is chosen to be 9-12 for channels 3 and 6. The results of the fits are listed 
in table C.7 - table C.24.

Figure 5.2: Effective mass plot for heavy-light pseudoscalar meson, p2 = 2. The 
solid line is the dispersion relation mass. 
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The chiral extrapolations of extra channels proceed as described in section 
4.5.1. The results for the chiral extrapolations are displayed in table C.29 to 
table C.36.

In Chapter 3 the dependence of the matrix elements and form factors on heavy 
quark mass was discussed. Rather than use the pseudoscalar mass to set the value 
of K which corresponds to the mass of the b quark, the extrapolation to the B 
meson scale is done directly in the inverse of the pseudoscalar mass The physical 
B meson mass is [53],

mB = 5.2792 ± 0.0018 GeV. (5.3)

From equation 3.31, the scaling of the form factors is known. This suggests the 
following form for the heavy extrapolations at fixed v • k

7+ (l + fe) Linear 

7+ (l + x£r + %) Quadratic

7o (1 + M] Linear
L^' ^ n A *• (5 " 4) To (1 + jfe + jfirj Quadratic

where C\(Mp] is defined in equation 3.22. To one loop, as is given by,

4vra' (Mr} = ' (5 ' 5)
The value of AQCD is taken from [72], for four flavours. In the MS scheme,

A = 295tgo MeV (5.6)

and /?0 = 11 for quenched QCD. The same reference quotes

A = 210^° MeV (5.7)

for five flavours. If this values is used then the value of G\ differs by about 2% 
around the D mass scale. The other uncertainties in the extrapolations are larger 
than this multiplicative factor.

As previously mentioned the form factors must be renormalised. The value 
of K which corresponds to the b quark mass is not known. Therefore the non- 
perturbative expression for Zy* cannot be used. The form factors are therefore
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renormalised before the extrapolation. For each heavy kappa, using equation 
4.47,

Z$ = Zv (l + bva\mH\ . (5.8) 
V £ /

The factor of a half comes from taking the average quark mass of the heavy and 
chiral quark. Then,

= 0.1299) = 0.887

Zf(KH = 0.1266) = 0.943

Z{f(«H = 0.1233) = 1.002

ZVS (KH = 0.1200) = 1.064.

Table 5.2: f+ (q2 ) for B -» TT.

(5.9)

mom q2

2 2.95149
3 2.51780
4 3.99848
5 2.94255
6 2.50517

Linear
/+ (<?2 )

1.5ll?o
1.051J?
3.22ljf
1.66151
1.55+47

X2 /dof

0.00379181/2
0.0111033/2
2.85936/2

0.0701752/2
0.93291/2

Quadratic

/+ (92 )

1.491S
1-131S
4.841^
1.89+.41
3.62lJ°°

X2 /dof

0.00251162/1
0.00828925/1
0.321782/1

0.0249573/1
0.0335135/1

Table 5.3: f0 (g2 ) for B —)• 7T.

mom q2

1 3.99848
2 2.95149
3 2.51780
4 3.99848
5 2.94255
6 2.50517

Linear
/o(<?2 )

0.78+ 4
0.551 I
0.611J
0.78+*°

0.551&
0.741J1

X 2 /dof

1/2
0.0251982/2
0.17009/2
0.999799/2
0.0475617/2
0.754674/2

Quadratic

/o(<?2 )
0.741 1 "

0.561 I
0.811J1
0.93l?i
0.581J?
1.85112

X2 /dof

1/1
0.0200793/1

0.00243446/1
0.0803181/1
0.0401551/1

0.00616235/1

For each momentum, that is for fixed v • k, a linear and a quadratic extrap­ 
olation is performed. For all channels except 4 and 7, the results of the linear
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and the quadratic extrapolations agree, the quadratic extrapolations giving larger 

statistical errors. This can be seen in figure 5.3(a) and figure 5.3(b). The extrapo­ 

lations of /+ (<? 2 ) and /0 (<?2 ) are plotted. The effect of the quadratic extrapolation 

is essentially larger error bars. It is harder to extract a signal from the ratios for 

Channels 4 and 7 (figure 4.8(b) and figure 5.1). This could explain the seemingly 

different dependence on heavy quark mass. Figure 5.3(c) shows the extrapola­ 

tion of f0 (q2 ) for channel 1. The linear and quadratic fits agree. Figure 5.3(d) 

shows /0 (q'2 ) for channel 4. here there is a difference between linear and quadratic 

which is not large given the size of the errors. Channels 1 and 4 have the same 

momentum transfer, so the form factors should have the same value. The linear 

extrapolation of channel 4 agrees with both the linear and quadratic extrapola­ 

tion of channel 1. Figure 5.3(e) and (f) show the extrapolations for f+ (q2 ) for 

channels 2 and 6. For channel 6 the result of the quadratic extrapolation nearly 

agrees with the linear due to huge error bars. Channels 2 and 6 also have the 

same momentum transfer, and so should agree. The linear extrapolation of chan­ 

nel 6 agrees with the linear and quadratic extrapolation of channel 2. The form 

of the heavy extrapolation is thus chosen to be linear. The results of both linear 

and quadratic extrapolations are listed in table 5.2 and table 5.3.
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Figure 5.3: Extrapolation of Form Factors to the B meson scale. The burst points 
are the extrapolated data.
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5.2 Momentum Dependence and

In order to try and measure the form factors at q2 = 0 some form of the momen­ 

tum dependence must be motivated. Pole dominance models can be combined 

with HQET to suggest the form of the momentum dependence [73].

Pole dominance models suggest

where / is either /+ or /0 , nj is the power of the pole, and Mf is equal to the 

mass, M, used to scale the form factors plus some 1/M correction. That is

For a large M,
2M

\M

= 1-1+-

The form factors then have the following behaviour

/(q2)~/(0)(^) n/ . (5.13) 

The scaling relations for the form factors, equation 3.31 then imply

n/o + l (5.14)

That is the degree of the pole for f+ (q2 ) is one greater than for /0 (<? 2 ), so the 

momentum dependence is for a pole/constant, dipole/pole for f+ (q2 ) and /0 (<? 2 ). 

The kinematic constraint,
/+(0) = /0 (0) (5.15)

can be used to further model the <? 2 dependence.

A 'quartic' parameterisation can also be used to model the q2 behaviour
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Here the mass of the pole is fixed to be mB and /(O), af and /?/ are free param­ 
eters. It also uses the constraint equation 5.15.

Fits to unconstrained pole/constant are shown in figure 5.4(a) and fits to 
unconstrained dipole/pole are shown in figure 5.4(b). It is clear that the /0 (<?2 ) 
has some curvature in q2 and so the dipole/ pole fits are clearly better. This is 
born out in the fit results, table 5.4. There is no Q value quoted for the constant 
fit to f0 (q2 ) as this essentially fails to fit the data.

Figure 5.4: Momentum dependence of form factors, (a) /+ (<?2 ) pole, /0 (<?2 ) con­ 
stant, (b) f+ (q2 ) dipole, f0 (q2 ) pole.
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Table 5.4: Fit results for momentum dependence of form factors.
fit type

/+(<?2 ) P°le 
/o(<?2 ) const 
/+(<?2 ) dipole 

f0 (q2 ) pole
pole/const 
dipole/pole

/(O) M/+ GeV M/0 GeV

0.48111! 5.685J:| N/A 
0.6971^ N/A N/A 
0.4271H 6.621JI N/A 
0.312121 N/A 6.811^
0.6891} 6.1771J N/A 
0.33012! 6.371," 6.96lfg

X2 /dof Q
3.47046 0.015374 
11.1618 

0.845067 0.429529 
0.812792 0.486531
6.70643 
1.18478 0.303571

Figure 5.5 shows the constrained fits for (a) pole/constant and (b) dipole/pole. 
The results are also displayed in table 5.4. The preferred fit is the dipole/pole.
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Figure 5.5: Momentum dependence of form factors, (a) f+ (q2 ) pole, fQ (q2 ) con­ 
stant, (b) f+ (q2 ) dipole, /oO?2 ) pole with /0 (0) = /+(0).
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The quartic parameterisation cannot be fitted to the data with the mass fixed at 
the B meson mass. This can be seen in figure 5.6. The solid lines are the fit to the 
data. Clearly this does not work well. The B meson mass is significantly smaller 
than the masses that are free parameters of the pole dominance fits. In [74] Light 
Cone Sum Rules (LCSR) are used to calculate the form factors for q2 < 20 GeV2 . 
This data is then fitted to the quartic parameterisation in equation 5.16. The 
dashed lines in figure 5.6 are the results of this fit. As can be seen, they diverge 
around q2 = 20 Gev2 .

An estimate of the systematic error can be obtained from the difference be­ 
tween the constrained and unconstrained fits to the dipole/pole for f+ (q2 } and 
f0 (q2 ). The results for the q2 behaviour of the form factors are then

/(O) = 0.33^3 stat + 1 " sys

— fi 17+ 6 +25 GeV— \j. u I _ JQ gta,t _25 sys ^ *

s GeV (5.17)stat

The decay rate for B -> TT is given by the expression [75] 

,_ ^ &F\Vub (5.18)
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Figure 5.6: Momentum dependence of form factors, quartic model
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where A is a kinetic factor given by,

ml (5.19)

However, all results have been presented after extrapolating to the chiral limit, 

mv —>• 0. This simplies the integral significantly. Whilst the pion has non-zero 

mass it is certainly small compared to the mass of the B meson, and so any error 

coming from this procedure is smaller than the other systematic uncertainties in 

the calculation.

The result for the decay rate is then

r
1Kb

+2 - 4 +4 - 7
_ 1 2 stat -1.6 sys

•U2 _-] (5.20)

This is somewhat larger than a previous UKQCD calculation [73]. However, the 

previous UKQCD calculation did not extrapolate the light quark masses to the 

chiral limit. This makes a large difference to the range of q2 (in lattice units) that 

the form factors are evaluated on, and this could well account for the discrepancy.

This decay rate has recently been measured. In [53] the branching ratio for 

B —¥ nli/i is given as
Br = l.Slgi 1(T4 , (5.21)
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and the mean life of

r(£) = 1.56 1(T 12 s. (5.22)

By comparing the experimental decay rate with the calculation of the decay rate 
the value of \4b can be extracted.

Vub = 0.00261' stat ±1 sys % exp . (5.23)

This compares very well with, but is much more accurate than the world average 
given in [53] of

Kb = 0.0018 - 0.0045. (5.24)

5.3 The Pseudoscalar Decay Constant

In the static limit the scaling of the pseudoscalar decay constant is given by 
equation 3.33. This suggests that a 1/Mp expansion for the extrapolation to the 
B meson scale is

7 f 1 + W~] Linear
' (5.25) 

Quadratic

where C\(Mp] is the logarithmic matching factor given in equation 3.22 and 
equation 5.5. The data for the heavy-light pseudoscalar decay constant is listed 
in table C.26. As with the form factors the decay constant has to be renormalised 
before the extrapolation,

Zf = ZA (l + bA a l-mH . (5.26)

where ZA and bA are determined by the Alpha Collaboration and are given by 

equation 4.63 and equation 4.64

Figure 5.7 shows the extrapolation of the pseudoscalar decay constant. The 
statistical uncertainties in fp are much smaller than those of the form factors. 
This obviously constrains the fit much more, and a quadratic fit has a smaller x2 
in table 5.5. This is reinforced by the figure where there is definite curvature in 
fp . The quadratic fit and the linear fit disagree by several a. This is opposite
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Figure 5.7: Extrapolation of the pseudoscalar decay constant to the B meson 
scale. The solid line is a quadratic fit to all points, the dotted line a linear fit to 
the heaviest three data points. The burst points are at the B meson scale
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0.08

0.06

0.04

1/11

Table 5.5: The pseudoscalar decay constant at the B meson scale
fit

Quadratic
Linear 4
Linear 3

/B MeV
174+53

156l|
16311

X 2 /dof

0.0275514/1
2.16851/2

0.0175467/1

Q
0.868168
0.338154
0.894617

to the case for the form factors. The quadratic fit is preferred. The dotted line 
is a linear fit to the heaviest three data points. The difference can be used to 
estimate the systematic uncertainty.

The pseudoscalar decay constant for /g s can be extrapolated in a similar fash­ 
ion. Figure 5.8 shows /# and fs, together. They both have a similar curvature, 
although /g s is slowly growing away from /#. From the figure it can be seen that 
they have the same dependence on the heavy pseudoscalar mass. The value for

is then

fa. = 208+^ MeV = 0.0746877 Q = 0.963345. (5.27)
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Figure 5.8: Extrapolation of fg and /ss,. The burst points are the decay constants 
at the B and Bs mass scale.
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0.04
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The lattice spacing has been set by mp . Choosing the lattice spacing set by r0 
will give a different result. Using this, as well as the linear fit to the heaviest 3 
data point to estimate the systematic uncertainties gives the following results.

—3 stat —11 sy: 

/B. = 208+Ltati

MeV

+s ™ MeV.sys

The 577(3) flavour breaking ratio can then be evaluated.

^ = 1.20+4.
JB

(5.28)

(5.29)

These values can be compared with other calculations of /B. In particular 
comparison with the same two reviews as quoted in chapter four, the first quoted 
[68]

J

fB = 172+ 23 1 MeV 

= 1.14 ±8. (5.30)

and the second [69]

fs = 175±35MeV
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/B. = 195 ± 35MeV

^ = 1.14 ±8. (5.31)
JB

This calculation is certainly in good agreement with both these reviews. The 
ratio is slightly higher, but agrees within errors. Again this calculation can be 
compared with [70],

/B = 179±19l5

fBf = 204±16l2*MeV

^ = 1.14 ±31°. (5.32)
JB

Again the agreement here is excellent. 

5.3.1 The Soft Pion Relation

In chapter three, HQET was used to derive equation 3.59, which should hold at 
i&). Taking the experimental value for /„. from [53],

/ro = 130 ± 5 /„+ = 130.7 ± 4 MeV (5.33) 

The heavy-light decay constant divided by 130 MeV can then be compared with

In figure 5.9 the heavy extrapolations of both /£//„• and /o are plotted. It is 
clear that there is a substantial violation of the soft pion relation. The reason for 
this is unclear. The value of fg is a reasonable one and in very good agreement 
with other calculations. The value of fv is also reasonably determined. What 
about /o? Recall from figure 5.3(d) that it is possible to extrapolate /0 quadrat- 
ically. However even this would only give a value of around 1.3 for the quantity 

plotted, still substantially less than the corresponding /B//W .

Other calculations of the form factors have been made. A preliminary cal­ 
culation on this data [58] found that the relation held. However, the form of 
the chiral extrapolation used was flawed. A previous UKQCD calculation of the 
form factors did not chirally extrapolate the data. Two other recent calculations
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Figure 5.9: The Soft Pion Relation for B mesons.
3.5

2.0

i.o

0.5

T I

1 2 
1/M

[76, 77] of the form factors and decay constants using different actions and lattice 
spacings also report large violations of the relation. Possible reasons could be 
chiral symmetry breaking by the lattice, the systematic uncertainty in the chiral 
extrapolation, or the breakdown of the soft pion theorem itself in semileptonic 
decays. Clearly this needs further study.

5.4 The Vector Decay Constant

In chapter three the ratio of the vector and the pseudoscalar decay constants and 
its scaling with the mass of a heavy meson were defined. Recall equation 3.64,

3

where M is the spin averaged mass
MP

(5.34)

(5.35)

In the static limit C/(oo) = 1. To motivate the extrapolation of this quantity, a 
new variable can be defined.

U(M) = U(M)
2 a,(m
3 TT

(5.36)
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Table 5.6: Extrapolation of U(M) to the static limit.
fit

Linear 
Quadratic

U(MB ) U(M00 )
0.92^ 0.94^ 
0.84±^ 0.771?

X*/dof Q
0.204717 0.814878 

0.0531115 0.817735

This is just U(M] divided by the logarithmic corrections where the mass is the 
spin averaged mass.. The form of the extrapolation is then

M

where the e term is dropped for a linear extrapolation.

Figure 5. 10: Scaling of U(M)

(5.37)

i.o

0.8

0.6

1/M*

In figure 5.10 both the linear and quadratic extrapolations are shown. The 
Linear extrapolation is close to the HQS limit of 1. The quadratic fit makes very 
little difference within the range of the data, but a rather large difference in the 
static limit. The quadratic fit has rather large errors. Both fits have reasonable 
X2 and Q value. The values of U(MB ] and U(M00 ) are shown in table 5.6. The 
linear fit is preferred. The heaviest point has a slight dip in relation to the other 
points, and it is this that allows negative curvature in the quadratic fit.
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The value for U(Mn) is one of the data points and has the value

U(MD ) = 0.89+} (5.38) 

Using the figure quoted in equation 5.28, the value of /#* can be estimated.

/B* = 28+.} stat +j sys (5.39)

This central value is from the linear fit and the systematic the difference between 

the linear and quadratic fit, and the systematic uncertainty in fg.

These results can again be compared with a previous UKQCD calculation, 

[71]. The HQS relation is satisfied, for both the linear and quadratic fits. The 

curvature is positive for their quadratic fit. Quoting the numbers for U(M) for 

B and D mesons

U(MD ) = 0.77+j

tf(MB ) = 0.93^ (0.961S) (5.40)

where the number in brackets is for the quadratic fit. The value for U(Mr>) 

is significantly lower than for this calculation, but at the B meson scale it is 

better for the linear fit. The other recent calculation of /B*, [70], which uses 

the same action as this calculation sees a similar pattern for the HQS relation, 

that is negative curvature in the quadratic fit, although the masses are heavier 

than in this calculation. Converting their definition of fy to the one used in this 

calculation gives,
/B* = 27 ± 3i°' 2 (5.41)

where the first error is statistical and the second systematic. As expected the 

agreement between the two calculations with the same action is excellent.



Chapter 6

Conclusions

The motivation for this calculation was to reduce the theoretical uncertainties 
in the CKM matrix elements. The theoretical uncertainties are dominated by 
non-perturbative strong interaction effects. This thesis demonstrates that lattice 
gauge theory is an effective tool for the calculation of matrix elements of the 
semileptonic decays of heavy mesons. One of the least well known CKM matrix 
elements is Kb- The matrix elements relevant to the decay B —> TT/I// has been 
calculated. This allows the theoretical decay rate to be computed and compared 
with experiment. Examining equation 5.23 the statistical uncertainties are around 
5 — 7%. The systematic uncertainties are much harder to quantify. Discretisation 
errors are hard to determine with results for only one lattice spacing and from 
other calculations systematic errors coming from quenching could be as large as 
20%. By varying various quantities this calculation has estimated some of these 
systematic uncertainties at around 12%. The UKQCD collaboration is currently 
generating data at a different lattice spacing to try and quantify the a dependence. 
By far the largest uncertainty in the value of Kb quoted in this thesis comes from 
experiment, around 20%. This is about to change with measurements from the 
new B factory experiments. This estimation of Kb compares very well with 
the 'world average' given in [53]. The aim of this calculation was to reduce the 
theoretical uncertainties in the extraction of CKM matrix elements. This has 
been successfully achieved. It is hoped that the decay B —> pli/i will constrain 

Kb further.
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It is very important to understand the chiral behaviour of the form factors. 
The decays of heavy mesons to light mesons are rather violent processes. The 
momentum 'kick' to the active light quark, and how this affects the remaining 
light degrees of freedom is certainly a non-perturbative affect. In determining 
the light hadron spectrum, combinations of 3 light AC'S result in 6 effective quark 
masses in which to extrapolate, usually at zero momentum. In this calculation 
a flavour symmetry between the active and passive quarks is not assumed. This 
allows the calculation of the form factors for D —>• Klv\. However, the 6 combi­ 
nations of light re's then have to be extrapolated in two dimensions to physical 
quark masses. The data cannot constrain the chiral behaviour to the same degree 
as the light hadron spectrum. In using a linear dependence of the form factors on 
the quark mass, the change in the form factor as the chiral limit is approached is 
small, resulting in the 577(3) flavour breaking ratios for f+(Q)/f+(Q) being close 
to unity. This agrees very well with experiment. An extra passive kappa would 
help to examine the chiral behaviour. However this would require an amount 
of computer time equal to a half what has already been used in generating the 
three-point correlation functions.

The extrapolation of the form factors to the B meson scale can also contain 
difficulties. The q2 of the form factors after the extrapolation are all (relatively) 
close to <?max which implies that the mass of the heavy meson dominates v-k and so 
the value of v-k should not vary greatly. The pseudoscalar decay constant has no 
ambiguities coming from momentum dependence in either the chiral extrapolation 
or the scaling to the B meson. The violation of the soft pion theorem is puzzling. 
Whilst, for instance the renormalisation constant Z*f has been calculated with 
a perturbative value for 64, the value of fs/fv in this calculation is consistent 
with many other determinations. A quadratic extrapolation in the heavy mass 
could increase the value of /o(<?max)> ^ut ^ would have to nearly double to satisfy 
the soft pion theorem. Other lattice calculations also see large violations of the 
soft pion theorem. Further study is necessary to determine the cause. Possible 
reasons include some as yet unknown lattice artifact, a quenching effect or even 
the break down of the soft pion theorem itself.

The calculation of the form factors, and their momentum dependence allows
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the comparison with pole dominance models. This comparison finds the data 
from this calculation in excellent agreement for D —>• Klv\ for both the general 
behaviour and the masses of the poles. The agreement for D —>• TT/Z^ is not so 
good. The masses suggested by pole dominance models are significantly lower 
than is consistent with these fits. If the chiral behaviour were to increase the 
value of the form factors at high q2 then perhaps the comparison would be better. 
This would boost the value of /o before the heavy extrapolation. However, this 
could spoil the agreement with experiment for the SU(3) flavour breaking ratios 
described above.

As ever numerical calculations in lattice gauge field theory can always be im­ 
proved with more data. In this calculation the statistical uncertainties are smaller 
than the systematic. Calculating the form factors for more quark masses would 
certainly improve the calculation, this however would be very expensive compu­ 
tationally. As previously mentioned repeating the calculation at several different 
lattice spacings would allow extrapolation to the continuum limit. Again this is 
very expensive computationally, however, the UKQCD collaboration is currently 
generating data at another lattice spacing. There are also other matrix elements 
that can be calculated from this data set which can be used to further constrain 
Kb- In particular the form factors for the decay B —>• plv\ could be calculated. 
The form factors of the electromagnetic penguin B —>• K*^ should have the same 
HQS scaling behaviour as the form factors /+ (<? 2 ) and f0 (q2 ). Besides being sen­ 
sitive to new physics, a calculation of the tensor matrix element could be used 
to check the scaling of the form factors in this calculation. Finally, quenching is 
potentially a large uncontrolled approximation to full QCD. The UKQCD col­ 
laboration is currently generating dynamical fermion gauge configurations. This 
presents an unparalleled opportunity to calculate these form factors in full QCD.



Appendix A

Grassmann Variables

Consider N anti-commuting Grassmann variables {&} i = 1, 2, • • •, N,

{il>i,*l>j} = i/>nl>j + fail>i = Q (A.I) 

=* # = 0 (A.2)

and let /(^>) be some function of the Grassmann variables. Since the Grassmann 
variables anti-commute, the functions / can only be polynomials of a finite degree

fW — fo + E f^ + E fij^i^j + • ' • + fl2-N^i^j •••tf>N (A-3)

where the /'s are complex numbers. Due to the anti-commutation relations there 
must be two types of differentiation: left and right. The derivative d/dt^i is 
performed by anti-commuting ^ to the left, whence

O

TTT^ = L (A - 4)
Otpi

Similarly for left differentiation,

&T£- = I. (A.5)

For instance
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The integration of functions of Grassmann variables is defined by

I dfa = 0

j d^i = 1 (A.7) 

wher the integration measures {dt/jj} anti-commute with themselves and {^-}

{&, <%} = {d^d^} = 0 Vi, j. (A.8)

This results in the peculiar property of Grassmann variables, that differentiation 
and integration have the same result.

(A,,

Now consider the generalisation to N pairs of independent Grassmann vari­ 
ables {t/>i>^»} i = 1,2, • • • , N. In particular consider the following integral, im­ 
portant in quantum field theory,

k=l

Writing the integrand as

-\^N ~ N -~ \^N M

Expanding the exponential yields
TVe-E,,J=1

*=i j=i
By applying the integration rules, A.7, it can be seen that only term which 
contributes is the product of all the Grassmann variables.

TV N _ N/[M] = / n WkWk n ̂  E Mi& ( A - 13 )
J k=l i=l j = l

Products of Grassmann variables are antisymmetric under exchange of any pair 

of indices, thus

TVr/ II dfadfaMk E th-i* Mih • • • MN]N (A. 14)
" I_._ -I n- . . . n , T
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where f.jv ..jN is the N-dimensional antisymmetric tensor. Recalling the definition 
of the determinant of a matrix

detM= E ch ...JN Mln ---MNJN . (A.15)

Thus obtaining

N
I[M] = j H [d$k dil>k]e- E'^=> *iMii ** = det M. (A.16)

Now consider the generating functional

where 77 and 77 are anti-commuting sources. By redefining the Grassmann vari­ 
ables,

(A.18)

we can re-write equation A. 17 as

N

k=i 
= det M (A.19)

Applying the rules of differentiation, A.4 and A.5 to the generating functional 
A.17 and then setting the sources to zero, we have

<- «- 
... — z[fj, 77] —- • • • —-

t 7 7 — / • • TbiMiilbi /A r»rv\ 
• • lpn tpi • • • 1f>n e ' 3 • (A. 20)

By making an expansion of the exponential in A. 19 in a similar manner to that 

of A.11

(A.21)
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and applying the rules of differentiation, A.4 and A.5, it can be seen that the 
only term which contributes after the differentiation in A.20 is the product of all 
Grassmann variables, so that

(A.22)

In particular, considering the integral of one pair of Grassmann variables

d
e -Z[ri,r)] —— 

= det (1/r " xr ~ 1 (A.23)

where equation A.23 can be generalised to any number of pairs of Grassmann 
variables.



Appendix B

Meson Spectrum

In the tables that follow are displayed the results to the fits for the meson spec­ 
trum. The data in each table are the results of fitting the correlation functions 
to

C(t) = A (2e-ET/ * cosh(E(t - T/2))) (B.I)

where T = 48, E = E(p2 ), the energy of the state, and A, the amplitude is

Z2 
A = ^, (B.2)

and Z is the two-point amplitude given by equation 2.103. In this appendix, the 
abreviation of the kappa value KKKK will be taken to mean 0. IKKKK. For example 

K = 2330 means K = 0.1233.
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Table B.I: Light Light Pseudoscalar Mesons. KI is FF, «2 are LL, fit range is
8-22

Kl
3460

3510

3510

3530

3530

3530

«2

3460

3460

3510

3460

3510

3530

A

0.013931^

0.014711^

0.015991^

0.015251^

0.016941^

0.0181611?

E

0.2808llg

0.250911?

0.216811^

0.23831^

0.20221}^

0.1862112

X2 /dof

0.760541

0.865043

0.835155

0.905768

0.855999

0.84415

Q
0.703145

0.590255

0.622795

0.546175

0.600096

0.613

Table B.2: Heavy Light Pseudoscalar Mesons. Heavies are BB, Lights are LL, fit 
range is 12-22

KH

2000

2330

2660

2990

KL

3460
3510
3530
3460
3510
3530
3460
3510
3530
3460
3530
3530

A

53.9l£°
50.811*
49.911?
58-71}°
55.411?
54.5lJi
64.211J
60.91}"
59.9112
Tn o~|-12/0.3_ 14

67.2l}i
66.4111

E

0.84051' 4
0.823111^
0.81651^
0.73871' 2
0.72051}?
0.71361}^
0.62841J 1
0.6091113
0.601711^
0.50511^
0.484011^
0.475811 4

X*/dof

1.09799
1.01715
0.92469
1.08233
0.93334
0.8123
1.16498
0.95453
0.79017
1.27592
1.07040
0.86976

Q
0.360133
0.423150
0.502024
0.371857
0.494381
0.604815
0.312677
0.475875
0.625511
0.244029
0.380956
0.551583
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Table B.3: 
is 12-22

Heavy Light Vector Mesons. Heavies are BB, Lights are LL, fit range

KH

2000

2330

2660

2990

KL

3460

3510

3530

3460
3510

3530

3460

3510

3530

3460

3510

3530

A

33.3l|
31.01'°

on 0+12 
OU.6_W

34.81™
on 4+ll o/.4_ 10

31.7J:{?
35.61'°

33.311*

32.6llt

35.0l{°

32.81H

32.211^

E

0.8887l?f

0.87261^
0.86671^

0.79451$

0.77851$

0.7727151

0.6944l|

0.67831^

0.67271^

0.5865l?|
0.57041^
0.56481^

X^/dof

1.86344

1.44828

1.24573

2.00409

1.57727

1.35869

2.22583

1.79956

1.54442

2.5098

2.10716

1.80523

Q
0.0524253

0.16105

0.261485

0.0347487

0.115542

0.200746

0.0177129

0.0628993

0.125936

0.0071905

0.0254967

0.0618984

Table B.4: Heavy Light Scalar Mesons. Heavies are BB, Lights are LL, fit range

is 12-22
KH

2330

KL

3460

3510

3530

A
1 ? ^+ 15 — J.o.o_ 19

-14.215?

-15.211

E

0.8891J 1

0.87611^

0.878ll£

X2/dof

1.95509

1.32661

1.09282

Q
0.0401635

0.216743

0.363979
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Table B.5: Masses (in lattice units) of Heavy-Light Mesons after chiral extrapo­ 

lation. Jp
K = K C

0~ K = Ks

X2 /dof

K = K C

-L r\i — iv $

X2 /dof

U K> — *"s

X2/dof

2000

0.79681?^
0.8405l^4
2.68469

0.84691H
0.88871??

1.32046

2330

0.69321?!
0.7387!£2
3.06916

0.75251^
0.79451??
2.31914

0.88441JS!!
3.72088

2660

0.580411^
0.62841I 1
3.14993

0.651511?
0.69441?^
2.76268

2990

0.452311^
0.50511^
2.43356

0.54381^
0.58651?^
3.22384



Appendix C

Matrix Elements

This appendix will use the same abbreviation for the K value as appendix B. 
Table C.I to table C.24 show the results of a simultaneous fit for the form factors 
/+ (<?2 ) and /0 (<?2 ) to the spatial and temporal ratios of three-point over two-point 
correlation functions as defined in equation 4.7. Listed are all eight momentum 
channels, the six listed in table 4.5 and the two extra channels described in chapter 
five table 5.1.

Table C.25 to table C.28 show the results of the fits for the pseudoscalar and 
vector decay constants defined in chapter four and their chiral extrapolations for 

each heavy K.

Table C.29 to table C.36 show the results of the chiral extrapolations of the 
form factors for each heavy K for the six momentum channels described in table 

5.1.

All data is for the unrenormalised matrix elements, apart from table C.27 and 

table C.28, which list data for the vector decay constant, renormalised by Zy 1 .
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Table C.I: Ka = 3460, KP = 3460, KK = 2000, Zf = 1.08371.
p2 q2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+(<?2 ) /o(92 )
0.7661^

0.7831^ 0.6881^
0.6491*1 0.64914!
0.96315H 0.8521^
1.2841^ 0.8741^
0.786^° 0.6871^
0.570l§l 0.5831^
0.690115 0.852l^9

q2

0.313±{
0.1401}

-0.07611
0.2461J
0.2911?
0.1091}

-0.0281}
-0.1241}

X2 /dof Q
9.48648/6 0.14801
7.84886/6 0.249386
29.6854/6 4.510e-05
10.6857/6 0.098589
5.28637/4 0.259156
8.71542/6 0.190227
3.18071/6 0.785848
9.85635/6 0.130833

Table C.2: «a = 3510, KP = 3460, Ke = 2000, Zf = 1.07606
p2 q2 k2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<? 2 )
0.7881^

0.7921^ 0.6741^
0.6481^ 0.653liJ
l.OOll^ 0.864l|?
1.438lio 0.8881^
0.7941^ 0.6711H
0.5921^ 0.5951^
0.7271^3 0.8891?^

q2

0.348!^
0.1601}

-0.0701}
0.2681}
0.328!2,
0.1311}

-0.0061}
-0.1161}

X2 /dof Q
5.48867/6 0.482828
5.9486/6 0.428973
17.752/6 0.0068827

10.3802/6 0.109526
9.1348/4 0.0578171
9.1195/6 0.166968

3.40205/6 0.756952
8.18152/6 0.225104
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Table C.3: Ka = 3530, KP = 3460, Ke = 2000, Zf = 1.07302.
p2 q2 k2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<?2 ) /o(<?2 )
o.sooiJ!

0.8131^ 0.6751^
0.6381^ 0.6441^
l.Olltio: 0.8741^
1.514li 0.891+H
0.7981^ 0.662^i
0.6071;$ 0.6051;$
0.739l^0 0.9031}^

<? 2

0.363^
0.168ti

-0.0671}
0.2771}
0.3441^
0.1401}
0.0031}

-0.1131}

X2 /dof Q
1.33312/6 0.9698
5.78018/6 0.44826
14.9245/6 0.0208519
9.48666/6 0.148001
11.2658/4 0.0237341
5.4835/6 0.483453
3.8995/6 0.690275
5.66807/6 0.46138

Table C.4: «„ = 3460, KP = 3510, K e = 2000, Zf =1.08371.
p2 q2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<? 2 ) /o(<?2 )
0.78lli

0.8011^ 0.6971^
0.65711? 0.6651^
0.9961^ 0.8331^
1.3181^ 0.8871^
0.79llt| 0.6861^
0.6231^ 0.6341^
0.710l^8 0.8951}^

?2

0.3281^
0.1441?

-0.0781}
0.25212
0.3081^
0.11412

-0.022612
-0.1251}

X2 /dof Q
6.2685/6 0.393795
9.02227/6 0.172329
18.2869/6 0.00555393
10.1651/6 0.117867
9.29207/4 0.0541997
5.57944/6 0.471908
3.12901/6 0.792489
10.2056/6 0.116255



APPENDIX C. MATRIX ELEMENTS 115

Table C.5: AC, = 3510, KP = 3510, K, = 2000, Zf = 1.07606.p2 <?2 fc 2
000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<?2 ) /o(<?2 )
0.802+1

O.Sllli 0.6821^
0.675lj$ 0.678ljj|j
1.052l?®5 0.850+J2,
1.4771S1 0.898ljg
0.8361^ 0.692tfi
0.631+.P 0.63ll 2i
0.697+?«5 0.887tl|^

q2

0.368t2^
0.165^

-0.07111
0.27412
0.3501^
0.137+.2

o.oooll
-0.11711

X*/dof Q
3.93872/6 0.68497
7.51794/6 0.275589
11.2699/6 0.0803852
5.62207/6 0.466827
11.0885/4 0.0255867
4.51726/6 0.607039
2.71537/6 0.843629
6.72494/6 0.347035

Table C.6: Ka = 3530, KP = 3510, Ke = 2000, Zf = 1.07302.

p2 g2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<? 2 ) /0 (92 )
r 0.831+.^

0.82311 0.67111
0.6621?? 0.672!?!
1.0291} 22 0.8641&
1.540l?J 0.9041^
0.795!^ 0.65l!|i
0.687l|g 0.682lig
0.7441?^ 0.9361^?

<? 2

0.3861^
0.1741}

-0.0691}
0.2841 2
0.3691^
0.14712
O.OOll2

-0.11411

X*/*>f Q
3.79276/6 0.704698
3.31478/6 0.768426
8.44682/6 0.20716
6.4938/6 0.370202
7.97133/4 0.0926341
5.65146/6 0.463343
2.63772/6 0.852747
4.96814/6 0.547906
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Table C.7: Ka = 3460, KP = 3460, Kg = 2330, Zf = 1.02167.

p2 g2 k2

000
0 1 1

022

1 0 1

1 1 0

1 2 1

1 4 1
1 3 2

/+ (<?2 ) /o(<?2 )
0.8211?,°

0.7741^ 0.7281^

0.6581$ 0.647ls°

0.982l7J 0.9191^

1.22111 0.923+Jf

0.74912! 0.72512*

0.5441 2* 0.604l|2

0.656l7jj 0.935l??6

92

0.2101}
0.0571}

-0.1161}
0.1601}
0.1841}

0.0231}

-0.1141}
-0.1701}

X*/dof Q
5.85466/6 0.439667
8.63748/6 0.195016
30.2428/6 3.534e-05
9.39058/6 0.152774
7.55452/4 0.109329
7.04171/6 0.317007
3.55279/6 0.736933
11.3189/6 0.0790055

Table C.8: Ka = 3510, KP = 3460, Ke = 2330, Zf = 1.01402.

p2 q2 k 2

000
0 1 1
022

1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

f+ (q2 ) /o(<?2 )
0.8401^

0.7881^ 0.720iy
0.6581^ 0.656l|J
1.0221P 0.96lle6
1.3381^ 0.938l 2 ^
0.768l|i 0.722125
0.55912? 0.6141^
0.6541H 0.9191}^

<?

0.2381}
0.0731}

-0.112li
0.1771}
0.2151}
0.0401}

-0.0971}
-0.1641}

X 2 /dof Q
5.15078/6 0.524625

5.97173/6 0.426364

17.621/6 0.00725265

5.93726/6 0.430255

8.5758/4 0.0726227

7.43648/6 0.282359

2.6757/6 0.848309

4.33324/6 0.631678
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Table C.9: Ka = 3530, KP = 3460, KC = 2330, Zf = 1.01097.p2 q2 k 2
000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<?2 )
0.863l£{j

0.7851$ 0.71115?
0.645lJ$ 0.6431HI
1.028l|t 0.9491^
1.386ljg 0.93715?
0.7831JH 0.7251S
0.561!2? 0.61415J
0.6601^ 0.932l} 2J

?2

0.25012
0.07911

-0.1101}
0.1851}
0.2291^
0.0481}

-0.0901}
-0.1621}

X2/dof Q
0.300488/6 0.999495
5.92334/6 0.431832
13.9186/6 0.0305583
5.7192/6 0.455368
9.46677/4 0.0504346
6.01894/6 0.421072
2.08773/6 0.911456
3.29223/6 0.771376

Table C.10: Ka = 3460, KP = 3510, K£ = 2330, Zf = 1.02167.
p2 q2 k2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<?2 )
0.8361^

0.79015? 0.740l5e
0.67211 0.6691H
1.0291& 0.9311^
1.249lg 0.929l^2
0.7411^ 0.7141^
0.5821^ 0.64311
0.62611^ 0.945l}?t

?2

0.2211}
0.0601}

-0.1171}
0.1641}
0.1981 2
0.0261}

-0.1111}
-0.1711}

X2 /dof Q
3.28743/6 0.772002
6.81561/6 0.338237
16.1228/6 0.0131097
9.0963/6 0.168234
8.27247/4 0.0820919
6.64026/6 0.3554
2.4725/6 0.871533
8.04392/6 0.234903
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Table C.ll: Ka = 3510, KP = 3510, «e = 2330, Zf = 1.01402.
p2 q2 k 2

000

0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<?2 )
0.8541^

0.805lj^ 0.732!^
0.6401^ 0.6661?!
1.0351??! 0.9151^
1.379t.f7 0.93911}
0.7581$ 0.708lif
0.5941^ 0.649t^
0.6401?? 0.96511^

92

0.25412
0.0761}

-o.nstj
0.1821}
0.2341^
0.0451}

-0.0921}
-0.1661}

X2 /dof Q
6.37521/6 0.382497
4.01969/6 0.674012
11.8706/6 0.0649194
3.51332/6 0.742196
9.24886/4 0.0551713
6.4172/6 0.378112
2.18393/6 0.902029
5.54717/6 0.475774

Table C.12: Ka = 3530, KP = 3510, KC = 2330, Zf = 1.01097.
p2 q2 k 2

000

0 1 1
022

1 0 1
1 1 0
1 2 1
1 4 1

1 3 2

/+ (92 ) /o(92 )
0.8801^

0.8031^ 0.7201H
0.6581^ 0.67121^}
1.0041} 2 ? 0.931191
1.4581H 0.9601^
0.7581^° 0.700l£i
0.61611 0.6711^
0.5771}^ 0.930l 2^

q2

0.2691 2
0.0831}

-0.1121}
0.1901}
0.250!?,
0.0531}

-0.0841}
-0.1631}

X2 /dof Q
2.13514/6 0.906859
5.86007/6 0.439046
7.02445/6 0.318592
4.76399/6 0.57442
14.2246/4 0.006612
4.39264/6 0.623700
3.58254/6 0.732958
3.33641/6 0.765592
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Table C.13: /c, = 3460, KP = 3460, Ke = 2660, Zf = 0.962856.
p2 q2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<? 2 ) /o(<?2 )
0.8801'°

0.77liy 0.7801^
0.6831& 0.633^9
0.9941^ 1.0111$
1.160111 0.98012 £
0.7041^ 0.7631™
0.5141^ 0.6271^
0.609^f 1.074J:lgl

<?

0.12ltJ
-0.0091J
-0.1361}

0.0881}
0.0911}

-0.0491}
-0.1861}
-0.1981}

X*/dof Q
8.2583/6 0.219784
8.10439/6 0.230555
29.8365/6 4.2224e-05
8.46896/6 0.205719
6.11581/4 0.190665
5.60788/6 0.468515
5.1047/6 0.530457
11.2482/6 0.081002

Table C.14: K a = 3510, KP = 3460, «e = 2660, Zf = 0.955207.
p2 q2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+(93 ) /o(<?2 )
0.898!^

0.7761^ 0.7741^
0.6371^ 0.6141^
1.0611^ 1.05ll^
1.235lle 0 -984+H
0.7051H 0.7511^
0.5151H 0.6331H
0.589172 0.9831}^

<? 2

0.1421}
0.0021}

-0.1351}
0.1011}
0.1161}

-0.0361}
-0.1731}
-0.1961}

X 2 /dof Q
4.95478/6 0.549626
7.60469/6 0.268518
19.1743/6 0.003879
7.7516/6 0.256873
8.55191/4 0.0733294
7.14537/6 0.307613
2.67443/6 0.848458
5.50874/6 0.480401
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Table C.15: «„ = 3530, KP = 3460, Ke = 2660, Zf = 0.952163.p2 92 fc 2
000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<?2 ) /o(<?2 )
0.9161 22

0.7711^1 0.763^7
0.6581^ 0.627111
1.030ljj7 1.059l7|j
1.30311? 0.999151
0.72412* 0.768lii
0.51911! 0.6381^9
0.593l|i 1.0171117

g2
0.1521}
0.0071}

-0.1341}
0.1071}
0.1271}

-0.0301}
-0.1671}
-0.1941}

X2 /dof Q
1.88957/6 0.929569
6.1987/6 0.401304
13.6536/6 0.0337541
5.05494/6 0.536786
8.47961/4 0.0755077
3.94609/6 0.683972
2.68245/6 0.847516
3.59128/6 0.731789

Table C.16: Ka = 3460, KP = 3510, « e = 2660, Zf = 0.962856.
p2 q2 k 2

000

0 1 1

022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<?2 ) /o(<?2 )
0-887111

0.78ll572 0.7891^?
0.689llf 0.6681^
1.073l^| 1.0611H
1.1791^ 0.982l 2J
0.70311? 0.7561^
0.54811? 0.6691^
0.5671S 1.06811H

92

0.1291}
-0.0081}
-0.1361}

0.0911}
0.1021}

-0.0471}
-0.1841}
-0.1991}

X 2 /dof Q
6.98499/6 0.322238
7.10223/6 0.311496
15.1462/6 0.0191495
7.13596/6 0.308456
7.63631/4 0.105847
2.49817/6 0.868673
3.43425/6 0.752696
7.36821/6 0.288133
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Table C.17: «„ = 3510, KP = 3510, Ke = 2660, Zf = 0.955207.
p2 q2 k2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<?2 )
0.926+;$

0.7791& 0.775+i
0.6711?2. 0.654l?t
1.0671??! 1.0401&
1.28615s 1.000112
0.725115 0.7711&
0.556157 0.6801JJ71
0.5691^ 1.0491$

<?2

0.1541J
0.0041}

-0.1351}
0.1041J
0.1311}

-0.03311
-0.17011
-0.1961}

X2 /dof Q
1.47819/6 0.96093
4.73772/6 0.577865
10.3961/6 0.108933
4.22814/6 0.645833
11.9947/4 0.0173907
4.38225/6 0.625095
2.57504/6 0.859977
3.59846/6 0.730827

Table C.18: Ka = 3530, KP = 3510, Ke = 2660, Zf = 0.952163.
p2 q2 k 2

000

0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /0 (<? 2 )
0.93711

0.783l§5 0.772l§|
0.675l?l 0.6631^

1 n74+ 109 1 n c;8 +76l.U(4_ 139 l.UOO_ 118

1.3411^ 1.0061^
0.7161^ 0.7531^
0.5591^ 0.68ll^2
0.562l?i8 1.0821^

g2
0.1661}
0.0091}

-0.1351}
0.1101}
0.1441}

-0.0271}
-0.1641}
-0.1951}

X 2 /dof Q
3.26794/6 0.774543
4.81181/6 0.568167
7.86923/6 0.247842
4.61807/6 0.593644
11.2686/4 0.0237053
4.46141/6 0.614492
3.22019/6 0.780746
3.08339/6 0.798311
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Table C.19: Ka = 3460, KP = 3460, K e = 2990, Zf = 0.907034.
p2 q* P

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(<?2 )
0.947i^

0.760155 0.8291^
0.712lg 0.5531^
1.0691^ 1.1351^
1.062±|g 1.027^1
0.6501^ 0.805+^
0.461^? 0.6381^
0.519^J 1.24211P

92

0.0501}
-0.0541}
-0.1291}

0.0341}
0.0141}

-0.1031}
-0.2401}
-0.2051}

X2 /dof Q
8.8349/6 0.183078

7.88483/6 0.246663
30.0509/6 3.844e-05
8.83057/6 0.183333
6.68781/4 0.153335
1.6905/6 0.945853

4.05386/6 0.669387
7.54577/6 0.273304

Table C.20: Ka = 3510, KP = 3460, K S = 2990, Zf = 0.899385.
p2 q2 k*

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<Z 2 ) /o(<Z 2 )
0.9631^

0.747^2? 0.8201^
0.6921^ 0.570l|
1.10811? 1.174l|i
1.12811? 1.0391^
0.6481^ 0.800111
0.4461^ 0.6321}
0.4891^ l.HOl^

q2

0.0651}
-0.0481}
-0.1311}

0.0431}
0.0331}

-0.0941}
-0.2321}
-0.2051}

X2/dof Q
5.10162/6 0.530847
6.37703/6 0.382306
18.8908/6 0.004352
7.08023/6 0.313492
8.78952/4 0.0665814
3.92662/6 0.686607
3.90267/6 0.689846
6.24129/6 0.39671
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Table C.21: Ka = 3530, KP = 3460, « e = 2990, Zf = 0.896342.
p2 q2 k 2

000

0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (92 ) /o(92 )
0.9791!

0.750lg 0.8251'*
0.6771^ 0.5641&
1.1101^ 1.219j$
1.1671S 1.05liJ!
0.6431^ 0.789t^2
0.452^ 0.650^2
0.484l?g 1.1001^

g2
0.07li|

-0.0461}
-0.1321}

0.046ti
0.04lt}

-0.091JIJ
-0.2281}
-0.206t}

X2 /dof Q

4.18745/6 0.651326
6.81731/6 0.338073
14.0002/6 0.0296342
6.7693/6 0.342711
8.49146/4 0.0751464
4.34837/6 0.629644
3.02573/6 0.80561
3.21587/6 0.781306

Table C.22: Ka = 3460, KP = 3510, /c e = 2990, Zf = 0.907034.
p2 q2 k 2

000

0 1 1

022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+(<?2 ) /o(<?2 )
0.9371^

0.773J3I 0.849^
0.7201^ 0.574lil
1.1041™, 1.148l?29
1.089l§i 1.0371^
0.652l2^ 0.8011^
0.486l§f 0.677l^J
0.5011^ 1-2961^

q2

0.0551}
-0.0541}
-0.1281}

0.0351}
0.0221}

-0.1021}
-0.2391}
-0.2051}

X 2 /dof Q
8.78107/6 0.18627
6.85021/6 0.334922
15.3203/6 0.0179068
8.37494/6 0.2119
11.5063/4 0.0214262
4.12901/6 0.659223
3.21467/6 0.781461
6.70157/6 0.34933
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Table C.23: Ka = 3510, KP = 3510, K e = 2990, Zf = 0.899385.
p2 q2 k2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+(<?2 ) /o(<?2 )
0.97211

0.75511° 0.83411'
0.699+?! 0.598l£j
1.134l}°4 1.2131&
1.157121 1.0431U
0.649121 0.7971??
0.4931^ 0.702ljg
0.4841^ 1.2801^1

<?2

0.0711}
-0.0481}
-0.1301}

0.0441}
0.0431}

-0.0931}
-0.2301}
-0.2051}

X*/dof Q
5.24516/6 0.512776
5.31347/6 0.504282
9.87629/6 0.129959
4.72766/6 0.579187
12.0862/4 0.0167214
4.12208/6 0.66016
3.88168/6 0.692685
2.31242/6 0.888842

Table C.24: Ka = 3530, KP = 3510, /c e = 2990, Zf = 0.896342.
p2 q2 k 2

000
0 1 1
022
1 0 1
1 1 0
1 2 1
1 4 1
1 3 2

/+ (<? 2 ) /o(92 )
0.99412?

0.7591^ 0.8391H
0.68ll?l 0.5891^
i i i y+119 1 000+84JL-J-J-'-iss J--^o_ 137

1.202121 1.05611?
0.648lfi 0.800l|i
0.494121 0.7141^°

0.482l°8075 1.25111?

?2

0.07941}
-0.0451}
-O.lSlli

0.0481}
0.0531}

-0.0891}
-0.2261}
-0.2051}

X*/dof Q
3.6775/6 0.720223
5.38288/6 0.495724
7.14768/6 0.307406
5.69125/6 0.458649
11.0704/4 0.0257838
4.07736/6 0.666208
3.5036/6 0.743491
1.79201/6 0.937799
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Table C.25: The pseudoscalar decay constant. Fit range is 14-21
KH KL

3460

2000 3510

3530

3460

2330 3510

3530

3460

2660 3510

3530

3460

2990 3510
3530

afp

0.08091?

0.07741?

0.07611^

0.08361?

0.080011

0.078811

0.08581?

0.08221^

0.08091^

0.08601?

0.0825l£

0.08121^

X*/dof Q

0.842898

0.603387

0.505311

1.2319

0.97497
0.823752

2.08967

1.70814

1.3854

3.4354

2.76928

2.18274

0.536474

0.727898

0.804837

0.28616

0.440222

0.551207

0.0509875

0.114556

0.216075

0.00215311

0.0108044

0.0415301

Table C.26: Chiral extrapolation of heavy-light fp.
KH

2000

2330

2660

2990

afp afp

0.07121^

0.07451^

0.07651^

0.077llio

0.08091?

0.08361?

0.08581?

0.08601?

X*/dof

3.43583

3.84863

2.93041

2.29832

Q
0.0637964

0.0497867

0.0869253

0.129514
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Table C.27: The vector decay constant. Fit range is 15-23.
KH Kl

3460

2000 3510

3530

3460

2330 3510

3530

3460

2660 3510

3530

3460

2990 3510

3530

fv

9.6311'

9.96llt

10.07!}^

8 7D+ 9 
•< U -10

8.95!}*

9.04111

7.71+ I

7.88!}°

7.93!}?

6.681 77

6.761 ?

6.781 1

X2/dof Q

1.70133 0.092495

1.29772 0.239248

1.20861 0.289037

1.59199 0.121264

1.25211 0.263846

1.21347 0.286138

1.4449 0.171983

1.19042 0.300084

1.18876 0.301109

1.42663 0.179375

1.17966 0.306761

1.1187 0.346564

Table C.28: Chiral extrapolation of heavy-light fy
KH

2000

2330

2660

2990

fv

10.511}?

9.40!};;
8.2l!}3

6.90!}°

fv

9.6311J

8.70lig

7.71! 1

6.68! I

X2/dof

0.66746

1.03477

1.14329

0.950229

Q
0.413939

0.309041

0.284959

0.329661

Table C.29: fl(q2 ) for KH = 2000

p2 q2 k 2

0 1 1
022
1 1 0
1 2 1
1 3 2

/+ (92 )
0.8591 H
0-6651^
1.753!!?!
0.863!!??
0.7881^5

q2

0.218!^
-0.0621}

0.634!^
0.196li

-0.1061?

X*/dof Q
5.05402/3 0.167884
1.30808/3 0.727216
1.27384/3 0.735354
1.92467/3 0.588188
1.02157/3 0.796032
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Table C.30: /07r (g2 ) for KH = 2000
p2 q2 k 2

000

0 1 1
022
1 1 0
1 2 1

1 3 2

/o(-?2 )

0.890± S
0.6781 1
0.6891^?
0.9361 39
0.6631 eg
1.0401^

92

0.6351^
0.21811

-0.062l|
0.6351^
0.19611

-0.10612

X 2 /dof Q
13.7659/3 0.003242
2.6011/3 0.457296

0.597728/3 0.896952
0.114332/3 0.990064
2.01523/3 0.569251
0.584164/3 0.900048

Table C.31: /;(g2 ) for KH = 2330
p2 q2 k 2

0 1 1

022
1 1 0
1 2 1
1 3 2

/+ (<?2 )

0.8491 j$
0.6761^3
1.5341 ^
n 70^+ 64U. l»0_ 102

n c;7O + 156u.o/z_ 175

g2
0.11812

-0.10811
0.48111
0.0931?

-0.1581}

X2 /dof Q
0.748379/3 0.86177
2.24829/3 0.522499
12.4013/3 0.006128
1.35883/3 0.715213

0.637297/3 0.887843

Table C.32: /0%2 ) for Ktf = 2330
p2 q2 k 2

000
0 1 1
022
1 1 0
1 2 1
1 3 2

f+ (q2 )
0.9141 ^{
0.7441 2?
0.698!^
0.9921 H
0.6941 P
0.9321^

q2

0.48111
0.11812

-0.1081J
0.48111
0.09312

-0.1581}

X 2 /dof Q
8.43457/3 0.037835
1.22597/3 0.746782

0.809935/3 0.847089
3.53059/3 0.316816
1.19947/3 0.753132

0.835376/3 0.840988
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Table C.33: /|(<?2 ) for KH = 2660
p2 <?2 k2

0 1 1

022
1 1 0
1 2 1
1 3 2

/+ 0?2 )
0.8181 1
0.6601^
1.4061 51
0.7391 |g
0.4471J1

<? 2

0.033l{
-0.1341}

0.337!^
0.00351}
-0.1931}

X 2 /dof Q
3.11264/3 0.374582
2.56828/3 0.463078
13.363/3 0.003914

1.39931/3 0.705696
0.852428/3 0.83689

Table C.34: fS(g2 ) for KH = 2660
p2 q2 k2

000
0 1 1
022
1 1 0
1 2 1
1 3 2

/o(<?2 )

0.9961 II
0.8011 ^
0.6791}?^
1.0211 2°
0.7591 jji
0.9251^

q2

0.3371?,
0.0331}

-0.1341}
0.3371^
0.0031}

-0.1931}

X 2/dof Q
15.2682/3 0.001601
2.92055/3 0.404038
1.72128/3 0.632213
3.17119/3 0.365977
1.51853/3 0.678
2.46406/3 0.481822

Table C.35: /T(g2 ) for KH = 2990
p2 q2 k 2

0 1 1

022

1 1 0
1 2 1
1 3 2

/+ (<?2 )

0.7601 45
0.6581}?^
1.2881 i?
0.6421 l\
0.435l}47

?!J
-0.0321}
-0.1321}

0.2051}
-0.0691}
-0.2061}

X 2/^/ Q
2.48139/3 0.478663
1.07477/3 0.783168
6.16286/3 0.10395
1.00512/3 0.800013

0.385849/3 0.94315
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Table C.36: f£(q2 ) for KH = 2990
p2 q2 k 2

000

0 1 1
022

1 1 0
1 2 1
1 3 2

/+(<?2 )

0.9421 f2
0.867+ H
0.678+}^
1.0831 H
0-7861^
1.3451^?

<?

0.2051}
-0.0321}
-0.1321}

0.2051}
-0.0691}
-0.2061}

X 2 /dof Q
17.9051/3 0.000460
3.38677/3 0.335747
2.55672/3 0.465127
1.65504/3 0.646975
1.7771/3 0.619931
1.22261/3 0.747588
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