
New algorithms and methods for
protein and DNA sequence comparison

James Crook

A Thesis Presented for
the Degree of

Ph.D.

Biocomputing Research Unit,
Department of Molecular Biology,
University of Edinburgh.

May 1991.

Abstract
International biological sequence databases hold information about protein

and DNA molecules. The molecules are represented by sequences of characters.
In analysis of this data algorithms for comparing the character sequences play a
central role. Comparisons can be made using dynamic programming techniques
to determine the score of optimal sequence alignments. Such methods are
particularly popular with molecular biologists for they accommodate the kinds of
differences which actually occur in the sequences of related molecules.

Sequence alignments are normally scored using score tables based on an
evolutionary model. The derivation of these score tables is re-examined and a
formula giving an analytic counterpart to an empirical method for assessment of
a score table's discriminating power is found. Use of the formula to derive
alternative protein similarity scoring tables is discussed.

A new approach to tackling the heavy computational demands of the
dynamic programming algorithm is described: intensive optimisation of a
microcomputer implementation. This provides an alternative to implementations
which use parallel computers for searching protein databases. This thesis also
describes how other implementational problems were tackled in order to make
more effective use of the serial comparison software.

The new software permitted comparison by optimal alignment of
32,000,000 pairs of sequences from a protein database using widely available and
inexpensive hardware. The results from this search were then reorganised to
facilitate the finding of previously unseen similarities. Software tools were written
to assist with the analysis including software to align sequence families.

From the results of this work, nine similarities are presented which do not
appear to have been previously noted. The examples illustrate factors that are
important in assessing similarities with scores close to the boundaries of
significance. The similarities presented are of particular interest because of the
biological functions they relate.

One software tool developed for the sequence analysis work was a new
multiple sequence alignment editor and sequence aligner, "Medal". Lessons from
its use on real sequence data lead to a modification to the original comparison
method to accommodate local variations in sequence similarity.

Consideration is given to parallelisation of this modification and of the
methods used to obtain speed in the serial software. Alternatives are suggested.
The suggested parallel method to cope with variations in sequence similarity
requires two interdependent sequence comparisons. A serial program using three
interdependent comparisons is demonstrated and shows the feasibility of multiple
interdependent comparisons. Examples show how this new program, "Fradho",
can compare DNA sequences to protein sequences accommodating frameshifts.

I'

Acknowledgements

Firstly I thank my two supervisors. I particularly want to thank Professor

Sidney Michaelson (Computer Science) for his constructive criticism combined

with lively interest and encouragement. I wish he were still alive and that we

could talk about shared interests in Computer Science, Molecular Biology and

Mathematics. I also thank Dr John Collins (Molecular Biology) and I thank the

Science and Engineering Research Council for their funding.

There are many other people I want to thank too. I thank Andrew Lyall,

whose achievements in biological sequence analysis and enthusiasm encouraged

me to join in too; Duncan Rouch, who showed me the importance of comparative

testing; Dr Andrew Coulson for instruction in "0" and help with laser printer

problems; Ian Campbell for attempting, with intermittent success, to repair the

jinxed IBM PC clone; for making the computing unit more human, Carol Crawley,

Tom Smith, Alok Kumar, Steven Hayward and Sarah (SJ) McQuay whom I also

thank for comments on the draft; Adelaide Carpenter for showing me how to

copy edit on an early draft of Chapter 8; the excellent staff at the Darwin library

for all their help; Richard Hayward for comments on S. aureus protein-A; Stuart

Moodie for drawing my attention to a paper on the p53 antigen; Roger Slee for

providing dodgy DNA data at an early stage of sequencing; Michelle Ginsburg for

the viral subunit sequences to align; Gill Cowan for explaining the restriction

enzyme identification problem and Mike Holmes and Peter Cleat in the

computing support for biologists group. Finally I want to thank my parents, sister

and my girlfriend Bobby for all their encouragement. Any mistakes in this thesis

are of course my own, alas, in this instance blaming the computer does not help

me much.

111

Declaration

The following declaration is made in accordance with paragraph 3.4.7 of

the University of Edinburgh regulations governing the submission of theses.

I declare that this thesis has been composed by me and that all the work

described in it is my own unless clearly indicated otherwise.

James Crook

May 1991.

Edinburgh.

iv

Contents

Chapter 1: Introduction II
Biological sequence data 	 1
Software for sequence analysis 	 13

• Importance of sequence comparison 	 13
Concluding remarks 	 16

Chapter 2: Comparison Methods and the NWS Algorithms 	 17
Word based comparison 	 17
Estimating likelihoods of chance matching 	 18
Alphabet reduction 	 20
Scoring amino acid similarity 	 21
Comparison by alignment 	 23

Chapter 3: Measuring Similarity 	 29
The Dayhoff model 	 30
Assumptions of the model 	 31
Justification for method for deriving 1 PAM table 	 38
Explanation for symmetry of A' 	 39
Discrimination of similarity scoring tables 	 40
Other amino acid similarity scoring tables 	 46

Chapter 4: Rapid and Sensitive Database Searching
Sensitivity and selectivity 	 49
Computational cost 	 49
Database reduction 	 51
Approximate methods for comparison 	 54
Theoretical advances in comparison algorithms 	 56
Concluding remarks 	 57

Chapter 5: Techniques to Get More from Machines
Type III comparison (speed) 58
Path reconstruction (memory space) 61
Database compression (disk space) 64
Tripeptide matching (speed) 66
Annotation browser (portability) 67
Optimisations to "Prosrch" 68
Concluding remarks 70

58

V

Chapter 6: Multiple Sequence Alignment
	

71
Uses of multiple alignments 	 72
Sequence editors 	 74
Automatic alignment methods 	 82
Use of the new computer tools 	 88
Concluding remarks 	 91

Chapter 7: Comprehensive Database Analysis
	

93
Organisation of sequence data 93
Methods and data used in comprehensive search 94
Reduction of the similarity data 97
Tree formation 100
Examining results 101
Concluding remarks 109

Chapter 8: Twilight Zone Similarities
Scores to significances 112
Repetitive sequence problem: Protein-A 114
Weak local constraints 116
Viral repetitive proteins 117
Local similarity and local structure 118
Multiple matching: An AMP binding pattern? 119
Conserved cysteines: Two plasma proteins 122
Similarities across taxonomic boundaries 123
Two pathogenesis related proteins 124
Protein formation and folding 125
Arginosuccinate and two viral proteins 126
Phosphoenolpyruvate -regulated sugar transport 127
Concluding remarks 127

Chapter 9: NWS variants 	 129
Coding regions and frameshifts 	 129
"Fradho" 	 131
Variations in noise 	 140
Mixed noise Type III comparison 	 142

111

v

Addendum: The "Blast" algorithm 	 144
"Blast's" method for finding word-pairs 	 145
Validity of seed based matching 	 146

Appendix 1: Tests of some ideas for new software 	 147
Introduction 	 147
Sequence retrieval 	 147
Dotplots 	 149
Identification of a target pattern 	 151

Appendix 2: Methods for fast serial type III comparison 	 154

Appendix 3: Conditional deferred assignment 	 161

Appendix 4: Potential for optimisations to "Prosrch" 	 163

Abbreviations 	 168

References 	 170

VII

Chapter 1: Introduction

This interdisciplinary thesis seeks to improve the ways in which Information

Technology is applied to the analysis of biological sequence data. This is

simultaneously a theoretical and a practical problem. The approach taken in this

work is a pragmatic one. Both the nature of the data being studied and practical

computational issues need to be considered. We start by describing the nature of

biological sequence data, how this information represents biological molecules and

how these molecules relate to genetic information, the information held in cells

that is passed on when cells divide.

Biological sequence data

Polymeric macromolecules synthesised within cells are fundamental to the

chemical processes on which all life depends. During the last two decades

molecular biologists have characterised many thousands of these macromolecules.

The chemical structures they have determined are conveniently represented by

sequences of characters. These sequences, the biological sequence data, have

been collected on an international scale to make biological sequence databases

(Barker et al., 1990; Kahn & Cameron, 1990; Burks et al., 1990).

Two classes of macromolecule are represented in the databases. One class

is the protein molecules. Proteins are polymers of amino acids. The other class

is the deoxyribonucleic acid (DNA) molecules. DNAS are polymers of nucleotide

monomers. Structural and other information about the component monomers of

proteins and DNAS is given, mostly in diagramatic form, in figures 1.1 to 1.4.

These diagrams are explained in greater detail in later sections of this chapter.

Both proteins and DNAs are linear polymers. The order of characters in

the sequences representing a protein or DNA molecule corresponds with the

order in which monomers form the linear polymer chain.

As well as holding protein and DNA sequence data, the databases contain

textual information. The textual information describes the known roles of the

1

molecules and gives references to the literature in which the sequence data were

reported.

Genetic information

Collecting information about DNAs and proteins is an essential part of the

process of investigating how organisms function at the molecular level. The

chemical reactions in a cell form a highly complex organised system. Multi-stage

metabolic pathways convert chemical resources available to a cell into forms that

meet the cell's current needs. Protein molecules are crucial to such pathways. In

a typical pathway, each reaction is catalysed by a specific protein. Genetic

information specifies the kinds of protein synthesised by the cell and hence it

determines the metabolic pathways.

The structure of a protein determines how it interacts with other molecules.

Taking a specific example, some chemical groups at the surface of a protein may

be arranged so that they readily bind to a comparatively small molecule,

adenosine triphosphate (ATP). ATP is an important carrier of readily available

energy. By specifying the chemical structures of proteins synthesised in the cell,

genetic information determines how chemical energy is used.

Like chemical energy, genetic information is vital to the cell. Accurate

information is essential to the correct functioning of cellular chemistry. A

bacterial cell such as Escherichia coli holds genetic information that precisely

specifies over 3000 different proteins each of which is formed from, on average,

300 amino acids. Cells also carry information to regulate the synthesis of proteins,

to ensure that under differing conditions that the appropriate quantity of each

protein is made. Just as there are molecules which carry chemical energy, so too

there are molecules which carry genetic information. Molecules of DNA are the

primary carriers of genetic information. DNA carries the information which

specifies the proteins.

With the discovery of the double helical structure of DNA (Watson &

Crick, 1953), the manner in which cells pass on genetic information to their

progeny became clear for the first time. The paired structure of DNA suggests

a biochemical mechanism for replication of DNA. Chemical processes in the cell

2

make precise copies of DNA molecules thus passing information on to the cell's

descendants.

Other achievements fundamental to the discipline of Molecular Biology

followed the discovery of DNA's structure. These included development of

techniques by Sanger et al. (1977), to rapidly determine base sequences of DNA

molecules. These techniques make it possible for molecular biologists to read

genetic information encoded in DNA. Over the years these techniques have been

used extensively and refined. Much molecular biological research can be viewed

as experimental work aimed at understanding the function of the data encoded

in different DNA molecules.

A landmark achievement in the interpretation of DNA sequence data has

been the elucidation of one of the basic information encoding strategies used by

DNA, the so called 'genetic code' (Frisch, 1966). Using a table giving the genetic

code it is now possible to deduce the.sequence of amino acid residues of a protein

from the DNA sequence that encodes it.

We now briefly describe the molecules, proteins and DNAS, that are

represented by sequence data. We then describe the link between the two classes

of molecule. More extensive information can be found in standard texts on

Molecular Biology such as Lewin's "Genes" (1990).

DNAS

The now famous DNA double helix consists of a pair of antiparallel

complementary strands of deoxyribonucleic acid. Each strand is a linear polymer

of thousands of nucleotide monomers. The nucleotides are similar in a sugar-

phosphate part which makes the 'backbone' of the strand. They differ in a

nitrogenous chemical group called a base. Information is carried by the sequence

in which the bases occur along a single strand's length. Four characters c, t, a and

g, are used in the sequence representation. They represent the four bases

cytosine, thymine, adenine and guanine. The order of characters in a sequence

corresponds with the order of chemical groups in one strand.

The bases come in complementary pairs; c pairs with g and t pairs with a.

Where one strand has c the complementary strand has g and similarly for each of

3

the other three possibilities. The pairing arises because the individual bases can

form stable interactions with their specific partner through weak 'hydrogen

bonding'. Hydrogen bonding of bases is shown in figure 1.1. This figure also

shows the chemical structure of the four bases. Only one strand of each double-

stranded DNA molecule is represented in the databases since the complementary

strand can be deduced from its partner. The complementary pairing of two

strands is both the basis for the stability of double stranded DNA as a molecule

and also the basis of the mechanism of information preserving replication of

DNA.

Cytosine Guanine H 	
-H I I I 10

C_

7N
/ C\ _

/ 	
C\ 	

/ H-C

N-C

C-N I H-N
/ 	

NC-
\.

/ \ 	/__ N
CII 11

H

Adenine
Thy nine

H OIIIIH-N'

H'

' \ 	
C C 	C-H

/ C- N

/ C \ 	H/
0

Figure 1.1: Hydrogen bond formation between complementary base
pairs.

Proteins

Protein sequences have greater prominence in this work than do DNA

sequences. Whereas DNA is the information carrier, proteins are the active

expression of this information. Proteins are linear polymers of twenty kinds of

amino acid.

4

Like DNA character sequences, protein character sequences represent the

order of simple subunits of a polymeric macromolecule. Protein sequences vary

in length from a few tens of characters (e.g. some hormones) to several thousand

characters (e.g. viral polyproteins). Each character in the sequence represents an

amino acid residue. The term 'residue' is used here to denote the parts of the

amino acid left after the polymerisation reaction is complete. In the reaction the

crb jiciroup of one amino acid reacts with the amino group of the next (figure

1.4). The residue of the amino acid consists of atoms involved in the protein

backbone plus a side-chain characteristic of the amino acid. The side-chains are

illustrated in figure 1.3. Proteins of around thirty or fewer residues are sometimes

referred to as polypeptides, or just peptides, for the bond between residues is

known as a peptide bond.

Unlike DNAs, proteins are single stranded polymers. Proteins fold into

complex three dimensional structures due to side-chain interactions (Schulz &

Schirmer, 1979). Aromatic residues, Phe, Trp, Tyr 	; and aliphatic residues, Ile, ,4)a

Leu, Val, have hydrophobic water repelling side-chains (Taylor, 1987a). Protein

folding, at least in an aqueous environment, is largely driven by a reduction in

energy through hydrophobic residues becoming buried in the core of the structure.

Two particular kinds of region of regular substructure are frequently found

in proteins. These are near planar zig-zag substructures (beta sheet), and helical

substructures (alpha helix). Both these sub-structures are characterised by a

regular pattern of hydrogen bonding involving atoms of the protein backbone.

The folded structure adopted by the protein is energetically favourable, that is,

slight perturbations of the structure have higher energy and are less stable. The

folded structure is essential to the protein's biochemical activity. The regular sub-

structures are crucial to the formation and stability of the folded molecule.

Frequently there is biologically significant modification of these basic

structures. The folded structure may be further stabilised by the formation of

covalent 'disulphide bridges' between cysteine residues in different regions of the

sequence that have been brought close together by the folding. Other residues

on the surface of the protein may also be chemically modified. However, three

dimensional structure is essentially dependent on the sequence.

5

Amino Acid Abbr. Symbol Frequency

Glycine Gly G 0.089

Alanine Ala A 0.087

Leucine Leu L 0.085

Lysine Lys K 0.081

Serine Ser S 0.070

Valine Val V 0.065

Threonine Thr T 0.058

Proline Pro P 0.051

Glutamic acid Glu E 0.050

Aspartic acid Asp D 0.047

Arginine Arg R 0.041

Asparagine Asn N 0.040

Phenylalanine Phe F 0.040

Glutamine Gin 0 0.038

Isoleucine lie I 0.037

Histidine His H 0.034

Cysteine Cys C 0.033

Tyrosine Tyr Y 0.030

Methionine Met M 0.015

Tryptophan Trp W 0.010

Figure 1.2: The amino acids and their standard three letter and one
letter abbreviations. The list is in order of abundance, glycine being most
abundant and tiyptophan being least abundant. After Dayhoff et al. (1978).

1.1

•

H(;CH

CH CH2 H2 H2

HNH

Pro -P- His -H- Trp -N- Tyr -I- Phe -F-

1 1 1
H H-C-H H-C--H H-C-H

t 	I I I I I
H-C-- C-H H-C--H H-C-H H- C-H H--C-H

H-C-H H H-C-H H-C-H
I

S

I
S

I I
H-t --H

I
H-t --H H-N H-C--H H

I
H

I
NH3

I
CNH2

I
H

H// NH

Ile -I- Lys -K- Arg -R- Met -H- Cys -C-

i I I I.

H-C-H H-(-H H--H H-c--OH

I I
H 	H H-C-H H-C--H H-C-H

I
H-C---H

I I
H- --c-H

I I
H H

Leu -L- Gin -Q- Giu -E- Thr -T- Ala -A-

I I
H 	H H-C-H H-C-H W-O-OH

I I I
H H H-C_-C--H CN

Val -V- ASn -N- Asp -D- Ser -5- Gly -G-

Figure 1.3: The characteristic side chains of different amino acids.
These have been arranged in an unconventional way to emphasize some of the
similarities and differences. For example, side chains in row 3 differ to those
in row 4 only by addition of an extra carbon group. The similarities of
individual amino acid types are crucial to comparison ofprotein sequences with
sensitivity.

7

H3 	 C

H-C-H

H-C-H

4
H-C-H

+ H3N—c

H

+
/ 	\ 	•••••'O-

HCH HCH

+ H3N-

H-C--OH

Methionine 	+ 	Glycine 	+ 	Praline 	+ Serine

H 0 	H 0 	H 0 	H 1 	II 	I 	II. 	I 	II 	1 0
H3N— C— C—N- C—C—N-C—C—N-C—Cd

H-C-H 	H H 	HCH HCH 	H H-C-OH

H-C-H 	 C 	 H
H

H-C--H 	 + 3H20

Figure 1.4: Polymerisation of amino acids to form a polypeptide.

Protein synthesis

The folded proteins have an astonishingly diverse range of functions,

structural, regulatory and catalytic. Proteins with catalytic roles are particularly

important to cellular chemistry. They are known as 'enzymes'. Enzymes are

powerful and highly specific catalysts.

Proteins, whether enzyme or otherwise, are the key intermediate stage by

which information held in DNA specifies the functioning of the cell. Chemical

processes studied in Molecular Biology either involve proteins directly or have

proteins catalysing the reactions.

In regions of DNA that code for protein a run of three consecutive bases

is used to specify selection of one amino acid. Three bases gives 64 Possibilities

rather than twenty. The encoding scheme has redundancy in it; several

possibilities usually encode the same amino acid.

DNA is not translated directly. Instead a ribonucleic acid (RNA) copy of

the DNA sequence is made, a process called 'transcription'. RNA is very similar

to a single strand of DNA except uracil, a base like thymine but lacking a methyl

group, is used in place of thymine and the sugar is ribose instead of deoxyribose.

Instructions in an RNA transcript are read as a protein is formed in a process

called 'translation'. This process of precisely controlled polymerisation takes place

in complex assemblies, the ribosomes, which are themselves made from protein

and RNA molecules.

2nd base

44

-C
S.
C.

p..

Co

eel

Figure 1.5: The coding scheme wherekv triples of adjacent bases
(codons) code for individual amino acids. indicate stop codons, the end of
a translated section. The code is presented in the alphabet of RNA in which
u substitutes for t. To produce proteins, a short transcript of RNA is first
produced from the DNA master copy. The residues shown shaded are those
encoded by three or more different codons. The organisation and shading of
this table are non-standard and draw attention to a pattern in the code which
involves codons whose second base is a.

2

The diversity in proteins is achieved with great economy. The same

molecular machinery driven from different sets of instructions is used in

synthesising all proteins. It is variation in the sequences of the amino acid

subunits, rather than a wide range to the subunits themselves, that give proteins

their profoundly different properties.

Software for sequence analysis

• 	Software for sequences analysis can be used to compare any newly

determined protein or DNA sequence to sequences in the databases. This is a

vital step in relating new information to information that is already known. When

an unexpected new similarity is found between sequences, it can lead to a

• hypothesis about the processes taking place in cells. The hypothesis can then be

tested by experiment. As an example, one similarity discovered by a computer

database search linked proteins that stimulate cell growth (growth factors) and

proteins implicated as causative agents in cancer (oncogenes) (Doolittle et al.,

1983). A number of different examples of growth factor and oncogene similarities

are now known. The discovery of this link has been of great interest to

researchers as it gives insight into the molecular mechanism whereby oncogenes

lead to uncontrolled growth (Bradshaw, 1987).

Computers are of importance in other aspects of sequence analysis work

in addition to their role in database searching. One of the most widely used

software packages for biological sequence analysis, at least in universities, is the

genetics computer group (GCG) package originally written at the university of

Wisconsin (Devereux et al., 1984). The GCG package provides a wide range of

sequence analysis facilities from simple programs that reverse and complement a

DNA sequence to derive the sequence of one DNA Strand from its

complementary pair, to computationally demanding programs that attempt to

predict some structural aspects of RNA molecules. The distributors of the

software have a policy of making source code for all these progranis available.

This makes it possible to adapt GCG programs to test out new sequence analysis

ideas. The package provides a natural base from which to develop flew ideas for

sequence analysis.

Applied information technology

How can one develop new algorithms that will actually help molecular

biologists? It is important that algorithms are genuinely of use, rather than solving

problems so idealised that they bear little relation to biologists' requirements.

Three approaches are considered.

1) Firstly, one may be able to identify aspects of sequence analysis which

have been consistently neglected by software developers. One area that has been

neglected is the combined use of both DNA and protein information.

Most analysis software deals independently with DNA data or with protein

data, except when translating to or from DNA. Analysis programs therefore

encourage researchers to see DNA and protein properties as independent, not to

look for relationships between them. There is, however, interest in analyses that

relate the two kinds of data.

One hypothesis where examination of both DNA and protein sequences is

important concerns introns and protein domains. Introns are stretches of nucleic

acid sequence which are removed from RNA before translation. Protein domains

are independently folding functional regions within a protein. A hypothesis that

links introns and boundaries between protein domains (Gilbert, 1978) is one of

several that attempt to explain the presence of introns. Under this hypothesis

introns separate functional domains and facilitate their rearrangement to make

multifunctional proteins. Such a mechanism may underlie patterns of similarity

actually observed in protein molecules (Patthy, 1985).

A second example where an interplay between DNA and protein

properties is important concerns the use of rare codons. Some codons for the

same amino acid residues are used preferentially to others. Use of the rarer

codons causes pauses in translation (Varenne et al., 1984) which may facilitate

protein folding. Whilst codon usage for whole DNA sequences can be tabulated,

software tools, as they currently stand, do not encourage investigation of such

hypotheses.

Those two examples are somewhat specialised. However, there is a

frequently required analysis in which consideration of both DNA and protein

11

sequences is important. Currently in searching databases researchers use either

DNA sequences or use the derived protein sequences. The problems this causes

are considered in Chapter 9 where software that simultaneously uses both

translated and untranslated DNA is presented.

A second approach to applying Information Technology is to examine

existing computer sequence analysis tools that have proved their worth and to

improve them. This may involve making a program run faster, making it perform

a more comprehensive analysis or provision of a new interface that makes a

cumbersome investigation more straightforward.

A third approach is to start from specific analysis problems that

molecular biologists find are difficult to solve using existing tools. Either a

satisfactory way can be found using a combination of existing tools, or new

methods can be developed.

All three approaches have their uses. The approaches reinforce each other

since new methods, improvements and difficult analyses influence the design of

new software. It was the combined use of these approaches, new ideas being

tested by writing new software, that directed research in this thesis.

In the early stages of the work a number of ideas and test implementations

of programs were tried. Also time was spent helping biologists new to the GCG

package with specific analysis problems. Some individual software ideas and

conclusions from this work are summarised in Appendix 1. This summary

illustrates some of the current practical difficulties with existing sequence analysis

software. These early investigations helped to focus further research by drawing

attention to the importance of sequence comparison in sequence analysis work.

12

Importance of sequence comparison

Comparison of biological sequences is fundamental to Computational

Molecular Biology. It is possibly the most useful computational technique

available. Why should this be so?

Firstly, comparison is required in database searches. Comparison allows

new sequence data to be related to previously studied sequences. Similarity in

sequences may give a researcher insight into a previously unsuspected function.

Comparison of a sequence to sequences in a database allows the researcher to

draw on a large collection of information that is frequently being updated.

Secondly, comparison of sequences which are already known to be related

shows patterns of similarity and differences. Most regions of related sequences

show some changes. Some regions show a remarkable stability. Sequence

comparison can draw attention to these conserved regions. One can hypothesise

that in these regions the evolutionary process has eliminated organisms which

show variation. If so, this suggests that the regions have crucial biochemical

functions requiring precise spatial organisations of amino acid residues.

Comparison which reveals conserved regions can therefore act as a guide to

identification of the site where an enzyme interacts directly with a substrate, the

active site. This can guide an experimenter, increasing the chance of identifying

by experimental techniques crucial regions early in their study.

Comparison software is also used to organise experimental data. In

experimental work to determine a DNA sequence many fragmentary sequences

are collected. Overlaps between these need to be found so that a long consensus

sequence can be determined. Organising the fragments into a longer sequence

requires comparison.

Underlying the various applications of sequence comparison is a common

theme. Comparison is a first stage in organising information. In biological

sequence database searching, comparison selects and brings to the attention of

researchers information that is most likely to be relevant. The comparisons bring

related sequences together whatever their order in the database. In studies of

related sequences, comparisons organise the differences and similarities so that

patterns of similarity can be seen.

13

Alternatives to sequence comparison

The three dimensional structure of a protein, as for example deduced from

X-ray crystallographic data, gives information about the arrangement in three

dimensions of the atoms of the molecule. In contrast, chemical structures only

give information about covalent bonding. Chemical structures give selective

information about the distances between atoms. Where the word 'structure' is

not qualified by 'chemical' in this thesis, we are referring to three dimensional

structure.

Comparison of protein structures should give a more accurate method for

investigating shared function than does sequence comparison alone. Function may

depend on the precise arrangement of residues in a small patch at the surface of

the protein. Residues which are close in the folded protein will not necessarily be

close in the linear sequence.

However, structural comparison techniques have limited applicability. Only

a few hundred distinct protein structures are known whereas many thousands of

protein sequences have been obtained (Pallabiraman et al., 1990). This reflects

the difficulty of obtaining protein structures. Determination of a structure using

X-ray crystallographic techniques is only possible where the protein can be

crystallised. The newer and more rapid nuclear magnetic resonance (NMR)

structure determining techniques also have limitations, particularly as regards the

size of molecules that can be analysed (Gronenborn & Clore, 1989).

Were it possible to deduce protein structure directly from sequence,

sequence comparison would have far less importance. Structural rather than

sequence comparisons would be of greater interest to researchers attempting to

understand protein function. Attempts have therefore been made to apply

computers to the problem of deducing protein structures from protein sequences.

Predicting structure from sequence

Protein structure prediction from sequence data alone presents a

formidable problem. Each structure for a protein has a corresponding energy.

The energy depends to a large extent on hydrogen bond formation. Calculating

the structure of minimum energy for a protein of known chemical structure

14

involves minimisation of a non-linear energy function involving thousands of

variables. Approaches to the problem so far have met with very limited success.

Simulations of protein folding and use of current energy minimisation techniques

suffer from phenomenal computational demands. There is uncertainty too about

whether the structure a protein adopts in a cell corresponds to the structure with

minimum energy, even were it possible to perform the minimisations in reasonable

times (Zvelebil et al., 1987).

Dynamic protein simulations can currently handle minor disturbances of

known structures and timescales of the order of picoseconds. Protein folding by

contrast involves major structural changes and can take seconds (Hantgan et aL,

1974). The conformation of a protein, moreover, may depend on the presence

of other cellular components such as other proteins that catalyse the folding

process (Sambrook & Geming, 1989).

An alternative to simulation and energy minimisation techniques is to use

statistical properties of sequences. Attempts have been made to employ statistical

relationships between short sequences and common structural motifs to predict

the presence of alpha helix and beta sheets. The poor success of these statistical

methods has generally been ascribed to 'tertiary structure effects', that is,

interactions between residues distant in the linear sequence (Kabsch & Sanders,

1983).

Without structural prediction, structural comparison is limited to those

sequences whose structure has been determined experimentally. On the other

hand, sequence comparison can be applied to all proteins in the sequence

databases. By comparing sequences rather than structures researchers are

potentially able to relate their sequence to a far larger class of proteins and they

are able to do so long before a structure for their sequence is available. Such

comparisons can even be of help in determining protein structures. Some of the

preliminary structural models that researchers work with are based on sequence

similarities of the protein being modeled to proteins of known structure (Ripka,

1986).

15

Concluding remarks

Sequence comparison techniques are needed in many areas of

Computational Molecular Biology. They make possible automatic organisation of

sequence data• to draw attention to biologically significant patterns. The

applications range from the early stages of determining a sequence to advanced

studies of the mechanism of protein action. Accordingly sequence comparison

techniques and associated software play a central role in ihis thesis.

16

Chapter 2: Comparison Methods and
the NWS Algorithms

This chapter examines the methods involved in measuring sequence

similarity. Computers can easily find strong similarities between sequences such

as runs of twenty or more identical residues. Comparison should draw attention

to weaker similarities as well as to the very strongest similarities. Weaker

similarities must be picked up from a background of similarities that occur by

chance and which do not reflect biologically significant relationships. In detecting

the weaker matches the crucial property of comparison algorithms is their ability

to discriminate between biologically significant matches, 'signal', and chance

matches, 'noise'.

To detect biologically significant similarities, methods are needed for

converting a qualitative property, the similarity of two sequences as judged by the

biologist, into a quantitative measure that can be calculated by the computer.

Programs for finding similarities are, in effect, algorithmic descriptions that

approximate to biologists' intuitions about what signal matches are like. An

algorithmic description can readily capture some aspects of sequence similarity

that distinguish genuine sequence relationships from spurious ones. For example,

in two related proteins there is a good chance of finding many short runs of two

or three residues that are present in both sequences. This kind of similarity is

rarer in unrelated sequence pairs. The simplest algorithms for measuring

relatedness are 'word based' algorithms that rely on such runs. Modifications to

these methods can improve detection of biologically interesting similarities. This

is described in the following sections. These lead to a description of comparison

'by alignment' and to description of the Needleman Wunsch Sellers (NWS)

algorithms for finding optimally scoring alignments.

Word based comparison

'Words' are contiguous sequences of characters within a longer sequence.

17

At its simplest a word based comparison method would count the number of

words of a fixed length shared by two sequences. For example the two sequences:

Seqi: FLTFERNRQIC
Seq2: FLSDKNRYQIC

have four two letter words in common. These words are FL, NR, 01 and IC.

One attraction of word based comparison methods is that algorithms for

counting matching words can be extremely rapid. Words contained in both

sequences can be located very efficiently using standard sorting and indexing

algorithms (Knuth, 1973a).

Estimating likelihoods of chance matching

With word based methods a simple model gives some idea of the expected

level of chance matching. Were all amino acids equally abundant in proteins, two

words of length six chosen from two sequences of random amino acid residues

would have a probability of 1/206 (which is 1.56 x 10) of matching identically.

Not all amino acids are equally abundant. The probability of the first

residue of two random words both being glycine, using the amino acid frequencies

of figure 1.2, is 0.0892 = 0.0079. The probability of both being tryptophan is

0.012 = 0.001. Summing these probabilities over all amino acids gives the

probability of an identical match which is 0.07, i.e. a 1 in 15 chance of matching.

Two random words of length six from proteins of average composition have a

probability of 1/156 = 8.78 x 10 of matching by chance.

There are about 90,000 ways of choosing two six letter words from two

sequences of length 300. The expected number of matching words of length six

in two sequences of length 300 is 90,000 x 8.78 x 108 = 0.008. Finding such a

word would tend to indicate that the sequences were related.

Such figures provides only a useful rule of thumb. Treating proteins as

random sequences of amino acids does not accurately reflect patterns present due

to biological constraints. A protein sequence may have local regions of biased

composition (McQuay, 1991). It may for example contain a region rich in

hydrophobic residues located in the protein core. Other proteins which do not

have similar functions may contain a similarly biased region, increasing the chance

of a matching word above the normal noise level. In practice this problem is

dealt with by the biologist interpreting the computer's results, rather than by the

computer. This is one reason why it is important that comparisons give not only

quantitative scores but also show the regions of sequence similarity.

Further problems arise when trying to calculate the likelihood of matching

when comparing one sequence to sequences in a database. Protein databases

contain families of related proteins. A similarity to one member of a family

implies a high likelihood of similarity to other members. Comparing a sequence

of unknown function to all sequences in a database and finding ten sequences that

show evidence of similarity to it may not be much more surprising than finding

just one, if the ten sequences are closely related to each other. In a model for

random matching it is simpler, though not accurate, to treat the proteins in the

database as unrelated to each other.

These comments serve to illustrate that measuring likelihoods of chance

matching is problematic even with the simplest of similarity measures. The model

for random matching necessarily makes simplifying assumptions. The likelihood

measures can, however, give guidance at extremes of similarity. They can suggest

that a similarity is so strong that some biological explanation for it is required, or

that a weak similarity is so poor that its occurrence can be entirely explained as

chance matching.

Ultimately the test of a method for scoring similarity is whether or not it

leads to new insights into protein function validated by actual experiment. Rather

than significance by an arbitrary numerical measure, it is significance to the

biologist that matters.

Substitutions

The requirement that words match exactly makes methods based on exact

word matching liable to miss similarities that are of significance to biologists.

Information about amino acid similarity can be used to improve the sensitivity of

a protein sequence comparison method. To the biologist chemical similarities

which suggest similarities of function are of interest. The chart of amino acid

19

sidegroups in figure 1.3 draws attention to some chemical similarities between

amino acids. Serine and threonine, for example, have sidechains of ethanol and

propanol. These two alcohol sidechains differ in length by only one carbon atom.

Serine can and does substitute for threonine in many related proteins. Exact

matching of words would fail to identify two words which differ only by an S

replacing a T. Such inexact matching would be of interest to a biologist.

Alphabet reduction

Insensitivity to inexact matching can be alleviated by 'alphabet reduction'.

Alphabet reduction represents the protein sequences using a more restricted

alphabet. The reduced sequences are the same length as the originals but some

characters are replaced by characters representing related amino acids. For

example, all occurrences of T could be replaced by S. Exact matching of the

alphabet reduced words corresponds to inexact matching of the actual sequences.

Alphabet reducing the example from page 18 using S for T, D for E, K for R and

F for Y, all of which are amino acid residue pairs with similarity, we get:

Seqi: FLSFDKNKQIC
Seq2: FLSDKNKFQIC

A pair of sequences which now have seven words of length two in common.

Evidently the alphabet reduction process can only be taken so far. With

too much alphabet reduction it becomes impossible to distinguish proteins which

are related to each other from those which are not. It has been shown that

alphabet reduction gives an improvement to sensitivity of comparison only when

reducing the pairs (D,E), (F,Y), (}çR), (I,V) and (IM) (Collins & Coulson,

1987).

Sawing a word

Even with alphabet reduction a single character pair mismatch can prevent

two otherwise similar words from being matched. Matching below a certain level

is then not detected at all. Two closely related sequences could have many words

which are nearly the same in common. Matching of alphabet reduced words

could fail to make use of much of the evidence for relatedness. This is

particularly problematic if longer words are used since longer words are less likely

to match exactly than shorter ones. This problem limits the ability of word

matching' to find weaker signals.

The problem of a few changes preventing otherwise similar words being

detected can be overcome. Words pairs can be scored by counting the number

of character similarities either with or without alphabet reduction. This makes

possible the detection of words with above average matching even when the

matching is imperfect.

Scoring amino acid similarity

Once the similarity of words is scored rather than simply being 'present' or

'absent' it is only natural to do the same with the individual amino acid

similarities. This approach leads to scoring that discriminates better between

signal and noise than counting similarities after alphabet reduction does.

Similarity between pairs of amino acids is scored by use of a table of

values. In the table S has its highest score against S, scores less highly against T

and scores negatively against most other amino acid residues. Exact matching is

rewarded more strongly than inexact matching in contrast to the case with

alphabet reduction. Using an amino acid scoring table in scoring words, scores

can better reflect the evidence for relatedness. Matching of rare amino acids, for

example, tends to give greater evidence for a genuine relationship than does the

matching of commonly occurring residues. This is reflected in high scores for

matching W against W and C against C, tryptophan and cysteine being two of the

rarest amino acids. Derivation of sensitive amino acid similarity scoring tables for

detecting evolutionary relationships is discussed in Chapter 4.

An amino acid scoring table that scores one for each exact match of amino

acids and zero for mismatches can be used to give a score that counts exact

matches. Tables consisting of ones and zeroes can also be constructed to count

matches after alphabet reduction. An algorithm that scores using an amino acid

scoring table can thus readily be used to score for exact matching or for matching

after alphabet reduction.

21

Locating high scoring word pairs

Forsaking exact matching of complete words and scoring word similarity

instead has a major disadvantage. The fast sorting methods that made the word

based methods so attractive can no longer be exploited. If words differ in their

first letter they are likely to be far apart after sorting yet if other letters agree

their similarity scores can be high.

The most straightforward algorithms to locate high scoring word pairs take

each word from one protein and compare these in turn with every word in the

other protein. Fortunately more rapid algorithms exist. These use the first

comparison of a word to limit the subsequent choice of words to compare against,

narrowing the search using a so called 'Post-office tree' (Knuth 1973b). The word

comparisons use some 'metric' for the similarity of words. Scores must measure

the difference between words rather than the similarity. Conversion to a metric

measure can easily be made in the case of scoring exact matches after alphabet

reduction. For scoring with alphabet reduction, counting mismatches rather than

matches after alphabet reduction gives a metric difference measure. Once similar

words are found the difference scores can be converted to similarity scores if

desired.

These fast word comparison algorithms which find word similarity rather

than word identity have apparently not been used in biological sequence

comparison. They are not used in this work either. There is a fundamental

problem that has not yet been mentioned with any method that is based on word

matching. Missing or extra residues within the words are not accommodated.

There are, however, well tried algorithms that deal with both inexact matching and

missing or extra residues in either sequence.

The methods which accommodate insertions and omissions are popular

amongst biologists as the comparisons they make are sensitive to the kind of

changes biologists expect to see in related proteins. A disadvantage of these

methods is that they are computationally expensive. Consequently they are used

for detailed comparison of sequence pairs which are already known to be related,

database searching being most usually performed using word based methods.

22

Comparison by alignment

The sensitive algorithms compare sequences 'by alignment'. An alignment

of two protein sequences presents the sequences in a manner which draws

attention to similarities between them. A pairwise alignment of proteins shows

two similar protein sequences one placed above the other. An alignment is shown

below:

** 	** ***
Seqi: FLTFERNR-QIC
Seq2: FLS-DKNRYQIC

Gaps, represented by '-', have been inserted in the upper and lower

sequences to improve the matching in each column. In addition a '' has been

placed above each identical residue pair.

Every alignment of two sequences has an associated score. Each pair of

aligned residues contributes to the score. Similar or identical residues in the same

column of the alignment contribute positively to the score. Aligned dissimilar

residues reduce the score. As before, the amino acid similarity scores come from

a table. Gaps in the alignment in either sequence represent insertions or

deletions relative to one or other of the sequences and are called 'indels'. Each

gap reduces the alignment score by an amount referred to as an 'indel penalty'.

The algorithms for scoring similarity find the highest scoring alignment of

the two sequences. High indel penalties encourage alignments with few gaps

whereas more lenient penalties are conducive to gaps.

Having described what optimal scoring alignments are, we now describe an

algorithm which finds them.

The local homology algorithm

The alignment algorithm described here is a particular variant that finds

'local regions of homology'. It is known as the Type III algorithm being one of

a family of related algorithms; the Needleman Wunsch Sellers (NWS) comparison

algorithms (Needleman & Wunsch 1970). The Type III variant is due to Smith

and Waterman (1981). Variants of the algorithms have uses in diverse

23

comparison applications such as speech recogniton, error correction of formal

languages, analysis of birdsong and RNA structure prediction (Kruskal, 1983).

Enumerating all possible alignments and calculating their scores is too

computationally expensive to be practical. Even for short sequences the number

of possible alignments is large. The number grows exponentially with sequence

length. Nevertheless the problem of determining which of these has highest score

can be solved in time proportional to the product of the sequences' lengths.

Dynamic programming techniques are used. In general dynamic programming

techniques work by a systematic decomposition of the problem into simpler ones

(Sedgewick, 1983). Larger sub-solutions are built up from smaller ones. For this

problem high scoring alignments are built on optimal initial portions.

Decomposition of the problem rests on the following observation: the initial

portion of any optimal alignment must itself be an optimal alignment of two

shorter sequences.

Characteristic to dynamic programming is the regularity of decomposition.

In this problem the sub-computations can be organised on a rectangular array

called the 'match matrix' (sometimes also 'path matrix'). There is then a

correspondence between an alignment of two subsequences and a path in the

matrix. The top edge and left edge of this matrix correspond to the two

sequences being compared. Diagonal steps in the matrix represent matches of

two amino acids. Horizontal steps correspond to placing a gap against a residue

in the first sequence. Vertical steps correspond to a gap against a residue in the

second sequence. Figure 2.1 show a path made up from such steps. Horizontal

and vertical steps incur an indel penalty whereas diagonal steps score for the

residue pair similarity, which in general may be positive or negative.

24

F L T F E R N R Q IC

FLTFERNR-QIC
FLS-DKNRYQIC

Figure 2.1: Correspondence between a path in the match matrix and an
alignment. '+' signs indicate positively scoring steps. Each cell ends up
holding the score for the best path ending in that cell. These scores are not
shown.

When calculation of the entries in the match matrix is complete, each cell

holds the score for the best path that ends at that cell. The score is also the score

for the best initial portion of an alignment that ends at a certain position in each

of the two sequences. The score in each cell depends on the scores in three

neighbouring cells, the cell above, the cell to the left and the cell diagonally up

and to the left. The best path ending at a cell is either an extension of a best

path ending in one of the three neighbouring cells or is a new path which starts

and ends at this cell. If a new path is started the score is reset to zero. The score

of an extended path is the score of the cell it starts from adjusted by the indel

penalty, for horizontal and vertical steps, or by the score for aligning two residues

if the extension is a diagonal step. The score placed in a cell is the highest of the

scores of the four possible paths ending in it, see figure 2.2. Cells along the top

edge and first column treat non-existing neighbour cells as if they contain zero

scores.

The maximum score in the entire matrix gives the score for the optimal

sequence alignment of the two sequences being compared. The path ending at

the cell with the maximum score corresponds to the optimal alignment.

25

90 	

110

—10
71)93

Figure 22: The score for a cell is the score of the best extension of the
paths ending in three neighbouring cells or zero if all three of these have
negative score.

Each cell computation requires a small fixed number of arithmetic

operations. Since the number of cells is the product of the sequence lengths,

computing all cell values has time complexity 0(112) where it is the length of each

sequence (assumed equal). This '0' notation gives an asymptotic measure of

performance (Knuth, 1981). Time complexity)Q(,2) means that the execution

time for the algorithm divided by 12 approaches a constant value for large n. For

sufficiently large n an algorithm with 0(n) time complexity will be faster than an
0(112) algorithm. In contrast to the alignment algorithm described here, the rapid

exact matching methods have time complexity 0(z Log it), provided suitable

assumptions are made about the word size used. A sufficient condition is that the

word size be proportional to Log it. For fixed word size, location of exactly

matching words is 0(172) too.

The speed of an algorithm can also be reported as the number of pairwise

sequence comparison performed in a fixed time. To make this independent of the

sequence length, multiplication by the product of the lengths gives the number of

path matrix elements (PMEs) computed in unit time.

Reconstruction of alignment

The procedure described finds the maximum score of an alignment. An

algorithm is also needed to trace the correct path through the match matrix and

reconstruct the alignment. Reconstruction of the alignment is a more rapid

process than computation of the comparison score. It is an 0(n) process provided

the scores in the match matrix have already been computed and stored and the

highest score located.

To perform the reconstruction the highest scoring cell is designated the

26

current cell. Starting at this cell individual steps to the left, up, or diagonally up

and to the left are taken. At each cell there is a choice between three possible

steps; that is steps against the direction of the arrows in figure 2.2. One of these

steps must lead to a cell with a score high enough to produce the score at the

current cell. This cell becomes the new current cell. Each of the steps taken is

on the maximum scoring path. The process of taking steps in reverse is repeated,

changing the score with each step, until the score reaches zero. All steps in the

alignment have then been reconstructed. Although the steps are generated in

reverse order this is easily corrected before an alignment is presented.

Sometimes equally good alternatives for some parts of the path exist. In

these cases, which of the possibilities is chosen is dependent on details of how the

algorithm is programmed.

Pointers in reconstruction

Usually a variant of the path reconstruction algorithm is described which

uses stored information about which path enters each cell. This information is

recorded at the time the score for a cell is calculated and takes the form of a

pointer to the cell whose path was extended. Path reconstruction then simply

follows these pointers. Keeping pointers as well as scores increases the time and

storage requirements of the computationally most expensive part of the alignment

procedure, the 0(112) part. Pointers are not required when using the method for

reconstruction described in the previous section which uses only the scores.

Types of alignment

There are three main variants of the alignment algorithm. These are

designated by different numbers (Lyall et al., 1986).

Type I 	Best complete sequence alignment.
Type II 	Best location of one sequence within another.
Type III 	Best local homology.

The Type III version finds the best local similarity between two sequences.

It finds a similar region contained in both sequences.

27

If negative scores are not reset to zero and new paths started, then the

algorithm finds the best alignment of complete sequences. This is the Type I

variant. It produces an end to end alignment including all residues of both

sequences.

An intermediate variant, the Type II, finds the best location of one

sequence within another. This might be suitable for looking for complete motifs

within a protein. Motifs are short patterns that have a well characterised function,

one such being the AT? binding motif. The Type II variant resets scores to zero

only for the top edge of the matrix and finds the best path ending in one of the

cells at the bottom edge of the matrix. This corresponds to alignment of the

entire motif with an absence of penalties for unaligned residues before and after

the motif.

Each of the three methods has its uses. The Type III is most appropriate

for database searches where the extent of any region of similarity is not known in

advance and cannot be presumed to include the whole of any sequence. Type II

and Type I effectively force the entirety of one or both sequences, respectively,

to be included. Type III is capable of aligning whole sequences if the similarity

extends along the whole length of the sequences.

A major disadvantage of these three algorithms is their computational

demands. Their major advantage is their ability to detect similarities of a kind

that are of interest to biologists that exact matching word based methods

described earlier cannot find. This sensitivity arises because comparisons by

alignment can find matching words that are interrupted by insertions and

deletions. Also, with alignment based algorithms, the individual residue matches

are scored using values from discriminating amino acid similarity scoring tables.

Chapter 3: Measuring Similarity

The sensitivity with which comparison between sequences can be made is

dependent on the similarity scoring scheme used for scoring amino acid pairs. In

this chapter we look at how to measure amino acid similarity in a manner that is

suitable for detecting evolutionary relationships. We are therefore interested in

the extent to which pairs of proteins have diverged from a common ancestor.

Divergence measures

One of the simplest assessments of how far a pair of related proteins have

diverged uses an alignment of the sequences. The percentage of aligned residues

which differ gives a convenient divergence measure. Identical sequences will be

0% divergent by this measure. For two unrelated sequences there will be a

certain level of chance matching. When comparing unrelated protein sequences

with the amino acid composition given in figure 1.2 there is 7% amino acid

matching just by chance and thus 93% divergence by the measure.

A measure of divergence which is closer in spirit to measuring an

evolutionary distance is due to Dayhoff et al. (1978). They developed a unit of

measure called 'The PAM'. This gives the number of accepted mutational events

per hundred residues. The emphasis on 'accepted' is to distinguish changes in

proteins which lead to viable organisms, i.e. changes which evolution accepts, from

those which do not and which are not normally observed. Accepted changes are

changes that are in the proteins of organisms which survive. In principle the

underlying mutational changes could be very different from these. In practice we

are only interested in the mutations in observed proteins and treat mutations

accepted by evolution as the only sort which occur.

29

The Dayhoff model

The measure PAMs is integral to a model that predicts amino acid

substitution frequencies between residue types. For each evolutionary distance

measured in PAMs the model gives a table of frequencies for substitution between

each pair of residue types, including entries for the frequencies of residue types

remaining unchanged. Each table therefore implies a certain level of amino acid

identity in two proteins related at that evolutionary distance. There is thus a

correspondence between PAMs and percentage amino acid difference. The graph

in figure 3.1 shows this correspondence over a range of values. The number of

PAIvIs is invariably higher than the percentage difference. This arises because

multiple mutations at the same site may reverse previous changes. In fact 100

PAMs, that is 100 changes per 100 residues, corresponds to an observed amino

acid difference of 57%. At 100 PAJvIs we still expect to see substantial evidence

for evolutionary relationship. As PAMs increase the percentage amino acid

difference asymptotically approaches 93% corresponding to protein sequences that

show matching only by chance.

For small evolutionary distances the frequency of multiple mutations at the

same site is low. Here divergences measured in PAMs and in percentage

differences agree quite closely. 15 PAMs for example corresponds to 13.6%

amino acid difference.

4)

Ioo

C) 60
C
C

40

20
C
4)

4)

0 	so 	too 	ISO 	200 	2_co 	300

Evolutionary distance in PAMs.

Figure 3.1: Correspondence between PAMs and percentage amino acid
difference. After Dayhoff et al. (1978).

30

Use of the amino acid substitution frequencies.

The main use of the amino acid substitution frequencies is to derive tables

for scoring amino acid replacements for various evolutionary distances. Such

tables have a score for each possible pair of amino acids. These scores are used

to measure evidence for sequence relatedness. The scores combine information

from two frequency tables. One table gives the expected frequencies of

replacements of each residue type by each residue type, at a particular

evolutionary distance in PAMs. This table gives substitution frequencies for signal

matches at the chosen evolutionary distance. The other table is the limiting case

for infinite PAMs. It gives the frequencies of residue types being paired in

random alignments of unrelated proteins. This table gives expected substitution

frequencies in noise matches. These two frequency tables are combined to make

score tables which measure how much more likely two aligned residues are to be

from related rather than unrelated sequences. The scoring tables are used to

assess the quality of an alignment of two proteins and are important in automatic

methods for alignment. The scoring tables are referred to as 'PAM tables'.

Assumptions of the model.

The Dayhoff model is based on observed frequencies of changes in aligned

pairs of closely related proteins. These frequencies of change are extrapolated

to predict substitution frequencies in more distantly related proteins. The model

makes a number of simplifications to make the extrapolation. In the model the

probability of change to a particular new amino acid at a particular site depends

only on the amino acid currently there. These probabilities are 'transition

probabilities'. Implicit in this simplification are three assumptions that are of

questionable biological accuracy. These are not clearly stated in the original

paper and so are set out here.

• Independence of sites.
• Equivalence of sites.
• Temporal independence.

31

The first states that changes at any one site are not influenced by nor

correlated with changes at another. The second is that all sites with the same

amino acid behave in the same fashion. The third is that the transition

probabilities do not change with time. The process of change is assumed to be

uniform. For example, the model does not consider sudden changes of a

different kind to the gradual changes observed in closely related proteins.

Equivalence of sites is known to be inaccurate. A paper by Perutz and

Lehmann (1968) describes many examples of changes between residues in

naturally occurring mutant haemoglobins. Of these, two examples concern

changes between leucine and arginine. At residue 14, interchanges between these

residues do not lead to any clinical symptoms. At residue 92, leucine is normal

and arginine leads to polycythaemia. Evidence that different sites with the same

residue have different mutational properties is also provided by multiple sequence

alignments of functionally equivalent proteins (Chapter 6). The range of variation

at different sites varies enormously. Some sites require specific residues whereas

others can tolerate variation.

Independence of sites is also open to question. The frequencies of

occurrence of residues are known to be influenced by the neighbouring residues

(Claverie & Bougueleret, 1986).

In scoring amino acid similarity, sites are treated as independent and

equivalent. These two simplifications are implicit in any scoring scheme that

scores pairs of amino acid types. Thus one uses some kind of average behaviour

in producing the score. This does not mean that taking average behaviour is a

necessary or desirable part of the extrapolation process. Extrapolating averaged

changes will not in general give the same answer as extrapolating changes and

then averaging. In theory at least, a model that allowed for differing evolutionary

constraints at sites containing the same amino acid could yield superior scoring

tables. This is clearly shown by considering a protein that has half of its sites

absolutely fixed. An extrapolated model based on average behaviour of sites

would show that nearly all sites change at sufficiently large evolutionary distance.

Extrapolating and then averaging would show that on average just over half the

sites stayed fixed.

32

The range of different constraints on sites is unknown. There is probably

insufficient sequence data to characterise the constraints to a level where

extrapolating changes at different kinds of site with the same residue would be

feasible. A possible exception to this is at sites containing cysteine. For cysteines

additional information about disulphide bonding is sometimes available. This

could be used to distinguish two cases, cysteines involved in disulphide bonding

and those not. A case could be made for extrapolating these two cases as if the

cysteines were two different residue types, cystine (participating in a disulphide

bond) and cysteine (not involved in a disulphide bond).

The Dayhoff model has also been criticised from other viewpoints. Wilbur

(1983) perhaps misunderstood the notion of accepted mutation. Dayhoff's model

is based only on changes at the amino acid level which are accepted by the

evolutionary process. Underlying mutational changes in DNA are only indirectly

reflected. Wilbur's criticism of the model is that it is inconsistent with an

alternative model based on underlying independent changes at the DNA level, all

of which are accepted.

In spite of the model's shortcomings, real and imagined, the tables it

produces are the basis for the most sensitive methods for comparing pairs of

protein sequences. Dayhoff was able to show that other tables based on identities

only and the genetic code had significantly poorer discrimination between related

and unrelated proteins (Schwartz & Dayhoff, 1978). Ultimately the discriminating

ability of the scoring schemes the model leads to is the justification for using the

Dayhoff model.

A modified presentation of the Dayhoff derivation is now given. This

clarifies the link to the mathematics of Markov processes (see e.g. Revuz, 1975)

and makes explicit the two parts of the model, one part to model signal, the other

noise. This also gives an opportunity to clarify some questions raised by the

original exposition and to introduce notation which is needed in the discussion of

discriminatory power.

Dayhoff's original paper is frequently found somewhat opaque. A

diagrammatic overview of the stages of the derivation may help.

33

C 12
S 02
T -2 1 3
P -3 1 0 6
A -2 1 1 1 2
G -3 1 0-1 1 5
N -4 1 0-1 0 0 2
0 -5 0 0-1 0 1 2 4
E -5 0 0-1 0 0 1 3 4
Q -5 -1 -1 0 0 -1 1 2 2 4
H -3-1-1 0-1-22 1 1 36
R -4 0-1 0-2-3 0-1 -1 1 2 6
K -5 0 0-1-1-2 1001035
N -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 2 0 0 6
1 -2-1 0-2-1 -3-2-2-2-2-2-2-2 2 5
L -6 -3 -2 -3 -2 -4 -3 -4 -3 2 -2 -3 -3 4 2 6
V -2-1 0-1 0-1 -2-2-2-2-2-2-2 2 4 2 4
F -4-3-3-5-4-5-4-6-5-5-2-4-5 0 1 2-1 9
Y 	0-3-3-5-3-5-2-4-4-4 0-4-4-2-1-1 -2 710
W -8 -2 5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17
B -4 1 0-1 0 1 2 4 4 2 2 0 1-2-2-3-2-4-2-4 4
X 0000000000000000000000
Z -5 0 0 0 0 0 1 3 4 4 3 1 1-1-2-2-2-5-4-5 4 0 4

CSTPAGNDEQHRKII I LVFYWBXZ

Figure 3. lb. Dayhoff Matrix for 250 PAMs. In this figure only half the
matrix is shown as the matrix is symmetrical about the diagonal.

The letters B X and Z represent ambiguous amino acid residues. B
represents asparagine or aspartic acid (N or D), Z represents glutamine or
glutamic acid (Q or E) and X represents any amino acid.

334

Substitution 	t\ 	Substitution: t\ Transition
frequencies 	(1) frequencies 	:2) frequencies
at 1-15 PAMs 	V 	at 1 PAM V 	at 1PAM

AM

Substitution 	 Transition
frequencies 	4 	frequencies
atNPAMs 	 atNPAMs

A' 	 MN

Figure 3.1: Overview of the derivation of substitution frequencies at N
PAMs in the Dayhoff model. Tables to the left of the dotted line are
.symmetric.

1 PAM substitution frequencies (Step 1)

An essential table that determines all others in the Dayhoff model is the

residue substitution frequency table for sequences 1 PAM apart. This table, A,

which is symmetric is derived from pairs of aligned sequences.

A = Frequency with which residue i substitutes for j

In matrix notation the symmetry of A is expressed by:

A=AT

When a sequence is aligned with another sequence which is 1 PAM

divergent from it, we expect the substitution frequencies to be similar to those in

A. Ideally the table A would be derived from observed frequencies of substitution

in pairs of proteins that were at an evolutionary distance of 1 PAM. In practice

the data is collected for proteins that are less closely related and a scale factor is

used to reduce the level of substitutions to 1 per 100 residues and increase the

fraction of unchanged residues.

34

A questionable practice used in collecting the initial data set was the use

of inferred ancestral sequences derived form phylogenic trees to try to reduce the

evolutionary distance between the pairs of sequences considered.

To derive a substitution frequency table from A for greater evolutionary

distances we require a matrix giving probabilities of transitions from each amino

acid to each other amino acid at 1 PAM. Dayhoff called this matrix the 'mutation

probability matrix'. Here we use the term 'transition probability matrix' to

emphasise the connection to the theory of Markov processes.

Transition probabilities (Step 2)

The columns of the 1 PAM transition probability matrix indicate how a

protein consisting entirely of one amino acid type will change in a fixed

evolutionary interval. The matrix is used to predict how a protein of arbitrary

composition will change. The composition is represented as a vector. Pre-

multiplying this vector by the transition probability matrix yields a new vector

giving the new composition after an interval of 1 PAM.

One important composition vector gives frequencies of the amino acids in

the sequences that produced the matrix A. This is taken as the average

composition for proteins. The components 1 of the vector are given by:

t; =EA

Using J to stand for the vector of all l's this summation can be expressed

in matrix notation by:

f =A.J

Figure 1.2 in Chapter 1 lists values of the 17s.

f, the average composition vector, is used in computing the transition

probability matrix, M, for 1 PAM. M is obtained by dividing each column of A

by the appropriate f. The twenty entries in each column of M give frequencies

for the twenty possible transitions per unit occurrence of the amino acid

represented by the column.

35

We can express this normalisation in matrix notation. We use diag(1/1) to

denote the matrix with diagonal entries iit and zeroes elsewhere. Then:

M = A.diag(1/t)

One property of the matrix M was stated by Dayhoff without proof. When

it acts on the composition vector f, the vector is left unchanged. This is proved

below:

M.f = A.diag(1/f).f = A.J = f

The preceding equation is exactly equivalent to the statement that f is an

'Eigen vector' for the matrix M with 'Eigen value' one. Markov theory shows that

f is then the asymptotic composition; that is, acting repeatedly on any composition

vector with M will produce a series of vectors converging to f.

Extrapolation to larger PAMs (Step 3)

In the model changes for large PAM distances are the result of successive

changes occurring with frequencies represented in M. This is where the

assumption of 'temporal independence' is used. Because of the associativity of

matrix multiplication, M acting N times on a vector is the same as acting with MN

on that vector. The matrix of transition probabilities at N PAMs is then MN. In

the language of Markov processes this is the N stage transition probability matrix.

From this matrix we wish to obtain a matrix giving substitution frequencies.

Substitution frequencies at N PAMs (Step 4)

In converting from a substitution frequency table to a transition probability

matrix (step 2) the amino acid frequencies f were used. The f's are unchanged

with transitions occurring at the frequencies in M and therefore also unchanged

for changes occurring with the frequencies in MN. Tables for substitutions for any

PAM distance should have the same c's. Substitution frequencies are thus related

to transition probabilities at the same PAM values by the c'• Multiplying the

36

columns of MN by the f's gives the N PAM expected substitution frequency table

A'.

A' = MN.diag(fJ)

This gives the first frequency table from the model, the table for signal

matching.

Random matching

Random matching frequencies are computed from the f's. The frequency

of seeing residue i against residue j by chance is simply the product of frequencies

f1 and f. This gives expected substitution frequencies if the two sequences were

unrelated and of average composition, i.e. the frequency table for noise.

This then completes the derivation of the two frequency tables used in the

Dayhoff model.

Score tables

The table A' giving the expected substitution frequencies at N PAMs can

be used to see how closely a pair of aligned proteins fit the Dayhoff model.

Marked deviation from the substitution frequencies predicted by the Dayhoff

model would tend to undermine confidence in the alignment. In principle this

could be used as the basis for an automatic method for producing good

alignments. However, computational techniques for alignment require residue-

pair scores.

To produce residue pair scores, both frequency tables are used. The scores

measure evidence for relatedness under the model relative to the null hypothesis

of random matching. The evidence for evolutionary relationship at N PAMs

from an aligned pair of residues is the ratio of the frequency under the Dayhoff

mutation model for related sequence matching, to the frequency assuming random

matching. Where this ratio is greater than one it is a positive indication of

relatedness. Where less than one, it is counterindicative.

37

For an alignment, these 'odds ratios' for each pair of residues can be

multiplied together to give an aggregate value. To facilitate calculation the

logarithm of each ratio is taken. Addition can then be used in place of

multiplication. This log odds table for a particular evolutionary distance measured

in PAMs is the scoring table suggested by Dayhoff. Positive values of the scores

are indicative of relatedness, negative values counterindicative. It is usual to scale

these. scores up by a factor of 10.

X = 10 x log(A' 1 /ff)

Integer values are found to be acceptable for calculations, which is

important for rapid calculation. An important property of these scoring tables is

their negative expectation for scoring amino acid replacements in unrelated

protein sequence pairs. That is:

E fifixij < 0

We demonstrate this using the relationship Log K :5 K - 1.

E ftX = E ft Log (A'/f1ç) < E ff (A'1 /f1ç - 1) = E 	- ff 	1 - 1 = 0

For Type III alignment this property is an essential condition since the condition

for ending a path in the match matrix is that the score drop below zero.

Justification for method for deriving 1 PAM table

One criticism of the method used by Dayhoff for deriving the frequencies

at 1 PAM concerns the observation set. To collect sufficiently many values

frequencies for 1 PAM were derived from observations at higher PAM5, up to 15

PAMs in some cases. Under the model's assumptions this data contains multiple

mutations at the same sites. No adjustment was made for this. Instead a

proportionality constant was introduced to decrease the number of changes to 1

change per hundred amino acids. This is equivalent to assuming that there were

no multiple mutations. One justification for this approximation is that multiple

mutations at 15 PAMs are relatively infrequent. The graph relating PAMs and

percentage difference indicates that about 10% of changed residues will have

experienced multiple changes at 15 PAMs. Errors from this procedure are in fact

substantially lower than 10%. This can be shown by application of the binomial

theorem for matrices.

To apply the binomial theorem we re-express the matrix for transition

probabilities. A, and hence also M, has most of its weight on the leading

diagonal. M can be expressed as:

M=I+e

Where I is the identity matrix and € is small. This reflects the fact that at

1 PAM most residues stay unchanged. Entries in the matrix e are of the order

0.01 since the table A corresponds to 1 change per hundred residues. Applying

the binomial expansion we have:

MN=(I+ E)N=I+Ne+...

Dayhoff's use of a proportionality constant to reduce 15 PAMs to 1 PAM

amounts to deriving I+e from (I+E)N using the first two terms of this

approximation. The omitted terms and hence errors in M in using this

approximation are thus of the order e 2 .

Explanation for symmetry of A'

Dayhoff gives no explanation for why the table A' should be symmetric.

A straightforward calculation of the higher PAM tables produces tables which are

asymmetric. This is a result of rounding errors in calculation. When raising

matrices to high powers small errors in calculation are magnified. Precise

calculation should give symmetric tables. To prove the assertion that A' should

be symmetric we use the symmetry of A and some algebra:

39

M.diag(1) = A = AT = (M.diag(ç)) T = diag(1).MT

So

A' = MN.diag(t)
= M.diag(f.).MT
= M 2.diag(f).(M2)T
= 	diag(f).(MN)T
= (MN.diag(f))T
= (A')T

Calculation of A'

A program 'Dayhoff'was written to compute the Dayhoff frequencies and

scoring tables. Calculations were performed to 12 significant figures accuracy. To

ensure symmetry of A' the computation of powers of M was arranged to reduce

the number of matrix multiplications involved. Even so asymmetrical tables

resulted. An ad hoc way used by other programs to fix this is to average the

resulting matrix with its transpose. A better way is available. Provided N is even

we can use the following identity in the calculation of A':

A'= M.diag(f).(M)T

This guarantees symmetry. The right hand side of this identity is one of

the intermediate steps in the proof of the symmetry of A'. The program was

modified to use this form. Of four-hundred values in the Dayhoff scoring tables

the corrections to PAM tables at 100 or 250 PAMs, the normal distances used in

practice, were slight. Eight entries were changed. These changes affect the scores

of protein matches by less than one percent.

Discrimination of similarity scoring tables

Ultimately the justification for the Dayhoff model is empirical. It is a

sensitive scoring method. More precisely the Dayhoff scoring scheme has good

discrimination between sequences that are related to a query sequence and those

sequences which show similarity as a result of chance matching. The sensitivity

was shown by Dayhoff by taking scores for comparison of related sequences and

comparing these to comparison scores for large numbers of random sequences.

In that analysis both alignment scores, and scores for fixed length words were

considered. For both methods the Dayhoff table generally separated the signal

from the noise distribution by a larger number of standard deviations than did

other tables based on exact matching or the genetic code (Schwartz & Dayhoff,

1978). Feng et al. (1985) essentially confirmed these results though they noted

that .for detecting very closely related sequences the identity matrix, that is scoring

for exact matches, gave better discrimination.

Analytic measure of discrimination

Discrimination can also be investigated by following an analytic approach.

To demonstrate the method we apply this analysis first to scoring that counts only

exact matches. In this discussion on analytic measures of discrimination, we look

at the expected score and variance of the score of a word of fixed length K. In

this we provide an analytic analogue of one of Dayhoffs method for measuring

the discrimination of different tables by simulation.

Two words of length K from unrelated protein sequences will have

expected identical matching of 0.07 K. The distribution of matching scores for

such words is binomial and for large K is approximately normal with variance

0.07 (1 - 0.07) K = 0.065 K. In general any scoring scheme that sums K

component scores of identical independent distribution will be, by the central limit

theorem, approximately normal. Since we know the distribution we can compute

the expected significance in standard deviations of a signal level match in terms

of its deviation from the distribution of noise level scores. For word pairs with a

fraction P of matching residues the significance S of the match in standard

deviations is given by:

S = (PK - 0.07K)/(0.065K)l2 = (4P - 0.28)K 1

This agrees with the significance estimate arrived at by Brennan et al.

(1986) by computer comparison of random sequences. The analytic derivation is

much more direct.

41

For DNA sequences of average composition the corresponding mean matching

frequency is 0.25 x 3K = 0.75K and the variance 0.25 x (1-0.25) x 3K = (0.75) 2K.

The factor 3 arises because 3 bases code for one amino acid and K still measures

sequence length in residues. The equation for DNA sequence comparisons analogous

to the one just given for proteins is then:

T = (3QK - 0.75K)I0.75K"2 = (4Q - 1)K"2

Here Q is the observed proportion of matching bases. T measures how far Q,

this observed proportion of matching, is from the mean and is in standard deviations.

For unrelated unbiased DNA sequences we have Q=1/4 and T=0 S.D. If

instead the two DNA sequences are identical we have Q=1 and T is then 3.0 K 1 '2

S.D. Comparing the protein translation of identical sequences we have P=1 and

S =3.7 K'2 S.D.

Proteins with 100% identity (S =3.7) can arise from DNA sequences with 66%

identity (T= 1.64) since, for many codons, changing the third base does not change

the amino acid encoded. These numbers give a numerical indication of the

improvement in discrimination between signal and noise that is possible if DNA

which codes for protein is translated before comparisons, even where scoring is based

on identities only.

More discriminating PAM tables

To extend the analysis of discrimination to arbitrary amino acid scoring tables

we make use of the Dayhoff frequencies of substitutions. Let W be the score for a

match of residue type i against type j. The random matching score X for pairs of

amino acids has mean value:

E(X) = EffW1

and Variance:

Var(X) = E1E ff(W) 2 - (EE f;W)2

42

And the expected significance for related sequence is then:

1=20 j=20 	 .1=20 j=20

E E wr E i fifjwij
1=1 j=1 	 1=1 j=1

I i20 j=20 	 (.1=20 j=20 	 2

E E f1f(W 1) 2 _J 	j jwij
1=1 j=1 	 'i=1 j=i.

Substitution of W j for exact matching shows that the exact matching matrix

gives greater significance scores than the corresponding Dayhoff matrix below 100

PAJvIs (figure 3.2). This provides an analytic corroboration of Feng et al.'s

empirical observation on separating very strongly related sequences from noise

similarities.

An advantage in having an expression in terms of the W ii for the

discrimination now becomes apparent. We can use mathematical techniques to

choose new Wii which give the optimal expected Z score. That is, on the

assumption that the frequencies A' 1 and f are correct, we can choose a scoring

scheme W. with maximal discrimination.

Maximization of Z with respect to the W is conveniently achieved using

the method of Lagrangian multipliers (Arfken, 1985). We observe first that the

Wii can be multiplied by a constant without affecting Z. This allows us to

introduce the constraint on the W 1 that:

Var(X) = 1

The maximum is unaffected. We now maximize Z by maximizing the

numerator in the equation for Z subject to the constraint. Letting Lambda be the

undetermined Lagrangian multiplier we require:

.1=20 j=20

87

ii 1=1 j=1

i=20 j=20 	 1=20 j=20

A 8w 	
f 1 f(W 1) 2 - 	fifj W.iiJ

ii 1=1 j=1 	 1=1 j=i.

43

So:

1=20 j=20
(A 1 -f 1f)= 2Af1f Wl)_> E fi wij

.1=]. j=1

We observe that Z is also unaffected by addition of any constant to all W 1 so we

are free to set:

i=20 1=20

E E f2fw1=o
1=1 1=1

Whence:

A lj-f i fj l (A 1
2Af1 f - 2A f 1f

Although we can readily determine ?. by substitution in the constraint

equation, we do not need to. Z is unaffected by addition of a constant to all Wij
or multiplication of all W1 by a constant. We get the same maximal Z, i.e. the

maximal discrimination with:

Aij wi = _____

i
1Itj

Thus the odds ratio of Dayhoff gives the optimal discriminating scoring according

to the two parts of her model. Taking the log of the odds as the scoring matrix,

as Dayhoff does, decreases the discriminatory power of the scoring scheme. A

graph comparing the discriminatory power of odds ratios, the log odds and the

identity scoring is given in figure 3.2. Additionally the graph shows a fourth curve

that is a compromise on the optimal scoring table. The reason for making this

compromise is given in the next section.

4

ti) 3

=
E
2
ej
Cl)

W

+ Dayhoff scoring tables.

X Table scoring identities only.

• Maximum discrimination tables.

• As above, with limit on maximum
value in tables.

o 	 ISo 	200 	2S0 	3Cc
Evolutionary distance in PAMs.

Figure 3.2: Graph, showing discriminatory power against evolutionary
distance in PAMs.

Disadvantage of the odds table

Use of the odds ratios rather than log odds has a disadvantage. The tables

give extreme weight to pairings of ammo acids that are unlikely by chance. The

new score matrices are thus more prone than Dayhoff's to cause problems where

composition deviates from the average assumed in the model. To overcome this

a cutoff can be incorporated that limits the maximum value in the scoring table.

This reduces the potential for high matching scores to arise from only a few

residues in the match.

Limiting high values in the score table through use of a cutoff reduces the

expected significance for signal matching when measured against the distribution

for noise matching. However the expected significance scores are still higher than

for log odds tables.

Validation

To validate the new tables, a method of testing that reflects the intended

use was developed. The test involved comparison of the human beta

45

haemoglobin protein sequence to sequences in a database of 6000 proteins (PIR

23, verified section), which contained 330 globin sequences. Comparison used the

Type III algorithm. Since the Type III algorithm requires integer scores with

negative expectation, the odds tables were scaled up by a a factor of 4 and a

constant offset of 5.5 was subtracted. This gives an expected score of -1.5 per

residue for comparison of unrelated sequences.

The table in figure 3.3 shows the number of globins which scored greater

than the first non-globin. This gives a measure of the scoring scheme's ability to

recover sequences related to a query from a protein sequence database.

100 PAMs 150 PAMs 200 PAMs 250 PAMs 300 PAMs

Odds 296 299 298 291 289

Lodds 292 298 298 298 297

Figure 3.3 Table showing number of globin sequences recovered before
first non-globin sequence. A: With odds scoring tables. B: With the usual log
odds tables. Target; recovery of 330 globin sequences before first non-globin
sequence.

In practice the new tables have performance that is only marginally

different to the original Dayhoff tables. According to the Dayhoff model there

should have been an improvement from using the modified tables. This suggests

that the Dayhoff model does not fully capture the structure of signal and noise in

the database and that deviations from the Dayhoff model for substitution

frequencies are a more serious source of loss of discrimination than the choice of

method for combining frequencies to produce scores.

There is little reason to use the new tables. They are no better in practice

than the Dayhoff tables which have been used successfully for many years. They

introduce an extra arbitrary parameter and, whereas the sum of individual

Dayhoff scores has a ready interpretation as a logarithm of odds, the sum of

scores from the modified tables do not.

46

Other amino acid similarity scoring tables

Many indices have been devised for comparing amino acids (Nakai et al.,

1988). These are based on measured chemical and physical properties. Scoring

schemes for scoring amino acid similarity based on differences of the indeces do

not take account of the mutational process. Such scoring schemes are rarely used

for protein database searching. Taking account of mutational change improves

detection of similarities arising from divergent evolution from a common ancestor.

Similarities between protein sequences suggestive of similar structure and hence

function will almost certainly be of this kind. One argument for using scoring

tables based on chemical and physical properties instead of the Dayhoff tables is

that potentially we might detect other functionally important sequence similarities

that have arisen by 'convergent evolution'.

With convergent evolution, the same enzymatic function is achieved by

evolution from very different ancestral sequences. Two proteins that have

achieved similar functions by convergent evolution may have similarities in the

three dimensional positioning of their interacting residues at the active sites with

this positioning of residues being achieved by radically different folding of the

proteins. Residues equivalent in the folded structures would then have markedly

different order and spacing in the linear protein sequences. The two classes of

serine protease, representatives being subtilisn and chymotrypsin provide an

example of this (Kraut, 1977). Both classes of protease have essentially the same

mechanism of action. Residues that are functionally equivalent can be identified.

In the linear sequences, these equivalent residues are not flanked by local regions

of sequence similarity. The kind of structural similarity the two classes of protease

show cannot be detected from the sequence data.

If convergent evolution cannot be detected by sequence comparison alone,

then it is correct to use a scoring scheme, such as Dayhoff's, based on divergent

evolution to score sequence similarity. Using such a scoring scheme can give a

sensitive method for finding weakly related sequences against a background of

noise.

47

Chapter 4: Rapid and Sensitive
Database Searching

The sensitivity of the Type III NWS sequence comparison algorithm makes

it the method of choice for comparing pairs of proteins. The documentation for

the GCG sequence comparison software suite states:

"Bestfit [the local homology algorithm] is the most powerful algorithm
we know for identifying the best region of similarity between two sequences
whose relationship is unknown." (Devereux et al., 1989a)

Comparison of two proteins using the Type III algorithm produces an

alignment and a similarity score. The algorithm can be used for searching a

protein database to find if any sequences in the database are similar to a 'query'

sequence. Comparison of the query to each protein in the database produces a

list of alignments and similarity scores. This list is sorted by score and the high

scoring similarities printed out in order of rank, highest scoring first. As well as

printing the high scoring sequences' names and their scores for comparison to the

query, alignments of the regions which show similarity can be printed. The

alignments contain qualitative information whereas the scores are purely

quantitative.

Examination of the alignment may show a similarity is less convincing than

the score suggests. The similarity may be due to a section of unusual amino acid

composition in both query and database rather than to a conserved pattern. Such

a similarity may provide less evidence for functional relationship than more

heterologous matches of equal score do. This particular artifact of the scoring

scheme is a case of the assumption of 'independence of sites' implicit in any

amino acid scoring scheme, breaking down.

Because the similarity measure is imperfect, it is usual to present not just

results which are clearly signal but also some of the highest scoring results which

are likely to be noise. Amongst these, the biologist may spot an alignment with

E;]

a protein which for biological reasons is more significant than the score alone

suggests. A biologist may have greater interest in a similarity low down the list

than one high up. For example, if the query protein is differentially expressed in

males and females then the biologist may attach greater importance to matches

of the query to sex specific sequences from the database.

Sensitivity and selectivity

Two words, 'sensitivity' and 'selectivity' are used in some papers on

sequence comparison in describing the quality of the searching performed by an

algorithm. 'Sensitivity' is used to mean the ability to detect weak signals.

'Selectivity' is used for the ability to reject noise matches. In producing a list of

similarities sorted by score, selectivity can be improved at the expense of

sensitivity simply by printing fewer of the results of the search. 'Sensitivity' and

'selectivity' are thus different aspects of one quality, the ability of a sequence

similarity scoring scheme to distinguish between signal matches and noise level

matching.

Computational cost

In comparing a protein sequence against all sequences in a database many

thousands of pairwise comparisons are performed. There is a widespread belief

that the sensitive NWS pairwise method of comparison is too computationally

expensive to be used in this way on serial computers.

"The Needleman-Wunsch method is too slow for complete database
searches to find sequences that are homologous to an input sequence."

"Use of the Needleman-Wunsch method to compare two sequences
(of length 350 residues) took several minutes of machine time and more
time is required for longer sequences." (Mount, 1988)

Consequently alternative solutions are sought. Various methods which are

acknowledged to be less sensitive are used instead (Pearson, 1990). This

approach is less than ideal. Ultimately the sensitivity of a method is more

important. One must consider the investment in time in experimental work to

49

determine the sequences. Lyall states:

"The real solution to this problem is to use a computer that is
powerful enough to run the exhaustive algorithm as a matter of routine. As
well as answering a real need, the use of such a machine may well catalyse
the development of new methods for the understanding of biological
sequences." (LyalI, 1988)

Lyall's work shows just how successful such an approach can be. He used

an ICL Distributed Array Processor (DAP) parallel computer which had 1024

simple processors. DAP computers are now manufactured and distributed by

Active Memory Technology Limited (AMT, Reading U.K.). Lyall developed a

fast parallel implementation, "Prosrch", of the Type III algorithm to run on the

DAP. In his doctoral thesis he presents six interesting and unexpected sequence

similarities found using "Prosrch".

Lyall also compared the performance of this software to software for

similar purposes running on various other machines. The use of the DAP turns

out to be cost effective particularly when compared to software on vector

supercomputers. The lesser cost effectiveness of such machines can largely be

attributed to the presence of special purpose hardware for floating point

calculations. This hardware adds considerably to the cost of the machines whilst

not materially contributing to speed of operation in this application.

Development of the early version of "Prosrch" which had a speed of

600,000 PMEs 1 has continued with improvements being made by Collins to

increase speed to 7,000,000 PMEs' and to facilitate investigations of the 'twilight

zone' between signal and noise matching (J.F. Collins, ICMB Edinburgh, personal

communication). Powerful hardware is clearly one solution to the problem of

combining speed with sensitivity. A disadvantage of parallel machines is that they

are not widely available.

50

Database reduction

One alternative way to increase speed is to reduce the size of the database

being searched. For example a database containing only representative members

of each sequence family could be searched. This inevitably reduces the ability to

detect weaker matches. Members of a family will show a range of values of

similarity score against any given query. The method works well when searching

with a sequence similar to the representative, less well when searching with a

sequence most similar to one of the more distant family members.

Rather than choosing a representative protein for each family, modified

sequences that attempt to capture the essential aspects of similarity shared by all

members of the family could be used. The use of such 'derived patterns' gives an

alternative method of database reduction.

Derived patterns

Using derived patterns for database reduction is possibly even less

satisfactory than choosing representative members, if the goal is to make new

discoveries through sequence comparison.

One of the sequence similarities reported by Lyall that was found using

"Prosrch" is indicative of the problem. A yolk amino acid storage protein (YP3)

in fruit fly, Drosophila melanogaster, was found to be similar to a lipase from the

liver of pig, Sus scrofa (Garbedian et al. 1987). A serine residue at the active site

is crucial to the lipase's lipid cleaving activity and is present in all members of the

lipase family. This residue would be part of a derived pattern for lipases. In YP3,

the residues in the corresponding position is glycine. This lead to a hypothesis

that YP3 is not a lipase, that it binds to but does not cleave a lipid analogue, a

precursor to a hormone called ecdysone. This hypothesis was confirmed by

experiment. The interpretation is that as YP3 is broken down to release its amino

acids to the growing larva, controlled quantities of hormone are released. Had

the computer search required matching of the active site serine residue the search

would not have detected the similarity.

(4E8/% 	

51

'Prosite

Databases of derived patterns are being actively developed. Though

caution is needed in their use, they are a valuable method for organising

information about sequences. The most comprehensive catalogue of derived

patterns so far developed is the 'Prosite' motif directory (Bairoch, 1989a). This

exists in both a printed and an electronic version. In the 'Prosite' directory

families of proteins are catalogued. For each family a 'motif pattern' is given.

The motif patterns of 'Prosite' represent 'key residues'. These key residues are

residues conserved or substituted for by similar amino acids in all examples of a

family. An example of a 'Prosite' motif for the Pentraxins, a family of serum and

plasma proteins some of which are expressed during acute phase response to

injury, is shown below:

Pentraxin family signature
HXCX(S,T)W

The bracketed residues indicate alternative possibilities at one site. An

X indicate a site at which any residue is acceptable. The patterns are short,

simple and straightforward to interpret. They are intended to be diagnostic for

family membership.

The 'Prosite' motifs make searching for membership of families extremely

rapid. The database of patterns is much smaller than the sequence database.

Release 4 of 'Prosite' contains 198 protein motifs with an average of five residues

in each motif pattern. As well as the small size, the fact that 'Prosite' contains

highly conserved residues makes fast exact matching of patterns more acceptable

than it would be were the selected residues more variable.

Insensitivity of 'Prosite patterns

A criticism of the 'Prosite' directory is the insensitivity of most of the

patterns. With the protein family cytochrome c, members of the family shows

strong homology throughout their length, that is over a stretch of some 100 amino

acid residues. In the 'Prosite' directory, a motif pattern of 5 amino acids is chosen

52

near to a haem attachment site. Whilst this pattern may be superior to other

possible short patterns, the use of a short pattern means that much of the

information is discarded.

The loss of information arising from using short patterns affects detection

of new members of a family. Whilst careful choice of motif can make the pattern

diagnostic for family membership for all data available at the time the pattern was

chosen, the motifs will not necessarily be so successful on new examples not

available when the patterns were designed. This is indicated by the fact that the

patterns are changed to accommodate new data. A fission yeast cytochrome has

a leucine in place of a methionine that is conserved in all the other known

cytochrome c's. A change in the motif pattern for cytochrome c was necessary to

take account of this new special case and this is documented in 'Prosite'. For

smaller families the range of variation at sites is less well determined. For these

families there is therefore less confidence that the chosen motif pattern, diagnostic

for all current examples, will continue to discriminate well with new examples.

Measuring information content of 'Prosite' patterns

The shorter patterns match against unrelated proteins more readily than

longer patterns would. From a table of amino acid frequencies such as the one

in figure 1.2, it is straightforward to calculate the likelihood of matching random

sequence with any motif. One way to express this is as the information content

of the pattern measured in bits, that is, the Log to base 2 of the probability of

matching (Shannon & Weaver, 1949). The motif patterns for 'Prosite' functional

sites have a wide range of information content from 8.6 bits (cell attachment

sequence), to 49.3 bits (nuclear hormone receptors' DNA-binding region

signature). The former pattern would be expected to occur by chance every 28.6

= 300 residues, i.e. 7,700 times in a typical database. One would expect to search

200,000,000 databases to find the latter pattern by chance.

The problem of poor diagnosis by pattern has been explicitly recognised

in the directory for the 'leucine zipper motif (information content 14.2 bits,

expected 160 times in a single database search):

53

"As this is far from being a specific pattern you should be cautious in
citing the presence of such pattern in a protein if it has not been shown to
be a nuclear DNA-binding protein." (Bairoch 1989b)

The problem of low information content is a general one that arises from

having few residues in each pattern. It is not restricted to this one example.

There is a danger that features postulated by pattern homology come to be

treated as genuine. One feature (information content for 'Prosite' pattern, 16.8

bits) that is notorious for this is the 'zinc finger' (Frankel & Pabo, 1988). The

dangers would be more obvious were a clearer indication of the specificity of each

pattern, either as a probability of random matching or in terms of information

content, given for each motif.

Use of 'Prosite'

'Prosite' does not represent an acceptable alternative to rapid and sensitive

database searching such as is provided by "Prosrch". Its function is instead to

annotate a new protein sequence with suggestions of sites with already known and

characterised function. Its role is complementary to full sequence database

searches.

Approximate methods for sequence comparison

Since NWS algorithms are computationally expensive, to make searching

possible at reasonable speeds on serial machines, faster methods which are less

sensitive have been developed (Pearson, 1990). The most popular of these,

"FastP", compares 800 protein pairs per minute. These more rapid programs are

invariably based on exact matching of words.

IrFastpe two tier approach

To overcome some of the sensitivity drawbacks of word based matching

"FastP" uses a two stage process. The initial search, based on exactly matching

words, acts as a filter. This picks out proteins for a more sensitive method to

examine. The filter reduces the workload of the sensitive method to a

54

manageable level.

In "FastP's" two tier approach the first stage, the initial filtering, may

discard matches which would score highly under the more sensitive method. A

match that would be accepted in the more sensitive stage is not guaranteed to

pass through the coarser first stage and could be lost. In this sense the two stages

are not fully compatible.

The risk of missing a good score can be reduced by letting more results

pass through the filter to the second stage, that is by reducing the stringency of

the filter. There is no criterion though for how to set the stringency to guarantee

that all high scores will be found. For a discriminating comparison either a more

sensitive method must be used throughout, or a filter must be devised that cuts

down the workload but which is guaranteed to pass on all matches which would

be recognised as 'good' by a second stage.

"FastP's" second stage

The second more sensitive stage of "Fast?" performs an NWS-like

alignment to refine the score. This stage uses exactly matching words rather than

individual residue matches. As a result far fewer possible alignments need to be

considered. Additional speed benefits arise from using a dictionary just as they

did in the filtering stage. Even if filtering parameters are set to pass all proteins

to the more sensitive stage, the final scoring is still based on exactly matching

words.

A later development of "FastP" called "FastA", improves the second stage

by scoring words using Dayhoff scores in the more sensitive phase. In addition it

overcomes a major defect of "FastP", that "FastP's" first stage was a global rather

than a local algorithm. Previously, in longer sequences, a smaller region of good

matching could be obscured if there were insufficient word matches in it to be

significantly above average for sequence comparison of entire sequences.

The "FastP" algorithm is asserted to have running time that depends on the

sum, rather than the product, of the lengths of sequences compared (Wilbur &

Lipman, 1983). In fact, since the number of matching word pairs of a particular

fixed length is proportional to the product of sequence lengths, "FastP" has time

55

complexity 0(11 2). However, the "FastF' algorithm makes considerable savings in

comparison to the Type III algorithm, which is also 0(n2). The use of exact

matching words of length 2 leads to an approximately 200 fold reduction factor

in the work performed, whilst maintaining a useful level of sensitivity. This makes

the algorithm very suitable for rapid database searching and "FastP" is in

widespread use.

Theoretical advances in comparison algorithms

The DAP program indicates the importance of methods which are both

sensitive and rapid. Theoretical advances might lead to algorithms that perform

with the rapidity of "FastP" and the sensitivity of the NWS algorithm on serial

machines. Theoretical work on the NWS algorithms shows that theoretical speed

improvements to the algorithm are possible, in particular improvements that lead

to the 'four Russians' version of the algorithm (Masek & Paterson, 1983). This

algorithm works by first calculating a large number of 2 by 2, 3 by 3 or more

generally K by K alignment path matrices. These are combined in producing a

path matrix for the complete alignment. The algorithm takes time 0(112/Log n)

rather than the normal 0(n2)

Using 1 by 1 submatrices the algorithm is equivalent to the normal

implementation and there is no gain. With K = 2 precalculation of around 10 10

submatrices is required. This estimate is based on 20 amino acids, a 100 PAM

table and an indel penalty of 10. Storing these submatrices in main memo!)' is

impractical on all but the largest computers. For the method to give any gain at

all, retrieval from disk of part results would need to be faster than recalculation.

The authors of the paper on this method do not mention a practical

implementation of this algorithm.

The four Russians approach gives a theoretical gain which seems to be of

no practical use whatsoever for protein database searching. Log n grows slowly

with it, so it must be very large before we can hope for an appreciable gain. As

a minimum it must be large enough to compensate for the overheads in

precalculating the submatrices. In practice these overheads are colossal. Not only

is the time needed in calculating the submatrices large, the storage requirements

56

for the matrices are large too. There is an exponential increase in number of

submatrices with increase in submatrix size, alphabet size, mdcl penalty and range

of score in the scoring table. For protein database searching, using reasonable

parameters, the. four Russians method is impractical.

Concluding remarks

Speed and sensitivity are important in protein database searching.

Approaches to achieving these apparently conflicting goals have been taken by a

number of authors with varying degrees of success. These include database

reduction, use of word based methods, use of powerful computers and

fundamental changes to the algorithms for NWS string comparison. A fifth

approach, taken in this work, recognises the potential for improved serial

implementation of the Type III algorithm. This resulted in an extremely rapid

serial implementation. This is described in the next chapter. This algorithm is of

similar speed to "FastP", runs on a microcomputer and has the same sensitivity as

the DAP "Prosrch" algorithm.

57

Chapter 5: Techniques to Get More
from Machines.

In the previous chapter we looked at various approaches to rapid and

sensitive database searching. Here we present a new approach that uses new

implementation techniques. These give a fifty fold speed improvement to the

serial Type III algorithm. The new implementation's importance is that it makes

the Type III algorithm run rapidly on widely available machines, that is on

personal microcomputers (PCs) such as those manufactured by International

Business Machines. In later chapters we discuss applications that were built

around this software.

As well as describing the new techniques used for rapid sequence

comparison, this chapter describes other implementation issues encountered in the

study. The chapter is divided into sections covering specific problems. Each

section starts with a statement of the problem, is followed by a description of the

methods used to tackle the problem and finishes with a discussion. The methods

sections concentrate on the principles behind the methods used. Further detail

of methods are contained in appendices where appropriate.

Type III comparison (Speed)

Problem:

A crucial problem with a standard implementation of the Type III

algorithm is its low execution speed. Apart from the use of parallel computers,

other techniques to improve speed make some compromise on the sensitivity of

searching in order to obtain their speed.

"The results of searches with FASTA compare favourably with results using
NWS-based programs that are 100 times slower. FASTA is slightly less
sensitive..." (Pearson, 1990)

RK

The problem tackled here is to find techniques that increase the speed of the

Type III searching on serial machines.

Methods:

A combination of techniques, rather than any one technique on its own,

were central to the speed improvements. Although each saving may appear to

have a marginal effect, the combined effect is significant. Savings in one part of

the algorithm only have a marked influence on the overall speed when other

inefficiencies are removed. Because the path matrix calculations involve

operations performed thousands of millions of times, apparently small savings can

have a large effect on the algorithm's running time.

The first step in improving performance uses the following observation:

Any two columns of the path matrix with the same sequence character at their

head will have the same one step diagonal scores. Production of a table of these

23 possible columns of scores gives a substantial saving in the number of indexing

operations the algorithm performs. Using this intermediate table, the number of

indexing operations in retrieving one step diagonal scores is halved. The row

index is used to directly access scores from one of the 23 columns in one indexing

operation, rather than first retrieving a sequence character (first indexing

operation), and then using the sequence character as an index into the amino acid

score table (second indexing operation).

The second optimisation is more complex. It rests on noticing that many

of the entries in the path matrix hold zero scores. This is true for over two thirds

of the entries. This arises because the scoring tables have a negative expectation.

The majority of paths score negatively and so have scores reset to zero at

each step.

Reorganisation of the order of operations is required. The Type III

algorithm is normally presented as in Chapter 2, in terms of how values at each

cell are computed. After re-expressing the algorithm in terms of how each cell

value influences its neighbours the fact that zero scores do not influence other cell

values can be properly exploited. Zero scores can then be processed rapidly. A

second saving arises from the new order of calculation. Provided that neither a

59

negative score nor a zero score influences other cell values, negative scores do not

need to be converted to zero.

For efficiency the software is written in assembly code. At this level of

expressing an algorithm, fetches of information from memory to processor and

storage of information from processor to memory are made explicitly. Deferred

assignment of values held in registers to variables held in memory is a technique

that can sometimes be used to reduce the number of times values in processor

registers are written out to memory. This optimisation technique normally relies

on a guaranteed pattern of memory reads and writes. The effect of a

conditionally executed statement can disrupt this, and does so in the Type III

algorithm. However, a new technique was developed to extend the method of

deferred assignment. This new technique, 'conditional deferred assignment' is

described in Appendix 3. It recaptures the ability to have a known history of

memory interactions and uses multiple versions of the code to do this.

The final important optimisation step is to reduce loop overheads for

processing one column. The determination of maximum score in a column which

could be done in a separate loop is instead performed in the main loop. Having

one loop instead of two halves the loop overheads. Moreover, the test for

maximum need take place only in the infrequently executed code that deals with

larger positive path scores. This subdivision of the algorithm into parts for

different levels of scoring arose from the previous two optimisations. The testing

of the loop counter is removed by using a rogue value (an impossibly high value)

to terminate the loop. Testing for the end of the loop only occurs where

maximum score may be being updated. This arrangement virtually eliminates loop

overheads.

Discussion:

The new implementation of the algorithm performs an average of 200

protein comparisons per minute, a speed of 300,000 PMEs 1 . A sensitive database

search can thus be performed in under an hour on inexpensive hardware. The

machine code algorithm has been built into a database searching program "Prowl",

written in Pascal for performing such searches.

ZC

The new implementation is the result of successive improvements to the

efficiency of an initial version. The idea for an optimisation often arose from

simpler optimisations. The rearrangement of the order of calculation, for

example, arose from combining two optimisations concerned with low scores.

How is it that the scope for dramatic improvements in speed in the serial

Type III algorithm has in the past been overlooked? One possible reason is the

practice of using asymptotic measures to measure performance. The

improvements described in the preceding section do not affect the asymptotic

measure. Asymptotic measures are useful precisely because they are a property

of the algorithm rather than the implementation. The example illustrates a

danger in relying too heavily on asymptotic measures when dealing with a practical

computational problem.

There are precedents for this. Theoretical advances in algorithms for

linear programming problems that resulted in an 0(n6) algorithm are not used in

practice (Osborne, 1985). The normal simplex algorithm with exponential time

worst case performance performs better in practice and is used instead.

The situation for Type III searching is more prosaic. The asymptotic order

does not distinguish between variants of an algorithm that differ in speed by a

constant factor. An emphasis on asymptotic orders may have lead software

developers to overlook the substantially greater efficiency possible in the

organisation of calculations in the standard algorithm.

Path reconstruction (Memory space)

Problem:

Generation of comparison scores rapidly is not enough. Alignments as well

as the alignment scores are needed. The pressure for rapid computation is not

intense since only a small fraction of the sequences compared need to be

presented to the user as alignments. Rapid computation here is not crucial. The

problem in implementing the reconstruction algorithm is limited RAM memory.

On a machine with a large memory it is feasible to store an entire path matrix in

main memory. From this the alignment can be reconstructed in steps as described

61

Uses of multiple alignments

Investigating mechanism.

Multiple alignments are useful in investigations of the functions of

individual residues in a protein. They show which residues are variable and which

conserved. Residues which are conserved in all the sequences are the most likely

to be crucial to the function. These conserved residues may be part of the active

site in an enzyme, or they may be vital to the three dimensional structure. Where

there is variation in a column of an alignment the kind of variation also gives

information. It can suggest the role played by an amino acid. Some columns of

multiple alignments, for example, contain only charged residues. The sign of the

charge, positive or negative, may vary. Such a site in a protein is likely to have

a different role to one for which all substitutions are charged residues of the same

sign. Information about variations can thus act as a guide for experimental work

to determine the function of individual residues.

The pattern of conservation of residues can give information about cysteine

residues. These residues may or may not participate in disulphide bridges with

partners elsewhere in the protein. No other residue type can fulfil this role. Loss

of a disulphide bridge would be expected to have a marked effect on the structure

and stability of a protein. If one sequence in a multiple alignment lacks a cysteine

at a particular site which is cysteine in the others, it suggests that the cysteine is

used for some purpose which other residues can fulfil and consequently is not part

of a disulphide bridge.

An example which shows how multiple alignments can draw attention to

structurally important residues is a particular glycine residue which is absolutely

conserved in all haemoglobins. Studies of three dimensional structures reveal the

explanation. The glycine occurs where two alpha helical structures, the B and E

helices cross (Stryer, 1981). No other residue is sufficiently small to fit in the

space available.

The information which multiple alignments contain is especially relevant

to methods for secondary structure prediction (Zvelebil et al., 1987). The

variation at sites shown by multiple alignments gives additional information about

72

structure not present in a single sequence. One example of this is that residues

that vary are more likely to be near the surface of a protein than in the core of

the protein (Perutz & Lehmann, 1968).

Searching

Computer searches can make use of information presented in a multiple

alignment about the range of variations at each site. Smith & Smith (1990),

suggest one method that could be implemented using a matrix that gives scores

for each amino acid at each site, a 'template matrix'. In the template matrix most

weight is attached to residues which are absolutely conserved. Template matrices

are computed from multiple alignments, typically by averaging scores for the

amino acids in a column. This takes into account the variability at a site and the

kind of variation. A template matrix represents a consensus about the patterns

shared by the sequences. If previously unknown members of a protein family

conform to the consensus pattern of conservation observed in the known

examples, then a databse search using template matching will give more

discriminating searching for new family members than comparison using any one

example from the family could (Taylor, 1986).

One advantage of using a family consensus pattern is that a single

comparison of a new sequence against a pattern can be used to check for family

membership. It is worth emphasising that this may be less sensitive than

comparing a sequence individually with each member of the family in turn. The

new sequence may be more similar to the member of the family most similar to

it than it is to the consensus pattern for the family. A mental picture for this is

to represent the sequences as points. The distance between the points represents

the degree of dissimilarity. A family of sequences will form a cluster. The pattern

for the family could be represented by a point that is at the centre of the cluster.

A new member to the family is, however, likely to be closer to some member of

the family than it is to this centre.

Motif patterns such as those of the 'Prosite' directory discussed in Chapter

4, are also derived from multiple alignments. They offer an alternative and less

sensitive method for defining patterns of conservation.

73

Sequence editors

For pairwise alignment, NWS algorithms are the accepted standard. The

situation is quite different for multiple sequence alignment. No method has yet

become universally accepted. It is not clear how best to extend a scoring scheme

that works well for pairwise alignment to score multiple sequence alignments. A

second problem is that the natural extensions of the NWS algorithms to score

columns of three or more residues, rather than scoring residue pairs, have very

high computational demands. To make improvements to existing multiple

sequence alignment algorithms involves addressing both purely computational

problems, and the problem of defining what good multiple sequence alignment is.

The latter requires some knowledge of patterns which actually occur in sequence

families.

To gain an understanding of patterns, many alignments for different protein

families must be examined. Moreover these alignments should be adjusted to

explore possibilities different to those suggested by computer alignment. Patterns

which computer analysis misses can only be characterised by manual examination

of sequences.

For closely related proteins, alignments can be examined and adjusted on

a text editor. For all but the simplest alignments this is time consuming. With a

text editor it is easy to delete sequence characters accidentally when removing

unwanted spaces from an alignment. There is a need for special purpose multiple

sequence editors.

There is a second reason why a multiple sequence editor is important for

development of new automatic methods of multiple sequence alignment. A

multiple sequence alignment editor can act as a front-end to a new alignment

method. It can take care of the loading and the formatting of sequences and the

display of results. This simplifies the testing of a new multiple alignment

algorithm.

The need for a multiple sequence editor is not specific to investigation of

improved algorithms for alignment. Until automatic methods produce entirely

satisfactory results manual adjustment of computer generated multiple sequence

alignments will continue to be important.

74

A number of multiple sequence alignment editors have been described in

the literature; "Lineup" (Devereux et al., 1984) "Homed" (Stockwell & Peterson,

1987), "Mase" (Faulkner & Jurka 1988), "Esee" (Cabot & Beckenback 1989) and

"Alma" (Thirup & Larsen 1990).

Sequence editor on the VAX

Initially work on multiple sequence alignment used the GCG "Lineup"

editor running on a VAX computer. With this editor alignments of the lipase /

yolk protein family discussed in Chapter 5, and of a family of citric acid cycle

proteins were explored.

Fortran source code for "Lineup" was available. "Lineup" was modified by

addition of new code to perform automatic multiple sequence alignment using a

new method. The new method performed all 112 n(,z +1) pairwise alignments of

11 sequences and recovered information about compatible parts of the alignments.

Where all alignments agreed, it aligned these residues, regions between being

divided into unaligned blocks. The new method proved unsatisfactory for all but

the most closely related families of sequences. It depended on low levels of

conflict between the pairwise alignments. This only occurred in the

straightforward cases, strongly related sequences or parts of sequences, that were

easy to align 'by eye'.

The VAX development environment and "Lineup" editor proved to be

unsatisfactory for this work. "Lineup" is the largest program in the GCG package

consisting of 10,000 lines of source code excluding subroutines shared by other

programs in the package, for example subroutines for reading sequence files. To

reduce compilation times, compilation was restricted to the new program section,

the bulk of the code being pre-compiled. Howevei, linking of the code was still

necessary for each change. This took a minimum of three minutes. This contrasts

with combined compilation and linking times of a few seconds for modular

software written in Turbo Pascal for the IBM PC. As well as having a

development environment that greatly facilitated program development, the PC

had a second advantage. The PC had the potential for an alignment editor with

a better user interface. For the VAX, updates to the screen had to be kept to a

75

minimum as the updates took place over a relatively slow serial line. The PC

permitted a much more responsive user interface as well as the use of colour.

The speed of response in particular was felt to be important for interactive

exploration of many different possible alignments.

Development work moved to the PC. To make this move a new multiple

sequence editor for the PC was written. This program was called "Medal" for

Multiple sequence EDitor and ALigner. The new editor could be more readily

modified to test out new ideas than could "Lineup".

"Medal" has a modular design. It makes use of the Turbo Pascal facility

to define software 'units' containing related subroutines and datastructures. This

modularity is important in development work. The automatic multiple alignment

routine of "Medal" is contained in a separate unit and could be replaced with an

alternative one without losing the interface features.

General editor interface features

Some of the interface features of "Medal" are relevant to general editor

design and not specific to Molecular Biology. They are not essential for the actual

task of sequence alignment editing. Features such as the 'help' facility could easily

have been omitted. One reason for developing a good interface to the editor was

to encourage use and criticism of the program by molecular biologists.

Computer interface design is itself an active field of research (Long &

Whitefield, 1989). Rather than performing a thorough study of interface design,

designs that worked well in other applications were adapted.

"Medal" has pop-up directory lists from which any individual file can be

selected. Pop-up menus are used in many PC programs. In "Medal" the pop-up

directory has an additional facility to allow selection of ordered sets of files. This

is needed for creation of a multiple alignment from a number of independent

sequence files. Pressing 'enter' selects the file currently indicated by a block

cursor. Each selected file is moved to the start of the pop-up menu and is

highlighted (figure 6.1). Files that have.been selected can be deselected in the

same manner. The whole set of selected files can then be accepted by another

key press.

76

Fiçure 6. 1: Pop-up directory for ,eIecting sequences IC tnükc a mLtl!iJ)le
alignment. The file names in yellow are the selected sequences. The file
currently open to selection is indicated by the purple block cursor.

I nil It 1jilf, rI 	iiif . 	Al4 flr 	 I 	U 	 I

Fiurc 0.2: "Medal 'S'' 	ac li/tv. The cuminand current/v elecied hi
the cursor is described more fully in the top two thirds of the screen.

77

l,1.j. L__i—U 	 ad LIps..14s ,'ta

sAlSflUUASILLXGNSX1. . If YIU I?SAUFTVUl3UGllSEftAkllS . Gill.
UJAGUHY . FPflVIPS IAYTZflUAUGLTEflAUI .6 ISYCTA . TYPV AS MIRS .$c

T?VAU . GJRLSE1LFNNUUHLIYI
IrTuursHrp IGTUGLT9!A 1111% IfllUiTTSTSyTpIflm

i?QUATVGYS!AIAHII) .GIETI$1TLTpJflAI
, .UAAY!GG!UAIMALGLAKU. : LDLIFV?GUT?ThrS IATUGLTEQQAIU .69. UITSUL?LMUPMLIMItT?G
V. IMMAGTIAA IMHTGG)AA. . . LDLTAIIPAUUFTDPQUATUG?S!AEAHH) .6 ItT). SiTLTLMlU?iAL*pflhi
I. UAAAA6TRA*IPIIITGGDAA. . . LNLTAMPAUU? TbTQUATUG?SEAEAHHI .6 tIC?). SiTLTLUpMyfl1

V

p jut. I$EDfI)Q IU IGAHL ISISEAIEI. 1$HrKF6IsTKELICQHI FAT jtAAsi IAHIIL...............
GIITILI9KE .SHIV I 166* IUGT)SGGELLGE I 	IEPIGC)A!) IJAH jLHES6LMtVFEGS1T)'2llu*
ILIL(UGSEE. x IUIGINGIGFGVIPEIILQGF 	KIIGATICK)F 	III? I*AEEFUTflI...............

11.KLU.IEEGSGILI 6
UIUCAISKU . KUU 6 IHIIQGLGCDEIILQGFA'

V?.JLU.UIIAQTQICLI GAHI
f1.NLU.I!EGSHRLI Gj§PA 	

T USO 	 T FI.KLU.UEEGSGBLI 6

ft-hip fl-kr F3-I..ck 14-k1.ct VS-kt 	flh-CuuO

alteft h_J-I• Liao hL..Jk 1.1 UpsisMs esitass

m3A341)SHUUASHLLKGNSØ. . JEYPU I?SAUV TUPKIIASUGISSZE!AINS .61I.
HIGHIIE .GSHMAE . UIAGICKNY. F)PKUI?SIAYTEP!U*HUGLTEKEAIU .615flTA . TV? ASGIALAS .KHI
T?UMM* . GJJLSULFMMX?DEHL)?SH I?TUUFSHP? IGTUGLTEPQAMvGlwmvxnrymitwiTww
T?UA!M . GUL*HILVEYKEDSXLDYMSI I?TWFSHP? I6TUGLT!)EA1HI%

....................)PQUATUGYSEAE*HH) GIST). S1TLTLPW?AI6
V .IMAYEGGIIMIWIALGLAXIX. . IDLRFUPGUTFT1IPS IATUGLT!QQAKEK .6?). UICTSUL?L)J?$LJm
V .TIaA1NHTGGDA*. . . LDLTANP*UUFTDPQUATUGYS!AEAHH) .61!?) -SITLILUMIALMnTIG
V. UMAAGTMA IMHTGGDM. . . LMLTAH?AUUFTD?QUATUG?SEAEAHH) .6 Ill?). SITLTL)IIVP.y.T

V

A,.IUL. I)!IHDQIUIGAHLISNEADELINHFAT.IIi?GISTXELKQIIIFAYIIAAS)IAImL

II .KIUCUGSE! . XIV 161116 IGFGIIDEMLQGFAU. GATICKIF 111 AAEUVTIIJ..............
STItLI1JICE . SHIU 1166* IUGTPIGGELLGE ICM9 IlAHILHE3VGLAA!UflG3IflUIW1

V?.KLU.I*IAQTQXLI GA A. ?GLTI!DLTI

UN. UIUCMKEE . KUI]GIHHQGLGCDEhLQGFAU. 	MKA)T)l
7I.ZLU.IEEGSGRLI GJU T. 	IRtIINTlJLAl

FIJLU.IUGSHRLI 6 	 T. 	IR$IMT1LAI
?I.XLU.U!EGSGKLI 6 	 T. 	1111111? 	LA]

a

?

XM6ATKA$9I
1RH8PITILA1

QF6LTIEDLTI
IRIIEMT 	LA]
IRNRfl.T 	LA]

SSULUTIJ...............
IIUEGLKLAAQTFTDUKQLSCCM
MEGLKLAALT9UUSIL3CM
HUEGLILAAQTThKWKQLSCCM

SSULVTLI..............

0jMut6uLA*QT1T05cd1
IIAEGLKL*ALTTIK$SIL3cCI
MU!GLKL*AQTFIII$IIL3tU

I 	,MU!6LILAA4T?IIXMLScC1

In "Medal" menus of commands and the on line explanatory 'help'

information are combined in one system. When selecting commands the lower

third of the screen contains a menu of commands. The command currently

selected off the menu has help information about it displayed in the top two thirds

of the screen (figure 6.2).

"Medal" uses an initialisation file which records path names. These paths

indicate directories in which sequence and alignment files are stored and the name

of the alignment most recently worked on. When "Medal" is invoked the most

recent alignment is fetched into memory so that alignment editing can resume

where it was last left off.

Platforms and interfaces

The editor interface design illustrates the influence of the platform. On

a machine with a slow transfer between screen and memory, update of help

information as each menu command was selected would have lead to a very slow

response and would have been impractical. Multiple sequence editors on other

machines follow interface practices for those machines. The "Lineup" editor uses

interface features from the VAX/VMS editor "EDT" such as the use of ctrl Z to

end screen based input. The Unix "Mase" sequence editor uses binding of keys

to longer commands similar to that found in the Unix editor "emacs".

Sequence editing features

Other features of "Medal" were designed specifically to assist multiple

sequence alignment editing. Normally in "Medal" all sequence characters are

shown in grey. Pressing a key on the keyboard causes all occurrences of the

character to be displayed in a preselected colour. Residues which are

conservative substitutions use the same colour. Pressing the key again causes all

occurrences of that character to revert to grey. This feature helps in locating by

eye patterns of similar residues.

"Medal" allows regions of the sequence to be delimited. A vertical bar in

an alignment prevents changes made on one side of the bar from affecting

79

in Chapter 2. Storage for the full path matrix is not necessary if only scores are

required. In the searching phase only two columns at a time are needed. For

reconstructing the alignment, the path matrix size can be a problem even on

mainframe machines. In the GCG implementation path matrices are limited to

1,000,000 elements. This is sufficient for two sequences of length 1000. On

microcomputers the memory problem is more severe.

The "Prosrch" program described in Chapter 4 has one solution to this

problem. With the "Prosrch" program both endpoints of any alignment path are

obtained in the searching pass. Whilst this adds a substantial overhead to the

searching time it simplifies the post processing'. When both endpoint positions

for a Type III alignment are available reconstruction of alignment is equivalent

to a Type I alignment. For Type I alignments this reconstruction can be done in

a space efficient manner using 'divide and conquer' techniques (Hirschberg, 1975).

These require recalculation of some of the path matrix entries.

"Prosrch" in fact uses a more sophisticated hierarchical approach. It tries

successively more complex algorithms in turn. This sequence is optimised for

alignments with few gaps (J.F. Collins, ICMB Edinburgh, personal

communication) and is extremely efficient in these cases.

The new serial Type III implementation described in this chapter finds the

endpoint but does not find the starting point of an alignment. However, as each

column of the path matrix is calculated, the software finds the score and location

of the best path ending in the column. These values are used in finding the score

for the overall best path and the location of its endpoint. The requirement is for

an efficient way to reconstruct the alignment given only this information for each

column.

1To do this, each path matrix element must carry start coordinates of a path in
addition to a score.

62

Method:

The strategy employed to do this, like the divide and conquer approach,

uses recalculation to reduce memory requirements. The strategy is not

guaranteed to use as few recalculations but its behaviour is good in practice. The

method uses the stored values for the best path ending in each column to reduce

the likelihood of needing recalculation. Many of the recorded locations are

actually on the best path. The reconstruction is particularly rapid where this is the

case. Reconstruction proceeds as described in Chapter 1 except that only ten

columns of the path matrix are available at a time. Moreover the values present

may be lower than they should be. Consequently the retrace procedure may be

unable to continue before having retraced the full path. In that case, path matrix

recalculation is started from fifteen columns prior and generates the ten columns

immediately before the column of the current cell. This recalculation starts by

setting the first of the fifteen column's scores to zero, whereas in fact some of the

values should normally be positive. This is the reason for some values being lower

than they should be. The recorded best endpoints in a column are put in place

after each column is calculated. This step ensures that if any one of the fifteen

recorded best endpoints prior to the current cell is actually used on the best path,

then the path being reconstructed can be continued. This is usually the case for

high scoring alignments. The approach also works if the path started within 15

steps of the cell currently reached. This tends to be the case for short low scoring

alignments. If, however, this stage also fails to extend the path, recalculation can

be started from the start of the sequence and will yield correct scores, rather than

reduced scores, for the immediately prior ten columns.

Discussion:

This strategy works well in practice. It also is simpler to program than the

'divide and conquer' technique. This results in a shorter program. The divide and

conquer method needs to change the direction in which sections of the path

matrix are calculated. The new method does not. It uses the same score

calculation code for reconstruction as used in the search. Since this code has been

heavily optimised, reconstruction of alignments is rapid. The method also extends

63

gracefully if more memory is available. Storage for more columns of the matrix

leads to lower likelihoods of repeated recalculation.

Database compression (Disk space)

Problem:

A second problem with microcomputers is limited disk space. One

investigation concerned methods to compress the sequence database. The method

developed has an exceptionally rapid decompression algorithm.

Compression technique:

Standard compression algorithms, such as the Lempel-Ziv algorithm, work

by identifying short patterns which occur many times and choosing compact

representations for these patterns (Welch, 1984). The new method recognized a

common kind of repetition that occurs in sequence databases - longer sequences

of characters that are repeated just a few times.

Ovvvvvvv
lnnnaaaa aaaaaaaa
llllaaaa aaaaaaaa rrrrrrrr

vvvvvvvv
nnn

aaaa aaaaaaaa
rrrrrrrr

Single character.
Repeated run of length 3-9.
Repeated run of length up to 256.

Character value (7 bits).
Run length in range 3-9,

represented by 000 to 110.
Offset to previous occurrence of run.
Run length in range 0-255.

Figure 5.1: Coding scheme used to represent repeated runs. Above: The
three forms in which data is represented in the compressed file in terms of bit
fields. Below: Interpretation of the bit fields.

A compressed run is represented by a word (two bytes) with the top bit set.

The lower twelve bits represent the relative location of the run. The remaining

3 bits represent the length of the run. 000 to 110 represent runs of length 3 to

64

9. Longer runs are represented by 111 and the byte after the word gives the

actual length up to 255 characters.

The standard compression methods would be unable to exploit such longer

patterns nearly so well. The Lempel-Ziv compression algorithm, for example,

needs to 'learn' each shorter run in the long repeated run before it can learn the

long run and represent it with maximum efficiency. The effect of this is that to

'learn' a longer run, the Lempel-Ziv algorithm must see it at least as many times

as its length. In the database, many of the long repeated patterns occur only a

few times. With the new method a long run only needs to be seen once for future

occurrences to be compressed.

Using the algorithm 2.5Mb of the PIR 23 database was compressed to

1.2Mb. Later, commercial software for compression, the program "PKZip"

(PKWare Inc, WI 53217, U.S.A.), was available. This algorithm achieves the same

compression factor, though it is not clear what compression algorithm it uses.

Discussion:

For machines for which disk performance is a severe problem, compression

gives an effective increase to the capacity of the disk. It also gives an effective

increase to the speed of disk read access since decompression is more rapid than

disk to memory transfer. Compression software improves the effective

performance of the disks. In practice the method was only used to reduce the

number of disks needed for data redistribution.

Data compression may become more important as the 'human genome

project', an international project to sequence the 3x10 9 bases of the human

genome develops (Gordon, 1988). When distributing data to a large number of

users, the potential savings from reducing media costs could conceivably be

significant. The increased speed of access is unlikely to be a critical factor as for

sensitive searching on low cost hardware the rate limiting step is the actual

comparison.

The technique is particularly attractive for representing slight variants of

a gene. At the moment there is an inconsistent policy over representation of

sequence variants in the database. Sometimes a variant sequence is given a new

65

sequence entry. At other times it is recorded in feature tables that give

alternatives at particular sites. Variants so represented are not searched by

current software. Using the kind of compression suggested here, full entries could

be made for these variants with minimal media costs.

Tripeptide matching (Speed).

Problem:

For part of the study a very fast approximate sequence comparison routine

was required (Chapter 7). A coarse method was acceptable as only the very

strongest similarities needed to be found.

Method:

The coarse comparisons were made using a program to count exactly

matching tripeptide words shared by pairs of proteins. The program took each

protein in turn and used it as a query against the database. To make the counting

of shared tripeptides rapid a tripeptide index for the query sequence was used.

To increase the efficiency of disk access, software to cache data from the database

was written.

A near eight fold speed improvement on this basic method was

subsequently achieved by searching with eight query proteins simultaneously. This

reduced the disk overheads by a factor of eight and, by splitting integer scores into

fields, one addition operation was made to serve the update of all eight proteins

scores. Overflow of the fields was avoided by periodically using the fields to

update scores with a wider range.

With these enhancements the comparison program could perform

32,000,000 coarse tripeptide based pairwise sequence comparisons over a

weekend.

Discussion:

Even more rapid techniques are possible using sorting of subsequences

from the database. Here a technique that compared each protein pair in turn was

required partly to test the software framework for total database searching. A

relatively simple method was found to be satisfactory.

Annotation browser (Portability)

Problem:

A screen based application for examining lists of results from database

searches was written. The program provided a rapid method for cross referencing

between search results and sequence annotation databases. The first version was

written for emas, a mainframe computer which had ample disk memory and which

held the sequence annotation files. The program, which was called "Xref', was

initially written in IMP, the language of choice on the emas computer. Later the

software was required for other machines. Since the program was not

computationally intensive, portability seemed to be an important design goal for

the rewrite.

Methods:

"Xref' was rewritten in Turbo Pascal for the IBM microcomputer with the

intention of porting it onto a Unix machine. This was initially thought to be a

good development route. As well as producing a version of the software for the

microcomputer, it gave the opportunity to use the excellent development

environment of Turbo Pascal in rewriting the code.

Documentation on the Unix Pascal that was available for the Unix machine

turned out to be insufficient. There was insufficient information about file

mapping, control of the intermediate PAD I/O computers and access to terminal

characteristics. In addition the Unix Pascal compiler did not support some of the

Turbo Pascal type casting operations that were essential to the program's

operation. Just as IMP is the best supported language on the emas computer, so

C is the preferred language for Unix machines. More facilities were readily

67

available in - C and C seemed to offer possibilities for a more portable

implementation. The program was therefore rewritten in C using the Unix

terminal independent screen and cursor control subroutines 'Curses' since one

factor which reduces portability is having software depend on specific hardware

features. The 'Curses' routines are aptly named. Using the routines an addition

of a single line at the top of the screen resulted in the whole screen being redrawn

to achieve reverse scrolling. This was slow and made the program useless as an

interactive tool. The compromise solution adopted avoided the 'Curses' software

and provided direct cursor control sequences for VT100 compatible machines

(Wyse, 1984). These sequences gave correct scrolling action for Sun workstations,

VT240 and Wyse 75 terminals and microcomputer terminal emulators. In practice

this restriction in terminal type did not cause problems.

Discussion:

The observation from experience with "Xref' was that translation of

software to different languages provided a rapid route to porting software

between different machines. Overcoming the portability problems of the Pascal

version would certainly have taken longer than rewriting in 'C'. Although the

program was not compute intensive it seemed to require a compromise in

portability. This was a result of the need for fast screen I/O.

Optimisation to "Prosrch"

Problem:

The PC program demonstrates the possibility of sensitive database

searching at reasonable speed using the Type III algorithm on a microcomputer.

The software can be used to do a comprehensive comparison of every pair of

sequences in the database (Chapter 7). However this takes several weeks of

computer time. A natural question to ask is: "Can the same techniques also be

applied to accelerate database searching on a parallel computer?". If so,

comprehensive sensitive pairwise comparisons of databases could be made on a

routine basis.

Methods:

To investigate the possible optimisations of a parallel program, source code

for the 'Prosrch" program was examined and modified in the time critical sections.

These modifications illustrate the potential for optimisation but to fully evaluate

them would require substantial changes elsewhere in the software.

Experience from optimising the serial implementation drew attention to

aspects of the calculation where savings could be made. The programming

techniques to do this were different; none of the techniques discussed for the

serial code apply. The details of the methods are peculiar to the parallel

computer's architecture and the 'Prosrch" program and are described in Appendix

4.

Discussion:

The serial techniques used to achieve speed on the microcomputer are not

applicable to the parallel computer. The serial techniques rely on case analysis

to make processing more rapid. On the parallel machine many cells are

processed at once. These must be processed with the same set of instructions.

On the parallel machine separate processing of different cases slows down

operations. Multiple cases take the sum of the time for the different cases, rather

than a weighted average of the times. Radically different optimisation techniques

need to be used.

The study provided an alternative set of optimisations suitable for the

parallel machine. More important than a potential for an estimated eight fold

speed improvement was a dramatic reduction in code size arising from the

optimisation method. This should aid maintainability and future modification of

the software for other uses. The techniques described in Appendix 4 would also

be appropriate for efficient implementation of the more computationally

expensive string comparison algorithms of Chapter 9.

Concluding remarks

Practical considerations draw attention to computational problems that are

different in kind to purely theoretical studies. In the main these can be tackled

by adapting and applying combinations of standard computing techniques. For

practical systems, it is not so much individual techniques as combinations of

techniques that matter. This is so both at the level of individual subroutines, such

as the new Type III subroutine, and at the level of applications programs.

70

Chapter 6: Multiple Sequence
Alignment

Multiple sequence alignments show in a compact format relationships

between several protein sequences. They differ from pairwise alignments by

having extra rows for additional related sequences in a family. The presentation

of information is more condensed than if a set of pairwise alignments were shown.

Strong patterns present in all sequences are readily distinguished from patterns

present in only some sequences. These patterns would be harder to see by

examining pairwise alignments. An example of a multiple alignment is shown

below:

++++++ + ++. + +.+ .- 	+ + + + +++ ++++
A30007 : APKIFGGEIKTHILLFLPKSVSDYDGKLSNLKKAADGFKGK ILFVFIDSDHTDNQR
A26289 :APKIFGGEIKTHILLFLPKSVSDYEGKLSNFKKAAESFKGK ILFIFIDSDHTDP4QR
ISMS :APKIFGGEIKTHILLFLPKSVSDYDGKLSNFICJ(AAEGFKGK ILFIFIDSDHTDNQR
R3EC2 :KPRIFGARNKVHIIN LEKTVPMFNEALAELNKIA SRKGK ILFVGTKRAASEAVK
R3NT2 :APYISAKRKGIHITN LTRTARFLSEA CDLVFDAASR GKQFLIVGTKNKAADSVE
R3LV2 :APYIFTERKc3IHIIN LTQTARFLSEA CDLVANASS KGKQFLIVGTKYQAADLIE

Identities '+' and conservative substitutions '.' are marked where four or

more of the residues are identical or conservative substitutions.

The top three sequences are strongly related to each other, so too are the

lower three. The relationship between the two families is less certain, the

similarity between sequences R3EC2 and A30007 providing most evidence for

there being a valid link. This particular alignment was produce to help

investigation of a hypothesised link between protein disulphide isomerases, top

three sequences, and ribosomal sequences, lower three sequences (see Chapter

8). Multiple alignments present more detailed information about the

interrelationships between sequences than a pairwise alignment can. Individual

columns of a multiple alignment show the range of variation at a site, assuming

that is, that the multiple alignment correctly aligns residues that are in structurally

equivalent positions.

71

residues on the other side. This feature is also present in "Mase" and "Esee".

The editor "Alma" allows groups of sequences to be locked together.

Insertions or deletions in any one of these grouped sequences affects all sequences

in the group. In "Medal" locking together is done on a per residue basis. Such

residues are shown with a coloured background. Residues which are locked

together stay aligned whatever other changes are made. Residues which are

locked together move together whenever any shift, insertion or deletion moves

one of them. This system makes it possible for the sequences locked together to

vary from column to column. This approach is more general than whole sequence

locking. Photos in figures 6.3 and 6.4 shows residue locks in action. The lock on

residues can be set and removed easily by a single keypress. Also an automatic

scan can be made that puts in locks for all currently aligned residues of similar

type. Locks are also placed after automatic alignment.

"Mase" and "Homed" have more limited whole sequence locking than

"Alma". They are restricted to locking together groups that consist of all but one

of the sequences.

Assessment of editor features

The editor part of "Medal" demonstrates the advantages of using

computers of the PC kind rather than a mainframe for multiple sequence editing

work. In many ways the advantages parallel those of using a PC word processor

over a mainframe text editor, a faster screen update leading to more information

on the screen at one time and user friendly help and menu facilities.

Additionally the "Medal" editor introduces a new concepts to multiple

sequence editing; the locking together of sequences on a per-residue basis. The

features in "Medal" were largely influenced by use of the program in creating and

modifying multiple alignments. Using per-residue locks on their own was found

to be not entirely satisfactory as for larger alignments changes can involve setting

and resetting many such locks.

One option in "Medal" combined automatic placement and removal of bars

at the boundaries of regions of sequence conservation with locking together of the

similar sequences over the region of conservation. This was found to be confusing

to other users of the software. For the kinds of editing for which this option was

designed an alternative would be more useful. This would give the user

temporary locking together of any subset of sequences over a region delimited by

the bars. Existing residue loëks would still be active. Were there time to do so,

this alternative option would be added in place of the present option.

Sizes

Of the editors considered, "Medal" has the smallest capacity for sequences.

Max. number of

sequences

Max. sequence

length

"Lineup" 31 100,000+

"Homed" 50 10,240

"Mase" 100 10,000

"Esee" 21* 18,000*

"Alma" 300 60,000

"Medal" 21* 6,000*

Figure 61: Sequence capacities of various multiple sequence alignment
editors. Figures marked * are for programs on microcomputers. For
microcomputer programs the maximum size and maximum number of
sequences are 1101 available simultaneously.

Additional work would be needed to raise the number of sequences and

increase the maximum sequence length. Data compression techniques, as

described in Chapter 5, could be one way to achieve this. The alternative is to

make greater use of disk memory. Much larger datasets could be accommodated

by holding parts of the alignment not currently being displayed in disk memory.

Space could also be saved by making the automatic alignment process, currently

part of the "Medal" program, into a separate program.

Automatic alignment methods

Ideally an algorithm for automatic multiple alignment should find patterns

which do not show up when only pairs of sequences are compared. One approach

to this is a multidimensional extension of the Type I algorithm (Murata et al.

1985). Instead of a two dimensional path matrix, a K dimensional array, where

K is the number of sequences being aligned, is used. Each additional sequence

of length three hundred increases the workload three hundred fold. Whilst cutting

corners in the match matrix, that is calculating only elements near the main

diagonal, dramatically improves this situation, it brings with it a risk of missing

similarities when large insertions or deletions are required. Because of large

memory and time requirements, this direct approach has been limited to three

sequences.

Subsequent to Murata et al. 's work, a more sophisticated method for

restricting the volume explored in the multidimensional path matrix has been

developed (Lipman et al. 1989). The method uses an alternative formulation of

matching in terms of difference scores rather than similarity scores. The method

extends the multidimensional method to up to six sequences. Unlike conventional

corner cutting,the alignments this method finds are guaranteed to be optimally

scoring by the scoring scheme.

Close examination of the method suggests that the computational costs

grow very rapidly with increase in sequence dissimilarity, even where this is

confined to short local regions. Thus, the method is applicable to up to six

sequences only when the sequences have very high levels of similarity.

A problem which is noted in the paper is that the scoring strategy needs

adjustment where one subfamily is heavily represented in the set, otherwise the

alignment is determined by these sequences, being then an alignment to the

consensus for this subfamily. This adjustment involves a manual intervention to

identify clustering of related sequences.

Using exact matching

Some algorithms overcome the problem of computational demands by

using exactly matching words (Sobel & Martinez, 1986; Bains, 1986; Santibanez

& Rhode, 1987). These algorithms can be seen as multidimensional extensions

of the Wilbur & Lipman (1983) approach. These word based alignment methods

have the same advantages as the word based pairwise methods - simplicity and

ease of calculation. The methods suffer from the same problems as the pairwise

exact word based methods. That is, lack of sensitivity over amino acids of similar

properties, inability to cope with single mismatches in a region of good matching

and inability to deal with insertions.

A promising variant of the exact matching word methods removes the

restriction that the amino acids be contiguous (Roberts, 1990). The variant, as

currently implemented, only detects the interrupted similarities, the multiple

alignment being performed manually. Allowing broken similarities overcomes the

problem of single mismatching residues ruining an otherwise matching word and

preventing its detection. This idea is examined again in the addendum in the

context of database searching.

Alignment refinement

A technique used as an additional stage in a number of multiple alignment

strategies is called refinement (Bains, 1986; Barton & Sternberg, 1987; Hennecke,

1989). After the initial multiple alignment has been made, individual sequences

are removed one at a time and realigned against the remaining sequences. The

process stops after a preset number of cycles or when no further improvement in

alignment score is achieved. The technique will not correct very poorly aligned

sequences but can fix 'glitches' where one sequence is obviously Out of alignment

relative to the rest. A modified form of refinement, claimed to have some

advantages over the simpler form, removes and realigns groups of sequences

(Subbiah & Harrison, 1989).

Refinement is popular partly because it is a simple addition to a program

that already performs alignment of sequences to aligned sequences. A

disadvantage of refinement is that realignment is performed against a consensus,

RE

so the criticisms of comparisons using consensus given earlier in this chapter

apply. Refinement, as its name suggests, can improve patterns already detected

by the initial method, but it is unlikely to detect patterns that the initial method

does not find. If a particular shared pattern is not evident from the consensus,

for example if the shared pattern is found in only two of the sequences,

refinement does not help. If the initial method finds such pattern, refinement is

likely to lose the pattern again unless the weaker pattern is bounded by strongly

conserved patterns that do show in the consensus. Refinement was not used in

the alignment algorithm of "Medal".

Multiple alignment based on pairwise alignment

One of the most straightforward multiple alignment methods is based on

pairwise alignments. The method is due to Taylor. He compared results of this

method to those of multidimensional extensions of the NWS algorithms as follows:

"Reasonable multiple sequence alignment can be achieved by a
simple method. The results are equivalent to those obtained using a
complex algorithm that considers the sequences simultaneously during
alignment." (Taylor, 1987b)

Taylor built his multiple alignment using selected pairwise alignments. The

selection process required only a few pairwise comparisons. The method

considered addition of a new sequence to a multiple alignment of a few sequences

by pairing either to the first or last sequence. Results of this approach depend

on the order in which sequences are presented to the algorithm. This strategy

seems most appropriate for cases where the sequences represent various

intermediates between two extremes and are presented to the algorithm in an

order that reflects this.

The approach used by "Medal" adds one sequence at a time to a multiple

alignment, each time adding the new sequence most closely related to any

sequences in the alignment and aligning on this pair. This approach seems

appropriate to more arbitrary relationships between sequences than Taylor's and

includes Taylor's pattern of relationships as a special case. Moreover this

approach makes the alignment essentially independent of the order in which

sequences are presented to the algorithm.

Consensus alignment

Closely related techniques to "Medal's" are used in two other methods of

multiple alignment (Barton & Sternberg, 1987; Higgins & Sharp, 1989). Both

these methods perform all pairwise comparisons of the sequences to establish the

order of alignment. This frees the algorithms from dependence on the order in

which sequences are presented to them. For reasons of speed the programs use

the Wilbur-Lipman pairwise approach to perform all comparisons. The Type I

algorithm is then used in actual alignment.

The program of Barton and Sternberg differs from "Medal" in aligning each

new sequence to a consensus for the sequences aligned so far. This may give

better results if the sequence being .added is more similar to the consensus than

it is to any of the sequences in the alignment. This consensus strategy for forming

multiple alignments is inappropriate where the sequences show differing degrees

of pairwise similarity. In these cases the 'average sequence' is likely to be much

less similar to a given sequence than the most similar one of a set. This situation

frequently arises in practice. Sequences being aligned are often obtained from

closely and from more distantly related organisms.

Higgins and Sharp's "Clustal" program also uses consensuses. It

progressively aligns initially separated subfamilies of sequences. It combines

alignments by aligning pairs of consensus patterns. The problems of consensus

sequence alignment are less in this case. Because of the order in which

alignments are made, most patterns present only in subfamilies can be found

before the subfamilies are combined. In particular, anomalous patterns present

in just two of the sequences can be found. Anomalous shared patterns seen in

examining alignment by hand were nearly always present within subfamily groups.

Consequently "Medal" and "Clustal" should have very similar behaviour in most

cases. In exceptional cases such as the multiple alignment at the start of this

chapter, the link between the families is clearest from one pair of sequences.

Only in such cases would "Medal's" approach be expected to give superior results.

Equally there will be special cases where a clearer picture of similarity arises from

"Clustal's" approach.

Examining the different methods, we see that similar principles underlie

several different approaches. "Medal's" method can be seen as combining specific

elements of Taylor's and Barton and Sternberg's techniques to give similar

advantages to the "Clustal" method of Higgins and Sharp. In fact the relationship

of "Medal's" algorithm to "Clustal's" is closer than initially appears. In "Medal",

introducing sequences one sequence at a time is an algorithmic convenience. The

alignment "Medal" produces would be unchanged were it instead produced by

combining subfamily alignments basing alignment of these alignments on the most

similar pair of sequences in the two subfamilies.

Use of the Type III method in "Medal"

One motivation for developing "Medal" was to test the utility of the new

Type III software in practice. To perform the comparisons for clustering rapidly,

"Clustal" uses an approximate word based method. "Medal" is able to use the full

Type III algorithm, and performs the calculations faster as a result of the

optimisations to the implementation. The advantages of this in practice are slight.

The reason for performing these comparisons at all is to distinguish subfamilies

from each other. For this purpose, an approximate comparison method is as

satisfactory as the more extensive method.

In performing the pairwise alignments for the multiple alignment, "Medal's"

Type III alignment has some advantages over the Type I alignment used in other

programs. For closely related sequences the Type III 'best local homology

algorithm' aligns whole sequences and there is little difference between using Type

I and Type III alignment. For strongly and for less strongly related sequences, the

Type I algorithm forces alignment from end to end. Improvements in the

matching in unrelated regions may take precedence over the alignment of related

regions. In particular, an unmodified Type I alignment incurs penalties for

unmatched residues at ends of sequences and attempts to make the starts and

ends of sequences correspond. This problem has been addressed by modification

of the Type I algorithm to suppress penalties for the gaps at the ends of

sequences (Devereux et aL, 1989b). This modification allows one sequence to

terminate before the other without incurring a penalty. The local algorithm copes

with this problem without any modification. For Type III alignment, unmatched

residues at the ends of sequences lie outside the local region of alignment and

incur no penalty. As well as the case where one sequence is a truncated version

of the other, Type III alignment can also handle sequences that differ at their

extremities, a case which the modified Type I algorithm does not handle well.

Experience of multiple alignments made by hand indicates greater variability in

terminal sequences, so the ability of Type III alignment to handle this case is

important.

Recursive local alignment

A disadvantage in using the unmodified local method is that only one local

matching region will be found even if there are several. Additional local matching

regions are of interest to the biologist. Those regions compatible with regions

already found could be used to make a more complete alignment of the two

sequences.

The additional regions of similarity can be found by reanalysing the parts

of the sequence not included in the strongest local alignment. A recursive

sequence alignment method was developed following this principle. It was used

in "Medal" in place of the simpler Type III algorithm. The procedure finds the

best local region between two sequences, aligns these parts of the sequences and

then aligns the initial and terminal unaligned regions of the two sequences by

calling itself recursively. The recursion stops when the alignment score for two

sequence segments drops below a preset threshold chosen to correspond to

insignificant alignment, the value 70 being found suitable in practice. The method

is an advance on the Type I and Type III methods. It includes all the information

yielded by the Type III method because the Type III aligned region is one part

of the alignment formed by the recursive method. The method maintains the

advantage of the Type I algorithm that separated regions of matching are found.

A way to view the new pairwise method is that it handles two levels of

matching. It handles good matching in the local regions it aligns and poor

matching in the regions between. There is a natural biological rationale for doing

this. Over regions in the core of the protein, or in active sites in enzymes, a high

level of conservation of residues is expected. Changes in these locations will be

strongly selected against. Changes in the core are likely to radically change the

folding of the protein and changes in the active sites will change the activity.

Loops on the protein surface, on the other hand, are in general less constrained

and more likely to change. They are expected to be more tolerant of point

mutations and of changes in length. Structural considerations lead one to expect

a variation in variability along the length of a sequence. As discussed earlier in

this chapter, examining variation in variability is one reason for constructing

multiple alignments. The methods used in comparing sequences should take

account of such variation.

Comments on alignment methods

Multiple sequence alignment algorithms are an active area of current

research. As with pairwise comparison, nearly all multiple sequence alignment

methods produce reasonable answers when the similarities are strong and poorer

results with weaker similarities. Given the current state of development of

automatic multiple sequence alignment software, a combination of automatic and

manual methods is, and is likely to continue to be for the near future, the best

method for aligning weakly related sequences. Experience from this can then help

guide the design of new algorithms. For weakly related sequences, "Medal's"

automatic method produces reasonable alignments. These are best regarded as

starting alignments for refinement by hand.

Use of the new computer tools

The software for producing multiple alignments was used to examine

around 50 sequence families. This work was predominantly with sequences

grouped by the total database comparison program (Chapter 7) and included

some of the most tenuous relationships. The main observation of importance was

the already remarked on frequent presence of islands of good matching separated

by regions of poor matching. It is this which lead to the recursive alignment

strategy. In the sample alignment at the start of this chapter the island patterns

'APKIF', 'KTHIL' and 'KGKJLFV' show strong matching. The regions between

have a low level of similarity. Other observations concerned changes in sequence

length and repeated subsequences.

Insertions

A frequent occurrence in sequence families is of inserted sequence in one

or a few of the sequences. The top two sequence fragments shown in the

alignment below are from different dihydrolipoamide dehydrogenases and the

lower two from glutathione reductase and mercuric (III) reductase:

RDHUU 	: TAP. . HIL IATGGMP
DHDL$YEAST : TVKEDHILDVKNIIVATGSEV
RDPSHA 	: VVMFDRCL VATGASP
RDEBHA 	: VVAFDRCL IATGASP

Direct repeat

In this example from the AIDS HTLV-III virus coat protein, the inserted

sequence is an exact repeat of prior sequence. The coat protein has a number of

known highly variable repeat regions of which this is one (Stavich et al., 1986).

In isolate BH10 the exact repeat of 'FNSTW' corresponds to an exact repeat at

the DNA level.

BH10 : CNSTQLFNsTwFNSTWSTKGSNNTEGsD
ARV2 : CNTTQLFNNTW 	RLNHTEGTK
HAT3 : CNTTQLFNSTWN 	STEGSNNTGGND

Interestingly in BH10, upstream of the repeat, the sequence 'NST' that occurs in

the insert 'FNSTW' is found once again. The repeated 'VK' in the yeast sequence

in the previous multiple alignment might conceivably be a remnant of a

duplication of this kind.

For the AIDS virus, a finer repeat which does not show at the amino acid

level can be hypothesised. The threefold DNA repeat 'aactc aactc aactc' could

have given rise to the sequence 'NSTQL'. The actual DNA sequence has the

pattern 'aattc aacac aagtg' and the weaker repetition is not strong enough to

support the hypothesis that finer scale repetitions are related to longer scale ones.

Repeat in initial sequence

In many examples of sequences that were compared by multiple alignment

it was found that the proteins shared a region of strong similarity and showed

most dissimilarity at their termini. Towards the ends of the proteins lower levels

of amino acid matching were frequently accompanied by length changes.

This example and the next example come from a family of nbonucleotide

reductase small subunits. Two of these sequences were about 100 residues longer

than other small subunit proteins considered. The alignment shown below is

within the initial additional residues of the two sequences:

**** 	• * 	•**.
MUSSU : SKAARRIFQDSAELEsKA
YSTSStJ : SKAAADALSDLEIKDSKS

The sequence similarity shown here is far weaker than in the main part of the

alignment. Moreover, the pattern shown occurs at different positions in the initial

sequences. In MUSSU the pattern is 60 residues further from the start of the

protein than it is in YSTSSU. This pattern is not found by the Type I pairwise

alignment algorithm nor by unmodified Type III alignment. For both these

algorithms the penalty for the large gap of 60 residues more than outweighs the

potential to increase score. Nor, unfortunately, does the modified Type III

algorithm find this region since the match scores below the preset threshold at

which recursion stops. In fact, this region of similarity was found by eye, using the

editor to move the sequences relative to each other to bring short patterns into

alignment.

For these two sequences there is some evidence that the initial sequence

has biases in sequence not present in the main sequence. For example, elsewhere

in the YSTSSU initial sequence, the tetrapeptidess 'SKDA' and 'ELET' occur.

These show similarity to the sequences 'SKAA' and 'ELES' in the region of the

MUSSU sequence shown here. These repetitions in the leader sequences may be

due either to mutational processes causing repetitions in the DNA or to a

selective pressure for specific short patterns.

Pattern movement

This example illustrates how alignments are selective in the patterns of

similarity which they can show. The pattern in EBVSSU at position one would

line up better against HSVSSU and VZVSSU in position two than does the

pattern actually in that position. However, this would disrupt the strong matching

between position one and two, and the position shown is better. Nevertheless the

possibility of an alternative position is of interest.

1 	 2
C. NNY. 	 C. NNY. * * ***** ** * 	** 	*

EBVSSU : CLANNYI SRDELLHTRAASLLYNSMTAKADRP
HSVSSU : CQSNDLI SRDEAVHTTASCYIYNNYLGDHAKP
VZVSSU 	: CQFNDLISRDEAIHTSASCCIYNNYVP. .EKP

Possibly the two sites either side of the strongly conserved region of

matching have similar functions.

Concluding remarks

Currently, for smaller sequence alignments, microcomputers seem to

provide a better vehicle for multiple sequence editor software than mainframe

computers. This is principally because microcomputers permit a more interactive

user interface than mainframes do.

Use of the "Medal" program shaped the design of its user interface. Use

of "Medal" in the study of many alignments motivated the development of

interface software to simplify formation of a new alignment. Use by other

researchers motivated provision of on line help information integrated with the

command menus.

Experience in manual editing of alignments lead to the recursive local

alignment method for pairwise alignment that aligns separated islands of good

matching without forcing the entire sequences to align.

Examination and manual adjustment of many alignments drew attention to

small repetitions in proteins associated with higher variability. Such features of

sequences pose problems which methods for alignment must tackle. Possibly

recognition of repetition within the comparison algorithm will be important to

91

future automatic methods. Automatic recognition of correlations in sequence

variability and repetition would also be of potential interest to biologists.

92

Chapter 7: Comprehensive Database
Analysis

Organisation of sequence data

In the PIR database each protein sequence is annotated as belonging to

a sequence superfamily, family and subfamily. These groupings perform an

important function in organising the information. Organising the relationships

between sequences is crucial to the understanding of biological sequence data.

New methods for organising the sequence data are being developed.

Multiple sequence alignments, as examined in the previous chapter, are central

to the proposed methods:

"Because of the importance of alignments to the study of protein
sequences, the organisation of the Protein Sequence Database is being
redesigned so that its fundamental structure will include alignments of
related sequences. The current superfamily organization will be replaced by
one based on alignments, i.e., each alignment will define a set of related
sequences or subsequences." (Barker et aL, 1990)

The new organisation of data will include information about shared

patterns in the sequences. The 'Prosite' motif directory (Bairoch, 1989a) discussed

in Chapter 4, represents one step in this direction. It relied on published

knowledge about families and shared pattern in proteins.

A complementary approach is comprehensive computer analysis of the

databases to automatically organise the data. Comprehensive sensitive

comparison may be able to uncover previously overlooked patterns of similarity.

The task of comparing all pairs of proteins in a database is several thousand times

more computationally demanding than the comparison of a single sequence

against a database discussed in Chapter 4.

93

Comprehensive pairwise comparison

To perform large numbers of sensitive protein sequence comparisons

rapidly one group has implemented the Type III algorithm on an exceptionally

powerful computer (Jones et al., 1990). The Connection Machine (Thinking

Machine Corporation, Cambridge, MA. 02142-1214), a supercomputer with a cost

of several million dollars, was used to perform comprehensive comparison of all

pairs of proteins in a test database of 200 proteins. With this software Jones et

al. have investigated the use of different parameters in searching. This work is

continuing. They are also currently working on scaling the search up to perform

50,000,000 sequence comparisons for a less restricted database.

Methods and data used in comprehensive search

The approach adopted in this work has in common with 	Jones et al. '5

approach use of the Type III algorithm and the comparison of all sequence pairs

in a database. Rather than using a supercomputer, the new rapid implementation

of the Type III algorithm was used. This made it feasible to do the analysis on

a microcomputer. The Dayhoff 100 PAM matrix was used for scoring. Choice

of this value was based on experience of single searches using "Prosrch" at the

Edinburgh Biocomputing Research Unit. Experience shows that a choice of 100

PAMs and an indel penalty of 14, rather than the more usual 250 PAMs, gives

better general performance (J.F. Collins, ICMB Edinburgh, personal

communication).

An indel penalty of 10 rather than 14 was used. Whilst this made the

alignment process less rapid, it had two advantages. Firstly, it exploited a key

aspect of the Type III algorithm, the ability to accommodate gaps, to the full.

Secondly, use of a higher indel penalty can only decrease the score for an

alignment. If required, significant results for some higher indel penalty could be

determined by re-examining only high scoring results obtained at the low indel

penalty. To change indel penalty in the other direction would require

recomputation of all comparisons.

In this work the 'PSeqip' 1987 compilation database containing versions of

94

the protein databases Swiss-prot, EMBL and translations of open reading frames

from the DNA database Genbank was used (Claverie & Sauvaget, 1985). The

PSeqip' database contained 8117 proteins, a total of 2,500,000 residues. At the

time the decision to use the 'PSeqip' database was made, many open reading

frames from DNA sequences were not being included in the other protein

databases.

Two factors make the database analysis that was performed less useful than

would be desirable. Firstly, more up-to-date databases exist. Ideally, the analysis

should be repeated with a more recent database. Using the older database, many

of the unidentified genes which showed similarity to known genes may now have

been identified. For an up-to-date database such similarities would have current

relevance.

A second reason to repeat the analysis concerns a problem caused by

memory limitations. This affected .comparison of sequences longer than 1000

residues. These longer protein sequences were mostly viral polyproteins. They

were only compared with sequences that were shorter than 1000 residues in length

and prior to them in the database order. The comparisons of proteins shorter

than 1000 residues were, however, comprehensive. This problem, a result of

memory restrictions in the comparison algorithm, was subsequently removed but

the additional comparisons have not been made.

Need for analysis methods

The production of scores for similarity between pairs of proteins solves just

one part of the analysis problem. For a comprehensive search to be of biological

use, methods for analysis of the results must be developed. Whether previously

unsuspected similarities are found or not, an analysis of the results is vital to

casting light on the value and limitations of the Type III algorithm and on the

comprehensive comparison approach. A database of 8000 proteins generates

32,000,000 pairwise comparison scores. Methods were needed to winnow the

comparison results to find unexpected sequence similarities likely to be of

biological interest.

95

Coarse searching

Before performing the comprehensive set of comparisons it was decided

to make a coarse rapid pairwise comparisons of proteins in the database (see

Chapter 5 for computing methods). This data was to act as a reference set of

known similarities.

The similarities found by this coarse method were of sufficiently marked

strength that any reasonably sensitive method should find them. Examination of

the collection of similarities confirmed that no previously unsuspected similarities

were contained in it. Most of the strong similarities were between variants of

proteins having the same function, for example, equivalent proteins from different

organisms. Pairs of equivalent proteins exhibited extensive regions of high

similarity, typically 70% amino acid identity or more. Other similarities found by

the method were also already known. These included more local regions of high

similarity in proteins which had virtually identical functional domains in common.

This collection was now ready to act as a reference data set of known similarities.

Similarities found by the more sensitive search could be automatically

checked against this set to exclude known similarities from further consideration.

It was hoped that this would bring previously unsuspected similarities to light.

Actual use of coarse method

Generation of the coarse similarities data provided a rapid and thorough

test for the framework to support comprehensive comparison. The framework

included software to cache data from disk and to allow suspension and resumption

of the search. The former enhanced speed, the latter was essential for extended

running. It was estimated that the sensitive search would take two months to

complete its run running on a 16Mhz IBM PC.

After the coarse search had been completed the new Type III algorithm

was installed in its place. The reference collection of known similarities now acted

as a convenient dataset for further development work on analysis methods.

During the day, software for analysis of results was developed using the coarse

dataset. During the night, the more sensitive sequence comparison algorithm was

at work producing an improved dataset.

In fact, the reference dataset was never used in the manner originally

intended. The development of analysis software and methods lead to an

alternative method that organised the search results. This promised to be

superior in bringing to light previously unsuspected similarities than using the

coarse dataset to filter out known results. A program was written to implement

this data reorganisation. The results of the comprehensive comparison were

available after nearly fifty days of calculation.

Reduction of the similarity data

Some of the data reduction problems presented by a comprehensive

database comparison can be illustrated by reconsidering how a biologist looks at

the results of a single database search with one protein query sequence.

Visual inspection of an alignment in a list of results may show that it comes

from a region of unusual composition. Biologists examining the list may choose

to downgrade these similarities. They will pay less attention to similarities that are

already known and well understood. They will mentally group results which are

biologically related, matches of their query to sets of viral proteins or to receptor

proteins. They will do this even where the matching proteins do not occur

together in the database or in the results list. For routine searching this manual

analysis is acceptable. The computer has selected a few tens of sequences that

may repay closer examination from the database of thousands. With results of

this kind for every sequence in the database, rather than for just one query, an

alternative procedure is essential.

In particular, automatic ways to group results and to present information

about links between these groups are needed. Use of the strategy for single

searches would lead to an overwhelming task of manual analysis. Consideration

of two natural ways to filter out less informative results shows up some of the

specific problems in data reduction.

97

Reduction by threshold

One way to reduce the volume of results presented is to modify the single

query method. First the results are sorted by score. Only the best of these

results, those comparisons seoring above some selected threshold, are presented.

When this method is applied to comprehensive comparison, larger families of

related proteins dominate the output. These are similarities the biologist already

knows about. Each family produces a number of high-scoring results proportional

to the square of the family size. The haemoglobin family of around 430 proteins

produces 80,000 high-scoring comparison results. None of these results come as

any surprise. Unfortunately,a simple threshold must be set low enough to report

them all, otherwise other biologically significant results will be lost. There is no

question that the similarities within a known family exhibit evidence for

biologically significant relationships. The problem is that the similarities are

known already. Moreover any sequence showing similarity to a single member of

a family is likely to show similarity to all members of the family. After the best

of these similarities has been reported additional similarities to the other members

of the family come as no surprise. The problem is the reporting of essentially the

same results many times over.

Reduction by 'best choice only'

An alternative strategy to the threshold method reports only the best

similarity for each protein. This produces substantially fewer results than the

threshold method. With this method at most 430 results are reported for the

haemoglobin-haemoglobin similarities, a 200 fold reduction. This approach gives

a very drastic data reduction. Every myoglobin sequence is most closely related

to other myoglobins. Every haemoglobin has its strongest similarity to another

haemoglobin. The strategy would totally fail to show any link between

myoglobins and haemoglobins, yet there is unquestionably a biologically significant

sequence similarity between the two families. This similarity would have been

detected in the search and would have been removed by the 'best choice' method

of reduction. This method fails to find significant links between families.

Reduction using the reference set

As was originally intended, the reference dataset of similarities could have

been used to define groups. Multiple similarities of sequences between these

groups could then be reported once only. To a limited extent this would still

result in multiple reports. These would arise when groups of sequences were

similar by the criteria of the more sensitive search but were not similar enough to

be grouped together on the basis of the crude search.

Tree based reduction

The reduction strategy developed for this work discarded a large number

of links between proteins. It found a maximally scoring tree using the scores

linking the proteins. Any link between two families that was kept was the best

link between members of those two families. This follows from the tree being

maximally scoring. Were a better scoring link between families available,

replacement of the inferior link by the superior one would lead to a tree with a

higher overall score. The tree property ensures data reduction. Any subset of n

proteins have at most n-i links between them in the tree.

The maximal scoring tree can be produced using a 'greedy' algorithm

(Bollobas, 1979). Links are introduced one at a time between initially separate

proteins. As links are added clusters aggregate. At each stage the highest scoring

link which links two separate clusters is added.

None of the difficulties previously mentioned is a problem with this data

reduction. For a family of 430 globins, 429 links are kept. On the other hand if

the non-haemoglobin sequence that is most closely related to a haemoglobin

sequence is a myoglobin, then the method guarantees that this link between

haemoglobin and myoglobin families will be kept in the maximal scoring tree.

The method groups proteins together, but it does so simultaneously for

each level of similarity. Because of this, information about groupings within each

family is preserved as well as information about links between families.

Although not sufficient on its own, use of a threshold was important in the

tree based reduction method. Using a threshold permitted an economy to be

made in tree formation. Links with scores too low to give reasonable evidence for

relatedness were discarded. In a search of this size scores below 100 readily arise

from chance matching. Links scoring less than 100 were not included in the tree

building.

Reducing the data by forming a maximal scoring tree is not a method

suitable for forming phylogenetic trees that reflect evolutionary relationships. For

such purposes methods of tree construction based on 'maximum parsimony' are

popular. In this work we do not assert that the trees represent the historical

process leading to the similarities. We require only a presentation of information

about similarities in a condensed form. The maximal scoring tree does this. The

maximum parsimony methods solve a different problem. Whilst the maximal

scoring tree to link many thousands of proteins can be computed rapidly, rigorous

maximum parsimony methods are by contrast impractical for more than ten

proteins (Hem, 1989).

Tree formation

The construction method that was described for forming the maximal

scoring tree required that individual links be introduced in order of score. A

variation on the algorithm which forms the same tree introduces the links in any

order. Each link that is introduced may complete a cycle of links. If so, the least

scoring link in the cycle is removed. It can be shown that:

• Maximally scoring tree
• Sequential introduction of best link between clusters
• Addition of links followed by cycle breaking

all give the same tree. The third formulation is ideally suited to implementation

on a machine with limited memory capacity such as the PC. This is the algorithm

that was used. Sorting of the linking data prior to tree formation would have

been problematic. The linking data, which had been written out to disk, took up

20Mb of disk space; considerably more space than was available in main memory.

One step in the variant algorithm was detection of cycles. Detection of the

100

cycles potentially involved a time consuming operation. It might have been

necessary to search most of the tree to detect each new cycle. This was avoided

by working with a rooted tree. All links in the tree were given a direction. A

'rooted tree' has the property that following links sequentially always leads to the

same root node. Initially the tree was set up with dummy links all pointing to one

root node, each with a score of zero.

By using rooted trees only some nodes of the tree needed to be searched

when a new link was added to link two nodes. The nodes examined lay on the

sequential paths from the added link towards the root. These paths converged at

some node, possibly at the root. As soon as a node common to both paths was

found, a cycle had been detected. The least scoring link in the cycle was then

removed. Removal of the least scoring link could require reversal of direction of

some of the links in one of the paths in order to ensure that the tree stayed

rooted. These searching and path reversal operations took time proportional to

the length of the paths, which was in approximately logarithmic relation to the

tree size.

The method presented here for coping with large sets of linking data and

small available memory are minor adaptations of standard techniques in

Computer Science. Whilst searching for relevant references for the techniques

described here, the problem of tree formation from linking data held in external

storage was found set as an exercise at the end of a chapter presenting tree

algorithms (Mo, 1983). The hints with the exercise suggested addition of links

followed by cycle breaking but not the method for detecting cycles.

Examining results

To examine the similarities represented by results held in the tree a

program for 'browsing' the tree was written. This showed the alignment for any

link and a dotplot for comparison of the two proteins connected by the link (see

Appendix 1 for a discussion of dotplots). Choice of proteins was provided by

direct selection or by movements up and down the tree hierarchy and between

'siblings' under a particular parent node. At any time the tree below a currently

selected node could be displayed graphically.

101

The display of the branching structure of larger trees, whilst pretty, was of

little use. The most useful aspect of the program was the combination of

alignment and dotplot. This helped in checking the validity of links within the

trees. Repetition and additional regions of similarity not found in locating the

single best region for the alignment showed up particularly clearly on the dotplots.

The most useful method of all for examining the reduced trees was found

to be printed output for small subtrees. This was non graphical. It consisted of

lists of proteins within the subtrees, optionally with alignments. The threshold of

100 split the main tree into subtrees. These subtrees contained a mixture of weak

and strong evidence for relatedness. A score above 200 provides very strong

evidence for a relationship between two proteins. A threshold of 200 was used

to further fragment the trees. Subtrees at the 200 threshold, that is subtrees in

which all links were above 200 in score, represented strong family groups. The

links scoring between 100 and 200 also formed a collection of subtrees. These

represented 'linking data', the links between families. In both sets most of these

subtrees contained twenty or fewer sequences. For small trees such as these,

listing the sequence names, the links and the scores gave a clear picture of the

relationships.

--Link-- Score Code name
1117->1108: 213 BSUSPOIIGP1
1108->1107: 275 BSURPOFP1
6978->1428: 277 SRPOD$ECOLI
5444->1107: 436 SHTPRSECOLI
1107->1428: 443 BSURPODP1
1429->1428: 2440 ECOHTPRRPI
1428-> 0: ECOHTPRP1

------Family

Arranged as a tree:

FuLL name (and species)
Sporulation protein. (B.subtilis)
37 KD minor sigma factor. (B.subtilis)
DNA-directed RNA polymerase sigma chain. (E.coli)
Heat shock regulatory protein. (E.coli)
RNA polymerase sigma-43 factor. (B.subtilis)
F33.4 heat shock regulatory protein. (E.coli)
Heat shock regulatory protein. (E.coLi)

74 of 813---

BSUSPOIIGP1

BSURPOFP1 	SHTPR$ECOLI

ECOHTPRRP1 	BSTJRPODP1 	SRPOD$ECOLI

EC HTPRP1

102

Printed output was made of the families, the subdivisions and the linking

data. A cross reference index was printed so that any protein in the lists could

readily be found. The number of subtrees for the 200+ and 100-200 collections

are shown below:

Strong similarities: 	Score 200+

813 family groups I 	6221 proteins

Weaker similarities: Score 100-200

720 linking families I 	2145 proteins

Note that some proteins occurred in both collections.

The tree construction method did not use prior assumptions about what

protein families were in the database. It used instead the evidence given by the

scores. The method of subdivision kept this information. Scores within the

subtrees and scores linking the subtrees were presented. The subdivisions were

simply a convenient way of presenting the tree data. All of the links in the tree

were shown.

Larger protein families - problems.

Larger subtrees, these being exclusively in the 200+ collection, were dealt

with by increasing the threshold once again. Increasing the threshold split these

subtrees into smaller trees and produced additional sets of linking data.

One of the largest family groups contained 619 proteins. Nearly all of

these were immunoglobulins. Raising the threshold to 400 split the family into
cU,cr

fifteen smaller families separating, for example, gamma andb heavy chain

immunoglobulins from lambda and kappa chain. This pulled out as a separate

class the class II histocompatibility antigen t4s. These were linked with the

immunoglobulin heavy chain constant region because a human precursor

contained both parts. This large immunoglobulin family was relatively easy to

resolve.

The largest and most difficult class to separate contained 653 sequences.

103

These were viral polyproteins, their components and related proteins. The related

proteins included cell division control proteins, hormone receptor proteins, RNA

polymerases and proteases. The proteases of the viral genome cleave the

polyprotein into its components. There were also repetitive fibrous proteins in

this 653 sequence class; actins, keratins, collagens and myosins. This composite

family required three threshold shifts to split it into sufficiently small or sufficiently

homogeneous classes.

Polyprotein problem

The splitting of the largest high scoring family into manageable subfamilies

illustrates a more general problem. This concerned the polyprotein and fusion

proteins. Both polyproteins and fusion proteins are composite proteins, each

component being a functional protein in its own right. Polyproteins are processed

subsequent to synthesis to yield the separate protein components, whereas the

components of fusion proteins stay joined. An example of a fusion protein was

'dihydrofolate reductase - thymidilate synthase'. This acted as a link between the

dihydrofolate reductase and thymidilate synthase families causing them to be

grouped as one. The linking of the families does not reflect a similarity between

the dihydrofolate reductase and thymidilate synthase families. In this case the

families joined were small and it was easy to see the artificial nature of the join.

The polyprotein problem had its most serious effects with the viral polyproteins.

Since these contained up to six individual proteins, the linking of families together

which they caused was not surprising. This was compounded by the fact that

viruses have scavenged the actin sequence from a host. This added a particularly

large family into the collection.

Biased protein problem

Spurious links between families can also arise from biased composition of

the protein sequences. The cysteine/glycine rich proteins, human metallothionein-

IF and wheat agglutinin have a high pairwise similarity score which reflects their

unusual composition rather than similarity in pattern. There are many indels in

the alignment and little evidence for the cysteines in the different families having

104

similar spacing. Whilst there may be some deeper reason explaining their similar

composition, such as the need for a highly disulphide bond cross-linked structure,

there is less compelling evidence for relatedness than the scores for such

similarities suggest.

Spurious links

The number of spurious links between families caused by these two

problems was small enough that manual detection was acceptable. However,

because of the method of data reduction, each such link between two families

potentially obscures one genuine link between the two families. Thus, were there

a weak similarity between some dihydrofolate reductase gene and some

thymidilate synthase gene, it would not have been found by this method.

One way round the problem of spurious links potentially obscuring other

links would have been to remove the proteins causing the problem. New links

might have been found by removing the biased proteins and the polyproteins, and

forming the tree afresh using the existing similarity data. Better still would have

been subdivision of the polyproteins into their separate components and

subdivision of biased proteins into biased and unbiased sections followed by a

repeated search with these component pieces. This was not done. There were

sufficiently many similarities to follow up as it was.

Known similarities

In many families the names clearly indicated that the proteins grouped

together were simply variants of the protein found in different organisms and that

the similarity in sequence and function were known.

Sometimes variations in the naming made this less obvious. One less

obvious pair was pyruvate oxidase and acetolactate synthase which represent

alternative views of the same chemical reaction. Another pair of sequences with

strong similarity were N-acetyl neuraminate lyase (EC 4.2.1.52) and

dihydrodipicolinate synthetase (EC 4.1.3.3). The EC numbers refer to a

hierarchical enzyme classification scheme and indicate substantially different

catalytic activities. The synthetase has pyruvate as a substrate, the lyase as a

105

reaction product. Since both must bind pyruvate, the similarity in structure is not

particularly surprising. Although the similarity was not mentioned in the 'PSeqip'

database annotations, it was later found to have been noted in the PIR database.

Both proteins belong to the same protein superfamily. These kind of matches

prevent a totally automatic elimination of known similarities based on the protein

names alone.

Many similarities between variously named hormone peptides and hormone

containing proteins were also found, e.g. one family contained folitropin,

luteinizing hormone, pituitary glycoprotein and gonadotropin. Also there were

groups of plant toxins and animal toxins which show similarity but which have

names that do not immediately indicate that the similarity is known. It is very

likely that these similarities are known. They are in any case not particularly

surprising. Such similarities were not taken further.

Removing uninformative similarities

Others proteins grouped together that were not of immediate interest

represented similarities amongst proteins for which a function was not known.

Proteins of unknown function were named variously as unidentified, hypothetical

protein and open reading frame. A group of proteins of unidentified function and

unusual name were the 'huey', 'duey' and 'louie' mystery proteins from

D. melanogaster. These lined up against a yeast maltase. This find has been

discovered independently and reported in the literature (Heinikoff, 1988). More

recent databases, e.g. PIR 26, label these proteins as hypothetical maltases.

Similarities mentioned in the annotations

For each similarity that was not obvious by name and for which the

similarity held up after examination of the alignment, the next step was to retrieve

the annotation information describing the protein. This stage used the search

facility within a text editor "Vecce" on a mainframe computer, emas, which held

the annotation data file. For some proteins the unexpected similarity was

mentioned in the annotation. For others, the fuller description explained cryptic

alternative descriptions for the same protein. These 'finds' could then be

106

eliminated. As the annotations file contained several megabytes of data the

searching process proved to be slow and cumbersome.

To help with the task of finding similarities mentioned in the textual

annotations the Unix utility 'grep' was used to search for the word 'like' and words

starting with 'similar' and 'homolog' in the annotations. This generated a list of

proteins whose names alone do not suggest that there is similarity between them,

but for which similarity is known. This search was done on the PIR 23 database

which was more up-to-date than the 'PSeqip' database.

A faster method for checking in the annotation file entries was still needed.

The description of the protein sequences' functions needed to be read, and, where

pairs were not obviously related, the references to the literature followed up. The

best software available for examining sequence annotation entries was the "Psq"

program from the National Biomedical Research Foundation (George et aL, 1986)

which ran on a VAX computer. Although this program worked only with the PIR

databases the 'PSeqip' database could have been converted to this format.

Unfortunately space problems on the VAX computer meant that it could not

accommodate the database. Transfer of the 'Psq" program onto emas would have

involved major rewriting to the program. "Psq" makes extensive use of lexical

functions which are specific to VAX computers.

Instead, an annotation file cross reference program "Xref' was written

which had additional features to facilitate this kind of work. "Xref' had a front

end very similar to a text editor. It had the ability to browse through but not to

change a file containing results of searches. It recognised within any textual file

protein sequence identifiers preceded by a'>'. At any position within the results

file, a display of the appropriate sequence annotation entry could be selected. An

index file was used to locate the annotations rapidly. The sequence annotation

entries, where these were longer than a screenful, could also be browsed through

and optionally appended to an output file for later printing.

This program was designed to also be of use in conjunction with files of

results produced by searches using "Prosrch". For this use a feature was added

that permitted filtering of the display so that only a selected number of lines after

each sequence identifier were displayed. The hundred or so "Prosrch" results

107

from a typical search could then be shown at several levels of detail ranging from

names alone in order of score, to full display with names, score information and

alignments.

For routine use with "Prosrch", "Xref' made checking annotations simpler

and more rapid than it would have been with "Psq". The checking could be done

on screen from a display of the output file, with a minimum of keystrokes. For

use with output from the comprehensive search, a program such as "Xref' was

almost essential. Issues of software portability concerning "Xref'are discussed in

Chapter 5.

The paper chase

Where the annotation did not reveal that the similarity was known, the next

step was to consult literature, taking as a starting point the references cited in the

annotations.

This process proved less straightforward than expected. An extreme

example of this concerned the bacterial 'host specificity of nodulation' protein

'hsnC'. This protein is one of several essential for the symbiotic interaction of

plants and nitrogen fixing bacteria. For a review, see Quispel (1988). HsnC

showed similarity to glucose dehydrogenase. The annotations gave references to

the papers in which each of these proteins was first presented (Horvath et al.,

1986; Jany, 1984). The paper presenting the hsnC sequence postdated the glucose

dehydrogenase paper. It seemed that the similarity might not previously have

been discovered:

The sequences of the hsn gene products were compared to those
of other proteins from the GenBank(USA) and from the EMBL data library
(Heidelberg). The only homology of any significance was found between
hsnA and the acyl carrier protein (AC?) of E. coli. "(Horvath et al., 1986)

Further investigation of whether similarity had subsequently been noted

involved listing papers citing each of the two papers using science citations indices

for all years subsequent to publication. A paper noting the similarity would be

likely to cite both of the primary references.

The paper with the hsnC sequence also concerned three other genes from

a region of the genome that is of intense research interest. Consequently large

numbers of papers cited this paper though many did not refer to the gene hsnC.

No paper cited both references. One of the papers (Surin & Downie, 1988) for

hsnC also cited another research group. This group determined essentially the

same sequence (Debelle & Sharma, 1986). Unlike the research group cited in the

database entry, these researchers had noted the similarity of hsnC to ribitol

dehydrogenase, an analogous enzyme to glucose dehydrogenase, at the time that

they presented their sequence. They had interpreted the similarity in terms of

interactions of the bacterium with the plant cell wall.

Two observations were made from this specific example that raise issues

a more automated process of literature searching would need to address. Firstly

the protein hsnC was entered in the database as 'host specificity of modulation

protein', a mistake corrected in later databases. Secondly there was a change of

nomenclature subsequent to the discovery of the hsn genes. 'hsnC' was renamed

to 'nodG'. This would make a text or keyword based search more problematic.

(see also Appendix 1 for discussion of keyword searching).

Concluding remarks

Results scoring greater than 200 generally had alignments giving strong

evidence for relatedness. The main exception involved protein whose composition

was heavily biased. In such cases scores reflected bias in sequence rather than

similarity in sequence pattern. All initially surprising results at this high level of

similarity were at some stage found to be known already though similarities to

unidentified proteins and between hormones and between some toxins were not

followed up. The similarities scoring less than 200 are considered in the next

chapter.

The tree reduction method provided an effective way to reduce the volume

of data to examine. The tools for browsing the results, particularly the sequence

annotations browser "Xref', were essential to analysis of the computer searches'

results. This software tool is also useful in examination of results from single

database searches. Issues addressed in this chapter may also be of importance in

searches of databases with newly determined sequences. One such is the

F U1

automatic grouping of related sequences. This was crucial in this work. Similar

techniques could also be useful in presenting results from single searches.

110

Chapter 8: Twilight Zone Similarities

Perhaps it is not surprising that the strongest similarities found by the

database search were already known. This chapter concerns weaker similarities

whose scores are at the boundary between signal and noise, the 'Twilight zone' for

sequence comparison (Doolittle, 1990). Similarities discussed in this chapter score

between 100 and 200. Except where clearly stated otherwise, the alignments

presented in this chapter show similarities that seem not to have been previously

noted. None of these new similarities are mentioned in the sequence annotations

nor do the family designations as allocated by NBRF, where these sequences are

present in the PIR 23 database, indicate a known relationship. Fully establishing

that a similarity has not previously been noted is not really possible. Amongst

papers concerning the proteins involved in the strong similarities a paper was

always found which mentioned the similarity. This was rarely so for the weaker

similarities. The similarities thus do seem to be not previously noted ones.

Given the large number of weak similarities, there was felt to be little to

be gained by following up the weak similarities which did not seem particularly

surprising. For example, there was a weak similarity (score 103) between myo-

inositol-binding protein and D-galactose-binding protein. The similarity was

weaker than would normally be considered as evidence for relatedness. There

were only 12 identities in a stretch of 36 residues. Even if further comparison

work could strengthen the confidence in the match, for example by finding

additional regions of matching, the known activities of the two proteins are

sufficiently similar that merely establishing a connection would add little to

biological knowledge.

Similarities in the weaker list, not unexpectedly, include additional

examples of ATP binding domains, additional NADH binding domains and more

examples of homeobox sequences - families that are clearly present at higher

levels of similarity. It is not absolutely clear that every one of these weaker

echoes has been previously noted. Examples of sequences containing such

111

patterns are sometimes collected by searching using derived patterns. Using

derived patterns captures an 'average' pattern, whereas a new member of a family

may be closest to an outlier in the known family - a case which tree reduction

catches well.

The weaker similarities had a lower proportion of groups where the

similarity was obvious from the name than did the high scoring ones. Similarities

that were not surprising and ones which seemed to arise from biased composition

in the sequences were crossed off the computer output. This still left a large

number of unexplained weak similarities. A disadvantage of a sensitive search is

exposed here. It is not clear how much evidence for relatedness weaker

similarities provide. This is where it would be helpful to have some method that

measures how much evidence for a genuine relationship a particular score gives.

In measuring significance it is important to take into account the large number of

comparisons made in comparing all pairs of sequences in the database.

Scores to significances

A direct interpretation of the Dayhoff scores as logarithms of odds gives

a rough guide to likelihoods of chance matching. A pair of words with Dayhoff

score 45- has odds 32000:1 of being signal rather than noise since 10 x Log (32000)

= 45. The factor of 10 arises because of the scaling of the score table (Chapter

3). This figure relates to a single comparison of two fixed length words.

Odds have to be 10000:1 or better in favour of a match being signal rather

than noise for a 'find' made in 10000 comparisons of fixed length words to begin

to be significant. This level of odds would be appropriate for regarding a find

made in two sequences of length 100 amino acids as significant since roughly

10000 word comparisons would be made.

The number of comparisons made between word pairs when a sequence

is compared to a database is approximately the product of the database and

sequence lengths. If comparing words from a query sequence of length 490.

against a database of size 3,000JJOO then 490 x 3,000,000 word comparisons are

made. A word match with a score of:

10 x Log (490 x 3,000,000) = 92

112

is then as likely to be from a sequence related at the selected evolutionary

distance as it is to be fortuitous. 92 is the 'break even' score for a single database

search. For scores above the 'break even' score, each additional ten points in

score increases the odds of the match being signal by ten fold. That is, there is

a multiplier of ten for odds for each extra ten points in score. Thus the break

even score and this 'significance multiplier' are parameters which can be used to

estimate significance of a word match with a given score.

Use of the Log of the product of sequence and database lengths to adjust

for the number of comparisons made has also been suggested by other researchers

(Smith et al., 1985). Moreover they provide references which suggest this

adjustment is valid in comparisons where word size is variable, which is a closer

approximation to the case of comparison by alignment than is comparison using

fixed word size.

"Prosrch" uses observed score frequencies to assess significance. In the

"Prosrch" program, actual frequencies for some of the higher scoring noise level

alignments are collected. These are observed to fall on a negative exponential

distribution. Fitting a line to this gives a 'break even' score and a multiplier for

the unlikelihood for each additional ten points in score. This gives an empirical

model for measuring significance. Unlike the theoretical Log odds model, this

approach takes into account indels and sequence inhomogeneities.

When a high indel penalty, a penalty of 20 or more, is used with "Prosrch",

the parameters which measure significance approach those from the more

theoretical model. Since a high indel penalty suppresses indels, this is to be

expected. Break even scores and multipliers calculated by "Prosrch" are lower

than predicted by the theoretical model, scores being typically 8.8 points lower

with an average 8.2 fold increase in significance, rather than tenfold, for each

additional ten points.

The lower estimate for 'break even' point can be explained as follows. The

'break even' score calculated by "Prosrch" is the score at which the expected

number of random matches is one, rather than the score at which a match is as

likely to be noise as to be signal. The more theoretical Log odds model thus gives

a slightly more conservative assessment of the break even score.

113

When a lower indel penalty is used with "Prosrch" the significance

multiplier decreases. With an indel of 10 the multiplier is around 5.9. The lower

factors for lower indels must reflect the increased possibility for random matching

arising from increased ease of insertion and deletion.

At low indel penalties the odds method and "Prosrch" give very similar

estimates of the break even score. Given this background, it seems reasonable to

use the direct interpretation of Dayhoff scores to estimate a break even score for

the comparison of every sequence against every other sequence.

For databases of the size of the 'PSeqip' database, a single search with a

protein of an average length (300 residues) involves 7.5 x 10 8 comparisons and the

break even score is 89. A total database search requires 3.12 x 1012 comparisons

which corresponds to a break even score of 125.

Break even score for comparison of one sequence against all 89 sequences in the 'PSeqip' database

Break even score for comparison of all sequences in the 'PSeqip' 125 database against each other

Figure 8.1: Break even scores for different numbers of comparisons. At
this score a match is as likely to be signal as noise.

Repetitive sequence problem: Protein-A

Caution is needed in interpreting weaker similarities. It is particularly

important when considering barely significant scores to recognise that the score

alone tells only part of the story. The problem of biased sequence has already

been mentioned. A related problem was exhibited by two proteins which

contained repeated subsequences. One protein was the major surface antigen (S-

antigen) of malaria, Plasmodium falczparum. The other was Protein-A from the

bacterium Staphylococcus aureus. The score for the match, at 198, was just below

the 200 threshold. Such a score would normally imply an alignment showing

strong evidence for a similarity. Repeated octopeptides in each protein were

aligned by the program. A low score for the match of one octomer pair was

114

multiplied by the repetition in both sequences to give a high score that reflected

primarily the fact that both proteins contained repeated domains. That is, the

high score related to repetition which could have been present in the proteins for

quite different functional reasons.

In the S-antigen, the octomer 'AEARKSDE' was repeated twenty times in

succession. Protein-A had the octomer 'EDNNKPGK' repeated eleven times.

The similarity score for these two octomers is 7, giving a score of 77 for matching

of these repeated octomers. Nine of the S-antigen octomers were thus not aligned

with the protein-A octomer repeat. Protein-A also contained a 60 residue

sequence repeated four times. The 60-mer contained the 16-mer shown aligning

with two of the S-antigen octomers in the alignment below.

STASPAPI 	- Protein-A (S. aureus)
SSANT$PLAFN - S-antigen protein precursor (P. falciparum)

STASPAPI 	: AEAKKLNDAQAPKADN
SSANT$PLAFN 	AEALKSDEAEALKSDE

This matching segment has a score of 54. In the alignment found by the

comprehensive search, two such 16-mers were aligned against four of the 5-

antigen octomers contributing 108 to the score.

This example was presented at a talk on sequence analysis to illustrate how

comparison algorithms can give artificially inflated scores when repetition is

present. In the discussion afterwards, R. Hayward (ICMB Edinburgh) suggested

a biological rationale for the similarity. He pointed out that protein-A is part of

the bacteria's defence system (Hammond et al., 1984). It binds to the F c part of

immunoglobulins. 'Fe ' is the constant domain recognised by phagocytic cells. In

S. aureus, binding of the Fc component prevents the phagocytes from recognising

the bacteria as foreign. In P. falciparum the surface antigen could turn out to be

a 'molecular mop' that soaks up the immunoglobulins. If the mechanism of

binding is the same as in S. aureus, then, rather than being the prime target of the

immune response, the 'antigen' is sequestering components of the immune

response. If the usual interpretation of the protein as a major antigen is incorrect,

the mistake is understandable. The radiolabeling antibody tests, which are the

data suggesting "major surface antigen", show only that there is a strong

115

association between antibody and the protein.

Further examination of the sequence pair revealed an additional small

region of similarity - a pentapeptide 'RNGFI' in the S-antigen and 'RNGFL' in

protein-A. There is a 1 in 6 chance of two random sequences of these proteins'

lengths sharing such a pentapeptide. This gives some additional evidence for a

genuine relationship.

Many variants of the S-antigen are known. These show considerable

variation in the repeated sequence. One hypothesis is that repetition in the

sequence saturates the immune system to suppress immune responses (referred

to in Howard, 1986). A more complex hypothesis than the new 'molecular mop'

hypothesis may emerge in time. One factor that casts serious doubt on the new

hypothesis is that association of antibody and S-antigen is specific to sera raised

against the S-antigen (Howard, 1986). Binding of the F component would be

expected to be non sera specific. Nevertheless this similarity is intriguing as its

score is high and it links proteins both believed to be involved with immune

response evasion.

Weak local constraints: Patterned bias

Unlike very strong matching, scores in the range 100-200 are not

necessarily suggestive of some similarity in function for the whole sequence. Short

shared pattern or longer patterns that are weakly conserved need not reflect a

structure that is involved in specific interactions with other compounds. Weak

similarity might simply reflect structural aspects of the proteins rather than active

sites.

For example, proline is a residue that leads to reduced flexibility of the

protein chain since it prevents free rotation about a carbon-nitrogen bond.

Glycine, because its small size reduces steric hindrance, gives great flexibility to

the chain. One might observe higher incidences of glycine and proline occurring

together than chance alone would suggest. Alignments of pairs of glycine and

proline rich proteins would then be less significant than their similarity scores

suggested since the model for random matching takes no account of the influence

of residues on residue frequencies at nearby sites. High scoring alignments of

116

sequences rich in proline and glycine would not necessarily reflect similarities

giving clues to function of the proteins. Similarity in sequence pattern in

sequences of biased composition could simply reflect local constraints on residues

close in the linear sequence that become more evident when bias in composition

is present.

Bias and repetition in protein sequence are intimately linked. Any short

sequence repeated many times over gives rise to a protein with an atypical

compositional bias. Conversely, strong sequence bias greatly increases the

likelihood of repeated patterns. Dipeptide repeats are far more frequent in

regions where only three residues are used rather than twenty. The mutational

properties of DNA are also important where repetition and bias are considered.

Once a repeat occurs at the DNA level, it can readily become amplified to a

larger numbers of repeats. For this reason, an alignment for sequences with

similar repeating patterns may have a score that would normally suggest common

origin, when in fact the sequences have arisen independently.

Sequences with biased composition which additionally show repetitive local

patterns lead to some of the highest scoring similarities scoring in the range 100-

200. DO-rich, QQA-rich and EEKK-rich sequences are three examples where

high matching scores between seemingly unrelated proteins are found. It is quite

possible to envisage these sequences arising independently of each other.

Viral repetitive proteins

One high scoring twilight zone similarity (score 184) was found between the

repetitive glycine and proline rich proteins, collagen (alpha chain, rat), and a

protein from a human virus (herpes simplex virus, type I, 34K1)A (c) protein).

Collagen's repetition gives it its fibrous structure. Repetition in viral coat protein

may, as hypothesised for the malaria protein, be part of a virus's defence against

the immune system. Mimicking common host proteins would be an additional

defence for the virus because host mechanisms which prevent self destruction

should also be to the virus's advantage. However, repetition would in itself be a

sufficient explanation for the similarity.

Although the muscle protein tropomyosin contains repetitive regions too,

117

repetition is not the explanation for its score, 130, in matching against a protein

associated with the viral coat:

SXAD9T - Hexon associated protein (IX) (Tupaia adenovirus)
TMCHS2 - Troponyosin, smooth muscle (Chicken)

SXAD9T: TDAATEPSTRQGLNLLRSVTELNESIDELQOJCJIT-ELEKRLKIMEEKI EEIKLALAN
TMCHS2: TDKLKEAETRAEFAE-RSVTKLEKSIDDLEEKVAHAKEENLN-MHOJILDQTLLELNN

The region of tropomyosin in this match shows little sign of repetition.

More likely this match reflects a viral scavenging of a host sequence, as was seen

with the actin sequence in the previous chapter. In this case subsequent

modifications have been more extensive.

Local similarity and local structure

The flexibility of the protein chain at glycine and proline residues was used

to illustrate the possibility that local folding constraints, rather than functional

similarity, could explain weaker sequence similarities. Can local regions of similar

sequence and folding be found in proteins with otherwise very dissimilar sequence

and structure? Kabsch and Sander (1984) performed a survey of known 3

dimensional structures to see whether short range interactions between residues

necessarily lead to the same local structures in folded proteins. Their purpose was

to examine intrinsic limitations in protein structure prediction from local sequence

patterns alone. They found examples of identical pentamers in different proteins

that did not adopt the same structure. One can be almost certain that these local

structures, being radically different, do not have similar function in the folded

protein. One possibility would be that the identical pentamers have a role in

intermediate stages of the protein folding. With pentamers, chance alone can

explain the occurrence of identical sequences in functionally distinct proteins. No

functional explanation for the similarity need be found.

Two identical decamers in distinct proteins are unlikely to occur by chance.

If two identical decamers did not adopt similar structure in two different folded

proteins some explanation would be required for the identical sequence occurring.

One possibility would be that the segments adopt similar structure at an

intermediate stage of folding.

118

Amongst the many similarities found, one find which is just significant for

a single search (score 103) but not for an entire comparison occurs between a

bacterial phosphofructokinase and a simian myoglobin:

KIBSFF - 6-phosphofructokinase (BacilLus stearothermophilus)
NYMQN - Myoglobin (Night monkey)

KIBSFF: KTEEGEKKGIEQLKXHGIQGLWIGG
MYNQN: KSED-EMKASEELKKJIGV'rVLTALGG

Unusually, since fewer than 2% of proteins have had their structure determined,

both sequences are of known structure (for the myoglobin a very close sequence

analogue exists). Like Kabsch and Sander's examples this similarity contains an

exact matching pentamer pair but it also has additional flanking similarity. In

myoglobin the region lies between the D4 and E16 helices. Examination of the

crystal structure using the program "0" (Jones et al., 1990) on an Evans and

Sutherland EV/PSX shows that the similar regions in sequence are different in

structure. Both involve some helix and some random coil but the selected

segments of the structures do not superimpose. This region is a possible

candidate for a similarity reflecting structural intermediates in folding. The

sequence similarity shown here is weak and though stronger than the pentamer

matches, could be a chance match. The structural comparison does, however,

show that low scoring similarity is not enough to establish that proteins or even

segments have similar structure. With low alignment scores one requires

additional evidence for sequence relatedness.

Multiple matching: An AMP binding pattern?

The alignment score is not the only factor in assessing significance.

Repetition and bias tend to reduce confidence that an alignment is as significant

as its score suggests. Other factors can increase confidence.

If segments from two proteins match with a third protein by chance these

matches are most likely to occur in different regions of the third protein. One

factor that might increase confidence in an alignment is finding the same region

being matched by several different proteins. The ATP binding motif gives rise to

matches of this kind. Any other short motif pattern that is found in otherwise

119

dissimilar proteins would also give rise to multiple matches to one region of a

protein. In the following example two proteins match a third in the same region.

Both the pairwise similarity scores for matching to adenylate cyclase are below the

break even score of 125. For the tail assembly protein the score is 101, for trans

zeatin the score is 107.

SVATAISLAMBDA - Tail assembly protein i. (Bacteriophage Lambda.)
SCYAASECOLI - Adenylate cyclase. (E. coli)
TIPTZSPI 	- Trans zeatin. (Agrobacterium tumefaciens)

The best region of matching in a more extensive match is shown here:

*+ ++**+*+ +* ++
SVATAI$LAMBDA: YGDLQRFGRRIDLRVK
SCYAASECOLI : YRNLIRFARRNNLSVS
TIPTZSP1 	: YRCAIRFARKHDLAIS

The line above the alignment emphasises the additional evidence for relatedness.

Locations where all three sequences agree are shown by '*', locations where two

out of three agree by

Finding local similarities of borderline significance that overlap is not all

that surprising under the hypothesis of unrelated proteins. The database search

produced 720 linking families of, on average, 3 proteins each. There were many

opportunities for such an overlap to occur by chance. Finding overlapping low

scoring matches is not in itself of great significance.

The situation is different if such multiple matching is accompanied by

knowledge that the proteins interact with similar molecules. In that case the

hypothesis that the region is involved with the specific interactions is of biological

interest. Although we measure significance numerically, we are actually more

interested in similarities that lead to new biological understanding.

Adenylate cyclase catalyses the conversion of Al? to cyclic adenosine

monophosphate (cAMP) (Aiba et al., 1984). Trans zeatin catalyses the addition

of isoprenols to adenosine monophosphate (AMP) (Akyoshi et al., 1985). The tail

assembly protein i (Sanger et al., 1982) takes part in the initiator complex for

lambda tail formation. A possible role for AMP in this initiation process does not

appear to have been investigated.

Cyclic AMP has diverse roles. It is a second messenger for hormone

120

action, is involved in glucagon metabolism and can stimulate active transport of

ions. Thus, like ATP, AMP is a candidate for having a binding motif in a range

of different proteins. The similarity in combination with the biochemical

information lead to the hypothesis that the region shown binds AMP.

How should one proceed in this case? The known biochemistry suggests

that the similarity is of interest, but the similarity scores are too weak to do more

than suggest the hypothesis. If the weak pattern binds AMP, corroborating this

by further sequence analysis and characterising the pattern better is likely to be

considerably harder than characterising the strong Al? binding pattern.

A first and simple step would be to use each of the three protein

sequences in turn to search the protein database and collect weaker matches to

this region. These weaker matches might identify proteins with known

interactions with AMP. To make further progress, a survey of current literature

on cAJvIP and on the cytokinins, the AMP derivatives partially synthesised by trans

zeatin, would be important. Also literature on the biochemistry of the sequences

involved in weaker matches would need to be examined. This combined

background would give information on the likelihood of the weaker matches

having previously unsuspected interactions with AMP. For example, weak

similarity to adenylate cyclase in the given region is shown by the toxin ricin, score

82, and by agglutinin, a plant lectin, score 90 (S.J. McQuay, ICMB Edinburgh,

unpublished results). If for biochemical reasons interactions with AMP could be

important for these proteins too then the similarities would tend to confirm the

AMP binding hypothesis. This possible approach shows the importance of

biochemical knowledge in sequence analysis work.

A tantalising additional piece of information that could be important in

such a study comes from a review of cAMP dependent protein kinases (Taylor et

al., 1990). In these protein kinases a regulatory subunit inhibits the enzyme's

phosphorylase activity by occupying the active site, thus preventing access by other

substrates. Binding of cAMP to the kinase leads to dissociation and activation in

a manner yet to be elucidated in detail. Of particular interest then is observation

of the sequence 'RFDRR' in the R-II alpha regulatory subunit of bovine cAMP

dependent protein kinase for this pentapeptide occurs at the specific site in the

121

regulatory subunit that inhibits kinase activity and is identical in four of the five

residues to that of the lambda protein in the putative AMP binding pattern.

Conserved cysteines: Two plasma proteins

In the example in this section, examination of the alignment increases

confidence in the match. Here seven cysteines in a segment of thirty-two residues

are conserved. Because cysteine can form disulphide bonds, structure could

largely be conserved even though residues in the longest sections between the

cysteines differ. This similarity has a score of 109, but the kind of matching

increases confidence in its validity.

MUSPC1BPI 	- Ptasma-ceU membrane protein. (Mouse)
P1SGHU2V 	- Vitronectin precursor, serum spreading factor. (Human)

MUSCPCIBP1 	: SCKGRCFERTFSN. . CRCDAACVSLGNCCLDF
P1 SGHU2V 	: $CKGRCTEGFNVDKJ(CQCDELCSYYQSCCTDY

The fact that both proteins are also plasma proteins increases confidence too.

Other cysteine rich domains in proteins are known. 'Kringle domains' are

cysteine rich triple-looped disulphide cross-linked domain found in serine

proteases and plasma proteins. Epidermal growth factor (EGF) domains are also

cross linked and cysteine-rich. In examples of these domains, the pattern of

cysteine residues is conserved.

The region of vitronectin shown here has been identified as a

'somatomedin-B' domain (Jenne & Stanley, 1987). Somatomedin-B is a growth

hormone dependent serum factor (Fryklund & Sievertson, 1978). For the plasma

cell protein the region's similarity to somatomedin-B does not appear to have

been identified. Instead to relate the protein to other proteins, Van-Driel and

Golding (1987) drew analogies between the plasma-cell protein, which is

selectively expressed on the surface of antibody secreting cells, EGF receptor and

transferin receptor, also membrane proteins. These analogies were based on

cysteine content and on hypothesised orientation and position at the cell

membrane surface. Van-Driel and Golding singled the thirty residue sequence

from the plasma cell protein out as being of special interest for it is cysteine rich,

occurs as an imperfect tandem repeat and is thought to take up a position

122

immediately external to the cell membrane.

The vitronectin sequence similarity showed regions of good matching

separated by a region of poor matching, though the conservation of cysteine

residues was a more striking feature. Even where cysteine residues are not

involved, clumping of good matches into short regions increases confidence in a

low scoring alignment. Since proteins are folded structures, similarities in

structure may not be reflected by similar sequences in unbroken contiguous

stretches. The Type III algorithm is designed only to detect unbroken contiguous

local similarity. Type III alignment only finds broken similarity where regions

flanking a region of poor matching each more than compensate for the poor score

of the intervening region. Scores returned by the algorithm reflect the similarity

over the whole region matched. Two good regions each scoring 90, separated by

a region scoring -70 would lead to a combined score of 110. If a region scoring

-100 separated the two good regions, the protein similarity would score just 90, one

or other of the matching regions being presented in a local alignment. In both

cases the score to the biologist is closer to 170. Automatic methods to link islands

of good matching together which incur only a small penalty for intervening regions

of poor matching are needed. The automatic linking of islands of good matching

was seen to be important in alignments in Chapter 6. It also seems to be

important in scoring weaker matches. An example where clumping of similarity

in two islands increases confidence in the alignment will be given shortly.

Similarities across taxonomic boundaries.

Of particular interest in this study were similarities between very different

organisms. Similarities between two proteins in different mammals are more

likely to be known to researchers for other reasons than similarities between

proteins in insects and mammals or similarities between proteins in animals and

plants.

Similarities between plant and animal are particularly likely to be of a

fundamental nature, given the long time since they shared a common ancestor.

The fundamental molecular machinery for nucleic acid and protein polymerisation

are similar in plants and animals. It is no surprise then to find strong sequence

123

similarities between ribosomal proteins of plants and animals. Other sequence

similarities that cross taxonomic boundaries may also reflect fundamental

biochemical processes.

Two pathogenesis related proteins

A similarity which links plants and animals is shown below. Though this

similarity scores only 103, it is present in two regions each with a high density of

matching and this increases confidence in its validity.

DNMS53 - Cellular tumour antigen p53. (Mouse)
VCT014 - Pathogenesis-related leaf protein p14. (Tomato)

DNMS53: PVQLWVSATPPAGSRVRAMAIHKKSQHMTGWRR-CPHHERCSDG
VCTOI 4: AVQLWVSERPSYNYATNQCVGGKJ(CRHYTQVVRLGCGR-ARCNNG

Moreover, the two proteins' functions suggest that this sequence similarity

may be the basis of a functional similarity. The leaf pathogenesis related (PR)

protein is expressed at elevated level in a pathophysiological non pathogen

specific response (Lucas et al. 1985). The mouse tumour protein is expressed at

elevated levels in cells transformed by a variety of mutagens, X-rays, chemicals

and viruses (Zhakut-Houri et al. 1983). The mouse tumour protein may have a

role in preventing cancerous transformation since mutant forms of the protein

predispose cells to transformation and elevated levels of functional, forms can act

to suppress it (Finlay et al., 1989).

The expression of specific proteins at elevated levels when cells are

subjected to abnormal physiological stress has a precedent in the heat shock

proteins. These were first observed expressed in response to increased

temperature, but other stressors can also induce them (Lindquist & Craig, 1988).

Remarkable conservation of sequence in heat shock proteins has been found

across the plant and animal kingdom, the best example found by the

comprehensive protein comparisons being between D. melanogaster and soy bean,

Glycine max.

Some heat shock proteins are 'sigma factors'. Sigma factors regulate the

expression of genes. They are interchangeable components of RNA polymerase,

the protein complex responsible for making copies of portions of DNA to be

124

translated into protein. The sigma factors determine at which specific DNA

patterns the protein complex which transcribes DNA initiates its replication.

Different sigma factors have different DNA recognition patterns. At elevated

temperatures there is a change in expression of sigma factors and a global shift

in the expression of genes. The leaf pathogenesis protein, however, shows no

similarity to known sigma factors and is known not to be expressed in response

to heat shocks The proteins might, however, have important interactions with

the conserved heat shock system, for the p53 antigen has been found to bind to

the heat shock protein hsc70 (Young & Elliot 1989).

Shortly before this thesis was completed, a repeat search was made using

"Prosrch" with the tomato PR protein on a more up-to-date database, PIR 26.

This uncovered additional evidence that a protein of importance to plants and

animals is involved.

831085: Antigen 5-3 precursor fragment. (Bald-faced hornet)

B31085: IGCGSVKYIENNWHTHYLVCNYGPAGNYNDQPIY
VC1014: LGCGRARC-NNGWW--FISCNYDPVGNWIGQRPY

The match shown here (score 96) is to the right of the match with the cellular

tumour antigen and overlaps by ten residues.

The similarity of PR proteins to the cellular antigen appears not to have

been noted (Kauffmann et aL, 1990). The similarity to the venom antigen has

been noted, but the biological significance was, and still is, unclear (Fang et al.,

1988; King et al., 1990). Possibly the similarity to the mammalian tumour antigen

may shed more light on this surprising similarity.

Protein formation and folding

A polymerase, in this case the ribosomal polymerase, figures in an

interesting similarity between organisms separated by a wide taxonomic divide.

This example is a similarity between prokaryotes and eukaiyotes. The alignment

has score 122. A multiple sequence alignment for this similarity was given at the

start of Chapter 6.

125

ISMS - Protein disutphide isomerase. (Rat)
R3EC2 	- Ribosomat protein S2. (E. coti)

ISRTSS: IFGGEIKTHILLFLPKSVSDYDGKLSNFKKAAEGFKGKILFI
R3EC2 : IFGARNKVHI IN-LEKTVPMFtIEALAELIIKIASRKGKILFV

Protein disulphide isomerase is believed to be responsible for ensuring that

proteins in the lumen of the endoplasmic reticulum fold correctly and form the correct

set of disulphide bonds (Freedman, 1989). This similarity suggests the hypothesis

that the ribosomal protein has some previously unsuspected function in protein

folding.

Arginosuccinate and two viral proteins

Two viral protein matches are intriguing in that they independently show

similarity to proteins involved with arginosuccinate. Each similarity in itself is strong

enough to be evidence for a genuine relationship. The first has score 147:

SASSYSHUMAN - Arginosuccinate synthase. (Hunan)
SC0A2$JCP0V - Coat protein VP2 JC. (Potyomavirus)

SASSYSHUMAN: WVDI EEITR NTVREIGYVHSDMGFDANSCAVLSAI GKQSPDINQGVD
SCOA2$JCPOV: WVS-EAI -RTRPAQVGFCQPHNDFEASRAGPFAA-PKVPADITQGVD

The second a score of 130. Only the best parts of this second alignment are shown

here.

P1CYCHD 	- DeLta crystattin (Arginosuccinate Lyase famiLy3. (Chicken)
RE03S1CP1 	- Sigma 1 protein prepetide. (Reo virus)

P1CYCHD 	: LEKILSGLEKISE . .(120 residues omitted).. RITVLPLGSGALAGNPLEI
RE03S1CP1 : LESRVSALEKTSQ . .(120 residues omitted).. RISTLERTAVTSAGAPLSI

126

Phospoenolpyruvate regulated sugar transport

The final similarity in this chapter is between a bacterial phosphocamer

protein and a protein called patatin. It has a score of 125.

WPSAHP - Phosphocarrier protein HPR (S. aureus)
POTPHO - Patatin (Potato)

WPSAHP: ATMLVQTASKFDSIDQGGYDSMQLKSLGVGKDEEI-TIYSAD
POTPHO: ATKLAQVDPKFASIKSLNYKQMLLLSLGTGTNSEFDKTYTAE

Patatin is the dominant protein of potato tubers. It has a lipid-acyl hydrolase

activity. It is differentially expressed in different parts of the potato plant,

expression being sucrose regulated and greatest in the potato tuber (Wenzler et

aL, 1989; Jefferson et al., 1990). The bacterial phosphocarrier protein is part of

the phosphoenolpyruvate sugar phosphotransferase (PTS) system involved in

regulation of carbohydrate uptake (Reizer et al. 1988). The PTS system is basic

to a wide class of bacterial cells (Saier et aL 1985). Elements of the system could

predate the divergence of plant and bacterial lines. Horizontal transfer of genetic

information, that is transfer of genes via for example plasmid DNA in bacteria,

is also a possibility that cannot be ruled out. In this context, since transposons can

mediate genetic rearrangements, it is intriguing to note that the only transposon

like sequence so far discovered in potato is immediately prior to an inactivated

patatin gene (Kostertopfer et al., 1990).

Concluding remarks

This chapter shows factors which can increase and decrease confidence in

the significance of an alignment. Similarity scores are only one factor in the

assessment of significance. Ultimately biological interpretation is crucial. Even

the strongest of similarity is merely a curiosity if no biological interpretation can

be found, whilst a weak similarity is of value if it leads to a hypothesis that can be

experimentally validated. Biological interpretation plays the most important role

in assessment of whether sequence similarities are worth pursuing further.

Computer analysis on its own is not enough.

Each of the alignments presented in this chapter is of potential interest to

127

biologists. It - is intended that the similarities involving the bacterial phosphocarrier

protein, the tomato pathogenesis related leaf protein and the mouse plasma cell

membrane protein will be communicated to researchers who work on these

proteins. If these researchers find this information helpful and of interest then

this will increase interest in the other similarities presented which are likely to be

harder to evaluate.

128

Chapter 9: NWS Variants

Coding regions and frameshifts

Protein database searching programs are frequently used by researchers

who have recently determined a DNA sequence. This DNA could code for a

protein. They wish to find whether the protein potentially coded for by the DNA

is homologous to a known protein.

Before the computer search can begin, the DNA sequence must be

translated into protein sequence. There are three frames in which a single strand

of DNA can be translated. These correspond to different starting positions for

the grouping of adjacent triplets of nucleotides into codons. If the complementary

strand is taken into account there are six possible frames. Usually only one frame

codes for a protein in a protein coding region. Translation of codons in this frame

gives a protein sequence to test against the database. A translation of all six

frames can help in determining which frame is most likely to be the coding frame.

An example is shown below. This example is only a fragment of a six frame

translation that covers all 674 nucleotides of a DNA sequence from

D. melanogaster.

(Linear) NAP of: Mal.Dne check: 6903 from: 1 to: 674

November 12, 1990 09:19

ttgcattggagccagcgctgtaagtatggctccctgctggcgggcacaatcggaggcacc
30 +---------+---------+---------+---------+---------+---------89

aacgtaacctcggtcgcgacattcataccgagggacgaccgcccgtgttagcctccgtgg

a 	CIGASAVSMAPCWRAQSEAP
b 	 A L E P A L * V W L P A G G H N R R H R
C 	 LHWSQRCKYGSLLAGTIGGT

30 +---------+---------+---------+---------+---------+---------89
d 	A N S G A S Y T H S G A P P C L R L C R
e 	 CQLWRQLYPERSApVIPPVP
f 	QMPALATLIAGQQRACDSAG

Figure 9.1: Six frame translation of a DNA sequence made using the
GCG 'MAP' program (Devereux et al. 1984).

In this six frame translation, the DNA sequence and its complement are

shown first. Translations of forward frames, a to c, and complementary frame

129

translations, d to f, which should be read from right to left, are shown below.

Of the sixty four possible triplets of bases, three triplets do not code for an

amino acid. These three 'stop codons' indicate to the ribosome the end of a

protein coding region. Where a codon codes for a 'stop codon', a star is shown

in the translation. Likely protein coding regions are the longer stretches free

from these stars. These are called open reading frames.

Confidence that a particular open reading frame codes for a protein is

increased if the frame uses certain codons in preference to others. Transfer

RNAs (tRNAs) are the molecules which carry amino acids to the ribosome and

which directly interact with the codons in RNA that is being translated. In every

organism some tRNAs for a particular amino acid are more abundant than others.

The corresponding codons are used preferentially. This 'codon preference' is the

basis for some methods for detecting likely coding regions (Gribskov et al. 1984).

The methods rely on knowing which codons are preferred in the organism, since

codon preferences differ in different organisms. The method works well for highly

expressed proteins for which the pressure to use the preferred codons is high. For

proteins expressed at a lower level, codon preference is a less reliable indicator.

In the absence of a clear choice of open reading frame, the researcher may wish

to search a protein database with three or possibly six translations of the DNA.

Problems arising from frameshift errors

Problems in searching arise when there are frameshift errors in the DNA

data. An extra or missing base will lead to triplets downstream of the error being

out of frame, incorrectly translated and an abrupt end to any detected region of

similarity between the translation and a sequence in the database. More

importantly, such frameshift errors are also a cause for failure to identify real

open reading frames. The shift can make a stop codon from another frame

appear to terminate a coding region, so making the coding region appear shorter

and hence less significant than it really is. Frameshift errors also interfere with

detection of codon preference. The methods to find codon preference consider

codon usage averaged over a number of codons. With a frameshift, the codons

considered will include codons which are not in fact part of the coding region.

130

"Fradho"

Molecular biologists frequently require database searches with protein

sequences deduced from DNA data. Protein purification and sequencing is a far

more complex and labour intensive process than is DNA sequencing. In fact, the

overwhelming majority of protein sequences now being determined are sequences

deduced from DNA. A method of protein database searching that could

accommodate frameshift errors in the DNA is highly desirable. It could extend

a matching region that has ended abruptly due to a frameshift error in the DNA

data. The extended match would have a higher score that took into account the

additional similarity. By improving the ability to detect signal, the sensitivity of the

searching should be improved.

A second reason for accommodating frameshifts is that ribosomal DNA

translation can occasionally involve frameshifts (Atkins etal., 1990). Frameshifting

in translation may be more widespread than currently thought, given that

algorithms for sequence comparison are not designed to detect such shifts. The

presence of sequencing errors in the data is the more compelling of the two

arguments for comparison that can accommodate frameshifts.

A program, "Fradho", was written to search protein databases using a DNA

query sequence and allowing for frameshifts. The program extends the normal

Type III algorithm by treating information in a hierarchical fashion. DNA bases

are the lowest level of the hierarchy. These are grouped in triplets to form the

level above in the hierarchy. The program scores similarity at the protein level

of the hierarchy whilst not losing the ability to deal with errors at a lower level in

the hierarchy. "Fradho" uses multiple path matrices to do this.

The "Fradho" program performs three Type III comparisons

simultaneously. Each comparison is for a different reading frame of a nucleic acid

sequence. These three protein sequence comparisons use the sensitive Dayhoff

amino acid scoring scheme. The three comparisons are interdependent. A

missing or extra base corresponds to switching frame and a score in a cell of one

path matrix influencing the score in a cell of another. Each such switch between

frames incurs a penalty, much as a gap in an alignment incurs a penalty. The

decision to postulate a change of frames is objective in the same sense that

131

postulation of insertions or deletions in a normal Type III alignment is objective.

Switching between frames occurs in such a way as to maximise the overall level

of matching as measured by the score.

"Fradho" can operate in single sequence pair comparison mode or can

compare a DNA sequence against an entire protein database. A match found by

"Fradho" could be shown using a three frame translation of the DNA by placing

dashes after each amino acid involved in matching as in figure 9.2. Frameshifts

then show up clearly where the dashes move from one line to another. Potential

sequencing errors can then easily be identified.

30 +---------+---------+---------+---------+---------+---------89
ttgcattggagccagcgctgtaagtatggctccctgctggcgggcacaatcggaggcacc

??
a 	C I G--A--S--A--V--S--M A P C W R A Q S--E--A--P--
b 	A L E P A L * V W L P A G G H N R R H R
c 	L H W S 	R C KY G--S--L--L--A--G--T--I G G T

30 +---------+---------+---------+---------+---------+---------89

Figure 9.2: Three frame translation showing possible locations of
frameshifts.

A more condensed form of output, as used by "Fradho", is shown below.

This shows the sequence aligned to, as well as the predicted sites of frameshifts:

:>P1;DEECIP
:IMP dehydrogenase (EC 1.1.1.205) - Escherichia coLi
Score 127 at 38 173

- **_****+ *.*** 	•* * AAAA*AA ** .* *
38 GASAVSatGSLLAGTaSEAPGEYFFSDGVRLKJCYRGMGSLEAMERGDAKR 182

173 GASAVN-VGSMLAGT-EESPGEIELYQGRSYKSYRGMGSLGAMSKGSSDR 221

Figure 9.3: Mixed alignment containing DNA and protein sequence as
produced by "Fradho". The upper sequence is the query sequence, mostly
translated, but with occasional bases shown in lower case at frame shift
positions. The lower sequence is the IMP dehydrogenase sequence found in the
database. Numbers for the upper and lower sequence refer to base pair and
amino acid positions respectively.

This mixed alignment shows amino acid residues in capitals and bases in lower

case. Wherever there is a frameshift the alignment switches temporarily into

DNA mode. The '-' and '+' above the line indicate missing or extra bases. '*' s

and '.'s indicate identity and conservative substitution as in normal protein

sequence alignments. Since a search of a database may produce many alignments,

132

it is convenient to present only the condensed form. To relate this mixed

alignment to the complete DNA sequence requires a three frame translation.

"Fradho" produces one at the start of each list of results.

Test with new sequence

The alignment shown in figure 9.3 was from the first test of "Fradho" using

a newly determined sequence. I am grateful to R. Slee (ICMB Edinburgh,

personal communication) for this sequence data at an early stage of sequencing

and prior to publication. The alignment predicted an omitted base and an

additional base in the DNA sequence. Both of these were sequencing errors

located in a part of the gel which was particularly difficult to read. By

compensating for these the program was able to demonstrate a convincing

relationship between the DNA query sequence and the protein IMP

dehydrogenase from the PIR 23 database.

Test with DNA sequence from databases

Individual DNA sequences from DNA databases were also compared

against the protein database using the new algorithm. Examples were chosen

which were thought to be likely candidates for frameshifts, sequences from

transposable elements, a sequence which is translated in two overlapping reading

frames and a locally repetitive sequence, a mating hormone from yeast, were

tested. None of these searches found strong matches to proteins other than those

that were already known to be homologous. "Fradho's" alignments suggested

frameshifts in regions of poor matching. As measured by the score, these

alternative alignments were only marginally preferable to those for unframeshifted

sequence. With a higher penalty for frameshifting no frameshifting was predicted

in these regions. However, for the purpose of this test it was correct to use a low

frameshift penalty so that even weak evidence for a frameshift would be shown.

133

Test with longer sequence of known homology

To further the development through criticism of the program, a beta test

version was sent to D. Rouch (School of Biological Sciences, Birmingham

University, U.K.), a molecular biologist with strong interest in computational

methods of sequence analysis. He demonstrated the value of the program at an

early stage in sequencing where a homologous protein is already known. This use

was not initially considered by this author. At the time the program was seen

primarily as a new method for sensitive database searching. A particular test case

used by Rouch was a six kilobase DNA sequence, Tn917, coding for a protein

essential to the integration of transposable elements. This sequence, determined

in the laboratory of D.B. Clewell (Michigan University, U.S.A.) was tested for

frameshifts against the known homolog Tn413. "Fradho" found five potential

frameshift errors. Four of these were seen to be sequencing errors when the gels

were reexamined. Each of the actual errors was within four base pairs of the site

of the error predicted by "Fradho". The fifth error predicted by "Fradho"

indicated that the C terminal region of the protein extended beyond the point

where it had previously been thought to end. Further sequencing confirmed this

result and lead to publication of a sequence correction (An & Clewell, 1991).

There is of course a danger in using this comparison method for data

correction. The normal process of DNA sequence checking involves re-

sequencing the DNA and its complement several times. This results in a

reduction of all types of sequencing errors, both in regions of homology and

outside such regions. If a criterion of consistency with already collected data were

used as a substitute, the quality of sequence data being collected would be

decreased. Sequence would only be reliable where homology existed to

independently sequenced data. The tool therefore has serious limitations as a

method for sequence correction.

134

Test with simulated shifts

As well as the practical tests of "Fradho", experiments have been

performed with simulated erroneous sequences to compare the performance of

"Fradho" to protein-protein comparison programs. In these experiments the test

of the GCG program "Wordsearch" was performed by Rouch using the Daresbuiy

SEQNET facility. His tests compared "Fradho" to a wider range of programs than

here (manuscript in preparation). The test method used a human haemoglobin

sequence which had a varying number of artificial frameshifts introduced into it.

Haemoglobin is a particularly suitable example for this kind of test as there are

over 400 homologues exhibiting a gradation in similarity from close to more

distant relationship.

The performance could be measured by counting globin sequences

recovered before the first reported non-globin sequence. However, this measure

is sensitive to the score of the highest scoring outlier from the noise distribution.

Also we are interested in all globin similarities that have been separated from

noise similarities sufficiently to be reported. A measure which better reflects

detection of similarity in practice is the number of sequences recovered before

noise starts to dominate signal. The statistic for this located the position in the

sorted list of results at which half the sequences were non-globins. The number

of globin sequences recovered before this halfway point was the measure of

performance used.

Determination of the 'half way' point used the fraction of globins in groups

of ten consecutive sequences. In practice groups larger than ten gave virtually

identical results. When using the protein-protein comparison programs the best

result for the three searches using the three different frames was recorded. In all

cases the protein database used was PIR 23.

The graph in figure 9.4 plots sequence recovery against number of

frameshifts. The three lines shown are for "Fradho", "Prowl" - the implementation

of the Type III algorithm without frameshifts, and "Wordsearch" the GCG

package's word based method. They show that with no frameshifts "Prowl" does

fractionally better than "Fradho". Noise levels are higher in "Fradho". This is a

result of the increase in score of noise alignments through (a) allowing frameshifts

135

C,

z

3or
C,

4)
C)
C
4,

C.
C,

20,

C'

and (b) increased numbers of comparisons from comparing three frames rather

than one frame. This is more than compensated for by improved signal recovery

for frameshifted sequence. The subsequent level response of Fradho with

increasing number of frameshifts shows that recovery of sequences is virtually

unaffected by frameshifts. Frameshifts only significantly affect recovery at a very

high density with frameshifts occurring every twenty bases. This behaviour is

clearly superior to "Prowl". "Prowl" shows a continued decrease in sequences

recovered, a result of progressive shortening of regions of homology.

Fradho

4o

V 	6 510 	 20 	 40 	6° 	1CO

Number of shifts per thousand bases.

Figure 9.4: Graph showing globin sequence recovery for varying numbers
of frameslufis with three different searching programs.

"Wordsearch" shows markedly lower recovery than either of the two Type

III algorithms. It has a section of nearly level response but with relatively few

sequences being found. Here it seems that the stringent requirement for exact

matching words has eliminated all but the most strongly related sequences. Since

these have many words in common with the query sequence, it takes a

considerable level of disruption to remove these matches too. A more precise

explanation of the level behaviour of this program looks in more detail at how

*101

"Wordsearch" works. "Wordsearch" is able to accumulate scores from several

regions. With regularly spaced frameshifts, protein translations in just one frame

show regular islands of homology. As the number of frameshifts increase, the

islands become smaller but the number of islands increases. The average level of

sequence similarity measured over the whole sequence stays roughly the same.

The results once again show an important weakness in the local homology

algorithm. The fact that its scoring is based on a single best region means that it

does not score for additional similarity from widely separated regions. The local

algorithm is unnecessarily restrictive in basing its score on the result for the single

best island alone. A suggested method to overcome this weakness of the local

algorithm is discussed later in this chapter. Although the "Fradho" program is also

a local algorithm, for the haemoglobin example, the local regions of similarity it

finds happen to extend over the whole sequence. For this reason "Fradho" does

not suffer from this 'isolated islands', effect in this example.

Types of frameshift error

So far no details of the manner in which the "Fradho" program scores

insertions and deletions have been given. The program distinguishes four kinds

of frameshift. A frameshjft occurs when one or two bases from the DNA line up

against an amino acid or against a gap in the amino acid sequence. The table

below shows the four possible types of frameshifting step:

DNA Protein Description in terms of error in DNA

ag K Missing base

a K Two missing bases

a - Extra base

ag - Two extra bases

Figure 9.5: Table showing examples of four possible frames/zift steps

The simplest scoring scheme has the same penalty for each of these.

However, on the assumption that errors are much more likely in the DNA

137

sequence than in the protein, a progressive penalty with the penalties for two

missing or two added bases greater than for one missing or one added base in the

DNA is more appropriate. The progressive scoring scheme was used for the

examples presented here.

One might also wish to consider scoring schemes which treated errors in

protein and DNA on an equal footing, that is a two base omission scoring the

same as a one base insertion and a two base insertion scoring the same as a one

base omission. The algorithm is 'robust' with respect to the frameshift

parameters. That is, changes to the parameters have only slight effects on the

recovery of related sequences. For a typical alignment the number of predicted

frameshifts is small, four or five frameshifts per hundred residues. Changes to

frameshift penalties have a very small percentage effect on the score. The choice

of scoring matrix has a far greater influence on the overall score than does the

choice of frameshift penalty. The essential new property of the algorithm is that

it can accommodate the DNA errors at all. By doing this it can combine matching

regions that would otherwise not be seen as originating from the same open

reading frame, so improving the ability to detect signal.

The scoring for base insertions and omissions takes no account of the kind

of bases inserted or omitted. Two bases aligning against an amino acid always

incur the same penalty irrespective of the bases and amino acid involved. 'aa'

scores the same against 'V' as it does against 'K' even though none of the four

codons for 'V' involves two Vs, whereas both codons for 'K' do. In view of the

comments on alternative frameshift scoring, very little gain can be expected from

taking account of such differences.

Use of DNA database

Would it be better to search DNA sequence against a DNA database to

detect frameshift errors? Reasons for preferring a comparison at the amino acid

level concern discriminating power. As was shown in Chapter 3, scoring protein

similarity in protein coding regions gives better discrimination of signal from noise

than scoring the DNA. Moreover the DNA database contains a large proportion

of DNA that does not code for protein. By restricting the search to sequences

138

known to encode protein, chance matching from non coding sequence is

eliminated. Naturally for non-coding similarities a search using DNA against the

DNA database is required.

Practical Issues: Portability

Prior to "Fradho" all programs developed on the PC had been written in

Turbo Pascal. A criticism was made that this restricted use of the programs to the

PC. Turbo Pascal has various extensions to Pascal which are not supported in

versions of Pascal running on other machines. The most important of these is the

ability to define 'units'; modules of code which fulfil specific classes of functions.

For example, most of the programs written for this thesis share a module for

reading sequence data which automatically works out which of four standard

formats is being used.

Whilst it would have been simpler to write "Fradho" using previously

written Turbo Pascal units, the decision was taken to write "Fradho" in C. Early

incarnations of the code ran on both PC and on a network of Sun workstations.

However, the superior development environment of the PC lead to most of the

development and debugging being done on the PC. Development of both versions

in tandem involved regularly transferring programs between machines and writing

conditionally compiled code to cope with different operating systems and memory

constraints. This slowed development and testing. Little use was made of the Sun

workstation version and it was decided to develop only the PC version further.

Practical Issues: Long running times

A major problem with "Fradho" was the long running times for searching.

Sequences of a thousand bases required that the program run for twelve hours.

This was a consequence of the greater complexity of the cell operations as

compared to the normal Type III algorithm and the use of C rather than

assembler.

A display of the current top ten finds was added to the program so that the

slow progress of the search could be easily monitored. In addition a monitor of

the current position in the database was shown. This addition, the loading of

139

parameters from an external file and the ability to suppress display of alignments

are present only in the PC version of the code.

"Fradho" does not use assembly level programming in its central routine.

In the Turbo Pascal programs the assembly code was incorporated as hexadecimal

numbers written directly into the program using the 'inline' directive. The

assembler available for this work and the Turbo Pascal compiler were

incompatible. -Fortunately the optimised routines were small and so use of inline

hexadecimal code was acceptable. No facility was available to add code 'inline'

in the C programs. No attempt was made to rewrite the searching subroutine for

"Fradho" in assembler.

In retrospect it was a mistake to attempt to write portable code from the

start. The eventual need for assembler level code should have been apparent

from the beginning. In any case, much of the code not actually in the main

subroutine involves interactions with the machine's operating system and is

machine dependent. Development of a Pascal version using the existing units

would have tested the concepts far more rapidly and would have made it easy to

use assembly level software in the main routine. Writing portable code meant

designing for the lowest common denominator of the machines. The Sun code

was encumbered by techniques to overcome memory restrictions on the PC and

the PC code initially made limited use of the screen. A more productive

approach would have been to develop code for the PC first and then subsequently

a version for the Sun using the experience gained.

Variations in noise

A second kind of extension to the Type III algorithm was inspired by the

recursive version of the algorithm used in "Medal". This extension was to tackle

the problem of 'mixed noise'. The problem with a purely local homology

algorithm is that it finds a single island of similarity. There may in fact be several

such islands, and the combination of them gives far more evidence for the

relationship. The variations in sequence between two proteins can be thought of

as 'noise', the type of noise changing over the length of the proteins. In the core

of the protein the noise would be expected to be low as changes in the core can

140

seriously disrupt protein folding. In loop regions not involved with specific

interactions the noise would be higher. The regions between the islands are

regions of poor matching, that is regions of high noise.

It should be stressed that this new algorithm is a paper algorithm and has

not been tested in practice. One reason for this is that the recursive algorithm in

"Medal" already overcomes many of the problems of mixed noise and was used

successfully to tackle the problem. A second reason is that the use of

simultaneously run path matrices, an important algorithmic aspect of the new

method, has already been demonstrated. The new algorithm would run two path

matrices simultaneously. "Fradho" shows that the dynamic programming paradigm

can be used successfully to switch between three simultaneously run path matrices

to maximise an overall score. The new and untested method is described for

several reasons. Firstly description of the method elaborates on a particular

problem of the existing local methods. Secondly it shows a potentially more

elegant solution to a problem than the one adopted in this work for "Medal".

Thirdly the method is more suitable for parallelisation than the recursive method.

Fourthly it demonstrates the scope still remaining within the dynamic

programming paradigm for extension and enhancement to the basic algorithms.

Greedy and global optimisation

The recursive local alignment algorithm developed for "Medal" employs a

'greedy' optimisation algorithm. At each stage the algorithm picks the best

remaining local similarity compatible with previous choices. Each choice may well

exclude other choices. 'Greedy' algorithms generally find good but not optimal

results. The greedy method does not guarantee to find the best combination of

local similarities though it should generally find a good combination. A second

defect in the recursive alignment algorithm is that it takes no account whatsoever

of the quality of matching in regions between those which it has aligned.

141

Mixed noise Type III algorithm

A new algorithm for 'mixed noise type' could solve both these problems.

The new algorithm finds regions that are globally optimal. The algorithm gives

the highest scoring combination of high scoring islands, rather than picking the

best island of matching available at each stage. It distinguishes between two kinds

of noise and makes an automatic choice of scoring tables for different parts of the

alignment. A natural choice would be between use of a 100 PAM table with a

high indel penalty and 250 PAM table with low indel penalty for regions of higher

noise.

The mixed noise algorithm calculates two path matrices simultaneously.

The path matrices can be thought of as stacked one above the other. Additional

path steps are possible between corresponding positions in the two path matrices.

Traversing such steps incurs a penalty and corresponds to a change in noise type.

The penalty is needed to limit switching between layers, just as an indel penalty

limits the postulation of indels. The algorithm switches layers only if the net effect

is to increase the score. Switching between the layers should incur a fairly heavy

penalty. With no penalty for layer switching the path would simply use the least

indel penalty and greatest score for diagonal steps of the two levels.

An additional minor benefit of this new method is that the path found

through the pair of matrices not only yields an alignment but also indicates

automatically which parts of the alignment are good and which parts of the

alignment are poor.

One extra parameter is needed in addition to the layer switch penalty. The

high noise regions of the alignment contain less information about sequence

relationship per residue. It is appropriate to scale down the scores on the high

PAM table by some factor. In low noise regions, matches would markedly

increase the score and mismatches markedly decrease the score. In high noise

regions neither matching nor mismatching would have much influence on the

score. This scaling should cause the algorithm to use the low noise parameters

to score regions which match well. The value for this scaling parameter would

need to be determined by experiment. An extreme would be to score zero for all

changes in the high noise part of the comparison. The recursive local alignment

142

algorithm in "Medal" does something similar in not penalising or rewarding

matches or gaps in regions between the matching islands of homology.

Comparison to recursive method

From experience of alignments performed by hand it is expected that in

practice the mixed noise algorithm will not prove markedly superior to the

recursive local similarity algorithm. Whilst it should do better on the poorly

matching regions, it should at least make some attempt to align them, alignments

of such regions are unlikely to be informative. In most cases the choice of islands

of good matches made is not expected to be different from those made by the

greedy strategy. Differences are, however, likely in the case of two proteins

containing repeats of similar sequences. For such pairs, greedily choosing the best

matching example of the repeated unit from each protein could preclude matching

of some of the other examples. This would happen if the first example of a

repeat in one protein matched best with the last example in another. In such

cases the 'globally best' rather than 'greedily best' gives a better representation of

the similarities. The suggested new algorithm is thus likely to be markedly better

only for a relatively rare subset of comparisons.

Probably the most important advantage of the mixed noise algorithm is its

greater suitability for parallelisation on a SIMD computer such as the DAP. The

mixed noise algorithm requires a single sweep through the two path matrices. For

the recursive algorithm multiple passes are required, which would make inefficient

use of DAP hardware. Finding a dynamic programming analogue to the recursive

algorithm gives an approach suitable for SIMD parallelisation.

143

Addendum: The "Blast" Algorithm

A recently published paper presents a new serial algorithm "Blast" that,

though word based, overcomes the principle defects of the classical word based

approaches (Altschul et al., 1990).

The method allows inexact matching in its first stage of searching. It

rapidly finds pairs of words of a fixed length W, one word from each sequence,

that when scored using a Dayhoff table, score above a threshold T. The program

then goes on to check in the neighbourhood of these words for further matching

using the initial match as a seed. These further matches and mismatches are

scored using the Dayhoff table. The method gives a rapid way to find high scoring

word pairs of any length provided they contain a stretch of length W scoring

greater than the threshold T. This searching strategy is linked to a semiempiric

analysis of the likelihood of a good match with a particular score being missed, ie.

the likelihood of a good match not containing a seed match scoring more than T.

The "Blast" strategy is also a flexible one. The authors have tried several

variants in the neighbourhood searching once the seed has been located and they

intend to adapt "Blast" to compare DNA against protein spotting frame shifts in

the process. They say:

"This permits the detection of distant protein homologies even in the
face of common DNA sequencing errors (replacements and frame shifts)".
(Altschul et al. 1990)

One adaptation of "Blast" searched for pairs of proteins with similarity to

a query, on the principle that a three way alignment might reveal a pattern not

obvious from a pairwise alignment (Altschul & Lipman, 1990). This was made

possible by the high speed of their algorithm.

The savings that the basic "Blast" algorithm gives over examining every

entry in the match matrix are impressive. "Blast" with its default wordsize of 4

and threshold of 14 need examine on average only 1 in 3200 positions. The fast

Type III algorithm by contrast examines every single position.

144

"Blast's" method for finding word-pairs

The key feature of "Blast" is its method for finding word pairs scoring

above the threshold. Prior to searching, the "Blast" method produces an expanded

list consisting of all words that score T or greater against some word in the query.

With default parameters W=4 and T=14 there are on average 50 words

generated for each residue of the query. Rapid techniques are available and are

used to identify exact matches of words from a database to words in the list.

Using an expanded list is a way to convert the inexact matching problem to one

of exact matching, as was achieved in a different fashion with alphabet reduction.

The default parameters give less sensitive matching than one might expect.

With default parameters there is no guarantee of finding all matches of three

residues in a run of four. This would require a minimum of 72 words in the

expanded list per query sequence residue. In contrast, detection of exact

dipeptide matches would guarantee to find all runs with three out of four matches.

In this sense the "Blast" seeds are less sensitive than is exact dipeptide matching.

Increases in sensitivity can be obtained by reducing T or by increasing W;

herein lies a major problem with "Blast", a problem which is noted by the authors.

The list of words increases in size exponentially with decrease in threshold or

increase in word size. Reducing T also leads to an exponential increase in

running time as a higher proportion of matching words are found with a higher

proportion of noise. Increasing W and T together could give greater sensitivity

whilst maintaining or decreasing the proportion of noise matches. However, the

exponential increase in list size precludes this method in practice. Thus in

practice, sensitivity of seed matching cannot be markedly improved by changing

the parameters.

The use of non-adjacent matching, as used by Roberts (1990) in multiple

sequence alignment, could provide an alternative way to convert inexact matching

to exact matching. Algorithmically a search for exact matching of four residues

or more spread over seven residues can be made at one twentieth the speed for

contiguous exact matching tetrapeptide searches. This is because there are twenty

ways to spread four matches over a run of seven starting with a match.

Possibilities for very high speed in tripeptide matching was shown in Chapter 5 so

145

the method should be fast. The advantage of these seeds over "Blast" seeds would

be the use of longer words, length seven, with a possible increase in seed

sensitivity.

Validity of seed based matching

"Blast's" use of a seed match is open to the criticism that there is a non-

zero probability of missing a good match with a high significance score. A good

match need not contain a short high scoring seed segment. Since the significance

score is only an approximate measure of biological significance, "Blast" provides

an approximate method for obtaining an approximate measure, rather than an

exact method for doing so. Given that the authors show that "Blast's" additional

approximation is small, the criticism is less serious than might seem at first.

The total Type III comparison of the database performed in this work

provides further motivation for an approach based on seeds, that is small regions

of high scoring matching. In examining results from that study, clumping of

matches gave greater confidence in the validity of an alignment. Every one of the

sequence similarities reported in this thesis contains a run with three out of four

residues matching. The approach of using a seed and extending alignments from

it is therefore a promising method for high performance database searching.

Irsi

Appendix 1: Tests of some Ideas for
New Software

Introduction

Problems with existing software for biological sequence work motivated

some investigation of alternative methods. Approaches to three particular

problems are described. The first two problems are ones commonly faced by

molecular biologists. The third is a specific problem of pattern identification.

Sequence Retrieval

Background:

A frequent requirement of molecular biologists is to retrieve sequences

from sequence databases by name. Even if the code name is available there may

be slight problems. For example, different databases use different code names for

the same sequence. Often code names for the sequences sought are not available

and the researcher has only a descriptive sequence name. Alternatives in

nomenclature or use of abbreviations cause problems with retrieval strategies that

use keywords. Keyword matching, as used in the GCG package's "Strings" and the

'find' commands of "PSQ" and "PDQ" fail to retrieve 'Trp synthase' when asked

for 'Tryptophan synthetase'. GCG's "Strings" is also notable for taking a long time

to scan for text matches. "Strings" does not use indices, instead it checks each

sequence title line in turn for a match. This is slow and discourages inquiries

about alternatives. The more efficient "PSQ" and "PDQ" which do use indices are

on the other hand offputting to users. The national Molecular Biology computing

centre at Daresbury which supports all three packages has found that most users

use the GCG "Strings" program in preference to "PSQ" and "PDQ" in spite of

encouragement to use the more efficient programs.

147

Idea test:

'Key word in context' indices are familiar to molecular biologists. They are

used, for example, for indexing titles of papers in 'Biological Abstracts'. The index

is a list of one line entries. Each entry occurs several times, once for each

significant word, and the occurrences are sorted on these words. A sample is

shown below:

/NEPHROPATHOLOGY OF CYSTIC FIBROSIS A HUMAN MODEL OF
LUNG INFECTION IN CYSTIC FIBROSIS A LONGITUDINAL ST

CHLORIDE LEVELS IN CYSTIC FIBROSIS A NEGATIVE REPORT

An entry may occur elsewhere in the printed index, as follows:

OF STREPTOCOCCAL INFECTION IN CULTURED YELLOWTAILS
5-AURUGINOSA LUNG INFECTION IN CYSTIC FIBROSIS A LO
HYLOCOCCUS-AUREUS INFECTION IN CYSTIC FIBROSIS HUMA

An online keyword in context index of the protein title lines was made.

Due to its size, the individual words were tokenised, keywords being replaced

internally by two byte tokens. This resulted in 9182 tokens, each protein title

generating on average 8.3 tokens. To the user the index appeared as a normal

file of 67,280 lines which could be examined on the PC using a simple interface

program.

The formation of the index necessary for tokenisation uncovered many

misspellings in the database, e.g oncogene with zero for an 'o' and 'falvoprotein'

for 'flavoprotein'. The extent of inconsistent nomenclature and of typing mistakes

in the databases has been commented on elsewhere (Tullo & Attimonelli, 1989).

The samples given here defeat the keyword in context strategy. For other

mistaken entries such as 'antennepedia' for 'antennapedia', the keyword in context

index does help. Keyword methods alone would fail in cases like this one.

Comments:

Although the keyword in context strategy does not automatically match up

alternative nomenclature, its rapidity and ease of use do make it easy for

148

biologists to check alternative names. Also some near misses (e.g 'synthase' and

'synthetase') are drawn to the biologist's attention.

A full solution to the problems of variation in nomenclature and. typing

mistakes in the database must rest with the database administrators. It is their

task to standardise nomenclature or alternatively to provide indices of equivalent

names. They too are in a position to organise the non-sequence data for well

developed commercial free text retrieval systems.

Dotplots

Background:

A graphical method for displaying similarities between pairs of sequences

is the 'dotplot'. As in the path matrix (Chapter 2) one sequence is placed

horizontally and the other vertically. At its simplest a dot is placed at positions

where the two sequences agree. Runs of similarity between the two sequences

appear as diagonal lines on the dotplot. For DNA sequences and to a lesser

extent protein sequences, background noise from random matching tends to

obscure these line. A system of filtering is usually employed. This uses two

parameters, a windowsize and a threshold. In the filtered dotplot, dots are

removed unless they occur in some diagonal segment of length windowsize that

has more than the threshold number of matches, i.e. only dots in regions with a

high density of matching are shown.

Dotplots are time consuming to produce. With the GCG package two

programs need to be run. One generates a list of points, the other displays them.

This very strongly discourages experimentation with different parameters.

Unfortunately experience and patience seem to be necessary to get the clearest

dotplots.

A subsidiary problem with dotplots is that detail in a dotplot can be hard

to see as the axes may be compressed to fit the dotplot on the screen.

149

Idea test:

A program was written to implement scrolling of graphical images on the

IBM PC. Instead of displaying compressed dotplots, only as much of the dotplot

as would fit on the screen at the most detailed resolution was shown. The

software written to scroll the image permitted viewing of other parts. For speed

this software copied already calculated parts of the image where possible so

requiring a minimum of recalculation.

Other aspects of the implementation addressed the problem of speed in

calculation. Segments which overlap can share some of their counting. For speed

the counting was organised to exploit this and indices were used to determine

which counts to increment. Also dots were plotted in colours depending on the

number of matches in the window. This enabled very rapid selection of different

thresholds once the dotplot was complete. This was achieved by manipulating the

colour palette of the computer without otherwise changing the data stored in the

graphic memory. Scores below the current threshold could be given the

background colour so making only dots with scores above the threshold visible.

Changing threshold was virtually instantaneous.

Comments:

With the test software, scrolling was slow even though this used the built

in graphics memory copy commands. Unlike some microcomputers, access to

graphical memory on the IBM PC is indirect. This markedly slows graphics

operations. For IBM PCs speed can best be achieved by minimising the number

of changes to the graphic image. Consequently a high level view with a zoom

option is probably a better way to achieve detailed viewing of any part than the

method described here.

The GCG implementation suffers from slow graphics which partially

explains its slow operation. However, its main loss in speed is due to splitting the

task into two stages and the use of an intermediate points file. Writing point

information to the file and then reading it back in, as the GCG implementation

does, is unnecessary and wasteful.

150

The methods discussed here make testing different parameters more rapid.

With two parameters there are still many combinations to try for any one pair of

sequences. If some method could be found to remove one parameter, leaving

only a 'plot density' parameter, this might provide a more satisfactory solution.

Identification of a target pattern

Background:

Type I restriction enzymes cut DNA sequences containing specific patterns.

Unlike Type II enzymes they do not cut at the recognition site but instead cut at

a variable distance from the target sequence. Patterns recognised by three Type

I restriction enzymes STySP, EcoK and CfrA are:

STySP: gag n6 rtayg
EcoK: aac n6 gtgc
Cf rA: gca n8 gtgg

Here n represents any residue the subscript showing how many, and y stands for

either c or t, r for g or a.

A new Type I restriction enzyme, EcoE, had been purified and tested on

a number of sequences by other researchers. It was desired to find out what

DNA pattern it recognised. A list of sequences cut and those not cut was

available.

Idea test:

An approach to the pattern identification problem that uses existing

software is to produce a list of overlapping DNA fragments of length 16 from the

sequence data and to sort this list on two keys. The first key would have 3

characters, the second 4. The keys would be separated by a distance of between

4 and 9 residues. These lists, one for each distance, could then be printed and

manually scanned. Groups of fragments that agreed in the selected positions

would occur together in the list. Such groups containing fragments from the cut

sequences and no fragments from the uncut sequences would indicate possible

target patterns.

151

A program was written that was an interactive implementation of this

process. Sorting was performed on any base position and the sorted list examined

on the screen. A stable sort was used so that repeated sortings could produce any

required multi-key sort. Next fragment groups were defined by selecting base

positions in the fragments. Fragments adjacent in the list agreeing at these

positions were grouped together. Rather than manually scanning for groups that

were. compatible with the experimental results, sorting was used again in the

following manner. Each fragment of each group was tagged with an indication of

the sequences, cut and uncut, in its group. That is, an extra field was introduced

to represent this information. A stable sort on this tag field brought sequence

groups with the same cut and uncut sequences together. It was then easy to find

groups with fragments from all cut sequences and none from uncut sequences.

The program identified the following pattern as a possible target:

EcoE: 	gag n7 atgc

And showed that no other pattern with a structure similar to known

recognition patterns for Type I enzymes was consistent with the data (Cowan et

A 1989). The following near miss patterns, it was noted, were in sequences not

cut by EcoE:

HsdK: aag gaagaga atgc
pBR322: ggg catcccg atgc
M13: gaa ttacctt atgc
pBR322: gag cgagggc gtgc
HsdSP: gag ttgttcg agc
M13: gag tacggtg atc
M13: gag cgtcaaa atgt

The tool acted as a way to rapidly organise information that had been

collected by the researchers. Organising the fragment results identified the target

pattern.

152

Comments:

The grouping operation was an important feature of the program and not

available as an adjunct to existing sorting programs. In hindsight the software

could have been made more automatic and would still have given the correct

answer. Use of existing software was tried initially. Whilst simplifying the task it

would have required considerably more work on the part of the researcher than

the approach described here.

153

Appendix 2: Methods for Fast Serial
Type III Comparison

The Type III algorithm can be described economically as follows: A

symmetrical table that scores similarities of pairs of characters from an alphabet

is used to generate scores d[i,j] for the similarity of the ith character of one string

to the jth character of the second. Positive d[i,j] indicate similarity, negative d[i,j]

are counterindicative of similarity. A penalty P, the 'indel' penalty, represents the

cost of inserting a gap in either sequence. Using these elementary scores, a score

S[i,j] for the best local similarity ending on the ith character of the first sequence

and jth character of the second can be computed. The score S[i,j] is expressed

recursively as:

S[i,j] := Max(S[i-1,j-1]+d[i,j],
S[i, j-1]-P,
S[i-1,j]-P,
0)

This expression is for O<ism and O<j:5n. S[i 3O] and S[O,j] are equal to 0

for 0:5i:5m, O:sj :5n respectively.

Matching the ith character against the jth corresponds to the first term and

increases the score S at [i,j] by d[i,j] over its value at S[i-1,j-1]. The second and

third terms correspond to the cost of skipping a character in either sequence.

This is -P. The formula for S[i,j] calculates the best similarity for substrings

ending at characters i and j as being from matching, skipping one or other

character, or if all three give negative results, starting a run of similarity after this

position. The largest value of S[i,j] gives the score for the best local region of

similarity between the two strings.

In a recursive implementation to calculate the S[i,j] there would be wasteful

recalculation of previously calculated values. Instead the dynamic programming

technique is used and all results O<im, 0<j:sn are computed in a suitable order.

Computation time is thus O(m,z).

154

Re-expression

The majority of pairs of strings compared in the Molecular Biology

application have low similarity and most of the S[i,j] are less than P. To use this

observation to increase efficiency requires some rearrangement to the equations.

The intermediate stages of rearrangement result in code which is manifestly less

efficient.

Taking the original formulation we first increase indices. For 0:5i<m and

0:5j<n we have:

S[i+].,j+1) := Max(d[i+1,j+1]+S[i,j],
S[i+1, j)-P,
S[i,j+11-P,
0)

We can introduce extra tests and break the 'Max' into components.

S[i+1,j+1] :=Max(O,d[i+1,j-I-1))
if S[i,j] 	> 0 then

S[i+1,j±1) := Max(O,d[i+1,j+13+S[i,j3)
if S[i+1,j] > P then

S[i-i-1, j+].] := Max(S[i+1,j+1),S[i+1,j)-P)
if S[i,j+13 > P then

S[i+1,j+1] := Max(S[i+1,j+13,S[i,j+1]-P)

The same positive values can be obtained as follows:

T[i+1,j+1] := d[i-s-1,j+1]
if T[i,j] 	> 0 then

T[i+1,j+1] :=T[i+1,j+1]-FT[i,j]
if T[i+1,j] > P then

T[i-4-1,j-4-1] := Max(T[i+1,j+1],T[i+1,j]-P)
if T[i,j+1] > P then

T[i+1,j+1] := Max(T[i+1,j+1] ,T[i,j+1)-P)

This change modifies the treatment of zero. Unlike S[i,j], T[i,j] may

become negative. S would hold a zero in such positions. S and T however agree

on their positive values. A negative T[i,j] fails each of the comparison test and

behaves just as if it were zero in so far as its influences on other T[i,j] is

concerned. That S and T agree on positive values can also be checked by

considering the cases leading to T[i+ 1,j+ 1]:5O and T[i+ 1,j+ 1]>0 separately.

Because S and T agree on positive values they find the same similar substnngs.

155

Rearrangement

This new form permits a rearrangement. Before the main loop starts all

the T[i,j] are initialised to d[i,j]. In the rearranged loop instead of collecting

values for one array element, values are distributed from an element that has

positive score. The operations performed at each location in T are now as

follows:

Start 	if T(i,j)>O then begin
if T[i,j]>P then begin

T[i+1,j] := Max(T[i+1,j),T[i,j]-P)
T[i,j+1] := Max(T[i,j+1),T[i,j]-P)

end
T[i+1,j+1] := T[i+1,j+1]+T[i,j]

end

Testing for T[i,j] >P is necessary only if the testing for T[i,j] >0 has already

succeeded. The testing substantially increases the speed. In a typical comparison

of a pair of sequences around three quarters of the T[i,j] are negative. These are

skipped. This is where the main saving from the rearrangement arises. Of the

remaining values around one half score P or less and are dealt with rapidly. The

second comparison requires subtraction of P from T[i,j]. The result of this

subtraction is then used twice if the test succeeds. The original formulation in

terms of S required two subtractions of P per calculation of S[i,j] so there is an

overall saving in calculation even when the second test succeeds.

Use of registers

The next version of the pseudocode shows minor changes to take account of

the possibility of using registers. To achieve greater speed the algorithm was

implemented at assembly level. A word length register AX was used to hold the

current T[i,j] and the register CX to hold T[i,j] - P. At this point the influence of

the target processor, the 80286 may be clear. The choice of processor is primarily

a reflection of the ready availability and affordability of IBM PCs and compatibles.

Use of registers to improve speed is applicable to most processors.

A standard technique to reduce storage and indexing calculations for the

matrix T was also used. Only two of T's columns are needed during processing.

156

TO[j] takes the place of T[i,j] and Ti[j] the place of T[i+ i,j]. After processing one

column, the values in TO are no longer required. Ti is used in place of TO and

the old TO is initialised with the appropriate d[i,j] values and takes the place of

Ti. The new inner loop is shown below.

Start: 	AX := TO[j]
if AX>O then begin

CX := AX-P
if CX>O then begin

	

T1[j] 	:= Max(T1[j],CX)
TO[j+1] := Max(T0[j+1],CX)

end
T1[j+1] := T1[j+1]+AX

end
j := j+1
if j<= n then goto start
stop

Deferred assignment

A technique compilers use toimprove efficiency in code they produce is to

defer assignments (Appendix 3). A compiler may defer the writing of a value held

in a register back out to memory. This can lead to a saving when the same

memory location is written to several times in succession. This situation frequently

occurs in executing instructions in a loop. A memory location written to in one

cycle of the loop may be written to again in the subsequent cycle. This algorithm

illustrates potential for a more complex form of deferred assignment, conditional

deferred assignment. In the unmodified code writing to memory locations is

conditional on values calculated within the loop. Depending on the condition, the

body of the loop may or may not write a new value out to memory. To cope with

conditional deferred assignment, different versions of the loop were required.

These handle different states of deferred assignment from the previous execution

of the loop. In this code, the 'code expansion' was used to allow deferral of

assignment to TO[j +1] and Ti [j + i}. If CX> 0 then both deferrals take place, if

only AX>O then only deferral of assignment to Ti[j-i- 1] takes place, and if AXsO

then no deferred assignment is required. This required three versions of the loop

body. As each version completes a cycle, it enters the appropriate version for the

next cycle. Which version it enters will depend on which assignments are being

157

deferred.

In fact the value being held to write into TO need not be written at all.

The value is needed only in the next cycle round the loop. For this use it can be

taken from the register holding the value that is being deferred. Use in

determining maximum score is the only other potential subsequent use for values

written into TO. Since the deferred value is derived by subtracting P from a value

already in the matrix T, it cannot itself be the maximum score. The result does

not need to be written out to memory. We now have:

Starti: 	AX := TOEjI
if AX>O then begin

CX := AX-P
if CX>O then begin

T1[j] := Max(T1[j],CX)
goto DeferTwo

end
goto DeferOne

end
NoDefer: 	j := j+1 	;AX<=O

if j<= n then goto Starti
Stop

Start2: 	DX := AX+Tl[j]
AX := TO[j]
if AX>O then goto Morecaic
T1[j] := DX
goto NoDefer

DeferOne: j := j+1 	;AX>O, CX<=O
if j<= n then goto Start2
stop

Start3: 	DX := AX-I-Tl(j)
AX := TO[j]
AX := Max(AX,CX)

;No need to test for AX>O here as AX>=CX>O
Morecaic: CX := AX-P

if CX>O then begin
Maxtest: 	T1[j] := Max(DX,CX)

goto DeferTwo
end else begin

T1[j] := DX
end
goto NoDefer

DeferTwo: j := j+l 	;AX and CX>O
if j<= n then goto Start3
stop

The number of external memory references has been decreased. The

158

plethora of gotos is not a concern. The unconditional gotos can be removed by

rearranging the code and code duplication. Other unconditional gotos originating

from expanding 'if then else' and 'Max' can be removed in a similar fashion.

Further code expansion is possible. In the line AX := Max(AX,CX) the

conditional assignment of CX into AX could be replaced by a conditional branch

to equivalent code with the roles of CX and AX reversed. This however was not

done. It would nearly double the length of the program for a marginal

performance gain.

Mnimum value and rogue value

Determination of the overall maximum value in the array and its position has

so far been left out of this discussion. The maximum value in a column could be

determined by a second loop that scans every entry in the column. In fact, since

we already have a loop which picks up values from TO we can be far more

efficient about finding the maximum. The overheads for looping and fetching

values from TO can be dispensed with by building the maximum testing into the

loop. Moreover we only need the test in the version of the code which performs

both deferrals, since deferrals correspond to values in TO greater than P. This

reduces the number of times we test for the current maximum being exceeded by

a factor of six. In doing this we have lost the ability to correctly score low scoring

pairs. The code will only detect those scores greater than P. For the database

searching application this is no loss. Substantially higher scores are needed for

evidence of relatedness between compared proteins. An even better position for

the maximum test is at the line labelled maxtest, when the value DX has been

found to be greater than CX. Any matching of two residues where the score for

the substrings before matching the two residues is greater than 2P will reach this

point. This gives a slightly higher threshold for guaranteed reporting of scores and

an even less frequent execution of the maximum test.

159

Loop overheads

The loop overheads, the test for j :5 n, are now a significant fraction of the

algorithm's cost. An improvement that is possible since the test for maximum is

infrequent is the use of a rogue value for determining whether the loop has

completed. TO[n+ 1] is initialised with an impossibly high value. This causes entry

into the code which checks to see if the current maximum score has been

exceeded. If it has, this code additionally checks for the rogue value. Using a

rogue value in this way virtually eliminates the time spent in checking for the end

of the loop. The tests for j :5 n can be replaced with unconditional gotos. The

testing of AX>O in the most commonly executed case, no deferral, is a natural

candidate for 'loop unrolling'. This unrolling makes a saving since it reverses the

test so that the conditional branches most commonly do not branch.

At the start of each cycle it is necessary to initialise the vector Ti. This

initialisation is dependent on the ith character of the second sequence. This is

most rapidly performed if vectors for each of the characters in the alphabet are

precomputed. Initialisation is then performed using a rapid memory copy

operation.

Performance

The overall result of these optimisations is an algorithm which has a speed

of 300,000 PMEs' on a 16 MHz IBM PC. This compares to speeds implied by

Pearson (1990) of 4,000 PMEs' for comparison; and by Mount (1988) of 700

PMEs 1 for comparison and alignment on a mainframe and a speed of 6000

PMEs 1 for Pascal code on the 16 MHz IBM PC (own data). Thus the

optimisations described here lead to an approximate 50 fold speed improvement.

160

Appendix 3: Conditional Deferred
Assignment

Just as improvements can be made in disk performance by disk caching,

that is, keeping of partial copies of disk files in RAM memory, so too speed

improvements can be made by keeping copies of some RAM memory locations

in the processor registers. In both optimisations multiple reads or writes to the

slower memory are replaced by multiple reads and writes to the faster memory.

Temporary use of processor registers to hold a copy of a RAM memory location

is an important optimisation technique. Aho et al. (1986) discuss how a compiler

can automatically select which memory locations to hold in a register. Any values

changed in the faster memory are ultimately written from the fast memory to the

slower. It is deferral of this process of assigning a value held in a register to a

variable held in RAM memory that leads to savings when multiple writes to slow

memory would normally be involved. Deferral allows one assignment to slow

memory to take the place of several.

With disk caching, the timescales are such that decisions about when to

write out changed data can be made at run time by software. These decisions can

depend on current availability of memory to hold disk data. With deferred

assignment, the decisions are made at compile time. The point in the software

at which to write register values to memory must be decided in advance and built

into the program. To do this, as the software is compiled a history of which reads

and writes to memory occur must be built up.

Information about the history of memory reads and writes can be updated

incrementally with each line of code compiled. Conditional branches in the code

can lead to alternative histories. The usual solution to this is, where two code

streams meet, to use only the history common to both branches that meet. This

can lead to a loss of history information and the loss of the ability to defer

assignment. In particular it leads to the loss of ability to defer a conditional

assignment.

161

The transformation to recover the property of having a known history is

straightforward. Where two branches of the code merge they may do so in the

transformed code only if the history, in as far as it affects deferred assignment, is

the same. Otherwise a copy of the relevant code is made.

In the program in Appendix 2, two memory locations are candidates for

deferral, leading to four possible code variants. In fact, update of one of the

memory locations is conditional on update of the other, so only three variants are

actually required. This code expansion effectively remembers alternative histories.

This extends the optimisation technique of deferred assignment to the case where

some of the operations during the deferral are conditional.

162

Appendix 4: Potential for
Optimisations to "Prosrch"

The program "Prosrch" (Lyall, 1988) performs a rapid Type III search,

single sequence against database on the DAP parallel computer. Most of the

code in the program concerns user interface and file I/O. Here we are concerned

only with the time critical core comparison routine which represents less than one

tenth of the total code. Before describing possible changes, we describe the

implementation as it currently stands.

"Prosrch" keeps two rows of the comparison matrix at any time. These

rows are updated in a parallel fashion. Rows may have up to 32768 elements and

contains several sequences from the database. Sequences are delimited by

sequence separator characters which are used to prevent scores from one

sequence influencing scores in another.

The row elements carry three pieces of information, the score, the starting

coordinate in the path matrix of the path leading to that score and the best score

so far on this path. Whenever the score falls below zero this information is reset.

The best score is set to zero and the coordinate information is reinitialised to the

current row and column. The program keeps a global threshold value. Scores are

tested against this threshold after each update of the rows. Scores on paths which

have just taken a positive step and are above this threshold and also above their

record of the best score so far are dealt with in a serial subroutine called

'Dsavres'. These scores and their associated coordinate information are recorded

serially in a separate array. The code in 'Dsavres' has to identify whether a score

has already been reported for this path's starting coordinate. If so it locates

where its top score is held; if not it allocates a location.

Ideally the threshold would be set so that exactly the required number of

results, typically 16,000, would be collected. In practice the distribution of scores

is not known exactly in advance. This being so, the threshold is set to a

reasonable but low value and is increased as results are collected. Dsavres is

163

called many times more than the number of results collected. On a good path,

each increase in score could lead to a call to Dsavres. These calls are additional

to calls early on before the threshold has approached its ultimate level. One

approach developed by J.F. Collins (ICMB Edinburgh, personal communication)

that has considerably improved the performance is the development of superior

techniques to set and adjust the threshold.

Optimisation

Given that fast serial implementations for Type III searching are possible,

it is natural to explore the potential for optimising the parallel code. The changes

to "Prosrch" presented here are changes which show the potential for optimisation

but which have not been tested in practice. To do so would require changes in

the interface and post-processing code in addition to changes made in the core

code.

For the modified core, written in DAY FORTRAN, use was made of the

C language's pre-processor, "cpp". This was so that repeated definitions of

datastructures, repeated definitions which are required by FORTRAN, were

generated accurately and automatically. Blocks defining the use of memory were

placed in a single file. The C pre-processor included selected portions of this file

into the source code in the appropriate places. This change facilitates

modification of the datastructures, the use of subroutines and it also simplifies the

appearance of the "Prosrch" program.

The post search phase of "Prosrch" runs on a serial machine and processes

fewer than one in a hundred of the proteins examined in the search phase. The

first step taken in optimisation was to fully exploit savings that could be made by

shifting work to the post-search phase. In fact, in searching, all that each row

element needs to carry is the score. With this modification the program would

produce a single score for each protein, the score of its best match. The

searching program would not determine the coordinates in the path matrix of the

ends of the best path, leaving this to the post-search phase. The scores

determined in this modified search could be used exactly as before to produce the

same list of high scoring proteins as produced by the current "Prosrch" program.

- 	 164

An important loss associated with this scheme is loss of results additional

to the best similarity for each protein in the database. "Prosrch" collects more

than one result per protein. The bulk of these are chance matches of unrelated

proteins. The distribution of the scores of these is used by "Prosrch" to measure

the likelihood that a high scoring match is part of the noise distribution. The

Dayhoff scores for an alignment are converted to likelihoods using an exponential

transform based on the collected distribution.

The Dayhoff scores themselves give a logarithmic measures of likelihood.

The computation of likelihoods using the distribution is a refinement that has not

yet been proven to give more useful information. The order in which results are

presented by "Prosrch" depends only on the score. The computation using the

additional noise results does not affect the order of results.

The extra results do have a second more important function as they can

give additional information about relatedness when a protein has more than one

region of matching. In current implementations of the post-processing phase of

"Prosrch" these extra results are not used to affect the order in which results are

reported. If a protein contains two weakly matching regions, its position in the

list of results is determined by the highest scoring one of these weak matches.

With the suggested alternative method, if detection of additional regions

of matching for each reported protein is desired then the reported proteins could

be reexamined using a serial or a parallel approach. Whether a serial or parallel

approach is used, the workload of this stage would be less than one hundredth of

the workload of doing this for all proteins in the database.

The changes to record one score per protein reduce the quantity of

information being transferred between processor elements by a factor of four and

should increase execution speed by at least the same factor. This factor can be

increased to eight by using only one byte to hold scores rather than two bytes.

Scores for comparisons scoring more than 256 would overflow and the true score

would not be reported. The highest score achieved before overflow would be

reported instead. Re-analysis of the small number of high scoring matches would

reveal the true situation.

165

Details

In the interests of clarity a number of finer points have been left out of the

discussion. The "Prosrch" program makes extensive use of a DAP specific speed

improving technique called crinkling. With crinkling, a single processor holds

several consecutive row elements. Fortunately the new technique can crinkle in

much the same way as "Prosrch" crinkles. Extra separator characters can be

introduced between sequences to ensure that each DAP processor element deals

with only one sequence. Best results can then be collected on a per-processor

rather than on a per-element basis. This leads to slight savings, most notably

reducing the storage required for best results by a factor of the number of row

elements held per processor.

The overflow of scores also requires careful consideration. In fact, since

the score must on occasion hold small negative values, the byte values should be

considered as covering the range -64to +191 rather than 0 to 255. This does not

affect the standard DAY arithmetic, an observation which needs careful checking,

but this asymmetric range does affect the criterion used in detecting negative

scores to reset scores to zero and requires a slight modification to the test.

Effect

Even with these complications the changes produce a dramatic

simplification to the searching code. The core part of the routine shrinks from

250 lines to 100 lines. The subroutine Dsavres containing 400 lines of code is

replaced by the single line:

PSCORE(N) = MAXV(MSCORE, PROT.EQ.N)

to record the maximum score for a protein. This statement is executed once per

protein, once for each value of N, whereas Dsavres is called for every

improvement to a path that scores above the threshold.

The simplifications are also important for future development. The more

economical code should be easier to develop to use the more complex dynamic

programming comparison techniques of Chapter 9. The mixed-noise algorithm

166

described there, which returns a result dependent on all islands matched, could

be used to provide a parallel counterpart of the serial recursive alignment

algorithm used in 'Medal".

Further comment

These techniques have been discussed with J.F. Collins who has suggested

further simplifications. He also suggested that a better estimate of significance

could be obtained using both score and alignment length rather than score alone.

This estimate could be based on statistics collected with the existing "Prosrch"

program.

The first additional simplification he suggested was use of the range -128

to +127 rather than -64 to +191. This simplifies the arithmetic tests. Secondly,

rather than producing one score per protein, finding maximum scores for a block

of typically ten proteins has some advantages. Since the databases are too large

to be processed in one section, the "Prosrch" program groups proteins into blocks.

Rather than detecting high scoring proteins, the modifications could be used to

detect high scoring blocks instead. The new software would then act as a fast first

stage filter for the existing comparison and alignment software. This 'block filter'

would reject blocks consisting entirely of proteins with similarity to the query

scoring below some threshold. Unlike the two stages of "FastP", the filter and

more sensitive stages would be compatible. All proteins with alignments scoring

highly by the criteria of the second stage would be guaranteed to be accepted by

the first stage. The most important advantage of this approach is that far less

modification to the existing post-processing software would be required.

167

Abbreviations

Computer Science and Molecular Biology abbreviations:

ATP adenosine tnphosphate.
AMP adenosine monophosphate.
cAMP cyclic adenosine monophosphate.
DNA deoxyribonucleic acid.
EGF epidermal growth factor.
I/O input/output.
MIMD multiple instruction multiple datapath.
NADH nicotinamide adenine dinucleotide.
NMR nuclear magnetic resonance.
NWS Needleman Wunsch Sellers.
PAD packet acceptor/distributor.
PMEs 1 path matrix elements per second.
PR pathogenesis related.
PTS phosphotransferase system.
RAM random access memory.
RNA ribonucleic acid.
SIMD single instruction multiple datapath.
tRNA transfer ribonucleic acid.
YP yolk protein.

Organisation and product names and abbreviations:

AMT Active Memory Technology limited (Reading U.K.).
DAP Distributed Array Processor (parallel computer

manufactured by AMT).
EVjPSX Mark name of Evans and Sutherland limited.
GCG Genetics Computer Group (Devereux et al., 1984).
IBM International Business Machines limited.
ICL International Computers limited.
ICMB Institute 	of 	Cell 	and 	Molecular 	Biology 	(Edinburgh

University).
NBRF National Biomedical Research Foundation.
PC personal computer (usually IBM PC).
PIR Protein Information Resource (name of the NBRF protein

database).
Sun Mark name of Sun systems limited.
Turbo Pascal Registered trademark of Borland International Inc (Scotts

Valley, CA 95066-9987).
VAX Mark name of Digital computers limited.
VAX/VMS Mark name of Digital computers limited.

Selected programs, description and references:

"Blast" 	-- Fast sequence comparison using high scoring word
matches as seeds (Altschul et al., 1990).

"FastA" 	-- Fast sequence comparison using exactly matching words
(Pearson, 1990).

110" 	-- Program for displaying three dimensional protein
structures (Jones T.A., Dpt. Chemistry, Aarhus
University, Denmark).

"PKZip" 	-- Data compression (PK-WAre ltd, WI 53217, U.S.A.).
"Prosrch" 	-- Database searching using Type III algorithm on a parallel

computer (Lyall et al., 1986).
"PSQ" 	-- Protein sequence entry retrieval (NBRF).
"PDQ" 	-- Protein sequence entry retrieval (UIG, Daresbury

laboratory, Warrington U.K.).
"Strings" 	-- Protein sequence retrieval by name (GCG).
"Wordsearch" -- Exact word matching database searching (GCG).

Selected own programs, description:

"Dayhoff'
"Fradho"
"Medal"
"Prowl"
"Xref'

-- Generation of dayhoff scoring tables.
-- DNA to protein comparison.
-- Multiple sequence editor and aligner.
-- Database searching using Type III algorithm on PC.
-- Annotation file crossreference browser.

169

References

Aho A-V., Hopäroft J.E. & Ullman J.D. (1983) "Data structures and algorithms"
p.377 Ex. 11.23, Reading MA: Addison-Wesley.

Aho A.V., Sethi R. & Ullman J.D. (1986) "Compilers: Principles, techniques and
tools" pp.517-522, Reading MA: Addison-Wesley.

Aiba H., Mori K., Tanaka M., Ooi T., Roy A. & Danchin A. (1984) "The
complete nucleotide sequence of the adenylate cyclase gene of Escherichia
coli" Nucleic. Acids Res., 12(24): 9427-9437.

Akyoshi D.E., Regier D.A., Jen G. & Gordon M.P. (1985) "Cloning and
nucleotide sequence of the tsz gene from Agrobacterium tumefaciens strain
T37" Nucleic. Acids Res., 13(8): 2773-2788.

Altschul S.F., Gisch W., Miller W.E., Myers E.W. &Lipman D.J. (1990) "Basic
local alignment search tool" J. Mol. Biol., 215 (3): 403-410.

Altschul S.F. & Lipman D.J. (1990) "Protein database searches for multiple
alignments" Proc. Nail. Acad. Sci. USA, 87(14): 5509-55 13.

An F.Y. & Clewell D.B. (1991) "Tn917 transposase. Sequence correction reveals
a single open reading frame corresponding to the tnpA determinant of
Tn3-family elements" Plasmid, 25(2): 121-124.

Arfken G.B. (1985) "Mathematical methods for physicists" 3rd edn. Orlando:
Academic Press

Atkins J.F., Weiss R.B. & Gesteland R.F. (1990) "Ribosome gymnastics: Degree
of difficulty 9.5 Style 10.0" Cell, 62(3): 413-423.

Bains W. (1986) "Multan - A program to align multiple DNA sequences" Nucleic.
Acids Res., 14(1): 159-177.

Bairoch A. (1989a) "PROSITE: A dictionary of protein sites and patterns" 4th
edn. University of Geneva.

Bairoch A. (1989b) "PROSITE: A dictionary of protein sites and patterns" 4th
edn. p.53 University of Geneva.

Barker W.C., George D.G. & Hunt L.T. (1990) "The protein sequence database"
Methods in Enzymol., 183: 31-49.

Barton G.J. & Sternberg M.J.E. (1987) "A strategy for the rapid multiple

170

alignment of protein sequences" J. Mo!. Biol., 198: 327-337.

Bollobas B.J. (1979) "Graph theory: An introductory course" New York: Springer
Verlag.

Bradshaw A. (1987) 'The control of cell growth: The role of polypeptide growth
factors and oncogene products." in "Oncogenes and growth factors",
Bradshaw R.A. & Prentis S. eds. pp.x-xv, Amsterdam: Elsevier.

Brennan R.G., Weaver L.H. & Matthews B.W. (1986) "Use of protein sequence
and structure to infer distant evolutionary relationships" Chemica scnta,
26B: 25 1-255.

Burks C. et al. (1990) "Genbank: Current status and future directions" Methods in
Enzymol., 183: 3-22.

Cabot E.L. & Beckenback A.T. (1989) "Simultaneous editing of multiple nucleic
and protein sequences with ESEE" CABIOS, 5: 233-234.

Claverie J.M. & Sauvaget I. (1985) "PGtrans: A protein sequence databank
generated by computer translation of Genbank nucleotide sequences"
Trends Bioc/zem. Sci., 10: 8.

Claverie J.M. & Bougueleret C. (1986) "Heuristic informational analysis of
sequences" Nucleic. Acids Res., 14(1): 179-196.

Collins J.F. & Coulson A.F.W. (1987) "Molecular sequence comparison and
alignment" in "Nucleic acid and protein sequence analysis: A practical
approach" Bishop M.J & Rawlings C.J. eds. Ch13 pp335-336, Oxford: IRL
Press.

Cowan G.M., Gann A.A.F. & Murray N.E. (1989) "Conservation of complete
DNA recognition domains between families of restriction enzymes" Cell,
56: 103-109.

Dayhoff M.O., Schwartz R.M. & Orcutt B.C. (1978) "A model of evolutionary
change in proteins" in "Atlas of protein sequence and structure" Vol.5
Supp.3 Ch.22 pp345-352, National Biomedical Research Foundation.

Debelle F. & Sharma S.B. (1986) "Nucleotide sequence of the Rhizobium meliloti
RCR2011 genes involved in host specificity of nodulation" Nucleic. Acids
Res., 14: 7453-7472.

Devereux J., Haeberli P. & Smithies 0. (1984) "A comprehensive set of sequence
analysis programs for the VAX." Nucleic. Acids Res., 12(1): 387-395.

Devereux J., Haeberli P. & Marquess P. (1989a) 'Bestfit' in Program manual

171

section of GCG package user manual, Sect.5 p.17. Madison: University of
Wisconsin Biotechnology Center.

Devereux J., Haeberli P. & Marquess P. (1989b) 'Gap' in Program manual section
of GCG package user manual, Sect.5 pp.25-3 1, Madison: University of
Wisconsin Biotechnology Center.

Doolittle R.F. (1981) "Similar amino acid sequences: Chance or common
ancestry?" Science, 214: 149-159.

Doolittle R.F., Hunkapiller M.W., Hood L.E., Devare S.G., Robbins K.C.,
Aaronson S.A. & Antoniades H.G. (1983) "Simian sarcoma virus onc gene,
V-sis is derived from the gene (or genes) encoding a platelet-derived
growth factor" Science, 221: 275-276.

Doolittle R.F. (1990) "Searching through sequence databases" Methods in
Enzymol., 183: 31-49.

Efstratiadis A., Posakony J.W., Maniatis T., Laun R., O'Connel C., Spritz R.A.,
Weisman F., Weisman M., Slighton J.L., Blecht A.E., Smithie 0., Baralle
F.E., Shoulders C.C. & Proudfoot N.J. (1980) "The structure and evolution
of the human beta-globin gene family" Cell, 21: 653-668.

Fang K.S.Y., Vitale M., Fehlner P. & King T.P. (1988) "cDNA cloning and
primary structure of a white-faced hornet venom allergen, antigen S" Proc.
Nat!. Acad. Sci. USA, 85: 895-899.

Faulkner D.V. & Jurka J. (1988) "Multiple aligned sequence editor (MASE)"
Trends Biochem. Sci., 13: 321-322.

Feng D.F., Johnson M.S. & Doolittle R.F. (1985) "Aligning amino acid sequences:
Comparison of commonly used methods" J. Mo!. Evol., 21: 112-125.

Finlay C., Hinds P.W., Levine A.J. (1989) "The p53 proto-oncogene can act as a
suppressor of transformation" Cell, 57: 1083-1093.

Frankel A.D. & Pabo CO. (1988) "Fingering too many proteins" Cell, 53: 675.

Freedman R.B. (1989) "Protein disulphide isomerase: Multiple roles in
modification of nascent secretory proteins" Cell, 7: 1069-1072.

Frisch L. ed. (1966) "The genetic code" Cold Spring Harbour Symposia on
Quantitative Biology 31.

Fryklund L. & Sievertson H. (1978) "Primary structure of somatomedin-B" FEBS
Lett., 87(1): 55-60.

172

Garbed ian M.J., Shirras A.D., Bownes M. & Wensink P.C. (1987) "The nucleotide
sequence of the gene coding for Drosophila melanogaster yolk protein 3"
Gene, 55: 1-8.

George D.G., Barker W.C. & Hunt L.T. (1986) "The protein identification
resource PIR" Nucleic. Acids Res., 14(1): 11-15.

Gilbert W. (1978) "Why genes in pieces?" Nature, 271: 501.

Gordon C. ed. (1988) "Mapping and sequencing the human genome" Washington:
National Academy Press.

Gribskov M., Devereux J. & Burgess R.R. (1984) "The codon preference plot;
graphic analysis of protein coding sequences and prediction of gene
expression" Nucleic. Acids Res., 12: 539-549.

Groneborn A.M. & Clore G.M. (1989) "Three dimensional structures of proteins
in solution by nuclear magnetic resonance spectroscopy" Protein Sequence
Data Analysis, 2: 1-8.

Hammond S.M., Lambert P.A. & Rycroft A.N. "The cell envelope in bacterial
disease" in "The bacterial cell surface" p.177 London: Croom Helm.

Hantgan R.R., Hammes G.G. & Scheraga H.A. (1974) "Pathways of folding of
reduced bovine pancreatic ribonuclease" Biochemistry, 13: 3421-3431.

Hein J. (1989) "A tree reconstruction method that is economical in the number
of pairwise comparisons used" Mol. Biol. Evol., 6(6): 669-684.

Hejnjkoff S. & Wallace J.C. (1988) "Detection of protein similarities using
nucleotide sequence databases" Nucleic. Acids Res., 16(13): 6191-6204.

Flenneke C.M. (1989) "A multiple sequence alignment algorithm for homologous
proteins using secondary structure information and optionally keying
alignments to functionally important sites" CABIOS, 5(2): 141-150.

Higgins D.G. & Sharp P.M. (1989) "Fast and sensitive multiple sequence
alignment on a microcomputer" CABIOS, 5(2): 151-153.

Hirschberg D.S. (1975) "A linear space algorithm for computing longest common
subsequences" Commun. A. CM, 18: 341-343.

Horvath B., Kondorosi E., John M., Schmidt J., Torok I., Gyorgypai Z., Barabas
I., Wieneke U., Schell J. & Kondorosi A. (1986) "Organization, structure
and symbiotic function of Rhizobium meliloti nodulation genes determining
host specificity for alfalfa" Cell, 46: 335-343.

173

Howard H.J. (1986) "Malaria: Antigens and host-parasite interactions" in "Parasite
antigens" Pearson T.W. ed. pp 144-149 New York: Dekker.

Jany K.D. (1984) "Complete nucleic acid sequence of glucose dehydrogenase from
Bacillus megasterium" FEBS Lett., 165: 6-10.

Jefferson R., Goldsbrough A. & Bevan M. (1990) "Transcriptional regulation of
a patatin-1 gene in potato" Plant Mo!. Biol., 14(6): 995-1006.

Jenne D. &Stanley K.K. (1987) "Human S-protein gene: Repeating peptide motifs
in the 'pexin' family and a model for their evolution" Biochemistry, 26:
6735-6742.

Jones R., Taylor W., Zhang X., Mesirov J. & Lander E. (1990) "Protein sequence
comparison on the connection machine CM-2" in "Computers and DNA"
Bell G. & Mar T.G. eds. pp99-102, Redwood City MA: Addison-Wesley.

Kabsch W. & Sander C. (1983) "How good are predictions of protein secondary
structure?" FEBS Lett., 155(2): 179-182.

Kabsch W. & Sander C. (1984) "On the use of sequence homologies to predict
protein structure: Identical pentapeptides can have completely different
conformations" Proc. Nat!. Acad. Sci. USA, 81: 1075-1078.

Kahn P. & Cameron G. (1990) "The EMBL data library" Methods in EnzymoL,
183: 23-30.

Kaufmann S., Legrand M. & Fritig B. (1990) "Isolation and characterisation of six
pathogenesis related (PR) proteins of samsun NN tobacco" Plant MoL
Biol., 14(3): 381-390.

King T.P., Moran D., Wang D.F., Kochourmian L. & Chait L. (1990) "Structural
studies of a hornet venom allergen antigen 5, dol mV and its sequence
similarity with other proteins" Prot. Seq. Data Analysis, 3(3): 263-266.

Knuth D.E. (1973a) "Fundamental algorithms" pp. 104-107, 2nd ed. Reading MA:
Addison Wesley.

Knuth D.E. (1973b) "Sorting and searching" pp.406-411, 2nd ed. Reading MA:
Addison Wesley.

Knuth D.E. (1973c) "Sorting and searching" pp.555-556, 2nd ed. Reading MA:
Addison Wesley.

Kostertopfer M., Frommer W.B., Rochasosa M. & Willmitzer L. (1990) "Presence
of a transposon-like element in the promoter region of an inactive patatin
gene in Solarium tuberosum" Plant Mo!. Biol., 14(2): 239-247.

174

Kraut J. (1977) "Serine proteases: Structure and mechanism of catalysis" Ann.
Rev. Bioc/zem., 46: 331-358.

Kruskal J.B. (1983) "An overview of sequence comparison" in 'Time warps string
edits and macromolecules: The theory and practice of sequence
comparison" Sankoff D. & Kruskal J.B eds. Ch.1 pp.1-45, Reading MA:
Addison-Wesley.

Lewin B. (1990) "Genes" 4th edit., Oxford: Oxford UP.

Lindquist S. & Craig E.A. (1988) "The heat shock proteins" Ann. Rev. Genet., 22:
631-637.

Lipman D.J., Kececioglu J.D. & Altschul S.F. (1989) "A tool for multiple
alignment" Proc. Nat!. Acad. Sci. USA, 86(12): 4412-4415.

Long J. & Whitefield A. eds (1989) "Cognitive ergonomics and human computer
interaction" Cambridge: Cambridge UP.

Lucas S., Camacho-Hennquez A., Lolspeich F., Henschen A. & Sanger H.L.
(1985) "Amino acid sequence of the 'pathogenesis related' leaf protein p14
from viroid-infected tomato reveals a new type of structurally unfamiliar
protein" EMBO J., 4: 2745-2749.

Lyall A., Hill C., Collins J.F. & Coulson A.F.W. (1986) "Implementation of an
inexact string matching algorithm on the I.C.L. DAP" in "Parallel
computing 85" pp.235-240, Amsterdam: Elsevier.

Lyall A. (1988) "Biological sequence comparison on a parallel computer"
Doctoral Thesis, Edinburgh University.

Masek W.J. & Paterson M.S. (1983) "How to compute string edit distances
quickly" in "Time warps' string edits and macromolecules: The theory and
practice of sequence comparison" Sankoff D. & Kruskal J.B eds. Ch. 14
pp.327-349, Reading MA: Addison-Wesley.

McQuay S.J. (1991) "Interpretation of alignments between sequences of unusual
composition" Bioc/jem. Soc. Transactions, 19(2): 523-524.

Mount D.W. (1988) in "Computational molecular biology" Lesk A.M ed. Oxford:
Oxford UP.

Murata M., Richardson J.S. & Sussman J.L. (1985) "Simultaneous comparison of
three protein sequences" Proc. Nail. Acad. Sci. USA, 82: 3073-3077.

Nakai K., Kidera A. & Kanehisa M. (1988) "Cluster analysis of amino acid indices
for prediction of protein structure and function" Prot. Engineering 2(2):

175

93-100.

Needleman S.B. & Wunsch C.D. (1970) "A general method applicable to the
search for similarities in amino acid sequences of two proteins" J. MoL
Biol., 48: 443-453.

Osborne M.R. (1985) "Finite algorithms in optimization and data analysis"
pp.325-332, Wiley.

Pallabiraman N., Namboodiri K., Lowrey A. & Gaber B.P. (1990) "NRL_3D: A
sequence structure database derived from the protein databank (PDB) and
searchable within the PIR environment." Prot. Seq. Data Analysis, 3(5):
387-405.

Patthy L. (1985) "Evolution of the proteases of blood coagulation and fibrinolysis
by assembly from modules" Cell, 41: 657-663.

Pearson W.R. (1990) "Rapid and sensitive sequence comparison with FastP and
FastA" Methods in Enzymol., 183: 63-89.

Quispel A. (1988) "Bacteria-plant interactions in symbiotic nitrogen fixation" Phys.
Plantum, 74: 784-790.

Regier D.A., Akiyoshi D.E. & Gordon M.P. (1989) "Nucleotide sequence of the
tsz gene from Agrobactenum rhizogenes (strain A4)" Nucleic. Acids Res.,
17(21): 8885.

Reizer J., Saier M.H., Thompson J., Grenier F., Hengstenberg W. (1988) "The
phosphoenolpyruvate - sugar phosphotransferase system in gram-positive
bacteria. Properties, mechanism and regulation" CRC Critical Reviews in
Microbiology, 15(4): 297-338.

Revuz D. (1975) "Markov chains" Amsterdam: Elsevier.

Ripka W.C. (1986) "Computer-assisted model building" Nature, 321: 93-94.

Roberts R. (1990) "Computational challenges of the human genome" presented
at "Computing in Molecular Biology" Conference, Chester.

Saier M.H., Grenier F.C., Lee C.A. & Waygood E.P. (1985) "Evidence for the
evolutionary relatedness of the proteins of the bacterial phosphoenol-
pyruvate sugar phosphotransferase system" J. Cell. Biochem., 27: 43-49.

Sambrook J. and GeThing M.J. (1989) "Chaperones, paperones" Nature, 342:
224-225.

Sanger F., Nicklen S. & Coulson A.R. (1977) "DNA sequencing with chain-

176

terminating inhibitors" Proc. Nati. Acad. Sci. USA, 74(12): 5463-5467.

Sanger F., Coulson A.R., Hong G.F., Hill D.F. & Peterson G.B. (1982)
"Nucleotide sequence of bacteriophage lambda DNA" J. Mo!. Biol., 162:
729-773.

Sankoff D. & Kruskal J.B. eds. (1983) 'Time warps, string edits and
macromolecules: The theory and practice of sequence comparison"
Reading MA: Addison-Wesley.

Santibanez M. & Rhode K. (1987) "A multiple alignment program for protein
sequences" CABIOS, 3(2): 111-114.

Schulz G.E. & Schirmer R.H. (1979) "Noncovalent forces determining protein
structure" in "Principles of protein structure" Ch.3 pp.27-53, 2nd ed. New
York: Springer-Verlag.

Schwartz R.M. & Dayhoff M.O. (1978) "Matrices for detecting distant
relationships" in "Atlas of protein sequence and structure" Vol.5 Supp.3
Ch.23 pp.353-358, National Biomedical Research Foundation.

Sedgewick R. (1983) "Dynamic programming" in "Algorithms" Ch.37 pp483-495,
Reading MA: Addison-Wesley.

Shannon C.E. & Weaver S. (1949) "The mathematical theory of communication"
p.9, Urbana: Urbana UP.

Smith R.F. & Smith T.F. (1990) "Automatic generation of primary sequence
patterns from sets of related proteins" Proc. Nail. Acad. Sci. USA, 87(1):
118-122.

Smith T.F., Waterman M.S. & Burks C. (1985) "The statistical distribution of
nucleic acid similarities" Nucleic. Acids Res., 13(2): 645-656.

Sobel E & Martinez HM (1986) "A multiple sequence alignment program"
Nucleic. Acids Res., 14(1): 363-374.

Stavich B.R., Hahn B.H., Shaw G.M., Mc Neely P.D., Modrow S., Wolf H., Parks
E.S., Parks W.P., Josephs S.F., Gallo R.G. & Wong-Staal F. (1986)
"Identification and characterisation of conserved and variable regions in the
envelope gene of HTLV-IIIJLAV, the retrovirus of AIDS" Cell, 45: 637-
648.

Stockwell P.A. & Peterson G.B. (1987) "HOMED: A homologous sequence
editor" CABIOS, 3: 37-43.

Stryer L. (1981) "Biochemistry" 2nd ed. p.61 San Francisco: Freeman.

177

Subbiah S. & Harrison S.C. (1989) "A method for multiple sequence alignment
with gaps" J. MoL Biol., 209: 539-548.

Surin B.P. & Downie J.A. (1988) "Characterization of the Rhizobium
leguminosarun genes nodLMN involved in efficient host-specific
nodulation" Mo!. Microbiology, 2(2): 173-183.

Taylor W.R. (1986) "Identification of protein sequence homology by consensus
template alignment" J. Mo!. Biol., 183: 233-258.

Taylor W.R. (1987a) "Protein Structure prediction" in "Nucleic acid and protein
sequence analysis: A practical approach" Bishop M.J & Rawlings C.J. eds.
Ch.12 p.313, Oxford: IRL Press.

Taylor W.R. (1987b) "Multiple sequence alignment by a pairwise algorithm"
CABIOS, 3(2): 81-87.

Taylor S.S. Buechler J.A. & Yonemoto W. (1990) "cAMP dependent protein
kinase: A framework for a diverse family of regulatory enzymes" Ann. Rev.
Biochem., 59: 971-1006.

Thirup S. & Larsen N.E. (1990) "Alma: An editor for large sequence alignments"
Proteins Struc. Func. & Genet., 7(3): 291-295.

Tullo A., Liuni S. & Attimonelli M. (1989) "Reorganization and merging of the
EMBL and Genbank keyword indeces in a tree structure for more efficient
retrieval of nucleic acid sequences" Prot. Seq. Data Anal., 2(4): 327-334.

Varenne S., Lloubes R. & Lazdunski C. (1984) "Translation is a non-uniform
process" J. Mo!. Biol., 180: 549-576.

Van-Driel R.A. & Goding J.W. (1987) "Plasma cell glycoprotein PC-1.', primary
structure deduced from cDNA clones." J. Biol. Chem., 262: 4882-4887.

Waterman M.S., Smith T.F. & Beyer W.A. (1976) "Some biological sequence
metrics" Adv. Mat/i., 20: 367-387.

Watson J.D. & Crick F.H.C. (1953) "Molecular structure of nucleic acid. A
structure for deoxyribose nucleic acid" Nature, 171: 737-738.

Welch T.A. (June 1984) "A technique for high-performance data compression"
Computer, 17(6): 8-19.

Wenzler H., Fisher L., Park W. & Mignery G. (1989) "Sucrose-regulated
expression of a chimeric potato-tuber gene in leaves of transgenic tobacco
plants" Plant Mo!. Biol., 13(4): 347-354.

178

Wetlaufer D.E. (1973) "Nucleation, rapid folding and globular interchain regions
in proteins" Proc. Nat!. Acad. Sci. USA, 70: 697-701.

Wilbur W.J. & Lipman D.J. (1983) "Rapid similarity searches of nucleic and
protein data banks" Proc. Nat!. Acad. Sd. USA, 80: 726-730.

Wilbur W.J. (1985) "On the PAM matrix model of protein evolution" Mo!. Biol.
Evo!., 2(5): 434-447.

Wyse (1984) "WY-75 Display terminal quick reference guide" Np.: Wyse
Technology CA 95134.

Young R.A. & Elliot T.J. (1989) "Stress proteins, infection and immune
surveillance" Cell, 59: 5-8.

Zhakut-Houri R., Orem M., Bienz B., Lane V., Hazum S. & Givol D. (1983) "A
single gene and a pseudogene for the cellular tumour antigen p53" Nature,
306: 594-597.

Zvelebil M.J., Barton G.J., Taylor W.R. & Sternberg M.J.E. (1987) "Prediction of
protein secondary structure and active sites using the alignment of
homologous sequences" J. Mo!. Biol., 195: 957-961.

179

