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Abstract 

 
 

Mitosis is a highly regulated process by which a cell duplicates and distributes its 

chromosomal DNA into two identical daughter cells equally. Equal distribution of the 

chromosomes is crucial for accurate propagation of genetic information. This is 

essential for maintaining viability and preventing genomic instability that can 

potentially lead to cancer. In order to avoid unequal distribution of chromosomes, cells 

employ a surveillance mechanism called the spindle assembly checkpoint (SAC). The 

SAC is an inhibitory signalling network, which delays segregation of chromosomes, 

until they have stably attached to spindle microtubules through their multi-protein 

platforms, known as kinetochores. The main target of the SAC is the anaphase 

promoter complex/ cyclosome (APC/C), an E3 ubiquitin ligase. Specifically APC/C 

and its activator Cdc20 are inhibited by the main effector of the SAC, called the mitotic 

checkpoint complex (MCC). The MCC consists of Cdc20, Mad2, Mad3 and Bub3 

(except S. pombe) proteins, which are recruited to the unattached kinetochores to 

promote MCC assembly. Once the chromosomes stably attach to the spindle, the SAC 

is turned off, MCC disassembles, and APC/CCdc20 is released from the inhibition. 

Activated APC/CCdc20 then targets its two main substrates, securin and cyclin B, for 

proteasomal degradation, and thereby triggers anaphase onset and mitotic exit. 

SAC signalling involves many protein components, whose activities are essentially 

regulated by direct protein-protein interactions and/ or post-translational 

modifications. One of these major modifications is phosphorylation, which is mediated 

by the SAC kinases such as Aurora B, Mps1 and Bub1. A number of studies have 

characterised SAC related substrates of Aurora B and Mps1 kinases in several model 

organisms. On the other hand, Bub1 kinase activity has been thought to play a key role 

in chromosome bi-orientation and more of an auxiliary role in SAC activation. 

 

 

 



III 

 

The aim of this study is to investigate the importance of Bub1 kinase activity for SAC 

response in fission yeast Schizosaccharomyces pombe (S. pombe). SAC activation 

assays, using various degrees of spindle perturbation, have demonstrated that Bub1 

kinase activity plays an important role in SAC maintenance. In order to examine the 

pathways downstream of Bub1, we set out to indicate Bub1 substrates which may be 

involved in SAC signalling. According to studies in various species, Cdc20 appears to 

be a prominent candidate, whose phosphorylation by Cdk1 and Bub1 kinases has been 

reported to regulate its mitotic activity. 

To investigate whether Cdc20 is phosphorylated by Bub1 in vitro, we purified 

recombinant S. pombe proteins from insect cells. Subsequent kinase assays identified 

Cdc20 as an in vitro substrate of Bub1, and the phosphorylated sites in Cdc20 were 

mapped by mass spectrometry. To address if this phospho-modification is involved in 

SAC regulation, phosphorylation mutants of Cdc20 were analysed in terms of their 

abilities to activate and silence SAC in vivo. Results show that phosphorylation of 

Cdc20 C-terminus promotes SAC maintenance in response to spindle damage. 

Furthermore, the mutations mimicking Bub1-mediated phosphorylation of Cdc20 C-

terminus restore the SAC defects in the absence of Bub1 kinase activity. 

In addition, we purified S. pombe mitotic checkpoint complex (MCC) from insect 

cells, and analysed the interactions between its components (Cdc20, Mad2 and Mad3) 

by cross-linking mass spectrometry. Crystal structure of S.pombe MCC has been 

determined recently, which lacks Mad3 C-terminus and flexible C-terminal tail of 

Cdc20. Using an MCC with full length Mad3, we identified novel interactions between 

the C-terminal tails Mad3 and Cdc20, which are in close proximity to the identified 

Cdc20 phosphorylation sites. 

Briefly, in this study we confirm the previously known roles of Bub1 kinase activity 

(chromosome bi-orientation). Moreover, we propose a new pathway (in addition to the 

well-established H2A pathway) mediated by Cdc20, that may be important to maintain 

the SAC response. 
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Chapter 1: Introduction 

1.1 The cell division cycle 

To grow and proliferate, all organisms require to produce genetically identical 

daughter cells through a process known as cell division. To maintain genetic identity, 

accurate duplication of cell contents and an equal distribution of those contents into 

two daughter cells must be ensured during every cell division. The sequence of events 

between two successive cell divisions is called the cell cycle. 

The eukaryotic cell cycle can be split up into four distinct phases: G1, S, G2 and M 

(Hartwell & Weinert, 1989). Each cell division leads to G1 phase (gap 1), during which 

the cell monitors its mass and the environmental conditions before deciding whether 

to stay in the cell cycle or to enter a prolonged non-dividing phase (G0).  

Once the cell reaches a certain size in the availability of nutrients, it commits to a new 

cell cycle and progresses into S phase (synthesis) (Sherlock & Rosamond, 1993). In S 

phase, the genetic content of the cell is replicated through DNA synthesis and 

centrosomes are duplicated (Adams & Kilmartin, 2000), which is followed by G2 

phase. G1, S and G2 phases define interphase, which form the majority of the cell 

cycle. In G2 (gap 2) the cell prepares for the M phase, in which segregation of 

duplicated chromosomes and their distribution into two daughter cells take place. 

Transition between cell cycle phases is largely unidirectional. This requires the activity 

of a family of enzymes called cyclin-dependent kinases (Cdks), which regulate 

progression through the cell cycle (Hartwell, Culotti, Pringle, & Reid, 1974). Cdks are 

conserved serine/threonine protein kinases, which are present at constant levels 

throughout the cell cycle. Cdks are activated by binding to proteins called cyclins. The 

abundance of cyclins at a given time in the cell are tightly regulated by gene expression 

and proteolysis (Morgan 1997; Murray 2004). 

In higher eukaryotes, there are cyclins that activate different Cdks during particular 

phases of the cells cycle: G1 (cyclin D), S phase (cyclins E and A) and mitosis (cyclins 

B and A) (Diffley, 2004) (Figure 1.1A). On the other hand fission yeast 

Schizosaccharomyces pombe (S. pombe) has only one type of Cdk (Cdk1Cdc2) that is 

involved in G1/S and G2/M transition (Figure 1.1B) and three type of cyclins: G1 

(cig1), G1/S (cig2), G2/M and M (cyclin Bcdc13) (Nurse et al., 1976, Nurse and Bissett, 
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1981). Although Cdc2 is constitutively expressed throughout the cell cycle, its activity 

is regulated by binding of cyclin BCdc13, phosphorylation by Wee1 kinase and 

dephosphorylation by Cdc25 phosphatase. Early in G2 phase, low levels of Cyclin B, 

and inhibitory phosphorylation by Wee1 keep Cdk1 inactive (Fattaey & Booher, 

1997). Towards the end of G2 phase, Cyclin B levels and Cdc25 phosphatase activity 

increase. Hence, binding of Cyclin B and reversal of Wee1 mediated inhibitory 

phosphorylation by Cdc25 phosphatase activate Cdk1, which leads to the entry into 

mitosis. Moreover, the active Cdk1-Cyclin B complex then phosphorylates Wee1 

kinase (to inhibit) and Cdc25 phosphatase (to further activate), in order to generate a 

positive-feedback loop for its own activation (Enoch & Nurse, 1990). In mitosis, 

Cdk1-Cyclin B complex catalyses the main events. Before the duplicated 

chromosomes separate, Cyclin B levels decrease through proteasomal degradation, 

thereby Cdk1 becomes inactive again (Sullivan & Morgan, 2007). 

 

1.2 Mitosis 

Mitosis is a short, but highly regulated process which results in the generation of two 

identical daughter cells. Mitosis comprises six stages in higher eukaryotes: prophase 

(not in yeast), pro-metaphase, metaphase, anaphase (anaphase A and anaphase B) and 

telophase/cytokinesis. 

After S phase, replicated chromosomes (sister chromatids) are linked together by sister 

DNA catenation and protein complexes called cohesin (Uhlmann, Wernic, Poupart, 

Koonin, & Nasmyth, 2000). Upon entry into prophase chromosomes condense. Then 

duplicated centrosomes (spindle pole bodies in yeast) move apart and nucleate the 

mitotic spindle. The mitotic spindle is a bipolar structure comprising microtubules, 

which rapidly polymerise and depolymerise until stabilised end-on attachments 

(microtubule plus ends) are formed with protein assemblies called kinetochores 

(Cheeseman and Desai, 2008). Kinetochores are protein complexes that are found on 

centromeric regions of chromosomes and connect with microtubules emanating from 

each of the two poles. In prometaphase, the nuclear envelope breaks down (unlike 

fission yeast that has a closed mitosis, in which contents of the nucleus remain 

compartmentalised from the cytoplasm throughout the cell cycle), thereby the mitotic 

spindle attaches to sister-chromatids through their kinetochores (Sazer, Lynch, & 
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Needleman, 2014). With this stabilised attachment, captured chromatids are tethered 

to the centrosomes/ spindle pole bodies. During metaphase, sister chromatids align at 

the metaphase plate. Once all sister chromatids are bi-oriented, they are captured by 

microtubules emanating from opposite spindle poles, the cell progresses into anaphase. 

In anaphase A, the cohesin complex that links sister-chromatids together disassembles. 

In anaphase B, centrosomes/spindle pole bodies move apart from each other. Thereby, 

sister-chromatids are pulled to opposite spindle poles, which results in their separation 

(Elmore, Beckley, Chen, & Gould, 2014). During telophase the spindle is 

disassembled, chromosomes de-condense and the nuclear envelope begins to reform. 

Finally in cytokinesis, the cell is divided into two daughter cells with identical genetic 

material (David, 2010). 

 

However, during prometaphase chromosomes are not bi-oriented straightaway. Until 

attaining bi-orientation, erroneous associations between microtubules and sister 

kinetochores occur, such as syntelic (kinetochores attach to microtubules from the 

same pole) and merotelic (a kinetochore attaches to microtubules from both poles) 

attachments (Musacchio & Salmon, 2007). If the cell fails to correct these attachment 

errors, chromosomes will segregate unequally, which results in aneuploidy (abnormal 

number of chromosomes). To establish bi-orientation, erroneous kinetochore-

microtubule attachments are destabilized (error correction) by Aurora B kinase 

(Kalantzaki et al., 2015), which leads to formation of unattached kinetochores. Then 

unattached kinetochores are detected by a surveillance mechanism called the spindle 

assembly checkpoint (SAC) that delays chromosome segregation (anaphase onset), 

until all kinetochores attain biorientation (Conly L. Rieder, Cole, Khodjakov, & 

Sluder, 1995). 

 

 

 

 

 



A

B

Figure 1.1 The cell cycle of higher eukaryotes and fission yeast cell cycle

(A) An overview of the cell division cycle of higher eukaryotes controlled by multiple 
cyclin-dependent kinases (Cdk) and cyclins. Model was adapted from Hochegger, 
Takeda, & Hunt, 2008 (B) An overview of fission yeast (S. pombe) cell cycle, which is 
driven by the activity of a single Cdk (cdc2). Note that fission yeast G2 phase takes up
70 % of its cell cycle, which is not reflected in the model. (See the text for details on the 
cyclin-dependent kinase and cyclins). Model was adapted from A. Sochaj, Hardwick lab, 
PhD thesis, 2013.
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1.3 Anaphase promoting complex/cyclosome (APC/C) 

The anaphase promoting complex/cyclosome (APC/C) is a large (1.5-MDa) multi-

subunit (13 subunits) E3 ubiquitin ligase (Figure 1.2A) that regulates progression 

through, and exit from mitosis. In the absence of APC/C activity, cells cannot separate 

their sister chromatids in anaphase, exit from mitosis or divide into two daughter cells 

(D. Barford, 2011).  The APC/C triggers anaphase onset by ubiquitinating two 

inhibitors of the transition to anaphase: securin and Cyclin B. Securin is a protein 

inhibitor of separase, a protease that cleaves the Cohesin subunit SCC1 (Uhlmann et 

al., 2000). Once securin is degraded, separase cleaves SCC1 which results in 

disassembly of Cohesin and sister chromatid segregation. Reduction in cyclin B levels 

are also required for entry into anaphase, (to relieve inhibition of separase by Cdk1) 

and exit from mitosis, that is maintained by Cyclin B- Cdk1 complex (Holland & 

Taylor, 2006).  

The temporal regulation of APC/C activity is achieved through a combination of two 

structurally related activator proteins, Cdc20 and Cdh1 (Kraft et al., 2003). Cdc20 

activates the APC/C during early mitosis, when APC/C is phosphorylated by Cdk1, 

which enhances its affinity for Cdc20 (Rudner & Murray, 2000). However, Cdk1-

mediated phosphorylation of Cdc20 prevents it from activating APC/C in a C-box 

dependent manner; therefore dephosphorylation of Cdc20 is required for its interaction 

with and activation of APC/C  (Labit et al., 2012). Cdh1 activity is low during mitosis 

due to its Cdk1 dependent phosphorylation. Cdh1 activates APC/C in late mitosis and 

G1 phase (Kramer, Scheuringer, Podtelejnikov, Mann, & Peters, 2000). APC/C 

activators utilise two conserved sequence motifs for APC/C binding: the C-box, 

located toward the N-terminus and a C-terminal IR motif (Figure 1.2A) (D. Barford, 

2011; Chang, Zhang, Yang, McLaughlin, & Barford, 2015; Thornton et al., 2006). 

Upon binding, the activators recruit APC/C substrates to the catalytic site of APC/C. 

The recognition of APC/C substrates by co-activators is predominantly achieved 

through two destructions motifs (degrons) found on the substrates: D-box and KEN-

boxes (J. L. Burton & Solomon, 2001). Cyclin B and securin are included in the APC/C 

substrates recognized through D-box and KEN-box, which is the reason for APC/C to 

be the main target of the SAC. 



A

Figure 1.2 EM reconstructions of the human APC/C and its interaction with the MCC

(A) Atomic structure of the human anaphase promoting complex (APC/C) interacting with 
Cdh1 (APC/C coactivator) and Emi1 (APC/C inhibitor), indicated by electron microscopy 
(EM). Large subunits are shown in cartoon, whereas the four small subunits, Emi1, 
Cdh1NTD, Cdh1IR and Apc10IR, are shown as surface representations. Emi1 interacts 
with the substrate-recognition and catalytic modules  Note that both Cdh1 and Apc10 
(APC/C subunit) contain the IR (isoleucine, arginine) motif. The figure was taken from 
(Chang, Zhang, Yang, McLaughlin, & Barford, 2015). (B) APC/C subunit topology and 
structural changes upon MCC binding indicated by electron microscopy (EM): (1) The 
apo-APC/C structure in its most open conformation; (2) The APC/C-MCC structure with a 
closed conformation; (3) Conformational changes induced by MCC binding to APC/C. The 
figure was adapted from (Herzog, 2009).

B
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1.4 The spindle assembly checkpoint (SAC): overview 

Components of the spindle assembly checkpoint (SAC) were first identified in budding 

yeast (Saccharomyces cerevisiae) screens for mutants that failed to delay chromosome 

segregation upon treatment with a microtubule depolymerising drug, called benomyl 

(Hoyt et al., 1991; Li and Murray, 1991).  

Major components of the SAC are the Bub (budding uninhibited by benzimidazole) 

proteins: the kinase Bub1 (Bernard et al., 1998; Roberts et al., 1994) and Bub3 (Taylor 

et al., 1998; Vanoosthuyse et al., 2004) and the Mad (mitotic arrest deficient) proteins: 

Mad1 (Hardwick and Murray, 1995), Mad2 (Chen et al., 1999; He et al., 1997), Mad3 

(Hardwick et al., 2000; Millband and Hardwick, 2002). Another kinase component of 

the SAC is Mps1 (mono polar spindle 1) that was first identified in a budding yeast 

screen for mutants with spindle pole duplication defects (Winey et al., 1991). 

 

The SAC proteins are recruited to unattached kinetochores, where the assembly of a 

diffusible checkpoint effector, known as mitotic checkpoint complex (MCC), is 

catalysed (Sudakin, Chan, & Yen, 2001). MCC consists of Mad2, Mad3 (BubR1 in 

animals) and Cdc20 (Slp1 in S. pombe) (plus Bub3 in budding yeast and animals). 

Once assembled, MCC delays anaphase onset through the inhibition of Anaphase 

promoting complex/cyclosome (APC/C). APC/C mediates poly-ubiquitination of 

cyclin B and securin (inhibitors of anaphase onset and mitotic exit), and thereby 

targeting them for degradation by 26S proteasome. By inhibiting APC/C, the SAC 

delays anaphase onset, and provides time for the aberrant kinetochore-microtubule 

attachments to be corrected. When the last kinetochore is stably attached in a bi-

oriented manner, the SAC is satisfied, and the MCC disassembles (SAC silencing). 

Once the APC/C is active again, it targets cyclin B and securin for proteasomal 

degradation, which results in chromosome segregation and mitotic exit (Musacchio & 

Salmon, 2007). 

 

http://www.nature.com/nature/journal/v428/n6983/abs/nature02424.html
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1.4.1 Spindle assembly checkpoint activation at kinetochores 

Laser ablation studies have indicated that even a single unattached kinetochore is 

sufficient to activate the “wait anaphase” signal mediated by the SAC (C L Rieder, 

Cole, Khodjakov, & Sluder, 1995). Kinetochore localization of checkpoint proteins 

has been reported to be important for SAC activation by many studies (London & 

Biggins, 2014a; Mchedlishvili et al., 2012; Rischitor, May, & Hardwick, 2007; Sharp-

Baker & Chen, 2001; Taylor & McKeon, 1997; Vanoosthuyse, Valsdottir, Javerzat, & 

Hardwick, 2004). However, the precise mechanisms regulating their recruitment was 

unknown until recently. Recent studies have demonstrated that the core kinetochore 

protein KNL1 (Spc7 in fission yeast, Spc105 in budding yeast) recruits BUB proteins: 

Bub1, BubR1 (Mad3 in S. pombe) and Bub3 at unattached kinetochores (Kiyomitsu, 

Obuse, & Yanagida, 2007; London, Ceto, Ranish, & Biggins, 2012; Shepperd et al., 

2012a; Yamagishi, Yang, Tanno, & Watanabe, 2012).  

KNL1 contains conserved ‘MELT’- like ([M/I/ L/ V]-[E/D]-[M/I/L/V]-T) motifs. It 

has been shown that the phosphorylation of the threonine residues on the MELT-like 

motifs by Mps1 (and polo-like kinase 1, plk1, in humans (von Schubert et al., 2015)) 

is required for kinetochore localization of Bub3, Bub1 and Mad3 (London et al., 2012; 

Shepperd et al., 2012a; Yamagishi et al., 2012). Additional crystallisation studies 

revealed that this phosphorylation is required for a tight interaction between KNL1 

and Bub3, suggesting that Bub3 recruitment to KNL1 may be the key step in localizing 

Bub1-Bub3 complex at kinetochores (Primorac et al., 2013). Furthermore, Bub1 

contributes to stabilizing the KNL1-Bub3 interaction in vitro (Primorac et al., 2013), 

which is in line with the finding that Bub1 is important for in vivo localization of Bub3 

(Vanoosthuyse et al., 2004). 

On the other hand, the mechanism of BubR1 (Mad3 in yeast) kinetochore recruitment 

remains unsolved. BubR1 (Mad3) may not be localising through the Bub3-KNL1 

interaction, as it has not been found to stabilize the KNL1-Bub3 interaction (Krenn, 

Overlack, Primorac, Van Gerwen, & Musacchio, 2014). Instead, Mad3 recruitment 

has been demonstrated to depend on Bub1 in fission yeast (Millband & Hardwick, 

2002). This raises the possibility that Mad3 may be directly recruited by Bub1 through 

heterodimerization (D’Arcy, Davies, Blundell, & Bolanos-Garcia, 2010). 
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This is consistent with the observation that ectopically localized fission yeast Bub1 

recruits Mad3 (Rischitor et al., 2007). On the other hand, a Mad3-Bub3 complex at 

high levels has been observed in budding yeast (Hardwick, Johnston, Smith, & 

Murray, 2000). 

Even though Bub3–Bub1 recruitment to kinetochores is required for the spindle 

assembly checkpoint (except in fission yeast), this localization does not always 

correlate with SAC activation. For instance, Bub1 has been observed on early anaphase 

kinetochores, which do not signal the SAC anymore (Sharp-Baker & Chen, 2001). On 

the other hand, kinetochore recruitment of Mad1-Mad2 heterodimer has been reported 

to strictly correlate with the SAC signalling (Maldonado & Kapoor, 2011). This 

implies that association of Mad1-Mad2 heterodimer with kinetochores is an important 

step in the SAC activation.  

As for the kinetochore receptor of Mad1-Mad2, a budding yeast study reported that 

Mad1 interacts with Bub1, and is dependent on an RLK motif that is present in Mad1 

(Brady & Hardwick, 2000). Mutation of this Mad1 motif or Bub1 depletion abrogated 

kinetochore recruitment of Mad1 in budding yeast and Caenorhabditis elegans 

(London & Biggins, 2014a; Moyle et al., 2014). Moreover, in vitro association of 

budding yeast Mad1 with kinetochores was found to require Mps1-mediated 

phosphorylation of Bub1 (London & Biggins, 2014a). Taken together, these findings 

imply that Mps1-mediated phosphorylation of KNL1 (Spc7, Spc105) and Bub1 may 

be responsible for establishing a link between Bub (Bub1, Bub3, BubR1 – Mad3 -) 

and Mad (Mad1 and Mad2) proteins at unattached kinetochores in budding yeast. 

Once localized at unattached kinetochores, Mad1 recruits Mad2 and induces a 

conformational change; Mad1 converts it to closed Mad2 (C-Mad2), which is one of 

the two distinct conformations that Mad2 adopts. When unbound to Mad1, it adopts 

an open conformation (O-Mad2), whereas upon binding to Mad1 (or Cdc20) closed 

conformation (C-Mad2) is created through the movement of two β-sheets across the 

face of Mad2. Upon mitotic entry, Mad1-C-Mad2 complex localizes at kinetochores, 

recruits O-Mad2 from cytosol, and converts it to C-Mad2 that has a higher affinity for 

binding Cdc20 (De Antoni et al., 2005). This leads to the formation of C-Mad2-Cdc20 

complex (Vink et al., 2006), which is the first step in MCC assembly. A fluorescence 

http://www.nature.com/nature/journal/v391/n6669/abs/391806a0.html
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recovery after photobleaching (FRAP) analysis in human cells has demonstrated that 

Cdc20 localizes at kinetochores with a fast turnover rate (Bonnie J Howell et al., 2004). 

1.4.2 Assembly of the mitotic checkpoint complex (MCC) 

MCC is the ultimate effector of the SAC that inhibits the APC/C in the cytoplasm 

(nucleoplasm in yeast which have closed mitosis). It has been suggested to be 

assembled from two sub-complexes, the C-Mad2-Cdc20 complex and the 

Mad3/BubR1-Bub3 complex (Musacchio & Salmon, 2007). While formation of C-

Mad2-Cdc20 complex is catalysed by unattached kinetochores, Mad3/BubR1-Bub3 

complex exists throughout the cell cycle in budding yeast (Hardwick et al., 2000). 

Recently, the crystal structure of the fission yeast MCC, that consists of Cdc20, Mad2 

and Mad3, has been solved (Chao, Kulkarni, Zhang, Kong, & Barford, 2012a). 

It has been established that Mad2 is essential for Cdc20 to bind Mad3/BubR1 (Janet 

L. Burton & Solomon, 2007; Hardwick et al., 2000; Nilsson, Yekezare, Minshull, & 

Pines, 2008). In addition, it has been demonstrated in yeast, flies and human cells that 

the N-terminal KEN box in Mad3/BubR1 (KEN20 in fission yeast) is necessary for 

MCC formation (King, van der Sar, & Hardwick, 2007; Pablo Lara-Gonzalez & 

Taylor, 2012; Sczaniecka et al., 2008).  

The MCC crystal structure has revealed that the N-terminal KEN box of Mad3 adopts 

a helix-loop-helix structure, and exhibits direct interactions with both Mad2 and Cdc20 

(Figure 1.3A and B) (Chao et al., 2012a). This is consistent with the findings that Mad2 

is required for the Mad3/BubR1-Cdc20 interaction. In addition, the N-terminal TPR 

domains in Mad3 also directly interact with Cdc20. This is in line with the observation 

that mutating these domains in Mad3/BubR1 abolishes its binding to Cdc20 (P. Lara-

Gonzalez, Scott, Diez, Sen, & Taylor, 2011). It was observed that only the closed 

conformation of Mad2 (C-Mad2) is capable of binding to Mad3. Intriguingly, the C-

Mad2 bound to Cdc20 interacts with Mad3 through the same surface that it dimerises 

with O-Mad2 (Chao et al., 2012a). In other words, when Mad2 incorporates into the 

MCC, it is not able to bind O-Mad2 anymore, as Mad3 competes for the same region 

of C-Mad2. This implies that, once formed part of the MCC, C-Mad2 is not likely to 

catalyse formation of additional Mad2-Cdc20 complexes. 
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1.4.3 Is the SAC response dependent on kinetochores? 

Although the SAC signalling network is widely associated with unattached 

kinetochores, some observations argue against the strict requirement for kinetochore 

localization of checkpoint proteins for a SAC response. For instance, MCC can still 

assemble in budding yeast strains with mutated Ndc10, a protein necessary for 

kinetochore function (Fraschini et al., 2001). Moreover, in fission yeast although Bub3 

is required for kinetochore recruitment of Bub1, Mad3, Mad1 and Mad2, it is not 

essential for MCC-APC/C interaction in the presence of a microtubule depolymerising 

drug (S. Heinrich, Windecker, Hustedt, & Hauf, 2012; Vanoosthuyse, Meadows, van 

der Sar, Millar, & Hardwick, 2009; Windecker, Langegger, Heinrich, & Hauf, 2009). 

However, although SAC signals can be amplified without kinetochore recruitment of 

the checkpoint proteins, their kinetochore localisation is still required for a full SAC 

response, as 15% of bub3 null cells failed to maintain a robust SAC arrest upon 

complete microtubule depolymerization (Vanoosthuyse et al., 2009). On the other 

hand Bub3 is essential for the SAC signalling in budding yeast (Hardwick et al., 2000). 

Similar observations have been made in mammalian cells. Although BubR1 (Mad3) 

interacts with Bub3 throughout the cell cycle, Bub3 is not necessary either for the 

MCC assembly, or for the ability of Mad2 and BubR1 to inhibit APC/CCdc20 activity 

in vitro (P. Lara-Gonzalez et al., 2011; Tang, Bharadwaj, Li, & Yu, 2001). Even 

though Bub3 may not be essential for in vitro interaction of BubR1 (Mad3) with Mad2 

and Cdc20, or APC/C inhibition, in cellular context the ability of BubR1 to bind Bub3 

(and to localize at kinetochores) is required for an efficient SAC response (Elowe et 

al., 2010; P. Lara-Gonzalez et al., 2011).  

 

 

 

 

 

 



A

B C

Figure 1.3 Crystal structure of S. pombe MCC trimer

(A) Cartoon representation of the fission yeast mitotic checkpoint complex: Cdc20 
ΔN-term (yellow) lacking the first 86 amino acids; closed Mad2 (C-Mad2) (green) and 
Mad3 ΔC-term (blue) lacking last 87 amino acids, 224-310. The N-terminal KEN box is 
shown in red, located in the helix-loop-helix (HLH) motif of Mad3. The N-terminus of the 
WD40 domain is indicated. (B) Details of the Mad3 HLH interaction with Mad2 and Cdc20. 
(C) Mad2-binding motif (MB motif) of Cdc20 bound to the Mad2 safety belt. Cartoon 
images were adapted from Chao, Kulkarni, Zhang, Kong, & Barford, 2012.
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1.5 Mechanisms underlying APC/CCdc20 inhibition by the SAC 

1.5.1 Inhibition of APC/CCdc20 through MCC 

According to the early observations Mad2 has been considered as a key inhibitor of 

anaphase onset, as it binds Cdc20 directly and prevents it from activating APC/C 

(Fang, Yu, & Kirschner, 1998; Li, Gorbea, Mahaffey, Rechsteiner, & Benezra, 1997). 

Consistent with this, Mad2 overexpression has been reported to activate the SAC in 

several model organisms (He, Patterson, & Sazer, 1997; Li et al., 1997). Indeed, a 

recent experiment in budding yeast has demonstrated that tethering Mad2 to Cdc20 

delayed anaphase onset, which was partially dependent on Mad3 (Lau & Murray, 

2012).  

On the other hand, recent investigations have indicated that Mad3/BubR1 may be the 

key APC/C inhibitor, instead of Mad2. First of all, Mad2 alone requires to be added in 

very high amounts with respect to Cdc20, to be able to inhibit the APC/C in vitro (Fang 

et al., 1998; Tang et al., 2001). Moreover, Mad2 has been observed to bind APC/CCdc20 

in vitro without significantly affecting its activity (P. Lara-Gonzalez et al., 2011). 

Importantly, Mad2 is not always present at the same amounts as the other components 

of the MCC (Mad3/ BubR1 and Cdc20) are under different mitotic conditions. For 

example, in the presence of nocodazole (many kinetochores are unattached in response 

to microtubule depolymerisation) Mad2 is easily detectable as an MCC component. 

Whereas in the presence of taxol (only a few kinetochores are activating the SAC in 

response to stabilized microtubules) much less Mad2 is detected in the MCC. This 

finding suggests that as well as the MCC (Mad2, Mad3/BubR1, Cdc20), the 

Mad3/BubR1-Cdc20 complex is also a viable APC/C inhibitor in human cells 

(Westhorpe, Tighe, Lara-Gonzalez, & Taylor, 2011). 

There is growing evidence that Mad3/BubR1 may be acting as a ‘pseudosubstrate’ to 

inhibit APC/CCdc20 (Janet L. Burton & Solomon, 2007). Recent structural studies have 

demonstrated that D-box substrates bind at the bi-partite D-box receptor formed 

between the activator (Cdc20 or Cdh1) and the small APC/C subunit Apc10 

(Buschhorn et al., 2011; da Fonseca et al., 2011). In addition, when the APC/C is 

bound by the MCC, its ability to recruit cyclin B and securin is reduced (Herzog, 

2009).  
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These observations suggest that Mad3/BubR1 may inhibit substrate recruitment to the 

APC/C by either inducing a conformational change on the bi-partite D-box receptor of 

APC/C, or by directly occupying the substrate binding site, acting as a 

pseudosubstrate. This view has been supported by observations in yeast that Mad3 

binds to Mad2-Cdc20 via its N-terminal KEN box (KEN20 in fission yeast) (Janet L. 

Burton & Solomon, 2007; King et al., 2007; Sczaniecka et al., 2008). Accordingly, 

Mad3 has been reported to compete with Cdc20 for substrate binding, which is 

dependent on the N-terminal KEN box (Janet L. Burton & Solomon, 2007). In 

agreement with these findings, the fission yeast MCC structure has demonstrated that 

the N-terminal KEN box of Mad3 occupies the KEN-box receptor on the WD40 

domain of Cdc20 (Figure 1.3B) (Chao, Kulkarni, Zhang, Kong, & Barford, 2012b). 

This strengthens the possibility that Mad3 does indeed appear to act as a 

pseudosubstrate to block recognition of KEN box-containing substrates by 

APC/CCdc20.  

Intriguingly, Mad3/ BubR1 contains a second KEN box (KEN271 in fission yeast) 

(Janet L. Burton & Solomon, 2007; King et al., 2007), which is essential for SAC 

function, although is not required for MCC assembly (P. Lara-Gonzalez et al., 2011; 

Sczaniecka et al., 2008). Moreover, BubR1 inhibits the recruitment of D-box-

containing substrates to APC/CCdc20 in vitro, in a second KEN box dependent manner 

(P. Lara-Gonzalez et al., 2011). These observations imply that, while the N-terminal 

KEN box inhibits the recruitment of KEN-box containing substrates to APC/CCdc20, C-

terminal second KEN box might occupy the bi-partite D-box receptor. This possibility 

is supported by the MCC structure; docking of the fission yeast MCC structure onto 

that of the APC/C indicates that Mad3 binding displaces Cdc20 from Apc10, thus 

disrupting the bi-partite D-box receptor between them (Chao et al., 2012b). These data 

are in line with cryo-EM studies demonstrating that MCC binding changes the position 

of Cdc20 within the APC/C (Figure 1.2B) (Herzog, 2009). In addition, a study in 

human cells has demonstrated that Mad2 inhibits Cdc20 by binding directly to a site 

required to bind the APC/C (Izawa & Pines, 2012). This is consistent with the MCC 

crystal structure that safety belt domain of Mad2 sequesters the Mad2 binding domain 

of Cdc20, which is also required for its binding to APC/C (Figure 1.3C). 
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Taken together, Mad2 and the two KEN boxes of Mad3/BubR1 appear to cooperate 

for inhibiting APC/CCdc20. 

1.5.2 Inhibition of APC/CCdc20 through Cdc20 turnover 

Cdc20 is an activator (along with Cdh1) of APC/C that associates with the APC/C in 

early mitosis and triggers anaphase onset by promoting the destruction of cyclin B and 

securin. Cdc20 is related to the β subunit of trimeric G proteins and contains seven 

WD40 repeats. These repeats form a seven-bladed β propeller structure which 

efficiently mediates protein-protein interactions (Chao et al., 2012b).  

Although Cdh1 protein and transcript levels are constitutive, both Cdc20 mRNA and 

protein levels oscillate throughout the cell cycle: absent in G1, begin to accumulate in 

S phase, and reach their peak levels in mitosis. (Pan & Chen, 2004) (Figure 1.4). 

During the normal cell cycle, Cdc20 levels are regulated both by transcription and 

proteolytic degradation. Expression of CDC20 gene is driven by a hybrid promoter 

that bears Yox1-, Mcm1- and Fkh-binding sites (Liang, Lim, Venkitaraman, & Surana, 

2011).  

Cdc20 is degraded by multiple APC/C-dependent mechanisms in budding yeast (Foe 

et al., 2011). It has been reported that late in mitosis and early in G1, Cdc20 

degradation is largely mediated by APC/CCdh1. On the other hand, even though Cdh1-

mediated degradation of Cdc20 is likely important, recent studies have proposed Cdh1-

independent mechanisms for Cdc20 turnover (Foe et al., 2011). Consistent with this, a 

budding yeast study has demonstrated that the majority of Cdc20 turnover does not 

involve a second activator molecule but instead is mediated by in cis Cdc20 auto-

ubiquitination while it binds to the activator binding site of the APC/C (Foe et al., 

2011). 

Studies in fission yeast, budding yeast and human cells have reported that Cdc20 

turnover is promoted by SAC activation, leading to lower Cdc20 levels (King et al., 

2007; Nilsson et al., 2008; Pan & Chen, 2004) to ensure that MCC (Mad2 and Mad3) 

levels are not overridden by Cdc20 hyper-accumulation.  

These data are in agreement with the recent findings in fission yeast that Cdc20Slp1 

overexpression leads to a defective SAC response, whereas reduced Cdc20 expression 
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rescues the SAC defects caused by lower abundance of Mad2 and Mad3 (Stephanie 

Heinrich et al., 2013).  

Interestingly, a budding yeast study has demonstrated that Cdk1 activity promotes 

recovery from SAC-induced mitotic arrest by sustaining Cdc20 expression during 

mitosis (Liang et al., 2011). It has been shown that Cdk1 activity silences Yox1, a 

transcription repressor of the CDC20 gene, and thereby maintains Cdc20 levels high 

enough during SAC recovery, which contributes to the rapid anaphase onset upon 

chromosome bi-orientation. 

Taken together, these observations suggest that the SAC keeps levels of Cdc20 low 

enough for its stoichiometric inhibition by the MCC until chromosome biorientation, 

yet high enough (by the indirect promotion of Cdk1 activity through stabilized Cyclin 

B) for APC/CCdc20 to start anaphase rapidly (recover from the SAC) once chromosomes 

are bioriented.  

1.5.3 Regulation of APC/CCdc20 activity through phosphorylation 

The association of APC/C and its activators is also subject to control by 

phosphorylation. Cdh1 can activate both interphase and mitotic APC/C, independent 

of APC/C phosphorylation, however its own activity is inhibited by Cdk1 mediated 

phosphorylation. On the other hand, Cdc20 binds and activates mitotically 

phosphorylated APC/C by Cdk1 (Kramer et al., 2000; Rudner & Murray, 2000; 

Yudkovsky, Shteinberg, Listovsky, Brandeis, & Hershko, 2000). This suggests that 

Cdc20 is the predominant activator of the APC/C when Cdk1 activity is high in 

mitosis. 

Phospho-regulation of Cdc20 by different kinases has also been reported in different 

model organisms. However, unlike the activating phosphorylation of APC/C, 

phosphorylation of Cdc20 has largely been suggested to inhibit its APC/C activator 

function.  

Studies in Xenopus egg extracts and human cells have reported that the SAC requires 

mitotic Cdk1 activity. Indeed, inhibition of Cdk1 activity disrupts the interaction of 

Cdc20 with other MCC components (Mad2 and Mad3/BubR1), and thereby overrides 

the SAC dependent arrest (D’Angiolella, Mari, Nocera, Rametti, & Grieco, 2003; 
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Yudkovsky et al., 2000). Moreover, the Cdc20 that is phosphorylated by Cdk1 in vitro 

has been shown to interact with Mad2 rather than APC/ C (D’Angiolella et al., 2003). 

Another Xenopus egg extract study has reported that Cdk1 does not account for all of 

the phosphorylation on Cdc20. Indeed, mitogen-activated protein kinase (MAPK) and 

Cdk1 mediated phosphorylation of Cdc20 is required for the interaction between MCC 

components (Cdc20, Mad2 and Mad3/BubR1) and a functional SAC response to 

spindle perturbation by nocodazole (Chung & Chen, 2003). It has been suggested that 

the SAC delays anaphase onset by inhibiting a fully-phosphorylated Cdc20. 

Consistent with these observations, a recent study in Xenopus egg extracts has 

demonstrated that the antagonistic activities of Cdk1 and protein phosphatase 2A 

(PP2A) regulate APC/CCdc20 in mitosis (Labit et al., 2012). Upon mitotic entry, both 

APC/C and N-terminus of Cdc20 are phosphorylated by Cdk1. Phosphorylation of 

APC/C increases its affinity for Cdc20, whereas Cdc20 phosphorylation has the 

opposite effect on its affinity for the APC/C. During the metaphase- anaphase 

transition, dephosphorylation of Cdc20 N-terminus by PP2A promotes the binding of 

its C-box to Apc8 and the subsequent APC/C activation. Importantly, when Cdc20 

remains hyper-phosphorylated through the inhibition of PP2A by ocadaic acid, it fails 

to activate APC/C-mediated ubiquitination. 

In addition to Cdk1 and MAPK mediated phosphorylation of Cdc20, Bub1 kinase has 

also been reported to regulate Cdc20 in human cells (Tang, Shu, Oncel, Chen, & Yu, 

2004). In vitro kinase assays have demonstrated that Bub1 directly phosphorylates 

Cdc20, which catalytically (at sub-stoichiometric amounts) inhibits APC/C. Moreover, 

in vivo phosphorylation of Cdc20 by Bub1 is required for a full SAC response, as the 

expression of a non-phosphorylatable Cdc20 mutant results in slippage from the SAC 

arrest upon spindle damage. Consequently, in addition to the APC/CCdc20 inhibition by 

MCC that is mediated by protein-protein interactions, a catalytic inhibition of Cdc20 

by Bub1 may contribute to the sensitivity of the SAC response. 

 

 

 



S. pombe Cdc20

S. cerevisiae Cdc20

H. sapiens Cdc20

Figure 1.4 Expression of Cdc20 is dynamically regulated during the cell cycle 

Oscillations in protein levels of Cdc20 orthologs from fission yeast (Slp1) (S. pombe), 
budding yeast (S. cerevisiae) and humans (H. sapiens) during the cell cycle progression. 
Each curve represents results of an independent time course experiment from different 
research groups (or from the same group if labeled with the same name). Red dots 
indicate the cell cycle phase, in which a particular Cdc20 ortholog reaches its peak levels. 
Oscillation graphs were adapted from Cyclebase 3.0.
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1.6 Roles of Bub1 kinase in mitosis 

Bub1 (budding uninhibited by benzimidazole 1) is a serine/threonine-protein kinase 

containing a conserved kinase domain at its C-terminus. Bub1 is recruited to unattached 

kinetochores during mitosis, and its slow FRAP recovery rates suggest that it is a more 

stable component of kinetochores than the other two Bub proteins (Bub3 and 

BubR1/Mad3) (Bonnie J Howell et al., 2004). Bub1 has been reported to have multiple 

roles in mitosis, either performed by its non-kinase region (N-terminal and middle) or the 

kinase domain (C-terminal).  

1.6.1 Roles of Bub1 that do not require its kinase activity 

Non-kinase roles of Bub1, for which its kinase function is dispensable, were previously 

mentioned in the section we described the SAC activation at kinetochores (1.4.1). In 

brief, Bub1 is recruited to the phosphorylated (by Mps1) kinetochore protein KNL1 

(Spc7 in fission yeast) through Bub3, where it functions as a scaffold for the 

subsequent localization of downstream SAC proteins, such as Mad1, Mad2, Mad3 

(BubR1 in animals) and Cdc20 (Klebig, Korinth, & Meraldi, 2009; Rischitor et al., 

2007; Shepperd et al., 2012a; Vanoosthuyse et al., 2004; Mathijs Vleugel et al., 2013). 

In this way Bub1 significantly contributes to the activation and maintenance of a robust 

SAC response upon spindle damage. 

 

A recent study in human cells has proposed that although Bub1 promotes Mad1 

recruitment to unattached kinetochores, its ability to activate the SAC correlates more 

strongly with its ability to recruit Cdc20 (M. Vleugel et al., 2015). This function of 

Bub1 is dependent on its ABBA motif (A-box-like motif) and BubR1 (Mad3). 

Consequently, the kinetochore recruitment of Cdc20 by Bub1 has been suggested to 

activate the SAC by bringing the Cdc20 in close proximity to newly formed C-Mad2. 

In addition, Bub1 dependent kinetochore recruitment of Cdc20 may also promote the 

SAC response by mediating a kinetochore-driven modification of Cdc20 (such as 

phosphorylation), that may further increase its affinity for C-Mad2 and BubR1 

(Mad3). 
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1.6.2 Roles of Bub1 that require its kinase activity 

In this section we summarise observations in different model organisms which suggest 

two major roles for Bub1 kinase activity that are relevant to mitosis: (i) roles in 

maintaining accurate chromosome bi-orinetation; (ii) roles in the SAC signalling. 

1.6.2.1 Bub1 kinase activity for chromosome bi-orientation 

In mitosis, Bub1 kinase has been shown to recruit the Shugoshin protein (Sgo2 in 

fission yeast; Sgo1 in budding yeast and human cells) to inner centromere through 

direct phosphorylation of H2A (Kawashima, Yamagishi, Honda, Ishiguro, & 

Watanabe, 2010). By catalysing the centromere localization of Shugoshin, Bub1 

kinase contributes to ensuring chromosome bi-orientation through two downstream 

mechanisms: 

1. Sgo1 has been reported to protect centromere cohesion from premature 

separation by associating with PP2A phosphatase that counteracts kinases 

targeting the cohesin complex (Tang, Sun, Harley, Zou, & Yu, 2004). 

 

2. Sgo1 (in mammalian cells and budding yeast), and Sgo2 (in fission yeast) have 

been demonstrated to recruit Aurora B to the inner centromere, where it 

destabilizes erroneous kinetochore–microtubule attachments (error correction) 

(Ruchaud, Carmena, & Earnshaw, 2007). Through the disruption of aberrant 

attachments, Aurora B promotes SAC signalling by creating unattached 

kinetochores. In addition, Aurora B is required for the recruitment of Mps1Mph1 

to unattached kinetochores in fission yeast (S. Heinrich et al., 2012), which is 

of vital importance for a stable SAC response. These two observations suggest 

that Bub1 kinase activity appears to contribute to the SAC signalling through 

the H2A-Shugoshin-Aurora B pathway. In the next section, we summarise the 

importance of Bub1 kinase activity for the SAC response in various species. 
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1.6.2.2 Bub1 kinase activity for a robust SAC response 

Unlike its chromosome bi-orientation roles described above, requirement of the Bub1 

kinase activity for the SAC response is less well understood. Contribution of Bub 

kinase activity to delaying anaphase onset in response to spindle damage has been 

investigated in different model organisms (fission yeast, budding yeast, Xenopus egg 

extracts and cultured human cells) and under various experimental conditions (such as 

different levels of spindle perturbation to induce SAC activation). 

1.6.2.2.1 Bub1 kinase activity in budding yeast SAC 

An early study in budding yeast reported that Bub1 is a kinase protein that is able to 

autophosphorylate and to catalyze phosphorylation of Bub3 (Roberts, Farr, & Hoyt, 

1994). This study also suggested that the kinase activity of Bub1 is required for the 

SAC response, as a Bub1 kinase-dead mutant (bub1-K733R) fails to rescue the 

benomyl sensitivity exhibited by a bub1 null strain. However, bub1-K733R was later 

found to be less stable than the wild type Bub1 in mitotically arrested cells (Cheryl, 

Johnston, Joseph, Hardwick & Spencer, 2003), which might have caused the SAC 

deficiency observed previously (Roberts et al., 1994). 

Another budding yeast study investigated the kinase activity of Bub1 extensively, 

using a truncated Bub1 kinase allele (bub1ΔK) that lacks the whole kinase domain, yet 

is as stable as the wild type Bub1 (Fernius & Hardwick, 2007). Bub1ΔK was tested 

using different degrees of spindle perturbation. First, bub1ΔK cells were demonstrated 

to have growth defects when exposed to anti-microtubule drugs (benomyl); bub1ΔK 

cells are more sensitive than mad3Δ cells, but not as sensitive as bub1 null cells. 

Moreover, bub1ΔK cells die rapidly (at similar rates to bub1 null and mad2Δ cells) 

when they are first grown in the presence of nocodazole (microtubule 

depolymerisation), and then plated on a rich media. This sensitivity of bub1ΔK cells is 

not due to a defect in arresting at metaphase in the presence of unattached kinetochores. 

Instead, it is mainly caused by a defect in chromosome bi-orientation, as bub1ΔK cells 

mis-segregated chromosomes during recovery from the SAC arrest.  
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Subsequent experiments demonstrated that whilst the Bub1 kinase domain is not 

essential for the SAC response to unattached or defective kinetochores, it is essential 

for the SAC response to lack of tension at sister kinetochores (Fernius & Hardwick, 

2007). 

1.6.2.2.2 Bub1 kinase activity in fission yeast SAC 

Fission yeast Bub1 has been reported to be hyperphosphorylated by Cdk1 in vitro and 

in cells arrested at metaphase upon spindle damage. This phosphorylation of Bub1 is 

required to activate the SAC (Yamaguchi, Decottignies, & Nurse, 2003). In addition, 

Bub1 kinase activity is also required for a complete SAC function, as both the bub1-

K762R allele (equivalent of the budding yeast bub1-K733R) and a Bub1 truncation 

allele lacking the entire kinase domain (both of them are as stable as the wild type 

Bub1) failed to delay anaphase onset in response to the anti-microtubule drug 

carbendazim (CBZ). Importantly, the double mutant Bub1 allele (bub1*P Cdk1, 

bub1Δkinase), which both lacks its kinase domain and is refractory to Cdk1 mediated 

phosphorylation, exhibits a more severe SAC defect than the single mutants. This 

suggests that Cdk1-mediated phosphorylation of Bub1 and the kinase activity of Bub1 

itself promote the SAC response non-redundantly, as losing them simultaneously 

results in an additive SAC defect (Yamaguchi et al., 2003). 

Another fission yeast study analysed Bub1 kinase activity by mutating the invariant 

lysine 762 into methionine to generate the bub1-K733M allele (Vanoosthuyse et al., 

2004). When the microtubules are depolymerized by the cold sensitive tubulin mutant 

nda3-KM311, bub1-K733M cells exhibit cut (cell untimely torn) phenotype more 

frequently than wild type, in which cells exit mitosis forming septa without equal 

chromosome segregation. This suggests that Bub1 kinase activity in response to 

unattached kinetochores is required for a complete SAC response. More importantly, 

upon recovery from the nda3-KM311 arrest, bub1-K733M cells exhibit lagging 

chromosomes very frequently, which suggests that Bub1 kinase activity is necessary 

for bi-orientation and accurate segregation of chromosomes (Vanoosthuyse et al., 

2004). 
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Bub1 kinase activity was further investigated in a recent fission yeast study, in which 

a different kinase-dead Bub1 allele (bub1-K762R D900N) was constructed through 

two point mutations: one in its ATP binding motif (lysine 762 to arginine) and another 

in the catalytic site (aspartate 900 to asparagine) (Kawashima et al., 2010). This group 

generated the bub1-K762R D900N allele because they have demonstrated that the 

previously reported (Yamaguchi et al., 2003) canonical ‘kinase-dead’ protein (bub1-

K762R) still retains residual kinase activity in vitro (< 1/100 of wild type Bub1 

activity) and in vivo. On the other hand, the bub1-K762R D900N allele has been shown 

to have no kinase activity. In addition, wild type Bub1 was shown to 

autophosphorylate (in vitro) as well as it catalyses the phosphorylation of H2A (in 

vitro and in vivo). Experiments with the bub1-K762R D900N allele demonstrated that 

lack of Bub1 kinase activity only slightly impairs the SAC response to unattached 

kinetochores (through the nda3-KM311 mutation depolymerizing microtubules). 

However, when the tension between sister chromatids is lost, (through the psc3-1T 

temperature-sensitive cohesin mutation disrupting sister cohesion) Bub1 kinase 

activity is essential for a SAC response to delay anaphase. As described above, Bub1 

phosphorylates H2A, and thereby recruits Sgo2 to inner centromeres, which is mainly 

required for chromosome bi-orientation. Forced enrichment of Sgo2 at centromeres is 

able to rescue only half of the SAC defect observed in the absence of Bub1 kinase 

activity when the tension between chromatids is lost (Kawashima et al., 2010). 

1.6.2.2.3 Bub1 kinase activity in Xenopus SAC 

An early study in Xenopus egg extracts reported that Bub1 is a kinase protein that 

autophosphorylates as well as it catalyses phosphorylations of Bub3 and Mad1 in vitro 

(Sharp-Baker & Chen, 2001). In vivo immunoprecipitations show that Bub1 is 

phosphorylated during interphase, mitosis, and SAC mediated arrest. Sharp-Baker and 

colleagues constructed a kinase-dead Bub1 allele (K872R) by mutating the invariant 

lysine 872 to arginine, which does not autophosphorylate. Catalytically inactive Bub1 

K872R (transcribed in vitro and translated in egg extracts) was shown to be capable of 

restoring the SAC response and the kinetochore recruitment of Mad1, Mad2 and Bub3 

proteins in Bub1-depleted egg extracts in response to high density of sperm nuclei 

(9000-15000/ µl extract ) and high dose nocodazole  
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(10 ng/µl). (Sharp-Baker & Chen, 2001). However, it is worth noting that the kinase 

inactive Bub1 K872R mutant was translated at a noticeably higher level than the wild 

type Bub1. This might have accounted for the capability of the kinase inactive mutant 

in the SAC response. In other words, non-kinase SAC functions of the kinase-dead 

Bub1 mutant (that was more abundant than the wild type) might have compensated for 

its missing kinase activity. Importantly, to activate the SAC Sharp-Baker and 

colleagues perturbed spindle by exposing the egg extracts to high numbers of sperm 

nuclei and high dose nocodazole (10ng/µl) (optimal conditions to activate the SAC). 

Among components of the SAC machinery, the role of Bub1 kinase activity may be 

maintaining the SAC response by fine-tuning it, rather than being directly responsible 

for the assembly of the ultimate inhibitor of APC/C (mitotic checkpoint complex, 

MCC). During such severe spindle perturbation, Bub1 kinase activity may not be 

detectable; as cells are expected to assemble high amounts of MCC, which might delay 

anaphase onset regardless of Bub1 kinase activity. 

A similar Xenopus study from the same group has addressed this hypothesis (Chen, 

2004), that any subtle difference in the SAC function between wild type and kinase-

dead Bub1 may be revealed only under suboptimal conditions for the SAC activation. 

Chen tested this possibility by treating the egg extracts with lower concentrations of 

nocodazole (or sperm nuclei) to disrupt microtubule-kinetochore attachment to 

different degrees. First, they confirmed that Bub1 becomes hyperphosphorylated in 

mitosis; and demonstrated that Bub1 phosphorylation by MAPK promotes its further 

phosphorylation by other kinases, which collectively induce Bub1 kinase activity 

specifically on unattached chromosomes. Second, analysis of the kinase-dead Bub1 

mutant (Bub1 K872R) revealed that although the kinase-dead Bub1 is fully SAC 

proficient under optimal spindle perturbation conditions (high concentration of 

nocodazole, 10 ng/µl; and sperm nuclei 10000/ µl extract), it is compromised in the 

SAC function under sub-optimal spindle perturbation conditions (low concentration of 

nocodazole, 1 ng/µl; and sperm nuclei 7500/ µl extract). This suggests that the kinase 

activity of Bub1 does not function as an on-off switch of the SAC; instead, it modulates 

the strength of the SAC signal generated from each kinetochore, and appears to 

become more important for the maintenance of the SAC when the number of 

unattached chromosomes are lower in the cell (mimicked by low dose of nocodazole). 
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1.6.2.2.4 Bub1 kinase activity in human SAC 

As described in the previous sections, Bub1 kinase activity has been suggested to 

contribute to the SAC response in various species, by employing different methods/ 

conditions to activate the SAC. However, a substrate of Bub1 kinase, whose 

phosphorylation may directly promote the SAC signalling (other than H2A, as its role 

is indirect and mainly through the Aurora B recruitment to centromeres (S. Heinrich 

et al., 2012)), had not been implied until a report published in 2004 (Tang, Shu, et al., 

2004).  

Tang and colleagues demonstrate that six residues of human Cdc20 (N-terminal), 

phosphorylated in vitro by Bub1, are phosphorylated in vivo in a Bub1-dependent 

manner. In addition, expression of a Cdc20 mutant that is nonphosphorylatable on 

these residues has a dominant-negative effect, which results in 50% of the cells leaking 

through the SAC arrest in the lack of microtubule-kinetochore attachments (generated 

through nocodazole treatment) or the tension between chromatids (generated through 

taxol treatment). On the other hand, this mutation does not affect either Cdc20 

recruitment to kinetochores or its binding to the other components of mitotic 

checkpoint complex (Mad2 and BubR1). Moreover, both Mad2 and BubR1 are 

capable of inhibiting the Cdc20 mutant (nonphosphorylatable on the six N-terminal 

residues by Bub1) by direct binding at least in vitro (Tang, Shu, et al., 2004). 

It is worth noting that the mutation of the six serine/ threonine sites on Cdc20 does not 

completely abolish its Bub1 mediated phosphorylation in vitro. This residual 

phosphorylation of Cdc20 is not due to a co-purified kinase contaminant, as it is not 

observed in the presence of a kinase-inactive Bub1. This suggests that there may be 

other sites of Cdc20 which are likely to be phosphorylated by Bub1. On the basis of 

these findings, Tang and colleagues conclude that Bub1 kinase activity towards Cdc20 

is crucial for a complete SAC response and full inhibition of APC/C activity (Tang, 

Shu, et al., 2004). 

Another study from the same group addressed whether the Bub1 kinase activity is 

required for the SAC response to spindle damage (Kang et al., 2008). They showed 

that in Bub1 depleted HeLa cells (by Bub1 RNAi) exposed to nocodazole, expression 

of the Bub1 kinase-dead mutant is 30% less efficient than the wild type Bub1 in 
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delaying premature anaphase onset. This suggests that the kinase activity of Bub1 is 

required for a full SAC response in human cells.  

Kang and colleagues next solved the crystal structure of the C-terminal domain of 

Bub1, consisting of its kinase domain and a 60 residue fragment N-terminal to it. The 

structure reveals that the extension fragment organizes the activation segment and the 

ATP-binding pocket of Bub1 in a similar way to the activation of cyclin- dependent 

kinases (Cdks) by cyclins. Mutations in the N-terminal extension disrupt the kinase 

activity of Bub1 (Kang et al., 2008).  

Interestingly, compared to other kinases, Bub1 has an extended substrate recognition 

loop that limits the access of non-specific substrates by blocking the active site of 

Bub1. Bub1 contains two KEN boxes in its central region, which mediate its 

degradation by APC/CCdh1 in G1 phase (Qi & Yu, 2007). In addition, Kang and 

colleagues demonstrated that these KEN boxes of Bub1 are also required for Cdc20 

binding, efficient phosphorylation of Cdc20 by Bub1, and the SAC response (Kang et 

al., 2008). These data suggest that Bub1 has a considerable specificity toward Cdc20, 

because Cdc20 is one of only two known KEN box receptors. The other KEN box 

receptor is Cdh1 (the other activator of the APC/C); however, Cdh1 is not efficiently 

phosphorylated by Bub1 in vitro (Tang, Shu, et al., 2004) presumably because it lacks 

an optimal phospho-acceptor residue that can interact with the Bub1 kinase domain. 
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1.7 SAC silencing and recovery from a SAC mediated arrest 

While it is essential to inhibit APC/C when kinetochores are unattached, the ability to 

alleviate APC/C inhibition once the SAC is satisfied is equally crucial for mitotic 

progression. Once all sister kinetochores stably attach to microtubules emanating from 

opposite poles, the ‘wait anaphase’ signal mediated by the SAC is extinguished. The 

major downstream consequence of the SAC silencing is the disassembly of the mitotic 

checkpoint complex (MCC), and the subsequent activation of the APC/C by Cdc20. 

SAC silencing is regulated by multiple mechanisms. 

The most widely conserved silencing mechanism is the phosphatase activity of protein 

phosphatase 1 (PP1; Dis2 in S. pombe). PP1 is required for mitotic exit (Vanoosthuyse 

et al., 2009). KNL1 (Spc7 in fission yeast) cooperates with the kinesins Klp5/6 to 

recruit PP1/Dis2 to kinetochores (Meadows et al., 2011). In the absence of kinetochore 

tension, Aurora B phosphorylates KNL1, and inhibits it from recruiting PP1. Once 

kinetochores are under tension, KNL1 leaves the phosphorylation range of Aurora B, 

thus is relieved from the inhibitory phosphorylation (Liu et al., 2010). This enables the 

localisation of PP1 to the kinetochores, whereupon it counteracts the checkpoint kinase 

activity. PP1 activity removes Bub1-Bub3 from kinetochores, which subsequently 

removes Mad1 and Mad2 (London et al., 2012), yet direct targets (substrates) of PP1 

remain to be discovered. 

Another model for the SAC silencing suggests that a vertebrate protein known as 

p31comet interacts with closed Mad2 (C-Mad2; the only state of Mad2 that can 

recognize Mad3 in fission yeast (Chao et al., 2012a)) in a way similar to interactions 

of C-Mad2 with open Mad2 (O-Mad2), Cdc20 or Mad3. Binding of p31comet to Mad2 

has been found to promote MCC disassembly (Westhorpe et al., 2011). It has been 

suggested that binding of p31comet to MCC through Mad2 may trigger a conformational 

change in Cdc20, facilitating its phosphorylation by Cdk1, which subsequently 

promotes dissociation of Cdc20 from BubR1 (Miniowitz-Shemtov et al., 2012).  

Another SAC silencing mechanism is known as ‘dynein-mediated stripping’ of 

checkpoint proteins, albeit it has only been reported by vertebrate studies. Dynein 

localizes to kinetochores (not in all eukaryotes), and the attachment of microtubules to 

kinetochores allows Dynein to transport Mad1, Mad2 and BubR1 to spindle poles, 
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which contributes to silencing of the SAC (Gassmann et al., 2010; B. J. Howell et al., 

2001).  
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Aims 

In this study, we aim to further our understanding of the phospho-regulation of the 

spindle assembly checkpoint (SAC), specifically by investigating roles of Bub1 kinase 

activity in fission yeast SAC signalling. In order to investigate that: 

1. We examine roles of Bub1 kinase activity in: 

1.1 Maintaining a SAC mediated metaphase arrest in response to various 

degrees of spindle perturbation 

1.2 Recovering from the SAC arrest and progressing into anaphase, once 

spindle reforms and chromosomes are bioriented. 

2. We investigate the protein(s) downstream of Bub1 kinase activity by: 

2.1 Identifying the substrate(s) of Bub1 kinase (Cdc20) 

2.2 Mapping phosphorylated sites of Cdc20 by Bub1 

2.3 Analysing interactions between the MCC components by cross-linking 

mass spectrometry analysis (Cdc20, Mad2 and Mad3) to determine 

Cdc20 phosphorylation sites that may be important for SAC regulation. 

2.4 Engineering the cdc20+ gene at its endogenous locus (inserting an 

antibiotic resistance marker and an internal epitope tag) for using in 

subsequent experiments. 

2.5 Generating phosphorylation mutants of Cdc20 to analyse its regulation 

through putative Bub1-phosphorylated sites. 

3. We examine roles of Cdc20 phosphorylation (C-terminal) by analysing 

phospho-deficient or phospho-mimicking mutants of Cdc20 in: 

3.1 Unperturbed mitosis or various degrees of spindle perturbation in terms 

of their abilities to maintain a SAC response. 

3.2 Prolonged spindle destabilisation followed by re-polymerisation of 

microtubules, in terms of their abilities to recover from the SAC and 

progress into anaphase. 

3.3 The absence of Bub1 kinase activity to test whether Cdc20 phospho-

mimicking mutants can rescue the SAC defects exhibited by the Bub1 

kinase-inactive mutant.  
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Chapter 2: Materials and Methods 

2.1 Buffers and solutions 

10 x TBE 

Tris 445 mM 

Boric acid 445 mM 

EDTA (pH 8) 100 Mm 

SDS gel running buffer (1x) 

Tris 50 mM 

Glycine 384 mM 

SDS 2 % 

Coomassie Blue stain 

0.16 % Coomassie Blue in 4 volumes methanol 

4 volumes acetic acid 

5 volumes ddH20 

PonceauS stain 

PonceauS 0.25 g 

Acetic acid 12.5 ml 

ddH20 to 250 ml 

Semi-dry transfer buffer (1x) 

Tris-Cl 25 mM 

Glycine 129 mM 

Methanol 10 % 
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2.2 Growth media 

Bacteria media (LB) 

Component Final conc. 

Bacto-tryptone 1 % (w/v) 

Bacto-yeast extract 0.5 % (w/v) 

NaCl 

pH adjusted to pH 7.2 with NaOH 

0.5 % (w/v) 

 

Yeast media 

Yeast extract supplemented (YES) 

Component Final conc. 

Yeast extract 0.5 % (w/v) 

D-glucose, anhydrous 0.5 % (w/v) 

Supplements mix 1x 

 

Pombe minimal medium (PMG) 

Component Final conc. 

Phtalic acid 14.7 mM 

Di-sodium hydrogen orthophosphate, 

anhydrous 
15.5 mM 

L-glutamic acid, monosodium salt 25.4 mM 

D-glucose, anhydrous 2 % (w/v) 
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Vitamins mix 1x 

Minerals mix 1x 

Supplements mix 1x 

 

Supplements mix (20x) 

Component Mass 

Adenine 0.4 g 

Arginine 0.4 g 

Histindine 0.4 g 

Leucine 0.4 g 

Uracil 0.4 g 

Lysine 0.4 g 

Distilled water to 250 ml 

 

 

Vitamins mix (1000x) 

Component Final conc. 

Biotin 10 mg/l 

Pantothenic acid 1 g/l 

Nicotinic acid 10 g/l 

Inositol 10 g/l 
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2.3 Insect cell methods 

This section describes the methods used in baculovirus/insect cell experiments. 

Expression and purification of protein complexes were carried out in five steps: 

 

2.3.1 Cloning target DNAs into a transfer vector 

Genes encoding the components of a protein complex were cloned into pFL using the 

multiple cloning site of the transfer vector. The efficiency of cloning was checked by 

analytical digestion and sequencing. 

 

2.3.2 Integration of the transfer vector into the baculoviral genome 

The Transfer vector carrying the insert was integrated into the baculovirus genome 

through transformation into engineered E.coli cells (DH10EMBacY) (a gift from Ken 

Sawin) containing this genome as a bacterial artificial chromosome (bacmid). This 

integration is performed using Tn7- dependent transposition. To enable the 

transposition, DH10EMBacY cells contain a helper plasmid (Tet resistant) that 

expresses the Tn7 transposon complex upon induction with IPTG. Selection of 

positive colonies occurs via blue-white screening. Insertions of the mini-Tn7 into the 

mini-attTn7 attachment site on the bacmid disrupt the expression of the LacZα peptide. 

Hence, colonies containing the recombinant bacmid are white and colonies that harbor 

the unaltered bacmid are blue. Moreover, DH10EMBacY cells are kanamycin resistant 

and the integrated part of transfer vector (pFL) carries a gentamicin resistance gene. 

Thus, to select for the right transformants, LB plates were prepared with the following 

markers: kanamycin (50 g/ml), gentamicin (7 g/ml), tetracycline (10 g/ml), bluo-

gal (100 g/ml), IPTG (40 g/ml). Furthermore, DH10EMBacY cells carry a YFP 

reporter gene in the bacmid that is expressed by the same promoter as the insert gene. 

This enabled us to screen the expression of our gene of interest by examining YFP 

expression under UV light.  Transformed cells were selected by blue/ white screening. 

Bacmid was isolated from white cells using PureLink HiPure Plasmid DNA Miniprep 

Kit (Invitrogen) and checked by PCR and sequencing. 
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2.3.3 Initial insect cell infection with bacmid and generation of virus 

Recombinant bacmids containing the genes of interest were used to transfect insect 

cells in order to produce recombinant baculovirus. On the first day, an exponentially 

growing monolayer Sf9 culture (1-1.5 x 106 cells/ml) with 95% viability was diluted 

in serum and antibiotic free SF-900 II media (Invitrogen) to 0.4 x 106 cells/ml. One 

hour prior to transfection 2.5 ml cells (1 x 106) were added to each well of a 6- well 

plate. Cells were allowed to attach the plate for one hour at 27C. Meanwhile the 

transfection mixture was prepared. For each well to be transfected, 2 g bacmid DNA 

and 10 l transfection reagent (Insect GeneJuice, Novagen) were diluted with 100 l 

media (serum and antibiotic free) in separate tubes. The diluted DNA was added to the 

diluted transfection reagent and mixed. The mixture was incubated at room 

temperature for 30 minutes followed by addition of 0.8 ml media (serum and antibiotic 

free). After the cells attached the plate, media was aspirated from the cells and replaced 

with the transfection mixture (~1 ml). Cells were incubated at 27C for 5 hours and 

then the transfection media was replaced with 2 ml medium (serum and antibiotic free). 

Approximately in 48- 72 hours, transfected insect cells start to demonstrate 

characteristics of very late infection (cessation of cell growth, granular appearance and 

release from the plate) as well as a YFP expression. 2 ml media was collected from 

wells with visibly infected cells. This medium contains the released virus. This is the 

high quality budded virus (P1) that has not yet suffered from damage that can occur 

through over-amplification from successive infection cycles. P1 virus was 

supplemented with 2% fetal bovine serum (FBS) and stored at 4C, protected from 

light. 

2.3.4 Virus amplification and test expression 

Initial virus amplification was carried out using a 25 ml suspension culture (1.8 x 106 

cells/ml) infected with 3 ml of P1 virus. This culture was incubated in 2L roller bottles 

(Corning) on the green sticky pads of a shaking incubator (InFors, at Edinburgh Protein 

Purification Facility, EPPF) at 27C, 95 rpm for 48- 72 hours. Cells were spun (at 500 

rcf, for 5 minutes) and the media containing the P2 virus was collected when the cell 

viability was around 75- 80 %, which was indicated using an automated cell counter 

(Countess, Invitrogen). The expression of the protein of interest was checked by SDS-
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PAGE and revealed by western blot. Expression was also confirmed by observation of 

YFP activity in the cell cultures. P2 virus was then used to infect a larger culture to 

obtain a virus solution (P3) with a higher titer and volume to be used in the ultimate 

protein expression. 

 

2.3.5 Protein expression 

Sf9 cells were used during the bacmid transfection and virus amplifications since they 

tend to clump less than other cell lines (enabling better observation of the infection 

symptoms) and attach firmly to plate surfaces. Once we obtained the P1 virus, we 

switched to suspension culture that provides better aeration and reproduction rates. 

Although Sf9 cells are suitable for suspension cultures, they double only once in 72 

hours whereas another insect cell line called High Five (Invitrogen) (kindly provided 

by Bill Earnshaw) has a much shorter doubling time (~18 hours). High Five cells are 

maintained in another media (ExpressFive, Gibco), but still could be infected with the 

virus released into Sf9 media. When High Five cells were initially transferred from 

tissue culture flasks to suspension culture, they started to form large aggregates of 

cells. Thus, 10 units/ ml Heparin (Heparin sodium salt from porcine intestinal mucosa, 

Sigma) was initially included in High Five media to prevent them from clumping, but 

removed before protein expression once clumping affected less than 10% of the total 

population. 500 ml of exponentially growing High Five cells (1.8 x 106 cells/ml, 98% 

viable) were infected with 10 ml of P3 virus. The cell pellet was harvested (spun at 

5,000 rpm for 20 minutes) 48 – 60 hours after the infection (when 70-80 % of the cells 

appeared to express YFP) and washed with phosphate buffer saline (PBS) to remove 

insect cell media. Cell pellets were stored at – 20°C. In this way more than 20 g of 

insect cell pellet was collected to be used in the subsequent purification experiments. 
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2.3.6 Protein purification 

Recombinant proteins expressed in the baculovirus and insect cell system carried a tag 

with two Strep II sites. A Strep II site is a short peptide (WSHPQFEK), which binds 

with high selectivity to Strep-Tactin, an engineered streptavidin. A tag with Strep II 

sites (strep-tag) allows affinity purification on immobilized Strep-tactin. Strep-tagged 

proteins bind to Strep-Tactin with a 100 times higher affinity (Kd = 1 µM) than to 

streptavidin. Then bound proteins are eluted using biotin (for magnetic beads) or 

desthiobiotin (for liquid chromotography). Desthiobiotin is a stable, reversibly binding 

analog of biotin, the natural ligand of streptavidin. Thawed insect cell pellets were re-

suspended in 5x volume (v/w) of lysis buffer. Cells were lysed by sonication (8 

minutes, 20% amplitude, 10 seconds on, 10 seconds off) and lysis efficiency was 

confirmed by checking the lysate under a bright-field microscope. Cell lysate was 

clarified by centrifuging at 22,000 rpm, 4C for 40 minutes. Supernatant was collected 

and re-adjusted to pH 8.0 before filtering with a 4.5 m filter (Millipore). Finally, 

recombinant protein was purified using magnetic beads.Pilot purification experiments 

involving relatively small pellets (<5 g) were performed using Strep-Tactin magnetic 

beads (Qiagen). The purification was carried out in the cold room. Magnetic bead 

suspension (70ul/ 1 g of pellet) was added to the cleared lysate and mixed on an end-

over-end shaker for 2 hours at 4C. The cell lysate – bead mixture was briefly 

centrifuged and the tube was placed on a magnetic separator for 2 minutes. The 

supernatant (flow-through) was removed and the beads were washed three times with 

1 ml wash buffer in each time. A magnetic separator was used to remove supernatants. 

Then the beads were re-suspended in 100 µl elution buffer and incubated for 5 minutes. 

The tube was placed on a magnetic separator and the supernatant was transferred to a 

new tube. Beads were subjected to four rounds of elution and the supernatants 

collected. Finally samples from all steps were mixed with SDS sample buffer, boiled 

and analyzed by SDS-PAGE and western blotting. 
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Buffers used in the Strep-tactin magnetic-bead purification: 

 

2.4 DNA methods 

Polymerase chain reaction  

For cloning work, Phusion® 2X Master Mix (New England Biolabs) was used in 

accordance with the manufacturer’s instructions. PCR products were visualised by 

agarose gel electrophoresis using ethidium bromide.  

Restriction endonuclease digestion 

All restriction enzymes were obtained from New England Biolabs and used in 

accordance with the manufacturer’s instructions.  

Ligation 

Ligations were carried out using T4 Quick Ligase (New England Biolabs) in 

accordance with the manufacturer’s instructions before transformation into E. coli 

Ethanol precipitation of DNA 

Three volumes of ice-cold 96 % ethanol and 1/10 volume 3 M sodium acetate solution 

was first added to one volume of DNA solution to precipitate DNA from aqueous 

solutions. After incubating on wet ice for 30 min., tubes were centrifuged at 14,000 

Strep-Tactin lysis buffer 

 

 

 

 

50 mM NaH2PO4 pH 8.0, 0.3 M NaCl, 10% glycerol, 

0.05% Tween 20, 10mM 2-mercaptoethanol, 1 

Complete-Mini Protease Inhibitor Cocktail Tablet 

(EDTA-free) per 10 ml buffer, 0.5 mM Pefabloc, 0.4 

ug/ml DNase 

 

Strep-Tactin magnetic beads 

wash buffer 

 

50 mM NaH2PO4 pH 8.0, 0.3 M NaCl, 10% glycerol, 

0.05% Tween 20, 10mM 2-mercaptoethanol 

 

Strep-Tactin magnetic beads 

elution buffer 

 

50 mM NaH2PO4 pH 8.0, 0.3 M NaCl, 10% glycerol, 

0.05% Tween 20, 10mM 2-mercaptoethanol, 20 mM 

biotin 
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rpm at 4 oC for 15 min. Supernatant was aspirated and the pellet was washed with 500 

µl of 70 % ethanol solution. The tubes were spun at 14,000 rpm at 4 oC for 10 min. 

After removing the wash solution, tubes were air-dried for 5-10 min. before the pellet 

was re-suspended in TE buffer.  

Site directed mutagenesis 

Site-directed mutagenesis was carried out using the Quikchange II site-directed 

mutagenesis kit (Strategene) according to the manufacturer’s instructions. Reaction 

volumes were reduced to 10 µl/reaction.  

Gateway cloning 

Gateway-based cloning was performed using the kit (LR Clonase II Enzyme Mix, 

Invitrogen) in accordance with the manufacturer’s instructions. Reaction volumes 

were reduced to 5 µl/reaction. 

Ethanol precipitation of DNA 

Three volumes of ice-cold 100 % ethanol and 1/10 volume 3 M sodium acetate solution 

were added to one volume of DNA solution to precipitate DNA. After incubating it on 

ice for 30 min., tubes were centrifuged at 14,000 rpm at 4 oC for 15 minutes. Then the 

supernatant was aspirated and the pellet was washed with 500 µl of cold 70 % ethanol 

solution. The tubes were spun at 14,000 rpm at 4 oC for 10 minutes. After removing 

the wash solution, tubes were air-dried for 5-10 minutes, and the pellet was re-

suspended in TE buffer. 

 

2.4 Fission yeast methods 

2.4.1 Yeast transformation 

Electroporation 

Yeast cells to be transformed were grown to mid-exponential phase (OD600 = 0.5) in 

YES overnight. Next day, cells were harvested (spun at 3000 rpm for 3 minutes), 

transferred to a pre-chilled microfuge tube and placed on ice. Then cells were washed 

once with ice-cold water, once with ice-cold 1 M sorbitol and re-suspended in ice-cold 
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sorbitol to a final density of 1 x 109 cells/ml. 40 µl of the cell suspension was mixed 

with 10 µl of transforming DNA (~1-2 µg)  in a pre-chilled tube. The mixture was then 

transferred to a pre-chilled cuvette (0.2 cm gap) and incubated for 2 minutes on ice, 

followed by electroporation at 1.8 kV, 200 Ω, 25 µF capacitance using a BioRad 

electroporator. Immidiately after electroporation, 500 µl of ice-cold 1 M sorbitol was 

added onto the cells, incubated 2 minutes on ice and transferred to a sterile microfuge 

tube. Cells were then spun, washed with water and plated onto YES plates. Once a 

thick layer of cells appear on the YES plate (2-3 days), cells were replica plated onto 

selective plates. 

 

2.4.2 Yeast genomic DNA extraction 

Yeast was extracted using the single-tube LiOAc-SDS lysis method described in 

(Lõoke, Kristjuhan, & Kristjuhan, 2011).  

 

2.4.3 Mitotic arrests 

G2 arrests (cdc25-22) for synchronous mitotic time courses treated with 

microtubule depolymerizing drug carbendazim (CBZ) 

Cells bearing the cdc25-22 mutation were grown in YES medium at 25°C to mid-log 

phase and then shifted to 36°C for 4 hours to arrest them in G2 phase. Once all cells 

exhibited characteristics of G2 phase (long cells were checked under the microscope) 

they were released into a synchronous mitosis, by shifting the temperature back to 

25°C in ice-water and then incubated at 25°C for 120-150 minutes. 20 mins after the 

G2 release into mitosis, the CBZ solution was spun at room temperature for 1 min at 

4500 rpm, and the soluble phase added to liquid cultures at 100 µg/ml final 

concentration to activate the spindle assembly checkpoint (SAC). Cells were 

harvested, then either fixed in 100% methanol (to be stained with DAPI or calcofluor), 

or frozen in dry ice and stored at -80°C (to be lysed for protein extraction) 
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Preparation of the carbendazim (CBZ) solution 

A carbendazim stock solution (3.75 mg/ml) was prepared by dissolving it in pre-

warmed DMSO. This solution was vortexed and heated in a water bath set to 55°C for 

3.5 hours. Then the solution was vortexed again and cooled down to room temperature 

before use.  

 

Prolonged microtubule depolymerization via nda3-KM311 block 

Cells bearing the nda3-KM311 cold sensitive tubulin mutation were grown at the 

permissive temperature (30°C) to mid-log phase and then shifted to the restrictive 

temperature (18°C) for 6-9 hours to depolymerize their microtubules and activate the 

spindle assembly checkpoint (SAC). Cells were harvested, fixed in 100% methanol 

and stained with DAPI (to detect DNA) or calcofluor (to detect septa). 

 

SAC recovery assay 

nda3-KM311 cells arrested at 18°C for 6 hours were shifted back to the permissive 

temperature (30°C), and incubated for 30 minutes to allow microtubule re-

polymerization. Cells were harvested, fixed in 100% methanol and stained with DAPI 

(to detect DNA) or calcofluor (to detect septa). 
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Table 2.1 Fission yeast strains used in this study 

Strain Genotype  Source 

OS118 nda3-KM311 GFP-plo1::ura4+  Hardwick lab 

OS165 nda3-KM311 GFP-plo1::ura4+ bub1Δ::NAT  Hardwick lab 

OS172 nda3-KM311 GFP-plo1::ura4+ bub1 K762R D900N  This work 

OS260 cdc25-22 lid1-TAP::kan’mad2-GFP::his3 mad3-

GFP::his3 

 Hardwick lab 

OS261 cdc25-22 lid1-TAP::kan’mad2-GFP::his3 mad3-

GFP::his3 bub1 K762R D900N 

 Hardwick lab 

OS216 cdc25-22 lid1-TAP::kan’mad2-GFP::his3 mad3-

GFP::his3 sgo2Δ::NAT 

 This work 

OS190 cdc25-22 slp1-FLAG::hyg mad2-GFP::his3 mad3-

GFP::his3 bub1 K762R D900N 

 This work 

OS20 cdc25-22 slp1-FLAG::hyg mad3-GFP::his3  This work 

OS246 cdc25-22 slp1-FLAG::hyg mad2-GFP::his3 mad3-

GFP::his3 mph1-kd::NAT 

 This work 

OS191 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482A::hyg 

 This work 

OS188 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482A S483A S484A::hyg 

 This work 

OS210 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 S482E 

S483E S484E::hyg 

 This work 

OS201 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

mad2Δ::ura4+ leu1 

 This work 

OS213 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 S482E 

S483E S484E::hyg mad2Δ::ura4+ leu1 

 This work 

OS18 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 slp1-

FLAG::hyg 

 This work 

OS184 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482A-FLAG::hyg 

 This work 
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Strain Genotype  Source 

OS154 nda3-KM311 GFP-plo1::ura4+slp1S482A S483A 

S484A::hyg 

 This work 

OS123 nda3-KM311 GFP-plo1::ura4+slp1S482E S483E 

S484E::hyg 

 This work 

OS129 nda3-KM311 GFP-plo1::ura4+slp1R488E::hyg  This work 

OS119 nda3-KM311 lid1-TAP::kan’ mad3-GFP::his3  Hardwick lab 

OS134 nda3-KM311 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482E S483E S484E::hyg 

 This work 

OS135 nda3-KM311 lid1-TAP::kan’ mad3-GFP::his3 

slp1R488E::hyg 

 This work 

OS287 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482D::hyg 

 This work 

OS286 cdc25-22 lid1-TAP::kan’ mad3-GFP::his3 

slp1S482D::hyg bub1 K762R D900N  

 This work 

 

 

Table 2.2 Plasmids used in this study 

Name Description Source 

OS11 pDONR201-Slp1-FLAG::hyg Gateway This work 

OS5 pFL-MCC-DN David Barford 

OS18 pFL-bub1 This work 

OS19 pFL-bub1-kd  This work 

OS7 pFL-MCC-FL David Barford 
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Table 2.3 Primers used in this study 

No.  Name Sequence (5’–3’) Comments Source 

OS13 Slp1_1108Rev CCATTGTGCCACCGCCTGTC

G 

Diagnostic 

PCR and 

sequencing 

This 

work. 

OS16 Slp1 938 FW GTTCAGACGGTCTTCAGTTG 

 

Diagnostic 

PCR and 

sequencing 

This 

work. 

OS17 
Slp1 37bp downst 

FW 
CGTCGAATCACTATGTTGC 

Diagnostic 

PCR and 

sequencing 

This 

work. 

OS24 Slp1 upstream 

ApaI FW 

GGGCCCCGCAGCATTACCA

TAAGCTG 

Internal tag This 

work. 

OS34 Slp1 Hyg attB1 

FW 

TTGATGGCGAATCCGCTGCT

ATGAAATTGGTTG 

Gateway 

cloning 

This 

work. 

OS35 Slp1 Hyg attB2 

REV 

CAACCAATTTCATAGCAGC

GGATTCGCCATCAA 

Gateway 

cloning 

This 

work. 

OS22 
Slp1 upstream 

NaeI REV 

TCACTAGAGAACGCGTTAT

ATG 

Internal tag This 

work. 

OS47 Slp1 S482D 

mutagenesis FW 

CCAATTACCAAAACCCCGga

cAGCAGCATAACAATCC 

S1D mutation This 

work. 

OS48 Slp1 S482D 

mutagenesis REV 

GGATTGTTATGCTGCTgtcCG

GGGTTTTGGTAATTGG 

S1D mutation This 

work. 

OS39 IE FW CCCCGTCCAGCAGCATAAC

AATCgaaTGAACAACACC 

IE mutation. This 

work. 

OS40 IE REV GGTGTTGTTCAttcGATTGTT

ATGCTGCTGGACGGGG 

IE mutation. This 

work. 

OS41 S3A FW CCAAAACCCCGgcggctgccAT

AACAATCCG 

S3A mutation This 

work. 

OS42 S3A REV CGGATTGTTATggcagccgcCG

GGGTTTTGG 

S3A mutation This 

work. 

OS43 S3E FW CCAAAACCCCGgaggaagagAT

AACAATCCG 

 

S3E mutation This 

work. 

OS44 S3E REV CGGATTGTTATctcttcctcCGGG

GTTTTGG 

S3E mutation This 

work. 
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2.5 Protein methods 

2.5.1 Immunoprecipitations 

Anaphase promoting complex/cyclosome (APC/C) interaction  

Proteins were extracted from harvested cells in lysis buffer (50 mM HEPES pH 7.5, 

75 mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.1% TritonX-100, 1 mM sodium vanadate, 

0.1 μM microcystin, complete mini EDTA free, and 1 mM pefabloc). Cells were 

resuspended in lysis buffer and bead-beat twice for 30 seconds. Lysates were spun and 

cleared lysates were incubated for 45 min with IgG-coupled Dynabeads (Invitrogen), 

which bind to Apc4-TAP. The immunoprecipitated complexes were washed five times 

with lysis buffer and then analysed by immunoblotting with sheep anti-GFP antibody, 

sheep anti-Mad2 and Peroxidase anti-Peroxidase (PAP) antibodies. 

Cdc20Slp1 (mitotic checkpoint complex) interaction  

The same steps described above were followed, except cells expressing Cdc20Slp1-

FLAG (instead of Apc4-TAP) were used, and the lysates from these cells were 

incubated with anti-FLAG-coupled Dynabeads, which bind to Cdc20-FLAG. 

2.5.2 SDS-PAGE 

Resolving gels were made following the recipe below: 

  12.5 %  

40 % acrylamide  4.7 ml  

2 % Bis  0.75 ml  

1.5 M Tris-HCl pH 8.8                    3.75 ml 

Water                      to 15 ml 

 

150 µl of 10 % ammonium persulfate (APS) and 20 µl TEMED were added to 

catalyse the polymerization of resolving gel. Once the gel solution was added 

between glass plates used to cast gels, it was overlaid with isopropanol and 
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allowed to set for 20 minutes. Then ispropanol was decanted, the gel was quickly 

rinsed and stacking gel solution was added. 

 

Stacking gels were made following the recipe below: 

40 % acrylamide 6.25 ml 

2 % Bis 3.33 ml 

1.0 M Tris-HCl pH 6.8 6.25 ml 

Water to 50 ml 

 

Proteins were resolved for 60-120 minutes at a constant voltage (110-170 V) in SDS-

PAGE running buffer (2 % SDS, 50 mM Tris, 384 mM glycine). After SDS-PAGE, 

proteins were transferred unto a nitrocellulose membrane (GE Healthcare) using a 

TE77 semi-dry transfer unit (Hoefer) at 135 mA for 120 min in semi-dry transfer buffer 

(25 mM Tris, 130 mM glycine, 10 % methanol).  

2.5.3 Immunoblotting 

Quality of the protein transfer was analyzed by Ponceau staining, and the membranes 

were blocked in blocking solution (1x PBS or TBS, 0.04 % Tween 20, 3-5 % w/v dried 

skimmed milk) for 30 minutes at room temperature and on a shaking platform, 

followed by overnight incubation with the primary antibody (diluted in blocking 

buffer) at 4 oC. Next day, membranes were washed with PBS or TBS + 0.04 % Tween 

3 times for 5 minutes each, before being incubated with secondary antibody (diluted 

in blocking buffer) for 40 minutes at room temperature. Membranes were washed with 

PBS or TBS + 0.04 % Tween 3 times before protein visualisation by 

chemiluminescence using an ECL detection kit (SuperSignal West Pico or 

SuperSignal West Femto, Pierce) according to the manufacturer’s instructions. 

Finally, membranes were exposed to X-ray films (Agfa Healthcare), which were 

subsequently developed using a SRX-101A Film Processor (Konica-Minolta).  
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Primary and secondary (HRP-conjugated) antibodies used in this study: 

Antibody Species Dilution Source 

Anti-Mad2 Sheep 1:1000 Hardwick lab 

Anti-FLAG M2 Mouse 1:1000 Sigma-Aldrich 

Anti-Cdc20Slp1 Rabbit 1:1000 Matsumoto lab 

Anti-tubulin (TAT1) Mouse 1:1000 Keith Gull 

Anti-GFP Sheep 1:1000 Hardwick lab 

Anti-sheep, HRP 

conjugated* 

Donkey 
1:5000 

Jackson Immuno-

Research 

Anti-mouse, HRP 

conjugated* 

Donkey 
1:5000 GE Healthcare 

Anti-rabbit, HRP 

conjugated* 

Sheep 
1;5000 GE Healthcare 

 

 

2.5.4 In vitro kinase assays 

Fission yeast Bub1 and MCC (mitotic checkpoint complex) proteins, which were 

purified from insect cells (See chapter 4.1), were washed twice with 1 x kinase buffer 

(50 mM Hepes pH 7.5, 10 mM MgCl2, 0.5 mM DTT). 25 l of kinase reaction buffer 

(12.5 l 2x kinase buffer (100 mM Hepes, pH7.5, 20 mM MgCl2, 1 mM DTT), 0.5 l 

P32 gamma-ATP, 0.5 l 1 mM ATP, made up with substrate (MCC) and kinase (Bub1) 

in a final volume of 25 l was then incubated at 30C for 30 mins. Reactions were 

stopped by adding 2xSDS sample buffer, boiled and resolved in an SDS-PAGE gel. 

Then the gel was stained with Coomassie Blue, dried and phosphorylation signals were 

detected by exposing the gel to Typhoon phosphoimager. Cold kinase assays were 

carried out with 100 mM ATP and further analysed by mass spectrometry. 
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2.5.5 Mass-spectrometry  

Cross-linking fission yeast MCC 

Recombinant MCC was expressed in insect cells and the cell lysate was incubated with 

Strep magnetic beads to immobilize the MCC. Cross-linking was performed using two 

different cross-linkers: BS3 or EDC, each of them requiring different buffer 

conditions. Therefore, beads solution was split into two; one half was resuspended in 

HEPES (pH 8.0) for cross-linking with BS3, and the other half in MES (pH 6.0) for 

cross-linking with EDC. Cross-linking reactions were carried out on the beads by 

Angel Chen (from Juri Rappsilber lab), followed by trypsin digestion and mass 

spectrometry. Cross-linking data was visualized using Xi Network Viewer (Generated 

by Juri Rappsilber lab). 

 

2.5.6 APC/C ubiquitination assays 

Fission yeast genes E1 (Uba1) and E2s (Ubc1, 4 and 11) inserted in pMAL and 

pET16b vectors respectively were kindly provided by Hiro Yamano. These vectors 

were used to express the proteins in BL21 RIL cells. MBP-Uba1 and His-tagged E2s 

were then affinity purified using either amylose (NEB) or talon resins (Clonetech). 

MBP-Uba1 was further purified by size exclusion chromatography using a Sephadex 

S200 column. Full-length APC/C activator Cdc20Slp1 and radiolabelled [Met 35S] 

APC/C substrate, securincut2 were produced by in vitro translation using the TNT 

Quick Coupled Transcription/Translation kit (Promega) according to manufacturer’s 

instructions using 1μg of pHY22-Cdc20Slp1 and pHY22-securincut2 plasmids also 

provided by Hiro Yamano. Lid1-TAP APC/C was affinity purified using IgG agarose 

beads (GE Healthcare) from S. pombe cells carrying the ts slp1-362 mutation to isolate 

the APC/C that is free from endogenous Cdc20slp1.  
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In vitro APC/C ubiquitination assays were carried out following a method based on 

assays previously described for budding, fission yeast and human proteins (Foster & 

Morgan, 2012; Hwang et al., 1998). In brief, 0.05 mg/ml Uba1, 0.5mg/ml E2s (ubc1, 

ubc4 and ubc11) and 0.3 mM ATP were mixed with 1.5 mg/ml wild-type mono-

ubiquitin (Sigma Aldrich), 2µM ubiquitin aldehyde (Boston Biochem) in a 

ubiquitination buffer containing 25 mM HEPES pH 7.5, 100 mM KCl, 3mM ATP, 2.5 

mM MgCl2, and 0.2 mM DTT. The ubiquitination mix was incubated at 23 °C for 20 

min. 0.5 µM APC/C, 4 µl and 2 µl of Cdc20Slp1 and securincut2 respectively were then 

added to the mix in a total reaction volume of 20 µl.  Reactions were carried out at 23 

°C for 45 min and stopped by adding 4xSDS sample buffer. Samples were subjected 

to SDS-PAGE electrophoresis and visualised by radiography using the Typhoon 

phosphoimager.  The ubiquitination of securincut2 by APC/C was quantified using the 

ImageQuant software (GE Healthcare) to analyse the decrease in intensity of the 

unmodified securin band. 
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Chapter 3: Roles of Bub1 kinase activity in the spindle 

assembly checkpoint 

3.1 Overview 

During mitosis, equal chromosome segregation is crucial to maintain chromosomal 

stability throughout the cell division cycle. A cellular surveillance mechanism, known 

as the spindle assembly checkpoint (SAC) ensures chromosomal stability  by delaying 

chromosome segregation (anaphase onset), until all sister kinetochores attain bi-

orientation (Conly L. Rieder et al., 1995). 

Bub1 kinase is one of the upstream enzymes of SAC signalling. Studies in various 

model organisms have reported two sets of Bub1 functions based on its structural 

domains: 

1. Non-kinase related functions (mediated by the N-terminal and middle regions 

of Bub1), which are mainly functionaing as a scaffold at the unattached 

kinetochores to recruit downstream SAC proteins (Klebig et al., 2009; 

Rischitor et al., 2007; Shepperd et al., 2012a; Vanoosthuyse et al., 2004; 

Mathijs Vleugel et al., 2013). 

2. Functions mediated by Bub1 kinase activity. Observations in various species 

have suggested two major roles for Bub1 kinase activity:  

(i) Ensuring chromosome bi-orientation by recruiting the Shugoshin 

protein (Sgo2 in fission yeast) to inner centromere through direct 

phosphorylation of H2A (Kawashima et al., 2010). 

(ii) Delaying premature anaphase onset (underlying mechanisms are 

currently unclear) to provide time for chromosome bi-orientation, 

which is the main focus of this chapter. 

Unlike its chromosome bi-orientation roles described above, roles of Bub1 kinase 

activity for the SAC response are less well-understood. Even though its downstream 

pathways remain to be discovered, several lines of evidence have demonstrated the 

requirement of Bub1 kinase activity for a robust SAC response.  

Several studies suggested that whilst the Bub1 kinase activity is not essential for the 

SAC response to many unattached kinetochores (generated by prolonged spindle 
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perturbation through nda3-KM311 tubulin mutation or high dose of nocodazole), it is 

essential for the SAC response to a few unattached kinetochores (generated by low 

dose nocodazole) or lack of tension at sister kinetochores (generated by cohesion 

mutants) in budding yeast (Fernius & Hardwick, 2007), fission yeast (Kawashima et 

al., 2010) and Xenopus egg extracts (Chen, 2004). In addition, in fission yeast cells 

(Yamaguchi et al., 2003) that are exposed to an-anti microtubule drug (75µg/ml 

microtubule depolymerising drug carbendazim, CBZ) during synchronous mitosis, the 

ability of the ‘kinase-dead’ Bub1 mutant to delay anaphase onset is 25-30% less than 

that of wild type Bub1. Compared to nda3-KM311 cold sensitive mutation, 

carbendazim (CBZ) treatment has been reported to cause relatively subtle spindle 

damage, as cells exposed to CBZ have been reported to retain short microtubule stubs 

associated with their spindle pole bodies (Petersen & Hagan, 2003). On the basis of 

these observations, we hypothesize that the SAC roles of Bub1 kinase activity may 

become more important to delay anaphase onset in response to relatively subtle and 

short spindle perturbation, rather than prolonged spindle damage. 

The ‘kinase-dead’ Bub1 mutant (bub1-K762R), that was constructed by Yamaguchi 

and colleagues, has been reported to retain residual kinase activity in vitro and in vivo 

(Kawashima et al., 2010). On the other hand, Kawashima and colleagues have 

demonstrated that mutating the catalytic site (D900N) of Bub1 in addition to mutating 

its ATP binding motif (K762R) abolishes its kinase activity (Kawashima et al., 2010). 

In this chapter, we aim to investigate roles of Bub1 kinase activity in SAC response 

using the bub1-K762R D900N allele (hereafter referred to interchangeably as bub1-

kd) (Kawashima et al., 2010) and analysing its ability to: 

- (i) Arrest at metaphase in response to relatively severe (nda3-KM311 tubulin 

mutation) spindle damage (ii) recover from the SAC arrest upon re-

polymerization of microtubules, and progress into anaphase. 

- (i)Arrest at metaphase in response to relatively subtle (carbendazim treatment) 

spindle damage (ii) recruit two of the MCC components (Mad2 and Mad3) to 

kinetochores (iii) Assemble the MCC (iv) catalyse MCC-APC/C binding. 
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3.2 Analysis of Bub1 kinase function in response to microtubule 

depolymerisation by nda3-KM311 allele 

3.2.1 Analysis of Bub1 kinase function in maintaining SAC arrest at metaphase 

In order to examine abilities of wild type, bub1-kd (Figure 3.1A) and bub1 null cells 

to arrest at metaphase in response to depolymerised microtubules, we used the nda3-

KM311 cold sensitive tubulin mutation, by which microtubules are depolymerised at 

the restrictive temperature (18°C), and thereby the SAC is activated. Strains were 

grown overnight at the permissive temperature (30°C) to mid-logarithmic phase, and 

then shifted to the restrictive temperature (18°C) for 9 hours. Cell samples were 

collected 6 hours and 9 hours after the temperature shift, fixed in methanol and stained 

with DAPI to visualise DNA. In addition to scoring condensed DNA, we monitored 

localisation of polo kinase (Plo1-GFP) at spindle poles, which is another indication of 

a metaphase arrest (Bahler et al, 1998a; Mulvihill et al, 1999). 

During the nda3-KM311 block cells exhibited characteristics of three types of cell 

cycle stages (Figure 3.1D): the first type is late G2 cells, which have uncondensed 

DNA and relatively weak Plo1-GFP signal gradually accumulating on their spindle 

poles; the second type is metaphase arrested cells with condensed DNA and strong 

Plo1-GFP signal on spindle poles; the third type is the cut (cell untimely torn) cells, in 

which cells exit mitosis forming septa without symmetrical segregation of their sister 

chromatids. The cut phenotype correlates with defects in the SAC response, as in this 

case cells do not have a robust checkpoint machinery to delay mitotic exit when the 

spindle formation is perturbed (Yanagida, 1998). 

Figure 3.1B and C show that after spending 6 hours with depolymerised microtubules, 

52% of the wild type cells arrested at metaphase, 48% remained at late G2, and only 

1% exhibited cut phenotype. 

On the other hand, bub1 null cells did not arrest at metaphase at all, however exhibited 

41% cut and 59% late G2 phenotype. This result was expected since bub1 null cells 

are known to be SAC deficient (Vanoosthuyse et al., 2004).  

Despite having a fully functional Bub1 N-terminus, less bub1-kd cells arrested at 

metaphase (43%) than the wild type cells (52%). Moreover, Figure 3.1C shows that 



 

52 

 

after 6 hours of nda3-KM311 block, 11% of the bub1-kd cells exhibited cut phenotype. 

In other words, 11% of the bub1-kd cells leaked through the metaphase arrest and 

exited mitosis without accurate chromosome segregation. 

After 9 hours, Figure 3.1B displays that the difference between the abilities of wild 

type and bub1-kd in arresting at metaphase became more significant. While 76% of 

wild type cells arrested at metaphase, only 54% of bub1-kd cells were able to arrest. 

Furthermore, as shown in Figure 3.1C-D, bub1-kd cells exhibited the cut phenotype 

more frequently (12%) than wild type cells did (2%). In the absence of Bub1 protein, 

premature mitotic exit was even more frequent, which was indicated by 58% cut 

phenotype observed in bub1 null cells. 

These results suggest that the non-kinase region of Bub1 (N-terminal and the middle 

region) is essential for the SAC response, however its C-terminal kinase activity is still 

required for SAC maintenance during a prolonged and severe spindle perturbation 

(highly penetrant microtubule polymerisation) mediated by nda3-KM311 mutation. 
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Figure 3.1 Bub1 kinase activity is required for maintaining the SAC in nda3-KM311 block
  
(A) Cartoon illustrating S. pombe bub1 kinase-dead (kd) allele, in which the function of C-termi-
nal kinase domain is abolished through two point mutations: K762R (ATP binding site) and 
D900N (catalytic site). (B) Wild type, bub1-kd and bub1∆ cells bearing nda3-KM311 cold 
sensitive tubulin mutation were grown at the permissive temperature (30°C) and shifted to the 
restrictive temperature (18°C) for 9 hours. Cell samples were collected 6 hours and 9 hours 
after the temperature shift, fixed in methanol and stained with DAPI to visualize DNA. Graph 
plotting percentage of cells arrested at metaphase with condensed DNA and Plo1-GFP locali-
zation at their spindle pole bodies (SPBs). 9 hour results are the mean values of two independ-
ent experiments with the error bars represent standard error of the mean (SEM) (n=100 cells 
per time point). (C) Distribution of the cells described in B in terms of their cell cycle stage: late 
G2 cells (green) with uncondensed DNA and relatively weak or absent Plo1-GFP signal; 
metaphase arrested cells (blue) with condensed DNA and strong Plo1-GFP signal; cut cells 
(cell untimely torn) (orange) which exit mitosis forming septa, without equal chromatid segre-
gation. (D) Representative images from 9 hours of nda3-KM311 block, displaying the distribu-
tion of the cells in terms of their cell-cycle stage. Scale bar represents 5 microns.        
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3.2.2 Analysis of Bub1 kinase function in recovering from the SAC arrest at 

metaphase 

In the previous section we demonstrated that Bub1 kinase function was important to 

fully activate the SAC response and arrest cells at metaphase when spindle formation 

was perturbed by nda3-KM311 cold sensitive mutation. In its absence (in the case of 

bub1-kd), higher frequency of ‘cut’ phenotype was observed, in which the cells exited 

mitosis without ensuring equal segregation of their chromosomes. 

In this section, we address whether Bub1 kinase activity has a role in recovering from 

the SAC-mediated metaphase arrest, upon formation of the spindle. To analyse this, 

we released wild type and bub1-kd cells (in the same experiment described in Figure 

3.1) from 6 hours of nda3-KM311 block at 18℃, shifting them back to the permissive 

temperature (32℃) to allow re-polymerisation of microtubules. Then we collected cell 

samples 10, 20 and 30 minutes after the temperature shift, and fixed them in methanol 

to process as described previously (Figure 3.1).  

Following the release from metaphase arrest we observed that the cells exhibited 

characteristics of various cell-cycle stages (Figure 3.2A). The first type is late G2 cells, 

which have uncondensed DNA and relatively weak Plo1-GFP signal gradually 

accumulating on their spindle poles. The second type is metaphase arrested cells with 

condensed DNA and strong Plo1-GFP signal on spindle poles. Metaphase cells consist 

of two subtypes; the cells displaying overlapped Plo1-GFP signals (one spot) on two 

spindle poles that are very close to each other early in metaphase and the cells 

displaying separated Plo1-GFP signals late in metaphase (two spots). The third 

category is anaphase cells, which have their sister chromatids equally separated, and 

pulled to the opposite poles by re-polymerised microtubules. The fourth is ‘cut’ cells, 

which exit mitosis forming septa, without equal segregation of their sister chromatids, 

and become aneuploid. 

On the basis of these criteria, Figure 3.2C shows that 10 minutes after the release from 

metaphase arrest 37% of initially arrested wild type cells exited mitosis by either 

progressing into normal anaphase (25%) or cut phenotype (12%) (mitotic exit without 

chromosome segregation) (Figure 3.2B). On the other hand, after 10 minutes 51% of 
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initially arrested bub1-kd cells exited mitosis, 30% of it progressing into normal 

anaphase and 21% exhibiting cut phenotype.  

After 30 minutes (Figure 3.2C), 81% of initially arrested wild type cells exited mitosis, 

with 74% normal anaphase and 7% cut phenotype. However, after 30 minutes 

percentage of mitotic exit was 93% for bub1-kd cells, exhibiting 68% normal anaphase 

and 25% cut phenotype. 

In order to compare mitotic exit rates of wild type and bub1-kd cells when spindle 

reformed, we plotted trend lines out of ‘% of initially arrested cells which exited 

mitosis upon microtubule re-polymerisation’ data. Linear regression analysis of these 

lines demonstrated that SAC recovery (mitotic exit) rates of wild type and bub1-kd 

cells were not significantly different from each other, indicated by the result that 

neither the slopes (stability of a certain recovery rate), nor the elevations (recovery 

rates themselves) are significantly different. 

In summary, (Figures 3.1A and B) upon re-polymerization of microtubules initially 

well-arrested wild type cells progressed into a normal anaphase with a low frequency 

of cut phenotype. On the other hand, bub1-kd cells did not only slip through the SAC 

arrest (with more frequent cut phenotype) throughout the nda3-KM311 block, but also 

exhibited an increasing number of cut phenotype during the recovery from the SAC 

mediated arrest.  

These results suggest that, Bub1 kinase function is important for both preventing 

premature mitotic exit when the spindle formation is perturbed, and ensuring equal 

segregation of chromosomes upon re-polymerization of microtubules. 
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Figure 3.2 Bub1 kinase activity is required to ensure equal chromosome segregation 

(A) Cells from the same experiment described in Figure 3.1 were blocked for 6 hours at 18°C 
with depolymerized microtubules through nda3-KM311 tubuline mutation. Immidiately after 
taking the 0 minute samples, cells were shifted to the permissive temperature (32°C) to allow 
re-polymerization of microtubules, and subsequent recovery from the SAC. Cell samples were 
taken at each 10 minutes for 30 minutes after the release from nda3-KM311 block, fixed in 
methanol, and stained with DAPI (purple) to visualize DNA, along with Plo1-GFP localisation at 
SPBs (green). Pictures demonstrate representative cell-cycle stages of the cells 0, 10, 20 and 
30 minutes after the release. Observed mitotic stages are annotated with dashed rectangles as 
follows: cells at late G2 (green); metaphase cells with one (light blue) or two (dark blue) 
Plo1-GFP spots at SPBs; cut cells (yellow); and anaphase cells (red). Scale bar represents 5 
microns. (B) Graph displaying the relative percentage of each cell-cycle stage for each strain 
throughout 30 minutes after the release (n=100 cells) (C) Graph plotting the percentage of 
metaphase cells at time=0, which progressed into anaphase or cut 0, 10, 20, 30 min after the 
release, using the following formula: 
     %    (anaphase cells + cut cells at 0, 10, 20 or 30 min) - (cut cells at 0 min)
              metaphase cells at 0 min
Linear regression analysis of the trend lines was performed using GraphPad Prism software:
* indicates lines with slopes that are not significantly different from each other; § indicates lines 
with elevations that are not significantly different from each other. 
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3.3 Analysis of Bub1 kinase function in response to microtubule 

depolymerisation by an anti-microtubule drug 

In the preceding two sections, we have investigated possible roles of Bub1 kinase 

activity in activating (when microtubules depolymerized) and inactivating (when 

microtubules re-polymerized) the SAC, by employing nda3-KM311 cold sensitive 

tubulin mutation. Using the nda3-KM311 allele has multiple advantages and related 

downsides.  

First, it provides a switch-like control on the polymerization of microtubules, which is 

reversible by switching between restrictive (18℃) and permissive (32℃) temperatures. 

However, S. pombe cells grow very slowly at 18℃. Therefore, once an asynchronous 

culture is shifted to 18℃, the whole population may not enter mitosis and be blocked 

at metaphase. This was observed in the previous experiment, in which 47% and 16% 

of the wild type cells were in late G2 after 6 and 9 hours of nda3-KM311 block 

respectively. Second, because it is a genetic tool, spindle perturbation through nda3-

KM311 is much more penetrant than those obtained from anti-microtubule drugs. This 

is particularly useful to rule out possible outcomes of residual microtubule 

polymerization. On the other hand, this ‘absolute’ microtubule depolymerisation 

mediated by nda3-KM311 results in activation of a very strong SAC response. In other 

words, a prolonged nda3-KM311 block leaves all the kinetochores unattached for a 

considerably long period of time (6-9 hours), which leads to constant formation of high 

quantities of MCC. This is a condition, in which contributions from more subtle 

elements of the SAC machinery might be overlooked in the presence of excessive 

amount of MCC. Bub1 kinase activity may be playing such a subtle role in maintaining 

the SAC, compared to the direct involvement of MCC components (Cdc20, Mad2 and 

Mad3). Thus, in this section we investigate Bub1 kinase activity by employing a more 

subtle spindle perturbation that is mediated by an anti-microtubule drug called 

carbendazim (CBZ) (Petersen & Hagan, 2003). This way, we aim to dissect the roles 

of Bub1 kinase function under conditions where it might become more important for 

SAC activation.  
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To do this, we employ temperature sensitive cdc25-22 mutant, which allows blocking 

the cells at G2 and releasing them into mitosis synchronously. To arrest cells in 

mitosis, they are treated with 100µg/ml CBZ 20 minutes after the G2 release (Note 

that cells have been observed not to enter mitosis if CBZ is added before 20 minutes, 

Jonathan Millar laboratory personal communication). 

3.3.1 Analysis of mitotic progression rate and kinetochore localization of MCC 

components in the presence of an anti-microtubule drug 

In the previously described nda3-KM311 time courses we used bub1 null allele as a 

negative control to examine bub1-kd allele in the context of the SAC. Although bub1-

kd cells were not able to activate the SAC at wild type levels, they were not as defective 

as bub1 null cells either. These results suggest that the N-terminal regulatory region of 

Bub1 is essential for the SAC, however C-terminal kinase function is still required for 

its maintenance during a prolonged spindle perturbation mediated by nda3-KM311 

mutation. 

In this section, we investigate Bub1 kinase activity using sgo2 null (Shugoshin2) as a 

control allele. S. pombe Sgo2 is required for loading the Aurora B complex 

(chromosome passenger complex) to centromeres, where it destabilizes erroneous 

attachments, and thereby activates the SAC (Vanoosthuyse, Hardwick, 2007). Bub1 

kinase has been shown to recruit Sgo2 to centromere through direct phosphorylation 

of H2A-S121(Kawashima et al., 2010). It has also been observed that the centromeric 

localization of Sgo2 is abolished in H2A-S121A and bub1-kd cells, which impairs the 

recruitment of Aurora B. Moreover, sgo2 null cells largely reproduced the defects of 

bub1-kd and H2A-S121A cells in ensuring accurate chromosome segregation, and 

delaying anaphase in the absence of sister chromatid cohesion. However, in an nda3-

KM311 block sgo2 null cells activated the SAC like wild type cells did (Vanoosthuyse, 

Hardwick, 2007), whereas bub1-kd cells were more defective in that regard 

(Kawashima et al., 2010). This suggests that Bub1 kinase might have other substrates 

which are involved in the maintenance of the SAC response. Considering that sgo2 

null phenocopies H2A-S121A (lack of H2A phosphorylation by Bub1), it can serve as 

an ideal separation-of-function allele which would help distinguish from other possible 

roles of Bub1 kinase activity in SAC activation. 
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In order to investigate roles of Bub1 kinase function in regulating the progression rate 

of a mitosis with destabilized microtubules, wild type, bub1-kd and sgo2 null cells 

bearing cdc25-22 mutation were grown at 25°C to mid-log phase, and shifted to 36°C 

(restrictive temperature for the cdc25-22 allele). After 4 hours at 36°C, cells were 

synchronously released from G2 phase into mitosis by shifting them back to the 

permissive temperature (25°C). Cells were treated with the anti-microtubule drug 

(CBZ) 20 minutes after the release. Samples were collected at 30 minute time points 

for 150 minutes, fixed in methanol, and then stained with calcofluor to detect septa. 

Septation was scored as a readout of anaphase onset/ mitotic exit (Yanagida, 1998), in 

order to determine mitotic progression rate. In addition, two of the MCC components 

Mad2-GFP and Mad3-GFP were visualized, as they are known to localise at 

kinetochores in metaphase arrested cells (S. Heinrich et al., 2012). Although the delay 

of anaphase onset (manifested as the absence of septation) and the kinetochore 

localization of MCC components are related events both occurring at the metaphase 

arrest, they might be regulated by different pathways. To be able to separately evaluate 

these pathways we scored kinetochore localisation of Mad2 and Mad3 only in the 

population of non-septating cells.  

30 minutes after the G2 release (10 minutes after the CBZ treatment) all three strains 

(wild type, bub1-kd and sgo2 null cells) arrested at metaphase with a low septation 

index (15-20%) (Figure 3.3A). Consistent with this, all three strains displayed 

kinetochore localization of Mad2 and Mad3 in roughly half (wild type 55%; bub1-kd 

46%; and sgo2 null; 54%) of their non-septating cells (Figure 3.4B). 

60 minutes after the G2 release bub1-kd cells deviated from wild type and sgo2 null 

cells. While wild type and sgo2 null cells maintained a relatively robust SAC arrest 

indicated by only 41-45% septation, more than half of bub1-kd cells (66%) septated, 

as they could not delay anaphase onset (Figure 3.3A). Consistent with the maintenance 

of a SAC arrest, 90% of the non-septating wild type cells had Mad2 and Mad3 foci at 

unattached kinetochores. Although their SAC arrest (45% septation) was as robust as 

that of wild type cells (41% septation), a relatively small proportion of non-septating 

sgo2 null cells (63%) exhibited kinetochore localization of the MCC components.  
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Figure 3.3 Bub1 kinase activity is required to delay premature anaphase in response 
to the microtubule drug CBZ

(A) Cdc25-22 temperature sensitive cells (wild type, bub1-kd and sgo2∆) were grown at the 
permissive temperature (25°C) until mid-log phase, then shifted to the restrictive temperature 
(36°C) for 4 hours to block in G2. Once all cells were blocked at G2-phase, they were shifted 
back to the permissive temperature (25°C) to be released into a synchronous mitosis 
(time=0). 20 minutes after the release, cells were treated with the microtubule depolymeris-
ing drug, 100 µg/ml carbendazim (CBZ) to activate the SAC response. Samples were 
collected at each 30 minutes time point. Graph plotting percentage of cells that formed 
septum (exited mitosis) throughout 150 minutes (n=100 cells). Results are the average of 
two independent experiments, and the values are expressed as mean ± SEM. (B)  Repre-
sentative images from 60 minutes after release into mitosis, displaying septation (in red) by 
calcofluor staining and Mad2-GFP, Mad3-GFP localisation (in green) at kinetochores. 
Scale-bar represents 5 microns. 
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Figure 3.4 Bub1 kinase function is required to maintain the kinetochore localization of 
MCC components in response to CBZ

(A) Representative images at 120 minutes after release into mitosis, from the same experi-
ment described in Figure 3.3, displaying septation (in red) by calcofluor staining and 
Mad2-GFP, Mad3-GFP localisation (in green) at kinetochores. Scale-bar represents 5 
microns. (B) Graph plotting percentage of non-septating cells with Mad2-GFP and 
Mad3-GFP localized at kinetochores 30, 60, 90 and 120 min after the release into mitosis. 
(n= 30-80 cells).  
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Strikingly at 60 minutes, only 14% of non-septating bub1-kd cells displayed robust 

Mad2 and Mad3 localisation to unattached kinetochores (Figures 3.3B and 3.4B). 

At the 90 minutes time point, abilities of wild type (56% septation) and sgo2 null cells 

(68% septation) to delay anaphase onset became slightly different. On the other hand, 

a considerable proportion of bub1-kd cells (87% septation) slipped through the SAC 

arrest, and progressed into anaphase. Kinetochore localization of MCC components 

was observed in 94% of non-septating wild type cells, whereas that became even less 

frequent in sgo2 null (33%) and remained low in bub1-kd cells (20%) (Figure 3.4B). 

Towards the end of the time course at 120 minutes, almost all of the bub1-kd cells 

exited mitosis (90% septation), whereas wild type (67% septation) and sgo2 null (77% 

septation) cells were more proficient at delaying anaphase onset. Despite the similar 

metaphase arrest profiles of wild type and sgo2 null cells, their MCC kinetochore 

localization frequencies appeared to be dramatically different. Mad2 and Mad3 

kinetochore foci were completely abolished in sgo2 null and bub1-kd cells, whereas it 

was observed in 94% of the non-septating wild type cells (Figure 3.4 A and B) 

These data suggest that at the early stages (30 minute) of a mitosis challenged with 

CBZ, Bub1 kinase activity is largely dispensable for both delaying anaphase onset and 

recruiting MCC components to kinetochores. However, at the later stages (60 minutes 

onward) it is required to maintain the SAC activity, to be able to sustain both the 

kinetochore recruitment of the MCC components and the anaphase delay. On the other 

hand, Bub1-mediated phosphorylation of H2A (Sgo2+) is not strictly required for 

either SAC activation or maintenance, as sgo2 null cells exhibited a similar mitotic 

progression to wild type cells. However, although the SAC response was intact without 

it, the Bub1-H2A-Sgo2-Aurora B pathway appears to play a role in the kinetochore 

localization of the MCC components, given sgo2 null cells became gradually defective 

in recruiting Mad2 and Mad3 after 30 minutes (Figure 3.4B). 
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Taken together, Bub1 kinase activity appears to be required for at least two main 

aspects of the SAC response:  

1) Localization of Mad2, Mad3 (maybe even Cdc20) at unattached 

kinetochores, where they assemble to form MCC. This role of Bub1 kinase 

function appears to be partially mediated through the Bub1-H2A-Sgo2-

Aurora B pathway. 

2) Arresting at metaphase to delay anaphase onset, and provide cells time to 

correct erroneous microtubule-kinetochore attachments. This role of Bub1 

kinase function appears to be largely mediated by another substrate(s) of 

Bub1, which may be directly involved in APC/C inhibition. 
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3.3.2 Analysis of MCC formation in an unperturbed mitosis 

In the preceding section we proposed that Bub1 kinase activity maintains the anaphase 

delay in response to spindle perturbation through an unknown substrate(s) (and/or its 

autophosphorylation). Since this substrate(s) does not appear to be in the Bub1-H2A-

Sgo2-Aurora B pathway, we hypothesize that it may be directly involved in the 

inhibition of APC/C.  

Considering that the mitotic checkpoint complex (MCC) is the ultimate effector of the 

SAC (London & Biggins, 2014b; Sudakin et al., 2001), we addressed whether the 

Bub1 kinase activity has a role in MCC formation. To analyse that, wild type, bub1-

kd and mps1-kd cells bearing cdc25-22 mutation were grown at 25°C, and shifted to 

36°C. After blocking cells at G2 phase for 4 hours, they were shifted back to 25°C to 

be released into an unperturbed mitosis (time 0). Cell samples were collected at 15 

minute time points for 135 minutes. Then the samples were lysed, subjected to anti-

FLAG (Cdc20) immunoprecipitation and processed for SDS-PAGE/western blotting, 

in which they were probed for two of the MCC components (Mad2 and Mad3). Note 

that, we used the SAC deficient Mps1 (Mph1 in fission yeast) kinase-dead (mps1-kd) 

allele as a negative control, because the kinase activity of Mps1 is required for MCC 

formation (unpublished data) and MCC-APC/C interaction (Zich et al., 2012). 

Figure 3.5A shows that, consistent with the previous observations, MCC formation 

was somewhat compromised in mps1-kd cells, whereas bub1-kd cells exhibited MCC 

formation similar to wild type levels. It is worth to note that the mitotic appearance of 

Cdc20 (Stephanie Heinrich et al., 2013) was observed to be slightly delayed in bub1-

kd cells (appearing at 45 minutes) compared to wild type (appearing at 30 minutes) 

(Figure 3.5B). This suggests that Bub1 kinase activity may be required for a timely 

mitotic entry after the G2 phase block. 

These results suggest that unlike Mps1 kinase activity, Bub1 kinase activity is not 

necessary for MCC formation in an unperturbed mitosis. 
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Figure 3.5 Bub1 kinase activity is not necessary for MCC formation in an unper-
turbed mitosis

Wild type, bub1-kd (kinase-dead Bub1) and mps1-kd (kinase-dead Mps1) cells were blocked 
in G2-phase for 4 hours through cdc25-22 temperature sensitivity, and then released into an 
unperturbed mitosis at 0 minute. Cells were harvested at each 15 minutes time point 
throughout 135 minutes. Coimmunoprecipitation (IP) analysis of the MCC formation is shown. 
Cdc20 (FLAG) was immunoprecipitated from cell extracts. Levels of  Mad3 (GFP) and Mad2 
coimmunoprecipitated with Cdc20 (FLAG) were analyzed by immunoblotting using anti-GFP 
and anti-Mad2 antibodies. Tubulin (TAT1) levels were analyzed as loading control. Cdc20 
(FLAG) is generally detected as two bands due to the cleavage of this fusion protein.
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3.3.3 Analysis of MCC-APC/C interaction in the presence of an anti-microtubule 

drug 

We demonstrated that bub1-kd cells can form MCC efficiently, therefore suggested 

that Bub1 kinase activity is not necessary for MCC formation in an unperturbed 

mitosis. However, formation of the MCC at wild type levels may not be sufficient to 

delay anaphase, considering the SAC maintenance defects of bub1-kd cells we 

previously observed in the presence of spindle damage (Figures 3.1, 3.3 and 3.4). Thus, 

we hypothesize that Bub1 kinase activity may have a role in MCC binding to the 

APC/C in response to spindle perturbation. 

To determine that, wild type and bub1-kd cells bearing cdc25-22 mutation were grown 

at 25°C, and shifted to 36°C. After blocking cells at G2 phase for 4 hours, they were 

shifted back to 25°C to release them into a synchronous mitosis (time 0), which was 

followed by CBZ treatment 20 minutes after the release. Cell samples were collected 

at 15 minute time points for 135 minutes. Then the samples were lysed, subjected to 

anti-TAP (APC4) immunoprecipitation and processed for SDS-PAGE/western 

blotting, in which they were probed for two of the MCC components (Mad2 and 

Mad3). 

As demonstrated in Figure 3.6, Mad2 and Mad3 began binding the APC/C at 30 

minutes after destabilisation of microtubules (20 minutes) in both wild type and bub1-

kd cells, though amount of MCC components interacting with APC/C was less in bub1-

kd cells. After 30 minutes, wild type cells maintained a detectable MCC-APC/C 

interaction until 120 minutes time point, whereas it was abolished at 60 minutes in 

bub1-kd cells. 

Considering that the MCC-APC/C interaction is the ultimate inhibitory mechanism of 

the SAC (London & Biggins, 2014b), these results are consistent with our previous 

findings (Figures 3.1 and 3.3) that bub1-kd cells are not able to maintain an anaphase 

delay in response to microtubule depolymerisation. Thus, we conclude that Bub1 

kinase activity contributes to the maintenance of anaphase delay, largely stabilizing 

MCC-APC/C interactions probably through phosphorylation of its unknown 

substrate(s). 
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Figure 3.6 Bub1 kinase activity is required to maintain the MCC-APC/C interaction
in response to the microtubule drug CBZ

Wild type and bub1-kd cells were blocked in G2-phase for 4 hours through cdc25-22 temper-
ature sensitivity, and then released into mitosis at 0 minute. At 20 minutes, cells were treated 
with the microtubule depolymerising drug CBZ to activate the SAC response. Cells were 
harvested at each 15 minutes time point throughout 135 minutes. Coimmunoprecipitation (IP) 
analysis of MCC-APC/C interaction is shown. Apc4 (TAP) was immunoprecipitated from cell 
extracts. Levels of  Mad3 (GFP) and Mad2 (GFP) coimmunoprecipitated with Apc4 (TAP) 
were analyzed by immunoblotting using anti-GFP antibody. Apc4 levels were analyzed as 
loading control. Mad3 (GFP) and Mad2 (GFP) are commonly detected as two bands due to 
cleavage of these fusion proteins.
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3.4 Discussion 

In this chapter we investigated roles of fission yeast Bub1 kinase activity in SAC 

signalling under various spindle perturbation conditions: (i) severe (nda3-KM311 

tubulin mutation) or (ii) subtle (carbendazim treatment) microtubule depolymerisation. 

3.4.1 Bub1 kinase activity is important but not necessary for the SAC response to 

prolonged spindle damage 

In response to a prolonged exposure (9 hours) to severe (nda3-KM311 tubulin 

mutation) microtubule depolymerisation we observed that the kinase-dead Bub1 

mutant (bub1-K762R D900N) failed to maintain the SAC mediated metaphase arrest 

at wild type levels (22% less mitotic index than wild type), while exhibiting 

characteristics of the ‘cut’ phenotype (untimely mitotic exit with missing or aberrant 

chromosome segregation) more frequently (10% more than wild type), though not as 

frequently as bub1 null exhibited (56% more than wild type). 

Our observations are consistent with previous findings of (Kawashima et al., 2010), 

who constructed the kinase-dead Bub1 mutant allele (bub1-K762R D900N) that we 

have used in this study. (Kawashima et al., 2010) reported that in a 10 hours long nda3-

KM311 block, bub1-K762R D900N cells are 10% less efficient than wild type and sgo2 

null cells in arresting at metaphase. (comparable SAC proficiencies of wild type and 

sgo2 null has been also reported by (Vanoosthuyse, Prykhozhij, & Hardwick, 2007)). 

This suggests, Kawashima and colleagues indicated that bub1-K762R D900N was not 

as SAC defective (10%) as we observed (22%). This phenotypical difference might 

have been due to using different criteria for scoring metaphase arrested cells. 

(Kawashima et al., 2010) have reported that they score all the cells displaying Plo1-

GFP foci at spindle poles as metaphase arrested. However, weak yet detectible Plo1 

localization in late G2 cells has been observed before, in which DNA is not condensed 

yet and exhibits the interphase-like morphology (crescent shape, with faint ribosomal 

DNA in the middle, see Figure 3.1D ) (Mulvihill, Petersen, Ohkura, Glover, & Hagan, 

1999). Therefore, in order to distinguish the genuine metaphase-arrested cells from the 

late G2 cells, we score only the ones (as metaphase arrested), which have both strong 

Plo1-GFP signal and condensed DNA (Figure 3.1D). 
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Taken together, these results confirm that the non-kinase region of Bub1 (N-terminal 

and the middle region) is essential for the SAC response to severe spindle damage. 

However, although not essential, C-terminal kinase activity of Bub1 is still required 

for SAC maintenance. 

3.4.2 Bub1 kinase activity is necessary for chromosome bi-orientation 

We next sought to determine whether Bub1 kinase activity has a role in recovering 

from the SAC-mediated metaphase arrest, upon reformation of the spindle. To 

examine this, we allowed re-polymerization of initially perturbed microtubules in the 

same experiment described in Figure 3.1, and analysed the abilities of wild type and 

bub1-K762R D900N cells to silence their SAC response and progress into anaphase. 

Wild type and bub1-kd cells exited mitosis with similar rates (bub1-kd cells were 

slightly faster though), thus their abilities to recover from SAC recovery were 

comparable (Figure 3.C). However, while most of the wild type cells were progressing 

into a normal anaphase, bub1-K762R D900N cells exhibited an increasing frequency 

of cut phenotype during their recovery from the SAC arrest (Figure 3.2A and B). These 

observations are consistent with previous fission yeast studies which have reported 

that upon recovery from an nda3-KM311 arrest, Bub1 kinase-dead cells (both bub1-

K762R D900N (Kawashima et al., 2010) and bub1-K762M (Vanoosthuyse et al., 

2009)) exhibit lagging chromosomes frequently, similar to sgo2 null cells. The latter 

study (Vanoosthuyse et al., 2009) analysed chromosome bi-orientation of the bub1-

K762M allele by monitoring the segregation of GFP-marked chromosome 2, which we 

should also carry out (ideally by live imaging) in order to accurately analyse the ability 

of bub1-K762R D900N allele in chromosome bi-orientation. 

To sum, these results confirm that Bub1 kinase activity is necessary for bi-orientation 

and accurate segregation of chromosomes, and this role of Bub1 appears to be largely 

performed through the Bub1-H2A-Sgo2-Aurora B pathway.  
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3.4.3 Bub1 kinase activity is necessary to maintain anaphase delay and 

kinetochore recruitment of SAC proteins in response to the anti-microtubule 

drug CBZ 

After confirming the published roles of Bub1 kinase activity (contributing to anaphase 

delay and playing a key role in chromosome bi-orientation) in response to prolonged 

spindle damage (nda3-KM311), we set out to determine whether it is also required 

under relatively subtle spindle perturbation. To analyse this, we monitored mitotic 

progression rates and the kinetochore recruitment of MCC components in wild type, 

bub1-kd (bub1-K762R D900N) and sgo2 null cells, which all bear cdc25-22 mutation 

and were exposed to microtubule depolymerising drug carbendazim (CBZ) 20 minutes 

after the release from G2 phase. 

Abilities of wild type and sgo2 null cells in delaying anaphase onset in response to 

spindle damage were comparable throughout the mitosis, whereas bub1-K762R 

D900N cells failed to maintain metaphase arrest, and they progressed into premature 

anaphase (Figure 3.3). Our results are in agreement with those of another fission yeast 

study (Yamaguchi et al., 2003). Yamaguchi and colleagues have reported that both the 

bub1-K762R allele and a Bub1 truncation allele lacking the entire kinase domain failed 

to delay anaphase onset in response to CBZ treatment. We observed that the bub1-

K762R D900N mutant was capable of arresting like wild type and sgo2 null early in 

mitosis (soon after the CBZ treatment), whereas after 60 minutes it leaked through the 

SAC arrest 25-30% more frequently than wild type and sgo2 null cells did. Even 

though Yamaguchi and colleagues employed a different method to synchronize the 

cells in G2 phase (a Cdk1 temperature sensitive mutant), their results were consistent 

with ours. Similarly, their kinase-inactive Bub1 alleles were also able to arrest at 

metaphase soon after the CBZ treatment, however at later stages they failed to maintain 

that arrest, and entered anaphase 25% more frequently than wild type (Yamaguchi et 

al., 2003).  

Taken together, soon after the CBZ treatment (30 minutes after the G2 release) Bub1 

kinase activity is largely dispensable for delaying anaphase onset, whereas at the later 

stages of mitosis (60 minutes onward) it becomes necessary to maintain the SAC 

arrest. This role of Bub1 does not appear to be performed through the Bub1-H2A-
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Sgo2-Aurora B pathway, because the absence of sgo2 does not significantly affect the 

mitotic progression rate, unlike the lack of whole Bub1 kinase activity does (Figure 

3.3). Consequently, substrate(s) of Bub1 kinase, in addition to H2A, may be 

responsible for its anaphase delay role. 

In addition to its role in delaying anaphase onset, we analysed the role of Bub1 kinase 

activity in recruiting MCC components (Mad2 and Mad3) to kinetochores 

independently from its anaphase delay role. As we previously demonstrated in Figure 

3.3, the bub1-K762R D900N (bub1-kd) mutant has less cells arrested at metaphase. 

Therefore the bub1-kd mutant is expected to have a very low percentage of Mad2 and 

Mad3 kinetochore recruitment (within the whole bub1-kd population), which would 

be surely affected by its low mitotic index. However, this does not necessarily mean 

that the sub-population of bub1-kd cells, that are still arrested at metaphase (much 

fewer than wild type though), are defective in recruiting Mad2 and Mad3, in case its 

anaphase delay role is independent of the kinetochores (for instance, it may be 

mediated through a catalytic APC/C inhibition, via direct phosphorylation of it or one 

of its activators). In order to dissect these two possible roles of Bub1 kinase activity, 

we scored kinetochore localisation of Mad2 and Mad3 only in the population of non-

septating cells (presumably arrested at metaphase). 

Soon after the addition of CBZ (30 minutes after the G2 release), all three strains (wild 

type, bub1-kd and sgo2 null cells) were able to recruit Mad2 and Mad3 to kinetochores 

at similar levels. However, later in mitosis (60 minutes onward) kinetochore 

recruitment abilities of bub1-kd and sgo2 null cells gradually decreased (bub1-kd being 

more severe), while wild type cells maintained the kinetochore recruitment of Mad2 

and Mad3 even at 120 minutes (where bub1-kd and sgo2 null cells had no detectable 

kinetochore foci) (Figure 3.4). These results suggest that, soon after the CBZ treatment 

(30 minutes after the G2 release) Bub1 kinase activity is largely dispensable for the 

kinetochore recruitment of MCC components, whereas at the later stages of mitosis 

(60 minutes onward) it becomes more important to maintain their recruitment. This 

role of Bub1 appears to be partly mediated through the Bub1-H2A-Sgo2-Aurora B 

pathway, because the absence of sgo2 compromises Mad2 and Mad3 kinetochore 

localization 60 minutes onward, and becomes as defective as the lack of Bub1 kinase 

function at 120 minutes (Figure 3.4). This implies that another substrate(s) of Bub1 
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may be working in parallel with the Bub1-H2A-Sgo2-Aurora B pathway in performing 

the kinetochore recruitment (of the MCC components) role of Bub1 kinase activity.  

On the basis of these observations, we propose a working model for the roles of Bub1 

kinase activity in maintaining anaphase delay and kinetochore recruitment of MCC 

components in response to spindle damage (Figure 3.7). Soon after the CBZ treatment, 

its high concentration in the cells is presumably sufficient to depolymerise 

microtubules efficiently. This probably generates many unattached kinetochores. This 

experimental condition may mimic the cellular conditions in early prometaphase, in 

which most or all of the kinetochores are unattached (Chen, 2004; Pablo Lara-

Gonzalez, Westhorpe, & Taylor, 2012). In the presence of relatively more unattached 

kinetochores, Bub1 “non-kinase activity” (kinetochore scaffolding) may suffice to 

recruit MCC components (Mad2, Mad3 and even Cdc20), and thereby promote the 

formation of “enough MCC molecules”, that would efficiently inhibit Cdc20 even 

without Bub1 kinase activity. Although the two possible pathways mediating Bub1 

kinase activity ((i) the H2A-Sgo2-Aurora B pathway and (ii) the additional “unknown” 

pathway) both contribute to the SAC response to a certain extent, they are largely 

dispensable under these conditions to maintain an average anaphase delay              

(Figure 3.7A). 

On the other hand, in late prometaphase cells (mimicked by later stages of the time 

course, in which the CBZ concentration is probably lower due to being pumped out by 

cells (Goffeau et al., 1997)) probably fewer unattached kinetochores left. Under these 

conditions, lower number of unattached kinetochores may not be sufficient to stimulate 

enough MCC formation through the stoichiometric non-kinase activity of Bub1. 

Therefore, the sub-stoichiometric (catalytic) kinase activity of Bub1 may become more 

important for the few unattached kinetochores to maintain the “wait anaphase” signal 

until all kinetochores attach to microtubules (Figure 3.7). 

This hypothesis is consistent with our observation that 30 and 60 minutes after the 

release into mitosis with CBZ (soon after the CBZ treatment), the ability of sgo2 null 

cells to delay anaphase was identical to that of wild type, whereas at later stages (90 

and 120 minutes) it slightly decreased (Figure 3.3A). This supports the notion that 

although the H2A-Sgo2-Aurora B pathway was not necessary to maintain anaphase  
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Figure 3.7 Speculative model for the regulation of SAC signalling by multiple 
factors in response to various degrees of spindle damage

Schematics illustrating the regulation of SAC response by multiple mechanisms, which are related 
to different structural domains of Bub1: C-terminal kinase domain (blue); N-terminal and middle 
non-kinase region (grey). Description boxes above the schematics denote: (1) various degrees of 
spindle damage that cells were exposed to in the time course experiments: prolonged mitotic arrest 
via the nda3-KM311 tubulin mutation (relatively severe damage), early stages of exposure to the 
anti-microtubule drug CBZ when its at high concentrations in cells (relatively severe damage) and 
late stages of exposure to the anti-microtubule drug CBZ when its at relatively low concentrations in 
cells due to being pumped out over time(relatively subtle damage); (2) stages of prometaphase in 
an unperturbed mitosis mimicked by relatively severe damage (early prometaphase) or relatively 
subtle damage (late prometaphase) on the spindle; (3) hypothetical amounts of unattached kineto-
chores in early prometaphase (more) or  late prometaphase (fewer). (A) In the presence of “more” 
unattached kinetochores (either in early prometaphase of an unperturbed mitosis or in a mitotic 
time course experiment in which cells are challenged by nda3-KM311 or CBZ) the “non-kinase 
region” of Bub1 may be sufficient to promote “enough MCC molecules” ([MCC] indicates MCC 
concentration) to maintain the SAC response. Although the two possible pathways mediating Bub1 
kinase activity, (i) the H2A-Sgo2-Aurora B pathway and (ii) the additional “unknown” pathway, both 
contribute to the SAC response to a certain extent, they are largely dispensable under these 
conditions. (B) In the presence of “fewer” unattached kinetochores (in late prometaphase of an 
unperturbed mitosis or in the later stages of a mitotic time course experiment in which cells have 
pumped out most of the CBZ), the “non-kinase region” of Bub1 may not be sufficient anymore to 
produce “enough MCC molecules”, therefore Bub1 kinase activity may be required to promote 
(catalytically) the assembly of “enough MCC molecules” to maintain the SAC response.      
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delay at early stages, it becomes important, but not sufficient, to maintain the delay at 

later stages presumably through its contribution by (i) correcting erroneous 

attachments, and thereby generating more unattached kinetochores, and (ii) promoting 

recruitment of Mps1 to those unattached kinetochores (Figure 3.7). These roles of the 

H2A-Sgo2-Aurora B pathway are not sufficient, as there appears to be other roles (a 

parallel pathway) of Bub1 kinase activity that may be complementary to them (bub1-

kd is significantly more SAC defective than sgo2 null, Figure 3.3A). 

This model is also in agreement with our findings in the nda3-KM311 experiment 

(Figure 3.1B). In the presence of highly penetrant microtubule depolymerisation 

(similar to the early stages of CBZ treatment), Bub1 kinase function was not as 

important as it was in the late stages of CBZ treatment (Figure 3.3A). In addition, other 

nda3-KM311 experiments in fission yeast have demonstrated that the H2A-Sgo2-

Aurora B pathway is dispensable to maintain a robust metaphase arrest (Kawashima 

et al., 2010; Vanoosthuyse et al., 2007). This is sensible because when microtubules 

are depolymerised by nda3-KM31, presumably there are not enough intact 

microtubules (or only negligible amounts) in the cell to cause stochastic attachment 

errors. Under these conditions, “the error correction” role of the H2A-Sgo2-Aurora B 

pathway will be dispensable and is expected to contribute less to the SAC response.  

In addition, our model is in agreement with observations in Xenopus egg extracts 

(Chen, 2004). Even though Bub1 kinase activity is dispensable in the presence of high 

dose nocodazole (when the “non-kinase Bub1 activity” is sufficient), it is required to 

maintain the SAC mediated metaphase arrest in the presence of low dose nocodazole. 

This suggests that the kinase activity of Bub1 probably does not function as an on-off 

switch of the SAC; instead, it modulates the strength of the SAC signal generated from 

each kinetochore, and appears to become more important for the maintenance of the 

SAC when the number of unattached kinetochores are presumably lower in the cell 

(mimicked by low dose of nocodazole). We hypothesize that Bub1 kinase activity may 

contribute to the maintenance of the “wait anaphase” signal through two likely 

mechanisms, which are not mutually exclusive: 

(i) promoting MCC formation and/or MCC-APC/C interaction  

(ii) inhibiting the APC/C via its kinase activity, independent of the MCC. 
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3.4.4 Bub1 kinase activity is not necessary for MCC assembly, yet essential to 

maintain MCC-APC/C interaction 

We next sought to determine the inhibitory mechanism underlying the anaphase delay 

role of Bub1 kinase activity. We hypothesize that although the exact pathway is not 

known, it probably links Bub1 activity to the most downstream SAC effector, MCC, 

and its ultimate target, APC/C.  

To test this, we analysed MCC formation in wild type and bub1-kd, and mps1-kd cells 

in an unperturbed mitosis. Results indicated that unlike Mps1 kinase activity, Bub1 

kinase activity is not necessary for MCC formation in an unperturbed mitosis (Figure 

3.5). However, this result is not sufficient conclude that MCC can assemble 

independent of Bub1 kinase activity, as we have tested the contribution of Bub1 

activity to the SAC only in the presence of spindle damage. Therefore this experiment 

needs to be repeated in the presence of CBZ in order to reproduce the same conditions 

in which Bub1 kinase activity has been important for the SAC response. 

Next, we hypothesize that Bub1 kinase activity may have a role in MCC binding to 

the APC/C in response to spindle perturbation. Analysis of wild type and bub1-kd cells 

in the presence of CBZ demonstrated that Bub1 kinase activity is essential to maintain 

MCC-APC/C interaction (Figure 3.6). 

Considering that the MCC-APC/C interaction is the ultimate inhibitory mechanism of 

the SAC (London & Biggins, 2014b), these results are consistent with our previous 

findings (Figures 3.1 and 3.3) that bub1-kd cells are not able to maintain an anaphase 

delay in response to microtubule depolymerisation. Thus, we conclude that Bub1 

kinase activity contributes to the maintenance of anaphase delay, largely stabilizing 

MCC-APC/C interactions probably through the phosphorylation of its unknown 

substrate(s) to be discovered, which is the main focus of chapter four. 
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Chapter 4: In vitro analysis of Bub1 kinase activity and 

interactions between the MCC components 

4.1 Overview 

In chapter three, we confirmed the requirement for Bub1 kinase activity for a robust 

SAC response to spindle damage, which has been reported by studies in budding yeast 

(Fernius & Hardwick, 2007; Roberts et al., 1994), fission yeast (Kawashima et al., 

2010; Yamaguchi et al., 2003) and Xenopus egg extracts (Chen, 2004). We 

demonstrated that Bub1 kinase activity may contribute to the SAC response through 

another pathway that works parallel to the Bub1-H2A-Sgo2-Aurora B pathway. The 

upstream component of such a pathway is likely to be a substrate of Bub1 kinase, as 

our observations have suggested roles for its kinase activity (in addition to 

phosphorylating H2A) in maintaining kinetochore localization of the MCC 

components, MCC-APC/C interaction and ultimately anaphase delay in response to 

spindle perturbation. However, such a substrate of Bub1 other than H2A had not been 

implied until a report published in 2004 (Tang, Shu, et al., 2004). Tang and colleagues 

identified Cdc20 as a substrate of Bub1, and reported that Bub1-mediated 

phosphorylation of Cdc20 is required for a robust SAC response in response to spindle 

damage. In addition, they further supported this hypothesis by crystalizing the C-

terminal kinase domain of Bub1, and demonstrating that Bub1 has a considerable 

specificity toward Cdc20 (Kang et al., 2008). 

Considering our observations that Bub1 kinase activity promotes MCC-APC/C 

binding (Figure 3.6), we suggest that the unknown substrate of Bub1 may have a direct 

role in maintaining MCC-APC/C interaction in fission yeast. On the basis of human 

studies (Kang et al., 2008; Tang, Shu, et al., 2004; Yu & Tang, 2005), we hypothesize 

that maintenance of the SAC response through Bub1-mediated Cdc20 phosphorylation 

may be conserved among human and fission yeast.  
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In this chapter we aim to investigate this possibility by: 

1. Purifying recombinant MCC components from insect cells, which will be used 

as substrates in a Bub1 kinase assay to analyse whether fission yeast Cdc20 (or 

other MCC components) are phosphorylated by Bub1 in vitro.  

2. If phosphorylation takes place, identifying phosphorylated sites by mass 

spectrometry. 

3. Analysing interactions between the recombinant MCC components to predict 

the roles of putative phosphorylation sites in the regulation of the SAC. Using 

this estimation to focus on the phosphorylation sites, which are more likely to 

be important for the SAC activity. 

4. Engineering the cdc20+ gene at its endogenous locus (inserting an antibiotic 

resistance marker and an internal epitope tag) for using in subsequent 

experiments. 

5. Generating phosphorylation mutants of Cdc20 to analyse its regulation through 

putative Bub1-phosphorylated sites. 
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4.2 Identification of Bub1 kinase substrates in vitro 

4.2.1 Purification of Bub1 kinase and its putative substrates from insect cells 

Previously in our lab there have been attempts to purify recombinant S. pombe Bub1 

kinase and Cdc20 from competent E. coli cells (BL21) (data not shown). However, 

these attempts resulted in production of insoluble proteins. Although E. coli is a cheap 

and versatile host to produce recombinant proteins, it is likely that S.pombe Bub1 and 

Cdc20 proteins have particular requirements for chaperone systems or post-

translational modifications that E. coli cannot support. Therefore, their recombinant 

production necessitates a eukaryotic expression system. The baculovirus/ insect cell 

system has recently become a method of choice in many laboratories for producing 

eukaryotic proteins. There are a number of reasons for that. First of all, large proteins 

with several hundred kilodalton molecular weight can be produced and authentically 

processed in insect cells, which contributes to their solubility. Moreover, this system 

does not require strict safety measures in the laboratories, as baculoviruses do not 

replicate in eukaryotic cells other than their insect cells hosts. Furthermore, subunits 

of multi-protein complexes can be simultaneously produced by infecting insect cells 

with a mixture of baculoviruses, each of which carries the gene encoding a particular 

subunit (Berger, Fitzgerald, & Richmond, 2004; Trowitzsch, Bieniossek, Nie, 

Garzoni, & Berger, 2010). 

 

On the basis of these technical advantages, in this study we employed the baculovirus/ 

insect cell system to purify S. pombe Bub1 kinase and the mitotic checkpoint complex, 

which consists of Cdc20, Mad2 and Mad3 (Figure 4.1A), to be used in the subsequent 

experiments. Figure 4.2A summarises early steps of the protocol from cloning of the 

recombinant genes into a transfer vector to the first infection of insect cells. First, we 

cloned Bub1 or MCC components into a transfer vector (pFL) that is compatible with 

the baculovirus/ insect cell system Figure 4.2A and B. The transfer vector contains 

multiple baculovirus promoters (polyhedron and p10) followed by multiple cloning 

sites, consisting of several restriction enzyme sites. Using conventional cloning, 

coding sequences of Bub1 or the MCC components were inserted, whose expression 

would be driven by separate baculovirus promoters. BUB1 gene was cloned in full 

length either as wild type or  
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Figure 4.1 Baculovirus transfer vectors cloned with MCC ∆N-term or Bub1  

(A) Schematic illustrating pFL baculovirus transfer vectors cloned with genes of the 
MCC ∆N-term components: Cdc20 ∆N, lacks its first 86 aminoacids and carries an N-termi-
nal tag; Mad3 is full length and wild type; Mad2 double mutant (dm), bears two mutations, 
one (L12A) prevents it from dimerizing, and the other one (R133A) locks it into the closed- 
conformation. Sequence of the tag at the N-terminus of Cdc20 ∆N consists of 8xHis, two 
strep-tag II and a TEV protease recognition site. Dark blue boxes indicate baculovirus 
promoters, red boxes indicate terminator sequences and orange boxes indicate Tn7 
transposon elements required for the transfer of recombinant genes into baculovirus 
genome. (B) Schematic illustrating pFL baculovirus transfer vectors cloned with genes of 
either of the following full length and N-terminally tagged Bub1 proteins: wild type Bub1 
or Bub1 kinase-dead. The dark blue box indicates the baculovirus promoter, the red box 
indicates the terminator sequence, orange boxes indicate Tn7 transposon elements 
required for the transfer of recombinant genes into baculovirus genome. recombinant genes 
into baculovirus genome. Vector maps were constructed in and exported from Lasergene 
Seqbuilder Software.    
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Figure 4.2 Purification of recombinant S. pombe SAC proteins from insect cells

(A) Schematic illustrating the early steps of producing recombinant proteins using 
baculovirus/ insect cell system. Genes of the recombinant proteins are cloned into a 
transfer plasmid (pFL), which is then used to transform bacterial cells containing the 
baculovirus genome (bacmid, indicated by the red rectangle and depicted in detail) in 
the form of a BAC. Once the recombinant genes are integrated into the bacmid, it is 
isolated and used in the transfection of insect cells. (B) Timetable for recombinant 
protein production in insect cells. Schematics in A and B were adapted from Trowitzsch 
et al. 2010 (C) Coomassie staining of purified recombinant mitotic checkpoint complexes 
(MCC); N-terminally truncated (MCC ∆N-term) and full length (MCC FL). (D) Coomassie 
staining and immunoblot (anti-Strep antibody) detection of purified recombinant Bub1 
proteins tagged with a Strep tag at their N-terminus; wild type and kinase-dead (kd).  
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bub1-kd (Figure 4.1B). As for the MCC components (Figure 4.1A), MCC ΔN-term, 

containing a wild type Cdc20 ΔN that lacks its first 86 aminoacids, was cloned. By 

doing so, we aimed to compare MCC ΔN-term and full length MCC (provided by 

David Barford) to analyse whether the N-terminus of Cdc20 is phosphorylated by 

Bub1. MCC ΔN-term also contains (Figure 4.6A) a wild type full length Mad3 and a 

double mutant Mad2. The two mutations in the MAD2-dm gene prevent Mad2 from 

dimerizing (L12A) and lock it into the closed-conformation (R133A) that is active 

during the SAC response (Westhorpe et al., 2011). (The transfer vector containing 

MCC ΔN-term components was provided by David Barford, which was also used to 

purify the MCC and determine its crystal structure (Chao et al., 2012b). They used an 

N-terminally truncated Cdc20 because full length Cdc20 did not crystallize). Both 

Cdc20 and Bub1 carry an N-terminal tagging cassette that consists of eight tandem 

histidines, two strep-tag II and a TEV protease recognition site (Figure 4.1).  

 

As illustrated in Figure 4.2A, the transfer vector also contains Tn7L and Tn7R 

sequence elements of the Tn7 transposon system flanking the foreign genes, which is 

later used in their integration into a baculoviral genome. Baculoviral genomic DNA 

(bacmid) isolated from native virus is engineered into an artificial bacterial 

chromosome (BAC) carried by competent E. coli cells. Integration of foreign genes 

into this BAC is accomplished in vivo via a Tn7 attachment site embedded in a lacZa 

gene on the BAC. A helper plasmid in the competent E. coli cells provides the Tn7 

transposon enzyme complex for catalysing the transposition event (Berger et al., 

2004). 

 

Therefore, we transformed the competent E. coli cells, which contain baculovirus 

genome, with the transfer vector cloned with BUB1 gene or the genes of MCC 

components. After a series of selections, Baculoviral genomic DNA (>130 kb) was 

purified from the correct E. coli transformants and used in the first round of infecting 

(transfection) insect cells (Figure 4.2A and B). In the transfection, purified bacmid was 

fused with a lipid-based transfection reagent and mixed into media of Sf9-type 

(Spodoptera frugiperda) insect cells that were cultured as monolayer in 6-well plates. 

In the next two days, the bacmid replicates itself in its host; propagating baculoviruses 
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burst insect cells, and are released into the insect cell growth medium. To monitor 

recombinant protein expression, a YFP gene is embedded in the bacmid, whose 

expression is controlled by the same promoter as that of the recombinant genes. Thus, 

two days after the transfection we monitored expression of our S. pombe genes using 

YFP expression as a readout. The first generation of baculoviruses were harvested 

from the medium and the extracts of remaining insect cells were analysed by 

immunoblotting to probe for Bub1 and MCC components. First generation 

baculoviruses were then used to infect a larger insect cell culture (50-100 ml) that was 

grown in suspension. After 3-4 days, expression levels were monitored as described 

above, and the second generation of baculovirus was obtained, which is expected to 

be concentrated enough to perform a large scale protein production. Ultimately, a 

larger culture (300-400 ml) was infected with baculovirus, followed by lysis of insect 

cells and purification of recombinant S. pombe proteins using Strep magnetic beads. 

 

As displayed in Figure 4.2C, S. pombe MCC ΔN-term was purified at comparable 

concentration to that of the full length MCC. Figure 4.2D shows that wild type and 

kinase-dead versions of Bub1 were also purified at similar concentrations. Here, it is 

worth mentioning that a proportion of recombinant Bub1 is cleaved into two 

fragments. Since Bub1 was tagged at its N-terminus, the cleaved C-terminus, which 

bears the kinase domain, was not retained. Nevertheless, a band corresponding to the 

size of full length Bub1 was excised, and the presence of intact Bub1 was confirmed 

by mass spectrometry identification (collaboration with Juri Rappsilber’s lab) for both 

wild type and kinase-dead versions. This was also confirmed by immunoblotting with 

anti-strep antibody, which detected N-terminally tagged intact Bub1 and N-terminal 

half of Bub1 cleavage product (Figure 4.2D). 

In summary, the kinases (wild type and kinase-dead Bub1) and the substrates (MCC 

ΔN-term, MCC FL) were successfully prepared for in vitro Bub1 kinase assays. 
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4.2.2 In vitro Bub1 kinase assay 

Initially, to test kinase functions of recombinant wild type and kinase-dead Bub1 

proteins, we performed a preliminary kinase assay using an established substrate of 

Bub1, S. pombe H2A (Kawashima et al., 2010) (provided by Robin Allshire ). Kinase 

assays were carried out with γ−32P-ATP, run on SDS protein gels and phosphorylation 

was visualized by autoradiographs. Figure 4.3A demonstrates that H2A and Bub1 

itself were phosphorylated only by wild type Bub1, whereas kinase-dead Bub1 was 

unable to phosphorylate either of them. This confirms that Bub1 kinase function has 

been completely abolished in the kinase-dead allele (Kawashima et al., 2010)  and also 

suggests that our recombinant Bub1 preparations do not appear to contain any insect 

cell-originated contaminant kinases. 

Next we carried out a Bub1 kinase assay using MCC ΔN-term and MCC FL as 

substrates. As displayed in Figure 4.3B, both full length and N-terminally truncated 

Cdc20 (Cdc20 ΔN-term) proteins were phosphorylated by the wild type Bub1 kinase, 

however not by kinase-dead Bub1. The N-terminus of Cdc20 has been found to be 

phosphorylated by Cdk1 in X. laevis (S50/T64/T68/ T79/S114/S165) (Labit et al., 

2012) and Bub1 in H. sapiens (S41, S72, S92, S153, T157, S161) (Tang, Shu, et al., 

2004). Our phosphorylation of N-terminally truncated Cdc20 suggests that Bub1 is 

able to phosphorylate downstream of the first 86 amino acids of Cdc20 as well. 

Moreover, Figure 4.3B confirms the Bub1 autophosphorylation observed in the 

previous experiment (Figure 4.3A). In addition to the autophosphorylation of Bub1 N-

terminal cleavage product, somewhat slowly migrating Mad3 appears to be 

phosphorylated by wild type Bub1 too (more visible in the MCC ΔN-term lane). On 

the other hand, Mad2 does not appear to be phosphorylated by Bub1 in vitro, although 

it has been reported as a substrate of S. pombe Mph1 (Mps1 in budding yeast and 

higher eukaryotes) (Zich et al., 2012). 

These data confirms that S. pombe Bub1 kinase auto-phosphorylates efficiently 

(Kawashima et al., 2010) and demonstrates that it phosphorylates Cdc20 directly. 

Unlike in X. laevis, phospho-modification of fission yeast Cdc20 is not restricted to its 

N-terminus. 
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Figure 4.3 Bub1 kinase autophosphorylates and phosphorylates Cdc20 in vitro

(A) S. pombe H2A was incubated with recombinant S. pombe Bub1 (wild type or 
kinase-dead) in the presence of γ−32P-ATP. Protein loading was examined through 
Coomassie Blue (CB) staining, and incorporation of the radioactive phosphate group 
was visualized through autoradiography (32P). (B) Recombinant S. pombe MCC∆N-term 
and full length MCC (FL) were incubated with recombinant S. pombe Bub1 (wild type or 
kinase-dead) in the presence of γ−32P-ATP. Protein loading was examined through 
Coomassie Blue (CB) staining, and incorporation of the radioactive phosphate group 
was visualized through autoradiography (32P). Asterisk denotes phosphorylated Bub1 
N-terminal cleavage product.   
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4.2.3 Identification of in vitro phosphorylation sites using mass spectrometry 

In the previous section we demonstrated that Cdc20 is an in vitro substrate of Bub1. 

We observed that Bub1-mediated phosphorylation modified middle and/or C-terminal 

regions of Cdc20, as well as its N-terminal 86 amino acids that has been reported to 

be phospho-regulated in vitro and in vivo in other model organisms (Labit et al., 2012; 

Tang, Shu, et al., 2004). 

In vivo phosphorylation of S. pombe Cdc20 had been analysed in our lab before by 

Sjaak van der Sar. Sjaak purified Mad3 and Apc4 proteins from either cycling or 

mitotically arrested (through nda3-KM311 cold sensitive tubulin mutation) cells, and 

identified phosphorylated sites of their interactors by mass spectrometry analysis (in 

collaboration with John Yates’ lab in Scripps Research Institute). These analyses 

showed that Cdc20 is phosphorylated at 10 serine or threonine residues in vivo (Figure 

4.4A).  

In this section, we aim to identify in vitro phosphorylated sites of Cdc20 by Bub1, and 

indicate which of those sites were previously found to be phosphorylated in vivo. For 

this purpose, we repeated the previously described Bub1 kinase assay (Figure 4.3B) 

using Cdc20 (full length or ΔN-term) and Bub1 kinase (wild type or kinase-dead) in 

the presence of non-radioactive ATP, and then identified in vitro phosphorylated sites 

by mass spectrometry analysis (in collaboration with Juri Rappsilber’s lab). As listed 

in Figure 4.4A, wild type Bub1 was found to phosphorylate 14 sites of Cdc20 in vitro, 

5 of which were also identified as in vivo phosphorylated sites in mitotically arrested 

cells. On the other hand, none of the Cdc20 sites were found to be phosphorylated by 

the kinase-dead Bub1, which confirms that the in vitro phosphorylation of Cdc20 was 

specific to Bub1. All together 19 different sites were indicated to be phosphorylated in 

vivo and/or in vitro, and 15 of them cluster around the N-terminal C-box motif. Several 

of these may be Cdk1 sites (S11, S28, T31, S76), as they are followed by a proline. 

(Figure 4.4B). The C-box motif has been reported to be required for APC/C activation 

(David Barford, 2011). Moreover, a study in X. laevis showed that Cdk1-mediated 

phosphorylation of the Cdc20 sites near the C-box (the majority of them are upstream 

the C-box) inhibits APC/C activation by Cdc20 (Labit et al., 2012). On the other hand, 

we observed a considerably strong phospho-signal given by Cdc20 ΔN-term in vitro 
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(Figure 4.3B), that lacks its N-terminal 86 amino acids, and starts from the C-box motif 

(included). This suggests that only five sites (S167, T359, T380, S399, S482) account 

for this signal. Importantly, one of these five sites (serine 482) was also identified as 

an in vivo phosphorylated residue in mitotically arrested cells, which is in very close 

proximity to the IR motif (I487 and R488). The IR motif has been shown to be required 

for Cdc20-APC/C interaction and subsequent activation of the APC/C (Izawa & Pines, 

2012). Thus, phospho- modification of a nearby residue like serine 482 may be 

regulating Cdc20 activity. 

Bub1, Cdk1 and Cdc20 proteins have several domains that are largely conserved from 

yeast to human. In order to determine which of the phosphorylation sites that we 

identified are well-conserved, we aligned the orthologs of Cdc20 protein from three 

fission yeast species (S. pombe, S. octosporus, S. japonicus), one budding yeast 

(S.cerevisiae) and two metazoans (H. sapiens, X. laevis) using ClustalWS algoritm in 

Jalview software. As demonstrated in Figure 4.5, four (S28, T31, S76 and S482) of the 

five residues, which were phosphorylated both in vitro by Bub1 and in vivo in mitosis, 

appear to be well-conserved at least among four of the six species. This strengthens 

the possibility that phospho- modification of these residues may play key roles in the 

regulation of Cdc20 throughout evolution.   

In order to further narrow down the phosphorylated sites of Cdc20 with possible 

regulatory roles, we next determined the interacting sites of MCC components (Cdc20, 

Mad2 and Mad3) by crosslinking mass spectrometry (CLMS) analysis. 

 

 

 

 

 



Phosphorylated residue Peptides identified in vitro Identified in vitro Identified in vivo Cell cycle stage (in vivo )
S7 MEIAGNSSTISPTFSTPTK +
S8 MEIAGNSSTISPTFSTPTK +

S11 MEIAGNSSTISPTFSTPTK + + mitotic arrest and interphase
S15 MEIAGNSSTISPTFSTPTK +
S28 NLVFPNSPITPLHQQALLGR + + mitotic arrest
T31 NLVFPNSPITPLHQQALLGR + + mitotic arrest
S59 data N/A + mitotic arrest and interphase
T67 IDVVNTDWSIPLCGSPR +
S70 IDVVNTDWSIPLCGSPR +
S76 IDVVNTDWSIPLCGSPR + + mitotic arrest and interphase
S93 data N/A + mitotic arrest
T97 data N/A + mitotic arrest

S104 data N/A + mitotic arrest
S116 data N/A + mitotic arrest
S167 FNTTPER +
T359 AVAWCPWQSNLLATGGGTMDK +
T380 QIHFWNAATGAR +
S399 VNTVDAGSQVTSLIWSPHSK +
S482 TPSSSITIR + + mitotic arrest

IRCdc20

S399

C-box
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S8

S11

S15

S28
T31

S59

T70

T67

S76
S93
S97

S104

S116
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T380

T359
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B

A

Figure 4.4 Cdc20 is phosphorylated in vivo during mitosis and in vitro by Bub1 

(A) Table listing the phosphorylated sites of Cdc20; in vitro by Bub1(red), in vivo in 
mitotically arrested or cycling cells (blue) and both in vitro and in vivo (purple). High-
lighted residues in the identified peptides correspond to the in vitro phoshorylated sites.
(B) Cartoon illustrating distribution of the phosphorylated sites of Cdc20 along with its 
two domains important for APC/C activation: N-terminal C-box and C-terminal IR-motif.
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Figure 4.5 In vivo and in vitro phosphorylated Cdc20 sites are well-conserved

Alignment of Cdc20 orthologs from three fission yeast species (S. pombe, S. octospo-
rus, S. japonicus), one budding yeast (S. cerevisiae) and two metazoans (H. sapiens, X. 
laevis) using ClustalWS algoritm in Jalview software. Red (in vitro by Bub1), blue (in 
vivo in mitotically arrested cells) and purple (in vitro and in vivo) dots indicate the phos-
phorylated sites. Purple dashed rectangles denote well-conserved residues that are 
phosphorylated in vitro and in vivo. Red dashed rectangles annotate two domains of 
Cdc20 that are required for APC/C activation: C-box and IR-motif. The green dashed 
rectangle annotates the Mad2-binding domain.
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4.3 Analysis of interactions between the recombinant MCC 

components: Cdc20, Mad2 and Mad3 

As described in section 4.3.1 (Figure 4.6A), from insect cells we purified recombinant 

S. pombe MCC (MCC ΔN-term) that consists of; wild type Cdc20 ΔN-term (with an 

N-terminal strep-tag), lacking the first 86 amino acids; wild type full length Mad3; 

double mutant Mad2, that is prevented from dimerizing (L12A) and locked into the 

closed-conformation (R133A). Although, soluble Mad2 and Mad3 proteins have been 

efficiently purified from E. coli in our lab, Cdc20 has been insoluble in every attempt. 

This was the main reason for purifying the S. pombe MCC from insect cells, which 

provide a eukaryotic post-translational folding machinery. Therefore, before using 

recombinant MCC ΔN-term in crosslinking mass spectrometry (CLMS) analysis, we 

examined whether its components folded properly and assembled a functional 

complex, by testing its functionality as an APC/C inhibitor in vitro.  

4.3.1 In vitro analysis of recombinant MCC as an APC/C inhibitor 

An in vitro APC/C ubiquitination assay has been optimized (and carried out in this 

experiment) by Konstantinos Paraskevopoulos in our lab (Foe et al., 2011; Van 

Voorhis & Morgan, 2014). In this assay, we test the ability of APC/C (an E3 ubiquitin 

ligase) to add poly-ubiquitin chains to Securin, which is one of its mitotic targets (D. 

Barford, 2011). Moreover, this assay allows us to analyse the abilities of recombinant 

SAC proteins to inhibit APC/C activity in vitro (P. Lara-Gonzalez et al., 2011). In this 

experiment, we used wild type APC/C purified from the Cdc20-362 S. pombe strain, 

in which the temperature sensitive mutant Cdc20 was not able to bind APC/C 

(Matsumoto, 1997). This provides an APC/C preparation free from endogenous 

Cdc20. S. pombe full length Cdc20 was in vitro translated to be used as an APC/C 

activator. As the APC/C substrate, S. pombe Securin was translated in vitro, and 

radiolabelled with 35S-methionine. As for the APC/C inhibitor proteins; full length 

Mad3 (wild type) and Mad2 (double mutant, see the description above) were purified 

from E. coli. In addition to single or double permutations of Mad2 and Mad3 proteins, 

we also used baculovirus produced MCC ΔN-term (described above) that contains 

Cdc20, Mad2 and Mad3.  
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Figure 4.6B and C show that Mad2 or Mad3 proteins partially inhibited APC/C activity 

to 77% and 55% respectively, when they were used alone. On the other hand, 

combination of Mad2 and Mad3 decreased the APC/C activity to 45%. Strikingly, 

MCC ΔN-term appeared to be the most potent inhibitor, as it almost completely 

abolished the APC/C activity (3%) towards Securin.  

To sum up, recombinant MCC ΔN-term efficiently inhibits APC/C activity in vitro. 

This confirms that post-translational folding machinery in insect cells was sufficient 

to produce a functional S. pombe MCC. Moreover, these data demonstrate that 

although apo-Cdc20 is an APC/C activator, its presence in the MCC has a significant 

contribution to the inhibition of APC/C, which is in line with findings from a human 

study (P. Lara-Gonzalez et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tag - Cdc20 ∆N  

KDa

66

116

45

35

25
18.4
14.4

M HHHHHHHH GNAGF WSHPQFEKGGGSGGGSGGGS WSHPQFEK ENLYFQSECGVS
8xHis Strep Strep TEV 

N-terminal Tag (6 kDa) 

Mad3 

Mad2 dm

*

*

*

A

B

Figure 4.6 Recombinant MCC efficiently inhibits 
APC/C activity in vitro
(A) Coomassie stained gel shows S. pombe mitotic 
checkpoint complex (MCC) purified from Sf9 insect 
cells. (Asterisks denote contaminants, which are likely 
to be insect cell chaperones). Cartoon illustrates 
important domains of the purified MCC components: 
Cdc20 ∆N, lacks its first 86 aminoacids and carries an 
N-terminal tag; Mad3 is full length and wild type; Mad2 
double mutant (dm), bears two mutations, one (L12A) 
prevents it from dimerizing, and the other one (R133A) 
locks it into the closed- conformation. Sequence of the 
tag at the N-terminus of Cdc20 ∆N consists of 8xHis, 
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two strep-tag II and a TEV protease recognition site. (B) Autoradiography image shows 
results of an in vitro  ubiquitination assay. Mad2, Mad3 (purified from E.coli) and MCC ∆N 
(purified from insect cells) were tested for their abilities to inhibit APC/C (purified from 
S.pombe) and Cdc20 (S.pombe, in vitro translated) mediated ubiquitination of Securin (in vitro 
translated with 35S-Methionine). Controls were as follows: ‘-Cdc20’ was with APC/C and 
without Cdc20; ‘- APC’ was without APC/C and with Cdc20; +APC was with both APC/C and 
Cdc20. Inhibitors were added as 10, 50 or 100 times more concentrated than APC/C. Half of 
each reaction was taken immidiately after mixing APC/C, Cdc20 and the inhibitors (0 min) and 
the other half after incubation (40 min). Samples were run on SDS gels, dried and visualized 
to detect ubiquitinated Securin (C) Graph plots the results (1/10 APC/inhibitor molar ratio) of 
the ubiquitination assay quantified  by Image Quant software (measuring the signal decrease 
in the unmodified securin band). Results were normalized to the intensity of ubiquitinated-Se-
curin in +APC control lane, considering it as 100% APC/C activity. Experiments shown in B 
and C were carried out by Konstantinos Paraskevopoulos. 
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4.3.2 Cross-linking mass spectrometry analysis of the interactions between the 

MCC components 

A previous study has resolved the crystal structure of S. pombe MCC (Chao et al., 

2012a). This finding has provided valuable insight into how Cdc20 is sequestered by 

Mad2 and Mad3, by revealing their key interacting domains. However, in order to 

optimize purification and crystallization steps Chao and his colleagues used ‘MCC 

ΔN-term ΔC-term’ comprising truncated components: Cdc20 ΔN-term lacking the 

first 86 amino acids (crystal structure lacks disordered last 22 amino acids 467-488 as 

well); Mad3 ΔC-term, lacking last 87 amino acids, 224-310; double mutant Mad2, that 

is prevented from dimerizing (L12A) and locked into the closed-conformation 

(R133A). Therefore, the crystal structure lacks some of the critical regulatory domains 

of Cdc20 (the N-terminus, where it is regulated by Cdk1 phosphorylation (Labit et al., 

2012); the IR motif at the C-tail) and the Mad3 C-terminus, including the second KEN 

box, that is involved in the inhibition of APC/C substrate recruitment (P. Lara-

Gonzalez et al., 2011). Considering that we have purified a recombinant MCC ΔN-

term, which includes Mad3 C-terminus, we next sought to determine the interactions 

between its components by performing cross-linking mass spectrometry analysis 

(CLMS) in collaboration with Juri Rappsilber lab following the protocol in (Barysz et 

al., 2015). By using this method, we aimed to reveal interactions between (or within) 

the regions of MCC components that are in close proximity, which will be covalently 

bound by either of the two cross-linkers: 

  

BS3   (bis(sulfosuccinimidyl)suberate) (11.4 Å spacer arm length) 

EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) 

(0 Å spacer arm length) 

 

For this purpose, we immobilized purified MCC ΔN-term on strep-magnetic beads 

through the strep-tag on the N-terminus of Cdc20 ΔN-term. This way it was more 

convenient to exchange the strep wash buffer with the buffers required by BS3 and 

EDC. Zhuo Angel Chen carried out the cross-linking reaction, mass spectrometry, and 

provided us with the CLMS data. 

 

http://rappsilberlab.org/people/zhuo-angel-chen/
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We identified two types of linkages from the CLMS data: 

1. Linkages between the regions of MCC components that were resolved in the 

crystal structure (Figure 4.7 and Table 4.1). 

2. Novel linkages between the regions of MCC components that were absent in 

the crystal structure (Figure 4.8 and Tables 4.2, 4.3). 

Linkages that can be compared to the crystal structure 

With the CLMS data, we plotted networks of cross-links and self-links between (or 

within) the MCC components (Figure 4.7) using XiNet Crosslink Viewer (Combe, 

Fischer, & Rappsilber, 2015). In the MCC crystal structure, Chao and his colleagues 

identified the major binding interfaces between Cdc20, Mad2 and Mad3, such as the 

first KEN box of Mad3 (KEN20) and its receptor in the WD40 domain of Cdc20, or 

the safety belt of Mad2 and the N-terminal Mad2 binding domain of Cdc20. In addition 

to these major regulatory contacts, the crystal structure reveals interactions between 

other regions of the MCC components, whose roles remain unknown. Therefore, we 

have annotated all of those interacting sites identified by the crystal structure in our 

CLMS data networks. 

Linkages mediated by the BS3 cross-linker are demonstrated in Figure 4.7A (network) 

and Figure 4.8 (on the crystal structure), and listed in Table 4.1. The most prominent 

cross-links are between the Mad2 binding domain of Cdc20 (K133, K140, K141) and 

two sites of Mad2 (residues K43 and K66) which have been shown to interact with 

Cdc20 in the crystal structure (Figure 4.8A). Moreover, self-links form between those 

two sites (K43 and K61) of Mad2. This suggests, that particular region of Mad2 might 

be folding onto itself to bind (and perhaps to wrap) the Mad2 binding domain of 

Cdc20.  

As for the Mad3 interactions, the N-terminus (K27) (near KEN20) and the middle 

region (K190, Y191) of Mad3 interact with the Mad2 binding domain of Cdc20 (K141) 

(Figure 4.7A, Figure 4.8B and Table 4.1). Furthermore, these two sites of Mad3 form 

a self-link. Taken together, these results imply that the sites of Mad2 and Mad3, which 

were found to interact with Cdc20, may be folding onto themselves in order to 

sequester Cdc20. Their binding interface (Mad2 binding domain of Cdc20) is only 34 
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Barford, 2011). Thus, sequestration of the Mad2 binding domain of Cdc20 by Mad2 

and Mad3 may have a direct role in the inhibition of APC/C by MCC. Interestingly, a 

self-link within Cdc20 brings together its C-terminus region (K461) and an N-terminal 

region (T167), which is 27 amino acids downstream of its Mad2-binding domain 

(K140) (Figure 4.10). Because the C-terminal tail (last 22 amino acids) of Cdc20 is 

disordered, it was not resolved in the crystal structure. On that basis, assuming the last 

ordered (resolved) region of Cdc20 C-terminus (K461) folds onto the downstream 

(T167) of Cdc20’s Mad2-binding domain (K140), this flexible C-terminal tail is likely 

to interact with the Mad2-binding domain itself, as it is exactly at the sufficient length 

to reach there (K461 to R488, and T167 to K140). Such a folding would bring the C-

terminus of Cdc20 near its regulatory C-box motif, which may be required for APC/C 

activation (D. Barford, 2011). Moreover, the Mad2 binding domain of Cdc20 is also 

required for APC/C binding in humans (Izawa & Pines, 2012). This is intriguing 

because at the very end of its C-terminal tail Cdc20 has the IR motif (I487 and R488), 

which is also required for APC/C activation through interactions with its Cdc27 

subunit (da Fonseca et al., 2011). This implies that, the Mad2 and Mad3 proteins may 

be targeting multiple regulatory domains of Cdc20 (C-box, Mad2 binding domain and 

IR-motif) that are responsible for APC/C activation. 

Furthermore, linkages mediated by the EDC cross-linker are consistent with those 

identified through BS3 (Figure 4.7 A and Table 4.1). EDC cross-linking reproduced 

the interactions between the Mad2 binding domain of Cdc20 (K140, K141 and D144) 

and Cdc20 interacting sites of Mad2 (E40, K43 and E59). 

Taken together, linkages between the regions of MCC components that were resolved 

in the crystal structure are in line with the interactions revealed by the MCC crystal 

structure. In addition, our findings suggest that when Cdc20 functions as an activator 

of APC/C, its IR motif in the flexible C-terminal region may come closer to the N-

terminal C-box in order to synergistically activate APC/C. On the other hand, when 

the SAC is activated, MCC assembles in a way that Mad2 and Mad3 may sequester 

both C-box and IR-motif of Cdc20, in order to effectively block Cdc20’s binding to 

and activation of the APC/C. 
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Figure 4.7 Linkages between the regions of MCC components which were 
resolved in the crystal structure

(A) Schematic illustrating the linkage network between MCC ΔN-term components 
mediated by BS3 (bis(sulfosuccinimidyl)suberate) crosslinker. MCC ΔN-term compo-
nents: Cdc20 ΔN-term, lacking the first 86 amino acids; wild type full length Mad3; 
double mutant Mad2, that is prevented from dimerizing (L12A) and locked into the 
closed-conformation (R133A). C-alpha distances and Cdc20-Mad3, Cdc20-Mad2 
contacts were obtained from S. pombe MCC crystal structure (4AEZ.pdb). Different from 
the crystal structure, cross-linked MCC ΔN-term used here contains Mad3 C-terminus 
(last 87 amino acids; 224-310) and disordered C-tail region of Cdc20 (last 22 amino 
acids; 467-488). (B) Schematic illustrating the linkages between MCC ΔN-term compo-
nents mediated by EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) 
crosslinker. Networks of cross-links and self-links were constructed using XiNet 
Crosslink Viewer (Combe, Fischer, & Rappsilber, 2015). 
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Figure 4.8 MCC cross-linking data are consistent with the MCC crystal structure  

(A) Cartoon representation of the “MCC ∆N-term ∆C-term” crystal structure with the 
prominent BS3-mediated cross-links (indicated by dark blue lines) between its components: 
Cdc20 ΔN-term lacking the first 86 amino acids (crystal structure lacks disordered last 22 
amino acids 467-488 as well); Mad3 ΔC-term, lacking last 87 amino acids, 224-310; double 
mutant Mad2, that is prevented from dimerizing (L1 2A) and locked into the closed-confor-
mation (R133A). N-terminal end of Cdc20 ΔN-term starts with the C-box. Mad2 binding 
domain of Cdc20 is between K133 and K141. (B) Details of the linkages between Mad2 
(K43 and K66) and the Mad2 binding domain of Cdc20 (K133, K140 and K141), shown 
in A. (C) Details of the linkages between Mad3 (K27, K177, K190 and K191) and the 
Mad2 binding domain of Cdc20 (K140 and K141), shown in A. Lysines of the proteins 
are highlighted, between which the BS3 crosslinker formed covalent bonds. Cartoon 
representations were generated using X-link Analyser tool in UCSF Chimera Software.  
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Protein 1 Linkage site 1 Protein 2 Linkage site 2 Match count C-α distance in 4AEZ (Å)
Mad2 E40 Cdc20 K140 1 10.2
Mad2 E40 Cdc20 K141 5 10.1
Mad2 K43 Cdc20 D144 1 13.4
Mad2 E59 Cdc20 K140 1 10.7
Mad3 K114 Mad3 D115 1 3.8
Mad3 S19 Mad3 E21 1 5.7
Mad3 E21 Mad3 S31 1 15.5
Mad3 T44 Mad3 E47 2 5.2
Cdc20 K133 Cdc20 D135 2 6.5

Linkages through BS3

Linkages through EDC

Protein 1 Linkage site 1 Protein 2 Linkage site 2 Match count C-α distance in 4AEZ (Å)
Mad2 K43 Mad2 K47 7 12.3
Mad2 K43 Mad2 K61 2 12.1
Mad2 K43 Cdc20 K133 2 C-α
Mad2 K43 Cdc20 K140 2 15.8
Mad2 K43 Cdc20 K141 5 16.8
Mad2 K43 Cdc20 K342 4 25.8
Mad2 K66 Cdc20 K133 2 11.3
Mad2 S92 Mad3 K190 1 15.3
Mad3 Y113 Mad3 K177 2 21.5
Mad3 K114 Mad3 K114 17 0
Mad3 K114 Mad3 K168 4 24.3
Mad3 K114 Mad3 K175 3 17.2
Mad3 K114 Mad3 K180 3 15.6
Mad3 K114 Mad3 K182 14 13.9
Mad3 K114 Mad3 K190 4 22.3
Mad3 K177 Mad3 K180 2 4.8
Mad3 K177 Mad3 K182 7 9.5
Mad3 K177 Cdc20 K141 1 21.5
Mad3 K190 Cdc20 K140 4 15.1
Mad3 K190 Cdc20 K141 9 12.6
Mad3 Y191 Cdc20 K141 1 13.5
Mad3 K27 Mad3 K190 5 16.5
Mad3 K27 Mad3 K61 1 27.3
Mad3 K27 Cdc20 K141 4 23.1
Mad3 K37 Mad3 K46 10 14.8
Mad3 K37 Mad3 K53 37 16.5
Mad3 K53 Mad3 K61 3 12.6
Mad3 K92 Cdc20 K461 3 15.7
Cdc20 K133 Cdc20 K133 2 0
Cdc20 K133 Cdc20 K141 3 24.5
Cdc20 T167 Cdc20 K461 1 9.5
Cdc20 S335 Cdc20 K342 1 17.1

Table 4.1 Linkages between the regions of MCC components which were resolved 
in the crystal structure

List of linkages between MCC ΔN-term components mediated through BS3 or EDC 
cross-linkers. C-alpha distances were obtained from S. pombe MCC crystal structure 
(4AEZ.pdb). Linkages listed in this table were identified between the regions of MCC Δ
N-term components which are present in the crystal structure. Within-length distances 
(~28Å for BS3; ~15Å for EDC) were calculated as follows: spacer arm length of the 
crosslinker + lengths of the side chains of linked residues + 2Å for displacement of 
carbon-alpha atoms.
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Novel linkages that can be complementary to (were absent in) the crystal 

structure 

In this subsection, we describe the CLMS data that indicates novel interactions of 

Mad3 C-terminus and Cdc20 C-tail, which were absent in the MCC crystal structure. 

Novel linkages mediated by the BS3 cross-linker are demonstrated in Figure 4.9A and 

listed in Table 4.2. We observed two major clusters of cross-links mediated by BS3. 

The first cluster is the cross-links between the Mad2 binding domain of Cdc20 (K133 

and K141) and the C-terminus of Mad3 (K271, K288 and K292). It is worth noting 

that K271 is the lysine of the C-terminal (second) KEN box of Mad3. It has been 

previously shown that fission yeast KEN271 (Sczaniecka et al., 2008), and its 

counterpart in budding yeast (Janet L. Burton & Solomon, 2007; King et al., 2007) are 

essential for a SAC response. In addition, a recent study has reported that the human 

counterpart of KEN271 is required for the inhibition of substrate recruitment to APC/C 

(P. Lara-Gonzalez et al., 2011).  

The second cluster of cross-links mediated by BS3 is the one between C-terminus of 

Mad3 (K271, K288 and K292) and the C-terminal tail of Cdc20 (K461, K472 and 

K479) (Figure 4.9A and Table 4.2). Importantly, the flexible C-terminal tail of Cdc20 

(K472 and K479) also forms self-links with the Mad2 binding domain of Cdc20 (K133 

and K141), which supports our hypothesis that the IR-motif in the C-tail may come 

closer to the N-terminal C-box (Figure 4.10).  

Taken together, the novel linkages mediated by BS3 suggest that the C-terminal Mad3 

KEN271 may be inhibiting substrate recruitment to APC/C, through its interaction 

with the Mad2 binding domain of Cdc20, where the C-box and IR-motif (which are 

responsible for substrate recruitment and APC/C activation) come closer (Figure 4.10). 

Novel linkages mediated by EDC cross-linker are consistent with those identified 

through BS3 (Figure 4.9B and Table 4.3), as numerous linkages show that C-terminus 

of Mad3 interacts with the C-terminal tail and the Mad2 binding domain of Cdc20. 

What is more, both the C-terminal Mad3 KEN271 and the C-terminal Cdc20 IR-motif 

(R488) interact with two very same regions of Mad2 N-terminus (K13) and C-terminus 

(D177 and E179) (see two V shaped linkages meeting at Mad2 in Figure 4.9B). These 
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findings strengthen the possibility that Mad2 may cooperate with both the N-terminal 

KEN20 (see Figure 4.7A), and the C-terminal KEN271 (see Figure 4.9B) of Mad3 to 

sequester the C-box, and especially the IR-motif of Cdc20 for effective inhibition of 

APC/C, likely through blocking substrate recruitment (Figure 4.10). 
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Figure 4.9 Novel linkages between the regions of MCC components which were 
absent in the crystal structure

(A) Schematic illustrating novel linkages between MCC ΔN-term components mediated 
by BS3 (bis(sulfosuccinimidyl)suberate) crosslinker. MCC ΔN-term components: Cdc20 
ΔN-term, lacking the first 86 amino acids; wild type full length Mad3; double mutant 
Mad2, that is prevented from dimerizing (L12A) and locked into the closed-conformation 
(R133A). C-alpha distances and Cdc20-Mad3, Cdc20-Mad2 contacts were obtained 
from S. pombe MCC crystal structure (4AEZ.pdb). Different from the crystal structure, 
cross-linked MCC ΔN-term used here contains Mad3 C-terminus (last 87 amino acids; 
224-310) and disordered C-tail region of Cdc20 (last 22 amino acids; 467-488). The 
linkages illustrated in A and B represent interactions of these regions that are absent in 
the crystal structure. (B) Schematic illustrating novel linkages between MCC ΔN-term 
components mediated by EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydro-
chloride) crosslinker. Self-links identified by EDC cross-linking are not presented here, 
as BS3 self-link data are representative of both of them. Networks of cross-links and 
self-links were constructed using XiNet Crosslink Viewer (Combe, Fischer, & Rappsilber, 
2015).   

Mad3
1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 310

Mad3

Cdc20
1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 488

Cdc20

Mad2
1 20 40 60 80 100 120 140 160 180 203

Mad2

Mad3
1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 310

Mad3

Cdc20
1 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 488

Cdc20

100



Protein 1 Linkage site 1 Protein 2 Linkage site 2 Match count C-α distance in 4AEZ (Å)
Mad3 114 Mad3 237 1 N/A
Mad3 114 Mad3 253 3 N/A
Mad3 114 Mad3 259 4 N/A
Mad3 114 Mad3 292 2 N/A
Mad3 114 Cdc20 472 1 N/A
Mad3 114 Cdc20 479 2 N/A
Mad3 168 Mad3 234 2 N/A
Mad3 168 Cdc20 479 1 N/A
Mad3 234 Cdc20 461 1 N/A
Mad3 27 Mad3 234 2 N/A
Mad3 271 Mad3 288 4 N/A
Mad3 271 Cdc20 141 1 N/A
Mad3 271 Cdc20 461 7 N/A
Mad3 288 Mad3 292 2 N/A
Mad3 288 Cdc20 133 1 N/A
Mad3 288 Cdc20 342 2 N/A
Mad3 288 Cdc20 472 2 N/A
Mad3 288 Cdc20 479 1 N/A
Mad3 292 Mad3 309 2 N/A
Mad3 292 Cdc20 133 4 N/A
Mad3 292 Cdc20 141 3 N/A
Mad3 292 Cdc20 342 4 N/A
Mad3 292 Cdc20 472 5 N/A
Mad3 292 Cdc20 479 12 N/A
Mad3 37 Mad3 292 1 N/A
Mad3 53 Mad3 271 1 N/A
Mad3 92 Mad3 271 4 N/A
Cdc20 133 Cdc20 479 1 N/A
Cdc20 141 Cdc20 472 2 N/A
Cdc20 339 Cdc20 479 1 N/A
Cdc20 342 Cdc20 342 7 N/A
Cdc20 342 Cdc20 479 7 N/A
Cdc20 461 Cdc20 472 2 N/A
Cdc20 461 Cdc20 479 1 N/A

Linkages through BS3

Table 4.2 Novel linkages through BS3 between the regions of MCC compo-
nents which were absent in the crystal structure

List of novel linkages between MCC ΔN-term components mediated through BS3 
cross-linker. C-alpha distances are not available, as the linkages listed in this 
table were identified between the regions of MCC ΔN-term components which are 
absent in S. pombe MCC crystal structure (4AEZ.pdb). Those regions which were 
present only in the crosslinked MCC ΔN-term are as follows: Mad3 C-terminus 
(last 87 amino acids; 224-310) and disordered C-tail region of Cdc20 (last 22 
amino acids; 467-488).
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Protein 1 Linkage site 1 Protein 2 Linkage site 2 Match count C-α distance in 4AEZ (Å)
Mad2 108 Mad2 119 1 N/A
Mad2 11 Mad2 179 2 N/A
Mad2 13 Mad2 110 2 N/A
Mad2 13 Mad3 272 1 N/A
Mad2 13 Mad3 283 1 N/A
Mad2 13 Cdc20 469 1 N/A
Mad2 13 Cdc20 488 2 N/A
Mad2 177 Mad3 233 1 N/A
Mad2 177 Mad3 234 1 N/A
Mad2 177 Mad3 237 2 N/A
Mad2 177 Mad3 253 1 N/A
Mad2 177 Mad3 288 3 N/A
Mad2 177 Mad3 292 2 N/A
Mad2 177 Cdc20 472 3 N/A
Mad2 177 Cdc20 479 1 N/A
Mad2 179 Mad3 234 1 N/A
Mad2 179 Mad3 237 2 N/A
Mad2 179 Mad3 288 2 N/A
Mad2 179 Mad3 292 2 N/A
Mad2 179 Cdc20 472 1 N/A
Mad2 179 Cdc20 479 3 N/A
Mad2 66 Cdc20 469 1 N/A
Mad2 69 Cdc20 469 1 N/A
Mad3 101 Mad3 237 1 N/A
Mad3 101 Mad3 292 1 N/A
Mad3 168 Mad3 247 2 N/A
Mad3 168 Cdc20 469 2 N/A
Mad3 171 Mad3 239 3 N/A
Mad3 171 Mad3 288 1 N/A
Mad3 171 Mad3 292 1 N/A
Mad3 175 Mad3 247 1 N/A
Mad3 182 Cdc20 469 1 N/A
Mad3 21 Mad3 239 1 N/A
Mad3 233 Cdc20 138 1 N/A
Mad3 233 Cdc20 169 1 N/A
Mad3 234 Cdc20 135 2 N/A
Mad3 234 Cdc20 138 2 N/A
Mad3 234 Cdc20 436 2 N/A
Mad3 234 Cdc20 469 3 N/A
Mad3 237 Mad3 272 1 N/A
Mad3 237 Cdc20 135 4 N/A
Mad3 239 Mad3 247 2 N/A
Mad3 239 Mad3 249 1 N/A
Mad3 239 Mad3 254 1 N/A
Mad3 239 Cdc20 135 1 N/A
Mad3 239 Cdc20 138 1 N/A
Mad3 239 Cdc20 436 1 N/A
Mad3 239 Cdc20 469 1 N/A
Mad3 241 Mad3 254 4 N/A
Mad3 243 Mad3 254 1 N/A
Mad3 245 Mad3 254 1 N/A
Mad3 246 Mad3 254 2 N/A
Mad3 247 Mad3 288 2 N/A
Mad3 247 Cdc20 472 1 N/A
Mad3 249 Mad3 292 1 N/A
Mad3 251 Mad3 254 2 N/A
Mad3 254 Mad3 271 2 N/A
Mad3 254 Mad3 288 2 N/A
Mad3 254 Mad3 292 1 N/A
Mad3 271 Cdc20 135 2 N/A
Mad3 272 Mad3 288 1 N/A
Mad3 272 Mad3 292 1 N/A
Mad3 272 Cdc20 437 1 N/A
Mad3 283 Mad3 288 3 N/A
Mad3 283 Mad3 292 3 N/A
Mad3 283 Cdc20 133 6 N/A
Mad3 288 Cdc20 135 3 N/A
Mad3 288 Cdc20 436 2 N/A
Mad3 292 Cdc20 135 5 N/A
Mad3 292 Cdc20 138 2 N/A
Mad3 294 Cdc20 437 1 N/A
Mad3 46 Cdc20 469 1 N/A
Mad3 63 Mad3 292 1 N/A
Mad3 63 Cdc20 472 1 N/A
Mad3 69 Mad3 234 2 N/A
Mad3 69 Mad3 288 4 N/A
Mad3 69 Mad3 292 1 N/A
Mad3 69 Cdc20 472 2 N/A
Mad3 70 Mad3 239 1 N/A
Cdc20 135 Cdc20 472 1 N/A
Cdc20 135 Cdc20 479 1 N/A
Cdc20 138 Cdc20 472 2 N/A
Cdc20 141 Cdc20 469 1 N/A
Cdc20 169 Cdc20 472 1 N/A
Cdc20 342 Cdc20 469 1 N/A
Cdc20 436 Cdc20 472 5 N/A
Cdc20 458 Cdc20 472 1 N/A

Linkages through EDC

Table 4.3 Novel linkages through 
EDC between the regions of MCC 
components which were absent in 
the crystal structure

List of novel linkages between MCC 
ΔN-term components mediated 
through EDC cross-linker. C-alpha 
distances are not available, as the 
linkages listed in this table were 
identified between the regions of 
MCC ΔN-term components which 
are absent in S. pombe MCC crystal 
structure (4AEZ.pdb). Those regions 
which were present only in the 
crosslinked MCC ΔN-term are as 
follows: Mad3 C-terminus (last 87 
amino acids; 224-310) and disor-
dered C-tail region of Cdc20 (last 22 
amino acids; 467-488). 
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Figure 4.10 Mad2 and Mad3 may cooperate to sequester the APC/C activation 
domains of Cdc20

Cartoon representation of the “MCC ∆N-term ∆C-term” crystal structure with the prominent 
BS3-mediated cross-links (indicated by dark blue lines) between its components. Red lines 
denote the novel interactions between the Mad2 binding domain of Cdc20 (K133 and 
K141) and C-terminal tails of Cdc20 and Mad3 (which were absent in the crystal struc-
ture since they are disordered). Here Cdc20 K133 and K141 are linked (through red 
lines) to Cdc20 Y466 and Mad3 F220 (last ordered residues of Cdc20 and Mad3 C-ter-
mini) in order to show the direction of the novel interactions identified by cross-linking. 
Grey (Cdc20 C-tail) and orange (Mad3 C-tail) drawings emanating from the C-terminal 
ends (that were available in the crystal structure) of Cdc20 and Mad3 represent possible 
interactions of the flexible (disordered) C-terminal tails of Cdc20 and Mad3 respectively. 
Both C-tails were found to interact with the Mad2 binding domain of Cdc20 (K133, K140 
and K141) by cross-linking. KEN2 denotes the second KEN box (KEN271) of Mad3. IR 
denotes the IR-motif of Cdc20 (its last two residues) that is required for binding to and 
activation of APC/C. The yellow box denotes the conserved phosphorylation site of 
Cdc20, serine 482 (S482), that is 4 aminoacids upstream of the IR-motif. Cartoon 
representations were generated using X-link Analyser tool in UCSF Chimera Software. 
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4.4 Marking of cdc20+ gene with an antibiotic resistance and inserting 

an internal tag 

As described in the previous sections we have identified phosphorylation sites of 

Cdc20 and novel interactions between MCC components. In order to investigate roles 

of these sites in vivo, we needed a selection marker in its endogenous locus, so we 

would be able to select for the Cdc20 alleles that we will generate. We initially had an 

attempt to mark the cdc20 gene locus at its 5’ UTR with the hygromycin B resistance 

gene. However, this led to a severe benomyl and temperature sensitivity, which might 

be due to the presence of a non-coding RNA sequence at that region. In addition, 

modification of 5’ UTR might have affected a complex Cdc20 promoter. To test these 

possibilities, RNA levels of Cdc20 could be analysed performing reverse transcriptase 

polymerase chain reaction (RT-PCR). Therefore, we inserted the hygromycin B 

resistance gene at its 3’ UTR, 460 bp downstream of cdc20 stop codon (Figure 4.11A). 

Analysis of benomyl and temperature sensitivities indicated that marking cdc20 gene 

at its 3’ UTR does not cause any detectable phenotypes (data not shown). 

To be able to track the Cdc20 protein in our immunoprecipitation and immunoblotting 

experiments we needed to couple it with an epitope tag. Previously in our lab, Cdc20 

had been coupled with several tags (GFP, HA and myc) at its C-terminal end by 

Matylda Sczaniecka. These tags had been inserted between the IR motif and the stop 

codon of Cdc20, which has been reported to involve in APC/C activation. Subsequent 

functionality analyses indicated that tagging Cdc20 at its C-terminus led to benomyl 

sensitivity and inability to hold a fully functional checkpoint arrest upon 

depolymerisation of microtubules by nda3-KM311 cold sensitivity. This could be 

caused by a possible perturbation of the IR-motif function and Cdc20-APC/C 

interaction due to the location of the tag. On the other hand, N-terminal tagging did 

not seem to be a viable solution either, since at that region Cdc20 has been found to 

bear several regulatory phosphorylation sites (Labit et al., 2012) and the C-box (David 

Barford, 2011), which have been reported to have roles in the APC/C activation. 

Moreover, similar difficulties in tagging Cdc20Slp1 has been reported by other groups 

before (Hiro Yamano and Silke Hauf personal communication). 
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Cdc20 function. Thus we decided to use three tandem repeats of FLAG tag 

(DYKDDDDK; 1012 Da). Figure 4.111C illustrates the process of inserting an internal 

3xFLAG tag, which consists of three steps. First, we amplified from the genomic DNA 

a sequence cassette with flanking restriction enzyme sites, which consists of the cdc20 

ORF and its 3’UTR followed by the hygromycin resistance gene and 527 base pair-

long 3’UTR downstream of the resistance marker. This ~500 base pair sequence was 

aimed to serve during homologous recombination of the final product into the yeast 

genome. Then we inserted this sequence cassette into Gateway pDONR201 vector 

using conventional cloning. Second, we ordered a synthetic Cdc20 DNA (nucleotides 

1-363) sequence (5’ end of the ORF), which contains the internal 3xFLAG tag. This 

sequence was incorporated into cdc20 ORF using conventional cloning in the Gateway 

vector. Third, we released the whole sequencing cassette, including the internal 

3xFLAG tag inside cdc20 ORF using restriction enzyme digestion, and transformed it 

into haploid S. pombe cells, followed by selection of the right isolates through 

hygromycin B resistance, and further analysis by PCR amplification and DNA 

sequencing. 

Next, we analysed cdc20-FLAG cells in terms of benomyl and temperature sensitivity 

and observed that they grow similarly to untagged cdc20 cells. Moreover, analyses in 

terms of mitotic progression rate in an unperturbed mitosis (using cdc25-22 block in 

G2 phase and synchronous release into mitosis) and nda3-KM311 mediated SAC 

activation indicated that internal tagging of Cdc20 protein does not lead to a detectable 

defect unlike the previously tried C-terminal tags (data not shown). Thus, we conclude 

that the internal FLAG tag is a relatively physiological tool to examine Cdc20 

regulation in our following experiments. 



A
cdc20 ORF

5’ 3’
460 bp UTR Hygromycin B

C
cdc20 ORF

5’ 3’
460 bp UTR Hygromycin B

Gateway
pDONR 201

527 bp UTR1.

cdc20 ORF Hyg GG

3 x FLAG

ATG2.

cdc20 ORF Hyg GG 3 x FLAGATG3.

Figure 4.11 Marking of cdc20+ gene with an antibiotic resistance gene and inserting an 
internal tag
 
(A) Schematic illustrating the marking of 3’ UTR of cdc20 gene with Hygromycin B resistance
gene, using the ‘two-step PCR based gene modification’ method. (B) Alignment of Cdc20 
N-terminus from three fission yeast species (S. pombe, S. octosporus, S. japonicus), one
budding yeast (S.cerevisiae) and two metazoans (H. sapiens, X. laevis), performed in Jalview
software using ClustalWS algoritm. The internal tag (3 x FLAG) was inserted between two
valine residues (V64 and V65) flanking the gap (C) Schematic illustrating three-steps of inserting
an internal 3 x FLAG tag into Cdc20 ORF, and transformation of haploid fission yeast with the
final product. See the text for details.   
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4.5 Generating phosphorylation site mutants of Cdc20 

In the previous sections, by performing kinase assays we identified Cdc20 as a 

substrate of Bub1 kinase in vitro (Figure 4.3B). Subsequently, mapping of Cdc20’s in 

vitro phosphorylated sites by Bub1 indicated that five of those sites (S11, S28, T31, 

S76 and S482) overlap with the in vivo phosphorylated sites of Cdc20 in mitotically 

arrested cells (Figure 4.4A). Alignment of the Cdc20 orthologs from three fission yeast 

species (S. pombe, S. octosporus, S. japonicus), one budding yeast (S.cerevisiae) and 

two metazoans (H. sapiens, X. laevis) indicated that four (S28, T31, S76 and S482) of 

these five residues are well-conserved among these species (Figure 4.5). This 

strengthens the possibility that phospho- modification of these residues may play a role 

in the regulation of Cdc20 throughout evolution. In order to investigate this possibility, 

we categorised the putative phosphorylation sites in two groups: N-terminal sites S28, 

T31, S76 and S59 (instead of S11 that is not well-conserved); and the C-terminal site 

S482. Initially, we began to examine the N-terminal phosphorylation sites by mutating 

them to alanine, generating the phospho-deficient cdc20 4A allele. Analysis of cdc20 

4A cells in mitosis under unperturbed conditions or spindle perturbation by CBZ 

demonstrated that cdc20 4A was not expressed at the endogenous levels (data not 

shown). Because this phenotype would make interpretation of the results difficult, we 

have decided to split the cdc20 4A allele by generating two cdc20 2A alleles (S28, T31 

and S59, S76), which will be studied in the future.  

 

I next chose to focus on the C-terminal site S482. There are four reasons that I chose 

to analyse the serine 482 site in particular: 

1. In the Cdc20 alignments, serine 482 appears to be fairly well-conserved among 

S. pombe, S. cerevisiae, X. laevis and H.sapiens (Figure 4.5 and Figure 4.12A), 

in which phospho-regulation of Cdc20 has been demonstrated before (Chung 

& Chen, 2003; Labit et al., 2012; Pan & Chen, 2004; Tang, Shu, et al., 2004; 

Vanoosthuyse & Hardwick, 2005; Yu & Tang, 2005). This suggests that 

phospho-modification of Cdc20 through S482 may be evolutionarily 

conserved. 

 



 

108 

 

2. Serine 482 is the only ‘in vivo and in vitro’ phosphorylated residue among the 

five sites of Cdc20 ΔN-term which were phosphorylated by Bub1 in vitro 

(Figure 4.3B). This increases the possibility that S482 may be phosphorylated 

by Bub1 in vivo. 

 

3. Serine 482 is only four residues away from the IR-motif (Figure 4.12A), that 

is required for APC/C activation (D. Barford, 2011). The study (Labit et al., 

2012) that demonstrated the Cdk1-mediated inhibition of X. laevis APC/CCdc20, 

attributed this regulation to the close proximity of the N-terminal 

phosphorylation sites to the C-box, which is the other APC/C activating 

domain of Cdc20 (David Barford, 2011). This implies that likewise the C-box 

motif, the IR-motif of Cdc20 may also be regulated by phosphorylation of a 

nearby residue, like serine 482. 

 

4. Cross-linking mass spectrometry analysis (Figures 4.10) showed that Mad2 

and Mad3 proteins interact with the C-terminus of Cdc20, and are therefore in 

close proximity (numerous linkages were observed to K479) to serine 482. This 

strengthens the possibility that C-terminus of Cdc20 may be phospho-regulated 

in the context of an active SAC, in which the activity of Bub1 kinase and the 

assembly of Mad2, Mad3 and Cdc20 (as the MCC) coincide. 

 

Therefore, to analyse lack of phosphorylation (phospho - deficiency) at this site we 

mutated this putative Bub1 site, serine 482, (or two adjacent serine residues as well; 

serine 482, serine 483 and serine 484) to alanine, in order to generate phospho – 

deficient mutants of Cdc20 C-terminal cdc20 S1A and cdc20 S3A (Figure 4.12B). In 

addition to mutating only serine 482, we mutated two adjacent serines as well, 

although they were not mapped. This was because of the high proximity of these three 

serines and the possibility that the mass spectrometry mapping could be misleading. 

Therefore, if any of these three sites is phosphorylated in vivo (and if this is important 

for the cell cycle), it would be indicated through the cdc20 S3A allele. 
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On the other hand, to analyse constitutive phosphorylation of serine 482, we mutated 

it to glutamate to generate a phospho – mimicking allele, cdc20 S3E. We generated 

another phospho – mimic mutant of Cdc20 as well, mutating serine 482 to aspartate 

(cdc20 S1D), that we examine in the last section of chapter 5. Besides the C-terminal 

phosphorylation site mutants, we also mutated arginine 488 of the IR motif to 

glutamate, in order to generate the cdc20 IE mutant (Figure 4.12B). 

In addition to investigating the function of the IR-motif in S. pombe, we used the 

Cdc20 IE allele as a control, which was thought to help us interpret the behaviour of 

our Cdc20 phosphorylation mutants with respect to the following aspects: 

 

1. Deletion of the IR motif or its mutation into IE have been reported to impair 

Cdc20’s activator function and MCC-APC/C interaction (Izawa & Pines, 

2012). In our case, substitution of serine(s) by alanine or glutamate/ 

aspartate in close proximity to the IR motif might affect Cdc20 functions 

in this regard. 

 

2. In the case of phospho – mimic mutations (cdc20 S3E and cdc20 S1D) 

additional negative charge(s) would be constitutively introduced in close 

proximity to the IR motif. Substitution of the arginine 488 by glutamate in 

the case of cdc20 IE may help us evaluate whether changes in charge impair 

functions of the C-terminus, regardless of their roles in phospho – 

regulation of Cdc20. 

 

 

 

 

 

 

 

 



bub1-kd kinase domain

K762R D900N

Figure 4.12 Cdc20 C-terminal mutants and the bub1 kinase-dead (kd) mutant used in
this study.

(A) Allignment of Cdc20 C-terminus from three fission yeast species
(S. pombe, S. octosporus, S. japonicus), one budding yeast (S.cerevisiae) and two
metazoans (H. sapiens, X. laevis), performed in Jalview software using ClustalWS algoritm.
The red asterisk annotates serine 482 that was found to be phosphorylated in vitro by Bub1
and in vivo in mitotically arrested cells. (B) Schematic illustrating the C-terminal
pshosphorylation site mutants (phospho-deficient cdc20 S1A and cdc20 S3A;
phospho-mimicking cdc20 S3E and cdc20 S1D) and IR motif mutant (cdc20 IE) of Cdc20
with their mutated sites. (C) Schematic illustrating the kinase-dead mutant of Bub1 (bub1-kd)
with two point mutations in its kinase domain.
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Chapter 5: Roles of Cdc20Slp1 phospho-regulation in the SAC 

5.1 Overview 

Phospho-regulation of Cdc20 by different kinases has been reported in different 

species. In Xenopus egg extracts, phosphorylation of Cdc20 by Cdk1 (D’Angiolella et 

al., 2003; Yudkovsky et al., 2000) and MAPK (Chung & Chen, 2003) is required for 

its interaction with the other two MCC components (Mad2 and Mad3/BubR1). 

Another Xenopus study has reported that phosphorylation of Cdc20 N-terminus by 

Cdk1 decreases it affinity for the APC/C in early mitosis, which is later (at metaphase- 

anaphase transition) reversed through its dephosphorylation by PP2A to promote 

Cdc20-APC/C binding, and thereby promote anaphase onset (Labit et al., 2012). In 

addition, phosphorylation of Cdc20 N-terminus by Bub1 has been reported in a human 

study for the first time (Tang, Shu, et al., 2004) suggesting that, this phosphorylation 

is required for a robust SAC response. Furthermore, the same group (Kang et al., 2008) 

has further supported this hypothesis by crystalizing the C-terminal kinase domain of 

Bub1, and demonstrating that Bub1 has a considerable specificity toward Cdc20 (see 

page 26 for details). 

In chapter three, we confirmed the observations of previous studies (Chen, 2004; 

Fernius & Hardwick, 2007; Kawashima et al., 2010; Roberts et al., 1994; Yamaguchi 

et al., 2003) that Bub1 kinase activity is necessary for bi-orientation and required to 

have a robust SAC response to spindle damage, in order to ensure accurate 

chromosome segregation. We demonstrated that Bub1 kinase activity contributes to 

delaying premature anaphase onset by maintaining kinetochore recruitment of the 

MCC components (Mad2 and Mad3), and MCC-APC/C interaction until the later 

stages of prometaphase. In addition, by using the sgo2 null strain, we attempted to 

separate possible SAC roles of Bub1 kinase activity from its relatively better 

established chromosome biorientation (and indirect SAC activation) role through the 

Bub1-H2A-Sgo2-Aurora B pathway. We observed that its roles in maintaining the 

MCC components on kinetochores (partly shared by the Bub1-Aurora B pathway), and 

sustaining a robust anaphase delay may be mediated by another substrate. 

In chapter four, we confirmed that S. pombe Bub1 auto-phosphorylates efficiently 

(Kawashima et al., 2010) and demonstrated for the first time that it phosphorylates 
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fission yeast Cdc20 directly (in vitro). Identification of the phosphorylated Cdc20 sites 

(in vitro by Bub1 and in vivo in mitotically arrested cells) revealed that this 

modification of fission yeast Cdc20 is not restricted to its N-terminal region, unlike it 

has been reported in Xenopus egg extracts (Labit et al., 2012) and allegedly in human 

cells (Tang, Shu, et al., 2004). Unlike Tang and colleagues proposed, mutating six N-

terminal Bub1 sites (to alanine) on human Cdc20 does not appear to abolish its Bub1 

mediated phosphorylation in vitro (see the residual phosphorylation signal of the 

“nonphosphorylatable” Cdc20 mutant in (Tang, Shu, et al., 2004)). This suggests that 

Bub1 may phosphorylate Cdc20 at its other regions which might be important for 

mitotic regulation.  

By using crosslinking mass spectrometry (CLMS) analysis, we confirmed already 

known interactions between the MCC components (Cdc20, Mad and Mad3) (Chang et 

al., 2015; Chao et al., 2012b; Izawa & Pines, 2012), and demonstrated new ones 

between the flexible C-terminal tails of Cdc20 and Mad3, which were not determined 

in the MCC crystal structure (Chao et al., 2012b). These novel interactions suggest 

that, Mad2 and Mad3 may inhibit APC/C activity by binding to the C-terminal tail of 

Cdc20 where the regulatory IR-motif (da Fonseca et al., 2011) and a highly conserved 

phosphorylation site, serine 482, (revealed in both in vitro and in vivo analyses) are 

found. In other words, sequestration of Cdc20 IR motif by Mad2 and Mad3 may inhibit 

the activation of APC/C by Cdc20. On the basis of these observations, we generated 

phosphorylation mutants of Cdc20, either refractory to C-terminal phosphorylation 

(phospho-deficient) or mimicking constitutive phosphorylation of this site (phospho-

mimicking). 
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In this chapter, we aim to: 

1. Examine the mitotic behaviour of the C-terminal Cdc20 phosphorylation 

mutants to determine whether they still retain the mitotic functions of Cdc20 

under unperturbed conditions: (i) activating APC/C to promote anaphase onset, 

(ii) maintaining MCC assembly and (iii) MCC-APC/C interaction. 

 

2. Analyse whether lack of C-terminal Cdc20 phosphorylation or its constitutive 

phosphorylation have any functional consequences on the abilities of cells in 

recruiting the MCC components to kinetochores and maintaining the MCC-

APC/C interaction, thus delaying anaphase onset in response to various degrees 

of spindle perturbation. In addition, we aim to assess the abilities of Cdc20 

phosphorylation mutants in satisfying the SAC (chromosome biorientation) 

and subsequently recovering from the SAC mediated metaphase arrest (SAC 

silencing), upon spindle reformation. 

 

3. Finally, combine the phospho-mimicking Cdc20 mutants with the bub1-kd 

mutant to analyse whether the constitutive phosphorylation of Cdc20 C-

terminus can rescue the SAC defects observed in the absence of Bub1 kinase 

activity. By performing this rescue experiment, we aim to provide in vivo 

evidence for the possibility that Bub1-mediated phosphorylation of Cdc20 (that 

we observed in vitro) is important for the mitotic regulation in fission yeast. 
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5.2 Analysis of Cdc20 C-terminal phosphorylation mutants under 

unperturbed conditions  

In this section we aim to analyse whether the phospho-deficient (cdc20 S1A and cdc20 

S3A) or phospho-mimicking (cdc20 S3E) mutations affect its functions under 

unperturbed conditions. To determine this, we analyse the abilities of C-terminal 

Cdc20 phosphorylation mutants in progressing into anaphase, assembling the MCC 

and maintaining MCC-APC/C interaction in an unperturbed mitosis. 

5.2.1 Progression through an unperturbed mitosis 

In this experiment we aimed to analyse whether Cdc20 phosphorylation mutations 

(cdc20 S3E, cdc20 S1A and cdc20 S3A) affect its APC/C activator function. If this was 

impaired, then we would expect the cells to have defects in anaphase onset, despite the 

absence of any microtubule perturbation (Izawa & Pines, 2012; Nilsson et al., 2008).  

 

In order to track progression of the Cdc20 mutants through an unperturbed mitosis, 

temperature sensitive cdc25-22 mutant was used to synchronize cells in G2 phase. In 

addition, SAC deficient mad2 null allele (Vanoosthuyse et al., 2009) was used as a 

negative control and crossed with wild type and cdc20 S3E, to be able to test if the 

results depend on the presence of a functional SAC machinery. Cells were grown at 

25°C to mid-log phase, and then the temperature was shifted to 36°C (restrictive 

temperature for cdc25-22 allele), in order to arrest them in G2 phase. After 4 hours, 

cells were synchronously released into mitosis by shifting the temperature back to the 

permissive temperature of 25°C. Samples were collected at 15 minute time points for 

120 minutes, and fixed in methanol. Fixed samples were then stained with calcofluor 

to detect septation, which was scored as a readout of mitotic exit (Vanoosthuyse et al., 

2009; Yanagida, 1998). The Mad3-GFP fusion protein was also visualized as it is 

known to localise to kinetochores of prometaphase arrested cells (Rischitor et al., 

2007; Sczaniecka et al., 2008). 
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It is evident from the results (Figure 5.1A) that at 60 minutes, 80-90% of the cells from 

all strains exited mitosis (septated) without any detectable Mad3-GFP localization to 

kinetochores. As can be seen in Figure 5.1B, septation scores of all Cdc20 

phosphorylation mutants, both phospho-deficient and phospho-mimicking ones, are 

similar to that of wild type throughout the time course. At the end of two hours 90-

100% cells of all strains exited mitosis with an almost equal timing. Moreover, the 

mad2 null mutant and the mad2 null, cdc20 S3E double mutant do not significantly 

deviate from this mitotic timing. (Figure 5.1B). This result implies that the effect of a 

functional SAC machinery on the timing of an unperturbed mitosis is negligible 

(Movies have demonstrated that unperturbed mitosis is only 1-2 minutes shorted in the 

absence of Mad2, Kevin Hardwick personal communication).  

 

These results suggest that cdc20 S3E, cdc20 S1A and cdc20 S3A mutants can activate 

APC/C as efficiently as wild type cdc20 does. In other words the Cdc20 activator 

function is not significantly affected by either absent (cdc20 S1A and cdc20 S3A) or 

constitutive phosphorylation (cdc20 S3E) of its C-terminal tail. 
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wild type

cdc20 S3E

cdc20 S1A

cdc20 S3A

Septa Mad3-GFP Merge

60 minutes after release into mitosis

Figure 5.1 APC/C activating function of Cdc20 is not affected by either absent or constitutive
phosphorylation of its C-terminus in an unperturbed mitosis.

(A) Representative images from 60 minutes, displaying septation (in red) by calcofluor staining
and Mad3-GFP localisation (in green) in the cells expressing wild type cdc20, cdc20 S3E,
cdc20 S1A or cdc20 S3A, following 4 hours of cdc25-22 block at G2-phase and release into an
unperturbed mitosis (time zero). Scale-bar represents 5 microns (B) Graph plotting percentage
of cells that formed septum (exited mitosis) with respect to time. Results are the average of two
independent experiments. Error bars representing standard error.
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5.2.2 MCC formation in an unperturbed mitosis 

In the previous section we reported that mitotic progression rates of Cdc20 

phosphorylation mutants were comparable to that of wild type. This result was 

accompanied by the finding that mitotic progression of mad2 null double mutants were 

not significantly faster. In other words, although cells with a functional SAC 

machinery (+Mad2 strains) were able to form MCC, this did not delay their mitotic 

timing dramatically. We hypothesize that in an unperturbed mitosis, random 

microtubule-kinetochore attachment errors may still occur, which leads to MCC 

formation to a certain extent. However, those errors are likely to be corrected without 

a long delay, which leads to silencing of the SAC and subsequent disassembly of the 

MCC. Thus, in the next experiment, we aimed to analyse MCC formation in the cells 

expressing wild type cdc20 or cdc20 S3A in an unperturbed mitosis. Cells were 

released into a synchronous mitosis employing cdc25-22 temperature sensitivity as 

described previously. Cell samples were collected at 15 minute time points for 135 

minutes. Then the samples were lysed, subjected to anti-FLAG (Cdc20) 

immunoprecipitation and processed for SDS-PAGE/western blotting, in which they 

were probed for Cdc20, Mad2 and Mad3 to monitor MCC formation. 

As shown in Figure 5.2A, wild type cdc20 and cdc20 S3A total protein levels were 

largely similar overall, although there may be a slight delay in the decline of cdc20 

S3A levels compared to that of wild type cdc20. Nevertheless, Figure 5.2B shows that 

comparable amount of MCC components (Mad2 and Mad3) are pulled-down by wild 

type cdc20 and cdc20 S3A.  

These data suggest that lack of the phosphorylation of Cdc20 C-terminus (as in the 

case of cdc20 S3A) does not significantly affect MCC formation during an unperturbed 

mitosis. 
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(Cdc20)
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(Mad3)
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Figure 5.2 MCC formation is not affected by the absence of Cdc20 C-terminus
phosphorylation in an unperturbed mitosis

(A) Total levels of Cdc20 (FLAG) and Mad3 (GFP) were analyzed by immunoblotting in whole
cell extracts from cells blocked at G2-phase (cdc25-22), and released into unperturbed mitosis
for 135 minutes. Mad3 levels were used as loading control. (B) Coimmunoprecipitation (IP)
analysis of mitotic checkpoint complex (MCC) formation. Cdc20 (FLAG) was immunoprecipitated
from the extracts described in A. Levels of Mad3 (GFP) and Mad2 coimmunoprecipitated with
Cdc20 (FLAG) were analyzed by immunoblotting. Cdc20 (FLAG) commonly appears as two
bands due to the cleavage of Cdc20 (FLAG) fusion protein. Results are representative of three
independent experiments.

A

B

 0     15    30  45  60  75  90 105 120 135  0    15   30   45   60  75   90  105  120 135 

wild type cdc20 S3A

IP:
FLAG
Cdc20

anti-FLAG
(Cdc20)
anti-GFP
(Mad3)
anti-Mad2

 0     15    30  45  60  75   90 105 120 135  0    15  30   45   60  75   90  105  120 135 

wild type cdc20 S3A

min after
release:

min after
release:

118



 

119 

 

5.2.3 MCC-APC/C interaction in an unperturbed mitosis 

Having shown previously that phosphorylation of Cdc20 C-terminus affects neither 

the mitotic progression rate nor the MCC formation abilities of cells significantly, next 

we sought to determine whether it influenced their MCC-APC/C interaction. To 

analyse that we employed cdc25-22 temperature sensitivity assay that enables us to 

release cells into an unperturbed mitosis. Cell samples were collected at 15 minute 

time points for 135 minutes. Then the samples were lysed, subjected to anti-TAP 

(APC4) immunoprecipitation and processed for SDS-PAGE/western blotting, in 

which they were probed for MCC components. 

As Figure 5.3A shows that total levels of wild type cdc20 and cdc20 S3A were fairly 

similar despite cdc20 S3A being slightly more stabilised towards the end of mitosis. 

This subtle stabilisation of cdc20 S3A levels is consistent with the previous finding 

(Figure 5.2A).  

As for the MCC-APC/C interaction, Figure 5.3B displays that comparable amounts of 

Cdc20, Mad2 and Mad3 bound to APC/C in wild type cdc20 and cdc20 S3A cells.  

This result is consistent with the previous findings that wild type cdc20 and cdc20 S3A 

cells progress through mitosis with almost the same rate (Figure 5.1B) as they form 

similar amounts of MCC (Figure 5.2B). 

To sum up, lack of Cdc20 phosphorylation at its C-terminus (as in the case of cdc20 

S3A) does not significantly affect MCC formation, MCC-APC/C interaction or the 

progression rate of cells in an unperturbed mitosis. 

 

 

 

 

 



anti-FLAG
(Cdc20)

anti-TAP
(Apc4) Input

A
 0     15    30  45  60   75  90 105 120 135  0   15   30    45    60  75    90    105  120 135 

wild type cdc20 S3A

B

IP:
TAP
Apc4

anti-FLAG
(Cdc20)
anti-GFP
(Mad3)
anti-Mad2

 0     15    30  45  60   75  90 105 120 135  0   15   30   45   60  75   90  105  120 135 

wild type cdc20 S3A

anti-TAP
(Apc4)

Figure 5.3 MCC-APC/C interaction is not affected by the absence of Cdc20 C-terminus
phosphorylation in an unperturbed mitosis

(A) Total levels of Cdc20 (FLAG) and Apc4 (TAP) were analyzed by immunoblotting in whole
cell extracts from cells blocked at G2-phase (cdc25-22), and released into unperturbed mitosis
for 135 minutes. Apc4 levels were used as loading control. (B) Coimmunoprecipitation (IP)
analysis of MCC-APC/C interaction. Apc4 (TAP) was immunoprecipitated from the extracts 
described in A. Levels of Cdc20 (FLAG), Mad3 (GFP) and Mad2 coimmunoprecipitated with
Apc4 (TAP) were analyzed by immunoblotting. Apc4 levels were used as loading control.
Cdc20 (FLAG) commonly appears as two bands due to the cleavage of Cdc20 (FLAG) fusion
protein. Results are representative of three independent experiments.
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5.3 Analysis of Cdc20 C-terminal phosphorylation site mutants in the 

context of the SAC activated by an anti-microtubule drug 

Our previous findings show that C-terminal phospho-modification of Cdc20 does not 

appear to affect cells’ mitotic timing, MCC formation and MCC-APC/C interaction in 

an unperturbed mitosis. In this section we aim to investigate whether this is also true 

in the context of a perturbed mitosis with destabilised spindle microtubules, activating 

the SAC. To investigate this, we released cells into a synchronous mitosis, employing 

cdc25-22 temperature sensitivity followed by treatment with the microtubule 

depolymerising drug carbendazim (CBZ) at 20 minutes after the release. Using this 

method, we aim to determine whether C-terminal phospho-modification of Cdc20 is 

involved in the regulation of mitotic progression rate and MCC-APC/C interaction, 

when the SAC is activated by depolymerised microtubules.  

 

5.3.1 Analysis of mitotic timing and Mad3 kinetochore localisation in 

the presence of an anti-microtubule drug 

Following their release into synchronous mitosis with CBZ treatment, cell samples 

were collected at 15 minute time points for 150 minutes, and fixed in methanol. Later, 

fixed cells were stained to detect septa, which was visualised by microscopy along 

with Mad3-GFP localisation at unattached kinetochores. 

Figure 5.4A and B demonstrate that after 60 minutes into mitosis, 56% of wild type 

cells exited mitosis (indicated by septation), and the remaining 44% still arrested at 

metaphase through the SAC response activated upon microtubule depolymerisation. 

However, this arrest did not occur anymore when Mad2 is deleted, as indicated by 94 

% septation index of the mad2 null strain. This result suggests that the observed 

metaphase arrest depends on a functional SAC machinery in the presence of spindle 

damage, which is abolished by deletion of Mad2 (Vanoosthuyse et al., 2009). Septation 

indexes of the phospho-deficient Cdc20 mutants cdc20 S1A and cdc20 S3A were 

similar to that of wild type, being 51% and 47% respectively. This result indicates that 

there is only a slight delay in the mitotic progression of phospho-deficient Cdc20 

mutants compared to that of wild type.  
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On the other hand, phospho-mimicking Cdc20 mutant cdc20 S3E displayed a 

dramatically lower septation index (13%) (and higher arrest profile (87%)). 

Importantly, when Mad2 was deleted, cdc20 S3E cells were not able to delay anaphase 

onset anymore, as indicated by a very high septation index (88%) exhibited by cdc20 

S3E, mad2 null cells.  

Figure 5.4B shows that the relative proportions of mitotic progression rates indicated 

at 60 minutes (Figure 5.4A) were largely maintained by the strains throughout the time 

course. At 150 minutes, ~80% of wild type and phospho-deficient Cdc20 cells (cdc20 

S1A and cdc20 S3A) septated, whereas the septation index of phospho-mimic Cdc20 

mutant cdc20 S3E was as low as 39%. This excessive arrest phenotype of cdc20 S3E 

was reversed in the absence of Mad2, indicated by 98% septation index of cdc20 S3E, 

mad2 null cells, which is almost identical to that of wild type, mad2 null strain (100%). 

In addition to examining mitotic exit, we monitored localisation of Mad3-GFP to 

unattached kinetochores, which is another indicator of metaphase arrest. To be able to 

separately evaluate abilities of cells to regulate either mitotic timing (indicated by 

septation index) or localisation of MCC components to unattached kinetochores 

(indicated by Mad3-GFP foci), we scored Mad3-GFP kinetochore localisation only in 

the population of non-septating cells.  

Figure 5.5 displays that at 30 minutes 66% of the non-septating wild type cells 

exhibited Mad3-GFP kinetochore foci, which was followed by phospho-deficient cells 

cdc20 S1A (54%) and cdc20 S3A (64%) with similar scores. However, only 17% of 

non-septating wild type, mad2 null cells could display kinetochore foci, suggesting that 

Mad2 is required to maintain the recruitment of MCC components to unattached 

kinetochores in wild type cells. On the other hand, non-septating cdc20 S3E cells 

exhibited a significantly high percentage of Mad3-GFP kinetochore foci (86%). 

Interestingly unlike wild type, mad2 null, removal of Mad2 from cdc20 S3E cells did 

not abolish kinetochore localisation of Mad3-GFP at 30 minutes, which is indicated 

by fairly high percentage of kinetochore foci exhibited by cdc20 S3E, mad2 null cells 

(64%). This result suggests that, cdc20 S3E phospho-mimicking mutation can rescue 

the Mad3 recruitment defect in the absence of Mad2, and restores it almost to the wild 

type levels (66%). However, this rescue phenotype was not maintained throughout the 
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time course, as at 60 minutes the percentage of Mad3- GFP kinetochore foci in cdc20 

S3E, mad2 null cells (4.5%) became as low as that in wild type, mad2 null cells (5%), 

and eventually both of them became zero at 90 and 120 minutes (Figure 5.5B).  

This suggests that although cdc20 S3E mutation promotes kinetochore localisation of 

Mad3 at early stages of metaphase (30 min), Mad2 is still required in a functional SAC 

to maintain Mad3 recruitment until the later stages of mitosis (60, 90, 120 min). As for 

the other strains, Figure 5.5B shows that non-septating wild type, cdc20 S1A and cdc20 

S3A cells exhibited Mad3 foci similar to each other throughout the time course, 

indicated as ~80% (60 min), ~90% (90 min) and ~60% (120 min). On the other hand 

the ability of cdc20 S3E maintain Mad3 at kinetochores remained higher than that of 

others, especially towards the end of time course (94% at 120 min). 

These results suggest that in the presence of a microtubule depolymerising drug 

(CBZ), lack of C-terminal Cdc20 phosphorylation (as in the case of cdc20 S1A and 

cdc20 S3A) does not significantly affect either the mitotic timing or the recruitment of 

Mad3. On the other hand, constitutive phosphorylation of Cdc20 C-terminus 

(mimicked by cdc20 S3E) leads to an significantly strong metaphase arrest that is 

dependent on Mad2 protein.  

Moreover, constitutive phosphorylation of the Cdc20 C-terminus (mimicked by cdc20 

S3E) not only enhances the kinetochore localisation of Mad3 throughout mitosis, but 

also rescues the defect of mad2 null allele in this regard at the early (30 minutes), but 

not late stages (60, 90, 120 minutes) of metaphase. 
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Figure 5.4 Mimicking constitutive phosphorylation of Cdc20 C-terminus results in a 
hyperactivated SAC response that is dependent on Mad2

(A) Representative images from 60 minutes, displaying septation (in red) by calcofluor staining
and Mad3-GFP localisation (in green). Scale-bar represents 5 microns. (B) Cells were blocked
in G2-phase for 4 hours through cdc25-22 temperature sensitivity, and then released into mitosis
at 0 minute. At 20 minutes, cells were treated with the microtubule depolymerising drug CBZ to
activate SAC response. Samples were collected at each 30 minutes time point. Graph plotting
percentage of cells that formed septum (exited mitosis) with respect to time. Results are the 
average of two experiments. Error bars representing standard error.
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Figure 5.5 Constitutive phosphorylation of Cdc20 C-terminus significantly increases
the frequency of Mad3 kinetochore recruitment

(A) Representative images from 30 minutes of the same experiment described in Figure 5.6,
displaying septation (in red) by calcofluor staining and Mad3-GFP localisation (in green).
Scale-bar represents 5 microns. (B) Graph plotting percentage of non-septating cells (still in
mitosis) that exhibit Mad3-GFP kinetochore localisation at 30, 60, 90 and 120 minutes after
release into mitosis.
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5.3.2 Analysis of the MCC-APC/C interaction in the presence of an 

anti-microtubule drug 

In the previous section we demonstrated that mitotic exit of cells is strongly delayed 

due to constitutive phosphorylation of Cdc20 C-terminus (mimicked by cdc20 S3E), 

whereas that is not significantly affected by the lack of this phosphorylation (as in the 

case of cdc20 S1A and cdc20 S3A). This reproducible anaphase delay is likely to be an 

outcome of strengthened APC/C inhibition, since this E3 ligase is the ultimate target 

of SAC (P. Lara-Gonzalez et al., 2011). Thus, we hypothesize that constitutive 

phosphorylation of the Cdc20 C-terminus (mimicked by cdc20 S3E) may lead to a 

stronger MCC-APC/C interaction, whereas lack of this phosphorylation (as in the case 

of cdc20 S1A and cdc20 S3A) is expected to result in an interaction similar to wild type 

levels. To investigate a possible link between Cdc20 C-terminal phospho-modification 

and MCC-APC/C binding, we carried out time course experiments as described in the 

previous section. Following the release into a synchronous mitosis with CBZ treatment 

(20 minutes after the release), cell samples were collected at 15 minute time points for 

150 minutes. Then the samples were lysed, subjected to anti-TAP (APC4) 

immunoprecipitation and processed for SDS-PAGE/western blotting, in which they 

were probed for MCC components. 

As displayed in Figure 5.6A, total levels of wild type Cdc20 and cdc20 S3A were 

almost identical in the presence of CBZ. Figure 5.6B shows that, this similarity was 

also observed in the amount of MCC components (Cdc20, Mad2 and Mad3) pulled-

down by APC4 in wild type and cdc20 S3A cells. Moreover, this result is supported 

by the observation (Figure 5.6A) that wild type and cdc20 S3A cells exhibited highly 

comparable Cyclin B levels throughout the time course.  

These results suggest that wild type and cdc20 S3A cells inhibited APC/C to a 

comparable extent by binding similar amounts of MCC to it, which is consistent with 

their comparable mitotic timing that we reported previously (Figure 5.4B). 

On the other hand, comparison of wild type and phospho-mimicking cdc20 S3E cells 

appeared to be rather different. Figure 5.7B demonstrates that, cdc20 S3E cells 

exhibited significantly high amount of MCC-APC/C binding compared to that in wild 

type cells. Furthermore, the MCC-APC/C interaction in cdc20 S3E cells lasted longer 
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than it did in wild type cells. In wild type cells MCC components began disassembling 

from the APC/C at 60 minutes into mitosis, whereas in cdc20 S3E cells the decline of 

the MCC-APC/C interaction was not observed until the 120 minutes time point (Figure 

5.7B). 

As Figure 5.7A shows, wild type Cdc20 and cdc20 S3E levels were similar until 45 

minutes after release into mitosis. However, from 45 minutes onwards wild type Cdc20 

levels began to decrease, while cdc20 S3E levels increased until 90 minutes. Moreover, 

although Cyclin B degradation began at 15 minutes in both strains, cdc20 S3E cells 

stabilized their Cyclin B levels at a significantly higher level than wild type cells did 

until the end of the time course.  

These results suggest that upon microtubule depolymerisation beginning at 20 

minutes, cdc20 S3E cells activate a more potent SAC response than the wild type cells 

do, which probably leads to formation of more MCC molecules that inhibit the APC/C 

more efficiently. Due to this stronger inhibition, higher amounts of Cyclin B are 

stabilised in cdc20 S3E cells, which results in an extended metaphase arrest consistent 

with our previous findings (Figure 5.4B). In this case, the extended mitotic state of 

cdc20 S3E cells explains their relatively more stabilised Cdc20 levels, whose 

expression is sustained by Cdk1 in budding yeast mitosis (Liang et al., 2011; Vernieri, 

Chiroli, Francia, Gross, & Ciliberto, 2013). Taken together, our results suggest that 

the lack of C-terminal Cdc20 phosphorylation (as in the case of cdc20 S3A) does not 

appear to affect either MCC-APC/C interaction or mitotic timing significantly. 

However, constitutive phosphorylation of Cdc20 C-terminus (mimicked by cdc20 

S3E) leads to a stronger and longer MCC-APC/C interaction, which delays anaphase 

onset. This stronger MCC-APC/C interaction may be a direct result of higher amounts 

of MCC formed in cdc20 S3E cells, which can be tested by co-immunoprecipitation 

of Cdc20 S3E-FLAG and the other MCC components. In addition, in the previous 

section (Figure 5.5) we reported that cdc20 S3E allele rescued the kinetochore 

recruitment of Mad3 in the absence of Mad2 at the early stages of mitosis. In order to 

assess the Mad2 dependency for a tight MCC formation, this experiment should be 

carried out along with the mad2 null, Cdc20 S3E-FLAG strain. 
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Figure 5.6 MCC-APC/C interaction is not affected by the absence of Cdc20 C-terminus
phosphorylation in response to the microtubule drug CBZ

(A) Total levels of tubulin (TAT1), Cdc20 (FLAG) and Cyclin B were analyzed by immunoblotting
in whole cell extracts at each 15 minute time points from cells blocked at G2-phase (cdc25-22),
and released into mitosis (0 minutes) followed by CBZ (100 µg/ml) treatment at 20 minutes.
TAT1 levels were used as loading control. Cdc20 (FLAG) commonly appears as two bands due
to the cleavage of Cdc20 (FLAG) fusion protein. (B) Coimmunoprecipitation (IP) analysis of
MCC-APC/C interaction. Apc4 (TAP) was immunoprecipitated from the extracts described in A.
Levels of Cdc20 (FLAG), Mad3 (GFP) and Mad2 coimmunoprecipitated with Apc4 (TAP) were
analyzed by immunoblotting. Apc4 levels were used as loading control. Mad3 (GFP) is commonly
detected as two bands due to the cleavage of the fusion protein. Results are representative of
two independent experiments.
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Figure 5.7 Constitutive phosphorylation of Cdc20 C-terminus enhances MCC-APC/C 
interaction in response to the microtubule drug CBZ

(A) Total levels of Apc4 (TAP), Cdc20 (FLAG) and Cyclin B were analyzed by immunoblotting
in whole cell extracts collected at each 15 minute time points from cells blocked at G2-phase
(cdc25-22), and released into mitosis (0 minutes) followed by CBZ (100 µg/ml) treatment at 20
minutes. Apc4 levels were used as loading control. (B) Coimmunoprecipitation (IP) analysis of
MCC-APC/C interaction. Apc4 (TAP) was immunoprecipitated from the extracts described in A.
Levels of Cdc20 (FLAG), Mad3 (GFP) and Mad2 coimmunoprecipitated with Apc4 (TAP) were
analyzed by immunoblotting. Apc4 levels were used as loading control. Mad3 (GFP) is commonly
detected as two bands due to cleavage of the fusion protein.
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5.4 Analysis of Cdc20 C-terminal phosphorylation mutants under 

nda3-KM311-mediated microtubule depolymerisation 

In the preceding sections, we described how phospho-modification of the Cdc20 C-

terminus can affect MCC formation, MCC-APC/C interaction, kinetochore 

localisation of MCC components and progression rate in an unperturbed mitosis. In 

addition, to examine the same cellular events in the context of an activated SAC, we 

treated cells with the microtubule depolymerising drug carbendazim (CBZ). For both 

of these experiments, we used cdc25-22 temperature sensitivity to be able to arrest the 

cells in G2-phase, and release them into a synchronous mitosis. As described in the 

third chapter, there is another method of enriching cells in mitosis that employs the 

nda3-KM311 cold sensitive allele, by which microtubules are completely 

depolymerised, thereby the SAC is activated upon shifting cells to the restrictive 

temperature. In this section we present experiments in which we examined the mitotic 

behaviour of Cdc20 C-terminal phosphorylation mutants along with bub1-kd and bub1 

null alleles with regards to their abilities to activate and recover from the SAC, using 

nda3-KM311 cold sensitivity. 
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5.4.1 Metaphase arrest mediated by nda3-KM311 

In order to examine abilities of the Cdc20 C-terminal mutants and the Bub1 mutants 

to arrest at metaphase in response to depolymerised microtubules, we carried out nda3-

KM311 time course experiments. Cells were grown overnight at the permissive 

temperature (30°C), and the next day log phase cultures were shifted to the restrictive 

temperature (18°C) for 9 hours. Cell samples were collected 6 hours and 9 hours after 

the temperature shift, fixed in methanol and stained with DAPI to visualise DNA. In 

addition to scoring condensed DNA, we monitored localisation of polo kinase (Plo1-

GFP) to spindle poles, which is another indication of metaphase arrest (Bahler et al, 

1998a; Mulvihill et al, 1999). Cdc20 C-terminal mutants examined in this experiment 

were phospho-deficient cdc20 S3A, phospho-mimic cdc20 S3E and cdc20 IE alleles 

(where the arginine of the C-terminal IR motif is mutated to glutamate); Bub1 mutants 

were bub-kd and bub1 null (negative control) alleles. 

 

After spending 6 hours with depolymerised microtubules (Figure 5.8), 52% of wild 

type cells arrested in metaphase, followed by cdc20 S3A with a similar arrest profile 

(49%). As expected from the negative control, bub1 null cells did not arrest at all, since 

they are known to be defective in the SAC response. Bub1-kd cells exhibited a lower 

arrest profile (44%) than the wild type cells did. On the other hand, higher (62%) 

proportion of cdc20 S3E cells arrested in metaphase. Interestingly, cdc20 IE cells also 

appeared to arrest with a rather high percentage (61%).  

 

After 9 hours, (Figure 5.8) arresting proportions of wild type (76%), cdc20 S3A (76%) 

and became comparable, that were higher than cdc20 IE (68%) cells. On the other 

hand, Cdc20 S3E cells (84%) were observed to have the highest arrest frequency than 

the other strains. However, bub1-kd cells exhibited a significant arrest defect (54%) 

compared to wild type cells (76%).  
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These results suggest that, in a prolonged and relatively more penetrant spindle 

perturbation (6-9 hours), constitutive phosphorylation of Cdc20 C-terminus 

(mimicked by cdc20 S3E) leads to a strengthened SAC arrest, although the difference 

is not as big as in the case of a less penetrant spindle perturbation by CBZ treatment 

for a relatively short period (130 min) (Figure 5.4B). Lack of C-terminal Cdc20 

phosphorylation (as in the case of cdc20 S3A) results in a slightly weaker SAC arrest 

than wild type cells only after 6 hours, but not 9 hours. On the other hand, lack of the 

Bub1 kinase activity (as in the case of bub1-kd) compromises the SAC response 

significantly, especially after 9 hours of spindle damage. This result is consistent with 

previous observations in fission yeast (Kawashima et al., 2010; Yamaguchi et al., 

2003). 

 

Interestingly, cdc20 IE cells arrested more frequently than wild type cells after 6 hours, 

although cdc20 IE mutation was expected to impair the Cdc20-APC/C interaction as 

it has been reported in human cells (Izawa & Pines, 2012). This might have been due 

to two possibilities; (i) cdc20 IE mutation either leads to a more potent SAC response 

or (ii) it impairs the activator function of Cdc20 so that the cdc20 IE cells cannot 

progress into anaphase.  

 

To determine this we analysed the amount of Mad3 that is bound to the APC/C in wild 

type, cdc20 S3E and cdc20 IE cells, which were blocked at metaphase for 6 hours by 

nda3-KM311 mutation. Figure 5.9A-B display that cdc20 S3E cells exhibited a slightly 

higher Mad3-APC/C interaction than wild type cells (the difference was much higher 

in response to CBZ), whereas it is noticeably lower in cdc20 IE cells. This result 

suggests that, the “strong arrest” phenotype of cdc20 IE cells observed in the previous 

experiment (Figure 5.8) is probably not due to a more potent SAC response. In 

contrast, a more likely explanation is that cdc20 IE mutation may impair the activator 

function of Cdc20, and this leads to a defective anaphase onset, which was manifested 

as a prolonged anaphase delay. In order to better understand functional consequences 

of the IR-motif mutation, the mitotic progression rate of cdc20 IE cells should be 

analysed in an unperturbed mitosis, to determine whether their ability to progress into 

anaphase is compromised.  



Figure 5.8 Constitutive phosphorylation of Cdc20 C-terminus slightly enhances SAC
activity in response to nda3-KM311 block

Graph plotting percentage of cells arrested at metaphase indicated by Plo1-GFP signal
at spindle pole bodies (SPBs) after 6 or 9 hours at the restrictive temperature (18°C) with
depolymerised microtubules (nda3-KM311 cold sensitivity). Results of wild type, bub1-kd and
cdc20 IE cells are the average of two independent experiments. Error bars representing
standard error.
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Figure 5.9 IR-motif of Cdc20 is required for an efficient Mad3-APC/C interaction

(A) Coimmunoprecipitation analysis of Mad3-APC/C interaction in cells arrested
at metaphase for 6 hours through nda3-KM311 allele. Mad3-APC/C interactions
of wild type, cdc20 S3E and cdc20 IE cells were compared by immunoprecipitating Apc4 
(TAP), immunoblotting against Mad3 (GFP). (B) Graph displaying the quantification of the 
results in A. APC/C-bound Mad3 intensities were measured by Image J and normalized to 
immunoprecipitated Apc4 levels and total Mad3 levels.
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5.4.2 Recovery from nda3-KM311-mediated metaphase arrest 

Having compared the Cdc20 C-terminal phosphorylation mutants and bub1-kd allele 

in terms of their abilities to arrest at metaphase in response to depolymerised 

microtubules, in this section we investigate how efficiently these mutants are able to 

extinguish the SAC-mediated ‘wait anaphase’ signal, and progress into anaphase upon 

re-polymerisation of microtubules. In order to examine this, we released the cells from 

the same experiment described in the previous section, from 6 hours of metaphase 

arrest at 18℃ by shifting them back to the permissive temperature (32℃) to allow re-

polymerisation of microtubules. Then we collected cell samples at 10, 20 and 30 

minutes after the release, and fixed them in methanol to process as described 

previously. Following the release from metaphase arrest we observed that cells 

exhibited characteristics of various cell cycle stages (Figure 5.10A). The first type is 

late G2 cells, which have uncondensed DNA and relatively weak Plo1-GFP signal 

gradually accumulating on their spindle poles. The second type is metaphase arrested 

cells exhibiting condensed DNA and strong Plo1-GFP signal on spindle poles. This 

category consists of two subtypes; (i) early metaphase cells displaying overlapped 

Plo1-GFP signals (appear as one spot) on two spindle poles that are very close to each 

other and (ii) late metaphase cells displaying separated Plo1-GFP signals (appear as 

two spots). The third category is anaphase cells, which have their sister chromatids 

symmetrically separated, and pulled to the opposite poles by anaphase spindles. The 

forth and the last category is ‘cut’ (cell untimely torn) cells, which form septa without 

symmetrical segregation of their sister chromatids, and become aneuploidy eventually 

(Yanagida, 1998). 

On the basis of these criteria, (Figure 5.10 C) 10 minutes after the release 37% of 

“initially (at time zero) arrested wild type cells” exited mitosis by either progressing 

into normal anaphase (25%) or exhibiting cut phenotype (12%) (Figure 5.10 A and B). 

However, after 10 minutes 51% of “initially arrested bub1-kd cells” exited mitosis with 

the proportions of 30% normal anaphase and 21% cut phenotype.  
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30 minutes after the release (Figure 5.10C), 81% of initially arrested wild type cells 

exited mitosis, with 74% normal anaphase and 7% cut phenotype. However, after 30 

minutes percentage of mitotic exit was as high as 93% for bub1-kd cells, exhibiting 

68% normal anaphase and 25% cut phenotype. 

Phospho – deficient Cdc20 S3A cells exhibited a fairly comparable SAC recovery 

pattern to wild type cells at the early stages after the release. Figure 5.10C plots that 

10 minutes after the release, 31% of the initially arrested Cdc20 S3A cells exited 

mitosis, by either progressing into normal anaphase (25%) or cut phenotype (6%). 

After 30 minutes, 92% of initially arrested Cdc20 S3A cells exited mitosis, with 83% 

normal anaphase and 9% cut phenotype. Although, frequency of cut phenotype was 

comparable to that of wild type (7%), Cdc20 S3A cells progressed into anaphase faster 

than wild type (74%) at the later stages of the release from nda3-KM311 block (Figure 

5.10 B).  

Phospho – mimetic Cdc20 S3E cells recovered from the SAC slightly slower than wild 

type cells did (Figure 5.10 B and C). 10 minutes after the release, 21% of initially 

arrested Cdc20 S3E cells exited mitosis (wild type 37%), almost of them progressing 

into normal anaphase (20%). After 30 minutes, mitotic exit index of initially arrested 

Cdc20 S3E cells was 77% which became similar to that of wild type (81%). Strikingly 

20% of those cells exhibited cut phenotype (wild type 7%), which largely accounts for 

this increase in the mitotic exit, whereas the cells progressing into a normal anaphase 

were only 57% of it. 

On the other hand, Cdc20 IE cells exhibited a rather different SAC rescue pattern. 

Figure 5.10B shows that, Cdc20 IE cells exhibited an arrest profile (63%) as high as 

Cdc20 S3E cells did (62%) immediately before the release. However, unlike Cdc20 

S3E cells, a considerable portion of Cdc20 IE cells remained arrested at metaphase 

even at 10 (54%), 20 (45%) and 30 minutes (43%) after the release. Consistent with 

this, as low as 36% of initially arrested Cdc20 IE cells could exit mitosis at 30 minutes 

time point (Figure 5.10C), which is significantly lower than the SAC recovery rates of 

wild type (81%) and Cdc20 S3E (77%). 
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In order to compare the mitotic exit (SAC recovery) rates of these strains when spindle 

reformed, (other than Cdc20 IE, that was significantly slower than the others) we 

plotted trend lines out of ‘% of initially arrested cells which exited mitosis upon 

microtubule re-polymerisation’ data (Figure 5.10 C). Linear regression analysis 

demonstrates that slopes and elevation (magnitude) values of the lines plotting mitotic 

exit rates of wild type, bub1-kd and cdc20 S3A cells are not significantly different from 

each other. In other words, the variance of mitotic exit rates among their own time 

points (0, 10, 20, 30 minutes) (represented by the slope of a line) and the levels of 

mitotic exit rates relative to each other (represented by the elevation of a line) were 

both statistically indistinguishable. On the other hand, the line plotting the mitotic exit 

rate of Cdc20 S3E cells has the same slope as the other three above, but with a lower 

elevation value. This suggests that Cdc20 S3E cells were able to maintain ‘a constant 

rate of recovery from the SAC’ (represented by the slope) as efficiently as wild type, 

bub1-kd and cdc20 S3A cells. However, that “constant rate” of SAC recovery was 

lower for Cdc20 S3E cells (represented by the elevation) than the other three. 

Taken together, these data suggest that the SAC recovery rate does not appear to be  

significantly affected by either lack of C-terminal Cdc20 phosphorylation by 

presumably Bub1 kinase (as in the case of cdc20 S3A) or lack of the whole Bub1 kinase 

function (as in the case of bub1-kd), albeit it is faster than wild type in both cases. 

However, constitutive phosphorylation of Cdc20 C-terminus by Bub1 kinase 

(mimicked by cdc20 S3E) slightly slows down the SAC recovery rate, yet does not 

impair the activation of APC/C by Cdc20, which takes place when the spindle reforms. 

This result is in line with our previous findings that cdc20 S3E retains its Cdc20 

function as an APC/C activator (It progresses through mitosis similar to wild type in 

an unperturbed mitosis (Figure 5.1) or when the SAC was shut down (mad2 null) in 

the presence of CBZ (Figure 5.4)). 

In contrast, mutation of the arginine residue of the Cdc20 IR motif to glutamate (as in 

the case of cdc20 IE) dramatically delays the SAC recovery. This result suggests that 

the cdc20 IE allele fails to fully perform the APC/C activator function of Cdc20, 

therefore is not able to trigger anaphase onset even after the re-polymerisation of 

microtubules. 
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Figure 5.10 Constitutive phosphorylation of Cdc20 C-terminus does not impair Cdc20 
function, yet slows down the SAC recovery 
(A) Cells from the same experiment described in Figure 3.1 were blocked for 6 hours at 
18°C with depolymerized microtubules through nda3-KM311 tubuline mutation. Immidiately 
after taking the 0 minute samples, cells were shifted to the permissive temperature (32°C) to 
allow re-polymerization of microtubules, and subsequent recovery from the SAC. Cell 
samples were taken at each 10 minutes for 30 minutes after the release from nda3-KM311 
block, fixed in methanol, and stained with DAPI (purple) to visualize DNA, along with 
Plo1-GFP localisation at SPBs (green). Pictures demonstrate representative cell-cycle 
stages of the cells 0, 10, 20 and 30 minutes after the release. Observed mitotic stages are 
annotated with dashed rectangles as follows: cells at late G2 (green); metaphase cells with 
one (light blue) or two (dark blue) Plo1-GFP spots at SPBs; cut cells (yellow); and anaphase 
cells (red). Scale bar represents 5 microns. (B) Graph displaying the relative percentage of 
each cell-cycle stage for each strain throughout 30 minutes after the release (n=100 cells) 
(C) Graph (dashed lines) plotting the percentage of metaphase cells at time=0, progressed 
into anaphase or cut 0, 10, 20, 30 min after the release, using the following formula: 
     %    (anaphase cells + cut cells at 0, 10, 20 or 30 min) - (cut cells at 0 min)
              metaphase cells at 0 min
Linear regression analysis of the trend lines (solid lines) was performed using GraphPad 
Prism software:
* indicates lines with slopes that are not significantly different from each other; § indicates 
lines with elevations that are not significantly different from each other. 
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5.4.3 Turnover rates of Cdc20 phospho – mutants during nda3-KM311-mediated 

metaphase arrest 

Above we described how C-terminal phosphorylation of Cdc20 may affect activation 

of and recovery from the SAC arrest. Abilities of cells to arrest at metaphase, or 

recover from that were not affected much by the lack of this phosphorylation (cdc20 

S3A). However, constitutive phosphorylation of Cdc20 C-terminus (cdc20 S3E) 

resulted in a more potent metaphase arrest and slower recovery from that. In order to 

address whether these C-terminal phosphorylation mutations affect levels of Cdc20 

during a SAC mediated arrest, we analysed turnover rates of Cdc20 during the nda3-

KM311 block. 

First, we analysed the phospho – deficient cdc20 S1A cells. Following 6 hours of nda3-

KM311 arrest as described before, we treated wild type and cdc20 S1A cells either with 

cycloheximide (CHX) or DMSO. Cycloheximide was used to inhibit synthesis of new 

proteins, and thereby to monitor the degradation rate of Cdc20. We collected cell 

samples immediately before and 15, 30, 45, 60 minutes after the treatment. Then the 

samples were lysed, processed for SDS-PAGE/western blotting, in which they were 

probed for Cdc20 and Bip1 (loading control). 

As demonstrated in Figure 5.11A, Cdc20 levels decreased only in the cycloheximide 

treated samples, which indicates that the decrease in the protein levels was due to the 

inhibition of protein synthesis and continued protein turnover. Quantification of the 

turnover rates shows that (Figure 5.11B) the degradation rates of wild type Cdc20 and 

cdc20 S1A proteins were almost identical when synthesis of new Cdc20 proteins was 

inhibited by cycloheximide. However, turnover dynamics of cdc20 S3E were rather 

different than that of cdc20 S1A. Figure 5.12 displays that the cycloheximide treatment 

affected levels of only wild type Cdc20, whereas Cdc20 S3E levels remained stable, 

which is similar to the DMSO treatment group. 

Taken together, these results suggest that during an nda3-KM311 arrest, lack of C-

terminal phosphorylation of Cdc20 does not significantly affect its turnover dynamics. 

On the other hand, constitutive phosphorylation of Cdc20 C-terminus stabilizes its 

turnover rate during the SAC arrest mediated by nda3-KM311. 
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Figure 5.11 Lack of Cdc20 C-terminus phoshorylation does not affect Cdc20 turnover
rate during metaphase arrest

(A) Wild type and cdc20 S1A cells were shifted to the restrictive temperature to arrest them for
6 hours in metaphase through nda3-KM311 allele. After 6 hours cell samples were taken
(0 minute), and immediately after the cells were treated with cycloheximide (CHX) to inhibit
protein synthesis, or with DMSO (negative control). Samples were taken at each 15 minutes
for one hour. Extracts from the lysed cells were immunoblotted with Cdc20 and Bip1 antibodies
(loading control) to analyse Cdc20 turnover rates. (B) Graph demonstrating Cdc20 turnover rates
quantified using ImajeJ software and normalized to Bip1 levels. All values were normalized to the
‘0 minute’ value of their CHX treatment group. Trendlines were plotted to demonstrate
corresponding turnover rates represented by the slope of each line. 
 

min after 
6 h arrest:

140



anti - Cdc20 -

anti - Mad2

0 6030 9015 45 0 6030 9015 45 0 6030 9015 450 6030 9015 45
CHX DMSO CHX DMSO

wild type cdc20 S3E

A

B

min after 
6 h arrest:

Figure 5.12 Constitutive phoshorylation of Cdc20 C-terminus decreases Cdc20 turnover
rate during metaphase arrest

(A) Wild type and cdc20 S3E cells were shifted to the restrictive temperature to arrest them for
6 hours in metaphase through nda3-KM311 allele. After 6 hours cell samples were taken
(0 minute), and immediately after the cells were treated with cycloheximide (CHX) to inhibit
protein synthesis, or with DMSO (negative control). Samples were taken at each 15 minutes
for 90 minutes. Extracts from the lysed cells were immunoblotted with Cdc20 and Mad2 antibodies
(loading control) to analyse Cdc20 turnover rates. (B) Graph demonstrating Cdc20 turnover rates
quantified using ImajeJ software and normalized to Mad2 levels. All values were normalized to the
‘0 minute’ value of their treatment group (CHX or DMSO). Trendlines were plotted to demonstrate
corresponding turnover rates represented by the slope of each line. 
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5.5 Can the Cdc20 C-terminal phospho-mimicking mutation rescue 

the SAC defects of bub1-kd allele? 

In the third chapter, we reported that cells expressing the kinase-dead mutant of Bub1 

(bub1-kd) are partially defective in arresting at metaphase and thereby delaying 

anaphase onset upon depolymerisation of their microtubules by either a microtubule 

poison (CBZ) or nda3-KM311 cold sensitive mutant. Furthermore, this SAC defect of 

bub1-kd cells is accompanied by significantly decreased kinetochore localisation of 

MCC components and defective MCC-APC/C interaction when their spindle is 

perturbed by CBZ.  

In the fourth chapter, we showed by in vitro kinase assays that the two point mutations 

in the bub1-kd allele completely abolish its kinase function, which accounts for the in 

vivo SAC defects of bub1-kd described above. Moreover, we demonstrated that Cdc20 

is a substrate of Bub1 kinase in vitro. Identification of in vitro phosphorylated sites of 

Cdc20 revealed that some of those sites overlap with the sites phosphorylated in vivo 

in mitotically arrested cells. Among those overlapping sites, particularly C-terminal 

serine 482 is well-conserved among fission yeast, budding yeast, X. laevis and 

H.sapiens. Moreover, cross-linking mass spectrometry results we described in the 

fourth chapter indicated that Mad2 and Mad3 proteins interact with C-terminus of 

Cdc20, which is in close proximity to Serine 482. Therefore, we mutated this putative 

Bub1 site, (or adjacent two serine residues as well; serine 482, serine 483 and serine 

484) to generate phospho – deficient (cdc20 S1A and cdc20 S3A) and phospho – 

mimicking (cdc20 S3E) mutants of Cdc20. In the previous sections of this chapter, we 

showed that the phospho – deficient mutants of Cdc20 (cdc20 S1A and cdc20 S3A) 

behave similarly to wild type in terms of their mitotic progression, MCC formation, 

MCC-APC/C interaction, Cdc20 turnover rate and kinetochore localisation of the 

MCC components during unperturbed and perturbed (through CBZ or nda3-KM311) 

mitoses. On the other hand, the phospho – mimicking mutant (cdc20 S3E) behaves 

rather differently under the conditions activating the SAC, although it is similar to wild 

type during unperturbed mitosis. Upon depolymerisation of microtubules by CBZ, 

cells expressing cdc20 S3E arrest at metaphase for much longer, which is accompanied 

by more abundant and prolonged kinetochore localisation of the MCC components. 
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Moreover, this acquired SAC potency of cdc20 S3E correlates with a stronger and 

longer MCC-APC/C interaction in mitosis.  

On the basis of these findings, we hypothesize that cdc20 S3E, which mimics C-

terminal phosphorylation of Cdc20, may rescue the SAC defects of bub1-kd, if this 

site of Cdc20 is modified by Bub1 kinase in vivo.  

First, in order to address this possibility more accurately, we generated another 

phospho – mimicking mutant of Cdc20 (cdc20 S1D) by mutating serine 482 to 

aspartate. Subsequently, we crossed the phospho – mimicking mutants (cdc20 S3E or 

cdc20 S1D) with bub1-kd, and analysed these double-mutants in a synchronous mitosis 

using cdc25-22 allele, in which microtubules were depolymerised by CBZ. Cell 

samples were collected at 30 minute time points for 150 minutes, and fixed in 

methanol. In order to determine their mitotic progression rate, fixed cells were stained 

with calcofluor to detect septa, or DAPI to detect DNA. Kinetochore localization of 

the MCC components was analysed visualising Mad3-GFP localisation at unattached 

kinetochores. As described in Chapter 3.3.1 (Figure 3.4B), to be able to evaluate the 

anaphase delay mechanisms, which may be independent of the kinetochore 

recruitment of MCC components, we scored kinetochore localisation of Mad3 only in 

the population of cells that arrested at metaphase exhibiting condensed DNA (similar 

to the non-septating cells we considered previously in Figure 3.4B). 

The strains used in this experiment are: wild type, cdc20 S1D, cdc20 S1D bub1-kd, 

cdc20 S3E, cdc20 S3E bub1-kd, bub1-kd* and wild type*. It should be noted that all 

the strains express Mad3-GFP; in addition bub1-kd* and wild type* strains express 

Mad2-GFP as well (annotated throughout the text with an asterisk). Moreover, mps1-

kd results from an independent experiment under identical conditions were used as a 

negative control, as mps1-kd is known to be defective in the SAC (Shepperd et al., 

2012b; Yamagishi et al., 2012; Zich et al., 2012)). 

30 minutes after the release into mitosis (10 minutes after the CBZ treatment) only a 

small portion of the strains progressed into anaphase, that is indicated by a low 

septation index (%5-10) (Figure 5.13 A). Consistent with this, all the strains had a high 

percentage (83-92%) of metaphase arrested cells displaying condensed DNA (Figure 

5.14 A and C). 
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In order to analyse the abilities of the strains to recruit the MCC components to 

unattached kinetochores, regardless of their abilities to delay anaphase,  we scored the 

percentage of metaphase arrested cells, which also exhibit kinetochore foci of MCC 

components (Figure 5.14 A and D). Within the population of metaphase arrested ones, 

60-66% of wild type, bub1-kd* and wild type* cells recruited Mad3-GFP to 

kinetochores (bub1-kd* and wild type* cells recruited Mad2-GFP as well). Hereafter 

Mad3 and/or Mad2 localization will be referred to interchangeably as ‘kinetochore 

localization of the MCC components’ as their localization dependencies are very 

similar (S. Heinrich et al., 2012)). As expected, none of the mps1-kd cells could recruit 

the MCC components, although they were at metaphase like the other strains at this 

time point. On the other hand, both phospho – mimicking mutants (cdc20 S1D, cdc20 

S3E) and their double mutant alleles, which also bear bub1-kd mutation, (cdc20 S1D 

bub1-kd, cdc20 S3E bub1-kd) exhibited kinetochore foci of the MCC components 

more frequently (80-95%) than wild type and bub1-kd cells did (60%) (Throughout 

this experiment, cdc20 S1D phenocopied cdc20 S3E; and cdc20 S1D bub1-kd 

phenocopied cdc20 S3E bub1-kd. Therefore hereafter, the functional consequences of 

phospho – mimicking mutations will be described by referring to cdc20 S1D and cdc20 

S1D bub1-kd alleles). 

60 minutes after the release into mitosis, the septation indexes of the strains deviated 

from each other depending on their abilities to maintain the SAC response. Wild type 

strains (wild type and wild type*) maintained a robust SAC response indicated by 44% 

of septation (Figure 5.13 A and B). However, bub1-kd* cells could not delay anaphase 

onset, as 71% of them septated. The inability of bub1-kd cells to hold a robust arrest 

was similar to that of mps1-kd (87% septation). On the other hand, cdc20 S1D cells 

maintained a very strong SAC response, and only 10% of them septated. Strikingly, 

although cdc20 S1D bub1-kd cells lacked Bub1 kinase activity, they maintained a 

robust SAC response (only 25% septation) that was significantly stronger than that of 

bub1-kd* (71%) and wild type (44%) cells (Figure 5.13 A and B). 
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Figure 5.13 Mimicking the phosphorylation of a putative Bub1 site in Cdc20 C-terminus  
rescues the anaphase delay defect of bub1-kinase dead
(A) Cells were blocked in G2-phase for 4 hours through cdc25-22 temperature sensitivity, and 
then released into mitosis at 0 minute. At 20 minutes, cells were treated with the microtubule 
depolymerising drug CBZ to activate SAC response. Samples were collected at each 30 
minutes time point. Graph plotting percentage of cells that formed septum (exited mitosis) 
throughout 150 minutes. Mph1-kd result was taken (dashed black line) from another experi-
ment with the identical conditions. (B) Representative images from 60 minutes, displaying 
septation (in red) by calcofluor staining and Mad3-GFP localisation (in green). Scale-bar 
represents 5 microns. All of the seven strains express Mad3-GFP. The two strains (annotated 
with an asterisk), bub1-kd* and wild type* express Mad2-GFP as well as Mad3-GFP.  
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Figure 5.14 Mimicking the phosphorylation of a putative Bub1 site in Cdc20 C-terminus
rescues the Mad3 kinetochore localization defect of bub1-kinase dead

The strains are from the same experiment described in Figure 5.15. All of the seven strains
express Mad3-GFP. The two strains (annotated with an asterisk), bub1-kd* and wild type*,
express Mad2-GFP as well as Mad3-GFP. 
(A) Representative images from 30 minutes, displaying DNA (in purple) by DAPI staining
and Mad3-GFP (Mad3-GFP and Mad2-GFP in the cells annotated with *) localisation at
kinetochores (in green). Scale-bar represents 5 microns.
(B) Representative images from 60 minutes, displaying DNA (in purple) by DAPI staining
and Mad3-GFP (Mad3-GFP and Mad2-GFP in the cells annotated with *) localisation at
kinetochores (in green). Scale-bar represents 5 microns.
(C) Graph plotting ‘percentage of metaphase cells’ (indicated by scoring condensed DNA)
at 30 and 60 minutes after release into mitosis.
(D) Graph plotting ‘percentage of metaphase cells exhibiting Mad3-GFP kinetochore foci at
30 and 60 minutes after release into mitosis.

146



wild type

cdc20 S1D

cdc20 S1D
bub1-kd

bub1-kd*

wild type*

60 minutes after release into mitosis

Mad3-GFP Merge

B

C D

DAPI

147



 

148 

 

As for the proportions of the cells arresting at metaphase with condensed DNA 60 

minutes after the release into mitosis, 45-47% of the wild type strains were observed 

to have condensed DNA (Figure 5.14 B and C). It should be noted that at 60 minutes 

the wild type strains had 56% non-septating cells (44% septation), which are expected 

to arrest at metaphase. This slight discrepancy suggests that there were cells, which 

de-condensed their DNA, but have not fully septated yet.  

Consistent with its inability to delay anaphase onset, only 21% of bub1-kd* cells had 

condensed DNA, which was closer to that of the SAC deficient mps1-kd (1%). In 

contrast, phospho – mimicking cdc20 S1D (87%) and double mutant cdc20 S1D bub1-

kd (65%) strains had more cells with condensed DNA, which is in line with their lower 

septation indexes (Figure 5.14 B and C). 

As for the proportions of metaphase arrested cells displaying kinetochore foci of the 

MCC components at 60 minutes, Figure 5.14 B and D demonstrate that the Mad3 

localization increased in wild type strains (93-97%) to the levels of the phospho – 

mimicking mutant cdc20 S1D (100%). However, the double mutant cdc20 S1D bub1-

kd (84%) was not able to recruit Mad3 as efficiently as wild type, although it had more 

metaphase arrested cells with condensed DNA. On the other hand, even though bub1-

kd recruited the MCC components to kinetochores at wild type levels at 30 minutes, at 

60 minutes the proportion of (metaphase arrested) bub1-kd cells exhibiting 

kinetochore foci dropped to as low as 17%. This defect of bub1-kd appears to be close 

to that of the SAC deficient mps1-kd, in which no kinetochore localization of the MCC 

components was observed. 

 

At the later stages of mitosis, differences between septation indexes of the strains 

largely followed the proportions observed at 60 minutes (Figure 5.13 A): wild type 

strains (with or without Mad2-GFP expression) were similar, and ~85% of them 

septated at 150 minutes. Bub1-kd remained as the highest septating strain throughout 

the time course, and exhibited a very high septation index (95-98%) 120 minutes 

onward, which was identical to that of the SAC deficient mps1-kd (97% at 120 

minutes). On the other hand, phospho – mimicking cdc20 S1D cells maintained their 

strong metaphase arrest throughout mitosis, and only 56% of them septated at 150 

minutes. Interestingly, although double mutant cdc20 S1D bub1-kd had a lower 
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septation index than wild type throughout the mitosis, it septated (86%) at wild type 

levels at 150 minutes. 

 

These data suggest that at the early stages (30 minute) of a mitosis challenged with 

CBZ, Bub1 kinase function is not essential for (initial activation of the SAC) either 

delaying anaphase onset or kinetochore recruitment of MCC components. However, 

at the later stages (60 minutes onward) Bub1 activity is required to maintain a robust 

SAC response, to be able to delay premature anaphase and sustain localization of the 

MCC components at unattached kinetochores of metaphase arrested cells.  

In chapter three we proposed that the role of Bub1 kinase activity to delay premature 

anaphase appeared to be only partially mediated through the Bub1-H2A-Sgo2-Aurora 

B pathway, as the sgo2 null cells exhibited a similar septation index to wild type when 

microtubules were depolymerized. We hypothesized that this role of Bub1 kinase 

activity may be mediated through phosphorylating Cdc20, and thereby inhibiting the 

APC/C. Indeed, here we demonstrate that mimicking the constitutive phosphorylation 

of Cdc20 C-terminus (which was phosphorylated in vitro by Bub1) rescued the 

anaphase delay defect observed in the absence of Bub1 kinase activity and brought it 

at least to the wild type levels (as in the case of the double mutant cdc20 S1D bub1-

kd). According to these findings we conclude that the anaphase delaying role of Bub1 

kinase activity may be largely mediated through the phosphorylation of Cdc20 C-

terminus (serine 482). 

In addition, we also suggested in Chapter three that the role of Bub1 kinase activity to 

recruit Mad2, Mad3 (maybe even Cdc20) to unattached kinetochores appears to be 

partly mediated through the Bub1-H2A-Sgo2-Aurora B pathway, since it was partially 

compromised in sgo2 null cells (27% less compared to wild type, see Figure 3.4) 60 

minutes after the release into the mitosis challenged with carbendazim. This implies 

that there may be another pathway(s) working in parallel with the Bub1-H2A-Sgo2-

Aurora B pathway in mediating the kinase activity of Bub1 towards kinetochore 

recruitment of the MCC components. 
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Consistent with this possibility, mimicking Bub1 kinase activity on Cdc20 C-terminus 

was able to significantly rescue the Mad3 kinetochore localization defect in the 

absence of Bub1 kinase function (cdc20 S1D bub1-kd) to a level slightly below (13% 

less than wild type) that of wild type at the same time point (60 minutes). Note that the 

double mutant could not rescue the kinetochore recruitment of Mad3 at exact wild type 

levels probably because in cdc20 S1D bub1-kd cells both H2A-S121 (Bub1-H2A-

Sgo2-Aurora B pathway) and other putative phosphorylation sites of Cdc20 failed to 

be phosphorylated, which may further contribute to the kinetochore localisation of 

Mad3. On the basis of these findings we conclude that Cdc20 C-terminus (serine 482) 

and H2A C-terminus (serine 121) may be the two main mediators of Bub1 kinase 

activity for promoting the kinetochore recruitment of MCC components when the 

spindle formation is perturbed. 
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Chapter 6: Final discussion 

In chapter three, we investigated the roles of Bub1 kinase activity in maintaining the 

SAC response. In chapter four, we demonstrated that fission yeast Cdc20Slp1 is an in 

vitro substrate of Bub1, and identified its phosphorylated sites. In addition, we 

revealed novel interactions between the MCC components that may be relevant to the 

regulation of the SAC through Cdc20 phosphorylation. In chapter five we investigated 

possible roles of fission yeast Cdc20Slp1 C-terminal phosphorylation (that we identified 

in the chapter four) in mitosis. For this purpose, we analysed the phosphorylation 

mutants of Cdc20, either refractory to C-terminal phosphorylation (phospho-deficient) 

or mimicking constitutive phosphorylation of this site (phospho-mimicking) under 

various mitotic conditions given below: 

1. In an unperturbed mitosis, to determine whether the phosphorylation mutants 

of Cdc20 retain their mitotic functions in the absence of spindle damage: 

 APC/C activation and subsequent anaphase onset  

 MCC assembly 

 MCC-APC/C interaction 

 

2. In the presence of prolonged spindle damage mediated by the cold sensitive 

tubulin mutant nda3-KM311, to examine whether the phosphorylation mutants 

of Cdc20 are capable of: 

 Maintaining a robust metaphase arrest mediated by the SAC 

 Recovering from the SAC arrest upon reformation of the spindle, and 

segregating their chromosomes equally 

 

3. In the presence of spindle damage caused by the microtubule depolymerising 

drug carbendazim (CBZ), to examine whether the phosphorylation mutants of 

Cdc20 are capable of: 

 Recruiting the MCC components (Mad2 and Mad3) to kinetochores 

 Maintain MCC-APC/C interaction 

 Delay premature anaphase onset 
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4. In the absence of Bub1 kinase activity, to determine whether the phospho-

mimicking Cdc20 mutant can rescue the SAC defects observed in the absence 

of Bub1 kinase activity (which would provide in vivo evidence for a potential 

Bub1- Cdc20 pathway, in addition to the existing Bub1-H2A-Sgo2-Aurora B 

pathway) 

 

6.1 Cdc20 C-terminal phosphorylation mutants retain their mitotic 

functions in an unperturbed mitosis 

Phosphorylation of Cdc20 has been implicated to affect its mitotic functions, 

independent of the SAC. In Xenopus egg extracts, Cdk1 mediated phosphorylation of 

Cdc20 N-terminus blocks its binding to and activation of the APC/C, by inhibiting the 

interaction of Cdc20 C-box (N-terminal APC/C interaction domain) with Apc8. This 

phosphorylation needs to be reversed by PP2A for anaphase onset (Labit et al., 2012).  

APC/C activation and anaphase onset 

Another conserved APC/C interaction domain of Cdc20 is the C-terminal IR-motif, 

whose mutation compromises the Cdc20- APC/C interaction (Izawa & Pines, 2012). 

Our mutated sites are in close proximity to the IR-motif (4 amino acids upstream of 

the IR). This raises the possibility that our C-terminal phosphorylation mutations 

might affect the Cdc20 function mediated by the IR-motif.  

In order to determine whether the C-terminal phosphorylation mutations on Cdc20 

affect its APC/C activating function, we analysed abilities of the mutants in 

progressing into anaphase, assembling the MCC and maintaining MCC-APC/C 

interaction in an unperturbed mitosis. We demonstrated that the cells expressing 

phospho-deficient (cdc20 S1A and cdc20 S3A) or phospho-mimicking (cdc20 S3E) 

Cdc20 mutants are capable of activating APC/C, and promote anaphase onset as 

efficiently as wild type cells do. Thus we suggest that the APC/C activator functions 

of the Cdc20 C-terminal phosphorylation mutants are not affected by the mutations, 

despite their proximity to the regulatory IR-motif. To further conform this, we intend 

to express the Cdc20 mutants in vitro, and test them in in vitro APC/C assays to 

determine whether they can activate the APC/C efficient. 
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MCC formation and MCC-APC/C interaction 

In addition, we showed that the lack of Cdc20 C-terminus phosphorylation (as in the 

case of cdc20 S3A) does not significantly affect the MCC formation or the MCC-

APC/C interaction during an unperturbed mitosis. At the time we carried out these two 

assays, anti-Cdc20 antibody was not available. Therefore we used the internally 

FLAG-tagged cdc20 S3A strain to perform Cdc20-FLAG immunoprecipitations (to 

analyse MCC formation) or Cdc20-FLAG immunoblotting following Apc4 

immunoprecipitations (to analyse MCC-APC/C interaction).  

However, the internally FLAG-tagged cdc20 S3E strain has become available only 

recently. Though considering its comparable mitotic progression rate to that of wild 

type and phospho-deficient mutants, we expect the phospho-mimicking cdc20 S3E to 

exhibit similar MCC formation and MCC-APC/C interaction. Nevertheless, we will 

need to carry out these experiments using cdc20 S3E to be able to fully confirm that 

all of its mitotic functions are as intact as those of wild type and cdc20 S3A. 

6.2 Constitutive phosphorylation of Cdc20 C-terminus slightly 

enhances the SAC arrest in response to penetrant spindle damage 

(nda3-KM311) 

In chapter five, we confirmed that the non-kinase region of Bub1 (N-terminal and the 

middle region) is essential for the SAC response to severe spindle damage (bub1 null 

is SAC deficient) (Kadura, He, Vanoosthuyse, Hardwick, & Sazer, 2005; Kiyomitsu 

et al., 2007), and although not essential, its C-terminal kinase activity is required for 

maintaining a robust SAC (bub1-kd is compromised in the SAC ) (Figure 5.8) (Fernius 

& Hardwick, 2007; Kawashima et al., 2010; Yamaguchi et al., 2003). 

In addition, we demonstrated that constitutive phosphorylation of Cdc20 C-terminus 

(cdc20 S3E) leads to a slightly enhanced SAC arrest, whereas lack of this 

phosphorylation (cdc20 S3A) results in a slightly weaker SAC response than wild type 

cells (Figure 5.8, especially after 6 hours of nda3-KM311 block). These results are 

consistent with our hypothesis that Bub1 may be at least one of the kinases 

phosphorylating serine 482 (in vivo) in mitotically arrested cells (Figure 4.4), as well 

as in our in vitro kinase assay (Figure 4.3). We believe that lack of S482 
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phosphorylation should phenocopy the lack of Bub1 kinase activity (toward serine 

482) to an extent, indicated by the slight SAC deficiency of cdc20 S3A. Moreover, 

constitutive phosphorylation of serine 482 indeed improved the SAC response, which 

strengthens the possibility that Bub1 may phosphorylate serine 482 to promote the 

SAC. 

On the other hand, introducing a negative charge on the regulatory IR-motif (cdc20 

IE) impaired the interaction between APC/C and Mad3. Even though a compromised 

MCC-APC/C interaction is expected to result in leakage through mitosis, cdc20 IE 

cells exhibited a mitotic index that is similar to wild type. Considering cdc20 IE cells 

are not expected to inhibit the APC/C efficiently, we hypothesized that their high 

mitotic index could be due to a compromised Cdc20 function, as an APC/C activator. 

In order to test this possibility we next analysed abilities of the C-terminal Cdc20 

mutants in activating the APC/C (recovering from the SAC) and promoting anaphase 

onset upon reformation of the spindle. 

 

6.3 IR-motif of Cdc20 is required for recovering from the SAC arrest 

(nda3-KM311) and progressing into anaphase 

Once the cells are released from a nda3-KM311 block, microtubules re-polymerize, 

chromosomes are bi-oriented (SAC is satisfied), and cells recover from the SAC 

(activating the APC/C), which results in progression into anaphase (Vanoosthuyse et 

al., 2009). However, this was not the case for cdc20 IE cells. Despite the spindle 

reformation (30 minutes after the release from metaphase arrest), a considerable 

portion of Cdc20 IE cells (43%) remained arrested at metaphase; in fact some them 

were even stuck at early metaphase indicated by Plo1-GFP localisation (“one spot”) to 

the spindle pole bodies which had not separated yet (Figure 5.10B) (Mulvihill et al., 

1999). This result suggests that the cdc20 IE mutant fails to fully perform its APC/C 

activating function, therefore is not able to trigger anaphase onset even after the re-

polymerisation of microtubules. To be able to further characterize roles of the IR-

motif, we need to analyse the mitotic progression rate of cdc20 IE cells in an 

unperturbed mitosis (using cdc25-22 mediated G2 arrest), to determine the degree of 

their inability in progressing into anaphase. 
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Constitutive phosphorylation of Cdc20 C-terminus slightly decreases the rate of 

SAC recovery 

Other C-terminal (phosphorylation) Cdc20 mutants recovered from the SAC more 

normally than the cdc20 IE cells did, yet with some variance depending on their 

mutation. 

Although the overall SAC recovery trends (Figure 5.10C displays the line representing 

the average mitotic exit at 10, 20 and 30 minutes) were comparable throughout the 

release, kinase inactive bub1-kd cells exited mitosis faster than wild type, especially 

at the later stages (30 minutes) of the release from metaphase. Interestingly, phospho-

deficient (at the C-terminus) cdc20 S3A cells phenocopied this, which is indicated by 

their slightly accelerated mitotic exit compared to wild type cells. According to this 

observation our hypothesis is as follows:  

Phosphorylation of SAC proteins (yet to be discovered) by Bub1 may promote SAC 

maintenance during spindle damage. Once the spindle reforms (and the SAC is 

satisfied), the sites phosphorylated by Bub1 may need to be dephosphorylated to 

recover from the SAC and activate APC/C (similar to the SAC silencing activity of 

PP1 (Liu et al., 2010; Meadows et al., 2011)). 

Accordingly, when the Bub1 kinase activity is absent (bub1-kd), it may be quicker to 

recover from the SAC arrest. Consistent with this hypothesis, lack of one of those 

Bub1 sites (as in the case of cdc20 S3A) may lead to a slightly accelerated SAC 

response (Figure 5.10C). If this hypothesis is true, then the phosphorylation and 

dephosphorylation of Cdc20 serine 482 may contribute to the regulation of SAC 

maintenance and the subsequent recovery from it respectively. Such a mechanism is 

not very unlikely, as threonine 79 (T79) of Xenopus Cdc20 has been shown to be in a 

dynamic state of phosphorylation and dephosphorylation mediated by Cdk1 and PP2A, 

respectively, which regulate the APC/C activation by Cdc20 in metaphase (Labit et 

al., 2012). In order to test whether the serine 482 phosphorylation has a key regulatory 

role in the context of SAC, we should analyse phosphatases, such as PP1 and PP2A, 

which may possibly reverse the phospho-modification of this residue.  
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Consistent with this hypothesis, constitutive (non-reversible) phosphorylation of 

serine 482 (cdc20 S3E) resulted in a slightly slower SAC recovery (Figure 5.10C). 

This suggest that dephosphorylation of serine 482 is not essential for the mitotic exit 

upon spindle reformation, yet it contributes to the rate of SAC recovery. Intriguingly, 

at the later stages of the release from the arrest, cdc20 S3E cells exhibited the “cut” 

phenotype more frequently than wild type and cdc20 S3A cells did (Figure 5.10B). In 

other words, more cdc20 S3E cells failed to segregate their chromosomes equally 

before the septation began. This might be due to a possible defect in microtubule-

kinetochore attachment and/or chromosome bi-orientation caused by the non-

reversible phosphorylation of serine 482. Hypothetically, the phosphorylation of serine 

482 may be promoting the SAC, and thereby contributing to ensuring accurate 

chromosome segregation in the absence of kinetochore-microtubule attachments (or 

in the presence of spindle damage in our experiment). However, once microtubules 

attach to kinetochores (the spindle reforms, in our experiment), serine 482 may need 

to be dephosphorylated (that does not happen in Cdc20 S3E) to allow proper SAC 

recovery. Thus, the relatively slower and detectably inaccurate chromosome 

segregation in Cdc20 S3E cells suggest possible mechanisms for the regulation of SAC 

arrest and recovery through of phosphorylation and dephosphorylation of Cdc20 C-

terminus. 

 

Alternatively, slower SAC recovery (APC/C activation) might be due to a possible 

destabilisation of the cdc20 S3E levels, therefore depletion of the APC/C activator 

during the SAC arrest. We next analysed whether phospho-deficient or phospho-

mimicking mutations affect the Cdc20 turnover rate during an active SAC arrest. 
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Effects of constitutive phosphorylation of Cdc20 C-terminus on its levels during 

the SAC arrest mediated by nda3-KM311 

By inhibiting the biosynthesis of new Cdc20 (using the translation inhibitor 

cycloheximide) we showed that cdc20 S1A had the same turnover rate as the wild type 

Cdc20 (Figure 5.11), whereas the cdc20 S3E degradation rate appeared to be reduced 

during the nda3-KM311 block (Figure 5.12). On the other hand, the cdc20 S3E cells 

treated with DMSO had the same levels of cdc20 S3E as wild type Cdc20, suggesting 

that total cdc20 S3E levels (the net result of expression and degradation, which are not 

affected in DMSO) are similar to wild type. Thus, the relatively slow SAC recovery 

rate of cdc20 S3E cells was probably not due to destabilisation of the cdc20 S3E levels 

during the SAC arrest. Instead, the slower SAC recovery rate of cdc20 S3E cells may 

be related to their reduced degradation rate. MCC (comprising Cdc20, Mad2 and 

Mad3) has been reported to dynamically assemble and disassemble during the SAC 

arrest, through Cdc20 ubiquitination mediated by Apc15 in budding yeast (Foster & 

Morgan, 2012) and humans (Uzunova et al., 2012). Reduced degradation rate of cdc20 

S3E may have resulted from their reduced ubiquitination by the APC/C, which leads 

to a slower MCC disassembly during the SAC arrest. Accordingly, slower MCC 

disassembly would result in delayed APC/C activation, which may explain the SAC 

recovery delay of cdc20 S3E cells (Figure 5.10C).  

6.4 Constitutive phosphorylation of Cdc20 C-terminus enhances the 

SAC response to the microtubule depolymerising drug CBZ 

In addition to the spindle damage mediated by nda3-KM311 block, we tested the C-

terminal Cdc20 phosphorylation mutants also under the spindle damage caused by the 

microtubule depolymerising drug CBZ, in synchronous mitotic time courses (Figure 

5.4). As we discussed previously, while the nda3-KM311 cold sensitive mutation leads 

to a prolonged (9-10 hours (Kawashima et al., 2010)) and highly penetrant microtubule 

depolymerisation, CBZ concentrations in the cell probably reduce in time (due to the 

efflux pumps in yeast (Goffeau et al., 1997)) as even the fully SAC proficient wild 

type cells do not arrest in CBZ as long as in the nda3-KM311 block (Yamaguchi et al., 

2003). Therefore, the gradually decreasing spindle damage mediated by CBZ may 
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mimic the early and late stages of metaphase arrest, in terms of the amount of 

unattached kinetochores in the cell. 

Soon after the CBZ treatment (at 30 minutes), both phospho-deficient (cdc20 S3A and 

cdc20 S1A) and phospho-mimicking (cdc20 S3E) cells arrested at metaphase like wild 

type (Figure 5.4B). At this early stage, phospho-deficient cells (cdc20 S3A and cdc20 

S1A) were capable of localizing Mad3 to kinetochores at wild type levels. In wild type 

cells, Mad3 recruitment was Mad2 dependent, as it was abolished when Mad2 was 

deleted (Figure 5.5A and B). On the other hand, significantly more cdc20 S3E cells 

exhibited Mad3 kinetochore foci than wild type. Interestingly, unlike wild type cells, 

cdc20 S3E cells were able to rescue Mad3 recruitment in the absence of Mad2, at the 

early (30 minutes), but not late (60 minutes) stages of mitosis (in Figure 5.5B, compare 

mad2 null strains: wild type Cdc20 and cdc20 S3E). This suggest that phosphorylation 

of Cdc20 C-terminus at early stages (which may be happening much later in wild type 

cells) might have strengthened the interaction between Mad3 and Cdc20, which 

presumably accounts for the enhancement (by cdc20 S3E) or the compensation of 

Mad2 deletion (by cdc20 S3E mad2 null) in terms of Mad3 kinetochore localization. 

However, constitutive phosphorylation of Cdc20 C-terminus is not sufficient, and 

requires Mad2, to maintain this interaction at later stages. Such an interaction between 

Mad3 and Cdc20 may be possible, as we identified cross-links between Cdc20 C-

terminus (K479, two residues upstream the mutated phospho-site serine 482) and 

Mad3 (mainly C-terminus, near its second KEN box) described in chapter four (Figure 

4.9 and 4.10). Thus a transient negative charge on Cdc20 C-terminus (by 

phosphorylation and subsequent dephosphorylation) may be regulating the recruitment 

of MCC components at different stages of mitosis.  

Later in mitosis (at 60 minutes), abilities of the phospho-deficient cells (cdc20 S3A 

and cdc20 S1A) to delay anaphase onset remained similar to that of wild type cells, 

suggesting that lack of Cdc20 C-terminus phosphorylation does not affect the SAC 

response significantly (Figure 5.4A and B). The delay of anaphase onset in response 

to spindle damage was Mad2 dependent, as the wild type cells could not delay 

anaphase anymore when Mad2 was deleted. On the other hand, significantly more 

cdc20 S3E cells delayed anaphase onset, which correlated with their more frequent 

Mad3 localization at kinetochores. This enhanced SAC response in cdc20 S3E cells 
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was completely dependent on Mad2, as the deletion of Mad2 abolished their arrest, 

and cdc20 S3E mad2 null cells exited mitosis as frequently as mad2 null cells did 

(Figure 5.4A and B). This result further confirms that cdc20 S3E retains the APC/C 

activating function of Cdc20, as it is as efficient as wild type Cdc20 to progress into 

anaphase in the absence of a functional SAC machinery (mad2 null). In addition, this 

Mad2 dependency and the enhanced Mad3 recruitment (even in the lack of Mad2) of 

the phospho-mimicking cdc20 S3E mutant suggest that its strengthened SAC activity 

is probably mediated by the MCC, possibly through the direct inhibition of the APC/C. 

To gain more insight into interactions between the MCC components and how these 

interactions may contribute to their kinetochore recruitment, we intend to carry out 

several related experiments as follows: 

 Repeat the same experiment in Mad2-GFP, mad3 null background, to 

determine whether phosphorylation of Cdc20 C-terminus (cdc20 S3E) can 

enhance Cdc20-Mad2 interactions as well, and promote the kinetochore 

recruitment of Mad2. 

 

 Replace the internal FLAG tag of Cdc20 with a GFP tag, to analyse how 

phosphorylation of Cdc20 may affect its cellular localization, especially at the 

kinetochores.  

 

Mimicking the C-terminus Cdc20 phosphorylation enhances the MCC-APC/C 

interaction 

We next demonstrated that in the presence of spindle damage caused by CBZ, lack of 

C-terminal Cdc20 phosphorylation (as in the case of cdc20 S3A) does not affect the 

MCC-APC/C interaction significantly, whereas constitutive phosphorylation of Cdc20 

C-terminus (mimicked by cdc20 S3E) leads to a stronger and longer MCC-APC/C 

interaction. This result strengthens the possibility that the phosphorylation of Cdc20 

C-terminus contributes to the SAC response through the MCC mediated inhibition of 

the APC/C. As we discussed in section 5.3.2, this enhanced MCC-APC/C interaction 

may be the outcome of multiple reasons (which are not mutually exclusive) as follows: 
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 cdc20 S3E cells may form higher amounts of MCC, which saturate and 

efficiently inhibit the APC/C molecules, leading to the enhanced anaphase 

delay (Figure 5.4). This  mechanism is likely to occur, as the cells expressing 

cdc20 S3E have more abundant, and longer-lasting Mad3-GFP kinetochore 

localization, which may catalyse formation of more MCC molecules at the 

unattached kinetochores (presumably through more abundant Cdc20 and Mad2 

recruitment as well). We intend to test this hypothesis by performing co-

immunoprecipitation of Cdc20 S3E-FLAG and Mad2/ Mad3 to compare how 

efficiently the MCC is formed in this strain. 

 

 cdc20 S3E cells may have slower MCC disassembly, resulting in MCC 

accumulation, and thereby excessive APC/C inhibition. As described before, 

MCC has been shown to dynamically assemble and disassemble during the 

SAC arrest, through Cdc20 ubiquitination mediated by Apc15 in in budding 

yeast (Foster & Morgan, 2012) and humans (Uzunova et al., 2012), and p31 in 

humans (Miniowitz-Shemtov et al., 2012; Westhorpe et al., 2011). This can be 

investigated by (i) analysing how efficiently the C-terminal Cdc20 mutants 

(expressed in vitro) are ubiquitinated in APC/C assays (ii) analysing the 

biophysical features of MCC molecules produced in insect cells (including 

different Cdc20 mutants), to determine whether the reduced MCC disassembly 

is caused by tighter interactions (due to Cdc20 C-terminus phosphorylation) 

within the MCC. 

 

 cdc20 S3E cells may assemble more potent MCC molecules which inhibit 

APC/C more efficiently, regardless of their amounts. This possibility is also 

worth considering, as the enhanced APC/C inhibition in cdc20 S3E cells is 

strictly dependent on Mad2 (Figure 5.4). According to this hypothesis, cdc20 

S3E requires Mad2 and Mad3 molecules to form an MCC molecule that can 

inhibit APC/C more efficiently, presumably through increased affinity of C-

terminally phosphorylated Cdc20 (cdc20 S3E) towards the APC/C. In order to 

test this possibility, we intend to compare abilities of the MCC molecules, 

containing different Cdc20 mutants, to inhibit the APC/C in vitro.  
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6.5 Mimicking phosphorylation of Cdc20 C-terminus by Bub1 rescues 

the SAC defects in the absence of Bub1 kinase activity 

Finally in the absence of Bub1 kinase activity (bub1-kd) we analysed cdc20 S3E and 

cdc20 S1D, mimicking constitutive phosphorylation of Cdc20 serine 482, that was 

identified as an in vivo phosphorylated site and an in vitro target of Bub1 kinase. 

(Hereafter we will refer to the cdc20 S1D allele to describe functional consequences 

of the phospho – mimicking mutation for two reasons: (i) the S1D mutation has 

successfully phenocopied the S3E mutation, (ii) the S1D mutation may be a more 

reliable allele as only this particular serine residue (S482D) was identified in the mass 

spectrometry analysis). 

We demonstrated that mimicking the constitutive phosphorylation of a putative Bub1 

site on Cdc20 (cdc20 S1D) significantly restored two prominent SAC defects in the 

cells, which lack Bub1 kinase activity and were exposed to a microtubule 

depolymerising drug: (i) delay of premature anaphase onset (Figure 5.13), (ii) 

kinetochore recruitment of the MCC components (Mad2, Mad3 and Cdc20) (Figure 

5.14). In order to further characterize this phenotype, we intend to clarify its certain 

aspects by carrying out a series of experiments in the future as follows: 

Is the compromised MCC-APC/C interaction in bub1-kd allele restored by cdc20 

S1D? 

We aim to address whether cdc20 S1D rescued the anaphase delay defect of bub1-kd 

(Figure 5.13), through restoring its highly defective MCC-APC/C interaction (Figure 

3.6). To determine this, we intend to repeat the synchronous mitotic time course 

experiment in the presence of CBZ. Considering the enhanced kinetochore recruitment 

of Mad3 in cdc20 S1D, bub1-kd cells, we expect them to exhibit also a stronger and 

longer-lasting MCC- APC/C interaction than bub1-kd cells. 

In addition, carrying out this experiment without CBZ may also provide insights into 

whether Bub1 kinase activity is required in an unperturbed mitosis, to maintain the 

relatively transient MCC-APC/C interaction observed in wild type cells (Zich et al., 

2012); moreover this experiment may reveal whether cdc20 S1D allele (that appeared 

to have a comparable progression rate to wild type in an unperturbed mitosis, similar 

to cdc20 S3E in Figure 5.1) would affect the mitotic progression rate of bub1-kd. 
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Is the rescue phenotype (restored anaphase delay) dependent on kinetochores? 

Previously (in section 5.6.4) we discussed that the enhancement of anaphase delay and 

MCC-APC/C interaction observed in the phospho – mimicking Cdc20 mutants may 

have resulted from assembly of more MCC molecules at the kinetochores. Considering 

cdc20 S1D significantly restored the Mad3 localisation defect of the bub1-kd allele, 

we hypothesize that this recruitment, which may be mediated by Cdc20 C-terminal 

phosphorylation, might have an upstream role in its contribution to anaphase delay. To 

address this hypothesis, we aim to assess the dependency of this rescue phenotype on 

kinetochore recruitment of Mad2 and Mad3. For this purpose, we will repeat the same 

experiment (Figure 5.13 and 14) in bub3 null background, which abolishes the 

kinetochore recruitment of Bub1 and Mad3 (S. Heinrich et al., 2012; Shepperd et al., 

2012b; Yamagishi et al., 2012). 

 

Is Cdc20 phosphorylated by Bub1 at serine 482 in vivo? 

Although the mutated phospho – site in cdc20 S1D (serine 482) was identified as an 

in vivo phosphorylated site (in mitotically arrested cells) and an in vitro target of Bub1 

kinase, this possibility needs to be further analysed. In order to support the possibility 

that serine 482 is phosphorylated by Bub1 in vivo, we aim to perform several 

experiments as follows: 

 

a) Analyse Cdc20+ (wild type) proteins from Bub1+ (wild type) or bub1-kd cells 

to determine whether lack of Bub1 kinase activity leads to a mobility shift of 

Cdc20 on Phos-tag protein gels, which have been reported to improve the 

detection of minor mobility shifts resulted from phospho – modification 

(Godfrey, Kuilman, & Uhlmann, 2015). 

 

b) Purify Cdc20+ (wild type) proteins from Bub1+ (wild type) or bub1-kd cells, 

and identify which of the previously phosphorylated Cdc20 sites (by Bub1+) 

change in the absence of Bub1 kinase activity (especially serine 482). 
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c) Purify the C-terminal Cdc20 phospho – deficient mutants (cdc20 S3A and 

cdc20 S1A) from insect cells and use them in an in vitro Bub1 kinase assay, to 

determine whether lack of Cdc20 phosphorylation by Bub1 at these specific 

sites decrease its total phosphorylation signals. Previously we have attempted 

to express these Cdc20 mutants in vitro in rabbit reticulocyte system, however 

the proteins were not pure enough to detect subtle changes in the 

phosphorylation signal (data not shown). 

 

d) Purify the C-terminal Cdc20 mutants (cdc20 S1D, cdc20 S3E, cdc20 S3A and 

cdc20 S1A) along with Cdc20+, to incubate with recombinant Mad2, Mad3 (to 

assemble the MCC) and Bub1+ kinase in vitro, and analyse their abilities to 

inhibit the APC/C activity (towards securin). This assay may provide direct 

evidence for whether Bub1 mediated Cdc20 C-terminal phosphorylation 

(either phosphorylation itself, or mimicking it via aspartate or glutamate 

mutations) inhibits APC/C directly. For this purpose, purification of the Cdc20 

mutants using in vitro in rabbit reticulocyte system may be sufficient, as the 

products of this system have been shown to work successfully in in vitro 

APC/C assays (Foe et al., 2011; Foster & Morgan, 2012).  

 

Does cdc20 S1D really rescue the bub1-kd phenotype or it has a dominant-positive 

effect on the SAC response? 

By performing the experiments listed above, we expect to provide further evidence for 

the our hypothesis that C-terminal Cdc20 may be regulated by Bub1 kinase activity; 

yet we will need to rule out the possibility that the rescue phenotype (cdc20 S1D, bub1-

kd) may be due to a dominant-positive effect of the cdc20 S1D allele rather than 

specifically restoring Bub1 kinase activity toward Cdc20 C-terminus. To investigate 

this possibility, we intend to determine whether the cdc20 S1D allele can restore the 

SAC defects of the alleles given below: 
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 bub1 null, is SAC deficient due to lack of its functions described in chapter 1. 

 mps1-kd, is severely defective in the SAC mainly because its kinase activity is 

required to localise the SAC proteins at kinetochores (London et al., 2012; 

Shepperd et al., 2012a; Yamagishi et al., 2012) and to promote the SAC 

response through Mad2 phosphorylation (Zich et al., 2012). 

 mad3 KEN271AAA, is a Mad3 allele that lacks its second KEN-box function, 

and is not able to maintain anaphase delay or MCC-APC/C interaction, 

although it can assemble the MCC efficiently (Sczaniecka et al., 2008). This 

allele would especially be useful to determine whether Cdc20 C-terminus 

phosphorylation (cdc20 S1D) promotes the MCC-APC/C interaction 

independently of MCC assembly. 

 

Understanding these aspects of Cdc20 C-terminus phosphorylation will hopefully 

strengthen our hypothesis that in addition to the Bub1-H2A-Sgo2-Aurora B pathway, 

a Bub1-Cdc20 mediated pathway may further promote the SAC response to ensure 

accurate chromosome segregation. 
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6.6 Relevance of Bub1 kinase activity and Cdc20 to therapeutic 

approaches 

Loss of Bub1 kinase activity has been reported to cause significant aneuploidy and 

male subfertility in mice (Ricke, Jeganathan, Malureanu, Harrison, & Van Deursen, 

2012). Together with several other studies, our findings imply that a possible Bub1-

Cdc20 pathway (in addition to the Bub1-Aurora B pathway) may contribute to 

genome stability in higher eukaryotes considering the observations as follows: 

 Bub1 kinase activity maintains the SAC response through direct 

phosphorylation of Cdc20 in humans (Tang, Shu, et al., 2004) 

 Human Bub1 has a considerable specificity toward Cdc20, through its 

extended substrate recognition loop in the non-kinase region (Kang et al., 

2008) 

 Phosphorylation of human Cdc20 by Bub1 in vitro is not restricted to its N-

terminus (Tang, Shu, et al., 2004), which suggests a possible phosphorylation 

of the C-terminus as well. 

 C-terminal phosphorylation site of Cdc20 (serine 482) is conserved among 

higher eukaryotes, including humans (Figure 4.5) 

 Mimicking C-terminal phosphorylation of fission yeast Cdc20 restores SAC 

related defects in the absence of Bub1 kinase activity (Figures 5.13 and 14) 

 

On the basis of these findings, investigation of Bub1 kinase activity towards Cdc20 in 

vertebrates may increase our understanding of the underlying mechanisms by which it 

ensures genome stability. Furthermore, these studies may lead to novel cancer 

therapeutic strategies, considering that targeting Cdc20 may be a better approach than 

using the anti-mitotics (Huang, Shi, Orth, & Mitchison, 2009). 

 

 

 

 

 

 

 

 



 

166 

 

References 

Adams, I. R., & Kilmartin, J. V. (2000). Spindle pole body duplication: a model for 

centrosome duplication? Trends in Cell Biology, 10(8), 329–35. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10884685 

Barford, D. (2011). Structural insights into anaphase-promoting complex function 

and mechanism. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 366(1584), 3605–3624. http://doi.org/10.1098/rstb.2011.0069 

Barford, D. (2011). Structure, function and mechanism of the anaphase promoting 

complex (APC/C). Quarterly reviews of biophysics (Vol. 44). 

http://doi.org/10.1017/S0033583510000259 

Barysz, H., Kim, J. H., Chen, Z. A., Hudson, D. F., Rappsilber, J., Gerloff, D. L., … 

Earnshaw, W. C. (2015). Three-dimensional topology of the SMC2 / SMC4 

subcomplex from chicken condensin I revealed by cross-linking and molecular 

modelling. 

Berger, I., Fitzgerald, D. J., & Richmond, T. J. (2004). Baculovirus expression 

system for heterologous multiprotein complexes. Nature Biotechnology, 22(12), 

1583–1587. http://doi.org/10.1038/nbt1036 

Brady, D. M., & Hardwick, K. G. (2000). Complex formation between Mad1p, 

Bub1p and Bub3p is crucial for spindle checkpoint function. Current Biology, 

10(11), 675–678. http://doi.org/10.1016/S0960-9822(00)00515-7 

Burton, J. L., & Solomon, M. J. (2001). D box and KEN box motifs in budding yeast 

Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p 

and Cdh1p. Genes and Development, 15(18), 2381–2395. 

http://doi.org/10.1101/gad.917901 

Burton, J. L., & Solomon, M. J. (2007). Mad3p, a pseudosubstrate inhibitor of 

APCCdc20 in the spindle assembly checkpoint. Genes and Development, 21(6), 

655–667. http://doi.org/10.1101/gad.1511107 

Buschhorn, B. a, Petzold, G., Galova, M., Dube, P., Kraft, C., Herzog, F., … Peters, 

J.-M. (2011). Substrate binding on the APC/C occurs between the coactivator 

Cdh1 and the processivity factor Doc1. Nature Structural & Molecular Biology, 

18(1), 6–13. http://doi.org/10.1038/nsmb.1979 

Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H., & Barford, D. (2015). Atomic 

structure of the APC/C and its mechanism of protein ubiquitination. Nature. 

http://doi.org/10.1038/nature14471 

Chao, W. C. H., Kulkarni, K., Zhang, Z., Kong, E. H., & Barford, D. (2012a). 

Structure of the mitotic checkpoint complex. Nature, 484(7393), 208–213. 

http://doi.org/10.1038/nature10896 



 

167 

 

Chao, W. C. H., Kulkarni, K., Zhang, Z., Kong, E. H., & Barford, D. (2012b). 

Structure of the mitotic checkpoint complex. Nature, 484(7393), 208–213. 

http://doi.org/10.1038/nature10896 

Chen, R.-H. (2004). Phosphorylation and activation of Bub1 on unattached 

chromosomes facilitate the spindle checkpoint. The EMBO Journal, 23(15), 

3113–3121. http://doi.org/10.1038/sj.emboj.7600308 

Cheryl D. Warren, † D. Michelle Brady, Johnston, R. C., Joseph S. Hanna, K. G. H., 

& Spencer*‡, and F. A. (2003). Distinct Chromosome Segregation Roles for 

Spindle Checkpoint Proteins. Molecular Biology of the Cell, 14(June), 2559–

2569. http://doi.org/10.1091/mbc.E02 

Chung, E., & Chen, R.-H. (2003). Phosphorylation of Cdc20 is required for its 

inhibition by the spindle checkpoint. Nature Cell Biology, 5(8), 748–753. 

http://doi.org/10.1038/ncb1022 

Combe, C. W., Fischer, L., & Rappsilber, J. (2015). xiNET: Cross-link Network 

Maps With Residue Resolution. Molecular & Cellular Proteomics, 14(4), 

1137–1147. http://doi.org/10.1074/mcp.O114.042259 

D’Angiolella, V., Mari, C., Nocera, D., Rametti, L., & Grieco, D. (2003). The 

spindle checkpoint requires cyclin-dependent kinase activity. Genes & 

Development, 17(20), 2520–2525. http://doi.org/10.1101/gad.267603 

D’Arcy, S., Davies, O. R., Blundell, T. L., & Bolanos-Garcia, V. M. (2010). 

Defining the molecular basis of BubR1 kinetochore interactions and APC/C-

CDC20 inhibition. Journal of Biological Chemistry, 285(19), 14764–14776. 

http://doi.org/10.1074/jbc.M109.082016 

Da Fonseca, P. C. a, Kong, E. H., Zhang, Z., Schreiber, A., Williams, M. a, Morris, 

E. P., & Barford, D. (2011). Structures of APC/C(Cdh1) with substrates identify 

Cdh1 and Apc10 as the D-box co-receptor. Nature, 470(7333), 274–278. 

http://doi.org/10.1038/nature09625 

David, R. (2010). Cell cycle: dissecting mitosis. Nature Reviews. Molecular Cell 

Biology, 11(5), 310. http://doi.org/10.1038/nrm2892 

De Antoni, A., Pearson, C. G., Cimini, D., Canman, J. C., Sala, V., Nezi, L., … 

Musacchio, A. (2005). The Mad1/Mad2 complex as a template for Mad2 

activation in the spindle assembly checkpoint. Current Biology : CB, 15(3), 

214–25. http://doi.org/10.1016/j.cub.2005.01.038 

Diffley, J. F. X. (2004). Regulation of early events in chromosome replication. 

Current Biology : CB, 14(18), R778–86. 

http://doi.org/10.1016/j.cub.2004.09.019 



 

168 

 

Elmore, Z. C., Beckley, J. R., Chen, J.-S., & Gould, K. L. (2014). Histone H2B 

ubiquitination promotes the function of the anaphase-promoting 

complex/cyclosome in Schizosaccharomyces pombe. G3 (Bethesda, Md.), 4(8), 

1529–38. http://doi.org/10.1534/g3.114.012625 

Elowe, S., Dulla, K., Uldschmid, A., Li, X., Dou, Z., & Nigg, E. a. (2010). 

Uncoupling of the spindle-checkpoint and chromosome-congression functions 

of BubR1. Journal of Cell Science, 123(Pt 1), 84–94. 

http://doi.org/10.1242/jcs.056507 

Enoch, T., & Nurse, P. (1990). Mutation of fission yeast cell cycle control genes 

abolishes dependence of mitosis on DNA replication. Cell, 60(4), 665–73. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2406029 

Fang, G., Yu, H., & Kirschner, M. W. (1998). The checkpoint protein MAD2 and the 

mitotic regulator CDC20 form a ternary complex with the anaphase-promoting 

complex to control anaphase initiation. Genes and Development, 12(12), 1871–

1883. http://doi.org/10.1101/gad.12.12.1871 

Fattaey, A., & Booher, R. N. (1997). Myt1: a Wee1-type kinase that phosphorylates 

Cdc2 on residue Thr14. Progress in Cell Cycle Research, 3, 233–40. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/9552418 

Fernius, J., & Hardwick, K. G. (2007). Bub1 kinase targets Sgo1 to ensure efficient 

chromosome biorientation in budding yeast mitosis. PLoS Genetics, 3(11), 

2312–2325. http://doi.org/10.1371/journal.pgen.0030213 

Foe, I. T., Foster, S. a., Cheung, S. K., Deluca, S. Z., Morgan, D. O., & Toczyski, D. 

P. (2011). Ubiquitination of Cdc20 by the APC occurs through an 

intramolecular mechanism. Current Biology, 21(22), 1870–1877. 

http://doi.org/10.1016/j.cub.2011.09.051 

Foster, S. a., & Morgan, D. O. (2012). The APC/C Subunit Mnd2/Apc15 Promotes 

Cdc20 Autoubiquitination and Spindle Assembly Checkpoint Inactivation. 

Molecular Cell, 47(6), 921–932. http://doi.org/10.1016/j.molcel.2012.07.031 

Fraschini, R., Beretta, A., Sironi, L., Musacchio, A., Lucchini, G., & Piatti, S. 

(2001). Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 

repeats and does not require intact kinetochores. EMBO Journal, 20(23), 6648–

6659. http://doi.org/10.1093/emboj/20.23.6648 

Gassmann, R., Holland, A. J., Varma, D., Wan, X., Filiz, C., Oegema, K., … Desai, 

A. (2010). controls spindle checkpoint silencing in human cells Removal of 

Spindly from microtubule- attached kinetochores controls spindle checkpoint 

silencing in human cells, 957–971. http://doi.org/10.1101/gad.1886810 



 

169 

 

Godfrey, M., Kuilman, T., & Uhlmann, F. (2015). Nur1 Dephosphorylation Confers 

Positive Feedback to Mitotic Exit Phosphatase Activation in Budding Yeast. 

PLoS Genetics, 11(1), e1004907. http://doi.org/10.1371/journal.pgen.1004907 

Goffeau, A., Park, J., Paulsen, I. T., Jonniaux, J. L., Dinh, T., Mordant, P., & Saier, 

M. H. (1997). Multidrug-resistant transport proteins in yeast: Complete 

inventory and phylogenetic characterization of yeast open reading frames within 

the major facilitator superfamily. Yeast, 13(1), 43–54. 

http://doi.org/10.1002/(SICI)1097-0061(199701)13:1<43::AID-

YEA56>3.0.CO;2-J 

Hardwick, K. G., Johnston, R. C., Smith, D. L., & Murray, A. W. (2000). MAD3 

encodes a novel component of the spindle checkpoint which interacts with 

Bub3p, Cdc20p, and Mad2p. Journal of Cell Biology, 148(5), 871–882. 

http://doi.org/10.1083/jcb.148.5.871 

Hartwell, L. H., Culotti, J., Pringle, J. R., & Reid, B. J. (1974). Genetic control of the 

cell division cycle in yeast. Science, 183, 46–51. 

http://doi.org/10.1126/science.183.4120.46 

Hartwell, L. H., & Weinert, T. A. (1989). Checkpoints: controls that ensure the order 

of cell cycle events. Science (New York, N.Y.), 246(4930), 629–634. 

http://doi.org/10.1126/science.2683079 

He, X., Patterson, T. E., & Sazer, S. (1997). The Schizosaccharomyces pombe 

spindle checkpoint protein mad2p blocks anaphase and genetically interacts 

with the anaphase-promoting complex. Proceedings of the National Academy of 

Sciences of the United States of America, 94(15), 7965–7970. 

http://doi.org/10.1073/pnas.94.15.7965 

Heinrich, S., Geissen, E.-M., Kamenz, J., Trautmann, S., Widmer, C., Drewe, P., … 

Hauf, S. (2013). Determinants of robustness in spindle assembly checkpoint 

signalling. Nature Cell Biology, 15(11), 1328–39. 

http://doi.org/10.1038/ncb2864 

Heinrich, S., Windecker, H., Hustedt, N., & Hauf, S. (2012). Mph1 kinetochore 

localization is crucial and upstream in the hierarchy of spindle assembly 

checkpoint protein recruitment to kinetochores. Journal of Cell Science, 4720–

4727. http://doi.org/10.1242/jcs.110387 

Herzog, F. (2009). Mitotic Checkpoint Complex. Science, 1985(March), 1477–1481. 

Holland, A. J., & Taylor, S. S. (2006). Cyclin-B1-mediated inhibition of excess 

separase is required for timely chromosome disjunction. Journal of Cell 

Science, 119(Pt 16), 3325–36. http://doi.org/10.1242/jcs.03083 

Howell, B. J., McEwen, B. F., Canman, J. C., Hoffman, D. B., Farrar, E. M., Rieder, 

C. L., & Salmon, E. D. (2001). Cytoplasmic dynein/dynactin drives kinetochore 



 

170 

 

protein transport to the spindle poles and has a role in mitotic spindle 

checkpoint inactivation. Journal of Cell Biology, 155(7), 1159–1172. 

http://doi.org/10.1083/jcb.200105093 

Howell, B. J., Moree, B., Farrar, E. M., Stewart, S., Fang, G., & Salmon, E. D. 

(2004). Spindle checkpoint protein dynamics at kinetochores in living cells. 

Current Biology : CB, 14(11), 953–64. http://doi.org/10.1016/j.cub.2004.05.053 

Huang, H. C., Shi, J., Orth, J. D., & Mitchison, T. J. (2009). Evidence that Mitotic 

Exit Is a Better Cancer Therapeutic Target Than Spindle Assembly. Cancer 

Cell, 16(4), 347–358. http://doi.org/10.1016/j.ccr.2009.08.020 

Izawa, D., & Pines, J. (2012). Mad2 and the APC/C compete for the same site on 

Cdc20 to ensure proper chromosome segregation. Journal of Cell Biology, 

199(1), 27–37. http://doi.org/10.1083/jcb.201205170 

Kadura, S., He, X., Vanoosthuyse, V., Hardwick, K. G., & Sazer, S. (2005). The 

A78V mutation in the Mad3-like domain of Schizosaccharomyces pombe 

Bub1p perturbs nuclear accumulation and kinetochore targeting of Bub1p, 

Bub3p, and Mad3p and spindle assembly checkpoint function. Molecular 

Biology of the Cell, 16(1), 385–95. http://doi.org/10.1091/mbc.E04-07-0558 

Kalantzaki, M., Kitamura, E., Zhang, T., Mino, A., Novák, B., & Tanaka, T. U. 

(2015). Kinetochore-microtubule error correction is driven by differentially 

regulated interaction modes. Nature Cell Biology, 17(4), 421–33. 

http://doi.org/10.1038/ncb3128 

Kang, J., Yang, M., Li, B., Qi, W., Zhang, C., Shokat, K. M., … Yu, H. (2008). 

Structure and Substrate Recruitment of the Human Spindle Checkpoint Kinase 

Bub1. Molecular Cell, 32(3), 394–405. 

http://doi.org/10.1016/j.molcel.2008.09.017 

Kawashima, S. a, Yamagishi, Y., Honda, T., Ishiguro, K., & Watanabe, Y. (2010). 

Phosphorylation of H2A by Bub1 prevents chromosomal instability through 

localizing shugoshin. Science (New York, N.Y.), 327(5962), 172–177. 

http://doi.org/10.1126/science.1180189 

King, E. M. J., van der Sar, S. J. a, & Hardwick, K. G. (2007). Mad3 KEN boxes 

mediate both Cdc20 and Mad3 turnover, and are critical for the spindle 

checkpoint. PLoS ONE, 2(4). http://doi.org/10.1371/journal.pone.0000342 

Kiyomitsu, T., Obuse, C., & Yanagida, M. (2007). Human Blinkin/AF15q14 Is 

Required for Chromosome Alignment and the Mitotic Checkpoint through 

Direct Interaction with Bub1 and BubR1. Developmental Cell, 13(5), 663–676. 

http://doi.org/10.1016/j.devcel.2007.09.005 



 

171 

 

Klebig, C., Korinth, D., & Meraldi, P. (2009). Bub1 regulates chromosome 

segregation in a kinetochore-independent manner. Journal of Cell Biology, 

185(5), 841–858. http://doi.org/10.1083/jcb.200902128 

Kraft, C., Herzog, F., Gieffers, C., Mechtler, K., Hagting, A., Pines, J., & Peters, J. 

M. (2003). Mitotic regulation of the human anaphase-promoting complex by 

phosphorylation. EMBO Journal, 22(24), 6598–6609. 

http://doi.org/10.1093/emboj/cdg627 

Kramer, E. R., Scheuringer, N., Podtelejnikov, a V, Mann, M., & Peters, J. M. 

(2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. 

Molecular Biology of the Cell, 11(5), 1555–1569. 

Krenn, V., Overlack, K., Primorac, I., Van Gerwen, S., & Musacchio, A. (2014). KI 

motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint 

complexes around MELT repeats. Current Biology, 24(1), 29–39. 

http://doi.org/10.1016/j.cub.2013.11.046 

Labit, H., Fujimitsu, K., Bayin, N. S., Takaki, T., Gannon, J., & Yamano, H. (2012). 

Dephosphorylation of Cdc20 is required for its C-box-dependent activation of 

the APC/C. The EMBO Journal, 31(15), 3351–3362. 

http://doi.org/10.1038/emboj.2012.168 

Lara-Gonzalez, P., Scott, M. I. F., Diez, M., Sen, O., & Taylor, S. S. (2011). BubR1 

blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. 

Journal of Cell Science. 

Lara-Gonzalez, P., & Taylor, S. S. (2012). Cohesion Fatigue Explains Why 

Pharmacological Inhibition of the APC/C Induces a Spindle Checkpoint-

Dependent Mitotic Arrest. PLoS ONE, 7(11). 

http://doi.org/10.1371/journal.pone.0049041 

Lara-Gonzalez, P., Westhorpe, F. G., & Taylor, S. S. (2012). The spindle assembly 

checkpoint. Current Biology, 22(22), R966–R980. 

http://doi.org/10.1016/j.cub.2012.10.006 

Lau, D. T. C., & Murray, A. W. (2012). Mad2 and Mad3 cooperate to arrest budding 

yeast in mitosis. Current Biology, 22(3), 180–190. 

http://doi.org/10.1016/j.cub.2011.12.029 

Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M., & Benezra, R. (1997). MAD2 

associates with the cyclosome/anaphase-promoting complex and inhibits its 

activity. Proceedings of the National Academy of Sciences of the United States 

of America, 94(23), 12431–12436. http://doi.org/10.1073/pnas.94.23.12431 

Liang, H., Lim, H. H., Venkitaraman, A., & Surana, U. (2011). Cdk1 promotes 

kinetochore bi-orientation and regulates Cdc20 expression during recovery from 



 

172 

 

spindle checkpoint arrest. The EMBO Journal, 31(2), 403–416. 

http://doi.org/10.1038/emboj.2011.385 

Liu, D., Vleugel, M., Backer, C. B., Hori, T., Fukagawa, T., Cheeseman, I. M., & 

Lampson, M. a. (2010). Regulated targeting of protein phosphatase 1 to the 

outer kinetochore by KNL1 opposes Aurora B kinase. Journal of Cell Biology, 

188(6), 809–820. http://doi.org/10.1083/jcb.201001006 

London, N., & Biggins, S. (2014a). Mad1 kinetochore recruitment by Mps1-

mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes and 

Development, 28(2), 140–152. http://doi.org/10.1101/gad.233700.113 

London, N., & Biggins, S. (2014b). Signalling dynamics in the spindle checkpoint 

response. Nature Reviews Molecular Cell Biology, 15(11), 736–748. 

http://doi.org/10.1038/nrm3888 

London, N., Ceto, S., Ranish, J. a., & Biggins, S. (2012). Phosphoregulation of 

Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Current 

Biology, 22(10), 900–906. http://doi.org/10.1016/j.cub.2012.03.052 

Lõoke, M., Kristjuhan, K., & Kristjuhan, A. (2011). Extraction of genomic DNA 

from yeasts for PCR-based applications. BioTechniques, 50(5), 325–328. 

http://doi.org/10.2144/000113672 

Maldonado, M., & Kapoor, T. M. (2011). Constitutive Mad1 targeting to 

kinetochores uncouples checkpoint signalling from chromosome biorientation. 

Nature Cell Biology, 13(4), 475–482. http://doi.org/10.1038/ncb2223 

Matsumoto, T. (1997). A Fission Yeast Homolog of CDC20 / p55 CDC / Fizzy Is 

Required for Recovery from DNA Damage and Genetically Interacts with p34 

cdc2, 17(2), 742–750. 

Mchedlishvili, N., Wieser, S., Holtackers, R., Mouysset, J., Belwal, M., Amaro, a. 

C., & Meraldi, P. (2012). Kinetochores accelerate centrosome separation to 

ensure faithful chromosome segregation. Journal of Cell Science, 125(4), 906–

918. http://doi.org/10.1242/jcs.091967 

Meadows, J. C., Shepperd, L. a., Vanoosthuyse, V., Lancaster, T. C., Sochaj, A. M., 

Buttrick, G. J., … Millar, J. B. a. (2011). Spindle checkpoint silencing requires 

association of PP1 to both Spc7 and kinesin-8 motors. Developmental Cell, 

20(6), 739–750. http://doi.org/10.1016/j.devcel.2011.05.008 

Millband, D. N., & Hardwick, K. G. (2002). Fission yeast Mad3p is required for 

Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores 

in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Molecular and Cellular 

Biology, 22(8), 2728–2742. http://doi.org/10.1128/MCB.22.8.2728-2742.2002 



 

173 

 

Miniowitz-Shemtov, S., Eytan, E., Ganoth, D., Sitry-Shevah, D., Dumin, E., & 

Hershko, a. (2012). Role of phosphorylation of Cdc20 in p31comet-stimulated 

disassembly of the mitotic checkpoint complex. Proceedings of the National 

Academy of Sciences, 109(21), 8056–8060. 

http://doi.org/10.1073/pnas.1204081109 

Moyle, M. W., Kim, T., Hattersley, N., Espeut, J., Cheerambathur, D. K., Oegema, 

K., & Desai, A. (2014). A Bub1-Mad1 interaction targets the Mad1-Mad2 

complex to unattached kinetochores to initiate the spindle checkpoint. Journal 

of Cell Biology, 204(5), 647–657. http://doi.org/10.1083/jcb.201311015 

Mulvihill, D. P., Petersen, J., Ohkura, H., Glover, D. M., & Hagan, I. M. (1999). 

Plo1 kinase recruitment to the spindle pole body and its role in cell division in 

Schizosaccharomyces pombe. Molecular Biology of the Cell, 10(8), 2771–2785. 

Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space 

and time. Nature Reviews. Molecular Cell Biology, 8(5), 379–393. 

http://doi.org/10.1038/nrm2163 

Nilsson, J., Yekezare, M., Minshull, J., & Pines, J. (2008). The APC/C maintains the 

spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell 

Biology, 10(12), 1411–1420. http://doi.org/10.1038/ncb1799 

Pan, J., & Chen, R. H. (2004). Spindle checkpoint regulates Cdc20p stability in 

Saccharomyces cerevisiae. Genes and Development, 18(12), 1439–1451. 

http://doi.org/10.1101/gad.1184204 

Petersen, J., & Hagan, I. M. (2003). S. pombe Aurora Kinase/Survivin Is Required 

for Chromosome Condensation and the Spindle Checkpoint Attachment 

Response. Current Biology, 13(7), 590–597. http://doi.org/10.1016/S0960-

9822(03)00205-7 

Primorac, I., Weir, J. R., Chiroli, E., Gross, F., Hoffmann, I., van Gerwen, S., … 

Musacchio, A. (2013). Bub3 reads phosphorylated MELT repeats to promote 

spindle assembly checkpoint signaling. eLife, 2013(2), 1–20. 

http://doi.org/10.7554/eLife.01030 

Qi, W., & Yu, H. (2007). KEN-box-dependent degradation of the Bub1 spindle 

checkpoint kinase by the anaphase-promoting complex/cyclosome. Journal of 

Biological Chemistry, 282(6), 3672–3679. 

http://doi.org/10.1074/jbc.M609376200 

Ricke, R. M., Jeganathan, K. B., Malureanu, L., Harrison, A. M., & Van Deursen, J. 

M. (2012). Bub1 kinase activity drives error correction and mitotic checkpoint 

control but not tumor suppression. Journal of Cell Biology, 199(6), 931–949. 

http://doi.org/10.1083/jcb.201205115 



 

174 

 

Rieder, C. L., Cole, R. W., Khodjakov, A., & Sluder, G. (1995). The checkpoint 

delaying anaphase in response to chromosome monoorientation is mediated by 

an inhibitory signal produced by unattached kinetochores. Journal of Cell 

Biology, 130(4), 941–948. http://doi.org/10.1083/jcb.130.4.941 

Rieder, C. L., Cole, R. W., Khodjakov, A., & Sluder, G. (1995). The checkpoint 

delaying anaphase in response to chromosome monoorientation is mediated by 

an inhibitory signal produced by unattached kinetochores. The Journal of Cell 

Biology, 130(4), 941–8. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2199954&tool=pmc

entrez&rendertype=abstract 

Rischitor, P. E., May, K. M., & Hardwick, K. G. (2007). Bub1 is a fission yeast 

kinetochore scaffold protein, and is sufficient to recruit other spindle checkpoint 

proteins to ectopic sites on chromosomes. PLoS ONE, 2(12), 1–6. 

http://doi.org/10.1371/journal.pone.0001342 

Roberts, B. T., Farr, K. a, & Hoyt, M. a. (1994). The Saccharomyces cerevisiae 

checkpoint gene BUB1 encodes a novel protein kinase. Molecular and Cellular 

Biology, 14(12), 8282–8291. http://doi.org/10.1128/MCB.14.12.8282.Updated 

Ruchaud, S., Carmena, M., & Earnshaw, W. C. (2007). Chromosomal passengers: 

conducting cell division. Nature Reviews. Molecular Cell Biology, 8(10), 798–

812. http://doi.org/10.1038/nrm2257 

Rudner, A. D., & Murray, A. W. (2000). Phosphorylation by Cdc28 activates the 

Cdc20-dependent activity of the anaphase-promoting complex. Journal of Cell 

Biology, 149(7), 1377–1390. http://doi.org/10.1083/jcb.149.7.1377 

Sazer, S., Lynch, M., & Needleman, D. (2014). Deciphering the evolutionary history 

of open and closed mitosis. Current Biology : CB, 24(22), R1099–103. 

http://doi.org/10.1016/j.cub.2014.10.011 

Sczaniecka, M., Feoktistova, A., May, K. M., Chen, J. S., Blyth, J., Gould, K. L., & 

Hardwick, K. G. (2008). The spindle checkpoint functions of Mad3 and Mad2 

depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-

promoting complex (APC/C). Journal of Biological Chemistry, 283(34), 23039–

23047. http://doi.org/10.1074/jbc.M803594200 

Sharp-Baker, H., & Chen, R. H. (2001). Spindle checkpoint protein Bub1 is required 

for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently 

of its kinase activity. Journal of Cell Biology, 153(6), 1239–1249. 

http://doi.org/10.1083/jcb.153.6.1239 

Shepperd, L. a., Meadows, J. C., Sochaj, A. M., Lancaster, T. C., Zou, J., Buttrick, 

G. J., … Millar, J. B. a. (2012a). Phosphodependent recruitment of Bub1 and 

Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Current 

Biology, 22(10), 891–899. http://doi.org/10.1016/j.cub.2012.03.051 



 

175 

 

Shepperd, L. a., Meadows, J. C., Sochaj, A. M., Lancaster, T. C., Zou, J., Buttrick, 

G. J., … Millar, J. B. a. (2012b). Phosphodependent recruitment of Bub1 and 

Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Current 

Biology, 22(10), 891–899. http://doi.org/10.1016/j.cub.2012.03.051 

Sherlock, G., & Rosamond, J. (1993). Starting to cycle: G1 controls regulating cell 

division in budding yeast. Journal of General Microbiology, 139(11), 2531–41. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8277239 

Sudakin, V., Chan, G. K., & Yen, T. J. (2001). Checkpoint inhibition of the APC/C 

in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. 

The Journal of Cell Biology, 154(5), 925–36. 

http://doi.org/10.1083/jcb.200102093 

Sullivan, M., & Morgan, D. O. (2007). Finishing mitosis, one step at a time. Nature 

Reviews. Molecular Cell Biology, 8(11), 894–903. 

http://doi.org/10.1038/nrm2276 

Tang, Z., Bharadwaj, R., Li, B., & Yu, H. (2001). Mad2-Independent Inhibition of 

APCCdc20 by the Mitotic Checkpoint Protein BubR1. Developmental Cell, 

1(2), 227–237. http://doi.org/10.1016/S1534-5807(01)00019-3 

Tang, Z., Shu, H., Oncel, D., Chen, S., & Yu, H. (2004). Phosphorylation of Cdc20 

by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle 

checkpoint. Molecular Cell, 16(3), 387–397. 

http://doi.org/10.1016/j.molcel.2004.09.031 

Tang, Z., Sun, Y., Harley, S. E., Zou, H., & Yu, H. (2004). Human Bub1 protects 

centromeric sister-chromatid cohesion through Shugoshin during mitosis. 

Proceedings of the National Academy of Sciences of the United States of 

America, 101(52), 18012–18017. http://doi.org/10.1073/pnas.0408600102 

Taylor, S. S., & McKeon, F. (1997). Kinetochore localization of murine Bub1 is 

required for normal mitotic timing and checkpoint response to spindle damage. 

Cell, 89(5), 727–735. http://doi.org/10.1016/S0092-8674(00)80255-X 

Thornton, B. R., Ng, T. M., Matyskiela, M. E., Carroll, C. W., Morgan, D. O., David, 

P., & Toczyski, D. P. (2006). An architectural map of the anaphase-promoting 

complex An architectural map of the anaphase-promoting complex, 1, 449–460. 

http://doi.org/10.1101/gad.1396906 

Trowitzsch, S., Bieniossek, C., Nie, Y., Garzoni, F., & Berger, I. (2010). New 

baculovirus expression tools for recombinant protein complex production. 

Journal of Structural Biology, 172(1), 45–54. 

http://doi.org/10.1016/j.jsb.2010.02.010 

Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V, & Nasmyth, K. (2000). 

Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. 



 

176 

 

Cell, 103(3), 375–86. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11081625 

Uzunova, K., Dye, B. T., Schutz, H., Ladurner, R., Petzold, G., Toyoda, Y., … 

Peters, J.-M. (2012). APC15 mediates CDC20 autoubiquitylation by 

APC/CMCC and disassembly of the mitotic checkpoint complex. Nature 

Structural & Molecular Biology, (September), 1–10. 

http://doi.org/10.1038/nsmb.2412 

Van Voorhis, V. a., & Morgan, D. O. (2014). Activation of the APC/c ubiquitin 

ligase by enhanced E2 efficiency. Current Biology, 24(13), 1556–1562. 

http://doi.org/10.1016/j.cub.2014.05.052 

Vanoosthuyse, V., & Hardwick, K. G. (2005). Bub1 and the multilayered inhibition 

of Cdc20-APC/C in mitosis. Trends in Cell Biology, 15(5), 231–233. 

http://doi.org/10.1016/j.tcb.2005.03.003 

Vanoosthuyse, V., Meadows, J. C., van der Sar, S. J. A., Millar, J. B. A., & 

Hardwick, K. G. (2009). Bub3p facilitates spindle checkpoint silencing in 

fission yeast. Molecular Biology of the Cell, 20(24), 5096–105. 

http://doi.org/10.1091/mbc.E09-09-0762 

Vanoosthuyse, V., Prykhozhij, S., & Hardwick, K. G. (2007). Shugoshin 2 regulates 

localization of the chromosomal passenger proteins in fission yeast mitosis. 

Molecular Biology of the Cell, 18(5), 1657–69. http://doi.org/10.1091/mbc.E06-

10-0890 

Vanoosthuyse, V., Valsdottir, R., Javerzat, J.-P., & Hardwick, K. G. (2004). 

Kinetochore targeting of fission yeast Mad and Bub proteins is essential for 

spindle checkpoint function but not for all chromosome segregation roles of 

Bub1p. Molecular and Cellular Biology, 24(22), 9786–9801. 

http://doi.org/10.1128/MCB.24.22.9786-9801.2004 

Vernieri, C., Chiroli, E., Francia, V., Gross, F., & Ciliberto, A. (2013). Adaptation to 

the spindle checkpoint is regulated by the interplay between Cdc28/Clbs and 

PP2ACdc55. Journal of Cell Biology, 202(5), 765–778. 

http://doi.org/10.1083/jcb.201303033 

Vink, M., Simonetta, M., Transidico, P., Ferrari, K., Mapelli, M., De Antoni, A., … 

Musacchio, A. (2006). In Vitro FRAP Identifies the Minimal Requirements for 

Mad2 Kinetochore Dynamics. Current Biology, 16(8), 755–766. 

http://doi.org/10.1016/j.cub.2006.03.057 

Vleugel, M., Hoek, T. a., Tromer, E., Sliedrecht, T., Groenewold, V., Omerzu, M., & 

Kops, G. J. P. L. (2015). Dissecting the roles of human BUB1 in the spindle 

assembly checkpoint. Journal of Cell Science, 128(16), 2975–2982. 

http://doi.org/10.1242/jcs.169821 



 

177 

 

Vleugel, M., Tromer, E., Omerzu, M., Groenewold, V., Nijenhuis, W., Snel, B., & 

Kops, G. J. P. L. (2013). Arrayed BUB recruitment modules in the kinetochore 

scaffold KNL1 promote accurate chromosome segregation. The Journal of Cell 

Biology, 203(6), 943–955. http://doi.org/10.1083/jcb.201307016 

von Schubert, C., Cubizolles, F., Bracher, J. M., Sliedrecht, T., Kops, G. J. P. L., & 

Nigg, E. A. (2015). Plk1 and Mps1 Cooperatively Regulate the Spindle 

Assembly Checkpoint in Human Cells. Cell Reports, 12(1), 66–78. 

http://doi.org/10.1016/j.celrep.2015.06.007 

Westhorpe, F. G., Tighe, a., Lara-Gonzalez, P., & Taylor, S. S. (2011). p31comet-

mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. 

Journal of Cell Science, 124(22), 3905–3916. http://doi.org/10.1242/jcs.093286 

Windecker, H., Langegger, M., Heinrich, S., & Hauf, S. (2009). Bub1 and Bub3 

promote the conversion from monopolar to bipolar chromosome attachment 

independently of shugoshin. EMBO Reports, 10(9), 1022–1028. 

http://doi.org/10.1038/embor.2009.183 

Yamagishi, Y., Yang, C.-H., Tanno, Y., & Watanabe, Y. (2012). MPS1/Mph1 

phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. 

Nature Cell Biology, 14(7), 746–752. http://doi.org/10.1038/ncb2515 

Yamaguchi, S., Decottignies, A., & Nurse, P. (2003). Function of Cdc2p-dependent 

Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic 

spindle checkpoint. EMBO Journal, 22(5), 1075–1087. 

http://doi.org/10.1093/emboj/cdg100 

Yanagida, M. (1998). Fission yeast cut mutations revisited: control of anaphase. 

Trends in Cell Biology, 8(4), 144–9. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9695827 

Yu, H., & Tang, Z. (2005). Bub1 multitasking in mitosis. Cell Cycle, 4(2), 262–265. 

http://doi.org/10.4161/cc.4.2.1487 

Yudkovsky, Y., Shteinberg, M., Listovsky, T., Brandeis, M., & Hershko, a. (2000). 

Phosphorylation of Cdc20/fizzy negatively regulates the mammalian 

cyclosome/APC in the mitotic checkpoint. Biochemical and Biophysical 

Research Communications, 271(2), 299–304. 

http://doi.org/10.1006/bbrc.2000.2622 

Zich, J., Sochaj, A. M., Syred, H. M., Milne, L., Cook, A. G., Ohkura, H., … 

Hardwick, K. G. (2012). Kinase activity of fission yeast Mph1 Is required for 

Mad2 and Mad3 to stably bind the anaphase promoting complex. Current 

Biology, 22(4), 296–301. http://doi.org/10.1016/j.cub.2011.12.049 

 



 

178 

 

Acknowledgements 

I would like to thank everyone who has contributed to make the last four years nice 

and memorable for me, but I am especially grateful to… 

My supervisor Kevin. Thank you very much for giving me the opportunity to work in 

your lab, for providing excellent guidance and continuous motivation throughout my 

project, and for everything you have taught me in my PhD. It has been a pleasure to 

work with you and learn from our conversations. 

Karen, for your positive attitude and generosity in sharing your fission yeast 

knowledge no matter how busy you were. I will miss our conversations during the 

tea time and lab meetings. 

Ivan, for being helpful throughout our stay in the lab. Considering we started more or 

less the same time, we have learned many things together and it has been great to 

exchange ideas with you. I wish you all the best for your next step. 

Ioanna, you have joined us recently but quickly adapted with your cheerful mood. I 

hope Bub1 will make you happy very soon. 

Adele, Ken and Malcolm for providing very useful feedback throughout my PhD. 

Marston lab people, for the traditional Friday afternoon music and making the lab a 

fun place to work. 

Members of Ohkura group, for nice conversations during our traditional cake 

sessions and all the fruit flies you set free! 

My family, for their encouragement and support. 

Finally, Edinburgh University, for kindly funding my PhD. This has been a life 

changing opportunity, and I really appreciate that. 

 


	cover sheet
	Corrected PhD Thesis_Onur Sen
	Corrected PhD Thesis_Onur Sen_s1144184
	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL


	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected PhD Thesis_Onur Sen_s1144184
	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis figures
	3.2 Nda3 recovery corrected
	4.12 Generating p mutants legend corrected
	4.4 Identification of phospho sites corrected

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL

	Corrected thesis text
	Corrected thesis text
	FULL THESIS 9 FINAL

	FULL THESIS 9 FINAL

	PhD Thesis Onur Sen 2015
	FULL THESIS FINAL
	FULL THESIS FINAL
	Figure 1.1 cell cycle
	FULL THESIS FINAL
	Figure 1.2 APC MCC EM
	FULL THESIS FINAL
	Figure 1.3 MCC structure
	FULL THESIS FINAL
	Figure 1.4 Cdc20 expression
	FULL THESIS FINAL
	3.1 Nda3 B&R WT, b1kd, b1-del error bars and stack together
	FULL THESIS FINAL
	3.2 Nda3 recovery
	FULL THESIS FINAL
	3.3 Septation and m2 m3 gp on KTs wt b1kd sgo2null
	3.4 M2 M3 KT foci in non septating cels
	FULL THESIS FINAL
	3.5 MCC assembly wt b1kd mph1kd
	FULL THESIS FINAL
	3.6 APC binding wt b1kd
	FULL THESIS FINAL
	3.7 Bub1 kinase working model
	FULL THESIS FINAL
	4.1 Transfer vectors MCC and Bub1
	4.2 Insect cell protocol and purified proteins
	FULL THESIS FINAL
	4.3 kinase assay
	FULL THESIS FINAL
	4.4 Identification of phospho sites
	4.5 Alignment of cdc20 p sites
	FULL THESIS FINAL
	4.6 MCC purification and testing
	FULL THESIS FINAL
	4.7 Within link EDC and BS3
	4.8 X link model
	Table 4.1 within length BS3 and EDC
	FULL THESIS FINAL
	4.9 Novel sites BS3 and EDC
	Table 4.2 novel BS3
	Table 4.3 novel EDC
	4.10 Model within novel
	FULL THESIS FINAL
	4.11 Marking and tagging cdc20 legend
	FULL THESIS FINAL
	4.12 Generating p mutants legend
	FULL THESIS FINAL
	5.1 Septation unperturbed
	FULL THESIS FINAL
	5.2 MCC formation S3A unperturbed
	FULL THESIS FINAL
	5.3 MCC APC binding S3A unperturbed
	FULL THESIS FINAL
	5.4 Septation 3E 3A 1A M2D
	5.5 30 min KT foci S3E mad2del
	FULL THESIS FINAL
	5.6 MCC APC binding S3A CBZ
	5.7 MCC APC binding S3E CBZ dashed line
	FULL THESIS FINAL
	5.8 nda3 6h 9h arrest
	5.9 Nda3 cdc20 IR motif mad3 APC interaction
	FULL THESIS FINAL
	5.10 nda3 release with a dashed cell outline 2 orange legend title
	FULL THESIS FINAL
	5.11 Nda3 turnover S1A
	5.12 Nda3 turnover S3E
	FULL THESIS FINAL
	5.13 Septation bub1kd double mutant
	5.14 DAPI 30 min
	5.14 2 DAPI 60 min
	FULL THESIS FINAL




