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Abstract

Throughout this thesis we deal with the scaling properties of resonance (or
Arnol’d) tongues of circle maps. The motivation comes from the work of A.M.
Davie, which we summarise as necessary.

We deal initially with the Sine Circle Map in the form
fra(@)=z+Q+k sin’(z) mod =,

where 0 < Q < 7 and 0 < k < 1, and consider rotation numbers of the form

a = 1. Here we investigate the scaling behaviour of the intervals I 1 (k), where, for

Q € I1, frq has rotation number 1, as n — co. We know that |TL (k)| ~ ykn~2.

Our concern is with estimating the behaviour of 7% as £ — 0, to which end we
improve on the estimates made in the original work by Davie, and consider the
effect of errors neglected in the first order approximations.

In chapter 3 we deal with the same map, but now considering rotation numbers
of the form a = (n + g)'l, where n,p,q € N, with p, ¢ co-prime. We investigate
. the widths of the intervals I,. Specifically, we consider the asymptotic behaviour
of |I,| as n — oo and k — 0 in any manner. This behaviour is related to a
polynomial in the first ¢ Fourier coefficients of a particular period 1 map, derived
from a transformation on the circle map. We derive the appropriate polynomials
for values of ¢ < 20.

In the final chapter we consider circle maps derived from the Dissipative Stan-
dard Map,

fra(,0) = (Jo — ksin(2r0), 6 +Q+Jz — ksin(29)) ,

where 0 < J < 1. The map may be regarded as a map of the cylinder R x S! into
itself. The theory of normal hyperbolicity shows that if k is small enough there
exists a circle, V, homotopic to {0} x S*, which is invariant under the action of
fr.0, and on which is induced an orientation preserving circle homeomorphism.
We obtain an approximation to the circle and the associated homeomorphism
when Q = Q°, such that fig+|v has a fixed point, proceeding to investigate the
scaling of |I.| from this basis. Finally, we numerically estimate the quantity
derived in the analytical part of this chapter.
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Chapter 1

Introduction

Resonance, or the possibility of resonance, arises often in physical systems - for
example, where two or more oscillators are coupled and a rational relationship
exists between the respective periods of oscillation. For this reason it is often
known as mode, or phase locking. In such a situation we might represent the mo-
tion of the system as a curve on an n-torus, which, when the system is resonant,
becomes a closed lobp. We may then consider the behaviour of the system with
attention restricted to the loop.

One way to study the phenomenon of resonance is to consider the time-one
map of such a system. It is therefore natural, from a mathematical point of view,

to abstract ideas from this situation and consider maps of the form
F(z)== + g(),

where g is continuous and periodic with period 7 € R . We therefore have

F(z +7) = F(z) + 7, and F naturally gives rise to the map
f(z) = F(z) mod 7,

which maps the circle 7S* = R/7Z continuously onto itself. For obvious reasons
we call f a circle map, although the notation is somewhat loose and may be
applied to F. F is properly known as a lift of f. Note also that whilst it is
convenient for this present discussion to distinguish between circle maps and lifts
by the use of lower and upper case letters, the meaning is in general clear from
thg context and we will drop the practice after this chapter.

One of the simplest maps of this type (other than a rigid rotation,



z — z + a mod 7, which is dynamically uninteresting) is the map
f(z)=2z+Q+ksin2wrz mod 1,

where 0 < 2 <1, 0 < k < 1. f is often known as the standard (circle) map.

Much of this thesis is concerned with the study of a related map,
fra(lz)=z+Q+ ksin’z mod ,

with0< Q<7 0<k<1
In the context of a circle map, resonance is associated with the existence of

periodic points — that is, points Zo such that
Fq(zo) =9 + P,

where p,q € N, with (p,q) = 1. At this point, we observe that throughout this
thesis the notation f*, where f is a mapping and n € N, will denote the n fold
composition of f with itself. If f is bijective we allow n € Z with the obvious

interpretation. We have also the following:

Definition 1.1 For any map f: X — X and any point z € X we define the
orbit of z to be the set {y € X :y = f*(z) or z = f"(y) for somen € NU{0} }.
If f is bijective we can simplify this definition to {y € X : y = f*(z),n € Z}.
Typically we will write T, = f"(20), so that the orbit of a point zo is the set
{zn :n € Z}, or just {z,}.

The most important tool for the study of resonance in circle maps is the

Rotation Number, due to Poincaré (see [Po)).

Definition 1.2 Let F be a lift of a circle homeomorphism, f. We define the

" rotation number p of f by

p(f) = lim F(z) mod 1

n—oco n

It can be shown that this limit always ezists, and is independent both of x and of

the particular lift chosen (see, for instance, [Ni]).

We may speak of the rotation number of F, rather than f, with the obvious
interpretation.
The importance of the rotation number lies in the following simple result (see,

for instance, [AP] for proof):



Theorem 1.3 Let f be a circle homeomorphism, and F a lift. Let p,q € N be
such that (p,q) = 1, that is p and g are co-prime. Then f has rotation number f;-

iff F4(z) = z + p for some z € R.

Now, it is easy to see from the definition that p(f,) is increasing, as a function of
Q). Poincaré stated, without proof (see [Arl]), that the rotation number depends
continuously on the map, and so we see that the set I;qg ={Q:p(fra) =2} isa
closed interval.

We come now to the idea of the scaling of the intervals Ig. If the small
parameter, k, is allowed to vary, then the question of how |I§| depends on k
arises.

-Arnol’d, [Arl], studied the cosine map,
fra(z) =+ Q+ kcosz mod 2w,

and found that |I§| = O(k?) as k — 0, also conjecturing the existence of the
more general result (see [Ar2]). Thus the set {(,k) : p(fr,a) = 2} appears as
a narrowing ‘tongue’ approaching the k = 0 axis, and hence the term ‘Arnol’d
tongues’.

Further general scaling properties also came to light, primarily regarding the
scaling of |I§| for fixed values of the non-linearity parameter, as ¢ — oo. Ecke,
Farmer and Umberger, [EFU], numerically observe the scaling behaviour |I§| =
O(q~®) for fixed k < 1 in the case of the sine map. More recently, Jonker
[Jo] (and see also [Da2]) has shown that this law holds for diffeomorphisms and
differentiable homeomorphisms of the circle in general.

It is this latter form of scaling behaviour that we will be primarily concerned

with in the chapters that follow.



Chapter 2

Scaling of %—tongues of the sine
circle map

In this chapter we consider the asymptotics of the resonance (or Arnol’d) tongues

of the sine circle map. More particularly, we consider the map in the form
fra(z) =  + Q + ksin’(z), (2.1)

where 0 < @ < 7,0 < k < 1, and z € R. The map is much studied, and
in particular we review here the work of Davie, [Dal], which is essential to the

material that forms the main part of this chapter.

' 2.1 Resonance scaling for the sine circle map.

We first define I, (k) = {Q : p(fr,a) = 2} , where p(-) denotes rotation number.
Then I, is a closed interval, [an(k), Bn(k))]-
The paper establishes the following:

Theorem 2.1 For each k there are numbers a(k), B(k) such that

anlh) = 15 + X 4 o)
and
ﬁn(k) + 28 4 o,
asn — o0o. Thus |I,(k)] =28 4 o(n 3), where v(k) = B(k) — a(k).
Also, ask — 0, (k) =k'e” ¥ [A+ o(1)), where A is a constant (numerical

results show A ~ 650.0).



We present now the main details of the proof.

Consider first of all the map fi(z) = z + ksin®(z), that is, frq for @ = 0.
Now, fi is a diffeomorphism, and for zo € (0,7) the orbit {z,} is such that
z, — ™ as n — +o0o0, and z, — 0 as n — —o0. We find ¢ : R — R such
that @(n41) — @(za) = 1 + O(z2). Using ¢ we define increasing functions
gx:(0,7) = R and hi:(0,7) — R by

gk(z0) = lim o(z,) — 7, (2.2)
and
hi(zo) = lim o(zn) — n, (23)

for zo € (0,7), noting that gi(fi(z)) = gr(z) + 1, and similarly for hy. We may
now define the mapping 7:(z) = hi(z) — gx(z), and, since g, maps (0,7) onto
R, we can write 7 as Tx(z) = 0x(gk(z)). So then oy is a periodic function on R
with period 1.

We now fix k and consider orbits of fiq for small @ > 0. These orbits now
extend from —oo to +oo, since fra(z) = z + . As before we find a function
¥ : R — R such that ¥(zn41) — ¥(2s) ~ 1. By consideration of the orbits of a
point zo under frq and fi, and of the mapping ¥, the following result is obtained.

For Q € Iy,

)= (1- 201) +o(N)
aN - kN2 N k o b]
and .
_ e 2 =3

B (k) = 7 (1 W”") +o(N7%),

where
ok = ?élzlxl ak(£)$

and

Ok = max ox(é).
The first part of the result follows.
We now consider the estimation of 4 as kK — 0. From the above, we have
2m?
(k) = ==~ (Ok — b)-

Since o is periodic with period 1 we can write it as a Fourier series,

ak(f) — E cr(k)e—21rir£,

reZ



where, for any é € R,

(k) = Lﬂzﬂﬁk"“dﬁ
- / " [hi(z) — gu(@)]e* gy (=) da. (2.4)

Zo

Clearly, in employing 2.4, o may be chosen arbitrarily. In order to estimate the

integral, we extend fi, hx and gx into the complex plane. Thus we consider orbits
of
fi(2) = z + ksin’(z), ze€C.

We now fix a constant C > 0 sufficiently large so that when z € V, with
V={zEC:%r<§Rz<%1r,0§3‘z§%log%—0’},

we have ‘k sin’(z)l < e"w, and z has a unique orbit with z, = 0 as n — —o0
and z, — T as n — o0.

By consideration of the first order non-linear O.D.E.
z=k siln2 z

' we.obtain a mapping,

®1(2) = =k~ cot(2) + log sin(z),

such that
O4(2nt1) — Pi(zn) — 1 = O (K* |sin’ (2n)

623‘2,.) )

We may now define complex analytic mappings gk : V — C and hi:V = C

analogous to those obtained earlier on the real line, and we have
l—k'l cot(z,) + logsin(z,) —n — §k(20)| =0 (kemz")
as n — —oo, and

|—k'1 cot(zy,) + logsin(z,) — n — Ek(zo)| =0 (kemz")



as n — oo. When 2 is real, §; and k. coincide with g and h respectively, and for
the sake of notational simplicity we shall drop the ~
Now, we choose o, 20 € V, with zo real. By Cauchy’s Theorem applied to a

) éuitable contour we find that

2 .
er(k) = [ [1u(2) — gi(2)]e¥ g} ) de.
20
In order to estimate this, we make a k-dependent change of variable to transform

fx into a mapping which is independent of k, to a first approximation. We write

z = ib+ w, where b = 1 log }, and consider the map
flw) = w— 1,
for w € W with
W={w€C:§1r<§Rz<-§7r,8‘z<—C},.

We now find that orbits of f satisfy Sw, — —oo as n — o0, and Rw, — § or

§41 as n — —oo or 400 respectively. In addition, we find that the limits

nﬁinwi (Qeziw" - wn) -n | (2.5)
and
nli'r_lpooi (262"""_‘ - wn) -n (2.6)

exist, and define analytic functions, G and H, on W. Fixing w € W, and n large,

negative, we find that, as k — 0,
ge(ib+w) — ik~ — b — G(w) + £ —log 2, (2.7)

with a similar result for Ay, H.
Thus we find that

2nr

F e (k) = e

[ 1) = 6w) G w) du,

as k — 0. Clearly when k is small, |c;(k)| dominates |c.(k)|, r > 2, and so
| Ok — 0 ~ dls(k)],

giving

. 1(k) = K¢ (A+ (1),

where

A=8rle™

/,,, [H(w) — G(w)] ™G (w) dw|,

which is then easily estimated numerically. O



2.2 Asymptotic behaviour of v;

Throughout the remainder of this chapter we will be concerned with the more

precise estimation of 4(k). In particular, we establish the following result:

Theorem 2.2 For anyr € N,
7(]6) = k'le-af [A0+A1k+ +A,-kr +0(kr+1)] :

where Ag = A.

We also show how, in principle, the A; can be fouﬁd, giving an expression for
A,, and investigate the possibilities of numerical estimation.

The proof of Theorem 2.2 follows broadly the same lines as that of Theorem
2.1, but with some significant additions. We show how 2.2 and 2.3 may be
generalised to give higher order approximations, and similarly 2.5 and 2.6; we
consider the error involved in relating the orbits of the map fi(z) = z + ksin®(2)
to those of f(w) = w — %e’zi‘”; and finally we co_nsider the convergence of higher
order terms in 2.7, from which the generalised result follows.

Firstly, then, we look for a change of co-ordinates, ¥, that will transform the

map, fr, approximately satisfying the relationship

TofroW '(§)=¢+1.

Lemma 2.3 Let
V={zeC:§7r<§Rz<-§7r,0$8‘z§%log%—C’},
and let U be the set

v=U) ).

t=—00

Then, given N € N, there ezists a mapping, Yi:U — C , such that

Ui(fie(2)) — Ua(z) = 1+ O (KV*+?sin’ 2 V%) (2.8)



"Proof. We show that there exists a méf)piﬁg of the form

V(x) = 3 Ke(2), (2.9)

A r=-1
which satisfies the requirement.
Let us first begin by assuming that this is the case. For such a ¥y, analytic

on some neighbourhood of U, we form the Taylor series,

Ui(fie(2)) = Ui(z + ksin’(2))

= Wi(z) + (ksin® 2)¥(z) + (is—lﬁ

Ui(z) +--- (2.10)
Now, substituting 2.9 into 2.10 and comparing coefficients, we obtain
Y_1(z) = —cot 2z

and
¥o(z) = logsinz

as in section 2.1. In general, for r > 1 we have the following relationship.

vi(z) = 21‘ sin’ z ¢ _ '(sm 2)2 o (2) —
e _*1_2)‘(sm z)'+1 HUF(2). (2.11)

From this it is possible to calculate recursively as many coefficients, ., as may be
required, although this is a tedious and error prone operation by hand, and it is
greatly simplified by the use of computer packages such as Maple or Mathematica.
However, for present purposes we require general information about arbitrarily

many coefficients. We pause in the proof of Lemma 2.3 to consider the following:

Definition 2.4 The degree of the trigonometric monomial sin™ zcos" z is
(m + n). The degree of a trigonometric polynomial in sin z and cos z is the degree

of the term of highest degree.

. Proposition 2.5 Let r > 1. Then 1,(z) has the form

"/)r(Z) =a,+frz+ T(Z),

where ay, B, € C, and T(z) is a trigonometric polynomial in sin(z) and cos(z)

with degree 2r.

10



Proof. We first note that if T(2) is a trigonometric monomial of degree n, then
so also is T'(z). Now, let Ti(2) be a trigonometric polynomial of degree n, and

let

_ 73(2)
0(z) = ==~
Then
s.2m ’
0'(z) = sin®™ 2Ty(z) — 2m{;(z)sm 1.cosz
sin®™ z
I £1C)
T gin(mtD) p?

where T3(z) is a trigonometric polynomial of degree n + 2.

Now, since 9" (z) has the form

Ti(2)
sin? 2’
and similarly
" T2(z)
Yo(2) = sinZz’

where T}, T3 are trigonometric polynomials in sin z and cos z with degree 2 and 0
respectively, it follows trivially by induction that 1](2) is a trigonometric poly-

nomial in sin z and cos z with degree 2r, and the result follows, with «, arbitrary.
(]

Now, returning to the proof of the lemma , we choose all the ¢.(z) as above,

and write N
\IIN,k(z) = E k'z/),(z).
r=-1

We now need to show that this ¥ satisfies 2.8. Now, in general, for fixed 2

and ¢ small, we can write

N+2
€ (N+2)

(N+2)' Nk (2)+RN+3(Z+€)

Uni(z+e)= Uni(z) + E:\I’;V,k(z) 4+

say, where

RN+3(Z + 6) (N+3)( ) + (N+4)( ) 4 -

(N (N +3)! (N + 4)!

Now
(N+2)(2+€) (N+2)( )+€\IJ(N+3)(Z)+

11



so that
Rnsa(z +e)l < |V (000 (z +0) - ¥RV (2))|

1 .
4 [ Wz +0¢) db ]
0

N+3 (N+3)
" o [ENE e + 09)]

and given the form of ¥;,j = —1,0,1,..., N, we easily obtain

2(N+1)92
’

IRN+3(2 + ksin® z)l < D |k~+2 sin’z e

for some constant, D.

We have chosen the ¥, in order to equate coefficients in 2.10, and so we now

have

N N
Uni(ztksin®2) = 3 K¢ (2) + ksin’ 2 Y &"¢;(2)

r=-1 r=-1

(ksm z)? E kol (2) + -

r=-1

(kSlIl 2)N+2 E k" (N+2)(Z)

1
(N 2)' r=-1
+0 (kN+2 sin2 2 62(N+1)9z)

N
= > Kir(2) +1+0+---+0

Cor=-1
+l'(k sin® z)2 kN ¥y (2)
(ksm z) [kNd)m( )+kN 1¢/// (z)] +

)'(ksm z)N+2[kN+2 (N+2)( )+kN_1¢(N+2)( )

W + 2
4o+ KOV (2))
+0 (kN+2 sin? z 62(N+1)<:fz)
= Unu(2) +140 (KV¥sin’ 2 £NHI%), (2.12)

as required. O

12



We now turn our attention to the question of the error involved in relating the
orbits of fi to those of f. Recall that if we make the transformation z = w +¢b,

with b= 1log 1, then

fi(z) = fi(w+1b)
= (w + ib) + ksin®(w + id)
= wtib— %e-”w + O(k). (2.13)
Thus we obtain the ‘limiting mapping’, f(w) = w — %6'2“”. Now, with V and W
as in section 2.1, let zo € V. We choose wg € W such that wo = zp — b, and let

{2} and {w,} be the orbits of 2o and wo under f; and f respectively. We write
Cn = 2n — (wn + 2b).

Consideration of this error was unnecessary in the previous section, but now we

need more precision. The following Lemma gives the form of (, for fixed n.

Lemma 2.6 (, is analytic in k, and we write
(o= kbpy + Ebnp+ -+ .

Also, for s =1,2,...,

Proof. Fix n > 1 (the argument is similar for n < 0). From 2.13 it is clear that

(n — 0 as k — 0. Also, (o = 0. Now, since (p+1 = Znt1 — Wnt1 — tb, we obtain

kK i 2icn 1 —2iwn [ —2i¢n
Cﬂ+1 = Cn + 5 — —4—6 [ -_ Ze (C -_ 1) . (2.14)

Thus (41 is analytic as a function of k and of (,. The first part of the Lemma
follows by induction.

Now, from 2.14, we can see that

G =3 + 1 ecéei?'ﬁi‘?z ro| 4oy )
-t {1 + z: LH (14 Lemmiomenms 4 O(cm-s))] } +O(k?).
- (2.16)

13



So,

Ekz — %{1 + nz_‘j Lf[ (1 + %e'z"""")]} = bn,1, (2.17)

as k — 0. Now, recall that
2ie?"™ — jw, —n — G(wp)
as n — oo. Hence we deduce that, for n large,
? —2iwy 1

—3¢ TRt

with |6,] < %. So then |1 + dem 2w

< 1. Now, given such an n, we choose a
constant, B > 1, such that |b, ;| < Bn, and suppose that for some ¢ > n we have
{b:,1] < Bt. Then, by 2.15,

1 i 2w
bt+1,1='§+bt,l (1+§6 2 )

So
1
1beg1,1] < 3 + Bt < B(t+1).
Hence, by induction, b,; = O(n).

Now let s be such that 1 < s < r, and suppose that for 1 <! < s we have
b,; = O(n'). Then from 2.14 we have

bn-l—l,s =
1 iw 22 2 22 -2 83—
bn,.s 4 2 "[2 bn §—2 + ( ) (bn 1bn =3 +--+ bn s—Sb'n. 1) + -+ (( ) 2)'bn 1 ]
1 —-2tw, . 2 2 2 ? 3
—Ze 2twn [—2zbn,s + — ( 2) (bn lbn s—1 1 -+ bn s-lbn 1) + -+ ( Z) n.l}

= b, (1 +% '2"”") +0 (n°7)
ol

u=1
= 0 (n"7"|2b,])
= 0(n%).

14



The‘ result f.olio.ws,. By fnduction. ] | _

Recall that in defining ¥y earlier, the constants, a,, were arbitrary. We now
impose the requirement that [,(2,)] — 0 as n — Zoo. In fact, this means
that we need two different Wy, functions, which we will denote ¥ , and ¥y,
respectively. Because of the form of ¥, and the fact that 2z, =+ ror 0 asn — *oo
' i'esi)ectively, the constants, a,, are uniquely determined for each Uy x By the

requirement.

Lemma 2.7 Let N > 0. There exist mappings, gr: V — C and hy: V — C,
such that

ng(zo) - [‘I’}-v,k(zn) - n” =0 (nl\}ﬂ) ’

as n — —oo, and

Ihk(zo) - [‘I’§.k(zn) - n” =0 (#) ’

asn— CO.

Proof. We give the proof for g, that for ki being similar. We have
[URu(Fx(2) — Ty a(2) — 1| = 0 (K"*+*sin? 2 2D

from Lemma 2.3. Thus

n

Uni(zn) = n =¥y, (20)+ 0 (Z (k sin’ z_u) (kemz"‘)Nﬂ) .

u=1

We need to show now that the error term converges, and to that end we consider
the tail of the infinite sum. Recall that for 2z, € V, we have &z, — 0 as n — too.

Thus we can say

0 < il (ksinz z_u) (ke28z_u)N+1
< (k)™ uil (ksin® z_.)
< K il (ksin 2_)|, - for some K > 0.
-0, o

15



Thus there exists a gx such that

ng(zo) - [\Il;,'k(z,,) - n” =0 ((ke2sz,.)N+1) ,

as k — 0 and n — —o0.

Now

Iz,

S(wn + 10+ (i)

1

1
Swp, + 2 log
by Lemma 2.6. Hence

ke?¥n = ®%¥"(1 + O(kn))
= e23wn(1+0(1)),

as n — —oo, provided k = O (#), for some p > 1.
Now we also know that

2e?" — jw, — n — G(wo),
_asn — —o0, and since

—2twn

<1,

|w wl—lle
n+1 n| — 4

we see that wy, = O(n). Thus " = O(n), which gives e = 0 (%), and the
result follows. D

So, we now have functions, gx and h, analytic on V, defined by

gi(z0) = lim U5 4(za) = m,

and

ha(z0) = lim Wk 4(za) — n.

. Also, g satisfies

9x(f(2)) = ge(2) + 1,
and similarly for hx. It follows from the definition, and from the fact that

¥(2z,) — 0 as n — oo respectively, that when zp is real, these functions agree

16



with the ones defined in section 2.1. As before we use the complex functions, gk

and hy, to find the maximum and minimum of the o) function. Recall,

ok(€) = 3 er(R)e™™™,

r€Z
with : ‘
(k) = [ [ha(2) = (DN HIG(6) d 219)

Lemma 2.8 Let w € W. Given N > 1, there exists an M € N such that

. gu(w + ib) = k7Y + bPu(k) + Go(w) + kGi(w) + -+ + KN Gn(w) + O (KV*),
and

hi(w + ib) = ki + bPar(k) + Ho(w) + kHy(w) +--- + KN Hy(w) + 0 (V1)

where Py is a polynomial, and the Gj,H;,j =0,...,N are analytic on W.

Proof. We shall give the proof for k;. Again, the proof for g is similar. Firstly,
let My € N. Now, recall that

My
Ui a(za) —n = 3 K9 (2a)

r=-1

= —k Ycotz, +logsinz, + k¥ (zn) + - + kM°¢X}O(z,,) —n.

Now, since z, = wy, +tb+ kbs1 + k®bn o + - -+ , we can expand the ¢ and rear-
i‘ange, collecting terms in k’. Thus,

etzn + e—tzn]

eiZn — e—iZn

—klcotz, = —k_li[

2izn
— kY [He ]

1-— e2izn

= FNi(1 42t 20 4

— k_li + 27:62"”" e2t(kbn,1 +-) + 2ike41wn e4t(kb,,,1+---) 4.

17



= kY 20 (14 2i(kbog + ) = 2kbuy )P =)
+2ike*™™ (14 4i(kboy +---) = 8(kbpy +-+-)" = - SRR
= k7' + 2ie" + k (2ibny + 2ie*n) + - -
Proceeding similarly with v 0T, z,bj{}o, we write
Ui i(zn) —n = k7% + bPuy () + cno + kcag + Eena + - + kN e n + Rk

Now, the contribution to ¢, from —k™ Yot z, is

. . — — 2
% {e2t(a+1)w" + e?wwn 2i3bn,1 + eZt(a-l)wn ( [2(32' 1)] ) bi'l

4e2ile=Nun 2(s = 1)ibp g+ -+ + 62iw"%(2i)ab;.1}

= O (n”’l) , as n — oo.

A similar analysis for log sin 2,, gives its contribution as O (n’). From Proposition

2.5 we can write, for 1 < r < M,,
D (20) = Bra€®™™ + Brpa€® TV 4o 4 B, 7P 4 Bz + 0

Thus, for the contribution to ¢,,, from %7 (2.), we require the terms of order £°~"
from
s 283w .o 1 . .
"/’:(Zn) = Z ﬂr.jkjez Ten (1 +2ij6a + 5"(22.7(11)2 +-- ) + B:(wn + b+ (n) + 0.
j==r -
The order k£°~" terms are

Z Br,jka—rezijw"Qa-—r—j(bﬂ,,], ooy bn,s—r—j) <+

= —t

§=r—3>0

0 otherwise

{ Brbne—r ifs>7

a ifs=r
+{ 0 otherwise ,

where

Qa—r—j(bn,la ey bn,s—r—j) = z Bxb:] se bf;:.:-r:ig a.

Ez;=s—r—j

z; 20

18



where X = (z1,Z2,...,%s-r-j), and By is a constant.
Since e*“" = O(n), and by, ; = O(n?), it is clear that the contribution to cn,s

from ¥} (2,) is O(n°""). Hence we see that
ene = O (n*11). (2.19)

Similarly, we obtain
Rin = O (KV410*2) (2.20)

. Note that the polynomial, Py, is derived from the 8.z, term in ¥ (z,), where
2z, = wn + tb + (n. It is important also to realise that we derive the same
polynomial for Uy, ((2s). Also, it is clear that each cn, defines an analytic
function of we € W which is independent of k. To prove the Lemma, however,
we need to show that they converge to analytic functions on W. Now the set
V depends on k, and it will be helpful, at this point, to make that clear in the
notation. We write

3 5 1 1
= P - - < < = - —
Vi {zGC 87r<§Rz<87r,0__S‘z__2logk C},

and we also introduce the set Wy,

3 5 1 1
— . = — — < < — .
Wk—{wEC 81r<§Rw< 87r, 2logk Sw C}

W; is thus the translation of Vi by 1log 1 in the negative imaginary direction.
We show that the ¢, , converge uniformly on every compact subset of W, and
therefore define analytic functions on W.
Let W* C W be compact. Then there exists a k* such that W* C Wie.
Now by Lemma 2.7, for zp € Vi» and k < k*, we have

1
1a20) = [ 0020) =] = 0 (77) -
So, if m > n,
1
[(eno — em0) + E(cnt = €ma) +*+ + (Bin = Bim)| = O (m) .
Now, from 2.19 and 2.20, provided km < 1, we have

|k(cn,1 —Cma) + kz(Cn,z - Cm,z) + -+ (Rkn — Rk,m)| =0 (kmz) .
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Thus we obtain

1
|eno — emol = O (—nMo =+ kmz) :

Now, suppose that k¥ ~ -L;, u > 1. Then we have .
1 s
lcno — mol = O W_*-m )
So if u is large enough, then we may conclude that

1
leno — emo| = O (—nMo+l) )

Thus (cn0)32, is a Cauchy sequence, and converges. Also, the convergence is
uniform for zo € Vi, and hence for wyp € Wj.. Continuing in like manner, we

obtain

1
[Fens = ema)] = O (zr +K'm®).

Now, suppose that n < m < 2n, and let k ~ #, as before. Then we have
lens = emal = O (gpmy #7077
Cnl — Cm1| = Mot1-n n .

Thus, if 4 < p < My,
1
|Cn,1 - Cm.ll =0 (—) .
n

" We now remove the restriction m < 2n. Thereis a ¢ € {0,1,2,...} such that

2% < m < 29%n.

Thus
Cni—Cm1 = (cny— Can1) + (€2n1 — Canp) + -+ (c2en1 — €m,1)
1 1 1
= 0(GHmt )

- ofd).

Thus (ca1)32, is Cauchy, and converges as required.
Now, since we can choose M as large as we like, it is clear that we can also

make p large enough so that

1
lcn,l - Cm,1| =0 (ﬁ) ’
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with 6 large. In fact, choosing

_M+N+3
 N+2
. gives
_M-3(N+1)
6= N 12 > Mo+ 1,
provided M is large enough. Now, the contributions from ¥y 44, ... Uy to can

are of order O(n'~M*1)) = O(n~M). Thus, when M = M,

1
kleny —ema| =0 (W) ;

and so we obtain

1
2 3 4
k |cn,2-°m:2|=0(;;m‘1+km +nMo+u)’

and hence,

1 1 1
Icn,2 - Cm'zl = 0 (nM0+1—2y + ne—4 + nMo—u)

1 1
0 (nMo+l-2u + nu-4) ’

since My — pp > Moy + 1 — 2u. We may now repeat the process, obtaining, in

general,

1 1 1
|c,,,, - c’""l % (nMo+1—su + nk—(s+2) + nMo+2—s—u)

1 1
= 0 (nMo«l-l—a;t + nu-(a+2)) ’

for 1 < s < N, provided p can be chosen to satisfy the following conditions:
(i) Mo+1—-sp>1 for1<s<N+1; )

(i) pw—-(s+2)>1 for1<s< N

It is evident that the choice

_ Mo+ N+3
~ N+42

will suffice, provided M is large enough. In this way, we obtain

, 1
klcn,g—cm,s|=0( )a

nbe
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with
bs=Mp+1—5+4+spu>My+1,

for 0 < s < N. Finally, then, we have

1
|Rin — Rim| = O (W) ,

from which we readily see that 5&‘1{—’; converges, so that

Rin=0 (kN+1) :

as k — 0 and n — oo.

So, then, we see that

|(Whi4(20) = 1) = (K" + bPagy (k) + Go(wo) + -+ + KNG (wo))|

_ 1 N+1
_O(nM°+1 +k )’

as k — 0 and n — oo, and so finally,

|i(wo + ib) — (k™' + bPagy (k) + Go(wo) + -+ + KNG (wo))|

L 1 N+1
= 0 (nMo+1 +k )

0 (K45 +#+)

= 0 (kN+1) ,

provided M, is large enough. O
The theorem now follows quite easily; substituting for gi(2), hx(2) in 2.18, we

obtain
Bl = | [ () = Gotw) + -+ ¥ [Hn(w) = ()] + Ok}

L =1 : N N
% ezm{k Vit bPps (K)+E +Go(w)++kN Gy (w)+O (KN +) }

 [Ghuw) 4+ + KYGly(w) + O] dw|, (221)

and the result follows.
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2.3 Numerical estimation of A;

We turn our attention now to the numerical estimation of A;. We use a Simpson
type approximation for the integral 2.21. First of all though, we need to calculate
sufficiently many of the 3, to obtain the required convergence. In terms of the
notation of section 2.2, we have N = 1. Consideration of the conditions (i) and
(ii) on p suggests that M > 8 will suffice. Of course, this is conservatively large,
and we will use M = 5, which, by experimentation, is adequate.

Now we have already,
Y_1(z) = —cotz;
Yo(z) = logsinz.

Using the relationship 2.11, we obtain,

1. z
Pi(z) = —-§smzcosz—6+a1;
1,
Pa(2) = ~1 cos'z — 5 sin’ z + av;
_ 5 . 119 5 . ) )
Pa(2) = 135 cos’ zsin z 510 cos” zsin z 30 cos zsin z 36z+a3,
1 g 6 83 4 9 2 .
Ya(z) = 3 cos” z 135 cos z + =0 cos z + 360 cos” z + ay;
164 o 0197 . . 190439 5 .
¥s(z) = 595 cos zsinz + 75600 cos' zsinz + 153600 cos’ zsin z
29009 cos® zsinz + 3001 cos 2 sin‘z - -4—19—2 +a
72576 80640 34560 5

Also, we have a; = 0, for 97 (), and § for 9 (2). Expanding the 3, and
collecting the appropriate terms, we obtain the following approximations: for n

large, positive,

) . 2i . L 2w 1 _4
Ho(wg) =~ %—log2+2zezw”—zw,,———f—ez n g Hun

12 64
19: _g; 1 _giw 411 _joiw
tWn - n __ _ " n. 222
t30¢ T 76s° 134400° (222)

. : . n bn 1 -2iw
T A i
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_ ibn’l _ 11: e—4iwn+ lgbn,l +_1_ —6Biwy
16 _ 2880 720 ' 540 °©

_ (ibn,l 54072 )e_siwn 164bn,1 =10iwn

96 T 3870720 ~ 53760 ° (2.23)

with similar expressions for Go(wp), G1(wo), with n large, negative. In addition,

a similar calculation to that in the proof of Lemma 2.6 for n < 0 gives

1 0 t z‘ 2 -1
bn'l = —— Z H (1 + —e” 'w') .
2 t=n+1 |s=n+l 2

For G, (we) and G’ (wp) we use a difference estimate:
0 1

G,‘('wo + 6) - G,’(wo - E)

Gi(wo) = %

+ O(%).

Now, we have

@)l = | [ {iHo(w) - Golw)] + k [Hy(w) - Ga(w)] + O(K")}

\
x 2 K1+ B2+ +Go(w)+5G1 (w)+O(K) } [Go(w)+ kG (w)+O(K)] dw}

—2n

= eFe™ l /'"‘ [Ho(w)—Go('w)]e““"°(w>az,(w)dw'

| [ ot} Galo) 6794 )+ 2 ) )]

[Hy(w) — Gy (w)] ez"‘G°(w)G6(w)dw‘ +0 () | (2.24)
= e:—:lé [40 + kAL + 0 (k7)) .

2.3.1 Results and programs

The approximations, 2.22 and 2.23, are sufficient to obtain an estimate of A,
using the second integral in 2.24. However, we need to give consideration to the
choice of the limits of integration, or, more particularly, we, since w, is deter-

mined by wg. Theoretically we should obtain approximately the same estimate

24



regardless of the choice of wg € W. However, we find that as Swp — —oo,
. Ho(wo) — Go(wo) — 0 and SGo(wo) — —o0. Since the relative error involved in
our estimate of Ho(wo) — Go(wo) increases rapidly as Swp — —oo, we find there

is only a small interval in Swp near 0 where the integral can be reasonably well es-

timated. Evaluating the integral over a range of wy values we obtain the following

data.

S S e S T T © T S N TS T - S B I S I A T

/1

.20662790502871e+007
.61409302724904e+007
.97942421415212e+007
.93966684094697e+007
.27315170695301e+007
.42737499087931e+006
.63022883993885e+006
.80425189737047e+006
.61043853201874e+006
.83266049403588e+006
.33153535818652e+006
.01530819982830e+006
.21254006798849e+005
.05049348515789e+005
.35903061365152e+005
.93817767072854e+005
.66886746730438e+005
.48462625274533e+005
.34987972377826e+005
.24560137020016e+005
.16140341096238e+005
.09137974611902e+005
.03196439246782e+005
.98085071045551e+005
.93643252921929e+005
.89751900694620e+005

st

.00000000000000e-001
.90000000000000e-001
.80000000000000e-001
.70000000000000e-001
.60000000000000e-001
.50000000000000e-001
.40000000000000e-001
.30000000000000e-001
.20000000000000e-001
.10000000000000e-001
.00000000000000e-001
.90000000000000e-001
.80000000000000e-001
.70000000000000e-001
.60000000000000e-001
.50000000000000e-001
.40000000000000e-001
.30000000000000e-001
.20000000000000e-001
.10000000000000e~001
.99999999999997e-002
.99999999999997e-002
.99999999999997e-002
.99999999999997e-002
.99999999999997e-002
.99999999999997e-002
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4.86320862910543e+005
4.83278205498934e+005
. 4:80566414538667e+005
4.78138673573294e+005
4.75956468143587e+005
4.73988304361610e+005
4.72207858927168e+005
4.,70593162239516e+005
4.69125850448329e+005
4.67790506744822e+005
4.66573839500267e+005
4.65464572974336e+005
4.64452924753408e+005
| 4.63530322476074e+005
4.62689320782182e+005

4.61923277694736e+005 -

4.61226254288507e+005
4.60592922137809e+005
4.60018450386608e+005
4.59498404654552e+005
4.59028727113075e+005
4.,58605653573064e+005
4.58225673688599e+005
4.57885500588759e+005
4.57582030999148e+005
4,57312315774994e+005
4.57073533984293e+005
4.56862972577594e+005
.4.,56677999747501e+005
4.56516047657056e+005
4.56374592277234e+005
4.56251136897695e+005
4.56143195318592e+005

.99999999999997e-002
.99999999999997e-002
.99999999999997e-002
.99999999999969e-003
.08780778723872e-016
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000003e-002
.00000000000000e-001

.10000000000000e-001
.20000000000000e-001
.30000000000000e-001
.40000000000000e-001
.50000000000000e-001
.60000000000000e-001
.70000000000000e-001
.80000000000000e-001
.90000000000000e-001
.00000000000000e-001
.10000000000000e-001
.20000000000000e-001
.30000000000000e-001
.40000000000000e-001
.50000000000000e-001
.60000000000000e-001
.70000000000000e-001
.80000000000000e-001
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4.56048279480739e+005 2.90000000000000e-001
4,55963885553530e+005 3.00000000000000e-001
4,55887477358960e+005 3.10000000000000e-001
. 4.55816483753687e+005 3.20000000000000e-001
4.,55749062458658e+005 3.30000000000000e-001
4.68627110835984e+005 3.40000000000000e-001
9.84336981363252e+006 3.50000000000000e-001

It is clear from the data that there is, as expected, a ‘window’ in Swp where
the estimate of the integral is substantially constant, although close inspection
reveals a systematic decrease with increasing Swo until Swo reaches about 0.33.
This is probably due to rounding error, which is an ever present hazard when
subtracting almost equal quantities as happens here. However, on the basis of

“the data here presented we tentatively suggest that A, is somewhere in the range

450000—460000.
For completeness we present also the program used to obtain the above data,
which is written in the Pascal programming language.

program newint3(input,output);
const pi=3.14159265358979e+000;
type complex=array [1..2] of real;
orbit= array[-30000..30000] of complex;
contour= array[0..30000] of complex;
var commult,rthpower,cominv,comexp,wone,
zetaplus,zetaminus,integral,intgr,comadd,comdiv,a,one,
minusone,
zero,wnought,invg,two,four,six,fwn,bwn,wn,H,G,Hi,Gi,modcka,
comminus,zetaminuscurrent,comlog,bwnplusone,error,minusn,
Ginverse,Glinverse,trial,zetanought,Ginvbwn,wnoughtplush,
wnpluseps,wnminuseps,wnplusteps,wnminusteps,
df,delta,intgrl,intgr2,gcurrent,hcurrent,glcurrent,hicurrent,
answer,gldashedcurrent,gdashed,int:complex;
eps,moda,modexp,b,modint :real;
11,num,s,numberofbands,m,n:integer;

" worbit,otherworbit:orbit;
gcont,hcont,gicont,hlcont,glpeps,gldashed,gamma,
gpeps,gdashedcheck,gdashedcont,glmeps,
gmeps,gpteps,gnteps,
gipteps,gimteps:contour;
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function modulus(z:complex) :real;
begin '

modulus:=sqrt(sqr(z[1])+sqr(z[2]))
end; (*modulus#*)

: procedure initialise;

begin
onel[1] :=1;0ne[2]:=0;
minusone[1]:=-1;minusone[2]:=0;
zero[1]:=0;zero[2] :=0;
six[1] :=6;8ix[2] :=0;
two[1] :=2;two[2]:=0;
four(1] :=4;four[2] :=0;

end; (*initialisex*)

procedure compadd(zi1,z2:complex);
begin '
comadd[1] :=z1[1]+z2[1];
comadd[2] :=z1[2]+22[2]
end ; (*compadd*)

procedure compminus(z1,z2:complex);
begin
comminus[1]:=z1[1]-22[1];
comminus[2] :=z1[2]-z2[2]
end; (*compminus*)

procedure compmult(z1,z2:complex);
begin
commult [1] :=(z1[1]*22[1])-(z1[2]*z2[2]);
commult [2] :=(z1[1]*z2[2])+(z1[2]*22[1])
end ; (*compmult*)

procedure comppower(wl:complex;power:integer);
var w2:complex;count:integer;

" begin
if power=0 then rthpower:=one else
begin
w2:=wl;
for count:= 1 to (power-1) do
begin
compmult (wl,w2);

w2:=commult
end; (xfor*)
rthpower:=v2
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end (*elsex*)
end ; (*comppower*)

procedure compinv(w:complex);

begin
cominv([1]:=w[1]/(sqr(w[1])+sqr(w([2]));
cominv[2] :=-w[2]/(sqr(w[1])+sqr(w[2]))

, end; (*compinvx*)

procedure compdiv(zi,z2:complex);
begin
compinv(z2);
compmult (z1,cominv);
comdiv:=commult
end; (*compdivx*)

procedure complog(w:complex) ;
begin :
comlog[1] :=1n(sqrt(sqr(wl1])+sqr(w([2])));
comlog[2] :=arctan(w[2]/w[1]);
if w[1]<0 then
comlog[2] :=comlog[2] +pi
end; (*complog*)

procedure compexp(z:complex) ;
begin
comexp[1] :=exp(z[1])*cos(z[2]);
comexp[2] :=exp(z[1])*sin(z[2])
end; (*compexp*)

procedure fofw(w:complex);
var fholdl,fhold2:complex;
begin
fholdi[1]:=2%w[2];
fhold1[2] :=-2*w[1];
compexp(fholdl);
wn[1]:=w[1]-comexp[1]/4;
wn[2] :=w[2]-comexp[2]/4
end; (xfofw*)

procedure finverse(w:complex);
var finvholdl,finvhold2:complex;
limit,j:integer;
begin
" if w[2]<-1 then limit:=15 else 1limit:=100;
bwn:=w;
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for j:=1 to limit do

begin
finvholdi1[1]:=2*bwn[2];
finvhold1[2] :=-2*bwn[1];
compexp(finvholdl) ;
bwn[1] :=w[1]+comexp[1]/4;
bwn[2] :=w[2] +comexp[2]/4

end; (*for-j*)

end; (*finverse*)

procedure fdashed(w:complex);
var fdholdl,fdhold2:complex;
begin
fdhold1[1] :=w[2]*2;
fdhold1[2] :=-w[1]*2;
compexp(fdholdl);
df[1] :=1-comexp[2]/2;
df[2] :=comexp[1]
end; (¥fdashedx*)

procedure getwn(z:complex;k:integer);
var j:integer;

begin
wn:=z;
bwn:=z;

worbit[0] :=z;
for j:=1 to k do
begin
"~ fofw(wn); .
finverse(bwn);
worbit[j] :=wn;
worbit[-j] :=bwn
end (*for-j*)
end; (*getwn*)

procedure getotherwn(z:complex;k:integer);
var j:integer;
begin
bwn:=z;
otherworbit [0] :=z;
for j:=1 to k do
begin
finverse(bwn);
otherworbit[-j] :=bwn
end (¥for-j*)
. end; (*getotherwn*)
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procedure getgamma;
var i:integer;
begin
compminus(wone,wnought) ;
delta:=comminus;
delta[1] :=delta[i]/numberofbands;
delta[2] :=delta[2] /numberofbands;
gamma[0] :=wnought;
for i:=1 to numberofbands do
begin
compadd(delta,gammali-1]);
gamma[i] :=comadd
end (*forx*)
end ; (*getgamma*)

procedure getH;

var Hterml,Hterm2,Hterm3,Hterm4:complex;
begin

" Hterm4[1] :=-2*worbit [num] [2];

Hterm4 [2] :=2*worbit [num] [1];

compexp (Hterm4) ;

Hterm4:=comexp;

Hterm1[1] :=-2%Hterm4[2];

Htermi[2] :=2*Hterm4[1];

Htermi[1] :=Htermi[1]+worbit[num] [2];

Hterm1[2] :=Htermi[2] -worbit [num] [1];

compinv(Hterm4) ;

Hterm1[1] :=Htermi[1]+cominv[2]/12;

Htermi[2] :=Hterm1[2] -cominv[1]/12;

compmult (cominv,cominv) ;

Htermi[1] :=Htermi[1]-commult[1]/64;

Htermi[2] :=Htermi [2] ~commult [2]/64;

conmppower (cominv,3) ;

Htermi[1] :=Htermi[1] -rthpower[2]*19/4320;

Htermi[2] :=Htermi [2] +rthpower [1]*19/4320;

comppower (cominv,4) ;

Htermi[1] :=Htermi[1]+rthpower[1]/768;

Hterm1[2] :=Htermi[2]+rthpower(2]/768;

comppower (cominv,5) ;

Htermi([1] :=Htermi[1]-rthpower[1]*164/537600;

Htermi [2] :=Htermi[2] -rthpower [2]*164/537600;

comppower (cominv,6) ;

Htermi[1] :=Htermi[1]-rthpower[1]*37/6635520;

Hterm1[2] :=Htermi[2] -rthpower [2]*37/6635520;
comppower (cominv,7) ;
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Hterm1[1] :=Htermi[1]-rthpower[1]*4.51472545e-5;
Hterm1[2] :=Htermi[2] -rthpower[2]*4.51472545e-5;
comppower (cominv,8) ; .
Htermi[1] :=Htermi[1] -rthpower[1]*2.145918589e-5;
Htermi[2] :=Hterm1[2] -rthpower [2]*2.145918589e-5;
Htermi[1] :=Htermi[1]-num;
H:=Hterml

end; (xgetH*)

procedure getG;
var Gterml,Gterm2,Gterm3,Gterm4:complex;

begin
" Gterm4[1]:=-2*worbit[-num][2];
Gterm4[2] :=2*worbit[-num] [1];
compexp (Gterm4) ;
Gterm4:=comexp;
Gtermi[1] :=-2%Gterm4[2];
Gterm1[2] :=2*Gterm4[1];
Gterm1[1] :=Gtermi[1]+worbit[-num] [2];
Gterm1[2] :=Gtermi[2]-worbit[-num] [1];
compinv(Gterm4) ;
Gterm1[1] :=Gtermi{1]+cominv[2]/12;
Gterm1[2] :=Gtermi[2]-cominv([1]/12;
compmult (cominv,cominv) ;
Gtermi[1]) :=Gtermi[1]-commult[1]/64;
Gterm1[2] :=Gtermi[2] -commult [2]/64;
comppower (cominv,3) ;
Gtermi[1] :=Gtermi [1]-rthpower[2]*19/4320;
Gtermi[2] :=Gtermi[2] +rthpower[1]*19/4320;
comppower (cominv,4) ;
Gterm1([1] :=Gtermi[1]+rthpower[1]/768;
Gterm1[2] :=Gtermi (2] +rthpower[2]/768;
comppower (cominv,5) ;
Gtermi[1] :=Gtermi[1]-rthpower[1]*164/537600;
Gterm1[2] :=Gtermi [2] -rthpower[2]*164/537600;
comppower (cominv,6) ; ‘
Gterm1[1] :=Gtermi[1]-rthpower[1]*37/6635520;
Gtermi[2] :=Gterm1 [2] -rthpower [2]*37/6635520;
comppowver (cominv,7);
Gtermi[1] :=Gtermi[1]-rthpower[1]*4.51472545e-5;
Gterm1[2] :=Gtermi [2] -rthpower[2]*4.51472545e-5;
comppower (coninv,8);
Gterm1[1] :=Gtermi[1]-rthpower[1]*2.145918589e-5;
Gterm1[2] :=Gtermi [2] -rthpower[2]*2.145918589e-5;
Gtermi[1] :=Gtermi[1]+num;
G:=Gterml
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end; (*getG*)

procedure getzetaplus;
var i:integer;
zetaplusterml,zetaplusterm2,zetaplusterm3,
zetaplustermé4:complex;
begin
zetaplus:=zero;
zetaplusterm3:=one;
for i:=1 to (num-1) do
begin
zetaplustermi[1] :=2*worbit [num-i] [2];
zetaplusterml[2] :=-2%worbit [num-i] [1];
" compexp(zetaplustermi);
zetaplusterm2[1] :=1-comexp[2]/2;
zetaplusterm2([2] :=comexp[1]/2;
compmult (zetaplusterm3,zetaplusterm2);
zetaplusterm3:=commult;
compadd (zetaplus,zetaplusterm3) ;
zetaplus:=comadd
end; (*for ix*)
zetaplus[1] :=(zetaplus[1]/2 +0.5);
zetaplus[2] :=zetaplus([2]/2
end; (*getzetaplus*)

procedure getzetaminus;
var i:integer;
zetaminusterml,zetaminusterm2,zetaminusterm3,
zetaminusterm4:complex;
begin
zetaminus:=zero;
zetaminusterm3:=one;
for i:=1 to (num) do
begin
zetaminustermi [1] :=2*worbit [-num-1+i] [2] ;
zetaminustermi [2] :=-2*worbit[-num-1+i] [1];
compexp (zetaminusterml) ;
zetaminusterm2[1] :=i-comexp[2]/2;
zetaminusterm2[2] :=comexp[1]/2;
compinv(zetaminusterm?2) ;
. compmult (zetaminusterm3, cominv) ;
zetaminusterm3:=commult;
compadd (zetaminus,zetaminusterm3) ;
zetaminus:=comadd
end; (*for ix*)
zetaminus([1] :=-zetaminus[1]/2;
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zetaminus[2] :=-zetaminus[2]/2
end; (*getzetaminus*)

procedure getH1;
var Hitermi,Hiterm2,Hiterm3,Hlterm4:complex;
begin

Hiterm4[1] :=-2*worbit [num] [2];

Hiterm4[2] :=2*worbit [num] [1];

compexp(Hiterm4) ;

Hiterm4:=comexp;

Hiterml:=zero;

compmult (zetaplus,Hiterm4) ;

Hitermi[1] :=Hitermi[1]-4*commult[1];

Hitermi[2] :=Hiterm1[2]-4*commult[2];

compmult (Hiterm4,Hiterm4) ;

Hitermi[1] :=Hiterm1[1]-2*commult [2]+zetaplus[2]-Hiterm4[1]
-worbit [num] [1]/6;

Hitermi[2] :=Hitermi[2]+2*commult [1]-zetaplus[1]-Hitern4[2]
-worbit [num] [2]/6;

compinv(Hiterm4);

compmult (cominv,zetaplus) ;

Hitermi[1]:=Hitermi[1]-commult[1]/6-cominv[1]/48;

Hitermi[2] :=Hiterm1[2]-commult[2]/6-cominv[2]/48;

compmult(cominv,cominv);

Hiterm2:=commult;

Hitermi[1] :=Hitermi[1]-commult [2]*11/2880;

Hitermi[2] :=Hiterm1[2]+commult[1]%11/2880;

compmult (Hiterm2,zetaplus) ;

Hitermi[1] :=Hitermi[1]+commult[2]/16;

Hitermi[2]:=Hitermi[2]-commult[1]/16;

comppower (cominv,3) ;

compmult (rthpower,zetaplus);

Hitermi[1] :=Hitermi[1]+commult[1]*228/8640 + 3.14159265358979/6;

Hitermi[2] :=Hiterm1[2]+commult [2]*228/8640;

Hitermi[1] :=Hltermi[1]+rthpower[1]/540;

Hitermi[2] :=Hitermi[2]+rthpower(2]/540;

comppower (cominv,4) ;

compmult (rthpower,zetaplus);

Hitermi[1] :=Hitermi[1]+commult [2]/96+rthpower [2]*5407/3870720;

Hitermi[2] :=Hiterm1[2]-commult[1]/96-rthpower [1]*5407/3870720;

comppower (cominv,5) ;

compmult (rthpower,zetaplus);

Hitermi[1] :=Hitermi[1]-commult[1]%164/53760
-rthpower[1]*18937/19353600;

Hitermi[2] :=Hitermi[2]-commult[2]*164/53760
-rthpower[2]*18937/19353600;
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comppower (cominv,6) ;

compmult (rthpower,zetaplus);

Hiterm1[1] :=Hitermi[1]-commult[2]*37/552960
-rthpower [2]*1.625340325e-3;

Hiterm1[2] :=Hiterm1[2]-commult[1]*37/552960
-rthpower[1]*1.625340325e-3;

comppower (cominv,7) ;

compmult (rthpower,zetaplus);

Hitermi[1] :=Hitermi[1]-commult[1]*6.320615631e-4
+rthpower[1]*8.575247229e-5;

Hitermi[2] :=H1term1[2]~commult[2]*6.320615631e-4
+rthpower [2]*8.6575247229e-5;

comppower (cominv,8) ;

compmult (rthpower,zetaplus);

Hitermi[1] :=Hitermi[1]-commult[2]*443/1290240;

Hitermi[2] :=Hi1term1[2]+commult[1]*443/1290240;

Hi:=Hitermi
end; (*getH1%)

procedure getGl;
var Gitermi,Glterm2,Glterm3,Glterm4:complex;
begin
Giterm4[1] :=-2*worbit [-num] [2];
Glterm4 [2] :=2%worbit [-num] [1];
compexp(Giterm4);
Glterm4:=comexp;
Glterml:=zero;
compmult (zetaminus,Giterm4);
Gitermi[1] :=Giltermi[1]-4*commult[1];
Giterm1[2] :=Giterm1[2]-4*commult [2];
compmult (Glterm4,Glterm4);
Gltermi[1]):=Gitermi[1]-2*commult [2]+zetaminus[2]-Glterm4[1]
-worbit [-num] [1]/6;
Gitermi[2] :=Gitermi[2]+2*commult [1]-zetaminus[1]-Giterm4[2]
-worbit [-num] [2]/6; '
compinv(Giterm4);
compmult(cominv,zetaminus);
Giterm1[1] :=Gltermi[1]-commult[1]/6-cominv[1]/48;
Giterm1[2]:=Giterm1[2]-commult[2]/6-cominv[2]/48;
compmult(cominv,cominv) ;
Glterm2:=commult;
Gitermi[1] :=Gitermi[1]-commult[2]*11/2880;
Gilterm1[2] :=Gitermi[2]+commult[1]*11/2880;
compmult (Glterm2,zetaminus);
Gitermi[1] :=Gltermi[1]+commult[2]/16;
Gitermi[2] :=Glterm1[2]-commult{1]/16;
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comppower(cominv,3);
compmult(rthpower,zetaminus);
Gitermi[1] :=Gitermi[1]+commult[1]*228/8640;
Gitermi[2] :=Gitermi[2]+commult[2]*228/8640;
Gitermi[1] :=Gltermi[1]+rthpower[1]/540;
Gitermi[2] :=Giltermi[2]+rthpower[2]/540;
comppower (cominv,4) ;
compmult (rthpower,zetaminus) ;
Gitermi[1] :=Giterm1[1]+commult[2]/96+rthpower [2]*5407/3870720;
Gitermi[2] :=Gitermi[2]-commult[1]/96-rthpower [1]*5407/3870720;
comppower(cominv,5) ; .
compmult(rthpower,zetaminus);
Gitermi[1] :=Gitermi[1)-commult[1]*164/53760
-rthpower [1]*18937/19353600;
Gitermi[2] :=Gitermi[2]-commult[2]*164/53760
-rthpower [2]*18937/19353600;
comppower (cominv,6) ;
compmult(rthpower,zetaminus);
Gitermi[1] :=Giltermi[1]-commult [2]*37/552960
" -rthpower [2]*1.625340325e-3; '
Gitermi[2] :=Gltermi[2]-commult[1]*37/552960
-rthpower[1]*1.625340325e-3;
comppower (cominv,7) ;
compmult (rthpower,zetaminus) ;
Gitermi[1] :=Gitermi[1)-commult[1]*6.320615631e-4
+rthpower[1]*8.575247229e-5;
Gitermi[2] :=Gitermi[2]-commult[2]*6.320615631e-4
+rthpower[2] *8.576247229e-5;
comppower (cominv,8) ;
compmult(rthpower,zetaminus);
Gitermi[1] :=Giterm1[1]-commult [2]*443/1290240;
Gitermi[2] :=Giterm1[2]+commult[1]*443/1290240;
G1:=Giterml
end; (*getG1x)

procedure getgdashed;
var gdashedtermi,gdashedterm2,gdashedterm3:complex;
i:integer;
begin
gdashedterml:=one;
for i:=0 to (num-1) do
begin
fdashed(worbit[-i]);
compmult (gdashedtermi,df);
gdashedterml:=commult
end; (*for-ix*)
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gdashedterm2[1] :=-2*worbit [-num] [2];
gdashedterm2[2] :=2*worbit [~num] [1];
compexp (gdashedterm?2) ;
gdashedterm2:=comexp;
compmult (gdashedterm?2,four);
compminus(zero,commult) ;
gdashedterm3:=comminus;
compinv(gdashedterm?2) ;
gdashedterm3[1] :=gdashedterm3[1]-cominv[1]/6;
gdashedterm3[2] :=gdashedterm3[2]-1-cominv[2]/6;
compmult (cominv,cominv) ;
gdashedtermS[i]:=gdashedterm3[1]+commu1t[2]/16;
gdashedterm3[2] :=gdashedterm3[2]-commult [1]/16;
compmult (gdashedterm3,gdashedtermi);
gdashed:=commult

end; (*getgdashed*)

procedure gethgs;
var i:integer;
+ begin
for i:=0 to numberofbands do
begin
getwn(gamma[i] ,num) ;
getzetaplus;
getzetaminus;
getG;
getH;
getGl;
getHl;
geont[i] :=G;
hcont[i] :=H;
glcont[i]:=G1;
hicont[i]:=H1
end; (xfor-ix*)
for i:=0 to numberofbands do
begin -
wnpluseps:=gamma[i] ;
wnpluseps[1] :=wnpluseps[1]+eps;
getwn(wnpluseps,num) ;

getzetaminus;
getG;

getGl;
gpeps[i] :=G;

glpeps[i]:=G1;
wnninuseps:=gammaf[i];
wnminuseps[1] :=wnminuseps[1]-eps;
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getwn(wnminuseps,num) ;
getzetaminus;
getG;
getGl;
gmeps[i] :=G;
gimeps[i] :=G1

end; (xfor-ix*)

for i:=0 to numberofbands do

begin
wnplusteps:=gammal[i];
wnplusteps[1] :=wnplusteps[1]+(2%eps);
getwn(wnplusteps,num) ;
getzetaminus;
getG;
getGl;
gpteps[i] :=G;
gipteps[i]:=G1;
wnminusteps:=gammal[i];
wnminusteps[1] :=wnminusteps[1]-(2*eps);
getwn(wnminusteps,num) ;

- getzetaminus;
getG;
getGl;
gmteps[i] :=G;
gimteps[i]:=G1

end (*for-i%*)

end; (*gethgs*)

procedure getGldashed;
var Gldashedtermi,Gidashedterm2:complex;
i:integer;
begin
for i:=0 to numberofbands do
begin »
gldashed[i][1] :=(8*glpeps[i] [1]-8*gimeps[i] [1]-
gipteps[il[1]+gimteps[i] [1])/(12%eps);
gldashed[i]l[2]:=(8*gipeps[i] [2]-8*gimeps[i] [2]-
gipteps[i] [2]+gimteps[i] [2])/(12%eps);
gdashedcont[i] [1] :=(8*gpeps[i] [1]-8*gmeps[i] [1]-
gpteps[i] [1]+gmteps[i] [1])/(12*%eps);
gdashedcont[i] [2] :=(8*gpeps [i] [2]-8*gmeps[i] [2]-
gpteps(il [2]+gmteps[il [2])/(12%eps)
end (*for-i*)
end; (*getGidashed*)

procedure integrandi(k:integer);

38



var intgriil,intgri2,intgri3,intgri4:complex;
begin
compminus (hcont [k] ,gcont[k]) ;
intgril:=comminus;
intgri12[1] :=-2*pi*gcont [k] [2];
intgri12[2] :=2*pi*gcont [k] [1];
compexp(intgri2);
compmult (comexp,gidashed[k]);
intgri3:=commult;
compmult (intgril,intgri3);
intgrl:=commult;
int:=intgril
end; (*integrandi*)

procedure integrand2(k:integer);
var intgr2i,intgr22,intgr23,intgr24,intgr2:complex;
begin
compminus (hcont [k] ,gcont [k]);
intgr21:=comminus;
compmult (intgr21,gicont[k]);
"intgr22[1] :=commult[2]*(-2)*pi;
intgr22[2] :=commult [1]*(2)*pi;
compminus (hicont[k],gicont [k]);
compadd (intgr22,comminus) ;
intgr21:=comadd;
intgr22[1]:=(-2)*pi*gcont [k][2];
intgr22[2] :=(2)*pi*gcont [k] [1];
compexp(intgr22);
compmult (intgr21,comexp) ;
intgr23:=commult;
compmult (intgr23,gdashedcont [k]);
intgr2:=commult;
~ int:=intgr2
end; (*integrand2*)

procedure integrand (kk:integer) ;

begin ‘
integrandi (kk) ;
integrand2(kk) ;
compadd(intgri,intgr2);
int:=comadd

end; (*integrand)

procedure integratel;

var subtotalintil,subtotalinti2,subtotalinti3,
subtotalinti4:complex;
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h:real;
count:integer;
begin

integrandi(0);
subtotalintil:=int;
integrand1 (numberofbands) ;
compadd (subtotalintil,int);
subtotalintii:=comadd;

count:=1;

subtotalintl2:=zero;

repeat

begin
integrandi(count);

compadd (subtotalint12,int);
subtotalinti2:=comadd;
count :=count+2
end (*repeat*)
until count>numberofbands;
compmult (subtotalint12,four);
compadd (subtotalintil,commult);
subtotalintll:=comadd;
count:=2;
subtotalintl3:=zero;
if count<numberofbands then
repeat
begin
integrandi(count);
compadd (subtotalinti3,int);
subtotalint13:=comadd;
count :=count+2
end (*repeat*)
until count>=numberofbands;
compmult (subtotalint13,two);
compadd (subtotalintil,commult);
subtotalintll:=comadd;
compmult (subtotalintil,delta);
subtotalint11[1] :=commult[1]/3;
subtotalint11[2] :=commult[2]/3;
integral:=subtotalintil;
modint :=modulus(integral)
end; (*integratelx)

procedure integrate2;

var subtotalint21,subtotalint22, subtotallnt23
subtotalint24:complex;
h:real;
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count:integer;
begin '
integrand2(0);
subtotalint21:=int;
integrand2(numberofbands) ;
compadd (subtotalint21,int);
subtotalint21:=comadd;
count:=1;
subtotalint22:=zero;
repeat
begin
integrand2(count);
compadd (subtotalint22,int);
subtotalint22:=comadd;
count :=count+2
end (*repeat*)
until count>numberofbands;
compmult (subtotalint22,four);
compadd (subtotalint21,commult) ;
subtotalint21:=comadd;
count:=2;
subtotalint23:=zero;
if count<numberofbands then
repeat
begin
integrand2(count);
compadd(subtotalint23,int);
subtotalint23:=comadd;
count :=count+2
end (*repeat*)
until count>=numberofbands;
compmult (subtotalint23,two);
compadd (subtotalint21,commult);
subtotalint21i:=comadd;
compmult (subtotalint21,delta);
subtotalint21[1] :=commult[1]/3;
subtotalint21[2] :=commult[2]/3;
answer[1] :=integral[1]+subtotalint21[1];
answer[2] :=integral[2]+subtotalint21[2];
writeln(modulus(answer),’ ’,wnought[2])
end; (*integrate2*)

begin (*body*)
initialise;
num:=100;
numberofbands:=40;
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eps:=le-4;

wnought [1]:=1.57;

wnought [2] :=-0.3;

repeat

begin
wnought [2] :=wnought [2]+0.01;
fofw(wnought) ;
wone:=wn;
getgamma;
gethgs;
getGldashed;
integratel;
integrate2

end (*repeat*)

until wnought[2]>0.35

end.
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. Chapter 3
Scaling of (n + g)_l—tongues of the
sine circle map

In this chapter we shall be considering the sine circle map as studied in chapter
3. We shall now, however, be investigating the width of tongues with rotation
number ;4]-_5" The motivation for this work is the paper [Da3], which looked at
tongues with rotation number 1 as n — oo and ¥ — 0 in any manner. We

summarise this paper below, since it is essential to the material that follows.

3.1 Width of Arnol’d tongues for the sine circle
map -

The following result is obtained:

Theorem 3.1 Let fia(z) =+ Q+ ksin’z, for0 <k <1,0<Q <7, and let
o0 = s (V1 (B - 22)
T n2y/n2k? + 4n? nk nk|

| 1.()|
in, k) 0

as n — oo and k — 0, where Ag is the same constant obtained in section 2.1.

Then

The proof is by estimation of the range of fiq for @ € I,(k), whence we
obtain the range of Q for which fig(z) — z — 7 has a fixed point. Asin [Dal],
' fk'g is extended into the complex plane. With an extra dimension available, 2o
is allowed to vary in such a way that fi¢ is transformed to a ‘limiting mapping’

independent of the small parameter k.
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We begin by defining a mapping which satisfies '
H(fra(z)) - H(z) > 1,

for z € C. Writing
g(2) = Q + ksin’ 2,

= ——1——— an~! M an z
G(z) = \/m t (\/ ) t ), (3.1)

(so that G’ = 7), we define

and

H(2) = G(z) + 3 log g(2),

the branches being chosen so that G(0) = 0 and H(0) = 3 log 2.

Now, let
A= ——1  tanh™ LU
Jak+ Q) k+Q

. We find that G maps the domain V = {z: |3G(z)| < A} conformally onto the
strip {w : |Sw| < A\}. We then also find that if Wa = {z € V : SH(2) < A — 4},
where A > 0, then provided A is large enough, H maps W4 conformally onto the
set {w:|Sw| < A — A}

This now _facilita.tes the estimation of the error in the approximation

H(fra(z)) — H(z) >~ 1. We obtain
|H(fra(2)) = H(z) ~ 1] < Cike™ [g(2) (3.2)
where y = Qz, and C; > 0. We are now able to define a mapping,
f=HofiaoH™,

on the rectangle

Ry = {w:léRw| <1,|8w| < A—A},
so that if H(z) = w € R4, then
Cike™ |g(2)
< CrkQe®.

‘f(w)—w—ll

IN

We now introduce the following important result:
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Proposition 3.2 There ezists § > 0 such that if 0 < e < § and if F is analytic
. on-the rectangle

R= {z=:v+iy: lz| < 3, |yl <a},
for some a < 2, satisfying

//R|F(z+iy)-(m+iy)-1|dzdy<e,

then there ezists @, analytic on the rectangle
Ro={z:—%<z<§,|y|<a—1},

such that
lo(2) — 2| < Be

for z € Ry, and
@(F(2)) = ¢(2) +1

for|z| < 1, |yl < a—1. (B is an absolute constant).

Now f satisfies the hypotheses of Proposition 3.2, and we then obtain ¢,

analytic on the rectangle
Qan = {w: -1 <Rw < §,[Sv| < A—(A+1)}.

 satisfies
¢(f(w)) = p(w) +1,
for w € R4 N Qa41, and
lp(w) — w| < CsQ,

for w € Qa41. Writing now, 6 = ¢ o H, we have
0(f(2)) = 6(=) +1, (3.3)
for 2 € H"'(RaN Qa+41), and ’
|0(z) — H(z)| < C3%,

for z € H(Qa41)-
We are now in a position to define the mapping which is the crucial ingredient

in the proof: we write

o(w)=2~0 [fm (0'1 (w)) - 7r] —w—m, (3.4)
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where m is chosen so that f™ (G'I(w)) — 7 € Qa41. It follows from 3.3 that
if more than one such m exists, o(w) is independent of the choice. Also, if
w,w+ 1 € Qg42, then o(w + 1) = o(w). We may thus extend o to an analytic
function of period 1 on the strip {w : |Sw| < A — (A + 2)}, and write

w .
a(w)= Z o,re—2mrw’

r=-—00

where

1 .
o, =/ o(w)e™ ™™ dw.
0

We now consider the behaviour of o, as k,2 — 0 by means of the ‘limiting
map’, fo(v) =v— -};e"zi". This is the same map as we derived in section 2.1, and

it plays the same role. We define similarly the map
Hy(v) = 2ie — R
and thence the limits
hi(vo) = Lim Ho(vm) —m,

on the set

U= {v:%" <Rv< ¥ Qv< -—A—S}.
hy and h_ are the same as the mappings h and g in sectioﬁ 2.1, and they satisfy
he(fo(v) = hs(v) + 1.
We define, as before, an analytic, period 1 map,
o°(w) = hy (h-(w)) — w,

on the half plane {w : Sw < B}, for B large enough. By considering an orbit of
fo, {vm}, and in particular by considering vim, where m is chosen large enough

so that e25¥#m < ¢, for € > 0, we find that
o(w) = o°(w — p) + E + O(e),

E a constant, for w € Q443 with Sw = A — A — 4, where

w

T 2 /0%k+9)
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and we therefore obtain

o, = e21riru

¥ o%(w) dw + O (6_2"’\6) . (3.5)

—p+i(A-A-4)+1
./—u+i(A-A—4)
Since u — (A + Z) € R, we obtain

lov| = e (02| + O(e)) , (3.6)

where 0%(w) = =% __ 0% ~?™", Thus, as k,Q — 0,
. _ —2rA—n2 0
max o(w) — min o(w) = 4e (lall + o(l)) .
Now, if Q € I,(k), there exists an orbit, {{m}, such that
i m) — 7 = &m. (3.7)

Since f(0) = (2, and since f preserves order, there must be zo € [0,}] such that
3.7 holds for &,, = zo. By 3.2,

|H(zo + 7) — H(zo) — n| < Cak,

and so

|G(z0 + 1) — G(z0) — n| < Cak.

However, from 3.1, we see that

G(zo+ 7) — G(z =——7r—,
|G(z0 + 7) — G(z0)| T )
and so we have
n— e | < Cyk.
VUE+ Q)

This then gives
- k2 P
e~ {—2n tanh™* [ ke ;rk + A ]} (1 + 0(1))

= exp

27\ 2|
= [ 1+ (E) _E] (1+0(1)) -
Now also, |Q20'(z) — 1| = o(1) for z € [—£,2)], and so we obtain

Jmax (f(2) —2—m) — min (f'(z) -~z —m)

= 4™ |a§’| .[\/1 + (%)2 - Z—:]n (1 + 0(1)) .
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Finally, we require an estimate of %%" to complete the argument, and for this we

af" n® 47? 4r?
30 (&) =3 [—k+\/k2+7 ]Wo%;ﬂ— (1+o(1)),

for z € [0,9)] and Q € I, (k). O

obtain
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3.2 The extension to rotation numbers (n+ g)_l.

In order to estimate the width of (n + g)'l—tongues we develop the idea of the
map 3.4. fa= (n+§)'1, and Q € I, with (p,q) = 1, then there exists z € [0, )
such that

5P (z) =z + qm.
[We note that if (p,q) = 1, then for any n € N, (¢,qn + p) = 1.] Recall now the

mapping which was the centre piece of the proof of Theorem 3.1:

o(w) = 0 [0 (w) — 7] —m —w,
for w € Qa42. In order to estimate the range of fi4/?(z) — = — g7 we define

$(w) =6 a7 () — 7] —m,
for w € Q 442, and consider
P*(w) = 8 [fa(67} (w)) — gn| — m,
with m' chosen so that f,’:,‘fl,(a"l(w)) — qr € Qa41. Of course, for any given
w, Sw not too large, m' will be near to gn + p when Q € I,. Recall that
0(fra(2)) = 6(2) + 1, so that again we see there is no ambiguity regarding the
choice of m/, and the map is well defined.
We define now
&(w) = p(w) — w,

for w € Qa42. Again & has the property &(w + 1) = &(w), provided w,w+1 €
Qa42, and so it can be analytically extended to a function of period 1 on the

strip {w : [Sw| < A — A — 2}. We thus write

)= Y &.(z)e™.

r=<00

Now, since for Q € I, there exists zo such that f;gj;;“" (z0) = zo + gr, we see that

7(6(zo)) = —gn — p, and hence conclude that
a’o =—qn-—p+ 0(5'1)

(Recall that 8(fra(2)) = 8(z) +1, for z € H'(Ra N Qa+1).)

The problem is thus now, as before, one of estimating the range

L A
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3.2.1 The case o= (n+1)7".

For ¢ small enough we may, in theory, expand & in terms of the Fourier coefficients

of 0. We illustrate this process by considering a = 7:_1—’—" sothat p=1,¢=2. We
2
have then, first of all,

'(/)((L‘) =z + Z a.r621rl'rz’

r=—00

for ¢ € R. Thus

¢2(x) = r4+00+ 0,1621riz + &16—21“'1: + 0_2641ri:c + &26—41ri:x +.e
+00 + o1 exp {27ri{a: + 00+ 0165™F + 517 4 . -}}
+87 exp {—27rz'{:c + 00+ 0165 4 5’16'_27".: + - }}

g, (3.8)

Now, writing &(z) = ¥*(z) — z as the Fourier series

o0

6'(23) = E &r(x)e%rriz,
we see that the constant term, &, is given by
5’0 = 20’0 + O(O’f)
[ Recall that o, = O(a? e'z’""‘—”’z). ] Thus we obtain
1 2 . .
0’0=—n-—§+0(0'1 +0’1).
Continuing with the expansion of 3.8, then, we eventually find

6’1 = O(O’?),

o2 = 2(02 —iraf) + 0 (af),

and of course,

G_;=0; .
We thus easily see that

D #(@) — mipo(e) = 8o — o]+ 0 (1),
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and by 3.6 we obtain

—4nA-272 (

|az - ivrafl =e oy — iw(a?)zl + o(l)) ,

as k— 0.

Now, from 3.2 we obtain
|G(zo + 27) — G(z0) — (2n +1)| < Dk,

where D is some positive constant. Also we see directly from the definition of G

that
27

G(IBQ + 27!') - G(:L‘o) = m,

and hence
2r

< Dk.

We therefore now have

2n+1
—4mr _ ~ 4 2 4ir
e ‘N”(W) ‘m} (1o,

. af?ﬂ-{-l
as k — 0. Also, our estimate of —5f— is

AfFt  Qn+1)? 1\2
S =T \/("*“5) ¥+ 4m% (1 + o(1)

‘forz e [0,9] and Q € I,. We thus finally obtain

] = A e NH( Vo2 }

(n + 1)%/(n + 1)2k2 + 4x? (n+Dk)  (m+Dk

x (1+0(1)),
asn — 00,k — 0.
3.2.2 The general case.

More generally we are interested in o = (n + fll)'l, for (p,q) = 1. The problem
with generalising the above method for £ = 1 is simply that for larger g, calcu-

lation of ¥? rapidly becomes impractical by direct means. We use a result from
[Da2].
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Theorem 3.3 Let fa(z) =z + Q + g(z), where

g(:l)) _ f: 2R (areZm'r:c) ,

r=1

the series converging for € small enough. Then for this family,
|Ia| = l\pa(ala soe 1aq)|€q + O(6q+l)a
for each rational a = 5, where ¥, is a polynomial with complex coefficients.

For the detailed proof of this result we refer the reader to [Da2], and in particular
to Theorem 7.2 and Proposition 7.3 therein.

Now consider again the map 1(z). From 3.5 we obtain
o, = 2miTH (0.3 + 0(1)) :
as n — oo. Thus

b(z) ~ 9°(z) = & + Do + f: T (eé""*“af) ,
r=1
as n — co. We apply the theorem to %°, or to be more precise, to the map
z+ x4+ (0 mod 1) + f: e AT R (ez"‘ra“af) ,
r=1
looking for the interval If' As we shall see, for each term in the polynomial,

Kof'...0.%, we have Yy =1 mrm = ¢, so that we obtain

2miRp 0 iqRp 0\ | —2mgr—qn® —2mgA
|Ia|=|\Il§(e’" “od,...,erm™ ”aq)|e.“q am +o(e "q).

An algorithm obtained from the proof of Theorem 3.3 enables us to calculate the
required polynomial \I’E, and we give details of this, as well as tabulation of I\Il:él
for values of ¢ up to 20 in the following section.

We see then that
. —27gA— "2 —2r _ 1r2
max(¢®(z) — 2) — mip(¢'(z) — 2) = q|¥zle 2= 4 ) (e e DN—(er) ),

and we then easily obtain the following result:
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Theorem 3.4 Let fia(z) =+ Q +ksin’z, for0 <k <1,0<Q <7, and let
a=(n+ g)'l, and let

gn+p

2
1 2n 27
l(n,k,p,q) = 1 -
(m: %, 09) (n+2)3/(n + 2)2F + 4 \] +((n+§)k) (n+ D)k

Then
| 1o (k)|
l(n’ k, p’ q)

— 21r28-q"2|\1’§|,

asn — 00,k — 0.
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3.3 Numerical results

We now turn to the estimation of |\Il§| for ¢ = 1,2,...,20. For full details of
the following algorithm we refer the reader to [Da2] and to the proofs of the
aforementioned results.
We begin by defining v = e?™® and we set b, = 0;. Now, proceeding recur-
sively, for 1 < k < q we define
bi

*= -y

and
i E(z )1‘1+ +rm CL o O
by = o; wij) T e

: il !
J:l e v o0 m.

where the second summation is taken over all sequences ry,...,7y, such that
(i) i 2 0

(i) ri+2rp+--4+mrp = k—j.

We then have ¥, = b,. Furthermore, it is easy to verify inductively that, as
mentioned in the previous section, every term in ¥, has the form Ko7' ...0.,

where Y7 _, mr, = q.

3.3.1 The Fourier coefficients

We derive the Fourier coefficients from numerical work done by Stewart, [St]. In
this work, Stewart considers the map g(v) = ve’, and derives a period-1 map
(called o, but we shall denote it by ¥, to avoid confusion) analogous to the
map o° involved in this chapter. Recall that ¢°(w) = hi(hZY(w)) — w, where
h(20) = limy—voo Ho(2n) —n and h_(20) = limps—co Ho(2n) — 1, 2n being iterates
~ of the map f(z) = 2 — -}e-m . Now, it is easily verified that the transformation

z=u(v) = élog —24v is such that f ou = uog. Defining © = Hg o u, we obtain
O(v) = }--i-llo v+C
- v 2 g )
where C is a constant, and we find that

0(g(v)) — O(v) = 1 + O(v?). (3.9)
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© can then be used to define the map ¥ in a manner analogous to the definition
of ¢°. We note, however, that Stewart calculates additional terms for the map
we have called ©, so that the error term in equation 3.9 is of higher order. The

effect of this is that the limits

px(vo) = lim O(v,) —n

will differ by a constant, depehding on the number of terms calculated for ©.

We have, then,

Pp(@) = @i(v) —p-(v),
ao(w) = hi(z) —h-(2),

where ¥ = ¢_(v) and w = h_(2z). Thus
o°(w) = hy o u(v) — b o u(v).
Now,
hyou(v) = lim Hpo Mu@)—n
= '}Lr&Hoouog"(v)—n

Y+ (v)a

and similarly for A_,p_. Hence we see that

o*(w) = $(@) = P(w +v),
for some constant v. We thus have, for the Fourier coefficients we require,

0 wo+1 =2mirw
o, = / P(w+v)e dw

wo

/wo+u+1 ¢(€)e-21rir(€—1')d€

wo +v

= e2m’ru "/)r ]

55



From [St] we have the following estimates for ¢1,. .., %20

1 = 1.0968632 x 10° — 3.2721079 x 10%
¥ = 3.0300529 x 10° — 7.1904567 x 10%
s = 3.7588902 x 107 — 1.9265715 x 1074
s = 4.2745511 x 10° — 2.4590307 x 10%
¥s = 1.3774875 x 10" — 4.8994609 x 10''i
Ye = 2.6166535 x 10" + 3.9449673 x 10'%;

vy = —3.3864992 x 10'® — 1.0748475 x 10'%
b = 2.1925635 x 10'7 + 1.7196424 x 10'%
o = —1.1493705 x 10 — 3.4009912 x 10%%
bo = —1.3183358 x 10?2 + 5.3164967 x 10?2
Y = 3.9565245 x 10** — 6.9086502 x 10%*;
b1z = —8.7036497 x 107 + 7.5179384 x 10%%
13 = 1.6676413 x 10%° — 8.3835279 x 107%
e = —3.256251 x 10° + 1.5434638 x 10%'i
bis = 6.9358351 x 10%° — 3.6867026 x 10%%
e = —1.4760744 x 10°® + 6.7328611 x 10%°
Y17 = 2.718999 x 10% —5.9558781 x 10°"3
b1s = —3.7648585 x 10%° — 8.0754807 x 10°%

o = 2.9151277 x 10*% + 4.0989653 x 10*%
Y20 1.2735682 x 10** — 7.6963318 x 10**;

P4

Now, from earlier numerical work we have the estimate o) ~ 134330 —

85357.4¢, and so we may obtain the estimate e?™ = 133.777 — 37.9118i by direct

calculation.

' 3.3.2 Computed values of |¥e|.

_ The data we present here were obtained using the program given at the end of
this chapter, and figures quoted are real and imaginary parts of \Ilg, followed by

the modulus. No more than 4 significant figures should be regarded as reliable.
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p/q=
p/g=

p/q=

p/q=

p/q=

p/q=

p/q=
p/q=
p/q=

p/q=

p/a=

p/q=

p/q=
p/q=
p/q=
p/q=
p/q=

~ple=

p/q=

p/q=

.34329918e+0056
.77854793e+010

.27667430e+016

.20486157e+016

.83065247e+022

.056836213e+022

.33573961e+028
.67494686e+028
.72161534e+028

.77469116e+028

.51677161e+035

.13908078e+035

.580038869+041
.52286366e+041
.09255853e+041
.61292124e+041
.96704046e+039

.61706235e+041

.34493063e+047

-8.

-3.

6

6.

3.

=7

53573361e+004

80562999e+010

.49245146e+016

24799206e+016

14375935e+022

.64794058e+022

.09537237e+029
.42036371e+028
.27202060e+028

.03580042e+029

.00811455e+035

.71392840e+035

.22318024e+041
.08265157e+041
.21615057e+041
.46164659e+040
.65320669e+041

.56715005e+041

.44700229e+048

57

.59156276e+005

.77377203e+010

.88005609e+016

.62561841e+016

.43814796e+022

.72082415e+022

.31832143e+029

.59856141e+028

.38626628e+028

.14055218e+029

.51656913e+035

.05792507e+035

.71253040e+041

.86848819e+041

.63484138e+041

.63159798e+041

.65620849e+041

.42420329e+041

.51082753e+048



p/q=

p/q=

ple
p/q=
p/q=
p/q=
p/q=

p/q=

p/q=
p/q=
p/q=

p/q=

p/q=
p/a=
p/q=
p/q=
p/q=
p/q=
p/a=
" p/a=

p/q=

-6.06619292e+046
.13911433e+047

6.22730078e+047

2.98805850e+054
.66608113e+053
3.46250569e+053
.69503655e+053

2.90761079e+053
8/9
-1.50970775e+054

1/10
1.56266385e+061
3/10
5.68201687e+059
7/10
2.87997462e+058
9/10
3.41478659e+060

1/11
3.21261831e+067
2/11
2.29794243e+065
3/11
1.12214115e+066
4/11
5.57538253e+065
5/11
-3.30878959e+065
6/11
1.03882429e+066
7/11
-4,12031803e+065
8/11
2.05654740e+065
9/11
1.68278091e+066

.26100299e+047
.15974893e+046

.20721835e+047

.47057472e+054
.75439811e+053
.23252941e+053
.0450é436e+053
.78040196e+053

.83460312e+054

.46653066e+060
.36241591e+059
.70569293e+059

.95731716e+060

.08202193e+067
.69884007e+066
.84071157e+065
.68576592e+065
.25865873e+066
.95141742e+065
.31067910e+065
.10335723e+065

.27635753e+065
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.34096593e+047
.17918453e+047

.11154012e+048

.57967057e+054
.00370321e+0563
.11984626e+053
.22320018e+053
.76923888e+053

.21157163e+054

.56953032e+061
.60235991e+059
.71295671e+059

.056265822e+061

.01225589§+067
.70860538e+066
.15753928e+066
.49504545e+065
.30142333e+066
.37128941e+066
.39184423e+065
.33276487e+065

.92152535e+066



p/q=

p/q=
p/q=
- p/g=

p/q=

p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=

p/q=

p/q=
p/q=
p/q=
. p/g=

p/q=

10/11

~4.92757310e+066 3.

1/12

-7.93795754e+073
5/12 .
-1.83954286e+070
7/12
-1.25795102e+071
11/12
-1.74622759e+073

1/13
-1.09200543e+081
2/13
1.06967334e+079
3/13
-3.51383859e+078
4/13
3.06127503e+078
5/13
2.05231012e+078
6/13
-4.,90862700e+078
7/13
-3.74451071e+078
8/13
8.46342795e+077
9/13
9.771971653e+077
10/13
-3.06568375e+078
11/13
9.96301894e+078
12/13
2.62448777e+080

1/14
-5.47503294e+087
3/14
-2.55763944e+084
5/14
5.02690306e+084
9/14
2.21079114e+084
11/14

83720570e+067

.42242293e+074
.30069617e+072
.25633888e+072

.56865717e+074

.63656281e+080
.26686819e+079
.77018703e+078
.12692437e+077
.90724898e+077
.80936838e+077
.88699588e+078
.70836486e+078
.47640020e+078
.17289663e+078
.40595092e+078

.58272843e+080

.49486884e+087
.99089574e+084
.83130836e+083

.62868710e+084
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.86871521e+067

.54916547e+074

.30082625e+072

.26262100e+072

.57834674e+074

.18636125e+081

.65805792e+079

.47448297e+078

.14314100e+078

.08917274e+078

.98705010e+078

.39723053e+078

.90651688e+078

.66223069e+078

.28239294e+078

.05291143e+079

.08662470e+080

.01667318e+087

.34760534e+084

.07310774e+084

.24911374e+084



p/q=

p/q=
p/q=
. P/q:
p/q=
p/q=
p/q=

p/q=

p/a=

p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=

p/q=

p/q=
p/q=
p/q=

p/g=

4.41120004e+084
13/14
-2.16678823e+087

1/15
-1.08408226e+094
2/15
-1.33404123e+092
4/15
6.86734781e+090
7/15
-1.46503813e+091
8/15
1.73287133e+091
11/15
-4.62094783e+090
13/15
7.21143366e+091
14/15
© 1.544832130+094

1/16
8.62967406e+100
3/16
6.43193686e+096
5/16
1.83734691e+097
7/16
-1.83549605e+096
9/16
7.83813462e+096
11/16
1.19064391e+097
13/16
2.84634047e+097
15/16
-1.02964850e+101

1/17
1.16930206e+108
2/17
5.40449570e+104
3/17
-4 .33077318e+103
4/17
3.56701822e+103

.63794219e+084

.71744680e+087

.12148350e+094
.12988425e+091
.98866429e+090
.72556665e+091
.81931091e+091
.16042277e+090
.555669053e+091

.01746490e+094

.75364248e+101
.79910999e+097
.52998930e+096
.11520297e+097
.48628437e+096
.02328922e+097
.24051130e+096

.61449211e+100

.09772951e+107
.28177172e+105
.10262680e+104

.78568460e+103
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.40071821e+084

.47555583e+087

.30437491e+094

.33881754e+092

.05346677e+091

.26360707e+091

.51251572e+091

.70090693e+090

.65090384e+091

.84979489e+094

.95447555e+101

.84201971e+097

.89236670e+097

.13020711e+097

.15522022e+097 .

.56995342e+097

.99257825e+097

.06232373e+101

.23902428e+108

.39105157e+105

.18462730e+104

.52588750e+103



p/q=
p/q=
p/q=
p/q=
p/q=
 ple=
p/q=
p/q=
p/q=
p/q=
p/q=

p/q=

p/q=

p/q=
p/q=
p/q=

p/q=

5/17
2.21244961e+103
6/17
7.26352949e+102
T7/17
-6.40956489e+102
8/17
3.17244647e+103
9/17
-9.95498005e+103
10/17
-1.54105999e+103
11/17
2.64045062e+103
12/17
3.18319833e+102
13/17
2.81890518e+103
14/17

-6.62388513e+103

15/17
6.32448655e+104

16/17
6.51652466e+107

1/18
7.63327222e+114
5/18
6.56972314e+108
7/18
-9.79228757e+108
11/18
4.56095668e+108
13/18
-1.63204748e+108
17/18
-3.85829523e+114

1/19
2.31123774e+121
2/19
1.29907462e+118
3/19
2.40280987e+116
4/19
2.10594378e+116

.19420614e+102
.30464791e+103
.51013736e+103
.15113022e+104
.22127312e+103
.59741156e+101
.87546998e+102
.71129868e+103
.22095508e+103
.77944588e+103
.44219622e+104

.61334681e+106

.46431322e+114
.26435198e+109
.63289397e+109
.47884169e+109
.09066162e+109

.93564264e+114

.56881081e+121
.27380772e+118
.70200234e+116

.39889012e+115

. 61

:27260446e+103
.38353165e+103
.64053043e+103
.19404562e+104
.35695802e+104
.54247155e+103
.68508501e+103
.74065237e+103
.07196318e+103
.85873763e+103
.20054477e+104

.54999673e+107

.38261957e+114
.31466226e+109
.80909587e+109
.52045222e+109
.09496770e+109

.31661378e+114

.02938419e+121
.81939027e+118
.06810605e+116

.11956268e+116



p/q=
p/q=
p/q=
p/q=
p/q=

p/q=
p/q=
p/q=

p/q=

p/q=
p/q=
p/q=

p/q=

p/q=
p/q=
p/q=
p/q=
p/q=
p/q=
p/q=

p/q=

5/19
3.46960349e+115
6/19
9.31220635e+115
7/19
-1.16440832e+115
8/19
2.03452462e+115
9/19
6.67583966e+116
10/19
6.76073752e+116

11/19

4.,35064995e+115
12/19

-3.77700858e+115

13/19
1.12348259e+116
14/19
7.89664617e+115
15/19
7.19775932e+115
16/19
-3.42048851e+116
17/19
6.14472717e+117
18/19 ‘
2.01872731e+121

1/20
-1.56481881e+128
3/20
1.49991466e+123
7/20
-2.44235853e+122
9/20
9.00623800e+121
11/20
1.47137151e+122
13/20
1.45760264e+121
17/20
1.11827140e+123
19/20

4

-2

-6

.20739841e+116

.03281377e+116

.005635181e+115

.14598642e+115

.71107049e+116

.93329748e+116

.11079067e+115

.91721586e+115

.17268283e+115

.60956922e+115

.01986680e+116

.46116838e+116

.00028191e+117

.25778782e+121

.32023221e+128
.71530410e+123
.21120071e+122
.10895779e+122
.63430944e+121
.04575122e+1é2

.02722821e+121

-7.56834396e+127 2.12328285e+128
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.25626128e+116
.39063876e+116
.13900705e+115
.61827824e+115
.20532708e+116
.36928885e+116
.49021279e+115
.23574202e+115
.12958620e+116
.31666233e+115
.24828109e+116
.21391640e+116
.58842564e+117

.02867393e+121

.59489545e+128
.27859873e+123
.72619191e+122
.42860443e+122
.54262840e+122
.05093737e+122

.11989450e+123

.25413583e+128



3.3.3 The program

Finally, we present the program used to calculate the above data. Most important

are the procedures used in calculating partitions of certain integers. Recall that in

the algorithm we required to perform a summation over all sequences rq,...,mm
such that
@) ri 2 0

(i) rm+2ry4+-+mrp, = k-7

Condition (ii) means that we are seeking partitions of k — j, and these are gen-

erated recursivély in the procedure findpartitions.

program tonguewidth(input,output);

type complex=array [1..2] of real;

var zero,one,compproduct,rthpower,lambda,partialsum,
nu,sum:complex;
p,q,k,j,m:integer;
r,t:array [0..100] of integer;
partition:array [1..100] of integer;
psi,b,c:array[1..20] of complex;
modbq:real;

procedure initialise;
var i,l:integer;

begin
for i:=1 to 20 do
begin
clil[1]:=1;
c[il[2]:=0

end; (*for*)

one[1] :=1;one[2] :=0;

zero[1] :=0;zero[2] :=0;
psi[l][1]:=1.0968632E03;psi[1][2]:=-3.2721079E02;
psi[?][1]:=3.0300529E05;psi[2][2]:=-7.1904567E04;
psi[3][1]:=3.7588902E07;psi[3][2]:=-1.9265715E07;
psi[4][1]:=4.2745511E09;psi[4][2]:=-2.4590307E09;
psi[S][1]:=1.3774875E11;psi[5][2]:=-4.8994609E11;
psi[6][1]:=2.6166535E13;psi[6][2]:=3.9449673E12;
psi[7][1]:=-3.3864992E16;psi[7][2]:=-1.0748475E16;
psil8]1[1]:=2.1925635E17 ;psi[8] [2]:=1.7196424E18;
psi[9][1]:=-1.1493705E18;psi[9][2]:=-3.4009912E20;
psi[lO][1]:=-1.3183358E22;psi[10][2]:=5.3164967E22;
psi[il][i]:=3.9565245E24;psi[11][2]:=-6.9086502E24;
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psi[12][1]:=-8.7036497E26;P8i[12][2]:=7.5179384E26;
psi[13][1]:=1.6676413E29;psi[13][2]:=-8.3835279E28;
psi[14][1]:=-3.256251E31;psi[14][2]:=1.5434638E31;
psi[15][1]:=6.9358351E33;psi[15][2]:=-3.6867026E33;
psi[16][1] :=-1.4760744E36;psi[16][2] :=6.7328611E35;
psi[17][1]:=2.718999E38;psi[17][2]:=-5.9558781E37;
psi[18][1]:=-3.7648585E40;psi[18][2]:=-8.0754807E39;
psi[19][1]:=2.9151277E42;psi[19][2]:=4.0989653E42;
psi[20][1]:=1.2735682E44;psi[20][2]:=-7.6963318E44;
nu[1]:=1.33777E2;nu[2] :=-3.79118E1;

for i:=1 to q do
begin
for 1:=1 to 1 do
" begin
psilil[1):=psi[i]1[1]/10000;
psil[i] [2]:=psili] [2]/10000
end (*for,1%)
end; (xfor,i*)
lambdal[1] :=cos(2*3.1415926*p/q) ;
lambda[2] :=sin(2*3.1415926*p/q)
end; (*initialisex)

procedure compmult(z1,z2:complex);
begin A
compproduct[1] :=(z1[1]*22[1])-(z1[2]*22[2]);
compproduct [2] :=(z1[1]*z2[2])+(21[2]*z2[1])
end; (*compmult*)

procedure comppower(wi:complex;power:integer);
var w2:complex;count:integer;
begin
if power=0 then rthpower:=one else
begin
w2:=wl;
for count:= 1 to (power-1) do
begin
compmult(wl,w2);
w2:=compproduct
end; (*for*)
rthpower:=w2
end (*elsex)
end ; (*comppower*)

function factorial(n:integer):integer;
var count:integer;product:integer;
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begin

product:=1;
if n<>0 then
begin

for count:=1 to n do
product :=count*product
end (*xif*);
factorial:=product
end; (xfactorial¥)

procedure zeroelsewhere(h:integer);
var i:integer;
begin
for i:= k-j+1 to 20 do partition([i]:=0;
if h>1 then for i:= 1 to h-1 do partition[i]:
end; (*zeroelsewhere*)

procedure addinterm;
var a,rtotal,divisor:integer;
~ term,twopiij,numerator:complex;
begin
rtotal :=0;numerator:=one;divisor:=1;
for a:=1 to (k-j+1) do
begin
rtotal:=rtotal+partition(al;
divisor:=divisor*factorial(partition([al);
comppower(c[al,partition[al);
compmult (numerator,rthpower) ;
numerator:=compproduct
end; (*forx)
twopiij[1]:=0;twopiij[2]:=2%3.1415926%j;
comppower (twopiij,rtotal);
term:=rthpower;
compmult (term,numerator);
term:=compproduct;
term[1] :=term[1]/divisor;
term[2] :=term[2]/divisor;
partialsum[1] :=partialsum[1]+term[1i];
partialsum([2] :=partialsum[2]+term[2]
end; (*addinterm*)

procedure findpartitions;
begin(*findpartitions*)
m:=m-1;r[m]:=-1;
if m=1 then
begin
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partition[m]:=t[m];
zeroelsewhere(l);
addinterm
end (*then*) else
while m*r[m]<=(t[m]-m) do
begin(*while*)
r(m] :=r[m]+1;
partition[m] :=r[m];
t[m-1] :=t[m] - (m*zr[m]);
if t[m-1]>0 then findpartitions else
. begin
zeroelsewhere(m) ;
addinterm
end (*else*)
end (*while*) ;
m:=m+1
end (*findpartitions*);

procedure findc(s:integer);

var denominator,conjugate:complex;

norm:real;

begin

comppower (lambda,s) ;
denominator:=rthpower;

denominator[1] :=denominator[1]-1;
conjugate:=denominator; ’
conjugate[2] :=-conjugate[2];
norm:=sqr(conjugate[1])+sqr(conjugate(2]);
compmult (b[s],conjugate);

c[s][1] :=compproduct [1] /norm;

c[s][2] :=compproduct [2] /norm

end; (*findc*)

function gcd(ni,n2:integer):integer;
var newn,last:integer;

begin
repeat

if ni>n2 then

begin
nil:=nil mod n2;
newn:=nl;
last:=n2

end (*thenx*)

else

begin

n2:=n2 mod ni;
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newn:=n2;
last:=ni
end; (*xelse*)
until newn=0;
gcd:=last
end; (*gcd*)

begin(*main body*)
for g:=1 to 20 do
begin
writeln;
for p:=1 to q do
begin
if gcd(p,q)=1 then
begin
initialise;
bl1]:=psi[1];
findc(1);
for k:=2 to q do
begin
sum:=zero;
for j:=1 to k do
begin
partialsum:=zero;
if k-j=0 then
begin
zeroelsewhere(2);
addinterm;
compmult (psi[j],partialsum);
sum[1] :=sum[1] +compproduct[1];
sum[2] : =sum[2] +compproduct [2]
end (*then*) else
begin
m:=k-j+1;t[k-j]:=k-j;
findpartitions;
compmult(psif[j],partialsum);
sum[1] :=sum[1] +compproduct [1];
sum[2] :=sum[2] +compproduct [2]
end (*elsex)
end;
b (k] :=sum;
findc(k)
end;
comppower (nu,q) ;
compmult (b[q] ,rthpower) ;
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b[q] :=compproduct;
modbq:=sqrt(sqr(blq] [1])+sqr(blql[2]));
writeln(’ p/a= ’,p:1,’/’,q:1);
writeln(’ ?,b[q] [1]*10%*(4%q) :16,’
?,b[q] [2]1#10%*(4%q) :16,’ ’,modbg*10%*(4%q):16);
writeln
end (*then*)
end; (*for,p*)
writeln
end (*for,q*)
end. (*main body*)
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Chapter 4

Resonance scaling on invariant

circles of the Dissipative
Standard Map

| 4.1 Introduction

Circle maps arise in the consideration of higher dimensional systems, rather than
just directly as one dimensional systems. In particular, when invariant circles
exist for maps from R" to R", we can restrict attention to the invariant set and
consider the resulting ‘induced’ circle map. In view of Jonker’s result, [Jo], the

existence of the n™2

scaling law similar to that derived from one dimensional
systems is a consequence of the smoothness of the invariant curve. Here we turn
our attention to resonance scaling properties of the planar map known as the

Dissipative Standard Map,

Topr = JoTp,— ;"; sin 270,

01 = 0,,+Q+Jmn—%sin27r0n,

where z,,0, € R, and 0 < J,k,Q < 1. The map is dissipative in the sense that
its Jacobian matrix has determinant J, with |J| < 1, and it may also be described

as area contracting. Writing fra:R X S' > R x S?,
fra(z,0)= (J:c — £sin2r0 , 0+ Q+Jz— £ sin276 mod 1) ,

_ we-have a homeomorphism of the cylinder R x S'. When k = 0, it is clear that
V = {0} x S! is an invariant set under the action of fiq. The theory of normal

hyperbolicity (see [HPS]) shows that, given r € N, if £ > 0 is small enough
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then there exists a C™ manifold, V’, which is C" near to V and invariant under
fr.a. The area contracting condition means that only one such invariant ‘circle’,
homotopic to {0} x S*, can exist.

‘We think of fx,q as inducing a circle map on V', and we here investigate the
scaling of its resonance tongues: given o € R, there exists an interval, I,, such
that for Q € I,, frq has rotation number a, provided k is small enough. The
purpbse of this chapter is to consider the scaling of |I _1';(.], k)| for large n. We
shall see, using the results in [Da2], that given k > 0,

|I%(J, k)l = ﬁ%‘]—”% = Bil +o(n™?),

for some constants £y, B2, and in particular, we establish the following result;

Theorem 4.1
2r(1—J)
|B2 — B1| ~ €™ A(J),
as k — 0, where A(J) is a constant depending only on J.

In addition, we derive numerical estimates of A(J) for several values of J.
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4.2 Invariant circles of f;q

We begin by considering the rotation number p = 0, characteristic of the case
where fxq has a fixed point. If Q, € I;I‘_, we have frq, — fra+ as n — oo,
where Q" is the right hand end point of the interval Iy, and in this context we
will invoke the results in [Da2]. In the meantime, we look for the right hand end

point of .

Proposition 4.2 The right hand end point of Iy is

k

= 2r(1=J)

Further, frq+ has a (non-hyperbolic) fized point at

- -k 1
* *\y - et
(2%,67) = (27r(1—J) ’ 4)'
Proof Since Q = Q* marks the point at which the fixed point of fi o disappears,
we anticipate that the fixed point will be non-hyperbolic, and so the linearization

of frq at the fixed point has at least one eigen value with modulus unity. We

therefore consider

J - —kcos2n0
Dfia = [J l—kcos27r0]'

This has eigen—values given by |D fra — Al | = 0, which gives

0 = (J—=A)(1—kcos2m0 — A) + Jkcos2nf
= A4 Mkcos2m0—J—1)+J.

Thus, if the eigen—values of Dfyq are Aq, A, then we have
M+ A=14+J~ kcos2rd,

and

Mz =J.

Thus we obtain A\; = 1, s = J, when cos 278 = 0, that is, when § = % + %, for

m € 2.
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Regarding fr o as a map of the cylinder R x S, we consider the values § = %, %.

Now, for any fixed point , (z9,00), with & = Qy, we have
= Joo— = sin2nby, 41)
To = JIg 27rsm 0o, (
00 = 00 + Qo + J:Eo - % sin 27(00. (4.2)
4.1 gives
. E
1=J)zo= —g, Sin 270y,

whilst from 4.2 we obtain

k
Jzo = — sin 276y — Qo.
2r

Thus we have

on = —-(1 - J):Eo— Qo,

which gives

To = '—Qo.
Now, by 4.1, § = -‘1; gives
g = __2_71'_(1——.]) sin 271'00

_ k

T 2r(1-J)
and so we obtain
' k

flo = 2r(1 = J)

Similarly, we find that § = 2 leads to a negative value for §2, and so we choose
0o = 3, together with zo = -—m, and Qg = -ﬁ‘:,—)

Finally, we show that £ is the right hand end point of Ip, %, and so also
(z*,6") = (zo,60).

Let ¢ > 0, and let ; = Qo + €. We suppose that fxq, has a fixed point,

(z1,01). If so, then as before we obtain

n = -
= —Qo—e
__F
2r(1=J)
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‘However, we also have, from 4.1,

ry = sin 27!'91

k
T 2r(1-J)

k

> Toar(1-J)

&,

) and thus we have a contradiction. O
We now consider the map frq+«. If k£ is small enough, fiq+ will have an

invariant circle through (z*,6), given by

\

V* = {(2,8) :z = u(8), 0< 6 <1},

with u: R — R being periodic with period 1. We look for an expression for u of

the form
r—1

u(6) =Y ai(0-6) +0((6-67)),
=0
near to § = 6*. This is reasonable, since V* is C". By substitution into the

definition of fiq+, we have
Ju(d) — * sin270 = u |Ju(0) + 0+ Q" — i-sin27r6?
2 - ¢ o2 )
Writing 0 = 6* + ¢, we obtain
Ju(0* + ¢) — L3 sin 27 (6" + @) =
¥) " on , vI=
u [Ju(ﬂ* +p)+e+60+0° - % sin 27 (6" + (,o)] .

So, by considering the relationship
r—-1 . k

Jga,-cp' — 5. cos 2 =

r—1 . k

u [JE ap +o+0"+ Q" — o, cos 27r(,o] + O(¢"),

=0
we may, in principle, determine as many a; as we like, and obtain an approxima-
tion valid for k small enough. Now, since ag = o, and zg, 27, % cos 2wy = O(k),

we can further write

r—1

J aip' — —2% cos 27y

1=0
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r—1 r—-1 . k i
= Y a;|JY ap +o+ 0" - 5—7;cos27r<p]

=0 L =0
r-1

[ r—-1 . 00 T 2s7°¢
= Za,- JZ:G,SO"F(P—%Z::I(—I)'S(z(zf))' ] )

1=0 L =1

since

Ja -+-Q'—i L + i _E
° or 2x(1—=J)  2x(1-J) 2=

= 0.

Collecting terms in ¢' we obtain
(i) for¢ = 1:
Jay = a1(1 + Jay),

giving a; = 0 or ‘—’3—1 To determine which is the required value we consider the

eigen—vectors of the linearisation of figq. at the fixed point. Now, D fiq- has

eigen-values A\; = 1 and Ay = J at the fixed point, and from these we obtain the

1)
.- (4)

Now, these define the eigen-spaces E; and Ej, which are respectively the centre

corresponding eigen—vectors,

1551

and stable manifolds of the non-hyperbolic fixed point of D fiq+«. We may think
of Dfiq« as being hyperbolic, and in particular, contracting, with respect to the
centre manifold, E;, and hence we expect u(0) to be tangential to E; at (z*,6%).

Evidently, then, we require a; = 0.

(i) i=2:
Jas + k7 = ag,
and hence
kr
a2 =T
(iii) 2 = 3:

Jas = a3 + 2a;(Ja, + kr),
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giving

2k 2k
az(J—1) = ] _7rJ (1 _WJ + kw) ,

and so we obtain

o= — 2k*r?
= J7
Thus we find,
* _ k km 2 2k27r2 3 4
W te)=—ga—nt 1= " =J9p" +0(¢),

provided k is small enough.
So, then, restricted to the invariant circle, V", the action of fr,ae is described

by the relationship

. “ | o Jk
(Prt1+07) = (pn+07) +Q ~ =)

2,2
I BT b ()40 (),

LETEA LSl rp s A4

which gives

kﬂ' 2 2Jk27r2 3 4
Pnt1 = Pn + AL i J)aso,, +0 (<p,,) .

We shall call this derived mapping, vi,q-.

In the usual manner, we now seek a transformation, A, such that

A (vias(9)) — A(p) > 1.
Accordingly, we consider the flow

. kn 2 _ 2Jk21r2
Y=E1-J% Ta-9p"

Setting

kn 2Jk*r?
A= R

we obtain

11
Z[—;—Clogso-i-Clog(l-i-C(P) )
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where C = %.

Thus we consider

Pn+l

1

1
a [—-‘; — Clogy + Clog(1 + C(p)]

¥n

_ 1 1 2 3\\!
= Z{_.‘Z(1+A%+B%+O(¢,,))

—~Clog (¢ + Agn + Be, + O(¢}))
+Clog[1+C '(cpn + Ap? + Bo + 0(#3))]

1
+<p_ + Clog@n — Clog(1 + C(pn)}

= 1— Apn + O(gh).
We shall require something more accurate than this, and in fact we find that

enir 1 A=-C
/ ! dp =1+ 0(p}).

$n 902
So, then, we define a mapping, A:(—1,0) U (0,1) = R, by
Mo = & LA g

1 A-C

= ~Z,ta log ||

_ o _a=J (1+J)

so that
A(¢ns1) = A(9n) — 1 = O(p7)-
Now, if n is large enough, we have

o = lA (<Pn+1 — ¢n — Bes + 0(90:))

= O(¢n+1 — ¥n)-
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+oo

Thus we can say that the sums Y% ¢? converge. Accordingly, we define

n=0
mappings,
ge(wo) = Lm_A(pn) —n, (43)
and
hi(po) = Lim A(ps) —n, (4.4)

for o € (0,1) and o € (—1,0) respectively. By the periodicity of fr,o we can
extend the definition of hj so that both maps are defined on (0,1). We need
now to define the map ox(gk(0)) = hr(@o) — gk(po). It is easy to see that gy is
increasing on (0,1). We shall see later that there exist analytic extensions of g
and A into a domain in C containing the interval (0,1). Since gi is non-constant
. we-conclude that g is strictly increasing on that interval. In addition, it is clear
that g, maps (0,1) onto the real line, so that we may indeed define the period 1
function, ox:R — R, by

ox(u) = by o g7t (u) — u.

Now, in order to be able to relate the intervals I, to this map, 0%, we need
briefly to consider what happens when (! = Q*+ 6, & > 0. The theory of normal
hyperbolicity again shows that if 6 is small enough, fiq still has a C" invariant

circle,

V={(0):z=a(), 0<0<1},

say, and further, that V is C™ near to V*. Thus we can write

r—1

() = ; a8 - 07 +0 ((0-067)),
for 0 near to 6*, and we have for 6 small enough,
tla; — | <e,
for any € > 0. As earlier, we write

k .
Ja(0" + o) — o sin 27 (0" + ¢)

. .
= a(Ja(0*+go)+<p+0*+ﬂ*+5—2-7rsin27r(0*+<p)),
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and we obtain

ik (27p)?

re1 r—1 | . k or 2 : .,
= > & (JE&;¢'+<,0+Q +6—— (1 —L‘f—)+-~-)) + O(¢").
=0 =0 2 2!

As earlier, we seek to expand this and collect terms in ¢'. The problem is not as
straight forward as it was earlier, since we now have a non-zero constant term in

the argument of the power series on the right hand side. Specifically, we have

J&o+ﬂ‘+6—i=A,
27

say. Thus we obtain

(i) for: =0:
k N
J&o—§=ao+alA+O(A2),
giving
zlo_zi,r+&1A
ToJ-1"
(ii) For i = 1:

Jay = a1 + Ja) + O(4),

from which we obtain

i = O(A).

Returning to the determination of @, we now have

k. 2
Gy = _____2w‘5?(1A)
k 2
= ~5ra=7 + o)

Now,

A = J&0+Q*+5——k—
2%

k . k 2
= _5}(1——J_)+Q —-2—;+5+O(A)

= §+0(8%)
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Thus, if § is small enough, A = O(8). So we have

.ok 2
% = 27r(1—J)+O(6 )
i = 0(5).

Continuing, we find
Jag + kr = Ja? + kréy + &2 (20(@; + k) + 3 + 1) + 0(8),
giv_ing

km
1-J

-~

aq =

+0(6).

Now, fi may be regarded as a mapping, fi: R? X S! = R? x S!, defined by
k . k.

(Q,z,0)— |2, Jz——sin270,0+0Q+Jz— —sin270 mod 1}.
2r 27

By consideration of the map in this sense, we see that the invariant circle of fx o
is just the restriction, Q = constant, of an invariant manifold of fx, which is C”
for any r. Thus we can write

kr

u6) = 1-J

k 2 3 4, 2
21r(1—J)+”&p+ ¢ +vp +0(<p +6),

where yu,v are constants, the precise values of which will not concern us. So,

restricted to the invariant circle the action of fiq is described by

. . k
Onp1 = On+Q + 6+ JU(0 +c,o,;)—-2—7‘_cos27rc,oﬂ

k
= <Pn+6+Ju6cpn+—1—_ljsoi+Jmpi+O(so4+62).

This map is, then, vyg where @ = Q" + 6. The coefficients of § and ? are
of particular relevance in the application of the following result, due to Davie,
[Da2], which enables us to relate the length of |I %(k)l to the mapping oy, defined
carlier. We note at this point that in the original paper the relevant results are
much more general than the special case presented here for sake of brevity. For
the complete picture the reader is referred to sections 1-5 in [Da2], and especially

to Proposition 4.2 and Theorem 3.1.
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. Theorem 4.3 The end points of the interval I 1 are given by

R ﬂt -3 .
Q+cd(n + — >+ o(n™7), i=1,2,

where c,d are the coefficients of § and p*, mentioned above, By, B, are constants,
and the length of the interval [Bi, B2) is equal to twice the length of the interval

in s such that ox(u) — s has a zero.

Recall that o is a periodic function with period 1. We therefore, as in previous
chapters, wish to estimate the quantity
max ox(u) — mm ox(u
k(u) — min ok(u),

u€f0,1)

and to that end we consider the Fourier coefficients, o,(k) of ox.
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4.3 Estimation of |o,.(k)|

It would, of course, be possible at this point to obtain numerical estimates for
|or (k)| for various different values of k. However, as in Chapter 2 we can deter-
mine the form of o,(k) more explicitly by extending f,q into a complex domain.
The facility of an extra dimension to play with enables us to convert the prob-
lem into one where we are seeking to estimate the quantities &,, say, which are
independent of k, and where we can approximately determine the relationship

between o,(k) and &,.

4.3.1 Continuation into C?

Firstly, fi is extended into C x C/Z in the obvious way: we have
fra(z,0) = (J:c - %’;sin27r0 , 0+ Q+Jz - % sin2760 mod 1) ,

where now z,0 € C. As before, J, k, are real constants. We will be concerned
only with the case = Q*.

When k£ = 0 we have a family of invariant circles,
\I,Il = {(0,0) RIS 12y € R}s

say, with U = U,er ¥, being the plane, z = 0.
Now to apply the Normal Hyperbolicity Theorem to fi g+ we must have fi q»

C" near to foq¢. Considering the derivatives of these mappings, we have
foae(z,0) = (J,J +1),
é}’,.(w,@) = (0,0), for r > 1.
Also,
fign(2,0) = (J = kcos2r,J +1— kcos2n0),
fhe(2,8) = ((2m)'kT.(200), (27) " KT, (2r6) ), for r>1,

where T, (270) € {£sin 270, £ cos 2r6}. Thus we see that fiq- is near to fo o+ in
the C" topology provided that ke*?*™* is sufficiently small. This will be the case if

|96| < 5= log 1. In fact we will constrain |36| to be bounded below this quantity,
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for reasons which will become clear, and say that if r is given, and k > 0 is small
enough, there exists an fj,go—invariant C" manifold, M C C?, which is C" near
to {(0,0) : |S6] < 5= log + — C}, where C is a positive constant.

We now suppose that (zo,00) € M is given and let {zn,0,} be the orbit of

(zo, 0) under fiq-. We therefore have

k
Ty, = JTpoy— o sin 270, -1

= Op— 01— Q.

Thus we obtain
* k . *
01 = 0, +Q +J(0n—Ony) — e sin 276, — J)

k. k
= (1+J)0p—Jbny— 2—1rs1n27r0,, + o

which gives us the second order difference equation governing the the orbit {6.},
k
(0n+1 - 2011 + 0n_1) + (1 - J)(G,, - an—l) <+ —2-7; (sin 271’07; - 1) =0. (45)

We use this now to consider the action of fi g+ restricted to M. Rearranging 4.5

we have

(On41 —0n) = J(0n — 0n) = —zk;(l —sin 276,).
Putting 6 = 6* + ¢, this becomes
k
(P41 = ¢n) = J(Pn — Pn-1) = ‘é;(l — €08 2mpn). (4.6)

We seek an expression for the mapping,

fk.ﬂ‘ (‘Pn) = Pn+1-

Now, let
D = { . ilo l — C}
k — ‘P . 27(' g k )

where + is a small positive constant. M is C" and may be expanded in powers of

<75, 0<Spo<

1
§R(P—§

k, so given ko, small, and 8y € Dy,, for k < ko we assume a solution of the form

i1 — Pn = kor(ion) + K 02(0n) + O (Fea(pa)) -
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As a first approximation, then, we have

_ k(1 — cos2mpn) 2
Prn+1 Pn = 27r(1 _ J) + O (k 92(‘P")) ‘

We could, of course, derive the same expression for ¢, — ¢n-1. From 4.6, we write

k
(1= J)(Pn41 = ¢n) = 5-(1 — cos 2mpn) + ens,

say, where
en2 = —J [(Pnt+1 = @n) = (Pn — n-1)].

We therefore have

2 - en,g
k*e2(pn) 123
-Jk
= ——27r(1 =7 [(1 — cos 2mp,) — (1 — cos 27rgon_1)]
O (k*
+ 0 (K*(e2(pn) — 02(n-1)))
N éw_(illi_.]) €08 2mpn, — COS 2wn-1] +0 (k°)

_ -Jk | ‘ .
= =) L27"((‘;"1: — ¢Pn-1) 8in 27“Pn] +0 (k )

_ —-Jk  [k(l —cos2mp,) . 3
= (=) | T—7 s1n27rcpn]+0(k)

Thus we obtain
J .
02(pn) = —m(l — €08 27y ) sin 2T p,.
Finally, by considering Akz[gg(cpn) — p2(pn-1)] we have

-J —k
Kos(pn) = =7 [2#(1 — J)(l — cos 27rgpn)]

—Jk*2 .
X 2—7}—(ﬁ%§ [(1 — cos 27py) c§s 27 py, + sin’ 27rcp,.]
= —-—J—?ks— [(1 — cos 27y, ) cos 2mep,, + (1 — cos2mep )sin® 27¢p ]
- = (- JF o P " "
" We therefore have
k(1 — cos 2mypy,,) JK?

Prntl — Pn = (1 — cos 27y ) sin 2wy

er(1—=J)  2r(1—=J)3
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+0 (k3 ((1 — cos 27r<p,,)2 cos 2, + (1 — cos 2mepy,) sin’ 27r<pn)) .

We use this to see how the orbits behave for large n. Now, for k small we have

k_
Pntl — Pn ~ m(l — COS 27T(Pn).

Thus, writing ¢n = €n + 175, We obtain

k 1 -2 1r
R(pns1 —pn) = -27(-1_—'1) [1 - = (e 27n cos 2mn + €27 cos 27r£n)]

2
—k—-(l—cos27r§ osh 277,) (4.7)
21— J) n COSB EMTn > '
+ and similarly
k . .
S(Pnt1 — Pn) X m sin 27w, sinh 277y, (4.8)

We consider first the forward orbit of a point @, = &, + 7, with % <é,<1land
0<n, < -21; log% — C. From 4.8 it is immediately clear that, for k¥ small enough,
F(Pn+1 — ¢n) < 0. We also note that the upper half of the ¢-plane is invariant
under fk,g-. From 4.7, however, we see that if & > % then R(pn41 — pn) is
positive provided 7, is small enough, whilst it is certainly positive if 3 < & < -3.

The above information is almost sufficient to show that ¢, — 1 as n — oo,
but we need to ensure that the orbit does not jump the line R¢ = 1. This can be
seen to be the case from the fact that w41 —n = -(T"_L‘,—)(l — )2+ 0(K(1-n)),
and 80 R(pn41 — ¢n) < R(1 = ¢n).

Now for the backward orbit, we note that we may as easily use 4.5 to estimate
the inverse map, fk— ae, and in fact a very similar expression is obtained. In the
same way we can show that if 0 < §, < 7 and 0 < 7, < 7 log 3 —C then ¢, — 0
as n — —oo.

Finally, similar considerations of the action of the map when £, is near to -15

easily show that the following result holds:

Proposition 4.4 Let po € D = {p: |Rp— 3/ <7, 0<Spo < =logt —C},
where v is a small positive constant, and let zo be such that (zo,0) € M. Then
if C > 0 is large enough, there ezists ko > 0 such that for 0 < k < ko, the orbit
of (2o, p0) under fras, {Tn,n}, liesin M, and pn — 0 asn — =00, Y = 1 as

n — +00.
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As with the real case we now seek a mapping, A;: Dy — C, such that

A1(pnt1) — Ai(pn) = 1.

We therefore consider the flow

k

¢ = m(l — cos 2mp).

Now

2r(1—J) /‘Pn+1 dy

k en 1 —cos2mp

2r(1 - J) /vnu-vn dy
k 0 1 — cos 27 (pn + ¥)

. 2n(1-=J) /‘Pn+l-% 1 - 2msin27pn
- k 0 1—cos2rp (1 —cos 27r<pn)2cp

272 cos 2mpn (1 — cos 2mp,) — 4r?sin® 27, 5

- 1= cos 2mpn)? P+ } dy

_ Jsin2wp, sin 27y,
= 1+2r(1 J)k{ ar(l—J)  dn(l— J)2}

+0 (k2 [(1 — €08 2y ) cO8 2mpn + sin’ 27"‘0"])

k(1 +J)

= =30 -7e

sin 27, + O (k2 [(1 — €08 27y, ) €08 2Ty + sin’ 27r(,on])

We thus find that

2n(1 — J) [enn 1 4 k(1 — J)sin2me
k on 1—cos2mp = 2(1—J)*(1 — cos2my)

= 140 (k2 [(1 — €05 2Ty, ) €COS 2Ty + sin’ 21r(pn]) .

We therefore define A;: Dy — C by

M) = — 1- J;ccot TP + % (i_i__’;) log(1 — cos 2mwp) + constant, (4.9)

so that

A1(pnt1) — Ai(pn) =140 (k2 [(1 — €08 27y ) 08 2Ty, + sin’ 21r<pn]) . (4.10)
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Writing
Di= U fia- (D),

t=—00
we are now in a position also to define the mappings g1 x, h1,x: Dx — C, analogous

to the real mappings 4.3 and 4.4, by

g1k(po) = Lm  Ay(pn) —n, (4.11)
and , |
h1i(po) = lim = Ai(pn) — 7. (4.12)

We consider the question of the analyticity of g1 x and hyx. We show that g, is
analytic, the proof for h;x being similar.

We consider, for the moment, a small subset of Dy,

Ey =D ({e : lel<e}

where p is a small real constant. We shall show that g; i is analytic on Ej.
Recall that near to the fixed point the manifold is given by z = u(8), where
r
u(8) = u(8" + ) = Yaip' +0 ().
=0
Previously we considered this expression in the context of z,8 € R, but it applies

equally well to the complex case if ¢ is small. Now, writing
ur(0" + ) = Z a;goi,
1=0
we have an approximation to the manifold near to ¢ = 0.

Now, for o € D, with n large, negative, we have

Ai(pn) — n = g1,4(0)-
Thus, for ¢ € g1,x(Dk),
en = AT (n+ ().

For k small,

A(p) = _-J) cot T,

_ k
so that bn 4 0) +i(l— )
1 n+()+i(l -
(P"z-é_;rlog{k(n+()—i(l—J)}'
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Expanding this we obtain
_od[za=-0) 26(0-J) 1
¥n = T on [k(n +¢)  3k3(n+ ()3 +0 (kn)* /|’
1
on=0(z2)

Now, we choose k, small. Given o € Dy, and defining zq such that (zo,,) € M,

and thus

as n — —oo.
we consider the limit,

lim | fige (ur(en) §+ ).

n—+—00

(;:) _ (ur(%) -;no(%“ )
( ur(so;1+ €n ) ,

Now, for m > n we define en(n), 6m(n) by

(5)-(0n) - (1450)

To see the behaviour of €,,, 6, let €, 6 be small. Then

f z+e _ J(z +€) — 2 cos 2x(p + 6)
MU\l to+6) T \l+p+6+Q +J(z+e) — 5 cos2n(p+ )

For n large we have

say.

; T N Je + késin 2rp + O(k6?)
= frae % + 6+ Je+ késin2mp + 0(k52)

We therefore have the system,

Empr = Jem + kb sin 2wy, + O(k83)
b1 = Om+ Jem + kb sin 2wy, + O(k5,2n)

= 8m + Em+1 (4.13)

Now, we first suppose that, for some m, €, and a > 0,

lem| < akl|bmpml, - (4.14)
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and we choose o > 2%, Now, provided 6, remains small compared with ¢m, we

can say

IA

J)em| + 4k|6m sin 27y |
J|em| + 8k7|6mem|

(87 + Ja)k|bmpm|
ak|bmpm|,

lem+1]

IA A

IA

and we can certainly choose a large enough to satisfy 4.14 when m = n + 1.
Thus, from 4.13 we obtain

|5m+1| < |5m|+ak|6m‘Pm|

< I6m| (1 + akl‘Pml) ’
akBl)

< lool (1455

for some By > 0, and n +1 < m < —1. We thus obtain

akB, akB; akB;
< ——— . s 0w .
(2,2 . 1+ 22

Now, if n is large,

akB,
(1+akBl)(l_{_akBl).“(lJrakBl ~ In + 1] ’
|n 4+ 1] |n + 2| S =1 I'(akB;, +1)

and so we see that
bo(n) = O (ennB’) ,
as n — —oo, for some B; > 0. Hence we deduce that if ¢, = O(n'Bs), for B3 > 0

sufficiently large, then both go(n), 8o(n) — 0 as n — —oo. More particularly, we

see that if r is large enough, and k small, then

lim fime (ur(@n),on) = (u(e0),%0),

N=r~00

with convergence being uniform on any compact subset of E;. Thus u is analytic
on Ei. Then iteration under fj g+ shows u to be analytic on Di. We then easily
see that g, x is analytic on Dy.

‘We also see that if ¢y € R then with the appropriate choice of the constant

in 4.9, g1 x and hy are simply analytic continuations of gx and hAx. It is also easy
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to see that in fact g, x and h;x may be defined on a neighbourhood of the open

interval (0,1), justifying the claim we made earlier that g is strictly increasing.

In view of the agreement with the real functions we will drop the suffix, 1, and

identify the functions just defined as gx and hi. Now, from 4.10 we have, as

n — —oo,
Ai(pns1) = M) = 1+0 (k2 |<Pn|2)

= 14+ 0(k|pn+1 —¢al)-

Thus we see that
|A1(en) — 7 — gr(wo)| = O(klpanl),

as n — —oo, and similarly,

|A1(n) = n — hi(po)| = O(K|1 = ¢nl),

as n — +oo.

4.3.2 The limiting map
Now, let = y + ib, with y € C and b= 3-log ;. Then we have

sin270 = i (627"'(#+ib) _ e—21ri(y+ib))

2

— L =27y
= %€ + O(k).

+ Thus we have, for figq-,
1

Tp4r = JTp— Ee_z”i”" +0 (kz) ,

o1 + b = Yo+ ib+ Jzg — 4i7re'2’"'”" + O(k).

Thus our limiting map is

i =27y,
Ty = Jzp— He "
Yn+ylr = Yn + Tn+1:
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Restricting our attention as before to orbits {z,, yn+ib} on the invariant manifold,
we wish to determine y,4; exclusively in terms of y,. We thus consider the
expansion of Zn4; in powers of e”*™¥, In particular we look for a solution of the
form

—2mi —4mi —6mi
Tnp1 = 1€ V" e + O (e ’"y") .
As-a first approximation we have

—1 -27iyn

Tni1 <~ :17-(1—_.])6 ’
so that a3 = 47(;1—_,), and we have

i

~ _ =2miyn—1
Yn Yn-1 47r(1 _ J)e
We therefore obtain
e-2m’y,, _ e—21rc'y,.-1 = e-21ri{y"_,—‘,r 1"_ e—2m‘vn-1+o(c—4m'yn-1)} _ e_zm'yn_l
-4miyn—1
- € —6miyn—1
=7 +0 (e ). (4.17)

Now, we have, from 4.16
2 3 . . 2 v . y . 13
Z aje-hmyn +0 (e—6mvn) - JE aje—2.1mun-1 _ 4Le—2myn-1 +0 (e-SW'Vn—l) :
Jj=1 ’ i=1 T
and so, using 4.17, we find
iJ
———ec¢
8n(1 — J)?

—47iyn +

4Ty Ay —6Riyn_
oge TtYn—1 =Jaze 47iyn—1 +O(C 67iyn 1),

and deduce that
W
8r(1—J)

Qg =

Now defining the domain
3
Dy = {y= IéRy—Zl <7 Sy< —C},
we consider orbits of the map f:C — C,

__' _ : —2miy _ tJ —4riy
W =y- i7" gr(l—JP

for yo € Do. For such orbits, {y,}, we find Ry, — 1 as n — —oo, and Ry, — 1
_as n — oo, whilst Sy, = —oo as n — +oo. We illustrate the relationship

between the orbits {y,} and {6,} in figure 4.1.
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Figure 4.1
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As usual we wish to find a mapping, ¥:C — C, such that

U(yn+1) — ¥(ya) ~ L.

We consider first

/ o L iy gy
b4

1 i Yntore2mVn page=imivn
e

[ 3 e y]

n  Qq 2mioy

Yn

= 1+ (ﬂ + 7ria1) e ™ 4 0 (6-4"iy") ,

251

and we therefore obtain

/yﬂ+l —1»621riy - (a_; + 7r2.) dy =1 + O (6—41"'1/") .
Un a3 : 621

Accordingly we define

1 ; .
U(y) = —e¥™ - (a_g + m) Y

271y of

2(1 — J)e¥™ — (i __*_ j) Ty,
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and see that the limits

lim ¥(y,) —n

and
oim, ¥(ya) =
exist, defining analytic functions on Do, G(yo0) and H(yo). We further see that

'(\Il(yn) —n)— G(yo)l =0 (e'z”i”") , (4.18)

as n — —oo, and similarly,

|(%(y) = ) — H(go)| = O (e7*"%),
as n — 4o00.
We now investigate the relationship between these functions and 4.11 and
4.12. Firstly, let yo € Do be chosen, and let 6o(k) = yo + 5= log . Now, if k is

small, we have p, & @o + zn, for some z, not dependent on k. Thus, by 4.15, for

)

n large negative, we obtain

[As(pn) = n = grlgo)] = O (k

- O(klog%),

with a similar result for n large positive, and hi(po). Now, since ¢ = 6—6* = 6—3,

ilo l+z
2r gk ™

we have

' T
cot (71'0 - Z)

(cos 76 + sin 7r0)

cos 7f — sin 76

- . 4 1 1 — 1 1 LSS § 1 - 1 1
i (emyo-zlogk +e myo-l-zlogk) + (emyo 2logk —e :1ryo+zlogk)

(ei‘iryo—%log]l; _ e-iryo+%log%) — (ehryo—%log% + e-iryo+%log%)

(ke?mvo — 1) — i (keZ™vo 4 1)

i (ke*™w + 1) + (ke?™ — 1)]

k e2myo + 4
—ike% o — 1

= (ke*™ 44) (=1 +ike™™ + O(K?))

= —i— 2ke¥™ 4+ O(K?).
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Similarly we have

log (1 — cos (2#0 - %)) = log(l — sin2x0)
— _ _1_ 2imyo __ l —2i1vyo)]
= log [1 5 (ke Pl

= —log (2ik€2iw") + log [1 + 2keX ™0 — kze‘“m]
= —log2ik — 2miyo + O(k).

" Thus we have, for some 8 € C,

A(pn) —n = _a ; J) ( — 2ke 2"""‘) + % (1 ks ) (—log 2ik — 27iy,) — n
+8
= (1 = J)e¥mn (i—i_’—j) riga + & _k‘])i - % (i—-f—j) log 2ik
+B + O(k)
= Gyo) + 1 ';J)i ; (i +j)l g 2ik + B + O ( e72mim),

by 4.18. A similar result also applies for n large, positive, and H(y,). Thus we

have the following lemma:
Lemma 4.5 Let yo € Dg. Then we have

gk(po) = Gy )+( kJ)z ;(iij)lg2zk+ﬂ+0(klogk>

and

mgo) = Heo)+ 1702 (152

1
— "3 1_J)log2zk+ﬂ+0(klogk)

We are now in a position to estimate |o,(k)|. We have

o.(k) = /:+1 (ok(u) — u) ™™ du

= /: [hi() — gx(0)] €W g () dip
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' Using Lemma 4.5 we then obtain

|a,<k)|exp{W}

372 /14 J
— &P "T(1-J)"

Evidently as ¥ — 0 we have

/v :l [H(y) - G(v)] ™" °WG (y) dy| (4.19)

_2n(a—J
o (B)] = 0 (e*F 0, (k),
so that

Inax ox(u) — min ox(u) ~ 4|oo(k)],

and the theorem is proved. O
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4.4 Numerical estimation of |oy(k)|

The numerical estimation of |og(k)| amounts to the estimation of the integral in
4.19 above. We do this in a similar way to the numerical work done in Chapter
3, although here it is altogether simpler. We do, however, have the additional
feature that the value of the integral depends on J, and so we compute this for
several different J. Again we find that the integrals can only be estimated well
for Qy in a certain region, and we give a fuller listing of the data in the appendix.

In terms of the notation we have already,

) = s {3 (129))

= Sexp {-37”2 (i—}%)} B(J),

say. We thus obtain the following estimates:

[ @) - 6w WG ) dy

J B(J) A(J)
0.2 4.28 x10" 77
0.1 1.778 x10° 197.1
0.05 1.768 x10°® 110.7
0.01 3.299 x107 72.80
0.001 2.303 x107 66.53

0.00001 2.214 x107 65.87

0 2.213 x107 65.86

Remark: When J = 0 we have 6 independent of z, and the map can be thought
of as just

k .
Opy1 =0, +Q — 5, sin 27,,. | (4.20)
Recall the results of [Dal], where the sine circle map was studied, in the form
Tnp1 = Tn + Q + ksin’ z. (4.21)

z

% we obtain the map

Making the transformation z — 76 —

1 Tk k.
0n+1 = 0n+ ; (Q-l- 5) - gSlnzﬂ'am
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so that we would expect the width of 7 x I 1 (k,0) for 4.21 to be asymptotic to the
_ width of I;';(k) for 4.20 as £ — 0. In terms of our present notation, this means
that we should have

(1 - J)A(J) ~ 650.0,

when J = 0. In fact we do have 72A(0) = 650.0 as required.

4.4.1 Numerical data

The estimation of the constants, A(J), is computationally similar to the the
numerical work involved in chapter 2, and to avoid being repetitious we omit
the program. However, we include the data produced from which we obtain the
estimates given in the table in the previous section. Again, estimation of the
integral is made using yo values with varying imaginary part, and for the same

reasons discussed in section 2.3.1.
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(i) J = 0.2
/]

. 4.44850683987032e+012
2.27991897036061e+012
1.16116432361204e+012
6.20110135357472e+011
4.15867169105417e+011
3.79948997233665e+011
3.90846989467893e+011
4.04923795882818e+011
4.14600311951183e+011
4.20374212628581e+011
4.23645504849211e+011
4.25456952982522e+011
4.26448295313320e+011
4.26986664209537e+011
4.27276874563020e+011
4.27431692770530e+011
4.27512804722820e+011
4.27553841212394e+011
4.27573104744053e+011
4.27580545122283e+011
4.27581567664727e+011
4.27579107332272e+011
4.27574757162982e+011
4.27569382304183e+011
4.27563456369560e+011
4.27557255052201e+011
4.27551003495986e+011
4.27545127581173e+011
4.27544585966241e+011
4.30177522561754e+011

Syo

-6.90000000000000e+000
-6.80000000000000e+000
=6.70000000000000e+000
~6.60000000000000e+000
-6.50000000000000e+000
-6.40000000000000e+000
-6.30000000000000e+000
-6.20000000000000e+000
-6.10000000000000e+000
-6.00000000000000e+000
~-5.90000000000000e+000
-5.80000000000000e+000
=5.70000000000000e+000
=-5.60000000000000e+000
-5.50000000000001e+000
-5.40000000000001e+000
-5.30000000000001e+000
-5.20000000000001e+000
-5.10000000000001e+000
-5.00000000000001e+000
-4,90000000000001e+000
-4.80000000000001e+000
-4.70000000000001e+000
-4.,60000000000001e+000
=4.,50000000000001e+000
=4.40000000000001e+000
=-4.30000000000001e+000
-4.,20000000000001e+000
-4.,10000000000001e+000
=-4,00000000000001e+000
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(i) J = 0.1
/]

.36286239902700e+012
.28961769568085e+012
.20123746707083e+012
.29937917323941e+011
.30086683332036e+011
.72719417518338e+011
.01355009202116e+010
.68003681608130e+010
.40673832425675e+010
.21685230076647e+010
.96109316835625e+009
.84280221706241e+009
.54177838811173e+009
.34151417960661e+009
.47409415901882e+009
.60033220253863e+009
.67954838294728e+009
.72464743318029e+009
.74946083130564e+009
.76291675733597e+009
.77016200847370e+009
.77404607100196e+009
.77611985037929e+009
.77722090152184e+009
LT7T7779986807665e+009
.77809878030077e+009
.77824751287840e+009
.77831572718852e+009
.77834078214754e+009
.77834271631198e+009
.77833228868075e+009
.77831529799526e+009
.77829491544252e+009
.77827297493378e+009
.77825076821781e+009
.77822975817994e+009
.77821279149599e+009
.77823184564989e+009
:88601868506875e+009

Syo

-6.90000000000000e+000
-6.80000000000000e+000
-6.70000000000000e+000
-6.60000000000000e+000
~-6.50000000000000e+000
-6.40000000000000e+000
-6.30000000000000e+000
-6.20000000000000e+000
-6.10000000000000e+000
-6.00000000000000e+000
-5.90000000000000e+000
~5.80000000000000e+000
-5.70000000000000e+000
~5.60000000000000e+000
-5.50000000000001e+000
-5.40000000000001e+000
-5.30000000000001e+000
-5.20000000000001e+000
-5.10000000000001e+000
-5.00000000000001e+000
-4.,90000000000001e+000
-4.80000000000001e+000
-4.70000000000001e+000
-4.60000000000001e+000
-4.50000000000001e+000
-4.40000000000001e+000
-4.30000000000001e+000
-4.,20000000000001e+000
-4,10000000000001e+000
-4.00000000000001e+000
-3.90000000000001e+000
-3.80000000000001e+000
~3.70000000000001e+000
-3.60000000000001e+000
-3.50000000000001e+000
~3.40000000000001e+000
-3.30000000000001e+000
-3.20000000000001e+000
-3.10000000000001e+000
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(iii) J = 0.05
|/l

.04074828388899e+012
.12000811077437e+012
.11207470304354e+012
:83232936420994e+011
.05804148006132e+011
.60287763314341e+011
.39727963835968e+010
.39553623257996e+010
.29738559344384e+010
.19741957601839e+010
.20807334826132e+009
.18576236940684e+009
.60219408945339e+009
.73925545988127e+008
.44937050887698e+008
.38637042968041e+008
.38506450758156e+007
.22273191098808e+008
.46321116306629e+008
.60354588605813e+008
.68037491874735e+008
.72163478819345e+008
.74362623821716e+008
.75530584125609e+008
.76149496143557e+008
.76476742514344e+008
.76649217834461e+008
.76739607817816e+008
.76786474820132e+008
.76810268774164e+008
.76821832555922e+008
.76826914825072e+008
.76828563870523e+008
.76828397335430e+008
.76827276209031e+008
.76825663655467e+008
.76823818345960e+008
.76821903377871e+008
.76820057833569e+008
.76818463353260e+008
.76817366363812e+008
.T76788724182413e+008

Syo

-6.90000000000000e+000
-6.80000000000000e+000
-6.70000000000000e+000
-6.60000000000000e+000
-6.50000000000000e+000
-6.40000000000000e+000
-6.30000000000000e+000
-6.20000000000000e+000
-6.10000000000000e+000
-6.00000000000000e+000
-5.90000000000000e+000
-5.80000000000000e+000
-5.70000000000000e+000
-5.60000000000000e+000
-5.50000000000001e+000
-5.40000000000001e+000
-5.30000000000001e+000
-5.20000000000001e+000
-5.10000000000001e+000
-5.00000000000001e+000
-4.90000000000001e+000
-4.80000000000001e+000
-4.70000000000001e+000
-4.,60000000000001e+000
-4.50000000000001e+000
-4.40000000000001e+000
-4,30000000000001e+000
-4.20000000000001e+000
-4,10000000000001e+000
-4.00000000000001e+000
-3.90000000000001e+000
-3.80000000000001e+000
-3.70000000000001e+000
-3.60000000000001e+000
-3.50000000000001e+000
-3.40000000000001e+000
-3.30000000000001e+000
-3.20000000000001e+000
-3.10000000000001e+000
-3.00000000000001e+000
-2.90000000000001e+000
-2.80000000000001e+000
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(iv) J =0.01
/1

5.78114030461431e+009
3.01275738735397e+009
1.56268211069374e+009
8.03218818378121e+008
. 4,05497212029778e+008
. 1.97256213627122e+008

8.83234325459802e+007
3.17419079114196e+007
7.53264447683457e+006
1.65867167853243e+007
2.42226281087278e+007
2.83630122878515e+007
3.05558684965107e+007
3.17111125627291e+007
3.23185254373228e+007
3.26375486094117e+007
3.28049408920690e+007
3.28926575084876e+007
3.29385241832895e+007
3.29624159153566e+007
3.29747721159960e+007
3.29810745794223e+007
3.29842010717848e+007
3.29856619666422e+007
3.29862498590276e+007
3.29863807713798e+007
3.29862733982216e+007
3.29860434100211e+007
3.29857533541073e+007
3.29854396076277e+007
3.29851279398191e+007
3.29848441679832e+007
3.29846234098240e+007
3.29845412506058e+007
3.30082143379126e+007

Syo

.90000000000000e+000
.80000000000000e+000
.70000000000000e+000
.60000000000000e+000
.50000000000000e+000
.40000000000000e+000
.30000000000000e+000
.20000000000000e+000
.10000000000000e+000
.00000000000000e+000
.90000000000000e+000
.80000000000000e+000
.70000000000000e+000
.60000000000000e+000
.50000000000001e+000
.40000000000001e+000
.30000000000001e+000
.20000000000001e+000
.10000000000001e+000
.00000000000001e+000
.90000000000001e+000
.80000000000001e+000
.70000000000001e+000
.60000000000001e+000
.50000000000001e+000
.40000000000001e+000
.30000000000001e+000
.20000000000001e+000
.10000000000001e+000
.00000000000001e+000
.90000000000001e+000
.80000000000001e+000
.70000000000001e+000
.60000000000001e+000
.50000000000001e+000
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(v) J = 0.001
/1

.65968883842204e+009
.95306893801074e+009
.53550499348245e+009
.93167674921143e+008
.04469646650674e+008
.00962945253940e+008
.44348865961544e+007
.87252522043553e+007
.94347819936175e+006
.82215241267005e+006
.43558601777961e+007
.84665872115225e+007
.06352959637762e+007
.17744649542356e+007
.23719986089379e+007
.26851736003079e+007
.28491866428799e+007
.29349936580899e+007
.29798120525631e+007
.30031551415558e+007
.30152504584547e+007
.30214568015487e+007
.30245810308245e+007
.30260928521485e+007
.30267615904839e+007
.30269899119030e+007
.30269886838271e+007
.30268686596736e+007
.30266886750471e+007
.30264812508469e+007
.30262666780711e+007
.30260616000647e+007
.302658854209065e+007
.30257611666812e+007
.30232213701251e+007
.65356252661815e+007

Syo

.90000000000000e+000
.80000000000000e+000
.70000000000000e+000
.60000000000000e+000
.50000000000000e+000
.40000000000000e+000
.30000000000000e+000
.20000000000000e+000
.10000000000000e+000
.00000000000000e+000
.90000000000000e+000
.80000000000000e+000
.70000000000000e+000
.60000000000000e+000
.50000000000001e+000
.40000000000001e+000
.30000000000001e+000
.20000000000001e+000
.10000000000001e+000
.00000000000001e+000
.90000000000001e+000
.80000000000001e+000
.70000000000001e+000
.60000000000001e+000
.50000000000001e+000
.40000000000001e+000
.30000000000001e+000
.20000000000001e+000
.10000000000001e+000
.00000000000001e+000
.90000000000001e+000
.80000000000001e+000
.70000000000001e+000
.60000000000001e+000
.50000000000001e+000
.40000000000001e+000
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(vi) J = 0.00001
1Sl

5.64596040429597e+009
2.94623163652679e+009
1.53229245312413e+009
7.91863324302108e+008
4.04171111444736e+008
2.01194049950564e+008
9.49420444085942e+007
- 3:93648740492561e+007
1.05520782570817e+007
5.96833030782586e+006
1.34844594667030e+007
1.75910302587404e+007
1.97563734609937e+007
2.08933788003747e+007
2.14896161574683e+007
2.18020387566927e+007
2.19656224861142e+007
2.20511885416765e+007
2.20958743536211e+007
2.21191468972663e+007
2.21312069674511e+007
2.21373980648459e+007
2.21405183431254e+007
2.21420325598285e+007
2.21427072509786e+007
2.21429434943104e+007
2.21429512467851e+007
2.21428407140386e+007
2.21426703572118e+007
2.21424723588256e+007
2.21422665816854e+007
2.21420689919325e+007
2.21418978502567e+007
2.21417756990259e+007
2.21399370653966e+007
1.93080418143582e+007

Syo

-5.90000000000000e+000
-5.80000000000000e+000
-5.70000000000000e+000
-5.60000000000000e+000
-5.50000000000000e+000
-5.40000000000000e+000
-5.30000000000000e+000
-5.20000000000000e+000
-5.10000000000000e+000
-5.00000000000000e+000
-4.90000000000000e+000
-4,80000000000000e+000
-4.70000000000000e+000
-4.60000000000000e+000
-4.50000000000001e+000
-4.40000000000001e+000
-4.,30000000000001e+000
-4.,20000000000001e+000
-4.,10000000000001e+000
-4.00000000000001e+000
-3.90000000000001e+000
-3.80000000000001e+000
-3.70000000000001e+000
-3.60000000000001e+000
-3.50000000000001e+000
-3.40000000000001e+000
-3.30000000000001e+000
-3.20000000000001e+000
-3.10000000000001e+000
-3.00000000000001e+000
-2.90000000000001e+000
-2.80000000000001e+000
-2.70000000000001e+000
-2.60000000000001e+000
-2.50000000000001e+000
-2.40000000000001e+000
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(vii) J =0
/]

5.64582154428750e+009
2.94616208269964e+009
1.53225995725658e+009
7.91850158216538e+008
4.04168114870592e+008
2.01196242351556e+008
9.49470297859775e+007
3.93712101704299e+007
. 1.05582458901004e+007
5.95990766583480e+006
1.34758429056738e+007
1.75823705793220e+007
1.97476795415453e+007
2.08846630369789e+007
2.14808874853675e+007
2.17933022414832e+007

© 2.19568816584495e+007

2.20424452411815e+007
2.20871297065190e+007
2.21104015342082e+007
2.21224612402547e+007
2.21286521793399e+007
2.21317724122242e+007
2.21332866506719e+007
2.21339613999900e+007
2.21341977206581e+007
2.21342055612797e+007
2.21340951222235e+007
2.21339248604891e+007
2.21337269552464e+007
2.21335212652781e+007
2.21333237499804e+007
2.21331526590042e+007
2.21330305285923e+007
2.21311980004647e+007
1.93244001062085e+007

(oY
~SYo

-5.90000000000000e+000
-5.80000000000000e+000
-5.70000000000000e+000
-5.60000000000000e+000
-5.50000000000000e+000
-5.40000000000000e+000
-5.30000000000000e+000
-5.20000000000000e+000
~5.10000000000000e+000
-5.00000000000000e+000
-4.90000000000000e+000
-4.80000000000000e+000
-4.,70000000000000e+000
-4.,60000000000000e+000
-4.50000000000001e+000
-4.40000000000001e+000
-4,30000000000001e+000
-4.20000000000001e+000
-4.,10000000000001e+000
-4.00000000000001e+000
-3.90000000000001e+000
-3.80000000000001e+000
-3.70000000000001e+000
-3.60000000000001e+000
-3.50000000000001e+000
-3.40000000000001e+000
-3.30000000000001e+000
-3.20000000000001e+000
-3.10000000000001e+000
-3.00000000000001e+000
-2.90000000000001e+000
-2.80000000000001e+000
-2.70000000000001e+000
-2.60000000000001e+000
-2.50000000000001e+000
-2.40000000000001e+000
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