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ABSTRACT
Expressions for crustal deformation as evidenced by seismic moment
release or slip rates are derived from a Weibull distribution and
Gumbel's third distribution of extreme values in earthquake magnitudes.
These are compared with the tectoniéally observed values, as are the
maximum magnitudes obtained by the statistical studies with those
inferred from maximum fa;lt areas. Both types of distribution exhibit a
good match between the seismic and tectonic crustal deformation in the
féllowing areas: The tectonically complex Eastern Mediterranean;
Southern California; The New Madrid Seismic zone. All of these regions
have apparent bimodal distributions of éarthquake magnitude,-with a
particularly good match in the New Madrid zone between the téctonic slib
rates and fault areas and the seismicity distribution on two
characteristic families of faults. By contrast the mainland UK has a
seismicity which can only account for a small fraction of the known
tectonic movement, exactly as one might expect for a regime of slow
elastic rebound following glacial unloading.

A new fréquency—magnitude distribution is derived from Information
theory., Its number density is n(m)=c.exp(—hlm—AZMo(m)>, where
xl=blﬁ(10) and b is the Gutenberg-Richtgr 'b~value'. M,(m) is the
moment-magnitude relation. By analogy with statistical mechanics b can
be related to a geometric similarity dimensioﬁ D by b=~2D, thereby
explaining the observation 0{b<1.5 as corresponding to the release of
strain energy in a finite volume, D<3. This distribution fits the -
Mediterranean data better than the Wéibull form, and predicts a repeat
of the 1857 earthquake in Southern California (M >7.9) 156 years after
this date on average, with a range considering errors of 8?-281 years.
This compares well with some results from trenching across the fault

(once every 163 years, but from 55-275 years). The method could be used



in areas where the slip rate is known but direct trenching is impossible
and to define a time constant to indicate when a seismic gap is likely
to become reactivated.

Source parameters are derived for Greek earthquakes from teleseismic
recordings of surface waves (Ms>5.5) an& local P waves
(1.8<ML<4.5) in order to further evalaate ;he seismic hazard and to
test some of the assumptions of the Informa;ion theory distribution.
Typical stress drops of the smaller-events (1-10 bars) scale vary well
with the larger events (7-12 bars), representing dimensional
self-similarity of the seismic process in antral Greece over an energy
ratio of 1:10,000 (!). A éalibration procedure for the seismic moments
of the larger events.shows'that ignoring the effect of orientation of
the seismic source only increases the standard deviation of these
moments from 25% to 40%..

A detailed study of Aegean seismotectonicé is undertaken. The
moment-magnitude relation log (Mo)'= A+BMS, with A = 10.97(.63),
B = 1.21(.11) is found from surface wave studies (A in SI units and
uncertainties are in brackets). By contrast the a?ailable body wave
moments are shown to be too low by a factor of two or three in this
area. The tectonic and seismic slip rates are compared for (a)Athe
spreading Aegean basin and (b) the sinking subduction slab of the
Hellenic arce. The Aegean activity can be exp;ained by mostly seismic
gravitational collapse, whilst the seismic activity of the sinking slab
is only a small fraction of that expected from its known slip rate. The
latter activity may be more dﬁe to the internal buckling of the slab due
to thermal expansion or mantle phase changes than to stick-slip sliding
at.its boundaries. A characteristic peak in the magnitude distribution
at MS s 7 can be related to a block-like earth étructure of a

characteristic size similar to the known seismogenic depth in the
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spréading Aegean crust. This macroscopic quantum effect is similar to
the behaviour observed in the New Madrid zone, and may be a fairly
common feature of seismogenic zones.

The reasonable agreement throughout Between the tectonic and
seismogenic slip rates show that the methods used have an important role
to play in investigating other second-order effects of plate tectonics,
as well as being testament to a surprising degree of stationarity of the
‘seismic process in some areas. However, practical results also emerge
in the form of qﬁantititive estimates of selsmic hazard in areas of

greatly differing crustal deformation rates.
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"Seience i8 a very human form of knowledge. We are always at the
brink of the knowm, we always feel fbrward~for what 18 to be

hoped. Every judgement in science stands on the egde of error, and
18 pergonal. GScience i8 a tribute to what we can know although we

are fallible ..... We have to touch people”.

The Ascent of Man

Jacob Bronowski



INTRODUCTION

.Seismotectonics and seismic hazard

As its name implies 'seismotectonics"refers to the study of the
relationship between tectonic activity over geological time scales
and earthquake (seismic) activity in more recent epochs (historical
or instrumental). On the other hand the 'seismic hazard' is a
numerical estimate of the probability of occurrence of earthquakes
of varying magnitudes and resultant ground motions which are caused
by this underlying process. Seismology in the past has been a
useful indicator of the bound;ries of the earth's plates - such as
the fRing of Fire' circling the Pacific, and in delineating the
Benioff zones where old ocean floor i1s subducted for recycling in
the earth's convective engine - the primary driving force behind
.all plate tectonic motion. 1In this thesis the relationship between
tectonic activity and resulting egrthquakes will be investigated in
more detail, and in particular for many regions of the world where
plate tectonics does not fully explain the activity. The intention
of this work is not to challenge the basic concept, but rather to
investigate possible second order effects such as the reac;ivation
of old iines of weakness within otherwise fairly rigid plates, or
the effects of irregular geometry at the plate boundaries.

One of the prime methods of looking.at this ﬁroblem is to
consider the slip rate over geological time. Thé slip rate in
areas at plate boundafies.is usually well known from magnetic
anomalies on the oéean floor, and several faults along plate
boundaries or within plates have now also been investigated to give
a measurement of this important geological parameter. In Chapter 1

various methods of estimating a seismogenic slip rate from the



‘current earthquake frequency magnitude distribution from recent
earthquake catalogues are reviewed, and in Chapter 2 two of these
methods are used to compare slip rates from long-term geological
processes with the current earthquake activity represented by the
catalogues.

In Chapter 3 a completely new approach to the seismic hazard
problem of combining the implications of short-term earthquake
catalogues with long-term geological slip rates is developed using
Shannon's (1948) Information theory. The slip rate ﬁere is ;sed as
a direct constraint on the earthquake size distribution in order to
make this distribution consistent with both the loﬁg-term tectonic
activity and the short-term seismic effects. This is an
improvement on eatl;er methods which were indirect. This aliows a
great improvement in any subsequent estimation of the 'seismic
hazard', here quantified as the probability of occurrence of
different magnitudes in the p§tential source zone., 'Seismic risk'’

. 1s a much more specific measure of the danger posed by earthquakes
to a particular building or facility which may include a valuation
of the structure's worth. In the whole of this thesis one of the
most important products is the quantification of seismic hazard by
the average repeat time of earthquakes of a given magnitude, with
the advantage over some previous studies that these estiﬁates are
also consistent with the long-term crustal deformatioﬁ~expressed by
the slip rate and are specified within well defiﬁed error bounds.

Another application of the earthquake distribution developed
in Chapter 3 is in evaluating 'long-term earthquake recurrence
intervals', by using the average repeat time of the largest
magnitudes. By applying the slip rate method to compare this time

constant with the time elapsed since the last major event, the



areas of the earth currently most at risk from catastrophic
earthquakes can be identified, and limited resources can be
concentrated on the areas most likely to}pear fruit in the ongoing
search for a reliable method of short ﬁ;rm earthquake prediction.
The most directly appliéable results of the methods to be
described, however, are in terms of their influence on hard
decigioné on earthquake zoning, building desigﬁ codes, earthquake
engineering and insurance levels.

In the final two chapters the Aegean area is investigated in '
some detail as a case study. In Chapter 4 sourée parameters such
as seismic moment, magnitude, slip, fault area, stress drop and
strain drop<a;e derived for several earthquakes and thése are used
to test some of the assumptions of the distribution developed in
Chapter 3. In the final chapter the problem of the tectonic
stretching of the Aegean sea is investigated in detail, an area
whose activity has yet to be fully explained by plate tectonics or

any other current theory.



Glossary of notation used in this thesis

The following are the main parameters of the thesis. There should
be no confusion between fault area and the A parameter. of the
moment-magnitude felation in any given context. Another aspect

of the nomenclature of this thesis is that 'seismic moment' is
oftén abbreviated to 'moment'.  This should not cause confusion
with the ordinary concept of a moment in the sense of a couple
applied to a swinging door, for example, because there are no
references to this use of the word in the thesis., Other parameters
will be defined as they crop up in the text, but this lisf should
be consulted if no explanation is given. On some diagrams the
computer graphics produced no subscripts, e.g. mb for mb, bué

it should be obvious where these would be appropriate.

N.B. References to equations are sometimes abbreviated by omitting
the qualifer 'equation'. Thus, for example (3.2) refers to’

equation (3.2).

m ¢ body wave magnitude

M : surface wave magnitude

ML : Richter's local magnitude

M ¢ Kanamori's seismic moment magnitude

m : symbol used in theoretical'treatment for Mw or an

unspecified magnitude

M : seismic moment
" ¢+ rigidity modulus
o) ¢ density

A,V : fault area, volume containing deformation



a or
L ]
S,8 ¢
Ao :
Ae :

°
e H

b,b’

((U)u:

r,L or L,W or w: fault radius, length, width
average fault slip, slip rate
stress drop

strain drop

strain rate

parameters of the decadic moment-magnitude relation

exponential

(also P, S wave velocities respectively)

maximum limiting magnitude

" moment

cunulative frequency (usually normalised to annual unit times)

number density "

discrate frequency "
cumulative probability

probability density "

decadic, exponential Gutenberg~Richter b-value
A) : parameters of the Weibull/Gumbel's third distribution

covariance error matrix for the Weibull distribution

(MysAp) @ parameters of the new distribution developed in Chapter

3 (N.B. A b')

¢ lower limiting magnitude, or completeness threshold
magnitude associated with average repeat time T
total no. of events per unit time in a complete-
earthquake catalogue

power of fault length distribution Y



D : fractal dimension

¢_,8,A : fault plane solution (azimuth, dip and rake)

£, n ¢ unit vectors parallel and perpendicular to the slip
direction
Q : spectral density
QO : long period spectral density
' fc : corner.frequeﬁcy
T¢6 : radiation pattern

f,w,T : wave frequency, angular.frequency and'period
h : focal depth
Y, Y' ¢ attenuation parameter per km or per degree

R ¢ source station distance

Units of measurement

In much of the geophysical literature c.g.s. units are used as
units of measurement. In order to give the reader a comparison
with the SI units used throughout this thesis (unless otherwise

stated) a conversion summary is given below:

SI CoeZeSe
Seismic Moment M 1Nm 107 dyne cm
o
Stress drop Ao 1Nm—2 10 dynes G

(1 bar = 10° Nm™2 = 106-MPa)

Rigidity modulus 1Nm~2 10 dynes cm™2
Energy E .1J ; 107 ergs
Density P lkg m‘? 10-3 gcm"3
Moment-magnitude | A=1 A=38
relation

(i.e. A(SI) = A(égs) -7



CHAPTER 1

Exlsting theory and practice in earthquake recurrence statistics

1.1 Introduction

Earthquake recurrence statistics are important for two reasons.
The first is that they quantify the seismic hazard due to.a broad
range of event sizes. It may be, for example, that the tectonic
stress which causes earthquakes is released primarily in several
small events, or perhaps (actually much more commonly) in rarer
llarge events. Earthquake recurrence.statistics quantify effects
such as this through the frequency magni tude distribution,‘wﬂicﬁ
can thenvbe combined with knowledge of attenuation of seismic
energy and local site effects to produce an estimate of the hazard
(as annual probabilities of occurrence of acceleration, veloclity,
displacement, or intensity for example). Thus practical decisions
can be made on building design criteria to mitigate .. ;. ;¢ the
inevitable recurrence of these events, M

The second reason for examining recurrence statistics is in
evaluating long term recurrence intervals of specific large events
which are known to have occurred previously.. This can be done
directly by combining the average repeat time of a characteristic
earthquake, which can be found by geological and geomorphological
investigation of surface trends, or less accurately by
extrapolation of usually short term frequency magnitude statistics,
with an estimate of the characteristic magnitude and the date of
the last occurrence, using the concept of a 'seismic gap'. For
example the southern section of the San Andreas fault in California

last ruptured in a great earthquake in 1857. No large events have



occurred along this break since then, leaving a 'gap' in the linear
trend of the seismicity along this fault near Los Angeles. The
average repeat time found from trenching.across the fault in some
peaty sediments is about 163 years, which means that for a normal
distribution of repeat times, the cumulative probability of a large
event having occurred will reach 50% by the year 2020,

This chapter will sumiartse the different theoretical.fofms
used for the fr;quency magni tude distribution, and show how
geological information from slip rates on faults can be used to

tighten up the extrapolation of recurrence statistics in areas

where there is no direct evidence from trenching studies.

1.2 Curvature in the log-linear seismicity distribution and an

associated limiting maximum magni tude

. The most commonly applied description of selismicity in terms of the
relative frequency of occurrence of different sizes of earthquake

i1s the Gutenberg-Richter law (e.g. Richter, 1958; Esteva, 1968)
log N(x »m) = a - bm, (1.1)

N is the number of times a magnitude m.is équalled or exceeded in a .
unit time interval and b is a constant which usually varies in the
range of 0.5 < b < 1.5. Some examples of a line fit ta cumulétive
frequency data N(m) are given in fig 1.1 for different seismic
zones, showing up variation in the b—value-by the different slopes
on the log-linear graph. \

Although this law is widely used in hazard estimation it does
have some serious drawbacks. For example if the seismic energy

ES'(in Joules) is related to magnitude by



Region B
Circumpocific belt 2.16
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Figure 1.l An example of a log-linear frequency magnitude plot
due to Esteva (1968). E[A(M)] corresponds to N of equation (l.l)
and B = blnl0 here. The lines drawn through the data represent a
least squares fit assuming the log-linear Gutenberg-Richter law.
The b-values corresponding to B are 0.94, 0.74 and 1.25
respectively, showing the kind of range this parameter .takes in
different regions. The curvature above M=8 could be due to
instrumental saturation.




Es(m) - 104.8+1.5m ’ (1.2)

Richter (1958) then the energy released in the magnitude range.

(n,») is an integral over this range

© : .
E = / Es(m) n(m) dm , (1.3)
nm
where n(m) = =dN/dm is the number density function of (l.l1). From
(1.1) and (1.2) it canvbe shown that this integral is infinite for
b < 1.5 (Knopoff & Kagan, 1977 and section 1.7), which means that
there must be a cut—-off magnitude w before m + » to avoid this
absurdity. .This limiting maximum magnitude is a ;eflection of the
finite breaking strength of the earth's crust, and the finite
extent of the source zone.

The limiting magnitude has a further consequence. Because the
interval (w, «) now has no events (N(w) = 0), the cumulative
frequency just below w is also significantly reduced compared to'
(1.1) for the same density distribution, giving rise to an
associated curvature in the log-linear plot at high magnitudes
(B&th, 198la). An éxample of this curvature is given in fig 1.2
from Cosentino and Luzio (1976). (The curvature at high magnitudes
in fig 1.1 may be due to saturation in the magnitude scale
discussed in the following section). The investigation of the
precise form of the relationsh;p between the limiting magnitude and
this curvature, using added information from seismotectonic
studies, 1s one of the prime objectives of this thesis. This is
important because the tectonic activity which generates earthquakes
- and the resulting seismic hazard - is usually dominated by the

very largest events, which occur in the range most sensitive to the



Figure 1.2 Examples of frequency magnitude distributions which
are not linear on the standard log-linear plot, after Cosentino and
Luzio (1976). The regions analysed are (a) New Zealand, (b) Burma
arc, (c) Mid-Atlantic Ridge and (d) The Indian Ocean. The
curvature shown here cannot be due to the instrumental saturation
discussed in section 1.2, because this predominantly affects
magnitudes Mg above 8.0. (For a further discussion of the line
fit used, see section 1.3). in their notation corresponds to
w used throughout this thesis for a maximum magnitude. It is
obvious that the dashed lines representing fits to equation (l.1)
are an inadequate description of the seismicity.
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form of this curvature.

1.3 Saturation of the magnitude scale and a definition of the

seismic moment magni tude

All instrumental magnitude scales suffer from saturation at high
magnitudes. As earthquakes increase in size more energy shifts
towards the D.C. (of infinite period) end of the ground motion -
the direct movement on the fault itself'(Howell, 1981). Howe@er,
all'insfruments for recording earthquakes have response
characteristics which-sample only a limited'range of the selsmic
energy spectrum about their natural frequency fo, or eQuivalent
period To. For the surface wave magnitude scale M.s this |
natural period is about 20s and for the body wave scale mb it
is about ls. These magni tude scales éannot pick up increases in
energy release in frequency ranges outside the natural bandwidth of
the seismographs. So as larger and larger events with longer and
longer fault lengths and associated natural periods are picked up
a point is reached where an event, say twice as large in terms of
energy as a previous one, produces no detected increase in the
measured magnitude. For MS this saturation occurs on average
gt approximately 8.0, which led Kanamori (1977, 1978) to propose an
unsaturated magnitude scale called the "seismic moment magnitude",
Mw, which extrapolates Ms beyond this onset.

The seismic moment Mo is perhaps the best currently
available measure of the size of an event., It is defined by the

equation

M, = uAs = (/o)W , ' (1.4)
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where p is the rigidity modulus, A is the fault area, s is the

average slip on the fault, o is the average stress level during the
earthquake, and AW is the changé in strain energy. Thus the
seismic moment can be easily related to various source parameters.

The seismic moment magnitude MW is then defined by
M, = (log o M, = A/B
or M = 10°MBM | (1.5)

0o

or MO = e(l'*'ﬁMw ’

where B = 3/2 follows from Kanamori and Anderson's (1975)

theoretical considerations on fault geometry as well as from

empirical fits to available data. The most recent work on this

s

conversion from seismic moment, Mo, to seismic moment
magni tude, Mw, indicates the followlng values for A and related

stress drops Ag: <o auTugi%anﬁ o2

Interplate events A = 9‘1f Ao = 30 Bars
Intraplate events A = 8.7 Ao = 76 Bars
Average value A =8.85 Ao = 52 Bars
California A = 8.83 Ao = 50 Bars

from Singh and Havskov (1980),lwhere A is appropriate for M.o in
SI units. The seismlic moment of an individual event can be
estimated from geological field evidence, the area of the
aftershock distribution or from the seismological record of an

event - particularly the longer periods. Methods of determining
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the seismic moment from various phases of a seismogram will be

described in Chapter 4,

1.4 Examples of different empirical and theoretical frequency=-

magni tude distributions

The Gutenberg-Richter relation (1.1) has already been discussea.

In many cases this 1s found to be an adéquate description of the
selsmicity of a region, although we should be wary of linear
extrapolation beyond the observed magni tude range because of
possible curvature introduced by a limiting magnitude w. In
.'particular Chinnery and North (1975) found that, when global
seismicity statistics were corrected for the effects of
instrumental saturation of the magnitude scale, equation (1.1) held
right up to the largest events. Even a small extrapolation beyond
ﬁhe observed magnitude range implies the occurrence of an event of
Mo = 102* Nm (about Mw 9.9!) on average once every 50 years

or so. This really massive scale of seismic energy release woﬁl&
require some rethinking of platé tectonic models and could have the
consequenée of a considerable excitation of the Chandler wobble.

On a more local scale fig 1.2 shows that (l.1) is often an
inadequate description of the seismicity. However its density
distribution may be retained and restricted to a range bounded by a
maximum magnitude w. The density distribution becomes .

n(m) = p e-b'm m< w

where b' = b 1n 10, p = b' 10®. The cumulative frequency

N(x>m) is then equal to the integral of n(m) over the magnitude
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range (m,w), which is

~b'm -b'w
e -e -

N(x>m) = (1.7)

-b'u -b'w
e -e

This relation is called the truncated Gutenberg-Richter law, and
was used in the fit to the data of fig 1.2.

A theoretical generalisation of this density distribution is
due to Caputo (1976, 1977). Starting with a basic distribution af

fault lengths (2) and stress drops (Ao) of

a(L) dt « & " 4R (1.8)

n(Ac) dAc = Aoa—l dAc

he derived a distribution
-b'm

n(m) = p e -q , (1.9)

A

-b! .
where'q = p e b w, and’ p,q,b' can be related to constants

specifying the distribution of fault lengths and stress drops, and
to maximum and minimum values of these parameters. The form of
this density distribution is that it is log-linear up to a
magnitude m2 say, and then curves asymptotically to zero
occurrence at m = w. As w=>o, g+ 0 and (1.9) reduces to (1.6).

An empirical distribution which aléo has this asymptotic form
is the Weibull (1951) distribution,

1/
}

N(x>m) = {(w-m)/(w-u) . (1.10)

Note that in both (1.7) and (1.10) N(u) = 1, so u is the



characteristic earthquake for unit time (if N is normalised to unit
time intervals). The difference between this form and that of
(1.9) is that the distribution (1.10) is curved over the entire
magnitdgg range below w. The parameter A is a measure of this

curvature. Jenkinson (1955) showed that 0 < A < 1 and that as A »

0 the log-linear curve straightens to the form of (l.l). Thus high

A values correspond to a greater degree of cdyvature. The
behaviour of this distribution is further analysed in Chapter 2.
A new frequency magnitude relation is proposed in Chépter 3 on
| i “

the basis of using Information theory to directly incorporate

additional knowledge of the seismic moment release rate &o into

the seismicity distribution. The form of its density distribution

is

~b'm =AoMo(m) (1.11)

n{(m) = p e
where Mb(m) is given by the seismic moment-magnitude relation
(1.5). This model comes in between the behaviour of (1.6) and
(1.9), curving down less drastically just below w than Caputo's
model. .

The shapes of the distributions outlined in this section are
, given in fig 1.3, by way of a summary and reference for futuré

discussion.

1.5 Extreme value distributions

Two of the main problems in the evaluation of seismic hazard from a
catalogue of earthquakes are (a) the incompleteness of reporting of
events and (b) the occurrence of non-independent aftershock

sequences. The former could be due to the threshold of detectable

14
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Figure 1.3 Comparison between seismicity models. The models
shown in increasing order of complexity are:- 1 The Gutenberg-
Richter law; 2 A truncated form of 1, due to Cosentino and Luzio
(1976); 3 The Information theory model derived in Chapter 3; and 4
Caputo's model (1976). The Weibull distribution is similar to 4
except that it is also curved below m,. 3 tends simply to 2 if the
parameter ), in equation (1.11) is =zero. Caputo's version
differs from 3 in having (a) a sudden departure from log-linearity
at rather than more gradually, and (b) an asymptotic limit w at
n(w) = 0 rather than at finite n.




excitation of modern instruments or to a sparsely populated area .
around the source in historical times and the latter complicates
the Poissonian assﬁmption made below. One method of lessening the
impact of both of these problems is to use only the extreme values
- that is only the largestvevent in any unit time interval - as a
basis for evaluating the hazard. We can be much more confident
that this subset will be complete, and since it sambles the tail of
the initial frequency distribution the method should enhance the
effects of a limiting magnitude and any associated curvature. The
procedure also effectively eliminates the smaller aftershocks. The
main drawback of the method is that much of the iﬁformation
avallable to us from smaller events is simply thrown away.

Consider a Poisson process of independent events

i
pi) = N e o (1.12)

where P(1) is the probability that i large earthquakes occur during
a given unit time, and N is the mean number of large earthquakes

" per unit time. For er purposes N is given simply by the |
cumulative frequency distribution normalised to unit time. For the
extreme value process we.wish i = 0, so that no events greater than
(say) mj occur in each unit time interval j containing a total

of Nj events., mj is the largest event or the"extreme

value' in the jth sample of unit time.

Thus, for 1 = 0, Ni =1 and i! = 1, so

P(x < m) = exp{-N(x > m)} . (1.13)

15



A type I distribution, of extreme values has an initial_distribution
N giveﬁ by (1.1), and a type III distribution has N given by the
Weibull distribution (1.10) so that, for the latter case

P(x < m) = exp [-{(w—m)/(w-u)}l/x] . (1.14)
Ihis form is analysed in greater detail in Chapter 2. A detaile&
description of the theofy is given by Jenkinson (1955) and Gumbel
(1958). The form (l.14) has beén used in order to prediét global
maximum magnitudes by Yegulalp and Kuo (1974) and by Makropoulos
(1978) and Burton (1979) in order to quantitatively evaluate

seismic hazard.

1.6 Quantitative assessment of earthquake hazard

The assessment of earthquake hazard involves

(a) The probability of a large earthquake occurring in a potential
source zone.

(b) Reduction in ground shaking with distance by geomeéric
spreading and attenuation effects.

(c) Local site conditions.

The first of these can be quantified throuéh the observed
frequency distribution of earthquake magnitudes in a potential
source zone, using the methods outlined in the previous two
sections. Most results of studies such as tlils are produced in the

form of a mathematical return period defined by
T(m) = 1/N(m) , - (1.15)

for the annual Cumulativelfreqdency distribution N or

16



1 : .
T(m) = ——— , (1.16)
1 - P(m)

where P is the annual non-exceedence probability given by;fi.lé).
This term 'return period' can be misleading, since the event is not
expected to recur at regular intervals. Because of this it is
known there is a significang random Eomponent to any series of
events (indeed this is the justification for assuming a Poisson
process in section l.4) and the term 'average repeat time' is
preferred for the remainder of this thesis. However, since in many
cases the instrumental catalogue of events is of much shorter
length in time (=80 years)rthaﬂ the average repeat time of the
largest events (=160 years in Southern California), it is very
important to quantify errors of extrapolation beyond this range.
This uncertainty may be reduced on extension of the catalogue to
historical times (Ambraseys, 1971), or by geological slip rates
incorporated by the methods described in the next section and in
Chapters 2 and 3.

The second process (b) reduces the effect of ground shaking
with distance, although it is known that longer periods attenuate
less quicklylthan shorter ones, so that tall buildings may be at
risk quite far from the source (Nuttli, 1979). It is obvious that
more work needs to be done on attenuation effects to quantify
effects like these, particularly with strong motion instruments
placed near likely source areas.

Finally, and in many cases most importantly, the effects of
local site conditions should be considered. Most of those who have
browsed the literature have been struck by photographs showing

wildly differing levels of damage within a small area. Buildings

17
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which are almost perfectly intact can stand beside areas of almost
total devastation (e.g. see Walker, 1982 p8). One of the earlier
syétematic investigations into the effects of a large earthquake
(Lawson et al, 1908) showed up a very good correlation between site
geology and intensit§ of damage for the 1906 earthquake in San
Franscisco. Most of the extensive damége was confined to areas
built on anonsolidated pleistocene sands and alluvium, with
,buildings on the intrusive basalts or the Franciscan series of
sandstones and cherts suffering less markedly. Other site

condi tions which complicate matters even further are due to the
possible amplification effects of topography and the local
geological profile.

To account for the first two conditions Algermissen and °
Perkins (1976) (see fig 1.4) used local relations for the
’relationéhip between magnitude, disténce and ground shaking
parameters such as ground acceleration and velocity - combined with
annual probablilities of earthquake occurrence - in order to produce
a contour map of the earthquéke hazard. The approach uses the
extreme value theory of Gumbel (1958) to evaluate contours for the
maximum, or peak accelerations and velocities. Because of the
smaller degree of attenuation in the Central and Eastern U.S., the
potential seismic hazard is similar in some areas of Tennessee to
that only a few hundred km from the San Andreas fault, despite»the
much Lower frequency of occurrencé of large events in the east!
This surprising conclusion is partly due to the greater competence
of mid-plate érust compared to that near a deforming plate
boundary. A greater quantitative understanding of more local site
effects resulting from strong motion studies near large events

should improve maps such as fig 1.4 on a local scale as more data



Contour Shpunng ou08cTed Cuet Ner tontsl §round
pround o0 s wowty

MmO m BV CHIIDE COR PSS B9 0450 1Y Mea e
= e conroue

Song e San Andrass snd Gariect taslw w Cotiterne
4 BOGUTINE 0l § Wiy (e ettnuenen curves of ° 300 X1LOMETERS
| S S W S —

(XT3 110" 108° 100" " 0"

wLIKY
EL

d.:Map showing maximum levels of peak horizontal ground acceleration at rock sites
in the United States in a 50-year period, (Algermissen and Perkins, 1976). There is a 90%
chance that the contoured values of acceleration will not be exceeded within a 50-year
period. The map reflects the relative frequency of occurrence of earthquakes in the
eastern and western United States. :

128° 120° s* 10° 108° 100" "* "’ L4 20° ’° 10° [

EFFECTIVE PEAK
CONTOUR  ACCELERATION -

‘ 044 4 . !
wl 3 022 4 of  Mrxico
2 o,
1

0.06 » 300 KiLOME Ty RS

" X
s’ 1o° 108 100° " [ " o "

b. Preliminary seismic zones proposed by the Applied Technology Council (1978).
Contours connect areas having equal values of effective peak acceleration. Site-specific
studies are recommended for zone 4. '

Figure 1.4 Two examples of contoured hazard maps taken from Hays
(1984). :




become available. The importance of maps such as these ig in
forming the basis for decisions made on building design codes in
order to mitigate against the hazard posed by earthquakes to life
and property.

The scope of the present study is coﬁfined to the evaluation
of the probabilities of occurrence of earthquakes of varying size
in likely source zones, although it is hoped that this section has
emphasised the importance of other éeophysical effects, together
with some of the practical aspects of the eventual use to which

studies such as this one may be put.

1.7 The incorporation of crustal deformation into earthquake

recurrence statistics

In seeking to extrapolate beyond the era of instrumentation (tens
of years) many studies use the subjective approach of an Intensity
scale of damage (say the Modified Mercalli Scale) to extend the
earthquake catalogue to hundreds and even thousands of years
(Ambraseys, 1971). However fig 1.5 from Main (1980) shows that any
empirical attempt to correlate intensity scales with the concept of
a magnitude is subject to very large scatter. Intensity of damage
to bulldings is simply not the same thing as ground motion measured
on a seismograph. Fortunately, in many cases there is a third
source of information on the right time scale (thoﬁsands to tens of
thousands of years). This is the geological and geophysical
observation of crustal deformation rates (slip or strain), which

will henceforth be incorporated into the parameter

%

(1.17)

M, = 2.5 pVe .
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The seismic moment release rate, Mo’ is proportional to the

slip rate ; along a fault of area A, or to the‘strain rate e in a
deforming volume V for a more complicated area (Papastamatiou,
1980). The maximum potential sgismic moment , éa} Mow; can also

be related to evidence of previous large—-scale breaks and depths of

the seismogenic layer via

.

. 3/2 .
= ] = = 1
M, CV Ao : Mow CVpax B0 =C" A b0, (1.18)
where C is a constant which is defined by the fault type and Ao is
the stress drop (Kanamori and Anderson, 1975). For example a
circular fault has C = 16/7 and V = 33, where a is the radius.

The maximum focal volume Vrnax can then be related to the

maximum fault area by A = ga?, Vmax = 4/3 1 a3 in this case.

max

Combining this equation with (1.5) as in section 2.1 allows
estimation of the limiting magnitude w from the field observation
of maximum fault areas and comparison with the extrapolation from
the short term recurrence statistics. |

The seismic moment release rate ﬂb can also be compared
with the discrete sum of seismic moments ZMO in unit time
interval from a catalogue which contains magnitudes by using (1.5)
on every entry in the catalogue, as in Davies and Brune (1971).
Alternatively the parameters of the conﬁinuous empirical line fit
can be used by integrating annual occurrence dénsities multiplied
by Mb' Anderson (1979) did this for the truncated
Gutenberg-Richter relation as follows.

He used



M ' '
¥ ow
M i M n(Mo) o, (1.19)

and changed the variable from seismic moment to magnitude using '
(1.5) because in practice nearly all of the available catalogues

consist of maghitudes at the present time. Thus

w
Moo= BT n(m) dn | (1.20)

where « = A In 10 and B = B 1n 10, Using (1.6) to define n(m)

glves
e-b'w
& ea +Bw ,
o (B -1b")
_bu,)

) Mom 10
or M =

o

(B-b) 1n 10 .,

Thus the.seismic moment release rate is expressed as a fraction of
the maximum which could be released in any one event. It is
intéresting to note that, since Bl= 3/2 (Kanamori and Anderson,
1975) the b-value is confined theoretically by the denominator to b
< 3/2 in order to preserve finite, positive ﬁb-

The preceeding outline has shown how two parameters of the
seismicity distribution - the moment release rate ﬁb and the
maximum magnitude w - can be compared with those observed over
geological time séales and for more recently recorded events.

This gives a test of the stationarity of an earthquake catalogue

based on a short term instrumental catalogue against long-term
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effects.

Finally, in a few areas of the world, and notably in Southern
California (Sieh, 1978) some basic spadework thtough faults can
reveal direct evidence of previoﬁs events. By radiocarbon dating
of charcoal deposited in the very recent holocene sediment a table
of interoccurrence times can be bu;ltvup and compared ﬁith
extrapoiations of recurrence curves as a further test. For
example table (l.1) is taken frém Anderson and Luco (1983), who
used (1.5) and the time-predictable and slip-predictable models of
Shimazaki and Nakata (1980) to estimate the magnitudes of the
events found at Pallet Creek by Sieh. Currently this area is a
very prominent and useful area of research in quaternary geology.
Hopefully such studies will soon extend to sevefal areas of the
globe where faults break the surface to give seismologists a direct

measurement of average repeat times for long-term earthquake

prediction.
~1.8 Summary

This chapter has introduced some of the basic theory and
observation of earthquake recurrence statistics which were
available at the start of the project, and has shown where the new
developments described in the following two chapters fit into the
overall picture.’ It has been shown that the linear Gutenberg-
Richter law is of£en an inadequate degcfiption of seismic
recurrence statistics on a local level, aﬁd some empirical and
theoretical disﬁributions which account for the observed curvature
to a limitihg maximum magnitude have been outlined. Further, the
chapter has shown how two important geological parameters - the

seismic moment release rate (which is brqportional to the slip



Table 1.1 Pallet Creek Events: Estimates of magnitude (Mg) from the

interoccurrence times of Sieh (1978) and the time- and slip-predictable

model of Shimazaki and Nakata (1980). The table is taken from Anderson

and Luco (1983), and the region analysed is the San Andreas fault in

Southern California.

Time

Predictable Model

Slip Predictable Model

Inferred Magnitude Waiting Inferred. Magnitude

Est. Waiting .
event Time to slip in time slip in
year next event from prior event
event (m) event (m)
(years) (years)
1857 > 125 > 4.6 > 7.81 112 4.1 7.74
1745, 112 4.1 7.74 275 10.2 8.26
1470 275 10.2 8.26 225 8.3  8.15
1245 225 8.3 8.15 55 2.0 . 7.33
1190 55 2.0 7.33 225 8.3 8.15
965 225 8.3 8.15 105 3.9 7.71
860 105 3.9 7.71 195 7.2 8.06
665 195 7.2 8.06 120 4.4 7.78
545 4.4 7.78 ? ? ?

120




23

rate) and the maximum fault area - can be related to the observed
integral of seismic moment under the curve and the maximum

magni tude respectively. The potential use of studies such as this
is shown in the areas of long-term earthquake warning via an
evaluatioh of the average repeat time and in probabilistic
evaluation of contoured.mapg of likely levels of ground shaking.
The former should help identify areas currently most at risk for

" detailed prediction studies (thereby optimising the distribution of
limited resources) and the'latte: is essential for hazard
mitigation by building design codes and earthquake insurance. In a
wider geophysical context, the pfesent study is also useful, for
example, in investigating the details of various tectonic processes
via the slip rate and the seismic moment.

In the next chapter, the concept of an integral of the seismic
moment over the magnitude range is generalised by using the
empirical Weibull distribution and Gumbel's third distribution of
extreme values. From this it is hoped to obtain better estimates
of the seismic hazard, and to compare the present-day seismicity
with tﬁe longer term geologlcal processes in several different

tectonic zones.



CHAPTER 2

The application of the Weibull distribution and its related extreﬁe

value distribution to four diverse tectonic zones

2.1 Introduction

The previous chapter has shown the link between the maximum
magnitude and curvature in the log-linear frequency magnitudé
distribution., Such curvature has been observed in laboratory
models by Burridge and Knopoff (1967) and King (1975), and also in
a theoretical model by Kuznetsova et al (1981), which considered
the effect of inhomogeneities along a fault. Furthermore this
behaviour is commonly ébserved in seismicity'distributions around
the world - for example by Botti et al'(1980) in the Western Alps,
Burton et al (1982, 1984) in Turkey, Makjanic (198%Z) in Yugoslavia,
Makropoulos (1978) in Greece as well as by Conéentino and Luzio
(1976) (fig 1.2) and later in this chapter. There is also
experimental evidence that the distribution of microfracture events
in stressed San Marco gabbro =~ shows curvature asymptotic to a
maximum size at low frequencies (Scholz, 1968). Even volcanic
seismicity shows this characteristic curve to a limiting
magnitude. Qamaf et al (1983) showed this retrospectively for the
seismicity preceeding the eruption of Mount St. Helens in 1980 on
18 May. The curve at high magnitudes indicated a characteristic
source dimension of about 3km, compared to a volume of earthquake
foci of (3x3x6) km3 from h&pocentral studies,

Analogous curved distributions have been observed elsewhere in
nature, for example in the yield strength and fatigue life of steel

(Weibull, 1951), and are commonly used in meteorological analysis
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(Jenkinson, 1955). The Weibull distribution can be usefully
extended to'preferen;ially énalyse 'the largest events associated
with curvature because of its simple form (see section 1.5). Tﬂe
largest events in this caée consist of a subset of the frequency
distribution - namely the largest (extreme) value in any unit time
interval.

" In this chapte; the Weibull distribution (1.10) and Gumbel's
third extreme value distribution (l1.14) are chosen as empirical
approximations to the recurrence statistics, aﬁd the maximum fault
dimensions and slip rates inferred from curve fits to empirical
earthquake data a;e compared with those observed geologically, in
order to see if the short term earthquake.catalogues are actually
compatible with long term effects. This is very important for
greater understanding of the relationship between seismicity and
tectonic effects, and as a check on any extrapolations from the
recurrence statistics for quantitative hazard estimation. For
example a good match also implies that the commonly held assumption
of the stationarity of earthquake - generating pro;esses is
actually valid.

The relationship between the maximum magnitude and source
dimension, V has been discussed in the previous chapﬁer, and can be

summarised by a combination of (1.5) and (1.18)

loglo{C V Ac} - A(Ac)
w = ' R (2.1)

B

where -
C = 16/17, V = a3 for a circular fault of radius a, and

C =mn/2, V = WL for a strike-slip fault of length L and width W.
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For a dip-slip fault C = n(x+2u)7[4(K+u)], V = W2L,. although no
distinction has yet been made between normal and thrust models
(Kanamori and Anderson, 1975). A and p are the Lamé constants
here. C is a constant, Ac is the typical stfess drop, ‘A(Ac), B,
are given by the magnitude—moment relation. The second
seismotectonic property — the rate of release of seismic moment -
requires a modification of Anderson's (1979) théory to account for
curvature described by the Weibull distribution. This is carried
out in the next section, and the models'developéd are applied to

four diverse tectonic zones later in the chapter.

2.2 Models of crustal deformation rates from (I) the Weibull

distribution and (II) Gumbel's third distribution of extreme values

The measure of crustai deformation is taken to be the rate of
release ofASeismic moment (ﬁo). This can be related to slip rates
(é) on individual faults, or strain rates (é) over a more diffuse
area by the equation (1.17).

Two models are used to estimate the rafe of‘crustal
deformation, following (I) from the cumulative frequency of
occurrence (which will be called the whole process here) and (II)
from the extreme value probabilities (a part process). .The
descriptions 'whole' or 'part' depend on whéther the whole
catalogue 1s used or not.

2.2.1 Model I An average value for the rate of release of seismic
moment 1s given by integration over the range (0, Mow) where

M0w is the largest moment which might be released in a single
event for a particular region. This is equivalent to integrating
over the magnitude range (=, w).

Putting the Weibull density distribution from (1.10) into
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(1.20) gives

c 9 ggn (@ m) <! |
M =[ e Kk ———  “dm , (2.2)
(o] k .
o (w - u)‘ g
where k = 1/A. = Then
- a w ‘
M = k e f N (w - m)k-1 dm . : (2.3)
o} k
(0 = u)" =
® . 0
Let x = - m be a dummy variable, so that dx = -dm and [ = -
0 ®
gives
- a+Bw ®
Moo= ke Ty emBx gkl gy (2.4)
o k
(w=u) o
Letting t = ﬁx,'df = Bdx gives
- at+fw ©
io= ke o e tekl g (2.5)
{Blu—)}” o

The integral is now a gamma function I'(k), and using I'(k+l) = kI(k)

- ea+6w

and M.0 from the moment-magnitude relation gives
w

T M, TG
M.o= -————_—-—E . (2.6)
{8 (w-w)}

Thus ﬁo is expressed as a function of (a, B) - the parameters of
the seismic moment-magnitude relation, and (w, u, A = 1/k) - the
three parameters of the Weibull distribution.

2.2.2 Model I1 Forming a probabilistic expectation value for the
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extreme value case gives

M
X ow
<M > £ M p(M) dM (2.7)
"o
where P(X(Mb) =.[ p(X) dX is the extreme value distribution
0o

following from the normalised probability density p. Replacing p

with' the density distribution of (1.13), which is given by

d
p=— {e-N(m)} = o~N(m)

dm ) " dm

=dN{(m)
= N n(m) : (2.8)

gives, on conversion to magnitude by (1.5)

otpn N 0) do . | (2.9)

. w
<M = [ e

-0

Note that this equation is similar to (1.20) except for the extreme

N(m)

value probability term P(m)=e inside the integral. Thus (2.9)

is also the average value of the moment release rate produced by

the extreme values alone, and <ﬁo> will therefore always be less

than ﬁo of Model I.

N(m) |, L N

Letting x = e n(m) dm in (2.9) gives

1
<ﬁo> = f em+ﬁm(x) dx
o

. (2.10)

Using (l.14) to define m(x) gives
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1
<ﬁ°> =M, | exp {B(u=w) (~n x)k} dx , (2.11)
o

where x is a dummy variable. For é limiting maximum ﬁagnitude
0<A<1l, and w > u, so the integral is always less than one, and
once more <ﬁo> is ‘expressed as a fraction of the maximum seismic
moment which may be released in any one event. The integral was
solved in the present work by a numerical algorithm due to Gill and
Miller (1972) which uses third order finite-difference formulae and
.produces error estimates.,

In evaluating parameters of the distribution (1.14) the unit
time interval must sometimes be taken to be i1 years rather than
annually in order to reduce problems associated with intervals
devoid of any recorded events. If this is the case then u and A
are also appropriate for a unit time of i years, and conversion to

annual rates, i = 1, can be done via
<Mo> = i<Mo> , | (2.12)

where <D:Io>i is.the seismic moment released per i years.

Thus (2.6) and (2.11) define the rate.of release of seismic
moment in terms of the statistically determined parameters (w, u,
A) - the link to the physical process of strain or slip rates being

represented by the terms Mo and B.
w

2.2.3 Uncertainties in ﬁA and {@oz_Because (ws, u, A\) are subject

to (often large) statistical error in the curve fit to empirical
data allowance must be ﬁade for this in predictions of'ﬁb. This

can be done by the equation



. - {3 3
s(M>, M) ={z =
° - ° 1=1 j=1

2 . D
) (<M°>, Mo)

N~

o]

2
api 6pj.

which represents a complete covariance error in <ﬁo> and ﬁo

respectively. Py j
’

takes on values (w, u, A) in turn and

o . 1s the statistically determined covariance error in these

i3

parameters. The covariance matrix ¢ is defined by

2 2
{a c
w wu
2 2
e = {o S
uw u
{62 62
Aw Au

as in Burton (1979).

for error, because in

21 | | (2.14)

This is the most complete method of allowing

general the parameters w and A are dependent

on each other. A large w leads to less curvature (lower A) and

vice versa. This manifests itself in a negative contribution from

Gik’ or a reduction in the overall error assigned when compared to

the variance method (i.e. a sum only of the positive diagonal

elements oi).

From (2.6) 1t can be s

oM - M
_0 = B Mo - ___.o
ow du
oM Mk

o _ )
du (w=u)
bMo -

hown by partial differentiation that

(2.15)
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and, if f(x) = exp{B(u~w) (~4n x)k} in (2.11)

3> . 3<M >
= 5<M0> -
ow du
a<»°4°> 1 \
= gM f f(x) (=an x)™ dx (2.16)
ou ow o
adg> 1 \
= B(u=w) LS f £(x) (=20 )™ gn (-gn x) dx .
oA o '

Note that the formulae for bﬁo/bw are similar in form.
Appendix 1 contains a program MOMENT-FF2 which was developed
to calculate Mo’ bﬁo/aw, 6&0/6u, bﬁb/ak and hence 5ﬁ° from

(wy uy, N\), € and (a, B) using both models.

2.3 Application of Models I and II to four tectonic zones

Having developed the theory of evaluating &o(w, u, A @ B) ¢
éﬁo in the previous section its application to four tectonic
zones can now be.considered. As an introduction the basic data
culled from an earthquake catalogue (of epicentres, times, depths
and magnitudes) are now described.

In the extreme value case the 1afgest event‘mi in each
unlt time interval i is extracted gnd then this subset is ranked in
ascending size mi, i=1, n. The magnitudes are then assigned é

plotting point probability given by Gringorten (1963)

P(mi) = (1 - 0.44)/(n + 0.12) , (2.17)
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where n is the total number of tiﬁe intervals. A curve of the form
(1.14) can then be fitted to this data set (mi, Pi)'

| The frequency case‘is simpler; and involves mere counting of
the number of magnitudes in the range (mj-5/2, mj+6/2), where
typically § = 0.1. (Magnitudes are uéually quoted to one decimal

place).. This gives what will be calied a 'discrete frequency'

) m
Fj. The cumulative frequency Nj =3 Fi is then just a sum of
i=j3 '

these terms above a chosen magnitude, giving a data set'(mj,
Nj).

The computef programme which was used to find (w, u, A\) also
evaluates the covariance error matrix e, which includes an
allowance for the uncertainty in magnitude. In this section this
uncertainty is estima;gdwas 6mi=t0.5. The curve fit was
carried out by using ;%gbﬁ-linear least squarés algorithm developed
initially by-Marquardt (1963), and translated into FORTRAN for
general application by Bevington (1969, p 237). It has been
'applied to extreme value analysis of seismic hazards by Burton
(1978, 1979), by Makropoulos (1978) and been updated by Bob
McGonigle (1982, pers. comm.). This latter version of the program
was modified (RISK~-FF7, see Appendix 1) for the whole.process
cunulative frequency fit specifically required in the present work.

Empirical curve fits were then performed for four diverse
tectonic regions: (a) the Central and Eastern Mediterranean, (b)
the New Madrid 'seismic zone, (c¢c) Southern Californa, and (d) the
| Mainland U.K. ﬁo (wyu,N\,A,B) can then be compared with geological

-and geophysical observation. Figs 2.1 - 2.3 are epicentral plots

for regions a—c and figs 2.4 and 2.5 show the completeness
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histograms. The curve fits to cumulative frequency data are given
in figs 2.6, 2.7 and 2.8, and are summarised in table 2.1, while
the éxtreme value fits are represented in figs 2.9, 2.10 and 2.11
and are summarised in table 2.,2. The predictions of magnitudes
associated with average repeat. times T as defined in equations
.(1.15) and (1.16) for (a) the whole process cumulative frequency
analysis and (b) the part process extreme value approach are given

in tables 2.3 and 2.4. Each area is now discussed separately.

2.3 (a) The Central and Eastern Mediterranean (32°-48°N, 4°-36°E)
North (1§77) tabulates seismic moment values for this area of
diffuse, plate boundary'seismicity. From his table 4 the total
seismic moment released in this area for the period 1943 through
1971 was 70 x 10!% Nm or a rate ﬁo = 24 x 1018 §m yr-1, A more
complete picture from 1963-1970 (his table 1) gives a rate

46 x 1018 Nm ygj which may be regarded as a mipnimum value.-

A seismicity map of thé area concerned is given in fig 2.1 and
an excellent summary of the complex geo-tectonic setting is given
in Horvath and Berckhemer (1982). The histograms of fig 2.4 show
that the catalogue used (Burton, 1978) is complete for the time
range analysed (1943-1971) above magnitude 4.5. The range (3.6,
4,5) is not comﬁiete - as can be inferred from the sudden jump in
the numbér of events reported on introduction of the WWSSN network
in 1963. Fig 2.6 shows the Weibull fit and fig 2.9 the extreme
value curve fit. The parameters and covariance errors (whicﬁ
include an allowance for + 0.5 uncertainty in the magnitude
measurement) can be seen in tables 2.1 and 2.2. Note that in some
cases the actual values of (w, u, A) for N and P differ slightly as

predicted by Makjanic (1980), who attempted to allow for this by
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Figure 2.1 Seismicity of the Central and Eastern Mediterranean, Only those events of Mg > 5 are
shown for economy of plotting. The tectonic interaction is composed of a collision between Africa
and Eurasia, with seismic energy being released mainly along the arcuate trend of the Hellenic arc
south and west of Greece and the Aegean sea.
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Figure 2.2 Tectonic setting of the area around the New Madrid
seismic zone (after Zoback et al (1980)), showing microearthquake
epicentres (dots), locations of seismic profiles (eg. S=7) and
principle faults inferred from the data. The continuous heavy
black lines are rift boundaries, and igneous plutons are
represented by the hatched areas. There are three main seismicity .
trends: (1) a 100 km long stretch running SW-NE from the SW corner,
(2) a section running SSE-NNW at the terminus of (1), and (3) the
smallest trend. SW-NE near New Madrid. Copyright 1980 by the
American Association for the Advancement of Science.
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Figure 2.3 Seismicity and main surface fault breaks for Southern
California (after Hileman et al 1973). The quiet zone on the line
of the fault between (120°W, 35.5°N) and (117.5°W, 34.2°N) last

ruptured in 1857 (Fort Tejon) with an estimated magnitude of 8.25

or greater (Sieh, 1978).




160.00

o
°e
v
o
[8)
Co
oo
o8
33
(¢}
Q
[o]
(=]
ot~ ]
%o
g:
C
[« o
d T
“900.00 1920.00 1940.00 1360.00 1980.00
Time
160 160
° ) R 20 . 8 . 2
bquh“Nlﬂ"hU1 . °
1900 1980 1900 1980 1800 1980 1800 L4 1980 1900 1980
3-6-4'5 4-6-5-5 5-6-6-5 6:6-7-5 7:6-

Figure. 2.4 Completeness testing for the Mediterranean catalogue., The lower diagrams show the
annual frequency of occurrence of events in the magnitude ranges indicated, with S-yearly averages
plotted on the upper figure. The roughly constant frequency of events in the range (4.6, 5.5) since
1920 or so, compared to the sudden jump in the range (3.6, 4.5) around 1963 indicates that the
former is complete for the time span analysed (1943-1971), if we assume a reasonably stationary
process.
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Figure 2.5 Completeness testing for the Southern Californian
catalogue. As in fig 2.4 the roughly constant frequency of events
in (4.0, 4.9) since 1932 indicates a completeness threshold of 4.0

for this time period. :
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Figure 2.6 Weibull curve fitted to the Mediterranean data. The
curved cumulative frequency distribution N(m) as in equation (1.10)
is compared with the data. A straight line would obviously not be
applicable to this area on a log-linear plot such as this.




E;b Cumulative frequency plot
of the New Madrid area.
m’b. Recent + historical data.
e
R (1) 1(max) : 12 (10) kn
8 : .09 (.01) mm/yr
° (L) 1(max) : 260 (200) km
o 3 : 1.0 (0.5) em/yr
g -1
s (1)
=
-
o
O
-
. :
ol
(L)
3
o ' r ’ :
'1.56 3.00 .50 8.00 7.50 9.00

Magni.tude mb

Figure 2.7 Weibull line fit to the New Madrid data. This data
set was supplied by Johnstone (1981), and contains historical and
recent microearthquake data, joined at magnitude 3.5 my. A
superposition of two distributions (of 'Large' - (L) and
'intermediate' events (I)) is compatible with field observation of
two characteristic orders of slip rates and maximum fault lengths.
This can be seen by comparing the fault lengths 1l(max) and slip
rates § inferred from the parameters of the Weibull .fit (w, M )
with those observed (in parentheses). The slip rates inferred for
(1) mean that about ten of the smaller subsidiary faults are
required to account for the total. About five can be seen on fig
2.2 and further reflection surveys may find others.
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Figure 2.8 Weibull line fit to 'the Southern Californian data. In
this case the line fit seriously underestimates the occurrence rate
of the largest events-which have occurred. A line fit of the form
(1.1) would in this case give a better fit at these magnitudes, but
again there seems to be some evidence of a bimodal distribution,
the ranges meeting at Ms = 6.7 or so.




Figure 2.9 Gumbel's third distribution of extreme values fit to
the Mediterranean extreme value data.
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(a) Mg vs (~1n P)A plots as a straight line (the A\ parameter -
the indicator of curvature being incorporated into the x axis). It
can clearly be seen that w is the intercept on the y axis and u is
defined where x = 1. The covariance error matrix,which includes an
estimate of magnitude uncertainty, leads to the confidence limits
drawn.
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(b) Mg vs {—ln (-1n P)}. This choice of x axis illustrates the

effect of curvature in the cumulative frequency distribution N =

-ln P. Annual extreme values are used in both diagrams to define

the plotting point probability P defined in section l.5.
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Figure 2.10 Gumbel's third distribution of extreme values fit to
the New Madrid extreme value data. The solid theoretical line is
effectively straight. Because of the superposition evident in fig
2.7 the line fit is not a good description of the seismicity.
Again annual .extremes were used.
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a possibility.

Again the occurrence
of the largest extremes are underestimated and bimodal curvature is

Annual extreme values are used to plot the data.



Table 2.1
Moment release rates predicted by cumulative frequency curve fits to N(m) = {(wm)/(w-u)}
(Model I and figs 2.6-2.8)

1/

Areé+ Parameters Covariance error Local values ﬁo (wyu,A,A,B) ﬁo
(w, u, A) matrix ¢ for A, B Observed or estimated
x1018 Nm yr-'1 X 1018 Nm yr-1
(a) (8.16, 6.80, 0.251) ~  0.855  —=0.031 - 0.119 - _
M -0.031 0.018 0.008 9.0 1.5 87 + 110 6
s : -0.119 0.008  0.018 , - 49
(b) Range (7.81, -23.5, 0.680)  1.43 71.1 - 0.752
-0.752 =-42.5 0.437 - 1.l
(b) Range (5.61, 3.63, 0.263) 1.000 -0.084 - 0.154 . -4 -2
(2.5, 5.0) mb* -0.084 0.019 0.015 8.58 1.5 4,0 + 23.6 ~ 10 -10
-0.154 0.015 0.025 i - 3.4
(xlO'“)
(c) (9.26, 6.00, 0.126) 9.45 -0.304 - 0.340
M /M -0.304 0.026 0.012 8.83 1.5 8.3 + 86.9 = 16
s L -0.340 0.012  0.012 - 7.6

* Refer to text for mb/M conversion
s

+ Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, and (c) Southern California



Table 2.2 ’
Moment release rates predicted by extreme value curve fits to P(m) = exp{-(wm)/(w-u)}
» (Model II and figs 2.9-2.11)

1/\

+ . ‘ L)
Area Parameters Covariance error Local values Mo (w,u, A\,A,B) MO
(w, u, A) matrix € for A, B 18 Obserged or estimated
x 10 Nm yr-1 X 101 Nm yr-1
(a) (7.84, 6.64, 0.435) 0.484 -0.044 -0.200
M -0.044 0.014 0.021 9.0 1.5 44 + 26 >46
s -0.200 0.021  0.093 - 16
(b) Range (19.4, 3.36, 0.042) 1123, 2.54 -3.20
(3.0, 7.5) m * 2.54 0.013 -0.007 8.58 1.5 - = 0.6
b ~3.20 -0.007  0.009
(c) (9.11, 5.46, 0.182) 3.700 -0.063 -0.219
S L - 5.6
-0.219 0.004 0.013
(d) (5.46, 4.58, 0.590) 0.190 -0.026 -0.134
m * -0.026 0.015 0.026 8.7 1.5 s 34
b (x107°)
-0.134 0.026 0.113 x

* Refer to text for mb/M conversion
‘b s

+ Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c) Southern California, and

(d) Mainland U.K.



Table 2.3

Magnitudes mT associated with average repeat time T = 1/N for N
— a Weibull distribution (equation 1.10)

T yrs (a) Mediterranean (b) New Madrid (b) New Madrid (c) Southern California
M m <5 m > 5 M /M
s b b s L

2.0 7.02 (0.136)* 3.96 (0.142) - - 6.27 (0.151)

5.0 7.25 (0.166) 4.31 (0.137) - - 6.60 (0.153)
10.0 7 .40 (0.208) 4,53 (0.142) 1.28 (4.525) 6.82 (0.181)
20.0 7.52 (0.258) 4,71 . (0.168) 3.73 (1.423) 7.03 (0.234)
50.0 7.65  (0.330) 4.90  (0.232) 5.62  (0.257) 7.27  (0.329)

100.0 7.73 (0.385) 5.02 (0.291) 6.44 (0.322) ‘ 7.44 - (0.413)

200.0 7.80 (0.438) 5.12 (0.353) 6.96 (0.265) 7.59 (0.504)

* All uncertainties inferred from the covariance matrix e are quoted in brackets. To derive
this uncertainty a magnitude measuring error of *+ 0.5 is assumed, and an expression similar to
(2.13) is used for mT = m(N), N = 1/T via (1.10)



Table 2.4

Magnitudes my associated with average repeat times T = 1/(1-P) for

. P as defined by Gumbel's third distribution (equation 1.14)

T (yrs) (a) Mediterranean (c) Southern California (d) Mainland U.K.
M M or M m
s s L b
2.0 6.82 (0.121)* 5.70 (0.093) - -
10.0 7.39 (0.169) 6.69 (0.122) 4,62 (0.122)
20.0 7.51 (0.234) 6.99 (0.152) 4.98 (0.113)
50.0 7.62 (0.324) 7.32 (0.223) 5.20 (0.156)
100.0 7.68 (0.387) 7.53 (0.293) 5.29 (0.209)
200.0 7.72 (0.443) 7.72 (0.373) 5.35 (0.260)

* All uncertainties inferred from the covariance matrix ¢ are quoted in brackets. To derive

this uncertainty a magnitude measuring error of = *+ 0.5, and an expression similar to (2.13) is

used for mT = m(P), P=1 - 1/T via (1.14).



generalising (1.13) to P = exp {-const.N}. (The underlying reason
for this observed discrepency is that the seismic process is not a
purely random one).

To convert to moment release rates refer to North's table 4
again, where an average stréss drop for an earthquake océurring in
the area of interest 15 38 bars. This implies that A = 9.0 using
Singh and Havskov's (1980) formulation for SI.units, and with B =
3/2 leads to a good linear fit to North's (1974) fig 4, right up to
the highest magnitudeé; This last point indicates Eﬁég there
appears to be no instrumental saturation effect for this catalogue,
because this would show up on the gréph as curvature asymp?bt£; to

y

a saturation magnitude. ‘
S

Both predictions of the short te}m moment release rates from
models I and II agree with the observed value Mo > 46 x 1018 Nm
yr"l to within a factor two or so, which ié in béth cases within
the expected uncertainty. This consistency, where a reasonable
error in (w, u, X) exists, and some knowledge of a local stress
drop or A value is available, shows that the model proposed is
quantitatively adequate well within the limits of statistical
uncertainty.

Further inspection of this uncertainty shows the following

relative effects of the three Gumbel parameters:

DM > Bd<M > <MD ‘
/% /2% =1.3/1/1.8
dw 3u g
a<»'40> a< > a<i >
o / g / o.=7.7 / 1/ 4.7 .
) u A

ow . ou oA
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This result shows that u is the best-determined parameter and that
w and A have a dominant effect on the total variance uncertainty

in <ﬁo> in this case., This effect is tempered by their
interdependence already discussed above, and highlights the need to
include the off-diagonal elements of the complete covariance error
matrix in any attempt to quantity an error in éﬁo>.

Finally, note from the tables that the error in <ﬁo> is

less than that for ﬁb (60% compared with 1267%). This is
compatible with the fact that the largest events are usually more
accurately recorded, and that these events dominate in the
determination of ﬁo-

The comments of the last three paragraphs were also found to
apply qualitatively to the following areas of study, the actual .

values being quoted in this subsection for 11lustration only.

2.3 (b) The New Madrid seismic zone (35°-37°N, 89°-90.5°W)
This are; of mid-plate seismicity has received much attention in
recent years for reasons both practical and theoretical., Zoback et
al (1980) summarised the available geological and geophysical data,
and concluded that the area‘consists of three main seismic trends
(see fig 2.2), set in a reactivated.graben structure. Why the
seismicity should largely follow the axis of the graben is not
clear.

Practical interest is stimulated by the possibility of a
repeat oﬁ the 1811-1812 sequence of major events (7.1 - 7.4 mb)
in an area of relatively low seismic attenuation and high
population density, and theoretical interest comes from the

break-down of the classical theory of rigid plate tectonics. These
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events are unusual in that they haﬁe'occurred in an area which is
otherwise relatively quiet in termé of moderate seisﬁicity, and
their very existence suggests that the American plate may be far
from rigid. Because fhe seismicity trends are situated in a zone
primarily of EW compression (Zoback and Zoback, 1980) right lateral
strike slip motion might be expected along the trends (1) and

(3) of fig 2.2 and thrust on section (2). Russ (1981) showed that
this is borne out to a large extent By the few fault plane
solutions available, and that section (2) may result from
reactivated dip~slip faulting. Together with Schilt and Reilinggr
(1981), he also indicates that such evidence as there is favours 5
om y:.'.l of uplift occurring in and around the northern part of

the active zone. There is some eyidence that some of this motion
is taken up by aseismic creep since earthquakes in Schilt and
Reilinger (1981) did not produce enough movement to account for all
of the uplift detected in'a later levelling survey.

The catalogues analysed are described ﬁy Nuttli (1979) and
Johnston~ (1981) quoting m, values inferred from macroseismic
intensities and recent data on small earthquakes, so there are no
problems associated with instrumental saturation. All events from
Johnston: 's (1981) data set for mb>2.5 were included in the
analysis. The most successful curve fit came from considering the
ranées (2.5, 5.0) and (5.0, 7.5) separately as in fig 2.7, which
plots the superposition of ghese two separate distributions. There
may also be a third component in the range of (1.6, 2.5). This
superposition can also be seen in the extreme value case (fig
2.10), but due to the scarcity of déta in the higher portion the
two ranges cannot be separated. In this case the curve fit is

effectively straight, eveﬁ though systematic bimodal curvature is
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evident from the figure. For this reason no realistic <ﬁo>
could be obtained with the impossibly high wvalue of w obtained in
table 2.2.

In arriving at the entries in table 2.1 for ﬁo the

magni tude conversions

MS = 1.59 m = 3.97 6.5 < Ms < 8.0 (2.18)
Ms = 1.93 o = 4.8 4.0 < MS < §.Q > (2.19)
from resuits summarised in Marshall (1970) were used to match the
ranges above '‘and below magnitude 5.0 respectively. There is some
evidence that the stress drops in this area are relatively high, so
a value Ao = 100 bars was chosen ﬁo estimate A for the region via
Singh and Havskov's (1980) formulation. Considering the large
error involved in converting from epicentral Intensities Io to m
(see fig 1.5) and then to Ms it is not surprising that the
final error quoted in ﬁb is as high as a factor 10 or so.

In fig 2.7 for the range mb > 5.0 the largest events (mb >7)
were moved to positions consistent with average repeat times of 650
years (Russ, 1981). This gave agreement within a factor 2 with the
estimated moment release rate from three fault areas modelled as
one fault 20 km deep (Nuttli and Herrmann, 1978) by 200 km long
moving at.O.S mm yr‘l, if p=3 x 1019 Nm=2, The value of w
calculated from (2.1) for the geological data, with L = 100 km, W =
20 km and Ag = 100 bars is given by a str;ke slip model and turﬁs
out to be Mw = 8.14, or w = 7.6 from (2.18). This is in good
agreement with the value found statistically of m, = 7.8 £ 1.2,
and the historical magnitudes (7.1 = 7.4 mb).

For the magnitude range (2.5, 5.0), using a circular fault
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model the maximum fault area Aj .. = = a2 (for w = 5.6) was found

to be 150km? which implies L=12 km and §~9 x 1072 m yr™'. This
typical movement on what are supposed to be a collection of
several subsidiary faults compares favourably with that observed on

one such fault ( 1.2 x 102 mm yr'1

and fault length 10 km from
Zoback et al (1980) on thg Cottonwood Grove fault if it is noted
that there are at least five pther such faults in fig 2.2). It can
be seen that the seismicity represented by the range (2.5, 5.0)
contributes only a minor fraction of the stress release.

The conclusion here is that bumps in the cumulative frequency
distribution have been numerically related to the superposition of

two different characteristic orders of observed'faulting, i.e. both

parameters established by the statistical curve fit, {A (w), ﬁo

max
(w,u,\,A,B)}, or more simply {L, é} agree within their error with
those inferred from geological and geophysical evidence. It

appears difficult to suggest any other reasons for the shape of the

curve which would match the tectonic information so well by chance.

2.3 (c) Southern California (31°-38°N, 114.5°-121°W)

This well-researched area of high seismicity on a plate boundary is
very different from the previous example. It includes the site of
the 1952 Kern Co event and the 1971 San Fernando earthquake, as
well as the 400 km long 'locked zone' which previously ruptured in
1857 with an estimated magnitude of 8.25 MS or greater and an
average repeat time of 163 years (Sieh, 1978).

The catélogue used was that of Hileman, Allen and Nordquist
(1973), whose publication also gives excellent maps of the
seismicity and the tectonic setting (e.g. see fig 2.3). The

analysis of fig 2.5 shows that for the period concerned (1932-1972)



magnitudes (MS or ML) above 4.0 or so are completeiy reported,

Anderson (1979) indicates a moment release rate of 12 x 1018

Nm yr'l for a 500 km loﬁg fault, but the catalogue analysed in the

present work contains a 650 km stretch of the San Andreas fault and

its offshoots, so ﬁo =16 x 1018 Nm yr‘l may be more appropriate.
These figures assume a depth of the brittle zone of 15 km and p = 3
x 1019 No=2, with a slip rate from plate tectonic constraints of
5.5 cm yr=}, Since the slip rate on surface faults is of the order
1 - 3.7 cm yr~! the deformation must take place in a broad zone
around the main fault trend.

Fitting the Weibull distribution to the data proved to be
unsuccessful above magnitude 6.7 (fig 2.8). The curve fit seems to
follow curvature apparent in the range (4.0, 6.7) and seriously
underestimates the occurrence of the highest magnitudes. It may be
that the activity above 6.7 is a separate characteristic
distribution as in the New Madrid area, but with only three or four
data points this cannot be tested from the current catalogue.

Singh and Havskov (1980) give A = 8.83 for this area,vwhich implies
a moment release rate of the right order only at the expense of
.allowing a value for w of 9.3 - one magnitude higher than Sieh's
deterministic estiméte.

Hanks, Hileman and Thatcher (1975) indicate that M0 for the
Kern Co (1952) event was 2 x 1020 Nm and.Ms = 7.,7. Using A = 8.83
gives Mw = 7.65, so there are no grounds for supposing
instrumental saturation is important, since this is the largest
event in the catalogue.

The extreme value curve fit (fig 2.11) gives a similar value
for w, but u is significantly different (even considering its

error). Curvature does seem to be enhanced by this method (higher
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value for A) but once more there is ; poor fit at the highest

magni tudes and the possibility of two separate curved distributions
is evident. The data point for Mg = 8.25 is inferred from Sieh's
(1978) estimates of Ms and the average repeat time T, with T =
1/(1-P). As in sections (a) and (b) the moment release rates
inferred from the curve fit are in agreement with those observed
within.a factor less than the estimated uncertainty (a factor 2
compared with 3 of 4) but in this case it is evident that the

parameters of the curve fit may be significantly improved .upon.

2.3 (d) United Kingdom mainland

This area of relatively low intraplate seismicity differs from the
New Madrid area in that no catastfophic events are documented in
historical times. Burton (1981) analysed this area in terms of the
third distribution of extreme values and produced the (w, u, A) set
in table 2.2(d). The unit time for this set was 6 years. The
mb/MS relation (2.19) is thoughf appropriate because of the typical

range of events in terms of magnitude.

Using (1.5) and the values of w, B given in table 2.2(d) gives
Mow = 2.0 x 107 Nm for A = 8.7 for an intraplate area, and if
this is modelled as a circular fault via-(1.18) the maximum fault
area would be 350 km? for a corresponding typical stress drop
of 76 bars. Since <ﬁ°>=2.2 x 1015 Nm yr=! from table 2.2(d)
and assuming p = 3 x 1010 Nm“z, a typical éeismogenic fault
movenent of 0.2 mm yr'l is expected.

Unfortunately there is very little direct tectonic informatioq
as yet on U.K. seismicity. However, King's (19805 results showed
that the fault area for the Carlisle event of 26th December 1979

was of the order 40 km? for an event of 5.0 mb. Very little



information exists on contemporary fault slip rates, although there
is some evidence of surface movement directly following glacial
unloading (Sissons and Cornish, 1982). The thrust mechanism of the
Carlisle event (King, 1980), and the strike-slip solution for the
Kintail earthquake swarm of 1974 (Assumcao, 1981) are both
_compatible with compressive tectonics.

King (1980) assumes Acg = 30 bars might be appropriate for
earthquakes in the U.K. In this case A = 9.1, Mow = 5,13 x 10}7
Nm, the maximum fault area = 1200 km2, & = 0.06 mm yr—}, King's
results are.consisteﬁt in themselves, but if Ao = 30 bars, fault
planes with areas an order of magnitude greater than those thch
ﬁa&e been observed so far might be expected. A more realistic
picture might be to interpret the maximum fault area as
representing a sum of several smaller faults of the order of tens
of km2, moving at rates around 0.1 mm yr‘l. This speculative
interpretation is compatible with the spréad of U.K. seismicity
around small, localised centres such as at Comrie and in pockets in
the North West of England and South Wales, and the absence of
catastrophic events in historical time such as in the New Madrid
area.

A deterministic estimate of the movement between the sinking
South of England and the relative uplift consistent with glacial
unloading of the North of England and Scotland is 1.5 mm yr‘l
(Rossiter, 1972). 1If the depth of the U.K. seismogenic zone is
taken to be 5 km from the depth distribution of U.K. earthquakes
(Neilson, 1982, pers. comm.), and its length is modelled as of the
order 200 km from the width of the mainl;dd, then the maximum fault
area is 1000 km? and Mo = 3.4 x 1016 Nm yr-l, This area

favours King's choice of Ao and comparison of the values of ﬁo and
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<ﬁ°> in table 2.2 indicate that over 907 of the observed movement
occurs aseismically. This is exactly what might be expected from °

elastic rebound of the crust folldwing glacial unloading.

2.4 Discussibn of Results

In most cases where moment release rates were available the
distributions N and P successfully‘modelled both ghe observed
curvature af high magnitudes and the prgdicted moment release rates
from moaels I and II. The exceptions tended to be in areas where
there was evidence that the distribution was bimodal - being most
striking in the New Madrid area (fig 2.10). It is unfortunate that
in most cases there are insufficient data to separate the two
distributions. |

The Weibull and (more obviously) the extreme value fitsboth
seem to underestimate the occurrence of the largest events
(especially if superposition of two characteristic fault sizes is
p%eéént). Allowing for the uncertainty of the curve fit thg moment
release rates inferred from models I and II are in general
compatible with field observation, although the match between w
from the curve fit and a deterministic estimate w(A,B,Ac,V,C) from
(2.1) is'nof always good. This exceedence of a deterministic @ (in
almost every case) is also related to the poor fit to (and
systematic underestimation of) recurrence statistics at the highest
magnitudes seen in the figures. Perhaps it is not strictly
meaningful to compare the two estimates of the maximum magnitude
(from the curve fit and the deterministic value from known fault
areas) in any case, since w from the curve fit is defined as the
maximum magnitude ever, for T = », and as such must include values

greater than those previously observed in a short time span (even



via the deterministic estimation). By definition then the
statistical value of w is an overestimate, and this leads to a
compensating underestimation of the hazard from large evenﬁs below
this value in the curve fit;

The tables 2.1 and 2.2 - show some small differences between
(w, u, A) found from the cumulative frequency and extreme value
data for the Mediterranean area. u is pretty much the same (within
ou) but w is smaller (with corresponding higher A) to reflect
‘the tighter curve found by using extreme values. This might be
expected because the extreme values are naturally chosen at larger
magnitudes - where curvature is more likely. To some extent this
discrepeﬁby would lessen as the sample time increased, and
eventually the-values should coalesce at T = =,

The differences between the two approaches can also be seen by
comparing the predictions of mT in tables 2.3 and 2.4. The
Weibull curve fit to the cumulative frequency data gives slightly
higher values for mT in.the Mediterranean and in Southern
California. From this comparison of (w, u, A\) and mT it can be
concluded that the basic éssumptiohs to derive the extreme value
distribution (l.14) do not seem to hold for these two data sets.
For example there is no infinite sample of events, and at least
some of the earthquakes are causally related (especially, say, the
aft;rshocks of the 1952 Kern Co event in Southern California).

Consistent underestimation of the probability of occurrence of
largest events in the catalogue is also strongly indicative of an
auto-correlation error between the value of w and the probability
of occurrence of smaller magnitudes. This is inherent in both
curve fits. This will be illustrated more fully in the next

chapter when discrete frequency statistics are considered
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(fig 3.2).

Another serious theoretical drawback of the distribution used
is that n(w) = 0. For a cyclic input and release of strain energy
n(w) might be expected to take some non-zero value, implying a
repeat time T = 1/N(m) which is not infinite as m + w.

However, despite these qualifications it can be seen that
careful quantitative comparison of ﬁo tAéﬁo can be uéed as a method
of distingulshing areas where the curve fit is indeed applicable
at the highest magnitudes. Incorporation of better deterministic
values for the maximum magnitude (from seismicity trends or
geological zoning), and geological estimates of théir average
repeat times could also improve the quality of the curve fit at
these magnitudes.,

Typical uncertainties in ﬁo were found to be a factor of 2-4
or so, with the extreme value estimates giving slightly lower
uncertainties, and agreement within this range with observed moment
release from (1) a short term catalogue for an internal consistency
check in the Mediterranean and (ii) long term geological estimates
in Sduthern California indicates that this approach may be usefully

applied in several other seismic zones of the world.

2.5 Recent developments

Since the work for this chapter was completed and published (see
inclusion Main and Burton, 1984a) some new observations have come
to light which are relevant and consistentiwith the interpretation
of the results of this chapter. Thé first concerns Sieh's (1978)
estimate of the surface wave magnitude of the 1857, Southern
California, earthquake. He estimated Ms > 8%, because the

macroseismic effects of the 1857 event exceeded those of the 1906,
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San Francisco earthquake, and this latter event had.been assigned
an instrumental magnitude of 8%. Abe and Noguchi (1983) have now
confirmed an observation by Neilson (1983, pers. comm,) that this
was due to an overestimation of about 0.5 magnitude units on the
latter event, because of incorrect damping constants being used' on
seismograms from the very early 1900s.

This confirmed some suspicions aroused in section (2.3(c)) by
looking at the curve fits around the data point associated with
Sieh's work in Southern California. This point should.have been at
T = 163 years, M.S = 7%, rather than MS =.8%, which would
have brought it within the covariance error bounds of the éxtreme
value curve fit shown on fig 2.1l1.

The second point is that several other.examples of the bimodal
distribution observed in the New Madrid area have now been observed
around the world: Bdth (1981b) observed a strikingly similar shape
to that of fig 2.7 in Turkish recurrence statistics, and attributed
this to the predominence of aftershock sequences in the earthquake
catalogue. (This interpretation would also hold for the NeQ-Madrid
area if aftershocks can take place away from the main fault plane.);
Singh et al (1983) found similar behaviour in Mexico, but did not
suggest a cause; Schwartz and Coppersmith (1984) explain a bimodal
distribution in the frequency-magnitude statistics of the Wasatch
zone (inéluding geologically estimated data points similar to Sieh
(1978)) in terms of two separate characteristic fault lengths in
the area. The discussion on New Madrid in this chapter goes one
step further than this latter reference in considering slip.rates
also; a further examplé from Southern California with a slightly
different interpretation will be given in the next chapter,

All of these observations of characteristic bimodal



distributions are consistent with so-called 'Asperity models'

(e.g. Aki, 1984), which lead to a'predominence of a few
characteristic earthquake sizes, reflected as a few bumps on thg/
frequency magnitude distribution. The idea is that, just as'ggﬁe
rocks can be broken down into similar-sized elementary blocks by
jointing, so can larger scale fractures such as faults by bends and
inhomogeneities, and subsequent-concentration of stress around
these so-called 'asperities'.

This macroscopic quantisation of earth materials into
characteristic lengths seems to apply to various scales of rock
fracture (Sadovskii et al, 1982): from clast sizes (mm) in rock
samples, through 1 m joints to 100 ﬁ blocks for small earthquakes,
10 km lengths in the Intermediate magnitude range of New Madrid,
for example, and the 100 km length of the dominant fault in the
same area. The results of many other more recent empirical
observations are fherefore in agreement with the resuits obtained
in this chapter, and their interpretation is consistent with the
quantitative attempts made here to explain their qualitative and
quantitative form. |
2.6 . Summary
First of all several examples of the relationship between a
physical maximum magnitude and curvature in the cumulative‘
frequency magnitude dis;ribution were discussed, and a formal
relationship between maximum fault area and a deterministic maximum
magnitude was given. Two new theoretical models were then
developed to extend Anderson's (1979) model of crustal deformation
to the Weibull distribution and Gumbel's third distribution of
extreme values, including in both cases an estimate of the error.

These two models were then applied to four diverse tectonic
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zones, with interesting results. In particular the New Ma&rid
seismic.zone shows two distinct curves which can be related within
a factor two or so to two sets of geological and geophysical
observations of characteristic maximum fault areas and slip rates.
Superposition of many such (curved) characteristic distributions
may explain the observed linearity of the global frequency/seismic
mbﬁent distribution observed by Chinnery and North (1975). All
estimates of w are consistent with geological estimation within
their efrors (which turn out to be of the order of factor 3 or 4),
but the geological estimates of fault area often imply that w found
by these statistical‘methods is larger than the deterministic value
based on fault areas. Even though a large statistical error in w
allows for this, this systematic differencé, which leads difectly
to an underestimation of the actual occurrence rates of large
mégﬁitudes just below w in the curve fit, represents a consistent
autocorrelation effect in the method. Of course the statistically
deternined value of w would'in general be expected to approach the
deterministic value from above as longer catalogue time spans are
considered and so a statisﬁical w larger than the deterministic
value 1s logical. However if this causes a consistent
underestimation of the hazard (ie the probability of occurrence) of
events which are known to have occurred then this autocorrelation
becomes significant. Despite this qualification the method could
usefully be applied to several areas of the world invstudies
similar to the present one.

" To summarise, this empirical method is reasonably good for
evaluating moment releaée rates (and modelling the observed
curvature) but is not always successful when comparing the

statistical maximum magnitude with a deterministic value obtained
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from a maximum fault area. This subsequently led to the

'~ development of a completely new approach which includes these two
pleces of information automatically, by a direct method which will
be discussed in the next chapter. This avoids any dichotomy, for
example, of comparing the statistical quantity u with a
deterministic maximum fault area, by effectively merging the
short-term statistical magnitude data with long-term geological

data which are dominated by the large events near w.
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CHAPTER 3

A new frequency magnitude distribution

3.1 Introduction

The previous chapter has shown how the choice of an empirical
distribution cah lead to éystematic differences beéween the
earthquake data and the curve or line fit., It seems that a Weibull
distribution consistently underestimat;s the average repeat times
of large events and the statistically determined w exceeds a
determiﬁistic estimate of the maximum magnitude from geological
evidence, although in some cases this could be due.to
overestimation of the largest catalogue magnitudes. In another
study Anderson and Luco (1983) concluded that Caputo's distribution
(equation 1.9) does not fit the data of table l.1 as well as a
truncated exponential (equations 1.6 or 1.7). However there are
areas of the world where a truncated exponential also does not
describe the seismicity (for example see fig 3.2 for the

Mediterranean catalogue).

A further problem is introduced by the possibility o
superposition of characteristic fault sizes highlighted by the
previous chapter's results for the New Madrid seismic zone. The
aim of this chapter is to develop a method of avoiding the
problems inhereht in the somewhat arbitrary choice of a given,
empirical distribution, and which also allows for possible
supérposition in estimating the repeat times of the great events
which are longer than the historical or instrumental catalogue.
The aim is to develop a joint distribu;ion which combines the

information from (a) the earthquake catalogue (instrumental and



historical) and (b) the geological record in a way which involves a
minimum of assumptions. Thus the recurrence rates and assoclated
average repeat times of large earthquakes can be estimated without
having to extrapolate blindly from a short term catalogue. Once
again it is the geological record and the information represented
by the slip rate and the observed seismogenic fault area which is

" the cruciai addition to thg seismicity statistics.

One natural method of combining.the data from a short term
catalogue of events and the long term geological observation in an
unbiased way 1s to use the principles of Information theory. This
method accepts that knowledge of the system is incomplete and
chooses an estimate (or inference) of the distribution which 1is the
least bilased with respect to this ignorance. O0f course there are
‘an infinite number of distributions which are consistent with an
underdetermined problem such as earthquake recurrence statistics.
Information theory picks only the most likely form consistent with
the limited knowledge of the system, usually expressed in terms of
an average observation of one or more of the paraméters which can
be measured; To do.this involves maximising an entropy‘function
which quantifies the information content and is subject only to the
constraints which are put in, i.e. the information which is
available. Even if this distribution requires subsequent
modification with increasing knowledge of the system it remains the

best contemporary solution to the problem (Jaynes, 1957).
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3.2 The earthquake frequency-magnitude distribution from

Information theory

3.2.1 Derivation of the distribution

Information theory is applicable,in a wide class of problems where
the average value of a physical‘parameter can be estimated even
'though it may deviate significantly from this value from time to
time. Its methods have been shown to be methematically identical
to, but are more general than those of statistical mechanics
(Jaynes, 1957). Berrill and Qavisl(1980) have previously applied
it to the earthquake frequency-magnitude distribution to derive the
truncated Gutenberg-Richter law of equations (1.6) and (1.7) for
historical earthquake‘catalogues. In this section their results
are extended by the direct inclusion of ;he long-term average
strain energy release thrbugh the seismic moment release rate.

Consider the continuous range of magnitudes (mc, w), where w
is the maximum magnitude consistent with the finite breaking strain
of the earth and the finite dimensions of the source zone, and
mc is an arbitrafily chosen lower bound. mc may be
physically determined by the minimum dimension which will support
selismic rupture, as well as by other physical constraints such as
stress drop and friction along the fault, but in practice will
usually be the lower bound of complete reporting of events.

For this magnitude range a probability function must be picked
in a way which avoids a biased choice, but is consistent with
currently available knowledge. This is similar to the common
problém in statistics of devising some method of sampling that
avolds bias. Shannon (1948) showed that there is a unique,

unambiguous criterion for the "amount of uncertainty" represented
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by such a probability distribution. Shannon proved that the only
quantity which is positive, which increases with increasing

uncertainty, and is additive for independent sources of uncertainty

is
w
s(p) = =/ p(m) 2n{p(m)}dm , (3.1)
m
C

where p(m) is the probability density function of magnitudes in
this case (Berrill and Davis, 1980). Jaynes (1957) demonstrated
that the thermodynamic entropy was mathematically equivalent to
Shannon's definition, which can also be called the 'Information
theory entropy{. In this section a distribution p is sought by
maximising S (for minimum ignorance or uncertainty, maximum

information content) subject to the constraints

w .
[ p(m)dm =1 |, - (3.2)
Te
W
[/ mp(m)dm = <m> (3.3)
m .
W
/ Mo(m) p(m)dm = <Mo> s (3.4)
m

c

where Mo(m) is given by the moment-magnitude relation (1.5).
<{m> and <Mo>, respectively the average magnitude and
moment per event in the range (mc, w), are the two pieces of

information which are available about the system; In this case the



expectation value and the mean value are equivalent, so to avoid

confusion later on the notation here sticks with <m> etc to comply
o, . is evaluated
<m>

with the first definition in (3.3). <m
simply from the earthquake catalogue'once mc'is specified (see
Appendix 1, MAXENT-FFl for a computer prograﬁ; o 1s a standard

error in the mean) and <Mo> + may be inferred from a

G<Mo>
catalogue of moments where this is available, from geological or
geophysical evidence of long-term fault movement, or from c;rrent
plate tectonic models. Note thaﬁ <Mo> is proportional to the |
average release of seismic strain energy via (l.4). The quantity

normally'gccessible is ﬁo - the rate of release of seismic moment,
but this is related quite simply to <M°> by <M°> = ﬁo/NT, where
NT is the total number of events in the catalogue per unit
time.

The method of Lagrangian undetermined multipliers applied to

these four equations (Appendix 2A) gives '

p(m) = exp{-A

LR NG VAR | (3.5)

where Z is given by

W
z={ exp{-klm - ksz(m)}dm . (3.6)

m
C

Z is the function which is necessary in order that (3.5) satisfies
the normalisation criterion (3.2).

It is easy to show (Appendix 2B) that

<m>

-d{an(z) }/dx, : (3.7)

-d{xn(z)}/dx2 .

AM >
o
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In principle, equations (3.7) could be solved and the distribution
uniquely specified in terms of the three variables <m>, <Mo>,
w, once mc has been chosen. Unfortunately this must be done
numericaliy because (3.7) has no analytical solution. The method
. that was applied here involves‘an iteration procedure from starting
values of A) and A,, using a third order finite-difference formula
due to Gill and Miller (1972) to evaluate the complicated integrals,
<{m> and <Mo> (see Appendix 1, the program is called MAXENT-FF2).

The cumulative form of the probability distribution is defined

by

W .
P(x>m) = [ p(x)dx =‘N(x>m)/NT , . (3.8)
m ' ’

if N is the cumulative frequency distribution. The number density
n(m) = —=dN(x>m)/dm is then given by n = NP, or

n(m)dm = C exp{-A.m - AzMo(m)}dé R (3.9)

1
where C = NT/Z, and Mo(m) is given by (1.5).

It will be noted that <m>, <Mo>, Z and NT all depend on the
range chosen (mé,w), but are most sensitively dependeht on m_ . For
the purpose of the present type of work this will not matter if (a)
the terms A} and A, are reasonably constant independent of the
choice of s and (b), proper normalisation is carried out by
using (3.2) and (3.8). It is obvious that (a) can only be effected
by considering a range of events wheré we are sure the catalogue is

complete, and (b) 1is taken care of by the terms 2 and-NT which
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will vary according to the choice of mc. It will also be shown
that the relative independence of A, with respect to mc is due

to a constant similarity dimension in the fauit‘geometry in the
following sections. This criterionAis equivalent to what will be

called dimensional (geometric) self-similarity.

3.2.2 A physical model from statistical mechanics

-In order to interpret (3.9) a physical model of a fault is now
considered and the methods of statistical mechanics are applied to
its localised elements. These elements may be as small as the
lattice constant of the predominant crystal, or may be related to
inhomogeneities such as joints or bedding planes. In the following

it is assumed that the elemental areas A0 are small enough to

warrant a continuous approach.

B e, -
e e -
gaon \

Consider an arbitrafx’ﬁwo dimensional area— A = 2? which

NN mn— . Ao oty

“\}

ruptures ‘during an event on the fault plane A« (fig 3.1).
Assuming a constant strain drop (so that the model 1s geometrically
self similar and thefefore can be scaled up or down without
altering this dimensionless qqantity) the fault slip s « £, so that
M= 23 from (1.4).

If an energy levei E is characterised by the symbol r, and can
be filled in g ways then the discrete frequency F of state

transition by statistical mechanics is given by

rzj
n

grexp{-Xé (Er - Er')} . ‘ (3.10)

l

AW (Er - Er') in this case is the change in strain energy which
is proportional to Mb via (1.4), and A,' depends on the average

energy <E>. In thermodynamics <E> = kT for example. The
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N /\zlz
\

dl

Figure 3.1 A two dimensional geometric fault model. The area A
can fit into Ap,, in Amax/A ways. A, represents the physical lower

limit to seismic energy release and depends on the spacing of
inhomogeneities in the earth. The densitz of degenerate states,if

Ao is assumed to be very small and A = 8¢ is

d(g)de = {a

2 2, _ 3
nax/ ¥ 1AL /(2 + A0} = 24 /2da.



degeneracy g is given by a simple geometric constraint on Mo(x).
On a planar fault as in fig 3.1, g() = Amax/A(l) so that, for

the continuous case, the density d(R) of degenerate states is given

by
d(2)dR = g()-g(a+d) = (24 /23)dg , (3.11)
max .

after binomial expansion and ignoring terms in dg? and higher.

This can be. compared with Caputo's (1976) postulate
-y : .

In a planar fault of two dimensions (say D=2), v=3 by comparing

(3.11) and (3.12) and so

in this case. However, it can be seen by induction that this holds
for any value of the dimension D and the power of the length
density distribution v. This concept of dimensioh will be
discussed more fully later.

Meanwhile the variable in (3.11) is converted from length to

moment using Mb « 23; dMo < 22dQ

d(Mo) dMo = d(R)da

o, (3.14)

- )3
[o] o

and then to magnitude via (1.5)

56



57

d(m) dm = d(Mo) dMo

I-v
« exp{(«+fm) Cj;—)} dm . : : (3.15)
If d(m) « e™®'® then
v-1 v=1_' :
b' =8 (—=) or b =B (—) . (3.16)
3 3

The continuous number density n(Q) is then given by a combination

of the geometric term with a Boltzmann exponential

n()dL = d(R)dg eXP(-KZMo(l)) ’ (3.17)

== ! 4
where XZMO xz AW from (l.4), or

—h! -
b me )\zMo(m)dm .

n{m) dm = const. e (3.18)

This form is identical to (3.9) if Ap = b' =b 1n 10.

Thus the distribution (3.9) can be interpreted as a Boltzmann
distribution of possible energy transitions in a stressed zone,
multipled by a geometric factor which is directly related to the
dimension of the source zone and is represented by the familiar

b-value.

3.2.3 A note on fractal dimension

By combining (3.13) and (3.16) an interesting result is obtained

B D .
s D/Z ’ * (3.19)




if B » 3/2. Thus the dimensions of the source zone of 1, 2, 3
correspond to b~values of }, 1, 13 which covers both the
empirically observed range (sectién 1.2) and the permissible range
for finite energy release (section 1.7, equation 1.21). Thus the
observation that b < 3/2 is a consequence both of a finite energy
density, and of the release of that enefgy in a cracked surface
which can fill (at most) a volume (D=3). This combination of ideas
enhances the statistical mechanical interpretation- of the previous
section,

It 1s interesting to note that data on Californian fault
breaks at the surface indicate that v = 2;5 (Caputo, 1982), This
would imply b = 0.75,'in good agréeﬁent with theoretical models
developed by Petrov kl981), where b = 0.75 results from random
statistiéal fluctuations in microcrack density and Vere-Jones
(1976) where b = 0.75 results from a critical branching model. The
non—-integer b implies by analogy with the normal concept of’
density, a density distribution of fault lengths which has a
fractal (ie non-integer) dimension (D=v-1=1.5 in this example).

The fractal dimension of the fault geometry may be modelled by (a)
irregularities along the main fault break or (b), scattered smaller
replicas of the original fault (see Mandelbrot, 1982). Caputo's
(1982) value for v only accounts: for (b) because only surface
breaks are considered, whiéh may explain why the b value predicted
from v under-estimates the empirical value for b of 0.87 (Epstein

and Lomnitz, 1966) and 0.89 + 0.03 (this chapter, section 3.3.2).

3.2.4 Uncertainties in the distribution and its predictions

The distribution (3.9) represents the most likely form of the

frequency magnitude relation consistent with <m> and <M,>. These
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two parameters have associated uncertainties which are independent,
and can be related to the uncertainties in A; and A, by the
solution of a series of four equations for the propagation of

standard errors of the form, for example

, {6<m>}2 , {6<m>}2 , {a<m>} {a<m> o2
fo C R (o} + (e} + e — o +
@ T, Moo, M Ty ey, MM
M, d<mD>
=1t {="}t o, -
dhy O 2%
2 2

2 2
These four similar equations in Tem>? G<Mo>’ °<mMo>’ °<Mom> can

be reduced to a matrix form as

2 2 2 2
{a b ab  ba} {cxl b o |
2 2 2 2
{b c bc  cb} {c:k2 } = {0<M0>} (3.20)
i 2 2
{ab bc ac b7} {lexz} { o}
2 2
{ba . cb b ca} {cxzkl} { o} ,
3<m>
where a = = ? - <@d ,
N,
Cakmd  adiy
b = = =<m> m>-<mM> ’
ohg ah o o
A<My
cs— =ad?-w@®
N,

follow from di?ferentiating (3.3) and (3.4). At this point note
~—. .

that &o = <M ‘NT is a function of the slip rate, whereas <m>
N
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depends only on the individual magnitudes in the catalogue. Mo
varies hardly at all with changing mC because it is dominated

by the larger events but <m> varies dramatically. Therefore <M,>
and <m> are essentially independent variables, which is why it has

been assumed that o = 0 in (3.20). This equation

aM> M m
o} o
can be simplified slightly by subtracting the bottom row from the

third to give

2 2

2 2 ‘
(ac = b)) GKIXZ - (b" - ac) oxle = 0 , (3.21)

or, since ac - b2 is not in general zero

2 2 '

Thus a simpler problem remains:

{a2 b 2ab } .{cil } {ogpy}
{v? c? 2be  } {cf\2 } = {c<Mo>} (3.23)
{éb bc ac+b2} {cilkz} { o }.

This equation was solved by diagonalising the 3 x 3 matrix and
back—substitution, using very high precision to avoid rounding
error. (The progrém MAXENT-FF3 in Appendix 1 does this job).

The contribution to errors in the cumulative frequency
distribution N are then added up. These are: the covariance terms
in N) and A, which depend on uncertainties in the moment release

rate Mo and a standard error in <m>; fluctuations in NT as seen in

the completeness graphs in Chapter 2; a measuring uncertainty in

the magnitude w; a variable A parameter to quantify uncertainties
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in the moment-magnitude relation. The latter criterion is

necessary since eventually the distribution (3.9) (which is cast in

terms of Mw) will be compared with empirical data (in Ms or ML).

The form of the propagation of errors equation in a quantity

N (<>, <Mo), NT’ w, A) is

fox 12 fn P2 on }2
5N2 = 0’2 + 62 + 0'2
fa<m>} <™ {o<t >} My ey} Mr
2
+{g}2 "3, +{g} ci,
{ow } {oa}

but it is necessary to recast the uncertainties in the parameters

<m> and <Mo> in terms of A and A, because there is no

analytical form for dN/d<m> and aN/6<Mo>. This requires the

addition of the covariance terms in A and A,. Formaily the final

uncertainty in N is taken to be

{on }2 {on }2 fon } {ow }
2 7 &2 — —_ — 202
T M T ) )
+ {b_N ¥ 2+ {2}2 2 + {ﬁ}zoz .
fongb Mt faw} ¢ fea} 4

(3.24)

Errors in T(m) = 1/N(m) can also be allowed for via &T/T = —-&N/N2.

(MAXENT-FF5 (Appendix 5) evaluates average repeat times and errors

from (3.24), given m). A similar equation to (3.24), with W

replaced throughout by o, holds for the error in L which

is solved for by MAXENT-FF4 (Appendix 1) for different values of T,

given (3.9).
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3.3 Application of the distribution

In order to test the validity of the approach developed in this
chapter, two regions were chosen for analysis - the requirements
being that the catalogue was large enough for reasonable

statistical treatment of discrete frequencies

at6m/2 ‘
F(m) = | n(m) dm , (3.25)
m-8m/2

and the availability of reasonable data on &o' Thus the catalogue
for the Central and Eastern Mediterranean‘was chosen for an
inspection of the properties of the distribution as an internal
consistency check, and the catalogue for Southern California as a
test of the primary objective of this thesis - the direct
incorporation of seismotectonic deformation rates into earthquake

hazard evaluation.

3.3.1 The Central and Eastern Mediterranean.

Since the method and the particular programs which were used for
each step have been outlined in section 3.2, and a description of
the earthquake catalogue and moment release rates were given in the
previous chapter, only the results are presented in this and the
following section.

Figure 3.2 (which was drawn by MAXENT-G in Appendix 1) shows
the theo;etical line (expressed in terms of Mw via (1.5)) for
m, = 4,75 compared to discrete frequency data (Ms). The dotted

line corresponds to a Welbull curve fit. It can be seen at a

glance that the distribution (3.9) fits the data better than the

Weibull curve, which consistently overestimates the occurrence of
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Figure 3.2 Discrete frequency plot of earthquake magnitudes for
the Central and Eastern Mediterranean. Discrete frequency-
magnitude data (my, F;) are compared with the theoretical
distribution (3.9) (solid line). A summary of the parameters of
this distribution is given in tables 3.l and 3.2, for a lower
completeness threshold m, = 4.75. 'An extrapolation of the
straight line portion of the distribution (a truncated exponential)
overestimates the occurrence of the highest magnitudes. The
autocorrelation error of the Weibull fit (dotted line) is evident
in the middle range. The good agreement between the theoretical
(Mw) line and the empirical data (Ms) indicates internal
consistency of the method. M, is defined here as the unsaturated
Mg scale. The points marked (*) indicate reader bias towards the
points (5.0, 5.5, 6.0), a reflection of the accuracy of earlier
instruments (*0.5).




63

the middle range of magnitudes. On the other hand a truncated
exponential would extrapolate the straight line portion and
overestimate the occurrence of the highest magnitudes. In general
terms the Information theory distribution seems to combine the best
features of both empirical distributions.

Another advantage that the distribution (3.95 has is that the
line is always directly compatible with the best estimates‘of w
and ﬁo because these constraints are actually fed in to the
distribution, Empirical liné fits can only be consistent with
these best estimates within certain error bounds. The figure shows
one aspect of the magnitude uncertainty quite clearly.- namely the
consistent overestimation of j-magnitude intervals due to a
magnitude uncertainty of #0.5, particularly in the early years of
seismology. The good agreement of the theoretical line (Mw) and
the empirical data (MS) indicates that the values of A and B
discussed in Chapter 2 are valid within the error bounds of the
method, expressed here by 68A.

"Figure 3.3 shows the cumulative frequency fit with error
bounds. o<m> and ONT are given by standard errors on their means.
The bounds also include a possible error in‘the moment-magnitude
parameter A of +0.2 from inspection of North (1974), in w of #0.3
as a typical magnitude uhcertainty and an arbitrary allowance for
50% uncertainty in &o;' The uncertainty in A quantifies the error’
due to the necessity of comparing a theoretical line (Mw) with the
data (Ms)’ Note that despite the possibility of superposition
(above and below MS ~ 7) the distribution fits‘the datﬁ well
within the given error bounds. This agreement between data from a
catalogue with magnitudes and moment release rates measured from

the same seismograms and a theoretical distribution based on making
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Figure 3.3 Cumulative frequency plot of earthquake magnitudes for
the Central and Eastern Mediterranean. Cumulative frequency. data
(my, Ny) are compared to the theoretical distribution (3.9) and 1its
error bounds. Despite the possibility of two earthquake
populations (above and below magnitude 7) the line fits well

considering the errors.




the best use of limited knowledge otherwise indicates that the
method is indeed internally consistent. This internal consistency
~ or self-consistency = 1is an iﬁportant check on the validity of
the distribution (3.9).

Téble 3.1 summarises the effect of altering mc on the
parameters and uncertainties. Since magnitude is normally quoted
to one decimal point (&m = 0.1 in (3.25)) m  was chosen as 4.5
+ 86mI/2, where I is integral. (Chapter 2 showed that the catalogue
was complete above magnitude 4.5). The table shows that b stays
re;sonably constant with increasing m (within its error),
although there 1s a tendency both for b and o, to increase with
mc."This systematic trend is offset by a tendency for ), to‘
decrease, -and the resulting negative contribution to the error from

the covariance term o2

MA

The predictions of mT(omT) which follow are given in table
3.2, It can be seen that all of the entries for given T are
virtually identical, thus backing up the assumption of
self-similarity which is important in the assumption of a comstant
strain drop as well as for the fractal interpretation of the
b-value in section 3.2.

This discussion has shown that the distribution (3.9) is
better than some of the alternatives, not only in the quantitative
sense of fitting the empirical data better, but doing so in a
manper which is directly consistent with the available knowledge of
the seismotectonics of the area. An added bonus is that, despite
the posgible superposition of two seismicity distributions and the

use of M for the theoretical line, the occurrence of the
W

largest magnitudes (MS)'is matched well by the overall line.
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Table 3.1 Variation in b and \, with changing,m for the Central
and Eastern Mediterranean *
4+ 2
mc b (cb) Ay (o ) (c)\l}\z)
X 2o(mn)
4.45 0.59_ (0.03) 0.36 (0.43) (-0.025)
4065 0063 (0 .04) 0040 (O 040) (-0 0029)
4,75 0.64 (0.04) 0.24 (0.39) (-0.032)
4,85 0.66 (0.05) 0.22 (0.41) (-0.039)
5905 0066 (0007) 0.23 (0045). (—00059)
* w is a constant at 7.85 * 0.3, with

M =
o

A =

8 +4 x 1019 Nm yr-!

9.0 + 0.2, B = 1.5

+ b = A logjge; o, = o log e

b %



Table 3.2

Variation in m_ (o ) with changing m for the Central and Eastéern Mediterranean

T in yrs 4.45 4.55 4.65 4.75 4.85 4.95 | "5.05

1 6.78 (0.07)* 6.77 (0.08) 6.75 (0.08) 6.75 (0.08) 6.73 (0.09) 6.69 (0.09) 6.72 (0.10)

2 7.09 (0.08) 7.05 (0.08) 7.04 (0.07) 7.04 (0.07) 7.02 (0.08) 7.00 (0.08) 7.02 (0.08)

5 7.32 (0.22) 7.31 (0.22) 7.32 (0.18) 7.33 (Q.l7) 7.32 (0.16) 7.31 (0.13)  7.31 (0.15)

10 '7.46 (0.41) 7.46 (0.42) 7.48 (0.36) 7.49- (0}35)' 7.48 '(0.34) 7.50 (0.30) 7.48 (0.34)

20 7.58 (0.65) 7.57 (0.66) 7.60 (0.60) 7.61 (0.58) 7.61 (0.57) 7.63 (0.52) 7.60 (0.58)

50 7.69 (0.99) 7.68 (1.02) 7.71 (0.92) 7.72 (0.89) 7.72 (0.90) 7.74 (0.82) 7.72 (0.94)
100 7.75 (i.24) 7.74 (1.28) 7.77 2(1.13) 7.77 (1.09) 7.78 (1.10) 7.79 (0.99) 7.77 (1.17)
200 7.79 (1.44) 7.79 (1.51) 7.80 (1.30) 7.81 (1.24) 7.81 (1.26) 7.82 (1.11) 7.81 (1.33)

* Uncertainties in mr result from an equation similar to (3.24) with N replaced

throughout by mT



3.3.2 Southern California

The previous section checked for self-consistency of the method
with contemporary data and compared the Information theoty
distribution with some commonly used empirical metho&sgﬁ%in this
section the aim is to test one of the primary objectives of this
thesis - the direct incorporation of crustal deformation rates
derived from data on a geblogical time span via the terms ﬁo and
NT’ with a view to extrapolat;ng beyond historical and
instrumental time scales. Previously this has been done only
indirectly by comparing moment predictions from extrapolation of
line fits to contemporary data with quaternary evidence of fault
movement. Examples are Anderson (1979) for the (linear) truncated
Gutenberg-Richter law and Main and Burton (1984) (i.e. the results
of Chapter 2) for the more general (curved) type III Weibull
frequency distribution and its extreme value equivalent.

The area under study here has been subject to occasional major
shocks, the last being in 1857 along the currently locked aseismic
portion of the San Andreas fault. Sieh (1978) has shown that
shocks of this order of magni;u&e fepeat on average every T = 163
27 years, where the unceftainty is a standard error in the mean.
The repeat time has varied from 55 - 275 years between the 9 events
regarded as proven withoﬁt reasonable doubt.

Sieh estimated the size of this event as Ms > 8.25, by
comparison of macroseismic effects with those for the
instrumentally recorded 1906 San Francisco earthquake. Singh and
Havskov (1980) find that A = 15.83, B = 1.5 is most appropriate for
Southern California in (1.5), and Anderson (1979) gives Mo for

the 1857 event as 9 x 1020 Nm from the extent of the surface break

and fault slip. These two data imply that M, = 8.1 — showing
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that the Mo - Mw relation cannot account for the relatively
high M value of the 1906 event.

Neilson (1983, oral communication) suggested that this was
almost certainly due to incorrect gains being used on early
selsmograms, a vie& later confirmed in detail by Abe and Noguchi
(1983). Their corrected magnitude for the San Francisco earthquake
is about 7.8 (Ms) and since the macroseismic data indicate that
the 1857 event in Southern California was larger, it might be
expected that MS > 7.8. (Botﬁ models in table 3.3 satisfy this
criterion). |

If an average slip rate at the 1857 fault break of 3.2 cm yr"l
1s assumed and s = st in (1.4) then an average magnitdde ; = 8,05
+ 0.15 Mw is found for appropriate values of t from Sieh's -
table of recurrence times (see table 3.3, model (b)). The slip
rate is consistent within #0.5 cm yr'l with (a) the creep rate over
four years in Central California -3.2 cm yr"l (14 sowski and
Prescott, 1981) (b) 43 m of slip repeated every 163 years for
approx 2000 yrs - 2.8 cm Yr'l (Sieh, 1978) and (c) geoloéically
estimated slip rates on the San Andreas fault - 3.7 cm yr‘l
(Anderson, 1979, table 1). This good agreement over different time
scales ‘also lends support to the stationarity hypothesis. A higher
value for the relative plate motion across the San Andreas
transform of 5.5 cm yr-1 indicateé that a significant amount of
movement occurs in a broad deformation zone around the main fault.
The calculated value of m results from locally appropriate valueé
of A (15.83) and B (1.5), p*3 x 10'% xm™2, length L = 400 Km (Sieh,
1978) and depth 15 Km (Anderson, 1979). Table 3.3 summarises this

speculative slip predictable model and compares it with the model
of Anderson and Luco (1983), since some of the input parameters and

assumptions are slightly different — for example the choice of the



Table 3.3 Comparison of the slip:predictable+ models of (a)
Anderson and Luco (1983) and (b) this chapter

Times t between Model (a) (M) Model (b) (M )
events in years* s w

112 7.4 7.96

275 - 8.26 8.22

225 8.15 8.17

55 _ 7.33 7.73

225 8.15 8.17

105 7.71 7.95

195 8.06 8.12

120 7.78 7.98
Average 163.4 7.8975 8.0375
Standard 72.2 0.3119 0.1663

deviation

* From Sieh (1978)
+ Shimazaki and Nakata (1980)
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-moment-magnitude relationship.

The results of this table can be summarised by assuming that
a reasonable estimate of the size of future events in thié area 1s
a magnitude greater than or equal to m - dm. Thus the point

(mi, Ni) can be included in the cumulative frequency graph of

(7.90, 1/163) since m = 8.05, &m = 0.15; N=1/T, T = 163 yrs (see
fig 3.5). .

Table 3.4 summarises the input and output parameters of the
solution to the distribution (3.9) for this area from (a) the
earthquake éatalogue and (b) a plate tectonic model of the area.
These results are plotted graphically in figs 3.4 and 3.5 for
comparison with frequency magnitude data from the catalogue and the
geologically inferred point. Table 3.5 gives the magnitudes mT
associated with average repeat times T in the area defined by the
extent of thé earthquake catalogue (see fig 2.3). A final result
is that the long-term prediction of the occurrence interval for the
largest events (Mw > 7.9) is once every 156 ygars, and considering
the errors in the model the range is 87 - 281 years. This agrees
very well with Sieh's observation of an average repeat time of 163
years, but varying within a range of 55-275 years (table 3.3).

Combining this average repeat time with the knowledge that the
last great event ruptured the fault at Palle; Creek in 1857, a
recurrence of this catastrophic event might be expected (on
average) in 2013. Thus for a normal distribution of recurrence
times the cumulative probability of Southern California being hit

by a great earthquake will have reached 50% by this date.

3.4 Discussion of results

The first conclusion from figs 3.2-3.5 is that the distribution



Table 3.4 Summary of Input and Qutput parameters of the solution for the

parameters of equation (3.9) for Southern Californian data.

(a) From the Earthquéke catalogue 1932-1972 (Hileman et al, 1973)
o 4,25

<m> : 4,738 (0.014)
N, : 25.512 (4.368) per year

(b) From a tectonic model (Andersom, 1979; Singh & Havskov, 1980; Sieh, 1978)

n : 3 x 10% bars (30%)
1 670 Km A 8.83 (0,20)
400 Ko (25%2)
max . -1
Ac : 70 bars (30%) M 16 (8) x 1018 N m yr
max [o]
W : 15 Ka. L (307)
H : 5.5 cmyc ! (20%) w 8.4 (0.3)
Ao : 50 bars (40%)

*(c) Output parameters
Ay (g, ) = 2,041 (0.061)
A
Ao (Oh ) H 0.040 (0.078)
2
(o? xlxz) : (=0.00207)

1 is the length of the seismic zone studied.
W 18 the fault width.

lpax 18 the maximum length of possible fault break constrained by present
bends and inhomogeneities. The assumption is that the northern boundary is
congtrained by the creeping segment of the San Andreas fault and the southern
boundary by the termination of the quiescent zone where the deformation zone
branches out and becomes more complex.

o{ , ci , azk N represents the covarlance error resulting from equivalent
1 2 1A2 '
uncertainties in <m> and <M°>, with o2 a 0 due to independence.

<aMg>

A 18 correct for S.I. units.

All uncertainties are given in brackets.



Table 3.5

Magni tudes mT associated with average repeat times T in years
for Southern California

T oy (cm,r)
1 5.831 (0.089)
2 6.165 (0.092)
5 6.597 (0.096)
10 6.912 (0.098)
20 7.208 (0.098)
50 7.556 (0.099)
100 7.777 (0.128)

200 7.960 (0.213)
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Figure 3.4 Discrete frequency plot of earthquake magnitudes for
Southern California. Discrete frequency data (m , F,) are compared

with the theoretical distribution (3.9) (solid line). A summary of
the parameters of the distribution is given in tables 3.3 and 3.4,
for a completeness threshold m, = 4.25. The point at magnitude
8.05 + 0.15 is evaluated from the slip predictable model of table
3.3(b). Note once again the overestimation of half-magnitude
intervals (4.5, 5.0, 5.5 etc) due to magnitude uncertainty in the
early years of the catalogue. There is only a slight curve down at
the highest magnitudes, in this case due to the small value of the
curvature parameter A,. The actual data are a combination of
local, surface and moment-magnitudes, with the theoretical solid

line worked out for M.
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Figure 3.5 Cumulative frequency plot for Southern California.
Cumulative frequency-magnitude data (mj, Nj) are compared to the
theoretical distribution (3.9) and its error bounds. Despite the
possibility of superposition (of (I) - intermediate and (L) - large
earthquakes) the extrapolation fits the M, data from model (b) of
table 3.3. Anderson and Luco's model (a) seems to underestimate
the tectonic hazard, even considering error bounds. (Model (a) is
the box at M, 7.6, Model (b) the box at M, 7.9). The largest
events are consistent with a b-value of 0.51, which corresponds to
a dimension of 1, and is consistent with the interpretation of the
San Andreas fault system as the transform boundary between two thin
plates.
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developed in this chapter fits the data from the ear;hquake
catalogue and the known seismic moﬁent release raée well within its
given error bounds. This is true both ‘for &b estimated from
seismograms which were recorded within the time span of a shortened
Mediterranean catalogue, and for a long-term estimate from tectonic
slip rates in Southern California. Equation (3.9) certainly fits
the Mediterranean data better than the forms of a truncated
exponential or a Weibull distribution. In Southern California A,
is very small so a truncated exponentiai would probably be adequate
here. However the extra information on ﬁo at long periods

reduced the error at longer average repeat times compared to using
- via the negative covariance term o - so even in

AL MMy

the second example there is an improvement over existing methods.

only A\ =+ ¢

Both examples show good correlation between the theoretical
(MW) lines and the empirical (MS) data, thereby providing a
consistency check on the values of A and B chosen. Another general
point to notice on both cumulative frequency diagrams and in table
3.1 is the reasonably constant slope of the theoretical line (i.e.
the b-value) and empirical data over two or three magnitude units
above mc. Since bs2D this represents self-similarity (i.e. a
constant similarity dimension D) over a scale of about 1:10,000!
(since 1 magnitude corresponds to a factor 30 or so increase in
energy). .

Where the assumption of self-similarity does begin to break
down is at the highest magnitudes, where both graphs show possible
superposition effects. In particular fig 3.5 shows a marked break
in slope at magnitude 6.6 Mg, from b = 0.89 to b = 0.51,
corresponding to a sudden reduction in the similarity dimension D

from about 2 to about 1. This may be due to the finite width of



the fault zone, which reduces the geometric degree of freedom from '
two to one for magnitudes above 6.6 Mg, and is probably related

to the seismogenic depth of,about 15km. Scholz (1982) discussed a
model of this type and ité‘effect on scaling laws for large
earthquakes, and this figure appeérs to be in tentative agreement
with his L-model (scaling according to L-length rather than W-width -
as previously considered in Kanamori and Anderson (1975).

However, the parameter A, in both cases ailogs a fit to this
difficult part of the‘graph in a manner which 1is direétly
consisfent with the geological information. Three possible types
" of behaviour can be imagined at the high magnitudes: Ay =0
corresponds to a truncated exponential; A, positive to a downward
curve at higher magnitudes; and A, negative to a curve upwards.
This feature of a curve up may be useful in some areas where there
is a bimodal distribution with an anomalbusly high proportion of
large events, sucﬁ as in Mexico (Singh et al, 1983). The main
strength of the approach in this chapter is that the behaviour of
the distribution as average repeat times.beyond the instrumental
scale are investigated is biased by as few assumptions.as possible
~ these being directly consistent with the information put in.

Here M has been chosen as appropriate, but in other areas an
o

energy release-rate E, a known recurrence time from historical data

on large events (Dong et al, 1984), or a combination of several
sources of information may be used. It is even possible to imagine
a time—-dependent distribution which combines several observations
of earthquake precursors, since at present no one precursor seems
to be reliable on its own (Rikitake, 1976). |

The method could, for the present, be usefully applied in many

areas of the world where historical data are unreliable or
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unavailable, especially as tectonic models become increasingly
sophisticated with satellite and laser ranging studies. In |
conjunction with the concept of a seismic gap (McCann ét al, 1979),
the average repeat time inferred for the largest events by this
method could be used as a less arbitrary.guide to the areas of the
world currently most at risk from catastrophic events. (In this
reference a seismic gap was deemed to exist after an arbitrary time

of 3Q years since the last catastrophic event).

3.5 Summary

A new frequency magnitude distribution was developed from the
principles of Information theory, thereby all&wing direct
incorporation of the geological data on the slip rate and the
maximum fault area. The form of the distribution can be
interpreted as the combination of two terms represenfing a) the
geometry (dimension) of the source zone and b) a Boltzmann
distribution of possible strain-energy transitions. This
interpretation comes from a statistical mechanical treatment of
fault elements, which i1s mathematically very similar to the
Information theory treatment.

The geometrical dependence can be further broken down to
relate the b-value to the (fractal) dimension D of the cracked
source medium.. As in Aki (1981), it turns out that b = D/2,
explaining the range ?f observed b-values 0.5 < b < 1.5 as being
limited by corresponding dimensions 1 < D < 3 and a finite energy
density. The self-similarity required for this interpretation
holds in two examples ovef a surprisingly large energy range
(1:10,000!) but breaks down at the very highest magnitudes wheré

superposition is evident.



An internal consistency check on the Mediterranean catalogue
of magnitudes and seismic moments showed that the distribution
combines the best features of the truncated exponential and Weibull
line fits, with the added advantage that ;he distribution is
automatically consistent with the slip rate and the maximum fault

area. The information represented by the latter can also

compensate for possible superposition at high magnitudes, since the’

total moment release rate is dominated by the largest events.
Because of this slightly more confidence can be had iﬁ
extrapolations beyond catalogue time scales for earthquake hazard
studies. | |

The Californian catalogue gives an extrapolation which is
consistent with a model developed from Sieh's table of occurrence
times, and incidentally showed that the magnitude of the
insﬁrumentally recorded San Franscisco earthquake (1906) was too
high By about half a magnitude unit. The long-term prediction of
average repeat times for the largest events in Southern California
by tﬁis method is once every 156 years, with a range 87-281 years,
and this compares well with the results obtained by Sieh on direct
trenching into the San Andreas fault (163 years, with a range
55=275 years).

This method could be used on global catalogues using plate
tectonic models and the concept of a seismic gap to iden;ify those
regions of the earth currently most at fisk (in a probabilistic
sense) from catatrophic earthquakes. This would seem to be less
arbitrary than the '30 years rule' which originally defined a

.seismic gap as existing 30 years after the last big event.
The really important point to emerge from this chapter is

that, although the distribution developed does fit the empirical

71
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data better than two other commonly used forms it is not just
another theoretical curiousity, but by definition is the best that
can be done with the currently limited knowledge of the earthquake
process. Any subsequent improvements will require a better
understanding of the latter, for example the validity of the
assumption of stationarity and dimensional self-similarity. In the
foylowing chapter the aim is to investigate somé of these
assumptions in more detail for omne particular tectonic province -

the Aegean.



CHAPTER 4

A seismotectonic analysis of the Aegean area I: Source parameters

4.1 Introduction

In the last two chapters two different models of seismic moment
release were developed and tested in up to four areas where a
suitable, homogeneous earthquaké magnitude catalogue was
available. At this point it was decided that a more detailed
investigation of one particular area of interest was necessary in
order to develop some of the subtleties of the method. One natural
advantage of such a case study is that the treétment of the data
could be made more consistent and yield a more convincing overview
of the whole method.

The area of the so-called 'Aegean plate' around Greece was
chosen as suitable for such a  detailed study for the following
reasons:-—

1) The complex seismicity and underlying tectonics of the area
are an interesting puzzle which a detailed investigation of
slip rates.determined from seismicity studies may help solve.

2) In a European context, the area affected contains most of the
significant seismic energy release (even in a global context
Greek seismicity accounts for about 27 of the total).

3) The availability of a homogeneous earthquake catalogue going
back to 1900.

4) The availability of extensive digital data on small
earthquakes.

Thé main aims of the remainder of this thesis are (a) to

further investigate the validity of the distribution (3.9) and some
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assumptions behind it and (b) to test a tectonic model for the
Aegean against the data on seismic moment.release in the Greek
area., The latter requires.the derivation of seismic moments for
large events, and the former a detailed investigation of the source
parameters over a broa& range of eveants down to the level of small
earthquakes. First a brief summary of the results culled from an
extensive literature search is presented, and then the extraction
of seismic moment and other parameters from Rayleigh waves (for
events Mg > 5.5; and P waves (for the small earthquakes with

M, = 3) is discussed. The results obtained will be used in an

analysis of Aegean seismotectonics and seismic hazard in the final

chapter, using the methods derived in the previous chapters.

4,2 Results of literature search: Source parameters

4,2.1 Introduction

Some hundreds of references relevant to Greek seismicity and
teétonics were consulted in order to evaluate the reliability of-
the various tectonic models and to look for available data on
source parameteré. The references had already been compiled as
part of the wider Volos project (Burton et al, in prep), and those
consulted are listed in Appendix 3. The tectonic model Qill be
discussed in the following chapter, but the available source
parameters of Aegean earthquakes are now considered in a few

subsections.

4.2.2 Earthquake magnitude catalogues

The most homogeneous catalogue for Greek seismicity is that of

Makropoulos (1978), published more widely in Makropoulos and Burton
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(1981). After considering other catalogues Bath (1983) concluded
that 'this catalogue is apparently the most homogeneous one in
existence for this area, with all parameters recalculated or
re—examined'. The catalogue now covers the period 1901-1981,
including 613 events for the period 1917-63 which were relocated
using first arrival data from the International Seismological
Summary. Consistent surface wave magnitudes were assigned mainly
using readings from the Swedish netwoerk at Uppsala. The authors
conclude that the catalogue is complete for magnitudes above 5.5
MS for the period since 1918 or so, and above 4.7 since the
introduction of the WWSSN (ﬁorld—wide standard station) network in
1963. |

Another catalogue which will be used is the result of
recordings from a seismograph network called VOLNET (Volos network)
which was set up by Paul Burton and others in a joint project (BGS
and Athens University) to investigate: (a) the details of the
tectonic stretching within the Aegean 'platg' behind the Hellenic
arc; (b) the most probable seismotectonic model for the
Volos-Almiros-Atalanti region in eastern Greece; and (c¢c) seismic
hazard combined with engineering geological studies of the latte?
region. For our purposes the Aegean plate includes the Greek
mainland as weil as the Aegean sea and the western edge of Turkey.
The area covered by the network is illustrated in fig 4.1 (from the
frontispiece of the VOLNET station bulletin). Although designed
aﬁongst other aims to investigate the detail of a forked seismicity
trend 1déntified in Makropoulos and Burton (1981), the network also
picks up data further south on the actively stretcﬁing Gulf of
Corinth. If any significant large events do occur this network

should give very accurate hypocentre locations and assist the
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Figure 4.1 The VOLNET array of seismometers in location, Central
Greece. This diagram is reproduced from the BGS VOLNET bulletins.
The network is discussed in Burton et al (in prep).




matching of major earthquake sites with known faults.

VOLNET began operation in Jan 1983, the field observations on
'magnetic tape being used to produce arrival times, local
magnitudes, hypocentral locat;ons and digital velocity seismograms
on magnetic tape. A magnitude range of 1.8-4.5'ML is covered,
although catalogue completeness is difficult to assess. Station
bulletins are available from Jan 1983 to present from the Global
Seismology Research Group .of the British Geological Survey in
‘Edinburgh. A small sample of the VOLNET data for epicentres spread
throughout mainland Greece and the Aegean sea was supplied for the
present wofk for the purpose of determining earthquake focal
properties from earthquake spectra.

Between them, these two catalogues pro?ide homogeneous data
for a time span 1901 to present, over a magnitude range 1.8 ML -
7.0 Mg. This represents an ideal data set to test the
assumptions of self-similarity in the interpretation of thé
previous chapter as well as other aspects of the distribution

(3.9).

4,2.3 Seismic moments

With the advent of the World Digital Seismograph Network (WDSN) and
the International Deployment of Accelerometers (IDA) it has been
possiblé to evaluate the centroid—-moment tensor solutions from
P-wa;es for earthquakes of magnitudes 5.3 MS and over (Mo >

1017 Nm). Dziewonski and others have published these results from
P-wave data for the period since Jan 1982 in various editions of
Physics of the Earth and Planetary iIinteriors. The most recent at
the time of writing is Dziewonski et al (1984), which contains

events up to Mar 1984 and references to all the appropriate earlier
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papers.

So far only scalar seismic moments have been discussed, but
the digital data allow investigation of the orientation of the
source and possible dilatation effects through the use of a 3x3
tensor moment. Dziewonski et al (1984) also summarise their
results in terms of a scalar moment and a fault plane solution.
Table.4.1 contains all of these seismic moments for the area of
Makropoulos and Burton's (1981) Greek catalogue‘(18°;30°E,

3 -43°N) for the time period Jan 1982 through Mar 1984.

North's (1977) work on hand-digitised surface waves for Mg >
5.5 for the period 1963-1971 on long period WWSSN records fof
Mediterranean events has already been discussed. These results
were used in Chapter 2 to estimate a moment release rate for the.
area covered by fig 2.1. The relevant portion of data for the
present area of interest was extracted and is summarised in table
4.2,

Table 4.3 contains a few seismic moments from miscellaneous
intensive studies of particular events, including one from field

observation only.

The data of these three tables show that two major gaps in the

seismic moment record of'large events in the area existed before
the’present work was undertaken. These were the period 1972-1978
and prior to 1963. The beriod 1979-1981 does have some solutions,
but the coverage is less complete than North's results. (Even
North's data set omitted earthquakes as large as 6.1 Mg where
severe multipathing effects were observed on the seismograph
records). It is not yet possible to evaluate.the completeness of
the catalogue of Dziewonski and others, although it is fairly

certain that the digital processing should cover nearly all of the
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Table 4.1 Seismic moments Jan 1982-Mar 1984%

Date Time Lat Lon ' Depth Mo MS mb

Day Mo Yr H m secs °©ON OE km x10 "N

18 01 82 19 27 32.9 39.84 24.46 9.0  93.8 6.9% -
17 08 22 22 29.8 33.70 22.90  23.4  39.8 6.6t -
16 11 23 41 28.8 40.12 19.35  10.4 3.20 5.5 5.6%
17 01 83 12 41 44.7 38.13 20.38  10.1 235.0 7.0  6.1%
19 03 21 41 49.0 34.75 24.89  65.0 3.33 - 5.7%
23 03 23 51 15.8 37.92 20.48  32.7  22.3 6.2 5.8%
05 07 12 01 32.6  40.45 27.01  27.9  17.7 6.1 5.7*%
06 08 15 44 00.6 39.85 24.56  10.1 117.0 7.0 6.2%
27 09 23 59 40.1 36.97 27.70 170.3 1.41 - 5.5%
11 02 84 08 02 54.8 38,11 21.86  15.0 3.32 5.5 5.4%

X These data are taken from Dziewonski et al (1984) and references
therein. |

+ From the International Seismological Centre (ISC) bulletins. The rest
are not yet published at the time of writing.

* MS and my from the monthly listings of the Preliminary

z
Determination of epicentres. U.S.G.S.



Table 4.2. Seismic moments for large Greek earthquakes
1963-1971." '

Date Time Lat Lon Dep M M

Year MoDay Hr m s N E km 10~ "Nm

N

1963 Sep 18 16 58 13 40.71 29.02 48
1963 Dec 16 13 47 57 36.97 20.96 15
1964 Apr 11 16 0 43 40.30 24.83 33
1964 Apr 29 421 5 39.25 23.72 20

1964 Jul 17 2 34 26 38.05 23.63 155 22.

1964 Oct 6 14 31 23 40.30 28.23 34 18

1965 Mar 9 17 57 54 39.34 23.82 18 17.

1965 Mar -31 9 47 26 38.38 22.26 45 190. .
1965 Apr 5 312 54 37.75 22.00 34 15.

1965 Apr 9 23 57 2 35.06 24.31 39 25.

1965 Apr 27 14 9 5 35.63 23.53 37 19.

1965 Jul 6 318 42 38.37 22.40 18 42.

1965 Nov 28 526 5 36.12 27.43 73 . .
1965 Dec 20 0 816 40.21 24.82 33 . .
1966 Feb 5 - 2 1 45 39.10 21.74 16  23. .
1966 May 9 0 42 53 .34.43 26.44 13 13. .
1966 Oct 29 2 39 24 38.90 21.10 1 .

1967 Mar 4 17 58 9 39.25 24.60 60 91. .
1967 May 1 7 9 3 39.60 21.29 34 23. .
1967 Nov 30 7 23 50 41.41 20.44 21 150. .
1968 Feb 19 22 45 42 39.40 24.94 7 670. .
1968 May 30 17 40 26 35.45 27.88 27 12. .
1968 Dec 5 - 7 5211 36.60 26.92 31° 1 .
1969 Jan 14 23 12 6 36.11  29.19 22 5

1969 Mar 3 0 59 10 40.09  27.50 6
1969 Mar 23 - 21 8 42 39.14  28.48 9
1969 Mar 25 13 21 34 39.25 28.44 37
1969 Mar 28 148 29 38.55  28.46 4
1969 Jun 12 15 13 30 34.43 25.04 22
1969 Jul 8 8 913 37.50 20.31 30
1969 Oct 13 1 230 39.78 20.59 27
1970 Apr 8 13 50 28 38.34 22.56 23
1970 Apr 23 9 126 39.13 28.65 28
1970 Aug 19 2 151 41.08 19.77 21

[
W =N =
NWHWEeEOWOOIRWOWIJIWONOOWHITWWUININDOYWOUROUONITONMNNWE
L] L] L] * L] L[] . . L] * L) L L[] L] o
NOORHFHFOOOHWOOOOOOOXRMOOWNOOODODOOOONNWO
LU UTUITONNUNUTUVTUVLTUITVSAITOANOAONUVTUNAAUITA VTN AU O OV
[ ] . . [ ] L] L] . . L] L] L] L] L ] L ] L] . . .
Wk NN~NNONPRPOOOWODOWAAONNNIDODONOALUVNHFONWOODUVIONN®W

* M _evaluated by surface waves by North(1977), and all other
d8ta from the catalogue of Makropoulos and Burton(1981).



Table 4.3 Miscellaneous seismic moments and stress drops

Date Time Lat Lon ADep Mo Ao MS
Day Mo Yr Hr m secs ©N OE km x10'"Nn  bars

18 03 53 . 19 06 16.0 40.20 . 27.52 8 770.0 651 7.4%
23 0578 23 34 1l.4  40.73 23.24 0 5462 122 5.9
20 06 78 ‘ 20 03 21.4 40.78 23.24 3 52.02~ 122 6.6
24 02 81 20 53 38.4 38.22 22.93 - 33 72.83 10% 7.0
25 02 81 02 35 53.3 38.12 23.14 33 16.83 8% 6.7
04 03 81 21 58 05.9 38.20 23.28 29 9.73 7% 6.5
1 From surface faulting (Ambraseys, 1970)

2 From P-waves and aftershock areas (Soufleris et al, 1982)

3 From P-waves (Jackson et al, 1982) ~

4 From P- and S-waves (Kim et al, 1984)

*  From Makropoulos and Burton (1981), an updated version.



events down to Mg 5.3.

‘ObViOuSly we are still a long way from having a complete,
homoéeneous catalogue of seismic moments for Greece and the Aegean.
However, when the results of this chapter for the period 1972-1978
(i.e. table 4.4) are added to tables 4.1, 4.2 and 4.3 over half of
the events of magnitudes Mg > 5.3 since 1963 will have had
seismic moments assigned to theﬁ. This magniﬁude range ﬁas been
completely reported since the advent of the WWSSN network in 1963
(see fié 2.4). |

4.,2.4 Fault plane solutions

Having identified the gap in the moment record of 1972-1978
attention was concentrated on finding fault plane solutions for the
events in this range for Mg > 5.5, because these were'required to
evaluate the medium response at a later stage. (A listing of these
events is given in table 4.4.) The plan was to complement North's'
work and produce a homogeneous cataiogue of seismic moments for the
time period 1963-1978. Although most of the available fault plane
solutions were collected in the literature search, table 4.5 only
lists those events which will be analysed later in this chapter.
Fig 4.2 illustrates what the syﬁbols ¢F, O and A represent
as descriptors of the orientation of the faﬁlt‘plane and the
direction of slip; ¢p is the strike of the fault, § is the dip of
the fault and A is the rake or direction of slip. A 1is positive
for a reverse fault and negative for a normal fault. § = 90°, A = #+
9(° corresponds to a dip~slip fault, and A = 0° to a strike slip
fault. If ¢, is the source—stétion azimuth, then ¢ = bp=dp in
fig 4.2.

The events to be evaluated in section 4.3 have been given
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Table 4.4

Seismic moments 1972-1978%

List of all events greater than 5.5 MS in the Greek catalogue* for

the time period 1972-1978.

6.6

Year Date ‘ Time Lat. Long. Dep. Mo Ms Event
H m s ON OF km x1017Nm Code
1972 May 4 21 39 57 35.15 23.56 13 75.86 6.4 C
1972 Sep 13 413 19 37.96 22.38 75 30.90 6.2 F
1972 Sep 17 14 7 15 38.35 20.27 33 66.07 5.9 G
1973 Nov 4 1552 12 38.87 20.54 13 6.03 5.9 H
1973  Nov 29 10 57 44  35.18 23.81 37 6.03 5.9 I
1975 Jan 8 19 32 34 38.24 22.65 26 2.95 5.7 L
.1975 Mar 17 5.35 17 40.48 26.08 18 7.54 5.8 K
1975 Mar 27 515 7 40.45 26.12 15 128.82 6.7 B
1975 Apr 4 516 16 38,11 21.98 56 4.68 5.7 M
1975 Sep 22 0 44 56 35.20 26.26 55 8.51 5.7 N
1976 Jan 18 15 10 28 38.81  20.51 5 5.50 5.7 0
1976 May 11 16 59 48 37.56 @ 20.35 33 - 6.3 D
1977 Sep 11 23 19 23 35.05 23.03 33 39.81 6.2 E
1977 Nov 28 25910 36.05 27.76 85 7.08 5.9 J
1978 Jan 29 10 23 44 35.18 25.94 33 2.48 5.7 P
1978 Mar 7 22 33 46 34.66 25.50 33 5.40 5.7 Q
1978 Jun 20 20 3 29 40.75 23.41 15 72.44 A

*+Evaluated later in this chapter

*Makropoulos and Burton (1981)



Table 4.4a. List of digitised seismograms and epicentral distances.

These are the 120 or so seismograms used in the actual evaluation

of Mo. Another 80 were digitised but found unsuitable for analysis
for various reasons (such as interference fram other events, poor

signal/noise ratios).

Station Code Epicentral dist in degrees
Event A ~
Blacksburg,Va,US BLA 75.8
Matsushiro,Japan MAT 82.6
College,Alaska,US COL 74.5
La Plata,Argentina LPA 106.0
Chiang Mai,Thailand CHG 67.2
Kodaikanal,India 'KOD 56.4
Kap Tobin,Greenland KTG 37.6
Nairobi,Kenya NAI 43.5
New Delhi,India NDI 45.2
Event B
Arequipa,Peru ARE 106.2
Blacksburg,Va,US BLA 77.6
Chiang Mai,Thailand CHG ' 65.2
College,Alaska,Us COoL 74.9
Davao,Phillipines DAV 92.6
La Plata,Argentina LPA 107.6
Matsushiro,Japan MAT 81.3
Mundaring,Australia MUN 109.9
New Delhi,India NDI 43.2
Windhoek ,Namibia WIN 63.2
Event C
Addis Ababa,Ethiopia AAE 29.5
Arequipa,Peru ARE 103.3
Blacksburg,Va,UsS BLA 79.2
Chiang Mai,Thailand CHG 67.7
College,Alaska,US COoL 80.1
Godhavn,Greenland GDH 53.1
Kingsbay,Spitsbergen KBS 44.2
Mundaring,Australia MUN 109.5
Natal,South Africa NAT 68.0
New Delhi,India ' NDI 45.6

San Juan,Puerto Rico SJG 79.6




Table 4.4a(cont.)

Station Code Epicentral dist in degrees
Event E
Arequipa,Peru ARE 102.9
Blacksburg,Va,US BLA 79.0
College,Alaska,US CoL 80.2
Corvalis,Oregon,US COR 95.1
Grahamstown,S Africa GRM 68.0
La Plata,Argentina LPA 102.7
Kap Tobin,Greenland KTG 42.8
Godhavn,Greenland - GDH 53.0
Event F
Nairobi,Kenya NAI 41.2
Kap Tobin,Greenland KIG 39.9
New Delhi,India NDI 46.2
College,Alaska,US CoL 77.2
Matsushiro,Japan MAT 85.1
Natal,South Africa NAT 68.3
Chiang Mai,Thailand CHG 68.3
- Addis Ababa,Ethiopia AAE 32.4
Kevo,Finland KEV 32.0
Blacksburg,Vva,US BLA 76.7
Shiraz,Iran SHI 26.3
Event G
College,Alaska,US COL 76.7
Eskdalemuir,Scotland ESK 23.2
Godhavn,Greenland GDH 49.1
Kevo,Finland KEV 31.7
Kap Tobin,Greenland KIG - 38.9
Nairobi,Kenya NAI 42.3
New Delhi,India NDI 47.8
San Juan,Puerto Rico -SJG 76.3
Weston,Massachusetts,US WES 66.5
Event H
Kingsbay,Spitsbergen KBS 40.3
Kevo,Finland : KEV 31.1
Kap Tobin,Greenland KTG 38.5
New Delhi,India NDI 47.5
Poona,India POO 50.2
Porto,Portugal PTO 22.4
Quetta,Pakistan QUE 38.9




Table 4.4a (cont.)

Station Code Epicentral dist in degrees
Event I
Addis Ababa,Ethiopia AAE 29.4
Eskdalemuir,Scotland ESK 27.4
Kevo,Finland KEV 34.7
Kap Tobin,Greenland KTG 42.9
" New Delhi,India NDI 45.3
Porto,Portugal PTO 26.1
Quetta, Pakistan QUE 36.4
Event J
Addis Ababa,Ethiopia AAE 28.7
Eskdalemuir,Scotland ESK 28.6
Kevo,Finland KEV 33.8
Kingsbay,Spitzbergen KBS 43.5
Kongsberg,Norway KON 26.4
Nairobi,Kenya NAI 38.1
Event K
Addis Ababa,Ethicpia AAE 33.3
Eskdalemuir,Scotland ESK 24.4
Godhavn,Greenland GDH 49.2
Kingsbay,Spitzbergen KBS 38.9
Shiraz,Iran SHI 24.1
Revo,Finland KEV 29.4
Quetta,Pakistan QUE 34.6
Event L
Addis Ababa,Ethiopia AAE 32.5
Eskdalemuir,Scotland ESK 24.4
Kingsbay,Spitsbergen KBS 41.0
Nairobi,Kenya NAI 41.4
Quetta,Pakistan QUE 37.2
Copenhagen, Denmark cop 18.8
Event M
Godhavn,Greenland GDH 49.3
Kevo,Finland KEV 29.4
Nairobi,Kenya NAI 42.7
New Delhi,India NDI 43.1
Porto,Portugal PTO 26.2
Quetta,Pakistan QUE 34.6




Table 4.4a (cont.)

Station Code Epicentral dist in degrees

Svent N

Addis Ababa,Ethiopia AAE 28.4
Camp Century,Greenland CCG 55.4
Eskdalemuir,Scotland ESK 28.6
Kongsberg,Norway KON 26.8
Kabul,Afghanistan KBL 34.9
Nairobi,Kenya NAI 37.6
New Delhi,India NDI 43.4
Poona, India POO 45.1
Porto,Portugal PTO 27.9
Quetta,Pakistan QUE 34.4
Event O

Eskdalemuir,Scotland ESK 22.9
Kevo,Finland KEV 31.2
Kabul,Afghanistan - KBL 38.8
Nairobi,Kenya NAI 42.6
New Delhi,India NDI 47.6
Quetta,Pakistan QUE 38.9
Event P

Addis Ababa,Ethiopia AAE 28.5
Revo,Finland KEV 34.6
Kingsbay,Spitsbergen KBS 44.2
Nairobi,Kenya NAT 37.6
Quetta,Pakistan QUE 34.7
Shiraz,Iran SHI 23.1
Event Q

Addis Ababa,Ethiopia AAE 28.2
Eskdalemuir,Scotland’ ESK 28.6
Kevo,Finland KEV 35.2
Kingsbay,Spitsbergen KBS 44.7
Nairobi,Kenya NAI 37.3
Kongsberg,Norway KON 27.1




Table 4.5

Fault plane solutions

For explanation of symbols see fig 4.2.

later are underlined.

The solutions actually used

Ref McKenzie (1978) Drékopoulos & Delibasis*
. (unless indexed otherwlise) (1982)

s B T L
A 278 46 -70+t 106 26 5 -11
B 41 60 =45
c 106 86 +90 138 82 78 +81
D 128 72 68 -77
E 94 36 14 +24
F 48 74 +20 52 80 46 +47
G 150 76 +90 33 86 20% +20
H 135 40 +90 142 82 82 +90
I 139 82 +90 121 72 67 -75
J 152 62 59 +76
K
L 99 78 67 +70
M 46 54 -90 103 60 4O%% =47
N 180 44 +40 176 66 40 +44
0 154 76 50 -52
P
Q

* This reference quotes the plunge ep, which is related to )\ by
A= -sin‘l{sin @P/sin 8}

+ On checking this solution severe doubts were formed on its validity

** A severe difference in polarity observation and interpretation is
evident for this event between the two references

++ From Soufleris and Stewart.(l981)

x These codes refer to the events listed in table 4.4
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Figure 4.2 Orientation of the seismic source. Strike ¢F; dip §;

rake \; epicentral distance R; source-station azimuth ¢A. f is the

unit vector along the slip direction, and_ﬁ a unit vector normal to
the fault plane. The magnitude of the double couple whose
orientation is described in the subsidiary diagram 1is equal to
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codes A-Q and are listed in tables 4.4 and 4.5 in (roughly)
decreasing order of magnitudes to allow quick refe;ence in the main
text, Of all the fault plane solutions listed in table 4.5 only
events G and M differ significantly between the two main source
references. An inspection of the polarity diagrams for these
events in Drakopoulos and Delibasis. (1982) led to the decision to
use McKenzie's (1978) solution for both these events because of the
better fit to the polarity data. Othérwise the former's solution
were used because the actual value fo; A cag be inferred directly
from this reference (McKenzie does not quoﬁe A), and because of the
reasonable agreement otherwise between the two sets of results.

The solutions which will actually be used later are underlined in

the table for clarity.

4,2.5 Other source parameters

P-wave data can be inverted to give the source area as well as the
total seismic moment by using the theory outlined in section 4.4.
Fault area can also be independently estimated by the extent of the
distribution of aftershocks (e.g. North, 1977), although this may
lead in general to an overestimate if the activity triggers stress
adjustment outside the initial  fault plane,

By using equations (l.4) and (1.18) the slip s or the stress
drép Ao can be evaluated once the fault area and the seismic moment
are available, although uﬁcertainties add at every stage. In order
to- investigate properties of geometric self-similarity essential to
the geometric.interpretation of the b value in the previous chapter
-the best parameter to evaluate is probably the stress drop, because
of its obvious dimensional scaling properties. Stress drops of

very large and very small events can be compared because the
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parameter is a force normalised to unit area. Table 4.3 also
collects the available data on stress drops for events in the area
of interest. From its length it can be seen that not much is known
about this area in terms of these parameters.

However, both the Thessaloniki, 1978 and the Corinth, 1981
sequences of events had fairly low stress drops in the range 7-12
Bars, and these events could be thought of as typical of the
stretching (normal faulted) part of the Aegean 'plate'. Higher
values for the reverse faulting associated with possible subduction
under this ﬁlate might be expected, since the average value of the
stress drop in the Eastern Mediterranean as a whole is 38 bars
(section 3.2(a)). However it should be borne in mind that the two
values of stress drops éuoted have been estimated by different

methods.

4,3 Seismic moments from surface waves

4,3.,1 Introduction

The aim of this section was to plug the gap in knowledge of seismic
moments at the time the project sta;ted - (1972-1978 inc.) in order
to produce a homogeneo;s set of seismic moments for the time period
1963-présent. North (1977) had already published his results from
surface wave studies for the period.(l963-l971 inc.), and so the
method used in this section runs in close parallel to that study,
particularly to the more detalled description given in an earlier
Ph.D. Thesis (North, 1973). The results of this section (table
4.4), when added to those of North (table 4.2) should form a

reasonably homogeneous data set for the period (1963-1978).



4f3.2 Theory

The theory of surface waves is very complex, but in the present
work the derivation of amplitudes at a given azimuth and distance
was carried out b} use of a computer programme from Douglas et al
(1972). A general overview of the method is given in Aki and
Richards (1980), Chapter 7. For this reason only a brief outline
Qill be given here, and ;ttention will be further restricted to
Rayleigh waves by only considering the vertical component of ground
motion. .

Seismic Rayleigh waves are transmitted along the free surface
of an elastic solid from the earthquake source, and differ from
Love waves in that they ideally only produce motion in a verticali
plane. Surface waves have two main advantages over body waves in
extracting seismic moment at the source:- (a) they suffer less
degradation due to inhomogeneities than body waves, because of
their longer wavelengths and (b) their signal/noise ratio at
teleseismic distances is greater at longer periods because surface
wave geometrical spreading is two dimensional, whereas body wave
geometrical spreading is three dimensional. The main disadvantage
is that the periods of interest (10-200s) are too high to observe
any corner frequency (at about 3-6s for these events). This
explains why North (1977) had to uée the distribution of
aftershocks to estimate fault area. .

The real component of the specﬁral content of a Rayleigh wave

Q can be expressed by

Qw) = MOST(w) SF(w; o) Mz(w; ¢; h; sj; oo Bx’ Pys tx)

R™Z D(w) I(w), | (4.1)
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where Mo for our purposes is the size of the double couple at
the source - i.e. the seismic moment, and the other parameters are

as follows:

ST(w) : Source time function

SF(w) : Source finiteness function

Mz(w) ¢ Medium response for a plane layered structure
R-% : Geometric spreading‘

D(w) : Attenuation

I(w) " : Instrument response

ak’Bl’pl’tl : Earth model: P velocity, S velocity, density and

thickness respectively of the xth layer

) : Source station azimuth (see fig. 4.2)
h ¢ Depth of source
sj : Orientation parameters of the source

sj depends on f and n as defined in fig 4.2 and on as; Bs - the
velocities in the source layer. The form of sj and the detailed
matrix algebra required to correct for the layering of the earth
are described in Haskell (1964). Thus MoSTSF describe the source,

MZ the effect of the layered medium, R *D the reduction in
amplitude with distance and I the effect of the instrument.

Fig 4.3 shows an example of a source finiteness function for
a strike-slip earthquake'with rupture length L;‘rupture velocity
VR ~ 0.78 following MacBeth's (1983) calculations of Sp. The
range of interest here is the magnitude range (5.6 = 6.7 MS), or a

rupture length L of about 10-40 km after using Wyss's (1979)

" relationship
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wo= VpsL
¢= 0° ,  strike-slip

Sg(w)

Wg

Figure 4.3 Source finiteness function for a strike~slip earthquake
with rupture length L, rupture velocity Vg at an azimuth of (°

(from MacBeth, 1983).
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M_ = log (A in ki) + 4.15 M> 5.6 , (4.2)

and A = LW, L =~ 2W (A 1is fault area and W is fault width). Thus
W = VR/L is in the range 0.20 - 0.05 Hz, or equivalently in
periods 0.8 - 3.2 sec for a typical velocity VR of 3 km s‘l..

Like North (1977) this study concentrates on periods T of 30s
- 70s, so the source finiteness has practically no effect on the
spectrum (SF = 1), Most i@portantly these considerations show
that no spectral 'holes' can be caused by the nodes of the plot on
fig 4.3, since the frequencies of interest w = 2n/T are all much
less than w . (w/wo <<'1 in fig 4.3).

The source -time function that was used was a simple
exponential ramp in time of the form:

s,(t) =1 - e VIt

1
or S _(w) =. T : (4.3)
T ol + D?}2 '
w

T

in the frequency domain.
. 1
The correction for geometrical spreading R? can also be

1

written as (E sin A)? where E is the radius of the earth in km

and A 1is the angular separation of source and receiver. The other

distance correction is attenuation
D(w; R) = exp{-y(w)R} = exp {-y'(w)a} . (4.4)

Attenuation correction was effected by using the empirical

parameter y (the attenuation coefficient) rather than the specific
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attenuation parameter (normally denoted Q) because only the

corrected amplitude at R = 0 is of interest in the present work.

4,3.3 Data reduction

The basic data are técorded on lbng period ( 20s) seismograms of
the World Wide Standard Station Network and are available on 70mm-
film chips in the BGS microfilm librgry like the egample in fig
4.,4a, which is the record of event A (20§h June Thessalonika) at
the American station whose WWSSN code is BLA (i.e. Blacksburg in
Virginia, U.S.). It can be seen at a glance from this figure that
most of the long period energy recorded at a station is indeed in
the surface wave at these teleseismic distances, because of the

greater reduction and dissipation of body wave energy with

distance.

(a) Time window of surface wave

The first step was to choose the time interval (tl,tz) to be
digitised, and this was done initially with reference to a time
window corresponding to an approximate group veloéity window

(U ,U ) of 2.5 = 4,0 km s~} via
mnin max

< (e - to) < =ty , (4.5)

where R is the source station distance and to is the time the
earthquake occurred. Some justification for this procedure is
given in fig 4.5, from Correig et al (1982) which plots group
velocities against wave periods for Europe. The period range of

interest (30-70s) is easily within the range of (U ., , U ) on
' min max

this dispersion diagram.
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Figure 4.4a WWSSN long, period record. This example is of event A. The header information is 1in
the top left hand corner, and directly under this in the calibration pulse. The event of interest
is in the top half of the seismogram. Measurements of L), Ly, and L3 are used to scale the trace to
the original ground motion and correct for the traverse of the recording  pen across the recording
drun (see text). Sections indicated by boxes (b) and (c) are enlagred in the following figures.
Various body wave phases were located with the assistance of Graham Neilson. A second event lower
down the seismogram occurred NW of the Kurile islands. The station BLA (Blacksburg, Virginia) is in

the north eastern U.S., so the azimuthal path across the Atlantic, but is still (just) predominantly
continental.
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Figure 4.4b  Surface wave energy. The true x—-axis is shown, as is the time window (t;, t,) which
was digitised in this case. In this example this matched the group velocity window (t,, ty) from
4.0 and 2.5 'km s~! but this was not always the case. Note that the late arrival due to multipathing
at about 55s was not digitised. ~
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Figure 4.4c Calibration pulse and Header,
The header information contains the date, station name, recording

component and time (GMT) to identify the event, as well as
calibration parameters MAG (amplification factor) CALCUR
(Calibration current) and G (Galvanometer constant). Points (P4,
Q4) at factors 1, 2/3, 1/3, 1/10 of the maximum amplitude A,

are used together with G and CALCUR to describe the instrument
response I(t) or I(w) after reference to a library of known pulses

and their responses.
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Figure 4.5 European dispersion characteristics. Observed group
velocities for Western Europe (circles) and Southeastern Europe
(triangles). Continuous and dashed lines represent standard
deviations (after Correig et al, 1982).




Having calculated (él,tz), the microfilm chip was copied onto
two A3 sheets and the seismogram inspected to see how well these
times matched an estimate of the time window defined by the arrival
of long period energy and the signal duration picked by e&e.
Usually t] was found to be correct if taken to the nearest minuté,
but t, often included later arrivals caused by lateral refraction
off'inhomogeﬁeities (for example see fig 4.4b). These refractions
can be spotted because they have longer periods in a general trend
of decreasing T with respect to t, and often look very similar to
earlier arrivals. Such refractions are inevitable because almost
all‘paths from Greece to stations above 20° away contain
continent/ocean boundaries. Using (t,, tz) as a guide, and'
inspecting the seismogram for effects such as multipathing, defines
(ti, té) the time window to be digitised on fig 4.4b. Further
discussion of the choice of time window and dispersion
characteristics is given in Appendix 4.

(b) Digitisation of seismogram

Having copied a record of the whole chip onto an approximate size
1.20 x 0.40 m (the approximate size of the original), the portion
including (ti, té) was placed on a Hewlett-Packard digitising
table. The surface wave in this interval was then traced relative
to the horizontal edge of the original record, the X, Y coordinates
being noted by the digitiser 5 times every second (real time). In
order to smooth this rgcord and prepare the resultant time, series
for Fourier analysis the data set was interpolated to give (Xi, Yi)
at unit intervals AX of 0.5 mm, which corresponds to about At = 1.6
seconds on the seismogram's time scale. This digitisation interval

is more than adequate to avoid aliasing during Fourier analysis at

the periods of interest (30-70s), because the Nyquist frequency
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(E%E) is 312 m Hz or an equivalent period of 3.2 seconds. The
accuracy of the digitisation was then tested by plotting this
interpolated record and overlaying tﬁis on the original on a light
table.

In order to set the scale a measurement of the length between
10 minute markers (say Ll).and a measurement of the total
horizontal length of the record (L2) was noted, together with a
note of the amplificatioﬁ factor of the recording instrument
(MAG) (fig 4.4c). The real length.of one of the original records

is standardised.at 910 mm, so finally

600
Xi' = Xi X o in secs ,

910 1000
in microns .

The factor 1000 converts Y'' to microns from the mm units of Y',

and X', L}, Ly are in mm. The final output file contains a set of

1. Y re

times defined by X} and AX , where X; =X + (i-1) AX and a
string of amplitudes Y'', i = 1, N where N is the number of
digitised points.

‘ In addition to this procedure, a correction for pen traverse
(of Ly mm per cycle) across the drum at an angle O was included to

correct for true vertical amplitude via

Yi = Yi + Xi tan 0 ; 6 = tan~! (L3/Ly) .

(Xi', Y'') have now been corrected to an equally spaced series of
i

" amplitudes in time on the same scale as the ground motion.
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(¢) Instrument calibration and response

This was carried out following a procedure and FORTRAN program
outlined in Espinosa et al (1962, 1965) and discussed in detail in
Burton (1973), Appendix C. The method is quick and accounts
adequately for variations in instrument response between WWSSN
stétions.

Each calibration pulse (as shown in Fig 4.4c) is
characterised, on the digitising table by noting points (Pi’ Qi)
i =1,6 relative to (Po’ Qo), the onset of the pulse. The maximum
amplitude of the pulse is Ao and the points at 1/3 Ao’ 2/3 Ao’ A°
are noted on the increasing part of the pulse (i = 1,3) and then
2/3.A0, 1/3 Ao, 1/10 A.o i = 4;6) on the decreasing half of the
cycle. After correcting these for the dfum roll © and the scaling
factors as outlined in the previous section the calibration current
(CALCUR) and the galvanometer constant (G) were noted. The

instrument response was then characterised by

I(w) = £{CALCUR, G, (2200, 6} >
and matched to a library of known instrument calibration pulse
shapes to choose the one closest to this set of parameters. -

This method is not perfect, but is very quick to apply to the
200 or so seismograms which were digitised. It is much better than
assuming a theoretical shape of the instrument response, because
unfortunately, WWSSN turns out to be not as 'standard' in this
respect as one might expect (Burton, 1973, Appendix C).

The instrument correction can then be done (in the frequency
domain) by a simple division, to give an instrument corrected

spectrum



QOBS(w) = Q(w)/I(w) .

(d) Time series analysis

The data is now in the form of a string of N amplitude terms Yi' at

equal time intervals At =~ l.6s - i.e. a time series. The Fourier

transform of a continuous function Y(t) is

© -iwt
Flw) = [ Y(t) e dt , (4.6)

which must be replaced for computing purposes by a discrete series

transform with coefficients

N -2xif kAt .
T Y e i (4.7)

F.(f,) = At
J( J) , i

k=0

where F, assumes discrete values at the frequencies f,, and

b
the highest frequency is the Nyquist frequency - 1/(2/4At). Fj
are in general complex, so real and imaginary parts can be
considered separately,

Q.(f) = mod (F,) ,
J h|

3
(4.8)
¢j(fj) = arg (Fj) .

For evaluating Mo, only tﬁe real part Q is required. The
Qj are then smoothed by a Gaussian filter over 5 neighbouring
points. The computer program TSAP, developed and listed in Burton
and Blamey (1972) and in Burton (1973), was used to produce Qj(fj),

and to correct for the instrument effect by the method outlined in
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the previous section.

Fig 4.6 gives an example of the program output, showing the .
steps described above; It begins with a digitised seismogram (fig
4.,6a) which is first corrected for any secular trends. A discrete
Fourier transform is then performed (fig 4.6b), and the best
instrument response compared with the calibration chstants (Pi’Qi)
is plotted (fig 4.6c). The amplitudes Q are then divided by I tg
get the instrument-corrected'spectr;m QOBS in micron secs (fig
4.6d), which is plotted on log-log paper;

(e) The medium response

This, the most gomplicated'step, was performed by pfoducing
synthetic spectra by the method of Douglas et al (1972) for
Mo = INm, using a computer program called ﬁIGE provided by
A. Douglas. The forms of SF and Sr have already been discussed,
and these were also incorporated in the program.

The parameters of table 4.6 (ql, Bl’ Py tk) were used for
the earth model, with the source parameters (h, ¢,‘6, A s BS)

of tables 4.4, 4.5 and 4.6 to give the medium response
Mz(w; ¢; h; sj(as’ BS’ 8, N); al’ Bl’ pl’ tl)

The earth models were reduced to the top 5 layers for a
predominantiy continental path (table 4.6a) or the top 6 (including
the water layer) for a predominantly oceanic path (table 4.6b).
This was done to reduce computing time because the lower layers
(below a depth of 350 km) had a negligible effect on the Rayleigh
spectrum at periods of 30-70s on several trial runms.

The program actually used is listed in'MacBeth (1983),

Appendix D2, which is a modified version of BIGE and computes a
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Table 4.6 Earth model*

(a) Crust-upper mantle structure for continent

Depth (km) Thickness (km) B(km/sec) a(km/sec) p(g/cm3)

0 10 0 3.49 6.05 2.75

10 20 3.67 6.35 2.85
30 20 3.85 7.05 3.08
50 . 65 4,65 8.17 3.45
115 250 4,30 8.35 3.54
365 85 4,75 8.80 3.65
450 200 5.30 9.80 3.98
650 400 6.20 11.15 4,43
1050 240 6.48 11.78 4,63
1290 ® 6.62 12.02 4,71

(b) Crust-upper mantle structure for ocean

Depth (km) Thickness (km) B(km/sec) a(km/sec) o(g/cm3)
0 4 0.00 1.52 1.03
4 1 1.00 2.10 2.10
5 5 ' 3.70 6.41 3.07
10 50 4,65 8.10 3.40
60 150° 4.15 7.60 3.40
210 240 4.75 8.80 3.65
450 200 5.30 9.80 3.98
650 400 6.20 11.15 4.43
1050 240 6.48 11.78 4.63
1290 © 6.62 12.02 4,71

% After Knopoff and Chang (1977)



theoretical spectrum
MS () S, (w5 &) M (w) R72
QTH M) Sn(w) S (w; ) 5 (0 = Q/pI ,

for Mb = 1Nm, R =1 km. QTH is the theoretical amplitude for an
event with source parameters (h, ¢, &, A) in a layered medium

(al, BX’ pl, tl) for unit seismic moment at unit distance. The

actual amplitude QOBS after time series analysis and instrument

correction is

‘ -1
Qs = Q/I = M sT(w) SF(w,cb) Mz(w) R 2 D(w)

So the actual seismic moment is evaluated by simple proportion.

Q L
Moo= 285 B2 exp (yR) x INm . (4.9)
o QTH 1

(f) Distance correction

At this stage QOBS and QTH in (4.9) have been calculated,

leaving only a correction for geometric spreading and attenuation
of Ré exp (YR) or (E sin A)% exp (y'4d) in terms of the
epicentral distance A in degrees. Values of y' per degree are
listed in table 4.7, which was obtained by.linear interpolation of
values quoted by North'(l973) from studies by Anderson.et al (1965)
and Tsai and Aki (1970).

First of all the digital output from TSAP (Q (fj)) was

0BS

reduced to seven readings at frequencies f, 6 = fo + (i-1)Af; 1=1,7

i
with fo = 10 mHz, Af = 2.5 mHz, since fj was slightly different for

each evenﬁ-étation pair. This frequency range reduces the data to
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Table 4.7 Attenuation: e TR or e YA

(a) D(w) = e.YR after Tsal and Aki (1970) for 20 < T < 45 and Anderson
et al (1965) otherwise, for R in km. T is the period of the surface

wave.

(For a complete discussion see North (1973) p46.)

T(s) 20-45 50 60 70 80 90 100
¥(10~%/km) 150 125 105 80 70 60 50

1
(b) D(w) = e ' A. Interpolating the above linearly at intervals of
2.5 m Hz gives the following values of y' in terms of A in degrees.
f=1/T.

£(mHz) 30 27.5 25 22.5 20 17.5 15 12.5 10
y'(1073/0)  16.7 16.7 16.7 16.7 13.9 12.0 10.3 7.8 5.5




the time period 30-70s. Then the parameter

QOBs (fi’ Aj)

QTH (fi)

A(r) =

L
(E sin Ak)2 »

for the kth station at the ith frequency was plotted on graphs such
as fig 4.7a. Since this‘parameter is equal to M, exp(-yR) from
(4.9), the intercept on the Y axié on fig 4.7a is s?mply Moi -

the seismic moment for the ith frequency. This intercept was

)

found for each frequency fi by calculating a centroid (Zi’ Ki

and applying the equation

= - y'A- 1
log Aik log Moi YiAk og(e) ,

for given values of yi. Values of Ak are given in table 4.4a for
the 120 or so seismograms actually used in the determination of the
final values of Mb obtained in tablé 4.4,

Finally, the seismic moment was evgluated by taking a
geometric mean of the seven values of the M, at frequencies

between 30 and 70s.

This procedure could be applied to all the events with fault plane
solutions, and was therefore used to produce all of the seismic
moments listed in table 4.4, with the exception of event D - which

was not analysed at all because of interference by an earlier event
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Figure 4.7 Attenuation corrections.

(a) correction of QypgRi/Qry by using the value of Y(w) in table

4.7.
(b) a similar correction on QOBSR% for the same event (Event A).
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on the record, and events K, P, Q — which had no fault plane

solutions in the literature and were treated separately.

(g) Moment calibration for even;éaK, P, Q'
This subsection began with an i;;uiry into how much the fault plane
solution really affects the eventual vaiue of M.o ~ given that
most of the data are chosen at azimuths near the antinodes of the
radiation pattern. This happens naturally since most of the data
at nodal points have very low signal to noise ratios, and so are
not used.

First of all consider fig 4.7b, which misses out the medium
respénse calculation, and then corrects for atténua;ion as in the
last section with a y axis parameter

L
= 2
Yik QOBS (fi’ Ak) (E sin A) .

The intercept on the y axis Yo was then averaged over the same

i

seven frequencies as in the previous section.

7 .
log (Yo) = §=1 Log (Yoi)

7

Fig 4.8 plots log Mo vs log Yo, which can be fitted by least

squares straight line with the equation

log Mo a+b log Yo , (4.10a)

with a = 13.003 + 0.383, b = 0.965 + 0.071 for Mo in Nm and

Y 1n micron seconds. Within the accuracy of this line fit,
o

this represents a straight proportionality relationship, with b =1
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Figure 4.8 Moment calibration. A plot of My vs Y, as defined |
in the text section 4.3.3(g). The line is fit by least squares to
the data in table 4.8, with gradient 0,965 + 0.071 and intercept
13.033 + 0.383.




Table 4.8 .Calibration of M vs Y : the data
Y U

These values are quoted as logarithms to the base ten, and plotted on
fig 4.8. Y, as defined in section 4.3.3(g) is in micron s and M, is in

Nm. Standard deviations of Yo and Mo are given in brackets.

Event codé log Yo log M0
A 6.20 (0.10) 18.86 (0.07)
B 6.29 (0.17) 19.11 (0.18)
Cc 5.88 (0.21) 18.88 (0.08)
E 5.60 (0.06) 18.60 (0.15)
F 5.70 (0.12) 18.49 (0.08)
G 6.01 (0.07) 18.82 (0.14)
H 4.97 (0.11) 17.78 (0.11)
I 5.09 (0.15) 17.78 (0.07)
J 4.93 (0.12) 17.85 (0.04)
L 4.87 (0.11) 17.47 (0.11)
M 4.78 (0.15) 17.67 (0.10)
N 4,99 (0.14) 17.93 (0.10)
0 . 4.71 (0.10) - 17.74 (0.09)
K 5.02 (0.09)

4.52 (0.15)
Q 4,87 (0.11)




M =kY . (4.10b)

k = 10% = 1.08 x 10"

’ N/s. Thus Y, was found for events K, P, Q
and converted to the values Mo listed in tables 4.4 and 4.8 by
using this calibration gquation (4.10b).

It is obvious from comparing fig 4.7a and 4.7b that the fault
plane solution for event A haé little effect on the observed
amplitudes in this case. That this 1is true generally is borne out
by the good fit to the data in fig 4.8. However the listing of Mo
Vs Yo in table 4.8 does show that the values of log Mb are in
general better constrained by their standard deviations (typically
+ 0.10) than log Yo (typically * 0.15) showing that inclusion of
the fault plane solution has (on average) led to a slightly better
solution.

4.,3.4 Discussion of results

At first glance table 4.4 seems scant reward for many hours of
digitising and computer processing. However this is a complete
1list of all the seismic moments for events of magnitude greater
than 5.5 MS for the period 1972-1978, with only omne exceptioﬂ
for event D.

One interesting result did emerge concerning the effect of the
medium response on the spectral amplitudes. The relationship
(4.10) gives a calibration of spectral amplitudes corrected for
instrument, geometric spreading and attenuation (Yo) against
seismic moment found by the complete correction process including
the medium response. The random error (i.e. a standard deviation)
is only increased from * 0.10 in log Mo to * 0.15 in log
Yo, or equivélently from 257 in Mo to 407 in Yo" The small

random error (standard deviation) in Mo of table 4.8 indicates
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a fairly flat spectral shape within about 25% after all of the
corrections, since Mo is an'average over seven frequencies in
the range 30-70s.

North (1977) estimated the total uncertainty in M0 by this
method as a factor 3 or so, including systematic errors in the
earth model, so the error introduced by the calibration procedure
is almogt negligible here. An error of a factor 3 in Mo leads
to a combination oé systematic and random errors in the A parameter
of the moment magnitude relation of + log 3 or * 0.47, and
similarly a random error of 407 introduced by the calibration

procedure gives 8A = * log (0.4) = £ 0.15.

4.4 Source parameters from P-waves

"4,4,1 Introduction

Having evaluated the seismic moments and collected the typical
stress. drops of published events in the previous two sections for
the large events, this section now considers the smaller events
picked up by the VOLNET array. The object here is to evaluate the
source pagameters of the smaller events in mainland Greece énd some
in the Aegean and to investigate thebscaling properties between the
smaller and larger events with a view towards testing the
assumptions behind the derivation and interpretation of the
distribution (3.9). If these assumptions are valid, and some
properties of the numerous small events do relate in a specific way
to those of the rare larger events, then this has very relevant
implications for estimates of the seismogenic slip rate and the
seismic hazard.

The VOLNET array data are reduced to a library of'digital

velocity seismograms on magnetic tape, a small sample of which 1is



" the basic data for this section. The arrival time of the P-wave
for each event-station pair is given in the appropriate monthly
station bulletin. The design of the overall system means that it
is a fairly routine matter to find events and extract them directly
off the tapes;

In the first instance 40 events in the magnitude range 1.8-4.5
My, were chosen for invéstigation (table 4.9). Eventually 28 of
these in the range 1.8-3.5 ML were found to be suitable for
analysis (i.e. having a sufficient signal/noise ratio on at least 6
of the available recording stations and avoiding saturated
records). A map of the epicentres of these events is given in fig:

4.90

4.4.2 Theory

The seismic momenf of an earthquake 1s proportional to the long
period épectral level @, of a displacement éeismogram (i.e. its
Fourier transform). The theorétical shépe of a P-wave displacement
spectrum for an.earthquake is much simpler than the surface wave
portion. In general it is a flat portion from zero frequency up to
a 'corner' frequency f., and then a power law tail £ Y beyond

this value (see fig 4.10c for ekamplé). The corner frequency is
inversely proportional to the fault length. By making the 'far
field' aéproximation i.e. the epicentral distance R >> r, the
source radius, the following relationships between the spectral
parameters (Qg, fc) and various source parameters (Mo, r, Ao,

s) can be deduced:-

= 3
M.0 4n pa RQO/(W¢92{2) R (4.11)
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Table 4. 9 Hypocentral coordinates and magnitudes of 40 sample
earthquakes recorded by VOLNET 1 Jan - 30 Jun 1983.

Event Origin time Lat Lon Dep ML
Number N E
(YMD Hm sec) (deg min) (deg min) (km)
1 83 18 626 5.16 38 13.44 23 18.06 9.21 3.1
2 83 112 1616 53.95 38 0.50 23 7.61 5.48 2.9
3 83 114 224 33.06 39 11.05 24 26.17 5.00 3.2
y 83 120 242 36.84 38 29.16 24 u43.40 0.95 2.7
5 83 123 12 6 6.70 38 47.10 25 2.96 1.07 3.5
6 83 2115 9 47.63.38 36.10 23 33.16 14.09 2.7
7 83 2 4 1143 0.71 38 12.39 23 17.39 6.55 3.1
8 83 216 1256 19.29 38 49.00 24 18.72 7.87 3.0
9 83 227 146 21.12 39 1.77 24 57.06 0.94% 3.3
10 83 318 1725 42.32 38 8.61 23 15.62 8.48 3.1
1 83 321 746 24.16 36 26.07 22 2.42 0.09 3.7
12 . 83 325 2323 34.74 38 28.85 21 40.00 0.21 3.2 ,
13 83 4 5 2112 21.90 38 39.64 22 6.77 9.81 3.12
14 83 4 7 151 50.91 38 40.68 22 18.48 9.99 3.22
15 83 4 7 12 1 30.51 38 40.90 22 14.91 10.47 2.9
16 83 4 7 17 8 50.18 38 41.11 22 14.61 11.74 2.8
17 83 4 8 133 34.86 38 26.91 23 43.01 11.16 2.5Z
18 83 4 8 1235 12.64 38 39.87. 22 9.29 9.97 3.0Z
19 83 4 8 1329 5.47 38 39.88 22 13.32 13.49 2.82
20 83 4 8 2147 45.79 38 42.85 22 15.18 11.64 2.8
21 83 411 1723 9.00 38 2.93 22 3.85 2.97 3.4z
22 83 414 937 7.69 38 11.95 24 18.27 "18.98 2.6
23 83 429 318 11.34 38 40.06 22 13.90 11.92 2.5Z
24 83 514 1220 4.15 38 0.38 22 51.00 3.29 3.2
25 83 610 239 36.89 38 7.79 19 50.70 5.00 4.4
26 . 83 611 2331 33.85 39 17.33 21 47.77 9.81 3.4
27 83 615 026 18.54 39 3.48 25 38.10. 9.88 3.6
28 83 618 2324 55.80 38 5.63 23 8.24 3.62 2.5
29 83 625 2055 36.58 38 21.94 22 8.02 0.28 2.8Z
30 83 627 550 14.47 36 8.18 23 45.30 32.59 .2
31 83 113 3 6 8.13 38 36.60 22 53.10 14,26 3.0
32 83 227 352 23.50 39 29.82 23 26.91 11.14 3.1
33 83 4 7 23 9 19.22 38 41.01 22 17.35 14.19 2.3
34 83 4 8 4 327.58 38 41.62 22 14.70 10.83 2.82
35 83 4 8 1911 15.62 38 41.01 22 13.21 . 9.75 2.5Z
36 83 411 2119 45.56 38 40.69 22 14.71 12.87 2.6
37 83 425 4 2 24.78 38 57.24 22 17.75 7.81 2.7Z
38 83 429 440 5.33 38 40.98 22 14.49 11.06 3.22
39 83 325 3 0 16.05 38 47.66 23 27.87 14,43 2.12
4o 83 319 1012 57.30 39 4.94 23 14.03 16.97 1.9

* Magnitudes assigned by a vertical component only
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r = 0.32 B/f_ . (4.12)
_bo = (7/16) (MO/r3) , (4.13)
s = Mb/nrzu . : ) (4.14)

(4011) is quoted from Thatcher and Hank's (1973) work on
Californian seismic moments, which assumes that small earthquakes
can be approximated by circular faults of radius r. Because the
VOLNET stations are close to the events in this study, no
correction was thought necessary for anelastic attenuation. 1In
support of this Modiano and Hatzfeld (1982) did a similar study to
tAe present one in the Pyrenees, and found that a cylindrical
correction for geometric spreading, which consists only of
multiplication by source station distance R, accounted for all the
observable reduction of the signal amplitude with distance. The
factor v2 in (4.11) allows for an equal amplitude on the horizonﬁal
component of the seismogram, and the factor 2 accounts for losses
in energy at the station caused by free surface reflection of SH
waves, In the present work the radiation pattern W¢e was taken to

be cylindrical, with an average value of 0.6. Since most of the

3 was chosen as

events were shallow, a crustal density p = 2.7 g cm™
in Thatcher and Hanks (1973), and the P wave velocity a was .
assigned a value according to the event's hypocentral depth (table
4,10, from Makris, 1977). These values for p and o« have received
recent confirmation from Calcagnile et al (1984).

(4.12) is an average formula from Madariaga (1976), which
assumes a rupture velocity 0.9 B for propagation of the crack tip

with B = (2/3)a. The last two equations (4.13), (4.14) follow from

(4.11), (4.12), (1.4) and (1.18).
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Table 4.10 P-wave velocity model for Central Greece*

Velocity (km s~ Depth to top of layer (km)
4.0 .0
6.0 - 1.07
6.7 24.0
8.16 30.0

* after Makris (1977)



4.,4.3 Method of analysis

The basic method of extracting My, T, Ac and s from the VOLNET
seismograms is to fit a theoretical spectral level Qo by eye to
the Fourier transform of the displacement spectrum, and then judge
the corner frequency f. as the point at which the spectral
density begins to fall off. On log-log paper both lines should
theoretically be straight (fig 4.10). The data provided from
VOLNET are digital velocity seismograms so the first step after
applying a Fast Fourier transform is to correct for the instrument
response, in this case from a Willmore MkIII‘seismometer, via the
expresgion

-jw3

10~ digital units/mp  (4.15)
{02 = o? + 23Buw_} :

0(w) = AKD mod

0

@ : displacement response

A : amplifier modulator gain = 200

1.-1

K : seismometer motor comstant = 500 volt m™*s”
B : seismometer damping = 0.7

f : natural frequency = 1/1.5 Hz (mo = ano)

D : digitiser gain = 1024 digital units/volt

w : angular frequency

(see VOLNET Station Bulletin, Jan 1983).

First of all the effect of removing the noise, and then
smoothing the resultant spectrum after the instrumental correction
(4.15) was investigated (figs 4.10a,b,c). This resulted in an
improvement on the basic signal on its own, with a typical random

uncertainty in estimating Qo and fc (by eye fitting) of

about 40% and 25% respectively. The time 'window' T for these
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Figure 4.10 Method of Spectral Analysis: Investigating the
effect of (1) removal of noise and smoothing and (1i) different
time windows on the spectrum. The following features are common to
all of the diagrams; Top line - title; next 3 lines - tape code and
station; top diagram - velocity seismogram showing time windows for
noise (above left) and signal (right), with 1 sec scale marker
(bottom left); bottom diagram - displacement spectrum in 100 s
units (noise shown as dotted lines). The windows defined by the P
arrival time and the theoretical S arrival time from Makris's
(1977) earth model are given in percentages below.

a) 75% window: original signal and noise (dotted line)
b) 75% window: signal with noise removed

c) 75% window: smoothed signal with noise removed

d) 25% window: . " " " "

e) 50% Window: n " " " "

f) 100% window: " " " " "

The results of fitting two straight lines to estimate Q and
f as defined in the text are as follows:-—
c

Qo (x10'9m s) f (Hz)

(a) 7.0
(b) 6.0
(c) 5.5
(d) 4.0
(e) 4.8
(£f) 6.0

It can be seen from diagrams (a)-(c) that removing the noise and
normalising the resultant spectrum by smoothing greatly assists the
eye fit of two straight lines. By inspecting the diagrams (c)- (£)
and consulting the above -table it can also be seen that procedure
(¢) covers most of the long period P-wave energy, and has the added
benefit of avoiding early S wave energy. Uncertainties in 4(c) are
about 407% in Qo and approximately 25% in fc.

(The figures referred to appear on the following six pages) .
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events was initially chosen as 75% of the difference between the

theoretical P and S arrival times via
T = R/(a-B) , (4.16)

where a, B are the P and S wave velocities in the lower layer and R
is the source-station distance. By adjusting the time window to
25%, 50% and 100% (figs 4,10d,e,f) it was found that most of the
relevant long period signal Qo was included by the 757 window
(see caption to fig 4.10), while avoiding any possible early S wave
energy. This rule of thumb is reasonable except where there was
evidence of reflection or refraction. 1In these cases the recording
was not used in the analysis.
The method can be éummarised thus:~-
1) Copy the digital record of an event's velocity seismogram from
a library tape to a working/scratch magnetic tape
2) Copy the event's time and location, its P-wave arrival time
to, and the location of each station from the VOLNET bulletin
3) Compute R and 75% T by (4.16) to define two time windows at
each station (+T for signal, -T for noise)
‘4) Obtain a Fouriler transform of the digital record at each
station for the signal and the noise
5) Correct to displacement spectrum via the instrument correction
(4.15) at each station .
6) Remove noise from signal and smooth to obtain a final spectrum
like fig 4.10c
7) Read off Qo, fc from resultant spectrum by eye as in
fig 4.10c

8) Convert to source parameters using (4.11)-(4.14)



Steps 1, 2 are routine, 3 is done by VOL-PREP which was
written for the present work and computer programmes for carrying
out the spectral analysis of steps 4~6 by a Fast Fourier rodtine
were made available (Bob McGonigle, 1984, pers. comm.). Finally Qo
and fc were reduced to source parameters by equations (4.11) -
(4.14) via VOL-DIST, which uses specific values of a, B for the
séurce layer. This differs from previous studies such as Thatcher
and Hanks (1973), who used only one fixed value in their work.

Both computer programmesvindicated by the prefix VOL- are listed in

Appendix 1.

4.,4.,4 Results

The results of this section are summarised in tables 4.l11 and 4.12,
the former lisfing Qo, fc’ R for each event-station pair, and the
latter the final results for My, r, Ac and s. The individual

parameters are plottéd against each other in figs 4.11-4.17.

4.,4.,5 Error analysis

A typical reading'error +407 in Qo and +25% in £, (fig
4,10c) has already been noted. Additional random uncertainties
lead to standard deviations from tﬁe mean value of M, of 20%-80%
and 10%-40% from the mean value of r (see table 4.12). Typical
random errors in Qo of about +50% and +257% in fc can therefore
be estimated. However, there are other sources of uncertainty
which are systematic, and these are now considered in turn.

First consider equation (4.11). No measurement of p was
available for this region at the time of analysis so a value 2.7 g

cm~3 was assigned (Thatcher and Hanks, 1973). To be conservative
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Table 4.11. Intermediary steps in the evaluation of source
parameters for 28 sample events recorded on VOLNET.

(a) Station codes and coordinates.

Code Lat Lon

1:vSI  38.8793  23.2090
2:VPA  38.7815  22.3400
. 3:VFI  39.2352 22.5921

4:VGL  39.4456  22.8842
5:VNE  39.3119  23.2322
6:VSK = 39.1106  23.6935
7:VMA  38.7059  23.5877
8:VER 38.2005 23.3600
9:VAG 38.3161 22.9003

(b) Epicentral distances R in km calculated fram Tables 4.9 & (a)

Event no. VSI VPA VFI VGL VNE VSK VMA VER VAG

1 73.1 104.1 128.0 140.3 120.8 104.1 59.0 5.8 36.5
3 111.4 186.9 159.3 136.9 104.8 64.7 90.7 143.7 164.5
6 42.9 107.3 109.0 110.1 83.5 57.8 12.0 47.6 65.1
7 75.0 104.5 129.2 141.9 122.7 106.3 61.2 6.2 36.2
9 151.8 228.0 205.1 184.2 151.7 109.1 123.6 166.2 195.1

13 98.2 23.9 76.1 109.7 120.9 145.9 128.3 120.2 78.6
14 81.4 - 11.8 66.5 98.7 106.5 129.4 111.3 106.0 65.4
15 86.2 13.6 68.2 101.0 110.2 134.0 116.5 110.7 69.8
16 . 86.6 13.6 68.1 100.9 110.3 134.3 116.9 111.3 70.4
17 65.1 125.4 130.9 132.1 104.6 73.5 30.7 41.6 72.8
18 94.6 20.7 73.8 107.2 117.7 142.3 124.7 117.1 75.6
19 89.0 16.5 71.0 103.9 113.2 136.8 118.8 111.9 70.7
20 85.0 10.6 64.8 97.8 107.6 132.4 116.0 112.1 71.6
21 135.9 84.8 139.4 170.5 173.1 184.4 151.7 114.8 79.0
22 121.7 183.1 188.0 185.2 154.6 114.2 84.1 82.7 123.5
23 g88.1 15.8 70.3 103.1 112.3 135.9 118.0 111.3 70.1
26 130.3 73.4 68.9 95.3 123.8 165.0 168.0 181.8 144.3
28 87.4 103.2 135.2 151.6 135.4 122.7 78.5 22.8 32.2
29 109.6 49.5 104.4 136.3 141.8 158.7 132.2 108.8 67.2
31 41.0 51.1 73.9 92.7 83.5 89.5 62.0 61.5 32.6
32 71.6 124.4 79.3 48.9 27.7 47.8 88.6 144.0 139.4
33 82.8 11.7 66.6 99.0 107.4 130.6 112.9 107.7 67.1
34 86.2 12.8 67.2 100.1 109.6 133.8 116.7 111.6 70.8
35 88.6 15.1 69.2 102.2 112.0 136.2 118.9 113.0 71.9
36 86.6 14.1 68.7 101.5 110.7 134.4 116.8 110.8 69.8
37 79.6 19.5 40.4 74.5 90.1 122.2 115.4 124.8 88.2
39 24.1 97.6 90.0 88.0 60.8 40.3 14.5 66.5 72.3
40 22.6 84.3 58.0 50.3 25.5 39.9 51.8 98.4 89.8

(cont....)



Table 4.11 (cont.)

(c) Long period spectral levelQ, in micron s read by eye off dlagrams
such as fig 4.10c.

No VSIZ VSIN VSIE VPA VFI VGL VNE VSK VMA VER VAG
1 0.022 0.015 0.016 0.050 0.035 0.080
3 0.050 0.062 0.045 0.005 0.006 0.010 0.020 0.006 0.007
6 0.012 0.018 0.004 0.004 0.005 0.011 0.003
7 0.065 0.090 0.012 0.020 0.015 0.100 0.120 0.060
9 0.014 0.018 0.012 0.009 0.006 0.014 0.004

13 0.180 0.100 0.090 0.020 0.052 0.140

14 0.080 0.120 0.140 0.060 0.060 0.120:

15 0.008 0.012 0.006 0.005 0.009 0.028

16 0.014 0.014 0.012 0.010 0.006 0.012 0.010 0.008 0.025

17 0.035 0.060 0.040 0.006 0.028 0.050 0.045 0.095 0.030 0.080

18 0.100 0.085 0.080 0.080 0.180 0.030 0.050 0.100

19 0.065 0.100 0.250 0.050 0.045 0.040 0.120

20 0.007 0.006 0.009 0.028 0.020 0.004 0.006 0.018

21 ‘ 0.700 0.800 1.000 0.620 0.700 1.400 1.000

22 0.012 0.015 0.020 0.008 0.012 0.006

23 0.035 0.025 0.007 0.008 0.010 0.015 0.022 0.030

26 0.110 0.110 0.075 0.030 0.120 0.180 0.180 0.030 0.055 0.028 0.060

28 - 0.004 0.002 0.005 0.001 0.035 0.007

29 0.054 0.065 0.050 0.160 0.060 0.044 0.040 0.007 0.035 0.045 0.020

31 0.021 0.025 0.030 0.025 0.015 0.022 0.007 0.016

32 0.200 0.300 0.250 0.032 0.074 0.085 0.050 0.028 0.025

33 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.007

34 0.015 0.020 0.040 0.040 0.070 0.010 0.009 0.036

35 0.018 0.018 0.023 0.015 0.085 0.070 0.009 0.010 0.012 0.020

36 0.006 0.006 0.004 0.015 0.015 0.012 0.007 0.014

37 0.045 0.056 - 0.066 0.110 0.026 0.050 0.028 0.020

39 0.005 0.010 0.030 0.013 0.016 0.007 0.004

40 0.012 0.022 0.100 0.010 0.016 0.010

(cont..
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Table 4.11 (cont.)

(d) fc in Hz read in similar fashion to

(c).

No VSIZ VSIN VSIE VPA VFI VGL VNE VSK VMA VER VAG
1 2.200 . 3.400 3.000 2.800 4.500 2.800
3 4.200 4.200 5.400 4.000 9.500 8.000 3.600 5.200 3.400
6 5.200 3.800 4.000 4.500 6.400 4.500 8.000
7 1.400 1.600 2.400 1.400°2.500 2.200 2.900 1.600
9 4.200 4.200 4.200 3.200 4.500 3.200 6.200

13 3.000 3.000° 4.000 3.800 4.500 4.000

14 5.000 4.800 3.800 . 3.800 3.500 3.800

15 . 5.200 5.400 6.500 7.000 6.000 4.100

16 5.200 4.800 5.000 5.200 7.200 4.500 5.000 5.200 4.500

17 3.000 3.000 3.200 3.500 3.200 3.200 3.200 3.000 2.500 3.500

18 3.000 3.000 4.800 5.000 3.600 3.000 3.800 3.200

19 5.900 4.000 4,000 3.000 5.100 5.400 3.000

20 2.100 3.400 4.800 4.800 4.000 3.200 3.600 4.100

21 2.000 2.100 1.900 1.800 2.000 1.500 1.800

22 2.400 2.200 2.200 3.200 2.500 2.500

23 2.100 3.100 5.000 5.500 4.000 2.500 2.500 4.500

26 2.200 2.800 3.000 4.000 3.100 1.800 2.200 3.200 1.800 2.800 3.400

28 4.200 4.000 3.500 7.000 3.300 6.400

29 2.800 3.600 3.300 4.200 3.200 3.500 3.500 4.600 3.000 3.100 4.000

31 3.500 2.500 3.100 3.500 3.600 5.200 5.000 5.200

32 2.200 3.200 2.800 1.800 3.200 4.800 2.500 3.200 3.400

33 12.000 5.000 5.200 7.000 9.000 7.600 6.500 7.000

- 34 10.000 4.500 6.800 8.200 5.000 3.600 8.000 9.000

35 9.000 6.000 4.000 3.500 1.800 3.500 2.700 3.200 3.100 4.900

36 4.500 4.500 5.700 4.800 5.000 5.000 4.200 4.000

37 3.000 3.000 3.500 5.100 3.200 2.500 1.600 6.000

39 6.00011.000 7.500 9.000 6.500 6.100 6.000

40 3.000 5.100 4.900 3.900 6.000 5.900




Table U4.12 Source parameters of 28 small earthquakes in
Central Greece.

Units : M_1is in 1012Nm, r in m,Ac in bars, s in mm.

Standard deviations are given below in %, N=No of stations.

(Moo M A pe s

1 3.1 25.9 429.9 1.4 1.49 6
51.3 20.9 62.8 59.2

3 3.2 22.6 270.6 5.0 3.28 9
88.3 29.0 101.6 97.3

6 2.7 4.4 261.3 1.1 0.68 T
31.3 22.6 50.1 uy.,7

7 3.1 49.9 686.1 0.7 1.12 8
. 72.6 26.0 85.4 81.3

9 3.3 4,2 209.7 2.0 1.02 7
38.9 ©19.9 51.9 48.0

13 3.1 84. 1. 351.9 8.4 7.21 6
- 46.7 15.5 53.9 51.6

14 3.2 69.7 316.0 9.7 7.41 6
23.3 12.8 32.1 29.4

15 2.9 8.7 231.1 3.1 1.73 6
47.3 18.2 56.8 53.8

16 2.8 9.5  251.1 2.6 1.59 9
30.1 11.8 36.4 34,4

17 2.5 27.4 411.7 1.7 1.72 10
47.2 9.5 50.0 49.1

18 3.0 81.2 361.3 7.5 6.60 8
52.5 18.3 61.3 58.5

19 2.8 81.6 313.6 11.6 8.81 7
82.1 25.5 " 93.2 89.6

20 2.8 9.9 362.8 0.9 0.80 8
69.7 28.4 85.3 80.4

21 3.4 1067.7 690.2 14.2 23.78 7
25.6 "10.8 31.7 29.8

22 2.6 14.0 519.3 0.4 0.55 6
32.6 11.7 38 36.5

23 2.5 15.1 391.8 1.1 1.05 8
46.9 33.4 TH. Y 66.5

e mmmmmmmmmme—m——m—m e ————— (cont...)===



Table 4.12(cont.)
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Figure 4.11 Moment-magnitude calibration for Central Greece.

There are two data sets of seismic moment vs magnitude. These are:

(a) Mp/M, from table 4.12 for the small earthquakes analysed in
this chapter (1.8 < Mp < 3.5)

(b) Mg/My from the tables 4.2 and 4.3 for the teleseismic events
analysed by North (1977) and Jackson et al (1982) in the area
(5.3 < Mg < 7.5)

The straight line drawn corresponds to A = 16.0 in (1.5), or
Ac = 38 bars, with B = 1.5. Empirically, at least, the two data

sets are described by the same equation.
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Figure 4.12 Seismic moment vs source radius.

The straight lines are drawn for given stress drops of 1 bar and 10
bars using (4.13). Since M, a r3 for Ac = const, the slope of the
lines on this logarithmic plot is 3. Data points come from table
4,12,
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Figure 4.13 Seismic moment vs stress drop.
The straight lines are drawn for given source radii of 200m and

'500m using (4.13). Since M, a Ac the slope of the lines is 1 for
r = const. Data points come from table 4.12.
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Figure 4.14 Local magnitude vs source radius.

The straight lines drawn are for arbitrary constant Ac. Since

Mo a r3 « 10BM 4 glope of 2 is expected for B = 3/2. Data

points come from table 4.12. Note the increased scatter compared
with the diagram for M, vs r (fig 4.12).
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Figure 4.15 Local magnitude vs stress drop.
The straight lines drawn are for arbitrary constant r. Since

M adoa 10BM ye expect a slope of 2/3 for B = 3/2. Data
points come from table 4.12, .
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Figure 4.16 Source radius vs stress drop.
These two parameters are confined within limits (Aol, Aaz) and (rl,

r,) as expected by Caputo (1976), but there are not enough points
to investigate their internal distribution. Data points come from

table 4.12.
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Figure 4.17 Fault slip vs source radius.

This graph shows that typical strain drops (defined by s/(rv/mn) for
a circular fault) are in the range 10-% to 1077, Data points come
from table 4.12.
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an uncertainty of 30% in this parameter may be estimated. Due to
uncertainties in focal depth and in the velocity model of table 4.6
a may only be correct to 30%:or so. Systematic uncertainties in
the radiation pattern will be much smaller than the random error
already accounted for by taking a standard deviation, so theilr
contribution can bg neglected. Thus the total systematic

uncertainty in Mo from equation (4.11) is given approximately

by

&M, 2 dp 2 da. 2

el B Sk G il (4.17)
Mo o} o :

or 60%. Adding a typical random uncertainty in Qo of 50% gives
a total error of +80% in Mb'

A 30% uncertainty in o leads to a 30% systematic error in r
via (4.12). After adding the random error, the total error in r is
of the order 40%; From (4.13) and (4.14) it follows that the total
uncertainty in Ao is around 106% and (allowing a conservative 30%
error in p) that in s is 102%.

These uncertainties may seem very small at first glance, but
this is<a reflection of the quality of the digital network and a
consequence of using known local values for the various
parameters. Of course the source parameters are highly model
dependent, and this could also effect how the errors are

quantified.

4.,4.6 Discussion of results

The moment magnitude relation (1.5) with A = 16.0, B = 1.5

describes the data from table 4.12 and that of North (1977) and
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Jackson et al (1982) quite well (fig 4.11). This empirical
observation should not be pushed too far because of the unknown
MS/ML relationship over the magnitude range 1.8-7.5. However,
Kiratzi and Papazachos (1984) showed that Mg - My = 0.5 for the
Athens observato;y.

Fig 4.12 shows the range of typical stress drops is quite low
(in the range 1~10 bars), but this matches the typical stress drop
of about 7-12 bars for the large events near Thessaloniki (1978)
and in the Gulf of Corinth (1981) (table 4.3). It may be that the
extensional regime which oﬁerates in the VOLNET area (including the
Gulf of Corinth) leads to lower stress drops. :This'relatively
constant stress drop is an important suggestion that the hypothesis
of geometric similarity is applicable to this region.

Fig 4.13 shows the comparatively small vari;tion in source
radii 200-500m (a factor 2 or so). This could imply that the
cha;acteristic size of the elementary blocks postulafed in fig 3.1
are quite large — about 500m. Thgse macroscopic characteristic
fault lengths may be yet anothef example of the crustal geometry -
behind the characteristic peaks in the frequency magnitude

distribution found for the New Madrid area in fig 2.7 at 10km and

100km.

Fig 4.14 shows the increased scatter in the data caused by y//}/
uncertainties in the local magnitude M. (Moment is a better
description of the size of the seismic source, both intuitively and
as evidenced by the reduced scatter of fig 4.12). A theoretical
slope on the diagram of 2 does not describe the data as well as the
theoretical slopes of the previous two figures. .

Fig 4.15 also shows an increased scatter compared with fig 4.7

caused by uncertainties in My . A theoretical slope of 2/3 on
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this diagram of magnitude vs stress drop describes the data

reasonably well.
Fig 4.16 shows that.Caputo's'(1976) postulated shape of the .
boundary of possible stress drops and source lengths (a rectangle)ff?

is consistent with the data set of table 4.12. However there is

insufficient data to discern the internal form of the distribution
within this box.

Figure 4.17 shows that the typical strain drops are in the

0-6 0_5

range 1 to 1 corresponding to the observed stress drop of’
1-10 bars found on fig 4.6, Only one study of strain drops in the
area has been done for events of M, > 1018 Nm. Kim et al (1984)
found strain drops of (0.9-1.4) x 103 cbrresponding to stress
drops of 7-10 bars (table 3 of their paper) for three events in the
Corinth sequence of February and March, 1981. Therefore it is
reasonable to infer that the assumption of relatively constant
strain drop in deriving (3.18) is applicable to this area.

Since the typical size of the seismic moments of the VOLNET
events in table 4.12 is 1013 Nm, this observation represents
geometric self-similarity over a range of 1013; 1018 or 1:10,000!
This (at first) surprising seif similarity of rock fracture, if
confirmed in other studies, could have important implications in
scaling up observations from controlled experiments on laboratory

samples - particularly those investigating precursory phenomena for

earthquake prediction (Allegre et al, 1982).

4.5 Summary

The basic objective of this chapter was to produce fundamental
parameters for earthquakes in the Aegean area over a large range in

magnitudes. First of all a literature search was done to discover
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the available information on parameters such as seismic moment,
stress drop, fault area, slip and fault plane solutions. The
record on seismic moﬁents was found to have gaps prior to 1963 and
1972-1978.

The next section plugged the gap in the seismic moment record
of the larger events (>5.5 Mg), producing a complete list for the
period 1972-1978 with only one exception out of seventeen events,
from studies of surface waves. Three events were analysed by a
calibrati;n méthod because no fault plane solutions were
available. This calibration showed that ignoring the medium
response calculation only increased the random uncertginty in
Mo from 25% to 40% - negligible when compared to the overall
error in Mo of a factor + 3 or so.

By adding these resﬁlts to a similar study by North (1977), a
relatively homogeneous catalogue of seismic moments for events of
Mg > 5.5, for the period 1963-1978 was produced. These events

dominate the total crustal deformation in this period for this
area.

(It was hoped to analyse some seismograms for the period prior
to 1963, but delays in obtaining somewhat rare records and the
necessary scaling parameters postponed this to a future project.)

The fiqal section dealt with the extraction of (Mo’ r, Ao, s)
from P-wave spectra characterised by (QO, fc) of seismograms for

small earthquakes (1.8 = 4.5 ML) in Central Greece recorded on
the VOLNET array. This was carried out in order to investigate the
scaling properties of faulting over a wide range of earthquake
magnitudes. Some 28 records out of 40 produced the required source
parameters with seismic moments of about 1013 Nmn. The main

conclusions in this section were:-
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i) The moment-magnitude relation with A = 9.0 used in Chapter 2
for the Eastern Mediterranean also holds for these small
events, although with a fairly large scatter;

(1i) Typical stress drops are consistently low in the range 1-10
bars with asspciated strain drops of 10-8 to 10'5. These
compare very well with the published data for the events at
Thessaloniki (Jul 1978) and the Corinth (Feb, Mar 1981)
sequence - representing self similarity of this aspect of the
seismic process over an average energy range of 1:10,000!
from the typicalAmoment range of 1013 N to 1018 Nm for the
region. This observation strongly supports two of the
crucial assumptions in deriving the distribution (3.9) i.e.
the relative constancy of A(Aog) and the assumption of
constant strain drop via e = s/ = const.;

(1ii) Typical fault radii are 200-500m, so they are all roughly
similar in extent (within a factor 2). This macroscopic
quantisatibn could be another example of the pattern of
characteristic fault lengths seen in the previous two
chgpters, but on a much smaller scale.

This chapter has laid the groundwork for a more detailed study

- of seismotectonics and seismic hazard in Greece and the Aégean in

the nexé chapter, by providing moment magnitude data, and by

justifying the use of the distribution (3.9) to assess the seismic

hazard.



CHAPTER 5

A seismotectonic analysis of the Aegean area II: The seismotectonic

model and associated earthquake hazard

5.1 Introduction

The preceeding two chapters have, in tufn, developed a general
model for the earthquake frequency magnitude reiation; and then
tested some of the éssumptions on which the resulting distribution
rests. In particular the assumption of self-similarity was found
to hold over a wide range of magnitudes for the Greek seismicity
catalogue of Makropoulos and Burton (1981) and for the results of a
sample of‘events recorded by the VOLNET array. The last chapter
also produced several new measurements of seismic moment, giving a
homogeneous (though not perfectly complete) catalogue of surface
wave moments for Ms > 5.5 for the time period 1963-1978. 1In

this final chapter the intention is to apply the distribution
developed in Chapter 3 to a particular area - tﬁe Aegean, by way of
a more detailed case study, and also to attempt to shed some
further light on an interesting and somewhat controversial problem
~ the details of the observed spreading of the Aegean.

First of all the available tectonic model is described and
this is used to estimate a long-term moment felease rate. Next an
artificial moment catalogue is constructed by applying a moment
magnitude relation to the events above 5.5 MS which have no
seismic moment assigned to them (principally those which occurred
before 1963). The individual moments are then summed to give a
short-term seismological moment release rate.

Both of these models are then compared and applied to the
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frequency-magnitude distribution in the Aegean, in order to test
the stationarity of the process of seismic energy release and to
further investigate the distribution of Chapter 3. Note that for
the purpose of this chapter the 'Aegean area' includes mainland
Greece and the western edge of Turkey. (It will be shown that the

Aegean area cannot be described as a simple plate).

5.2 A tectonic model of Aegean spreading
The basic problem with describing the tectonics of the Aegean area
is that it does not seem to behave as if it were a rigid plate, or
even the rigid edge of a larger Eurasian plate. Since plate
tectonics requires such rigidity a modified, or second order,
theory is needed to account for the observed spreading and
concurrent thinning of the earth's crust in mainland Greece and
under the Aegean sea.

ﬁcKenzie (1972) at first tried to preserve the notion of rigid
plates by dividing the whole area into microplates as in fig 5.1,
but abandoned this idea (McKenzie, 1978) when it became obvious
that there was no evidence for the transform fault cutting through
Central Greece on the diagram (fig 5.2), and that the Aegean was
actually being thinned rather than moving as a block (Makris,
1976) . Makris interpreted the deformation of the area as
attenuation due to the surface expression of a mantle plume, and
-McKenzie (1978) to a convection cell set up by a slab sinking under
the Hellenic arc and a sinking blob of cold crust off Western
Greece. McKenzie, with the added knowledge of the available fault
plane solutions, interpreted the thin crust as being due to
stretching rather than attenuation by a mantle.plume.

Le Pichon and Angelier (1979, 1981) also interpreted the
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Figure 5.1 A plate tectonic model of the Aegean area after
McKenzie (1972). McKenzie envisaged a series of microplates as
delineated in.the diagram. A single line indicates transcurrent
faulting, a double line represents normal faulting and thrusting is
represented by a single line with bars. This model was later
abandoned when observations of surface fault traces and fault plane
solutions contradicted the model.




Figure 5.2 A tectonic model of the Aegean area after McKenzie
(1978). Evidence from fault plane solutions, field observation
and satellite pictures delineated the fault lines ‘as shown. Normal
faults are shown as lines with small bars in the direction of slip,
thrust with semicircles in the slip direction and transcurrent
faults as lines with arrows giving the sense of motion. In this
model the Aegean is not rigid or split up into rigid blocks, but is

subject to stretching.




geophysical observations of high heat flow and thin crust under the
Aegean as being caused by crustal stretching. However they
modelled the deformation with a subducting slab sinking vertically
under the Hellenic arc. rather than as part of a local convection
cell (fig 5.3). In this ﬁodel the cold (presumably remnant)
oceanic crust sinks below the Aegean and the hinge of this
subducting slab at tﬁe Hellenic arc retreats at a rate determined
by the velocity of sinking. This retreat allows extension of the
Aegean b; gravitational instability because the compressive force
due to the African Eurasian collision is not great enough to
compensate for the hinge retreat. The process is similar to the
reduction in height (thickness) of a basin of water if one of the
dimensions of the basin is increased. Thus Le Pichon and Anéelier
(1981) refer to extension as resulting from a 'hydrostaﬁic head
caused by the change in boundary conditions by hinge retreat at the
Hellenic arc. In their interpretation the African-Eurasian
collision proceeds at about l'cﬁ yr‘l, whereas the Aegean extension
goes at a maximum rate éf 4 cm yr'l if the motion over time has
been constant. Of course this two dimensional stretching looks
rather d;fferent on the surface of the earth (fig 5.4), where it is
consistent with rotation of 30° about a pole near 40°N, 18°E since
the Upper-Middle Miocene transition (13M years before the

present). The major problem with this model is the mass transfer
which 1s required between mantle material behind and in front of
the sinking slab due to the oblique angle of a vertically sinking
slab. It has even been suggested that the curve of the Hellenic
arc 1s actually caused by this mass transfer (Bfooks; 1984, oral
comm.), but it is evident that the mechanism of mass transfer is

not well understood.
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Figure 5.3 A section of the tectonic model of the Aegean area by
Le Pichon and Angelier (1981). This is a schematic section of the
Hellenic subduction zone with relative motions and gravitational
forces. .

(a) F,, outward component of the gravitational force acting on the
Aegean region, owing to its hydrostatic head with respect to

ad jacent Mediterranean sea crust. F,, negative bouyancy force
acting on the sinking slab, with components F, and Fj, parallel and
perpendicular to the slab, respectively.

(b) L,, displacement of Eurasia relative to Africa: L,,
displacement of the Hellenic arc relative to Eurasia due to the
Aegean expansion (L2 is approximately 3 to 4 times larger than Ll);
. L, total displacement of the Helenic arc relative to Africa; S,
subsidence of the Aegean region due to lithospheric thinning
(double arrows), and subsequent transgressions; V, vertical motion
of the sinking slab. ’

The vertical disappearance of the sinking slab creates a 'vacuum'
which allows the hinge point at the Hellenic arc to retreat.
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Figure 5.4 The tectonic model of the Le Pichon and Angelier (1981)
in plan. The lower figure is the present configuration of the
Aegean region. The deformation is shown by the grid which was
originally square at the onset of stretching (upper figure). 1I,L:
Ionian, Levantine basins respectively.




The details of the stretching are also interesting. At first
the crust necked under tension primarily in a relatively narrow
belt in the sea north of Crete. This can be seen from the length
of the grid squares on fig 5.4, and from the depth of the sea and
the relative thinness of the crust under it (Le Pichon and
" Angelier, 1981). However this area between the present Hellenic
arc and the volcaniq arc 1s currently lécked and relatively
aseismic. For some reason extension is currently taking place
along a belt to the north of the volcanic arc, in Central Greece
and around the islands to the east. This activity has been well
mapped selsmically and by investigations of surface faults, and is
even refle;ted in the topography in features such as the Gulf of
Corinth and the bay south of Volos.

In the present chapter the model of Le Pichon and Angelier
(1979, 1981) will be adopted because the stretching factor 1.3
compared with of the original length from their model is more
compatible with the observed fieldwork data and evidence of
subsidence (a factor 1.4) compared with McKenzie's (1578) model,
which requires stretching of a factor two or so. In addition the
preferred model also explains the shallow angle of the subducting
slab below the Aegean found by the earthquake hypocentres of -

Makropoulos and Burton (1984). Previously Comninakis and

Papazachos (1980) showed a more steeply dipping slab at an angle of

about 35°, which agrees with the geometric construction of fig
5.5. The dip angle of the slab 6 = cos™ ! {4/(4+1)} = 36.8° from
the horizontal results from relative stretéhing rates of 4 cm yr'l
for the Aegean within an overall compression between Africa and

Eurasia of 1 cm yr'l. This construction follows from the simple

vertical sinking of the subducting slab with zero horizontal motion
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Figure 5.5 A geometric model of the Aegean subduction angle.

This simple geometrical construction shows how the sinking slab
(now almost totally consumed) could form an angle of 6 cos™! (4/5)
or 36.8 . This occurs if the slab sinks Yertica%ly with resqect to
the Eurasian continent to the North with a = 4, b =1 cm yr~ .

a and b depend on the definition of the coordinate frame in which
the slab sinks completely vertically. However aT + bT = const. 1is
the length of the original remnant ocean. The general expression

for 9 is @ = cos™! {;/(; + B)}.



relative to the Eurasian continent, implying a sinking velocity dug
to negative buoyancy of about 3 cm yr'l. However, this average
sinking rate implies a maximum depth of 3 em x 13 x 108 yrs or 390
km which is about double the maximum focal depth of 200 km or so
found in Makropoulos and Burton (1984), fig 5.

At the other extreme, if the slab is sinking in the coordinate
frame of the African plate, no stretching motion of the Aegean is
possible under the geometric construction of fig 5.5, since 0 =
cos—! (5/4+1) = 0, with the further requirement thét the siﬁking
slab must undergo stretching for a non-zero subducting angle.
There is no'evidence for such stretching, and in fact many of the
fault plane solutions for deeper earthquakes show high angle
reverse faults (Drakopoulos and Delibasis, 1982), indicating that
if any minor changes'are occurring in.the slab length beyond the
geometrical rigidity of fig 5.5, then they are probably
compressional.

In summary nelther of these two extreme interpretations agree
fully with the observations, so it may.be that sinking probably
takes place approximately vertically in the frame of the original
slab, with relative movements towards that position of ; cm year
from both the African and Eurasian plates. This would give an
angle of subduction 8 = cos™} {(4+%)/(5)} = 25.8°; a sinking

1; and a depth to the slab tip

velocity §=4.,5 tan 8 = 2.2 cm yr~
of 280 km. In order to match perfectly the observed maximum
sel smogenic depth of 200 km or so Europe and Africa would be

required to be moving towards a reference plane at velocities of

1 respectively.

about 8mm and 2 mm yr~
At the moment this most recent phase of the movement seems to

be almost complete, with the African foreland now right up against
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the edge of the Hellenic arc. Once the two continental masses
converge the final stages of the Aegean evolution may be seen as
being very similar to that currently ngerved in the Pannonian
basin further north (see fig 5.6 f?dﬁ$ﬂorvaCh et al, 1981).

This figure shows that many other.Mediterranean basins have
developed or are currently éctive - all of which require some
stretcﬁing or rotation similar to the current activity in the
Aegean, This basin acﬁivity could also have resulted from bbundary
forces, similar to those presently existing at the Hellenic arc;
and relying ultimately on the geometry of the African-Eurasian
collision. McKenzie's (1978) model would requiré a very complex.
internal éonvection pattern under the Mediterranean to account for
the activity, and it is perhaps easier to envisage a complex
surface geography giving rise to complex boundary conditions, since
;here is so much evidence for this elsewhere in nature.

In short it can be seen that no model accounts perfectly for
all the observations in the Aegean, far less the Mediterranean, but
Le Pichon and Angelier's model is currently the most consistent
with those data for the present area of interest.

In order to estimate a moment release rate'fr?m the preferred
model, normal faulting typically at an angle of 45° is assumed
(from the published fault plane solutions - fig. 7 of Drakopoulos
and Delibasis, 1982) which cuts through a brittle crust which is
about W = 30 + 5 km thick in Central Greece (Makris, 1976). The
length of the seismic zone (E-W extent with some curvature) is
approximately 8 + 1° of longitude, or L = 890 km. This gives a
total fault area of y2WL or 37.8 x 103 km?, and with p = 3.0 x 1010
Nm‘z, s =2 cm yr"l the moment release rate is &o = 2,27 x r019 Nu

L]
yr ! The value of s here is an average value, assuming a maximum
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Figure 5.6 Geotectonic setting of the Meditteranean back-arc
basins, after Horvath et al (1981) and Channel et al (1979). The
complexity of the collision is evident. Several cycles of opening.
and closing of an ocean or ocean remnants has left a sinuous chain
of deformation, including the Alpine mountains and the ophiolite
sequences. This complexity is not easy to explain by internal
convection forces as proposed by McKenzie (1978), but may be
explained by boundary forces resulting from the geometric shape of
oceanic remnants as proposed by Le Pichon and Angelier (1981). The
boot of Italy swings anticlockwise to close up the Adriatic, just
as the Hellenic arc swings clockwise to cover the last remnants of
ocean floor under the Aegean arc. Both processes result in the
formation of back-arc basins, and will probably end up in the final
stages of the African-Eurasian collision as land-locked basins
similar to the Pannonian.

(The figure referred to appears on the following page).
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of 4 cm yr~! extension southward in the Central Aegean sea and

Crete, and a minimum of zero at the pole of rotation. Of course
the Aegean area is much more complex than this gross first order
approximation, but it should be reasonably representative of the

total resulting from several faults distributed throughout the

region. A conservative 50% error in ﬁb was assigned to account
for this, and to allow for uncertainties in the assumed average

angle of the normal faults.

5.3 The moment-magnitude relation for Greek earthquakes

Most of the events in the catalogue of Makropoulos andeurton
(1981) do not yet have seismic moments assigned to them. This
means that, in order to estimate a total seismic moment release .
rate from the events in the catalogue a moment—magnitude relation
must first be counstructed for the area., Fig 5.7 shows the
moment-magni tude plot from tables 4.1-4.4, compared to reference
lines for stress drops of 5-50 bars and best lines obtained by
assuming B = 1.5. Fig 5.7a plots North's (1977) results from
surface waves for 1963-1971, fig 5.7b plots the new results of the
last chapter also for surface waves, and fig 5.7c plots the
miscellaneous results from body waves. One field observatian is
shown in fig 5.7c for reference oniy. It 1s immediately obvious
from the diagrams that ' the body waves produce systematically
lower values for &b' given that all of the magnitude have been

taken from the same homogeneous earthquake catalogue, because

M for a given magnitude plots systematically lower in the

o
diagram for the body wave results. This is expressed more
~rigorously in the values of A found in fig 5.7 for the two types of

data (surface and body-waves).
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Figure 5.7 Moment-magnitude plots for Greek Earthquakes.
These diagrams plot the moment magnitude data for the studies of
(a) North (1977) and table 4.2; (b) this thesis, table 4.4; (c)
various published (mainly) body-wave determinations, tables 4.1,
4.3; (d) a combination of the two surface wave studies (a) and
(b). In (c) one measurement from field measurement is plotted for
reference only, with a symbol A (for Ambraseys, 1970).

Solid lines correspond to values of stress drop of 5 and 50
bars, and dotted lines indicate the best fit to the data assuming B
= 3/2, with standard deviation errors in brackets.
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Figure 5.7 (cont.) The body wave results (c) show a marked
systematic difference from the surface waves (d). The size of this
difference, assuming B = 3/2 is 8A = {A(c)-A(b)} = 9,196 - 8.775 =
0.394. This implies that the body wave moments are lower than the
surface wave moments by a factor 106A or 2.5.
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The question then remains to decide which set of results are
correct, This was done Sy reference to the one event which has
been assigned a moment and a stress drop from field study
(Ambraseys, 1970). This particular point plots almost exactly
where it might be expected to on fig 5.7c for a stress drop of 65
bars, but the events in the sequences at’ Thessaloniki and the Gulf
of Corinth plot at much higher stress drops in fig 5.7c than they
actually had (100 bars cf about 10 bars). Assuming that the
formulation of Kanamori (1977) and Singh and Havskov (1980) used to
draw the lines of constant stress drop is not almost an order of
magnitude out, it must be concluded that the body wave moments are
on average too low by a factor 2.5.

This either represents a major error in the theoretical
derivation of the equations for the extraction of seismic moment,
or significant errors in the earth parameters being used in the
model, although the latter explanation seems very unlikely., Either
way this marked discrepancy is a very significant result of this
the§is as a whole. ;t’should be noted, however, that Scott and
Kanamori (1985) found no significant difference between moment
teasors found from first motion P-waves and phases R, and Ry of the
Rayleigh wave at 256 s, so this discrepancy may be a result of
unusual conditions in the Aeéean or the analysis of the period
range 30-70s in North (1977) and the previous chapter. However,
perhaps the most likgiy explanation is that the evenfs analysed in
fig 5.7 are typically multiple events caused by segmented faults
with two or three elements separated by a few barriers. This was
certainly true for the El Asnam event (Algeria) in 1980 (Yielding,
1985). First motion P-waves only gave about 1/3 of the total

moment for this event from surface wave studies, and it is known



that this was due to segmented rupture.

A variable B can be allowed for as expected by Kanamori and
Anderson (1975), which gives As = 10.970 (0.632) Bs = 1,206
(0.105); and A = 12.106 (0.871), B, = 0.981 (0.135) by least
squares (see fig 5.8 subscripts refer to s-surface or b-body wave
studies). In order to estimate §A given the.least squares values
for AS’ Bs a standard deviation 5AS = #0.,294 was found assuming
GBS = 0. In order to retain compatibility with (3.24) in
consideration of errors in the ffequenéy magni tude distribution,
only these latter values of As, SAS, BS are used subsequently in

this chapter.

5.4 The moment release caused by Aegean spreading

. The seismic moment release rate from the tectonic model of section
5.2 has been estimated at a rate 2.3 * 1.2 x 101° Nm yr'l. In this
section the magnitude catalogue of Makropoulos and Burton (1981)
for MS > 5.5 and the moments of tables 4.1-4.4 are used to
estimate a seismogenic release rate for the Aegean spreading.

First of all the catalogue was reduced to the aréa north of the
Hellenic trench (fig 5.9), with shallow crustal depths (h < 40 km)
and Ms > 5.5. Allowing for uncertainties in the seismogenic depth,
this volume corresponds to that used for the tectonic model of
Aegean spreading developed in section 5.2.°

After this seismic moments were assigned to all of the events
which had none given by using the moment magnitude relation and the
final values of As’ GAS, Bs quoted in the previous section.
Makropoulos and Burton (1981) found their catalogue to be complete
for MS > 5.5 since 1918, so the time period gf interest was taken

to be»1918-1981. The sum of the individual moments for this range
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Figure 5.8 The moment-magnitude relation by least squares. Here
the data from fig 5.7(c) and fig 5.7(d) are plotted. This is the
data for (a) the body wave studies and (b) the two surface wave
studies, 1963-1978, tables 4.2, 4.4. The least squares fit gives
the values of A, B shown with standard errors in brackets. It is
obvious that a systematic trend away from the theoretical lines
exists.
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ts 102 x 109 Nm, or a rate of 1.59 + 0.79 x 1019 §m yr~! allowing
for a standard error in AS' Allowing for its error this value
agrees very well with the one found from the tectonic model of 2.3
* 1.2 x 1019 Nm yr'l. These correspond to slip rates of 1.4 and 2
cm yr‘l respectively by assuming the length, depth and fault
orienations of the tectonic model discussed in section 5.2. The
remaining difference may be taken up by aseismic creep on faults,
but the large uncertainty in both of.these values (about 50%)
precludes a more detailed discussion.

What can be said, however, is that, to an accufacy of about
50%, the crustal deformation due to the spreading of the Aegean is

mostly seismic and relatively stationary (i.e. the average moment

release rate is fairly stable over short and long time periods).

5.5 The frequency magnithde distribution due to the spreading of

the Aegean

In this section the information obtained from the earthquake
catalogue and the seismotectonic model is applied to the problem of
evaluating recurrence rates due to shallow events associated with
Aegean spreading. The method will be to use the distribution (3.9)
developed in Chapter 3. However, in this case there are some
advantages over previous use of this distribution, because of the
more de;ailed 1nvestigatipn which was undertaken iﬁ these finai two
chaptefs of one particular area. These are; (1) a good test of the
validity of the assumption of geometric self-similarity from the
relatively constant strain (or stress) drops found on figs 4.12 and
4.17; (11) a good fit to the local moment magnitude relation from a
homogeneous data set of 50 points; (iii) a rough test of the

overall stationarity of the process from comparison of the moment

{
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release rate over 6 decades compared to 13 million years.

The approach derived in Chapter 3 allows for deviations from
these assumptions or for random fluctuations within given
uncertainty bounds. Assumptions (i) and (ii) are covered by
qncertainties in the stress drop via 8A(Ac), and (iii) by

uncertainties o and 6NT.

Mo? )

Table 5.1 contains the parameters and the predictions of the
distribution (3.9) found for this area by methods outlined in
Chapter 3, and the theoretical line is compared with the earthquake
ffequency data in fig 5.10. The value of mohent release rate found
. by summing the moments was used here to constfain the distribution,
because of its good agreement with the tectonic model. A value of
w = 7.65 % 0.3 MS was chosen as the upper bo#n@, since the
largest catalogue entry (which happened to occur in 1981) is 7.6
Ms for this area.

First consider the discrete frequency diagram fig 5.10a. The
most striking feature of this diagram.is the number of events with
magnitude 7.0 MS. Only 5.6, 5.7 and 5.8 Ms have more. This is
less easy to put down to magnitude uncertainty than was done for
the Californian data in Chapter 3, because many of the earthquakes
here are quite recent and are therefore more accurately
determined. fhis feature also affécts the cumulative frequency
.data in fig 5.10b, whichbonce again show a bimodal seismicity
distribution which is, this time, associated with the
characteristic peak at about 7.0 MS. The line (but not its error
bound) does not fit the second curve in the distribution above
7.0 MS too well, because most of the seismié moment release at
MS > 6.9 is taken up by the events of Ms = 7.0 (see fig 5.10¢c).

However, it may be that this characteristic peak will flétten as



Table 5.1 Parameters and predictions from the distribution (3.9)

applied to Aegean spreading

(a) Input parameters/constraints:’

mc, w o : 5455, 7.65 (0.3)

A, B : 10.970 (0.294), 1.206 (0.0)
<m> : 6.178 (0.049)

N, ‘ : 1.687 (0.218) yr-1

M 1.59 (0.79) x 10!° Nm yr~!

(b) Resulting distribution: |

N, Mg . 1.285 (0.956); 0.000 (2.703) x 1072%(Nm)~*
b : 0.558 (0.415)

2 2,2 . i 0.914, 7.304, -2.:

°xl’°X2’°§1K2 s 7.304, =2.538

(c) Predictions: Magnitudes associated with average repeat times T

T in years m(T) Om(T)
1.0 5.921  (0.100)

2.0 6.380  (0.264)

5.0 6.892 - (0.339)

10.0 7.182  (0.152)
20.0 7.381  (0.516)
50.0 7.531  (1.200)
100,00 7.588  (1.566)

200.00 7.619  (1.786)
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Figure 5.10 Frequency magnitude statistics for Aegean spreading.
(a) Discrete frequency, (b) cumulative frequency, (c) discrete and
cumulative frequency superposed. The most notable observation from
this data set is the prevalence of events with magnitude 7 M.

The lines are drawn by using the parameters of table 5.1 in the
distribution of equation (3.9).
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more datalbecome available., It was decided not to fit a double
Weibull distribution to the data because of the sparse number of
points (only four) ‘at the very largest magnitudes corresponding to
a second bump in the distribution.

In conclusion the Information theory line fits the data within
its error bounds up to magnitude 7 MS, but does not model the
effects of a characteristic peak in the discrete fréquency-at this
value. This happens because the information represented by this
peak is simply not present in the model. At least one more

parameter would be required as an additional constraint.

5.6 Characteristic earthquake models: discussion

There is one class of model which describes behaviour as seen in
fig 5.10a. This is the 'characteristic earthquake' model of
Schwartz and Coppersmith (1984), which adequately describes the
qualitative form of the bimodal distributions observed in the
cunulative frequency diagrams of nearly all of the areas
investigated in this thesis. They have applied this distribution
to the Wasatch zone and the San Andreas fault in the QEStern U.S.,
using geological data on slip rates and recurrence times. In
addition Lomnitz-Adler (1n.press) has developed a similar form of
the distribution by considering an asperity model based on
percolation theory, and applied it successfully to the earthquakes
assoclated with Mexican subduction. A recent summary of the effect
of discrete;sized asperities and barriers is given by Aki (1984).
HoweQer, the result of all of these models is a relative
enhancement of some of the higher magnitudes exactly as seen on
fig 5.10a.

Information theory can also be used to study the form of this
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distribution. For examplevLomnitz—Adler used this theory to give
the shape of the characteristic pgak of high magnitudes as a
Ggussian. By using the pfinciéle of superposition the treatment of
‘the data on fig 5.10a could be done in two segments - above and -
below 6.8 Ms - with a Gaussian and the distribution (3.9)
respectively. This could be done by using only one extré
constraint - ie'the choice of the critical magnitude at MS =

6.8, since the other parametérs would follow from the specified
forms of the distributions above and below this value, given

m,y W ﬁo etc. .

Fig 5.11a shows the effect of treating the range 6.85, 7.25
simply as an anomalous Gaussian. The increase in the moment
release rate for this range abovefthe Informat1on theory line would
require a reductioh of probabilities.at ﬁs > 7.25 to
compensate, as shown by the schematic dotted line in fig 5.11b.
This approach is not quantified further here, but it is hoped this

line of enquiry may prove fruitful in subsequent investigations.

5.7 The positioning of the characteristic earthquake peak

The average magnitude for MS » 6.9 used to define the Gaussian
curve in fig 5.11 was found to be 7.03 Ms, with g = 0.0625.

This corresponds to a seismic“momgnt of 2.81 x 1012 Nm. If a
constant strain drop de of 10”2 as in the sequence of events at
Corinth, 1981 (Kim et al, 1984) is assumed theﬁ s = AeW since
movement is normal and therefore parallel to the fault width‘(depth
in this case), and the fault length is L = Mo/pWZAe. If a

constant aspect ratio L/W = 2 is assted (Gelier, 1976; Purcaru and
Berckhemer, 1982), then the mégnitude 7.03 corresponds to a fault

width of 36km. Assuming an average dip angle of 45° implies a



(N (M) )
6 -0.50

%

lo
-1

-1.50

I
|
I
|

| D

's.50 6.80 6.50 7.00 7.58 8.00
Magnitude Ms :

wp-00

.50 6.06 8.50 7.00 7.50 8.00
Hogplrude Ms

Figure S5.11 Frequency-magnitude statistics for Aegean spreading:

a characteristic earthquake model.

(a) A Gaussian is fit to the magnitude data, giving a
characteristic peak at magnitude m = 7.031, ¢ = 0.0625 in the )
magnitude range (6.85, 7.35). The moment in this range above the
solid Information theory line leads to a lowering of the
probability of occurrence above magniutude 7.35.

(b) In this diagram the frequency data F; is smoothed over
neighbouring ranges, e.g. F,6 = (Fi-l +F +F, )/3. This
broadends the Gaussian peak without eliminating it. Here the
dotted line represents the reinterpretation in terms of the
characteristic earthquake model discussed in the text, with a
schematic interpretation of its shape at high magnitude.




seismogenic depth of 25km, which is remarkably similar to that
observed in Central Greece (i.e. =~30km)., This macroscopic block
like structure of the earth is remarkably similar to observations
over a huge range of earth materials noted by Allegre et al (1982),
Sadovskili et al (1982) and most recently by Fﬁkao and Furumoto

(1985).

5.8 Subduction under the Hellenic arc

The Hellenic arc, which forms.a curve south of mainland Greece and
Crete, is the point at which the Eurasian and African plates meet.
Le Pichon and Angelier (1981) showed that .this arc is the junction
of two continental masses from isodepth contours of tﬁe earth
surface under the Mediterranean. If a remnant océanic mass- has
initiated and maintained the spreading of the Aegean by its
vertical subduction, then it has all but disappeared at present, to
form a very rough 'amphitheatre' shape under the present surface
features of the area. From the hypocentral maps in Makropoulos and
Burton (1984) it can be seen that subduction has not taken place in
the form of a neat slab, but that the subsumed.maﬁerial has
probably been subject to internal buckling as well as vertical pull
due to megative buouancy. The internal buckling may be caused, for
example, by thermal expansion as the cold slab slowly heats up
without changing its size, or by phase changes in the mantle (Goto
et al, 1985). .

It is also interesting to note that an earlier phase of
continental collision between Africa and Eurasia was resppnsible
for the closure of an old ocean, but this phase of deformation left
a characteristic signature in the form of oceanic remnants and

ophiolite sequences in a broad swathe from Eastern Turkey to the
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Pannonian basin, and then again into the Alps (fig 5.6). However,
in this figure, there is no suggestion of the logical continuation
of such sequences in the Dinarides west of the Pannonian basin. It
is therefore tempting to suggest that the mechanism for the
formation of this basin was exactly similar to that of the present
Aegean basin, i.e. the complete disappearance by vertical sinking
of a fragment of old ocean crust, with concomitant stretching of
the adjoining continental crust. Horvath (1984) also comes to this
conclusion by mapping areas of active extension and compression.
Fig 5.12 shows the present-day seismicity associated with this
subduction, including the deeper events underneath the spreading
Aegeén, and fig 5.13 shows the frequency-magnitude distribution of
these earthquakes for the time period 1918-1981 from the catalogue
of Makropoulos and Burton (1981). The total seismic moment release
rate of the present day is 72.9 x 1017 Nm yr‘1 from the earthquake
catalogue and using the known moments or those inferred from the
moment-magni tude relation of section 5.3. This agrees very well
with previous studies by North (1973) of 88.2 x 1017 Nm yr"1 over a
similar time period and Ambraseys (1981) of 78 x 1017 Nm yr"1 over
two centuries using historical data. All of these studies show
that only a tiny fraction of the total moment ;hich would be due to
the platebtectonic disappearance of the slab is seismogenic. North
(1973), in his table 5.19, suggested a total value of 1370 x 1017
Nm yr‘l based on the African-Eurasian collision rates and the
length of the arc, so the seismogenic moment release of these three
studies is only about 5.7 - 7.2% of the total. These figures imply

that the slab must be sinking almost completely aseismically, just

TS .

like a slab of cool concrete in wet cement. The second order

QS

deformation caused by buckling of the slab may well be enough to
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Figure 5.13 Frequency magnitude statistics for subduction of the
arcCe

(a) Discrete frequency, (b) Cumulative frequency. The most notable
observation here is the break in slope at Mg 6.6. The b value
reduces above this value, corresponding to a sudden reduction in
the similarity dimension at a magnitude coresponding to a slab
width of 12 km (see text). Above Mg 6.6 faults can only enlarge

in one dimension - along their length. This 1s very similar to the
observation of Californian recurrence statistics in fig 3.5. The
lines are drawn by the Information theory parameters of table 5.2.
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explain almost all of the observed seismicity. In support of this
Goto et al (1985) recently showed that thermal expansion and phase
changes within a sinking slab contribute more to earthquake
geheratioﬁ than stick-slip sliding at its boundaries. 1In this case
the former explanation seems the more likely.

One final point is that the frequency magnitude statistics of
fig 5.13 for the subducting slab show a marked break of slope at a
magni tude 6.5 MS. This corresponds to a seismic moment of 6.4
x 1018 Nm, and with a typical strain drop Ae = s/W of 10-3, using
Ls2W for thrust or normal faults (Geller, 1976; Purcaru and
Berckhemer, 1982), a tfpical fault width of about 17.5 km is found
if u=6x 10'0 Nm~2 for deep earthquakes (North, 1973). As in.
section 5.7, W does not automaticaliy correspond to the seismogenic
width bécause the faulting may not always be at right angles to the
crust or the slab edge. 1If a typical angle of QSO is assumed for
faults caused by this internal buckling of an old ocean floor, the
fault width implies a seismogenic depth of 17.5/v2 or 12.4 km for
the original slab width. This somewhat speculative analysis in
sections 5.7 and here has identified two characteristic dimensions
above which the discrete frequency data take on new forms. For the
shallow events in the Aegean basin this dimension (25 km)
corresponds very well with the known seismogenic depth of 30 km,
and in the case of the earthquakes assoclated with subduction the
dimension (12 km) indicates an original crustal depth more like
that of a typical ocean (10 km) than a continent (30km).

Finally the parameters and predictions associated with
subduction by using the frequency-magnitude data and the inferred

short term moment release rate are given in table 5.2.



Table 5.2 Parameters and predictions from the distribution (3.9)

. applied to subduction at the Hellenic arc

(a) Input parameters/constraints:

n, W :5.55, 7.45 (0.3)

A, B : 10.970 (0.294), 1.206 (0.0)
<m> + 6.034 (0.050)

N, ¢ 1.234 (0.175) yr-!

M : 7.29 (3.64) x 1018 §m yr~!

0

(b) Resulting distribution

Ms Ay s 2.251 (1.269), =0.212 (0.468) x 1077 (xm)~!

2 2 .
oil’okg’ cklkz.
b : 0.978 (0.551)

1.609, 0.219, -0.585

(¢) Predictions: Magnitudes'associated with average repeat times T

T in years m(T) On(T)

1.0 5.651 (0.131)

2.0 5.995 (0.103)

5.0 6.489 (0.264)

10.0 6.879 (0.244)
20.0 7.178  (0.216)

50.0 7.355 (0.636)

100.00 7.405  (0.822)

200.00 7.428  (0.919)
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5.9 Summary

In this final chapter a detailed case study of the seismotectonics
and seismic hazard due to the extension and céncomitant thinning of
"the Aegean area behind the curve of the Hellenic arc was
undertaken. The tectonic model of Le Pichon and Angelier (1981)
was found to be the most consistent with all of the available
geophysical evidencé, although it is still not perfectly compatible‘
with all observations. This tectonic model gave a moment release
rate of 2.3 + 1.2 x 1019 Nm yr-! over 13 x 10° yrs 1f stretching is
due to slip on a series of normal faults dipping at 45°. By
applying the magnitude-moment relation found from surface wave
studies (A = 10.970 + 6.294, B = 1,206) to the catalogue magnitudes
of Makrop&ulos'and Burton (1981), a total catalogue moment of 1.6 *
0.8 x 10!% Ma yr~! was found for the period 1918-1981. Thus the
two moment releasé rates are in good agreement within their error
bounds, although the catalogue moment is smaller. This implies
that the process of Aegean strgtching is selsmotectonically
stationary to the accuracy of the model, i.e. about 507%.

A significant result emerged from comparison of the seismic
moment magnitude relation for body waves and surface waves. The
body wave moments for the Aegean were found to be systematicaliy
lower than the surface wave studies of North (1977) and Chapter 4,
by a factor two or three on average. This is coﬁpatible with
multiple ruptures oﬁ faults with two or three segments separated by
barriers or asperities, since many P-wave moments are evaluated
from first motions only.

The freq;ency magni tude relation of Chapter 3 was then applied
to the magnitude data on Aegean spreading. vAlthough once again the

distribution modelled the empirical distribution within its error
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bounds, there was a strong anomaly at magnitude 7 MS. This
anomaly could be interpreted with the characteristic earthquake
models of Schwartz and Coppersmitpi(1984) and Lomnitz~Adler (in
press). The peak magnitude 7 Ms-.‘implies a characteristic
block-like earth structure in the area, 6f elements roughly 72 km
long by 36 km, just as a characteristic block size of 30-100 x 22
kn was found for the New Madrid area in Chapter 2.

A similar analysis-of the moment release rate of the Hellenic
arc sho&ed that the slabvis éurrently sinking almost perfectly
aseismically, and that internal buckling caused by thermal
expanéion may well be the cause of the observed sei;ﬁicity. A
break in slope at 6.5 MS is consistent with an original slab
width of 12 km, giving another characteristic block dimension. The
implied seismogenic depths of 25km for the spreading Aegean crust
and 12 km for the depth of the original sinking slab agree well
with the known valués fof typical continental and oceanic seismic

depths (30km and 10km respectively).
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CONCLUSION

Several conclusions have already been noted in each of the
chapters, all of which have turned out to be self-contained
enquiries as well as part of the overall investiéation. In this
final section the main c&nclusions are brought together in a common
theme in order to summarise the overall progress which has been |
made. ‘ |

First of all the empirical Weibull distribution and its
extreme value equivalent, Gumbel's third distribution, were found
to be adequate desériptions bogh of the frequency magnitude data
and the geologically observed seismic moment release rate. The
error bounds in the seismogenic momeﬁt relea§e rate of a factor 2-3
up to as much as 10 reflect the sparsity of information at low
frequencies of occurrence. Several different tectonic zones were
investigated: the Eastern Mediterranean gave a good match with
short term moment releaée rates culled from a moment catalogue to
prove the internal consistency of the method; the New Madrid
seismic zone in the Eastefn U.S. showed a bimodal distribution
which could be matched to slip ratesvand fault areas on two
separate charécteristié fault sizes prevalent in the area (of 10
and 100km lengths); Southern Californian data gaﬁe a good match
with the observed slip rate of the San Andreas fault at the expense
of un&erestimating the known e;rthquake hazard at the highest
magnitudes; the mainland U.K. showed that only a fraction of the
observed crustal rebound following glaciation is taken up
seismogenically - exactly as one might expect from an elastic
rebound mechanism. All of the zones studied (with the exception of

the UK) showed a bimodal distribution, although with insufficient
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data to investigate the detail as in New Madrid. An
autocorrelation effect observed in Southern California
(overestimate of the maximum magnitude, unde}estimate in the hazard
just below this value) can be accounted for by the covariance error
in the Weibull parameters, but showed that this empirical
distribution is not necessaril& the best one to choose.

Because of these observatidns, a direct method of including
the observed maximum fault area and the slip rate was subsequently
developed’from Shannon's Information theory. By constraining the
frequency magnitude distribution using the moment release rate
observed over geological time, and the average magnitude from a
short-term catalogue, the resulting distribution is automatically
made consistent with estimates of the geological parameters. This
led to an improvement over the Weibull distribution that was most
evident in the discrete frequency statistics of the Eastern
Mediterranean. Using statistical mechanics the distribution that
was obtained could be interpreted as reflecting two processes: the
input of tectonic strain energy, and the release of that energy in
a given fault geometry. The Gutenberg-Richter b-value was related
to the geometric similarity dimension of the fault system D by b =
2D, explaining the empirical observation 0.5 < b < 115 as due to
the release of tectonic strain energy in a system witﬁ finite
volume D < 3. This observation would also explain why foreshocks
(b < 1) have a lower b value than aftershocks (b > 1). As the
stress concentrates on the asperity whose failure results in a
large earthquake the seismogenic similarity dimension decreases
below two. However once the maiﬁ event occurs smaller strains are
shddenly released in the volume surrounding the fault and the

dimension increases above two. This is one reason why the author
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believes that aftershock areas should only be treated only as an
upper bound to the overall seismogenic fault area of the mainshock,
since it is possible that changes in the stress field around the
fault after the mainshock could trigger off events away from the
primary fault area.

The distribution obtained gives an average repeat time of the
largest Californian events (MS 5 7.9) of once every 156 years,
within error bounds of 87-251 years. This is in good agreement
with direct trenching studies into the San Andreas fault: 163 years
on average, but between 55-275 years. This result indicates that
the method would be useful for evaluating long-term earthquake
recurrence intervals in areas where direct trenching is impossible
but the slip rate is known. Another application would be in using
this average repeat time to define‘a local time comstant to
indicate when a seismic gap is likely to be reactivated.
(Originally an arbitrary time of 30 years since the occurrence of a
plate-rupturing large earthqu;ke was assigned, bf way of
definition). |

ﬁaving developed an& applied the new distribution the
remainder of the thesis was dedicated to a case study of thg Aegean
area. This region already had a homogeneous magnitude catalogue
and a much less complete catalogue of seismic moments. Source
parameters over a huge magnitude range of 1.8 M ~6.7 Mg were
obtained from P-waves from the VOLNET array in Central Greece, and
from surface waves digitised from WWSSN records. The conclusions
from this study of fundamental source parameters were as follows:
the moment-magnitude relation with A= 16.0, B = 1.5 holds for both
the large teleseismic events Ms > 5.5 and the small local

earthquakes 1.8 < ML < 4.,5; typical stress drops of 1-10 bars
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and associated strain drops of 10— t;o'-lo"5 of the small
earthquakes scale very wellvwith known values of large events at
Thessaloniki (1978) and the Gulf of Coriﬁth (1981), representing
dimensional self-similarity over a moment of energy range of
ll:l0,000(!); a calibration procedure which ignored the effects of
the orientation of the seismic‘source only increased the standard
deviation in the surface wave seismic moments from 25% to 40%.

Having proven the validity of the assumption of self-
similarity in the Aegean and produced a homﬁgeneous catalogue of
seismic moments for the area, a more detailed seismotectonic
evaluation of the spreading of the Aegean area could be .
undertaken. First of all the moment magnitude relation showed that
the body wave moments are lower than the surface wave moments by,
on average, a factor two to three or so for the region. If this is
shown to be the case on a global scale this has serious
implications either for tbe theoret;cal models used. One likely
explanation for this observation is the occurrence of multiple
ruptures of two or three fault segments, since many P-wave studies
only use first motions.

By applying the momeﬁt magnitude relation to the earthquake
catalogue a seismogenic Aegean extension rate of 1.4 cm yr"1 was
found for the peribd 1918-1981 using magnitudes above 5.5 MS.

This compares reasonably well with one tectonic model (Le Pichon
and Angelier, 1981) with an average extension rate of 2 cm yr'l,
especially when large errors of about 507% exist in these
parameters. The tectonic model is based on an extension of the
idea of plate tectonics, allowing stretching to occur behind a
retreating subduction hinge. The reasonable agreement of tectonic

and seismogenic slip rates here and throughout this thesis
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indicates that the methods used have an important role to play in
investigating other second order effects of plate tectonics.

Although the Information theory distribution models the Aegean
frequency-magnitude distribution adequately within its error
bounds, there is a systematic offset caused by a prevalence of
magnitudes around 7 Ms‘ This chara?teristic magnitude
corresponds to a block like structure of large-scale fractures of
about .36 x 72 km, which implies a seismogenic depth of the
stretching p;rt.of the Aegean area of 25km, which 1s near the
observéd 30km depth. The indications are that this characteristic
peak could also be modelled by Information theory, énd it is hoped
that some future project will quantify this characteristic
earthquake model further.

By contrast with the Aegean basin, the seismic moment release
rate due to the subducting slab under the Hellenic arc is only a
fraction (about 6%) of the tectonic release expected from
stick-slip at the slab's boundaries. This is consistent with a
slab sinking aseismically, but being subject to second ordgr
internal buckling due to thermal expansion or phase changes in the
mantle. The thickness of the original remnant oceanic crust is
estimated at 12 km by a break in slope in the frequency-magnitude
statistics.

All of the above discussion has focussed on the academic
implications of the ‘thesis, but thefe are also some immediate
practical results in the form of earthquake recurrence
prpbabilities in all of the areas studied. These quantitative
estimates of the seismic hazard in the diverse areas studied will
be of immediate use to those assessing seismic risk for particular

structures, land use and design criteria for engineers in these
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earthquake-prone areas. By using the methods developed in this
thesis these decision-makers can Be a little more confident of the
seismic design loadings of buildings and communication systems
whose working lifetimes are expected to be longer than the current

length of the instrumental or historical earthquake catalogue.
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" COMPUTER PROGRAMMES
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1(i) Programme summary

This section tabulates the programmes in the order they appear in

the main text of the thesis.

Chapter 2
1A : RISK-FF7 - Weibull curve fit

1B : MOMENT-FF2 - Seismic moment release from a Weibull

distribution

Chapter 3

1¢c. MAXENT-FF1 - Preparation of discrete frequency data points
and evaluation of the average magnitude
1D : MAXENT-FF2 - The Information theory distribution of

equation (3.9)

1E : MAXENT-FF3 - Evaluation of the error bounds of equation
3.9
1F : MAXENT-FF4 - Magnitudes associated with a given average

repeat time for (3.9)
1G : MAXENT-FF5 - Long term prediction of recurrence times from
(3.9)

1H MAXENT-G — Graph file for (3.9)

Chapter 4
11 : VOL-PREP - Preparation file for spectral analysis of

VOLNET seismograms

1J : VOL-DIST - Evaluates epicentral distances and source

parameters from the VOLNET spectra



1(ii) Programme notes

Most of the programmes developed for the thesis have been kept
short, and have been well annotated in order to make thém easier to
operate and understand. This has meant that the methods chosen are
not necessarily the most gfficient in terms of computer time, and’
it is hoped to ﬁroduce a cost efficient, user friendly package at
some future point, especially for all the ﬁumerical calculations
involved in obtaining the.para;eters and predictions of the
Information theory distribution of equation (3.9). The following
notes relate the notation of the thesis (see text referring to each
programme or the glossary) to the FORTRAN names used in the
programmes for all the variables. Some descriptions of  the
algorithms used is also given where necessary.

1A

This program, which solves for the Weibull and Gumbel parameters
(w, u, A) and ¢ was modified from a listing by Makropoulos (1978).
The subroutine CURFIT, originally taken from Bevington (1969), is
the basic routine used to fit a Weibull curve to.the
frequency-magnitude data. Alterations.from Makropoulos' (1978)
listing are (a) the inclusion of a return period of the large
events from geological evidence (RT), and (b) using cumulative
frequency data rather than extreme values. This also requires

alteration of the form of the derivatives given in subroutine

FDERIV. The notation of the important parameters are as follows.

Text Symbol Programme parameter Notes
(wyuy ) G3PAR(1,2,3)
€ cov(1,J)
th :
L VAR (1) the i~ magnitude

read in from the
catalogue



A3

w-m 1/X\
= (—) Z1 in subroutine FDERIV
w=-u '
ON ON N 1.2.3
5 33 BT DERIV(1,2,3)
m=Ww - (w-u)Nx FUNCTN in function FUNCTN

1B

This program calculates 50 and <ﬁo> as defined in Chapter 2 from
the parameters of a Weibull curve fit and an extreme value curve’
fit respectively, using an analytical form for the former, but
relying on a nﬁmerical routine for the latter. The numerical
integration was done by accessing én algorithm by Gill and Miller
(1972) through a call to a standard routine CALL DOlGAF

(X,Y,N,ANS,ER,IFAIL) available on the EMAS system at Edinburgh.

First of all two arrays X,Y of N points each are set up, and then

this routine is called by this one line only, giving the
integration of Y = f(X) a; ANS = fXNf(X)dX and an error estimate
ER. IFAIL is an error flag, so thﬁé any error in running the
routine makes IFAIL # O. For a more complete description see the.

NAG FORTRAN Library manual (mark 9), Numerical algorithms group,

Oxford (1982).

Other parameters are

(w: u, A) W, U, RL
A, B, B A, B, BETA .
M RMOW
ow :
<M > . RMO
[o]

a<ﬁ°>/au DMOU etc



1C

This is a standard calculation of an average magnitude value <m>
and its standard error °<m> given a catalogue of magnitudes
mi, i=1,N. In addition the frequency magnitude data are also

counted from the catalogue entries. The notation 1is

mi VAR(I)

mc; w RMAGl, RMAGMAX

F(mj) X(J) . Discrete Frequency

N(mj) CF (J) Cumulative Frequency
AVMAG, SIGMAG

@25 Oeny ’
RNT IGNT

NT’ UNT s S

1D

This programme solves for \, and ), in (3.9). This was done by
simple iteration from starting values of A (RL1) and A, (RL2) of
RL1 = 0.5, RL2 = 0, first by setting a value of A consistent with
<m> (RMBAR) within % °{m>/10 (SIG = SIGMA/10). There is no

need to solve more accurately at this stage, since the programme
subsequently allows for * ¢ in the covariancé error

<m>

calculation, The first order iteration
RL1 = RL1 (1 + Cl * DELTAM)

is used with constant RL2 to reduce the difference between the
calculated value of <m) from equation (3.7) given RL1 and RL2 (RM),
and the actual value (DELTAM = RM - RMBAR).

Once DELTAM < SIG the routine adjusts RL2 by the iteration

A4
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RL2 = RL2 + C2 * DELTAMO

and this time compares the calculated value of <MO> (RMOBAR1)

given equation (3.7) and RL1 and RL2 (RMO) with the known value
(RMOBAR), via DELTAMO = RMO - RMOBARl. If at any time during this
iteration with constant RL1 the value of DELTAM exceeds SIG, then
the pfocedure is foliowed once.more with these new starting values
of RL1 and RL2. Finally a result is produced when DELTAM < SIG and
DELTAMO < SIGMO, SIGMO = o, >/10.

At every s;ep the calcuiated values of <m>, <Mo> and Z in
equation (3.7) are done by the nﬁmerical integration routine DOLGAF
discussed in the notes to 1B, and held in the subroutine INTEGRATE.

'The only control on the speed of convergence to a solution are
the variables Cl and C2 read in on channel 3 with the data on
<Mo>. Typical values.of 1 and 5 respectively give reasonable
convergenée, but some trial and error is required to avoid

convergence which is too slow (ie more than 20 iterations in the

program listing) or even a diverging iteration.

1E

- Having found A\, and A, the next step is to solve for their standard
errors, using (3.23). This was done by real brute force - very
high precision (REAL * 16) and by back-substitution after
diagonalising the (3x3) matrix A, with B the (1x3) covariance error

matrix in <m> and <Mo>° By comparison with (3.23), the matrix

equation

AC

1]
o

>
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is defined, where C is the covariance error matrix (02 ,62, 02 )T.
AN Onng

First of all the coefficients of A are calculated from (3.20) and
(3.23) by the subroutine EXPECTATIONS, and then A and C are
combined into a 4 x 3 matrix by a;king C the fourth column of A in
the subroutine SOLVE. SOLVE then goes on to diagonalise the mat;ix
A in two stages: first by making the first column entries below A;,

zero and then those under A,,, and writing out the intermediate

stages. Filnally C is solved for by back substitutionm.

LF

Here mT it c . are calcuiated, being defined by equation
T

(3.9), with T = 1/N, and the covariance error equation for

o given below. The notation is

mp
A, B, Ty A, B, SIGA
ws O, W, SIGW
m RMIN
Cc .
<m>, OS> RMBAR, SIGMA
NT’ 6NT RNT, SIGRNT
ISEIRYY Z RL1, RL2, Z
2 2 2
okl, cxz, cxlxz SLl, SL2, SL3
<Mo>, G<Mo> RMOBAR, SIGMOBAR

The subroutine SOLVE solves (3.9) for A;, A, given all the other
parameters, and ERROR calculates o using .partial
T

derivatives, e.g.

om
3N



The covariance error in m_,

T
om om dm om,
6m = {__T}Z Ui + {—!}2 02)\ + {_—T} {—T} 26}\ A +
T 3N L 2 AN 172
) 0 om
{-;mT—}2 A% + {-_ml}2 &N 2+ =L}12 su?
0A ONT ow

called SIG is calculated partly in this routine, and partly in the

main program.

16
This program is similar to lF except for the use of équation
(3.24) rather than the above equation. The notation is similar,

except for

N RN
BN

— DNDLL  etc
BN

in the subroutine ERROR. Once again INTEGRATE performs the
numerical integration. Then the error in the long-term average
repeat time is calculated for a given magnitude X read in omn

channel 5.

T(m) = 1/N T
1

+8T = — &N TP
N2

=-8T ™
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18
This is a simple graph routine which plots the frequency data
against the Information theory curve, made complicated by the form

of the distribution. The subroutines INTEGRATE, ERROR etc all have

similar functions to those already described.

11

This programme prepares a control file for spectral analysis from
the phase data (P wave arrival times To) in the VOLNET
bulletins and the velocity model of Makris (1977). The subroutine
FDIST calculates the distance R between the epicentre of the

th th ‘
I event at the J station - DIST (I,J). This is then converted
to a time by using 8T = (a=B)/R using given values of a and B, the
P and S wave velocities. T0 + 8T now Specify two windows for

the frequency analysis.

1J

This programme calculates the final source parameters from Q
o

and fc’ using (4.11)-(4.14). The notation is as follows

Q OMEGA(T,J) LP spectral level of
o h h
ij ) : ith event at it
station
fc FC (I,J) Corner frequency
ij
Rij : R (1,J) Source-station distance
with
M = CK * OMEGA (I,J) * R (I,J)
°3
h|
Fi = C/FC (I1,J)



A9
C and CK depend on a, § in the source layer and hence on the depth
(DEP(I)). These values are assigned in the subroutine CONSTS, and

R is calculated by FDIST.

1(1ii) Programme listings

There follows a listing of the actual programs used.



aaoaaaaaaaaaaaaaoaaaaaa
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1A

RISK-FF7

This program produces estimates and uncertainties of the parameters
of a cumulative frequency distribution from an earthquake catalogue

the form is ((w;ﬁb/(w-u))**k

This version introduces geologically estimated
average repeat times.

Streams 1:earthquake catalogue
5:terminal or control file
11:output parameter file
12:output file of extremes and plotting points

Tan Main Dec. 82 (Modified from the extreme value
program riskff5 by R.McGonigle)

DIMENSION VAR(3000),%(199),Y(199);SI5Y(199),33PAR(3),G3UN(3)
,cov(3,3),wk(199),wrRK(199),WRKY (199) ,RINT(2,5)
B ,RKA(5) ,MINTIM(5)
DATA RAD/57.29577951/,RT/I63.0/,RM/8.0/

(RT is the return period of the 'Big ones')
Set up options; initialise variables

CALL FPRMPT('Lat limits:',611)
READ(S, *)RLAT1 ,RLAT2

CALL FPRMPT('Lon limits:',!1)
READ(5,*)RLON1 ,RLON2

CALL FPRMPT('Time limits:',12)
READ(5,*)MINT,MAXT

CALL FPRMPT('Min mag:',8)
READ(S,*)RMAG! ,RMAGMAX

CALL FPRMPT('Var option:',11)
READ(5,*)IVAR

CALL FPRMPT('Unit time:',10)
READ (5,*) TUNIT

CALL FPRMPT('No. of Intervals:',17)
READ(5,*) NCOMP

DO 1 J=1,NCOMP

CALL FPRMPT('Int, time:',10)

1 READ (5,*) RINT(1,J),RINT(2,J),MINTIM(J)
RLATM=RLAT1 +(RLAT2-RLAT! )/2.
RLONM=RLON1 +(RLON2-RLON1 ) /2.
D0 2 I=1,NCOWP
TIME=MAX T-MINTIM(I)+1

2 RKA(I)=TIME/TUNIT
G3PAR(1 )=7.0
G3PAR(2)=5.

G3PAR(3)=0.7



c
C Read in magnitudes; 2ssign to VAR the correct variable
c

RMAG2=RHMAGH

NO=0

L0 RRAD(! )IYEAR,RLAT,RLON, IDEPTH,RMAG
IP(IYBAR.EQ.0)GO TO 17
IP(IYRAR.LP.MINT.OR.IY2AR.GT.MAXT)GO TO 10
IP(RMAG. LP.RMAG1 )50 TO 10
1P(RMAG.GT .RMAGHAX) GO TO 10
1P (RLON.GT.RLON2.0R.RLON. LP.RLON! )30 TO 10
IP(RLAT.GT.RLAT2.0R.RLAT. LF.RLATY )GO TO 10
DO 4 K=1,RCOMP

4 IP(RMAG.CE.RINT(},X).AND.RMAG.LT.RINP(2,K)) L=K
IP(IYEAR.LT.MINTIM(L)) GOTO 10
NO=NO+1
IP(IVAR.EQ.4)GO TO 14
Go 70 (11,12,i3),1VAR

C Accelsration -

11 V=21 64.*EXP(EM®0.7)*(R+20. )**(-1.50)

GO TO 15
C Velocity

12 V=0.725"0.%%(0.52%EM)*(R®**(-1.34))

GO TO 15
C Displacement

13 V=0.04T1 *10.**(EM%0.57 )*(R**(-1.18))

GO TO 15
C Magnitude

14 V=RMAG
VAR(RO)=V
1F(V.GT.RMAG2) GOTO 16

15 GOTO 10

16 RMAG2=VAR(NO)
30TO 10

Count the frequencies

Qaa

17 M1=RMAGI *10.0
M2=RMAG2%10.0
NPTS=M2-M1 +1
19 DO 20 I=1,NPTS
Y(1)=(RMAG2-PLOAT(1)/10.0)+2.1
20 x(1)=0.0
D0 21 I=1,NO
J=IPIXK((RMAG2-VAR(I))®10.0)+1
DO 3 K=1,NCOMP
1P(Y(J).GE.RINT{1,K).AND.Y(J).LT.RIN?(2,K)) L=X
3 CONTINUE
21 1(J3)=x(3)+1.0/rKA(L)
GOTO 28

Optional'adjustment of large events
where there ia geological evidence

QaQ

Q0

QaOaQ

Qo

aaoa

for recurrence rates

wK(1)=1./RT
NPTS=NPTS+!
DO 26 1=2,KPTS
WK(1)=x(1-1)
26 CONTINUE
DN 27 I=1,NPTS
27 x(1)=wx(1)
28 CONTINUE

Add up the cumulative frequency

D0 22 I=2,NPTS
22 X(1)=x(1)+x(1-1)

Remove zero entries

J=i
SIGY(1)=0.5
DO 24 1=2,RPTS
Z=X(1)-X(I-1)
1P (z.8Q.0) GOTO 24
J=J+
wrK(J)=x(1)
WRKY (3)=Y(1)

24 CONTINUR
NPTS=J
DO 25 I=2,NPTS
S13Y(1)=0.5
Y{1)=wRxY (1)

25 X(1)=wrK(1)

Solve equdtions and output

PLAMDA=0.01
CHISQP=10.0*%10

30 CALL CURFIT(C,Y,SISY,NPTS,3,+t ,PLAMDA,G3PAR,COV,CHISQ)

IP(ABS(CHISQ-CHISQP).IT.0.01 )GO TO 31
CHISQP=CHISQ
¢0 T0 30
31 DO 32 K=1,3
32 G3UN(K)=SqRT(COV(K,K))
PRINT 100,RLATY ,RLAT2,RLONI ,RLON2 ,MINT,MAXT,TUNIT,
RMAGH, TVAR, (G3PAR(K),G3UN(K),K=1,3),

“WRITR(41,101 )RLATM, RLORM

wrIre(11,102)33PAR,G3UN,cov (1 ,2) ,cov(1,3),c0v(2,3),WPTS

WRITR(11,102)RLATY ,RLAT2,RLON1 ,RLON2
4RITE(12,103)RLATM, RLONN, G3PAR, RPTS
WRITR(42,104)(X(X),Y(K),K=1 ,§PTS)
100 PORMAT(' **3umbel type 3 distribution program®*'/
11, 'The area is',2(P10.4,"' to’,P10.4,10)/

cov, (RINT(1,J) ,RINT(2,J) ,MINTIN(J),J=1 ,RCOMP)

TV



1¥,'The time period is ',14,'-',14/ . 50 CORTINUE
1T, 'and the unit time interval is',I4,'yrs.'/ 51 DO 53 J=i,NTERMS

- 1%, "The magnitude cut-off is',F10.4/ D0 53 K=1,J
_ t{,"and the variable is',I4/ 53 ALPHA(X,J)=ALPHA(J,K)
- 1X, "the parameters are ',3(P10.4,'(",F10.4,')')/ ¢
- 1K, 'The covariance matrix is:',3(/1T,3710.4) - g Bvaluate chi square at starting point
- IX,//'The intervals are:',5(/1X,¥6.2,76.2,16)) )
101 FORMAT( 'CBLL ',3P10.4) ’ 6! DO 62 Iﬂ!.ﬂgTs
102 PORMAT(1X,9E14.6,14) 62 YPIT(I)=FUNCTN(X,I,A)
103 PORMAT(5%14.6,14) ! 63 CHISQ =PCHISQ(Y,SIGMAY,NPTS,NPREE,MODR,YPIT)
104 PORMAT(1X,9814.6) C
STOP C Invert modified curvature matrir to find new parameters
END c
SUBROUTINE CURFIT(Y,Y,SIGMAY,NPTS,NTERNS,MODE,FLAMDA, 7V DO 74 J=t1,NTERMS
A,COV,CHISAQR) DO 73 K=1,NTERMS
¢ - T3 ARRAY(J,K)=ALPHA(J,K)/DSQRT(ALPHA(J,J)*ALPHA(K,K))
C Makes a least squares fit to a non-linear function T4 ARRAY(J,J)=1.+PLAMDA
c . 80 CALL MATINV (ARRAY,NTSRM3,DRT)
REAL*S8 ARRAY(10,10),A1P4A(10,10),BRTA(10) 81 DO 84 J=1,NTERMS
DIMENSION X(|99),Y(l99).SIGHAY(l99),Y§IT(I992,:EIGHT(I99) géngAéJz rERNS
DIMENSION A(3),B DELTAA(3),c0Vv(3,3),D0ERIV(3 =,
c ) (3),863), ¢ 3.3, 84 B(J)=B(J)+BETA(K)*ARRAY (J,K)/DSQRT (ALPHA(J,J ) *ALPHA (X ,K))
11 NPRE%=NPTS-NTERMS c
IP(NFREE) 13,13,20 C If Chi square, increase flambda and try again
; c
13 CHISQR=0.
’ GO Tg 110 91 DO 92 I=1,RPTS
c 92 YPIT(I)=FUNCTN(X,I,B)
¢ Bvaluate weights 93 CHISQR=FCHISQ(Y,SIGMAY,NPTS,NFREE,MODE,YPIT)
c 1P (CHISQ! -CHISQR) 95,101,101
20 DO 30 I=1,NPTS 95 PLAMDA=10.*PLAMDA
21 IF (MODB) 22,27,29 GO TO Tt
22 17 (Y(1)) 25,27,23 c
23 WSIGHT(I)=1./Y(1) C Bvaluate parameters and uncertajinties
GO TO 30 c
25 WBIGHT(I)=1./(-Y(1)) 10t DO 102 I=1,NTERNMS
G0 TO 30 DO IO? J=;,NTERHS
102 ALPYA(I,J)=0.D0
27 WBIGHT(I)=1. ,
50 TO go) DO 103 I=1,NPTS
29 WBIGHT(I)=1./SIGHAY(1)**2 CALL PDERIV(X,I,B,DELTAA,NTERNS, DERIV)
30 CONTINUB DO 104 J=1,NTERHS
c DO 194 K=1,J
g BEvaluate alpl.la and beta matrices :g; géﬁg;gaéK)’\m“A(J-K)’VEIGHT(I)'DBRIV(J)'DERIV(K)

31 DO 34 J=1 ,NTERMS
BETA(J)=0.D0
DO 34 K=1,J

34 ALPHA(J,K)=0.D0

41 DO SO I=1,RPTS
CALL FDERIV (X,T,A,DELTAA,NTERMS,DERIV)
DO 46 J=1,NTERMS
BETA(J)=BETA{J)+4BIGHT (T)*(Y(I)-PUNCTN(X,T,A))*DRRIV(J)
DO 45 K=1,J

46 ALPHA(J,X)=ALPHA(J,K)+WRIGHT (1)*DRRIV(J)*DERIV(K)

DO 105 J=1,NTERNS
DO 105 X=1,J
105 ALPHA(K,J)=ALPHA(J,K)
D0 106 J=1,NTERMS
DO 106 K=1,NTERMS
106 ARRAY(J,K)=ALPHA(J,K)/DSQRT(ALPHA(J,J)*ALPHA(K,K))
CALL MATINV(ARRAY,NTERMS,DET) .
DO 107 J=1,NTERUS
A(J3)=B(J)
DO 107 K=1,NTERMS

cTy



c

aaQa

C
c
C

Qaa

107 cov(J,K)=ARRAY(J,K)/DSQRT(ALPHA(J,J)*ALPHA (K,K))
FLAMDA=FLAMDA/10.

110 RETURN
END
FUNCTION PUNCTN(X,1,A)

Returns the magnitude associated with the probability X(1)

DIMENSION X(199),A(3)
PUNCTN=A(1)-(A(1)-A(2))*(x(1))**A(3)
END

FUNCTION PCHISQ(Y,SIGMAY,NPTS,NFREE,MODE,YPIT)
Returns the value of reduced chi-square

DOUBIE PRECISION CHISQ,WEIGHT
DIMENSION Y(199),SIGMAY(199),YPIT(199)
11 CHISQ=0.
12 IF (NFREB) 13,13,20
13 PCHISQ=0.
GO TO 40

Accumulate chi square

20 DO 30 I=1,NPTS
21 IP (MODE) 22,27,29
22 1P(¥(1)) 25,27,23
23 WBIGHT=1./Y(1)
GO TO 30
25 WRIGHT=1./(-Y(1))
GO 70 30
27 WEIGHT=I.
GO TO 30
29 WEIGHT=1./SIGMAY(I)**2
30 CHISQ=CHISQ+WEIGHT*(Y(I1)-YPIT(I))**2

Divide by no. of degrees of freedom

31 PREE=NFPREE
32 PCHISQ=CHISQ/FREE
40 RETURN
END
SUBROUTINE PDERIV (X,I,A,DSLTAA,NTERMS,DZRIV)

Returns the partial derivatives DERIV

DIMENSION X(199),A(3),DBLTAA(3),DRRIV(3)
21 =X(1)

Z2=71%%5(3)

DERIV(1)=1.-22

DRRIV(2)=22
DERIV(3)=-(Aa(1)-A(2))*z2%A10G(21)

c

C Returns the inverse of ARRAY in place and its determinant DRT

[

Qo

Qaa

aaa

RETURN
END
SUBROUTINE MATINV (ARRAY,NORDER,DET)

DOUBIZ PRECISTION ARRAY,AMAX,SAVS
DINENSION ARRAY(10,10),TX(10),3K(10)
DET=1.

DO 190 K=1,NORDER

Find largest element ARRAY(I,J) in rest of matrix

AMAL=0.
21 DO 30 I=K,NORDER

DO 30 J=K,RORDER :
23 TP (DABS(AMAR)-DABS(ARRAY(I,J))) 24,24,30
24 AMAX=ARRAY(T,J)

IK(K)=1

JK(K)=3
30 CONTINUE

Interchange rows and columns to put AMAX in ARRAY(K,K)

31 IF (AMAK) 41,32,41
32 DET=0.
GO TO 140
41 I=IK(K)
1° (1K) 21,51 ,43
43 DO 50 J=1,KORDER
SAVE=ARRAY(X,J) .
ARRAY (K,J)=ARRAY(T1,J)
50 ARRAY(I,J)=-SAVE
51 J=JK(K)
IF (J-K) 21,61,53
53 DO 60 I=1,NORDER
SAVE=ARRAY(I,K)
ARRAY (I,K)=ARRAY(I,J)
50 ARRAY(I,J)=-SAVE

Acgumulate elements of inverse matrix

6}. DO 70 I=1,NWORDER
¥ (1-K) 63,70,63
63 ARRAY(T,K)=-ARRAY(I,K)/AMAX
70 CONTINUB
7' DO 80 I=i,NORDER
DO-80 J=1,NORDER
IP (I-K) 74 ,80 ,74
74 17 (J-K) 75,80,75
75 ARRAY(I,J)=ARRAY(I,J)+ARRAY(I,K)*ARRAY(K,J)
80 CONTINUB
81 DO 90 J=1,NORDER

€TV
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I¢ (J-K) 83,90,83
83 ARRAY (K,J)=ARRAY(X,J)/ANAX
90 CONTINUE

ARRAY (K,K)=1./AMAX
100 DET=DET*AMAX

Restore ordering of matrix

101 DO 130 L=1,NORDER
K=NORDER- L+1
J=1K(X)
IP (J-K) 111,111,105
105 DO 110 I=1,NORDER
SAVE=ARRAY(I,K)
ARRAY (I,K)=-ARRAY(I ,J)
110 ARRAY(I,J)=SAVE
11 1=JK(K)
IF (I-K) 130,130,113
113 DO 120 J=1,NORDER
SAVE=ARRAY(K ,J)
ARRAY(K,J)=-ARRAY(I,J)
120 ARRAY(I,J)=SAVE
130 CONTINUE
140 RETURN
END

-

AN



1B
MOMENT-FF2
C ‘
¢ This program computes Mo(w,u,lambda,A,B) for model
¢ I (Weibull frequency distribution) and
¢ II (Gumbel's third distribution)
C
C Input streams
C . ' .
¢ 11 : w,u,lambda set from risk-ff5 or -ff7
o]
C Output gtream
o } ' .
C 6 : Mo for both models
C
¢ Ian Main Jan. 33
€
o] PYOTY TR R R IS PR L AR L P L sl n s L g
C
DATA A/15.58/,8/1.5/
DATA C/1.59/,D/3.97/
READ (11,1) W,U,RL,SW,SU,SL,SWU,SWL,SUL
1 FORMAT (/,1X,9%14.6) '
o .
C Optional change Mb-Ms
C
A1=A-B%*D
B1 =B¥*C
c* Al =Al
c* Bl =B
Al=A1-25.
Wl=W
U1=u
RLI =RL
SU1=3U
SW1=SW
SLi =SL
C
C 6363038 030 35 3030303 T 8 30 I I I 320 53 3 I I I8 36 I N N BN NN
C
C (A) <MO> FROM GUMBEL THREE
C -
C EVALUATE MO IN UNITS OF 10%*25 DYN CM YR(-1)
C
RMOW=10.0%*( Al +B1 *W)
BETA=B1*AL0G (10.0)
C1=BETA*(W-U)
c .
C FEVALUATE THE INTEGRALS FI,FZ,F3
C

REAL*8 £ (1001),Y1 (1001 ),Y2(1001),Y3(1001)
REAL*S F1,F2,F3,81,82,83

DO 10 I=t,1000

£(1)=0.5+FLOAT(T1)/2000.0

AlS
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ARG=(-ALOG(X(1)))**RL
Y1(1)=EXP(-C1*ARG)

12 Y2(1)=Y1 (1)*ARG
DO 20 1=1,999

20 Y3(1)=Y2(1)*AL0G(-AL0G(X(1)))
CALL DOIGA®(X,Y1,1000,F1,%1,0)
CALL DO1GAR(X,Y2,1000,F2,82,0)
CALL DO!3AF(X,Y3,999,F3,83,0)

EVALUATE MO AND ITS PARTIAL DERIVATIVES

RMO=RMOW*P|
DMOU=RMOW*BETA®F2
DMOW=RMO*BETA - DMOU
DMOL=(-C1 ) *RMOW*F3

EVALUAT® TOTAL COVARTANCE ERROR INCLUDING 5IGMA(W,U,RL)

SMOU=DMOU *SU

SMOW=DMOW*SW

SMOL=DMOL®*SL
SHO=(SMOU**2+3MOW**2+SMOL*2)
SMOW=DMOW*DNOU*SHU
SMOL#=DMOW*DMOL*SWL
SMOLU=DMOU*DMOL*3UL
SMICOV=SHO+2*( SHOUW+SMILW+SMOLY )
SMO=3H0**0.5

SMOCOV=3M0COV**).5
SMONBG=RMO*(1 .~ . /(1 . +SHOCOV/RMO))

AR RSB REBHFRBRBRSR R BB RBR NSRS RDHR RS

(B) M9(BAR) FROM N(M)

EVALUATS M9(BAR) AND ITS PARTIAL DERIVATIVES

RMOW! =10. **( Al +BI *¥1 )
C2=BETA*(WI -U1)

RK1 =1 .0/RLA

SK1 =-SL1 /(RLY #*2)
RKP=RK1 +1 .0

G=GAMMA(RKP)

AK=C2**RKI
RMOBAR=3*(RMOW! /AK)
DMDU=RMOBAR*(RK! /(W1 -U1))
DMDW=RMOBAR*( BETA-RKI /(W1 -U1))
DMIK=RMOBAR*(1 .0-ALOG(c2))

EVALUATE THE COVARIANCE ERROR IN MO(BAR) AND
DETERMINE THE RATIO <M7>/MO(BAR)

aaoaoaaa

W

100
101

102
103
104
105
106
197
108
199
1o
"

SMU=DMDI*SU1

SHW=DMDW®*S41

SMK =DMDK *SK1
SMOBAR=(SMU®#2+SNU**2+5MK #22)
SMUW=DMDW*DHDU*SWU
SMLW=-DMDY*DMIK *SWL*{ RL} #*2)
SMUL=-DMDUYDMDK*SUL®*(RLI **2)
SIGCOV=SMOBAR+2*( SMUW +3M LW+SMYL)
SMOBAR=SMOBAR™N.5
SIGCOV=3I3COV**0.5
SIGNEG=RMOBAR®*(1 .~1./(1 . +SIGCOV/RMOBAR))
RATTIO=RMO/RMOBAR

BB ERARRRARRARRRADSAHDSRNBERBB RN

RITE OUT -RESULTS
VRITE (6,100)

WRITE (6,101) ¥,U,RL

WRITE (6,110) A,B

WRITE (6,111) C,D

WRITE (5,103) RMO,SMOCOV
WRITE (6,104) SMONEG

WRITE (6,105) RMOBAR,SIGCOV
WRITE (6,109) SIGNEG

WRITE (6,106) RATIO

WRITE (6,107) DMOW, DMOU,DMOL

WRITE (6,108) SMOW,SMOU,SMOL

PORMAT(1(, ‘Bastern U.S. (Stress drop 100 Bars)'/)
FORMAT(2¢,' w=',¥8.3,' U=',F8.3,"' L=',F8.3/)
PORMAT(2X, 'Wi1="',98.3," 'Ut=",r8.3, 'L =' ,F8.3/)

PORMAT(2X, "<MO>=",¥8.3," SIGMA= +',F8.3," #10%#25 pYN C¥ YR(-1)')

PORMAT (25%,'-*,¥8.3) ‘
PORMAT(2€, '(MO)=",F8.3," SIGMA= +',p8.3)
PORMAT(/® <MO>/MO(BAR)=",P10.4)

PORMAT(/'dMo/dw:4Mo/du:dMo/d1=",P10.4,": ' ,FI10.4,"':" ,F10.4)
FORMAT(/"sMo(w):sMo(u):aMo(1)=",P10.4,"':' ,F10.4,": "' ,710.4)

PORMAT(25¢,'-",¥8.3)
PORMAT (1€, 'A=",P5.2,° B=',P4.2//)
PORMAT (1X,'C=',F5.2,' D=",P4.2//)

STOP
END
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1C
WARENT-FF1

This program computes the single frequency
data points, the total no. of events/year Nt +/- sigma, and the

average magnitude <m> +/- sigma.
Sigma is the Standard error in the mean.
Input streams

t+ : Risk catalogue

Output gstreams

2 : {m>, Nt data
12 : Cumulative frequency data

Ian Main Jénuary 1983

DIMENSION IYR(5000),VAR(5000),X(199),Y(199),%c(199),Yc(199)
DATA RAD/57.29577951/,RT/650.0/,RMT/10./,8TA/0.00001 /

Set up options; initialise variables

CALL PPRMPT('Lat limits:',11)
READ(5,*)RLAT1,RLAT2

CALL PPRMPT('Lon limits:',11)
READ(5,*)RLON1 ,RLON2

CALL FPRMPT('Time limits:',12)
R2AD(5,*)MINT ,MAKT

CALL FPRMPT('Min mag:',8)
READ(5,*)RMAG! ,RMAGMAX

CALL FPRMPT('Var option:',t!)
READ(5,*)IVAR

RLATM=RLAT! +(RLAT2-RLAT1 )/2.
RLONM=RLON1 +(RLON2-RLON1 ) /2.
NYR=MAXT-MINT+1

change unit time to 1yrs.
RKA=FLOAT(NYR)/1.
Read in magnitudes; assign to VAR the correct variable

RMAG2=RMAG1
NO=0

10 RBAD(} )IYEAR,RLAT,RLON, IDEPTH, RMAG
IF(IYEAR.®Q. O)GO ™ 17
IF(TYEAR.LT.MINT.OR.IYEAR.GT .MAXT)GO TO 10
IF(RMAG.LT .RMAG1)G0 TO 10
IF(RMAG.GT .RMAGMAX) GO TO 10
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I#(RLON.GT .RLON2.0R.RLON. LT .RLONI )30 TO 10
IP(RLAT.GT.RLAT2.0R.RLAT. IT.RLAT1 )30 TO 10
NO=NO+1
IP(IVAR.EQ.4)30 TO 14
GO0 TO0 (11,12,13), VAR
Acceleration
11 V=2164.%EXP(EM*0.7)*(R+20.)**(-1.80)
50 T0 15
Velocity
12 V=0.726"10.4%(0.52*EM) *(R**(-1 .34 ))
30 TO 15
Displacement
13 V=0.0471 %10.%*(EN*0.57 )*(R**(-1.18))
GO TO 15
Magnitude
14 V=RMAG
VAR(NO)=V
IYR(NO)=IYEAR
IP(V.GT .RMAG2) GOTO 16
15 GOTO 10
16 RMAG2=VAR(N?)
GOTO 10

Count the no. of magnitudes

17 M1=IPIX(RMAGI *10.0+0.05+ETA)
M2=IPIXK(RMAG2*10.0 +3T4)
NPTS=M2-M1 +]

19 DO 20 I=1,NPTS
Y(1)=(aMAG2-PLOAT(I)/10.0)+D.1

20 X(1)=0.0
DO 21 I=1,N)
J=IFIX((RMAG2-VAR(I)+ETA)*10.0)+i

21 X(J3)=x(J)+1.0

Add up cumulative frequencies
and normalise to unit time

J=1
xe(1)=x(1)
Yc(1)=y(1)
00 22 1=2,KPTS
IP(<(I).1E.ETA) GOTO 22
J=J+1
1C(J)=x(1)+xc(3-1)
Ye(a)=v(1)

22 CONTINUS
DO 23 1=1,J

23 xo(1)=xc(1)/RKA
DO 24 1=1,NPTS

24 X(1)=1(1)/RKA

c
C Output 12

Qaaoaaoaa
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WRITE (12,1) J
t PORMAT(70X,14)

wrITE (12,2) (vc(r1),Yc(r),1=1,3)
2 PORMAT (1X,9914.5)

WRITR(12,1) NPTS

WRITE(12,2) (X(1),Y(1),1=1,HPTS)

Optional adjustment of large events (m>RMT)
where there is geological evidence
for recurrence rates

DO 26 I=\,NPTS

IP(Y(I).LT.RMT) GOTO 26

(1)=X(1)*PLOAT(NYR)/RT
25 CONTINUE

RNT1 =PLOAT(NO)/RKA

evaluate <m> and Nt with standard errors

CALL SIGNT(IYR,NYR,NO,RNT,SIGRNT)

IP{RNT.GT .RNT1 +ETA .OR .RNT. LT.RNTI -ETA) WRITE (6,27)

27 PORMAT( ' ERROR IN'NT ')
CALL SIGMA(VAR,NO,AVMAG,SIGMAG)

Print results
WRITE (6,99) WO

99 FORMAT(1X,'Total no. of events : ',I14/)
WRITE (6,100) RMAG! ,AVMAG,SIGMAG

100 PORMAT (1%, °'Min mag:',P5.2,' Ave mag:',P6.3,' sigma:',¥6.3)

WRITE (6,101) RNT,SIGRNT

101 PORMAT(/1X,'Nt:',P8.4,' sigma=',¥8.4," per yr')
WRITE (2,*)RMAG) ,RMAGMAX ,AVMAG,SIGMAG,RNT, SIGRNT

STOP
END

SUBROUTINE SIGNP(IYR,NYR,NO,RNT,SIGRNT)

DIMENSION SUM(200),8SUM(200),WRK(200), IYR(5000)

DO 1 I=i,NYR
1 sumM(1)=0.

J=1

NSUM(1 )=t

DO 10 I=2,N0
IP(IYR(T).NE.IYR(I-1)) GOTO 2
SUM(J)=SuM(J)+1.
HSUM(J)=1
GOT0 10

2 J=J+1

10 ‘CONTINUB
WRK(1 )=nsuM(1)

8TV



DO 20 J=2,NYR

WRK(J )=NSUM(J)-NSUN(J-1)

CALL STGMA(WRK,NYR,RNT,SISRNT)
RETURN :

END

SUBROUTINE SIGMA (X,N,XBAR,SY)

DIMENSION X(5000)
(SUM=0.

DO 1 I=1,R
XSUM=X3UM+X (1)

X BAR=XSUM/N

SUMD=0.
DO 2 I=1,N

DEV=(K (1)-UBAR)**2
SUMD=SUMD+DEV
SK=SUMD/N/(N-1 )
SX=SQRT(SK)

RETURN

END

SUBROUTINE ERR! (RM,SM,RN,SN,S%0)

B! =SM/RM
B2=SN/RN

B3=E1 ##2+g2##2
SMO=RM*3QRT(E3)
RETURN

END
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1D
MAXENT-FF2

This program evaluates 1} and 12 from starting
parameters of mmin,mmax,<m>,<{Mo> for the distribution

p(m)=exp(-11m-12Mo(m)).

where Mo(m)=10%*(A+Bm)

Input streanms:

2 : magnitude data from maxent-ffi
3 : moment data from maxent-dat

Output streams:

4 : 14,12,2
6 : Output viewing file

Tan Main July 1983

REAL*S 7

READ (2,*) RMIN,RMAX,RMBAR,SIGMA,RNT
SIG=SIGMA/10.

READ (3,*) A,B,RMOBAR,SISMOBAR,POWRR,C!,C2
SIGMO=SIGMOBAR/(10.*RNT)

Set initial values of 11 andl2
Set A to the same units as <Mo>

A=A-POWER
RL=.5*AL0G(10.)
RL2=0.

RMOBAR! =RMOBAR/RNT

Itefape 20 times

WRITE (6,11)

11 FORMAT(TX,'<m>',8%,'<Mo>',10%X,'2',10%, 'b",12%,'L2"/)
DO 100 I=1,20
CALL INTEGRATE(RMIN,RMAX,A,B,RL,RL2,Z,RMO,RY)
RL1=RL/ALOG(10.)
RMOB! =RMO*RNT
WRITE(6,150) RM,RMOB!,Z,RLI ,RL2

150 FORMAT(1X,5F12.8)

RATM=RM/RMBAR
RATMO=RMO/RMOBAR1
DELTAM=RM-RMBAR
DELTAMO=RMO-RMOBAR!
DEL=DELTAMO/RMO
DRATMO=ABS (RATMO-1 .)
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IP(ABS(DELTAM) . LP.SIG .AND.ABS(DELTAMO) . LT .SIGHO) 30TO 200
1P (ABS(DELTAM).LPF.SIG) GOTO 2
RL=RL*(1 .+C1 *DELTAN)
GOTO 100
2 RL2=RL2+C2*DELTANO
100 CONTINUE
- WRITE (6,20)
20 PORMAT(/1X, 'Iteration unsuccessful to required accuracy')
GOTO 300

200 WRITE (5,30) RLI,RL,RL2
30 PORMAT(/1X,'The answer is b=',P12.6,
_u=tm2.6," 12=' ,P12.6) '
WRITE (5,15)
15 PORMAT(/,38¢,'.")
WRITE (6,12) RMIV,RMBAR,SIGMA,RMAX ,RMOBAR, SIGMOBAR
TPOW=IPIX (POWER+).001 )
WRITE (6,16)
16 FORMAT(/1¢,'.")
WRITE(5,14) IPOW
14 PORMAT(1X, Mo in units of 10**' 12,' dyn cm yr(-1)")
A=A+POWER .
WRITS (6,13) A,B,RNT
12 PORMAT (11,' mo=',P4.2,' <md=',PF5.3,°'+/-',¥5.3,
_' mmax=',P4.2,' Mo=',F5.3,'+/-',¥5.3)
13 FORMAT(/1¢,'A=",P6.2,' B=',P6.2,' Nt=',F¥6.2)
WRITE (4,*) RL,RL2,2 :
300 CONTINUE
STOP
END

SUBROUTIN% INTEGRATE (RMIN,RMA,A,B,RL,RL2,FPt,RMO,RN)

REAL®3 <(101),Y1(101)
REAL*S Y2(101),Y3(101)
REAL®*S P1,P2,F3,B1,E2,R3,RN0N

BTA=0.001
D0 5 J=1,100
K(J)=RMIN+PLOAT(J-1 )*(RMAX-RMIN)/100.
RMOM=10.0%*(A+B* (J))
Y1 (J)=BXP(-RL* (J)-RL2*RMOM)
Y2(3)=x(3)*11(J)

5 Y3(J)=RMOM*Y1 (J)

CALL DOV 3AP(X,Y1,100,F1,81,0)
CALL DOI 3AP(X,Y2,100,F2,%2,0)
CALL DO15AP(X,Y3,100,73,%3,0)
RM=P2/FI
RMO=F3/PI
IP(®1/F1 . LT.ETA) GOTO 6
WRITE (6,20)

20 FORMAT( 1X,'BRROR IN 2 > .1%")

6

60
7

40
400

IF (B2/P2.LP.EBTA) GOTO 7

WRITS (6,60)

PORMAT ( 1X,'ERROR IN <> > .1%')
1P(B3/F3. LT .ETA)30T0 400

WRIT® (5,40)

PORMAT(/1¥, 'Brror in Mo integration > .1%¥')
CONTINUE

RETURN

END
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1E
MAXENT-FF3

This program evaluates the covariance error
in 1! and 12

Input streams:

2 : data file from maxent-ff1 (magnitude info)
3 : data file for moment info

4 + 11,12,2

OQutput streams:

6 : output viewing file

T : covariance error

Ian Main November 1983

REAL* 6 A(5,5),8(5),c(5)

READ (2,*) RMIN,RMAX,RMBAR,SIGM,RNT
READ (3,*) Al,B!,RMOBAR,SIGMO,POWER
SIGMO=SIGMO/RNT -
READ (4,*)RL1,RL2,7

Al =Al -POWER .

CALL EXPECTATIONS(RL!,RL2,RMIN,RMAK,A1,BI ,BXM,WKM2,
_EXMO,EXMO2, BXMOM)

P=EXM**2-EXM2 -

Q=EXM*EXMO-EXMOM

R=EXMO**2-EXM02

Set up array A(3,3)

A(3,1)=p**2
A(3,2)=Q%*2
A(3,3)=2%p*
A(2,1)=Q%*2
A(2,2)=R**2
A(2,3)=24R*
A(1,1)=P"
A(1,2)=*R
A(1,3)=P*R+Q*Q

Set up array B(3)

B(3)=3IGM**2
B(2)=SIGMO**2
B(1)=0.
WRITE (5,9)
9 FORMAT(/,' Matrix coefficients:'/)
D0 4 I=1,3
4 WRITE (6,10) ((A(1,J),3=1,3),B(I))
10 PORMAT (/,4F11.7)
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Solve for covariance array 2(3)

CALL SOLVE(A,B,C) .
wrITZ (6,11) (c(1),1=1,3) .

11 PORMAT (//,' Covariance error: sli,sl2,su2',//,3F11.7)
wRITE(7,*) (c(1),1=1,3)
STOP
SND

SUBROUTINE EXPECTATIONS(RLY,RL2,RMIN,RMAY,A,B,EXN,
_EX42,EXHO,BTNO2, BKMOM)

REAL*S X (101),Y1 (101),Y2(+01),¥3(101)
REAL*S Y4(101),¥5{101),Y6(101)
REAL®S P1,F2,P3,P4,F5,F6
REAL*S B!,E2,E3,%4,85,86
D0 5 J=1,100
X (J)=RMIN+FLOAT(J)*(RMAX -RMIN)/100.
RMOM=10."*(A+B*(J))
11 (J)=BxP(-RL1*{(J ) -RL2*RHMOM)
Y2(J3)=x(3)*11 (J)
¥3(3)=x(3)*¥2(J)
Y4(J)=rRMON* 1 (J)
Y5(J )=aMoM®*Y4(J)

5 Y6(J)=RMOM*Y2(J)

CALL DO1GAP(X,Y1,100,P1,81,0)
CALL DOIGAF(X,Y2,100,72,%2,0)
CALL DO1GAP(X,Y3,100,F3,83,0)
CALL DO13AF(X,Y4,100,F4,84,0)
CALL DO13AP(£,Y5,100,75,85,0)
CALL DO13AF(X,Y6,100,76,%6,0)

2=F
BXM=P2/2
EXM2=F3/2
EXMO=F4/Z
EXMO02=F5/7
B{MOM=P6/2
RETURN

END

SUBROUTINE SOLVE(A,B,C)

REAL"M16 A(5,5),8(5),c(5)

A(1,4)=8(1)

a(2,4)=8(2)

4(3,4)=8(3) .
ZERO 1ST COLUMN

cr=A(1,1)/a(2,1)

QaaQ

QaQ

c2=a(1,1)/a(3,1)
A{2,1)=0. :
a(2,2)=a(2,2)%*c1-a(1,2)
A(2,3)=a(2,3)*c1-2(1,3)
A(2,4)=4(2,4)*1-A(1 ,4)
A(3,1)=0.
A(3,2)=a(3,2)*c2-A(1,2)
A(3,3)=a(3,3)*¢2-1(1,3)
A(3,4)=A(3,4)%c2-A(1,4)
WRITE (6,9)

9 PORMAT(/,' Zero firast column:'//)~
DO 1 I=1,3

I WRITE(5,10) (A(I,J),J=1,4)

10 PORMAT(/,4F11.7)

SECOND COLUMN

c3=4(2,2)/A(3,2)
A(3,2)=0.
A(3,3)=a(3,3)%C3-A(2,3)
A(3,4)=4(3,4)%C3-A(2,4)
WRITE (6,8)

8 PORMAT (/,' Zero second column’,//)
D0 2 I=1,3

2 wriTB(5,10) (A(1,3),J=1,4)

SOLVE POR C BY BACK SUBSTITUTION

c(3)=a(3,4)/A(3,3)
c(2)=(a(2,4)-a(2,3)*c(3))/a(2,2)
c(1)=(a(1,4)-a(1,3)*c(3)-a(1,2)%c(2))/a(1 1)
RETURN :

BND
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MAKENT-FF4

Magnitudes associated with.given ‘
return Periods for the frequency distribution
F(m)=Sn(m)dn where n(m)=Nt.exp(-RL|*n-RL2*¥0)/%

fnput streams:

: magnitude range and <m>
+ A,B and <Mo>
+ RL1,RL2,Z

: SLi,SL2,SL12

EURF SISt N

Qutput streams:
6 : All parameters + m(T)

Ian Main February 19384

aQaoaouaaaaaoaoaoaaoaaoaaoaaaaaaaaaaQ

SIGA=0.2*AL0G(10.)

SIGW=0.3

READ (2,*) RMIN,RMAK,RMBAR,SIGMA,RNT,SIGRNT
READ (3,*) A,B,RMOBAR,SIGMOBAR,POWER

READ (4,*) RL1,RL2,2

READ (7,*) SI1,SL2,SLi2

S1=SQRT(SL! )
$2=SQRT(SL2)
BV=RL! /ALOG(10.)
3BV=S1 /ALOG(10.)
1P=IFIX (POWER+OD.00! )
WRITE (5,100) :
100 PORMAT(/,' Information theory distribution parameters:’ )
WRITE (6,101 ) RMIN,RMAK,SIGW
101  FORMAT(/,' mmin=',F6.3,' w=',F6.3,' (',F6.3,")")
WRITE (6,102) RMBAR,SIGMA
102  FORMAT(/,' <m>=',F6.3,'(',F6.3,')",)
‘ WRITE (6,103 )RMOBAR,SIGMOBAR,IP
103  FORMAT(' .',/,' Mo=',F6.3,'(',F6.3') MO**' 12,' dyn.cm/yr')
SIGA=SIZA/ALOG(10.) '
WRITE (6,104)RNT,SIGRNT,A,SIGA,B
104  FomMAT(/,' NT=',F6.3,'(',¥6.3,') /yr A=',F6.3,' (',F6.3,")
_ B=',F6.3) :
WRITE (56,105)
1 05 FORMAT( / , 9 30030003 33 30 30 W10 0 W30 B I b I N )
WRITE (6,106) RL1,S1,RL2,S2,IP,BV,SBV
106 FORMAT(/,' 1=',F6.3,' (',F6.3,') :12=',76.3,
! (',F6.3,")HO**(-" 12,')/dya.cm’,
~/, ' b=', ¥6.3,'(",96.3,')",)
WRITE (6,107) SL1,SL2,SL12
107 .FORMAT(/,' The covariance terms are : ',3F9.5)



SIGMOBAR=SIGMOBAR/RNT
RMOBAR=RMOBAR/RNT
A=A-POWRR
WRITE (6,10)
10 PORMAT (/,' Magnitudes associated with ave. rpt. times 7',
/" T ia yrs o{T) sigma(m)')

c
D0 1 I=1,8
IF (1.EQ.1) T=1.
17 (1.8Q.2) T=2.
IP (I.EQ.3) T=5.
1P (1.8Q.4) T=10.
If (1.8Q.5) T=20.
1f (1.8Q.6) T=50.
I? (1.BQ.7) T=170.
¢ (1.EQ.8) T=200.
c
RN=1./T
P=RN/RNT

CALL SOLVE(P,RLI,RL2,Z,RMIN,RMAX,A,B,RMAG)
¢ (SOLVES FOR M AS A FN. OF P)

CALL RRROR (SLV,SL2,SL12,RL1,RL2,%,A,B,RMBAR, RNOBAR, RMAS,STG)
RMOY=10,**(A+B*RMAG)

DENS=EXP (-RL1 *RMAG-RL2*RUOK ) /2

CALL BRRW ( RMAX,A,B,2,RLI,RL2,SIGW,SW)

CALL ERRNA(T,P,DENS,SIGRNT,RL! ,RL2,RMOX,SIGA,SIGNA)
SI3=SQRT(SIGH*2+SICHAM 2 +5yy#2)

c
¢ (SOLVES FOR SIGMA(M)
c

WRITE (6,108) T,RMAG,SI3
108 PORMAT(VX,P6.1,38,F6.3,20' (" ,P6.3,°)")

1 CONTINUE
STOP
SND
c .
SUBROUTINE INTZGRATE (21,Z2,RLI,RL2,A,B,RNMDM)
c
REAL*3 (101),Y(101),Y1 (101),¥2(101)
REAL*3 ¥,Fl,F2,%,81 ,E2
c

DO 5 1=1,100
X(1)=21 +PLOAT(I-1)*(22-21)/100.
RMO=10.0**(A+B® (1))

5 Y(I1)=RXP(-RL1*<(I)-RL2%RM))
CALL DOVGAP(X,Y,100,F,8,0)
17 (&/F.GT.0.01) WRITE (5,40)

40 PORMAT (1X,'Brror in integration in INTEGRATE >1%’)
RNMDM=F
RETURN
BND

0

20

99

SUBROUTINE SOLVE(P,RL!,RL2,%,RMIN,RMAY,A,B,RM)

BTA=0.001
RL=RMIA

RR=AMAX -0 .001

TL=R00T{P,RLI ,RL2,2,A,B,RL, RMAT)
TR=ROOT{P,RL! ,RL2,Z,A,B,RR,RMAX)
RU=RL+(RR-RL)/2.

1P({RR-RL) .IT.BTA) GOTO 99
TEM=RO0T(P,RL! ,RL2,%,A,B,RM,RMAX)
IF (TEM*PR.GT.0.) 30TO 20

RL=R%

PL=TEN

GOTO 10

RR=RM

TR=TEM

GOTO 10

CONTINUE

RETURN

END

PUNCTION ROOT(P,RL!,RL2,2,A,B,R,RMAX)

CALL INTEGRATE(R,RMAX,RL),RL2,A,B,PROB)
PROB=PROB/2Z :
ROOT=PROB-P

RETURN

END

SUBROUTINE ERROR (SL1,SL2,SL12,RLI ,RL2,2,A,B,RMB,RMOB, RM, 3IG)

RMO=10 . %% ( A+B%RY )
DMDL! = (RMB-8M ) /RLI
DMDL2=(RMOB-RMO) /RLI

BRI =SL1 *DMDL} **2
BR2=GL2%DMDL2%*2

ER3=3L1 2*DMDL) *DMDL2
SIG=3QRT (BR1 +ER2+2.%ER3)
RETURN

END

SUBROUTINE RRRNA(T,P,D,SHT,RLi ,RL2,RMO,SA,SHA)

DMDHT=T*P*p /D
DHDA=RL2*RMO*(1 +D)/RLA
B1 =DMDNT *3NT
E2=DMDA*SA
SNA=SQRT (51 *#2+g2%#2)
RETURN

BND

SUBROUTIN% BRRW(W,A,8,%,RLI ,RL2,SICW,SV)

Gcv



RMOW=10.%*(a+B*Y)
PU=EXP(-RLI #W-RL2*RMOW) /2
DMD#=PW/RL1

SW=DMDA*SIGW

RETURN

BND

gcv



rEsEoRsNsReoNesNsNoNoNeoNesNoNeoNeNoNoNeoNoNe]

QaQ

1G
MAXENT-FF5

This program gives long-term predictions T+dT

of

the average repeat times of magnitudes

larger than or equal to M.

The error is expressed as a fn. of signa(N(mm).

Input streams:

~ S W

: data on <m> from maxent-ff1!
: data on Mo from maxent-dat
: 11,12,2

covariance error matrix

Output stream:

6 :

T+d4t ,

Ian Main 07:03:84

SIGW=0.3
SIGA=0.2*AL0G(10.)

Read in input data

~ READ (2,%*) RMIN,RMAX,RMBAR,SIGRM,RNT,SIGRNT

READ (3,*) A,B,RMOBAR,SIGMOBAR,POWER

READ (4,*) RL1,RL2,Z

READ (7,*) SL1,SL2,SL12

CALL FPRMPT ( ' Magnitude :',12)

READ (5,%*) X

RMOBAR=RMOBAR/RNT

A=A-POWER

CALL INTEGRATE (X,RMAX,RL1,RL2,A,B,RN,RM,RMO)
RN=RN*RNT/Z

RM=RM/Z

RMO=RMO/Z

CALL ERROR(SL!,SL2,SLi2,RLI,RL2,RMBAR, RMOBAR,X,
RN,RNT,RM,RMO,SIGRNT, SIGA,RMAK,SI3W,A,B,Z, RN)
T=1./RN :
RNP=RN+ERN

TM=1 ./RNP

RNM=RN*RN/RNP

TP=1./RNM

WRITE (6,1) T,T™,TP

FORMAT (1X, ' The average repeat time is',F8.3,
/,' The range considering errors is from',FS8.3,' to',FS8.3,’ yrs')
STOP

END

SUBROUTINE INTSGRATE (21,%2,RL!,RL2,A,B,RN,RM,RMO)

A27
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399
40

400

REAL*8 T1(+01),Y0(101),Y1 (101),¥2(101)
REAL*3 P,B,P1,P2,81,82 :

DO 5 I=1,100
X1 (1)=21 +PLOAT(I-1 )*(22-21)/190.
RMOX=10.0%*(A+B™) (1))
YO(1)=EXP(-RLI*1 (I)-RL2*RMOX )
1 (1)=x1 (1)*Y0(1)
Y2(1)=RMOC*YO(1)

CALL DOI5AP(%1,Y0,100,F,8,0)
CALL DO1GAR(L1,Y1,100,P1,%1,0)
CALL DOt ZAP(1,Y2,100,P2,82,0)
IF (B/F.LP.0.001) GOTO 400
WRITE (6,40)

FORMAT (1X,'Srror in integration >.1%')
STOP

CONTINUE

IF(B1 /P1 .GP.0.001 ) GOTO 399

IP (B2/F2.3T.0.001) GOTO 399
RN=F

RM=P)

RMO=F2

RETURN

BND

SUBROUTINE SRROR(SL!,SL2,SL12,HL!,RL2,RMB,RM0B,X,
_RN,RNT,RH4,RMO,SIGRNT,SIGA,W,SIGW,A,B,%,ERN)

DNDL! =RMB*RN -RM*RNT
DNDL2=RMOB*RN-RMO*RNT
RMOW=10.##(A+B%Y)
PW=BKP(-RL) *W-RL2"RMOW) /2
DNDW=PW*(RNT-RN)
DNDA=RL2*DNDL2
DNDNT=RN/RNT

B1 =SL! "DNDLI **2
B2=SL2%DNDL2**2
E3=2.*SL12%DNDL] *DRDL2
B4=(SIGA*DNDA ) #*2
B5=(SICRNT*DNDNT )**2
86=(3IGW*DRDW)**2

BRN=Bl +B2+E3+B4+ES+86
ERN=SQRT (2RN)

RETURN

END,

8cv
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Plotting program for the cumulative frequency distribution

i}
MAXENT-G

computed in maxent-ff2 ,with optional Weibull
plot for comparison.

The error is expressed as sigma(N(md>m).

Input streams:

N E R

ae oo se oy

.o

data on <m> from maxent-ff1

data on Mo from maxent-dat

11,12,2 from maxent-ff2

covariance error matrix from maxent-ff3

w,u,lambda from gwul (Weibull option) from maxent-ff7
cumulative frequency data from maxent-ff1

OQutput stream:

70

graph file

Options are:-

S~ N -

: Cum + Single freq.
Cum

: Single

: Single + Weibull plot

Tan Main 25:10:83%

DIMENSION RMAG(50),RMAGF(50)

DIMENSION CF(50),CFG(50),F(50)

DATA RT/163/,DRT/27/,RMN/7.94/,DRM/0.05/
SIGW=0.35

3IGA=0.2 |
STGA=SIGA*ALOG(10.)

DATA RMF/8.04/,DRMF/0.15/,BTA/0.0001/
DELTAM=0.1

Read in cum. frequency data and Gumbel parameters

501
500

READ (2,*) RMIN,RMAX,RMBAR,SIGMA,RNT,SIGRNT
READ (3,*) A,B,RMOBAR,SIGMOBAR,POWER,C1,C2,TIO0PT
READ (4,*) RL1,RL2,Z

READ (7,*) SL1,SL2,SLi12

RMOBAR=RMOBAR/RNT

A=A-POWER

IF (IOPT.NE.4) GOTO 500

READ(11,501 )W, U,RL

FORMAT(/,1X,3814.6)

READ (12,1) RLAT,RLONG,DUM!1,DUM2,DUM3,NPTS
READ(12,2)(CF(T),RMAG(T),I=1,NPTS)
READ(12,1) D1,D2,D3,D4,D5,NINCS

A2



DO 7 N=1,3

IPEN=3

b0 10 1=1,50
X=PLOAT(I)/10.0+RMIN-O.1

R8AD(12,2) (P(1),RMAGP(I),I=1,NINCS)
FORMAT(S5E14.6,14)
2 PORMAT(1X,9%14.6)

DO 8 I=1,NPTS

-

8 CP(1)=ALOGIO(CP ¢
xséaz, (er(1)) c X is m and Y is log10(CF(m))
XsC=1. c
YST=-3. IP(X.GE.RMAX-0.1) GOTO 100
Ysc=1. CALL INTSGRATE (X,RMAX,RL!,RL2,A,B,RN,RM,RMO)
CALL PLOTS('TIan Main ,Murchseis.',20,70) RN=RN®RNT/2
c RM=RM/3Z
C Compute Gumbel distribution points RMO=RMO/Z
c CALL EBRROR(SLY{,SL2,SL12,RLt,RL2,PMIN,RMBAR,RMOBAR,X,
IF (I0PT.NE.4) GOTO 3 _RN,RNT,RM,RM0,SIGRNT,Z,A,B,SIGA,RHAX,SICGV, BRN)
RK=1./RL . Y=ALOG10O(RN)
C3=(W-U)**gy YP=ALOG10(RN+ERN)
D0 6 I=1,NINCS YM=2.%*Y-YP :
C1=(W-RMAGF([)+DELTAM/2.)**RK IP(N.BQ.2) Y=YP
C2=(W-RMAGF(TI)-DELTAM/2.)%*gK IP(N.BQ.3) Y=YM
cre(1)=(c1-c2)/c3 IP(Y.LE.YSP) GOTO 100
6 CPG(I1)=aL0GI0(CPG(I)) 1P(X.LT.XST-0.3.0R.X.GT.XR) GOTO 100
CFG(NINCS+1)=YST X=(X-XST)/XSC
CPG(NINCS+2)=YSC . Y=(Y-YST)/¥YScC
RMAGF(NINCS+1)=XST CALL PLOT(X,Y,IPEBN)
RMAGP(NINCS+2)=XSC 10 IPBN=2
3 CONTINUB : ¢
o 100 CONTINUR
C Plot graphs . . 7 CONTINUB
C .
CALL PACTOR(0.7) C Plot geologically derived frequencies for largest events
CALL PLOT(1.,1.,-3) c .
CALL AXIS(0.,0.,'Magnitude Mw',-12,5.0,0.0,XST,XSC) c* CALL GROLPLOT(RMK,DRM,RT,DRT,XST,XSC,YST,YSC)
CALL AXIS(0.,0.,'log(N(X))',9,5.,90.,YST,YSC) 1P (IOPT.EQ.2) GOTO 14
CALL PLOT(5.,0.,+3) : 9 RT=RT*3. .
CALL PLOT{(5.,5.,+2) c* CALL GROLS(RMFP,DRMF,RT,XST,XSC,YS?,YSC)
CALL PLOT(92.,5.,+2) c
c® CALL SYMBOL({1.25,3.75,0.1,'b=0.89',0.0,6) C Set up and plot frequency data
c* CALL SYMBOL(1.5,2.,0.1,°b=0.51',0.0,6) i c
c* CALL .SYMBOL(2.75,1.,0.1,°(1)°,0.0,3) . IPEN=3
c* CALL SYMBOL{4.1,1.,0.1,'(L)',0.,3) X=(RMAGF(1)+0.05-XST)/XSC
RMAG(NPTS+1 )=XST CALL PLOT(X,0., IPEN)
RMAG(NPPS+2)=XSC IPEN=2
CR(NPTS+1)=YST Toc
CP(NPPS+2)=YSC . D7 11 J=1,50
¢ IF (J.GT.NIRCS) GOTO 12
¢ Cumulative frequency option X=RMAGP(1)+0.05-PLOAT(J-1)/10.
c XM=X-DELTAM
1P (I0PT.BQ.3.0R.IOPT.%Q.4) GOTO 9 Y=r(J)
CALL LINE(RMAG,CP,NPTS,1,-1,240) IP(Y.LR.BTA) Y=10.%%YST
SIGN=0. Y=ALOG10(Y)
XR=XST+5.%XSC ) X=(X-XST)/XscC
RMOMIN=10.%**( A+B*RNIN) XM=(XM-XST)/XSC
PMIN=EXP(-RL1*RMIN-RL2*RMOMIN)/2 Y=(Y-YST)/YSC

oev



c
C
c

1
12

CALL PLOT(X,Y,IPEN)
CALL PLOT(XM,Y,IPEN)
CALL PLOT(XM,0.,IPEN)
IPER=3

Compute and plot theoretical frequencies

DO 13 J=1,50
X1=RMIN-0.05+FLOAT(J-1)*(RMAX-RNIN)/50.
X2=X1+DELTAM

IP(X2.G2.RMAK) GOTO 14

X=(X1+X2)/2.

CALL INTEGRATEB(X1,X2,RL!,RL2,A,B,RN,RH,RND)
RN=RN*RNT/(Z*10.*DELTAN)

Y=ALOG1O(RN)

IP(Y.LP.YST) GOTO 14

X=(X-XSP)/xSC

Y=(Y-YsT)/YScC

CALL PLOT(X,Y,IPBHN)

IPEN=2

IP (IOPT.EQ.4) CALL LINE(RMAGP.CFG,NINCS.1.-I.154)

CALL PLOT(0.,0.,999)
STOP
END

SUBROUTINE GEOLPLOT(RH.DRH.RT,DRT,XST,XSC,YST,YSC)

RMPLUS=RM+DRM
RMMIN=RM-DRM
RTPLUS=RT+DRT
RTMIN=RT-DRT
RTPLUS=ALOG10(1./RTPLUS)
RTMIN=ALOG1O(1./RTMIN)

X1=(RMPLUS-XST)/XSC
X2=(RMMIN-XST)/XSC

Y1 =(RPPLUS-YST)/YSC
Y2=(RTMIN-YST)/YSC

CALL PLOT (Xt,Y1,3)
CALL PLOT (X1,Y2,2)
CALL PLOT (X2,Y2,2)
CALL PLOT (X2,Y1,2)
CALL PLOT (X1,Y1,2)

RTY=ALOG10(1./RT)
XM=(RM-XST)/XSC
YM=(RTY-YST)/YSC
CALL PLOT (XM, Y1,3)
CALL PLOT (XxM,Y2,2)
CALL PLOT (X1,YM,3)
CALL PLOT (X2,YN,2)

RETURN
END

Q

Q

399
40

400

SUBROUTINE INTEGRATE (Z|,ZZ,RL!,RLZ,A,B,RN,RH,R!O)

REAL"S Xl(iOl),Y0(101),Yl(lOl).YZ(lOl)
REAL®*8 P,EB,P1,P2,81,%2

DO 5 I=1,100
X1(1)=21+PLOAT(I-1)%(22-21)/100.
RMOX=10.0%**(A+B*X1(1))
YO(T)=EXP(-RL1*X1(I)-RL2*RMOX)
Y1(1)=x1(1)*Y0(1) -
Y2(1)=RrM0X*YO(T)

CALL DO1GAF(X1,Y0,100,F,%,0)
CALL DO1GAF(X1,Y1,100,P1,81,0)
CALL DO13AP(X1,Y2,100,72,E2,0)
IF (B/P.LT.0.001) GOTO 400
WRITZ (6,40)

FPORMAT (1X,'Brror in integration >.1%')
STOP

CONTINURB

IP(E1/P1.GT.0.001) GOTO 399

IF (B2/P2.GT.0.001) €970 399
RN=F

RM=F1

RMO=F2

RETURN

END

SUBROUTINE ERROH(SL!.SLZ.SL12.RL1.RLZ,PKIN.R!B.RHOB.X}

_RN.RHT,RH.RHO,SIGRNT,Z.A.B,SIGA.H,SIGH.ERN)

DNDLY=RMB*RN-RM*RNT
DNDL2=RMOB*RN-RMO*RNT
DNDA=RL2*DNDL2
DNDNT=RN/RNT

RMOW=10.%%( A+p*y)
PW=EBXP(-RL1*W-RL2*RNMOV)/2
DNDW=P¥*(RNT-RN)

Bt=SL1*DNDL1 ##2
E2=SL2*DNDL2%%2
E3=2.%*SL12*DNDL1*DNDL2
B4=(SIGA®DNDA)**2
ES=(SIGRNT®*DNDNT)#**2
B6=(SICW*DNDW)**

ERN=E1+B2+E3+B4+B5+E6
ERN=SQRT(ERN)

RETURN

END

SUBROUTINE GEOLS(RHP.DR!F,RT,XST.XSC,YST,YSC)

TEV



X1 =RMP-DRMF
X2=RMF+DRHUF
Y=ALOG10(1./RT)
Y=(Y-YST)/YSC
X1=(xV-XST)/XsC
X2=(X2-XST)/XSC
CALL PLOT(X1,0.,3)
CALL PLOT (X1,Y,2)
CALL PLOT (X2,Y,2)
CALL PLO2T(X2,0.,2)
RETURN

END

(434
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1
VOL_PREP

This program computes the source-station distance R and the

P wave time window T=(alpha-beta)/R. Ti is read in from

entries in the VOLNET bulletin as the P wave onset at the ith
station. A file is output on channel 6 whis is used as a control
file for Frequency analysis on an LSI computer using programs
developed by Bob McGonigle of BGS, Edinburgh.

streams 1:station file
2:¢ront file
3:1listing of delays
5:Input file of P arrival times
6:0utput listing

Ian Main Jul 84 (adapted from a preliminary version by Bob McGonigle)

OQOOO0O0O0OO0O0O00O0O0a00O000O000000

CHARACTER CODE(100)%*3,A%*11
DIMENSION SLAT(100),SLON(100),DIST(40,12)
DIMENSION T(12,4),WIN(12),ST(12),FILE(3)
DATA ALPHA/6.7/,BETA/4.4/,E/'END'/
FAC=(1./BETA-1./ALPHA)
PIMU=3.#%#3,14159
C read the station list
READ( 1, *)NS
DO t I=1,NS
READ(1,#)CODE(I),SLAT(I),SLON(I)
1 CONTINUE
WRITE(3,#)'Station list'
WRITE(3,2)(I,CODE(I),SLAT(I),SLON(I),I=1,NS)
2 FORMAT(1X,I2,':',A3,2F10.4)
WRITE(3,5)(CODE(I),I=1,NS)
5 FORMAT(/,1X,' S-P delay times in s',/,'Site Code',12(2X,A3,1X))
C read epicentre 1list and find distances
I=1 '
10 READ(2,3,END=99)A,I1,R1,I2,R2
3 FORMAT(A11,7X,12,F6.0,2X,I2,F6.0)
ELAT=I1+R1/60.
ELON=I2+R2/60.
DO 11 J=1,NS
DIST(I,J)=FDIST(ELAT,ELON,SLAT(J),SLON(J))
11 DIST(I,J)=DIST(I,J)*FAC
WRITE(3,6)A,(DIST(I,J),J=1,NS)
6 FORMAT(1X,A11,12F6.1)
I=I+1
GO TO 10
C
99 CONTINUE
C
C Input
C
DO 300 NEV=1,40
IF(NEV.EQ.4.0R.NEV.EQ. 12) NEV=NEV+1
IF(NEV.EQ.8) NEV=NEV+1



100

10

-

-

103

12

98

8
c
C Ou

20

-

202

o

203
300

CALL FPRMPT('File:',5)

READ (5,100) (FILE(I),I=1,3)
FORMAT(3A4)

CALL FPRMPT('Event no:',9)
READ (S, 101) NEVENT
FORMAT(I2)

CALL FPRMPT('Time correction:',16) -

READ(S5, *)COR
FORMAT(F3.1)

I=1

CALL FPRMPT('Station code:',13)
READ (5,103) ST(I)

FORMAT(AY)

IF (ST(I).EQ.E) GOTO 98

CALL FPRMPT('Time of onset:',1d)
READ (5,%) T(I,2)

CALL RECOG(ST(I),NCH)

CALL CON(NCH,J)

W=DIST(NEV,J)

WIN(I)=W*1,

I=1+1

GOTO 7

NSTS=1-1

DO 8 I=1,NSTS
T(I,2)=T(1,2)-COR
T(1,3)=T(1,2)
T(1,1)=T(I,2)-WIN(I)
T(I,8)=T(I,2)+WIN(I)

tput file

WRITE (6,201) (FILE(I),I=1,3)
FORMAT('FILE *,3AH)

WRITE (6,202) NEVENT

FORMAT ('TITL EVENT NO *,12)
DO 9 I=1,NSTS

CALL RECOG(ST(I),NCH)

WRITE(6,203) NCH,T(I,1),T(I,2),T(I,3),T(I,4)
IF(NCH.EQ.2) CALL ADD(NCH,T(I,1),T(1,2),T(I,3),T(I,4))

FORMAT( 'CHNL *,14,4F6.2)
CONTINUE

STOP

END

SUBROUTINE RECOG(S,N)

DATA CH2/'VSIZ'/,CH3/'VSIN'/,CHU/'VSIE'/,
® CH5/'VPA '/,CH6/'VFI */,CHT/'VGL '/,
® CHB/'VNE */,CH9/'VSK '/,CHI0/'VMA '/,

® CH11/'VER '/,CH12/'VAG */

IF(S.EQ.CH2)N=2
IF(S.EQ.CH3)N=3
IF(S.EQ.CHE)N=U

IF(S.EQ.CH5)N=5
IF(S.EQ.CH6)N=6
IF(S.EQ.CHT)N=7
IF(S.EQ.CH8)N=8
IF(S.EQ.CH9)N=9
IF(S.EQ.CH10)N=10
IF(S.EQ.CH11)N=11
IF(S.EQ.CH12)N=12
RETURN

END

" FUNCTION FDIST(RLAT1,RLONY,RLAT2,RLON2)
returns the distance FDIST in kilometers

REAL*8 GEOCN

GSLAT=GEOCN(DBLE(RLAT1))

SLON=RLON1

GELAT=GEOCN(DBLE(RLAT2))

ELON=RLON2

CALL AZDIST(GELAT,ELON,GSLAT,SLON,AZ,DIST)
FDIST=111. 1*#DIST

RETURN
END
SUBROUTINE AZDIST(ELAT,ELON,SLAT,SLON,AZ,DIST)

REAL®8 PI,RTOD,DTOR

REAL®*8 SLA,SLO,ELA,ELO,SLAC,SLAS,SLOC,SLOS, ELAC ,ELAS, ELOC,ELOS,
1AS,BS,CS,DS,ES,GS,HS,SK, AE, BE,CE, DE, EE,GE, HE , EK,
2CDIST,SDIST,CSDIST,CAZ,SAZ
" DATA PI/3.1415927D0/,RTOD/57.29578D0/,DTOR/0.0174533D0/

ELAT=ELAT+1.0E-5
ELON=ELON+1.0E-5
SLA=SLAT®*DTOR
SLO=SLON*DTOR
ELA=ELAT*DTOR
ELO=ELON®*DTOR

SLAC=DCOS(SLA) .
SLAS=DSIN(SLA)
SLOC=DCOS(SLO)
SLOS=DSIN(SLO)

ELAC=DCOS(ELA)
ELAS=DSIN(ELA)
ELOC=DCOS(ELO)
ELOS=DSIN(ELO)

AS=SLACS®SLOC
BS=SLAC®SLOS
CS=SLAS
DS=SLOS
ES=-SLOC
GS=SLAS®*SLOC
HS=SLAS®*SLOS

p—
-0 W o=
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204

SK=-SLAC

AE=ELAC®ELOC
BE=ELAC®ELOS
CE=ELAS
DE=ELOS
EE=-ELOC
GE=ELAS®ELOC
HE=ELAS®ELOS
EK=-ELAC

CDIST=AE®*AS+BE®BS+CE®*CS
SDIST=DSQRT{1.0-CDIST#*CDIST)
DIST=RTOD®*DATAN2(SDIST,CDIST)
CSDIST=1./SDIST
SAZ=-(AS®DE+BS#*EE)*CSDIST
CAZ=-(AS*GE+BS*HE+CS®EK ) *CSDIST

AZ=DATAN2(SAZ,CAZ)
IF(AZ.LT.0.0)AZ=AZ+2.%P]
AZ=AZ®*RTOD

RETURN
END
FUNCTION GEOCN(ALAT)

REAL*8 PI,RTOD,DTOR,ALAT,GEOCN,GCON
DATA PI/3.1415927D0/,RTOD/57.29578D0/,DTOR/0.0174533D0/

GCON=0.993231500
GEOCN=RTOD®*DATAN(GCON®*(DSIN(ALAT*DTOR)/DCOS(ALAT*DTOR)))
RETURN

END

SUBROUTINE CON(N,J)
IF(N.LE.b) J=1
IF(N.GE.5) J=N-3
RETURN

END

SUBROUTINE ADD(N,T1,T2,T3,T4)
DO 1 I=1,2

N=N+1

WRITE(6,204) N,T1,T2,T3,T4
FORMAT( 'CHNL *,I4 4F6.2)
RETURN

END |

29
30

3

33
34
35
36
37
38
39
4o

43
iy
us
u6

48
49
50
51
52
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1J

VOL_DIST

Program to produce distance list from epicentres

to calculate seismic moments from LP spectral levels

using these distances. Other source parameters are then
calculated using the corner frequency Fe.

streams 1:station file

2:event file
3:Mo,Fc readings for N events
6:1listing

Ian Main Jun B4 (adapted from a preliminary version by Bob McGonigle)

CHARACTER CODE(10)%*3,TCODE(12)*3,A*11

DIMENSION SLAT(40),SLON(40),DEP(40),RMAG(40),DIST(40,10)
DIMENSION OMEGA(40,12),FC(40,12),RMO1(40,12),R(40,12)
DIMENSION RMO(12),RA(12)

DATA RO/0./ '

PIMU=3.%3. 14159

C read the station list

2

5

READ(1,*)NS

DO 1 I=1,NS

READ(1,*)CODE(I),SLAT(I),SLON(I)

CONTINUE

WRITE(6,%)'Station list' '
WRITE(G,Z)(I,CODE(I),SLAT(I),SLON(I),I:1,NS
FORMAT(1X,IZ,':',A3,2F10.u)

WRITE(6,5)(CODE(I),I=1,NS)

FORMAT(/,' Epicentral distances',/,' Site Code', 12(2X,43,1X))

C read epicentre list and find distances

10
3

"

99
C Add

I=1
READ(2,3,END=99)A,I1,R1,I2,R2,DEP(I),RMAG(I)
FORMAT(A11,7X,12,F6.0,2X,12,F6.0,F7.0,F6.0)
WRITE (6,3) A,I1,R1,1I2,R2,DEP(I),RMAG(I)
ELAT=I1+R1/60.

ELON=I2+R2/60.

DO 11 J=1,NS
DIST(I,J)=FDIST(ELAT,ELON,SLAT(J),SLON(J))
WRITE(6,6)A,(DIST(I,J),d=1,NS)
FORMAT(1X,A11,12F6.1)

I=I+1

GO TO 10

NEV=I-1" .
2 extra channels for VSI Ns and EW

CALL DECODE (CODE,TCODE,NS)

NS=NS+2

WRITE (6,7) '

FORMAT(/,'LP spectral level in micron s ')

WRITE (6,8) (TCODE(I),I=1,NS) '

FORMAT(12(2X,A3))
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DO 40 I=1,NEV
C read in omega in nm secs
READ(3,4) (OMEGA(I,J),Jd=1,NS)
READ(Y4,55) (FC(I,J),d=1,NS)
C convert to micron secs
DO 97 J=1,NS
97 OMEGA(I,J)=OMEGA(I,J)*0.001
4 FORMAT(11(F5.2))
55 FORMAT(11(F4.1))
80 WRITE (6,4) (OMEGA(I,J),J=1,NS)
WRITE(6,88)
88 FORMAT(/,'Fc in Hz.')
DO 89 I=1,NEV
89 WRITE(6,4) (FC(I,J),J=1,NS)
WRITE (6,31)
31 FORMAT(/,'Mo in Nn®*10%*#12, r in m, sdrop in bars, s in mm'/
1 ,'(Standard devs are given below in %, N=No of stations)'//
2'No ML Mo r Sdrop s N*',/)
C Remove zeros, calculate parameters and standard devs.
DO 50 1I=1,NEV

-

)

K=0

DO 30 J=1,NS

IF (FC(I,J).LT.0.01) GOTO 30
K=K+1

CALL JL(J,L)
CALL CONSTS(DEP(I),CK,C)
RMO1(I,K)=CK®OMEGA(I,J)*DIST(I,L)
R(I,K)=C/FC(1,J)
RMO(K)=RMO1(I,K)
RA(K)=R(I,K)

30 CONTINUE
IF(K.EQ.0) GOTO 50
CALL SIGMA(RMO,K,RMOBAR,ERMO)
CALL SIGMA(RA,K,RABAR,ERRA)
SDROP=(7.%RMOBAR)/(16.*RABAR®*3)
SBAR=RMOBAR/(PIMU®RABAR®#2)

ERSDR=ERMO##24+3_ #ERRA®#3
ERSBAR=ERMO®#2,2 %ERRA®#2
ERSDR=SQRT (ERSDR)
ERSBAR=SQRT(ERSBAR)
C Scale for output units
C omega read in in micron.s, Fc in Hz
C Output Mo in 10%*%12 Nm, r in m, sdrop in bars, s in mm
SDROP=SDROP#*10000000.
SBAR=SBAR®* 100000.

WRITE(12,493) RMAG(I),RMOBAR,SDROP,RABAR,SBAR

43 FORMAT (5F10.18)
WRITE(6,41) I,RMAG(I),RMOBAR,RABAR,SDROP,SBAR,K
WRITE(6,42) ERMO,ERRA,ERSDR,ERSBAR

41 FORMAT(I4,F4.1,3F10.1,F10.2,10)

42 FORMAT(8X,uF10.1/)
50 CONTINUE
STOP
END
FUNCTION FDIST(RLAT1,RLON1,RLAT2,RLON2)

C returns the distance FDIST in kilometers

C

REAL®8 GEOCN

GSLAT=GEOCN(DBLE(RLAT1))

SLON=RLON1

GELAT=GEOCN(DBLE(RLAT2))

ELON=RLON2

CALL AZDIST(GELAT,ELON,GSLAT,SLON,AZ,DIST)
FDIST=111.1%DIST

RETURN
END
SUBROUTINE AZDIST(ELAT,ELON,SLAT,SLON,AZ,DIST)

REAL®8 PI,RTOD,DTOR

REAL®8 SLA,SLO,ELA,ELO,SLAC,SLAS,SLOC,SLOS,ELAC,ELAS,ELOC,ELOS,

14s,BS,CS,DS, ES,GS,HS, SK, AE, BE ,CE, DE, EE, GE , HE  EK,
2CDIST,SDIST,CSDIST,CAZ,SAZ
DATA P1/3.1815927D0/,RTOD/57.29578D0/,DTOR/0.0174533D0/

ELAT=ELAT+1.0E-5

ELON=ELON+1.0E-S

SLA=SLAT®*DTOR

SLO=SLON*DTOR .
ELA=ELAT®*DTOR

ELO=ELON*DTOR

SLAC=DCOS(SLA)
SLAS=DSIN(SLA)
SLOC=DCOS(SLO)
SLOS=DSIN(SLO)

ELAC=DCOS(ELA)
ELAS=DSIN(ELA)
ELOC=DCOS(ELO)
ELOS=DSIN(ELO)

AS=SLAC®*SLOC
BS=SLAC®SLOS
CS=SLAS
DS=SLOS
ES=-SLOC
GS=SLAS#SLOC
HS=SLAS®*SLOS
SK=-SLAC

AE=ELAC®*ELOC

- -
-OWw o~
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anon

BE=ELAC*ELOS
CE=ELAS
DE=ELOS
EE=-ELOC
GE=ELAS®ELOC
HE=ELAS®ELOS
EK=-ELAC

CDIST=AE®AS+BE®*BS+CE*CS
SDIST=DSQRT(1.0-CDIST#CDIST)
DIST-RTOD*DATAN2(SDIST,CDIST)
CSDIST=1./SDIST
SAZ=-(AS*DE+BS®EE)*CSDIST
CAZ=-(AS*GE+BS*HE+CS®EK ) *CSDIST

AZ=DATAN2(SAZ,CAZ)
IF(AZ.LT.0.0)AZ=AZ+2.%P1
AZ=AZ*RTOD

RETURN
END
FUNCTION GEOCN(ALAT)

REAL®8 PI,RTOD,DTOR,ALAT,GEOCN,GCON
DATA P1/3.1415927D0/,RTOD/57.29578D0/,DTOR/0.0174533D0/

GCON=0.9932315D0
GEOCN=RTOD®*DATAN(GCON®(DSIN(ALAT®*DTOR)/DCOS(ALAT®*DTOR)))
RETURN

END

SUBROUTINE SIGMA (X,N,XBAR,SX)

RETURNS THE STANDARD DEVIATION AS A PERCENTAGE

-

DIMENSION D(12),X(12)
XSUM=0.

DO 1 I=1,N
XSUM=XSUM+X(I)
XBAR=XSUM/N

SUMD=0.

DO 2 I=1,N
DEV=(X(I)-XBAR)®#2
SUMD=SUMD+DEV
SX=SUMD/N
SX=SQRT(SX)
SX=100. *SX/XBAR
RETURN

END

32
33
34
35
36
37
38
39
40

43
4y
us
46

48
g
50
51
52

aon

s NeNeNe]

SUBROUTINE DECODE(C,TC,NS)
CHARACTER TC(12)%3,C(10)%*3
DO 1t I=2,NS

J=1+2

TC(J)=C(I)

TC(1)=C(1)

TC(2)=C(1)

TC(3)=C(1)

RETURN

END

-

SUBROUTINE JL(J,L)
IF(J.LE.3) L=1
1F(J.GE.4) L=J-2
RETURN

END

SUBROUTINE CONSTS(D,CK,C)

CK=12%10##15 Kg 3(-3)
C=1427 m s(-1) both for ALPHA=6.7 Km s(-1)

IF (D.GT.24.) CK=12.

IF (D.GT.24.) C=1427.
IF(D.LE.2Y4.0.AND.D.GT. 1.07) CK=8.618
IF(D.LE.23,0.AND.D.GT. 1.07) C=1278.
IF(D.LE.1.07) CK=2.554

IF(D.LE.1.07) C=851.9

RETURN

END
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Appendix 2A  Derivation of equation 3.5

Differentiating equations (3.1) to (3.4) in turn with respect to

the probability density we are trying to find - p(m) - gives

a_s. = - tf .6_ {p xn(p)} dm = - (f {Rn (p) + 1} dm = 0 ’ (i)
op n_ op m ’
d(1) . :
= 0 , (ii)
dp ' ' )
3<m> ©
M7 = dm =0 |, iii
35 i o dm (111)
c
w
§§%o> =/ M dn=0. (iv)
m

<m> and <Mo> are constant averages, so their derivatives are

zero. Similarly we wish to maximise the entropy S so that
3S/dp = 0. Thus we can sum all of the quantities together to give

a net zero.
65 = 6(1) + &m> + &M > =0 . ' (v)
Since all the individual terms equal zero we can introduce the

Lagrangian undetermined multipliers Ng» M) and A, and the sum will

stiil be zero.
=85 + Ay 8(1) + A} &m> + Ny &KM> =0 , (vi)
or alternatively

W
[ {Gnp+1)ep+rdp+r msp+ryM(m) dpldn=0 . (vif)

m
c



This last equation can only hold where the term under the integral

is zero for all m, so

(,Q,np+l)+}\o+)\lm+)\2Mo(m)=O, (viii)
and finally this can be rearranged to give

p(m) = exp {-1 = A - A @~} Mo(m)} . (ix)
This is almost the same as equation (3.5) except for the
normalising term Z = exp (l+A,).

Putting this form of p into the normalising equation (3.2)

glves

exp { -1 - Ko}

8 “—E

exp {~A\; m - A, Mo(m)} dm =1, (x)

so 1f Z = exp {1 + ko} as in the denominator of equation (3.5) then

Z also has the form of equation (3.6) from (x).

Appendix 2B Derivation of equation (3.7)

By differentiating equation (3.3) and (3.4) wrt. A) and A,

respectively we have

w
dp o okm>
/] m BT dm B} (1)
mC
@ dp <M,
~y Bdihich ¢
i Mb(m) oA d Vi (ii)
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with p = exp {- \m - A M (m)}/Z (111)
L
Z=[ exp {~Am=- A\, Mo(m)} dm , (iv)
m

c

as in the text.,

Now consider differentiating Z wrt. \; and A,.

32 . ? 9 _ {exp (-Aym)}. exp {-A; M (m)} dm
3T 5 O L 2%
c
w
= J' - m exp {—le - A\ Mo(m)} dm ,
B
or
9z = ~<m> 2 , (v)

N
after comparison with (3.3), using (iii) and (iv). Similarly

dZ
_ = MD>Z. (vi)
d\, °

Now consider differentiating &n Z (M), A,) using the chain rule

3(an 2) 1 3z .

- T (vid)
O\ Z d\ :

d(an 2) 1 dzZ

—_——— =, (viii)
YO Z d\, ' :

and using (v) and (vi) gives equation (3.7) directly.
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APPENDIX 4

DISPERSION CHARACTERISTICS AND

THE GROUP VELOCITY WINDOW




Not all of the selismograms were as easy to interpret as the example
given in fig 4.4, wheré the group velocity windows 4 < U < 2.5 km
s=! proved to be compatible with an obvious influx and decay of’
long period surface wave energy.‘ Consider, for example, the
seismogram at the top of fig 4A.

In this part of the diagram the horizontal scale has been
changéd from timé T to group veiocity U by U = R/T, where R is the
epicentral distance. ‘By eye it is not obvious exactly where the
energy in the period range.30-70$ comes in,

One way of checking this is to‘draw the diagram in the lower
half of the figure, which plots the signal content as contours in
decibels on a two dimensional grid with group velocity on the
horizontal axils and frequency on the vertical axis. Again this
matrix (called the E-matrix) is drawn by the programme TSAP
developed in Burton (1973). Note that the signal has been
correéted for the instrument response before drawing the diagram.

It is not easy to pick the surface wave arrival too well here
by éye, but a time window can be chdéen with reference to a ridge
in the contours of the signal content picked out by the dotted
line. With the exception of using frequency rather than period,
this ridge crest correéponds to the dispersion line drawn on the
graph of fig 4B, which can be compared to the dispersion curve for
southeastern Europe, fig 4.5 in the main text.

Horizontal lines at 14 mHz and 34 mHz correspond to the period
range of interest (30-70s), and the vertical lines at 4 kms‘l and
2.95 kms™! adequately cover this dispersion ridge without including
spurious effects such as the possibility of noiée at lower

frequencies in this case.
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Figure 4A The E matrix for event E, at station GDH (Godhavn,

Greenland)
A two dimensional plot of signal content in frequency and velocity

space (called the E matrix). The dispersion line is drawn on the
crest of a ridge on this contour plot by the dotted line. Because
the contours are in decibels nearly all of the signal is close to
this ridge. In this cdse the time window defined by group
velocities at 4km s~! and 2.95km s~! adequately cover the periods
of interest between 30 and 70s.
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Figure 4B Dispersion characteristics.

This diagram plots the ridge outlined on fig 4A, to allow
comparison with a 'typical' dispersion curve such as fig 4,14, The
azimuthal path for this recording at southern Greenland is
predominantly continental.
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Summary. Seismic moment release rates M, inferred from a Weibull
frequency—magnitude distribution and its extreme value equivalent are
compared with observation. The seismotectonically diverse regions studied
all exhibit the curvature of a log-linear frequency magnitude plot associated
with applying a maximum magnitude to earthquake recurrence statistics.
The inferred seismic moment release rates are consistent with available crustal
deformation data within uncertainties resulting from the line fit and in magni-
tude determination. The uncertainties for the regions studied (Southern
California, the New Madrid seismic zone, the Central and Eastern Mediter-
ranean and mainland UK) vary from at worst an order of magnitude down to
a factor of 2 or 3. :

This agreement can be used to justify the extrapolation of frequency—
magnitude statistics beyond the historical and instrumental era in seismic
hazard studies as a test of the stationarity of short-term statistics against
long-term effects.

A striking example of a bimodal seismicity distribution is observed in the
New Madrid zone. This can be interpreted as being due to the superposition
of two distinct seismogenic source types observed in the area. A quantitative
analysis of the separate orders of seismicity observed in the frequency—
magnitude statistics — comparing the different maximum magnitudes and
inferred seismic moment release rates with those observed — supports this
hypothesis. Superposition of many such seismogenic sources can explain
the linearity observed in global frequency versus seismic moment magnitude
statistics. '

Introduction

The incorporation of crustal deformation into analyses of seismic hazard has given useful
insight into probabilities of the largest events associated with long time periods. By linking
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the observed statistical magnitude occurrence with a physical parameter — seismic
moment — a means is provided to test an extrapolation from short-term historical and
instrumental reports against an average of crustal deformation observed over geological time.
Examples of observed deformation would come from plate tectonic models, from observed
rates of slip along faults which break the surface, or from geodetically determined strain
rates in more complex tectonic regions. Some knowledge of the dimensions of the fault zone
(extent and depth) and appropriate elastic constants are required to convert slip or strain
rates to seismic moment. This information also places deterministic constraints on an
important parameter in any seismicity distribution — the largest earthquake consistent with
the finite breaking strength of the Earth and the finite extent of the fault zone.

In previous work on this subject (e.g. Anderson 1979; Papastamatiou 1980) this largest
earthquake specifies a truncation of the two parametered Gutenberg—Richter frequency
relation (equation 2 below) in order to avoid problems such as an infinite rate of strain
energy release (Knopoff & Kagan 1977). This effectively introduces a third parameter to the
assessment of seismic hazard, and is consistent with the simple geometric seismicity model
of Kanamori & Anderson (1975). '

A more complex model of seismicity (Caputo 1977), which includes the effect of variable
and limited stress drop as well as source dimension shows that such arbitrary and sudden
truncation is not physically valid, and rather that we might expect a gradual roll-off both in
the number density and the cumulative frequency asymptotic to a maximum earthquake at
zero probability. (Incidentally the model also requires a similar roll-off at very small
magnitudes.) This roll-off appears as curvature on a log-linear frequency—magnitude plot.
For the cumulative form, such curvature has been observed in the laboratory by Burridge
& Knopoff (1967) and King (1975) for earthquake models, and also in a theoretical model
by Kuznetsova, Shumilana & Zavialov (1981), which considered inhomogeneities along a
fault. This behaviour has already been observed in seismicity distributions around the
world — for example by Botti, Pasquale & Anghinolfi (1980) in the Western Alps, Burton
et al. (1982) in Turkey, Makjanik (1980) in Yugoslavia, Makropoulos (1978) in Greece and
by Cosentino & Luzio (1976). There is also experimental evidence that the distribution of
microfracture events in stressed San Marco gabbro also shows curvature asymptotic to a
maximum size at low frequencies (Scholz 1968). Analogous curved distributions have been
observed elsewhere in nature, for example in the yield strength and fatigue life of steel
(Weibull 1951), and are commonly used in meteorological analysis (Jenkinson 1955).

The Weibull distribution can be usefully extended to analyse preferentially the largest
events associated with curvature because of its simple form. The largest events in this case
consist of a subset of the frequency distribution — namely the largest value in any unit time
interval. This distribution of extreme values has been used in seismic hazard analysis (Burton
1979) and also in order to assign a maximum magnitude to events on a global basis (Yegulalp
& Kuo 1974). There follows a discussion on crustal deformation compatible with curvature
in both the cumulative frequency distribution  and that of the extreme values, with appli-
cation to different tectonic regimes.

Curved cumulative frequency distributions
The most commonly used seismicity distribution is the log-linear Gutenberg—Richter law
log N(x > m)=a—bm (1)

where N is the number of times a magnitude m is equalled or exceeded and a and b are
regionally varying positive constants. (The symbol m is used in the theoretical discussion for
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a general magnitude in order to avoid confusion with the seismic moment M. Elsewhere
My, Mg, M,) and my, have their usual meanings.) b is commonly observed to be close to 1
in accordance with the geometrical model of Kanamori & Anderson (1975). If we define
‘a number density distribution n = —dN/dm and rearrange (1) then

) (—b'm) b'=bIn10 @
n(m) = p exp(—b m); ,
pexp p=5b"10°,
Caputo’s (1977) model introduces a third parameter to the distribution at high magni-
tudes, above m, say, and defines a maximum value for m via the relation

n(m) =p exp(—b'm) —q (3)

where p, b' and q can be related to constants specifying the distribution of fault dimension
and stress drop, and to maximum values of these parameters. The model also indicates that
b ~ 1. Equation (3) is therefore a simple generalization of (2), or we can regard (2) as the
limit in which ¢ =0 or the equivalent maximum magnitude (w) tends to infinity, since
q =pexp(-b'w).

Jenkinson’s (1955) general solution for a cumulative frequency distribution related to
the extreme values takes the form

N(x > m)= [(w—m)l(w—u)]"

and is equivalent to the Weibull distribution for positive, non-zero A. w is the maximum
magnitude, u < w is a characteristic value associated with unit time, and A < 1 is a measure
of the curvature of the distribution. As A—>0 (4) reduces to the form (1) (Gumbel 1958). This
form of the distribution in (4) is chosen as the most convenient for the present work. In
both cases curvature in V and »n asymptotic to a maximum value is reflected by three para-
meters, rather than the two of (1).

An alternative attempt to limit the distribution is to define N(m) = 0 at a finite maximum
magnitude, given a normalized form of (2). The form, after Cosentino & Luzio (1976) is the
truncated Gutenberg—Richter law

exp(—b'm) —exp(—b'w)

N> m)= exp(—b'u) —exp(—b'w) | G)

.

where w and u are defined as in the Jenkinson notation and ' = b In 10. In this case the-

number density distribution n(m) is not curved although the cumulative frequency is
(B&th 1981a), so there is a philosophical difference between (5) and the forms (3) and
(4). Finally, the effects of both a lower and an upper bound to earthquake occurrence can
be combined in the single equation

P(m)=(1-K)+K exp [b'(m—mo)] ‘ (6)

where P is the fraction of earthquakes greater than m, K is {1—exp[—b'(w—mq)]} !
and myg, w are lower and upper bounds to the seismicity distribution (Cornell & Vanmarcke
1969). Normally the effects of a lower bound on earthquake statistics are negligible and can
be safely ignored. The relationship of this form of the seismicity distribution to crustal
deformation rates was analysed by Papastamatiou (1980) directly in terms of seismic
moment.

In summary, the inclusion of a third parameter which limits the seismicity distribution
gives a more general form than.the open-ended Gutenberg—Richter law, and in a form in
common use outside seismology. The main parameterizations are outlined above,-although
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others are possible, but in the present work the form used will be that of (4), because this
form allows us to compare both the initial distribution (V) and the extreme value distri-
bution (P) discussed below.

Extreme value distributions

The theory of extreme values has been covered extensively by Gumbel (1958). For our
purpose the most important relation is

P(x < m)=exp[-N(x > m)] )

where P is a probability of non-exceedance in unit timé of a magnitude m — or alternatively
that m is an extreme value. This relation follows from a Poissonian assumption that different
events are unrelated, in the limit as the total number of events analysed — o. A derivation of
the form of NV (and hence P) consistent with certain assumptions pertinent to the extreme
values gave equation (4). The form of this distribution which reflects an upper bounded
magnitude is defined as Gumbel’s third distribution of extreme values:

P(x < m) = exp {—[(w—m)/(w-u)] "™} @®)

where 0 < A < 1, u < w as for the Weibull distribution.

Knopoff & Kagan (1977) have objected to the use of extreme value statistics of the first
type (related to equation 1) because methods which analyse the whole data set in this case
generally give more accurate results in earthquake statistics. However, the curvature consis-
tent with Caputo’s physical model is usually emphasized to a greater degree in the extreme
value case for a type three distribution because it deals preferentially with the largest events
where such curvature is to be expected. Gumbel’s third distribution of extreme values may
well be the best available method of extrapolating to earthquake occurrence at low proba-
bilities from an existing catalogue of events, particularly when it is incomplete, although
where possible the predictions should be checked against known physical parameters such
as slip rate. The theoretical means of carrying this out is derived in the next section.

Crustal deformation

The measure of crustal deformation is taken to be the seismic moment M,. This can be
related to slip rates (§) on individual faults, or strain rates (¢) over a more diffuse area by the
equations

Mo = uAs - )
My=2.5uvVe (10)
where u is the rigidity modulus, 4 is the area of slip and V is the crustal volume of the zone
of deformation. Equation (10) is derived in Papastamatiou (1980).

Two models are used to estimate the rate of crustal deformation, following from (I) the
cumulative frequency of occurrence (whole process) and (II) from the extreme value
probabilities (part process).

MODEL I

An average value for the rate of release of seismic moment is given by integration over the
range (0, Mow) where My, is the largest moment which might be released in a single event
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for a particuldr region
= Mo w
My = Mol’l(Mo) dMo (11)
Yo

n(My) dMy is the number of earthquakes occurring in an interval dM, per unit time with
n=—dN/dM,. N is given by the cumulative frequency relationship, but is normally
expressed in terms of magnitude, since moment is still a fairly rare observational parameter.
To convert between the two we may use the relationship

Mq(m) =104+Bm (12)

where B =3/2 for the M,, scale follows from Kanamori & Anderson’s (1975) theoretical
considerations on fault geometry as well as from empirical fits to available data. The most "
recent work on this conversion from seismic moment, My, to seismic moment magnitude,
M,,, indicates the following values for 4 and related stress drops Ao:

interplate events = 16.1, Ao = 30 bar
intraplate events = 15.7, Ao = 76 bar
average value = 15.85, Ao =52 bar
California = 15.83

(from Singh & Havskov 1980).
By an appropriate change of variables, and using (4) to define n(m) = —dN/dm, it can be
shown from (11) and (12) that

i, = Mo T(1+1/N)
18w —u))"?

where My and u are expressed per unit time interval, and §= B In 10. I is the usual symboi
for the Gamma function.

(13)

MODEL II

Forming a probabilistic expectation value
. MO(:J
(My) = J‘ Mop(Mo) dM, (1‘4)
0
where

MO
P(X < M) = J’ p(X)dX
0

is the extreme value distribution following from the normalized probability density p. After
a suitable change of variables involving (8) and (12) '

. l .
(My)=Mow f exp [—B(w —u)(— In x)*) dx. (15)
0
In the present work this equation is evaluated numerically.
Thus in both models the seismic moment release per unit time interval is expressed as a

fraction of the maximum moment M, for all values of (w, u, A) consistent with a
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Gumbel’s third extreme value distribution and its initial Weibull distribution.| We can also
show that (M )/M, < 1 for appropriate values of the parameters and if (7) holds.

In evaluating parameters of the distribution (8) the unit time interval must sometimes be
taken to be i yr rather than annually, in order to reduce problems associated with intervals
devoid of any recorded events. If this is the case « and A are appropriate for this scale, and -

we can convert to annual rates via
(Mo>i=i<Mo>1 (16)

where ( M, ); is the seismic moment released periyr.

(13) and (15) then define the rate of release of seismic moment in terms of the
statistically determined parameters (w, u, A\) — the link to the physical process of strain or
slip rates being represented by the terms M, and f.

UNCERTAINTIES IN My, {My) AND Myw

Because (w, u, A) are subject to (often large) statistical error we have to allow for this in
predictions of My. This can be done by the equation

.= 3
s((io), i) = | 3 2. M)
=1

ol 17
=1 apl ap/ 7 ( )

which represents a complete covariance error in (M,) and Mo respectively. p; ; takes on
values (w, u, ) and oj; is the statistically determined covariance error in these parameters.
The covariance matrix e is defined by

0% Oou  Oin
€= '012‘@ 0?1 02,‘)\ (18)
0w % 9%

as in Burton (1979). This is the most complete method of allowing for error, because in
general the parameters w and A are dependent on each other. A large w leads to less curva-
ture (lower A) and vice versa. This manifests itself in a negative contribution from 0%,,, -
or a reduction in the error compared to the variance method (a sum of the diagonal elements
0?).

The uncertainty in w is often unusually large (Burton 1979), and in many cases may be.
reduced where limitations on stress drop (usually in the range 1< Ag < 100 bar), fault
dimension and fault type place an upper bound on My, through the general expression

Mow = CAOmax Jtanax (19)

where C is a dimensionless constant which depends on the type of fault, and I, is the
maximum fault dimension (Kanamori & Anderson 1975). Alternatively we may use this
value to compare My, obtained by i, and Aoy, With statistically determined values of
w via (12).

Saturation

It is well known that curvature of the form (3), (4) or (5) may be artificially present for
magnitudes above Mg =7.5 to 8.0 because of instrumental saturation of the magnitude
scale (Howell 1981). Chinnery & North (1975) have shown that when Mg values are
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Figure 1. (b) Tectonic setting of the area around the New Madrid seismic zone (after Zoback et al. 1980),
showing microearthquake epicentres (dots), locations of seismic profiles (e.g. S-7) and principal faults
inferred from the data. The continuous heavy black lines are rift boundaries, and igneous plutons are
represented by the hatched areas. There are three main seismicity trends: (1) a 100 km long stretch
running SW—-NE from the SW corner, (2) a section running SSE-NNW at the terminus of (1), and (3)
the smallest trend SW—NE near New Madrid. Copyright 1980 by the American Association for the
Advancement of Science,

corrected to what is, in effect, Kanamori’s (1978) My, on a global level then (1) is the best
description of world seismicity, but concede that there are no convincing theoretical argu-
ments for such linearity. There are, moreover, several examples of non-linearity below the
threshold of curvature due to instrumental saturation when events on a more local scale are
grouped together as well as a solid body of theoretical and experimental backing for such
behaviour (for references see the Introduction). It may well be that the linearity observed
on a global scale is due to the superposition of many curved distributions. For example
Duda (1965) and Makropoulos (1978) found a poor fit to (1) and (8) respectively for the
Aleutians—Alaska arc. B8th (1981b) and Singh, Rodriguez & Esteva (1983) have also
observed such behaviour in Turkey and Mexico. A further example is cited in this paper.
In. many cases the superposition of two or more earthquake populations offer a plausible
explanation for this apparently anomalous behaviour.

For this reason care has been taken in the following section to investigate any possible
curvature which may result from such instrumental saturation. In effect, this would amount
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to using Chinnery & North’s (1975) empirical method for converting from Mg to a seismic
moment magnitude, My, — a much more meaningful description of the ‘size’ of the seismic
source. For the areas considered in the present work this turns out to be unnecessary.

It is not even clear that such correction is always appropriate, since Kanamori’s (1977)
tabulation of Mg/M,, for large events shows that Mg is commonly greater than M,, for
large events — the opposite effect of that of saturation. This anomaly may be ironed out as
more data become available, but can be partially included in the method of line fitting by
assuming an uncertainty in each magnitude value of the same order as any saturation
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Figure 2 — (a) .
Figure 2. Completeness testing. (a) The Central and Eastern Mediterranean. The roughly constant
frequency of events in the range (4.6, 5.5) since 1920 or so, compared to the sudden jump in the range
(3.6, 4.5) around 1963 indicates that the former is complete for the time span analysed (1943—1971).

(b) Southern California. Again the roughly constant frequency of events in (4.0, 4.9) indicates a
completeness threshold of 4.0.
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correction. In the present work this value is taken to be +0.5 of a magnitude unit, which
includes estimates of ieasuring uncertainty,. conversion to seismic moment as well as
possible saturation effects in the final value of M.

Results and discussion

Empirical line fits to establish Mo(w, u, \, A, B) were attempted for four diverse tectonic
regions: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c)
Southern California, and (d) mainland UK. The results are summarized in Tables 1 and 2 and
in Figs 1—4. This section investigates in detail the areas tentatively assessed in Main &
Burton (1981).

(a) THE CENTRAL AND EASTERN MEDITERRANEAN (32°-48°N, 4°—36°E)

North (1977) has tabulated seismic moment values for this area of diffuse, plate boundary
seismicity. From his table 4 the total seismic moment released in this area for the period
1943—1971 was 70 x 10% dyne cm or a rate My =24 x 10%*dyne cm yr™'. A more complete
picture from 1963—1970 (his table 1) gives a rate 46 x 10*dyne cm yr™' which may be
regarded as a minimum value.
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A seismicity map -of the area concerned is given in Fig. 1(a) and an excellent summary of
the complex geo-tectonic setting is given in Horvath & Berckhemer (1982). The histograms
of Fig. 2(a) show that the catalogue used (Burton 1978) is complete for the time range
analysed (1943—1971) above mag 4.5. The range (3.6, 4.5) is not complete — as can be

] e
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Figure 3. Cumulative frequency line fits to the distribution N(m) = [(w — m)/(w = u}]"X. The parameters
and their covariance error matrices are given in Table 1. (a) The Central and Eastern Mediterranean. In
this case there seems to be a high autocorrelation error — there being a systematic trend in the positioning
of the data points relative to the line. It would be difficult to justify a linear fit of the form (1) in this’
case, the curvature being so marked at high magnitudes. (b) The New Madrid area. Here the most success-
ful fit was obtained by splitting the magnitude range into two segments — above and below 5, and fitting
the line separately. The New Madrid events were repositioned at average repeat times T =650 years
(N =1/T). (c) Southern California. In this case the line fit seriously underestimates the occurrence rate of
the largest events which have occurred. A line fit of the form (1) would in this case give a better fit at
these magnitudes, but again there seems to be some evidence of a bimodal dlstnbutxon the ranges meeting
at M = 6.7 or so.
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Figure 4. Extreme value line fits to the distribution P = exp {~ 1w = m)/(w —u)" )‘}. The parameters and
their covariance error matrices are given in Table 2. () The Central and Eastern Mediterranean. Curvature
and a maximum magnitude are well established. (b) The New Madrid area. The line fit is effectively
straight — implying a moment release rate which is deterministically several orders of magnitude too high.
A bimodal distribution as in Fig. 3(b) is apparent, but in this case the data could not be separated into the
two portions successfully, because of their scarcity in the higher range. (c) Southern California. The
curvature is enhanced compared to Fig. 3(c), but again the occurrence of the largest magnitudes is under-
estimated. The ringed data point has been inferred from Sieh’s (1978) work which indicates Mg = 8.25
and 7=163 yr, with P=1-1/T.
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Table 1. Moment release rates predicted by cumulative frequency line fits to N(m) = [(w -m)/(w— u)]")\ (model I and Fig. 3).

Area* Parameters Covariance error Local values A—l olw,u,\,A,B) Mo observed or estimated
(w,u, N) matrix € . forA, B X102*dynecmyr™! x10**dynecm yr~!
(@) (8.16, 6.80, 0.855 -0.031 —0.119 '
0.251) -0.031 0.018 0.008 16.0 1.5 87 +110 >46
My -0.119 0.008 0.018 —48
(b) Range (7.81, —=23.4, 1.43 . 71.1 —-0.752 C
(5.0,7.5) 0.680) 71.1 4179.0 —42.5 15.58 1.5 1.2+12 ~0.6
my -0.752 -42.5 0.437 -11
(b) Range (561,363, 1.00 —~0.084 —-0.154 '
2.5,5.0) 0.263) -0.084 0.019 0.015 1558 1.5 40+235 ~107%-10"?
m] -0.154 0.015 0.025 ~3.4
. (X10-9)
(©) (9.26,6.00, 9.54 -0.304 -0.340
- 0.126) —0.304 0.026 0.012 1583 1.5 8+26 ~16
MMy, -0.340 0.012 0.012 -6

* Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, and (c) Southern California.
T Refer to text for my/Mg conversion.
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Table 2. Moment release rates predicted by extreme value line fits to P(m) = exp [~ (w —m)/(w —u)]*? (model I and Fig. 4).

Area®

@)

(b) Range
(3.0, 7.5)

©

(d)

* Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c) Southern California, and (d) mainland UK.

Parameters
(w,u, \)

(7.84,6.64,
0.435)
M

(19.4,3.36,
0.042)
m

(9.11, 5.46,
0.182)
Mg/My,

(5.46,4.58,
0.59)
m

T Refer to text for my, /Mg conversion.

Covariance error
matrix e

0.484
—-0.044

—0.200

1123.00
2.54
-3.20

3.70
—0.062
-0.219

0.190
—0.026
-0.134

—0.044
0.014
0.021

2.54
0.013
~0.007

—0.062

0.008
0.004

—0.026
0.015
0.026

-0.200
0.021

0.093

-3.20
-0.007
0.009

-0.219
0.004
0.013

—0.134
0.026
0.113

Local values

for A, B

16.0 1.5
1558 1.5
1583 1.5
15.7 1.5

Mo(w, u,rA,B)
X10%**dyne cm yr™!

43 +26
-16

8.5+16.2
-5.6

22+1.0
-0.7
(X107?)

M, observed or estimated

X10%*dynecm yr~!

=46

~34
(X10-%)
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"inferred from the sudden jump in the number of events reported on introduction of the
WWSSN network in 1963. Fig. 3(a) shows the cumulative frequency line fit to these data
and Fig. 4(a) the Gumbe! plot, both of whose parameters were calculated using the method
described in Burton (1979). The parameters and covariance errors (which include an
allowance for 0.5 uncertainty in the magnitude measurement) can be seen in Tables 1 and
2. Note that in some cases the actual values of (w, u, ) for NV and P differ slightly as
expected by Makjanik (1980).

To convert to moment release rates we refer to North’s table 4 again, where we find for
this area that an average stress drop is 38 bar. This converts to A =16.0 using Singh &
Havskov’s (1980) formulation, and with B =1.5 leads to a good linear fit to North’s (1974)
fig. 4, right up to the highest magnitudes. This last point indicates that there appears to be
no instrumental saturation effect.

Both predictions of the moment release rates agree with that expected to within a factor
2 or so, which is in both cases within the expected uncertainty. This consistency, where we
have reasonable error in (w, u, \) and some knowledge of a local stress drop or A value
shows that the model proposed is quantitatively adequate well within the limits of statistical
uncertainty.

Further inspection of this uncertainty shows the following relative effects of the three
Gumbel parameters

HMy) d(My) (M)

: : =13:1:18
ow ou oA
I M,) 3 My) 9 ( My)
2 0w :— ‘ Oy : 2 0,=17.7:1:14.7.
ow ou oA

This result shows that u is the best-determined parameter and that w and A have a dominant
effect on the total uncertainty in this case. This effect is tempered by their interdependence
already discussed above, and highlights the need to include the off-diagonal elements of the
covariance error matrix in any attempt to quantify an error in <M0)

Finally, note from the tables that the error in (M, ) is less than that for Mo (60 per cent
compared with 126 per cent).

The comments of the last three paragraphs were all found to apply qualitatively to the
following areas of study, the actual values being quoted in this subsection for illustration
only.

(b) THE NEW MADRID SEISMIC ZONE (35°-37°N, 89°-90.5°W)

This area of mid-plate seismicity has received much attention in recent years for reasons
both practical and theoretical. Zoback et al. (1980) summarized the available geological and
geophysical data, and concluded that the area consists of three main seismic trends (see
Fig. 1b), set in a reactivated graben structure. Why the seismicity should largely follow the
axis of the graben is not clear.

Practical interest is stimulated by the possibility of a repeat of the 18111812 sequence
of major events (mp 7.1-7.4) in an area of relatively low seismic attenuation and high
population density, and theoretical interest comes from the breakdown of the classical
theory of rigid plate tectonics. Because the seismicity trends are situated in a zone primarily
of EW compression (Zoback & Zoback 1980) we would expect right lateral strike-slip
motion along the trends (1) and (3) of Fig. 2(b) and thrust on section (2). Russ (1981)
showed that this is borne out to a large extent by the few fault plane solutions available, and
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that section (2) may result from reactivated dip-slip faulting. Together with Schilt &
Reilinger (1981), he also indicates that such evidence as there is favours 5 mm yr™! of uplift
occurring in and around the northern part of the active zone. There is some evidence that
some of this motion is taken up by aseismic creep since earthquakes in Schilt & Reilinger
(1981) did not produce enough movement to account for all of the uplift detected in a later
levelling survey. _ :

The catalogues analysed are described by Nuttli (1979) and Johnston (1981) quoting my,
values inferred from macroseisiic intensities and recent microseismic data, so there are no
problems associated with instrumental saturation. All events from Johnston’s (1981) data
set for my, > 2.5 were included in the analysis. The most successful line fit came from"
considering the range (2.5, 5.0) and (5.0, 7.5) separately as in Fig. 3(b), which plots the
superposition of these two separate distributions. There may also be a third component in
the range of (1.6, 2.5). This superposition can also be seen in the extreme value case
(Fig. 4b), but due to the scarcity of data in the higher portion the two ranges cannot be
-separated. In this case the line fit is effectively straight, even though systematic bimodal
curvature is evident from the figure. For this reason no realistic M, could be obtained with
the impossibly high value of w obtained in Table 2(b).

In arriving at the entries in Table 1(b) for M, the magnitude conversions

My=159my—397  65<M<80 (20)
M, =193 m,—4.8 40 <M, <60 1)

from results summarized in Marshall (1970) were used to match the ranges above and below
5.0 respectively. There is some evidence that the stress drops in this area are relatively high,
so a value Ao =100 bar was chosen to define 4 via Singh & Havskov’s (1980) formulation.
Considering the large error involved in converting from epicentral intensities Iy to my,
(Burton, Main & Long 1983) and then to Mg it is not surprising that the final error quoted
in M, is as high as a factor 10 or so. .

In Fig. 3(b) for the range my, > 5.0 the largest events (m; > 7) were moved to positions
consistent with average repeat times of 650 years (Russ 1981). This gave agreement within
a factor 2 with the estimated moment release rate from three fault areas modelled as one
fault 20km deep (Nuttli & Herrmann 1978) by 200km long moving at 0.5 cm yr™, if
u=3x10" dyne cm™.

For the range (2.5, 5.0), using a circular fault model (Kanamori & Anderson 1975) the
maximum fault size (for w=75.6) was found to be ~ 150km?, with § ~ 9 x 102 mm yr™'.
This typical movement on what are supposed-to be a collection of several subsidiary faults
compares favourably with that observed on one such fault (~1.2x1072mm yr™! from
Zoback et al. 1980) on the Cottonwood Grove fault. We can see that the seismicity
represented by the range (2.5, 5.0) contributes only a minor fraction of the stress release.

The conclusion here is that bumps in the cumulative frequency distribution have been
numerically related to the superposition of two different orders of observed faulting.

(c). SOUTHERN CALIFORNIA (31°—38°N, 114.5°~121°W)

This well-researched area of high seismicity on a plate boundary is very different from the
previous example. It includes the site of the 1952 Kern Co event and the 1971 San
Fernando earthquake, as well as the 400 km long ‘locked zone’ which previously ruptured
in 1857 with an estimated Mg of 8.25 or greater and an average repeat time of 163 yr
(Sieh 1978).
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The catalogue used was that of Hileman, Allen & Nordquist (1973), whose publication
also gives excellent maps of the seismicity and the tectonic setting. The analysis of Fig. 2(b)
shows that for the period concerned (1932—1972) magnitudes above 4.0 or so are com-
pletely reported.

Anderson (1979) indicated a moment release rate of 12 x 102* dyne cm yr ™" for a 500 km
long fault, but this catalogue contains a 650 km stretch of the San Andreas fault and its
offshoots, so My ~ 16 x 10?® dyne cm yr™' may be more appropriate. These figures assume a
depth of the brittle zone of 15 km and u ~ 3 x 10" dyne cm™2, with a movement from plate
‘tectonic constraints of 5.5 cm yr™'. Since the movement on surface faults is of the order
1-3.7cmyr™! the deformation must taken place in a broad zone around the main fault
trend.

Fitting the Weibull distribution to the data proved to be unsuccessful above magnitude
6.7 (Fig. 3c). The line fit seems to follow curvature apparent in the range (4.0, 6.7) and
seriously underestimates the occurrence of the highest magnitudes. It may be that the
activity above 6.7 is a separate distribution as in the New Madrid area, but with only three
or four data points this cannot be tested from the current catalogue. Singh & Havskov
(1980) give A =15.83 for this area, which implies a moment release rate of the right order
only at the expense of allowing a value for w of 9.3 — one magnitude higher than Sieh’s
(1978) deterministic estimate. .

Hanks, Hileman & Thatcher (1975) indicate that M, for the Kern Co (1952) event was
200 x 10%* dyne cm and Mg =7.7. Using 4 =15.83, we find M,, =7.65 so there are no
grounds for supposing instrumental saturation is important.

The extreme value line fit (Fig. 4c¢) gives a similar value for w, but u is significantly
different (even considering its error). Curvature does seem to be enhanced by this method
(higher value for A\) but once more there is a poor fit at the highest magnitudes and the
possibility of two separate curved distributions is evident. The ringed data point is inferred
from Sieh’s (1978) estimates of Mg and the average repeat time T, with T=1/(1-P). Asin
sections (a) and (b) the moment release rates inferred from the line fit are in agreement with
those observed within a factor less than the estimated uncertainty (a factor of 2, cf. 3 or 4)
but in this case it is evident that the parameters of the line fit may be significantly improved
upon.

(d) MAINLAND UK

This area of relatively low intraplate seismicity differs from the New Madrid area in that no
catastrophic events are documented in historical times. Burton (1981) analysed the area in
terms of the third distribution of extreme values and produced the (w, u, A\) set in Table
2(d). The unit time for this set was 6 yr. The my/M; relation (21) is thought appropriate
because of the typical range of events.

Using equation (12) Mo = 2.0 x10%* dyne cm for A =15.7 for an intraplate area, and if
we model this as a circular fault via (19) the maximum fault area would be ~350km?
for a corresponding typical stress drop of 76 bar. Since (M,)=2.2x10%* dyne cm yr™
and u =3 x 10*! dyne cm™, a typical fault movement of 0.2 mm yr™! is expected.

Unfortunately there is very little direct tectonic information as yet on UK seismicity.
However, King’s (1980) results showed that the fault area for the Carlisle event of 1979
December 26 was of the order of 40km? for an event of m;, 5.0. Very little information
exists on contemporary fault movement rates, although some unconfirmed evidence of
surface movement directly following glacial unloading does exist (Sissons & Cornish 1982).
The thrust mechanism of the Carlisle event (King 1980), and the strike-slip solution for the
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Kintail earthquake swarm of 1974 (Assumgao 1981) are both compatible with compressive
intraplate tectonics.

King (1980) assumes Ag=30bar might be appropriate for the UK In this case
A=161, My, =5.13x10%dyne cm, the maximum fault area=1200km? §=
0.06 mm yr™!. King’s results are consistent in themselves, but if Ao =30bar, we should
expect fault planes of an order higher than those which have been observed so far. A more
realistic picture might be to interpret the maximum fault area as representing a sum of
several smaller faults of the order of tens of km? moving at rates ~ 0.1 mm yr™'. This
speculative interpretation is compatible with the spread of UK seismicity around small,
localized centres such as at Comrie and in pockets in the north-west of England and South
Wales, and the absence of catastrophic events such as in the New Madrid area.

A deterministic estimate of the movement between the sinking south of England and the
relative uplift consistent with glacial unloading of the north of England and Scotland is
1.5mm yr™! (Rossiter 1972). If the depth of the UK seismogenic zone is ~5km, and its
width is modelled as of the order 200km, then A ~ 1000 km? and M, ~ 3.4 x 10 dyne
cmyr™!. This area favours King’s choice of A¢ and comparison of the values of M, and
( M,) indicate that over 90 per cent of the observed movement occurs aseismically.

Conclusion

In most cases where moment release rates were available the distributions NV and P success-
fully modelled both the observed curvature at high magnitudes and the predicted moment
release rates from models I and II. The exceptions tended to be in areas where there was
evidence that the distribution was bimodal — being most striking in the New Madrid area
(Fig. 4b).

Careful quantitative comparison of My + 8M, can be used as a method of distinguishing
areas where the line fit is deficient at the higher magnitudes. Incorporation of deterministic
values for the maximum magnitude (from seismicity trends or geological zoning), and
geological estimates of their average repeat times will also improve the quahty of the line
fit at these magnitudes as better quality data become available.

Typical uncertainties in M, were found to be a factor of 2—4 or so, with the Gumbel
estimates giving slightly lower uncertainties, and agreement within this range with observed
moment release rates from (1) a short-term catalogue for an internal consistency check in
the Mediterranean and (2) long-term geological estimates in Southern California is
encouraging.

A serious drawback of the distribution used is that n(w)=0. For a cyclic input and
release of strain energy we might expect n(w) to be some non-zero value, implying a repeat
time T'=1/N(m) which is not infinite as m ~> w. Work is currently progressing in this area to
generalize (2) to allow curvature in the density distribution without requiring n(w) = 0. This
will imply a less severe curvature at magnitudes just below w, and thereby offset the under-
estimation of observed occurrence rates to which the Weibull and Gumbel’s third distri-

* bution seems to be prone.
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ABSTRACT

A new frequency-magnitude relation consistent with an average magnitude
* (m) and an average seismic moment (M;) in the magnitude range (m., v) is
derived using the principles of information theory. The resulting density distri-
bution n(m) dm = C exp{—\A:m — \2Mo(m)} dm can be interpreted as a Boltzmann
distribution of possible energy transitions scaled by a geometric factor, depend-
ing on how such transitions may occur on a fault plane. It gives a better fit to
available frequency data on the Central Mediterranean area than other distribu-
tions which can only successfully model part of the magmtude range. The
technique offers a direct method of including long-term geological information
from plate models or observed fault movement in order to extrapolate seismicity
statistics beyond the instrumental and historical eras. This approach is found to
be in reasonable agreement with southern Californian frequency data—-the re-
sulting distribution being consistent with a geologically estimated recurrence
time for the major events on the southern locked portion of the San Andreas
fault.
_ INTRODUCTION

Great interest is currently being expressed in assigning probabilities to the
occurrence of the large earthquakes which occur in response to-the dynamic motion
of the earth’s crust over geological time scales. One obvious goal is to predict the
time, place, and the size of an event at a given probability level, but the limited
amount of data currently available and the lack of detailed understanding of
earthquake mechanisms are likely to restrict wide application of reliable prediction
to some time in the future.

A second approach is to assess the probability of occurrence of the largest events
and to predict their magnitudes in the light of the seismotectonic properties of the
area under consideration. Knowledge of the'distribution and location of past
earthquake magnitudes may be linked to attenuation studies in order to predict
maximum, or the most likely, ground motion to be expected at a given site some
distance from the likely earthquake source. If there is good control on propagation
effects from source to site—e.g., on local soil mechanics and site conditions as well
as on attenuation of seismic energy—the study of the distribution of earthquakes
can assign probabilities of ground shaking of use to a design engineer.

One recent example of such an approach is to estimate the most probable
earthquake which will affect a site within the region of interest. Burton et al. (1983)
find that the maximum magnitude expected to occur in the Eastern United States
is approximately 7.7, while the most likely to be felt at any given site, after inclusion
of attenuation effects, is 6.5. These are macroseismic body wave magnitudes, which
do not suffer from the instrumental saturation discussed more fully below (Nuttli,
1983, personal communication).

The nondeterministic nature of the latter approach necessitates the use of a
probabilistic framework, but currently suffers from a lack of information at low
frequencies of earthquake occurrence. The instrumental record of earthquakes only
stretches back to the turn of the century, and we are often forced to use a subjective
scale of reported earthquake damage in order to extend our knowledge to the
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historically documented-period before then (Ambraseys, 1971). There is, however,
a third source of information which gives direct evidence for the occutrence of the
rare large events, on the right time scale. This is the geological field evidence for
earthquake-related deformation of the earth’s crust. For example, Sieh (1978) dug
into the San Andreas fault in California and uncovered field evidence in the recent
sedimentation for eight previous major events at irregular spacings averaging 163
yr. More routinely, it is common for field geologists to record slip vectors on surface
faults from stratigraphic and other evidence. The quaternary. geological record gives
direct information on a fault’s long-term behavior, which in many cases can be
understood in the framework of plate tectonic theory.

This paper will address the problem of incorporating such deterministic studies
into the probabilistic assessment of seismic hazard evaluation in a direct way. The
method used is the classic approach of information theory (also known as the
maximum entropy method), which picks the most objective probability distribution
consistent with the currently available data. Even if the distribution thus obtained
requires modification as more information becomes available, it remains the best
contemporary solution to a problem where our knowledge of the system is incomplete
(Jaynes, 1957).

THE MAGNITUDE-SEISMIC MOMENT RELATION

It is well known that instrumental magnitude scales suffer from saturation at
high magnitudes. As earthquakes increase in size, more energy shifts towards the
long-period end of the ground motion—the direct movement on the fault itself
(Howell, 1981). Thus, one reaches the point where an event twice as large in terms
of energy produces hardly any increase in the measured magnitude. For Mg, this
occurs at approximately 8.0 and so Kanamori (1978) proposed an unsaturated
magnitude scale called the “seismic moment magnitude”, M,,, which extrapolates
M; beyond the onset of saturation.

The seismic moment M, is perhaps the best currently available measure of the
size of an event. It is defined by the equation

M, = pAs = (u/c) AW : (1)

where x is the rigidity modulus, A is the fault area, s is the movement on the fault,
o is the average stress level during the earthquake, and AW is the change in strain
energy. Thus, the seismic moment can be easily related to various source parameters.
The seismic moment magnitude M,, is then defined by L

M, = (logio Mo — A)/B (2)

where B = 1.5 from theoretical constraints (Kanamori and Anderson, 1975), and A
is a function of the average stress drop Ac, which is assumed to be a constant. Sing
and Havskov (1980) have shown that appropriate values for A in interplate,
intraplate, and “average” regions are 16.1, 15.7, and 15.85, respectively (in cgs units).
The seismic moment of an individual event can be measured from geological field
evidence, or from the seismological record of an event, particularly the longer
periods. )

In the following sections, we shall formulate a distribution in terms-of M, and
assume that this is applicable to the Ms or M, values in the region below instru-
mental saturation (Mg < 8.0) when we compare this to frequency-magnitude data.
This is effected in practice by using locally correct values for A and B, and can be

~
’
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tested by comparing the theoretical line (M,,) with the available (Ms) data. In order
to avoid confusion between seismic moment and magnitude, we shall henceforth
adopt the symbol m for “seismic moment magnitude”.

THE EARTHQUAKE FREQUENCY DISTRIBUTION FROM INFORMATION THEORY

Information theory is' applicable in a wide class of problems where the average
value of a physical parameter can be estimated even though it may deviate signifi-
cantly from this value from time to time. Its methods have been shown to be
mathematically identical to, but are more general than those of statistical mechanics
(Jaynes, 1957) and have found recent application in geophysics. Rubincam (1982)
has used the method to solve the inverse problem of determining the lateral density
distribution of the earth’s crust from the current global gravity field, and Berrill
and Davis (1980) have previously applied it to the earthquake frequency-magnitude
distribution. In this section, we extend their results by directly including the average
strain energy release through the seismic moment.

Consider the continuous range of magnitudes (m., ), where w is the maximum
magnitude consistent with the finite breaking strain of the earth and the finite
dimensions of the source zone, and m. is an arbitrarily chosen lower bound. m. may
be physically determined by the minimum dimension which will support seismic
rupture, but in practice will usually be the lower bound of complete reporting of
events. .

For this range, we wish to choose a distribution which is consistent with currently
available knowledge but is the least biased with respect to our ignorance of the
system—the “missing information”. The “missing information” inherent in this
probabilistic approach is.characterized in information theory by the function

S(p) = fm p(m) In(p(m)) dm (3)

where p(m) is the probability density function of magnitudes. S is also known as
the “information theory entropy”, and we look for the distribution of p which
maximizes S subject to the constraints

c

f p(m)-dm =1 4)
J; mp(m) dm = (m) (5)
f My(m)p(m) dm = (M,). (6) .

(m) and (M,), respectively, the average magnitude and moment per event in the
range (m., w), are the two pieces of information we have about the system. (m) is
evaluated simply from the earthquake catalog once m, is specified, and (M,) may
be inferred from a catalog of moments where this is available, from geological or
geophysical evidence of long-term fault movement or from current plate tectonic
models. Note that (M,) is proportional to the average release of seismic strain
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energy via (1). The quantity normally accessible is M, — the rate of release of
seismic moment, but this is related quite simply to (M) by (M,) = M,/Nr where
Ny is the total number of events in the catalog above m, per. unit time. In regions
where the deformation is more diffuse, M, may be inferred from the geodetically
determined strain rate é by

M, = 2.5uVeé ' )

if V is the crustal volume (Papastamatiou, 1980).
The method of Lagrangian undetermined multipliers applied to (3), (4), (5) (6)
gives

p(m) = exp{—A\m — \;My(m)}/Z ' (8)

where Z is the normalizing integral

Z= f expl—Mm — \oMo(m)} dm. )

It is easy to show that

(m) = —d{In(Z)}/d\, (10)
(Mo) = —d{In(Z)}/dX,.

In principle, we could solve equations (10) and specify the distribution uniquely in
terms of the three variables (m), (M, ), and w, once m, has been chosen. Unfortu-
nately this must be done numerically. The method applied in this paper involves
an iteration procedure from starting values of A\; and \,, using a third order finite-
difference formula due to Gill and Miller (1972) to evaluate the complicated integrals
(m) and (Mo). *

The cumulative form of the probability distribution is deﬁned by

Pxzm)= f p(x) dx = N(x Z m)/Ny ‘ (11)

if N is the cumulative frequency distribution. The number density n(m) = —dN
(x' 2 m)/dm is then given by

n(m) dm = C exp{~Mm — NuMo(m)} dm (12)

where C = N/Z, and My(m) is given by (2). !

It will be noted that (m), (M,), Z, and Ny will depend on the range chosen (m,,
w), but are most sensitively dependent on m.. For the purpose of the present type
of work, this will not matter if: (a) the form of the distribution is self-similar at the
lower magnitudes; i.e., the term in A, dominates at low magnitudes and is reasonably
constant independent of the choice of m,, and (b), proper normalization is carried
out. It is obvious that (a) can only be effected by considering a range of events
where we are sure the catalog is complete.



i

INFORMATION THEORY & FREQUENCY-MAGNITUDE DISTRIBUTION 1413

A PHYSICAL MODEL FROM STATISTICAL MECHANICS

In order to interpret (12), we now consider a physical model of a fault and apply
the methods of statistical mechanics to its localized elements. These elements may
be as small as the lattice constant of the predominant crystal or may be related to
inhomogeneities such as joints or bedding planes. In the following, we assume that
the elements A, are small enough to warrant a continuous approach.

Consider an arbitrary area A = |*> which ruptures during an event on the fault
plane An.x (Figure 1). Assuming a constant strain drop (so that the model is self
similar), we may take the fault movement s « /, so that

M, « I3 from (1).

If an energy level E is characterized by the symbol r and can be filled in g ways,

A

max

FI1G. 1. A geometric fault model. The area A can fit into Am, in Ap./A ways. A, represents the
physical lower limit to seismic energy release and depends on the spacing of inhomogeneities in the
earth. The density of degenerate states if A, is assumed to be very small is D(!) di = {Apas/I%} =~ {Anar/(l
+ dl)?} = 2A,,/1% dl. ’

then the discrete frequency F of state transition is given by

F, = g.exp{— B'(E, — E,")}. (13)
AW = (E, — E,) is the change in strain energy which is proportional to M, via (1),
and 8’ depends on the average energy (E). The degeneracy g is given by a simple

geometric constraint on My(/). On a planar fault, we take g(I) = Apa/A(l) so that
for the continuous case, the density D(l) of degenerate states is given by

D() dl = g(l) = g(l + dl) = (2A,e/1%) dl (14)

after binomial expansion and ignoring terms in di* and higher. Tflé continuous
number density n(l) is then given by '

n(l) dl = D(l) dl exp(— BM,(l)) - (15)

where SM, = 8'AW from (1).
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‘Remembering M, « [* and incorporating (2) gives
Sn(m) dm = const 107" =M™ gy - ©(18)

with b = (§)B [see the Appendix‘ for a general derivation of b for D(l) « [™]. This
is identical in form to (12) if \; = b In(10), A, = 8. Since B = 1.5, b should be close
to unity. If moment is the relevant parameter

n(Mo) dMo = const Mo_ﬁ/ae—ﬂMo dMo (17)

where the geometric term M, follows from (14) with M, « I°. The form of this
distribution can then be interpreted as a Boltzmann distribution of energy transi-
tions via exp(— BM,), multiplied by a geometric factor M,™**® which results in
another exponential if magnitude is the relevant parameter.

A NOTE ON FRACTAL DIMENSION

It is interesting to note that data on Californian fault breaks indicate that D(l)
o [™ with v = 2.5 rather than 3 given previously in (14) (Caputo, 1982). This would
imply b = [(v — 1)/3] X B is 0.75, in good agreement with theoretical models
developed by Petrov (1981), where b = 0.75 results from random statistical fluctu-
ations in microcrack density and Vere-Jones (1976) where b = 0.75 results from a
critical branching model. The noninteger v implies by analogy with the normal
concept of density, a density distribution of fault lengths which has a fractal (i.e.,
noninteger) dimension (of 1.5 in this case). The fractal dimension of the fault
geometry may be modeled by: (a) irregularities along the main fault break or (b)
scattered smaller replicas of the original fault (see Mandelbrot, 1977). Caputo’s
(1982) value for » only accounts for (b), which may explain why the b value predicted
from v underestimates the empirical value for b of 0.87 (Epstein and Lomnitz, 1966)
and 0.86 (this paper).

COMPARISON WITH OTHER MODELS

Normally, in seismicity statistics, there are insufficient data to observe the
contribution of the term in My(m) in (12) or (16)—the direct result of incorporating

a finite rate of release of strain energy. The most common frequency distribution . .

used has therefore been the Gutenberg-Richter frequency law
n(m) dm = a 107°" dm. (18)

This law can be applied as an open distribution in the range (m,, ©) (Richter, 1958)
or in truncated form in (m., w) (Cosentino et al., 1977). The truncated form is
preferable because it leads to finite rates of strain energy release, but the open-
ended form often serves as a useful approximation. Figure 2 shows this distribution
compared with some of the other truncated distributions mentioned in this section.

By comparison, the effect of the term exp{— A\;M,y(m)} is to progressively reduce
n as w is approached. Roll-off can also be seen in a physical model by Caputo (1976),
which considers the effects of variable stress drop as well as source dimension, and
which also includes, directly, an explicit value for the finite release of strain energy
as an a priori assumption. This model has the form

n(m) dm = {a 107%™ — ¢} dm ' ' (19)
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where ¢ is 0 below m, and a finite positive constant, a107%, in the range (m,, w).
The differences between the distributions are only significant just below w, so in
many cases are not yet reliably observable because of the rare occurrence of the
large events and the short time coverage of present earthquake catalogs. Perhaps
the most important point to note is that inclusion of the long-term information
leads us to expect fewer events at the largest magnitudes than an extrapolation of
(18) would suggest. Additional information, such as the predominance of aftershock
sequences (Bath, 1981) may alter this conclusion.

Statistical analyses which preferentially investigate the higher magnitudes by
extreme value methods (Gumbel, 1958) generally show curvature similar to that
indicated just below w (Yegulalp and Kuo, 1974; Burton, 1979). The form of this

"~
log n(m)

-
7

m m

¢ w m

FiGc. 2. Comparison between seismicity models. The models shown, in increasing order of complexity
are: (1) the Gutenberg-Richter law; (2) a truncated form of (1), due to Cosentino et al. (1977); (3) the
information theory model; and (4) Caputo’s model. Model (3) tends simply to (2) if the parameter A, in
equation (12) is zero. Caputo’s version differs from (3) in having (a) a sudden departure from log-
linearity at mg rather than more gradually, and (b) an asymptotic limit w at n(w) = 0 rather than at
finite n. This allows the strain to build up to infinity since n(m) dm = 0 corresponds to infinite repeat
times. Model (3) is, therefore, more compatible with a cyclical input and release of strain energy, since
it does not allow such a build up.

curvature is related to the type III Weibull cumulative frequency distribution -
NIII(x Z m) = {(w — m)/(w — w)}** ' (20)

(Jenkinson, 1955). As X approaches 0, this form reduces to that of (18) (a type I
distribution). The difference is that type I is-unlimited but type III has an upper
bound to m. Main and Burton (1981, 1983) have applied this form to the forward
problem of predicting crustal deformation rates from available catalogs in such
diverse regions as California, the Eastern United States, the United Kingdom, and
the Mediterranean. Where there is adequate control on the relation (2) the agree-
ment with the observed deformation is good. The extreme value equivalent to (20)
also’ gives inferred moment rates consistent with available data. This form is
especially useful for areas where the data set is severely incomplete.
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Equations (19) and (20) both tend continuously to n(@) = 0, which allbws infinite
repeat times of the largest events and so is seen as a drawback (see legend to Figure
2 and Main and Burton, 1983). :

RESULTS

Example (1): The céntral Mediterranean. The deformation around the Mediter-
ranean is composed ma\‘inly of continental collision and arcuate subduction, and
may involve a significant amount of aseismic creep processes such as folding and
continuous fault movement (North, 1974). The region encompasses many diverse
tectonic features which currently defy complete explanation within the framework
of classical plate tectonics. However, it does serve as a good example of the
application of earthquake statistics to an arbitrary area with sufficient numbers of
events for statistical rigor. A seismicity map is given in Figure 3.

The histograms of Figure 4 show that the catalog used (Burton, 1978) is complete
for the time range analyzed (1943, 1971) above magnitude 4.5, so we choose this
value of m.. We can infer this from the roughly constant number of events per year
in the range (4.6, 5.5), despite the introduction of the WWSSN network in 1963,
which has such a marked effect on the range (3.6, 4.5). The dramatic rise in the
number of events in (4.6, 5.5) just before a large event (Ms 7. 8) in 1953 is interesting,
but is not investigated in further detail here. The frequency F(m) = [7+2m/2 n(m)
dm, for 6m = 0.1 and equation (12) is plotted in Figure 5, with the solid line being
determined by numerical solution of equations (10), the parameters of which are
summarized in Table 1. North’s (1977) Tables 4 and 1, respectively, indicate M, =
2.4 X 10 dyne-cm yr™! for the time period 1943 to 1971 and 4.5 X 10% dyne-cm
yr~! for the more completely analyzed period 1963 to 1970. These may be regarded
as minimum values, so the value 8 X 10% dyne-cm yr™' is a reasonable one. There
is some scatter about the theoretical line, but this is of the same order as instru-
mental errors in measuring magnitude (+0.3 units typically). Some compensation
for this has already been incorporated into Figure 5 by averaging the frequency data
over neighboring ranges. This smoothing also serves to correct for spurious empty
magnitude intervals and serves as a normalizing agent at the highest currently
available magnitudes where the data shown on Figures 5 to 7 become effectively
discrete. The smoothed discrete data points are then described by Fy(i) = Yzl
Fi(j)/3 where F,(j) represents the original unsmoothed data. Note that F = F(M,,)
is the theoretical line and F,(Mj5) is shown for comparison purposes only.

By comparison, the dotted line representing the truncated Gutenberg-Richter law
overestimates the occurrence of the largest magnitudes. The departure point from
this- line indicates that Caputo’s m, parameter is around 7.0 for this region. The
Weibull frequency distribution of Figure 6 is not such a good fit for the intermediate
magnitudes, but is similar for the largest ones which dominate the moment release.

A summary of the results are presented in Table 1. A = 16.0, B = 1.5 are found
to be appropriate values for the Mediterranean (North, 1974; Figure 2). The same
figure indicates that the highest magnitudes do not suffer from instrumental
saturation so the Ms and M, scales can be regarded as equivalent within their
uncertainties. The time period (1943, 1971) and magnitude range (4.6, 7.8) are also
common to all of the entries. The parameter b = X\,/In(10) is quoted here because
it is more commonly used in seismology. The uncertainty in the empirically inferred
values for M; results from the covariance errors in (w, u, A) as do those of Table 2,
which compares estimates of average repeat time. The covariance error matrix as
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described in Burton (1979) for Figure 6 is

{o.2 o2, o] { 0.855 —0.031 -0.119}
foho 0. ol ={~0031 0.018 0.008}
{afw Uiu 0')\2, {—0119 0008 0.018}1\11".

In comparing the models, we have already found that the truncated Gutenberg-
Richter law overestimates the occurrence of the highest magnitudes. The type IIT
cumulative frequency distribution is an improvement in that it is consistent with
the curvature observed on log-linear graphs at-the highest magnitudes. However

o
o

32}

Frequency groph n (m)dm
of the Mediterraonean

For 1943=1971,Ms>4.5

00

2.

log (F (M) )
00& ’ II.UU

-1.00

~2.00

.00 5.00 6.00 7.00 g8.00 3.00
Magnitude Ms

F16. 5. The frequency distribution of events in the central Mediterranean. Comparison of Fo(i) =
jei-1 F1(j)/3 with the information theory prediction from the input values of Table 1. The solid line is

the information theory prediction, which falls below the extrapolation of the dotted straight line segment
corresponding to the truncated Gutenberg-Richter law. Although the data points shown are all Mg, these
are regarded as being equivalent within measuring errors to M,, used to produce the theoretical line.

there is some evidence of autocorrelation error in Figure 6, in that the distribution
of data points around the theoretical line is not random. There is a tendency for
data points in the middle range of magnitudes to fall below the best-fitting line.
However, because the fit is good at high magnitudes, the moment predictions from
(w, u, ) (obtained by the method described in Main and Burton, 1981) turn out to
be reasonable considering their error.

The information theory distribution has no such apparent autocorrelation error-
in the low and medium magnitude range, and for this reason is considered to be an
improvement on the type III distributions. However, for the high magnitudes, the



TABLE 1
SUMMARY OF RESULTS FOR THE CENTRAL MEDITERRANEAN
Figure Method Model Distribution Input - Results
5 Information theory Average of magnitude This paper (m) = 5.216 + 0.017 b = 0.666 .
-and short-term mo- Equation M, =8 X 10% dyne-cm yr™ A2 = 3.29 X 102 (dyne-cm)™*
ment release 12) Nr =410yr!

6 Cumulative frequency Whole process of earth- Jenkinson Cumulative frequency data from (w, u, A) = (8.2, 6.8, 0.2)

with upper bound to quake magnitude cat- (1955). catalog Mo=(8+ 11 X 10 dyne-cm yr-'

magnitude alog Equation 5

(20) !
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fit to the data and the consistency of appropriate seismic moment release rates
indicate that both methods can model this range successfully. The advantage here
of the information theory distribution is that it models the occurrence in a way
which is directly consistent with available knowledge of the highest magnitudes via
the extra information represented by M,.

Example (2): Southern California. In the first example, we checked for self-
consistency of the method with contemporary data and compared the information
theory distribution with some commonly used empirical methods. In this section,
we test the primary objective of this paper—the direct incorporation of crustal
deformation via the terms M, and N7 with a view to extrapolating beyond historical

L=
o

Frequency graph n(m)dm
of the Mediterraneon
3 For 1943-1971,Ms>4.5,

-2.00

.00

| (F (M))
Log(F ),

-1.00

2.00

.00 5.00 6.00 7.00 8.00 9.00
Mognitude Ms

FiG. 6. Empirical freti‘qency fit. The type III form of equation (20) is fitted to the data by computer
algorithm. The line fits high and low magnitudes well, and predicts a reasonable value for M, [by the
method developed in Main and Burton (1981)] but overestimates the occurrence of the intermediate
events,

and instrumental time scales. Previously, this has been done indirectly by comparing
moment predictions from extrapolation of line fits to contemporary data with
. quaternary evidence of fault movement. Examples are Anderson (1979) for the
(linear) truncated Gutenberg-Richter law, and Main and Burton (1981, 1983) for
the more general (curved) type III Weibull frequency distribution and its extreme
value equivalent. . »
The catalog used is that of Hileman et al. (1973) which covers the period 1932 to
1972 inclusive. Their magnitudes are taken to be Mg or equivalent M, although
most of the entries are M. The only event which might possibly be subject to
saturation effects is the 1952 Kern County event, but this is not found to be the
case (Main and Burton, 1983). The area has, however, been subject to occasional
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- B
Frequency graph ni{m)dm
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3. For 1932-1972,Mw>4.65.
» .
=¥
E
w
-0
o
L
|~
n
c}i.
A
o . . , '
y.00 5.00 68.00 7.00 8.00

Magnitude Mw

Fic. 7. Frequency data from Californian instrumental records and Sieh’s geologically estimated occur-
rence time of the largest events, compared with the information theory prediction. Curvature due to \; is
small but significant and leads to a good match at the box representing Sieh’s results. The box represents
a seismic moment magnitude obtained from Sieh’s results, and the catalog data (Ms or My) is regarded
as equivalent to M, within their measuring errors. The good fit of the theoretical line (expressed as M,,)
with the magnitude data seems to bear this assumption out.

4

TABLE 2

MAGNITUDES M7 CORRESPONDING TO AVERAGE

REPEAT TIME T YEARS FOR THE CENTRAL

MEDITERRANEAN USING: (A) INFORMATION THEORY (5)

AND (B) CUMULATIVE FREQUENCY (6)

Figure: 5* 6*

T (yr) Mr Mr (oM7)t
1.0 6.75 6.80 (0.138)
2.0 7.00 7.03 (0.137)
5.0 7.256 7.27 (0.165)

10.0 7.45 7.42 (0.208)
20.0 7.55 7.55 (0.262)
50.0 7.65 7.68 (0.339)

100.0 7.80 7.84 (0.456)

*T=1/N(MzZ Mr).
+ Uncertainties follow from the covariance matrix on

errors in (w, 4, A).

major shocks, the last being in 1857 along the currently locked aseismic portion of
the San Andreas fault. Sieh (1978) has shown that shocks of this order of magnitude
repeat on average every T'= 163 + 27 yr, where the uncertainty is a standard error
in the mean. The repeat time has varied from 50 to 275 yr for the eight events
regarded as proven without reasonable doubt. »
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Sieh estimates the size of this event as Mg > 8.25, by comparison of macroseismic
effects with those for the instrumentally recorded 1906 San Francisco earthquake.
Sing and Havskov (1980) find that A = 15.83, B = 1.5 is most appropriate for
southern California, and Anderson (1979) gives M, for the 1857 event as 9 X 10%
dyne-cm from the extent of the surface break and fault movement. These two data
imply that M, = 8.1, showing that the M, — M, relation cannot account for the
relatively high Mg value of the 1906 event.

Further, if we assume an average movement rate at the 1857 fault break of 3.2
cm yr~' and let s = st in (1), then we find M,, = 8.05 £ 0.15 from (2) for appropriate
values of ¢t from Sieh’s table of recurrence times. The movement rate is consistent
within £0.5 cm yr™" with: (a) the creep rate over 4 yr in central California — 3.2 cm

! (Lisowski and Prescott, 1981); (b) 44 m of slip repeated every 163 yr for
approximately 2000 yrs — 2.8 cm yr™' (Sieh, 1978); and (c) geologically estimated
movement rates on the San Andreas fault — 3.7 cm yr~! (Anderson, 1979, Table 1).
This good agreement over different time scales also lends support to the stationary

TABLE 3
MAGNITUDES M7 CORRESPONDING TO AVERAGE
REPEAT TIMES T FOR THE INFORMATION THEORY
DISTRIBUTION IN SOUTHERN CALIFORNIA

T (yn) Mr*
1 5.85

2 ' 6.20

5 6.65
10 6.95
20 o 7.25
50 7.60
100 7.80
200 7.95

*T=1/NMz Myr).

hypothesis. A higher value for the relative plate motion across the San Andreas
transform of 5.5 cm yr™ indicates that a significant amount of movement occurs in
a broad deformation zone around the main fault. The calculated value of M, results
from locally appropriate values of A (15.83) and B (1.5), u = 8 X 10" dyne-cm™2,
length L =~ 400 km (Sieh, 1978) and depth 15 km (Anderson, 1979).

Figure 7 shows the information theory line compared with the catalog and
quaternary geological data discussed above. The appropriate parameters are (m., )
= (4.7, 8.2), My = 16.1 X 10¥ dyne-cm yr~! (for a fault zone 150 km longer than
Anderson’s (1979) area of study where M, = 12.0 X 10%® dyne-cm yr™* and § = 5.5
cm yr~! from plate models). The average magnitude and standard error in this range
is found to be (m) = 5.157 + 0.021, with Ny = 11.15 yr~. These imply b = 0.856
and A, = 3.0 X 107® dyne™ ¢cm™ and seem to compare well with the data. The
effect of increasing w progressively is negligible on b even to three figures, but A,
increases to 6.0, 7.6, 7.8 X 107% for w = 8.4, 8.6, 8.8, respectively. These solutions
all pass through the error confines around this point, but w = 8.2 gives the best fit.
Finally, the average repeat times from the information theory distribution are
quoted in Table 3.

The main conclusion from this section is that the information theory distribution
can successfully model the extrapolation of current seismicity statistics in the light
of quaternary geological data.
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DISCUSSION AND CONCLUSIONS

The method of statistical inference known as information theory can be applied
to earthquake statistics in the range (m., w) if the average magnitude (m), the
seismic moment release rate M,, and the number of events per unit time Nr are
known. The form of the distribution thus obtained can be interpreted as a Boltz-
mann distribution of energy transitions multiplied by a geometric term which
dominates the high frequencies of occurrence at the lower magnitudes. The geo-
metric term corresponds to the commonly used Gutenberg-Richter law, and the
Boltzmann term to the roll-off below this line which is often observed in nature.

The distribution has been tested in a region which has a reasonably complete set
of contemporary unsaturated magnitude and seismic moment data, and fits well
considering the instrumental errors involved. It also compares favorably with other
commonly used distributions in that it accurately reflects the behavior over the
entire magnitude range. The method is a general one, and could conceivably be
extended to include premonitory effects from earthquake prediction studies. For
example Von Seggern (1980) noted that isolated stress measurements along a fault
are unreliable for earthquake prediction because of the large random component
involved. The average stress (or strain) measured on a broader scale over the whole
fault may yield information on the increased probability of occurrence of the largest
magnitudes as the strain builds up.

For the moment, however, the method does give some hope of extrapolating
frequencies of occurrence beyond the instrumental and historical era by including
long-term geological movement rates where they are available through the term M,.
Thus, we might be slightly more confident of estimating design criteria for buildings
or communications systems whose life times are expected to be longer than the time
scale of the available catalog.
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APPENDIX: THE RELATIONSHIP BETWEEN », B, AND b
We have

Mo, = e***™  dM, = M, dm o (A1)
Mo« 1% dM, o 312 dI - (A2

D() « i, @y
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"From (A2) we first convert the variable in (A3) from [ to My(l) -

D(M,) dM, = D(l) dl
. o MO__(.,+2)/3 dMo (A4)

and then to m(M,) via (A1) E

D(m) dm = D(M,) dM,

Jeoe <1 - v)l, '
OCepr( + 8m) 3 ldm. '(A5)
If we define
D(m) « 107", (A6)
then
b= (” ; 1) 8/In10 (A7)
or
b= (” = 1)3. | (48)

Since B = 3/In10, A = OC/ntO by comparing (2) with (A1).



