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ABSTRACT 

Least-squares regression is a standard statistical technique 

for relating variables by means of functional relationships. On 

the assumption that the errors are independent of one another and 

have equal variance, the regression parameter estimators are 

approximately efficient and the conventional estimators of the 

variances of these estimators are approximately unbiased. However, 

if the errors are correlated, then in general neither property 

holds true. 

This thesis is directed towards overcoming these deficiences 

when errors are serially correlated; arising because a series of 

measurements is made on a single experimental unit, rather than on 

a number of separate units. Two types of solution are considered: 

(1) model the error process, either empirically or mechanistically, 

and estimate any unknown parameters jointly with the regression 

parameters (chapters 4 to 8); (2) derive estimators of the 

variances of least-squares regression parameter estimators which 

take account of the error correlations (chapter 9). The diversity 

of models considered in the first solution is facilitated 

computationally by the specification in chapter 2 of a new class of 

serially-structured error processes, termed generalized 

autoregressive-moving average processes. In chapter 3 solutions of 

linear stochastic difference and differential equations are shown 

to be in this class. 

Empirical models of the error processes are based entirely on 

the corresponding data sets; no other information being available 

on the forms the correlations should take. Basically, a regression 
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function is fitted by least-squares estimation, the residuals are 

examined and an error model is identified. In the three examples 

considered (pharmacokinetic data, data on transport systems within 

a leaf, and the energy demands of a mechanical model of a suckler 

cow) the error processes are assumed to be stationary and either 

the sample autocorrelation coefficients or the periodograms are 

used to identify the appropriate autocorrelation functions or 

spectral functions in chapters 4 and 5 respectively. 

Antithetically, mechanistic models of the error processes are 

derived from considerations of the methods by which the data sets 

were generated. Three particular types of model are considered in 

the thesis. In chapter 6 linear stochastic difference and 

differential equations are used: first-order models to describe 

the variations in a cow's milk yield over its lactation; 

second-order models to describe the growth in an animal's weight. 

Stochastic compartment systems are used in chapter 7 to model the 

pharmacokinetic and leaf transport data previously considered in 

chapters 4 and 5. Then, in chapter 8 a related model appropriate 

to cumulative counts is used to describe seed germination numbers. 

In chapter 9 estimates of the variances of regression 

parameter estimators are obtained which are conservative, that is 

never downward biased, for broad classes of serially-structured 

error processes. The technique arose as a solution to the 

inadequacies of the empirical modelling strategy, and is applied to 

the data sets used in chapter 4. 



V 

ACKNOWLEDGEMENTS 

This work was undertaken as part of the research programme of 

the Agricultural and Food Research Council's Unit of Statistics. I 

am grateful to the AFRC for both financial support and facilities 

to undertake the research presented. 

I an indebted to Drs D. Colquhoun, J.E. Dale, J.M. Bruce, 

D. Neilson, R.B. Thiessen and R.E.L. Naylor for being permitted to 

use their data. 

My thanks are due to my supervisors Mr P.R. Fisk and 

Mr R. Thompson for their valuable comments and advice and to 

Professor D.J. Finney and Dr H.D. Patterson for their encouragement 

and support. I am also grateful for the widespread support I have 

received from other members of staff of the Unit of Statistics and 

from my wife. Finally, I would like to thank Miss L.E. Robertson 

for typing this thesis so conscientiously. 



vi 

CONTENTS 

Page 

Title i 

Declaration ii 

Abstract iii 

Acknowledgements V 

Contents vi 

Conventions and Notation 

Character conventions xviii 

Matrix notation xix 

Probability notation xix 

Other mathematical 	notation xix 

Subscript, 	superscript and postscript notation xxi 

Numbering 	in thesis xxi 

Characters - Latin 	lower-case xxii 

Characters - Greek lower-case xxiv 

Characters - Latin upper-case xxvii 

Characters - Greek upper-case xxviii 

1. Prelude 

1.1 Introduction 

1.1.1 Least-squares regression 	 1 

1.1.2 Reasons for noticeably correlated residuals 	2 

1.1.3 Effects of correlated errors on 
least-squares regression 	 5 

1.1.4 Solutions 	 7 

1.2 Outline of thesis 

1.2.1 Structure 	 8 



vii 

Page 

1.2.2 Empirical models 9 

1.2.3 Mechanistic models 10 

1.2.4 Data sets 11 

1.3 Review of literature 

1.3.1 Tests for autocorrelation 12 

1.3.2 Duality between regression misspecification 
and correlated errors 14 

1.3.3 Effects of correlated errors on least-squares 
estimators 15 

1.3.4 Empirical 	models 17 

1.3.5 Growth models 20 

1.3.6 Stochastic compartment models 21 

1.3.7 Model 	misspecification 22 

1.3.8 Distribution of estimators 22 

2. Regression parameter estimation with generalized 
autoregressive-moving average errors 

2.1 	Introduction 25 

2.2 The generalized 	autoregressive-moving 	average 
structure 

2.2.1 Definition of 	a GARMA (p,q) 	process 26 

2.2.2 Decomposition of 	V 28 

2.2.3 Numerical 	example of decomposition for 
GARMA(1,1) 	process 31 

2.2.4 Interpretation of GARMA property 33 

2.2.5 Examples 34 

2.2.6 Properties 36 

2.2.7 Extension 	to continuous processes 37 

2.2.8 Properties of a cGARMA process 38 



viii 

Page 

2.3 Parameter estimation 

2.3.1 Model 39 

2.3.2 Optimization criteria 40 

2.3.3 Numerical 	evaluation of the optimization 
functions 41 

2.3.4 Optimization 	algorithms 41 

2.3.5 Variances of parameter estimators 42 

2.3.6 Prediction of fit based on past observations 43 

2.3.7 Simulation 44 

2.4 Computer program REGAME 

2.4.1 Programming philosophy 44 

2.4.2 Program structure 45 

2.4.3 Input/Output to REGAME 46 

2.4.4 Input/Output to REGMOD 50 

2.4.5 Input/Output to REGOER 51 

2.4.6 Output to channel 	NOUT6 52 

2.4.7 Output to channel NOUT10 53 

2.4.8 Optimization 	algorithm 54 

2.4.9 Algorithms in REGAMD 55 

2.4.10 Algorithms in REGIRA 56 

3. - 	solutions of linear stochastic difference 
arm airrerential equations with constant coefficients 

3.1 Introduction 	 57 

3.2 Difference equations 

3.2.1 Model 	 58 

3.2.2 Solution 	 59 

3.2.3 Relation to GARMA property 	 61 



ix 

Page 

3.3 Differential equations 

3.3.1 Model 	 63 

3.3.2 Solution 	 64 

3.3.3 Relation to cGARMA property 	 67 

4. Stationary error processes: empirical autocorrelation 
parameterization 

4.1 	Introduction 70 

4.2 Theory 

4.2.1 Model 71 

4.2.2 Parameterization by stationary solutions of 
stochastic difference equations 72 

4.2.3 Parameterization by stationary solutions of 
stochastic differential 	equations 74 

4.2.4 Parameterization by a sum of 
positively-correlated Markov processes 76 

4.2.5 Model 	order 	identification 78 

4.2.6 Variances of parameter estimators 80 

4.3 Coiquhoun's data: 	relaxation of drug-induced 
membrane currents 

4.3.1 Introduction 80 

4.3.2 Single exponential 	regression with independent 
errors 81 

4.3.3 Generalized partial 	autocorrelation 
coefficients 83 

4.3.4 Single exponential 	regression with ARMA(1,1) 
error model 85 

4.3.5 Simulation to compare estimation methods 91 

4.3.6 Likelihood-based marginal 	confidence 	intervals 96 

4.3.7 Double exponential 	regression with independent 
errors 97 



X 

Page 

4.3.8 Double exponential 	regression with ARMA(1,1) 
error model 100 

4.3.9 Resumé 104 

4.4 	Dale's data: 	radioactive emission from a wheat 	leaf 

4.4.1 Introduction 106 

4.4.2 Regression with 	independent errors 106 

4.4.3 Regression with weighted ARMA(1,1) error model 107 

4.4.4 Adjusted 	least-squares standard errors 113 

4.4.5 Simulation to compare estimation methods 117 

4.4.6 Likelihood-based marginal 	confidence 	intervals 119 

4.4.7 Regression with non-stationary error model 119 

4.4.8 Resumé 122 

4.5 	Bruce's data: 	energy demand of a mechanical model 
of a suckler cow 

4.5.1 Introduction 122 

4.5.2 Regression with 	independent errors 123 

4.5.3 Regression with ARMA(1,1) error model 126 

4.5.4 Simulation to compare estimation methods 131 

4.5.5 Regression with non-stationary error model 133 

4.5.6 Resumé 135 

4.6 Discussion 137 

5. Stationary error processes: empirical spectral 
parameterization 

5.1 Introduction 	 139 

5.2 Theory 

5.2.1 Model 	 140 

5.2.2 Derivation of pseudo-likelihood 	 141 

5.2.3 Estimation using REGAME 	 143 



xi 

Page 

5.2.4 Variances of parameter estimators 144 

5.3 Coiquhoun's data 

5.3.1 Choice of model 145 

5.3.2 Pseudo-likelihood when errors are independent 145 

5.3.3 Double exponential 	regression with independent 
errors 146 

5.3.4 Spectrum when the autocorrelation function 
is 	a sum of exponentials 146 

5.3.5 - Double exponential 	regression with ARMA(1,1) 
error model 147 

5.3.6 Double exponential 	regression with an 
empirical 	non-increasing error spectrum 151 

5.3.7 Double exponential 	regression with an 
empirical 	error spectrum 155 

5.3.8 Resume 159 

5.4 Discussion 159 

6. Models based on linear stochastic difference and 
oirrerentiai equations 

6.1 Introduction 161 

6.2 A model for 	lactation using first-order equations 

6.2.1 Model 	in discrete time 162 

6.2.2 Solution for the model 	in discrete time 163 

6.2.3 Model 	in continuous time 164 

6.2.4 Solution for the model 	in continuous time 165 

6.2.5 Relation between models 	in discrete and 
continuous time 166 

6.3 A model for growth using second-order equations 

6.3.1 Justification for choice of model 167 

6.3.2 Model 	in discrete time 168 

6.3.3 Solution for the model 	in discrete time 168 



xii 

Page 

6.3.4 Model 	in continuous time 170 

6.3.5 Solution for the model 	in continuous time 171 

6.3.6 Relation between models in discrete and 
continuous time 173 

6.4 Neilson's data: milk yield of cows 

6.4.1 Introduction 175 

6.4.2 Models 175 

6.4.3 Method of estimation 177 

6.4.4 Results - likelihood comparisons 178 

6.4.5 Results - parameter estimates 181 

6.4.6 Resumé 185 

6.5 	Thiessen's data: weights of cattle 

6.5.1 Introduction 190 

6.5.2 Models 190 

6.5.3 Method of estimation 192 

6.5.4 Results - likelihood comparisons 193 

6.5.5 Results - parameter estimates 193 

6.5.6 Resumé 201 

6.6 Discussion 201 

7. Stochastic compartment models with constant coefficients 

7.1 Introduction 	 - 	 202 

7.2 Theory 

7.2.1 Model 	 203 

7.2.2 Solution 	 205 

7.2.3 Distribution of N(0) 	 209 

7.2.4 Relation to cGARMA property 	 210 

7.2.5 Parameter estimators 	 210 



xiii 

Page 

7.3 Coiquhoun's data 

7.3.1 Introduction 

7.3.2 Closed two-compartment model 

7.3.3 rn2  held constant 

7.3.4 Open one-compartment model 

7.3.5 Separate covariance parameterization 

7.3.6 Estimation without use of scaling parameter 

7.3.7Reparameterization using B 

7.3.8 Open two-compartment model 

7.3.9 Resumé 

7.4 Dale's data 

7.4.1 Introduction 

7.4.2 Estimation 

7.4.3 Temporary immigration to generate the initial 
distribution 

7.4.4 Separate covariance parameterization 

7.4.5 Estimation without use of scaling parameter 
and with i 2  fixed at 0.1 

7.4.6 Resumé 

7.5 Discussion 

8. Cumulative count models 

8.1 Introduction 	 243 

8.2 Theory 

8.2.1 Model 	 244 

8.2.2 Solution 	 244 

8.2.3 Relation between the generalized sum of 
squares and Berkson's x2  statistic 	 245 

211 

212 

214 

216 

220 

222 

222 

224 

228 

228 

230 

231 

234 

238 

238 

241 



xiv 

Page 

8.3 Naylor's data: seed germination tests 

8.3.1 	Introduction 248 

8.3.2 Models 249 

8.3.3 Method of estimation 251 

8.3.4 Results - likelihood comparisons 252 

8.3.5 Results 	- parameter estimates 257 

8.3.6 Resumé 259 

8.4 Discussion 259 

9. Conservative estimates of the variances of rearession 
parameter estimators 

9.1 	Introduction 263 

9.2 Method 

9.2.1 Regression parameter estimators 264 

9.2.2 Form of estimator of var() 266 

9.2,3 Expectation of 	eTC e 267 

9.2.4 Specification of relative bias 268 

9.2.5 Relation to ordinary least-squares 269 

9.2.6 Optimization problem 270 

9.2.7 Dual 	optimization problem 271 

9.2.8 Selection of 	c {t+1} 272 

9.2.9 Interpretation of 	c{t+1} 273 

9.2.10 Algorithm for obtaining 	c Ct+11 276 

9.2.11 The choice of 	cz 277 

9.2.12 Dual 	Problem for 	n (O,u) 279 

9.2.13 Dual 	problem for 	c 	(l,u) 279 

9.2.14 Dual 	problem for 	o (2,u) 281 

9.2.15 Interpretation of 	c(w,n-1) 	for a Markov 
process 282 



Y4 

Page 

9.2.16 	Discussion 	about 	c 	(w,o) 282 

9.2.17 Other choices for 	Q 284 

9.2.18 Distribution of 	eTC  e 284 

9.3 Computer program CEVOPE 

9.3.1 Programming philosophy 286 

9.3.2 Program structure 286 

9.3.3 Input 287 

9.3.4 Output 288 

9.3.5 Stopping conditions 290 

9.3.6 Algorithm for 	linear program 291 

9.3.7 Algorithm for calculating XLHS 293 

9.3.8 Algorithm for obtaining eigenvectors 294 

9.3.9 Algorithm for transforming with respect to 	V 295 

9.3.10 Algorithm for t-statistics 297 

9.4 An 	illustrative example 

9.4.1 Model 297 

9.4.2 Dual 	optimization problem for 	s=2, 	n (1, 4) 299 

9.4.3 Solution when t=1 299 

9.4.4 The search for 	c 300 

9.4.5 Solution when t=2 301 

9.4.6 New c-vectors and bias 302 

9.4.7 Final 	solution 302 

9.4.8 Output from CEVOPE 303 

9.4.9 Dual 	optimization problem for 	s=2, 	a (0,1) 304 

9.4.10 Solutions when s=2 306 

9.4.11 Comparison with standard estimator of 
variance 307 



xvi 

Page 

9.4.12 Solutions when 	s=1 308 

9.4.13 Dependence on 	V 311 

9.4.14 Optimal 	choice of 313 

9.5 Coiquhoun's data 

9.5.1 Choice of regression parameter estimators 

and 	V 314 

9.5.2 	Choice of 	a (w,u) 315 

9.5.3 Single exponential 	regression results 315 

9.5.4 Double exponential 	regression results 317 

9.6 Dale's data 

9.6.1 Choice of regression parameter estimators, V 
- 	 and 	c 	(w, o) 319 

9.6.2 Results 319 

9.7 Bruce's data 

9.7.1 Choice of regression parameter estimators, V 
and 	c 	(,o) 321 

9.7.2 Results 321 

9.8 Discussion 0  322 

10. - Conclusions/Future work 

10.1 Conclusions 

10.1.1 General 	 324 

10.1.2 Empirical models 	 324 

10.1.3 Mechanistic model 	 325 

10.1.4 Conservative estimates of the variances of 
regression parameter estimators 	 325 

10.2 Future work 

10.2.1 Empirical models 	 326 



xvii 

Page 

10.2.2 Mechanistic models 	 327 

10.2.3 Conservative estimates of the variances of 
regression parameter estimators 	 327 

Appendix A 329 

Appendix B 365 

Appendix C 383 

Appendix D 403 

References 404 



xviii 

Conventions and Notation 

Character conventions 

The character set is restricted to lower-case and upper-case 

Latin and Greek alphabets. A general convention has been used as 

follows: 

underlined lower-case characters, for example x , denote 

column vectors; 

lower-case characters with single subscripts, for example 

x 1  , denote individual elements in vectors, in this 

case the ith element in x ; 

otherwise lower-case characters, for example x , denote 

scalar constants or variables; 

underlined upper-case characters, for example A , denote 

matrices, the only exceptions being D , N , V and Z 

which denote vector random variates in order to 

distinguish then from their realisations (although in 

some instances a distinction is not made between a 

random variate and its realisation); 

upper-case characters with double subscripts, for example 

A 
13  
. . , denote individual elements in matrices, in this 

example the (ij)th element of A ; 

otherwise upper-case characters, for example A , are only 

used for special purposes. 

The specific definitions of all characters used in the thesis 

follow after other notation has been established. 
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Matrix notation 

Standard matrix notation has been used as follows: 

x 

	

	denotes the row vector which is the transpose of the 

column vector x ; 

AT denotes the transpose of the matrix A ; 

IN 	denotes the determinant of the square matrix 

tr(A) denotes the trace of the square matrix A ; 

A4  denotes the inverse of the non-singular square matrix A. 

Probability notation 

Standard notation has been used as follows: 

E(Y) denotes the vector of expectations of elements in V ; 

var(V) denotes the matrix of variances and covariances 

between elements in V ; 

cov(Y.1,Y. 
3 	 1 
) denotes the covariance between V. and V. ; 

3 
E(VIZ) denotes the expectation of V conditional upon the 

realisation of Z ; 

cov(V 1  ,Y J  . Z) denotes the covariance between V. and V. 

conditional upon the realisation of Z ; 

V 	(f,V) denotes that V is distributed with mean f and 

variance matrix V ; 

V 	N(f,V) denotes that V is multivariate normally 

distributed with mean f and variance matrix V ; 

denotes a vector random variate which is an estimator of 

the column vector of parameters, a 

Other mathematical notation 

Other mathematical notation has been used as follows: 
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denotes the complex conjugate of x ; 

Ln(x) denotes the natural logarithm of x ; 

lxi denotes the absolute value of x ; 

St denotes a small positive increment to t ; 

o(6t) denotes a term of order less than 5t ; 
k 

x. denotes the summation from the jth to the kth 

elements in x , and is defined to be zero if k < j ; 
k 

it x. denotes the product from the .jth to the kth 

elements in x , and is defined to be unity if k < j ; 

T 
3f/3cz 	denotes a matrix, the (ij)th coefficient of which 

is the partial derivative 3f/ 3cs ; 

af/aa denotes a column vector, the ith coefficient of 

which is the partial deHvative 3f 1 /cz ; 

3f/3a denotes a column vector, the ith coefficient of 

which is the partial derivative 3f/3c ; 

1 denotes a vector each of whose coefficients is unity; 
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to context; 
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x € E2 denotes that x is a member of the set c; 

{1} 	
S112   denotes that every member of the set 	is 
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Subscript, superscript, and postscript notation 

A standard notation has been employed throughout the thesis 

as follows: 

a single subscript, for example x. , is used to denote an 

element in a vector, although in some instances this 

has not been rigorously applied and the index i has 

been allowed to take non-positive values; 

a double subscript, for example A 1  , is used to denote an 

element in a matrix; 

a superscript in angular brackets, for example x<1> 	is 

used to denote the ith derivative of x with respect 

to time, conventionally denoted by t 

a superscript in curly brackets, for example x{1} , is used 

as an index label, thus x 	x 	and x 3 	each 

denote a different scalar; 

similarly, * superscript, for example x' , is used to 

distinguish between x and x ; 

any superscript which does not involve angular or curly 

brackets, for example x 1  , is used in the conventional 

sense as a power, in this case x raised to the ith 

power; 

a postscript in brackets, for example x(t) , is used to 

denote the value at t of a scalar variable x which 

is indexed by a continuous variable. 

Numbering in thesis 

The thesis is divided into chapters, referred to as chapter 2 

for example. Chapters are divided into sections and sub-sections, 
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referred to, for example, as section 2.1 and [2.1.4] respectively. 

Equations which are referred to elsewhere in the text are labelled, 

and these are numbered consecutively within sections, and referred 

to as equation (2.1.1) for example. Tables and figures are also 

numbered consecutively in sections and referred to, for example, as 

table 2.1.1 and figure 2.1.1 respectively. 

Characters - Latin lower-case 

a: 	an index variable. 

the n-vector of weight-corrected departures of the vector of 

observations from the regression vector, that is W 1 (y-f). 

an index variable. 

b(t): the p-vector in chapter 7 of expected number of particles 

that will immigrate to each compartment in time t 

n-vectors used in the decomposition of C in chapter 9. 

the n-vector of spectral coefficients (at harmonic 

frequencies) of the error process, used in chapter 5. 

e: 	the base of natural logarithms, that is the constant 2.713... 

the n-vector of departures (either the random variate or its 

realisation) of the vector of observations from the 

regression vector, that is (y-f), except in chapter 9 where 

the departures are weight-corrected, that is W -1  (Y-f) 

the n-vector of regression function values. 

an index variable. 

an index variable. 

an index variable. 

an index variable. 

k: 	an index variable. 
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an index variable. 

in: 	the number of regression parameters. 

n: 	the number of observations. 

n: 	the p-vector in chapter 7 of the expected number of particles 

in each compartment at time zero. 

o(.cst): denotes term of order less than dt 

P: 	the non-negative first integer parameter in the specification 

of a GARMA process, see [2.2.1], which also has specialized 

meanings in different chapters: 

order of difference/differential equations in chapters 

3 and 6; 

number of Markov processes in chapter 4; 

number of compartments in chapter 7. 

p(t): the cumulative probability function used in chapter 8. 

the n-vector of cumulative probabilities used in chapter 8. 

the non-negative second integer parameter in the 

specification of a GARMA process, see [2.2.1]. 

the p-vector in chapter 7 of emigration rates from 

compartments. 

r: 	the degrees of freedom of the conservative estimator of 

variance, JC
e , used in chapter 9, defined in [9.2.18]. 

the p-vector in chapter 7 of immigration rates into 

compartments. 

5: 	general index variable except in chapter 9 where it denotes 

the index of the regression parameter of interest, that is 

t: 	an index variable, conventionally representing time, except 
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in chapter 9 where it denotes the number of vectors 	c {i 	in 

the decomposition of 	C 

the n-vector of observation times, in 	ascending order. 

U: an 	index variable. 

U: an n-vector, the sth column of 	U used 	in chapter 9. 

v: an index variable. 

 a general 	vector which is defined in a specific context. 

 an 	index variable. 

a general 	vector which is defined in a specific context. 

 an index variable. 

x: a general vector which is defined in a specific context. 

Y: an 	index variable. 

the n-vector of observations. 

the n-vector of model residuals, 	that is the departures 	e 

corrected to take account of model covariances by 

z = E)_ 1 
 0 e. 

Characters - Greek lower-case 

a single model parameter. 

a: 	a vector of model parameters whose length depends on the 

specific context. 

8: 	a single regression parameter, that is m is equal to 1. 

8: 	the rn-vector of regression parameters. 

the vector of autocovariarices of the error process. 

the non-negative second parameter in the specification of a 

cGARMA process, see [2.2.7]. 

6t: 	a small positive increment to t 

an arbitrarily small positive number. 



xxv 

the first set of functions, indexed by continuous t 

used in decomposition of variance matrix of cGARMA process, 

see [2.2.7]. 

the first set of n-vectors used in decomposition of variance 

matrix of GARMA process, see [2.2.1]. 

the second set of functions, indexed by continuous t , 

used in decomposition of variance matrix of cGARMA process, 

see [2.2.7]. 

the second set of n-vectors used in decomposition of variance 

matrix of GARMA process, see [2.2.1]. 

a single parameter in a moving average process of order 1 in 

discrete time. 

8: 	a vector of parameters in a moving average process in 

discrete time. 

the square-root of -1, used in chapter 5. 

a single weight associated with an exponential term. 

a variable weight used in [4.5.5]. 

K: 	a vector of weights associated with exponential terms. 

a single rate constant in an exponential term, except in 

chapter 9 where it denotes an eigenvector. 

A(L): a variable rate constant used in [4.5.5]. 

A: 	a vector of rate constants in exponential terms. 

a shift parameter used in chapter 9. 

u(t): the weight function used to specify a fitter in [2.2.8]. 

11: 	a general vector which is defined in a specific context, 

usually to describe weighting constants. 

a parameter used to define a filter in [2.2.8]. 
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a single parameter in an autoregressive process of order 1 in 

continuous time. 

a vector of parameters in an autoregressive process in 

continuous time. 

IT: 	the constant 3.141.... 

p(t): the autocorrelation function of a stationary process in 

continuous time, indexed by continuous t 

the vector of autocorrelation coefficients of a stationary 

process in discrete time, or the correlations between 

consecutive terms in a Markov process, depending upon the 

context. 

cr2: 	a variance term. 

a variance term, usually the scaling parameter in a GARMA 

process, see [2.2.1]. 

the non-negative second integer parameter used in the 

definition of c in chapter 9, see [9.2.11]. 

a single parameter in an autoregressive process of order 1 in 

discrete time. 

a vector of parameters in an autoregressive process in 

discrete time. 

x 2 : 	the central chi-square probability distribution with. i 
1 

degrees of freedom. 	 - 

a vector of parameters in a moving average process in 

continuous time. 

the non-negative first integer parameter used in the 

definition of c in chapter 9, see [9.2.11]. 
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Characters - Latin upper-case 

A{1): scalar random variates, defined in [3.3.2] and used in the 

solution of differential equations. 

A: 	a general matrix which is defined in a specific context. 

C: 	the n by n symmetric matrix used in chapter 9. 

0: 	the random vector of length n of the periodogram used in 

chapter 5. 

the p by p matrix of right-eigenvectors of Q , used in 

chapter 7. 

the n by n complex matrix used in [5.2.2]. 

the identity matrix, the size being specified in each 

situation. 

 a matrix of weights 	associated with exponential terms. 

LM: the negative Gaussian log-likelihood function, defined in 

[2.3.2]. 

the negative of the logarithm of the pseudo-likelihood 

function, used in chapter 5. 

LR: 	the negative residual Gaussian log-likelihood function, 

defined in [2.3.2]. 

L5 : 	the sum of squares function, defined in [2.3.2]. 

N: 	the standard normal probability distribution, except, in 

chapter 8 where it denotes the total number of events in the 

cumulative counts model. 

N(t): the random vector of length p , used in chapter 7, of the 

number of particles in each compartment at time t 

P(t): the p by p matrix used in chapter 7 of transition 

probabilities of particles between compartment in time t 
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the p by p matrix used in chapter 7 of transition 

probability rates of particles between compartments. 

the n by n matrix used to specify generalized least-squares 

estimation in chapter 9, see [9.2.1]. 

the generalized sum of squares, defined in [2.3.2]. 

used as a superscript to denote a vector or matrix transpose. 

the n by m matrix used in chapter 9, defined in [9.2.1]. 

the n by n symmetric positive-definite variance matrix of 

observations y , and therefore also of e , possibly after 

the removal of a scaling parameter. 

W: 	the n by n diagonal matrix of weights. 

the n by m regression design matrix, defined in [2.3.2], 

except in chapter 9 where it is weight-corrected as defined 

in [9.2.1]. 

Y(t): a random variate indexed by continuous t 

a random vector. 

Z(t): a random variate indexed by continuous t , used as input. 

Z: 	a random vector, used as input. 

Characters - Greek upper-case 

F: 	a general n by n lower-triangular band matrix used in 

[2.4.10]. 

a differencing operator acting on the lower-triangle of a 

matrix, defined in [9.2.11]. 

the n by n lower-triangular matrix with bandwidth (q+1) 

used as the second matrix in the decomposition of a variance 

matrix of a GARMA process, defined in [2.2.2]. 
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A: 	a general variance matrix. 

the product symbol. 

the summation symbol. 

an n by n symmetric matrix used in chapter 9, the lower 

triangle being defined by A 2V in [9.2.14]. 

the n by n lower-triangular-matrix with bandwidth (p+1) 

used as the first matrix in the decomposition of a variance 

matrix of a GARMA process, defined in [2.2.2]. 

an n by n symmetric matrix used in chapter 9, the lower-

triangle being defined by M( in [9.2.13]. 

the set of matrices of size n by n considered to be 

possible variance matrices, used in chapter 9. 
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1. Prelude 

1.1 	Introduction 

1.1.1 Least-squares regression 

A fundamental objective, in scientific research is to relate 

variables by means of functional relationships. 	If variables are 

not observed precisely, but subject to experimental errors of 

various sorts, then no function will fit exactly. 	A standard 

statistical technique for fitting functions in this situation is to 

regress observations of one variable, the dependent variate, 

against a function of the observations on other explanatory 

variables. 	In specific applications, objectives inevitably vary 

but often include the following: 

to summarize the data; 

to predict values of the dependent variate for specific 

values of the explanatory variables; 

and 	c) to discover and understand fundamental relationships 

between variates. 

Conventionally in this thesis, the observations are denoted 

by y , a vector of length n , and the values the regression 

function takes, based on the values of the explanatory variables, 

are denoted by f which depends on m unknown parameters 8 

The standard way of estimating these parameters is by the method of 

ordinary least-squares, that is by minimizing the criterion 

function 

(y - f) T (y - f) 
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with respect to a , where superscript I denotes the transpose of 

a vector (or matrix). If f is a function linear in a then 

f = X 8 

for some n by m matrix X commonly called the regression 

design matrix, and 8 is estimated as 

(X TX) 1 X Ty 31 

provided that (xTx) is non-singular, where the superscript -1 

denotes a matrix inverse. 	If f is non-linear in 8 it may 

still be approximated by a linear function, based on a Taylor 

expansion of f in terms of 8 about a value close to the best-

fitting value. 

Under certain assumptions, this method of estimation is 

optimal in the sense that it gives the linear unbiased estimator of 

8 with the smallest variance, and the variance of the estimator 

can be estimated as 

(1.1.2) 	vr() = 

where 	 = T /(n-m) 

and the vector of residuals is defined as 

e=y- X 

1.1.2 Reasons for noticeably correlated residuals 

Two important conditions for 8 to be optimal, and vár(8) 

to be a good estimator of var() , are: 

the functional relationship f is of approximately the 

correct form; 

the individual elements in the vector (y - f) are 

distributed independently of one another with a common 

2  variance  
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If the data exhibit systematic departures from the fitted 

regression curve, that is the residuals are noticeably correlated, 

then it cannot be possible for both these conditions to be true. 

(The term "noticeably" is important because some correlation is 

automatically introduced into the residuals by the process of 

estimating 8 , so that even if conditions (a) and (b) both hold 

var(e) = 2(I - X(X1 XY 1 X 1) ) 

In most applications of regression it is assumed that condition (a) 

is violated; so the emphasis is on finding a suitable alternative 

regression function if systematic departures are encountered. 

However in some situations, for example when data are collected 

serially in time from a single experimental unit, assumption (b) is 

not wholly plausible. 	For serially-structured data, any errors 

causing a discrepancy between ,y  and f may persist over several 

observations, thus manifesting themselves as systematic 	- 

departures. 	This poses a dilemma: when serially-structured data 

depart systematically from a fitted regression is it because the 

function is wrong or is it because the errors are correlated? 

The answer is that it is impossible to distinguish between 

the two alternatives for a single series of serially-structured 

data. To illustrate this, consider a series of data (,y) 

generated by 

Yi = 1 + 82 x + 8 3  sin x 1  + e i 	 for i = 1,...,n, 

where 	x. = i/10 	for i = 1,...,n, 
a   

and 82  are constants, 

8 3  and e are random terms with 

8 3 	N(O,a 2 ) independently of e 

and 	e. 	N(O,T 2 ) independently for i = 1,...,n 

Notation is being used here that will reappear throughout the 
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thesis: y 	denotes the ith element in the vector y  of length 

n , and 83 	N(O,a 2 ) denotes that 63is  normally distributed 

with mean zero and variance a 2 , with the obvious extension to the 

multidimensional case. Two models of the data: 

1) 	y - N(81i + 82x+ 83  sin x , t21) , 8 	N(O,a 2 ) 

ii) 	y 	N(811 + 8 2x , a(sin x)(sin )T + t 2 1) 

are mathematically equivalent because they give identical 

probability densities for y . (Here 1 denotes a vector of l's, 

sin x denotes an n-vector whose ith element is sin x 1  and I 

denotes the identity matrix of size n .) If inference on the 

model parameters is to be made from a single realisation of y 

 al then either t2 
, 	, 8 	and the particular realisation of 8 3  

(ignoring its underlying distribution) may be estimated or 

01 1 82 and a 2  may be estimated. 	However, the form of the 

likelihood is different in the two approaches so the maximum 

likelihood estimators of the common parameters t2 , 8i and  82 

will not agree. 	Also, there are philosophical differences between 

the two methods which have parallels in certain analyses of 

variance: in the first case 83  is treated as a fixed effect, 

whereas in the second case it is treated as a random effect. 	Most 

importantly, in (1), conditioning on 83 	the oscillations about a 

straight line are modelled by a systematic sinusoid plus white 

noise error, whereas in (ii) they are modelled by a correlated 

error structure. Thus there is in some sense an interchangeability 

or duality between the regression model and the error model. 

A sensible compromise would seem to be to require the 

regression function to describe the long-term trends in the 

serially-structured data and the correlations in the errors the 
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short-term fluctuations. 	Of course these are vague terms open to 

different interpretations. 	The final arbiter will be the use to 

which the model is to be put, for example, for a simple summary of 

data it may be preferable for the regression function to explain 

all systematic variability whereas with more fundamental objectives 

a correlated stochastic component may make more sense. 

Predominantly in this thesis the postulated regression 

function will be assumed correct and attempts to improve the fit of 

the model will be channelled into different choices of error 

correlation structure. 	Because of the duality noted above this is 

in no way a restrictive choice to make. 	In the examples 

considered the regression functions do explain most of the 

variability in the data, and an alternative justification for 

concentrating on correlation structures is that they are a more 

parsimonious description of the residual variability. 

1.1.3 Effects of correlated errors on least-squares regression 

There are two well understood consequences of correlated 

errors on least-squares regression estimation. 	In the first 

place, the estimator of var() given in equation (1.1.2) is usually 

biased because if 

y - N(f, t 2 V) 

where V is an n by n symmetric positive-definite matrix, 

then 	var() = 2(XTX)_1XTV X(XTX) 

which will not in general be equal to the expectation of 

both because r 2  will not be an unbiased estimator of t 2  and 

because 

(XTx)_1 * (X TX) 4 x1 V X (XT  X)_1 
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(See for example Judge, Griffiths, Hill and Lee (1980, pp113-117).) 

Typically, if correlations are positive between adjacent 

observations in the serially observed data and consecutive elements 

in each column of X are positively correlated (i.e. the influence 

of B on f changes slowly) then vr() will be biased downwards 

and its use will exaggerate the precision with which 8 is 

estimated. 

The second consequence is that 8 is usually an inefficient 

estimator of 8 . The best linear estimator when V is known is 

the generalized least-squares estimator (Aitken, 1934) 

(XTV4 X) 4 XT V 1y 

provided that (X TVX) is non-singular. The estimator has a 

variance matrix given by 

c 2 (xIvlx) 1  

which will never be larger and will usually be smaller than the 

variance matrix of the ordinary least-squares estimator, 8 

Expressing this more precisely, the difference between var() 

and equation (1.1.3) is always a positive-semidefinite matrix. 

Therefore, least-squares estimation does not make the most 

effective use of the data. 

As an aside, it may be noted that although the least-squares 

estimator of var() is biased, the least-squares estimator of B 

is unbiased whatever form the covariances of ,y  take because, from 

equation (1.1.1) 

E() = (X TX) 1 X 1  E(y) , 

= (XT X)xTx B 
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1.1.4 Solutions 

The regression objectives in a particular problem will bear 

upon the choice of solution to overcome the difficulties of 

[1.1.3]. 	Nevertheless, three broad categories of approach to 

regression parameter estimation when the errors are correlated can 

be identified as follows: 

The easiest option, when faced with correlated errors, is to 

retain the least-squares parameter estimator 8  but discard 

the biased estimate of its variance matrix. 	This is most 

useful when no estimation of precision is required, for 

example when replicates of experimental units are also 

available and between unit variability is of prime 

consideration. 	This strategy can be justified by arguing 

that least-squares estimation is often not very inefficient, 

and is intuitively appealing irrespective of probabilistic 

assumptions as it gives a simply understood summary of a set 

of observations. However, no reliable information on 

precision is available. 

A second approach is to assume that the errors arose from a 

distribution with a particular variance matrix V , where V 

possibly has a few unknown parameters. 	Once these 

parameters have been estimated from the data, 8 can be 

estimated, for example by generalized least-squares. 	More 

simply, regression and error variance parameters can be 

estimated jointly by maximizing the log-likelihood, or some 

variant of it. Thus, provided the correct form of V is 

assumed, 8 can be estimated with asymptotic efficiency and 

approximately unbiased estimates of precision can be. 

obtained. 



c) 	Because of the intuitive appeal of least-squares estimation 

and the dependence of approach (b) on the assumed structure 

for V , a third solution is to make a compromise between (a) 

and (b). 	The least-squares estimator of 8 is retained but 

an estimate of var() is obtained which takes some account 

of the correlations in the errors. 	This approach has the 

potential of yielding valid estimates which are less 

dependent on the assumed structure for V than those in 

approach (b). 

1.2 	Outline of thesis 

1.2.1 Structure 

The thesis divides into two main parts: chapters 2 to 8 are 

concerned with solution (b) in [1.1.4], that is modelling the error 

process; chapter 9 develops a solution in category (c), that is 

the estimation of the variance of 8 without explicit reference to 

V. 	Although, for the sake of generality, section 1.1 dealt with 

correlations of an arbitrary nature this thesis concentrates solely 

on serially correlated errors. 

The key to the variety of models considered in chapters 2 to 

8 is a decomposition of a class of serially-structured variance 

matrices given in chapter 2. 	This enables large variance matrices 

to be manipulated without recourse to handling each element 

separately. 	In chapter 3 the solutions are given for linear 

stochastic difference and differential equations which are used in 

later chapters. 	They are also shown to be examples of the 

processes considered in chapter 2. 
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Two approaches have been used in modelling the error process, 

denoted "empirical" and "mechanistic" by Thornley (1976, pp4-6). 

The empirical method is described by Thornley as consisting of 

"looking at the experimental data, possibly doing some 
analysis of the data, and trying to make an intelligent guess 
at a (usually simple) form of equation or set of equations 
which can be used as a mathematical model and fitted to the 
data." 

In the present context, this means using the structure in the 

residuals to identify an appropriate error model. In contrast 

"a [mechanistic] model can be constructed by looking at the 
structure of the system, by dividing the system into 
components, and by trying to understand the behaviour of the 
whole system in terms of the behaviour of the individual 
system components and their interaction with one another." 

When the processes are understood by which the errors are generated 

these can be used to identify a mechanistic model for the data. 

The distinction between the two approaches is a little 

arbitrary as Thornley admits: 

"It needs to be stressed that there is no clearly defined 
dividing line between the two methods, and it is usual for 
most modelling exercises to contain both empiricism and 
mechanism in varying admixtures. 	It is more a matter of 
emphasis." 

Certainly in this thesis there is a lot of empiricism in the 

mechanistic models. However, the labels serve as a useful 

distinction between two groups of chapters in the thesis. 

1.2.2 Empirical models 

With regard to the empirical approach, it is impossible for a 

single series of observations to be of any help whatsoever in 

choosing among all possible error variance matrices because, in the 

words of Bartlett (1978, p264), 

"dependence has so many more possibilities a priori than 
independence." 
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Therefore gross assumptions have to be made to restrict the 

choice. 	For serially-structured data it may be reasonable to make 

the assumption, common in time series analysis, that the error 

process is stationary, or at least stationary in its first and 

second moments, in which case the correlations between errors 

depends solely on the time separation between them. 	The choice 

then is between modelling the autocorrelation function or modelling 

its Fourier transform, the spectrum. 	In chapter 4, the 

correlations between errors in a regression model based on 

serially-observed data are modelled, beyond a particular fixed time 

separation, by a sum of exponentials. 	In chapter 5, the spectrum 

of the error process is modelled instead, an approach inspired by 

Robinson (1978). 

1.2.3 Mechanistic models 

There are vast numbers of mechanistic models of which three 

particular types are considered in chapters 6, 7 and 8. 	In 

chapter 6, linear stochastic difference and differential equations 

are used: a first-order model is used to describe the variations 

in a cow's milk yield over its lactation, developing from the work 

of Ohanoa and Le Du (1982); and a second-order model is used to 

describe the growth in an animal's weight. 	This aproach to 

modelling growth was stimulated by Sandland and McGilchrist's 

(1979) paper in a special review issue of Biometrics. 	A second 

paper in the same issue (Matis and Wehrly, 1979) prompted the use 

of stochastic compartment models in chapter 7. 	These are used to 

model pharmacokinetic data and data on transport systems within a 

leaf. 	Finally, in chapter 8 a related model is used to describe 

cumulative seed germination counts. 
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1.2.4 Data sets 

Each of chapters 4 to 9 consists of initial sections of 

mathematical development followed by applications to real data. 

The techniques have been illustrated and explored using six data 

sets. 	Three sets consist of single series of observations and 

have been used in chapters 4 and 9: 

Colquhoun's data, 124 observations on the relaxation current 

flowing through the end-plate membrane of a muscle fibre 

following a voltage jump, modelled by a sum of exponentials 

(Coiquhoun, 1978); 

Dale's data, 138 observations on the radioactive emission 

from a wheat leaf after it has been fed 14C , modelled by a 

sum of exponentials (Bauermeister, Dale, Williams and Scobie, 

1980); 

C) 	Bruce's data, 200 observations on the daily energy demand of 

a mechanical model of a suckler cow, modelled by non-linear 

multiple regression (Burnett and Bruce, 1978; Bruce, 1980). 

Also, Colquhoun's data have been used in chapters 5 and 7 and 

Dale's data in chapter 7. 	The other three data sets are multiple 

series of observations: 

Neilson's data, between 32 and 44 observations on the milk 

yields of each of 23 cows (Neilson, Whittemore, Lewis, 

Alliston, Roberts, Hodgson-Jones, Mills, Parkinson and 

Prescott, 1983); 

Thiessen's data, between 82 and 133 observations on the 

weights of each of 5 cattle (Thiessen, Hnizdo, Maxwell, 

Gibson and Taylor, 1984); 



- 12 - 

f) 	Naylor's data, between 7 and 12 observations on the 

germination counts of seeds in each of 33 petri-dishes 

(Hunter, Glasbey and Naylor, 1984). 

Neilson's and Theissen's data have been used in chapter 6 and 

Naylor's data in chapter 8. 

All the regression functions used are non-linear in their 

parameters but this is not particularly restrictive since, once 

correlations are introduced, any linearity in the model is 

automatically lost. 	As a consequence, estimation has to proceed 

iteratively and variances of estimators are at best an 

approximation. 

1.3 	Review of literature 

1.3.1 Tests for autocorrelation 

The standard test for uncorrelated errors against the 

alternative of serially correlated errors, when fitting regression 

models, is based on the Durbin-Watson statistic (Durbin and Watson, 

1950, 1951, 1971). 	This is a function 

- 	)2 / 

i=2  

of the n-vector of residuals, e , and is approximately equal to 

2(1 - p1) 

where p1  is the sample autocorrelation of the residuals at lag 

one (in other words it is the average correlation between adjacent 

residuals). 	The test employs small-sample significance levels 
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which take account of the correlation among the residuals induced 

by regression fitting, and has been widely used, particularly in 

econometrics. Johnston (1972, pp249-258) discussed 	it and 

alternatives. Weber and Monarchi 	(1982) reviewed more recent 

work. 

A deficiency of the Durbin-Watson test is that it tests only 

for correlation at lag one, and thus may miss correlation at other 

lags. 	If the. sample size is sufficiently large for the effect of 

the regression fitting to be ignored, then the approximate 

distribution of the sample autocorrel at ions for stationary 

processes is well understood, see for example Box and Jenkins 

(1976, pp34-36). 	In particular, if errors are independent then 

the sample autocorrelations of the residuals are asymptotically 

independent normal deviates, each with mean zero and variance 1/n. 

Therefore the assumption of independence can be tested. 	Various 

statistics have also been developed to help choose from among a 

class of linear processes called autoregressive-moving average 

models (ARMA models). 	A recent, development is to introduce an 

array of statistics termed generalized partial autocorrelations 

(Glasbey, 1982). 	These will be described further in chapter 4. 

If the model that is fitted includes lagged values of the 

dependent variate, then this affects the sampling distribution of 

the residual autocorrelations. 	Box and Pierce (1970) derived the 

asymptotic distribution of the autocorrelations of ARMA residuals 

and Pierce (1971a) showed the results still to be valid if a 

regression function is fitted as well as the ARMA model. 	The 

portmanteau statistic which they proposed for testing model 

inadequacy, essentially the sun of squares of the sample 
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autocorrelations at low lags, was later modified by Ljung and Box 

(1978). 	They changed the weights given to different terms in the 

sum of squares statistic in order to improve the rate of 

convergence to an asymptotic x 2  distribution. Ansley and Newbold 

(1979) recommended instead the examination of autocorrelations at 

each, lag separately. 

In a related situation, Ripley (1981, pp98-101) discussed 

statistics for testing for uncorrelated errors where data are 

spatially, that is two-dimensionally, structured rather than 

serially, that is one-dimensionally, structured. 

1.3.2 Duality between regression misspecification and correlated 

errors 

Once it has been identified that residuals are autocorrelated 

the question arises as to how the model is to be changed to 

accommodate them. The choice is between changing the regression 

function and specifying a correlated errors structure, but the 

duality between these alternatives has received little attention in 

the literature. 	When noticeably correlated residuals have been 

encountered in situations where there has been no a priori reason 

to assume the errors to be independent (such as with serially-

structured data) it has been conventional to attribute all lack of 

fit to correlation in the errors. 	A noteworthy exception is the 

attention given by Chatterjee and Price (1977, pp123-142) to the 

problem. 	They devoted a chapter to it, gave an example of 

correlated residuals which were explained by an omitted explanatory 

variable, and in general advocated the introduction of correlated 

errors into a model only as an action of last resort. 
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The duality can appear in many guises, two particular 

instances are: Blight and Ott (1975) used the duality when they 

described the departures of a polynomial approximation from an 

exact function by a first-order autoregressive (AR(1)) process; 

and Woodward and Gray (1983) showed that an eleventh-order 

autoregressive (AR(11)) process and a deterministic sinusoid 

together with a second-order autoregressive error process are 

almost equivalent models of the famous lynx data. 	In discussing 

the approximate duality between the two models they expressed a 

preference for the AR(11) process because of a lack of any 

justification for fitting a sinusoid. 	However, one could equally 

well argue the lack of justification for fitting an AR(11) process! 

1.3.3 Effects of correlated errors on least-squares estimators 

If it is decided that correlated residuals are caused by 

correlated errors then one pertinent question is "How poor are the 

least-squares estimators?", because if little efficiency has been 

lost then a more complicated analysis may be unnecessary. The 

efficiency of regression parameter estimators depends on both the 

design matrix X and the error variance matrix T 2 . 	A common 

assumption is that V is derived from a first-order autoregressive 

(AR(1)) process with parameter 0 , where 101 < 1 (therefore 

V ij
= 	

if I > j) 	and X is a known single column that 

follows an independent AR(i) process with parameter x , where 

N < 1 . 	The efficiency of the least-squares regression 

parameter estimator 8 , that is the ratio of the variance of the 

generalized least-squares estimator to the variance of the 

least-squares estimator, is 
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(1 - 	2)(i - x) 	- 

(l+ 2 -2x)(1+Ox) 

see for example Malinvaud (1980, pp510-513). 	Provided 	lies 

between 0 and 0.5 the efficiency remains above 58%, although as t 

approaches 1 the efficiency drops to 0%. 

This basic approach is open to many generalizations, for 

instance in recent work Chipman (1979) and Kramer (1980) have 

considered more general design matrices X , but the same AR(1) 

error process as above. Chipman showed that the ordinary 

least-squares estimators of the regression parameters in a simple 

linear trend are never less than 75% efficient provided that 	is 

positive. 

More generally, the least-squares estimator is equivalent to 

the generalized least-squares estimator, and is thus fully 

efficient, if and only if the design matrix is expressible as 

X=AB, 

where A is an n by m matrix consisting of m of the 

eigenvectors of V and B is a nonsingular m by in matrix. 

(This was proved in generality by Zyskind, 1967.) 	However, even 

when the estimator is efficient, the least-squares estimator of its 

variance will usually be biased. 	For example, in the above case 

of AR(i) processes the relative bias of the variance estimator is 

[E(vr()) - var(8)]/var( ) =! In - 1 + 4X 
	1 - 4X 

- 1 
n-i 	i - qx 	1+4x 

where n is the length of the series (Judge, Griffiths, Hill and 

Lee, 1980, p178). 	Therefore, in particular, if both 0 and x 

are positive the variance estimator is downward biased. 
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Watson (1955) found the matrices X which, conditional on 

V , gave the most extreme biases in least-squares estimators of the 

variances of the regression parameter estimators and the lowest 

efficiencies of regression parameter estimators; the bounds were 

expressible in terms of the eigenvalues of V . (Bloomfield and 

Watson (1975) gave a corrected proof of one theorem). Watson and 

Hannan (1956) applied these results to the situation of 

autoregressive-moving average processes by obtaining approximate 

expressions for the eigenvalues of V , but unfortunately the 

bounds they obtained were very wide. Tighter bounds can be derived 

by making more specific assumptions about X and V , but there 

seems to be no end to the possibilities that can be considered. 

Judge, Griffiths, Hill and Lee (1980, pp174-179), in their book, 

give a more comprehensive review of the subject. 

1.3.4 Empirical models 

If errors are correlated, then one way of overcoming the 

deficiencies of ordinary least-squares estimation is to model the 

error covariance structure and re-estimate the regression 

parameters. There is a large literature on regression parameter 

estimation with empirically chosen error models. 	Cochrane and 

Orcutt (1949) proposed an iterative least-squares method for 

incorporating an AR(1) error process. 	Initially, 

- X 8) - 	X a) i_112 

i=2  

is minimized with respect to 8 with 0 set to zero, obtaining 

, where (y - X 	denotes the ith coefficient in the n-vector 

y - X 8 . Then 0 is estimated by minimizing the above sum of 



squares with 8 held constant at 8(1} , which gives 	, and 

8 can be re-estimated with 4,  held constant at this value. After 

several repeats of this procedure, values converge to give final 

estimates of 8 and 	. Anderson (1954) reviewed this and other 

early work. 	Rao and Griliches (1969) compared various procedures 

by Monte Carlo simulation and recommended Durbin's (1960) method 

which also has the advantage of being able to handle any order of 

autoregressive process, although Spitzer (1979) cast doubt on their 

results and found full maximum likelihood estimation preferable. 

Developments in computers since the early 1960's have removed 

the need for ad hoc estimation procedures as an approximation to 

full maximum likelihood estimation and restrictions to linear 

regression with autoregressive error models. 	The result has been 

a series of papers exploiting different generalizations: Duncan 

and Jones (1966) allowed for a general stationary error process; 

Pierce (1971b, 1972) and Harvey and Phillips (1979) used ARMA error 

models; Gallant and Goebel (1976) and Glasbey (1980) handled 

non-linear regression functions. 	Another variation was the use of 

residual maximum likelihood (Cooper and Thompson, 1977) in which 

error parameters are estimated only in the sub-space of the data 

orthogonal to the regression model (this is specified further in 

section 2.3). 	In other papers, regression curves were fitted when 

errors were correlated, but with a particular example in mind. 

For example, Campbell and Walker (1977) fitted a sinusoid plus an 

AR(2) error model to the lynx data, Glasbey (1979) fitted 

generalized logistic curves with AR(1) errors to cattle weights, 

and Crowder and Tredger (1981) fitted exponentially damped 

polynomials with AR(1) errors to biological recovery data. 
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The above techniques draw heavily upon the time series 

literature, for which the fundamental text on ARMA models is Box 

and Jenkins (1976). 	Newbold (1981) recently reviewed the rapidly 

expanding literature. 	Nearly all of the empirical error modelling 

has been with observations equally spaced in time. This reflects a 

preoccupation in the time series literature because, although some 

interest has been shown in missing observations, for example Ljung 

(1982), very little has been done with other types of unequal 

spacings. 	Exceptions are the early paper by Quenouille (1958), 

and recent work on AR(1) processes (Robinson, 1977) and spectral 

analysis (Gaster and Roberts, 1977). 	In the case of spectral 

analysis this offers the oportunity of avoiding the aliasing 

associated with equally spaced observations. 	A related topic, 

observations of a continuous process at discrete times, has 

received some attention recently and been reviewed by Jones 

(1981). 	Phadke and Wu (1974) modelled sunspots data using a 

continuous analogue of an ARMA(2,1) process. 	Pandit and Wu (1975) 

studied the identifiability of parameters in second-order 

stochastic differential equations. 

Another type of empirical error model has been encountered in 

regression with spatially correlated errors. This is a recent 

development (see for example Cliff and Ord, 1981, pp231-240) which 

has been used by Cook and Pocock (1983) in analysing geographical 

mortality data. 	Nearest-neighbour adjustment in the analysis of 

designed experiments is a special case of regression with 

correlated errors (Atkinson, 1969). 	There has been a lot of 

recent interest, see for example the paper by Wilkinson, Eckert, 

Hancock and Mayo (1983) and the ensuing discussion. 
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1.3.5 Growth models 

One particular situation in which correlated errors are 

encountered is in the study of growth, which has had a long 

history, and data have been analysed in many ways. 	Two 

predominant strands in the literature have been biological and 

statistical. 	In the biological approach, non-linear regression 

functions have been proposed which supposedly come close to 

representing the true processes in growth, but the statistical 

techniques by which these curves are fitted to data are often quite 

inadequate. Whereas statistical methods have concentrated on good 

estimation procedures, but have inclined towards linear regression, 

in particular using polynomial functions which made no biological 

sense. A large number of references, primarily to the biological 

approach, are given by Kowalski and Guire (1974). 	A series of 

statistical papers on the analysis of multiple series probably 

reached its apotheosis with the work of Grizzle and Allen (1969). 

The relationship between biological and statistical models was 

discussed by Finney (1978). 

Another statistical approach has been to model growth of 

individuals by means of stochastic difference or differential 

equations. 	First-order equations were considered by Finney (1958) 

and by Mitchell (1968). In a review article, Sandland and 

McGilchrist (1979) tried to unify the statistical and biological 

strands by incorporating stochastic variability into biologically-

realistic differential equations and tying in recent work on 

population dynamics. 
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1.3.6 Stochastic compartment models 

Deterministic compartment models have been in use for some 	- 

considerable time, but stochastic generalizations are quite a 

recent development which have been reviewed from a statistical 

perspective by Matis and Wehrly (1979) and from a mathematical 

perspective by Purdue (1979). 

The simplest and most commonly chosen form of stochasticity 

(termed P1 by Matis and Wehrly, 1979) is that arising from having 

only a finite number of particles in a system, each behaving 

independently with constant transition probability rates between 

compartments. 	The result is a Markov process in continuous time 

on a discrete state-space, see for example Cox and Miller (1965, 

pp178-186). 	Kodell and Matis (1976) considered the fitting of a 

two-compartment stochastic model which allowed emigration, although 

not immigration, and estimated the rate constants by generalized 

least-squares from the number of particles in each compartment at 

various times. The variance matrix, which took account of the 

correlations over time generated by the stochastic model, has a 

particular structure which simplified its inversion. Matis and 

Hartley (1971) had previously considered the fitting of a larger 

model by generalized least-squares, but using only the total number 

of particles in the system at different times. The method was only 

applicable to small data sets because the variance matrix had to be 

inverted explicitly. One reason for the use of generalized 

least-squares is that the exact distributions yield a very 

complicated likelihood function. An alternative approach, due to 

Lehoczky and Gayer (1977), is to approximate the stochastic model 

by a diffusion process, and then fit this to the data by exact 

maximum likelihood estimation. 
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There are a multitude of ways in which the above simple form 

of stochastic compartment model can be generalized, such as: 

allowing the transition rates to vary with time, removing the 

Markovian property, introducing dependence between particles and 

thus losing linearity. Invariably, in all these cases, the 

mathematical analysis is far in advance of statistical techniques 

for identifying and fitting appropriate models to observed data 

sets. 

1.3.7 Model misspecification 

Whether the error model has been chosen empirically or 

mechanistically, very little attention has been given to the 

consequences of the assumed model not being correct. 	Engle (1974) 

showed that if errors are from an AR(2) process but are assumed to 

be from an AR(1) process, then the ordinary least-squth-es 

regression estimators can be more efficient than the assumed 

maximum likelihood estimators. 	Patterson and Silvey (1980), faced 

with covariances of a non-serial nature when combining results from 

series of experiments, commented: 

"errors in the estimation of variance parameters can 
seriously affect the accuracy of estimated variety means. 
On the other hand, use of too simple a variance model can 
result in loss of efficiency and biased estimates of error." 

Thus, there is a problem that has been recognised only occasionally 

and seemingly never solved. 

1.3.8 Distribution of estimators 

For a single series of correlated observations there is no 

true replication. Therefore the sample is only of size one and 

the asymptotic properties of maximum likelihood estimators (as 
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described, for example, by Cramr, 1946, pp500-506) are not 

applicable without changes in assumptions. For example, as 

Bartlett (1978, pp264-271) indicated, there are ways round the 

problem fOr stationary processes, such as the approach of Mann and 

Wald (1943) and Anderson (1971, pp188-211) for linear stochastic 

difference equations. 	However, the same properties do not 

necessary hold for non-stationary processes; for example White 

(1958) showed that for the explosive AR(1) process the 

least-squares estimator has a limiting Cauchy distribution. 

When a regression term is also present the asymptotic 

properties depend on the form the regression takes with increasing 

sample size (Jennrich, 1969); for example, estimators of transient 

parameters will not converge to their true values as the sample 

size increases (Crowder, 1976). 	This highlights the arbitrariness 

of appealling to asymptotic properties: it is usually a totally 

artificial question to ask what form a regression function takes as 

the sample size increases beyond the actual number of observations; 

I could suppose it did anything that suited my purposes such as 

genuinely replicating (that is f 	 =f19  f n+2 = f 2  , etc) and so 

avoid transient parameters. The real question, which has seldom 

been addressed theoretically, is whether the actual sample size is 

large enough for asymptotic results to be a good approximation. 

So much for a general discussion; the pertinent issue here 

is the appropriateness of asymptotic theory of parameter estimators 

and likelihood ratio tests to the preceding models. 	These may be 

grouped into three categories: 

a) 	Empirical models consisting of non-linear regressions with 

stationary error processes fitted by maximum likelihood or 
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asymptotically equivalent variants. 	These fall within the 

cases considered in the above discussion so results are 

asymptotically valid although, if observations are unequally 

spaced, their distribution in time must satisfy constraints 

(Robinson, 1977). 	For actual sample sizes the 

approximations may not be so good, and in particular 

distributions of non-linear parameter estimators may be skew 

(Ross, 1978). 

If growth is modelled by non-stationary solutions of 

stationary differential equations, then long-term solutions 

will be stationary and so be of the same type as (a) except 

for start-up parameters which are only transient. 	But, as 

argued above, outside the bounds of the data, issues of this 

sort are artificial and to all - intents and purposes we are in 

situation (a). 

For stochastic compartment models Gaussian estimators 

(Whittle, 1961) are used instead of maximum likelihood 

estimators. 	There is a form of replication in these types 

of data because each particle in the system behaves 

independently. 	Chiang (1956) showed that regression 

parameter estimators approach asymptotic efficiency as the 

number of particles increases even if the number of 

observation times remains constant. 	However, these results 

do not apply to variance parameter estimators whose variances 

may include fourth order terms (see for example, Fisk, 1967). 
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2. Regression parameter estimation with generalized 

autoregressive-moving average errors 

2.1 	Introduction 

In this and the following chapter the ground is prepared 

before the consideration of specific models in chapters 4 to 8 

involving regression with serially correlated errors. 	Initially, 

a class of serially-structured variance matrices is defined and 

some simple mathematical properties are elucidated. 	Statistical 

and computational features are then considered for estimating 

regression parameters with error variances in this class. 

In order to estimate regression parameters by maximum 

likelihood when the errors are correlated it is often necessary to 

handle a large variance matrix. 	The evaluation of elements in 

this matrix and repeated inversion of the matrix in the course of 

an iterative estimation procedure can be prohibitively expensive in 

computer time. 	For this reason a large body of literature has 

built up expounding methods of evaluating the likelihood for 

particular types of covariance structure without explicit use of 

the variance matrix. 	This chapter is a continuation of the 

tradition. 

In section 2.2 a decomposition into lower-triangular band 

matrices is found for a large class of serially- structured variance 

matrices. 	This enables a wider class of covariance structures to 

be used than have previously been considered in the literature. 

The form of decomposition prompts the name "generalized 

autoregressive-moving average" (GARMA) processes. 	A large number 
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of serially-generated stochastic processes are demonstrated to be 

of this type including discrete realisations of a class of 

continuous processes. 	The decomposition is the key which enables 

the wide range of models considered in chapters 4 to 8 to be fitted 

to data. 

In section 2.3 the use of the decomposition is set within the 

context of regression parameter estimation with GARMA errors. 

Choices of optimization criteria and algorithms and approximations 

to the variances of parameter estimators are also considered in 

this section. 

Finally, in section 2.4 a computer program, REGAME, is 

described which implements the techniques of section 2.3. 	This 

program has been used to fit the models considered in chapters 4 to 

8. 

2.2 	The generalized autoregressive-moving average structure 

2.2.1 Definition of a GARMA (p,q) process 

I will start with a rather technical definition. Its purpose 

will become clearer in [2.2.2] and its meaning should be clarified 

by the examples that follow. 

A random vector e of length n is defined to be a 

generalized autoregressive-moving average process of orders p and 

q , denoted GARMA (p,q), for non-negative integers p and q , if 

var(e) = T  2v 

where r 2  is a positive scaling parameter, V is an flxfl real, 

symmetric positive-definite matrix and there exist, possibly 
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complex, vectors C {k}  and n 
{k} 

 of length n for k=1,.. . ,p 

such that for j = i,...,n , if p>O , then 

(2.2.1) 	V 	

= 	

{k}{k} 	for i > j+q-p+1 
k=1  

and if p=O , then 

= 0 	 for i > j+q+1 

This statement needs some explanation. 	The structure of V 

may become clearer by taking as an example a GARMA(1,1) process 

with n equal to 5, then 

V = 	V,1C2nl3Tl 	4i 	C5 

11 

1 

V22 
	C3 n2 	V2 	Y2  

3fl 	V33 	4 T13 	5 r 3  

4i 	C4 T 2 	C4 n3
V44 
	C5 n4 

5111 	C5"2 	 V55 

The use of the name GARMA process will become apparent in [2.2.4]. 

It may be noted that diagonal, and some off-diagonal, elements of 

V are undefined in equation (2.2.1) when q is greater than or 

equal to p , although they are implicitly constrained by the 

restriction that V is positive-definite. 	Also, elements close 

to the diagonal are defined twice in equation (2.2.1) when q is 

less than (p-i) , so that for example 

P 
- v 	{k} {k} 

'i i+1 -- 1 	C.j 	1+1 
k=1 

but because V is symmetric 

V 	 {k} {k} 
i 	

= 
,i+i. 	V +i1 = 	ci+1 T i 

k=1 

which places constraints on possible values for 	and 

for k = l,...,p 



2.2.2 Decomposition of V 

- 	If V is the variance matrix of a GARMA (p,q) process then 

there exist nxn real, lower-triangular, band matrices D and 0 

with bandwidths (p+1) and (q+1) respectively such that 

eoT 

(A lower-triangular band matrix with bandwidth (2.+1) has zero 

elements above the diagonal and after z terms below the 

diagonal.) 

To prove this, define ' by: 

0 	 = 1 	 for i = 1,...,n;ii  

0 
i,i-min(p,i-q-1)'"'i,i-1 	 for i = q+2,...,n, 

are any real solution of the simultaneous linear equations 

min(p,i-q-1) 
(2.2.2) 	 = 0 for 9.  

C) 	0 	 = 0 	 otherwise.ij  

One point in this definition which requires clarification is 

equation (2.2.2) which consists of (i-q-1) equations in 

min(p,i-q-1) unknowns, so if i>p+q+1 there are more equations 

than unknowns and a solution does not necessarily exist. 	However, 

j is less than or equal to p and 9. is greater than q 

therefore (i-j)(i-9.)+q-p+1 and equation (2.2.1) can be used to 

substitute for V 1 _3,1 _ 	in equation (2.2.2) giving 

P 	
k m  {} 	 {k} = 0 
	for  

k=1 
	1-9. 	 1,1-3 	1-3 

which is satisfied by any solution of 

min(p,i-q-1) 

j=O 
	ili-jCi-j= 0 	for k=1,... ,p 
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This consists of p equations in min(p,i-q-1) unknowns and so 

does have a, possibly complex, solution which is also a solution of 

equation (2.2.2). But because V is real the real part of the 

solution is also a solution of equation (2.2.2). 	Therefore a 

real, not necessarily unique, solution of equation (2.2.2) always 

exists. 

To illustrate the definition of ' , consider the example of 

a GARMA(1,1) process with n equal to 5. has a bandwidth of 2 

and is defined to be 

	

1 	0 	0 	0 	0 

1 	0 	0 	0 

	

o 	- 3/c2  1 	0 	0 

	

o 	0 	 1 	0 

	

U 	0 	0 	 1 

Returning to the proof, from the definition, 0 is real and 

is also lower-triangular with bandwidth (p+1) because 

	

ij = 0 
	when either j>i or j'(i-p 

for i=1,.. .,p 

When jq+1 

i-i 

' 	. Z 'i,i-j - 	L 	' 	_. h v j_j , j_ 	- 
£= i-n 

because 	 = 0 	when 9..<j, so in particular when zq 

and 	('i V)1 	= 0 	when £>q from (b) above. 

Therefore, because (o V o T)  is also symmetric, it has a bandwidth 

of (2q+1), meaning that after q terms off the diagonal all 

elements are zero. 	It is also positive-definite because V and 

o  are positive-definite, so by the Cholesky triangular 

decomposition there exists a real lower-triangular matrix G with 

bandwidth (q+1) such that 
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(See for example Wilkinson and Reinsch (1971, pp50-56).) 

- 	For the example already considered 

( 	V) = 

	

V11 	 2T 1 1 	 c31 	 4Th1 

12% 	V22 	 42 	 5h12 

0 (c 3 n 2 -V 223I 2 ) (V 33-ri 2/ 2 ) t 4 (n 3 - 3n 2/c) 5 (n 3 - 3 fl 2/ 2 ) 

	

0 	 0 	( 4 n 3 -V334/ 3 ) (V 44-n3/ 3 ) C 5 (r14- 4n 3/C3 ) 

	

0 	 0 	 0 	( 5 n4 -V445/z 4 ) (V 55-n4I 4 ) 

which has zero elements after one term below the diagonal, and 

( 0 V T
)  = 

	

V 11 	 0 	 0 	 0 

	

C2flj 	V 22 	( 32 -V223/ 2 ) 	0 	 0 

0 ( 32 -V 223I 2 ) 	( v )33 	( 4 r,3 -V 334/ 3 ) 	0 

	

0 	 0 	( 4 n 3 -V 33 t 4I 3 ) 	( V 	)44 
	

(.5r,4-V445/4) 

	

0 	 0 	 0 	( 5 n4 -V445/ 4 ) 	( V 

where (0 V, 
 T )  

for 1=3,4,5, 

which has a bandwidth of 3. 

It is convenient at this point to note for future use that 

and 	 l2 = 

Not only does the definition of a GARMA process in [2.2.1] 

imply that V can be decomposed into lower-triangular band 

matrices, but also if V can be so decomposed, then it is a GARMA 



31 

process, provided P 	 is non-zero for i > p+q+1 . Because 

this is of no practical importance only a brief sketch of the proof 

is given below. 

If ( V 
1) 
 has a bandwidth of (2q+1) then, because of the 

structure of . 	, for j = 1,...,n 

(2 = 0 	 when i+p > j+q+1 

Therefore 

I +p 
Vii = 
	

i+p,k Vkj 
P,i k=i+1 

when i > max(.j+q-p+1,q+1) 

i+p+1 

'i+p+1,k Vkj  
'i+p,i 	'i+p+1,i+1 k=i+2 

I 
+ 	

i+p,k Vki } 
k=i+2 

by substituting for V 1  

n 
= 	

A i k V kj 
k=n-p+1 

after repeated substitution, for some coefficients Ajk  which do 

not depend on i . 	This is a restatement of equation (2.2.1) 

except for the case when— j < p and i lies between (j+q-p+1) 

and q which requires special treatment and will not be considered 

here. 

2.2.3 Numerical example of decomposition for GARMA(1,1) process 

To illustrate the preceding algebra, suppose that e is a 

vector of length 5 with a variance matrix 
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V = 	1.0 	0.5 	0.333 	0.25 	0.2 

	

0.5 	2.0 	0.667 	0.5 	0.4 

	

0.333 	0.667 	3.0 	0.75 	0.6 

	

0.25 	0.5 	0.75 	4.0 	0.8 

	

0.2 	0.4 	0.6 	0.8 	5.0 

This matrix satisfies equation (2.2.1) with p and q equal to 1, 

	

= 	(1.0, 	0.5, 	0.333, 0.25, 	0.2) 

and 	 = 	(1.0, 	2.0, 	3.0, 	4.0, 	5.0). 

Therefore e is a GARMA(1,1) process. 

From [2.2.2] c is defined to be 

	

1.0 	0.0 	0.0 	0.0 	0.0 

	

0.0 	1.0 	0.0 	0.0 	0.0 

	

0.0 	-0.667 	1.0 	0.0 	0.0 

	

0.0 	0.0 	-0.75 	1.0 	0.0 

	

0.0 	0.0 	0.0 	-0.8 	1.0 

from which it follows that 

	

(0 V T) = 	1.0 	0.5 	0.0 	0.0 	0.0 

	

0.5 	2.0 	-0.667 	0.0 	0.0 

	

0.0 	-0.667 	3.0 	-1.5 	0.0 

	

0.0 	0.0 	-1.5 	4.563 -2.4 

	

0.0 	0.0 	0.0 	-2.4 	6.280 

and 

	

= 	1.0 	0.0 	0.0 	0.0 	0.0 

	

0.5 	1.323 	0.0 	0.0 	0.0 

	

0.0 	-0.504 	1.657 	0.0. 	0.0 

	

0.0 	0.0 	-0.905 	1.935 	0.0 

	

0.0 	0.0 	0.0 	-1.24 	2.177 

which is a lower-triangular matrix with a bandwidth of 2 
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2.2.4 Interpretation of GARMA property 

If e is a GARMA (p,q) process then, defining an n-vector 

I by 

(2.2.3) 	Oz= o e 

it follows that 

var(z) = T 2 	1 0 v 

= r21 , 	 I 

where I is the identity matrix of size n . 	Therefore 

e 	
i 

.= - 	e i 
	

... 	e 
i 
 +0. 

i 
 z 

i 
 +...+0 . 	z. i 	,i-1 -i 	- i,i-p -p 	i 	 i,i-q i-q 

for i=max(p+1,q+1),...,n, 

where coefficients of z are uncorrelated and have equal 

variance. 	When z is normally distributed, this has the 

appearance of a finite realisation of an autoregressive-moving 

average process (see for example, Box and Jenkins, 1976 pp73-78), 

but with the non-constant parameters, hence the name "generalized 

autoregressive-moving average process". 

I have found the analogy with an ARMA process helpful in 

understanding the property defined by equation (2.2.1), although in 

many applications the decomposition in [2.2.2] may be no more than 

a mathematical trick. 	Use of the name GARMA process is.misleadi.ng  

to the extent that it may neither represent a finite sample from an 

infinite-dimensional process, as is the case for an ARMA process, 

nor a true generating mechanism. 

If e is a GARMA(1,0) process, then it has the second-moment 

property of a non-stationary Markov process because 

e = - 	 + 01 z 	for i=2,.. .,n ; 

and if e is a GARMA(p,q) process, with qp-1 , then it may in 

certain circumstances be represented as a sum of p Markov 
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processes, the kth of which has variance 	with 

- 	 = 	{k} {k} 	
for 

provided these matrices are all real and positive-definite. 	This 

is because e can be represented as 

k=l 

where eCk) 
 is a vector of length n , distributed with a variance 

matrix of v{kJ , and is hence a GARMA(1,0) process and a Markov 

process. 

GARMA processes also have similarities with the linear 

processes used by control engineers. 	Harvey and Phillips (1979) 

have used this association in the case of ARMA processes to 

evaluate the likelihood by means of the Kalman filter, a technique 

developed by control engineers (see for example, Priestley, 1981b, 

pp807-815). 	The technique, which is also applicable to GARMA 

processes, involves giving a state-space representation of a 

process in terms of a multidimensional Markov process. 

2.2.5 Examples 

Any flxfl real, symmetric positive-definite matrix V can be 

expressed as 

Vij 

= 	

{k} {k} 	
for i>j 

k=1  

using its eigenvectors, and so is the variance matrix of a 

GARMA(n,n-I) process. 	Alternatively, and trivially, V is the 

variance matrix of a GARM4A(O,n-1) process because there are no 

elements V ii  for which ij+n , so equation (2.2.1) does not 

apply. 	The examples below are not of this meaningless type; p 

and q take values close to zero. 
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In chapter 3 it will be shown that the solutions of linear 

stochastic difference and differential equations with constant 

coefficients are GARMA processes. 

The autocorrelation coefficient at lag £ of an ARMA(p,q) 

process is 

P 	LX 

	

= 	Ke k 	 for Lq-p+1 
k=1 

where K1 , ...,K 	 and A 1 , ..., A 1 	are constants (see chapter 

4). 	Therefore 

V
p 

= p 1 _i  = 	(Kke Ak 
	JAk 
)(e 	) 	for ij+q-p+1 

k=1 

and so, as already alluded to in [2.2.4], the process is a 

GARMA(p,q) process. 	Also, non-stationary ARMA processes, ARMA 

processes with non-constant variances and ARMA processes with 

missing values are all GARMA processes. 

C) 	In chapter 7 it will be shown that the solution of a type of 

stochastic compartment model is a GARMA process. 

In chapter 8 it will be shown that the cumulative number of 

random events form a GARMA process. 

To illustrate the variety of GARMA processes consider 

regression with random coefficients. 	If 

_ (X a. a2  I) 
which means that conditional upon 8 , e is distributed with a 

mean of X a and a variance matrix of a 2 1 , where 8 is a 

p-vector with 

(ci, A) 

	

p 	p 
then cov(e1e)= I (Xik)( 	AkLXjZ) 	for bj+1 

	

k=1 	L1 

and e satisfies the definition in [2.2.1] and so is a GARMA(p,p) 

process. 
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2.2.6 ProDerties 

If e is a GARMA(p,q) process then many simple variates 

derived from e are also GARMA processes. 	Examples include the 

following: 

The moving average of length L+1 	I ui*geg 	is a 

GARMA(p,q+L) process because 	
g=i-2. 

i 
coy ((I Pi_g eg ) 	( 

g=i- 	 h=j-2. 

	

=
i-gj-h 	 if i-j+q-p+1 

g=i-9. h=j- 	 k=1 

by substituting for the variance of e from equation (2.2.1) 

= T 	 ( 
I  P_ 9 	

k} )( 	 k} )  

k=1 g=i- 	 h=j-z 

if ij+(q+)-p+1. 

This is a variance matrix of the same form as equation (2.2.1) but 

with q replaced by (q+.), so the new process is a GARMA(p,q+..) 

process. 

The sin of elements in e , is a GARMA(p+1,q) process because 

I 	j 
cov(( I e)( 	eh)) 

g=1 	h=1 

j+q-p j 	 I 	j 	p 
= 	 Vg+t 
	

(k) {k} 	
if ij+q-p 

g=1 h4 	gj+q-p+1 h1 k1 

by substituting for the variance of e from equation (2.2.1) 

j+q-p j 	 p 	i 	j+q-p 	j 
= 	 Vgh + I 	( 	

k} 	 k}) 

g=1 h=1 	k=1 g=1 	g=1 	h=1 

= 	
(Vg 	2 	k}k}) + 	

( 	
k} )( 	k} )  

g=1 h=1 	k=1 	 k=1 g=1 	h=1 

if ij+q-(p+1)-i-1 
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by algebraic manipulation. 	This is the sum of one term in j 

alone and p terms which are products of single terms in i and 

j-, and thus satisfies equation (2.2.1) for a GARMA(p+1,q) process. 

C) 	If e is a GARMA(p,q) process and w is a GARMA(u,v) 

process uncorrelated with e and of the same length, then e + w is 

a GARMA(p+u,max(q+u,v+p)) process because 

p+ U 

cov(e1+w, e+w) =T 	
k}k} 	for i>j+maxq-p+1,v-u+1). 

k=1 

This meets the conditions of equation (2.2.1) for a 

GARMA(p+u,max(q+u,v+p)) process. 

d) 	With the same conditions pertaining as in (c) above (e T,  wT)T 

is a GARMA(max(p,u),max(p,u)-i-max(q-p,v-u)) process because the 

covariance between element i and element j is of the form of 

equation (2.2.1) as the sum of max(p,u) terms when 

I j+max(q-p,v-u)+1. 

2.2.7 Extension to continuous processes 

The preceding results for discrete processes extend naturally 

to continuous processes. A random variable Y(t), indexed by t 

over a continuous finite or infinite range, is defined to be a 

cGARMA(p,S) process for non-negative integer p and non-negative 

real 6 if 

(2.2.4) 	cov(Y(s),Y(t)) = 2 	 {k}(s){k}(t) 	for st+6 
k=1  

where 	
{k) 

 (t) and 	{k}(t)  for k=1,...,p are, possibly complex, 

functions over the same continuous range of t as Y(t). 

If times t1 ,t 2 ,.. .,t 	ranked in ascending order are 

independent of Y(t) , then the sequence Y(t 1 ),Y(t2 ),. . .,Y(t) 
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in discrete time forms a GARMA(p,p+2.) process where 2. is the 

smallest integer such that 

- 	 - t. 	cS 	 for 	i = 1 ...... (n-2.-1), 

because 

p 
cov(Y(ti),Y(t 	T 

2 1 c 
k=1 

if 	1 

and equation (2.2.1) is satisfied. For example, if ts equals 

zero, then 2. is equal to -1 for any set of times and the sequence 

in discrete time is a GARMA(p,p-1) process. 

2.2.8 Properties of a cGARMA process 

If Y(t) is a cGARMA(p,6) process then, in a similar manner 

to the discrete case, many simple derived variates are also cGARMA 

processes. 	Examples include the following: 

The filter of length v , 
	5 	

p(S-u)Y(u)du is a 

cGARMA(p,S+v) process because 

. 	 t 
cov((f 

S 	
p(s-u)Y(u)du), (f 	11(t-v)Y(v)dv)) 

5-v 	 t-v 

=T 	
(fS 	

(su)Hu)du)(f 	(t-v)(v)dv) 
k=1 Sv 	 t-v 

if S-v > t -'-ô 

provided these integrals exist, by substituting for cov(Y(u),Y(v)) 

from equation (2.2.4). 	This satisfies equation (2.2.4) for a 

cGARMA(p,6+v) process. 

S 
The integral of Y(t), f Y(u)du is a cGARMA(p+1,*5) process 

0 

because 
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cov ((f S  Y(u)du),(ft Y(v)dv)) 

t+ t (f  f 	
cov(Y(u),Y(v))dv)du 

0 	0 

+ t2 
f S 

(ft P {k}u{k}) 	 if s>t+ 
t d 	

k=1 

by substituting for cov(Y(u),Y(v)) from equation (2.2.4) when 

u)t+5 

t+s t 	 p 

= I 	{f[cov(Y(u),Y(v)) - 

k=1 

+ t2(f 	
{k} 	)(ft {k}) 

by algebraic manipulation. 	This is a sum of a term in t alone 

and p terms which are products of single terms in s and t and 

thus satisfies equation (2.2.4) for a GARMA(p+1,6) process. 

2.3 	Parameter estimation 

2.3.1 Model 

In this section a very general form of model is considered 

which includes all the models considered in chapters 4 to 8 as 

special cases. 	An n-vector of observations y  is assumed to be a 

realisation of the model 

y - (f, r 2 V) 

where f is a known n-vector except for an m-vector 8 of 

parameters, r 2  is a scaling parameter which is possibly known and 

V is the variance matrix of a GARMA(p,q) process and is known 

except possibly for a few parameters. 
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2.3.2 Optimization criteria 

If ,y  is multivariate normally distributed then its negative 

log-likelihood to within an additive constant is 

fl 	21 2.n L =—nr +- 	V + S - 
2 	2 	2r 2  

where S is the generalized sum of squares, that is 

S = (y-f) TV 1 (y-f) 

The unknown parameters in the model can be estimated by minimizing 

LM . 	 This gives maximum likelihood estimates if y  is 

multivariate normally distributed, otherwise they have been called 

Gaussian estimates (Whittle, 1961). 

A second estimation method, proposed by Cooper and Thompson 

(1977), is to minimize the residual negative log-likelihood which, 

to withirr an additive constant, is 

L = ()Ln T2 ~ 1 	 + R .....L 

where X is an n by m matrix defined by 

X = Was 

With this approach, the parameters in V are estimated only from 

the contrasts in ,y  orthogonal to the contrasts used to estimate 

the regression parameters 8 

A third function that can be minimized is the sum of squares 

L =!ivi 2 + S  
S 	2 	2r2  

which omits £nIVI  totally. 

The use of the first two of these optimization criteria will 

be investigated in subsequent chapters. 	The third criterion can 

not be used when V has parameters additional 	to those in 	f 

because then 	L5  may have no minimum. 



- 41 - 

Other estimation criteria exist, particularly for 

non-normally distributed data. 	When only first and second moments 

of a distribution are known, Wedderburn (1974) proposed optimizing 

the quasi-likelihood. 	However, this suffers from the same 

deficiency as Ls  when V has parameters additional to those in 

f. 

2.3.3 Numerical evaluation of the optimization functions 

The decomposition of V in [2.2.2] can be used to evaluate 

the optimization functions without explicitly inverting V or 

calculating its determinant. 	If the departures of the data from a 

regression function are denoted e , where 

(2.3.1) 	e = ,y-f 

then 	 S = zz 	where 0 z = o e , 

and z are called the residuals. Other terms required may also be 

evaluated relatively easily using 

l!I = 112112 =ne 

and 	XTV4X = ( e_1 0 x) T (e 1  X) 

This technique for evaluating the likelihood is a generalization of 

Ansley's (1979) method for ARMA processes. 

2.3.4 Optimization algorithms 

In general, the regression function will be non-linear in its 

parameters which can thus only be estimated iteratively. 	Even if 

the regression function is linear in its parameters the presence of 

correlations between observations will usually mean that the log- 

likelihood can only be optimized iteratively. 	The sole exception 
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to this rule is the scale parameter 	2 , if unknown, which can be 

estimated directly, conditional on the other parameters, as 

- 	 = S/n 

for LM  and Ls  and as 

= SI(n-m) 

for L  . 	So it is necessary only to iterate on 8 and the 

unknown parameters in V . 	Most, but not all, of the optimization 

functions can be re-expressed as sums of squares for which special 

optimization routines are available. 	For example 

LM(2) = Il - 	in n + 	Ln(SJVI") 

which can be minimized by minimizing 

SIVIl/n = (

11 1/ : 2 	z)T(IV1'(2")  z) 

which is a sum of squares. 	But LM , with t 2  known, cannot be 

expressed as a sum of squares. 	In order to apply a single 

algorithm in all circumstances a general derivative-free numerical 

optimization routine has been used (see [2.4.8]). 	Thus, some 

computational efficiency has been lost in certain problems in order 

to use the same optimization algorithm in all problems. 	Bard 

(1974, pp83-140) gives a general discussion of alternative 

algorithms. 

2.3.5 Variances of parameter estimators 

For the general model considered in this section it is not 

possible to appeal to asymptotic results in order to derive 

approximate variances of parameter estimators because the sample is 

only of size one. 	However, for certain types of correlation 

structure, for example stationary time series, asymptotic results 

have been found to be valid, as discussed in [1.3.8]. 	Approximate 
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variances of parameter estimators can thus be calculated by 

inverting the Hessian matrix, that is the matrix of second 

derivatives of the optimization function. 	The validity of this 

approximation for particular models will be discussed as they arise 

in later chapters. 

2.3.6 Prediction of fit based on past observations 

With serially correlated data it is of interest, in assessing 

the goodness-of-fit of a model, not merely to know the predicted 

value of the ith observation, that is f , but also the predicted 

value conditional on all the earlier observations, denoted 

This provides an assessment of fit taking 

account of the error correlation structure. 	From equations 

(2.2.3) and (2.3.1) 

min(p,i-1) 	 min(q,i-1) 
y

1  . = f 1  . - 	 ,1 
. . e. . + 	 0. 	z 	1-J 	1-3 	 1,1-k 	i-k j=j k=O 

for 	i=1,...,n. 

Conditional upon (y1,  ... ,y1]),  (e 1 ,...,e 11 ) 	is predicted to be 

and (z,...,z. 1 ) 	is predicted to be (z,...,z. 1 ), 

where 

and 

(2.3.5)  

and because z. is uncorrelated with observations before i its 

minimum variance unbiased linear predictor is zero. 	Therefore 

min(p,i-1) 

=  i - 
j=1 

min(q,i-1) 
+ 	1 	Oi,i_kZi_k 	for i=1,...,n 

k=1 
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Numerically, this can be derived quite simply by substituting from 

the ith row of equation (2.3.5) to give 

- 	(fy1 ... 	
yi-i 	= + - 

= y. - eiizj 	 for i  

Therefore, once a model has been fitted to data the predicted fit, 

taking account of correlation, can be evaluated straightforwardly. 

2.3.7 Simulation 

Another useful feature of the GARMA property is that it makes 

it relatively easy to simulate y from the model 

y"N(f, -r 2 V) 

A random variate z is generated with 

z 	N(O,t 2 1) 

which is then transformed to e by 

e= Oz 

and 

This has the desired properties because 

E(y) = 

var(y) = t 2 	4 e 1 	1 e 	(.!
4 

 ) 	= 
2 
 v 

and linear transforms of normal variates are also normal. 

2.4 	Computer program REGAME 

2.4.1 Programming philosophy 

The computer program REGAME, Regression Estimation with 

Generalized Autoregressive-Moving Average Errors, implements the 

methods described in sections 2.2 and 2.3. 	It is the program used 
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in chapters 4 to 8 to fit models to the data sets. 	The program is 

written in FortranlV with code as similar as possible to the 

preceding algebra. 	Some efficiency has been sacrificed in order 

to improve clarity in the program. 	For example, variables are 

transferred between routines in parameter lists wherever possible. 

An indicator variable can be set to generate the printing of all 

intermediate results in the program. 	The program has been 

designed so that the chances of total failure are minimized and 

warnings and failures are clearly signalled to the user. 	All 

variables are explicitly declared and the code is copiously 

annotated. 	The program has a modular structure both for 

simplicity and so that subroutines REGAMO and REGTRA can be used 

independently. 

2.4.2 Program structure 

The user must supply different subroutines REGMOD and REGDER 

for each model to be fitted. 	REGMOD evaluates f , and the first 

(p+q+1) elements on and below the diagonal of V , when supplied 

with values for the model parameters. 	Details are given in 

[2.4.4]. REGDER evaluates X if the residual maximum likelihood 

optimization function is to be used. 	Details are given in 

[2.4.5]. In REGLIK the optimization function is evaluated using 

REGAMD to decompose V into lower-triangular band matrices 

and e (see [2.4.9], and using REGTRA to transform vectors using 

s and G , for example to obtain z (see [2.4.10]). A NAG 

library routine E04JBF (Numerical Algorithms Group, 1983), 

minimizes the optimization function (see [2.4.8]) and REGMON 

monitors and outputs the result of each iteration. 	At the 
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completion of the optimization, control returns to the main 

subroutine REGAME. 	REGVAR calculates variances of the parameter 

estimators by inverting the approximate Hessian matrix of the 

optimization function. 	A detailed output of results is produced 

by REGOIJT to a secondary output channel NOUT10, optionally 

including line printer graphs printed by PLTLNG and PLTACR. 

Output suitable for input to another program, CEVOPE, which will be 

described in chapter 9, is produced by REGCVI to channels NOUT8 and 

NOUT9. 	Input and output channels are declared in a named common 

block /NINOUT/. 	Intermediate diagnostic output can be generated 

by MATPN1, MATPRO, MATPR1 and MATPR2. 	A flow chart is shown in 

figure 2.4.1. 	Three common blocks /REGCM1/, /REGCM2/ and /REGCM3/ 

pass parameters between REGAME and REGLIK which cannot be passed 

directly because E04JBF is in between. 	/REGCM2/ is also shared 

with REGMON and REGVAR and /REGCM3I with REGVAR. 	The program is 

listed in Appendix A, excluding the NAG routines and the general 

output routines /NINOUT/, MATPN1, MATPRO, MATPR1, MATPR2, PLTLNG 

and PLTACR. 

A separate main subroutine REGGEN is available to generate 

pseudo-random normal deviates from the first and second moments 

supplied by REGMOD. 

2.4.3 Input/Output to REGAME 

The user must write a computer program which calls 

subroutine REGAME. The variables to be transferred in the 

parameter list are specified below. Input parameters must be 

assigned values before the subroutine is called. On return to the 

calling program output parameters will have been assigned values by 

REGAME. 
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Figure 2.4.1 

REGAME flow diagram (excluding general output routines) 
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Input 

Y(NL) 	vector of observations (y). 

NL 	number of observations (n), 200n1. 

ACCIOL 	accuracy to which parameters are to be estimated 

(explained in [2.4.8]), >0. 

NCALMX 	maximum number of function evaluations to be allowed. 

NLIK 	choice of optimization criterion: 

l for  LM, 

2 for LR, 

3 for L. 

NSCALE 

	

	set to 1 if T
2  is to be estimated, otherwise t 2  

set to 1. 

NM 	number of regression parameters (m), 5m0 

NOER 	set to 1 if REGDER has been supplied, otherwise X 

will be calculated by difference methods. 

NVAR 	set to 1 if variances of parameter estimators are to 

be estimated from second differences of the 

optimization function, otherwise the approximation 

supplied by E04JBF will be used. 

NPARVR 	on input this declares the first dimension of PARVAR, 

NPARVR>NPAR + NSCALE. 

NOUT 	controls how detailed the output results are: 

0 iterations, error messages and final estimates 

to NOUT6 (explained in [2.4.6]); 

1 and to NOUT10 (explained in [2.4.7]); 

2 and the fitted model to NOUT10; 

3 and graphs of the fitted model to NOUT10; 

4 and intermediate results from REGAME, REGVAR to 

NOUT6; 



- 49 - 

5 and intermediate results from REGLIK, REGAMD 

and REGIRA to NOUT6. 

NCVI 	set to 1 if output required for input to CEVOPE. 

Input and output 

PARAM(16) vector of model parameters ordered so that regression 

parameters (8)  precede other parameters, initial 

estimates input and final estimates (plus r2 if 

NSCALE=1) output. 

NPAR 	number of model parameters input, on output this is 

increased by 1 if NSCALE=1. 	On input 15NPAR1. 

SE(16) 	vector of approximate standard errors of parameter 

estimates, on input contains initial estimates of 

the standard errors (SE > 0), except where a 

parameter is to-be held constant in which case 

SE=O, on output contains final estimates of 

standard errors including the standard error of 

2 if NSCALE=1. 

Output 

XLIK 	final value of optimization function. 

Z(NL) 	vector of residuals (z). 

PARVAR(NPARVR,NPARVR) 	matrix of approximate variances of 

parameter estimators with correlations below the 

diagonal. 

FAIL 	failure indicator: 

0 optimization and estimation of variances of 

parameter estimators successful; 

1 one of parameters input to REGAME or output by 

REGMOD or REGDER outside permitted range; 
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2 there is too much rounding error at the 

starting value of PARAJM for E04HBF to work; 

3 the number of function evaluations has exceeded 

NCALMX; 

4 not all the conditions for an optimum have been 

satisfied but no better point could be found; 

5 the problem is ill-conditioned because, in a 

local search, no optimum could be found; 

10 optimization successful but variances of 

parameter estimators derived from E04JBF 

approximation because of ill-conditioning in 

the matrix of second differences or because 

NVAR * 1. 

11-15 failure 1-5 above and variances of 

parameter estimators only an approximation. 

2.4.4 Input/Output to REGMOD 

REGAME calls subroutine REGMOD with the parameter list 

specified below and input parameters assigned values. The user 

must write a subroutine REGMOD which assigns appropriate values to 

the output parameters. 

Input 

PARAM(NPAR) 	vector of model parameters. 

NPAR number of parameters. 

NLMAX the first dimension of VAR. 

NL number of observations. 

NFDIF set to 1 if only F is required. 

Output 

F(NL) vector of fitted values 	(f). 
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VAR(NLMAX,11) the first (p+q+1) elements on and below the 

diagonal of V, with V 	 in VAR(i,p+q+1-L) 

for 1=1,... ,n, £=O,... ,rnin(p+q,i-1). 

NPQA 	 set to NP+NQ+1. 

NP 	 generalizedautoregressive order (p), 5p0. 

NQ 	 generalized moving average order (q), 5qO. 

NTEQ 	 set to 1 if V is such that all rows of 0 after 

the first (p+q) have the same elements before 

the diagonal (see [2.4.91). 

Control 

NOUT 	 an input to REGAME which controls level of output. 

If NOUT=O error messages should only be output 

to NOUT6. 

FAIL 	set to 1 on output if f or V cannot be 

evaluated with the parameters set to PARAM. 

2.4.5 Input/Output to REGOER 

REGAME calls subroutine REGOER with the parameter list 

specified below and input parameters assigned values. The user 

must write a subroutine REGDER which assigns appropriate values to 

the output parameters. 

Input 

PARAM(NPAR) vector of model 	parameters. 

NPAR number of parameters. 

NLMAX 	the first dimension of DERIV. 

NL 	 number of observations. 

NM 	 number of regression parameters. 

X3 
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Output 

DERIV(NLMAX,NM) matrix of first partial derivatives of F with 

respect to the first NM parameters in PARAM 

(X). 

Control 

NOUT 	 an input to REGAME which controls level of output. 

If NOUT=O error messages should only be output 

to NOUT6. 

IFAIL 	set to 1 on output if X cannot be evaluated with 

the parameters set to PARAM. 

2.4.6 Output to channel NOUT6 

To channel NOUT6 is output a history of the optimization 

iterations together with a brief summary of the final results. For 

interactive work this would conventionally be a computer user 

terminal. 

Initially a heading is output, followed at each iteration by: 

Number of iterations. 

Number of function evaluations. 

Value of the optimization function. 

Convergence criteria: change in the optimization function 

from the last iteration, 

slope of the optimization function 

with respect to the parameters, 

change in the parameters from the last 

iteration. 

A measure of conditioning: the ratio of largest to smallest 

elements on the diagonal of a lower-triangular decomposition 
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of a matrix of approximations to the second derivatives of 

the optimization function. 

The symbol C' is printed if the change in the parameters has 

been constrained by the maximum size of step permitted. 

Current estimates of the parameters. 

After the iterations are completed a brief summary of the results 

is output: 

(1) Value of IFAIL, the failure indicator. 

Final value of the optimization function. 

Final estimates of the parameters. 

An estimate of the standard errors of the parameter 

estimators. 

Triangular array of correlations of parameter estimators. 

2.4.7 Output to channel NOUT10 

To channel NOUT10 a much more comprehensive set of results 

can be output. This would normally be directed to a computer disc 

file or a fast printer such as a line printer. 

If NOUT=O then there is no output to channel NOUT10. 	If 

NOUT1 a heading is output together with settings for the input 

parameters: 

NCALMX, NLIK, NSCALE, NM, NOER, ACCTOL, NVAR, NPEST, SE, 

where WEST is the number of parameters being estimated, in other 

words the number of non-zero coefficients in SE. 	The results at 

each iteration and upon completion are output as described in 

[2.4.6], together with the vector of first partial derivatives of 

the optimization function with respect to the parameters and the 

variances of the parameter estimators (PARVAR) with correlations 

exceeding 0.9 in magnitude highlighted by the symbol **. 
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If NOUT2, then in addition the following are also output: 

p, q, 	(ilpast), Z/t, -T 2  VAR, 

with elements z./r exceeding 2.5 in magnitude highlighted by the 

symbol 

If NOUT3, then line printer graphs are produced of: 

y1 , f 1 , and 	 plotted against i , for 

i=1, .... n ; 

( 	 fy1..,y 1 _1) - 2 , and 	Ir plotted against i 

for i=1,. . . ,n ; 

z/t plotted against f 1  , for i=1,... ,n ; 

the columns of t 2 VAR plotted against i , for i=1,...,n 

An example of output from REGAME is given in Appendix B, the 

background to which is described in section 4.3. 

- 	2.4.8 Optimization algorithm 

A derivative-free quasi-Newton algorithm (Gill and Murray, 

1972), implemented in the NAG library as routine E04JBF, is used to 

minimize the optimization function. 	A second routine, E04HBF, 

selects appropriate step lengths for calculating first 

derivatives by difference methods. 	The parameters and 

optimization function are scaled to lie approximately between -1 

and 1. 	To achieve this the parameters are transformed about their 

initial estimates and scaled by the initial estimates of the 

standard errors. 	Similarly the optimization function is 

transformed about its initial value less the number of parameters 

and scaled by the number of parameters. 	If the algorithm is 

successful then on output the scaled parameter estimates are within 

a prespecified distance ACCIOL of their minimizing values. 
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Approximate second derivatives of the optimization function, with 

t 2  replaced by r 2  , are output from the routine. 

2.4.9 Algorithms in REGAMD 

D is calculated by finding a solution, for i=q+2,. . . ,n, of 

the simultaneous equations 

min(p,i-q-1) 

= -V. 
1,1-3 1-3,1-2. 	1,1-x 

j=1 

for 2. = (q+1),...,min(i-1,p+q), 

using NAG routine F04ATF if the equations are of full rank and 

F04JGF otherwise. 	If the equations are of full rank, then the 

solution is unique and 0 satisfies equation (2.2.2). 	If the 

equations are not of full rank, then 0 may not satisfy equation 

(2.2.2); a warning is printed but the algorithm continues on the 

assumption that p has been overspecified. If NTEQ is set equal 

to 1 then, provided the equations are of full rank, they are only 

solved for i between (q+1) and (p+q+1), after which every row of 

o has identical elements. 

The elements up to q below the diagonal of ' V 	are 

calculated for i = 1,...,n by: 

min(p,i-.z-1,q-L) 

k=O 

for 2. = O,...,min(q,i-I) 

min(p,i-1) 

where (s V) . . 	= 
_ 	1, 	 1-3,1-2.-k 

j0 

for £+k = O,...,p+q 

C) 	e is obtained from ( V 0
T
) by use of the NAG library 

routine F03AGF. 	This performs the Cholesky triangular 
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decomposition of a real positive-definite symmetric band matrix 

(Wilkinson and Reinsch, 1971, pp50-56). 

2.4.10 Algorithms in REGTRA 

Denote a real positive-definite lower-triangular matrix with 

band width x by r (this represents either 	or e), then 

transformations of vectors by r can be derived as follows: 

 If 	w=rv 

W = 	 rll+kvl+k for i=1,...,n. 
k=max( £+1-i ,1) 

 If 

min(i+z-1,n) 

W.  = 
1 

r. ,31  v. 
3 

for i=1,...,n. 

3=1 

C) If 

£- 1 
w1  = (v 1 	- 

k=max( L+1-i ,1) 

for i=1,...,n. 

d) If 	w = (r4)Tv 

mi n ( I + - 1 , n) 

w 	= (vi 	
r.w)Ir 1  for i=n,n-1,...,1. i 

j=i+1 
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3. The general solutions of linear stochastic difference 

and differential equations with constant coefficients 

3.1 	Introduction 

This chapter serves the dual purposes of showing that a wide 

range of processes are either GARMA or cGARMA processes as defined 

in chapter 2, and specifying the general solutions of linear 

stochastic difference and differential equations with constant 

coefficients, special cases of which will be used in chapters 4 and 

6. 	It is the second preparatory chapter prior to the use of 

specific models to fit real data in chapters 4 to 8. 

The basic building blocks of many mathematical models of 

processes which evolve in time are difference equations or, their 

continuous analogues, differential equations. 	Among them the most 

mathematically tractable are those which are linear with constant 

coefficients. 	The general solutions of these types of equations 

are well understood. 	In the case of difference equations Brand 

(1966, pp373-412), for example, gave a general derivation of the 

solution when the input is deterministic. This extends in a 

straightforward manner to stochastic, that is random, input (see 

for example, Bartlett, 1978, pp162-165). 	Brand (1966, pp127-160) 

also gave a derivation of the general solution of deterministic 

differential equations. 	The extension to stochastic input is more 

difficult in this case, requiring the development of a stochastic 

calculus (see for example, Hoel, Port and Stone, 1972, pp111-170), 

although the apparent similarity with the deterministic solution is 

retained. 



The general solutions of linear difference and differential 

equation are stated in sections 3.2 and 3.3 respectively. 	They 

are demonstrated to be solutions of the equations that satisfy the 

initial conditions, although the technicalities of stochastic 

calculus are not entered into. 	When the input process is a GARMA 

or a cGARMA process the output process is also shown to be a GARMA 

or a cGARMA process. 	The output could be used as the input to 

another linear equation for which the output would once again be a 

GARMA or cGARMA process. 	Thus, there is a wide range of models 

available to fit real data which are all GARMA or cGARMA 

processes. 	The similarities between sections 3.2 and 3.3 serve to 

emphasise the close connection between difference and differential 

equations. 

Special cases of the models in this chapter are considered in 

later chapters: in chapter 4 stationary solutions alone are 

considered (a common restriction in the time series literature), 

whilst in chapter 6 first-order and second-order equations are 

used. 

3.2 	Difference equations 

3.2.1 Model 

A random vector V representing a finite or infinite 

sequence of variates Y 0 ,Y 1 ,..., is defined to have been generated 

by the pth order linear stochastic difference equation 

p 

Y   = . 	 + Z 	 for tp 

i=1 
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where 'i'• .. 	
are constants, Z is a random vector representing 

a finite or infinite sequence of variates Z0 ,Z1 ,..., with known 

distribution, and (Y0 ,... Y 1 ) also have a known distribution 

and are independent of Z . 	The starting point has been taken to 

be t = 0 , but this does not incur any loss of generality because 

t could be redefined to be t-t 0  in order to initiate the 

process at t 0  

3.2.2 Solution 

The general solution of equation (3.2.1) is 

	

P 	p 	tA. 	t 	P 	(t+p-1-k)x 
(3.2.2) 	Yt = 	Y 1 _ 1  I Ke 	+ 	

Z 	I  Ke 

	

1=1 	j=1 	 k=p 

for t)O, 

where X 1 ,...,A 	denote the elements in the p-vector 

eAl,...,eXP are the roots of the pth order polynomial 

 
OP 	0 x-q 1x' 	... - 

which are assumed to all be distinct, K is a square matrix of size 

p defined to be the solution of the p2  linear equations 

P 	tA. 
K1. 

3  
.e 	= I 1. 	 for 	i = l,...,p, t = 

, 

and I is the identity matrix of size p . 	The generality of 

this solution when Z is deterministic has been proved by Brand 

(1966, pp373-412), who also gave the solution when the polynomial 

equation has some roots equal. 	This complication is more of 

theoretical than of practical concern because it is highly unlikely 

that roots will be estimated as being equal when real data are 

being modelled. Below I will confine myself to demonstrating that 

equation (3.2.2) is self-consistent for t=0,.. .,(p-1) and is a 

solution of equation (3.2.1) when tp 
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First of all, when t<p the second term on the right side of 

equation (3.2.2) is zero because the upper limit in the k-summation 

is less than the lower limit, therefore 

p 	p 	tA. 

Vt = 	'-1 	K 	e J 
	 for t0,. . . ,p-1 

i=1 	j=1 

p 
= 	V. 

1 -1 
i =1 

from the definition of K 

Therefore equation (3.2.2) 

Define 	to be - 

equation (3.2.2), for tp 

'i,t+l = Vt 

makes sense when t=0,...,(p-1). 

L to simplify the notation then, from 

we get 

P 	 p 	p 	p  
- 	

g 't-g = - 	4'g 	i-1 	K 	e 

g=0 	 g=0 	i=1 	j=1 

- 	p 	t-g 	p 	(t_g+P_l_k)x 

- 	
cg 1 Z  	I Ke 

g=0 	k=p 

p 	p 	 (t-p).x. 	P 	(p-g)A. 

	

= - 	 e 	' { I o e 	} 
i1 j1 	 g=0 

t-p p 	(t-1--k)x 	P 	(p-g)A 

	

- 	ZKe 	 1 +g e 
k=p £4 	 g=0 

t 	t-k 	P 	(t+p-1-g-k)x 

	

- 	
Z 	1  09 	Ke 

k=t-p+1 	9=0 

by dividing the second term into two at k=t-p and reordering the 

expressions. The first two terms are zero by the definition of x 

because the terms in curly brackets are no more than a 

A  
re-expression of the polynomial of which e i,...,  e AP  are the 

roots. 	An extra term can be added on: 
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t4 	p 	p 	(t+p-1-g-k)x 
- 	

Z 	X 	9 
1 Ke 

k=t-p+1 	g=t-k+1 

which is zero by the definition of K 	 because p-2t+p-1-g-k0
px  

The result is that 

t-1 p 	(t-1-k)x P 	(p-g) A 
- 	

g "t-g = 4' - 	 Z 
L  

 KPL e e 	} 
g=O k=t-p+1 £4 g=O 

	

p 	(p-1)x 

	

- Z. 	 e 

= Z  

because the first term is zero by the definition of x as above and 

the second term simplifies by the definition of K . 	What remains 

is a restatement of equation (3.2.1) for tp and thus equation 

(3.2.2) has been demonstrated to be a solution. 

3.2.3. Relation to GARMA property 

In this sub-section it will be proved that if the input 

vector of equation (3.2.1), Z , is a GARMA (a,b) process then the 

output vector, Y , is a GARMA(p+a,p+b-1) process. 	From equation 

(3.2.2) 

p 	p 	 p 	p 	 SA 
(3.2.3) 	cov(Y 5 , Yt) = 	cov(Y11 Y 1 ) 	 e 

k  e £
ik 

1=1 j=1 	 k=1 £4 

	

5 	t 	 P 	p 	(s+p_l_i)xk (t+p-1-j)x 

	

+ I 	I cov(Z 1 Z) I 	I K(KpL  e 	 e 

i=p j=p 	 k=1 £1 

If Z is a GARMA(a,b) process then 

(3.2.4) 	cov(ZZ) = 	cfg ' nfgl 	 when ij+b-a+1 

g=1 

for appropriately chosen vectors 	and 	of possibly 
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infinite length for g = 1,...,a . 	Therefore, restricting 

attention to the case when st+b-a we have 

	

5 	t 
cov(Z 1 Z) e 	e 

i=p j=p 

t+b-a t 	 -iA 	-. 
= 	I cov(Z 1 Z)e 	e 	L 

i=p j=p 

S 	t 	a 	
lAk .x 

+ 

	

	 gj e 
	e 

1=t+b-a+1 j=p g=1 

t+b-a t 	 a 	 -i 
= 	I [cov(Z 1 Z) - 	 ]e 	e 

i=p j=p 	 g=1 

a 	5 	 1Ak 	t 

+}{ 	ne 	
£}, 

g=1 i=p 	 j=p 

by substituting from equation (3.2.4) and reordering the 

	

expressions. 	Substituting for this in equation (3.2.3) when 

s)t+b-a and reordering gives 

	

p 	SA 	p 	p 	 p 	 t  

	

cov(Y 5 , Yt) = 	{ e k 
	 cov(Y11 Y 1 ) I K A K 	 e L 

	

k=1 	1=1 j=1 

	

p 	SA 	t+b-a t 
+ 	{ e k 	 {cov(Z, Z) 

	

k=1 	 i=p j=p 

a 	 P 	(p-l-i)xk (t+p-1-j)x 

	

- 	g} 	g} j 
	K1 K 	e 	 e 	 £ 

g=1 

a 	5 	p 	 ( s+p-1-i)x 	t 	P 	 (t+p-1-j)A 
+ 	{ 	

k e 	 e 	 £ 

	

g1 i=p k=1 	 j=p £1 

This is the suit of (p+a) products of a term dependent only on s 

and a term dependent only on t provided st+(p+b-1)-(p+a)+1 , 

therefore V is a GARMA(p+a, p+b-1) process. 
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The orders in the GARMA specification above are not 

necessarily the smallest possible. In particular, if a = 0 and 

st+b+1 , then cov(Z5,Zt) = 0 and, because '' 	depends only on 

Z 	for ut , cov(Z,Yt) = 0 . 	It follows from equation (3.2.1) 

that 

p 

cov(Y ,Y) = 	4 i  cov(Y.,Y) 	
when s>t+b+1 

i=1 

Therefore there exist 	and 	{g}  for g = 1,...,p such that 

p 

cov(Y 5 , Yt) = 	
gj 	g} 	 for st+b-p+1 

g=1 

and V is a GARMA(p,b) process. 	One particular example of this 

is that when Z is a stationary moving average process of order q 

the stationary solution of equation (3.2.1), if one exists, is not 

only a GARMA(p,q) process but also an ARMA(p,q) process. 

3.3 	Differential equations 

3.3.1 Model 

A random variate Y(t), indexed by t over a continuous 

finite or infinite interval, is defined to have been generated by 

the linear stochastic differential equation 

(3.3.1) 	Y<P>(t) - 

	

Y<P_>(t) = <>() - 

	

Z<3> ( t ) 

for t0 

where the terms in angular brackets denote the order of derivative 

with respect to t 1'"'p' 1'1'"''q are constants, Z(t) is 

a random variate with known distribution over a continuous 
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interval, 
(y<O>(0),•••,y<P>(0)) 

 also have a known distribution, 

and qp-i . If Z(t) is not stochastically differentiable q 

times with respect to t , as will often be the case for a random 

variate, then equation (3.3.1) makes no formal sense. This can be 

rectified by "integrating" both sides of the equation q times 

with respect to t (see Hoel, Port and Stone (1972, pp.162) for a 

specific example). The restriction to q being less than p is 

not necessary for equation (3.3.1) to define a valid process, but 

it is necessary for a general solution which does not include 

derivatives of Z(t). The starting point has been taken to be t=O, 

but this does not incur any loss of generality because t could be 

redefined to be t-t 0  in order to initiate the process at t0  

3.3.2 Solution 

The general solution of equation (3.3.1) is 

Ptx. 	 p 	(t_u)Ak 
(3.3.2) 	Y(t) = 	 K 	e 	+ f 0 

Z(u) I K 
  

e 	du 
i=i 	j=1 	 k=i 

for t0 

provided the integral exists, where 

1-2 	P 

A1 = y< 1 _l>(0) - 	Z<'>(0) 	K 	
1-2-h 

k 'k 
h=O 	k=1 

for i=i,...,p, 

x1 ,.. 	denote the elements in the p-vector x and are the 

roots of the pth order polynomial 

p 	p-i 
x - 1 x 

which are assumed to all be distinct, K is a square matrix of size 

p defined to be the solution of the p 2  linear equations 
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p 
KA 	 for i=1,...,p  

j=1 

K is a vector of length p defined to be the solution of the p 

linear equations 

p-i 	p 	__ 
KX 	

= q+1-j 	
for j  

i=0 	k=1 

I is the identity matrix of size p , 
	and 	are defined to 

be -1 and = 0 if 2.<0 . The same terms x and K have 

been used as in section 3.2 to emphasise the similarity between 

difference and differential equations, although they are defined 

differently. The generality of the solution when Z(t) is 

deterministic has been proved by Brand (1966, pp  127-160). 	Below 

I will once again confine myself to demonstrating that equation 

(3.3.2) is self-consistent in its first (p-i) derivatives when t=0 

and is a solution of equation (3.3.1) for t > 0 

From equation (3.3.2), by applying standard techniques of 

differentiation 

p 	p 	tA. 
Y<l>(t) = 	 KA

j 
 e k  

i=1 	j=i 

p 	t 	p 	(t_u)xk 
+ Z(t) 	Kk + 10 Z(u) 	KA e 	du , 

k=1 	 k=1 

and 

p 	p 	t. 
= 	A' 	K A 2  e 

ii j 
1=1 	j=i 

<l> 	 t 	P 	 k + Z(t) 	IC + Z(t) 	KkAk+ fZ(u) 	e 	du. 
k=i 	k=1 	 k=1 

By repeated differentiation 
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Y<9>(t) = A { ' - ' I 	K13A 	
tx. 

. e 
1=1 	j=1 

	

z<ht 	g-i-h 	t 	P 	(t_u)xk 

	

+ f
0 

Z(u)  I KkXk e 	du 
h=O 	k=l 	 k=1 

for g=O,...,p 

To check the solution when t=O for g = O,...,p-i 

	

y<g>(0) = i1 A 1 	K1.x + :: z<h>(o)KkA1 

	

The first term is equal to 	by the definition of K 

Therefore 

= Y<9>(0) 

	

from the definition of 	, and the first (p-i) derivatives 'of 

equation (3.3.2) make sense when t=O. 

For t > 0 

	

p 	 p 	p 
- 	g  Y<P9>(t) = - 	 K 1 A 	e i  

	

g=0 	 g=0 	14 	j=i 

	

p 	p-g-1 	p 
- 	z<I>(t) 	p-g-i-h 

g=0 	h=0 	k=i 

	

p 	t 	p 	p-g (t_u)xk 

	

- 	
g f Z(u) 	e 	du 

g=0 	° 	k=1 

	

p 	p 	•
1 	

t. 	i p-g 

	

= - 	A 	K 	e 	x. 	
} ii 	g 3  i=1 j=1 	 g=0 

p-i 	p-(h+i) 	p 	p-g-(h+i) 

	

- 	 KkXk 
h=0 	g=0 	k=i 

	

t 	P 	(t_u)Ak p 	p-g 

	

-f Z(u) 	Kk e 	
9 Ak 
	} du 

k=1 	 g=0 



- 67 - 

by reordering the expressions. 	The first and third terms are zero 

by the definition of A , because the terms in curly brackets are 

no more than a re-expression of the polynomial of which 

are the roots, and the second term, from the definition of K , 15 

p-i 
z<h>(t) q-h 

h=O  

What remains is a restatement of equation (3.3.1) for t > 0 and 

thus equation (3.3.2) has been demonstrated to be a solution. 

3.3.3 Relation to cGARMA property 

In this sub-section it will be proved that if the input 

variate, Z(t), is a cGARMA(a,d) process then the output variate, 

Y(t), is a cGARMA(p+a,$) process, provided that Z(t) for t > 0 

is distributed independently of A 	s ...,A. 	This last 

restriction is rather arbitrary because, asA {0J ,...,A { p_11 are 

defined in terms of the derivatives of Y(t) and Z(t) at t=0 , it 

is necessary for these derivatives to be correlated in order to 

ensure the independence condition. 	However, without the 

restriction the covariances of the derivatives of Z(t) would be 

required to be known, not just the covariances of the process 

itself. 

From equation (3.3.2), provided that Z(t) for t > 0 is 

independent of A
{0} 

 ,.. 	
{p-l} 

 

(3.3.3) 	cov(Y(s),Y(t)) = 

Pp 
	5A 	tA 

cov(A, A 4  )p ) 	KjkK 	e k  e 
i=1 j=1 	 k=1 £=1 

s t 	 p 	p 	(s_u)Ak (t-v)X z  
+1 f cov(Z(u),Z(v)) 	KkK e 	e 	dv du 

00 	 k=1&=1 



If Z(t) is a cGARMA(a,S) process, then 

(3.3.4) cov(Z(u),Z(v)) = I c{g} (u) n(v) 	 for uv+ 
g=1 

for appropriately chosen functions 	(t) and 

specified over a continuous interval for g=1,. ..,p . 	Therefore, 

restricting to the case when s > t+6 

S t 	 -UX 	-VA 

ffcov(Z(u),Z(v))e 	
k 
 e 	dv du 

t+ t 	 -uAk 	vA 

	

= f 	f cov(Z(u),Z(v))e 	e 	dv du 
0 0 

a 	 _UAk -VA 
'o 	ç(u) ri't9 (v) e 	e 	dv du + 1t+  

g1 

	

t+d t 	 a 	 -UA 	-VA 

= 0 
10 {cov(Z(u),Z(v))- 

	

	 k 
(u) n(v)]e 	e 	£dv  du 

g=1 

	

a 	 _uAk 	 -VA 
+ 	Us

(u)e 	du}{f n(v)e 	dv} 

g=1 
0 

 

by substituting from equation (3.3.4) and reordering the 

expressions. 	Substituting this in equation (3.3.3) when s > t-'- 

and reordering gives 

P 	SA 	P 	p 
cov(Y(s),Y(t)) = 	{e k 
	

cov(A',A1) 

	

k=1 	i=1 j=1 
p 	tA 

K 1 K 	e 2. 

x=1 

	

P 	SA 	t+t 	 a 
+ 	{e k 
	

[cov(Z(u),Z(v))- 	{ 

	

0 	0 	
}() 	19  I ( V ) 

	

k1 	 g=1 

P 	
e- ux k 

  e-(t-v)x2 dv du} 

z= 1 

	

P 	(t-v)A a 	 P 	(s_u)xk 	t S j 
+ 	{f 	Kke 	du}{f 	(v) 	2e 	dv} 

0 
g1 	 k=1 



This is the sum of (p+a) products of a term dependent only on s 

and a term dependent only on t provided that s > t+6 , therefore 

Y(t) is a cGARMA(p+a,iS) process. 

12 
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4. Stationary error processes: 

empirical autocorrelation parameterization 

4.1 	Introduction 

If the departures of serially ordered observations from a 

fitted regression function are noticeably serially correlated, then 

either the regression function is inappropriate or the errors are 

not independent. 	In the latter case it is necessary to know the 

error covariances in order to estimate the regression parameters 

efficiently and obtain unbiased estimates of the variances of the 

parameter estimators. 	Except in exceptional circumstances where 

the mechanism causing the correlations is understood (see chapters 

6, 7 and 8), these covariances will not be known and the data 

themselves must be used to identify an appropriate model. 

However, the range of potential models is too great to be 

considered unless some gross assumptions are made about the forms 

the correlations can take. 	A common choice in time series 

analysis and one that will be made in this and the following 

chapter, is that the error process is stationary. 	In this case 

the autocorrelation function fully describes the second-order 

properties of the errors. 

In section 4.2 a particular class of models is presented in 

which the autocorrel at ions decay as a sum of exponentials after a 

certain time lag. 	Different ways of parameterizing this type of 

model are considered, including stationary solutions of the 

difference and differential equations in chapter 3. 	Model order 

identification is discussed for the special case of equally-spaced 

observations. 	In succeeding sections three data sets are used as 
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case studies of this approach to estimating regression parameters 

when errors are serially correlated. 	Maximum likelihood 

estimators and residual maximum likelihood estimators are 

compared. 	Finally, in section 4.6 the usefulness of the method is 

critically assessed. 

The basic idea in this chapter, of identifying a stationary 

time series model from least-squares residuals and using it to 

re-estimate regression parameters, is not new, see [1.3.4]. 	The 

novelty lies in the choice of parametric model for the 

autocorrelation structure, the use of residual maximum likelihood 

estimators, and the application to particular data sets. 

4.2 	Theory 

4.2.1 Model 

The situation envisaged is where a sequence of observations 

y
19

.. .,y (denoted y)  have been made at times t 1 ,...,t (denoted 

t) on a single experimental subject. 	It is assumed that the 

vector y  is a realisation from a multivariate normal distribution 

with mean f and variance r 2  V , where 

(WV W1) 	=P(It_tI) 	for i,j = 1,...,n 

W is a diagonal matrix of weights used to standardize the 

variances of the errors and 

P 	ux 
P(U) = 	ie £ 	for u ) 6 

v 1 

Therefore the autocorrelation function, p(u) , decays as the sun of 

p exponentials after a time lag of 6 , with rates 
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(denoted x) given weights K1 ,... 	(denoted 	). 	At present, 

P(u) will remain unspecified when u<6 . One model order, p, must 

be a non-negative integer, but the other model order, 5, is 

unconstrained. 	However, if 6 is negative then K and A must 

be constrained to ensure that p remains symmetric about zero. 

It is immediately apparent that the definition in [2.2.1] is 

satisfied and ,y  is a GARMA(p,q) process with q dependent on the 

spacing of observation times as described in [2.2.7]. 	In 

particular, if t = i for i = 1,...,n, then q = p+6-1 

The parameters K and A are constrained because V is 

real, thus coefficients of K (and of x) are either real or occur 

in complex-conjugate pairs. 	Also, V must be positive-definite 

and this places a more complicated set of constraints on K and 

A . It is convenient to reparameterize K and A in order to 

incorporate both these types of constraints. -Alternative 

parameterizatlons also permit the addition of further constraints 

that may be deemed desirable. 	Four different choices will be 

considered in the following three subsections. 

4.2.2 Parameterization by stationary solutions of stochastic 

difference equations 

The parameterization by stationary difference equations is 

suitable only when the times between observations are equal or are 

all integer multiples of some basic time interval which can be 

taken to be unity without any loss of generality. 	The weight- 

corrected departures (a = W(y_f)) are assumed to be the 

realisation at times t of the discrete random vector V indexed 

by all integer times between t 1  and t , where V is generated 
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by the linear difference equation (3.2.1) with Z a (q+1)-term 

moving average process of white noise denoted zCw} . Therefore, 

p 	 q 
(4.2.1) 	Yt= 	 - 

i=1 	 j=O 

where 	is the same vector of parameters as in equation (3.2.1) 

and e is the vector of weights in the moving average process. 

This has been called an autogregressive-moving average process in 

the statistical literature. 

It is possible to derive the autocorrelation coefficients of 

the stationary solution of equation (4.2.1) directly from equation 

(3.2.3) but is much simpler to use the method described by Box and 

Jenkins (1976, pp.74-75). From equation (4.2.1.) 

(4.2.2) 	cov(Y5 ,Z) 	cov(v5 ,z)e. cov(Z,Z)S-j 

and 

(4.2.3) 	cov (Ys  , 	 cov(Y
, 
Y)_ e 

 cov(Z {wj  

Because Y is stationary, cov(Y 5 ,Z') and cov(Y,Y)  are 

functions of (s-t) , but not of s or t separately. 	Equation 

(4.2.2) can be solved in turn for t = s, s-i, s-2 ... to obtain 

cov(Y 51 Z') because cov(Y 5 ,Z) = 0 if t>s . 	 Equation 

(4.2.3) can then be solved for t = s, s-i,.. .,s-p simultaneously 

to obtain cov(Y5,Y)  over this range of values of t , and then 

in turn for t = s-p-1, s-p-2 ... . 	 In particular, 

p 
cov(V, 	

= ~ i 
cov(Y51 , 	when st+q+1 

i =1 

Therefore the autocorrelation function of V is of the form 

p 	UA 
P(U) =I K e X 	 when uq-p+1 

£= 1 
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where e 	. ,e  AP are the roots of the pth order polynomial 

xp-,lxp-1 ... _4'p = 

which are all assumed to be distinct, and K is a vector of 

weights which can be expressed in terms of • and 0 by way of 

cov(Y5, ') . The constraints on the parameters 0 and e 

necessary and sufficient to ensure V is positive-definite, or 

equivalently that equation (4.2.1) has a stationary solution, are 

le A 	< 1 	 for £ = 1,... 

(See for example Box and Jenkins, 1976, pp  73-74.) 

4.2.3 Parametérization by stationary solutions of stochastic 

differential equations 

An alternative parametrization is in terms of stationary 

differential equations. There is no restriction to times between 

observations being integer multiples of some basic time interval. 

The random vector Y(t) underlying the weight-corrected departures 

is assumed to be indexed over continuous time t and generated by 

the linear differential equation (3.3.1), where Z(t) is the first 

derivative of . a Weiner process. 	Strictly speaking, this 

definition of Z(t) is nonsense because the Weiner process is 

nowhere differentiable, see for example Hoel, Port and Stone (1972, 

pp141-147). 	As already discussed in [3.3.1] this can be rectified 

by integrating both sides of equation (3.3.1) a certain number of 

times. 	Hoe], Port and Stone (1972, pp159-170) considered this 

equation in the restricted case when q is zero, and Phadke and Wu 

(1974) used the process with p=2 and q=1 to model annual 

sunspot numbers. 
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Examination of the general solution of equation (3.3.1) given 

in equation (3.3.2) reveals that the differential equation can have 

a stationary solution only when 

	

le 
X 1 
 < 1 	 for t = 1,... 9 p 

With this condition satisfied, the first double summation term in 

equation (3.3.2) decays to zero as t increases. Therefore, if 

the origin of the process is redefined to be in the infinite past, 

the solution is 

	

t 	p 	(t-U)A 
(4.2.4) 	Y(t) = f 	Z(u) 	e 	k du 

	

00 	

k=1 

where K* is used in place of K to distinguish it from another 

vector of parameters K which were introduced in [4.2.1] and will 

be used throughout this chapter. 	It follows that the 

autocovariance function of the process satisfies 

cov(Y(s),Y(t))=fftcov(Z(u),Z(v)) 	KK1e 	k e(t& dvdu, 

k=1 x=1 

	

2 	
p 	p 	

( s_v).xk (t-v)A 

	

e 	dv 	for s  

	

a f 	KK*Le 
k=1 t=1 

because Z(u) and 

p 

=( 
k=1 

Therefore the autoc 

p 
P(U) = 

k=1 

Z(v) are uncorrelated when u * v 

P K K* 	(s-t)x 
-2  	

A+A )e 

orrelation function of Y(t) is 

UAk 
Kke 	 for u0, 

K* K* 
where 

Kk
is proportional to 

1= 1 

P 
and K is normalized so that 	I Kk = 1 

k=1 
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The constraints on the parameters g and p in equation 

(3.3.1) to ensure that a stationary solution exists and that V is 

positive-definite are 

	

le 
X  ZI < 1 	 for £ = 1,...,p 

The choice of parameterization by means of stationary solutions of 

stochastic differential equations is more restrictive on the range 

of possibilities for p(u) than is the previous parameterization 

in [4.2.2]. In particular, 6 is restricted to taking only the 

value zero, although this may be extended to the case where 6 is 

an arbitrarily small positive number, by adding an independent 

white noise error to Y(t) . 	In this latter instance 

P 	ux 
P(U) = 	K e 	 for u > 0 , 

k=1 

p 
and 	 I K<l 

k=1 

An alternative model for Y(t) is to define it by the 

weighted integral of a Weiner process given in equation (4.2.4). 

The autocorrelations remain as above but the reference to 

stochastic differential equations is avoided. This then serves as 

a third parameterization of the autocorrelation function. 

4.2.4 Parameterization by a sum of positively-correlated Markov 

processes 

A fourth parameterization is also applicable to any spacing 

of observation times. The weight-corrected departures can b.e 

considered to be the sum of p positively-correlated Markov 

processes if all elements in K are real and non-negative and all 

elements in A are real and non-positive. 	Because, then the 
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weight-corrected departures, a , can be expressed as 

= L1 

where a 11 ,.. . 	are positively-correlated Markov processes 

which are independent of one another and 

li_i IA 2. 
cov(a, aL) = 	e 	 for i,j = 1,...,n 

The above constraints on K and A can be achieved by 

parameterizing with a (2p-1)-dimensional vector a where 

K2. = ( + . sin a) ii (- - - Sin 	for 	2. = 1,...,p-1 1  
k=1 

p-i 1 
	1 

K p =  ii 	(-a. - -. sin ak) 
k=1 

and 	e 2.  = . +. sin a +2..i 	 for 2. = 

This ensures that all elements in K are non-negative, that all 

elements in x are non-positive, and that 

p 
K1 

2. 1 

This parameterization is more restrictive than using either 

the difference or differential equations. 	The advantage of the 

sinusoid over the more commonly used logit transformation to 

constrain parameters to lie between 0 and 1 is that it allows the 

values 0 and 1 to be realised. 	For example, when p=i and q=1 

in equation (4.2.1) the stationary solution, denoted the ARMA(1,1) 

process by Box and Jenkins (1976), has an autocorrelation function: 

p(u) = K e X 	 when u1 

The same structure can be produced in this parameterization, 

provided 	O, by setting p=2 and a3  = - 7rI2 , because then 

eA2 = 0 and 



P(U) = K1  + K2  = 1 	 if u = 0 

= K 	
UA

1  e 1 	 if u > 0 

This is the parameterization that has been used in subsequent 

sections of this chapter. 	It has the advantage of restricting the 

parameters, K and A , to a sensible range for the data sets 

considered, and has less problems with iterative convergence in 

estimation when A 	is close to zero. 

4.2.5 Model order identification 

The orders, p and cs , in the autocorrelation function need 

to be known before K and x can be estimated. When observations 

are equally spaced this is equivalent to finding p and q , the 

orders in equation (4.2.1), because 6 = q.-p+1 . 	Autocorrelations 

p can be estimated from the weight corrected departures (a) of 

the data from the regression function (f) fitted, for example, by 

least-squares estimation. The sample autocorrelation at lag & is 

	

fl-Z 	 fl 

= ( 	+) / ( 	 for 1 

	

P.e

i=1 	 j=1 
and p2. 

= 	
. 	To help identify p and q from p I proposed 

(Glasbey, 1982) the use of generalized partial autocorrel at ion 

(GPA) coefficients, the (g,h)th of which is 

g 

g+h+1 - 
i= 1 

/( 

(gh} 
4 i 	'g+h-i+1 

'{gh} -{gh} 
(t) L 	j+k-.t 

where 
•{h} 

 is the solution of the simultaneous linear equations 

= ;{gh} 
p 2.4 + ... + ;{gh} 
	

for 9. = h+1,... ,h+g 

If gp and h=q (or g=p and hq) then I proved that the 
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(g,h)th GPA coefficient is asymptotically normally distributed with 

zero mean and variance 1/n, where n is the number of 

observations. 	Once the GPA coefficients have been calculated 	for 

a range of g and h, p and q can be selected as the smallest 

indices such that when gp and h=q , and when g=p and hq 

the GPA coefficients are all within sampling range of zero. 

When h=O , the GPA coefficients are simply the 

autocorrelation coefficients standardized to equal variances taking 

account of autocorrelations of lower lags (Bartlett, 1946) and 

assuming that autocorrelations at higher lags are zero. 	When 

g=O , the GPA coefficients are the partial autocorrelations 

proposed by Quenouille (1947). 

The orders p and q identified from examination of an 

array of GPA coefficients are not necessarily those appropriate for 

parameterizations in [4.2.3] and [4.2.4] which require extra 

conditions to be satisfied. These can sometimes be ascertained by 

examining the values of p . 	For example, for the weight- 

corrected departures to be represented as a sum of positively-

correlated Markov processes all elements in p should be non- 

negative. 	Of course, this is not a simple property to assess 

because of the sampling variability in . If there is doubt 

about the suitability of a model, then the options are either to 

use alternative parameterizations to test the assumptions, or to 

assess the fit by over-fitting using a higher order model. 

Initial estimates of the error model parameters to provide 

starting values in the iterative optimization algorithm can be 

obtained by equating the first few coefficients in p and p 
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4.2.6. Variances of parameter estimators 

The distributions of maximum likelihood estimators have been 

discussed in [1.3.8]. 	The computer program, REGAME, which was 

described in section 2.4, has been used to fit models to the data 

sets in the following sections. 	Approximate variances of 

parameter estimators have been obtained by inverting the Hessian 

matrix of whichever optimization function is being used, whether 

the negative log-likelihood (LM)  or the negative residual log-

likelihood (LR)  described in [2.3.2]. However, small simulations 

and marginal confidence intervals obtained directly from the 

likelihood surface have also been used. 

4.3 	Coiquhoun's data: relaxation of drug-induced membrane 

currents 

4.3.1 Introduction 

One method of studying the mechanism of drug action has been 

by measuring the relaxation of drug-induced currents in the 

end-plate membrane of a muscle fibre after a voltage jump (see for 

example Coiquhoun and Hawkes, 1977); The particular set of data 

that will be. analysed in this thesis consists of 128 measurements 

made at intervals of 0.25 milliseconds after the voltage jump 

(Coiquhoun, 1978). 	The first millisecond of data was discarded 

because of electrical transients leaving 124 observed currents 

which are plotted against time in figure 4.3.1. 	The theory of 

drug action predicts that the current decays as a sum of 

exponentials to a constant level. 	I used this data set as an 
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example in some earlier work (Glasbey 1980), the results of which 

will be referred to later. 

4.3.2 Single exponential regression with independent errors 

Initially the simplest regression model was considered (that 

is a single exponential response curve) and the simplest error 

model (independent errors with equal variances). 	Observations y 

were therefore assumed to be independent normal deviates about a 

mean value of f with variance matrix t 2 1 , where 

= 	+ 82 e 
	 3 	 for i = 1, ..., 124 

with three unknown parameters, 8 1 1  82 and 8 3  (denoted 8) 

From the definition in [2.2.1] y is a GARMA(0,0) process, and the 

parameters 8 and T 2  can be estimated by minimizing LM (defined 

in [2.3.2]) using the computer program REGAME described in section 

2.4. At this stage the choice of LM  is of no importance because, 

for independent errors, the results would have been almost the same 

if L  	had been used as the optimizing function. The estimation 

proceeded iteratively on 8  from a starting value which was 

obtained quite easily from the data which have only a small error 

component. 	The parameter estimates, standard errors and 

associated correlation coefficients for this simple model are given 

in table 4.3.1. 	As an example of the output from REGAME, the 

results to channel NOUT10 when this model was fitted, are given in 

Appendix B. 	The scatter plot produced by REGAME of departures of 

the data from the fitted regression show no indication that the 

error variances are unequal. 	However, the fitted curve in figure 

4.3.1 exhibits systematic departures from the data, which implies 

that either a single exponential regression, or the assumption of 
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Figure 4.3.1 

Colquhoun's data, single exponential regression with independent 
errors, fitted by least-squares estimation; observed currents (X) 
and fitted regression curve ( 	) plotted against time. 
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independent errors, is inappropriate. 	In most regression problems 

the more suspect assumption would be the single exponential model 

and this would then be modified, but in this example there is no a 

priori justification for assuming independent errors because the 

data were collected serially in time on a single subject. 	I will 

therefore consider extending the model to allow the error process 

to be correlated. 

4.3.3 Generalized partial autocorrelation coefficients 

To identify a suitable correlation model the autocorrelation 

and GPA coefficients of the departures of the data from the fitted 

regression curve were calculated. These are given in table 

4.3.2. 	The estimated autocorrelation coefficients are 

significantly different from their zero expectations for 

independent errors. 	They appear to decline approximately 

exponentially after an initial drop from lag zero to lag one. 

This suggests an ARMA(1,1) process may be a suitable error model. 

The GPA coefficients indicate the same model because all terms 

below and to the right of the element where (p,q) is equal to (1,1) 

are small relative to the standard error of 9 (derived as 

100/1124). 	The estimated autocorrelation coefficients are also 

consistent with the errors being the sinn of a positively-correlated 

Markov process and white noise, which was the parameterization 

considered in [4.2.4]. 

In some earlier work (Glasbey, 1980) using a similar 

regression function I restricted the choice of error models to 

autoregressive processes alone and found it necesary to use a 

third-order model, that is an ARMA(3,0) process in the present 
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Table 4.3.1 

Coiquhoun's data, single exponential regression with independent 

errors, fitted by least-squares estimation; parameter estimates 

with associated estimated standard errors and estimated correlation 

coefficients 

'2 P3  Ir
2  

estimate -88.9 77.4 7.24 0.33 

se (0.1) (0.3) (0.06) (0.04) 

correlations 

P2  
0.18 

-0.82 -0.60 

¶2 0.00 0.00 0.00 

Table 4.3.2 

Coiquhoun's data, single exponential regression with independent 

errors, fitted by least-squares estimation; lOOxautocorrelation 

coefficients of residuals and 100xGPA coefficients. 

Lag 	 1 	2 	3 	4 	5 

autocorrelation 	70 	64 	60 	53 	47 

GPA 

p 	0 	1 	2 	3 	4 

q 

0 70 30 17 3 0 

1 45 2 -5 -1 -6 
2 36 -5 -2 -5 1 

3 28 1 •-4 7 5 

4 24 -4 0 4 -2 

Autocorrelation and GPA coefficients exceeding 18 (that is 2 

standard errors) are underlined. 
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terminology. 	The estimated autocorrelation structure is very 

similar to that of an ARMA(1,1) process, but at the cost of one 

extra parameter. 

4.3.4 Single exponential regression with ARMA(1,1) error model 

The autocorrelation function was assumed to be of the form 

considered in [4.2.4] with p=2 , e 2  held constant at zero and 

t. taken to be i for i = 1,...,n. 	The regression parameters 

(8) and error model parameters (ci) were jointly estimated by 

minimizing the negative log-likelihood LM  using REGAME. 

Starting values in the iterative process were taken as the 

least-squares estimated values of 8 from [4.3.2] and a was 

estimated from the first few sample autocorrelation coefficients of 

the least-squares residuals. 	The results are given in table 

4.3.3. 	The negative log-likelihood has decreased to -64.7 from 

the earlier value of -6.3 when errors were assumed to be 

independent. If the errors were independent then this difference 

would be distributed approximately as 	x 	because of the 

two extra parameters in the model. However, the 95 percentile for 

the 	4 distribution is 3.0 which is greatly exceeded, so the 

improvement in fit is sufficient to reject the hypothesis of 

independent errors. The regression parameter estimates are 

approximately the same as those estimated assuming independent 

errors but the standard errors are much bigger. This illustrates 

the bias in the estimated variances of parameter estimators when an 

incorrect error model is assumed. 	The estimated autocorrelation 

function is 

(u) = 0.85 (0975)U 
	

for u > 0 



:. 

The output from fitting this model is given in the second half of 

Appendix B. 

An alternative estimation method is to minimize L  , the 

residual negative log-likelihood defined in [2.3.2]. 	The results 

are given in table 4.3.4. 	The estimated autocorrelation function 

is substantially different from above: 

;(u) = 0.99997 (0999995) U 	
for u > 0 

Because the error process is very close to non-stationarity, 

problems were encountered with the difference equation 

parameterization of the autocorrelation function using 	and 

01 , as described in [4.2.2]. The parameterization as a suit of 

positively-correlated Markov processes proved to be more robust. 

However, it was still necessary to experiment with different 

parameter scaling values in REGAME in order to achieve 

convergence. There are large correlations between the estimators 

of the error model parameters (a1 , cz2  and r 2), but this would 

have been a problem with any parameterization. 	It is not of too 

great a concern because the main interest is in 8 . 	The fitted 

regression curve (f) and - the predicted fit using past 

observations (as described in [2.3.6]) are plotted against time in 

figure 4.3.2. 	The improvement in fit can be seen in the better 

agreement between predicted and observed values than in figure 

4.3.1, although the fitted values in figure 4.3.2, which take no 

account of correlation in the errors, are worse than the fitted 

values when errors are assumed independent. 

Further examination of the likelihood surface showed that 

it has no minimum and L  	
converges to its lowest value of 

-68.8351 as a1  converges to ir/2 and 
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Table 4.3.3 

Coiquhoun's data, single exponential regression with ARMA(1,1) 

error model, fitted by maximum likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

estimate 

se 

correlations 

P 2 

P3 

a2  

2 

0 1  p2  a1  a2  

-88.3 79.4 6.77 0.8 1.3 0.52 

(0.7) (1.0) (0.23) (0.3) (0.1) (0.37) 

-0.48 

-0.63 0.15 

0.22 -0.05 	-0.53 

0.22 -0.10 	-0.57 	0.86 

0.22 -0.07 	-0.55 	0.97 	0.92 

Correlation coefficients exceeding 0.9 underlined. 

Table 4.3.4 

Colquhoun's data, single exponential regression with ARMA(1,1) 

error model, fitted by residual maximum likelihood estimation; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

Pi 	02 	 a1 	a2 	¶2 

estimate -88.2 78.6 6.59 1.559 	1.566 	2300.0 

se (47.7) (1.6) (0.24) (0.109) 	(0.042) 	(43000.0) 

correlations 

P2 
-0.02 

P3 
-0.01 0.48 

a1  0.00 -0.01 -0.00 

a2  0.00 -0.01 0.00 0.9997 

2 0.00 -0.01 -0.00 0.99996 	0.9998 

Correlation coefficients exceeding 0.9 underlined. 



Figure 4.3.2 

Colquhoun's data, single exponential regression with ARMA(1,1) 
error model, fitted by residual maximum likelihood estimation; 
observed currents (X), fitted regression curve ( ---- ) and predicted 
currents ( 	) conditional upon earlier observations, plotted 
against time. 
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= ff12 - 0.379(7r/2 - 

As the limit is approached, all correlations between observations 

approach unity, and r 2  becomes infinite, although the white noise 

component of the variance structure, that is 1(2 1 2  , converges to a 

finite value of 0.077. 	Therefore, the optimization algorithm gave 

the wrong answer for the minimum, probably because of numerical 

rounding errors as the limit was approached, although the value of 

L 	obtained (-68.8350) is close to its lower bound. 

The high correlations in the error process imply that the 

regression function is not accounting for all the long-term trends 

in the data and as such are strong grounds for changing the 

regression function. However, I would like to persevere for a 

little while with the single exponential function because of its 

relationship with the simplest stochastic compartment models 

considered insection 7.3 as mechanistic models of Coiquhoun's 

data. 

The high correlations coud be eliminated by taking first 

differences of the series to obtain y 2 -y1 , y3 -y 2 ,..., y-y 1  

The regression function becomes 

-(1+(i+1)/4)/8 3 	-(1+i/4)/6 3  
02   e 	 - e 	 } 	for i = 1,...,n-1 

with the loss of 0 1  , and the error series becomes a first-order 

moving average process with parameter e defined in equation 

(4.2.1) and variance a2 • The residual maximum likelihood 

estimates and standard errors are given in table 4.3.5. The error 

parameter estimates relate to the limiting relationships specified 

above between a 1  I  a2  and T 2  as follows: 

e = 1 + (0.379) 2  - /12(0.379)2 + (0.379)1 

a 2  = 2(0.077) 11 + ( 0.379)2} 



Table 4.3.5 

Coiquhoun's data first differenced, exponential regression with 

ARMA(0,1) error model, fitted by residual maximum likelihood 

estimation; parameter estimates with associated estimated standard 

errors and estimated correlation coefficients. 

82 83 	 0 

estimate 	 78.6 6.58 	0.59 	0.18 

se 	 (1.6) (0.24) 	(0.07) 	(0.02) 

correl ations 

83 	 0.48 

• e 	 -0.02 	0.08 

a 2 	 -0.01 	0.03 	0.39 

I , 
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The estimates and standard errors of the parameters of primary 

interest, 0 
2 
 and 

 P3 , are almost identical with those of table 

4.3.4. Therefore it seems preferable to remain with the 

untransformed series to simplify comparisons between maximum 

likelihood estimation and residual maximum likelihood estimation. 

A comparison of tables 4.3.3 and 4.3.4 shows that the 

regression parameter estimates are approximately the same but the 

standard errors of the residual maximum likelihood estimators are 

bigger, especially for p,. 	Both sets of parameter estimates 

satisfactorily account for the correlations in the data; 

examination of the residuals reveals no remaining autocorrelations. 

4.3.5 Simulation to compare estimation methods 

To compare the three estimation methods used so far, ten 

independent series, each of length 124, were generated from a model 

with a single exponential as regression function and stationary 

ARMA(1,1) errors with, as parameter values, the estimates from 

Colquhoun's data given in table 4.3.3. 	Pseudo-random standardized 

normal deviates were generated using the NAG routine G05DDF, 

starting from a seed set by the routine G05CBF. 	These were then 

transformed to have the appropriate mean and variance matrix by 

applying the technique described in [2.3.7], using subroutine 

REGGEN listed at the end of Appendix A. 	Separately, to each 

series of data, a single exponential regression model was fitted by 

three methods: (1) least-squares estimation, denoted LS (that is 

minimizing LM  on the assumption that the errors were 

independent); (2) maximum likelihood estimation, denoted ML (that 

is minimizing LM  on the assumption that the errors arose from an 
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ARMA(1,1) process); and (3) residual maximum likelihood 

estimation, denoted REML (that is minimizing L 	on the assumption 

that the errors arose from an ARMA(1,1) process). 	These are the 

three methods of estimation that have already been used with 

Colquhoun's data. 	Because of the heavy use of computer CPU time 

in fitting the models only ten series were simulated. 	It is 

recognised that sampling variability will remain a large component 

of any summary statistics derived from such a small sample, but 

large differences between methods of estimation should be 

identifiable. 

For each parameter in the model and each method of 

estimation, three summary statistics were extracted from the ten 

independent estimates from the simulated series: bias, 

root-mean-square-error (abbreviated to r.m.s.e) and average 

standard error. 	To define what these statistics are, consider the 

regression parameter p, and denote its least-squares estimated 

value from the ith data set by 	.and its estimated standard 

error by se(11) , where i ranges between 1 and 10. The true 

value of p, is -88.3, given as the estimate of p, in table 

4.3.3, and used to simulate the ten series. 	Therefore the 

estimated bias in the least-squares estimator of p, is 

10 

488.3 + 	{1} / 10 
i =1 

and the estimated r.m.s.e. is 

10 

4 	(-88.3 - 
	

/ 10] 
i =1 

The mean standard error is defined simply as 
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10 

se() / 10 

i =1 

Table 4.3.6 gives these summary statistics. 

The whole procedure of simulation, estimation and 

summarization was repeated for a different set of model parameters, 

namely the estimates given in table 4.3.4. 	These summary 

statistics are given in table 4.3.7. 

If it is assumed that the parameter estimators are normally 

distributed, then t-statistics can be derived in order to test 

whether the biases are significantly different from zero. 	The 

estimated variance of the bias can be calculated from the root-

mean-square-error as 

((r.m.s.e.) 2 - ( bias) 2)/g 

Because the 95 percentile for the t-distribution with 9 degrees of 

freedom is 2.26, biases on the threshold of significance at the 5% 

level satisfy: 

bias 
= ±2.26 

- (bi as) 2 )/9) 

This can be reexpressed as 

bias = ± 0.6017 (r.m.s.e.) 

Therefore biases exceeding 60% of the r.m.s.e.s are significantly 

different from zero at the 5% level and have been underlined in 

tables 4.3.6 and 4.3.7. 

The most significant biases are for the maximum likelihood 

estimators of cz j  and a2  . 	The r.m.s.e.s are largest for the 

least-squares estimators as is to be expected because this is an 

inefficient estimation procedure when errors are correlated. 	The 

standard errors obtained by least-squares estimation are much 

smaller than the r.m.s.e.s and so are overestimating the precision 
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Table 4.3.6 

Summary statistics derived from ten simulations of a single 

exponential regression with ARMA(1,1) error model, using as model 

parameters the estimates given in table 4.3.3, fitted by least-

squares estimation (LS), maximum likelihood estimation (ML) and 

residual maximum likelihood estimation (REML). 

8 1 	82 	83 	a1 	a2  

bias 

LS 	 -0.1 	-0.8 	0.17 

ML 	 0.0 	-0.4 	0.11 	-0.5 	-0.4 	-0.3 

REML 	 0.1 	-0.5 	0.07 	-0.1 	-0.1 	70.0 

r.m.s .e. 

LS 0.7 1.3 0.23 

ML 0.6 0.9 0.15 0.6 0.5 0.3 

REML 0.6 0.9 0.16 0.6 0.3 170.0 

average se 

LS 0.1 0.2 0.04 

ML 0 0 0.11 0 0 Od 

R EML 2.7 0.1 0.003 0.2 0.1 9.6 

Biases significant at 5% level, i.e. exceeding 60% of r.m.s.e. 

underlined. Mean se's less than 80% of r.m.s.e. underlined. 

The three summary statistics are defined in [4.3.5]. 



- 95 - 

Table 4.3.7 

Summary statistics derived from ten simulations of a single 

exponential regression with ARMA(1,1) error model, using as model 

parameters the estimates given in table 4.3.4, fitted by least-

squares estimation (LS), maximum likelihood estimation (ML) and 

residual maximum likelihood estimation (REML). 

a2  

bias 

LS -0.2 0.7 0.05 

ML -0.2 0.8 0.05 -1.3 -0.7 -2300.0 
REML -0.3 0.7 0.05 -0.0 0.0 20.0 

r.m.s.e. 

LS 24.7 1.2 0.2 

ML 24.8 1.3 0.1 1.4 0.7 2300.0 
REML 24.9 1.2 0.1 0.001 0.0007 430.0 

average se 

LS 0.1 0.2 0.04 

ML 0.2 0.5 0.01 0.3 0.2 0.06 
REML 220.0 0.004 0.00002 0.003 0.0007 720.0 

Biases significant at 5% level, i.e. exceeding 60% of r.m.s.e. 

underlined. Mean se's less than 80% of r.m.s.e. underlined. 

The three summary statistics are defined in [4.3.5]. 



of the parameter estimators. 	This is also as expected. 	However 

the ML, and especially the REML, standard errors are also much too 

small. 	Using ML, the true parameters are rejected on the basis of 

the negative log-likelihood, that is applying the likelihood ratio 

test. 	The average decreases are 4.8 and 8.8 in the two sets of 

simulations, but to be consistent with the true parameter values 

they should be distributed as 	X 2 . 	The 95 percentile for 

this distribution is 3.4, which is exceeded in both sets of 

simulations. 	For REML, the average decreases are 2.7 and 1.1 in 

the two sets of simulations, which are not significantly too large, 

so the true parameters are not rejected. 	This suggests that it is 

the quadratic approximation to the likelihood surface that has been 

used to obtain the REML standard errors which is causing them to be 

too small, possibly because of near singularity in the Hessian 

matrix, and likelihood-based confidence intervals should perform 

better. 

4.3.6 Likelihood-based marginal confidence intervals 

The quadratic approximation to the likelihood surface can be 

used to obtain 95% marginal confidence intervals for each 

regression parameter as 

± se() v'{ 	(95%)} 

which is 	 0± 1.96 se(8) 	for j = 1,2,3, 

where x(95%)  denotes the 95 percentile for the x 2  distribution 

with 1 degree of freedom. 	To find 95% marginal confidence 

intervals based directly on the likelihood surface, the critical 

values of each parameter were found such that when that parameter 
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was held constant and all the other parameters estimated by 

minimizing LR , the value of LR  was -66.9, that is 

greater than at its minimum value. 	The results are given in table 

4.3.8. 	The only difference in marginal confidence intervals 

between the two methods of derivation is for p, which cannot 

apparently be estimated with any precision at all for this type of 

correlation amongst the errors. 	This is related to the point made 

in [4.3.4] that the likelihood surface has no minimum. 	As a1  

and a2  approach it/2 , the correlations all approach unity and 

cannot be estimated because it becomes confounded with the 

parameters in the error model. 	Therefore, no confidence limits 

can be placed on 

4.3.7 Double exponential regression with independent errors 

In [4.3.2] it was mentioned that the autocorrelations in the 

departures of the data from the fitted regression curve could have 

been caused by an inappropriate regression function. 	This was 

investigated further by considering a double exponential 

regression: 

f 
1  
. = 1 p + 2 e"4"3 + P4  e 1"4" 5 

for i = 1,...,124. 

The first fit obtained was by least-squares estimation and the 

parameter estimates are given in table 4.3.9. 	The autocorrelation 

and GPA coefficients of the departures are given in table 4.3.10. 

These are smaller than those obtained when fitting a single 

exponential regression, but some are sufficiently different from 

zero to reject the hypothesis of independent errors. 	The pattern 

is consistent with an ARMA(1,1) error model. 



Table 4.3.8 

Coiquhoun's data, single exponential regression with ARMA(1,1) 

error model, fitted by residual maximum likelihood estimation; 95% 

marginal confidence intervals based on quadratic approximation and 

derived directly from the likelihood surface. 

Marginal confidence limits for 

quadratic approximation 

lower 	 -181.6 75.5 6.11 

upper 	 5.3 81.7 7.07 

likelihood surface 

lower 	 -CO 
	 75.4 	6.10 

upper 	 CO 	 82.0 	7.11 



a. 

Table 4.3.9 

Coiquhoun's data, double exponential regression with independent 

errors, fitted by least-squares estimation; parameter estimates 

with associated estimated standard errors and estimated correlation 

coefficients. 

1 2 3 4 5 

estimate -90.4 25.3 3.28 58.6 9.22 0.12 

se (0.3) (4.3) (0.39) (4.4) (0.46) (0.01) 

correlations 

02 -0.91 

-0.80 0.95 

0.88 -0.99 -0.98 

05  
-0.95 0.99 0.93 -0.98 

-0.00 0.00 0.00 -0.00 0.00 

Correlation coefficients exceeding 0.9 underlined. 

Table 4.3.10 

Coiquhoun's data, double exponential regression with independent 

errors, fitted by least-squares estimation; lOOxautocorrelation 

coefficients of residuals and 100xGPA coefficients. 

lag 	 1 	2 	3 	4 	5 

autocorrelation 	 22 	22 	17 	13 	6 

GPA 

p 	0 	1 	2 	3 	4 

0 	 22 18 10 5 -2 

1 	 21 -2 -1 -3 -11 

2 	 16 -1 -1 0 .3 

3 	 12 -2 0 3 0 

4 	 6 -8 2 0 1 

Autocorrelation and GPA coefficients exceeding 18 (that is 2 

standard errors) are underlined. 
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4.3.8 Double exponential regression with ARMA(1,1) error model 

Regression parameters 8 and error parameters a , as for 

the single exponential regression in [4.3.4], were jointly 

estimated: maximum likelihood estimates are given in table 4.3.11 

and residual maximum likelihood estimates in table 4.3.12. The 

reduction in LM , from -64.7 for a single exponential regression 

to -76.3 for a double exponential regression, is sufficiently 

large, for the addition of two extra parameters, to reject the 

hypothesis of a single exponential model using the asymptotic 

properties of the likelihood ratio test. 	Similarly, the reduction 

in L  	from -68.8 to -74.3 is sufficiently large to reject the 

same hypothesis. 	The regression parameter estimates in tables 

4.3.11 and 4.3.12 are approximately the same as the least-squares 

estimates but the standard errors, especially the standard errors 

derived by residual maximum likelihood estimation, are larger. 

The maximum likelihood estimates of a 	 and a 	 are less than 	the 

residual maximum likelihood estimates. 	This is consistent with 

the results for the single exponential regression, which were shown 

by simulation to be due to the maximum likelihood estimates of the 

error parameters being biased downwards. 

The experience with the single exponential regression 

indicates that marginal confidence intervals are more accurate when 

obtained directly from the likelihood surface. 	This also seems 

desirable because of the high correlations among the parameter 

estimates shown in table 4.3.12, which at the very least are likely 

to cause numerical problems in inverting the Hessian matrix. 	The 

95% marginal confidence intervals are given in table 4.3.13. 

There are considerable discrepancies between the marginal 



Table 4.3.11 

Colquhoun's data, double exponential regression with ARMA(1,1) error model, fitted by maximum 

likelihood estimation; parameter estimates with associated estimated standard errors and estimated 

correlation coefficients. 

13 1 	02 	 83 	84 	85  - - a1  

estimate 	-90.4 	26.1 	3.41 	57.6 	9.29 	-0.4 	0.6 	0.12 

se 	 (0.4) 	(7.6) 	(0.64) 	(7.7) 	(0.80) 	(0.3) 	(0.3) 	(0.02) 

correlations 

0 2  
-0.90 

8 3  -0.79 0.96 

84  0.87 -0.995 -0.98 

8 5  -0.94 0.99 0.93 -0.98 

a 1  0.04 -0.04 -0.03 0.03 	-0.04 

a2  -0.07 0.12 0.17 -0.14 	0.11 	-0.32 

-0.00 0.03 -0.04 -0.03 	0.02 	0.35 	0.20 

Correlation coefficients exceeding 0.9 underlined. 



Table 4.3.12 

Colquhoun's data, double exponential regression with ARMA(1,1) error model, fitted by residual 

maximum likelihood estimation; parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

P1 p2 P3 
p4 a] 	-- a2 	 2 

estimate -90.6 31.5 3.86 51.8 9.83 0.1 1.1 	0.19 

se (1.5) (35.2) (2.22) (34.9) (3.96) (1.4) (0.8) 	(0.32) 

correlations 

P2 -0.94 

-0.91 0.99 

0.93 -0.9995 -0.995 

P5 -0.96 0.996 0.98 -0.994 

a1  -0.60 0.73 0.74 -0.73 0.70 

a2  -0.62 0.74 0.75 -0.74 0.72 0.98 

-0.61 0.73 0.74 -0.74 0.71 0.995 0.99 

Correlation coefficients exceeding 0.9 underlined. 
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Table 4.3.13 

Coiquhoun's data, double exponential regression with ARMA(1,1) 

error model, fitted by residual maximum likelihood estimation; 95% 

marginal confidence intervals based on quadratic approximation and 

derived directly from the likelihood surface. 

Marginal confidence limits for 

8 	 8 83  84  85  

quadratic approximation 

lower 	 -93.6 	-37.5 -0.48 -16.5 2.07 

upper 	 -87.5 	100.6 8.21 120.2 17.59 

likelihood surface 

lower 	 -00 
	

8.2 	1.96 	7.5 
	

7.90 

upper 
	

76.8 	5.61 	73.7 
	

Go 
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confidence limits derived by quadratic approximation, that is based 

on the standard errors in table 4.3.12, and those derived directly 

from the likelihood surface. 	As for the single exponential 

regression in table 4.3.8, the likelihood-based limits for 8i  are 

infinite. For parameters 82 , 8 3  and 84  the likelihood-based 

confidence intervals are shorter. 	For the fifth parameter the 

limits are asymmetric about 85 	indicating that the estimator has 

a skew distribution. 

The fitted curve and predicted fit from past observations 

based on residual maximum likelihood estimation are shown plotted 

against time in figure 4.3.3. 	The agreement between predicted and 

observed values is very good indeed, although it is difficult to 

see if it is any better than the agreement in figure 4.3.2. 

The adequacy of the ARMA(1,1) process to model the errors can 

be assessed either by examination of the residuals after fitting 

the model, or by fitting a model of higher order and testing the 

improvement in fit. 	Both these criteria support the existing 

model. 	The residuals, which are the estimates of z in the 

notation of section 2.3, have very small autocorrelations at low 

lags. 	Alternatively, when an ARMA(2,2) model is fitted, the 

decrease in L  	is only 0.1 which is nowhere near approaching the 

magnitude required to reject the hypothesis of an ARM A(1,1) model 

using the likelihood ratio test. 

4.3.9 Resumé 

Regression parameters have been estimated and marginal 

confidence intervals derived for both single and double exponential 

functions. 	ARMA(1,1) error models estimated by residual maximum 
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Figure 4.3.3 

Colquhoun's data, double exponential regression with ARMA(1,1) 
error model, fitted by residual maximum likelihood estimation; 
observed currents (X), fitted regression curve ( ---- ) and predicted 
currents ( 	) conditional upon earlier observations, plotted 
against time. 

Time (ms) 
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likelihood with marginal confidence intervals based directly on the 

likelihood surface were found to be most appropriate for 

Colquhoun's data set. 	The improvement in fit of the double 

exponential model over the single exponential model was found to be 

sufficient to reject the simpler model. 

This data set will be considered again in chapter 5 when a 

spectral parameterization of the error process will be considered. 

Then, in chapter 7 a mechanistic error model will be used in place 

of the empirical model considered in this chapter. 	Finally, in 

chapter 9 the parameter estimates obtained in this section will be 

re-used, but more generally valid estimates of the regression 

parameter estimator standard errors will be derived. 

4.4 	Dales data: radioactive emission from a wheat leaf 

4.4.1 Introduction 

To study the effect of IAA, a growth regulating substance, on 

transport within a plant, a wheat leaf was fed a constant level of 

radioactive carbon dioxide for five minutes. The radioactive 

discharge was then measured every minute for 23 hours. 	The data, 

consisting of ten minute averages of Geiger counts, are plotted 

against time in figure 4.4.1. 	The theory of transport in the leaf 

predicts that the discharge decays as a sun of exponentials 

(Bauermeister, Dale, Williams, Scobie, 1980). 

4.4.2 Regression with independent errors 

Initially, the vector of observations, denoted y , were 

assumed independently normally distributed with mean f where 
U 
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2 	
+ 	

e
( 10 _ 5 ) 	- 4 (10i-5) 

= 	
e  

1 

for i = 1, ... ,138, 

and the ith observation has a variance of r 2  f . 	The choice of 

weighting for the variances was made because of the Poisson form of 

sampling variability inherent in radioactive emissions and for 

empirical reasons, arising from the observed scatter in the data 

revealed in some exploratory plots which are not included in this 

thesis. Estimation of the parameters by minimization of LM , by 

the use of REGAME, gave the parameter estimates in table 4.4.1. 

The fitted curve is shown in figure 4.4.1. 	The autocorrelation 

and GPA coefficients of the weight-corrected departures of the data 

from the fitted regression are shown in table 4.4.2. 	These are 

sufficiently large to reject the hypothesis of independent errors 

and their pattern suggests an ARMA(1,1) process as a suitable error 

model. 	As for Colquhoun's data, the parameterization as a sun of 

positively-correlated Markov processes appears to be appropriate. 

4.4.3 Regression with weighted ARMA(1,1) error model 

With t. 
1 

= i for i = 1,...,138 , and the same form of 

weights as in [4.4.2], the results of fitting the model by maximum 

likelihood estimation are shown in table 4.4.3 and by residual 

maximum likelihood in table 4.4.4. 	The regression parameter 

estimates in tables 4.4.3 and 4.4.4, especially 82 , are quite 

different from the least-squares estimates. 	This can also be seen 

by comparing the curve fitted by residual maximum likelihood 

estimation which is plotted in figure 4.4.2 with the least-squares 

fit plotted in figure 4.4.1. 	As for Colquhoun's data, the maximum 
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Table 4.4.1 

Dale's data, regression with weighted independent errors, fitted by 

least-squares estimation; parameter estimates with associated 

estimated standard errors and estimated correlation coefficients. 
2 

P1 	p2 	p3 	 t 

estimate 	 818.0 	0.0142 	702.0 	0.00067 	0.61 

se 	 (21.0) (0.0006) 	(7.0) (0.00001) 	(0.07) 

correlations 

P2 
0.52 

P 3  -0.02 	0.69 

-0.04 	0.61 	0.93 

-0.00 	0.00 	-0.00 	0.00 

Correlation coefficients execceding 0.9 underlined. 

Table 4.4.2 

Dale's data, regression with weighted independent errors, fitted by 

least-squares estimation; lOOxautocorrelation coefficients of 

residuals and 100xGPA coefficients. 

Lag 	 1 	2 	3 	4 	5 

autocorrelation 	72 	62 	61 	56 	51 

GPA 

p 	0' 	1 	2 	3 	4 

q 

0 	 72 22 22 5 .  5 

1 	 44 13 -7 3 -1 

2 	 36 -7 -2 1 -6 

3 	 29 1 1 -6 -0 

4 	 25 1 -3 -1 3 

Autocorrelation and GPA coefficients exceeding 17 (that is 2 

standard errors) are underlined. 
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Figure 4.4.1 

Dale's data, regression with weighted independent errors, fitted by 
least-squares estimation; observed radioactive discharges (X) 
and fitted regression curve( 	) plotted against time. 
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Table 4.4.3 

Dale's data, regression with weighted ARMA(1,1) error model, fitted 

by maximum likelihood estimation; parameter estimates with 

associated estimated standard errors and estimated correlation 

coefficients. 

estimate 

se 

correlations 

P2 

P3 

N 
a1  

a2  

2 
-V 

01 	02 	p3 	 a1 	a2  

809.0 	0.0205 785.0 	0.00081 	0.9 	1.3 	1.04 

(38.0) (0.0018) (39.0) (0.00006) (0.2) 	(0.1) (0.64) 

-0.44 

-0.43 0.57 

-0.43 0.49 0.80 

-0.25 0.36 0.41 	0.42 

-0.28 0.24 0.41 	0.43 	0.82 

-0.27 0.32 0.40 	0.44 	0.96 	0.89 

Correlation coefficients exceeding 0.9 underlined. 
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Table 4.4.4 

Dale's data, regression with weighted ARMA(1,1) errors model, 

fitted by residual maximum likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

Pi 	P2 p3 	 a1 	a2 	t 

estimate 

se 

correlations 

P2 

P3 

P4 

a2  

2 

806.0 0.0210 816.0 0.00084 	1.41 	1.50 	18.2 

(74.0)(0.0020)(157.0)(0.00013) (0.77) (0.36) (175.0) 

-0.32 

0.72 0.12 

-0.64 0.34 -0.40 

0.55 -0.04 0.61 

0.55 -0.06 0.61 

0.53 -0.05 0.60 

-0.41 

	

-0.41 	0.999 

	

-0.40 	0.9996 0.9993 

Correlation coefficients exceeding 0.9 underlined. 
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Figure 4.4.2 

Dale's data, regression with weighted ARMA(1,1) error model, fitted 
by residual maximum likelihood estimation; observed radioactive 
discharges (X), fitted regression curve ( ---- ) and predicted values 
( 	) conditional upon earlier observations, plotted against time. 
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likelihood estimates of a, and a2  are lower than the residual 

maximum likelihood estimates and this is probably the reason why 

regression parameter standard errors derived by maximum likelihood 

estimation are smaller. 	The improvement in fit over the model 

with independent errors, as measured by LM  decreasing from 458.7 

to 385.3, is sufficient to reject the hypothesis of independent 

errors on the basis of the asymptotic properties of the likelihood 

ratio test. 	The residuals have very small autocorrelations at low 

lags, and so an ARMA(1,1) process appears to model adequately the 

correlation structure in the errors. 	The maximum likelihood 

estimate of the autocorrelation function is 

(u) = 0.89 (0976)U 
	

for u > 0 

and the residual maximum likelihood estimate is 

(u) = 0.994 (09987)u 
	

for u > 0 

The high. correlations are a cause for concern as they were 

for Colquhoun's data in [4.3.4], although in this case L   does 

have a minimum. The same reasons may be given here as in [4.3.4] 

for continuing with the present model. 

4.4.4 Adjusted least-squares standard errors 

The differences in the estimates of 8  between table 4.4.1 

and tables 4.4.3 and 4.4.4 may be because of the improvement in 

efficiency of maximum likelihood estimation compared with that of 

least-squares. 	On the assumption that the regression function is 

approximately linear in its parameters close to the best fitting 

value, the weighted least-squares estimate of 8  is 

(4.4.1) 	 8* + (XT  WWX)4 XTW1W1(y 

where 	 X 	af/381( 
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W is a diagonal matrix with W 1  = v'f , 8 	is an arbitrary value 

of the vector of regression parameters close to the best fitting 

value, and f*  is the corresponding value of the regression 

vector. 	Therefore, if y  has a variance r 2V , then 

(4.4.2) var() = r 2 (XIWWX) X TWW4 V W 1 w 1 x (XTW . wx 

On the assumption that V has the same ARMA(1,1) structure as in 

[4.4.3], its parameters (ct) can be estimated using the departures 

of the data from the least-squares fitted regression. 	The maximum 

likelihood estimate of the error parameters and standard errors, 

and the least-squares estimated regression parameters with standard 

errors calculated using equation (4.4.2), are given in table 

4.4.5. The corresponding residual maximum likelihood estimates are 

given in table 4.4.6. 	The standard errors are not large enough to 

account for the difference with tables 4.4.3 and 4.4.4. 

The maximum likelihood and residual maximum likelihood 

estimators of the regression parameters, which were discussed in 

[4.4.3], can also be expressed approximately as linear functions of 

the observation vector y , analoguous to equation (4.4.1). 

Approximate correlations between these estimators and, the least-

squares regression estimators can then be calculated and the 

multivariate distance between different estimates of 8 obtained. 

The squared Mahalanobis distance between the least-squares and 

maximum likelihood estimates is 22.0, which exceeds the 95 

percentile of x 	(which is 9.5), and so is large enough to reject 

the hypothesis that the two estimators are both estimating 8 , on 

the assumption that the errors arose from an ARMA(1,1) process. 	A 

similar conclusion holds in a comparison between the least-squares 

and residual maximum likelihood estimates for which the Mahalanobis 
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Table 4.4.5 

Dale's data, ARMA(1,1) error model fitted by maximum likelihood 

estimation to residuals after least-squares fit of regression, 

variances of regression parameter estimators recalculated; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

01 	P2 	03 	P4 	ala2 

estimate 818.0 0.0142 702.0 	0.00067 	0.7 	1.1 	0.73 

se (42.0) (0.0017) (31.0) 	(0.00005) 	(0.2) 	(0.2) 	(0.32) 

correlations 

-0.05 

-0.42 0.66 

-0.40 0.57 0.90 

a1  

a2  0.53 

¶2 
0.87 	0.80 
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Table 4.4.6 

Dale's data, ARMA(1,1) error model fitted by residual maximum 

likelihood estimation to residuals after least-squares fit of 

regression, variances of parameter estimators recalculated; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

P1  P2  P3 	P4 	a1  a2  

estimate 818.0 0.0142 702.0 	0.00067 	1.51 1.54 	116.0 

se (151.0) (0.0027) (284.0)(0.00023)(0.24) (0.13) 	(14.0) 

correlations 

-0.32 

0.86 -0.04 

-0.78 0.47 -0.59 

a1 	 - 

a2 	 0.997 

0.9995 0.999 

Correlation coefficients exceeding 0.9 underlined. 
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squared distance is 16.1. Therefore, either asymptotic properties 

are not being closely approximated, or the errors are not from an 

ARMA(1,1) process, or equivalently (see [1.1.2]) the regression 

function is inappropriate. 

4.4.5 Simulation to compare estimation methods 

The validity of asymptotic approximations can be tested by 

simulation. To compare the estimation methods, ten independent 

series were generated in an analogous fashion to that described in 

[4.3.5], but this time the series were of length 138 and used the 

regression function in [4.4.2] with a weight-corrected stationary 

ARMA(1,1) model for the errors with, as parameter values, the 

estimates from Dale's data given in table 4.4.4. 	Separately, to 

each series of data, the regression model of [4.4.2] was fitted by 

four methods: (1) least-squares estimation, but with standard 

errors recalculated after an ARMA(1,1) process had been fitted by 

maximum likelihood estimation to the departures of the data from 

the fitted regression as described in [4.4.4], denoted LS/ML; (2) 

least-squares estimation as above, but with the ARMA(1,1) process 

fitted by residual maximum likelihood estimation, denoted LS/REML; 

(3) joint maximum likelihood estimation of both the regression and 

the ARMA(1,1) process, denoted ML; and (4) joint residual maximum 

likelihood estimation of both the regression and the ARMA(1,1) 

process, denoted REML. These are the four methods of estimation 

that have already been applied to Dale's data. 	Because of the 

heavy use of computer CPU time in fitting the models only ten 

series were simulated. 

The results are summarized in table 4.4.7 using the summary 

statistics previously defined in [4.3.5]. 	None of the biases in 
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Table 4.4.7 

Summary statistics derived from ten simulations of a regression 

with ARMA(1,1) error model, using as model parameters the estimates 

given in table 4.4.6, fitted by least-squares estimation and the 

error process by maximum likelihood estimation (LS/ML) or residual 

maximum likelihood estimation (LS/REML), full maximum likelihood 

estimation (ML) and residual maximum likelihood estimation (REML). 

8 1 82 83  84 al a2 

bias 

LS/ML -4.0 -0.0005 12.0 -0.0000 -0.9 -0.6 -18.0 

LS/REML -4.0 -0.0005 12.0 -0.0000 -0.5 -0.3 - 3.0 
ML -2.0 -0.0003 14.0 0.0000 -0.9 -0.6 -18.0 

REML 71.0 -0.0007 324.0 -0.0001 0.1 0.0 1100.0 

r .m.s .e. 

LS/ML 26.0 0.0024 51.0 0.00006 0.9 0.6 19.0 

LS/REML 26.0 0.0024 51.0 0.00006 0.6 0.4 21.0 

ML 22.0 0.0018 51.0 0.00006 0.9 0.6 18.0 

REML 207.0 0.0019 646.0 0.00027 0.2 0.1 1500.0 

average se 

LS/ML 32.0 0.0018 20.0 0.00003 0.2 0.2 0.2 

LS/REML 54.0 0.0027 85.0 0.00009 0.3 0.2 12.0 

ML 30.0 0.0013 19.0 0.00003 0.2 0.2 0.2 

REML 129.0 0.0011 465.0 0.00017 0.1 0.05 450.0 

Biases significant at 5% level, i.e. exceeding 60% of r.m.s.e. 

underlined. Mean se's less than 80% of r.m.s.e. underlined. 

The three summary statistics are defined in [4.3.5]. 
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the regression parameter estimators is significant at the 5% level, 

so the differences in estimates between table 4.4.1 and tables 

4.4.3 and 4.4.4 remain unexplained. 	As with Coiquhoun's data, 

and a2  appear to be underestimated by maximum likelihood 

estimation. 	The average ses are smaller than the r.m.s.e.s with 

all the estimation methods and so are overestimating the precision 

of the parameter estimators. 	In ML, the average decrease in LM 

from the true model to the estimated model is 6.0 which exceeds the 

95 percentile of -. 	which is 4.0, so the true model is 

rejected on the basis of the likelihood ratio test. 	In REML, the 

change in L  	of 2.3 is close to its expected value of 3.0 and 

the true model is not rejected. 	Therefore, as with the simulation 

in [4.3.5], the likelihood surface for L 	appears to provide a 

better measure of precision of estimation than do the standard 

errors based on a quadratic approximation. 

4.4.6 Likelihood-based marginal confidence intervals 

Marginal confidence intervals for the regression parameters 

were calculated using the standard errors in table 4.4.4, and also 

directly from the likelihood surface as described in [4.3.6]. 	The 

results are given in table 4.4.8 and show that the quadratic 

approximation is underestimating the standard errors. 	This is 

consistent with the simulation results. 

4.4.7 Regression with non-stationary error model 

Simulation has not shown the asymptotic properties to be far 

off the truth, so the inconsistencies between estimators must be 

due to the assumed model being inappropriate. 
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Examination of figure 4.4.1 and also of the line printer 

plots generated by REGAME (which have not been included in the 

thesis) indicate that the weight-corrected departures of the data 

from the least-squares fitted regression are not stationary: the 

departures show much greater changes in magnitude at the start of 

the series than at later times. 	When the errors were assumed to 

be stationary, the fitted regression function was adjusted so that 

the sample correlation coefficients among the departures at the 

start of the series increased. 	This can be seen in the departures 

of the data from the fitted curve in figure 4.4.2. 

Therefore, as an experiment, the covariance model was 

modified by allowing the first three observations to be independent 

of the rest of the data which were once again modelled by an 

ARMA(1,1) process. 	This model corresponds to a GARMA(1,1) 

process. The parameters were estimated by residual maximum 

likelihood estimation and the results are given in table 4.4.9. 

The regression parameter estimates are a compromise between those 

given in tables 4.4.1 and 4.4.4 with the new estimate of p 	 in 

particular being much closer to the least-squares estimate. 	The 

fit is a slight improvement on the stationary model: L 	has 

decreased from 367.5 to 367.0 

Once the possibility has been admitted that the error process 

is non-stationary, the number of alternative models from which to 

choose is enormous. The effects of different selections on the 

regression parameter estimators may be large, but the data are of 

little assistance in making the choice. 
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Table 4.4.8 

Dale's data, regression with weighted ARMA(1,1) error model, fitted 

by residual maximum likelihood estimation; 95% marginal confidence 

intervals based on quadratic approximation and derived directly 

from the likelihood surface. 

Marginal confidence limits for 

0 1 	P2 	P3 	P4  
quadratic approximation 

lower 	 661.0 	0.0171 	509.0 0.00059 

upper 	 950.0 	0.0250 	1123.0 0.00110 

likelihood surface 

lower 
	

523.0 	0.0175 	398.0 0.00039 

upper 
	

1174.0 	0.0258 	2034.0 0.00125 

A A fl 

Dale's data, regression with weighted ARMA(1,1) error model 

excluding the first three errors which are taken to be independent, 

fitted by residual maximum likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

P1  P2  P3  04 	 2 	lu 2 

estimate 749.0 0.0156 779.0 0.00078 	1.1 	1.4 	2.2 

se (49.0) (0.0025) (43.0) (0.00008) 	(0.2) 	(0.1) 	(2.2) 

correlations 

0.31 

-0.53 0.37 

-0.11 0.56 0.54 

a1  -0.44 -0.48 0.07 -0.37 

a2 	-0.47 	-0.57 	0.06 	-0.40 	0.92 

	

-0.44 	-0.49 	0.05 	-0.35 	0.99 	0.95 

Correlation coefficients exceeding 0.9 underlined. 
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4.4.8 Resumé 

Double exponential regression parameters have been estimated 

on the assumption that the errors arose from an ARMA(1,1) process. 

The least-squares and residual maximum likelihood estimates were 

not in agreement. 	An explanation for the discrepancy was sought 

in a small simulation experiment but none was found. 	Further 

examination of the data revealed a non-stationary error structure, 

but this opened up the possibility of so many alternative models 

that the analysis ground to a halt. 

The effect on the regression parameter estimates of changing 

the error model reveals the sensitivity of the method described in 

this chapter to the assumptions made about V . This poses a 

problem because V is unknown. 	This data set will be examined 

further in chapter 87using a mechanistic error model rather than 

the empirical model considered here. 	Finally, in chapter 9 the 

parameter estimates obtained in this section will be re-used, but 

more generally valid estimates of the regression parameter 

estimator standard errors will be derived. 

4.5 	Bruce's data: energy demand of a mechanical model of a 

suckler cow 

4.5.1 Introduction 

A mechanical model of a suckler cow was built to measure the 

integrated energy demand of a real suckler cow (Burnett and Bruce, 

1978; Bruce, 1980). Every hour for seven months between October 

and April the energy required to maintain the model at 39°C was 
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measured together with four climatic variables: temperature, 

radiation, wind speed, and rainfall. 	The objective was to relate 

the energy demand to the climatic variables and so be able to 

predict the energy demand of a suckler cow in any similar climatic 

environment. 

The data were averaged over each 24 hours which reduced the 

number of observations to 200. 	The energy demand was standardized 

to unit surface area of model and log-transformed to standardize 

the variances because there was a greater scatter to the data at 

the higher energy levels. 	The log-transformed energy demand is 

plotted against time in figure 4.5.1. 	Consideration of the 

physics of energy balance and fluid flow led to the selection of a 

particular regression function with four unknown parameters: 

39 - temperature - 
	radiation! (5.3+7 wind 0.6 in[  

0.203+ 32 {1-min(83  rain, 84 )} + 11(5.3+7 wind 06) 

Because the optimization routine used in REGAME requires continuous 

first derivatives with respect to the parameters the coefficient of 

82 between curly brackets was approximated by: 

1 - 84  + 102n(1 + e (84 83 1h102) 

4.5.2 Regression with independent errors 

Initially, the observations y , that is the log-transformed 

energy demands per unit surface area of model, were assumed 

independently normally distributed with mean f and variance 

21 . 	The least-squares estimated parameters are given in table 

4.5.1 and the fitted curve is plotted in figure 4.5.1. 	The 

autocorrelation and GPA coefficients of the departures of the data 

from the regression function are given in table 4.5.2. 	These are 
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Figure 4.5.1 

Bruce's data, regression with independent errors, fitted by 
least-squares estimation;' observed log-energy demand (X) and 
fitted regression curve ( 	) plotted against time. 
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Table 4.5.1 

Bruce's data, regression with independent errors, fitted by least-

squares estimation; parameter estimates with associated estimated 

standard errors and estimated correlation coefficients. 

PI 	p2 	p 	p 	¶ 2 

estimate 0.75 0.068 1.6 	0.57 	0.0013 

se (0.05) (0.001) (0.1) 	(0.04) 	(0.0001) 

correlations 

P2 0.05 

P3  0.18 0.34 

0.07 0.20 0.30 

¶2 0.00 0.00 0.00 	0.00 

Table 4.5.2 

Bruce's data, regression with independent errors, fitted by least-

squares estimation; lOOxautocorrelation coefficients of residuals 

and 100xGPA coefficients. 

Lag 	 1 	2 	3 	4 	5 

autocorrelation 	35 	25 	28 	32 	31 

GPA 

p 	1 	2 	3 	4 

q 

0 	 35  15  18  19  15 
1 	 23 8 -1 -2 -6 

2 	 24 1 -3 0 1 
3 	 26 -3 -1 1 0 

4 	 24 -7 2 -1 -6 

Autocorrelation and GPA coefficients exceeding 14 (that is 2 

standard errors) are underlined. 
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sufficiently large to reject the hypothesis of independent errors 

and their pattern suggests an ARMA(1,1) model with the 

parameterization as a sum of positively-correlated Markov 

processes specified in [4.2.4]. 

4.5.3 Regression with ARMA(1,1) error model 

The results of jointly estimating regression and error 

parameters by maximum likelihood are given in table 4.5.3 and by 

residual maximum likelihood in table 4.5.4. The regression 

function fitted by residual maximum likelihood estimation and the 

predicted fit using past observations (as described in [2.3.6]) are 

plotted in figure 4.5.2. The improvement in fit over the model 

with independent errors, as measured by LM decreasing from -564.2 

to -589.8, is sufficient to reject the hypothesis of independent 

errors on the basis of the asymptotic properties of the likelihood 

ratio test. The residuals have very small autocorrel at ions at low 

lags, and so an ARMA(1,1) process appears to model adequately the 

correlation structure in the errors. The maximum likelihood and 

residual maximum likelihood estimates are in good agreement on this 

occasion, possibly because a2  is no longer close to it/2. However, 

the regression parameter estimates in tables 4.5.3 and 4.5.4 are 

substantially different from those in table 4.5.1. 

To investigate whether this discrepancy is caused by the 

inefficiency of the least-squares estimators, an ARMA(1,1) model 

was fitted to the least-squares residuals. 	The standard errors of 

the least-squares regression parameter estimators were then 

adjusted, as described in [4.4.4]. 	The results of maximum 

likelihood estimation are given in table 4.5.5 and of residual 
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Table 45.3 

Bruce's data, regression with ARMA(1,1) error model, fitted by 

maximum likelihood estimation; parameter estimates with associated 

estimated standard errors and estimated correlation coefficients. 

01 	02 	03 	P4 	
2 

	

a1 	a2  

estimate 	0.61 	0.067 	1.3 	0.48 	-0.0 	0.9 	0.0014 
se 	(0.08) (0.003) (0.1) 	(0.04) 	(0.2) 	(0.2) (0.0003) 

correlations 

-0.01 

0.04 -0.15 

0.02 -0.23 0.54 

a1  -0.09 -0.13 -0.14 	-0.16 

a2  -0.37 -0.06 0.08 	0.10 	0.26 

-0.20 -0.11 -0.06 	-0.07 	0.75 	0.55 

Table 4.5.4 

Bruce's data, regression with ARMA(1,1) error model, fitted by 

residual maximum likelihood estimation; parameter estimates with 

associated estimated standard errors and estimated correlation 

coefficients. 

Pi  P2  P3  P4  a1 a2 

estimate 0.60 0.067 1.3 0.48 0.0 1.0 0.0015 
se (0.08) (0.003) (0.1) (0.04) (0.2) (0.2) (0.0004) 

correlations 

0.01 

0.02 -0.22 

0.01 -0.31 0.54 

a1  -0.15 -0.17 -0.08 -0.09 

a2  -0.38 -0.13 0.11 0.13 0.47 

IT 
2 -0.24 -0.16 -0.01 -0.01 0.84 0.69 
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Figure 4.5.2 

Bruce's data, regression with ARMA(1,1) error model, fitted by 
residual maximum likelihood estimation; observed log-energy 
demands (X), fitted regression curve ( ---- ) and predicted values 

( 	) conditional upon earlier observations, plotted against time. 
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Table 4.5.5 

Bruce's data, ARMA(1,1) error model fitted by maximum likelihood 

estimation to residuals after least-squares fit of regression, 

variances of regression parameter estimators recalculated; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

P1 	P2 	P3 	
2 a1  

estimate 	0.75 	0.068 	1.6 	0.57 	-0.2 	0.9 	0.0013 

se 	(0.10) (0.002) 	(0.2) 	(0.05) 	(0.2) 	(0.2) (0.0002) 

correlations 

-0.05 

0.10 	0.07 

0.13 -0.11 	0.35 

a1  

a2 	 0.14 

0.63 	0.42 
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Table 4.5.6 

Bruce's data, ARMA(1,1) error model fitted by residual maximum 

likelihood to residuals after least-squares fit of regression, 

variances of regression parameter estimators recalculated; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

01 	P2 	p3 	 a1 	a2  

estimate 0.75 0.068 	1.6 0.57 	-0.2 	0.9 	0.0014 
se (0.11) (0.002) 	(0.2) (0.05) 	(0.2) 	(0.2) 	(0.0002) 

correlations 

P2 -0.06 

0.11 0.20 

0.15 -0.14 	0.39 

a1  

a2  0.30 

¶2 
0.71 	0.54 
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maximum likelihood estimation in table 4.5.6. 	The squared 

Mahalanobjs distance between the least-squares and residual maximum 

likelihood estimates was computed as in [4.4.4]. 	The value of 9.7 

is close to the 95 percentile ofx 	(which is 9.5) and so is 

large enough to cast doubt on the hypothesis that the two 

estimators are both estimating 8 , on the assumption that the 

errors arose from an ARMA(1,1) process. Therefore, as with the 

analysis of Dale's data, either asymptotic properties are not being 

closely approximated, or the errors are not from an ARMA(1,1) 

process. 

4.5.4 Simulation to compare estimation methods 

To compare the estimation methods, ten independent series 

were generated in an analogous fashion to that described in 

[4.3.5], but this time the series were of length 200 and used the 

regression function in [4.5.1] with an ARMA(1,1) model for the 

errors with, as parameter values, the estimates from Bruce's data 

given in table 4.5.4. 	Separately, to each series, the regression 

model of [4.5.1] was fitted by the same four methods described in 

[4.4.5]. 	Once again, because of the heavy use of computer CPU 

time in fitting the models only ten series were simulated. 	It is 

recognised that sampling variability will remain a large component 

of the summary statistics derived from such a small sample, but the 

earlier experiences in [4.3.5] and [4.4.5] suggest that valuable 

information can still be extracted. 

The results are given in table 4.5.7 using the summary 

statistics previously defined in [4.3.5]. 	There are no biases in 

the regression parameter estimates significant at the 95% level so 
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Table 4.5.7 

Summary statistics derived from ten simulations of a regression 

with ARMA(1,1) error model, using as model parameters the estimates 

given in table 4.5.6, fitted by least-squares estimation and the 

error process by maximum likelihood estimation (LS/ML) or residual 

maximum likelihood estimation (LS/REML), full maximum likelihood 

estimation (ML) and residual maximum likelihood estimation (REML). 

82 83  84  a1  a2  

b i as 

LS/ML 0.02 0.000 0.1 9.02 -0.1 -0.1 0.0000 

LS/REML 0.02 0.000 0.1 0.02 -0.0 -0.1 0.0001 

ML 0.00 0.000 0.1 0.01 0.1 -0.0 0.0001 

REML 0.00 0.000 0.1 0.01 0.1 0.0 0.0003 

r.m.s.e. 

LS/ML 0.17 0.002 0.3 0.06 0.2 0.2 0.0003 

LS/REML 0.17 0.002 0.3 0.06 0.2 0.2 0.0004 

ML 0.09 0.002 0.2 0.03 0.2 0.2 0.0004 

REML 0.09 0.003 0.2 0.03 0.2 0.2 0.0005 

average se 

LS/ML 0.13 0.003 0.2 0.06 0.2 0.2 0.0003 

LS/REML 0.15 0.003 0.3 0.06 0.2 0.2 0.0004 

ML 0.07 0.003 0.2 0.05 0.2 0.2 0.0004 

REML 0.07 0.004 0.2 0.05 0.3 0.2 0.0007 

Biases significant at 5% level, i.e. exceeding 60% of r.m.s.e. 

underlined. Mean se's less than 80% of r.m.s.e. underlined. 

The three summary statistics are defined in [4.3.5]. 
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the differences in estimates between table 4.5.1 and tables 4.5.3 

and 4.5.4 remain unresolved. 	The standard errors appear to be of 

the correct magnitude agreeing well with the r.m.s.e.s, so for this 

data set it would appear to be unnecessary to obtain marginal 

confidence intervals directly from the likelihood surface. 

4.5.5 Regression with non-stationary error model 

There is no a priori justification for the assumption that 

the error process is stationary. 	In part, the errors arise from 

the variability in other climatic variables that were not 

incorporated into the regression function, and climatic variables 

in general are known not to be stationary over as long a period as 

200 days. 	The autocorrelation coefficients at lags one and two, 

calculated separately for each quarter of the series of departures 

of the data from the regression function fitted by residual maximum 

likelihood, also cast doubt on the assumption of stationarity. 

These are displayed in table 4.5.8. 

To explore the possibility of the error process being 

non-stationary, the ARMA(1,1) model was generalized. 	In the 

stationary model, fitted in [4.5.3], elements in the variance 

matrix are of the form: 

K e 	 if I > j , 

which can be re-expressed as 

i-i 

V 13 =K II ex 	 if i>j. 

This can be generalized to a non-stationary model by allowing K 

and X to be time dependent, to give 

1 

= /(K(I) K(j)) 

fl 
e 	if 	i > 
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Table 4.5.8 

Bruce's data, regression with ARMA(1,1) error model, fitted by 

residual maximum likelihood estimation; lOOxautocorrelat ion 

coefficients of departures of data from fitted regression, 

separately for each quarter of data. 

100 x auto c or re lation coefficients 

quarter 	1 
	

2 	3 	4 

1 ag 

1 	 18 	88 	28 	53 

2 	 20 	76 	21 	21 
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Where, for example, 

	

K(2.) 	 sin (a + c* 
) 

- 	 * e 	- 	+ -1  sin  I 	+ 
2 94 

and  01 	2 

	

and 	are two additional parameters which determine the 

non-stationarity in the error process. In particular, if a* = 0 , 

then the model simplifies to its stationary form. This model 

serves as a simple non-stationary generalization of an ARMA(1,1) 

process of the form given in [4.2.4], whilst retaining the 

GARMA(1,1) property because 

	

Vij 	
i-i X( 20 	j-1 .-A(L) = (v'(i) n e 	)(,/K(J) ii e 	) 	if i > j 

The regression and error parameters were estimated by residual 

maximum likelihood and the estimates are given in table 4.5.9. 

The decrease in L  	from -577.7 to -583.2 is sufficiently large 

to reject the hypothesis of a stationary ARMA(1,1) error process, 

on the basis of a likelihood ratio test, because the 95 percentile 

of - x 	(which is 3.0) is exceeded. 

Once the possibility has been admitted that the error process 

is non-stationary, the choice of model becomes daunting. Unless 

further information is available about the error process the 

problem appears to be intractable. 

4.5.6 Resumé 

Regression parameters have been estimated on the assumption 

that the errors arose from an ARMA(1,1) process. 	The 

least-squares and residual maximum likelihood estimates were not in 

agreement. 	An explanation for the discrepancy was sought in a 

small simulation experiment but none was found. 	Further 



Table 4.5.9 

Bruce's data, regression with non-stationary ARMA(1,1) error model, fitted by residual maximum 

likelihood estimation; parameter estimates with associated estimated standard errors and estimated 

correlation coefficients. 

0 1  82 83  84  a1  - a2 

estimate 0.54 0.068 1.3 0.47 0.6 -0.003 1.4 -0.002 	0.0019 

se (0.09) (0.006) (0.2) (0.05) (0.4) (0.002) (0.2) (0.003) 	(0.0010) 

correlations 

82 0.30 

83  -0.18 -0.52 

84  -0.20 -0.63 0.56 

a 1  -0.52 -0.66 0.39 0.42 

0.08 0.01 0.01 0.00 -0.19 

a2  -0.05 0.16 0.09 -0.00 -0.16 0.54 

-0.43 -0.65 0.34 0.45 0.81 -0.31 -0.53 

T 2  -0.53 -0.66 0.43 0.46 0.91 0.15 0.10 0.72 

Correlation coefficients exceeding 0.9 underlined. 

I-. 
(A) 

0•i 
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examination of the data revealed a non-stationary error structure, 

but this opened up the possibility of so many alternative models 

that the analysis ground to a halt. 

In chapter 9, the parameter estimates obtained in this 

section will be re-used, but more generally valid estimates of the 

regression parameter estimator standard errors will be derived. 

4.6 	Discussion 

The basic technique presented in this chapter is to fit a 

regression function to a series of observations by least-squares 

estimation, identify an ARMA model of suitable order by examination 

of the sample autocorrel at ions of the departures of the data from 

the fitted regression, and then jointly estimate the regression and 

error model parameters by maximum likelihood or residual maximum 

likelihood. 	The experience in applying the technique to three 

data sets shows that the method is not as simple as it seems. 	The 

only satisfactory analysis was of Coiquhoun's data, for which a 

double exponential regression with ARMA(1,1) errors appeared to fit 

adequately. 	When a single exponential regression was fitted 

instead, problems were encountered in confounding between 

regression and error model parameters when estimating by maximizing 

the residual log-likelihood. 	For Dale's and Bruce's data 

inconsistencies between least-squares and maximum likelihood 

estimators of the regression parameters were encountered and were 

attributed to the lack of stationarity in the error processes. 

This highlights the major problem when estimating regression 
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parameters in the presence of unknown error covariances: the 

technique rests heavily upon gross assumptions that are made about 

the correlation structure of the observations. 	An impasse has 

been reached in this chapter and is the motivation for the novel 

approach taken in chapter 9. 

Other points have arisen in the course of fitting models to 

the data sets. 	An ARMA(1,1) error model has been identified as 

the most appropriate ARMA process in every data set. 	Simulations 

have shown residual maximum likelihood estimation to be preferable 

to maximum likelihood estimation, and likelihood based marginal 

confidence intervals to be better than those derived from standard 

errors using the quadratic approximation to the likelihood 

surface. The comparison between maximum likelihood estimation and 

residual maximum likelihood estimation in this type of application 

warrants further study beyond the limited set of cases considered 

in this chapter or in the original paper by Cooper and Thompson, 

(1977). 
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5. Stationary error processes: empirical 

spectral parameterization 

5.1 	Introduction 

	

This chapter is a natural sequel to the previous one. 	There 

are two dominant strands in the statistical time series literature: 

the time domain approach with its emphasis on the autocorrelation 

function; and the frequency domain approach with the spectral 

function at its heart. 	In chapter 4, the error process associated 

with a regression model was modelled empirically by specifying an 

autocorrelation function, and in this chapter it is modelled 

empirically by specifying a spectral function. 

Robinson (1978) states that in certain situations it is 

easier to parameterize the spectrun than the autocorrelation 

function of a stationary process. 	He estimated the spectral 

parameters by maximizing a pseudo-likelihood, derived asymptotic 

variances of parameter estimators, and proved that the estimators 

are efficient when the data are multivariate normally distributed. 

In section 5.2 the pseudo-likelihood is shown to be an 

approximation to the Gaussian likelihood, and it is demonstrated 

that the regression and spectral parameters can be estimated by 

minimizing L , the negative of the logarithm of the pseudo-

likelihood, using REGAME. 	A technique analogous to that in 

chapter 4 is proposed; that is initially fit a regression function 

by least-squares estimation, identify an appropriate spectral 

function by examination of the periodogram of the departures of the 

data from the fitted regression, and then jointly estimate the 

regression and spectral parameters by minimizing L . 	The 
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technique is explored in section 5.3 by fitting a double 

exponential regression model to Colquhoun's data which were also 

used in section 4.3. 	The other two data sets in chapter 4 have 

not been re-used because the error processes were shown to be 

non-stationary, so the technique in this chapter is inappropriate. 

Although the basic technique in chapter 4 is not new, the 

frequency domain approach in this chapter does appear to be 

original. 

5.2 	Theory 

5.2.1 Model 

The model to be considered is for a sequence of observations 

y1, ..., y, (denoted y) which have been made at times 1, 2, ..., n 

on a single experimental subject. 	(This is rather more 

restrictive than [4.2.1] where observation times were allowed to be 

unequally spaced.) 	It is assumed that y  is a realization from 

a multivariate normal distribution with mean f and variance 

T 2 , where 

	

-1 	-1 
)jk = nj-k = k-j 

and W is a diagonal matrix of weights. 	Therefore, the vector 

of weight-corrected departures, denoted a (= W_ 1  (y-f)) , is a 

finite realization of what is supposed to be a stationary process 

of infinite length with autocorrelation p 	 for any integer lag 2 .

21 

The theoretical spectrum (d), denoted dg  at frequency (g-1)/n, 

is defined as 
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CO 

(5.2.1) 	 d
g  =

T 2 1 	P 
e27Tiz(g-l)/n 

- 

for g = 1, ..., n 

where i is defined to be '(-1) , and the periodogram (D), 

denoted D 
g 
 at frequency (g-1)/n , is defined as 

n 

= I-,7 	a 	27rt3(gl)/n 2 0 I ,  g j=1 
 

	

n 	n 

(522) 	 _1 
- •j:j. 	a 	ak 

.j=1 k=1 

for g = 1, ..., n 

where a 	is the jth element in a . These are standard formulae, 

see for example Priestley (1981a, pp222-226 and 394-397), although 

different authors use different multiplying constants and frequency 

scales. 	In the above notation, g indexes the sinusoid component 

which completes (g-1) cycles in the series of length n. 

5.2.2 Derivation of pseudo-likelihood 

The negative log-likelihood of the observations is given in 

[2.3.2] as 

LM 	
in 2 	 - f) 1  v4 

(y f) 
 

= - Ln.r V I + - a W V W a 
2 	 2T 2 

by substituting for (y - f) . With H defined as an flxri 

symmetric complex matrix with (j,k)th coefficient 

H 	- 1 	2Trl(j-1)(k-1)/n 
jk 7n_ , 

(5.2.3) 	LM = .1 znjW  FI(12H W 4 V WH)H WJ 

+ 	a1  H( T 2 W 1 V W 4 H) 1 H a 

	

2T2 	— — 	— — — — — 
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where H denotes the complex conjugate and also the inverse of H. 

It is the inverse because 

- 1 	-2iTt(j-1)/n 27ri(-1)(k-1)/n ( H H ) 
	

n 

jki Le 	 e 
L 1 

Ii 

= 1. v e 2 tj'n1  
n 

v 1 

for j,k = 1,...,n 

If k=j this equals 1 , but otherwise it is a geometric series 

with a sum of 

e2 t( k_J)/n }  

which equals 0 because for integer values of j and k 

e21t_j) = 1 

Therefore 	H H = I . 	It follows from this result that 

LII!:I = ILl = 1 

We now consider the nxfl symmetric complex matrix 

( T 2 HW4  VW-  H) , the (j,k)th element of which is 

(t 2 	VW-  )jk = 
	 Pg  he 	

1)/n e- 2,ffi(k-1)(h-l)/n 

g=1 h=i 

= T 
ni 	

e- 2ffi(k-l)v/n 

£=i-n 	v=niax(0,-.t) 

by transforming to a new scale with v = h-i and 	. = g-i-v 

2 n-i 	 min(n-1,n-1-z) 
T 	 2inz(j-1)/n 	 2iu(j-k)v/n 

L P L e 	 L 	e 

v=max(O,-.t) 

However, 

n-i 
2 (j )v/n = 'jk 

v=0 
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where 

'jk  denotes the (jk)th element in I , the identity matrix 

of size n , so provided p 	decays rapidly to zero as 2. 

increases, 

(1 2 Hw_l  VW_  1 H) jk  = d 'jk 

Essentially, the assumption serves to omit from the likelihood the 

terms arising from end-effects in a finite realisation of an 

infinite process. 

By substitution of the approximation for (12HW1  VW_ H) 

equation (5.2.3) becomes 

n 	 n 	n 	n 
L = I £n(lwI2IHI 	

j= 
ii d) ~ 	

g=1 _ 	(ajI1jg)(Hgka M 	2 	 k) 
1 

= 

+ .1 	1 	i 1 	1 a.a -2irt(i-l)(g-l)/n 2irt(gl)(kl)/n 
2n 

g=1 
 dg 

 j=1 k=1 	
k 

(5.2.4) 	= 	Ln(Wd) 
+ 2 k=1 Dk/dk 

by the definition of 0 in equation (5.2.2). 	This is the 

negative of the logarithm of the pseudo-likelihood, proposed by 

Robinson (1978), which will henceforth be denoted L . 	 It has 

therefore been demonstrated that the pseudo-likelihood is an 

approximation to the Gaussian likelihood. 

5.2.3 Estimation using REGAME 

The computer program REGAME has not been designed to fit 

models by optimizing functions of the form given above for L 

However, it can be tricked into doing so. 
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The negative log-likelihood of an n-vector of zero 

observations 0 , which are specified to be independently normally 

distributed with the jth observation having mean W 	
'Di 

 and 

variance W3  d , has the same form as equation (5.2.4). REGAME 

can therefore be used to estimate regression parameters in f and 

spectral parameters in d by minimizing L. At each call, 

REGMOD has to set the jth pseudo-fitted value to W 	/D , p andii 
q to 0 and the jth diagonal element of the pseudo-variance 

matrix to W 	d 

Also of note on a computational theme, the periodogram (0) 

can be calculated very efficiently using the Fast Fourier 

Transform, for example using NAG library routine C06FAF (Numerical 

Algorithms Group, 1983). 

5.2.4 Variances of parameter estimators 

-As the sample size (n) increases, L approximates more 

closely the negative log-likelihood, so maximum pseudo-likelihood 

estimators share the same asymptotic properties as maximum 

likelihood estimators already discussed in [1.3.8]. Robinson 

(1978) derived more general results for the spectral parameter 

estimators without resorting to the assumption of multivariate 

normality. In section 4.3, approximate variances of parameter 

estimators have been obtained by inverting the Hessian matrix of 

L 1, using REGAME. The emphasis in this chapter is on a first 

attempt at modelling the spectrum of the error process, so the 

attention given in chapter 4 to checking asymptotic properties by 

small simulations and deriving likelihood-based marginal confidence 

intervals has not been repeated in this chapter. 
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5.3 	Colquhoun's data 

5.3.1 Choice of model 

An important assumption made in [5.2.2], to derive L 	as an 

approximation to the Gaussian log-likelihood, was that the 

autocorrelation coefficients of the error process decayed rapidly 

to zero as the lags increased. 	However, it has already been shown 

in [4.3.4] that if the regression model is a single exponential 

function, then the error autocorrelations in Colquhoun's data decay 

very slowly. 	Therefore, the technique of estimation by minimizing 

L 	is likely to perform better when a double exponential function 

is fitted, for which the error autocorrelations decay much more 

quickly. 

The first step in the analysis, as it was in chapter 4, is to 

fit the regression function-by least-squares estimation, that is by 

minimizing the negative log-likelihood on the assumption that the 

errors are independent. 	It will first be shown that, for this 

particular correlation structure, L 	is identical to the negative 

log-likelihood. 

5.3.2 Pseudo-likelihood when errors are independent 

If errors are independent then the autocorrelation function 

is 

P it = 	 if £ = 0 , 

= 0 	 otherwise, 

and from equation (5.2.1), the spectrum is flat, that is 

dg = T 
2 	for g = 1, ..., n 

Therefore 
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n 	 n 
L = I I 	(W3. 	+ 	

g=1 
D1t2

11 	2 p 	2 

	

j=1 	
g 

 

from equation (5.2.4), 

	

n 	 n 	n 	n 
=  (W 	2  £fl ) + 

2 	 .. 	a a 	2iri(k_j)(g_l)/n 

	

g=1 	j=1 k=1 	k 

by substituting for 0 from equation (5.2.2), 

	

n 	 n 	n 
1 	

£n(W2  t2)+ 1 1 a a nI 

	

= 
2 j=1 	

2rn j=1 k=1 j k 	jk 

=1I Ln(W 2 1 2 ) +_!. a 2 . 

	

33 	2r j=1 

This is also the negative log-likelihood of y , which was stated 

in [5.2.2], if the errors are independent. 

5.3.3 Double exponential regression with independent errors 

The regression parameters () in the double exponential 

function given in [4.3.7], were estimated by minimizing L , using 

REGAME, with d g  = r 2  for g = 1,...,n and W = I . 	The results 

were almost identical to the maximum likelihood estimates with 

independent errors given in table 4.3.9. 	They would have been 

exactly the same, but the NAG library Fast Fourier Transform 

algorithm (C06FAF) required n to have no prime factor exceeding 

19, so n was increased from 124 to 125 and a 125  was set to zero. 

5.3.4 Spectrum when the autocorrelation function is a sum of 

exponent ials 

To continue the analogy with section 4.3, the next model to 

be considered is the double exponential regression with an 
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ARMA(1,1) error process. 	Before this can be fitted it is 

necessary to derive the spectral function for this process. 

When the autocorrelation function is of the form considered 

in chapter 4, as defined in [4.2.1], but with 6 = 0, then 

LX. 
Pg  = I K e 3 	 for L 0 

j=1 

The spectrum, from equation (5.2.1), and making use of the fact 

that p 	 is symmetric about zero, has gth element 

dg  = 	
ej 2iuL(g-1)/n 

£-OD j=1 

p 
+ T 	 K. 

j=1 
3 

00 	P LX. 21rtL(g-1)/n 
+ 	 K3  e 3 e 

£4 j=1 

p 	X.-27rt(g-1)/n 
=2 	K.{ 	

eJ 	
+1+ 	eJ 

3 	X.-2iri(g-1)/n 	 A.+2irt(g-1)/n 

	

1-e 3 	 1-e 3 

p 	 2X. 
1-e 3 = 2 	K. 

A.-2in(g-1)/n 	X+2rrl(g-1)/n 
.

) 

=. 	1-e 3 	 )(1-e 

2x. 
3 1-e = 2 

p 

 5 K 

j=1 	12eXicos(2n(g1)/n) + e 3 

5.3.5 Double exponential regression with ARMA(1,1) error model 

With the representation of the error process as a sum of 

positively-correlated Markov processes defined in [4.2.4], the 

regression parameters (3) and error model parameters (ci) for an 

ARMA(1,1) process were jointly estimated by minimizing L 1,. 	The 



- 148 - 

parameter estimates are almost the same as the maximum likelihood 

estimates given in table 4.3.11. 	Figure 5.3.1 shows the first 

half of the periodogram 0 and of the fitted spectrum d plotted 

against the number of harmonic cycles. Only the first half need 

be plotted because the second half is a mirror image of the first 

because 

o =D 
g 	n+2-g 

and 	 dg = dn+2_g 	for g = 2, ..., n 

The fitted spectral function is high at low numbers of cycles, or 

alternatively at low frequency, and plateaus to a low level at 

higher frequencies. 	The high value at low frequencies corresponds 

to the correlated component of the error process and is an attempt 

to fit the high values of the periodogram at 2,3 and 4 cycles. 

The plateau level of the spectrum corresponds to the white noise 

component of the error process. 

Figure 5.3.2 shows the first half of the observed and fitted 

autocorrelation functions obtained as the Fourier transforms of D 

and d respectively. In this case also, the second halves are 

mirror images of the first and so have not been plotted. 	The 

fitted autocorrelation function exhibits the appropriate form for 

an ARMA(1,1) process: an exponential decay to zero as the lag 

increases after an initial step change between lags zero and one. 

The observed autocorrelations agree well with the fit up to a lag 

of ten, but beyond that point the fitted autocorrelations no longer 

follow the trends in observed values. 	However, it should be borne 

in mind that the estimates of autocorrelation at adjacent lags can 

be highly correlated, so apparent trends may be no more than random 

fluctuations about an expectation of zero. 
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Figure 5.3.1 

Colquhoun's data, double exponential regression with ARMA(1,1) 
error model, fitted by maximum pseudo-likelihood estimation; 
periodogram (X) of departures of the data from the fitted 
regression, and fitted spectrum ( 	), plotted against the number 
of cycles completed by each sinusoid component. 
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Figure 5.3.2 

Colquhoun's data, double exponential regression with ARMA(1,1) 
error model, fitted by maximum pseudo-likelihood estimation; the 
autocorrelations (X) of the departures of the data from the fitted 
regression, and fitted autocorrelation function ( 	), plotted 
against the lag separation. 
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5.3.6 Double exponential regression with an empirical non-

increasing error spectrum 

'The models considered so far have already been fitted in 

section 4.3. 	For the spectral approach to be of any use we have 

to consider spectral functions which are simpler than their 

corresponding autocorrelation functions. 	The first step is to 

examine the periodogram, plotted in figure 5.3.1, to identify a 

suitable spectral function. 	The main feature of the periodogram, 

as already commented on above, is that a few terms at low 

frequencies have high values. 	It is reasonable to suppose that 

the error terms are positively correlated with each other at low 

lags and therefore the spectrum is larger at low frequencies than 

at high frequencies. 

On the assumption that d is non-increasing at low 

frequencies one empirical parameterization is 

dg = dn+2_g = 2  (1 + : 	*
2) 	for g = 1,. ..,(n+2)/2 

j =g 

for some small value of L . 	The regression parameters 
() and 

error model parameters (,.*) were jointly estimated by minimizing 

L 	for two values of 2. (5 and 10). 	In both cases, all estimated 

coefficients in 	were zero except for 	. 	The results 

are given in table 5.3.1 with 11* excluded except for. 	The 

fitted spectrum is shown in figure 5.3.3 and the fitted 

autocorrelation function is plotted in figure 5.3.4. 	The fitted 

spectrum is a step function approximation to the previous fitted 

spectrum in figure 5.3.1. 	The fitted autocorrelation function is 

also similar to that in figure 5.3.2, although it is no longer 

monotonically decreasing. 	L 	has been reduced from -77.4 for 



Table 5.3.1 

Coiquhoun's data, double exponential regression with empirical non-increasing error spectrum, fitted 

by maximum pseudo-likelihood estimation; parameter estimates with associated estimated standard 

errors and estimated correlation coefficients. 

* 	 2 
P1 	p2 	 p4 	p5 

estimate 	-90.2 	22.6 	3.15 	60.8 	8.94 	2.0 	0.09 

se 	 (0.4) 	(6.9) 	(0.67) 	(7.1) 	(0.70) 	(0.6) 	(0.01) 

correlations 

-0.89 

-0.81 0.96 

0.87 -0.996 -0.98 

-0.94 0.99 0.94 	-0.98 

11 0.21 -0.19 -0.17 	0.18 	-0.19 

Ic 
2 -0.06 0.05 0.05 	-0.05 	0.05 	-0.28 

c-n 
I') 

Correlation coefficients exceeding 0.9 underlined. 
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Figure 5.3.3 

Coiquhoun's data, double exponential regression with empirical non-
increasing error spectrum, fitted by maximum pseudo-likelihood 
estimation; periodogram (X) of departures of the data from the 
fitted regression, and fitted spectrum ( 	), plotted against the 
number of cycles completed by each sinusoid component. 
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Figure 5.3.4 

Coiquhoun's data 
increasing error 
estimation; the 
from the fitted 

), plotted 

double exponential regression with empirical 
spectrum, fitted by maximum pseudo-likelihood 
autocorrelations (X) of the departures of the 

regression, and fitted autocorrelation function 
against the lag separation. 
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the ARMA(1,1) model to -79.2 with one less parameter being used 

(although some selection bias will have been introduced in choosing 

which parameter to use), so the new error model would appear to fit 

better. 	The regression parameter estimates and standard errors 

are in close agreement with those in table 4.3.11. At this stage, 

the spectral approach to modelling the error structure in order to 

estimate regression parameters has worked well. 

5.3.7 Double exponential regression with an empirical error 

spectrum 

To test the assumption that the error spectrum is 

non-increasing, d was reparameterized as 

dg = dn+2_g = t2(1 + 2) 
	

for g=  

= 
	

for g = (i+1),...,(n-i-2)/2 

for some small value of £ . 	The regression parameters (8)  and 

error model parameters 
() were jointly estimated by minimizing 

L 	with £ equal to 5. 	Of the coefficients in M , only 
i.i  

and 1.15  were estimated to be non-zero. 	The parameter estimates 

are given in table 5.3.2 and the spectrum and autocorrelation 

function are plotted in figures 5.3.5 and 5.3.6 respectively. 	The 

observed and estimated autocorrelations are now in excellent 

agreement for all lags. 	L has been reduced to -83.4 for the 

addition of one extra parameter compared with the model in 

[5.3.6]. 	Therefore, on the basis of the asymptotic properties of 

the likelihood ratio test, the hypothesis of a non-increasing 

spectral function is rejected. 	However, the appropriateness of 

asymptotic results can be called into question for this model 

because the the fitted autocorrelation function does not 



Table 5.3.2 

Coiquhoun's data, double exponential regression with empirical error spectrum, fitted by maximum 

pseudo-likelihood estimation; parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

P1  P2 - 	P3 13 	- 13 
2 

estimate -89.9 17.6 2.48 66.3 8.45 3.8 3.4 	0.09 

se (0.2) (2.1) (0.36) (2.5) (0.24) (2.1) (1.9) 	(0.01) 

correlations 

02 -0.90 

13 3 -0.78 0.85 

134 0.87 -0.95 -0.97 

135 -0.94 0.97 0.91 -0.98 

It4  0.16 -0.18 -0.15 0.16 -0.16 

0.13 -0.13 -0.15 0.15 -0.14 0.05 

-0.04 0.04 0.04 -0.04 0.04 -0.13 -0.13 

c-n 
0•i 

Correlation coefficients exceeding 0.9 underlined. 
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Figure 5.3.5 

Coiquhoun's data, double exponential regression with empirical 
error spectrum, fitted by maximum pseudo-likelihood estimation; 
periodogram (X) of departures of the data from the fitted 
regression, and fitted spectrum ( 	), plotted against the number 
of cycles completed by each sinusoid component. 
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Figure 5.3.6 

Coiquhoun's data, double exponential regression with empirical 
error spectrum, fitted by maximum pseudo-likelihood estimation; 
the autocorrelations (X) of the departures of the data from the 
fitted regression, and autocorrelation function ( ), plotted 
against the lag separation. 
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decay rapidly to zero, so the pseudo-likelihood fails to 

approximate the Gaussian likelihood. 	The regression parameter 

estimates have been changed substantially from those in tables 

4.3.9, 4.3.11 and 5.3.1. 	The standard errors have decreased, 

probably because of the high negative autocorrelations in the error 

process for lags between 10 and 25 which is evident in figure 

5.3.6. 

5.3.8 Resumé 

Double exponential regression parameters have been estimated 

for three assumed error spectral functions. 	The results when 

using the spectrum of a ARMA(1,1) process or an empirically chosen 

non-increasing function were in good agreement with the results 

obtained in section 4.3 when the autocorrelation of the error 

process was being modelled. 	However, when the constraint that the 

spectral function should be non-increasing was relaxed, the new 

estimates of the regression parameters were inconsistent with 

earlier results. 	The reasons for, and conclusions from, these 

results will be discussed in section 5.4. 	Coiquhoun's data will 

be re-used as an example in chapters 7 and 9. 

5.4 	Discussion 

The basic technique presented in this chapter is to fit a 

regression function to a series of observations by least-squares 

estimation, identify a spectral function by examination of the 

periodogram of the departures of the data from the fitted 

regression, and then jointly estimate the regression and error 

spectrum parameters by maximizing the pseudo-likelihood. 
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This method is more restrictive than that in chapter 4 

because observations must be equally spaced in time, the 

autocorrelations of the error process must decay rapidly to zero, 

and the estimation method is an approximation to maximum 

likelihood, rather than to residual maximum likelihood 

estimation which was found to perform better in chapter 4. 	Also, 

if the error process is found to be non-stationary the technique in 

this chapter is unuseable, whereas the estimation methods in 

chapter 4 can still be used. 	The autocorrelations have to decay 

rapidly to zero for the pseudo-likelihood to be of use because 

end-effects in the error process are omitted. 	If the 

autocorrelations were to remain high these end-effects would not be 

of negligible magnitude. 	It is probably because this assumption 

is violated in the final model considered (in [5.3.7]) that the 

results were out of step with earlier regression parameter 

estimates. 

Finally, the major problem, when estimating regression 

parameters in the presence of an unknown error spectral structure, 

is that the technique in this chapter rests heavily upon gross 

assumptions that are made about the spectral function of the error 

process. 	This is the same problem encountered in chapter 4 and is 

the motivation for the approach taken in chapter 9. 
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6. Models based on linear stochastic difference 

and differential equations 

6.1 	Introduction 

Up to this point in the thesis, empirical models have been 

used to describe error processes in order to estimate regression 

parameters when errors are serially correlated. In other words, 

the data themselves have been used to identify the correlation 

structure among the errors. In this and the following two chapters 

a fundamentally different strategy will be adopted; instead of the 

data being used, the processes by which the data were generated 

will be used to identify the correlation structure. At least that 

is the theory, in practice the distinction is rather more blurred. 

This approach has been termed "mechanistic modelling" and was 

discussed in section 1.2. 

Sometimes, regression functions fitted to data are selected 

because they are solutions of difference or differential 

equations. 	There is then an opportunity to add an error component 

directly into the original equation, rather than onto its 

deterministic solution, in order to model observations. 	This 

approach was used implicitly by Dhanoa and Le Du (1982) in 

modelling the milk yields of cows, and explicitly by Sandland and 

McGilchrist (1979) in modelling growth. 

The simplest types of difference and differential equations 

are those which are linear with coefficients that are constant over 

time. General solutions of these have already been given in 

chapter 3. In sections 6.2, first-order equations are considered 

with input variates appropriate to generating lactation curves, and 
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the relationship between models in discrete and continuous time is 

explored. In an analogous fashion, in section 6.3 second-order 

equations are considered with input variates appropriate to 

generating animal growth curves. Neilson's data on the milk yields 

of cows are modelled by first-order differential equations in 

section 6.4 and the goodness-of-fit is tested. Similarly, in 

section 6.5 Thiessen's data on the weights of cattle are modelled 

by second-order differential equations. Finally, in section 6.6 

the usefulness of stochastic difference and differential equations 

in estimating regression parameters in the presence of serially 

correlated errors is critically assessed. 

The novelty in the modelling of lactation lies in the 

respecification of Dhanoa and Le Du's (1982) model, which makes 

clearer its relationship with other models and enables it to be 

extended to unequally spaced observation times, and in generalizing 

the model to test its goodness-of-fit. Regarding growth, the use 

of second-order stochastic differential equations is original, and 

may either be viewed as a generalization of Finney's (1958) and 

Mitchell's (1968) first-order models to permit a sigmoidal trend or 

a linearization of the "more biological" differential equations 

considered by Sandland and McGilchrist (1979). 

6.2 	A model for lactation using first-order equations 

6.2.1 Model in discrete time 

Dhanoa and Le Du (1982) proposed a model in which the 

observed milk yields y  from a single cow are a realisation of a 



- 163 - 

random vector V which is generated by the first-order difference 

equation 

(6.2.1) 	
Vt = 't_i + Z 
	 for t>1 

where i  is a parameter, V 0  = 0 , and Z 	is independently 

normally distributed for t > 1 , with mean (a1  + a2t) and 

variance ci 2  

6.2.2 Solution for the model in discrete time 

Equation (6.2.1) may be solved quite simply, but for 

illustrative purposes the general solution derived in {3.2.2] will 

be used. This gives 

tx 	 (t_k)xt 
Vt = YOKI1 e 	+ I ZKt  e 

k=1 

where e 1 
 is the root of 

x - q=O, 

and K 1  satisfies 

K 1 =1, 

with A* and 'K* used in place of x and K to distinguish 

these parameters from the ones used with the model in continuous 

time. Therefore, because V 0  is identically zero, 

Y t =Zk t_k  

It follows that 

t 

	

E(Vt) = 	E(Zk)4t_k 

k=1 

t 

	

= 	(a1 + 
k=1 
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t+l 
- 	- 	a2 	- (t+ 1 4 +  t) 

+  

(14,) 2  

a 	ct24, 	
}{14,t }  + 	

t (6.2.2) 	= {() - ( 4,)2 
 

by algebraic manipulation, and 

S 	t 
coy 	= 	I coVZ1,z 	•t-j 

i=1 j=1 
t 

=a2
0 	4, 	 when st 

i 4 

because Z. and Z. are uncorrelated when I * j 

(6.2.3) 	

1 	

= 	24,s-t (12t) 
(1_2) 

As Z is a GARMA(O,O) process it follows from [3.2.3] that 

V is a GARMA(1,0) process.'This is also evident from equation 

(6.2.3). Equation (6.2.2) is an exponential function plus a linear 

trend and passes through the origin, and was proposed by Cobby and 

Le Du (1978) as an alternative regression model in place of Wood's 

(1967) curve: 

E(Yt) = 81t82 e_t83 

which has become the standard model for lactation data. For 

appropriate values of the parameters a1  , a2  and 4, equation 

(6.2.2) has the characteristic shape of a lactation curve: it 

rises rapidly to a maximitn and then decreases more slowly towards 

zero. 

6.2.3 Model in continuous time 

The model may also be formulated in continuous time, which 

serves to shed light on the relationship between discrete and 



- 165 - 

continuous processes. It is assumed that the observations y  are 

a realisation in discrete time of a random variate Y(t) indexed 

by t over a continuous interval, which is generated by the 

first-order differential equation 

Y<l>(t) - 	Y(t) = Z(t) 	 for t0,, 

where the term in angular brackets denotes the order of derivative 

with respect to t , 	is a parameter, Y(0) 	0 , and Z(t) is a 

random vaiate over a continuous interval with expectation (8 1+82t) 

and (Z(t)-8 1 - 2t) is the first derivative of the Weiner process 

with variance T 2  for t0 . Strictly speaking, this definition 

of Z(t) is nonsense because the Weiner process is nowhere 

differentiable, but this does not invalidate the definition of 

Y(t) , which can be modified as discussed in [3.3.1]. 

6.2.4 Solution for the model in continuous time 

Applying the results of [3.3.2] for illustrative purposes, 

rather than solving the differential equation directly, gives 

Y(t) = A 01K11  e tA , + f 
t 	 (t-u)A, 

Z(u) K1 e 	du 
0 

where 

= Y(0) 

A 1  is the root of 

x - 

K11  satisfies 

K11  = 1 

and K 	 satisfies 

o 'Cl = 

where E 	 and 	are defined to be -1 . 	Therefore, because 

Y(0) is identically zero, 
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Y(t) = ft Z(u) e(t 	du 

It follows that 

	

E(Y(t)) 
= f t 
() 	du 

= (i+ P2  ) e - (. i++L) 

1 
(6.2.4) 	= -(-- + —

2
)(1 - e ) - - t 

by algebraic manipulation, and 

cov(Y(s),Y(t)) = f 5  f cov(Z(u),Z(v)) e 	e(t 	dv du 

	

= 2 1 	
e(t_ 	du 	 when st 

because Z(u) and Z(v) are uncorrelated when u * v 

	

, 	t' 	 1 (6.2.5) 	= ¶ 2 e'  

As Z(t) is a cGARMA(O,e) process, where e is an 

arbitrarily small positive number, from [3.3.3] Y(t) is a 

cGARMA(1,c) process. However, it is evident from equation (6.2.5) 

which is valid when s equals t , and not just when s is greater 

than t , that Y(t) is a cGARMA(1,0) process. Equation (6.2.4) 

is of the same functional form as equation (6.2.2) and the 

regression model proposed by Cobby and Le Du (1978). 

6.2.5Relationbetweenmodelsindiscreteandcontinuoustime 

Provided 0 is positive, the models in discrete and 

continuous time are equivalent because equation (6.2.2) is the same 

as equation (6.2.4) with 

= e, 

=(i 	2 
, 

	

(1-) 	(1_q)2 
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- and 	 _ a2 

and equation (6.2.3) is the same as equation (6.2.5) with 

	

2 	 2 
a 

, 

where the relationship between 4)  and 	ensures that a2  and 

¶2 are of the same sign. 

The model in continuous time will be used in section 6.4 

because it ensures the desirable property that all correlations are 

positive and is more appropriate for the observation times in 

Neilson's data, which are unequally spaced. 

6.3 	A model for growth using second-order equations 

6.3.1 Justification for choice of model 

Many growth curves are derived as the solutions of 

deterministic difference or differential equations because the 

rate of growth is a fundamental variable in the process of growth. 

However, Sandland and McGilchrist (1979) comment that 

"Deterministic differential equations do not seem fully 
appropriate here. Growth is embedded in a stochastically 
fluctuating environment and it would be attractive to attempt 
to incorporate this environmental randomness into the class 
of growth models, rather than, as an afterthought, tacking a 
residual onto the expected value, which is either a 
polynomial in time or a solution to a differential equation." 

It is difficult to work with stochastic versions of most 

biologically derived differential equations because they are 

non-linear. Linear equations are more mathematically tractable and 

may be justified either as approximations to non-linear equations 

or, more empirically and more specifically, the second-order 

equation is the simplest equation capable of yielding the 



characteristic sigmoidal shape of a growth curve. 

An alternative route to the second-order differential 

equation is via the work of Parks (1975a,b). He proposed that an 

animal's weight at time t , denoted Y(t), satisfies 

Y<l>(t) - 
	

Y(t) = Z(t)  41 

where the term in angular brackets denotes the order of derivative 

with respect to t , 
	is a constant and Z(t) is proportional 

to the food intake of the animal at time t 	A simple model of 

intake is 

<1> 
Z 	(t)-p2 Z(t)= 3 , 

with constants P2and 1 3 	After substitution for Z(t) and 

Z<l>(t) , this becomes 

	

(Y<2>(t) 
- i 	>() - 2 (Y<l>(t) - p1 Y(t)) = 03 

which is a second-order differential equation. The analogous model 

in discrete time is a second-order difference equation. 

6.3.2 Model in discrete time 

Observations y 	of an animal's weight are assumed to be a 

realisation of a random vector Y whose elements are generated by 

the second-order difference equation 

(6.3.1) 	Yt = 
i Y - + 02 Y t- + Z 	 for t2 

Here 0 	 and 0 
2  are parameters, Z. is a first-order moving 

average process with mean a for t2 , and Y 	 and Y 	 are 

constants. 

6.3.3 Solution for the model in discrete time 

Applying the results of [3.2.2] we get 

2 	2 	tAt 	t 	2  
(6.3.2) 	Yt = Y i _ j Kt e J + 	Zk I K* e

Ii 
i=1 	j=1 	 k=2 	x=1 

2k 
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where e , e 2  are the roots of 

- 	- 2 = 0 
and the elements of K*  satisfy 

	

tA 	tx 
Kti e 	+ Kt2 e 	= ]i,i 	 for t = 0,1 

	

tA 	tx 
e 	+ K22  e 	= '2t+1 	 for t = 0,1 

where I is the identity matrix of size 2. (Parameters x' and 

K* have been used in place of A and K to distinguish them from 

the parameters used with the model in continuous time.) Therefore 
* 	 * 

K* = 	e 	* = 	-e 11 	A* 	' K 12 	A* 
(e 	-e ) 	(e 	-e') 

K* = 	-1 	K* = 	1 21 	22 	A* 

	

(e 	-e J 	(e 	-e ) 

It follows from equation (6.3.2) that 

2 	2 	t 	t 	2 	(t+1_k)A* 
E(Yt) 	 'te 	+ 	a 	K* e 

i=1 	j=1 	 k=2 	=1 

At 	tA* 

	

tA* 	I j = 	{YK 	e J + Y1 K J  e 	+ 	- e 

j1 	 (1-e3) 

Ak 
2 aK* e 3 	2 	 aK* 	tA* 

(6.3.3) 	= 	2j Ak + 	{Y 0K 	+ YlKk - 
	2k }e  k 

j1 (1 - e 3) 	k1 	 (1-e ) 
by algebraic manipulation, and 

S 	t 	 2 	2 	(s+1-i)x 	(t+1_j)A* 
cov(Y 5 ,Yt) = 	cov(ZZ) I 	I K* K 	e 	e 

i=2 j=2 	k=1 L=1 2k 21 

If Z is a first-order moving average process with parameter e 

then var(Z.) = a 2 (1+0 2) , cov(Z.,Z. 1 ) = - 	, and Z 	and Z 

are uncorrelated if li-il > 2 . Therefore, when st+1 
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t 	 22 
K* K* e 	e(t+1_)  £ 

	

cov(Y , Yt) = 	cov(Z1Z) 	2k 22, 
j=3 	 k=1 £=l 

	

t 	 2 	2 	(s+1-j)x 	(t+1j).x* 

	

+ 	cov(Z, Z) 	KK 	e 	e 
j=2 	k=1 .=1 

	

t 	 2 	2 	(s-j)x 	(t+1_j)x* 

	

+ I cov(Z +1 Z) I 	I K* K 	e 	e 
j=2 	 k=1 £=1 2k 2Y. 

	

2 	2 a2K* K* 	(s+2_t)A*+x* 	sx*+(t_1)x* 
L 

	

_. 	L 	
2k 2z 	 k 	. 	k 

k1  

(s+1_t)x+x*  
-e 	£)_e(e 	k 	-e 	k 	2.) }  

2 	2 a2K* K* 	sA*+tA*_A* 
(6.3.4) 	= 	 {e k 	(oe £(1+e2)+ee k) 

k1 X= 1  (1-e 

	

(s_t)x* 	2A*+A*A*+A* 	A* 
-e 	k (8 	k £(1+e2)  k 

V is a GARMA(2,2) process by the definition in [2.2.1] 

because, when st+1 , equation (6.3.4) is the sum of two terms, 
S X 

each of which is a product of a term e k  dependent only on s 

and a term dependent only on t . However, Z is a GARMA(0,1) 

process, so it follows from the last part of [3.2.3] that V has 

the more specific property of being a GARMA(2,1) process. Equation 

(6.3.3) consists of a constant term plus the weighted sun of two, 

possibly complex, exponential functions. Therefore, for 

appropriate values of the parameters it can take on the sigmoidal 

shape characteristic of growth curves. 

6.3.4 Model in continuous time 

Analogous with section 6.2, the growth model may also be 

formulated in continuous time in order to reveal some aspects of 
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the relationship between discrete and continuous processes. It is 

assumed that observations y  are the realisations in discrete time 

of a random variate Y(t) , indexed by t over a continuous 

interval, which is generated by the second-order differential 

equation 

(6.3.5) 	Y<2>(t) - E ly <l>(t) - 2Y(t) = Z<l>(t) 
- 1Z(t) for tO, 

where the terms in angular brackets denote the orders of 

derivative with respect to t , 
	

and 	are parameters, 

Y(0) and (Y<l>(0) - Z(0)) are constants, and Z(t) has an 

expectation of a and (Z(t)-0) is the first derivative of a 

Weiner process with variance r 2  for t0 . 	 (A stationary 

version of this model was used by Phadke and Wu (1974) to model 

sunspot numbers.) 

6.3.5 Solution for the model in continuous time 

Applying the results of [3.3.2] we get 

2 	2 	tx 	 2 	(t_u)Ak 
(6.3.6) Y(t) = 	 K 	e '~ 

f Z(u)Kk e 	du 
1=1 	j=l 

where 

i-2 	 2 
1-2-h A{ 14 } = y< 1  l> (0) - 	z<h>(o) 	

Kk Ak 
h=O 	k=1 

for i=1,2, 

, 
A2  are the roots of 

 El 
 x - 	

- 2 = 

the elements of K satisfy 

K114 + K124 = 	 for t = 0,1, 

K214 + K224 
= '2,t+1 	 for t = 0,1, 

where I is the identity rnatrixof size 2, and the elements of K 

satisfy 
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2 	2 
OkXkl1)l 
k=1 

2 

k=1 

where C 0 = (1)0 = - 1 

A 0  = Y(0) 

K 11 -  

K -1 
21 -  

- x2 -x1  

= (1)0 

Therefore 

Am = Y<1> (0) - Z(0) 

K- - 12 -  

K1 	
31 22  

- -X1+ 1 -1)1  
K2_ 

It follows from equation (6.3.6) that 

E(Y(t)) = 	E(AU) 	K 	
0 	 k e 
	du 

i=1 	j=1 	 k=l  

2 	tx. tx. 	tX. (e__-i) = 	{Y(0) K1 e 	+(E(Y<1> (0))-) K2 e 

2 
(6.3.7) 	= - 	__.1 + 	{Y(0)Klk+E(Y<l>(0) )K2k-K2k+ x 

j=1 j k=1 	
k le 

by algebraic manipulation, and 
2 	2 	( 5_U)Xk (t-u) 

	

cov(Y(s),Y(t)) = f 	 e 	e 	du 
k=1 £=1 

for st 

	

because Z(s) and Z(t) are uncorrelated when s 	t 
2 	2 	sx+tx 

(6.3.8) 	= ¶ 2 	
K K k 	

(e k 	£ e(5t k )  

+x) 
k=1=1 	

(x 
k 	£ 

As Z(t) is a cGARMA(0,c) process, where c is an 

arbitrarily small positive number, from [3.3.3] Y(t) is a 
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CGARMA(2,c) process. 	In fact it is evident from equation (6.3.8) 

above which holds when s is equal to t , and not only when s 

exceeds t , that Y(t) has the more specific property of being a 

cGARMA(2,O) process. The functional form of equation (6.3.7) is 

the same as that for equation (6.3.3) which has already been 

discussed. 

6.3.6 Relation between models in discrete and continuous time 

The relation between models in discrete and continuous time 

is much more complicated in the case of second-order equations than 

in the case of first-order equations considered in [6.2.5]. What 

follows is a brief discussion of the similarities and differences, 

with no attempt made at rigorous proof. 

In the model in discrete time, e 1  and e 2  are the roots of 

a real quadratic equation and are therefore either both real or a 

complex conjugate pair; whereas in the model in continuous time, 

and 	are the quadratic roots so that e 
x 
1 and e 

x
2 are 

either both real and positive or a complex conjugate pair. 	The 

model in continuous time is evidently more restrictive than the 

model in discrete time. 	With the restriction that 	and 

are not real and negative, the expectations given by equations 

(6.3.3) and (6.3.7) are equivalent for all integer values of t 

provided that 

= 
"1 

= 
'2 	"2 

	

2 	K*.eJ 
2j 	-  

	

j=1 	(1-e i) 	j=1 
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aKk 	 K 
and 	YOKk+YlKk_ 	- Y( 0 )Klk +  E(Y<l> (0))K2k _BK2k  + 	

k 

(1-e k) 
	

Ak 

for k=1,2. 

For given values of K these five equations uniquely define 

8, Y(0) and E(Y<l>(0))  in terms of q], 2' a, Y0 , Y1 , and 

conversely. 

For the covariances given by equations (6.3.4) and (6.3.8) to 

be equivalent for integer values of s and t we require that 

2 	K* K* 	2x*+x* 	 A*+A* 
(6.3.9) 	a 	

2k 22.. {ee  k 9. - ( 1+e2)e k 	+ ee 
L1 	(1-e  k 	9.) 

2 	KK 

	

= 	k 2. 	
for k = 1,2 

Ak A 9.j 

in order to equate the coefficients of e (s-t) Ak , and that 

K* K* -A 	K K 

(6.3.10) 	a2 	2k29.  fee -111  - ( 1+e 2) + ee k} =  
(1_ek 	2.) 	 'k 	, 

for k = 1,2, 2. = 1,2 

in order to equate the coefficients of e SA k +tA 9.. 	Equation 

(6.3.9) defines r 2  and p1  (included in K) in terms of a 2  and 

o , and conversely, but these do not satisfy equation (6.3.10). 

Provided that le A 1 1 and le A 
	 SA +tA 
21 are less than unity, e k 	£ 

decreases to zero as s and t increase and the contribution to 

cov(Y(s), Y(t)) from the components given in equation (6.3.10) 

declines to zero, so the models are equivalent asymptotically. 

In order to achieve equivalence between the models for all 

times it is necessary to include a starting distribution other than 

the one so far considered in which initial variances are zero. 

This change has the effect of adding a term 
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22 
cov(Y 	Y 	' K* K* 

i=1 j=1 	
i-i' j-1' 	ik j.. 

to the left side of equation (6.3.10) and a term 

22 
{i-1} {j-1} 

cov(A 	,A 	)K 	K 
1k j3. 

i=1 j=1 

to the right side. 	The variance of (A ° , AU } ) is defined by, 

and defines, the variance of (Y0 ,Y 1 ) and the models in discrete and 

continuous time are equivalent. 

The model in continuous time will be used in section 6.5 to 

maintain similarity with section 6.4. 

6.4 	Neilson's data: milk yield of cows 

6.4.1 Introduction 

Daily milk yields were recorded approximately once a week 

from the date of calving for each of 23 British Friesian cows in a 

commercial herd at Langhill (Neilson, Whittemore, Lewis, Alliston, 

Roberts,. Hodgson -Jones, Mills, Parkinson and Prescott, 1983). 	The 

number of measurements of milk yield per cow varied between 32 and 

44 and were unequally spaced in time. The animals were part of a 

larger experiment to study the relationships between feed intake, 

milk output and body condition in high yielding dairy cows. 

6.4.2 Models 

A vector of observations y1, ..., y,, , denoted ,y , of daily 

milk yields made on a single cow at times t1, •• t 	denoted 
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t , measured in weeks are assumed to be multivariate normally 

distributed with mean f where 

	

81 	82 	t. 
f1 = -(- + —)(1 - e 1) - - t 	for I = 1,...,n 

as given in equation (6.2.4). This regression model was previously 

proposed by Cobby and Le Du (1978) because, for appropriate values 

of the parameters o i l, 82 and E , it has the desirable features 

of a lactation curve of passing through the origin, rising rapidly 

to a maximum and subsequently decreasing much more slowly. 

Several different models for the variance matrix (V) will 

be considered: 

(0) Independent observations with equal variances T 2 

v.. = 
1 J 	13 

where I is the identity matrix of size n 

The *standard variance structure appropriate to a first-order 

stochastic differential equation, for which 

2 	(t.-t.) (e2tj - 1) 

	

V 1  = t e 	1 3 	
2 	 for i > j 

as given in equation (6.2.5). 

The standard variance structure in (1) above but with a 

separate parameter 	, independent of the parameter g in f , for 

which 

2*t 
2 	 - 	 . 

	

e 	13 	
2* 	 for 1j. 

The standard variance structurein (1) plus an observation 

error, for which 

V.. = r 2 [( 1  + .. sin a*)e 	i 	j 	(e 	3- 1) +(- 	sin c&*)IJ 

for I > j 
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This uses the same type of parameterization as [4.2.4] to constrain 

terms to lies between 0 and 1. 

(4) The variance structure with a separate parameter 	* plus an 

observation error, for which 

2 
ij 	 *(t -t ) 	 ___ = 	[( + . sin c&*)e 	. 	j 	e 	

2* 	+ ( 1 -  ' sin   a*)I] 

for i > j 

Models (2) to (4) enable the validity of Dhanoa and Le Du's 

(1982) model to be tested both for the connection between 	in f 

and 	* in V , and for the inclusion of an observation error. 

The particular choice of parameterization of the observation errors 

given by (3) and (4) above has been made to ensure that the 

parameters can fit the full range of possible models, whilst 

remaining bounded, without the use of more than one scaling 

parameter T 2 	If cz* equals r/2 there is no observation 

error, and if 	* equals -r/2 observation error is the sole 

source of error. Model (0) corresponds to a GARMA(0,0) process, 

models (1) and (2) to GARMA(1,0) processes and models (3) and (4) 

to GARMA(1,1) processes. 

It should be noted that these simple models do not take 

special account of any effects resulting from the onset of 

pregnancy or changes in environment such as leaving winter housing, 

rather they are subsumed within the general error model. 

6.4.3 Method of estimation 

The models were all fitted separately to the data from each 

cow by maximum likelihood estimation (that is by minimizing LM), 

and by residual maximum likelihood estimation (that is by 

minimizing LR), as defined in [2.3.2]; The results were in good 
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agreement, so only the maximum likelihood results have been 

presented because LM  is computationally simpler to evaluate, and 

the interpretation of L   is not clear when parameters occur in 

both the regression function and in the variance matrix. 

To obtain good initial estimates for the parameters in the 

iterative optimization routine the models were fitted 

sequentially. 	Parameter values were guessed from the data to 

provide starting values for model (0). 	The parameter estimates 

from model (0) were then used as starting values for model (1), 

those obtained for model (1) were used to start the iterations for 

models (2) and (3) and finally those for model (3) were used to 

start the iterations for model (4). 

6.4.4 Results - likelihood comparisons 

Table 6.4-1 shows the minimized values of LM  (the negative 

log-likelihood) for each model fitted to the data from each cow. 

For each cow the model with the lowest Akaike Information Criterion 

(AIC) (see Akaike, 1973), that is LM  plus the number of model 

parameters, is underlined. 	AIC has recently become popular in 

time-series analysis for choosing between models. On the basis of 

this criterion the choice of best model varies considerably among 

cows: on seven occasions model (0) is chosen, on eight occasions 

model (1) is chosen, on two occasions model (2) is chosen, once 

model (3) is chosen and on five occasions model (4) is chosen. 

When LM  is averaged over all cows AIC simply involves adding the 

number of model parameters as above, and the best fit is model (2). 

Models (2), (3) and (4) are generalizations of model (1) so 

they can be compared on the basis of the asymptotic properties of 

the likelihood ratio test. Models (2) and (3) have one extra 
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Table 6.4.1 

Neilson's data; minimum values of the 

negative log-likelihood (LM) for different 

models. 

independent 	correlation 	+ observation 
errors 	parameter 	 error 

Model 	 (0) 	(1) 	(2) 	(3) 	(4) 

Number of 
Cow 	Parameters 4 4 5 - 5 6 

1 60.1 57.6 57.6 57.6 57.6 
2 70.3 61.4 55.2* 61.4 55.2* 
3 74.3 73.6 73.5 73.5 73.5 
4 54.7 52.3 52.2 52.3 52.2 
5 44.9 43.1 42.3 40.3* 381** 
6 50.1 51.3 50.1 50.1 50.1 
7 40.3 42.1 40.3 40.3 40.3 
8 70.6 62.5 60.7 62.5 58.7** 
9 34.8 40.2 34.8* 34.8* 34.8* 

10 78.2 77.1 76.8 76.6 76.3 
11 53.1 52.3 51.8 50.9 50.0 
12 43.0 41.0 41.0 41.0 41.0 
13 45.7 45.8 45.2 44.8 43.7 
14 41.7 38.7 36.3* 38.7 343** 

15 31.4 29.6 26.7* 29.6 26.6* 
16 62.7 56.8 53.0* 56.8 50.6** 
17 40.8 42.6 40.8 40.8 40.8 
18 45.8 46.4 45.6 45.7 45.6 
19 46.1 45.0 44.4 45.0 44.1 
20 44.9 42.6 41.9 42.3 41.9 
21 58.6 58.7 58.6 58.6 58.6 
22 51.3 47.4 46.4 47.4 46.4 
23 52.8 53.0 52.8 52.7 52.7 

Average 52.0 50.5 49.0* 49.7 48.4* 

For each cow the model with the lowest value of Akaike's 

Information Criterion has been underlined. 

Models (2) to (4) with significantly lower LM  than model (1) at 5% 

level denoted by an asterisk. 

Model (4) with significantly lower LM  than model (2) at 5% level 

denoted by a second asterisk. 
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parameter and so are a significant improvement over model (1) at 

the 5% level if LM  has been decreased by more than 1.9, that is 

the 95 percentile of x • Model (4) has two extra parameters 

so a decrease in LM  of 3.0 (95 percentile of - 4) is sufficient 

to reject model (1). Models which are a significant improvement 

are marked with an asterisk. In particular, model (4) is chosen 

in preference to model (1) on seven occasions. 

Model (4) is also a generalization of model (2) with one 

extra parameter to specify the observation error, so a decrease of 

1.9 is sufficient to reject model (2). 	Data sets for which model 

(2) is rejected are marked with a second asterisk in the table. 

Model (4) is prefered to model (2) on four occasions. 

The same tests were also applied to the values of LM  for 

each model averaged over all cows. The significant decrease for a 

model with one extra parameter is 0.8 (the 95 percentile of ,. 43 ) 

and with two extra parameters it is 1.4 (the 95 percentile of 

X46)' once again appealing to the asymptotic properties of the 

likelihood ratio test. (Equivalent tests could have been performed 

using LM  summed over all cows.) On average, models (2) and (4) 

are better than model (1) but the improvement of (4) over (2) is 

not significant. However, the significant improvement from using 

model (4) for 4 cows is sufficient to justify its use because there 

is less than a 3 percent probability of model (2) being rejected on 

four or more occasions if it were in fact correct. 	The conclusion 

therefore is that Dhanoa and Le Du's model is found inadequate for 

the data set in two respects: the parameter 	cannot-be assumed 

to be common to both the regression function (f) and the variance 

matrix (V), and an observation error is necessary. 
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6.4.5 Results - parameter estimates 

Parameter estimates and standard errors inevitably vary 

between cows for a particular model. In order to summarize the 

results three simple and widely used statistics have been derived: 

two statistics relate to the parameter estimates and are the mean 

and standard deviation of the between-cow distribution; the third 

statistic is the average standard error. To define these summary 

statistics more explicitly consider the parameter a 	 in a 

particular model: this was estimated as a l with a standard 

error of s.e.(8) using the data from the jth cow. The mean of 

the estimates is 

23 
= 

j=1 

the standard deviation of the estimates is 

• 	 23 
) 2 122} 

j=1 

and the average standard error is 

23 

s.e.()/23 

j=1 

Table 6.4.2 gives the results. These statistics are obviously 

discarding some information, but they are adequate for making some 

important comparisons between models and for assessing whether a 

parameter could take a common value for all cows. 

In the table e 	and e*  are presented instead of 	and 

* because on occasions the latter took large negative values. 

Also, r is not given because in models (1) to (4) it is too 

highly correlated with estimates of 	and F' to be 

interpretable when the latter took large negative values. 
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Table 6.4.2 

Neilson's data; means and standard deviations of parameter 

estimates over all 23 cows for each model, and average errors (see 

[6.4.5]). 

Model 	 p1 	P2 e 	e 

Means of estimates 

(0) indep. errors 46. -0.82 0.33 

(1) cor. 	param. 48. -0.87 0.31 

(2) cor. 	param. E' 47. -0.85 0.32 	0.29 

 + obs. error 44. -0.79 0.34 	 0.5 

 * + obs.error 47. -0.85 0.31 	0.47 	0.5 

standard deviations of estimates 

(0) indep. 	errors 17. 0.47 0.12 

 cor. 	param. 24. 0.65 0.12 

 cor. 	param. 18. 0.50 0.13 

 + obs. error 17. 0.46 0.11 

 * + obs.error 17. 0.49 0.12 

average standard errors 

0.23 

1.3 

0.34 
	

1.0 

(0) indep. errors 

cor. param. 

cor. param. * 

+ obs. error 

* + obs.error 

 0.20 0.07 

9. 0.16 0.06 

 0.21 0.07 

9. 0.18 0.07 

11. 0.21 0.07 

0.11 

1.3 

0.17 
	

1.4 
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A feature of particular note in the table is the good 

agreement between the mean values of e (0.32) and X (0.29) 

in model (2). 	This seems to suggest model (1) is correct in 

assuming that E is equal to * and using a single parameter, 

and as a consequence reducing the average standard error of the 

estimator of e from 0.7 in models (0), (2), (3) and (4) to 0.6. 

However, although the average values of the estimates of e 	and 

e 	are in good agreement there is no evidence of a relationship 

between these two parameters for individual cows and the 

correlation coefficient between them over the 23 cows is -0.2 

Figure 6.4.1 shows the 23 estimates of e 	for model (2) ranked 

in ascending order, together with estimates of e*  for model (2) 

and estimates of e 	for model (1), arranged in the same order, 

plotted against the integers 1 to 23. From this it can be seen 

that using a single parameter biases the estimate of g . In fact 

the combined parameter consists of approximately 80% of the weight 

appropriate to the coefficient in the regression function and 20% 

to the coefficient appropriate to the correlation structure. 

Therefore, although the close agreement between the mean values of 

e 	and e*  in model (2) is of interest it is no justification 

for assuming that E and 	are equal. 

Although the likelihood ratio tests indicate significant 

differences between the models these do not seem to have any effect 

on average on the regression parameter estimates. 	The mean 

estimates, standard deviations and average standard errors are very 

similar for all models. 	This is probably because although the 

errors are significantly positively correlated this correlation 

coefficient is small in value so the assumption of independent 

errors does not reduce the efficiency by much. Also, standard 
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Figure 6.4.1 

Neilson's data; the estimates of e (X) for model (2) ranked in 

ascending order, the estimates of e 	(+) for model (2) and the 

estimates of e (*) for model (1), arranged in the same order, 

plotted against the integers 1 to 23. 

Integers 

e 
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deviations of estimates exceed the standard errors for all 

parameters except e , on average they are twice as big, so there 

is no evidence for parameters being constant over all cows. 

Figures 6.4.2, 6.4.3, 6.4.4 and 6.4.5 show the data for cow 

number 8 together with the fitted regression function and predicted 

values using earlier observations (described in [2.3.6]) plotted 

against time for models (0), (1), (2) and (4) respectively. The 

eighth cow was selected as one of the four data sets for which 

model (4) gave the best fit. As such, it is not typical of the 

other cows, but rather serves to highlight the differences in fit 

between models. The fitted curve in model (1) reaches its linear 

asymptote less quickly than in the other three models because 

is describing both the regression function and the correlation 

structure. 	The predicted values for model (4) give the best 

agreement with the data because this model can allow for more 

correlation between errors than model (1) whilst also allowing an 

observation error component which is absent from model (2). 

6.4.6 Resumé 

The evidence from Neilsons data is that the model advocated 

by Dhanoa and Le Du is inappropriate and if used will lead to 

biased estimates of 	. 	An ARMA (1,1) process seems to be the 

simplest model capable of describing the error correlation 

structure, allowing for both persistent correlations and an 

observation error component. However, the difference this makes 

compared with least-squares estimation is small and does not appear 

to be sufficient to justify its use. 
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Figure 6.4.2 

Neilson's data, cow number 8, model (0) fitted by maximum 
likelihood estimation; observed milk yields (X) and the fitted 
curve ( 	) plotted against time. 
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Figure 6.4.3 

Neilson's data, cow number 8, model (1) fitted by maximum 
likelihood estimation; observed milk yields (X), the fitted curve 
( ---- ) and the predicted values ( 	) conditional upon earlier 
observations plotted against time. 
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Figure 6.4.4 

Neilson's data, cow number 8, model (2) fitted by maximum 
likelihood estimation; observed milk yields (X), the fitted curve 
(----.) and the predicted values ( 	) conditional upon earlier 
observations plotted against time. 
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Neilson's data, cow number 8, model (4) fitted by maximum 
likelihood estimation; observed milk yields (X), the fitted curve 
(----) and the predicted values ( 	) conditional upon earlier 
observations plotted against time. 
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6.5 Thiessen's data: weights of cattle 

6.5.1 Introduction 

The weights of five non-pregnant female cattle fed ad libitum 

were recorded every second week from weaning at 12 weeks of age 

for periods of up to 5 years, resulting in between 82 and 133 

observations per animal. 	These animals were part of a multibreed 

experiment, set up to study genetic variation between breeds and 

genetic inter-breed relationships for a wide spectrum of traits, in 

order to examine the problems of between-breed testing and 

selection (Thiessen, Hnizdo, Maxwell, Gibson and Taylor, 1984). 

The animals were of the following breed types: one Hereford, one 

Dairy Shorthorn, two British Whites and one British Friesian. 

6.5.2 Models 

A vector of observations y19 ..., y 1  , denoted y , of 

weights of a single animal at times t 1 , ..., t , denoted t 

measured in weeks are assumed to be multivariate normally 

distributed with mean f where 

K 2k f. = f() + 

	

{f(0) K 1 + f<1> (0) K 2 	f()  2 	k 	
etiAk, 

k 1 	 A 

for i = 1, ..., n 

This is simply a restatement of equation (6.3.7) except for Y(0) 

being replaced by f(0) , E(Y<l>(0)) by  f<l>(0)  and some 

algebraic manipulation resulting from (8i]) having been replaced 

by (2f(co)). This reparameterization reduces the number of 

parameters from six to five which is convenient because only five 

are estimable for a regression model described by a constant plus 
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the weighted sum of two exponential functions. The terminology 
A 

f(0D) has been used because, provided Ie"I<l , as t 1  increases 

f 1  tends to the limit f(a) 

Several different models for the variance matrix (V) will 

be considered: 

(0) Independent observations with equal variances T 2 

v ii  = •r 2  

where I is the identity matrix of size n 

The standard variance structure appropriate to a second-

order stochastic differential equation if the right side of 

equation (6.3.5) were simply Z(t) , plus an observation error, for 

which 

2 	2 	
1 tjAk+tjA . 	(ti -tj)xk 

v. = 2 	+ 	sin a*) 	K2 	
2 1 

(e  

+ (-. - - sin a*)IJ 	 for i > j 

This equation may be derived from equation (6.3.8) by noting that 

as 	increases, K1 /1 1  converges to -K21  and K2 / 1  converges 

to -K22  , and this is all that is required for equation (6.3.5) to 

approximate to the above specification in which the right side is 

dominated by the term in Z(t). The parameterization of the 

observation error component using cz* is the same as in [6.4.2] to 

constrain terms to lie between 0 and 1. 

The standard variance structure as given by equation (6.3.8) 

plus an observation error, for which 

2 	2 	 tjAk+tjAL 	(tj -tj)xk 

= 2 [(• + - sin *) 	

L1 
Kk K& 	

(A;+) 

+ 	- .. sin *)j] 	 for I > j 
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(3) The variance structure but with separate parameter 	, plus 

an observation error, for which 

2 	2 	 t.x*+t.x* 	(t -t 

= t2 [(. + . sin a) 	 K K 
(e 1 k 3 £ - e 

k=1 L1 	
(+x*) 

+ 	 ct*)I] 	 for 	•i •)j 

where x , 	are the roots of 

- 	x - 	= 0 

An observation error has been included in all the above 

models because there will inevitably be some errors of this sort 

when large animals are being weighed. As in section 6.4, -the 

choice of parameterization of the observation errors has been so as 

to ensure that the parameters can fit the full range of possible 

models, whilst remaining bounded, without the use of more than one 

scaling parameter r 2  . Model (1) enables model (2) to be tested 

against a simpler alternative and model (3) enables the assumption 

in model (2) that parameters are shared in common between the 

regression function f and the variance matrix V to be tested. 

Model (0) corresponds to a GARMA(0,0) process whilst models (1), 

(2) and (3) are all GARMA(2,2) processes. 

6.5.3 Method of estimation 

All the models were fitted separately to each data set by 

maximum likelihood estimation, that is by minimizing LM  as 

defined in [2.3.2]. 	For these models it would have been difficult 

to use residual maximum likelihood estimation because the first 

derivative of the regression function with respect to the model 

parameters would have been required. 
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Initial estimates of the parameter values for each model were 

obtained from the final estimates from the next "smaller" model and 

initial guesses were used for model (0). 	Convergence difficulties 

were encountered because of high correlations among the parameter 

estimators. 	This could possibly have been circumvented by 

reparameterizing, but for simplicity of programming, different 

initial estimates were tried instead and the number of iterations 

in the optimization algorithm increased. 	A consequence of this 

parameterization was that estimates of standard errors could not be 

obtained from a quadratic approximation to LM  at the minimum. 

6.5.4 Results - likelihood comparisons 

Table 6.5.1 shows the minimized values of LM  (the negative 

log-likelihood) for each model fitted to the data from each 

animal. 	For each animal the model with the lowest Akaike 

Information Criterion, that is LM  plus the number of model 

parameters, is underlined. 	On the basis of this criterion the 

best model is (3), except for animal 3 where model (2) is adequate. 

Likelihood ratio tests are not necessary to show that the 

improvement of model (3) over models (0), (1) and (2) is sufficient 

to reject the simpler models for all except animal 3. 	The 

conclusion from this evidence is that the variance matrix needs to 

be parameterized separately from the regression function. 

6.5.5 Results - parameter estimates 

Table 6.5.2 shows the means and standard deviations of the 

parameter estimates over all animals for each model. 	The summary 

statistics were defined and discussed in [6.4.5]. As already 
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Table 6.5.2 

Theissen's data; minimum values of the negative 

log-likelihood (LM)  for different models. 

independent model with standard sep. 	cor. 
errors ip 	omitted model param. 	F' 

Model (0) (1) (2) (3) 

Number of 
Animal 	Parameters 6 7 8 10 

1 411.1 346.5 341.4 330.7 

2 312.8 287.7 279.1 274.7 

3 402.3 323.0 306.0 305.0 

4 333.2 294.0 285.8 279.0 

5 209.2 209.2 209.0 194.5 

Average 333.7 292.1 284.3 276.9 

For each animal the model with the lowest value of Akaike's 

Information Criterion has been underlined. 



(0) indep. 	errors 96. 4.6 -6.8 -10.9 690. 

 model with 	p  omitted 95. 4.6 -6.0 -9.2 710. 

 standard model 95. 5.1 -5.8 -8.9 690. 	2.5 

 sep. 	cor. 	param. 94. 4.8 -7.0 -10.8 690. 	0.9 -16. 	-200. 

0.2 

1.4 

1.5 

0 
U) 

Table 6.5.2 

Theissen's data; means and standard deviations of parameter estimates over all S animals for-each model. 

Model 	 f(0) 	f<l>(0) 	1021 	1O"2 	f(co) 	10 2 p 	1O 2 	10 

Means of estimates 

standard deviations of estimates 

(0) indep. 	errors 7. 2.1 6.5 11.2 30. 

 model 	with ,p  omitted 6. 1.5 4.8 7.9 30. 	 1.0 

 standard model 5. 1.5 4.5 7.7 30. 	2.3 	 0.1 

 sep. 	cor. 	param. 5. 1.2 6.1 9.8 30. 	2.3 	27. 	330. 	0.1 
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explained, standard errors could not be obtained for these models. 

It is recognised that some of the differences between animals are 

being ignored in forming these statistics, but this simple approach 

is adequate for making certain important comparisons between the 

different models. 

The parameter estimates are in good agreement except that 

and E 
2 
 in models (1) and (2) are greater than in models (0) and 

(3). This arises because E parameterizes both the regression and 

error structure in models (1) and (2), whilst in models (0) and (3) 

only parameterizes the regression function, and in model (3) a 

separate parameter 	is used to model the errors and is 

estimated as being quite different from 

The standard deviations are greatest for model (0) as is to 

be expected because the assumption of independent errors leads to 

inefficient estimators. The standard deviations for Z  are less 

in models (1) and (2) than in model (3) because the information in 

error structure is also being used in the estimation procedure. 

However, this appearance of increased precision is an illusion 

because models (1) and (2) have been rejected by the data so the 

estimators are meaningless anyway. 

Figures 6.5.1, 6.4.2, 6.5.3 and 6.5.4 show the data for 

animal 4 together with the fitted regression function and predicted 

values using earlier observations (described in [2.3.6]) for models 

(0), (1), (2) and (3) respectively. 	The systematic departures of 

the fit in model (1) illustrates the effect of assuming a high 

correlation among observations, and was the reason for the choice 

of animal 4 for plotting. 
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Figure 6.5.1 

Thiessen's data, animal 
likelihood estimation; 
( 	) plotted against 

number 4, model (0) fitted by maximum 
observed weights (X) and the fitted curve 
time. 
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Figure 6.5.2 

Thiessen's data, animal number 4, model (1) fitted by maximum 
likelihood estimation; observed weights (X), the fitted curve 
( ---- ) and the predicted values ( 	) conditional upon earlier 
observations, plotted against time. 
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Figure 6.5.3 

Thiessen's data, animal number 4, model (2) fitted by maximum 
likelihood estimation; observed weights (X), the fitted curve 
( ---- ) and the predicted values ( 	) conditional upon earlier 
observations, plotted against time. 
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Figure 6.5.4 

Thiessen's data, animal number 4, model (3) fitted by maximum 
likelihood estimation; observed weights (X), the fitted curve 
( ---- ) and the predicted values ( 	) conditional upon earlier 
observations, plotted against time. 
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6.5.6 Resumé 

The notion of using the same pirameters to model both the 

regression function and the error structure in animal growth is an 

attractive one. 	However, in examples such as the above where the 

data do not support the model the approach cannot be recommended. 

It may give the appearance of improved precision but in fact the 

estimators are biased. 

6.6 	Discussion 

The technique considered in this chapter is to model data by 

linear stochastic difference and differential equations with 

constant coefficients. The parameters in the model are estimated 

utilizing the information both in the main trend of the data and in 

the local stochastic fluctuations. The techniques were applied to 

two data sets, one of milk yields and the other of weights, for 

neither of which were there any theoretical justification for using 

such models. Therefore it was perhaps not surprising to find that 

in neither case did the models fit well, there being no evidence of 

a link between the parameters required to describe the regression 

function and those required to describe the correlation structure. 

If the parameters are linked together then the resulting estimators 

are biased, so the methods of chapters 4 and 5, where the error 

structure is modelled empirically on the basis of the observed 

data, would seem more appropriate to these types of application. 

In other words, if a differential equation is to be used then the 

deterministic form should be used with the error process "tacked 

on" at the end. This result is in direct contradiction to the 

arguments of Sandland and McGilchrist (1979), quoted in [6.3.1], 

and to the recommendations made implicitly by Dhanoa and Le Du. 



WIMM 

7. Stochastic compartment models with constant coefficients 

7.1 	Introduction 

This is the second of three chapters which consider the use 

of mechanistic models in order to estimate regression parameters 

when errors are serially correlated. 	Sometimes the theoretical 

justification for fitting a weighted sum of exponentials as a 

regression function is that a compartment system is a realistic 

model for the generation of the data. 	The fundamental assumption 

is that the system to be modelled may be divided into homogenous 

components called compartments, and that material flows between 

these compartments according to some specified kinetics. 	Such 

reasoning lay behind the choice of weighted sums of exponential 

functions to fit Coiquhoun's and Dale's data in chapter 4, 

discussed for the respective cases by Colquhoun and Hawkes (1977) 

and Bauermeister, Dale, Williams and Scobie (1980). 	The 

opportunity arises, as it did for difference and differential 

equations in chapter 6, to incorporate stochastic variability into 

the basic model rather than to add error onto the deterministic 

solution in order to model the observations. 	Provided a 

stochastic compartment model is appropriate, this approach will 

improve the efficiency of parameter estimation and help identify 

the correct order of compartment system. 

The stochastic variability considered in this chapter is that 

arising from having only a finite number of particles in the 

compartmental system, each behaving independently. 	This has been 

denoted type P1 by Matis and Wehrly (1979) who also considered 

other sources of variability. 	In section 7.2, the first and 
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second moments are derived for a type of variate specified by the 

model, and this variate is shown to be a cGARMA process. In 

section 7.3, Coiquhoun's data is modelled using stochastic 

compartment models and the results compared with the empirical 

approach to modelling used in section 4.3. 	In section 7.4, Dale's 

data is modelled in a similar way. 	Finally, in section 7.5 the 

usefulness of stochastic compartment models in estimating 

regression parameters in the presence of serially correlated errors 

is critically assessed. 

The mathematical development of stochastic compartment models 

given in section 7.2 is not new, see the literature review in 

[1.3.6]. 	At the theoretical level, what is original in this 

chapter is the link made with cGARMA processes which allows the 

Gaussian likelihood, or variants of it, to be evaluated simply. 

Therefore, parameters in a stochastic compartment model can be 

estimated using the computer program REGAME. 	The applications of 

the stochastic model to the two situations represented by the two 

data sets are also original, previous analyses not having utilized 

the link between the regression and error structures. 

7.2. Theory 

7.2.1 Model 

The situation envisaged is where a sequence of observations 

311'"''n (denoted y)  have been made at times t1•••tn 

(denoted t) on a single experimental subject. 	It is assumed 

that the vector ,y  is a realisation at times t of a random 
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variate Y(t) , indexed by t over a continuous finite or infinite 

interval, which is a weighted sun of the number of particles in 

each of p compartments of a stochastic compartment system. 

Therefore 

P 
(7.2.1) 	Y(t) = 	N 1 (t) 

1=1 

where N 1 (t) is the random number of particles in compartment i 

at time t and 4i  is the constant weight given to particles in 

compartment i. 

The stochastic compartment system is defined as follows: 

a particle in compartment i at time t is in compartment 

j(*i) at time t+ôt with probability Qot + o(6t) , has 

left the system with probability qot + o(6t) and is other -

wise still in compartment i , independently of what happens 

to all other particles and what happens at all earlier times, 

where o(6t) denotes terms of order less than ot and 

6t0 ; 

the number of particles entering compartment i from outside 

the system between times t and t+ôt is Poisson 

distributed with expectation r 1 ôt + o(ot) 

Diagramatically this can be represented as: 

(other 
-Icompartment 	> 	Icompartment 

i_ > j 	 ) 	( other 

compartments)( 	 ( 	 compartments) 

Iq 

The rate constant Q 	 denotes a coefficient in a square matrixij 
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Q of size p , all of whose off-diagonal elements must be 

non-negative for the definition above to make sense as St 

approaches zero. 	Constants q 1  and r , which denote 

coefficients in vectors q and r , both of length p , must also 

be non-negative. 	For obvious reasons, r is called the 

immigration rate and q the emigration rate. 	If all coefficients 

in both q and r are zero the system is said to be closed, 

otherwise it is said to be open. 

7.2.2 Solution 

The solution that follows is an amalgam of the analyses given 

by Cox and Miller (1965, pp.178-186), Chiang (1980, pp.451-498) and 

Colquhoun and Hawkes (1977). The diagonal elements of Q , which 

were unspecified in [7.2.1], are defined by 

Qij = - 1 . 	q 1 	 for 	i = 1,...,n. 

j *i 

Therefore (1 + Q1 .6t + o(dt)) is the probability of a particle in 

compartment i at time t being in compartment i at time t+st. 

The probability that a particle in compartment i at time t 

will be in compartment j at time s(t) is dependent only upon 

the time separation (s-t) and is denoted: 

P 	(s-t)A 
(7.2.2) 	P(s_t) = 	K ij  e 

= 1 

where the coefficients x1 ,.. 	in the p-vector A are the 

eigenvalues of Q , which are assumed to be all distinct, and 

. . 	are square matrices of size p , whose coefficients 

are specified by 

	

Kf" = (G)j 	 for i,j,L = 1, ... ,p, ij 

where 6 is the matrix of right eigenvectors of Q 
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The number of particles in compartment j at time s which 

were not in the system at an earlier time t is also dependent 

only upon the time separation (s-t) and is Poisson distributed 

with expectation denoted by 

P 
(7.2.3) 	b(s_t) = I 	K 9 (e  

Z= 1 

where 	{1},. .,K '  are vectors of length p whose coefficients 

are specified by 

p 
= 	r 	 if A 2,  > 0, x. 1 	i 	i.j 

and 	 = 0 	 if 

It is convenient to distinguish between the number of 

particles in the various compartments at time t that were in the 

system at time zero, denoted N(t), and the number of particles 

that entered the system after time zero, denoted N 21 (t). 	From 

equation (7.2.1) 

p 
E(Y(t)) 	Ii i  E(N(t) + N.f 2 (t)) 

1=1 

= 	
{E{E(N1(t)IN(0))} + E(N 

i 1 	

2(t))] 

by conditioning on N(0) , the number of particles in compartments 

at time zero, 

	

p 	p 
(7.2.4) 	= 	 n. 

J 	Ji 
P. 	1(t) + b.(t)] 

i=1 	j=1 

where E(N(0)) is denoted by n 

p 	p 	tAk 	P 	{2.} 
tA 

e 	+ 	K 1  (e  = 

	

1=1 	j=1 	k=1 
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by substituting for P(t) and b(t) from equations (7.2.2) and 

(7.2.3), 

p 	p 

(7.2.5) 	 = - 	U 

p 	p p 	 p 	 U 

	

+ 	{ 	u 1nK, 	+ 	 e k 
k=1 i=1 j=1 	 1=1 

by rearranging terms. 	From this it can be seen that the 

functional form of E(Y) is a constant plus a weighted sum of p 

exponential s. 

Also from equation (7.2.1), because N(t) and N 2 (t) 

are independent 

pp 
(7.2.6) 	cov(Y(s),Y(t)) = 

i=1 3=1 

+ cov(r42 (s),N 2 (t))] 

I shall consider'N {11 and N 2 	separately, and restrict to the 

case when st . 	By a standard probability formula, conditioning 

on 

cov(N'(s),N?1(t)) = E{cov (N } ( s ),N , U(t)N(0))] 

+ cov[E(N(s)IN( 0 )) ,  E(N'(t)IN( 0 ))] 

P 
= E[ I N 

k 	kj 	ii 	kj 	ki 
(0)(P (t)P (s-t)-P (t)P (s))] 

k=1 

p 	 p 
+ cov[ 	N 

L 	£1 
(0)P .(s) , 	Nk(0)Pk.(t)J 

k=1 

P 
= 	

"k kj 	ji 
(t)P 	

kj 
(s-t)-P 	

ki
(t)P (s)) 

k=1 

pp 
+ I 	I cov(Nk(0),N.(0))Pk.(t)P..(s) 
k=1 L=1 
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where the derivation of the first term can be understood by 

considering a single particle: if it is in compartment k at time 

zero then it contributes 1 to (N(s) N ,f 1 (t)) only if it moves 

to compartment j by time t and then to compartment i by time 

s and otherwise contributes 0, contributes 1 to N(s) by 

moving to compartment I by time s, and contributes 1 to 

N 1  (t) by moving to compartment j by time t. By applying the 

same standard formula to N 	 , but this time conditioning on 

N 2 (t) 

cov(N2(s),N2(t)) = E[cov(N2(s),N2(t)IN{2}(t))] 

+ cov[E(N2(s)IN2(t)), E(N2(t)JN2(t))J 

Because 

var(N,2(t)IN2(t)) = 0 

cov(N2(s), N2(t)IN2(t)) = 0 

and the first term above is zero. 	Therefore 

cov(N 2 (s) ,N2(t) ) 

= cov[ 	 N 2 (t)] 

because particles that are in compartment i at time s , but were 

not in the system at time zero, either were in some compartment k 

at time t and moved to compartment i before time s , or 

entered the system between times t and s , 

= k1 cov(N21(t),N2(t))PkI(st) 
=  

= b.(t)P..(s-t) , 

because N 2 (t) and NJ 2 (t) are uncorrelated unless k equals 

j , in which case var(N 2 (t)) equals E(N 2 (t)) because the 

variate is Poisson distributed. 
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When these results are incorporated into equation (7.2.6) 

they give 

(7.2.7) 	cov(Y(s),Y(t)) = 

pp 	p 
n k Pkj (t)(P..(s-t) - P 

ki 
 (s)) 

i=1 j=1 	k=1 

pp 
+ I 	I cov(N 

k 	 kj 
(0) ,N (0) )P . 	

Li 	j 	ii (t)P (s) + b (t)P (S-t) 
k=1 L1 

7.2.3 Distribution of N(0) 

Up to this point no mention has been made of the distribution 

of N(0) , that is the number of particles in the system at time 

zero, beyond denoting its expectation by n . 	Three particular 

distributions which have appeared in the literature and tie in well 

with the other components of a stochastic compartmental model, are: 

The null distribution, that is N(0) is a vector of 

constants and in particular the covariance coefficients 

required in equation (7.2.7) are specified by 

cov(Nk(0),NL(0)) = 0 

The multinomial distribution, so that in particular 

P 

	

cov(Nk(0),NL(0)) = k 	kL n 
/I n. } 
i=1 

where 
'kL 

 is the (kL)th coefficient in the identity matrix 

I of size p 

Each coefficient of N(0) is an independent Poisson random 

variate, so that in particular 

cov(Nk(0),NL(0)) = k tkit 	
for k,L = 1, ..., p 

The uses of different starting distributions are discussed as they 

arise practically in sections 7.3 and 7.4. 



- 210 - 

7.2.4 Relation to cGARMA property 

By substitution of P(t) and b(t) from equations (7.2.2) 

and (7.2.3), equation (7.2.7) becomes 

P 	p 	p 	p 	p 	tx 
cov(Y(s),Y(t)) 	u.u[ e g 

1=1 j=1 	k=1 	g=1 h=1 

ji 
e_t 	 sx

- 	e h) 
ki 

p 	p 	 p 	p 	ti 
+ 	cov(Nk(0),NL(0)) 	 e g 	e  xi 
k=1 =1 	 g=1 h=1 

P 	p 	tx 	 (s_t)xh 
+ 	 g -1) KJ }  e 

g=1 h=1 

p 	p p 
= 	e h{ 
	

[ 	k 	
e g  (KJ 	

et 	
- K)

ki 
h=1 	i=1 j=1 	k=1 g=1 

• I 	I 	I cov(Nk(0),N(0)) 	

tAg 

k=1 =1 g=1 

p 
• 	

{g} 	
g - 1) 	

-tA 
e 	

h 
	s>tji 

g=1 

by rearranging terms. 	This is the sum of p products of a term 

dependent only upon s and a term dependent only upon t 

Therefore V is a cGARMA(p,0) process by the definition in [2.2.7] 

and, of more importance, the discrete realisation y  is a 

GARMA(p,p-1) process. 	Therefore, the computer program REGAME can 

be used to fit a stochastic compartment model to a vector y of 

observations. 

7.2.5 Parameter estimators 

Unlike the models considered in previous chapters, the 

realisation y  of a stochastic compartment model is not normally 
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distributed, in fact a single element is distributed as a weighted 

sum of Poisson variates and terms in a multinomial random variate, 

and joint distributions between elements are even more 

complicated. 	Because the likelihood function is so complicated, 

Matis and Wehrly (1979) fitted the models by generalized 

least-squares estimation. 	In the examples that follow, other 

sources of error have been included and Gaussian likelihood 

estimation (that is using LM)  has been used instead of generalized 

least-squares estimation (that is using Ls),  because, as discussed 

in [2.3.2], Ls  cannot be used when the variance matrix has 

parameters in it which are not in the regression function. 	The 

third optimization function considered in the thesis, the residual 

Gaussian likelihood, has not been employed in this chapter 

because of the complications involved in deriving the design matrix 

X , defined in [2.3.2]. 	As discussed in [1.3.8], asymptotic 

properties do apply to regression parameter estimators, but this is 

because of the replication in particles, rather than the 

replication in observation times. 	The computer program, REGAME 

which was described in section 2.4, has been used to fit the models 

in the following sections, and has derived approximate variances, of 

parameter estimators by inverting the Hessian matrix. 

7.3 	Colquhoun's data 

7.3.1 Introduction 

Compartment models have been proposed to explain the 

relaxation of drug-induced currents, see for example Colquhoun and 
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Hawkes (1977). 	Coiquhoun's data, first considered in section 4.3, 

is an example of this type of data. The theory derives from the 

observed current being the sum of the currents flowing through each 

of the ion-channels in a muscle end-plate membrane. 	Each channel 

is assumed to be in one of several states, some of which are 

conducting with a particular constant conductance and some of which 

are non-conducting. 	It is assumed that each channel changes state 

independently of all other channels, according to the probabilistic 

laws of a stochastic compartment model. 	With these assumptions, 

the observed current is a linear combination of the number of 

channels in each state and corresponds with the variate Y(t) 

considered in section 7.2. 

The compartments actually correspond to different possible 

molecular states of each channel, the transitions between which are 

known, from chemical physics, to be well approximated by a Markov 

process. It is therefore slightly misleading to use the term 

"compartment model", which originated in order to describe much 

more empirical situations. However, I do not consider the 

distinction between empirical and mechanistic models to be 

sufficient to warrant the use of a different name to describe 

mathematically equivalent stochastic processes. 

7.3.2 Closed two-compartment model 

The simplest model of drug action is one in which each 

channel has only a single conducting state and a single 

non-conducting state. 	Every channel is in one or other of these 

states, there being neither immigration nor emigration, so the 

system is closed. 	It may be represented diagramatically as: 
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State 1 
	

State 2 

(conducting) j------'E•--------I (non-conducting) 

21 

The current at time t is 

Y(t) = 11 N1 (t) 

where U, is the current flowing through a single ion-channel in 

state one and N 1 (t) denotes the number of channels in this state 

at time t. 	Because of the direction in which the current was 

measured u l  is actually the negative of the current (denoted 1 2  

because, for reasons that will become apparent later, it may be 

viewed as a scaling parameter). 

The distribution of channels between states at time zero, 

N(0) , is assumed to be multinomial (binomial in this case) because 

this ensures the desirable propertythat N(t) is then 

multinomially distributed for all later times t . 	The electrical 

circuits by which y  was recorded introduce measurement error 

which, for lack of any other information, is assumed to be white 

noise. 	This serves to add an extra term a 2  I 	into the
st 

expression for cov(Y(s),Y(t)). 	Therefore, from equation (7.2.4) 

2 
E(Y(t)) = - 	. 2 fl P. 1 (t) 

j=1 

and from the modification to equation (7.2.7) 

2 
cov(Y(s),Y(t)) = t2{ I T2 

n k Pkl(t) (Pjl(s_t)_Pkl(s)) 
k=1 

22 

+ I 	I T 2 cov(Nk( 0 ) , N L( 0 )) Pkl(t) P si(s) 
k=1 £=1 

+ a2/r2 
1st ' 

with terms in b(t) omitted because there is no immigration. 	The 
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current, T 2  , can be treated as a scaling parameter, and therefore 

estimated separately, provided that t 2  n is estimated in place of 

n and a2/r 2  in place of a 2  . 	From the above covariance 

structure y , the realisation of V at discrete times t , is a 

GARMA(2,2) process. 	However, because the system is closed, one 

of the eigenvalues of the transition matrix Q is zero and as a 

consequence y is a GARMA(1,1) process. 

The model was fitted to Coiquhoun's data by minimizing the 

negative Gaussian log-likelihood (LM)  using transformations of 

the parameter estimates obtained in chapter 4 as starting values in 

the iterative process. The parameter estimates, standard errors 

and correlation coefficients are given in table 7.3.1. The minimum 

value of LM  was -65.4 

7.3.3 rn2  held constant 

The iterative convergence was slow, from which, upon 

examination, it became apparent that 	is known with little 

precision despite its estimated standard error (based on the 

quadratic approximation to LM)  being small. With t 2n 2  held 

constant at either 200 or 1000, the model was refitted and the 

parameter estimates that were obtained are given in tables 7.3.2 

and 7.3.3 respectively. The increase in LM  to -65.0 is small 

and, in particular, is not sufficiently large to reject the 

hypothesis that t 2 n2  is equal to 1000, on the basis of the 

asymptotic properties of the likelihood ratio test. This uses the 

property that the Gaussian likelihood converges to the true 

likelihood function as the number of particles in the compartment 

system increases. Therefore, purely on the basis of the data, it 
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-r_i_1_ -, - 	I 

Coiquhoun's data, closed two-compartment model fitted by Gaussian 

likelihood estimation; parameter estimates with associated 

estimated standard errors and estimated correlation coefficients. 

Q12' 	Q21 	
2 	

¶ 2 
	22 	2 

	

estimate 	0.0057 	0.135 	9.4 	83.3 	2.6 	0.030 

se 	0.0118 	0.009 	1.0 	7.8 	1.8 	0.021 

correlations 

-0.88 

r 2 fl 1  -0.30 0.07 

2n  0.99 -0.87 	-0.41 

0.78 -0.70 	-0.20 	0.77 

-0.86 0.77 	0.24 	-0.85 	-0.97 

Correlation coefficients exceeding 0.9 underlined. 

Table 7.3.2 	 - 

Colquhoun's data, closed two-compartment model with t 2n 2  fixed at 

200, fitted by Gaussian likelihood estimation; parameter estimates 

with associated estimated standard errors and estimated correlation 

coefficients. 

Q12  Q21  ¶ 2 fl a2/t 2  

estimate 0.085 0.062 9.0 11.4 	0.0067 

se 0.002 0.001 0.6 4.8 	0.0022 

correlations 

0.92 

-0.50 -0.68 

-0.06 -0.08 0.13 

0.04 0.06 -0.11 -0.92 

Correlation coefficients exceeding 0.9 underlined. 
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is not possible to distinguish whether T 2 n 2  is equal to 83 or 

1000. This is possibly because direct observations are made on 

compartment 1 but not on compartment 2. 

However, consideration of the experimental conditions under 

which the data were collected indicates that the current T 2  is 

closer to 0.0045 nAmps, as estimated when r 2 fl 2  = 1000, than to 

0.0300 nAmps, as estimated when t 2 n2  = 83. This is because the 

conductance of a single ion-channel is somewhere between 20 and 40 

pSiemens and the potential across the membrane was 160 mVolts, 

which implies a current of between 0.0032 and 0.0064 nAmps. 

An understanding of why problems arose when estimating 

parameters in a two-compartment model may be gained by examining 

the functional form of the expectations. 	This is a single 

exponential function plus a mean term and therefore only requires 

three parameters to describe it. However, there are four 

parameters in the compartment model: n 1 , n2 , Q12 , Q21  ; so 

information on the fourth parameter can only be obtained from the 

covariance structure. 	We are led to conclude that there is very 

little extra information coming from the second-order moments. 

7.3.4 Open one-compartment model 

The problem of overparanieterization can be circumvented if it 

is assumed that the expected number of channels in a non-conducting 

state at time zero (n 2 ) is sufficiently large to be considered 

infinite. There is some justification in making this assumption 

because it has already been noted that when t 2 n2  is large the 

estimated current 	2  takes a more reasonable value than when 

is small. The closed two-compartment model becomes an open 
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one-compartment model, which can be represented diagramatically as: 

In practical terms, this means that at any particular time nearly 

every ion-channel is in a non-conducting state, and these provide a 

large reservoir of potentially conducting channels. 

If it assumed that N 1 (0) is Poisson distributed, then this 

ensures that N1 (t) is Poisson distributed for all later times t , 

and in a sense this may be considered to be the "natural" starting 

distribution. The conductance t 2  can once again be treated as a 

scaling parameter provided that t 2r1  is estimated in place of 

The observations y once again constitute a GARMA(1,1) 

process. 	From equations (7.2.4) and (7.2.7), with the Poisson 

starting distribution incorporated, 

E(Y(t)) = - r 2 {n1  P11 (t) + b1 (t)} 

2,. 	
T 

2,. 	 -t 

q1 	

I 
=- 	+( 	-t 2n1 )e 	, 

q1  

and 	cov(Y(s),Y(t)) = r41n1 P 11 (t) P 11 (s-t) + b 1 (t) P 11 (s-t) 

+ a2/t4 
1 st }  ' 

= - t2{E(Y(t)) e - (s-t)q 1 - ,2 /T2 1st 

The model was fitted by minimizing LM  and the estimates are 

given in table 7.3.4. 	Figure 7.3.1 shows the data, fitted curve 

of expectations and predicted values based on past observations (as 

described in [2.3.7]) plotted against time. 	LM  is minimized as 

-64.9, which is close to the value of -65.0 for the two-compartment 

model with t 2 n2  = 1000. 	This is not surprising because the two 
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Table 7.3.3 

Coiquhoun's data, closed two-compartment model with T 2n fixed at 

1000, fitted by Gaussian likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

estimate 0.134 0.0129 9.0 16.9 	0.0045 

se 0.003 0.0003 0.6 7.2 	0.0015 

correlations 

0.97 

t 2 fl 1  -0.61 -0.66 

a 2/r 2  -0.08 -0.09 0.15 

T 2  0.06 0.07 -0.13 -0.92 

Correlation coefficients exceeding 0.9 underlined. 

Table 7.3.4 

Colquhoun's data, open one-compartment model fitted by Gaussian 

likelihood estimation; parameter estimates with associated 

estimated standard errors and estimated correlation coefficients. 

estimate 	13.0 	0.147 	9.0 	18.3 	0.0042 

se 	 0.3 	0.003 	0.6 	7.8 	0.0014 

correlations 

q 1  0.97 

-0.65 	-0.63 

-0.09 	-0.09 	0.15 

0.07 	0.07 	-0.13 	-0.92 

Correlation coefficients exceeding 0.9 underlined. 
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Figure 7.3.1 

Coiquhoun's data, open one-compartment model fitted by Gaussian 
likelihood estimation; observed currents (X), expected currents 
( ---- ) and predicted currents ( 	-) conditional upon earlier 
observations, plotted against time. 

Time (ms) 
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models are very similar: as 'r 2 n 2  increases, the two-compartment 

approximates to a one-compartment model, with (v 2n 2  Q21 ) 

converging to ¶ 2r 1  and Q12  converging to 

7.3.5 Separate covariance parameterization 

To test the adequacy of the stochastic compartment model a 

different emigration parameter, denoted 	,was introduced into 

the variance matrix. 	Therefore 

cov(Y(s), Y(t)) = -r21E(Y(t)) 	 - a2/'r2 I} 

and the covariances decay exponentially at rate q rather than at 

rate q1  as in [7.3.4]. 	The reparameterization facilitates the 

assumption to be tested that covariances between observations decay 

at the same rate q 1  as the expectation function approaches its 

asymptote. 

The parameters were estimated by minimizing LM . 	The 

decrease in LM  to -65.3 is not sufficiently large for the 

addition of one extra parameter to reject the hypothesis that 

is equal to q1  , on the basis of the asymptotic properties of the 

likelihood ratio test. 	The parameter estimates are given in table 

7.3.5. It can be seen that q 1  is estimated much more precisely 

than cii , the standard errors being 0.005 and 0.106 respectively. 

Therefore, if the two parameters are combined into one, as they 

were in [7.3.4], the pooled estimate is dominated by the 

contribution from the component which controls the rate at which 

the function of expected values approaches its asymptote. This is 

borne out by q1  in table 7.3.4 (0.147) being much closer to 

(0.150) in table 7.3.5 than it is to dl  (0.059). 
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P_L1. 	 fl r 

Coiquhoun's data, open one-compartment model with separate 

covariance parameter, fitted by Gaussian likelihood estimation; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

t2r 1 	q1 	2n 1 	q 	 ¶2 

estimate 13.2 0.150 8.8 0.059 19.7 	0.0040 

se 0.4 0.005 0.6 0.106 8.8 	0.0015 
correlations 

q1  0.96 

¶ 2 n 1  -0.68 -0.65 

q -0.56 -0.62 0.31 

-0.21 -0.22 0.21 0.26 

¶2 0.26 0.28 -0.23 -0.39 -0.93 

Correlation coefficients exceeding 0.9 underlined. 

Table 7.3.6 

Coiquhoun's data, open one-compartment model parameterized without 

the use of a scaling parameter, fitted by Gaussian likelihood 

estimation; parameter estimates with associated estimated standard 

errors and estimated correlation coefficients. 

q1 	n1 	a2 	
¶2 

estimate 	3140. 	0.147 	2160.0 	0.076 	0.0042 

se 	1060. 	0.003 	770.0 	0.013 	0.0014 

correlations 

q1  -0.01 

n 1  0.98 	-0.17 

a2  0.35 	-0.09 	0.36 

0.998 	-0.06 	0.98 	0.35 

Correlation coefficients exceeding 0.9 underlined. 
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7.3.6 Estimation without use of scaling parameter 

In order to obtain direct estimates of r 1  , n 1  and a2  

the conductance t 2  cannot be treated as a scaling parameter as 

previously. When this reparameterized model was fitted using 

REGAME the convergence was very slow, which illustrates the 

usefulness of the earlier parameterization that enabled t 2  to be 

omitted from the iterative procedure (see [2.3.4]). The final 

results are summarized in table 7.3.6. 

7.3.7 Reparameterization using 8 

It is illuminating to relate the results of this section to 

those given in section 4.3, where a single exponential regression 

function (parameterized by 8)  with an ARMA(1,1) error process was 

fitted to the same set of data. The one-compartment model differs 

from this earlier model in only two respects: the variances 

change through time; and the covariances decay at the same rate as 

the expectation (or regression) function approaches its asymptote. 

We may reparameterize the compartment model using 8 , where 

	

E(Y(t))=8 1 +82 e 	3, 

by letting 	 t2n 1  = - 
	- 82 

t2r1 = 81183 

and 	 q1  = 1/83  

The parameters, 8 together with a21'r 2  and T 2  as in [7.3.4], 

can be estimated by minimizing LM . The estimates, which are 

simply a transformation of those given in table 7.3.4, are given in 

table 7.3.7. 
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Table 7.3.7 

Coiquhoun's data, open one-compartment model reparameterized using 

regression parameters 8, fitted by Gaussian likelihood estimation; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

82 	8 

estimate -88.3 79.3 

se 0.5 0.7 

correlations 

82 -0.57 

8 3  -0.69 0.02 

-0.05 -0.09 

0.03 0.09 

	

6.78 	18.3 	0.0042 

	

0.16 	7.8 	0.0014 

0.09 

	

-0.07 	-0.92 

Correlation coefficients exceeding 0.9 underlined. 

Table 7.3.8 

Colquhoun's data, open one-compartment model reparameterized using 

regression parameters 8,  with separate covariance parameter, fitted 

by Gaussian likelihood estimation; parameter estimates with 

associated estimated standard errors and estimated correlation 

coefficients. 

8 1 8 2 83  8 

estimate -88.0 79.2 6.67 17.0 19.7 	0.0040 

se 1.0 1.0 0.23 30.6 8.8 	0.0015 

correlations 

82 -0.82 

8 3  -0.78 0.43 

0.57 -0.41 -0.62 

-0.18 0.06 0.22 -0.26 

0.24 -0.12 -0.28 0.39 -0.93 

Correlation coefficients exceeding 0.9 underlined. 
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If a separate parameter 	is used in the covariances, as 

in [7.3.5], where 

= 1/8 , 

and the model is fitted by minimizing LM , then the estimates, 

which are simply a transformation of those given in table 7.3.5, 

are given in table 7.3.8. 

The estimate of B in table 7.3.8 is very close to that in 

table 4.3.3 which is not surprising because the models differ only 

in whether or not the variances are constant. 	The estimate of B 

is also very close to that in table 7.3.7, but the standard errors 

are larger, because the covariances among the observations are not 

being used to give extra information about 83 . This illustrates 

the gain in efficiency of estimation, when appropriate, through 

using the same parameters to describe both the function of 

expectations and the covariance structure of data. 

7.3.8 Open two-compartment model 

Colquhoun proposed a model in which each ion-channel can be 

in one of three states, only the first of which is conducting, to 

account for the double exponential form of the regression 

previously fitted in [4.3.7]. The model may be represented as 

follows: 

Q23  

State 1 
	

State 2 
	

State 3 

(Conducting) 
	

(Non-conducting) 
	

(Non-conducting) 
I Q21 	 -' 	Q3 	I 

which requires seven parameters once n 1  , n 2  and n 	 have been 

included. If the number of channels in the third state is 

considered to be large then, analogous with the preceding 
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simplification of a two-compartment model, the model reduces to an 

open two-compartment model as follows: 

State 1 	 I 	State 2 

(Conducting) 

21 	
N2 

There are six parameters, including n 1  and n2  , 	to be 

estimated, although the expectation function can be parameterized 

by five. 	Mindful of the difficulties encountered in fitting a 

closed two-compartment model, I held t 2 fl2  constant in order to 

obtain good starting values for the optimization algorithm; values 

for the remaining five parameters were found so that they were 

consistent with: 

E(Y(t)) = -90.4 + 25.0 et/33 + 58.6 et/92 31  

which was the least-squares fit of the double exponential 

regression function to Coiquhoun's data, given in table 4.3.9. 

For a range of values of t 2 fl 2  , the values for the other 

parameters were found and are given in table 7.3.9. 	When 

was less than 200, values could not be found for the other 

parameters. 

Because the system is open, the distribution of N(0) was 

assumed to be Poisson, as in [7.3.4]. The inclusion of observation 

errors means that y  is a GARMA(2,2) process. 	With rn2  held 

constant at either 500 or 8000 the remaining parameters were 

estimated by minimizing LM , and the resulting estimates are given 

in tables 7.3.10 and 7.3.11 respectively. 	The corresponding 

values of LM  are -74.5 and -74.9. 	There is little difference in 

LM between the two models although the parameter estimates are 
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Table 7.3.9 

Alternative sets of parameter values in open two-compartment model 

(specified in [7.3.8]) consistent with 

E(Y(t)) = - 90.4 + 25.0 e - t/3 . 3 + 58.6 e- t/9.2 

Set No. 	
Q12 Q21 	

r 2  r 2 	q 2 	t 2 fl 1  

1 0.18 0.082 56.0 0.28 5.4 200.0 

2 0.15 0.028 61.0 0.12 7.5 500.0 

3 0.19 0.015 107.0 0.09 7.4 1000.0 

4 0.22 0.007 248.0 0.09 7.1 2000.0 

5 0.23 0.004 537.0 0.10 7.1 4000.0 

6 0.25 0.002 1143.0 0.10 7.0 8000.0 

Table 7.3.10 

Colquhoun's data, open two-compartment model with T 
2  n fixed at 

500, fitted by Gaussian likelihood estimation; parameter estimates 

with associated estimated standard errors and estimated correlation 

coefficients. 

12 21 t 2r 2  q 2 r 2  n a2/t 2  

estimate 0.24 0.031 94.0 0.135 6.9 114.0 	0.00077 

se 0.07 0.002 26.0 0.008 0.7 40.0 	0.00025 

correlations 

0.97 

2r2  0.98 0.90 

0.53 0.36 0.70 

t 2 fl 1  -0.69 -0.82 -0.58 -0.04 

a2/ w2  -0.17 -0.22 -0.11 0.14 0.26 

0.08 0.14 0.03 -0.17 -0.19 -0.92 

Correlation coefficients exceeding 0.9 underlined. 
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Table 7.3.11 

Coiquhoun's data, open two-compartment model with 2  n 
2 
 fixed at 

8000, fitted by Gaussian likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

	

Q12 	Q21 	
2 	 2 	22 	2 

	

r2 	q2 	t 	a fl 1 	It 

estimate 	0.28 	0.0020 1420.0 	0.109 	6.9 	131.0 	0.00067 

se 	0.08 	0.0001 	490.0 	0.016 	0.8 	90.0 	0.00041 

correlations 

0.98 

t2r 2 	0.99 	0.94 

q2 	0.95 	0.87 	0.99 

tfl 1 	-0.79 -0.87 	-0.71 -0.62 

	

0.05 	0.09 	0.03 -0.00 	-0.15 

	

-0.09 -0.12 	-0.06 -0.03 	0.17 	-0.98 

Correlation coefficients exceeding 0.9 underlined. 
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quite different. It would appear that once again we are trying to 

estimate more parameters than the data can identify. However, the 

agreement between the data and the fitted models is excellent. For 

example, figure 7.3.2 shows the fit when v 2n 2  is held constant at 

8000. 

One solution would be to assume that r 2  n 
2 
 is large. The 

system would reduce to one-compartment but the rate of immigration 

would change with time according to an exponential relationship and 

this would move us outside the theory of section 7.2 in which all 

rate parameters are constant over time. 

7.3.9 Resumé 

The open one-compartment system appears to be successful in 

modelling the data. 	This is in accord with existing belief in the 

scientific community that ion-channels behave approximately like 

particles in stochastic compartment models. 	However, the 

estimation procedure does not seem to extend readily to larger 

systems because of lack of identifiability of larger numbers of 

parameters. 

7.4 	Dale's data 

7.4.1 Introduction 

Compartment models have been proposed to explain leaf 

transport systems, see for example Bauermeister, Dale, Williams and 

Scobie, 1980. Dale's data, first considered in section 4.4, is an 

example of this type of data. It is postulated that 14C atoms in 
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Figure 7.3.2 

Coiquhoun's data, open two-compartment model with t 2 n 2  fixed at 
8000, fitted by Gaussian likelihood estimation; observed currents 
(X), expected currents (----) and predicted currents - (—) 
conditional upon earlier observations, plotted against time. 
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the leaf may be either in molecules which are available for 

transportation out of the leaf or in molecules which are stored 

within the leaf. On the assumption that molecules switch between 

states or leave the leaf independently of one another, at 

probabilistic rates constant over time, the process may be modelled 

using an open two-compartment system, thus: 

	

Q12 	 -. 

Transporting 
	

state 2 

Iq 	 21 

The observations y are a constant proportion of the IL,C  atoms 

in the two compartments, with the constant (denoted t 2 ) being the 

rate of emission of 8-particles from a single 14C  atom 

multiplied by the rate of detection by a Geiger counter. 	As in 

section 7.3, r 2  may be treated as a global scaling parameter by 

rep arameteri zing. 

7.4.2 Estimation 

The distribution of N(0) was assumed to be Poisson. 

Observation errors were included in the model with variance 

a2E(Y(t)) at time t , as in section 4.4, to take account of the 

Poisson nature of the sampling variability associated with 

radioactive emission.. With these assumptions, the observed counts 

.y form a GARMA(1,1) process. 

There are five parameters in the model, including n 1  and 

but the expectation which is a weighted sum of two 

exponentials has only four, so we may expect problems of 

indeterminancy. 	To obtain good starting values for the 
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optimization algorithm, r 2 n 2  was held constant and values for the 

remaining four parameters found consistent with: 

E(Y(t)) = 818 e- 0.0142t + 702 e°° 67t 
SP 

which was the least-squares fit of the double exponential 

regression function to Dale's data, given in table 4.4.1. 	For a 

range of values of ¶ 2n 2 , the values for the other parameters were 

found and are given in table 7.4.1. 

The parameters were estimated by minimizing LM  for the two 

extreme cases in table 4.4.1, that is with t 2 n2  = 0 in one case 

and with Q12 = 0 in the other case, and the estimates of the 

remaining parameters are given in tables 7.4.2 and 7.4.3 

respectively. In both cases, and also in fact in all intermediate 

cases between these extremes, LM  was minimized as 387.4. 

Therefore, purely on the basis of the data, it is impossible to 

distinguish among the alternative sets of parameter values. 

7.4.3 Temporary immigration to generate the initial distribution 

It is necessary to introduce further information about the 

experiment which generated the data in order to reduce the number 

of parameters in the model. 	1 C was fed to the leaf as 

radioactive carbon dioide at a constant rate for five minutes 

prior to time zero. 	This can be represented as temporary, 

immigration at rate r 1  into the first compartment between times 

-5 and 0. After time zero the immigration rate is zero. This 

single parameter replaces both n 1  and n2  

The new parameter set was estimated by minimizing LM  and 

the estimates are given in table 7.4.4. 	Once again LM  is equal 

to 387.4. 	Temporary immigration in this case is equivalent to 
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Table 7.4.1 

Alternative sets of parameter values in two-compartment model 

0.0142t consistent with E(Y(t)) = 818 e - 	+ 702 e_OO°°67t 

q1 Ir 2 n 1  

1 0.00572 0.00120 0.0080 1520.0 0.0 

2 0.00467 0.00104 0.0092 1320.0 200.0 

3 0.00320 0.00088 0.0108 1120.0 400.0 

4 0.00165 0.00076 0.0125 970.0 550.0 

5 0.00 0.00067 0.0142 851.0 669.0 

Table 7.4.2 

Dale's data, two-compartment model with v 2 n2  fixed at 0, fitted by 

Gaussian likelihood estimation; parameter estimates with 

associated estimated standard errors and estimated correlation 

coefficients. 

12 Q21  q 1  a2/t 2 	t2  

estimate 0.0080 0.0015 0.0101 1606.0 0.034 	3.6 

se 0.0014 0.0002 0.0011 80.0 0.013 	1.1 

correlations 

0.65 

0.68 0.23 

0.10 0.03 0.16 

-0.15 0.02 -0.09 0.04 

IV 
2 0.07 -0.05 0.12 -0.12 -0.89 
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Table 7.4.3 

Dale's data, two-compartment model with Q 	 fixed at 0, fitted by12 
Gaussian likelihood estimation; parameter estimates with 

associated estimated standard errors and estimated correlation 

coefficients. 

q1  2 2 n 2  2
t

2 	2 al 

estimate 0.0008 0.0188 860.0 745.0 0.034 	3.6 

se 0.0001 0.0023 67.0 63.0 0.013 	1.1 

correlations 

0.45 

-0.27 -0.29 

t 2n 2  0.34 0.48 -0.25 

0.10 -0.13 0.07 -0.12 

IV 
2 -0.05 0.09 -0.06 -0.09 -0.89 

Table 7.4.4 

Dale's data, two-compartment model with temporary immigration 

(specified in [7.4.3]), fitted by Gaussian likelihood estimation; 

parameter estimates with associated estimated standard errors and 

estimated correlation coefficients. 

estimate 	0.0079 	0.0015 	329.0 	0.0103 	0.034 	3.6 

se 	0.0013 	0.0002 	17.0 	0.0011 	0.013 	1.1. 

correlations 

0.65 	 - 

t 2r 1 	0.14 	0.04 

q1 . 	0.68 	0.23 	0.21 

-0.15 	0.03 	-0.04 	-0.09 

0.06 	-0.05 	-0.11 	0.12 	-0.89 
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assuming that the coefficients in N( 0) are both Poisson 

distributed, with r 2 fl1  = 1574 and r 2 n 2  = 31. 	The 

data, fitted curve of expected values and predicted values from 

past observations (as described in [2.3.7]) are plotted against 

time in figure 7.4.1. 

7.4.4 Separate covariance parameterization 

The models fitted so far in this section assume that the 

covariances between observations decay to zero with increasing time 

separation at a rate which is the sinn of two exponentials, which 

are the same two exponentials that describe the rate of decay of 

the function of expectations to zero. To test this assumption, a 

different set of parameters corresponding to Q 12  , Q21  and q1  

were used in the covariances, denoted 	2 	
and 	. 	These 

are the three parameters which jointly specify the two exponential 

terms. 	This is analogous to the approach taken in [7.3.5] when 

the assumption of a common single exponential term was tested in 

Colquhoun's data. 

The parameters were estimated by minimizing LM and the 

estimates are given in table 7.4.5. 	Figure 7.4.2 shows the data, 

fitted curve and predicted 'values plotted against time. The value 

of LM  has been reduced to 384.4. 	This is a decrease of 3.0 

compared with the results in [7.4.3] for the addition of 3 

parameters which, on the basis of asymptotic likelihood theory, is 

not a sufficient change to reject the model with shared 

parameters. This uses the property that the Guassian likelihood 

converges to the true likelihood function as the number of 

particles in the compartment system increases. 
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Figure 7.4.1 

Dale's data, two-compartment model with temporary immigration 
(specified in [7.4.3]), fitted by Gaussian likelihood estimation; 
observed radioactive discharges (X), fitted values ( ---- ) and 
predicted values ( 	) conditional upon earlier observations, 
plotted against time. 
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Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]) and separate 

covariance parameterization, fitted by Gaussian likelihood estimation; 	parameter estimates with 

associated estimated standard errors and estimated correlation coefficients. 

Q2 1 
2 	 * 	* r 1 	q1 	Q12 	Q21 * q 1  22 	 2 

a It 

estimate 	0.0067 	0.0014 304.0 	0.0082 	0.0197 	0.0006 0.18 0.0056 	21.3 

se 	0.0011 	0.0002 16.0 	0.0012 	0.0352 	0.0006 0.15 0.0105 	39.6 

correlation 

0.54 

0.70 0.24 

q1  0.77 0.35 0.42 

Qt2 0.25 0.06 0.23 0.25 

Q 0.25 0.21 0.10 0.38 -0.03 

q 0.02 -0.01 0.05 0.05 -0.76 	-0.13 

a 
2/T2 0.20 0.12 0.12 0.25 0.86 	0.35 	-0.88 

2 
-0.22 -0.11 -0.17 -0.25 -0.87 	-0.35 	0.88 	-0.995 

Correlation coefficients exceeding 0.9 underlined. 

(A, 
ON 
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Figure 7.4.2 

Dale's data, two-compartment model with temporary immigration 
(specified in [7.4.31), and separate covariance parameterization, 
fitted by Gaussian likelihood estimation; observed radioactive 
discharges (X), fitted values ( ---- ) and predicted values ( 	) 
conditional upon earlier observations, plotted against time. 
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7.4.5 Estimation without use of scaling parameter and with a 2  fixed 

at 0.1 

To obtain direct estimates of r1 , q1  and ci 2  , the rate of 

emission T 2  cannot be treated as a scaling parameter. 	The 

estimates resulting from minimizing LM  are given in table 7.4.6. 

Particularly worthy of note is the estimate of a 2  as 0.12. 

The observations are ten-minute averages of Geiger counts, so if in 

any single minute the distribution is Poisson, then the variance of 

the average will be one tenth of the mean. To test this, a 2  was 

fixed at 0.1 and the other parameters were re-estimated. 	The 

results are summarized in table 7.4.7 and figure 7.4.3 shows the 

fitted values plotted against time. 	LM  is minimized at 388.0 

which is only 0.6 more than when a 2  = 0.12. Therefore the data 

is consistent with the hypothesis that a 2  is equal to 0.1, on the 

basis of the asymptotic properttes of the likelihood ratio test. 

7.4.6 Resumé 

Although the preceding analysis has appeared to produce a 

model which fits the data adequately, one particular feature 

nullifies this conclusion: the estimate of t 2  is 3.6. 	If 

molecules in the leaf behave independently of one another then T2 

should represent the rate of emission of a single 14C  atom 

multiplied by the rate of detection of a Geiger counter. 	However, 

the product of these rates is miniscule and the value 3.6 is utter 

nonsense. 	Therefore the stochastic compartment model does not 

describe the transport mechanism, maybe because molecules do not 

act independently but in groups. 

There is certainly not the same degree of belief in the 

stochastic compartment model describing the transport mechanism as 
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Table 7.4.6 

Dale's data, two-compartment model with temporary immigration 

(specified in [7.4.3]), parameterized without the use of a scaling 

parameter, fitted by Gaussian likelihood estimation; parameter 

estimates with associated estimated standard errors and estimated 

correlation coefficients. 

Q12 	Q21 	r 	q1 	a 2  

estimate 0.0079 0.0015 92.0 0.0103 0.12 	3.6 

se 0.0013 0.0002 28.0 0.0011 0.02 	1.1 

correlations 

0.65 

-0.04 0.06 

q 1  0.68 0.23 -0.08 

a 2  -0.22 -0.03 0.15 0.01 

0.06 -0.05 -0.99 0.12 -0.20 

Correlation coefficients exceeding 0.9 underlined. 

Table 7.4.7 

Dale's data, two-compartment model with temporary immigration 

(specified in [7.4.3]), a 2  fixed at 0.1, parameterized without the 

use of a scaling parameter, fitted by Gaussian likelihood 

estimation; parameter estimates with associated estimated standard 

errors and estimated correlation coefficients. 

	

'12 	'21 	
r 1 
	

q, 1 
2 

estimate 	0.0082 	0.0015 	85.0 	0.0103 	3.9 

se 	0.0014 	0.0002 	26.0 	0.0012 	1.1 

correlations 

0.65 

-0.03 	0.06 

0.70 	0.22 	-0.07 

0.04 	-0.06 	-0.99 	0.11 

Correlation coefficients exceeding 0.9 underlined. 
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Figure 7.4.3 

Dale's data, two-compartment model with temporary immigration 
(specified in [7.4.3]), cy 2  fixed at 0.1, fitted by Gaussian 
likelihood estimation; observed radioactive discharges (X), fitted 
values ( ---- ) and predicted values ( 	) conditional upon earlier 
observations, plotted against time. 
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there is in it describing the behaviour of ion-channels, considered 

in section 7.3. 	At best it is an approximation to reality. 

Therefore, although it may be reasonable to expect the long term 

trend in the data to be adequately described by a compartment 

model, it may be taking the model too far to expect it also to 

explain the covariance structure of the observations. 	In that 

case the empirical approach of chapter 4 would seem to be 

preferable to the analysis in the present section which may be 

compared to building a tower on sand. However, the method of 

chapter 4 also has its deficiencies, a partial resolution of which 

will be presented in chapter 9. 

7.5 	Discussion 

The technique considered in this chapter is to model data, 

which are postulated to have arisen from a compartment system, by a 

simple type of stochastic compartment model. 	The parameters in 

the model are estimated utilizing the information both in the main 

trend of the data and in the local stochastic fluctuations. 	There 

are theoretical reasons for proposing compartment models as 

generating mechanisms for both Colquhoun's and Dale's data. 

Judged on the basis of goodness-of-fit, stochastic compartment 

models appear to perform well in both applications. However, at 

this point the similarities end. For Coiquhoun's data, the 

parameter estimates were consistent with other information about 

values they should take. 	But, for Dale's data this was not the 

case. 	I think the difference between the two problems is that in 

one the stochastic model comes very close to describing the true 
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mechanism, whereas in the other, although a deterministic model may 

be a reasonable approximation to reality, the sources of stochastic 

variability are much more complex than they are assumed to be in a 

stochastic compartment model. 	Misleading results can be produced 

in fitting an inappropriate stochastic model because parameters do 

not have the same interpretation as in a deterministic model, and 

may have no physical meaning at all. 	Therefore, if there is any - 

doubt about the validity of a stochastic compartment model, it 

would be better to fit a deterministic model with an empirical 

choice of error model, as described in chapters 4 and 5. 
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8. Cumulative count models 

8.1 	Introduction 

This is the last of three chapters describing the use of 

mechanistic models in order to estimate regression parameters when 

errors are serially correlated. In the approach adopted here the 

correlations arise through cumulative numbers of events up to 

particular times being used as the dependent variate. The 

situation envisaged is where a fixed number of events, N say, occur 

in a particular interval of time, and the times of the events are 

independent identically distributed random variables. 

In section 8.2, the variate indexed by continuous time of the 

cumulative number of events is shown to be a cGARMA(1,0) process 

and the generalized sum of squares, S. (defined in [2.3.2]) is 

shown to be Berkson's x 2  statistic. This helps to illuminate the 

relation between the correlated structure of the cumulative numbers 

of events and the approximate independence of events in 

non-overlapping time intervals. However, the formulation as a 

GARMA process permits other types of correlation structure to be 

used intermediate between that predicted by the mechanistic model 

and the simple-minded assumption of independence. In section 8.3, 

the technique is applied to seed germination data previously 

analysed by Hunter, Glasbey and Naylor (1984). Finally, in section 

8.4 the technique is evaluated critically. 
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8.2 	Theory 

8.2.1 Model 

The model to be considered is for a sequence of observations 

y11 ..., y (denoted y)  which have been made at monotonically 

increasing times t 1 , ..., 	(denoted t), where y j  is the 

number of events that have occurred up to time t. . It is assumed 

that y  is a realisation at discrete times t of a random variate 

Y(t) indexed by continuous time, which is itself the sum of N 

independent random variates 	 Y(t) , where Y(t) 

is an indicator random variable that denotes whether or not the 

event indexed by k occurred before time t . If the event 

labelled k occurs at time t 	 , then 

	

y{k}(t) = 0 	 if t < 

	

1 
	

if t 

It is further assumed that 
	

is a positive random variate with 

cumulative probability function p(t) , therefore 

t) = p(t) 	for all t > 0 

8.2.2 Solution 

From [8.2.1] it follows that 

N 

E(Y(t)) = I E(Y(t)) 
k=1 

= N E(Y(t)) 

because the N events occur independently of one another and are 

identically distributed, 

= N P(t > t) 

by the definition of Y(t) above, 

= Np(t) 
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Also, 
N 

cov(Y(s),Y(t)) = 	cov(Y(s), y{k}(t)) 
k=1 

= N cov(Y 1 (s), Y 1 (t)) 

	

= N [E(Y 11 (s)Y(t)) 	E(YU}( s ))E(Y{l}(t))] 

= N[P(s,t > t) - P(s > t 1 )P(t > tm )] 

= N(p(t)-p(s)p(t)) 	 for s > t 

= N(1-p(s) )p(t) 

This is the product of a term dependent only upon s and a term 

dependent only upon t , so Y(t) satisfies the definition in 

[2.2.7] and is a cGARMA(1,0) process. As a consequence, y is a 

GARMA(1,0) process. 

At this point it is worth noting that another way of viewing 

the above model is as an open one-compartment system with N 

particles in the system at time zero, no immigration and a 

time-varying rate of emigration, 

- 	1 	ap(t) q / 
	1-p( t) 

provided p(t) is differentiable with respect to t and not equal 

to unity. This is closely related to the model applied by Matis 

and Wehrly (1979) to fish survival data irf their review of 

stochastic compartment models. 

8.2.3 Relation between the generalized sum of squares and Berkson's 

x 2  statistic 

In what follows I forge a link between the approach to 

correlated errors taken in this thesis and the more conventional 

way of tackling the particular type of covariance structure 

associated with cumulative counts data. At the same time, this 
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serves as another illustration of the decomposition of the variance 

of a GARMA process in terms of lower-triangular band matrices, as 

specified in [2.2.2]. 

The vector of observations (y) is a realisation of a 

multivariate distribution with mean f and variance matrix V 

where 

fN 1 
	

for i=1,...,n, 

= N(1-p 1 )p 	 for i > j 

and p(t 1 ) is denoted p. . 	Because y  is a GARMA(1,0) process, 

from [2.2.2] (0 V 	
)T 
 is diagonal, where ' 	is a lower 

triangular matrix with bandwidth 2 defined by 

= 1 	 for i = 

and 

ii V i,i _ l  + cV 	= 0 	 for i = 2,... 

Therefore 

1,1- 1 
= 	1 	

for i = 2,...,n 
(1-p11 ) 

It follows that 

T) 	
= • 1 V 11  + 2 1$V 	+ 

* 

= N(1-p)p- 2 	1 	N(1-p)p 	+ 	
1 2 N(1-p 	)p 

1 	1 	(l-p 11 ) 	1 	i-i 	(1-p 1 _ 1 ) 	i-i 

for 	i = 1...,n 

where p0  is taken to be zero, 

- N(1_p 1 )(p 1 _p 1 ) 

(1 - pi - 1) 

From [2.2.2], e is a diagonal matrix with 

Gii = V(O V )ii 	 for 	I = 1,...,n 
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In [2.3.3], the generalized sum of squares, S , is defined by 

S = z T 

where 

z=ee 

and 

Therefore, 

z 1  = ( 1 e 1  

where e0  is defined 

e. 
1 

and 

+ ID . for 	i = 1,...,n 

to be zero, 

- (1-pi 
	1-1  )e 	1(1-pi-1 ) 

	

n e? - 2(1-p.)e. 
i

e 	/(l_P 1 )+(1_) 2e 1 /(1_p11 ) 2  
1 S = 	

1 	 1 -i 

	

i=1 1 	1 	1 

2 { 

	

(1-p 11 ) 	- 	(1-p11 ) 
=e 	 + 	 ] 
1=1 	N(1_P)(p1_p11) 	N(1_p1)(p+i_p) 

2e .e. 

i=2 N(p1-p11) 

with p + 	taken as 1 . 	Rearrangement of terms leads to 

n 	
1 	 1 	

n 	2e.e. 
S = 	e2{ 	 + 	 - 	1 i4 

i=1 	N(p 1 -p 1 _ 1 ) 	N(p11-p1) 	1=2 N(p-p1_1) 

n+1 (e 
1
.-e i 
	

) 2 

= 	-i 
i1 N(p-p1_1) 

	

with e 1  defined to be zero. 	This is Berkson's x2  statistic: 

the ith term has a numerator: (e - e 11 ) 2  which is the squared 

difference between the observed and the expected number of events 

between times t11  and t. , and a denominator equal to the 
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expected number of events. Thus, there are two routes to the same 

optimization function S: either take account of the correlation 

structure between cumulative counts and form a generalized sum of 

squares; or form a new variate, the number of events between 

observation times, and construct Berkson's x2  statistic. 

8.3 	Naylor's data: seed germination tests. 

8.3.1 Introduction 

Approximately one hundred seeds were placed in each of 33 

petri-dishes inside a germination cabinet. 	Every few hours for 

the following week the seeds which had germinated (that is had a 

radicle at least 4nin in length) were counted and removed. 	The 

numbers of seeds remaining ungerniinated at the end of the test were 

also counted. The number of observations per dish varied between 7 

and 12. These data have been used by Hunter, Glasbey and Naylor 

(1984) to illustrate an efficient way to fit a curve to cumulative 

counts taking account of the correlations among the observations. 

Previous methods presented in the seed germination literature (see 

for example Nicholas and Heydecker, 1968) had inappropriately 

assumed the observations to be independent. 	In this section the 

flexibility of REGAME in handling different variance matrices will 

be used to illustrate the use of the model considered in section 

8.2 and to explore the use of related models. 
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8.3.2 Models 

The germination times of seeds are assumed to be log-normally 

distributed with a time origin 48 hours after the start of the 

experiment, except for a probability of non-germination (denoted 

83 ). Therefore the probability of a seed having germinated by 

observation time t i (> 48) is 

(n(t.-48)-8 )/v'8 2/2 

 

	

Pi -' 
	. 	 1 	2e 	d 

	

- ' 
	3' 	 /7(2W)

x  1  

for i = 

where a  	
and 82  are the mean and variance of the distribution 

of log-times to germination of seeds which germinate. This is the 

distribution that was found to be appropriate by Hunter, Glasbey 

and Naylor (1984). 

Several different models for the variance matrix (V) of the 

observations will be considered: 

(0) 	Independent observations with binomial type variances: 

= 

where r 2  is a variance parameter and I 	denotes the 

(i.j)th coefficient of the identity matrix (I) of size n 

This is a type of variance matrix commonly assumed in the 

germination literature, although it should be inappropriate 

for cumulative data. 

The standard variance structure, for which 

V ii= N(1-P)P 	 for i> j ; 

shown in [8.2.2] to be appropriate to cumulative data, 

where N is the number of seeds in a petri-dish. 

The standard variance structure in (1) together with an 

independent observation error with a standard deviation 
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proportional to the rate of germination, denoted error type 

(a), this leads to variance matrix coefficients: 

2 . 
= N(1P 1 )P + (a 	-5-r7-)-5-r7-)i 	for 	i 

where cr 	 is a proportionality constant. 

The standard variance structure in (1) together with an 

independent observation error with constant standard 

deviation a 	 , denoted error 'type (b), this leads to 

variance matrix coefficients: 

Vij = N(l_P)P + (a {b} ) 
2 1 	 for i > j 

A scaled version of the standard variance structure in (1) 

for which 

Vij = . 2 N(1_P 1 )P 	 for i > j 

with r a proportionality constant. This may for example 

result from the responses of seeds being correlated rather 

than independent. 

A scaled version of the variance structure in (1) plus 

observation error of the type denoted (a), which leads to 

variance matrix coefficients: 

V ij  = r 2  N(l_) 	
2 

+ (a 	I 	for 

A scaled version of the variance structure in (1) plus an 

observation error of the type denoted (b), which leads to 

variance matrix coefficients: 

V.. = r 2  N(1-p)p + ( a{) 2  1 	 for i > j
ij 

If observation errors arise through misclassifying seeds that are 

on the point of germinating then error type (a) will be 

appropriate, because the chance of misclassifying is proportional 

to the rate of germination at that time. Observation error type 
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(b) has been included to provide an alternative form for the 

variances. 	Inclusion of a scaled version of the variance 

structure enables the magnitude of the variances assumed in model 

(1) to be tested. 

Model (0) corresponds to a GARMA(O,O) process, models (1) and 

(4) to GARMA(1,0) processes and the remaining models to GARMA(1,1) 

processes. 

8.3.3 Method of estimation 

Among the various models only (1) could be fitted by 

minimizing the generalized sum of squares S (which was shown in 

[8.2.3] to be equivalent to Berkson's x2  statistic) because the 

other models have a scaling term in the variance matrix. 	Models 

(0) and (4) have single global scaling parameters and so could be 

fitted by minimizing L5 , defined in [2.3.2]. 	The other models 

require the term LnIVI to be in the function to be minimized, so 

the choice when using the computer program REGAME is between LM 

and L  , as defined in [2.3.2]. 	In this application LM  is the 

negative Gaussian log-likelihood (Whittle, 1961) and not the true 

negative log-likelihood, because the observations are not normally 

distributed. 	When minimizing 	LM , the scaling parameters are 

estimated without taking account of the number of other parameters 

to be estimated. 	This can introduce severe biases when the 

average number of observations per petri-dish is only ten and three 

other parameters are being estimated. 	Therefore the negative 

residual Gaussian log-likelihood L  	was chosen as the optimizing 

function, and for consistency was used to fit all seven models. 

To obtain good initial estimates for the parameters in the 

iterative optimization routine the models were fitted 
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sequentially. 	Parameter values obtained by Hunter, Glasbey and 

Naylor (1984) were used to provide starting values for model (1). 

The parameter estimates from model (1) were then used as starting 

values for models (0), (2), (3) and (4), and those finally obtained 

from model (4) were used as starting values for models (5) and 

(6). 	With this scheme no convergence problems were encountered. 

I could have eliminated one parameter from the iterative procedure 

by reparameterizing V to have a global scaling parameter, as I 

did in chapter 7. But, because there were no convergence 

difficulties I preferred to retain the original parameters. 

8.3.4 Results - likelihood comparisons 

Table 8.3.1 shows the minimized values of L  	
(the negative 

residual Gaussian log-likelihood) for each model fitted to the data 

- from each petri-dish. 	For each dish the model with the lowest 

value for an approximation to the Akaike Information Criterion 

(AIC) using LR,  instead of LM , plus the number of model 

parameters, is underlined. AIC (Akaike, 1973) has already been 

used in sections 6.4 and 6.5. Model (1), the one considered in 

section 8.2, is preferred on this basis for 60% of dishes. 

Models (2) to (6) are all generalizations of model (1) and so 

can be compared on the basis of the asymptotic properties of the 

likelihood ratio test. This uses the fact that the residual 

Gaussian likelihood converges to the true likelihood function as 

the number of seeds increases. Models (2), (3) and (4) each have 

one extra parameter and so are a significant improvement over model 

(1) at the 5% level if L  	
has been decreased by more than 1.9, 

that is the 95 percentile of - 	. 	Models (5) and (6) have two 
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Table 8.3.1 
Naylor's data; minimum values of the negative residual 

Gaussian log-likelihood (LR) for different models 

Model 

Number of 
Dish Parameters 

standard variances 	scaled variances 
independent 
errors 	 + error + error 	+ error + error 

(a) 	(b) 	 (a) 	(b) 

(0) 	(1) 	(2) 	(3) 	(4) 	(5) 	(6) 

4 	 3 	4 	4 	4 	5 	5 

1 5.6 5.4 4.7 5.4 4.8 4.1 4.8 
2 8.1 7.6 6.2 5.0* 5.9 5.9 4.8 
3 5.9 4.2 4.0 4.1 4.1 3.9 4.1 
4 10.1 8.8 7.7 8.6 8.1 7.7 8.1 
5 7.9 6.8 6.8 6.8 6.7 6.7 6.7 
6 8.4 6.1 6.1 6.1 6.1 6.1 6.1 
7 7.4 5.3 5.3 5.3 4.6 3.7 4.6 
8 7.5 5.8 5.8 5.8 5.8 5.8 5.8 
9 6.0 5.1 5.0 5.1 5.1 4.4 5.1 
10 9.8 8.0 8.0 8.0 8.0 8.0 8.0 
11 7.4 7.1 7.1 7.1 7.1 7.1 7.1 
12 7.6 7.9 7.5 7.6 7.5 7.4 7.5 
13 9.2 8.7 7.8 7.5 7.9 7.8 7.5 
14 10.6 8.1 6.7 8.0 7.3 6.6 7.3 
15 7.2 4.9 4.8 4.9 4.8 4.4 4.8 
16 13.9 12.4 11.9 12.1 11.1 11.1 11.1 
17 6.1 5.0 5.0 5.0 4.2 4.2 4.2 
18 9.6 8.0 8.0 7.8 7.8 7.8 7.8 
19 0.1 4.1 4.1 4.1 2.2* 2.2 0.2* 
20 8.5 10.6 8.2* 8.4* 8.1* 8.0 8.1 
21 8.5 9.2 8.9 7.8 8.1 8.1 7.8 
22 4.2 4.4 4.4 4.4 3.4 3.4 3.4 
23 8.4 5.8 5.7 5.8 5.5 1.9' 5.5 
24 9.0 8.8 7.9 8.8 7.9 7.8 7.9 
25 3.6 4.2 4.2 4.2 2.6 2.6 2.6 
26 7.3 5.6 5.6 5.6 5.6 5.6 5.6 
27 6.3 7.5 7.5 6.2 7.2 7.2 6.1 
28 8.0 8.2 8.2 7.7 7.7 7.7 7.6 
29 6.9 5.9 5.9 5.7 5.8 5.8 5.3 
30 8.9 9.9 7.7 9.3 7.8 7.6 7.8 
31 10.7 9.5 9.5 8.8 9.3 9.3 8.7 
32 9.2 11.5 11.4 9.0* 10.0 10.0 8.4* 
33 10.4 11.5 11.2 10.0 10.0 10.0 9.7 

Average 	 7.8 7.3 6.9 6.8 6.6 6.4 6.4 

For each dish the model with the lowest value of an approximation to Akaike's 
Information Criterion has been underlined. Models (2) to (6) with 
significantly 	lower 	L  

 than model (1) 	at 5% level denoted by an asterisk. 
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extra parameters so a decrease in L  	of 3.0 (the 95 percentile of 

4 x) is sufficient to reject model (1). 	Models which are 

significant improvements are marked with an asterisk. 	Only 11 of 

the 165 tests are significant which is close to the expected number 

of 8 arising by chance if model (1) is correct. However, because 

the 5 tests for each petri-dish are correlated with each other it 

is not possible to assess how substantial the difference is between 

the observed number of 11 and the expected number of 8. If model 

(1) is correct then the 33 differences between L  	
in model 

(1) and model (2) should be independent deviates from 4 x 	To 

assess this, the 33 differences were ranked and plotted against the 

corresponding quantiles of 4 x 	in figure 8.3.1. Except for a 

preponderance of observations at zero the agreement with the 

predicted straight line is very good. Figure 8.3.2 shows a similar 

plot of the ranked differences between L  	
in models (1) and (6) 

against the quantiles Of 4 4 with even better agreement. 

The values of L  	
for each model averaged over all dishes 

are given at the foot of table 8.3.1. 	The significant decrease 

for a model with one extra parameter is 0.7 (the 95 percentile of 

- x3) and with two extra parameters 1.3 (the 95 percentile of 

.,. 45 ) once again appealing to the asymptotic properties of 
the likelihood ratio test. Model (1) is adequate as it is not 

rejected in favour of any of the other models on the basis of this 

test. 	The improvement in fit obtained by using a scaled version 

of the variance matrix (model (4)) is close to the 5% level and, 

because the mean estimate of t is 1.2, this result suggests that 

the covariances are slightly larger than those predicted in the 

standard model for cumulative counts. 
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Figure 8.3.1 

Naylor's data; ranked differences in minimum values of the 
negative residual Gaussian log-likelihood between models (1) and 

(2) plotted against quantiles of 	x 
2 distribution. 

1 2 distribution .- Quantiles of 	x1 



- 256 - 

Figure 8.3.2 

Naylor's data; ranked differences in minimum values of the 
negative residual Gaussian log-likelihood between models (1) and 

(6) plotted against quantiles of 	x
2 distribution. 

Observed 
differences 

1 2 distribution .. Quantiles of 	x2 
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8.3.5 Results - parameter estimates 

Table 8.3.2 shows the means and the standard deviations of 

the parameter estimates over all dishes for each model together 

with the average standard errors supplied by REGAME. To define 

what these summary statistics are (they were previously discussed 

and used in [6.4.5] and [6.5.5]) consider the parameter p, in a 

particular model; this was estimated as 	with a standard 

error of se() using the data from the jth petri-dish. The 

mean of the estimates is 

33 
= 	 / 

the standard deviation of the estimates is 

33 
)2 / 321 

j=1 

and the average standard error is 

33 

se(') / 33 

•j=1 

Some of the differences between petri-dishes is being ignored in 

forming these statistics, but this simple approach is adequate for 

making some important comparisions between models and for assessing 

whether a parameter could take a common value for all dishes. The 

mean parameter estimates are in close agreement over all models , , as 

are the standard deviations, but the standard errors are on average 

only half the size in model (0) that they are in the other models. 

The agreement among models (1) to (6) is not surprising since 

models (2) to (6) are generalizations of model (1) which were found 

in [8.3.4] not to be significant improvements. 	The estimated 

precision in model (0) is too great because the assumption that the 
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Table 8.3.2 

Naylor's data; means and standard deviations of parameter 

estimates over all 33 dishes for each model, and average standard 

errors (see [8.3.5]). 

Model 	 p1 	p2 	p3 	 {a} 
t 	a 	a {b} 

 

means of estimates 

(0) indep. 	errors 3.24 0.39 0.085 0.6 

 standard variances 3.25 0.39 0.082 

 + obs error(a) 3.25 0.39 0.084 0.7 

 + obs error(b) 3.24 0.37 0.086 0.5 

 scaled variances 3.25 0.38 0.084 1.2 

 + obs error(a) 3.25 0.39 0.084 0.9 0.6 

 + abs error(b) 3.24 0.37 0.087 1.0 0.3 

standard deviations of estimates 

(0) indep. errors 0.19 0.20 0.046 0.2 

 standard variances 0.19 0.18 0.045 

 + obs error(a) 0.19 0.18 0.045 0.7 

 + abs error(b) 0.19 0.18 0.044 0.6 

 scaled variances 0.19 0.18 0.044 0.3 

 + obs error(a) 0.19 0.17 0.045 0.4 0.8 

 + abs error(b) 0.19 0.19 0.044 0.4 0.5 

average standard errors 

(0) indep. 	errors 0.03 0.04 0.014 0.2 

 standard variances 0.07 0.07 0.029 

 + obs error(a) 0.07 0.08 0.029 1.3 

 + obs error(b) 0.07 0.07 0.031 1.1 

 scaled variances 0.07 0.08 0.033 0.3 

 + obs error(a) 0.07 0.07 0.027 0.4 1.6 

 + obs error(b) 0.07 0.07 0.031 0.4 1.0 
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observations are independent assumes that the data contain more 

information than they actually do. 	With the exception of model 

(0) the results agree very well with those of Hunter, Glasbey and 

Naylor (1984) which were estimated by full maximum likelihood. and 

therefore took account of distributional properties of the 

observations and not simply first and second moments. 

Figures 8.3.3 and 8.3.4 show the data for dish 2 together 

with the fitted curve and predicted fit using earlier observations 

(described in [2.3.6]) plotted against time for models (1) and (3) 

respectively. 	Although model (3) gave a significant improvement 

over model (1) for this particular dish, that being the reason for 

its selection for plotting, the differences are difficult to detect 

in the plots because there are so few data points. 	The figures 

are shown in the same form as in other chapters for completeness. - 

8.3.6 Resumé 

For Naylor's data the standard variance model is adequate and 

is superior to the model in Nhich errors are assumed to be 

independent. 	This confirms the assumptions made by Hunter, 

Glasbey and Naylor (1984). 	It has been demonstrated that REGAME 

is capable of fitting models which combine both types of error, 

although the full generality was found unnecessary for this data 

set. 

8.4 	Discussion 

Data which are cumulative counts are serially correlated, but 

in a way that can be modelled very easily. So this is a rather 
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Figure 8.3.3 

Naylor's data, dish number 2, model (1) fitted by residual Gaussian 
maximum likelihood estimation; observed germination counts (X), 
the fitted curve ( ---- ) and predicted values ( 	) conditional 
upon earlier observations, plotted against time. 
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Figure 8.3.4 

Naylor's data, dish number 2, model (3) fitted by residual Gaussian 
maximum likelihood estimation; observed germination counts (X), 
the fitted curve ( ---- ) and predicted values ( 	) conditional 
upon earlier observations, plotted against time. 

UC. U 	'PU 	DV 	DV 	IUU 	L.0 	L?V 	LU 	LW 

Time (hours) 



- 262 - 

trivial example of a mechanistic approach to specifying the error 

covariance structure. However, by setting this within the context 

of the preceding chapters in the thesis, we acquire the capability 

to include and test for other sources of error. In the particular 

illustration, using Naylor's data, these extensions proved to be 

unnecessary. The general modelling technique would be of 

particular use if cumulative counts were observed subject to 

unavoidable sampling errors. 

Of the three chapters considering mechanistic modelling, the 

type considered in this chapter is the least suspect. For data 

such as Naylor's, there is no doubt that the mechanistic approach 

outperforms by far an empirical approach to modelling the error 

covariance structure. 
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9. Conservative estimates of the variances of 

regression parameter estimators 

9.1 	Introduction 

This chapter is quite distinct from all the other chapters in 

the thesis, which were concerned with the estimation of regression 

parameters conditional upon the error variance matrix being known 

except for a few parameters. 	Here the emphasis is on obtaining 

valid estimates of the variances of regression parameter estimators 

without making gross assumptions about the error covariance 

structure. 	The comments of Efron (1982, p3) in introducing 

jackknifing and bootstrapping are equally valid here: 

"An important theme of what follows is the substitution of 
comp.utational power for theoretical analysis. 	The payoff, 
of course, is freedom from the constraints of traditional 
parametric theory, with its overreliance on a small set of 
standard models for which theoretical solutions are 
available." 

Previous chapters may be divided into those in which the 

choice of variance matrix is empirical (4 and 5) and those in which 

the variances are an integral part of the overall model (6, 7 and 

8). 	In the empirical case, the choice of a variance matrix 

"close" to the true matrix will improve the efficiency of 

estimation of regression parameters relative to ordinary 

least-squares estimation. 	However, if this approximating variance 

matrix is assumed true, the estimated variances of the parameter 

estimators will be biased. 	The discussions in sections 4.6 and 

5.4 highlight this problem. 	Essentially, there is a difficulty in 

estimating regression parameters from observations which are 

correlated in an unknown manner. 
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For a particular fitted regression it is desirable to 

estimate variances of the parameter estimators such that they will 

be valid for a wide range of possible error variance matrices. 	A 

general method of approaching the problem is presented in section 

9.2. 	A computer program, CEVOPE, which can be used to implement 

this technique on real data sets, is described in section 9.3. 	In 

section 9.4 the method is illustrated by a small example. 	Then in 

sections 9.5, 9.6 and 9.7 the method is applied to Coiquhoun's, 

Dale's and Bruce's data which were originally analysed in chapter 

4. 	Finally, the usefulness of the technique is evaluated in 

section 9.8. 

9.2 	Method 

9.2.1 Regression parameter estimators 

It is assumed that the rn-vector of unknown regression 

parameters, 8 , is estimated by generalized least-squares by 

minimizing the optimization function 

e  R _  1  e 
where e = 

Here y is the n-vector of observations, f is the n-vector of 

regression values (which are functions of ), W is a known n by n 

diagonal matrix of weights, e is the n-vector of weight-corrected 

departures of the observations from the regression and R is a 

known n by n positive-definite symmetric matrix. It is further 

assumed that f is linear in 8 and so can be expressed as 

f= W 	8, 
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where X is the n by ii weight-corrected regression design 

matrix. 

It is a standard result that the estimator of 8 , denoted 

8 , is given by 

= (XTRX 1  XTRWy , 

(9.2.1) 	 = IJTW4 

if an n by m matrix U is defined by 

U = R4 X(XT R4 X)  

It is convenient at this stage to note that X T  U = I 

At this point some comments my help to clarify the 

situation. The use of a matrix of weights may appear rather 

arbitrary, but it is convenient in what follows to be able to 

handle heteroscedasticity separately from other features of the 

variance matrix' of y . The choice of R does not affect the 

mathematical development in this section and so, for the sake of 

generality, has been left deliberately vague. Finally, the 

assumption that the regression function is linear in 8  is not too 

restrictive in practice because, provided f is differentiable 

with respect to B , f may be approximated by a linear function in 

the region of B  close to 8  with 

af 

x=w 1  
38T 

88 

Provided the approximation, which is precisely that used in 

non-linear regression to obtain standard errors of parameter 

estimators, is good what follows in this section still applies in 

the non-linear case. 

If it is assumed that E(y) = f , then B  is an unbiased 

estimator of B . Further, if V is the n by n symmetric 



rai, c. 
positive-definitematrix of the weight-corrected observations, that 

is var(Wy) = V , then var(8) = U 
T 
 V U , and in particular 

var(3 5 ) = u V u 

where U denotes the sth column of U . 	Strictly, the notation 

should include an indication of s in u , but this has been 

omitted in order to simplify what follows. 	All subsequent 

references in this section will be to a single parameter 8 	 and 

must be repeated for each value of s from 1 to m 

9.2.2 Form of estimator of var() 

The variance of 8 	may be rewritten as 

tr(u u V) 

where tr denotes the trace of a square matrix. 	In order to 

estimate this variance it is necessary to estimate V using the 

only information available, the vector of weight-corrected 

departures, e ,where 

(9.2.2) 	 = w-  1 (Y - 

and f is the estimated regression function. 	The ideal would be 

to find an estimator of V which was unbiased for a wide range of 

possible variance matrices, say all matrices belonging to some set 

Unless very restrictive assumptions are made about a , such 

as 

V = T 2 1 	r 2  > O} 

(using the set notation defined in the conventions section at the 

front of the thesis), this does not seen to be possible. 

The next best alternative is for the estimator of var( 5 ) 

to be conservative, that is upward biased (or more precisely, not 

downward biased) for all V belonging to n because marginal 
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confidence intervals placed on a 	 will then never have higher 

error probability levels than they should have. 

I considered this problem for some time but failed to find an 

estimator of V which ensured that var( 5 ) was conservative for 

any reasonable set a . 	So instead, I decided to estimate V 

simply using e eT  , but sought to substitute a symmetric n by n 

matrix denoted C in place of uu T  in the estimator of var(8 5 ). 

The problem is then to find C such that 

E(tr(C e eT)) > tr(u uTV) for all V e 

The estimator may be rewritten as 

and it becomes apparent that it is a quadratic form of the weight-

corrected departures e . It is desirable for C to be positive-

semidefinite because then the variance estimator cannot take 

negative values. For the sake of generality n will remain 

unspecified at present, but will be discussed in detail in 

subsections [9.2.11] to [9.2.17]. 

9.2.3 Expectation of 	TC 

It follows from equation (9.2.2) that 

= W 1 (Y-W X ) , 

= (I - X U )W y , 

after substitution for 8 from equation (9.2.1). 	Therefore e 

is orthogonal to U because 

UT = (UTUT) Wy = 0 

Also, 



E(eTC ) = tr(C E(e T)) 

= tr(C(I-X UT) 	U XT)) 

= tr(C V) 

provided that 	 C X = 0 

Without loss of generality we can restrict our choice to C 

orthogonal to X because, as e is orthogonal to U , only the 

component of C orthogonal to X contributes to e TC 

Discussion of other distributional properties of e TC e is 

deferred to [9.2.18]. 

9.2.4 Specification of relative bias 

If a symmetric matrix C can be found such that 

tr(C V) > u 
T 
 V u 	for all V e c 

and C is orthogonal to X , then e TC e can be used as a 

conservative estimator of var( 5 ) . 	However, if a matrix C 

exists that meets the specification, then it is not unique; for 

example 2C is also valid. 	Therefore, some means of choosing 

between competing matrices is needed. 

A sensible approach would seem to be to choose the estimator 

with smallest bias. The relative upward bias of JC
as an 

estimator of var() is 

tr(C V)/(uTV  u) - 1 

when the true error variance matrix is V . 	There are various 

ways in which this bias can be specified for all V e c , such as 

(I) 	average (tr(C V)/(uTV  u) 	1) 
V  

where the averaging is with respect to some well behaved measure on 
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or 	(ii) 	max 
V€c 

(tr(C V)/( TV u) - 1) 

but if c is large, in some unspecified sense, then many 

unrealistic variance matrices will be included. 	Therefore, and 

also to simplify the problem, the bias I have chosen to minimize is 

that for a specific choice of V , denoted V . The way in which 

V is estimated or otherwise chosen is irrelevant to what follows 

in this section. It will be considered in subsequent sections when 

real data are encountered. 

The search for an estimator of var( 5 ) can now be expressed 

formally as an optimization problem: 

minimize 	 tr(C ) 	with respect to C 

subject to constraints tr(C V)u TV u 	for al.l V e n 

for 	 C symmetric and C X = 0 

To illustrate what the constraints mean, consider the case 

when 

= {! : Vf 0 if ii-i1 4 u and V= 0 if li-ji > 

for some non-negative integer u . The constraints are then 

equivalent to 

C..
1J 	

u 
1  
.0 

3  
. 	for 	i-j 	u 

9.2.5 Relation to ordinary least-squares 

It may be enlightening at this stage to relate the above 

remarks to ordinary least-squares when V = t 2 1 . For this 

subsection alone let 

R=W=I 

and 
	 = { r 2 1: T 2 0} , 

then 
	

U = x(XTX)4 
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and if 	 C = (I - X UT) ulu/(nm) 

the constraints in the optimization problem are exactly satisfied 

because 

tr(C V) = tr(t 2  C) 

= 2 tr(I - X U) u I/o 

2 
=1 U 

1 
U 

= 

 

	

u 
T 
 V u 	 for all V e 

and 	 CX=0. 

Therefore, C minimizes tr(C V) provided that V e n , and the 

estimator of the variance of 8 	is 
S 

2  eCe=r UT 

where 

= 

Therefore, the conservative estimator of variance chosen by the 

optimization problem specified in [9.2.4] with the restrictive 

assumption about c , is the same as the standard estimator. 

9.2.6 Optimization problem 

I now return-to the general theory. The optimization problem 

in [9.2.4] has n(n+1)/2 variables corresponding to the elements 

in C , nm constraints arising from the requirement that C be 

orthogonal to X , and a potentially large number of other 

constraints dependent on the choice of a . Therefore this is a 

very large problem. For example, if n is equal to 200 and m is 

equal to 4, then there are 20100 variables and at least 800 

constraints. Also, the solution of the problem may not result in a 

choice of C which is positive-semidefinjte. Therefore e TC e 
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may take negative values with non-zero probability, which is 

undesirable for a variance estimator. 

Any symmetric matrix C may be decomposed as 

= 	

{k} {k IT 

k=1 
Xk  

for some value of t not exceeding n , with coefficients 

x1,...,x. 'J  denoted x , and vectors c
{1} 	{t} 

,..., c 	, for example 

by using the eigenvalues and eigenvectors of C . Constraining all 

the coefficients x 	to be non-negative ensures that C is 

positive'-semidefinite. 	The decomposition also enables the 

optimization problem to be reformulated in a computationally more 

tractable form. 

The optimization problem may be restated as: 

minimize 	
k=lk (

c {k}T 	c {k}) 

with respect to x 	and c 	 for k = 1 ' ... ' t , 

subject to k=1 Xk (c T V c {k} 	
uT u for all V € 

for 	 Xk 	
{k IT 

0 and 	C 	X = 0 	k  

The constraints on c 	 are sufficient, but not necessary, to 

ensure that C is orthogonal to X . This problem is linear in x 

and quadratic in c {k}  for k  

9.2.7 Dual optimization problem 

Provided n is a convex set, the optimization problem with 

respect to x with cCt} held fixed (orthogonal to X) 

has a dual: 

maximize 	u 
T 
 V U with respect to V 
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{k}T 	 {k}T subject to 	c 	V c {k} 
	 {k} 

C 	V C 	 for k = 1,...,t 

for 	 V  

The solution to this problem is also the solution to the primal 

problem in [9.2.6]: the maximum and minimum are equal and the 

Lagrangian multipliers are the optimal coefficients in x in the 

primal problem. 	The optimal V is the matrix within c for 

which the relative bias of e TC e as an estimator of var(8 5 ) is 

most severe. 

For a particular set of vectors, C1 	{t} the linear 

optimization problem in [9.2.6] can be solved to find the 

coefficients x to associate with these vectors in order to obtain 

the estimator of var() with smallest relative bias if the 

error variance matrix is V . In order to improve upon this 

solution, in other words to find an estimator with an even smaller 

relative bias, it is necessary to change the set of c-vectors. 

Examination of the dual optimization problem suggests a way in 

which this can be done, and this will be considered in the 

following subsections. 

9.2.8 Selection of ct+1} 

Denote the optimal choice V in the dual problem by V 

If a vector c can be found such that 

T Vc>cT Vc C 	, 

(t+1} 	 'I  and C is added to the constraints as C 	, then V no longer 

satisfies all the constraints and so becomes infeasible. 

Therefore, the maximum in the new problem, and hence the bias in 

the estimator of var( 5 ), will be reduced. 
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To ensure that c is orthogonal to X , it can be found as 

an eigenvector of 

(9.2.3) 	(I - X(XTXY'XT)(v - MI - X(X TX) 1 xT ) 

with a negative eigenvalue. 	Because this last matrix is real and 

symmetric all eigenvalues and eigenvectors are real. 	The columns 

of X are eigenvectors with zero eigenvalues, so provided the 

eigenvalue corresponding to C IS non-zero, C will be orthogonal 

to X. Also, although c will not in general be an eigenvector of 

(V-V) 	cT(V-V)c will be negative. 	(As an aside, it may be noted 

that this would not have been the case if C had been found as an 

eigenvector of 

(I - u xT)()(I - x U T ) 

This transformation would have ensured that c was orthogonal to 

X , but because in general 

(I - X U
T 
 )c* c 

c T(V-V)c would not necessarily have been negative.) 

If all the eigenvalues of equation (9.2.3) are non-negative, 

then the existing solution to the dual optimization problem cannot 

be made infeasible. Therefore, the positive-semidefinite matrix C 

has been found which gives a conservative estimator of var(8) 

with smallest possible relative bias if the error variance matrix 

is 	. 

9.2.9 Interpretation of 

The constraint c T V c 4 c V C IS linear in elements of V, 

so every vector C orthogonal to X defines a constraining 

hyperplane in the space of V . 	Figure 9.2.1 gives a crude 
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Figure 9.2.1 

An illustration in the space V , V 	of the optimal value of22 
u V u subject to the boundary imposed by the global set of 

constraints c 
T 
 V 	 C for all vectors c orthogonal to X 

1. 
V22  

1 . 

1. 

0. 

0. 

0 . 

0. 

0.0 u.c 	U.? 	W.0 	W.0 	&.W 	£.(- 

V11  
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Figure 9.2.2 

An illustration in the space V , V 	of the optimal value of22 
u V U subject to a finite set of constraints of the form 

CT  c 	cTV c , and the selection of a new c-vector so that the 

optimum value is no longer feasible. 

1 . 

V22  

1. 

1. 

0. 

0. 

0. 

0. 

Vii 
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diagrammatic representation, simply in terms of two elements in 

V. There is a global boundary defined by all possible c-vectors. 

The point on this boundary at which u T  V U is maximized 

corresponds to the best possible positive-semidefinite matrix C 

A finite set of constraints corresponding to 	 c(t} is 

less restrictive and the value V maximizing u T  v u will, in 

general, lie outside the region defined by all c (see figure 
11 

9.2.2). The new vector c 
{t+1} 

 is so chosen that V is outside 

the boundary of the new constrained region. 	The vector C which 

would maximize the separation of V from the new boundary would be 

the one that lay on the global constraining surface in the 

direction of V , that is the vector C will maximize 

T 
c V  

c 
T
Vc 

This can be found, after incorporation of the constraint c T  x = o 

as the elgenvector with largest negative generalized eigenvalue () 

which satisfies 

(I_X(XTX)4XT)V(I_X(XTX)_1XT) c = (I_X(XTX) 4 XT)(I_X(XTX)_lXT) c 

9.2.10 Algorithm for obtaining 

A simple algorithm exists for finding the eigenvector of a 

matrix with the eigenvalue of greatest absolute magnitude, 

originally due to Aitken (1937) and refined by Wilkinson (1954). 

This can be modified to enable c to be found as specified in 

[9.2.8]. 	Starting with any initial vectorw {01 , we may 

transform this to 

= (I - X(XTX) 4x 1 )(V - V)(I - X(X TX) 4X 1 ) 

and standardize the resultant vector to have a largest element of 
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unity. 	After repeated transformations, 	converges to the 

eigenvector with eigenvalue of largest absolute magnitude (say u) 

provided this is unique. If the eigenvalue of largest absolute 

magnitude happens to be positive then a new transformation can be 

applied: 

= (I - X(X TXxT )(v - V)(I - X(XTXY1xT) - I) w  

which after repeated application ensures c converges to the 

eigenvector with the largest negative eigenvalue. 	If the largest 

negative eigenvalue is not unique the algorithm will not converge. 

However, in the course of iterationw {i l may be found such that 

{i} > 	{i}T 	{i} 

and this is all that is required since every 	is 

automatically orthogonal to X 

The alternative approach for finding c{t+hl as the solution 

of the generalized eigenvalue problem, which was discussed in 

[9.2.9], has not been pursued. 	No algorithm equivalent to the 

above exists and more general algorithms for finding all the 

eigenvectors proved to be prohibitively costly in computer time. 

9.2.11 The choice of sl 

At this stage the choice of n needs to be considered. 	The 

first point that should be made is that n cannot be madeso large 

as to contain all positive-definite symmetric matrices. 	If it did 

then t21 + 02 x XT would belong to n provided that T 2  and a2  

were positive. 	Applying the results of [9.2.1], for variance 

matrices of this form, 

var(8) = UT(21 + CF2 X XT  )U 

= 2UI U+ a21 
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because X T  U = I , and from [9.2.3] 

E(eTC ) = tr(C(t 2 1 + a 2X XT )) 

= tr(t 2  C) 

because C is orthogonal to X . 	From the above we notice that 

the variance of 8 depends on a 2  , but the quadratic form of 

departures is independent of a 2  . 	Therefore, no matrix C 

exists such that 

E( TC e)> var(' 5 ) 	for all a 2  > 0 

One explanation of this problem is that when the variance matrix is 

of the above form a 2  is confounded with the regression 

parameters. 	The situation will be encountered again, in [9.4.9]. 

In order that the upward bias in the variance estimator of 

a s  should be small, the set c should be as small as possible 

consistent with containing all "reasonable" error variance matrices 

and leading to a mathematically tractable optimization problem. 

The dual problem in [9.2.7] has n(n+1)/2 variables (corresponding 

to the elements in the siiimetric matrix V) and t constraints, 

and so is already very big. Two particular limitations can be 

placed on 92 without making the optimization problem any larger by 

adding more constraints. These can be represented as: 

V e a (w,u) if and only if 

(I) V is symmetric 

(ii) (AW V )

jj 

 > 0 	for i > j 

and (iii) 	V.P. = 0 	 if 	i > j-h 

where w and u are non-negative integers, A is the matrix 

operator 

=Vij + V 1+1, _ 1  - 	- V191 	5 	for i 

with 	V 	 = 	= 0 

and 	(O V) = V 
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First of all I will demonstrate how the choice of c can be 

incorporated into the optimization problem when w is equal to 0, 

1 or 2. Then I will go on to discuss how a can be interpreted 

and what other choices are possible. 

9.2.12 Dual Problem for o (O,u) 

If V € 92(0,u) , then u T  V u can be re-expressed as 

n min(j+u,n) 

V(2u.u./(1 + I..)) 

j=1 	i=j 

where I 	is an element in the identity matrix, I , of size n 

Therefore, the dual optimization problem of [9.2.7] can be restated 

as: 

n min(j+u,n) 

maximize 	 V(2uu/(1+I..)) 
j=1 	i=j 

with respect to coefficients V ij 

n min(ji-u,n) 

subject to 	 V(2c'" c? 
 ,(1+I)) 	

{k}T C{k} 

j=1 	i=j 

for k=1,...,t 

for 	V..> 0 	 j = 1,-..,n,, i = j,. ..,min(j+u,n) 

This is a linear programming problem. 	The number of variables 

V... have been reduced to (2n-o)(u+1)/2 , and no constraints have 

been added because the boundary constraints V ij > 0 are 

incorporated into the standard linear program. 

9.2.13 Dual problem for n (1,u) 

Lower-triangular elements in an flxfl matrix T are 

specified by 

= 	 for i > j 



alum 
If V € c(i,u) , then 

fij=o 	 for i>j+o, 

n 	h 
and 	 Vgh = I 	I Tij 	

for g > h 

i=g j=1 

because 

n 	h 	n h n h-i 
= v.. 	+ v.. 

i=g j=i 	i=g 
ij 

j=i i=g+i j=i 

n 	h nh-i 

- v.. - v.. 
i=g+i j=i 

13 
i=g 

13 
j=i 

h h-i 
= v. 
	

-  v. 
j=1 

gj 
j=1 

gj 

=V 
gh 

Therefore 

= 	2UgU ( 
	 Tij )/(i+Ig 

h=1 g=h 	,j=1 i=g 

n min(j+u,n) 	i 	I 

=T 	 ( I 	I 2UgU 
"1ghij 

j=1 	1j 	h=j g=h 

It is convenient at this point to note that UT  v U is 

always non-negative because each coefficient T 	 is non-negative 

by definition and it is multiplied by a term which can be 

re-expressed as a sum of squares: 

h 	
uh 

j
) 

and so is also non-negative. 	Therefore, all matrices in c2(i,o) 

are positive-semidefinite. 

The optimization problem of [9.2.7] can be restated as: 

n min(j+u,n) 	i 	1 

maximize 	 2 U g Uh/( 1+I gh))ij 
j4 	ij 	h=j g=h 
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with respect to coefficients 

n min(j+u,n) 	I 	I 

subject to 	 2c 	c,(l+I))c0Iv 	{k} 

j=1 	i=j 	h=j g=h 

for k=1,...,t 

for 	T ij > 0 	 j = 1,...,n, I = j,...,min(j+u,n) 

Once again this is a linear programming problem, and it has the 

same numbers of variables and constraints as the problem in 

[9.2.12]. 

9.2.14 Dual problem for n (2,u) 

Lower-triangular elements in an nxn matrix T are 

specified by 

= (2 	 for i > j 

If V e c(2,o) , then as in [9.2.13], 

13 	
for i>j+u, 

n 	h 
and 	 IFg h = 	 for g > h 

i=g j=1 

The optimization problem of [9.2.7] can be restated as: 

n min(j+u,n) 	i 	i 
maximize 2 ug uh(i +l_9)(h+1 _i)/( 1+ I g h)) 

j=1 	i=j 	h=j g=h 

with respect to coefficients T 	 , subject to 

	

n min(j+u,n) 	i 	i 

T1 ( 2cc }( i+1 _ g )( h+1 _j ) /(1+Ig) ) 

j=1 	i=j 	h=j g=h 

{k}T{k} 	 for k = 1,...,t , 

for 	T1 .> 0 	 j = 1,...,n, i = j,. ..,min(j+u,n) 

Once again this is a linear programming problem with the same 

number of variables and constraints as the problem in [9.2.12]. 



9.2.15 Interpretation of 	(w,n-1) for a Markov process 

If V is a symmetric matrix with a Markov structure, that is 

V.. = 
1J 	

1 	 when i=j 

i-i 
IL p 	 when i>j 

t 

for a set of coefficients p13' .., p , then: 

	

(1) 	V e a (O,n-1) if and only if 

0 	 for  

V e c (1,n-1) if in addition 

i-i 

'V 	= ( II PL)(l_Pj)(1_Pj1) 
Lj 

for i.i 

where p0  = 0 , so in this instance 

0 ( 	1 	 for  

V e c (2,n-1) 	if in addition 

i-i 

= ('I P L)(l 2Pi + PIPI +1)( 1 _ 2Pj_1+ Pj..1Pj_2) 
L3 

for ij 

where p 1  = p0  = 0 and P n
=  1 , so in this instance 

o pL 1,  

and p 4 11(2-) 	 for 9=1,...,n, with 

9.2.16 Discussion about a (w,o) 

The set n (,u) has the desirable properties that if 

V 1 	v 2  e a (w,u) 

then 	 V'.  + V 	 e a (w,u) 

and 	 k V 1  e a (w,u) 	provided k > 0 
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Therefore, in particular, sums of Markov processes satisfying the 

restrictions of [9.2.15] also belong in n (a,n-1) 

The choice of w equal to 1 appears to have much to commend 

it. 	It ensures that V is positive-semidefinite and that its 

elements decrease monotonically away from the diagonal in any 

direction. 	It is also necessary that the rate of decay should 

decrease, so the matrix 

64100 

46410 

14641 

01464 

00146 

is not a member of 2 (1,3) because the lower-triangular elements 

Of 'v are 

2 

3 -1 

1 	2 -1 

012-1 

00132 

which are not all non-negative. I consider this to be an 

undesirable feature of the set. It may be noted that 

T ii = - cov(e 1  - e 1  , e - e 1 ) 	for i > j 

so the condition w=l is the same as the assumption that the 

covariances among the first differences of the error process are 

all non-positive. 

Specifying w>2 imposes additional, possibly unrealistic, 

constraints on V . 	In particular, the constraint on p 	in 

[9.2.15] may be unreasonable if the observation times are unequally 

spaced. 	Also p1  and Pn-1  must each be less than 0.5. 
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One choice of general interest, although not of interest in a 

thesis on correlated errors, is n (0,0), which is the set of all 

diagonal matrices with non-negative elements. 	Thus, it would be 

appropriate for a situation where errors are independent but have 

heterogeneous variances of an unknown form. 

9.2.17 Other choices for 

Other possible restrictions that could be placed on n by n 

matrices V that belong to n are: 

V.. 
11 

= 	 for 	i  

V..V i 
	

and V 	. 	for ij 
ij 	+l,j 	i,j-1 

The second set of constraints is more restrictive than those above 

when w = 0 but less restrictive than when w = 1 . 	These 

alternative sets of constraints, although realistic in some 

applications, cannot be incorporated into the optimization problem 

without greatly increasing its complexity. 

9.2.18 Distribution of e TC e 

Up to this point attention has focused on the expectation of 

C and its distribution has been ignored, except to note that 

the variate is always non-negative because C is constrained to be 

positive-semidefinite by the way it is constructed. 

If y  is normally distributed then 

E((TC )2) = 

i=1 j=1 

+ 

= (tr(C V 

n 	n 

Cij C  
1 J 

k=1 L1 

E(eek)E(.e ) + E(e. 1 	3 e )E(.k)) 

+ 2 tr(C ! . ! ) 
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Therefore 

var( C e) = 2 tr(C V C V) 

A quadratic form of normal deviates is not, in general, x 2  

distributed. 	However, it may be approximated by a x 2  

distribution by equating the first and second moments 

(Satterthwaite, 1946). 	In this example it means assuming that 

C e is distributed as +tr(C V ) X2 , where the non-integer 

degrees of freedom r is defined by 

(tr (C V) ) 2  

r=tr(CVCV) 

The degrees of freedom can be used, after substituting V for V 

to obtain t-statistics in order to construct approximate marginal 

confidence intervals for 

It would be desirable to incorporate the variance of 	Tc 

in the optimization problem rather than just concentrating on the 

expectation of the estimator. 	However, this cannot be achieved 

without greatly complicating the problem and, in particular, 

forfeiting the linearity in the optimization problem. 

It is important to note that these degrees of freedom are 

conditional upon V being the true error variance matrix which may 

seem rather inconsistent since the whole justification for this 

chapter is that the error variance matrix cannot be assumed to be 

V 	It will always be conservative, and therefore safe, to assume 

that r is equal to unity, although the marginal confidence 

intervals may be much wider than otherwise. 



9.3 	Computer program CEVOPE 

9.3.1 Programming philosophy 

The computer program CEVOPE, Conservative Estimates of the 

Variances Of regression Parameter Estimators, implements the 

method described in section 9.2. 	It is the program used in 

subsequent sections to apply the techniques to real data sets. In 

fact, without the existence of powerful computers the method in 

section 9.2 would only be of academic interest. The program is 

written in FortranIV. 	All arrays are declared in the main program 

and transferred to subroutines where all operations are performed 

except for input and output. 	Because of the amount of computer 

time required by the algorithm, efforts have been made to reduce 

the CPU and disc times to as low values as possible. 	Under these 

restrictions clarity of code has been a priority. 	There is strict 

checking of input parameters, clear error messages and well 

annotated output. 	An indicator variable can be set to generate 

the printing of all intermediate results in the program. 

A brief description of the program structure, input and 

output follows. Then, some specific features of the program are 

considered, which serves to bridge the gap between the mathematical 

discussion in section 9.2 and the problems associated with computer 

programming. Elsewhere, I have discussed the computational problem 

in more detail (Glasbey, 1984). 

9.3.2 Program structure 

The main program calls a sequence of subroutines: 

CVINPT, to input the arrays associated with the model (output 

from REGAME); 
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MARS, to calculate the model dependent parameter estimator 

variances; 

CySTIC, to select the first set of c-vectors; 

CVINIT, to set-up the input arrays for the linear program; 

CVLINP, to find the best combination of c-vectors using NAG 

library routine H01ADF; 

CVEIGC, to find a new c-vector by solving an eigenvalue 

problem; 

CVMODI, to modify input arrays for the linear program; 

CVINCR, to increase the first dimension of array XLHS if 

necessary. 

Then CVLINP is called again, followed by CVEIGC, and so the 

algorithm loops round. 	Once a stopping condition has been reached 

CVRESU is called to calculate the results of using the conservative 

estimator. 

Auxiliary subroutines which are used are: 

REGIRA, already described in chapter 2; 

CVIXXT, to apply the transformation (I_X(X 
TX) 

 1XT); 

CVOMEG, to calculate the parameters in the linear program 

corresponding to a choice of set c (w,o); 
Is 

CVVOPT, to apply the transformation V 

General output routines /NINOUT/ ,MATPNO,MATPN1,MATPRO,MATPR1 and 

MATPR2 are also used. The program is listed in Appendix C. 

9.3.3 Input 

Control is from channel NIN5. 	Ten parameters are required 

to initiate each run of the program, in 1017 format: 

ND, 	the number of data sets to advance from channels 

NIN3, NIN4, (<0 to stop the program); 



NVARS, 1 to calculate model dependent results in CVVARS; 

NS, 

	

	number of parameter (s) for which conservative 

estimate sought; 

NSEED, seed for NAG random number generator (if 0 seed 

chosen at random, if < 0 c-vectors restored from 

channel NIN2); 

NT, 	initial number (t) of c-vectors (unless NSEED<O) 

NOMEGA, difference operator in a (i.e. w in c (w,u)); 

NLAG, 	lag beyond which covariances are zero (i.e. u in 

(w,u)); 

NITER, maximum number of iterations; 

NCPU, 	maximum CPU time; 

NPRI, 	1 to output intermediate calculations. 

Arrays associated with a model are input from channels NIN3 

and NIN4. These correspond to the output from REGAME to channels 

NOUT8 and NOUT9. 

If c-vectors found by a previous run of CEVOPE are to be 

re-used, these are restored from channel NIN2. 

9.3.4 Output 

Output is to channel NOUT6. 	Initially, if NVARS=1, the 

following is output from CVVARS: 

Parameter estimates (8) ; 

standard errors /( TV ii) ; 

parameter estimator variances assuming an error variance of 

V, (U
T 
 VU); 

T- -1 X) -1   
lower bounds on variances, (X V 	; 

efficiency of estimators, /(U TV u)//((X V X) )ss  for 



Then there follows a heading giving s , u TV U 	/(u TV u) and 

NSEED and the iterative history: 

hER, 	number of iterations; 

ICPUT, total CPU time used in seconds; 

NT, 	number of c-vectors (t) in current solution; 

ITEIG, number of iterations required in CVEIGC to find new 

c-vector; 

ICPU, 	CPU time used by CVEIGC on last call; 

IDIS, 	disc time used by CVEIGC on last call; 

	

t+1 }T 	'• 	{t+1 } QUAD, 	the value of c t 	(V-V) C 	; 

ITLP, 	number of iterations required by linear program; 

ICPU, 	CPU time used by linear program on last call; 

IDIS, 	disc time used by linear program on last call; 

XOPT, 	lowest estimate of standard error so far found for 

,'tr(C V) 	u) ; 

BIAS, 	relative bias of conservative estimate of standard 

it error /(uT/  u)//(uTV u) - 1 

Once iterations have ceased the following are output from CVRESU: 

Number of data sets advanced, ND; 

Number of parameter, NS; 

Estimate of parameter value, 

Model dependent results 

Variance of estimator assuming error variance V , u T  V u ; 

S.e. of estimator assuming V , /(u TV u) ; 

Expected results from conservative estimator 

Difference operator applied to a , NOMEGA; 

Lag beyond which covariances are zero, NLAG; 

Expected value of conservative estimator of variance assuming 

V , tr(C V) ; 
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Expected conservative estimator of s.e. assuming V 
91 

,'tr(C V) ; 

Relative bias in s.e. assuming V , /(tr(C V))//(uTV u) 

Variance of conservative estimator of variance, 

2tr(C V CV) ; 

Approximate degrees of freedom (r) of conservative estimator 

tr(C V) 2/tr(C V C V) 

Approximate 95% t-statistic ; 

Actual results from conservative estimator 

Estimate of variance using conservative estimator, JC
e ; 

Estimate of s.é. using conservative estimator, /( TC ) ; 

Approximate 95% lower confidence bound for parameter, 

- t (95%)/( TC ) 

Approximate 95% upper confidence bound for parameter, 

8 5  + t (95%),'( TC ) 

An example of output is given in appendix 0, and is discussed 

further in section 9.4. 

The final c-vectors are output to channel NOUTIO for possible 

future restoration via channel NIN2. 

9.3.5 Stopping conditions 

Iterations cease when one of four conditions is reached: 

there are no negative eigenvalues, so the optimal matrix 

C has been found; 

XOPT has not decreased in the last iteration; 

the maximiui number of iterations has been reached; 

the CPU time is about to exceed its maximum allocation. 
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Only in case (a) can the user be sure of having found the best 

matrix C . In case (b) a better solution may be found starting 

from a different seed. 	In cases (c) and (d) the existing solution 

can be restored from channel NIN2 and further improved. 

If any of these conditions is met then CVRESU is called. 

CVRESU is also called in the event of two error conditions being 

encountered: 

NT has exceeded its maximum value (30); 

CVEIGC fails to converge after 1000 iterations. 

In case (e) all that can be done is to restart from a different 

random number generator seed in the hope of finding a better 

solution, because the program cannot be restarted from the final 

set of c-vectors as they exceed the capacity of the program. 

Condition (f) may mean that the current solution is close to being 

optimal. 

If any other failure condition is encountered then meaningful 

output cannot be produced by CVRESU, so the run ends and new input 

is requested. 

9.3.6 Algorithm for linear program 

The revised simplex algorithm (see for example Garvin, 

chapter 13, 1960) has been used to solve the dual optimization 

problem in order to avoid having to use the enormous square matrix 

corresponding to the (2n-u)(u+1)/2 auxiliary variables required by 

the inequality constraints given in [9.2.12] for example. Because 

elements in the large matrix of constraints are accessed by the 

algorith'n row by row whereas FortranlV stores array elements by 

columns, it is more efficient to store the transpose of the 
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matrix. Also, if the first dimension of the array XLHS holding the 

constraints matrix is of fixed size 30, that is the maximum value 

of t , and there are 10,000 constraints, then with double 

precision variables the array is of size 2.4 Mbytes. However, the 

central processor unit (CPU) space available on the Prime 550 

computer is only 1.7 Mbytes. Therefore, in paged virtual memory 

parts of the array have to be moved in and out of the CPU as 

required. This incurs disc I/O time and dramatically increases the 

total run time for the program. If instead, the first dimension of 

the array is set close to t then, when t is less then 30, 

elements in the constraints matrix may be placed in closer 

proximity in computer store and if no other job is running 

concurrently on the computer, disc I/O may be unnecessary. In 

order to achieve this, the first dimension' of the array has to be 

variable so that it can be changed as t is changed between linear 

programs. Another 'technique that is being used is to place all 

variables used in the linear programming algorithm into a single 

common block. This increases the chances of variables required 

consecutively being on the same page of virtual memory, which 

reduces access time. 

A linear programming routine in the NAG library, H01ADF 

(Numerical Algorithms Group, 1983), has been used in which any 

degeneracy encountered is resolved by the perturbed problem 

technique described for example by Garvin (chapter 14, 1960). It 

is almost certainly possible to improve upon the general routine 

for this particular problem, for example by using as a starting 

value the solution of the preceding linear program rather than 

allowing H01ADF to set all the variables to zero initially. Also, 
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until the final few iterations, the time-consuming search performed 

by the simplex algorithm could be restricted to a subset only of 

the large number of constraints. 

9.3.7 Algorithm for calculating XLHS 

Because of the size of the array XLHS the algorithm used to 

calculate its elements is of critical importance. In order to 

calculate the element in a row of XLHS, denoted w 

corresponding to a c-vector, denoted c , for a (w,u) a doubly-

recursive algorithm has been used: 

First, k=O 

For i = 1,.. 

For j = i,i-1,.. ,max(1,i-u) 

k = k+1 

Wk = 2c1c/(l+I) 

End 

End. 

This gives the elements appropriate for si (O,u), previously 

specified in [9.2.12]. 

Then if w > 0 

For 	£ 	1,..., 

k=0 

h= 0 

For i1,...,n 

For j = i,i-1,...,max(1,i-u) 

k = k+1 

If j < i Wk = wk+wkl+v.. 

If j < i-i Wk = W$(Vj.1 

End 
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For j = i,i-1,...,max(1,i-o) 

h = h+1 

vi_j+l = W 

End 

End 

End. 

This gives the elements appropriate for Q (,u), with the same 

results for w equal to 1 or 2 as previously given in [9.2.13] and 

[9.2.14]. A listing of this algorithm implemented in FortranlV is 

given in subroutine CVOMEG in Appendix C. 

9.3.8 Algorithm for obtaining eigenvectors 

From a random initial vector 	orthogonal to X , 

is derived by the transformation 

W{11 = 	- ( x(xTx)4xT)[(v) - {O} 	{O} 

which is obtained by transforming by each component matrix in 

turn. 	The transformation V is given in [9.3.9]. 	Then 	is 

standardized to have a largest element of unity, by dividing by its 

element of largest absolute magnitude, denoted x {11 . The 

difference between w {1}  and w {O}  is calculated as 

n 
= 	Iw-w ° I L 	' 

i=1 

This is then repeated for w
{2} 

 ,w
{3} 

 

At the start 	{O} = 0 , but every 5 iterations if 	> 0 

then 
{i} - 0-1} 	{i} 

11 	- i 	+ x 

After every 250 iterations, or when x
{i} 

 < 10
-10

, the ratio 

of quadratic forms 



- 295 - 

{i} =w {i}T(){i}/{i}T{i} 

is calculated as 

( {7+1 }{i ITW11 } + 	{i 1W  {i }I{ 	}T{i } 

If 	is negative, or if 	< 10 	and x 	 < 0 , then 

the algorithm can stop with ct+1} set to 	 Otherwise, 

iteration continues with 

0+1} = 01 + {i } 

until either the above conditions are satisfied or 1000 iterations 

are completed, in which case an error state is entered. A listing 

of this algorithm implemented in FortranlV is given in subroutine 

CVEIGC in Appendix C. 

9.3.9 Algorithm for transforming with respect to V 

The first time the transformation is to be used, a vector w 

is created using the output from the linear prograii HO1ADF 

(MOPT(1,...,t) and VOPT(1,...,t)). For c (w,u) a doubly-recursive 

algorithm has been used which in some senses is the inverse of that 

given in [9.3.7]: 

w=O 

For 9. = 

k =0 

For i = 1,...,n 

For  

k = k+1 

if MOPT( £) = k 	Wk = VOPT( £) 

End 

End 

End. 
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If w > 0 

For  

V =0 

k = (2n-o)(u+l)/2+1 

h  

For 	I = n,n-1,...,i 

For j = max(i,i-u) .....,i-i,i 

k=k - i 

w k 
 =w  k +v. j 

If j > max(i,i-u) Wk = Wk + wk+i - v ji  

End 

For j = max(i,i-u),... ,i-i,i 

h = h-i 

V = W 

	

j 	h 
End 

End 
End. 

Then, and on subsequent occasions, the transformation 

f2l 	11 
= 	

{ 1} 

is obtained by 

= 0 

k= 0 

For 	i =i,...,n 

For j = i,i-i,...,max(i,i-u) 

k=k+i 

= V2 + wkvIll  

If I * j 	V2 = V• 	+ k
V .lj 

 

End 
End. 
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A listing of this algorithm implemented in FortranlV is given in 

subroutine CVVOPT in Appendix C. 

9.3.10 Algorithm for t-statistics 

The degrees of freedom of the conservative estimator of 

variance are 

r = (tr(C V)) 2/tr(C V C V) 

as given in [9.2.18]. This can be calculated using the 

decomposition of C in [9.2.6] and 

/x AkL 	
0

2 	V c 	for k,z = 1,...,t 

because then 

t 

	

tr(C) = 	Akk 
k=1 

and 

t t 
tr(C 	C ) = 	A 2 A2k 

k=1 2=1 

The appropriate t-statistics are then obtained by interpolation 

between the t-statistics at integer degrees of freedom using a 

geometric scale. 

9.4 	An illustrative example 

9.4.1 Model 

To illustrate the algebra of section 9.2, a particularly 

simple numerical example will be analysed. A vector y  of 5 

observations is defined to be a realisation from the model: 

y 	N(f , 2 1) 
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where 	f1 = 8i + 8 2 i 	 for i = 1,... ,5 

2 =1 

and 	81 = (0,0) 

Therefore, the design matrix X is 

1, f 

1, 2 

1, 3 

1, 4 

1, 5 

If 8 is estimated by ordinary least-squares then, in the notation 

of [9.2.1] 9  

W= R= I 

and 	U = X(XTx) 	= 	0.8 9  -0.2 

0.5, -0.1 

0.2, 0.0 

-0.1, 0.1 

-0.4, 0.2 

In what follows the conservative estimators of var( 5 ) ( for 

s1 or 2) with the minimum biases will be found for a range of 

choices of a , on the assumption that V = I . One particular 

case, that is when s is equal to 2 and the error variance matrix 

is restricted to belong to the set a (1,4), is considered in 

detail in subsections [9.4.2] to [9.4.8]. Other cases with s 

equal to 2 are considered in [9.4.9] to [9.4.11], and cases with s 

equal to 1 are considered in [9.4.12]. 

The effect of the choice of V on the best conservative 

estimator is illustrated in [9.4.13]. Finally, in [9.4.14] the 

potential of the technique to aid in the selection of the 

estimators of the regression parameters themselves is demonstrated. 
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9.4.2 Dual optimization problem for 5=2, c (1, 4) 

If V is assumed to be diagonal with constant elements, then 

for simplicity V can be specified as I . 	Further, if it is 

assumed that V 6 c2 (1,4), then transforming to a new set of 

variates 'V in accord with [9.2.13], the optimization problem 

becomes, in the case when s=2: 

maximize 	0.04 T 
11 

+ 0.09 'V21  + 0.01 'V22  

+ 0.09 'V31  + 0.01 'V32  + 0.00 T 
33 

+ 
0.04 ''41 

+ 0.00 'V42  + 0.01 T 	 + 0.01
43  

+ 0.00 'V51  + 
0.04 'V52 

+ 0.09 T + 0.09 T + 0.04
53  

Subject to 
1 	11 

• (c 	+ c)221 
+ {k} 2  

2 	22 
{k} 2 	{k}2 • 

(c?+ 	c+ c) 2 31  + (C2
'k}+ c3 

 ) 'V32 + c3 	T3 3  

• (c+ {k}+  c {k}, cfI)2'V41 + (c1+ {k}+  c)242 

+ (c+{k} 2 	{k}2 c4  )'V43 -i-  c4 	T44  

• (c 	
2 

+ c2 
{k} + C3 

{k} + C4{k + c k }) 'V51 

• (c+ {k}+  {k}+ c)252 

+
{k} 	{k} 	{k} 2 

c 3  +c4  +c5  ) 'V 
 53 

• (c 1+ c)254 + 
c2v55 

14 
{k}T {k} 

C 	C 	 for k = 1,...,t 

for 	!)0 

9.4.3 Solution when t=1 

The above problem requires the c-vectors to be specified. 

These vectors, or in fact a single vector, can be generated by a 



III,  

random process. For simplicity consider a single vector, that is 

t=1 . A vector orthogonal to X is chosen at random and 

standardized to have a largest element of unity: 

{1}T 
C 	= (- 0.1275, -0.4467, 1.0000, -0.1498, -0.2760) 

The above optimization problem is solved by 

= 80.81 	 if (i,j)=(5,2) 

0 	 otherwise. 

Therefore, back-transforming, the optimal choice of V in a (1,4) 

is 
II 	 11 

0 

0 

0 

0 

0 

P 
and u V u = 3.233 

Lagrangian multipi 

0 

80.81 

80.81 

80.81 

80.81 

, where 

ier give 

0 

80.81 

80.81 

80.81 

80.81 

u is 

s the s 

0 	0 

	

80.81 	80.81 

	

80.81 	80.81 

	

80.81 	80.81 

	

80.81 	80.81 

the second column of U . The 

olution to the primal problem as 

x 1  = 2.459 

and 	 tr(C) = X1c {I IT c fl, = 3.233 

Therefore, the solutions of the primal and dual problems agree as 

they should do. The relative bias in the standard error is 
11 

,/( u TV u)/,/(UTU)_1 = 4.685 

9.4.4 The search for 

Once the optimization problem has been solved the next step 

(as described in [9.2.8]) is to find c t2 	as the eigenvector with 

largest negative eigenvalue in 

( - X(XTX)4xT)(I - V)(I - x(XTX)_1XT) 
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Starting with a vector orthogonal to X chosen at random, 

(0.5771, -0.9315, -0.1105, 0.7069, _0.2420)T 

this is transformed, using the algorithm described in [9.3.8], on 

the first iteration to 

(1.0 , 	-0.9804, -0.5099, -0.0391, 0.5294)1 

with 	= -18.08, on the second iteration to 

(-0.9994, 1.0 , 	0.4994, -0.0012, _0.4988)T 

with x {2}= 
 31.34, thence to 

( 1.0 9  -1.0 9  -0.5, 0.0, 0.5) , 	= 31.30 

(-1.0, 1.0, 0.5, 0.0, -0.5) , 	= 31.32 

and 	 ( 1.0, -1.0, -0.5, 0.0, 0.5) , 	= 31.32 

It appears that the matrix has at least two eigenvalues of equal 

largest magnitude because the algorithm is not converging. 	At 

this point, after 5 iterations x 	 > 0 so P 	 is set to 

31.32. 	On the next iteration the vector is transformed to 

( 1.0, -1.0, -0.5, 0.0, 0.5) , 	= -62.65 

to which it converges exactly in the course of the next ten 

iterations. 	Therefore the matrix has a single eigenvalue of -31.3 

and at least one eigenvalue of 31.3, and introducing the shift of 

31.32 has ensured the eigenvalue of largest magnitude is unique and 

negative. 

9.4.5 Solution when t=2 

The new optimization problem with c 	 incorporated is 

solved by 

ij = 7.188 	 if (i,j)=(3,1) 

0.703 	 if (i,j)=(5,2) 

0 	 otherwise 
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Therefore 
11 

V = 
1 

7.188 7.188 7.188 0.0 

7.188 7.891 7.891 0.703 

7.188 7.891 7.891 0.703 

0.0 0.703 0.703 0.703 

0.0 0.703 0.703 0.703 

and 	u V u = 0.6750 

The primal solution is 

= (0.4514, 0.0327) 

and the relative bias equals 1.598. 

0.0 

0.703 

0.703 

0.703 

0.703 

9.4.6 New c-vectors and bias 

From this solution, a new c-vector can be found 

(-0.5515, 0.3101, 1.0000, -0.7242, _0.0343)T 

which reduces the relative bias to 1.491 when incorporated in the 

optimization problem. On succeeding iterations the c-vectors and 

relative biases are: 

( 	
0.4924, 0.0341, -0.5452, -0.9812, 1•0000)T , 

1.491 

(-0.6156, 0.1218, 1.0000, 0.0970, 
.0•6032)T , 

1.314 

(-0.3735, -0.0968, 1.0000, -0.2154, _0.3142)T , 1.263 

(-0.3184, -0.3794, 1.0000, 0.4117, _0.1393)T , 1.182 

(-0.2607, -0.3326, 1.0000, 0.0405, 
_04472)T , 

1.170 

(-0.2509, -0.2776, 1.0000, -0.1633, 
_0•3081)T , 

1.160 

9.4.7 Final solution 

After 18 iterations the relative bias stops decreasing and 4 

c-vectors remain. 	However, they are all very similar and the 

solution has 1.00008 degrees of freedom (r). 	Examination of the 

T solution reveals that the optimum corresponds to C = x C S 	for 



a single vector with x equal to 0.36 and 

cT  = (-1/3, -1/6, 1, -1/6, -1/3) 

= (-0.3333, -0.1667, 1.0000, -0.1667, -0.3333) 

It is because of the effects of rounding error that the final 

solution does not give this single vector exactly. 

The solution of the optimization problem has 

II 

V = 2.5556 2.5556 0.0 0.0 0.0 

2.5556 2.5556 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 2.5556 2.5556 

0.0 0.0 0.0 2.5556 2.5556 

T11 
	u = 	0.46, 

C = 	0.04 0.02 -0.12 0.02 0.04 

0.02 0.01 -0.06 0.01 0.02 

-0.12 -0.06 0.36 -0.06 -0.12 

0.02 0.01 -0.06 0.01 0.02 

0.04 0.02 -0.12 0.04 0.04 

tr(C) = 	0.46 

relative bias 	= 1.145 

and d.f. (r) 	= 	1.0 

9.4.8 Output from CEVOPE 

Appendix 0 shows the output from CEVOPE for the preceding 

problem, including the numerical results when 

= ( 0.2247, 0.4873, -1.081, -0.8700, -0.5833) 

In this case 

= ( 0.5274, -0.2973) , 

= 	0.3354, 

and 	eT  = (-0.0054, 0.5545, -0.7169, -0.2081, 0.3759) 

, 
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The model dependent standard error of 82  is 

/(r2 uTu) = 0.1831 

which has 3 degrees of freedom. 	Therefore 95% marginal confidence 

bounds are 

-0.2973 ± 0.1831 t3 (95%) 

= -0.88 and 0.29 

which encompass the true value of zero as we would expect. The 95% 

bounds based on the conservative estimator are 

-7.14 and 6.55 

These are much wider and are the price that has to be paid in order 

to have marginal confidence limits which are valid for all variance 

matrices in the set n (1,4). 

9.4.9 Dual optimization problem for s=2, n (0,1) 

To illustrate the effect of a on the problem, consider the 

situation as above but with the weaker assumption that V e a (0,1). 

The optimization problem is, in accord with [9.2.12]: 

maximize 	0.04 V 11  

+ 0.04 V 21  + 0.01 V22  

+ 0.00 V 32  + 0.00 V33  

+ 0.00 V43  + 0.01 V44  

+ 0.04 V54  + 0.04 V55  

subject to 	C 
{k 2 
1 	V11  

	

k} 'k} 	{k} 2  

	

+2c 	c 	V12+c 2 	V22  

	

{k} {k} 	{k} 2  
+2c2  c3  V32+c3 	V33  

{kJ l k} 	{k} 2  
+2c c4 V43+c4 	V44  

{k} {k} 	{k} 2  
+2c4  c5  V54+c5  V55  

for k = 1,...,t 
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for 	V0 

This has a dual (which is in fact the original primal problem): 

t 
minimize 	. Xk 	k}T  {k} 

k=1 
t 

subject to 	 {k}2 	
0.04 Xk C 1  

k=1 

t 

	

Xk 2c 1 	' 0.04 
k=1 

t 
{k} 2  

XC 	 ) 0.01 
k=1 

t 

	

Xk 2c 	{k} > 0.00 
k=1 

t 
{k} 2  

	

XkC3 	 ) 0.00 
k=1 

t 

	

2c 	{k} 	
0.00 Xk 

	

3 	C4 
k=1 

t 
{k} 2  

	

Xk C 4 	 > 0.01 
k=1 

t 

	

2c 
{k} {k} 	

0.04 Xk 

	

4 	C5 
k=1 

t 
{k} 2 

	

XC 5 	 ) 0.04 
k=1 

for 	x0. 

For this problem to be solvable it is necessary, in 

particular, for the expression 

t 
c '2 {k} {k} + {k} {k} + {k} {k} + 2 {k} {k} 

L xk 	1 	C 2 	C 2 	C 3 	C3 	C4 	C 4 	C5  
k=1 

to be greater than zero. 	However, each C is orthogonal to X so 
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c  + C2  + C3  + C4  -I•  C5  = 0 

and 	 c1 +2c2 +3c3 +4c4 +5c5 =0 

'Therefore 	c4  = - (c 1  - c 3  - 3c 5 ) 

c 2  = 	(-3c 1  - c3  + c5 ) 

and 2c 1 c2  + c2 c3  + c3 c4  + 2c4 c5  

- (-3c 1-c 3+c 5 )(2c 1+c 3) + - (c 1 -c 3-3c 5 )(c 3+2c 5 ) 

= -3c 2
1 
 - c - 3c - 2c 1c 3  + 2c 1c 5  - 2c 3c 5  

= -(c 1 -c 5 ) 2  - 2(c 1+c 3/2) 2  - 2(c 5+c 3/2) 2  

(0. 

Therefore no c-vectors exist satisfying all the constraints. 	So, 

if no greater constraint can be placed on V than that it belongs 

to sl (w,u) with w = 0 and u > 1 , then no bound can be placed 

on the variance of the estimator 82 

9.4.10 Solutions when s=2 

Table 9.4.1 gives the relative biases of the minimum biased 

estimators for a range of values of w and u in n (w,u) when 

s=2. 	As w increases, or u decreases, the relative bias 

decreases. 	This is as it should be because 

(,u) 	(-1,U) 

and 	 S2 (,u) C= Q (w,u+1) 

Also, when o0 the differencing operator has no effect so 

(,o) = i (0,0) for all w, 

and this is consistent with the relative biases all being equal in 

the table when u0. 

When o=0 , the optimal choice of C is x 1  C CT  where 

/x1 S  = ( 1/5, -2/15, -2/15, -2/15, 1/5) 

= (0.2, -0.1333, -0.1333, -0.1333, 0.2) 
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This example will be used further in [9.4.11]. 	When w=1 and 

u1,2,3 or 4, once again a single vector is optimal: 

= (-0.2, -0.1, 0.6, -0.1, -0.2) 

which was given in [9.4.7]. 	When w=2 and u1,2,3 or 4 the 

combination of two vectors is optimal, with the second being the 

reverse of the first: 

{1}T 

	

c 	= (-0.1993, 0.2728, 0.0351, -0.0915, -0.0171) 

{2 }T 
v'x 2  c 	= (-0.0171, -0.0915, 0.0351, 0.2728, -0.1993). 

Similarly when w=3 and u=1,2,3 or 4, two vectors are optimal: 

	

{11T 
c 	= (-0.1846, 0.2277, 0.0214, 0.0126, -0.0770) 

2}T 
= (-0.0770, 0.0126, 0.0214, 0.2277, -0.1846). 

9.4.11 Comparison with standard estimator of variance 

The standard least-squares estimator of the variance of 82 

is 

vr(2) = ;
2 uu 

where 
= 

Therefore 

E(var(82 )) = .2- tr((I - XU T)V(I - U X T)) 

If V ecz(0,0), that is the variance matrix is diagonal, then 

E(vr( 2 )) = 0.013V 11  + 0.023V22  + 0.027V33  + 0.023V44  

+ 0.013V55  

This may be compared with 

var(2) = Tv u 

= 0.040V 11  + 0.010V22  + 0.000V33  + 0.010V44  

+ 0.040V55  , 

and the expected value of the conservative estimator given in 

[9.4.10]: 



-1 
E(e C e) = 0.040V 11 + 0.018V 22 + 0.018V 33  + 0.018V44  + 0.040V 55* 

Whatever the positive values of diagonal elements in V 

E(eTC )> var() 

but var(8 2 ) is sometimes downward biased. 	Figure 9.4.1 

illustrates this for the particular case when V11  = V33  = V 55  = 1 

and V 22  = V44  . When V22  = 1 all the error variances are equal 

(this is the assumption made in the standard analysis) and var(8 2 ) 

is unbiased. 	However, when V 22  < 1 var( 2 ) on average under- 

estimates the variance of 82 

9.4.12 Solutions when s=1 

Table 9.4.2 gives the relative biases of the minimum biased 

estimators for a range of values of w and u in a (,u) when 

5=1. When =O. and u1 no solution is possible for the same 

reason as in [9.4.9] when s=2. 	Also, when w=l and u=4 the 

primal problem includes a constraint 

k=1 Xk 

(c 	+ {k} + 	k} + {k} + ck})2 	1.0 

but 

+ {k} + {k} +c 	+ 	= 0 31 

so once again no solution is possible. 

It has not been possible to find in all cases the optimal 

c-vectors in simple form as it was when s=2. 	However it has been 

possible in three cases. 	When o0 the optimal C is the 

combination of two vectors: 

I 
,1x 1  c 1 	= (0.8 1  -0.8, -0.4, 0.0, 	0.4) 

I 
= (0 9 	-1170, 	-2/70, 	1/10, -4/70) 

= (0.0, -0.0143, -0.0286, 0.1, -0.0571) 
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Table 9.4.1 

Relative biases (degrees of freedom in brackets) of best 

conservative estimators of standard error of 82  for a range of 

values of the parameters in a (w,u) and the model specified in 

[9.4.1], with V = I 

0 	 1 	 2 	 3 

U 

0 	0.153 	(1.0) 	0.153 (1.0) 0.153 (1.0) 0.153 (1.0) 

1 	. 	- 	 1.145 (1.0) 0.575 (1.8) 0.360 (1.8) 

2 	- 	 1.145 (1.0) 0.575 (1.8) .0.360 (1.8) 

3 	- 	 1.145 (1.0) 0.575 (1.8) 0.360 (1.8) 

4 	- 	 1.145 (1.0) 0.575 (1.8) 0.360 (1.8) 

Relative biases (degrees of freedom in brackets) of best 

conservative estimators of standard error of 8i  for a range of 

values of the parameters in c (o,u) and the model specified in 

[9.4.1], with V = I 

0 	 1 	 2 	 .3 

U 

0 0.211 	(1.0) 	0.211 	(1.0) 0.211 (1.0) 0.211 (1.0) 

1 - 	 1.564 	(1.4) 0.581 (1.3) 0.342 (1.3) 

2 - 	 2.000 	(1.0) 0.609 (1.0) 0.352 (1.1) 

3 - 	 2.387 	(1.1) 0.609 (1.0) 0.352 (1.1) 

4 - 	 - 0.609 (1.0) 0.352 (1.1) 
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Figure 9.4.1 

The variance of 82  and expected values of the conventional 

estimator and a conservative estimator (for n (0,0)) of var (a 
2) 

for the model specified in [9.4.1], except that V11 =V33 =V55 =1 and 
V 22 =V44 , plotted against V22  

V22 



MUM 

When w=l and u=2 a single vector is optimal: 

	

/x 1  c T = (0.8, 0.5 9 	-2.8, 	0.9, 	0.6). 

When w=2 and u=2,3 or 4, a single vector is optimal: 

1x 1  cT = (-(9+1145)120, (1145)110, (19-1145)120, -1/10, -4/10) 

= (-1.0521 9  1.2042, 0.3479, -0.1 9  -0.4). 

9.4.13 Dependence on V 

All the preceding results in this section have been dependent 

on the assumption that 

V=I 

For other choices of V the expected relative biases will be 

different and the best estimators may be different. 	For example, 

if V has a AR(1) structure so that 

V. 	
= 	

, when i 

for some value of p between 0 and 1, V e a (1,4) . In the case 

when s=2 and it assumed that V e a (1 ,4) the single c-vector 

given in [9.4.7] remains optimal but the relative bias changes with 

p , as illustrated in table 9.4.3. 	The relative bias is never 

less than zero because of the constraints in the optimization 

problem. 

Although the c-vector in [9.4.7] was optimal for the above 

choices of V it is not optimal for all variance matrices in 

(1,4). 	For example, if 

1 0 0 0 .0 

0 1 0 0 0 

0 0 100 0 0 

0 0 0 1 0 

0 0 0 •0 1 
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Table 9.4.3 

Relative biases of best conservative estimator of standard errors 

of 82  for a (1,4) and the model specified in [9.4.1], when 

has an AR(1) structure as specified in [9.4.13]. 

P Relative bias 

0.0 1.145 

0.2 0.894 

0.4 0.646 

0.6 0.413 

0.8 0.199 

0.9 0.098 

0.99 0.010 



- 313 - 

then the preceding c-vector has a relative bias of 18.0. 	The best 

choice of vector is 

'x1 c  = (0.3, -0.6, 0.0, 0.6, -0.3) 

with a relative bias of 2.0 

9.4.14 Optimal choice of 8 

An interesting but unresolved question raised by the approach 

to conservative estimators developed in this chapter can be 

illustrated by example. If the true variance of y  is 

proportional to W R W (I in this example), then estimation of 8 

by the use of U given in [9.2.1] provides the unbiased estimator 

with the minimum variance. However, it does not necessarily give 

the, linear unbiased estimator with the minimum expected 

conservative estimator of variance for a particular choice of 

(ci,u). The question is: what choice of U does minimize the 

expected conservative estimator of variance? 

In the above example, when s=2 and !=I 	
=T 	

(with 

= (-0.2, -0.1, 0.0, 0.1, 0.2)) is the best estimator of 82 

with a variance of 0.1 . 	But if we assume only that V e n (1,4), 

the expected value of the conservative estimator of variance is 

0.46 if V is equal to I . 	When 82  is instead estimated using 

=(-2/7, 	1/14, 	0 9 	-1/14, 	217) 

= (-0.2857, 0.0714, 0.0, -0.0714, 0.2857) 

its variance is 0.1735 when V is equal to I , but the best 

conservative estimator on the assumption that V e a (1,4) is 

derived from a single vector: 

T = (-2/7, 1/14, 3/7, 1/14, -2/7) 

= (0.2857, 0.0714, 0.4286, 0.0714, -0.2857) 
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with an expected value of 0.3571 if V is equal to I 

Therefore, if no confidence can be placed in the conjucture that V 

is equal to I , and a conservative estimator of the variance of 

82 is to be used by assuming only that V e c (1,4) , then the 

second estimator above is preferable to the conventional first 

estimator. 

9.5 	Coiquhoun's data 

9.5.1 Choice of regression parameter estimators and V 

Both a single exponential regression and a double 

exponential regression model were fitted to Colquhouns data by 

three methods described in section 4.3: least-squares estimation 

(LS); maximum likelihood estimation with an ARMA(1,1) error model 

(ML); and residual maximum likelihood estimation with an ARMA(1,1) 

error model (REML). The least-squares residuals were found to be 

incompatible with the assumed error variance matrix T 21 , so it 

does not seem appropriate to assume that V is equal to T 21 when 

obtaining conservative estimators. Instead, ARMA(1,1) models were 

fitted to the least-squares residuals by both maximum likelihood 

(LS/ML) and residual maximum likelihood (LS/REML) estimation, thus 

giving four choices of estimator and V . Strictly, the method in 

section 9.2 is not applicable when regression and variance 

parameters have been jointly estimated from the same data because 

dimensionality in the residuals will have been lost to the variance 

model as well as to the regression model. 	However, this has been 

ignored in what follows. 
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9.5.2 Choice of c (w,o) 

The smallest set of matrices to which V belongs in the cz 

class is n (1,123). 	The fact that w is equal to 1 follows 

directly from [9.2.15] by observing that V is the sum of two 

matrices with Markov structure and w cannot exceed 1 because the 

correlations exceed 0.5. The value of u is 123 because 

V 124,1 > 0 

and in particular when the single exponential regression model is 

fitted by REML the estimated correlation between y1  and y124  

exceeds 0.999. 

9.5.3 Single exponential regression results 

Considering first the single exponential regression model, 

the variance of 	is unbounded when V belongs to n (1,123) 

for all three methods of estimation (LS, ML and REML) 	This is a 

repeat of the situation encountered when estimating a global mean 

in [9.4.12]. Conservative estimators of variances were found for 

both of the other regression parameters for all four combinations 

of estimators and V . 	In all cases, the maximum CPU time of 

30,000 seconds was reached before the best estimator could be 

found. 	Table 9.5.1 summarises the results. 

The four pairs of marginal confidence intervals are equally 

valid, each being at least at the 95% level for all variance 

matrices in a (1,123). 	The expected standard errors derived from 

the conservative estimators of variance, and hence the expected 

widths of marginal confidence intervals, are very similar for each 

parameter over all four methods of estimation. It does not 

necessarily follow that because ML and REML estimators are more 



Table 9.5.1 

Coiquhoun's data, single exponential regression with ARMA(1,1) error model estimated by four methods; 
summary results of using conservative estimators of the variances of the regression parameter estimators on 
the assumption that V e a (1,123). 

Estimation 	Parameter Parameter 	Model 	Expected Relative Aprox. Estimated 	Approximate 95% 
method 	 number 	estimate 	based s.e. 	s.e. 	bias 	d.f. 	s.e. 	confidence limits 

LS/ML 
2 77.4 1.0 2.2 1.16 3.3 3.9 65.5 89.4 
3 7.24 0.22 0.52 1.33 3.2 0.34 6.19 8.28 

LS/REML 
2 77.4 2.1 2.4 0.16 3.3 3.0 68.3 86.5 
3 7.24 0.43 0.60 0.38 3.5 0.23 6.56 7.91 

ML 
- 	 2 79.4 1.0 1.7 0.74 3.0 3.2 69.1 89.6 

3 6.77 0.18 0.47 1.61 3.7 0.63 4.94 8.60 

RE ML 
2 	78.6 	1.6 	1.7 	0.12 	3.0 	2.6 	70.4 	86.8 
3 	6.59 	0.23 	0.53 	1.29 	3.6 	0.82 	4.21 	8.97 

LS/ML 	regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by 
maximum likelihood from residuals 

LS/REML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by 
residual maximum likelihood from residuals 

ML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by maximum likelihood 

REML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by residual maximum 
likelihood 

(A, 

I-. 
0•s 
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efficient than LS estimators that they will give smaller 

conservative estimates of variances. 	(This relates to the optimal 

choice of $ considered in [9.4.14].) The estimated standard 

errors show less consistency between methods of estimation; in 

part this is because a different value of V is being used in each 

case, and in part it results from sampling variability. 

It is not possible to choose from among the estimators the 

one with the smallest estimated standard error without invalidating 

the 95% interpretation of the marginal confidence interval. If a 

choice is to be made between estimators then it should be on the 

basis of the expected standard error, the approximate degrees 

of freedom and the appropriateness of V . 	The estimation methods 

ML and REML have slightly lower expected standard errors and about 

the same degrees.of freedom as LS/ML and LS/REML, but REML is 

preferable in being based on a probably more realistic estimate of 

V . It has already been observed in chapter 4 that ML does seen to 

give downward biased estimates of V . 	This may account for the 

estimated standard errors of 82  for both LS/ML and ML exceeding 

what would have been their 95% limits if the assumed value of V 

had been correct. 

9.5.4 Double exponential regression results 

The variance of 8i is unbounded as in the single 

exponential regression case. 	Conservative estimators of variances 

were found for the other four parameters, although not ones with 

minimum relative bias because the maximum CPU time was reached 

during the iterations. 	Table 9.5.2 gives the best results found. 

The expected standard errors for each parameter are similar 

for LS/ML, LS/REML and ML but larger values were obtained for 
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Coiquhoun's data, double exponential regression with ARMA(1,1) error model estimated by four methods; 
summary results of using conservative estimators of the variances of the regression parameter estimators on 
the assumption that V e a (1,123). 

Estimation 	Parameter Parameter Model Expected Relative Aprox. Estimated Approximate 95% 
method 	 number estimate based 	s.e. s.e. bias d.f. s.e. confidence 	limits 

LS/ML 	 2 25.3 7.7 26.3 2.43 6.3 36.8 -63.9 	114.5 
3 3.28 0.68 2.27 2.32 7.1 2.77 -3.25 	9.82 
4 58.6 7.9 27.0 2.43 6.9 33.0 -19.8 	137.0 
5 9.22 0.82 2.83 2.45 6.2 3.50 0.70 	17.73 

LS/REML 2 25.3 12.7 33.0 1.60 5.8 35.0 -61.1 111.7 
3 3.28 1.07 2.92 1.71 6.6 3.12 -4.17 10.74 
4 58.6 12.9 34.4 1.67 6.0 363 -30.3 147.5 
5 9.22 1.36 3.57 1.62 5.4 3.30 0.92 17.51 

CO 

ML 2 26.1 8.5 28.3 2.32 6.3 37.9 -65.7 117.8 
3 3.41 0.71 2.33 2.27 7.6 2.91 -3.38 10.19 
4 57.6 8.7 28.9 2.34 6.8 36.4 -29.0 144.2 
5 9.29 0.90 3.02 2.35 5.9 3.94 -0.40 18.98 

REML 2 31.5 21.0 51.8 1.47 6.0 49.1 -88.8 151.8 
3 3.86 1.29 3.48 1.70 5.9 2.90 -3.28 11.00 
4 51.8 20.5 51.8 1.52 6.5 46.6 -60.2 163.8 
5 9.83 2.45 6.01 1.45 6.1 5.33 -3.20 22.85 

LS/ML regression parameters estimated by least-squares, ARMA(1,1) 	error variance matrix, estimated by 
maximum likelihood from residuals 

LS/REML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by 
residual maximum likelihood from residuals 

ML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by maximum likelihood 

REML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by residual maximum 
likelihood 
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REML. 	This may be due, in part, to elements in V estimated by 

REML being larger than for the other estimation methods. 	The 

estimated standard errors are all greater than expectation except 

for the REML ones. 	However, interpretation is hindered by the 

potentially large correlations between the conservative estimators. 

As already stated, all four sets of marginal confidence 

intervals are valid. 	If a choice has to be made then, given the 

closeness of expected standard errors and degrees of freedom for 

LS/ML, LS/REML and ML, the LS/REML estimates seem to be preferable 

because of the ease of interpretation of least-squares estimators 

and the approximate unbiasedness of residual maximum likelihood 

estimates of V from the least-squares residuals. 

9.6 	Dale's data 

9.6.1 Choice of regression parameter estimators, V and a (w, u) 

As for Colquhoun's data in [9.5.1], there are four choices of 

estimator and V available from the models fitted in section 4.4. 

The smallest set of matrices to which V belongs is a (1,137). 

9.6.2 Results 

Conservative estimators of variances were found for all four 

parameters for all combinations of estimators and V . 	The 

maximum CPU times were reached before minimum biased estimators 

were found. 	Table 9.6.1 summarises the best results found. 

The expected relative biases are larger than those previously 

encountered and most of the final estimators have only one degree 



Table 9.6.1 

Dale's data, regression with ARMA(1,1) error model estimated by four methods; summary results of using 
conservative estimators of the variances of the regression parameter estimators on the assumption that 
V e n (1,37). 

Estimation 	Parameter Parameter Model Expected Relative Aprox. Estimated Approximate 95% 
method 	number estimate based s.e. s.e. bias d.f. s.e. confidence 	limits 

LS/ML 	1 818. 42. 	- 765. 17.21 1.0 1123. -13204. 	14841. 
2 0.0142 0.0017 0.0048 1.88 2.3 0.0064 -0.0101 	0.0385 
3 702. 31. 1516. 47.30 1.0 1772. -21750. 	23154. 
4 0.00067 0.00005 0.00097 17.19 1.0 0.00125 -0.01486 	0.01619 

LS/REML 1 818. 151. 1202. 6.94 1.0 1326. -15837. 17474. 
2 0.0142 0.0027 0.0066 1.49 1.6 0.0054 -0.0199 0.0483 
3 702. 284. 2290. 7.07 1.0 2647. -32810. 34214. 
4 0.00067 0.00023 0.00152 5.71 1.0 0.00162 -0.01962 0.02096 

ML 1 809. 36. 442. 11.44 1.0 108. -506. 2125. 
- 2 0.0205 0.0015 0.0044 1.99 3.4 0.0079 -0.0028 0.0439 

3 785. 35. 940. 25.54 1.0 130. -864. 2434. 
4 0.00081 0.00006 0.00069 11.12 1.0 0.00015 -0.00103 0.00265 

REML 1 806. 63. 494. 6.85 1.0 68. -26. 1637. 
2 0.0210 0.0016 0.0049 1.96 3.5 0.0083 -0.0034 0.0454 

• 3 816. 125. 1064. 7.55 1.0 254. -2361. 3994. 
4 0.00084 0.00013 0.00078 5.19 1.0 0.00016 -0.00111 0.00279 

LS/ML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by maximum 
likelihood from residuals 

LS/REML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by residual 
maximum likelihood from residuals 

ML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by maximum likelihood 

REML 	regression parameters and ARMA(1,1) error variance matrix jointly estimated by residual maximum 
likelihood 

(A) 

0 
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of freedom. 	The unexplained exception is found for the second 

parameter. 	As a consequence, the marginal confidence 

intervals are much wider than those obtained in chapter 4. If a 

choice is to be made between estimators, then ML and REML have much 

smaller expected standard errors, and REML is preferable as it is 

based on a more reliable matrix V 

9.7 	Bruce's data 

9.7.1 Choice of regression parameter estimators, V and n (,o) 

As for Colquhoun's and Dale's data there are four choices of 

estimator and V from models fitted in section 4.5. 	The smallest 

set of matrices to which V belongs is a (1,199). 	However, this 

means that the dual optimization problem has 20100 variables 

whereas CEVOPE has an upper limit of 10000. 	The correlation 

coefficients between the errors in the models fitted to Bruce's 

data decay more rapidly than in either Coiquhoun's or Dale's data, 

so that for example the REML estimated correlation between y. and 

is 0.05. 	It seems reasonable to assume that after 30 days 

have elapsed there should be no carry-over of errors. 	Therefore, 

it is assumed that the true error variance matrix belongs to 

n (1,30). 

9.7.2 Results 

Conservative estimators of variances were found for all four 

methods of estimation. Before minimum biased estimators could be 

found the maximum number of c-vectors (30) was reached in half the 
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cases and the maximum CPU time reached in the rest. 	It is 

possible that the large number of c-vectors and the large number of 

degrees of freedom in the final solution could be because the 

parameter u is less than its maximum possible value of n-i. 

Table 9.7.1 summarises the best results found. 

As already seen in section 4.5, there is little to choose 

between ML and REML in this example. 	In general, both have lower 

expected standard errors and larger degrees of freedom than either 

LS/ML or LS/REML so both appear to be acceptable. 

9.8 	Discussion 

An impasse was reached in chapters 4 and 5. 	Empirical 

models of the error variances were there assumed and used to 

estimate regression parameters, but the final results were 

sensitive to the choice of model. 	Because no information was 

available for choosing V except for that contained in the data, 

the problem appeared to be intractable. The method presented in 

this chapter has gone a long way towards overcoming the problem. 

When applied to real data the new technique provides marginal 

confidence intervals which have very general validity, although 

they are very wide in certain circumstances. 

The method should be applicable to any situation where 

regression parameters and standard errors are to be estimated from 

data with serial correlation of unknown form except for some very 

general specification. 	Partly because of the novelty of the 

approach it has several unresolved problems. 	These are discussed 

in the category of future work in section 10.2. 



Table 9.7.1 

Bruce's data, regression with ARMA(1,1) error model estimated by four methods; summary results of using 
conservative estimators of the variances of the regression parameter estimators on the assumption that 
V e n (1,30). 

Estimation Parameter Parameter Model Expeted Relative Aprox. Estimated Approximate 95% 
method number estimate based s.e. s.c. bias d.f. s.e. confidence limits 

LS/ML 1 0.75 	- 0.10 	- 0.27 1.64 3.1 0.23 - 0:04 	-- 1.46 
2 	. 0.068 0.002 0.004 1.00 5.7 0.005 0.057 0.080 
3 1.6 0.2 0.5 1.36 1.4 0.2 -0.1 3.33 
4 0.57 0.05 0.21 3.33 2.1 0.18 -0.15 1.29 

LS/REML 1 0.75 0.11 0.19 0.66 4.4 0.13 0.40 1.10 
2 0.068 0.002 0.006 1.26 5.4 0.004 0.059 0.078 

3 1.6 0.2 0.7 2.20 2.8 O.S. -0.1 3.3 
4 0.57 0.05 0.09 0.79 5.0 0.09 0.34 0.81 

ML 1 0.61 0.07 0.18 1.55 4.7 0.15 0.23 0.99 
- 2 0.067 0.003 0.003 0.31 9.0 0.003 0.060 0.074 

3 1.3 0.2 0.4 1.42 7.0 0.5 0.1 2.5 
4 0.48 0.04 0.14 2.21 3.1 0.19 -0.12 1.08 

REML 1 0.60 0.07 0.21 1.89 3.3 0.20 0.00 	1.20 
2 0.067 0.003 0.004 0.31 9.3 0.004 0.058 	0.076 

3 1.3 0.2 0.5 1.84 2.8 0.5 -0.3 	3.0 
4 0.48 0.04 0.10 1.22 6.7 0.12 0.19 	0.77 

LS/ML regression parameters estimated by least-squares, ARMA(1,1) 	error variance matrix estimated by 
maximum likelihood from residuals 

LS/REML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by 
residual maximum likelihood from residuals 

ML regression parameters and ARMA(1,1) error variance matrix jointly estimated by maximum likelihood 

REML regression parameters and ARMA(1,1) error variance matrix jointly estimated by residual maximum 
likelihood 
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10. Conclusions/Future work 

10.1 Conclusions 

10.1.1 General 

Ordinary least-squares regression parameter estimators are 

inefficient and estimated standard errors are biased when errors 

are correlated. If an incorrect variance structure is assumed and 

used in the estimation procedure, then the new estimators may be 

even less efficient and the estimated standard errors more biased. 

Moreover, regression parameters change their meaning in the 

presence of a correlated errors model. This is because it is the 

conjunction of a regression model, and an error model which describe 

a data set, so if the error model is changed the regression model 

has also to change in order to compensate. For example, if errors 

are assumed to be highly correlated, then the fitted regression 

model will exhibit much larger systematic departures from the data 

than if the errors had been assumed to be independent. Therefore, 

although within the last few years it has become computationally 

easy to estimate regression parameters with almost any choice of 

variance matrix, it is statistically difficult and fraught with 

dangers. In a word, contrary to most advice in the literature, 

beware! 

10.1.2 Empirical models 

It was found in the research reported in this thesis to be 

easier to model empirically the correlation coefficients of an 

error process than to model the spectral function. The recommended 

procedure is: 
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Estimate the regression parameters by (possibly weighted) 

least-squares. 

Examine the residuals for autocorrelation, and if these are 

inconsistent with the assumption of independent errors 

identify a low-order ARMA model. 

C) 	Jointly estimate the regression and error parameters by 

residual maximum likelihood using the variance matrix of the 

assumed ARMA model. 

d) 	Compare the results with the least-squares estimates, if they 

are inconsistent return to the least-squares results and 

obtain variances of the estimators by some other means, such 

as using the method described in chapter 9 to derive 

conservative estimates of the variances valid over wide 

classes of possible error variance structures. 

10.1.3 Mechanistic model 

If the assumed model is (almost) correct, then the use of a 

mechanistic model makes for the most efficient use of the data, but 

if not then the results can be very misleading. The recommended 

procedure is always to include an observation error, always to test 

the goodness-of-fit by refitting the model with separate sets of 

parameters for the regression and error components, and never to 

use a model without a sound scientific basis. 

10.1.4 Conservative estimates of the variances of regression 

parameter estimators 

The technique described in chapter 9 makes heavy use of 

computer CPU time but light use of explicit statistical models. 
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Estimates of the variances of regression parameter estimators are 

obtained'which are valid when errors are serially correlated in an 

unknown manner. The price that sometimes has to be paid for this 

robustness is the large upward biases in the estimates of the 

variances of regression parameter estimators. The present method 

may still be some way from being of routine use but it has 

potential for further development, as discussed in [10.2.3]. 

10.2 Future work 

10.2.1 Empirical models 

The comparison between maximum likelihood and residual 

maximum likelihood estimates of regression parameters when errors 

are correlated warrants further study beyond the small-scale 

simulations reported in chapter 4, particularly when the process is 

close to non-stationarity. 

Empirically modelling the spectral function of the error 

process is a more recent technique than modelling the correlation 

coefficients in order to estimate regression parameters, and seems 

to offer more potential for future work. 	It ought to extend more 

easily to handle large numbers of regression parameters such as 

treatment effects in designed experiments, and to higher-

dimensional correlation structures such as spatial processes. 

Another possibility is to explore the relationship between the 

parameterized spectrum approach in this thesis and the 

non-parametric approach of Duncan and Jones (1966). 
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10.2.2 Mechanistic models 

I expect many more models in future literature to be 

mechanistic rather than empirical, although how mechanistic most of 

them will be is open to question. 	One particular gap of which I 

am aware is the lack of any successful attempt to introduce 

stochasticity into non-linear growth equations. 

It is possible to generalize the difference and differential 

equations considered in chapter 6, and the compartment models 

considered in chapter 7, by allowing the parameters to vary with 

time. In fact, the model considered in chapter 8 may be thought of 

as a single compartment with a time-varying rate of emigration. 

Whether or not the solutions are GARMA and cGARMA processes has yet 

to be resolved, although it would seem that the solution of a 

p-compartment model is a cGARMA(p 2 ,O) process, rather than a 

cGARMA(p,O) process as it is with time-constant parameters. 

10.2.3 Conservative estimates of the variances of regression 

parameter estimators 

The area of conservative estimates of the variances of 

regression parameter estimators is the one in which I am most 

conscious of the potential for further work. 	The computer CPU 

time used by the program CEVOPE should be reducible through better 

linear programming and eigenvector algorithms and through' special 

algorithms for specific choices of 2 such as 	(0,0) and 

cz(1,u). 	Also, improved algorithms are required to cope with 

rounding errors, especially as the optimum solution is approached. 

Further work could be put into other choices of a , for 

example more restrictive assumptions to reduce 'the variance bias in 
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some applications, and to other types of correlation structure such 

as might arise in spatial data or two-way tables. 

More fundamentally, methods are required to incorporate the 

variance of the variance estimator into the optimization problem 

(see [9.2.18]) and to find the regression parameter estimator which 

minimizes the expected value of the conservative estimator of 

variance (see [9.4.14]). 
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Appendix A 

REGAME computer progrn listing (see section 2.4). 

0001 C******************************************************************C 
0002 C**********************************************************************C 
0003 C** 
0004 C** RRRRRR 	EEEEEEE 	GGGGG 	AAA 	M 	M 	EEEEEEE ** 
0005 C** R 	R 	E 	G 	G 	A 	A 	MM 	MM 	E 
0006 C** R 	R 	E 	G 	A 	A 	M M M M 	E 
0007 C** RRRRRR 	EEEE 	G 	GGGG 	AAAAAAA 	N 	N 	M 	EEEE 
0008 C** R 	R 	E 	G 	G 	A 	A 	M 	M 	£ 
0009 C** R 	R 	E 	G 	G 	A 	A 	M 	M 	E 
0010 C** R 	R 	EEEEEEE 	GGGGG 	A 	A 	M 	N 	EEEEEEE ** 
0011 C** 
0012 C** 
0013 C** REGRESSION ESTIMATION WITH GENERALISEd 
0014 C** AUTOREGRESSIVE-MOVING AVERAGE ERRORS 
0015 C** 
0016 C** C.A.GLASBEY 
0017 C** A.F.R.C. UNIT OF STATISTICS 
0018 C** UNIVERSITY OF EDINBURGH 
0019 C** 
0020 C**********************************************************************C 
0021 C**********************************************************************C 
0022 C 
0023 SUBROUTINE REGAME(YT,NLT,ACCTOL,NCALMX,NLIKT,NSCALT,NMT,NDERT, 
0024 1 	 NVAR,NPARVR,NOUTT,NCVI,PARAM,NPART,SE,XLIK, 
0025 1 	 ZT,PARVAR,IFAIL) 
0026 C 
0027 C 
0028 C 
0029 C REGAME 
0030 C 
0031 C 
0032 C MAIN CONTROLLING SUBROUTINE 
0033 C 
0034 C INPUT 
0035 C YT(NLT) 	=Y(NL) 	DATA VECTOR OF OBSERVATIONS 
0036 C NLT 	=NL 	NUMBER OF OBSERVATIONS (BETWEEN 1 AND 200) 
0037 C ACCTOL 	 ACCURACY TO WHICH PARAMETERS REQUIRED (>0.0) 
0038 C NCALMX 	 MAXIMUM NUMBER OF FUNCTION EVALS. IN E04JBF 
0039 C NLIKT 	=NLIK 	CHOICE OF OPTIMIZATION CRITERION 
0040 C 1 	MAXIMUM LIKELIHOOD (GAUSSIAN LIKELIHOOD) 
0041 C 2 	RESTRICTED MAXIMUM LIKELIHOOD 
0042 C 3 	SUM OF SQUARES (OR CHI-SQUARED) 
0043 C NSCALT 	=NSCALE 	1 	IF SCALE PARAMETER TO BE ESTIMATED 
0044 C NMT 	=NM 	NUMBER OF REGRESSION PARAMETERS, USED WHEN 
0045 C NLIK=2 OR NCVI=1 (BETWEEN 0 AND 5) 
0046 C NOERT 	=NOER 	1 	IF THE DERIVATIVE SUBROUTINE REGDER 
0047 C SUPPLIED, CALLED WHEN NLIK=2 OR NCVI=1 
0048 C NVAR 	 1 	IF PARAMETER VARIANCES TO BE ESTIMATED BY 
0049 C DIFFERENCE METHODS, OTHERWISE THE 
0050 C APPROX.-IN E04JBF WILL BE USED 
0051 C NPARVR 	 DIMENSIONS OF PARVAR 
0052 C ( >= NPAR, NPAR+1 	IF NSCALE=1) 
0053 C NOUTT 	=NOUT 	CONTROLS OUTPUT 
0054 C 0 	ITERATIONS TO NOUT6 (WIDTH 80 CHAR.) 
0055 C 1 	 AND NOUT10 (WIDTH 120 CHAR.) 
0056 C 2 	FINAL RESULTS TO NOUT10 
0057 C 3 	AND PLOTS 
0058 C 4 	INTERMEDIATE RESULTS IN REGAME, REGVAR 
0059 C 5 	 AND IN REGLIK, REGAMD 
0060 C MCVI 	 1 	CREATES OUTPUT TO NOUT8 AND NOUT9 FOR 
0061 C INPUT TO PROGRAM CEVOPE 
0062 C 
0063 C INPUT/OUTPUT 
0064 C PARAM(16) 	 PARAMETER STARTING VALUES / ESTIMATES 
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0065 C NPART 	=NPAR NUMBER OF PARAMETERS (BETWEEN 1 AND 15) 
0066 C / INCREASED BY 1 IF NSCALE=1 
0067 C SE(16) APPROX. STANDARD ERRORS (>=O.0), 	IF 0.0 THEN 
0068 C THAT PARAMETER HELD CONSTANT 
0069 C / PARAMETER STANDARD ERRORS 
0070 C 
0071 C OUTPUT 
0072 C XLIK FINAL VALUE OF OPTIMIZATION FUNCTION 
0073 C ZT(NLT) 	=Z(NL) VECTOR OF RESIDUALS FROM MODEL 
0074 C PARVAR(NPARVR,NPARVR) PARAMETER VARIANCES, CORRELS. BELOW DIAG. 
0075 C IFAIL FAILURE INDICATOR 
0076 C 0 	MODEL FITTING SUCCESSFUL 
0077 C 1 	ONE OF PARAMETERS OUT OF RANGE 
0078 C 2 	TOO MUCH ROUNDING ERROR FOUND BY E04HBF 
0079 C FOR STARTING PARAM TO BE USEABLE 
0080 C 3 	NCALMX EXCEEDED 
0081 C 4 	NOT ALL CONDITIONS FOR OPTIMUM SATISFIED 
0082 C BUT NO BETTER POINT FOUND 
0083 C 5 	OPTIMUM NOT FOUND IN LOCAL SEARCH, 
0084 C PROBLEM ILL-CONDITIONED 
0085 C +10 	VARIANCES ONLY FOUND APPROXIMATELY 
0086 C 
0087 C 
0088 C 
0089 C MODEL DEPENDENT SUBROUTINES 
0090 C 
0091 C 
0092 C REGMOD 
0093 C 
0094 C SUBROUTINE SPECIFYING F AND VAR FOR PARTICULAR 
0095 C PARAMETER VALUES. 
0096 C 
0097 C INPUT 
0098 C PARAM(NPAR) VECTOR OF MODEL PARAMETERS 
0099 C NPAR NUMBER OF MODEL PARAMETERS 
0100 C NLMAX FIRST DIMENSION OF VAR 
0101 C ML NUMBER OF OBSERVATIONS 
0102 C NFDIF 1 	IF F IS REQUIRED, BUT NOT VAR 
0103 C 
0104 C OUTPUT 
0105 C F(NL) VECTOR OF FITTED VALUES 
0106 C VAR(NLMAX,11) BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
0107 C NPQA NP+NQ+1 
0108 C NP GENERALIZED AUTOREGRESSIVE ORDER (<=5) 
0109 C NQ GENERALIZED MOVING AVERAGE ORDER (<=5) 
0110 C NTEQ 1 	IF ALL ROWS OF PHI ARE EQUAL IN 
0111 C DECOMPOSITION OF VAR 
0112 C 
0113 C CONTROL 
0114 C NOUT CONTROLS OUTPUT 
0115 C IFAIL 1 	IF F OR VAR CANNOT BE EVALUATED AT PARAM 
0116 C 
0117 C 
0118 C 
0119 C REGDER 
0120 C 
0121 C SUBROUTINE SUPPLYING DERIV FOR PARTICULAR PARAMETER VALUES 
0122 C IF NDER=1 AND EITHER NLIK=2 OR NCVI=1 
0123 C 
0124 C INPUT 
0125 C PARAM(NPAR) VECTOR OF MODEL PARAMETERS 
0126 C NPAR NUMBER OF MODEL PARAMETERS 
0127 C NLMAX FIRST DIMENSION OF DERIV 
0128 C ML NUMBER OF OBSERVATIONS 
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0129 C NM SECOND DIMENSION OF DERIV 
0130 C 
0131 C OUTPUT 
0132 C DERIV(NLMAX,NM) MATRIX OF FIRST DERIVATIVES OF F W.R.T. PARAM 
0133 C 
0134 C CONTROL 
0135 C MOOT CONTROLS OUTPUT 
0136 C IFAIL 1 	IF DERIV CANNOT BE EVALUATED AT PARAM 
0137 C 
0138 C 
0139 C 
0140 C NAG ROUTINES 
0141 C 
0142 C 
0143 C E04HBF 
0144 C E04JBF 
0145 C E04JBQ 
0146 C F01ABF 
0147 C F03ABF 
0148 C F03AGF 
0149 C F04ATF 
0150 C F041JGF 
0151 C G05CBF 
0152 C G05DDF 
0153 C X02AAF 
0154 C 
0155 C 
0156 C AUXILIARY NAG ROUTINES 
0157 C 
0158 C 
0159 C E04JBM E04KBV E04KBY E04JBN E04,JBP 
0160 C E041JBR E04JBS E04JBT EO4JBU E04JBV 
0161 C E04JBW E04JBX E041JBY E04JBZ E04KBQ 
0162 C E04KBR E04KBS E04KBT E04KBU E04KBW 
0163 C E04KBX E04KBZ E04LBT E04LBU E04LBV 
0164 C E04LBW E04LBX E04LBY E04LBZ E04ABZ 
0165 C F04AHF F04AQF F03AEF F03AFF F04AJF 
0166 C F01ACF F01ADF F01DEF F04JGZ F02WDF 
0167 C F02WDZ FO1QAF F01QAY F02WAZ F041JAY 
0168 C F04JGR F04JGW F01LZF F01QAZ F02SZF 
0169 C F02WAY F02WCW F02WCY F02WDY F04JGS 
0170 C F04JGV F04JGY F01LZW F01LZX F01LZY 
0171 C F01LZZ FO1QAW F01QAX F02SZZ F04JGT 
0172 C F04JGU F04JGX X02ACF X02AGF X028CF 
0173 C X028DF X020AF X03AAF P01AAF X04AAF 
0174 C Y13AAF Y13ACF Y13AEF Y13AFF Y13AGF 
0175 C Y13ADF Y13ABF G05CAF G05CCF G05CGZ 
0176 C G05CFZ BG05CC 
0177 C 
0178 1. 
0179 C AUXILIARY OUTPUT ROUTINES 
0180 C 
0181 C 
0182 C /NINOUT/ 
0183 C MATPN1 
0184 C MATPRO 
0185 C MATPR1 
0186 C MATPR2 
0187 C PLTACR 
0188 C PLTLNG 
0189 C 
0190 C 
0191 C LIST OF SUBROUTINES AND ROUTINES CALLED BY THEM, 
0192 C ARRANGED HIERARCHICALLY. 



- 332 - 

0193 C 
0194 C MODEL NAG OTHER 
0195 C 
0196 C 1 REGAME: 	E04HBF 
0197 C ====== 	E04JBF 
0198 C REGLIK 
0199 C REGVAR 
0200 C REGOUT 
0201 C REGCVI 
0202 C MATPN1 
0203 C MATPRO 
0204 C MATPR1 
0205 C . 
0206 C 
0207 C E04HBF: REGLIK 
0208 C 
0209 C 
0210 C E041JBF: REGLIK 
0211 C REGMON 
0212 C E041JBQ 
0213 C . . 
0214 C 
0215 C 2 REGLIK: REGAMD 
0216 C ======= REGTRA 
0217 C REGMOD 
0218 C REGDER 
0219 C F03ABF 
0220 C MATPRO 
0221 C MATPR1 
0222 C MATPR2 
0223 C . . . 
0224 C 
0225 C 3 REGMON: 
0226 C 
0227 C . 
0228 C 
0229 C 4 REGVAR: REGLIK 
0230 C ======= REGTRA 
0231 C (REGVRF) F01ABF 
0232 C MATPR2 
0233 C . 
0234 C 
0235 C 5 REGOUT: PLTACR 
0236 C PLTLNG 
0237 C . . 
0238 C 
0239 C 6 REGCVI: REGAMD 
0240 C ====== REGTRA 
0241 C REGMOD 
0242 C REGDER 
0243 C F01ABF 
0244 C MATPR2 
0245 C . . 
0246 C 
0247 C 7 REGAND: F03AGF 
0248 C ======= F04ATF 
0249 C F04JGF 
0250 C X02AAF 
0251 C MATPRO 
0252 C MATPR1 
0253 C MATPR2 

- 	0254 C . . • 
0255 C 
0256 C 8 REGTRA: MATPR1 
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0257 C ======= 
0258 C . 	 . 	 . 

0259 C 
0260 C 9 	REGGEN: 	 REGAMD 
0261 C ======= 	 REGTRA 
0262 C REGMOD 
0263 C G05CBF 
0264 C G05DDF 
0265 C 
0266 C 
0267 C 
0268 C THE TYPES OF ALL VARIABLES ARE DECLARED. 
0269 C VARIABLES BEGINNING WITH A-H OR P-Z ARE DOUBLE PRECISION REALS 
0270 C THE REST ARE INTEGERS EXCEPT FOR OCCASIONAL LOGICAL VARIABLES 
0271 C BEGINNING WITH THE LETTER L. 
0272 C THE ORDER OF DECLARATION IS: 
0273 C VARIABLES TRANSFERRED IN PARAMETER LISTS, 
0274 C VARIABLES IN COMMON, 
0275 C LOCAL VARIABLES IN ALPHABETICAL ORDER. 
0276 C 
0277 DOUBLE PRECISION 
0278 1 	YT(NLT) ,ACCTOL,PARAM( 16) ,SE( 16) ,XLIK,ZT(NLT), 
0279 1 PARVAR(NPARVR,NPARVR), 
0280 1 	PARAIIM(16),PARAMS(16),XLIKM,XLIKS,STEPMX,SCALE, 
0281 1 Y(200),F(200),Z(200),VAR(200,11),THETA(200,6), 
0282 1 	BOUNDL(15),BOUNDU(15),EPS(15),ETA,HESD(15),HESL( 105), 
0283 1 PARAMT(16),RSCALE,WK(135),XLIKD(16),XLIKT,XLKMIN,XX 
0284 INTEGER 
0285 1 	NLT,NCALMX,NLIKT,NSCALT,NMT,NDERT,NVAR,NPARVR,NOUTT,NCVI, 
0286 1 NPART,IFAIL, 
0287 1 	MLEST(16) ,NPAR,NOUT,NSCALE,NSTAGE, 
0288 1 NL,NPQA,NPA,NQA,NP,NQ,NLIK,NM,NDER,NLMAX,NpMAX,NQr4AX, 
0289 1 	I I IFAILT,J,JZ,K,KU,MCONST(15),MWK(2),NBOUND,NCALL, 
0290 1 NCALMT,NFLAG,NHESL,NMMAX,NMONIT,NMWK,NN,NPARMX,NpEST, 
0291 1 NPRI,NSTYPE,NWK 
0292 LOGICAL 
0293 1 	LOGJBF 
0294 COMMON 
0295 1 /REGCM1/ PARAMM,PARAMS,XLIKM,XLIKS,STEPMX,MLEST,NPAR,NOLJT 
0296 1 /REGCM2/ SCALE,NSCALE,NSTAGE 
0297 1 /REGCM3/ Y,F,Z,VAR,THETA,NL,NPQA,NPA,NQA,NP,NQ, 
0298 1 	 NLIK,NM,NDER,NLMAX,NPMAX,NQMAX 
0299 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
0300 C 
0301 C 
0302 C 
0303 C /REGCM1/ SHARED BY REGAME, REGLIK, REGMON, REGVAR 
0304 C 
0305 C PARAMM(16) 	 LOCATION SHIFT TRANSFORMING PARAM TO PARAMT 
0306 C PARNIS(16) 	 SCALE SHIFT TRANSFORMING PARAM TO PARANT 
0307 C XLIKM 	 LOCATION SHIFT TRANSFORMING XLIK TO XLIKT 
0308 C XLIKS 	 SCALE SHIFT TRANSFORMING XLIK TO XLIKT 
0309 C STEPMX 	 MAX. CHANGE OF PARAMT IN ONE STEP BY E04JBF 
0310 C MLEST(16) 	 LOCATION OF PARAMETERS TO BE ESTIMATED 
0311 C NPAR 	 NUMBER OF MODEL PARAMETERS 
0312 C NOUT 	 CONTROLS OUTPUT 
0313 C 
0314 C /REGCM2/ SHARED BY REGAME, REGLIK, REGVAR 
0315 C 
0316 C SCALE 	 SCALE PARAMETER 
0317 C NSCALE 	 1 	IF SCALE PARAMETER TO BE ESTIMATED 
0318 C NSTAGE 	 I. 	FOR ESTIMATION STAGE 
0319 C 2 	FOR CALCULATION OF PARVAR STAGE 
0320 	C 
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0321 	C /REGCM3/ SHARED BY REGAME, REGLIK 
0322 	C 
0323 C Y(200) DATA VECTOR OF OBSERVATIONS 
0324 C F(200) VECTOR OF FITTED VALUES 
0325 C Z(200) VECTOR OF RESIDUALS FROM MODEL 
0326 C VAR(200,11) BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
0327 
0328 

C 
C 

THETA(200,6) 
NL SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 

NUMBER OF OBSERVATIONS 
0329 C NPQA NUMBER OF COLUMNS IN VAR (NP+NQ+1) 
0330 
0331 

C 
C 

NPA NUMBER OF COLUMNS IN PHI (NP+1) 
NQA NUMBER OF COLUMNS IN THETA (NQ+1) 

0332 C NP GENERALIZED AUTOREGRESSIVE ORDER 0333 
0334 

C 
C 

NQ GENERALIZED MOVING AVERAGE ORDER 
NLIK OPTIMIZATION CRITERION 

0335 
0336 

C 
C 

NM NUMBER OF REGRESSION PARAMETERS, AND SECOND 
0337 C NDER DIMENSION OF DERIV (WHEN NLIK=2 OR NCVI=1) 

1 IF DERIVATIVE SUBROUTINE REGDER AVAILABLE 
0338 C NLMAX MAXIMUM SIZE ALLOWED FOR ML (=200) 0339 C NPMAX MAXIMUM SIZE ALLOWED FOR NP (=5) 0340 C NQMAX MAXIMUM SIZE ALLOWED FOR NO (=5) 
0341 C 
0342 C 
0343 C 
0344 C LOCAL 
0345 C BOUNDL(15) LOWER BOUNDS ON PARAMT IN E04JBF 
0346 C BOUNDU(15) UPPER BOUNDS ON PARAMT IN E04JBF 
0347 C EPS(15) STEP LENGTH TO CALC. DERIVS. IN E04JBF 
0348 C ETA ACCURACY OF 1-0 SEARCH IN E04JBF 
0349 C HESD(15) DIAG. OF DECOMPOSITION OF SECOND DERIVS. 
0350 C HESL(105) LOWER TRIANGLE OF DECOMP. OF SECOND DERIVS. 0351 C I LENGTH INDEX 
0352 C IFAILT FAILURE INDICATOR IN REGVAR 
0353 C J INDEX 
0354 C JZ NPAR+1-J 
0355 C K INDEX 
0356 C KU UPPER BOUND ON K DO-LOOP 
0357 C LOGJBF DUMMY VARIABLE (LOGICAL) 
0358 C MCONST(15) DENOTES CONSTRAINED PARAMETERS IN E04JBF 0359 C MWK(2) WORK SPACE IN E04HBF, E04JBF 
0360 
0361 

C 
C 

NBOUND SPECIFIES TYPE OF BOUNDARIES IN E041JBF 
NCALL NUMBER OF CALLS TO REGLIK BY E04HBF 

0362 C NCALMT MAX. CALLS TO REGLIK FROM E04JBF, 0363 
0364 

C 
C NFLAG 

HALVED IF IFAIL RETURNED SET TO 4 

0365 C NHESL 
DUMMY USED IN CALLING REGLIK 
DIMENSION OF HESL 

0366 C NMMAX MAXIMUM OF NM 
0367 C NMONIT SPECIFIES FREQUENCY OF CALLS TO REGMON 
0368 C NMWK DIMENSION OF MWK 
0369 
0370 

C 
C 

MN 
NPARMX 

NUMBER OF ELEMENTS USED IN HESL 
MAXIMUM OF NPAR 

0371 C NPEST NUMBER OF PARAMETERS TO BE ESTIMATED 
0372 
0373 

C 
C 

NPRI 
NSTYPE 

1 	IF INTERMEDIATE RESULTS OUTPUT 
SPECIFIES START CONDITIONS IN E04JBF 

0374 C NWK DIMENSION OF WK 
0375 C PARAMT(15) RESCALED PARPM 
0376 C RSCALE SQUARE-ROOT OF SCALE 
0377 C WK(135) WORK SPACE IN E04HBF, E041JBF 
0378 C XLIKD(16) FIRST DERIVATIVE OF XLIKT W.R.T. PARANT 
0379 C XLIKT RESCALED OPTIMIZATION FUNCTION 
0380 C XLKMIN LOWER BOUND ON XLIKT USED BY E041JBF 0381 C XX WORK SPACE 
0382 C 
0383 C 
0384 C 
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EXTERNAL REGLIK,REGMON,E04JBQ 
DATA NMMAX,NPARMX,NHESL,NMWK,NWK,LOGJBF 

/ 	5, 	15, 105, 	2, 135, .TRUE./ 
NOUT=NOUTT 
WRITE (NOUT6,938) 
IF (NOUT.GE .1) WRITE (NOUT10,942) 
NLMAX=200 
NPMAX=5 
NQMAX=5 

CHECK PARAMETERS ARE IN RANGE 

NL=NLT 
NLIK=NLIKT 
NSCALE=NSCALT 
NM=NMT 
NDER=NDERT 
NPAR=NPART 
IF ((NL.LT.1).OR.(NL.GT .NLMAX)) GO TO 017 
IF (ACCTOL.LE.O.000) GO TO 019 
IF ((NLIK.LT .1).OR.(NLIK.GT .3)) GO TO 021 
IF ((NM.LT.0).OR.(NM.GT.NMMAX)) GO TO 023 

NP AR 
IF (NSCALE.EQ.1) K=NPAR+1 
IF (NPARVR.LT .K) GO TO 025 
IF ((NPAR.LT .1).OR.(NPAR.GT .NPARMX)) GO TO 027 
00 001 I=1,NL 
Y(I)=YT(l) 

SET PARAMETERS TO BE ESTIMATED 

K=O 
DO 002 J=1,NPAR 
IF (SE(J).LT.-1.OD-12) GO TO 029 
PARAMM(J)=PARAM(J) 
PARAMS(J)=SE(J) 
IF (SE(J).LT.1.0D-12) GO TO 002 
K=K+1 
MLEST(K)=J 
PARAMT ( K) =0 . 000 
CONTINUE 
NPEST=K 
K=K+1 
MLEST(K)=O 
IF (NPEST.LT .1) GO TO 032 

OUTPUT HEADINGS 

WRITE (NOUT6,939) 
IF (NOUT.LT .1) GO TO 003 
WRITE (NOUT10,943) 
WRITE (NOUT10,944) 
WRITE (NOUT10,945) NCALMX,NLIK,NSCALE,NM,NDER,ACCTOL,NVAR,NPEST, 
1 (PARAMS(I),I=1,NPAR) 
WRITE (NOUT10,946) 

INITIALISE PARAMETERS FOR E04JBF 

NPR I=O 
IF (NOUT.GE .4) NPRI=1 
NSTAGE=1 
XLIKM=O.000 
XLIKS=FLOAT( NPEST) 
CALL REGLIK(NFLAG,NPEST,PARAMT,XLIKT,XLIKD,MWK,NMWK,WK,NWK) 

0385 
0386 
0387 
0388 
0389 
0390 
0391 
0392 
0393 
0394 
0395 
0396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412.01 001 
0413.01 C 
0414.01 C 
0415.01 C 
0416 
0417 
0418.01 
0419.01 
0420.01 
0421.01 
0422.01 
0423.01 
0424.01 
0425.01 002 
0426 
0427 
0428 
0429 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 
0438 
0439 
0440 
	

C 
0441 
	

C 
0442 
	

C 
0443 
	

003 
0444 
0445 
0446 
0447 
0448 



- 336 - 

0449 IF (XLIKT.GT.9.9019) GO TO 031 
0450 XLIKM=XLIKT*XLIKS_XLIKS 
0451 C 
0452 IFAIL=1 
0453 CALL E04HBF(NPEST,REGLIK,PARAMT,NCALL,EPS,HESL,NHESL,HESD, 
0454 1 	 XLIKT,XLIKD,MWK,NMWK,WK,NWK, IFAIL) 
0455 IF 	(NPRI.NE .1) GO TO 004 
0456 CALL MATPR1(EPS,NPEST,1) 
0457 CALL MATPR1(HESD,NPEST,1) 
0458 CALL MATPRO(XLIKT,1) 
0459 CALL MATPR1(XLIKD,NPEST,1) 
0460 004 IF (IFAIL-1) 	007,034,005 
0461 005 WRITE (NOUT6,906) 
0462 IF (NOUT.GE.1) WRITE (NOUT10,906) 
0463 906 FORMAT (' 	REGA'IE: 	E04JBF CANNOT START FROM THIS POINT ***1) 
0464 GO TO 012 
0465 C 
0466 007 IF (NCALMX.GT.0) GO TO 008 
0467 IFAIL=3 
0468 GO TO 012 
0469 008 NCALMT=NCALMX 
0470 NMONIT=1 
0471 NSTYPE=1 
0472 ETA=O.5D0 
0473 IF (NPEST.EQ.1) ETA=0.000 
0474 STEPMX=1.000 
0475 XLKMIN=-1.000 
0476 NBOUND=1 
0477 IFAIL=1 
0478 C 
0479 C OPTIMIZATION USING E04JBF 
0480 C 
0481 009 CALL E04JBF(NPEST,REGLIK,REGMON,NMONIT,LOGJBF,NSTYPE,E04JBQ, 
0482 1 	 NCALMT,ETA,ACCTOL,STEPMx,xLKMIN,EPS,NBOuND,BOIJNDL, 
0483 1 	 BOUNOU,PARAMT,HESL,NHESL,HESD,MCONST,XLIKT, - 
0484 1 	 XLIKD,MWK,NMWK,WK,NWK,IFAIL) 
0485 IF (IFAIL.EQ.1) GO TO 036 
0486 IF (IFAIL.NE .4) GO TO 011 
0487 WRITE (NOUT6,910) 
0488 IF (NOUT.GE .1) WRITE (NOUT10,910) 
0489 910 FORMAT (' 	REGAME: E04.JBF FAILED BUT BEING RESTARTED ***I) 
0490 NSTYPE=0 
0491 NCALMT=NCALMT/ 2 
0492 GO TO 009 
0493 011 CALL REGLIK(NFLAG,NPEST,PARAMT,XLIKT,XLIKD,MWK,NMWK,WK,NWK) 
0494 IF (IFAIL.EQ.3) 	IFAIL=4 
0495 IF (IFAIL.EQ.2) IFAIL=3 
0496 IF (NPRI.NE .1) GO TO 012 
0497 NN=((NPEST*(NPEST_1)))/2 
0498 CALL MATPR1(HESL,NN,1) 
0499 CALL MATPR1(HESD,NPEST,1) 
0500 CALL MATPN1(MCONST,NPEST,1) 
0501 CALL MATPR1(XLIKD,NPEST,1) 
0502 C 
0503 C CALCULATE PARAMETER VARIANCES AND RESULTS FOR OUTPUT 
0504 C 
0505 012 CALL REGVAR(NVAR,HESL,NHESL,HESD,ACCTOL,NPEST,XLIKT,NL,NPARVR, 
0506 1 	 PARANT,PARVAR,SE,MWK,NMWK,WK,NWK,NPRI,IFAILT) 
0507 IF (IFAILT.NE .0) 	IFAIL=IFAIL+10 
0508 IF (NSCALE.EQ.1) 	XLIKD(NPAR)=0.ODO 
0509 K=NPEST 
0510 DO 013 JZ=1,NPAR 
0511.01 XX=O.ODO 
0512.01 J=NPAR+1-JZ 
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0513.01 	IF (K.EQ.0) GO TO 013 
0514.01 	IF (MLEST(K).NE.J) GO TO 013 
0515.01 	XX=XLIKD(K) 
0516.01 	K=K_1 
0517.01 013 	XLIKD(J)XX 
0518 	 NPART=NPAR 
0519 	C 
0520 	 XLIK=XLIKT*XLIKS+XLIKM 
0521 	 K=1 
0522 	 DO 014 J=1,NPAR 
0523.01 	XX=O.ODO 
0524.01 	IF (MLEST(K).NE.J) GO TO 014 
0525.01 	XX=PARAMT(K) 
0526.01 	K=K+1 
0527.01 014 	PARAM(J)=XX*PARAMS(J)+PARAr.IM(J) 
0528.01 C 
0529 	 RSCALE=DSQRT(SCALE) 
0530 	 DO 016 I=1,NL 
0531.01 	Z(I)=Z(I)/RSCALE 
0532.01 	ZT(I)=Z(I) 
0533.01 	DO 015 J=1,NQA 
0534.02 015 	THETA(I,J)=THETA(I,J)*RSCALE 
0535.01 	DO 016 J=1,NPQA 
0536.02 016 	VAR(I,J)=VAR(I,J)*SCALE 
0537.02 C 
0538.02 C 	OUTPUT OF RESULTS 
0539.02 C 
0540 	 WRITE (NOUT6,940) IFAIL,XLIK,(PARAM(,J),J=1,NPAR) 
0541 	 WRITE (NOUT6,941) (SE(J),J=1,NPAR) 
0542 	 IF (NPAR.GE .2) WRITE (NOUT6,950) PARVAR(2,1) 
0543 	 IF (NPAR.LT .3) GO TO 51 
0544 	 DO 50 J=3,NPAR 
0545.01 	.KU=J-1 
0546.01 50 	WRITE (NOUT6,951) (PARVAR(J,K),K=1,KU) 
0547 	51 	-IF (NOUT.GE .1) CALL REGOUT(IFAIL,XLIK,XLIKD I PARAM,NPAR,SE, 
0548 	1 	 PARVAR,NPARVR,Y,F ,Z,THETA,NLMAx, 
0549 	1 	 NL,NQA,VAR,NPQA,NP,NQ,NOUT) 
0550 	 IF (NCVI.EQ.1) CALL REGCVI(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ, 
0551 	1' 	 Y,F ,PARAM,PARAMM,PARAMS,PARA?IT, 
0552 	1 	 MLEST,NPAR,NM,NDER,NOUT,IFAIL) 
0553 	 RETURN 
0554 	C 
0555 	C 	ERROR MESSAGES 
0556 	C 
0557 	017 	WRITE (NOUT6,918) NL 
0558 	 IF (NOUT.GE .1) WRITE (NOUT10,918) NL 
0559 	918 	FORMAT (' 	REGAME: NL =',IS,' OUT OF RANGE ***I) 
0560 	 IFAIL=1 
0561 	 RETURN 
0562 	019 	WRITE (NOUT6,920) ACCTOL 
0563 	 IF (NOUT.GE .1) WRITE (NOUT10,920) ACCTOL 
0564 	920 	FORMAT (' 	REGAME: ACCTOL =',1PG12.4,' OUT OF RANGE ***t) 
0565 	 IFAIL=1 
0566 	 RETURN 
0567 	021 	WRITE (NOUT6,922) NLIK 
0568 	 IF (NOUT.GE .1) WRITE (NOUT10,922) NLIK 
0569 	922 	FORMAT (' 	REGAME: NLIK =',I5,' OUT OF RANGE ***1) 
0570 	 IFAIL=1 
0571 	 RETURN 
0572 	023 	WRITE (NOUT6,924) NM 
0573 	 IF (NOUT.GE .1) WRITE (NOUT10,924) NM 
0574 	924 	FORMAT (' 	REGAME: NM =',IS,' OUT OF RANGE ***1) 
0575 	 IFAIL=1 
0576 	 RETURN 



0577 025 WRITE (NOUT6,926) NPARVR 
0578 IF (NOUT.GE .1) WRITE (NOUT10,926) NPARVR 
0579 926 FORMAT (' 	REGAME: 	NPARVR =',15, 	OUT OF RANGE 

***S) 

0580 IFAIL=1 
0581 RETURN 
0582 027 WRITE (NOUT6,928) NPAR 
0583 IF (NOUT.GE.1) WRITE (NOUT10,928) NPAR 
0584 928 FORMAT (' 	REGAME: NPAR =,15 	OUT OF RANGE 

***5) 

0585 IFAIL=1 
0586 RETURN 
0587 029 WRITE (NOUT6,930) SE(J) 
0588 IF (NOUT.GE .1) WRITE (NOUT10,930) SE(J) 
0589 930 FORMAT (' 	REGAME: 	SE =',1PG12.4,' OUT OF RANGE 

***1) 

0590 IFAIL=1 
0591 RETURN 
0592 032 WRITE (NOUT6,933) 
0593 IF 	(NOUT.GE .1) WRITE (NOUT10,933) 
0594 933 FORMAT (' 	REGAME: ALL PARAMETERS CONSTRAINED 

***1) 

0595 IFAIL=1 
0596 RETURN 
0597 031 WRITE (NOUT6,934) 
0598 IF 	(NOUT.GE .1) WRITE (NOUT10,934) 
0599 934 FORMAT (' 	REGAME: XLIK CANNOT BE EVAL. AT PARNI START 

***1) 

0600 IFAIL=1 
0601 RETURN 
0602 034 WRITE (NOUT6,935) 
0603 IF 	(NOUT.GE .1) WRITE (NOUT10,935) 
0604 935 FORMAT (' 	REGAME: E04HBF PARAMETER OUT OF RANGE 

***1) 

0605 RETURN 
0606 036 WRITE (NOUT6,937) 
0607 IF 	(NOUT.GE .1) WRITE (NOUT10,937) 
0608 937 FORMAT (S 	REGAME: E04JBF PARAMETER OUT OF RANGE ***1) 

0609 RETURN 	 - 
0610 C 
0611 C FORMAT STATEMENTS 
0612 C 
0613 938 FORMAT (//9X,'R E S U L T S 	FROM 	PROGRAM 
0614 1 	'R E G A N E') 
0615 939 FORMAT (//5  MITER NCALL 	XLIK 	XLIKCH 	SLOPE 
0616 1 	'PARACH 	COND'/21X,'PARAM ..... 

0617 940 FORMAT (/' 	IFAIL=',13,1PG14.6/19X,5G12.4/ 
0618 1 19X,5G12.4/19X,5G12.4/19X,5G12.4) 
0619 941 FORMAT (13X,'S.E.= 	',1P5G12.4/ 
0620 1 19X,5G12.4/19X,5G12.4/19X,5G12.4) 
0621 950 FORMAT (/12X,'CORREL 	',5(F8.4,4X)/ 
0622 1 19X,5(F8.4,4X)/19X,5(F8.4,4X)/19X,5(F8.4,4X)) 
0623 951 FORMAT (19X,5(F8.4,4X)/ 
0624 1 19X,5(F8.4,4X)/19X,5(F8.4,4X)/19X,5(F8.4,4X)) 
0625 942 FORMAT (1H1////22X,'R E S U L T S 	F R 0 M 	P R 0 G R A N', 
0626 1 ' 	R E G A M E 	- 	C 	. A . G L A S B £ Y'/) 
0627 943 FORMAT (/1X,119('*') 
0628 1 	/5X,'R',9X,'D',39X,'D',9X,'R',39X,'R',9X,'D' 
0629 1 	/3X,'F',3X,'U',5X,'U',3X,'O',35X,'U' ,3X,'O',5X,'F' ,3X,'U' 
0630 1 	,35X,'F',3X,'U',5X,'U',3X,'0' 
0631 1 	/1X,AI,3X,*,3X,'S',1X,'ES,3X,'*',3X,'S' 
0632 1 	,31X,'E' ,3X,'*',3X,'S'  ,1X,'A'  ,3X,'*'  ,3X,'S' 
0633 1 	,31X,'A' ,3X,'*'  ,3X,'S' ,1X,'E' ,3X,S*S  ,3X,'S' 
0634 1 	/1X,'E',3X,'+',3X,'S',1X,'A',3X, 1 + 1 ,3X,'S' 
0635 1 	,31X,'A',3X,'+',3X,'S',1X,'E',3X,'+',3X,'S' 
0636 1 	,31X,'E',3X,'+',3X,'S',1X,'A',3X,'+',3X,'S' 
0637 1 	/3X,'U',3X,'O',5X,'F',3X,'U',35X,'F',3X,'U',5X,'U',3X,'O' 
0638 1 	,35X,'U',3X,'O',5X,'F',3X,'U' 
0639 1 	/5X,'D',9X,'R',39X,'R',9X,'D',39X,'D',9X,'R' 
0640 1 
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0641 944 FORMAT (I/f' 	I 	T E R A I I 0 N S') 
0642 945 FORMAT (II' 	NCALMX 	NLIK NSCALE 	NM 	NDER 	ACCTOL', 
0643 1 	' 	NVAR 	NPEST 	PARAIIS ..... 'I 
0644 1 4X,16,1X,416,5X,1PD8.1,1X,216,3X,4G14.6/62X,4G14.6/ 
0645 1 60X,4G14.6/58X,4G14.6) 
0646 946 FORMAT (1/' MITER NCALL 	XLIK 	XLIKCH 	SLOPE 
0647 1 	'PARACH 	COND 	 PARAM ..... 

0648 END 
0649 
0650 SUBROUTINE REGLIK(NFLAG,NPEST,PARNIT,XLIKT,XLIKD,MWK,NMWK,WK,NWK) 
0651 C 
0652 C 
0653 C 
0654 C REGLIK 
0655 C 
0655 C 
0657 C EVALUATES OPTIMIZATION FUNCTION AT PARAMI CALLING REGMOD, 
0658 C AND REGDER IF NLIK=2, NDER=1 
0659 C 
0660 C INPUT 
0661 C MPEST 	 NUMBER OF PARAMETERS TO BE ESTIMATED 
0662 C PARAMT(NPEST) 	RESCALED PARAMETERS TO BE ESTIMATED 
0663 C 
0664 C OUTPUT 
0665 C XLIKT 	 RESCALED OPTIMIZATION FUNCTION 
0666 C (SET TO 1.0D20 IF IT CANNOT BE EVALUATED) 
0667 C 
0668 C 	.DUMMY 
0669 C NFLAG 
0670 C XLIKD(NPEST) 
0671 C MWK(NMWK) 
0672 C NMWK 
0673 C WK(NWK) 
0674 C NWK 
0675 C 
0676 C 
0677 C 
0678 DOUBLE PRECISION 
0679 1 	PARAMT(NPEST),XLIKT,XLIKD(NPEST),WK(NWK), 
0680 1 	PARAMM(16),PARAMS(16),XLIKM,XLIKS,STEPMX,SCALE, 
0681 1 Y(200),F(200),Z(200),VAR(200,11),THETA(200,6), 
0682 1 	DD(5,5),000ET,DDTDET,DERIV(200,5),E(200),EPSL,PARAM(16), 
0683 1 PHI(200,6),SS,W1(200),W2(200),XLDET,XX,XY 
0684 INTEGER 
0685 1 	NFLAG,NPEST,MWK(NMWK) ,NMWK,NWK, 
0686 1 	MLEST(16) ,NPAR,NOUT,NSCALE,NSTAGE, 
0687 1 NL,NPQA,NPA,NQA,NP,NQ,NLIK,NM,NDER,NLMAX,NPMAX,NQMAX, 
0688 1 	I,IFAIL,J,K,NFDIF,NPRI ,NTEQ 
0689 COMMON 
0690 1 /REGCM1/ PARAMM,PARAIIS,XLIKM,XLIKS,STEPMX,MLEST,NPAR,NOUT 
0691 1 /REGCM2/ SCALE,NSCALE,NSTAGE 
0692 1 /REGCM3/ Y,F,Z,VAR,THETA,NL,NPQA,NPA,NQA,NP,NQ, 
0693 1 	NLIK ,NM,NDER,NLMAX,NPMAX ,NQMAX 
0694 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
0695 C 
0696 C 
0697 C 
0698 C LOCAL 
0699 C DD(5,5) 	 SUM OF SQARES OF DERIV, AND TRANSFORMED DERIV 
0700 C DDDET 	 DETERMINANT OF DD 
0701 C DDTDET 	 DETERMINANT OF DD AFTER TRANSFORMATION 
0702 C DERIV(200,5) 	FIRST DERIVATIVE OF F(NL) W.R.T. PARAM(NM) 
0703 C E(200) 	 VECTOR OF DEPARTURES 
104. C EPSL 	 STEPLENGTH USED TO C LC_OER1VJ.EJWER NOT 1 
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0705 C I 	 LENGTH INDEX 
0706 C IFAIL 	 FAILURE INDICATOR 
0707 C J 	 INDEX 
0708 C K 	 INDEX 
0709 C NFDIF 	 1 	IF ONLY F REQUIRED FROM REGMOD 
0710 C NPRI 	 1 	IF INTERMEDIATE RESULTS OUTPUT 
0711 C NTEQ 	 1 	IF ALL ROWS OF PHI EQUAL 
0712 C PARAM(16) 	 VECTOR OF MODEL PARAMETERS 
U713 C PHI(200,6) 	 FIRST MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
0714 C SS 	 SUM OF SQUARES OF RESIDUALS 
0715 C W1(200) 	 WORK SPACE 
0716 C W2(200) 	 WORK SPACE 
0717 C XLDET 	 LOG DETERMINANT OF THETA 
0718 C XX 	 WORK SPACE 
0719 C XV 	 WORK SPACE 
0720 C 
0721 C 
0722 C 
0723 EPSL=1.OD-4 
0724 NPRI0 
0725 IF (NOUT.GE .5) NPRI=1 
0726 K=1 
0727 DO 001 J=1,NPAR 
0728.01 XX=0.000 
0729.01 IF (MLEST(K).NE.J) GO TO 001 
0730.01 XX=PARAMT(K) 
0731.01 K=K+1 
0732.01 001 PARPM(J)=XX*PARAMS(J)+PARAMM(J) 
0733.01 C 
0734 NFDIF=O 
0735 IFAIL=0 
0736 CALL REGMOD( PARAM,NPAR,NLMAX,NL,NFDIF,F,VAR,NPQA,NP,NQ,NTEQ, 
0737 1 	 NOUT,IFAIL) 
0738 IF (IFAIL.NE.0) GO TO 022 
0739 IF ((NP.LT.0).OR.(NP.GT.NPMAX)) GO TO 024 
0740 IF ((NQ.LT.0).OR.(NQ.GT.NQMAX)) GO TO 026 
0741 IF (NPQA.NE.NP+NQ+1) GO TO 028 
0742 C 
0743 NPA=NP+1 
0744 •NQA=NQ+1 
0745 CALL REGAMD(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,PHI,THETA,XLDET, 
0746 1 	 NOUT,NPRI,IFAIL) 
0747 IF (IFAIL.NE.0) GO TO 030 
0748 C 
0749 DO 002 I=1,NL 
0750.01 002 E(I)=Y(I)-F(I) 
0751 CALL REGTRA(E,NL,PHI,NLMAX,NPA,0,0,W1,NOUT,NPRI,IFAIL) 
0752 CALL REGTRA(W1,NL,THETA,NLMAX,NQA,1,0,Z,NOUT,NPRI,IFAIL) 
0753 IF (IFAIL.NE .0) GO TO 030 
0754 SS=0.000 
0755 DO 003 I=1,NL 
0756.01 003 SS=SS+Z(I)*Z(I) 
0757 GO TO (004,006,020),NLIK 
0758 C 
0759 C NLIK=1 	MAXIMUM LIKELIHOOD 
0760 C 
0761 C 
0762 C XLIK=0.5*NL*LOG( SCALE)+0.5*LUG(DET(  VAR)  )+O.5*SS/SCALE 
0763 C 
0764 C 
0765 004 IF (NSTAGE.EQ.2) GO TO 005 
0766 SCALE=1.000 
0767 IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL) 
0768 005 XLIKT=( (FLOAT(NL)LOG(SCALE)+SS/5CALE)/2.0D0+XLDET-XLM)/XUKS 
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0769 	 RETURN 
0770 	C 
0771 	C 	NLIK=2 RESTRICTED MAXIMUM LIKELIHOOD 
0772 	C 
0773 	C 
0774 	C 	XLIK=0.5*(NL_NM)*LOG(SCALE)+0.5*LOG(DET(VAR))+0.5*SS/SCALE 
0775 	C 	 +135*LQG(OET(DERIV*VAR(..1)*DERIV)/DET(DERIV*OERIV)) 
0776 	C 
0777 	C 
0778 	006 	IF (NM.EQ.0) GO TO 004 
0779 	 IF (NDER.NE .1) GO TO 007 
0780 	 IFAIL=O 
0781 	 CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT, IFAIL) 
0782 	 IF (IFAIL.NE .0) GO TO 031 
0783 	 GO TO 010 
0784 	C 
0785 	007 	NFDIF=1 
0786 	 IFAIL=1 
0787 	 K=1 
0788 	 DO 009 J=1,NM 
0789.01 	XX=EPSL 
0790.01 	IF (MLEST(K).EQ.J) XX=EPSL*PARAMS(J) 
0791.01 	PARAM(J)=PARAM(J)+XX 
0792.01 	CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,W1 ,VAR,NPQA,NP ,NQ,NTEQ, 
0793.01 	1 	 NOUT,IFAIL) 
0794.01 	XY=0.ODO 
0795.01 	IF (MLEST(K).NE.J) GO TO 008 
0796.01 	XY=PARAMT(K) 
0797.01 	K=K+1 
0798.01 008 	PARAM(J)=XY*PARAMS(J)+PARAMM(J) 
0799.01 	IF (IFAIL.NE.0) GO TO 033 
0800.01 	00 009 I=1,NL 
0801.02 009 	DERIV(I,J)=(W1(I)-F(I))/XX 
0802.02 C 
0803 	010 	DO 012 J=1,NM 
0804.01 	00 012 K=1,J 
0805.02 	XX=0.000 
0806.02 	DO 011 I=1,NL 
0807.03 011 	XX=XX+DERIV(I,J)*0ERIV(I,K) 
0808.02 012 	DD(K,J)=XX 
0809 	 IFAIL=1 
0810 	 CALL F03ABF(DD,5,NM,DDDET,W1,IFAIL) 
0811 	 IF (IFAIL.NE.0) GO TO 035 
0812 	 IF (NPRI.NE .1) GO TO 013 
0813 	 CALL MATPR2(DERIV,NLMAX,NL,NM,1) 
0814 	 CALL MATPR2(DD,5,NM,NM,1) 
0815 	 CALL MATPRO(DDDET,1) 
0816 	C 
0817 	013 	00 017 J=1,NM 
0818.01 	DO 014 I=1,NL 
0819.02 014 	W1(I)=DERIV(I,J) 
0820.01 	CALL REGTRA(W1,NL,PHI,NLMAX,NPA,O,O,W2,NOUT,NPRI,IFAIL) 
0821.01 	CALL REGTRA(W2,NL,THETA,NLMAX,NQA,1,0,W1,NOUT,NPRI,IFAIL) 
0822.01 	IF•(IFAIL.NE.0) GO TO 030 
0823.01 	DO 015 I=1,NL 
0824.02 015 	DERIV(I,J)=W1(I) 
0825.01 	DO 017 K=1,J 
0826.02 	XX=O.000 
0827.02 	00 016 I=1,NL 
0828.03 016 	XX=XX+DERIV(I,J)*DERIV(I,K) 
0829.02 017 	DD(K,J)=XX 
0830 	 IFAIL=1 
0831 	 CALL F03ABF(DD,5,NM,DDTDET,W1,IFAIL) 
0832 	 IF 	FAIL.NE .0) GO TO 035 
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0833 IF 	(NPRI.NE .1) 	GO TO 018 
0834 CALL MATPR2(DERIV,NLMAX,NL,NM,1) 
0835 CALL I'tATPR2(DD,5,NM,NM,1) 
0836 CALL MATPRO(DDTUET,1) 
0837 C 
0838 018 IF (NSTAGE.EQ.2) GO TO 019 
0839 SCALE=1.000 
0840 IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL-NM) 
0841 019 XLIKT=((FLOAT(NL_NM)*DLOG(SCALE)+SS/SCALE)/2.000+XLDET 
0842 1 	+DLOG(DDTDET/DDDET)/2.ODO-XLIKM)/XLIKS 
0843 RETURN 
0844 C 
0845 C NLIK=3 	SUM OF SQUARES 
0846 C 
0847 C 
0848 C XLIK=0.5*NL*LOG(SCALE)+0.5*SS/SCALE 
0849 C 
0850 C 
0851 020 IF (NSTAGE.EQ.2) GO TO 021 
0852 SCALE=1.000 
0853 IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL) 
0854 021 XLIKT=((FLOAT(NL)*DLOG(SCALE)+SS/SCALE)/2.000_XLIKM)/XLIKS 
0855 RETURN 
0856 C 
0857 C ERROR MESSAGES 
0858 C 
0859 022 WRITE (NOUT6,923) 
0860 IF 	(NOIJT.GE.1) WRITE (NOUT10,923) 
0861 923 FORMAT (' 	REGLIK: REGMOD CANNOT EVALUATE F OR VAR ***I) 
0862 XLIKT=1.OD20 
0863 RETURN 
0864 024 WRITE (NOUT6,925) NP 
0865 IF (NOUT.GE .1) WRITE (N0UT10925) NP 
0866 925 FORMAT (' 	REGLIK: 	NP =',I5,' OUT OF RANGE ***1) 
0867 XLIKT=1.0020 
0868 RETURN 
0869 026 WRITE (NOUT6,927) NQ 
0870 IF 	(NOUT.GE .1) WRITE (NOUT10,927) NO 
0871 927 FORMAT (' 	REGLIK: 	NQ =',I5,' OUT OF RANGE ***1) 
0872 XLIKT=1.0020 
0873 RETURN 
0874 028 WRITE (NOUT6,929) NPQA 
0875 IF (NOUT.GE .1) WRITE (NOUT10,929) NPQA 
0876 929 FORMAT (' 	REGLIK: 	NPQA =',15,' NOT EQUAL TO NP+NQ+1 ***I) 
0877 XLIKT=1.0D20 
0878 RETURN 
0879 030 XLIKT=1.0D20 
0880 RETURN 
0881 031 WRITE (NOUT,932) 
0882 IF (NOUT.GE .1) WRITE (NOUT10,932) 
0883 932 FORMAT (' 	REGLIK: REGDER CANNOT EVALUATE DERIV ***1) 
0884 XLIKT=1.0020 
0885 RETURN 
0886 033 WRITE (NOUT6,934) 
0887 IF (NOUT.GE .1) WRITE (NOUT10,934) 
0888 934 FORMAT (' 	REGLIK: REGMOD CANNOT EVALUATE F FOR NLIK=2 ***I) 
0889 XLIKT=1.OD20 
0890 RETURN 
0891 035 WRITE (NOUT6,936) 
0892 IF (NOUT.GE .1) WRITE (NOUT10,936) 
0893 936 FORMAT (' 	REGLIK: DETERMINANT FOR NLIK=2 NOT POS. DEF. ***I) 
0894 XLIKT=1.OD20 
0895 RETURN 
0896 END 



- 343 - 

0897 
0898 SUBROUTINE REGMON(NPEST,PARAMT,XLIKT,XLIKD,MCONST,XLNORM,COND, 
0899 1 	 LOGJBF,NITER,NCALL,MWK,NMWK,wK,NWK) 
0900 C 
0901 C 
0902 C 
0903 C REGMON 
0904 C 
0905 C 
0906 C MONITORS ITERATIONS BY E04JBF 
0907 C 
0908 C INPUT 
0909 C NPEST 	 NUMBER OF PARAMETERS TO BE ESTIMATED 
0910 C PARPMT(NPEST) 	RESCALED PARAMETERS TO BE ESTIMATED 
0911 C XLIKT 	 RESCALED OPTIMIZATION FUNCTION 
0912 C XLIKD(NPEST) 	VECTOR OF FIRST DERIVATIVES OF XLIKT 
0913 C MCONST(NPEST) 	DENOTES CONSTRAINED PARAMETERS IN E04JBF 
0914 C XLNORM 	 NORM OF XLIKD 
0915 C COND 	 RATIO OF LARGEST TO SMALLEST VALUES IN HESD 
0916 C NITER 	 NUMBER OF ITERATIONS 
0917 C NCALL 	 NUMBER OF CALLS BY E04JBF TO REGLIK 
0918 C 
0919 C DUMMY 
0920 C LOGJBF 
0921 C MWK(NMWK) 
0922 C NMWK 
0923 C WK(NWK) 
0924 C NWK 
0925 C 
0926 C 
0927 C 
0928 DOUBLE PRECISION 
0929 1 	PARAMT(NPEST),XLIKT,XLIKD(NPEST),XLNORM,COND,WK(NWK), 
0930 1 	PARNIM(16),PARAMS(16),XLIKM,XLIKS,STEPMX, 
0931 1 	BLA,CEE,PARACH,PARAM(16),PARATX(16),SIGN,SLOPE, 
0932 1 XLIK,XLIKCH,XLIKTX,XX,XY 
0933 INTEGER 
0934 1 	NPEST,MCONST(NPEST),NITER,NCALL,MWK(NMWK),NMWK,NWK, 
0935 1 	MLEST(16),NPAR,NOUT, 
0936 1 	J,K 
0937 LOGICAL 
0938 1 	LOGJBF 
0939 COMMON 
0940 1 /REGCM1/ PARAMM,PARAMS,XLIKM,XLIKS,STEPMX,MLEST,NPAR,NOUT 
0941 1 /MONCM1/ XLIKTX,PARATX 
0942 1 /NINOUT/ NIN1,NIN2,NIN3,r4IN4,NIN5,NOUT6,NOUT7,NO,JT8,NOUT9,NOUT10 
0943 C 
0944 C 
0945 C 
0946 C LOCAL 
0947 C BLA 	 BLANK CHARACTER 
0948 C GEE 	 C' CHARACTER, DENOTES CONSTRAINED STEP 
0949 C J 	 INDEX 
0950 C K 	 INDEX 
0951 C PARACH 	 CHANGE IN PARAMT 
0952 C PARAM(16) 	 VECTOR OF MODEL PARAMETERS 
0953 C PARATX(16) 	 PARAMT AT LAST ITERATION 
0954 C SIGN 	 SET TO BLA OR CEE 
0955 C SLOPE 	 SLOPE OF XLIKT W.R.T. PARAMT 
0956 .  C XLIK 	 OPTIMIZATION FUNCTION 
0957 C XLIKCH 	 CHANGE IN XLIKT 
0958 C XLIKTX 	 XLIKT AT LAST ITERATION 
0959 C XX 	 WORK SPACE 
.0960. C XY 	 WORKSPACE 
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0961 	C 
0962 	C 
0963 	C 
0964 DATA CEE,BLA/'C',' 
0965 C 
0966 C CALCULATE CONVERGENCE CRITERIA 
0967 C 
0968 XLIK=XLIKT*XLIKS+XLIKM 
0969 K=1 
0970 DO 001 J=1,NPAR 
0971.01 XX=0.ODO 
0972.01 IF (MLEST(K).NE.J) GO TO 001 
0973.01 XX=PARAMT(K) 
0974.01 K=K+1 
0975.01 001 PARAM(J)=XX*PARAMS(J)+PARAMM(J) 
0976.01 C 
0977 XLIKCH=1.OD-10 
0978 PARACH=0.000 
0979 XX=0.ODO 
0980 IF (NITER.EQ.0) GO TO 003 
0981 C 
0982 XLIKCH=DSIGN(DSQRT(DABS(XLIKTX-XLIKT)/(1.ODO+DABS(XLIKT))), 
0983 1 	 XLIKTX-XLIKT)+1.OD-1O 
0984 DO 002 J=1,NPEST 
0985.01 XX=XX+PARAMT(J )*PARA?IT(J) 
0986.01 XY=PARATX(J)-PARAMT(J) 
0987.01 002 PARACH=PARACH+XY*XY 
0988 PARACH=DSQRT(PARACH) 
0989 003 SIGN=BLA 
0990 IF (PARACH.GE.(1.ODO_1.OD_6)*STEPMX)  SIGN=CEE 
0991 PARACH=PARACH/( 1.000+DSQRT(XX))+1 .OD-10 
0992 C 
0993 DO 004 J=1,NPEST 
0994.01 004 PARATX(J)=PARAMT(J) 
0995 XLIKTX=XLIKT 
0996 SLOPE=XLNORM/( 1 .000+DABS(XLIKT)) 
0997 C 
0998 C OUTPUT 
0999 C 
1000 WRITE (NOUT6,905) NITER,NCALL,XLIK,XLIKCH,SLOPE,PARACH,COND, 
1001 1 SIGN,(PARAM(J),J=1,NPAR) 
1002 IF (NOUT.LT .1) 	RETURN 
1003 WRITE (NOUT10,906) NITER,NCALL,XLIK,XLIKCH,SLOPE,PARACH,COND, 
1004 1 SIGN,(PARAM(J),J=1,NPAR) 
1005 905 FORMAT (14,16,1PG14.6,3D8.1,08.1,2X,A1/ 
1006 1 19X,5G12.4/19X,5G12.4/19X,5G12.4/19X,5G12.4) 
1007 906 FORMAT (14,16,1PG14.6,3D8.1,D8.1,2X,A1, 
1008 1 5X,4G14.6/62X,4G14.6/60X,4G14.6/58X,4G14.6) 
1009 RETURN 
1010 END 
1011 
1012 SUBROUTINE REGVAR(NVAR,HESL,NHESL,HESD,ACCTOL,NPEST,XLIKT,NL, 
1013 1 	 NPARVR,PARAMT,PARVAR,SE,MWK,NMWK,WK,NWK, 
1014 1 	 NPRI,IFAILT) 
1015 C 
1016 C 
1017 C 
1018 C REGVAR 
1019 C 
1020 C 
1021 C CALCULATES APPROXIMATE VARIANCES FOR PARAM BY 
1022 C INVERTING THE MATRIX OF SECOND DERIVATIVES OF 
1023 C XLIK OBTAINED BY DIFFERENCING. 
10 2 4 	C 
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1025 	C INPUT 
1026 C NVAR 	 1 	IF PARVAR TO BE EST. BY DIFFERENCE METHOD 
1027 C HESL(NHESL) 	LOWER TRIANGLE OF APPROX. TO SECOND DERIVS. 
1028 C NHESL 	 DIMENSION OF HESL 
1029 C HESD(NPEST) 	DIAGONAL OF APPROX. TO SECOND DERIVATIVES 
1030 C ACCTOL 	 ACCURACY TO WHICH PARAMETERS EST. BY E04JBF 
1031 C NPEST 	 NUMBER OF PARAMETERS ESTIMATED 
1032 C XLIKT 	 RESCALED OPTIMIZATION FUNCTION AT MAX. 
1033 C NL 	 NUMBER OF OBSERVATIONS 
1034 C NPARVR 	 DIMENSIONS OF PARVAR 
1035 C 
1036 C INPUT/OUTPUT 
1037 C PARAMT(16) 	 RESCALED ESTIMATED PARAMETERS AT MAX. 
1038 C 
1039 C OUTPUT 
1040 C PARVAR(NPARVR,NPARVR) ESTIMATED VARIANCES OF PARAMETERS, 
1041 C CORRELATIONS BELOW DIAGONAL 
1042 C SE(16) 	 STANDARD ERRORS OF PARAMETERS 
1043 C 
1044 C DUMMY 
1045 C MWK(NMWK) 
1046 C NMWK 
1047 C WK(NWK) 
1048 C NWK 
1049 C 
1050 C CONTROL 
1051 C NPRI 	 1 	INTERMEDIATE RESULTS OUTPUT 
1052 C IFAILT 	 1 	IF PARVAR CANNOT BE EVALUATED 
1053 C 
1054 C 
1055 C 
1056 DOUBLE PRECISION 
1057 1 	HESL(NHESL),HESD(NPEST),ACCTOL,XLIKT,PARAMT(16), 
1058 1 PARVAR(NPARVR,NPARVR),SE(16),WK(NWK), 
1059 1 	PARPMM(16),PARAMS(16),XLIKM,XLIKS,STEPMX,SCALE, 
1060 1 	EPSV,REGVRF,TRAN(16,16),W1(16),W2(16),XLDER(17,16), 
1061 1 XMM,XMP,XPM,XPP 
1062 INTEGER 
1063 1 	NVAR,NHESL,NPEST,NL,NPARVR,MWK(NMWK),NMWK,NWK,NPRI,IFAILT, 
1064 1 	MLEST(16),NPAR,NOUT,NSCALE,NSTAGE, 
1065 1 	I,IFAILV,J,JF,JS,K,L,NFLAG,NPARN,NPESTA,NPESTN,NPESTZ, 
1066 1 NTRAN,NXLDER 
1067 COMMON 
1068 1 /REGCM1/ PARAMM,PARAMS,XLIKM,XLIKS,STEPMX,MLEST,NPAR,NOUT 
1069 1 /REGCM2/ SCALE,NSCALE,NSTAGE 
1070 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
1071 C 
1072 C 
1073 C 
1074 C LOCAL 
1075 C EPSV 	 STEP USED TO CALC SECOND DERIVS OF XLIKT 
1076 C I 	 INDEX 
1077 C IFAILV 	 INTERNAL FAILURE INDICATOR 
1078 C J 	 INDEX 
1079 C JF 	 UPPER BOUND ON J DO-LOOP 
1080 C JS 	 LOWER BOUND ON J DO-LOOP 
1081 C K 	 INDEX 
1082 C L 	 INDEX 
1083 C NFLAG 	 DUMMY VARIABLE IN REGLIK 
1084 C NPARN 	 NPAR (+1 IF NSCALE=1) 
1085 C NPESTA 	 NPESTN+1 
1086 C NPESTN 	 NPEST (+1 IF NSCALE=1) 
1087 C NPESTZ 	 NPESTN-1 
1088 C NTRAN 	 DIMENSION OF TRAM 
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1089 	C 	NXLDER 	 DIMENSION OF XLDER 
1090 	C 	REGVRF 	 FUNCTION TO EVAL. XLIKT NEAR PARAMT 
1091 	C 	TRAN(16,16) 	LOWER TRIANGULAR MATRIX FORM HESD, HESL 
1092 	C 	W1(16) 	 WORK SPACE 
1093 	C 	W2(16) 	 WORK SPACE 
1094 	C 	XLDER(17,16) 	SECOND DERIVS. OF XLIKT W.R.T. PARAMT 
1095 	C XMM 	 XLIKT AT PARAMT -EPSV -EPSV 
1096 	C 	XMP 	 XLIKT AT PARANT -EPSV +EPSV 
1097 	C XPM 	 XLIKT AT PARAMT +EPSV -EPSV 
1098 	C XPP 	 XLIKT AT PARAMT +EPSV +EPSV 
1099 	C 
1100 	C 
1101 	C 
1102 	 DATA NTRAN,NXLDER/16,17/ 
1103 	 IFAILT=0 
1104 	 EPSV=10.ODO*ACCTOL 
1105 	 NSTAGE=2 
1106 	C 
1107 	C 	LOWER TRIANGULAR TRANSFORMATION MATRIX TRAN 
1108 	C 
1109 	 NPARN=NPAR 
1110 	 NPESTN=NPEST 
1111 	 IF (NSCALE.NE .1) GO TO 001 
1112 	 NPARN=NPAR+1 
1113 	 NPESTN=NPEST+1 
1114 	001 	NPESTZ=NPESTN-1 
1115 	 DO 003 I=1,NPEST 
1116.01 	DO 002 J=1,NPESTZ 
1117.02 002 	TRAN(I,J)=0.000 
1118.01 003 	TRAN(I,NPESTN)=DSQRT(HESD(I)) 
1119.01 C 
1120 	 IF (NSCALE.NE .1) GO TO 005 
1121 	 DO 004 J=1,NPESTZ 
1122.01 004 	TRAN(NPESTN,J)=O.ODO 
1123 	 TRAN(NPESTN,NPESTN)=DSQRT(FLOAT(NL)/(2.ODO*XLIKS))/SCALE 
1124 	 PARAtIS(NPARN)=1.000 
1125 	 PARNIM(NPARN)=0.ODO 
1126 	 MLEST(NPESTN)=NPARN 
1127 	 PARPNT( NPESTN) =SCALE 
1128 	C 
1129 	005 	K=0 
1130 	 DO 006 I=2,NIEST 
1131.01 	JS=NPESTN+1-I 
1132.01 	LO 
1133.01 	DO 006 J=JS,NPESTZ 
1134.02 	K=K+1 
1135.02 	L=L+1 
1136.02 006 	TRAN(I,J)=HESL(K)*TRAN(L,NPESTN) 
1137 	 IF (NPRI.EQ.1) CALL MATPR2(TRAN,NTRAN,NPESTN,NPESTN,1) 
1138 	 DO 007 I=1,NPESTN 
1139.01 007 	W1(I)=0.000 
1140 	 IFAILV=O 
1141 	C 
1142 	C 	MATRIX OF SECOND DERIVATIVES ON TRANSFORMED SCALE XLDER 
1143 	C 	(SHOULD APPROXIMATE TO IDENTITY MATRIX) 
1144 	C 
1145 	 IF (NVAR.EQ.1) GO TO 033 
1146 	 WRITE (NOUT6,935) 
1147 	 IF (NOUT.GE .1) WRITE (NOUT10,935) 
1148 	935 	FORMAT (' 	REGVAR: NVAR NOT 1, VARIANCES AN APPROX. ***I) 
1149 	 GO TO 034 
1150 	033 	DO 009 I=1,NPESTN 
1151.01 	00 009 J=1,I 
1152.02 	XPP=REGVRF(I,J, 1, 1,W1,W2,EPSV,NPESTN.TRAN.NTRAN.PARAMT.NPEST, 
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1153.02 	1 	 MWK,NMWK,WK,NWK,NOUT,NPRI , IFAILV) 
1154.02 	IF (IFAILV.NE.0) GO TO 010 
1155.02 	XMMREGVRF(I,J,-1,-1,W1,W2,EPSV,NPESTN,TRAN,NTRAN,PARAMT,NPEST, 
1156.02 	1 	 MWK,NMWK,WK,NWK,NOUT,NPRI ,IFAILV) 
1157.02 	IF (IFAILV.NE.0) GO TO 010 
1158.02 	IF (J.EQ.I) GO TO 008 
1159.02 	XMP=REGVRF(I,J,-1, 1,W1,W2,EPSV,NPESTN,TRAN,NTRAN,PARAMT,NPEST, 
1160.02 	1 	 MWK,NMWK,WK,NWK,NOUT,NPRI , IFAILV) 
1161.02 	IF (IFAILV.NE .0) GO TO 010 
1162.02 	XPM=REGVRF(I,J, 1,-1,W1,W2,EPSV,NPESTN,TRAN,NTRAN,PARAMT,NPEST, 
1163.02 	1 	 MWK,NMWK,WK,NWK,NOUT,NPRI , IFAILV) 
1164.02 	IF (IFAILV.NE .0) GO TO 010 
1165.02 	XLDER(I,J)=(XPP_XMP_XPM+XMM)/(4.000*EPSV*EPSV) 
1166.02 	XLDER(J,I)=XLDER(I,J) 
1167.02 	GO TO 009 
1168.02 008 	XLDER(I,J)=(XPP_2.000*XLIKT+XMM)/(EPSV*EPSV) 
1169.02 009 	CONTINUE 
1170 	 GO TO 014 
1171 	C 
1172 	010 	IF (IFAILT.EQ.1) GO TO 025 
1173 	 WRITE (NOUT6,911) 
1174 	 IF (NOUT.GE .1) WRITE (NOUT10,911) 
1175 	911 	FORMAT (' 	REGVAR: FAILURE, VARIANCES AN APPROX. ***I) 
1176 	034 	IFAILT=1 
1177 	 DO 013 I=1,NPESTN 
1178.01 	DO 012 J=1,NPESTN 
1179.02 012 	XLDER(I,J)=O.ODO 
1180.01 013 	XLDER(I,I)=1.000 
1181 	 GO TO 014 
1182 	014 	IF (NPRI.EQ.1) CALL MATPR2(XLDER,NXLDER,NPESTN,NPESTN,1) 
1183 	C 
1184 	C 	MATRIX OF SECOND DERIVATIVES ON PARANT SCALE XLDER 
1185 	C 
1186 	 DO 016 I=1,NPESTN 
1187.01 	DO 015 J=1,NPESTN 
1188.02 015 	W1(J)=XLDER(J,I) 
1189.01 	CALL REGTRA(W1,NPESTN,TRAN,NTRAN,NPESTN,O,O,W2,NOUT,NPRI ,IFAILV) 
1190.01 	DO 016 J=1,NPESTN 
1191.02 016 	XLDER(J,I)=W2(J) 
1192.02 C 
1193 	 DO 018 I=1,NPESTN 
1194.01 	DO 017 J=1,NPESTN 
1195.02 017 	W1(J)=XLDER(I,J) 
1196.01 	CALL REGTRA(W1,NPESTN,TRAN,NTRAN,NPESTN,0,0,W2,NOUT,NPRI,IFAILV) 
1197.01 	DO 018 J=1,NPESTN 
1198.02 018 	XLDER(I,J)=W2(J) 
1199.02 C 
1200.02 C 	VARIANCE MATRIX PARVAR , STANDARD ERRORS SE 
1201.02 C 	(OBTAINED BY INVERTING RESCALED XLDER) 
1202.02 C 
1203 	 IFAILV=1 
1204 	 CALL F01ABF(XLDER,NXLDER,NPESTN,PARVAR,NPARVR,W1,IFAILV) 
1205 	 NPESTA=NPESTN+1 
1206 	 IF (NPRI.EQ.1) CALL MATPR2(XLDER,NXLDER,NPESTA,NPESTN,1) 
1207 	 IF (IFAILV.NE.0) GO TO 010 
1208 	C 
1209 	 K=1 
1210 	 DO 024 I=1,NPARN 
1211.01 	IF (MLEST(K).EQ.I) GO TO 021 
1212.01 	DO 020 J=I,NPARN 
1213.02 	PARVAR(J,I)=O.ODO 
1214.02 020 	PARVAR(I,J)=O.ODO 
1215.01 	GO TO 024 
1216.01 021 	L=K 
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1217.01 	DO 023 J=I,NPARN 

	

1218.02 	IF (MLEST(L).EQ.J) GO TO 022 

	

1219.02 	PARVAR(J,I)=O.ODO 

	

1220.02 	PARVAR(I,J)0.000 

	

1221.02 	GO TO 023 

	

1222.02 022 	L=L+1 

	

1223.02 	PARVAR(J,I)=O.ODO 

	

1224.02 	PARVAR( I,J)=XLDER(L,K)*PARAMS(I)*PARAMS(J)/XLIKS 

	

1225.02 023 	CONTINUE 

	

1226.01 	K=K+1 

	

1227.01 024 	CONTINUE 

	

1228 	 GO TO 029 

	

1229 	C 

	

1230 	025 	WRITE (NOUT6,926) 

	

1231 	 IF (NOUT.GE .1) WRITE (NOUT10,926) 

	

1232 	926 	FORMAT (' 	REGVAR: APPROX. VARIANCES ALSO FAIL 
***1) 

	

1233 	 DO 028 I=1,NPARN 

	

1234.01 	00 027 J=1,NPARN 

	

1235.02 027 	PARVAR(I,J)=0.000 

	

1236.01 028 	PARVAR(I,I)=PARAMS(I) 

	

1237 	029 	00 030 1=1,NPARN 

	

1238.01 030 	SE(I)=DSQRT(PARVAR(I,I)) 
1239.01 C 

	

1240 	 IF (NPARN.EQ.1) GO TO 032 

	

1241 	 DO 031 I=2,NPARN 

	

1242.01 	JF=I-1 

	

1243.01 	00 031 J=1,JF 

	

1244.02 	IF ((SE(I).LT.1.OD_12).OR.(SE(J).LT.1.OD-12)) GO TO 031 

	

1245.02 	PARVAR(I,J)=PARVAR(J,I)/(SE(I)*SE(J)) 

	

1246.02 031 	CONTINUE 

	

1247 	032 	CONTINUE 

	

1248 	 IF (NPRI.EQ.1) CALL MATPR2(PARVAR,NPARVR,NPARN,NPARN,1) 

	

1249 	C 

	

1250 	 IF (NSCALE.EQ.1) SCALE=PARAMT(NPESTN) 

	

1251 	 CALL REGLIK(NFLAG,NPEST,PARAMT,XLIKT,W1,MWK,NMWK,WK,MWK) 

	

1252 	 NPAR=NPARN 

	

1253 	 RETURN 

	

1254 	 END 
1255 

	

1256 	 DOUBLE PRECISION FUNCTION 

	

1257 	1 REGVRF(I,J,IS,JS,W1,W2,EPSV,NPESTN,TRAN,NTRAN,PT, 

	

1258 	1 	NPEST,MWK,NMWK,WK,NWK,NOUT,NPRI,IFAILV) 

	

1259 	 DOUBLE PRECISION 

	

1260 	1 	W1(NTRAN) ,W2(NTRAN),EPSV,TRAN(NTRAN,NTRAN) ,PARAMT(NTRAN), 

	

1261 	1 WK(NWK), 

	

1262 	1 	SCALE, 

	

1263 	1 	XLIKD(15) 

	

1264 	 INTEGER 

	

1265 	1 	I,J,IS,JS,NPESTN,NTRAN,NPEST,MWK(NMWK),NMWK,NWK,NOUT, 

	

1266 	1 NPRI,IFAILV, 

	

1267 	1 	NSCALE,NSTAGE, 

	

1268 	1 	K,NFLAG 

	

1269 	 COMMON 

	

1270 	1 /REGCM2/ SCALE,NSCALE,NSTAGE 

	

1271 	C 

	

1272 	C 

	

1273 	C 

	

1274 	C LOCAL 

	

1275 	C 	K 	 INDEX 

	

1276 	C 	NFLAG 	 DUMMY VARIABLE IN REGLIK 

	

1277 	C 	XLIKD(15) 	 DUMMY VARIABLE USED IN REGLIK 
1278 	C 
1279 	C 
1280 	C 
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1281 
1282 
1283 
1284 
1285 
1286.01 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 
1296 
1297 
1298 
1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 

W1(I)=FLOAT( IS)*EPSV 
W1(J)=FLOAT(JS)*EPSV 
CALL REGTRA(W1,NPESTN,TRAN,NTRAN,NPESTN,1,1,W2,NOUT,NPRI,IFAILV) 
IF (IFAILV.NE.0) RETURN 
00 001 K=1,NPESTN 

001 	W2(K)=W2(K)+PARAMT(K) 
IF (NSCALE.EQ.1) SCALE=W2(NPESTN) 
CALL REGLIK(NFLAG,NPEST,W2,REGVRF,XLIKD,MWK,NMWK,WK,NWK) 
IF (REGVRF.Gt.9.9019) IFAILV=1 
W1(I)=0.000 
W1(J)=0.000 
RETURN 
END 

SUBROUTINE REGOUT(IFAIL,XLIK,XLIKD,PARAM,NPAR,SE,PARVAR,NPARVR, 
1 	 Y,F,Z,THETA,NLMAX,NL,NQA,VAR,NPQA,NP,NQ,NOUT) 

C 
C 

C 	 REGOUT 
C 
C 
C OUTPUT COMPREHENSIVE SET OF RESULTS TO NOUT1O 
C 
C INPUT 
C 	IFAIL 	 FAILURE INDICATOR FOR REGAME 
C 	XLIK 	 FINAL VALUE OF OPTIMIZATION FUNCTION 
C 	XLIKD(NPAR) 
	

FIRST DERIVATIVES OF XLIKT W.R.T.PARAMT 
C 	PARAM(NPAR) 
	

PARAMETER ESTIMATES 
C NPAR 
	

NUMBER OF MODEL PARAMETERS 
C 	SE(NPAR) 
	

STANDARD ERRORS OF PARAMETERS 
C 	PAR VAR( NPAR VR ,NPARVR) PARAMETER VARIANCES, CORRELATIONS BELOW DIAG. 
C 	NPARVR 
	

DIMENSIONS OF PARVAR 
C 	Y(NL) 
	

DATA VECTOR OF OBSERVATIONS 
C 	F(NL) 
	

VECTOR OF FITTED VALUES 
C 	Z(NL) 
	

VECTOR OF STANDARDIZED RESIDUALS FROM MODEL 
C 	THETA(NLMAX ,NQA) 
	

SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
C 	NLMAX 
	

FIRST DIMENSION OF THETA, VAR 
C 	NL 
	

NUMBER OF OBSERVATIONS 
C 	NQA 
	

BAND WIDTH OF THETA 
C 	VAR(200,NPQA) 
	

BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
C 	NPQA 
	

NUMBER OF COLUMNS IN VAR 
C 	NP 
	

GENERALIZED AUTOREGRESSIVE ORDER 
C 	NO 
	

GENERALIZED MOVING AVERAGE ORDER 
C 
C CONTROL 
C NOUT 
	

CONTROLS OUTPUT 
C 	 1 IFAIL,XLIK,XLIKD,PARAM,SE,PARVAR OUTPUT 
C 	 2 	AND Y,F,Z,VAR,NP,NQ 
C 	 >2 	AND PLOTS OF Y,F,Z,VAR 
C 
C 
C 

DOUBLE PRECISION 
1 	XLIK,XLIKD(NPAR),PARNI(NPAR),SE(NPAR),PARVAR(NPARVR,NPARVR), 
1 Y(NL),F(NL),Z(NL),THETA(NLMAX,NQA),VAR(NLMAX,NPQA), 
1 	AST,BLA,SGN,VARCHR(11),VARMAX(11),VAR!IIN(11),VARNUM(11), 
1 W(200,4),WCHR(4),WSGN(16) 
INTEGER 

1 	IFAIL,NPAR ,NPARVR,NLMAX,NL,NQA,NPQA,NP,NQ,NOUT, 
1 	I,IZ,J,JF,JFF,L,MAXIS(200),MCHN(11),MPL(2,1) 
COMMON 
1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NUUT7,NOUT8,NOUT9,NOIJT10 
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1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 
1354 
1355 
1356 
1357 
1358 
1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 
1378 
1379 
1380 
1381 
1382 
1383 
1384 
1385.01 
1386.01 
1387 
1388 
1389 
1390.01 
1391.01 
1392.02 
1393.02 
1394.02 
1395.01 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 
1405.01 
1406.01 
1407.01 
1408.01 

C 

C LOCAL 
C 	AST '*' CARACTER 
C 	BLA BLANK CHARACTER 
C 	I INDEX 
C 	IZ I-i 
C 	J INDEX 
C 	JF MIN(NPQA,4) 
C 	JFF MIN(NPQA,8) 
C 	L INDEX 
C 	MAXIS(200) NUMBERS 1-200 USED BY PLTNLG 
C 	MCHN(11) CHANNEL NUMBERS USED BY PLTLNG 
C 	MPL(2,1) PLOT NUMBERS USED BY PLTACR 
C 	SGN SET TO AST TO DENOTE RESIDUALS > 2.5 
C 	VARCHR(11) CHARACTERS USED TO PLOT VAR 
C 	VARMAX(11) UPPER BOUNDS USED BY PLTLNG 
C 	VARMIN(11) LOWER BOUNDS USED BY PLTLNG 
C 	VARNUM(11) NUMBERS STORED AS CHARACTERS FOR VARCHR 
C 	W(200,4) WORK SPACE 
C 	WCHR(4) CHARCTERS USED TO PLOT Y,F,Z 
C 	WSGN(16) SET TO AST TO DENOTE CORRELS. 	> 2.5 
C 
C 
C 

DATA AST,BLA,WCHR/'**' ,' 	','Y','F' ,'P','Z'/, VARNUM/'O' 
1 	'1' 	I 	 1 A' 	 ,71,QI 	'a' 	'A' 

, 	 , 	 , 	 I 	 I 	 I 	 I 	 I 	 I 

OUTPUT IFAIL,XLIK,XLIKD,PARAM,SE ,PARVAR 

WRITE (NOUT10,911) 
WRITE (NOUT10,912) IFAIL 
WRITE (NOUT10,913) XLIK 
WRITE (NOUT10,914) (XLIKD(J) ,J=1,NPAR) 
WRITE (NOUT10,917) (J ,J=1 ,NPAR) 
WRITE (NOUT10,915) (PARAM(J) ,J=1,NPAR) 
WRITE (NOUT10,916) (SE(J),J=1,NPAR) 

WRITE (NOUT10,918) 
00 001 I=1,NPAR 

001 	WRITE (NOUT10,919) I,(PARVAR(J,I),J=1,I) 
C 

IF (NPAR.EQ.1) GO TO 004 
WRITE (NOUT10,925) 
DO 003 I=2,NPAR 
IZ=I-1 
DO 002 J=1,IZ 
WSGN(J)=BLA 
IF (DABS(PARVAR(I,J)).GT.O.900) WSGN(J)=AST 

002 CONTINUE 
003 	WRITE (NOUT10,926) I,(PARVAR(I,J),WSGN(J),J=1,IZ) 

WRITE (NOUT10,920) AST 
004 	IF (NOUT.LT .2) RETURN 
C 
C 	NOUT>1 OUTPUT Y,F,Z,VAR,NP,NQ 
C 

WRITE (NOUT10,927) NP,NQ 
JF=MINO(NPQA,4) 
JFF=MINO(NPQA,8) 
DO 005 I=1,NL 
W( I ,3)=Y(I )-THETA( I ,NQA)*Z(I) 
SGN=BLA 
IF (DABS(Z(I)).GT.2.5D0) SGN=AST 
WRITE (NOUT10,928) I,Y(I),F(I),W(I,3),Z(I),SGN,(VAR(I,J),J=1,1JF) 
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1409.01 	IF (NPQA.GT .4) WRITE (NOUT10,929) (VAR(I,J),J=5,.JFF) 
1410.01 	IF (NPQA.GT .8) WRITE (NOUT10,930) (VAR(I,J),J=9,NPQA) 
1411.01 005 	CONTINUE 
1412 	 WRITE (NOUT10,921) AST 
1413 	 IF (NOUT.LT .3) RETURN 
1414 	C 
1415 	C 	NOUT>2 OUTPUT PLOTS OF Y,F,Z,VAR 
1416 	C 
1417 	 WRITE (NOUT10,931) 
1418 	 MCHN(1)=1 
1419 	 MCHN(2)=1 
1420 	 MCHN(3)=1 
1421 	 DO 006 I=1,NL 
1422.01 	MAXIS(I)=I 
1423.01 	W(I,1)=Y(I) 
1424.01 006 	W(I,2)=F(I) 
1425 	 CALL PLTLNG(W,NLMAX,NL,3,VARMAX,VARMIN,O,MCHN,WCHR,1,MAXIS,1,O) 
1426 	C 
1427 	 MCHN(2)=0 
1428 	 MCHN(4)=2 
1429 	 DO 007 I1,NL 
1430.01 	W(I,1)=W(I,1)-F(I) 
1431.01 	W(I,3)=W(I,3)-F(I) 
1432.01 007 	W(I,4)=Z(I) 
1433 	 CALL PLTLNG(W,NLMAX,NL,4,VARMAX,VARMIN,O,MCHN,WCHR,1,MAXIS,1,1) 
1434 	C 
1435 	 MPL(1,1)=4 
1436 	 MPL(2,1)=2 
1437 	 CALL PLTACR(W I NL?IAX,NL,4,VARMAX,VARMIN,O,MPL,1,MAXIS,O) 
1438 	C 
1439 	 VARMAX(1)=0.000 
1440 	 VARMIN(1)=O.ODO 
1441 	 DO 008 I=1,NL 
1442.01 	DO 008 J=1,NPQA 
1443.02 	VARMAX(1)=DMAX1(VARMAX(1),VAR(I,J)) 
1444.02 008 	VARMIN(1)=DMIN1(VARMIN(1),vAR(I,J)) 
1445 	 DO 009 J=1,NPQA 
1446.01 	VARMAX(J)=VARMAX(1) 
1447.01 009 	VARMIN(J)=VARMIN(1) 
1448 	 DO 010 J=1,NPQA 
1449.01 	MCHN(J)=1 
1450.01 	L=NPQA+1-J 
1451.01 010 	VARCHR(J)=VARNUM(L) 
1452 	 CALL PLTLNG(VAR,NLMAX,NL,NPQA,VARMAX,VARMIN,1,MCHN,VARCHR,1, 
1453 	1 	- 	MAXIS,1,1) 
1454 	 RETURN 
1455 	C 
1456 	911 	FORMAT (I//I' R E S U L T S') 
1457 	912 	FORMAT (//16X,'IFAIL',14) 
1458 	913 	FORMAT (/S NEG. LOG-LIKELIHOOD ',1PG14.6) 
1459 	914 	FORMAT (/' 	FIRST DERIVATIVES ',1P7G14.6/22X,7G14.6/22X,7G14.6) 
1460 	917 	FORMAT (/12X,7114/12X,7114/12x,7I14) 
1461 	915 	FORMAT (' PARAMETER ESTIMATES 5 1 1P7G14.6/22X,7G14.6/22X,7G14.6 
1462 	916 	FORMAT(' 	STANDARD ERRORS ',1P7G14.6/22X,7G14.6/22X,7G14.6 
1463 	918 	FORMAT (/' 	(CO)VARIANCES ') 
1464 	919 	FORMAT (15x,I6,lx,1P7G14.6/22x,7G14.6/22x,7G14.6) 
1465 	925 	FORMAT (/' 	CORRELATIONS ') 
1466 	926 	FORMAT (15X,16,1X,7(F1O.6,A2,2X)/22X,7(F1O.6,A2,2X)/ 
1467 	1 22X,7(F1O.6,A2,2X)) 
1468 	920 	FORMAT (/22X,'(CORRELATIONS EXCEEDING 0.9 IN MAGNITUDE', 
1469 	1 ' INDICATED BY ',A2,')') 
1470 	927 	FORMAT (////7X,'DATA(Y)',8X,'FIT(F)',5X,'PREDICTIONS',4X, 
1471 	1 'RESIDUALS(Z)',6X,'COVARIANCES(VAR) ( NP =',I2,' , NQ =',12,' )') 
1472 	928 	FORMAT (I4,1P3G14.6,OPF12.6,A2,4X,1P4G14.6' 
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1473 929 FORMAT (62X,1P4G14.6) 
1474 930 FORMAT (60X,1P4G14.6) 
1475 921 FORMAT (/22x,'(REsIDUALs Z EXCEEDING 2.5 IN MAGNITUDE', 
1476 1 	' 	INDICATED BY 	',A2,')') 
1477 931 FORMAT (I//I' THERE FOLLOW:' 
1478 1/' 	(A) 	A LONGITUDINAL PLOT OF DATA(Y),FIT(F),PREDICTION 
1479 • 1 (REVEALS LACK OF FIT)' 
1480 1/ , 	(B) 	A LONGITUDINAL PLOT OF DATA-FIT,PREDICTION-FIT,RESIDU', 
1481 1 	'ALS(Z) (REVEALS CORRELATION OF ERRORS)' 
1482 1/' 	(C) 	A CROSS-SECTIONAL PLOT OF RESIDUALS(Z) AGAINST FITçF)', 
1483 1 	' (REVEALS HETEROGENEITY OF VARIANCE AND OUTLIERS) 
1484 1/' 	(0) 	A LONGITUDINAL PLOT OF COVARIANCES OF ERRORS 
1485 1 	' (DISPLAYS FITTED COVARIANCE STRUCTURE)') 
1486 END 
1487 
1488 SUBROUTINE REGCVI(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,Y,F,PARAJI, 
1489 1 PARAMM,PARAMS,PARAMT,MLEST,NPAR,NM,NDER,NOIJT, IFAIL) 
1490 C 
1491 C 
1492 C 
1493 C REGCVI 
1494 C 
1495 C 
1496 C CREATES INPUT FILES FOR CEVOPE. 
1497 C RESULTS OUTPUT TO NOUT9: 	NL,IFAIL 	(215) 
1498 C E(1 ... NL) 	(5G24.16) 
1499 C NM 
1500 C PARAM(1 ... NM) 
1501 C DERIV(1 ... NL,J) 
1502 C J=l...NM 
1503 C TRANSFORMED 	OERIV(1 ... NL,J) 
1504 C J=1 ... NM 
1505 C 
1506 C NOUTB: 	NPA,NQA 
1507 C PHI(1 ... NL,1J) 
1508 C J=1 ... NPA 
1509 C THETA(1.. .NL,J) 
1510 C J=1...NQA 
1511 C 
1512 C INPUT 
1513 C VAR(NLMAX,11) BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
1514 C NLMAX FIRST DIMENSION OF VAR 
1515 C NL NUMBER OF OBSERVATIONS 
1516 C NPQA NP+NQ+1 
1517 C NPA NP+1 
1518 C NQA NQ+1 
1519 C NP GENERALIZED AUTOREGRESSIVE ORDER 
1520 C NQ GENERALIZED MOVING AVERAGE ORDER 
1521 C Y(NL) DATA VECTOR OF OBSERVATIONS 
1522 C F(NL) VECTOR OF FITTED VALUES 
1523 C PARAM(NPAR) PARAMETER ESTIMATES 
1524 C PARAMM(NPAR) LOCATION SHIFT TRANSFORMING PARAM TO PARAMT 
1525 C PARAMS(NPAR) SCALE SHIFT TRANSFORMING PARAM TO PARANT 
1526 C PARAMT(NPAR) RESCALED ESTIMATED PARAM 
1527 C MLEST(16) LOCATION OF ESTIMATED PARAMETERS 
1528 C NPAR NUMBER OF MODEL PARAMETERS 
1529 C NM NUMBER OF REGRESSION PARAMETERS 
1530 C NDER 1 	IF REGOER AVAILABLE 
1531 C NOUT >0 OUTPUT TO NOUT10 
1532 C >3 INTERMEDIATE RESULTS OUTPUT 
1533 C IFAIL FAILURE INDICATOR IN REGAME 
1534 C 
1535 C 
1536 	C 
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1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 
1545 
1546 
1547 
1548 
1549 
1550 
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588.01 
1589.01 
1590.01 
1591 
1592 
1593.01 
1594.01 
1595 
1596 
1597 
1598 
1599 
1600 

DOUBLE PRECISION 
VAR(NLMAX,11) ,Y(NL) ,F(NL) ,PARAM(NPAR) ,PARAMM(NPAR), 

PARAMS(NPAR) ,PARAMT(NPAR), 
DD( 6, 5) ,DDI( 5,5) ,DERIV( 200, 5) ,DERIVT( 200,5) ,E( 200) 

EPSL,PHI(200,6) ,THETA(200,6) ,W1(200) ,W2(200) ,WT(200), 
XLDET,XX,XY 
INTEGER 

NLMAX,NL,NPQA,NPA,NQA,NP,NQ,MLEST(16),NPAR,NM,NDER,NOUT,IFAJL, 
I,IFAILP,J ,K,NDD,NDOI ,NFDIF,NPRI ,NTEQ,NWRITE 

COMMON 
/NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 

C 

C LOCAL 
C 	OD(6,5) 	 SUM OF SQUARES OF DERIV 
C 	001(5,5) 	 INVERSE OF DO 
C 	DERIV(200,5) 
	

FIRST DERIVATIVE OF F(NL) W.R.T. PARAZI(NM) 
C 	OERIVT(200,5) 
	

TRANSFORM OF DERIV 
C 	E(200) 
	

VECTOR OF WEIGHT CORRECTED DEPARTURES 
C 	EPSL 
	

STEPLENGTH USED TO CALC. DERIV IF NOER NOT 1 
CI 
	

INDEX 
C 	IFAILP 
	

FAILURE INDICATOR 
C 	J 
	

INDEX 
C 	K 
	

INDEX 
C 	NOD 
	

DIMENSION OF DD 
C 	NDDI 
	

DIMENSION OF 001 
C 	NFDIF 
	

SET TO 1 WHEN CALLING REGMOD IF NDER NOT 1 
C 	NPRI 
	

1 IF INTERMEDIATE RESULTS OUTPUT 
C NTEQ 
	

1 IF ALL ROWS OF PHI EQUAL 
C NWRITE 
	

SET TO LOWER OF NM,NPAR 
C 	PHI(200,6) 
	

FIRST MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
C THETA(200,6) 
	

SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
C W1(200) 
	

WORK SPACE 
C W2(200) 
	

WORK SPACE 
C WT(200) 	 VECTOR OF WEIGHTS 
C XLDET 	 LOG DETERMINANT OF THETA 
C XX 	 WORK SPACE 
C XY 	 WORK SPACE 
C 
C 
C 

DATA NDD,NDDI/6,5/ 
NPRI=O 
IF (NOUT.GE .4) NPRI=1 

WEIGHT CORRECTED DEPARTURES,STANDARDIZED TO SUM 
OF SQUARES OF UNITY 

XX=O .000 
00 001 I=1,NL 
WT(I)=DSQRT(VAR(I,NPQA)) 
E(I)=(Y( l)-F(l))/WT(l) 

001 	XX=XX+E(I)*E(I) 
XX=DSQRT(XX/FLOAT(NL)) 
00 002 I=1,NL 
WT(I)=WT(I)*XX 

002 	E(I)=E(I)/XX 
WRITE (NOUT9,903) NL,IFAIL 

903 	FORMAT (215) 
WRITE (NOUT9,904) (E(I),I=1,NL) 

904 	FORMAT (1P5G24.16) 
C 
C 	PARAMETER ESTIMATES 
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1601 C 
1602 NWRITE=MINO(NM,NPAR) 
1603 WRITE (NOUT9,903) NM,NWRITE 
1604 IF (NWRITE.GT .0) WRITE (NOUT9,904) 	(PARAM(J),J=1,NWRITE) 
1605 C 
1606 C WEIGHT CORRECTED PHI, THETA DECOMPOSITION OF VAR 
1607 C 
1608 DO 005 	I=1,NL 
1609.01 DO 005 J=1,NPQA 
1610.02 K=I+.J-NPQA 
1611.02 XX=1.ODO 
1612.02 IF 	(K.GT.0) 	XX=WT(K) 
1613.02 005 VAR(I,J):VAR(I,J)/(WT(I)*XX) 
1614 NTEQ=0 
1615 IFAILP=O 
1616 CALL REGAMD(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,PHI ,THETA,XLDET, 
1617 1 	 NOUT,NPRI,IFAILP) 
1618 C 
1619 IF 	(IFAILP.NE .0) GO TO 021 
1620 WRITE (NOUT8,903) NPA,NQA 
1621 DO 006 J=1,NPA 
1622.01 006 WRITE (NOUT8,904) 	(PHI(I,J),I=1,NL) 
1623 DO 007 J=1,NQA 
1624.01 007 WRITE (NOUT8,904) 	(THETA(I,J),I=1,NL) 
1625.01 C 
1626.01 C WEIGHT CORRECTED FIRST DERIVATIVES 
1627.01 C 
1628 IF (NM.LE.0) RETURN 
1629 IF (NDER.NE .1) GO TO 008 
1630 IFAILP=0 
1631 CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT, IFAILP) 
1632 IF 	(IFAILP.NE .0) GO TO 023 
1633 GO TO 011 
1634 C 
1635 008 EPSL=1.OD-4 
1636 NFDIF=1 
1637 IFAILP=0 
1638 K=1 
1639 00 010 J=1,NM 
1640.01 XX=EPSL 
1641.01 IF (MLEST(K).EQ.J) 	XX=EPSL*PARAtIS(J) 
1642.01 PARAM(J)=PARAM(J)+XX 
1643.01 CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,W1 ,VAR,NPQA,NP,NQ,NTEQ, 
1644.01 1 	 NOUT,IFAILP) 
1645.01 XY=0.ODO 
1646.01 IF (MLEST(K).NE.J) GO TO 009 
1647.01 XY=PARAMT(K) 
1648.01 K=K+1 
1649.01 009 PARAM(J)=XY*PARAMS(J)+PARNIM(J) 
1650.01 IF (IFAILP.NE .0) GO TO 025 
1651.01 00 010 I=1,NL 
1652.02 010 DERIV(I,J)=(W1(I)-F(I))/XX 
1653.02 C 
1654 011 IF (NPRI.EQ.1) CALL MATPR2(DERIV,NLMAX,NL,NM,1) 
1655 DO 014 J=1,NM 
1656.01 00 012 I=1,NL 
1657.02 W1(I)=(DERIV( I,J) )/WT( I) 
1658.02 012 DERIV(I,J)=W1(I) 
1659.01 WRITE (NOUT9,904) 	(DERIV(I,J),I=1,NL) 
1660.01 C 
1661.01 C TRANSFORMED DERIVATIVES 
1662.01 C 
1663.01 CALL REGTRA(W1,NL,PHI,NLMAX,NPA,0,0,W2,NOUT,NPRI,IFAILP) 
1664.01 CALL REGTRA(W2,NL,THETA,NLMAX,NQA,11p,W1,NOUT.NPRI.IFAftP) 
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1665.01 	IF (IFAILP.NE.0) GO TO 027 
1666.01 	CALL REGTRA(W1,NL,THETA,NLMAX,NQA,1,1,W2,NOUT,NPRI,IFAILP) 
1667.01 	IF-(IFAILP.NE.0) GO TO 027 
1668.01 	CALL REGTRA(W2,NL,PHI,NLMAX,NPA,0,1,W1,NOUT,NPRI,IFAILP) 
1669.01 	DO 013 I=1,NL 
1670.02 013 	DERIVT(I,J)=W1(I) 
1671.01 014 	CONTINUE 
1672.01 C 
1673 	 DO 016 J=1,NM 
1674.01 	DO 016 K=J,NM 
1675.02 	XX=O.ODO 
1676.02 	00 015 I=1,NL 
1677.03 015 	XX=XX+DERIVT(I,J)*DERIV(I,K) 
1678.02 	DD(K,J)=XX 
1679.02 016 	DD(J,K)=XX 
1680 	 IF (NPRI.EQ.1) CALL MATPR2(UD,NDD,NM,NM,1) 
1681 	 IFAILP=1 
1682 	 CALL F01ABF(DD,NDD,NM,DDI,NDDI,W1,IFAILP) 
1683 	 IF (IFAILP.NE .0) GO TO 029 
1684 	 DO 017 J1,NM 
1685.01 	DO 017 K=J,NM 
1686.02 017 	DDI(.J,K)=DDI(K,1J) 
1687 	 IF (NPRI.EQ.1) CALL MATPR2(DDI,NDDI,NM,NM,1) 
1688 	C 
1689 	 DO 020 J=1,NM 
1690.01 	DO 019 I=1,NL 
1691.02 	XX=0.ODO 
1692.02 	DO 018 K=1,NM 
1693.03 018 	XX=XX+DERIVT( I,K)*ODI(K,J) 
1694.02 019 	OERIV(I,J)=XX 
1695.01 020 	WRITE (NOUT9,904) (DERIV(I,J),I=1,NL) 
1696 	 IF (NPRI.EQ.1) CALL MATPR2(DERIV,NLMAX,NL,NM,1) 
1697 	 RETURN 
1698 	C 
1699 	C 	ERROR MESSAGES 
1700 	C 
1701 	021 	WRITE (NOUT6,922) 
1702 	 IF (NOUT.GE .1) WRITE (NOUT10,922) 
1703 	922 	FORMAT (' 	REGCVI, REGAMD FAILS ***I) 
1704 	 RETURN 
1705 	023 	WRITE (NOUT6,924) 
1706 	 IF (NOUT.GE .1) WRITE (NOUT10,924) 
1707 	924 	FORMAT (' 	REGCVI, REGDER FAILS ***I) 
1708 	 RETURN 
1709 	025 	WRITE (NOUT6,926) 
1710 	 IF (NOUT.GE .1) WRITE (NOUT1O,926) 
1711 	926 	FORMAT (' 	REGCVI, REGMOD FAILS ***I) 
1712 	 RETURN 
1713 	027 	WRITE (NOUT6,928) 
1714 	 IF (NOUT.GE .1) WRITE (NOUT1O,928) 
1715 	928 	FORMAT (' 	REGCVI, REGTRA FAILS ***S) 
1716 	 RETURN 
1717 	029 	WRITE (NOUT6,930) 
1718 	 IF (NOUT.GE .1) WRITE (NOUT10,930) 
1719 	930 	FORMAT (' 	REGCVI, F01ABF FAILS, MATRIX NOT POS. DEF. ***1) 
1720 	 RETURN 
1721 	 END 
1722 
1723 	 SUBROUTINE REGAND(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,PUI, 
1724 	1 	 THETA,XLDET,NOUT,NPRI ,IFAIL) 
1725 	C 
1726 	C 
1727 	C 
1728 	C 	 REGAIID 
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1729 	C 
1730 	C 
1731 C GENERALIZED AUTOREGRESSIVE-MOVING AVERAGE DECOMPOSITION 
1732 C DECOMPOSES VAR INTO LOWER TRIANGULAR BAND MATRICES 
1733 C PHI AND THETA. 
1734 C 
1735 C INPUT 
1736 C VAR(NLMAX,NPQA) 	BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
1737 C NLMAX 	 FIRST DIMENSION OF VAR,PHI,THETA 
1738 C NL 	 NUMBER OF OBSERVATIONS 
1739 C NPQA 	 NP+NQ+1 
1740 C NPA 	 NP+1 
1741 C NQA 	 NQ+1 
1742 C NP 	 GENERALISED AUTOREGRESSIVE ORDER 
1743 C NQ 	 GENERALISED MOVING AVERAGE ORDER 
1744 C NTEQ 	 1 	IF ALL ROWS OF PHI ARE EQUAL 
1745 C 
1746 C OUTPUT 
1747 C PHI(NLMAX,NPA) 	FIRST MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
1748 C THETA(NLMAX,NQA) 	SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
1749 C XLOET 	 LOG DETERMINANT OF THETA 
1750 C 
1751 C CONTROL 
1752 C NOUT 	 >0 ERROR MESSAGES OUTPUT TO CHANNEL NOUTIO 
1753 C NPRI 	 1 	OUTPUT OF INTERMEDIATE RESULTS 
1754 C IFAIL 	 1 	IF VAR NOT POSITIVE DEFINITE 
1755 C 
1756 C 
1757 c 
1758 DOUBLE PRECISION 
1759 1 	VAR(NLMAX,NPQA),PHI(NLMAX,NPA),THETA(NLMAX,NQA),XLDET 
1760 1 	PHIVAR(11),TOL,W(5,5),W1(5),W2(5),WA(5,5)WB(5)WC(5) 
1761 1 X02AAF,XX 
1762 INTEGER 
1763 1 	NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,NOUT,NPRI I IFAIL, 
1764 1 	I,IJ,IL,ILK,IS,J,JA,JAF,JF,JP,K,KA,KAF,KP,L,LA,LAF, 
1765 1 LAQ,LKA,LKAF,LQ,NCJGF,NPET,NJGF,NPMAX,NV1,NV2,NWMAX 
1766 LOGICAL 
1767 1 	LOGJGF 
1768 COMMON 
1769 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOtJT6,NOUT7,NOUT8,NOUT9,NOUT10 
1770 C 
1771 C 
1772 C 
1773 C LOCAL 
1774 C I 	 LENGTH INDEX 
1775 C IJ 	 I-J 
1776 C IL 	 I-L 
1777 C ILK 	 I-L-K 
1778 C IS 	 LOWER BOUND ON I DO-LOOP 
1779 C J 	 INDEX 
1780 C JA 
1781 C JAF 	 UPPER BOUND ON JA DO-LOOP 
1782 C JF 	 UPPER BOUND ON J DO-LOOP 
1783 C JP 	 NPA-J 
1784 C K 	 INDEX 
1785 C KA 	 K+1 
1786 C KAF 	 UPPER BOUND ON KA DO-LOOP 
1787 C KP 	 NPA-K 
1788 C L 	 INDEX 
1789 C LA 	 L+1 
1790 C LAF 	 UPPER BOUND ON LA DO-LOOP 
1791 C LAQ 	 L+1-NQA 
1792 C LKA 	 L+K+1 
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1793 	C 	LKAF 	 UPPER BOUND ON LKA DO-LOOP 
1794 	C 	LOGJGF 	 USED BY F04JGF (LOGICAL) 
1795 	C 	LQ 	 NQA-L 
1796 	C 	NCJGF 	 NUMBER OF CALLS TO F04JGF 
1797 	C 	NDET 	 POWER IN DETERMINANT OF THETA 
1798 	C 	NJGF 	 1 IF F04JGF CALLED 
1799 	C 	NPMAX 	 MAXIMUM OF NP 
1800 	C 	NV1 	 FIRST TERM IN VAR 
1801 	C 	NV2 	 SECOND TERM IN VAR 
1802 	C 	NWMAX 	 NUMBER OF ELEMENTS IN W 
1803 	C 	PHIVAR(11) 	 WORK SPACE 
1804 	C 	TOL 	 ACCURACY USED BY F041JGF 
1805 	C 	W(5,5) 	 WORK SPACE 
1806 	C 	W1(5) 	 WORK SPACE 
1807 	C 	W2(5) 	 WORK SPACE 
1808 	C 	WA(5,5) 	 WORK SPACE 
1809 	C 	WB(5) 	 WORK SPACE 
1810 	C 	WC(5) 	 WORK SPACE 
1811 	C 	X02AAF 	 SUPPLIES ACC. TO WHICH SOLN. OF F04JGF REQUIRED 
1812 	C 	XX 	 WORK SPACE 
1813 	C 
1814 	C 
1815 	C 
1816 	C 
1817 	C 	 PHI 
1818 	C 
1819 	C 
1820 	C 	CALCULATE RECTANGULAR MATRIX PHI(NL,NPA) FROM 
1821 	C 	VAR(NL,NPQA) BY SOLVING SIMULTANEOUS EQUATIONS 
1822 	C 
1823 	C 	FOR L FROM NQA TO NQA-1+MIN(NP,I-NQA) 
1824 	C 
1825 	C 	SUMJ PHI(I,NPA_J)*COV(I_J,I_L)= -COV(I,I-L) 
1826 	C 
1827 	C 	SUMJ FROM 1 TO MIN(NP,I-NQA) 
1828 	C 
1829 	C 	WHERE COV(NC1,NC2)=VAR(NV1,NV2) 
1830 	C 	 NV1 = MAX(NC1,NC2) 
1831 	C 	 NV2 = NPQA-DIF(NC1,NC2) 
1832 	C 
1833 	C 	FOR I FROM NQA+1 TO NL 
1834 	C 
1835 	C 
1836 	 DATA NPMAX,NWMAX/5,25/ 
1837 	 DO 002 I=1,NPQA 
1838.01 	DO 001 J=1,NP 
1839.02 001 	PHI(I,J)=O.000 
1840.01 002 	PHI(I,NPA)=1.ODO 
1841.01 C 
1842 	 IS=NQA+1 
1843 	 NJGF=0 
1844 	 NCJGF=O 
1845 	 IF (IS.GT.NL ) GO TO Oil 
1846 	 DO 008 I=IS,NL 
1847.01 	PHI(I,NPA)=1.ODO 
1848.01 	IF (NP.EQ.0) GO TO 008 
1849.01 	IF ((NTEQ.EQ.1).AND.(I.GT.NPQA).AND.(NJGF.EQ.0)) GO 10006 
1850.01 C 
1851.01 	JF=MINO(NP,I-NQA) 
1852.01 	DO 004 LAQ=1,JF 
1853.02 	L=NQA+LAQ-1 
1854.02 	IL=I-L 
1855.02 	DO 003 J=1,JF 
1856.03 	IJ=I-J 
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1857.03 	NV1=MAXO(IJ,IL) 
1858.03 	NV2=NPQA-IABS(IJ-IL) 
1859.03 003 	WA(LAQ,J)=VAR(NV1,NV2) 
1860.02 	NV2=NPQA_L 
1861.02 004 	WB(LAQ)=-VAR(I,NV2) 
1862.02 C 
1863.01 	NJGF=O 
1864.01 	IFAIL=1 
1865.01 	CALL F04ATF(WA,NPMAX,WB,JF,WC,W,NPMAX,W1,W2,IFAIL) 
1866.01 	IF (IFAIL.EQ.0) GO TO 006 
1867.01 C 
1868.01 C 	IF SIMULTANEOUS EQNS. NOT OF FULL RANK USE F04JGF 
1869.01 C 
1870.01 	NJGF=1 
1871.01 	NCJGF=NC1JGF+1 
1872.01 	IFAIL=1 
1873.01 	TOL=XO2AAF(XX) 
1874.01 	00 005 J=1,JF 
1875.02 005 	WC(J)=W8(J) 
1876.01 	CALL F04JGF(JF,JF,WA,NPMAX,WC,TOL,LOGJGF,XX,J,W,NWMAX,IFAIL) 
1877.01 	IF (IFAIL.NE .0) GO TO 021 
1878.01 C 
1879.01 006 	DO 007 J=1,JF 
1880.02 	JP=NPA-J 
1881.02 007 	PHI(I,JP)=WC(J) 
1882.01 008 	CONTINUE 
1883.01 C 
1884 	 IF (NCJGF.EQ.0) GO TO 011 
1885 	 WRITE (NOLJT6,910) NCJGF 
1886 	 IF (NOUT.GE .1) WRITE (NOUT10,910) NCJGF 
1887 	910 	FORMAT (' 	REGAMD: AUTOREGRESSIVE ORDER<NP IN',15,' ROWS ***1) 
1888 	011 	IF (NPRI.NE .1) GO TO 012 
1889 	C 
1890 	 CALL MATPR2(VAR,NLMAX,NL,NPQA,1) 
1891 	 CALL MATPR2(PHI,NLMAX,NL,NPA,1) 
1892 	C 
1893 	C 	 THETA 
1894 	C 
1895 	C 
1896 	C 	CALCULATE RECTANGULAR MATRIX THETA(NL,NQA) FROM 
1897 	C 	MATRICES PHI(NL,NPA) AND VAR(NL,NPQA) USING 
1898 	C 
1899 	C 	THETA(I,NQA-L) = SUMK PHI(I_L,NPA_K)*PHIVAR(L+K+1) 
1900 	C 
1901 	C 	 SUMK FROM 0 TO MIN(NPA,I-L,NQA-L)-1 
1902 	C 	FOR L FROM 0 TO MIN(NQA,I)-1 
1903 	C 
1904 	C 	WHERE 
1905 	C 	PHIVAR(L+K+1) = SUMJ PHI(I,NPA_J)*COV(I_J,I_L_K) 
1906 	C 
1907 	C 	 SUMJ FROM 0 TO MIN(NPA,I)-1 
1908 	C 	FOR L+K+1 FROM 1 TO MIN(NPQA,I) 
1909 	C 
1910 	C 
1911 	C 	FOR I FROM 1 TO NL 
1912 	C 
1913 	C 
1914 	012 	DO 013 I=1,NQA 
1915.01 	00 013 J=1,NQA 
1916.02 013 	THETA(I,J)=O.000 
1917.02 C 
1918 	 00 017 I=1,NL 
1919.01 	LKAF=MINO(NPQA,I) 
1920.01 	00 015 LKA=1,LKAF 
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1921.02 	ILK=I+1-LKA 
1922.02 	XX=O.000 
1923.02 	JAF=MINO(NPA,I) 
1924.02 	00 014 JA=1,JAF 
1925.03 	J=JA-1 
1926.03 	IJ=I-J 
1927.03 	NV1=MAXO(IJ,ILK) 
1928.03 	NV2=NPQA-IABS(IJ-ILK) 
1929.03 	JP=NPA-J 
1930.03 014 	XX=XX+PHI(I,JP)*VAR(NV1,NV2) 
1931.02 015 	PHIVAR(LKA)=XX 
1932.02 C 
1933.01 	L.AF=MINO(NQA,I) 
1934.01 	DO 017 LA=1,LAF 
1935.02 	L=LA-1 
1936.02 	IL=I-L 
1937.02 	XX=O.000 
1938.02 	KAF=MINO(NPA,IL,NQA-L) 
1939.02 	DO 016 KA=1,KAF 
1940.03 	K=KA-1 
1941.03 	KP=NPA-K 
1942.03 	LKA=LA+K 
1943.03 016 	XX=XX+PHI(IL,KP)*PHIVAR(LKA) 
1944.02 	LQ=NQA-L 
1945.02 017 	THETA(I,LQ)=XX 
1946.02 C 
1947 	 IF (NPRI.EQ.1) CALL MATPR2(THETA,NLMAX,NL,NQA,1) 
1948 	C 
1949 	C 	CHOLESKY DECOMPOSITION OF BAND MATRIX THETA 
1950 	C 
1951 	 IFAIL=1 
1952 	 CALL F03AGF(NL,NQ,THETA,NLMAX,THETA,NLMAX,NQA,XLDET,N0ET.IFM_) 
1953 	 IF (IFAIL.NE.0) GO TO 019 
1954 	C 
1955 	 DO 018 I=1,NL 
1956.01 018 	THETA( I ,NQA)=1 .000/THETA( I ,NQA) 
1957 	 XLDET(DLOG(XLDET)+FLOAT(NDET)*DLOG(2.000))/2.000 

1958 	 IF (NPRI.NE .1) RETURN 
1959 	C 
1960 	 CALL MATPRO(XLDET,1) 
1961 	 CALL MATPR2(THETA,NLMAX,NL,NQA,1) 
1962 	 RETURN 
1963 	C 
1964 	C 	ERROR MESSAGES 
1965 	C 
1966 	021 	WRITE (NOUT6,922) 
1967 	 IF (NO(JT.GE.1) WRITE (NOUT10,922) 
1968 	922 	FORMAT (' 	REGAMD: F04JGF FAILS, PHI CANNOT BE FOUND 

***S) 

1969 	 IFAIL=1 
1970 	 RETURN 
1971 	019 	WRITE (NOUT6,920) 
1972 	 IF (NOUT.GE .1) WRITE (NOUT10,920) 
1973 	920 	FORMAT (' 	REGAMD: VARIANCE MATRIX NOT POSITIVE DEFINITE 

***I) 

1974 	 RETURN 
1975 	 END 
1976 
1977 	 SUBROUTINE REGTRA(X,NL,BAND,NLMAX,NBAND,NINV,NTRA,Y,NOUT,U, 

1978 	1 	 IFAIL) 
1979 	C 
1980 	C 
1981 	C 
1982 	C 	 REGTRA 
1983 	C 
1984 	C 



I4I 

1985 C TRANSFORM VECTOR 	X 	TO VECTOR 	Y 	BY PRE-MULTIPLYING BY 
1986 C A LOWER TRIANGULAR MATRIX 	BAND 	WITH BANDWIDTH NBAND WHICH 
1987 C CAN BE INVERTED (NINV=1) AND/OR TRANSPOSED (NTRA=1). 
1988 C 
1989 C INPUT 
1990 C X(NL) 	 VECTOR TO BE TRANSFORMED 
1991 C NL 	 DIMENSION OF X,Y (BETWEEN 1 AND NLMAX) 
1992 C BAND(NLMAX,NBAND) 	LOWER TRIANGULAR SAND MATRIX 
1993 C NLMAX 	 FIRST DIMENSION OF BAND (> 0) 
1994 C NBAND 	 BAND WIDTH OF BAND (> 0) 
1995 C NINV 	 1 	IF 	INVERSE OF BAND TO BE USED 
1996 C NTRA 	 1 IF TRANSPOSE OF BAND TO BE USED 
1997 C 
1998 C OUTPUT 
1999 C Y(NL) 	 TRANSFORMED VECTOR 
2000 C 
2001 C CONTROL 
2002 C NOUT 	 >0 OUTPUT TO NOUT10 
2003 C NPRI 	 1 	OUTPUT OF INTERMEDIATE RESULTS 
2004 C IFAIL 	 1 	IF NINV=1 BUT RANK(BAND)<NL 
2005 C 
2006 C 
2007 C 
2008 DOUBLE PRECISION 
2009 1 	X(NL) ,BAND(NLMAX,NBAND) ,Y(NL), 
2010 1 	XX 
2011 INTEGER 
2012 1 	NL,NLMAX,NBAND,NINV,NTRA,NOUT,NPRI,IFAIL, 
2013 1 	I,IA,IZ,J ,JF,K,KS,L,NBANDA,NBANDZ,NLZ 
2014 COMMON 
2015 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
2016 C 
2017 C 
2018 C 
2019 C LOCAL 
2020 C I 	 INDEX 
2021 C IA 	 1+1 
2022 C IZ 	 I-i 
2023 C J 	 INDEX 
2024 C JF - 	 UPPER BOUND ON J DO-LOOPS 
2025 C K 	 INDEX 
2026 C KS 	 LOWER BOUND ON K DO-LOOPS 
2027 C L 	 INVERSE/ TRANSPOSE OPTION INDEX 
2028 C NBANDA 	 NBAND+1 
2029 C NBANOZ 	 NBANO-1 
2030 C NLZ 	 NL-1 
2031 C XX 	 WORK SPACE 
2032 C 
2033 C 
2034 C 
2035 IF ((NL.LT.1).OR.(NL.GT .NLMAX)) GO TO 017 
2036 IF (NBAND.LT .1) GO TO 019 
2037 IF (NLMAX.LT .1) GO TO 021 
2038 IFAIL=O 
2039 NBANDZ=NBAND-1 
2040 NBANDA=NBAND+1 
2041 L=1 
2042 IF(NTRA.EQ.1) L=L+1 
2043 IF 	(NINV.EQ.1) L=L+2 
2044 GO TO (001,004,007,012),L 
2045 C 
2046 C NINV = 0 	NTRA = 0 
2047 	C 
2048 	C 
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2049 	C 
2050 	C 
2051 	C 
2052 	C 
2053 	C 
2054 	001 
2055.01 
2056.01 
2057.01 
2058.02 
2059.02 002 
2060.01 003 
2061 
2062 
2063 	C 
2064 	C 
2065 	C 
2066 	C 
2067 	C 
2068 	C 
2069 	C 
2070 	C 
2071 	C 
2072 	004 
2073.01 
2074.01 
2075.01 
2076.02 
2077.02 005 
2078.01 006 
2079 
2080 
2081 	C 
2082 	C 
2083 	C 
2084 	C 
2085 	C 
2086 	C 
2087 	C 
2088 	C 
2089 	C 
2090 	007 
2091 
2092 
2093 
2094.01 
2095.01 
2096.01 
2097.01 
2098.02 
2099.02 008 
2100.01 009 
2101.01 010 
2102 	011 
2103 
2104 	C 
2105 	C 
2106 	C 
2107 	C 
2108 	C 
2109 	C 
2110 	C 
2111 	C 
2112 	C 

'((I) = SUMK BAND(I,K) * X(I+K-NBAND) 

SUMK FROM MAX(NBAND+1-I,1) TO NBAND 

00 003 I=1,NL 
XX=O.000 
KS=MAXO( NBANDA- I .1) 
00 002 K=KS,NBAND 
J=I+K-NBAND 
XX=XX+BAND( I .K)X(J) 
Y(I)=XX 
IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1) 
RETURN 

NINV=0 	NTRA=1 

Y(I) = SUMJ BAN0(J,NBAND+I-J) * X(J) 

SUMJ FROM I TO MIN(I+NBAND-1,NL) 

00 006 I=1,NL 
XX=O .ODO 
JF=MINO( I+NBANDZ,NL) 
00 005 J=I,JF 
K=NBAND+I-J 
XX=XX+BAND(J ,K)*X(J) 
Y(I)=XX 
IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1) 
RETURN 

NINV=1 	NTRA=0 
======== 	======== 

Y(I) = ( X(I) - SUMK BANO(I,K) * Y(I+K..NBAND) ) / BAND(I,NBAND) 

SUMK FROM MAX(NBAND+1-I,1) TO NBAND-1 

IF (BAND(1,NBAND).EQ.O.000) GO TO 023 
Y(1)=X( 1)/BAND(1 ,NBAND) 
IF (NL.EQ.1) GO TO Oil 
00 010 I=2,NL 
XX=X( I) 
IF (NBANO.EQ.1) GO TO 009 
KS=MAXO(NBANDA-I , 1) 
00 008 K=KS,NBANDZ 
J= I+K-NBAND 
XX=XX-BAND( I ,K)Y(J) 
IF (BAND(I,NBAND).EQ.O.000) GO TO 023 

I )=XX/BAND( I ,NBAND) 
IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1) 
RETURN 

NINV=1 	NTRA= 1 
======== 	======== 

Y(I) = ( X(I) - SUMJ BANO(J,NBAND+I-J) * Y(1J) ) / BAND(I,NBAND) 

SUMJ FROM 1+1 TO MIN(I+NBAND-1,NL) 
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2113 	012 	NLZ=NL-1 
2114 	 IF (BAND(NL,NBAND).EQ.0.ODO) GO TO 023 
2115 	 Y(NL)=X(NL)/BAND(NL,NBAND) 
2116 	 IF (NL.EQ.1) GO TO 016 
2117 	 00 015 IZ=1,NLZ 
2118.01 	I=NL-IZ 
2119.01 	XX=X(I) 
2120.01 	IF (NBAND.EQ.1) GO TO 014 
2121.01 	IA=I+1 
2122.01 	JF=MINO(I+NBANDZ,NL) 
2123.01 	00 013 J=IA,JF 
2124.02 	K=NBAND+I-J 
2125.02 013 	XX=XX_BAND(J,K)*Y(J) 
2126.01 014 	IF (BAND(I,NBAND).EQ.0.000) GO TO 023 
2127.01 015 	Y(I)=XX/BAND(I,NBAND) 
2128 	016 	IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1) 
2129 	 RETURN 
2130 	C 
2131 	C 	ERROR MESSAGES 
2132 	C 
2133 	017 	WRITE (NOUT6,918) NL 
2134 	 IF (NOUT.GE .1) WRITE (NOUT1O,918) NL 
2135 	918 	FORMAT (' 	REGTRA: NL =',IS,' OUT OF RANGE 

***S) 
2136 	 IFAIL=1 
2137 	 RETURN 
2138 	019 	WRITE (NOUT6,920) NBAND 
2139 	 IF (NOUT.GE .1) WRITE (NOUT10,920) NBAND 
2140 	920 	FORMAT C' 	REGTRA: NBAND =',IS,' OUT OF RANGE ***I) 
2141 	 IFAIL=1 
2142 	 RETURN 
2143 	021 	WRITE (NOUT6,922) NLMAX 
2144 	 IF (NOUT.GE .1) WRITE (NOUT10,922) NLMAX 
2145 	922 	FORMAT (' 	REGTRA: NLMAX =',15,' OUT OF RANGE ***I) 
2146 	 IFAIL=1 
2147 	 RETURN 
2148 	023 	WRITE (NOUT6,924) 
2149 	 IF (NOUT.GE .1) WRITE (NOUT10,924) 
2150 	924 	FORMAT (' 	REGTRA: BAND MATRIX NOT OF FULL RANK 

***I) 
2151 	 IFAIL=1 
2152 	 RETURN 
2153 	 END 
2154 
2155 	 SUBROUTINE REGGEN(PARAM,NPAR,SCALE,NSEED,NL,Y,NOUT,IFAIL) 
2156 	C 
2157 	C 
2158 	C 
2159 	C 	 REGGEN 
2160 	C 
2161 	C 
2162 	C 	TO SIMULATE DATA WITH GENERALIZED AUTOREGRESSIVE-MOVING 
2163 	C 	AVERAGE ERRORS, CALLING REGMOD. 
2164 	C 	RESULTS OUTPUT TO NOUT7: NL,NSEED (215) 
2165 	C 	 Y(1 ... NL) (5G24.16) 
2166 	C 
2167 	C INPUT 
2168 	C PARAM(NPAR) 	VECTOR OF MODEL PARAMETERS 
2169 	C NPAR 	 NUMBER OF MODEL PARAMETERS 
2170 	C 	SCALE 	 SCALE PARAMETER 
2171 	C 	NSEED 	 SEED TO SET RANDOM NUMBER GENERATOR 
2172 	C NL 	 LENGTH OF VECTOR TO BE SIMULATED 
2173 	C 	 (BETWEEN 1 AND 200) 
2174 	C 
2175 	C OUTPUT 
2176 	C 	Y(NL) 	 VECTOR OF SIMULATED OBSERVATIONS 



2177 	C 
2178 	C CONTROL 
2179 C NOUT 	 >0 ERROR MESSAGES OUTPUT TO NOUT10 
2180 C 5 	INTERMEDIATE RESULTS OUTPUT 
2181 C IFAIL 	 1 	IF REGGEN FAILS 
2182 C 
2183 C 
2184 C 
2185 DOUBLE PRECISION 
2186 1 	PARAM(NPAR),SCALE,Y(NL), 
2187 1 	E(200),F(200),GO5DDF,PHI(200,6),THETA(200,6),VAR(200,11), 
2188 1 W1(200),XLDET,Z(200) 
2189 INTEGER 
2190 1 	NPAR,NSEED,NL,NOUT,IFAIL, 
2191 1 	I,J,NFDIF,NLMAX,NP,,NPA,NPMAX,NPQA,NPRI,NQ,NQA,NQMAX,NTEQ 
2192 COMMON 
2193 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
2194 C 
2195 C 
2196 L. 
2197 C LOCAL 
2198 C E(200) 	 VECTOR OF DEPARTURES 
2199 C F(200) 	 VECTOR OF FITTED VALUES 
2200 C G0500F 	 SUPPLIES SIMULATED STANDARD NORMAL DEVIATES 
2201 C I 	 INDEX 
2202 C J 	 INDEX 
2203 C NFDIF 	 0 	BECAUSE BOTH F AND VAR REQUIRED 
2204 C NLMAX 	 MAXIMUM SIZE ALLOWED FOR NL (=200) 
2205 C NP 	 GENERALIZED AUTOREGRESSIVE ORDER (MAX=5) 
2206 C NPA 	 NP+1 
2207 C NPMAX 	 MAXIMUM SIZE ALLOWED FOR NP (=5) 
2208 C NPQA 	 NP+NQ+1 	- 
2209 C NPRI 	 1 	FOR INTERMEDIATE RESULTS OUTPUT 
2210 C NQ 	 GENERALIZED MOVING AVERAGE ORDER (MAX=5) 
2211 C NQA 	 NQ+1 
2212 C NQMAX 	 MAXIMUM SIZE ALLOWED FOR NQ (=5) 
2213 C NTEQ 	 1 	IF ALL ROWS OF PHI EQUAL 
2214 C PHI(200,6) 	 FIRST MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
2215 C THETA(200,6) 	SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR 
2216 C VAR(200,11) 	BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX 
2217 C W1(200) 	 WORK SPACE 
2218 C XLDET 	 LOG DETERMINANT OF THETA 
2219 C Z(200) 	 VECTOR OF SIMULATED RESIDUALS FROM MODEL 
2220 C 
2221 C 
2222 C 
2223 DATA NLNAX,NPMAX,NQMAX/200,5,5/ 
2224 IF 	((NL.LT.1).OR.(NL.GT .NLMAX)) GO TO 006 
2225 NPRI=O 
2226 IF (NOUT.GE .5) NPRI=1 
2227 C 
2228 C USE REGMOD TO OBTAIN F AND VAR 
2229 C 
2230 NFUIF=O 
2231 IFAIL=0 
2232 CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,F,VAR,NPQA,NP,NQ,NTEQ, 
2233 1 	 NOUT,IFAIL) 
2234 IF (IFAIL.NE.0) GO TO 008 
2235 IF 	((NP.LT.0).OR.(NP.GT .NPMAX)) GO TO 010 
2236 IF 	((NQ.LT.0).OR.(NQ.GT.NQMAX)) GO TO 012 
2237 IF (NPQA.NE.NP+NQ+1) GO TO 014 
2238 NPA=NP+1 
2239 NQA=NQ+1 
2240 00 001 	I=1,NL 
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2241.01 	00 001 J=1,NPQA 

	

2242.02 001 	VAR(I,J)=VAR(I,J)*SCALE 
2243.02 C 

	

2244.02 C 	DECOMPOSE VAR INTO PHI AND THETA 
2245.02 C 

	

2246 	 CALL REGAMD(VAR,NLMAX,NL,NPQA,MPA,NQA,NP,NQ,NTEQ,PHI,THETA,XLDET, 

	

2247 	1 	 NOUT,NPRI,IFAIL) 

	

2248 	 IF (IFAIL.NE .0) GO TO 016 

	

2249 	C 

	

2250 	C 	SIMULATE RESIDUALS Z 

	

2251 	C 

	

2252 	 IF (NSEED.NE.0) CALL G05CBF(NSEED) 

	

2253 	 00 002 I=1,NL 

	

2254.01 002 	Z(I)=GO5DDF(O.ODO,1.000) 
2255.01 C 

	

2256.01 C 	TRANSFORM TO DEPARTURES E 
2257.01 C 

	

2258 	 CALL REGTRA(Z,NL,THETA,NLMAX,NQA,0,O,W1,NOUT,NPRI,IFAIL) 

	

2259 	 CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,O,E,NOUT,NPRI,IFAI1) 

	

2260 	C 

	

2261 	C 	ADD TO F TO OBTAIN SIMULATED OBSERVATIONS V 

	

2262 	C 

	

2263 	 00 003 I=1,NL 

	

2264.01 003 	Y(I)=F(I)+E(I) 
2265.01 C 

	

2266.01 C 	OUTPUT RESULT 
2267.01 C 

	

2268 	 WRITE (NOUT7,904) NL,NSEED 

	

2269 	904 	FORMAT (215) 

	

2270 	 WRITE (NOUT7,905) V 

	

2271 	905 	FORMAT (1P5G24.16) 

	

2272 	 RETURN 

	

2273 	C 

	

2274 	C 	ERROR MESSAGES 

	

2275 	C 

	

2276 	006 	WRITE (NOUT6,907) NL 

	

2277 	 IF (NOUT.GE .1) WRITE (NOUT10,907) ML 

	

2278 	907 	FORMAT (' 	REGGEN: ML 	,I5,' OUT OF RANGE 
***I) 

	

2279 	 IFAIL=1 

	

2280 	 RETURN 

	

2281 	008 	WRITE (NOUT6,909) 

	

2282 	 IF (NOUT.GE .1) WRITE (NOUT1O,909) 

	

2283 	909 	FORMAT (' 	REGGEN: REGMOD CANNOT EVALUATE F OR VAR 
***1) 

	

2284 	 IFAIL=1 

	

2285 	 RETURN 

	

2286 	010 	WRITE (NOUT6,911) NP 

	

2287 	 IF (NOUT.GE .1) WRITE (NOUT10,911) NP 

	

2288 	911 	FORMAT (' 	REGGEN: NP =',15,' OUT OF RANGE 
***I) 

	

2289 	 IFAIL=1 

	

2290 	 RETURN 

	

2291 	012 	WRITE (NOUT6,913) NQ 

	

2292 	 IF (NOUT.GE .1) WRITE (NOUT10,913) NQ 

	

2293 	913 	FORMAT (' 	REGGEN: NQ =',IS,' OUT OF RANGE 
***1) 

	

2294 	 IFAIL=1 

	

2295 	 RETURN 

	

2296 	014 	WRITE (NOUT6,915) NPQA 

	

2297 	 IF (NOUT.GE .1) WRITE (NOUT1O,915) NPQA 

	

2298 	915 	FORMAT (' 	REGGEN: NPQA =',I5,' NOT EQUAL TO NP+NQ+1 
***s) 

	

2299 	 IFAIL=1 

	

2300 	 RETURN 

	

2301 	016 	IFAIL=1 

	

2302 	 RETURN 

	

2303 	 END 
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Appendix B 

Example of output from REGAME to channel NOUT10 (see [2.4.7]). 

(1) Coiquhoun's data, single exponential regression with in-
dependent errors, fitted by least-squares estimation (see [4.3.2]); 

history of iterations, 
parameter estimates and standard errors, 
fitted model, 
line printer plots. 

(2) Colquhoun's data, single exponential regression with ARMA(1,1) 
errors, fitted by maximum likelihood estimation (see [4.3.4]). 

RESULTS 	FROM 	PROGRAM 	R E G A M E - C .A.GLASBEY 

P 	0 	 D 	a 	 a 	o 
F U 	U 0 	 U 0 	F U 	 F U 	U 0 

A • SE • S 	 E * SA • S 	 A * SE * S 
C 	• SA + S 	 A. SE + S 	 E • SA + S 
U 0 	F U 	 F U 	U 0 	 U 0 	F U 
0P 	 P 	0 	 0 	8 

IT C RATIONS 

NCALMX NIlE I6CALE 1*4 	NOER ACCIOL NYAR NPEST PARAZIS ..... 
100 1 	1 3 1 1.00-04 1 3 1.00000 1.00000 0.200000 0.0000000+00 

NITER ICALL XLIK XLIKCH SLOPE PARACH COND PARAI4 ..... 
0 0 103.692 1.00-10 1.40+01 1.00.10 1.60.01 -90.0000 80.0000 7.00000 .1.57080 

1 6 59.6059 1.00+00 1.80+00 5.00.01 7.60+00 C -89.8687 80.1165 7.196e9 -1.57080 

2 13 34.0910 6.10-01 3.90-01 3.40.01 1.80.01 -89.5717 79.6061 7.34952 .1.57080 

3 18 15.3577 4.60-01 4.50-01 3.00-01 1.10+01 C .89.3397 78.6399 7.36940 ..157(3*4) 

4 23 -1.70056 4.00-01 3.00.01 2.50-01 3.00.01 C -89.0894 17.6844 7.33817 -1.57080 

5 27 -4.19857 1.50.01 1.70.01 2.40-01 2.80101 C -88.7165 77.1758 1.18296 .1.57080 

6 31 -6.33802 1.40-01 7.70.03 1.10-01 2.10.01 -88.8766 77.4458 7.24023 -1.57080 

7 35 .6.34258 6.40-03 1.00-02 1.10-02 3.00+01 .88.8567 77.4558 7.23293 -1.57080 

8 39 .6.34460 4.30-03 1.10-03 3.50-03 3.50401 -88.8626 77.4476 7.23488 -1.$7080 

9 43 -6.34463 4.80-04 9.80-05 2.80-04 3.30+01 -88.8629 71.4483 7.23504 -1.51080 

10 50 .6.34463 6.80-05 2.70-06 6.30-05 3.10.01 -88.8628 17.4483 7.23500 -1.51080 

10 57 -6.34463 1.00-10 2.70-06 1.00-10 3.10.01 -88.8628 17.4483 7.23500 -1.57080 

RESULTS 

	

IFAIL 	0 

NEG. LOG-LIKELIHOOD -6.34463 

FIRST DERIVATIVES .6.0737170-05 2.6092640-05 -7.1728820.05 0.0000000.00 0.0000000+00 

1 	 2 	 3 	 4 	 5 

	

PARAMETER ESTIMATES-88.8628 	77.4483 	7.23500 	-1.57080 	0.332096 

	

STANDARD ERRORS 0.121258 	0.299208 	5.8111930-02 0.0000000.00 4.2176150-02 

(C0)VARIANCES 
1 1.4703400-02 
2 6.4304520-03 8.9525260-02 
3 -5.1519350-03 -1.0415150-02 3.3769970-03 
4 0.0000000.00 0.0000000+00 0.0000000.00 0.0000000+00 
5 2.0546160-08 9.1697910-08 -1.7864890-08 0.0000000+00 1.7788210-03 

CORRELATIONS 

	

2 	0.177239 

	

3 -0.816281 	-0.599001 

	

4 0.000000 	0.000000 	0.000000 

	

5 0.000004 	0.000007 	-0.000007 	0.000000 

(CORRELATIONS EXCEEDING 0.9 IN MAGNITUDE INDICATED BY ") 
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OATA(Y) 	FIT(F) 	PREDICTIONS 	RESIDUALS(Z) 
1 -22.2170 	-23.7032 	-23.1032 	2.578899" 
2 -24.4140 	-25.9162 	-25.9162 	2.606813 
3 -27.3440 	-28.0542 	-28.0542 	1.232338 
4 -29.2970 	-30.1195 	-30.1195 	1.427225 
5 -31.7380 	-32.1146 	-32.1146 	0.653574 
6 .33.9350 	-34.0420 	-34.0420 	0.185741 
7 -35.1330 	-35.9040 	.35.9040 	.0.397423 
8 .38.0860 	-37.7027 	-37.7027 	-0.665180 
9 -39.3070 	-39.4403 	.39.4403 	0.231274 
10 -41.5040 	-41.1189 	-41.1189 	-0.665311 
11 -42.7240 	.42.7404 	-42.7404 	0.028538 
12 -44.4330 	-44.3069 	-44.3069 	-0.218734 
13 -46.6310 	-45.8202 	-45.8202 	-1.406881 
14 -47.6070 	-47.2821 	-47.2821 	-0.563710 
15 -49.3160 	-48.6944 	-48.6944 	-1.078657 
16 -50.7810 	-50.0587 	-50.0587 	-1.253430 
17 -52.4900 	-51.3766 	-51.3766 	-1.932017 
18 -53.4670 	-52.6498 	-52.5498 	-1.418058 
19 -54.6870 	-53.8797 	-53.8797 	-1.400808 
20 -55.4200 	-55.0679 	.55.0679 	-0.610969 
21 -57.1290 	-56.2157 	-56.2157 	-1.584785 
22 -58.1050 	-57.3246 	-57.3246 	.1.354294 
23 -59.8140 	-58.3957 	.58.3957 	.2.461110 
24 -60.3030 	-59.305 	-59.4305 	-1.514021 
25 -61.0350 	-60.4301 	-60.4301 	-1.049592 
26 -62.7440 	-61.3958 	-61.3958 	.2.339442 
27 -62.9880 	-52.3287 	-62.3287 	-1.144029 
28 -63.4760 	-63.2299 	-63.2299 	-0.427004 
29 -63.9650 	-64.1005 	-64.1005 	0.235170 
30 -65.6740 	-.64.9416 	-64.9416 	-1.271002 
31 -66.4060 	-65.7540 	-65.7540 	-1.131377 
32 -66.8940 	-66.5389 	-66.5389 	-0.616229 
33 -67.6270 	-67.2971 	-67.2971 	-0.572482 
34 .68.3590 	-68.0296 	-68.0296 	-0.571686 
35 .68.8470 	-68.7371 	-68.7371 	-0.190651 
36 -69.0920 	-69.4207 	-69.4207 	0.570352 
37 -69.5800 	-70.0810 	-70.0810 	0.869397 
38 -70.8010 	.70.7189 	-70.7189 	-0.142433 
39 -70.8010 	-71.3352 	-71 .3352 	0.926913 
40 -71.0450 	-71.9305 	-71.9305 	1.536532 
41 -72.0210 	-72.5056 	-72.5056 	0.840843 
42 -72.2650 	-73.0611 	-73.0611 	1.381482 
43 -73.7300 	-73.5978 	-73.5978 	-0.229394 
44 -73.2420 	-74.1163 	-74.1163 	1.517093 
45 -73.4860 	-74.6171 	-74.6171 	1.962801 
46 -74.9510 	-75.1010 	.75.1010 	0.260220 
47 .74.7070 	-75.5684 	.75.5684 	1.494708 
48 -74.9510 	-76.0199 	.76.0199 	1.854834 
49 .75.6830 	-76.4561 	.76.4561 	1.341533 
50 -76.4160 	-16.8775 	-76.8775 	0.800789 
51 -76.4160 	-77.2845 	-77.2845 	1.507168 
52 .77.1480 	-77.5778 	-77.6778 	0.919333 
53 -77.3920 	-78.0577 	-78.0577 	1.155135 
54 -77.6370 	.78.4247 	-78.4247 	1.366813 
55 -78.1250 	-18.7792 	-78.7792 	1.135190 
56 -79.1010 	-79.1217 	-79.1217 	0.035858 
57 -79.1010 	.19.4525 	-79.4525 	0.609971 
58 -79.3450 	-19.7721 	-79.7721 	0.141117 
59 -79.3450 	-80.0809 	-80.0809 	1.276953 
60 -80.0780 	-80.3791 	-80.3791 	0.522575 
61 -80.5660 	410.6673 	-80.6673 	0.175761 
62 -80.5660 	-80.9456 	.80.9456 	0.658779 
63 410.8100 	-81.2145 	-81.2145 	0.701984 
64 -81.2990 	-81.4743 	-81.4743 	0.304199 
65 -81.5430 	.81.7252 	-81.7252 	0.316246 
66 -81.7870 	.81.9671 	-81.9677 	0.313504 
67 -82.5190 	-82.2019 	-82.2019 	-0.550340 
68 -82.2750 	-82.4281 	-82.4281 	0.265642 
69 -82.2750 	.82.6466 	-82.6466 	0.644884 
70 -82.5190 	-82.8578 	-82.8578 	0.587838 
71 -82.5190 	-83.0617 	-83.0617 	0.941756 
72 -82.5190 	.83.2587 	-83.2587 	1.283654 
73 -82.7630 	-83.4491 	-83.4491 	1.190532 
74 -83.0080 	-83.6329 	-83.6329 	1.084457 
75 -83.4960 	-83.8106 	-83.8106 	0.545873 
76 .83.7400 	-83.9822 	-83.9822 	0.420227 
77 -84.9610 	-84.1479 	.84.1479 	-1.410896 
78 -84.4720 	-84.3081 	-84.3081 	-0.284467 
19 -84.2280 	-84.4628 	-84.4628 	0.407381 
80 -84.4720 	.84.6122 	-84.6122 	0.243298 
81 -84.4720 	-84.7566 	-84.7566 	0.493814 
82 -84.4720 	-84.8960 	-84.8960 	0.735821 
83 .84.7170 	-85.0308 	-85.0308 	0.544467 
84 -84.9610 	-85.1609 	-85.1609 	0.346907 
85 -84.9610 	-85.2866 	-85.2866 	0.565084 
86 -85.2050 	-85.4081 	-85.4081 	0.352443 
87 -85.2050 	-85.5254 	-85.5254 	0.556051 
88 -85.9370 	-85.6388 	-85.6388 	-0.517478 
89 -85.4490 	-85.7483 	-85.7483 	0.519349 
90 -85.6930 	-85.8541 	-85.8541 	0.279500 
91 -86.4260 	-85.9563 	-85.9563 	-0.815132 
92 .85.9370 	-86.0550 	.86.0550 	0.204719 
93 -86.4260 	-86.1503 	-86.1503 	-0.478347 
94 -85.6930 	-86.2425 	-86.2425 	0.953473 
95 -86.6700 	-86.3315 	-86.3315 	-0.587458  

COVARIANCES( VAR) ( NP • 0 • 	• 0 
0.332096 
0. 332095 
0.332096 
0.332096 
0.3 32096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332G96 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332095 
0.332096  
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
0.332096 
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96 6700 -86.4174 .86.4174 -0.438270 0.332096 
97 

:86 
-86.9140 -86.5005 -86.5005 -0.717556 0.332096 

98 -86.4260 -86.5807 -86.5807 0.268485 0.332095 

99 -86.6700 -86.6582 -86.6582 -0.020425 0.332096 
100 .86.6700 -86.7331 -86.7331 0.109505 0.332096 

101 .86.4260 -86.8054 -86.8054 0.658428 0.332095 
102 -86.9140 -86.8153 -86.8753 -0.067133 0.332096 
103 -86.9140 -86.9428 -86.9428 0.050003 0.332096 
104 -87.1580 -87.0080 -87.0080 -0.260248 0.332096 
105 -86.9140 -87.0710 -87.0710 0.272473 0.332096 
106 -87.4020 -87.1319 -87.1319 -0.468741 0.332096 
107 -87.4020 .87.1907 -87.1907 -0.366727 0.332096 

108 .87.8900 -87.2475 -87.2475 -1.114992 0.332096 
109 -87.6460 -87.3023 -87.3023 -0.596382 0.332096 
110 .87.6460 -87.3553 .87.3553 .0.504414 0.332096 

111 -87.6460 -87.4065 -87.4065 -0.415568 0.332096 
112 -87.8900 .87.4560 .87.4560 -0.753148 0.332096 
113 -87.6460 .87.5038 -87.5038 -0.246828 0.332095 
114 -88.1350 -87.5499 -87.5499 -1.015282 0.332096 
115 -88.3790 .87.5945 -87.5945 -1.361313 0.332096 
116 -88.6230 -87.6376 -87.6376 -1.709972 0.332096 
117 -88.1350 -87.6792 -87.6792 -0.790948 0.332096 
118 -88.8670 -81.7194 -87.7194 -1.991413 0.332096 
119 -88.1350 -87.7582 .87.7582 -0.653804 0.332095 
120 -88.1350 -87.7957 -81.7957 -0.588705 0.332096 
121 -88.8670 -87.8320 -87.8320 -1.796039 0.332096 
122 -88.1350 -87.8670 .87.8670 -0.465065 0.332096 
123 -88.6230 -87.9008 -87.9008 -1.253191 0.332096 
124 -88.1350 -81.9335 -87.9335 -0.349682 0.332096 

(RESIDUALS 2 EXCEEDING 2.5 IN MAGNITUDE INDICATED 87 ") 

THERE FOLLIM: 
(A) A LONGITUDINAL PLOT OF OATA(Y).FIT(F).PREDICTIQN 	 (REVEALS LACK OF FIT) 
(8) A LONGITUDINAL PLOT OF DATA-FIT.PREDICTION-FIT,RESIDUALS(Z) 	(REVEALS CORRELATION OF ERRORS) 
(C) A CROSS-SECTIONAL PLOT OF RESIDUALS(Z) AGAINST FIT(F) 	(REVEALS HETEROGENEITY OF VARIANCE AND OUTLIERS) 
(0) A LONGITUDINAL PLOT OF COVARIANCES OF ERRORS 	 (DISPLAYS FITTED COVARIANCE STRUCTURE) 



OUTPUT 	FROM 	SUBROUTINE PLTLNG - 	 C .A .GLASBET 

VARIABLE 	O4ANNEL 	MINIMUM MAXIMUM -VT(I) +VT(2) CHARACTER 

1 	-88.867000 -22.217000 1.6054014 145.16720 

2 	 1 	-88.867000 -22.217000 1.6054014 145.16720 F 
3 	 1 	-88.867000 -22.217000 1.6054014 145.16720 P 

FT 
FT 

FT 
FT 

FT 

FT 
YF 

YF 
Yr 

Yr 
YF 

YF 
Y  

YF 
YF 

V 
YF 

Y  
Y  

YF 
Yr 

Y  
YF 

TF 
Yr 

Yr 
YF 

FT 
FT 

FT 
FT 

FT 
FT 

YF 
FT 

FT 

FT 
FY 

FT 
FT 
FT 

FT 
FT 
FT 

FT 

FT 

FT 

FT 

FT 

YF 
FT 
FT 

FT 
FT 
FY 

FT 
FT 

Y  
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FY 
FY 

FY 

YF 

FY 

YF 

FY 
FY 

YF 
YF 

I 	VP 
YF 

IV 
I 	YF 

VP 
'F 
VF 

I 	VP 
VP 

N 	VP 
L 	VP 
! 	VP 
N 	VP 
I 	V 

OUTPUT FROM SUBROUTINE P L T L N G - C .A.GLASBEY 

VARIABLE 	CHANNEL 	MINIMUM 	MAXIMUM 	-VT(l) 	 +61(2) 	CHARACTER 

1 	 1 	-1.4182817 	1.5022474 	17.804993 	27.752495 	Y 
3 	 1 	-1.4182817 	1.5022474 	17.804993 	27.752495 	P 
4 	 2 	-2.4611098 	2.6068135 	10.260613 	81.752495 	 2 

J . 	 .7 

P 	 1 
	

2 
7 	 P 	 V 

	
2 

3 	 P 	 1 	 : 	 Z 
I 	 p 	 y 	 : 	 2 
I 	 p 	y 	 : 	Z 

p 	 :2 
7 	 y 	 2 
3 	 V 	P 	 2 
N 	 p 	 :2 
3 	 7 	P 	 Z 
I 	 P1 	 :2 
1 	 VP 	 2: 
3 	 V 	 P 	 Z 
I 	 V 	P 	 2 
S 	 V 	 P 	 2 
5 	 Y 	 P 	 Z 
7 	V 	 P 	 2 
I 	 V 	 P 	 2 
N 	 V 	 P 	 2 
3 	 V 	P 	 2 
1 	 V 	 P 	 2 
2 	 1 	 P 	 2 
3 	V 	 P 	 Z 
6 	 V 	 P 	 Z 
5 	 1 	P 	 2 
6 	V 	 P 	 Z 
7 	 V 	 P 	 2 
8 	 Y 	P 	 Z 
9 	 P7 	 :2 
0 	 V 	 P 	 Z 
1 	 V 	 P 	 2 
2 	 7 	P 	 2 
3 	 1 	P 	 2 
4 	 1 	P 	 2 
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OUTPUT FROM SUBROUTINE 	PLTACR 	- C.A.GLASBEY 

	

VARIABLE 	MINIMUM 	MAXIMUM 	 VTV(1) 	+VTV(2) 	 VIA( 1) 	+VTA(2) 

	

2 	-87.933487 	-23.703159 	0.84072429 	16.427819 	1.4012072 	125.71303 

	

4 	-2.4611096 	2.6068134 	10.655252 	28.723742 	17.758753 	46.206237 

	

COUNTS UP TO 	0 	1 	2 	4 	B 	56 	32 	64 	128 256 $12 OVER 

	

CHARACTERS 	 * 	1 	2 	3 	4 	5 	6 	7 	8 	9 	0 

PLOTS 
4 VERSUS 2 

	

VERTICAL VARIABLE 4 	( .2.461 	• 	2.607 	) 	HORIZONTAL VARIABLE 2 	( -87.93 	• -23.70 

+--------- +--------- *--------- ,--------- +--------- +--------- *--------- +--------- *--------- * 

	

+ 	 * 

+ 

	

• 	11 	* 	 . 

	

+ 	1• 	 + 

+ 

+ 

	

+ 	 . 	 + 

	

+ 	 a 

*--------- +--------- +------------------- +--------- +--------- +------------------- *--------- + 



- 372 - 

OUTPUT FROM SUBROUTINE P L T L N G - C.A.GL.ASBEV 

VARIABLE 	CHANNEl. 	MINIMUM 	MAXIMUM 	-VT(I) 	 .VT(2) 	CHARACTER 

1 	0.000000000+00 0.33209551 	322.19647 	2.5000000 	0 



GENERALIZED PART IAL. 

NQVNPV. 	0 1 2 3 4 
0 69.54 	8 29.90 	X 16.92 • 	2.70 .0.13 
1 45.48 	8 2.04 -4.57 -0.54 -5.84 
2 35.89 	8 -4.82 -2.43 -5.10 0.62 
3 28.32 	8 0.79 -4.10 6.78 4.50 
4 23.51 	8 -3.60 -0.22 3.83 -1.57 
5 18.88 	8 13.06 3.96 0.30 3.52 
6 19.04 	8 -6.47 -7.67 -8.95 
7 17.07 	+ -2.75 -0.65 
8 14.62 	+ -2.37 
9 11.98 

STANDARD ERROR - 8.98 

VALUES EXCEEDING 1.5 	SE DENOTED BY + 
VALUES EXCEEDING 2.0 	SE DENOTED BY I 

AUTOCORRE L A T 10115 

5 6 7 	 8 
-5.86 12.68 4.45 	-2.25 
0.14 4.94 -3.10 	-6.81 
1.21 1.94 -5.62 
2.24 -1.17 
3.51 

9 
-8.70 
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84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 

AUTOCORRE L A T IONS 	OF 	R E S I DUALS 

0.6953660 0.6379363 0.5984393 0.5295662 0.4735971 0.4007144 0.4184132 0.3884956 0.3422894 0.2864343 
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RESULTS 	FROM 	PROGRAM 	R E G A M E - C.A.GLASSEY 

9 	0 	 U 	R 	 R 	0 
F U 	U 0 	 U 0 	F U 	 F U 	U 0 

A • SE 	• S 	 E • SA • S 	 A * SE • S 

E 	• SA • S 	 A 4 SE + S 	 E + S A * s 
U 0 	F U 	 F U 	U 0 	 U 0 	F U 

0 	R 	 9 0 	 D 	R 

I T E R A TI ON S 

NCAUIX NLIK 6CALE POi 	NOER ACCTOL NYAR NPEST 	PARAI4S ..... 
200 1 	1 3 1 1.00-04 1 5 	1.00000 1.00000 0.500000 0.500000 

0.500000 0.0000000+00 

MITER NCALL XLIK ILIECH SLOPE PARH CORD PARN4 ..... 

0 0 -60.1152 1.00-10 4.30-01 1.00-10 1.20+01 -88.8600 77.4500 1.23500 0.600000 
1.00000 -1.51080 

1 7 -62.0261 4.90-01 1.00+00 5.00-01 1.10+01 C 	-88.7900 78.4331 7.19978 0.611338 
1.07611 -1.67080 

2 14 -63.7521 5.20-01 7.50-01 3.40-01 1.10+01 C 	-88.8552 79.3587 7.05543 0.631651 
1.19220 -1.51080 

3 20 -63.8697 1.40-01 8.50-01 1.90-01 1.10+01 -88.8661 79.9548 6.92813 0.729627 
1.14741 -1.57080 

4 28 -64.3515 2.90-01 2.60-01 5.10-02 1.20401 -88.8137 79.8802 6.91838 0.698945 
1.21835 -1.57080 

S 35 -64.5542 1.90-01 2.00-01 1.40-01 2.00.01 -88.6942 79.4715 6.88506 0.762024 
1.24405 -1.57080 

6 42 -64.6742 1.50-01 2.50-01 8.70-02 1.70.01 -88.5440 79.5282 6.78034 0.814035 
1.28393 .1.57080 

7 48 -64.6994 6.80-02 1.70-01 2.70-02 1.70+01 -88.4958 79.4580 6.77065 0.820533 
1.27147 -1.57080 

8 55 -64.7337 8.00-02 9.70-02 6.90-02 1.60+01 -88.3650 79.2862 6.76365 0.791585 
1.27131 -1.57080 

9 62 -64.7466 4.90-02 1.40-02 2.90-02 1.50.01 -88.3369 79.3653 6.76929 0.779641 
1.25701 -1.57080 

10 69 -64.7468 6.40-03 3.10-03 5.10-03 1.50+01 -88.3493 79.3753 6.77164 0.778737 
1.25121 -1.51080 

11 76 -64.7469 2.00-03 2.40-03 1.30-03 1.10.01 -88.3491 79.3741 6.77203 0.776897 
1.25656 -1.57080 

12 83 -64.7469 6.40-04 2.50-04 1.50-04 1.10+01 -88.3494 79.3742 6.77187 0.776859 
1.25648 -1.57080 

13 90 -64.7469 8.10-05 1.50-05 4.00-05 1.20+01 -88.3495 79.3742 6.77192 0.776839 
1.25646 -1.57080 

13 95 -64.7469 1.00-10 1.50-05 1.00-10 1.20+01 -88.3495 79.3742 6.77192 0.776839 
1.25646 -1.57080 

RESULTS 

	

IFAIL 	0 

	

NEG. LOG-LIKELIHOOD 	-64.7469 

	

FIRST DERIVATIVES 	1.2047530-06 7.3854620-06 1.1255400-05 -4.4252800-06 6.8836700-06 0.0000000.00 0.0000000+00 

1 	 2 	 3 	 4 	 5 	 6 	 7 

	

PARAMETER ESTIMATES 	.88.3495 	79.3742 	6.77192 	0.776839 	1.25646 	-1.57080 	0.517483 

STANDARD ERRORS 0.651737 	0.978568 	0.226243 	0.302573 	0.149382 	0.0000000400 0.367237 

(CO)VARIANCES 
1 	0.424762 
2 -0.305306 	0.957595 
3 -9.3246980-02 3.2283590.02 5.1186090-02 
4 	4.2916130-02 -1.6113350-02 -3.6409210-02 9.1550370-02 
5 	2.1743270-02 -1.4306600-02 -1.9240660-02 3.8909920-02 2.2315120-02 
6 0.0000000+00 0.0000000.00 0.0000000400 0.0000000+00 0.0000000.00 0.0000000.00 
1 	5.3244830-02 -2.4640510-02 -.4.5772910-02 0.107927 	5.0243490-02 0.0000000+00 0.134863 

CORRELATIONS 
2 -0.478709 
3 -0.632392 
	

0.145819 
4 	0.217630 
	

.0.054421 	-0.531870 
5 0.223333 
	.0.097869 	-0.569304 	0.860856 

6 0.000000 
	

0.000000 	0.000000 	0.000000 	0.000000 
7 0.222463 
	

-0.068567 	-0.550917 	0.971304** 	0.915869** 	0.000000 

(CORRELA1I INS EXCEEDING 0.9 IN MAGNITUDE INDICATED 81 	) 
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DATA(T) IT(F) PREDICTIONS RESIDUALS(Z) COVARIANCES(VAR) (NP • 1 • NO • 1 
-22.2170 .22.3539 -22.3539 0.190295 0.0000000.00 0.0000000+00 0.517483 
-24.4140 -24.7458 .24.6323 0.543507 0.0000000.00 0.429344 0.517483 
-27.3440 -27.0511 -26.8295 -1.390202 0.418825 0.429344 0.517483 
-29.2970 -29.2728 -29.2751 -0.060700 0.418825 0.429344 0.517483 
-31.7380 -31.4140 -31.4249 .0.872721 0.418825 0.429344 0.517483 
-33.9350 -33.4775 -33.6101 -0.908146 0.418825 0.429344 0.517483 
.35.1330 -35.4663 -35.7210 -1.152388 0.418825 0.429344 0.517483 
-38.0860 -37.3830 -37.7901 -.0.827988 0.418825 0.429344 0.517483 
-39.3070 -39.2302 -39.7412 1.215051 0.418825 0.429344 0.517483 
.41.5040 .41.0105 -41.3420 -0.453397 0.418825 0.429344 0.517483 
-42.7240 -42.7263 -43.1119 1.085650 0.418825 0.429344 0.517483 
.44.4330 -44.3798 .44.6069 0.486716 0.418825 0.429344 0.517483 
-46.6310 .45.9735 .46.1281 -1.407407 0.418825 0.429344 0.511483 
-47.6070 -47.5094 -47.8535 0.589972 0.418825 0.429344 0.517483 
-49.3160 -48.9896 -49.2305 -0.239189 0.418825 0.429344 0.517483 
-50.7810 -50.4161 -50.6840 -0.271341 0.418825 0.429344 0.517483 
-52.4900 -51.7910 .52.0896 -1.120577 0.418825 0.429344 0.517483 
-53.4670 -53.1160 -53.5612 0.263755 0.418825 0.429344 0.517483 
-54.6870 .54.3930 -54.7911 0.291368 0.418825 0.429344 0.517483 
-55.4200 .55.6237 -55.9121 1.545043 0.418825 0.429344 0.517483 
-57.1290 -55.8098 -56.9374 -0.536210 0.418825 0.429344 0.517483 
-58.1050 .57.9530 -58.1511 0.128907 0.418825 0.429344 0.517483 
-59.8140 -59.0547 -59.2302 -1.633922 0.418825 0.429344 0.517483 
-60.3030 -60.1164 -60.5121 0.585164 0.418825 0.429344 0.517483 
-61.0350 -61.1397 -61.4453 1.148297 0.418825 0.429344 0.517483 
-62.7440 -62.1259 -62.2663 -1.337033 0.418825 0.429344 0.517483 
-62.9880 -63.0763 -63.3969 1.144484 0.418825 0.429344 0.517483 
-63.4760 -63.9923 -64.1479 1.880392 0.418825 0.429344 0.517483 
-63.9650 -64.8751 -64.7686 2.249003 0.418825 0.429344 0.517483 
-55.6740 -65.7259 -65.3131 -1.010115 0.418825 0.429344 0.517483 
-66.4060 -66.5459 -66.2819 -0.347297 0.418825 0.429344 0.517483 
-66.8940 -67.3362 -67.1263 0.550226 0.418825 0.429344 0.511483 
-67.6270 -68.0978 -67.8038 0.494716 0.418825 0.429344 0.517483 
-68.3590 -68.8318 .68.4770 0.330302 0.418825 0.429344 0.517483 
-68.8470 -69.5392 -69.1477 0.841692 0.418825 0.429344 0.517483 
-69.0920 .70.2209 -69.7235 1.767342 0.418825 0.429344 0.517483 
-69.5800 .10.8780 -70.1500 1.595173 0.418825 0.429344 0.517483 
-70.8010 -71.5112 -70.5819 -0.613118 0.418825 0.429344 0.517483 
.10.8010 -72.1215 -71.2992 1.394323 0.418825 0.429344 0.517483 
-71.0450 -72.7097 -71.7160 1.877927 0.418825 0.429344 0.517483 
-72.0210 -73.2765 .72.0492 0.079042 0.418825 0.429344 0.517483 
-72.2650 -73.8228 -72.6148 0.978876 0.418825 0.429344 0.517483 
-73.7300 -74.3493 -73.0364 -1.941187 0.418825 0.429344 0.517483 
-73.2420 -74.8568 -73.8426 1.680989 0.418825 0.429344 0.517483 
-73.4860 -75.3458 -74.1255 1.790089 0.418825 0.429344 0.517483 
-74.9510 -75.8171 -74.3809 -1.595477 0.418825 0.429344 0.517483 
-74.1070 -76.2713 -75.0895 1.070475 0.418825 0.429344 0.517483 
-74.9510 -76.7091 -75.4092 1.282280 0.418825 0.429344 0.517483 
-75.6830 -77.1310 -75.6868 0.010574 0.418825 0.429344 0.517483 
-76.4160 -17.5376 .76.1273 -0.807960 0.418825 0.429344 0.517483 
-76.4160 -11.9294 -76.6647 0.696065 0.418825 0.429344 0.517483 
-71.1480 -78.3071 -76.9711 -0.476489 0.418825 0.429344 0.517483 
-77.3920 -78.6711 .77.4397 0.133615 0.418825 0.429344 0.517483 
-77.6370 -79.0219 -77.8023 0.462741 0.418825 0.429344 0.517483 
-78.1250 .79.3599 -78.1067 -0.051140 0.418825 0.429344 0.517483 
-79.1010 -79.6858 .78.4703 -1.165237 0.418825 0.429344 0.517483 
.79.1010 -79.9998 -79.0565 -0.124473 0.418825 0.429344 0.517483 
-79.3450 -80.3024 .19.3994 0.152134 0.418825 0.429344 0.517483 
-79.3450 -80.5940 -79.6922 0.971843 0.418825 0.429344 0.517483 
-80.0780 .80.8751 .79.8619 -0.604700 0.418825 0.429344 0.517483 
-80.5660 -81.1460 -80.2407 -0.910371 0.418825 0.429344 0.517483 
-80.5660 -81.4071 -80.6490 0.232360 0.418825 0.429344 0.517483 
-80.8100 -81.6587 -80.8873 0.216345 0.418825 0.429344 0.517483 
-81.2990 -81.9012 -81.1190 -0.503816 0.418825 0.429344 0.517483 
-81.5430 -82.1349 -81.4411 -0.285299 0.418825 0.429344 0.517483 
-81.7870 -82.3602 -81.1225 .0.180551 0.418825 0.429344 0.517483 
-82.5190 -82.5773 -81.9800 -1.508551 0.418825 0.429344 0.517483 
-82.2750 .82.7865 -82.4110 0.380731 0.418825 0.429344 0.517483 
-82.2750 -82.9881 -82.5696 0.824407 0.418825 0.429344 0.517483 
-82.5190 -83.1824 -82.6609 0.397138 0.418825 0.429344 0.517483 
-82.5190 -83.3697 -82.8064 0.804360 0.418825 0.429344 0.517483 
-82.5190 -83.5502 -82.8902 1.038904 0.418825 0.429344 0.517483 
-82.7630 -83.7241 -82.9376 0.488716 0.418825 0.429344 0.517483 
-83.0080 -83.8918 -83.0574 0.138265 0.418825 0.429344 0.517483 
-83.4960 -84.0533 .83.2204 -0.771279 0.418825 0.429344 0.511483 
-83.7400 -84.2090 -83.5025 -0.664772 0.418825 0.429344 0.511483 
-84.9610 -84.3591 -83.7612 _3.358024** 0.418825 0.429344 0.517483 
-84.4120 -84.5037 -84.3817 -0.252714 0.418825 0.429344 0.517483 
-84.2280 -84.6431 -84.5588 0.925758 0.418825 0.429344 0.517483 
-84.4720 -84.7774 -84.5680 0.268731 0.418825 0.429344 0.517483 
-84.4720 -84.9069 -84.6657 0.542121 0.418825 0.429344 0.517483 
-84.4720 -85.0317 -84.7219 0.699460 0.418825 0.429344 0.517483 
-84.7170 -85.1519 -84.7531 0.102670 0.418825 0.429344 0.517483 
-84.9610 -85.2678 -84.8652 -.0.268032 0.418825 0.429344 0.511483 
-84.9610 -85.3795 -85.0236 0.175204 0.418825 0.429344 0.517483 
-85.2050 -85.4872 .85.1159 .0.249370 0.418825 0.429344 0.517483 
-85.2050 -85.5909 -85.2630 0.162295 0.418825 0.429344 0.511483 
-85.9370 -85.6909 -85.3487 -1.646458 0.418825 0.429344 0.511483 
-85.4490 -85.7872 -85.6796 0.645399 0.418825 0.429344 0.511483 
-85.6930 -85.8801 -85.6865 -0.018311 0.418825 0.429344 0.511483 
-86.4260 -85.9696 -85.7832 -1.798976 0.418825 0.429344 0.517483 
-85.9310 -86.0559 -86.1211 0.515356 0.418825 0.429344 0.517483 
-86.4260 -86.1390 -86.1319 -0.823155 0.418825 0.429344 0.517483 
-85.6930 -86.2191 -86.3252 1.769465 0.418825 0.429344 0.517483 
-86.6700 -86.2963 -86.1568 -1.436294 0.418825 0.429344 0.517483 
-86.6700 -86.3707 -86.4319 -0.666318 0.418825 0.429344 0.517483 
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97 .85.9140 -86.4425 .85.5937 .0.896538 0.418825 0.429344 0.517483 

98 .86.4260 -86.5116 .86.7822 0.996966 0.418825 0.429344 0.517483 
99 .86.6700 -86.5782 -86.7053 0.098693 0.418825 0.429344 0.517483 

100 -86.6100 .86.6424 -86.7528 0.231714 0.418825 0.429344 0.517483 

101 -86.4260 -86.7043 -86.7801 0.991120 0.418825 0.429344 0.517483 

102 .86.9140 -86.7639 -86.7018 -0.593985 0.418825 0.429344 0.517483 

103 .86.9140 -86.8214 .86.8423 -0.200547 0.418825 0.429344 0.517483 
104 .87.1580 -86.8767 -85.9248 .0.652773 0.418825 0.429344 0.517483 
105 -86.9140 -86.9301 -87.0666 0.427155 0.418825 0.429344 0.517483 

106 -87.4020 .86.9816 -87.0561 -0.968217 0.418825 0.429344 0.517483 

107 -87.4020 -87.0311 .87.2368 -0.462363 0.418825 0.429344 0.517483 

108 .87.8900 -87.0789 -87.3430 -1.530773 0.418825 0.429344 0.517483 
109 -87.6460 -87.1250 -87.5929 -0.148649 0.418825 0.429344 0.517483 
110 .87.6460 -87.1694 -87.6462 0.000621 0.418825 0.429344 0.517483 
111 -87.6460 -87.2121 -87.6772 0.087393 0.418825 0.429344 0.517483 
112 -87.8900 -87.2533 .87.6950 -0.545614 0.418825 0.429344 0.517483 
113 -87.6460 -87.2931 .87.7989 0.427923 0.418825 0.429344 0.517483 
114 -88.1350 -87.3314 -87.7660 -1.032684 0.418825 0.429344 0.517483 
115 .88.3790 -87.3683 -87.9341 .1.245115 0.418825 0.429344 0.517483 
116 .88.6230 -87.4038 -88.1268 -1.388623 0.418825 0.429344 0.517483 
111 -88.1350 -87.4381 -88.3341 0.557323 0.418825 0.429344 0.517483 
118 .88.8670 -87.4711 -88.2687 -1.674586 0.418825 0.429344 0.517483 
119 -88.1350 -87.5030 -88.5110 1.052244 0.418825 0.429344 0.517483 
120 -88.1350 -87.5336 -88.3724 0.664488 0.418825 0.429344 0.517483 
121 -88.8670 .87.5632 .88.2902 .1.614384 0.418825 0.429344 0.517483 
122 -88.1350 -87.5917 .88.5226 1.084801 0.418825 0.429344 0.517483 

123 -88.6230 .87.6192 .88.3783 .0.684965 0.418825 0.429344 0.517483 
124 -88.1350 -87.6456 .88.4802 0.966161 0.418825 0.429344 0.517483 

(RESIDUALS 2 EXCEEDING 2.5 IN MAGNITUDE INDICATED BY ) 

THERE FOLLOW: 
A LONGITUDINAL PLOT OF UATA(Y),FIT(F).PREDICTION 	 (REVEALS LACE OF FIT) 
A LONGITUDINAL PLOT OF OATA.FIT.PREDICTION-FIT,RESIDUALS(Z) 	(REVEALS CORRELATION OF ERRORS) 
A CROSS-SECTIONAL PLOT OF RESIDUALS(Z) AGAINST FIT(F) 	(REVEALS HETEROGENEITY OF VARIANCE AND OUTLIERS) 
A LONGITUDINAL PLOT If COVARIANCES OF ERRORS 	 (DISPLAYS FITTED COVARIANCE STRUCTURE) 
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OUTPUT FROM 	SUBROUTINE P L T L N G - 	 C.A.GLASBEV 

VARIABLE 	O4ANNEI. MINIMUM MAXIMUM -VT(I) .VT(2) 	O4ARACTER 

1 -88.867000 -22.217000 1.6054014 145.16720 
2 	 1 -88.867000 -22.217000 1.6054014 145.16720 	F 
3 	 1 -88.867000 -22.217000 1.6054014 145.16720 	 P 

YF 
'F 

YF 
PT 

YF 
PT 

YF 

YF 
'F 

YPF 

FT 

YF 
YF 

PT '  
YF 

FT 
FT 

FY 
YP 

FT 
FT 

FT 
FPY 

FPT 
FT 

FPY 
F PT 

FT 
F PT 

FTP 
F PT 
F PT 

FTP 
F PT 
FY 

FT 
FT 
FT 

FT 
FT 
FT 

FT 
FTP 

FT 
FT 

FT 
FT 

FTP 
FT 
FT 

FT 
FT 

FT 
'P 
FT 

FPT 
FT 
FT 
FT 

FT 
FT 
FT 

FTP 
TFP 

TP 
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81 	FT 
82 	FT 
83 	FT 
84 
85 	9 
86 	FT 
87 	FT 
88 	VP 
89 	V 
90 
91 	YF 
92 	PT 
93 	V 
94 	FT 
95 	V 
96 	V 
97 	VP 
98 	PY 
99 	PY 
100 	PY 
101 	FT 
102 	V 
103 	V 
104 	V 
105 	Y 
106 	VP 
107 	VP 
108 	VF 
109 	VF 
110 	VF 
111 	VP 
112 	VP 
113 	YF 
114 	VP 
115 	VP 
116 	YPF 
111 	YF 
118 	VPF 
119 	VF 
120 	VP 
121 	VPF 
122 	VP 
123 	VPF 
124 	VP 

0 U T P U I 	P R 	N 	S U B R 0 U I I N E p L I L N G - 	C • A • G L A S 8 £ V 

VARIABLE CHANNEL 	MINIMUM MAXIMUM V1(1) +VT(2) CHARACTER 

1 	-1.3958692 1.8597870 15.972203 24.195105 V 
3 1 	-1.3958692 1.8597870 15.972203 24.795105 P 
4 2 	-3.3580244 2.2490033 9.2740758 87.642513 Z 

PT :2 
:P 	V : 	2 

V 	: 	P 2 
V 2 

y 	p 2 
V 	P: Z 

V 	P 	: Z 
V 	P 	: 2 

P 	V: : 	 Z 
VP 	: 2 

P 	V : 	2 
PV: : 	2 

V 	P: 2 
P9: : 	2 
VP 	: 2: 
VP 	: 2: 

V 	P 	: Z 
PT 	: :2 
PV 	: : 	2 
P 	: 	V : 	 Z 
VP: 2 

PT 	: :2 
V 	P: 2 

PT: : 	2 
P 	:V : 	 Z 

V 	P: 2 
P 	:V : 	 Z 

V 
V 

:9 	P Z 
VP 2 
PT : 	2 
PV : 	2 
PT :2 

z 
2 
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y 2: 
p 	V : 	2 
p 	V : 	2 

yp 2: 
p 	 V : 	 2 
P 	 V : 	 2 
p 	y : 	2 
p 	 V : 	 2 

VP Z: 
p 	 V : 	 2 
P V : 	 Z 
p :2 
P 	 V : 	 2 
P V : 	 2 
P 	 V : 	 2 
p 	y : 	2 
p 	 V : 	 2 
p 	 y : 	 2 
P 	 V : 	 2 
P 	 V : 	 2 
P 	 V : 	 2 
PV :Z 
P 	V : 	2 
P 	V : 	Z 
P 	 V : 	 2 
P 	V : 	2 
PV :2 
P 	V : 	2 
P 	V : 	2 
PV :2 

:2 
PV :2 

V 	P Z 
PV :2 
P 	V : 	2 
P 	V : 	2 
P 	V : 	 2 
P 	 V : 	 2 
P 	 V : 	 Z 
P 	 V : 	 2 
P 	V : 	2 
P 	Y : 	2 

V 	 P 2 
VP 2 

P 	V : 	2 
p  :2 
P 	V : 	2 
P 	V : 	2 
P 	V : 	2 
P 	V : 	2 
P 	V : 	2 
P 	V : 	Z 
P 	V : 	2 

V 	P 2 
P 	V : 	Z 
p  :2 

V 	P 2 
p  :2 

V 	P 2 
P 	Y : 	 2 

V 	P 2 
V 	P 2 

V 	P 2 
p  :2 
V 2 
PY :2 
P 	V : 	2 
V 2 
PY :2 

VP Z: 
PV :Z 

V 	P 2 
VP 2 

V 	 P 2 
V 	P 2 

V 	P 2 
V 	P 2 

V 	P 2 	: 
VP 2: 

V 	P 2 
V 	 P 2 

V P 2 
V 	P 2 

V P 2 
V 	P 2 
V 	P 2 

V P 2 
V 	P 2 

V 	 P 2 
VP 2: 



OUTPUT FROM SUBROUTINE P L T A C R - C.A.GLASB(Y 

VARIABLE 	MINIMUM 	MAXIMUM 	VTV(1) 	+VTV(2) 	•VTA(1) 	.VTA(2) 

2 	-87.645645 	-22.353889 	0.82705685 	74.987931 	1.3784281 	123.31322 
4 	-3.3580246 	2.2490034 	9.6307705 	34.840364 	16.051284 	56.400601 

COUNTS UP TO 	0 	1 	2 	4 	8 	16 	32 	64 	128 256 512 OVER 
CHARACTERS 	 • 	1 	2 	3 	4 	5 	6 	7 	8 	9 	0 

PLOTS 
4 VERSUS 2 

VERTICAL VARIABLE 4 	( -3.358 	• 	2.249 	) 	HORIZONTAL VARIABLE 2 	( .87.65 	• -22.35 

+---------*---------+---------+---------+---------+---------4---------+---------+---------+ 

+ 	 • 	 + 

• 	 • 	 + 

•..... . 	 4 

•4 	 • 	 4 

tel* 

* 1 	• 	 * 	. * 	 + 

+ 

* 	 + 

• 	 + 

• 	1 	 + 

---------- 4--------------------------------------------------------------------- •---------- 
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OUTPUT FROM 	SUBROUTINE P L T L N G - 	 C .A .GLASBEI 

VARIABLE CHANNEL MINIMUM MAXIMUM -VT(I) +VT(2) CHARACTER 

1 1 0.000000000+00 0.51748311 206.77003 2.5000000 2 

2 1 0.000000000400 0.51748311 206.77003 2.5000000 1 
3 1 0.000000000+00 0.51748311 206.77003 2.5000000 0 

21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
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21 81 	: 
21 82 	: 21 83: 
21 84 	: 
20 85 	: 
21 86 	: 
21 87 	: 
21 88 	: 
21 89 	: 21 90 	: 
21 91 	: 
21 92 	: 21 93 	: 
21 94 	: 
21 95 	: 
21 96 	: 
21 91 	: 
21 98 	: 
21 99 	: 
21 100 	: 
21 101 	: 
21 102 	: 
21 103 	: 
21 104 	: 
21 105 	: 
21 106 	: 

107 	: 21 

108 	: 21 

109 	: 21 
110 	: 21 

111 	: 21 
112 	: 21 

113 	: 21 

114 	: 21 

115 	: 21 

116 	: 21 
21 117 	: 

118 	: 21 

119 	: 21 
120 	: 21 

121 	: 21 
21 122 	: 
21 123 	: 

124 	: 21 

AUTOCORREI.ATIONS 	OF 	RESIDUALS 

-0.0365390 0.0289507 0.0600407 0.0474054 0.0186853 .0.1104928 0.0999713 0.0820289 0.1208935 0.0676121 

AUTOCORRE L A T IONS 

5 6 7 	 8 	9 
-11.67 8.56 9.34 	13.89 	• 	7.54 
-1.60 8.41 1.34 	-3.47 
-0.54 6.09 -3.97 
4.90 0.57 
6.22 

GENERALIZED 	PARTIAL 

NQVNPV. 	0 1 	 2 3 4 
0 -3.65 2.77 	6.22 5.14 1.91 

1 2.89 4.37 	-1.30 -1.14 -9.87 
2 5.99 -1.21 	0.19 -2.95 1.22 
3 4.71 -0.90 	-3.02 -0.16 1.47 
4 1.85 -8.76 	0.97 1.40 0.90 
5 -10.96 -1.52 	-0.01 4.95 5.66 
6 9.80 7.95 	4.97 0.01 
7 7.96 2.42 	-3.25 
8 11.66 -2.68 
9 6.44 

STANDARD ERROR • 8.98 

VALUES EXCEEDING 1.5 	SE DENOTED BY + 
VALUES EXCEEDING 2.0 	SE DENOTED BY I 
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Appendix C 

CEVOPE computer program listing (see section 9.3). 

0001 
0002 
0003 C 
0004 C** CCCCC 	EEEEEEE 	V 	V 	00000 	PPPPPP 	EEEEEEE ** 
0005 C** C 	C 	E 	V 	V 	0 	0 	p 	p 	E 
0006 C** C 	E 	V 	V 	0 	0 	P 	p 	E 
0007 C C 	EEEE 	V 	V 	0 	0 	PPPPPP 	EEEE 
0008 C C 	E 	V 	V 	0 	0 	P 	E 
0009 C 	C 	E 	 V V 	0 	0 	P 	E 
0010 C** CCCCC 	EEEEEEE 	V 	00000 	P 	EEEEEEE ** 
0011 C** 
0012 C 
0013 C PROGRAM TO CALCULATE 
0014 C CONSERVATIVE (UPWARD BIASED) ESTIMATES OF 
0015 C** THE VARIANCES OF REGRESSION PARAMETER ESTIMATORS 
0016 C** FOR CLASSES OF SERIALLY CORRELATED ERRORS **C 
0017 C** 
0018 C** C.A.GLASBEY 
0019 C** A.F.R.C. UNIT OF STATISTICS 
0020 C** UNIVERSITY OF EDINBURGH **j 
0021 C** 
0022 C**********************************************************************C 
0023 
0024 C 
0025 C 
0026 C SUBROUTINES 
0027 C 
0028 C 
0029 C CVINPT 
0030 C CVVARS 
0031 C CVSTTC 
0032 C CVIXXT 
0033 C CVINIT 
0034 C CVOMEG 
0035 C CVEIGC 
0036 C CVVOPT 
0037 C CVMODI 
0038 C CVINCR 
0039 C CVLINP 
0040 C CVRESU 
0041 C 
0042 C 
0043 C REGAME ROUTINE 
0044 C 
0045 C 
0046 C REGTRA 
0047 C 
0048 C 
0049 C NAG ROUTINES 
0050 C 
0051 C 
0052 C F01AAF 
0053 C G05CBF 
0054 C G05CCF 
0055 C G05DDF 
0056 C G05DYF 
0057 C H01ADF 
0058 C X02AAF 
0059 C X02ACF 
0060 C 
0061 C 
0062 C AUXILIARY NAG ROUTINES 
0063 	C 
0064 	C 
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0065 C F03AFF 	F04AJF 	X03AAF 	P01AAF 	X04AAF 
0066 C Y13AAF 	Y13ACF 	Y13AEF 	Y13AFF 	Y13AGF 
0067 C Y13ADF 	Y13ABF 	G05CAF 	G05CGZ 	G05CFZ 
0068 C BG05CC 
0069 C 
0070 C 
0071 C AUXILIARY OUTPUT ROUTINES 
0072 C 
0073 to 
0074 C /NINOUT/ 
0075 C MATPNO 
0076 C MATPN1 
0077 C MATPRO 
0078 C MATPR1 
0079 C MATPR2 
0080 C 
0081 C 
0082 C IMPLEMENTATION DEPENDENT ROUTINES 
0083 C 
0084 C 
0085 C CLOCK 
0086 C DTIM$A 
0087 C 
0088 C 
0089 C 
0090 C ARRAY DIMENSIONS 
0091 C 
0092 C DOUBLE PRECISION 
0093 C 1 PARAII(NPARMX),RESID(NLMAX), 
0094 C 1 U(NLMAX,NPARMX),X(NLMAX,NPARMX),XT(NLMAX,NPARMX), 
0095 C 1 PHI(NLMAX,NPAMAX),THETA(NLMAX,NQAMAX), 
0096 C 1 UVU(NPARMX,NPARMX),XVIX(NPARMX,NPARMX), 
0097 C 1 XVIXI(NPARMX,NPARMX),SE(NPARIIX), 
0098 C 1 C(NLMAX,NThAX),CWT(NTMAX),VOPT(NTBMAX),CNEW(NLMAX), 
0099 C 1 XLHS(NTAMAX,NVARMX),XRHS(NTMAX),W1(NLMAX),W2(NLMAX), 
0100 C 1 W3(NVARMX),W4(NTBMAX,NTAMAX),w5(NLMAX), 
0101 C 1 ACCTOL,XOPT,XOPTLD,QUAD,RBIAS,DTIM$A 
0102 C INTEGER 
0103 C 1 MINEQ(NTMAX),MOPT(NTMAX),MW1(NTMAX),MW2(NTVRMX), 
0104 C 1 MW3(NTThAX) 
0105 C 
0106 DOUBLE PRECISION 
0107 1 PARAM(5,RESID(200), 
0108 1 U(200,5 ,X(200,5),XT(200,5). 
0109 1 PHI(200,6),THETA(200,6), 
0110 1 	UVU(5,5),XVIX(5,5), 
0111 1 	XVIXI(5,5),SE(5), 
0112 1 C(200,30),CWT(30),VOPT(32),CNEw(200), 
0113 1 XLHS(31,10000),XRHS(30),W1(200),w2(200), 
0114 1 W3(10000),W4(32,31),W5(200), 
0115 1 ACCTOL,XOPT,XOPTLD,QUAD,RBIAS,DTIM$A 
0116 INTEGER 
0117 1 MINEQ(30),MOPT(30),MW1(30),MW2(10030), 
0118 1 MW3(50) 
0119 INTEGER*4 INT4 
0120 COMMON 
0121 1 /CVCOM1/ U,X,XT,PHI,THETA,C,W3 
0122 1 /CVCOM2/ VOPT,XRHS,W4,XOPT,XLHS 
0123 1 /CVCOM3/ MINEQ,MOPT,MW1,MW3,NLHS,NT,NVAR,NTBMAX,ITLP,IFAIL,Mw2 
0124 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,N0UT8,N0IJT9,NOUT1O 
0125 C 
0126 C INITIALISE VARIABLES 
0127 C 
0128 DATA 
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0129 1 NLMAX,NPARMX ,NPAMAX,NQAMAX,NTMAX,NVARMX,NLHSSP ,ACCTOL 
0130 1/ 	200, 	5, 	6, 	6, 	30, 	10000, 	5,1.OD-10/ 
0131 C 
0132 NTAMAX=NTMAX+1 
0133 NTBMAX=NThAX+2 
0134 NTVRMX=NTMAX+NVARMX 
0135 NTTMAX=2*NThAX 
0136 C 
0137 C INPUT AND CHECK PARAMETERS 
0138 C 
0139 001 WRITE (NOUT6,902) 
0140 902 FORMAT (/1 	INPUT (1017):'!' 	NO 	NVARS', 
0141 1 	' 	NS 	NSEED 	NT NOMEGA 	NLAG 	MITER 	NCPU 	NPRI') 
0142 READ (NINS,903) ND,NVARS,NS,NSEED,NT I NOMEGA,NLAG,NITER,NCPU I NPRI 
0143 903 FORMAT (1017) 
0144 C 
0145 C 
0146 C NO 	NUMBER OF DATA SETS TO ADVANCE FROM CHANNELS NIN3,NIN4 
0147 C (NEGATIVE TO STOP PROGRAM) 
0148 C NVARS 	1 TO CALCULATE MODEL DEPENDENT RESULTS IN CVVARS 
0149 C MS 	NO. OF PARAMETER FOR WHICH CONSERVATIVE ESTIMATE BEING SOUGHT 
0150 C NSEED 	SEED FOR NAG RANDOM NUMBER GENERATOR USED IN CVINIT, CVEIG 
0151 C (NEGATIVE TO START PROGRAM FROM CHANNEL NIN2) 
0152 C NT 	INITIAL NUMBER OF VECTORS IN C-ARRAY (UNLESS NSEED NEGATIVE) 
0153 C NOMEGA 	DIFFERENCE OPERATOR APPLIED TO CLASS OF VARIANCE MATRICES 
0154 C NLAG 	LAG BEYOND WHICH VARIANCE TERMS ARE ZERO 
0155 C MITER 	MAXIMUM NUMBER OF ITERATIONS 
0156 C NCPU 	MAXIMUM CPU TIME 
0157 C NPRI 	1 TO OUTPUT INTERMEDIATE CALCULATIONS 
0158 C 
0159 C 
0160 IF (ND.LT.0) STOP 
0161 IF ((NT.LT.1).OR.(NT.GT .NThAX)) GO TO 023 
0162 IF (NOMEGA.LT.0) GO TO 025 
0163 IF (NLAG.LT.0) GO TO 027 
0164 IF (NITER.LE.0) GO TO 029 
0165 IFAIL=O 
0166 CALL CLOCK(TCPUST) 
0167 TCPULD=TCPUST 
0168 TCPULM=TCPUST+FLOAT(NCPU) 
0169 TDISLD=SNGL(DTIM$A(INT4)) 
0170 C 
0171 C INPUT AND CHECK MATRICES, USING CVINPT 
0172 C 
0173 IF (ND.EQ.0) GO TO 005 
0174 DO OO4 ID=1,ND 
0175.01 CALL CVINPT(PARAM,NPARMX,NPAR,RESID,NLMAX,NL,U,X,XT, 
0176.01 1 	 PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0177.01 1 	 XVIX,XVIXI,W1,ACCTOL,NPRI ,IFAIL) 
0178.01 IF (IFAIL.NE.0) GO TO 001 
0179.01 004 	CONTINUE 
0180 005 	IF (NLAG.GT .NL-1) GO TO 027 
0181 NVAR=INTS( (INTL(2*NL_NLAG)*INTL(NLAG+1))/2) 
0182 IF (NVAR.GT .NVARMX) GO TO 031 
0183 C 
0184 C CALCULATE PARAMETER ESTIMATOR VARIANCES 
0185 C ASSUMING ERROR VARIANCE MATRIX IS V, USING CVVARS 
0186 C 
0187 CALL CVVARS(PARAM,NPARMX,NPAR,U,NLMAX,NL,X, 
0188 1 	 PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0189 1 	 UVU,XVIX,XVIXI,SE,W1,W2, 
0190 1 	 NVARS,NPRI,IFAIL) 
0191 IF (IFAIL.NE.0) GO TO 001 
0192 IF 	((NS.LE.0).OR.(NS.GT.NPAR)) GO TO 033 



0193 	C 
0194 C SELECT FIRST SET OF C-VECTORS. USING CVSTTC 
0195 C 
0196 CALL CVSTTC(XT,NLMAX,NL,NPARMX,NPAR,X,NSEED,C,NThAX,NT, 
0197 1 	 W1,W5,ACCTOL,NPRI,IFAIL) 
0198 IF (IFAIL.NE.0) GO TO 001 
0199 WRITE (NOUT6,906) NS,UVU(NS,NS),SE(NS),NSEED 
0200 906 FORMAT (//18X,'*** 0 U T P U I 	F R 0 N 	C E V 0 P E 
0201 1 11X, - MODEL DEPENDENT ESTIMATE OF THE VARIANCE OF THE ESTIMATOR'! 
0202 1 6X. - OF PARAMETER NUMBER',I3,' 	IS',1PG12.4, 
0203 1 	' 	AND THE S.E. 	IS',G12.4//18X, 
0204 1 	'SEARCH FOR ROBUST ESTIMATOR WITH MINIMUM BIAS (NSEED=',I5,')'// 
0205 1 ' 	 ADD NEW C-VECTOR 
0206 1 	' 	FIND BEST COMBINATION OF C-VECTORS'! 
0207 1 
0208 1 	' 
0209 1 ' ITER ICPUT NT ITEIG ICPU IDIS 	QUAD 
0210 1 	' 	ITLP ICPU lOIS 	XOPT 	REL BIAS'! 
0211 1 
0212 1 
0213 C 
0214 C SET INPUT FOR LINEAR PROGRAM, USING CVINIT 
0215 C 
0216 NLHS=NTAMAX.-( (NThAX_NT)/NLHSSP)*NLHSSP 
0217 CALL CVINIT(U,NLMAX,NL,NPARMX,NPAR,PHI,NPA?IAX,NPA, 
0218 1 	 THETA,NQAMAX,NQA,C,NTMAX,NT,NOMEGA,NLAG,NS, 
0219 1 	 XLHS,NLHS,NTA,NVARMX,NVAR,XRHS,MINEQ, 
0220 1 	 W1,W2,W3,ACCTOL,NPRI I IFAIL) 
0221 IF (IFAIL.NE .0) GO TO 001 
0222 ITER=0 
0223 XOPTLD=1 .0020 
0224 GO TO 008 
0225 C 
0226 C FIND NEW C-VECTOR, USING CVEIGC 
0227 C 
0228 007 ITER=ITER+1 
0229 CALL CVEIGC(XT,NLMAX,NL,NPARMX,NPAR,X,PHI,NPAMAX,NPA, 
0230 1 	 THETA,NQAMAX,NQA,VOPT,NTBMAX,MOPT,NTMAX,NT,NOMEGA, 
0231 1 	 NLAG,NVAR,CNEW,QUAD,W1 ,W2,W3,NVARMX, 
0232 1 	 W5,ITEIG,ACCTOL,NPRI ,IFAIL) 
0233 IF (IFAIL.NE .0) GO TO 021 
0234 IF (QUAD.GE .-ACCTOL) GO TO 013 
0235 C 
0236 C MODIFY INPUT FOR LINEAR PROGRAM, USING CVMODI 
0237 C 
0238 CALL CVMODI(PHI,NLMAX,NL,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0239 1 	 C,NTMAX,NT,CWT,CNEW,NOMEGA,NLAG,NVAR, 
0240 1 	 XLHS,NLHS,NVARNX,XRHS, 
0241 1 	 W1,W2,W3,MW1,MW3,NTThAX,ACCTOL,NPRI,IFAIL) 
0242 IF (IFAIL.NE .0) GO TO 021 
0243 C 
0244 C INCREASE FIRST DIMENSION OF XLHS IF NECESSARY, USING CVINCR 
0245 C 
0246 IF (NT+1.LE.NLHS) GO TO 008 
0247 NLHS=NLHS+NLHSSP 
0248 CALL CVINCR(XLHS,NLHS,NVARMX,NVAR,W1,NLMAX,W3,NT,NPRI) 
0249 C 
0250 C OPTIMIZE COMBINATION OF C-VECTORS BY LINEAR PROGRAM, 
0251 C USING CVLINP 
0252 C 
0253 008 CALL CLOCK(TCPUA) 
0254 TDIS=SNGL(DTIM$A( 1N14)) 
0255 CALL CVLINP(XLHS,NLHS,NVARMX,NVAR,XRHS,NTMAX,NT, 
0256 1 	 MINEQ,XOPT,CWT,VOPT,NTBMAX,MOPT,NL, 
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0257 
0258 

1 	 W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL) 
IF 	(IFAIL.NE.0) GO TO 001 

0259 C 
0260 C CALCULATE CPU AND DISC TIMES 
0261 C 
0262 CALL CLOCK(TCPU) 
0263. ICPUT= INT(TCPU-TCPUST+O.5) 
0264 ICPU1= I NT(TCPUA-TCPULD+O .5) 
0265 ICPU2=INT(TCPU-TCPUA+0.5) 
0266 IDIS1=INT(TDIS-TDISLD+0.5) 
0267 TDISLD=TDIS 
0268 TDIS=SNGL(DTIM$A( INT4)) 
0269 IDIS2=INT(TDIS-TDISLD+O.5) 
0270 TDISLD=TDIS 
0271 RBIAS=XOPT/SE(NS)-1.000 
0272 IF (ITER.GT.0) GO TO 010 
0273 WRITE (NOUT6,909) 	ITER,ICPUT,NT,ICPU1,IDIS1, 
0274 1 	ITLP,ICPU,IDIS2,XOPT,RBIAS 
0275 909 FORMAT (I5,I6,13,6X,215,9X,16,215,1PG12.4,G12.4) 
0276 GO TO 012 
0277 010 WRITE (NOUT6,911) ITER,ICPUT,NT,ITEIG,ICPU1,IDIS1,QUAD., 
0278 1 	ITLP,ICPU2,IDIS2,XOPT,RBIAS 
0279 911 FORMAT (I5,16,I3,I6,2I5,1P09.0,16,2I5,G12.4,G12.4) 
0280 C 
0281 C CHECK STOPPING CONDITIONS 
0282 C 
0283 012 IF (XOPT.GT.XOPTLD*(1.ODO_ACCTOL)) GO TO 015 
0284 IF (ITER.GE .NITER) GO TO 017 
0285 IF (2.0*(TCPU_TCPULD).GT.(TCPULM_TCPU))  GO TO 019 
0286 XOPTLD=XOPT 
0287 TCPULD=TCPU 
0288 GO TO 007 
0289 C 
0290 C OUTPUT STOPPING CRITERION 
0291 C 
0292 013 WRITE (NOUT6,914) 
0293 914 FORMAT (I' 	ITERATIONS CEASED, OPTIMUM REACHED') 
0294 GO TO 021 
0295 015 WRITE (NOUT6,916) 
0296 916 FORMAT (I' 	ITERATIONS CEASED, NO DECREASE IN XOPT') 
0297 GO TO 021 
0298 017 WRITE (NOUT6,918) 
0299 918 FORMAT (I' 	ITERATIONS CEASED, NITER REACHED') 
0300 GO TO 021 
0301 019 WRITE (NOUT6,920) 
0302 920 FORMAT (I' 	ITERATIONS CEASED, CPU LIMIT MAY BE EXCEEDED ON NEXT 
0303 1 	'ITERATION') 
0304 C 
0305 C . 	 CALCULATE FINAL RESULTS, USING CVRESU 
0306 C 
0307 021 CONTINUE 
0308 CALL CVRESU(PARAN,NPARMX,NPAR,RESID,NLMAX,NL, 
0309 1 	 PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA,UVU, 
0310 1 	 C,NTMAX,NT,CWT,ND,NS,NOMEGA,NLAG, 
0311 1 	 W1,W2,W4,NTBMAX,NTAMAX,NPRI) 
0312 GO TO 001 
0313 C 
0314 C ERROR MESSAGES 
0315 C 
0316 023 WRITE (NOUT6,924) 
0317 924 FORMAT C' 	CEVOPE, NT OUT OF RANGE 
0318 GO TO 001 
0319 025 WRITE (NOUT6,925) 
0320 926 FORMAT (' 	CEVOPE, NOMEGA OUT OF RANGE ***' 



	

0321 	 GO 10 001 

	

0322 	027 	WRITE (NOUT6,928) 

	

0323 	928 	FORMAT (' 	CEVOPE, NLAG OUT OF RANGE ***l) 

	

0324 	 GO TO 001 

	

0325 	029 	WRITE (NOUT6,930) 

	

0326 	930 	FORMAT (' 	CEVOPE, NITER OUT OF RANGE ***1) 

	

0327 	 GO TO 001 

	

0328 	031 	WRITE (NOUT6,932) 

	

0329 	932 	FORMAT (' 	CEVOPE, ML AND NVAR COMBINED OUT OF RANGE ***I) 

	

0330 	 GO TO 001 

	

0331 	033 	WRITE (NOUT6,934) 

	

0332 	934 	FORMAT (' 	CEVOPE, MS OUT OF RANGE ***1) 

	

0333 	 GO TO 001 

	

0334 	 END 
0335 

	

0336 	 SUBROUTINE CVINPT(PARAII,NPARMX,NPAR,RESID,NLMAX,NL,U,XXT 

	

0337 	1 	 PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA, 

	

0338 	1 	 XVIX,XVIxI ,W1 ,ACCTOL,NPRI ,IFAIL) 

	

0339 	C 

	

0340 	C 	INPUT AND CHECK MATRICES 

	

0341 	C 

	

0342 	 DOUBLE PRECISION 

	

0343 	1 PARAM(NPARMX),RESID(NLMAX),. 

	

0344 	1 U(NLMAX,NPARMX),X(NLMAX,NPARMX),XT(N1J.XNPARMX) 

	

0345 	1 PHI (NLMAX,NPAMAX) ,THETA(NLMAX,NQNIAX), 

	

0346 	1 XVIX(NPARMX,NPARMX),XVIXI(NPARMX,NPAPJIX)W1(NLJ.IAX)ACCTOLXX 

	

0347 	 COMMON 

	

0348 	1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7NOUT8NOUT9NOUT1O 

	

0349 	C 

	

0350 	C 

	

0351 	C 	READS OUTPUT FILE CREATED BY REGAME. 

	

0352 	C 	 INPUT FROM NI-N4: ML 	 (215) 

	

0353 	C 	RESID(1 ... N1) 	(5G24.16) 

	

0354 	C 	 NPAR 

	

0355 	C 	 PARAM(1 ... NPAR) 

	

0356 	C 	 X(1...NL,J) 

	

0357 	C 	 J=1. . .NPAR 

	

0358 	C 	 U(1 ... NL,J) 

	

0359 	C 	 J=1 ... NPAR 

	

0360 	C 
0361 	 READ (NIN4,901) NL 
0362 	901 	FORMAT (215) 
0363 	 IF ((NL.LT.1).OR.(NL.GT .NLMAX)) GO TO 017 
0364 	 READ (NIN4,902) (RESID(I),I=1,NL) 
0365 	902 	FORMAT (5G24.16) 
0366 	 IF (NPRI.EQ.1) CALL MATPR1(RESID,NL I 1) 
0367 	 READ (NIN4,901) NPAR 
0368 	 IF ((NPAR.LT .1).OR.(NPAR.GT .NPARMX)) GO TO 019 
0369 	 READ (NIN4,902) (PARAM(J),J=1,NPAR) 
0370 	 IF (NPRI.EQ.1) CALL MATPR1(PARAM,NPAR,1) 
0371 	 DO 003 J=1,NPAR 
0372.01 003 	READ (NIN4,902) (X(I,J),I=1,NL) 
0373 	 IF (NPRI.EQ.1) CALL MATPR2(X,NLMAX,NL,NPAR,1) 
0374 	 DO 004 J=1,NPAR 
0375.01 004 	READ (NIN4,902) (U(I,J),I=1,NL) 
0376 	 IF (NPRI.EQ.1) CALL MATPR2(U,NLMAX,NL,NPAR,1) 
0377 	C 
0378 	C 	CALCULATES XT=X(XTX)- 
0379 	C 
0380 	 DO 010 I=1,NPAR 
0381.01 	DO 010 J=1,NPAR 
0382.02 	XX=O.ODO 
0383.02 	DO 009 K=1,NL 
0384.03 009 	XX=XX+X(K,I)*x(K,,J) 



NERM 

	

0385.02 010 	XVIX(I,J)=XX 

	

0386 	 IF (NPRI.EQ.1) CALL MATPR2(XVIX,NPARMX,NPAR,NPAR,1) 

	

0387 	C 

	

0388 	 IFAIL=1 

	

0389 	 CALL F01AAF(XVIX,NPARMX,NPAR,XVIXI,NPARMX,W1,IFAIL) 

	

0390 	 IF (IFAIL.NE .0) GO TO 021 

	

0391 	 IF (NPRI.EQ.1) CALL MATPR2(XVIXI,NPARMX,NPAR.NPAR,1) 

	

0392 	C 

	

0393 	 00 012 I=1,NL 

	

0394.01 	DO 012 K=1,NPAR 

	

0395.02 	XX=0.000 

	

0396.02 	DO 011 J=1,NPAR 

	

0397.03 011 	XX=XX+X(I,J)*XVIXI(J,K) 

	

0398.02 012 	XT(I,K)=XX 

	

0399 	 IF (NPRI.EQ.1) CALL MATPR2(XT,NLMAX,NL,NPAR,1) 

	

0400 	C 

	

0401 	C 

	

0402 	C 	 INPUT FROM NIN3: NPA,NQA 

	

0403 	C 	 PHI(1 ... NL,J) 

	

0404 	C 	 J=1 ... NPA 

	

0405 	C 	 THETA(1 ... NL,J) 

	

0406 	C 	 J=1 ... NQA 

	

0407 	C 

	

0408 	C 

	

0409 	 READ (NIN3,901) NPA,NQA 

	

0410 	 IF ((NPA.LT .1).OR.(NPA.GT .NPAMAX)) GO TO 023 

	

0411 	 IF ((NQA.LT .1).OR.(NQA.GT .NQAMAX)) GO TO 025 

	

0412 	 DO 013 J=1,NPA 

	

0413.01 013 	READ (NIN3,902) (PHI(I.J),I=1,NL) 

	

0414 	 IF (NPRI.EQ.1) CALL MATPR2(PHI,NLMAX,NL,NPA,1) 

	

0415 	 DO 014 I=1,NL 

	

0416.01 	IF (PHI(I,NPA).EQ.0.000) GO TO 027 

	

0417.01 014 	CONTINUE 
0418.01 C 

	

0419 	 DO 015 J=1,NQA 

	

0420.01 015 	READ (NIN3,902) (THETA(I,J),I=1,NL) 

	

0421 	 IF (NPRI.EQ.1) CALL MATPR2(THETA,NLMAX,NL,NQA.1) 

	

0422 	 DO 016 I=1,NL 

	

0423.01 	IF (THETA(I,NQA).EQ.O.ODO) GO TO 029 

	

0424.01 016 	CONTINUE 

	

0425 	 RETURN 

	

0426 	C 

	

0427 	C 	ERROR MESSAGES 

	

0428 	C 

	

0429 	017 	WRITE (NOUT6,918) 

	

0430 	918 	FORMAT (S 	CVINPT, ML OUT OF RANGE ***S) 

	

0431 	 IFAIL=1 

	

0432 	 RETURN 

	

0433 	019 	WRITE (NOUT6,920) 

	

0434 	920 	FORMAT (' 	CVINPT. NPAR OUT OF RANGE 
***I) 

	

0435 	 IFAIL=1 

	

0436 	 RETURN 

	

0437 	021 	WRITE (NOUT6,922) 

	

0438 	922 	FORMAT (' 	CVINPT, X NOT OF FULL RANK 
***5) 

	

0439 	 RETURN 

	

0440 	023 	WRITE (NOUT6,924) 

	

0441 	924 	FORMAT (' 	CVINPT, NPA OUT OF RANGE 
***1) 

	

0442 	 IFAIL=1 

	

0443 	 RETURN 

	

0444 	025 	WRITE (NOUT6,926) 

	

0445 	926 	FORMAT (5 	CVINPT, NQA OUT OF RANGE ***5) 

	

0446 	 IFAIL=1 

	

0447 	 RETURN 

	

0448 	027 	WRITE (NOUT6.928) 
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0449 
0450 
0451 
0452 
0453 
0454 
0455 
0456 
0457 
0458 
0459 
0460 
0461 
0462 
0463 
0464 
0465 
0466 
0467 
0468 
0469 
0470 
0471 
0472 
0473 
0474 
0475 
0476.01 
0477.02 
0478.01 
0479.01 
0480.01 
0481.01 
0482.01 
0483.02 
0484.02 
0485.03 
0486.02 
0487.02 
0488.01 
0489 
0490 
0491 
0492 
0493 
0494 
0495 
0496 
0497 
0498 
0499 
0500 
0501 
0502 
0503 
0504 
0505 
0506.01 
0507.02 
0508.01 
0509.01 
0510.01 
0511.01 
0512.01 

928 	FORMAT (' 	CVINPT, PHI SINGULAR ***I) 
IFAIL=1 
RETURN 

029 	WRITE (NOUT6,930) 
930 	FORMAT (' * CVINPT, THETA SINGULAR ***1) 

IFAIL=1 
RETURN 
END 

SUBROUTINE CVVARS(PARAM,NPARMX,NPAR,U,NLMAX,NL,X, 
1 	 PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA, 
1 	 UVU,XVIX,XVIXI,SE,W1,W2, 
1 	 NVARS,NPRI,IFAIL) 

CALCULATE PARAMETER ESTIMATOR VARIANCES 
ASSUMING ERROR VARIANCE MATRIX IS V 

DOUBLE PRECISION 
1 PARAM(NPARMX),U(NLMAX,NPARMX),X(NLMAX,NPARMX), 
1 PHI(NLMAX,NPAMAX) ,THETA(NLMAX,NQAMAX), 
1 UVU(NPARMX,NPARMX),XVIX(NPARMX,NPARMX), 
1 XVIXI(NPARMX,NPARMX),SE(NPARMX), 
1 W1(NLMAX) ,W2(NLMAX) ,XX 
COMMON 
1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 

00 004 J=1,NPAR 
DO 001 I=1,NL 

001 	W1(I)=U(I,J) 
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0,NPRI,IFAIL) 
CALL REGTRA(W2,NL,THETA,NLMAX,NQA,0,1,W1,O,NPRI,IFAIL) 
CALL REGTRA(W1,NL,THETA,NLMAX,NQA,0,0,W2,0,NPRI,IFAIL) 
CALL REGTRA(W2,NL,PHI,NLMAX,NPA,1,0,W1,0,NPRI,IFAIL) 
DO 003 K=1,J 
XX=0. 000 
00 002 I=1,NL 

002 	XX=XX+W1(I)*U(I,K) 
U VU ( K  ) =XX 

003 	UVU(J,K)=XX 
004 	SE(J)=DSQRT(UVU(J,J)) 

IF (NVARS.NE .1) RETURN 
C 
C 	IF NVARS=1 OUTPUT RESULTS 
C 

WRITE (NOUT6,905) 
905 	FORMAT (I' PARAMETER ESTIMATES') 

CALL MATPR1(PARAM,NPAR,0) 
WRITE (NOUT6,906) 

906 	FORMAT (I' STANDARD ERRORS') 
CALL MATPR1(SE,NPAR,O) 
WRITE (NOUT6,907) 

907 	FORMAT (I' PARAMETER ESTIMATOR VARIANCES ASSUMING V') 
CALL MATPR2(UVU,NPARMX,NPAR,NPAR,O) 

C 
C 	CALCULATE EFFICIENCY OF ESTIMATORS 
C 

DO 010 J=1,NPAR 
DO 008 I=1,NL 

008 	W1(I)=X(I,J) 
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,O,O,W2,0,NPRI,IFAIL) 
CALL REGTRA(W2,NL,THETA,NLMAX,NQA,1,O,W1,O,NPRI,IFAIL 
CALL REGTRA(W1,NL,THETA,NLMAX,NQA,1,1,W2,O,NPRI,IFAIL 
CALL REGTRA(W2,NL,PHI,NLMAX,NPA,O,1,W1,O I NPRI,IFAIL) 
DO 010 K=1,J 
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0513.02 	XX=0.000 
0514.02 	DO 009 I=1,NL 
0515.03 009 	XX=XX+W1(I)*X(I,K) 
0516.02 	XVIX(K,J)=XX 
0517.02 010 	XVIX(J,K)=XX 
0518 	 IF (NPRI.EQ.1) CALL MATPR2(XVIX,NPARMX,NPAR,NPAR,1) 
0519 	C 
0520 	 IFAIL=1 
0521 	 CALL F01AAF(XVIX,NPARtIX,NPAR,XVIXI,NPARMX,W1,IFAIL) 
0522 	 IF (IFAIL.NE .0) GO TO 014 
0523 	 WRITE (NOUT6,911) 
0524 	911 	FORMAT (I' LOWER BOUNDS ON VARIANCES') 
0525 	 CALL MATPR2(XVIXI,NPARMX,NPAR,NPAR,0) 
0526 	C 
0527 	 DO 012 J=1,NPAR 
0528.01 012 	W1(J)=XVIXI(J,J)/UVU(J,J) 
0529 	 WRITE (NOUT6,913) 
0530 	913 	FORMAT (I' EFFICIENCY OF ESTIMATORS') 
0531 	 CALL MATPR1(W1,NPAR,O) 
0532 	 RETURN 
0533 	C 
0534 	014 	WRITE (NOUT6,915) 
0535 	915 	FORMAT (' 	CEVOPE, XVIXI SINGULAR ***) 
0536 	 RETURN 
0537 	 END 
0538 
0539 	 SUBROUTINE CVSTTC(XT,NLMAX,NL,NPARMX,NPAR,X,NSEED,C,NThAX,NT, 
0540 	1 	 W1,W5,ACCTOL,NPRI,IFAIL) 
0541 	C 
0542 	C 	SELECT FIRST SET OF C-VECTORS 
0543 	C 
0544 	 DOUBLE PRECISION 
0545 	1 XT(NLMAX,NPARMX),X(NLMAX,NPARMX), 
0546 	1 C(NLMAX,NTMAX), 
0547 	1 W1(NLMAX),W5(NLMAX),ACCTOL,G0500F,XX 
0548 	 INTEGER 
0549 	1 G05DYF 
0550 	 COMMON 
0551 	1 /NINOUT/ NIN1 ,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT1O 
0552 	C 
0553 	 IF (NSEED) 006,001,002 
0554 	C 
0555 	C 	INITIAL C-VECTORS CHOSEN AT RANDOM 
0556 	C 
0557 	001 	CALL G05CCF 
0558 	 NSEED=G05DYF(1 ,9999) 
0559 	002 	CALL G05CBF(NSEED) 
0560 	 DO 005 J=1,NT 
0561.01 	00 003 I=1,NL 
0562.02 003 	W1(I)=GO5DDF(O.ODO,1.ODO) 
0563.01 	IF (NPRI.EQ.1) CALL MATPR1(W1,NL,1) 
0564.01 	CALL CVIXXT(W1 ,NLMAX,NL,XT,NPARMX,NPAR,X,W5,ACCTOL, 
0565.01 	1 	 NPRI,IFAIL) 
0566.01 	IF (IFAIL.NE.0) RETURN 
0567.01 	XX=0.000 
0568.01 	DO 004 I1,NL 
0569.02 	IF (DABS(W1(I)).GT.DABS(XX)) XX=W1(I) 
0570.02 004 CONTINUE 
0571.01 	DO 005 I=1,NL 
0572.02 005 	C(I,J)=W1(I)/XX 
0573 	 IF (NPRI.EQ.1) CALL MATPR2(C,NLMAX,NL,NT,1) 
0574 	 RETURN 
0575 	C 
0576 	C 	C-VECTORS RESTORED FROM CHANNEL NIN2 
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0577 	C 
0578 	006 	NSEED=-NSEED 
0579 	 CALL G05CBF(NSEED) 
0580 	 READ (NIN2,907) NT 
0581 	907 	FORMAT (15) 
0582 	 DO 008 J=1,NT 
0583.01 008 	READ (NIN2,909) (C(I,J),I=1,NL) 
0584 	909 	FORMAT (5D24.16) 
0585 	 IF (NPRI.EQ.1) CALL MATPR2(C,NLMAX,NL,NT,1) 
0586 	 RETURN 
0587 	 END 
0588 
0589 	 SUBROUTINE CVIXXT(W1,NLMAX,NL,XT,NPARMX,NPAR,X,W5,ACCT0L, 
0590 	1 	 NPRI,IFAIL) 
0591 	C 
0592 	C 	PERFORM TRANSFORMATION w1=(I-(XT)X)W1 
0593 	C 
0594 	 DOUBLE PRECISION 
0595 	1 XT(NLMAX,NPARMX) ,X(NLMAX,NPARMX), 
0596 	1 W1(NLMAX),W5(NLMAX),ACCTOL,XX,XY,XZ 
0597 	 COMMON 
0598 	1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,N0UT9,N0UT10 
0599 	 DO 005 ITER1,3 
0600.01 	DO 002 I=1,NPAR 
0601.02 	XX=0.ODO 
0602.02 	00 001 J=1,NL 
0603.03 001 	XX=XX+X(JJ)*W1(J) 
0604.02 002 	W5(I)=XX 
0605.01 	IF (NPRI.EQ.1) CALL MATPR1(W5,NPAR,1) 
0606.01 C 
0607.01 	XY=0.000 
0608.01 	XZ=O.ODO 
0609.01 	DO 004 I=1,NL 
0610.02 	XY=XY+DABS(W1( I)) 
0611.02 	XX=O.ODO 
0612.02 	00 003 J=1,NPAR 
0613.03 003 	XX=XX+XT(I,J)*W5(J) 
0614.02 	W1(I)=W1(I)-XX 
0615.02 004 	XZ=XZ+DABS(XX) 
0616.01 	IF (NPRI.EQ.1) CALL MATPR1(W1,NL,1) 
0617.01 	IF (XZ/XY.LT .ACCTOL) RETURN 
0618.01 005 CONTINUE 
0619 	 WRITE (NOUT6,906) 
0620 	906 FORMAT (' 	CVIXXT, FAILURE TO CONVERGE 

***S) 
0621 	 IFAIL=1 
0622 	 RETURN 
0623 	 END 
0624 
0625 	 SUBROUTINE CVINIT(U,NLMAX,NL,NPARMX,NPAR,PHI,NPAMAX,NPA, 
0626 	1 	 THETA,NQAMAX,NQA,C,NTMAX,NT,NOMEGA,NLAG,NS, 
0627 	1 	 XLHS,NLHS,NTA,NVARMX,NVAR,XRHS,MINEQ, 
0628 	1 	 W1,W2,W3,ACCTOL,NPRI ,IFAIL) 
0629 	C 
0630 	C 	SET INPUT FOR LINEAR PROGRAM 
0631 	C 
0632 	 DOUBLE PRECISION 
0633 	1 U(NLMAX,NPARMX), 
0634 	1 PHI(NLMAX,NPAMAX) ,THETA(NLMAX,NQAMAX), 
0635 	1 C(NLMAX,NTMAX), 
0636 	1 XLHS(NLHS,NVARMX),XRHS(NTMAX),W1(NLMAX),W2(NX), 
0637 	1 W3(NVARMX),ACCTOL,CVC 
0638 	 INTEGER 
0639 	1 MINEQ(NTMAX) 
0640 	 COMMON 
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0641 	1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
0642 	C 
0643 	 DO 001 I=1,NTMAX 
0644.01 001 	MINEQ(I)=-1 
0645.01 C 
0646 	 DO 004 J=1 9 NT 
0647.01 	DO 002 I=1,NL 
0648.02 002 	w1(I)=C(I,J) 
0649.01 	CALL CVOMEG(W1,NLMAX,NL,PHI,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0650.01 	1 	 NOMEGA,NLAG,CVC,W3,NVARMX,NVAR, 
0651.01 	1 	 W2,ACCTOL,NPRI,IFAIL) 
0652.01 	IF (IFAIL.NE .0) RETURN 
0653.01 	DO 003 K=1,NVAR 
0654.02 003 	XLHS(J,K)=W3(K) 
0655.01 	XRHS(J)=CVC 
0656.01 004 CONTINUE 
0657 	 IF (NPRI.EQ.1) CALL MATPR1(XRHS,NT,1) 
0658 	C 
0659 	 DO 005 I=1,NL 
0660.01 005 	W1(I)=U(I,NS) 
0661 	 CALL CVOMEG(W1,NLMAX,NL,PHI,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0662 	1 	 NOMEGA, NLAG ,C VC,W3,NVARMX ,NVAR, 
0663 	1 	 W2,ACCTOL,NPRI,IFAIL) 
0664 	 IF (IFAIL.NE.0) RETURN 
0665 	 NTA=NT+1 
0666 	 DO 006 K=1,NVAR 
0667.01 006 	XLHS(NTA,K)=-W3(K) 
0668 	 RETURN 
0669 	 END 
0670 
0671 	 SUBROUTINE CVOMEG(W1,NLMAX,NL,PHI,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0672 	1 	 NOMEGA,NL.AG,CVC,W3 ,NVARMX , NVAR, 
0673 	1 	 W2,ACCTOL,NPRI,IFAIL) 
0674 	C 
0675 	C 	CALCULATES CVC=(W1)V(W1) 
0676 	C 	AND W3 IS L.H.S. IN LINEAR PROGRAM (DEPENDS ON NOMEGA,NLAG) 
0677 	C 
0678 	 DOUBLE PRECISION 
0679 	1 PHI(NLMAX,NPAMAX),THETA(NLMAX,NQAMAX), 
0680 	1 W1(NLMAX),W2(NLMAX), 
0681 	1 W3(NVARMX),ACCTOL,CVC,XX 
0682 	 COMMON 
0683 	1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
0684 	C 
0685 	C 	CALCULATE CVC 
0686 	C 
0687 	 CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0,NPRI,IFAIL) 
0688 	 CALL REGTRA(W2,NL,THETA,NLMAX,NQA,O,1,W3,0,NPRI,IFAIL) 
0689 	 CVC=O.ODO 
0690 	 DO 001 1=1 9 NL 
0691.01 001 	CVC=CVC+W3(I)*W3(I) 
0692 	 IF (NPRI.EQ.1) CALL MATPRO(CVC,1) 
0693 	 IF (CVC.LE.O.000) GO TO 007 
0694 	C 
0695 	C 	CALCULATES W3 IF NOMEGA=O 
0696 	C 
0697 	 NLAGA=NLAG+1 
0698 	 K=O 
0699 	 DO 002 I=1,NL 
0700.01 	JZF=MINO(NLAGA,I) 
0701.01 	DO 002 JZ=1,JZF 
0702.02 	J=1+1-JZ 
0703.02 	K=K+1 
0704.02 	W3(K)=W1(I)-W1(J) 
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0705.02 	IF (I.NE.J) W3(K)=2.000*W3(K) 
0706.02 002 	CONTINUE 
0707 	 IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1) 
0708 	 IF (NOMEGA.EQ.0) RETURN 
0709 	C 
0710 	C 	CALCULATES W3 IF NOMEGA>O 
0711 	C 
0712 	 00 005 IOMEGA=1,NOMEGA 
0713.01 	K=O 
0714.01 	KK=0 
0715.01 	00 004 I=1,NL 
0716.02 	JZF=MINO(NLAGA,I) 
0717.02 	00 003 JZ=1,JZF 
0718.03 	J=1+1-JZ 
0719.03 	JZZ=JZ-1 
0720.03 	JZY=JZ-2 
0721.03 	XX=0.000 
0722.03 	IF (JZ.GE.2) XX=XX+W3(K)+W2(JZZ) 
0723.03 	IF (JZ.GE.3) XX=XX-W2(JZY) 
0724.03 	K=K+1 
0725.03 003 	W3(K)=W3(K)+XX 
0726.02 	DO 004 JZ=1JZF 
0727.03 	KK=KK+1 
0728.03 004 	W2(JZ)=W3(KK) 
0729.01 	IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1) 
0730.01 005 	CONTINUE 
0731.01 C 
0732 	 DO 006 K=1,NVAR 
0733.01 	IF (W3(K).LE.ACCTOL) W3(K)=O.ODO 
0734.01 006 CONTINUE 
0735 	 RETURN 
0736 	C 
0737 	007 	WRITE (NOUT6,908) 
0738 	908 	FORMAT (' 	CVOMEG, CVC NON-POSITIVE 

***I) 
0739 	 IFAIL=1 
0740 	 RETURN 
0741 	 END 
0742 
0743 	 SUBROUTINE CVEIGC(XT,NLMAX,NL,NPARMXNPAR,X,PHI,NPAMAX,NPA, 
0744 	1 	 THETA,NQAMAX,NQA,VOPT,NTBMAX,MOPT,NTMAX,NTNOMEGA, 
0745 	1 	 NLAG,NVAR,CNEW,QUAD,W1 ,W2,W3,NVARMX 
0746 	1 	 W5,ITEIG,ACCTOL,NPRI ,IFAIL) 
0747 	C 
0748 	C 	FIND NEW C-VECTOR 
0749 	C 
0750 	 DOUBLE PRECISION 
0751 	1 XT(NU4AX,NPARMX) I,X(NLMAX,NPARMX), 
0752 	1 PHI(NLMAX,NPAMAX),THETA(NLMAX,NQAMAX), 
0753 	1 VOPT(NTBMAX)CNEW(NLMAX), 
0754 	1 W1(NLMAX),W2(NLMAX), 
0755 	1 W3(NVARMX),W5(NLMAX),QUAD,CNEIG,ACCTOL,SHIFT,XDIF,XX,XY,G05DDF 
0756 	 INTEGER 
0757 	1 MOPT(NThAX) 
0758 	 COMMON 
0759 	1 /NINOUT/ MINi ,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT1O 
0760 	C 
0761 	C 
0762 	C 	FROM A RANDOM STARTING VECTOR REPEATEDLY APPLY TRANSFORMATION: 
0763 	C 
0764 	C 	CNEW = (I-(XT)X) ((V-VOPT) CNEW - (SHIFT) CNEW) 
0765 	C 
0766 	C 	IN THE FOLLOWING STEPS: 
0767 	C 	W1=CNEW 
0768 	C 	W5=(VOPT'W1 
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0769 C W1=(V)W1 	BY: 	W2=((PHI)T-)W1 
0770 C W1=((THETA)T)W2 
0771 C W2=('HI)W1 
0772 C W1=((THETA)-)W2 
0773 C W1=W1-W5-(SHIFT)CNEW 
0774 C W1=(I-(XT)X)W1 
0775 C CNEW=STANOARDISED(W1) 
0776 C 
0777 C 
0778 SHIFT=0.000 
0779 DO 001 I=1,NL 
0780.01 001 W1(I)=G0500F(O.000,1.ODO) 
0781 CALL CVIXXT(W1,NLMAX,NL,XT,NPARMX,NPAR,X,W5,ACCTOL, 
0782 1 	 NPRI,IFAIL) 
0783 C 
0784 DO 008 ITEIG=1,1000 
0785.01 DO 002 I=1,NL 
0786.02 002 CNEW(I)=W1(I) 
0787.01 IF (IFAIL.NE.0) RETURN 
0788.01 CALL CVVOPT(W1,NLMAX,NL,VOPT,NTBMAX,NT,MOPT,NTMAX, 
0789.01 1 	 NOMEGA,NLAG,NVAR, ITEIG,W5,W2, 
0790.01 1 	 W3,NVARMX,NPRI) 
0791.01 CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0,NPRI,1FAIL) 
0792.01 CALL REGTRA(W2,NL,TIIETA,NLMAX,NQA,0,1,W1,0,NPRI ,IFAIL) 
0793.01 CALL REGTRA(W1,NL,THETA,NLMAX,NQA,O,0,W2,0,NPRI,1FAIL) 
0794.01 CALL REGTRA(W2,NL,PHI,NLMAX,NPA,1,0,W1,0,NPRI,IFA1t) 
0795.01 DO 003 I=1,NL 
0796.02 003 W1(I)=W1(I)_W5(I)_SHIFT*CNEW(I) 
0797.01 IF (NPRI.EQ.1) CALL MATPR1(W1,NL,1) 
0798.01 CALL CVIXXT(W1,NLMAX,NL,XT,NPARMX,NPAR,X,W5,ACCTOL, 
0799.01 1 	 NPRI,IFAIL) 
0800.01 - 	 IF (IFAIL.NE .0) RETURN 
0801.01 CNEIG=0.000 
0802.01 DO 004 I=1,NL 
0803.02 IF (DABS(W1(I)).GT.DABS(CNEIG)) CNEIG=W1(I) 
0804.02 004 CONTINUE 
0805.01 XDIF=O.ODO 
0806.01 DO 005 I=1,NL 
0807.02 W1(I)=W1(I)/CNEIG 
0808.02 XDIF=XDIF+DABS(W1(I)-CNEW( I)) 
0809.02 005 CONTINUE 
0810.01 IF (NPRI.EQ.1) CALL MATPRO(XDIF,1) 
0811.01 IF (NPRI.EQ.1) CALL MATPRO(CNEIG,1) 
0812.01 IF (NPRI.EQ.1) CALL MATPR1(W1,NL,1) 
0813.01 IF ((MOD(ITEIG,250).NE.0).AND.(XDIF.GT.ACCTOL)) GO TO 007 
0814.01 C 
0815.01 C CHECK STOPPING CONDITIONS BY CALCULATING: 
0816.01 C 
0817.01 C QUAD = CNEW((I-(XT)X) 	(V-VOPT) 	(I-(XT)X) CNEW - 	(SHIFT) CNEW) 
0818.01 C 
0819.01 XX=O.ODO 
0820.01 XY=O.000 
0821.01 DO 006 I=1,NL 
0822.02 XX=XX+CNEW(I)*W1(I) 
0823.02 XY=XY+CNEW( I)*CNEW( I) 
0824.02 006 CONTINUE 
0825.01 QUAD=(CNEIG*XX+SHIFT*XY )/XY 
0826.01 IF (NPRI.EQ.1) CALL MATPRO(QUAD,1) 
0827.01 IF (QUAD.LT.O.000) RETURN 
0828.01 IF ((XDIF.LT.ACCTOL).AND.(CNEIG.LT.O.ODO)) RETURN 
0829.01 SHIFT=QUAD+SHIFT 
0830.01 GO TO 008 
0831.01 C 
0832.01 007 IF ((M0D(ITEIG,5).EQ.0).AND.(CNEiG.GT.O000 
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0833.01 1 SHIFT=CNEIG+SHIFT 
0834.01 IF (NPRI.EQ.1) CALL MATPRO(SHIFT,1) 
0835.01 008 CONTINUE 
0836.01 C 
0837 WRITE (NOUT6,909) 
0838 909 FORMAT C' 	CVEIGC, FAILURE TO CONVERGE ***I) 
0839 IFAIL1 
0840 ITEIG=1001 
0841 QUAD=0.ODO 
0842 RETURN 
0843 END 
0844 
0845 SUBROUTINE CVVOPT(W1 ,NLMAX,NL,VOPT,NTBMAX,NT,MOPT,NTMAX, 
0846 1 	 NOMEGA,NLAG,NVAR, ITEIG,W5,W2, 
0847 1 	 W3,NVARMX,NPRI) 
0848 C 
0849 C CALCULATES W5=(VOPT)(W1) 
0850 C 
0851 DOUBLE PRECISION 
0852 1 VOPT(NTBMAX), 
0853 1 W1(NLMAX),W2(NLMAX), 
0854 1 W3(NVARMX),W5(NLMAX),XX 
0855 INTEGER 
0856 1 MOPT(NTMAX) 
0857 IF (ITEIG.NE .1) GO TO 008 
0858 C 
0859 C CALCULATE W3 WHEN ITEIG=1 IF NOMEGA=0 
0860 C 
0861 DO 001 I=1,NVAR 
0862.01 001 W3(I)=O.000 
0863 NLAGA=NLAG+1 
0864 00 003 L=1,NT 
0865.01 IF (MOPT(L).GT.NVAR) GO TO 003 
0866.01 K=0 
0867.01 DO 002 I=1,NL 
0868.02 JZF=MINO(NLAGA,I) 
0869.02 DO 002 JZ=1,JZF 
0870.03 J=1+1-JZ 
0871.03 K=K+1 
0872.03 IF (MOPT(L).NE.K) GO TO 002 
0873.03 W3(K)=VOPT(L) 
0874.03 002 CONTINUE 
0875.01 003 CONTINUE 
0876 IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1) 
0877 IF (NOMEGA.EQ.0) GO TO 008 
0878 C 
0879 C CALCULATE W3 WHEN ITEIG=1 IF NOMEGA>O 
0880 C 
0881 NLA=NL+1 
0882 DO 007 IOMEGA=1,NOMEGA 
0883.01 DO 004 J:1,NL 
0884.02 004 W2(J)=O.ODO 
0885.01 K=NVAR+1 
0886.01 KK=NVAR+1 
0887.01 DO 006 IZ=1,NL 
0888.02 I=NLA-IZ 
0889.02 JS=MAXO( I-NLAG,1) 
0890.02 DO 005 J=JS,I 
0891.03 XX=W2(J) 
0892.03 JZ=J-1 
0893.03 IF (J.GT.JS) 	XX=XX+W3(K)-W2(JZ) 
0894.03 K=K-1 
0895.03 005 W3(K)=W3(K)+XX 
0896.02 00 006 J=JS,I 
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0897.03 	KK=KK-1 

	

0898.03 006 	W2(J)=W3(KK) 

	

0899.01 	IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1) 

	

0900.01 007 	CONTINUE 
0901.01 C 

	

0902.01 C 	CALCULATE W5 
0903.01 C 

	

0904 	008 NLAGA=NLAG+1 

	

0905 	 DO 009 L=1,NL 

	

0906.01 009 	W5(I)=0.000 

	

0907 	 K=0 

	

0908 	 00 010 I=1,NL 

	

0909.01 	JZF=MINO(NLAGA,I) 

	

0910.01 	00 010 JZ=1,JZF 

	

0911.02 	J=I+1-JZ 

	

0912.02 	K=K+1 

	

0913.02 	W5(I)=W5(I)+W3(K)*W1(J) 

	

0914.02 	IF (I.NE.J) W5(J)=W5(J)+W3(K)*W1(I) 

	

0915.02 010 	CONTINUE 

	

0916 	 IF (NPRI.EQ.1) CALL MATPR1(W5,NL,1) 

	

0917 	 RETURN 

	

0918 	 END 
0919 

	

0920 	 SUBROUTINE CVMODI(PHI ,NLMAX,NL,NPAMAX,NPA,THETA,NQAMAX,NQA, 

	

0921 	1 	 C,NTtIAX,NT,CWT,CNEW,NOMEGA,NLAG,NVAR, 

	

0922 	1 	 XLHS,NLHS,NVARMX,XRHS, 

	

0923 	1 	 W1,W2,W3,MW1,MW3,NTTMAX,ACCTOL,NPRI,IFAIL) 

	

0924 	C 

	

0925 	C 	MODIFY INPUT FUR LINEAR PROGRAM 

	

0926 	C 

	

0927 	 DOUBLE PRECISION 

	

0928 	1 PHI(NIJ4AX,NPAMAX),THETA(NLMAX,NQAMAX), 

	

0929 	1 C(NLMAX,NTMAX),CWT(NTMAX),CNEW(NLMAX), 

	

0930 	1 XLHS(NLHS,NVARMX),XRHS(NThAX),W1(NLMAX),W2(NLMAX), 

	

0931 	1 W3(NVARMX),ACCTOL,CVC 

	

0932 	 INTEGER 

	

0933 	1 MW1(NThAX),MW3(NTTMAX) 

	

0934 	 COMMON 

	

0935 	1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 

	

0936 	 NTA=NT+1 

	

0937 	C 

	

0938 	C 	REMOVE C-VECTORS FOR WHICH CWT=O 

	

0939 	C 

	

0940 	 NEWLOC=NTA 

	

0941 	 NSHIFT=O 

	

0942 	 K=0 

	

0943 	 L=NTA 

	

0944 	001 	K=K+1 

	

0945 	 IF (K.EQ.L) GO TO 004 

	

0946 	 IF (CWT(K).GE.ACCTOL) GO TO 001 

	

0947 	 IF (NEWLOC.NE .NTA) GO TO 002 

	

0948 	 NEWLOC=K 

	

0949 	 GO TO 001 

	

0950 	002 	L=L-1 

	

0951 	 IF (K.EQ.L) GO TO 004 

	

0952 	 IF (CwT(L).LT.ACCTOL) GO TO 002 

	

0953 	 NSHIFT=NSHIFT+1 

	

0954 	 MW1(NSHIFT)=K 

	

0955 	 MW3(NSHIFT)L 

	

0956 	 DO 003 I=1,NL 
0957.01 003 	C(I,K)=C(I,L 

	

0958 	 CWT(K)=CWT(L)  

	

0959 	 XRHS(K)XRHS(L) 

	

0960 	 GO TO 001 
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0961 	C 
0962 	004 	IF (NEWLOC.EQ.NTA) K=K+1 
0963 	 IF (K.GT.NTMAX) GO TO 013 
0964 	 NT=K-1 
0965 	 IF (K.GT.NLHS) GO TO 005 
0966 	 IF (K.EQ.NTA) GO TO 005 
0967 	 NSHIFT=NSHIFT+1 
0968 	 MW1(NSHIFT)=K 
0969 	 MW3(NSHIFT)=NTA 
0970 	005 	IF (NPRI.NE .1) GO TO 006 
0971 	 CALL MATPNO(NSHIFT,1) 
0972 	 IF (NSHIFT.EQ.0) GO TO 006 
0973 	 CALL MATPN1(MW1,NSHIFT,1) 
0974 	 CALL MATPN1(MW3,NSHIFTJ) 
0975 	C 
0976 	C 	ADD NEW C-VECTOR CNEW 
0977 	C 
0978 	006 	00 007 1=1,NL 
0979.01 007 	C(I,NEWLOC)=CNEW(I) 
0980 	 CWT( NEWLOC)=O.000 
0981 	 CALL CVOMEG(CNEW,NLMAX,NL,PHI ,NPAMAX,NPA,THETA,NQAMAX,NQA, 
0982 	1 	 NOMEGA,NLAG,CVC ,W3 ,NVARMX, NVAR, 
0983 	1 	 W2,ACCTOL,NPRI,IFAIL) 
0984 	 IF (IFAIL.NE.0) RETURN 
0985 	 XRHS( NEWLOC ) =CVC 
0986 	 IF (NT+1.GT.NLHS) GO TO 012 
0987 	 NTA=NT+1 
0988 	 IF (NSHIFT.EQ.0) GO TO 010 
0989 	 DO 009 I=1,NVAR 
0990.01 	DO 008 J=1,NSHIFT 
0991.02 	K=MW1 J) 
0992.02 	L=MW3 J) 
0993.02 008 	XLHS(K,I)=XLHS(L,I) 
0994.01 009 	XLUS(NEWLOC,I)=W3(I) 
0995 	 GO TO 012 
0996 	010 	DO 011 I=1,NVAR 
0997.01 011 	XLHS(NEWL0CI)=W3(I) 
0998.01 C 
0999 	012 	IF (NPRI.NE .1) RETURN 
1000 	 CALL MATPR2(C,NLMAX,NL,NT,1) 
1001 	 CALL MATPR1(CWT,NT,1) 
1002 	 CALL MATPR2(XLHS,NLHS,NTA,NVAR,1) 
1003 	 CALL MATPR1(XRHS,NT,1) 
1004 	 RETURN 
1005 	C 
1006 	013 	WRITE (NOUT6,914) 
1007 	914 FORMAT (' 	CVMODI, NEW NT OUT OF RANGE ***) 
1008 	 IFAIL=1 
1009 	 RETURN 
1010 	 END 
1011 
1012 	 SUBROUTINE CVINCR(XLHS,NLHS,NVARMX,NVAR,W1,NLMAX,W3,NT,NPRI) 
1013 	C 
1014 	C 	INCREASE FIRST DIMENSION OF XLHS 
1015 	C 
1016 	 DOUBLE PRECISION 
1017 	1 XLHS(NLHS,NVARMX),W1(NLMAX),W3(NVARMX) 
1018 	C 
1019 	 NTA=NT+1 
1020 	 JOLD=INTS((INTL(NVAR)*INTL(NT)_1)/INTL(NLHS)+1) 
1021 	 IOLD=INTS(INTL(NVAR)*INTL(NT)_INTL(JOLD_1)*INTL(NLHS)+1) 
1022 	 J=NVAR+1 
1023 	 DO 002 JZ=1,NVAR 
11024.01 	J=J- 
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I =NTA 
DO 001 IZ=1,NT 
1=1-1 
IOLD=IOLD-1 
IF (IOLD.GE .1) GO TO 001 
IOLD=NLHS 
JOLD=JOLD-1 
W1( I)=XLHS( IOLD,JOLD) 
W1(NTA)=W1(NT) 
W1(NT)=W3(J) 
DO 002 I=1,NTA 
XLHS(I,J)=W1(I) 
IF (NPRI.EQ.1) CALL MATPR2(XLHS,NLHS,NTA,NVAR,1) 
RETURN 
END 

SUBROUTINE CVLINP(XLHS,NLHS,NVARMX,NVAR,XRHS,NTMAX,NT, 
1 	 MINEQ,XOPT,CWT,VOPT,NTBMAX,MOpT,NL, 
1 	 W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL) 

OPTIMIZE COMBINATION OF C-VECTORS BY LINEAR PROGRAM 

DOUBLE PRECISION 
1 CWT(NTMAX),VOPT(NTBMAX), 
1 XLHS(NLHS,NVARMX) ,XRHS(NThAX), 
1 W4(NTBMAX,NTAMAX),XMIN,X02AAF,XOPT 
INTEGER 

1 MINEQ(NTMAX),MOPT(NTMAX),MW1(NThAX),Mw2(NTVRMX), 
1 MW3(NTTMAX) 
COMMON 
1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 

XMIN=XO2AAF(XOPT) 
N ITLP=NT*NL 
NTA=NT+1 
NTB=NT+2 
NT VAR = NT+N VAR 
NTT=2*NT 
IFAIL=1 
CALL H01ADF(XLHS,NLHS,NT,NVAR,MINEQ,XRHS,XMIN,NITLP, 

NTVAR,NTT,NTA,NTB,MW1 ,W4,NTBMAX,MW2, 
MW3,MOPT,VOPT,XOPT,ITLP,IPAR, IFAIL) 

IF(IFAIL.NE.0) GO TO 003 
IF (IPAR.NE.0) GO 10 005 

XOPT=DSQRT( -XOPT) 
DO 002 1=1,N1 
CWT( I )=DSQRT( DABS( W4(NTA, I))) 

IF (NPRI.NE .1) RETURN 
CALL MATPR2(W4,NTBMAX,NTA,NT,1) 
CALL MATPR1(CWT,NT,1) 
CALL MATPN1(MOPT,NT,1) 
CALL MATPR1(VOPT,NT,1) 
RETURN 

WRITE (NOUT6,904) IFAIL 
FORMAT (' 	CVLIN, H01ADF FAILS, IFAIL =',13,' ***I) 
RETURN 
WRITE (NOUT6,906) IPAR 
FORMAT (' 	CVI IN, H01ADF FAILS, IPAR =',13,' ***I) 
IFAIL=1 
RETURN 
END 

1025.01 
1026.01 
1027.02 
1028.02 
1029.02 
1030.02 
1031.02 
1032.02 001 
1033.01 
1034.01 
1035.01 
1036.02 002 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
1058 
1059 
1060 
1061 
1062 
1063 
1064 
1065 
1066 
1067 
1068 
1069 
1070 
1071 
1072.01 002 
1073.01 C 
1074 
1075 
1076 
1077 
1078 
1079 
1080 
	

C 
1081 
	

003 
1082 
	

904 
1083 
1084 
	

005 
1085 
	

906 
1086 
1087 
1088 



1089 
1090 
1091 
1092 
1093 
1094 
1095 
1096 
1097 
1098 
1099 
1100 
1101 
1102 
1103 
1104 
1105 
1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 
1138 
1139 
1140 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 
1150 
1151 
1152 

SUBROUTINE CVRESU(PARAM,NPARMX,NPAR,RESID,NLMAX,NL, 
1 	 PHI,NPAMAX,NPA,THETA,NQAMAX,NQA,UVU, 
1 	 C,NTMAX,NT,CWT,ND,NS,NOMEGA,NLAG, 
1 	 W1,W2,W4,NTBMAX,NTAMAX,NPRI) 

CALCULATE FINAL RESULTS 

DOUBLE PRECISION 
1 PARAM(NPARMX),RESID(NLMAX), 
1 PKI(NLMAX,NPAMAX),THETA(NLMAX,NQAMAX), 
1 UVU(NPARMX,NPARMX), 
1 C(NLMAX,NThAX),CWT(NTMAX), 
1 W1(NLMAX),W2(NLMAX), 
1 W4(NTBMAX,NTAMAX),TSTAT(34),TDF(34), 
1 XX,SUVU,TRCV,STRCV,RBIAS,VARECE,DF,T,ECE,SECE,CILOW,CIUPP 
COMMON 
1 /NINOtJT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 
DATA 
1 TSTAT 
1/ 12.70600, 4.30300, 3.18200, 2.77600, 2.57100, 
1 	2.447DO, 2.36500, 2.306D0, 2.26200, 2.228D0, 
1 	2.20100, 2.179D0, 2.16000, 2.14500, 2.131D0, 
1 	2.12000, 2.11000, 2.101DO, 2.09300, 2.086D0, 
1 	2.08000, 2.07400, 2.06900, 2.06400, 2.06ODO, 
1 	2.056D0, 2.05200, 2.04800, 2.04500, 2.04200, 
1 	2.021D0, 2.00000, 1.98000, 1.96000/, 
1 TDF 
1/ 1.000, 	2.ODO, 	3.000, 	4.ODO, 	5.000, 
1 6.000, 7.000, 8.000, 9.000, 10.000, 
1 11.000, 12.000, 13.000, 14.000, 15.000, 
1 16.000, 17.000, 18.ODO, 19.000, 20.000, 
1 21.ODO, 22.000, 23.000, 24.000, 25.ODO, 
1 26.000, 27.000, 28.000, 29.000, 30.ODO, 
1 40.000, 60.000, 120.000, 1.OD10/ 

WRITE (NOUT6,901) 
901 	FORMAT (1/) 
C 

WRITE (NOUT6,902) ND 
902 FORMAT (I' NUMBER OF DATA SETS ADVANCED (ND) 

1 	 ',7X,I5) 
WRITE (NOUT6,903) NS 

903 FORMAT (I' NUMBER OF PARAMETER (NS) 
1 	 ',7X,15) 
WRITE (NOUT6,904) PARAM(NS) 

904 FORMAT (I' ESTIMATE OF PARAMETER VALUE (PARNI(NS)) 
1 	 '1PG168/) 

C 
C 	MODEL DEPENDENT RESULTS 

WRITE (NOUT6.905) 
905 	FORMAT (/' MODEL DEPENDENT RESULTS', 

WRITE (NOUT6,906) UVU(NS,NS) 
906 FORMAT (I' VARIANCE OF ESTIMATOR ASSUMING 

1IX (UVU(NS,NS)) 	',12X,1PG16.8) 
SUVU=DSQRT( UVU( NS ,NS)) 
WRITE (NOUT6,907) SUVU 

907 	FORMAT (I' S.E. OF ESTIMATOR ASSUMING V IS 
1SQRT(UVU(NS.NS))) 	',1PG16.8/) 

EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR 

V IS ERROR VARIANCE MATR 

ERROR VARIANCE MATRIX 
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1153 	 WRITE (NOUT6,908) 
1154 	908 FORMAT (/' EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR', 
1155 	1  
1156 	 DO 012 K=1,NT 
1157.01 	00 009 I=1,NL 
1158.02 009 	W1(I)=CWT(K)*C(I,K) 
1159.01 	CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0 I NPRI,IFAIL) 
1160.01 	CALL REGTRA(W2,NL,THETA,NLMAX,NQA,O,1,W1,O,NPRI,IFAIL) 
1161.01 	CALL REGTRA(W1,NL,THETA,NLMAX,NQA,O,O,W2,O,NPRI,IFAIL) 
1162.01 	CALL REGTRA(W2,NL,PHI,NLtIAX,NPA,1,0,W1,O,NPRI,IFAIL) 
1163.01 	DO 011 L=1,NT 
1164.02 	XX=O.ODO 
1165.02 	DO 010 I=1,NL 
1166.03 010 	XX=XX+C(I,L)*W1(I) 
1167.02 011 	W4(L,K)=XX*CWT(L) 
1168.01 012 	CONTINUE 
1169 	 IF (NPRI.EQ.1) CALL MATPR2(W4,NTBMAX,NT,NT,1) 
1170 	C 
1171 	 WRITE (NOUT6,913) NOMEGA 
1172 	913 FORMAT (I' DIFFERENCE OPERATOR APPLIED TO CLASS OF VARIANCE MATRIC 
1173 	1ES (NOMEGA) 	 ',19X,15) 
1174 	 WRITE (NOUT6,914) NLAG 
1175 	914 FORMAT (I' LAG BEYOND WHICH VARIANCE TERMS ARE ZERO (NLAG) 
1176 	1 	 ',19X,15) 
1177 	C 
1178 	 TRCV=O.ODO 
1179 	 DO 015 K=1,NT 
1180.01 015 	TRCV=TRCV+W4(K,K) 
1181 	 WRITE (NOUT6,916) TRCV 
1182 	916 FORMAT (I' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF VARIANCE AS 
1183 	1SUMING V (TR(CV)) 	',12X,1PG16.8) 
1184 	 STRCV=DSQRT(TRCV) 
1185 	 WRITE (NOUT6,917) STRCV 
1186 	917 	FORMAT (I' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF S.E. ASSUMI 
1187 	1NG V (SQRT(TR(CV))) 	',1PG16.8) 
1188 	 RBIAS=STRCV/SUVU-1 .000 
1189 	 WRITE (NOUT6,918) RBIAS 
1190 	918 	FORMAT (I' EXP. REL. BIAS OF CONSERVATIVE EST. OF S.E. (SQRT(TR(CV 
1191 	1))/SQRT(UVU(NS,NS))-1) ',24X,1PG16.8/) 
1192 	C 
1193 	 VARECE=0.ODO 
1194 	 DO 019 K=1,NT 
1195.01 	DO 019 L=1,NT 
1196.02 019 	VARECE=VARECE+W4(K,L)*W4(L,K) 
1197 	 VARECE=2 .000*VARECE 
1198 	 WRITE (NOUT6,920) VARECE 
1199 	920 FORMAT (/' VARIANCE OF CONSERVATIVE ESTIMATOR OF VARIANCE (2*TR(CV 
1200 	1CV)) 	 ',24X,1PG16.8) 
1201 	 DF=2 .ODO*TRCV*TRCV/VARECE 
1202 	 WRITE (NOUT6,921) DF 
1203 	921 	FORMAT (I' APPROX. D.F. OF CONSERVATIVE ESTIMATOR OF VARIANCE (TR( 
1204 	1CV)**2/TR(CVCV)) 	',24X,1PG16.8) 
1205 	C 
1206 	 IF (DF.LT.1.000) DF=1.000 
1207 	 DO 022 1=1,33 
1208.01 	IF (DF.LT .TDF(I)) GO TO 023 
1209.01 022 	CONTINUE 
1210 	023 	IZ=I-1 
1211 	 IF (IZ.LT.1) IZ=1 
1212 	 T=TSTAT(I)+(TSTAT(IZ)_TSTAT(I))*(1.000/DF_1.000/TDF(I)) 
1213 	1 	 /( 1.ODO/TDF(IZ)-1.ODO/TDF( I)) 
1214 	 WRITE (NOUT6,924) T 
1215 	924 	FORMAT (I' APPROXIMATE 95% T-STATISTIC 
J..ZI.6 	1 	 .24X1PG6.8/) 



- 402 - 

1217 	C 
1218 	C 	ACTUAL RESULTS FROM CONSERVATIVE ESTIMATOR 
1219 	C 
1220 	 WRITE (NOUT6,925) 
1221 	925 	FORMAT (I' ACTUAL RESULTS FROM CONSERVATIVE ESTIMATOR', 
1222  
1223 	 ECE=O.000 
1224 	 DO 027 K=1,NT 
1225.01 	XX=O.ODO 
1226.01 	DO 026 I=1,NL 
1227.02 026 	XX=XX+RESID(I)*C(I,K) 
1228.01 	XX=XX*CWT(K) 
1229.01 027 	ECE=ECE+XX*XX 
1230 	 WRITE (NOUT6,928) ECE 
1231 	928 FORMAT (/' ESTIMATE OF VARIANCE USING CONSERVATIVE ESTIMATOR (ECE) 
1232 	1 	 ',12X,1PG16.8) 
1233 	 SECE=DSQRT(ECE) 
1234 	 WRITE (NOUT6,929) SECE 
1235 	929 	FORMAT (/' ESTIMATE OF S.E. USING CONSERVATIVE ESTIMATOR (SQRT(ECE 
1236 	1)) 	 ' ,1PG16.8/82X,'=========='/) 
1237 	C 
1238 	 CILOW=PARAM(NS)_T*SECE 
1239 	 WRITE (NOUT6,930) ChOW 
1240 	930 FORMAT (I' APPROXIMATE 95% LOWER CONFIDENCE BOUND FOR PARAMETER VA 
1241 	1LUE 	 ',1PG16.8) 
1242 	 CIUPP=PARAM( NS)+T*SECE 
1243 	 WRITE (NOUT6,931) CIUPP 
1244 	931 	FORMAT (I' APPROXIMATE 95% UPPER CONFIDENCE BOUND FOR PARAMETER VA 
1245 	1LUE 	 ',1PG16.8) 
1246 	C 
1247 	C 	DUMP OF FINAL C-VECTOR TO CHANNEL NOUT10 
1248 	C 
1249 	 WRITE (NOUT10,932) NT 
1250 	932 	FORMAT (15) 
1251 	 DO 033 J=1,NT 
1252.01 033 	WRITE (NOUT10,934) (C(I,J),I=1,NL) 
1253 	934 	FORMAT (1P5D24.16) 
1254 	 RETURN 
1255 	 END 
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Appendix D 
INPUT (1011): 

ND NVARS 	NS NSEED 	NT NUMEGA NLAI, MiTERNCPU NPRI 
8 	1 	2 214 	1 	1 	4 	50 'Quo 	o 	 Example of output from 

PARAMETER ESTIMATES 
0.5274 	-0.2973 	 CEVOPE (see [9.3.4] 
STANDARD ERRORS 
0.5014 	0.1831 

PARAMETER ESTIMATOR VARIANCES ASSUMING V 	 and [9 .4 .8 ] 
) 

0.3689 	-0.1006 
-0.1006 	3.35350-02 

LOWER BOUNDS ON VARIANCES 
0.3689 	-0.1006 
-0.1006 	3.35350-02 

EFFICIENCY OF ESTIMATORS 
1.000 1.000 

0 U T P U T 	FROM CEV0PE...  

MODEL DEPENDENT ESTIMATE OF THE VARIANCE OF THE ESTIMATOR 
OF PARAMETER NUMBER 2 	15 	3.35350-02 	AND THE S.E. IS 	0.1631 

SEARCH FOR ROBUST ESTIMATOR WITH MINIMUM BIAS (NSEED. 	214) 

AUD NEW C-VECTOR FIND BEST COMBINATION OF C-VECTORS 

ITER ICPUI Ni 	ITEIG ICPU lOIS 	QUAD ITLP ICPU lOIS ZOPT ((EL BIAS 

0 2 	1 	2 1 3 0 0 1.041 4.685 
1 3 	2 	15 	0 0 	-1.0.01 3 0 0 0.4758 1.598 
2 3 	3 	16 	0 0 	-4.0-01 3 0 0 0.4562 1.491 
3 4 	4 	36 	1 0 	.6.0-01 4 0 0 0.4237 1.314 
4 5 	5 	26 	1 0 	-1.0-01 3 0 0 0.4143 1.263 
5 6 	4 	53 	1 0 	-4.0-02 3 0 0 0.3997 1.182 
6 8 	4 	61 	2 0 	-6.0-02 4 0 0 0.3973 1.170 
1 9 	4 	51 	1 0 	-2.0-02 4 0 0 0.3956 1.160 
8 10 	4 	58 	1 0 	-9.0-03 5 0 0 0.3945 1.154 
9 12 	4 	75 	2 0 	-4.0-03 4 0 0 0.3938 1.150 
10 14 	4 	72 	2 U 	-2.0-03 4 0 0 0.3933 1.148 
11 17 	4 	128 	3 0 	-1.0-03 4 0 0 0.3929 1.146 
12 19 	4 	92 	2 0 	-4.0-04 4 0 0 0.3929 1.146 
13 21 	4 	88 	2 0 	.3.0-04 4 0 0 0.3928 1.145 
14 25 	4 	130 	3 0 	-1.0-04 4 0 0 0.3928 1.145 
15 27 	4 	94 	2 0 	-1.0-04 4 0 0 0.3928 1.145 
16 29 	4 	93 	2 0 	-5.0-05 4 0 U 0.3928 1.145 
11 31 	4 	91 	2 0 	-9.0-05 4 0 0 0.3928 1.145 
is 33 	4 	92 	2 0 	-3.0-05 5 0 0 0.3928 1.145 

ITERATIONS CEASED. OPTIMUM REACHED 

NUMBER OF DATA SETS ADVANCED (NO) 8 

NUMBER OF PARAMETER ((IS) 

ESTIMATE OF PARAMETER VALUE (PARAM(NS)) -0.29730000 

MODEL DEPENDENT RESULTS 

VARIANCE OF ESTIMATOR ASSUMING V IS ERROR VARIANCE MATRIX (UVU(NS,NS)) 	 3.353504790-02 

S.E. OF ESTIMATOR ASSUMING V IS ERROR VARIANCE MATRIX (SQRT(UVU(NS.NS))) 	0.18312577 

EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR 

DIFFERENCE OPERATOR APPLIED TO CLASS OF VARIANCE MATRICES (NOMEGA) 	 1 

LAG BEYOND WHICH VARIANCE TERMS ARE ZERO (NLAG) 	 4 

EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF VARIANCE ASSUMING V (TR(CV)) 	 0.15426567 

EXPECTED VALUE OF CONSERVATIVE ESTIMATOR If S.E. ASSUMING V (SQRT(TR(CV))) 	0.39276669 

EXP. REL. BIAS OF CONSERVATIVE EST. OF S.E. (SQRT(TR(CV))/SQRT(UVU(NS.NS))-1) 	 1.1447920 

VARIANCE OF CONSERVATIVE ESTIMATOR OF VARIANCE (21R(CVCV)) 	 4.759187990-02 

APPROX. D.F. OF CONSERVATIVE ESTIMATOR OF VARIANCE (TR(CV)*2/TR(CVCV)) 	 1.0000823 

APPROXIMATE 95% T.STATISTIC 	 12.704617 

ACTUAL RESULTS FROM CONSERVATIVE ESTIMATOR 

ESTIMATE OF VARIANCE USING CONSERVATIVE ESTIMATOR (ECE) 	 0.29039159 

ESTIMATE OF S.E. USING CONSERVATIVE ESTIMATOR (SQRT(ECE)) 	 0.53887994 

APPROXIMATE 9L LOWER CONFIDENCE BOUND FOR PARAMETER VALUE 	 -7.1435635 

APPROXIMATE 95% UPPER CONFIDENCE BOUND FOR PARAMETER VALUE 	 6.5489635 
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