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ABSTRACT 

Expressions for crustal deformation as evidenced by seismic moment 

release or slip rates are derived from a Weibull distribution and 

Guinbel's third distribution of extreme values in earthquake magnitudes. 

These are compared with the tectonically observed values, as are the 

maximum magnitudes obtained by the statistical studies with those 

inferred from maximum fault areas. Both types of distribution exhibit a 

good match between the seismic and tectonic crustal deformation in the 

following areas: The tectonically complex Eastern diterranean; 

Southern California; The New Madrid Seismic zone. All of these regions 

have apparent bimodal distributions of earthquake magnitude, with a 

particularly good match in the New Madrid zone between the tectonic slip 

rates and fault areas and the seismicity distribution on two 

characteristic families of faults. By contrast the mainland UK has a 

seismicity which can only account for a small fraction of the known 

tectonic movement, exactly as one might expect for a regime of slow 

elastic rebound following glacial unloading. 

A new frequency-magnitude distribution is derived from Information 

theory. Its number density is n(m)=c.exp<- 1m-x 2M0(m)>, where 

X 1 =bQ.i(10) and b is the Gutenberg-Richter 'b-value'. M0(m) is the 

moment-magnitude relation. By analogy with statistical mechanics b can 

be related to a geometric similarity dimension D by b2D, thereby 

explaining the observation O<b<1.5 as corresponding to the release of 

strain energy in a finite volume, D<3. This distribution fits the 

Mediterranean data better than the Weibull form, and predicts a repeat 

of the 1857 earthquake in Southern California (M>7.9)  156 years after 

this date on average, with a range considering errors of 87-281 years. 

This compares well with some results from trenching across the fault 

(once every 163 years, but from 55-275 years). The method could be used 
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in areas where the slip rate is known but direct trenching is impossible 

and to define a time constant to indicate when a seismic gap is likely 

to become reactivated. 

Source parameters are derived for Greek earthquakes from teleseismic 

recordings of surface waves (M>5.5) and local P waves 

( 1 . 8 <ML<4 . 5 ) in order to further evaluate the seismic hazard and to 

test some of the assumptions of the Information theory distribution. 

Typical stress drops of the smaller events (1-10 bars) scale vary well 

with the larger events (7-12 bars), representing dimensional 

self-similarity of the seismic process in Central Greece over an energy 

ratio of 1:10,000 (!). A calibration procedure for the seismic moments 

of the larger events shows that ignoring the effect of orientation of 

the seismic source only increases the standard deviation of these 

moments from 25% to 40%. 

A detailed study of Aegean seismotectonics is undertaken. The 

moment-magnitude relation log (H) = A+BM, sith A = 10.97(.63), 

B = 1.21(.11) is foundfrom surface wave studies (A in SI units and 

uncertainties are in brackets). By contrast the available body wave 

moments are shown to be too low by a factor of two or three in this 

area. The tectonic and seismic slip rates are compared for (a) the 

spreading Aegean basin and (b) the sinking subduction slab of the 

Hellenic arc. The Aegean activity can be explained by mostly seismic 

gravitational collapse, whilst the seismic activity of the sinking slab 

is only a small fraction of that expected from its known slip rate. The 

latter activity may be more due to the internal buckling of the slab due 

to thermal expansion or mantle phase changes than to stick-slip sliding 

at its boundaries. A characteristic peak in the magnitude distribution 

at M su 7 can be related to a block-like earth structure of a 
S 

characteristic size similar to the known seismogenic depth in the 
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spreading Aegean crust. This macroscopic quantum effect is similar to 

the behaviour observed in the New Madrid zone, and may be a fairly 

common feature of seismogenic zones. 

The reasonable agreement throughout between the tectonic and 

seisniogenic slip rates show that the methods used have an important role 

to play in investigating other second—order effects of plate tectonics, 

as well as being testament to a surprising degree of stationarity of the 

seismic process in some areas. However, practical results also emerge 

in the form of quantititive estimates of seismic hazard in areas of 

greatly differing crustal deformation rates. 
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"Science is a very human form of knowledge. We are alwaye at the 

brink of the known, we alwaye feel forward for what is to be 

hoped. Every judgement in science 8tanda on the egde of error, and 

is personal. Science is a tribute to what we can know although we 

are fallible .....We have to touch people". 

The Ascent of Man 

Jacob Bronowski 



INTRODUCTION 

Seismotectonics and seismic hazard 

As its name implies 'seismotectonics' refers to the study of the 

relationship between tectonic activity over geological time scales 

and earthquake (seismic) activity in more recent epochs (historical 

or instrumental). On the other hand the 'seismic hazard' is a 

numerical estimate of the probability of occurrence of earthquakes 

of varying magnitudes and resultant ground motions which are caused 

by this underlying process. Seismology in the past has been a 

useful indicator of the boundaries of,the earth's plates - such as 

the 'Ring of Fire' circling the Pacific, and in delineating the 

Benioff zones where old ocean floor is subducted for recycling in 

the earth's convective engine - the primary driving force behind 

all plate tectonic motion. In this thesis the relationship between 

tectonic activity and resulting earthquakes will be investigated in 

more detail, and in particular for many regions of the world where 

plate tectonics does not fully explain the activity. The intention 

of this work is not to challenge the basic concept, but rather to 

investigate possible second order effects such as the reactivation 

of old lines of weakness within otherwise fairly rigid plates, or 

the effects of irregular geometry at the plate boundaries. 

One of the prime methods of looking at this problem is to 

consider the slip rate over geological time. The slip rate in 

areas at plate boundaries is usually well known from magnetic 

anomalies on the ocean floor, and several faults along plate 

boundaries or within plates have now also been investigated to give 

a measurement of this important geological parameter. In Chapter 1 

various methods of estimating a seismogenic slip rate from the 
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current earthquake frequency magnitude distribution from recent 

earthquake catalogues are reviewed, and in Chapter 2 two of these 

methods are used to compare slip rates from long-term geological 

processes with the current earthquake activity represented by the 

catalogues. 

In Chapter 3 a completely new approach to the seismic hazard 

problem of combining the implications of short-term earthquake 

catalogues with long-term geological slip rates is developed using 

Shannon's (1948) Information theory. The slip rate here is used as 

a direct constraint on the earthquake size distribution in order to 

make this distribution consistent with both the long-term tectonic 

activity and the short-term seismic effects. This is an 

improvement on earlier methods which were indirect. This allows a 

great improvement in any subsequent estimation of the 'seismic 

hazard', here quantified as the probability of occurrence of 

different magnitudes in the potential source zone. 'Seismic risk' 

is a much more specific measure of the danger posed by earthquakes 

to a particular building or facility which may include a valuation 

of the structure's worth. In the whole of this thesis one of the 

most important products is the quantification of seismic hazard by 

the average repeat time of earthquakes of a given magnitude, with 

the advantage over some previous studies that these estimates are 

also consistent with the long-term crustal deformation-expressed by 

the slip rate and are specified within well defined error bounds. 

Another application of the earthquake distribution developed 

in Chapter 3 is in evaluating 'long-term earthquake recurrence 

intervals', by using the average repeat time of the largest 

magnitudes. By applying the slip rate method to compare this time 

constant with the time elapsed since the last major event, the 
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areas of the earth currently most at risk from catastrophic 

earthquakes can be identified, and limited resources .can be 

concentrated on the areas most likely to. bear fruit in the ongoing 

search for a reliable method of short term earthquake prediction. 

The most directly applicable results of the methods to be 

described, however, are in terms of their influence on hard 

decisions on earthquake zoning, building design codes, earthquake 

engineering and insurance levels. 

In the final two chapters the Aegean area is investigated in 

some detail as a case study. In Chapter 4 source parameters such 

as seismic moment, magnitude, sup, fault area, stress dro'p and 

strain drop are derived for several earthquakes and these are used 

to test some of the assumptions of the distribution developed in 

Chapter 3. In the final chapter the problem. of the tectonic 

stretching of the Aegean sea is investigated in detail, an area 

whose activity has yet to be fully explained by plate tectonics or 

any other current theory. 
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Glossary of notation used in this thesis 

The following are the main parameters of the thesis. There should 

be no confusion between fault area and the A parameter of the 

moment-magnitude relation in any given context. Another aspect 

of the nomenclature of this thesis is that 'seismic monent' is 

often abbreviated to 'moment'. This should not cause confusion 

with the ordinary concept of a moment in the sense of a couple 

applied to a swinging door, for example, because there are no 

references to this use of the word in the thesis. Other parameters 

will be defined as they crop up in the text, but this list should 

be consulted if no explanation is given. On some diagrams the 

computer graphics produced no subscripts, e.g. nib for nibs  but 

it should be obvious where these would be appropriate. 

N.B. References to equations are sometimes abbreviated by omitting 

the qualifer 'equation'. Thus, for example (3.2) refers to 

equation (3.2). 

nib : body wave magnitude 

M : surface wave magnitude 
S 

ML : Richter's local magnitude 

	

M 	: Kananiori's seismic moment magnitude 
w 

	

rn 	: symbol used in theoretical treatment for M or an 

unspecified magnitude 

	

M 	: seismic moment 

	

0 	 - 

rigidity modulus 

	

p 	density 

A,V : fault area, volume containing deformation 
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a or r,L or £,W or w: fault radius, length, width 

s,s : average fault slip, slip rate 

Aa 	stress drop 

e : strain drop 

0 

e : strain rate 

A,B: parameters of the decadic moment-magnitude relation 

exponential 

(also P, S wave velocities respectively) 

maximum limiting magnitude 

M : 	' 	 moment 
o 

cumulative frequency (usually norinalised to annual unit times) 

n 	number density 	 H 

F : discrate frequency 

P 	cumulative probability 

p : probability density 

b,b' 	: decadic, exponential Gutenberg-Richter b-value 

(u,u,X) : parameters of the Weibull/Guinbel's •third distribution 

covariance error matrix for the Weibull distribution 

(X 1 ,X2 ) : parameters of the new distribution developed in Chapter 

3 (N.B. X 1  = b') 

in 	: lower limiting magnitude, or completeness threshold 

magnitude associated with average repeat time T 

NT 	: total no. of events per unit time in a complete 

earthquake catalogue 

v 	: power of fault length distribution LV 
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D 	: fractal dimension 

fault plane solution (azimuth, dip and rake) 

f, n 	: unit vectors parallel and perpendicular to the slip 

direction 

Q 	: spectral density 

long period spectral density 
0 

corner frequency 

radiation pattern 

f,u,T 	: wave frequency, angular frequency and period 

h 	: focal depth 

y, y' 	: attenuation parameter per km or per degree 

R 	: source station distance 

Units of measurement 

In much of the geophysical literature c.g.s. units are used as 

units of measurement. In order to give the reader a comparison 

with the SI units used throughout this thesis (unless otherwise 

stated) a conversion summary is given below: 

SI c.g.s. 

Seismic Moment M lNm 107 dyne cm 
0 

Stress drop Aa lNn7 2  10 dynes ctf 2  

(1 bar = 10 	Nm 2  = 106 MPa) 

Rigidity modulus 1Nm 2  10 dynes cm 2  

Energy E 11 10 7  ergs 

Density p 1kg m 3  10 gcif 3  

1oment-magnitude A = 1 A = 8 
relation 

(i.e. A(SI) = A(cgs) - 7) 



CHAPTER 1 

Existing theory and practice in earthquake recurrence statistics 

1.1 Introduction 

Earthquake recurrence statistics are important for two reasons. 

The first is that they quantify the seismic hazard due to a broad 

range of event sizes. It may be, for example, that the tectonic 

stress which causes earthquakes is released primarily in several 

small events, or perhaps (actually much more commonly) in rarer 

large events. Earthquake recurrence.statistics quantify effects 

such as this through the frequency magnitude distribution, which 

can then be combined with knowledge of attenuation of seismic 

energy and local site effects to produce an estimate of the hazard 

(as annual probabilities of occurrence of acceleration, velocity, 

displacement, or intensity for example). Thus practical decisions 

can be made on building design criteria to mitigate 	the 

inevitable recurrence of these events. 

The second reason for examining recurrence statistics is in 

evaluating long term recurrence intervals of specific large events 

which are known to have occurred previously. This can be done 

directly by combining the average repeat time of a characteristic 

earthquake, which can be found by geological and geomorphological 

investigation of surface trends, or less accurately by 

extrapolation of usually short term frequency magnitude statistics, 

with an estimate of the characteristic magnitude and the date of 

the last occurrence, using the concept of a 'seismic gap'. For 

example the southern section of the San Andreas fault in California 

last ruptured in a great earthquake in 1857. No large events have 
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occurred along this break since then, leaving a 'gap' in the linear 

trend of the seismicity along this fault near Los Angeles. The 

average repeat time found from trenching across the fault in some 

peaty sediments is about 163 years, which means that for a normal 

distribution of repeat times, the cumulative probability of a large 

event having occurred will reach 50% by the year 2020. 

This chapter will sununari'se the different theoretical forms 

used for the frequency magnitude distribution, and show how 

geological information from slip rates on faults can be used to 

tighten up the extrapolation of recurrence statistics in areas 

where there is no direct evidence from trenching studies. 

1.2 Curvature in the log-linear seismicity distribution and an 

associated limiting maximum magnitude 

The most commonly applied description of seismicity in terms of the 

relative frequency of occurrence of different sizes of earthquake 

is the Gutenberg-Richter law (e.g. Richter, 1958; Esteva, 1968) 

logN(x>m) = a - bm. 	 (1.1) 

N is the number of times a magnitude ni.is equalled or exceeded in a 

unit time interval and b is a constant which usually varies in the 

range of 0.5 < b < 1.5. Some examples of a line fit to cumulative 

frequency data N(m) are given in fig 1.1 for different seismic 

zones, showing up variation in the b-value by the different slopes 

on the log-linear graph. 

Although this law is widely used in hazard estimation it does 

have some serious drawbacks. For example if the seismic energy 

E (in Joules) is related to magnitude by 
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Figure 1.1 	An example of a, log-linear frequency magnitude plot 
due to Esteva (1968). ELX(M)J corresponds to N of equation (1.1) 
and = binlO here. The lines drawn through the data represent a 
least squares fit assuming the log-linear Gutenberg-Richter law. 
The b-values corresponding to are 0.94, 0.74 and 1.25 
respectively, showing the kind of range this parameter takes in 
different regions. The curvature above M=8 could be due to 
instrumental saturation. 



E (LA) 
= 10 4.8+1.5m 

S 
(1.2) 

Richter (1958) then the energy released in the magnitude range 

(m,) is an integral over this range 

00 

E = f E(m) n(m) drn , 	 (1.3) 

where n(m) = -dN/dm is the number density function of (1.1). From 

(1.1) and (1.2) it can be shown that this integral is infinite for 

b < 1.5 (Knopoff & Kagan, 1977 and section 1.7), which means that 

there must be a cut-off magnitude w before in + to avoid this 

absurdity. •This limiting inaimum magnitude is a reflection of the 

finite breaking strength of the earth's crust, and the finite 

extent of the source zone. 

The limiting magnitude has a further consequence. Because the 

interval (c, a') now has no events'(N(u) = 0), the cumulative 

frequency just below w is also significantly reduced compared to 

(1.1) for the same density distribution, giving rise to an 

associated curvature in the log-linear plot at high magnitudes 

(BIth, 1981a). An example of this curvature is given in fig 1.2 

from Cosentino and Luzio (1976). (The curvature at high magnitudes 

in fig 1.1 may be due to saturation in the magnitude scale 

discussed in the following section). The investigation of the 

precise form of the relationship between the limiting magnitude and 

this curvature, using added information from seismotectonic 

studies, is one of the prime objectives of this thesis. This is 

important because the tectonic activity which generates earthquakes 

- and the resulting seismic hazard - is usually dominated by the 

very largest events, which occur in the range most sensitive to the 
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Figure 1.2 	Examples of frequency magnitude distributions which 
are not linear on the 'standard log-linear tilot. after Cosentino and 
Luzio (1976). The regions analysed are (a) New Zealand, (b) Burma 
arc, (c) Mid-Atlantic Ridge and (d) The Indian Ocean. The 
curvature shown here cannot be due to the instrumental saturation 
discussed in section 1.2, because this predominantly affects 
magnitudes M5  above 8.0. (For a further discussion of the line 
fit used, see section 1.3).M.1, in their notation, corresponds to 
w used throughout this thesis or a maximum magnitude. It is 
obvious that the dashed lines representing fits to equation (1.1) 
are an inadequate description of the seismicity. 



form of this curvature. 

1.3 Saturation of the magnitude scale and a definition of the 

seismic moment magnitude 

All instrumental magnitude scales suffer from saturation at high 

magnitudes. As earthquakes increase in size more energy shifts 

towards the D.C. (or infinite period) end of the ground motion - 

the direct movement on the fault itself (Howell, 1981). However, 

all instruments for recording earthquakes have response 

characteristics which sample only a limited range of the seismic 

energy spectrum about their natural frequency f , or equivalent 
0 

period T 
0 
• For the surface wave magnitude scale M this 

natural period is about 20s and for the body wave scale mb  it 

is about is. These magnitth le scales cannot pick up increases in 

energy release in frequency ranges outside the natural bandwidth of 

the seismographs. So as larger and larger events with longer and 

longer fault lengths and associated natural periods are picked up 

a point is reached where an event, say twice as large in terms of 

energy as a previous one, produces no detected increase in the 

measured magnitude. For M this saturation occurs on average 

at approximately 8.0, which led Kananiori (1977, 1978) to propose an 

unsaturated magnitude scale called the "seismic moment magnitude", 

M , which extrapolates M 
S 
 beyond this onset. 

w  

The seismic moment M is perhaps the best currently 
0 

available measure of the size of an event. It is defined by the 

equation 

10 

M = As = (/) w , 	 ( 1.4) 



where p. is the rigidity modulus, A is the fault area, s is the 

average slip on the fault, a is the average stress level during the 

earthquake, and AW is the change in strain energy. Thus the 

seismic moment can be easily related to various source parameters. 

The seismic moment magnitude M is then defined by 

M w = (log 10  M - A)/B 

or M = 10A+BMw , 
	 (1.5) 

0 

or N = 

where B = 3/2 follows from Kanainori and Anderson's (1975) 

theoretical considerations on fault geometry as well as from 

empirical fits to available data. The most recent work on this 

conversion from seismic moment, M , to seismic moment 
0 

magnitude, M, indicates the following values for A and related 

stress drops cy: 	 Q 

Interplate events A = 9.1 - = 30 Bars 

Intraplate events A = 8.7 Aa = 76 Bars 

Average value A = 8.85 Aa = 52 Bars 

California A = 8.83 jcy = 50 Bars 

from Singh and Havskov (1980), where A is appropriate for M in 

SI units. The seismic moment of an individual event can be 

estimated from geological field evidence, the area of the 

aftershock distribution or from the seismological record of an 

event - particularly the longer periods. Methods of determining 

11 



the seismic moment from various phases of a seismogram will be 

described in Chapter 4. 

1.4 Examples of different empirical and theoretical frequency-

magnitude distributions 

The Gutenberg-Richter relation (1.1) has already been discussed. 

In many cases this is found to be an adequate description of the 

seismicity of a region, although we should be wary of linear 

extrapolation beyond the observed magnitude range because of 

possible curvature introduced by a limiting magnitude w. In 

particular Chinnery and North (1975) found that, when global 

seismicity statistics were corrected for the effects of 

instrumental saturation of the magnitude scale, equation (1.1) held 

right up to the largest events. Even a small extrapolation beyond 

the observed magnitude range implies the occurrence of an event of 

M = 102 Nm (about M 
W 
 9.91) on average once every 50 years 

0  

or so. This really massive scale of seismic energy release would 

require some rethinking of plate tectonic models and could have the 

consequence of a considerable excitation of the Chandler wobble. 

On a more local scale fig 1.2 shows that (1.1) is often an 

inadequate description of the seismicity. However its density 

distribution may be retained and restricted to a range bounded by a 

maximum magnitude w. The density distribution becomes 

n(in)pe-b' m 

(1.6) 

where b' = b in 10, p = b' 10a• The cumulative frequency 

N(x>tn) is then equal to the integral of n(m) over the magnitude 
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range (ni,w), which is 

-b'm 	-b'w 
N(xm) = e 	- e 	 (1.7) 

-b'u 	-b'c e 	-e 	. 

This relation is called the truncated Gutenberg-Richter law, and 

was used in the fit to the data of fig 1.2. 

A theoretical generalisation of this density distribution is 

due to Caputo (1976, 1977). Starting with a basic distribution of 

fault lengths (.) and stress drops (&) of 

n(9.) dl 	I "  dl 	 (1.8) 

n(M) dM 

he derived a distribution 

n(m) = p e 	- q , 	 (1.9) 

where q = p eb,  and p,q,b' can be related to constants 

specifying the distribution of fault lengths and stress drops, and 

to maximum and minimum values of these parameters. The form of 

this density distribution is that it is log-linear up to a 

magnitude ni2  say, and then curves asymptotically to zero 

occurrence at m = w. As w + , q + 0 and (1.9) reduces to (1.6). 

An empirical distribution which also has this asymptotic form 

is the Weibull (1951) distribution, 

1 /X 
N(x)m) = {(w-m)/(w-u)} 	. 	 (1.10) 
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Note that in both (1.7) and (1.10) N(u) = 1, so u is the 



characteristic earthquake for unit time (if N is normalised to unit 

time intervals). The difference between this form and that of. 

(1.9) is,that the distribution (1.10) is curved over the entire 

magnitude range below w. The parameter X is a measure of this 

curvature. Jenkinson (1955) showed that 0 < X < 1 and that as X + 

0 the log-linear curve straightens to the form of (1.1). Thus high 

X values correspond to a greater degree of curvature. The 

behaviour of this distribution is further analysed in Chapter 2. 

A new frequency magnitude relation is proposed in Chapter 3 on 

the basis of using Information theory to directly incorporate 

additional knowledge of the seismic moment release rate A 
0 

into 

the seismicity distribution. The form of its density distribution 

is 

n(m) = p e-b'm 
 e 2M0(m) 	

(1.11) 

where M (m) is given by the seismic moment-magnitude relation 
0 

(1.5). This model comes in between the behaviour of (1.6) and 

(1.9), curving down less drastically just below w than Caputo's 

model. 

The shapes of the distributions outlined in this section are 

given in fig 1,3, by way of a summary and reference for future 

discussion. 

1.5 Extreme value distributions 

Two of the main problems in the evaluation of seismic hazard from a 

catalogue of earthquakes are (a) the incompleteness of reporting of 

events and (b) the occurrence of non-independent aftershock 

sequences. The former could be due to the threshold of detectable 
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Figure 1.3 	Comparison between seisinicity models. The models 
shown in increasing order of complexity are:- 1 The Gutenberg-
Richter law; 2 A truncated form of 1, due to Cosentino and Luzio 
(1976); 3 The Information theory model derived in Chapter 3; and 4 
Caputo's model (1976). The Weibull distribution is similar to 4 
except that it is also curved below m 2 . 3 tends simply to 2 if the 
parameter X2 in equation (1.11) is zero. Caputo's version 
differs from 3 in having (a) a sudden departure from log-linearity 
at m2  rather than more gradually, and (b) an asymptotic limit w at 
n() = 0 rather than at finite n. 



excitation of modern instruments or to a sparsely populated area 

around the source in historical times and the latter complicates 

the Poissonian assumption made below. One method of lessening the 

impact of both of these problems is to use only the extreme values 

- that is only the largest event in any unit' time interval - as a 

basis for evaluating the hazard. We can be much more confident 

that this subset will be complete, and since it saniples the tail of 

the initial frequency distribution the method should enhance the 

effects of a limiting magnitude and any associated curvature. The 

procedure also effectively eliminates the smaller aftershocks. The 

main drawback of the method is that much of the information 

available to us from smaller events is simply thrown away. 

Consider a Poisson process of independent events 

p(i) = N e 	,• 	 (1.12) 
il 

where p(i) is the probability that i large earthquakes occur during 

a given unit time, and N is the mean number of large earthquakes 

per unit time. For our purposes N is given simply by the 

cumulative frequency distribution normalised to unit time. For the 

extreme value process we wish I = 0, so that no events greater than 

(say) ta occur in each unit time interval j containing a total 

of N 
3 	 3 
events. m is the largest event or the 'extreme 

th 
value 	j in the 	sample of unit time. 

Thus, for i = 0, Ni = 1 and ii = 1, so 
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P(x < ía) = exp{-N(x > m)} . 	 (1.13) 



A type I distribution, of extreme values has an initial distribution 

N given by (1.1), and a type III distribution has N given by the 

Weibull distribution (1.10) so that, for the latter case 

P(x 4 in) = exp [-{(w-m)I(w-u)}] 
	

(1.14) 

This form is analysed in greater detail in Chapter 2. A detailed 

description of the theory is given by Jenkinson (1955) and Gumbel 

(1958). The form (1.14) has been used in order to predict global 

maximum magnitudes by Yegulalp and Kuo (1974) and by Makropoulos 

(1978) and Burton (1979) in order to quantitatively evaluate 

seismic hazard. 

1.6 Quantitative assessment of earthquake hazard 

The assessment of earthquake hazard involves 

The probability of a large earthquake occurring in a potential 

source zone. 

Reduction in ground shaking with distance by geometric 

spreading and attenuation effects. 

Local site conditions. 

The first of these can be quantified through the observed 

frequency distribution of earthquake magnitudes in a potential 

source zone, using the methods outlined in the previous two 

sections. Most results of studies such as this are produced in the 

form of a mathematical return period defined by 

T(m) = 1/N(m) 
	

(1.15) 
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for the annual cumulative frequency distribution N or 



1 
T(m) = 	 , 	 (1.16) 

1-P(m) 

where P is the annual non-exceedence probability given by (1.14). 

This term 'return period' can be misleading, since the event is not 

expected to recur at regular intervals. Because of this it is 

known there is a significant random component to any series of 

events (indeed this is the justification for assuming a Poisson 

process in section 1.4) and the term 'average repeat time' is 

preferred for the remainder of this thesis. However, since in many 

cases the instrumental catalogue of events is of much shorter 

length in time (80 years) than the average repeat time of the 

largest events ('460 years in Southern California), it is very 

important to quantify errors of extrapolation beyond this range. 

This uncertainty may be reduced on extension of the catalogue to 

historical times (Ambraseys, 1971), or by geological slip rates 

incorporated by the methods described in the next section and in 

Chapters 2 and 3. 

The second process (b) reduces the effect of ground shaking 

with distance, although it is known that longer periods attenuate 

lesä quickly than shorter ones, so that tall buildings may be at 

risk quite far from the source (Nuttli, 1979). It is obvious that 

more work needs to be done on attenuation effects to quantify 

effects like these, particularly with strong motion instruments 

placed near likely source areas. 

Finally, and in many cases most importantly, the effects of 

local site conditions should be considered. Most of those who have 

browsed the literature have been struck by photographs showing 

wildly differing levels of damage within a small area. Buildings 
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which are almost perfectly intact can stand beside areas of almost 

total devastation (e.g. see Walker, 1982 p8). One of the earlier 

systematic investigations into the effects of a large earthquake 

(Lawson et al, 1908) showed up a very good correlation between site 

geology and intensity of damage for the 1906 earthquake in San 

Franscisco. Most of the extensive damage was confined to areas 

'built on unconsolidated pleistocene sands and alluvium, with 

• buildings on the intrusive basalts or the Franciscan series of 

sandstones and cherts suffering less markedly. Other site 

conditions which complicate matters even further are due to the 

possible amplification effects of topography and the local 

geological profile. 

To account for the first two conditions Algermissen and 

Perkins (1976) (see fig 1.4) used local relations for the 

relationship between magnitude, distance and ground shaking 

parameters such as ground acceleration and velocity - combined with 

annual probabilities of earthquake occurrence - in order to produce 

a contour map of the earthquake hazard. The approach uses the 

extreme value theory of Gumbel (1958) to evaluate contours for the 

maximum, or peak accelerations and velocities. Because of the  

smaller degree of attenuation in the Central and Eastern U.S., the 

potential seismic hazard is similar in some areas of Tennessee to 

that only a few hundred km from the San Pndreas fault, despite the 

much lower frequency of occurrence of large events in the east! 

This surprising conclusion is partly due to the greater competence 

of mid-plate crust compared to that near a deforrning plate 

boundary. A greater quantitative understanding of more local site 

effects resulting from strong motion studies near large events 

should improve maps such as fig 1.4 on a local scale as more data 
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a.Map showing maximum levels of peak horizontal ground acceleration at rock sites 
in the United States in a 50-year period, (Algermissen and Perkins, 1976). There is a 90% 
chance that the contoured values of acceleration will not be exceeded within a 50-year 
period. The map reflects the relative frequency of occurrence of earthquakes in the 
eastern and western United States. 

I" 

b. Preliminary seismic zones proposed by the Applied Technology Council (1978). 
Contours connect areas having equal values of effective peak acceleration. Site-specific 
studies are recommended for zone 4. 

Figure 1.4 Two examples of contoured hazard maps taken from Hays 
(1984). 



become available. The importance of maps such as these is in 

forming the basis for decisions made on building design codes in 

order to mitigate against the hazard posed by earthquakes to life 

and property. 

The scope of the present study is confined to the evaluation 

of the probabilities of occurrence of earthquakes of varying size 

in likely source zones, although it is hoped that this section has 

emphasised the importance of other geophysical effects, together 

with some of the practical aspects of the eventual use to which 

studies such as this one may be put. 

1.7 The incorporation of crustal deformation into earthquake 

recurrence statistics 

In seeking to extrapolate beyond the era of instrumentation (tens 

of years) many studies use the subjective approach of an Intensity 

scale of damage (say the Modified Mercalli Scale) to extend the 

earthquake catalogue to hundreds and even thousands of years 

(Ambraseys, 1971). However fig 1.5 from Main (1980) shows that any 

empirical attempt to correlate intensity scales with the concept of 

a magnitude is subject to very large scatter. Intensity of damage 

to buildings is simply not the same thing as ground motion measured 

on a seismograph. Fortunately, in many cases there is a third 

source of information on the right time scale (thousands to tens of 

thousands of years). This is the geological and geophysical 

observation of crustal deformation rates (slip or strain), which 

will henceforth be incorporated into the parameter 

= 

(1.17) 

= 2.5 44 . 
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Figure 1.5 	Intensity-magnitude relations after Nuttli (1979) (broken line) and Street and Lacroix 
(1979) (solid line) compared to recent data for the Central and Eastern United States. These data, 
cross symbols, on felt and damaging earthquakes, are extracted from regional Catalogues of the 
International Seismological Centre, Newbury, for the period January 1968 to June 1977. 



The seismic moment release rate, M 0 , is proportional to the 

slip rate s along a fault of area A, or to the strain rate e in a 

deforming volume V for a more complicated area (Papastamation, 

1980). The maximum potential seismic moment, say M, can also 
ow 

be related to evidence of previous large-scale breaks and depths of 

the seismogenic layer via 

3/2 
M0 	CV M : Mow = max 	'= c' \nax y , 	 (1.18) 

where C is a constant which is defined by the fault type and M is 

the stress drop (Kanamori and Anderson, 1975). For example a 

circular fault has C = 16/7 and V = a 3 , where a is the radius. 

The maximum focal volume V 	can then be related to the 
max 

maximum fault area by A V 	= 4/3 j a 3  in this case. 
max 	max 

Combining this equation with (1.5) as in section 2.1 allows 

estimation of the limiting magnitude w from the field observation 

of maximum fault areas and comparison with the extrapolation from 

the short term recurrence statistics. 

The seismic moment release rate Mi 
0 
 can also be compared 

with the discrete sum of seismic moments EM in unit time 
0 

interval from a catalogue which contains magnitudes by using (1.5) 

on every entry in the catalogue, as in Davies and Brune (1971). 

Alternatively the parameters of the continuous empirical line fit 

can be used by integrating annual occurrence densities multiplied 

by M. Anderson (1979) did this for the truncated 

Gutenberg-Richter relation as follows. 

He used 
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S  M 	J 	M n(M)dN 0 	 0 	0 	0 

0 
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and changed the variable from seismic moment to magnitude using 

(1.5) because in practice nearly all of the available catalogues 

consist of magnitudes at the present time. Thus 

= 5 	e' 	n(m) dm , 	 (1.20) 

where a = A in 10 and P = B in 10. Using (1.6) to define n(m) 

gives 

-b ' 
e 

• 
M =e 

0 	 (n-b') 

(1.21) 

-bu) 
10 

or1 
° 	(B-b)lnlO 

Thus the seismic moment release rate is expressed as a fraction of 

the maximum which could be released in any one event. It is 

interesting to note that, since B = 3/2 (Kanamori and Anderson, 

1975) the b-value is confined theoretically by the denominator to b 

< 3/2 in order to preserve finite, positive 

The preceeding outline has shown how two parameters of the 

seismicity distribution - the moment release rate A and the 

maximum magnitude w - can be compared with those observed over 

geological time scales and for more recently recorded events. 

This gives a test of the stationarity of an earthquake catalogue 

based on a short term instrumental catalogue against long-term 



effects. 

Finally, in a few areas of the world, and notably in Southern 

California (Sieh, 1978) some basic spadework through faults can 

reveal direct evidence of previous events. By radiocarbon dating 

of charcoal deposited in the very recent holocene sediment a table 

of interoccurrence times can be built up and compared with 

extrapolations of recurrence curves as a further test. For 

example table (1.1) is taken from Anderson and Luco (1983), who 

used (1.5) and the time-predictable and slip-predictable models of 

Shimazaki and Nakata (1980) to estimate the magnitudes of the 

events found at Pallet Creek by Sieh. Currently this area is a 

very prominent and useful area of research in quaternary geology. 

Hopefully such studies will soon extend to several areas of the 

globe where faults break the surface to give seismologists a direct 

measurement of average repeat times for long-term earthquake 

prediction. 

1.8 Summary 

This chapter has introduced some of the basic theory and 

observation of earthquake recurrence statistics which were 

available at the start of the project, and has'shown where the new 

developments described in the following two chapters fit into the 

overall picture. It has been shown that the linear Gutenberg-

Richter law is often an inadequate description of seismic 

recurrence statistics on a local level, and some empirical and 

theoretical distributions which account for the observed curvature 

to a limiting maximum magnitude have been outlined. Further, the 

chapter has shown how two important geologica. parameters - the 

seismic moment release rate (which is proportional to the slip 
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Table 1.1 Pallet Creek Events: Estimates of magnitude (M5 ) from the 

interoccurrence times of Sieh (1978) and the time- and slip-predictable 

model of Shimazaki and Nakata (1980). The table is taken from Anderson 

and Luco (1983), and the region analysed is the San Andreas fault in 

Southern California. 

Time Predictable Model 	 Slip Predictable Model 

Est. Waiting Inferred Magnitude Waiting 	Inferred. Magnitude 
event Time to slip in 	 time 	slip in 
year next 	event 	 from prior event 

event 	(in) 	 event 	(m) 
(years) 	 (years) 

1857 > 125 > 	4.6 > 7.81 112 4.1 7.74 

1745 112 4.1 - 	 7.74 	. 275 10.2 8.26 

1470 275 10.2 8.26 225 8.3 8.15 

1245 225 8.3 8.15 55 2.0 7.33 

1190 55 2.0 7.33 225 8.3 8.15 

965 225 8.3 8.15 105 3.9 7.71 

860 105 3.9 7.71 195 7.2 8.06 

665 195 7.2 8.06 120 4.4 7.78 

545 120 4.4 7.78 ? ? ? 



rate) and the maximum fault area - can be related to the observed 

integral of seismic moment under the curve and the maximum 

magnitude respectively. The potential use of studies such as this 

is shown in the areas of long-term earthquake warning via an 

evaluation of the average repeat time and in probabilistic 

evaluation of contoured maps of likely levels of ground shaking. 

The former should help identify areas currently most at risk for ,  

detailed prediction studies (thereby optiinising the distribution of 

limited resources) and the latter is essential for hazard 

mitigation by building design codes and earthquake insurance. In a 

wider geophysical context, the present study is also useful, for 

example, in investigating the details of various tectonic processes 

via the slip rate and the seismic moment. 

In the next chapter, the concept of an integral of the seismic 

moment over the magnitude range is generalised by using the 

empirical Weibull distribution and Gumbel's third distribution of 

extreme values. From this it is hoped to obtain better estimates 

of the seismic hazard, and to compare the present-day seistuicity 

with the longer term geological processes in several different 

tectonic zones. 
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CHAPTER 2 

The application of the Weibull distribution and its related extreme 

value distribution to four diverse tectonic zones 

2.1 Introduction 

The previous chapter has shown the link between the maximum 

magnitude and curvature in the log—linear frequency magnitude 

distribution. Such curvature has been observed in laboratory 

models by Burridge and Knopoff (1967) and King (1975), and also in 

a theoretical model by Kuzuetsova et al (1981),.which considered 

the effect of inhomogeneities along a fault. Furthermore this 

behaviour is commonly observed in seismicity distributions around 

the world - for example by Botti et al (1980) in the Western Alps, 

Burton et al (1982, 1984) in Turkey, Makjanic (1981) in Yugoslavia, 

Makropoulos (1978) in Greece as well as by Consentino and Luzio 

(1976) (fig 1.2) and later in this chapter. There is also 

experimental evidence that the distribution of microfracture events 

in stressed San Marco gabbro 	shows curvature asymptotic to a 

maximum size at low frequencies (Scholz, 1968).  Even volcanic 

seisniicity shows this characteristic curve to a limiting 

magnitude. Qainar et al (1983) showed this retrospectively for the 

seismicity preceeding the eruption of Mount St. Helens in 1980 on 

18 May. The curve at high magnitudes indicated a characteristic 

source dimension of about 3km, compared to a volume of earthquake 

foci of (3x3x6) km 3  from hypocentral studies. 

Analogous curved distributions have been observed elsewhere in 

nature, for example in the yield strength and fatigue life of steel 

(Weibull, 1951), and are commonly used in meteorological analysis 
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(Jenkinson, 1955). The Weibull distribution can be usefully 

extended to preferentially analyse tthe largest events associated 

with curvature because of its simple form (see section 1.5). The 

largest events in this case consist of a subset of the frequency 

distribution - namely the largest (extreme) value in any unit time 

interval. 

In this chapter the Weibull distribution (1.10) and Gumbel's 

third extreme value distribution (1.14) are chosen as empirical 

approximations to the recurrence statistics, and the maximum fault 

dimensions and slip rates inferred from curve fits to empirical 

earthquake data are compared with those observed geologically, in 

order to see if the short term earthquake catalogues are actually 

compatible with long term effects. This is very important for 

greater understanding of the relationship between seismicity and 

tectonic effects, and as a check on any extrapolations from the 

recurrence statistics for quantitative hazard estimation. For 

example a good match also implies that the commonly held assumption 

of the stationarity of earthquake - generating processes is 

actually valid. 

The relationship between the maximum magnitude and source 

dimensions V has been discussed in the previous chapter, and can be 

summarised by a combination of (1.5) and (1.18) 

1og 10 {C V M} - A(M) , 
	 (2.1) 

B 

where 

C = 16/17, V = a 3  for a circular fault of radius a, and 

C = i/2, V = W2L for a strike-slip fault of length L and width W. 



26 

For a dip-slip fault C = 	 V = WL,, although no 

distinction has yet been made between normal and thrust models 

(Kanamori and Anderson, 1975). X and p are the Lame constants 

here. C is a constant, M is the typical stress drop, A(), B, 

are given by the magnitude-moment relation. The second 

seismotectonic property - the rate of release of seismic moment - 

requires a modification of Anderson's (1979) theory to account for 

curvature described by the Weibull distribution. This is cafried 

out in the next section, and the models developed are applied to 

four diverse tectonic zones later in the chapter. 

2.2 Models of crustal deformation rates from (I) the Weibull 

distribution and (II) Gumbel's third distribution of extreme values 

The measure of crustal deformation is taken to be the rate of 

release of seismic moment (A0). This can be related to slip rates 

(s) on individual faults, or strain rates (e) over a more diffuse 

area by the equation (1.17). 

Two models are used to estimate the rate of crustal 

deformation, following (I) from the cumulative frequency of 

occurrence (which will be called the whole process here) and (II) 

from the extreme value probabilities (a part process). The 

descriptions 'whole' or 'part' depend on whether the whole 

catalogue is used or not. 

2.2.1 Model I An average value for the rate of release of seismic 

moment is given by integration over the range (0, M ow ) where 

M 
OW 
 is the largest moment which might be released in a single 

event for a particular region. This is equivalent to integrating 

over the magnitude range (—ce, ). 

Putting the Weibull density distribution from (1.10) into 



(1.20) gives 

k-i 
- 	() 	(-m) 

f eink 	
'k 

(w-u) 
(2.2) 

where k = 1/X. Then 

- 	a 	c 
• 	ke 	r 	m 	k-i M = 
	k 	

e 	(w - in) 	din . 	 (2.3) 
0 	

( -u) - 

Let x = w - in be a dummy variable, so that dx = -din and f = -f 
0 

gives 

-  
M 	

a+ 

k 
• 	= k e 	e-Ox  k1 dx . 	 (2.4) o 	/ 

w-u) 0 

Letting t = px, dt = dx gives 

- 	a+ 

	

= k e 	
k f 	ettl 	dt . 	 (2.5) 

{(c-u)} 	0 

The integral is now a gamma function r(k), and using r(k+i) = kr'(k) 

and M 
ow = 
	from the moment-magnitude relation gives 

- 	M 
ow 

 r(k+i) 

0 	
{ 

(2.6) 

Thus M is expressed as a function of (a, ) - the parameters of 

the seismic moment-magnitude relation, and (w, u, X = 1/k) - the 

three parameters of the Weibull distribution. 

2.2.2 Model II Forming a probabilistic expectation value for the 
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extreme value case gives 

M 
' S  M>j 	Mp(M)dM ' 	 (2.7) 

0 

M 

where P(XM) = f p(X) dX is the extreme value distribution 

following from the normalised probability density p. Replacing p 

withthe density distribution of (1.13), which is given by 

d 	 -dN(m) 
p =- {e (m)} = e m) _____ = 	n(m) 	 (2.8) 

dm 	 din 

gives, on conversion to magnitude by (1.5) 

CL) 

< 	= 	a a 
	

e 
+m -N(m) n(m) din . 	 (2.9) 

CO 
0 

Note that this equation is similar to (1.20) except for the extreme 

value probability term P(m)=ein)  inside the integral. Thus (2.9) 

is also the average value of the moment release rate produced by 

the extreme values alone, and <1> will therefore always be less 

than 1 of Model I. 
0 

Letting x = a -N(m) ; dx = e -N(m) n(m) dm in (2.9) gives 

1 
S 	 •. 	cr+ni(x) 

<M > = 	e 	dx . 	 (2.10) 
0 

0 
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Using (1.14) to define m(x) gives 



1 
S 

<M > = M f exp {(u—w) (—Zn x)'} dx  o 	ow 
0 

where x is a dummy variable. For a limiting maximum magnitude 

o < X < 1, and w > u, so the integral is always less than one, and 

once more <1 
0 > 

is expressed as a fraction of the maximum seismic 

moment which may be released in any one event. The integral was 

solved in the present work by a numerical algorithm due to Gill and 

Miller (1972) which uses third order finite—difference formulae and 

produces error estimates. 

In evaluating parameters of the distribution (1.14) the unit 

time interval must sometimes be taken to be i years rather than 

annually in order to reduce problems associated with intervals 

devoid of any recorded events. If this is the case then u and X 

are also appropriate for a unit time of i years, and conversion to 

• 	annual rates, i = 1, can be done via 

S 	 S 

<M> 	icM , oi 	o > l (2.12) 

where <K o > is the seismic moment released per i years. 

Thus (2.6) and (2.11) define the rate of release of seismic 

moment in terms of the statistically determined parameters (w, u, 

X) - the link to the physical process of strain or slip rates being 

represented by the terms M 
ow 

 and 3. 

2.2.3 Uncertainties in M and <k.> Because (w, u, X) are subject 

to (often large) statistical error in the curve fit to empirical 

data allowance must be made for this in predictions of M0 . This 

can be done by the equation 
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- 	3 	3 	62('14>,i) 	2 
o 	o 

6(Q1 
0 	0 

>, i ) = { z 	E 	 a 	j  , 	 (2.13) 
i1 j1 	ôpôp 

which represents a complete covariance error in <11> and t 

respectively. p. takes on values (w,  u, x) in turn and 

a i 3. is the statistically determined covariance error in these 

parameters. The covariance matrix c is defined by 

	

r2 	2 
a 

	

w 	wu 

	

r2 	2 

	

c = ta 	a 
uw 	U 

	

2 	2 

	

{a 	a Xu 

2 
a} (A)X 

• 	(2.14) 

2 
a } 

as in Burton (1979). This is the most complete method of allowing 

for error, because in general the parameters u and X are dependent 

on each other. A large w leads to less curvature (lower X) and 

vice versa. This manifests itself in a negative contribution from 

a2, or a reduction in the overall error assigned when compared to 

the variance method (i.e. a sum only of the positive diagonal 

elements ai). 

From (2.6) it can be shown by partial differentiation that 

- o11 
—o =p1 ._o  

0 
ôt bu 

M k 
0 0 

bu 	(u-u) 

ÔM 	- 

ôk 	
M 0 	. - = {1 - 

(2.15) 



0 - 0  

ax 
- - - i—I 

ôk 	XL 

and, if f(x) = exp{(u-w) (-Ln x)X} in (2.11) 

• 
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(2.16) 

Note that the formulae for A o1bw are similar in form. 

Appendix 1 contains a program MOMENT-FF2 which was developed 

to calculate A, 	ôA/ôu, oAiox and hence 	from 

(w, u, X), c and (a, ) using both models. 

2.3 ADDlication of Models I and II to four tectonic zones 

Having developed the theory of evaluating i(u, u, X. a )  p) ± 

6M0  in the previous section its application to four tectonic 

zones can now be considered. As an introduction the basic data 

culled from an earthquake catalogue (of epicentres, times, depths 

and magnitudes) are now described. 

In the extreme value case the largest event 	in each 

unit time interval I is extracted and then this subset is ranked in 

ascending size rn 1 31 i 1 , n. The magnitudes are then assigned a 

plotting point probability given by Gringorten (1963) 
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P(m) =(i - 0.44)/(n + 0.12) , 	 (2.17) 



where n is the total number of time intervals. A curve of the form 

(1.14) can then be fitted to this data set (m, P r ). 

The frequency case is simpler, and involves mere counting of 

the number of magnitudes in the range (m-6/2, m 
3 
 +6/2), where 

3  

typically ô = 0.1. (Magnitudes are usually quoted to one decimal 

pdac.e). This gives what will be called a 'discrete frequency' 
m 

F. The cumulative frequency N. = E F Is then just a sum of 

these terms above a chosen magnitude, giving a data set(m, 

Ni). 

The computer programme which was used to find (w, u, X) also 

evaluates the covariance error matrix c, which includes an 

allowance for the uncertainty in magnitude. In this section this 

uncertainty is estimated as 8m±0.5. The curve fit was 

carried out by using aiion-linear least squares algorithm developed 

initially by Marquardt (1963), and translated into FORTRAN for 

general application by Bevington (1969, p  237). It has been 

applied to extreme value analysis of seismic hazards by Burton 

(1978, 1979), by Makropoulos (1978) and been updated by Bob 

McConigle (1982, pers. comm.). This latter version of the program 

was modified (RISK-FF7, see Appendix 1) for the whole process 

cumulative frequency fit &pecifically required in the present work. 

Empirical curve fits were then performed for four diverse 

tectonic regions: (a) the Central and Eastern Mediterranean, (b) 

the New Madrid seismic zone, (c) Southern Calif orna, and (d) the 

Mainland U.K. A (w,u,X,A,B) can then be compared with geological 

and geophysical observation. Figs 2.1 - 2.3 are epicentral plots 

for regions a-c and figs 2.4 and 2.5 show the completeness 
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histograms. The curve fits to cumulative frequency data are given 

in figs 2.6, 2.7 and 2.8, and are summarised in table 2.1, while 

the extreme value fits are represented in figs 2.9, 2.10 and 2.11 

and are summarised in table 2.2. The predictions of magnitudes 

associated with average repeat. times T as defined in equations 

(1.15) and (1.16) for (a) the whole process cumulative frequency 

analysis and (b) the part process extreme value approach are given 

in tables 2.3 and 2.4. Each area is now discussed separately. 

2.3 (a) The Central and Eastern Mediterranean (32 0 -480 N, 40 -360 E) 

North (1977) tabulates seismic moment values for this area of 

diffuse, plate boundary seismicity. From his table 4 the total 

seismic moment released in this area for the period 1943 through 

1971 was 70 x 1019  Nm or a rate 	24 x 10 18 Nm yr. A more 

complete picture from 1963-1970 (his table 1) gives a rate 

46 x 10 18  Nm yr, which may be regarded as a minimum value. 

A seismicity map of the area concerned is given in fig 2.1 and 

an exc4lent summary of the complex geo-tectonic setting is given 

in Horvath and Berckhemer (1982). The histograms of fig 2.4 show 

that the catalogue used (Burton, 1978) is complete for the time 

range analysed (1943-1971) above magnitude 4.5. The range (3.6, 

4.5) is not complete - as can be inferred from the sudden jump in 

the number of events reported on introduction of the WWSSN network 

in 1963. Fig 2.6 shows the Weibull fit and fig 2.9 the extreme 

value curve fit. The parameters and covariance errors (which 

include an allowance for ± 0.5 uncertainty in the magnitude 

measurement) can be seen in tables 2.1 and 2.2. Note that in some 

cases the actual values of (w, u, X) for N and P differ slightly as 

predicted by Makjanic (1980), who attempted to allow for this by 
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Figure 2.1 	Seismicity of the Central and Eastern Mediterranean. Only those events of M. > 5 are 
shown for economy of plotting. The tectonic interaction is composed of a collision between Africa 
and Eurasia, with seismic energy being released mainly along the arcuate trend of the Hellenic arc 
south and west of Greece and the Aegean sea. 
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Figure 2.2 	Tectonic setting of the area around the New Madrid 
seismic zone (after Zoback et al (1980)), showing microearthquake 
epicentres (dots), locations of seismic profiles (eg. S-7) and 
principle faults inferred from the data. The continuous heavy 
black lines are rift boundaries, and igneous plutons are 
represented by the hatched areas. There are three main seismicity 
trends: (1) a 100 km long stretch running SW-NE from the SW corner, 
(2) a section running SSE-NNW at the terminus of (1), and (3) the 
smallest trend. SW-NE near New Madrid. Copyright 1980 by the 
American Association for the Advancement of Science. 
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Figure 2.9 	Gumbel's third distribution of extreme values fit to 
the Mediterranean extreme value data. 
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the New Madrid extreme value data. The solid theoretical line is 
effectively straight. Because of the superposition evident in fig 
2.7 the line fit is not a good description of the seismicity. 
Again annual extremes were used. 



SouthernCaliForn,a For 1932-1972 
ID 

/ 

0 
U, 

Co 

0 
0 

I. 

+ 

0 
0 

 cc 	0.140 	0.86 	1.26 	1.60 
(-InP)xxIambda 

SouIhern Cal iFornia For 1932-1972 

+ 

+ 

++ 
++ 

++ 

I 	 I 

-2.00 	0.00 	2.00 	4.00 	6.00 	8.66 
- I n (- I nP) 

Figure 2.11 	Gumbel's third distribution of extreme values fit to 
the Southern Californian extreme value data. Again the occurrence 
of the largest extremes are underestimated and bimodal curvature is 
a possibility. Annual extreme values are used to plot the data. 

0 
U, 

0D 

Do 
jU) 

Lf  

D) 
0 

0 
0 



Table 2.1 	 1/X 
Moment release rates predicted by cumulative frequency curve fits to N(m) = {(w-m)/(ru)} 

(Model I and figs 2.6-2.8) 

Area+ Parameters Covariance error Local values T1 	(,u,X,A,B) 

u, X) matrix 	e for A, B Observed or estimated 
18 	-1 18 	-1 

xlO 	Nm yr x 10 	Nm yr 

 (8.16, 6.80, 0.2.51) 0.855 -0.031 - 0.119 
M -0.031 0.018 0.008 9.0 1.5 87 + 110 >46 

S -0.119 0.008 0.018 - 	 49 

 Range (7.81, -23.5, 0.680) 1.43 71.1 - 0.752 
(5.0, 	7.5) m * 71.1 4179.0 -42.5 8.58 1.5 1.2 + 12 0.6 

b -0.752 -42.5 0.43.7 

(b) Range (5.61, 3.63, 0.263) 1.000 -0.084 - 0.154 
(2.5, 	5.0) mb *  -0.084 0.019 0.015 8.58 1.5 4.0 + 	23.6 io 	10_2  

-0.154 0.015 0.025 - 	 3.4 
(x10') 

 (9.26, 6.00, 0.126) 9.45 -0.304 - 0.340 
M /M -0.304 0.026 0.012 8.83 1.5 8.3 + 86.9 16 
s L -0.340 0.012 0.012 - 	 7.6 

* Refer to text for in b /M conversion 
s 

+ Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, and (c) Southern California 



Table 2.2 
1/X  Moment release rates predicted by extreme value curve fits to P(m) = exp{-(rin)/(y-u)} 

(Model II and figs 2.9-2.11) 

+ 
Area Parameters Covariance error Local values M0  (,u,X,A,B) 

(w, 	u, X) matrix 	c for A, B Observed or estimated 

xlO 	Nmyr xlO 	Nmyr 

 (7.84, 	6.64, 0.435) 0.484 -0.044 -0.200 
M -0.044 0.014 0.021 9.0 1.5 44 + 	26 >46 

S 
-0.200 0.021 0.093 - 	16 

Range (19.4, 	3.36, 0.042) 1123. 2.54 -3.20 
(3.0, 	7.5) in * 2.54 0.013 -0.007 8.58 1.5 - 0.6 

b -3.20 -0.007 0.009 

 (9.11, 	5.46, 0.182) 3.700 -0.063 -0.219 
M /M -0.063 0.008 0.004 8.83 1.5 8.5 + 	16.3 16 

S 	L 
- 	5.6 

-0.219 0.004 0.013 

 (5.46, 	4.58, 0.590) 0.190 -0.026 -0.134 
m * -0.026 0.015 0.026 8.7 1.5 	7 2.2 + 	1.0 	') 34 
b 

-0.134 0.026 0.113 (xlO_3)0 (x103) 

* Refer to text for in /M conversion 
b. s 

+ Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c) Southern California, and 
(d) Mainland U.K. 



Thh1 

Magnitudes mrr associated with average repeat time T = 11N for N 
a Weibull distribution (equation 1.10) 

T yrs 	(a) Mediterranean 	(b) New Madrid 	(b) New Madrid 	(c) Southern California 
M 	 in <5 	 in >5 s 	 b 	 b 	 s L 

2.0 7.02 (0.136)* 3.96 (0.142) - 
- 6.27 (0.151) 

5.0 7.25 (0.166) 4.31 (0.137) - 
- 6.60 (0.153) 

10.0 7.40 (0.208) 4.53 (0.142) 1.28 (4.525) 6.82 (0.181) 
20.0 7.52 (0.258) 4.71 (0.168) 3.73 (1.423) 7.03 (0.234) 
50.0 7.65 (0.330) 4.90 (0.232) 5.62 (0.257) 7.27 (0.329) 
100.0 7.73 (0.385) 5.02 (0.291) 6.44 (0.322) 7.44 (0.413) 
200.0 7.80 (0.438) 5.12 (0.353) 6.96 (0.265) 7.59 (0.504) 

* All uncertainties inferred from the covariance matrix c are quoted in brackets. To derive 
this uncertainty a magnitude measuring error of ± 0.5 is assumed, and an expression similar to 
(2.13) is used for in = ni(N), N = l/T via (1.10) 



Table 2.4 

Magnitudes 111T  associated with average repeat times T = 1/(1-P) for 

P as defined by Gumbel's third distribution (equation 1.14) 

T (yrs) (a) Mediterranean (c) Southern California (d) Mainland U.K. 
M 
s 

M 
s 
orM 

L 
m 
b 

2.0 6.82 (0.121)* 5.70 (0.093) - - 

5.0 7.22 (0.126) 6.34 (0.110) - - 

10.0 7.39 (0.169) 6.69 (0.122) 4.62 (0.122) 
20.0 7.51 (0.234) 6.99 (0.152) 4.98 (0.113) 
50.0 7.62 (0.324) 7.32 (0.223) 5.20 (0.156) 

100.0 7.68 (0.387) 7.53 (0.293) 5.29 (0.209) 
200.0 7.72 (0.443) 7.72 (0.373) 5.35 (0.260) 

* All uncertainties inf erred from the covariance matrix e are quoted in brackets. To derive 
this uncertainty a magnitude measuring error of = ± 0.5, and an expression similar to (2.13) is 
used for m = m(P), P = 1 - l/T via (1.14). 



generalising (1.13) to P = exp {-const.N}. (The underlying reason 

for this observed discrepency is that the seismic process is not a 

purely random one). 

To convert to moment release rates refer to North's table 4 

again, where an average stress drop for an earthquake occurring in 

the area of interest is 38 bars. This implies that A = 9.0 using 

Singh and Havskov's (1980) formulation for SI units, and with B 

3/2 leads to a good linear fit to NQrth's (1974) fig 4, right up to 

the highest magnitudes. This last point indicates that there 

appears to be no instrumental saturation effect for this catalogue, 

because this would show up on the graph as curvature asynip 'totic to 

a saturation magnitude. 

Both predictions of the short term moment release rates from 

models I and II agree with the observed value M 
0 

> 46 x 1018  Nm 

yr 1  to within a factor two or so, which is in both cases within 

the expected uncertainty. This consistency, where a reasonable 

error in (, u, X) exists, and some knowledge of a local stress 

drop or A value is available, shows that the model proposed is 

quantitatively adequate well within the limits of statistical 

uncertainty. 

Further inspection of this uncertainty sbows the following 

relative effects of the three Gumbel parameters: 

<:> o<1> ô'(1> o / 
	/ 	° = 1.3 / 1 / 1.8 

	

. 	 . 	 S 

	

0 	 0 	 0 
/ 	 / 	 7.7 / 1 / 4.7 

w 	 u 

	

ow 	Ou 	OX 
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This result shows that u is the best-determined parameter and that 

and X have a dominant effect on the total variance uncertainty 

in 44> in this case. This effect is tempered by their 

interdependence already discussed above, and highlights the need to 

include the off-diagonal elements of the complete covariance error 

matrix in any attempt to quantity an error in <A >. 

Finally, note from the tables that the error in 'M 0 > is 

less than that for i (60% compared with 126%). This is 

compatible with the fact that the largest events are usually more 

accurately recorded, and that these events dominate in the 

determination of i 
0 

The comments of the last three paragraphs were also found to 

apply qualitatively to the following areas of study, the actual 

values being quoted in this subsection for illustration only. 

2.3 (b) The New Madrid seismic zone (351 -370 N, 890 -90.50 W) 

This area of mid-plate seismicity has received much attention in 

recent years for reasons both practical and theoretical. Zoback et 

al (1980) summarised the available geological and geophysical data, 

and concluded that the area consists of three main seismic trends 

11 (see fig 2.2), set in a reactivated.graben structure. Why the 

seismicity should largely follow the axis of the graben is not 

clear. 

Practical interest is stimulated by the possibility of a 

repeat of the 1811-1812 sequence of major events (7.1 - 7.4 mb) 

in an area of relatively low seismic attenuation and high 

population density, and theoretical interest comes from the 

break-down of the classical theory of rigid plate tectonics. These 
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events are unusual in that they have occurred in an area which is 

otherwise relatively quiet in terms of moderate seismicity, and 

their very existence suggests that the American plate may be far 

from rigid. Because the seismicity trends are situated in a zone 

primarily of EW compression (Zoback and Zoback, 1980) right lateral 

strike slip motion might be expected along the trends (1) and 

(3) of fig 2.2 and thrust on section (2). Russ (1981) showed that 

this is borne out to a large extent by the few fault plane 

solutions available, and that section (2) may result from 

reactivated dip-slip faulting. Together with Schilt and Reilinger 

(1981), he also indicates that such evidence as there is favours 5 

mm yr 1  of uplift occurring in and around the northern part of 

the active zone. There is some evidence that some of this motion 

is taken up by aseismic creep since earthquakes in Schilt and 

Reilinger (1981) did not produce enough movement to account for all 

of the uplift detected ma later levelling survey. 

The catalogues analysed are described •by Nuttli (1979) and 

Johnston (1981) quoting tUb values inferred from atacroseismic 

intensities and recent data on small earthquakes, so there are no 

problems associated with instrumental saturation. All events from 

Johnstonc 's (1981) data set for tUb>2S  were included in the 

analysis. The most successful curve fit came from considering the 

ranges (2.5, 5.0) and (5.0, 7.5) separately as in fig 2.7, which 

plots the superposition of these two separate distributions. There 

may also be a third component in the range of (1.6, 2.5). This 

superposition can also be seen in the extreme value case (fig 

2.10), but due to the scarcity of data in the higher portion the 

two ranges cannot be separated. In this case the curve fit is 

effectively straight, even though systematic bimodal curvature is 
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evident from the figure. For this reason no realistic <> 

could be obtained with the impossibly high value of w obtained in 

table 2.2. 

In arriving at the entries in table 2.1 for 1 the 

magnitude conversi ons 

"S 

• M 
S 

= 1.59 rn,
D. 	 S 
-3.97 	6.5< M <8.0 	 (2.18) 

M = 1.93 mb - 4.8 	4.0 < M < 6.0 , 	 (2.19) 

from results summarised in Marshall (1970) were used to match the 

ranges above and below magnitude 5.0 respectively. There is some 

evidence that the stress drops in this area are relatively high, so 

a value M = 100 bars was chosen to estimate A for the region via 

Singh and Havskov's (1980) formulation. Considering the large 

error involved in converting from epicentral Intensities I to mb 

(see fig 1.5) and then to M it is not surprising that the 

fipal error quoted in A is as high as a factor 10 or so. 

In fig 2.7 for the range tab > 5.0 the largest events (tab > 

were moved to positions consistent with average repeat times of 650 

years (Russ, 1981). This gave agreement within a factor 2 with the 

estimated moment release rate from three fault areas modelled as 

one fault 20 Ian deep (Nuttli and Herrmann, 1978) by 200 lan long 

moving at 0.5 mm yr, if 4 = 3 x 1010  Nm 2 . The value of 

calculated from (2.1) for the geological data, with L = 100 kin, W = 

20 km and Aa = 100 bars is given by a strike slip model and turns 

out to be M = 8.14, or m b = 7.6 from (2.18). This is in good 
w  

agreement with the value found statistically of tab = 7.8 ± 1.2, 

and the historical magnitudes (7.1 - 

For the magnitude range (2.5, 5.0), using a circular fault 
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model the maximum fault area Amax = 7c a (for U) = 5.6) was found 

to be 150km2  which implies L12 km and 9 x 10-2  mm yr 1 . This 

typical movement on what are supposed to be a collection of 

several subsidiary faults compares favourably with that observed on 

one such fault ( 1.2 x 10_2 mm yr 1  and fault length 10 km from 

Zoback et al (1980) on the Cottonwood Grove fault if it is noted 

that there are at least five other such faults in fig 2.2). It can 

be seen that the seismicity represented by the range (2.5, 5.0) 

contributes only a minor fraction of the stress release. 

The conclusion here is that bumps in the cumulative frequency 

distribution have been numerically related to the superposition of 

two different characteristic orders of observed faulting, i.e. both 

parameters established by the statistical curve fit, {A(w), AO  
(U),u,X,A,B)}, or more simply (L, } agree within their error with 

those inferred from geological and geophysical evidence. It 

appears difficult to suggest any other reasons for the shape of the 

curve which would match the tectonic information so well by chance. 

2.3 (c) Southern California (31 0 -389 N, 114.50 -121° W) 

This well-researched area of high seismicity on a plate boundary is 

very different from the previous example. It includes the site of 

the 1952 Kern Co event and the 1971 San Fernando earthquake, as 

well as the 400 km long 'locked zone' which previously ruptured in 

1857 with an estimated magnitude of 8.25 M or greater and an 

average repeat time of 163 years (Sieh, 1978). 

The catalogue used was that of Hileman, Allen and Nordquist 

(1973), whose publication also gives excellent maps of the 

seismicity and the tectonic setting (e.g. see fig 2.3). The 

analysis of fig 2.5 shows that for the period concerned (1932-1972) 

38 



39 

magnitudes (M or 	above 4.0 or so are completely reported. 

Anderson (1979) indicates a moment release rate of 12 x 10 18  

Nm yr for a 500 km long fault, but the catalogue analysed in the 

present work contains a 650 km stretch of the San Andreas fault and 

its offshoots, so =  16 x 10 18  Nm yr 1  may be more appropriate. 

These figures assume a depth of the brittle zone of 15 km and 	3 

x 1010  Nm 2 , with a slip rate from plate tectonic constraints of 

5.5 cm yr 1 . Since the slip rate on surface faults is of the order 

1 - 3.7 cm yr the deformation must take place in a broad zone 

around the main fault trend. 

Fitting the Weibull distribution to the data proved to be 

unsuccessful above magnitude 6.7 (fig 2.8). The curve fit seems to 

follow curvature apparent in the range (4.0, 6.7) and seriously 

underestimates the occurrence of the highest magnitudes. It may be 

that the activity above 6.7 is a separate characteristic 

distribution as in the New Madrid area, but with only three or four 

data points this cannot be tested from the current catalogue. 

Singh and Havskov (1980) give A = 8.83 for this area, which implies 

a moment release rate of the right order only at the expense of 

allowing a value for w of 9.3 - one magnitude higher than Sieh's 

deterministic estimate. 

Hanks, Hileman and Thatcher (1975) indicate that M for the 
0 

Kern Co (1952) event was 2 x 1020  Nm and M = 7.7. Using A = 8.83 
S 

gives H w = 7.65, so there are no grounds for supposing 

instrumental saturation is important, since this is the largest 

event in the catalogue. 

The extreme value curve fit (fig 2.11) gives a similar value 

for w, but u is significantly different (even considering its 

error). Curvature does seem to be enhanced by this method (higher 



value for X) but once more there is a poor fit at the highest 

magnitudes and the possibility of two separate curved distributions 

is evident. The data point for M9  = 8.25 is inferred from Sieh's 

(1978) estimates of M and the average repeat time T, with T 

1/(1—P). As in sections (a) and (b) the moment release rates 

inferred from the curve fit are in agreement with those observed 

within a factor less than the estimated uncertalnty (a factor 2 

compared with 3 or 4) but in this case it is evident that the 

parameters of the curve fit may be significantly improved upon. 

2.3 (d) United Kingdom mainland 

This area of relatively low intraplate seismicity differs from the 

New Madrid area in that no catastrophic events are documented in 

historical times. Burton (1981) analysed this area in terms of the 

third distribution of extreme values and produced the (w, u, X) set 

in table 2.2(d). The unit time for this set was 6 years. The 

mb/MS relation (2.19) is thought appropriate because of the typical 

range of events in terms of magnitude. 

Using (1.5) and the values of w, B given in table 2.2(d) gives 

M ow = 2.0 x 1017  Mm for A = 8.7 for an intraplate area, and if 

this is modelled as a circular fault via (1.18) the maximum fault 

area would be 350 km 2  for a corresponding typical stress drop 

of 76 bars. Since <I1>=2.2 x 1015  Nm yr 	from table 2.2(d) 

and assumiig = 3 x 1010  Nm 2 , a typical seismogenic fault 

movement of 0.2 mm yr is expected. 

Unfortunately there is very little direct tectonic information 

as yet on U.K. seismicity. However, King's (1980) results showed 

that the fault area for the Carlisle event of 26th December 1979 

was of the order 40 km 2  for an event of 5.0 mb.  Very little 
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information exists on contemporary fault slip rates, although there 

is some evidence of surface movement directly following glacial 

unloading (Sissons and Cornish, 1982). The thrust mechanism of,the 

Carlisle event (King, 1980), and the strike—slip solution for the 

Kintail earthquake swarm of 1974 (Assuincao, 1981) are both 

compatible with compressive tectonics. 

King (1980) assumes M = 30 bars might be appropriate for 

earthquakes in the U.K. In this case A 	9.1, M
O() 
 = 5.13 x 10 17  

Nm, the maximum fault area 1200 km 2 , 	= 0.06 mm yr. King's 

results are consistent in themselves, but if M = 30 bars, fault 

planes with areas an order of magnitude greater than those which 

have been observed so far might be expected. A more realistic 

picture might be to interpret the maximum fault area as 

representing a sum of several smaller faults of the order of tens 

of 2, moving at rates around 0.1 mm yr. This speculative 

interpretation is compatible with the spread of U.K. seismicity 

around small, localised centres such as at Comrie and in pockets in 

the North West of England and South Wales, and the absence of 

catastrophic events in historical time such as in the New Madrid 

area. 

A deterministic estimate of the movement between the sinking 

South of England and the relative uplift consistent with glacial 

unloading of the North of Eitgland and Scotland is 1.5 mm yr 

(Rossicer, 1972). If the depth of the U.K. seismogenic zone is 

taken to be 5 km from the depth distribution of U.K. earthquakes 

(Neilson, 1982, pers. comm.), and its length is modelled as of the 

order 200 km from the width of the mainland, then the maximum fault 

area is 1000 km2  and 14 	3.4 x 1016  Nm yr. This area 

favours King's choice of M and comparison of the values of A and 

41 



<M > in table 2.2 indicate that over 90% of the observed movement 
0 

occurs aseismically. This is exactly what might be expected from 

elastic rebound of the crust following glacial unloading. 

2.4 Discussion of Results 

In most cases where moment release rates were available the 

distributions N and P successfully modelled both the observed 

curvature at high magnitudes and the predicted moment release rates 

from models I and II. The exceptions tended to be in areas where 

there was evidence that the distribution was bimodal - being most 

striking in the New Madrid area (fig 2.10). It is unfortunate that 

in most cases there are insufficient data to separate the two 

distributions. 

The Weibull and (more obviously) the ex treme value fitc both 

seem to underestimate the occurrence of the largest events 

(especially if superposition of two characteristic fault sizes is 

present). Allowing for the uncertainty of the curve fit the moment 

release rates inferred from models I and II are in general 

compatible with field observation, although the match between w 

from the curve fit and a deterministic estimate w(A,B,&y,V,C) from 

(2.1) is not always good. This exceedence of a deterministic w (in 

almost every case) is also related to the poor fit to (and 

systematic underestimation of) recurrence statistics at the highest 

magnitudes seen in the figures. Perhaps it is not strictly 

meaningful to compare the two estimates of the maximum magnitude 

(from the curve fit and the deterministic value from known fault 

areas) in any case, since w from the curve fit is defined as the 

maximum magnitude ever, for T = , and as such must include values 

greater than those previously observed in a short time span (even 
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via the deterministic estimation). By definition then the 

statistical value of w is an overestimate,, and this leads to a 

compensating underestimation of the hazard from large events below 

this value in the curve fit. 

The tables 2.1 and 2.2 show some small differences between 

(, u, X) found from the cumulative frequency and extreme value 

data for the Mediterranean area. u is preçty much the same (within 

but u is smaller (with corresponding higher X) to reflect 

the tighter curve found by using extreme values. This might be 

expected because the extreme values are naturally chosen at larger 

magnitudes - where curvature is more likely. To some extent this 

discrepency would lessen as the sample time increased, and 

eventually the'values should coalesce at T = 

The differences between the two approaches can also be seen by 

comparing the predictions of m in tables 2.3 and 2.4. The 

Weibull curve fit to the cumulative frequency data gives slightly 

higher values for mT  in the Mediterranean and in Southern 

California. From this comparison of (w, u, X) and niT  it can be 

concluded that the basic assumptions to derive the extreme value 

distribution (1.14) do not seem to hold for these two data sets. 

For example there is no infinite sample of events, and at least 

some of the earthquakes are causally related (especially, say, the 

aftershocks of the 1952 Kern Co event in Southern California). 

Consistent underestimation of the probability of occurrence of 

largest events in the catalogue is also strongly indicative of an 

auto—correlation error between the value of w and the probability 

of occurrence of smaller magnitudes. This is inherent in both 

curve fits. This will be illustrated more fully in the next 

chapter when discrete frequency statistics are considered 
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(fig 3.2). 

Another serious theoretical drawback of the distribution used 

is that n(u) = 0. For a cyclic input and release of strain energy 

n(w) might be expected to take some non—zero value, implying a 

repeat time T = 1/N(m) which is not infinite as in + we 

However, despite these qualifications it can be seen that 

careful quantitative comparison of A ± 	can be used as a method 

of distinguishing areas where the curve fit is indeed applicable 

at the highest magnitudes. Incorporation of better deterministic 

values for the maximum magnitude (from seismicity trends or 

geological zoning), and geological estimates of their average 

repeat times could also improve the quality of the curve fit at 

these magnitudes. 

Typical uncertainties in Ii were found to be a factor of 2-4 

or so, with the extreme value estimates giving slightly lower 

uncertainties, and agreement within this range with observed moment 

release from (i) a short term catalogue for an internal consistency 

check in the Mediterranean and (ii) long term geological estimates 

in Southern California indicates that this approach may be usefully 

applied in several other seismic zones of the world. 

2.5 Recent developments 

Since the work for this chapter was completed and published (see 

inclusion Main and Burton, 1984a) some new observations have come 

to light which are relevant and consistent with the interpretation 

of the results of this chapter. The first concerns Sieh's (1978) 

estimate of the surface wave magnitude of the 1857, Southern 

California, earthquake. He estimated M > 8*, because the 
S 

macrosesrnic effects of the 1857 event exceeded those of the 1906, 
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San Francisco earthquake, and this latter event had been assigned 

an instrumental magnitude of 8). Abe and Noguchi (1983) have now 

confirmed an observation by Neilson (1983, pers. comm.) that this 

was due to an overestimation of about 0.5 magnitude units on the 

latter event, because of incorrect damping constants being used on 

seismograms from the very early 1900s. 

This confirmed some suspicions aroused in section (2.3(c)) by 

looking at the curve fits around the data point associated with 

Sieh's work in Southern California. This point should have been at 

T = 163 years, M = 7'4, rather than M 
5 
 =8, which would 

S  

have brought it within the covariance error bounds of the extreme 

value curve fit shown on fig 2.11. 

The second point is that several óther.exaniples of the bimodal 

distribution observed in the New Madrid area have now been observed 

around the world: Bath (1981b) observed a strikingly similar shape 

to that of fig 2.7 in Turkish recurrence statistics, and attributed 

this to the predominence of aftershock sequences in the earthquake 

catalogue. (This interpretation would also hold for the New Madrid 

area if aftershocks can take place away from the main fault plane.); 

Singh et al (1983) found similar behaviour in Mexico, but did not 

suggest a cause; Schwartz and Coppersmith (1984) explain a bimodal 

distribution in the frequency-magnitude statistics of the Wasatch 

zone (including geologically estimated data points similar to Sieh 

(1978)) in terms of two separate characteristic fault lengths in 

the area. The discussion on New Madrid in this chapter goes one 

step further than this latter reference in considering slip rates 

also; a further example from Southern California with a slightly 

different interpretation will be given in the next chapter. 

All of these observations of characteristic bimodal 
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distributions are consistent with so-called 'Asperity models' 

(e.g. Aki, 1984), which lead to a predominence of a few 

characteristic earthquake sizes, reflected as a few bumps on the 

frequency magnitude distribution. The idea is that, just aá some 

rocks can be broken down into similar-sized elementary blocks by 

jointing, so can larger scale fractures such as faults by bends and 

inhoinogeneities, and subsequent concentration of stress around 

these so-called 'asperities'. 

This macroscopic quantisation of earth materials into 

characteristic lengths seems to apply to various scales of rock 

fracture (Sadovskii et al, 1982): from clast sizes (mm) in rock 

samples, through 1 in joints to 100 in blocks for small earthquakes, 

10 kin lengths in the Intermediate magnitude range of New Madrid, 

for example, and the 100 km length of the dominant fault in the 

same area. The results of many other more recent empirical 

observations are therefore in agreement with the results obtained 

in this chapter, and their interpretation is consistent with the 

quantitative attempts made here to explain their qualitative and 

quantitative form. 

2.6 Summary 

First of all several examples of the relationship between a 

physical maximum magnitude and curvature in the cumulative 

frequency magnitude distribution were discussed, and a formal 

relationship between maximum fault area and a deterministic maximum 

magnitude was given. Two new theoretical models were then 

developed to extend Anderson's (1979) model of crustal deformation 

to the Weibull distribution and Gumbel's third distribution of 

extreme values, including in both cases an estimate of the error. 

These two models were then applied to four diverse tectonic 
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zones, with interesting results. In particular the New Madrid 

seismic zone shows two distinct curves which can be related within 

a factor two or so to two sets of geological and geophysical 

observations of characteristic maximum fault areas and slip rates. 

Superposition of many such (curved) characteristic distributions 

may explain the observed linearity of the global frequency/seismic 

moment distribution observed by Chinnery and North (1975). All 

estimates of w are consistent with geological estimation within 

their errors (which turn out to be of the order of factor 3 or 4), 

but the geological estimates of fault area often imply that w found 

by these statistical methods is larger than the deterministic value 

based on fault areas. Even though a large statistical error in w 

allows for this, this systematic difference, which leads directly 

to an underestimation of the actual occurrence rates of large 

magnitudes just below w in the curve fit, represents a consistent 

autocorrelation effect in the method. Of course the statistically 

" 

	

	determined value of w would in general be expected to approach the 

deterministic value from above as longer catalogue time spans are 

considered and so a statistical w larger than the deterministic 

value is logical. However if this causes a consistent 

underestimation of the hazard (ie the probability of occurrence) of 

events which are known to have occurred then this autocorrelation 

becomes significant. Despite this qualification the method could 

usefully be applied to several areas of the world in studies 

similar to the present one. 

To summarise, this empirical method is reasonably good for 

evaluating moment release rates (and modelling the observed 

curvature) but is not always successful when comparing the 

statistical maximum magnitude with a deterministic value obtained 
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from a maximum fault area. This subsequently led to the 

development of a completely new approach which includes these two 

pieces of information automatically, by a direct method which will 

be discussed in the next chapter. This avoids any dichotomy, for 

example, of comparing the statistical quantity w with a 

deterministic maximum fault area, by effectively merging the 

short-term statistical magnitude data with long-term geological 

data which are dominated by the large events near w. 



CHAPTER 3 

A new frequency magnitude distribution 

3.1 Introduction 

The previous chapter has shown how the choice of an empirical 

distribution can lead to systematic differences between the 

earthquake data and the curve or line fit. It seems that a Weibull 

distribution consistently underestimates the average repeat times 

of large events and the statistically determined w exceeds a 

deterministic estimate of the maximum magnitude from geological 

evidence, although in some cases this could be due to 

overestimation of the largest catalogue magnitudes. In another 

study Anderson and Luco (1983) concluded that Caputo's distribution 

(equation 1.9) does not fit the data of table 1.1 as well as a 

truncated exponential (equations 1.6 or 1.7). However there are 

areas of the world where a truncated exponential also does not 

describe the seistnicity (for example see fig 3.2 for the 

Mediterranean catalogue). 

A further problem is introduced by the possibility of 

superposition of characteristic fault sizes highlighted by the 

previous chapter's results for the New Madrid seismic zone. The 

aim of this chapter is to develop a method of avoiding the 

problems inherent in the somewhat arbitrary choice of a given. 

empirical distribution, and which also allows for possible 

superposition in estimating the repeat times of the great events 

which are longer than the historical or instrumental catalogue. 

The aim is to develop a joint distribution which combines the 

information from (a) the earthquake catalogue (instrumental and 
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historical) and (b) the geological record in a way which involves a 

minimum of assumptions. Thus the recurrence rates and associated 

average repeat times of large earthquakes can be estimated without 

having to extrapolate blindly from a short term catalogue. Once 

again it is the geological record and the information represented 

by the slip rate and the observed seisinogenic fault area which is 

the crucial addition to the seisinicity statistics. 

One natural method of combining, the data from a short term 

catalogue of events and the long terni geological observation in an 

unbiased way is to use the principles of Information theory. This 

method accepts that knowledge of the system is incomplete and 

chooses an estimate (or inference) of the distribution which is the 

least biased with respect to this ignorance. Of course there are 

an infinite number of distributions which are consistent with an 

underdetermined problem such as earthquake recurrence statistics. 

Information theory picks only the most likely form consistent with 

the limited knowledge of the system, usually expressed in terms of 

an average observation of one or more of the parameters which can 

be measured. To do this involves maxiniising an entropy function 

which quantifies the information content and is subject only to the 

constraints which are put in, i.e. the information which is 

available. Even if this distribution requires subsequent 

modification with increasing knowledge of the system it remains the 

best contemporary solution to the problem (Jaynes, 1957). 
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3.2 The earthquake frequency-magnitude distribution from 

Information theory 

3.2.1 Derivation of the distribution 

Information theory is applicable4n a wide class of problems where 

the average value of a physical parameter can be estimated even 

though it may deviate significantly from this value from time to 

time. Its methods have been shown to be methematically identical 

to, but are more general than those of statistical mechanics 

(Jaynes, 1957). Berrill and Davis (1980) have previously applied 

it to the earthquake frequency-magnitude distribution to derive the 

truncated Gutenberg-Richter law of equations (1.6) and (1.7) for 

historical earthquake catalogues. In this section their results 

are extended by the direct inclusion of the long-term average 

strain energy release through the seismic moment release rate. 

Consider the continuous range of magnitudes (m, w), where 

is the maximum magnitude consistent with the finite breaking strain 

of the earth and the finite dimensions of the source zone, and 

m is an arbitrarily chosen lower bound. in 
c 
 may be 

c  

physically determined by the minimum dimension which will support 

seismic rupture, as well as by other physical constraints such as 

stress drop and friction along the fault, but in practice will 

usually be the lower bound of complete reporting of events. 

For this magnitude range a probability function must be picked 

in a way which avoids a biased choice, but is consistent with 

currently available knowledge. This is similar to the common 

problem in statistics of devising some method of sampling that 

avoids bias. Shannon (1948) showed that there is a unique, 

unambiguous criterion for the "amount of uncertainty" represented 

71~1_ nlUl . 
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by such a probability distribution. Shannon proved that the only 

quantity which is positive, which increases with increasing 

uncertainty, and is additive for independent sources of uncertainty 

is 

(A) 

S(p) = -f 	p(m) £n{p(m)}dm , 	 (3.1) 
In 
c 

where p(m) is the probability density function of magnitudes in 

this case (Berrili and Davis, 1980). Jaynes (1957) demonstrated 

that the thermodynamic entropy was mathematically equivalent to 

Shannon's definition, which can also be called the 'Information 

theory entropy'. In this section a distribution p is sought by 

maximising S (for minimum ignorance or uncertainty, maximum 

information content) subject to the constraints 

p(m)dm = 1 , 	 (3.2) 

c  

(A) 

$ 	rnp(m)dm<m> 
	

(3.3) 
m 
c 

(A) 

$ 	M 0 
 () p(m)dm = <M 0 > ,. 	 ( 3.4) 

in 
c 

where M(m) is given by the moment-magnitude relation (1.5). 

<in> and <N 
0 
 >, respectively the average magnitude and 

moment per event in the range (in, w), are the two pieces of 

information which are available about the system. In this case the 



expectation value and the mean value are equivalent, so to avoid 

confusion later on the notation here sticks with <in> etc to comply 

with the first definition in (3.3). <m> ± a 	is evaluated 

simply from the earthquake catalogue once in is specified (see 

Appendix 1, MAXENT-FF1 for a computer •program; a is a standard 

error in the mean) and <M 
o 	<M0  
> ± a > may be inferred from a 

catalogue of moments where this is available, from geological or 

geophysical evidence of long-term fault movement, or from current 

plate tectonic models. Note that <M> is proportional to the 

average release of seismic strain energy via (1.4). The quantity 

normally accessible is 	- the rate of release of seismic moment, 

but this is related quite simply to <M0> by tM> = Mo/NT, where 

NT Is the total number of events in the catalogue per unit 

time. 

The method of Lagrangian undetermined multipliers applied to 

these four equations (Appendix 2A) gives 

p(m) = exp{-X1 m - X2M(rn)}/Z , 	 (3.5) 

where Z is given by 

Z = ce{hn - XM(m)}dm . 	 (3.6) 

Z is the function which is necessary in order that (3.5) satisfies 

the normalisation criterion (3.2). 

It is easy to show (Appendix 2B) that 

<in> = -d{n(Z)}/dX 1 	 (3.7) 

<M> = -d{1n(Z)}/dX2  . 
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In principle, equations (3.7) could be solved and the distribution 

uniquely specified in terms of the three variables <in>, <M>, 

w, once m has been chosen. Unfortunately this must be done 

numerically because (3.7) has no analytical solution. The method 

that was applied here involves an iteration procedure from starting 

values of X 1  and X21  using a third order finite-difference formula 

due to Gill and Miller (1972) to evaluate the complicated integrals. 

<in> and <M> (see Appendix 1, the program is called MAXENT-FF2). 

The cumulative form of the probability distribution is defined 

by 

P(xm) = f p(x)dx 	N(x)m) /NT ' 	 (3.8) 

if N is the cumulative frequency distribution. The number density 

n(m) = -dN(xm)/dm is then given by n = NTP or 

n(rn)dm = C exp{-x 1m - X 2 o M (m)}din (3.9) 

where C = NT/Z and M(m) is given by (1.5). 

It will be noted that <in>, <M>, Z and NT  all depend on the 

range chosen (ni,w),  but are most sensitively dependent on mc.  For 

the purpose of the present type of work this will not matter if (a) 

the terms X 1  and X2  are reasonably constant independent of the 

choice of m, and (b), proper normalisation is carried Out by 

using (3.2) and (3.8). It is obvious that (a) can only be effected 

by considering a range of events where we are sure the catalogue is 

complete, and (b) is taken care of by the terms Z and.NT  which 
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will vary according to the choice of in. It will also be shown 

that the relative independence of X 1 with respect to m is due 

to a constant similarity dimension in the fault geometry in the 

following sections. This criterion is equivalent to what will be 

called dimensional (geometric) self-similarity. 

3.2.2 A physical model from statistical mechanics 

In order to interpret (3.9) a physical model of a fault is now 

considered and the methods of statistical mechanics are applied to 

its localised elements. These elements maybe as small as the 

lattice constant of the predominant crystal, or may be related to 

inhomogeneities such as joints or bedding planes. In the following 

it is assumed that the elemental areas A are small enough to 

warrant a continuous approach. 

Consider an arbitrary two dimensional area-A cs £ which 

ruptures'during an event on the fault plane A 	(fig 3.1).
max 

Assuming a constant strain drop (so that the model is geometrically 

self similar and therefore can be scaled up or down without 

altering this dimensionless quantity) the fault slip s = £, so that 

M 	£ from (1.4). 
0 

If an energy level E is characterised by the symbol r, and can 

be filled in g ways then the discrete frequency F of state 

transition by statistical mechanics is given by 

F = g exp{-X' (E - E ,)} 
r 	r 	2 	r 	r (3.10) 

(Er  - E,) in this case is the change in strain energy which 

is proportional to M via (1.4), and X'  depends on the average 

energy <E>. In thermodynamics <E> = kT for example. The 
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d 

Figure 3.1 	A two dimensioial geometric fault model. The area A 
can fit into Amax  in 	/A ways. A0  represents the physical lower 
limit to seismic energy release and depends on the spacing of 
inhomogeneities in the earth. The density of degenerate states,if 
A is assumed to be very small and A = £2 ,  is 

d(l)dl = {A 
max 	max 	 max /i2 }—{A 1(1 + d) 2 } = 2A 	/13di. 



degeneracy g is given by a simple geometric constraint on 

On a planar fault as in fig 3.1, g(L) = A/A(L) so that, for 

the continuous case, the density d(L) of degenerate states is given 

by 

d(L)d9. = g(L)-g(L+dL) = (2A 
max /L

3 )dL , 	 (3.11) 

after binomial expansion and ignoring terms in d1 2  and higher. 

This can be. compared with Caputo's (1976) postulate 

d(L) 	LV . 	 (3.12) 

In a planar fault of two dimensions (say D2), v=3 by comparing 

(3.11) and (3.12) and so 

Dv-1 
	

(3.13) 

in this case. However, it can be seen by induction that this holds 

for any value of the dimension D and the power of the length 

density distribution v. This concept of dimension will be 

discussed more fully later. 

Meanwhile the variable in (3.11) is, converted from length to 

moment using M 	i; dM m  L2d9. 

	

0 	 0 

d(M ) dM = d(L)dL 
0 	0 

M +2 )h' 3 dM 

	

0 	 0 , 
	 (3.14) 
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d(m) din = d(M) d1I 

exp{(ct+m) (
11v
-)} din . 	 (3.15) 
3 

If d(m) 	e-b' in  then 

	

v-i 	 v-i 
b' = (_-_) or b = B (-) . 	 (3.16) 

	

3 	 3 

The continuous number density n(1) is then given by a combination 

of the geometric term with a Boltzmann exponential 

n(.9.)dR. = d(9jdl exp(-X2M(.)) , 	 (3.17) 

where X M 	X' W from (1.4), or 

	

2
0 
	2 

n(m) din = coast. e
-b'm -x e 	2M0(m)d . 	 (3.18) 

This form is identical to (3.9) if X, = b' = b ln 10. 

Thus the distribution (3.9) can be interpreted as a Boltzivann 

distribution of possible energy transitions in a stressed zone, 

multipled by a geometric factor which is directly related to the 

dimension of the source zone and is represented by the familiar 

b-value. 

3.2.3 A note on fractal dimension 

By combining (3.13) and (3.16) an interesting result is obtained 
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BD 
	 2 

b = - D/2 , 	 (3.19) 
3 



if B 3/2. Thus the dimensions of the source zone of 1, 2, 3 

correspond to b-values of, 1, 1 which covers both the 

empirically observed range (section 1.2) and the permissible range 

for finite energy release (section 1.7, equation 1.21). Thus the 

observation that b < 3/2 is a consequence both of a finite energy 

density, and of the release of that energy in a cracked surface 

which can fill (at most) a volume (D=3). This combination of ideas 

enhances the statistical mechanical interpretation of the previous 

section. 

It is interesting to note that data on Californian fault 

breaks at the surface indicate that v = 2.5 (Caputo, 1982). This 

would imply b = 0.75, in good agreement with theoretical models 

developed by Petrov (1981), where b = 0.75 results from random 

statistical fluctuations in microcrack density and Vere-Jones 

(1976) where b = 0.75 results from a critical branching model. The 

non-integer D implies by analogy with the normal concept of' 

density, a density distribution of fault lengths which has a 

fractal (ie non-integer) dimension (Dv-11.5 in this example). 

The fractal dimension of the fault geometry may be modelled by (a) 

irregularities along the main fault break or (b), scattered smaller 

replicas of the original fault (see Mandelbrot, 1982). Caputo's 

(1982) value for v only acccunts' for (b) because only surface 

breaks are considered, which may explain why the b value predicted 

from v under-estimates the empirical value for b of 0.87 (Epstein 

and Lomnitz, 1966) and 0.89 ± 0.03 (this chapter, section 3.3.2). 

3.2.4 Uncertainties in the distribution and its predictions 

The distribution (3.9) represents the most likely form of the 

frequency magnitude relation consistent with <m> and <M0>. These 
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two parameters have associated uncertainties which are independent, 

and can be related to the uncertainties in X, and X2 by the 

solution of a series of four equations for the propagation of 

standard errors of the form, for example 

2 	a <n> 2 	O<m> 	O<m> 
a2 	= 	} 	

2 + { 
	} 	

2 + 	} { 	} a2 	+ 

	

<In> - 	xl 
'1 	3X2 

{>} {>} ° x 	• 

	

'2 	1 

2 	2 	2 	2 These four similar equations in a<> ,  a<> ,  a<> ,  a<NIn> can 
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be reduced to a matrix form as 

{a2 	2  b ab ba} 
2 

{a 	} 
2 

a<  {n> 	1 
xl 

{ 2 	c2  b bc cb} 2 
{a 	}- - 	

2 
a<M>} 

{ab 	bc at b2} {a} { 	
0 	

} 

{ba 	cb b2  ca} {o} { 	
0 	

} 	 31 

where a 
0 <iu> 
____ <in> 2  - 

ox1 

O<m> 
b= ___ = ___ =<In> <M>-<mM> 

OX2 

c 	<M > 2  - <N 2> 
0 	 0 

ox2 

(3.20) 

follow from differentiating (3.3) and (3.4). At this point note 

that A = <M A is a function of the slip rate, whereas <in> 



depends only on the individual magnitudes in the catalogue. M 0  

varies hardly at all with changing m because it is dominated 

by the larger events but <m> varies dramatically. Therefore 0140> 

and <m> are essentially independent variables, which is why it has 

been assumed that 
<mM>  

c 	
<Mm> 	

0 in (3.20). This equation 
0 	0 

can be simplified slightly by subtracting the bottom row from the 

third to give 

(ac 	b 
2 
 ) a 2 
	

(b2-  ac) 2 
- 
	 = 0 , 	 (3.21) 

or, since ac - b2  is not in general zero 

.2 2 
X 1 X 2  = 	X2X1 	 (3.22) 

Thus a simpler problem remains: 

2 	
2 	

2 
{a 	b 	2ab } 	{oxl } 

{b22 
	 2 	1 

	

c 	 j 2bc } 	f = 	 (3.23) 

•2 
{ab 	bc 	ac+b2} 	{xx} 	{ 0 } 

This equation was solved by diagonalising the 3 x 3 matrix and 

back-substitution, using very high precision to avoid rounding 

error. (The program MPXENT-FF3 in Appendix 1 does this job). 

The contribution to errors in the cumulative frequency 

distribution N are then added up. These are: the covariance terms 

in X, and X2 which depend on uncertainties in the moment release 

rate A and a standard error in <m>; fluctuations in N 
T 
 as seen in 

0  

the completeness graphs in Chapter 2; a measuring uncertainty in 

the magnitude w; a variable A parameter to quantify uncertainties 



in the moment-magnitude relation. The latter criterion is 

necessary since eventually the distribution (3.9) (which is cast in 

terms of M ) will be compared with empirical data (in M or M ). 
w 	 . 	. 	 s 	L 

The form of the propagation of errors equation in a quantity 

N (<in>, <M>, NT, W A) is 

{oN 12 	16N 	12 	ôN 12 
8N2 = - a2  + 	a2 	+ - a2  

{ô<m>} <> 	{o<M0>} <Mo> 	{NT} 	NT 

{oN 12 	{6N}2 
+_ a2  +_ 

I 	{oA} 

but it is necessary to recast the uncertainties in the parameters 

<in> and <M 
0 > 

in terms of x i  and X2 because there is no 

analytical form for N/ô<m> and ÔN/ô<N>. This requires the 

addition of the covariance terms in x, and X2 . Formally the final 

uncertainty in N is taken to be 

{ÔN,} 2 	{oN }2 	{oN } {oN } 
ON2  = - a2  + - a + - - 2a2 

{ox1} 	X1 	{ox2} 	2 	{ox1} {ox2} 	X1X2 

(3.24) 

{oN 12 	{6N} 2 	{6N} 2  

a + 
a2 + 

{oNT} 	
NT 	{ôw} 	W 	 A. 

Errors in T(m) = 1/N(m) can also be allowed for via OT/T = -6N/N 2 . 

(MAXENT-FF5 (Appendix 5) evaluates average repeat times and errors 

from (3.24), given in). A similar equation to (3.24), with N 

replaced throughout by tnT holds for the error in m
T' 
 which 

is solved for by MAXENT-FF4 (Appendix 1) for different values of T, 

given (3.9). 
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3.3 Application of the distribution 

In order to test the validity of the approach developed in this 

chapter, two regions were chosen for analysis - the requirements 

being that the catalogue was large enough for reasonable 

statistical treatment of discrete frequencies 

rirf-ôm/2 
F(m) 	5 	n(m) din , 	 (3.25) 

m-ôm/2 

and the availability of reasonable data on M 0. Thus the catalogue 

for the Central and Eastern Mediterranean was chosen for an 

inspection of the properties of the distribution as an internal 

consistency check, and the catalogue for Southern California as a 

test of the primary objective of this thesis - the direct 

incorporation of seismotectonic deformation rates into earthquake 

hazard evaluation. 

3.3.1 The Central and Eastern Mediterranean 

Since the method and the particular programs which were used for 

each step have been outlined in section 3.2, and a description of 

the earthquake catalogue and moment release rates were given in the 

previous chapter, only the results are presented in this and the 

following section. 

Figure 3.2 (which was drawn by MAXENT-G in Appendix 1) shows 

the theoretical line (expressed in terms of M via (1.5)) for 
- 	 w. 

in = 4.75 compared to discrete frequency data (M). The dotted 

line corresponds to a Weibull curve fit. It can be seen at a 

glance that the distribution (3.9) fits the data better than the 

Weibull curve, which consistently overestimates the occurrence of 
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Figure 3.2 	Discrete frequency plot of earthquake magnitudes for 
the Central and Eastern Mediterranean. Discrete frequency-
magnitude data (mj, F) are compared with the theoretical 
distribution (3.9) (solid line). A snnmary of the parameters of 
this distribution is given in tables 3.1 and 3.2, for a lower 
completeness threshold mc = 4.75. An extrapolation of the 
straight line portion of the distribution (a truncated exponential) 
overestimates the occurrence of the highest magnitudes. The 
autocorrelation error of the Weibull fit (dotted line) is evident 
in the middle range. The good agreement between the theoretical 
(Mv) line and the empirical data (Me) indicates internal 
consistency of the method. Mw  is defined here as the unsaturated 
MS  scale. The points marked (*) indicate reader bias towards the 
points (5.0, 5.5, 6.0), a reflection of the accuracy of earlier 
instruments (±0.5). 



the middle range of magnitudes. On the other hand a truncated 

exponential would extrapolate the straight line portion and 

overestimate the occurrence of the highest magnitudes. In general 

terms the Information theory distribution seems to combine the best 

features of both empirical distributions. 

Another advantage that the distribution (3.9) has is that the 

line is always directly compatible with the best estimates of 

and A because these constraints are actually fed in to the 

distribution. Empirical line fits can only be consistent with 

these best estimates within certain error bounds. The figure shows 

one aspect of the magnitude uncertainty quite clearly - namely the 

consistent overestimation of-inagnitude intervals due to a 

magnitude uncertainty of ±0.5, particularly in the early years of 

seismology. The good agreement of the theoretical line (M) and 

the empirical data (M) indicates that the values of A and B 

discussed in Chapter 2 are valid within the error bounds of the 

method, expressed here by ÔA. 

'Figure 3.3 shows the cumulative frequency, fit with error 

bounds. a 	 and a
N 
 are given by standard errors on their means. 
T 

The bounds also include a possible error in the moment-magnitude 

parameter A of ±0.2 from inspection of North (1974), in w of ±0.3 

as a typical magnitude uncertainty and an arbitrary allowance for 

50% uncertainty in M 	 The uncertainty in A quantifies the error 

due to the necessity of comparing a theoretical line (Mu)  with the 

data (M5 ). Note that despite the possibility of superposition 

(above and below MS 
 7) the distribution fits the data well 

within the given error bounds. This agreement between data from a 

catalogue with magnitudes and moment release rates measured from 

the same seismograms and a theoretical distribution based on making 
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Figure 3.3 	Cumulative frequency plot 
the Central and Eastern Mediterranean. 
(mj , N) are compared to the theoretic 
error bounds. Despite the possibility 
populations (above and below magnitude 
considering the errors. 



the best use of limited knowledge otherwise indicates that the 

method is indeed internally consistent. This internal consistency 

- or self-consistency - is an important check on the validity of 

the distribution (3.9). 

Table 3.1 summarises the effect of altering in on the 
c 

parameters and uncertainties. Since magnitude is normally quoted 

to one decimal point (óm = 0.1 in (3.25)) m was chosen as 4.5 
C 

+ 6mI/2, where I is integral. (Chapter 2 showed that the catalogue 

was complete above magnitude 4.5). The table shows that b stays 

reasonably constant with increasing in (within its error), 

although there is a tendency both for b and y to increase with 

in. - This systematic trend is offset by a tendency for X2to 

decrease, -and the resulting negative contribution to the error from 

the covariance term 

The predictions of 	) which follow are given in table
MT  

3.2. It can be seen that all of the entries for given T are 

virtually identical, thus backing up the assumption of 

self-similarity which is important in the assumption of a constant 

strain drop as well as for the fractal interpretation of the 

b-value in section 3.2. 

This discussion has shown that the distribution (3.9) is 

better than some of the alternatives, not only in the quantitative 

sense of fitting the empirical data better, but doing so in a 

maniier which is directly consistent with the available knowledge of 

the seismotectonics of the area. An added bonus is that, despite 

the possible superposition of two seismicity distributions and the 

use of M for the theoretical line, the occurrence of the 
w 

largest magnitudes (M) is matched well by the overall line. 

M. 



Table 3.1 Variation in b and 	with changing m for the Central 
and Eastern Mediterranean * 

b+ () ( 	) 	 c 
C 

-20 	-1 
x 10 	(Nm) 

4.45 0.59 (0.03) 0.36 (0.43) (-0.025) 

4.55 0.59 (0.03) 0.38 (0.46) (-0.031) 

4.65 0.63 (0.04) 0.40 (0.40) (-0.029) 

4.75 0.64 (0.04) 0.24 (0.39) (-0.032) 

4.85 0.66 (0.05) 0.22 (0.41) (-0.039) 

4.95 0.71 (0.06) 0.14 (0.39) (-0.041) 

5.05 0.66 (0.07) 0.23 (0.45) (-0.059) 

* w is a constant at 7.85 ± 0.3, with 

= 8±4x10 19 Nmyr 1  

A 	= 9.0 ± 0.2, B = 1.5 

+ b = X1 log 1 0e; a b = 
	

log10e 



Table 3.2 

Variation in 	with changing mfor the Central and Eastern Mediterranean 

T in yrs 
mc  

4.45 4.55 4.65 4.75 4.85 4.95 5.05 

1 6.78 (0.07)* 6.77 (0.08) 6.75 (0.08) 6.75 (0.08) 6.73 (0.09) 6.69 (0.09) 6.72 (0.10) 

2 7.09 (0.08) 7.05 (0.08) 7.04 (0.07) 7.04 (0.07) 7.02 (0.08) 7.00 (0.08) 7.02 (0.08) 

5 7.32 (0.22) 7.31 (0.22) 7.32 (0.18) 7.33 (0.17) 7.32 (0.16) 7.31 (0.13) 7.31 (0.15) 

10 •7.46 (0.41) 7.46 (0.42) 7.48 (0.36) 7.49 (0.35) 7.48 (0.34) 7.50 (0.30) 7.48 (0.34) 

20 7.58 (0.65) 7.57 (0.66) 7.60 (0.60) 7.61 (0.58) 7.61 (0.57) 7.63 (0.52) 7.60 (0.58) 

50 7.69 (0.99) 7.68 (1.02) 7.71 (0.92) 7.72 (0.89) 7.72 (0.90) 7.74 (0.82) 7.72 (0.94) 

100 7.75 (1.24) 7.74 (1.28) 7.77 (1.13) 7.77 (1.09) 7.78 (1.10) 7.79 (0.99) 7.77 (1.17) 

200 7.79 (1.44) 7.79 (1 .51) 7.80 (1.30) 7.81 (1.24) 7.81 (1.26) 7.82 (1.11) 7.81 (1.33) 

* Uncertainties in m
T  result from an equation similar to (3.24) with N replaced throughout by 



3.3.2 Southern California 

The previous section checked for self-consistency of the method 

with contemporary data and compared the Information theory 

distribution with some commonly used empirical methods. In this 

section the aim is to test one of the primary objectives of this 

thesis - the direct incorporation of crustal deformation rates 

derived from data on a geological time span via the terms 1 and 

NT) with a view to extrapolating beyond historical and 

instrumental time scales. Previously this has been done only 

indirectly by comparing moment predictions from extrapolation of 

line fits to contemporary data with quaternary evidence of fault 

movement. Examples are Anderson (1979) for the (linear) truncated 

Gutenberg-Richter law and Main and Burton (1984) (i.e. the results 

of Chapter 2) for the more general (curved) type III Weibull 

frequency distribution and its extreme value equivalent. 

The area under study here has been subject to occasional major 

shocks, the last being in 1857 along the currently locked aseisraic 

portion of the San Andreas fault. Sieh (1978) has shown that 

shocks of this order of magnitude repeat on average every T = 163 ± 

27 years, where the uncertainty is a standard error in the mean. 

The repeat time has varied from 55 - 275 years between the 9 events 

regarded as proven without reasonable doubt. 

Sieh estimated the size of this event as M > 8.25, by 
S 

comparison of macroseismic effects with those for the 

instrumentally recorded 1906 San Francisco earthquake. Singh and 

Havskov (1980) find that A = 15.83, B = 1.5 is most appropriate for 

Southern California in (1.5), and Anderson (1979) gives M for 
0 

the 1857 event as 9 x 1020  Nm from the extent of the surface break 

and fault slip. These two data imply that Mw  = 8.1 - showing 
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that the M 
0 	W 

- M relation cannot account for the relatively 

high M value of the 1906 event. 

Neilson (1983, oral communication) suggested that this was 

almost certainly due to incorrect gains being used on early 

seismograms, a view later confirmed in detail by Abe and Noguchi 

(1983). Their corrected magnitude for the San Francisco earthquake 

is about 7.8 (M ) and since the macroseismic data indicate that 
S 

the 1857 event in Southern California was larger, it might be 

expected that M > 7.8. (Both models in table 3.3 satisfy this 

criterion). 

If an average slip rate at the 1857 fault break of 3.2 cm yr 1  

is assumed and s = st in (1.4) then an average magnitude m 8.05 

± 0.15 M is found for appropriate values of t from Sieh's 
w 

table of recurrence times (see table 3.3, model (b)). The slip 

rate is consistent within ±0.5 cm yr 1  with (a) the creep rate over 

four years in- Central California -3.2 cm yr 1  (Lisowski and 

Prescott, 1981) (b) 4*  m of slip repeated every 163 years for 

approx 2000 yrs - 2.8 cm yr 1  (Sieh, 1978) and (c) geologically 

estimated slip rates on the San Andreas fault - 3.7 cm yr 1  

(Anderson, 1979, table 1). This good agreement over different time 

scales also lends support to the stationarity hypothesis. A higher 

value for the relative plate motion across the San Andreas 

transform of 5.5 cm yr 1  indicates that a significant amount of 

movement occurs in a broad deformation zone around the main fault. 

The calculated value of rn results from locally appropriate values 

of A (15.83) and B (1.5), 	3 x 1010  Nm 2 , length L = 400 Km (Sieh, 

1978) and depth 15 Km (Anderson, 1979). Table 3.3 summarises this 

speculative slip predictable model and compares it with the model 

of Anderson and Luco (1983), since some of the input parameters and 

assumptions are slightly different - for example the choice of the 



Table 3.3 	Comparison of the slip_predictable+ models of (a) 
Anderson and Luco (1983) and (b) this chapter 

Times t between 	Model (a) CM ) 	Model (b) (M ) 
events in years* 	 S 	 w 

112 7.74 7.96 

275 8.26 8.22 

225 8.15 8,17 

55 7.33 7.73 

225 8,15 8.17 

105 7.71 7.95 

195 8.06 8.12 

120 7.78 7.98 

Average 	163.4 
	

7.8975 
	

8.0375 

Standard 	72.2 
	

0.3119 
	

0.1663 
deviation 

* From Sieh (1978) 
+ Shituazaki and Nakata (1980) 



moment-magnitude relationship. 

The results of this table can be summarised by assuming that 

a reasonable estimate of the size of future events in this area is 

a magnitude greater than or equal to m - óm. Thus the point 

(mi ,  Ni) can be included in the cumulative frequency graph of 

(7.90, 1/163) since ni = 8.05, ôm 	0.15; N = l/T, T = 163 yrs (see 

fig 3.5). 

Table 3.4 summarlses the input and output parameters of the 

solution to the distribution (3.9) for this area from (a) the 

earthquake catalogue and (b) a plate tectonic model of the area. 

These results are plotted graphically in figs 3.4 and 3.5 for 

comparison with frequency magnitude data from the catalogue and the 

geologically inferred point. Table 3.5 gives the magnitudes ruT 

associated with average repeat times T in the area defined by the 

extent of the earthquake catalogue (see fig 2.3). A final result 

is that the long-term prediction of the occurrence interval for the 

largest events (M > 7.9) is once every 156 years, and considering 

the errors in the model the range is 87 - 281 years. This agrees 

very well with Sieh's observation of an average repeat time of 163 

years, but varying within a range of 55-275 years (table 3.3). 

Combining this average repeat time with the knowledge that the 

last great event ruptured the fault at Pallet Creek in 1857, a 

recurrence of this catastrophic event might be expected (on 

average) in 2013. Thus for a normal distribution of recurrence 

times the cumulative probability of Southern California being hit 

by a great earthquake will have reached 50% by this date. 

3.4 Discussion of results 

The first conclusion from figs 3.2-3.5 is that the distribution 
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Table 3.4 Summary of Input and Output parameters of the solution for the 

parameters of equation (3.9) for Southern Californian data. 

From the Earthquake catalogue 1932-1972 (Hileman et al, 1973) 

m 	4.25 
C 

<m> : 4.738 (0.014) 

NT 	25.512 (4.368) per year 

From a tectonic model (Anderson, 1979; Singh & Havskov, 1980; Sieh, 1978) 

3 x 105  bars (30%) 

1 	: 	670 Km 	 A 	: 	8.83 (0.20) 

400Km 	(25%) max 	 -1 
AC 
max 

70 bars 	(30%) 	 M 
0 	

: 	16 (8) x 1018  N m yr 

W 	: 	15 Km 	(30%) 
5.5 cm yr 	(20%) 	 8.4 (0.3) 

Aa 	50 bars 	(40%) 

'(c) Output parameters 

k i  (a.) 	: 	2.041 (0.061) 

	

(a ) 	: 	0.040 (0.078) 

(a2 	) 	(-0.00207) 
1'2 

1 is the length of the seismic zone studied. 

W is the fault width. 

1max is the maximum length of possible fault break constrained by present 
bends and inhomogeneities. The assumption is that the northern boundary is 
constrained by the creeping segment of the San Andreas fault and the southern 
boundary by the termination of the quiescent zone where the deformation zone 
branches Out and becomes more complex. 

a2  , a2  , a2 	represents the covariance error resulting from equivalent 
X1 	X2 	X1X2 

uncertainties in <in> and 4a4 >, with 02 	- 0 due to independence. 
0 

A is correct for S.I. units. 

All uncertainties are given in brackets. 



Table 3.5 

Magnitudes mT  associated with average repeat times T in years 

for Southern California 

T 	 MT 	mT) 

1 5.831 (0.089) 

2 6.165 (0.092) 

5 6.597 (0.096) 

10 6.912 (0.098) 

20 7.208 (0.098) 

50 7.556 (0.099) 

100 7.777 (0.128) 

200 7.960 (0.213) 
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Figure 3.4 Discrete frequency plot of earthquake magnitudes for 
Southern California. Discrete frequency data (m1 , F 

i 
 ) are compared 

with the theoretical distribution (3.9) (solid line). A summary of 
the parameters of the distribution is given in tables 3.3 and 3.4, 
for a completeness threshold mc  = 4.25. The point at magnitude 
8.05 ± 0.15 is evaluated from the slip predictable model of table 
3.30). Note once again the overestimation of half-magnitude 
intervals (4.5, 5.0, 5.5 etc) due to magnitude uncertainty in the 
early years of the catalogue. There is only a slight curve down at 
the highest magnitudes, in this case due to the small value of the 
curvature parameter X. The actual data are a combination of 
local, surface and nioment-niagnitudes, with the theoretical solid 
line worked Out for M. 
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Figure 3.5 	Cumulative frequency plot for Southern California. 
Cumulative frequency—magnitude data (mj, Ni) are compared to the 
theoretical distribution (3.9) and its error bounds. Despite the 
possibility of superposition (of (I) - intermediate and (L) - large 
earthquakes) the extrapolation fits the M w  data from model (b) of 
table 3.3. Anderson and Luco's model (a) seems to underestimate 
the tectonic hazard, even considering error bounds. (Model (a) is 
the box at Mw  7.6, Model (b) the box at Mw  7.9). The largest 
events are consistent with a b—value of 0.51, which corresponds to 
a dimension of 1, and is consistent with the interpretation of the 
San Andreas fault system as the transform boundary between two thin 
plates. 

0 
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developed in this chapter fits the data from the earthquake 

catalogue and the known seismic moment release rate well within its 

given error bounds. This is true both for t1 estimated from 

seismograms which were recorded within the time span of a shortened 

Mediterranean catalogue, and for a long-term estimate from tectonic 

slip rates in Southern California. Equation (3.9) certainly fits 

the Mediterranean data better than the forms of a truncated 

exponential or a Weibull distribution. In Southern Calif ornia 

is very small so a truncated exponential would probably be adequate 

here. However the extra information on I at long periods 

reduced the error at longer average repeat times compared to using 

only X 1  ± a - via the negative covariance term a x1x2 - so even in 

the second example there is an improvement over existing methods. 

Both examples show good correlation between the theoretical 

(M ) lines and the empirical (M 
S 
 ) data, thereby providing a 

w  

consistency check on the values of A and B chosen. Another general 

point to notice on both cumulative frequency diagrams and in table 

3.1 is the reasonably constant slope of the theoretical line (i.e. 

the b-value) and empirical data over two or three magnitude units 

above in • Since b2D this represents self-similarity (i.e. a 
c 

constant similarity dimension D) over a scale of about 1:10,000! 

(since 1 magnitude corresponds to a factor 30 or so increase in 

energy). 

Where the assumption of self-similarity does begin to break 

down is at the highest magnitudes, where both graphs show possible 

superposition effects. In particular fig 3.5 shows a marked break 

in slope at magnitude 6.6 Ms,  from b = 0.89 to b = 0.51, 

corresponding to a sudden reduction in the similarity dimension D 

from about 2 to about 1. This may be due to the finite width of 



the fault zone, which reduces the geometric degree of freedom from 

two to one for magnitudes above 6.6 M5 , and is probably related 

to the seismogenic depth of... about 15km. Scholz (1982) discussed a 

model of this type and its effect on scaling laws for large 

earthquakes, and this figure appears to be in tentative agreement 

with his L—aiodel (scaling according to L—length rather than W—width 

as previously considered in Kanatuori and Anderson (1975). 

However, the parameter X2  in both cases allows a fit to this 

difficult part of the graph in a manner which is directly 

consistent with the geological information. Three possible types 

of behaviour can be imagined at the high magnitudes: X2 = 0 

corresponds to a truncated exponential; X 2  positive to a downward 

curve at higher magnitudes; and X2  negative to a curve upwards. 

This feature of a curve up may be useful in some areas where there 

is a bimodal distribution with an anomalously high proportion of 

large events, such as in Mexico (Singh et al, 1983). The main 

strength of the approach in this chapter is that the behaviour of 

the distribution as average repeat times beyond the instrumental 

scale are investigated is biased by as few assumptions as possible 

- these being directly consistent with the information put in. 

Here R, has been chosen as appropriate, but in other areas an 
0 

energy release rate E, a known recurrence time from historical data 

on large events (Dong et al, 1984), or a combination of several 

sources of information may be used. It is even possible to imagine 

a time—dependent distribution which combines several observations 

of earthquake precursors, since at present no one precursor seems 

to be reliable on its own (Rikitake, 1976). 

The method could, for the present, be usefully applied in many 

areas of the world where historical data are unreliable or 



unavailable, especially as tectonic models become increasingly 

sophisticated with satellite and laser ranging studies. In 

conjunction with the concept of a seismic gap (McCann et al, 1979), 

the average repeat time inferred for the largest events by this 

method could be used as a less arbitrary guide to the areas of the 

world currently most at risk from catastrophic events. (In this 

reference a seismic gap was deemed to exist after an arbitrary time 

of 30 years since the last catastrophic event). 

3.5 Summary 

A new frequency magnitude distribution was developed from the 

principles of Information theory, thereby allowing direct 

incorporation of the geological data on the slip rate and the 

maximum fault area. The form of the distribution canbe 

interpreted as the combination of two terms representing a) the 

geometry (dimension) of the source zone and b) a Boltzmann 

distribution of possible strain-energy transitions. This 

interpretation comes from a statistical mechanical treatment of 

fault elements, which is mathematically very similar to the 

Information theory treatment. 

The geometrical dependence can be further broken down to 

relate the b-value to the (fractal) dimension D of the cracked 

source medium. As in Aki (1981), it turns out that b z D/2, 

explaining the range of observed b-values 0.5 < b < 1.5 as being 

limited by corresponding dimensions 1 < D < 3 and a finite energy 

density. The self-similarity required for this interpretation 

holds in two examples over a surprisingly large energy range 

(1:10,000!) but breaks down at the very highest magnitudes where 

superposition is evident. 
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An internal consistency check on the Mediterranean catalogue 

of magnitudes and seismic moments showed that the distribution 

combines the best features of the truncated exponential and Weibull 

line fits, with the added advantage that the distribution is 

automatically consistent with the slip rate and the maximum fault 

area. The information represented by the latter can also 

compensate for possible superposition at high magnitudes, since the 

total moment release rate is dominated by the largest events. 

Because of this slightly more confidence can be had in 

extrapolations beyond catalogue time scales for earthquake hazard 

studies. 

The Californian catalogue gives an extrapolation which is 

consistent with a model developed from Sieh's table of occurrence 

times, and incidentally showed that the magnitude of the 

instrumentally recorded San Franscisco earthquake (1906) was too 

high by about half a magnitude unit. The long-term prediction of 

average repeat times for the largest events in Southern California 

by this method is once every 156 years, with a range 87-281 years, 

and this compares well with the results obtained by Sieh on direct 

trenching into the San Andreas fault (163 years, with a range 

55-275 years). 

This method could be used on global catalogues using plate 

tectonic models and the concept of a seismic gap to identify those 

regions of the earth currently most at risk (in a probabilistic 

sense) from catatrophic earthquakes. This would seem to be less 

arbitrary than the 1 30 years rule' which originally defined a 

seismic gap as existing 30 years after the last big event. 

The really important point to emerge from this chapter is 

that, although the distribution developed does fit the empirical 
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data better than two other commonly used forms it is not just 

another theoretical curiousity, but by definition is the best that 

can be done with the currently limited knowledge of the earthquake 

process. Any subsequent improvements will require a better 

understanding of the latter, for example the validity of the 

assumption of stationarity and dimensional self-similarity. In the 

following chapter the aim is to investigate some of these 

assumptions in more detail for one particular tectonic province - 

the Aegean. 
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CHAPTER 4 

A seismotectonic analysis of the Aegean area I: Source parameters 

4.1 Introduction 

In the last two chapters two different models of seismic moment 

release were developed and tested in up to four areas where a 

suitable, homogeneous earthquake magnitude catalogue was 

available. At this point it was decided that a more detailed 

investigation of one particular area of interest was necessary in 

order to develop some of the subtleties of the method. One natural 

advantage of such a case study is that the treatment of the data 

could be made more consistent and yield a more convincing overview 

of the whole method. 

The area of the so-called 'Aegean plate' around Greece was 

chosen as suitable for such a detailed study for the following 

reasons: - 

The complex seismicity and underlying tectonics of the area 

are an interesting puzzle which a detailed investigation of 

slip rates.determined from seismicity studies may help solve. 

In a European context, the area affected contains most of the 

significant seismic energy release (even in a global context 

Greek seismicity accounts for about 2% of 'the total). 

The availability of a homogeneous earthquake catalogue going 

back to 1900. 

The availability of extensive digital data on small 

earthquakes. 

The main aims of the remainder of this thesis are (a) to 

further investigate the validity of the distribution (3.9) and some 
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assumptions behind it and (b) to test a tectonic model for the 

Aegean against the data on seismic moment release in the Greek 

area. The latter requires the derivation of seismic moments for 

large events, and the former a detailed investigation of the source 

parameters over a broad range of events down to the level of small 

earthquakes. First a brief summary of the results culled from an 

extensive literature searëh is presented, and then the extraction 

of seismic moment and other parameters from Rayleigh waves (for 

events Ms  > 5.5) and P waves (for the small earthquakes with 

ML o 3) is discussed. The results obtained will be used in an 

analysis of Aegean seismotectonics and seismic hazard in the final 

chapter, using the methods derived in the previous chapters. 

4.2 Results of literature search: Source parameters 

4.2.1 Introduction 

Some hundreds of references relevant to Greek seismicity and 

tectonics were consulted in order to evaluate the reliability of 

the various tectonic models and to look for available data on 

source parameters. The references had already been compiled as 

part of the wider Volos project (Burton et al, in prep), and those 

consulted are listed in Appendix 3. The tectonic model will be 

discussed in the following chapter, but the available source 

parameters of Aegean earthquakes are now considered in a few 

subsections. 

4.2.2 Earthquake magnitude catalogues 

The most homogeneous catalogue for Greek seismicity is that of 

Makropoulos (1978'), published more widely in Makropoulos and Burton 
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(1981). After considering other catalogues BAth (1983) concluded 

that 'this catalogue is apparently the most homogeneous one in 

existence for this area, with all parameters recalculated or 

re-examined'. The catalogue now covers the period 1901-1981, 

including 613 events for the period 1917-63 which were relocated 

using first arrival data from the International Seismological 

Summary. Consistent surface wave magnitudes were assigned mainly 

using readings from the Swedish network at Uppsala. The authors 

conclude that the catalogue is complete for magnitudes above 5.5 

M for the period since 1918 or so, and above 4.7 since the 
S 

introduction of the WWSSN (World-wide standard station) network in 

1963. 

Another catalogue which will be used is the result of 

recordings from a seismograph network called VOLNET (Volos network) 

which was set up by Paul Burton and others in a joint project (BGS 

and Athens University) to investigate: (a) the details of the 

tectonic stretching within the Aegean 'plate' behind the Hellenic 

arc; (b) the most probable seisniotectonic model for the 

Volos-Almiros-Atalanti region in eastern Greece; and (c) seismic 

hazard combined with engineering geological studies of the latter 

region. For our purposes the Aegean plate includes the Greek 

mainland as well as the Aegean sea and the western edge of Turkey. 

The area covered by the network is illustrated in fig 4.1 (from the 

frontispiece of the VOLNET station bulletin). Although designed 

amongst other aims to investigate the detail of a forked seismicity 

trend identified in Makropoulos and Burton (1981), the network also 

picks up data further south on the actively stretching Gulf of 

Corinth. If any significant large events do occur this network 

should give very accurate hypocentre locations and assist the 
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Figure 4.1 	The VOLNET array of seistnonieters in location, Central 
Greece. This diagram is reproduced from the BGS VOLNET bulletins. 
The network is discussed in Burton et al (in prep). 



matching of major earthquake sites with known faults. 

VOLNET began operation in Jan 1983, the field observations on 

magnetic tape being used to produce arrival times, local 

magnitudes, hypocentral locations and digital velocity seismograms 

on magnetic tape. A magnitude range of 1.8-4.5 ML is covered, 

although catalogue completeness is difficult to assess. Station 

bulletins are available from Jan 1983 to present from the Global 

Seismology Research Group.of the British Geological Survey in 

Edinburgh. A small sample of the VOLNET data for epicentres spread 

throughout mainland Greece and the Aegean sea was supplied for the 

present work for the purpose of determining earthquake focal 

- 	properties from earthquake spectra. 

Between them, these two catalogues provide homogeneous data 

for a time span 1901 to present, over a magnitude range 1.8 ML - 

7.0 M5 . This represents an ideal data set to test the 

assumptions of self-similarity in the interpretation of the 

previous chapter as well as other aspects of the distribution 

(3.9). 

4.2.3 Seismic moments 

With the advent of the World Digital Seismograph Network (WDSN) and 

the International Deployment of Accelerometers (IDA) it has been 

possible to evaluate the centroid-nioment tensor solutions from 

P-waves for earthquakes of magnitudes 5.3 M and over (M 0  > 
10 17  Nm). Dziewonski and others have published these results from 

P-wave data for the period since Jan 1982 in various editions of 

Physics of the Earth and Planetary interiors. The most recent at 

the time of writing is Dziewonski et al (1984), which contains 

events up to Mar 1984 and references to all the appropriate earlier 
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papers. 

So far only scalar seismic moments have been discussed, but 

the digital data allow investigation of the orientation of the 

source and possible dilatation effects through the use of a 3x3 

tensor moment. Dziewonski et al (1984) also summarise their 

results in terms of a scalar moment and a fault plane solution. 

Table 4.1 contains all of these seismic moments for the area of 

Makropoulos and Burton's (1981) Greek catalogue (180 -300 E, 

330 -433 N) for the time period Jan 1982 through Mar 1184. 

North's (1977) work on hand-digitised surface waves for M 5  > 

5.5 for the period 1963-1971 on long period WWSSN records for 

Mediterranean events has already been discussed. These results 

were used in Chapter 2 to estimate a moment release rate for the 

area covered by fig 2.1. The relevant portion of data for the 

present area of interest was extracted and is summarised in table 

4.2. 

Table 4.3 contains a few seismic moments from miscellaneous 

intensive studies of particular events, including one from field 

observation only. 

The data of these three tables show that two major gaps in the 

seismic moment record of large events in the area existed before 

the present work was undertaken. These were the period 1972-1978 

and prior to 1963. The period 1979-1981 does have some solutions, 

but the coverage is less complete than North's results. (Even 

North's data set omitted earthquakes as large as 6.1 M 5  where 

severe niultipathing effects were observed on the seismograph 

records). It is not yet possible to evaluate the completeness of 

the catalogue of Dziewonski and others, although it is fairly 

certain that the digital processing should cover nearly all of the 
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Table 4.1 Seismic moments Jan 1982-Mar 1984 

Date 	Time 	Lat 	Lon 	Depth 	M 	M 	m 
o 	s 	b 

	

Day Mo Yr H m secs O N 	°E 	km 	x10 17Nm 

18 01 82 19 27 32.9 39.84 24.46 9.0 93.8 6.9+ - 

17 08 22 22 29.8 33.70 22.90 23.4 39.8 6.6+ - 

16 11 23 41 28.8 40.12 19.35 10.4 3.20 5.5 5.6* 

17 01 83 12 41 44.7 38.13 20.38 10.1 235.0 7.0 6.1* 

19 03 21 41 49.0 34.75 24.89 65.0 3.33 - 5 • 7* 

23 03 23 51 15.8 37.92 20.48 32.7 22.3 6.2 5.8* 

05 07 12 01 32.6 40.45 27.01 27.9 17.7 6.1 5•7* 

06 08 15 44 00.6 39.85 24.56 10.1 117.0 7.0 6.2*. 

27 09 23 59 40.1 36.97 27.70 170.3 1.41 - 5 • 5* 

11 02 84 08 02 54.8 38.11 21.86 15.0 3.32 5.4 5 • 4* 

x These data are taken from Dziewonski et al (1984) and references 

therein. 

+ From the International Seismological Centre (ISC) bulletins. The rest 

are not yet published at the time of writing. 

* M 
sz 

 and 1b  from the monthly listings of the Preliminary 

Determination of epicentres. U.S.G.S. 



Table 4.2.kSeismic  maients f or large Greek earthquakes 
1963-1971. 

Date Time Lat Lon Dep M0  M5  

Year Mo Day Hr m S N E km 1017Nm 

1963 Sep 18 16 58 13 40.71 29.02 48 27.0 6.3 
1963 Dec 16 13 47 57 36.97 20.96 15 4.8 5.8 
1964 Apr 11 16 0 43 40.30 24.83 33 3.2 5.6 
1964 Apr 29 4 21 5 39.25 23.72 20 2.2 5.5 
1964 Jul 17 2 34 26 38.05 23.63 155 22.0 6.0 
1964 Oct 6 14 31 23 40.30 28.23 34 180.0 7.0 
1965 Mar 9 17 57 54 39.34 23.82 18 17.0 6.3 
1965 Mar31 9 47 26 38.38 22.26 45 190.0 6.6 
1965 Apr 5 3 12 54 37.75 22.00 34 15.0 6.0 
1965 Apr 9 23 57 2 35.06 24.31 39 25.0 6.1 
1965 Apr 27 14 9 5 35.63 23.53 37 19.0 5.5 
1965 Jul 6 3 18 42 38.37 22.40 18 42.0 6.4 
1965 Nov 28 5 26 5 36.12 27.43 73 7.7 5.6 
1965 Dec 20 0 8 16 40.21 24.82 33 5.3 6.0 
1966 Feb 5 2 1 45 39.10 21.74 16 23.0 6.2 
1966 May 9 0 42 53 34.43 26.44 13 13.0 5.9 
1966 Oct 29 2 39 24 38.90 21.10 1 7.8 5.8 
1967 Mar 4 17 58 9 39.25 24.60 60 91.0 6.8 
1967 May 1 7 9 3 39.60 21.29 34 23.0 6.2 
1967 Nov 30 7 23 50 41.41 20.44 21 150.0 6.5 
1968 Feb 19 22 45 42 39.40 24.94 7 670.0 7.2 
1968 May 30 17 40 26 35.45 27.88 27 12.0 5.9 
1968 Dec 5 7 52 11 36.60 26.92 31 18.0 5.6 
1969 Jan 14 23 12 6 36.11 29.19 22 53.0 5.9 
1969 Mar 3 0 59 10 40.09 27.50 6 7.3 5.9 
1969 Mar 23 - 	 21 8 42 39.14 28.48 9 9.1 5.9 
1969 Mar 25 13 21 34 39.25 28.44 37 18.0 5.8 
1969 Mar 28 1 48 29 38.55 28.46 4 120.0 6.4 
1969 Jun 12 15 13 30 34.43 25.04 22 19.0 6.2 
1969 Jul 8 8 9 13 37.50 20.31 30 4.1 5.8 
1969 Oct.13 1 2 30 39.78 20.59 27 34 5.7 
1970 Apr 8 13 50 28 38.34 22.56 23 31.0 6.2 
1970 Apr 23 9 1 26 39.13 28.65 28 3.8 5.4 
1970 Aug 19 2 1 51 41.08 19.77 21 7.2 5.3 

M evaluated by surface waves by North(1977), and all other 
data from the catalogue of Makrcpoulos and Burtcn(1981). 



Table 4.3 	Miscellaneous seismic moments and stress drops 

Date 	Time 	Lat 	Lon 	Dep M 	Aa 	M 
0 	 S 

Day Mo Yr Hr in secs O N 	°E 	km 	x10 17Nm bars 

18 0353 1906 16.0 40.20 27.52 8 770.0 65 1  74* 

23 05 78 23 34 11.4 40.73 23.24 0 5.6 2  12 2  59 

20 06 78 20 03 21.4 40.78 23.24 3 52.02 12 2  6.6 

24 02 81 20 53 38.4 38.22 22.93 33 72.8 10' 7.0 

25 0281 02 35 53.3 38.12 23.14 33 16.8 3 8' 6.7 

04 03 81 21 58 05.9 38.20 23.28 29 9•73 7 6.5 

1 	From surface faulting (Mibraseys, 1970) 

2 	From P-waves and aftershock areas (Soufleris et al, 1982) 

3 	From P-waves (Jackson et al, 1982) 

4 	From P- and S-waves (Kim et al, 	1984) 
* 	From Makropoulos and Burton (1981), an updated version. 



events down to H5  5.3. 

Obviously we are still a long way from having a complete, 

- 	homogeneous catalogue of seismic moments for Greece and the Aegean. 

However, when the results of this chapter for the 

(i.e. table 4.4) are added to tables 4.1, 4.2 and 

the events of magnitudes M5  > 5.3 since 1963 will 

seismic moments assigned to them. This magnitude 

completely reported since the advent of the WWSSN 

(see fig 2.4). 

period 1972-1978 

4.3 over half of 

have had 

range has been 

network in 1963 

4.2.4 Fault plane solutions 

Having identified the gap in the moment record of 1972-1978 

attention was concentrated on finding fault plane solutions for the 

events in this range for H5  > 5.5, because these were required to 

evaluate the medium response at a later stage. (A listing of these 

events is given in table 4.4.) The plan was to complement North's 

work and produce a homogeneous catalogue of seismic moments for the 

time period 1963-1978. Although most of the available fault plane 

solutions were collected in the literature search, table 4.5 only 

lists those events which will be analysed later in this chapter. 

Fig 4.2 illustrates what the symbols 4y, ô and X represent 

as descriptors of the orientation of the fault plane and the 

direction of slip; OF  is the strike of the fault, 5 is the dip of 

the fault and X is the rake or direction of slip. X is positive 

for a reverse fault and negative for a normal fault. 6 = 90 0 , X = ± 

900  corresponds to a dip-slip fault, and X = 0 0  to a strike slip 

fault. If 4'A  is the source-station azimuth, then 0 = 	in 

fig 4.2. 

The events to be evaluated in section 4.3 have been given 
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Table 4.4 	Seismic moments 1972_1978+ 

List of all events greater than 5.5 M in the Greek catalogue* for 

the time period 1972-1978. 

Year Date 	Time 	Lat. 	Long. Dep. M 	M 	Event 
0 	 S 

H m s 	°N 	°E 	km 	xlO 17Nm 	Code 

1972 May 4 21 39 57 35.15 23.56 13 75.86 6.4 C 

1972 Sep 13 4 13 19 37.96 22.38 75 30.90 6.2 F 

1972 Sep 17 14 7 15 38.35 20.27 33 66.07 5.9 G 

1973 Nov 4 15 52 12 38.87 20.54 13 6.03 5.9 H 

1973 Nov 29 1057 44 35.18 23.81 37 6.03 5.9 I 

1975 Jan 8 19 32 34 38.24 22.65 26 2.95 5.7 L 

1975 Mar 17 5, 35 17 40.48 26.08 18 7.54 5.8 K 

1975 Mar 27 5 15 7 40.45 26.12 15 128.82 6.7 B 

1975 Apr 4 5 16 16 38.11 21.98 56 4.68 5.7 M 

1975 Sep 22 0 44 56 35.20 26.26 55 8.51 5.7 N 

1976 Jan 18 15 10 28 38.81 20.51 5 5.50 5.7 0 

1976 May 11 16 59 48 37.56 	, 20.35 33 - 6.3 D 

1977 Sep 11 23 19 23 35.05 23.03 33 39.81 6.2 E 

1977 Nov 28 2 59 10 36.05 27.76 85 7.08 5.9 J 

1978 Jan 29 10 2,3 44 35.18 25.94 33 2.48 5.7 P 

1978 Mar 7 22 33 46 34.66 25.50 33 5.40 5.7 Q 
1978 Jun20 20 3 29 40.75 23.41 15 72.44 6.6 A 

+Evaluated later in this chapter 

*Makropoulos and Burton (1981) 



Table 4.4a. List of diqitised seismoqrams and epicentral distances. 

These are the 120 or so seismograms used in the actual evaluation 
of Mo. Another 80 were digitised but found unsuitable for analysis 
for various reasons (such as interference fran other events, poor 
signal/noise ratios). 

Station 	Code Epicentral dist in degrees 

Event A 
Blacksburg,Va,US BLA 75.8 
Matsushiro,Japan MAT 82.6 
College,Alaska,US COL 74.5 
La Plata,Argentina LPA 106.0 
Chiang Mai,Thailand CHG 67.2 
Kbdaikanal,India KOD 56.4 
Kap Tobin,Greenland KTG 37.6 
Nairobi,Kenya NPJ 43.5 
New Delhi,India NOl 45.2 

Event B 
Arequipa,Peru ARE 106.2 
Blacksburg,Va,tJS BLA 77.6 
Chiang Mai,Thailand CHG 65.2 
College,Alaska,US COL 74.9 
Davao,Phillipines DAy 92.6 
La Plata,Argentina LPA 107.6 
Matsushiro,Japan MAT 81.3 
Mundaring,Australia MON 109.9 
New Delhi,India NDI 43.2 
Windhoek,Nainibia WIN 63.2 

Event C 
Addis Ababa,Ethiia AAE 29.5 
Arequipa,Peru ARE 103.3 
Blacksburg,Va,US BLA 79.2 
Chiang Mai,Thailand CHG 67.7 
College,Alaska,US COL 80.1 
Godhavn,Greenland GDH 53.1 
Kingsbay,Spitsbergen KBS 44.2 
Mundaring,Australia MON 109.5 
Natal,Swth Africa NAT 68.0 
New Delhi,India NDI 45.6 
San Juan,Puerto Rico SJG 79.6 



Table 4.4a(cont.) 

Station 	Code Epicentral dist in degrees 

Event E 
Arequipa,Peru ARE 102.9 
Blacksburg,Va,tJS BLA 79.0 
College,Alaska,US COL 80.2 
Corvalis,Oregon,US COR 95.1 
Grahamstcqn,S Africa GRM 68.0 
La Plata,Argentina LPA 102.7 
Rap Tobin,Greenland IrG 42.8 
Godhavn,Greenland GDH 53.0 

Event F 
Nairobi,Kenya NAI 41.2 
Rap Tcbin,Greenland IrG 39.9 
New Delhi,India NDI 46.2 
College,Alaska,US COL 77.2 
Matsushiro,Japan MAT 85.1 
Natal,Saith Africa NAT 68.3 
Chiang Mai,Thailand CHG 68.3 
Addis Ababa,Ethicpia AAE 32.4 
Revo,Finland REV 32.0 
Blacksburg,Va,US BLA 76.7 
Shiraz,Iran SHI 26.3 

Event G 
College,Alaska,tJS COL 76.7 
Eskdalemuir,Scotland ESK 23.2 
Godhav'n,Greenland GDH 49.1 
Kevo,Finland REV 31.7 
Rap Tobin,Greenland KTG 38.9 
Nairobi,Kenya NAI 42.3 
New Delhi,India NDI 47.8 
San Juan,Puerto Rico •SJG 76.3 
Weston,Massachusetts,US WES 66.5 

Event H 
Kingsbay,Spitsbergen RBS 40.3 
Kevo,Finland 	0  REV 31.1 
Rap Tobin,Greenland KTG 38.5 
New Delhi,India NDI 47.5 
Poona,India P00 50.2 
Porto,Portugal PW 22.4 
Quetta,Pakistan QIJE 38.9 



Table 4.4a (cont.) 

Station 	Code Epicentral dist in degrees 

Event I 
Addis Ababa,Ethiia AAE 29.4 
Eskdalemuir,Scotland ESK 27.4 
Kevo,Finland KEV 34.7 
Kap Tobin,Greenland WIG 42.9 
New Delhi,India NDI 45.3 
Porto,Portugal PlO 26.1 
Quetta,Pakistan QUE 36.4 

Event J 
Addis Ababa,Ethicpia AAE 28.7 
Eskdalenuiir,Scotland ESK 28.6 
Kevo,Finland KEV 33.8 
Kingsbay,Spitzbergen KBS 43.5 
Kongsberg,Norway KON 26.4 
Nairobi,Kenya NAI 38.1 

Event K 
Addis Ababa,Ethicpia ME 33.3 
Eskdalemuir,Scotland ESK 24.4 
Godhavn,Greenland GDR 49.2 
Kingsbay,Spitzbergen KBS 38.9 
Shiraz,Iran SRI 24.1 
Kevo, Finland KEV 29.4 
Quetta,Pakistan QUE 34.6 

Event L 
Addis Ababa,Ethicpia ME 32.5 
Eskdalemuir,Scotland ESK 24.4 
Kingsbay,Spitsbergen KBS 41.0 
Nairobi,Kenya NAI 414 
Quetta,Pakistan QUE 37.2 
Ccpenhagen,Denrnark Cop 18.8 

Event M 
Godhavn,Greenland GDH 49.3 
Kevo,Finland KEV 29.4 
Nairobi,Kenya NAI 42.7 
New Delhi,India NDI 43.1 
Porto,Portugal PlO 26.2 
Quetta,Pakistan QUE 34.6 



Table 4.4a (cont.) 

Station 	Code Epicentral dist in degrees 

Event N 
Addis Ababa,Ethicpia ME 28.4 
Camp Century,Greenland CCG 55.4 
Eskdaleniuir,Scotland ESK 28.6 
Kongsberg,Norway KON 26.8 
Kab.il,Afghanistan KBL 34.9 
Nairobi,Kenya NM 37.6 
New Delhi,India NDI 43.4 
Poona,India P00 45.1 
Porto,Portugal P10 27.9 
Quetta,Pakistan QUE 34.4 

Event 0 
Eskdalemuir,Scotland ESK 22.9 
Kevo,Finland KEV 31.2 
Kabul,Afghanistan KBL 38.8 
Nairobi,Kenya NM 42.6 
New Delhi,India NDI 47.6 
Quetta,Pakistan QUE 38.9 

Event P 
Addis Ababa,Ethicpia ME 28.5 
Kevo,Finland KEV 34.6 
Kingsbay,Spitsbergen KBS 44.2 
Nairobi,Kenya NA.I 37.6 
Quetta,Pakistan QUE 34.7 
Shiraz,Iran SIll 23.1 

Event Q 
Addis Ababa,Ethiia ME 28.2 
Eskda1eTniir,Scot1and' ESK 28.6 
Kevo,Finland KEV 35.2 
Kingsbay,Spitsbergen KBS 44.7 
Nairobi,Kenya NM 37.3 
Kongsberg,Norway KON 27.1 



Table 4.5 	Fault plane solutions 

For explanation of symbols see fig 4.2. The solutions actually used 

later are underlined. 

Ref 	McKenzie (1978) 	 Dtakopoulos & Delibasis* 
(unless indexed otherwise) 	 (1982) 

Event 	 4, 	8 	X 	 4, 	6 	0 • 	X 
Codex 	 F 	 F 

A 278 46 -70 106 26 5 -11 

B 41 60 -45 

C 106 86 +90 138 82 78 +81 

D 128 72 68 -77 

E 94 36 14 +24 

F 48 74 +20 52 80 46 +47 

G 150 76 +90 33 86 20+ +20 

H 135 40 +90 142 82 82 +90 

I 139 82 +90 121 72 67 -75 

J 152 62 59 +76 

K 

L 99 78 67 +70 

M 46 54 -90 103 60 40** ...47 

N 180 44 +40 176 66 40 +44 

0 154 76 50 -52 

P 

Q 

* This reference quotes the plunge 0 , which is related to X  by 

x = -sin 1 {sjn 0/sin o} 
+ On checking this solution severe doubts were formed on its validity 
** A severe difference in polarity observation and interpretation is 

evident for this event between the two references 

++ From Soufleris and Stewart (1981) 

x These codes refer to the events listed in table 4.4 



1- 

double-coupte 	t 	1 
orientation 

Figure 4.2 	Orientation of the seismic source. Strike 
F' 
 dip ô; 

rake X; epicentral distance R; source—station azimuth 0 	 f is the 

unit vector along the slip direction, and n a unit vector normal to 
the fault plane. The magnitude of the double couple whose 
orientation is described in the subsidiary diagram is equal to 
M . 

0 



codes A-Q and are listed in tables 4.4 and 4.5 in (roughly) 

decreasing order of magnitudes to allow quick reference in the main 

text. Of all the fault plane solutions listed in table 4.5 only 

events G and M differ significantly between the two main source 

references. An inspection of the polarity diagrams for these 

events in Drakopoulos and Delibasis. (1982) led to the decision to 

use McKenzie's (1978) solution for both these events because of the 

better fit to the polarity data. Otherwise the former's solution 

were used because the actual value for X can be inferred directly 

from this reference (McKenzie does not quote X), and because of the 

reasonable agreement otherwise between the two sets of results. 

The solutions which will actuafly be used later are underlined in 

the table for clarity. 

4.2.5 Other source parameters 

P-wave data can beinverted to give the source area as well as the 

total seismic moment by using the theory outlined in section 4.4. 

Fault area can also be independently estimated by the extent of the 

distribution of aftershocks (e.g. North, 1977), although this may 

lead in general to an overestimate if the activity triggers stress 

adjustment outside the initial fault plane. 

By using equations (1.4) and (1.18) the slip s or the stress 

drop Aa can be evaluated once the fault area and the seismic moment 

are available, although uncertainties add at every stage. In order 

to. investigate properties of geometric self-similarity essential to 

the geometric interpretation of the b value in the previous chapter 

the best parameter to evaluate is probably the stress drop, because 

of its obvious dimensional scaling properties. Stress drops of 

very large and very small events can be compared because the 
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parameter is a force normalised to unit area. Table 4.3 also 

collects the available data on stress drops for events in the area 

of interest. From its length it can be seen that not much is known 

about this area in terms of these parameters. 

However, both the Thessaloniki, 1978 and the Corinth, 1981 

sequences of events had fairly low stress drops in the range 7-12 

bars, and these events could be thought of as typical of the 

stretching (normal faulted) part of the Aegean 'plate'. Higher 

values for the reverse faulting associated with possible subduction 

under this plate might be expected, since the average value of the 

stress drop in the Eastern Mediterranean as a whole is 38 bars 

(section 3.2(a)). However it should be borne in mind that the two 

values of stress drops quoted have been estimated by different 

methods. 

4.3 Seismic moments from surface waves 

4.3.1 Introduction 

The aim of this section was to plug the gap in knowledge of seismic 

moments at the time the project started - (1972-1978 inc.) in order 

to produce a homogeneous set of seismic moments for the time period 

1963-present. North (1977) had already published his results from 

surface wave studies for the period (1963-1971 inc.), and so the 

method used in this section runs in close parallel to that study, 

particularly to the more detailed description given in an earlier 

Ph.D. Thesis (North, 1973). The results of this section (table 

4.4), when added to those of North (table 4.2) should form a 

reasonably homogeneous data set for the period (1963-1978). 



4.3.2 Theory 

The theory of surface waves is very complex, but in the present 

work the derivation of amplitudes at a given azimuth and distance 

was carried out by use of a computer programme from Douglas et al 

(1972). A general overview of the method is given in Aki and 

RichardS (1980), Chapter 7. For this reason only a brief outline 

will be given here, and attention will be further restricted to 

Rayleigh waves by only considering the vertical component of ground 

motion. 

Seismic Rayleigh waves are transmitted along the free surface 

of an elastic solid from the earthquake source, and differ from 

Love waves in that they ideally only produce motion in a vertical 

plane. Surface waves have two main advantages over body waves in 

extracting seismic moment at the source:— (a) they suffer less 

degradation due to inhomogeneities than body waves, because of 

their longer wavelengths and (b) their signal/noise ratio at 

teleseisniic distances is greater at longer periods because surface 

wave geometrical spreading is two dimensional, whereas body wave 

geometrical spreading is three dimensional. The main disadvantage 

is that the periods of interest (10-200s) are too high to observe 

any corner frequency (at about 3-6s for these events). This 

explains why North (1977) had to use the distribution of 

aftershocks to estimate fault area. 

The real component of the spectral content of a Rayleigh wave 

Q can be expressed by 

Q(w) = M o T S () S F 
 (w; 0) M ( w; 4'; h; S.; a, 3, p, t) 

R 	D() I(), 	 (4.1) 
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where M for our purposes is the size of the double couple at 

the source - i.e. the seismic moment, and the other parameters are 

as follows: 

ST(w) 	: Source time function 

SF(w) 	: Source finiteness function 

Medium response for a plane layered structure 

R 2 	 : Geometric spreading 

D(w) 	 : Attenuation 

1(w) 	 : Instrument response 

a,,p,t 	: Earth model: P velocity, S velocity, density and 

thickness respectively of the £t  layer 

Source station azimuth (see fig. 4.2) 

Ii 	 : Depth of source 

S. 	 : Orientation parameters of the source 

S. depends on f and n as defined in fig 4.2 and on a, P - the, 

velocities in the source layer. The form of Sj and the detailed 

matrix algebra required to correct for the layering of the earth 

are described in FLaskell (1964). Thus M S T F S describe the source, 
o 

Mz the effect of the layered medium, R 2D the reduction in 

amplitude with distance and I the effect of the instrument. 

Fig 4.3 shows an example of a source finiteness function for 

a strike-slip earthquake with rupture length L, rupture velocity 

VR 0.7 following MacBeth's (1983) calculations of SF. The 

range of interest here is the magnitude range (5.6 - 6.7 M), or a 

rupture length L of about 10-40 km after using Wyss's (1979) 

relationship 
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Figure 4.3 Source finiteness function for a strike-slip earthquake 
with rupture length L, rupture velocity VR at an azimuth of 0 0  
(from MacBeth, 1983). 
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M = log (A in ki) + 4.15 	M > 5.6 , 	 (4.2) 

and A = LW, L 2W (A is fault area and W is fault width). Thus 

V/L is in the range 0.20 - 0.05 Hz, or equivalently in 

periods 0.8 - 3.2 sec for a typical velocity VR  of 3 km s, 

Like North (1977) this study concentrates on periods T of 30s 

- 70s, so the source finiteness has practically no effect on the 

spectrum (SF 	1). Most importantly these considerations show 

that no spectral 'holes' can be caused by the nodes of the plot on 

fig 4.3, since the frequencies of interest w = 2it/T are all much 

less than w . (w/w << 1 in fig 4.3). 
0 	0 

The source time function that was used was a simple 

exponential ramp in time of the form: 

ST(t)1_eTt 	t0 

1 
or ST(() 	w{i + (u))2} 	

3) 
, 	

(4  

in the frequency domain. 

A 
The correction for geometrical spreading R 2  can also be 

written as (E sin t) where E is the radius of the earth in km 

and A is the angular separation of source and receiver. The other 

distance correction is attenuation 

D(w; R) = exp{ -i(u)R} = exp {-i'(u)} . 	 (4.4) 

Attenuation correction was effected by using the empirical 

parameter y (the attenuation coefficient) rather than the specific 



attenuation parameter (normally denoted Q) because only the 

corrected amplitude at R = 0 is of interest in the present work. 

4.3.3 Data reduction 

The basic data are recorded on long period ( 20s) seismograms of 

the World Wide Standard Station Network and are available on 70mm 

film chips in the BGS microfilm library like the example in fig 

4.4a, which is the record of event A (20th June Thessalonika) at 

the American station whose WWSSN code is I3LA (i.e. Blacksburg in 

Virginia, U.S.). It can be seen at a glance from this figure that 

most of the long period energy recorded at a station is indeed in 

the surface wave at these teleseismic distances, because of the 

greater reduction and dissipation of body wave energy with 

distance. 

(a) Time window of surface wave 

The first step was to choose the time interval (t 1 ,t 2 ) to be 

digitised, and this was done initially with reference to a time 

window corresponding to an approximate group velocity window 

(U 
mm , max 

U 	)of2.5-4.Okms 1 via 

R 	 R 
tj= 
	
< (t - t) < 	t2  , 	 (4.5) 

max 	 mm 

where R is the source station distance and t is the time the 
0 

earthquake occurred. Some justification for 

given in fig 4.5, from Correig et al (1982) 

velocities against wave periods for Europe. 

interest (30-70s) is easily within the range 

this dispersion diagram. 

this procedure is 

hich plots group 

The period range of 

of(U 
ru,U 
	)on 

in max 
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Figure 4.4a WWSSN long, period record. This example is of event A. The header information is in 
the top left hand corner, and directly under this in the calibration pulse. The event of interest 
is in the top half of the seismogram. Measurements of L 1 , L 2 , and L 3  are used to scale the trace to 
the original ground motion and correct for the traverse of the recording pen across the recording 
drum (see text). Sections indicated by boxes (b) and (c) are enlagred in the following figures. 
Various body wave phases were located with the assistance of Graham Neilson. A second event lower 
down the seismogram occurred NW of the Kurile islands. The station BLA (Blacksburg, Virginia) is in 
the north eastern U.S., so the azimuthal path across the Atlantic, but is still (just) predominantly 
continental. 
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i?igure 4.4b Surface wave energy. The true x—axis is shown, as is the time window (t1, t2) which 
was digitised in this case. In this example this matched the group velocity window (t1, t2) from 
4.0 and 2.5 km s but this was not always the case. Note that the late arrival due to multipathing 
at about 55s was not digitised. 
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Figure 4.4c 	Calibration pulse and Header S  
The header information contains the date, station name, recording 
component and time (GMT) to identify the event, as well as 
calibration parameters MAG (amplification factor) CALCUR 
(Calibration current) and C (Galvanometer constant). Points (P r , 

Qj) at factors 1, 2/3, 1/3, 1/10 of the maximum amplitude A0  
are used together with G and CALCiJR to describe the instrument 
response 1(t) or 1(w) after reference to a library of known pulses 
and their responses. 
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Figure 4.5 	European dispersion characteristics. Observed group 
velocities for Western Europe (circles) and Southeastern Europe 
(triangles). Continuous and dashed lines represent standard 
deviations (after Correig et al, 1982). 



Having calculated (t1,t2), the microfilm chip was copied onto 

two A3 sheets and the seismogram inspected to see how well these 

times matched an estimate of the time window defined by the arrival 

of long period energy and the signal duration picked by eye. 

Usually t1 was found to be correct if taken to the nearest minute, 

but t2  often included later arrivals caused by lateral refraction 

off inhomogeneities (for example see fig 4.4b). These refractions 

can be spotted because they have longer periods in a general trend 

of decreasing T with respect to t, and often look very similar to 

earlier arrivals. Such refractions are inevitable because almost 

all paths from Greece to stations above 20 away contain 

continent/ocean boundaries. Using (t1 1  t2) as a guide, and 

inspecting the seismogram for effects such as multipathing, defines 

(t1 t) , 	the time window to be digitised on fig 4.4b. Further 

discussion of the choice of time window and dispersion 

characteristics is given in Appendix 4. 

(b) Digitisation of seismogram 

Having copied a record of the whole chip onto an approximate size 

1.20 x 0.40 m (the approximate size of the original), the portion 

including (t, t) was placed on a Hewlett-Packard digitising 

table. The surface wave in this interval was then traced relative 

to the horizontal edge of the original record, the X, Y coordinates 

being noted by the digitiser 5 times every second (real time). In 

order to smooth this record and prepare the resultant time, series 

for Fourier analysis the data set was interpolated to give (X Y) 

at unit intervals .X of 0.5 mm, which corresponds to about At = 1.6 

seconds on the seismogramts time scale. This digitisation interval 

is more than adequate to avoid aliasing during Fourier analysis at 

the periods of interest (30-70s), because the Nyquist frequency 
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1 
is 312 ni Hz or an equivalent period of 3.2 seconds. The 

accuracy of the digitisation was then tested by plotting this 

interpolated record and overlaying this on the original on a light 

table. 

In order to set the scale a measurement of the length between 

10 minute markers (say L 1 ) and a measurement of the total 

horizontal length of the record (L2) was noted, together with a 

note of the amplification factor of the recording instrument 

(MAG) (fig 4.4c). The real length of one of the original records 

is standardised at 910 mm, so finally 

600 
= X' x 

L
- in secs 

1 	i  

910 	1000 

	

Y' =I 
	L 	MAG 
x - x 	in microns 

The factor 1000 converts Y'' to microns from the mm units of Y', 

and X', L 1 , L2 are in mm. The final output file contains a set of 

	

times defined by X1 and AX, where X = 	+ (i-i) 1X and a 

string of amplitudes Y', i = 1, N where N is the number of 

digitised points. 

In addition to this procedure, a correction for pen traverse 

(of L3  mm per cycle) across the drum at an angle 0 was included to 

correct for true vertical amplitude via 

=+ X 1  tan 0 ; 	e = tan 1  (L3/L2) . 

(X'', Y'') have now been corrected to an equally spaced series of 
I 	I 

amplitudes in time on the same scale as the ground motion. 



(c) Instrument calibration and response 

This was carried out following a procedure and FORTRAN program 

outlined in Espinosa et al (1962, 1965) and discussed in detail in 

Burton (1973), Appendix C. The method is quick and accounts 

adequately for variations in instrument response between WWSSN 

stations. 

Each calibration pulse (as shown in Pig 4.4c) is 

characterised on the digitising table by noting points (P, Q) 

i = 1,6 relative to (P 0 , Q),  the onset of the pulse. The maximum 

amplitude of the pulse is A 0  and the points at 1/3 A 0 , 2/3 A0 , A0  

are noted on the increasing part of the pulse (i = 1,3) and then 

213.A 
0 	 0 	 0 
, 1/3 A , 1/10 A 	(i = 4,6) on the decreasing half of the 

cycle. After correcting these for the drum roll e and the scaling 

factors as outlined in the previous section the calibration current 

(CALCUR) and 'the galvanometer constant (G) were noted. The 

instrument response was then characterised by 

1(w) = f{CALCUR, G, (P. 
1
,Q.

1
) 16 } 

and matched to a library of known instrument calibration pulse 

shapes to choose the one closest to this set of parameters. 

This method is not perfect, but is very quick to apply to the 

200 or so seismograms which were digitised. It is much better than 

assuming a theoretical shape of the instrument response, because 

unfortunately, WWSSN turns out to be not as 'standard' in this 

respect as one might expect (Burton, 1973, Appendix C). 

The instrument correction can then be done (in the frequency 

domain) by a simple division, to give an instrument corrected 
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OBS 	
= Q(w)/I(w) 

(d) Time series analysis 

The data is now in the form of a string of N amplitude terms Y' at 

equal time intervals At 	1.6s - i.e. a time series. The Fourier 

transform of a continuous function Y(t) is 

CO 	 —iwt 
F(c) = 5 Y(t) e 	dt , 	 (4.6) 

which must be replaced for computing purposes by a discrete series 

transform with coefficients 

	

N 	—2,tif.kt 
F(f.) 	At Z 	Y'' e 
	

(4.7) 
k=O 

where F assumes discrete values at the frequencies fi,  and 

the highest frequency is the Nyquist frequency - 1/(2/tt). F. 

are in general complex, so real and imaginary parts can be 

considered separately, 

Q. 
3 j 
(f ) =mod (F 

j 
 ) 

(4.8) 

= arg (F) 

For evaluating M, only the real part Q  is required. The 

Q. are then smoothed by a Gaussian filter over 5 neighbouring 

points. The computer program TSAP, developed and listed in Burton 

and Blamey (1972) and in Burton (1973), was used to produce Q(f.), 
33 

and to correct for the instrument effect by the method outlined in 



the previous section. 

Fig 4.6 gives an example of the program output, showing the 

steps described above. It begins with a digitised seismogram (fig 

4.6a) which is first corrected for any secular trends. A discrete 

Fourier transform is then performed (fig 4.6b), and the best 

instrument response compared with the calibration constants (P,Q) 

is plotted (fig 4.6c). The amplitudes Q are then diviaed by I to 

get the instrument—corrected 'spectrum 
%BS 

 in micron secs (fig 

4.6d), which is plotted on log—log paper. 

(e) The medium response 

This, the most complicated step, was performed by producing 

synthetic spectra by the method of Douglas et al (1972) for 

M = lNm, using a computer program called BIGE provided by 
0 

A. Douglas. The forms of SF  and  ST  have already been discussed, 

and these were also incorporated in the program. 

The parameters of table 4.6 (at , p, p,  t) were used for 

the earth model, with the source parameters (h, 4, 8 3, X, a, 

of tables 4.4, 4.5 and 4.6 to give the medium response 

4; h; s.(a, PS  1  8 3, X); a, 13 9 k 

The earth models were reduced to the top 5 layers for a 

predominantly continental path (table 4.6a) or the top 6 (including 

the .water layer) for a predominantly oceanic path (table 4.6b). 

This was done to reduce computing time because the lower layers 

(below a depth of 350 km) had a negligible effect on the Rayleigh 

spectrum at periods of 30-70s on several trial runs. 

The program actually used is listed in MacBeth (1983), 

Appendix D2, which is a modified version of BIGE and computes a 
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AMPLITUDE / FREQUENCY (HZ) FOR ADJUSTED SEISMOGRAM 

Figure 4.6 	Time series analysis and instrument correction. (a) 
original seismogram; (b) Fourier transform of seismogram - 
(c) Instrument reponse 1(w); (d) Q/I - instrument corrected 
spectrum. The period range 30-70s is shown. Most of the spectrum 
below 0.02 Hz ad above 0.09 Hz is probably noise. 



Figure 4.6 (cont.) 



Table 4.6 Earth model* 

Crust-upper mantle structure for continent 

Depth (kin) Thickness (kin) (km/sec) a(km/sec) p(g/cm 3) 

0 10 3.49 6.05 2.75 
10 20 3.67 6.35 2.85 
30 20 3.85 7.05 3.08 
50 65 4.65 8.17 3.45 

115 250 4.30 8.35 3.54 
365 85 4.75 8.80 3.65 
450 200 5.30 9.80 3.98 
650 400 6.20 11.15 4.43 

1050 240 6.48 11.78 4.63 
1290 CO 6.62 12.02 4.71 

Crust-upper mantle structure for ocean 

Depth (kin) Thickness (kin) (km/sec) a(kin/sec) p(g/cm 3) 

0 4 0.00 1.52 1.03 
4 1 1.00 2.10 2.10 
5 5 3.70 6.41 3.07 

10 50 4.65 8.10 3.40 
60 150 4.15 7.60 3.40 

210 240 4.75 8.80 3.65 
450 200 5.30 9.80 3.98 
650 400 6.20 11.15 4.43 

1050 240 6.48 11.78 4.63 
1290 CO 6.62 12.02 4.71 

* After Knopoff and Chang (1977) 



theoretical spectrum 

H = M ST(c ))  SF ((A); 4)) M () R 2  = Q/DI 

for M = lNm, R = 1 km. OTH  is the theoretical amplitude for an 

event with source parameters (h, 4), o, x) in a layered medium 

(a, p, P 	t) for unit seismic moment at unit distance. The 

actual amplitude 
%BS 

 after time series analysis and instrument 

correction is 

Q  OBS = Q/I = M o T 	F S (w) S (,4) Mz(w) R 2  D() 

So the actual seismic moment is evaluated by simple proportion. 

= 	
(R)k exp (1R) x lNm . 	 (4.9) 

(f) Distance correction 

At this stage 
COBS 

 and  9
TH 
 in (4.9) have been calculated, 

leaving only a correction for geometric spreading and attenuation 

A. 	 I 
of R2  exp (1R) or (E sin 	exp (yt)  in terms of the 

epicentral distance A in degrees. Values of y' per degree are 

listed in table 4.7, which was obtained by linear interpolation of 

values quoted by North (1973) from studies by Anderson et al (1965) 

and Tsai and Aki (1970). 

First of all the digital output from TSAP ( %5(f J )) was 

reduced to seven readings at frequencies f = f + (i-1)f; i1,7 

with f0  = 10 mHz, tif = 2.5 mHz, since f was slightly different for 

each event-station pair. This frequency range reduces the data to 

Me 



Table 4.7 	Attenuation: e
- yR

or e 

D(w) = e1R after Tsai and Aid. (1970) for 20 < T < 45 and Anderson 

et al (1965) otherwise, for R in km. T is the period of the surface 

wave. 

(For a complete discussion see North (1973) p46.) 

T(s) 20-45 50 60 70 80 90 100 
y(10 6 /km) 150 125 105 80 70 60 50 

D() = 	Interpolating the above linearly at intervals of 

2.5 m Hz gives the following values of. y'  in terms of A in degrees. 

f = l/T. 

f(inRz) 30 27.5 25 22.5 20 17.5 15 12.5 10 

'(10 3I0) 16.7 16.7 16.7 16.7 13.9 12.0 10.3 7.8 5.5 



the time period 30-70s. Then the parameter 

A(r) 	
0BS (f 
	

(E sin 
(f) 

Til 	i 

f or' the k th 
	 th 
station at the i frequency was plotted on graphs such 

as fig 4.7a. Since this parameter is equal to M0  exp(-yR) from 

(4.9), the intercept on the Y axis on fig 4.7a is simply Mi - 

the seismic moment for the ith  frequency. This intercept was 

found for each frequency f by calculating a centroid 	
. 

and applying the equation 

log A 1k = log M oi - 	log(e) 

for given values of y. Values ofare given in table 4.4a for 

the 120 or so seismograms actually used in the determination of the 

final values of M obtained in table 4.4. 
0 

Finally, the seismic moment was evaluated by taking a 

geometric mean of the seven values of the M 0  at frequencies 

between 30 and 70s. 

7 

log (M)- E 
	log(M ) 

oi 
0 - i=1 

7 

This procedure could be applied to all the events with fault plane 

solutions, and was therefore used to produce all of the' seismic 

moments listed in table 4.4, with the exception of event D - which 

was not analysed at all because of interference by an earlier event 
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Figure 4.7 	Attenuation corrections. 

correction of QoBsR/rH by using the value of y'(w) in table 
4.7. 

a simij.ar correction on Qo -BSR'2 for the same event (Event A). 



on the record, and events K, F, Q - which had no fault plane 

solutions in the literature and were treated separately. 

(g) Moment calibration for events:.K, P, Q 

This subsection began with an inquiry into how much the fault plane 

solution really affects the eventual value of M - given that 

most of the data are chosen at azimuths near the antinodes of the 

radiation pattern. This happens naturally since most of the data 

at nodal points have very low signal to noise ratios, and so are 

not used. 

First of all consider fig 4.7b, which misses out the medium 

response calculation, and then corrects for attenuation as in the 

last section with a y axis parameter 

A. 

ik = COBS 	i' 	
(E sin )2 

The intercept on the y axis Y was then averaged over the same 

seven frequencies as in the previous section. 

7 

log (y0 ) = 
	log (Y) 

7 

Fig 4.8 plots log M vs log Y, which can be fitted by least 

squares straight line with the equation 

log M 
0 	 0 
= a + b log Y , 	 (4.10a) 

with a = 13.003 ± 0.383, b = 0.965 ± 0.071 for M 
0  in Nm and 

y 
0 

in micron seconds. Within the accuracy of this line fit, 

this represents a straight proportionality relationship, with b = 1 

EFA 



U 
U 

100 
Iog(To in micron 8) 

Figure 4.8 Moment calibration. A plot of M 0  vs Y0  as defined 
in the text section 4.3.3(g). The line is fit by least squares to 
the data in table 4.8, with gradient 0.965 ± 0.071 and intercept 
13.033 ± 0.383. 



Table 4.8 	Calibration of M vs Y the data 
0 

These values are quoted as logarithms to the base ten, and plotted on 
fig 4.8. Y0  as defined in section 4.3.3(g) ir2  in micron s and M0  is in 
Nm. Standard deviations of Y 

0 	0 
and M are given in brackets. 

Event code log Y 
0 

log M 
0 

A 6.20 (0.10) 18.86 (0.07) 

B 6.29 (0.17) 19.11 (0.18) 

C 5.88 (0.21) 18.88 (0.08) 

E 5.60 (0.06) 18.60 (0.15) 

• F 5.70 (0.12) 18.49 (0.08) 

C 6.01 (0.07) 18.82 (0.14) 

H 4.97 (0.11) 17.78 (0.11) 

I 5.09 (0.15) 17.78 (0.07) 

J 4.93 (0.12) 17.85 (0.04) 

L 4.87 (0.11) 17.47 (0.11) 

4.78 (0.15) 17.67 (0.10) 

N 4.99 (0.14) 17.93 (0.10) 

0 4.71 (0.10) 17.74 (0.09) 

K 	5.02 (0.09) 

P 	4.52 (0.15) 

Q 	4.87 (0.11) 
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M = k Y 	. 	 (4.1Ob) 
0 	.0 

k =a = 1.08 x 1019  N/s. Thus Y 0 
 was found for events K, P, Q 

and converted to the values M listed in tables 4.4 and 4.8 by 

using this calibration equation (4.10b). 

It is obvious from comparing fig 4.7a and 4.7b that the fault 

plane solution for event A has little effect on the observed 

amplitudes in this case. That this is true generally is borne out 

by the good fit to the data in fig 4.8. However the listing of N 
0 

vs Y in table 4.8 does show that the values of log N  
0 

are in. 
0  

general better constrained by their standard deviations (typically 

± 0.10) than log Y (typically ± 0.15) showing that inclusion of 
0 

the fault plane solution has (on average) led to a slightly better 

solution. 

4.3.4 Discussion of results 

At first glance table 4.4-seems scant reward for many hours of 

digitisitig and computer processing. However this is a complete 

list of all the seismic moments for events of magnitude greater 

than 5.5 N for the period 1972-1978, with only one exception 
S 

for event D. 

One interesting result did emerge concerning the effect of the 

medium response on the spectral amplitudes. The relationship 

(4.10) gives a calibration of spectral amplitudes corrected for 

instrument, geometric spreading and attenuation (Y 
0 
) against 

seismic moment found by the complete correction process including 

the medium response. The random error (i.e. a standard deviation) 

is only increased from ± 0.10 in log M 
0 
 to ± 0.15 in log 

Y , or equivalently from 25% in M 
0 	 0 

to 40% in Y • The small 
,0  

random error (standard deviation) in M of table 4.8 indicates 



a fairly flat spectral shape within about 25% after all of the 

corrections, since M is an average over seven frequencies in 

the range 30-70s. 

North (1977) estimated the total uncertainty in M 
0 
 by this 

method as a factor 3 or so, including systematic errors in the 

earth model, so the error introduced by the calibration procedure 

is almost negligible here. An error of a factor 3 in M 0 
 leads 

to a combination of systematic and random errors in the A parameter 

of the moment magnitude relation of ± log 3 or ± 0.47, and 

similarly a random error of 40% introduced by the calibration 

procedure gives ÔA = ± log (0.4) = ± 0.15. 

4.4 Source parameters from P-waves 

4.4.1 Introduction 

Having evaluated the seismic moments and collected the typical 

stress. drops of published events in the previous two sections for 

the large events, this section now considers the smaller events 

picked up by the VOLNET array. The object here is to evaluate the 

source parameters of the smaller events in mainland Greece and some 

in the Aegean and to investigate the scaling properties between the 

smaller and larger events with a view towards testing the 

assumptions behind the derivation and interpretation of the 

distribution (3.9). If these assumptions are valid, and some 

properties of the numerous small events do relate in a specific way 

to those of the rare larger events, then this has very relevant 

implications for estimates of the seisniogenic slip rate and the 

seismic hazard. 

The VOLNET array data are reduced to a library of digital 

velocity seismograms on magnetic tape, a small sample of which is 
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the basic data for this section. The arrival time of the P-wave 

for each event-station pair is given in the appropriate monthly 

station bulletin. The design of the overall system means that it 

is a fairly routine matter to find events and extract them directly 

off the tapes. 

In the first instance 40 events in the magnitude range 1.8-4.5 

ML were chosen for investigation (table 4.9). Eventually 28 of 

these in the range 1.8.-3.5 M
L

were found to be suitable for 

analysis (i.e. having a sufficient signal/noise ratio on at least 6 

of the available recording stations and avoiding saturated 

records). A map of the epicentres of these events is given in fig 

4.9. 

4.4.2 Theory 

The seismic moment of an earthquake is proportional to the long 

period spectral level go  of a displacement seismogram (i.e. its 

Fourier transform). The theoretical shape of a P-wave displacement 

spectrum for an.earthquake is much simpler than the surface wave 

portion. In general it is a flat portion from zero frequency up to 

a 'corner' frequency f c , and then a power law tail f 1  beyond 

this value (see fig 4.10c for ekample). The corner frequency is 

inversely proportional to the fault length. By making the 'far 

field' approximation i.e. the epicentral distance R >> r, the 

source radius, the following relationships between the spectral 

parameters ( 0 	and various source parameters (M0 , r, t, 

s) can be deduced:- 

M 	= 4it pa3  RQ /('F 212) , 	 (4.11) 
0 	 0 	8 
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Table 14. 9 H ocentral coordinates and magnitudes of 40 sample 

ea 	uakes recorded 
	

VOLNET1 Jan - 

Event Origin time Lat Lon Dep ML 
Number N E 

(Y M D H m see) (deg mm) (deg mm) (1cm) 

1 83 1 	8 626 5.16 38 13.44 23 18.06 9.21 3.1 

2 83 112 1616 53.95 38 0.50 23' 7.61 5.48 2.9 

3 83 1114 224 33.06 39 11.05 214 26.17 5.00 3.2 

14 83 120 2142 36.84 38 29.16 214 143.140 0.95 2.7 

5 83 123 12 6 6.70 38 147.10 25 2.96 1.07 3.5 

6 832 1 159 147.6338 36.10 23 33.16 114.09 2.7. 

7 83 2 	14 11143 0.71 38 12.39 23 17.39 6.55 3.1 

8 83 216 1256 19.29 38 149.00 24 18.72 7.87 3.0 

9 83 227 146 21.12 39 1.77 214 57.06 0.914 3.3 
10 83 318 1725 142.32 38 8.61 23 15.62 8.148 3.1 

11 83 321 7146 214.16 36. 26.07 22 2.142 0.09 3.7 
12 	. • 83 325 2323 314.714 38 28.85 21 140.00 0.21 3.2 * 

13 83 14 	5 2112 21.90 38 39.614 22 6.7,7 9.81 3.1Z 
114 83 14 	7 151 50.91 38 140.68 22 18.148 9.99 3.2Z 

15 8314712130.5138140.90 22114.91 10.147 2.9 
16 83 14 	7 17 8 50.18 38 141.11 22 114.61 11.714 2.8 

17 83 14 	8 133 314.86 38 26.91 23 143.01 11.16 2.5Z 
18 83 14 	8 1235 12.614 38 39.87. 22 9.29 9.97 3.OZ 

19 83 14 	8 1329 5.147 38 39.88 22 13.32 13.149 2.8Z 

20 83 14 	8 21147 145.79 38 142.85 22 15.18 11.614 2.8 
21 83 1411 1723 9.00 38 2.93 22 3.85 2.97 3.14Z 

22 83 14114 937 7.69 38 11.95 214 18.27 18.98 2.6 

23 83 1429 318 11.314 38 140.06 22 13.90 11.92 2.5Z 
214 835114 1220 14.15 38 0.38 2251.00 3.29 3.2 

25 83 610 239 36.89 38 7.79 19 50.70 5.00 144 

26 83 611 2331 33.85 39 17.33 21 147.77 9.81 3.14 

27 83 615 026 18.514 39 3.148 25 38.10 9.88 3.6 

28 83 618 23214 55.80 38 5.63 23 8.24 3.62 2.5 

29 83 625 2055 36.58 38 21.914 22 8.02 0.28 2.8Z 

30 83 627 550 114.147 36 8.18 23 145.30 32.59 14.2 
31 83 113 3  6 8.13 38 36.60 22 53.10 114.26 3.0 

32 83 227 352 23.50 39 29.82 23 26.91 11.1 14 3.1 

33 83 14 	7 23 9 19.22 38 141.01 22 17.35 114.19 2.3 
314 83 14 	8 14 	3 27.58 38 141.62 22 14.70 10.83 2.8Z 

35 83 1 	8 1911 15.62 38 141.01 22 13.21 9.75 2.5Z 
36 83 1411 2119 145.56 38 40.69 22 114.71  12.87 2.6 

37 83 1425 4 2 24.78 38 57.2 14 22 17.75 7.81 2.7Z 

38 83 1429 4140  5.33 38 140.98 22 14. 149 11.06 3.2Z 

39 83 325 3 0 16.05 38 47.66 23 27.87 14. 143 2.1Z 
140 83 319 1012 57.30 39 14.94 23 14.03 16.97 1.9 

* Magnitudes assigned by a vertical component only 
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Figure 4.9 	Location of sample events for the period 1st Jan 1983 
- 30th June, 1983. 



r 	= O.32/f c 	 (4.12) 

= (7/16) (M /r3) , 	 (4.13) 
0 

s 	M/itr2 	. 	 (4.14) 

(4.11) is quoted from Thatcher and Hank's (1973) work on 

Californian seismic moments, which assumes that small earthquakes 

can be approximated by circular faults of radius r. Because the 

VOLNET stations are close to the events in this study, no 

correction was thought necessary for anelastic attenuation. In 

support of this Modiano and Hatzfeld (1982) did a similar study to 

the present one in the Pyrenees, and found that a cylindrical 

correction for geometric spreading, which consists only of 

multiplication by source station distance R, accounted for all the 

observable reduction of the signal amplitude with distance. The 

factor ,/2 in (4.11) allows for an equal amplitude on the horizontal 

component of the seismogram, and the factor 2 accounts for losses 

in energy at the station caused by free surface reflection of SH 

waves. In the present work the radiation pattern T was taken to 

be cylindrical, with an average value of 0.6. Since most of the 

events were shallow, a crustal density p = 2.7 g cm 3  was chosen as 

in Thatcher and Hanks (1973), and the P wave velocity a was 

assigned a value according to the event's hypocentral depth (table 

4.10, from Makris, 1977). These values for p and a have received 

recent confirmation from Calcagnile et al (1984). 

(4.12) is an average formula from Madariaga (1976), which 

assumes a rupture velocity 0.9 P for propagation of the crack tip 

with P = ( 2/3)a. The last two equations (4.13), (4.14) follow from 

(4.11), (4.12), (1.4) and (1.18). 



Table 4.10 P-wave velocity model for Central Greece* 

Velocity (km s 1 ) 	Depth to top of layer (km) 

4.0 0 

6,0 1.07 	 S 

6.7 24.0 

8.16 30.0 	 5 

* after Nakris (1977) 



4.4.3 Method of analysis 

The basic method of extracting M0 , r, zcy and s from the VOLNET 

seismograms is to fit a theoretical spectral level Q by eye to 

the Fourier transform of the displacement spectrum, and then judge 

the corner frequency f c  as the point at which the spectral 

density begins to fall off. On log-log paper both lines should 

theoretically be straight (fig 4.10). The data provided from 

VOLNET are digital velocity seismograms so the first step after 

applying a Fast Fourier transform is to correct for the instrument 

response, in this case from a Wilimore MkIII seismometer, via the 

expression 

8(w) = AD mod 	io 	digital units/m 	(4.15) 

	

{w2 	W2 + 2jpww } 

	

0 	 0 

displacement response 

A 	amplifier modulator gain = 200 

K : seisniometer motor constant = 500 volt iu 1s 

seisniometer damping = 0.7 

f : natural frequency = 1/1.5 Hz (w = 2itf ) 
0 	 0 	0 

D : digitiser gain = 1024 digital units/volt 

w : angular frequency 

(see VOLNET Station Bulletin, Jan 1983). 

First of all the effect of removing the noise, and then 

smoothing the resultant spectrum after the instrumental correction 

(4.15) was investigated (figs 4.10a,b,c). This resulted in an 

improvement on the basic signal on its own, with a typical random 

uncertainty in estimating Q and f c 
 (by eye fitting) of 

about 40% and 25% respectively. The time 'window' T for these 
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Figure 4.10 Method of Spectral Analysis: Investigating the 
effect of (i) removal of noise and smoothing and (ii) different 
time windows on the spectrum. The following features are common to 
all of the diagrams; Top line - title; next 3 lines - tape code and 
station; top diagram - velocity seismogram showing time windows for 
noise (above left) and signal (right), with 1 sec scale marker 
(bottom left); bottom diagram. - displacement spectrum in 10 m s 
units (noise shown as dotted lines). The windows defined by the P 
arrival time and the theoretical S arrival time from Makris's 
(1977) earth model are given in percentages below. 

 75% window: original signal and noise (dotted line) 
 75% window: signal with noise removed 
 75% window: smoothed signal with noise removed 
 25% window: 

to 
	

it 	 of 

 50% window: it 

 100% window: " 	 it 	 of U 	 U 

The results of fitting two straight lines to estimate Q and 
f as defined in the text are as follows:- 	 0 

C 

Q 	(x10 9m s) f 	(Hz) 
0 C 

 7.0 4.0. 
 6.0 4.2 
 5.5 4.0 
 4.0 3.6 
 4.8 4.2 
 6.0 4.1 

It can be seen from diagrams (a)-(c) that removing the noise and 
normalising the resultant spectrum by smoothing greatly assists the 
eye fit of two straight lines. By inspecting the diagrams (c)-(f) 
and consulting the above-table it can also be seen that procedure 
(c) covers most of the long period P-wave energy, and has the added 
benefit of avoiding early S wave energy. Uncertainties in 4(c) are 
about 40% in Q and approximately 25% in f 

0 	 C 

(The figures referred to appear on the following six pages). 
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Figure 4.10a 
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Figure 4.10c 
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Figure 4.10d 
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Figure 4.10e 
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Figure 4.10f 



events was initially chosen as 75% of the difference between the 

theoretical P and S arrival times via 

T = R/(ct-) 
	

(4.16) 

where a, P are the P and S wave velocities in the lower layer and R 

is the source-station distance. By adjusting the time window to 

25%, 50% and 100% (figs 4,10d,e,f) it was found that most of the 

relevant long period signal Q 
0 
was included by the 75% window 

(see caption to fig 4.10), while avoiding any possible early S wave 

energy. This rule of thumb is reasonable except where there was 

evidence of reflection or refraction. In these cases the recording 

was not used in the analysis. 

The method can be summarised thus:- 

Copy the digital record of an event's velocity seismogram from 

a library tape to a working/scratch magnetic tape 

Copy the event's time and location, its P-wave arrival time 

t , and the location of each station from the VOLNET bulletin 
0 

Compute R and 75% T by (4.16) to define two time windows at 

each station (+T for signal, -T for noise) 

Obtain a Fourier transform of the digital record at each 

station for the signal and the noise 

Correct to displacement spectrum via the instrument correction 

(4.15) at each station 

Remove noise from signal and smooth to obtain a final spectrum 

like fig 4.10c 

Read off Q , f from resultant spectrum by eye as in 
o c 

fig 4.lOc 

Convert to source parameters using (4.11)-(4.14) 



Steps 1, 2 are routine, 3 is done by VOL-PREP which was 

written for the present work and computer programmes for carrying 

out the spectral analysis of steps 4-6 by a Fast Fourier routine 

were made available (Bob McGonigle, 1984, pers. comm.). Finally 

and f 
c 
 were reduced to source parameters by equations (4.11) - 

(4.14) via VOL-DIST, which uses specific values of a, 	for the 

source layer. This differs from previous studies such as Thatcher 

and Hanks (1973), who used only one fixed value in their work. 

Both computer programmes indicated by the prefix VOL- are listed in 

Appendix 1. 

4.4.4 Results 

The results of this section are summarised in tables 4.11 and 4.12, 

the former listing 	' R for each event-station pair, and the 

latter the final results for N0 , r, Aa and s. The individual 

parameters are p1ottd against each other in figs 4.11-4.17. 

4.4.5 Error analysis 

A typical reading error ±40% in Q and ±25% in fc  (fig 

4.10c) has already been noted. Additional random uncertainties 

lead to standard deviations from the mean value of M0  of 20%-80% 

and 10%-40% from the mean value of r (see table 4.12). Typical 

random errors in Q of about ±50% and ±25% in f can therefore 
0 	 c 

be estimated. However, there are other sources of uncertainty 

which are systematic, and these are now considered in turn. 

First consider equation (4.11). No measurement of p was 

available' for this region at the time of analysis so a value 2.7 g 

cm 3  was assigned (Thatcher and Hanks, 1973). To be conservative 



Table 4.11. Intermediary steps in the evaluation of swrce 
parameters for 28 sanle events recorded on VOLNET. 

Station codes and coordinates. 

Code Lat ton 

1:VSI 38.8793 23.2090 
2:VPA 38.7815 22.3400 
3:VFI 39.2352 22.5921 
4:VGL 39.4456 22.8842 
5:VNE 39.3119 23.2322 
6:VSK 39.1106 23.6935 
7:VMA 38.7059 23.5877 
8:VER 38.2005 23.3600 
9:VAG 38.3161 22.9003 

Epicentral distances R in km calculated fran Tables 4.9 & (a) 

Event no. 	VSI VPA VFI VGL VNE VSK VMA VER VAG 

1 73.1 104.1 128.0 140.3 120.8 104.1 59.0 5.8 36.5 
3 111.4 186.9 159.3 136.9 104.8 64.7 90.7 143.7 164.5 
6 42.9 107.3 109.0 110.1 83.5 57.8 12.0 47.6 65.1 

7 75.0 104.5 129.2 141.9 122.7 106.3 61.2 6.2 36.2 

9 151.8 228.0 205.1 184.2 151.7 109.1 123.6 166.2 195.1 
13 98.2 23.9 76.1 109.7 120.9 145.9 128.3 120.2 78.6 
14 81.4 11.8 66.5 98.7 106.5 129.4 111.3 106.0 65.4 
15 86.2 13.6 68.2 101.0 110.2 134.0 116.5 110.7 69.8 
16 86.6 13.6 68.1 100.9 110.3 134.3 116.9 111.3 70.4 
17 65.1 125.4 130.9 132.1 104.6 73.5 30.7 41.6 72.8 
18 94.6 20.7 73.8 107.2 117.7 142.3 124.7 117.1 75.6 
19 89.0 16.5 71.0 103.9 113.2 136.8 118.8 111.9 70.7 
20 85.0 10.6 64.8 97.8 107.6 132.4 116.0 112.1 71.6 
21 135.9 84.8 139.4 170.5 173.1 184.4 151.7 114.8 79.0 
22 121.7 183.1 188.0 185.2 154.6 114.2 84.1 82.7 123.5 
23 88.1 15.8 70.3 103.1 112.3 135.9 118.0 111.3 70.1 
26 130.3 73.4 68.9 95.3 123.8 165.0 168.0 181.8 144.3 
28 87.4 103.2 135.2 151.6 135.4 122.7 78.5 22.8 32.2 
29 109.6 49.5 104.4 136.3 141.8 158.7 132.2 108.8 67.2 
31 41.0 51.1 73.9 92.7 83.5 89.5 62.0 61.5 32.6 
32 71.6 124.4 79.3 48.9 27.7 47.8 88.6 144.0 139.4 
33 82.8 11.7 66.6 99.0 107.4 130.6 112.9 107.7 67.1 
34 86.2 12.8 67.2 100.1 109.6 133.8 116.7 111.6 70.8 
35 88.6 15.1 69.2 102.2 112.0 136.2 118.9 113.0 71.9 
36 86.6 14.1 68.7 101.5 110.7 134.4 116.8 110.8 69.8 
37 79.6 19.5 40.4 74.5 90.1 122.2 115.4 124.8 88.2 
39 24.1 97.6 90.0 88.0 60.8 40.3 14.5 66.5 72.3 
40 22.6 84.3 58.0 50.3 25.5 39.9 51.8 98.4 89.8 

(cont. 



Table 4.11 (cont.) 

(C) Long period spectral levelC) 0  in micron s read by eye off diagrams 
such as fig 4.10c. 

No VSIZ VSIN VSIE VPA VFI VGL VNE VSK VMA VER VAG 

1 0.022 	 0.015 	0.016 0.050 0.035 	 0.080 

	

3 0.050 0.062 0.045 	0.005 0.006 0.010 0.020 	0.006 0.007 
6 	0.012 0.018 0.004 0.004 0.005 	 0.011 0.003 
7 0.065 	0.090 0.012 0.020 0.015 0.100 0.120 0.060 

	

9 0.014 0.018 0.012 	 0.009 0.006 0.014 	0.004 
13 	0.180 0.100 	 0.090 0.020 	0.052 0.140 
14 0.080 0.120 0.140 	 0.060 0.060 0.120 
15 	 0.008 0.012 0.006 	0.005 0.009 0.028 
16 0.014 0.014 0.012 	0.010 0.006 0.012 	0.010 0.008 0.025 
17 0.035 0.060 0.040 	0.006 0.028 0.050 0.045 0.095 0.030 0.080 
18 	0.100 0.085 	0.080 0.080 0.180 0.030 0.050 0.100 
19 	 0.065 	0.100 	0.250 0.050 0.045 0.040 0.120 
20 	0.007 0.006 	0.009 0.028 0.020 	0.004 0.006 0.018 
21 	 0.700 0.800 1.000 0.620 0.700 1.400 1.000 
22 0.012 0.015 0.020 	 0.008 0.012 0.006 
23 	0.035 0.025 	0.007 0.008 0.010 	0.015 0.022 0.030 
26 0.110 0.110 0.075 0.030 0.120 0.180 0.180 0.030 0.055 0.028 0.060 
28 	 0.004 	 0.002 0.005 0.001 0.035 0.007 
29 0.054 0.065 0.050 0.160 0.0600.044 0.040 0.007 0.035 0.045 0.020 
31 0.021 0.025 0.030 0.025 0.015 	0.022 0.007 	0.016 
32 0.200 0.300 0.250 0.032 0.074 	 0.085 0.050 0.028 0.025 
33 0.002 0.003 0.002 	0.003 0.002 0.003 	 0.002 0.007 
34 0.015 0.020 	 0.040 0.040 0.070 	0.010 0.009 0.036 
35 0.018 0.018 0.023 	0.015 0.085 0.070 0.009 0.010 0.012 0.020 
36 0.006 0.006 0.004 	0.015 0.015 0.012 	 0.007 0.014 
37 	0.045 0.056 	 0.066 0.110 0.026 0.050 0.028 0.020 
39 	 0.005 0.010 0.030 0.013 0.016 0.007 0.004 
40 	 0.012 0.022 0.100 0.010 0.016 	0.010 

--------------------------------------------- (cont... )-- 



Table 4.11 (cont.) 

(d) f in Hz read in similar fashion to (C). 

No VSIZ VSIN VSIE VPA VFI VGL VNE VSK VMA VER VG 

1 2.200 3.400 3.000 2.800 4.500 2.800 
3 4.200 4.200 5.400 4.000 9.500 8.000 3.600 5.200 3.400 
6 5.200 3.800 4.000 4.500 6.400 4.500 8.000 
7 1.400 1.600 2.400 1.4002.500 2.200 2.900 1.600 
9 4.200 4.200 4.200 3.200 4.500 3.200 6.200 

13 3.000 3.000 4.000 3.800 4.500 4.000 
14 5.000 4.800 3.800 3.800 3.500 3.800 
15 5.200 5.400 6.500 7.000 6.000 4.100 
16 5.200 4.800 5.000 5.200 7.200 4.500 5.000 5.200 4.500 
17 3.000 3.000 3.200 3.500 3.200 3.200 3.200 3.000 2.500 3.500 
18 3.000 3.000 4.800 5.000 3.600 3.000 3.800 3.200 
19 5.900 4.000 4.000 3.000 5.100 5.400 3.000 
20 2.100 3.400 4.800 4.800 4.000 3.200 3.600 4.100 
21 2.000 2.100 1.900 1.800 2.000 1.500 1.800 
22 2.400 2.200 2.200 3.200 2.500 2.500 
23 2.100 3.100 5.000 5.500 4.000 2.500 2.500 4.500 
26 2.200 2.800 3.000 4.000 3.100 1.800 2.200 3.200 1.800 2.800 3.400 
28 4.200 4.000 3.500 7.000 3.300 6.400 
29 2.800 3.600 3.300 4.200 3.200 3.500 3.500 4.600 3.000 3.100 4.000 
31 3.500 2.500 3.100 3.500 3.600 5.200 5.000 5.200 
32 2.200 3.200 2.800 1.800 3.200 4.800 2.500 3.200 3.400 
33 12.000 5.000 5.200 7.000 9.000 7.600 6.500 7.000 
34 10.000 4.500 6.800 8.200 5.000 3.600 8.000 9.000 
35 9.000 6.000 4.000 3.500 1.800 3.500 2.700 3.200 3.100 4.900 
36 4.500 4.500 5.700 4.800 5.000 5.000 4.200 4.000 
37 3.000 3.000 3.500 5.100 3.200 2.500 1.600 6.000 
39 6.00011.000 7.500 9.000 6.500 6.100 6.000 
40 3.000 5.100 4.900 3.900 6.000 5.900 



Table 14 12 Source parameters of 28 small earthquakes in 
Central Greece. 

Units : M 	is in 10 
12Nm, r in m,a 	in bars, s in mm. 

Standard 8eviations are given below in %, N:No of stations. 

No ML M r Aa s N 

1 3.1 25.9 429.9 1.11 1.49 6 
51.3 20.9 62.8 59.2 

3 3.2 22.6 270.6 5.0 3.28 9 
88.3 29.0 101.6 97.3 

6 2.7 4.4 261.3 1.1 0.68 7 
31.3 22.6 50.1 14.7 

7 3.1 19.9 686.1 0.7 1.12 8 
72.6 26.0 85.4 81.3 

9 3.3 4.2 20.9.7 2.0 1.02 7 
38.9 19.9 51.9 48.0 

13 3.1 84.1 351.9 8.4 7.21 6 
46.7 15.5 53.9 51.6 

14 3.2 69.7 316.0 9.7 7.41 6 
23.3 12.8 32.1 29. 

15 2.9 8.7 231.1 3.1 1.73 6 
473 18.2 56.8 53.8 

16 2.8 9.5 251.1 2.6 1.59 9 
30.1 11.8 36.4 34.4 

17 2.5 27.14 1411.7 1.7 1.72 10 
147.2 9.5 50.0 149.1 

18 3.0 81.2 361.3 7.5 6.60 8 
52.5 18.3 61.3 58.5 

19 2.8 81.6 313.6 11.6 8.81 7 
82.1 25.5 93.2 89.6 

20 2.8 9.9 362.8 0.9 0.80 8 
69.7 28. 14 85.3 80.14 

21 3.14 1067.7 690.2 14.2 23.78 7 
25.6 10.8 31.7 29.8 

22 2.6 14.0 519.3 0.14 0.55 6 
32.6 11.7 38.14 36.5 

23 2.5 15.1 391.8 1.1 1.05 8 
-• 46.9 33.14 714.14 66.5 
-------------------------------------- (cont. . . )--- 



Table 41 7 (cont.) 

N0ML M r Aa s N 

26 3.14 91.1 493.14 3•3 397 11 
53.5 25.6 69.5 614.6 

28 2.5 3.6 293.1 0.6 0.144 6 
55.5 26.4 .71.9 66.8 

29 2.8 13.1 246.5 3.8 2.29 11 
39.4 13.9 46.2 414.1 

31 3.0 9.6 344.5 1.0 0.86 8 
29.8 25.3 53.0 46.5 

32 3.1 76.2 455.14 3.5 3.90 9 
75.3 26.9 88.5 84.3 

33 2.3 2.2 185.0 1.5 0.69 8 
43.14 25.0 61.3 56.0 

314 2.8 23.8 208.5 11.5 5.81 8 
75.2 36.3 98.1 91.1 

35 2.5 24.1 366.1 2.2 1.91 10 
98.2 140.5 120.7 113.7 

36 2.6 7.6 2714.2 1.6 1.07 8 
43.5 10.3 47.0 45.9 

37 2.7 39.9 1423.8 2.3 2.36 8 
49.5 39.7 84.7 74.9 

39 2.1 5.8 180.1 14.4 . 	 1.90 7 
75.2 19.8 82.6 80.2 

140 1.9 9.3 282.5 1.8 1.2 14 6 
614.0 26.4 78.6 714.1 
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Figure 4.11 	Moment—magnitude calibration for Central Greece. 

There are two data sets of seismic moment vs magnitude. These are: 

ML/MO from table 4.12 for the small earthquakes analysed in 
this chapter (1.8 < ML < 3•5) 

Ms/Mo from the tables 4.2 and 4.3 for the teleseismic events 
analysed by North (1977) and Jackson et al (1982) in the area 
(5.3 < M5  < 7.5) 

The straight line drawn corresponds to A = 16.0 in (1.5), or 
38 bars, with B = 1.5. Empirically, at least, the two data 

sets are described by the same equation. 
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Figure 4.12 	Seismic moment vs source radius. 
The straight lines are drawn for given stress drops of 1 bar and 10 
bars using (4.13). Since M 0  a r 3  for M = const, the slope of the 

lines on this logarithmic plot is 3. Data points come from table 
4.12. 

E 

C 

0 

a 
0 



0 

ZZIP 

C 

0 
0 

-4 

0 
0 

U, 
-4 

00 
x9 

0 

mm 
19 

IMB 

0 
0 

C" 

0 
0 

1.20 	1.6 
Iog(81re88 drop in bar8) 

Figure 4.13 	Seismic moment vs stress drop. 
The straight lines are drawn for given source radii of 200m and 
500m using (4.13). Since Mo  a M the slope of the lines is 1 for 
r = const. Data points come from table 4.12. 
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Figure 4.14 	Local magnitude vs source radius. 
The straight lines drawn are for arbitrary constant t. Since 

M a r3  a 1OBM a slope of 2 is expected for B = 3/2. Data 
points come from table 4.12. Note the increased scatter compared 
with the diagram for M0  vs r (fig 4.12). 
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Figure 4.15 	Local magnitude vs stress drop. 
The straight lines drawn are for arbitrary constant r. Since 
M a &s a 1QBM  we expect a slope of 2/3 for B = 3/2. Data 
points come from table 4.12. 
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Figure 4.16 Source radius vs stress drop. 
These two parameters are confined within limits (cy, ,a 2 ) and (r 1 , 
r2) as expected by Caputo (1976), but there are not enough points 
to investigate their internal distribution. Data points come from 
table 4.12. 
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Figure 4.17 Fault slip vs source radius. 
This graph shows that typical strain drops (defined by s/(r/,) for 
a circular fault) are in the range 10_6 to io. Data points come 
from table 4.12. 



an uncertainty of 30% in this parameter may be estimated. Due to 

uncertainties in focal depth and in the velocity model of table 4.6 

a may only be correct to 30% or so. Systematic uncertainties in 

the radiation pattern will be much smaller than the random error 

already accounted for by taking a standard deviation, so their 

contribution can be neglected. Thus the total systematic 

uncertainty in M from equation (4.11) is given approximately 
0 

by 

{ Ô O 
	8p 2 	0a 2  

....} 	={-} + 3{_} , 
M 	p 	a 

0 

(4.17) 

or 60%. Adding .a typical random uncertainty in Q of 50% gives 

a total error of ±80% in H 
0 

A 30% uncertainty in a leads to a 30% systematic error in r 

via (4.12). After adding the random error, the total error in r is 

of the order 40%. From (4.13) and (4.14) it follows that the total 

uncertainty in Aa is around 106% and (allowing a conservative 30% 

error in ) that in s is 102%. 

These uncertainties may seem very small at first glance, but 

this is a reflection of the quality of the digital network and a 

consequence of using known local values for the various 

parameters. Of course the source parameters are highly model 

dependent, and this could also effect how the errors are 

quantified. 

4.4.6 DIscussion of results 

The moment magnitude relation (1.5) with A = 16.0, B = 1.5 

describes the data from table 4.12 and that of North (1977) and 
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Jackson et al (1982) quite well (fig 4.11). This empirical 

observation should not be pushed too far because of the unknown 

Ms/ML relationship over the magnitude range 1.8-7.5. However, 

Kiratzi and Papazachos (1984) showed that Ms - ML = 0.5 for the 

Athens observatory. 

Fig 4.12 shows the range of typical stress drops is quite low 

(in the range 1-10 bars), but this matches the typical stress drop 

of about 7-12 bars for the large events near Thessaloniki (1978) 

and in the Gulf of Corinth (1981) (table 4.3). It may be that the 

extensional regime which operates in the VOLNET area (including the 

Gulf of Corinth) leads to lower stress drops. This relatively 

constant stress drop is an important suggestion that the hypothesis 

of geometric similarity is applicable to this region. 

Fig 4,13 shows the comparatively small variation in source 

radii 200-500m (a factor 2 or so). This could imply that the 

characteristic size of the elementary blocks postulated in fig 3.1 

are quite large - about 500m. These macroscopic characteristic 

fault lengths may be yet another example of the crustal geometry 

behind the characteristic peaks in the frequency magnitude 

distribution found for the New Madrid area in fig 2.7 at 10km and 

100km. 

/ 
Fig 4.14 shows the increased scatter in the data caused by 

 
uncertainties in the local magnitude ML.  (Moment is a better 

description of the size of the seismic source, both intuitively and 

as evidenced by the reduced scatter of fig 4.12). A theoretical 

slope on the diagram of 2 does not describe the data as well as the 

theoretical slopes of the previous two figures. 

Fig 4.15 also shows an increased scatter compared with fig 4.7 

caused by uncertainties in ML.  A theoretical slope of 2/3 on 
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this diagram of magnitude vs stress drop describes the data 

reasonably well. 

Fig 4.16 shows that Caputo's (1976) postulated shape of the 

boundary of possible stress drops and source lengths (a rectangle) 

is consistent with the data set of table 4.12. However there is 

insufficient data to discern the internal form of the distribution 

within this box. 

Figure 4.17 shows that the typical strain drops are in the 

range 106 to 10 	corresponding to the observed stress drop of' 

1-10 bars found on fig 4.6. Only one study of strain drops in the 

area has been done for events of Mo > 10. Nm. Kim et al (1984) 

found strain drops of (0.9-1.4) x 10 	corresponding to stress 

drops of 7-10 bars (table 3 of their paper) for three events in the 

Corinth sequence of February and March, 1981. Therefore it is 

reasonable to infer that the assumption of relatively constant 

strain drop in deriving (3.18) is applicable to this area. 

Since the typical size of the seismic moments of the VOLNET 

events in table 4.12 is 1013  Nm, this observation represents 

geometric self-similarity over a range of 10 13 : 10 18  or 1:10,0001 

This (at first) surprising self similarity of rock fracture, if 

confirmed in other studies, could have important implications in 

scaling up observations from controlled experiments on laboratory 

samples - particularly those investigating precursory phenomena for 

earthquake prediction (Allegre et al, 1982). 

4.5 	Summary 

The basic objective of this chapter was to produce fundamental 

parameters for earthquakes in the Aegean area over a large range in 

magnitudes. First of all a literature search was, done to discover 
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the available information on parameters such as seismic moment, 

stress drop, fault area, slip and fault plane solutions. The 

record on seismic moments was found to have gaps prior to 1963 and 

1972-1978. 

The next section plugged the gap in the seismic moment record 

of the larger events (>5.5 M5 ), producing a complete list for the 

period 1972-1978 wih only one exception out of seventeen events, 

from studies of surface waves. Three events were analysed by a 

calibration method because no fault plane solutions were 

available. This calibration showed that ignoring the medium 

response calculation only increased the random uncertainty in 

M from 25% to 40% - negligible when compared to the overall 
0 

error in M of a factor ± 3 or so. 
0 

By adding these results to a similar study by North (1977), a 

relatively homogeneous catalogue of seismic moments for events of 

Ms > 5.5, for the period 1963-1978 was produced. These events 

dominate the total crustal deformation in this period for this 

area. 

(It was hoped to analyse some seismograms for the period prior 

to 1963, but delays in obtaining somewhat rare records and the 

necessary scaling parameters postponed this to a future project.) 

The final section dealt with the extraction of (M, r, M, s) 

from P-wave spectra characterised by o'c 
 of seismograms for 

small earthquakes (1.8 - 4.5 ML) in Central Greece recorded on 

the VOLNET array. This was carried out in order to investigate the 

scaling properties of faulting over a wide range of earthquake 

magnitudes. Some 28 records out of 40 produced the required source 

parameters with seismic moments of about 1013  Nm. The main 

conclusions in this section were:- 
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The moment—magnitude relation with A = 9.0 used in Chapter 2 

for the Eastern Mediterranean also holds for these small 

events, although with a fairly large scatter; 

Typical stress drops are consistently low in the range 1-10 

bars with associated strain drops of 10_6 to 	These 

compare very well with the published data for the events at 

Thessaloniki (Jul 1978) and the Corinth (Feb, Mar 1981) 

sequence - representing self similarity of this aspect of the 

seismic process over an average energy range of 1:10,000! 

from the typical moment range of 1013  Nm to 1018  Nm for the 

region. This observation strongly supports two of the 

crucial assumptions in deriving the distribution (3.9) i.e. 

the relative constancy of A(a) and the assumption of 

constant strain drop yia e = s/I = const.; 

Typical fault radii are 200-500m, so they are all roughly 

similar in extent (within a factor 2). This macroscopic 

quantisation could be another example of the pattern of 

characteristic fault lengths seen in the previous two 

chapters, but on a much smaller scale. 

This chapter has laid the groundwork for a more detailed study 

of seismotectonics and seismic hazard in Greece and the Aegean in 

the next chapter, by providing moment magnitude data, and by 

justifying the use of the distribution (3.9) to assess the seismic 

hazard. 



CHAPTER 5 

A seismotectonic analysis of the Aegean area II: The seismotectonic 

model and associated earthquake hazard 

5.1 Introduction 

The preceeding two chapters have, in turn, developed a general 

model for the earthquake frequency magnitude relation, and then 

tested some of the assumptions on which the resulting distribution 

rests. In particular the assumption of self-similarity was found 

to hold over a wide range of magnitudes for the Greek seismicity 

catalogue of Makropoulos and Burton (1981) and for the results of a 

sample of events recorded by the VOLNET array. The last chapter 

also produced several new measurements of seismic moment, giving a 

homogeneous (though not perfectly complete) catalogue of surface 

wave moments for M > 5.5 for the time period 1963-1978. In 
S 

this final chapter the intention is to apply the distribution 

developed in Chapter 3 to a particular area - the Aegean, by way of 

a more detailed case study, and also to attempt to shed some 

further light on an interesting and somewhat controversial problem 

- the details of the observed spreading of the Aegean. 

First of all the available tectonic model is described and 

this is used to estimate a long-term moment release rate. Next an 

artificial moment catalogue is constructed by applying a moment 

magnitude relation to the events above 5.5 M 
S 
which have no 

seismic moment assigned to them (principally those which occurred 

before 1963). The individual moments are then summed to give a 

short-term seismological moment release rate. 

Both of these models are then compared and applied to the 
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frequency-magnitude distribution in the Aegean, in order to test 

the stationarity of the process of seismic energy release and to 

further investigate the distribution of Chapter 3. Note that for 

the purpose of this chapter the 'Aegean area' includes mainland 

Greece and the western edge of Turkey. (It will be shown that the 

Aegean area cannot be described as a simple plate). 

5.2 A tectonic model of Aegean spreading 

The basic problem with describing the tectonics of the Aegean area 

is that it does not seem to behave as if it were a rigid plate, or 

even the rigid edge of a larger Eurasian plate. Since plate 

tectonics requires such rigidity a modified, or second order, 

theory is needed to account for the observed spreading and 

concurrent thinning of the earth's crust in mainland Greece and 

under the Aegean sea. 

McKenzie (1972) at first tried to preserve the notion of rigid 

plates by dividing the whole area into inicroplates as in fig 5.1, 

but abandoned this idea (McKenzie, 1978) when it became obvious 

that there was no evidence for the transform fault cutting through 

Central Greece on the diagram (fig 5.2), and that the Aegean was 

actually being thinned rather than moving as a block (Makris, 

1976). Makris interpreted the deformation of the area as 

attenuation due to the surface expression of a mantle plume, and 

McKenzie (1978) to a convection cell set up by a slab sinking under 

the Hellenic arc and a sinking blob of cold crust off Western 

Greece. McKenzie, with the added knowledge of the available fault 

plane solutions, interpreted the thin crust as being due to 

stretching rather than attenuation by a mantle plume. 

Le Pichon and Angelier (1979, 1981) also interpreted the 
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Figure 5.1 	A plate tectonic model of the Aegean area after 
McKenzie (1972). 	McKenzie envisaged a series of microplates as 
delineated in. the diagram. A single line indicates transcurrent 
faulting, a double line represents normal faulting and thrusting is 
represented by a single line with bars. This model was later 
abandoned when observations of surface fault traces and fault plane 
solutions contradicted the model. 
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Figure 5.2 A tectonic model of the Aegean area after McKenzie 
(1978). 	Evidence from fault plane solutions, field observation 
and satellite pictures delineated the fault lines •as shown. Nornial 
faults are shown as lines with small bars in the direction of slip, 
thrust with semicircies in the slip direction and transcurrent 
faults as lines with arrows giving the sense of motion. In this 
model the Aegean is not rigid or split up into rigid blocks, but is 
subject to stretching. 



geophysical observations of high heat flow and thin crust under the 

Aegean as being caused by crustal stretching. However they 

modelled the deformation with a subducting slab sinking vertically 

under the Hellenic arc, rather than as part of a local convection 

cell (fig 5.3). In this model the cold (presumably remnant) 

oceanic crust sinks below the Aegean and the hinge of this 

subducting slab at the Hellenic arc retreats at a rate determined 

by the velocity of sinking. This retreat allows extension of the 

Aegean by gravitational instability because the compressive force 

due to the African Eurasian collision is not great enough to 

compensate for the hinge retreat. The process is similar to the 

reduction in height (thickness) of a basin of water if one of the 

dimensions of the basin is increased. Thus Le Pichon and Angelier 

(1981) refer to extension as resulting from a 'hydrostatic head' 

caused by the change in boundary conditions by hinge retreat at the 

Helleriic arc. In their interpretation the African-Eurasian 

collision proceeds at about 1cm yr 1 , whereas the Aegean extension 

goes at a maximum rate of 4 cm yr 1  if the motion over time has 

been constant.. Of course this two dimensional stretching looks 

rather different on the surface of the earth (fig 5.4), where it is 

consistent with rotation of 3P about a pole near 40 0 N, 180 E since 

the Upper-Middle Miocene transition (13M years before the 

present). The major problem with this model is the mass transfer 

which is required between mantle material behind and'in front of 

the sinking slab due to the oblique angle of a vertically sinking 

slab. It has even been suggested that the curve of the Hellenic 

arc is actually caused by this mass transfer (Brooks, 1984, oral 

comm.), but it is evident that the mechanism of mass transfer is 

not well understood. 
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Figure 5.3 	A section of the tectonic model of the Aegean area by 
Le Pichon and Angelier (1981). 	This is a schematic section of the 
Hellenic subduction zone with relative motions and gravitational 
forces. 

F 1 , outward component of the gravitational.force acting on the 
Aegean region, owing to its hydrostatic head with respect to 
adjacent Mediterranean sea crust. F 2 , negatiye bouyncy forceit  
acting on the sinking slab, with components F2  and F2, parallel and 
perpendicular to the slab, respectively. 

L 1 , displacement of Eurasia relative to Africa: L 21  
displacement of the Hellenic arc relative to Eurasia due to the 
Aegean expansion (L 2  is approximately 3 to 4 times larger than L 1 ); 
L, total displacement of the Helenic arc relative to Africa; S, 
subsidence of the Aegean region due to lithospheric thinning 
(double arrows), and subsequent transgressions; V, vertical motion 
of the sinking slab. 
The vertical disappearance of the sinking slab creates a 'vacuum' 
which allows the hinge point at the Hellenic arc to retreat. 



Figure 5.4 The tectonic model of the Le Pichon and Angelier (1981) 
in plan. 	The lower figure is the present configuration of the 
Aegean region. The deformation is shown by the grid which was 
originally square at the onset of stretching (upper figure). I,L: 
Lonian, Levantine basins respectively. 



The details of the stretching are also interesting. At first 

the crust necked under tension primarily in a relatively narrow 

belt in the sea north of Crete. This can be seen from the length 

of the grid squares on fig 5.4, and from the depth of the sea and 

the relative thinness of the crust under it (Le Pichon and 

Angelier, 1981). However this area between the present Hellenic 

arc and the volcanic arc is currently locked and relatively 

aseismic. For some reason extension is currently taking place 

along a belt to the north of the volcanic arc, in Central Greece 

and around the islands to the east. This activity has been well 

mapped seismically and by investigations of surface faults, and is 

even reflected in the topography in features such as the Gulf of 

Corinth and the bay south of Volos. 

In the present chapter the model of Le Pichon and Angelier 

(1979, 1981) will be adopted because the stretching factor 1.3 

compared with of the original length from their model is more 

compatible with the observed fieldwork data and evidence of 

subsidence (a factor 1.4) compared with McKenzie's (1978) model, 

which requires stretching of a factor two or so. In addition the 

preferred model also explains the shallow angle of the subducting 

slab below the Aegean found by the earthquake hypocentres of 

Makropoulos and Burton (1984). Previously Comninakis and 

Papazachos (1980) showed a more steeply dipping slab at an angle of 

about 350,  which agrees with the geometric construction of fig 

5.5. The dip angle of the slab e = cos 1  {4/(4+1)} = 36.8 0  from 

the horizontal results from relative stretching rates of 4 cm yr 1  

for the Aegean within an overall compression between Africa and 

Eurasia of 1 cm yr 1 . This construction follows from the simple 

vertical sinking of the subducting slab with zero horizontal motion 
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Figure 5.5 A geometric model of the Aegean subduction angle. 
This simple geometrical construction shows how the sinking slab 
(now almost totally consumed) could form an angle of e cos 1  (4/5) 
or 36.. This occurs if the slab sinks vertically with resect to 
the Eurasian continent to the North with a = 4, b = 1 cm yr 
a and b depend on the definition of the coordinte faine in which 
the slab sinks completely vertically. However aT + bT = const. is 
the length of the original remnant ocean. The general expression 

for e is e = cos 	{/( + b)}. 



relative to the Eurasian continent, implying a sinking velocity due 

to negative buoyancy of about 3 cm yr. However, this average 

sinking rate implies a maximum depth of 3 cm x 13 .x 106  yrs or 390 

Ion which is about double the maximum focal depth of 200 Ion or so 

found in Makropoulos and Burton (1984), fig 5. 

At the other extreme, if the slab is sinking in the coordinate 

frame of the African plate, no stretching motion of the Aegean is 

possible under the geometric construction of fig 5.5, since 0 = 

cos 1  (5/4+1) = 0, with the further requirement that the sinking 

slab must undergo stretching for a non—zero subducting angle. 

There is no evidence for such stretching, and in fact many of the 

fault plane solutions for deeper earthquakes show high angle 

reverse faults (Drakopoulos and Delibasis, 1982), indicating that 

if any minor changes are occurring in the slab length beyond the 

geometrical rigidity of fig 5.5, then they are probably 

compressional. 

In summary neither of these two extreme interpretations agree 

fully with the observations, so it may5be that sinking probably 

takes place approximately vertically in the frame of the original 

slab, with relative movements towards that position ofcm year 

from both' the African and Eurasian plates. This would give an 

angle of subduction e = cos 1  {(4+)/(5)} = 25.80 ; a sinking 

velocity 	4.5 tan 8 = 2.2 cm yr 1 ; and a depth to the slab tip 

of 280 km. In order to match perfectly the observed maximum 

seismogenic depth of 200 Ion or so Europe and Africa would be 

required to be moving towards a reference plane at velocities of 

about 8mm and 2 mnx yr 1  respectively. 

At the moment this most recent phase of the movement seems to 

be almost complete, with the African foreland now right up against 
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the edge of the Hellenic arc. Once the two continental masses 

converge the final stages of the Aegean evolution may be seen as 

being very similar to that currently observed in the Pannonian 

basin further north (see fig 5.6 fronHorvath et al, 1981). 

This figure shows that many other.Mediterranean basins have 

developed or are currently active - all of which require some 

stretching or rotation similar to the current activity in the 

Aegean. This basin activity could also have resulted from boundary 

forces, similar to those presently existing at the Hellenic arc, 

and relying ultimately on the geometry of the African-Eurasian 

collision'. McKenzie's (1978) model would require a verj complex 

internal convection pattern under the Mediterranean to account for 

the activity, and it is perhaps easier to envisage a complex 

surface geography giving rise to complex boundary conditions, since 

there is so much evidence for this elsewhere in nature. 

In short it can be seenthat no model accounts perfectly for 

all the observations in the Angean, far less the Mediterranean, but 

Le Pichon and Angelier's model is currently the most consistent 

with those data for the present area of interest. 

In order to estimate a moment release rate from the preferred 

model, normal faulting typically at an angle of 450  is assumed 

(from the published fault plane solutions - fig. .7 of Drakopoulos 

and Delibasis, 1982) which cuts through a brittle crust which is 

about W = 30 ± 5 Iou thick in Central Greece (Makris, 1976). The 

length of the seismic zone (E-W extent with some curvature) is 

approximately 8 ± 10  of longitude, or L = 890 km. This gives a 

total fault area of v'2WL or 37.8 x 10 km 2 , and with = 3.0 x 10 10  

2 cm yr 	the moment release rate is A = 2.27 x 1019  Nm 

yr. The value of s here is an average value, assuming a maximum 
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Figure 5.6 Geotectonic setting of the Meditteranean back-arc 
basins, after Horvath et al (1981) and Channel et al (1979). 	The 
complexity of the collision is evident. Several cycles of opening. 
and closing of an ocean or ocean remnants has left a sinuous chain 
of deformation, including the Alpine mountains and the ophiolite 
sequences. This complexity is not easy to explain by internal 
convection forces as proposed by McKenzie (1978), but may be 
explained by boundary forces resulting from the geometric shape of 
oceanic remnants as proposed by Le Pichon and Angelier (1981). The 
boot of Italy swings anticlockwise to close up the Adriatic, just 
as the Hellenic arc swings clockwise to cover the last remnants of 
ocean floor under the Aegean arc. Both processes result in the 
formation of back-arc basins, and will probably end up in the final 
stages of the African-Eurasian collision as land-locked basins 
similar to the Pannonian. 

(The figure referred to appears on the following page). 



Figure 5.6 	Geotectonic setting of the Mediterranean back-arc basins. (Full caption on previous 
page). 	- 



of 4 cm yr 1  extension southward in the Central Aegean sea and 

Crete, and a minimum of zero at the pole of rotation. Of course 

the Aegean area is much more complex than this gross first order 

approximation, but it should be reasonably representative of the 

total resulting from several faults distributed throughout the 

region. A conservative 50% error in I1 was assigned to account 

for this, and to allow for uncertainties in the assumed average 

angle of the normal faults. 

5.3 The moment-magnitude relation for Greek earthquakes 

Most of the events in the catalogue of Makropoulos and Burton 

(1981) do not yet have seismic moments assigned to them. This 

means that, in order to estimate a total seismic moment release 

rate from the events in the catalogue a moment-magnitude relation 

must first be constructed for the area. Fig 5.7 shows the 

moment-magnitude plot from tables 4.1-4.4, compared to reference 

lines for stress drops of 5-50 bars and best lines obtained by 

assuming B = 1.5. Fig 5.7a plots North's (1977) results from 

surface waves for 1963-1971, fig 5.7b plots the new results of the 

last chapter also for surface waves, and fig 5.7c plots the 

miscellaneous results from body waves. One field observation is 

shown in fig 5.7c for reference only. It is immediately obvious 

from the diagrams that the body waves produce systematically 

lower values for M ' given that all of the magnitude have been 

taken from the same homogeneous earthquake catalogue, because 

i for a given magnitude plots systematically lower in the 
0 

diagram for the body wave results. This is expressed more 

rigorously in the values of A found in fig 5.7 for the two types of 

data (surface and body-waves). 
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Figure 5.7 	Moment-magnitude plots for Greek Earthquakes. 
These diagrams plot the moment magnitude data for the studies of 
(a) North (1977) and table 4.2; (b) this thesis, table 4.4; (c) 
various published (mainly) body-wave determinations, tables 4.1, 
4.3; (d) a combination of the two surface wave studies (a) and 
(b). In (c) one measurement from field measurement is plotted for 
reference only, with a symbol A (for Ambraseys, 1970). 

Solid lines correspond to values of stress drop of 5 and 50 
bars, and dotted lines indicate the best fit to the data assuming B 
= 3/2, with standard deviation errors in brackets. 
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The question then remains to decide which set of results are 

correct. This was done by reference to the one event which has 

been assigned a moment and a stress drop from field study 

(Ambraseys, 1970). This particular point plots almost exactly 

where it might be expected to on fig 5.7c for a stress drop of 65 

bars, but the events in the sequences at Thessaloniki and the Gulf 

of Corinth plot at much higher stress drops in fig 5.7c than they 

actually had (100 bars cf about 10 bars). Assuming that the 

formulation of Kanamori (1977) and Singh and Havskov (1980) used to 

draw the lines of constant stress drop is not almost an order of 

magnitude out, it must be concluded that the body wave moments are 

on average too low by a factor 2.5. 

This either represents a major error In the theoretical 

derivation of the equations for the extraction of seismic moment, 

or significant errors in the earth parameters being used in the 

model, although the latter explanation seems very unlikely., Either 

way this marked discrepancy is a very significant result of this 

thesis as a whole. It should be noted, however, that Scott and 

Kanamori (1985) found no significant difference between moment 

tensors found from first motion P-waves and phases R 2  and R 3  of the 

Rayleigh wave at 256 s, so this discrepancy may be a result of 

unusual conditions in the Aegean or the analysis of the period 

range 30-70s in North (1977) and the previous chapter. However, 

perhaps the most likely explanation is that the events analysed in 

fig 5.7 are typically multiple events caused by segmented faults 

with two or three elements separated by a few barriers. This was 

certainly true for the El Asnam event (Algeria) in 1980 (Yielding, 

1985). First motion P-waves only gave about 1/3 of the total 

moment for this event from surface wave studies, and it is known 
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that this was due to segmented rupture. 

A variable B can be allowed for as expected by Kanamori and 

Anderson (1975), which gives A s = 10.970 (0.632) B s = 1.206 

(0.105); and Ab = 12.106(0.871), Bb = 0.981 (0.135) by least 

squares (see fig 5.8 subscripts refer to s-surface or b-body wave 

studies). In order to estimate ÔÂ given the least squares values 

for A , B a standard deviation ô!t = ±0.294 was found assuming 
S 	S 	 S 

8B5 = 0. In order to retain compatibility with (3.24) in 

consideration of errors in the frequency magnitude distribution, 

only these latter values of A, &A, B are used subsequently in 

this chapter. 

5.4 The moment release caused by Aegean spreading 

The seismic moment release rate from the tectonic model of section 

5.2 has been estimated at a rate 2.3 ± 1.2 x 1019  Mm yr 1 . In this 

section the magnitude catalogue of Makropoulos and Burton (1981) 

for M > 5.5 and the moments of tables 4.1-4.4 are used to 
S 

estimate a seismogenic release rate for the Aegean spreading. 

First of all the catalogue was reduced to the area north of the 

Hellenic trench (fig 5.9), with shallow crustal depths (h < 40 kin) 

and M ) 5.5. Allowing for uncertainties in the seismogenic depth, 

this volume corresponds to that used for the tectonic model of 

Aegean spreading developed in section 5.2. 

After this seismic moments were assigned to all of the events 

which had none given by using the moment magnitude relation and the 

final values of A , ÔA , B quoted in the previous section. 
S 	S 	S 

Makropoulos and Burton (1981) found their catalogue to be complete 

for M > 5.5 since 1918, so the time period of interest was taken 
S 

to be 1918-1981. The sum of the individual moments for this range 
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Figure 5.8 	The moment-magnitude relation by least squares. 	Here 
the data from fig 5.7(c) and fig 5.7(d) are plotted. This is the 
data for (a) the body wave studies and (b) the two surface wave 
studies, 1963-1978, tables 4.2, 4.4. The least squares fit gives 
the values of A, B shown with standard errors in brackets. It is 
obvious that a systematic trend away from the theoretical lines 
exists. 
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is 102 x 1019  Nm, or a rate of 1.59 ± 0.79 x 1019  Nm yr 	allowing 

for a standard error in A. Allowing for its error this value 

agrees very well with the one found from the tectonic model of 2.3 

± 1.2 x 1019  Nm yr. These correspond to slip rates of 1.4 and 2 

cm yr 1  respectively by assuming the length, depth and fault 

orienations of the tectonic model discussed in section 5.2. The 

remaining difference may be taken up by aseismic creep on faults, 

but the large uncertainty in both of these values (about 50%) 

precludes a more detailed discussion. 

What can be said, however, is that, to an accuracy of about 

50%, the crustal deformation due to the spreading of the Aegean is 

mostly seismic and relatively stationary (i.e. the average moment 

release rate is fairly stable over short and long time periods). 

5.5 The frequency magnitude distribution due to the spreading of 

the Aegean 

In this section the information obtained from the earthquake 

catalogue and the seismotectonic model is applied to the problem of 

evaluating recurrence rates due to shallow events associated with 

Aegean spreading. The method will be to use the distribution (3.9) 

developed in Chapter 3. However, in this case there are some 

advantages over previous use of this distribution, because of the 

more detailed investigation which was undertaken in these final two 

chapters of one particular area. These are: (i) a good test of the 

validity of the assumption of. geometric self-similarity from the 

relatively constant strain (or stress) drops found on figs 4.12 and 

4.17; (ii) a good fit to the local moment magnitude relation from a 

homogeneous data set of 50 points; (iii) a rough test of the 

overall stationarity of the process from comparison of the moment 



release rate over 6 decades compared to 13 million years. 

The approach derived in Chapter 3 allows for deviations from 

these assumptions or for random fluctuations within given 

uncertainty bounds. Assumptions (i) and (ii) are covered by 

uncertainties in the stress drop via oA(M), and (iii) by 

uncertainties 	and oN 
T 

Table 5.1 contains the parameters and the predictions of the 

distribution (3.9) found for this area by methods outlined in 

Chapter 3, and the theoretical line is compared with the earthquake 

frequency data in fig 5.10. The value of moment release rate found 

by summing the moments was used here to constrain the distribution, 

because of its good agreement with the tectonic model. A value of 

= 7.65 ± 0.3 M was chosen as the upper bound, since the 
S 

largest catalogue entry (which happened to occur in 1981) is 7.6 

M for this area. 
S 

First consider the discrete frequency diagram fig 5.10a. The 

most striking feature of this diagram is the number of events with 

magnitude 7.0 M. Only 5.6, 5.7 and 5.8 M have more. This is 

less easy to put down to magnitude uncertainty than was done for 

the Californian data in Chapter 3, because many of the earthquakes 

here are quite recent and are therefore more accurately 

determined. This feature also affects the cumulative frequency 

data in fig 5.10b, which once again show a bimodal seismicity 

distribution which is, this time, associated with the 

characteristic peak at about 7.0 M • The line (but not its error 
S 

bound) does not fit the second curve in the distribution above 

7.0 M too well, because most of the seismic moment release at 
S 

N5  > 6.9 is taken up by the events of N 5  = 7.0 (see fig 5.10c). 

However, it may be that this characteristic peak will flatten as 
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Table 5.1 Parameters and predictions from the distribution (3.9) 

applied to Aegean spreading 

Input parameters/constraints:' 

in , W 	 : 5.55, 7.65 (0.3) 
C 

A, B 	: 10.970 (0.294)., 1.206 (0.0) 

<in> 	 : 6.178 (0.049) 

NT 	 : 1.687 (0.218) yr 

ii 	 : 1.59 (0.79) x 1019  Nm yr 
0 

Resulting distribution: 

X 	 : 1.285 (0.956); 0.000 (2.703) x 10 20 (Nm) -1  

b 	 : 0.558 (0.415) 

2 ,2 	.: 0.914, 7.304, -2.538 
xl X2 

Predictions: Magnitudes associated with average repeat times T 

T in years 	m(T) 	m(T) 

1.0 5.921 (0.100) 

2.0 6.380 (0.264) 

5.0 6.892 (0.339) 

10.0 7.182 40.152) 

20.0 7.381 (0.516) 

50.0 7.531 (1.200) 

100.00 7.588 (1.566) 

200.00 7.619 (1.786) 
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Figure 5.10 Frequency magnitude statistics for Aegean spreading. 
(a) Discrete frequency, (b) cwulative frequency, (c) discrete and 
cumulative frequency superposed. The most notable observation from 
this data set is the prevalence of events with magnitude 7 M s . 
The lines are drawn by using the parameters of table 5.1 in the 
distribution of equation (3.9). 
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more data become available. It was decided not. to fit a double 

Weibull distribution to the data because of the sparse number of 

points (only four) at the very largest magnitudes corresponding to 

a second bump in the distribution. 

In conclusion the Information theory line fits the data within 

its error bounds up to magnitude 7 M, but does not model the 

effects of a characteristic peak in the discrete frquencyat this 

value. This happens because the information represented by this 

peak is simply not present in the model. At least one more 

parameter would be required as an additional constraint. 

5.6 Characteristic earthquake models: discussion 

There is one class of model which describes behaviour as seen in 

fig 5.10a. This is the 'characteristic earthquake' model of 

Schwartz and Coppersmith (1984), which adequately describes the 

qualitative form of the bimodal distributions observed in the 

cumulative frequency diagrams of nearly all of the areas 

investigated in this thesis. They have applied this distribution 

to the Wasatch zone and the San Andreas fault in the Western U.S., 

using geological data on slip rates and recurrence times. In 

addition Lomnitz—Adler (in press) has developed a similar form of 

the distribution by considering an asperity model based on 

percolation theory, and applied it successfully to the earthquakes 

associated with Mexican subduction. A recent summary of the effect 

of discrete—sized asperities and barriers is given by Aki (1984). 

However, the result of all of these models is a relative 

enhancement of some of the higher magnitudes exactly as seen on 

fig 5.lOa. 

Information theory can also be used to study the form of this 
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distribution. For example Lomnitz—Adler used this theory to give 

the shape of the characteristic peak of high magnitudes as a 

Gaussian. By using the principle of superposition the treatment of 

the data on fig 5.10a could be done in two segments - above and 

below 6.8 M - with a Gaussian and the distribution (3.9) 
S 

respectively. This could be done by using only one extra 

constraint - ie the choice of the critical magnitude at M 
S 

6.8, since the other parameters would follow from the specified 

forms of the distributions above and below this value, given 

etc. 

Fig 5.11a shows the effect of treating the range 6.85, 7.25 

simply as an anomalous Gaussian. The increase in the moment 

release rate for this range above :the Information theory line would 

require a reduction of probabilities at M > 7.25 to 

compensate, as shownby the schematic dotted line in fig 5.11b. 

This approach is not quantified further here, but it is hoped this 

line of enquiry may prove fruitful in subsequent investigations. 

5.7 The positioning of the characteristic earthquake peak 

The average magnitude for M s > 6.9 used to define the Gaussian 

curve in fig 5.11 was found to be 7.03 M, with a = 0.0625. 

This corresponds to a seismic' moment of 2.81 x 1019  Nm. If a 

constant strain drop te of 	as in the sequence of events at 

Corinth, 1981 (Kim et al, 1984) is assumed then s = eW since 

movement is normal and therefore parallel to the fault width (depth 

in this case), and the fault length is L = M/j.W 2 e. If a 

constant aspect ratio L/W = 2 is assumed (Geller, 1976; Purcaru and 

Berckhemer, 1982), then the magnitude 7.03 corresponds to a fault 

width of 36km. Assuming an average dip angle of 45 0  implies a 
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Figure 5.11 	Frequency-magnitude statistics for Aegean spreading 
a characteristic earthquake model. 

A Gaussian is fit to the magnitude data, giving a 
characteristic peak at magnitude m 7.031, a 0.0625 in the 
magnitude range (6.85, 7.35). The moment in this range above the 
solid Information theory line leads to a lowering of the 
probability of occurrence above magniutude 7.35. 

In this diagram the frequency data F is smoothed over 
neighbouring ranges, e.g. Fi 	(F_1  + F + Fi+i)/3.  This 
broadends the Gaussian peak without eliminating it. Here the 
dotted line represents the reinterpretation in terms of the 
characteristic earthquake model discussed in the text, with a 
schematic interpretation of its shape at high magnitude. 



seismogenic depth of 25km, which is remarkably similar to that 

observed in Central Greece (i.e. 3Okm). This macroscopic block 

like structure of the earth is remarkably similar to observations 

over a huge range of earth materials noted by Allegre et al (1982), 

Sadovskii et al (1982) and most recently by Fukao and Furumoto 

(1985). 

5.8 Subduction under the Hellenic arc 

The Hellenic arc, which forms a curve south of mainland Greece and 

Crete, is the point at which the Eurasian and African plates meet. 

Le Pichon and Migelier (1981) showed that.this arc is the junction 

of two continental masses from isodepth contours of the earth 

surface under the Mediterranean. If a remnant oceanic mass• has 

initiated and maintained the spreading of the Aegean by its 

vertical subduction, then it has all but disappeared at present, to 

form a very rough 'amphitheatre' shape under the present surface 

features of the area. From the hypocentral maps in Makropoulos and 

Burton (1984) it can be seen that subduction has not taken place in 

the form of a neat slab, but that the subsumed material has 

probably been subject to internal buckling as well as vertical pull 

due to .negative buouancy. The internal buckling may be caused, for 

example, by thermal expansion as the cold slab slowly heats up 

without changing its size, or by phase changes in the mantle (Goto 

et al, 1985). 

It is also interesting to note that an earlier phase of 

continental collision between Africa and Eurasia was responsible 

for the closure of an old ocean, but this phase of deformation left 

a characteristic signature in the form of oceanic remnants and 

ophiolite sequences in a broad swathe from Eastern Turkey to the 
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Pannonian basin, and then again into the Alps (fig 5.6). However, 

in this figure, there is no suggestion of the logical continuation 

of such sequences in the Dinarides west of the Pannonian basin. It* 

is therefore tempting to suggest that the mechanism for the 

formation of this basin was exactly similar to that of the present 

Aegean basin, i.e. the complete disappearance by vertical sinking 

of a fragment of old ocean crust, with concomitant stretching of 

the adjoining continental crust. Horvath (1984) also comes to this 

conclusion by mapping areas of active extension and compression. 

Fig 5.12 shows the present-day seismicity associated with this 

subduction, including the deeper events underneath the spreading 

Aegean, and fig 5.13 shows the frequency-magnitude distribution of 

these earthquakes for the time period 1918-1981 from the catalogue 

of Makropoulos and Burton (1981). The total seismic moment release 

rate of the present day is 72.9 x 10 17  Nm yr from the earthquake 

catalogue and using the known moments or those inferred from the 

moment-magnitude relation of section 5.3. This agrees very well 

with previous studies by North (1973) of 88.2 x 1017  Nm yr over a 

similar time period and Ambraseys (1981) of 78 x 1017  Nm yr 	over 

two centuries using historical data. All of these studies show 

that only a tiny fraction of the total moment which would be due to 

the plate tectonic disappearance of the slab is seismogenic. North 

(1973), in his table 5.19, suggested a total value of 1370 x 10 17  

Nm yr based on the African-Eurasian collision rates and the 

length of the arc, so the seismogenic moment release of these three 

studies is only about 5.7 - 7.2% of the total. These figures imply 

that the slab must be sinking almost completely aseismically, just 

like a slab of cool concrete in wet cement. The second order 

deformation caused by buckling of the slab may well be enough to 
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explain almost all of the observed seismicity. In support of this 

Goto et al (1985) recently showed that thermal expansion and phase 

changes within a sinking slab contribute more to earthquake 

generation than stick-slip sliding at its boundaries. In this case 

the former explanation seems the more likely. 

One final point is that the frequency magnitude statistics of 

fig 5.13 for the subducting slab show a marked break of slope at a 

magnitude 6.5 M. This corresponds to a seismic moment of 6.4 

x 1018  Nm, and with a typical strain drop Ae = s/W of 10 -5 , using 

L=2W for thrust or normal faults (Geller, 1976; Purcaru and 

Berckhemer, 1982), a typical fault width of about 17.5 km is found 

if 	6 x 10 10  Nrn 2  for deep earthquakes (North, 1973). As in. 

section 5.7, W does not automatically correspond to the seismogenic 

width because the faulting may not always be at right angles to the 

crust or the slab edge. If a typical angle of 450  is assumed for 

faults caused by this internal buckling of an old ocean floor, the 

fault width implies a seismogenic depth of 17.5112 or 12.4 Ion for 

the original slab width. This somewhat speculative analysis in 

sections 5.7 and here has identified two characteristic dimensions 

above which the discrete frequency data take on new' forms. For the 

shallow events in the Aegean basin this dimension (25 Ion) 

corresponds very well with the known seismogenic depth of 30 kin, 

and in the case of the earthquakes associated with subduction the 

dimension (12 kin) indicates an original crustal depth more like 

that of a typical ocean (10 kin) than a continent (30km). 

Finally the parameters and predictions associated with 

subduction by using the frequency-magnitude data and the inferred 

short term moment release rate are given in table 5.2. 
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Table 5.2 	Parameters and predictions from the distribution (3.9) 

applied to subduction at the Hellenic arc 

Input parameters/constraints: 

5.55, 7.45 (0.3) 

A, B 	: 10.970 (0.294), 1.206 (0.0) 

<in> 	 : 6.034 (0.050) 

NT 	 : 1.234 (0.175) yr 

7.29 (3.64) x 1018  Nm yr 1  

Resulting distribution 

Xj, "2 	: 2.251 (1.269), -0.212 (0.468) x 1_19  (Nm) 4  

1'2' 	12 	
1.609, 0.219, -0.585 

b 	 : 0.978 (0.551) 

Predictions: Magnitudes associated with average repeat times T 

T in years m(T) m(T) 

1.0 5.651 (0.131) 

2.0 5.995 (0.103) 

5.0 6.489 (0.264) 

10.0 6.879 (0.244) 

20.0 7.178 (0.216) 

50.0 7.355 (0.636) 

100.00 7.405 (0.822) 

200.00 7.428 (0.919) 



5.9 Summary 

In this final chapter a detailed case study of the seismotectonics 

and seismic hazard due to the extension and concomitant thinning of 

the Aegean area behind the curve of the Hellenic arc was 

undertaken. The tectonic model of La Pichon and Angelier (1981) 

was found to be the most consistent with all of the available 

geophysical evidence,, although it is still not perfectly compatible 

with all observations. This tectonic model gave a moment release 

rate of 2.3 ± 1.2 x 1019  Nm yr 	over 13 x 106  yrs if stretching is 

due to slip on a series of normal faults dipping at 450 . By 

applying the magnitude-moment relation found from surface wave 

studies (A = 10.970 ± 0.294, B = 1.206) to the catalogue magnitudes 

of Makropoulos' and Burton (1981), a total catalogue moment of 1.6 ± 

0.8 x 10 19  Nut yr was found for the period 1918-1981. Thus the 

two moment release rates are in good agreement within their error 

bounds, although the catalogue moment is smaller. This implies 

that the process of Aegean stretching is seismotectonically 

stationary to the accuracy of the model, i.e. about 50%. 

A significant result emerged from comparison of the seismic 

moment magnitude relation for body waves and surface waves. The 

body wave moments for the Aegean were found to be systematically 

lower than the surface wave studies of North (1977) and Chapter 4, 

by a factor two or three on average. This is compatible with 

multiple ruptures on faults with two or three segments separated by 

barriers or asperities, since many P-wave moments are evaluated 

from first motions only. 

The frequency magnitude relation of Chapter 3 was then applied 

to the magnitude data on Aegean spreading. Although once again the 

distribution modelled the empirical distribution within its error 

121 



bounds, there was a strong anomaly at magnitude 7 M 
S 
. This 

anomaly could be interpreted with the characteristic earthquake 

models of Schwartz and Coppersmith (1984) and Loninitz-Adler (in 

press). The peak magnitude 7 M implies a characteristic 

block-like earth structure in the area, of elements roughly 72 km 

long by 36 kin, just as a characteristic block size of 30-100 x 22 

km was found for the New Madrid area in Chapter 2. 

A similar analysis of the moment release rate of the Hellenic 

arc showed that the slab is currently sinking almost perfectly 

aseismically, and that internal buckling caused by thermal 

expansion may well be the cause of the observed seismicity. A 

break in slope at 6.5 M 
S 

is consistent with an original slab 

width of 12 kin, giving another characteristic block dimension. The 

implied seismogenic depths of 25km for the spreading Aegean crust 

and 12 kin for the depth of the original sinking slab agree well 

with the known values for typical continental and oceanic seismic 

depths (30km and 10km respectively). 
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CONCLUSION 

Several conclusions have already been noted in each of the 

chapters, all of which have turned out to be self-contained 

enquiries as well as part of the overall investigation. In this 

final section the main conclusions are brought together in a common 

theme in order to summarise the overall progress which has been 

made. 

First of all the empirical Weibull distribution and its 

extreme value equivalent, Gumbel's third distribution, were found 

to be adequate descriptions both of the frequency magnitude data 

and the geologically observed seismic moment release rate. The 

error bounds in the seismogenic niornent release rate of a factor 2-3 

up to as much as 10 reflect the sparsity of information at low 

frequencies of occurrence. Several different tectonic zones were 

investigated: the Eastern Mediterranean gave a good match with 

short term moment release rates culled from a moment catalogue to 

prove the internal consistency of the method; the New Madrid 

seismic zone in the Eastern U.S. showed a bimodal distribution 

which could be matched to slip rates and fault areas on two 

separate characteristic fault sizes prevalent in the area (of 10 

and 100km lengths); Southern Californian data gave a good match 

with the observed slip rate of the San Andreas fault at the expense 

of underestimating the known earthquake hazard at the highest 

magnitudes; the mainland U.K. showed that only a fraction of the 

observed crustal rebound following glaciation is taken up 

seismogenically - exactly as one might expect from an elastic 

rebound mechanism. All of the zones studied (with the exception of 

the UK) showed a bimodal distribution, although with insufficient 
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data to investigate the detail as in New Madrid. An 

autocorrelation effect observed in Southern California 

(overestimate of the maximum magnitude, underestimate in the hazard 

just below this value) can be accounted for by the covariance error 

in the Weibull parameters, but showed that this empirical 

distribution is not necessarily the best one to choose. 

Because of these observations, a direct method of including 

the observed maximum fault area and the slip rate was subsequently 

developed from Shannon's Information theory. By constraining the 

frequency magnitude distribution using the moment release rate 

observed over geological time, and the average magnitude from a 

short-term catalogue, the resulting distribution is automatically 

made consistent with estimates of the geological parameters. This 

led to an improvement over the Weibull distribution that was most 

evident in the discrete frequency statistics of the Eastern 

Mediterranean. Using statistical mechanics the distribution that 

was obtained could be interpreted as reflecting two processes: the 

input of tectonic strain energy, and the release of that energy in 

a given fault geometry. The Gutenberg-Richter b-value was related 

to the geometric similarity dimension of the fault system D by b 

2D, explaining the empirical observation 0.5 < b < 1.5 as due to 

the release of tectonic strain energy in a system with finite 

volume D < 3. This observation would also explain why foreshocks 

(b < 1) have a lower b value than aftershocks (b > 1). As the 

stress concentrates on the asperity whose failure results in a 

large earthquake the seismogenic similarity dimension decreases 

below two. However once the main event occurs smaller strains are 

suddenly released in the volume surrounding the fault and the 

dimension increases above two. This is one reason why the author 
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believes that aftershock areas should only be treated only as an 

upper bound to the overall seismogenic fault area of the mainshock, 

since it is possible that changes in the stress field around the 

fault after the mainshock could trigger off events away from the 

primary fault area. 

The distribution obtained gives an average repeat time of the 

largest Californian events (M > 7.9) of once every 156 years, 

within error bounds of 87-251 years. This is in good agreement 

with direct trenching studies into the San Andreas fault: 163 years 

on average, but between 55-275 years. This result indicates that 

the method would be useful for evaluating long-term earthquake 

recurrence intervals in areas where direct trenching is impossible 

but the slip rate is known. Another application would be in using 

this average repeat time to define a local time constant to 

indicate when a seismic gap is likely to be reactivated. 

(Originally an arbitrary time of 30 years since the occurrence of a 

plate-rupturing large earthquake was assigned, by way of 

definition). 

Having developed and applied the new distribution the 

remainder of the thesis was dedicated to a case study of the Aegean 

area. This region already had a homogeneous magnitude catalogue 

and a much less complete catalogue of seismic moments. Source 

parameters over a huge magnitude range of 1.8 ML6.7  M5  were 

obtained from P-waves from the VOLNET array in Central Greece, and 

from surface waves digitised from WWSSN records. The conclusions 

from this study of fundamental source parameters were as follows: 

the moment-magnitude relation with A = 16.0, B = 1.5 holds for both 

the large teleseismic events M > 5.5 and the small local 

earthquakes 1.8 < ML < 4.5; typical stress drops of 1-10 bars 
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and associated strain drops of 10-6 to 1O 5  of the small 

earthquakes scale very well with known values of large events at 

Thessaloniki (1978) and the Gulf of Corinth (1981), representing 

dimensional self-similarity over a moment or energy range of 

1:10,000(1); a calibration procedure which ignored the effects of 

the orientation of the seismic ,  source only increased the standard 

deviation in the surface wave seismic moments from 25% to 40%. 

Having proven the validity of the assumption of self-

similarity in the Aegean and produced a homogeneous catalogue of 

seismic moments for the area, a more detailed seismotectonic 

evaluation of the spreading of the Aegean area could be 

undertaken. First of all the moment magnitude relation showed that 

the body wave moments are lower than the surface wave moments by, 

on average, a factor two to three or so for the region. If this is 

shown to be the case on a global scale this has serious 

implications either for the theoretical models used. One likely 

explanation for this observation is the occurrence of multiple 

ruptures of two or three fault segments, since many P-wave studies 

only use first motions. 

By applying the moment magnitude relation to the earthquake 

catalogue a seismogenic Aegean extension rate of 1.4 cm yr 1  was 

found for the period 1918-1981 using magnitudes above 5.5 M 
S 

This compares reasonably well with one tectonic model (Le Pichon 

and Angelier, 1981) with an average extension rate of 2 cm yr 1 , 

especially when large errors of about 50% exist in these 

parameters. The tectonic model is based on an extension of the 

idea of plate tectonics, allowing stretching to occur behind a 

retreating subduction hinge. The reasonable agreement of tectonic 

and seismogenic slip rates here and throughout this thesis 



indicates that the methods used have an important role to play in 

investigating other second order effects of plate tectonics. 

Although the Information theory distribution models the Aegean 

frequency-magnitude distribution adequately within its error 

bounds, there is a systematic offset caused by a prevalence of 

magnitudes around 7 M. This characteristic magnitude 

corresponds to a block like structure of large-scale fractures of 

about .36 x 72 kin, which ip1ies a seismogenic depth of the 

stretching part of the Aegean area of 25km, which is near the 

observed 30km depth. The indications are that this characteristic 

peak could also be modelled by Information theory, and it is hoped 

that some future project will quantify this characteristic 

earthquake model further. 

By contrast with the Aegean basin, the seismic moment release 

rate due to the subducting slab under the Hellenic arc is only a 

fraction (about 6%) of the tectonic release expected from 

stick-slip at the slab's boundaries. This is consistent with a 

slab sinking aseismically, but being subject to second order 

internal buckling due to thermal expansion or phase changes in the 

mantle. The thickness of the original remnant oceanic crust is 

estimated at 12 km by a break in slope in the frequency-magnitude 

statistics. 

All of the above discussion has focussed on the academic 

implications of the thesis, but there are also some immediate 

practical results in the form of earthquake recurrence 

probabilities in all of the areas studied. These quantitative 

estimates of the seismic hazard in the diverse areas studied will 

be of immediate use to those assessing seismic risk for particular 

structures, land use and design criteria for engineers in these 
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earthquake-prone areas. By using the methods developed in this 

thesis these decision-makers can be a little more confident of the 

seismic design loadings of buildings and communication systems 

whose working lifetimes are expected to be longer than the current 

length of the instrumental or historical earthquake catalogue. 
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APPENDIX 1 

COMPUTER PROGRAMMES 



1(1) Programme summary 

This section tabulates the programmes in the order they appear in 

the main text of the thesis. 

Chapter 2 

lÀ : 	RISK-FF7 - Weibull curve fit 

lB 	: 	MOMENT-FF2 - Seismic moment release from a Weibull 

distribution 

Chapter 3 

iC 	: 	MAXENT-FF1 	Preparation of discrete frequency data points 

and evaluation of the average magnitude 

1D 	: 	MAXENT-FF2 - The Information theory distribution of 

equation (3.9) 

1E 	: 	MAXENT-FF3 - Evaluation of the error bounds of equation 

(3.9) 

IF 	: 	MAXENT-FF4 - Magnitudes associated with a given average 

repeat time for (3.9) 

1G 	: 	MAXENT-FF5 - Long term prediction of recurrence times from 

(3.9) 

1H 	MAXENT-G - Graph file for (3.9) 

Chapter 4 

ii 	VOL-PREP - Preparation file for spectral analysis of 

VOLNET seismograms 

1J 	: 	VOL-DIST - Evaluates epicentral distances and source 

parameters from the VOLNET spectra 

Al 



1(u) Programme notes 

Most of the programmes developed for the thesis have been kept 

short, and have been well annotated in order to make them easier to 

operate and understand. This has meant that the methods chosen are 

not necessarily the most efficient in terms of computer time, and 

it is hoped to produce a cost efficient, user friendly package at 

some future point, especially for all the nunerical calculations 

involved in obtaining the parameters and predictions of the 

Information theory distribution' of equation (3.9). The following 

notes relate the notation of the thesis (see text referring to each 

programme or the glossary) to the FORTRAN names used in the 

programmes for all the variables. Some descriptions of,the 

algorithms used is also given where necessary. 

1A 

This program, which solves for the Weibull and Gumbel parameters 

(w, u, X) and c was modified from a listing by Makropoulos (1978). 

The subroutine CURFIT, originally taken from Bevington (1969), is 

the basic routine used to fit a Weibull curve to the 

frequency-magnitude data. Alterations from Makropoulos' (1978) 

listing are (a) the inclusion of a return period of the large 

events from geological evidence (RT), and (b) using cumulative 

frequency data rather than extreme values. This also requires 

alteration of the form of the derivatives given in subroutine 

FDERIV. The notation of the important parameters are as follows. 

Text Symbol 	Programme parameter 	Notes 

(w,u,X) 	 G3PAR(1,2,3) 

cov(I,J) 

VAR (I) 	 the 
jth 

 magnitude 
read in from the 
catalogue 

A2 



w-m 1/X 
N = (-) 	 Zi 	 in subroutine FDERIV 

w-u 

oN ON ON 

-, -, 	

. 	 DERIV(1,2,3) 

m = w - (wu)NX 	FUNCTN 	 in function FIJNCTN 

lB 

This program calculates Moand <M o> as defined in Chapter 2 from 

the parameters of a Weibull curve fit and an extreme value curve 

f it respectively, using an analytical form for the former, but 

relying on a numerical ràutine for the latter. The numerical 

integration was done by accessing an algorithm by Gill and Miller 

(1972) through a call to a standard routine CALL D01GAF 

(X,Y,N,ANS,ER,IFAIL) available on the EMAS system at Edinburgh. 

First of all two arrays X,Y of N points each are set up, and then 

this routine is called by this one line only, giving the 
XN 

integration of Y = f(X) as ANS 	f f(X)dX and an error estimate 
x l.  

ER. IFAIL is an error flag, so that any error in running the 

routine makes IFAIL * 0. For a more complete description see the. 

NAG FORTRAN Library manual (mark 9), Numerical algorithms group, 

Oxford (1982). 

Other parameters are 

(w, u, X) 	 W, U, RL 

A, •B, 0 	 A, B, BETA 

M 	 RNOW 
O(,) 

RMO 
0 

O<M>/Ou 	 DMOU etc 

A3 



ic 

This is a standard calculation of an average magnitude value <in> 

and its standard error a<>  given a catalogue of magnitudes 

i=1,N. In addition the frequency magnitude data are also 

counted from the catalogue entries. The notation is 

in1 	 VAR(I) 

in,. u 	 RMAG1, RMAGMAX 

F(m) 	 x(J) 

N(m.) 	 CF (J) 

<in>, a <in> 
	

AVMAG, SIGMAG 

N 
T , aNT 	

RNT, SIGNT 

Discrete Frequency 

Cumulative Frequency 

1D 

This programme solves for X and X2 in (3.9). This was done by 

simple iteration from starting values of X1(RL1) and X 2  (RL2) of 

RL1 = 0.5, RL2 = 0, first by setting a value of X 1 consistent with 

<in> (RMBAR) within ± cY<>/10 (SIG = SIGMA/b). There is no 

need to solve more accurately at this stage, since the programme 

subsequently allows for ± a<> in the covariance error 

calculation. The first order iteration 

RL1 = RL1 (1 + Cl * DELTAM) 

is used with constant RL2 to reduce the difference between the 

calculated value of <in> from equation (3.7) given RL1 and RL2 (RM), 

and the actual value (DELTAN = RN - RNBAR). 

Once DELTAM < SIG the routine adjusts RL2 by the iteration 

A4 



RL2 = RL2 + C2 * DELTAMO 

and this time compares the calculated value of <M 0 > (RMOBA1U) 

given equation (3.7) and RL1 and RL2 (RMO) with the known value 

(RMOBAR), via DELTAMO = RMO - RMOBAR1. If at any time during this 

iteration with constant RL1 the value of DELTAM exceeds SIG, then 

the procedure is followed once more with these new starting values 

of Rt1 and RL2. Finally a result is produced when DELTAM < SIG and 

DELTAMO < SIGMO, SIGMO 	<M >/10. 

At every step the calculated values of <ni>, <M> and Z in 

equation (3.7) are done by the numerical integration routine DO1GAF 

discussed in the notes to 1B, and held in the subroutine INTEGRATE. 

The only control on the speed of convergence to a solution are 

the variables C]. and C2 read in on channel 3 with the data on 

<M >. Typical values of 1 and 5 respectively give reasonable 
0 

convergence, but some trial and error is required to avoid 

convergence which is too slow (ie more than 20 iterations in the 

program listing) or even a diverging iteration. 

1E 

Having found X 1  and X2 the next step is to solve for their standard 

errors, using (3.23). This was done by real brute force - very 

high precision (REAL * 16) and by back-substitution after 

diagonalising the (3x3) matrix A, with B the (1x3) covariance error 

matrix in <m> and <M 
0 
 >. By comparison with (3.23), the matrix 

equation 

A5 

ACB 



A6 

2 	2 	2 	T 

	

is defined, where C is the covariance error aiatrix (y, , 	) 
1 	2 	'1 2 

First of all the coefficients of A are calculated from (3.20) and 

(3.23) by the subroutine EXPECTATIONS, and then A and C are 

combined into a 4 x 3 matrix by making C the fourth column of A in 

the subroutine SOLVE. SOLVE then goes on to diagonalise the matrix 

A in two stages: first by making the first column entries below A ll  

zero and then those under A22, and writing out the intermediate 

stages. Finally C is solved for by back substitution. 

iF 

Here m T ± a
TnT 
 are calculated, being defined by equation 

(3.9), with T = 11N, and the covariance error equation for 

given below. The notation is 
mT 

A, B, aA A, B, SIGA 

W, SIGW 
(A) 

m RMIN 
c 

<m>, c<> RMBAR, SIGMA 

NT, ÔNT RNT, SIGRNT 

X1 	X2, 	Z RL1, RL2, 	Z 

SLI, 	SL2, 	SL3 
X1 	'2 	l2 

<M>, a RMOBAR, SIGMOBAR 

The subroutine SOLVE solves (3.9) for X, X 2  given all the other 

parameters, and ERROR calculates a using partial 
TnT 

derivatives, e.g. 

ôm 
= DMDL1 

ox1 



The covariance error in 

Om 	 Om 	Om 
8 	= {T}2 a2 + 	T}2 ci 	+ {_!} {-.} 2a 	+ 

Xl mT 	OX1 	 6X2 	 OXl 	OX 	
X1X2 

Om 
{'T 12 8A2 + {T}2 6N2 + {T}2 62 

ONT 	
bw 

called SIG is calculated partly in this routine, and partly in the 

main program. 

1G 

This program is similar to IF except for the use of equation 

(3.24) rather than the above equation. The notation is similar, 

except for 

N 	 RN 

ON 
- 	DNDL1 etc 
ox 

in the subroutine ERROR. Once again INTEGRATE performs the 

numerical integration. Then the error in the long-term average 

repeat time is calculated for a given magnitude X read in on 

channel 5. 

T(m) = 1/N 	 T 

1 
+8T— ON 	 TP 

N2  

A7 

-OT 	 TM 



1H 

This is a simple graph routine which plots the frequency data 

against the Information theory curve, made complicated by the form 

of the distribution. The subroutines INTEGRATE, ERROR etc all have 

similar functions to those already described. 

11 

This programme prepares a control file for spectral analysis from 

the phase data (P wave arrival times T ) in the VOLNET 
0 

bulletins and the velocity model of Nakris (1977). The subroutine 

FDIST calculates the distance R between the epicentre of the 

th 
event at the 

Jth  station - DIST (I,J). This is then converted 

to a time by using ÔT = (a-)/R using given values of a and 0, the 

P and S wave velocities. T ± ÔT now specify two windows for 
0 

the frequency analysis. 

1J 

This programme calculates the final source parameters from Q 
0 

and 1c' using (4.11)-(4.14). The notation is as follows 

Q 	 OMEGA(I,J) 
oji 	 - 

f 	 FC (I,J) 
cii  

R 1 	 R (i,J) 

with 

M 	= CK * OMEGA (I,J) * R (I,J) 
o i I 

F. 	= C/FC (I,J) 
1. 
3 

LP spectral level of 
jth event at jth 
station 

Corner frequency 

Source-station distance 

A8 



C and Q( depend on a, in the source layer and hence on the depth 

(DEP(I)). These values are assigned in the subroutine CONSTS, and 

R is calculated by FDIST. 

i(iii) 	Programme listings 

There follows a listing of the actual programs used. 

A9 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1A 

RISK-'F7 

This program produces estimates and uncertainties of the parameters 
of a cumulative frequency distribution from an earthqu&ce catalogue 

the form is ((w_nl)/(w_u))**k 

This version introauces geologically estimated 
average repeat times. 

Streams 1 :earthquake catalogue 
5:terminal or control file 
11 :output parameter file 
12:output file of extremes and plotting points 

Ian Main Dec. 82 (Modified from the extreme value 
program riskff5 by R.McGonigle) 

DIMENSION vR(3000),(199),y(199);sIGY(199),3PkR(3),G3uN(3) 
,cov(3,3) ,wc(i 99) ,wRt(1 99) ,WRK'( (1 99) ,RINT(2,5) 

- 	,RKA(5),MINTIM(5) 
DATA RAD/57.29577951 /,RT/163.0/,RM/8.O/ 

C 
C (RT is the return period of the 'Big ones') 
C 
C Set up options; initialise variables 
C 

CALL FPEMPT('Lat limits:',ll ) 
READ(5,)RLkT1 ,RLAT2 
CALL FPRMPT( ' Lon limits: ',I 1) 
READ(5,*)RLON1 ,RLON2 
CALL FPRKPTCTime lirnits:',12) 
READ(5, * )MINT,MAXT 
CALL FPRMPT('Min mag:',8) 
READ(5,*)RMAGI ,RMAGMA 
CALL FPRM?T('Var option:',lt ) 
READ(5,)IVAR 
CALL FPRMPT('Tjnit time:',lO) 
READ (5,*)  TUNIT 
CALL FPRMPT('No. of Intervals:',17) 
READ(5,*) NCOMP 
DO 1 J1 ,NCOMP 
CALL FPRMPT('Int, tiiue:',lO) 

1 READ (5,) anT(1 ,J),RINT(2,J),MINTIM(J) 
RLATMRLAT1 +(RT2-RLkT1 )/2. 
RLONMRLON1 +(RLON2-RLO1 )/2. 
DO 2 11 ,NCOMP 
TIMEMAXT-MINTIM(I )+i 

2 RKA(I)TIME/TUNIT 
G3PAR(1)7.O 
G3PAR(2)5. 
03PAR(5)0.7 

AlO 



C 
C Read in magnitudes; assign to VAR the correct variable 
C 

RMAG2R14&G1 
NO=O 

tO RRAD(I )Iy9AR,RLAp,RuN,ID9P11,RAa 
IF(IYRAR.EQ.0)GO TO 17 
Ip(rygAR.rr.!nNT.oR.rYRAR.GT.MAT)ao TO 10 
rF(RMAG.up.RMAG1 )GO TO 10 
IF(RMAG..RMAH4A) GO TO 10 
IF(a.GT.RtoN2.oa.RmN. IJ1.RLONI )so TO 10 
rp(RLAr.GT.RLAP2.OR.RLAT.Ijr.RIATI )Go TO to 
DO 4 K1,NCOMP 

4 IF(RMAG.G€.RIRT(I ,.D.RG.IJ1.RIHT(2,K)) LK 
t?(IYRAR.LT.MlNTI(L)) ]OTO 10 
NOUO I 
IF(IVAR.EQ.4)GO TO 14 
GO TO (I*,12,13),IvAR 

C Acceleration 
tl V2I 64MigP(E11*0.7)(R+20.)(-1 .eo) 

GO TO 15 
C Velocity 

12 V=0.726'10.(0.52Rl4)(R'(1 34)) 
GO TO 15 

C Displacement 
13 V=0.047110.'(gM0.57)(R'(-1.IS)) 

GO P0 15 
C Magnitude 

14 VRMkG 
V AR ( NO ) 
IF(V.GT.RMAG2) GOTO 16 

15 GOPO tO 
16 RMAG2VkR(N0) 

DOTO tO 

Count the frequencies 

17 MlR14AGl'I0.0 
M2RMAG2'10.0 
NPTSM2-Ml +1 

190020 Il,NPPS 
y(I)(IlI4AG2-FiDAT(t)/1O.0)+3.1 

20 (I)O.o 
00 21 t=t,NO 
JIFIx((RMAG2-vAR(I))1 o.o)+s 
003 K1,NC014P 
IF(Y(J).GN.RINT(l ,K).AND.Y(J).LT.RINT(2,K)) LC 

3 CONTIN'JN 
21 	(j)(J)+I .o/Ric%(L) 

GOTO 28 

Optional adjustment of large events 
where there is geological evidence 

for recurrence rates 

WK($)l ./r 
NPTStiPPS+t 
00 26 I2,NPPS 
WK(I)(I-I ) 

26 CONTINIJR 
DO 27 11,NPTS 

27 (t)wK(t) 
28 CONPINIJR 

Add up the cumulative frequency 

DO 22 I2,NPTS 
22 (I)(I)+(i-I ) 

Remove aero entries 

310T(l )0.5 
DO 24 12,NPTS 
z=(r)-(I-t ) 
IF (z..o) GOTO 24 
JJ+l 
VRK(J)(l) 

24 CONTIN(JR 
NPTSJ 
DO 25 12,NP'1S 
stSY(I)o.5 

25 (t)=watc(I) 

Solve equations and output 

F L&MDAO .01 
CutSQPlO.0I0 

30 CAIL CURFIT((.Y,SICY,NPPS,3,+I ,FLAMD.G3P&R,COV,C1{P3Q) 
tF(kBS(C}1ISQ-C1iI5P),I1P.0.01 )Go TO 31 
CIILSQPCHISQ 
GO TO 30 

31 DO 32 K1,3 
32 G3UN(K)SRT(COV(iC,K)) 

PRINT IO0,RLATI ,RL&T2,RLONI ,RLOW2,MINT,MAP,TUNIT, 
RIIAGI ,tVkR,(G3PkR(K),G3UN(K),t('1 ,3), 
cov,(Rnr(1 ,J),RINT(2,J),MINTIM(J),Jt ,NCcN°) 

WRIPN(%l ,IOI )RL&PM,aI.ONM 
WRIPR(lI ,102)03PkR,G3UN,COV(I ,2),COV0 ,3),COV(2,3),NPTS 
WRITN(1I ,102)RLATI ,RLAT2,RLON1 ,RLON2 
IRIPN(I 2, IO3)RLATM,RINM,G3PkR,NPTS 
vRIT9(I2,104)((K),T(tc),tc1 ,&Pr8) 

tOO FORN&T( 'umbel type 3 distribution progrw'/ 
t1,'The area ts',2(FIO.4,' to',Fl0.4,l)/ 



	

• - 
	lt,'The time period is ,14,'-',14/ 

I,'and the unit time Interval is',14,'yrs.'/ 

	

- 	U, 'The magnitude cut-oft is' ,F10.4/ 

	

- 	l(,'and the variable is',14/ 
lI,'the parameters are ,3(F1O.4,'(',F10.4,')')/ 

	

- 	U,'The covariance matrix is:',3(/1K,3F10.4) 
U,//'The intervals are:',5(/I,F6.2,F6,2,I6)) 

101 FORMAP('CELL ',3F10.4) 
102 FORNAr(U,9EI4.6,14) 
103 FORI(AT(5E14.6,14) 
104 FOR4AT(1I,9E14.6) 

STOP 
END 
SUBROUTINE CURFIT(E,,SIGM&Y,gPTS,NTNR?4S,MODE,FLkJID&, 

	

- 	 A,COY,CHIS'R) 
C 
C Makes a least squares fit to a non-linear function 
C 

REAL58 ARRAY(10,10),kIP4A(10,lO),BETA(IO) 
rgsrot (199),(199),sIoM&y(,gg),yFIp(199),vqIow11(199) 

DIMENSION A(3),B(3),DELT&(3),cov(3,3),bERp,(3) 

II NFRE'I=IlPTS-WFERMS 
IF(NFRNE) 13,13,20 

13 CI{ISQR=0. 
GO TO 110 

Evaluate weights 

20 DO 30 I1,NPTS 
21 IF (MoDE) 22,27,29 
22 IF ((I)) 25,27,23 
23 UEIGI1P(I)l./Y(I) 

GO TO 30 
25 WEIGHT(I)=l./(-j)) 

GO TO 30 
27 WEIG1{T(t)=1. 

GO TO 30 
29 VEIGHT(I)=I ./SIGEkY(I)'2 
30 CONTINUE 

Evaluate alpha and beta matrices 

31 DO 34 JI,NTERMS 
BETA(J)=0. IX) 
0034 KI,J 

34 ILf'uA(i,K)O.Bo 
41 DO 50 1=1 ,IIPTS 

CALL FDERIV (,T,A,nLpAA,wrEIus,DERjy) 
D046 JI,NTERMS 
8ETA(J)=8ETA(J)+WEIG}fp(t)(y(I)_pUNCpN(I ,I,A))DERIy(J) 
0046 K=1,J 

46 ALHA(J,K)ALP11A(J,K)+W1IIGI1y(I)*DERIV(J)*DERtV(,)  

50 CONTINUE 
51 DO 53 J1,NTERM5 

DO 53 K=I,J 
53 ALPI{A(!C,J)"ALPIIA(J,K) 

Evaluate chi square at starting point 

61 DO 62 I1 ,NPTS 
62 YFIT(I)=FLJNCTN(,I,A) 
63 CHtSI 'FCI{ISQ(Y,SIGPY,NPTS,NFRNE,4ODE,TFIT) 

Invert modified curvature matrix to find new parameters 

71 DO 74 J=1,NTERMS 
0073 Kl,NTERMS 

73 ARRAY(J,K)LPH&(J,K)/DSQRT(ALP}IA(J,J)*Ar.pgA(K,K)) 
74 ARRAY(J,J)'l .+FLAMDA 
80 CALL MATINV (ARR&Y,tRt3,oET) 
81 0084 J1,NTERM5 

B(J)-A(J) 
0084 KI,1IER$S 

84 B(J)=B(i)+BETA(K)'ARRAY(J,K)/DSQ!l'p(ALpEA(J.J)*AIPRA(r(.K)) 

If Chi square, increase flambda and try again 

91 DO 92 I1,NPTS 
92 FIT(I)FUNCTN(I,I,B) 
93 CUISQR=FCIIISQ(Y.SIGMAY,NPTS,NFREE,EODE,YFIT) 

IF (ciiisi-ciirsg) 95,101,101 
95 FLANDA10 .'FLAMDA 

GO TO 71 
C 
C Evaluate parameters and uncertainties 
C 

101 00 102 I1,WTERMS 
00 102 JI,IffERNS 

102 ALPHA(I,J)0.D0 
DO 103 11,NPTS 
CALL F1ERIY(,I,B,DELTAA,NTERM3,0ERIV) 
00 104 J=1,RPERI1S 
DO 104 K=l,J 

104 kLPRA(J,K)=LPHk(J,K)+VEIG}jT(I)*DERIy(J)*DERIy(K) 
103 CONTINUE 

00 105 J1,N'PERl1g 
DO 105 E'l,J 

105 ALP}IA(K,J)=AIPIIA(J,K) 
00 106 JI,NTERMS 
DO 106 K1,NTERMS 

106 ARRAY(J,K)=ALP}I&(J,E)/05QRT(ALpI{(J,J)*AtpEk(g,K)) 
CALL MAPIRV(ARRAY,NTERNS,DE.r) 
DO 107 J1,WrERMs 
A(J)-B(J) 
DO 107 Kl,NTERMS 

I-,  
I'.) 



107 COV(J,K)RRAY(J,K)/D5qRT(ALpq&(J,J)epH(g)) 
FLAMDA=FLAMDA/l 0. 

110 RETURN 
END 
FUNCTION FUNCTN(,I,A) 

C 
C Returns the magnitude associated with the probabtlity X(t) 
C 

DIMENSION X(199),A(3) 
FUNCTN=A(I )-(A(l )-A(2))'((I))'A(3) 
END 

C 
FUNCTION FCffISg(Y,3IalIy,Npp5,NFR913,MOD9,yFIp) 

C 
C Returns the value of reduced chi-square 
C 

DOUBlE PRECISION CIIISQ.WRIOIIT 
DIMENSION Y(199),SIGMAY(199),YPIP(199) 

it CEISQ=O. 
12 IF (EFREE) 13,13,20 
13 FCHISQ=O. 

GO TO 40 
C 
C Accumulate chi square 
C 

20 DO 30 11,NPTS 
21 IF (MODE) 22,27,29 
22 IF(Y(t)) 25,27,23 
23 VEIGIIT=l./Y(I) 

GO TO 30 
25 WEIGI{T=l ./(-T(I)) 

GO TO 30 
27 WEII1T=l. 

GO TO 30 
29 WEIGHT=I ./SIGM&T(I)2 
30 CUISQ=CHISQ+WEIDIIT'(Y(I)-YFIT(I))* 42 

C 
C Divide by no. of degrees of freedom 
C 

31 FREENI?REE 
32 FCHI3Q=C11ISQ/ylgE 
40 RETURN 

END 
SUBROUTINE FDBRIY (,I.A,ILTAA,N'FERMS.0ERIY) 

C 
C Returns the partial derivatives DNRIV 
C 

DIMENSION I( 1 99),A(3),DELTAA(3),IERIV(3) 
Z1 = (i) 
Z2=Zl"A(3) 
DERIV(l )=l .-52 
D9RIY(2)=Z2 
DNRIV(3)=-(&(l )-A(2))'Z2'ALOG(ZI)  

RETURN 
END 
SUBROUTINE MAPINY (ARRAY,NORDER,RET) 

C 
C Returns the inverse of ARRAY in place and its determinant BET 
C 

DOUBLE PRECISION %RRAY.AMAX,SAVN 
DIMENSION ARRAY(IO,10),IK(I0),JK(10) 
DET=l. 
DO 100 K=I ,NORDER 

C 
C Find largest element ARRAY(I,J) in rest of matrix 
C 

&MA( 0. 
21 DO 30 I=K,NORDER 

DO 30 JK,NORDNR 
23 IF (D&Bs(J1AE)-DAB3(&RRAy(I,J))) 24,24,30 
24 AMA=&RRkY(t,J) 

JK(X)=J 
30 CONTINUE 

C 
C Interchange rows and columns to put AT4AN in ARR&Y(lC,K) 
C 

31 IF (APiA) 41 .32,41 
32 DET=O. 

GO TO 140 
41 1I1c(K) 

IF (I-ic) 21 ,51 ,43 
$5 DO 50 J1,NORDER 

BA V E= AR N AT (K ,j  ) 
ARRAT(K,J)=ARRAY(j .J) 

50 ARRAY(I,J)=-sAVg 
51 J=JK(K) 

IF (J-K) 21 .61 ,55 
53 DO 60 I=1,NORDER 

SAVE=ARRAY(I ,K) 
ARRAT(I ,K)=ARRAY(t,J) 

60 ARRAY(I,J)=-SAVN 
C 
C Accumulate elements of inverse matrix 
C 

61. DO 70 1=1 ,NORDER 
IF (I-K) 63,70,6 

63 &RRAY(I,K)=-ARRAY(I,lc)/AI4Ag 
70 CONTINUE 
71 DO 80 1=1 .NORDNR 

0080 J1,EORDER 
IF (I-K) 74 ,00 ,74 

74 IF (J-ic) 75,80,75 
75 ARRAY(I,J)=ARRAY(I,J)+ARRAY(I,K)*ARRAY(K,J) 
80 CONTINUE 
81 DO 90 J1,11ORDNR 

0) 



IF (i-K) 83,90.53 
83 kRRA((K,J)ARRAY('(,J)/AX& 
90 cONrIrnJ 

&RRAY(K,K)'I ./AM& 
100 DET=D8T'A4A 

Restore ordering of matrix 

131 DO 130 Ll,WORDRR 
K-NORDRR-L+t 
JIK(K) 
IF (i-K) 111,111,105 

105 DO 110 II,NORDRR 
5kVR'Ml11&Y(I,K) 
ARRA!(I,K)-&RRAY(I ,j) 

110 kRRAT(I.J)=s&yR 
ill x=.nc(ic) 

ip (I-K) 130,130,113 
113 DO 120 J1,NORDR 

S1tVR'kRR&Y(K ,j) 
A.RRAY(K ,J)-AaRkr(I ,i) 

120 ARRAY(I,J)=SAVK 
130 COHTINffR 
140 RIITURN 

END 

I- 



18 

MOMENT-FF2 
C 
C This.prograin contputes.Mo(w,u,la!flbda,A,B) for model 
C I (1eibull frequency distribution) and 
C II (Gumbel's third distribution) 
C 
C Input streams 
C 
C 	11 : w,u,lambda sat from rislc-ff5 or -ff7 
C 

C Output stream 
C 
C 6 : Mo for both models 
C 
C Ian Main :Ian. 33 
'C 
C 
C 

DATA A/15.58/,'B/l .5/ 
DATA C/i .59/,D/3.97/ 
READ (i ,1) W,U,RL,SW,SU,SL,SWU,SWL,SUL 

1 FORMAT (/,i,9Ei4.6) 
C 
C Optional change Mb-Ms 
C 

Al P3*D 
Bi B*C 

C 	AIA1 
C 	B18 

Al A1 -25. 
Wi =W 
Ui TJ 
RL1 =RL 
SUi =SU 
SW1 SW 
SL1 =SL 

C 
C ********************************************* 
C 
a 	(A) <MO> FROM GUMBEL THREE 
C 
C EVALUATE MO IN UNITS OF 1025 DN CM YR(-i) 
C 

RMOW=10.0'(Al +Bl *w) 
BETABi*ALOG(1O.0) 
Ci =BETA*(W_tJ) 

C 
C EVALUATE THE INTEGRALS FI,F2,F3 
C 

REAL*8 (iooi ),Yi (1001 ),r2(looI ),Y3(iooi ) 
REAL*8 Fl ,F2,F3,El ,E2,E3 
DO 10 1=1,1000 
(I)=o.5+FLoAT(I)/2ooO.0 

Al 5 



C.  
C RVALJATE TOTAL COVARIANCE ERROR INCLUDING RICMA(W,U,RL) 
C 

ARG(-ALOG(((I)))RL 
Yi (i)='(-ci&o) 

13 Y2(1)=YI (I)ARG 
00 20 I1,999 

20 Y3(1)=Y2(1)*AUX(_AL0C(I))) 
CALL DOICA?(c,Yi ,1000,FI ,i ,o) 
CALL DO1GAF(I,Y2,l000,F2,E2,0) 
CALL 001 AF((,Y3,999,F3,E3,O) 

EVAWATE MO AND ITS PARTIAL DERIVATIVES 

RMORMOWFI 
DMOU=RMOWBRTAF2 
DMOW=RMOBRTA-DMOU 
DMOL=(-C1 )*aMow* 

SMOU=DMOUSU 
SMOW=DMOVSW 
SMOL=DMOLSL 
SMO= (sMou2+3Mov'2+314002) 
SMcYJW=DMOW'DMOU'ThiU 
SM0L'=DMOWDM0LSW L 
SEOLU=DMOU*DMOL*3TJL 
SM1)COV=S1(0+2*( St4OUW+SM0LW5MOLU) 
314O3M00 .5 
3M000V=3MOCOV3 .5 
SMONRG=RMO*(l .-1 .1(1 .+SM(rOV/RI4O)) 

C 
C 
c 
C 
o (B) I43(BAR) FROM N(M) 
C 
C 
C EVALUATE M0(BAR) AND ITS PARTIAL DERIVATIVES 
C 

RMOW1 =Io.'- (Al +BI 'iii) 
C2=BEPA(WI -Ui) 
111(1 =1 .0/RLI 
SKI =-SL1/(RLI'2) 
RKP=RKI +1 .0 
G=GAMMA(RKP) 
AK=C2RKl 
RMOBAR=G'(RMOWl /AK) 
DMDU=RMOBAR(RKI /(WI -Ui)) 
DMDW=RMOBAR(BNTA-RKI /(WI -UI )) 
DMTh(=RI4OBAR'(I .o-Auc(C2)) 

EVALUATE THE COVARIANCE ERROR IN M0(BAR) AND 
DETERMINE THE RATIO <M0>/MO(BAR) 

SMU'DPWJ'5IJI 
SMw=DMDW3WI 
SMKDMt*CSKI 
SMOBAR (sMu'2+SMW'2 +SMK'2) 
SMUW=DMDW'DNIJ'SVU 
SMLW=-DMDWDNIC'SWL'( RLI "2) 
SMUL=-DMDUDMDK'SUL(RLI '2) 
SIGCOV=SMOBAR+2(SMtJW+3MU(+SI4IJL) 
SMOBAR"$MOBkR') .5 
SIGCOV3I000V0 .5 
SIGNEG=RMOBAR(i .-i .1(1 .+SIGCOV/RMOBAR)) 
RATIO=RIIO/RMOBAR 

WRITE OUT -RESULTS 

WRITE (6,100) 
WRITE (6,101) V,U,RL 
WRITE (6,110) A,B 
WRITE (6,111) C,D 
WRITE (6,103) RMO,SM000V 
WRITE (6,101) SNORED 
WRITE (6,105) RT4OBAR,SIGCOV 
WRITE (6,109) SIGNED 
WRITE (6,106) RATIO 
WRITE (6,107) OMOW,DMOU,DMOL 
WRITE (6,108) SMOW,SMOU,SMOL 

100 FORI1A'T(l(,'Eastern U.S. (Stres8 drop 100 Br9)'/) 
lOt FOR4AP(2,' W=',F8.3,' U=,F8.3,' L=',F8.3/) 
102 F0RMAP(2,WI=',F8.3,'Ul=',F8.3,Ll=',F8.3/) 
103 F0R14AT(2,'<MO>=,F8.3,' SICMA= f',F8.3,' 1025 DYE Cl TR(-I)') 
101 FORMAT (25,'-',p8.3) 
105 FORI4AT(2(, '(MO)=' ,F8.3, SIGMA= +' ,F8.3) 
106 FORMAT(/ <Mo>/MO(aAR)' ,FI0.4) 
137 FORMAT(/'dMo/dw:1!1o/du:dMo/d1=' ,FIO.4,':' ,FIO.4,': ',F1O.4) 
138 FORMAT(/'sMo(w):sMo(u):sMo(l)' ,?IO.4,:' ,Fi0.4,': ',FI0.4) 
109 FORrIAP(251, '-' ,F8.3) 
110 FORMAT (t,'&=',?5.2,' B=' ,F4.2//) 
III FORMAT (I,'c=' ,F5.2,' 0=' ,F4.2//) 

STOP 
END 

0) 



IC 
	 A17 

MAX ENT .FF 1 

C This progrsin computes the single frequency 
C data points, the total no. of events/year Mt +1- sigma, 
C average magnitude <m) +1- sigma. 
C 

• C Sigma is the Standard error in the mean. 
C 
C Input streams 
C 
C 1 : Risk catalogue 
C 
C 
C Output streams 
C 
C 2 : <m>, Mt data 
C 12 : Cumulative frequency data 
C 
C Ian Main January 1983 

and the 

DIMENSION IrR(5000),VR(5000),X(199),Y(199),C(199),YC(199) 
DATA RAD/57.29577951 /,RT/650.O/,RMT/1O./,ETA/O.00001 / 

C 
C Set up options; initialise variables 
C 

CtLL FPRM?P('Lat limits:',ll ) 
READ(5,*)RLAT1 ,RLAT2 
CALL FPRM?('Lon limits:',ll) 
REkD(5,*)RLON1 ,RLON2 
CALL VPRMPT('Time limits:',12) 
READ(5 ,*)M].NT ,MA(T 
CALL FPRMPT('Min mag:',S) 
READ(5,*)RMAG1 ,RMAGt'tkX 
CALL FPRMPT('Var option:',fl) 
READ(5, *)IVAR  
RLATMRLAT1 +(RLAT2-RLA'rl )/2. 
RLONMRLON1 +(RLQN2-aL0w1 )/2. 
NYRMAT-MINT+1 

C 
C change unit time to lyrs. 
C 

RKAFL0AT(3YR)/1.' 
C 
C Read in magnitudes; assign to VAR the correct variable 
C 

RMAG2RMAG1 
NO =0 

10 READ(1 )IYEAR,RLAT,RLON,IDE?TH,RMAG 
I?(IYEAR.EQ.0)Go TO 17 
IF(IYEAR.LT.MINT.OR.IYEkR.GT.MAT)GO TO 10 
IF(RMAG.LT.RMAG1)O TO 10 
IF(RMAG .GT . RMAGMA() GO TO 10 



I?(RI.Oi.GF.R1.ON2.OR.qL0N.Lp.RU3Nl )oo TO 10 
I?(RLAT.CT.R1AT2.OR.RIAp.LT.qIAp1)O TO 10 
NGNO+ I 
IF(IVAR.EQ.4)DO TO 14 
GO TO (I1,12,13),IvR 

C Acceleration 
II V2I64. *EXP(bpI*0.7)*(R+20.)**(_1 .80) 

GO TO 15 
C Velocity 

12 V0.726*13.(0.52g)*(R**(_ .34)) 
GO TO 15 

C Displacement 
13 V=0.0471 *I0. * (gI0.57)*(R**(_I .18)) 

GO TO 15 
C Magnitude 

14 YRX4&C 
V AR (No )'V 
IYR(NO)'tYMkR 
IF(V.GT.R14A02) GOTO 16 

IS GOTO 10 
16 RMAG2V&R(N0) 

GOTO 10 

Count the no. of magnitudes 

17 MItFI(RMAGI*1O.Q+O.O5+rA) 
M2IFIK(RMAG2'I0.0 +p) 
NPTS=M2-Ml +1 

19 DO 20 11,NPTS 
Y(I)=(RMAG2-FLOAp(I)/I o.0).i 

20 (i)o.o 
DO 21 I1,N0 
JIFIX((RM&G2-VAiI(j)+Mpk)*1 O.o)+l 

21 )((J)=((J)+l.0 

Add up cumulative frequencies 
and normalise to unit time 

Jl 
C(l )=(i ) 

Yc(i )=r(' ) 
DO 22 12,NPTS 
IF(((r).Lg.grA) GOTO 22 
J=J+l 
(C(J)=(I)+C(J-1 ) 
TC(J)=T(I) 

22 CONTtNUN 
DO 23 tI .3 

23 C(t)=C(I)/RKA 
DO 24 1=1,NPTS 

24 (I)(l)/RKA 

Output 12  

WRITM (12.1) j 
I FOR4AP(7O,I4) 

WRIT€ (12.2) 	c(1),YC(r),1=1 .3) 
2 FORMAT (l,9714.6) 

WRIT9(I2,l) NPTS 
FRITM(12,2) ((t),T(I),Il,gprs) 

Optional adjustment of large events (in>RMT) 
where there is geological evidence 
for recurrence rates 

DO 26 tl ,NPTS 
IF(i(I).LT.RMT) GOTO 26 
(I)(I)FuJAT(NyR)/wr 

25 CONTINLJM 
RNTI FloAT(N0)/R1(& 

evaluate <a> and Mt with standard errors 

CALL SIGMT(IYR.HTR,NO,Rflp,SIGR1IT) 
IF(Rwr.GT.RNTI+RTA.oR.RNT.LT.RNTI_g.pA) WRITM (6,27) 

27 FORM&T( 	RRROR INP1T ') 
CALL SIDMA(VA.R,MO,AVMAG,SIGMAG) 

Print results 

WRITM (6,9) No 
99 FORMAP(I,'Total no. of events 	',141) 

VRIT€ (6.100) RMAGI .AVIIAG.SIGMAG 
100 FORMAT (I,'Min mag:',F5.2,' Ave mag:',F6.3,' atgma:',F6.3) 

WRITM (6.101) RNT,SIORNT 
101 FORMAT(/l,Nt:,F8.4,' sigma' ,F8.4,' per yr') 

WRITR (2,')RM&a1 ,RMAGMAg ,AVMAG.StOMAG,RNT,SIGRNT 
$TOP 
RHO 

SUBROUTINR SICNT(TYR,NYR,NO,RNT,SIQRNP) 

DIMRNSION STJM(200),NSIJM(200),yRI((200),1yR(5000) 
DO I il,NYR 

1 DUM(t)=O. 
Jl 
NSIJM(I )l 

- - 
	 DO 10 I2,NO 

IF(IYR(I).NM.ITR(I-1 )) GOTO 2 
SIJM(J).SIJM(J).t. 
t1sUM(J)r 
GOTOIO 

2 JJ+I 
10 CONTINUR 

WRK(I).NSUM(I ) 

00 



DO 20 J2,NYR 
20 wi J)=usuM(J)-N51n4(J-1 ) 

CALL SIGNA(WRK.NYR.RNT,SIDRNT) 
R?URN 
END 

C 
SUBROUTINE -SIGMA (,N,BAR,$) 

C 
DIMENSION (5000) 
ISUNO. 
DO I Il,N 

I 5UMX3UM+I(1) 
8AR=SUM/N 

C 
SIJMDO. 
DO 2 IlN 
DEV(L(I)-BAR)2 

2 SIJMDSIJMD+DEV 
SSUMD/N/(N-1 
SISQRT(SI) 
RETURN 
END 

C 
SUBROUTINE ERRI (lu1,SM,RN,sN,sIo) 

C 
El SM/R14 
E2=SR/RN 
93E1 2+B2'2 
SMO=RM3QRP(E3) 
RETURN 
END 



A20 

ID 

MAENT -FF2 
C 
C This program evaluates 11 and 12 from starting 
C parameters of mmin,mmax,<m>,<Mo> for the distribution 
C 
C 
	

p(m)exp(-l1 m-l2Mo(tn)) 
C 
C 
	

where Mo(m)1 O( k+Bm) 
C 
C 
C Input streams: 
C 
C 2 : magnitude data from inaxent-ffl 
C 3 : moment data from maxent-dat 
C 
C Output streams: 
'I 

C 4 : 1I,12,Z 
C 6 : Output viewing file 
C 
C Ian Main July 1953 
C 

REAL*8 Z 
READ (2,*) RIN,RMAX,aBkR,SIGMk,RNT 
SISIGMk/10. 
READ (3,*) ,B,RMOBAR,9I'Th1O13kR,?OWR,01 ,02 
SIGMOSIGMOBAR/ (10. RNT) 

C 
C Set initial values of 11 and12 
C 
	

Set A to the same units as <Mo> 
C 
C 

kA-POWER 
RL.5ALOG(lO.) 
RL20. 
RMOkR1 RMOBAR/RNT 

C 
C 
	

Iterate 20 times 
C 

WRITE (6,11) 
11 FORMAT(7, '<m>' ,8, '<Mo>' ,lO, 'Z' ,1OX, 'b' ,l2, 'L2'/) 

DO 100 1=1,20 
CALL INTEGRATE(RMIN,RMAX,A,B,RL,RL2,Z,RMO,RM) 
RL1 RL/ALOG(1O.) 
RMOBI RMO*RNT 
WRITE(6,150) X,RMOB1 ,Z,RL1 ,RL2 

150 FORMAT(1,5F12.8) 
RATMRM/RMBAR 
RATMORMO/RMOBkR1 
DELTAM=RM-RNBAR 
DELTkMORM0-RMOBAR1 
DE L=DELTAMO/RMO 
DRATMOABS(RTT4O-1 .) 



IF(ABS(DELTkM),IJr.slC.AND.AS (DELTAMO).LT.SIGNO) oo'ro 200 
IF (ABS(DELTkN),IIr.sIG) GOTO 2 

I RL=RL'(I .+ClDELTkM) 
GOTO $00 

2 RL2=RL2C2DELTkM0 
100 CONTINUE 

- WRITE (6,20) 
20 FORNAT(/I,'Iterqtjon unsuccessful to requirel accuracy') 

GOTO 500 

200 WRITE (6,30) RLI,RL,R12 
50 FORN&T(/I,'The answer is b' ,F12.6, 

lI' ,F12.6,' 12=',F12.6) 
WRITE (6,15) 

15 FORMAT(/,38(,'.') 
WRITE (6,12) MIB,RB&R,SIGMA,RM&X,RM0BAR,SIGI10B&R 
IPow=IFI(pEw'o.00I ) 
WRITE (6,16) 

16 F0RMAT(/I,' .) 
WRIrE(6,14) rpow 

14 F0Rl4AT(l!,'Mo in units of 10",12,' dyn cm yr(-l)') 
A=PL+POWER 
WRITE (6,13) A,B,RNT 

12 F0RMT (l,' no' ,F4.2,' <in>',?5.3,'+/-',F5.3, 
imnax',F4.2,' Mo' ,F5.3,'+/-',F5.3) 

I3FOR4&T(/l(,'A=' ,F6.2,' 8=' ,F6.2,' Nt=',1?6.2) 
WRITE (4,') RL,RL2,Z 

300 CONTINUE 
STOP 
END 

C 
SUBROUTINE INTEGRATE (RMIN,RNk,k,B,RL,RI.2,F1 ,RNO,RM) 

C 
REALS (l-ol ),i (101 
REAL8 T2(I01 ),Y3(IOI ) 
REkL'B LI ,F2,F3,E1 ,E2,E3,RMOM 

C 
.001 

005 J=I,IOO 
I(J)=RMINfFL0&T(J-I )'(RMk-aMIN)/IOo. 
RMOE=IO.O"(A+B'(J)) 
yi (J)=ExP(-RL'(J)-RL2'IuoN) 
Y2(J)=(J)'Yl (j) 

5 3(J)Rl4OM'YI (.1) 
C 

CALL 001 &F('C,TI ,I00,Fl,El,O) 
CALL 001 S&F(,2,I0O,F2,E2,O) 
CALL 001 GAF( ,Y3,IOO,F3,83,O) 
R!4F2/Fl 
RMO'F3/FI 
IF(EI/FI.1JF.ET&) GOTO 6 
WRITE (6,20) 

20 LORMAT( l', 'ERROR IN Z > .1%') 

6 IF (N2/v2.LT.9Tk) GOS,O 7 
WRITE (6,60) 

60 FORNAT ( U, ERROR IN <II> > .IV) 
7 rF(93/F3.vr.9rA)1oT0 400 

WRITE (6,40) 
40 FORN&T(/l,'Error in Mo inteNration > 

400 CONTINUE 
RETURN 
END 

N) 
I-, 
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1E 

MA.ENT?F3 
C 
C This program evaluates the covariance error 
(1 in U and 12 
C 
C Input streams: 
C 
C 2 : data file from maxent-ffl (magnitude info) 
C 3 : data file for moment info 
C 
	

4 : lI,12,Z 
C 
C Output streams: 
tl 

C 6 : output viewing file 
C 1 : covariance error 
C 
C 
	

tan Main November 1993 
C 

REAL*I6 A(5,5),13(5),c(5) 
READ (2,*)  RMN,RMA,RM3AR,SIGM,RNT 
READ (3,') i ,i ,RMOBAR,SIGMO,POtiiER 
SIGMOSIGMO/RNT 
READ (1.,')RL1 ,RL2,Z 
k1A1-POWER 
CALL EPECTATIONS(RL1 ,RL2,RMIN,RMk,A1 ,B1 ,E'M,XM2, 
EXMO ,EXMO2,EXMOM) 
P=EXM''2-EM2 
Q =EM'EMO-EMOM 
REMO''2-EXMO2 

C 
C Set up array A(3,3) 
'I 

k(3,I )=P'2 

A(2,1 )=Q"2 

k(I ,1 )pr 
k(l ,2)=Q'R 
A(t ,3)=P*R+Q*Q 

C 
C Set up array B(3) 
C 

B(3)sIGM"2 
B(2)SIGMO"2 
3(1 )=o. 
WRITE (6,9) 

9 FORMk(/,' Matrix coefficients:'!) 
DO 4 1=1 ,3 

4. WRITE (6,10) ((A(I,J),J=3 ,3),3(I)) 
10 FORMAT (/,011 .7) 

C 



C Solve for covariance array 10) 
C 

CALL SOLVE(A,B,C) 
WRIT'S (6,11 ) (c(r),I=I ,3) 

II FORI4AT (/1,' Covariance error: sli ,s12,,112',//,3F11 .7) 
VRITS(7,) (c(t),i=; .3) 
STOP 
SN 0 

C 
SUBROUTINE EXPECTATI0N3(RLI ,RL2,RMIE,RMA,A.B,EM, 

E14O ,EU102,EIW)11) 
C 

REAL'B K (IoI  ),yi (101 ),Y2(3I ),Y3(I3I 
REALR !4(I01 ),Y5(I01 ),Y6(10I ) 
RNAL'8 LI ,F2,P3,F4,F5,F6 
REALB SI ,E2,53,54,E5,56 
DO 5 J=l,lOO 

(J)=tIN+FtAT(-i)(RMAI-RMIN)/l 30. 
RMOM'IO.'(A+B(J)) 
II (J)"9IP(-RLl(J)-RL2R140I1) 
Y2(J)=K(J)Y1 (i) 
Y3(3)'(J)Y2(J) 
Y4(J)"RMOII"fl (J) 
Y5(J)=RM0I4(J) 

5 Y6(J)'RMOMY2(J) 
C 

CALL DOI0AF,Y1 ,IOO,F1 ,E1 .0) 
CALL DOIGAL((,'12,IOO,F2,'S2,O) 
CALL ooIokp(,Y3,Ioo,F3,S3,O) 
CALL 001 OAF(I ,Y4,IOO,F4,E4,O) 
CALL DOIGAF((,5,IOO,F5,95,O) 
CALL DOICAF(c,Y6,IOO,F6.56,O) 

C 
ZFI 
gM=F2/Z 
IU42F3/Z 
EXMOF4/Z 
5K1402'F5/Z 
9UION"F6/Z 
RETURN 
END 

C 
SUBROUTINE 5OLVE(',B,C) 

C 
REAL16 A(5,5),B(5),C(5) 
AU ,4)=B(I ) 
A(2,4)'8(2) 
A(3,4)"B(3) 

C 
C ZERO ISP COLUMN 
C 

CI &(I ,1 )/A(2,l ) 

C2A(I ,I )/It(3,t ) 
A(2,I )=O. 
k(2,2)A(2,2)C1-A(I .2) 
A(2,3)A(2,3)CI-4(I ,3) 
A(2,4)&(2,4)(1l-k(I ,4) 
A(3,I )=o. 
A(3,2)A(3,2)C2-A(I ,2) 
A(3,3)A(3,3)2-A(l .3) 
A(3,4)A(3,4)C2-A(I .4) 
WRITE (6,9) 

9 FORNAT(/,' Zero first colunin:'//) 
001 11,3 

IWRITE(6,I0) (A(t,J),J=I,4) 
13 FORMAT(/.4F11.7) 

C 
C SECOND COLUMN 
C 

C3A(2,2)/A(3,2) 
A(3,2)"O. 
A(3,3)A(3,3)C3-A(2,3) 
A(3.4)'A(3,4)C3-A(2,4) 
WRITE (6,8) 

B FORMAT (I,' Zero second column',!!) 
002 1=1,3 

2 WRIPE(6,I0) (A(I,J),J=I ,4) 
C 
C SOLVE FOR C BY BACK SUBSTITUTION 
C 

C( )=A (3 .4 )/A(3 .3) 
C(2)=(&(2,4)-A(2,3)C(3))/A(2,2) 
CO )"(k(I ,4)-(I 3)*C(3)_A(I ,2)C(2))/A(l ,i ) 
RETURN 
END 

co 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

IF 
MA.ENT-FP4 

Magnitudes associated with given 
return Periods for the frepiency distribution 
F(m)5n(m)dm where n(!n)=Mt.ezp(_RL1*tn_RL2*Mo)/Z 

Input streams: 

2 : magnitude range and <m 
3 : k,B and <Mo> 
4 : RL1,RL2,Z 
7 : SLI ,SL2,SL12 

Output streams: 

6 : All parameters + m(T) 

Ian Main February 1984 

SIGA0.2*ALOG(10.) 
SIGWO .3 
READ (2 ,*) R4I,RMA,RMBAR,3IGMA,RNT,SIGRNT 
READ (3 ,) k,B,RMOBAR,SIGMOBAR,POWER 
READ (4,*) RL1 ,RL2,Z 
READ (7,*) SL1,SL2,SL12 

C 
SI =SQRT(SL1) 
S2SQRT (sL2) 
BVRL1 /ALOG(O.) 
9 13V31 /ALOG(lO.) 
IPIFD((OWER+O.00I ) 
WRITE (6,100) 

100 FORMAT(/,' Information theory distribution 
WRITE (6,101 ) RMIN,RM.A,SIGW 

101 	FORMAT(/,' mmin' ,F6.3,' w=' ,F6.3,' (' ,F6.3 
WRITE (6,102) RMBAR,SIMA 

102 	FORMAT(/,' <m>'',F6.3, 1 (' ,F6.3,')',) 
WRITE (6,1 03 )oBAR ,SIGMOBAR,IP 

103 	FORMAT(' •s/IMO1,F6.3,1(1,p6.3)*10**' 
SIGASIGA/ALOG(I'O.) 
WRITE (6,1o4)RNT,SIGRNT,A,SIGk,B 

104 	FORMAT(/,' NT',F6.3,'(',F6.3,') /yr A. 1 ,F6.3, 
8' ,F6.3) 

WRITE (6,105) 
105  

WRITE (6,106) RL1,51,RL2,S2,IP,BV,SBV 
106 	FORMAT(/,'11',F6.3,' (',F6.3,') 	:12',F6.3, 

(',F6.3,')*10(_',I2,')/dyn.cm', 
F6.3,'(' p,3,I) ,) 

WRITE (6,107) SL1 ,SL2,SL12 
107 .FORMAT(/,' The covariance terms are : ',3F9.5) 

A24 

(' ,F6.3,') 

parameters:') 

,I2,' dyn.cin/yr') 



RICMOBAR=SICMOBAR/RNT C 
RM0B&RR!40B&R/RNT 

SUBROUTINE SOLVN(P,RLI ,RL2,1,RMIN,RMA,A,B,RM) A=A'0WRR C 
WRITE (6,10) ETItO.00I 

10 FORMAT (I,' Magnitudes associated with aye. rpt. tines r • RL=RIIN 
1/,' 	1 in yrs 	n(T) 	etna(tn)') RR=R?4A-0.00I 

C 
TLRO01(P,RLI ,RL2,Z,A,B,RL,RMA) 00 I 	1=1,8 

IF 	(i.iq.i) 1=1. TR=R00T(P,RLl,RL2,Z,A,B,RR,R14A) 

IF (I..2) 1=2. 13 Rl4RL+(RR-RL)/2. 

IF (1.NQ.3) 1=5. 
IF((RR-RL).sr.gr) SOPO g 

IF 	 110. 
TEM=R03r(P,RLI,RL2,Z,A,B,RM,R14A) 

IF (I.EQ.5) 1=20. 
IF (TEMTR.GT.0.) 5010 20 

IF (1.E.6) T50. 
RL=R4 
PL=TRM 

IF 	(I..i) 't=Ioo. 0010 10 
IF (I.EQ.8) 1=200. 20 RR=RM 

C 
RNI./T 

TR=TE!( 

P=RN/RNT 
001010 

CALL SOLVM(P,RLI ,RL2,Z,RMIN,RMAI,A,B,RMA.G) 
99 CONTINUE 

C 
RETURN 

o 	(soLvEs FOR N AS P. FE. OF 	) c 
END 

C 
CALL ERROR (sLI,sr2,sLI2,RL1,Ri.2,z,A,B,RMBAR,RMosR,RN&s,sIo) 

FUNCTION ROOIY(P,RL1 ,RL2,Z,A,B,R,RMA) 

RM0=l0.'(A+BR(AG) cAu, INTECRATN(R,RMA,RLI ,RL2,A,B,PROB) flENS=EP(-RLI 'RMA0-RL2'RNO)/Z PROB=PROB/Z 
CALL ERRW ( RM,A,B,Z,RLI,RL2,SI0W,SW) R0O1=PR0B-P 
CALL ERRNA(T,P,DFINS,SIGRNT,RLI ,RL2,RMOI,SIG&,SI']Nk) RETURN 
513 SQRT (sIa'2+sIoNk'2.sw2) END 

C C 
c 	(soLves FOR SIGNA(M) 

SUBROUTINE ERROR (SLI,5L2,5L12,RLI,RL2.Z,A,B,RMB,RMOB,RM,SID) C C 
WRITE (6,108) T,RMAG,SI3 R14010.**(A+8*RN) 

108 	F0R14AT(I,F6.I,3(,F6.,2'(',F6.3,')') DMDLI=(RMB=RM)/RLI CONTINUE 
OMDL2(RMOB-RN0)/RLI 

STOP ERI =SLI 	DI4DLI 	2 END 
ER2=3L2DMDL22 C 

SUBROUTINE INTEGRATE (Zi ,Z2,RLI ,RL2,A,8,RI11IDM ) ER3=3L1 2'DMDLI DNDL2
31G3QR?(ERI +ER2+2.ER3) C 

REALS 	(uOi ),Y(Ioi ),yi (ioi ),Y2(IoI 
RETURN 

REALS F,Fl ,F2,E,El ,92 C 
END 

C 
SUBROUTINE NRRN&(T,P,D,SNT,RLI ,RL2,RMO,SA,SNA) DO 5 1=1,100 C 

I(t)=zi +FTJ)AT(I-i )*(..zi )/ioo. DMDNT=1'PP/D 
RMO=I 0 .O"( A+B 	(I))  DIID4=RL2RI4O( i +i)/j 

s 
CALL D0I0AF(,Y,I0O,F,E,O) E2=DMDA*SA 
IF (E/F.G'r.o.oI ) WRITE (6,40) sNk=sQET(sI2+92'2) 'Error 40 FORMAT (II, 	in integrition in INTEGRATE 	'it') 	 ' 

RETURN 
RNMDNF 

END RETURN 	
- C END 

SUBROUTINE ERRW(W,A,B,Z,RLI ,RL2,stow,sW) 

01 



RMOW'IO.'(A+BW) 
Pi( -RLI 'W-RL2T(i4O)/Z 
DMDW/RLI 
5WDIDiSLGW 
RETURN 
END 

N) 
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MAXENT-FFS 

C 
C This program gives long-term predictions T+dT 
C of the average repeat times of magnitudes 
C larger than or equal to M. 
C 
C The error is expressed as a fn. of sigtfla(N(m>m). 
C 
C Input streams: 
C 
C 2 : data on <m> from maxent-ffl 
C 3 : data on Mo from inaxent-dat 
C 4 : ii ,12,Z 
C 7 : covariance error matrix 
C 
C Output stream: 
C 
C 6 : T+dt 
C 
C Ian Main 07:03:94 
C 

SIGW=O.3 
SIGA=0.2ALOG(1O.) 

C 
C 
C 

Read in input data 

• READ (2,*)  RMIN,RMA,RMBAR,SIGRM,RNT,9IGRNT 
READ (3,*)  A,B,RMOBAR,SIGMOBAR,?OWER 
READ (4,*)  RL1 ,RL2,Z 
READ (7,*) SLI,9L2,SL12 
CALL FPRMPT ( ' Magnitude :',12) 
READ (5,*) 
RMOBAR=RMOBAR/RNT 
A A-POWER 
CALL INTEGRATE (,RMA,RL1 ,RL2,A,B,RN,RM,RMO) 
RNRN*RNT/Z 
RMRM/Z 
RMORMO/Z 
CALL ERROR(SL1 ,5L2,SL12,RLI ,RL2,RMBAR,RMOBAR,, 
RN,RNT,RM,RMO,SIGRNT,SIGA,RMA,SIW,A,B,Z,ERN) 
T1 ./RN 
RNPRN+ERN 
TM1 ./RNP 
RNMRN*RN/INP 
TPI ./RNM 
WRITE (6,1) T,TM,TP 
FORMAT (it, ' The average repeat time is',F8.3, 
I,' The range considering errors is frotn',FS.3,' 
ST OP 
END 

to',F9.3,' yrs') 

C 
SUBROUTINE INTEGRATE (zi ,Z2,RL1 ,RL2,A,B,RN,RM,RMQ) 

C 



REAL*8 K i (lot ).Yo(lol ),i (iol ),T2(I0I 
RBALM F,E,FI,F2,1,2 

DO 5 I1,100 
i (i)=zi +FWAT(t-1 )(z2-zl )/ioo. 

RO'I0.0'(A+BI (r)) 
Yo(I)=P(-RLi*U (r)-RL2RMo) 
ci (r)'i (r)'To(I) 

5 Y2(I)"R40(T0(T) 
CALL DOt C&F(I ,YO,I00,F,,0) 
CALL 001 GAF((l ,yt ,IOO,Fl ,i .0) 
CALL DOt AF(I ,T2,t00,P2,2,0) 
IF (/i.Lr.o.00i) GOPO 400 

399 WRITB (6,40) 
43 FORMAT (it, rror in integration >.iV) 

5POP 
400 C0NPINU 

IF(I/Fi.GT.0.00i) GOPO 399 
IF (2/.cr.o.00t) GOTO 399 
RNF 

RMOF2 
RgTIJRN 
END 

SUBROUTINE ERROR(SLI ,SL2,5L12,4Ll ,RL2,RM3,RM0B,, 
3N,RNT.Rt4,RMO,SIGRNP,SICA,W,SIGW.A,B.i,ERN) 

ON DLI RMB*RN_RI1*RNT 
DNDI.2 RN0BRNRMORNP 
RM010 .'(A+B'w) 
PWEIP(-RLl '(-RL2"RNOW)/i 
DNDW=PW(RNTRN) 
DNDARL2DNDL2 
ON 0&T=RN /OUT 

RI =SLI DNDLI "2 
E2=5L2'DNDL2"2 
E3=2 .'SLl 2DNDLI 'DNDI2 
E4=(SIG A'DNDA )"2 
E5= (SI(. RNTDNDNT )"2 
E6 ( 310W'DNDW)"2 

ERNEI +E2+E3+54+E5+E6 
ERN= SQ NT ( RON ) 
RETURN 
END. 

I'.) 
03 
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MAXENT-G 
C 
C Plotting program for the cumulative frequency distribution 
C computed in maxent-ff2 with optional Weibull 
C plot for comparison. 
C 
C The error is expressed as sigma(N(m>m). 
C 
C Input streams: 
C 
C 2 r data on <tn> from maxent-ffl 
C 3 : data on Mo from maxent-dat 
C 4 : 11 ,12,Z from maxent-ff2 
C 7 : covariance error matrix from maxent-ff3 
C 11. : w,u,latnbda from gwul (Weibull option) from maxent-ff7 
C 12 : cumulative frequency data from inaxent-ffl 
C 
C Output stream: 
C 
C 70 : graph file 
C 
C Options are:- 
C 
C 	1 : Cum + Single freq. 
C 	2 : Cum 
C 	3 : Single 
C 	4 : Single + Weibull plot 
C 
C Ian Main 25:10:83 
C 

DIMENSION RMAG(50),RMAGP(50) 
DIMENSION c'F(50),CFG(50),P(50) 
DATA RT/1 63/ ,DRT/27/ ,RMN/7.94/,DRM/0.O5/ 
SIGW0 .35 
31Gk0.2 
SIGA=SIGAALOG(1 0.) 
DATA RMF/8.04/,DRMF/0.15/,ETA/0.000 1  I 
DELTAMO.1 

C 
C Read in cum. frequency data and Gumbel parameters 
C 

READ (2,') RMIN,RMAX,RMBAR,SIGMA,RNT,SIGRNT 
READ (3,') A,B,RMOBAR,SIGMOBAR,POWER,01,C2,IOPT 
READ (4,*) RL1,RL2,Z 
READ (7,') SL1,SL2,SL12 
RMOBARRMOBAR/RNT 
A=A-POWER 
IF (I0PT.NE.4) GOTO 500 
READ(11 ,501 )W,U,RL 

501 FORMAT(/ ,1X,3E14.6) 
500 READ (12,1) RLAT,RLONG,DUM1,DUM2,DUM3,NPTS 

READ(12,2)(CF(I),RMAG(I),11,NPTS) 
READ(12,1 ) Dl ,D2,D3,D4,D5,NINCS 

A2 



C 
C 
C 

RN&D(12,2) (?(I),RAcF(r),11 ,NINCS) 
1 FORMAT(5E14.6,14) 
2 FORMAT(1X9 9,14.6) 
DO 8 11,NPTS 

8 CF(I)=&LOG1O(CP(T)) 
XST4. 
xsC1 
'1 SP-3. 
Y SC = 

CALL PLOPS('lan Min ,Murchseia. .20,70) 

Compute Guobel distribution points 

IF (toPp.Ng.4) GOFO 3 
RK=I ./RL 
C3'(W_U)"RI( 
DO 6 1=1,NINC3 
ci =(w-'uc( t)omT&/2. )"K 
C2'(WRIAGF(I)D9LTAM/2.)"RI( 
CFG(1)=(Ci -C2)/C3 

6 cFG(1)'&LoGio(cFG(t)) 
CFG(NINCS+1 )sr 
C ic ( NINa S+2 ) Sc 
RMAGF(NINCS+1 )=xsp 
RMAGF(NINCS+2)=XSC 

3 CONPINIJN 

E Plot graphs 

CALL FACTOR(O.7) 
CALL DLOP(l .,i .,-3) 
CALL AXIS(O.,O.,'Magnitude Mv'.-12,5.0,0.O,XSP,XqC) 
CALL AIS(O.,O.,log(N(M))',9,5.,90.,Y3T,YSC) 
CALL PLOT(5. ,0. ,3) 
CALL PLOT(5.,5.,+2) 
CALL PLOP(O.,5.,+2) 

C 5 
	

CALL SYI1BOL(I.25,3.75,0.1,'b=0.89',O.O,6) 
C' 
	

CALL SY14BOL(I.5,2.,O.l,'b=0.51 * ,0.0,6) 
C. 
	

CALL .SY4B 1)L(2 .75 ,i. ,O.i, '( 	, 0. 0, 3) 
C. 
	

CALL SYMBOL(4.1,1 .,o.i ,'(t.)' ,o.,) 
RMAC(NPTS+1 )=xsi 
RMAG(NPPS+2)=XSC 
CF(NPPS+i )'ysp 
CF(NPPS+2 )=YSC 

C 
C Cumulative frequency option 
C 

IF (I0PT.8Q.3.OR.IOPr.3?Q.4) coro 9 
CALL LINB(Rr4AG,CF.NPPS.1,-1,240) 
SIGN=O. 
XRXST+5 .'SC 
EMOMINiO"( A+B'RMIN) 
PMIN=NXP( -RL1 'RMIN-RL2'RMOI(IN)/i  

DO 7 N1 .3 
IPRN=3 
DO 10 1=1,50 
X=FLOAr( r)/io.o ~ RMTN-O. 

C 
C 	X is m and Y is logiO(CF(m)) 
C 

IF(X.G9.RMAX-O.1) GOPO 100 
CALL LNPEGRATN (X,RMAX.RLI,RL2,&,B,RN,RM,RMO) 
RN=RN'RNP/Z 
RKRM/ Z 
RMO=RMO/Z 
CALL NRROR(SLI,3L2,5L12,RL1 ,RL2,PMIN.RNB&R,RMOBAR,X, 
_RN,RNT,R4,RMO.S1GRNP,Z,A,B,StGA,RMAX,SIGW,NRN) 
f=ALOGI o( RN) 
YP=ALOCI O(RN+NRN) 
YM=2.'f='fP 
IF(N.EQ.2) Y=YP 
IF(N.NQ.3) Y=YM 
IF(Y.LN.Ysr) coro 100 
IF(X. LP.XSr-0.3.OR.X.GP .XR) GOTO 100 
x=(x=xsr)/XSC 

CALL PLDF(X,T,IPNN) 
10 IPNN2 

C 
100 CONrINIJN 

7 CONTINIJR 
C 
C Plot geologically derived frequencies for largest events 
C 
C' 	CALL GNOLPLOP(RMN,DRN,RT, DRT,SP,XSC ,YST ,ysc) 

IF (toPr.9Q.2) GOFO 14 
9 RTRP'3. 

C' 	CALL G'OLS(RI4V, DRMF ,RP,XSF ,XSC ,YST,YSC) 
C 
C Set up and plot frequency data 
C 

IPNN=3 
x'(RMAG?(l)+o.OS=xSP)/XSC 
CALL PLOr(X,O. . 

IPRN=2 
C 

DO Ii J=1,50 
IF (j.ar.gigcs) GOFO 12 
X=RMAGF(1)+O.05-FLOAT(J-1)/10. 
XM=X-DRLTAP( 
Y.'F(J) 
IF(Y . LN. NrA) T=lo ."ysp 
YALOG1O(Y) 
x'(x-xsr)/XSC 
XM=(xN-xsr)/xsC 

CA) 
0 



CALL PLOT(X,Y,IPNN) 
It CALL PLOP(XM,y,IPTIN) 
12 CALL PLOT(XM,O.,jpgN) 

IPNFI=3 
C 
C Conpute and plot theoretical frequencje9 
C 	 - 

DO 13 J1,50 
Xl = RMIN_ 0 . 05+FLOAT(3_I) * (RMAX.RMIN)/50 
X2=Xt +DMLTAN 
IF(X2.GTI.RNAX) GOTO 14 
x=(xi +X2)/2. 
CALL INTNGRATN(X1,X2RLtRL2ABRNRNRMO) 
RN=RN*RNT/( Z1 0 .'DNt.TAM) 
I = ALOG tO ( RN) 
IF(Y.LlliySp) GOTO 14 

Y=(Y-YST)/YSC 
CALL PLOT(X,Y.IpMN) 

13 IPMN=2 

14 IF (IOPT.NQ.4) CALL LINN(Rt4AGF,CFG.&TNCS,1,_1,I54) 
CALL PLOr(O.,O.,999) 
STO P 
RN D 

C 

SUBROLJTINR GMOLPLOT(RM, DRM,RT,DRT,XSP,C,YSTYSC) 
RN FL It S RM + DR N 
R MM I N RN - DR N 
MT FL US = RT+ ORT 
RTMIN=RT-DRP 
RTPLUS=ALOG1O(1 ./RTPLU3) 
RT14IN=ALOG1O(1 ./RIMIN) 

C 
xi =(RMPLUS-XST)/XSC 
X2=(RNMIN-XST)/XSC 
yt =(RTPLUS-IST)/YSC 
Y2=(RTMIN-YST)/TIC 
CALL PLOT (xi ,Yi ,3) 
CALL PLOT (11.12,2) 
CALL PLOT (x2,12,2) 
CALL PLOT (12,11,2) 
CALL PLOT (xl ,YI .2) 

C 
RPY=ALOGIO(t ./RT) 
XM=( RM-XST)/xSC 
YM=(RTY-YST)/YSC 
CALL PLOT (xM,yi,3) 
CALL PLOT (XN,12,2) 
CALL PLOT (xl ,YM,3) 
CALL PLOT (12,YM,2) 

C 
RRTURN 
MMD  

SUBROUTINE INTEGRATE (Z1,52,RL1,Rb2,A,B,RN,RMRMO) 

RNALS Xi(1O1),YO(101),yl(1O1),y2(1OI) 
REAL8 F,E,F1 ,F2,E1 ,52 

DO 5 1=1.100 
Xi(I)=Z 1 +FLOAT(t_i) * (Z2_ZI)/100. 
RMOX =10 . O* ( A. BX1 ( I) ) 
IQ(I)=8xP(_RL1*x1 (I)-aL2•RMOX) 
yi (r)=xi (i)'yo(i) 

5 Y2(I)=RMOX*yO(I) 
CALL DOIGAF(XI ,YO,IOO,F,5,O) 
CALL DO1GAF(Xl,y1,IOO,Fi,Ml,O) 
CALL DO1OAF(X1,y2,IOO,p2,E2,O) 
IF (N/F.LT.o.00I) GOTO 400 

399 WRITE (6,40) 
40 FORMAT (IX,'Error in integration >.1) 

ST 4) P 
400 CONTINUE 

1?(El/Fi.GT.O.00I) GOTO 399 
IF (E2/F2.GT.O.00I) crro 399 
RN=F 
RM=F1 
RMO=P2 
RETURN 
END 

SUBROIJTINE NRROR(sLI ,5L2,5L12,RL1 .RL2.PNIN,RNB,RMOB.X 
RN .RNP.RM , RMO,SIGRNT,Z&BSIGAWSIGWMRN) 

DNDL1 =RMBRN-RMRNT 
DNDL2=RMOB * RN_RMO*RNT 
DNDA=RL2DNDL2 
DNDNT=RN/RNT 
RMOW=10.*'( k+BW) 
PW-ExP(-RLI W-RL2'RMOW)/Z 
DNDV=PW*(RNT_RN) 

C 
Mt SLI *DNDL1 	2 
R2=SL2'DNDL2**2 
E3=2 .'SLl 2DNDL1 D00L2 

E5=(SIGRNT*DNDNT)**2 

C 
ERN=El +R2+E3 -iE4+E5.E6 
ERR SQMT(RRN) 
RETURN 
END 

C 

SUBROUTINE GEOLS(RNF, ORNF,RP,X.ST,XSC ,TST,YSC) 

C 

C 
C 

C 

C 

C 

() 
I-. 



Xl RMP-DRMF 
X2=RMFDRMF 
Y=&LOGlO(l ./RT) 

xi =(xi -XST)/XSC 
X2=(X2-XST)/XSC 
CALL PLOP(Xl,O.,3) 
CALL PLOP (xl ,Y,2) 
C&LL PLOT (x2,Y,2) 
CALL PLT(X2,O. ,2) 
RETURN 
END 



II 
VOL_PREP 

C 
C This program computes the source-station distance R and the 
C P wave time window T:(alpha-beta)/R. Ti is read in from 
C entries in the VOLNET bulletin as the P wave onset at the ith 
C station. A file is output on channel 6 whis is used as a control 
C file for Frequency analysis on an LSI computer using programs 
C developed by Bob McGonigle of BGS, Edinburgh. 
C 
C 
C streams i:station file 
C 	2:e'nt file 
C 	3:1isting of delays 
C 	5:Input file of P arrival times 
C 	6:Output listing 
C 
C Ian Main Jul 81$ (adapted from a preliminary version by Bob McGonigle) 
C 

CHARACTER CODE(100)'3,A'i1 
DIMENSION SLAT( 100) ,SLON( 100) ,DIST( 14O, 12) 
DIMENSION T(12,1$),WIN(12),ST(12),FILE(3) 
DATA ALPHA/6. 7/ ,BETA/1$. 14/,E/ 'END '/ 
FAC( 1./BETA-i. /ALPHA) 
PIMU:3.'3. 1Z$159 

C read the station list 
READ(1,')NS 
DO 1 I=1,NS 
READ(i ,*)CODE(I),SLAT(I),SLON(I) 

1 CONTINUE 
WRITE(3,*)tStation list' 
WRITE(3,2)(I,CODE(I),SLAT(I),SLON(I),I1 ,NS) 

2 FORMAT(1X,12, 1 : 1 ,A3,2F10.4) 
WRITE(3,5)(CODE(I),I:1 ,NS) 

5 FORMAT(/,1X,' S-P delay times in s',/,'Site Code',12(2X,A3,1X)) 
C read epicentre list and find distances 

1:1 
10 READ(2,3,END:99)A,I1,Ri,12,R2 
3 FORMAT(A11,7X,12,F6.0,2X,12,F6.0) 

ELAT:I1+R1/60. 
ELONI2+R2/60. 
DO 11 J=1,NS 
DIST(I,J):FDIST(ELAT,ELON,SLAT(J) ,SLON(J)) 

ii DIST(I,J):DIST(I,J)*FAC 
WRITE(3,6)A, (DIST(I,J) ,Ji ,NS) 

6 FORMAT(1X,A11,12F6.1) 
1:1+1 
GO TO 10 

C 
99 CONTINUE 

C 
C Input 
C 

DO 300 NEV=1,40 
IF(NEV.EQ.1$.OR.NEV.EQ.12) NEV:NEV+1 
IF(NEV.EQ.8) NEV:NEV+1 
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CALL FPRMPT('File:',5) 
READ (5,100) (FILE(I),Ir1,3) 

100 FORMAT(3A4) 
CALL FPRMPT('Event no: 1 ,9) 
READ (5,101) NEVENT 

101 FORMAT(12) 
CALL FPRMPT( 'Time correction:• .16) 
READ(5,')COR 

102 FORKAT(F3.1) 
C 

I1 
7 CALL FPRMPT('Station code:',13) 

READ (5,103) ST(I) 
103 FORMAT(A9) 

IF (ST(I).EQ.E) GOTO 98 
CALL FPRMPT('Time of onset: '.111) 
READ (5, 0 ) T(I,2) 
CALL RECOG(ST(I),NCH) 

12 CALL CON(NCH.J) 
WDIST(NEV ,J) 
WIN(I)W'1. 
II+1 
GOTO 7 

98 NSTSI-1 
C 

Do 8 I1,NSTS 
T(I,2)rT(I,2)-COR 
T(I,3)T(I,2) 
I(I, 1)T(I,2)-WIN(I) 

8 T(I,4)T(I,2)+WIN(I) 
C 
C Output file 
C 

WRITE (6,201) (FILE(I),I1,3) 
201 FORI4AT('FILE ',3A4) 

WRITE (6,202) NEVENT 
202 FORMAT ('TITL EVENT NO 1 ,12) 

DO 9 I1,NSTS 	 - 
CALL RECOG(ST(I),NCH) 
WRITE(6,203) NCH,T(I, 1),T(I,2),T(I,3),T(I,4) 

9 IF(NCH.EQ.2) CALL ADD(NCU,T(I,1),T(I,2),T(I,3),T(I,4)) 
203 FORMAT.(CHNL 1 ,1 14, 11F6.2) 
300 CONTINUE 

STOP 
END 

SUBROUTINE RECOG(S,N) 
C 

DATA CH2/'VSIZ '/,CH3/'VSIN'/,CHI4/'VSIE'/, 
• CH5/'VPA '/,CH6/'VFI /,CH7/'VGL 
• CH8/'VNE '/,CHg/'VSK /,CH1O/'VMA 
'CHll/'VER '/,CH12/'VAG 'I 

C 
IF(S.EQ.CH2)N2 
IF(S.EQ.CH3)N3 
IF(S.EQ.CH4)N.I 

IF(S.EQ.CH5)N5 
IF(S.EQ.CH6)N6 
IF(S.EQ.CH7)N7 
IF(S.EQ.CH8)Nr8 
IF(S.EQ.CH9)N9 
IF(S.EQ.CH10)N 10 
IF(S.EQ.CH11)N11 
IF(S.EQ.CH12)N12 
RETURN 
END 

C 
FUNCTION FDIST(RLAT1 ,RLON1 ,RLAT2,RLON2) 

C returns the distance FDIST in kilometers 
REAL'8 GEOCN 

C 
GSLAThGEOCN(DBLE(RLAT1)) 
SLONRLON1 
GELATG€OCN(DBLE( RLAT2)) 
ELONRL0N2 
CALL AZDIST(GELAT,ELON,GSLAT,SLON,AZ,DIST) 
FDIST11 1. 1'DIST 

C 
RETURN 
END 

SUBROUTINE AZDIST(ELAT,ELON.SLAT,SLON,AZ,DIST) 
C 

REAL'8 PI,RTOD,DTOR 
REAL'8 SLA,SL0,ELA,EL0,SLAC,SLAS,SLOC,SLOS,ELAC.ELAS,ELY,,ELOS 

1AS,BS,CS,DS,ES,GS,HS,SK,AE,BE,CE,DE,EE,GE,HE,EK, 
2CDIST,SDIST,CSDIST,CAZ,SAZ 
DATA P1/3. 1 1415927D0/,RTOD/57.2957800/,DmR/o 017453300/ 

C 
ELATELAT+1 .OE-5 
ELONELON+1.0E-5 
SLASLAT'DTOR 
S LO S LO N DTOR 
ELAELAT'DTOR 
ELOELON'DTOR 

C 
SLACrDCOS(SLA) 
SLASDSIN(SLA) 
SLOCrDCOS(SLO) 
SLOSDSIN(SLO) 

C 
ELACDC0S(ELA) 
ELASDSIN(ELA) 
ELOC=DCOS(ELO) 
ELOSDSIN( ELO) 

C 
AS rSL A C 'S LOC 
BSSLA C 'S LOS 
CS S LAS 
DSSLOS 
ESr-SLOC 
GSSLAS'SLOC 
HSSLAS'SLOS 

6 

7 
8 

9 
10 
11 

16 

21 

23 
24 
25 
26 
27 
28 
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SKr-SLAC 29 
C 30 

AEELAC'ELOC 31 
BEELAC'ELOS 32 
CErELAS 33 
DEELOS 314 
EE-ELOC 35 
GEELAS'ELOC 36 
HEELAS'ELOS 37 
EK-ELAC 38 

C 39 
CDISThAE'AS+BE'BS+CE'CS 110 
SD1STDSQRT( 1 .0-CDIST'CDIST) 
DISTrRTOD'DATAN2(SDIST,CDIST) 
CSDIST1./SDIST 	 S  43 
SAZ-(AS'DE+BS'EE)'C5DIST 44 
CAZ-(AS'GE+BS'HE+CS'EK)'CSDIST 45 

C '46 
AZDATAN2(SAZ ,CAZ) 
IF(AZ.LT.0.0)AZAz+2.'Pj 148 
AZAZ'RTOD 49 

C 50 
RETURN 51 
END 52 
FUNCTION GEOCN(ALAT) 3 

C U 
REAL 1 8 PI,RTOD,DTOR,ALAT,GEOCN ,GCON 
DATA P1/3. 1 1415927D0/,RTOD/57.29578DO/,DTOR/0.0174533D0/ 

C 6 
GC0N0. 993231500 
GE0CNRTOD'DATAN(GC0N'(DSIN(ALAT'DT0R)/DCOS(ALAT'DTOR))) 7 
RETURN 8 
END 9 

C 
C 

SUBROUTINE CON(N,J) - 

IF(N.LE.14) 	J1 
IF(N.GE.5) JN-3 
RETURN 
END 

C 
SUBROUTINE ADD(N,T1,T2,T3,T14) 
DO 	1 	Irl,2 
NN+1 

1 WRITE(6,20 14) 	N,T1,T2,T3,T1I 
2014 FORNAT(CHNL 	,1 14,4F6.2) 

RETURN 
END 

(*) 
01 



1J 

VOL_D 1ST 

Program to produce distance list from epicentres 
and to calculate seismic moments from LP spectral levels 
using these distances. Other source parameters are then 
calculated using the corner frequency Fc. 

streams 1:statiOrl file 
2:event file 
3:Mo,FQ readingsfor N events 
6:listing 

Ian Main Jun .8k (adapted from a preliminary version by Bob McGonigle) 

CHARACTER CODE(10)*3,TCODE(12)'3,A' 11  
DIMENSION SLAT(40),SLON(40),DEP(40),RMAG(40),TST(40,10) 
DIMENSION OMEGA(40,12),FC(40,12),RM01(40,12),R( 4 , 12 ) 
DIMENSION RMO(12),RA(12) 
DATA RO/O./ 
PIMU3.'3. 1k 159 

read the station list 
READ(1,*)NS 
DO 1 I1,NS 
READ(1,*)CODE(I),SLAT(I),SL0t4 (I) 

1 CONTINUE 
WRITE(6,*)StatiOfl list' 

2 FORMAT(1X,I2, 1 : 1 ,A3,2F 1 O.) 
WRITE(6,5)(CODE(I),I 1  ,NS) 

5 FORMAT(/,' Epicentral distances',!,' Site Code 1 ,12(2X,A3,1X)) 
read epicentre list and find distances 

1=1 
10 READ(2,3,END99)A,I 1  ,R1 ,I2,R2,DEP(I),RMAG(I) 
3 FORMAT(A1 1 ,7X,12,F6.O,2X,12,F6.O,F7.O,Fb.0) 
WRITE (6,3) A,I1,R1,I2,R2,DEP(I),RMAG(I) 
ELATI1+R1/60. 
ELON:12+R2/60. 
DO 11 J=1,NS 

11 DIST(I,J):FDIST(ELA'I,ELON,SLAT(J),5L0"l)) 
WRITE(6,6)A,(DIST(I,J) ,J1 ,NS) 

6 FORMAT(1X,A11,12F6.1) 
1:1+1 
GO TO 10 

C 
99 NEVI-1 

C Add 2 extra channels for VSI Ns and EW 
CALL DECODE (CODE,TCODE,NS) 
NS:NS+2 
WRITE (6,7) 

7 FORMAT(/,'LP spectral level in micron s ') 
WRITE (6,8) (TCODE(I),I:1,NS) 

8 FORMAT(12(2X,A3)) 

A36 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 



DO 	lO I1,NEV 
C read in omega in nm secs 

READ(3, 14) 	(OHEGA(I,J),J1,NS) 
READ(14,55) 	(FC(I.J),J1,NS) 

C convert to micron secs 
DO 97 J1,NS 

97 OKEGA(I,J)OMEGA(I,J)'0.001 
Ii FORHAT(11(F5.2)) 

55 FORMAT(11(F4.1)) 
110 WRITE 	(6, 11) 	(OMEGA(I,J),J1,NS) 

WRITE(6, 88) 
88 FORHAT(/,'Fo in Hz.') 

DO 89 I1,NEV 
89 WRITE(6,4) 	(FC(I,J),J1,NS) 

WRITE (6,31) 
31 FORMAT(/,'Mo in Nm'10 02 12, r in m, sdrop in bars, s in mm'/ 

1 ,'(Standard deva are given below in %, NNo of atations)'// 
2'No 	ML 	Mo 	r 	Sdrop a 	N,/) 

C Remove zeros, calculate parameters and standard devs. 
DO 50 I1,NEV 
KO 
DO 30 J1,NS 
IF (FC(I,J).LT.O.01) GOTO 30 
KK+1 
CALL JL(J,L) 
CALL CONSTS(DEP(I),CK,C) 
RMO1(I,K)CK'OMEGA(I,J)'DIST(I,L) 
R(I,K)rC/FC(I,J) 
RMO(K)RMO1(I,K) 
RA(K)R(I,K) 

30 CONTINUE 
IF(K.EQ.0) GOTO 50 
CALL SIGMA(RMO,K,RMOBAR,ERMO) 
CALL SIGMA(RA,K,RABAR,ERRA) 
SDROP(7.'flMOBAR)/(16.'RABAR"3) 
SBARRH0BAR/( PIMU'RABAR"2) 

C 
ERSDRERMO"2+3. 'ERRA' 1 3 
ERSBARERKO"2.2. 'ERRA"2 
ERSDRSQRT(ERSDR) 
ERSBARSQRT(ERSBAR) 

C Scale for output units 
C omega read in in micron.s, Fc in Hz 
C 	Output Mo in 101112  Nm, r In m, sdrop in bars, s in mm 

SDROPSDROP' 10000000. 
SBARSBAR' 100000. 

WRITE(12,113) RMAG(I),RMOBAR,SDROP,RABAR,SBAR 
113 FORMAT (5F10.4) 

WRITE(6,111) I,RMAG(I).RMOBAR,RABAR,SDROP,SBAR,K 
WRITE(6, 142) ERMO,ERRA ,ERSDR,ERS8AR 

41 FORMAT(I4,F4.1,3F10.1,F1O.2,I4)  

42 FORHAT(8X,11F10.1/) 
50 CONTINUE 

STOP 
END 
FUNCTION FDIST(RLAT1 ,RLON1 ,RLAT2,RLON2) 

C returns the distance FDIST in kilometers 
REAL'8 GEOCN 

C 
GSLATGEOCN(DBLE(RLAT1)) 
SLONRLON1 
GELATGEOCN( DBLE( RLAT2)) 
EL0NRL0N2 
CALL AZDIST(GELAT,ELON,GSLAT,SLON,AZ,DIST) 
FDISTr111. 1'DIST 

C 
RETURN 
END 
SUBROUTINE AZDIST(ELAT,ELON,SLAT,SLON,AZ,DIST) 

C 
REAL4 8 PI,RTOD,DTOR 
RFAL'8 SLA,SLO,ELA,ELO,SLAC,SLAS,SLOC,SLOS,EL.AC,ELAS,ELOC,ELOS, 
1AS,BS,CS,DS,ES,GS,HS,SK,AE,BE,CE,DE,EE,GE,HE,EK, 
2CDIST , SDIST ,CSDIST , CAZ ,SAZ 
DATA P1/3. 1l$15927D0/,RTOD/57.29578D0/,DTOR/0.017'1533DO/ 

C 
ELATrELATi.1 .OE-5 
ELONELON+1 .OE-5 
SLASLAT'DTOR 
SLOSLON'DTOR 
ELAELAT'DT0R 
ELOELON'DTOR 

C 
S LA C DCOS ( SLA ) 
SLASDSIN(SLA) 
SLOCDCOS(SLO) 
SLOSrDSIN(SLO) 

C 
ELACDCOS(ELA) 
ELASDSIN( ELA) 
EL0CDCOS(ELO) 
ELOSDSIN(EL0) 

C 
ASSLAC 1SLOC 
BSSLAC'SLOS 
CS S LAS 
DSSL0S 
ES-SL0C 
GSrSLAS'SLOC 
HS S LAS IS  LOS 
SK-SLAC 

C 
AFELAC'EL0C 

7 
8 

9 
10 
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30 
31 
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BErELAC'ELOS 32 
CErELAS 33 
DEELOS 34 
EEr-ELOC 35 
GErELAS'ELOC 36 
HErELAS'ELOS 37 
EKr-ELAC 38 

C 39 
CDISTrAE'AS+BE'BS+CE'CS 40 
SDISTrDSQRT( 1 .O-CDIST'CDIST) 
DISTrRTOD'DATAN2(SDIST,CDIST) 
CSDISTr 1. /SDIST 43 
SAZr-(AS'DE+BS'EE)ICSDIST 44 
CAZr-( AS'GE.BS'HE+CS'EK ) 'CSDIST 45 

C 46 
AZrDATAN2(SAZ,CAZ) 
IF(AZ.LT.0.0)AZrAZ+2.'PI 48 
AZAZ'RTOD 149 

C 50 
RETURN 51 
END 52 
FUNCTION GEOCN(ALAT) 3 

C 14 
REAL 98 PI,RTOD,DTOR,ALAT,GEOCN,GCON 
DATA P1/3. 141592700/.RTOD/57.2957800/,DTOR/0.017453300/ 

c 6 
GCONr0.9932315D0 
GEOCNrRTOD'DATAN(GCON'(DSIN(ALAT'DTOR)/DCOS(ALAT'DTOR))) 7 
RETURN 8 
END 9 

C 
SUBROUTINE SIGMA (X,N,XBAR,SX) 

C 
C 	RETURNS THE STANDARD DEVIATION AS A PERCENTAGE 
C 

DIMENSION D( 12),X( 12) 
XSUMrO. 
DO 1 	Ir1,N 

1 XSUHrXSUM+X(I) 
XBARrXSUM/N 

C 
SUMDrO. 
DO 2 Irl,N 
DEVr(X(I)-XBAR) 062 

2 SUMDrSUMD+DEV 
SXSUHD/N 
SXrSQRT(SX) 
SXr 100. 'SX/XBAR 
RETURN 
END 

C 

SUBROUTINE DECODE(C ,TC ,NS) 
CHARACTER TC(12)'3,C(10)3 
DO 1 1r2,NS 
JrI+2 

1 TC(J)rC(I) 
TC( 1)rC( 1) 
TC(2)C(1) 
TC(3)rC(1) 
RETURN 
END 

C 
SUBROUTINE JL(J,L) 
IF(J.LE.3) Lrl 
IF(J.GE.4) LrJ-2 
RETURN 
END 

C 
C 

SUBROUTINE CONSTS(D,CK,C) 
C 
C 	CKr12 0 10 66 15 Kg 3(-3) 
C 	Cr1427 m s(-1) both for ALPHA6.7 Km s(-1) 
C 

IF (D.GT.24.) CKr12. 
IF (D.GT.24.) Cr1 1427. 
IF(D.LE.24.0.AND.D.GT.1.07) CKr8.618 
IF(D.LE.214.0.AND.D.GT.1.07) Cr1278. 
IF(D.L.E.1.07) CKr2.554 
IF(D.LE.1.07) Cr851.9 
RETURN 
END 

(.A) 

OD 



APPENDIX 2 

MATHEMATICAL DERIVATIONS OF 

SOME TEXT EQUATIONS 



Appendix 2A Derivation of equation 3.5 

Differentiating equations (3.1) to (3.4) in turn with respect to 

the probability density we are trying to find - p(m) - gives 

(i) 

o(1) 
0 

op 

(A) 

Op 	f 	nidinO  = 
In 

c 
(A) 

=  Op 	 0 f 	M (in) din = 0 . 	 (iv) 
in 

C 

<m> and <M> are constant averages, so their derivatives are 

zero. Similarly we wish to maximise the entropy S so that 

OS/Op = 0. Thus we can sum all of the quantities together to give 

a net zero. 

6S=6(1)+6<m>+6<M0>=0 
	

(v) 

Since all the individual terms equal zero we can introduce the 

Lagrangian undetermined multipliers X,  X, and X2and  the sum will 

still be zero. 

—Os + X o  6(1) + X 1  6<in> + X2  6<M 0> = 0 
	

(vi) 

or alternatively 

(A) 

f 	{(n p + 1) 5p + XOp + X1 m'6P + X 2  M(m) op} din = 0 . (vii) 

mc 
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This last equation can only hold where the term under the integral 

is zero for all in, so 

(yj p + 1) + x + 	in + X2  M(m) 	0 , 	 (viii) 

and finally this can be rearranged to give 

p(m) = exp 1-1 - 	- 	m - X2 M(m)} . 	 (ix) 

This is almost the same as equation (3.5) except for the 

normalising term Z = exp (1+X 0 ). 

Putting this form of p into the normalising equation (3.2) 

gives 

U) 

exp { -1 - x 0 1 5' exp {-x 1  in - x2  M(m)} dm = 1, 	 (x) 
in 
c 

so if z = exp {i + x 0 1 as in the denominator of equation.(3.5) then 

Z also has the form of equation (3.6) from (x). 

Appendix 23 Derivation of equation (3.7) 

By differentiating equation (3.3) and (3.4) wrt. X, and 

respectively we have 

U) 
I m  ap 	din = ô<m> 	 (i) 
in 	 I 

C 

M (in) 	din =  
0 in 	 I 

c 

A40 



with p = exp - X1in - '2 M(m)}/Z  

Z =exp 
{- 

xm 	X2 M(m)} din , 	 (iv) 

as in the text. 

Now consider differentiating Z wrt. X, and X20 

az 	= 7 	{exp (-X 1m)}. exp {-x2 M(m)} din 

C 

(A) 

= 5 - in exp {-X1m - X2  M0 (in)} din 
in 

C 

or 

- 	 —<ni>Z , 	 (v) 
ox1 

after comparison with (3.3), using (iii) and (iv). Similarly 

oz 
- = —<M>Z. 	 (vi) 
0X2 	0 

Now consider differentiating In Z (X1, x2 ) using the chain rule 

o(Inz) 	1 OZ 
___ = 	- 	 ( vii) 

ox 1 	z ox 1  

o(LnZ) 	1 oZ 
(viii) 

ox2 	z ox2 
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and using (v) and (vi) gives equation (3.7) directly. 
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APPENDIX 4 

DISPERSION CHARACTERISTICS AND 

THE GROUP VELOCITY WINDOW 



Not all of the seismograms were as easy to interpret as the example 

given in fig 4.4, where the group velocity windows 4 < U < 2.5 km 

s proved to be compatible with an obvious influx and decay of 

long period surface wave energy. Consider, for example, the 

seismogram at the top of fig 4A. 

In this part of the diagram the horizontal scale has been 

changed from time T to group velocity U by U = R/T, where R is the 

epicentral distance. By eye it is not obvious exactly where the 

energy in the period range. 30-70s comes in. 

One way of checking this is to draw the diagram in the lower 

half of the figure, which plots the signal content as contours in 

decibels on a two dimensional grid with group velocity on the 

horizontal axis and frequency on the vertical axis. Again this 

matrix (called the E-matrix) is drawn by the programme TSAP 

developed in Burton (1973). Note that the signal has been 

corrected for the instrument response before drawing the diagram. 

It is not easy to pick the surface wave arrival too well here 

by eye, but a time window can be chosen with reference to a ridge 

in the contours of the signal content picked out by the dotted 

line. With the exception of using frequency rather than period, 

this ridge crest corresponds to the dièpersion line drawn on the 

graph of fig 4B, which can be compared to the dispersion curve for 

southeastern Europe, fig 4.5 in the main text. 

Horizontal lines at 14 mHz and 34 mHz correspond to the period 

range of interest (30-70s), and the vertical lines at 4 kms 1  and 

2.95 kms 1  adequately cover this dispersion ridge without including 

spurious effects such as the possibility of noise at lower 

frequencies in this case. 
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Figure 4A The E matrix for event E, at station GDH (Godhavn, 
Greenland) 
A two dimensional plot of signal content in frequency and velocity 
space (called the E matrix). The dispersion line is drawn on the 
crest of a ridge on this contour plot by the dotted line. Because 
the contours are in decibels nearly all of the signal is close to 
this ridge. In this case the time window defined by group 
velocities at 4km s and 2.95km s_ i  adequately cover the periods 
of interest between 30 and 70s. 
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Figure 4B Dispersion characteristics. 
This diagram plots the ridge outlined on fig 4A, to allow 
comparison with a 'typical' dispersion curve such as fig 4.14. The 
azimuthal path for this recording at southern Greenland is 
predominantly continental. 
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Summary. Seismic moment release rates A 0  inferred from a Weibull 
frequency—magnitude distribution and its extreme value equivalent are 
compared with observation. The seismotectonically diverse regions studied 
all exhibit the curvature of a log-linear frequency magnitude plot associated 
with applying a maximum magnitude to earthquake recurrence statistics. 
The inferred seismic moment release rates are consistent with available crustal 
deformation data within uncertainties resulting from the line fit and in magni-
tude determination. The uncertainties for the regions studied (Southern 
California, the New Madrid seismic zone, the Central and Eastern Mediter-
ranean and mainland UK) vary from at worst an order of magnitude down to 
a factor of 2 or 3. 

This agreement can be used to justify the extrapolation of frequency-
magnitude statistics beyond the historical and instrumental era in seismic 
hazard studies as a test of the stationarity of short-term statistics against 
long-term effects. 

A striking example of a bimodal seismicity distribution is observed in the 
New Madrid zone. This can be interpreted as being due to the superposition 
of two distinct seismogenic source types observed in the area. A quantitative 
analysis of the separate orders of seismicity observed in the frequency-
magnitude statistics - comparing the different maximum magnitudes and 
inferred seismic moment release rates with those observed - supports this 
hypothesis. Superposition of many such seismogenic sources can explain 
the linearity observed in global frequency versus seismic moment magnitude 
statistics. 

Introduction 

The incorporation of crustal deformation into analyses of seismic hazard has given useful 
insight into probabilities of the largest events associated with long time periods. By linking 
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the observed statistical magnitude occurrence with a physical parameter - seismic 
moment - a means is provided to test an extrapolation from short-term historical and 
instrumental reports against an average of crustal deformation observed over geological time. 
Examples of observed deformation would come from plate tectonic models, from observed 
rates of slip along faults which break the surface, or from geodetically determined strain 
rates in more complex tectonic regions. Some knowledge of the dimensions of the fault zone 
(extent and depth) and appropriate elastic constants are required to convert slip or strain 
rates to seismic moment. This information also places deterministic constraints on an 
important parameter in any seismicity distribution - the largest earthquake consistent with 
the finite breaking strength of the Earth and the finite extent of the fault zone. 

In previous work on this subject (e.g. Anderson 1979; Papastamatiou 1980) this largest 
earthquake specifies a truncation of the two parametered Gutenberg—Richter frequency 
relation (equation 2 below) in order to avoid problems such as an infinite rate of strain 
energy release (Knopoff & Kagan 1977). This effectively introduces a third parameter to the 
assessment of seismic hazard, and is consistent with the simple geometric seismicity model 
of Kanamori & Anderson (1975). 

A more complex model of seismicity (Caputo 1977), which includes the effect of variable 
and limited stress drop as well as source dimension shows that such arbitrary and sudden 
truncation is not physically valid, and rather that we might expect a gradual roll-off both in 
the number density and the cumulative frequency asymptotic to a maximum earthquake at 
zero probability. (Incidentally the model also requires a similar roll-off at very small 
magnitudes.) This roll-off appears as curvature 6n a log-linear frequency—magnitude plot. 
For the cumulative form, such curvature has been observed in the laboratory by Burridge 
& Knopoff (1967) and King (1975) for earthquake models, and also in a theoretical model 
by Kuznetsova, Shumilana & Zavialov (1981), which considered inhomogeneities along a 
fault. This behaviour has already been observed in seismicity distributions around the 
world - for example by Botti, Pasquale & Anghinolfi (1980) in the Western Alps, Burton 
et al. (1982) in Turkey, Makjanik (1980) in Yugoslavia, Makropoulos (1978) in Greece and 
by Cosentino & Luzio (1976). There is also experimental evidence that the distribution of 
microfracture events in stressed San Marco gabbro also shows curvature asymptotic to a 
maximum size at low frequencies (Scholz 1968). Analogous curved distributions have been 
observed elsewhere in nature, for example in the yield strength and fatigue life of steel 
(Weibull 1951), and are commonly used in meteorological analysis (Jenkinson 1955). 

The Weibull distribution can be usefully extended to analyse preferentially the largest 
events associated with curvature because of its simple form. The largest events in this case 
consist of a subset of the frequency distribution - namely the largest value in any unit time 
interval. This distribution of extreme values has been used in seismic hazard analysis (Burton 
1979) and also in order to assign a maximum magnitude to events on a global basis (Yegulalp 
& Kuo 1974). There follows a discussion on crustal deformation compatible with curvature 
in both the cumulative frequency distribution and that of the extreme values, with appli-
cation to different tectonic regimes. 

Curved cumulative frequency distributions 

The most commonly used seismicity distribution is the log-linear Gutenberg—Richter law 

logN(x > m)a—bm 
	

(I) 

where N is the number of times a magnitude m is equalled or exceeded and a and b are 

regionally varying positive constants. (The symbol m is used in the theoretical discussion for 
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a general magnitude in order to avoid confusion with the seismic moment M0 . Elsewhere 

ML, M, M,J and mb have their usual meanings.) b is commonly observed to be close to 1 
in accordance with the geometrical model of Kanamori & Anderson (1975). If we define 
a number density distribution n = —dN/dm and rearrange (1) then 

'bIn 10 
n(m)pexp(—b'm); 

b 	
(2) 

p=b 10 a 
 

Caputo's (1977) model introduces a third parameter to the distribution at high magni-
tudes, above m 2  say, and defines a maximum value for m via the relation 

n(m) = p exp(—b'm) - q 	 (3) 

where p, b' and q can be related to constants specifying the distribution of fault dimension 
and stress drop, and to maximum values of these parameters. The model also indicates that 
b 1. Equation (3) is therefore a simple generalization of (2), or we can regard (2) as the 
limit in which q - 0 or the equivalent maximum magnitude (w) tends to infinity, since 

q = p exp(—b'). 
Jenkinson's (1955) general solution for a cumulative frequency distribution related to 

the extreme values takes the form 

N(x > m) = .[( - m)/(w - u)]'' 

and is equivalent to the Weibull distribution for positive, non-zero X. w is the maximum 
magnitude, u < w is a characteristic value associated with unit time, and X < I is a measure 
of the curvature of the distribution. As X - 0 (4) reduces to the form (1) (Gumbel 1958). This 
form of the distribution in (4) is chosen as the most convenient for the present work. In 
both cases curvature in N and n asymptotic to a maximum value is reflected by three para-
meters, rather than the two of(1). 

An alternative attempt to limit the distribution is to define N(m) = 0 at a finite maximum 
magnitude, given a normalized form of(2). The form, after Cosentino & Luzio (1976) is the 
truncated Gutenberg—Richter law 

exp(—b'm) - exp(—b'w) 

exp(—b'u) - exp(—b'w) 	
(5) 

where w and u are defined as in the Jenkinson notation and b' = b In 10. In this case the 
number density distribution n(m) is not curved although the cumulative frequency is 
(Bath 1981a), so there is a philosophical difference between (5) and the forms (3) and 
(4). Finally, the effects of both a lower and an upper bound to earthquake occurrence can 
be combined in the single equation 

P(m)(l—K)+Kexp[b'(m—m o)] 	 (6) 

where P is the fraction of earthquakes greater than m, K is (1 - exp [—b'(w - m 0)] 
} ' 

and m 0 , w are lower and upper bounds to the seismicity distribution (Cornell & Vanmarcke 
1969). Normally the effects of a lower bound on earthquake statistics are negligible and can 
be safely ignored. The relationship of this form of the seismicity distribution to crustal 
defoirnation rates was analysed by Papastamatiou (1980) directly in terms of seismic 
moment. 

In summary, the inclusion of a third parameter which limits the seismicity distribution 
gives a more general form than the open-ended Gutenberg—Richter law, and in a form in 
common use outside seismology. The main parameterizations are outlined above,although 



472 	I. G. Main and P. W. Burton 

others are possible, but in the present work the form used will be that of (4), because this 
form allows us to compare both the initial distribution (N) and the extreme value distri-
bution (F) discussed below. 

Extreme value distributions 

The theory of extreme values has been covered extensively by Gumbel (1958). For our 
purpose the most important relation is 

P(x < m) = exp [—N(x m)] 	 (7) 

where P is a probability of non-exceedance in unit time of a magnitude m - or alternatively 
that m is an extreme value. This relation follows from a Poissonian assumption that different 
events are, unrelated, in the limit as the total number of events analysed - 00• A derivation of 
the form of N (and hence P) consistent with certain assumptions pertinent to the extreme 
values gave equation (4). The form of this distribution which reflects an upper bounded 
magnitude is defined as Gumbel's third distribution of extreme values: 

P(x < m) = exp {- [(w—m)/(w—u)] 1/X} 	 (8) 

where 0 < X < 1, u < w as for the Weibull distribution. 
Knopoff & Kagan (1977) have objected to the use of extreme value statistics of the first 

type (related to equation 1) because methods which analyse the whole data set in this case 
generally give more accurate results in earthquake statistics. However, the curvature consis-
tent with Caputo's physical model is usually emphasized to a greater degree in the extreme 
value case for a type three distribution because it deals preferentially with the largest events 
where such curvature is to be expected. Gumbel's third distribution of extreme values may 
well be the best available method of extrapolating to earthquake occurrence at low proba-
bilities from an existing catalogue of events, particularly when it is incomplete, although 
where possible the predictions should be checked against known physical parameters such 
as slip rate. The theoretical means of carrying this out is derived in the net section. 

Crustal deformation 

The measure of cmstal deformation is taken to be the seismic moment M0 . This can be 
related to slip rates () on individual faults, or strain rates (e) over a more diffuse area by the 
equations 

M0 =jiA 	 (9) 

M0 =2.5jiVè 	 (10) 

where .z is the rigidity modulus, A is the area of slip and V is the crustal volume of the zone 
of deformation. Equation (10) is derived in Papastamatiou (1980). 

Two models are used to estimate the rate of crustal deformation, following from (I) the 
cumulative frequency of occurrence (whole process) and (II) from the extreme value 
probabilities (part process). 

MODEL I 

An average value for the rate of release of seismic moment is given by integration over the 
range (0, M0 ) where Mow  is the largest moment which might be released in a single event 
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for a particular region 

Mo J 	Mo n(Mo)dMo  
0 

(11) 

,n(Mo) dM0  is the number of earthquakes occurring in an interval dM0  per unit time with 

n = —dN/dM 0 . N is given by the cumulative frequency relationship, but is normally 
expressed in terms of magnitude, since moment is still a fairly rare observational parameter. 
To convert between the two we may use the relationship 

Mo (m )=10A+Bm 	 (12) 

where B = 3/2 for the M scale follows from Kanamori & Anderson's (1975) theoretical 
considerations on fault geometry as well as from empirical fits to available data. The most 
recent work on this conversion from seismic moment, M0 , to seismic moment magnitude, 

M, indicates the following values for A and related stress drops a: 

interplate events = 16.1, Au= 30 bar 

intraplate events = 15.7, Au = 76 bar 

average value = 15.85, Aa = 52 bar 

California = 15.83 

(from Singh & Havskov 1980). 
By an appropriate change of variables, and using (4) to define n(m) = —dN/dm, it can be 

shown from (11) and (12) that 

- - M0F(I + 1/X) 
M0 — 	 ( 13) 

- u)] 1  

where M0  and u are expressed per unit time interval, and 0 = B In 10. F is the usual symbol 
for the Gamma function. 

MODEL II 

Forming a probabilistic expectation value 

(M0  ) = fo

M0 

M0  p (M0) dM0 	 (14) 
 

where 

f
M

P(XM o) 	p(X)dX 
0 

is the extreme value distribution following from the normalized probability density p. After 
a suitable change of variables involving (8) and (12) 

(Mo >Mooif exp[-3(w—u)(—lnxidx. 	 (15) 

In the present work this equation is evaluated numerically. 
Thus in both models the seismic moment release per unit time interval is expressed as a 

fraction of the maximum moment Mow,  for all values of (w, u, X) consistent with a 
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Gumbel's third extreme value distribution and its initial Weibull distribution. We can also 
show that (M0  )/M0  < 1 for appropriate values of the parameters and if (7) holds. 

In evaluating parameters of the distribution (8) the unit time interval must sometimes be 
taken to be i yr rather than annually, in order to reduce problems associated with intervals 
devoid of any recorded events. If this is the case u and X are appropriate for this scale, and 
we can convert to annual rates via 

(M0 )1 =i(A10 > 1 	 (16) 

where (MO )i  is the seismic moment released per i yr. 
(13) and (15) then define the rate of release of seismic moment in terms of the 

statistically determined parameters (w, u, X) - the link to the physical process of strain or 
slip rates being represented by the terms Mo and 

UNCERTAINTIES IN M0 , ( Al0) AND M0 

Because (ce., u, X) are subject to (often large) statistical error we have to allow for this in 
predictions of M0 . This can be done by the equation 

- 	 a2(nl>M0) 	1/2 
((M0),M0)= 	 4 	 (17) 

il j=l 	aP1aP/ 	) 

which represents a complete covariance error in (A 0 ) and M0  respectively. Pij  takes on 
values (w, u, X) and crq  is the statistically determined covariance error in these parameters. 
The covariance matrix € is defined by 

0.2 
otu 	02 1

\ 
Olu 	U2 X ) 	 ( 18) 

(Crxw 	du 	aJ 

as in Burton (1979). This is the most complete method of allowing for error, because in 
general the parameters w and X are dependent on each other. A large w leads to less curva-
ture (lower A) and vice versa. This manifests itself in a negative contribution from a, x 
or a reduction in the error compared to the variance method (a sum of the diagonal elements 
a). 

The uncertainty in w is often unusually large (Burton 1979), and in many cases may be 
reduced where limitations on stress drop (usually in the range 1 < A o < 100 bar), fault 
dimension and fault type place an upper bound on Mow  through the general expression 

M0  = CA Umax  'ax 	 (19) 

where C is a dimensionless constant which depends on the type of fault, and 'max is the 
maximum fault dimension (Kanamori & Anderson 1975). Alternatively we may use this 
value to compare M0  obtained by 1max and  Aumax  with statistically determined values of 
w via (12). 

Saturation 

It is well known that curvature of the form (3), (4) or (5) may be artificially present for 
magnitudes above Ms = 7.5 to 8.0 because of instrumental saturation of the magnitude 
scale (Howell 1981). Chinnery & North (1975) have shown that when M5  values are 
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Figure 1. (b) Tectonic setting of the area around the New Madrid seismic zone (after Zoback et ci. 1980), 
showing microearthquake epicentres (dots), locations of seismic profiles (e.g. S-7) and principal faults 
inferred from the data. The continuous heavy black lines are rift boundaries, and igneous plutons are 
represented by the hatched areas. There are three main seismicity trends: (1) a 100km long stretch 
running SW—NE from the SW corner, (2) a section running SSE—NNW at the terminus of (1), and (3) 
the smallest trend SW—NE near New Madrid. Copyright 1980 by the American Association for the 
Advancement of Science. 

corrected to what is, in effect, Kanamori's (1978) M on a global level then (1) is the best 
description of world seismicity, but concede that there are no convincing theoretical argu-
ments for such linearity. There are, moreover, several examples of non-linearity below the 
threshold of curvature due to instrumental saturation when events on a more local scale are 
grouped together as well as a solid body of theoretical and experimental backing for such 
behaviour (for references see the Introduction). It may well be that the linearity observed 
on a global scale is due to the superposition of many curved distributions. For example 
Duda (1965) and Makropoulos (1978) found a poor fit to (1) and (8) respectively for the 
Aleutians—Alaska arc. Bath (1981b) and Singh, Rodriguez & Esteva (1983) have also 
observed such behaviour in Turkey and Mexico. A further example is cited in this paper. 
In many cases the superposition of two or more earthquake populations offer a plausible 
explanation for this apparently anomalous behaviour. 

For this reason care has been taken in the following section to investigate any possible 
curvature which may result from such instrumental saturation. In effect, this would amount 
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to using Chinnery & North's (1975) empirical method for converting from Ms to a seismic 
moment magnitude, M - a much more meaningful description of the 'size' of the seismic 
source. For the areas considered in the present work this turns out to be unnecessary. 

It is not even clear that such correction is always appropriate, since Kanamori's (1977) 
tabulation of Ms/Mw  for large events shows that Ms is commonly greater than M for 
large events - the opposite effect of that of saturation. This anomaly may be ironed out as 
more data become available, but can be partially included in the method of line fitting by 
assuming an uncertainty in each magnitude value of the same order as any saturation 
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Figure 2. Completeness testing. (a) The Central and Eastern Mediterranean. The roughly Constant 
frequency of events in the range (4.6, 5.5) since 1920 or so, compared to the sudden jump in the range, 
(3.6, 4.5) around 1963 indicates that the former is complete for the time span analysed (1943-1971). 
(b) Southern California. Again the roughly constant frequency of events in (4.0, 4.9) indicates a 
completeness threshold of 4.0. 
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correction. In the present work this value is taken to be ±0.5 of a magnitude unit, which 
includes estimates of measuring uncertainty, conversion to seismic moment as well as 
possible saturation effects in the final value ofM 0 . 

Results and discussion 

Empirical line fits to establish M0(w, u, X, A, B) were attempted for four diverse tectonic 
regions: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c) 
Southern California, and (d) mainland UK. The results are summarized in Tables 1 and 2 and 
in Figs 1-4. This section investigates in detail the areas tentatively assessed in Main & 
Burton (1981). 

(a) THE CENTRAL AND EASTERN MEDITERRANEAN (32 ° -48 ° N, 4 ° -36 ° E) 

North (1977) has tabulated seismic moment values for this area of diffuse, plate boundary 
seismicity. From his table 4 the total seismic moment released in this area for the period 
1943-1971 was 70x 1026  dyne cm or a rate M0 = 24x 1025  dyne cm yr'. A more complete 
picture from 1963-1970 (his table 1) gives a rate 46 x 1025  dyne cm yr' which may be 
regarded as a minimum value. 
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A seismicity map of the area concerned is given in Fig. 1(a) and an excellent summary of 
the complex geo-tectonic setting is given in Horvath & Berckhemer (1982). The histograms 
of Fig. 2(a) show that the catalogue used (Burton 1978) is complete for the time range 
analysed (1943-1971) above mag 4.5. The range (3.6, 4.5) is not complete - as can be 
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Figure 3. Cumulative frequency line fits to the distribution N(m) = [(Li - 	- u)l ° '. The parameters 
and their covariance error matrices are given in Table 1. (a) The Central and Eastern Mediterranean. In 
this case there seems to be a high autocorrelation error - there being a systematic trend in the positioning 
of the data points relative to the line. It would be difficult to justify a linear fit of the form (1) in this 
case, the curvature being so marked at high magnitudes. (b) The New Madrid area. Here the most success-
ful fit was obtained by splitting the magnitude range into two segments - above and below 5, and fitting 
the line separately. The New Madrid events were repositioned at average repeat times T = 650 years 
(N = lIT). (c) Southern California. In this case the line fit seriously underestimates the occurrence rate of 
the largest events which have occurred. A line fit of the form (1) would in this case give a better fit at 
these magnitudes, but again there seems to be some evidence of a bimodal distribution, the ranges meeting 
atMLN 6.7 or so. 
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Figure 4. Extreme value line fits to the distribution P = exp {- [(w - 	- U)] 
Ii X} The parameters and 

their covariance error matrices are given in Table 2. (a) The Central and Eastern Mediterranean. Curvature 
and a maximum magnitude are well established. (b) The New Madrid area. The line fit is effectively 
straight - implying a moment release rate which is deterministically several orders of magnitude too high. 
A bimodal distribution as in Fig. 3(b) is apparent, but in this case the data could not be separated into the 
two portions successfully, because of their scarcity in the higher range. (c) Southern California. The 
curvature is enhanced compared to Fig. 3(c), but again the occurrence of the largest magnitudes is under-
estimated. The ringed data point has been inferred from Sieh's (1978) work which indicates Ms = 8.25 

and T = 163 yr, with P = 1-1IT. 
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Table 1. Moment release rates predicted by cumulative frequency line fits to N(m) = [(w - m)/( 	- u)]" (model I and Fig. 3). 

Area* 	 Parameters Covariance error Local values M 0  (w, u, X, A, B) M0  observed or estimated 

(,u, X) matrix € forA, B Xlo 2 sdynecmyrl xlO 25 dynecmyr' 

(8.16, 6.80, 0.855 —0.031 —0.119 

0.251) —0.031 0.018 0.008 16.0 	1.5 87 + 110 46 

M5  —0.119 0.008 0.018 —48 	- 

Range 	(7.81, —23.4, 1.43 71.1 —0.752 

(5.0, 7.5) 	0.680) 71.1 4179.0 —42.5 15.58 	1.5 1.2 + 12 '0.6 

—0.752 —42.5 0.437 —1.1 

(b) 	Range 	(5.61, 3.63, 1.00 —0.084 —0.154 

(2.5,5.0) 	0.263) —0.084 0.019 0.015 15.58 	1.5 4.0 + 23.5 104_102 

m —0.154 0.015 0.025 —3.4 
(x10 4 ) 

(9.26, 6.00, 9.54 —0.304 —0.340 14 

0.126) —0.304 0.026 0.012 15.83 	1.5 8 + 26 16 

M5JML —0.340 0.012 0.012 —6 

* Areas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, and (c) Southern California. 

t Refer to text for mb/MS  conversion. 

C.' 
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Table 2. Moment release rates predicted by extreme value line fits to P(m) = exp [—(w - m)/( 	—u)]' A  (model 11 and Fig. 4). 

Area* 	 Parameters Covariance error Local values M0  (w, u, x, A, B) M0  observed or estimated 
(w,u,X) matrixc forA,B X10 25 dynecmyr X10 25 dynecmyr 

(7.84, 6.64, 0.484 —0.044 —0.200 14. 

0.435) —0.044 0.014 0.021 16.0 	1.5 43 + 26 46 
Ib 

M5  —0.200 0.021 0.093 —16 
bo 

Range 	(19.4, 3.36, 1123.00 2.54 —3.20 
(3.0, 7.5) 	0.042) 2.54 0:01 .3 —0.007 15.58 	1.5 - 0.6 

—3.20 —0.007 0.009 

(C) 	 (9.11, 5.46, 3.70 —0.062 —0.219 
0.182) —0.062 0.008 0.004 15.83 	1.5 8.5 + 16.2 16 
Ms/ML —0.219 0.004 0.013 —5.6 

(d) 	 (5.46, 4.58, 0.190 —0.026 —0.134 
0.59) —0.026 0.015 0.026 15.7 	1.5 2.2 + 1.0 34 

—0.134 0.026 0.113 —0.7 (X10 3 ) 

(X10 3 ) 

*Aleas are: (a) the Central and Eastern Mediterranean, (b) the New Madrid seismic zone, (c) Southern California, and (d) mainland UK. 
t Refer to text for mb/MS conversion. 
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inferred from the sudden jump in the number of events reported on introduction of the 
WWSSN network in 1963. Fig. 3(a) shows the cumulative frequency line fit to these data 
and Fig. 4(a) the Gumbel plot, both of whose parameters were calculated using the method 
described in Burton (1979). The parameters and covariance errors (which include an 
allowance for ±0.5 uncertainty in the magnitude measurement) can be seen in Tables I and 
2. Note that in some cases the actual values of (w, u, X) for N and P differ slightly as 

expected by Makjanik (1980). 
To convert to moment release rates we refer to North's table 4 again, where we find for 

this area that an average stress drop is 38 bar. This converts to A = 16.0 using Singh & 

Havskov's (1980) formulation, and with B = 1.5 leads to a good linear fit to North's (1974) 
fig. 4, right up to the highest magnitudes. This last point indicates that there appears to be 
no instrumental saturation effect. 

Both predictions of the moment release rates agree with that expected to within a factor 
2 or so, which is in both cases within the expected uncertainty. This consistency, where we 
have reasonable error in (w, u, A) and some knowledge of a local stress drop or A value 
shows that the model proposed is quantitatively adequate well within the limits of statistical 
uncertainty. 

Further inspection of this uncertainty shows the following relative effects of the three 
Gumbel parameters 

3(11 0 ) 	a(A 0 ) 	ai0) 
: 	: 	=1.3:1:1.8 

a 	 ax  

a(M0 ) 	a(M0 ) 	a(M0 ) 
- 	: 	ax =7.7:l:l4.7. 

	

au 	ax 

This result shows that u is the best-determined parameter and that w and A have a dominant 
effect on the total uncertainty in this case. This effect is tempered by their interdependence 
already discussed above, and highlights the need to include the off- diagonal elements of the 
covariance error matrix in any attempt to quantify an error in (M0 ). 

Fin ally, note from the tables that the error in (M0 ) is less than that for M0  (60 per cent 
compared with 126 per cent). 

The comments of the last three paragraphs were all found to apply qualitatively to the 
following areas of study, the actual values being quoted in this subsection for illustration 
only. 

(b) THE NEW MADRID SEISMIC ZONE (35 ° -37 ° N, 89 ° _90.5 ° W) 

This area of mid-plate seismicity has received much attention in recent years for reasons 
both practical and theoretical. Zoback et al. (1980) summarized the available geological and 
geophysical data, and concluded that the area consists of three main seismic trends (see 
Fig. I b), set in a reactivated graben structure. Why the seismicity should largely follow the 
axis of the graben is not clear. 

Practical interest is stimulated by the possibility of a repeat of the 1811-1812 sequence 
of major events (mb 7.1-7.4) in an area of relatively low seismic attenuation and high 
population density, and theoretical interest comes from the breakdown of the classical 
theory of rigid plate tectonics. Because the seismicity trends are situated in a zone primarily 
of EW compression (Zoback & Zoback 1980) we would expect right lateral strike-slip 
motion along the trends (1) and (3) of Fig. 2(b) and thrust on section (2). Russ (1981) 
showed that this is borne out to a large extent by the few fault plane solutions available, and 
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that section (2) may result from reactivated dip-slip faulting. Together with Schilt & 
Reiinger (1981), he also indicates that such evidence as there is favours 5mm yr' of uplift 
occurring in and around the northern part of the active zone. There is some evidence that 
some of this motion is taken up by aseismic creep since earthquakes in Schilt & Reilinger 
(1981) did not produce enough movement to account for all of the uplift detected in a later 
levelling survey. 

The catalogues analysed are described by Nuttli (1979) and Johnston (198 1 ) quoting mb 
values inferred from macroseismic intensities and recent microseismic data, so there are no 
problems associated with instrumental saturation. All events from Johnston's (1981) data 
set for mb > 2.5 were included in the analysis. The most successful line fit came from 
considering the range (2.5, 5.0) and (5.0, 7.5) separately as in Fig. 3(b), which plots the 
superposition of these two separate distributions. There may also be a third component in 
the range of (1.6, 2.5). This superposition can also be seen in the extreme value case 
(Fig. 4b), but due to the scarcity of data in the higher portion the two ranges cannot be 
separated. In this case the line fit is effectively straight, even though systematic bimodal 
curvature is evident from the figure. For this reason no realistic M0  could be obtained with 
the impossibly high value of w obtained in Table 2(b). 

In arriving at the entries in Table 1(b) forM 0  the magnitude conversions 

M = 1.59mb —3.97 	6.5 <M < 8.0 	 (20) 

M = 1.93 mb —4.8 	4.0 <M <6.0 	 (21) 

from results summarized in Marshall (1970) were used to match the ranges above and below 
5.0 respectively. There is some evidence that the stress drops in this area are relatively high, 
so a value zu = 100 bar was chosen to define A via Singh & Havskov's (1980) formulation. 
Considering the large error involved in converting from epicentral intensities 4 to mb 
(Burton, Main & Long 1983) and then to Ms it is not surprising that the final error quoted 
in M0  is as high as a factor 10 or so. 

In Fig. 3(b) for the range mb > 5.0 the largest events (mb > 7) were moved to positions 
consistent with average repeat times of 650 years (Russ 1981). This gave agreement within 
a factor 2 with the estimated moment release rate from three fault areas modelled as one 
fault 20km deep (Nuttli & Herrmann 1978) by 200 km long moving at 0.5cm yC 1 , if 
1.1=3 xlO 1 ' dyne cm 2 . 

For the range (2.5, 5.0), using a circular fault model (Kanamori & Anderson 1975) the 
maximum fault size (for w = 5.6) was found to be 150km 2, with 9 x 10 2 mm yC1 . 

This typical movement on what are supposed to be a collection of several subsidiary faults 
compares favourably with that observed on one such fault (- 1.2 x 10 2 mm yC 1  from 
Zoback et at 1980) on the Cottonwood Grove fault. We can see that the seismicity 
represented by the range (2.5, 5.0) contributes only a minor fraction of the stress release. 

The conclusion here is that bumps in the cumulative frequency distribution have been 
numerically related to the superposition of two different orders of observed faulting. 

(c). SOUTHERN CALIFORNIA (31 ° -38 ° N, 1 14.5 ° -121 ° W) 

This well-researched area of high seismicity on a plate boundary is very different from the 
previous example. It includes the site of the 1952 Kern Co event and the 1971 San 
Fernando earthquake, as well as the 400 km long 'locked zone' which previously ruptured 
in 1857 with an estimatedMs  of 8.25 or greater and an average repeat time of 163 yr 
(Siéh 1978). 
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The catalogue used was that of Hileman, Allen & Nordquist (1973), whose publication 
also gives excellent maps of the seismicity and the tectonic setting. The analysis of Fig. 2(b) 
shows that for the period concerned (1932-1972) magnitudes above 4.0 or so are com-
pletely reported. 

Anderson (1979) indicated a moment release rate of 12 x 1025  dyne cm yr for a 500 km 
long fault, but this catalogue contains a 650 km stretch of the San Andreas fault and its 
offshoots, so M0  16 x 1025  dyne cm yr' may be more appropriate. These figures assume a 
depth of the brittle zone of 15km and p 3 x 1011  dyne cm 2, with a movement from plate 
tectonic constraints of 5.5 cm yr'. Since the movement on surface faults is of the order 
1-3.7cm yr' the deformation must taken place in a broad zone around the main fault 
trend. 

Fitting the Weibull distribution to the data proved to be unsuccessful above magnitude 
6.7 (Fig. 3c). The line fit seems to follow curvature apparent in the range (4.0, 6.7) and 
seriously underestimates the occurrence of the highest magnitudes. It may be that the 
activity above 6.7 is a separate distribution as in the New Madrid area, but with only three 
or four data points this cannot be tested from the current catalogue. Singh & Havskov 

(1980) give A = 15.83 for this area, which implies a moment release rate of the right order 
only at the expense of allowing a value for w of 9.3 - one magnitude higher than Sieh's 
(1978) deterministic estimate. 

Hanks, Hileman & Thatcher (1975) indicate that M0  for the Kern Co (1952) event was 
200 x 1025  dyne cm and Ms = 7.7. Using A = 15.83, we find M = 7.65 so there are no 
grounds for supposing instrumental saturation is important. 

The extreme value line fit (Fig. 4c) gives a similar value for w, but u is significantly 
different (even considering its error). Curvature does seem to be enhanced by this method 
(higher value for X) but once more there is a poor fit at the highest magnitudes and the 
possibility of two separate curved distributions is evident. The ringed data point is inferred 
from Sieh's (1978) estimates of Ms and the average repeat time T, with T= 11(1—F). As in 
sections (a) and (b) the moment release rates inferred from the line fit are in agreement with 
those observed within a factor less than the estimated uncertainty (a factor of 2, cf. 3 or 4) 
but in this case it is evident that the parameters of the line fit may be significantly improved 
upon. 

(d) MAINLAND UK 

This area of relatively low intraplate seismicity differs from the New Madrid area in that no 
catastrophic events are documented in historical times. Burton (1981) analysed the area in 
terms of the third distribution of extreme values and produced the (w, u, X) set in Table 
2(d). The unit time for this set was 6 yr. The mb/MS  relation (21) is thought appropriate 
because of the typical range of events. 

Using equation (12) M0 = 2.0 x 1024  dyne cm for A = 15.7 for an intraplate area, and if 
we model this as a circular fault via (19) the maximum fault area would be 350 km 2  
for a corresponding typical stress drop of 76 bar. Since (M0 ) = 2.2 x 1022  dyne cm yC' 
and p = 3 x 1011  dyne cm 2 , a typical fault movement of 0.2 mm yr is expected. 

Unfortunately there is very little direct tectonic information as yet on UK seismicity. 
However, King's (1980) results showed that the fault area for the Carlisle event of 1979 
December 26 was of the order of 40 km 2  for an event of mb 5.0. Very little information 
exists on contemporary fault movement rates, although some unconfirmed evidence of 
surface movement directly following glacial unloading does exist (Sissons & Cornish 1982). 
The thrust mechanism of the Carlisle event (King 1980), and the strike-slip solution for the 
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Kintail earthquake swarm of 1974 (Assumcao 1981) are both compatible with compressive 
intraplate tectonics. 

King (1980) assumes za = 30 bar might be appropriate for the UK. In this case 
A =16.1, M0 =5.l3xl024 dynecm, the maximum fault area=1200km 2, i= 
0.06mm yr 1 . King's results are consistent in themselves, but if za = 30 bar, we should 
expect fault planes of an order higher than those which have been observed so far. A more 
realistic picture might be to interpret the maximum fault area as representing a sum of 
several smaller faults of the order of tens of km 2, moving at rates 0.1 mm yC'. This 
speculative interpretation is compatible with the spread of UK seismicity around small, 
localized centres such as at Comrie and in pockets in the north-west of England and South 
Wales, and the absence of catastrophic events such as in the New Madrid area. 

A deterministic estimate of the movement between the sinking south of England and the 
relative uplift consistent with glacial unloading of the north of England and Scotland is 
1.5mm yC 1  (Rossiter 1972). If the depth of the UK seismogenic zone is —5km, and its 
width is modelled as of the order 200km, then A 1000km 2  and M0  3.4 x 1023  dyne 
cm yC 1 . This area favours King's choice of Au and comparison of the values of M0  and 
(Mo ) indicate that over 90 per cent of the observed movement occurs aseismically. 

Conclusion 

In most cases where moment release rates were available the distributions N and P success-
fully modelled both the observed curvature at high magnitudes and the predicted moment 
release rates from models I and II. The exceptions tended to be in areas where there was 
evidence that the distribution was bimodal - being most striking in the New Madrid area 
(Fig. 4b). 

Careful quantitative comparison of MO ± 6M0  can be used as a method of distinguishing 
areas where the line fit is deficient at the higher magnitudes. Incorporation of deterministic 
values for the maximum magnitude (from seismicity trends or geological zoning), and 
geological estimates of their average repeat times will also improve the quality of the line 
fit at these magnitudes as better quality data become available. 

Typical uncertainties in M0  were found to be a factor of 2-4 or so, with the Gumbel 
estimates giving slightly lower uncertainties, and agreement within this range with observed 
moment release rates from (1) a short-term catalogue for an internal consistency check in 
the Mediterranean and (2) long-term geological estimates in Southern California is 
encouraging. 

A serious drawback of the distribution used is that n(w) = 0. For a cyclic input and 
release of strain energy we might expect n(w) to be some non-zero value, implying a repeat 
time T = 1 /N(m) which is not infinite as m - w. Work is currently progressing in this area to 
generalize (2) to allow curvature in the density distribution without requiring n(w) = 0. This 
will imply a less severe curvature at magnitudes just below w, and thereby offset the under-
estimation of observed occurrence rates to which the Weibull and Gumbel's third distri-
bution seems to be prone. 
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ABSTRACT 

A new frequency-magnitude relation consistent with an average magnitude 
(m) and an average seismic moment (M0 ) in the magnitude range (me, w) is 
derived using the principles of information theory. The resulting density distri-
bution n(m) dm = C expl–X1 m - X2MO(M)l dm can be interpreted as a Boltzmann 
distribution of possible energy transitions scaled by a geometric factor, depend-
ing on how such transitions may occur 'on a fault plane. It gives a better fit to 
available frequency data on the Central Mediterranean area than other distribu-
tions which can only successfully model part of the magnitude range. The 
technique offers a direct method of including long-term geological information 
from plate models or observed fault movement in order to extrapolate seismicity 
statistics beyond the instrumental and historical eras. This approach is found to 
be in reasonable agreement with southern Californian frequency data—the re-
sulting distribution being consistent with a geologically estimated recurrence 
time for the major events on the southern locked portion of the San Andreas 
fault. 

INTRODUCTION 
Great interest is currently being expressed in assigning probabilities to the 

occurrence of the large earthquakes which occur in response to the dynamic motion 
of the earth's crust over geological time scales. One obvious goal is to predict the 
time, place, and the size of an event at a given probability level, but the limited 
amount of data currently available and the lack of detailed understanding of 
earthquake mechanisms are likely to restrict wide application of reliable prediction 
to some time in the future. 

A second approach is to assess the probability 'of occurrence of the largest events 
and to predict their magnitudes in the light of the seismotectonic properties of the 
area under consideration. Knowledge of the' distribution and location of' past 
earthquake magnitudes may be linked to attenuation studies in order to predict 
maximum, or the most likely, ground motion to be expected at a given site some 
distance from the likely earthquake source. If there is good control on propagation 
effects from source to site—e.g., on local soil mechanics and site conditions as well 
as on attenuation of seismic energy—the study of the distribution of earthquakes 
can assign probabilities of ground shaking of use to a design engineer. 

One recent example of such an approach is to estimate the most probable 
earthquake which will affect a site within the region of interest. Burton et al. (1983) 
find that the maximum magnitude expected to occur in the Eastern United States 
is approximately 7.7, while the most likely to be felt at any given site, after inclusion 
of attenuation effects, is 6.5. These are macroseismic body wave magnitudes, which 
do not suffer from the instrumental saturation discussed more fully below (Nuttli, 
1983, personal communication). 

The nondeterministic nature of the latter approach necessitates the use of a 
probabilistic framework, but currently suffers from a lack of information at low 
frequencies of earthquake occurrence. The instrumental record of earthquakes only 
stretches back to the turn of the century, and we are often forced to use a subjective 
scale of reported earthquake damage in order to extend our knowledge to the 
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historically documentedperjod bfore then (Ambraseys, 1971). There is, however, 
a third source of information which gives direct evidence for the occurrence of the 
rare large events, on the right time scale. This is the geological field evidence for 
earthquake-related deformatin of the earth's crust. For example, Sieh (1978) dug 
into the San Andreas fault in California and uncovered field evidence in the recent 
sedimentation for eight previOus major events at irregular spacings averaging 163 
yr. More routinely, it is common for field geologists to record slip vectors on surface 
faults from stratigraphic and other evidence. The quaternary, geological record gives 
direct information on a fault's long-term behavior, which in many cases can be 
understood in the framework of plate tectonic theory. 

This paper will address the problem of incorporating such deterministic studies 
into the probabilistic assessment of seismic hazard evaluation in a direct way. The 
method used is the classic approach of information theory (also known as the 
maximum entropy method), which picks the most objective probability distribution 
consistent with the currently available data. Even if the distribution thus obtained 
requires modification as more information becomes available, it remains the best 
contemporary solution to a problem where our knowledge of the system is incomplete 
(Jaynes, 1957). 

THE MAGNITUDE-SEISMIC MOMENT RELATION 

It is well known that instrumental magnitude scales suffer from saturation at 
high magnitudes. As earthquakes increase in size, more energy shifts towards the 
long-period end of the ground motion—the direct movement on the fault itself 
(Howell, 1981). Thus, one reaches the point where an event twice as large in terms 
of energy produces hardly any increase in the measured magnitude. For M5, 'this 
occurs at approximately 8.0 and so Kanamori (1978) proposed an unsaturated 
magnitude scale called the "seismic moment magnitude", M, which extrapolates 
M5  beyond the onset of saturation. 

The seismic moment M0  is perhaps the best currently available measure of the 
size of an event. It is defined by the equation 

M0  = ,aAs = (/ff)W 	 (1) 

where jA is the rigidity modulus, A is the fault area, s is the movement on the fault, 
& is the average stress level during the earthquake, and A W is the change in strain 
energy. Thus, the seismic moment can be easily related to various source parameters. 
The seismic moment magnitude M. is then defined by 

M. = (log10  M0  - A)/B 	 (2) 

where B = 1.5 from theoretical constraints (Kanamori and Anderson, 1975), and A 
is a function of the average stress drop zo', which is assumed to be a constant. Sing 
and Havskov (1980) have shown that appropriate values for A in interplate, 
intraplate, and "average" regions are 16.1, 15.7, and 15.85, respectively (in cgs units). 
The seismic moment of an individual event can be measured from geological field 
evidence, or from the seismological record of an event, particularly the longer 
periods. 

In the following sections, we shall formulate a distribution in terms 'of M and 
assume that this is applicable to the Ms  or ML values in the region below instru-
mental saturation (M5  8.0) when we compare this to frequency-magnitude data. 
This is effected in practice by using locally correct values for A and B, and can be 
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tested by comparing the theoretical line (Mm) with the available (Ms ) data. In order 
to avoid confusion between seismic moment and magnitude, we shall henceforth 
adopt the symbol m for "seismic moment magnitude". 

THE EARTHQUAKE FREQUENCY DISTRIBUTION FROM INFORMATION THEORY 

Information theory is applicable in a wide class of problems where the average 
value of a physical parameter can be estimated even though it may deviate signifi-
cantly from this value from time to time. Its methods have been shown to be 
mathematically identical to, but are more general than those of statistical mechanics 
(Jaynes, 1957) and have found recent application in geophysics. Rubincam (1982) 
has used the method to solve the inverse problem of determining the lateral density 
distribution of the earth's crust from the current global gravity field, and Berrill 
and Davis (1980) have previously applied it to the earthquake frequency-magnitude 
distribution. In this section, we extend their results by directly including the average 
strain energy release through the seismic moment. 

Consider the continuous range of magnitudes (me , w), where w is the maximum 
magnitude consistent with the finite breaking strain of the earth and the finite 
dimensions of the source zone, and mc  is an arbitrarily chosen lower bound. Mc  may 
be physically determined by the minimum dimension which will support seismic 
rupture, but in practice will usually be the lower bound of complete reporting of 
events. 

For this range, we wish to choose a distribution which is consistent with currently 
available knowledge but is the least biased with respect to our ignorance of the 
system—the "missing information". The "missing information" inherent in this 
probabilistic approach is.characterized in information theory by the function 

S(p) = fm, p(m) ln(p(m)) dm 	 (3) 

where p(m) is the probability density function of magnitudes. S is also known as 
the "information theory entropy", and we look for the distribution of p which 
maximizes S subject to the constraints 

p ( m ) dm =1 	 (4) 

fmo mp(m) dm = (m) 	 (5) 

f Mo (m)p(m) dm = ( M0 ). 	 (6) 

(m) and (M0 ), respectively, the average magnitude and moment per event in the 
range (me , w), are the two pieces of information we have about the system. (m) is 
evaluated simply from the earthquake catalog once mc  is specified, and (M0 ) may 
be inferred from a catalog of moments where this is available, from geological or 
geophysical evidence of long-term fault movement or from current plate tectonic 
models. Note that (M0 ) is proportional to the average release of seismic strain 
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energy via (1). The quantity normally accessible is M0  - the rate of release of 
seismic moment, but this is related quite simply to (M0 ) by (M0 ) = Mo/NT where 
NT is the total number of events in the catalog above m per, unit time. In regions 
where the deformation is more diffuse, M0  may be inferred from the geodetically 
determined strain rate é by 

M0  = 2.5tVé 	 (7) 

if V is the crustal volume (Papastamatiou, 1980). 
The method of Lagrangian undetermined multipliers applied to (3), (4), (5), (6) 

gives 

p(m) = exp{—X 1 m - X 2Mo (m)/Z 	 (8) 

where Z is the normalizing integral 

Z  f w 
exp—X1m - X 2 M0 (m) dm. 	 (9) 

It is easy to show that 

(m) = —d{ln(Z)/dX1 	 (10) 
= —d{ln(Z)}/dX 2 . 

In principle, we could solve equations (10) and specify the distrib'ution uniquely in 
terms of the three variables (m), (M 0 ), and c, once m has been chosen. Unfortu-
nately this must be done numerically. The method applied in this paper involves 
an iteration procedure from starting values of X 1  and X 2 , using a third order finite-
difference formula due to Gill and Miller (1972) to evaluate the complicated integrals 
(m) and (M0 ). 

The cumulative form of the probability distribution is defined by 

	

fP(x m) 
= p(x) dx = N(x m)/NT 	 (11) 

if N is the cumulative frequency distribution. The number density n(m) = — dN 
(x m)/dm is then given by 

	

n(m) dm = C exp{—X1m - X2Mo(m) I dm 	- 	(12) 

where C = NT/Z, and Mo (m) is given by (2). 	 / 

It will be noted that (m), (M0 ), Z, and NT will depend on the range chosen (me , 

w), but are most sensitively dependent on m. For the purpose of the present type 
of work, this will not matter if: (a) the form of the distribution is self-similar at the 
lower magnitudes, i.e., the term in X 1  dominates at low magnitudes and is reasonably 
constant independent of the choice of m, and (b), proper normalization is carried 
out. It is obvious that (a) can only be effected by considering a range of events 
where we are sure the catalog is complete. 
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A PHYSICAL MODEL FROM STATISTICAL MECHANICS 

In order to interpret (12), we now consider a physical model of a fault and apply 
the methods of statistical mechanics to its localized elements. These elements may 
be as small as the lattice constant of the predominant crystal or may be related to 
inhomogeneities such as joints or bedding planes. In the following, we assume that 
the elements A 0  are small enough to warrant a continuous approach. 

Consider an arbitrary area A = 12 which ruptures during an event on the fault 
plane Amax (Figure 1). Assuming a constant strain drop (so that the model is self 
similar), we may take the fault movement s oc 1, so that 

M0  cc  1 from (1). 

If an energy level E is characterized by the symbol r and can be filled in g ways, 

FIG. 1. A geometric fault modeL The area A can, fit into A m  in Am/A ways. A 0  represents the 
physical lower limit to seismic energy release and depends on the spacing of inhomogeneities in the 
earth. The density of degenerate states if A 0  is assumed to be very small is D(l) dl = Am/l9 - tAm,./(l 
+ dl)9 = 2A m /l dl, 

then the discrete frequency F of state transition is given by 

Fr = grexp— fl'(Er - Er'). 	 (13) 

LW = (Er - Er') is the change in strain energy which is proportional to M0  via (1), 
and ' depends on the average energy (E). The degeneracy g is given by a simple 
geometric constraint on M0 (1). On a planar fault, we take g(1) = Amax/A(1) so that 
for the continuous case, the density D(1) of degenerate states is given by 

D(l) dl = g(l) - g(1 + dl) = (2Amax/13) dl 	 (14) 

after binomial expansion and ignoring terms in d1 2  and higher. The cOntinuous 
number density n(1) is then given by 

n(1) dl = D(1) dl exp(— 3.M'0(l)) 	 (15) 

where /3M0  = 3'W from (1). 
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Remembering M0  cc  i and incorporating (2) gives 

n(m) drn = const 10_bme_Mo(m)  dm 	- 	 (18) 

with b = ()B [see the Appendix for a general derivation of b for D(l) oc  l]. This 
is identical in form to (12) if A 1  = b ln(10), A 2  3. Since.B = 1.5,b should be close 
to unity. If moment is the relevant parameter 

n(Mo) dM0  = const Mo_ô/le_Mo  dM0 	 (17) 

where the geometric term M0 512  follows from (14) with M0  oc i. The form of this 
distribution can then be interpreted as a Boltzmann distribution of energy transi-
tions via exp(— 3M0), multiplied by a geometric factor M0 513  which results in 
another exponential if magnitude is the relevant parameter. 

A NOTE ON FRACTAL DIMENSION 

It is interesting to note that data on Californian fault breaks indicate that D(l) 
cc l' with v = 2.5 rather than 3 given previously in (14) (Caputo, 1982). This would 
imply b = [(v - 1)/31 x B is 0.75, in good agreement with theoretical models 
developed by Petrov (1981), where b = 0.75 results from random statistical fluctu-
ations in microcrack density and Vere-Jones (1976) where b = 0.75 results from a 
critical branching model. The noninteger v implies by analogy with the normal 
concept of density, a density distribution of fault lengths which has a fractal (i.e., 
noninteger) dimension (of 1.5 in this case). The fractal dimension of the fault 
geometry may be modeled by: (a) irregularities along the main fault break or (b) 
scattered smaller replicas of the original fault (see Mandelbrot, 1977). Caputo's 
(1982) value for v only accounts for (b), which may explain why the b value predicted 
from v underestimates the empirical value for b of 0.87 (Epstein and Lomnitz, 1966) 
and 0.86 (this paper). 

COMPARISON WITH OTHER MODELS 

Normally, in seismicity statistics, there are insufficient data to observe the 
contribution of the term in Mo(m) in (12) or (16)—the direct result of incorporating 
a finite rate of release of strain energy The most common frequency distribution 
used has therefore been the Gutenberg-Richter frequency law 

n(m) dm = a 10_bm  dm. 	 (18) 

This law can be applied as an open distribution in the range (me , cc)  (Richter, 1958) 
or in truncated form in (me , w) (Cosentino et al., 1977). The truncated form is 
preferable because it leads to finite rates of strain energy release, but the open-
ended form often serves as a useful approximation. Figure 2 shows this distribution 
compared with some of the other truncated distributions mentioned in this section. 

By comparison, the effect of the term exp{— X2MOW1 is to progressively reduce 
n as w is approached. Roll-off can also be seen in a physical model by Caputo (1976), 
which considers the effects of variable stress drop as well as source dimension, and 
which also includes, directly, an explicit value for the finite release of strain energy 
as an a priori assumption. This model has the form 

n(m) dm = { a 10-bm - cl dm 	 (19) 
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where c is 0 below m 2  and a finite positive constant, a10, in the range (m 2 , o). 
The differences between the distributions are only significant just below w, so in 
many cases áre not yet reliably observable because of the rare occurrence of the 
large events and the short time coverage of present earthquake catalogs. Perhaps 
the most important point to note is that inclusion of the long-term information 
leads us to expect fewer events at the largest magnitudes than an extrapolation of 
(18) would suggest. Additional information, such as the predominance of aftershock 
sequences (Bath, 1981) may alter this conclusion. 

Statistical analyses which preferentially investigate the higher magnitudes by 
extreme value methods (Gumbel, 1958) generally show curvature similar to that 
indicated just below w (Yegulaip and Kuo, 1974; Burton, 1979). The form of this 

m c 	 m 2 	t. 	 m 

FIG. 2. Comparison between seismicity model-s. The models shown, in increasing order of complexity 
are: (1) the Gutenberg-Richter law; (2) a truncated form of (1), due to Cosentino et al. (1977); (3) the 
information theory model; and (4) Caputo's model. Model (3) tends simply to (2) if the parameter 1\2  in 
equation (12) is zero. Caputo's version differs from (3) in having (a) a sudden departure from log-
linearity at m2  rather than more gradually, and (b) an asymptotic limit w at n(w) = 0 rather than at 
finite n. This allows the strain to build up to infinity since n(m) dm = 0 corresponds to infinite repeat 
times. Model (3) is, therefore, more compatible with a cyclical input and release of strain energy, since 
it does not allow such a build up. 

curvature is related to the type III Weibull cumulative frequency distribution 

NIII(x m) = {( - m)/(w - u)'' 	 (20) 

(Jenkinson, 1955). As A approaches 0, this form reduces to that of (18) (a type I 
distribution). The difference is that type I isunlimited but type III has an upper 
bound to m. Main and Burton (1981, 1983) have applied this form to the forward 
problem of predicting crustal deformation rates from available catalogs in such 
diverse regions as California, the Eastern United States, the United Kingdom, and 
the Mediterranean. Where there is adequate control on the relation (2) the agree-
ment with the observed deformation is good. The extreme value equivalent to (20) 
also' gives inferred moment rates consistent with available data. This form is 
especially useful for areas where the data set is severely incomplete. 
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Equations (19) and (20) both tend continuously to n(w) = 0, which allows infinite 
repeat times of the largest events and so is seen as a drawback (see legend to Figure 
2 and Main and Burton, 1983). 

RESULTS 

Example (1): The cntral Mediterranean. The deformation around the Mediter-
ranean is composed mainly of continental collision and arcuate subduction, and 
may involve a significant amount of aseismic creep processes such as folding and 
continuous fault movement (North, 1974). The region encompasses many diverse 
tectonic features whih currently defy complete explanation within the framework 
of classical plate tectonics. However, it does serve as a good example of the 
application of earthquake statistics to an arbitrary area with sufficient numbers of 
events for statistical rigor. A seismicity map is given in Figure 3. 

The histograms of Figure 4 show that the catalog used (Burton, 1978) is complete 
for the time range analyzed (1943, 1971) above magnitude 4.5, so we choose this 
value of m. We can infer this from the roughly constant number of events per year 
in the range (4.6, 5.5), despite the introduction of the WWSSN network in 1963, 
which has such a marked effect on the range (3.6, 4.5). The dramatic rise in the 
number of events in (4.6, 5.5) just before a large event (Ms  7.8) in 1953 is interesting, 
but is not investigated in further detail here. The frequency F(m) = J1 n(m) 
dm, for 5m = 0.1 and equation (12) is plotted in Figure 5, with the solid line being 
determined by numerical solution of equations (10), the parameters of which are 
summarized in Table 1. North's (1977) Tables 4 and 1, respectively, indicate M0  = 
2.4 X 1026 dyne-cm yr' for the time period 1943 to 1971 and 4.5 x 1026 dyne-cm 
yr 1  for the more completely analyzed period 1963 to 1970. These may be regarded 
as minimum values, so the value 8 >< 1026 dyne-cm yr' is a reasonable one. There 
is some scatter about the theoretical line, but this is of the same order as instru-
mental errors in measuring magnitude (±0.3 units typically). Some compensation 
for this has already been incorporated into Figure 5 by averaging the frequency data 
over neighboring ranges. This smoothing also serves to correct for spurious empty 
magnitude intervals and serves as a normalizing agent at the highest currently 
available magnitudes where the data shown on Figures 5 to 7 become effectively 
discrete. The smoothed discrete data points are then described by F2(i) = 
F1 (j)13 where Fj (j) represents the original unsmoothed data. Note that F = F(M) 
is the theoretical line and F2(M5) is shown for comparison purposes only. 

By comparison, the dotted line representing the truncated Gutenberg-Richter law 
overestimates the occurrence of the largest magnitudes. The departure point from 
this line indicates that Caputo's m 2  parameter is around 7.0 for this region. The 
Weibull frequency distribution of Figure 6 is not such a good fit for the intermediate 
magnitudes, but is similar for the largest ones which dominate the moment release. 

A summary of the results are presented in Table 1. A = 16.0, B = 1.5 are found 
to be appropriate yalues for the Mediterranean (North, 1974; Figure 2). The same 
figure indicates that the highest magnitudes do not suffer from instrumental 
saturation so the M5  and M. scales can be regarded as equivalent within their 
uncertainties. The time period (1943, 1971) and magnitude range (4.6, 7.8) are also 
common to all of the entries. The parameter b = X 1/ln(10) is quoted here because 
it is more commonly used in seismology. The uncertainty in the empirically inferred 
values for M0  results from the covariance errors in (w, u, A) as do those of Table 2, 
which compares estimates of average repeat time. The covariance error matrix as 



FEY TO SYMBOLS 

OEPTS (kns) 

CD <60 

60 	S 	060 	300 

300 	5 

MAGN I TIJJ[ 
(5yn.bol Fod.'...$) 

5.0 

5.0 5 660 	5.5 

5.5 S 660 	6.0 

6.0 	660 	6.5 

65 5 960 	7.0 

7.0 	660 	7.5 

	

7.5 1 960 	8.0 

	

8.0 5 060 	8.5 

8.5 5 

z 
0 

-3 
0 
z 

AD

-3  
x 
0 

- 

tTi 

tTi 

z 
C, 

z 
-3 

tTi 

(ID 

-3 

I 

-3 
0 
z 

5 	 0 	 IS 	 20 	 25 	 30 	 35 

0 

0 	 0 

0000 0 

0 0 o o 	 • 
'Is 

0 
0 	 Dl!] 
0 o 

0 	
c? GD 	00 	0  

0 	 0 	 CD 
0 	 o 	

0  

0 	 0 
0 

o 	 0 
A 	 0 

0 	0 	 o 
40 

0 	 0 
0 A 	 0

CI'Tl0 

4 0  

0 	 0 0 

	

0 	 0 0 	
0 0 C) 	~V(D 

O o .° 
Il  

0 
. 

eDr !) 0 

0 o 
o 	00001111 	[11 	 A 0 

0 
0 

. 	 o 
5 	 .0 	 IS 	 2C 	 25 	 30 	 35 

54278.49 

FIG. 3. Seismicity map of the Central Mediterranean area. All events of M5  5.0 are included. Smaller events are too numerous to be plotted economically, but 
are easily accessible for frequency analysis. 
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described in Burton (1979) for Figure 6 is 

{a 2  o ax 1 	1 	0.855 0.031 	-0.1191 
o 2  aux 	= 1-0.031 0.018 	0.0081 

lax a -0.119 0.008 	0.018NJJJ. 

In comparing the models, we have already found that the trunèated Gutenberg-
Richter law overestimates the occurrence of the highest magnitudes. The type III 
cumulative frequency distribution is an improvement in that it is consistent with 
the curvature observed on log-linear graphs at. the highest magnitudes. However 

Frequency graph n (rn) dm 
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For 19 143-1971,Ms>14.5 
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( ol 	I  
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FIG. 5. The frequency distribution of events in the central Mediterranean. Comparison of F2(i) = 
Fi (j)13 with the information theory prediction from the input values of Table 1. The solid line is 

the information theory prediction, which falls below the extrapolation of the dotted straight line segment 
corresponding to the truncated Gutenberg-Richter law. Although the data points shown are all M5 , these 
are regarded as being equivalent within measuring errors to M. used to produce the theoretical line. 

there is some evidence of autocorrelation error in Figure 6, in that the distribution 
of data points around the theoretical line is not random. There is a tendency for 
data points in the middle range of magnitudes to fall below the best-fitting line. 
However, because the fit is good at high magnitudes, the moment predictions from 
(w, u, X) (obtained by the method described in Main and Burton, 1981) turn out to 
be reasonable considering their error. 

The information theory distribution has no such apparent autocorrelation error 
in the low and medium magnitude range, and for this reason is considered to be an 
improvement on the type III distributions. However, for the high magnitudes, the 
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TABLE 1 

SUMMARY OF RESULTS FOR THE CENTRAL MEDITERRANEAN 

Method 	 Model 	 Distribution 	 Input 

Information theory Average of magnitude This paper (m) 	= 5.216 ± 0.017 
and short-term mo- Equation M0 	= 8 x 1026  dyne-cm yr' 
ment release (12) NT 	= 41.0 yr' 

Cumulative frequency Whole process of earth- Jenkinson Cumulative frequency data from 
with upper bound to quake magnitude cat- (1955) catalog 
magnitude alog Equation 

(20) 
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fit to the data and the consistency of appropriate seismic moment release rates 
indicate that both methods can model this range' successfully. The advantage here 
of the information theory distribution is that it models the occurrence in a way 
which is directly consistent with available knowledge of the highest magnitudes via 
the extra information represented by M0 . 

Example (2): Southern California.  In the first example, we checked for self-
consistency of the method with contemporary data and compared the information 
theory distribution with some commonly used empirical methods. In this section, 
we test the primary objective of this paper—the direct incorporation of crustal 
deformation via the terms M0  and 'NT with a view to extrapolating beyond historical 
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FIG. 6. Empirical frequency fit. The type III form of equation (20) is fitted to the data by computer 

algorithm. The line fits high and low magnitudes well, and predicts a reasonable value for M0  [by the 
method developed in Main and Burton (1981)] but overestimates the occurrence of the intermediate 
events. 

and instrumental time scales. Previously, this has been done indirectly by comparing 
moment predictions from extrapolation of line fits to contemporary data with 
quaternary evidence of fault movement. Examples are Anderson (1979) for the 
(linear) truncated Gutenberg-Richter law, and Main and Burton (1981, 1983) for 
the more general (curved) type III Weibull frequency distribution and its extreme 
value equivalent. 

The catalog used is that of Hileman et al. (1973) which covers the period 1932 to 
1972 inclusive. Their magnitudes are taken to be Ms  or equivalent M, although 
most of the entries are ML.  The only event which might possibly be subject to 
saturation effects is the 1952 Kern County event, but this is not found to be the 
case (Main and Burton, 1983). The area has, however, been subject to occasional 

E 
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FIG. 7. Frequency data from Californian instrumental records and Sieh's geologically estimated occur-
rence time of the largest events, compared with the information theory prediction. Curvature due to X 2  is 
small but significant and leads to a good match at the box representing Sieh's results. The box represents 
a seismic moment magnitude obtained from Sieh's results, and the catalog data (Ms  or ML) is regarded 
as equivalent to M. within their measuring errors. The good fit of the theoretical line (expressed as M) 
with the magnitude data seems to bear this assumption out. 

TABLE 2 

MAGNITUDES MT CORRESPONDING TO AVERAGE 
REPEAT TIME T YEARS FOR THE CENTRAL 

MEDITERRANEAN USING: (A) INFORMATION THEORY (5) 
AND (B) CUMULATIVE FREQUENCY (6) 

Figure: 5' 	 6' 

	

T(yr) 	Mr 	Mr 	(eMr)t 

	

1.0 	6.75 	6.80 	(0.138) 

	

2.0 	7.00 	7.03 	(0.137) 

	

5.0 	7.25 	7.27 	(0.165) 

	

10.0 	7.45 	7.42 	(0.208) 

	

20.0 	7.55 	7.55 	(0.262) 

	

50.0 	7.65 	7.68 	(0.339) 

	

100.0 	7.80 	7,84 	(0.456) 

* T= 1/N(MMT). 
t Uncertainties follow from the covariance matrix on 

errors in (w, u, 

major shocks, the last being in 1857 along the currently locked aseismic portion of 
the San Andreas fault. Sieh (1978) has shown that shocks of this order of magnitude 
repeat on average every T = 163 ± 27 yr, where the uncertainty is a standard error 
in the mean. The repeat time has varied from 50 to 275 yr for the eight events 
regarded as proven without reasonable doubt. 

1422 

a 
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Sieh estimates the size of this event as Ms  > 8.25, by comparison of macroseismic 
effects with those for the instrumentally recorded 1906 San Francisco earthquake. 
Sing and Havskov (1980) find that A = 15.83, B = 1.5 is most appropriate for 
southern California, and Anderson (1979) gives M0  for the 1857 event as 9 x 10 27  
dyne-cm from the extent of the surface break and fault movement. These two data 
imply that M. = 8.1, showing that the M0  - M. relation cannot account for the 
relatively high Ms  value of the 1906 event. 

Further, if we assume an average movement rate at the 1857 fault break of 3.2 
cm yr 1  and let s = St in (1), then we find M. = 8.05 ± 0.15 from (2) for appropriate 
values of t from Sieh's table of recurrence times. The movement rate is consistent 
within ±0.5 cm yr' with: (a) the creep rate over 4 yr in central California - 3.2 cm 
yr 1  (Lisowski and Prescott, 1981); (b) 4 m of slip repeated every 163 yr for 
approximately 2000 yrs - 2.8 cm yr1  (Sieh, 1978); and (c) geologically estimated 
movement rates on the San Andreas fault - 3.7 cm yr1  (Anderson, 1979, Table 1). 
This good agreement over different time scales also lends support to the stationary 

TABLE 3 

MAGNITUDES MT CORRESPONDING TO AVERAGE 
REPEAT TIMES T FOR THE INFORMATION THEORY 

DISTRIBUTION IN SOUTHERN CALIFORNIA 

T (yr) M 

1 5.85 
2 6.20 
5 6.65 

10 6.95 
20 7.25 
50 7.60 

100 7.80 
200 7.95 

* T= 1/N(M MT), 

hypothesis. A higher value for the relative plate motion across the San Andreas 
transform of 5.5 cm yr indicates that a significant amount of movement occurs in 
a broad deformation zone around the main fault. The calculated value of M. results 
from locally appropriate values of A (15.83) and B (1.5), i 3 X 1011  dyne-cm 2 , 

length L = 400 km (Sieh, 1978) and depth 15 km (Anderson, 1979). 
Figure 7 shows the information theory line compared with the catalog and 

quaternary geological data discussed above. The appropriate parameters are (me, w) 
= (4.7, 8.2), M0  = 16.1 X 1027 dyne-cm yr1  (for a fault zone 150 km longer than 
Anderson's (1979) area of study where M0  = 12.0 x 1026 dyne-cm yr' and s = 5.5 
cm yr' from plate models). The average magnitude and standard error in this range 
is found to be (m) = 5.157 ± 0.021, with NT = 11.15 yr1 . These imply b = 0.856 
and X 2  = 3.0 x 1029  dyne' cm' and seem to compare well with the data. The 
effect of increasing w progressively is negligible on b even to three figures, but X 9  
increases to 6.0, 7.6, 7.8 X 10_29  for w = 8.4, 8.6, 8.8, respectively. These solutions 
all pass through the error confines around this point, but w = 8.2 gives the best fit. 
Finally, the average repeat times from the information theory distribution are 
quoted in Table 3. 

The main conclusion from this section is that the information theory distribution 
can successfully model the extrapolation of current seismicity statistics in the light 
of quaternary geological data. 
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DISCUSSION AND CONCLUSIONS 

The method of statistical infeEence known as information theory can be applied 
to earthquake statistics in the range (me, w) if the average magnitude (m), the 
seismic moment release rate M0 , and the number of events per unit time NT are 
known. The form of the distribution thus obtained can be interpreted as a Boltz-
mann distribution of energy transitions multiplied by a geometric term which 
dominates the high frequencies of occurrence at the lower magnitudes. The geo-
metric term corresponds to the commonly used Gutenberg-Richter law, and the 
Boltzmann term to the roll-off below this line which is often observed in nature. 

The distribution has been tested in a region which has a reasonably complete set 
of contemporary unsaturated magnitude and seismic moment data, and fits well 
considering the instrumental errors involved. It also compares favorably with other 
commonly used distributions in that it accurately reflects the behavior over the 
entire magnitude range. The method is a general one, and could conceivably be 
extended to include premonitory effects from earthquake prediction studies. For 
example Von Seggern (1980) noted that isolated stress measurements along a fault 
are unreliable for earthquake prediction because of the large random component 
involved. The average stress (or strain) measured on a broader scale over the whole 
fault may yield information on the increased probability of occurrence of the largest 
magnitudes as the strain builds up. 

For the moment, however, the method does give some hope of extrapolating 
frequencies of occurrence beyond the instrumental and historical era by including 
long-term geological movement rates where they are available through the term M0 . 

Thus, we might be slightly more confident of estimating design criteria for buildings 
or communications systems whose life times are expected to be longer than the time 
scale of the available catalog. 
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APPENDIX: THE RELATIONSHIP BETWEEN v, B, AND b 

We have 

M0 = e0cm; dM0  = 3M0  dm 	 (Al) 

M0  cc 1; dM0  cc  31 dl 	 (A2) 

D(1) cc 1 -0. 	 (A3). 
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From (A2) we first convert the variable in (A3) from ito M0(i) 

D(M0)dM0 =D(1)dl 

x M0 +20  dM0 	 (A4) 

and then to m(M o ) via (Al) 

D(m) dm = D(M0) dM0  

oc 	
\1 

	

exp 1 (oc + $m) 	
)i 

dm. 	
(A5) 

If we define 

	

D(m) OC  10-b-, 	 (A6) 

then 

b = (v; 1) 
0/ln10 	 (A7) 

or 

b=(v31)B. 	 (A8) 

Since B = 0/ln10, A = c/1n10 by comparing (2) with (Al). 


