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Abstract 
International biological sequence databases hold information about protein 

and DNA molecules. The molecules are represented by sequences of characters. 
In analysis of this data algorithms for comparing the character sequences play a 
central role. Comparisons can be made using dynamic programming techniques 
to determine the score of optimal sequence alignments. Such methods are 
particularly popular with molecular biologists for they accommodate the kinds of 
differences which actually occur in the sequences of related molecules. 

Sequence alignments are normally scored using score tables based on an 
evolutionary model. The derivation of these score tables is re-examined and a 
formula giving an analytic counterpart to an empirical method for assessment of 
a score table's discriminating power is found. Use of the formula to derive 
alternative protein similarity scoring tables is discussed. 

A new approach to tackling the heavy computational demands of the 
dynamic programming algorithm is described: intensive optimisation of a 
microcomputer implementation. This provides an alternative to implementations 
which use parallel computers for searching protein databases. This thesis also 
describes how other implementational problems were tackled in order to make 
more effective use of the serial comparison software. 

The new software permitted comparison by optimal alignment of 
32,000,000 pairs of sequences from a protein database using widely available and 
inexpensive hardware. The results from this search were then reorganised to 
facilitate the finding of previously unseen similarities. Software tools were written 
to assist with the analysis including software to align sequence families. 

From the results of this work, nine similarities are presented which do not 
appear to have been previously noted. The examples illustrate factors that are 
important in assessing similarities with scores close to the boundaries of 
significance. The similarities presented are of particular interest because of the 
biological functions they relate. 

One software tool developed for the sequence analysis work was a new 
multiple sequence alignment editor and sequence aligner, "Medal". Lessons from 
its use on real sequence data lead to a modification to the original comparison 
method to accommodate local variations in sequence similarity. 

Consideration is given to parallelisation of this modification and of the 
methods used to obtain speed in the serial software. Alternatives are suggested. 
The suggested parallel method to cope with variations in sequence similarity 
requires two interdependent sequence comparisons. A serial program using three 
interdependent comparisons is demonstrated and shows the feasibility of multiple 
interdependent comparisons. Examples show how this new program, "Fradho", 
can compare DNA sequences to protein sequences accommodating frameshifts. 
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Chapter 1: Introduction 

This interdisciplinary thesis seeks to improve the ways in which Information 

Technology is applied to the analysis of biological sequence data. This is 

simultaneously a theoretical and a practical problem. The approach taken in this 

work is a pragmatic one. Both the nature of the data being studied and practical 

computational issues need to be considered. We start by describing the nature of 

biological sequence data, how this information represents biological molecules and 

how these molecules relate to genetic information, the information held in cells 

that is passed on when cells divide. 

Biological sequence data 

Polymeric macromolecules synthesised within cells are fundamental to the 

chemical processes on which all life depends. During the last two decades 

molecular biologists have characterised many thousands of these macromolecules. 

The chemical structures they have determined are conveniently represented by 

sequences of characters. These sequences, the biological sequence data, have 

been collected on an international scale to make biological sequence databases 

(Barker et al., 1990; Kahn & Cameron, 1990; Burks et al., 1990). 

Two classes of macromolecule are represented in the databases. One class 

is the protein molecules. Proteins are polymers of amino acids. The other class 

is the deoxyribonucleic acid (DNA) molecules. DNAS are polymers of nucleotide 

monomers. Structural and other information about the component monomers of 

proteins and DNAS is given, mostly in diagramatic form, in figures 1.1 to 1.4. 

These diagrams are explained in greater detail in later sections of this chapter. 

Both proteins and DNAs are linear polymers. The order of characters in 

the sequences representing a protein or DNA molecule corresponds with the 

order in which monomers form the linear polymer chain. 

As well as holding protein and DNA sequence data, the databases contain 

textual information. The textual information describes the known roles of the 

1 



molecules and gives references to the literature in which the sequence data were 

reported. 

Genetic information 

Collecting information about DNAs and proteins is an essential part of the 

process of investigating how organisms function at the molecular level. The 

chemical reactions in a cell form a highly complex organised system. Multi-stage 

metabolic pathways convert chemical resources available to a cell into forms that 

meet the cell's current needs. Protein molecules are crucial to such pathways. In 

a typical pathway, each reaction is catalysed by a specific protein. Genetic 

information specifies the kinds of protein synthesised by the cell and hence it 

determines the metabolic pathways. 

The structure of a protein determines how it interacts with other molecules. 

Taking a specific example, some chemical groups at the surface of a protein may 

be arranged so that they readily bind to a comparatively small molecule, 

adenosine triphosphate (ATP). ATP is an important carrier of readily available 

energy. By specifying the chemical structures of proteins synthesised in the cell, 

genetic information determines how chemical energy is used. 

Like chemical energy, genetic information is vital to the cell. Accurate 

information is essential to the correct functioning of cellular chemistry. A 

bacterial cell such as Escherichia coli holds genetic information that precisely 

specifies over 3000 different proteins each of which is formed from, on average, 

300 amino acids. Cells also carry information to regulate the synthesis of proteins, 

to ensure that under differing conditions that the appropriate quantity of each 

protein is made. Just as there are molecules which carry chemical energy, so too 

there are molecules which carry genetic information. Molecules of DNA are the 

primary carriers of genetic information. DNA carries the information which 

specifies the proteins. 

With the discovery of the double helical structure of DNA (Watson & 

Crick, 1953), the manner in which cells pass on genetic information to their 

progeny became clear for the first time. The paired structure of DNA suggests 

a biochemical mechanism for replication of DNA. Chemical processes in the cell 
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make precise copies of DNA molecules thus passing information on to the cell's 

descendants. 

Other achievements fundamental to the discipline of Molecular Biology 

followed the discovery of DNA's structure. These included development of 

techniques by Sanger et al. (1977), to rapidly determine base sequences of DNA 

molecules. These techniques make it possible for molecular biologists to read 

genetic information encoded in DNA. Over the years these techniques have been 

used extensively and refined. Much molecular biological research can be viewed 

as experimental work aimed at understanding the function of the data encoded 

in different DNA molecules. 

A landmark achievement in the interpretation of DNA sequence data has 

been the elucidation of one of the basic information encoding strategies used by 

DNA, the so called 'genetic code' (Frisch, 1966). Using a table giving the genetic 

code it is now possible to deduce the.sequence of amino acid residues of a protein 

from the DNA sequence that encodes it. 

We now briefly describe the molecules, proteins and DNAS, that are 

represented by sequence data. We then describe the link between the two classes 

of molecule. More extensive information can be found in standard texts on 

Molecular Biology such as Lewin's "Genes" (1990). 

DNAS 

The now famous DNA double helix consists of a pair of antiparallel 

complementary strands of deoxyribonucleic acid. Each strand is a linear polymer 

of thousands of nucleotide monomers. The nucleotides are similar in a sugar-

phosphate part which makes the 'backbone' of the strand. They differ in a 

nitrogenous chemical group called a base. Information is carried by the sequence 

in which the bases occur along a single strand's length. Four characters c, t, a and 

g, are used in the sequence representation. They represent the four bases 

cytosine, thymine, adenine and guanine. The order of characters in a sequence 

corresponds with the order of chemical groups in one strand. 

The bases come in complementary pairs; c pairs with g and t pairs with a. 

Where one strand has c the complementary strand has g and similarly for each of 
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the other three possibilities. The pairing arises because the individual bases can 

form stable interactions with their specific partner through weak 'hydrogen 

bonding'. Hydrogen bonding of bases is shown in figure 1.1. This figure also 

shows the chemical structure of the four bases. Only one strand of each double-

stranded DNA molecule is represented in the databases since the complementary 

strand can be deduced from its partner. The complementary pairing of two 

strands is both the basis for the stability of double stranded DNA as a molecule 

and also the basis of the mechanism of information preserving replication of 

DNA. 
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Figure 1.1: Hydrogen bond formation between complementary base 
pairs. 

Proteins 

Protein sequences have greater prominence in this work than do DNA 

sequences. Whereas DNA is the information carrier, proteins are the active 

expression of this information. Proteins are linear polymers of twenty kinds of 

amino acid. 
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Like DNA character sequences, protein character sequences represent the 

order of simple subunits of a polymeric macromolecule. Protein sequences vary 

in length from a few tens of characters (e.g. some hormones) to several thousand 

characters (e.g. viral polyproteins). Each character in the sequence represents an 

amino acid residue. The term 'residue' is used here to denote the parts of the 

amino acid left after the polymerisation reaction is complete. In the reaction the 

crb jiciroup of one amino acid reacts with the amino group of the next (figure 

1.4). The residue of the amino acid consists of atoms involved in the protein 

backbone plus a side-chain characteristic of the amino acid. The side-chains are 

illustrated in figure 1.3. Proteins of around thirty or fewer residues are sometimes 

referred to as polypeptides, or just peptides, for the bond between residues is 

known as a peptide bond. 

Unlike DNAs, proteins are single stranded polymers. Proteins fold into 

complex three dimensional structures due to side-chain interactions (Schulz & 

Schirmer, 1979). Aromatic residues, Phe, Trp, Tyr 	; and aliphatic residues, Ile, ,4)a 

Leu, Val, have hydrophobic water repelling side-chains (Taylor, 1987a). Protein 

folding, at least in an aqueous environment, is largely driven by a reduction in 

energy through hydrophobic residues becoming buried in the core of the structure. 

Two particular kinds of region of regular substructure are frequently found 

in proteins. These are near planar zig-zag substructures (beta sheet), and helical 

substructures (alpha helix). Both these sub-structures are characterised by a 

regular pattern of hydrogen bonding involving atoms of the protein backbone. 

The folded structure adopted by the protein is energetically favourable, that is, 

slight perturbations of the structure have higher energy and are less stable. The 

folded structure is essential to the protein's biochemical activity. The regular sub-

structures are crucial to the formation and stability of the folded molecule. 

Frequently there is biologically significant modification of these basic 

structures. The folded structure may be further stabilised by the formation of 

covalent 'disulphide bridges' between cysteine residues in different regions of the 

sequence that have been brought close together by the folding. Other residues 

on the surface of the protein may also be chemically modified. However, three 

dimensional structure is essentially dependent on the sequence. 

5 



Amino Acid Abbr. Symbol Frequency 

Glycine Gly G 0.089 

Alanine Ala A 0.087 

Leucine Leu L 0.085 

Lysine Lys K 0.081 

Serine Ser S 0.070 

Valine Val V 0.065 

Threonine Thr T 0.058 

Proline Pro P 0.051 

Glutamic acid Glu E 0.050 

Aspartic acid Asp D 0.047 

Arginine Arg R 0.041 

Asparagine Asn N 0.040 

Phenylalanine Phe F 0.040 

Glutamine Gin 0 0.038 

Isoleucine lie I 0.037 

Histidine His H 0.034 

Cysteine Cys C 0.033 

Tyrosine Tyr Y 0.030 

Methionine Met M 0.015 

Tryptophan Trp W 0.010 

Figure 1.2: The amino acids and their standard three letter and one 
letter abbreviations. The list is in order of abundance, glycine being most 
abundant and tiyptophan being least abundant. After Dayhoff et al. (1978). 
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Figure 1.3: The characteristic side chains of different amino acids. 
These have been arranged in an unconventional way to emphasize some of the 
similarities and differences. For example, side chains in row 3 differ to those 
in row 4 only by addition of an extra carbon group. The similarities of 
individual amino acid types are crucial to comparison ofprotein sequences with 
sensitivity. 
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Figure 1.4: Polymerisation of amino acids to form a polypeptide. 

Protein synthesis 

The folded proteins have an astonishingly diverse range of functions, 

structural, regulatory and catalytic. Proteins with catalytic roles are particularly 

important to cellular chemistry. They are known as 'enzymes'. Enzymes are 

powerful and highly specific catalysts. 

Proteins, whether enzyme or otherwise, are the key intermediate stage by 

which information held in DNA specifies the functioning of the cell. Chemical 

processes studied in Molecular Biology either involve proteins directly or have 

proteins catalysing the reactions. 



In regions of DNA that code for protein a run of three consecutive bases 

is used to specify selection of one amino acid. Three bases gives 64 Possibilities 

rather than twenty. The encoding scheme has redundancy in it; several 

possibilities usually encode the same amino acid. 

DNA is not translated directly. Instead a ribonucleic acid (RNA) copy of 

the DNA sequence is made, a process called 'transcription'. RNA is very similar 

to a single strand of DNA except uracil, a base like thymine but lacking a methyl 

group, is used in place of thymine and the sugar is ribose instead of deoxyribose. 

Instructions in an RNA transcript are read as a protein is formed in a process 

called 'translation'. This process of precisely controlled polymerisation takes place 

in complex assemblies, the ribosomes, which are themselves made from protein 

and RNA molecules. 

2nd base 

44 
 

-C 
S. 
C. 

p.. 

Co

eel  

Figure 1.5: The coding scheme wherekv triples of adjacent bases 
(codons) code for individual amino acids. indicate stop codons, the end of 
a translated section. The code is presented in the alphabet of RNA in which 
u substitutes for t. To produce proteins, a short transcript of RNA is first 
produced from the DNA master copy. The residues shown shaded are those 
encoded by three or more different codons. The organisation and shading of 
this table are non-standard and draw attention to a pattern in the code which 
involves codons whose second base is a. 
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The diversity in proteins is achieved with great economy. The same 

molecular machinery driven from different sets of instructions is used in 

synthesising all proteins. It is variation in the sequences of the amino acid 

subunits, rather than a wide range to the subunits themselves, that give proteins 

their profoundly different properties. 

Software for sequence analysis 

• 	Software for sequences analysis can be used to compare any newly 

determined protein or DNA sequence to sequences in the databases. This is a 

vital step in relating new information to information that is already known. When 

an unexpected new similarity is found between sequences, it can lead to a 

• hypothesis about the processes taking place in cells. The hypothesis can then be 

tested by experiment. As an example, one similarity discovered by a computer 

database search linked proteins that stimulate cell growth (growth factors) and 

proteins implicated as causative agents in cancer (oncogenes) (Doolittle et al., 

1983). A number of different examples of growth factor and oncogene similarities 

are now known. The discovery of this link has been of great interest to 

researchers as it gives insight into the molecular mechanism whereby oncogenes 

lead to uncontrolled growth (Bradshaw, 1987). 

Computers are of importance in other aspects of sequence analysis work 

in addition to their role in database searching. One of the most widely used 

software packages for biological sequence analysis, at least in universities, is the 

genetics computer group (GCG) package originally written at the university of 

Wisconsin (Devereux et al., 1984). The GCG package provides a wide range of 

sequence analysis facilities from simple programs that reverse and complement a 

DNA sequence to derive the sequence of one DNA Strand from its 

complementary pair, to computationally demanding programs that attempt to 

predict some structural aspects of RNA molecules. The distributors of the 

software have a policy of making source code for all these progranis available. 

This makes it possible to adapt GCG programs to test out new sequence analysis 

ideas. The package provides a natural base from which to develop flew ideas for 

sequence analysis. 



Applied information technology 

How can one develop new algorithms that will actually help molecular 

biologists? It is important that algorithms are genuinely of use, rather than solving 

problems so idealised that they bear little relation to biologists' requirements. 

Three approaches are considered. 

1) Firstly, one may be able to identify aspects of sequence analysis which 

have been consistently neglected by software developers. One area that has been 

neglected is the combined use of both DNA and protein information. 

Most analysis software deals independently with DNA data or with protein 

data, except when translating to or from DNA. Analysis programs therefore 

encourage researchers to see DNA and protein properties as independent, not to 

look for relationships between them. There is, however, interest in analyses that 

relate the two kinds of data. 

One hypothesis where examination of both DNA and protein sequences is 

important concerns introns and protein domains. Introns are stretches of nucleic 

acid sequence which are removed from RNA before translation. Protein domains 

are independently folding functional regions within a protein. A hypothesis that 

links introns and boundaries between protein domains (Gilbert, 1978) is one of 

several that attempt to explain the presence of introns. Under this hypothesis 

introns separate functional domains and facilitate their rearrangement to make 

multifunctional proteins. Such a mechanism may underlie patterns of similarity 

actually observed in protein molecules (Patthy, 1985). 

A second example where an interplay between DNA and protein 

properties is important concerns the use of rare codons. Some codons for the 

same amino acid residues are used preferentially to others. Use of the rarer 

codons causes pauses in translation (Varenne et al., 1984) which may facilitate 

protein folding. Whilst codon usage for whole DNA sequences can be tabulated, 

software tools, as they currently stand, do not encourage investigation of such 

hypotheses. 

Those two examples are somewhat specialised. However, there is a 

frequently required analysis in which consideration of both DNA and protein 
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sequences is important. Currently in searching databases researchers use either 

DNA sequences or use the derived protein sequences. The problems this causes 

are considered in Chapter 9 where software that simultaneously uses both 

translated and untranslated DNA is presented. 

A second approach to applying Information Technology is to examine 

existing computer sequence analysis tools that have proved their worth and to 

improve them. This may involve making a program run faster, making it perform 

a more comprehensive analysis or provision of a new interface that makes a 

cumbersome investigation more straightforward. 

A third approach is to start from specific analysis problems that 

molecular biologists find are difficult to solve using existing tools. Either a 

satisfactory way can be found using a combination of existing tools, or new 

methods can be developed. 

All three approaches have their uses. The approaches reinforce each other 

since new methods, improvements and difficult analyses influence the design of 

new software. It was the combined use of these approaches, new ideas being 

tested by writing new software, that directed research in this thesis. 

In the early stages of the work a number of ideas and test implementations 

of programs were tried. Also time was spent helping biologists new to the GCG 

package with specific analysis problems. Some individual software ideas and 

conclusions from this work are summarised in Appendix 1. This summary 

illustrates some of the current practical difficulties with existing sequence analysis 

software. These early investigations helped to focus further research by drawing 

attention to the importance of sequence comparison in sequence analysis work. 
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Importance of sequence comparison 

Comparison of biological sequences is fundamental to Computational 

Molecular Biology. It is possibly the most useful computational technique 

available. Why should this be so? 

Firstly, comparison is required in database searches. Comparison allows 

new sequence data to be related to previously studied sequences. Similarity in 

sequences may give a researcher insight into a previously unsuspected function. 

Comparison of a sequence to sequences in a database allows the researcher to 

draw on a large collection of information that is frequently being updated. 

Secondly, comparison of sequences which are already known to be related 

shows patterns of similarity and differences. Most regions of related sequences 

show some changes. Some regions show a remarkable stability. Sequence 

comparison can draw attention to these conserved regions. One can hypothesise 

that in these regions the evolutionary process has eliminated organisms which 

show variation. If so, this suggests that the regions have crucial biochemical 

functions requiring precise spatial organisations of amino acid residues. 

Comparison which reveals conserved regions can therefore act as a guide to 

identification of the site where an enzyme interacts directly with a substrate, the 

active site. This can guide an experimenter, increasing the chance of identifying 

by experimental techniques crucial regions early in their study. 

Comparison software is also used to organise experimental data. In 

experimental work to determine a DNA sequence many fragmentary sequences 

are collected. Overlaps between these need to be found so that a long consensus 

sequence can be determined. Organising the fragments into a longer sequence 

requires comparison. 

Underlying the various applications of sequence comparison is a common 

theme. Comparison is a first stage in organising information. In biological 

sequence database searching, comparison selects and brings to the attention of 

researchers information that is most likely to be relevant. The comparisons bring 

related sequences together whatever their order in the database. In studies of 

related sequences, comparisons organise the differences and similarities so that 

patterns of similarity can be seen. 
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Alternatives to sequence comparison 

The three dimensional structure of a protein, as for example deduced from 

X-ray crystallographic data, gives information about the arrangement in three 

dimensions of the atoms of the molecule. In contrast, chemical structures only 

give information about covalent bonding. Chemical structures give selective 

information about the distances between atoms. Where the word 'structure' is 

not qualified by 'chemical' in this thesis, we are referring to three dimensional 

structure. 

Comparison of protein structures should give a more accurate method for 

investigating shared function than does sequence comparison alone. Function may 

depend on the precise arrangement of residues in a small patch at the surface of 

the protein. Residues which are close in the folded protein will not necessarily be 

close in the linear sequence. 

However, structural comparison techniques have limited applicability. Only 

a few hundred distinct protein structures are known whereas many thousands of 

protein sequences have been obtained (Pallabiraman et al., 1990). This reflects 

the difficulty of obtaining protein structures. Determination of a structure using 

X-ray crystallographic techniques is only possible where the protein can be 

crystallised. The newer and more rapid nuclear magnetic resonance (NMR) 

structure determining techniques also have limitations, particularly as regards the 

size of molecules that can be analysed (Gronenborn & Clore, 1989). 

Were it possible to deduce protein structure directly from sequence, 

sequence comparison would have far less importance. Structural rather than 

sequence comparisons would be of greater interest to researchers attempting to 

understand protein function. Attempts have therefore been made to apply 

computers to the problem of deducing protein structures from protein sequences. 

Predicting structure from sequence 

Protein structure prediction from sequence data alone presents a 

formidable problem. Each structure for a protein has a corresponding energy. 

The energy depends to a large extent on hydrogen bond formation. Calculating 

the structure of minimum energy for a protein of known chemical structure 
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involves minimisation of a non-linear energy function involving thousands of 

variables. Approaches to the problem so far have met with very limited success. 

Simulations of protein folding and use of current energy minimisation techniques 

suffer from phenomenal computational demands. There is uncertainty too about 

whether the structure a protein adopts in a cell corresponds to the structure with 

minimum energy, even were it possible to perform the minimisations in reasonable 

times (Zvelebil et al., 1987). 

Dynamic protein simulations can currently handle minor disturbances of 

known structures and timescales of the order of picoseconds. Protein folding by 

contrast involves major structural changes and can take seconds (Hantgan et aL, 

1974). The conformation of a protein, moreover, may depend on the presence 

of other cellular components such as other proteins that catalyse the folding 

process (Sambrook & Geming, 1989). 

An alternative to simulation and energy minimisation techniques is to use 

statistical properties of sequences. Attempts have been made to employ statistical 

relationships between short sequences and common structural motifs to predict 

the presence of alpha helix and beta sheets. The poor success of these statistical 

methods has generally been ascribed to 'tertiary structure effects', that is, 

interactions between residues distant in the linear sequence (Kabsch & Sanders, 

1983). 

Without structural prediction, structural comparison is limited to those 

sequences whose structure has been determined experimentally. On the other 

hand, sequence comparison can be applied to all proteins in the sequence 

databases. By comparing sequences rather than structures researchers are 

potentially able to relate their sequence to a far larger class of proteins and they 

are able to do so long before a structure for their sequence is available. Such 

comparisons can even be of help in determining protein structures. Some of the 

preliminary structural models that researchers work with are based on sequence 

similarities of the protein being modeled to proteins of known structure (Ripka, 

1986). 
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Concluding remarks 

Sequence comparison techniques are needed in many areas of 

Computational Molecular Biology. They make possible automatic organisation of 

sequence data• to draw attention to biologically significant patterns. The 

applications range from the early stages of determining a sequence to advanced 

studies of the mechanism of protein action. Accordingly sequence comparison 

techniques and associated software play a central role in ihis thesis. 
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Chapter 2: Comparison Methods and 
the NWS Algorithms 

This chapter examines the methods involved in measuring sequence 

similarity. Computers can easily find strong similarities between sequences such 

as runs of twenty or more identical residues. Comparison should draw attention 

to weaker similarities as well as to the very strongest similarities. Weaker 

similarities must be picked up from a background of similarities that occur by 

chance and which do not reflect biologically significant relationships. In detecting 

the weaker matches the crucial property of comparison algorithms is their ability 

to discriminate between biologically significant matches, 'signal', and chance 

matches, 'noise'. 

To detect biologically significant similarities, methods are needed for 

converting a qualitative property, the similarity of two sequences as judged by the 

biologist, into a quantitative measure that can be calculated by the computer. 

Programs for finding similarities are, in effect, algorithmic descriptions that 

approximate to biologists' intuitions about what signal matches are like. An 

algorithmic description can readily capture some aspects of sequence similarity 

that distinguish genuine sequence relationships from spurious ones. For example, 

in two related proteins there is a good chance of finding many short runs of two 

or three residues that are present in both sequences. This kind of similarity is 

rarer in unrelated sequence pairs. The simplest algorithms for measuring 

relatedness are 'word based' algorithms that rely on such runs. Modifications to 

these methods can improve detection of biologically interesting similarities. This 

is described in the following sections. These lead to a description of comparison 

'by alignment' and to description of the Needleman Wunsch Sellers (NWS) 

algorithms for finding optimally scoring alignments. 

Word based comparison 

'Words' are contiguous sequences of characters within a longer sequence. 
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At its simplest a word based comparison method would count the number of 

words of a fixed length shared by two sequences. For example the two sequences: 

Seqi: FLTFERNRQIC 
Seq2: FLSDKNRYQIC 

have four two letter words in common. These words are FL, NR, 01 and IC. 

One attraction of word based comparison methods is that algorithms for 

counting matching words can be extremely rapid. Words contained in both 

sequences can be located very efficiently using standard sorting and indexing 

algorithms (Knuth, 1973a). 

Estimating likelihoods of chance matching 

With word based methods a simple model gives some idea of the expected 

level of chance matching. Were all amino acids equally abundant in proteins, two 

words of length six chosen from two sequences of random amino acid residues 

would have a probability of 1/206  (which is 1.56 x 10) of matching identically. 

Not all amino acids are equally abundant. The probability of the first 

residue of two random words both being glycine, using the amino acid frequencies 

of figure 1.2, is 0.0892 = 0.0079. The probability of both being tryptophan is 

0.012 = 0.001. Summing these probabilities over all amino acids gives the 

probability of an identical match which is 0.07, i.e. a 1 in 15 chance of matching. 

Two random words of length six from proteins of average composition have a 

probability of 1/156 = 8.78 x 10 of matching by chance. 

There are about 90,000 ways of choosing two six letter words from two 

sequences of length 300. The expected number of matching words of length six 

in two sequences of length 300 is 90,000 x 8.78 x 108 = 0.008. Finding such a 

word would tend to indicate that the sequences were related. 

Such figures provides only a useful rule of thumb. Treating proteins as 

random sequences of amino acids does not accurately reflect patterns present due 

to biological constraints. A protein sequence may have local regions of biased 

composition (McQuay, 1991). It may for example contain a region rich in 

hydrophobic residues located in the protein core. Other proteins which do not 



have similar functions may contain a similarly biased region, increasing the chance 

of a matching word above the normal noise level. In practice this problem is 

dealt with by the biologist interpreting the computer's results, rather than by the 

computer. This is one reason why it is important that comparisons give not only 

quantitative scores but also show the regions of sequence similarity. 

Further problems arise when trying to calculate the likelihood of matching 

when comparing one sequence to sequences in a database. Protein databases 

contain families of related proteins. A similarity to one member of a family 

implies a high likelihood of similarity to other members. Comparing a sequence 

of unknown function to all sequences in a database and finding ten sequences that 

show evidence of similarity to it may not be much more surprising than finding 

just one, if the ten sequences are closely related to each other. In a model for 

random matching it is simpler, though not accurate, to treat the proteins in the 

database as unrelated to each other. 

These comments serve to illustrate that measuring likelihoods of chance 

matching is problematic even with the simplest of similarity measures. The model 

for random matching necessarily makes simplifying assumptions. The likelihood 

measures can, however, give guidance at extremes of similarity. They can suggest 

that a similarity is so strong that some biological explanation for it is required, or 

that a weak similarity is so poor that its occurrence can be entirely explained as 

chance matching. 

Ultimately the test of a method for scoring similarity is whether or not it 

leads to new insights into protein function validated by actual experiment. Rather 

than significance by an arbitrary numerical measure, it is significance to the 

biologist that matters. 

Substitutions 

The requirement that words match exactly makes methods based on exact 

word matching liable to miss similarities that are of significance to biologists. 

Information about amino acid similarity can be used to improve the sensitivity of 

a protein sequence comparison method. To the biologist chemical similarities 

which suggest similarities of function are of interest. The chart of amino acid 
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sidegroups in figure 1.3 draws attention to some chemical similarities between 

amino acids. Serine and threonine, for example, have sidechains of ethanol and 

propanol. These two alcohol sidechains differ in length by only one carbon atom. 

Serine can and does substitute for threonine in many related proteins. Exact 

matching of words would fail to identify two words which differ only by an S 

replacing a T. Such inexact matching would be of interest to a biologist. 

Alphabet reduction 

Insensitivity to inexact matching can be alleviated by 'alphabet reduction'. 

Alphabet reduction represents the protein sequences using a more restricted 

alphabet. The reduced sequences are the same length as the originals but some 

characters are replaced by characters representing related amino acids. For 

example, all occurrences of T could be replaced by S. Exact matching of the 

alphabet reduced words corresponds to inexact matching of the actual sequences. 

Alphabet reducing the example from page 18 using S for T, D for E, K for R and 

F for Y, all of which are amino acid residue pairs with similarity, we get: 

Seqi: FLSFDKNKQIC 
Seq2: FLSDKNKFQIC 

A pair of sequences which now have seven words of length two in common. 

Evidently the alphabet reduction process can only be taken so far. With 

too much alphabet reduction it becomes impossible to distinguish proteins which 

are related to each other from those which are not. It has been shown that 

alphabet reduction gives an improvement to sensitivity of comparison only when 

reducing the pairs (D,E), (F,Y), (}çR),  (I,V) and (IM) (Collins & Coulson, 

1987). 

Sawing a word 

Even with alphabet reduction a single character pair mismatch can prevent 

two otherwise similar words from being matched. Matching below a certain level 

is then not detected at all. Two closely related sequences could have many words 

which are nearly the same in common. Matching of alphabet reduced words 



could fail to make use of much of the evidence for relatedness. This is 

particularly problematic if longer words are used since longer words are less likely 

to match exactly than shorter ones. This problem limits the ability of word 

matching' to find weaker signals. 

The problem of a few changes preventing otherwise similar words being 

detected can be overcome. Words pairs can be scored by counting the number 

of character similarities either with or without alphabet reduction. This makes 

possible the detection of words with above average matching even when the 

matching is imperfect. 

Scoring amino acid similarity 

Once the similarity of words is scored rather than simply being 'present' or 

'absent' it is only natural to do the same with the individual amino acid 

similarities. This approach leads to scoring that discriminates better between 

signal and noise than counting similarities after alphabet reduction does. 

Similarity between pairs of amino acids is scored by use of a table of 

values. In the table S has its highest score against S, scores less highly against T 

and scores negatively against most other amino acid residues. Exact matching is 

rewarded more strongly than inexact matching in contrast to the case with 

alphabet reduction. Using an amino acid scoring table in scoring words, scores 

can better reflect the evidence for relatedness. Matching of rare amino acids, for 

example, tends to give greater evidence for a genuine relationship than does the 

matching of commonly occurring residues. This is reflected in high scores for 

matching W against W and C against C, tryptophan and cysteine being two of the 

rarest amino acids. Derivation of sensitive amino acid similarity scoring tables for 

detecting evolutionary relationships is discussed in Chapter 4. 

An amino acid scoring table that scores one for each exact match of amino 

acids and zero for mismatches can be used to give a score that counts exact 

matches. Tables consisting of ones and zeroes can also be constructed to count 

matches after alphabet reduction. An algorithm that scores using an amino acid 

scoring table can thus readily be used to score for exact matching or for matching 

after alphabet reduction. 
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Locating high scoring word pairs 

Forsaking exact matching of complete words and scoring word similarity 

instead has a major disadvantage. The fast sorting methods that made the word 

based methods so attractive can no longer be exploited. If words differ in their 

first letter they are likely to be far apart after sorting yet if other letters agree 

their similarity scores can be high. 

The most straightforward algorithms to locate high scoring word pairs take 

each word from one protein and compare these in turn with every word in the 

other protein. Fortunately more rapid algorithms exist. These use the first 

comparison of a word to limit the subsequent choice of words to compare against, 

narrowing the search using a so called 'Post-office tree' (Knuth 1973b). The word 

comparisons use some 'metric' for the similarity of words. Scores must measure 

the difference between words rather than the similarity. Conversion to a metric 

measure can easily be made in the case of scoring exact matches after alphabet 

reduction. For scoring with alphabet reduction, counting mismatches rather than 

matches after alphabet reduction gives a metric difference measure. Once similar 

words are found the difference scores can be converted to similarity scores if 

desired. 

These fast word comparison algorithms which find word similarity rather 

than word identity have apparently not been used in biological sequence 

comparison. They are not used in this work either. There is a fundamental 

problem that has not yet been mentioned with any method that is based on word 

matching. Missing or extra residues within the words are not accommodated. 

There are, however, well tried algorithms that deal with both inexact matching and 

missing or extra residues in either sequence. 

The methods which accommodate insertions and omissions are popular 

amongst biologists as the comparisons they make are sensitive to the kind of 

changes biologists expect to see in related proteins. A disadvantage of these 

methods is that they are computationally expensive. Consequently they are used 

for detailed comparison of sequence pairs which are already known to be related, 

database searching being most usually performed using word based methods. 

22 



Comparison by alignment 

The sensitive algorithms compare sequences 'by alignment'. An alignment 

of two protein sequences presents the sequences in a manner which draws 

attention to similarities between them. A pairwise alignment of proteins shows 

two similar protein sequences one placed above the other. An alignment is shown 

below: 

** 	** *** 
Seqi: FLTFERNR-QIC 
Seq2: FLS-DKNRYQIC 

Gaps, represented by '-', have been inserted in the upper and lower 

sequences to improve the matching in each column. In addition a '' has been 

placed above each identical residue pair. 

Every alignment of two sequences has an associated score. Each pair of 

aligned residues contributes to the score. Similar or identical residues in the same 

column of the alignment contribute positively to the score. Aligned dissimilar 

residues reduce the score. As before, the amino acid similarity scores come from 

a table. Gaps in the alignment in either sequence represent insertions or 

deletions relative to one or other of the sequences and are called 'indels'. Each 

gap reduces the alignment score by an amount referred to as an 'indel penalty'. 

The algorithms for scoring similarity find the highest scoring alignment of 

the two sequences. High indel penalties encourage alignments with few gaps 

whereas more lenient penalties are conducive to gaps. 

Having described what optimal scoring alignments are, we now describe an 

algorithm which finds them. 

The local homology algorithm 

The alignment algorithm described here is a particular variant that finds 

'local regions of homology'. It is known as the Type III algorithm being one of 

a family of related algorithms; the Needleman Wunsch Sellers (NWS) comparison 

algorithms (Needleman & Wunsch 1970). The Type III variant is due to Smith 

and Waterman (1981). Variants of the algorithms have uses in diverse 
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comparison applications such as speech recogniton, error correction of formal 

languages, analysis of birdsong and RNA structure prediction (Kruskal, 1983). 

Enumerating all possible alignments and calculating their scores is too 

computationally expensive to be practical. Even for short sequences the number 

of possible alignments is large. The number grows exponentially with sequence 

length. Nevertheless the problem of determining which of these has highest score 

can be solved in time proportional to the product of the sequences' lengths. 

Dynamic programming techniques are used. In general dynamic programming 

techniques work by a systematic decomposition of the problem into simpler ones 

(Sedgewick, 1983). Larger sub-solutions are built up from smaller ones. For this 

problem high scoring alignments are built on optimal initial portions. 

Decomposition of the problem rests on the following observation: the initial 

portion of any optimal alignment must itself be an optimal alignment of two 

shorter sequences. 

Characteristic to dynamic programming is the regularity of decomposition. 

In this problem the sub-computations can be organised on a rectangular array 

called the 'match matrix' (sometimes also 'path matrix'). There is then a 

correspondence between an alignment of two subsequences and a path in the 

matrix. The top edge and left edge of this matrix correspond to the two 

sequences being compared. Diagonal steps in the matrix represent matches of 

two amino acids. Horizontal steps correspond to placing a gap against a residue 

in the first sequence. Vertical steps correspond to a gap against a residue in the 

second sequence. Figure 2.1 show a path made up from such steps. Horizontal 

and vertical steps incur an indel penalty whereas diagonal steps score for the 

residue pair similarity, which in general may be positive or negative. 
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F L T F E R N R Q IC 

FLTFERNR-QIC 
FLS-DKNRYQIC 

Figure 2.1: Correspondence between a path in the match matrix and an 
alignment. '+' signs indicate positively scoring steps. Each cell ends up 
holding the score for the best path ending in that cell. These scores are not 
shown. 

When calculation of the entries in the match matrix is complete, each cell 

holds the score for the best path that ends at that cell. The score is also the score 

for the best initial portion of an alignment that ends at a certain position in each 

of the two sequences. The score in each cell depends on the scores in three 

neighbouring cells, the cell above, the cell to the left and the cell diagonally up 

and to the left. The best path ending at a cell is either an extension of a best 

path ending in one of the three neighbouring cells or is a new path which starts 

and ends at this cell. If a new path is started the score is reset to zero. The score 

of an extended path is the score of the cell it starts from adjusted by the indel 

penalty, for horizontal and vertical steps, or by the score for aligning two residues 

if the extension is a diagonal step. The score placed in a cell is the highest of the 

scores of the four possible paths ending in it, see figure 2.2. Cells along the top 

edge and first column treat non-existing neighbour cells as if they contain zero 

scores. 

The maximum score in the entire matrix gives the score for the optimal 

sequence alignment of the two sequences being compared. The path ending at 

the cell with the maximum score corresponds to the optimal alignment. 
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Figure 22: The score for a cell is the score of the best extension of the 
paths ending in three neighbouring cells or zero if all three of these have 
negative score. 

Each cell computation requires a small fixed number of arithmetic 

operations. Since the number of cells is the product of the sequence lengths, 

computing all cell values has time complexity 0(112)  where it is the length of each 

sequence (assumed equal). This '0' notation gives an asymptotic measure of 

performance (Knuth, 1981). Time complexity )Q(,2)  means that the execution 

time for the algorithm divided by 12  approaches a constant value for large n. For 

sufficiently large n an algorithm with 0(n) time complexity will be faster than an 
0(112) algorithm. In contrast to the alignment algorithm described here, the rapid 

exact matching methods have time complexity 0(z Log it), provided suitable 

assumptions are made about the word size used. A sufficient condition is that the 

word size be proportional to Log it. For fixed word size, location of exactly 

matching words is 0(172)  too. 

The speed of an algorithm can also be reported as the number of pairwise 

sequence comparison performed in a fixed time. To make this independent of the 

sequence length, multiplication by the product of the lengths gives the number of 

path matrix elements (PMEs) computed in unit time. 

Reconstruction of alignment 

The procedure described finds the maximum score of an alignment. An 

algorithm is also needed to trace the correct path through the match matrix and 

reconstruct the alignment. Reconstruction of the alignment is a more rapid 

process than computation of the comparison score. It is an 0(n) process provided 

the scores in the match matrix have already been computed and stored and the 

highest score located. 

To perform the reconstruction the highest scoring cell is designated the 
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current cell. Starting at this cell individual steps to the left, up, or diagonally up 

and to the left are taken. At each cell there is a choice between three possible 

steps; that is steps against the direction of the arrows in figure 2.2. One of these 

steps must lead to a cell with a score high enough to produce the score at the 

current cell. This cell becomes the new current cell. Each of the steps taken is 

on the maximum scoring path. The process of taking steps in reverse is repeated, 

changing the score with each step, until the score reaches zero. All steps in the 

alignment have then been reconstructed. Although the steps are generated in 

reverse order this is easily corrected before an alignment is presented. 

Sometimes equally good alternatives for some parts of the path exist. In 

these cases, which of the possibilities is chosen is dependent on details of how the 

algorithm is programmed. 

Pointers in reconstruction 

Usually a variant of the path reconstruction algorithm is described which 

uses stored information about which path enters each cell. This information is 

recorded at the time the score for a cell is calculated and takes the form of a 

pointer to the cell whose path was extended. Path reconstruction then simply 

follows these pointers. Keeping pointers as well as scores increases the time and 

storage requirements of the computationally most expensive part of the alignment 

procedure, the 0(112)  part. Pointers are not required when using the method for 

reconstruction described in the previous section which uses only the scores. 

Types of alignment 

There are three main variants of the alignment algorithm. These are 

designated by different numbers (Lyall et al., 1986). 

Type I 	Best complete sequence alignment. 
Type II 	Best location of one sequence within another. 
Type III 	Best local homology. 

The Type III version finds the best local similarity between two sequences. 

It finds a similar region contained in both sequences. 

27 



If negative scores are not reset to zero and new paths started, then the 

algorithm finds the best alignment of complete sequences. This is the Type I 

variant. It produces an end to end alignment including all residues of both 

sequences. 

An intermediate variant, the Type II, finds the best location of one 

sequence within another. This might be suitable for looking for complete motifs 

within a protein. Motifs are short patterns that have a well characterised function, 

one such being the AT? binding motif. The Type II variant resets scores to zero 

only for the top edge of the matrix and finds the best path ending in one of the 

cells at the bottom edge of the matrix. This corresponds to alignment of the 

entire motif with an absence of penalties for unaligned residues before and after 

the motif. 

Each of the three methods has its uses. The Type III is most appropriate 

for database searches where the extent of any region of similarity is not known in 

advance and cannot be presumed to include the whole of any sequence. Type II 

and Type I effectively force the entirety of one or both sequences, respectively, 

to be included. Type III is capable of aligning whole sequences if the similarity 

extends along the whole length of the sequences. 

A major disadvantage of these three algorithms is their computational 

demands. Their major advantage is their ability to detect similarities of a kind 

that are of interest to biologists that exact matching word based methods 

described earlier cannot find. This sensitivity arises because comparisons by 

alignment can find matching words that are interrupted by insertions and 

deletions. Also, with alignment based algorithms, the individual residue matches 

are scored using values from discriminating amino acid similarity scoring tables. 



Chapter 3: Measuring Similarity 

The sensitivity with which comparison between sequences can be made is 

dependent on the similarity scoring scheme used for scoring amino acid pairs. In 

this chapter we look at how to measure amino acid similarity in a manner that is 

suitable for detecting evolutionary relationships. We are therefore interested in 

the extent to which pairs of proteins have diverged from a common ancestor. 

Divergence measures 

One of the simplest assessments of how far a pair of related proteins have 

diverged uses an alignment of the sequences. The percentage of aligned residues 

which differ gives a convenient divergence measure. Identical sequences will be 

0% divergent by this measure. For two unrelated sequences there will be a 

certain level of chance matching. When comparing unrelated protein sequences 

with the amino acid composition given in figure 1.2 there is 7% amino acid 

matching just by chance and thus 93% divergence by the measure. 

A measure of divergence which is closer in spirit to measuring an 

evolutionary distance is due to Dayhoff et al. (1978). They developed a unit of 

measure called 'The PAM'. This gives the number of accepted mutational events 

per hundred residues. The emphasis on 'accepted' is to distinguish changes in 

proteins which lead to viable organisms, i.e. changes which evolution accepts, from 

those which do not and which are not normally observed. Accepted changes are 

changes that are in the proteins of organisms which survive. In principle the 

underlying mutational changes could be very different from these. In practice we 

are only interested in the mutations in observed proteins and treat mutations 

accepted by evolution as the only sort which occur. 
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The Dayhoff model 

The measure PAMs is integral to a model that predicts amino acid 

substitution frequencies between residue types. For each evolutionary distance 

measured in PAMs the model gives a table of frequencies for substitution between 

each pair of residue types, including entries for the frequencies of residue types 

remaining unchanged. Each table therefore implies a certain level of amino acid 

identity in two proteins related at that evolutionary distance. There is thus a 

correspondence between PAMs and percentage amino acid difference. The graph 

in figure 3.1 shows this correspondence over a range of values. The number of 

PAIvIs is invariably higher than the percentage difference. This arises because 

multiple mutations at the same site may reverse previous changes. In fact 100 

PAMs, that is 100 changes per 100 residues, corresponds to an observed amino 

acid difference of 57%. At 100 PAJvIs we still expect to see substantial evidence 

for evolutionary relationship. As PAMs increase the percentage amino acid 

difference asymptotically approaches 93% corresponding to protein sequences that 

show matching only by chance. 

For small evolutionary distances the frequency of multiple mutations at the 

same site is low. Here divergences measured in PAMs and in percentage 

differences agree quite closely. 15 PAMs for example corresponds to 13.6% 

amino acid difference. 
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Evolutionary distance in PAMs. 

Figure 3.1: Correspondence between PAMs and percentage amino acid 
difference. After Dayhoff et al. (1978). 
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Use of the amino acid substitution frequencies. 

The main use of the amino acid substitution frequencies is to derive tables 

for scoring amino acid replacements for various evolutionary distances. Such 

tables have a score for each possible pair of amino acids. These scores are used 

to measure evidence for sequence relatedness. The scores combine information 

from two frequency tables. One table gives the expected frequencies of 

replacements of each residue type by each residue type, at a particular 

evolutionary distance in PAMs. This table gives substitution frequencies for signal 

matches at the chosen evolutionary distance. The other table is the limiting case 

for infinite PAMs. It gives the frequencies of residue types being paired in 

random alignments of unrelated proteins. This table gives expected substitution 

frequencies in noise matches. These two frequency tables are combined to make 

score tables which measure how much more likely two aligned residues are to be 

from related rather than unrelated sequences. The scoring tables are used to 

assess the quality of an alignment of two proteins and are important in automatic 

methods for alignment. The scoring tables are referred to as 'PAM tables'. 

Assumptions of the model. 

The Dayhoff model is based on observed frequencies of changes in aligned 

pairs of closely related proteins. These frequencies of change are extrapolated 

to predict substitution frequencies in more distantly related proteins. The model 

makes a number of simplifications to make the extrapolation. In the model the 

probability of change to a particular new amino acid at a particular site depends 

only on the amino acid currently there. These probabilities are 'transition 

probabilities'. Implicit in this simplification are three assumptions that are of 

questionable biological accuracy. These are not clearly stated in the original 

paper and so are set out here. 

• Independence of sites. 
• Equivalence of sites. 
• Temporal independence. 
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The first states that changes at any one site are not influenced by nor 

correlated with changes at another. The second is that all sites with the same 

amino acid behave in the same fashion. The third is that the transition 

probabilities do not change with time. The process of change is assumed to be 

uniform. For example, the model does not consider sudden changes of a 

different kind to the gradual changes observed in closely related proteins. 

Equivalence of sites is known to be inaccurate. A paper by Perutz and 

Lehmann (1968) describes many examples of changes between residues in 

naturally occurring mutant haemoglobins. Of these, two examples concern 

changes between leucine and arginine. At residue 14, interchanges between these 

residues do not lead to any clinical symptoms. At residue 92, leucine is normal 

and arginine leads to polycythaemia. Evidence that different sites with the same 

residue have different mutational properties is also provided by multiple sequence 

alignments of functionally equivalent proteins (Chapter 6). The range of variation 

at different sites varies enormously. Some sites require specific residues whereas 

others can tolerate variation. 

Independence of sites is also open to question. The frequencies of 

occurrence of residues are known to be influenced by the neighbouring residues 

(Claverie & Bougueleret, 1986). 

In scoring amino acid similarity, sites are treated as independent and 

equivalent. These two simplifications are implicit in any scoring scheme that 

scores pairs of amino acid types. Thus one uses some kind of average behaviour 

in producing the score. This does not mean that taking average behaviour is a 

necessary or desirable part of the extrapolation process. Extrapolating averaged 

changes will not in general give the same answer as extrapolating changes and 

then averaging. In theory at least, a model that allowed for differing evolutionary 

constraints at sites containing the same amino acid could yield superior scoring 

tables. This is clearly shown by considering a protein that has half of its sites 

absolutely fixed. An extrapolated model based on average behaviour of sites 

would show that nearly all sites change at sufficiently large evolutionary distance. 

Extrapolating and then averaging would show that on average just over half the 

sites stayed fixed. 
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The range of different constraints on sites is unknown. There is probably 

insufficient sequence data to characterise the constraints to a level where 

extrapolating changes at different kinds of site with the same residue would be 

feasible. A possible exception to this is at sites containing cysteine. For cysteines 

additional information about disulphide bonding is sometimes available. This 

could be used to distinguish two cases, cysteines involved in disulphide bonding 

and those not. A case could be made for extrapolating these two cases as if the 

cysteines were two different residue types, cystine (participating in a disulphide 

bond) and cysteine (not involved in a disulphide bond). 

The Dayhoff model has also been criticised from other viewpoints. Wilbur 

(1983) perhaps misunderstood the notion of accepted mutation. Dayhoff's model 

is based only on changes at the amino acid level which are accepted by the 

evolutionary process. Underlying mutational changes in DNA are only indirectly 

reflected. Wilbur's criticism of the model is that it is inconsistent with an 

alternative model based on underlying independent changes at the DNA level, all 

of which are accepted. 

In spite of the model's shortcomings, real and imagined, the tables it 

produces are the basis for the most sensitive methods for comparing pairs of 

protein sequences. Dayhoff was able to show that other tables based on identities 

only and the genetic code had significantly poorer discrimination between related 

and unrelated proteins (Schwartz & Dayhoff, 1978). Ultimately the discriminating 

ability of the scoring schemes the model leads to is the justification for using the 

Dayhoff model. 

A modified presentation of the Dayhoff derivation is now given. This 

clarifies the link to the mathematics of Markov processes (see e.g. Revuz, 1975) 

and makes explicit the two parts of the model, one part to model signal, the other 

noise. This also gives an opportunity to clarify some questions raised by the 

original exposition and to introduce notation which is needed in the discussion of 

discriminatory power. 

Dayhoff's original paper is frequently found somewhat opaque. A 

diagrammatic overview of the stages of the derivation may help. 
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C 12 
S 02 
T -2 1 3 
P -3 1 0 6 
A -2 1 1 1 2 
G -3 1 0-1 1 5 
N -4 1 0-1 0 0 2 
0 -5 0 0-1 0 1 2 4 
E -5 0 0-1 0 0 1 3 4 
Q -5 -1 -1 0 0 -1 1 2 2 4 
H -3-1-1 0-1-22 1 1 36 
R -4 0-1 0-2-3 0-1 -1 1 2 6 
K -5 0 0-1-1-2 1001035 
N -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 2 0 0 6 
1 -2-1 0-2-1 -3-2-2-2-2-2-2-2 2 5 
L -6 -3 -2 -3 -2 -4 -3 -4 -3 2 -2 -3 -3 4 2 6 
V -2-1 0-1 0-1 -2-2-2-2-2-2-2 2 4 2 4 
F -4-3-3-5-4-5-4-6-5-5-2-4-5 0 1 2-1 9 
Y 	0-3-3-5-3-5-2-4-4-4 0-4-4-2-1-1 -2 710 
W -8 -2 5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17 
B -4 1 0-1 0 1 2 4 4 2 2 0 1-2-2-3-2-4-2-4 4 
X 0000000000000000000000 
Z -5 0 0 0 0 0 1 3 4 4 3 1 1-1-2-2-2-5-4-5 4 0 4 

CSTPAGNDEQHRKII I LVFYWBXZ 

Figure 3. lb. Dayhoff Matrix for 250 PAMs. In this figure only half the 
matrix is shown as the matrix is symmetrical about the diagonal. 

The letters B X and Z represent ambiguous amino acid residues. B 
represents asparagine or aspartic acid (N or D), Z represents glutamine or 
glutamic acid (Q or E) and X represents any amino acid. 
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Substitution 	t\ 	Substitution:  t\ Transition 
frequencies 	( 	1  ) frequencies 	:2 ) frequencies 
at 1-15 PAMs 	V 	at 1 PAM V 	at 1PAM 

AM 

Substitution 	 Transition 
frequencies 	4 	frequencies 
atNPAMs 	 atNPAMs 

A' 	 MN 

Figure 3.1: Overview of the derivation of substitution frequencies at N 
PAMs in the Dayhoff model. Tables to the left of the dotted line are 
.symmetric. 

1 PAM substitution frequencies (Step 1) 

An essential table that determines all others in the Dayhoff model is the 

residue substitution frequency table for sequences 1 PAM apart. This table, A, 

which is symmetric is derived from pairs of aligned sequences. 

A = Frequency with which residue i substitutes for j 

In matrix notation the symmetry of A is expressed by: 

A=AT 

When a sequence is aligned with another sequence which is 1 PAM 

divergent from it, we expect the substitution frequencies to be similar to those in 

A. Ideally the table A would be derived from observed frequencies of substitution 

in pairs of proteins that were at an evolutionary distance of 1 PAM. In practice 

the data is collected for proteins that are less closely related and a scale factor is 

used to reduce the level of substitutions to 1 per 100 residues and increase the 

fraction of unchanged residues. 
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A questionable practice used in collecting the initial data set was the use 

of inferred ancestral sequences derived form phylogenic trees to try to reduce the 

evolutionary distance between the pairs of sequences considered. 

To derive a substitution frequency table from A for greater evolutionary 

distances we require a matrix giving probabilities of transitions from each amino 

acid to each other amino acid at 1 PAM. Dayhoff called this matrix the 'mutation 

probability matrix'. Here we use the term 'transition probability matrix' to 

emphasise the connection to the theory of Markov processes. 

Transition probabilities (Step 2) 

The columns of the 1 PAM transition probability matrix indicate how a 

protein consisting entirely of one amino acid type will change in a fixed 

evolutionary interval. The matrix is used to predict how a protein of arbitrary 

composition will change. The composition is represented as a vector. Pre-

multiplying this vector by the transition probability matrix yields a new vector 

giving the new composition after an interval of 1 PAM. 

One important composition vector gives frequencies of the amino acids in 

the sequences that produced the matrix A. This is taken as the average 

composition for proteins. The components 1 of the vector are given by: 

t; =EA 

Using J to stand for the vector of all l's this summation can be expressed 

in matrix notation by: 

f =A.J 

Figure 1.2 in Chapter 1 lists values of the 17s. 

f, the average composition vector, is used in computing the transition 

probability matrix, M, for 1 PAM. M is obtained by dividing each column of A 

by the appropriate f. The twenty entries in each column of M give frequencies 

for the twenty possible transitions per unit occurrence of the amino acid 

represented by the column. 

35 



We can express this normalisation in matrix notation. We use diag(1/1) to 

denote the matrix with diagonal entries iit and zeroes elsewhere. Then: 

M = A.diag(1/t) 

One property of the matrix M was stated by Dayhoff without proof. When 

it acts on the composition vector f, the vector is left unchanged. This is proved 

below: 

M.f = A.diag(1/f).f = A.J = f 

The preceding equation is exactly equivalent to the statement that f is an 

'Eigen vector' for the matrix M with 'Eigen value' one. Markov theory shows that 

f is then the asymptotic composition; that is, acting repeatedly on any composition 

vector with M will produce a series of vectors converging to f. 

Extrapolation to larger PAMs (Step 3) 

In the model changes for large PAM distances are the result of successive 

changes occurring with frequencies represented in M. This is where the 

assumption of 'temporal independence' is used. Because of the associativity of 

matrix multiplication, M acting N times on a vector is the same as acting with MN 

on that vector. The matrix of transition probabilities at N PAMs is then MN.  In 

the language of Markov processes this is the N stage transition probability matrix. 

From this matrix we wish to obtain a matrix giving substitution frequencies. 

Substitution frequencies at N PAMs (Step 4) 

In converting from a substitution frequency table to a transition probability 

matrix (step 2) the amino acid frequencies f were used. The f's are unchanged 

with transitions occurring at the frequencies in M and therefore also unchanged 

for changes occurring with the frequencies in MN.  Tables for substitutions for any 

PAM distance should have the same c's. Substitution frequencies are thus related 

to transition probabilities at the same PAM values by the c'• Multiplying the 
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columns of MN by the f's gives the N PAM expected substitution frequency table 

A'. 

A' = MN.diag(fJ ) 

This gives the first frequency table from the model, the table for signal 

matching. 

Random matching 

Random matching frequencies are computed from the f's. The frequency 

of seeing residue i against residue j by chance is simply the product of frequencies 

f1  and f. This gives expected substitution frequencies if the two sequences were 

unrelated and of average composition, i.e. the frequency table for noise. 

This then completes the derivation of the two frequency tables used in the 

Dayhoff model. 

Score tables 

The table A' giving the expected substitution frequencies at N PAMs can 

be used to see how closely a pair of aligned proteins fit the Dayhoff model. 

Marked deviation from the substitution frequencies predicted by the Dayhoff 

model would tend to undermine confidence in the alignment. In principle this 

could be used as the basis for an automatic method for producing good 

alignments. However, computational techniques for alignment require residue-

pair scores. 

To produce residue pair scores, both frequency tables are used. The scores 

measure evidence for relatedness under the model relative to the null hypothesis 

of random matching. The evidence for evolutionary relationship at N PAMs 

from an aligned pair of residues is the ratio of the frequency under the Dayhoff 

mutation model for related sequence matching, to the frequency assuming random 

matching. Where this ratio is greater than one it is a positive indication of 

relatedness. Where less than one, it is counterindicative. 
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For an alignment, these 'odds ratios' for each pair of residues can be 

multiplied together to give an aggregate value. To facilitate calculation the 

logarithm of each ratio is taken. Addition can then be used in place of 

multiplication. This log odds table for a particular evolutionary distance measured 

in PAMs is the scoring table suggested by Dayhoff. Positive values of the scores 

are indicative of relatedness, negative values counterindicative. It is usual to scale 

these. scores up by a factor of 10. 

X = 10 x log(A' 1 /ff) 

Integer values are found to be acceptable for calculations, which is 

important for rapid calculation. An important property of these scoring tables is 

their negative expectation for scoring amino acid replacements in unrelated 

protein sequence pairs. That is: 

E fifixij < 0 

We demonstrate this using the relationship Log K :5 K - 1. 

E ftX = E ft Log (A'/f1ç) < E ff (A'1 /f1ç - 1) = E 	- ff 	1 - 1 = 0 

For Type III alignment this property is an essential condition since the condition 

for ending a path in the match matrix is that the score drop below zero. 

Justification for method for deriving 1 PAM table 

One criticism of the method used by Dayhoff for deriving the frequencies 

at 1 PAM concerns the observation set. To collect sufficiently many values 

frequencies for 1 PAM were derived from observations at higher PAM5, up to 15 

PAMs in some cases. Under the model's assumptions this data contains multiple 

mutations at the same sites. No adjustment was made for this. Instead a 

proportionality constant was introduced to decrease the number of changes to 1 

change per hundred amino acids. This is equivalent to assuming that there were 



no multiple mutations. One justification for this approximation is that multiple 

mutations at 15 PAMs are relatively infrequent. The graph relating PAMs and 

percentage difference indicates that about 10% of changed residues will have 

experienced multiple changes at 15 PAMs. Errors from this procedure are in fact 

substantially lower than 10%. This can be shown by application of the binomial 

theorem for matrices. 

To apply the binomial theorem we re-express the matrix for transition 

probabilities. A, and hence also M, has most of its weight on the leading 

diagonal. M can be expressed as: 

M=I+e 

Where I is the identity matrix and € is small. This reflects the fact that at 

1 PAM most residues stay unchanged. Entries in the matrix e are of the order 

0.01 since the table A corresponds to 1 change per hundred residues. Applying 

the binomial expansion we have: 

MN=(I+ E)N=I+Ne+...  

Dayhoff's use of a proportionality constant to reduce 15 PAMs to 1 PAM 

amounts to deriving I+e from (I+E)N  using the first two terms of this 

approximation. The omitted terms and hence errors in M in using this 

approximation are thus of the order e 2 . 

Explanation for symmetry of A' 

Dayhoff gives no explanation for why the table A' should be symmetric. 

A straightforward calculation of the higher PAM tables produces tables which are 

asymmetric. This is a result of rounding errors in calculation. When raising 

matrices to high powers small errors in calculation are magnified. Precise 

calculation should give symmetric tables. To prove the assertion that A' should 

be symmetric we use the symmetry of A and some algebra: 
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M.diag(1) = A = AT = (M.diag(ç)) T  = diag(1).MT  

So 

A' = MN.diag(t) 
= M.diag(f.).MT  
= M 2.diag(f).(M2)T 
= 	diag(f).(MN)T 
= (MN.diag(f))T 
= (A' )T 

Calculation of A' 

A program 'Dayhoff'was written to compute the Dayhoff frequencies and 

scoring tables. Calculations were performed to 12 significant figures accuracy. To 

ensure symmetry of A' the computation of powers of M was arranged to reduce 

the number of matrix multiplications involved. Even so asymmetrical tables 

resulted. An ad hoc way used by other programs to fix this is to average the 

resulting matrix with its transpose. A better way is available. Provided N is even 

we can use the following identity in the calculation of A': 

A'= M.diag(f).(M)T  

This guarantees symmetry. The right hand side of this identity is one of 

the intermediate steps in the proof of the symmetry of A'. The program was 

modified to use this form. Of four-hundred values in the Dayhoff scoring tables 

the corrections to PAM tables at 100 or 250 PAMs, the normal distances used in 

practice, were slight. Eight entries were changed. These changes affect the scores 

of protein matches by less than one percent. 

Discrimination of similarity scoring tables 

Ultimately the justification for the Dayhoff model is empirical. It is a 

sensitive scoring method. More precisely the Dayhoff scoring scheme has good 

discrimination between sequences that are related to a query sequence and those 

sequences which show similarity as a result of chance matching. The sensitivity 

was shown by Dayhoff by taking scores for comparison of related sequences and 



comparing these to comparison scores for large numbers of random sequences. 

In that analysis both alignment scores, and scores for fixed length words were 

considered. For both methods the Dayhoff table generally separated the signal 

from the noise distribution by a larger number of standard deviations than did 

other tables based on exact matching or the genetic code (Schwartz & Dayhoff, 

1978). Feng et al. (1985) essentially confirmed these results though they noted 

that .for detecting very closely related sequences the identity matrix, that is scoring 

for exact matches, gave better discrimination. 

Analytic measure of discrimination 

Discrimination can also be investigated by following an analytic approach. 

To demonstrate the method we apply this analysis first to scoring that counts only 

exact matches. In this discussion on analytic measures of discrimination, we look 

at the expected score and variance of the score of a word of fixed length K. In 

this we provide an analytic analogue of one of Dayhoffs method for measuring 

the discrimination of different tables by simulation. 

Two words of length K from unrelated protein sequences will have 

expected identical matching of 0.07 K. The distribution of matching scores for 

such words is binomial and for large K is approximately normal with variance 

0.07 (1 - 0.07) K = 0.065 K. In general any scoring scheme that sums K 

component scores of identical independent distribution will be, by the central limit 

theorem, approximately normal. Since we know the distribution we can compute 

the expected significance in standard deviations of a signal level match in terms 

of its deviation from the distribution of noise level scores. For word pairs with a 

fraction P of matching residues the significance S of the match in standard 

deviations is given by: 

S = (PK - 0.07K)/(0.065K)l2 = (4P - 0.28)K 1  

This agrees with the significance estimate arrived at by Brennan et al. 

(1986) by computer comparison of random sequences. The analytic derivation is 

much more direct. 
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For DNA sequences of average composition the corresponding mean matching 

frequency is 0.25 x 3K = 0.75K and the variance 0.25 x (1-0.25) x 3K = (0.75) 2K. 

The factor 3 arises because 3 bases code for one amino acid and K still measures 

sequence length in residues. The equation for DNA sequence comparisons analogous 

to the one just given for proteins is then: 

T = (3QK - 0.75K)I0.75K"2  = (4Q - 1)K"2  

Here Q is the observed proportion of matching bases. T measures how far Q, 

this observed proportion of matching, is from the mean and is in standard deviations. 

For unrelated unbiased DNA sequences we have Q=1/4 and T=0 S.D. If 

instead the two DNA sequences are identical we have Q=1 and T is then 3.0 K 1 '2  

S.D. Comparing the protein translation of identical sequences we have P=1 and 

S =3.7 K'2  S.D. 

Proteins with 100% identity (S =3.7) can arise from DNA sequences with 66% 

identity (T= 1.64) since, for many codons, changing the third base does not change 

the amino acid encoded. These numbers give a numerical indication of the 

improvement in discrimination between signal and noise that is possible if DNA 

which codes for protein is translated before comparisons, even where scoring is based 

on identities only. 

More discriminating PAM tables 

To extend the analysis of discrimination to arbitrary amino acid scoring tables 

we make use of the Dayhoff frequencies of substitutions. Let W be the score for a 

match of residue type i against type j. The random matching score X for pairs of 

amino acids has mean value: 

E(X) = EffW1  

and Variance: 

Var(X) = E1E ff(W) 2  - ( EE f;W)2  
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And the expected significance for related sequence is then: 

1=20 j=20 	 .1=20 j=20 

E E wr E i fifjwij 
1=1 j=1 	 1=1 j=1 

I i20 j=20 	 (.1=20 j=20 	 2 

E E f1f(W 1 ) 2 _J 	j jwij  
1=1 j=1 	 'i=1 j=i. 

Substitution of W j  for exact matching shows that the exact matching matrix 

gives greater significance scores than the corresponding Dayhoff matrix below 100 

PAJvIs (figure 3.2). This provides an analytic corroboration of Feng et al.'s 

empirical observation on separating very strongly related sequences from noise 

similarities. 

An advantage in having an expression in terms of the W ii  for the 

discrimination now becomes apparent. We can use mathematical techniques to 

choose new Wii which give the optimal expected Z score. That is, on the 

assumption that the frequencies A' 1  and f are correct, we can choose a scoring 

scheme W. with maximal discrimination. 

Maximization of Z with respect to the W is conveniently achieved using 

the method of Lagrangian multipliers (Arfken, 1985). We observe first that the 

Wii can be multiplied by a constant without affecting Z. This allows us to 

introduce the constraint on the W 1  that: 

Var(X) = 1 

The maximum is unaffected. We now maximize Z by maximizing the 

numerator in the equation for Z subject to the constraint. Letting Lambda be the 

undetermined Lagrangian multiplier we require: 

.1=20 j=20 
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ii 1=1 j=1 

i=20 j=20 	 1=20 j=20 

A 8w 	
f 1 f(W 1 ) 2 - 	fifj W.iiJ 

ii 1=1 j=1 	 1=1 j=i. 
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So: 

1=20 j=20 
(A 1 -f 1f)= 2Af1f Wl)_> E fi wij 

 

.1=]. j=1 

We observe that Z is also unaffected by addition of any constant to all W 1  so we 

are free to set: 

i=20 1=20 

E E f2fw1=o 
1=1 1=1 

Whence: 

A lj-f i fj l (  A 1  
2Af1 f - 2A f 1f 

Although we can readily determine ?. by substitution in the constraint 

equation, we do not need to. Z is unaffected by addition of a constant to all Wij  
or multiplication of all W1  by a constant. We get the same maximal Z, i.e. the 

maximal discrimination with: 

Aij wi = _____ 

i 
1Itj 

Thus the odds ratio of Dayhoff gives the optimal discriminating scoring according 

to the two parts of her model. Taking the log of the odds as the scoring matrix, 

as Dayhoff does, decreases the discriminatory power of the scoring scheme. A 

graph comparing the discriminatory power of odds ratios, the log odds and the 

identity scoring is given in figure 3.2. Additionally the graph shows a fourth curve 

that is a compromise on the optimal scoring table. The reason for making this 

compromise is given in the next section. 
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Figure 3.2: Graph, showing discriminatory power against evolutionary 
distance in PAMs. 

Disadvantage of the odds table 

Use of the odds ratios rather than log odds has a disadvantage. The tables 

give extreme weight to pairings of ammo acids that are unlikely by chance. The 

new score matrices are thus more prone than Dayhoff's to cause problems where 

composition deviates from the average assumed in the model. To overcome this 

a cutoff can be incorporated that limits the maximum value in the scoring table. 

This reduces the potential for high matching scores to arise from only a few 

residues in the match. 

Limiting high values in the score table through use of a cutoff reduces the 

expected significance for signal matching when measured against the distribution 

for noise matching. However the expected significance scores are still higher than 

for log odds tables. 

Validation 

To validate the new tables, a method of testing that reflects the intended 

use was developed. The test involved comparison of the human beta 
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haemoglobin protein sequence to sequences in a database of 6000 proteins (PIR 

23, verified section), which contained 330 globin sequences. Comparison used the 

Type III algorithm. Since the Type III algorithm requires integer scores with 

negative expectation, the odds tables were scaled up by a a factor of 4 and a 

constant offset of 5.5 was subtracted. This gives an expected score of -1.5 per 

residue for comparison of unrelated sequences. 

The table in figure 3.3 shows the number of globins which scored greater 

than the first non-globin. This gives a measure of the scoring scheme's ability to 

recover sequences related to a query from a protein sequence database. 

100 PAMs 150 PAMs 200 PAMs 250 PAMs 300 PAMs 

Odds 296 299 298 291 289 

Lodds 292 298 298 298 297 

Figure 3.3 Table showing number of globin sequences recovered before 
first non-globin sequence. A: With odds scoring tables. B: With the usual log 
odds tables. Target; recovery of 330 globin sequences before first non-globin 
sequence. 

In practice the new tables have performance that is only marginally 

different to the original Dayhoff tables. According to the Dayhoff model there 

should have been an improvement from using the modified tables. This suggests 

that the Dayhoff model does not fully capture the structure of signal and noise in 

the database and that deviations from the Dayhoff model for substitution 

frequencies are a more serious source of loss of discrimination than the choice of 

method for combining frequencies to produce scores. 

There is little reason to use the new tables. They are no better in practice 

than the Dayhoff tables which have been used successfully for many years. They 

introduce an extra arbitrary parameter and, whereas the sum of individual 

Dayhoff scores has a ready interpretation as a logarithm of odds, the sum of 

scores from the modified tables do not. 
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Other amino acid similarity scoring tables 

Many indices have been devised for comparing amino acids (Nakai et al., 

1988). These are based on measured chemical and physical properties. Scoring 

schemes for scoring amino acid similarity based on differences of the indeces do 

not take account of the mutational process. Such scoring schemes are rarely used 

for protein database searching. Taking account of mutational change improves 

detection of similarities arising from divergent evolution from a common ancestor. 

Similarities between protein sequences suggestive of similar structure and hence 

function will almost certainly be of this kind. One argument for using scoring 

tables based on chemical and physical properties instead of the Dayhoff tables is 

that potentially we might detect other functionally important sequence similarities 

that have arisen by 'convergent evolution'. 

With convergent evolution, the same enzymatic function is achieved by 

evolution from very different ancestral sequences. Two proteins that have 

achieved similar functions by convergent evolution may have similarities in the 

three dimensional positioning of their interacting residues at the active sites with 

this positioning of residues being achieved by radically different folding of the 

proteins. Residues equivalent in the folded structures would then have markedly 

different order and spacing in the linear protein sequences. The two classes of 

serine protease, representatives being subtilisn and chymotrypsin provide an 

example of this (Kraut, 1977). Both classes of protease have essentially the same 

mechanism of action. Residues that are functionally equivalent can be identified. 

In the linear sequences, these equivalent residues are not flanked by local regions 

of sequence similarity. The kind of structural similarity the two classes of protease 

show cannot be detected from the sequence data. 

If convergent evolution cannot be detected by sequence comparison alone, 

then it is correct to use a scoring scheme, such as Dayhoff's, based on divergent 

evolution to score sequence similarity. Using such a scoring scheme can give a 

sensitive method for finding weakly related sequences against a background of 

noise. 
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Chapter 4: Rapid and Sensitive 
Database Searching 

The sensitivity of the Type III NWS sequence comparison algorithm makes 

it the method of choice for comparing pairs of proteins. The documentation for 

the GCG sequence comparison software suite states: 

"Bestfit [the local homology algorithm] is the most powerful algorithm 
we know for identifying the best region of similarity between two sequences 
whose relationship is unknown." (Devereux et al., 1989a) 

Comparison of two proteins using the Type III algorithm produces an 

alignment and a similarity score. The algorithm can be used for searching a 

protein database to find if any sequences in the database are similar to a 'query' 

sequence. Comparison of the query to each protein in the database produces a 

list of alignments and similarity scores. This list is sorted by score and the high 

scoring similarities printed out in order of rank, highest scoring first. As well as 

printing the high scoring sequences' names and their scores for comparison to the 

query, alignments of the regions which show similarity can be printed. The 

alignments contain qualitative information whereas the scores are purely 

quantitative. 

Examination of the alignment may show a similarity is less convincing than 

the score suggests. The similarity may be due to a section of unusual amino acid 

composition in both query and database rather than to a conserved pattern. Such 

a similarity may provide less evidence for functional relationship than more 

heterologous matches of equal score do. This particular artifact of the scoring 

scheme is a case of the assumption of 'independence of sites' implicit in any 

amino acid scoring scheme, breaking down. 

Because the similarity measure is imperfect, it is usual to present not just 

results which are clearly signal but also some of the highest scoring results which 

are likely to be noise. Amongst these, the biologist may spot an alignment with 
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a protein which for biological reasons is more significant than the score alone 

suggests. A biologist may have greater interest in a similarity low down the list 

than one high up. For example, if the query protein is differentially expressed in 

males and females then the biologist may attach greater importance to matches 

of the query to sex specific sequences from the database. 

Sensitivity and selectivity 

Two words, 'sensitivity' and 'selectivity' are used in some papers on 

sequence comparison in describing the quality of the searching performed by an 

algorithm. 'Sensitivity' is used to mean the ability to detect weak signals. 

'Selectivity' is used for the ability to reject noise matches. In producing a list of 

similarities sorted by score, selectivity can be improved at the expense of 

sensitivity simply by printing fewer of the results of the search. 'Sensitivity' and 

'selectivity' are thus different aspects of one quality, the ability of a sequence 

similarity scoring scheme to distinguish between signal matches and noise level 

matching. 

Computational cost 

In comparing a protein sequence against all sequences in a database many 

thousands of pairwise comparisons are performed. There is a widespread belief 

that the sensitive NWS pairwise method of comparison is too computationally 

expensive to be used in this way on serial computers. 

"The Needleman-Wunsch method is too slow for complete database 
searches to find sequences that are homologous to an input sequence." 

"Use of the Needleman-Wunsch method to compare two sequences 
(of length 350 residues) took several minutes of machine time and more 
time is required for longer sequences." (Mount, 1988) 

Consequently alternative solutions are sought. Various methods which are 

acknowledged to be less sensitive are used instead (Pearson, 1990). This 

approach is less than ideal. Ultimately the sensitivity of a method is more 

important. One must consider the investment in time in experimental work to 
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determine the sequences. Lyall states: 

"The real solution to this problem is to use a computer that is 
powerful enough to run the exhaustive algorithm as a matter of routine. As 
well as answering a real need, the use of such a machine may well catalyse 
the development of new methods for the understanding of biological 
sequences." (LyalI, 1988) 

Lyall's work shows just how successful such an approach can be. He used 

an ICL Distributed Array Processor (DAP) parallel computer which had 1024 

simple processors. DAP computers are now manufactured and distributed by 

Active Memory Technology Limited (AMT, Reading U.K.). Lyall developed a 

fast parallel implementation, "Prosrch", of the Type III algorithm to run on the 

DAP. In his doctoral thesis he presents six interesting and unexpected sequence 

similarities found using "Prosrch". 

Lyall also compared the performance of this software to software for 

similar purposes running on various other machines. The use of the DAP turns 

out to be cost effective particularly when compared to software on vector 

supercomputers. The lesser cost effectiveness of such machines can largely be 

attributed to the presence of special purpose hardware for floating point 

calculations. This hardware adds considerably to the cost of the machines whilst 

not materially contributing to speed of operation in this application. 

Development of the early version of "Prosrch" which had a speed of 

600,000 PMEs 1  has continued with improvements being made by Collins to 

increase speed to 7,000,000 PMEs' and to facilitate investigations of the 'twilight 

zone' between signal and noise matching (J.F. Collins, ICMB Edinburgh, personal 

communication). Powerful hardware is clearly one solution to the problem of 

combining speed with sensitivity. A disadvantage of parallel machines is that they 

are not widely available. 
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Database reduction 

One alternative way to increase speed is to reduce the size of the database 

being searched. For example a database containing only representative members 

of each sequence family could be searched. This inevitably reduces the ability to 

detect weaker matches. Members of a family will show a range of values of 

similarity score against any given query. The method works well when searching 

with a sequence similar to the representative, less well when searching with a 

sequence most similar to one of the more distant family members. 

Rather than choosing a representative protein for each family, modified 

sequences that attempt to capture the essential aspects of similarity shared by all 

members of the family could be used. The use of such 'derived patterns' gives an 

alternative method of database reduction. 

Derived patterns 

Using derived patterns for database reduction is possibly even less 

satisfactory than choosing representative members, if the goal is to make new 

discoveries through sequence comparison. 

One of the sequence similarities reported by Lyall that was found using 

"Prosrch" is indicative of the problem. A yolk amino acid storage protein (YP3) 

in fruit fly, Drosophila melanogaster, was found to be similar to a lipase from the 

liver of pig, Sus scrofa (Garbedian et al. 1987). A serine residue at the active site 

is crucial to the lipase's lipid cleaving activity and is present in all members of the 

lipase family. This residue would be part of a derived pattern for lipases. In YP3, 

the residues in the corresponding position is glycine. This lead to a hypothesis 

that YP3 is not a lipase, that it binds to but does not cleave a lipid analogue, a 

precursor to a hormone called ecdysone. This hypothesis was confirmed by 

experiment. The interpretation is that as YP3 is broken down to release its amino 

acids to the growing larva, controlled quantities of hormone are released. Had 

the computer search required matching of the active site serine residue the search 

would not have detected the similarity. 

(4E8/% 	

51 



'Prosite 

Databases of derived patterns are being actively developed. Though 

caution is needed in their use, they are a valuable method for organising 

information about sequences. The most comprehensive catalogue of derived 

patterns so far developed is the 'Prosite' motif directory (Bairoch, 1989a). This 

exists in both a printed and an electronic version. In the 'Prosite' directory 

families of proteins are catalogued. For each family a 'motif pattern' is given. 

The motif patterns of 'Prosite' represent 'key residues'. These key residues are 

residues conserved or substituted for by similar amino acids in all examples of a 

family. An example of a 'Prosite' motif for the Pentraxins, a family of serum and 

plasma proteins some of which are expressed during acute phase response to 

injury, is shown below: 

Pentraxin family signature 
HXCX(S,T)W 

The bracketed residues indicate alternative possibilities at one site. An 

X indicate a site at which any residue is acceptable. The patterns are short, 

simple and straightforward to interpret. They are intended to be diagnostic for 

family membership. 

The 'Prosite' motifs make searching for membership of families extremely 

rapid. The database of patterns is much smaller than the sequence database. 

Release 4 of 'Prosite' contains 198 protein motifs with an average of five residues 

in each motif pattern. As well as the small size, the fact that 'Prosite' contains 

highly conserved residues makes fast exact matching of patterns more acceptable 

than it would be were the selected residues more variable. 

Insensitivity of 'Prosite patterns 

A criticism of the 'Prosite' directory is the insensitivity of most of the 

patterns. With the protein family cytochrome c, members of the family shows 

strong homology throughout their length, that is over a stretch of some 100 amino 

acid residues. In the 'Prosite' directory, a motif pattern of 5 amino acids is chosen 
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near to a haem attachment site. Whilst this pattern may be superior to other 

possible short patterns, the use of a short pattern means that much of the 

information is discarded. 

The loss of information arising from using short patterns affects detection 

of new members of a family. Whilst careful choice of motif can make the pattern 

diagnostic for family membership for all data available at the time the pattern was 

chosen, the motifs will not necessarily be so successful on new examples not 

available when the patterns were designed. This is indicated by the fact that the 

patterns are changed to accommodate new data. A fission yeast cytochrome has 

a leucine in place of a methionine that is conserved in all the other known 

cytochrome c's. A change in the motif pattern for cytochrome c was necessary to 

take account of this new special case and this is documented in 'Prosite'. For 

smaller families the range of variation at sites is less well determined. For these 

families there is therefore less confidence that the chosen motif pattern, diagnostic 

for all current examples, will continue to discriminate well with new examples. 

Measuring information content of 'Prosite' patterns 

The shorter patterns match against unrelated proteins more readily than 

longer patterns would. From a table of amino acid frequencies such as the one 

in figure 1.2, it is straightforward to calculate the likelihood of matching random 

sequence with any motif. One way to express this is as the information content 

of the pattern measured in bits, that is, the Log to base 2 of the probability of 

matching (Shannon & Weaver, 1949). The motif patterns for 'Prosite' functional 

sites have a wide range of information content from 8.6 bits (cell attachment 

sequence), to 49.3 bits (nuclear hormone receptors' DNA-binding region 

signature). The former pattern would be expected to occur by chance every 28.6 

= 300 residues, i.e. 7,700 times in a typical database. One would expect to search 

200,000,000 databases to find the latter pattern by chance. 

The problem of poor diagnosis by pattern has been explicitly recognised 

in the directory for the 'leucine zipper motif (information content 14.2 bits, 

expected 160 times in a single database search): 
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"As this is far from being a specific pattern you should be cautious in 
citing the presence of such pattern in a protein if it has not been shown to 
be a nuclear DNA-binding protein." (Bairoch 1989b) 

The problem of low information content is a general one that arises from 

having few residues in each pattern. It is not restricted to this one example. 

There is a danger that features postulated by pattern homology come to be 

treated as genuine. One feature (information content for 'Prosite' pattern, 16.8 

bits) that is notorious for this is the 'zinc finger' (Frankel & Pabo, 1988). The 

dangers would be more obvious were a clearer indication of the specificity of each 

pattern, either as a probability of random matching or in terms of information 

content, given for each motif. 

Use of 'Prosite' 

'Prosite' does not represent an acceptable alternative to rapid and sensitive 

database searching such as is provided by "Prosrch". Its function is instead to 

annotate a new protein sequence with suggestions of sites with already known and 

characterised function. Its role is complementary to full sequence database 

searches. 

Approximate methods for sequence comparison 

Since NWS algorithms are computationally expensive, to make searching 

possible at reasonable speeds on serial machines, faster methods which are less 

sensitive have been developed (Pearson, 1990). The most popular of these, 

"FastP", compares 800 protein pairs per minute. These more rapid programs are 

invariably based on exact matching of words. 

IrFastpe two tier approach 

To overcome some of the sensitivity drawbacks of word based matching 

"FastP" uses a two stage process. The initial search, based on exactly matching 

words, acts as a filter. This picks out proteins for a more sensitive method to 

examine. The filter reduces the workload of the sensitive method to a 
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manageable level. 

In "FastP's" two tier approach the first stage, the initial filtering, may 

discard matches which would score highly under the more sensitive method. A 

match that would be accepted in the more sensitive stage is not guaranteed to 

pass through the coarser first stage and could be lost. In this sense the two stages 

are not fully compatible. 

The risk of missing a good score can be reduced by letting more results 

pass through the filter to the second stage, that is by reducing the stringency of 

the filter. There is no criterion though for how to set the stringency to guarantee 

that all high scores will be found. For a discriminating comparison either a more 

sensitive method must be used throughout, or a filter must be devised that cuts 

down the workload but which is guaranteed to pass on all matches which would 

be recognised as 'good' by a second stage. 

"FastP's" second stage 

The second more sensitive stage of "Fast?" performs an NWS-like 

alignment to refine the score. This stage uses exactly matching words rather than 

individual residue matches. As a result far fewer possible alignments need to be 

considered. Additional speed benefits arise from using a dictionary just as they 

did in the filtering stage. Even if filtering parameters are set to pass all proteins 

to the more sensitive stage, the final scoring is still based on exactly matching 

words. 

A later development of "FastP" called "FastA", improves the second stage 

by scoring words using Dayhoff scores in the more sensitive phase. In addition it 

overcomes a major defect of "FastP", that "FastP's" first stage was a global rather 

than a local algorithm. Previously, in longer sequences, a smaller region of good 

matching could be obscured if there were insufficient word matches in it to be 

significantly above average for sequence comparison of entire sequences. 

The "FastP" algorithm is asserted to have running time that depends on the 

sum, rather than the product, of the lengths of sequences compared (Wilbur & 

Lipman, 1983). In fact, since the number of matching word pairs of a particular 

fixed length is proportional to the product of sequence lengths, "FastP" has time 
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complexity 0(11 2). However, the "FastF' algorithm makes considerable savings in 

comparison to the Type III algorithm, which is also 0(n2). The use of exact 

matching words of length 2 leads to an approximately 200 fold reduction factor 

in the work performed, whilst maintaining a useful level of sensitivity. This makes 

the algorithm very suitable for rapid database searching and "FastP" is in 

widespread use. 

Theoretical advances in comparison algorithms 

The DAP program indicates the importance of methods which are both 

sensitive and rapid. Theoretical advances might lead to algorithms that perform 

with the rapidity of "FastP" and the sensitivity of the NWS algorithm on serial 

machines. Theoretical work on the NWS algorithms shows that theoretical speed 

improvements to the algorithm are possible, in particular improvements that lead 

to the 'four Russians' version of the algorithm (Masek & Paterson, 1983). This 

algorithm works by first calculating a large number of 2 by 2, 3 by 3 or more 

generally K by K alignment path matrices. These are combined in producing a 

path matrix for the complete alignment. The algorithm takes time 0(112/Log n) 

rather than the normal 0(n2) 

Using 1 by 1 submatrices the algorithm is equivalent to the normal 

implementation and there is no gain. With K = 2 precalculation of around 10 10  

submatrices is required. This estimate is based on 20 amino acids, a 100 PAM 

table and an indel penalty of 10. Storing these submatrices in main memo!)' is 

impractical on all but the largest computers. For the method to give any gain at 

all, retrieval from disk of part results would need to be faster than recalculation. 

The authors of the paper on this method do not mention a practical 

implementation of this algorithm. 

The four Russians approach gives a theoretical gain which seems to be of 

no practical use whatsoever for protein database searching. Log n grows slowly 

with it, so it must be very large before we can hope for an appreciable gain. As 

a minimum it must be large enough to compensate for the overheads in 

precalculating the submatrices. In practice these overheads are colossal. Not only 

is the time needed in calculating the submatrices large, the storage requirements 
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for the matrices are large too. There is an exponential increase in number of 

submatrices with increase in submatrix size, alphabet size, mdcl penalty and range 

of score in the scoring table. For protein database searching, using reasonable 

parameters, the. four Russians method is impractical. 

Concluding remarks 

Speed and sensitivity are important in protein database searching. 

Approaches to achieving these apparently conflicting goals have been taken by a 

number of authors with varying degrees of success. These include database 

reduction, use of word based methods, use of powerful computers and 

fundamental changes to the algorithms for NWS string comparison. A fifth 

approach, taken in this work, recognises the potential for improved serial 

implementation of the Type III algorithm. This resulted in an extremely rapid 

serial implementation. This is described in the next chapter. This algorithm is of 

similar speed to "FastP", runs on a microcomputer and has the same sensitivity as 

the DAP "Prosrch" algorithm. 
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Chapter 5: Techniques to Get More 
from Machines. 

In the previous chapter we looked at various approaches to rapid and 

sensitive database searching. Here we present a new approach that uses new 

implementation techniques. These give a fifty fold speed improvement to the 

serial Type III algorithm. The new implementation's importance is that it makes 

the Type III algorithm run rapidly on widely available machines, that is on 

personal microcomputers (PCs) such as those manufactured by International 

Business Machines. In later chapters we discuss applications that were built 

around this software. 

As well as describing the new techniques used for rapid sequence 

comparison, this chapter describes other implementation issues encountered in the 

study. The chapter is divided into sections covering specific problems. Each 

section starts with a statement of the problem, is followed by a description of the 

methods used to tackle the problem and finishes with a discussion. The methods 

sections concentrate on the principles behind the methods used. Further detail 

of methods are contained in appendices where appropriate. 

Type III comparison (Speed) 

Problem: 

A crucial problem with a standard implementation of the Type III 

algorithm is its low execution speed. Apart from the use of parallel computers, 

other techniques to improve speed make some compromise on the sensitivity of 

searching in order to obtain their speed. 

"The results of searches with FASTA compare favourably with results using 
NWS-based programs that are 100 times slower. FASTA is slightly less 
sensitive..." (Pearson, 1990) 
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The problem tackled here is to find techniques that increase the speed of the 

Type III searching on serial machines. 

Methods: 

A combination of techniques, rather than any one technique on its own, 

were central to the speed improvements. Although each saving may appear to 

have a marginal effect, the combined effect is significant. Savings in one part of 

the algorithm only have a marked influence on the overall speed when other 

inefficiencies are removed. Because the path matrix calculations involve 

operations performed thousands of millions of times, apparently small savings can 

have a large effect on the algorithm's running time. 

The first step in improving performance uses the following observation: 

Any two columns of the path matrix with the same sequence character at their 

head will have the same one step diagonal scores. Production of a table of these 

23 possible columns of scores gives a substantial saving in the number of indexing 

operations the algorithm performs. Using this intermediate table, the number of 

indexing operations in retrieving one step diagonal scores is halved. The row 

index is used to directly access scores from one of the 23 columns in one indexing 

operation, rather than first retrieving a sequence character (first indexing 

operation), and then using the sequence character as an index into the amino acid 

score table (second indexing operation). 

The second optimisation is more complex. It rests on noticing that many 

of the entries in the path matrix hold zero scores. This is true for over two thirds 

of the entries. This arises because the scoring tables have a negative expectation. 

The majority of paths score negatively and so have scores reset to zero at 

each step. 

Reorganisation of the order of operations is required. The Type III 

algorithm is normally presented as in Chapter 2, in terms of how values at each 

cell are computed. After re-expressing the algorithm in terms of how each cell 

value influences its neighbours the fact that zero scores do not influence other cell 

values can be properly exploited. Zero scores can then be processed rapidly. A 

second saving arises from the new order of calculation. Provided that neither a 
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negative score nor a zero score influences other cell values, negative scores do not 

need to be converted to zero. 

For efficiency the software is written in assembly code. At this level of 

expressing an algorithm, fetches of information from memory to processor and 

storage of information from processor to memory are made explicitly. Deferred 

assignment of values held in registers to variables held in memory is a technique 

that can sometimes be used to reduce the number of times values in processor 

registers are written out to memory. This optimisation technique normally relies 

on a guaranteed pattern of memory reads and writes. The effect of a 

conditionally executed statement can disrupt this, and does so in the Type III 

algorithm. However, a new technique was developed to extend the method of 

deferred assignment. This new technique, 'conditional deferred assignment' is 

described in Appendix 3. It recaptures the ability to have a known history of 

memory interactions and uses multiple versions of the code to do this. 

The final important optimisation step is to reduce loop overheads for 

processing one column. The determination of maximum score in a column which 

could be done in a separate loop is instead performed in the main loop. Having 

one loop instead of two halves the loop overheads. Moreover, the test for 

maximum need take place only in the infrequently executed code that deals with 

larger positive path scores. This subdivision of the algorithm into parts for 

different levels of scoring arose from the previous two optimisations. The testing 

of the loop counter is removed by using a rogue value (an impossibly high value) 

to terminate the loop. Testing for the end of the loop only occurs where 

maximum score may be being updated. This arrangement virtually eliminates loop 

overheads. 

Discussion: 

The new implementation of the algorithm performs an average of 200 

protein comparisons per minute, a speed of 300,000 PMEs 1 . A sensitive database 

search can thus be performed in under an hour on inexpensive hardware. The 

machine code algorithm has been built into a database searching program "Prowl", 

written in Pascal for performing such searches. 
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The new implementation is the result of successive improvements to the 

efficiency of an initial version. The idea for an optimisation often arose from 

simpler optimisations. The rearrangement of the order of calculation, for 

example, arose from combining two optimisations concerned with low scores. 

How is it that the scope for dramatic improvements in speed in the serial 

Type III algorithm has in the past been overlooked? One possible reason is the 

practice of using asymptotic measures to measure performance. The 

improvements described in the preceding section do not affect the asymptotic 

measure. Asymptotic measures are useful precisely because they are a property 

of the algorithm rather than the implementation. The example illustrates a 

danger in relying too heavily on asymptotic measures when dealing with a practical 

computational problem. 

There are precedents for this. Theoretical advances in algorithms for 

linear programming problems that resulted in an 0(n6) algorithm are not used in 

practice (Osborne, 1985). The normal simplex algorithm with exponential time 

worst case performance performs better in practice and is used instead. 

The situation for Type III searching is more prosaic. The asymptotic order 

does not distinguish between variants of an algorithm that differ in speed by a 

constant factor. An emphasis on asymptotic orders may have lead software 

developers to overlook the substantially greater efficiency possible in the 

organisation of calculations in the standard algorithm. 

Path reconstruction (Memory space) 

Problem: 

Generation of comparison scores rapidly is not enough. Alignments as well 

as the alignment scores are needed. The pressure for rapid computation is not 

intense since only a small fraction of the sequences compared need to be 

presented to the user as alignments. Rapid computation here is not crucial. The 

problem in implementing the reconstruction algorithm is limited RAM memory. 

On a machine with a large memory it is feasible to store an entire path matrix in 

main memory. From this the alignment can be reconstructed in steps as described 
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Uses of multiple alignments 

Investigating mechanism. 

Multiple alignments are useful in investigations of the functions of 

individual residues in a protein. They show which residues are variable and which 

conserved. Residues which are conserved in all the sequences are the most likely 

to be crucial to the function. These conserved residues may be part of the active 

site in an enzyme, or they may be vital to the three dimensional structure. Where 

there is variation in a column of an alignment the kind of variation also gives 

information. It can suggest the role played by an amino acid. Some columns of 

multiple alignments, for example, contain only charged residues. The sign of the 

charge, positive or negative, may vary. Such a site in a protein is likely to have 

a different role to one for which all substitutions are charged residues of the same 

sign. Information about variations can thus act as a guide for experimental work 

to determine the function of individual residues. 

The pattern of conservation of residues can give information about cysteine 

residues. These residues may or may not participate in disulphide bridges with 

partners elsewhere in the protein. No other residue type can fulfil this role. Loss 

of a disulphide bridge would be expected to have a marked effect on the structure 

and stability of a protein. If one sequence in a multiple alignment lacks a cysteine 

at a particular site which is cysteine in the others, it suggests that the cysteine is 

used for some purpose which other residues can fulfil and consequently is not part 

of a disulphide bridge. 

An example which shows how multiple alignments can draw attention to 

structurally important residues is a particular glycine residue which is absolutely 

conserved in all haemoglobins. Studies of three dimensional structures reveal the 

explanation. The glycine occurs where two alpha helical structures, the B and E 

helices cross (Stryer, 1981). No other residue is sufficiently small to fit in the 

space available. 

The information which multiple alignments contain is especially relevant 

to methods for secondary structure prediction (Zvelebil et al., 1987). The 

variation at sites shown by multiple alignments gives additional information about 
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structure not present in a single sequence. One example of this is that residues 

that vary are more likely to be near the surface of a protein than in the core of 

the protein (Perutz & Lehmann, 1968). 

Searching 

Computer searches can make use of information presented in a multiple 

alignment about the range of variations at each site. Smith & Smith (1990), 

suggest one method that could be implemented using a matrix that gives scores 

for each amino acid at each site, a 'template matrix'. In the template matrix most 

weight is attached to residues which are absolutely conserved. Template matrices 

are computed from multiple alignments, typically by averaging scores for the 

amino acids in a column. This takes into account the variability at a site and the 

kind of variation. A template matrix represents a consensus about the patterns 

shared by the sequences. If previously unknown members of a protein family 

conform to the consensus pattern of conservation observed in the known 

examples, then a databse search using template matching will give more 

discriminating searching for new family members than comparison using any one 

example from the family could (Taylor, 1986). 

One advantage of using a family consensus pattern is that a single 

comparison of a new sequence against a pattern can be used to check for family 

membership. It is worth emphasising that this may be less sensitive than 

comparing a sequence individually with each member of the family in turn. The 

new sequence may be more similar to the member of the family most similar to 

it than it is to the consensus pattern for the family. A mental picture for this is 

to represent the sequences as points. The distance between the points represents 

the degree of dissimilarity. A family of sequences will form a cluster. The pattern 

for the family could be represented by a point that is at the centre of the cluster. 

A new member to the family is, however, likely to be closer to some member of 

the family than it is to this centre. 

Motif patterns such as those of the 'Prosite' directory discussed in Chapter 

4, are also derived from multiple alignments. They offer an alternative and less 

sensitive method for defining patterns of conservation. 
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Sequence editors 

For pairwise alignment, NWS algorithms are the accepted standard. The 

situation is quite different for multiple sequence alignment. No method has yet 

become universally accepted. It is not clear how best to extend a scoring scheme 

that works well for pairwise alignment to score multiple sequence alignments. A 

second problem is that the natural extensions of the NWS algorithms to score 

columns of three or more residues, rather than scoring residue pairs, have very 

high computational demands. To make improvements to existing multiple 

sequence alignment algorithms involves addressing both purely computational 

problems, and the problem of defining what good multiple sequence alignment is. 

The latter requires some knowledge of patterns which actually occur in sequence 

families. 

To gain an understanding of patterns, many alignments for different protein 

families must be examined. Moreover these alignments should be adjusted to 

explore possibilities different to those suggested by computer alignment. Patterns 

which computer analysis misses can only be characterised by manual examination 

of sequences. 

For closely related proteins, alignments can be examined and adjusted on 

a text editor. For all but the simplest alignments this is time consuming. With a 

text editor it is easy to delete sequence characters accidentally when removing 

unwanted spaces from an alignment. There is a need for special purpose multiple 

sequence editors. 

There is a second reason why a multiple sequence editor is important for 

development of new automatic methods of multiple sequence alignment. A 

multiple sequence alignment editor can act as a front-end to a new alignment 

method. It can take care of the loading and the formatting of sequences and the 

display of results. This simplifies the testing of a new multiple alignment 

algorithm. 

The need for a multiple sequence editor is not specific to investigation of 

improved algorithms for alignment. Until automatic methods produce entirely 

satisfactory results manual adjustment of computer generated multiple sequence 

alignments will continue to be important. 
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A number of multiple sequence alignment editors have been described in 

the literature; "Lineup" (Devereux et al., 1984) "Homed" (Stockwell & Peterson, 

1987), "Mase" (Faulkner & Jurka 1988), "Esee" (Cabot & Beckenback 1989) and 

"Alma" (Thirup & Larsen 1990). 

Sequence editor on the VAX 

Initially work on multiple sequence alignment used the GCG "Lineup" 

editor running on a VAX computer. With this editor alignments of the lipase / 

yolk protein family discussed in Chapter 5, and of a family of citric acid cycle 

proteins were explored. 

Fortran source code for "Lineup" was available. "Lineup" was modified by 

addition of new code to perform automatic multiple sequence alignment using a 

new method. The new method performed all 112 n(,z +1) pairwise alignments of 

11 sequences and recovered information about compatible parts of the alignments. 

Where all alignments agreed, it aligned these residues, regions between being 

divided into unaligned blocks. The new method proved unsatisfactory for all but 

the most closely related families of sequences. It depended on low levels of 

conflict between the pairwise alignments. This only occurred in the 

straightforward cases, strongly related sequences or parts of sequences, that were 

easy to align 'by eye'. 

The VAX development environment and "Lineup" editor proved to be 

unsatisfactory for this work. "Lineup" is the largest program in the GCG package 

consisting of 10,000 lines of source code excluding subroutines shared by other 

programs in the package, for example subroutines for reading sequence files. To 

reduce compilation times, compilation was restricted to the new program section, 

the bulk of the code being pre-compiled. Howevei, linking of the code was still 

necessary for each change. This took a minimum of three minutes. This contrasts 

with combined compilation and linking times of a few seconds for modular 

software written in Turbo Pascal for the IBM PC. As well as having a 

development environment that greatly facilitated program development, the PC 

had a second advantage. The PC had the potential for an alignment editor with 

a better user interface. For the VAX, updates to the screen had to be kept to a 
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minimum as the updates took place over a relatively slow serial line. The PC 

permitted a much more responsive user interface as well as the use of colour. 

The speed of response in particular was felt to be important for interactive 

exploration of many different possible alignments. 

Development work moved to the PC. To make this move a new multiple 

sequence editor for the PC was written. This program was called "Medal" for 

Multiple sequence EDitor and ALigner. The new editor could be more readily 

modified to test out new ideas than could "Lineup". 

"Medal" has a modular design. It makes use of the Turbo Pascal facility 

to define software 'units' containing related subroutines and datastructures. This 

modularity is important in development work. The automatic multiple alignment 

routine of "Medal" is contained in a separate unit and could be replaced with an 

alternative one without losing the interface features. 

General editor interface features 

Some of the interface features of "Medal" are relevant to general editor 

design and not specific to Molecular Biology. They are not essential for the actual 

task of sequence alignment editing. Features such as the 'help' facility could easily 

have been omitted. One reason for developing a good interface to the editor was 

to encourage use and criticism of the program by molecular biologists. 

Computer interface design is itself an active field of research (Long & 

Whitefield, 1989). Rather than performing a thorough study of interface design, 

designs that worked well in other applications were adapted. 

"Medal" has pop-up directory lists from which any individual file can be 

selected. Pop-up menus are used in many PC programs. In "Medal" the pop-up 

directory has an additional facility to allow selection of ordered sets of files. This 

is needed for creation of a multiple alignment from a number of independent 

sequence files. Pressing 'enter' selects the file currently indicated by a block 

cursor. Each selected file is moved to the start of the pop-up menu and is 

highlighted (figure 6.1). Files that have.been selected can be deselected in the 

same manner. The whole set of selected files can then be accepted by another 

key press. 
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Fiçure 6. 1: Pop-up directory for ,eIecting sequences IC tnükc a mLtl!iJ)le 
alignment. The file names in yellow are the selected sequences. The file 
currently open to selection is indicated by the purple block cursor. 

I nil It 1jilf, rI 	iiif . 	Al4 flr 	 I 	U 	 I 

Fiurc 0.2: "Medal 'S'' 	ac li/tv. The cuminand current/v elecied hi 
the cursor is described more fully in the top two thirds of the screen. 
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In "Medal" menus of commands and the on line explanatory 'help' 

information are combined in one system. When selecting commands the lower 

third of the screen contains a menu of commands. The command currently 

selected off the menu has help information about it displayed in the top two thirds 

of the screen (figure 6.2). 

"Medal" uses an initialisation file which records path names. These paths 

indicate directories in which sequence and alignment files are stored and the name 

of the alignment most recently worked on. When "Medal" is invoked the most 

recent alignment is fetched into memory so that alignment editing can resume 

where it was last left off. 

Platforms and interfaces 

The editor interface design illustrates the influence of the platform. On 

a machine with a slow transfer between screen and memory, update of help 

information as each menu command was selected would have lead to a very slow 

response and would have been impractical. Multiple sequence editors on other 

machines follow interface practices for those machines. The "Lineup" editor uses 

interface features from the VAX/VMS editor "EDT" such as the use of ctrl Z to 

end screen based input. The Unix "Mase" sequence editor uses binding of keys 

to longer commands similar to that found in the Unix editor "emacs". 

Sequence editing features 

Other features of "Medal" were designed specifically to assist multiple 

sequence alignment editing. Normally in "Medal" all sequence characters are 

shown in grey. Pressing a key on the keyboard causes all occurrences of the 

character to be displayed in a preselected colour. Residues which are 

conservative substitutions use the same colour. Pressing the key again causes all 

occurrences of that character to revert to grey. This feature helps in locating by 

eye patterns of similar residues. 

"Medal" allows regions of the sequence to be delimited. A vertical bar in 

an alignment prevents changes made on one side of the bar from affecting 
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in Chapter 2. Storage for the full path matrix is not necessary if only scores are 

required. In the searching phase only two columns at a time are needed. For 

reconstructing the alignment, the path matrix size can be a problem even on 

mainframe machines. In the GCG implementation path matrices are limited to 

1,000,000 elements. This is sufficient for two sequences of length 1000. On 

microcomputers the memory problem is more severe. 

The "Prosrch" program described in Chapter 4 has one solution to this 

problem. With the "Prosrch" program both endpoints of any alignment path are 

obtained in the searching pass. Whilst this adds a substantial overhead to the 

searching time it simplifies the post processing'. When both endpoint positions 

for a Type III alignment are available reconstruction of alignment is equivalent 

to a Type I alignment. For Type I alignments this reconstruction can be done in 

a space efficient manner using 'divide and conquer' techniques (Hirschberg, 1975). 

These require recalculation of some of the path matrix entries. 

"Prosrch" in fact uses a more sophisticated hierarchical approach. It tries 

successively more complex algorithms in turn. This sequence is optimised for 

alignments with few gaps (J.F. Collins, ICMB Edinburgh, personal 

communication) and is extremely efficient in these cases. 

The new serial Type III implementation described in this chapter finds the 

endpoint but does not find the starting point of an alignment. However, as each 

column of the path matrix is calculated, the software finds the score and location 

of the best path ending in the column. These values are used in finding the score 

for the overall best path and the location of its endpoint. The requirement is for 

an efficient way to reconstruct the alignment given only this information for each 

column. 

1To do this, each path matrix element must carry start coordinates of a path in 
addition to a score. 
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Method: 

The strategy employed to do this, like the divide and conquer approach, 

uses recalculation to reduce memory requirements. The strategy is not 

guaranteed to use as few recalculations but its behaviour is good in practice. The 

method uses the stored values for the best path ending in each column to reduce 

the likelihood of needing recalculation. Many of the recorded locations are 

actually on the best path. The reconstruction is particularly rapid where this is the 

case. Reconstruction proceeds as described in Chapter 1 except that only ten 

columns of the path matrix are available at a time. Moreover the values present 

may be lower than they should be. Consequently the retrace procedure may be 

unable to continue before having retraced the full path. In that case, path matrix 

recalculation is started from fifteen columns prior and generates the ten columns 

immediately before the column of the current cell. This recalculation starts by 

setting the first of the fifteen column's scores to zero, whereas in fact some of the 

values should normally be positive. This is the reason for some values being lower 

than they should be. The recorded best endpoints in a column are put in place 

after each column is calculated. This step ensures that if any one of the fifteen 

recorded best endpoints prior to the current cell is actually used on the best path, 

then the path being reconstructed can be continued. This is usually the case for 

high scoring alignments. The approach also works if the path started within 15 

steps of the cell currently reached. This tends to be the case for short low scoring 

alignments. If, however, this stage also fails to extend the path, recalculation can 

be started from the start of the sequence and will yield correct scores, rather than 

reduced scores, for the immediately prior ten columns. 

Discussion: 

This strategy works well in practice. It also is simpler to program than the 

'divide and conquer' technique. This results in a shorter program. The divide and 

conquer method needs to change the direction in which sections of the path 

matrix are calculated. The new method does not. It uses the same score 

calculation code for reconstruction as used in the search. Since this code has been 

heavily optimised, reconstruction of alignments is rapid. The method also extends 
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gracefully if more memory is available. Storage for more columns of the matrix 

leads to lower likelihoods of repeated recalculation. 

Database compression (Disk space) 

Problem: 

A second problem with microcomputers is limited disk space. One 

investigation concerned methods to compress the sequence database. The method 

developed has an exceptionally rapid decompression algorithm. 

Compression technique: 

Standard compression algorithms, such as the Lempel-Ziv algorithm, work 

by identifying short patterns which occur many times and choosing compact 

representations for these patterns (Welch, 1984). The new method recognized a 

common kind of repetition that occurs in sequence databases - longer sequences 

of characters that are repeated just a few times. 

Ovvvvvvv 
lnnnaaaa aaaaaaaa 
llllaaaa aaaaaaaa rrrrrrrr 

vvvvvvvv 
nnn 

aaaa aaaaaaaa 
rrrrrrrr 

Single character. 
Repeated run of length 3-9. 
Repeated run of length up to 256. 

Character value (7 bits). 
Run length in range 3-9, 

represented by 000 to 110. 
Offset to previous occurrence of run. 
Run length in range 0-255. 

Figure 5.1: Coding scheme used to represent repeated runs. Above: The 
three forms in which data is represented in the compressed file in terms of bit 
fields. Below: Interpretation of the bit fields. 

A compressed run is represented by a word (two bytes) with the top bit set. 

The lower twelve bits represent the relative location of the run. The remaining 

3 bits represent the length of the run. 000 to 110 represent runs of length 3 to 
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9. Longer runs are represented by 111 and the byte after the word gives the 

actual length up to 255 characters. 

The standard compression methods would be unable to exploit such longer 

patterns nearly so well. The Lempel-Ziv compression algorithm, for example, 

needs to 'learn' each shorter run in the long repeated run before it can learn the 

long run and represent it with maximum efficiency. The effect of this is that to 

'learn' a longer run, the Lempel-Ziv algorithm must see it at least as many times 

as its length. In the database, many of the long repeated patterns occur only a 

few times. With the new method a long run only needs to be seen once for future 

occurrences to be compressed. 

Using the algorithm 2.5Mb of the PIR 23 database was compressed to 

1.2Mb. Later, commercial software for compression, the program "PKZip" 

(PKWare Inc, WI 53217, U.S.A.), was available. This algorithm achieves the same 

compression factor, though it is not clear what compression algorithm it uses. 

Discussion: 

For machines for which disk performance is a severe problem, compression 

gives an effective increase to the capacity of the disk. It also gives an effective 

increase to the speed of disk read access since decompression is more rapid than 

disk to memory transfer. Compression software improves the effective 

performance of the disks. In practice the method was only used to reduce the 

number of disks needed for data redistribution. 

Data compression may become more important as the 'human genome 

project', an international project to sequence the 3x10 9  bases of the human 

genome develops (Gordon, 1988). When distributing data to a large number of 

users, the potential savings from reducing media costs could conceivably be 

significant. The increased speed of access is unlikely to be a critical factor as for 

sensitive searching on low cost hardware the rate limiting step is the actual 

comparison. 

The technique is particularly attractive for representing slight variants of 

a gene. At the moment there is an inconsistent policy over representation of 

sequence variants in the database. Sometimes a variant sequence is given a new 
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sequence entry. At other times it is recorded in feature tables that give 

alternatives at particular sites. Variants so represented are not searched by 

current software. Using the kind of compression suggested here, full entries could 

be made for these variants with minimal media costs. 

Tripeptide matching (Speed). 

Problem: 

For part of the study a very fast approximate sequence comparison routine 

was required (Chapter 7). A coarse method was acceptable as only the very 

strongest similarities needed to be found. 

Method: 

The coarse comparisons were made using a program to count exactly 

matching tripeptide words shared by pairs of proteins. The program took each 

protein in turn and used it as a query against the database. To make the counting 

of shared tripeptides rapid a tripeptide index for the query sequence was used. 

To increase the efficiency of disk access, software to cache data from the database 

was written. 

A near eight fold speed improvement on this basic method was 

subsequently achieved by searching with eight query proteins simultaneously. This 

reduced the disk overheads by a factor of eight and, by splitting integer scores into 

fields, one addition operation was made to serve the update of all eight proteins 

scores. Overflow of the fields was avoided by periodically using the fields to 

update scores with a wider range. 

With these enhancements the comparison program could perform 

32,000,000 coarse tripeptide based pairwise sequence comparisons over a 

weekend. 



Discussion: 

Even more rapid techniques are possible using sorting of subsequences 

from the database. Here a technique that compared each protein pair in turn was 

required partly to test the software framework for total database searching. A 

relatively simple method was found to be satisfactory. 

Annotation browser (Portability) 

Problem: 

A screen based application for examining lists of results from database 

searches was written. The program provided a rapid method for cross referencing 

between search results and sequence annotation databases. The first version was 

written for emas, a mainframe computer which had ample disk memory and which 

held the sequence annotation files. The program, which was called "Xref', was 

initially written in IMP, the language of choice on the emas computer. Later the 

software was required for other machines. Since the program was not 

computationally intensive, portability seemed to be an important design goal for 

the rewrite. 

Methods: 

"Xref' was rewritten in Turbo Pascal for the IBM microcomputer with the 

intention of porting it onto a Unix machine. This was initially thought to be a 

good development route. As well as producing a version of the software for the 

microcomputer, it gave the opportunity to use the excellent development 

environment of Turbo Pascal in rewriting the code. 

Documentation on the Unix Pascal that was available for the Unix machine 

turned out to be insufficient. There was insufficient information about file 

mapping, control of the intermediate PAD I/O computers and access to terminal 

characteristics. In addition the Unix Pascal compiler did not support some of the 

Turbo Pascal type casting operations that were essential to the program's 

operation. Just as IMP is the best supported language on the emas computer, so 

C is the preferred language for Unix machines. More facilities were readily 
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available in - C and C seemed to offer possibilities for a more portable 

implementation. The program was therefore rewritten in C using the Unix 

terminal independent screen and cursor control subroutines 'Curses' since one 

factor which reduces portability is having software depend on specific hardware 

features. The 'Curses' routines are aptly named. Using the routines an addition 

of a single line at the top of the screen resulted in the whole screen being redrawn 

to achieve reverse scrolling. This was slow and made the program useless as an 

interactive tool. The compromise solution adopted avoided the 'Curses' software 

and provided direct cursor control sequences for VT100 compatible machines 

(Wyse, 1984). These sequences gave correct scrolling action for Sun workstations, 

VT240 and Wyse 75 terminals and microcomputer terminal emulators. In practice 

this restriction in terminal type did not cause problems. 

Discussion: 

The observation from experience with "Xref' was that translation of 

software to different languages provided a rapid route to porting software 

between different machines. Overcoming the portability problems of the Pascal 

version would certainly have taken longer than rewriting in 'C'. Although the 

program was not compute intensive it seemed to require a compromise in 

portability. This was a result of the need for fast screen I/O. 

Optimisation to "Prosrch" 

Problem: 

The PC program demonstrates the possibility of sensitive database 

searching at reasonable speed using the Type III algorithm on a microcomputer. 

The software can be used to do a comprehensive comparison of every pair of 

sequences in the database (Chapter 7). However this takes several weeks of 

computer time. A natural question to ask is: "Can the same techniques also be 

applied to accelerate database searching on a parallel computer?". If so, 

comprehensive sensitive pairwise comparisons of databases could be made on a 

routine basis. 



Methods: 

To investigate the possible optimisations of a parallel program, source code 

for the 'Prosrch" program was examined and modified in the time critical sections. 

These modifications illustrate the potential for optimisation but to fully evaluate 

them would require substantial changes elsewhere in the software. 

Experience from optimising the serial implementation drew attention to 

aspects of the calculation where savings could be made. The programming 

techniques to do this were different; none of the techniques discussed for the 

serial code apply. The details of the methods are peculiar to the parallel 

computer's architecture and the 'Prosrch" program and are described in Appendix 

4. 

Discussion: 

The serial techniques used to achieve speed on the microcomputer are not 

applicable to the parallel computer. The serial techniques rely on case analysis 

to make processing more rapid. On the parallel machine many cells are 

processed at once. These must be processed with the same set of instructions. 

On the parallel machine separate processing of different cases slows down 

operations. Multiple cases take the sum of the time for the different cases, rather 

than a weighted average of the times. Radically different optimisation techniques 

need to be used. 

The study provided an alternative set of optimisations suitable for the 

parallel machine. More important than a potential for an estimated eight fold 

speed improvement was a dramatic reduction in code size arising from the 

optimisation method. This should aid maintainability and future modification of 

the software for other uses. The techniques described in Appendix 4 would also 

be appropriate for efficient implementation of the more computationally 

expensive string comparison algorithms of Chapter 9. 



Concluding remarks 

Practical considerations draw attention to computational problems that are 

different in kind to purely theoretical studies. In the main these can be tackled 

by adapting and applying combinations of standard computing techniques. For 

practical systems, it is not so much individual techniques as combinations of 

techniques that matter. This is so both at the level of individual subroutines, such 

as the new Type III subroutine, and at the level of applications programs. 
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Chapter 6: Multiple Sequence 
Alignment 

Multiple sequence alignments show in a compact format relationships 

between several protein sequences. They differ from pairwise alignments by 

having extra rows for additional related sequences in a family. The presentation 

of information is more condensed than if a set of pairwise alignments were shown. 

Strong patterns present in all sequences are readily distinguished from patterns 

present in only some sequences. These patterns would be harder to see by 

examining pairwise alignments. An example of a multiple alignment is shown 

below: 

++++++ + ++. + +.+ .- 	+ + + + +++ ++++ 
A30007 : APKIFGGEIKTHILLFLPKSVSDYDGKLSNLKKAADGFKGK ILFVFIDSDHTDNQR 
A26289 :APKIFGGEIKTHILLFLPKSVSDYEGKLSNFKKAAESFKGK ILFIFIDSDHTDP4QR 
ISMS :APKIFGGEIKTHILLFLPKSVSDYDGKLSNFICJ(AAEGFKGK ILFIFIDSDHTDNQR 
R3EC2 :KPRIFGARNKVHIIN LEKTVPMFNEALAELNKIA SRKGK ILFVGTKRAASEAVK 
R3NT2 :APYISAKRKGIHITN LTRTARFLSEA CDLVFDAASR GKQFLIVGTKNKAADSVE 
R3LV2 :APYIFTERKc3IHIIN LTQTARFLSEA CDLVANASS KGKQFLIVGTKYQAADLIE 

Identities '+' and conservative substitutions '.' are marked where four or 

more of the residues are identical or conservative substitutions. 

The top three sequences are strongly related to each other, so too are the 

lower three. The relationship between the two families is less certain, the 

similarity between sequences R3EC2 and A30007 providing most evidence for 

there being a valid link. This particular alignment was produce to help 

investigation of a hypothesised link between protein disulphide isomerases, top 

three sequences, and ribosomal sequences, lower three sequences (see Chapter 

8). Multiple alignments present more detailed information about the 

interrelationships between sequences than a pairwise alignment can. Individual 

columns of a multiple alignment show the range of variation at a site, assuming 

that is, that the multiple alignment correctly aligns residues that are in structurally 

equivalent positions. 
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residues on the other side. This feature is also present in "Mase" and "Esee". 

The editor "Alma" allows groups of sequences to be locked together. 

Insertions or deletions in any one of these grouped sequences affects all sequences 

in the group. In "Medal" locking together is done on a per residue basis. Such 

residues are shown with a coloured background. Residues which are locked 

together stay aligned whatever other changes are made. Residues which are 

locked together move together whenever any shift, insertion or deletion moves 

one of them. This system makes it possible for the sequences locked together to 

vary from column to column. This approach is more general than whole sequence 

locking. Photos in figures 6.3 and 6.4 shows residue locks in action. The lock on 

residues can be set and removed easily by a single keypress. Also an automatic 

scan can be made that puts in locks for all currently aligned residues of similar 

type. Locks are also placed after automatic alignment. 

"Mase" and "Homed" have more limited whole sequence locking than 

"Alma". They are restricted to locking together groups that consist of all but one 

of the sequences. 

Assessment of editor features 

The editor part of "Medal" demonstrates the advantages of using 

computers of the PC kind rather than a mainframe for multiple sequence editing 

work. In many ways the advantages parallel those of using a PC word processor 

over a mainframe text editor, a faster screen update leading to more information 

on the screen at one time and user friendly help and menu facilities. 

Additionally the "Medal" editor introduces a new concepts to multiple 

sequence editing; the locking together of sequences on a per-residue basis. The 

features in "Medal" were largely influenced by use of the program in creating and 

modifying multiple alignments. Using per-residue locks on their own was found 

to be not entirely satisfactory as for larger alignments changes can involve setting 

and resetting many such locks. 

One option in "Medal" combined automatic placement and removal of bars 

at the boundaries of regions of sequence conservation with locking together of the 

similar sequences over the region of conservation. This was found to be confusing 



to other users of the software. For the kinds of editing for which this option was 

designed an alternative would be more useful. This would give the user 

temporary locking together of any subset of sequences over a region delimited by 

the bars. Existing residue loëks would still be active. Were there time to do so, 

this alternative option would be added in place of the present option. 

Sizes 

Of the editors considered, "Medal" has the smallest capacity for sequences. 

Max. number of 

sequences 

Max. sequence 

length 

"Lineup" 31 100,000+ 

"Homed" 50 10,240 

"Mase" 100 10,000 

"Esee" 21* 18,000* 

"Alma" 300 60,000 

"Medal" 21* 6,000* 

Figure 61: Sequence capacities of various multiple sequence alignment 
editors. Figures marked * are for programs on microcomputers. For 
microcomputer programs the maximum size and maximum number of 
sequences are 1101 available simultaneously. 

Additional work would be needed to raise the number of sequences and 

increase the maximum sequence length. Data compression techniques, as 

described in Chapter 5, could be one way to achieve this. The alternative is to 

make greater use of disk memory. Much larger datasets could be accommodated 

by holding parts of the alignment not currently being displayed in disk memory. 

Space could also be saved by making the automatic alignment process, currently 

part of the "Medal" program, into a separate program. 



Automatic alignment methods 

Ideally an algorithm for automatic multiple alignment should find patterns 

which do not show up when only pairs of sequences are compared. One approach 

to this is a multidimensional extension of the Type I algorithm (Murata et al. 

1985). Instead of a two dimensional path matrix, a K dimensional array, where 

K is the number of sequences being aligned, is used. Each additional sequence 

of length three hundred increases the workload three hundred fold. Whilst cutting 

corners in the match matrix, that is calculating only elements near the main 

diagonal, dramatically improves this situation, it brings with it a risk of missing 

similarities when large insertions or deletions are required. Because of large 

memory and time requirements, this direct approach has been limited to three 

sequences. 

Subsequent to Murata et al. 's work, a more sophisticated method for 

restricting the volume explored in the multidimensional path matrix has been 

developed (Lipman et al. 1989). The method uses an alternative formulation of 

matching in terms of difference scores rather than similarity scores. The method 

extends the multidimensional method to up to six sequences. Unlike conventional 

corner cutting,the alignments this method finds are guaranteed to be optimally 

scoring by the scoring scheme. 

Close examination of the method suggests that the computational costs 

grow very rapidly with increase in sequence dissimilarity, even where this is 

confined to short local regions. Thus, the method is applicable to up to six 

sequences only when the sequences have very high levels of similarity. 

A problem which is noted in the paper is that the scoring strategy needs 

adjustment where one subfamily is heavily represented in the set, otherwise the 

alignment is determined by these sequences, being then an alignment to the 

consensus for this subfamily. This adjustment involves a manual intervention to 

identify clustering of related sequences. 



Using exact matching 

Some algorithms overcome the problem of computational demands by 

using exactly matching words (Sobel & Martinez, 1986; Bains, 1986; Santibanez 

& Rhode, 1987). These algorithms can be seen as multidimensional extensions 

of the Wilbur & Lipman (1983) approach. These word based alignment methods 

have the same advantages as the word based pairwise methods - simplicity and 

ease of calculation. The methods suffer from the same problems as the pairwise 

exact word based methods. That is, lack of sensitivity over amino acids of similar 

properties, inability to cope with single mismatches in a region of good matching 

and inability to deal with insertions. 

A promising variant of the exact matching word methods removes the 

restriction that the amino acids be contiguous (Roberts, 1990). The variant, as 

currently implemented, only detects the interrupted similarities, the multiple 

alignment being performed manually. Allowing broken similarities overcomes the 

problem of single mismatching residues ruining an otherwise matching word and 

preventing its detection. This idea is examined again in the addendum in the 

context of database searching. 

Alignment refinement 

A technique used as an additional stage in a number of multiple alignment 

strategies is called refinement (Bains, 1986; Barton & Sternberg, 1987; Hennecke, 

1989). After the initial multiple alignment has been made, individual sequences 

are removed one at a time and realigned against the remaining sequences. The 

process stops after a preset number of cycles or when no further improvement in 

alignment score is achieved. The technique will not correct very poorly aligned 

sequences but can fix 'glitches' where one sequence is obviously Out of alignment 

relative to the rest. A modified form of refinement, claimed to have some 

advantages over the simpler form, removes and realigns groups of sequences 

(Subbiah & Harrison, 1989). 

Refinement is popular partly because it is a simple addition to a program 

that already performs alignment of sequences to aligned sequences. A 

disadvantage of refinement is that realignment is performed against a consensus, 
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so the criticisms of comparisons using consensus given earlier in this chapter 

apply. Refinement, as its name suggests, can improve patterns already detected 

by the initial method, but it is unlikely to detect patterns that the initial method 

does not find. If a particular shared pattern is not evident from the consensus, 

for example if the shared pattern is found in only two of the sequences, 

refinement does not help. If the initial method finds such pattern, refinement is 

likely to lose the pattern again unless the weaker pattern is bounded by strongly 

conserved patterns that do show in the consensus. Refinement was not used in 

the alignment algorithm of "Medal". 

Multiple alignment based on pairwise alignment 

One of the most straightforward multiple alignment methods is based on 

pairwise alignments. The method is due to Taylor. He compared results of this 

method to those of multidimensional extensions of the NWS algorithms as follows: 

"Reasonable multiple sequence alignment can be achieved by a 
simple method. The results are equivalent to those obtained using a 
complex algorithm that considers the sequences simultaneously during 
alignment." (Taylor, 1987b) 

Taylor built his multiple alignment using selected pairwise alignments. The 

selection process required only a few pairwise comparisons. The method 

considered addition of a new sequence to a multiple alignment of a few sequences 

by pairing either to the first or last sequence. Results of this approach depend 

on the order in which sequences are presented to the algorithm. This strategy 

seems most appropriate for cases where the sequences represent various 

intermediates between two extremes and are presented to the algorithm in an 

order that reflects this. 

The approach used by "Medal" adds one sequence at a time to a multiple 

alignment, each time adding the new sequence most closely related to any 

sequences in the alignment and aligning on this pair. This approach seems 

appropriate to more arbitrary relationships between sequences than Taylor's and 

includes Taylor's pattern of relationships as a special case. Moreover this 



approach makes the alignment essentially independent of the order in which 

sequences are presented to the algorithm. 

Consensus alignment 

Closely related techniques to "Medal's" are used in two other methods of 

multiple alignment (Barton & Sternberg, 1987; Higgins & Sharp, 1989). Both 

these methods perform all pairwise comparisons of the sequences to establish the 

order of alignment. This frees the algorithms from dependence on the order in 

which sequences are presented to them. For reasons of speed the programs use 

the Wilbur-Lipman pairwise approach to perform all comparisons. The Type I 

algorithm is then used in actual alignment. 

The program of Barton and Sternberg differs from "Medal" in aligning each 

new sequence to a consensus for the sequences aligned so far. This may give 

better results if the sequence being .added is more similar to the consensus than 

it is to any of the sequences in the alignment. This consensus strategy for forming 

multiple alignments is inappropriate where the sequences show differing degrees 

of pairwise similarity. In these cases the 'average sequence' is likely to be much 

less similar to a given sequence than the most similar one of a set. This situation 

frequently arises in practice. Sequences being aligned are often obtained from 

closely and from more distantly related organisms. 

Higgins and Sharp's "Clustal" program also uses consensuses. It 

progressively aligns initially separated subfamilies of sequences. It combines 

alignments by aligning pairs of consensus patterns. The problems of consensus 

sequence alignment are less in this case. Because of the order in which 

alignments are made, most patterns present only in subfamilies can be found 

before the subfamilies are combined. In particular, anomalous patterns present 

in just two of the sequences can be found. Anomalous shared patterns seen in 

examining alignment by hand were nearly always present within subfamily groups. 

Consequently "Medal" and "Clustal" should have very similar behaviour in most 

cases. In exceptional cases such as the multiple alignment at the start of this 

chapter, the link between the families is clearest from one pair of sequences. 

Only in such cases would "Medal's" approach be expected to give superior results. 



Equally there will be special cases where a clearer picture of similarity arises from 

"Clustal's" approach. 

Examining the different methods, we see that similar principles underlie 

several different approaches. "Medal's" method can be seen as combining specific 

elements of Taylor's and Barton and Sternberg's techniques to give similar 

advantages to the "Clustal" method of Higgins and Sharp. In fact the relationship 

of "Medal's" algorithm to "Clustal's" is closer than initially appears. In "Medal", 

introducing sequences one sequence at a time is an algorithmic convenience. The 

alignment "Medal" produces would be unchanged were it instead produced by 

combining subfamily alignments basing alignment of these alignments on the most 

similar pair of sequences in the two subfamilies. 

Use of the Type III method in "Medal" 

One motivation for developing "Medal" was to test the utility of the new 

Type III software in practice. To perform the comparisons for clustering rapidly, 

"Clustal" uses an approximate word based method. "Medal" is able to use the full 

Type III algorithm, and performs the calculations faster as a result of the 

optimisations to the implementation. The advantages of this in practice are slight. 

The reason for performing these comparisons at all is to distinguish subfamilies 

from each other. For this purpose, an approximate comparison method is as 

satisfactory as the more extensive method. 

In performing the pairwise alignments for the multiple alignment, "Medal's" 

Type III alignment has some advantages over the Type I alignment used in other 

programs. For closely related sequences the Type III 'best local homology 

algorithm' aligns whole sequences and there is little difference between using Type 

I and Type III alignment. For strongly and for less strongly related sequences, the 

Type I algorithm forces alignment from end to end. Improvements in the 

matching in unrelated regions may take precedence over the alignment of related 

regions. In particular, an unmodified Type I alignment incurs penalties for 

unmatched residues at ends of sequences and attempts to make the starts and 

ends of sequences correspond. This problem has been addressed by modification 

of the Type I algorithm to suppress penalties for the gaps at the ends of 



sequences (Devereux et aL, 1989b). This modification allows one sequence to 

terminate before the other without incurring a penalty. The local algorithm copes 

with this problem without any modification. For Type III alignment, unmatched 

residues at the ends of sequences lie outside the local region of alignment and 

incur no penalty. As well as the case where one sequence is a truncated version 

of the other, Type III alignment can also handle sequences that differ at their 

extremities, a case which the modified Type I algorithm does not handle well. 

Experience of multiple alignments made by hand indicates greater variability in 

terminal sequences, so the ability of Type III alignment to handle this case is 

important. 

Recursive local alignment 

A disadvantage in using the unmodified local method is that only one local 

matching region will be found even if there are several. Additional local matching 

regions are of interest to the biologist. Those regions compatible with regions 

already found could be used to make a more complete alignment of the two 

sequences. 

The additional regions of similarity can be found by reanalysing the parts 

of the sequence not included in the strongest local alignment. A recursive 

sequence alignment method was developed following this principle. It was used 

in "Medal" in place of the simpler Type III algorithm. The procedure finds the 

best local region between two sequences, aligns these parts of the sequences and 

then aligns the initial and terminal unaligned regions of the two sequences by 

calling itself recursively. The recursion stops when the alignment score for two 

sequence segments drops below a preset threshold chosen to correspond to 

insignificant alignment, the value 70 being found suitable in practice. The method 

is an advance on the Type I and Type III methods. It includes all the information 

yielded by the Type III method because the Type III aligned region is one part 

of the alignment formed by the recursive method. The method maintains the 

advantage of the Type I algorithm that separated regions of matching are found. 

A way to view the new pairwise method is that it handles two levels of 

matching. It handles good matching in the local regions it aligns and poor 



matching in the regions between. There is a natural biological rationale for doing 

this. Over regions in the core of the protein, or in active sites in enzymes, a high 

level of conservation of residues is expected. Changes in these locations will be 

strongly selected against. Changes in the core are likely to radically change the 

folding of the protein and changes in the active sites will change the activity. 

Loops on the protein surface, on the other hand, are in general less constrained 

and more likely to change. They are expected to be more tolerant of point 

mutations and of changes in length. Structural considerations lead one to expect 

a variation in variability along the length of a sequence. As discussed earlier in 

this chapter, examining variation in variability is one reason for constructing 

multiple alignments. The methods used in comparing sequences should take 

account of such variation. 

Comments on alignment methods 

Multiple sequence alignment algorithms are an active area of current 

research. As with pairwise comparison, nearly all multiple sequence alignment 

methods produce reasonable answers when the similarities are strong and poorer 

results with weaker similarities. Given the current state of development of 

automatic multiple sequence alignment software, a combination of automatic and 

manual methods is, and is likely to continue to be for the near future, the best 

method for aligning weakly related sequences. Experience from this can then help 

guide the design of new algorithms. For weakly related sequences, "Medal's" 

automatic method produces reasonable alignments. These are best regarded as 

starting alignments for refinement by hand. 

Use of the new computer tools 

The software for producing multiple alignments was used to examine 

around 50 sequence families. This work was predominantly with sequences 

grouped by the total database comparison program (Chapter 7) and included 

some of the most tenuous relationships. The main observation of importance was 

the already remarked on frequent presence of islands of good matching separated 

by regions of poor matching. It is this which lead to the recursive alignment 



strategy. In the sample alignment at the start of this chapter the island patterns 

'APKIF', 'KTHIL' and 'KGKJLFV' show strong matching. The regions between 

have a low level of similarity. Other observations concerned changes in sequence 

length and repeated subsequences. 

Insertions 

A frequent occurrence in sequence families is of inserted sequence in one 

or a few of the sequences. The top two sequence fragments shown in the 

alignment below are from different dihydrolipoamide dehydrogenases and the 

lower two from glutathione reductase and mercuric (III) reductase: 

RDHUU 	: TAP. . HIL ...... IATGGMP 
DHDL$YEAST : TVKEDHILDVKNIIVATGSEV 
RDPSHA 	: VVMFDRCL ...... VATGASP 
RDEBHA 	: VVAFDRCL ...... IATGASP 

Direct repeat 

In this example from the AIDS HTLV-III virus coat protein, the inserted 

sequence is an exact repeat of prior sequence. The coat protein has a number of 

known highly variable repeat regions of which this is one (Stavich et al., 1986). 

In isolate BH10 the exact repeat of 'FNSTW' corresponds to an exact repeat at 

the DNA level. 

BH10 : CNSTQLFNsTwFNSTWSTKGSNNTEGsD 
ARV2 : CNTTQLFNNTW 	RLNHTEGTK 
HAT3 : CNTTQLFNSTWN 	STEGSNNTGGND 

Interestingly in BH10, upstream of the repeat, the sequence 'NST' that occurs in 

the insert 'FNSTW' is found once again. The repeated 'VK' in the yeast sequence 

in the previous multiple alignment might conceivably be a remnant of a 

duplication of this kind. 

For the AIDS virus, a finer repeat which does not show at the amino acid 

level can be hypothesised. The threefold DNA repeat 'aactc aactc aactc' could 

have given rise to the sequence 'NSTQL'. The actual DNA sequence has the 

pattern 'aattc aacac aagtg' and the weaker repetition is not strong enough to 

support the hypothesis that finer scale repetitions are related to longer scale ones. 



Repeat in initial sequence 

In many examples of sequences that were compared by multiple alignment 

it was found that the proteins shared a region of strong similarity and showed 

most dissimilarity at their termini. Towards the ends of the proteins lower levels 

of amino acid matching were frequently accompanied by length changes. 

This example and the next example come from a family of nbonucleotide 

reductase small subunits. Two of these sequences were about 100 residues longer 

than other small subunit proteins considered. The alignment shown below is 

within the initial additional residues of the two sequences: 

**** 	• * 	•**. 
MUSSU : SKAARRIFQDSAELEsKA 
YSTSStJ : SKAAADALSDLEIKDSKS 

The sequence similarity shown here is far weaker than in the main part of the 

alignment. Moreover, the pattern shown occurs at different positions in the initial 

sequences. In MUSSU the pattern is 60 residues further from the start of the 

protein than it is in YSTSSU. This pattern is not found by the Type I pairwise 

alignment algorithm nor by unmodified Type III alignment. For both these 

algorithms the penalty for the large gap of 60 residues more than outweighs the 

potential to increase score. Nor, unfortunately, does the modified Type III 

algorithm find this region since the match scores below the preset threshold at 

which recursion stops. In fact, this region of similarity was found by eye, using the 

editor to move the sequences relative to each other to bring short patterns into 

alignment. 

For these two sequences there is some evidence that the initial sequence 

has biases in sequence not present in the main sequence. For example, elsewhere 

in the YSTSSU initial sequence, the tetrapeptidess 'SKDA' and 'ELET' occur. 

These show similarity to the sequences 'SKAA' and 'ELES' in the region of the 

MUSSU sequence shown here. These repetitions in the leader sequences may be 

due either to mutational processes causing repetitions in the DNA or to a 

selective pressure for specific short patterns. 



Pattern movement 

This example illustrates how alignments are selective in the patterns of 

similarity which they can show. The pattern in EBVSSU at position one would 

line up better against HSVSSU and VZVSSU in position two than does the 

pattern actually in that position. However, this would disrupt the strong matching 

between position one and two, and the position shown is better. Nevertheless the 

possibility of an alternative position is of interest. 

1 	 2 
C. NNY. 	 C. NNY. * * ***** ** * 	** 	* 

EBVSSU : CLANNYI SRDELLHTRAASLLYNSMTAKADRP 
HSVSSU : CQSNDLI SRDEAVHTTASCYIYNNYLGDHAKP 
VZVSSU 	: CQFNDLISRDEAIHTSASCCIYNNYVP. .EKP 

Possibly the two sites either side of the strongly conserved region of 

matching have similar functions. 

Concluding remarks 

Currently, for smaller sequence alignments, microcomputers seem to 

provide a better vehicle for multiple sequence editor software than mainframe 

computers. This is principally because microcomputers permit a more interactive 

user interface than mainframes do. 

Use of the "Medal" program shaped the design of its user interface. Use 

of "Medal" in the study of many alignments motivated the development of 

interface software to simplify formation of a new alignment. Use by other 

researchers motivated provision of on line help information integrated with the 

command menus. 

Experience in manual editing of alignments lead to the recursive local 

alignment method for pairwise alignment that aligns separated islands of good 

matching without forcing the entire sequences to align. 

Examination and manual adjustment of many alignments drew attention to 

small repetitions in proteins associated with higher variability. Such features of 

sequences pose problems which methods for alignment must tackle. Possibly 

recognition of repetition within the comparison algorithm will be important to 
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future automatic methods. Automatic recognition of correlations in sequence 

variability and repetition would also be of potential interest to biologists. 
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Chapter 7: Comprehensive Database 
Analysis 

Organisation of sequence data 

In the PIR database each protein sequence is annotated as belonging to 

a sequence superfamily, family and subfamily. These groupings perform an 

important function in organising the information. Organising the relationships 

between sequences is crucial to the understanding of biological sequence data. 

New methods for organising the sequence data are being developed. 

Multiple sequence alignments, as examined in the previous chapter, are central 

to the proposed methods: 

"Because of the importance of alignments to the study of protein 
sequences, the organisation of the Protein Sequence Database is being 
redesigned so that its fundamental structure will include alignments of 
related sequences. The current superfamily organization will be replaced by 
one based on alignments, i.e., each alignment will define a set of related 
sequences or subsequences." (Barker et aL, 1990) 

The new organisation of data will include information about shared 

patterns in the sequences. The 'Prosite' motif directory (Bairoch, 1989a) discussed 

in Chapter 4, represents one step in this direction. It relied on published 

knowledge about families and shared pattern in proteins. 

A complementary approach is comprehensive computer analysis of the 

databases to automatically organise the data. Comprehensive sensitive 

comparison may be able to uncover previously overlooked patterns of similarity. 

The task of comparing all pairs of proteins in a database is several thousand times 

more computationally demanding than the comparison of a single sequence 

against a database discussed in Chapter 4. 

93 



Comprehensive pairwise comparison 

To perform large numbers of sensitive protein sequence comparisons 

rapidly one group has implemented the Type III algorithm on an exceptionally 

powerful computer (Jones et al., 1990). The Connection Machine (Thinking 

Machine Corporation, Cambridge, MA. 02142-1214), a supercomputer with a cost 

of several million dollars, was used to perform comprehensive comparison of all 

pairs of proteins in a test database of 200 proteins. With this software Jones et 

al. have investigated the use of different parameters in searching. This work is 

continuing. They are also currently working on scaling the search up to perform 

50,000,000 sequence comparisons for a less restricted database. 

Methods and data used in comprehensive search 

The approach adopted in this work has in common with 	Jones et al. '5 

approach use of the Type III algorithm and the comparison of all sequence pairs 

in a database. Rather than using a supercomputer, the new rapid implementation 

of the Type III algorithm was used. This made it feasible to do the analysis on 

a microcomputer. The Dayhoff 100 PAM matrix was used for scoring. Choice 

of this value was based on experience of single searches using "Prosrch" at the 

Edinburgh Biocomputing Research Unit. Experience shows that a choice of 100 

PAMs and an indel penalty of 14, rather than the more usual 250 PAMs, gives 

better general performance (J.F. Collins, ICMB Edinburgh, personal 

communication). 

An indel penalty of 10 rather than 14 was used. Whilst this made the 

alignment process less rapid, it had two advantages. Firstly, it exploited a key 

aspect of the Type III algorithm, the ability to accommodate gaps, to the full. 

Secondly, use of a higher indel penalty can only decrease the score for an 

alignment. If required, significant results for some higher indel penalty could be 

determined by re-examining only high scoring results obtained at the low indel 

penalty. To change indel penalty in the other direction would require 

recomputation of all comparisons. 

In this work the 'PSeqip' 1987 compilation database containing versions of 
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the protein databases Swiss-prot, EMBL and translations of open reading frames 

from the DNA database Genbank was used (Claverie & Sauvaget, 1985). The 

PSeqip' database contained 8117 proteins, a total of 2,500,000 residues. At the 

time the decision to use the 'PSeqip' database was made, many open reading 

frames from DNA sequences were not being included in the other protein 

databases. 

Two factors make the database analysis that was performed less useful than 

would be desirable. Firstly, more up-to-date databases exist. Ideally, the analysis 

should be repeated with a more recent database. Using the older database, many 

of the unidentified genes which showed similarity to known genes may now have 

been identified. For an up-to-date database such similarities would have current 

relevance. 

A second reason to repeat the analysis concerns a problem caused by 

memory limitations. This affected .comparison of sequences longer than 1000 

residues. These longer protein sequences were mostly viral polyproteins. They 

were only compared with sequences that were shorter than 1000 residues in length 

and prior to them in the database order. The comparisons of proteins shorter 

than 1000 residues were, however, comprehensive. This problem, a result of 

memory restrictions in the comparison algorithm, was subsequently removed but 

the additional comparisons have not been made. 

Need for analysis methods 

The production of scores for similarity between pairs of proteins solves just 

one part of the analysis problem. For a comprehensive search to be of biological 

use, methods for analysis of the results must be developed. Whether previously 

unsuspected similarities are found or not, an analysis of the results is vital to 

casting light on the value and limitations of the Type III algorithm and on the 

comprehensive comparison approach. A database of 8000 proteins generates 

32,000,000 pairwise comparison scores. Methods were needed to winnow the 

comparison results to find unexpected sequence similarities likely to be of 

biological interest. 
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Coarse searching 

Before performing the comprehensive set of comparisons it was decided 

to make a coarse rapid pairwise comparisons of proteins in the database (see 

Chapter 5 for computing methods). This data was to act as a reference set of 

known similarities. 

The similarities found by this coarse method were of sufficiently marked 

strength that any reasonably sensitive method should find them. Examination of 

the collection of similarities confirmed that no previously unsuspected similarities 

were contained in it. Most of the strong similarities were between variants of 

proteins having the same function, for example, equivalent proteins from different 

organisms. Pairs of equivalent proteins exhibited extensive regions of high 

similarity, typically 70% amino acid identity or more. Other similarities found by 

the method were also already known. These included more local regions of high 

similarity in proteins which had virtually identical functional domains in common. 

This collection was now ready to act as a reference data set of known similarities. 

Similarities found by the more sensitive search could be automatically 

checked against this set to exclude known similarities from further consideration. 

It was hoped that this would bring previously unsuspected similarities to light. 

Actual use of coarse method 

Generation of the coarse similarities data provided a rapid and thorough 

test for the framework to support comprehensive comparison. The framework 

included software to cache data from disk and to allow suspension and resumption 

of the search. The former enhanced speed, the latter was essential for extended 

running. It was estimated that the sensitive search would take two months to 

complete its run running on a 16Mhz IBM PC. 

After the coarse search had been completed the new Type III algorithm 

was installed in its place. The reference collection of known similarities now acted 

as a convenient dataset for further development work on analysis methods. 

During the day, software for analysis of results was developed using the coarse 

dataset. During the night, the more sensitive sequence comparison algorithm was 

at work producing an improved dataset. 



In fact, the reference dataset was never used in the manner originally 

intended. The development of analysis software and methods lead to an 

alternative method that organised the search results. This promised to be 

superior in bringing to light previously unsuspected similarities than using the 

coarse dataset to filter out known results. A program was written to implement 

this data reorganisation. The results of the comprehensive comparison were 

available after nearly fifty days of calculation. 

Reduction of the similarity data 

Some of the data reduction problems presented by a comprehensive 

database comparison can be illustrated by reconsidering how a biologist looks at 

the results of a single database search with one protein query sequence. 

Visual inspection of an alignment in a list of results may show that it comes 

from a region of unusual composition. Biologists examining the list may choose 

to downgrade these similarities. They will pay less attention to similarities that are 

already known and well understood. They will mentally group results which are 

biologically related, matches of their query to sets of viral proteins or to receptor 

proteins. They will do this even where the matching proteins do not occur 

together in the database or in the results list. For routine searching this manual 

analysis is acceptable. The computer has selected a few tens of sequences that 

may repay closer examination from the database of thousands. With results of 

this kind for every sequence in the database, rather than for just one query, an 

alternative procedure is essential. 

In particular, automatic ways to group results and to present information 

about links between these groups are needed. Use of the strategy for single 

searches would lead to an overwhelming task of manual analysis. Consideration 

of two natural ways to filter out less informative results shows up some of the 

specific problems in data reduction. 
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Reduction by threshold 

One way to reduce the volume of results presented is to modify the single 

query method. First the results are sorted by score. Only the best of these 

results, those comparisons seoring above some selected threshold, are presented. 

When this method is applied to comprehensive comparison, larger families of 

related proteins dominate the output. These are similarities the biologist already 

knows about. Each family produces a number of high-scoring results proportional 

to the square of the family size. The haemoglobin family of around 430 proteins 

produces 80,000 high-scoring comparison results. None of these results come as 

any surprise. Unfortunately,a simple threshold must be set low enough to report 

them all, otherwise other biologically significant results will be lost. There is no 

question that the similarities within a known family exhibit evidence for 

biologically significant relationships. The problem is that the similarities are 

known already. Moreover any sequence showing similarity to a single member of 

a family is likely to show similarity to all members of the family. After the best 

of these similarities has been reported additional similarities to the other members 

of the family come as no surprise. The problem is the reporting of essentially the 

same results many times over. 

Reduction by 'best choice only' 

An alternative strategy to the threshold method reports only the best 

similarity for each protein. This produces substantially fewer results than the 

threshold method. With this method at most 430 results are reported for the 

haemoglobin-haemoglobin similarities, a 200 fold reduction. This approach gives 

a very drastic data reduction. Every myoglobin sequence is most closely related 

to other myoglobins. Every haemoglobin has its strongest similarity to another 

haemoglobin. The strategy would totally fail to show any link between 

myoglobins and haemoglobins, yet there is unquestionably a biologically significant 

sequence similarity between the two families. This similarity would have been 

detected in the search and would have been removed by the 'best choice' method 

of reduction. This method fails to find significant links between families. 



Reduction using the reference set 

As was originally intended, the reference dataset of similarities could have 

been used to define groups. Multiple similarities of sequences between these 

groups could then be reported once only. To a limited extent this would still 

result in multiple reports. These would arise when groups of sequences were 

similar by the criteria of the more sensitive search but were not similar enough to 

be grouped together on the basis of the crude search. 

Tree based reduction 

The reduction strategy developed for this work discarded a large number 

of links between proteins. It found a maximally scoring tree using the scores 

linking the proteins. Any link between two families that was kept was the best 

link between members of those two families. This follows from the tree being 

maximally scoring. Were a better scoring link between families available, 

replacement of the inferior link by the superior one would lead to a tree with a 

higher overall score. The tree property ensures data reduction. Any subset of n 

proteins have at most n-i links between them in the tree. 

The maximal scoring tree can be produced using a 'greedy' algorithm 

(Bollobas, 1979). Links are introduced one at a time between initially separate 

proteins. As links are added clusters aggregate. At each stage the highest scoring 

link which links two separate clusters is added. 

None of the difficulties previously mentioned is a problem with this data 

reduction. For a family of 430 globins, 429 links are kept. On the other hand if 

the non-haemoglobin sequence that is most closely related to a haemoglobin 

sequence is a myoglobin, then the method guarantees that this link between 

haemoglobin and myoglobin families will be kept in the maximal scoring tree. 

The method groups proteins together, but it does so simultaneously for 

each level of similarity. Because of this, information about groupings within each 

family is preserved as well as information about links between families. 

Although not sufficient on its own, use of a threshold was important in the 



tree based reduction method. Using a threshold permitted an economy to be 

made in tree formation. Links with scores too low to give reasonable evidence for 

relatedness were discarded. In a search of this size scores below 100 readily arise 

from chance matching. Links scoring less than 100 were not included in the tree 

building. 

Reducing the data by forming a maximal scoring tree is not a method 

suitable for forming phylogenetic trees that reflect evolutionary relationships. For 

such purposes methods of tree construction based on 'maximum parsimony' are 

popular. In this work we do not assert that the trees represent the historical 

process leading to the similarities. We require only a presentation of information 

about similarities in a condensed form. The maximal scoring tree does this. The 

maximum parsimony methods solve a different problem. Whilst the maximal 

scoring tree to link many thousands of proteins can be computed rapidly, rigorous 

maximum parsimony methods are by contrast impractical for more than ten 

proteins (Hem, 1989). 

Tree formation 

The construction method that was described for forming the maximal 

scoring tree required that individual links be introduced in order of score. A 

variation on the algorithm which forms the same tree introduces the links in any 

order. Each link that is introduced may complete a cycle of links. If so, the least 

scoring link in the cycle is removed. It can be shown that: 

• Maximally scoring tree 
• Sequential introduction of best link between clusters 
• Addition of links followed by cycle breaking 

all give the same tree. The third formulation is ideally suited to implementation 

on a machine with limited memory capacity such as the PC. This is the algorithm 

that was used. Sorting of the linking data prior to tree formation would have 

been problematic. The linking data, which had been written out to disk, took up 

20Mb of disk space; considerably more space than was available in main memory. 

One step in the variant algorithm was detection of cycles. Detection of the 
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cycles potentially involved a time consuming operation. It might have been 

necessary to search most of the tree to detect each new cycle. This was avoided 

by working with a rooted tree. All links in the tree were given a direction. A 

'rooted tree' has the property that following links sequentially always leads to the 

same root node. Initially the tree was set up with dummy links all pointing to one 

root node, each with a score of zero. 

By using rooted trees only some nodes of the tree needed to be searched 

when a new link was added to link two nodes. The nodes examined lay on the 

sequential paths from the added link towards the root. These paths converged at 

some node, possibly at the root. As soon as a node common to both paths was 

found, a cycle had been detected. The least scoring link in the cycle was then 

removed. Removal of the least scoring link could require reversal of direction of 

some of the links in one of the paths in order to ensure that the tree stayed 

rooted. These searching and path reversal operations took time proportional to 

the length of the paths, which was in approximately logarithmic relation to the 

tree size. 

The method presented here for coping with large sets of linking data and 

small available memory are minor adaptations of standard techniques in 

Computer Science. Whilst searching for relevant references for the techniques 

described here, the problem of tree formation from linking data held in external 

storage was found set as an exercise at the end of a chapter presenting tree 

algorithms (Mo, 1983). The hints with the exercise suggested addition of links 

followed by cycle breaking but not the method for detecting cycles. 

Examining results 

To examine the similarities represented by results held in the tree a 

program for 'browsing' the tree was written. This showed the alignment for any 

link and a dotplot for comparison of the two proteins connected by the link (see 

Appendix 1 for a discussion of dotplots). Choice of proteins was provided by 

direct selection or by movements up and down the tree hierarchy and between 

'siblings' under a particular parent node. At any time the tree below a currently 

selected node could be displayed graphically. 
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The display of the branching structure of larger trees, whilst pretty, was of 

little use. The most useful aspect of the program was the combination of 

alignment and dotplot. This helped in checking the validity of links within the 

trees. Repetition and additional regions of similarity not found in locating the 

single best region for the alignment showed up particularly clearly on the dotplots. 

The most useful method of all for examining the reduced trees was found 

to be printed output for small subtrees. This was non graphical. It consisted of 

lists of proteins within the subtrees, optionally with alignments. The threshold of 

100 split the main tree into subtrees. These subtrees contained a mixture of weak 

and strong evidence for relatedness. A score above 200 provides very strong 

evidence for a relationship between two proteins. A threshold of 200 was used 

to further fragment the trees. Subtrees at the 200 threshold, that is subtrees in 

which all links were above 200 in score, represented strong family groups. The 

links scoring between 100 and 200 also formed a collection of subtrees. These 

represented 'linking data', the links between families. In both sets most of these 

subtrees contained twenty or fewer sequences. For small trees such as these, 

listing the sequence names, the links and the scores gave a clear picture of the 

relationships. 

--Link-- Score Code name 
1117->1108: 213 BSUSPOIIGP1 
1108->1107: 275 BSURPOFP1 
6978->1428: 277 SRPOD$ECOLI 
5444->1107: 436 SHTPRSECOLI 
1107->1428: 443 BSURPODP1 
1429->1428: 2440 ECOHTPRRPI 
1428-> 0: ECOHTPRP1 

------Family 

Arranged as a tree: 

FuLL name (and species) 
Sporulation protein. (B.subtilis) 
37 KD minor sigma factor. (B.subtilis) 
DNA-directed RNA polymerase sigma chain. (E.coli) 
Heat shock regulatory protein. (E.coli) 
RNA polymerase sigma-43 factor. (B.subtilis) 
F33.4 heat shock regulatory protein. (E.coli) 
Heat shock regulatory protein. (E.coLi) 

74 of 813----------------------------------------- 

BSUSPOIIGP1 

BSURPOFP1 	SHTPR$ECOLI 

ECOHTPRRP1 	BSTJRPODP1 	SRPOD$ECOLI 

EC HTPRP1 
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Printed output was made of the families, the subdivisions and the linking 

data. A cross reference index was printed so that any protein in the lists could 

readily be found. The number of subtrees for the 200+ and 100-200 collections 

are shown below: 

Strong similarities: 	Score 200+ 

813 family groups I 	6221 proteins 

Weaker similarities: Score 100-200 

720 linking families I 	2145 proteins 

Note that some proteins occurred in both collections. 

The tree construction method did not use prior assumptions about what 

protein families were in the database. It used instead the evidence given by the 

scores. The method of subdivision kept this information. Scores within the 

subtrees and scores linking the subtrees were presented. The subdivisions were 

simply a convenient way of presenting the tree data. All of the links in the tree 

were shown. 

Larger protein families - problems. 

Larger subtrees, these being exclusively in the 200+ collection, were dealt 

with by increasing the threshold once again. Increasing the threshold split these 

subtrees into smaller trees and produced additional sets of linking data. 

One of the largest family groups contained 619 proteins. Nearly all of 

these were immunoglobulins. Raising the threshold to 400 split the family into 
cU,cr 

fifteen smaller families separating, for example, gamma andb  heavy chain 

immunoglobulins from lambda and kappa chain. This pulled out as a separate 

class the class II histocompatibility antigen t4s. These were linked with the 

immunoglobulin heavy chain constant region because a human precursor 

contained both parts. This large immunoglobulin family was relatively easy to 

resolve. 

The largest and most difficult class to separate contained 653 sequences. 
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These were viral polyproteins, their components and related proteins. The related 

proteins included cell division control proteins, hormone receptor proteins, RNA 

polymerases and proteases. The proteases of the viral genome cleave the 

polyprotein into its components. There were also repetitive fibrous proteins in 

this 653 sequence class; actins, keratins, collagens and myosins. This composite 

family required three threshold shifts to split it into sufficiently small or sufficiently 

homogeneous classes. 

Polyprotein problem 

The splitting of the largest high scoring family into manageable subfamilies 

illustrates a more general problem. This concerned the polyprotein and fusion 

proteins. Both polyproteins and fusion proteins are composite proteins, each 

component being a functional protein in its own right. Polyproteins are processed 

subsequent to synthesis to yield the separate protein components, whereas the 

components of fusion proteins stay joined. An example of a fusion protein was 

'dihydrofolate reductase - thymidilate synthase'. This acted as a link between the 

dihydrofolate reductase and thymidilate synthase families causing them to be 

grouped as one. The linking of the families does not reflect a similarity between 

the dihydrofolate reductase and thymidilate synthase families. In this case the 

families joined were small and it was easy to see the artificial nature of the join. 

The polyprotein problem had its most serious effects with the viral polyproteins. 

Since these contained up to six individual proteins, the linking of families together 

which they caused was not surprising. This was compounded by the fact that 

viruses have scavenged the actin sequence from a host. This added a particularly 

large family into the collection. 

Biased protein problem 

Spurious links between families can also arise from biased composition of 

the protein sequences. The cysteine/glycine rich proteins, human metallothionein-

IF and wheat agglutinin have a high pairwise similarity score which reflects their 

unusual composition rather than similarity in pattern. There are many indels in 

the alignment and little evidence for the cysteines in the different families having 
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similar spacing. Whilst there may be some deeper reason explaining their similar 

composition, such as the need for a highly disulphide bond cross-linked structure, 

there is less compelling evidence for relatedness than the scores for such 

similarities suggest. 

Spurious links 

The number of spurious links between families caused by these two 

problems was small enough that manual detection was acceptable. However, 

because of the method of data reduction, each such link between two families 

potentially obscures one genuine link between the two families. Thus, were there 

a weak similarity between some dihydrofolate reductase gene and some 

thymidilate synthase gene, it would not have been found by this method. 

One way round the problem of spurious links potentially obscuring other 

links would have been to remove the proteins causing the problem. New links 

might have been found by removing the biased proteins and the polyproteins, and 

forming the tree afresh using the existing similarity data. Better still would have 

been subdivision of the polyproteins into their separate components and 

subdivision of biased proteins into biased and unbiased sections followed by a 

repeated search with these component pieces. This was not done. There were 

sufficiently many similarities to follow up as it was. 

Known similarities 

In many families the names clearly indicated that the proteins grouped 

together were simply variants of the protein found in different organisms and that 

the similarity in sequence and function were known. 

Sometimes variations in the naming made this less obvious. One less 

obvious pair was pyruvate oxidase and acetolactate synthase which represent 

alternative views of the same chemical reaction. Another pair of sequences with 

strong similarity were N-acetyl neuraminate lyase (EC 4.2.1.52) and 

dihydrodipicolinate synthetase (EC 4.1.3.3). The EC numbers refer to a 

hierarchical enzyme classification scheme and indicate substantially different 

catalytic activities. The synthetase has pyruvate as a substrate, the lyase as a 
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reaction product. Since both must bind pyruvate, the similarity in structure is not 

particularly surprising. Although the similarity was not mentioned in the 'PSeqip' 

database annotations, it was later found to have been noted in the PIR database. 

Both proteins belong to the same protein superfamily. These kind of matches 

prevent a totally automatic elimination of known similarities based on the protein 

names alone. 

Many similarities between variously named hormone peptides and hormone 

containing proteins were also found, e.g. one family contained folitropin, 

luteinizing hormone, pituitary glycoprotein and gonadotropin. Also there were 

groups of plant toxins and animal toxins which show similarity but which have 

names that do not immediately indicate that the similarity is known. It is very 

likely that these similarities are known. They are in any case not particularly 

surprising. Such similarities were not taken further. 

Removing uninformative similarities 

Others proteins grouped together that were not of immediate interest 

represented similarities amongst proteins for which a function was not known. 

Proteins of unknown function were named variously as unidentified, hypothetical 

protein and open reading frame. A group of proteins of unidentified function and 

unusual name were the 'huey', 'duey' and 'louie' mystery proteins from 

D. melanogaster. These lined up against a yeast maltase. This find has been 

discovered independently and reported in the literature (Heinikoff, 1988). More 

recent databases, e.g. PIR 26, label these proteins as hypothetical maltases. 

Similarities mentioned in the annotations 

For each similarity that was not obvious by name and for which the 

similarity held up after examination of the alignment, the next step was to retrieve 

the annotation information describing the protein. This stage used the search 

facility within a text editor "Vecce" on a mainframe computer, emas, which held 

the annotation data file. For some proteins the unexpected similarity was 

mentioned in the annotation. For others, the fuller description explained cryptic 

alternative descriptions for the same protein. These 'finds' could then be 
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eliminated. As the annotations file contained several megabytes of data the 

searching process proved to be slow and cumbersome. 

To help with the task of finding similarities mentioned in the textual 

annotations the Unix utility 'grep' was used to search for the word 'like' and words 

starting with 'similar' and 'homolog' in the annotations. This generated a list of 

proteins whose names alone do not suggest that there is similarity between them, 

but for which similarity is known. This search was done on the PIR 23 database 

which was more up-to-date than the 'PSeqip' database. 

A faster method for checking in the annotation file entries was still needed. 

The description of the protein sequences' functions needed to be read, and, where 

pairs were not obviously related, the references to the literature followed up. The 

best software available for examining sequence annotation entries was the "Psq" 

program from the National Biomedical Research Foundation (George et aL, 1986) 

which ran on a VAX computer. Although this program worked only with the PIR 

databases the 'PSeqip' database could have been converted to this format. 

Unfortunately space problems on the VAX computer meant that it could not 

accommodate the database. Transfer of the 'Psq" program onto emas would have 

involved major rewriting to the program. "Psq" makes extensive use of lexical 

functions which are specific to VAX computers. 

Instead, an annotation file cross reference program "Xref' was written 

which had additional features to facilitate this kind of work. "Xref' had a front 

end very similar to a text editor. It had the ability to browse through but not to 

change a file containing results of searches. It recognised within any textual file 

protein sequence identifiers preceded by a'>'. At any position within the results 

file, a display of the appropriate sequence annotation entry could be selected. An 

index file was used to locate the annotations rapidly. The sequence annotation 

entries, where these were longer than a screenful, could also be browsed through 

and optionally appended to an output file for later printing. 

This program was designed to also be of use in conjunction with files of 

results produced by searches using "Prosrch". For this use a feature was added 

that permitted filtering of the display so that only a selected number of lines after 

each sequence identifier were displayed. The hundred or so "Prosrch" results 
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from a typical search could then be shown at several levels of detail ranging from 

names alone in order of score, to full display with names, score information and 

alignments. 

For routine use with "Prosrch", "Xref' made checking annotations simpler 

and more rapid than it would have been with "Psq". The checking could be done 

on screen from a display of the output file, with a minimum of keystrokes. For 

use with output from the comprehensive search, a program such as "Xref' was 

almost essential. Issues of software portability concerning "Xref'are discussed in 

Chapter 5. 

The paper chase 

Where the annotation did not reveal that the similarity was known, the next 

step was to consult literature, taking as a starting point the references cited in the 

annotations. 

This process proved less straightforward than expected. An extreme 

example of this concerned the bacterial 'host specificity of nodulation' protein 

'hsnC'. This protein is one of several essential for the symbiotic interaction of 

plants and nitrogen fixing bacteria. For a review, see Quispel (1988). HsnC 

showed similarity to glucose dehydrogenase. The annotations gave references to 

the papers in which each of these proteins was first presented (Horvath et al., 

1986; Jany, 1984). The paper presenting the hsnC sequence postdated the glucose 

dehydrogenase paper. It seemed that the similarity might not previously have 

been discovered: 

The sequences of the hsn gene products were compared to those 
of other proteins from the GenBank(USA) and from the EMBL data library 
(Heidelberg). The only homology of any significance was found between 
hsnA and the acyl carrier protein (AC?) of E. coli. "(Horvath et al., 1986) 

Further investigation of whether similarity had subsequently been noted 

involved listing papers citing each of the two papers using science citations indices 

for all years subsequent to publication. A paper noting the similarity would be 

likely to cite both of the primary references. 

The paper with the hsnC sequence also concerned three other genes from 



a region of the genome that is of intense research interest. Consequently large 

numbers of papers cited this paper though many did not refer to the gene hsnC. 

No paper cited both references. One of the papers (Surin & Downie, 1988) for 

hsnC also cited another research group. This group determined essentially the 

same sequence (Debelle & Sharma, 1986). Unlike the research group cited in the 

database entry, these researchers had noted the similarity of hsnC to ribitol 

dehydrogenase, an analogous enzyme to glucose dehydrogenase, at the time that 

they presented their sequence. They had interpreted the similarity in terms of 

interactions of the bacterium with the plant cell wall. 

Two observations were made from this specific example that raise issues 

a more automated process of literature searching would need to address. Firstly 

the protein hsnC was entered in the database as 'host specificity of modulation 

protein', a mistake corrected in later databases. Secondly there was a change of 

nomenclature subsequent to the discovery of the hsn genes. 'hsnC' was renamed 

to 'nodG'. This would make a text or keyword based search more problematic. 

(see also Appendix 1 for discussion of keyword searching). 

Concluding remarks 

Results scoring greater than 200 generally had alignments giving strong 

evidence for relatedness. The main exception involved protein whose composition 

was heavily biased. In such cases scores reflected bias in sequence rather than 

similarity in sequence pattern. All initially surprising results at this high level of 

similarity were at some stage found to be known already though similarities to 

unidentified proteins and between hormones and between some toxins were not 

followed up. The similarities scoring less than 200 are considered in the next 

chapter. 

The tree reduction method provided an effective way to reduce the volume 

of data to examine. The tools for browsing the results, particularly the sequence 

annotations browser "Xref', were essential to analysis of the computer searches' 

results. This software tool is also useful in examination of results from single 

database searches. Issues addressed in this chapter may also be of importance in 

searches of databases with newly determined sequences. One such is the 
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automatic grouping of related sequences. This was crucial in this work. Similar 

techniques could also be useful in presenting results from single searches. 
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Chapter 8: Twilight Zone Similarities 

Perhaps it is not surprising that the strongest similarities found by the 

database search were already known. This chapter concerns weaker similarities 

whose scores are at the boundary between signal and noise, the 'Twilight zone' for 

sequence comparison (Doolittle, 1990). Similarities discussed in this chapter score 

between 100 and 200. Except where clearly stated otherwise, the alignments 

presented in this chapter show similarities that seem not to have been previously 

noted. None of these new similarities are mentioned in the sequence annotations 

nor do the family designations as allocated by NBRF, where these sequences are 

present in the PIR 23 database, indicate a known relationship. Fully establishing 

that a similarity has not previously been noted is not really possible. Amongst 

papers concerning the proteins involved in the strong similarities a paper was 

always found which mentioned the similarity. This was rarely so for the weaker 

similarities. The similarities thus do seem to be not previously noted ones. 

Given the large number of weak similarities, there was felt to be little to 

be gained by following up the weak similarities which did not seem particularly 

surprising. For example, there was a weak similarity (score 103) between myo-

inositol-binding protein and D-galactose-binding protein. The similarity was 

weaker than would normally be considered as evidence for relatedness. There 

were only 12 identities in a stretch of 36 residues. Even if further comparison 

work could strengthen the confidence in the match, for example by finding 

additional regions of matching, the known activities of the two proteins are 

sufficiently similar that merely establishing a connection would add little to 

biological knowledge. 

Similarities in the weaker list, not unexpectedly, include additional 

examples of ATP binding domains, additional NADH binding domains and more 

examples of homeobox sequences - families that are clearly present at higher 

levels of similarity. It is not absolutely clear that every one of these weaker 

echoes has been previously noted. Examples of sequences containing such 
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patterns are sometimes collected by searching using derived patterns. Using 

derived patterns captures an 'average' pattern, whereas a new member of a family 

may be closest to an outlier in the known family - a case which tree reduction 

catches well. 

The weaker similarities had a lower proportion of groups where the 

similarity was obvious from the name than did the high scoring ones. Similarities 

that were not surprising and ones which seemed to arise from biased composition 

in the sequences were crossed off the computer output. This still left a large 

number of unexplained weak similarities. A disadvantage of a sensitive search is 

exposed here. It is not clear how much evidence for relatedness weaker 

similarities provide. This is where it would be helpful to have some method that 

measures how much evidence for a genuine relationship a particular score gives. 

In measuring significance it is important to take into account the large number of 

comparisons made in comparing all pairs of sequences in the database. 

Scores to significances 

A direct interpretation of the Dayhoff scores as logarithms of odds gives 

a rough guide to likelihoods of chance matching. A pair of words with Dayhoff 

score 45- has odds 32000:1 of being signal rather than noise since 10 x Log (32000) 

= 45. The factor of 10 arises because of the scaling of the score table (Chapter 

3). This figure relates to a single comparison of two fixed length words. 

Odds have to be 10000:1 or better in favour of a match being signal rather 

than noise for a 'find' made in 10000 comparisons of fixed length words to begin 

to be significant. This level of odds would be appropriate for regarding a find 

made in two sequences of length 100 amino acids as significant since roughly 

10000 word comparisons would be made. 

The number of comparisons made between word pairs when a sequence 

is compared to a database is approximately the product of the database and 

sequence lengths. If comparing words from a query sequence of length 490. 

against a database of size 3,000JJOO then 490 x 3,000,000 word comparisons are 

made. A word match with a score of: 

10 x Log ( 490 x 3,000,000) = 92 

112 



is then as likely to be from a sequence related at the selected evolutionary 

distance as it is to be fortuitous. 92 is the 'break even' score for a single database 

search. For scores above the 'break even' score, each additional ten points in 

score increases the odds of the match being signal by ten fold. That is, there is 

a multiplier of ten for odds for each extra ten points in score. Thus the break 

even score and this 'significance multiplier' are parameters which can be used to 

estimate significance of a word match with a given score. 

Use of the Log of the product of sequence and database lengths to adjust 

for the number of comparisons made has also been suggested by other researchers 

(Smith et al., 1985). Moreover they provide references which suggest this 

adjustment is valid in comparisons where word size is variable, which is a closer 

approximation to the case of comparison by alignment than is comparison using 

fixed word size. 

"Prosrch" uses observed score frequencies to assess significance. In the 

"Prosrch" program, actual frequencies for some of the higher scoring noise level 

alignments are collected. These are observed to fall on a negative exponential 

distribution. Fitting a line to this gives a 'break even' score and a multiplier for 

the unlikelihood for each additional ten points in score. This gives an empirical 

model for measuring significance. Unlike the theoretical Log odds model, this 

approach takes into account indels and sequence inhomogeneities. 

When a high indel penalty, a penalty of 20 or more, is used with "Prosrch", 

the parameters which measure significance approach those from the more 

theoretical model. Since a high indel penalty suppresses indels, this is to be 

expected. Break even scores and multipliers calculated by "Prosrch" are lower 

than predicted by the theoretical model, scores being typically 8.8 points lower 

with an average 8.2 fold increase in significance, rather than tenfold, for each 

additional ten points. 

The lower estimate for 'break even' point can be explained as follows. The 

'break even' score calculated by "Prosrch" is the score at which the expected 

number of random matches is one, rather than the score at which a match is as 

likely to be noise as to be signal. The more theoretical Log odds model thus gives 

a slightly more conservative assessment of the break even score. 
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When a lower indel penalty is used with "Prosrch" the significance 

multiplier decreases. With an indel of 10 the multiplier is around 5.9. The lower 

factors for lower indels must reflect the increased possibility for random matching 

arising from increased ease of insertion and deletion. 

At low indel penalties the odds method and "Prosrch" give very similar 

estimates of the break even score. Given this background, it seems reasonable to 

use the direct interpretation of Dayhoff scores to estimate a break even score for 

the comparison of every sequence against every other sequence. 

For databases of the size of the 'PSeqip' database, a single search with a 

protein of an average length (300 residues) involves 7.5 x 10 8 comparisons and the 

break even score is 89. A total database search requires 3.12 x 1012  comparisons 

which corresponds to a break even score of 125. 

Break even score for comparison of one sequence against all 89 sequences in the 'PSeqip' database 

Break even score for comparison of all sequences in the 'PSeqip' 125 database against each other 

Figure 8.1: Break even scores for different numbers of comparisons. At 
this score a match is as likely to be signal as noise. 

Repetitive sequence problem: Protein-A 

Caution is needed in interpreting weaker similarities. It is particularly 

important when considering barely significant scores to recognise that the score 

alone tells only part of the story. The problem of biased sequence has already 

been mentioned. A related problem was exhibited by two proteins which 

contained repeated subsequences. One protein was the major surface antigen (S-

antigen) of malaria, Plasmodium falczparum. The other was Protein-A from the 

bacterium Staphylococcus aureus. The score for the match, at 198, was just below 

the 200 threshold. Such a score would normally imply an alignment showing 

strong evidence for a similarity. Repeated octopeptides in each protein were 

aligned by the program. A low score for the match of one octomer pair was 
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multiplied by the repetition in both sequences to give a high score that reflected 

primarily the fact that both proteins contained repeated domains. That is, the 

high score related to repetition which could have been present in the proteins for 

quite different functional reasons. 

In the S-antigen, the octomer 'AEARKSDE' was repeated twenty times in 

succession. Protein-A had the octomer 'EDNNKPGK' repeated eleven times. 

The similarity score for these two octomers is 7, giving a score of 77 for matching 

of these repeated octomers. Nine of the S-antigen octomers were thus not aligned 

with the protein-A octomer repeat. Protein-A also contained a 60 residue 

sequence repeated four times. The 60-mer contained the 16-mer shown aligning 

with two of the S-antigen octomers in the alignment below. 

STASPAPI 	- Protein-A (S. aureus) 
SSANT$PLAFN - S-antigen protein precursor (P. falciparum) 

STASPAPI 	: AEAKKLNDAQAPKADN 
SSANT$PLAFN 	AEALKSDEAEALKSDE 

This matching segment has a score of 54. In the alignment found by the 

comprehensive search, two such 16-mers were aligned against four of the 5-

antigen octomers contributing 108 to the score. 

This example was presented at a talk on sequence analysis to illustrate how 

comparison algorithms can give artificially inflated scores when repetition is 

present. In the discussion afterwards, R. Hayward (ICMB Edinburgh) suggested 

a biological rationale for the similarity. He pointed out that protein-A is part of 

the bacteria's defence system (Hammond et al., 1984). It binds to the F c  part of 

immunoglobulins. 'Fe ' is the constant domain recognised by phagocytic cells. In 

S. aureus, binding of the Fc  component prevents the phagocytes from recognising 

the bacteria as foreign. In P. falciparum the surface antigen could turn out to be 

a 'molecular mop' that soaks up the immunoglobulins. If the mechanism of 

binding is the same as in S. aureus, then, rather than being the prime target of the 

immune response, the 'antigen' is sequestering components of the immune 

response. If the usual interpretation of the protein as a major antigen is incorrect, 

the mistake is understandable. The radiolabeling antibody tests, which are the 

data suggesting "major surface antigen", show only that there is a strong 
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association between antibody and the protein. 

Further examination of the sequence pair revealed an additional small 

region of similarity - a pentapeptide 'RNGFI' in the S-antigen and 'RNGFL' in 

protein-A. There is a 1 in 6 chance of two random sequences of these proteins' 

lengths sharing such a pentapeptide. This gives some additional evidence for a 

genuine relationship. 

Many variants of the S-antigen are known. These show considerable 

variation in the repeated sequence. One hypothesis is that repetition in the 

sequence saturates the immune system to suppress immune responses (referred 

to in Howard, 1986). A more complex hypothesis than the new 'molecular mop' 

hypothesis may emerge in time. One factor that casts serious doubt on the new 

hypothesis is that association of antibody and S-antigen is specific to sera raised 

against the S-antigen (Howard, 1986). Binding of the F component would be 

expected to be non sera specific. Nevertheless this similarity is intriguing as its 

score is high and it links proteins both believed to be involved with immune 

response evasion. 

Weak local constraints: Patterned bias 

Unlike very strong matching, scores in the range 100-200 are not 

necessarily suggestive of some similarity in function for the whole sequence. Short 

shared pattern or longer patterns that are weakly conserved need not reflect a 

structure that is involved in specific interactions with other compounds. Weak 

similarity might simply reflect structural aspects of the proteins rather than active 

sites. 

For example, proline is a residue that leads to reduced flexibility of the 

protein chain since it prevents free rotation about a carbon-nitrogen bond. 

Glycine, because its small size reduces steric hindrance, gives great flexibility to 

the chain. One might observe higher incidences of glycine and proline occurring 

together than chance alone would suggest. Alignments of pairs of glycine and 

proline rich proteins would then be less significant than their similarity scores 

suggested since the model for random matching takes no account of the influence 

of residues on residue frequencies at nearby sites. High scoring alignments of 
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sequences rich in proline and glycine would not necessarily reflect similarities 

giving clues to function of the proteins. Similarity in sequence pattern in 

sequences of biased composition could simply reflect local constraints on residues 

close in the linear sequence that become more evident when bias in composition 

is present. 

Bias and repetition in protein sequence are intimately linked. Any short 

sequence repeated many times over gives rise to a protein with an atypical 

compositional bias. Conversely, strong sequence bias greatly increases the 

likelihood of repeated patterns. Dipeptide repeats are far more frequent in 

regions where only three residues are used rather than twenty. The mutational 

properties of DNA are also important where repetition and bias are considered. 

Once a repeat occurs at the DNA level, it can readily become amplified to a 

larger numbers of repeats. For this reason, an alignment for sequences with 

similar repeating patterns may have a score that would normally suggest common 

origin, when in fact the sequences have arisen independently. 

Sequences with biased composition which additionally show repetitive local 

patterns lead to some of the highest scoring similarities scoring in the range 100-

200. DO-rich, QQA-rich and EEKK-rich sequences are three examples where 

high matching scores between seemingly unrelated proteins are found. It is quite 

possible to envisage these sequences arising independently of each other. 

Viral repetitive proteins 

One high scoring twilight zone similarity (score 184) was found between the 

repetitive glycine and proline rich proteins, collagen (alpha chain, rat), and a 

protein from a human virus (herpes simplex virus, type I, 34K1)A (c) protein). 

Collagen's repetition gives it its fibrous structure. Repetition in viral coat protein 

may, as hypothesised for the malaria protein, be part of a virus's defence against 

the immune system. Mimicking common host proteins would be an additional 

defence for the virus because host mechanisms which prevent self destruction 

should also be to the virus's advantage. However, repetition would in itself be a 

sufficient explanation for the similarity. 

Although the muscle protein tropomyosin contains repetitive regions too, 
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repetition is not the explanation for its score, 130, in matching against a protein 

associated with the viral coat: 

SXAD9T - Hexon associated protein (IX) (Tupaia adenovirus) 
TMCHS2 - Troponyosin, smooth muscle (Chicken) 

SXAD9T: TDAATEPSTRQGLNLLRSVTELNESIDELQOJCJIT-ELEKRLKIMEEKI EEIKLALAN 
TMCHS2: TDKLKEAETRAEFAE-RSVTKLEKSIDDLEEKVAHAKEENLN-MHOJILDQTLLELNN 

The region of tropomyosin in this match shows little sign of repetition. 

More likely this match reflects a viral scavenging of a host sequence, as was seen 

with the actin sequence in the previous chapter. In this case subsequent 

modifications have been more extensive. 

Local similarity and local structure 

The flexibility of the protein chain at glycine and proline residues was used 

to illustrate the possibility that local folding constraints, rather than functional 

similarity, could explain weaker sequence similarities. Can local regions of similar 

sequence and folding be found in proteins with otherwise very dissimilar sequence 

and structure? Kabsch and Sander (1984) performed a survey of known 3 

dimensional structures to see whether short range interactions between residues 

necessarily lead to the same local structures in folded proteins. Their purpose was 

to examine intrinsic limitations in protein structure prediction from local sequence 

patterns alone. They found examples of identical pentamers in different proteins 

that did not adopt the same structure. One can be almost certain that these local 

structures, being radically different, do not have similar function in the folded 

protein. One possibility would be that the identical pentamers have a role in 

intermediate stages of the protein folding. With pentamers, chance alone can 

explain the occurrence of identical sequences in functionally distinct proteins. No 

functional explanation for the similarity need be found. 

Two identical decamers in distinct proteins are unlikely to occur by chance. 

If two identical decamers did not adopt similar structure in two different folded 

proteins some explanation would be required for the identical sequence occurring. 

One possibility would be that the segments adopt similar structure at an 

intermediate stage of folding. 
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Amongst the many similarities found, one find which is just significant for 

a single search (score 103) but not for an entire comparison occurs between a 

bacterial phosphofructokinase and a simian myoglobin: 

KIBSFF - 6-phosphofructokinase (BacilLus stearothermophilus) 
NYMQN - Myoglobin (Night monkey) 

KIBSFF: KTEEGEKKGIEQLKXHGIQGLWIGG 
MYNQN: KSED-EMKASEELKKJIGV'rVLTALGG 

Unusually, since fewer than 2% of proteins have had their structure determined, 

both sequences are of known structure (for the myoglobin a very close sequence 

analogue exists). Like Kabsch and Sander's examples this similarity contains an 

exact matching pentamer pair but it also has additional flanking similarity. In 

myoglobin the region lies between the D4 and E16 helices. Examination of the 

crystal structure using the program "0" (Jones et al., 1990) on an Evans and 

Sutherland EV/PSX shows that the similar regions in sequence are different in 

structure. Both involve some helix and some random coil but the selected 

segments of the structures do not superimpose. This region is a possible 

candidate for a similarity reflecting structural intermediates in folding. The 

sequence similarity shown here is weak and though stronger than the pentamer 

matches, could be a chance match. The structural comparison does, however, 

show that low scoring similarity is not enough to establish that proteins or even 

segments have similar structure. With low alignment scores one requires 

additional evidence for sequence relatedness. 

Multiple matching: An AMP binding pattern? 

The alignment score is not the only factor in assessing significance. 

Repetition and bias tend to reduce confidence that an alignment is as significant 

as its score suggests. Other factors can increase confidence. 

If segments from two proteins match with a third protein by chance these 

matches are most likely to occur in different regions of the third protein. One 

factor that might increase confidence in an alignment is finding the same region 

being matched by several different proteins. The ATP binding motif gives rise to 

matches of this kind. Any other short motif pattern that is found in otherwise 
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dissimilar proteins would also give rise to multiple matches to one region of a 

protein. In the following example two proteins match a third in the same region. 

Both the pairwise similarity scores for matching to adenylate cyclase are below the 

break even score of 125. For the tail assembly protein the score is 101, for trans 

zeatin the score is 107. 

SVATAISLAMBDA - Tail assembly protein i. (Bacteriophage Lambda.) 
SCYAASECOLI - Adenylate cyclase. (E. coli) 
TIPTZSPI 	- Trans zeatin. (Agrobacterium tumefaciens) 

The best region of matching in a more extensive match is shown here: 

*+ ++**+*+ +* ++ 
SVATAI$LAMBDA: YGDLQRFGRRIDLRVK 
SCYAASECOLI : YRNLIRFARRNNLSVS 
TIPTZSP1 	: YRCAIRFARKHDLAIS 

The line above the alignment emphasises the additional evidence for relatedness. 

Locations where all three sequences agree are shown by '*', locations where two 

out of three agree by 

Finding local similarities of borderline significance that overlap is not all 

that surprising under the hypothesis of unrelated proteins. The database search 

produced 720 linking families of, on average, 3 proteins each. There were many 

opportunities for such an overlap to occur by chance. Finding overlapping low 

scoring matches is not in itself of great significance. 

The situation is different if such multiple matching is accompanied by 

knowledge that the proteins interact with similar molecules. In that case the 

hypothesis that the region is involved with the specific interactions is of biological 

interest. Although we measure significance numerically, we are actually more 

interested in similarities that lead to new biological understanding. 

Adenylate cyclase catalyses the conversion of Al? to cyclic adenosine 

monophosphate (cAMP) (Aiba et al., 1984). Trans zeatin catalyses the addition 

of isoprenols to adenosine monophosphate (AMP) (Akyoshi et al., 1985). The tail 

assembly protein i (Sanger et al., 1982) takes part in the initiator complex for 

lambda tail formation. A possible role for AMP in this initiation process does not 

appear to have been investigated. 

Cyclic AMP has diverse roles. It is a second messenger for hormone 
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action, is involved in glucagon metabolism and can stimulate active transport of 

ions. Thus, like ATP, AMP is a candidate for having a binding motif in a range 

of different proteins. The similarity in combination with the biochemical 

information lead to the hypothesis that the region shown binds AMP. 

How should one proceed in this case? The known biochemistry suggests 

that the similarity is of interest, but the similarity scores are too weak to do more 

than suggest the hypothesis. If the weak pattern binds AMP, corroborating this 

by further sequence analysis and characterising the pattern better is likely to be 

considerably harder than characterising the strong Al? binding pattern. 

A first and simple step would be to use each of the three protein 

sequences in turn to search the protein database and collect weaker matches to 

this region. These weaker matches might identify proteins with known 

interactions with AMP. To make further progress, a survey of current literature 

on cAJvIP and on the cytokinins, the AMP derivatives partially synthesised by trans 

zeatin, would be important. Also literature on the biochemistry of the sequences 

involved in weaker matches would need to be examined. This combined 

background would give information on the likelihood of the weaker matches 

having previously unsuspected interactions with AMP. For example, weak 

similarity to adenylate cyclase in the given region is shown by the toxin ricin, score 

82, and by agglutinin, a plant lectin, score 90 (S.J. McQuay, ICMB Edinburgh, 

unpublished results). If for biochemical reasons interactions with AMP could be 

important for these proteins too then the similarities would tend to confirm the 

AMP binding hypothesis. This possible approach shows the importance of 

biochemical knowledge in sequence analysis work. 

A tantalising additional piece of information that could be important in 

such a study comes from a review of cAMP dependent protein kinases (Taylor et 

al., 1990). In these protein kinases a regulatory subunit inhibits the enzyme's 

phosphorylase activity by occupying the active site, thus preventing access by other 

substrates. Binding of cAMP to the kinase leads to dissociation and activation in 

a manner yet to be elucidated in detail. Of particular interest then is observation 

of the sequence 'RFDRR' in the R-II alpha regulatory subunit of bovine cAMP 

dependent protein kinase for this pentapeptide occurs at the specific site in the 
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regulatory subunit that inhibits kinase activity and is identical in four of the five 

residues to that of the lambda protein in the putative AMP binding pattern. 

Conserved cysteines: Two plasma proteins 

In the example in this section, examination of the alignment increases 

confidence in the match. Here seven cysteines in a segment of thirty-two residues 

are conserved. Because cysteine can form disulphide bonds, structure could 

largely be conserved even though residues in the longest sections between the 

cysteines differ. This similarity has a score of 109, but the kind of matching 

increases confidence in its validity. 

MUSPC1BPI 	- Ptasma-ceU membrane protein. (Mouse) 
P1SGHU2V 	- Vitronectin precursor, serum spreading factor. (Human) 

MUSCPCIBP1 	: SCKGRCFERTFSN. . CRCDAACVSLGNCCLDF 
P1 SGHU2V 	: $CKGRCTEGFNVDKJ(CQCDELCSYYQSCCTDY 

The fact that both proteins are also plasma proteins increases confidence too. 

Other cysteine rich domains in proteins are known. 'Kringle domains' are 

cysteine rich triple-looped disulphide cross-linked domain found in serine 

proteases and plasma proteins. Epidermal growth factor (EGF) domains are also 

cross linked and cysteine-rich. In examples of these domains, the pattern of 

cysteine residues is conserved. 

The region of vitronectin shown here has been identified as a 

'somatomedin-B' domain (Jenne & Stanley, 1987). Somatomedin-B is a growth 

hormone dependent serum factor (Fryklund & Sievertson, 1978). For the plasma 

cell protein the region's similarity to somatomedin-B does not appear to have 

been identified. Instead to relate the protein to other proteins, Van-Driel and 

Golding (1987) drew analogies between the plasma-cell protein, which is 

selectively expressed on the surface of antibody secreting cells, EGF receptor and 

transferin receptor, also membrane proteins. These analogies were based on 

cysteine content and on hypothesised orientation and position at the cell 

membrane surface. Van-Driel and Golding singled the thirty residue sequence 

from the plasma cell protein out as being of special interest for it is cysteine rich, 

occurs as an imperfect tandem repeat and is thought to take up a position 
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immediately external to the cell membrane. 

The vitronectin sequence similarity showed regions of good matching 

separated by a region of poor matching, though the conservation of cysteine 

residues was a more striking feature. Even where cysteine residues are not 

involved, clumping of good matches into short regions increases confidence in a 

low scoring alignment. Since proteins are folded structures, similarities in 

structure may not be reflected by similar sequences in unbroken contiguous 

stretches. The Type III algorithm is designed only to detect unbroken contiguous 

local similarity. Type III alignment only finds broken similarity where regions 

flanking a region of poor matching each more than compensate for the poor score 

of the intervening region. Scores returned by the algorithm reflect the similarity 

over the whole region matched. Two good regions each scoring 90, separated by 

a region scoring -70 would lead to a combined score of 110. If a region scoring 

-100 separated the two good regions, the protein similarity would score just 90, one 

or other of the matching regions being presented in a local alignment. In both 

cases the score to the biologist is closer to 170. Automatic methods to link islands 

of good matching together which incur only a small penalty for intervening regions 

of poor matching are needed. The automatic linking of islands of good matching 

was seen to be important in alignments in Chapter 6. It also seems to be 

important in scoring weaker matches. An example where clumping of similarity 

in two islands increases confidence in the alignment will be given shortly. 

Similarities across taxonomic boundaries. 

Of particular interest in this study were similarities between very different 

organisms. Similarities between two proteins in different mammals are more 

likely to be known to researchers for other reasons than similarities between 

proteins in insects and mammals or similarities between proteins in animals and 

plants. 

Similarities between plant and animal are particularly likely to be of a 

fundamental nature, given the long time since they shared a common ancestor. 

The fundamental molecular machinery for nucleic acid and protein polymerisation 

are similar in plants and animals. It is no surprise then to find strong sequence 
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similarities between ribosomal proteins of plants and animals. Other sequence 

similarities that cross taxonomic boundaries may also reflect fundamental 

biochemical processes. 

Two pathogenesis related proteins 

A similarity which links plants and animals is shown below. Though this 

similarity scores only 103, it is present in two regions each with a high density of 

matching and this increases confidence in its validity. 

DNMS53 - Cellular tumour antigen p53. (Mouse) 
VCT014 - Pathogenesis-related leaf protein p14. (Tomato) 

DNMS53: PVQLWVSATPPAGSRVRAMAIHKKSQHMTGWRR-CPHHERCSDG 
VCTOI 4: AVQLWVSERPSYNYATNQCVGGKJ(CRHYTQVVRLGCGR-ARCNNG 

Moreover, the two proteins' functions suggest that this sequence similarity 

may be the basis of a functional similarity. The leaf pathogenesis related (PR) 

protein is expressed at elevated level in a pathophysiological non pathogen 

specific response (Lucas et al. 1985). The mouse tumour protein is expressed at 

elevated levels in cells transformed by a variety of mutagens, X-rays, chemicals 

and viruses (Zhakut-Houri et al. 1983). The mouse tumour protein may have a 

role in preventing cancerous transformation since mutant forms of the protein 

predispose cells to transformation and elevated levels of functional, forms can act 

to suppress it (Finlay et al., 1989). 

The expression of specific proteins at elevated levels when cells are 

subjected to abnormal physiological stress has a precedent in the heat shock 

proteins. These were first observed expressed in response to increased 

temperature, but other stressors can also induce them (Lindquist & Craig, 1988). 

Remarkable conservation of sequence in heat shock proteins has been found 

across the plant and animal kingdom, the best example found by the 

comprehensive protein comparisons being between D. melanogaster and soy bean, 

Glycine max. 

Some heat shock proteins are 'sigma factors'. Sigma factors regulate the 

expression of genes. They are interchangeable components of RNA polymerase, 

the protein complex responsible for making copies of portions of DNA to be 
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translated into protein. The sigma factors determine at which specific DNA 

patterns the protein complex which transcribes DNA initiates its replication. 

Different sigma factors have different DNA recognition patterns. At elevated 

temperatures there is a change in expression of sigma factors and a global shift 

in the expression of genes. The leaf pathogenesis protein, however, shows no 

similarity to known sigma factors and is known not to be expressed in response 

to heat shocks  The proteins might, however, have important interactions with 

the conserved heat shock system, for the p53 antigen has been found to bind to 

the heat shock protein hsc70 (Young & Elliot 1989). 

Shortly before this thesis was completed, a repeat search was made using 

"Prosrch" with the tomato PR protein on a more up-to-date database, PIR 26. 

This uncovered additional evidence that a protein of importance to plants and 

animals is involved. 

831085: Antigen 5-3 precursor fragment. (Bald-faced hornet) 

B31085: IGCGSVKYIENNWHTHYLVCNYGPAGNYNDQPIY 
VC1014: LGCGRARC-NNGWW--FISCNYDPVGNWIGQRPY 

The match shown here (score 96) is to the right of the match with the cellular 

tumour antigen and overlaps by ten residues. 

The similarity of PR proteins to the cellular antigen appears not to have 

been noted (Kauffmann et aL, 1990). The similarity to the venom antigen has 

been noted, but the biological significance was, and still is, unclear (Fang et al., 

1988; King et al., 1990). Possibly the similarity to the mammalian tumour antigen 

may shed more light on this surprising similarity. 

Protein formation and folding 

A polymerase, in this case the ribosomal polymerase, figures in an 

interesting similarity between organisms separated by a wide taxonomic divide. 

This example is a similarity between prokaryotes and eukaiyotes. The alignment 

has score 122. A multiple sequence alignment for this similarity was given at the 

start of Chapter 6. 
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ISMS - Protein disutphide isomerase. (Rat) 
R3EC2 	- Ribosomat protein S2. (E. coti) 

ISRTSS: IFGGEIKTHILLFLPKSVSDYDGKLSNFKKAAEGFKGKILFI 
R3EC2 : IFGARNKVHI IN-LEKTVPMFtIEALAELIIKIASRKGKILFV 

Protein disulphide isomerase is believed to be responsible for ensuring that 

proteins in the lumen of the endoplasmic reticulum fold correctly and form the correct 

set of disulphide bonds (Freedman, 1989). This similarity suggests the hypothesis 

that the ribosomal protein has some previously unsuspected function in protein 

folding. 

Arginosuccinate and two viral proteins 

Two viral protein matches are intriguing in that they independently show 

similarity to proteins involved with arginosuccinate. Each similarity in itself is strong 

enough to be evidence for a genuine relationship. The first has score 147: 

SASSYSHUMAN - Arginosuccinate synthase. (Hunan) 
SC0A2$JCP0V - Coat protein VP2 JC. (Potyomavirus) 

SASSYSHUMAN: WVDI EEITR NTVREIGYVHSDMGFDANSCAVLSAI GKQSPDINQGVD 
SCOA2$JCPOV: WVS-EAI -RTRPAQVGFCQPHNDFEASRAGPFAA-PKVPADITQGVD 

The second a score of 130. Only the best parts of this second alignment are shown 

here. 

P1CYCHD 	- DeLta crystattin (Arginosuccinate Lyase famiLy3. (Chicken) 
RE03S1CP1 	- Sigma 1 protein prepetide. (Reo virus) 

P1CYCHD 	: LEKILSGLEKISE . .(120 residues omitted).. RITVLPLGSGALAGNPLEI 
RE03S1CP1 : LESRVSALEKTSQ . .(120 residues omitted).. RISTLERTAVTSAGAPLSI 
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Phospoenolpyruvate regulated sugar transport 

The final similarity in this chapter is between a bacterial phosphocamer 

protein and a protein called patatin. It has a score of 125. 

WPSAHP - Phosphocarrier protein HPR (S. aureus) 
POTPHO - Patatin (Potato) 

WPSAHP: ATMLVQTASKFDSIDQGGYDSMQLKSLGVGKDEEI-TIYSAD 
POTPHO: ATKLAQVDPKFASIKSLNYKQMLLLSLGTGTNSEFDKTYTAE 

Patatin is the dominant protein of potato tubers. It has a lipid-acyl hydrolase 

activity. It is differentially expressed in different parts of the potato plant, 

expression being sucrose regulated and greatest in the potato tuber (Wenzler et 

aL, 1989; Jefferson et al., 1990). The bacterial phosphocarrier protein is part of 

the phosphoenolpyruvate sugar phosphotransferase (PTS) system involved in 

regulation of carbohydrate uptake (Reizer et al. 1988). The PTS system is basic 

to a wide class of bacterial cells (Saier et aL 1985). Elements of the system could 

predate the divergence of plant and bacterial lines. Horizontal transfer of genetic 

information, that is transfer of genes via for example plasmid DNA in bacteria, 

is also a possibility that cannot be ruled out. In this context, since transposons can 

mediate genetic rearrangements, it is intriguing to note that the only transposon 

like sequence so far discovered in potato is immediately prior to an inactivated 

patatin gene (Kostertopfer et al., 1990). 

Concluding remarks 

This chapter shows factors which can increase and decrease confidence in 

the significance of an alignment. Similarity scores are only one factor in the 

assessment of significance. Ultimately biological interpretation is crucial. Even 

the strongest of similarity is merely a curiosity if no biological interpretation can 

be found, whilst a weak similarity is of value if it leads to a hypothesis that can be 

experimentally validated. Biological interpretation plays the most important role 

in assessment of whether sequence similarities are worth pursuing further. 

Computer analysis on its own is not enough. 

Each of the alignments presented in this chapter is of potential interest to 
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biologists. It -  is intended that the similarities involving the bacterial phosphocarrier 

protein, the tomato pathogenesis related leaf protein and the mouse plasma cell 

membrane protein will be communicated to researchers who work on these 

proteins. If these researchers find this information helpful and of interest then 

this will increase interest in the other similarities presented which are likely to be 

harder to evaluate. 
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Chapter 9: NWS Variants 

Coding regions and frameshifts 

Protein database searching programs are frequently used by researchers 

who have recently determined a DNA sequence. This DNA could code for a 

protein. They wish to find whether the protein potentially coded for by the DNA 

is homologous to a known protein. 

Before the computer search can begin, the DNA sequence must be 

translated into protein sequence. There are three frames in which a single strand 

of DNA can be translated. These correspond to different starting positions for 

the grouping of adjacent triplets of nucleotides into codons. If the complementary 

strand is taken into account there are six possible frames. Usually only one frame 

codes for a protein in a protein coding region. Translation of codons in this frame 

gives a protein sequence to test against the database. A translation of all six 

frames can help in determining which frame is most likely to be the coding frame. 

An example is shown below. This example is only a fragment of a six frame 

translation that covers all 674 nucleotides of a DNA sequence from 

D. melanogaster. 

(Linear) NAP of: Mal.Dne check: 6903 from: 1 to: 674 

November 12, 1990 09:19 

ttgcattggagccagcgctgtaagtatggctccctgctggcgggcacaatcggaggcacc 
30 +---------+---------+---------+---------+---------+---------89 

aacgtaacctcggtcgcgacattcataccgagggacgaccgcccgtgttagcctccgtgg 

a 	CIGASAVSMAPCWRAQSEAP 
b 	 A L E P A L * V W L P A G G H N R R H R 
C 	 LHWSQRCKYGSLLAGTIGGT 

30 +---------+---------+---------+---------+---------+---------89 
d 	A N S G A S Y T H S G A P P C L R L C R 
e 	 CQLWRQLYPERSApVIPPVP 
f 	QMPALATLIAGQQRACDSAG 

Figure 9.1: Six frame translation of a DNA sequence made using the 
GCG 'MAP' program (Devereux et al. 1984). 

In this six frame translation, the DNA sequence and its complement are 

shown first. Translations of forward frames, a to c, and complementary frame 
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translations, d to f, which should be read from right to left, are shown below. 

Of the sixty four possible triplets of bases, three triplets do not code for an 

amino acid. These three 'stop codons' indicate to the ribosome the end of a 

protein coding region. Where a codon codes for a 'stop codon', a star is shown 

in the translation. Likely protein coding regions are the longer stretches free 

from these stars. These are called open reading frames. 

Confidence that a particular open reading frame codes for a protein is 

increased if the frame uses certain codons in preference to others. Transfer 

RNAs (tRNAs) are the molecules which carry amino acids to the ribosome and 

which directly interact with the codons in RNA that is being translated. In every 

organism some tRNAs for a particular amino acid are more abundant than others. 

The corresponding codons are used preferentially. This 'codon preference' is the 

basis for some methods for detecting likely coding regions (Gribskov et al. 1984). 

The methods rely on knowing which codons are preferred in the organism, since 

codon preferences differ in different organisms. The method works well for highly 

expressed proteins for which the pressure to use the preferred codons is high. For 

proteins expressed at a lower level, codon preference is a less reliable indicator. 

In the absence of a clear choice of open reading frame, the researcher may wish 

to search a protein database with three or possibly six translations of the DNA. 

Problems arising from frameshift errors 

Problems in searching arise when there are frameshift errors in the DNA 

data. An extra or missing base will lead to triplets downstream of the error being 

out of frame, incorrectly translated and an abrupt end to any detected region of 

similarity between the translation and a sequence in the database. More 

importantly, such frameshift errors are also a cause for failure to identify real 

open reading frames. The shift can make a stop codon from another frame 

appear to terminate a coding region, so making the coding region appear shorter 

and hence less significant than it really is. Frameshift errors also interfere with 

detection of codon preference. The methods to find codon preference consider 

codon usage averaged over a number of codons. With a frameshift, the codons 

considered will include codons which are not in fact part of the coding region. 
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"Fradho" 

Molecular biologists frequently require database searches with protein 

sequences deduced from DNA data. Protein purification and sequencing is a far 

more complex and labour intensive process than is DNA sequencing. In fact, the 

overwhelming majority of protein sequences now being determined are sequences 

deduced from DNA. A method of protein database searching that could 

accommodate frameshift errors in the DNA is highly desirable. It could extend 

a matching region that has ended abruptly due to a frameshift error in the DNA 

data. The extended match would have a higher score that took into account the 

additional similarity. By improving the ability to detect signal, the sensitivity of the 

searching should be improved. 

A second reason for accommodating frameshifts is that ribosomal DNA 

translation can occasionally involve frameshifts (Atkins etal., 1990). Frameshifting 

in translation may be more widespread than currently thought, given that 

algorithms for sequence comparison are not designed to detect such shifts. The 

presence of sequencing errors in the data is the more compelling of the two 

arguments for comparison that can accommodate frameshifts. 

A program, "Fradho", was written to search protein databases using a DNA 

query sequence and allowing for frameshifts. The program extends the normal 

Type III algorithm by treating information in a hierarchical fashion. DNA bases 

are the lowest level of the hierarchy. These are grouped in triplets to form the 

level above in the hierarchy. The program scores similarity at the protein level 

of the hierarchy whilst not losing the ability to deal with errors at a lower level in 

the hierarchy. "Fradho" uses multiple path matrices to do this. 

The "Fradho" program performs three Type III comparisons 

simultaneously. Each comparison is for a different reading frame of a nucleic acid 

sequence. These three protein sequence comparisons use the sensitive Dayhoff 

amino acid scoring scheme. The three comparisons are interdependent. A 

missing or extra base corresponds to switching frame and a score in a cell of one 

path matrix influencing the score in a cell of another. Each such switch between 

frames incurs a penalty, much as a gap in an alignment incurs a penalty. The 

decision to postulate a change of frames is objective in the same sense that 
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postulation of insertions or deletions in a normal Type III alignment is objective. 

Switching between frames occurs in such a way as to maximise the overall level 

of matching as measured by the score. 

"Fradho" can operate in single sequence pair comparison mode or can 

compare a DNA sequence against an entire protein database. A match found by 

"Fradho" could be shown using a three frame translation of the DNA by placing 

dashes after each amino acid involved in matching as in figure 9.2. Frameshifts 

then show up clearly where the dashes move from one line to another. Potential 

sequencing errors can then easily be identified. 

30 +---------+---------+---------+---------+---------+---------89 
ttgcattggagccagcgctgtaagtatggctccctgctggcgggcacaatcggaggcacc 

?? 
a 	C I G--A--S--A--V--S--M A P C W R A Q S--E--A--P-- 
b 	A L E P A L * V W L P A G G H N R R H R 
c 	L H W S 	R C KY G--S--L--L--A--G--T--I G G T 

30 +---------+---------+---------+---------+---------+---------89 

Figure 9.2: Three frame translation showing possible locations of 
frameshifts. 

A more condensed form of output, as used by "Fradho", is shown below. 

This shows the sequence aligned to, as well as the predicted sites of frameshifts: 

:>P1;DEECIP 
:IMP dehydrogenase (EC 1.1.1.205) - Escherichia coLi 
Score 127 at 38 173 

- **_****+ *.*** 	•* * AAAA*AA ** .* * 
38 GASAVSatGSLLAGTaSEAPGEYFFSDGVRLKJCYRGMGSLEAMERGDAKR 182 

173 GASAVN-VGSMLAGT-EESPGEIELYQGRSYKSYRGMGSLGAMSKGSSDR 221 

Figure 9.3: Mixed alignment containing DNA and protein sequence as 
produced by "Fradho". The upper sequence is the query sequence, mostly 
translated, but with occasional bases shown in lower case at frame shift 
positions. The lower sequence is the IMP dehydrogenase sequence found in the 
database. Numbers for the upper and lower sequence refer to base pair and 
amino acid positions respectively. 

This mixed alignment shows amino acid residues in capitals and bases in lower 

case. Wherever there is a frameshift the alignment switches temporarily into 

DNA mode. The '-' and '+' above the line indicate missing or extra bases. '*' s  

and '.'s indicate identity and conservative substitution as in normal protein 

sequence alignments. Since a search of a database may produce many alignments, 
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it is convenient to present only the condensed form. To relate this mixed 

alignment to the complete DNA sequence requires a three frame translation. 

"Fradho" produces one at the start of each list of results. 

Test with new sequence 

The alignment shown in figure 9.3 was from the first test of "Fradho" using 

a newly determined sequence. I am grateful to R. Slee (ICMB Edinburgh, 

personal communication) for this sequence data at an early stage of sequencing 

and prior to publication. The alignment predicted an omitted base and an 

additional base in the DNA sequence. Both of these were sequencing errors 

located in a part of the gel which was particularly difficult to read. By 

compensating for these the program was able to demonstrate a convincing 

relationship between the DNA query sequence and the protein IMP 

dehydrogenase from the PIR 23 database. 

Test with DNA sequence from databases 

Individual DNA sequences from DNA databases were also compared 

against the protein database using the new algorithm. Examples were chosen 

which were thought to be likely candidates for frameshifts, sequences from 

transposable elements, a sequence which is translated in two overlapping reading 

frames and a locally repetitive sequence, a mating hormone from yeast, were 

tested. None of these searches found strong matches to proteins other than those 

that were already known to be homologous. "Fradho's" alignments suggested 

frameshifts in regions of poor matching. As measured by the score, these 

alternative alignments were only marginally preferable to those for unframeshifted 

sequence. With a higher penalty for frameshifting no frameshifting was predicted 

in these regions. However, for the purpose of this test it was correct to use a low 

frameshift penalty so that even weak evidence for a frameshift would be shown. 
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Test with longer sequence of known homology 

To further the development through criticism of the program, a beta test 

version was sent to D. Rouch (School of Biological Sciences, Birmingham 

University, U.K.), a molecular biologist with strong interest in computational 

methods of sequence analysis. He demonstrated the value of the program at an 

early stage in sequencing where a homologous protein is already known. This use 

was not initially considered by this author. At the time the program was seen 

primarily as a new method for sensitive database searching. A particular test case 

used by Rouch was a six kilobase DNA sequence, Tn917, coding for a protein 

essential to the integration of transposable elements. This sequence, determined 

in the laboratory of D.B. Clewell (Michigan University, U.S.A.) was tested for 

frameshifts against the known homolog Tn413. "Fradho" found five potential 

frameshift errors. Four of these were seen to be sequencing errors when the gels 

were reexamined. Each of the actual errors was within four base pairs of the site 

of the error predicted by "Fradho". The fifth error predicted by "Fradho" 

indicated that the C terminal region of the protein extended beyond the point 

where it had previously been thought to end. Further sequencing confirmed this 

result and lead to publication of a sequence correction (An & Clewell, 1991). 

There is of course a danger in using this comparison method for data 

correction. The normal process of DNA sequence checking involves re-

sequencing the DNA and its complement several times. This results in a 

reduction of all types of sequencing errors, both in regions of homology and 

outside such regions. If a criterion of consistency with already collected data were 

used as a substitute, the quality of sequence data being collected would be 

decreased. Sequence would only be reliable where homology existed to 

independently sequenced data. The tool therefore has serious limitations as a 

method for sequence correction. 
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Test with simulated shifts 

As well as the practical tests of "Fradho", experiments have been 

performed with simulated erroneous sequences to compare the performance of 

"Fradho" to protein-protein comparison programs. In these experiments the test 

of the GCG program "Wordsearch" was performed by Rouch using the Daresbuiy 

SEQNET facility. His tests compared "Fradho" to a wider range of programs than 

here (manuscript in preparation). The test method used a human haemoglobin 

sequence which had a varying number of artificial frameshifts introduced into it. 

Haemoglobin is a particularly suitable example for this kind of test as there are 

over 400 homologues exhibiting a gradation in similarity from close to more 

distant relationship. 

The performance could be measured by counting globin sequences 

recovered before the first reported non-globin sequence. However, this measure 

is sensitive to the score of the highest scoring outlier from the noise distribution. 

Also we are interested in all globin similarities that have been separated from 

noise similarities sufficiently to be reported. A measure which better reflects 

detection of similarity in practice is the number of sequences recovered before 

noise starts to dominate signal. The statistic for this located the position in the 

sorted list of results at which half the sequences were non-globins. The number 

of globin sequences recovered before this halfway point was the measure of 

performance used. 

Determination of the 'half way' point used the fraction of globins in groups 

of ten consecutive sequences. In practice groups larger than ten gave virtually 

identical results. When using the protein-protein comparison programs the best 

result for the three searches using the three different frames was recorded. In all 

cases the protein database used was PIR 23. 

The graph in figure 9.4 plots sequence recovery against number of 

frameshifts. The three lines shown are for "Fradho", "Prowl" - the implementation 

of the Type III algorithm without frameshifts, and "Wordsearch" the GCG 

package's word based method. They show that with no frameshifts "Prowl" does 

fractionally better than "Fradho". Noise levels are higher in "Fradho". This is a 

result of the increase in score of noise alignments through (a) allowing frameshifts 
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and (b) increased numbers of comparisons from comparing three frames rather 

than one frame. This is more than compensated for by improved signal recovery 

for frameshifted sequence. The subsequent level response of Fradho with 

increasing number of frameshifts shows that recovery of sequences is virtually 

unaffected by frameshifts. Frameshifts only significantly affect recovery at a very 

high density with frameshifts occurring every twenty bases. This behaviour is 

clearly superior to "Prowl". "Prowl" shows a continued decrease in sequences 

recovered, a result of progressive shortening of regions of homology. 
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Figure 9.4: Graph showing globin sequence recovery for varying numbers 
of frameslufis with three different searching programs. 

"Wordsearch" shows markedly lower recovery than either of the two Type 

III algorithms. It has a section of nearly level response but with relatively few 

sequences being found. Here it seems that the stringent requirement for exact 

matching words has eliminated all but the most strongly related sequences. Since 

these have many words in common with the query sequence, it takes a 

considerable level of disruption to remove these matches too. A more precise 

explanation of the level behaviour of this program looks in more detail at how 

*101 



"Wordsearch" works. "Wordsearch" is able to accumulate scores from several 

regions. With regularly spaced frameshifts, protein translations in just one frame 

show regular islands of homology. As the number of frameshifts increase, the 

islands become smaller but the number of islands increases. The average level of 

sequence similarity measured over the whole sequence stays roughly the same. 

The results once again show an important weakness in the local homology 

algorithm. The fact that its scoring is based on a single best region means that it 

does not score for additional similarity from widely separated regions. The local 

algorithm is unnecessarily restrictive in basing its score on the result for the single 

best island alone. A suggested method to overcome this weakness of the local 

algorithm is discussed later in this chapter. Although the "Fradho" program is also 

a local algorithm, for the haemoglobin example, the local regions of similarity it 

finds happen to extend over the whole sequence. For this reason "Fradho" does 

not suffer from this 'isolated islands', effect in this example. 

Types of frameshift error 

So far no details of the manner in which the "Fradho" program scores 

insertions and deletions have been given. The program distinguishes four kinds 

of frameshift. A frameshjft occurs when one or two bases from the DNA line up 

against an amino acid or against a gap in the amino acid sequence. The table 

below shows the four possible types of frameshifting step: 

DNA Protein Description in terms of error in DNA 

ag K Missing base 

a K Two missing bases 

a - Extra base 

ag - Two extra bases 

Figure 9.5: Table showing examples of four possible frames/zift steps 

The simplest scoring scheme has the same penalty for each of these. 

However, on the assumption that errors are much more likely in the DNA 
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sequence than in the protein, a progressive penalty with the penalties for two 

missing or two added bases greater than for one missing or one added base in the 

DNA is more appropriate. The progressive scoring scheme was used for the 

examples presented here. 

One might also wish to consider scoring schemes which treated errors in 

protein and DNA on an equal footing, that is a two base omission scoring the 

same as a one base insertion and a two base insertion scoring the same as a one 

base omission. The algorithm is 'robust' with respect to the frameshift 

parameters. That is, changes to the parameters have only slight effects on the 

recovery of related sequences. For a typical alignment the number of predicted 

frameshifts is small, four or five frameshifts per hundred residues. Changes to 

frameshift penalties have a very small percentage effect on the score. The choice 

of scoring matrix has a far greater influence on the overall score than does the 

choice of frameshift penalty. The essential new property of the algorithm is that 

it can accommodate the DNA errors at all. By doing this it can combine matching 

regions that would otherwise not be seen as originating from the same open 

reading frame, so improving the ability to detect signal. 

The scoring for base insertions and omissions takes no account of the kind 

of bases inserted or omitted. Two bases aligning against an amino acid always 

incur the same penalty irrespective of the bases and amino acid involved. 'aa' 

scores the same against 'V' as it does against 'K' even though none of the four 

codons for 'V' involves two Vs, whereas both codons for 'K' do. In view of the 

comments on alternative frameshift scoring, very little gain can be expected from 

taking account of such differences. 

Use of DNA database 

Would it be better to search DNA sequence against a DNA database to 

detect frameshift errors? Reasons for preferring a comparison at the amino acid 

level concern discriminating power. As was shown in Chapter 3, scoring protein 

similarity in protein coding regions gives better discrimination of signal from noise 

than scoring the DNA. Moreover the DNA database contains a large proportion 

of DNA that does not code for protein. By restricting the search to sequences 
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known to encode protein, chance matching from non coding sequence is 

eliminated. Naturally for non-coding similarities a search using DNA against the 

DNA database is required. 

Practical Issues: Portability 

Prior to "Fradho" all programs developed on the PC had been written in 

Turbo Pascal. A criticism was made that this restricted use of the programs to the 

PC. Turbo Pascal has various extensions to Pascal which are not supported in 

versions of Pascal running on other machines. The most important of these is the 

ability to define 'units'; modules of code which fulfil specific classes of functions. 

For example, most of the programs written for this thesis share a module for 

reading sequence data which automatically works out which of four standard 

formats is being used. 

Whilst it would have been simpler to write "Fradho" using previously 

written Turbo Pascal units, the decision was taken to write "Fradho" in C. Early 

incarnations of the code ran on both PC and on a network of Sun workstations. 

However, the superior development environment of the PC lead to most of the 

development and debugging being done on the PC. Development of both versions 

in tandem involved regularly transferring programs between machines and writing 

conditionally compiled code to cope with different operating systems and memory 

constraints. This slowed development and testing. Little use was made of the Sun 

workstation version and it was decided to develop only the PC version further. 

Practical Issues: Long running times 

A major problem with "Fradho" was the long running times for searching. 

Sequences of a thousand bases required that the program run for twelve hours. 

This was a consequence of the greater complexity of the cell operations as 

compared to the normal Type III algorithm and the use of C rather than 

assembler. 

A display of the current top ten finds was added to the program so that the 

slow progress of the search could be easily monitored. In addition a monitor of 

the current position in the database was shown. This addition, the loading of 
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parameters from an external file and the ability to suppress display of alignments 

are present only in the PC version of the code. 

"Fradho" does not use assembly level programming in its central routine. 

In the Turbo Pascal programs the assembly code was incorporated as hexadecimal 

numbers written directly into the program using the 'inline' directive. The 

assembler available for this work and the Turbo Pascal compiler were 

incompatible. -Fortunately the optimised routines were small and so use of inline 

hexadecimal code was acceptable. No facility was available to add code 'inline' 

in the C programs. No attempt was made to rewrite the searching subroutine for 

"Fradho" in assembler. 

In retrospect it was a mistake to attempt to write portable code from the 

start. The eventual need for assembler level code should have been apparent 

from the beginning. In any case, much of the code not actually in the main 

subroutine involves interactions with the machine's operating system and is 

machine dependent. Development of a Pascal version using the existing units 

would have tested the concepts far more rapidly and would have made it easy to 

use assembly level software in the main routine. Writing portable code meant 

designing for the lowest common denominator of the machines. The Sun code 

was encumbered by techniques to overcome memory restrictions on the PC and 

the PC code initially made limited use of the screen. A more productive 

approach would have been to develop code for the PC first and then subsequently 

a version for the Sun using the experience gained. 

Variations in noise 

A second kind of extension to the Type III algorithm was inspired by the 

recursive version of the algorithm used in "Medal". This extension was to tackle 

the problem of 'mixed noise'. The problem with a purely local homology 

algorithm is that it finds a single island of similarity. There may in fact be several 

such islands, and the combination of them gives far more evidence for the 

relationship. The variations in sequence between two proteins can be thought of 

as 'noise', the type of noise changing over the length of the proteins. In the core 

of the protein the noise would be expected to be low as changes in the core can 
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seriously disrupt protein folding. In loop regions not involved with specific 

interactions the noise would be higher. The regions between the islands are 

regions of poor matching, that is regions of high noise. 

It should be stressed that this new algorithm is a paper algorithm and has 

not been tested in practice. One reason for this is that the recursive algorithm in 

"Medal" already overcomes many of the problems of mixed noise and was used 

successfully to tackle the problem. A second reason is that the use of 

simultaneously run path matrices, an important algorithmic aspect of the new 

method, has already been demonstrated. The new algorithm would run two path 

matrices simultaneously. "Fradho" shows that the dynamic programming paradigm 

can be used successfully to switch between three simultaneously run path matrices 

to maximise an overall score. The new and untested method is described for 

several reasons. Firstly description of the method elaborates on a particular 

problem of the existing local methods. Secondly it shows a potentially more 

elegant solution to a problem than the one adopted in this work for "Medal". 

Thirdly the method is more suitable for parallelisation than the recursive method. 

Fourthly it demonstrates the scope still remaining within the dynamic 

programming paradigm for extension and enhancement to the basic algorithms. 

Greedy and global optimisation 

The recursive local alignment algorithm developed for "Medal" employs a 

'greedy' optimisation algorithm. At each stage the algorithm picks the best 

remaining local similarity compatible with previous choices. Each choice may well 

exclude other choices. 'Greedy' algorithms generally find good but not optimal 

results. The greedy method does not guarantee to find the best combination of 

local similarities though it should generally find a good combination. A second 

defect in the recursive alignment algorithm is that it takes no account whatsoever 

of the quality of matching in regions between those which it has aligned. 

141 



Mixed noise Type III algorithm 

A new algorithm for 'mixed noise type' could solve both these problems. 

The new algorithm finds regions that are globally optimal. The algorithm gives 

the highest scoring combination of high scoring islands, rather than picking the 

best island of matching available at each stage. It distinguishes between two kinds 

of noise and makes an automatic choice of scoring tables for different parts of the 

alignment. A natural choice would be between use of a 100 PAM table with a 

high indel penalty and 250 PAM table with low indel penalty for regions of higher 

noise. 

The mixed noise algorithm calculates two path matrices simultaneously. 

The path matrices can be thought of as stacked one above the other. Additional 

path steps are possible between corresponding positions in the two path matrices. 

Traversing such steps incurs a penalty and corresponds to a change in noise type. 

The penalty is needed to limit switching between layers, just as an indel penalty 

limits the postulation of indels. The algorithm switches layers only if the net effect 

is to increase the score. Switching between the layers should incur a fairly heavy 

penalty. With no penalty for layer switching the path would simply use the least 

indel penalty and greatest score for diagonal steps of the two levels. 

An additional minor benefit of this new method is that the path found 

through the pair of matrices not only yields an alignment but also indicates 

automatically which parts of the alignment are good and which parts of the 

alignment are poor. 

One extra parameter is needed in addition to the layer switch penalty. The 

high noise regions of the alignment contain less information about sequence 

relationship per residue. It is appropriate to scale down the scores on the high 

PAM table by some factor. In low noise regions, matches would markedly 

increase the score and mismatches markedly decrease the score. In high noise 

regions neither matching nor mismatching would have much influence on the 

score. This scaling should cause the algorithm to use the low noise parameters 

to score regions which match well. The value for this scaling parameter would 

need to be determined by experiment. An extreme would be to score zero for all 

changes in the high noise part of the comparison. The recursive local alignment 
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algorithm in "Medal" does something similar in not penalising or rewarding 

matches or gaps in regions between the matching islands of homology. 

Comparison to recursive method 

From experience of alignments performed by hand it is expected that in 

practice the mixed noise algorithm will not prove markedly superior to the 

recursive local similarity algorithm. Whilst it should do better on the poorly 

matching regions, it should at least make some attempt to align them, alignments 

of such regions are unlikely to be informative. In most cases the choice of islands 

of good matches made is not expected to be different from those made by the 

greedy strategy. Differences are, however, likely in the case of two proteins 

containing repeats of similar sequences. For such pairs, greedily choosing the best 

matching example of the repeated unit from each protein could preclude matching 

of some of the other examples. This would happen if the first example of a 

repeat in one protein matched best with the last example in another. In such 

cases the 'globally best' rather than 'greedily best' gives a better representation of 

the similarities. The suggested new algorithm is thus likely to be markedly better 

only for a relatively rare subset of comparisons. 

Probably the most important advantage of the mixed noise algorithm is its 

greater suitability for parallelisation on a SIMD computer such as the DAP. The 

mixed noise algorithm requires a single sweep through the two path matrices. For 

the recursive algorithm multiple passes are required, which would make inefficient 

use of DAP hardware. Finding a dynamic programming analogue to the recursive 

algorithm gives an approach suitable for SIMD parallelisation. 
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Addendum: The "Blast" Algorithm 

A recently published paper presents a new serial algorithm "Blast" that, 

though word based, overcomes the principle defects of the classical word based 

approaches (Altschul et al., 1990). 

The method allows inexact matching in its first stage of searching. It 

rapidly finds pairs of words of a fixed length W, one word from each sequence, 

that when scored using a Dayhoff table, score above a threshold T. The program 

then goes on to check in the neighbourhood of these words for further matching 

using the initial match as a seed. These further matches and mismatches are 

scored using the Dayhoff table. The method gives a rapid way to find high scoring 

word pairs of any length provided they contain a stretch of length W scoring 

greater than the threshold T. This searching strategy is linked to a semiempiric 

analysis of the likelihood of a good match with a particular score being missed, ie. 

the likelihood of a good match not containing a seed match scoring more than T. 

The "Blast" strategy is also a flexible one. The authors have tried several 

variants in the neighbourhood searching once the seed has been located and they 

intend to adapt "Blast" to compare DNA against protein spotting frame shifts in 

the process. They say: 

"This permits the detection of distant protein homologies even in the 
face of common DNA sequencing errors (replacements and frame shifts)". 
(Altschul et al. 1990) 

One adaptation of "Blast" searched for pairs of proteins with similarity to 

a query, on the principle that a three way alignment might reveal a pattern not 

obvious from a pairwise alignment (Altschul & Lipman, 1990). This was made 

possible by the high speed of their algorithm. 

The savings that the basic "Blast" algorithm gives over examining every 

entry in the match matrix are impressive. "Blast" with its default wordsize of 4 

and threshold of 14 need examine on average only 1 in 3200 positions. The fast 

Type III algorithm by contrast examines every single position. 
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"Blast's" method for finding word-pairs 

The key feature of "Blast" is its method for finding word pairs scoring 

above the threshold. Prior to searching, the "Blast" method produces an expanded 

list consisting of all words that score T or greater against some word in the query. 

With default parameters W=4 and T=14 there are on average 50 words 

generated for each residue of the query. Rapid techniques are available and are 

used to identify exact matches of words from a database to words in the list. 

Using an expanded list is a way to convert the inexact matching problem to one 

of exact matching, as was achieved in a different fashion with alphabet reduction. 

The default parameters give less sensitive matching than one might expect. 

With default parameters there is no guarantee of finding all matches of three 

residues in a run of four. This would require a minimum of 72 words in the 

expanded list per query sequence residue. In contrast, detection of exact 

dipeptide matches would guarantee to find all runs with three out of four matches. 

In this sense the "Blast" seeds are less sensitive than is exact dipeptide matching. 

Increases in sensitivity can be obtained by reducing T or by increasing W; 

herein lies a major problem with "Blast", a problem which is noted by the authors. 

The list of words increases in size exponentially with decrease in threshold or 

increase in word size. Reducing T also leads to an exponential increase in 

running time as a higher proportion of matching words are found with a higher 

proportion of noise. Increasing W and T together could give greater sensitivity 

whilst maintaining or decreasing the proportion of noise matches. However, the 

exponential increase in list size precludes this method in practice. Thus in 

practice, sensitivity of seed matching cannot be markedly improved by changing 

the parameters. 

The use of non-adjacent matching, as used by Roberts (1990) in multiple 

sequence alignment, could provide an alternative way to convert inexact matching 

to exact matching. Algorithmically a search for exact matching of four residues 

or more spread over seven residues can be made at one twentieth the speed for 

contiguous exact matching tetrapeptide searches. This is because there are twenty 

ways to spread four matches over a run of seven starting with a match. 

Possibilities for very high speed in tripeptide matching was shown in Chapter 5 so 
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the method should be fast. The advantage of these seeds over "Blast" seeds would 

be the use of longer words, length seven, with a possible increase in seed 

sensitivity. 

Validity of seed based matching 

"Blast's" use of a seed match is open to the criticism that there is a non-

zero probability of missing a good match with a high significance score. A good 

match need not contain a short high scoring seed segment. Since the significance 

score is only an approximate measure of biological significance, "Blast" provides 

an approximate method for obtaining an approximate measure, rather than an 

exact method for doing so. Given that the authors show that "Blast's" additional 

approximation is small, the criticism is less serious than might seem at first. 

The total Type III comparison of the database performed in this work 

provides further motivation for an approach based on seeds, that is small regions 

of high scoring matching. In examining results from that study, clumping of 

matches gave greater confidence in the validity of an alignment. Every one of the 

sequence similarities reported in this thesis contains a run with three out of four 

residues matching. The approach of using a seed and extending alignments from 

it is therefore a promising method for high performance database searching. 

Irsi 



Appendix 1: Tests of some Ideas for 
New Software 

Introduction 

Problems with existing software for biological sequence work motivated 

some investigation of alternative methods. Approaches to three particular 

problems are described. The first two problems are ones commonly faced by 

molecular biologists. The third is a specific problem of pattern identification. 

Sequence Retrieval 

Background: 

A frequent requirement of molecular biologists is to retrieve sequences 

from sequence databases by name. Even if the code name is available there may 

be slight problems. For example, different databases use different code names for 

the same sequence. Often code names for the sequences sought are not available 

and the researcher has only a descriptive sequence name. Alternatives in 

nomenclature or use of abbreviations cause problems with retrieval strategies that 

use keywords. Keyword matching, as used in the GCG package's "Strings" and the 

'find' commands of "PSQ" and "PDQ" fail to retrieve 'Trp synthase' when asked 

for 'Tryptophan synthetase'. GCG's "Strings" is also notable for taking a long time 

to scan for text matches. "Strings" does not use indices, instead it checks each 

sequence title line in turn for a match. This is slow and discourages inquiries 

about alternatives. The more efficient "PSQ" and "PDQ" which do use indices are 

on the other hand offputting to users. The national Molecular Biology computing 

centre at Daresbury which supports all three packages has found that most users 

use the GCG "Strings" program in preference to "PSQ" and "PDQ" in spite of 

encouragement to use the more efficient programs. 

147 



Idea test: 

'Key word in context' indices are familiar to molecular biologists. They are 

used, for example, for indexing titles of papers in 'Biological Abstracts'. The index 

is a list of one line entries. Each entry occurs several times, once for each 

significant word, and the occurrences are sorted on these words. A sample is 

shown below: 

/NEPHROPATHOLOGY OF CYSTIC FIBROSIS A HUMAN MODEL OF 
LUNG INFECTION IN CYSTIC FIBROSIS A LONGITUDINAL ST 

CHLORIDE LEVELS IN CYSTIC FIBROSIS A NEGATIVE REPORT 

An entry may occur elsewhere in the printed index, as follows: 

OF STREPTOCOCCAL INFECTION IN CULTURED YELLOWTAILS 
5-AURUGINOSA LUNG INFECTION IN CYSTIC FIBROSIS A LO 
HYLOCOCCUS-AUREUS INFECTION IN CYSTIC FIBROSIS HUMA 

An online keyword in context index of the protein title lines was made. 

Due to its size, the individual words were tokenised, keywords being replaced 

internally by two byte tokens. This resulted in 9182 tokens, each protein title 

generating on average 8.3 tokens. To the user the index appeared as a normal 

file of 67,280 lines which could be examined on the PC using a simple interface 

program. 

The formation of the index necessary for tokenisation uncovered many 

misspellings in the database, e.g oncogene with zero for an 'o' and 'falvoprotein' 

for 'flavoprotein'. The extent of inconsistent nomenclature and of typing mistakes 

in the databases has been commented on elsewhere (Tullo & Attimonelli, 1989). 

The samples given here defeat the keyword in context strategy. For other 

mistaken entries such as 'antennepedia' for 'antennapedia', the keyword in context 

index does help. Keyword methods alone would fail in cases like this one. 

Comments: 

Although the keyword in context strategy does not automatically match up 

alternative nomenclature, its rapidity and ease of use do make it easy for 
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biologists to check alternative names. Also some near misses (e.g 'synthase' and 

'synthetase') are drawn to the biologist's attention. 

A full solution to the problems of variation in nomenclature and. typing 

mistakes in the database must rest with the database administrators. It is their 

task to standardise nomenclature or alternatively to provide indices of equivalent 

names. They too are in a position to organise the non-sequence data for well 

developed commercial free text retrieval systems. 

Dotplots 

Background: 

A graphical method for displaying similarities between pairs of sequences 

is the 'dotplot'. As in the path matrix (Chapter 2) one sequence is placed 

horizontally and the other vertically. At its simplest a dot is placed at positions 

where the two sequences agree. Runs of similarity between the two sequences 

appear as diagonal lines on the dotplot. For DNA sequences and to a lesser 

extent protein sequences, background noise from random matching tends to 

obscure these line. A system of filtering is usually employed. This uses two 

parameters, a windowsize and a threshold. In the filtered dotplot, dots are 

removed unless they occur in some diagonal segment of length windowsize that 

has more than the threshold number of matches, i.e. only dots in regions with a 

high density of matching are shown. 

Dotplots are time consuming to produce. With the GCG package two 

programs need to be run. One generates a list of points, the other displays them. 

This very strongly discourages experimentation with different parameters. 

Unfortunately experience and patience seem to be necessary to get the clearest 

dotplots. 

A subsidiary problem with dotplots is that detail in a dotplot can be hard 

to see as the axes may be compressed to fit the dotplot on the screen. 
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Idea test: 

A program was written to implement scrolling of graphical images on the 

IBM PC. Instead of displaying compressed dotplots, only as much of the dotplot 

as would fit on the screen at the most detailed resolution was shown. The 

software written to scroll the image permitted viewing of other parts. For speed 

this software copied already calculated parts of the image where possible so 

requiring a minimum of recalculation. 

Other aspects of the implementation addressed the problem of speed in 

calculation. Segments which overlap can share some of their counting. For speed 

the counting was organised to exploit this and indices were used to determine 

which counts to increment. Also dots were plotted in colours depending on the 

number of matches in the window. This enabled very rapid selection of different 

thresholds once the dotplot was complete. This was achieved by manipulating the 

colour palette of the computer without otherwise changing the data stored in the 

graphic memory. Scores below the current threshold could be given the 

background colour so making only dots with scores above the threshold visible. 

Changing threshold was virtually instantaneous. 

Comments: 

With the test software, scrolling was slow even though this used the built 

in graphics memory copy commands. Unlike some microcomputers, access to 

graphical memory on the IBM PC is indirect. This markedly slows graphics 

operations. For IBM PCs speed can best be achieved by minimising the number 

of changes to the graphic image. Consequently a high level view with a zoom 

option is probably a better way to achieve detailed viewing of any part than the 

method described here. 

The GCG implementation suffers from slow graphics which partially 

explains its slow operation. However, its main loss in speed is due to splitting the 

task into two stages and the use of an intermediate points file. Writing point 

information to the file and then reading it back in, as the GCG implementation 

does, is unnecessary and wasteful. 
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The methods discussed here make testing different parameters more rapid. 

With two parameters there are still many combinations to try for any one pair of 

sequences. If some method could be found to remove one parameter, leaving 

only a 'plot density' parameter, this might provide a more satisfactory solution. 

Identification of a target pattern 

Background: 

Type I restriction enzymes cut DNA sequences containing specific patterns. 

Unlike Type II enzymes they do not cut at the recognition site but instead cut at 

a variable distance from the target sequence. Patterns recognised by three Type 

I restriction enzymes STySP, EcoK and CfrA are: 

STySP: gag n6  rtayg 
EcoK: aac n6  gtgc 
Cf rA: gca n8  gtgg 

Here n represents any residue the subscript showing how many, and y stands for 

either c or t, r for g or a. 

A new Type I restriction enzyme, EcoE, had been purified and tested on 

a number of sequences by other researchers. It was desired to find out what 

DNA pattern it recognised. A list of sequences cut and those not cut was 

available. 

Idea test: 

An approach to the pattern identification problem that uses existing 

software is to produce a list of overlapping DNA fragments of length 16 from the 

sequence data and to sort this list on two keys. The first key would have 3 

characters, the second 4. The keys would be separated by a distance of between 

4 and 9 residues. These lists, one for each distance, could then be printed and 

manually scanned. Groups of fragments that agreed in the selected positions 

would occur together in the list. Such groups containing fragments from the cut 

sequences and no fragments from the uncut sequences would indicate possible 

target patterns. 
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A program was written that was an interactive implementation of this 

process. Sorting was performed on any base position and the sorted list examined 

on the screen. A stable sort was used so that repeated sortings could produce any 

required multi-key sort. Next fragment groups were defined by selecting base 

positions in the fragments. Fragments adjacent in the list agreeing at these 

positions were grouped together. Rather than manually scanning for groups that 

were. compatible with the experimental results, sorting was used again in the 

following manner. Each fragment of each group was tagged with an indication of 

the sequences, cut and uncut, in its group. That is, an extra field was introduced 

to represent this information. A stable sort on this tag field brought sequence 

groups with the same cut and uncut sequences together. It was then easy to find 

groups with fragments from all cut sequences and none from uncut sequences. 

The program identified the following pattern as a possible target: 

EcoE: 	gag n7  atgc 

And showed that no other pattern with a structure similar to known 

recognition patterns for Type I enzymes was consistent with the data (Cowan et 

A 1989). The following near miss patterns, it was noted, were in sequences not 

cut by EcoE: 

HsdK: aag gaagaga atgc 
pBR322: ggg catcccg atgc 
M13: gaa ttacctt atgc 
pBR322: gag cgagggc gtgc 
HsdSP: gag ttgttcg agc 
M13: gag tacggtg atc 
M13: gag cgtcaaa atgt 

The tool acted as a way to rapidly organise information that had been 

collected by the researchers. Organising the fragment results identified the target 

pattern. 
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Comments: 

The grouping operation was an important feature of the program and not 

available as an adjunct to existing sorting programs. In hindsight the software 

could have been made more automatic and would still have given the correct 

answer. Use of existing software was tried initially. Whilst simplifying the task it 

would have required considerably more work on the part of the researcher than 

the approach described here. 
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Appendix 2: Methods for Fast Serial 
Type III Comparison 

The Type III algorithm can be described economically as follows: A 

symmetrical table that scores similarities of pairs of characters from an alphabet 

is used to generate scores d[i,j] for the similarity of the ith character of one string 

to the jth character of the second. Positive d[i,j] indicate similarity, negative d[i,j] 

are counterindicative of similarity. A penalty P, the 'indel' penalty, represents the 

cost of inserting a gap in either sequence. Using these elementary scores, a score 

S[i,j] for the best local similarity ending on the ith character of the first sequence 

and jth character of the second can be computed. The score S[i,j] is expressed 

recursively as: 

S[i,j] := Max( S[i-1,j-1]+d[i,j], 
S[i, j-1 ]-P, 
S[i-1,j ]-P, 
0) 

This expression is for O<ism and O<j:5n. S[i 3O] and S[O,j] are equal to 0 

for 0:5i:5m, O:sj :5n respectively. 

Matching the ith character against the jth corresponds to the first term and 

increases the score S at [i,j] by d[i,j] over its value at S[i-1,j-1]. The second and 

third terms correspond to the cost of skipping a character in either sequence. 

This is -P. The formula for S[i,j] calculates the best similarity for substrings 

ending at characters i and j as being from matching, skipping one or other 

character, or if all three give negative results, starting a run of similarity after this 

position. The largest value of S[i,j] gives the score for the best local region of 

similarity between the two strings. 

In a recursive implementation to calculate the S[i,j] there would be wasteful 

recalculation of previously calculated values. Instead the dynamic programming 

technique is used and all results O<im, 0<j:sn are computed in a suitable order. 

Computation time is thus O(m,z). 
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Re-expression 

The majority of pairs of strings compared in the Molecular Biology 

application have low similarity and most of the S[i,j] are less than P. To use this 

observation to increase efficiency requires some rearrangement to the equations. 

The intermediate stages of rearrangement result in code which is manifestly less 

efficient. 

Taking the original formulation we first increase indices. For 0:5i<m and 

0:5j<n we have: 

S[i+].,j+1) := Max( d[i+1,j+1]+S[i,j], 
S[i+1, j)-P, 
S[i,j+11-P, 
0) 

We can introduce extra tests and break the 'Max' into components. 

S[i+1,j+1] :=Max(O,d[i+1,j-I-1)) 
if S[i,j] 	> 0 then 

S[i+1,j±1) := Max(O,d[i+1,j+13+S[i,j3) 
if S[i+1,j] > P then 

S[i-i-1, j+].] := Max(S[i+1,j+1),S[i+1,j)-P) 
if S[i,j+13 > P then 

S[i+1,j+1] := Max(S[i+1,j+13,S[i,j+1]-P) 

The same positive values can be obtained as follows: 

T[i+1,j+1] := d[i-s-1,j+1] 
if T[i,j] 	> 0 then 

T[i+1,j+1] :=T[i+1,j+1]-FT[i,j] 
if T[i+1,j] > P then 

T[i-4-1,j-4-1] := Max(T[i+1,j+1],T[i+1,j]-P) 
if T[i,j+1] > P then 

T[i+1,j+1] := Max(T[i+1,j+1] ,T[i,j+1)-P) 

This change modifies the treatment of zero. Unlike S[i,j], T[i,j] may 

become negative. S would hold a zero in such positions. S and T however agree 

on their positive values. A negative T[i,j] fails each of the comparison test and 

behaves just as if it were zero in so far as its influences on other T[i,j] is 

concerned. That S and T agree on positive values can also be checked by 

considering the cases leading to T[i+ 1,j+ 1]:5O and T[i+ 1,j+ 1]>0 separately. 

Because S and T agree on positive values they find the same similar substnngs. 
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Rearrangement 

This new form permits a rearrangement. Before the main loop starts all 

the T[i,j] are initialised to d[i,j]. In the rearranged loop instead of collecting 

values for one array element, values are distributed from an element that has 

positive score. The operations performed at each location in T are now as 

follows: 

Start 	if T(i,j)>O then begin 
if T[i,j]>P then begin 

T[i+1,j] := Max(T[i+1,j),T[i,j]-P) 
T[i,j+1] := Max(T[i,j+1),T[i,j]-P) 

end 
T[i+1,j+1] := T[i+1,j+1]+T[i,j] 

end 

Testing for T[i,j] >P is necessary only if the testing for T[i,j] >0 has already 

succeeded. The testing substantially increases the speed. In a typical comparison 

of a pair of sequences around three quarters of the T[i,j] are negative. These are 

skipped. This is where the main saving from the rearrangement arises. Of the 

remaining values around one half score P or less and are dealt with rapidly. The 

second comparison requires subtraction of P from T[i,j]. The result of this 

subtraction is then used twice if the test succeeds. The original formulation in 

terms of S required two subtractions of P per calculation of S[i,j] so there is an 

overall saving in calculation even when the second test succeeds. 

Use of registers 

The next version of the pseudocode shows minor changes to take account of 

the possibility of using registers. To achieve greater speed the algorithm was 

implemented at assembly level. A word length register AX was used to hold the 

current T[i,j] and the register CX to hold T[i,j] - P. At this point the influence of 

the target processor, the 80286 may be clear. The choice of processor is primarily 

a reflection of the ready availability and affordability of IBM PCs and compatibles. 

Use of registers to improve speed is applicable to most processors. 

A standard technique to reduce storage and indexing calculations for the 

matrix T was also used. Only two of T's columns are needed during processing. 
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TO[j] takes the place of T[i,j] and Ti[j] the place of T[i+ i,j]. After processing one 

column, the values in TO are no longer required. Ti is used in place of TO and 

the old TO is initialised with the appropriate d[i,j] values and takes the place of 

Ti. The new inner loop is shown below. 

Start: 	AX := TO[j] 
if AX>O then begin 

CX := AX-P 
if CX>O then begin 

	

T1[j] 	:= Max(T1[j],CX) 
TO[j+1] := Max(T0[j+1],CX) 

end 
T1[j+1] := T1[j+1]+AX 

end 
j := j+1 
if j<= n then goto start 
stop 

Deferred assignment 

A technique compilers use toimprove efficiency in code they produce is to 

defer assignments (Appendix 3). A compiler may defer the writing of a value held 

in a register back out to memory. This can lead to a saving when the same 

memory location is written to several times in succession. This situation frequently 

occurs in executing instructions in a loop. A memory location written to in one 

cycle of the loop may be written to again in the subsequent cycle. This algorithm 

illustrates potential for a more complex form of deferred assignment, conditional 

deferred assignment. In the unmodified code writing to memory locations is 

conditional on values calculated within the loop. Depending on the condition, the 

body of the loop may or may not write a new value out to memory. To cope with 

conditional deferred assignment, different versions of the loop were required. 

These handle different states of deferred assignment from the previous execution 

of the loop. In this code, the 'code expansion' was used to allow deferral of 

assignment to TO[j +1] and Ti [j + i}. If CX> 0 then both deferrals take place, if 

only AX>O then only deferral of assignment to Ti[j-i- 1] takes place, and if AXsO 

then no deferred assignment is required. This required three versions of the loop 

body. As each version completes a cycle, it enters the appropriate version for the 

next cycle. Which version it enters will depend on which assignments are being 
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deferred. 

In fact the value being held to write into TO need not be written at all. 

The value is needed only in the next cycle round the loop. For this use it can be 

taken from the register holding the value that is being deferred. Use in 

determining maximum score is the only other potential subsequent use for values 

written into TO. Since the deferred value is derived by subtracting P from a value 

already in the matrix T, it cannot itself be the maximum score. The result does 

not need to be written out to memory. We now have: 

Starti: 	AX := TOEjI 
if AX>O then begin 

CX := AX-P 
if CX>O then begin 

T1[j] := Max(T1[j],CX) 
goto DeferTwo 

end 
goto DeferOne 

end 
NoDefer: 	j := j+1 	;AX<=O 

if j<= n then goto Starti 
Stop 

Start2: 	DX := AX+Tl[j] 
AX := TO[j] 
if AX>O then goto Morecaic 
T1[j] := DX 
goto NoDefer 

DeferOne: j := j+1 	;AX>O, CX<=O 
if j<= n then goto Start2 
stop 

Start3: 	DX := AX-I-Tl(j) 
AX := TO[j] 
AX := Max(AX,CX) 

;No need to test for AX>O here as AX>=CX>O 
Morecaic: CX := AX-P 

if CX>O then begin 
Maxtest: 	T1[j] := Max(DX,CX) 

goto DeferTwo 
end else begin 

T1[j] := DX 
end 
goto NoDefer 

DeferTwo: j := j+l 	;AX and CX>O 
if j<= n then goto Start3 
stop 

The number of external memory references has been decreased. The 
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plethora of gotos is not a concern. The unconditional gotos can be removed by 

rearranging the code and code duplication. Other unconditional gotos originating 

from expanding 'if then else' and 'Max' can be removed in a similar fashion. 

Further code expansion is possible. In the line AX := Max(AX,CX) the 

conditional assignment of CX into AX could be replaced by a conditional branch 

to equivalent code with the roles of CX and AX reversed. This however was not 

done. It would nearly double the length of the program for a marginal 

performance gain. 

Mnimum value and rogue value 

Determination of the overall maximum value in the array and its position has 

so far been left out of this discussion. The maximum value in a column could be 

determined by a second loop that scans every entry in the column. In fact, since 

we already have a loop which picks up values from TO we can be far more 

efficient about finding the maximum. The overheads for looping and fetching 

values from TO can be dispensed with by building the maximum testing into the 

loop. Moreover we only need the test in the version of the code which performs 

both deferrals, since deferrals correspond to values in TO greater than P. This 

reduces the number of times we test for the current maximum being exceeded by 

a factor of six. In doing this we have lost the ability to correctly score low scoring 

pairs. The code will only detect those scores greater than P. For the database 

searching application this is no loss. Substantially higher scores are needed for 

evidence of relatedness between compared proteins. An even better position for 

the maximum test is at the line labelled maxtest, when the value DX has been 

found to be greater than CX. Any matching of two residues where the score for 

the substrings before matching the two residues is greater than 2P will reach this 

point. This gives a slightly higher threshold for guaranteed reporting of scores and 

an even less frequent execution of the maximum test. 
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Loop overheads 

The loop overheads, the test for j :5 n, are now a significant fraction of the 

algorithm's cost. An improvement that is possible since the test for maximum is 

infrequent is the use of a rogue value for determining whether the loop has 

completed. TO[n+ 1] is initialised with an impossibly high value. This causes entry 

into the code which checks to see if the current maximum score has been 

exceeded. If it has, this code additionally checks for the rogue value. Using a 

rogue value in this way virtually eliminates the time spent in checking for the end 

of the loop. The tests for j :5 n can be replaced with unconditional gotos. The 

testing of AX>O in the most commonly executed case, no deferral, is a natural 

candidate for 'loop unrolling'. This unrolling makes a saving since it reverses the 

test so that the conditional branches most commonly do not branch. 

At the start of each cycle it is necessary to initialise the vector Ti. This 

initialisation is dependent on the ith character of the second sequence. This is 

most rapidly performed if vectors for each of the characters in the alphabet are 

precomputed. Initialisation is then performed using a rapid memory copy 

operation. 

Performance 

The overall result of these optimisations is an algorithm which has a speed 

of 300,000 PMEs' on a 16 MHz IBM PC. This compares to speeds implied by 

Pearson (1990) of 4,000 PMEs' for comparison; and by Mount (1988) of 700 

PMEs 1  for comparison and alignment on a mainframe and a speed of 6000 

PMEs 1  for Pascal code on the 16 MHz IBM PC (own data). Thus the 

optimisations described here lead to an approximate 50 fold speed improvement. 
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Appendix 3: Conditional Deferred 
Assignment 

Just as improvements can be made in disk performance by disk caching, 

that is, keeping of partial copies of disk files in RAM memory, so too speed 

improvements can be made by keeping copies of some RAM memory locations 

in the processor registers. In both optimisations multiple reads or writes to the 

slower memory are replaced by multiple reads and writes to the faster memory. 

Temporary use of processor registers to hold a copy of a RAM memory location 

is an important optimisation technique. Aho et al. (1986) discuss how a compiler 

can automatically select which memory locations to hold in a register. Any values 

changed in the faster memory are ultimately written from the fast memory to the 

slower. It is deferral of this process of assigning a value held in a register to a 

variable held in RAM memory that leads to savings when multiple writes to slow 

memory would normally be involved. Deferral allows one assignment to slow 

memory to take the place of several. 

With disk caching, the timescales are such that decisions about when to 

write out changed data can be made at run time by software. These decisions can 

depend on current availability of memory to hold disk data. With deferred 

assignment, the decisions are made at compile time. The point in the software 

at which to write register values to memory must be decided in advance and built 

into the program. To do this, as the software is compiled a history of which reads 

and writes to memory occur must be built up. 

Information about the history of memory reads and writes can be updated 

incrementally with each line of code compiled. Conditional branches in the code 

can lead to alternative histories. The usual solution to this is, where two code 

streams meet, to use only the history common to both branches that meet. This 

can lead to a loss of history information and the loss of the ability to defer 

assignment. In particular it leads to the loss of ability to defer a conditional 

assignment. 
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The transformation to recover the property of having a known history is 

straightforward. Where two branches of the code merge they may do so in the 

transformed code only if the history, in as far as it affects deferred assignment, is 

the same. Otherwise a copy of the relevant code is made. 

In the program in Appendix 2, two memory locations are candidates for 

deferral, leading to four possible code variants. In fact, update of one of the 

memory locations is conditional on update of the other, so only three variants are 

actually required. This code expansion effectively remembers alternative histories. 

This extends the optimisation technique of deferred assignment to the case where 

some of the operations during the deferral are conditional. 
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Appendix 4: Potential for 
Optimisations to "Prosrch" 

The program "Prosrch" (Lyall, 1988) performs a rapid Type III search, 

single sequence against database on the DAP parallel computer. Most of the 

code in the program concerns user interface and file I/O. Here we are concerned 

only with the time critical core comparison routine which represents less than one 

tenth of the total code. Before describing possible changes, we describe the 

implementation as it currently stands. 

"Prosrch" keeps two rows of the comparison matrix at any time. These 

rows are updated in a parallel fashion. Rows may have up to 32768 elements and 

contains several sequences from the database. Sequences are delimited by 

sequence separator characters which are used to prevent scores from one 

sequence influencing scores in another. 

The row elements carry three pieces of information, the score, the starting 

coordinate in the path matrix of the path leading to that score and the best score 

so far on this path. Whenever the score falls below zero this information is reset. 

The best score is set to zero and the coordinate information is reinitialised to the 

current row and column. The program keeps a global threshold value. Scores are 

tested against this threshold after each update of the rows. Scores on paths which 

have just taken a positive step and are above this threshold and also above their 

record of the best score so far are dealt with in a serial subroutine called 

'Dsavres'. These scores and their associated coordinate information are recorded 

serially in a separate array. The code in 'Dsavres' has to identify whether a score 

has already been reported for this path's starting coordinate. If so it locates 

where its top score is held; if not it allocates a location. 

Ideally the threshold would be set so that exactly the required number of 

results, typically 16,000, would be collected. In practice the distribution of scores 

is not known exactly in advance. This being so, the threshold is set to a 

reasonable but low value and is increased as results are collected. Dsavres is 
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called many times more than the number of results collected. On a good path, 

each increase in score could lead to a call to Dsavres. These calls are additional 

to calls early on before the threshold has approached its ultimate level. One 

approach developed by J.F. Collins (ICMB Edinburgh, personal communication) 

that has considerably improved the performance is the development of superior 

techniques to set and adjust the threshold. 

Optimisation 

Given that fast serial implementations for Type III searching are possible, 

it is natural to explore the potential for optimising the parallel code. The changes 

to "Prosrch" presented here are changes which show the potential for optimisation 

but which have not been tested in practice. To do so would require changes in 

the interface and post-processing code in addition to changes made in the core 

code. 

For the modified core, written in DAY FORTRAN, use was made of the 

C language's pre-processor, "cpp". This was so that repeated definitions of 

datastructures, repeated definitions which are required by FORTRAN, were 

generated accurately and automatically. Blocks defining the use of memory were 

placed in a single file. The C pre-processor included selected portions of this file 

into the source code in the appropriate places. This change facilitates 

modification of the datastructures, the use of subroutines and it also simplifies the 

appearance of the "Prosrch" program. 

The post search phase of "Prosrch" runs on a serial machine and processes 

fewer than one in a hundred of the proteins examined in the search phase. The 

first step taken in optimisation was to fully exploit savings that could be made by 

shifting work to the post-search phase. In fact, in searching, all that each row 

element needs to carry is the score. With this modification the program would 

produce a single score for each protein, the score of its best match. The 

searching program would not determine the coordinates in the path matrix of the 

ends of the best path, leaving this to the post-search phase. The scores 

determined in this modified search could be used exactly as before to produce the 

same list of high scoring proteins as produced by the current "Prosrch" program. 
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An important loss associated with this scheme is loss of results additional 

to the best similarity for each protein in the database. "Prosrch" collects more 

than one result per protein. The bulk of these are chance matches of unrelated 

proteins. The distribution of the scores of these is used by "Prosrch" to measure 

the likelihood that a high scoring match is part of the noise distribution. The 

Dayhoff scores for an alignment are converted to likelihoods using an exponential 

transform based on the collected distribution. 

The Dayhoff scores themselves give a logarithmic measures of likelihood. 

The computation of likelihoods using the distribution is a refinement that has not 

yet been proven to give more useful information. The order in which results are 

presented by "Prosrch" depends only on the score. The computation using the 

additional noise results does not affect the order of results. 

The extra results do have a second more important function as they can 

give additional information about relatedness when a protein has more than one 

region of matching. In current implementations of the post-processing phase of 

"Prosrch" these extra results are not used to affect the order in which results are 

reported. If a protein contains two weakly matching regions, its position in the 

list of results is determined by the highest scoring one of these weak matches. 

With the suggested alternative method, if detection of additional regions 

of matching for each reported protein is desired then the reported proteins could 

be reexamined using a serial or a parallel approach. Whether a serial or parallel 

approach is used, the workload of this stage would be less than one hundredth of 

the workload of doing this for all proteins in the database. 

The changes to record one score per protein reduce the quantity of 

information being transferred between processor elements by a factor of four and 

should increase execution speed by at least the same factor. This factor can be 

increased to eight by using only one byte to hold scores rather than two bytes. 

Scores for comparisons scoring more than 256 would overflow and the true score 

would not be reported. The highest score achieved before overflow would be 

reported instead. Re-analysis of the small number of high scoring matches would 

reveal the true situation. 
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Details 

In the interests of clarity a number of finer points have been left out of the 

discussion. The "Prosrch" program makes extensive use of a DAP specific speed 

improving technique called crinkling. With crinkling, a single processor holds 

several consecutive row elements. Fortunately the new technique can crinkle in 

much the same way as "Prosrch" crinkles. Extra separator characters can be 

introduced between sequences to ensure that each DAP processor element deals 

with only one sequence. Best results can then be collected on a per-processor 

rather than on a per-element basis. This leads to slight savings, most notably 

reducing the storage required for best results by a factor of the number of row 

elements held per processor. 

The overflow of scores also requires careful consideration. In fact, since 

the score must on occasion hold small negative values, the byte values should be 

considered as covering the range -64to +191 rather than 0 to 255. This does not 

affect the standard DAY arithmetic, an observation which needs careful checking, 

but this asymmetric range does affect the criterion used in detecting negative 

scores to reset scores to zero and requires a slight modification to the test. 

Effect 

Even with these complications the changes produce a dramatic 

simplification to the searching code. The core part of the routine shrinks from 

250 lines to 100 lines. The subroutine Dsavres containing 400 lines of code is 

replaced by the single line: 

PSCORE(N) = MAXV( MSCORE, PROT.EQ.N) 

to record the maximum score for a protein. This statement is executed once per 

protein, once for each value of N, whereas Dsavres is called for every 

improvement to a path that scores above the threshold. 

The simplifications are also important for future development. The more 

economical code should be easier to develop to use the more complex dynamic 

programming comparison techniques of Chapter 9. The mixed-noise algorithm 
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described there, which returns a result dependent on all islands matched, could 

be used to provide a parallel counterpart of the serial recursive alignment 

algorithm used in 'Medal". 

Further comment 

These techniques have been discussed with J.F. Collins who has suggested 

further simplifications. He also suggested that a better estimate of significance 

could be obtained using both score and alignment length rather than score alone. 

This estimate could be based on statistics collected with the existing "Prosrch" 

program. 

The first additional simplification he suggested was use of the range -128 

to +127 rather than -64 to +191. This simplifies the arithmetic tests. Secondly, 

rather than producing one score per protein, finding maximum scores for a block 

of typically ten proteins has some advantages. Since the databases are too large 

to be processed in one section, the "Prosrch" program groups proteins into blocks. 

Rather than detecting high scoring proteins, the modifications could be used to 

detect high scoring blocks instead. The new software would then act as a fast first 

stage filter for the existing comparison and alignment software. This 'block filter' 

would reject blocks consisting entirely of proteins with similarity to the query 

scoring below some threshold. Unlike the two stages of "FastP", the filter and 

more sensitive stages would be compatible. All proteins with alignments scoring 

highly by the criteria of the second stage would be guaranteed to be accepted by 

the first stage. The most important advantage of this approach is that far less 

modification to the existing post-processing software would be required. 

167 



Abbreviations 

Computer Science and Molecular Biology abbreviations: 

ATP adenosine tnphosphate. 
AMP adenosine monophosphate. 
cAMP cyclic adenosine monophosphate. 
DNA deoxyribonucleic acid. 
EGF epidermal growth factor. 
I/O input/output. 
MIMD multiple instruction multiple datapath. 
NADH nicotinamide adenine dinucleotide. 
NMR nuclear magnetic resonance. 
NWS Needleman Wunsch Sellers. 
PAD packet acceptor/distributor. 
PMEs 1  path matrix elements per second. 
PR pathogenesis related. 
PTS phosphotransferase system. 
RAM random access memory. 
RNA ribonucleic acid. 
SIMD single instruction multiple datapath. 
tRNA transfer ribonucleic acid. 
YP yolk protein. 

Organisation and product names and abbreviations: 

AMT Active Memory Technology limited (Reading U.K.). 
DAP Distributed Array Processor (parallel computer 

manufactured by AMT). 
EVjPSX Mark name of Evans and Sutherland limited. 
GCG Genetics Computer Group (Devereux et al., 1984). 
IBM International Business Machines limited. 
ICL International Computers limited. 
ICMB Institute 	of 	Cell 	and 	Molecular 	Biology 	(Edinburgh 

University). 
NBRF National Biomedical Research Foundation. 
PC personal computer (usually IBM PC). 
PIR Protein Information Resource (name of the NBRF protein 

database). 
Sun Mark name of Sun systems limited. 
Turbo Pascal Registered trademark of Borland International Inc (Scotts 

Valley, CA 95066-9987). 
VAX Mark name of Digital computers limited. 
VAX/VMS Mark name of Digital computers limited. 



Selected programs, description and references: 

"Blast" 	-- Fast sequence comparison using high scoring word 
matches as seeds (Altschul et al., 1990). 

"FastA" 	-- Fast sequence comparison using exactly matching words 
(Pearson, 1990). 

110" 	-- Program for displaying three dimensional protein 
structures (Jones T.A., Dpt. Chemistry, Aarhus 
University, Denmark). 

"PKZip" 	-- Data compression (PK-WAre ltd, WI 53217, U.S.A.). 
"Prosrch" 	-- Database searching using Type III algorithm on a parallel 

computer (Lyall et al., 1986). 
"PSQ" 	-- Protein sequence entry retrieval (NBRF). 
"PDQ" 	-- Protein sequence entry retrieval (UIG, Daresbury 

laboratory, Warrington U.K.). 
"Strings" 	-- Protein sequence retrieval by name (GCG). 
"Wordsearch" -- Exact word matching database searching (GCG). 

Selected own programs, description: 

"Dayhoff' 
"Fradho" 
"Medal" 
"Prowl" 
"Xref' 

-- Generation of dayhoff scoring tables. 
-- DNA to protein comparison. 
-- Multiple sequence editor and aligner. 
-- Database searching using Type III algorithm on PC. 
-- Annotation file crossreference browser. 
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