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Abstract 

Throughout this thesis we deal with the scaling properties of resonance (or 
Arnol'd) tongues of circle maps. The motivation comes from the work of A.M. 
Davie, which we summarise as necessary. 

We deal initially with the Sine Circle Map in the form 

fk,c(x) = x + ci + k sin2 (x) mod 7r, 

where 0 < Il < ir and 0 < k < 1, and consider rotation numbers of the form 
a =. Here we investigate the scaling behaviour of the intervals I(k), where, for 

3  ci E Li., fk,c has rotation number , as n -+ oo. We know that IIj (k)I 7kfl. 

Our cncern is with estimating the behaviour of Yk  as k -+ 0, to'which end we 
improve on the estimates made in the original work by Davie, and consider the 
effect of errors neglected in the first order approximations. 

In chapter 3 we deal with the same map, but now considering rotation numbers 
of the form a = (n + )_1, where n,p, q € N, with p,q co-prime. We investigate 

the widths of the intervals Ia. Specifically, we consider the asymptotic behaviour 

of hal as n - 00 and k - 0 in any manner. This behaviour is related to a 

polynomial in the first q Fourier coefficients of a particular period 1 map, derived 
from a transformation on the circle map. We derive the appropriate polynomials 
for values of q < 20. 

In the final chapter we consider circle maps derived from the Dissipative Stan-

dard Map, 

fk,n(x,O) = (Jx - ksin(2ir9), 9 + ci + Jx - ksin(27r0)), 

where 0 < J < 1. The map may be regarded as a map of the cylinder It x S 1  into 

itself. The theory of normal hyperbolicity shows that if k is small enough there 

exists a circle, V, homotopic to {0} x S i , which is invariant under the action of 

fk,c, and on which is induced an orientation preserving circle homeomorphism. 
We obtain an approximation to the circle and the associated homeomorphism 

when ci = cit, such that fk,Q lv has a fixed point, proceeding to investigate the 

scaling of I I. I from this basis. Finally, we numerically estimate the quantity 

derived in th'e analytical part of this chapter. 
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Chapter 1 

Introduction 

Resonance, or the possibility of resonance, arises often in physical systems - for 

example, where two or more oscillators are coupled and a rational relationship 

exists between the respective periods of oscillation. For this reason it is often 

known as mode, or phase locking. In such a situation we might represent the mo-

tion of the system as a curve on an n—torus, which, when the system is resonant, 

becomes a closed loop. We may then consider the behaviour of the system with 

attention restricted to the loop. 

One way to study the phenomenon of resonance is to consider the time—one 

map of such a system. It is therefore natural, from a mathematical point of view, 

to abstract ideas from this situation and consider maps of the form 

F(x) = x+g(x), 

where g is continuous and periodic with period r E R . We therefore have 

F(x + r) = F(x) + r, and F naturally gives rise to the map 

f(x) = F(x) mod r, 

which maps the circle rS 1  = R/rZ continuously onto itself. For obvious reasons 

we call f a circle map, although the notation is somewhat loose and may be 

applied to F. F is properly known as a lift of f. Note also that whilst it is 

convenient for this present discussion to distinguish between circle maps and lifts 

by the use of lower and upper case letters, the meaning is in general clear from 

the context and we will drop the practice after this chapter. 

One of the simplest maps of this type (other than a rigid rotation, 
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x i—  x + a mod T, which is dynamically uninteresting) is the map 

f(x) = x + + ksin2irx mod 1, 

where 0 < 11 < 1, 0 < k < 1. f is often known as the standard (circle) map. 

Much of this thesis is concerned with the study of a related map, 

fk,n(x)=x+1+ksin2 x modir, 

with0<l<7r, 0<k<1. 

In the context of a circle map, resonance is associated with the existence of 

periodic points - that is, points XO such that 

F(x0) = x0  + p, 

where p, q E N, with (p, q) = 1. At this point, we observe that throughout this 

thesis the notation f', where  f is a mapping and n € N, will denote the n fold 

composition of f with itself. If f is bijective we allow n E Z with the obvious 

interpretation. We have also the following: 

Definition 1.1 For any map f : X —+ X and any point x E X we define the 

orbit of x to be the set {y E X : y = f(x) orx = f'(y) for some n E NU{0} }. 

If f is bijective we can simplify this definition to {y E X : y = f'(x),n E Z}. 

Typically we will write x, = f'(xo), so that the orbit of a point xo  is the set 

{x : n E Z}, or just {x}. 

The most important tool for the study of resonance in circle maps is the 

Rotation Number, due to Poincaré (see [Po]). 

Definition 1.2 Let F be a lift of a circle homeomorphism, f. We define the 

rotation number p off by 

F(x) 

	

p(f) = lim 	mod 1 

	

n—oo 	fl 

It can be shown that this limit always exists, and is independent both of x and of 

the particular lift chosen (see, for instance, [Ni]). 

We may speak of the rotation number of F, rather than f, with the obvious 

interpretation. 

The importance of the rotation number lies in the following simple result (see, 

for instance, [AP] for proof): 



Theorem 1.3 Let f be a circle homeomorphism, and F a lift. Let p, q E N be 

such that (p, q) = 1, that is p and q are co-prime. Then f has rotation number 

jffF(x) = x + p for some x ER. 

Now, it is easy to see from the definition that p(fk,o)  is increasing, as a function of 

Q. Poincaré stated, without proof (see [An]), that the rotation number depends 

continuously on the map, and so we see that the set 12 = {1 : p(fk,) = is a 

closed interval. 

We come now to the idea of the scaling of the intervals 12. If the small 

parameter, k, is allowed to vary, then the question of how 1121 depends on k 

arises. 

Arnol'd, [An], studied the cosine map, 

fk,(x) = x + Q + kcosx mod 27r, 

and found that lIE I = Q(k) as k - 0, also conjecturing the existence of the 

more general result (see [Ar2]). Thus the set {(1, k) : p(fk,r) = } appears as 

a narrowing 'tongue' approaching the k = 0 axis, and hence the term 'Arnol'd 

tongues'. 

Further general scaling properties also came to light, primarily regarding the 

scaling of lIE I for fixed values of the non-linearity parameter, as q - 00. Ecke, 

Farmer and Umberger, [EFU], numerically observe the scaling behaviour lI I = 
O(q 3 ) for fixed k < 1 in the case of the sine map. More recently, Jonker 

[Jo] (and see also [Da2]) has shown that this law holds for diffeomorphisms and 

differentiable homeomorphisms of the circle in general. 

It is this latter form of scaling behaviour that we will be primarily concerned 

with in the chapters that follow. 
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Chapter 2 

Scaling of 
	ongues of the sine 

circle map 

In this chapter we consider the asymptotics of the resonance (or Arnol'd) tongues 

of the sine circle map. More particularly, we consider the map in the form 

2 
fk,n(x) = x + l + ksin (x), 	 (2.1) 

where 0 < Q < ir, 0 < k < 1, and x E R. The map is much studied, and 

in particular we review here the work of Davie, [Dal], which is essential to the 

material that forms the main part of this chapter. 

2.1 Resonance scaling for the sine circle map. 

We first define I(k) = {IZ : p(fk,n) =, where p(.) denotes rotation number. 

Then In  is a closed interval, [c(k),/3(k)]. 

The paper establishes the following: 

Theorem 2.1 For each k there are numbers c(k), /3(k) such that 

.2 	a(k) 
+o(n 3 ) 

and 

13 	

2 	/3(k) 
n(k)=+ 	+o(n3), rj  

as n —+ oo. Thus II(k)I =+ o(n 3 ), where 'y(k) = /3(k) - 
LN 

Also, as k —+ 0, -1(k) = k_ 1 e_ k [A + o(1)], where A is a constant (numerical 

results show A = 650.0). 
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We present now the main details of the proof. 

Consider first of all the map fk(x) = x + Icsin2 (x), that is, fk,ci  for Q = 0. 

Now, fk  is a diffeomorphism, and for x o  E (0, ir) the orbit {x} is such that 

- ir as n — +00, and x, —+ 0 as n - —00. We find V : R - R such 

that (x 1 ) - (x) = 1 + O(x). Using p  we define increasing functions 

9k:(0,7r) —* R and hk:(0,lr) - R by 

• 	 gk(xo) = lim (x) - n, 	 (2.2) 
n--oQ 

and 

hk(xo) = urn W(Xn) — fl, 	 (2.3) 
n-woo 

for XO E(0,ir), noting that gk(fk(x)) = gk(x) + 1, and similarly for hk.  We may 

now define the mapping Tk(X) = hk(x) - gk(x), and, since gj maps (0, ir) onto 

R, we can write Tk as Tk(x) = ak(gk(x)). So then o is a periodic function on R 

with period 1. 

We now fix k and consider orbits of fk,12  for small ci > 0. These orbits now 

extend from —oo to +00, since fk,i2(x) > x + SI. As before we find a.function 

R - R such that &(x) - &(x) 1. By consideration of the orbits of a 

point x 0  under fk,c  and fk,  and of the mapping 0 , the following result is obtained. 

For SI E 'N, 

aN(lc) =(i — ek) + o(N 3 ), 

and 

13N(k) = TN2. (i - 77Ok) + o(N 3 ), 

where 

Ok = min 7k(), ER 

and 

Ok=Ic o() 
tER 

The first part of the result follows. 

We now consider the estimation of -y  as k .- 0. From the above, we have 

——(ek - Oh). 

Since 0k  is periodic with period 1 we can write it as a Fourier series, 

= 	cr(k) —2irire 
rEZ 



where, for any 5 E R, 

	

cr(JC) = J 
5+1 

cTk(e)e 	d 

	

= 

fX1

[h,(x) - 	gk(x)]e 	'9k(x) dx. 	(2.4) 
Jx0 

Clearly, in employing 2.4, x0  may be chosen arbitrarily. In order to estimate the 

integral, we extend 1k, hk and g  into the complex plane. Thus we consider orbits 

of 

fk(z) = z+ Ic sin2  (z), 	z E C. 

We now fix a constant C > 0 sufficiently large so that when z e V, with 

V = {z E C: 2 7r < 1z < r,0 c~z 	log - c}, 

we have ksin 2 (z)I < e2C, and z has a unique orbit with z, -, 0 as n - —00 

and Zn - ir as 71 —4  00. 

By consideration of the first order non-linear O.D.E. 

	

1 	2 
z=icsin z 

we obtain a mapping, 

k(Z) = —k cot(z) + log sin(z), 

such that 

k(Z n+1) - k(Z) - 1 = o (Ic2  Isjn2(zn)I e2) 

We may now define complex analytic mappings § k : V - C and hk : V -p C 

analogous to those obtained earlier on the real line, and we have 

—k' cot(Z) + log sin(z) - n - Yk(ZO)f = o (ke2m) 

as fl -p —00, and 

—k' cot(z) + log sin(z) - n— hk(zo)I = 0 (ke') 
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as n —+ 00. When z is real, 9k  and hk coincide with g and h respectively, and for 

the sake of notational simplicity we shall drop the -. 

Now, we choose x0, zo  E V, with xo  real. By Cauchy's Theorem applied to a 

suitable contour we find that 

c(k) = 
	

[hk(z) — 
	 dz. 

In order to estimate this, we make a k-dependent change of variable to transform 

fk into a mapping which is independent of k, to a first approximation. We write 

z = ib + w, where b = log, and consider the map 

f(w)=w— 1  e -21w 
 

for w E W with 

W={wEC:ir<Rz'(7r,z<—C}. 8 	 8 

We now find that orbits of f satisfy jw — — 00 as n - ±00, and Qw — or 

as n — —oo or +00 respectively. In addition, we find that the limits 

u 	I 2iw, — 
	) - 

rn z(e 	w, 	 (2.5)  
n_-co 

and 

hm z ' ( e 2iw, - ) 
— n 	 (2.6) 

fl—l.+O0  

exist, and define analytic functions, G and H, on W. Fixing w E W, and ri large, 

negative, we find that, as k - 0, 

gk(ib + w) — ik — b —+ G(w) +- log 2, 	 (2.7) 

with a similar result for hk,  H. 

Thus we find that 

2, r 	 1  P 

e 	k(k)I - e' 
2 
 I / 

W1 

[H(w) — G(w)] e2i(1GI(w) dwl, 
IJwo 	 I 

as k —' 0. Clearly when k is small, Ici(k)I dominates Icr(k)I, r > 2, and so 

ek 	°k ' 4 Ici(k)I, 

giving 
2,r 

1(k) = keT(A+ o(1)), 

where 

A = 87r 2 e
_2 
 / [H(w) - G(w)] e2  Nw)GF(w) dwl, 

J 'Do 

which is then easily estimated numerically. 0 



2.2 Asymptotic behaviour of '-yb 

Throughout the remainder of this chapter we will be concerned with the more 

precise estimation of y(k). In particular, we establish the following result: 

Theorem 2.2 For any r E N, 

7(k) = k_ 1 e_ [A0  + A1 1c + 	+ A rk' + O(k)], 

where A 0  = A. 

We also show how, in principle, the A, can be found, giving an expression for 

A 1 , and investigate the possibilities of numerical estimation. 

The proof of Theorem 2.2 follows broadly the same lines as that of Theorem 

2.1, but with some significant additions. We show how 2.2 and 2.3 may be 

generalised to give higher order approximations, and similarly 2.5 and 2.6; we 

consider the error involved in relating the orbits of the map fk(z) = z + k sin2 (z) 

to those of f(w) = w - e 2"' ; and finally we consider the convergence of higher 

order terms in 2.7, from which the generalised result follows. 

Firstly, then, we look for a change of co-ordinates, I1, that will transform the 

map, fk,  approximately satisfying the relationship 

wofkow'(e) =+1. 

Lemma 2.3 Let 

V = {z E C: ir < Rz <ir,O 9z ~ lo g - 

8 	 8 

and let U be the set 

00 

U = Uf(V). 

Then, given N E N, there exists a mapping, Wk : U - C , such that 

N+22 	2 
'I'k(fk(z)) - Wk(z) = 1 + 0 (k 	sin z e (N+1)$3z) 	(2.8) 



Proof. We show that there exists a mapping of the form 

Wk(z) = 
	

k/)r(z), 	 (2.9) 

which satisfies the requirement. 

Let us first begin by assuming that this is the case. For such a Tk, analytic 

on some neighbourhood of U, we form the Taylor series, 

Wk(fk(z)) = Wk(z+ksin(z)) 

= W(z)+(ksin2z)W(z)+ (ks2z)2 
2! 	

k(Z) +... 	(2.10) 

Now, substituting 2.9 into 2.10 and comparing coefficients, we obtain 

0_ 1 (z) = — cotz 

and 

o(z) = logsinz 

as in section 2.1. In general, for r > 1 we have the following relationship. 

- 1 2 	ii b (z) 	- sin z t'_ - j(sin2 z) 2  I,,  _ 2 (z ) - -  

1 __ 	'r+1 
_(r+2)!(8m 

	0( r +2)(Z) 	 (2.11) 

From this it is possible to calculate recursively as many coefficients, 	as may be 

required, although this is a tedious and error prone operation by hand, and it is 

greatly simplified by the use of computer packages such as Maple or Math ematica. 

However, for present purposes we require general information about arbitrarily 

many coefficients. We pause in the proof of Lemma 2.3 to consider the following: 

Definition 2.4 The degree of the trigonometric monomial 5m  z cos' z is 

(m + n). The degree of a trigonometric polynomial in sin z and cos z is the degree 

of the term of highest degree. 

Proposition 2.5 Let r > 1. Then r(Z) has the form 

= ar +/9rz+T(Z), 

where cx,., /3,. E C, and T(z) is a trigonometric polynomial in sin(z) and cos(z) 

with degree 2r. 
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Proof. We first note that if T(z) is a trigonometric monomial of degree n, then 

so also is T'(z). Now, let Ti (z) be a trigonometric polynomial of degree n, and 

let 

0(z) 
= Ti (z) 

Then 

sin  zT(z) - 2mTi (z) sin 	cos z 
0'(z) = 	 5j 4mz 

T2 (z) 
= sjn2(m+l) z' 

where T2 (z) is a trigonometric polynomial of degree n + 2. 

Now, since '1 (z) has the form 

Ti (z) 
sin4  z' 

and similarly 
T2 (z) 
sin 2  z '  

where T1 , 7'2  are trigonometric polynomials in sin z and cos z with degree 2 and 0 

respectively, it follows trivially by induction that b(z) is a trigonometric poly- 

nomial in sin z and cos z with -degree 2r, and the result follows, with ar arbitrary. 

MI 

Now, returning to the proof of the lemma, we choose all the br (Z) as above, 

and write 
N 

1N,k(Z) = r-1 

We now need to show that this "N,k  satisfies 2.8. Now, in general, for fixed z 

and e small, we can write 

N+2 6 	(N+2) 
''N,k(Z + e) = 'PN,k(z) + &'IIN,k(Z) + 	+ (

N + 2)!' 	
(z) + RN+3(z + e), 

say, where 

6N+3 	 C N+4 
(N+4) 

RN+3(z + e) = (N+4)! 
N,k (z)+".. 

Now 
(N+2) 	(N+3) 

N,k+ e) = 'T! N,k  (z) + e'T!Nk (z) +..., 
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so that 

(N+2) ' 
IRN +3(z + e)I ~ 

1N+2 (w(N+2)(z + e) 
- N,k (z)) 

= 
kN+3 101  W'(z + Oe) dO 

< IW(N+3) 
- 	 max1 Nk (z+Oe)l, GE (0,11 

and given the form of t/,j = —1,0, 1,... , N, we easily obtain 

2 N+ 
I1N+3(z+ksiz)I ~ D1C 	sin2  ze 2 +1 I, 

for some constant, D. 

We have chosen the 0, in order to equate coefficients in 2.10, and so we now 

have 
N 	 N 

WN,k(z+k sin z) 
= r1 

k T 1)(z) + ksin2  Z>  k'(z) 

+ j (k sin2  z)2 
r-1 

 k'(z) + 

+ (N + 2)! 
(k sin2 z)N+2 

r-1 

ro+2 ) (Z) 

( N+ 	2 +0 k 2 sin z e21) 

N 
= 

r=-1 

II 

	

+j(ksin2z) 	N(Z) 

+(ksin2z)31 N 'ii ( +kN_lbI 	1 [k 'hINZ) 	 N_1(Z)j +... 

+ (N + 2)! 
(k sin2  z)''72 [kN+2(N+2)(z)  + 

+... + k0&2)(z)] 

+0 (kN+2  sin 2 Z e2(N+1)) 

	

= '!N,k(z) + 1 + 0 (kN+2 sin2  z 2(N+1))1 	 (2.12) 

as required. 0 
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We now turn our attention to the question of the error involved in relating the 

orbits of 1k  to those of f. Recall that if we make the transformation z = w + ib, 

with b.= log, then 

fk(z) = fk(W+ib) 

= (w+ib)+ksin2 (w+ib) 

= w + ib - e" + 0(k). 	 (2.13) 

Thus we obtain the 'limiting mapping', 1(w) = w - e 2"" . Now, with V and W 

as in section 2.1, let z0  E V. We choose wo  E W such that w0  = zo  - ib, and let 

{ z,} and {w} be the orbits of z0 and w0  under fk  and f respectively. We write 

= z,, - (w, + ib). 

Consideration of this error was unnecessary in the previous section, but now we 

need more precision. The following Lemma gives the form of for fixed n. 

Lemma 2.6 	is analytic in k, and we write 

C. = kb,,1  + k2 bn 2 +... 

Also, fors=1,2, ... , 

bn ,8 = 0(n8 ). 

Proof. Fix n > 1 (the argument is similar for n <0). From 2.13 it is clear that 

0 as Ic —i 0. Also, Co  = 0. Now, since C+i = 	- w+j - ib, we obtain 

Cn+1 = ( + k - k 
2iWn 	- e 21L  (e_2i 	(2.14) 

Thus (n+1  is analytic as a function of k and of (,,. The first part of the Lemma 

follows by induction. 

Now, from 2.14, we can see that 

+A[i ±:!i ± O((n)]+ 0(k2 ) 

kf = 	+ 	+ 	+ 0((+i_))] I + 
(2.16) 
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So, 

cn 	i' it I 
+ 2 1+ n—1 lll =h1 	Z  _2iwn_a)]} = bni , 	(2.17) 

k 	1 	=1\ +e 

as k - 0. Now, recall that 

2ie2" - iw - n - G(w o ) 

as n - oo. Hence we deduce that, for n large, 

iti t = 	+ s, 
2 	n 

with 16TL1  <. So then Ii + 	< 1. Now, given such an n, we choose a 

constant, B> 1, such that Ib, i I <Bn, and suppose that for some t > n we have 

b,1l <Bt. Then, by 2.15, 

= + b,1  (i + e2iwt) 

So 

lbt+i, i I 	+Bt<B(t+1). 

Hence, by induction, bn,i = 0(n). 

Now let s be such that 1 < s < r, and suppose that for 1 < 1 < s we have 

b,1 = 0(n'). Then from 2.14 we have 

= 

	

bn,se[2ib.,.-2 
	

(2i)2 	 (2i'i2 	1 

- - 	+ 2! (b,1 b,8_3  + ... + b,33b,1 ) + ... + 	b82
(s-2)! nil

[ 	 (-2i) 8 	1 

	

2ib,8  + 	
2! 	

(b,1 b,3_ 1  +... + bn , 8_ibn,i) + 	+ 
s! 	

bn.ij 

= ba,, (i + 	
+ 0 (na_i) 

=(n3-1  11 + 
n-1 	

+ 
i 
 — 2iwn—u)] 

) 

= 0 (na_i  I2b, i  I) 
= 
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The result follows, by induction. 0 

Recall that in defining ''k  earlier, the constants, ar , were arbitrary. We now 

impose the requirement that I/'r(Zn)I -+ 0 as n —* ±oo. In fact, this means 

that we need two different WN,k  functions, which we will denote W,k and W,k 

respectively. Because of the form of 7k , and the fact that z - ir or 0 as n —' ±oo 

respectively, the constants, a, are uniquely determined for each WN,k  by the 

requirement. 

Lemma 2.7 Let N > 0. There exist mappings, gj : V — C and hk : V —+ C, 

such that 

gk(zo) - [w,k(Zfl) 
— 	

= 0 

as n — —oo, and 

hk(Zo) — [,k(zfl) — n] I = 0 (+) 
as n — co. 

Proof. We give the proof for gj, that for hk being similar. We have 

'N,k(fk(z)) — 	— 	0 (k"2sin2z e2+1) 

from Lemma 2.3. Thus 

- n = WN,k(zO) + 0 
( 

(ksin2z_) (ke2_+1). 

We need to show now that the error term converges, and to that end we consider 

the tail of the infinite sum. Recall that for z0 E V, we have —* 0 as n — ±00. 

Thus we can say 

00 

o < 	E (ksin2z_u) (ke2z_u)N+1 l u=n+l 

00 

~ (ke2_1)"l E (k sin2  z_) l u'=n+l 

K 	(k sin2  z_) , 	 for some K > 0, 
u n+1 

—+ 0, 	 as n — oo. 

15 



Thus there exists a gj such that 

gk(zo) —  [,k(zfl —  n] = 0 ((ke 2 !a,.) N+l) 

as k —i 0 and n —+ —00. 

Now 

~zn  = 
1 

= 9w + log + 0(kn), 

by Lemma 2.6. Hence 

ke  2DZn =  e2'"(1+0(kn)) 

= e2 '(1+o(1)), 

as n —* —oo, provided k = 0 (i), for some p> 1. 

Now we also know that 

2ie2tL 
- iw — n —' G(wo), 

as n — —oo, and since 

Iwn+1 - wnI 
= 	< 1, 

we see that w, = 0(n). Thus e 2iWn = 0(n), which gives e2 '" = 0 (k), and the 

result follows. 0 

So, we now have functions, g, and hk,  analytic on V, defined by 

gk(zo) = lim W,k(zfl) - n, 
n--oo 

and 

hk(zo) = lim 'I' N,k (zfl ) — n. 
n—oo 

Also, g  satisfieB 

;k(f + 

and similarly for hk.  It follows from the definition, and from the fact that 

— 0 as n .— ±00 respectively, that when z0  is real, these functions agree 
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with the ones defined in section 2.1. As before we use the complex functions, gj 

and hk,  to find the maximum and minimum of the 0k  function. Recall, 

7k() = 	c,.(k)e —2irir 
rEZ 

with 
a*z1 (z) I c,.(k) 

= J 
[h,(z) - gk(Z)]e2r 	9k(z) dz. 	 (2.18) 

zo 

Lemma 2.8 Let w E W. Given N > 1, there exists an M E N such that 

gk(w + ib) = k 1 i + bPM(k) + Go (w) + kG i (w) + ... + kNGN(w)  + o (kN+1), 

and 

hk(w + ib) = 1c 1 i + bPM(k) + Ho (w) + kHi (w) +... + kNHN(w)  + o (kN+1), 

where PM is a polynomial, and the G 3 , H2 ,j = 0,. . . , N are analytic on W. 

Proof. We shall give the proof for hk. Again, the proof for g, is similar. Firstly, 

let M0  E N. Now, recall that 

M0 

WM 0 ,k(zfl) — n = rikt (Zn) 

= —k 1  cotz + log sin z + /&(zn) +... + kM0bo(Zn) - fl. 

	

Now, since Zn = w + ib + kb,1  + k 2 bn ,2  +•.. , we can expand the 	and rear- 

range, collecting terms in 0. Thus, 

le

e  tzn + '
— k 1 cot z = —k1i 

ün - e 2nj 

- k' [ + e
2  

- 

= k 1 i (i + 2e2' + 2e4*  +...) 

= k 1 i + 	 + 2ike4 	 + 
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= k 1 i + 2ie2' (i + 2i(kb, 1  + .) - 2(kbn,i + 
.)2 
 ...) 

+2ike4 	(i + 4i(kb, 1  +) - 8(kb, 1  + 
• )

2 ...) + 

= k'i + 2e2  + k (2ib, 1  + 
e4 iwn  + 

Proceeding similarly with , t'j1 ,. • 	we write 

- n = k'i + bPM0 (k) + c,o  + kc,, 1  + k 2c,2  + ... + kNcfl,N  + Rk,. 

Now, the contribution to c,, 8  from —k' cot Zn  is 

2s(a 1)wn (_[2(s - 1) ]
2  ) b2  2i {e2i(8+1) 	+ e2i8A 2isb, 1  + e 	- 	

2! 	n,1 

+e2i(8_tv 2(s - 1)ib0,2 + 	+ e2*(2i)3bi} 

= 0 (s+1) , 	as n —+ 00. 

A similar analysis for log sin Zn  gives its contribution as 0 (n8 ). From Proposition 

2.5 we can write, for 1 < r < M0 , 

13r,re 	+ r,r_ie2 r_1)z, + 	+ fl,_e 2" + /3rZn  + — 	2irz 

Thus, for the contribution to c, 3  from 	we require the terms of order k 8  

from 

f3r,jk' 2 "' (i + 2ij + (2ijcn)2 +.) +f3r(Wn+b+(n) +an. 
j=-r 

The order k terms are 

r 	 I f3rbn,s_r  if 	r k8' 2ijw,,- 
Pr,j 	e 	 . . , bn,s_r_,) + 	0 	otherwise 

s-r-jO 

+ { ar ifs=r 
otherwise 

where 

(L 
	 — 	V' 	LX1 	j 2a-r-j 

, 
L Un,a....r_j) — 	L_.d 	

D 	
• 

Ex1 = a —r—j 
xi >o 
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where x = (x1 )  x2,... , Xa_r_j), and B. is a constant. 

Since e2 '" = 0(n), and b,1 = 0(n'), it is clear that the contribution to c,,, 3  

from /(z,,) is 0(na_r).  Hence we see that 

Cfl,3 = 0 (s+i) 	 (2.19) 

Similarly, we obtain 

	

= 0 (k"1n"T2). 	 (2.20) 

Note that the polynomial, FM0,  is derived from the f3z,, term in b(z,,), where 

Zn = w,, + ib + a,,. It is important also to realise that we derive the same 

polynomial for lI' 0 k(zfl). Also, it is clear that each c,,, 3  defines an analytic 

function of wo  E W which is independent of k. To prove the Lemma, however, 

we need to show that they converge to analytic functions on W. Now the set 

V depends on k, and it will be helpful, at this point, to make that clear in the 

notation. We write 

Vk = 	C: 
3 

 7r <z <ir,o cz 	1og - c}, 

and we also introduce the set Wk, 

W, = jW E C: 3  7r < Rw < 5  7r ,  — 1 log 1 < FjW <  — C 

Wk is thus the translation of Vk by 1  log in the negative imaginary direction. 

We show that the c,,, converge uniformly on every compact subset of W, and 

therefore define analytic functions on W. 

Let W*  C W be compact. Then there exists a k*  such that W 3  9 Wk.. 

Now by Lemma 2.7, for z0  E Vk. and k < k* ,  we have 

Ihk(zo) - [w 0,k(z fl ) - n] I = 0 ( 1  ). 

So, if rn > n, 

- cm,o) + k(c,,,i 
- 

Cm,i) + 	+ (Rk,n - Rk,m)I = 0 
(nmlo+l) 

Now, from 2.19 and 2.20, provided 1cm < 1, we have 

k(c,,, i  - c,,,, 1 ) + k 2 (c,,,2  - cm,2) + ... + (Rk,n - Rk,m)I = 0 (km2). 
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Thus we obtain 

- Cm,O I = 0 	+ km2). 

Now, suppose that k 	, p> 1. Then we have 
MA 

lCn,O - Cm,O = 0
1

(A+1 + m2_M). 

So if p is large enough, then we may conclude that 

ICn,O - Cm,O = 0 
(nM10+1) 

 

Thus (c,) ° 1  is a Cauchy sequence, and converges. Also, the convergence is 

uniform for zo E Vk., and hence for w0 E Wk.. Continuing in like manner, we 

obtain 

Ik(c,i - Cm,i)I = 0 	+ k2m3). 

Now, suppose that n <m < 2n, and let k 	, as before. Then we have 

(nmo+'- 'A 

1 
I cn,i - 	= 0 	+  Cm,I 

Thus, if 4< p 

kni cm1iI 0 ( in)  

We now remove the restriction m < 2n. There is a q E {O, 1,2 .... } such that 

2q  n < m < 2 q +'n. 

Thus 

Cnj - Cm,1 = (Cn,i - C2fi,1) + (c2fl ,1 - C4n,1) + . + (cqn ,i - Cm,i) 

/1 	1 	1 
= oI. -+—+...+— n 2n 	2q n  

= o(!). 

Thus (c,) 1  is Cauchy, and converges as required. 

Now, since we can choose M as large as we like, it is clear that we can also 

make p large enough so that 

Icn,i - Cm,iI = 0 
(;), 

II] 



with S large. In fact, choosing 

- M+N+3 
N+2 

gives 
M-3(N+1) 

N+2 

provided M is large enough. Now, the contributions from
. . , 	to c,i 

are of order 0(1(Mo+1)) = Q(_Mo). Thus, when M = M0 , 

'1 \ 
- 4n,iI = 	(Mo+iz)' 

and so we obtain 

k 2  ICn,2 - Cm,21 = 0  
(;~M-0+1 	nmo+A 

+ k3m 4  + 
1 ) I 

and hence, 

- 	
= 0 (MO1_2 + 	+ 

= 0 (MO1_2  + 

since M0  - p > M0 + 1 - 21z. We may now repeat the process, obtaining, in 

general, 

ICn,a — Cm,al = o( 	1 	 1 	1 
+ 	+ flMO+2_8_i4) 

1 	1 	1 
=0 	+ \MQ+1-8 	W(8+2) 

for 1 < s < N, provided p can be chosen to satisfy the following conditions: 

Mo+1—sp>1for1<s—<N+1; 

p—(s+2)>l 	forl—<s—<N. 

It is evident that the choice 

• 	 M0+N+3 
N+2 

will suffice, provided M0 is large enough. In this way, we obtain 

k 8  Icn,3 - C7fl ,$  = 0 
(ni  ) 
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with 

for 0 < s < N. Finally, then, we have 

— Rk,mI = 0 (nM10+1) 

from which we readily see that 	converges, so that 

Rk,n = o (kT+1), 

as k —p 0 and n —+ 00. 

So, then, we see that 

I (w O, (z) — n) — (k'i + bPM 0 (k) + Go (wo) + ... + k N GN(w o))I 
= 0 1  + 

as k — 0 and n —* oo, and so finally, 

hk(wo + ib) — (k 1 i + bPM0 (k) + Go (wo) +" + kN GN(w o ))I 

= 0 (+ + kN+1) 

/ 0± 	
k'') =O(k+ 

= 0 (kN+1), 

provided M0  is large enough. 0 

The theorem now follows quite easily; substituting for gk(z), hk(Z) in 2.18, we 

obtain 

lci(k)I = J:1  {[Ho (w) — G o(w)] + + kN [HN(w) — GN(w)] + 0(k'')} 

x e27nj{1 	 +kN GN(w)+0(k N4i  )} 

x [G'(w) +... + kNG(w)  + Q(kN+1)] dw , 	 (2.21) 

and the result follows. 
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2.3 Numerical estimation of A 1  

We turn our attention now to the numerical estimation of Al. We use a Simpson 

type approximation for the integral 2.21. First of all though, we need to calculate 

sufficiently many of the &r to obtain the required convergence. In terms of the 

notation of section 2.2, we have N = 1. Consideration of the conditions (i) and 

(ii) on j suggests that M> 8 will suffice. Of course, this is conservatively large, 

and we will use M = 5, which, by experimentation, is adequate. 

Now we have already, 

b_i(z) = — cotz; 

b0(z) = logsinz. 

Using the relationship 2.11, we obtain, 

1. 	z 
= —sinzcosz—+c1; 

14 	
2 

1 
2(z) = - cos z - sin z + a2; 

38 119 	. 	1 	 1 
03(z) 

= 	
cos z sin z - 	cos z sin z - cos z sin z - 	+ ; 

1 	8 	74 	6 	83 	4 	29 	2 = 	cos z—cos z+cos z+cos z+c4; 

164 	 20197 	 190439 
1's(z) = - 	cos9  Z Sfl Z + 

75600 cos 
Z Sfl Z + 

453600 	
z 

29009 	3 . 	3001 	. 	419 

72576 
COS Z Sifl Z 

+ 80640 
COS z sin z - 	+ Qs . 

	

Also, we have a, = 0, for &j(z), and 	for b(z). Expanding the 	and 

collecting the appropriate terms, we obtain the following approximations: for n 

large, positive, 

Ho (w o ) 	- log 2 + 2ie2*L) - iw,, - e_2  - 
64 

19i -6iw 	1 -8iw0 	41i 	-1Oiw1, 
+ 4320 e 	+e 	134400 e 	, 	 (2.22) 

Wn  7r 
Hi (wo) 	2ie1h - (4b,1  + 1) 2iw - 	- 	+ - 	+ 
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• 	 (ibnj 	hi \ 	(19b, 1 	1 ) 

- 	2880) e
4 ' + 

720  + 
	e6
540 

- 
(ib,1 	5407i ' e8" 

	
164b,1 _io 

96 + 3870720) 	- 53760 e 
	, 	 (2.23) 

with similar expressions for Go(wo), Gi (wo), with n large, negative. In addition, 

a similar calculation to that in the proof of Lemma 2.6 for n <0 gives 

bn,l = - I1 ft 1 + e_28
=fl+ 

For G'0 (wo ) and G(wo ) we use a difference estimate: 

G(wo) = G(w
o  + e) - G(wo  - e) + 0(62) 

2e 

Now, we have 

Ici(k)I = 
	

{[Ho (w) - Go (w)] + k [Hi (w) - G i (w)] + 0(k2 )} 

LI 

x 2{1+ 	.I-GO(w)+kGi(w)+O(k2)} [G(w)+ kG( w )+0(k2 )] dw 

-2ff 	2f 

= ee 	

i J 
Wi 

[Ho (w) - Go(w)] e2iG01)Gbo(w)dw 

I PW 	 r 2iriGo(w) ' 2iriGo(w) 
+kI / [Ho (w)—G o(w)] [e 	G(w)+27riGi(w)e 	G(w)] 

Jw 

[H1 (w) - G1(w)] e20(w)G!(w)dw  +0 (k2) } 

	

(2.24) 

21 = 
87r2 [A

0  + kA 1  + 0 (k 2)]. 

2.3.1 Results and programs 

The approximations, 2.22 and 2.23, are sufficient to obtain an estimate of A1 

using the second integral in 2.24. However, we need to give consideration to the 

choice of the limits of integration, or, more particularly, w0 , since w 1  is deter-

mined by w0 . Theoretically we should obtain approximately the same estimate 
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regardless of the choice of w0  E W. However, we find that as £wo - - 00, 

Ho (wo ) - Go (wo) .- 0 and Go (wo ) -+ -oo. Since the relative error involved in 

our estimate of Ho (wo ) - Go (wo ) increases rapidly as w0  -* -00, we find there 

is only a small interval in w0  near 0 where the integral can be reasonably well es-

timated. Evaluating the integral over a range of w0  values we obtain the following 

data. 

If I 	 WO 

7.2066279050287 le+007 

4. 61409302724904e+007 

2 . 97942421415212e+007 

1 . 93966684094697e+007 

1 . 27315170695301e+007 

8.4273749908793 le+006 

-3. 00000000000000e-001 

-2 . 90000000000000e-001 

-2 .80000000000000e-001 

-2 .70000000000000e-001 

-2. 60000000000000e-001 

-2. 50000000000000e-001 

5. 63022883993885e+006 -2 .40000000000000e-001 

3.80425 189737047e+006 

2. 61043853201874e+006 

1 . 83266049403588e+006 

1 . 33153535818652e+006 

1 . 01530819982830e+006 

8. 21254006798849e+005 

7. 05049348515789e+005 

6 .35903061365152e+005 

5 . 938 17767072854e+005 

5 . 66886746730438e+005 

5 . 48462625274533e+005 

5 . 34987972377826e+005 

5 .24560 137020016e+005 

-2 .30000000000000e-OOi. 

-2. 20000000000000e-001 

-2. l0000000000000e-001 

-2. 00000000000000e-001 

-1 . 90000000000000e-001 

-1 . 80000000000000e-001 

-1 .70000000000000e-001 

-1 . 60000000000000e-001 

-1. 50000000000000e-001 

-1 .40000000000000e-001 

-1. 30000000000000e-001 

-1 . 20000000000000e-001 

-1. l0000000000000e-001 

5. 16140341096238e+005 -9. 99999999999997e-002 

5. 09137974611902e+005 

5. 03196439246782e+005 

4.9808507104555 le+005 

4.9364325292 1929e+005 

4. 89751900694620e+005 

-8. 99999999999997e-002 

-7 .9999999 9999997e-002 

-6. 99999999999997e-002 

-5 . 99999999999997e-002 

-4. 99999999999997e-002 
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4. 86320862910543e+005 -3. 99999999999997e-002 

4. 83278205498934e+005 -2 . 99999999999997e-002 

4; 80566414538667e+005 -1 . 99999999999997e-002 

4. 78138673573294e+005 -9 . 99999999999969e-003 

4. 75956468143587e+005 3. 08780778723872e-016 

4.73988304361610e+005 1 .00000000000003e-002 

4. 72207858927168e+005 2. 00000000000003e-002 

4. 70593162239516e+005 3. 00000000000003e-002 

4. 69125850448329e+005 4. 00000000000003e-002 

4. 67790506744822e+005 5. 00000000000003e-002 

4. 66573839500267e+005 6. 00000000000003e-002 

4. 65464572974336e+005 7. 00000000000003e-002 

4. 64452924753408e+005 8. 00000000000003e-002 

4. 63530322476074e+005 9 . 00000000000003e-002 

4.62689320782 182e+005 1 . 00000000000000e-001 

4. 61923277694736e+005 1 . l0000000000000e-001 

4. 61226254288507e+005 1 . 20000000000000e-001 

4. 60592922137809e+005 1. 30000000000000e-001 

4.600 18450386608e+005 1 .40000000000000e-001 

4. 59498404654552e+005 1 . 50000000000000e-001 

4. 59028727113075e+005 1. 60000000000000e-001 

4. 58605653573064e+005 1 . 70000000000000e-001 

4.58225673688599e+005 1 .80000000000000e-001 

4. 57885500588759e+005 1 . 90000000000000e-001 

4.57582030999 148e+005 2. 00000000000000e-001 

4. 57312315774994e+005 2. l0000000000000e-001. 

4. 57073533984293e+005 2. 20000000000000e-001 

4. 56862972577594e+005 2 . 30000000000000e-001 

• 4.5667799974750 1e+005 2 . 40000000000000e-001 

4.565 16047657056e+005 2. 50000000000000e-001 

4. 56374592277234e+005 2 . 60000000000000e-001 

4. 56251136897695e+005 2 .70000000000000e-001 

4. 56143195318592e+005 2. 80000000000000e-001 
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4. 56048279480739e+005 2. 90000000000000e-0O1 

4. 55963885553530e+005 3. 00000000000000e-O01 

4. 55887477358960e+005 3. l0000000000000e-O01 

• 4 558 16483753687e+005 3. 20000000000000e-001 

4. 55749062458658e+005 3. 30000000000000e-001 

4. 68627110835984e+005 3 .40000000000000e-O01 

9 . 84336981363252e+006 3. 50000000000000e-001 

It is clear from the data that there is, as expected, a 'window' in w0  where 

the estimate of the integral is substantially constant, although close inspection 

reveals a systematic decrease with increasing awo  until w0  reaches about 0.33. 

This is probably due to rounding error, which is an ever present hazard when 

subtracting almost equal quantities as happens here. However, on the basis of 

the data here presented we tentatively suggest that A1  is somewhere in the range 

450000-460000. 
For completeness we present also the program used to obtain the above data, 

which is written in the Pascal programming language. 

program newint3(input,output); 
const pi=3. 14159265358979e+000; 
type complex=array [1. .2] of real; 

orbit= array[-30000. .30000] of complex; 
contour arrayCO. .30000] of complex; 

var commult , rthpower , cominv , comexp , wone, 
zetaplus ,zetaininus ,integral, intgr , comadd , comdiv, a, one, 
minusone, 
zero,wnought,invg,two,four,six,fwn,bwn,wfl,H,G,H1,Gl,modckai 
comminus ,zetaminuscurrent , comlog ,bwnplusone ,error ,minusn, 
Ginverse ,Glinverse ,trial ,zetanought ,Ginvbwn ,wnoughtplush, 
wnpluseps , wnminuseps , wnplusteps , wnminusteps, 
df ,delta, intgri. , intgr2 ,gcurrent ,hcurrent ,glcurrent ,hi.current, 
answer, gldasliedcurrent , gdashed, mt : complex; 
eps,moda,modexp,b,modint :real; 
11,num,s,numberofbands,m,n: integer; 

• - worbit , otherworbit : orbit; 
gcont ,hcont ,glcont ,hlcont ,glpeps ,gldashed,gamina, 
gpeps ,gdashedcheck,gdashedcont ,glmeps, 
gmeps , gpteps , gmteps, 
gipteps , glmteps : contour; 
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function modulus (z : complex) : real; 
begin 

modulus :=sqrt(sqr(z[l])+sqr(z[2])) 
end; (*modulus*) 

procedure initialise; 
begin 

one[1] :1;one[2] :0; 
minusone[1] :=-1;minusone[2] :0; 
zero [1] :0;zero[2] :=O; 
six[l] :6;six[2] :0; 
two[1] :2;twoE2] :0; 
four[l] :=4;four[2] :=O; 

end; (*jnjtjalise*) 

procedure compadd(zl,z2:complex); 
begin 

comadd[1] :=zl[1]+z2[l]; 
comadd [2] : =zl [2] +z2 [2] 

end; (*compadd*) 

procedure compminus(zl,z2:complex); 
begin 

comminus[1] :z1[l] -z2[l]; 
comminus [2] z1 [2] -z2 [2] 

end; (*compminus*) 

procedure compmult(zl,z2:complex); 
begin 

coinmult [1] :(zl El] *z2 [l]) - (zl [2] *z2[2]); 
cominult [2] :(zl [1] *z2 [2])+(z1 [2] *z2 [1]) 

end; (*compmult*) 

procedure comppower(wl:complex;power:integer); 
var w2 : complex; count integer; 
begin 

if powerO then rthpower:=one else 
begin 
w2:wl; 
for count:= 1 to (pover-l) do 
begin 

• - 	compmult(wl ,w2); 
w2 : =coinmult 

end; (*for*) 
rthpower : w2 



end (*else*) 
end; (*comppower*) 

procedure compinv(w:complex); 
begin 

cominv[1]:w[1]/(sqr(w[1])+sqr(w[2])); 
cominv[2] :=-w[2]/(sqr(w[1])+sqr(w[2])) 

end; (*compinv*) 

procedure compdiv(zl,z2:complex); 
begin 

coinpinv(z2); 
coinpmult (zi , cominv); 
comdiv : cominult 

end; (*compdiv*) 

procedure complog(w:complex); 
begin 

comlog[1] :1n(sqrt(sqr(w[1])+sqr(w[2]))); 
comlog[2] :=arctan(w[21/wE11); 
if w[1]<0 then 

comlog[2] :=comlog[2]+pi 
end; (*coinplog*) 

procedure compexp(z:complex); 
begin 

comexp[1] :=exp(z[1])*cos(z[2]); 
comexp[2] :exp(z[1])*sin(z[2]) 

end; (*compexp*) 

procedure fofw(w:complex); 
var flioldi ,fhold2 :complex; 
begin 

fholdl[1] :2*w[2]; 
fholdl[2] : -2*w[1]; 
compexp(fholdl); 
wn[1] :w[1] -comexp[1]/4; 
wn [2] : w [2] -coxnexp [2] /4 

end; (*fofw*) 

procedure finverse(w:complex); 
var finvholdl ,finvhold2:coniplex; 

limit,j :integer; 
begin 

if wE21<-1 then limit:15 else limit:100; 
bwn:w; 
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for j:1 to limit do 
begin 

finvholdl[1] :=2*bwn[2]; 
finvholdl[2] :=-2*bwn[1]; 
compexp(finvholdl); 
bwn[1] :=wEl]+comexp[1]/4; 
bwn [2] : v [2] +comexp [2] /4 

end; (*for-.j*) 
end; (*finverse*) 

procedure fdashed(w:complex); 
var fdholdl ,fdhold2 : complex; 
begin 

fdholdl[1] :=w  [2] *2; 
fdholdl[2] : -w[1]*2; 
compexp (fdholdl); 

=1-comexp[2]/2; 
:=comexp[1] 

end; (*fdashed*) 

procedure getwn(z:complex;k:integer); 
var j:integer; 
begin 

wn : =z; 
bwn : z; 
worbit[O] :z; 
for j:1 to k do 
begin 

fofw(wn); 
finverse(bwn); 
worbit[j] :wn; 
worbit[-j] :bwn 

end(*for-j *) 
end; (*getwn*) 

procedure getotherwn(z : complex ;k: integer); 
var j:integer; 
begin 

bwn : =z; 
otherworbit [0] : =z; 
for j:1 to k do 
begin 

finverse(bwn); 
otherworbit [-.j] : bvn 

end(*for-j*) 
end; (*getotherwn*) 
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procedure getganuna; 
var i:integer; 
begin 

compminus (wone,wnought); 
delta: =comminus; 
delta[1] : =delta[1] /numberofbands; 
delta [2] : =delta [2] /numberofbands; 
gamma [0] : =wnought; 
for i:1 to numnberofbands do 
begin 

compadd(delta,gamma[i-1]); 
ganima[i] :=comadd 

end(*for*) 
end; (*getgamlna*) 

procedure getH; 
var Hterml,Hterm2,Hterm3,Hterm4:complex; 
begin 

Hterm4[1] : -2*worbit[nuni] [2]; 
Hterm4[2] :=2*worbit[num] [1]; 
compexp(Hterm4); 
Hterm4 : =comexp; 
Hterml[1] :=-2*Hterm4[2]; 
Hterml[2] :2*Hterm4[1]; 
Hterrnl[1] :=Hterml[1]+worbit[num] [2]; 
Hterml [2] : =Hterml [2] -worbit [num] [13; 
compinv(Hterm4); 
Hterml[1] :=Hterml[1]+cominv[2]/12; 
Hterml [2] : Hterml [2] -cominv[1] /12; 
compinult (cominv , cominv); 
Hterml [1] : =Hterml [1] -conunult [13/64; 
Hterml [2] : =Hterml [2] -coinmult [2] /64; 
comppower(cominv , 3); 
Hterinl [1] : =Hterml [13 -rthpower [23*19/4320; 
Hterml [23 : Hterml [2] +rthpower [13*19/4320; 
comppower(cominv , 4); 
Hterml [1] : Hterml [1] +rthpower [1] /768; 
Hterml [2] : =Hterml [2] +rthpower [2] /768; 
comppower(cominv, 5); 
Hterml [1] : Hterml [1] -rthpower[1] * 164/537600; 
Hterml [2] : =Hterml [2] -rthpower [2] *164/537600; 
comppower(cominv, 6); 
Hterml [1] : =Hterml [1] -rthpower [13*37/6635520; 
Hterml [2] : Hterml [2] -rthpower [23 *37/6635520; 
comppower (cominv , 7); 
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Hterml[1] :=Hterml[1]-rthpover[1]*4.51472545e-5; 
Hterml [2] : Hterml [2] -rthpower [2] *4. 51472545e-5; 
comppower(cominv,8); 
Hterinl[1] :Hterml[1]-rthpower[1]*2. 145918589e-5; 
Hterml [2] : =Hterml [2] -rthpower[2] *2 . 145918589e-5; 
Hterml [1] : =Hterinl [1] -num; 
H:=Hterinl 

end; (*getH*) 

procedure getG; 
var Gterml , Gterm2,Gterm3, Gterm4 : complex; 
begin 

Gterm4[1] :=-2*worbit[ -num] [2]; 
Gterm4[2] :=2*worbit[ -num] [1]; 
compexp(Gterm4); 
Gterm4 : =comexp; 
Gterml[1] :=-2*Gterm4[2]; 
Gterml[2] :2*Gterm4[1]; 
Gterml [1] : =Gterml [1] +worb it [-nuni) [2]; 
Gterml [2] : Gterml [2] -worbit [-nuin] [1]; 
compinv(Gterm4); 
Gterml [1] : =Gterml Ci] +comjnv[2]/1.2; 
Gterml[2] :=Gterml[2] -cominv[1]/12; 
compmult (cominv , cominv); 
Gterml[1] :Gterml[1] -commult[1]/64; 
Gterml [2] : Gterml [2] -coxnmult [2] /64; 
comppower (cominv, 3); 
Gterml [1] : =Gterml [1] -rthpower [2] *19/4320; 
Gterml [2] : =Gterml [2] +rthpower [1] *19/4320; 
comppower(cominv,4); 
Gterml Li] =Gterml [1] +rthpower [1] /768; 
Gterml [2] : =Gterml [2] +rthpower [2] /768; 
comppower(cominv, 5); 
Gterml [1] Gtermi [1] -rthpower [i] *164/537600; 
Gterml [2] : =Gterml [2] -rthpower[2] *164/537600; 
comppower(cominv,6); 
Gterml [1] : Gterml [1] -rthpower [1] *37/6635520; 
Gterml [2) : =Gterml [2] -rthpower [2) *37/6635520; 
comppower(cominv,7); 
Gterml[1] :=Gtermi[1]-rthpower[1]*4.51472545e -5; 
Gterml [2] : Gterml [2] -rthpower [2] *4. 51472545e-5; 
comppower (cominv , 8); 
Gterml[1] :Gternil[1]-rthpower[1]*2. 145918589e-5; 
Gterml [2] : =Gterinl [2] -rthpover[2) *2 . 145918589e-5; 
Gterml Ci) : =Gterinl [1]+num; 
G : Gterml 

32 



end; (*getG*) 

procedure getzetaplus; 
var i:integer; 

zetaplustermi ,zetaplusterm2 ,zetaplusterm3, 
zetaplusterm4 : complex; 

begin 
zetaplus : =zero; 
zetaplusterm3 : =one; 
for i:1 to (nuin-1) do 
begin 

zetaplusterini [1] : 2*worbit [nuin-i] [2]; 
zetaplustermi [2] :-2*worbit [num-i] [1]; 
compexp(zetaplusterinl); 
zetaplusterm2 [1] : 1-comexp [2] /2; 
zetaplusterm2 [2] : cQmexp [1] /2; 
compmult (zetaplusterm3 , zetaplusterm2); 
zetaplusterm3 :=commult; 
compadd(zetaplus,zetaplusterm3); 
zetaplus :=comadd 

end; (*for i*) 
zetaplus[1] :=(zetaplus[1]/2 +0.5); 
zetaplus [2] : zetaplus [2] /2 

end; (*getzetaplus*) 

procedure getzetaminus; 
var i:integer; 

zetaminustermi , zetaininusterm2 , zetaminusterin3, 
zetaminusterin4: complex; 

begin 
zetaminus : zero; 
zetaiuinusterm3 : one; 
for i:1 to (num) do 
begin 

zetazninusterml [1] 2*worbit [-ntun - 1+i3 [2]; 
zetaininusterml [2] : =-2*worbit [-num-1+i] [1]; 
compexp(zetaininusterml); 
zetaminusterm2 [1] : 1-comexp [2] /2; 
zetaminusterm2 [2] comexp [1] /2; 
compinv(zetaminusterm2); 
compmult(zetaminusterm3,cominv); 
zetminusterm3 : =commult; 
compadd(zetaininus ,zetaininusterm3); 
zetaininus : =comadd 

end; (*for i*) 
zetaminus[1] :=-zetaininus[1]/2; 
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zetaxninus [2] : =-zetaminus [2)/2 
end; (*getzetalninus*) 

procedure getHi; 
var Hitermi ,Hiterm2,Hlterm3,Hlterm4:cOmpleX; 
begin 

Hlterm4[1] :-2*worbit[num] [2]; 
Hlterm4[2) :=2*worbit[num] [1]; 
compexp(Hlterm4); 
Hit erm4 : =comexp; 
Hitermi :zero; 
compmult (zetaplus ,Hlterm4); 
Hlterini [1] :Hltermi [1]-4*conunult [1]; 
Hitermi [2] :=Hitermi [2)-4*comniult [2]; 

• compinult(Hiterm4,Hlterm4); 
Hltermi El) : =Hlterml [i] -2*comjnult [2]+zetaplus [2) -Hiterin4 [1] 

-worbit [num] [1)16; 
Hiterini [2] : =Hiterml [2]+2*commult [1] -zetaplus [i] -Hlterm4 [2] 

-worbit [nuin] [2] /6; 
compinv(Hlterxn4); 
compmult(cominv,zetaplus); 
Hitermi [1] : =Hitermi [1] -conunult [1) /6-cominv [1] /48; 
Hiterini [2] : =Hitermi [2] -conunu].t [2] /6-cominv [2] /48; 
compinult(coininv ,cominv); 
Hit erm2 : =cominult; 
Hlterini[1] :=Hlterml[i]conunultE2]*il/2880; 
Hitermi[2) :=Hltermi[2]+comlnult[i]*li/ 2880 ; 
compmult(Hlterm2,zetaplus); 
Hiterml[1] :Hiterml[i]+conunult[2]/i6; 
Hltermi [2) :Hiterml [2] -conunult Li] /16; 

comppower(cominv,3); 
compmult (rthpower , zetaplus); 
Hlterml[i) :=HltermlLi]+conunult [1] *228/8640 + 3.14159265358979/6; 
Hitermi [2) :=Hlterml [2) +coxninult [2] *228/8640; 
Hit erml [1) : =Hlterml [1) +rthpower [1] /540; 
Hit ermi [2] : =Hltermi [2) +rthpower [2] /540; 
comppower(cominv,4); 
compmult (rthpower, zetaplus); 
Hitermi Li] : =Hlterml [1] +commult [2] /96+rthpower [2] *5407/3870720; 
Hlterxni [2] : =Hltermi [2] -commult Li) /96-rthpowerEi] *5407/3870720; 

comppower(coniinv, 5); 
conipmult(rthpower ,zetaplus); 
Hit ermi [1) : =Hlterml [1)-commult [1) * 164/53760 

-rthpower[1] *18937/19353600; 
Hit erml [2] : Hlterml [2) -commult [2] * 164/53760 

-rthpower[2]*18937/19353600; 
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comppower(cominv,6); 
compmult(rthpower,zetap].us); 
Hitermi [1) :=Hlterml [1] -cominult [2] *37/552960 

-rthpower [2] *1 . 625340325e-3; 
Hit ermi [2] : =Hlterinl [2] -comniult [1] *37/552960 

-rthpower [1] *1 . 625340325e-3; 
comppower(coxninv , 7); 
compmult (rthpower , zetaplus); 
Hitermi [1] Hlterml [1] -comxnult [1] *6.3206 15631e-4 

+rthpower[1]*8.575247229e-5; 
Hit ermi [2] =Hlterml [2] -coxnmult [2] *6.3206 15631e-4 

+rthpower[2]*8.575247229e-5; 
coinppower (cominv, 8); 
coinpmult (rthpower , zetaplus); 
Hitermi [1] : Hlterml [1] -coxnmult [2] *443/1290240; 
Hitermi. [2] : =Hlterml [2]+commult [1] *443/1290240; 

• 141:Hlterinl 
end; (*getHl*) 

pràcedure getGl; 
var Glterml,Glterm2,Glterm3,GlterIn4:complex; 
begin 

Glterin4[1] :=-2*worbit[ -num) [2]; 
Glterm4[2] :=2*worbit [-nuin] [1]; 
compexp(Glterm4); 
Glterm4: comexp; 
Gitertal :=zero; 
compmult (zetaininus ,Glterm4); 
Glterinl[1] :Glterml[1]-4*commult[1]; 
Gitermi [2] :=Glterml[2]-4*conunult [2]; 
coinpmult (Glterm4,Glterm4); 
Gitermi [1] =Glterml [1] -2*conunult [2]+zeta.minus [2] -Glterin4[1] 

-worbit[ -nuin] [1)16; 
Gitermi [2] : =Glterml [2]+2*cominult [1] -zetaminus [1] -Glterm4[2] 

-worbit [-nuin] [2] /6; 
compinv(Glterm4); 
compinult (cominv ,zetaininus); 
Glterml[1] :=Glterml[1]-commult[1]/6 -comiflV[1]/48 
Gitermi [2] : =Glterml [2] -cominult [2] /6-cominv[2] /48; 
compmult (cominv, coininv); 
Glterm2 : =commult; 
Gitermi [1] :Glterml [1)-coininult [2)*11/ 2880; 

Gltermi[2] :Glterml[2]+conunult[1]*11/ 2880  

compmult(Glterni2,zetaininus); 
Gitermi [1] :Glterml [1]+commult [2] /16; 
Giterml [2] : =Glterml [2] -conunult [1] / 16; 
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comppower (comi.nv , 3); 
compmult (rthpower , zetaininus); 
Gitermi El] =Glterml [1] +cominult [j.]  *228/8640; 

Gitermi [2] : =Glterml [2] +conunult [2] *228/8640; 
Gitermi [1] : =Glteriul El]+rthpower[1] /540; 
Gitermi [2] : =Glterml [2] +rthpower [2] /540; 
comppower (cominv , 4); 
compmult (rthpower , zetaininus); 
Gltertnl [1] : =Glterml [1]+commult [2] /96+rthpower[2] *5407/3870720; 
Gitermi [2] : =Glterml [2] -coirunult [1] /96-rthpower [1] *5407/3870720; 
comppower(coininv,5); 
compmult (rthpower , zetaininus); 
Glterml[l] :Glterml[l]_comlnult[l]* 164/53760  

-rthpower[l] *18937/19353600; 
Glterml [2] : =Glterml [2] -conunult [2] *164/53760 

-rthpower[2]*18937/19353600 
comppower (cominv, 6); 

• compmult(rthpower,zetaininuS); 
Gitermi [1] : =Glterml [1] -comniult [2] *37/552960 

-rthpower[2] *1. 625340325e-3; 
Gitermi [2] : =Glterml [2] -conunult [1] *37/552960 

-rthpower [1] *1 . 625340325e-3; 
comppower(cominv , 7); 
compmult (rthpower , zetaminus); 
Gitermi [1] :Glterml [1] -coininult [1] *6. 320615631e-4 

+rthpower [1] *8. 575247229e-5; 
Glterml[2] :=Glterml[2] -coInmultE2]* 6 . 3206 l563 le-4  

+rthpower [2] *8. 575247229e-5; 
comppower (cominv , 8); 
compmult (rthpower , zetaminus); 
Glterml[l] :=G1.terml[l] - comInUlt[2]*443/ 129 O 24O; 
Glterml[2] :=Glterml [2] +cominult [1] *443/1290240; 
G1.:=Glterml 

end; (*getGl*) 

procedure getgdashed; 
var gdashedterml , gdashedterm2,gdashedterm3 : complex; 

i : integer; 
begin 

gdashedterml : one; 
for i:0 to (num-1) do 
begin 

fdashed(worbit [ - i]); 
compmult (gdashedterml ,df); 
gdashedterml commult 

end; (*for-i*) 
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gdashedterm2 [1] :-2*worbit [-num] [2]; 
gdashedterxn2[2] :2*worbit[ -num] [1]; 
compexp (gdashedterin2); 
gdashedterm2 : =comexp; 
compmult (gdashedterm2 ,f our); 
compminus (zero , coininult); 
gdashedterm3 : coznminus; 
compinv (gdashedterin2); 
gdashedterm3[1] : =gdashedterm3[1] -cominv[1] /6; 
gdashedterm3 [2] : gdashedterm3 [2] -1-cominv [2] /6; 
compmult (cominv , cominv); 
gdashedt erin3 [1] : gdashedterm3 [1] +coininult [2] / 16; 
gdashedterm3[2] : =gdashedteriu3[2] -cominult [1]/16; 
compmu].t (gdashedterm3 ,gdashedterinl); 
gdashed: conmu1t 

end; (*getgdashed*) 

procedure gethgs; 
var i:integer; 
begin 

for i:0 to nuinberofbands do 
begin 

getwn(ganuna[i] ,num); 
getzetaplus; 
getzetaminus; 
getG; 
getH; 
getGl; 
getHi; 
gcont[i] :=G; 
hcont[i] :=H; 
glcont[i] :G1; 
hlcont[i] :H1 

end; (*for-j*) 
for i:0 to nuinberofbands do 
begin 

wnpluseps : =gamma[i]; 
wnpluseps El] : =wnpluseps [1] +eps; 
getwn(wnpluseps ,num); 
getzetaininus; 
getG; 
getGl; 
gpeps[i] :=G; 
glpeps[i] :G1; 
vniuinuseps :ganuna[i]; 
wnininuseps [1] : wnlninuseps [1] -eps; 
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getwn(vnminuseps ,num); 
getzetaininus; 
getG; 
getGl.; 
gmepsCi] :=G; 
glxnepsCi] :G1 

end; (*for-j*) 
for i:=O to numberofba.nds do 
begin 

wnp].usteps :=gaxnma[i]; 
wnplusteps[1] :=wnplusteps[1]+(2*eps); 
getwn(wnplusteps ,nuin); 
getzetaminus; 
getG; 
getGl; 
gptepsCi] :=G; 
gipteps[i3 :G1; 
wnminusteps gainma [i]; 
wnminustepsCl] :=wnminusteps[1]-(2*eps); 
getwn(wnminusteps ,num); 

- getzetaminus; 
getG; 
getGl; 
gmteps[i] :G; 
glmtepsti]:G1 

end(*for-i*) 
end; (*gethgs*) 

procedure getGldashed; 
var Gldashedterml ,Glda.shedterm2 : complex; 

i : integer; 
begin 

for i:0 to nuniberofbands do 
begin 

gidashed Ci] Cl] : = ( 8*glpeps [i] Ci] -8*glmeps [i] Ci] - 
glpteps[i] [1]+gimtepsCi] Cl])/(12*eps); 

gldashed[i][2] :(8*glpeps[i] [2] -8*glmeps [i] [2]- 
glpteps[i] [21+glmteps[i] [2])/(12*eps); 

gdashedcont Ci] [1] : (8*gpeps [i] Ci] -8*gmeps [i] [1]- 
gptepsCi] [i]+gmtepsCi] C1])/(12*eps); 

gdashedcont [i] [2] : = (8*gpeps [i] [2] -8*gmeps [i] [2] - 
gpteps Ii] [2] +gmteps [1] [2] ) I (12*eps) 

end(*for-i*) 
end; (*getGldashed*) 

procedure integrandl(k:integer); 



var intgrl 1, intgrl2 , intgrl3, intgrl4: complex; 
begin 

compminus(hcont[k] ,gcont[k]); 
intgrll : coinininus; 
intgrl2[1] :-2*pi*gcont[k] [2]; 
intgr12[2] :2*pi*gcont[k] El]; 
compexp(intgrl2); 
compmult(comexp,gldashed[k]); 
intgrl3 cominult; 
compmult (intgrll , intgrl3); 
intgrl : =conunult; 
mt : intgrl 

end; (*integra.ndl*) 

procedure mntegrand2(k:integer); 
var intgr2l,intgr22,intgr23 , intgr24, intgr2 : complex; 

begin 
compminus(hcont[k] ,gcont[k]); 
intgr2l : =coinminus; 
compmult (mntgr2l ,glcont Ek]); 
mntgr22[1] :comxaultE21*(-2)*pi; 
intgr22[2] :commult[1]*(2)*pi; 
compminus (hicont [k] ,glcont [k]); 
compadd(intgr22 ,coxnininus); 
intgr2l :comadd; 
intgr22[1] :(-2)*pi*gcont[k] [2]; 
mntgr22[2] :(2)*pi*gcont[k] [1]; 
compexp(intgr22); 
compmult (intgr2l , comexp); 
intgr23:cominult; 
compmult(intgr23,gdashedcontEk]); 
intgr2 : =commult; 
mt : mntgr2 

end; (*integrand2*) 

procedure integrand(kk:integer); 
begin 

integrandl(kk); 
integrand2 (kk); 
compadd(intgrl , intgr2); 
mt : comadd 

end; (*integrand*) 

procedure integratel; 
var subtotalintll,subtotalintl2,Subtotalifltl3, 

subtotalintl4 : complex; 
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h:real; 
count : integer; 

begin 
integrandl(0); 
subtotalintil : =int; 
integrandi (numberofbands); 
compadd(subtota].intll ,int); 
subtotalintli =coznadd; 
count : =1; 
subtotalintl2 : zero; 
repeat 
begin 

integra.ndl(count); 
compa.dd(subtotalintl2,int); 
subtotalintl2 :comadd; 
count : count+2 

end(*repeat*) 
until count>numberofbands; 
compmult(subtotalintl2,four); 
compadd(subtotalintll ,comniult); 
subtotalintil :comadd; 
count : =2; 
subtotalintl3 : =zero; 
if count<numberofbands then 
repeat 
begin 

integrandl(count); 
compadd(subtotalint13, int); 
subtotal jntl3 :comadd; 
count : count+2 

end(*repeat*) 
until count>=nujnberofbands; 
compmult(subtota].intl3,two); 
compadd(subtotalintll ,commult); 
subtotalintli. : comadd; 
compmult (subtotalintli, delta); 
subtotalintli [1] : coinmult [1] /3; 
subtotalintll[2] :cominult[2]/3; 
integral: =subtotalintll; 
modint : =modulus (integral) 

end; (*integratel*) 

procedure integrate2; 
var subtotalint2l ,subtotalint22 ,subtotalint23, 

subtotalint24 : complex; 
h:real; 
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count : integer; 
begin 

integrand2(0); 
subtotalint2l : =int; 
integrand2 (nuinberofba.nds); 
compadd(subtotalint2l ,int); 
subtotalint21 : =comadd; 
count: =1; 
subtotalint22 : zero; 
repeat 
begin 

integrand2(count); 
coxnpadd(subtotalint22 , int); 
subtotalint22 : =comadd; 
count : count+2 

end(*repeat*) 
until count>numberofbands; 
compmult (subtotalint22 ,f our); 

.compadd(subtotalint2l ,commult); 
subtotalint2l :=comadd; 
count : =2; 
subtotalint23 : =zero; 
if count<nuiuberofbands then 
repeat 
begin 

integrand2(count); 
compadd(subtotalint23 ,int); 
subtotalint23 : comadd; 
count : count+2 

end(*repeat*) 
until count>numberofbands; 
compmult (subtotalint23,two); 
compadd(subtotalint21 ,cominult); 
subtotal int2l : =cornadd; 
compmult (subtotai.int2l ,delta); 
subtotalint21[1] :commult [1]/3; 
subtotal int2l [2] : commult [2] /3; 
answer[1] :=integral[1]+subtotalint2l[1]; 
answer [2] : integral[2]+subtotalint2l [2]; 
writeln(modulus (answer),' ',wnought[21) 

end; (*integrate2*) 

begin(*body*) 
initialise; 
nuin:100; 
numberof bands : =40; 
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eps :1e-4; 
wnought[1] :1.57; 
wnought [2] :-0 .3; 
repeat 
begin 

wnought[2] :wnought [2] +0 .01; 
tofv(wnought); 
wone : wn; 
getgamlna; 
gethgs; 
getG idashed; 
integratel; 
integrate2 

end(*repeat*) 
until wnought [2]>0 .35 

end. 
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• Chapter 3 

Scaling of (n + 1—tongues of the 
sine circle map 

In this chapter we shall be considering the sine circle map as studied in chapter 

3. We shall now, however, be investigating the width of tongues with rotation 

numberThe motivation for this work is the paper [Da3], which looked at 

tongues with rotation number as n - oo and k -i 0 in any manner. We 

summarise this paper below, since it is essential to the material that follows. 

3.1 Width of Arnol'd tongues for the sine circle 
map 

The following result is obtained: 

Theorem 3.1 Let fk.ç(x) = x + 1 + k sin2  x, for 0 < k < 1,0 < 11 < ir, and let 

1 	1 I 	27r 2 	27r\ 
______ 

	

l(n,k)= n
2 n2 k 2 +4 2  V 	nk)nk 

Then 
II(k)I 
l(n,k) 

as n - co and k -i 0, where A 0  is the same constant obtained in section 2.1. 

The proof is by estimation of the range of fkn o  for Q E I(k), whence we 

obtain the range of l for which f ç (x) - x - ir has a fixed point. As in [Dal], 

fkc•I is extended into the complex plane. With an extra dimension available, z0 

is allowed to vary in such a way that fk,cj  is transformed to a 'limiting mapping' 

independent of the small parameter k. 
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We begin by defining a mapping which satisfies 

H(fk,c2(z)) - H(z) 	1, 

for z E C. Writing 

g(z)=fZ+ksin2 z, 

and  

1 	_ 1 (
ik+fl 

tan 	 tan 	 (3.1) G(z) = 

(so that G' = 	we define 

H(z) = G(z) + 1  logg(z), 

the branches being chosen so that G(0) = 0 and H(0) = 1  log Q. 

Now, let 
1fi 

tanh'I 

We find that G maps the domain V = {z: I~'G(z)I <A} conformally onto the 

strip {w: I~wI < A}. We then also find that if WA = {z E V : H(z) <A - A}, 

where A> 0, then provided A is large enough, H maps WA conformally onto the 

set {w: IwI < A - A}. 

This now facilitates the estimation of the error in the approximation 

H(fk,c(z)) - H(z) 1. We obtain 

- H(z) 
- ii 	Ci k e2V' g(z), 	 (3.2) 

where y = !~Iz, and C1 > 0. We are now able to define a mapping, 

I = H o fk,cl 0 H', 

on the rectangle 

so that if H(z) = w E RA, then 

w - ii ~ Cike  2y  g(z) 

< C2k1le2 . 

We now introduce the following important result: 
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Proposition 3.2 There exists 6 > 0 such that if 0 < e < 6 and if F is analytic 

on-the rectangle 

• 	 R={z=x+iy :IxI<,IyI<a}, 

for some a <2, satisfying 

j
L IF(x + iy) — (x + iy) — 11 

then there exists V, analytic on the rectangle 

<x < LIyI<a-1}, 

such that 

I(z) - zI <Be 

for z E R 0 , and 

(F(z)) = v(z) + 1 

for IxI < 1 , IyI <a - 1. (B is an absolute constant). 

Now J satisfies the hypotheses of Proposition 3.2, and we then obtain W, 

analytic on the rectangle 

p satisfies 

(f(w)) = p(w) +1, 

for w E RA fl QA+1, and 

k'(w) - wI <c3ci, 

for w e QA+1. Writing now, 0 = V o H, we have 

0(f(z)) = 0(z) ± 1, 	 (3.3) 

for z E H 1  (RA fl QA+1), and 

• • 
	 10(z) - H(z)I <C3 •l, 

for z E H 1 (QA+1). 

We are now in a position to define the mapping which is the crucial ingredient 

in the proof: we write 

a(w) = 0 [fm (0_ 1 (w)) - - w - m, 	 (3.4) 
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where rn is chosen so that ftm 
(0-1(w)) - ir E QA+1. It follows from 3.3 that 

if more than one such rn exists, a(w) is independent of the choice. Also, if 

w, w + 1 E QQ+2, then o(w + 1) = c(w). We may thus extend or to an analytic 

function of period 1 on the strip {w: IwI < A - (A + 2)}, and write 

00 —2ir,rw o(w) = 

where 
1 . —,rrw ai 

0 r = I o(w)e 2s w. 
Jo 

We now consider the behaviour of °r  as k, fl - 0 by means of the 'limiting 

map', fo(v) = v - e_22v. This is the same map as we derived in section 2.1, and 

it plays the same role. We define similarly the map 

Ho(v) = 2ie2" - iv, 

and thence the limits 

• 	 h(v o) = urn Ho(Vm) - m, 

on the set 

h and h_ are the same as the mappings h and g in section 2.1, and they satisfy 

h(fo(v) = h(v) + 1. 

We define, as before, an analytic, period 1 map, 

0 a (w) =h(h_(w))—w, 

on the half plane {w : £'3w < B), for B large enough. By considering an orbit of 

fo, {V m }, and in particular by considering V±m, where rn is chosen large enough 

so that €2m  <e, for e> 0, we find that 

U(W) = o°(w - p) + E + 0(e), 

E a constant, for w E QA+3 with w = A - A - 4, where 

L 	
2/cu(k+l) 

_log2+i(A+), 
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and we therefore obtain 

—,s+s(A—A-4)+1 
ir 	 2irirw 

ar = e 2irs 	 e 	o 0  (w) dw + 0 (e_2e). 	(3.5) 

Since p - i(\ + 
) 

E R, we obtain 

—2,rr.X—rir2 ( l 01 

	

Io,I=e 	j(7rI+O(6)), 	 (3.6) 

= 	,.O_21rirW Thus, as k, ~ — i 0, where o ° (w)  

maxo(w) - minu(w) 
= 4_2_2 (IoI + 0(1)). 

wEB. 	 wEB. 

Now, if 0 e I(k), there exists an orbit, {em} such that 

f'm)—ir=.em. 	 (3.7) 

Since f(0) = , and since f preserves order, there must be x 0  E [0, 1] such that 

3.7 holds for em = x0. By 3.2, 

IH(xo + ir) - H(xo) - nI C4 k, 

and so 

IG(xo +ir)—G(xo)—nI<C4k. 

However, from 3.1, we see that 

IG(xo+w)—G(xo)I = 

and so we have 

<C4k. 
fZ(k+1) 

This then gives 

e 	= ex p {_2ntanh_1 I _nk + Vn 2 k 2  + 42]} (i + 0(1)) 
2ir 

= [+ 
( 	

27r] (i+o(i)). 

Now also, I9'(x) - = o(1) for x e [-11,211], and so we obtain 

fl
(  

I 	I \ max Ij x)—x-7r)— mm (f'(x)—x—ir) 

-In 

27r 2 	2irI 
= 

2 kI 
 [~l  + (;) - 	

(i+ 0(1))4e . 
 nk 
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Finally, we require an estimate of 	to complete the argument, and for this we an 

obtain 

--(x)=-j  [_k+k2+ 
	I %Jk2 

3ffl 	
+i 	(1+o(1)), 

forxE[O,IZ] and 11EI(k). 0 



3.2 The extension to rotation numbers (n + 

In order to estimate the width of (n + ) 1 -tongues we develop the idea of the 

map 3.4. If c = (n+) 1 , and Il e Ia with (p,q) = 1, then there exists x E [O,ir) 

such that 

f '(x) = x + qir. 
in 

[We note that if (p, q) = 1, then for any n E N, (q, qn + p) = 1.] Recall now the 

mapping which was the centre piece of the proof of Theorem 3.1: 

r m o(w) = 9 [f,c(0
-1 (w)) - ir] - m - w, 

for w E QA+2. In order to estimate the range of fQfl0+P(x) - x - qir we define 

= 9 [f(9 1 (w)) - ir] - rn, 

for w E QA+2, and consider 

= 9 	 - qir] - rn', 

with m' chosen so that f%(O_1(w)) - qr E QA+1. Of course, for any given 

w, Z1'w not too large, m' will be near to qn + p when 11 e Ia,. Recall that 

9(fk,o(z)) = 9(z) + 1, so that again we see there is no ambiguity regarding the 

choice of rn', and the map is well defined. 

We define now 

&(w) = 0(W) - 

for w E QA+2. Again ô has the property &(w + 1) = &(w), provided w, W + 1 E 

QA+2, and so it can be analytically extended to a function of period 1 on the 

strip {w: IwI < A - A - 2}. We thus write 

&(x) = 2irriz 
e 

r=—oo 

Now, since for 11 E I. there exists x0  such that fk,-
qn+p  (x 0 ) = Xo + qir, we see that 

&(9(xo)) = -qn - p, and hence conclude that 

= -qn-p+O(&1). 

(Recall that O(fk,n(z)) = 0(z) + 1, for z E H 1 (RA fl QA+1).) 

The problem is thus now, as before, one of estimating the range 

max &(x) - mm &(x). 
zE[O,ir) 	x€[O,ir) 
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3.2.1 The case a = (n + '. 

For q small enough we may, in theory, expand b in terms of the Fourier coefficients 

of a. We illustrate this process by considering a= --r, so that p = 1, q = 2. We 

have then, first of all, 

00  1,  (x) = x + 

for x € R. Thus 

21riz 	- —2iria, 	4irix 	- —4irix 
2(x) = x--ao+a1e 	+a1e 	+a2e 	+a2e 	+... 

- 

-i-ao+aiexp{2iri{x+ao+a 27rir ie 	-i-aie —2irix  

- 

+ôiexp{-2iri{x+ao+c 21riz ie 	
+a1e —2,riz 

 

+.... 
	 (3.8) 

Now, writing 5(x) = 02 (x) - x as the Fourier series 

&(x) 

we see that the constant term, &o, is given by 

- 	 2 = 2a0  + 0(a1 ). 

[Recall that ar = 0(a0e_21_n1r2) ] Thus we obtain 

o 0 = —n—-i-0(cr+ôi). 

Continuing with the expansion of 3.8, then, we eventually find 

a
- 	, - f 3\ 

1  = L/ 

= 2 (a2  - iira) + 0 (a), 

and of course, 

We thus easily see that 

2' max&(x) - minô(x) = 8 a2 - z 7ralI + 0 (a), .  

xER 	zEB 
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and by 3.6 we obtain 

2' 	—4irA-2ir2 (1  0 	0 21 I 

	

02 - zlro-iI = C 	 IO2 - 27r(c7 1 ) + 0(1)) 

as k - 0. 

Now, from 3.2 we obtain 

IG(xo  + 27r) - G(xo) - (2n + 1)1 < Dk, 

where D is some positive constant. Also we see directly from the definition of G 

that 

G(xo  + 27r) - G(xo ) = 	
27r 

and hence 
I 

(2n+1)— 	
27r 	

I<Dk. 

We therefore now have 
2n+1 

41r 	2 	47r 1 

	

eA= [1+ ((2n+l)k) 	(2n+1)k] 	
(1 +0(1)), 

81 
as k — 	

2n+1 

+ 0. Also, our estimate of 	is an 

In  = 1(n + _1)2/( + )2 
k 2  + 41r2.(1 + 0(1)), 

On 

• for x E [0, 1] and Q E I. We thus finally obtain 

2n+1 
8 2 —2ir2  I  Q 

	

ir_ e____I°2- j.(0)2I 	1 . + ( 	
2r 	

2 	2ir 1 
Icir(k)l = (n+)2(n+)2k2+42 L 	\(n+)k) - (n+)kj 

< (i+o(i)), 

as n - oo,k —p 0. 

3.2.2 The general case. 

More generally we are interested in a = (n + )_1, for (p, q) = 1. The problem 

with generalising the above method for E= is simply that for larger q, calcu-

lation of b' rapidly becomes impractical by direct means. We use a result from 

[Da2]. 
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Theorem 3.3 Let fi(x) = x + Il + g(x), where 

00 
2irira,\ 

) 

	

gx)=2T( / are 	
, r=1 

the series converging for e small enough. Then for this family, 

hal = l'j'a(ai,. ,aq)e  + 
Q(6+1), 

for each rational a = , where Wa is a polynomial with complex coefficients. 

For the detailed proof of this result we refer the reader to [Da2], and in particular 

to Theorem 7.2 and Proposition 7.3 therein. 

Now consider again the map (x). From 3.5 we obtain 

2irirj (cr+o(1)), 

as n - oo. Thus 

00 

1' (x) 	b°(x) = + l0  + 	
— 2irrA—rir22 (e2cr), 

r=1 

as n - oo. We apply the theorem to b° , or to be more precise, to the map 

00 
I 2,rir3p O\ 

x I) x + (1 0  mod 1) + 	e_2 	r1r22 e 

r1 

looking for the interval I.E. As we shall see, for each term in the polynomial, 

we have E1 rnrm  = q, so that we obtain 

2iri81 	0 	2iriq 	O' I 	 21rqA—qir 	( —2irqA\ 

I q 
e 	cr1,...,e 	°qil 	+oe 	). 

An algorithm obtained from the proof of Theorem 3.3 enables us to calculate the 

required polynomial I2, and we give details of this, as well as tabulation of 

for values of q up to 20 in the following section. 

We see then that 

max('(x) - x) - rnin(&(x) - x) = 	
+ 0 (e_2 	1)A_(+1)r2) 

zER. 	 zEll. 

and we then easily obtain the following result: 
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Theorem 3.4 Let fk.c(x)=x+1+ksin2 x,forO < k< 1,0<< ir, and let 

= (n + i)', and let 

'qn+p 

2ir 	2ir 1  

(n+V2(n+)2k2+42[(n+) 	(n+)kj 

Then 
IIa(k)I 	_+ 27r2e_2tlEI, 

l(n,k,p,q) 

as n - oo, k —* 0. 
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3.3 Numerical results 

We now turn to the estimation of IW I for q = 1,2, ..., 20. For full details of 

the following algorithm we refer the reader to [Da2] and to the proofs of the 

aforementioned results. 

We begin by defining -y = e2 , and we set b1  = cr1. Now, proceeding recur-

sively, for 1 < k < q we define 

bk 
Ck = (1k —1)' 

and 
k 	 ri 	Tm 

• . b=o!j>(21rij) 	
ri!...rm!' j=1 

where the second summation is taken over all sequences r1,. . . , r such that 

ri > 0; 

r1 + 2r2  + ... + mrm = k - j. 

We then have IF,, = bq . Furthermore, it is easy to verify inductively that, as 

mentioned in the previous section, every term in "a  has the form Ko 1  . . . 

where n1 rnrm  = q. 

3.3.1 The Fourier coefficients 

We derive the Fourier coefficients from numerical work done by Stewart, [St]. In 

this work, Stewart considers the map g(v) = ve" , and derives a period-i map 

(called o, but we shall denote it by , to avoid confusion) analogous to the 

map ao  involved in this chapter. Recall that o °(w) = h+(h:1(w)) - w, where 

h (z0) = Ho(z) - n and h_ (z0) = lirn.4_ Ho(z) - n, Zn  being iterates 

of the map f(z) = z - e 2 Z. Now, it is easily verified that the transformation 

z=u(v)= log —2iv is such that fou=uog. Defininge=Ho ou,weobtain 

0(v)- 1 + 
1 
 lov+C 

where C is a constant, and we find that 

e(g(v)) - ®(v) = 1 + O(v2 ) . 	 (3.9) 
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can then be used to define the map b in a manner analogous to the definition 

of o. We note, however, that Stewart calculates additional terms for the map 

we have called 0, so that the error term in equation 3.9 is of higher order. The 

effect of this is that the limits 

ço(vo)= lim 0(v)—n 
n—+±co 

will differ by a constant, depending on the number of terms calculated for 0. 

We have, then, 

• 	 1'(ti) = 	- 

= h(z) - 

where ti' = p-(v) and w = h_(z). Thus 

c70(w) = 4+  o u(v) - h.... o u(v). 

Now, 

o u(v) = lim H0  a f'(u(v)) - n 
n—oo 

= limHo ouog"(v)—n 
n—poo 

= lim 0(v)—n 

= 

and similarly for h_, p.... Hence we see that 

o(w) = 	= b(w + ii), 

for some constant ii. We thus have, for the Fourier coefficients we require, 

wo +1 —2,rirw = f
WO 

b(w+v)e 	dw 
 

J 
Wo+V-4-1 

w = o+&,  

2irir&, = 	lL1r . 
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From [St] we have the following estimates for 	. . , 

= 1.0968632 x io - 3.2721079 x 102 i 

/'2 	= 3.0300529 x io - 7.1904567 x 104 i 

,b3 	= 3.7588902 x107-  1.9265715 x 107 i 

04 = 	4.2745511 x 109  - 2.4590307 x 109i 

05  = 	1.3774875 x 1011 - 4.8994609 x 10 11 i 

06  = 2.6166535 x 1013 + 3.9449673 x 1012 i 

= -3.3864992 x 1016 - 1.0748475 x 1016i 

08  = 2.1925635 x 1017 + 1.7196424 x 1018 i 

b9  = -1.1493705 x 1018 - 3.4009912 x 1020 i 

010 = -1.3183358 x 1022 + 5.3164967 x 1022 i 

= 3.9565245 x 1024 - 6.9086502 x 1024 i 

012 	= -8.7036497 x 1026 + 7.5179384 x 1026 i 

= 1.6676413 x 1029 - 8.3835279 x 1028 i 

014 = 	-3.256251 x 10' + 1.5434638 x 1031 i 

015  = 	6.9358351 x 10 	- 3.6867026 x 1033 i 

016  = 	-1.4760744 x 1036 + 6.7328611 x 1035 i 

017 = 	2.718999 x 1038 - 5.9558781 x 1037 i 

b18 = 	-3.7648585 x 1040 - 8.0754807 x 1039 i 

= 	2.9151277 x 1042 + 4.0989653 x 1042 i 

020 = 	1.2735682 x 10 	- 7.6963318 x 1044 i 

Now, from earlier numerical work we have the estimate o 	134330 - 

85357.4i, and so we may obtain the estimate e2TLI 133.777 - 37.9118i by direct 

calculation. 

3.3.2 Computed values of IWI. 
The data we present here were obtained using the program given at the end of 

this chapter, and figures quoted are real and imaginary parts of 1I , followed by 

the modulus. No more than 4 significant figures should be regarded as reliable. 
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p/q= 1/1 
1 .34329918e+005 -8.53573361e+004 1 .59155276e+005 

p/q 1/2 
- 	-6 .77854793e+010 -3.80562999e+010 7.77377203e+010 

p/q 1/3 
-2. 27667430e+016 6 .49245146e+016 6. 88005609e+016 

p/q 2/3 
2.20486157e+016 6.24799206e+016 6.62561841e+016 

p/q 1/4 
7.83065247e+022 3. 14375935e+022 8.43814796e+022 

p/q= 3/4 
1 . 05836213e+022 -7. 64794058e+022 7. 72082415e+022 

p/q 1/5 
7.3357396 le+028 -1 . 09537237e+029 1 .31832 143e+029 

p/q 2/5 
67494686e+028 -5 .42036371e+028 8. 59856141e+028 

p/q= 3/5 
72161534e+028 -3. 27202060e+028 8. 38626628e+028 

p/q= 4/5 
-4.77469116e+028 1 .03580042e+029 1. 14055218e+029 

p/q 1/6 
-1.51677161e+035 -2.00811455e+035 2.51656913e+035 

p/q 5/6 
1. 13908078e+035 -1 .71392840e+035 2. 05792507e+035 

p/q= 1/7 
-5. 58003886e+041 1 . 22318024e+041 5 . 71253040e+041 

p/q 2/7 
1 . 52286366e+041 1 .08265 157e+041 1 .868488 19e+041 

p/q= 3/7 
1 .09255853e+041 -1 .21615057e+041 1 .63484138e+041 

p/q= 4/7 
1 .61292124e+041 -2 .46164659e+040 1 .63159798e+041 

p/q= 5/7 
-9 . 96704046e+039 -1 . 65320669e+041 1 . 65620849e+041 

p/q 6/7 
-2 .61706235e+041 3.56715005e+041 4.42420329e+041 

p/q= 1/8 
-4. 34493063e+047 1.44700 229e+048 1. 51082753e+048 

p/q= 3/8 
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-6 . 06619292e+046 -2 . 26100299e+047 2. 34096593e+047 

p/q 5/8 
-2. 13911433e+047 4. 1597'4893e+046 2. 17918453e+047 

p/q 7/8 
6.22730078e+047 -9 .20721835e+047 1. li.154012e+048 

p/q 1/9 
2. 98805850e+054 3. 47057472e+054 4. 57967057e+054 

p/q 2/9 
-3.66608113e+053 -4.75439811e+053 6.00370321e+053 

p/q= 4/9 
3.46250569e+053 2 .23252941e+053 4. 11984626e+053 

p/q= 5/9 
-3. 69503655e+053 2. 04502436e+053 4. 22320018e+053 

p/q= 7/9 
2.9076 1079e+053 -3.78040 196e+053 4. 76923888e+053 

p/q= 8/9 
-1 .509707'75e+054 2.83460312e+054 3.21157163e+054 

p/q 1/10 
1 .56266385e+061 -1 .46653066e+060 1 .56953032e+061 

p/q 3/10 
6.6820 1687e+059 3. 36241591e+059 6.6023599 le+059 

p/q 7/10 
2. 87997462e+058 -5. 70569293e+059 5 . 7129567'le+059 

p/q 9/10 
3.41478659e+060 -9.95731716e+060 1 .05265822e+061 

p/q= 1/11 
3.2125 1831e+067 -5. 08202193e+067 6. 01225589e+067 

p/q 2/11 
2. 29794243e+065 2. 69884007e+066 2. 70860538e+066 

p/q 3/11 
1. 12214115e+066 -2.84071157e+065 1. 15753928e+066 

p/q 4/11 
5 . 57538253e+065 -7 . 68576592e+065 9 . 49504545e+065 

p/q 5/11 
-3.30878959e+065 1 .25865873e+066 1 .30142333e+066 

p/q 6/11 
1 . 03882429e+066 -8. 95141742e+065 1 . 37128941e+066 

p/q 7/11 
-4. 12031803e+065 7 . 31067910e+065 8. 39184423e+065 

p/q 8/11 
2 .056 54740e+065 9 . 10335723e+065 9. 33276487e+065 

p/q 9/11 
1 .6827809 le+066 -9 . 27635753e+065 1 . 92152535e+066 
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p/q 10/11 
-4. 92757310e+066 3. 83720570e+067 3. 86871521e+067 

p/q 1/12 
-7. 93795754e+073 -2 .42242293e+074 2.549 16547e+074 

p/q= 5/12 
-1 .83954286e+OT0 1 .30069617e+072 1 .30082625e+072 

p/q 7/12 
-1. 25795102e+071 1 . 25633888e+072 1 . 26262100e+072 

p/q 11/12 
-1 . 74622759e+073 -1 . 56865717e+074 1 . 57834674e+074 

p/q 1/13 
-1 .09200543e+081 -4.63656281e+080 1. 18636125e+081 

p/q 2/13 
1 . 06967334e+079 -1 .266868 19e+079 1 . 65805792e+079 

p/q 3/13 
51383859e+078 2.770 18703e+078 4 .47448297e+078 

p/q 4/13 
3. 06127503e+078 7. 12692437e+077 3. 143 14100e+078 

p/q 5/13 
2.052310 12e+078 3. 90724898e+077 2 .089 17274e+078 

p/q 6/13 
90862700e+078 8. 80936838e+077 4.987050 lOe+078 

p/q 7/13 
-3. 74451071e+078 3. 88699588e+078 5. 39723053e+078 

p/q 8/13 
8. 46342795e+077 -1. 70836486e+078 1.9065 1688e+078 

p/q 9/13 
9 .77197153e+077 -2. 47640020e+078 2 . 66223069e+078 

p/q 10/13 
-3. 06568375e+078 1 . 17289 663e+078 3. 28239294e+078 

p/q 11/13 
9.96301894e+078 -3.40595092e+078 1 .05291143e+079 

p/q 12/13 
2. 62448777e+080 6. 58272843e+080 7. 08662470e+080 

p/q 1/14 
-5 .47503294e+087 2 .49486884e+087 6 .01667318e+087 

p/q 3/14 
-2. 55763944e+084 8. 99089574e+084 9. 34760534e+084 

p/q 5/14 
5 . 02690306e+084 6. 83130836e+083 5 . 07310774e+084 

p/q 9/14 
2.21079114e+084 3.62868710e+084 4.24911374e+084 

p/q 11/14 
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4.41120004e+084 -4.63794219e+084 6 .40071821e+084 

p/q= 13/14 
-2. 16678823e+087 -2 .71744680e+087 3 .47555583e+087 

p/q 1/15 
-1 .08408226e+094 3. 12148350e+094 3.30437491e+094 

p/q 2/15 
-1 .33404123e+092 -1. 12988425e+091 1 .33881754e+092 

p/q 4/15 
6 . 86734781e+090 -7. 98866429e+090 1 . 05346677e+091 

p/q 7/15 
-1.46503813e+091 -1.72556665e+091 2.26360707e+091 

p/q 8/15 
1.73287133e+091 -1.81931091e+091 2.51251572e+091 

p/q 11/15 
-4. 62094783e+090 -6. 16042277e+090 7. 70090693e+090 

p/q 13/15 
7.21143366e+091 -2.55569053e+091 7.65090384e+091 

p/q 14/15 
1.54483213e+094 1.01746490e+094 1.84979489e+094 

p/q= 1/16 
8.62967406e+100 1 .75364248e+1O1 1 .95447555e+101 

p/q 3/16 
6 .43193686e+096 -4.79910999e+097 4.84201971e+097 

p/q 5/16 
1 .83734691e+097 -4.52998930e+096 1 .89236670e+097 

p/q 7/16 
-1 .83549605e+096 -1. 11520297e+097 1. 13020711e+097 

p/q 9/16 
7. 83813462e+096 8. 48628437e+096 1. 15522022e+097 

p/q 11/16 
19064391e+097 -1 . 02328922e+097 1 . 56995342e+097 

p/q 13/16 
84634047e+097 9.2405 1130e+096 2. 99257825e+097 

p/q 15/16 
-1.02964850e+101 -2.61449211e+100 1.06232373e+101 

p/q 1/17 
1. 16930206e+108 4. 09772951e+107 1 . 23902428e+108 

p/q 2/17 
5.40449570e+104 1 .28177172e+105 1.39105157e+105 

p/q 3/17 
-4.33077318e+103 -1. 10262680e+104 1. 18462730e+104 

p/q 4/17 
3.5670 1822e+ 103 2. 78568460e+103 4. 52588750e+ 103 
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p/q 5/17 
21244961e+103 -5. 194206 14e+102 2. 27260446e+103 

p/q 6/17 
7. 26352949e+102 3. 30464791e+103 3. 38353165e+103 

p/q 7/17 
-6 .40956489e+102 -1 .51013736e+103 1 .64053043e+103 

p/q 8/17 
17244647e+103 -1 . 15113022e+104 1 . 19404562e+104 

p/q 9/17 
-9. 95498005e+103 9. 22127312e+103 1 . 35695802e+104 

p/q 10/17 
-1 . 54105999e+103 -6. 59741156e+101 1. 54247155e+103 

p/q 11/17 
2 .64045062e+103 -4.87546998e+102 2 .68508501e+103 

p/q 12/17 
3. 18319833e+102 1 .71129868e+103 1 .74065237e+103 

p/q 13/17 
2. 81890518e+103 1. 22095508e+103 3. 07196318e+103 

p/q 14/17 
-6 .62388513e+103 1 .77944588e+103 6 .85873763e+103 

p/q 15/17 
6. 32448655e+104 -3.442 19622e+104 7. 20054477e+104 

p/q 16/17 
6. 51652466e+107 -6. 61334681e+106 6. 54999673e+107 

p/q 1/18 
7.63327222e+114 -3.46431322e+114 8.38261957e+114 

p/q 5/18 
6. 569T2314e+108 -4. 26435198e+109 4. 31466226e+109 

p/q- 7/18 
-9 .79228757e+108 2 .63289397e+109 2.80909587e+109 

p/q 11/18 
56095668e+108 2 .47884169e+109 2. 52045222e+109 

p/q 13/18 
-1 .63204748e+108 -3.09066162e+109 3.09496770e+109 

p/q 17/18 
-3.85829523e+114 1 .93564264e+114 4.31661378e+114 

p/q 1/19 
2.31123774e+121 -5 .56881081e+121 6.02938419e+121 

p/q 2/19 
1 .29907462e+118 -1 .27380772e+118 1.81939027e+118 

p/q 3/19 
2.40280987e+116 7.70200234e+116 8.06810605e+116 

p/q 4/19 
2.10594378e+116 -2.39889012e+115 2.11956268e+116 
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p/q 5/19 
3.46960349e+115 -1.20739841e+116 1.25626128e+116 

p/q 6/19 
9.31220635e+115 -1.03281377e+116 1.39063876e+116 

p/q 7/19 
-1.16440832e+115 5.00535181e+115 5.13900705e+115 

p/q 8/19 
2.03452462e+115 -4. 14598642e+115 4.61827824e+115 

p/q 9/19 
6.67583966e+116 -2.71107049e+116 7.20532708e+116 

p/q 10/19 
6 .76073752e+116 -4.93329748e+116 8.36928885e+116 

p/q 11/19 
4.35064995e+115 1.11079067e+115 4.49021279e+115 

p/q 12/19 
-3.77700858e+115 -1.91721586e+115 4.23574202e+115 

p/q 13/19 
1. 12348259e+116 -1. 17268283e+115 1. 12958620e+116 

p/q .14/19 
7 .89664617e+115 2.60956922e+115 8.31666233e+115 

p/q 15/19 
7.19775932e+115 -1.01986680e+116 1.24828109e+116 

p/q 16/19 
-3.42048851e+116 -2.46116838e+116 4.21391640e+116 

p/q 17/19 
6. 14472717e+117 -6. 00028191e+117 8. 58842564e+117 

p/q 18/19 
2.01872731e+121 -2.25778782e+121 3.02867393e+121 

p/q 1/20 
-1.56481881e+128 -4.32023221e+128 4.59489545e+128 

p/q 3/20 
1 .49991466e+123 1.71530410e+123 2.27859873e+123 

p/q 7/20 
-2.44235853e+122 1.21120071e+122 2.72619191e+122 

p/q 9/20 
9 .00623800e+121 1. 10895779e+122 1 .42860443e+122 

p/q 11/20 
1 .4713715 le+122 4. 63430944e+121 1. 54262840e+122 

p/q 13/20 	 - 
1 .45760264e+121 -2.04575122e+122 2.05093737e+122 

p/q 17/20 
1. 11827140e+123 -6. 02722821e+121 1. 11989450e+123 

p/q 19/20 
-7. 56834396e+127 2. 12328285e+128 2 . 25413583e+128 
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3.3.3 The program 

Finally, we present the program used to calculate the above data. Most important 

are the procedures used in calculating partitions of certain integers. Recall that in 

the algorithm we required to perform a summation over all sequences r 1 ,.. . , rm  

such that 

r, > 0; 

r1  + 2r2  +... + mrm  = k - j. 

Condition (ii) means that we are seeking partitions of k - j, and these are gen-

erated recursively in the procedure findpartitions. 

program tonguewidth(input,output); 
type complexarray [1. .2] of real; 
var zero ,one ,compproduct,rthpower , lambda.,partialsum, 

nu,sum:complex; 
p,q,k,j ,m:integer; 
r,t:array [0. .100] of integer; 
partition:array [1. .100] of integer; 
psi,b,c:a.rrayEl. .20] of complex; 
modbq : real; 

procedure initialise; 
var i,l:integer; 
begin 

for i:1 to 20 do 
begin 

c[i] 
c[i] [2] :0 

end; (*for*) 
one[1] :1;one[2] :0; 
zeroEl] :=0;zero[2] :0; 
psi[1] El] :1.0968632E03;psi [1] [2] :-3.2721079E02; 
psi[2] Ci] :3.0300529E05;psi[2] [2] :=-7.1904567E04; 
psi[3] [1) :3.7588902E07;psi [3] [2] :-1.9265715E07; 
psi[4] El] :4.2745511E09;psi[4] [2] :-2.4590307E09; 
psi[5) [1] :1.3774875E11;psiE5) [2) :-4.8994609E11; 
psi[6] [1] :2.6166535E13;psi[6] [2] :3.9449673E12; 
psi[7] [1] :-3.3864992E16;psi[7] [2] :-1.0748475E16; 

psi [8] Ci] :2.1925635E17 ;psi[8] [2] :1.7196424E18; 
psi[9] [1] :-1.1493705E18;psi[9] [2] :-3.4009912E20; 
psi [10] [1] :-1.3183358E22;psi [10] [2] :5.3164967E22; 
psi [ii] [1] :=3.9565245E24;psi[11] [2] :-6.9086502E24; 
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psi[12] [1] :=-8.7036497E26;psi[12] [2] :=7.5179384E26; 
psi [13] [1] :=1.6676413E29;psi[13] [2] :-8.3835279E28; 
psi[14] [1] :-3.256251E31;psi[14] [2] :1.5434638E31; 
psi [15] [1] :=6.9358351E33;psi[15) [2] :-3.6867026E33; 
psi[16] [1] :=-1.4760744E36;psi[16] [2] :=6.7328611E35; 
psi[17] Ci] :2.718999E38;psi[17] [2] :=-5.9558781E37; 
psi [18] [1] :=-3.7648585E40;psi [18] [2] :-8.0754807E39; 
psi [19] [1] :=2.9151277E42;psi[19] [2] :=4.0989653E42; 
psi [20] [1] :1.2735682E44;psi[20] [2] :=-7.6963318E44; 
nu[1] :1.33777E2;nu[2] :=-3.79118E1; 

for i:1 to q do 
begin 

for 1:1 to i do 
• 	begin 

psi[i] Ci] :psi[i] [1]/10000; 
psi[i] [2] :psi[i] [2]/10000 

end(*for,l*) 
end; (*for,i*) 
lambda[1] :cos(2*3.1415926*p/q); 
lambda [2] : sin(2*3. 1415926*p/q) 

end; (*initialise*) 

procedure compmult(zl,z2:complex); 
begin 

compproduct[1] :(zl[1]*z2[1]) - (zl[2]*z2[2]); 
compproduct [2] : (zl Ci] *z2 [2] )+(zl [2] *z2 [i]) 

end; (*compmult*) 

procedure comppower(wi:complex;power:integer); 
var w2 : complex; count : integer; 
begin 

if powero then rthpower:one else 
begin 
v2:w1; 
for count: 1 to (power-i) do 
begin 

compmu].t(wl ,w2); 
w2 : =compproduct 

end; (*for*) 
rthpower : =w2 

end.(*else*) 
end; (*comppower*) 

function fa.ctorial(n: integer) : integer; 
var count: integer;product :integer; 
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begin 
product: =1; 
if n<>0 then 
begin 

for count:=1 to n do 
product : =count*product 

end(*if*); 
factorial : =product 

end; (*factorja].*) 

procedure zeroelsewhere(h:integer); 
var i:integer; 
begin 

for i: k-j+i to 20 do partition[i]:0; 
if h>1 then for i:= 1 to h-i do partition[i]:0 

end; (*zeroelsewhere*) 

procedure addinterm; 
var a,rtotal,divisor:integer; 

term,twopiij ,numerator:complex; 
begin 

rtotal :0;numerator:one;divisor:i; 
for a:1 to (k-j+i) do 
begin 

rtotal : =rtotal+partition[a]; 
divisor: =divisor*f actorial (partition [a] ) 
comppower(c[a] ,partition[a]); 
compmult (numerator, rthpower); 
numerator: compproduct 

end; (*for*) 
twopiij [1] :=0;twopiij [2] :2*3.1415926*j; 
comppower(twopiij ,rtotal); 
term: =rthpower; 
compmult (term,nuinerator); 
term: compproduct; 
term[i] :=term[i]/divisor; 
term [2] : =term[2] /divisor; 
pa.rtialsumEl] :=partialsuin[i]+term[i]; 
partialsuin[2] : =partialsum [2] +term[2] 

end; (*addinterm*) 

procedure f indpartit ions; 
begin(*f indpartit ions*) 

m:m-1;r[m] :-1; 
if m1 then 
begin 
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partitiontm] :=t[m]; 
zeroelsewhere(1); 
addinterm 

end(*then*) else 
while m*r[m]<=(t[m]-m) do 
begin(*while*) 

r[m] :r[m]+1; 
partition [in] :=r[m]; 
t[xn- i] :=t[m] - (m*r[m]); 
if t[m- 1]>O then findpartitions else 
begin 

zeroelsewhere (in); 
add mt erm 

end(*else*) 
end(*wbile*); 
m: m+ 1 

end(*findpartitions*); 

procedure findc(s : integer); 
var denominator, conjugate: complex; 

norm: real; 
begin 

comppower(lambda, s); 
denominator: =rthpower; 
denominator[1] :=denominator[1]-1; 
conjugate: =denominator; 
conjugate [2] :-conjugate[2]; 
norm : =sqr(conjugate [1] )+sqr(conjugate [2] ) 
compmult(b[s] ,conjugate); 
c[s] [1] :compproduct[1]/norm; 
c[s] [2] :compproduct[2]/norm 

end; (*fjndc*) 

function gcd(nl,n2:integer) :integer; 
var newn,last : integer; 
begin 

repeat 
if nl>n2 then 
begin 
nl:n1 mod n2; 
newn : n1; 
last :=n2 

end(*then*) 
else 
begin 

n2:=n2 mod ni; 



newn:n2; 
last : =nl 

end; (*else*) 
until newn0; 
gcd:last 

end; (*gcd*) 

begin(*main body*) 
for q:= 1 to 20 do 
begin 

writ eln; 
for p:l to q do 
begin 

if gcd(p,q)1 then 
begin 

initialise; 
bEl] :psi[1] 
findc(1); 
for k:2 to q do 
begin 

sum: =zero; 
for j:1 to k do 
begin 

partialsuin: =zero; 
if k-j0 then 
begin 

zeroelsewhere(2); 
addinterm; 
coxnpmult(psi[j] ,partialsuin); 
suin[1] :=sumtl]+compproduct[1]; 
sum [2] : sum [2] +compproduct [2] 

end(*then*) else 
begin 

m:k-j+1;t[k-j] :=k-j; 
findpartitions; 
compmult(psi[j] ,partialsuin); 
suin[1] :sum[1]+compproduct[1]; 
sum [2] : =sum [2] +compproduct [2] 

end(*else*) 
end; 
b[k] :suiu; 
findc(k) 

end; 
comppower(nu,q); 
compmult(b[q] ,rthpower); 



b[q] :compproduct; 
modbq:sqrt(sqr(bCq] [1])+sqr(b[q][2])); 
writeln(' 	p/q ',p:l,,'/',q:l); 
writeln(' 	',b[q][1]*10**(4*q):16,' 
,b[q] [2]*1O**(4*q) :16,' ',modbq*10**(4*q) :16); 
writein 

end (*then*) 
end;(*for,p*) 
writein 

end(*for,q*) 
end.(*main body*) 



chapter 4 

Resonance scaling on invariant 
circles of the Dissipative 
Standard Map 

4.1 Introduction 

Circle maps arise in the consideration of higher dimensional systems, rather than 

just directly as one dimensional systems. In particular, when invariant circles 

exist for maps from R' to R', we can restrict attention to the invariant set and 

consider the resulting 'induced' circle map. In view of Jonker's result, [Jo], the 

existence of the n 3  scaling law similar to that derived from one dimensional 

systems is a consequence of the smoothness of the invariant curve. Here we turn 

our attention to resonance scaling properties of the planar map known as the 

Dissipative Standard Map, 

= Jx — sin 2rOn  

n+1 = On + Q + Jxn  — sin2irO, 

where x, On  E R, and 0 < J, k, Q < 1. The map is dissipative in the sense that 

its Jacobian matrix has determinant J, with IJI <1, and it may also be described 

as area contracting. Writing fk,o : R x —+ R x S i , 

fk,o(x,O)= (Jx_sin2irO , 0+f+Jx—sin27rO mod i), 

wehave a homeomorphism of the cylinder R x S 1 . When k = 0, it is clear that 

V = {0} x S 1  is an invariant set under the action of fk,c.  The theory of normal 

hyperbolicity (see [HPS]) shows that, given r E N, if k > 0 is small enough 
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then there exists a Ct  manifold, V, which is C' near to V and invariant under 

fk,n. The area contracting condition means that only one such invariant 'circle', 

homotopic to {O} x S 1 , can exist. 

We think of fk,o  as inducing a circle map on V', and we here investigate the 

scaling of its resonance tongues: given a e R, there exists an interval, I, such 

that for fl E I',, fk,g has rotation number a, provided k is small enough. The 

purpose of this chapter is to consider the scaling of IIi(, lc)I for large n. We 

shall see, using the results in [Da2], that given k > 0, 

V (J,k)I 
- 

7
r(1 - J) 

/32 - thI + 
I; 	 - 	kn3  

for some constants /3, $2, and in particular, we establish the following result; 

Theorem 4.1 

2ir(1-J) 

I/32—thI 	k A(J), 

as k -+ 0, where A(J) is a constant depending only on J. 

In addition, we derive numerical estimates of A(J) for several values of J. 
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402 Invariant circles of fk,cz 

We begin by considering the rotation number p = 0, characteristic of the case 

where fk,o  has a fixed point. If IZ,, E LL, we have fk,o - fk ,n.as n - 00, 

where V is the right hand end point of the interval 10,  and in this context we 

will invoke the results in [Da2]. In the meantime, we look for the right hand end 

point of J. 

Proposition 4.2 The right hand end point of 10  is 

• 	 ______ 
2ir(1—J) 

Further, fk,o  has a (non-hyperbolic) fixed point at 

• 	 1)( 27r(l 
—k(x*,O*) 

= 	- J) ' 

Proof Since Q = V marks the point at which the fixed point of fk,cl  disappears, 

we anticipate that the fixed point will be non-hyperbolic, and so the linearization 

of fk,o  at the fixed point has at least one eigen value with modulus unity. We 

therefore consider 

	

Dfk,o F J 	—kcos2ir9 

	

= [J 	1—kcos27r8 

This has eigen—values given by IDfk,o - All = 0, which gives 

0 = (J—A)(1—kcos27r9—A)+Jkcos2lrO 

= A 2 +A(kcos27rO—J-1)+J. 

Thus, if the eigen—values of Dfk,o  are A, A, then we have 

Al+A2 = 1+J—kcos27r9, 

and 

A 1 A 2  = J. 

Thus we obtain A 1  = 1, A2  = J, when cos 27rO = 0, that is, when 9 = + m , for 

mEZ. 
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Regarding fk,  as a map of the cylinder Rx S', we consider the values 0 

Now, for any fixed point , (x o , 0),  with 0 = o, we have 

so  = Jxo - 	sin 27r00 , 	 (4.1) 

00 = 0 + 1 0  + J50 - -k- sin 27rOo . 	 (4.2) 
2ir 

4.1 gives 

(1 - J)x0 = 	sin 2ir00 , 

whilst from 4.2 we obtain 

	

Jxo = 	sin 27r00 - o. 
2ir 

Thus we have 

Jxo = —(1 - J)so - 

which gives 

XO  = -c0. 

Now, by 4.1, 0 = gives 

k 

= 	27r(1 - J) 
sin 27rO0  

k 

= 	2r(1—J)' 

and so we obtain 
k 

= 27r(1 - J) 

Similarly, we find that 9 = leads to anegative value for 1, and so we choose 

= , together with so = 	and o = 

Finally, we show that QO  is the right hand end point of Io, ir, and so also 

= (xo,Oo). 

Let e > 0, and let ci = 110 + E . We suppose that fk,01  has a fixed point, 

(Xi, 0). If so, then as before we obtain 

Si = —fli 

= 

k 

	

= 	2ir(1—J) 
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However, we also have, from 4.1, 

x 1  = - 	
k 
	sin 27r0 1  
2ir(1 - J) 

k 
27r(1 - J) 

and thus we have a contradiction. 0 

We now consider the map fk,Q.  If k is small enough, fk,(1'  will have an 

invariant circle through ( x* ,  0*) ,  given by 

V*={(x,0):x=u(0), 0<0<1}, 

with u : R - R being periodic with period 1. We look for an expression for u of 

the form 

= E ai(O - 9*)1 + 0((0 - 9* )? ),  

near to 0 = 0* .  This is reasonable, since V is CT. By substitution into the 

definition of fk,1',  we have 

Ju(0)— . sin2ir0 = u [iu(0)+O+IZ* - fsin21r0]. 

Writing 0 = 0* + cp, we obtain 

Ju(0* + ) - 	sin 27r(0* + o) = 

U [JU(O*  + ) + V + 0*  + - k sin2(0 + 

So, by considering the relationship 

r-1 	 k 
J aço' - T  cos 2irç = 

1=0 

[i=O

k 	1

u J> a1ç' +cp+0*+ cl* 
- r cos2lrpl+

Q( T ), 

 .1 

we may, in principle, determine as many a 1  as we like, and obtain an approxima-

tion valid for k small enough. Now, since a0  = x0 , and xo , ir, cos 2ir = 0(k), 

we can further write 

- 	Ja1cp'---cos27r5o 
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= 	 cos a Li acp1  + p + 	
k 

1=0 	L =o 	 27r 	
27r2] - -  

r-1 r ,.-i 	 00 	 (2irp)28l 
= 	a J aço1  + - - E(-1)8 (2s)! 

j 1=0 	L 1=1 

since 

Jk 	k 	k Jao+1l*_ k_ = 
27r 	2ir(1 - J) + 27r(1 - J) - 27r 

Collecting terms in c' we obtain 

for i = 1: 

Jai  = ai (1 + Jai ), 

giving a 1  = 0 or Ji l . To determine which is the required value we consider the 

eigen-vectors of the linearisation of fk,o  at the fixed point. Now, Dfk,cz.  has 

eigen-values ) = 1 and 'X2 = J at the fixed point, and from these we obtain the 

corresponding eigen-vectors, 

(0\ 

	

- 	 e1 = 

e2 = ( ( 1 .j ) - 
\ i-J 

Now, these define the eigen-spaces E1  and E2 , which are respectively the centre 

and stable manifolds of the non-hyperbolic fixed point of Dfk,o.. We may think 

of as being hyperbolic, and in particular, contracting, with respect to the 

centre manifold, E1 , and hence we expect u(0) to be tangential to E1  at (x*, 9*)• 

Evidently, then, we require a 1  = 0. 

i = 2: 

Ja2  + kir = a2 , 

and hence 
kir 

a2= 1 . 

i = 3: 

Ja3  = a3  + 2a2 (Ja2  + kir), 
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giving 	
2kir I2kir 

a3(J-1)= 

and so we obtain 	
2k22 

a3 
= (1— J)3• 

Thus we find, 

k 	kir 	2 	2k27r2 
u(9*+ o) =  -___ 1_J 

	

2(1_J)+ 	 (1—J) 	
+o(), 

provided k is small enough. 

So, then, restricted to the invariant circle, V*,  the action of fk,c2e is described 

by the relationship 

Jk 
( (pn+1 +O*) = (p +O*)+1Z* 

- 27r(1 - J) 

	

Jkir 2 	2Jk2 7r2  3 	k 
J)3'fl - —sin2ir( + 9*) 

 + 0 (9) 

which gives 

	

kir 	2 	2Jk2 7r2  3 	4 
fl+1 = 0fl 

+ 1 - J - (1 - J)30fl +0 

We shall call this derived mapping, Vk,O'. 

In the usual manner, we now seek a transformation, A, such that 

A(vk,Os()) - A() = 1. 

Accordingly, we consider the flow 

	

kir 	2 	2Jk2 7r2 
=1_c' 	(1—J)° 

Setting 
kir 	 2Jk2 7r2  

B=_(1J)3  

we obtain 

t 	f
dp 

 A 2 +Bp3  

111 
C  0 

dp 
( 	1+Cp 

	

= 	- C1og + Clog(1 + C)] 
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where C = 

Thus we consider 

1 1  1 
I-- - Clog+ Clog(1 + C)I 

Wn  

+ 	+ B + O()) '  

—Clog (c'n + AV + Bp + O(co)) 

+0 log [i + C ( + A + B + °()) 1 
1 

+— + C log Vn — C 109(1 + Cpa) ('on  

1—Aço+O(ço). 

We shall require something more accurate than this, and in fact we find that 

	

'n+1 1 	A — C 

	

j —+ 	d'=1+O(). 

So, then, we define a mapping, A: (-1,0) U (0,1) — R, by 

aj 
—2  
l A—C 

	

A()— 
— 

A
— 	+ 	dp 

1 A—C 

	

= 	A 
1og('o 

— (1—J) (1+J\ 

	

- 	kirp 
+1_)logkoI 

so that 
2 - A() — 1 = O(('o). 

Now, if n is large enough, we have 

2 1 
('on = ;;j (on+i — ço — Bço + O((p4)) 

= O(co+i — ('On). 
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,-±oo 2 Thus we can say that the sums nO ço, converge. Accordingly, we define 

mappings, 

gk('po) = lim A(ça) - n, 	 (4.3) 
fl 	00 

and 

	

hk(wo) = urn A() - n, 	 (4.4) 
n—+0o 

for Wo € (0, 1) and Vo E (-1,0) respectively. By the periodicity of fk,c  we can 

extend the definition of hk so that both maps are defined on (0,1). We need 

now to define the map (g(o)) = hk(po) - gk(po). It is easy to see that 9k is 

increasing on (0, 1). We shall see later that there exist analytic extensions of gj 

and hk into a domain in C containing the interval (0,1). Since 9k  is non-constant 

we conclude that 9k 15 strictly increasing on that interval. In addition, it is clear 

that 9k  maps (0, 1) onto the real line, so that we may indeed define the period 1 

function, ok:  R —' R, by 

o,(u)= hk og 1 (u) — u. 

Now, in order to be able to relate the intervals 'a  to this map, 0 k, we need 

briefly to consider what happens when Q = +8, 8> 0. The theory of normal 

hyperbolicity again shows that if 6 is small enough, fk,2  still has a cr invariant 

circle, 

17={(x,0):x=ü(0), 0<0<1}, 

say, and further, that ' is Cr near to V*.  Thus we can write 

ü(0) = 	a(O _O*) + o ((0 - 

for 0 near to 0, and we have for S small enough, 

i!la - a11 <e 

for any e> 0. As earlier, we write 

2ir 

=  , (J,,(O*+W)+W+O*+Q*+b_  k 
 sin27r(O*+ ~o) 

27r 
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and we obtain 

= +O(gor). 

As earlier, we seek to expand this and collect terms in '. The problem is not as 

straight forward as it was earlier, since we now have a noil-zero constant term in 

the argument of the power series on the right hand side. Specifically, we have 

Jão +1l*+S_ = 
27r 

say. Thus we obtain 

(i)fori=O: 	

Ja - _ 	= ao +a1 +O( 2), 0 	
2ir 

giving 	
2ir --+àiL 
J-1 

(ii) For i = 1: 

Jà1  = ài (1 + Jä1 ) + O(z), 

from which we obtain 

a1 = O(z). 

Returning to the determination of äc, we now have 

a0 = 

= 	
J) + 

Q(2).  

Now, 

= Jão +1Z*+8_ 
Tr 

= 	++S+O() 

= 6+O( 2 ) 

ip 



Thus, if S is small enough, A = 0(8). So we have 

k ao  
= 	2r(1 - J) + 

ai = 0(8). 

Continuing, we find 

Ja2  + kir = Jã + kirã1  + 02 (2I(ã2  + k7r) + a + i) + O(z), 

giving 

a2= 1 +O(S). 

Now, fk,cI may be regarded as a mapping, fk : ft2  x S 1  —* ft2  x Si , defined by 

(ft, x, 9) i—~ (c, Jx — 	sin 2irO, 0 + + Jx — 	sin 27rO mod 1 
2ir 	 2ir 

By consideration of the map in this sense, we see that the invariant circle of fk,cz 

is just the restriction, fl = constant, of an invariant manifold of 1k,  which is c r 

for any r. Thus we can write 

kit 	2 	3 

1 — J 	
+0(4+82), 

where ji, ii are constants, the precise values of which will not concern us. So, 

restricted to the invariant circle the action of fk,o  is described by 

n41 = ( n  +.ci +5+Jü(0*  +) - 
k 

 rcos 27rofl 

kit 	2 = 

• 	 i 	 , 	 r* 	c mi 	m • 	 c 	i 	2 
mis map is, tnen, 	wnere ii = i + 0. me coemcients 01 0 ana p  are 

of particular relevance in the application of the following result, due to Davie, 

[Da2], which enables us to relate the length of I I.1  (k)I to the mapping Ck, defined 

earlier. We note at this point that in the original paper the relevant results are 

much more general than the special case presented here for sake of brevity. For 

the complete picture the reader is referred to sections 1-5 in [Da2], and especially 

to Proposition 4.2 and Theorem 5.1. 
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Theorem 4.3 The end points of the interval I.1 are given by 

o(n), i = 1,2, 

where c,d are the coefficients of S and W 2,  mentioned above, /31,132  are constants, 

and the length of the interval [/31, 021 is equal to twice the length of the interval 

in s such that ork (u) - s has a zero. 

Recall that uk is a periodic function with period 1. We therefore, as in previous 

chapters, wish to estimate the quantity 

max e7k(U) - min 0 k(U), 
uE[0 ,1] 	uE[0, 1] 

and to that end we consider the Fourier coefficients, o(k) of 0k. 



4.3 Estimation of Iar(k)I 

It would, of course, be possible at this point to obtain numerical estimates for 

I 0r(k)I for various different values of k. However, as in Chapter 2 we can deter-

mine the form of crr(k) more explicitly by extending fk,c2  into a complex domain. 

The facility of an extra dimension to play with enables us to convert the prob-

lem into one where we are seeking to estimate the quantities &, say, which are 

independent of k, and where we can approximately determine the relationship 

between o(k) and &. 

4.3.1 Continuation into C 2  

Firstly, fk,O  is extended into C x C/Z in the obvious way: we have 

fk,n(x,O)= (Jx_sin27r9 , 9+1+Jx— sin27r9 mod 1.), 

where now x, 9 E C. As before, J, k, f1 are real constants. We will be concerned 

only with the case Q = 

When k = 0 we have a family of invariant circles, 

41 1, = {(O,9) : 	= p,p E R}, 

say, with U = UPERW being the plane, x = 0. 

Now to apply the Normal Hyperbolicity Theorem to fk,czs we must have fj,ç* 

C' near to 	Considering the derivatives of these mappings, we have 

f.(x,O) = (J,J+1), 

f.(x,O) = (0,0), 	for r> 1. 

Also, 

f.(x,O) = (J—kcos2irO,J+1—kcos2irO), 

	

f.(x,9) = ( (27r)1kT(27rO), (21r)r_lkTr(21r0) ), 	for r > 1, 

where Tr(27rO) E {±sin2lr9,±cos27r9}. Thus we see that fk,()  is near to fo , ç . in 

the c' topology provided that ke 2 '°  is sufficiently small. This will be the case if 

I 0 I :~  2 1r
log . In fact we will constrain ~9I to be bounded below this quantity, 



for reasons which will become clear, and say that if r is given, and k > 0 is small 

enough, there exists an fk,e-invariant C manifold, M 9 C 2 , which is cr near 

to {(O,0) : < log - C}, where C is a positive constant. 
21r

We now suppose that (x 0 , 0) € M is given and let {x, 0} be the orbit of 

(x0 , 0) under fk,o'.  We therefore have 

xTl  = Jxfl_l - - sin 2ir0_i  
27r 

= LI 	LI - 

Thus we obtain 

0+i = On + cr + J(0- 0_) - -'f- sin 27r0 
- jcl* 

2ir 

= (1 + J)6 — Jon_i  — 	sin2irO, + 
k 

2ir 

which gives us the second order difference equation governing the the orbit {O,}, 

k 
-2O+O_i) +(1 -J)(O -O_1 )+—(sin27r0- 1) = 0. 	(4.5) 

27r 

We use this now to consider the action of fk,clS  restricted to M. Rearranging 4.5 

we have 

(On+i - 0) - J(O - O_) = 	- sin 27rO). 

Putting 0 = O + (p, this becomes 

(n+1 - n) - J( - n-1) = 	- cos2w). 	(4.6) 

We seek an expression for the mapping, 

fk,o . ( pfl) = 

Now, let 

Dk={o: 	_ j<'v, O o < - logC
J  2ir 	k  

where 'y  is a small positive constant. M is 
Cr  and may be expanded in powers of 

k, so given k0 , small, and Oo E Dk 0 , for k < k0  we assume a solution of the form 

Pn+1 - 	= k 1 (p) + 0e2('fl) + 0 (kQ3(0)). 



As a first approximation, then, we have 

k(1 - cos 27rço) 
- = 	

+ 0 (k2 e2  
27r(1 - J)

(n)). 

We could, of course, derive the same expression for - Pn-1 From 4.6, we write 

- 	 (1— J)(+1 - 	= 	- cos2) + e,2, 

say, where 

efl ,2 = —J [('n+i - pn) - (pn - c'n—i)]. 

We therefore have 

k2g2(') 	
e,,,2 	 - 

1—J 
—Jk 

= 2
(1 - cos2) - (1 - Cos2_) 

(1 - J) I 	I 
+ 0 (k2(2() - 02(Pn_1))) 

Jk 

= 2(1 - J) I cos 	- cos 2 n_ 1] + 0 (k 3) 

—Jk 

= 2(1 - J) 	
- n_i )sin2 n] + 0(k 3) 

—Jk Ik(1 - cos27rp) 	
+ 0 (1c) 

= 2ir(1_J)[ 	
sin 

Thus we obtain 

U2(n) = 2(1 J)3(l - cos2)sin2. 

Finally, by considering k 2 [e2(fl) - &'(p-i)] we have 

[2(J) (1_cos2 fl )] 

—Jk 22ir 
X 

27r(1 - J)3 
[(1 - cos 27r) cos 27r 	+ sin2  27r,] 

- —J2 k3  

- 27r(1 - J)5 	- cos2irp)2  cos2irp + (1 - cos2irp) sin 2  27rpnI. 

We therefore have 

k(1—cos2irpn ) 	Jk2  
pn+1 - 	= 	27r(1 - J) 	- 27r(1 - J)3(l - cos2irç)sin2irça 



+0 (k3  ((1 - cos 	cos 27rV,, + (1 - cos 2) sin2  2)). 

We use this to see how the orbits behave for large n. Now, for k small we have 

n+1 — 	 J)(l — cos 

Thus, writing Vn = + iij,, we obtain 

k 
— 	 27r(1 — J) [i 

— (_2111 cos 27r 0  + .2111n cos 27 n)] 

= 2 
k 	

— cos 2ir 0  cosh 2ir), 	 (4.7) 
ir(1 - J) 

(1  

and similarly 

-Pn+1 — con) 	
k 

2ir(1 — J) 
sin 21r sinh 27r77. 	 (4.8) 

We consider first the forward orbit of a point Vn =  ' + irj,, with 1  < 	<1 and 

0 < 	< log - C. From 4.8 it is immediately clear that, for k small enough, 

9(çon~ i — 	<0. We also note that the upper half of the —plane is invariant 

under 	From 4.7, however, we see that if e71 > 1  then (con+i — ) is 

positive provided rj,, is small enough, whilst it is certainly positive if < 	< 

The above information is almost sufficient to show that co, - 1 as n —* 00, 

but we need to ensure that the orbit does not jump the line RW = 1. This can be 

seen to be the case from the fact that Pn. (1  Pn = _J)( 1  —çon ) 2 +0(k2 (1 çOn )3 ), 

and so R(o+i - con) < R(1 - 
Now for the backward orbit, we note that we may as easily use 4.5 to estimate 

the inverse map, f., and in fact a very similar expression is obtained. In the 

same way we can show that if 0 < G < 1  and 0 < 77,, < log - C then ço, —* 0 

as n -4 —00. 

Finally, similar considerations of the action of the map when 	is near to  12 

easily show that the following result holds: 

Proposition 4.4 Let poEDk={co: IRV -I<y, 0o < log—C}, 

where y is a small positive constant, and let x o  be such that (xo,po) E M. Then 

if C > 0 is large enough, there exists k0  > 0 such that for 0 < k < k0 , the orbit 

of (x 01  coo) under fk, -2, {xn ,cpn }, lies in M, and con —*0 as n —* —00, c°n —* 1 as 

fl — +00. 



As with the real case we now seek a mapping, A1 : Dk - C, such that 

A 1 ((p +i ) - A1(o) P.J  1. 

We therefore consider the flow 

= k 
J)(l - cos2ir). 

Now 

27r(1 - J) n+ l 	dço 
k 	1W,  n 	1—cos27r 

- 27r(1 - J)
jo

'Pn+ 10n 	dp 
- 	k 	1—cos21r(+) 

- 21r(1 - J)
JO

con+icon f 	1 	- 21r sin 2 7rç 

- 	k 	11—cos27r 	(1_cos27cp)2' 

21r 2  cos 27rç'(1 - cos 27ro,) - 4.2 sin 2  27ro 2 + .} dço 
- 	 (1—cos27rp) 3  

Jsin2r 	sin2ir' •I = 	I1 + 27r ( l_J)k 2 (1 	- 47r(1 _J)2 

+0 (k2  [(1 - cos 27r) cos 27r' + sin 2  27pn]) 

= 1— 
k(1+J) 
2(1 - 

J)2,sm 27r + 0 (k 2  [(1 - cos 2ircn) cos 27r + sin 2  2ir n]) 

We thus find that 

	

27r(1 - J)
Jv'n

n+1 	1 	k(1 - J)sin2ir 

k 	1_cos2+2(1_J)2(1_cos21rc) dco 

= 1 + 0 (k 2  [(1 - cos2ir)cos 2irp + sin2  27r n]). 

	

We therefore define A 1  : 	-* C by 

(1—J)cotir 	1 '1+J\ 
= - 
	k 	

+ 	
- 	

log(1 - cos27r) + consian, 	(4.9) 

so that 

A1(p1) - A1(') = 1 + 0 (k 2  [(1 - cos 27r) cos 27rp + sin 2  27rn]). (4.10) 



Writing 

00  Dk =UJkQ.(Dk), 

we are now in a position also to define the mappings gi,k, hl,k D - C, analogous 

to the real mappings 4.3 and 4.4, by 

91,k('o) = urn A 1() - n, 	 (4.11) 
n-+ -oo 

and 

= lim A 1() - n. 	 (4.12) 
n.-+oo 

We consider the question of the analyticity of 91,k  and  hl,k.  We show that 91,k is 

analytic, the proof for hl,k being similar. 

We consider, for the moment, a small subset of Vk, 

	

Ek = Vk fl { : 	</4, 

where p is a small real constant. We shall show that gi,k  is analytic on Ek. 

Recall that near to the fixed point the manifold is given by x = u(6), where 

r 
U(0) = u(O* + = 
	

+0 (r+i)  

Previously we considered this expression in the context of x, 0 E R, but it applies 

equally well to the complex case if V is small. Now, writing 

r 
u(0+',') 

we have an approximation to the manifold near to W = 0. 

Now, for o E Vk, with n large, negative, we have 

- n 	gl ,k((po). 

Thus, for C E gl,k(Vk), 

A'(n + C). 

For k small, 

cot Ai(cp) 	
k 

sothat 	
.  2 	fk(n++i(1—J)) 

cn __lo\( +C)—i(1 - J) •  

LIM 



Expanding this we obtain 

i 12i(1 - J) 	2i(1 - J)3  

--27r [k(n+() - 3k3(n+()3 +0 ((k4)]' 

and thus 
11 

con 

as n - —00. 

Now, we choose k, small. Given coo  E Vk, and defining x0  such that (xo,p0 ) E M, 

we consider the limit, 

urn  f; n . 
 

n—co 	
(ut (cpn), + 

For n large we have 

=
) 	

) Vn 

/ ,, 	 I Ur((pn)  + o(cor+l) 

= (ur(con)+En) 

con  

say. 

Now, for m > n we define Em(fl),Sm(fl) by 

( Em - ( Xm 	 -n-4-m I ur(con) 
I 	 1 I 	t t 	I 	 - 	 I/I 

\ m, 	ym, 	 \4 Yfl 

To see the behaviour of Em, 5m, let e, 5 be small. Then 

( +~O+

)x+€ 	J(x+e)—cos2ir(co+S) 
k,) 	

5 - 	 +ço+S+f*+J(x+E)_cos21r(W+S) 
4 	 4 

• 	 / x 
) + 

( 

1e + kSsin2irço + 0(k52) 

) 
5+Je+kSsin2irco+O(k52 ) 

We therefore have the system, 

Em+1 = JErn + k5m  Sfl 27rcom  + 0(k5) 

= 5m +JEm +k5m 5j1121rWm+0( 18 n ) 

= 8m + Em+1 	 (4.13) 

Now, we first suppose that, for some m, Em and a> 0, 

16m1 :~ aklSm com l, 	 (4.14) 



and we choose a 	Now, provided 8m remains small compared with ço,,, we 

can say 

I&m+1I :5 JIemI+45mS 27PmI 

< JIemI+ 8k7nI 5mcPmI 

- 	 < (87r+Ja)kISmm I 

CthI5m (Pm I, 

and we can certainly choose a large enough to satisfy 4.14 when m = n + 1. 

Thus, from 4.13 we obtain 

18m+1I :5  lmI + aklSm pm l 

:5 15m 1(1+akl'pm l), 

I 	crkB i \ 
I8m I(1+ 	I, Imli 

for some B1  > 0, and n + 1 < m < —1. We thus obtain 

I 	akB \ I 	akBj  \ 	akB 1 \ 
 ~ 18n+1I 1+ In+1I) 	In+21 1~01 	 ••• 

I 
+ 

i — 'i) 

Now, if n is large, 

/ 	akB 1 \ / 	akB 1  \ 	cxkB 1  \ 	In + 

in+ii) 	In+21) 	
/ 	

i—u) 	r(akBi+1)' 

and so we see that 

5o (n) = 0 (Enn 
 

as n —p —oo, for some 132  > 0. Hence we deduce that if Cn =  0(_B3), for B3  > 0 

sufficiently large, then both eo (n), 60(n) — 0 as n —+ —co. More particularly, we 

see that if r is large enough, and k small, then 

Urn 7k11 	), (r(n'n) = (u((po),po) 
n—p—oo 

with convergence being uniform on any compact subset of Ek.  Thus u is analytic 

on Bk.  Then iteration under fk,ce shows u to be analytic on Vk.  We then easily 

see that gl,k  is analytic on Vk. 

• - We also see that if po E R then with the appropriate choice of the constant 

in 4.9, gl,k  and hl,k are simply analytic continuations of g, and hk.  It is also easy 



to see that in fact gl,k  and hl,k may be defined on a neighbourhood of the open 

interval (0, 1), justifying the claim we made earlier that gj is strictly increasing. 

In view of the agreement with the real functions we will drop the suffix, 1, and 

identify the functions just defined as g, and hk.  Now, from 4.10 we have, as 

fl -4  -00, 

- A i (ç) = 1 + 0 (k2  II 2) 

= 1+0(kI n+i —con I). 

Thus we see that 

	

IA 1 (con ) - n - 9k(P0)I = O(kIwI), 	 (4.15) 

as ii - —oo, and similarly, 

IA 1(') - n - hk(o)I = O(kIl - 

as n -+ +00. 

4.3.2 The limiting map 

Now, let 9 = y + ib, with y E C and b = log . Then we have 
21r 

sin 27rO = 1— (e2 	- €-21ri(V+ ib)) 
2i 

= 	+ 0(k). 

Thus we have, for fk,ca, 

= Jxn — 	+ 0 (k 2), 
4ir 

y--j + ib = y, + ib + Jx, - 	+ 0(k). 
4ir 

Thus our limiting map is 

xn+1 = Jxn - 
47r 

(4.16) 

!Jn+1 = Yn+Xn+1. 



Restricting our attention as before to orbits {x, y+ib} on the invariant manifold, 

we wish to determine Yn+i  exclusively in terms of y. We thus consider the 

expansion of in powers of e2rlt.  In particular we look for a solution of the 

form 

= cr1e 
—2iriy + a

2 e 4'' + o (e
-67riYn  

As-a first approximation we have 

—27riy, 
xn+1 z  

so that a1 = 4J)' and we have 

_______ 21I1/,.4 
Yn Yn-1 — 47r(1 — 

J) e 

We therefore obtain 

	

— e2T_1 = 	 — 

—4iriy_1 e 

	

= 	2(1 - J) 
+ 0 (e_6_1). 	 (4.17) 

Now, we have, from 4.16 

2 	 2 

> ae 2 "" + 
(_6iriV) = 	—2jiriy,_, — Ze2h1tvm_1 + 0 (e '"' ) ae 

j=1 	 j=1 	 47r  

and so, using 4.17, we find 

-4Tiy 	____________ -4iriy,... 

	

a2 e 	+ 
8ir(1 — 

,J)2 e 	= Ja2 e 4'"'' + 0 (e_6Imm_1) 

and deduce that 
iJ 

a2 
= 87r(1 - J)3• 

Now defining the domain 

Do={y: I RY — < 7 y<_C}, 

we consider orbits of the map f: C -+ C, 

2  
f( 	

—21riy 	____________ —41riy 
Y). = Y - _____ 	______ 47r(l_J)e 	8(1J)3e 

for yo  E D0 . For such orbits, {y,j, we find Ry —' as n -+ —oo, and Qy — 1 

as n - +oo, whilst  !4 -+ —oo as n — ±oo. We illustrate the relationship 

between the orbits {y}  and {O} in figure 4.1. 
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Figure 4.1 

21 

log 

0 

As usual we wish to find a mapping, W C —, C, such that 

— W(y) 1. 

We consider first 

f
Y +1 	

e' dy = 1 27rial 

1 	
C-2ffiYn

v; 	a1 	Yn 

= 1 + 	+ iria1'\ e2h1t + 0 (e") 
) 

and we therefore obtain 

— 
(al 

— + irz
t

M 	1 

Vn+1 1 e 2iriy 	2 	.

JI
dy = 1 + 0 (e_41uhl) 

 j 

Accordingly we define 

1 	2iriy (ala2 	.
W(y) = e 	——+7zy 

	

2iria1 	I 

27riy 	f1+J

.1 

 '\ 
= 2(1 — J)e - —  
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and see that the limits 

J!9 " 00 (Yn) - fl 

and 

urn W(y) — n 
n—.+oo 

exist, defining analytic functions on D0 , G(yo) and H(yo). We further see that 

	

(W(y) - n) - G(yo)I = 0 (e'") 	 (4.18) 

as n - — oo, and similarly, 

(W() - n) - H(yo)I = 0 (_21rivn) 

as n —i +00. 

We now investigate the relationship between these functions and 4.11 and 

4.12. Firstly, let yo E D0  be chosen, and let 90(k) = I/o + 	log . Now, if k is 

small, we have 	ço + z, for some z, not dependent on k. Thus, by 4.15, for 

n large negative, we obtain 
1 

	

(kj— log +z
=k 	1) 
= o(k log - ), 

with a similar result for n large positive, and hk(o).  Now, since V = 99* = 

we have 

cot(rO_) = 
(cosirO + sin irO 

cos 7r9 - sin 7r9 

i 	 + e_u1 o+1o) + 
	

- e_u10+b0) 

= 	 !log 	 i7rVO 	- I (e °_ '°  + 

- 	i (ke2b0 + 1)  + (ke2ib0 - i) 

- 	(ke 2u"Vo - 1) - i (ke 2iYo + 1) 

- 	ke2i10 + i 
- _ikc2ulrVo - 1 

= (ke2 	+ i) (_i + ike2tr0  + 0(k2 )) 

= —z - 2ke20 + 0(k 2 ). 
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Similarly we have 

log (i - cos (27rO - 
	

= log(1 - sin 2irO) 

= log 
I 
 1 - 	(k e2 b0  - . e_ 21 Yo)] 

= - log (2ike2"0) + log [i + 2ike20 - k2 e40 ] 

= —log2ik - 27riyo+0(k). 

Thus we have, for some 3 E C, 

- 	(1—J) 	 1'l+J\ 
- 	

- 	k 	
(_ - 2ke 2") + (] - ) (—log 2ik - 21riy) - n 

+13 

(11+J\ 

	(1—J)i 1 f1+J\ 
= 2(1 - J)e2"" - 
	- 	

irij, + 	
k 	- 	

- ) log 2ik 

+/ + 0(k) 

- 	(1—J)i1f1+J' 
- G(yo)+ 	

k 	2 

by 4.18. A similar result also applies for n large, positive, and H(yo). Thus we 

have the following lemma: 

Lemma 4.5 Let yo E D 0 . Then we have 

	

gk('o) = G(yo
) + (1 - J)i 1 (1—J1 +J\

k 	
)log2ik+/3+0(klog), 

and 

hk(co) = H(yo
) + (1 - J)i - 1 /1 + J\ 

	

k 	
- ) log 2ik + /3 + 0 (klog .). 

We are now in a position to estimate Ia(k)I. We have 

pUO +1 . 2iriru 
cTr(k) = / 	(ok(u) — u)e 	du 

Jtz0 

=[hk(p) - gk(cp)] e2it9g,(co)  dço 
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Using Lemma 4.5 we then obtain 

ar(k)IP{1 - 

J)} 
k 

( 3.2 
f1+J\ .li yi 

exp ir ( - ) r J [H(y) - G(y)] 2lrirG(v)G'()  dyl (4.19) 
I iio 

Evidently as k - 0 we have 

(

2r(1-J) 
e-  Io +1(k)I = Q k a,(k)) 

so that 

Inaxok(U) - 91nak(U) 4 1ao(k)I, 

and the theorem is proved. 0 
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4.4 Numerical estimation of Ioo(k)I 

The numerical estimation of Ioo(k) I amounts to the estimation of the integral in 

4.19 above. We do this in a similar way to the numerical work done in Chapter 

3, although here it is altogether simpler. We do, however, have the additional 

feature that the value of the integral depends on J, and so we compute this for 

several different J. Again we find that the integrals can only be estimated well 

for £y in a certain region, and we give a fuller listing of the data in the appendix. 

In terms of the notation we have already, 

( 	 \ 	Yi 
A(J) = 8exp _ 3_ 2 - ( 

1  
. 
+ Jj)J I10 [H(y) - G(y)] e21G(v)G(y)  dy 1 -  

8exp{ 377.2 
1+J)}B(J) 

= 	---- (1_J 

say. We thus obtain the following estimates: 

J B(J) A(J) 

0.2 4.28 xlO' 1  777 

0.1 1.778 x109  197.1 

0.05 1.768 x108  110.7 

0.01 3.299 x107  72.80 

0.001 2.303 x107  66.53 

0.00001 2.214 x107  65.87 

0 2.213 x107  65.86 

Remark: When J = 0 we have 9 independent of x, and the map can be thought 

of as just 

= On  + Il - -- sin 27r9. 	 (4.20) 
277. 

Recall the results of [Dal], where the sine circle map was studied, in the form 

= x + Q + k sin2  X. 	 (4.21) 

Making the transformation x u.- irO - we obtain the map 

1/ 	k" 	k 
On+i = Oir + - 	

+ -) - - 
sIn27rO, 

2 	2ir 
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so that we would expect the width of ir x Li (k, 0) for 4.21 to be asymptotic to the 

width of I(k) for 4.20 as k -+ 0. In terms of our present notation, this means 

that we should have 

- J)A(J) 650.0, 

when J = 0. In fact we do have 7r2 A(0) = 650.0 as required. 

4.4.1 Numerical data 

The estimation of the constants, A(J), is computationally similar to the the 

numerical work involved in chapter 2, and to avoid being repetitious we omit 

the program. However, we include the data produced from which we obtain the 

estimates given in the table in the previous section. Again, estimation of the 

integral is made using Yo  values with, varying imaginary part, and for the same 

reasons discussed in section 2.3.1. 



(i) J = 0.2 

If' 
	

Yo 

4 ;44850683987032e+012 
2. 27991897036061e+012 
1 . 16116432361204e+012 
6. 20110135357472e+011 
4. 15867169105417e+O11 
3. 79948997233665e+011 
3. 90846989467893e+O11 
4. 04923795882818e+O11 
4. 14600311951183e+011 
4. 20374212628581e+011 
4. 23645504849211e+011 
4. 25456952982522e+011 
4. 26448295313320e+011 
4. 26986664209537e+011 
4. 27276874563020e+011 
4. 27431692770530e+011 
4. 27512804722820e+O11 
4. 27553841212394e+O11 
4. 27573104744053e+011 
4.27580545 122283e+011 
4. 27581567664727e+011 
4. 27579107332272e+011 
4. 27574757162982e+011 
4. 27569382304183e+011 
4. 27'563456369560e+011 
4. 27557255052201e+011 
4. 27551003495986e+Oli. 
4. 27545127581173e+011 
4. 27544585966241e+011 
4. 30177522561754e+011 

-6 . 90000000000000e+000 
-6 . 80000000000000e+000 
-6 . 70000000000000e+000 
-6 . 60000000000000e+000 
-6 . 50000000000000e+000 
-6 .40000000000000e+000 

• 30000000000000e+000 
-6 . 20000000000000e+000 
-6. l0000000000000e+000 
-6.0000000000000 Oe+000 
-5 • 90000000000000e+000 
-5 . 80000000000000e+000 
-5 . 70000000000000e+000 
-5 . 60000000000000e+000 
-5. 50000000000001e+000 
-5 .40000000000001e+000 
-5 .30000000000001e+000 
-5 .2000000000000 le+000 
-5 • l000000000000le+000 
-5 . 0000000000000le+000 
-4. 90000000000001e+000 
-4.8000000000000 le+000 
-4.7000000000000 le+000 
-4.60000000000001e+000 
-4. 50000000000001e+000 
-4.4000000000000 le+000 
-4.3000000000000 le+000 
-4. 20000000000001e+000 
-4. l000000000000le+000 
-4.0000000000000 le+000 
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(ii) J = 0.1 

If I 	 9Yo 

4. 36286239902700e+012 -6. 90000000000000e+000 
2 28961769568085e+012 -6 . 80000000000000e+000 
1 . 20123746707083e+012 -6 . 70000000000000e+000 
6. 29937917323941e+O11 -6. 60000000000000e+000 
3 .30086683332036e+011 -6. 50000000000000e+000 
1 .72719417518338e+011 -6 .40000000000000e+000 
9 . 01355009202116e+O10 -6. 30000000000000e+000 
4. 68003681608130e+010 -6. 20000000000000e+000 
2 . 40673832425675e+0 10 -6. l0000000000000e+000 
1 . 21585230076647e+010 -6. 00000000000000e+000 
5 . 96109316835625e+009 -5 . 90000000000000e+000 
2.8428022170624 le+009 -5. 80000000000000e+000 
1. 54177838811173e+009 -5. 70000000000000e+000 
1 .34151417960661e+009 -5. 60000000000000e+000 
1 .47409415901882e+009 -5.5000000000000 le+000 
1 . 60033220253863e+009 -5 .40000000000001e+000 
1. 67954838294728e+009 -5 .30000000000001e+000 
1 .724647433 18029e+009 -5.2000000000000 le+000 
1 .74946083 130564e+009 -5. 1000000000000 le+000 
1 . 76291675733597e+009 -5.0000000000000 le+000 
1 .77016200847370e+009 -4. 90000000000001e+000 
1 .77404607100196e+009 -4.8000000000000 le+000 
1 .77611985037929e+009 -4.70000000000001e+000 
1 .77722090152184e+009 -4. 60000000000001e+000 
1 . 77779986807665e+009 -4. 50000000000001e+000 
1 .77809878030077e+009 -4.4000000000000 le+000 
1.7782475 1287840e+009 -4. 30000000000001e+000 
1 .778315727 18852e+009 -4. 20000000000001e+000 
1.778340782 14754e+009 -4. l000000000000le+000 
1 . 77834271631198e+009 -4.0000000000000 le+000 
1 .77833228868075e+009 -3.9000000000000 le+000 
1 .77831529799526e+009 -3. 80000000000001e+000 
1 .77829491544252e+009 -3. 70000000000001e+000 
1. 77827297493378e+009 -3.6000000000000 le+000 
1 . 77825076821781e+009 -3. 50000000000001e+000 
1 .778229758 17994e+009 -3 .40000000000001e+000 
1 .77821279149599e+009 -3.3000000000000 le+000 
1.778231845 64989e+009 -3. 20000000000001e+000 
1 .88601868506875e+009 -3. 1000000000000 le+000 



(iii) J = 0.05 

Ill 	 Yo 

4. 04074828388899e+012 	• 90000000000000e+000 

2. 12000811077437e+012 -6 . 80000000000000e+000 

1 . 11207470304354e+012 -6. 70000000000000e+000 

5 83232936420994e+011 -6 . 60000000000000e+000 

3. 05804148006132e+011 -6. 50000000000000e+000 
1 . 60287763314341e+011 -6 .40000000000000e+000 
8 .39727963835968e+010 -6. 30000000000000e+000 
4. 39553623257996e+O1O -6. 20000000000000e+000 

2. 29738559344384e+010 -6 . l0000000000000e+000 
1 . 19741957601839e+010 -6. 00000000000000e+000 
6. 20807334826132e+009 -5.90000000000000e+000 
3. 18576236940684e+009 -5. 80000000000000e+000 
1 . 602 19408945339 e+009 -5 . 70000000000000e+000 
7 .73925545988 127e+008 -5.6000000 0000000e+000 
3.449370 50887698e+008 -5. 50000000000001e+000 
1. 38637042968041e+008 -5 .40000000000001e+000 
9 . 38506450758156e+007 -5 .30000000000001e+000 
1 . 22273191098808e+008 -5. 20000000000001e+000 
1 .46321116306629e+008 -5. l000000000000le+000 
1 . 60354588605813e+008 -5 .0000000000000 le+000 
1. 68037491874735e+008 -4. 90000000000001e+000 

1 .72163478819345e+008 -4. 80000000000001e+000 

1 . 74362623821716e+008 -4. 70000000000001e+000 
.1 .75530584125609e+008 -4. 60000000000001e+000 
1 .76149496 143557e+008 -4.5000000000000 le+000 
1.764767425 14344e+008 -4.4000000000000 le+000 
1 .76649217834461e+008 -4.3000000000000 le+000 
1 .767396078 178 16e+008 -4. 20000000000001e+000 
1 . 76786474820132e+008 -4. l000000000000le+000 

1 .76810268774164e+008 -4. 0000000000000le+000 
1 .7682 1832555922e+008 -3. 90000000000001e+000 
1 .768269 14825072e+008 -3 .80000000000001e+000 
1. 76828563870523e+008 -3. 70000000000001e+000 
1 .76828397335430e+008 -3. 60000000000001e+000 
1 .76827276209031e+008 -3. 50000000000001e+000 
1 .76825663655467e+008 -3. 40000000000001e+000 
1 .76823818345960e+008 -3. 30000000000001e+000 
1. 76821903377871e+008 -3. 20000000000001e+000 
1 . 76820057833569e+008 -3. l000000000000le+000 
1 .76818463353260e+008 -3.0000000000000 le+000 

1 .76817366363812e+OO8 -2. 90000000000001.e+000 
1 .76788724182413e+008 -2 .80000000000001e+000 
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(iv) J = 0.01 

If I 	 QVYO 

5 .78114030461431e+009 -5 . 90000000000000e+000 

01275738735397e+009 -5. 80000000000000e+000 

1 .562682 11069374e+009 -5. 70000000000000e+000 

8.032188 1.8378121e+008 -5. 60000000000000e+000 

05497212029778e+008 -5 . 50000000000000e+000 

1 .97256213627122e+008 -5 .40000000000000e+000 

8.8323432545980 2e+007 -5 . 30000000000000e+000 

3. 17419079114196e+007 -5. 20000000000000e+000 

7. 53264447683457e+006 -5. l0000000000000e+000 

1 .65867 167853243e+007 -5. 00000000000000e+000 

2 .42226281087278e+007 -4. 90000000000000e+000 

2 .83630 122878515e+007 -4. 80000000000000e+000 

3.05558684965 107e+007 -4. 70000000000000e+000 

3. 17111125627291e+007 -4. 60000000000000e+000 

3. 23185254373228e+007 -4. 50000000000001e+000 

3. 26375486094117e+007 -4.4000000000000 le+000 

3. 28049408920690e+007 -4.3000000000000 le+000 

3. 28926575084876e+007 -4.2000000000000 le+000 

3. 29385241832895e+007 -4. l000000000000le+000 

3.29624159 153556e+007 -4. 0000000000000le+000 

3. 297477211.59960e+007 -3. 90000000000001e+000 

3.298 i.0745794223e+007 -3. 80000000000001e+000 

3.298420 10717848e+007 -3.7000000000000 le+000 

3. 29856619666422e+007 -3. 60000000000001e+000 

3. 29862498590276e+007 -3. 50000000000001e+000 

3.298638077 13798e+007 -3 .40000000000001e+000 

3.298627339822 16e+007 -3.3000000000000 i.e+000 

3.298604341002 lle+007 -3. 20000000000001e+000 

3. 29857533541073e+007 -3. 1000000000000 le+000 

3.29854396076 277e+007 -3. 0000000000000le+000 

3. 29851279398191e+007 -2. 90000000000001e+000 

3. 29848441679832e+007 -2 .80000000000001e+000 

3.298462340 98240e+007 -2 .70000000000001e+000 

3. 29845412506058e+007 -2. 60000000000001e+000 

3. 30082143379126e+007 -2. 50000000000001e+000 
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(v) J = 0.001 

If I 	 yo 

5 . 65968883842204e+009 -5 . 90000000000000e+000 
2.9530689380 1074e+009 -5 . 80000000000000e+000 
1 . 53550499348245e+009 -5. 70000000000000e+000 
7. 93167674921143e+008 -5.60000000000000e+000 
4. 04469646650674e+008 -5. 50000000000000e+000 
2 . 00962945253940e+008 -5 .40000000000000e+000 
9: 44348865961544e+007 -5 . 30000000000000e+000 
3.8725 2522043553e+007 20000000000000e+000 
9 .94347819936 175e+006 -5. l0000000000000e+000 
6 .822 15241267005e+006 -5 . 00000000000000e+000 
1 .43558601777961e+007 -4. 90000000000000e+000 

1 .84665872 115225e+007 -4. 800000000Ô0000e+000 
2 .063529 59637762e+007 -4. 70000000000000e+000 
2. 17744649542356e+007 -4. 60000000000000e+000 
2 .237 19986089379e+007 -4. 50000000000001e+000 
2.2685 1736003079e+007 -4 .40000000000001e+000 
2.2849 1866428799e+007 -4.3000000000000 le+000 
2 . 29349936580899e+007 -4. 20000000000001e+000 
2 . 29798120525631e+007 -4. l000000000000le+000 
2. 30031551415558e+007 -4.0000000000000 le+000 
2. 30152504584547e+007 -3. 90000000000001e+000 
2.302 145680 15487e+007 -3 .80000000000001e+000 
2.302458 10308245e+007 -3. T000000000000le+000 
2. 30260928521485e+007 -3. 60000000000001e+000 
2 .302676 15904839e+007 -3. 50000000000001e+000 
2 .30269899119030e+007 -3 .40000000000001e+000 
2. 30269886838271e+007 -3 .30000000000001e+000 
2. 30268686596736e+007 -3.2000000000000 le+000 
2 .30266886750471e+007 -3. l000000000000le+000 
2 . 30264812508469e+007 -3. 0000000000000le+000 
2 .30262666780711e+007 -2. 90000000000001e+000 
2. 30260616000647e+007 -2 .80000000000001e+000 
2 . 30258854209 065e+007 -2 .70000000000001e+000 
2.302576 11666812e+007 -2.6000000000000 le+000 
2.302322 13701251e+007 -2 . 50000000000001e+000 
1 . 65356252661815e+007 -2 .40000000000001e+000 
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(vi) J = 0.00001 

If I 	 Yo 

.5 . 64596040429597e+009 -5 . 90000000000000e+000 

2 . 94623163652679e+009 -5 . 80000000000000e+000 

1 . 53229245312413e+009 -5 .70000000000000e+000 

7 . 91863324302108e+008 -5 . 60000000000000e+000 

4. 04171111444736e+008 -5. 50000000000000e+000 

2. 01194049950564e+008 -5 .40000000000000e+000 

9 . 49420444085942e+007 -5 . 30000000000000e+000 

3 93648740492561e+007 -5. 20000000000000e+000 

1 . 05520782570817e+007 -5. l0000000000000e+000 
5 . 96833030782586e+006 -5 . 00000000000000e+000 

1 .34844594667030e+007 -4.90000000000000e+000 

1 .75910302587404e+007 -4.80000000000000e+000 

1 . 97563734609937e+007 -4. 70000000000000e+000 

2 . 08933788003747e+007 -4. 60000000000000e+000 

2.,14896161574683e+007 -4.50000000000001e+000 
2. 18020387566927e+007 -4.40000000000001e+000 

2. 19656224861142e+007 -4.30000000000001e+000 
2.2051 1885416765e+007 -4.2000000000000 le+000 

2. 20958743536211e+007 -4. l000000000000le+000 

2. 21191468972663e+007 -4. 0000000000000le+000 

2. 21312069674511e+007 -3.9000000000000 le+000 

2 .21373980648459e+007 -3.80000000000001e+000 

2 . 21405183431254e+007 -3. 70000000000001.e+000 

2 . 21420325598285e+007 -3. 60000000000001e+000 
2. 21427072509786e+007 -3.5000000000000 le+000 

2. 21429434943104e+007 -3 .40000000000001e+000 

2 . 21429512467851e+007 -3.3000000000000 le+000 

2 . 21428407140386e+007 -3.2000000000000 le+000 

2. 21426703572118e+007 -3. l000000000000le+000 

2 . 21424723588256e+007 -3. 0000000000000le+000 

2 . 21422665816854e+007 -2.9000000000000 le+000 

2 .214206899 19325e+007 -2.8000000000000 le+000 

2 . 21418978502567e+007 -2. 70000000000001e+000 
2. 21417756990259e+007 -2. 60000000000001e+000 

2 . 21399370653966e+007 -2.5000000000000 le+000 

1 .93080418143582e+007 -2.40000000000001e+000 
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(vii) J = 0 

Ill 	 O~y0 

5 . 64582154428750e+009 -5 . 90000000000000e+000 

2 .946 16208269964e+009 -5 . 80000000000000e+000 

1 . 53225995725658e+009 -5. 70000000000000e+000 
7. 91850158216538e+008 -5 . 60000000000000e+000 

4.04168 114870592e+008 -5. 50000000000000e+000 

01196242351556e+008 -5 .40000000000000e+000 
9 .49470297859775e+007 -5 .30000000000000e+000 

93712101704299e+007 -5 . 20000000000000e+000 

1 . 05582458901004e+007 -5. l0000000000000e+000 

5 . 95990766583480e+006 -5 . 00000000000000e+000 

1 . 34758429056738e+007 -4. 90000000000000e+000 

1 . 75823705793220e+007 -4. 80000000000000e+000 

1 . 97476795415453e+007 -4.7000000000000 Oe+000 

2 . 08846630369789e+007 -4. 60000000000000e+000 
2. 14808874853675e+007 -4.5000000000000 le+000 

2. 17933022414832e+007 -4.40000000000001e+000 
2.19568816584495e+007 -4.30000000000001e+000 

2 . 20424452411815e+007 -4. 20000000000001e+000 
2.20871297065190e+007 -4. l000000000000le+000 
2. 21104015342082e+007 -4. 0000000000000le+000 

2 . 21224612402547e+007 -3.9000000000000 le+000 
2. 21286521793399e+007 -3.8000000000000 le+000 

2 . 21317724122242e+007 -3.7000000000000 le+000 

2 . 21332866506719e+007 -3. 60000000000001e+000 
2. 21339613999900e+007 -3. 50000000000001e+000 
2. 21341977206581e+007 -3 .40000000000001e+000 

2 .213420556 12797e+007 -3.3000000000000 le+000 
2 . 21340951222235e+007 -3.2000000000000 1e+000 
2 .2133924860489 le+007 -3. 1000000000000 le+000 

2 . 21337269552464e+007 -3. 0000000000000le+000 
2. 21335212652781e+007 -2 .9000000000000 1e+000 

2 .21333237499804e+007 -2 .80000000000001e+000 

2. 21331526590042e+007 -2 .70000000000001e+000 

2 . 2i.330305285923e+007 -2 . 60000000000001e+000 

2 .21311980004647e+007 -2 .50000000000001e+000 
1. 93244001062085e+007 -2 .40000000000001e+000 
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