Regression Parameter Estimation with Serially Correlated Errors

C.A. Glasbey

Thesis submitted for the degree of Doctor of Philosophy University of Edinburgh
 1984

DECLARATION

The following record of research work is submitted as a Thesis for the Degree of Doctor of Philosophy at the University of Edinburgh, having been submitted for no other Degree.

The research work was carried out under the supervision of Mr P.R. Fisk and Mr R. Thompson. Except where due acknowledgement is made the work is original.
C.A. Glasbey.

ABSTRACT

Least-squares regression is a standard statistical technique for relating variables by means of functional relationships. On the assumption that the errors are independent of one another and have equal variance, the regression parameter estimators are approximately efficient and the conventional estimators of the variances of these estimators are approximately unbiased. However, if the errors are correlated, then in general neither property holds true.

This thesis is directed towards overcoming these deficiences when errors are serially correlated; arising because a series of measurements is made on a single experimental unit, rather than on a number of separate units. Two types of solution are considered: (1) model the error process, either empirically or mechanistically, and estimate any unknown parameters jointly with the regression parameters (chapters 4 to 8); (2) derive estimators of the variances of least-squares regression parameter estimators which take account of the error correlations (chapter 9). The diversity of models considered in the first solution is facilitated computationally by the specification in chapter 2 of a new.class of serially-structured error processes, termed generalized autoregressive-moving average processes. In chapter 3 solutions of linear stochastic difference and differential equations are shown to be in this class.

Empirical models of the error processes are based entirely on the corresponding data sets; no other information being available on the forms the correlations should take. Basically, a regression
function is fitted by least-squares estimation, the residuals are examined and an error model is identified. In the three examples considered (pharmacokinetic data, data on transport systems within a leaf, and the energy demands of a mechanical model of a suckler cow) the error processes are assumed to be stationary and either the sample autocorrelation coefficients or the periodograms are used to identify the appropriate autocorrelation functions or spectral functions in chapters 4 and 5 respectively.

Antithetically, mechanistic models of the error processes are derived from considerations of the methods by which the data sets were generated. Three particular types of model are considered in the thesis. In chapter 6 linear stochastic difference and differential equations are used: first-order models to describe the variations in a cow's milk yield over its lactation; second-order models to describe the growth in an animal's weight. Stochastic compartment systems are used in chapter 7 to model the pharmacokinetic and leaf transport data previously considered in chapters 4 and 5. Then, in chapter 8 a related model appropriate to cumulative counts is used to describe seed germination numbers.

In chapter 9 estimates of the variances of regression parameter estimators are obtained which are conservative, that is never downward biased, for broad classes of serially-structured error processes. The technique arose as a solution to the inadequacies of the empirical modelling strategy, and is applied to the data sets used in chapter 4.

ACKNOWLEDGEMENTS

This work was undertaken as part of the research programme of the Agricultural and Food Research Council's Unit of Statistics. I am grateful to the AFRC for both financial support and facilities to undertake the research presented.

I am indebted to Drs D. Colquhoun, J.E. Dale, J.M. Bruce, D. Neilson, R.B. Thiessen and R.E.L. Naylor for being permitted to use their data.

My thanks are due to my supervisors Mr P.R. Fisk and Mr R. Thompson for their valuable comments and advice and to Professor D.J. Finney and Dr H.D. Patterson for their encouragement and support. I am also grateful for the widespread support I have received from other members of staff of the Unit of Statistics and from my wife. Finally, I would like to thank Miss L.E. Robertson for typing this thesis so conscientiously.

CONTENTS

Page
Title i
Declaration ii
Abstract iij
Acknowledgements v
Contents vi
Conventions and Notation
Character conventions xviii
Matrix notation xix
Probability notation xix
Other mathematical notation xix
Subscript, superscript and postscript notation xxi
Numbering in thesis xxi
Characters - Latin lower-case xxii
Characters - Greek lower-case xxiv
Characters - Latin upper-case xxvii
Characters - Greek upper-case xxviii

1. Prelude
1.1 Introduction
1.1.1 Least-squares regression 1
1.1.2 Reasons for noticeably correlated residuals 2
1.1.3 Effects of correlated errors on least-squares regression 5
1.1.4 Solutions 7
1.2 Outline of thesis
1.2.1 Structure 8
Page
1.2.2 Empirical models 9
1.2.3 Mechanistic models 10
1.2.4 Data sets 11
1.3 Review of 'literature
1.3.1 Tests for autocorrelation 12
1.3.2 Duality between regression misspecification and correlated errors 14
1.3.3 Effects of correlated errors on least-squares estimators 15
1.3.4 Empirical models 17
1.3.5 Growth models 20
1.3.6 Stochastic compartment models 21
1.3.7 Model misspecification 22
1.3.8 Distribution of estimators 22
2. Regression parameter estimation with generalized
autoregressive-moving average errors
2.1 Introduction 25
2.2 The generalized autoregressive-moving average structure
2.2.1 Definition of a GARMA (p, q) process 26
2.2.2 Decomposition of $\underset{\sim}{V}$ 28
2.2.3 Numerical example of decomposition for GARMA(1,1) process 31
2.2.4 Interpretation of GARMA property 33
2.2.5 Examples 34
2.2.6 Properties 36
2.2.7 Extension to continuous processes 37
2.2.8 Properties of a cGARMA process 38
Page
2.3 Parameter estimation
2.3.1 Model 39
2.3.2 Optimization criteria 40
2.3.3 Numerical evaluation of the optimization functions 41
2.3.4 Optimization algorithms 41
2.3.5 Variances of parameter estimators 42
2.3.6 Prediction of fit based on past observations 43
2.3.7 Simulation 44
2.4 Computer program REGAME
2.4.1 Programming philosophy 44
2.4.2 Program structure 45
2.4.3 Input/Output to REGAME 46
2.4.4 Input/Output to REGMOD 50
2.4.5 Input/Output to REGDER 51
2.4.6 Output to channel NOUT6 52
2.4.7 Output to channel NOUT10 53
2.4.8 Optimization algorithm 54
2.4.9 Algorithms in REGAMD 55
2.4.10 Algorithms in REGTRA 56
3. The general solutions of linear stochastic difference and differential equations with constant coefficients
3.1 Introduction 57
3.2 Difference equations
3.2.1 Model 58
3.2.2 Solution 59
3.2.3 Relation to GARMA property 61
Page
3.3 Differential equations
3.3.1 Model 63
3.3.2 Solution 64
3.3.3 Relation to cGARMA property 67
4. Stationary error processes: empirical autocorrelation parameterization
4.1 Introduction 70
4.2 Theory
4.2.1 Model 71
4.2.2 Parameterization by stationary solutions of stochastic difference equations 72
4.2.3 Parameterization by stationary solutions of stochastic differential equations 74
4.2.4 Parameterization by a sum of positively-correlated Markov processes 76
4.2.5 Model order identification 78
4.2.6 Variances of parameter estimators 80
4.3 Colquhoun's data: relaxation of drug-induced membrane currents
4.3.1 Introduction 80
4.3.2 Single exponential regression with independent errors 81
4.3.3 Generalized partial autocorrelation coefficients 83
4.3.4 Single exponential regression with $\operatorname{ARMA}(1,1)$ error model 85
4.3.5 Simulation to compare estimation methods 91
4.3.6 Likelihood-based marginal confidence intervals 96
4.3.7 Double exponential regression with independent errors 97Page
4.3.8 Double exponential regression with $\operatorname{ARMA}(1,1)$ error model 100
4.3.9 Resumé 104
4.4 Dale's data: radioactive emission from a wheat leaf
4.4.1 Introduction 106
4.4.2 Regression with independent errors 106
4.4.3 Regression with weighted $\operatorname{ARMA}(1,1)$ error model 107
4.4.4 Adjusted least-squares standard errors 113
4.4.5 Simulation to compare estimation methods 117
4.4.6 Likelihood-based marginal confidence intervals 119
4.4.7 Regression with non-stationary error model 119
4.4.8 Resumé 122
4.5 Bruce's data: energy demand of a mechanical model of a suckler cow
4.5.1 Introduction 122
4.5.2 Regression with independent errors 123
4.5.3 Regression with $\operatorname{ARMA}(1,1)$ error model 126
4.5.4 Simulation to compare estimation methods 131
4.5.5 Regression with non-stationary error model 133
4.5.6 Resumé 135
4.6 Discussion 137
5. Stationary error processes: empirical spectral
parameterization
5.1 Introduction 139
5.2 Theory
5.2.1 Model 140
5.2.2 Derivation of pseudo-likelihood 141
5.2.3 Estimation using REGAME 143
Page
5.2.4 Variances of parameter estimators 144
5.3 Colquhoun's data
5.3.1 Choice of model 145
5.3.2 Pseudo-1ikelihood when errors are independent 145
5.3.3 Double exponential regression with independent errors 146
5.3.4 Spectrum when the autocorrelation function is a sum of exponentials 146
5.3.5 Double exponential regression with $\operatorname{ARMA}(1,1)$ error model 147
5.3.6 Double exponential regression with an empirical non-increasing error spectrum 151
5.3.7 Double exponential regression with an empirical error spectrum 155
5.3.8 Resumé 159
5.4 Discussion 159
6. Models based on linear stochastic difference and
differential equations
6.1 Introduction 161
6.2 A model for lactation using first-order equations
6.2.1 Model in discrete time 162
6.2.2 Solution for the model in discrete time 163
6.2.3 Model in continuous time 164
6.2.4 Solution for the model in continuous time 165
6.2.5 Relation between models in discrete and continuous time 166
6.3 A model for growth using second-order equations
6.3.1 Justification for choice of model 167
6.3.2 Model in discrete time 168
6.3.3 Solution for the model in discrete time 168
Page
6.3.4 Model in continuous time 170
6.3.5 Solution for the model in continuous time 171
6.3.6 Relation between models in discrete and continuous time 173
6.4 Neilson's data: milk yield of cows
6.4.1 Introduction 175
6.4.2 Models 175
6.4.3 Method of estimation 177
6.4.4 Results - likelihood comparisons 178
6.4.5 Results - parameter estimates 181
6.4.6 Resumé 185
6.5 Thiessen's data: weights of cattle
6.5.1 Introduction 190
6.5.2 Models 190
6.5.3 Method of estimation 192
6.5.4 Results - likelihood comparisons 193
6.5.5 Results - parameter estimates 193
6.5.6 Resumé 201
6.6 Discussion 201
7. Stochastic compartment models with constant coefficients
7.1 Introduction 202
7.2 Theory
7.2.1 Model 203
7.2.2 Solution 205
7.2.3 Distribution of $\underset{\sim}{N}(0)$ 209
7.2.4 Relation to cGARMA property 210
7.2.5 Parameter estimators 210
Page
7.3 Colquhoun's data
7.3.1 Introduction 211
7.3.2 Closed two-compartment model 212
7.3.3 $\tau^{2} n_{2}$ held constant 214
7.3.4 Open one-compartment model 216
7.3.5 Separate covariance parameterization 220
7.3.6 Estimation without use of scaling parameter 222
7.3.7 Reparameterization using 222
7.3.8 Open two-compartment model 224
7.3.9 Resumé 228
7.4 Dale's data
7.4.1 Introduction 228
7.4.2 Estimation 230
7.4.3 Temporary immigration to generate the initial distribution 231
7.4.4 Separate covariance parameterization 234
7.4.5 Estimation without use of scaling parameter and with σ^{2} fixed at 0.1 238
7.4.6 Resumé 238
7.5 Discussion 241
8. Cumulative count models
8.1 Introduction 243
8.2 Theory
8.2.1 Model 244
8.2.2 Solution 244
8.2.3 Relation between the generalized sum of squares and Berkson's x^{2} statistic 245
Page
8.3 Naylor's data: seed germination tests
8.3.1 Introduction 248
8.3.2 Models 249
8.3.3 Method of estimation 251
8.3.4 Results - likelihood comparisons 252
8.3.5 Results - parameter estimates 257
8.3.6 Resumé 259
8.4 Discussion 259
9. Conservative estimates of the variances of regressionparameter estimators
9.1 Introduction 263
9.2 Method
9.2.1 Regression parameter estimators 264
9.2.2 Form of estimator of $\operatorname{var}\left(\hat{\beta}_{\mathrm{s}}\right)$ 266
9.2.3 Expectation of $\hat{e}^{\top} \underset{\sim}{C} \underset{\sim}{e}$ 267
9.2.4 Specification of relative bias 268
9.2.5 Relation to ordinary least-squares 269
9.2.6 Optimization problem 270
9.2.7 Dual optimization problem 271
9.2.8 Selection of ${\underset{\sim}{c}}^{\{t+1\}}$ 272
9.2.9 Interpretation of $\underset{\sim}{\underset{\sim}{c}}$ \{t+1\} 273
9.2.10 Algorithm for obtaining $\underset{\sim}{c}\{t+1\}$ 276
9.2.11 The choice of Ω 277
9.2.12 Dual Problem for $\Omega(0, u)$ 279
9.2.13 Dual problem for $\Omega(1, u)$ 279
9.2.14 Dual problem for $\dot{\Omega}(2, v)$ 281
9.2.15 Interpretation of $\Omega(\omega, n-1)$ for a Markov process 282
9.2.16 Discussion about $\Omega(\omega, v)$ 282
9.2.17 Other choices for Ω 284
9.2.18 Distribution of ${\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}$ 284
9.3 Computer program CEVOPE
9.3.1 Programming philosophy 286
9.3.2 Program structure 286
9.3.3 Input 287
9.3.4 Output 288
9.3.5 Stopping conditions 290
9.3.6 Algorithm for linear program 291
9.3.7 Algorithm for calculating XLHS 293
9.3.8 Algorithm for obtaining eigenvectors 294
9.3.9 Algorithm for transforming with respect to $\underset{\sim}{v}$ 295
9.3.10 Algorithm for t-statistics 297
9.4 An illustrative example
9.4.1 Model 297
9.4.2 Dual optimization problem for $s=2, \Omega(1,4)$ 299
9.4.3 Solution when $t=1$ 299
9.4.4 The search for $\underset{\sim}{c}{ }^{\{2\}}$ 300
9.4.5 Solution when $t=2$ 301
9.4.6 New c-vectors and bias 302
9.4.7 Final solution 302
9.4.8 Output from CEVOPE 303
9.4.9 Dual optimization problem for $s=2, \Omega(0,1)$ 304
9.4.10 Solutions when $\mathrm{s}=2$ 306
9.4.11 Comparison with standard estimator of variance 307
Page
9.4.12 Solutions when $s=1$ 308
9.4.13 Dependence on $\underset{\sim}{V}$ 311
9.4.14 Optimal choice of $\hat{\underset{\beta}{\hat{B}}}$ 313
9.5 Colquhoun's data
9.5.1 Choice of regression parameter estimators and $\underset{\sim}{V}$ 314
9.5.2 Choice of $\Omega(\omega, v)$ 315
9.5.3 Single exponential regression results 315
9.5.4 Double exponential regression results 317
9.6 Dale's data
9.6.1 Choice of regression parameter estimators, $\underset{\sim}{v} \underset{\sim}{v}$
and
(ω, u) 319
9.6.2 Results 319
9.7 Bruce's data
9.7.1 Choice of regression parameter estimators, $\underset{\sim}{v}$ 321
9.7.2 Results 321
9.8 Discussion 322
10. Conclusions/Future work
10.1 Conclusions
10.1.1 General 324
10.1.2 Empirical models 324
10.1.3 Mechanistic model 325
10.1.4 Conservative estimates of the variances of regression parameter estimators 325
10.2 Future work
10.2.1 Empirical models 326
Page
10.2.2 Mechanistic models 327
10.2.3 Conservative estimates of the variances of regression parameter estimators 327
Appendix A 329
Appendix B 365
Appendix C 383
Appendix D 403
References 404

Conventions and Notation

Character conventions

The character set is restricted to lower-case and upper-case Latin and Greek alphabets. A general convention has been used as follows:

```
underlined lower-case characters, for example \(\underset{\sim}{x}\), denote
``` column vectors;
lower-case characters with single subscripts, for example \(x_{i}\), denote individual elements in vectors, in this case the ith element in \(\underset{\sim}{x}\);
otherwise lower-case characters, for example \(x\), denote scalar constants or variables;
underlined upper-case characters, for example \(\underset{\sim}{A}\), denote matrices, the only exceptions being \(\underset{\sim}{D}, \underset{\sim}{N}, \underset{\sim}{Y}\) and \(\underset{\sim}{Z}\) which denote vector random variates in order to distinguish them from their realisations (although in some instances a distinction is not made between a random variate and its realisation);
upper-case characters with double subscripts, for example \(A_{i j}\), denote individual elements in matrices, in this example the (ij)th element of \(\underset{\sim}{A}\);
otherwise upper-case characters, for example \(A\), are only used for special purposes.

The specific definitions of all characters used in the thesis follow after other notation has been established.

Matrix notation
Standard matrix notation has been used as follows:
```

~
column vector }\underset{~}{x}\mathrm{ ;
A}\mp@subsup{~}{}{\top}\mathrm{ denotes the transpose of the matrix }\underset{~}{A}
|~}A| denotes the determinant of the square matrix A A ;
tr(A) denotes the trace of the square matrix }\underset{~}{A}\mathrm{ ;
~}\mp@subsup{A}{}{-1}\mathrm{ denotes the inverse of the non-singular square matrix }\underset{~}{A}

```

\section*{Probability notation}

Standard notation has been used as follows:
```

$E(\underset{\sim}{Y})$ denotes the vector of expectations of elements in $\underset{\sim}{Y}$;
$\operatorname{var}(\underset{\sim}{Y})$ denotes the matrix of variances and covariances
between elements in $\underset{\sim}{Y}$;
$\operatorname{cov}\left(Y_{i}, Y_{j}\right)$ denotes the covariance between $Y_{i}$ and $Y_{j} ;$
$E(\underset{\sim}{Y} \mid \underset{\sim}{Z})$ denotes the expectation of $\underset{\sim}{Y}$ conditional upon the
realisation of $\underset{\sim}{Z}$;
$\operatorname{cov}\left(Y_{i}, Y_{j} \mid \underset{\sim}{Z}\right)$ denotes the covariance between $Y_{i}$ and $Y_{j}$
conditional upon the realisation of $\underset{\sim}{Z}$;
$\underset{\sim}{Y} \sim(\underset{\sim}{f}, \underset{\sim}{V})$ denotes that $\underset{\sim}{Y}$ is distributed with mean $\underset{\sim}{f}$ and
variance matrix $\underset{\sim}{V}$;
$\underset{\sim}{Y} \sim N(\underset{\sim}{f}, \underset{\sim}{V})$ denotes that $\underset{\sim}{Y}$ is multivariate normally
distributed with mean $\underset{\sim}{f}$ and variance matrix $\underset{\sim}{V}$;
$\underset{\sim}{\alpha}$ denotes a vector random variate which is an estimator of
the column vector of parameters, $\underset{\sim}{\alpha}$.

```

Other mathematical notation
Other mathematical notation has been used as follows:
\(\bar{x}\) denotes the complex conjugate of \(x\);
\(\ell n(x)\) denotes the natural logarithm of \(x\);
\(|x|\) denotes the absolute value of \(x\);
st denotes a small positive increment to \(t\);
\(o(\delta t)\) denotes a term of order less than \(\delta t\);
k
\(\sum_{i=j} x_{i}\) denotes the summation from the \(j\) th to the \(k\) th
\(i=j\) elements in \(\underset{\sim}{x}\), and is defined to be zero if \(k<j\);
k
II \(x_{i}\) denotes the product from the \(j\) th to the \(k\) th \(i=j\) elements in \(\underset{\sim}{x}\), and is defined to be unity if \(k<j\);
\(\partial \underset{\sim}{\sim} / \partial \sim_{\sim}^{\top}\) denotes a matrix, the (ij)th coefficient of which is the partial derivative \(\partial f_{i} / \partial \alpha_{j}\);
\(\partial f / \partial \alpha\) denotes a column vector, the ith coefficient of which is the partial derivative \(\partial f_{i} / \partial \alpha\);
\(\partial f / \partial \underset{\sim}{\alpha}\) denotes a column vector, the ith coefficient of which is the partial derivative \(\partial f / \partial \alpha_{i} ;\)
\(\underset{\sim}{1}\) denotes a vector each of whose coefficients is unity;
\(\underset{\sim}{0}\) denotes either a vector, or a matrix, of zeros according to context;
\(\{x: x>0, x<1\}\) denotes the set of all scalars, say \(x\), such that \(x\) lies between 0 and 1 ;
\(x \in \Omega\) denotes that \(x\) is a member of the set \(\Omega\);
\(\Omega^{\{1\}} \subset \Omega^{\{2\}}\) denotes that every member of the set \(\Omega^{\{1\}}\) is also a member of the set \(\Omega^{\{2\}}\).

A standard notation has been employed throughout the thesis as follows:
a single subscript, for example \(x_{i}\), is used to denote an element in a vector, although in some instances this has not been rigorously applied and the index \(i\) has been allowed to take non-positive values;
a double subscript, for example \(A_{i j}\), is used to denote an element in a matrix;
a superscript in angular brackets, for example \(x^{\langle i\rangle}\), is used to denote the ith derivative of \(x\) with respect to time, conventionally denoted by \(t\);
a superscript in curly brackets, for example \(x^{\{i\}}\), is used as an index label, thus \(x^{\{1\}}, x^{\{2\}}\) and \(x^{\{3\}}\) each denote a different scalar;
similarly, * superscript, for example \(x^{*}\), is used to distinguish between \(x\) and \(x^{*}\);
any superscript which does not involve angular or curly brackets, for example \(x^{i}\), is used in the conventional sense as a power, in this case \(x\) raised to the ith power:
a postscript in brackets, for example \(x(t)\), is used to denote the value at \(t\) of a scalar variable \(x\) which is indexed by a continuous variable.

\section*{Numbering in thesis}

The thesis is divided into chapters, referred to as chapter 2 for example. Chapters are divided into sections and sub-sections,
referred to, for example, as section 2.1 and [2.1.4] respectively. Equations which are referred to elsewhere in the text are labelled, and these are numbered consecutively within sections, and referred to as equation (2.1.1) for example. Tables and figures are also numbered consecutively in sections and referred to, for example, as table 2.1.1 and figure 2.1.1 respectively.

\section*{Characters - Latin lower-case}
\(a: \quad\) an index variable.
a: the \(n\)-vector of weight-corrected departures of the vector of observations from the regression vector, that is \(\underset{\sim}{W}{ }^{-1}(\underset{\sim}{x}-f)\).
b: an index variable.
\(\underset{\sim}{b}(t)\) : the \(p\)-vector in chapter 7 of expected number of particles that will immigrate to each compartment in time \(t\).
\({\underset{\sim}{c}}^{\{i\}}\) : n-vectors used in the decomposition of \(\underset{\sim}{C}\) in chapter 9.
d: the n-vector of spectral coefficients (at harmonic frequencies) of the error process, used in chapter 5.
e: the base of natural logarithms, that is the constant 2.713...
e: the n-vector of departures (either the random variate or its realisation) of the vector of obseryations from the regression vector, that is \((\underset{\sim}{y}-\underset{\sim}{f})\), except in chapter 9 where the departures are weight-corrected, that is \(\underset{\sim}{\underset{\sim}{W}} \underset{\sim}{-1} \underset{\sim}{y})\).
f: the \(n\)-vector of regression function values.
g: an index variable.
\(n\) : an index variable.
i: an index variable.
j: an index variable.
k: an index variable.
l: an index variable.
m: the number of regression parameters.
n : the number of observations.
\(\underset{\sim}{n}\) : \(\quad\) the p-vector in chapter 7 of the expected number of particles in each compartment at time zero.
\(o(\delta t):\) denotes term of order less than \(\delta t\).
p: the non-negative first integer parameter in the specification of a GARMA process, see [2.2.1], which also has specialized meanings in different chapters:
order of difference/differential equations in chapters 3 and 6;
number of Markov processes in chapter 4;
number of compartments in chapter 7.
\(p(t):\) the cumulative probability function used in chapter 8.
\(p\) : the \(n\)-vector of cumulative probabilities used in chapter 8.
\(q\) : the non-negative second integer parameter in the specification of a GARMA process, see [2.2.1].
q: the \(p\)-vector in chapter 7 of emigration rates from compartments.
\(r\) : the degrees of freedom of the conservative estimator of variance, \(\underset{\sim}{e}{ }_{\sim}^{\top} \underset{\sim}{C} \underset{\sim}{e}\), used in chapter 9, defined in [9.2.18].
\(\underset{\sim}{r}: \quad\) the p-vector in chapter 7 of immigration rates into compartments.
s: general index variable except in chapter 9 where it denotes the index of the regression parameter of interest, that is \(\beta_{s}\).
t: an index variable, conventionally representing time, except
```

        in chapter 9 where it denotes the number of vectors }\underset{~}{c
        the decomposition of }\underset{~}{C}\mathrm{ .
    t: the n-vector of observation times, in ascending order.
    u: an index variable.
    ~~
    v: an index variable.
v: a general vector which is defined in a specific context.
w: an index variable.
w: a general vector which is defined in a specific context.
x: an index variable.
~
y: an index variable.
y: the n-vector of observations.
~
corrected to take account of model covariances by
~}=\mp@subsup{\underset{~}{0}}{-1}{~}\underset{~}{e}\underset{~}{e}

```

\section*{Characters - Greek lower-case}
a: a single modei parameter.
\(\alpha \quad\) a vector of model parameters whose length depends on the specific context.

B: a single regression parameter, that is \(m\) is equal to 1.
3: the m-vector of regression parameters.
\(\underset{\sim}{\gamma}: \quad\) the vector of autocovariances of the error process.
反: the non-negative second parameter in the specification of a cGARMA process, see [2.2.7].
\(\delta t\) : a small positive increment to \(t\).
\(\varepsilon\) : an arbitrarily small positive number.
\(\zeta^{\{k\}}(t)\) : the first set of functions, indexed by continuous \(t\), used in decomposition of variance matrix of cGARMA process, see [2.2.7].
\({\underset{\sim}{\zeta}}^{\{k\}}\) : the first set of \(n\)-vectors used in decomposition of variance matrix of GARMA process, see [2.2.1].
\(\eta^{\{k\}}(t)\) : the second set of functions, indexed by continuous \(t\), used in decomposition of variance matrix of cGARMA process, see [2.2.7].
\({\underset{\sim}{n}}^{\{k\}}\) : the second set of \(n\)-vectors used in decomposition of variance matrix of GARMA process, see [2.2.1].
\(\theta\) : a single parameter in a moving average process of order 1 in discrete time.

ө: a vector of parameters in a moving average process in discrete time.

1: the square-root of -1 , used in chapter 5.
k: a single weight associated with an exponential term.
\(k(\ell):\) a variable weight used in [4.5.5].
\(\underset{\sim}{k}: \quad\) vector of weights associated with exponential terms.
\(\lambda\) : a single rate constant in an exponential term, except in chapter 9 where it denotes an eigenvector.
\(\lambda(\ell):\) a variable rate constant used in [4.5.5].
\(\lambda \quad\) a vector of rate constants in exponential terms.
\(\mu: \quad\) a shift parameter used in chapter 9.
\(\mu(t):\) the weight function used to specify a fitter in [2.2.8].
\(\underset{\sim}{\mu}: \quad\) a general vector which is defined in a specific context, usually to describe weighting constants.
\(v: \quad\) a parameter used to define a filter in [2.2.8].

छ: a single parameter in an autoregressive process of order 1 in continuous time.
\(\underset{\sim}{\xi}: \quad\) a vector of parameters in an autoregressive process in continuous time.
\(\pi\) : the constant 3.141.... .
\(\rho(t)\) : the autocorrelation function of a stationary process in continuous time, indexed by continuous \(t\).
\(\underset{\sim}{\rho}: \quad\) the vector of autocorrelation coefficients of a stationary process in discrete time, or the correlations between consecutive terms in a Markov process, depending upon the context.
\(\sigma^{2}\) : a variance term.
\(\tau^{2}\) : a variance term, usually the scaling parameter in a GARMA process, see [2.2.1].
v: the non-negative second integer parameter used in the definition of \(\Omega\) in chapter 9, see [9.2.11].
\(\phi\) : a single parameter in an autoregressive process of order 1 in discrete time.
\(\phi: \quad\) a vector of parameters in an autoregressive process in discrete time.
\(x_{i}^{2}\) : the central chi-square probability distribution with. i degrees of freedom.
\(\underset{\sim}{\psi}: \quad\) a vector of parameters in a moving average process in continuous time.
\(\omega\) : the non-negative first integer parameter used in the definition of \(\Omega\) in chapter 9, see [9.2.11].

\section*{Characters - Latin upper-case}
\(A^{[i]}\) : scalar random variates, defined in [3.3.2] and used in the solution of differential equations.

A: a general matrix which is defined in a specific context.
C: the \(n\) by \(n\) symmetric matrix used in chapter 9 .
D: the random vector of length \(n\) of the periodogram used in chapter 5.

G: the \(p\) by \(p\) matrix of right-eigenvectors of \(\underset{\sim}{Q}\), used in chapter 7.
\(\underset{\sim}{H}\) : the \(n\) by \(n\) complex matrix used in [5.2.2].
I: the identity matrix, the size being specified in each situation.

K: a matrix of weights associated with exponential terms.
\(L_{M}\) : the negative Gaussian log-likelihood function, defined in [2.3.2].
\(L_{p}\) : the negative of the logarithm of the pseudo-likelinood function, used in chapter 5.
\(L_{R}\) : the negative residual Gaussian log-likelinood function, defined in [2.3.2].
\(L_{S}\) : the sum of squares function, defined in [2.3.2].
\(N\) : the standard normal probability distribution, except. in chapter 8 where it denotes the total number of events in the cumulative counts model.
\(\underset{\sim}{N}(t)\) : the random vector of length \(p\), used in chapter 7 , of the number of particles in each compartment at time \(t\).
\(\underset{\sim}{P}(t)\) : the \(p\) by \(p\) matrix used in chapter 7 of transition probabilities of particles between compartment in time \(t\).

Q: the \(p\) by \(p\) matrix used in chapter 7 of transition probability rates of particles between compartments.

R: the \(n\) by \(n\) matrix used to specify generalized least-squares estimation in chapter 9, see [9.2.1].
\(S: \quad\) the generalized sum of squares, defined in [2.3.2].
T: used as a superscript to denote a vector or matrix transpose.
\(\underset{\sim}{U}: \quad\) the \(n\) by \(m\) matrix used in chapter 9 , defined in [9.2.1].
\(\underset{\sim}{V}\) : the \(n\) by \(n\) symmetric positive-definite variance matrix of observations \(\underset{\sim}{y}\), and therefore also of \(\underset{\sim}{e}\), possibly after the removal of a scaling parameter.
\(\underset{\sim}{W}\) : the \(n\) by \(n\) diagonal matrix of weights.
\(\underset{\sim}{x}: \quad\) the \(n\) by \(m\) regression design matrix, defined in [2.3.2], except in chapter 9 where it is weight-corrected as defined in [9.2.1].
\(Y(t)\) : a random variate indexed by continuous \(t\).
Y: a random vector.
\(Z(t)\) : a random variate indexed by continuous \(t\), used as input.
Z: a random vector, used as input.

\section*{Characters - Greek upper-case}
\(\underset{\sim}{r} \quad\) a general \(n\) by \(n\) lower-triangular band matrix used in [2.4.10].
\(\Delta\) : a differencing operator acting on the lower-triangle of a matrix, defined in [9.2.11].
\(\underset{\sim}{\theta}\) : the \(n\) by \(n\) lower-triangular matrix with bandwidth (\(q+1\)) used as the second matrix in the decomposition of a variance matrix of a GARMA process, defined in [2.2.2].

\section*{xxix}

A: a general variance matrix.
II: the product symbol.
\(\Sigma: \quad\) the summation symbol.
T: an \(n\) by \(n\) symmetric matrix used in chapter 9 , the lower triangle being defined by \(\Delta^{2} \underset{\sim}{V}\) in [9.2.14].
\(\Phi\) : the \(n\) by \(n\) lower-triangular matrix with bandwidth (\(p+1\)) used as the first matrix in the decomposition of a variance matrix of a GARMA process, defined in [2.2.2].
\(\underset{\sim}{\Psi}: \quad\) an \(n\) by \(n\) symmetric matrix used in chapter 9 , the lowertriangle being defined by \(\underset{\sim}{\Delta V}\) in [9.2.13].
\(\Omega: \quad\) the set of matrices of size \(n\) by \(n\) considered to be possible variance matrices, used in chapter 9.
1. Prelude

\subsection*{1.1 Introduction}

\subsection*{1.1.1 Least-squares regression}

A fundamental objective. in scientific research is to relate variables by means of functional relationships. If variables are not observed precisely, but subject to experimental errors of various sorts, then no function will fit exactly. A standard statistical technique for fitting functions in this situation is to regress observations of one variable, the dependent variate, against a function of the observations on other explanatory variables. In specific applications, objectives inevitably vary but often include the following:
a) to summarize the data;
b) to predict values of the dependent variate for specific values of the explanatory variables;
and c) to discover and understand fundamental relationships between variates.

Conventionally in this thesis, the observations are denoted by \(\underset{\sim}{y}\), a vector of length \(n\), and the values the regression function takes, based on the values of the explanatory variables, are denoted by \(\underset{\sim}{f}\) which depends on \(m\) unknown parameters \(\underset{\sim}{\beta}\). The standard way of estimating these parameters is by the method of ordinary least-squares, that is by minimizing the criterion function
\[
(\underset{\sim}{y}-\underset{\sim}{f})^{\top}(\underset{\sim}{y}-\underset{\sim}{f})
\]
with respect to \(\underset{\sim}{\beta}\), where superscript \(T\) denotes the transpose of a vector (or matrix). If \(\underset{\sim}{f}\) is a function linear in \(\underset{\sim}{\beta}\) then
\[
\underset{\sim}{f}=\underset{\sim}{X} \underset{\sim}{B}
\]
for some \(n\) by \(m\) matrix \(\underset{\sim}{x}\) commonly called the regression design matrix, and \(\underset{\sim}{\beta}\) is estimated as (1.1.1) \(\underset{\sim}{\hat{\beta}}=\left(\underset{\sim}{x}{\underset{\sim}{x}}^{x}\right)^{-1} \underset{\sim}{x}{\underset{\sim}{x}}^{y}\),
provided that \(\left(\underset{\sim}{X}{\underset{\sim}{x}}^{x}\right)\) is non-singular, where the superscript -1 denotes a matrix inverse. If \(\underset{\sim}{f}\) is non-linear in \(\underset{\sim}{\beta}\) it may still be approximated by a linear function, based on a Taylor expansion of \(\underset{\sim}{f}\) in terms of \(\underset{\sim}{\beta}\) about a value close to the bestfitting value.

Under certain assumptions, this method of estimation is optimal in the sense that it gives the linear unbiased estimator of \(\underset{\sim}{B}\) with the smallest variance, and the variance of the estimator can be estimated as
\[
\begin{align*}
\operatorname{var}(\underset{\sim}{\hat{\beta}}) & =\hat{\tau}^{2}\left(\underset{\sim}{X}{\underset{\sim}{X}}_{X}\right)^{-1}, \tag{1.1.2}\\
\hat{\tau}^{2} & =\underset{\sim}{\dot{e}}{ }_{\sim}^{\top} \underset{\sim}{\hat{e}} /(n-m),
\end{align*}
\]
and the vector of residuals is defined as
\[
\underset{\sim}{e}=\underset{\sim}{y}-\underset{\sim}{x} \underset{\sim}{\hat{\beta}} .
\]

\subsection*{1.1.2 Reasons for noticeably correlated residuals}

Two important conditions for \(\underset{\sim}{\hat{\beta}}\) to be optimal, and \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) to be a good estimator of \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\), are:
a) the functional relationship \(\underset{\sim}{f}\) is of approximately the correct form;
b) the individual elements in the vector (\(\underset{\sim}{y}-\underset{\sim}{f}\)) are distributed independently of one another with a common variance \(\tau^{2}\).

If the data exhibit systematic departures from the fitted regression curve, that is the residuals are noticeably correlated, then it cannot be possible for both these conditions to be true. (The term "noticeably" is important because some correlation is automatically introduced into the residuals by the process of estimating \(\underset{\sim}{\beta}\), so that even if conditions (a) and (b) both hold \(\left.\operatorname{var}(\underset{\sim}{e})=\tau^{2}\left(\underset{\sim}{1}-\underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{x}}_{x}^{X}\right)^{-1} \underset{\sim}{x}\right).\right)\)
In most applications of regression it is assumed that condition (a) is violated; so the emphasis is on finding a suitable alternative regression function if systematic departures are encountered. However in some situations, for example when data are collected serially in time from a single experimental unit, assumption (b) is not wholly plausible. For serially-structured data, any errors causing a discrepancy between \(\underset{\sim}{y}\) and \(\underset{\sim}{f}\) may persist over several observations, thus manifesting themselves as systematic departures. This poses a dilemma: when serially-structured data depart systematically from a fitted regression is it because the function is wrong or is it because the errors are correlated?

The answer is that it is impossible to distinguish between the two alternatives for a single series of serially-structured data. To illustrate this, consider a series of data (y) generated by
\[
y_{i}=\beta_{1}+\beta_{2} x_{i}+\beta_{3} \sin x_{i}+e_{i} \quad \text { for } \quad i=1, \ldots, n,
\]
where \(x_{i}=i / 10\) for \(i=1, \ldots, n, \beta_{1}\) and \(\beta_{2}\) are constants, \(\beta_{3}\) and \(\underset{\sim}{e}\) are random terms with
and
\[
\beta_{3} \sim N\left(0, \sigma^{2}\right) \text { independently of } \underset{\sim}{e},
\]

Notation is being used here that will reappear throughout the
thesis: \(y_{i}\) denotes the ith element in the vector \(\underset{\sim}{y}\) of length \(n\), and \(\beta_{3} \sim N\left(0, \sigma^{2}\right)\) denotes that \(\beta_{3}\) is normally distributed with mean zero and variance \(\sigma^{2}\), with the obvious extension to the multidimensional case. Two models of the data:
i) \(\underset{\sim}{y} \sim N\left(\beta_{1} \underset{\sim}{1}+\beta_{2} \underset{\sim}{x}+\beta_{3} \sin \underset{\sim}{x}, \tau^{2} I\right), \beta_{3} \sim N\left(0, \sigma^{2}\right)\),
ii) \(\quad \underset{\sim}{y} \sim N\left(\beta_{1} \underset{\sim}{1}+\beta_{2} \underset{\sim}{x}, \sigma^{2}(\sin \underset{\sim}{x})(\sin \underset{\sim}{x})^{\top}+\tau_{\underset{\sim}{I}}^{2}\right)\), are mathematically equivalent because they give identical probability densities for \(\underset{\sim}{y}\). (Here \(\underset{\sim}{1}\) denotes a vector of 1 's, \(\sin \underset{\sim}{x}\) denotes an \(n\)-vector whose ith element is \(\sin x_{i}\) and \(\underset{\sim}{I}\) denotes the identity matrix of size \(n\).) If inference on the model parameters is to be made from a single realisation of \(\underset{\sim}{y}\), then either \(\tau^{2}, \beta_{1}, \beta_{2}\) and the particular realisation of \(\beta_{3}\) (ignoring its underlying distribution) may be estimated or \(\tau^{2}\), \(B_{1}, B_{2}\) and \(\sigma^{2}\) may be estimated. However, the form of the likelihood is different in the two approaches so the maximum likelihood estimators of the common parameters \(\tau^{2}, \beta_{1}\) and \(\beta_{2}\) will not agree. Also, there are philosophical differences between the two methods which have parallels in certain analyses of variance: in the first case \(\beta_{3}\) is treated as a fixed effect, whereas in the second case it is treated as a random effect. Most importantly, in (i), conditioning on \(\beta_{3}\), the oscillations about a straight line are modelled by a systematic sinusoid plus white noise error, whereas in (ii) they are modelled by a correlated error structure. Thus there is in some sense an interchangeability or duality between the regression model and the error model.

A sensible compromise would seem to be to require the regression function to describe the long-term trends in the serially-structured data and the correlations in the errors the
short-term fluctuations. Df course these are vague terms open to different interpretations. The final arbiter will be the use to which the model is to be put, for example, for a simple summary of data it may be preferable for the regression function to explain all systematic variability whereas with more fundamental objectives a correlated stochastic component may make more sense.

Predominantly in this thesis the postulated regression function will be assuned correct and attempts to improve the fit of the model will be channelled into different choices of error correlation structure. Because of the duality noted above this is in no way a restrictive choice to make. In the examples considered the regression functions do explain most of the variability in the data, and an alternative justification for concentrating on correlation structures is that they are a more parsimonious description of the residual variability.

\subsection*{1.1.3 Effects of correlated errors on least-squares regression}

There are two well understood consequences of correlated errors on least-squares regression estimation. In the first place, the estimator of \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) given in equation (1.1.2) is usually biased because if
\[
\underset{\sim}{y} \sim N\left(\underset{\sim}{f}, \tau^{2} \underset{\sim}{V}\right)
\]
where \(\underset{\sim}{v}\) is an \(n\) by \(n\) symmetric positive-definite matrix, then
\[
\operatorname{var}(\underset{\sim}{\hat{\beta}})=\tau^{2}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{\top}\right)^{-1} \underset{\sim}{x}{ }_{\sim}^{\top} \underset{\sim}{V} \underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{X}}_{X}^{X}\right)^{-1},
\]
which will not in general be equal to the expectation of \(\hat{\tau}^{2}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{\top}\right)^{-1}\), both because \(\boldsymbol{\tau}^{2}\) will not be an unbiased estimator of \(\tau^{2}\) and because
\[
\left(\underset{\sim}{x^{\top}} \underset{\sim}{x}\right)^{-1} \neq\left(\underset{\sim}{x}{\underset{\sim}{\top}}^{\top}\right)^{-1} \underset{\sim}{x}{ }_{\sim}^{\top} \underset{\sim}{v} \underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{\top} \underset{\sim}{x}\right)^{-1} .
\]
(See for example Judge, Griffiths, Hill and Lee (1980, ppl13-117).) Typically, if correlations are positive between adjacent observations in the serially observed data and consecutive elements in each column of \(\underset{\sim}{X}\) are positively correlated (i.e. the influence of \(\underset{\sim}{\beta}\) on \(\underset{\sim}{f}\) changes slowly) then \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) will be biased downwards and its use will exaggerate the precision with which \(\underset{\sim}{\beta}\) is estimated.

The second consequence is that \(\underset{\sim}{\hat{\beta}}\) is usually an inefficient estimator of \(\underset{\sim}{\beta}\). The best linear estimator when \(\underset{\sim}{V}\) is known is the generalized least-squares estimator (Aitken, 1934)
\[
\left(\underset{\sim}{x^{\top}}{\underset{\sim}{V}}^{-1} \underset{\sim}{x}\right)^{-1} \underset{\sim}{x}{ }_{\sim}^{\top}{\underset{\sim}{V}}^{-1} \underset{\sim}{y}
\]
provided that \(\left({\underset{\sim}{x}}^{\top}{\underset{\sim}{V}}^{-1} \underset{\sim}{x}\right)\) is non-singular. The estimator has a variance matrix given by
\[
\begin{equation*}
\tau^{2}\left({\underset{\sim}{x}}^{X_{V}^{V}}{\underset{\sim}{1}}^{-1} \underset{\sim}{x}\right)^{-1}, \tag{1.1.3}
\end{equation*}
\]
which will never be larger and will usually be smaller than the variance matrix of the ordinary least-squares estimator, \(\underset{\sim}{\hat{\beta}}\). Expressing this more precisely, the difference between \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) and equation (1.1.3) is always a positive-semidefinite matrix. Therefore, least-squares estimation does not make the most effective use of the data.

As an aside, it may be noted that although the least-squares estimator of \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) is biased, the least-squares estimator of \(\underset{\sim}{\beta}\) is unbiased whatever form the covariances of \(\underset{\sim}{y}\) take because, from equation (1.1.1)
\[
\begin{aligned}
E(\underset{\sim}{\hat{\beta}}) & =\left(\underset{\sim}{x}{\underset{\sim}{\top}}^{\top}\right)^{-1} \underset{\sim}{x}{ }^{\top} E(\underset{\sim}{y}), \\
& =\left(\underset{\sim}{x}{ }^{\top} \underset{\sim}{x}\right)^{-1} \underset{\sim}{x}{\underset{\sim}{x}}_{\underset{\sim}{\beta}}^{\underset{\sim}{\beta}}, \\
& =\underset{\sim}{\beta} .
\end{aligned}
\]

The regression objectives in a particular problem will bear upon the choice of solution to overcome the difficulties of [1.1.3]. Nevertheless, three broad categories of approach to regression parameter estimation when the errors are correlated can be identified as follows:
a) The easiest option, when faced with correlated errors, is to retain the least-squares parameter estimator \(\underset{\sim}{\hat{\beta}}\) but discard the biased estimate of its variance matrix. This is most useful when no estimation of precision is required, for example when replicates of experimental units are also available and between unit variability is of prime consideration. This strategy can be justified by arguing that least-squares estimation is often not very inefficient, and is intuitively appealing irrespective of probabilistic assumptions as it gives a simply understood summary of a set of observations. However, no reliable information on precision is available.
b) A second approach is to assume that the errors arose from a distribution with a particular variance matrix \(\underset{\sim}{V}\), where \(\underset{\sim}{V}\) possibly has a few unknown parameters. Once these parameters have been estimated from the data, \(\underset{\sim}{\beta}\) can be estimated, for example by generalized least-squares. More simply, regression and error variance parameters can be estimated jointly by maximizing the log-likelihood, or some variant of it. Thus, provided the correct form of \(\underset{\sim}{v}\) is assumed, \(\underset{\sim}{\beta}\) can be estimated with asymptotic efficiency and approximately unbiased estimates of precision can be obtained.
c) Because of the intuitive appeal of least-squares estimation and the dependence of approach (b) on the assumed structure for \(\underset{\sim}{V}\), a third solution is to make a compromise between (a) and (b). The least-squares estimator of \(\underset{\sim}{\beta}\) is retained but an estimate of \(\operatorname{var}(\underset{\sim}{\hat{\beta}})\) is obtained which takes some account of the correlations in the errors. This approach has the potential of yielding valid estimates which are less dependent on the assumed structure for \(\underset{\sim}{v}\) than those in approach (b).

\subsection*{1.2 Outline of thesis}

\begin{abstract}
1.2.1 Structure

The thesis divides into two main parts: chapters 2 to 8 are concerned with solution (b) in [1.1.4], that is modelling the error process; chapter 9 develops a solution in category (c), that is the estimation of the variance of \(\underset{\sim}{\hat{\beta}}\) without explicit reference to \(\underset{\sim}{V}\). Although, for the sake of generality, section 1.1 dealt with correlations of an arbitrary nature this thesis concentrates solely on serially correlated errors.

The key to the variety of models considered in chapters 2 to 8 is a decomposition of a class of serially-structured variance matrices given in chapter 2. This enables large variance matrices to be manipulated without recourse to handling each element separately. In chapter 3 the solutions are given for linear stochastic difference and differential equations which are used in later chapters. They are also shown to be examples of the processes considered in chapter 2.
\end{abstract}

Two approaches have been used in modelling the error process, denoted "empirical" and "mechanistic" by Thornley (1976, pp4-б).

The empirical method is described by Thornley as consisting of
```

"looking at the experimental data, possibly doing some
analysis of the data, and trying to make an intelligent guess
at a (usually simple) form of equation or set of equations which can be used as a mathematical model and fitted to the data."

```

In the present context, this means using the structure in the residuals to identify an appropriate error model. In contrast
"a [mechanistic] model can be constructed by looking at the structure of the system, by dividing the system into components, and by trying to understand the behaviour of the whole system in terms of the behaviour of the individual system components and their interaction with one another."

When the processes are understood by which the errors are generated these can be used to identify a mechanistic model for the data. The distinction between the two approaches is a little arbitrary as Thornley admits:
"It needs to be stressed that there is no clearly defined dividing line between the two methods, and it is usual for most modelling exercises to contain both empiricism and mechanism in varying admixtures. It is more a matter of emphasis."

Certainly in this thesis there is a lot of empiricism in the mechanistic models. However, the labels serve as a useful distinction between two groups of chapters in the thesis.

\subsection*{1.2.2 Empirical models}

With regard to the empirical approach, it is impossible for a single series of observations to be of any help whatsoever in choosing among all possible error variance matrices because, in the words of Bartlett (1978, p264),
"dependence has so many more possibilities a priori than independence."

Therefore gross assumptions have to be made to restrict the choice. For serially-structured data it may be reasonable to make the assumption, common in time series analysis, that the error process is stationary, or at least stationary in its first and second moments, in which case the correlations between errors depends solely on the time separation between them. The choice then is between modelling the autocorrelation function or modelling its Fourier transform, the spectrum. In chapter 4, the correlations between errors in a regression model based on serially-observed data are modelled, beyond a particular fixed time separation, by a sum of exponentials. In chapter 5 , the spectrum of the error process is modelled instead, an approach inspired by Robinson (1978).

\subsection*{1.2.3 Mechanistic models}

There are vast numbers of mechanistic models of which three particular types are considered in chapters 6, 7 and 8. In chapter 6, linear stochastic difference and differential equations are used: a first-order model is used to describe the variations in a cow's milk yield over its lactation, developing from the work of Dhanoa and Le Du (1982); and a second-order model is used to describe the growth in an animal's weight. This aproach to modelling growth was stimulated by Sandland and McGilchrist's (1979) paper in a special review issue of Biometrics. A second paper in the same issue (Matis and Wehrly, 1979) prompted the use of stochastic compartment models in chapter 7. These are used to model pharmacokinetic data and data on transport systems within a leaf. Finally, in chapter 8 a related model is used to describe cumulative seed germination counts.
1.2.4 Data sets

\begin{abstract}
Each of chapters 4 to 9 consists of initial sections of mathematical development followed by applications to real data. The techniques have been illustrated and explored using six data sets. Three sets consist of single series of observations and have been used in chapters 4 and 9:
\end{abstract}
a) Colquhoun's data, 124 observations on the relaxation current flowing through the end-plate membrane of a muscle fibre following a voltage jump, modelled by a sum of exponentials (Colquhoun, 1978);
b) Dale's data, 138 observations on the radioactive emission from a wheat leaf after it has been fed \({ }^{14} \mathrm{C}\), modelled by a sum of exponentials (Bauermeister, Dale, Williams and Scobie, 1980);
c) Bruce's data, 200 observations on the daily energy demand of a mechanical model of a suckler cow, modelled by non-linear multiple regression (Burnett and Bruce, 1978; Bruce, 1980). Also, Colquhoun's data have been used in chapters 5 and 7 and Dale's data in chapter 7. The other three data sets are multiple series of observations:
d) Neilson's data, between 32 and 44 observations on the milk yields of each of 23 cows (Neilson, Whittemore, Lewis, Alliston, Roberts, Hodgson-Jones, Mills, Parkinson and Prescott, 1983);
e) Thiessen's data, between 82 and 133 observations on the weights of each of 5 cattle (Thiessen, Hnizdo, Maxwell, Gibson and Taylor, 1984);
f) Naylor's data, between 7 and 12 observations on the germination counts of seeds in each of 33 petri-dishes (Hunter, Glasbey and Naylor, 1984).

Neilson's and Theissen's data have been used in chapter 6 and Naylor's data in chapter 8.

All the regression functions used are non-linear in their parameters but this is not particularly restrictive since, once correlations are introduced, any linearity in the model is automatically lost. As a consequence, estimation has to proceed iteratively and variances of estimators are at best an approximation.

\subsection*{1.3 Review of literature}

\subsection*{1.3.1 Tests for autocorrelation}

The standard test for uncorrelated errors against the alternative of serially correlated errors, when fitting regression models, is based on the Durbin-Watson statistic (Durbin and Watson, 1950, 1951, 1971). This is a function
\[
\sum_{i=2}^{n}\left(\hat{e}_{i}-\hat{e}_{i-1}\right)^{2} / \sum_{j=1}^{n} \hat{e}_{j}^{2}
\]
of the \(n\)-vector of residuals, \(\underset{\sim}{\dot{e}}\), and is approximately equal to
\[
2\left(1-\hat{\rho}_{1}\right)
\]
where \(\hat{\rho}_{1}\) is the sample autocorrelation of the residuals at lag one (in other words it is the average correlation between adjacent residuals). The test employs small-sample significance levels
which take account of the correlation among the residuals induced by regression fitting, and has been widely used, particularly in econometrics. Johnston (1972, pp249-258) discussed it and alternatives. Weber and Monarchi (1982) reviewed more recent work.

A deficiency of the Durbin-Watson test is that it tests only for correlation at lag one, and thus may miss correlation at other lags. If the sample size is sufficiently large for the effect of the regression fitting to be ignored, then the approximate distribution of the sample autocorrelations for stationary processes is well understood, see for example Box and Jenkins (1976, pp34-36). In particular, if errors are independent then the sample autocorrelations of the residuals are asymptotically independent normal deviates, each with mean zero and variance \(1 / n\). Therefore the assumption of independence can be tested. Various statistics have also been developed to help choose from among a class of linear processes called autoregressive-moving average models (ARMA models). A recent development is to introduce an array of statistics termed generalized partial autocorrelations (Glasbey, 1982). These will be described further in chapter 4.

If the model that is fitted includes lagged values of the dependent variate, then this affects the sampling distribution of the residual autocorrelations. Box and Pierce (1970) derived the asymptotic distribution of the autocorrelations of ARMA residuals and Pierce (1971a) showed the results still to be valid if a regression function is fitted as well as the ARMA model. The portmanteau statistic which they proposed for testing model inadequacy, essentially the sum of squares of the sample
autocorrelations at low lags, was later modified by Ljung and Box (1978). They changed the weights given to different terms in the sum of squares statistic in order to improve the rate of convergence to an asymptotic \(x^{2}\) distribution. Ansley and Newbold (1979) recommended instead the examination of autocorrelations at each lag separately.

In a related situation, Ripley (1981, pp98-101) discussed statistics for testing for uncorrelated errors where data are spatially, that is two-dimensionally, structured rather than serially, that is one-dimensionally, structured.

\subsection*{1.3.2 Duality between regression misspecification and correlated errors}

Once it has been identified that residuals are autocorrelated the question arises as to how the model is to be changed to accommodate them. The choice is between changing the regression function and specifying a correlated errors structure, but the duality between these alternatives has received little attention in the literature. When noticeably correlated residuals have been encountered in situations where there has been no a priori reason to assume the errors to be independent (such as with seriallystructured data) it has been conventional to attribute all lack of fit to correlation in the errors. A noteworthy exception is the attention given by Chatterjee and Price (1977, pp123-142) to the problem. They devoted a chapter to it, gave an example of correlated residuals which were explained by an omitted explanatory variable, and in general advocated the introduction of correlated errors into a model only as an action of last resort.

The duality can appear in many guises, two particular instances are: Blight and Ott (1975) used the duality when they described the departures of a polynomial approximation from an exact function by a first-order autoregressive (AR(1)) process; and Woodward and Gray (1983) showed that an eleventh-order autoregressive (AR(11)) process and a deterministic sinusoid together with a second-order autoregressive error process are almost equivalent models of the famous lynx data. In discussing the approximate duality between the two models they expressed a preference for the \(\operatorname{AR}(11)\) process because of a lack of any justification for fitting a sinusoid. However, one could equally well argue the lack of justification for fitting an \(A R(11)\) process!

\subsection*{1.3.3 Effects of correlated errors on least-squares estimators \\ If it is decided that correlated residuals are caused by} correlated errors then one pertinent question is "How poor are the least-squares estimators?", because if little efficiency has been lost then a more complicated analysis may be unnecessary. The efficiency of regression parameter estimators depends on both the design matrix \(\underset{\sim}{X}\) and the error variance matrix \(\tau^{2} \underset{\sim}{V}\). A common assumption is that \(\underset{\sim}{V}\) is derived from a first-order autoregressive (AR(1)) process with parameter \(\phi\), where \(|\phi|<1\) (therefore \(V_{i j}=\phi^{i-j}\) if \(i \geqslant j\), and \(\underset{\sim}{x}\) is a known single column that follows an independent \(A R(1)\) process with parameter \(x\), where \(|x|<1\). The efficiency of the least-squares regression parameter estimator \(\hat{\beta}\), that is the ratio of the variance of the generalized least-squares estimator to the variance of the least-squares estimator, is
\[
\frac{\left(1-\phi^{2}\right)(1-\phi x)}{\left(1+\phi^{2}-2 \phi x\right)(1+\phi x)},
\]
see for example Malinvaud (1980, pp510-513). Provided \(\phi\) lies between 0 and 0.5 the efficiency remains above \(58 \%\), although as \(\phi\) approaches 1 the efficiency drops to \(0 \%\).

This basic approach is open to many generalizations, for instance in recent work Chipman (1979) and Kräner (1980) have considered more general design matrices \(\underset{\sim}{X}\), but the same \(\operatorname{AR}(1)\) error process as above. Chipman showed that the ordinary least-squares estimators of the regression parameters in a simple linear trend are never less than \(75 \%\) efficient provided that \(\phi\) is positive.

More generally, the least-squares estimator is equivalent to the generalized least-squares estimator, and is thus fully efficient, if and only if the design matrix is expressible as
\[
\underset{\sim}{X}=\underset{\sim}{A} \underset{\sim}{B},
\]
where \(\underset{\sim}{A}\) is an \(n\) by \(m\) matrix consisting of \(m\) of the eigenvectors of \(\underset{\sim}{V}\) and \(\underset{\sim}{B}\) is a nonsingular \(m\) by \(m\) matrix. (This was proved in generality by Zyskind, 1967.) However, even when the estimator is efficient, the least-squares estimator of its variance will usually be biased. For example, in the above case of \(A R(1)\) processes the relative bias of the variance estimator is
\[
[E(\operatorname{var}(\hat{\beta}))-\operatorname{var}(\hat{\beta})] / \operatorname{var}(\hat{\beta}) \simeq \frac{1}{n-1}\left[n-\frac{1+\phi x}{1-\phi x}\right] \frac{1-\phi x}{1+\phi x}-1,
\]
where \(n\) is the length of the series (Judge, Griffiths, Hill and Lee, 1980, p178). Therefore, in particular, if both \(\phi\) and \(x\) are positive the variance estimator is downward biased.

Watson (1955) found the matrices \(\underset{\sim}{X}\) which, conditional on \(\underset{\sim}{V}\), gave the most extreme biases in least-squares estimators of the variances of the regression parameter estimators and the lowest efficiencies of regression parameter estimators; the bounds were expressible in terms of the eigenvalues of \(\underset{\sim}{V}\). (Bloomfield and Watson (1975) gave a corrected proof of one theorem). Watson and Hannan (1956) applied these results to the situation of autoregressive-moving average processes by obtaining approximate expressions for the eigenvalues of \(\underset{\sim}{V}\), but unfortunately the bounds they obtained were very wide. Tighter bounds can be derived by making more specific assumptions about \(\underset{\sim}{X}\) and \(\underset{\sim}{V}\), but there seems to be no end to the possibilities that can be considered. Judge, Griffiths, Hill and Lee (1980, pp174-179), in their book, give a more comprehensive review of the subject.

\subsection*{1.3.4 Empirical models}

If errors are correlated, then one way of overcoming the deficiencies of ordinary least-squares estimation is to model the error covariance structure and re-estimate the regression parameters. There is a large literature on regression parameter estimation with empirically chosen error models. Cochrane and Orcutt (1949) proposed an iterative least-squares method for incorporating an \(\operatorname{AR}(1)\) error process. Initially,
\[
\sum_{i=2}^{n}\left\{(\underset{\sim}{y}-\underset{\sim}{x} \underset{\sim}{\beta})_{i}-\phi(\underset{\sim}{y}-\underset{\sim}{x} \underset{\sim}{\beta})_{i-1}\right\}^{2}
\]
is minimized with respect to \(\underset{\sim}{\beta}\) with \(\phi\) set to zero, obtaining \({\underset{\sim}{\beta}}^{\{1\}}\), where \((\underset{\sim}{y}-\underset{\sim}{X} \underset{\sim}{\beta})_{i}\) denotes the ith coefficient in the \(n\)-vector \(\underset{\sim}{y}-\underset{\sim}{X} \underset{\sim}{\beta}\). Then \(\phi\) is estimated by minimizing the above sum of
squares with \(\underset{\sim}{\beta}\) held constant at \(\underset{\sim}{\beta}{ }^{\{1\}}\), which gives \(\phi^{\{1\}}\), and \(\underset{\sim}{B}\) can be re-estimated with \(\phi\) held constant at this value. After several repeats of this procedure, values converge to give final estimates of \(\underset{\sim}{\beta}\) and \(\phi\). Anderson (1954) reviewed this and other early work. Rao and Griliches (1969) compared various procedures by Monte Carlo simulation and recomnended Durbin's (1960) method which also has the advantage of being able to handle any order of autoregressive process, although Spitzer (1979) cast doubt on their results and found full maximum likelihood estimation preferable.

Developments in computers since the early 1960's have removed the need for ad hoc estimation procedures as an approximation to full maximum likelihood estimation and restrictions to linear regression with autoregressive error models. The result has been a series of papers exploiting different generalizations: Duncan and Jones (1966) allowed for a general stationary error process; Pierce (1971b, 1972) and Harvey and Phillips (1979) used ARMA error models; Gallant and Goebel (1976) and Glasbey (1980) handled non-linear regression functions. Another variation was the use of residual maximum likelihood (Cooper and Thompson, 1977) in which error parameters are estimated only in the sub-space of the data orthogonal to the regression model (this is specified further in section 2.3). In other papers, regression curves were fitted when errors were correlated, but with a particular example in mind. For example, Campbell and Walker (1977) fitted a sinusoid plus an AR(2) error model to the lynx data, Glasbey (1979) fitted generalized logistic curves with \(\operatorname{AR}(1)\) errors to cattle weights, and Crowder and Tredger (1981) fitted exponentially damped polynomials with \(A R(1)\) errors to biological recovery data.

The above techniques draw heavily upon the time series literature, for which the fundamental text on ARMA models is Box and Jenkins (1976). Newbold (1981) recently reviewed the rapidly expanding literature. Nearly all of the empirical error modelling has been with observations equally spaced in time. This reflects a preoccupation in the time series literature because, although some interest has been shown in missing observations, for example Ljung (1982), very little has been done with other types of unequal spacings. Exceptions are the early paper by Quenouille (1958), and recent work on AR(1) processes (Robinson, 1977) and spectral analysis (Gaster and Roberts, 1977). In the case of spectral analysis this offers the oportunity of avoiding the aliasing associated with equally spaced observations. A related topic, observations of a continuous process at discrete times, has received some attention recently and been reviewed by Jones (1981). Phadke and Wu (1974) modelled sunspots data using a continuous analogue of an \(\operatorname{ARMA}(2,1)\) process. Pandit and Wu (1975) studied the identifiability of parameters in second-order stochastic differential equations.

Another type of empirical error model has been encountered in regression with spatially correlated errors. This is a recent development (see for example Cliff and Ord, 1981, pp231-240) which has been used by Cook and Pocock (1983) in analysing geographical mortality data. Nearest-neighbour adjustment in the analysis of designed experiments is a special case of regression with correlated errors (Atkinson, 1969). There has been a lot of recent interest, see for example the paper by Wilkinson, Eckert, Hancock and Mayo (1983) and the ensuing discussion.

\subsection*{1.3.5 Growth models}

One particular situation in which correlated errors are encountered is in the study of growth, which has had a long history, and data have been analysed in many ways. Two predominant strands in the literature have been biological and statistical. In the biological approach, non-linear regression functions have been proposed which supposedly come close to representing the true processes in growth, but the statistical techniques by which these curves are fitted to data are often quite inadequate. Whereas statistical methods have concentrated on good estimation procedures, but have inclined towards linear regression, in particular using polynomial functions which made no biological sense. A large number of references, primarily to the biological approach, are given by Kowalski and Guire (1974). A series of statistical papers on the analysis of multiple series probably reached its apotheosis with the work of Grizzle and Allen (1969). The relationship between biological and statistical models was discussed by Finney (1978).

Another statistical approach has been to model growth of individuals by means of stochastic difference or differential equations. First-order equations were considered by Finney (1958) and by Mitchell (1968). In a review article, Sandland and McGilchrist (1979) tried to unify the statistical and biological strands by incorporating stochastic variability into biologicallyrealistic differential equations and tying in recent work on population dynamics.

\subsection*{1.3.6 Stochastic compartment models}

Deterministic compartment models have been in use for some considerable time, but stochastic generalizations are quite a recent development which have been reviewed from a statistical perspective by Matis and Wehrly (1979) and from a mathematical perspective by Purdue (1979).

The simplest and most commonly chosen form of stochasticity (termed P1 by Matis and Wehrly, 1979) is that arising from having only a finite number of particles in a system, each behaving independently with constant transition probability rates between compartments. The result is a Markov process in continuous time on a discrete state-space, see for example Cox and Miller (1965, ppl78-186). Kodell and Matis (1976) considered the fitting of a two-compartment stochastic model which allowed emigration, although not immigration, and estimated the rate constants by generalized least-squares from the number of particles in each compartment at various times. The variance matrix, which took account of the correlations over time generated by the stochastic model, has a particular structure which simplified its inversion. Matis and Hartley (1971) had previously considered the fitting of a larger model by generalized least-squares, but using only the total number of particles in the system at different times. The method was only applicable to small data sets because the variance matrix had to be inverted explicitly. One reason for the use of generalized least-squares is that the exact distributions yield a very complicated likelihood function. An alternative approach, due to Lehoczky and Gaver (1977), is to approximate the stochastic model by a diffusion process, and then fit this to the data by exact maximum likelihood estimation.

There are a multitude of ways in which the above simple form of stochastic compartment model can be generalized, such as: allowing the transition rates to vary with time, removing the Markovian property, introducing dependence between particles and thus losing linearity. Invariably, in all these cases, the mathematical analysis is far in advance of statistical techniques for identifying and fitting appropriate models to observed data sets.

\subsection*{1.3.7 Model misspecification}

Whether the error model has been chosen empirically or mechanistically, very little attention has been given to the consequences of the assumed model not being correct. Engle (1974) showed that if errors are from an \(\operatorname{AR}(2)\) process but are assumed to be from an \(A R(1)\) process, then the ordinary least-squares regression estimators can be more efficient than the assumed maximum likelihood estimators. Patterson and Silvey (1980), faced with covariances of a non-serial nature when combining results from series of experiments, commented:
> "errors in the estimation of variance parameters can seriously affect the accuracy of estimated variety means. On the other hand, use of too simple a variance model can result in loss of efficiency and biased estimates of error."

Thus, there is a problem that has been recognised only occasionally and seemingly never solved.

\subsection*{1.3.8 Distribution of estimators}

For a single series of correlated observations there is no true replication. Therefore the sample is only of size one and the asymptotic properties of maximum likelihood estimators (as
described, for example, by Cramér, 1946, pp500-506) are not applicable without changes in assumptions. For example, as Bartlett (1978, pp264-271) indicated, there are ways round the problem for stationary processes, such as the approach of Mann and Wald (1943) and Anderson (1971, pp188-211) for linear stochastic difference equations. However, the same properties do not necessary hold for non-stationary processes; for example White (1958) showed that for the explosive AR(1) process the least-squares estimator has a limiting Cauchy distribution.

When a regression term is also present the asymptotic properties depend on the form the regression takes with increasing sample size (Jennrich, 1969); for example, estimators of transient parameters will not converge to their true values as the sample size increases (Crowder, 1976). This highlights the arbitrariness of appealling to asymptotic properties: it is usually a totally artificial question to ask what form a regression function takes as the sample size increases beyond the actual number of observations; I could suppose it did anything that suited my purposes such as genuinely replicating (that is \(f_{n+1}=f_{1}, f_{n+2}=f_{2}\), etc) and so avoid transient parameters. The real question, which has seldom been addressed theoretically, is whether the actual sample size is large enough for asymptotic results to be a good approximation. So much for a general discussion; the pertinent issue here is the appropriateness of asymptotic theory of parameter estimators and likelihood ratio tests to the preceding models. These may be grouped into three categories:
a) Empirical models consisting of non-linear regressions with stationary error processes fitted by maximum likelihood or
asymptotically equivalent variants. These fall within the cases considered in the above discussion so results are asymptotically valid although, if observations are unequally spaced, their distribution in time must satisfy constraints (Robinson, 1977). For actual sample sizes the approximations may not be so good, and in particular distributions of non-linear parameter estimators may be skew (Ross, 1978).
b) If growth is modelled by non-stationary solutions of stationary differential equations, then long-term solutions will be stationary and so be of the same type as (a) except for start-up parameters which are only transient. But, as argued above, outside the bounds of the data, issues of this sort are artificial and to all intents and purposes we are in situation (a).
c) For stochastic compartment models Gaussian estimators (Whittle, 1961) are used instead of maximum likelihood estimators. There is a form of replication in these types of data because each particle in the system behaves independently. Chiang (1956) showed that regression parameter estimators approach asymptotic efficiency as the number of particles increases even if the number of observation times remains constant. However, these results do not apply to variance parameter estimators whose variances may include fourth order terms (see for example, Fisk, 1967).
2. Regression parameter estimation with generalized autoregressive-moving average errors

\subsection*{2.1 Introduction}

In this and the following chapter the ground is prepared before the consideration of specific models in chapters 4 to 8 involving regression with serially correlated errors. Initially, a class of serially-structured variance matrices is defined and some simple mathematical properties are elucidated. Statistical and computational features are then considered for estimating regression parameters with error variances in this class.

In order to estimate regression parameters by maximum likelihood when the errors are correlated it is often necessary to handle a large variance matrix. The evaluation of elements in this matrix and repeated inversion of the matrix in the course of an iterative estimation procedure can be prohibitively expensive in computer time. For this reason a large body of literature has built up expounding methods of evaluating the likelihood for particular types of covariance structure without explicit use of the variance matrix. This chapter is a continuation of the tradition.

In section 2.2 a decomposition into lower-triangular band matrices is found for a large class of serially-structured variance matrices. This enables a wider class of covariance structures to be used than have previously been considered in the literature. The form of decomposition prompts the name "generalized autoregressive-moving average" (GARMA) processes. A large number
of serially-generated stochastic processes are demonstrated to be of this type including discrete realisations of a class of continuous processes. The decomposition is the key which enables the wide range of models considered in chapters 4 to 8 to be fitted to data.

In section 2.3 the use of the decomposition is set within the context of regression parameter estimation with GARMA errors. Choices of optimization criteria and algorithms and approximations to the variances of parameter estimators are also considered in this section.

Finally, in section 2.4 a computer program, REGAME, is described which implements the techniques of section 2.3. This program has been used to fit the models considered in chapters 4 to 8.

\subsection*{2.2 The generaiized autoregressive-moving average structure}

\subsection*{2.2.1 Definition of a GARMA (\(p, q\)) process}

I will start with a rather technical definition. Its purpose will become clearer in [2.2.2] and its meaning should be clarified by the examples that follow.

A random vector \(\underset{\sim}{e}\) of length \(n\) is defined to be a generalized autoregressive-moving average process of orders \(p\) and \(q\), denoted GARMA \((p, q)\), for non-negative integers \(p\) and \(q\), if
\[
\operatorname{var}(\underset{\sim}{e})=\tau^{2} \underset{\sim}{V},
\]
where \(\tau^{2}\) is a positive scaling parameter, \(\underset{\sim}{v}\) is an \(n \times n\) real, symmetric positive-definite matrix and there exist, possibly
complex, vectors \({\underset{\sim}{c}}^{\{k\}}\) and \({\underset{\sim}{\eta}}^{\{k\}}\) of length \(n\) for \(k=1, \ldots, p\) such that for \(j=1, \ldots, n\), if \(p>0\), then
\[
\begin{equation*}
V_{i j}=\sum_{k=1} \zeta_{i}^{\{k\}} \eta_{j}^{\{k\}} \text { for } i \geqslant j+q-p+1 \tag{2.2.1}
\end{equation*}
\]
and if \(\mathrm{p}=0\), then
\[
V_{i j}=0 \quad \text { for } \quad i \geqslant j+q+1
\]

This statement needs some explanation. The structure of \(\underset{\sim}{V}\) may become clearer by taking as an example a \(\operatorname{GARMA}(1,1)\) process with \(n\) equal to 5 , then
\[
\underset{\sim}{v}=\left[\begin{array}{ccccc}
V_{11} & \zeta_{2} n_{1} & \zeta_{3} n_{1} & \zeta_{4} n_{1} & \zeta_{5} n_{1} \\
\zeta_{2} n_{1} & V_{22} & \zeta_{3} n_{2} & \zeta_{4} n_{2} & \zeta_{5} n_{2} \\
\zeta_{3} n_{1} & \zeta_{3} n_{2} & V_{33} & \zeta_{4} n_{3} & \zeta_{5} n_{3} \\
\zeta_{4} n_{1} & \zeta_{4} n_{2} & \zeta_{4} n_{3} & V_{44} & \zeta_{5} n_{4} \\
\zeta_{5} n_{1} & \zeta_{5} n_{2} & \zeta_{5} n_{3} & \zeta_{5} n_{4} & V_{55}
\end{array}\right]
\]

The use of the name GARMA process will become apparent in [2.2.4]. It may be noted that diagonal, and some off-diagonal, elements of \(\underset{\sim}{V}\) are undefined in equation (2.2.1) when \(q\) is greater than or equal to \(p\), although they are implicitly constrained by the restriction that \(\underset{\sim}{V}\) is positive-definite. Also, elements close to the diagonal are defined twice in equation (2.2.1) when \(q\) is less than \((p-1)\), so that for example
\[
v_{i, i+1}=\sum_{k=1}^{P} \zeta_{i}^{\{k\}} n_{i+1}^{\{k\}}
\]
but because \(\underset{\sim}{v}\) is symmetric
\[
v_{i, i+1}=v_{i+1, i}=\sum_{k=1}^{p} \zeta_{i+1}^{\{k\}} n_{i}^{\{k\}},
\]
which places constraints on possible values for \({\underset{\sim}{\zeta}}^{\{k\}}\) and \({\underset{\sim}{n}}^{\{k\}}\) for \(k=1, \ldots, p\).

If \(\underset{\sim}{V}\) is the variance matrix of a GARMA (\(p, q\)) process then there exist \(n \times n\) real, lower-triangular, band matrices \(\underset{\sim}{\Phi}\) and \(\underset{\sim}{\theta}\) with bandwidths \((p+1)\) and \((q+1)\) respectively such that
\[
\underset{\sim}{\Phi} \underset{\sim}{v} \underset{\sim}{\Phi}{ }^{\top}=\underset{\sim}{\theta}{\underset{\sim}{\theta}}^{\top} .
\]
(A lower-triangular band matrix with bandwidth (\(\ell+1\)) has zero elements above the diagonal and after \(\&\) terms below the diagonal.)

To prove this, define \(\underset{\sim}{\Phi}\) by:
a) \(\Phi_{i j}=1 \quad\) for \(i=1, \ldots, n\);
b) \(\quad \Phi_{i, i-m i n(p, i-q-1)}, \ldots, \Phi_{i, i-1} \quad\) for \(i=q+2, \ldots, n\), are any real solution of the simultaneous linear equations
\[
\begin{equation*}
\min (p, i-q-1) \tag{2.2.2}
\end{equation*}
\]
c) \(\quad \Phi_{i j}=0\)
otherwise.
One point in this definition which requires clarification is equation (2.2.2) which consists of (i-q-1) equations in \(\min (p, i-q-1)\) unknowns, so if \(i>p+q+1\) there are more equations than unknowns and a solution does not necessarily exist. However, \(j\) is less than or equal to \(p\) and \(\ell\) is greater than \(q\), therefore \((i-j)>(i-\ell)+q-p+1\) and equation (2.2.1) can be used to substitute for \(v_{i-j, i-\ell}\) in equation (2.2.2) giving
\[
\sum_{k=1}^{p} n_{i-\ell}^{\{k\}^{\min (p, i-q-1)}} \sum_{j=0} \Phi_{i, i-j} \zeta_{i-j}^{\{k\}}=0 \quad \text { for } \ell=(q+1), \ldots,(i-1),
\]
which is satisfied by any solution of
\[
\sum_{j=0}^{\min (p, i-q-1)} \Phi_{i, i-j} \zeta_{i-j}^{\{k\}}=0 \quad \text { for } k=1, \ldots, p .
\]

This consists of \(p\) equations in \(\min (p, i-q-1)\) unknowns and so does have a, possibly complex, solution which is also a solution of equation (2.2.2). But because \(\underset{\sim}{V}\) is real the real part of the solution is also a solution of equation (2.2.2). Therefore a real, not necessarily unique, solution of equation (2.2.2) always exists.

To illustrate the definition of \(\underset{\sim}{\Phi}\), consider the example of a \(\operatorname{GARMA}(1,1)\) process with \(n\) equal to \(5 . \underset{\sim}{\Phi}\) has a bandwidth of 2 and is defined to be
\[
\underset{\sim}{\Phi}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -\zeta_{3} / \zeta_{2} & 1 & 0 & 0 \\
0 & 0 & -\zeta_{4} / \zeta_{3} & 1 & 0 \\
0 & 0 & 0 & -\zeta_{5} / \zeta_{4} & 1
\end{array}\right] .
\]

Returning to the proof, from the definition, \(\underset{\sim}{\Phi}\) is real and is also lower-triangular with bandwidth (\(p+1\)) because
\[
\begin{array}{r}
\Phi_{i j}=0 \quad \text { when either } j>i \text { or } j<i-p, \\
\text { for } i=1, \ldots, p .
\end{array}
\]

When \(j>q+1\)
\[
(\Phi \underset{\sim}{\vee} \underset{\sim}{\Phi})_{i, i-j}=\sum_{\ell=i-n}^{i-1}\left(\underset{\sim}{\underset{\sim}{V}} \underset{i, i-\ell^{\Phi}}{i-j, i-\ell}=0\right.
\]
because \(\quad \Phi_{i-j, j-\ell}=0 \quad\) when \(\ell<j\), so in particular when \(\ell \leqslant q\), and \(\quad(\underset{\sim}{\Phi} \underset{\sim}{V})_{i, i-\ell}=0 \quad\) when \(\ell>q\) from (b) above.
Therefore, because \((\underset{\sim}{\Phi} \underset{\sim}{V} \underset{\sim}{\Phi})\) is also symmetric, it has a bandwidth of \((2 q+1)\), meaning that after \(q\) terms off the diagonal all elements are zero. It is also positive-definite because \(\underset{\sim}{V}\) and \(\underset{\sim}{\Phi}\) are positive-definite, so by the Cholesky triangular decomposition there exists a real lower-triangular matrix \(\underset{\sim}{\ominus}\) with bandwidth (\(q+1\)) such that
(See for example Wilkinson and Reinsch (1971, pp50-56).)
For the example already considered
\((\underset{\sim}{(\underset{\sim}{V})}=\)
\(\left[\begin{array}{ccccc}V_{11} & \zeta_{2} n_{1} & \zeta_{3} n_{1} & \zeta_{4} n_{1} & \zeta_{5} n_{1} \\ \zeta_{2} n_{1} & V_{22} & \zeta_{3} n_{2} & \zeta_{4} n_{2} & \zeta_{5} n_{2} \\ 0 & \left(\zeta_{3} n_{2}-V_{22} \zeta_{3} / \zeta_{2}\right) & \left(V_{33}-\zeta_{3}^{2} n_{2} / \zeta_{2}\right) & \zeta_{4}\left(\eta_{3}-\zeta_{3} n_{2} / \zeta_{2}\right) & \zeta_{5}\left(\eta_{3}-\zeta_{3} n_{2} / \zeta_{2}\right) \\ 0 & 0 & \left(\zeta_{4} n_{3}-V_{33} \zeta_{4} / \zeta_{3}\right) & \left(V_{44}-\zeta_{4}^{2} n_{3} / \zeta_{3}\right) & \zeta_{5}\left(n_{4}-\zeta_{4} n_{3} / \zeta_{3}\right) \\ 0 & 0 & 0 & \left(\zeta_{5} n_{4}-V_{44} \zeta_{5} / \zeta_{4}\right) & \left(V_{55}-\zeta_{5}^{2} n_{4} / \zeta_{4}\right)\end{array}\right]\)
which has zero elements after one term below the diagonal, and \(\left(\underset{\sim}{\Phi} \underset{\sim}{\vee} \underset{\sim}{\Phi}{ }^{\top}\right)=\)

where \((\underset{\sim}{\Phi} \underset{\sim}{v} \underset{\sim}{\Phi})_{i j}=V_{i j}-2 \zeta_{i}^{2} n_{i-1} / \zeta_{i-1}+V_{i-1, i-1} \zeta_{i}^{2} / \zeta_{i-1}^{2}\) for \(\mathfrak{i}=3,4,5\),
which has a bandwidth of 3 .
It is convenient at this point to note for future use that
\[
\begin{aligned}
& |\underset{\sim}{\Phi}|=\underset{i=1}{n} \Phi_{i j}=1, \\
& |\underset{\sim}{\theta}|=\underset{i=1}{n} \theta_{i j} .
\end{aligned}
\]

Not only does the definition of a GARMA process in [2.2.1]
imply that \(\underset{\sim}{V}\) can be decomposed into lower-triangular band matrices, but also if \(\underset{\sim}{v}\) can be so decomposed, then it is a GARMA
process, provided \(\Phi_{i, i-p}\) is non-zero for \(i \geqslant p+q+1\). Because this is of no practical importance only a brief sketch of the proof is given below.

If \(\left(\underset{\sim}{\Phi} \underset{\sim}{\underset{\sim}{\Phi}}{ }^{\top}\right)\) has a bandwidth of \((2 q+1)\) then, because of the structure of \(\underset{\sim}{\Phi}\), for \(j=1, \ldots, n\)
\[
(\underset{\sim}{\Phi} \underset{\sim}{V})_{i+p, j}=0 \quad \text { when } i+p>j+q+1
\]

Therefore
\[
v_{i j}=\frac{-1}{\Phi_{i+p, i}} \sum_{k=i+1}^{i+p} \Phi_{i+p, k} V_{k j}
\]
\[
\text { when } i \geqslant \max (j+q-p+1, q+1)
\]
\[
=\frac{-1}{\Phi_{i+p, i}}\left\{\frac{-\Phi_{i+p, i+1}}{\Phi_{i+p+1, i+1}} \sum_{k=i+2}^{i+p+1} \Phi_{i+p+1, k} V_{k j}\right.
\]
\[
\left.+\sum_{k=i+2}^{i+p} \Phi_{i+p, k} V_{k j}\right\}
\]
by substituting for \(V_{i+1, j}\),
\[
=\sum_{k=n-p+1}^{n} A_{i k} V_{k j}
\]
after repeated substitution, for some coefficients \(A_{i k}\) which do not depend on \(j\). This is a restatement of equation (2.2.1) except for the case when \(\mathbf{j}<\boldsymbol{p}\) and \(i\) lies between (\(j+q-p+1\)) and \(q\) which requires special treatment and will not be considered here.

\subsection*{2.2.3 Numerical example of decomposition for GARMA(1,1) process}

To illustrate the preceding algebra, suppose that \(\underset{\sim}{e}\) is a vector of length 5 with a variance matrix
\[
\underset{\sim}{v}=\left[\begin{array}{lllll}
1.0 & 0.5 & 0.333 & 0.25 & 0.2 \\
0.5 & 2.0 & 0.667 & 0.5 & 0.4 \\
0.333 & 0.667 & 3.0 & 0.75 & 0.6 \\
0.25 & 0.5 & 0.75 & 4.0 & 0.8 \\
0.2 & 0.4 & 0.6 & 0.8 & 5.0
\end{array}\right] .
\]

This matrix satisfies equation (2.2.1) with \(p\) and \(q\) equal to 1 ,
and
\[
\left.\begin{array}{lllll}
\underset{\sim}{\underset{~}{~}} & (1.0, & 0.5, & 0.333, & 0.25,
\end{array} 0.2\right) ~\left(\begin{array}{llll}
\underset{\sim}{n} & (1.0, & 2.0, & 3.0,
\end{array} 4.0, \quad 5.0\right) .
\]

Therefore \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(1,1)\) process.
From [2.2.2] \(\underset{\sim}{\Phi}\) is defined to be
\[
\left[\begin{array}{ccccc}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & -0.667 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -0.75 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & -0.8 & 1.0
\end{array}\right],
\]
from which it follows that
\[
\left(\underset{\sim}{\Phi} \underset{\sim}{\vee}{\underset{\sim}{\top}}^{\top}\right)=\left[\begin{array}{llllc}
1.0 & 0.5 & 0.0 & 0.0 & 0.0 \\
0.5 & 2.0 & -0.667 & 0.0 & 0.0 \\
0.0 & -0.667 & 3.0 & -1.5 & 0.0 \\
0.0 & 0.0 & -1.5 & 4.563 & -2.4 \\
0.0 & 0.0 & 0.0 & -2.4 & 6.280
\end{array}\right],
\]
and
\[
\underset{\sim}{\theta}=\left[\begin{array}{lllll}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.5 & 1.323 & 0.0 & 0.0 & 0.0 \\
0.0 & -0.504 & 1.657 & 0.0 & 0.0 \\
0.0 & 0.0 & -0.905 & 1.935 & 0.0 \\
0.0 & 0.0 & 0.0 & -1.24 & 2.177
\end{array}\right],
\]
which is a lower-triangular matrix with a bandwidth of 2 .
2.2.4 Interpretation of GARMA property

If \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(p, q)\) process then, defining an n-vector \(z\) by
\[
\begin{equation*}
\underset{\sim}{\theta} \underset{\sim}{z}=\underset{\sim}{\Phi} \underset{\sim}{e}, \tag{2.2.3}
\end{equation*}
\]
it follows that
\[
\begin{aligned}
\operatorname{var}(z) & =\tau^{2} \underset{\sim}{\underset{\sim}{\theta}} \\
& =\tau^{2} \underset{\sim}{I},
\end{aligned}
\]
where \(\underset{\sim}{I}\) is the identity matrix of size \(n\). Therefore
\[
\begin{array}{r}
e_{i}=-\Phi_{i, i-1} e_{i-1} \cdots-\Phi_{i, i-p^{e}}{ }_{i-p}+\theta_{i j}{ }_{i}+\ldots+\theta_{i, i-q^{z}}{ }_{i-q} \\
\text { for } i=\max (p+1, q+1), \ldots, n,
\end{array}
\]
where coefficients of \(\underset{\sim}{z}\) are uncorrelated and have equal variance. When \(\underset{\sim}{z}\) is normally distributed, this has the appearance of a finite realisation of an autoregressive-moving average process (see for example, Box and Jenkins, 1976 pp73-78), but with the non-constant parameters, hence the name "generalized autoregressive-moving average process".

I have found the analogy with an ARMA process helpful in understanding the property defined by equation (2.2.1), although in many applications the decomposition in [2.2.2] may be no more than a mathematical trick. Use of the name GARMA process is.misleading to the extent that it may neither represent a finite sample from an infinite-dimensional process, as is the case for an ARMA process, nor a true generating mechanism.

If \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(1,0)\) process, then it has the second-moment property of a non-stationary Markov process because
\[
e_{i}=-\Phi_{i, i-1} e_{i-1}+\theta_{i i} z_{i} \quad \text { for } \quad i=2, \ldots, n ;
\]
and if \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(p, q)\) process, with \(q \leqslant p-1\), then it may in certain circumstances be represented as a sum of \(p\) Markov
processes, the \(k\) th of which has variance \({\underset{\sim}{v}}^{\{k\}}\) with
\[
V_{i j}^{\{k\}}=\zeta_{j}^{\{k\}} \eta_{j}^{\{k\}} \quad \text { for } i>j
\]
provided these matrices are all real and positive-definite. This is because \(\underset{\sim}{e}\) can be represented as
\[
\underset{\sim}{e}=\sum_{k=1}^{p}{\underset{\sim}{e}}^{\{k\}}
\]
where \({\underset{\sim}{e}}^{\{k\}}\) is a vector of length \(n\), distributed with a variance matrix of \(\underset{\sim}{v}\{k\}\), and is hence a \(\operatorname{GARMA}(1,0)\) process and a Markov process.

GARMA processes also have similarities with the linear processes used by control engineers. Harvey and Phillips (1979) have used this association in the case of ARMA processes to evaluate the likelihood by means of the Kalman filter, a technique developed by control engineers (see for example, Priestley, 1981b, pp807-815). The technique, which is also applicable to GARMA processes, involves giving a state-space representation of a process in terms of a multidimensional Markov process.

\subsection*{2.2.5 Examples}

Any \(n \times n\) real, symmetric positive-definite matrix \(\underset{\sim}{V}\) can be expressed as
\[
V_{i j}=\sum_{k=1}^{n} \zeta_{j}^{\{k\}} n_{j}^{\{k\}} \quad \text { for } i \geqslant j
\]
using its eigenvectors, and so is the variance matrix of a \(\operatorname{GARMA}(n, n-1)\) process. Alternatively, and trivially, \(\underset{\sim}{V}\) is the variance matrix of a \(\operatorname{GARMA}(0, n-1)\) process because there are no elements \(V_{i j}\) for which \(i \geq j+n\), so equation (2.2.1) does not apply. The examples below are not of this meaningless type; \(p\) and \(q\) take values close to zero.
a) In chapter 3 it will be shown that the solutions of linear stochastic difference and differential equations with constant coefficients are GARMA processes.
b) The autocorrelation coefficient at lag \(\ell\) of an \(\operatorname{ARMA}(p, q)\) process is
\[
\rho_{\ell}=\sum_{k=1}^{p} k_{k} e^{\ell \lambda} k \quad \text { for } \quad \ell \geqslant q-p+1
\]
where \(k_{1}, \ldots, k_{p}\) and \(\lambda_{1}, \ldots, \lambda_{p}\) are constants (see chapter 4). Therefore
\[
V_{i j}=\rho_{i-j}=\sum_{k=1}^{p}\left(k_{k} e^{i \lambda_{k}}\right)\left(e^{-j \lambda_{k}}\right) \quad \text { for } \quad i \geqslant j+q-p+1,
\]
and so, as already alluded to in [2.2.4], the process is a GARMA \((p, q)\) process. Also, non-stationary ARMA processes, ARMA processes with non-constant variances and ARMA processes with missing values are all GARMA processes.
c) In chapter 7 it will be shown that the solution of a type of stochastic compartment model is a GARMA process.
d) In chapter 8 it will be shown that the cumulative number of random events form a GARMA process.
e) To illustrate the variety of GARMA processes consider regression with random coefficients. If
\[
(\underset{\sim}{e} \mid \underset{\sim}{\beta}) \sim\left(\underset{\sim}{X} \underset{\sim}{\beta}, \sigma^{2} \underset{\sim}{I}\right),
\]
which means that conditional upon \(\underset{\sim}{\beta}, \underset{\sim}{e}\) is distributed with a mean of \(\underset{\sim}{X} \underset{\sim}{B}\) and a variance matrix of \(\sigma^{2} \underset{\sim}{I}\), where \(\underset{\sim}{\beta}\) is a p-vector with
\[
\underset{\sim}{\beta} \sim(\underset{\sim}{\alpha}, \underset{\sim}{\Lambda}),
\]
then \(\operatorname{cov}\left(e_{i}, e_{j}\right)=\sum_{k=1}^{p}\left(x_{i k}\right)\left(\sum_{\ell=1}^{p} \Lambda_{k \cdot \ell} x_{j \ell}\right) \quad\) for \(\quad i>j+1\)
and \(\underset{\sim}{e}\) satisfies the definition in [2.2.1] and so is a \(\operatorname{GARMA}(p, p)\) process.

\subsection*{2.2.6 Properties}

If \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(p, q)\), process then many simple variates derived from \(\underset{\sim}{e}\) are also GARMA processes. Examples include the following:
a) The moving average of length \(\ell+1, \sum_{g=i-\ell}^{i} \mu_{i-g} e_{g}\), is a GARMA \((p, q+\ell)\) process because
\[
\begin{aligned}
\operatorname{cov} & \left(\left(\sum_{g=i-\ell}^{i} \mu_{i-g} e_{g}\right),\left(\sum_{h=j-\ell}^{j} \mu_{j-h} e_{h}\right)\right) \\
& =\tau^{2} \sum_{g=i-\ell \quad h=j-\ell}^{i} \sum_{i-g^{\mu} j-h}^{j} \sum_{k=1}^{p} \zeta_{g}^{\{k\}} n_{h}^{\{k\}} \quad \text { if } i-\ell>j+q-p+1
\end{aligned}
\]
by substituting for the variance of \(\underset{\sim}{e}\) from equation (2.2.1),
\[
=\tau^{2} \sum_{k=1}^{p}\left(\sum_{g=i-\ell}^{i} \mu_{i-g} \zeta_{g}^{\{k\}}\right)\left(\sum_{h=j-\ell}^{j} \mu_{j-h} \eta_{h}^{\{k\}}\right)
\]
\[
\text { if } \quad i>j+(q+\ell)-p+1
\]

This is a variance matrix of the same form as equation (2.2.1) but with \(q\) replaced by \((q+\ell)\), so the new process is a \(\operatorname{GARMA}(p, q+\ell)\) process.
b) The sum of elements in \(\underset{\sim}{e}\), is a \(\operatorname{GARMA}(p+1, q)\) process because
\[
\begin{aligned}
\operatorname{cov} & \left(\left(\sum_{g=1}^{j} e_{g}\right),\left(\sum_{h=1}^{j} e_{h}\right)\right) \\
& =\sum_{g=1}^{j+q-p} \sum_{h=1}^{j} V_{g h^{+}}+\tau^{2} \sum_{g=j+q-p+1}^{i} \sum_{h=1}^{j} \sum_{k=1}^{p} \zeta_{g}^{\{k\}} \eta_{h}^{\{k\}} \quad \text { if } \quad i \geqslant j+q-p
\end{aligned}
\]
by substituting for the variance of \(\underset{\sim}{e}\) from equation (2.2.1)
\[
\begin{aligned}
&= \sum_{g=1}^{j+q-p} \sum_{h=1}^{j} V_{g h}+\tau^{2} \sum_{k=1}^{p}\left(\sum_{g=1}^{i} \zeta_{g}^{\{k\}}-\sum_{g=1}^{j+q-p} \zeta_{g}^{\{k\}}\right)\left(\sum_{h=1}^{j} n_{h}^{\{k\}}\right) \\
&= \sum_{g=1}^{j+q-p} \sum_{h=1}^{j}\left(V_{g h}-\tau^{2} \sum_{k=1}^{p} \zeta_{g}^{\{k\}} n_{h}^{\{k\}}\right)+\tau^{2} \sum_{k=1}^{p}\left(\sum_{g=1}^{i} \zeta_{g}^{\{k\}}\right)\left(\sum_{h=1}^{j} n_{h}^{\{k\}}\right) \\
& \text { if } \quad i \geqslant j+q-(p+1)+1
\end{aligned}
\]
by algebraic manipulation. This is the sum of one term in \(j\) alone and \(p\) terms which are products of single terms in \(i\) and \(j\) - , and thus satisfies equation (2.2.1) for a \(\operatorname{GARMA}(p+1, q)\) process.
c) If \(\underset{\sim}{e}\) is a \(\operatorname{GARMA}(p, q)\) process and \(\underset{\sim}{w}\) is a \(\operatorname{GARMA}(u, v)\) process uncorrelated with \(\underset{\sim}{e}\) and of the same length, then \(\underset{\sim}{e}+\underset{\sim}{w}\) is a GARMA \((p+u, \max (q+u, v+p))\) process because
\(\operatorname{cov}\left(e_{i}+w_{i}, e_{j}+w_{j}\right)=\tau^{2} \sum_{k=1}^{p+u} \zeta_{i}^{\{k\}} \eta_{j}^{\{k\}} \quad\) for \(\quad i \geqslant j+\max (q-p+1, v-u+1)\).
This meets the conditions of equation (2.2.1) for a
\(\operatorname{GARMA}(p+u, \max (q+u, v+p))\) process.
d) With the same conditions pertaining as in (c) above \(\left(\underset{\sim}{e}{ }^{\top},{\underset{\sim}{w}}^{w}\right)^{\top}\) is a \(\operatorname{GARMA}(\max (p, u), \max (p, u)+\max (q-p, v-u))\) process because the covariance between element \(i\) and element \(j\) is of the form of equation (2.2.1) as the sum of \(\max (p, u)\) terms when \(i>j+\max (q-p, v-u)+1\).

\subsection*{2.2.7 Extension to continuous processes}

The preceding results for discrete processes extend naturally to continuous processes. A random variable \(Y(t)\), indexed by \(t\) over a continuous finite or infinite range, is defined to be a cGARMA \((p, \delta)\) process for non-negative integer \(p\) and non-negative real \(\delta\) if
(2.2.4) \(\operatorname{cov}(Y(s), Y(t))=\tau^{2} \sum_{k=1} \zeta^{\{k\}}(s) \eta^{\{k\}}(t) \quad\) for \(s \geqslant t+\delta\), where \(\zeta^{\{k\}}(t)\) and \(\eta^{\{k\}}(t)\) for \(k=1, \ldots, p\) are, possibly complex, functions over the same continuous range of \(t\) as \(Y(t)\).

If times \(t_{1}, t_{2}, \ldots, t_{n}\) ranked in ascending order are independent of \(Y(t)\), then the sequence \(Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(t_{n}\right)\)
in discrete time forms a \(\operatorname{GARMA}(p, p+\ell)\) process where \(\ell\) is the smallest integer such that
\[
t_{i+\ell+1}-t_{i} \geqslant \delta \quad \text { for } \quad i=1, \ldots,(n-\ell-1)
\]
because
\[
\begin{aligned}
& \operatorname{cov}\left(Y\left(t_{i}\right), Y\left(t_{j}\right)\right)=\tau^{2} \sum_{k=1}^{p} \zeta^{\{k\}}\left(t_{i}\right) n^{\{k\}}\left(t_{j}\right) \\
& \text { if } i \geqslant j+(p+l)-p+1
\end{aligned}
\]
and equation (2.2.1) is satisfied. For example, if \(\delta\) equals zero, then \(\ell\) is equal to -1 for any set of times and the sequence in discrete time is a \(\operatorname{GARMA}(p, p-1)\) process.

\subsection*{2.2.8 Properties of a cGARMA process}

If \(Y(t)\) is a \(\operatorname{cGARMA}(p, \delta)\) process then, in a similar manner to the discrete case, many simple derived variates are also cGARMA processes. Examples include the following:
a) The filter of length \(v, \int_{s-v}^{S} \mu(s-u) Y(u) d u\) is a \(\operatorname{cGARMA}(p, \delta+v)\) process because
\[
\begin{aligned}
& \operatorname{cov}\left(\left(\int_{s-v}^{s} \mu(s-u) Y(u) d u\right),\left(\int_{t-v}^{t} \mu(t-v) Y(v) d v\right)\right) \\
& =\tau^{2} \sum_{k=1}^{p}\left(\int_{s-v}^{s} \mu(s-u) \zeta^{\{k\}}(u) d u\right)\left(\int_{t-v}^{t} \mu(t-v) \eta^{\{k\}}(v) d v\right) \\
& \quad \text { if } s-v \geqslant t+\delta,
\end{aligned}
\]
provided these integrals exist, by substituting for \(\operatorname{cov}(Y(u), Y(v))\) from equation (2.2.4). This satisfies equation (2.2.4) for a cGARMA \((p, \delta+v)\) process.
b) The integral of \(Y(t), \int_{0}^{S} Y(u) d u\) is a \(\operatorname{cGARMA}(p+1, \delta)\) process because
\[
\begin{aligned}
\operatorname{cov} & \left(\left(\int_{0}^{s} Y(u) d u\right),\left(\int_{0}^{t} Y(v) d v\right)\right) \\
& =\int_{0}^{t+\delta}\left(\int_{0}^{t} \operatorname{cov}(Y(u), Y(v)) d v\right) d u \\
& +\tau^{2} \int_{t+\delta}^{s}\left(\int_{0}^{t} \sum_{k=1}^{p} \zeta^{\{k\}}(u) n^{\{k\}}(v) d v\right) d u \quad \text { if } s \geqslant t+\delta
\end{aligned}
\]
by substituting for \(\operatorname{cov}(Y(u), Y(v))\) from equation (2.2.4) when \(u>t+\delta\),
\[
\begin{aligned}
= & \int_{0}^{t+\delta}\left\{\int_{0}^{t}\left[\operatorname{cov}(Y(u), Y(v))-\tau^{2} \sum_{k=1}^{p} \zeta^{\{k\}}(u) \eta^{\{k\}}(v)\right] d v\right\} d u \\
& +\tau^{2} \sum_{k=1}^{p}\left(\int_{0}^{s} \zeta^{\{k\}}(u) d u\right)\left(\int_{0}^{t} \eta^{\{k\}}(v) d v\right)
\end{aligned}
\]
by algebraic manipulation. This is a sum of a term in \(t\) alone and \(p\) terms which are products of single terms in \(s\) and \(t\) and thus satisfies equation (2.2.4) for a \(\operatorname{GARMA}(p+1, \delta)\) process.

\subsection*{2.3 Parameter estimation}

\subsection*{2.3.1 Model}

In this section a very general form of model is considered which includes all the models considered in chapters 4 to 8 as special cases. An n-vector of observations \(\underset{\sim}{y}\) is assumed to be a realisation of the model
\[
\underset{\sim}{y} \sim\left(\underset{\sim}{f}, \tau^{2} \underset{\sim}{V}\right),
\]
where \(\underset{\sim}{f}\) is a known \(n\)-vector except for an m-vector \(\underset{\sim}{\beta}\) of parameters, \(\tau^{2}\) is a scaling parameter which is possibly known and \(\underset{\sim}{V}\) is the variance matrix of a \(\operatorname{GARMA}(p, q)\) process and is known except possibly for a few parameters.
2.3.2 Optimization criteria

If \(\underset{\sim}{y}\) is multivariate normally distributed then its negative log-likelihood to within an additive constant is
\[
L_{M}=\frac{n}{2} \ln \tau^{2}+\frac{1}{2} \ln |\underset{\sim}{V}|+\frac{S}{2 \tau^{2}}
\]
where \(S\) is the generalized sum of squares, that is
\[
S=(\underset{\sim}{y}-\underset{\sim}{f})^{T}{\underset{\sim}{V}}^{-1}(\underset{\sim}{y}-\underset{\sim}{f})
\]

The unknown parameters in the model can be estimated by minimizing \(L_{M}\). This gives maximum likelinood estimates if \(\underset{\sim}{y}\) is multivariate normally distributed, otherwise they have been called Gaussian estimates (Whittle, 1961).

A second estimation method, proposed by Cooper and Thompson (1977), is to minimize the residual negative log-likelihood which, to within an additive constant, is
\[
L_{R}=\left(\frac{n-m}{2}\right) \ln \tau^{2}+\frac{1}{2} \ln \left(|\underset{\sim}{V}|\left|\underset{\sim}{x}{\underset{\sim}{V}}^{-1} \underset{\sim}{x}\right|\left|\underset{\sim}{x}{\underset{\sim}{x}}^{x}\right|^{-1}\right)+\frac{S}{2 \tau^{2}},
\]
where \(\underset{\sim}{x}\) is an \(n\) by \(m\) matrix defined by
\[
\underset{\sim}{x}=\underset{\sim}{\partial f / \partial \underset{\sim}{\beta}}{ }^{\top}
\]

With this approach, the parameters in \(\underset{\sim}{V}\) are estimated only from the contrasts in \(\underset{\sim}{y}\) orthogonal to the contrasts used to estimate the regression parameters \(\underset{\sim}{\beta}\).

A third function that can be minimized is the sum of squares
\[
L_{S}=\frac{n}{2} \ell n \tau^{2}+\frac{S}{2 \tau^{2}}
\]
which omits en \(|\underset{\sim}{\mid}|\) totally.
The use of the first two of these optimization criteria will be investigated in subsequent chapters. The third criterion can not be used when \(\underset{\sim}{V}\) has parameters additional to those in \(\underset{\sim}{f}\) because then \(L_{S}\) may have no minimum.

Other estimation criteria exist, particularly for non-normally distributed data. When only first and second moments of a distribution are known, Wedderburn (1974) proposed optimizing the quasi-likelihood. However, this suffers from the same deficiency as \(L_{S}\) when \(\underset{\sim}{V}\) has parameters additional to those in \(\underset{\sim}{f}\).

\subsection*{2.3.3 Numerical evaluation of the optimization functions}

The decomposition of \(\underset{\sim}{V}\) in [2.2.2] can be used to evaluate the optimization functions without explicitly inverting \(\underset{\sim}{V}\) or calculating its determinant. If the departures of the data from a regression function are denoted \(\underset{\sim}{e}\), where
\[
\begin{equation*}
\underset{\sim}{e}=\underset{\sim}{y-f} \underset{\sim}{f}, \tag{2.3.1}
\end{equation*}
\]
then
\[
S={\underset{\sim}{z}}^{\top} \underset{\sim}{z} \quad \text { where } \underset{\sim}{\theta} \underset{\sim}{z}=\underset{\sim}{\Phi} \underset{\sim}{e},
\]
and \(\underset{\sim}{z}\) are called the residuals. Other terms required may also be evaluated relatively easily using
\[
\begin{aligned}
& |\underset{\sim}{V}|=|\underset{\sim}{\theta}|^{2}|\underset{\sim}{\Phi}|^{-2}={\underset{i=1}{n} \theta_{i j}^{2}, ~}_{i=1} \\
& {\underset{\sim}{x}}^{\top}{\underset{\sim}{V}}^{-1} \underset{\sim}{x}=\left(\underset{\sim}{\theta^{-1}} \underset{\sim}{\Phi} \underset{\sim}{x}\right)^{\top}\left(\underset{\sim}{\theta}{\underset{\sim}{\mid}}^{-1} \underset{\sim}{x}\right) .
\end{aligned}
\]
and
This technique for evaluating the likelihood is a generalization of Ansley's (1979) method for ARMA processes.

\subsection*{2.3.4 Optimization algorithms}

In general, the regression function will be non-linear in its parameters which can thus only be estimated iteratively. Even if the regression function is linear in its parameters the presence of correlations between observations will usually mean that the loglikelihood can only be optimized iteratively. The sole exception
to this rule is the scale parameter \(\tau^{2}\), if unknown, which can be estimated directly, conditional on the other parameters, as
\[
\bar{\tau}^{2}=s / n
\]
for \(L_{M}\) and \(L_{S}\) and as
\[
\hat{\tau}^{2}=s /(n-m)
\]
for \(L_{R}\). So it is necessary only to iterate on \(\underset{\sim}{\beta}\) and the unknown parameters in \(\underset{\sim}{V}\). Most, but not all, of the optimization functions can be re-expressed as sums of squares for which special optimization routines are available. For example
\[
L_{M}\left(\hat{\tau}^{2}\right)=\frac{n}{2}-\frac{n}{2} \ln n+\frac{n}{2} \ln \left(S|\underset{\sim}{\mid}|^{1 / n}\right),
\]
which can be minimized by minimizing
\[
s|\underset{\sim}{V}|^{1 / n}=\left(|\underset{\sim}{V}|^{1 /(2 n)} \underset{\sim}{z}\right)^{\top}\left(|\underset{\sim}{V}|^{1 /(2 n)} \underset{\sim}{z}\right)
\]
which is a sum of squares. But \(L_{M}\), with \(\tau^{2}\) known, cannot be expressed as a sum of squares. In order to apply a single algorithm in all circumstances a general derivative-free numerical optimization routine has been used (see [2.4.8]). Thus, some computational efficiency has been lost in certain problems in order to use the same optimization algorithm in all problems. Bard (1974, pp83-140) gives a general discussion of alternative algorithms.

\subsection*{2.3.5 Variances of parameter estimators}

For the general model considered in this section it is not possible to appeal to asymptotic results in order to derive approximate variances of parameter estimators because the sample is only of size one. However, for certain types of correlation structure, for example stationary time series, asymptotic results have been found to be valid, as discussed in [1.3.8]. Approximate
variances of parameter estimators can thus be calculated by inverting the Hessian matrix, that is the matrix of second derivatives of the optimization function. The validity of this approximation for particular models will be discussed as they arise in later chapters.

\subsection*{2.3.6 Prediction of fit based on past observations}

With serially correlated data it is of interest, in assessing the goodness-of-fit of a model, not merely to know the predicted value of the \(i\) th observation, that is \(\hat{\mathbf{f}}_{\mathfrak{i}}\), but also the predicted value conditional on all the earlier observations, denoted \(\left(\hat{y}_{i} \mid y_{1}, \ldots, y_{i-1}\right)\). This provides an assessment of fit taking account of the error correlation structure. • From equations (2.2.3) and (2.3.1)
\[
\begin{array}{r}
y_{i}=f_{i}-\sum_{j=1}^{\min (p, i-1)} \Phi_{i, i-j} e_{i-j}+\sum_{k=0}^{\min (q, i-1)} \theta_{i, i-k} z_{i-k} \\
\text { for } i=1, \ldots, n .
\end{array}
\]

Conditional upon \(\left(y_{i}, \ldots, y_{i-1}\right),\left(e_{i}, \ldots, e_{i-1}\right)\) is predicted to be \(\left(\hat{e}_{i}, \ldots, \hat{e}_{i-1}\right)\) and \(\left(z_{i}, \ldots, z_{i-1}\right)\) is predicted to be \(\left(\hat{z}_{i}, \ldots, \hat{z}_{i-1}\right)\), where
\[
\underset{\sim}{e}=\underset{\sim}{y}-\underset{\sim}{\hat{f}}
\]
and
(2.3.5) \(\underset{\sim}{\underset{\sim}{\underset{\sim}{z}}} \underset{\sim}{i}=\underset{\sim}{\Phi} \underset{\sim}{e}\),
and because \(z_{i}\) is uncorrelated with observations before \(i\) its minimum variance unbiased linear predictor is zero. Therefore
\[
\begin{aligned}
\left(\hat{y}_{i} \mid y_{1}, \ldots, y_{i-1}\right)= & \hat{f}_{i}-\sum_{j=1}^{\min (p, i-1)} \Phi_{i, i-j} \hat{e}_{i-j} \\
& +\sum_{k=1}^{\min (q, i-1)} \theta_{i, i-k} \hat{z}_{i-k} \text { for } i=1, \ldots, n .
\end{aligned}
\]

Numerically, this can be derived quite simply by substituting from the ith row of equation (2.3.5) to give
\[
\begin{aligned}
\left(\hat{y}_{i} \mid y_{1} \cdots y_{i-1}\right) & =\hat{f}_{i}+\hat{e}_{i}-\theta_{i j} \hat{z}_{i} \\
& =y_{i}-e_{i j} \hat{z}_{i} \quad \text { for } \quad i=1, \ldots, n .
\end{aligned}
\]

Therefore, once a model has been fitted to data the predicted fit, taking account of correlation, can be evaluated straightforwardly.

\subsection*{2.3.7 Simulation}

Another useful feature of the GARMA property is that it makes it relatively easy to simulate \(\underset{\sim}{y}\) from the model
\[
\underset{\sim}{y} \sim N\left(\underset{\sim}{f}, \tau^{2} \underset{\sim}{V}\right) .
\]

A random variate \(\underset{\sim}{\boldsymbol{z}}\) is generated with
\[
\underset{\sim}{z} \sim N\left(\underset{\sim}{0}, \tau^{2} \underset{\sim}{I}\right),
\]
which is then transformed to \(\underset{\sim}{e}\) by
and
\[
\underset{\sim}{\Phi} \underset{\sim}{e}=\underset{\sim}{\theta} \underset{\sim}{z},
\]

This has the desired properties because
\[
\begin{aligned}
& E(\underset{\sim}{y})=\underset{\sim}{f}, \\
& \operatorname{var}(\underset{\sim}{y})=\tau^{2}{\underset{\sim}{\Phi}}^{-1} \underset{\sim}{\theta} \underset{\sim}{\underset{\sim}{\theta}}{ }^{\top}\left({\underset{\sim}{\Phi}}^{-1}\right)^{\top}=\tau^{2} \underset{\sim}{v},
\end{aligned}
\]
and linear transforms of normal variates are also normal.
2.4 Computer program REGAME

\subsection*{2.4.1 Programming philosophy}

The computer progran REGAME, Regression Estimation with
Generalized Autoregressive-Moving Average Errors, implements the methods described in sections 2.2 and 2.3. It is the program used
in chapters 4 to 8 to fit models to the data sets. The program is written in FortranIV with code as similar as possible to the preceding algebra. Some efficiency has been sacrificed in order to improve clarity in the program. For example, variables are transferred between routines in parameter lists wherever possible. An indicator variable can be set to generate the printing of all intermediate results in the program. The program has been designed so that the chances of total failure are minimized and warnings and failures are clearly signalled to the user. All variables are explicitly declared and the code is copiously annotated. The program has a modular structure both for simplicity and so that subroutines REGAMD and REGTRA can be used independently.

\subsection*{2.4.2 Program structure}

The user must supply different subroutines REGMOD and REGDER for each model to be fitted. REGMOD evaluates \(\underset{\sim}{f}\), and the first (\(p+q+1\)) elements on and below the diagonal of \(\underset{\sim}{V}\), when supplied with values for the model parameters. Details are given in [2.4.4]. REGDER evaluates \(\underset{\sim}{x}\) if the residual maximum likelihood optimization function is to be used. Details are given in [2.4.5]. In REGLIK the optimization function is evaluated using REGAMD to decompose \(\underset{\sim}{V}\) into lower-triangular band matrices \(\underset{\sim}{\Phi}\) and \(\underset{\sim}{\ominus}\) (see [2.4.9], and using REGTRA to transform vectors using \(\underset{\sim}{\Phi}\) and \(\underset{\sim}{\Theta}\), for example to obtain \(\underset{\sim}{z}\) (see [2.4.10]). A NAG library routine E04JBF (Numerical Algorithms Group, 1983), minimizes the optimization function (see [2.4.8]) and REGMON monitors and outputs the result of each iteration. At the
completion of the optimization, control returns to the main subroutine REGAME. REGVAR calculates variances of the parameter estimators by inverting the approximate Hessian matrix of the optimization function. A detailed output of results is produced by REGOUT to a secondary output channel NOUT10, optionally including line printer graphs printed by PLTLNG and PLTACR. Output suitable for input to another program, CEVOPE, which will be described in chapter 9, is produced by REGCVI to channels NOUT8 and NOUT9. Input and output channels are declared in a named common block /NINOUT/. Intermediate diagnostic output can be generated by MATPN1, MATPRO, MATPR1 and MATPR2. A flow chart is shown in figure 2.4.1. Three common blocks /REGCM1/, /REGCM2/ and /REGCM3/ pass parameters between REGAME and REGLIK which cannot be passed directly because EO4JBF is in between. /REGCM2/ is also shared with REGMON and REGVAR and /REGCM3/ with REGVAR. The program is listed in Appendix A, excluding the NAG routines and the general output routines /NINOUT/, MATPN1, MATPRO, MATPR1, MATPR2, PLTLNG and PLTACR.

A separate main subroutine REGGEN is available to generate pseudo-random normal deviates from the first and second moments supplied by REGMOD.

\subsection*{2.4.3 Input/Output to REGAME}

The user must write a computer program which calls subroutine REGAME. The variables to be transferred in the parameter list are specified below. Input parameters must be assigned values before the subroutine is called. On return to the calling program output parameters will have been assigned values by REGAME.

Figure 2.4.1

REGAME flow diagram (excluding general output routines)

Input
\(Y(N L) \quad\) vector of observations (\(\underset{\sim}{y}\)).
NL number of observations (\(n\)), 200>n>1.
ACCTOL accuracy to which parameters are to be estimated (explained in [2.4.8]), >0.

NCALMX maximum number of function evaluations to be allowed. NLIK choice of optimization criterion:

1 for \(L_{M}\),
2 for \(L_{R}\),
3 for \(L_{S}\).
NSCALE set to 1 if \(\tau^{2}\) is to be estimated, otherwise \(\tau^{2}\) set to 1.

NM number of regression parameters (\(m\)), \(5>m>0\).
NDER set to 1 if REGDER has been supplied, otherwise \(\underset{\sim}{x}\)
will be calculated by difference methods.
NVAR

NPARVR
on input this declares the first dimension of PARVAR,
NPARVR \(>\) NPAR + NSCALE.
NOUT
controls how detailed the output results are:
0 iterations, error messages and final estimates to NOUT6 (explained in [2.4.6]);

1 and to NOUT1O (explained in [2.4.7]);
2 and the fitted model to NOUT10;
3 and graphs of the fitted model to NOUT10;
4 and intermediate results from REGAME, REGVAR to NOUT6;

5 and intermediate results from REGLIK, REGAMD and REGTRA to NOUT6.

NCVI set to 1 if output required for input to CEVOPE. Input and output

PARAM(16) vector of model parameters ordered so that regression parameters (\(\underset{\sim}{\beta}\)) precede other parameters, initial estimates input and final estimates (plus \(\hat{\tau}^{2}\) if NSCALE=1) output.

NPAR number of model parameters input, on output this is increased by 1 if NSCALE \(=1\). On input \(15 \geqslant\) NPAR \(>1\).

SE(16) vector of approximate standard errors of parameter estimates, on input contains initial estimates of the standard errors (\(S E>0\)), except where a parameter is to.be held constant in which case \(S E=0\), on output contains final estimates of standard errors including the standard error of \(\hat{\tau}^{2}\) if NSCALE \(=1\).

Output
XLIK final value of optimization function.
\(Z(N L) \quad\) vector of residuals (\(\underset{\sim}{z})\).
PARVAR(NPARVR,NPARVR) matrix of approximate variances of parameter estimators with correlations below the diagonal.

IFAIL failure indicator:
0 optimization and estimation of variances of parameter estimators successful;

1 one of parameters input to REGAME or output by REGMOD or REGDER outside permitted range;

2 there is too much rounding error at the starting value of PARAM for EO4HBF to work;

3 the number of function evaluations has exceeded NCALMX;

4 not all the conditions for an optimum have been satisfied but no better point could be found;

5 the problem is ill-conditioned because, in a local search, no optimum could be found;

10 optimization successful but variances of parameter estimators derived from E04JBF approximation because of ill-conditioning in the matrix of second differences or because NVAR \(\neq 1\).

11-15 failure 1-5 above and variances of parameter estimators only an approximation.

\subsection*{2.4.4 Input/Output to REGMOD}

REGAME calls subroutine REGMOD with the parameter list specified below and input parameters assigned values. The user must write a subroutine REGMOD which assigns appropriate values to the output parameters.

Input
PARAM(NPAR) vector of model parameters.
NPAR number of parameters.
NLMAX the first dimension of VAR.
NL number of observations.
NFDIF set to 1 if only \(F\) is required.
Output
\(F(N L) \quad\) vector of fitted values (f).
\(\operatorname{VAR}(\) NLMAX,11) the first \((p+q+1)\) elements on and below the diagonal of \(\underset{\sim}{V}\), with \(V_{i, i-\ell}\) in \(\operatorname{VAR}(i, p+q+1-\ell)\) for \(i=1, \ldots, n, \ell=0, \ldots, \min (p+q, i-1)\).

NOUT an input to REGAME which controls level of output.

NPQA
NP
NQ
NTEQ

Control

IFAIL
set to \(N P+N Q+1\).
generalized autoregressive order (\(p\)) , \(5 \geqslant p \geqslant 0\). generalized moving average order (q), \(5 \geqslant q \geqslant 0\). set to 1 if \(\underset{\sim}{V}\) is such that all rows of \(\underset{\sim}{\Phi}\) after the first \((p+q)\) have the same elements before the diagonal (see [2.4.9]). If NOUT \(=0\) error messages should only be output to NOUT6. set to 1 on output if \(\underset{\sim}{f}\) or \(\underset{\sim}{V}\) cannot be evaluated with the parameters set to PARAM.

\subsection*{2.4.5 Input/Output to REGDER}

REGAME calls subroutine REGDER with the parameter list specified below and input parameters assigned values. The user must write a subroutine REGDER which assigns appropriate values to the output parameters.

Input
PARAM(NPAR) vector of model parameters.
NPAR number of parameters.
NLMAX the first dimension of DERIV.
NL number of observations.
NM number of regression parameters.

Output
OERIV(NLMAX,NM) matrix of first partial derivatives of \(F\) with respect to the first NM parameters in PARAM \((\underset{\sim}{x})\).

Control
NOUT an input to REGAME which controls level of output. If NOUT \(=0\) error messages should only be output to NOUT6.

IFAIL set to 1 on output if \(\underset{\sim}{x}\) cannot be evaluated with the parameters set to PARAM.

\subsection*{2.4.6 Output to channel NOUT6}

To channel NOUT6 is output a history of the optimization iterations together with a brief summary of the final results. For interactive work this would conventionally be a computer user terminal.

Initially a heading is output, followed at each iteration by:
(i) Number of iterations.
(ii) Number of function evaluations.
(iii) Value of the optimization function.
(iv) Convergence criteria: change in the optimization function from the last iteration, slope of the optimization function with respect to the parameters, change in the parameters from the last iteration.
(v) A measure of conditioning: the ratio of largest to smallest elements on the diagonal of a lower-triangular decomposition
of a matrix of approximations to the second derivatives of the optimization function.
(vi) The symbol ' \(C\) ' is printed if the change in the parameters has been constrained by the maximum size of step permitted.
(vii) Current estimates of the parameters.

After the iterations are completed a brief summary of the results is output:
(i) Value of IFAIL, the failure indicator.
(ii) Final value of the optimization function.
(iii) Final estimates of the parameters.
(iv) An estimate of the standard errors of the parameter estimators.
(v) Triangular array of correlations of parameter estimators.

\subsection*{2.4.7 Output to channel NOUT10}

To channel NOUT1O a much more comprehensive set of results can be output. This would normally be directed to a computer disc file or a fast printer such as a line printer.

If NOUT=0 then there is no output to channel NOUT10. If NOUT \(>1\) a heading is output together with settings for the input parameters:

NCALMX, NLIK, NSCALE, NM, NDER, ACCTOL, NVAR, NPEST, SE, where NPEST is the number of parameters being estimated, in other words the number of non-zero coefficients in SE. The results at each iteration and upon completion are output as described in [2.4.6], together with the vector of first partial derivatives of the optimization function with respect to the parameters and the variances of the parameter estimators (PARVAR) with correlations exceeding 0.9 in magnitude highlighted by the symbol **.

If NOUT>2, then in addition the following are also output:
\[
\mathrm{p}, \mathrm{q}, \underset{\sim}{y}, \underset{\sim}{f},(\underset{\sim}{\underset{y}{y}} \mid \text { past }), \underset{\sim}{\underset{z}{z}} / \hat{\tau}, \hat{\tau}^{2} \text { VAR },
\]
with elements \(\hat{z}_{i} / \hat{\tau}\) exceeding 2.5 in magnitude highlighted by the symbol **.

If NOUT \(>3\), then line printer graphs are produced of:
(i) \(y_{i}, \hat{f}_{i}\), and \(\left(\hat{y}_{i} \mid y_{1}, \ldots, y_{i-1}\right)\) plotted against \(i\), for i=1,....,n ;
(ii) \(y_{i}-\hat{f}_{i},\left(\hat{y}_{i} \mid y_{1}, \ldots, y_{i-1}\right)-\hat{f}_{i}\), and \(\hat{z}_{i} / \hat{\tau}\) plotted against \(i\), for \(i=1, \ldots, n\);
(iii) \(\hat{\mathbf{z}}_{i} / \hat{\tau}\) plotted against \(\hat{f}_{i}\), for \(i=1, \ldots, n\);
(iv) the columns of \(\hat{\tau}^{2}\) VAR plotted against \(i\), for \(i=1, \ldots, n\).

An example of output from REGAME is given in Appendix B, the background to which is described in section 4.3.

\subsection*{2.4.8 Optimization algorithm}

A derivative-free quasi-Newton algorithm (Gill and Murray, 1972), implemented in the NAG library as routine EO4JBF, is used to minimize the optimization function. A second routine, EO4HBF, selects appropriate step lengths for calculating first derivatives by difference methods. The parameters and optimization function are scaled to lie approximately between -1 and 1. To achieve this the parameters are transformed about their initial estimates and scaled by the initial estimates of the standard errors. Similarly the optimization function is transformed about its initial value less the number of parameters and scaled by the number of parameters. If the algorithm is successful then on output the scaled parameter estimates are within a prespecified distance ACCTOL of their minimizing values.

Approximate second derivatives of the optimization function, with \(\tau^{2}\) replaced by \(\hat{\tau}^{2}\), are output from the routine.

\subsection*{2.4.9 Algorithms in REGAMD}
a) \(\underset{\sim}{\Phi}\) is calculated by finding a solution, for \(i=q+2, \ldots, n\), of the simultaneous equations
\[
\begin{aligned}
& \sum_{j=1}^{\min (p, i-q-1)} \Phi_{i, i-j} V_{i-j, i-\ell}=-V_{i, i-\ell} \\
& \text { for } \ell=(q+1), \ldots, \min (i-1, p+q),
\end{aligned}
\]
using NAG routine FO4ATF if the equations are of full rank and FO4JGF otherwise. If the equations are of full rank, then the solution is unique and \(\underset{\sim}{\Phi}\) satisfies equation (2.2.2). If the equations are not of full rank, then \(\underset{\sim}{\Phi}\) may not satisfy equation (2.2.2); a warning is printed but the algorithm continues on the assumption that \(p\) has been overspecified. If NTEQ is set equal to 1 then, provided the equations are of full rank, they are only solved for \(i\) between \((q+1)\) and \((p+q+1)\), after which every row of \(\underset{\sim}{\Phi}\) has identical elements.
b) The elements up to \(q\) below the diagonal of \(\underset{\sim}{\Phi} \underset{\sim}{\underset{\sim}{\underset{\sim}{~}}}{ }^{\top}\) are calculated for \(i=1, \ldots, n\) by:
\[
\begin{array}{r}
\left(\underset{\sim}{\vee} \underset{\sim}{\Phi}{\underset{\sim}{T}}_{i, i-\ell}={\underset{k}{\min (p, i-\ell-1, q-\ell)}}_{(\underset{\sim}{\Phi} \underset{\sim}{V})_{i, i-\ell-k}}{ }_{i-\ell, i-\ell-k}\right. \\
\text { for } \ell=0, \ldots, \min (q, i-1),
\end{array}
\]
\[
\min (p, i-1)
\]
where
\[
(\underset{\sim}{\Phi} \underset{\sim}{V})_{i, i-\ell-k}=\sum_{j=0} \dot{\Phi}_{i, i-j} V_{i-j, i-\ell-k}
\]
\[
\text { for } \ell+k=0, \ldots, p+q .
\]
c) \(\underset{\sim}{\theta}\) is obtained from \((\underset{\sim}{\Phi} \underset{\sim}{V} \underset{\sim}{\Phi})\) by use of the NAG library routine FO3AGF. This performs the Cholesky triangular
decomposition of a real positive-definite symmetric band matrix (Wilkinson and Reinsch, 1971, pp50-56).

\subsection*{2.4.10 Algorithms in REGTRA}

Denote a real positive-definite lower-triangular matrix with band width \& by \(\underset{\sim}{\Gamma}\) (this represents either \(\underset{\sim}{\Phi}\) or \(\underset{\sim}{\theta}\)), then transformations of vectors by \(\underset{\sim}{\Gamma}\) can be derived as follows:
a) If \(\underset{\sim}{w}=\underset{\sim}{\Gamma} \underset{\sim}{v}\)
\[
w_{i}=\sum_{k=\max (\ell+1-i, 1)}^{\ell} \Gamma_{i, i-\ell+k^{v}}{ }_{i-\ell+k} \quad \text { for } i=1, \ldots, n .
\]
b) If \(\underset{\sim}{w}={\underset{\sim}{r}}^{\top} \underset{\sim}{v}\)
\[
w_{i}=\sum_{j=i}^{\min (i+2-1, n)} \Gamma_{j i} v_{j} \quad \text { for } i=1, \ldots, n .
\]
c) If \(\underset{\sim}{w}={\underset{\sim}{r}}^{-1} \underset{\sim}{v}\)
\[
\begin{array}{r}
w_{i}=\left(v_{i}-\sum_{k=\max (\ell+1-i, 1)}^{\ell-1} \Gamma_{i, i-\ell+k} w_{i-\ell+k}\right) / \Gamma_{i j} \\
\quad \text { for } i=1, \ldots, n .
\end{array}
\]
d) If \(\underset{\sim}{w}=(\underset{\sim}{r}-1)^{T} \underset{\sim}{v}\)
\[
w_{i}=\left(v_{i}-\sum_{j=i+1}^{\min (i+\ell-1, n)} r_{j i} w_{j}\right) / r_{i j} \quad \text { for } i=n, n-1, \ldots, 1
\]

\subsection*{3.1 Introduction}

This chapter serves the dual purposes of showing that a wide \(r\) ange of processes are either GARMA or cGARMA processes as defined in chapter 2, and specifying the general solutions of linear stochastic difference and differential equations with constant coefficients, special cases of which will be used in chapters 4 and 6. It is the second preparatory chapter prior to the use of specific models to fit real data in chapters 4 to 8.

The basic building blocks of many mathematical models of processes which evolve in time are difference equations or, their continuous analogues, differential equations. Among them the most mathematically tractable are those which are linear with constant coefficients. The general solutions of these types of equations are well understood. In the case of difference equations Br and (1966, pp373-412), for example, gave a general derivation of the solution when the input is deterministic. This extends in a straightforward manner to stochastic, that is random, input (see for example, Bartlett, 1978, pp162-165). Br and (1966, pp127-160) also gave a derivation of the general solution of deterministic differential equations. The extension to stochastic input is more difficult in this case, requiring the development of a stochastic calculus (see for example, Hoel, Port and Stone, 1972, pp111-170), although the apparent similarity with the deterministic solution is retained.

The general solutions of linear difference and differential equation are stated in sections 3.2 and 3.3 respectively. They are demonstrated to be solutions of the equations that satisfy the initial conditions, although the technicalities of stochastic calculus are not entered into. When the input process is a GARMA or a cGARMA process the output process is also shown to be a GARMA or a cGARMA process. The output could be used as the input to another linear equation for which the output would once again be a GARMA or cGARMA process. Thus, there is a wide range of models available to fit real data which are all GARMA or cGARMA processes. The similarities between sections 3.2 and 3.3 serve to emphasise the close connection between difference and differential equations.

Special cases of the models in this chapter are considered in later chapters: in chapter 4 stationary solutions alone are considered (a common restriction in the time series literature), whilst in chapter 6 first-order and second-order equations are used.

\subsection*{3.2 Difference equations}

\subsection*{3.2.1 Model}

A random vector \(\underset{\sim}{Y}\) representing a finite or infinite sequence of variates \(Y_{0}, Y_{1}, \ldots\), is defined to have been generated by the pth order linear stochastic difference equation
\[
\begin{equation*}
Y_{t}=\sum_{i=1}^{p} \phi_{i} Y_{t-i}+Z_{t} \quad \text { for } t \geqslant p \tag{3.2.1}
\end{equation*}
\]
where \(\phi_{1}, \ldots, \phi_{p}\) are constants, \(\underset{\sim}{z}\) is a random vector representing a finite or infinite sequence of variates \(Z_{0}, Z_{1}, \ldots\), with known distribution, and \(\left(Y_{0}, \ldots, Y_{p-1}\right)\) also have a known distribution and are independent of \(\underset{\sim}{z}\). The starting point has been taken to be \(t=0\), but this does not incur any loss of generality because \(t\) could be redefined to be \(t-t_{0}\) in order to initiate the process at \(t_{0}\).

\subsection*{3.2.2 Solution}

The general solution of equation (3.2.1) is
\[
\begin{equation*}
Y_{t}=\sum_{i=1}^{p} Y_{i-1} \sum_{j=1}^{p} k_{i j} e^{t \lambda}+\sum_{k=p}^{t} Z_{k} \sum_{\ell=1}^{p} K_{p \ell} e^{(t+p-1-k) \lambda_{\ell}} \tag{3.2.2}
\end{equation*}
\]
\[
\text { for } t \geqslant 0 \text {, }
\]
where \(\lambda_{1}, \ldots, \lambda_{p}\) denote the elements in the \(p\)-vector \(\underset{\sim}{\lambda}\), \(e^{\lambda_{1}}, \ldots, e^{\lambda_{p}}\) are the roots of the pth order polynomial
\[
x^{p}-\phi_{1} x^{p-1} \ldots-\phi_{p}=0
\]
which are assumed to all be distinct, \(\underset{\sim}{K}\) is a square matrix of size \(p\) defined to be the solution of the \(p^{2}\) linear equations
\[
\sum_{j=1}^{p} k_{i j} e^{t \lambda}=I_{i, t+1} \quad \text { for } \quad i=1, \ldots, p, t=0, \ldots, p-1
\]
and \(\underset{\sim}{I}\) is the identity matrix of size \(p\). The generality of this solution when \(\underset{\sim}{z}\) is deterministic has been proved by Brand (1966, pp373-412), who also gave the solution when the polynomial equation has some roots equal. This complication is more of theoretical than of practical concern because it is highly unlikely that roots will be estimated as being equal when real data are being modelled. Below I will confine myself to demonstrating that equation (3.2.2) is self-consistent for \(t=0, \ldots,(p-1)\) and is a solution of equation (3.2.1) when \(t \geqslant p\).

First of all, when \(t<p\) the second term on the right side of equation (3.2.2) is zero because the upper limit in the \(k\)-summation is less than the lower limit, therefore
\[
\begin{aligned}
Y_{t} & =\sum_{i=1}^{p} Y_{i-1} \sum_{j=1}^{p} K_{i j} e^{t \lambda} \lambda_{j} \quad \text { for } t=0, \ldots, p-1, \\
& =\sum_{i=1}^{p} Y_{i-1} I_{i, t+1}=Y_{t},
\end{aligned}
\]
from the definition of \(\underset{\sim}{K}\).
Therefore equation (3.2.2) makes sense when \(t=0, \ldots,(p-1)\).
Define \(\phi_{0}\) to be -1 to simplify the notation then, from equation (3.2.2), for \(t>p\) we get
\[
\begin{aligned}
-\sum_{g=0}^{p} \phi_{g} Y_{t-g}= & -\sum_{g=0}^{p} \phi_{g} \sum_{i=1}^{p} Y_{i-1} \sum_{j=1}^{p} K_{i j} e^{(t-g) \lambda_{j}} \\
& -\sum_{g=0}^{p} \phi_{g} \sum_{k=p}^{t-g} Z_{k} \sum_{\ell=1}^{p} K_{p \ell} e^{(t-g+p-1-k) \lambda_{\ell}}, \\
= & -\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i-1} K_{i j} e^{(t-p) \lambda_{j}}\left\{\sum_{g=0}^{p} \phi_{g} e^{(p-g) \lambda_{j}}\right\} \\
& -\sum_{k=p}^{t-p} \sum_{\ell=1}^{p} Z_{k} K_{p \ell} e^{(t-1-k) \lambda_{\ell}}\left\{\sum_{i=0}^{p} \phi_{g} e^{(p-g) \lambda_{\ell}}\right\} \\
& -\sum_{k=t-p+1}^{t} Z_{k} \sum_{g=0}^{t-k} \phi_{g} \sum_{\ell=1}^{p} K_{p \ell} e^{(t+p-1-g-k) \lambda_{\ell}},
\end{aligned}
\]
by dividing the second term into two at \(k=t-p\) and reordering the expressions. The first two terms are zero by the definition of \(\underset{\sim}{\lambda}\) because the terms in curly brackets are no more than a re-expression of the polynomial of which \(e^{\lambda_{1}}, \ldots, e^{\lambda_{p}}\) are the roots. An extra term can be added on:
\[
-\sum_{k=t-p+1}^{t-1} z_{k} \sum_{g=t-k+1}^{p} \phi_{g} \sum_{\ell=1}^{p} k_{p \ell} e^{(t+p-1-g-k) \lambda_{\ell}}
\]
which is zero by the definition of \(K_{p \ell}\) because \(p-2 \geqslant t+p-1-g-k \geqslant 0\). The result is that
\[
\begin{aligned}
-\sum_{g=0}^{p} \phi_{g} Y_{t-g} & =-\sum_{k=t-p+1}^{t-1} Z_{k} \sum_{\ell=1}^{p} K_{p \ell} e^{(t-1-k) \lambda_{\ell}}\left\{\sum_{g=0}^{p} \phi_{g} e^{(p-g) \lambda_{\ell}}\right\} \\
& -Z_{t} \phi_{0} \sum_{\ell=1}^{p} K_{p \ell} e^{(p-1) \lambda_{\ell}} \\
= & Z_{t}
\end{aligned}
\]
because the first term is zero by the definition of \(\underset{\sim}{\lambda}\) as above and the second term simplifies by the definition of \(\underset{\sim}{K}\). What remains is a restatement of equation (3.2.1) for \(t \geqslant p\) and thus equation (3.2.2) has been demonstrated to be a solution.

\subsection*{3.2.3 Relation to GARMA property}

In this sub-section it will be proved that if the input vector of equation \((3.2 .1), \underset{\sim}{Z}\), is a \(\operatorname{GARMA}(a, b)\) process then the output vector, \(\underset{\sim}{Y}\), is a \(\operatorname{GARMA}(p+a, p+b-1)\) process. From equation (3.2.2)
(3.2.3) \(\operatorname{cov}\left(Y_{S}, Y_{t}\right)=\sum_{i=1}^{p} \sum_{j=1}^{p} \operatorname{cov}\left(Y_{i-1}, Y_{j-1}\right) \sum_{k=1}^{p} \sum_{\ell=1}^{p} K_{i k} K_{j \ell} e^{s \lambda_{k}} e^{t \lambda_{\ell}}\)
\[
+\sum_{i=p}^{s} \sum_{j=p}^{t} \operatorname{cov}\left(Z_{i}, Z_{j}\right) \sum_{k=1}^{p} \sum_{\ell=1}^{p} K_{p k} K_{p \ell} e^{(s+p-1-i) \lambda_{k}} e^{(t+p-1-j) \lambda_{\ell}}
\]

If \(\underset{\sim}{z}\) is a \(\operatorname{GARMA}(a, b)\) process then
(3.2.4) \(\operatorname{cov}\left(Z_{i}, Z_{j}\right)=\sum_{g=1}^{a} \zeta_{i}^{\{g\}} \eta_{j}^{\{g\}}\)
when \(i>j+b-a+1\)
for appropriately chosen vectors \({\underset{\sim}{\zeta}}^{\{g\}}\) and \(\underset{\sim}{\eta}{ }^{\{g\}}\) of possibly
infinite length for \(g=1, \ldots, a\). Therefore, restricting attention to the case when \(s>t+b-a\) we have
\[
\sum_{i=p}^{s} \sum_{j=p}^{t} \operatorname{cov}\left(Z_{i}, z_{j}\right) e^{-i \lambda_{k}} e^{-j \lambda_{\ell}}
\]
\[
=\sum_{i=p}^{t+b-a} \sum_{j=p}^{t} \operatorname{cov}\left(z_{i}, z_{j}\right) e^{-i \lambda_{k}} e^{-j \lambda_{\ell}}
\]
\[
\begin{aligned}
& +\sum_{i=t+b-a+1}^{s} \sum_{j=p}^{t} \sum_{g=1}^{a} \zeta_{i}^{\{g\}} \eta_{j}^{\{g\}} e^{-i \lambda_{k}} e^{-j \lambda_{\ell}}, \\
& =\sum_{i=p}^{t+b-a} \sum_{j=p}^{t}\left[\operatorname{cov}\left(z_{i}, z_{j}\right)-\sum_{g=1}^{a} \zeta_{i}^{\{g\}} \eta_{j}^{\{g\}}\right] e^{-i \lambda_{k}} e^{-j \lambda_{\ell}}
\end{aligned}
\]
\[
+\sum_{g=1}^{a}\left\{\sum_{i=p}^{s} \zeta_{i}^{\{g\}} e^{-i \lambda_{k}}\right\}\left\{\sum_{j=p}^{t} n_{j}^{\{g\}} e^{-j \lambda} \ell\right\}
\]
by substituting from equation (3.2.4) and reordering the expressions. Substituting for this in equation (3.2.3) when \(s>t+b-a\) and reordering gives

This is the sum of \((p+a)\) products of a term dependent only on \(s\) and a term dependent only on \(t\) provided \(s>t+(p+b-1)-(p+a)+1\), therefore \(\underset{\sim}{Y}\) is a \(\operatorname{GARMA}(p+a, p+b-1)\) process.
\[
\begin{aligned}
& \operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{k=1}^{p}\left\{e^{s \lambda_{k}}\right\}\left\{\sum_{i=1}^{p} \sum_{j=1}^{p} \operatorname{cov}\left(Y_{i-1}, Y_{j-1}\right) \sum_{\ell=1}^{p} K_{i k} K_{j \ell} e^{t \lambda} \ell\right\} \\
& +\sum_{k=1}^{p}\left\{e^{s \lambda_{k}}\right\} \sum_{i=p}^{t+b-a} \sum_{j=p}^{t}\left[\operatorname{cov}\left(z_{i}, z_{j}\right)\right. \\
& \left.\left.-\sum_{g=1}^{a} \zeta_{i}^{\{g\}} \eta_{j}^{\{g\}}\right] \sum_{\ell=1}^{p} K_{p k} K_{p \ell} e^{(p-1-i) \lambda_{k}} e^{(t+p-1-j) \lambda_{\ell}}\right\} \\
& +\sum_{g=1}^{a}\left\{\sum_{i=p}^{s} \sum_{k=1}^{p} \zeta_{i}^{\{g\}_{j}} K_{p k} e^{(s+p-1-i) \lambda_{k}}\right\}\left\{\sum_{j=p}^{t} \sum_{\ell=1}^{p} \eta_{j}^{\left.\{g\}_{K_{p \ell}} e^{(t+p-1-j) \lambda_{\ell}}\right\} . . . ~ . ~ . ~}\right.
\end{aligned}
\]

The orders in the GARMA specification above are not
necessarily the smallest possible. In particular, if \(a=0\) and \(s>t+b+1\), then \(\operatorname{cov}\left(Z_{s}, Z_{t}\right)=0\) and, because \(\gamma_{t}\) depends only on \(Z_{u}\) for \(u \leqslant t, \operatorname{cov}\left(Z_{s}, Y_{t}\right)=0\). It follows from equation (3.2.1) that
\[
\operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{i=1}^{p} \phi_{i} \operatorname{cov}\left(Y_{s-i}, Y_{t}\right) \quad \text { when } s>t+b+1
\]

Therefore there exist \({\underset{\sim}{c}}^{\{g\}}\) and \(\underset{\sim}{\eta}{ }^{\{g\}}\) for \(g=1, \ldots, p\) such that
\[
\operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{g=1}^{p} \zeta_{s}^{\{g\}} n_{t}^{\{g\}} \quad \text { for } s>t+b-p+1
\]
and \(\underset{\sim}{Y}\) is a \(\operatorname{GARMA}(p, b)\) process. One particular example of this is that when \(\underset{\sim}{Z}\) is a stationary moving average process of order \(q\) the stationary solution of equation (3.2.1), if one exists, is not only a \(\operatorname{GARMA}(p, q)\) process but also an \(\operatorname{ARMA}(p, q)\) process.
3.3 Differential equations

\subsection*{3.3.1 Model}

A random variate \(Y(t)\), indexed by \(t\) over a continuous finite or infinite interval, is defined to have been generated by the linear stochastic differential equation
\[
\begin{array}{r}
Y^{\langle p\rangle}(t)-\sum_{i=1}^{p} \xi_{i} Y^{\langle p-i\rangle}(t)=z^{\langle q\rangle}(t)-\sum_{j=1}^{q} \psi_{j} z^{\langle q-j\rangle}(t) \tag{3.3.1}\\
\text { for } t>0,
\end{array}
\]
where the terms in angular brackets denote the order of derivative with respect to \(t, \xi_{1}, \ldots, \xi_{p}, \psi_{1}, \ldots, \psi_{q}\) are constants, \(Z(t)\) is a random variate with known distribution over a continuous
interval, \(\left(Y^{\langle 0\rangle}(0), \ldots, \gamma^{\langle p\rangle}(0)\right)\) also have a known distribution, and \(q<p-1\). If \(Z(t)\) is not stochastically differentiable \(q\) times with respect to \(t\), as will often be the case for a random variate, then equation (3.3.1) makes no formal sense. This can be rectified by "integrating" both sides of the equation \(q\) times with respect to \(t\) (see Hoel, Port and Stone (1972, pp.162) for a specific example). The restriction to \(q\) being less than \(p\) is not necessary for equation (3.3.1) to define a valid process, but it is necessary for a general solution which does not include derivatives of \(Z(t)\). The starting point has been taken to be \(t=0\), but this does not incur any loss of generality because \(t\) could be redefined to be \(t-t_{0}\) in order to initiate the process at \(t_{0}\).

\subsection*{3.3.2 Solution}

The general solution of equation (3.3.1) is
\[
\begin{equation*}
Y(t)=\sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} K_{i j} e^{t \lambda_{j}}+\int_{0}^{t} Z(u) \sum_{k=1}^{p} K_{k} e^{(t-u) \lambda_{k}} d u \tag{3.3.2}
\end{equation*}
\]
provided the integral exists, where
\[
\begin{aligned}
& A^{\{i-1\}}=Y^{\langle i-1\rangle}(0)-\sum_{h=0}^{i-2} z^{\langle h\rangle}(0) \sum_{k=1}^{p} k_{k} \lambda_{k}^{i-2-h} \\
& \text { for } i=1, \ldots, p,
\end{aligned}
\]
\(\lambda_{1}, \ldots, \lambda_{p}\) denote the elements in the p-vector \(\underset{\sim}{\lambda}\) and are the roots of the pth order polynomial
\[
x^{p}-\xi_{1} x^{p-1} \ldots-\xi_{p}=0
\]
which are assumed to all be distinct, \(\underset{\sim}{K}\) is a square matrix of size \(p\) defined to be the solution of the \(p^{2}\) linear equations
\[
\sum_{j=1}^{p} K_{i j} \lambda_{j}^{t}=I_{i, t+1}
\]
for \(i=1, \ldots, p, t=0, \ldots, p-1\),
\(\underset{\sim}{k}\) is a vector of length \(p\) defined to be the solution of the \(p\) linear equations
\[
\sum_{i=0}^{p-j} \xi_{i} \sum_{k=1}^{p} k_{k} \lambda_{k}^{p-i-j}=\psi_{q+1-j} \quad \text { for } \quad j=1, \ldots, p \text {, }
\]
\(\underset{\sim}{I}\) is the identity matrix of size \(p, \xi_{0}\) and \(\psi_{0}\) are defined to be -1 and \(\psi_{\ell}=0\) if \(\ell<0\). The same terms \(\underset{\sim}{\lambda}\) and \(\underset{\sim}{K}\) have been used as in section 3.2 to emphasise the similarity between difference and differential equations, although they are defined differently. The generality of the solution when \(Z(t)\) is
deterministic has been proved by Br and (1966, pp 127-160). Below I will once again confine myself to demonstrating that equation (3.3.2) is self-consistent in its first (\(p-1\)) derivatives when \(t=0\) and is a solution of equation (3.3.1) for \(t \geqslant 0\).

From equation (3.3.2), by applying standard techniques of differentiation
\[
\begin{aligned}
Y^{\langle 1\rangle}(t) & =\sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} K_{i j} \lambda_{j} e^{t \lambda_{j}} \\
& +Z(t) \sum_{k=1}^{p} k_{k}+\int_{0}^{t} Z(u) \sum_{k=1}^{p} k_{k} \lambda_{k} e^{(t-u) \lambda_{k}} d u,
\end{aligned}
\]
and
\[
\begin{aligned}
Y^{\langle 2\rangle}(t) & =\sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} K_{i j} \lambda_{j}^{2} e^{t \lambda_{j}} \\
& +Z^{\langle 1\rangle}(t) \sum_{k=1}^{p} k_{k}+Z(t) \sum_{k=1}^{p} k_{k} \lambda_{k}+\int_{0}^{t} z(u) \sum_{k=1}^{p} k_{k} \lambda_{k}^{2} e^{(t-u) \lambda_{k}} d u .
\end{aligned}
\]

By repeated differentiation
\[
\begin{aligned}
& Y^{\langle g\rangle}(t)=\sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} k_{i j} \lambda_{j}^{g} e^{t \lambda} j \\
& \quad+\sum_{h=0}^{g-1} z^{\langle h\rangle}(t) \sum_{k=1}^{p} k_{k} \lambda_{k}^{g-1-h}+\int_{0}^{t} z(u) \sum_{k=1}^{p} k_{k} \lambda_{k}^{g} e^{(t-u) \lambda_{k}} d u \\
& \quad \text { for } g=0, \ldots, p .
\end{aligned}
\]

To check the solution when \(t=0\) for \(g=0, \ldots, p-1\)
\[
Y^{\langle g\rangle}(0)=\sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} K_{i j} \lambda_{j}^{g}+\sum_{h=0}^{g-1} z^{\langle h\rangle}(0) \sum_{k=1}^{p} K_{k} \lambda_{k}^{g-1-h} .
\]

The first term is equal to \(A^{\{g\}}\) by the definition of \(\underset{\sim}{k}\).
Therefore
\[
Y^{\langle g\rangle}(0)=Y^{\langle g\rangle}(0)
\]
from the definition of \(A^{\{g\}}\), and the first (\(p-1\)) derivatives of equation (3.3.2) make sense when \(t=0\).
\[
\text { For } t \geqslant 0
\]
\[
\begin{aligned}
& -\sum_{g=0}^{p} \xi_{g} \gamma^{\langle p-g\rangle}(t)=-\sum_{g=0}^{p} \xi_{g} \sum_{i=1}^{p} A^{\{i-1\}} \sum_{j=1}^{p} K_{i j} \lambda_{j}^{p-g} e^{t \lambda_{j}} \\
& -\sum_{g=0}^{p} \xi_{g} \sum_{h=0}^{p-g-1} z^{\langle h\rangle}(t) \sum_{k=1}^{p} k_{k} \lambda_{k}^{p-g-1-h} \\
& -\sum_{g=0}^{p} \xi_{g} \int_{0}^{t} Z(u) \sum_{k=1}^{p} k_{k} \lambda_{k}^{p-g} e^{(t-u) \lambda_{k}} d u \text {, } \\
& =-\sum_{i=1}^{p} \sum_{j=1}^{p} A^{\{i-1\}} K_{i j} e^{t \lambda} j\left\{\sum_{g=0}^{p} \xi_{g} \lambda_{j}^{p-g}\right\} \\
& -\sum_{h=0}^{p-1} z^{\langle h\rangle}(t) \sum_{g=0}^{p-(h+1)} \xi_{g} \sum_{k=1}^{p} \kappa_{k} \lambda_{k}^{p-g-(h+1)} \\
& -\int_{0}^{t} Z(u) \sum_{k=1}^{p} k_{k} e^{(t-u) \lambda_{k}}\left\{\sum_{g=0}^{p} \xi_{g} \lambda_{k}^{p-g}\right\} d u,
\end{aligned}
\]
by reordering the expressions. The first and third terms are zero by the definition of \(\underset{\sim}{\lambda}\), because the terms in curly brackets are no more than a re-expression of the polynomial of which \(\lambda_{1}, \ldots, \lambda_{p}\) are the roots, and the second term, from the definition of \(\underset{\sim}{k}\), is
\[
-\sum_{h=0}^{p-1} z^{\langle h\rangle}(t) \psi_{q-h}
\]

What remains is a restatement of equation (3.3.1) for \(t \geqslant 0\) and thus equation (3.3.2) has been demonstrated to be a solution.

\subsection*{3.3.3 Relation to cGARMA property}

In this sub-section it will be proved that if the input variate, \(Z(t)\), is a \(\operatorname{cGARMA}(a, \delta)\) process then the output variate, \(Y(t)\), is a \(\operatorname{CGARMA}(p+a, \delta)\) process, provided that \(Z(t)\) for \(t \geqslant 0\) is distributed independently of \(A^{\{0\}}, \ldots, A^{\{p-1\}}\). This last restriction is rather arbitrary because, as \(A^{\{0\}}, \ldots, A^{\{p-1\}}\) are defined in terms of the derivatives of \(Y(t)\) and \(Z(t)\) at \(t=0\), it is necessary for these derivatives to be correlated in order to ensure the independence condition. However, without the restriction the covariances of the derivatives of \(Z(t)\) would be required to be known, not just the covariances of the process itself.

From equation (3.3.2), provided that \(Z(t)\) for \(t \geqslant 0\) is independent of \(A^{\{0\}}, \ldots, A^{\{p-1\}}\),
(3.3.3) \(\operatorname{cov}(Y(s), Y(t))=\)
\[
\begin{aligned}
& \sum_{i=1}^{p} \sum_{j=1}^{p} \operatorname{cov}\left(A^{\{i-1\}}, A^{\{j-1\}}\right) \sum_{k=1}^{p} \sum_{\ell=1}^{p} K_{i k} K_{j \ell} e^{s \lambda_{k}} e^{t \lambda_{\ell}} \\
& +\int_{0}^{s} \int_{0}^{t} \operatorname{cov}(Z(u), Z(v)) \sum_{k=1}^{p} \sum_{\ell=1}^{p} k_{k} k_{\ell} e^{(s-u) \lambda_{k}} e^{(t-v) \lambda_{\ell}} d v d u .
\end{aligned}
\]

If \(Z(t)\) is a \(\operatorname{cGARMA}(a, \delta)\) process, then
(3.3.4) \(\operatorname{cov}(Z(u), Z(v))=\sum_{g=1}^{a} \zeta^{\{g\}}(u) \eta^{\{g\}}(v) \quad\) for \(u \geqslant v+\delta\), for appropriately chosen functions \(\zeta^{\{g\}}(t)\) and \(n^{\{g\}}(t)\) specified over a continuous interval for \(g=1, \ldots, p\). Therefore, restricting to the case when \(s \geqslant t+\delta\),
\[
\begin{aligned}
& \int_{0}^{s} \int_{0}^{t} \operatorname{cov}(Z(u), Z(v)) e^{-u \lambda_{k}} e^{-v \lambda} \ell d v d u \\
& \quad=\int_{0}^{t+\delta} \int_{0}^{t} \operatorname{cov}(Z(u), Z(v)) e^{-u \lambda_{k}} e^{-v \lambda} \ell d v d u \\
& \quad+\int_{t+\delta}^{s} \int_{0}^{t} \sum_{g=1}^{a} \zeta^{\{g\}}(u) n^{\{g\}}(v) e^{-u \lambda_{k}} e^{-v \lambda} \ell d v d u, \\
& =\int_{0}^{t+\delta} \int_{0}^{t}\left[\operatorname{cov}(Z(u), Z(v))-\sum_{g=1}^{a} \zeta^{\{g\}}(u) \eta^{\{g\}}(v)\right] e^{-u \lambda_{k}} e^{-v \lambda} \ell d v d u \\
& \quad+\sum_{g=1}^{a}\left\{\int_{0}^{s} \zeta^{\{g\}}(u) e^{-u \lambda_{k}} d u\right\}\left\{\int_{0}^{t} n^{\{g\}}(v) e^{-v \lambda} \ell d v\right\},
\end{aligned}
\]
by substituting from equation (3.3.4) and reordering the expressions. Substituting this in equation (3.3.3) when \(s \geqslant t+\delta\) and reordering gives
\[
\begin{aligned}
& \operatorname{cov}(Y(s), Y(t))=\sum_{k=1}^{p}\left\{e^{s \lambda} k\right\} \sum_{i=1}^{p} \sum_{j=1}^{p} \operatorname{cov}\left(A^{\{i-1\}}, A^{\{j-1\}}\right) \\
& \sum_{\ell=1}^{p} K_{i k} K_{j \ell} e^{t_{\lambda}} \ell \\
& +\sum_{k=1}^{p}\left\{e^{s \lambda} k\right]\left\{\int_{0}^{t+\delta} \int_{0}^{t}\left[\operatorname{cov}(Z(u), Z(v))-\sum_{g=1}^{a} \zeta^{\{g\}}(u) n^{\{g\}}(v)\right]\right. \\
& \left.\sum_{\ell=1}^{p} k_{k} \kappa_{\ell} e^{-u \lambda_{k}} e^{-(t-v) \lambda_{\ell}} d v d u\right\} \\
& +\sum_{g=1}^{a}\left\{\int_{0}^{s} \zeta^{\{g\}}(u) \sum_{k=1}^{p} k_{k} e^{(s-u) \lambda_{k}} d u\right\}\left\{\int_{0}^{t} \eta^{\{g\}}(v) \sum_{\ell=1}^{p} \kappa_{\ell} e^{(t-v) \lambda_{\ell}} d v\right\} .
\end{aligned}
\]

This is the sum of \((p+a)\) products of a term dependent only on \(s\) and a term dependent only on \(t\) provided that \(s \geqslant t+\delta\), therefore \(Y(t)\) is a cGARMA \((p+a, \delta)\) process.

\subsection*{4.1 Introduction}

If the departures of serially ordered observations from a fitted regression function are noticeably serially correlated, then either the regression function is inappropriate or the errors are not independent. In the latter case it is necessary to know the error covariances in order to estimate the regression parameters efficiently and obtain unbiased estimates of the variances of the parameter estimators. Except in exceptional circumstances where the mechanism causing the correlations is understood (see chapters 6, 7 and 8), these covariances will not be known and the data themselves must be used to identify an appropriate model. However, the range of potential models is too great to be considered unless some gross assumptions are made about the forms the correlations can take. A common choice in time series analysis and one that will be made in this and the following chapter, is that the error process is stationary. In this case the autocorrelation function fully describes the second-order properties of the errors.

In section 4.2 a particular class of models is presented in which the autocorrelations decay as a sum of exponentials after a certain time lag. Different ways of parameterizing this type of model are considered, including stationary solutions of the difference and differential equations in chapter 3. Model order identification is discussed for the special case of equally-spaced observations. In succeeding sections three data sets are used as
case studies of this approach to estimating regression parameters when errors are serially correlated. Maximum likelinood estimators and residual maximum likelinood estimators are compared. Finally, in section 4.6 the usefulness of the method is critically assessed.

The basic idea in this chapter, of identifying a stationary time series model from least-squares residuals and using it to re-estimate regression parameters, is not new, see [1.3.4]. The novelty lies in the choice of parametric model for the autocorrelation structure, the use of residual maximum likelihood estimators, and the application to particular data sets.
4.2 Theory

\subsection*{4.2.1 Model}

The situation envisaged is where a sequence of observations
\(y_{1}, \ldots, y_{n}\) (denoted \(\underset{\sim}{y}\)) have been made at times \(t_{1}, \ldots, t_{n}\) (denoted \(\underset{\sim}{t}\)) on a single experimental subject. It is assumed that the vector \(\underset{\sim}{y}\) is a realisation from a multivariate normai distribution with mean \(\underset{\sim}{f}\) and variance \(\tau^{2} \underset{\sim}{V}\), where
\[
\left({\underset{\sim}{W}}^{-1} \underset{\sim}{v}{\underset{\sim}{W}}^{-1}\right)_{i j}=\rho\left(\left|t_{i}-t_{j}\right|\right) \quad \text { for } \quad i, j=1, \ldots, n,
\]
\(\underset{\sim}{W}\) is a diagonal matrix of weights used to standardize the variances of the errors and
\[
\rho(u)=\sum_{\ell=1}^{p} k_{\ell} e^{u \lambda} \ell \quad \text { for } \quad u \geqslant \delta
\]

Therefore the autocorrelation function, \(\rho(u)\), decays as the sum of \(p\) exponentials after a time lag of \(\delta\), with rates \(\lambda_{1}, \ldots, \lambda_{p}\)
(denoted \(\underset{\sim}{\lambda}\)) given weights \(\kappa_{1}, \ldots, \kappa_{p}\) (denoted \(\underset{\sim}{\kappa}\)). At present, \(\rho(u)\) will remain unspecified when \(u<\delta\). One model order, \(p\), must be a non-negative integer, but the other model order, \(\delta\), is unconstrained. However, if \(\delta\) is negative then \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\) must be constrained to ensure that \(\rho\) remains symmetric about zero. It is immediately apparent that the definition in [2.2.1] is satisfied and \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(p, q)\) process with \(q\) dependent on the spacing of observation times as described in [2.2.7]. In particular, if \(t_{i}=i\) for \(i=1, \ldots, n\), then \(q=p+\delta-1\).

The parameters \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\) are constrained because \(\underset{\sim}{V}\) is real, thus coefficients of \(\underset{\sim}{k}\) (and of \(\underset{\sim}{\lambda}\)) are either real or occur in complex-conjugate pairs. Also, \(\underset{\sim}{V}\) must be positive-definite and this places a more complicated set of constraints on \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\). It is convenient to reparameterize \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\) in order to incorporate both these types of constraints. Alternative parameterizations also permit the addition of further constraints that may be deemed desirable. Four different choices will be considered in the following three subsections.

\subsection*{4.2.2 Parameterization by stationary solutions of stochastic difference equations}

The parameterization by stationary difference equations is suitable only when the times between observations are equal or are all integer multiples of some basic time interval which can be taken to be unity without any loss of generality. The weightcorrected departures \((\underset{\sim}{a}=\underset{\sim}{\underset{\sim}{W}} \underset{\sim}{-1}(\underset{\sim}{y}-f))\) are assumed to be the realisation at times \(\underset{\sim}{t}\) of the discrete random vector \(\underset{\sim}{Y}\) indexed by all integer times between \(t_{1}\) and \(t_{n}\), where \(\underset{\sim}{Y}\) is generated
by the linear difference equation (3.2.1) with \(\underset{\sim}{z}\) a (\(q+1\))-term moving average process of white noise denoted \(\underset{\sim}{\underset{\sim}{Z}} \underset{ }{\{w\}}\). Therefore, (4.2.1) \(\quad Y_{t}=\sum_{i=1}^{p} \phi_{i} Y_{t-i}-\sum_{j=0}^{q} \theta_{j} Z_{t-j}^{\{w\}}\),
where \(\underset{\sim}{\phi}\) is the same vector of parameters as in equation (3.2.1) and \(\underset{\sim}{\theta}\) is the vector of weights in the moving average process. This has been called an autogregressive-moving average process in the statistical literature.

It is possible to derive the autocorrelation coefficients of the stationary solution of equation (4.2.1) directly from equation (3.2.3) but is much simpler to use the method described by Box and Jenkins (1976, pp.74-75). From equation (4.2.1.)
(4.2.2) \(\operatorname{cov}\left(Y_{s}, Z_{t}^{\{w\}}\right)=\sum_{i=1}^{p} \phi_{i} \operatorname{cov}\left(Y_{s-i}, Z_{t}^{\{w\}}\right)-\sum_{j=0}^{q} \theta_{j} \operatorname{cov}\left(Z_{s-j}^{\{w\}}, Z_{t}^{\{w\}}\right)\) and
(4.2.3) \(\operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{i=1}^{p} \phi_{i} \operatorname{cov}\left(Y_{s-i}, Y_{t}\right)-\sum_{j=0}^{q} \theta_{j} \operatorname{cov}\left(Z_{s-j}^{\{W\}}, Y_{t}\right)\).

Because \(\underset{\sim}{Y}\) is stationary, \(\operatorname{cov}\left(Y_{s}, Z_{t}^{\{W\}}\right)\) and \(\operatorname{cov}\left(Y_{s}, Y_{t}\right)\) are functions of \((s-t)\), but not of \(s\) or \(t\) separately. Equation (4.2.2) can be solved in turn for \(t=s, s-1, s-2 \ldots\) to obtain \(\operatorname{cov}\left(Y_{s}, Z_{t}^{\{W\}}\right)\) because \(\operatorname{cov}\left(Y_{s}, Z_{t}^{\{W\}}\right)=0\) if \(t>s\). Equation (4.2.3) can then be solved for \(t=s, s-1, \ldots, s-p\) simultaneously to obtain \(\operatorname{cov}\left(Y_{s}, Y_{t}\right)\) over this range of values of \(t\), and then in turn for \(\mathrm{t}=\mathrm{s}-\mathrm{p}-1, \mathrm{~s}-\mathrm{p}-2 \ldots\). . In particular,
\[
\operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{i=1}^{p} \phi_{i} \operatorname{cov}\left(Y_{s-i}, Y_{t}\right) \quad \text { when } \quad s>t+q+1
\]

Therefore the autocorrelation function of \(\underset{\sim}{Y}\) is of the form
\[
\rho(u)=\sum_{\ell=1}^{p} k_{\ell} e^{u \lambda_{\ell}} \quad \text { when } u>q-p+1
\]
where \(e^{\lambda_{1}}, \ldots, e^{\lambda_{p}}\) are the roots of the pth order polynomial
\[
x^{p}-\phi_{1} x^{p-1} \ldots-\phi_{p}=0,
\]
which are all assumed to be distinct, and \(\underset{\sim}{x}\) is a vector of weights which can be expressed in terms of \(\underset{\sim}{\phi}\) and \(\underset{\sim}{\theta}\) by way of \(\operatorname{cov}\left(Y_{s}, Y_{t}\right)\). The constraints on the parameters \(\underset{\sim}{\phi}\) and \(\underset{\sim}{\theta}\) necessary and sufficient to ensure \(\underset{\sim}{V}\) is positive-definite, or equivalently that equation (4.2.1) has a stationary solution, are
\[
\left|e^{\lambda} \ell\right|<1 \quad \text { for } \quad \ell=1, \ldots, p \text {. }
\]
(See for example Box and Jenkins, 1976, pp 73-74.)

\subsection*{4.2.3 Parameterization by stationary solutions of stochastic} differential equations

An alternative parametrization is in terms of stationary differential equations. There is no restriction to times between observations being integer multiples of some basic time interval. The random vector \(Y(t)\) underlying the weight-corrected departures is assumed to be indexed over continuous time \(t\) and generated by the linear differential equation (3.3.1), where \(Z(t)\) is the first derivative of a Weiner process. Strictly speaking, this definition of \(Z(t)\) is nonsense because the Weiner process is nowhere differentiable, see for example Hoel, Port and Stone (1972, pp141-147). As already discussed in [3.3.1] this can be rectified by integrating both sides of equation (3.3.1) a certain number of times. Hoel, Port and Stone (1972, pp159-170) considered this equation in the restricted case when q is zero, and Phadke and Wu (1974) used the process with \(p=2\) and \(q=1\) to model annual sunspot numbers.

Examination of the general solution of equation (3.3.1) given in equation (3.3.2) reveals that the differential equation can have a stationary solution only when
\[
\left|e^{\lambda} \ell\right|<1 \quad \text { for } \quad \ell=1, \ldots, p \text {. }
\]

With this condition satisfied, the first double summation term in equation (3.3.2) decays to zero as \(t\) increases. Therefore, if the origin of the process is redefined to be in the infinite past, the solution is
\[
\begin{equation*}
Y(t)=\int_{-\infty}^{t} Z(u) \sum_{k=1}^{p} k_{k}^{\star} e^{(t-u) \lambda_{k}} d u, \tag{4.2.4}
\end{equation*}
\]
where \({\underset{\sim}{k}}^{\star}\) is used in place of \(\underset{\sim}{\kappa}\) to distinguish it from another vector of parameters \(\underset{\sim}{k}\) which were introduced in [4.2.1] and will be used throughout this chapter. It follows that the autocovariance function of the process satisfies
\[
\begin{aligned}
& \operatorname{cov}(Y(s), Y(t))=\int_{-\infty}^{s} \int_{-\infty}^{t} \operatorname{cov}(Z(u), Z(v)) \sum_{k=1}^{p} \sum_{\ell=1}^{p} k_{k}^{\star} \kappa_{l}^{\star} e^{(s-u) \lambda_{k}} e^{(t-v) \lambda_{\ell}} d v d u, \\
&=\sigma^{2} \int_{-\infty}^{t} \sum_{k=1}^{p} \sum_{\ell=1}^{p} k_{k}^{\star} k_{\ell}^{\star} e \\
&(s-v) \lambda_{k} e^{(t-v) \lambda_{\ell} d v} \quad \text { for } s>t,
\end{aligned}
\]
because \(Z(u)\) and \(Z(v)\) are uncorrelated when \(u \neq v\),
\[
=\sum_{k=1}^{p}\left(-\sigma^{2} \sum_{\ell=1}^{p} \frac{k_{k}^{\star} \kappa_{l}^{\star}}{\lambda_{k}^{+\lambda_{\ell}}}\right) e^{(s-t) \lambda_{k}}
\]

Therefore the autocorrelation function of \(Y(t)\) is
\[
\rho(u)=\sum_{k=1}^{p} k_{k} e^{u \lambda_{k}}
\]
where \(\kappa_{k}\) is proportional to \(\sum_{\ell=1}^{p} \frac{k_{k}^{\star} \kappa_{\ell}^{\star}}{\lambda_{k}+\lambda_{\ell}}\),
and \(\underset{\sim}{k}\) is normalized so that \(\sum_{k=1}^{p} k_{k}=1\).

The constraints on the parameters \(\underset{\sim}{\xi}\) and \(\underset{\sim}{\psi}\) in equation (3.3.1) to ensure that a stationary solution exists and that \(\underset{\sim}{V}\) is positive-definite are
\[
\left|e^{\lambda} \ell\right|<1 \quad \text { for } \quad \ell=1, \ldots, p \text {. }
\]

The choice of parameterization by means of stationary solutions of stochastic differential equations is more restrictive on the range of possibilities for \(\rho(u)\) than is the previous parameterization in [4.2.2]. In particular, \(\delta\) is restricted to taking only the value zero, although this may be extended to the case where \(\delta\) is an arbitrarily small positive number, by adding an independent white noise error to \(Y(t)\). In this latter instance
\[
\rho(u)=\sum_{k=1}^{p} k_{k} e^{u \lambda_{k}} \quad \text { for } u>0
\]
and

An alternative model for \(Y(t)\) is to define it by the weighted integral of a Weiner process given in equation (4.2.4). The autocorrelations remain as above but the reference to stochastic differential equations is avoided. This then serves as a third parameterization of the autocorrelation function.

\subsection*{4.2.4 Parameterization by a sum of positively-correlated Markov processes}

A fourth parameterization is also applicable to any spacing of observation times. The weight-corrected departures can be considered to be the sum of \(p\) positively-correlated Markov processes if all elements in \(\underset{\sim}{\kappa}\) are real and non-negative and all elements in \(\underset{\sim}{\lambda}\) are real and non-positive. Because, then the
weight-corrected departures, \(\underset{\sim}{a}\), can be expressed as
\[
\underset{\sim}{a}=\sum_{\ell=1}^{p}{\underset{\sim}{a}}^{\{\ell\}},
\]
where \({\underset{\sim}{a}}^{\{1\}}, \ldots,{\underset{\sim}{a}}^{\{p\}}\) are positively-correlated Markov processes which are independent of one another and
\[
\operatorname{cov}\left(a_{i}^{\{\ell\}}, a_{j}^{\{\ell\}}\right)=\tau^{2} k_{\ell} e^{|i-j| \lambda_{\ell}} \quad \text { for } \quad i, j=1, \ldots, n .
\]

The above constraints on \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\) can be achieved by parameterizing with a (2p-1)-dimensional vector \(\underset{\sim}{\alpha}\) where
\[
\begin{aligned}
k_{\ell} & =\left(\frac{1}{2}+\frac{1}{2} \sin \alpha_{\ell}\right)_{k=1}^{\ell-1}\left(\frac{1}{2}-\frac{1}{2} \sin \alpha_{k}\right) & \text { for } \ell=1, \ldots, p-1, \\
& & \\
k_{p} & =\prod_{k=1}^{p-1}\left(\frac{1}{2}-\frac{1}{2} \sin \alpha_{k}\right), & \text { for } \ell=1, \ldots, p .
\end{aligned}
\]

This ensures that all elements in \(\underset{\sim}{k}\) are non-negative, that all elements in \(\underset{\sim}{\lambda}\) are non-positive, and that
\[
\sum_{\ell=1}^{p} k_{\ell}=1 .
\]

This parameterization is more restrictive than using either the difference or differential equations. The advantage of the sinusoid over the more commonly used logit transformation to constrain parameters to lie between 0 and 1 is that it allows the values 0 and 1 to be realised. For example, when \(p=1\) and \(q=1\) in equation (4.2.1) the stationary solution, denoted the \(\operatorname{ARMA}(1,1)\) process by Box and Jenkins (1976), has an autocorrelation function:
\[
\rho(u)=\kappa e^{u \lambda} \quad \text { when } u \geqslant 1 .
\]

The same structure can be produced in this parameterization, provided \(k>0\), by setting \(p=2\) and \(\alpha_{3}=-\pi / 2\), because then \(e^{\lambda_{2}}=0\) and
\[
\begin{aligned}
\rho(u) & =k_{1}+k_{2}=1 & & \text { if } u=0 \\
& =\kappa_{1} e^{u \lambda_{1}} & & \text { if } u>0 .
\end{aligned}
\]

This is the parameterization that has been used in subsequent sections of this chapter. It has the advantage of restricting the parameters, \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\), to a sensible range for the data sets considered, and has less problems with iterative convergence in estimation when \(\lambda_{\ell}\) is close to zero.

\subsection*{4.2.5 Model order identification}

The orders, \(p\) and \(\delta\), in the autocorrelation function need to be known before \(\underset{\sim}{\kappa}\) and \(\underset{\sim}{\lambda}\) can be estimated. When observations are equally spaced this is equivalent to finding \(p\) and \(q\), the orders in equation (4.2.1), because \(\delta=q-p+1\). Autocorrelations \(\underset{\sim}{\hat{\rho}}\) can be estimated from the weight corrected departures (\(\underset{\sim}{a}\)) of the data from the regression function (\(\underset{\sim}{\hat{f}})\) fitted, for example, by least-squares estimation. The sample autocorrelation at lag \(\ell\) is
\[
\rho_{\ell}=\left(\sum_{i=1}^{n-\ell} \hat{a}_{i} \hat{a}_{i+\ell}\right) /\left(\sum_{j=1}^{n} \hat{a}_{j}^{2}\right) \quad \text { for } \quad \ell=0,1,2, \ldots,
\]
and \(\hat{\rho}_{\ell}=\hat{\rho}_{-\ell}\). To help identify \(p\) and \(q\) from \(\underset{\sim}{\rho}\) I proposed (Glasbey, 1982) the use of generalized partial autocorrelation (GPA) coefficients, the \((g, h)\) th of which is
\[
\sqrt{\left.\sum_{j=-h}^{\sum_{j=0}\left(\sum_{k=h+1}^{\min (g, h-j)}-\sum_{i=1}^{g} \hat{\phi}_{i}^{\{g h\}} \hat{\rho}_{g+h-i+1}\right.} \hat{\phi}_{k}^{\{g h\}} \hat{\phi}_{\ell}^{\{g h\}} \hat{\rho}_{j+k-\ell}\right)^{2}},
\]
where \({\underset{\sim}{\dot{\phi}}}^{\{g h\}}\) is the solution of the simultaneous linear equations \(\hat{\rho}_{\ell}=\hat{\phi}_{1}^{\{g h\}} \hat{\rho}_{\ell-1}+\ldots+\hat{\phi}_{g}^{\{g h\}} \hat{\rho}_{\ell-g} \quad\) for \(\quad \ell=h+1, \ldots, h+g\). If \(g>p\) and \(h=q\) (or \(g=p\) and \(h \geqslant q\)) then I proved that the
(\(g, h\)) th GPA coefficient is asymptotically normally distributed with zero mean and variance \(1 / n\), where \(n\) is the number of observations. Once the GPA coefficients have been calculated for a range of \(g\) and \(h, p\) and \(q\) can be selected as the smallest indices such that when \(g>p\) and \(h=q\), and when \(g=p\) and \(h \geqslant q\), the GPA coefficients are all within sampling range of zero. When \(h=0\), the GPA coefficients are simply the autocorrelation coefficients standardized to equal variances taking account of autocorrelations of lower lags (Bartlett, 1946) and assuming that autocorrelations at higher lags are zero. When \(g=0\), the GPA coefficients are the partial autocorrelations proposed by Quenouille (1947).

The orders \(p\) and \(q\) identified from examination of an array of GPA coefficients are not necessarily those appropriate for parameterizations in [4.2.3] and [4.2.4] which require extra conditions to be satisfied. These can sometimes be ascertained by examining the values of \(\underset{\sim}{\hat{\rho}}\). For example, for the weightcorrected departures to be represented as a sum of positivelycorrelated Markov processes all elements in \(\underset{\sim}{\rho}\) should be nonnegative. Of course, this is not a simple property to assess because of the sampling variability in \(\underset{\sim}{\dot{\rho}}\). If there is doubt about the suitability of a model, then the options are either to use alternative parameterizations to test the assumptions, or to assess the fit by over-fitting using a higher order model.

Initial estimates of the error model parameters to provide starting values in the iterative optimization algorithm can be obtained by equating the first few coefficients in \(\underset{\sim}{\rho}\) and \(\underset{\sim}{\rho}\).

\subsection*{4.2.6. Variances of parameter estimators}

The distributions of maximum likelihood estimators have been discussed in [1.3.8]. The computer program, REGAME, which was described in section 2.4, has been used to fit models to the data sets in the following sections. Approximate variances of parameter estimators have been obtained by inverting the Hessian matrix of whichever optimization function is being used, whether the negative log-likelinood (\(L_{M}\)) or the negative residual loglikelihood (\(L_{R}\)) described in [2.3.2]. However, small simulations and marginal confidence intervals obtained directly from the likelihood surface have also been used.
4.3 Colquhoun's data: relaxation of drug-induced membrane
currents

\subsection*{4.3.1 Introduction}

One method of studying the mechanism of drug action has been by measuring the relaxation of drug-induced currents in the end-plate membrane of a muscle fibre after a voltage jump (see for example Colquhoun and Hawkes, 1977). The particular set of data that will be analysed in this thesis consists of 128 measurements made at intervals of 0.25 milliseconds after the voltage jump (Colquhoun, 1978). The first millisecond of data was discarded because of electrical transients leaving 124 observed currents which are plotted against time in figure 4.3.1. The theory of drug action predicts that the current decays as a sum of exponentials to a constant level. I used this data set as an
example in some earlier work (Glasbey 1980), the results of which will be referred to later.

\subsection*{4.3.2 Single exponential regression with independent errors}

Initially the simplest regression model was considered (that is a single exponential response curve) and the simplest error model (independent errors with equal variances). Observations \(\underset{\sim}{y}\) were therefore assumed to be independent normal deviates about a mean value of \(\underset{\sim}{f}\) with variance matrix \(\tau^{2} \underset{\sim}{I}\), where
\[
f_{i}=\beta_{1}+\beta_{2} e^{-(1+i / 4) / \beta_{3}} \quad \text { for } i=1, \ldots, 124,
\]
with three unknown parameters, \(\beta_{1}, \beta_{2}\) and \(\beta_{3}\) (denoted \(\underset{\sim}{\beta}\)). From the definition in [2.2.1] \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(0,0)\) process, and the parameters \(\underset{\sim}{\beta}\) and \(\tau^{2}\) can be estimated by minimizing \(L_{M}\) (defined in [2.3.2]) using the computer program REGAME described in section 2.4. At this stage the choice of \(L_{M}\) is of no importance because, for independent errors, the results would have been almost the same if \(L_{R}\) had been used as the optimizing function. The estimation proceeded iteratively on \(\underset{\sim}{\beta}\) from a starting value which was obtained quite easily from the data which have only a small error component. The parameter estimates, standard errors and associated correlation coefficients for this simple model are given in table 4.3.1. As an example of the output from REGAME, the results to channel NOUT10 when this model was fitted, are given in Appendix B. The scatter plot produced by REGAME of departures of the data from the fitted regression show no indication that the error variances are unequal. However, the fitted curve in figure 4.3.1 exhibits systematic departures from the data, which implies that either a single exponential regression, or the assumption of

\section*{Figure 4.3.1}

Colquhoun's data, single exponential regression with independent errors, fitted by least-squares estimation; observed currents (\(X\)) and fitted regression curve (- \(\quad\)) plotted against time.

independent errors, is inappropriate. In most regression problems the more suspect assumption would be the single exponential model and this would then be modified, but in this example there is no a priori justification for assuming independent errors because the data were collected serially in time on a single subject. I will therefore consider extending the model to allow the error process to be correlated.

\subsection*{4.3.3 Generalized partial autocorrelation coefficients}

To identify a suitable correlation model the autocorrelation and GPA coefficients of the departures of the data from the fitted regression curve were calculated. These are given in table
4.3.2. The estimated autocorrelation coefficients are significantly different from their zero expectations for independent errors. They appear to decline approximately exponentially after an initial drop from lag zero to lag one. This suggests an \(\operatorname{ARMA}(1,1)\) process may be a suitable error model. The GPA coefficients indicate the same model because all terms below and to the right of the element where (\(p, q\)) is equal to (1,1) are small relative to the standard error of 9 (derived as \(100 / \cdot 124)\). The estimated autocorrelation coefficients are also consistent with the errors being the sum of a positively-correlated Markov process and white noise, which was the parameterization considered in [4.2.4].

In some earlier work (Glasbey, 1980) using a similar regression function I restricted the choice of error models to autoregressive processes alone and found it necesary to use a third-order model, that is an \(\operatorname{ARMA}(3,0)\) process in the present

Table 4.3.1
Colquhoun's data, single exponential regression with independent errors, fitted by least-squares estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients
\begin{tabular}{ccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\tau^{2}\) \\
\cline { 2 - 5 } estimate & -88.9 & 77.4 & 7.24 & 0.33 \\
se & \((0.1)\) & \((0.3)\) & \((0.06)\) & \((0.04)\) \\
correlations & & & & \\
\(\beta_{2}\) & 0.18 & & & \\
\(\beta_{3}\) & -0.82 & -0.60 & & \\
\(\tau^{2}\) & 0.00 & 0.00 & 0.00 & \\
\hline
\end{tabular}

\section*{Table 4.3.2}

Colquhoun's data, single exponential regression with independent errors, fitted by least-squares estimation; \(100 \times\) autocorrelation coefficients of residuals and \(100 \times\) GPA coefficients.
\begin{tabular}{crrrrr}
\hline Lag & 1 & 2 & 3 & 4 & 5 \\
autocorrelation & \(\underline{70}\) & \(\underline{64}\) & \(\underline{60}\) & \(\underline{3}\) & \(\underline{47}\) \\
GPA & \(p\) & 0 & 1 & 2 & 3
\end{tabular}

Autocorrelation and GPA coefficients exceeding 18 (that is 2 standard errors) are underlined.
terminology. The estimated autocorrelation structure is very similar to that of an \(\operatorname{ARMA}(1,1)\) process, but at the cost of one extra parameter.

\subsection*{4.3.4 Single exponential regression with ARMA(1,1) error model}

The autocorrelation function was assumed to be of the form considered in [4.2.4] with \(p=2, e^{\lambda_{2}}\) held constant at zero and \(t_{i}\) taken to be \(i\) for \(i=1, \ldots, n\). The regression parameters (\(\underset{\sim}{\beta}\)) and error model parameters (\(\alpha\)) were jointly estimated by minimizing the negative log-likelihood \(L_{M}\) using REGAME. Starting values in the iterative process were taken as the least-squares estimated values of \(\underset{\sim}{\beta}\) from [4.3.2] and \(\underset{\sim}{\alpha}\) was estimated from the first few sample autocorrelation coefficients of the least-squares residuals. The results are given in table 4.3.3. The negative log-1ikelihood has decreased to -64.7 from the earlier value of -6.3 when errors were assumed to be independent. If the errors were independent then this difference would be distributed approximately as \(\frac{1}{2} x_{2}^{2}\) because of the two extra parameters in the model. However, the 95 percentile for the \(\frac{1}{2} x_{2}^{2}\) distribution is 3.0 which is greatly exceeded, so the improvement in fit is sufficient to reject the hypothesis of independent errors. The regression parameter estimates are approximately the same as those estimated assuming independent errors but the standard errors are much bigger. This illustrates the bias in the estimated variances of parameter estimators when an incorrect error model is assumed. The estimated autocorrelation function is
\[
\hat{\rho}(u)=0.85(0.976)^{u}
\]
\[
\text { for } u>0 .
\]

The output from fitting this model is given in the second half of Appendix B.

An alternative estimation method is to minimize \(L_{R}\), the residual negative log-likelihood defined in [2.3.2]. The results are given in table 4.3.4. The estimated autocorrelation function is substantially different from above:
\[
\hat{\rho}(u)=0.99997(0.999995)^{u} \quad \text { for } u>0 .
\]

Because the error process is very close to non-stationarity, problems were encountered with the difference equation parameterization of the autocorrelation function using \(\phi_{1}\) and \(\theta_{1}\), as described in [4.2.2]. The parameterization as a sum of positively-correlated Markov processes proved to be more robust. However, it was still necessary to experiment with different parameter scaling values in REGAME in order to achieve convergence. There are large correlations between the estimators of the error model parameters \(\left(\alpha_{1}, \alpha_{2}\right.\) and \(\left.\tau^{2}\right)\), but this would have been a problem with any parameterization. It is not of too great a concern because the main interest is in \(\underset{\sim}{\beta}\). The fitted regression curve \((\underset{\sim}{f})\) and the predicted fit using past observations (as described in [2.3.6]) are plotted against time in figure 4.3.2. The improvement in fit can be seen in the better agreement between predicted and observed values than in figure 4.3.1, although the fitted values in figure 4.3.2, which take no account of correlation in the errors, are worse than the fitted values when errors are assumed independent.

Further examination of the likelihood surface showed that it has no minimum and \(L_{R}\) converges to its lowest value of -68.8351 as \(\alpha_{1}\) converges to \(\pi / 2\) and

Table 4.3.3
Colquhoun's data, single exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & -88.3 & 79.4 & 6.77 & 0.8 & 1.3 & 0.52 \\
se & \((0.7)\) & \((1.0)\) & \((0.23)\) & \((0.3)\) & \((0.1)\) & \((0.37)\)
\end{tabular}
correlations
\(\beta_{2} \quad-0.48\)
\(\beta_{3}\)
-0.63 0.15
\(\alpha_{1}\)
\(0.22-0.05 \quad-0.53\)
\(\begin{array}{lllll}\alpha_{2} & 0.22 & -0.10 & -0.57 & 0.86\end{array}\)
\(\begin{array}{llllll}\tau^{2} & 0.22 & -0.07 & -0.55 & \underline{0.97} & \underline{0.92}\end{array}\)
Correlation coefficients exceeding 0.9 underlined.

\section*{Table 4.3.4}

Colquhoun's data, single exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } est imate & -88.2 & 78.6 & 6.59 & 1.559 & 1.566 & 2300.0 \\
se & \((47.7)\) & \((1.6)\) & \((0.24)\) & \((0.109)\) & \((0.042)\) & \((43000.0)\) \\
correlations & & & & & & \\
\(\beta_{2}\) & -0.02 & & & & & \\
\(\beta_{3}\) & -0.01 & 0.48 & & & & \\
\(\alpha_{1}\) & 0.00 & -0.01 & -0.00 & & & \\
\(\alpha_{2}\) & 0.00 & -0.01 & 0.00 & 0.9997 & & \\
\(\tau^{2}\) & 0.00 & -0.01 & -0.00 & \(\underline{0.99996}\) & 0.9998 & \\
& & & & & & \\
\hline
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Figure 4.3.2
Colquhoun's data, single exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; observed currents (X), fitted regression curve (----) and predicted currents (_) conditional upon earlier observations, plotted against time.

\[
\alpha_{2}=\pi / 2-0.379\left(\pi / 2-\alpha_{1}\right) .
\]

As the limit is approached, all correlations between observations approach unity, and \(\hat{\tau}^{2}\) becomes infinite, although the white noise component of the variance structure, that is \(\kappa_{2} \tau^{2}\), converges to a finite value of 0.077 . Therefore, the optimization algorithm gave the wrong answer for the minimum, probably because of numerical rounding errors as the limit was approached, although the value of \(L_{R}\) obtained (-68.8350) is close to its lower bound.

The high correlations in the error process imply that the regression function is not accounting for all the long-term trends in the data and as such are strong grounds for changing the regression function. However, I would like to persevere for a little while with the single exponential function because of its relationship with the simplest stochastic compartment models considered in'section 7.3 as mechanistic models of Colquhoun's data.

The high correlations coud be eliminated by taking first differences of the series to obtain \(y_{2}-y_{1}, y_{3}-y_{2}, \ldots, y_{n}-y_{n-1}\). The regression function becomes
\[
\beta_{2}\left\{e^{-(1+(i+1) / 4) / \beta_{3}}-e^{-(1+i / 4) / \beta_{3}}\right\} \quad \text { for } \quad i=1, \ldots, n-1
\]
with the loss of \(\beta_{1}\), and the error series becomes a first-order moving average process with parameter \(\theta\) defined in equation (4.2.1) and variance \(\sigma^{2}\). The residual maximum likelihood estimates and standard errors are given in table 4.3.5. The error parameter estimates relate to the limiting relationships specified above between \(\alpha_{1}, \alpha_{2}\) and \(\tau^{2}\) as follows:
\[
\begin{aligned}
\theta & =1+(0.379)^{2}-\gamma\left\{2(0.379)^{2}+(0.379)^{4}\right\}, \\
\sigma^{2} & =2(0.077)\left\{1+(0.379)^{2}\right\}
\end{aligned}
\]

Table 4.3.5
Colquhoun's data first differenced, exponential regression with ARMA \((0,1)\) error model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
estimate
se
\begin{tabular}{cccc}
\({ }^{\beta_{2}}\) & \({ }^{\beta_{3}}\) & \(\theta\) & \(\sigma^{2}\) \\
\hline 78.6 & 6.58 & 0.59 & 0.18 \\
\((1.6)\) & \((0.24)\) & \((0.07)\) & \((0.02)\)
\end{tabular}
correlations
\[
\stackrel{\beta}{3}_{\beta^{2}}
\]
\[
0.48
\]
\[
-0.02
\]
\[
0.08
\]
\begin{tabular}{ll}
-0.02 & 0.08 \\
-0.01 & 0.03
\end{tabular}
\[
0.39
\]

The estimates and standard errors of the parameters of primary interest, \(\beta_{2}\) and \(\beta_{3}\), are almost identical with those of table 4.3.4. Therefore it seems preferable to remain with the untransformed series to simplify comparisons between maximum likelihood estimation and residual maximum likelihood estimation.

A comparison of tables 4.3.3 and 4.3.4 shows that the regression parameter estimates are approximately the same but the standard errors of the residual maximum likelihood estimators are bigger, especially for \(\hat{\beta}_{1}\). Both sets of parameter estimates satisfactorily account for the correlations in the data; examination of the residuals reveals no remaining autocorrelations.

\subsection*{4.3.5 Simulation to compare estimation methods}

To compare the three estimation methods used so far, ten independent series, each of length 124 , were generated from a model with a single exponential as regression function and stationary ARMA \((1,1)\) errors with, as parameter values, the estimates from Colquhoun's data given in table 4.3.3. Pseudo-random standardized normal deviates were generated using the NAG routine GO5DDF, starting from a seed set by the routine GO5CBF. These were then transformed to have the appropriate mean and variance matrix by applying the technique described in [2.3.7], using subroutine REGGEN listed at the end of Appendix A. Separately, to each series of data, a single exponential regression model was fitted by three methods: (1) least-squares estimation, denoted LS (that is minimizing \(L_{M}\) on the assumption that the errors were independent); (2) maximum likelihood estimation, denoted ML (that is minimizing \(L_{M}\) on the assumption that the errors arose from an

ARMA(1,1) process); and (3) residual maximum likelihood estimation, denoted REML (that is minimizing \(L_{R}\) on the assumption that the errors arose from an \(\operatorname{ARMA}(1,1)\) process). These are the three methods of estimation that have already been used with Colquhoun's data. Because of the heavy use of computer CPU time in fitting the models only ten series were simulated. It is recognised that sampling variability will remain a large component of any summary statistics derived from such a small sample, but large differences between methods of estimation should be identifiable.

For each parameter in the model and each method of estimation, three summary statistics were extracted from the ten independent estimates from the simulated series: bias, root-mean-square-error (abbreviated to r.m.s.e) and average standard error. To define what these statistics are, consider the regression parameter \(\beta_{1}\) and denote its least-squares estimated value from the ith data set by \(\hat{\beta}_{1}^{\{i\}}\). and its estimated standard error by \(\operatorname{se}\left(\bar{\beta}_{1}^{\{i\}}\right)\), where \(i\) ranges between 1 and 10 . The true value of \(\beta_{1}\) is -88.3 , given as the estimate of \(\beta_{1}\) in table 4.3.3, and used to simulate the ten series. Therefore the estimated bias in the least-squares estimator of \(\beta_{1}\) is
\[
+88.3+\sum_{i=1}^{10} \hat{\beta}_{1}^{\{i\}} / 10
\]
and the estimated r.m.s.e. is
\[
v\left[\sum_{i=1}^{10}\left(-88.3-\hat{\beta}_{1}^{\{i\}}\right)^{2} / 10\right]
\]

The mean standard error is defined simply as
\[
\sum_{i=1}^{10} \operatorname{se}\left(\hat{\beta}_{1}^{\{i\}}\right) / 10 .
\]

Table 4.3.6 gives these summary statistics.
The whole procedure of simulation, estimation and summarization was repeated for a different set of model parameters, namely the estimates given in table 4.3.4. These summary statistics are given in table 4.3.7.

If it is assumed that the parameter estimators are normally distributed, then \(t\)-statistics can be derived in order to test whether the biases are significantly different from zero. The estimated variance of the bias can be calculated from the root-mean-square-error as
\[
\left((\text { r.m.s.e. })^{2}-(\text { bias })^{2}\right) / 9 .
\]

Because the 95 percentile for the t-distribution with 9 degrees of freedom is 2.26, biases on the threshold of significance at the \(5 \%\) level satisfy:
\[
\frac{\text { bias }}{r\left(\left((\text { r.m.s.e. })^{2}-(\text { bias })^{2}\right) / 9\right)}= \pm 2.26
\]

This can be reexpressed as
\[
\text { bias }= \pm 0.6017 \text { (r.m.s.e.) }
\]

Therefore biases exceeding \(60 \%\) of the r.m.s.e.s are significantly different from zero at the \(5 \%\) level and have been underlined in tables 4.3.6 and 4.3.7.

The most significant biases are for the maximum likelihood estimators of \(\alpha_{1}\) and \(\alpha_{2}\). The r.m.s.e.s are largest for the least-squares estimators as is to be expected because this is an inefficient estimation procedure when errors are correlated. The standard errors obtained by least-squares estimation are much smaller than the r.m.s.e.s and so are overestimating the precision

Table 4.3.6
Summary statistics derived from ten simulations of a single exponential regression with ARMA (1,1) error model, using as model parameters the estimates given in table 4.3.3, fitted by leastsquares estimation (LS), maximum likelihood estimation (ML) and residual maximum likelihood estimation (REML).
\begin{tabular}{llllll}
\(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline
\end{tabular}
bias
LS
\[
\begin{array}{lrrl}
\text { LS } & -0.1 & -0.8 & \frac{0.17}{0.11} \\
\text { ML } & 0.0 & -0.4 & \frac{-0.5}{0.07} \\
\text { REML } & 0.1 & -0.5 & \frac{-0.4}{-0.1} \\
\hline & 0.1 & -0.3 \\
\hline 0.0
\end{array}
\]
r.m.s.e.

LS
0.7
1.3
0.23

ML
0.6
0.9
0.15
0.6
0.5
0.3

REML
0.6
0.9
0.16
0.6
0.3170 .0
average se
LS
\(\begin{array}{lll}\frac{0.1}{0.3} & \frac{0.2}{0.7} & \frac{0.04}{0.5} \\ \underline{0.1} & \underline{0.003}\end{array}\)
\begin{tabular}{lll}
\(\frac{0.3}{0.2}\) & \(\underline{0.2}\) & \(\underline{0.1}\) \\
\(\underline{0.1}\) & \(\underline{9.6}\)
\end{tabular}

REML
ML.

Biases significant at \(5 \%\) level, i.e. exceeding \(60 \%\) of r.m.s.e. underlined. Mean se's less than \(80 \%\) of r.m.s.e. underlined. The three summary statistics are defined in [4.3.5].

Table 4.3.7
Summary statistics derived from ten simulations of a single exponential regression with \(\operatorname{ARMA}(1,1)\) error model, using as model parameters the estimates given in table 4.3.4, fitted by leastsquares estimation (LS), maximum likelihood estimation (ML) and residual maximum likelihood estimation (REML).
\begin{tabular}{llllll}
\(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline
\end{tabular}
bias
LS
\(\begin{array}{lll}-0.2 & 0.7 & 0.05\end{array}\)
ML
REML
-0.2
\begin{tabular}{ll}
\(\frac{0.8}{0.7}\) & 0.05 \\
\hline 0.05
\end{tabular}
\(\begin{array}{lll}-\frac{1.3}{-0.0} & \frac{-0.7}{0.0} & -2300.0 \\ 20.0\end{array}\)
r.m.s.e.

LS
24.7
1.20 .2

ML
24.8
1.30 .1
1.4
\(0.7 \quad 2300.0\)
REML
24.9
1.2
0.1
0.001
\(0.0007 \quad 430.0\)
average se
LS
\(\begin{array}{lll}\frac{0.1}{0.2} & \frac{0.2}{0.5} & \frac{0.04}{0.01}\end{array}\)
ML
REML
\begin{tabular}{llllll}
\(\frac{0.2}{020.0}\) & \(\frac{0.5}{0.004}\) & \(\frac{0.01}{0.00002}\) & \(\frac{0.3}{0.003}\) & \(\frac{0.2}{0.0007}\) & 720.0 \\
\hline
\end{tabular}
Biases significant at \(5 \%\) level, i.e. exceeding \(60 \%\) of r.m.s.e. underlined. Mean se's less than \(80 \%\) of r.m.s.e. underlined. The three summary statistics are defined in [4.3.5].
of the parameter estimators. This is also as expected. However the ML, and especially the REML, standard errors are also much too small. Using ML, the true parameters are rejected on the basis of the negative log-likelihood, that is applying the likelihood ratio test. The average decreases are 4.8 and 8.8 in the two sets of simulations, but to be consistent with the true parameter values they should be distributed as \(\frac{1}{20} x_{50}^{2}\). The 95 percentile for this distribution is 3.4 , which is exceeded in both sets of simulations. For REML, the average decreases are 2.7 and 1.1 in the two sets of simulations, which are not significantly too large, so the true parameters are not rejected. This suggests that it is the quadratic approximation to the likelihood surface that has been used to obtain the REML standard errors which is causing them to be too small, possibly because of near singularity in the Hessian matrix, and likelihood-based confidence intervals should perform better.

\subsection*{4.3.6 Likelihood-based marginal confidence intervals}

The quadratic approximation to the likelihood surface can be used to obtain \(95 \%\) marginal confidence intervals for each regression parameter as
\[
\hat{\beta}_{j} \pm \operatorname{se}\left(\hat{\beta}_{j}\right) \checkmark\left\{x_{1}^{2}(95 \%)\right\}
\]
\[
\hat{\beta}_{j} \pm 1.96 \operatorname{se}\left(\hat{\beta}_{j}\right) \quad \text { for } \quad j=1,2,3
\]
where \(x_{1}^{2}(95 \%)\) denotes the 95 percentile for the \(x^{2}\) distribution with 1 degree of freedom. To find \(95 \%\) marginal confidence intervals based directly on the likelihood surface, the critical values of each parameter were found such that when that parameter
was held constant and all the other parameters estimated by minimizing \(L_{R}\), the value of \(L_{R}\) was -66.9 , that is \(\frac{1}{2} \chi_{1}^{2}(95 \%)\) greater than at its minimum value. The results are given in table 4.3.8. The only difference in marginal confidence intervals between the two methods of derivation is for \(\beta_{1}\) which cannot apparently be estimated with any precision at all for this type of correlation amongst the errors. This is related to the point made in [4.3.4] that the likelihood surface has no minimum. As \(\alpha_{1}\) and \(\alpha_{2}\) approach \(\pi / 2\), the correlations all approach unity and \(\beta_{1}\) cannot be estimated because it becomes confounded with the parameters in the error model. Therefore, no confidence limits can be placed on \(\beta_{1}\).

\subsection*{4.3.7 Double exponential regression with independent errors}

In [4.3.2] it was mentioned that the autocorrelations in the departures of the data from the fitted regression curve could have been caused by an inappropriate regression function. This was investigated further by considering a double exponential regression:
\[
\begin{aligned}
& f_{i}=\beta_{1}+\beta_{2} e^{-(1+i / 4) / \beta_{3}}+\beta_{4} e^{-(1+i / 4) / \beta_{5}} \\
& \text { for } i=1, \ldots, 124 .
\end{aligned}
\]

The first fit obtained was by least-squares estimation and the parameter estimates are given in table 4.3.9. The autocorrelation and GPA coefficients of the departures are given in table 4.3.10. These are smaller than those obtained when fitting a single exponential regression, but some are sufficiently different from zero to reject the hypothesis of independent errors. The pattern is consistent with an \(\operatorname{ARMA}(1,1)\) error model.

Table 4.3.8
Colquhoun's data, single exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; 95\% marginal confidence intervals based on quadratic approximation and derived directly from the likelihood surface.
quadratic approximation
lower
upper
likelihood surface
lower
upper
lower
upper

\(-181.6\)
75.5
6.11
5.3
81.7
7.07
\(-\infty\)
75.4
6.10
\(\infty\)
82.0
7.11

Table 4.3.9
Colquhoun's data, double exponential regression with independent errors, fitted by least-squares estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & -90.4 & 25.3 & 3.28 & 58.6 & 9.22 & 0.12 \\
se & \((0.3)\) & \((4.3)\) & \((0.39)\) & \((4.4)\) & \((0.46)\) & \((0.01)\)
\end{tabular}
correlations
\begin{tabular}{llllll}
\(\beta_{2}\) & \(\underline{-0.91}\) & & & & \\
\(\beta_{3}\) & -0.80 & \(\underline{0.95}\) & & & \\
\(\beta_{4}\) & 0.88 & \(\underline{-0.99}\) & \(\underline{-0.98}\) & & \\
\(\beta_{5}\) & \(\underline{-0.95}\) & \(\underline{0.99}\) & 0.93 & \(\underline{-0.98}\) & \\
\(\tau^{2}\) & -0.00 & 0.00 & 0.00 & -0.00 & 0.00
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

\section*{Table 4.3.10}

Colquhoun's data, double exponential regression with independent errors, fitted by least-squares estimation; \(100 \times\) autocorrelation coefficients of residuals and \(100 \times\) GPA coefficients.
\begin{tabular}{crrrrr}
\hline lag & 1 & 2 & 3 & 4 & 5 \\
autocorrelation & \(\underline{22}\) & \(\underline{2}\) & 17 & 13 & 6 \\
GPA & \(p\) & 0 & 1 & 2 & 3
\end{tabular}

Autocorrelation and GPA coefficients exceeding 18 (that is 2
standard errors) are underlined.
4.3.8 Double exponential regression with \(\operatorname{ARMA}(1,1)\) error model

Regression parameters \(\underset{\sim}{B}\) and error parameters \(\underset{\sim}{\alpha}\), as for the single exponential regression in [4.3.4], were jointly estimated: maximum likelihood estimates are given in table 4.3.11 and residual maximum likelihood estimates in table 4.3.12. The reduction in \(L_{M}\), from -64.7 for a single exponential regression to -76.3 for a double exponential regression, is sufficiently large, for the addition of two extra parameters, to reject the hypothesis of a single exponential model using the asymptotic properties of the likelihood ratio test. Similarly, the reduction in \(L_{R}\) from -68.8 to -74.3 is sufficiently large to reject the same hypothesis. The regression parameter estimates in tables 4.3.11 and 4.3.12 are approximately the same as the least-squares estimates but the standard errors, especially the standard errors derived by residual maximum likelihood estimation, are larger. The maximum likelihood estimates of \(\alpha_{1}\) and \(\alpha_{2}\) are less than the residual maximum likelihood estimates. This is consistent with the results for the single exponential regression, which were shown by simulation to be due to the maximum likelihood estimates of the error parameters being biased downwards.

The experience with the single exponential regression indicates that marginal confidence intervals are more accurate when obtained directly from the likelihood surface. This also seems desirable because of the high correlations among the parameter estimates shown in table 4.3.12, which at the very least are likely to cause numerical problems in inverting the Hessian matrix. The 95\% marginal confidence intervals are given in table 4.3.13. There are considerable discrepancies between the marginal

\section*{Table 4.3.11}

Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccccc}
& \({ }^{\beta_{1}}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 9 } estimate & -90.4 & 26.1 & 3.41 & 57.6 & 9.29 & -0.4 & 0.6 & 0.12 \\
se & \((0.4)\) & \((7.6)\) & \((0.64)\) & \((7.7)\) & \((0.80)\) & \((0.3)\) & \((0.3)\) & \((0.02)\)
\end{tabular}
correlations
\begin{tabular}{lcccccc}
\(\beta_{2}\) & -0.90 & & & & & \\
\(\beta_{3}\) & -0.79 & \(\underline{0.96}\) & & & & \\
\(\beta_{4}\) & 0.87 & \(\underline{-0.995}\) & \(\underline{-0.98}\) & & & \\
\(\beta_{5}\) & \(\underline{-0.94}\) & \(\underline{0.99}\) & \(\underline{0.93}\) & \(\underline{-0.98}\) & & \\
\(\alpha_{1}\) & 0.04 & -0.04 & -0.03 & 0.03 & -0.04 & \\
\(\alpha_{2}\) & -0.07 & 0.12 & 0.17 & -0.14 & 0.11 & -0.32 \\
\(\tau^{2}\) & -0.00 & 0.03 & -0.04 & -0.03 & 0.02 & 0.35 \\
\hline
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Table 4.3.12
Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
estimate
se
correlations
\begin{tabular}{llllllll}
\(\beta_{2}\) & \(\underline{-0.94}\) & & & & & & \\
\(\beta_{3}\) & \(\underline{-0.91}\) & \(\underline{0.99}\) & & & & \\
\(\beta_{4}\) & \(\underline{0.93}\) & \(\underline{-0.9995}\) & \(\underline{-0.995}\) & & & & \\
\(\beta_{5}\) & \(\underline{-0.96}\) & \(\underline{0.996}\) & \(\underline{0.98}\) & \(\underline{-0.994}\) & & & \\
\(\alpha_{1}\) & -0.60 & 0.73 & 0.74 & -0.73 & 0.70 & & \\
\(\alpha_{2}\) & -0.62 & 0.74 & 0.75 & -0.74 & 0.72 & \(\underline{0.98}\) & \\
\(\tau^{2}\) & -0.61 & 0.73 & 0.74 & -0.74 & 0.71 & \(\underline{0.995}\) & \(\underline{0.99}\)
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

\section*{Table 4.3.13}

Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelinood estimation; \(95 \%\) marginal confidence intervals based on quadratic approximation and derived directly from the likelihood surface.

Marginal confidence limits for
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \({ }^{8} 1\) & \(\mathrm{B}_{2}\) & \(\beta_{3}\) & \(\mathrm{B}_{4}\) & \(\mathrm{B}_{5}\) \\
\hline \multicolumn{6}{|l|}{quadratic approximation} \\
\hline lower & -93.6 & -37.5 & -0.48 & -16.5 & 2.07 \\
\hline upper & -87.5 & 100.6 & 8.21 & 120.2 & 17.59 \\
\hline \multicolumn{6}{|l|}{likelihood surface} \\
\hline lower & - & 8.2 & 1.96 & 7.5 & 7.90 \\
\hline upper & \(\infty\) & 76.8 & 5.61 & 73.7 & \(\infty\) \\
\hline
\end{tabular}
confidence limits derived by quadratic approximation, that is based on the standard errors in table 4.3.12, and those derived directly from the likelihood surface. As for the single exponential regression in table 4.3.8, the likelihood-based limits for \(B_{1}\) are infinite. For parameters \(\beta_{2}, \beta_{3}\) and \(\beta_{4}\) the likelihood-based confidence intervals are shorter. For the fifth parameter the limits are asymmetric about \(\hat{\beta}_{5}\), indicating that the estimator has a skew distribution.

The fitted curve and predicted fit from past observations based on residual maximum likelihood estimation are shown plotted against time in figure 4.3.3. The agreement between predicted and observed values is very good indeed, although it is difficult to see if it is any better than the agreement in figure 4.3.2.

The adequacy of the \(\operatorname{ARMA}(1,1)\) process to model the errors can be assessed either by examination of the residuals after fitting the model, or by fitting a model of higher order and testing the improvement in fit. Both these criteria support the existing model. The residuals, which are the estimates of \(\underset{\sim}{z}\) in the notation of section 2.3, have very small autocorrelations at low lags. Alternatively, when an \(\operatorname{ARMA}(2,2)\) model is fitted, the decrease in \(L_{R}\) is only 0.1 which is nowhere near approaching the magnitude required to reject the hypothesis of an \(\operatorname{ARMA}(1,1)\) model using the likelihood ratio test.

\subsection*{4.3.9 Resumé}

Regression parameters have been estimated and marginal confidence intervals derived for both single and double exponential functions. \(\operatorname{ARMA}(1,1)\) error models estimated by residual maximum

Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; observed currents (X), fitted regression curve (----) and predicted currents (__) conditional upon earlier observations, plotted against time.

likelihood with marginal confidence intervals based directly on the likelihood surface were found to be most appropriate for Colquhoun's data set. The improvement in fit of the double exponential model over the single exponential model was found to be sufficient to reject the simpler model.

This data set will be considered again in chapter 5 when a spectral parameterization of the error process will be considered. Then, in chapter 7 a mechanistic error model will be used in place of the empirical model considered in this chapter. Finally, in chapter 9 the parameter estimates obtained in this section will be re-used, but more generally valid estimates of the regression parameter estimator standard errors will be derived.
4.4 Dale's data: radioactive emission from a wheat leaf

\subsection*{4.4.1 Introduction}

To study the effect of IAA, a growth regulating substance, on transport within a plant, a wheat leaf was fed a constant level of radioactive carbon dioxide for five minutes. The radioactive discharge was then measured every minute for 23 hours. The data, consisting of ten minute averages of Geiger counts, are plotted against time in figure 4.4.1. The theory of transport in the leaf predicts that the discharge decays as a sum of exponentials (Bauermeister, Dale, Williams, Scobie, 1980).

\subsection*{4.4.2 Regression with independent errors}

Initially, the vector of observations, denoted \(\underset{\sim}{y}\), were assumed independently normally distributed with mean \(\underset{\sim}{f}\) where
\[
f_{i}=\beta_{1} e^{-\beta_{2}(10 i-5)}+\beta_{3} e^{-\beta_{4}(10 i-5)}
\]
for \(i=1, \ldots, 138\),
and the \(i\) th observation has a variance of \(\tau^{2} f_{i}\). The choice of weighting for the variances was made because of the Poisson form of sampling variability inherent in radioactive emissions and for empirical reasons, arising from the observed scatter in the data revealed in some exploratory plots which are not included in this thesis. Estimation of the parameters by minimization of \(L_{M}\), by the use of REGAME, gave the parameter estimates in table 4.4.1. The fitted curve is shown in figure 4.4.1. The autocorrelation and GPA coefficients of the weight-corrected departures of the data from the fitted regression are shown in table 4.4.2. These are sufficiently large to reject the hypothesis of independent errors and their pattern suggests an ARMA \((1,1)\) process as a suitable error model. As for Colquhoun's data, the parameterization as a sum of positively-correlated Markov processes appears to be appropriate.

\subsection*{4.4.3 Regression with weighted \(\operatorname{ARMA}(1,1)\) error model}

With \(t_{i}=i\) for \(i=1, \ldots, 138\), and the same form of weights as in [4.4.2], the results of fitting the model by maximum likelihood estimation are shown in table 4.4.3 and by residual maximum likelihood in table 4.4.4. The regression parameter estimates in tables 4.4.3 and 4.4.4, especially \(\hat{\beta}_{2}\), are quite different from the least-squares estimates. This can also be seen by comparing the curve fitted by residual maximum likelihood estimation which is plotted in figure 4.4 .2 with the least-squares fit plotted in figure 4.4.1. As for Colquhoun's data, the maximum

Table 4.4.1
Dale's data, regression with weighted independent errors, fitted by least-squares estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
estimate
se
\begin{tabular}{ccccc}
\(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\tau^{2}\) \\
\hline 818.0 & 0.0142 & 702.0 & 0.00067 & 0.61 \\
\((21.0)\) & \((0.0006)\) & \((7.0)\) & \((0.00001)\) & \((0.07)\)
\end{tabular}
correlations
\begin{tabular}{lrlrl}
\(\beta_{2}\) & 0.52 & & & \\
\(\beta_{3}\) & -0.02 & 0.69 & & \\
\(\beta_{4}\) & -0.04 & 0.61 & \(\underline{0.93}\) & \\
\(\tau^{2}\) & -0.00 & 0.00 & -0.00 & 0.00
\end{tabular}

Correlation coefficients execceding 0.9 underlined.

Table 4.4.2
Dale's data, regression with weighted independent errors, fitted by least-squares estimation; \(100 \times a u t o c o r r e l a t i o n ~ c o e f f i c i e n t s ~ o f ~\) residuals and \(100 \times\) GPA coefficients.
\begin{tabular}{crrrrr}
\hline Lag & 1 & 2 & 3 & 4 & 5 \\
autocorrelation & \(\underline{72}\) & \(\underline{62}\) & \(\underline{61}\) & \(\underline{56}\) & \(\underline{51}\) \\
GPA & p & 0 & 1 & 2 & 3
\end{tabular}

Autocorrelation and GPA coefficients exceeding 17 (that is 2 standard errors) are underlined.

Figure 4.4.1
Dale's data, regression with weighted independent errors, fitted by least-squares estimation; observed radioactive discharges (\(X\)) and fitted regression curve(-) plotted against time.

Table 4.4.3
Dale's data, regression with weighted ARMA \((1,1)\) error model, fitted by maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } \begin{tabular}{c}
\\
estimate \\
se \\
correlations \\
\(\beta_{2}\)
\end{tabular} & \((309.0\) & 0.0205 & 785.0 & 0.00081 & 0.9 & 1.3 & 1.04 \\
\(\beta_{3}\) & -0.44 & & & & & & \\
\(\beta_{4}\) & -0.43 & 0.57 & & & & & \\
\(\alpha_{1}\) & -0.43 & 0.49 & 0.80 & & & & \\
\(\alpha_{2}\) & -0.25 & 0.36 & 0.41 & 0.42 & & & \\
\(\tau^{2}\) & -0.27 & 0.32 & \(0.0006)\) & \((0.2)\) & \((0.1)\) & \((0.64)\) \\
& & & 0.40 & 0.44 & 0.96 & 0.89 & \\
\hline
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Table 4.4.4
Dale's data, regression with weighted \(\operatorname{ARMA}(1,1)\) errors model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } estimate & 806.0 & 0.0210 & 816.0 & 0.00084 & 1.41 & 1.50 & 18.2 \\
se & \((74.0)(0.0020)\) & \((157.0)\) & \((0.00013)\) & \((0.77)\) & \((0.36)\) & \((175.0)\) \\
correlations & & & & & & & \\
\(\beta_{2}\) & -0.32 & & & & & & \\
\(\beta_{3}\) & 0.72 & 0.12 & & & & & \\
\(\beta_{4}\) & -0.64 & 0.34 & -0.40 & & & \\
\(\alpha_{1}\) & 0.55 & -0.04 & 0.61 & -0.41 & & \\
\(\alpha_{2}\) & 0.55 & -0.06 & 0.61 & -0.41 & \(\underline{0.999}\) & & \\
\(\tau^{2}\) & 0.53 & -0.05 & 0.60 & -0.40 & \(\underline{0.9996}\) & 0.9993 & \\
& & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}

Figure 4.4.2
Dale's data, regression with weighted ARMA(1,1) error model, fitted by residual maximum likelihood estimation; observed radioactive discharges (X), fitted regression curve (----) and predicted values (——) conditional upon earlier observations, plotted against time.

likelinood estimates of \(\alpha_{1}\) and \(\alpha_{2}\) are lower than the residual maximum likelihood estimates and this is probably the reason why regression parameter standard errors derived by maximum likelihood estimation are smaller. The improvement in fit over the model with independent errors, as measured by \(L_{M}\) decreasing from 458.7 to 385.3 , is sufficient to reject the hypothesis of independent errors on the basis of the asymptotic properties of the likelinood ratio test. The residuals have very small autocorrelations at low lags, and so an \(\operatorname{ARMA}(1,1)\) process appears to model adequately the correlation structure in the errors. The maximum likelihood estimate of the autocorrelation function is
\[
\hat{\rho}(u)=0.89(0.976)^{u} \quad \text { for } u>0,
\]
and the residual maximum likelinood estimate is
\[
\hat{\rho}(u)=0.994(0.9987)^{u} \quad \text { for } u>0 .
\]

The high correlations are a cause for concern as they were for Colquhoun's data in [4.3.4], although in this case \(L_{R}\) does have a minimum. The same reasons may be given here as in [4.3.4] for continuing with the present model.

\subsection*{4.4.4 Adjusted least-squares standard errors}

The differences in the estimates of \(\underset{\sim}{\beta}\) between table 4.4.1 and tables 4.4 .3 and 4.4 .4 may be because of the improvement in efficiency of maximum likelihood estimation compared with that of least-squares. On the assumption that the regression function is approximately linear in its parameters close to the best fitting value, the weighted least-squares estimate of \(\underset{\sim}{\beta}\) is
\[
\begin{align*}
& \underset{\sim}{x}=\underset{\sim}{\sim} /\left.\underset{\sim}{\partial \beta^{\top}}\right|_{\underset{\sim}{\beta}={\underset{\sim}{\beta}}^{*}} \text {, } \tag{4.4.1}
\end{align*}
\]
where
\(\underset{\sim}{W}\) is a diagonal matrix with \(W_{i j}=\checkmark f_{i},{\underset{\sim}{\beta}}^{\star}\) is an arbitrary value of the vector of regression parameters close to the best fitting value, and \(\underset{\sim}{f *}\) is the corresponding value of the regression vector. Therefore, if \(\underset{\sim}{y}\) has a variance \(\tau^{2} \underset{\sim}{V}\), then On the assumption that \(\underset{\sim}{V}\) has the same \(\operatorname{ARMA}(1,1)\) structure as in [4.4.3], its parameters \((\underset{\sim}{a})\) can be estimated using the departures of the data from the least-squares fitted regression. The maximum likelihood estimate of the error parameters and standard errors, and the least-squares estimated regression parameters with standard errors calculated using equation (4.4.2), are given in table 4.4.5. The corresponding residual maximum likelihood estimates are given in table 4.4.6. The standard errors are not large enough to account for the difference with tables 4.4.3 and 4.4.4.

The maximum likelihood and residual maximum likelihood estimators of the regression parameters, which were discussed in [4.4.3], can also be expressed approximately as linear functions of the observation vector \(\underset{\sim}{y}\), analoguous to equation (4.4.1). Approximate correlations between these estimators and the leastsquares regression estimators can then be calculated and the multivariate distance between different estimates of \(\underset{\sim}{\beta}\) obtained. The squared Mahalanobis distance between the least-squares and maximum likelihood estimates is 22.0, which exceeds the 95 percentile of \(x_{4}^{2}\) (which is 9.5), and so is large enough to reject the hypothesis that the two estimators are both estimating \(\underset{\sim}{\beta}\), on the assumption that the errors arose from an \(\operatorname{ARMA}(1,1)\) process. A similar conclusion holds in a comparison between the least-squares and residual maximum likelihood estimates for which the Mahalanobis

Table 4.4.5
Dale's data, \(\operatorname{ARMA}(1,1)\) error model fitted by maximum likelihood estimation to residuals after least-squares fit of regression, variances of regression parameter estimators recalculated; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline estimate & 818.0 & 0.0142 & 702.0 & 0.00067 & 0.7 & 1.1 & 0.73 \\
\hline se & (42.0) & (0.0017) & (31.0) & (0.00005) & (0.2) & (0.2) & (0.32) \\
\hline \multicolumn{8}{|l|}{correlations} \\
\hline \(\beta_{2}\) & -0.05 & & & & & & \\
\hline \(\beta_{3}\) & -0.42 & 0.56 & & & & & \\
\hline \(\beta_{4}\) & -0.40 & 0.57 & 0.90 & & & & \\
\hline \multicolumn{8}{|l|}{\(\alpha_{1}\)} \\
\hline \(\alpha_{2}\) & & & & & 0.53 & & \\
\hline \(\tau^{2}\) & & & & & 0.87 & 0.80 & \\
\hline
\end{tabular}

\section*{Table 4.4.6}

Dale's data, ARMA(1,1) error model fitted by residual maximum likelihood estimation to residuals after least-squares fit of regression, variances of parameter estimators recalculated; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \({ }_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline estimate & 818.0 & 0.0142 & 702.0 & 0.00067 & 1.51 & 1.54 & 116.0 \\
\hline se & (151.0) & (0.0027) & (284.0) & (0.00023) & (0.24) & (0.13) & (14.0) \\
\hline \multicolumn{8}{|l|}{correlations} \\
\hline \(\beta_{2}\) & -0.32 & & & & & & \\
\hline \(\beta_{3}\) & 0.86 & -0.04 & & & & & \\
\hline \(\beta_{4}\) & -0.78 & 0.47 & -0.59 & & & & \\
\hline \(\alpha_{1}\) & - & & & & & & \\
\hline \(\alpha_{2}\) & & & & & 0.997 & & \\
\hline \(\tau^{2}\) & & & & & 0.9995 & 0.999 & \\
\hline
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}
squared distance is 16.1 . Therefore, either asymptotic properties are not being closely approximated, or the errors are not from an \(\operatorname{ARMA}(1,1)\) process, or equivalently (see [1.1.2]) the regression function is inappropriate.

\subsection*{4.4.5 Simulation to compare estimation methods}

The validity of asymptotic approximations can be tested by simulation. To compare the estimation methods, ten independent series were generated in an analogous fashion to that described in [4.3.5], but this time the series were of length 138 and used the regression function in [4.4.2] with a weight-corrected stationary ARMA(1,1) model for the errors with, as parameter values, the estimates from Dale's data given in table 4.4.4. Separately, to each series of data, the regression model of [4.4.2] was fitted by four methods: (1) least-squares estimation, but with standard errors recalculated after an ARMA \((1,1)\) process had been fitted by maximum likelihood estimation to the departures of the data from the fitted regression as described in [4.4.4], denoted LS/ML; (2) least-squares estimation as above, but with the \(\operatorname{ARMA}(1,1)\) process fitted by residual maximum likelihood estimation, denoted LS/REML; (3) joint maximum likelihood estimation of both the regression and the ARMA \((1,1)\) process, denoted ML; and (4) joint residual maximum likelihood estimation of both the regression and the \(\operatorname{ARMA}(1,1)\) process, denoted REML. These are the four methods of estimation that have already been applied to Dale's data. Because of the heavy use of computer CPU time in fitting the models only ten series were simulated.

The results are summarized in table 4.4.7 using the summary statistics previously defined in [4.3.5]. None of the biases in

Table 4.4.7
Summary statistics derived from ten simulations of a regression with ARMA \((1,1)\) error model, using as model parameters the estimates given in table 4.4.6, fitted by least-squares estimation and the error process by maximum likelihood estimation (LS/ML) or residual maximum likelihood estimation (LS/REML), full maximum likelihood estimation (ML) and residual maximum likelihood estimation (REML).
\begin{tabular}{lllllll}
\({ }^{\beta_{1}}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline
\end{tabular}
bias
\begin{tabular}{lrrrrrrr}
LS/ML & -4.0 & -0.0005 & 12.0 & -0.0000 & \(\underline{-0.9}\) & \(-\underline{-0.6}\) & \(-\underline{-18.0}\) \\
LS/REML & -4.0 & -0.0005 & 12.0 & -0.0000 & \(\underline{-0.5}\) & \(\underline{-0.3}\) & -3.0 \\
ML & -2.0 & -0.0003 & 14.0 & 0.0000 & \(\underline{-0.9}\) & \(\underline{-0.6}\) & \(-\underline{-18.0}\) \\
REML & 71.0 & -0.0007 & 324.0 & -0.0001 & 0.1 & 0.0 & \(\underline{1100.0}\)
\end{tabular}
\(\frac{\text { r.m.s.e. }}{\text { LS/ML }}\)
\begin{tabular}{lrrrrrrr}
LS/ML & 26.0 & 0.0024 & 51.0 & 0.00006 & 0.9 & 0.6 & 19.0 \\
LS/REML & 26.0 & 0.0024 & 51.0 & 0.00006 & 0.6 & 0.4 & 21.0 \\
ML & 22.0 & 0.0018 & 51.0 & 0.00006 & 0.9 & 0.6 & 18.0 \\
REML & 207.0 & 0.0019 & 646.0 & 0.00027 & 0.2 & 0.1 & 1500.0
\end{tabular}
average se
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LS/ML & 32.0 & 0.0018 & 20.0 & 0.00003 & 0.2 & 0.2 & 0.2 \\
\hline LS/REML & 54.0 & 0.0027 & 85.0 & 0.00009 & 0.3 & 0.2 & 12.0 \\
\hline ML & 30.0 & 0.0013 & 19.0 & 0.00003 & 0.2 & 0.2 & 0.2 \\
\hline REML & 129.0 & 0.0011 & 465.0 & 0.00017 & 0.1 & 0.05 & 450.0 \\
\hline
\end{tabular}

Biases significant at \(5 \%\) level, i.e. exceeding \(60 \%\) of r.m.s.e. underlined. Mean se's less than \(80 \%\) of r.m.s.e. underlined. The three summary statistics are defined in [4.3.5].
the regression parameter estimators is significant at the \(5 \%\) level, so the differences in estimates between table 4.4.1 and tables 4.4.3 and 4.4.4 remain unexplained. As with Colquhoun's data, \(\alpha_{1}\) and \(\alpha_{2}\) appear to be underestimated by maximum likelihood estimation. The average ses are smaller than the r.m.s.e.s with all the estimation methods and so are overestimating the precision of the parameter estimators. In ML, the average decrease in \(L_{M}\) from the true model to the estimated model is 6.0 which exceeds the 95 percentile of \(\frac{1}{20} \chi_{50}^{2}\) which is 4.0 , so the true model is rejected on the basis of the likelihood ratio test. In REML, the change in \(L_{R}\) of 2.3 is close to its expected value of 3.0 and the true model is not rejected. Therefore, as with the simulation in [4.3.5], the likelihood surface for \(L_{R}\) appears to provide a better measure of precision of estimation than do the standard errors based on a quadratic approximation.

\subsection*{4.4.6 Likelihood-based marginal confidence intervals}

Marginal confidence intervals for the regression parameters were calculated using the standard errors in table 4.4.4, and also directly from the likelihood surface as described in [4.3.6]. The results are given in table 4.4 .8 and show that the quadratic approximation is underestimating the standard errors. This is consistent with the simulation results.

\subsection*{4.4.7 Regression with non-stationary error model}

Simulation has not shown the asymptotic properties to be far off the truth, so the inconsistencies between estimators must be due to the assumed model being inappropriate.

Examination of figure 4.4.1 and also of the line printer plots generated by REGAME (which have not been included in the thesis) indicate that the weight-corrected departures of the data from the least-squares fitted regression are not stationary: the departures show much greater changes in magnitude at the start of the series than at later times. When the errors were assumed to be stationary, the fitted regression function was adjusted so that the sample correlation coefficients among the departures at the start of the series increased. This can be seen in the departures of the data from the fitted curve in figure 4.4.2.

Therefore, as an experiment, the covariance model was modified by allowing the first three observations to be independent of the rest of the data which were once again modelled by an \(\operatorname{ARMA}(1,1)\) process. This model corresponds to a \(\operatorname{GARMA}(1,1)\) process. The parameters were estimated by residual maximum likelihood estimation and the results are given in table 4.4.9. The regression parameter estimates are a compromise between those given in tables 4.4.1 and 4.4.4 with the new estimate of \(\beta_{2}\) in particular being much closer to the least-squares estimate. The fit is a slight improvement on the stationary model: \(L_{R}\) has decreased from 367.5 to 367.0 .

Once the possibility has been admitted that the error process is non-stationary, the number of alternative models from which to choose is enormous. The effects of different selections on the regression parameter estimators may be large, but the data are of little assistance in making the choice.

Table 4.4.8
Dale's data, regression with weighted \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; \(95 \%\) marginal confidence intervals based on quadratic approximation and derived directly from the likelihood surface.
\begin{tabular}{|c|c|c|c|c|}
\hline & & al conf
\[
\beta_{2}
\] & \[
\begin{aligned}
& 1 \text { in } \\
& \beta_{3}
\end{aligned}
\] & \[
\begin{array}{r}
\text { for } \\
\beta_{4}
\end{array}
\] \\
\hline \multicolumn{5}{|l|}{quadratic approximation} \\
\hline lower & 661.0 & 0.0171 & 509.0 & 0.00059 \\
\hline upper & 950.0 & 0.0250 & 1123.0 & 0.00110 \\
\hline
\end{tabular}
likelihood surface
lower
\(\begin{array}{llll}523.0 & 0.0175 & 398.0 & 0.00039\end{array}\)
upper
\[
\begin{array}{llll}
1174.0 & 0.0258 & 2034.0 & 0.00125
\end{array}
\]

\section*{Table 4.4.9}

Dale's data, regression with weighted \(\operatorname{ARMA}(1,1)\) error model excluding the first three errors which are taken to be independent, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } \begin{tabular}{c}
est imate \\
se
\end{tabular} & 749.0 & 0.0156 & 779.0 & 0.00078 & 1.1 & 1.4 & 2.2 \\
& \((49.0)\) & \((0.0025)\) & \((43.0)\) & \((0.00008)\) & \((0.2)\) & \((0.1)\) & \((2.2)\)
\end{tabular} correlations
\begin{tabular}{lrrrrll}
\(\beta_{2}\) & 0.31 & & & & & \\
\(\beta_{3}\) & -0.53 & 0.37 & & & & \\
\(\beta_{4}\) & -0.11 & 0.56 & 0.54 & & & \\
\(\alpha_{1}\) & -0.44 & -0.48 & 0.07 & -0.37 & & \\
\(\alpha_{2}\) & -0.47 & -0.57 & 0.06 & -0.40 & \(\underline{0.92}\) & \\
\(\tau^{2}\) & -0.44 & -0.49 & 0.05 & -0.35 & \(\underline{0.99}\) & \(\underline{0.95}\)
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}

\begin{abstract}
4.4.8 Resumé

Double exponential regression parameters have been estimated on the assumption that the errors arose from an \(\operatorname{ARMA}(1,1)\) process. The least-squares and residual maximum likelihood estimates were not in agreement. An explanation for the discrepancy was sought in a small simulation experiment but none was found. Further examination of the data revealed a non-stationary error structure, but this opened up the possibility of so many alternative models that the analysis ground to a halt.

The effect on the regression parameter estimates of changing the error model reveals the sensitivity of the method described in this chapter to the assumptions made about \(\underset{\sim}{V}\). This poses a problem because \(V\) is unknown. This data set will be examined further in chapter 67 using a mechanistic error model rather than the empirical model considered here. Finally, in chapter 9 the parameter estimates obtained in this section will be re-used, but more generally valid estimates of the regression parameter estimator standard errors will be derived.
\end{abstract}
4.5 Bruce's data: energy demand of a mechanical model of a suckler cow

\subsection*{4.5.1 Introduction}

A mechanical model of a suckler cow was built to measure the integrated energy demand of a real suckler cow (Burnett and Bruce, 1978; Bruce, 1980). Every hour for seven months between October and April the energy required to maintain the model at \(39^{\circ} \mathrm{C}\) was
measured together with four climatic variables: temperature, radiation, wind speed, and rainfall. The objective was to relate the energy demand to the climatic variables and so be able to predict the energy demand of a suckler cow in any similar climatic environment.

The data were averaged over each 24 hours which reduced the number of observations to 200. The energy demand was standardized to unit surface area of model and log-transformed to standardize the variances because there was a greater scatter to the data at the higher energy levels. The log-transformed energy demand is plotted against time in figure 4.5.1. Consideration of the physics of energy balance and fluid flow led to the selection of a particular regression function with four unknown parameters:
\[
\ln \left[\frac{39-\text { temperature }-\beta_{1} \text { radiation } /(5.3+7 \text { wind }}{}{ }^{0.6}\right),
\]

Because the optimization routine used in REGAME requires continuous first derivatives with respect to the parameters the coefficient of \(\beta_{2}\) between curly brackets was approximated by:
\[
1-\beta_{4}+10^{-2} \ln \left(1+e^{\left(\beta_{4}-\beta_{3} r a i n\right) / 10^{-2}}\right)
\]

\subsection*{4.5.2 Regression with independent errors}

Initially, the observations \(\underset{\sim}{y}\), that is the log-transformed energy demands per unit surface area of model, were assumed independently normally distributed with mean \(\underset{\sim}{f}\) and variance \(\tau^{2}{ }_{\sim}\). The least-squares estimated parameters are given in table 4.5.1 and the fitted curve is plotted in figure 4.5.1. The autocorrelation and GPA coefficients of the departures of the data from the regression function are given in table 4.5.2. These are

Bruce's data, regression with independent errors, fitted by least-squares estimation; observed log-energy demand (\(X\)) and fitted regression curve (-) plotted against time.

Table 4.5.1
Bruce's data, regression with independent errors, fitted by leastsquares estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 0.75 & 0.068 & 1.6 & 0.57 & 0.0013 \\
se & \((0.05)\) & \((0.001)\) & \((0.1)\) & \((0.04)\) & \((0.0001)\)
\end{tabular}
correlations
\[
\beta_{2}
\]
0.05
\(\beta_{3}\).
\(0.18 \quad 0.34\)
\(\beta_{4}\)
\(\tau^{2}\)
\begin{tabular}{ll}
0.07 & 0.20 \\
0.00 & 0.00
\end{tabular}
0.30
0.00
0.00
\(0.00 \quad 0.00\)

Table 4.5.2
Bruce's data, regression with independent errors, fitted by leastsquares estimation; 100×autocorrelation coefficients of residuals and \(100 \times\) GPA coefficients.
\begin{tabular}{crrrrr}
\hline Lag & 1 & 2 & 3 & 4 & 5 \\
autocorrelation & \(\underline{35}\) & \(\underline{25}\) & \(\underline{28}\) & \(\underline{32}\) & \(\underline{31}\) \\
GPA & \(p\) & 0 & 1 & 2 & 3
\end{tabular}

Autocorrelation and GPA coefficients exceeding 14 (that is 2 standard errors) are underlined.
sufficiently large to reject the hypothesis of independent errors and their pattern suggests an \(\operatorname{ARMA}(1,1)\) model with the parameterization as a sum of positively-correlated Markov processes specified in [4.2.4].

\subsection*{4.5.3 Regression with ARMA(1,1) error model}

The results of jointly estimating regression and error parameters by maximum likelihood are given in table 4.5.3 and by residual maximum likelihood in table 4.5.4. The regression function fitted by residual maximum likelihood estimation and the predicted fit using past observations (as described in [2.3.6]) are plotted in figure 4.5.2. The improvement in fit over the model with independent errors, as measured by \(L_{M}\) decreasing from -564.2 to -589.8 , is sufficient to reject the hypothesis of independent errors on the basis of the asymptotic properties of the likelinood ratio test. The residuals have very small autocorrelations at low lags, and so an \(\operatorname{ARMA}(1,1)\) process appears to model adequately the correlation structure in the errors. The maximum likelihood and residual maximum likelihood estimates are in good agreement on this occasion, possibly because \(\alpha_{2}\) is no longer close to \(\pi / 2\). However, the regression parameter estimates in tables 4.5 .3 and 4.5.4 are substantially different from those in table 4.5.1.

To investigate whether this discrepancy is caused by the inefficiency of the least-squares estimators, an \(\operatorname{ARMA}(1,1)\) model was fitted to the least-squares residuals. The standard errors of the least-squares regression parameter estimators were then adjusted, as described in [4.4.4]. The results of maximum likelihood estimation are given in table 4.5.5 and of residual

Table 4.5.3
Bruce's data, regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } estimate & 0.61 & 0.067 & 1.3 & 0.48 & -0.0 & 0.9 & 0.0014 \\
se & \((0.08)\) & \((0.003)\) & \((0.1)\) & \((0.04)\) & \((0.2)\) & \((0.2)\) & \((0.0003)\)
\end{tabular}
correlations
\begin{tabular}{lrrrrrr}
\(\beta_{2}\) & -0.01 & & & & & \\
\(\beta_{3}\) & 0.04 & -0.15 & & & & \\
\(\beta_{4}\) & 0.02 & -0.23 & 0.54 & & & \\
\(\alpha_{1}\) & -0.09 & -0.13 & -0.14 & -0.16 & & \\
\(\alpha_{2}\) & -0.37 & -0.06 & 0.08 & 0.10 & 0.26 & \\
\(\tau^{2}\) & -0.20 & -0.11 & -0.06 & -0.07 & 0.75 & 0.55
\end{tabular}

Table 4.5.4
Bruce's data, regression with ARMA \((1,1)\) error model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
estimate
se
correlations
\begin{tabular}{lrrrrrr}
\(\beta_{2}\) & 0.01 & & & & & \\
\(\beta_{3}\) & 0.02 & -0.22 & & & & \\
\(\beta_{4}\) & 0.01 & -0.31 & 0.54 & & & \\
\(\alpha_{1}\) & -0.15 & -0.17 & -0.08 & -0.09 & & \\
\(\alpha_{2}\) & -0.38 & -0.13 & 0.11 & 0.13 & 0.47 & \\
\(\tau^{2}\) & -0.24 & -0.16 & -0.01 & -0.01 & 0.84 & 0.69
\end{tabular}

\section*{Figure 4.5.2}

Bruce's data, regression with. \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; observed log-energy demands (X), fitted regression curve (----) and predicted values (——) conditional upon earlier observations, plotted against time.

Table 4.5.5
Bruce's data, \(\operatorname{ARMA}(1,1)\) error model fitted by maximum likelihood estimation to residuals after least-squares fit of regression, variances of regression parameter estimators recalculated;
parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } estimate & 0.75 & 0.068 & 1.6 & 0.57 & -0.2 & 0.9 & 0.0013 \\
se & \((0.10)\) & \((0.002)\) & \((0.2)\) & \((0.05)\) & \((0.2)\) & \((0.2)\) & \((0.0002)\) \\
crrelations & & & & & & & \\
\(\beta_{2}\) & -0.05 & & & & & & \\
\(\beta_{3}\) & 0.10 & 0.07 & & & & & \\
\(\beta_{4}\) & 0.13 & -0.11 & 0.35 & & & &
\end{tabular}
\(\alpha_{1}\)
\begin{tabular}{llll}
\(\alpha_{2}\) & & 0.14 & \\
\(\tau^{2}\) &. & 0.63 & 0.42
\end{tabular}

Table 4.5.6
Bruce's data, ARMA \((1,1)\) error model fitted by residual maximum likelihood to residuals after least-squares fit of regression, variances of regression parameter estimators recalculated; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } estimate & 0.75 & 0.068 & 1.6 & 0.57 & -0.2 & 0.9 & 0.0014 \\
se & \((0.11)\) & \((0.002)\) & \((0.2)\) & \((0.05)\) & \((0.2)\) & \((0.2)\) & \((0.0002)\)
\end{tabular}
correlations
\(\beta_{2} \quad-0.06\)
\(\beta_{3}\)
\(0.11 \quad 0.20\)
\(\beta_{4}\)
\(\begin{array}{lll}0.15 & -0.14 & 0.39\end{array}\)
\({ }^{\alpha} 1\)
\begin{tabular}{lll}
\(\alpha_{2}\) & 0.30 & \\
\(\tau^{2}\) & 0.71 & 0.54
\end{tabular}
maximum likelihood estimation in table 4.5.6. The squared Mahalanobis distance between the least-squares and residual maximum likelihood estimates was computed as in [4.4.4]. The value of 9.7 is close to the 95 percentile of \(x_{4}^{2}\) (which is 9.5) and so is large enough to cast doubt on the hypothesis that the two estimators are both estimating \(\underset{\sim}{\beta}\), on the assumption that the errors arose from an \(\operatorname{ARMA}(1,1)\) process. Therefore, as with the analysis of Dale's data, either asymptotic properties are not being closely approximated, or the errors are not from an \(\operatorname{ARMA}(1,1)\) process.

\subsection*{4.5.4 Simulation to compare estimation methods}

To compare the estimation methods, ten independent series were generated in an analogous fashion to that described in [4.3.5], but this time the series were of length 200 and used the regression function in [4.5.1] with an \(\operatorname{ARMA}(1,1)\) model for the errors with, as parameter values, the estimates from Bruce's data given in table 4.5.4. Separately, to each series, the regression model of [4.5.1] was fitted by the same four methods described in [4.4.5]. Once again, because of the heavy use of computer CPU time in fitting the models only ten series were simulated. It is recognised that sampling variability will remain a large component of the summary statistics derived from such a small sample, but the earlier experiences in [4.3.5] and [4.4.5] suggest that valuable information can still be extracted.

The results are given in table 4.5.7 using the summary statistics previously defined in [4.3.5]. There are no biases in the regression parameter estimates significant at the \(95 \%\) level so

Table 4.5.7
Summary statistics derived from ten simulations of a regression with ARMA \((1,1)\) error model, using as model parameters the estimates given in table 4.5.6, fitted by least-squares estimation and the error process by maximum likelihood estimation (LS/ML) or residual maximum likelihood estimation (LS/REML), full maximum likelihood estimation (ML) and residual maximum likelihood estimation (REML).
\begin{tabular}{lllllll}
\({ }^{{ }^{\beta}} 1\) & \({ }^{\beta_{2}}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{2}\) & \(\tau^{2}\) \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
bias & & & & & & & \\
LS/ML & 0.02 & 0.000 & 0.1 & 0.02 & -0.1 & -0.1 & 0.0000 \\
LS/REML & 0.02 & 0.000 & 0.1 & 0.02 & -0.0 & -0.1 & 0.0001 \\
ML & 0.00 & 0.000 & 0.1 & 0.01 & 0.1 & -0.0 & 0.0001 \\
REML & 0.00 & 0.000 & 0.1 & 0.01 & 0.1 & 0.0 & 0.0003 \\
r.m.s.e. & & & & & & & \\
LS/ML & 0.17 & 0.002 & 0.3 & 0.06 & 0.2 & 0.2 & 0.0003 \\
LS/REML & 0.17 & 0.002 & 0.3 & 0.06 & 0.2 & 0.2 & 0.0004 \\
ML & 0.09 & 0.002 & 0.2 & 0.03 & 0.2 & 0.2 & 0.0004 \\
REML & 0.09 & 0.003 & 0.2 & 0.03 & 0.2 & 0.2 & 0.0005
\end{tabular}
average se
\begin{tabular}{llllllll}
LS/ML & \(\frac{0.13}{}\) & 0.003 & \(\underline{0.2}\) & 0.06 & 0.2 & 0.2 & 0.0003 \\
LS/REML & 0.15 & 0.003 & 0.3 & 0.06 & 0.2 & 0.2 & 0.0004 \\
ML & 0.07 & 0.003 & \(\underline{0.2}\) & 0.05 & 0.2 & \(\frac{0.2}{0.0004}\) & 0.00 \\
REML & 0.07 & 0.004 & 0.2 & 0.05 & 0.3 & 0.0 & 0.0007 \\
\hline
\end{tabular}

Biases significant at \(5 \%\) level, i.e. exceeding \(60 \%\) of r.m.s.e. underlined. Mean se's less than \(80 \%\) of r.m.s.e. underlined. The three summary statistics are defined in [4.3.5].
the differences in estimates between table 4.5.1 and tables 4.5.3 and 4.5 .4 remain unresolved. The standard errors appear to be of the correct magnitude agreeing well with the r.m.s.e.s, so for this data set it would appear to be unnecessary to obtain marginal confidence intervals directly from the likelihood surface.

\subsection*{4.5.5 Regression with non-stationary error model}

There is no a priori justification for the assumption that the error process is stationary. In part, the errors arise from the variability in other climatic variables that were not incorporated into the regression function, and climatic variables in general are known not to be stationary over as long a period as 200 days. The autocorrelation coefficients at lags one and two, calculated separately for each quarter of the series of departures of the data from the regression function fitted by residual maximum likelihood, also cast doubt on the assumption of stationarity. These are displayed in table 4.5.8.

To explore the possibility of the error process being non-stationary, the \(\operatorname{ARMA}(1,1)\) model was generalized. In the stationary model, fitted in [4.5.3], elements in the variance matrix are of the form:
\[
v_{i j}=\kappa e^{(i-j) \lambda} \quad \text { if } i>j
\]
which can be re-expressed as
\[
v_{i j}=\kappa \prod_{\ell=j}^{i-1} e^{\lambda} \quad \text { if } i>j
\]

This can be generalized to a non-stationary model by allowing \(k\) and \(\lambda\) to be time dependent, to give
\[
V_{i j}=\downarrow(k(i) k(j)) \prod_{\ell=j}^{i-1} e^{\lambda(\ell)} \quad \text { if } \quad i>j
\]

Table 4.5.8
Bruce's data, regression with ARMA(1,1) error model, fitted by residual maximum likelihood estimation; \(100 \times a u t o c o r r e l a t i o n\) coefficients of departures of data from fitted regression, separately for each quarter of data.
\(100 \times\) autocorrelation coefficients
\(\begin{array}{lllll}\text { quarter } & 1 & 2 & 3 & 4\end{array}\)
lag
\begin{tabular}{lllll}
1 & 18 & 88 & 28 & 53 \\
2 & 20 & 76 & 21 & 21
\end{tabular}
where, for example,
\[
\begin{aligned}
x(\ell) & =\frac{1}{2}+\frac{1}{2} \sin \left(\alpha_{1}+\alpha_{1}^{*} \ell\right) \\
\mathrm{e}^{\lambda(\ell)} & =\frac{1}{2}+\frac{1}{2} \sin \left(\alpha_{2}+\alpha_{2}^{*} \ell\right)
\end{aligned}
\]
and \(\alpha_{1}^{*}\) and \(\alpha_{2}^{*}\) are two additional parameters which determine the non-stationarity in the error process. In particular, if \(\underset{\sim}{\alpha}{ }^{\star}=\underset{\sim}{0}\), then the model simplifies to its stationary form. This model serves as a simple non-stationary generalization of an \(\operatorname{ARMA}(1,1)\) process of the form given in [4.2.4], whilst retaining the GARMA \((1,1)\) property because
\[
v_{i j}=\left(\gamma_{k}(i) \underset{\ell=1}{i-1} e^{\lambda(\ell)}\right)\left(\gamma_{k}(j) \underset{\ell=1}{j-1} e^{-\lambda(\ell)}\right) \quad \text { if } \quad i>j
\]

The regression and error parameters were estimated by residual maximum likelihood and the estimates are given in table 4.5.9. The decrease in \(L_{R}\) from -577.7 to -583.2 is sufficiently large to reject the hypothesis of a stationary \(\operatorname{ARMA}(1,1)\) error process, on the basis of a likelihood ratio test, because the 95 percentile of \(\frac{1}{2} x_{2}^{2}\) (which is 3.0) is exceeded.

Once the possibility has been admitted that the error process is non-stationary, the choice of model becomes daunting. Unless further information is available about the error process the problem appears to be intractable.

\subsection*{4.5.6 Resumé}

Regression parameters have been estimated on the assumption that the errors arose from an \(\operatorname{ARMA}(1,1)\) process. The least-squares and residual maximum likelihood estimates were not in agreement. An explanation for the discrepancy was sought in a small simulation experiment but none was found. Further

\section*{Table 4.5.9}

Bruce's data, regression with non-stationary \(\operatorname{ARMA}(1,1)\) error model, fitted by residual maximum likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\alpha_{1}\) & \(\alpha_{1}^{\star}\) & \(\alpha_{2}\) & \(\alpha_{2}^{\star}\) & \(\tau^{2}\) \\
\cline { 2 - 10 } & 0.54 & 0.068 & 1.3 & 0.47 & 0.6 & -0.003 & 1.4 & -0.002 & 0.0019 \\
estimate \\
se & \((0.09)\) & \((0.006)\) & \((0.2)\) & \((0.05)\) & \((0.4)\) & \((0.002)\) & \((0.2)\) & \((0.003)\) & \((0.0010)\) \\
correlations \(^{\beta_{2}}\) & 0.30 & & & & & & & \\
\(\beta_{3}\) & -0.18 & -0.52 & & & & & & \\
\(\beta_{4}\) & -0.20 & -0.63 & 0.56 & & & & & \\
\(\alpha_{1}\) & -0.52 & -0.66 & 0.39 & 0.42 & & & & \\
\(\alpha_{1}^{\star}\) & 0.08 & 0.01 & 0.01 & 0.00 & -0.19 & & & \\
\(\alpha_{2}\) & -0.05 & 0.16 & 0.09 & -0.00 & -0.16 & 0.54 & & \\
\(\alpha_{2}^{\star}\) & -0.43 & -0.65 & 0.34 & 0.45 & 0.81 & -0.31 & -0.53 & \\
\(\tau^{2}\) & -0.53 & -0.66 & 0.43 & 0.46 & 0.91 & 0.15 & 0.10 & 0.72 \\
& & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}
examination of the data revealed a non-stationary error structure, but this opened up the possibility of so many alternative models that the analysis ground to a halt.

In chapter 9, the parameter estimates obtained in this section will be re-used, but more generally valid estimates of the regression parameter estimator standard errors will be derived.

\subsection*{4.6 Discussion}

The basic technique presented in this chapter is to fit a regression function to a series of observations by least-squares estimation, identify an ARMA model of suitable order by examination of the sample autocorrelations of the departures of the data from the fitted regression, and then jointly estimate the regression and error model parameters by maximum likelihood or residual maximum likelihood. The experience in applying the technique to three data sets shows that the method is not as simple as it seems. The only satisfactory analysis was of Colquhoun's data, for which a double exponential regression with \(\operatorname{ARMA}(1,1)\) errors appeared to fit adequately. When a single exponential regression was fitted instead, problems were encountered in confounding between regression and error model parameters when estimating by maximizing the residual log-likelinood. For Dale's and Bruce's data inconsistencies between least-squares and maximum likelihood estimators of the regression parameters were encountered and were attributed to the lack of stationarity in the error processes. This highlights the major problem when estimating regression
parameters in the presence of unknown error covariances: the technique rests heavily upon gross assumptions that are made about the correlation structure of the observations. An impasse has been reached in this chapter and is the motivation for the novel approach taken in chapter 9.

Other points have arisen in the course of fitting models to the data sets. An \(\operatorname{ARMA}(1,1)\) error model has been identified as the most appropriate ARMA process in every data set. Simulations have shown residual maximum likelihood estimation to be preferable to maximum likelihood estimation, and likelihood based marginal confidence intervals to be better than those derived from standard errors using the quadratic approximation to the likelihood surface. The comparison between maximum likelihood estimation and residual maximum likelihood estimation in this type of application warrants further study beyond the limited set of cases considered in this chapter or in the original paper by Cooper and Thompson, (1977) .

\section*{5. Stationary error processes: empirical}
spectral parameterization

\subsection*{5.1 Introduction}

This chapter is a natural sequel to the previous one. There are two dominant strands in the statistical time series literature: the time domain approach with its emphasis on the autocorrelation function; and the frequency domain approach with the spectral function at its heart. In chapter 4, the error process associated with a regression model was modelled empirically by specifying an autocorrelation function, and in this chapter it is modelled empirically by specifying a spectral function.

Robinson (1978) states that in certain situations it is easier to parameterize the spectrum than the autocorrelation function of a stationary process. He estimated the spectral parameters by maximizing a pseudo-likelihood, derived asymptotic variances of parameter estimators, and proved that the estimators are efficient when the data are multivariate normally distributed.

In section 5.2 the pseudo-likelihood is shown to be an approximation to the Gaussian likelihood, and it is demonstrated that the regression and spectral parameters can be estimated by minimizing \(L_{p}\), the negative of the logarithm of the pseudolikelihood, using REGAME. A technique analogous to that in chapter 4 is proposed; that is initially fit a regression function by least-squares estimation, identify an appropriate spectral function by examination of the periodogram of the departures of the data from the fitted regression, and then jointly estimate the regression and spectral parameters by minimizing \(L_{p}\). The
technique is explored in section 5.3 by fitting a double exponential regression model to Colquhoun's data which were also used in section 4.3. The other two data sets in chapter 4 have not been re-used because the error processes were shown to be non-stationary, so the technique in this chapter is inappropriate.

Although the basic technique in chapter 4 is not new, the frequency domain approach in this chapter does appear to be original.

\subsection*{5.2 Theory}

\subsection*{5.2.1 Model}

The model to be considered is for a sequence of observations \(y_{1}, \ldots, y_{n}\) (denoted \(\underset{\sim}{y}\)) which have been made at times \(1,2, \ldots, n\) on a single experimental subject. (This is rather more restrictive than [4.2.1] where observation times were allowed to be unequally spaced.) It is assumed that \(\underset{\sim}{y}\) is a realisation from a multivariate normal distribution with mean \(\underset{\sim}{f}\) and variance \(\tau^{2} \underset{\sim}{V}\), where
\[
\left({\underset{\sim}{W}}^{-1} \underset{\sim}{v}{\underset{\sim}{W}}^{-1}\right)_{j k}=\rho_{j-k}=\rho_{k-j},
\]
and \(\underset{\sim}{W}\) is a diagonal matrix of weights. Therefore, the vector of weight-corrected departures, denoted \(\underset{\sim}{a}\left(=\underset{\sim}{\underset{\sim}{w}}{ }^{-1}(\underset{\sim}{y}-\underset{\sim}{f})\right)\), is a finite realisation of what is supposed to be a stationary process of infinite length with autocorrelation \(\rho_{\ell}\) for any integer lag \(\ell\). The theoretical spectrum \((\underset{\sim}{d})\), denoted \(d_{g}\) at frequency \((g-1) / n\), is defined as
\[
\begin{equation*}
d_{g}=\tau^{2} \sum_{\ell=-\infty}^{\infty} \rho_{\ell} e^{2 \pi \imath \ell(g-1) / n} \tag{5.2.1}
\end{equation*}
\]
\[
\text { for } g=1, \ldots, n \text {, }
\]
where 1 is defined to be \(\checkmark(-1)\), and the periodogram (\(\underset{\sim}{D}\)), denoted \(D_{g}\) at frequency \((g-1) / n\), is defined as
\[
D_{g}=\left|\frac{1}{\sqrt{n}} \sum_{j=1}^{n} a_{j} e^{-2 \pi i j(g-1) / n}\right|^{2}
\]
\[
\begin{equation*}
=\frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} e^{2 \pi i(k-j)(g-1) / n}, \tag{5.2.2}
\end{equation*}
\]
\[
\text { for } g=1, \ldots, n \text {, }
\]
where \(a_{j}\) is the \(j\) th element in \(\underset{\sim}{a}\). These are standard formulae, see for example Priestley (1981a, pp222-226 and 394-397), although different authors use different multiplying constants and frequency scales. In the above notation, \(g\) indexes the sinusoid component which completes (\(g-1\)) cycles in the series of length \(n\).

\subsection*{5.2.2 Derivation of pseudo-likelihood}

The negative log-likelihood of the observations is given in [2.3.2] as
\[
\begin{aligned}
L_{M} & =\frac{n}{2} \ln \tau^{2}+\frac{1}{2} \ln |\underset{\sim}{V}|+\frac{1}{2 \tau^{2}}(\underset{\sim}{y}-\underset{\sim}{f})^{\top} \underset{\sim}{V^{-1}}(\underset{\sim}{y}-\underset{\sim}{f}) \\
& =\frac{1}{2} \ell n\left|\tau^{2} \underset{\sim}{V}\right|+\frac{1}{2 \tau^{2}}{\underset{\sim}{a}}^{\top} \underset{\sim}{w} \underset{\sim}{V^{-1}} \underset{\sim}{w} \underset{\sim}{a}
\end{aligned}
\]
by substituting for \((\underset{\sim}{y}-\underset{\sim}{f})\). With \(\underset{\sim}{H}\) defined as an \(n \times n\) symmetric complex matrix with (\(j, k\)) th coefficient
\[
\begin{equation*}
H_{j k}=\frac{1}{\sqrt{n}} e^{2 \pi i(j-1)(k-1) / n}, \tag{5.2.3}
\end{equation*}
\]
\[
\begin{aligned}
& +\frac{1}{2 \tau^{2}}{\underset{\sim}{a}}^{\top} \underset{\sim}{H}\left(\tau^{2} \underset{\sim}{H} \underset{\sim}{W} \underset{\sim}{W} \underset{\sim}{\underset{\sim}{W}} \underset{\sim}{-1} \underset{\sim}{-}\right)^{-1} \underset{\sim}{\underset{\sim}{\underset{\sim}{a}}},
\end{aligned}
\]
where \(\underset{\sim}{\underset{\sim}{H}}\) denotes the complex conjugate and also the inverse of \(\underset{\sim}{\underset{\sim}{H}}\). It is the inverse because
\[
\begin{aligned}
(\underset{\sim}{H} \underset{\sim}{H})_{j k} & =\frac{1}{n} \sum_{\ell=1}^{n} e^{-2 \pi i(j-1)(\ell-1) / n} e^{2 \pi i(\ell-1)(k-1) / n} \\
& =\frac{1}{n} \sum_{\ell=1}^{n} e^{2 \pi i(k-j)(\ell-1) / n}
\end{aligned}
\]
\[
\text { for } j, k=1, \ldots, n \text {. }
\]

If \(k=j\) this equals 1 , but otherwise it is a geometric series with a sum of
\[
\frac{1}{n}\left\{1-e^{2 \pi \mathfrak{l}(k-j)}\right\} /\left\{1-e^{2 \pi \mathfrak{l}(k-j) / n}\right\},
\]
which equals 0 because for integer values of \(j\) and \(k\)
\[
e^{2 \pi \imath(k-j)}=1 .
\]

Therefore \(\underset{\sim}{\underset{\sim}{H}} \underset{\sim}{H}=\underset{\sim}{I}\). It follows from this result that
\[
|\underset{\sim}{\bar{H}}||\underset{\sim}{H}|=|\underset{\sim}{I}|=1 .
\]

We now consider the \(n \times n\) symmetric complex matrix \(\left(\tau^{2}{\underset{\sim}{W}}^{-1} \underset{\sim}{V W}{ }^{-1} \underset{\sim}{\mathcal{H}}\right)\), the \((j, k)\) th element of which is
by transforming to a new scale with \(v=h-1\) and \(\ell=g-1-v\),
\[
=\frac{\tau^{2}}{n} \sum_{\ell=1-n}^{n-1} \rho_{\ell} e^{2 \pi i \ell(j-1) / n} \sum_{v=\max (0,-\ell)}^{\min (n-1, n-1-\ell)} e^{2 \pi \imath(j-k) v / n} .
\]

However,
\[
\frac{1}{n} \sum_{v=0}^{n-1} e^{2 \pi i(j-k) v / n}=I_{j k}
\]
\[
\begin{aligned}
& \left(\tau^{2} \underset{\sim}{W W^{-1}} \underset{\sim}{V W^{-1}} \underset{\sim}{\underset{\sim}{H}}\right)_{j k}=\frac{\tau^{2}}{n} \sum_{g=1}^{n} \sum_{h=1}^{n} \rho_{g-h} e^{2 \pi i(j-1)(g-1) / n} e^{-2 \pi i(k-1)(h-1) / n}, \\
& =\frac{\tau^{2}}{n} \sum_{\ell=1-n}^{n-1} \rho_{\ell} \sum_{v=\max (0,-\ell)}^{\min (n-1, n-1-\ell)} e^{2 \pi i(j-1)(\ell+v) / n} e^{-2 \pi i(k-1) v / n}
\end{aligned}
\]
where \(I_{j k}\) denotes the \((j k)\) th element in \(\underset{\sim}{I}\), the identity matrix of size \(n\), so provided \(\rho_{\ell}\) decays rapidly to zero as \(\ell\) increases,
\[
\left(\tau^{2}{\underset{\sim}{W}}^{-1} \underset{\sim}{V W^{-1}} \underset{\sim}{\underset{H}{*}}\right)_{j k}=d_{j} I_{j k} .
\]

Essentially, the assumption serves to omit from the likelihood the terms arising from end-effects in a finite realisation of an infinite process.

By substitution of the approximation for \(\left(\tau^{2} \underset{\sim}{2 W^{-1}} \underset{\sim}{\mathrm{VW}^{-1}} \underset{\sim}{\mathrm{H}}\right)\), equation (5.2.3) becomes
\[
\begin{align*}
& L_{M}=\frac{1}{2} \ln \left(|\underset{\sim}{W}|^{2}|\underset{\sim}{\bar{H}}| \underset{\sim}{\mid} \mid \underset{j=1}{n} \mathbb{d}_{j}\right)+\frac{1}{2} \sum_{g=1}^{n} \frac{1}{d_{g}} \sum_{j=1}^{n} \sum_{k=1}^{n}\left(a_{j} \bar{H}_{j g}\right)\left(H_{g k} a_{k}\right), \\
& =\frac{1}{2} \sum_{j=1}^{n} \ell n\left(W_{j j}^{2} d_{j}\right) \\
& +\frac{1}{2 n} \sum_{g=1}^{n} \frac{1}{d_{g}} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} e^{-2 \pi i(j-1)(g-1) / n} e^{2 \pi i(g-1)(k-1) / n}, \\
& =\frac{1}{2} \sum_{j=1}^{n} \ln \left(W_{j j}^{2} d_{j}\right)+\frac{1}{2} \sum_{k=1}^{n} D_{k} / d_{k}, \tag{5.2.4}
\end{align*}
\]
by the definition of \(\underset{\sim}{D}\) in equation (5.2.2). This is the negative of the logarithm of the pseudo-likelihood, proposed by Robinson (1978), which will henceforth be denoted \(L_{p}\). It has therefore been demonstrated that the pseudo-likelihood is an approximation to the Gaussian likelihood.

\subsection*{5.2.3 Estimation using REGAME}

The computer program REGAME has not been designed to fit models by optimizing functions of the form given above for \(L_{p}\). However, it can be tricked into doing so.

The negative log-likelihood of an \(n\)-vector of zero observations \(\underset{\sim}{0}\), which are specified to be independently normally distributed with the \(j\) th observation having mean \(W_{j j} / D_{j}\) and variance \(W_{j j}^{2} d_{j}\), has the same form as equation (5.2.4). REGAME can therefore be used to estimate regression parameters in \(\underset{\sim}{f}\) and spectral parameters in \(\underset{\sim}{d}\) by minimizing \(L_{p}\). At each call, REGMOD has to set the \(j\) th pseudo-fitted value to \(W_{j j} \gamma D_{j}, p\) and \(q\) to 0 and the jth diagonal element of the pseudo-variance matrix to \(W_{j j}^{2} d_{j}\).

Also of note on a computational theme, the periodogram (\({ }_{\sim}^{D}\)) can be calculated very efficiently using the Fast Fourier Transform, for example using NAG library routine CO6FAF (Numerical Algorithms Group, 1983).

\subsection*{5.2.4 Variances of parameter estimators}

As the sample size (\(n\)) increases, \(L_{p}\) approximates more closely the negative log-likelihood, so maximum pseudo-likelihood estimators share the same asymptotic properties as maximum likelihood estimators already discussed in [1.3.8]. Robinson (1978) derived more general results for the spectral parameter estimators without resorting to the assumption of multivariate normality. In section 4.3, approximate variances of parameter estimators have been obtained by inverting the Hessian matrix of \(L_{p}\) using REGAME. The emphasis in this chapter is on a first attempt at modelling the spectrum of the error process, so the attention given in chapter 4 to checking asymptotic properties by small simulations and deriving likelihood-based marginal confidence intervals has not been repeated in this chapter.

\subsection*{5.3 Colquhoun's data}

\subsection*{5.3.1 Choice of model}

An important assumption made in [5.2.2], to derive \(L_{p}\) as an approximation to the Gaussian log-likelihood, was that the autocorrelation coefficients of the error process decayed rapidly to zero as the lags increased. However, it has already been shown in [4.3.4] that if the regression model is a single exponential function, then the error autocorrelations in Colquhoun's data decay very slowly. Therefore, the technique of estimation by minimizing \(L_{p}\) is likely to perform better when a double exponential function is fitted, for which the error autocorrelations decay much more quickly.

The first step in the analysis, as it was in chapter 4, is to fit the regression function by least-squares estimation, that is by minimizing the negative log-likelihood on the assumption that the errors are independent. It will first be shown that, for this particular correlation structure, \(L_{p}\) is identical to the negative log-likelihood.

\subsection*{5.3.2 Pseudo-likelihood when errors are independent}

If errors are independent then the autocorrelation function is
\[
\begin{aligned}
\rho_{\ell} & =\tau^{2} & & \text { if } \ell=0, \\
& =0 & & \text { otherwise }
\end{aligned}
\]
and from equation (5.2.1), the spectrum is flat, that is
\[
d_{g}=\tau^{2} \quad \text { for } g=1, \ldots, n
\]

Therefore
\(L_{p}=\frac{1}{2} \sum_{j=1}^{n} \ln \left(W_{j j}^{2} \tau^{2}\right)+\frac{1}{2} \sum_{g=1}^{n} D_{g} / \tau^{2}\)
from equation (5.2.4),
\[
=\frac{1}{2} \sum_{j=1}^{n} \ln \left(W_{j j}^{2} \tau^{2}\right)+\frac{1}{2 \tau^{2}} \sum_{g=1}^{n} \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} e^{2 \pi i(k-j)(g-1) / n}
\]
by substituting for \(\underset{\sim}{D}\) from equation (5.2.2),
\[
\begin{aligned}
& =\frac{1}{2} \sum_{j=1}^{n} \ln \left(W_{j j}^{2} \tau^{2}\right)+\frac{1}{2 \tau^{2}} \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} n I_{j k}, \\
& =\frac{1}{2} \sum_{j=1}^{n} \ln \left(W_{j j}^{2} \tau^{2}\right)+\frac{1}{2 \tau^{2}} \sum_{j=1}^{n} a_{j}^{2} .
\end{aligned}
\]

This is also the negative log-likelihood of \(\underset{\sim}{y}\), which was stated in [5.2.2], if the errors are independent.

\subsection*{5.3.3 Double exponential regression with independent errors}

The regression parameters (\(\sim_{\sim}^{\beta}\)) in the double exponential function given in [4.3.7], were estimated by minimizing \(L_{p}\), using REGAME, with \(\mathrm{d}_{\mathrm{g}}=\tau^{2}\) for \(\mathrm{g}=1, \ldots, \mathrm{n}\) and \(\underset{\sim}{\underset{\sim}{W}}=\underset{\sim}{I}\). The results were almost identical to the maximum likelihood estimates with independent errors given in table 4.3.9. They would have been exactly the same, but the NAG library Fast Fourier Transform algorithm (CO6FAF) required \(n\) to have no prime factor exceeding 19, so \(n\) was increased from 124 to 125 and \(a_{125}\) was set to zero.

\subsection*{5.3.4 Spectrum when the autocorrelation function is a sum of}

\section*{exponentials}

To continue the analogy with section 4.3 , the next model to be considered is the double exponential regression with an

ARMA \((1,1)\) error process. Before this can be fitted it is necessary to derive the spectral function for this process.

When the autocorrelation function is of the form considered in chapter 4, as defined in [4.2.1], but with \(\delta=0\), then
\[
\rho_{\ell}=\sum_{j=1}^{p} k_{j} e^{\ell \lambda_{j}} \quad \text { for } \quad \ell \geqslant 0
\]

The spectrum, from equation (5.2.1), and making use of the fact that \(\rho_{\ell}\) is symmetric about zero, has gth element
\[
\begin{aligned}
d_{g}= & \tau^{2} \sum_{\ell=-\infty}^{-1} \sum_{j=1}^{p} \kappa_{j} e^{-\ell \lambda_{j}} e^{2 \pi i \ell(g-1) / n} \\
& +\tau^{2} \sum_{j=1}^{p} \kappa_{j} \\
& +\tau^{2} \sum_{\ell=1}^{\infty} \sum_{j=1}^{p} \kappa_{j} e^{\ell \lambda_{j}} e^{2 \pi i \ell(g-1) / n}, \\
= & \tau^{2} \sum_{j=1}^{p} \kappa_{j}\left\{\frac{e^{\lambda_{j}-2 \pi i(g-1) / n}}{\left.1-e^{\lambda_{j}-2 \pi i(g-1) / n}+1+\frac{e^{\lambda_{j}+2 \pi i(g-1) / n}}{1-e^{\lambda}+2 \pi i(g-1) / n}\right\},}\right. \\
= & \tau^{2} \sum_{j=1}^{p} \kappa_{j} \frac{1-e^{2 \lambda}{ }_{j}}{\left(1-e^{\lambda_{j}-2 \pi i(g-1) / n}\right)\left(1-e^{\lambda_{j}+2 \pi i(g-1) / n}\right)}, \\
= & \tau^{2} \sum_{j=1}^{p} \kappa_{j} \frac{1-2 e^{\lambda_{j}} \cos (2 \pi(g-1) / n)+e^{2 \lambda_{j}}}{1-e^{2 \lambda} j}
\end{aligned}
\]

\subsection*{5.3.5 Double exponential regression with ARMA(1,1) error model}

With the representation of the error process as a sum of positively-correlated Markov processes defined in [4.2.4], the regression parameters (\(\underset{\sim}{\beta}\)) and error model parameters \((\underset{\sim}{\alpha})\) for an ARMA(1,1) process were jointly estimated by minimizing \(L_{p}\). The
parameter estimates are almost the same as the maximum likelihood estimates given in table 4.3.11. Figure 5.3.1 shows the first half of the periodogram \(\underset{\sim}{D}\) and of the fitted spectrum \(\underset{\sim}{d}\) plotted against the number of harmonic cycles. Only the first half need be plotted because the second half is a mirror image of the first bec ause
\[
\begin{aligned}
& D_{g}=D_{n+2-g} \\
& d_{g}=d_{n+2-g} \quad \text { for } g=2, \ldots, n .
\end{aligned}
\]

The fitted spectral function is high at low numbers of cycles, or alternatively at low frequency, and plateaus to a low level at higher frequencies. The high value at low frequencies corresponds to the correlated component of the error process and is an attempt to fit the high values of the periodogram at 2,3 and 4 cycles. The plateau level of the spectrum corresponds to the white noise component of the error process.

Figure 5.3.2 shows the first half of the observed and fitted autocorrelation functions obtained as the Fourier transforms of \(D\) and \(\underset{\sim}{d}\) respectively. In this case also, the second halves are mirror images of the first and so have not been plotted. The fitted autocorrelation function exhibits the appropriate form for an ARMA \((1,1)\) process: an exponential decay to zero as the lag increases after an initial step change between lags zero and one. The observed autocorrelations agree well with the fit up to a lag of ten, but beyond that point the fitted autocorrelations no longer follow the trends in observed values. However, it should be borne in mind that the estimates of autocorrelation at adjacent lags can be highly correlated, so apparent trends may be no more than random fluctuations about an expectation of zero.

\section*{Figure 5.3.1}

Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by maximum pseudo-likelihood estimation; periodogram (\(X\)) of departures of the data from the fitted regression, and fitted spectrum (__), plotted against the number of cycles completed by each sinusoid component.

Figure 5.3.2
Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model, fitted by maximum pseudo-likelihood estimation; the autocorrelations (\(X\)) of the departures of the data from the fitted regression, and fitted autocorrelation function (__), plotted against the lag separation.

\subsection*{5.3.6 Double exponential regression with an empirical nonincreasing error spectrum}

The models considered so far have already been fitted in section 4.3. For the spectral approach to be of any use we have to consider spectral functions which are simpler than their corresponding autocorrelation functions. The first step is to examine the periodogram, plotted in figure 5.3.1, to identify a suitable spectral function. The main feature of the periodogram, as already commented on above, is that a few terms at low frequencies have high values. It is reasonable to suppose that the error terms are positively correlated with each other at low lags and therefore the spectrum is larger at low frequencies than at high frequencies.

On the assumption that \(\underset{\sim}{d}\) is non-increasing at low frequencies one empirical parameterization is
\[
d_{g}=d_{n+2-g}=\tau^{2}\left(1+\sum_{j=g}^{\ell} \mu_{j}^{\star}\right) \quad \text { for } g=1, \ldots,(n+2) / 2,
\]
for some small value of \(\&\). The regression parameters. (\(\underset{\sim}{\beta}\)) and error model parameters (\(\underset{\sim}{\underset{\sim}{*}}\)) were jointly estimated by minimizing \(L_{p}\) for two values of \(\ell(5\) and 10). In both cases, all estimated coefficients in \({\underset{\sim}{\mu}}^{\star}\) were zero except for \(\mu_{5}^{\star}\). The results are given in table 5.3 .1 with \(\underset{\sim}{\underset{\sim}{*}}{ }^{*}\) excluded except for \(\mu_{5}^{\star}\). The fitted spectrum is shown in figure 5.3.3 and the fitted autocorrelation function is plotted in figure 5.3.4. The fitted spectrum is a step function approximation to the previous fitted spectrum in figure 5.3.1. The fitted autocorrelation function is also similar to that in figure 5.3.2, although it is no longer monotonically decreasing. \(L_{P}\) has been reduced from -77.4 for

Table 5.3.1
Colquhoun's data, double exponential regression with empirical non-increasing error spectrum, fitted by maximum pseudo-likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) & \(\mu_{5}^{\star}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } estimate & -90.2 & 22.6 & 3.15 & 60.8 & 8.94 & 2.0 & 0.09 \\
se & \((0.4)\) & \((6.9)\) & \((0.67)\) & \((7.1)\) & \((0.70)\) & \((0.6)\) & \((0.01)\)
\end{tabular}
\begin{tabular}{ccccccc}
correlations \\
\(\beta_{2}\) & -0.89 & & & & & \\
\(\beta_{3}\) & -0.81 & \(\underline{0.96}\) & & & & \\
\(\beta_{4}\) & 0.87 & \(\underline{-0.996}\) & \(\underline{-0.98}\) & & & \\
\(\beta_{5}\) & \(-\underline{0.94}\) & \(\underline{0.99}\) & \(\underline{0.94}\) & \(\underline{-0.98}\) & & \\
\(\mu_{\text {去 }}^{2}\) & 0.21 & -0.19 & -0.17 & 0.18 & -0.19 & \\
\(\tau^{2}\) & -0.06 & 0.05 & 0.05 & -0.05 & 0.05 & -0.28
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Figure 5.3.3
Colquhoun's data, double exponential regression with empirical nonincreasing error spectrum, fitted by maximum pseudo-likelihood estimation; periodogram (X) of departures of the data from the fitted regression, and fitted spectrum (_), plotted against the number of cycles completed by each sinusoid component.

Figure 5.3.4
Colquhoun's data, double exponential regression with empirical nonincreasing error spectrum, fitted by maximum pseudo-likelihood estimation; the autocorrelations (X) of the departures of the data from the fitted regression, and fitted autocorrelation function (—_), plotted against the lag separation.

the \(\operatorname{ARMA}(1,1)\) model to -79.2 with one less parameter being used (although some selection bias will have been introduced in choosing which parameter to use), so the new error model would appear to fit better. The regression parameter estimates and standard errors are in close agreement with those in table 4.3.11. At this stage, the spectral approach to modelling the error structure in order to estimate regression parameters has worked well.

\subsection*{5.3.7 Double exponential regression with an empirical error} spectrum

To test the assumption that the error spectrum is
non-increasing, \(\underset{\sim}{d}\) was reparameterized as
\[
\begin{aligned}
d_{g}=d_{n+2-g} & =\tau^{2}\left(1+\mu_{g}^{2}\right) & & \text { for } g \\
& =\tau^{2} & & \text { for } g=(\ell+1), \ldots,(n+2) / 2,
\end{aligned}
\]
for some small value of \(\ell\). The regression parameters (\(\underset{\sim}{\beta}\)) and error model parameters (\(\underset{\sim}{\mu}\)) were jointly estimated by minimizing \(L_{p}\) with \(\ell\) equal to 5 . Of the coefficients in \(\underset{\sim}{\mu}\), only \(\mu_{4}\) and \(\mu_{5}\) were estimated to be non-zero. The parameter estimates are given in table 5.3.2 and the spectrum and autocorrelation function are plotted in figures 5.3.5 and 5.3.6 respectively. The observed and estimated autocorrelations are now in excellent agreement for all lags. \(L_{p}\) has been reduced to -83.4 for the addition of one extra parameter compared with the model in [5.3.6]. Therefore, on the basis of the asymptotic properties of the likelihood ratio test, the hypothesis of a non-increasing spectral function is rejected. However, the appropriateness of asymptotic results can be called into question for this model because the fitted autocorrelation function does not

Table 5.3.2
Colquhoun's data, double exponential regression with empirical error spectrum, fitted by maximum pseudo-likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccccc}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) & \(\mu_{4}\) & \(\mu_{5}\) & \(\tau^{2}\) \\
\cline { 2 - 10 } estimate & -89.9 & 17.6 & 2.48 & 66.3 & 8.45 & 3.8 & 3.4 & 0.09 \\
se & \((0.2)\) & \((2.1)\) & \((0.36)\) & \((2.5)\) & \((0.24)\) & \((2.1)\) & \((1.9)\) & \((0.01)\)
\end{tabular}
correlations
\(\beta_{2}\)
\(\beta_{3}\)
\(\beta_{4}\)
\(\beta_{5}\)
\(\mu_{4}\)
\(\mu_{5}\)
\(\tau^{2}\)
\begin{tabular}{lrrrrrr}
\(\underline{-0.90}\) & & & & & \\
-0.78 & 0.85 & & & & & \\
0.87 & \(\underline{-0.95}\) & \(\underline{-0.97}\) & & & & \\
\(\underline{-0.94}\) & \(\underline{0.97}\) & \(\underline{0.91}\) & \(\underline{-0.98}\) & & & \\
0.16 & -0.18 & -0.15 & 0.16 & -0.16 & & \\
0.13 & -0.13 & -0.15 & 0.15 & -0.14 & 0.05 & \\
-0.04 & 0.04 & 0.04 & -0.04 & 0.04 & -0.13 & -0.13
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Figure 5.3.5
Colquhoun's data, double exponential regression with empirical error spectrum, fitted by maximum pseudo-likelihood estimation; periodogram (\(X\)) of departures of the data from the fitted regression, and fitted spectrum (___), plotted against the number of cycles completed by each sinusoid component.

Figure 5.3.6
Colquhoun's data, double exponential regression with empirical error spectrum, fitted by maximum pseudo-likelihood estimation; the autocorrelations (\(X\)) of the departures of the data from the fitted regression, and autocorrelation function (___), plotted against the lag separation.

decay rapidly to zero, so the pseudo-likelihood fails to approximate the Gaussian likelihood. The regression parameter estimates have been changed substantially from those in tables 4.3.9, 4.3.11 and 5.3.1. The standard errors have decreased, probably because of the high negative autocorrelations in the error process for 1 ags between 10 and 25 which is evident in figure 5.3.6.

\subsection*{5.3.8 Resumé}

Double exponential regression parameters have been estimated for three assumed error spectral functions. The results when using the spectrum of a \(\operatorname{ARMA}(1,1)\) process or an empirically chosen non-increasing function were in good agreement with the results obtained in section 4.3 when the autocorrelation of the error process was being modelled. However, when the constraint that the spectral function should be non-increasing was relaxed, the new estimates of the regression parameters were inconsistent with earlier results. The reasons for, and conclusions from, these results will be discussed in section 5.4. Colquhoun's data will be re-used as an example in chapters 7 and 9.

\subsection*{5.4 Discussion}

The basic technique presented in this chapter is to fit a regression function to a series of observations by least-squares estimation, identify a spectral function by examination of the periodogram of the departures of the data from the fitted regression, and then jointly estimate the regression and error spectrum parameters by maximizing the pseudo-likelihood.

This method is more restrictive than that in chapter 4 because observations must be equally spaced in time, the autocorrelations of the error process must decay rapidly to zero, and the estimation method is an approximation to maximum likelihood, rather than to residual maximum likelihood estimation which was found to perform better in chapter 4. Also, if the error process is found to be non-stationary the technique in this chapter is unuseable, whereas the estimation methods in chapter 4 can still be used. The autocorrelations have to decay rapidly to zero for the pseudo-likelihood to be of use because end-effects in the error process are omitted. If the autocorrelations were to remain high these end-effects would not be of negligible magnitude. It is probably because this assumption is violated in the final model considered (in [5.3.7]) that the results were out of step with earlier regression parameter estimates.

Finally, the major problem, when estimating regression parameters in the presence of an unknown error spectral structure, is that the technique in this chapter rests heavily upon gross assumptions that are made about the spectral function of the error process. This is the same problem encountered in chapter 4 and is the motivation for the approach taken in chapter 9.

\title{
6. Models based on linear stochastic difference
}
and differential equations

\subsection*{6.1 Introduction}

Up to this point in the thesis, empirical models have been used to describe error processes in order to estimate regression parameters when errors are serially correlated. In other words, the data themselves have been used to identify the correlation structure among the errors. In this and the following two chapters a fundamentally different strategy will be adopted; instead of the data being used, the processes by which the data were generated will be used to identify the correlation structure. At least that is the theory, in practice the distinction is rather more blurred. This approach has been termed "mechanistic modelling" and was discussed in section 1.2.

Sometimes, regression functions fitted to data are selected because they are solutions of difference or differential equations. There is then an opportunity to add an error component directly into the original equation, rather than onto its deterministic solution, in order to model observations. This approach was used implicitly by Dhanoa and Le Du (1982) in modelling the milk yields of cows, and explicitly by Sandland and McGilchrist (1979) in modelling growth.

The simplest types of difference and differential equations are those which are linear with coefficients that are constant over time. General solutions of these have already been given in chapter 3. In sections 6.2, first-order equations are considered with input variates appropriate to generating lactation curves, and
the relationship between models in discrete and continuous time is explored. In an analogous fashion, in section 6.3 second-order equations are considered with input variates appropriate to generating animal growth curves. Neilson's data on the milk yields of cows are modelled by first-order differential equations in section 6.4 and the goodness-of-fit is tested. Similarly, in section 6.5 Thiessen's data on the weights of cattle are modelled by second-order differential equations. Finally, in section 6.6 the usefulness of stochastic difference and differential equations in estimating regression parameters in the presence of serially correlated errors is critically assessed.

The novelty in the modelling of lactation lies in the respecification of Dhanoa and Le Du's (1982) model, which makes clearer its relationship with other models and enables it to be extended to unequally spaced observation times, and in generalizing the model to test its goodness-of-fit. Regarding growth, the use of second-order stochastic differential equations is original, and may either be viewed as a generalization of Finney's (1958) and Mitchell's (1968) first-order models to permit a sigmoidal trend or a linearization of the "more biological" differential equations considered by Sandland and McGilchrist (1979).

\subsection*{6.2 A model for 1 actation using first-order equations}
6.2.1 Model in discrete time

Dhanoa and Le Du (1982) proposed a model in which the observed milk yields \(\underset{\sim}{y}\) from a single cow are a realisation of a
random vector \(\underset{\sim}{Y}\) which is generated by the first-order difference equation
(6.2.1) \(\quad Y_{t}=\phi Y_{t-1}+Z_{t}\)
for \(t \geqslant 1\),
where \(\phi\) is a parameter, \(Y_{0} \equiv 0\), and \(Z_{t}\) is independently
normally distributed for \(t \geqslant 1\), with mean (\(\alpha_{1}+\alpha_{2} t\)) and variance \(\sigma^{2}\).
6.2.2 Solution for the model in discrete time

Equation (6.2.1) may be solved quite simply, but for illustrative purposes the general solution derived in [3.2.2] will be used. This gives
\[
Y_{t}=Y_{0} K_{11}^{*} e^{t \lambda_{1}^{\star}}+\sum_{k=1}^{t} Z_{k} K_{11}^{\star} e^{(t-k) \lambda_{1}^{\star}}
\]
where \(e^{\lambda_{1}^{\star}}\) is the root of
\[
x-\phi=0,
\]
and \(K_{11}^{*}\) satisfies
\[
K_{11}^{\star}=1,
\]
with \({\underset{\sim}{\lambda}}_{\lambda^{*}}\) and \({\underset{\sim}{r}}_{K}^{K}\) used in place of \(\underset{\sim}{\lambda}\) and \(\underset{\sim}{K}\) to distinguish
these parameters from the ones used with the model in continuous
time. Therefore, because \(Y_{0}\) is identically zero,
\[
Y_{t}=\sum_{k=1}^{t} z_{k} \phi^{t-k}
\]

It follows that
\[
\begin{aligned}
E\left(Y_{t}\right) & =\sum_{k=1}^{t} E\left(Z_{k}\right) \phi^{t-k} \\
& =\sum_{k=1}^{t}\left(\alpha_{1}+\alpha_{2} k\right) \phi^{t-k}
\end{aligned}
\]
\[
=\alpha_{1} \frac{\left(1-\phi^{t}\right)}{(1-\phi)}+\alpha_{2} \frac{\left(\phi^{t+1}-(t+1) \phi+t\right)}{(1-\phi)^{2}}
\]
\[
\begin{equation*}
=\left\{\frac{\alpha_{1}}{(1-\phi)}-\frac{\alpha_{2}{ }^{\phi}}{(1-\phi)^{2}}\right\}\left\{1-\phi^{t}\right\}+\frac{\alpha_{2}}{(1-\phi)} t \tag{6.2.2}
\end{equation*}
\]
by algebraic manipulation, and
\[
\begin{aligned}
\operatorname{cov}\left(Y_{s}, Y_{t}\right) & =\sum_{i=1}^{s} \sum_{j=1}^{t} \operatorname{cov}\left(Z_{i}, Z_{j}\right) \phi^{s-i} \phi^{t-j} \\
& =\sum_{i=1}^{t} \sigma^{2} \phi^{s-i} \phi^{t-i}
\end{aligned}
\]
when \(s>t\)
because \(Z_{i}\) and \(Z_{j}\) are uncorrelated when \(i \neq j\),
\[
\begin{equation*}
=\sigma^{2} \phi^{s-t} \frac{\left(1-\phi^{2 t}\right)}{\left(1-\phi^{2}\right)} \tag{6.2.3}
\end{equation*}
\]

As \(\underset{\sim}{Z}\) is a \(\operatorname{GARMA}(0,0)\) process it follows from [3.2.3] that \(\underset{\sim}{\mathbf{Y}}\) is a \(\operatorname{GARMA}(1,0)\) process. This is also evident from equation (6.2.3). Equation (6.2.2) is an exponential function plus a linear trend and passes through the origin, and was proposed by Cobby and Le Du (1978) as an alternative regression model in place of Wood's (1967) curve:
\[
E\left(Y_{t}\right)=\beta_{1} t^{\beta} 2 e^{-t \beta_{3}}
\]
which has become the standard model for lactation data. For appropriate values of the parameters \(\alpha_{1}, \alpha_{2}\) and \(\phi\) equation (6.2.2) has the characteristic shape of a lactation curve: it rises rapidly to a maximum and then decreases more slowly towards zero.

\subsection*{6.2.3 Model in continuous time}

The model may also be formulated in continuous time, which serves to shed light on the relationship between discrete and
continuous processes. It is assumed that the observations \(\underset{\sim}{y}\) are a realisation in discrete time of a random variate \(Y(t)\) indexed by \(t\) over a continuous interval, which is generated by the first-order differential equation
\[
Y^{\langle 1\rangle}(t)-\xi Y(t)=Z(t) \quad \text { for } t \geq 0 .
\]
where the term in angular brackets denotes the order of derivative with respect to \(t, \xi\) is a parameter, \(Y(0) \equiv 0\), and \(Z(t)\) is a random variate over a continuous interval with expectation (\(\beta_{1}+\beta_{2} t\)) and \(\left(Z(t)-\beta_{1}-\beta_{2} t\right)\) is the first derivative of the Weiner process with variance \(\tau^{2}\) for \(t \geqslant 0\). Strictly speaking, this definition of \(Z(t)\) is nonsense because the Weiner process is nowhere differentiable, but this does not invalidate the definition of \(Y(t)\), which can be modified as discussed in [3.3.1].

\subsection*{6.2.4 Solution for the model in continuous time}

Applying the results of [3.3.2] for illustrative purposes, rather than solving the differential equation directly, gives
\[
Y(t)=A^{\{0\}_{K_{11}}} e^{t \lambda_{1}}+\int_{0}^{t} Z(u) k_{1} e^{(t-u) \lambda_{1}} d u,
\]
where
\[
A^{\{0\}}=Y(0),
\]
\(\lambda_{1}\) is the root of
\[
x-\xi=0
\]
\(K_{11}\) satisfies
\[
K_{11}=1
\]
and \(k_{1}\) satisfies
\[
\xi_{0} \kappa_{1}=\psi_{0},
\]
where \(\xi_{0}\) and \(\psi_{0}\) are defined to be -1 . Therefore, because \(Y(0)\) is identically zero,
\[
Y(t)=\int_{0}^{t} Z(u) e^{(t-u) \xi} d u .
\]

It follows that
\[
\begin{aligned}
E(Y(t)) & =\int_{0}^{t}\left(\beta_{1}+\beta_{2} u\right) e^{(t-u) \xi} d u \\
& =\left(\frac{\beta_{1}}{\xi}+\frac{\beta_{2}}{\xi^{2}}\right) e^{t \xi}-\left(\frac{\beta_{1}}{\xi}+\frac{\beta_{2}}{\xi^{2}}+\frac{\beta_{2} t}{\xi}\right),
\end{aligned}
\]
(6.2.4) \(\quad=-\left(\frac{\beta_{1}}{\xi}+\frac{\beta_{2}}{\xi^{2}}\right)\left(1-e^{t \xi}\right)-\frac{\beta_{2}}{\xi} t\)
by algebraic manipulation, and
\(\operatorname{cov}(Y(s), Y(t))=\int_{0}^{s} \int_{0}^{t} \operatorname{cov}(Z(u), Z(v)) e^{(s-u) \xi} e^{(t-v) \xi} d v d u\),
\(=\tau^{2} \int_{0}^{t} e^{(s-u) \xi} e^{(t-u) \xi} d u \quad\) when \(s \geqslant t\)
because \(Z(u)\) and \(Z(v)\) are uncorrelated when \(u \neq v\),
\[
\begin{equation*}
=\tau^{2} e^{(s-t) \xi} \frac{\left(e^{2 t \xi}-1\right)}{2 \xi} . \tag{6.2.5}
\end{equation*}
\]

As \(Z(t)\) is a \(\operatorname{cGARMA}(0, \varepsilon)\) process, where \(\varepsilon\) is an arbitrarily small positive number, from [3.3.3] \(Y(t)\) is a \(\operatorname{CGARMA}(1, \varepsilon)\) process. However, it is evident from equation (6.2.5) which is valid when \(s\) equals \(t\), and not just when \(s\) is greater than \(t\), that \(Y(t)\) is a \(\operatorname{cGARMA}(1,0)\) process. Equation (6.2.4) is of the same functional form as equation (6.2.2) and the regression model proposed by Cobby and Le Du (1978).

\subsection*{6.2.5 Relation between models in discrete and continuous time}

Provided \(\phi\) is positive, the models in discrete and continuous time are equivalent because equation (6.2.2) is the same as equation (6.2.4) with
\[
\begin{aligned}
\phi & =\mathrm{e}^{\xi} \\
\frac{\alpha_{1}}{(1-\phi)}-\frac{\alpha_{2} \phi}{(1-\phi)^{2}} & =-\left(\frac{\beta_{1}}{\xi}+\frac{\beta_{2}}{\xi^{2}}\right),
\end{aligned}
\]
and
\[
\frac{\alpha_{2}}{(1-\phi)}=-\frac{\beta_{2}}{\xi},
\]
and equation (6.2.3) is the same as equation (6.2.5) with
\[
\frac{\sigma^{2}}{\left(1-\phi^{2}\right)}=-\frac{\tau^{2}}{2 \xi},
\]
where the relationship between \(\phi\) and \(\xi\) ensures that \(\sigma^{2}\) and \(\tau^{2}\) are of the same sign.

The model in continuous time will be used in section 6.4 because it ensures the desirable property that all correlations are positive and is more appropriate for the observation times in Neilson's data, which are unequally spaced.
6.3 A model for growth using second-order equations

\subsection*{6.3.1 Justification for choice of model}

Many growth curves are derived as the solutions of deterministic difference or differential equations because the rate of growth is a fundamental variable in the process of growth. However, Sandland and McGilchrist (1979) comment that

> "Deterministic differential equations do not seem fully appropriate here. Growth is embedded in a stochastically fluctuating environment and it would be attractive to attempt to incorporate this environmental randomness into the class of growth models, rather than, as an afterthought, tacking a residual onto the expected value, which is either a polynomial in time or a solution to a differential equation."

It is difficult to work with stochastic versions of most biologically derived differential equations because they are non-linear. Linear equations are more mathematically tractable and may be justified either as approximations to non-linear equations or, more empirically and more specifically, the second-order equation is the simplest equation capable of yielding the
characteristic sigmoidal shape of a growth curve.
An alternative route to the second-order differential equation is via the work of Parks (1975a,b). He proposed that an animal's weight at time \(t\), denoted \(Y(t)\), satisfies
\[
Y^{\langle 1\rangle}(t)-\mu_{1} Y(t)=Z(t)
\]
where the term in angular brackets denotes the order of derivative with respect to \(t, \mu_{1}\) is a constant and \(Z(t)\) is proportional to the food intake of the animal at time \(t\). A simple model of intake is
\[
z^{\langle 1\rangle}(t)-\mu_{2} z(t)=\mu_{3}
\]
with constants \(\mu_{2}\) and \(\mu_{3}\). After substitution for \(Z(t)\) and \(z^{\langle 1\rangle}(t)\), this becomes
\[
\left(Y^{\langle 2\rangle}(t)-\mu_{1} Y^{\langle 1\rangle}(t)\right)-\mu_{2}\left(Y^{\langle 1\rangle}(t)-\mu_{1} Y(t)\right)=\mu_{3},
\]
which is a second-order differential equation. The analogous model in discrete time is a second-order difference equation.

\subsection*{6.3.2 Model in discrete time}

Observations \(\underset{\sim}{y}\) of an animal's weight are assumed to be a realisation of a random vector \(\underset{\sim}{Y}\) whose elements are generated by the second-order difference equation
\[
\begin{equation*}
Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+Z_{t} \tag{6.3.1}
\end{equation*}
\]
\[
\text { for } t>2 \text {. }
\]

Here \(\phi_{1}\) and \(\phi_{2}\) are parameters, \(Z_{t}\) is a first-order moving average process with mean \(\alpha\) for \(t>2\), and \(Y_{0}\) and \(Y_{1}\) are constants.
6.3.3 Solution for the model in discrete time

Applying the results of [3.2.2] we get
(6.3.2) \(\quad Y_{t}=\sum_{i=1}^{2} Y_{i-1} \sum_{j=1}^{2} K_{i j}^{\star} e^{t \lambda_{j}^{*}}+\sum_{k=2}^{t} Z_{k} \sum_{\ell=1}^{2} K_{2 \ell}^{*} e^{(t+1-k) \lambda_{\ell}^{\star}}\),
where \(e^{\lambda_{1}^{\star}}, e^{\lambda_{2}^{\star}}\) are the roots of
\[
x^{2}-\phi_{1} x-\phi_{2}=0
\]
and the elements of \(\underset{\sim}{k}\) * satisfy
\[
\begin{array}{ll}
K_{11}^{\star} e^{t \lambda_{1}^{\star}}+K_{12}^{\star} e^{t \lambda_{2}^{\star}}=I_{1, t+1} & \text { for } t=0,1, \\
K_{21}^{\star} e^{t \lambda_{1}^{\star}}+K_{22} e^{t \lambda_{2}^{\star}}=I_{2, t+1} & \text { for } t=0,1,
\end{array}
\]
where \(\underset{\sim}{I}\) is the identity matrix of size 2. (Parameters \(\underset{\sim}{\lambda^{*}}\) and \(\underset{\sim}{K}{ }^{\star}\) have been used in place of \(\underset{\sim}{\lambda}\) and \(\underset{\sim}{K}\) to distinguish them from the parameters used with the model in continuous time.) Therefore
\[
\begin{aligned}
& K_{11}^{\star}=\frac{e^{\lambda_{2}^{\star}}}{\left(e^{\lambda_{2}^{\star}}-e^{\lambda_{1}^{\star}}\right)}, K_{12}^{\star}=\frac{-e^{\lambda_{1}^{\star}}}{\left(e^{\lambda_{2}^{\star}}-e^{\lambda_{1}^{\star}}\right)}, \\
& K_{21}^{\star}=\frac{-1}{\left(e^{\lambda_{2}^{\star}}-e^{\lambda_{1}^{\star}}\right)}, K_{22}^{\star}=\frac{1}{\left(e^{\lambda_{2}^{\star}}-e^{\lambda_{1}^{\star}}\right)} \cdot
\end{aligned}
\]

It follows from equation (6.3.2) that
\[
\begin{align*}
& E\left(Y_{t}\right)=\sum_{i=1}^{2} Y_{i-1} \sum_{j=1}^{2} K_{i j}^{*} e^{t \lambda_{j}^{*}}+\sum_{k=2}^{t} \alpha \sum_{\ell=1}^{2} K_{2 \ell}^{\star} e^{(t+1-k) \lambda_{\ell}^{\star}}, \\
& =\sum_{j=1}^{2}\left\{Y_{0} K_{1 j}^{\star} e^{t \lambda_{j}^{\star}}+Y_{1} K_{2 j}^{\star} e^{t \lambda_{j}^{\star}}+\alpha K_{2 j}^{*} \frac{\left(e^{\lambda_{j}^{\star}}-e^{t \lambda_{j}^{\star}}\right)}{\left(1-e^{\lambda_{j}^{\star}}\right)}\right\} \text {, } \\
& =\sum_{j=1}^{2} \frac{\alpha K_{2 j}^{\star} e^{\lambda_{j}^{\star}}}{\left(1-e^{\lambda_{j}^{\star}}\right)}+\sum_{k=1}^{2}\left\{Y_{0} K_{1 k}^{\star}+Y_{1} K_{2 k}^{\star}-\frac{\alpha K_{2 k}^{*}}{\left(1-e^{\lambda_{k}^{\star}}\right)}\right\} e^{t \lambda_{k}^{\star}} \tag{6.3.3}
\end{align*}
\]
by algebraic manipulation, and
\[
\operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{i=2}^{s} \sum_{j=2}^{t} \operatorname{cov}\left(Z_{j}, Z_{j}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} K_{2 k}^{\star} K_{2 \ell}^{\star} e^{(s+1-i) \lambda_{k}^{*}} e^{(t+1-j) \lambda_{\ell}^{\star}}
\]

If \(\underset{\sim}{Z}\) is a first-order moving average process with parameter \(\theta\), then \(\operatorname{var}\left(Z_{j}\right)=\sigma^{2}\left(1+\theta^{2}\right), \operatorname{cov}\left(Z_{i}, z_{i-1}\right)=-\sigma^{2} \theta\), and \(Z_{i}\) and \(Z_{j}\) are uncorrelated if \(|i-j| \geqslant 2\). Therefore, when \(s>t+1\)
\[
\begin{align*}
& \operatorname{cov}\left(Y_{s}, Y_{t}\right)=\sum_{j=3}^{t} \operatorname{cov}\left(Z_{j-1}, Z_{j}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} K_{2 k}^{*} K_{2}^{\star} Z_{\ell} e^{(s+2-j) \lambda_{k}^{\star}} e^{(t+1-j) \lambda_{\ell}^{*}} \\
& +\sum_{j=2}^{t} \operatorname{cov}\left(Z_{j}, Z_{j}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} K_{2 k}^{\star} K_{2 \ell}^{\star} e^{(s+1-j) \lambda_{k}^{\star}} e^{(t+1-j) \lambda_{\ell}^{*}} \\
& +\sum_{j=2}^{t} \operatorname{cov}\left(Z_{j+1}, Z_{j}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} K K_{2 k}^{\star} K_{2}^{\star} e^{(s-j) \lambda_{k}^{\star}} e^{(t+1-j) \lambda_{\ell}^{\star}}, \\
& =\sum_{k=1}^{2} \sum_{\ell=1}^{2} \frac{\sigma^{2} K_{2 k}^{\star} K_{2}^{*}}{\left(1-e^{\lambda_{k}^{\star}+\lambda_{l}^{\star}}\right.}\left\{-\theta\left(e^{(s+2-t) \lambda_{k}^{\star}+\lambda_{l}^{\star}}-e^{s \lambda_{k}^{\star}+(t-1) \lambda_{l}^{\star}}\right)\right. \\
& \left.+\left(1+\theta^{2}\right)\left(e^{(s+1-t) \lambda_{k}^{\star+} \lambda_{l}^{\star}}-e^{s \lambda_{k}^{\star}+t \lambda_{l}^{\star}}\right)-\theta\left(e^{(s-t) \lambda_{k}^{\star}+\lambda_{l}^{\star}}-e^{(s-1) \lambda_{k}^{\star}+t \lambda_{l}^{\star}}\right)\right\}, \\
& =\sum_{k=1}^{2} \sum_{\ell=1}^{2} \frac{\sigma^{2} K_{2 k}^{*} K_{2}^{*}}{\left(1-e^{\lambda_{k}^{k}+\lambda_{l}^{\star}}\right)}\left\{e^{s \lambda_{k}^{*}+t \lambda_{l}^{\star}}\left(\theta e^{-\lambda_{l}^{\star}}-\left(1+\theta^{2}\right)+\theta e^{-\lambda_{k}^{*}}\right)\right. \tag{6.3.4}\\
& \left.-e^{(s-t) \lambda_{k}^{\star}}\left(\theta e^{2 \lambda_{k}^{\star}+\lambda_{l}^{\star}}-\left(1+\theta^{2}\right) e^{\lambda_{k}^{\star}+\lambda_{\ell}^{\star}}+\theta e^{\lambda_{l}^{\star}}\right)\right\} . \\
& \underset{\sim}{Y} \text { is a } \operatorname{GARMA}(2,2) \text { process by the definition in }[2.2 .1] \\
& \text { because, when } s \geqslant t+1 \text {, equation (6.3.4) is the sum of two terms, } \\
& \text { each of which is a product of a term } e^{s \lambda_{k}^{*}} \text { dependent only on } s \\
& \text { and a term dependent only on } t \text {. However, } \underset{\sim}{z} \text { is a } \operatorname{GARMA}(0,1) \\
& \text { process, so it follows from the last part of }[3.2 .3] \text { that } \underset{\sim}{Y} \text { has } \\
& \text { the more specific property of being a } \operatorname{GARMA}(2,1) \text { process. Equation } \\
& \text { (6.3.3) consists of a constant term plus the weighted sum of two, } \\
& \text { possibly complex, exponential functions. Therefore, for } \\
& \text { appropriate values of the parameters it can take on the sigmoidal } \\
& \text { shape characteristic of growth curves. }
\end{align*}
\]

\subsection*{6.3.4 Model in continuous time}

Analogous with section 6.2 , the growth model may also be formulated in continuous time in order to reveal some aspects of
the relationship between discrete and continuous processes. It is assumed that observations \(\underset{\sim}{\boldsymbol{y}}\) are the realisations in discrete time of a random variate \(Y(t)\), indexed by \(t\) over a continuous interval, which is generated by the second-order differential equation
(6.3.5) \(\quad Y^{\langle 2\rangle}(t)-\xi_{1} Y^{\langle 1\rangle}(t)-\xi_{2} Y(t)=Z^{\langle 1\rangle}(t)-\psi_{1} Z(t)\) for \(t \geqslant 0\), where the terms in angular brackets denote the orders of derivative with respect to \(\mathrm{t}, \xi_{1}, \xi_{2}\) and \(\psi_{1}\) are parameters, \(Y(0)\) and \(\left(Y^{\langle 1\rangle}(0)-Z(0)\right)\) are constants, and \(Z(t)\) has an expectation of \(\beta\) and \((Z(t)-\beta)\) is the first derivative of a Weiner process with variance \(\tau^{2}\) for \(t \geqslant 0\). (A stationary version of this model was used by Phadke and Wu (1974) to model sunspot numbers.)

\subsection*{6.3.5 Solution for the model in continuous time}

Applying the results of [3.3.2] we get
(6.3.6) \(Y(t)=\sum_{i=1}^{2} A^{\{i-1\}} \sum_{j=1}^{2} K_{i j} e^{t \lambda} j_{+} \int_{0}^{t} Z(u) \sum_{k=1}^{2} k_{k} e^{(t-u) \lambda_{k}} d u\),
where
\[
A^{\{i-1\}}={Y^{\langle i-1\rangle}}^{\langle i}(0)-\sum_{h=0}^{i-2} z^{\langle h\rangle}(0) \sum_{k=1}^{2} k_{k} \lambda_{k}^{i-2-h}
\]
\[
\text { for } i=1,2 \text {, }
\]
\(\lambda_{1}, \lambda_{2}\) are the roots of
\[
x^{2}-\xi_{1} x-\xi_{2}=0
\]
the elements of \(\underset{\sim}{k}\) satisfy
\[
\begin{array}{ll}
K_{11} \lambda_{1}^{t}+K_{12}^{\lambda_{2}^{t}}=I_{1, t+1} & \text { for } t=0,1 \\
K_{21} \lambda_{1}^{t}+K_{22}^{\lambda_{2}^{t}}=I_{2, t+1} & \text { for } t=0,1
\end{array}
\]
where \(\underset{\sim}{I}\) is the identity matrix of size 2, and the elements of \(\underset{\sim}{K}\) satisfy
\[
\xi_{0} \sum_{k=1}^{2} \kappa_{k} \lambda_{k}+\xi_{1} \sum_{l=1}^{2} \kappa_{l}=\psi_{1}
\]
\[
\xi_{0} \sum_{k=1}^{2} k_{k} \quad=\psi_{0}
\]
where \(\xi_{0}=\psi_{0}=-1\). Therefore
\[
\begin{array}{rlrl}
A^{\{0\}} & =Y(0), & A^{\{1\}} & =Y^{\langle 1\rangle}(0)-Z(0), \\
K_{11} & =\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}, & K_{12} & =\frac{-\lambda_{1}}{\lambda_{2}-\lambda_{1}}, \\
K_{21} & =\frac{-1}{\lambda_{2}-\lambda_{1}}, & K_{22} & =\frac{1}{\lambda_{2}-\lambda_{1}}, \\
K_{1} & =\frac{\lambda_{2}-\xi_{1}+\psi_{1}}{\lambda_{2}-\lambda_{1}} & K_{2}=\frac{-\lambda_{1}+\xi_{1}-\psi_{1}}{\lambda_{2}-\lambda_{1}} .
\end{array}
\]

It follows from equation (6.3.6) that
\[
\begin{aligned}
E(Y(t)) & =\sum_{i=1}^{2} E\left(A^{\{i-1\}}\right) \sum_{j=1}^{2} K_{i j} e^{t \lambda_{j}}+\int_{0}^{t} \beta \sum_{k=1}^{2} k_{k} e^{(t-u) \lambda_{k}} d u, \\
& =\sum_{j=1}^{2}\left\{Y(0) K_{1 j} e^{t \lambda_{j}}+\left(E\left(Y^{<1\rangle}(0)\right)-\beta\right) K_{2 j} e^{t \lambda_{j}}+\beta k_{j} \frac{\left(e^{t \lambda_{j}}-1\right)}{\lambda_{j}}\right\},
\end{aligned}
\]
\[
\begin{equation*}
=-\sum_{j=1}^{2} \frac{\beta K_{j}}{\lambda_{j}}+\sum_{k=1}^{2}\left\{Y(0) K_{1 k}+E\left(Y^{\langle 1\rangle}(0)\right) K_{2 k}-\beta K_{2 k}+\frac{\beta k_{k}}{\lambda_{k}}\right\} e^{t \lambda_{k}} \tag{6.3.7}
\end{equation*}
\]
by algebraic manipulation, and
\[
\begin{aligned}
& \operatorname{cov}(Y(s), Y(t))=\int_{0}^{t} \tau^{2} \sum_{k=1}^{2} \sum_{\ell=1}^{2} k_{k} \kappa_{l} e^{(s-u) \lambda_{k}} e^{(t-u) \lambda_{\ell}} d u \\
& \text { for } s \geqslant t
\end{aligned}
\]
because \(Z(s)\) and \(Z(t)\) are uncorrelated when \(s \neq t\),
\[
\begin{equation*}
=\tau^{2} \sum_{k=1}^{2} \sum_{\ell=1}^{2} k_{k} k_{\ell} \frac{\left(e^{s \lambda_{k}+t \lambda_{\ell}}-e^{(s-t) \lambda_{k}}\right)}{\left(\lambda_{k}+\lambda_{\ell}\right)} . \tag{6.3.8}
\end{equation*}
\]

As \(Z(t)\) is a \(\operatorname{cgarma}(0, \varepsilon)\) process, where \(\varepsilon\) is an
arbitrarily small positive number, from [3.3.3] \(Y(t)\) is a
\(\operatorname{cGARMA}(2, \varepsilon)\) process. In fact it is evident from equation (6.3.8) above which holds when \(s\) is equal to \(t\), and not only when \(s\) exceeds \(t\), that \(Y(t)\) has the more specific property of being a \(\operatorname{cGARMA}(2,0)\) process. The functional form of equation (6.3.7) is the same as that for equation (6.3.3) which has already been discussed.

\subsection*{6.3.6 Relation between models in discrete and continuous time}

The relation between models in discrete and continuous time is much more complicated in the case of second-order equations than in the case of first-order equations considered in [6.2.5]. What follows is a brief discussion of the similarities and differences, with no attempt made at rigorous proof.

In the model in discrete time, \(e^{\lambda_{1}^{*}}\) and \(e^{\lambda_{2}^{*}}\) are the roots of a real quadratic equation and are therefore either both real or a complex conjugate pair; whereas in the model in continuous time, \(\lambda_{1}\) and \(\lambda_{2}\) are the quadratic roots so that \(e^{\lambda_{1}}\) and \(e^{\lambda_{2}}\) are either both real and positive or a complex conjugate pair. The model in continuous time is evidently more restrictive than the model in discrete time. With the restriction that \(\lambda_{1}^{*}\) and \(\lambda_{2}^{*}\) are not real and negative, the expectations given by equations (6.3.3) and (6.3.7) are equivalent for all integer values of \(t\) provided that
\[
\begin{aligned}
\lambda_{1}^{\star} & =\lambda_{1}, \\
\lambda_{2}^{\star} & =\lambda_{2}, \\
\sum_{j=1}^{2} \alpha \frac{K_{2 j}^{\star} e^{\lambda_{j}^{\star}}}{\left(1-e^{\lambda_{j}^{\star}}\right)} & =\sum_{j=1}^{2} \frac{-\beta \kappa_{j}}{\lambda_{j}},
\end{aligned}
\]
and \(\quad Y_{0} K_{1 k}^{\star}+Y_{1} K_{2 k}^{\star}-\frac{\alpha K_{2 k}^{*}}{\left(1-e^{\lambda_{k}^{\lambda}}\right)}=Y(0) K_{1 k}+E\left(Y^{\langle 1\rangle}(0)\right) K_{2 k}-\beta K_{2 k}+\beta \frac{K_{k}}{\lambda_{k}}\)
\[
\text { for } k=1,2
\]

For given values of \(\underset{\sim}{\kappa}\) these five equations uniquely define \(\xi_{1}\), \(\xi_{2}, B, Y(0)\) and \(E\left(Y^{\langle 1\rangle}(0)\right)\) in terms of \(\phi_{1}, \phi_{2}, \alpha, Y_{0}, \gamma_{1}\), and conversely.

For the covariances given by equations (6.3.4) and (6.3.8) to be equivalent for integer values of \(s\) and \(t\) we require that
\[
\begin{align*}
& \sum_{\ell=1}^{2} \sigma^{2} \frac{K_{2 k}^{\star} K_{2 \ell}^{\star}}{\left(1-e^{\lambda_{k}^{\star}+\lambda_{l}^{\star}}\right.}\left\{\theta e^{2 \lambda_{k}^{\star}+\lambda_{l}^{\star}}-\left(1+\theta^{2}\right) e^{\lambda_{k}^{\star}+\lambda_{l}^{\star}}+\theta e^{\lambda_{l}^{\star}}\right\} \tag{6.3.9}\\
& =\sum_{\ell=1}^{2} \tau^{2}{ }^{k_{k}{ }^{\kappa_{\ell}}}\left(\lambda_{\ell}+\lambda_{\ell}\right) \\
& \text { for } k=1,2
\end{align*}
\]
in order to equate the coefficients of \(e^{(s-t) \lambda_{k}}\), and that
\[
\begin{align*}
& \sigma^{2} \frac{K^{\star} k^{K^{\star}} 2 \ell}{\left(1-e^{\lambda_{k}^{\star}+\lambda_{l}^{\star}}\right)}\left\{\theta e^{-\lambda_{\ell}^{\star}}-\left(1+\theta^{2}\right)+\theta e^{-\lambda_{k}^{\star}}\right\}=\tau^{2}\left(\frac{{ }_{k}{ }^{K_{\ell}} \ell}{\lambda_{k}+\lambda_{\ell}}\right) \tag{6.3.10}\\
& \text { for } k=1,2, \ell=1,2
\end{align*}
\]
in order to equate the coefficients of \(e^{S \lambda_{k}+t \lambda} \ell\). Equation (6.3.9) defines \(\tau^{2}\) and \(\psi_{1}\) (included in \(\underset{\sim}{k}\)) in terms of \(\sigma^{2}\) and \(\theta\), and conversely, but these do not satisfy equation (6.3.10). Provided that \(\left|e^{\lambda_{1}}\right|\) and \(\left|e^{\lambda_{2}}\right|\) are less than unity, \(e^{5 \lambda^{+t \lambda} \ell}\) decreases to zero as \(s\) and \(t\) increase and the contribution to \(\operatorname{cov}(Y(s), Y(t))\) from the components given in equation (6.3.10) declines to zero, so the models are equivalent as ymptotically.

In order to achieve equivalence between the models for all times it is necessary to include a starting distribution other than the one so far considered in which initial variances are zero. This change has the effect of adding a term
\[
\sum_{i=1}^{2} \sum_{j=1}^{2} \operatorname{cov}\left(Y_{i-1}, Y_{j-1}\right) K_{i k}^{*} K_{j \ell}^{*}
\]
to the left side of equation (6.3.10) and a term
\[
\sum_{i=1}^{2} \sum_{j=1}^{2} \operatorname{cov}\left(A^{\{i-1\}}, A^{\{j-1\}}\right) K_{i k} K_{j \ell}
\]
to the right side. The variance of \(\left(A^{\{0\}}, A^{\{1\}}\right)\) is defined by, and defines, the variance of (\(Y_{0}, Y_{1}\)) and the models in discrete and continuous time are equivalent.

The model in continuous time will be used in section 6.5 to maintain similarity with section 6.4.

\subsection*{6.4 Neilson's data: milk yield of cows}

\subsection*{6.4.1 Introduction}

Daily milk yields were recorded approximately once a week from the date of calving for each of 23 British Friesian cows in a commercial herd at Langhill (Neilson, Whittemore, Lewis, Alliston, Roberts, Hodgson-Jones, Mills, Parkinson and Prescott, 1983). The number of measurements of milk yield per cow varied between 32 and 44 and were unequally spaced in time. The animals were part of a larger experiment to study the relationships between feed intake, milk output and body condition in high yielding dairy cows.

\subsection*{6.4.2 Models}

A vector of observations \(y_{1}, \ldots, y_{n}\), denoted \(\underset{\sim}{y}\), of daily milk yields made on a single cow at times \(t_{1}, \ldots, t_{n}\), denoted
\(\underset{\sim}{t}\), measured in weeks are assumed to be multivariate normally distributed with mean \(\underset{\sim}{f}\) where
\[
f_{i}=-\left(\frac{\beta_{1}}{\xi}+\frac{\beta_{2}}{\xi^{2}}\right)\left(1-e^{\xi t_{i}}\right)-\frac{\beta_{2}}{\xi} t_{i} \quad \text { for } \quad i=1, \ldots, n,
\]
as given in equation (6.2.4). This regression model was previously proposed by Cobby and Le Du (1978) because, for appropriate values of the parameters \(\beta_{1}, \beta_{2}\) and \(\boldsymbol{\xi}\), it has the desirable features of a lactation curve of passing through the origin, rising rapidly to a maximum and subsequently decreasing much more slowly.

Several different models for the variance matrix \(\underset{\sim}{V})\) will be considered:
(0) Independent observations with equal variances \(\tau^{2}\) :
\[
V_{i j}=\tau^{2} I_{i j}
\]
where \(\underset{\sim}{I}\) is the identity matrix of size \(n\).
(1) The standard variance structure appropriate to a first-order stochastic differential equation, for which
\[
v_{i j}=\tau^{2} e^{\xi\left(t_{i}-t_{j}\right)} \frac{\left(e^{2 \xi t} j-1\right)}{2 \xi} \quad \text { for } i \geqslant j
\]
as given in equation (6.2.5).
(2) The standard variance structure in (1) above but with a separate parameter \(\xi^{\star}\), independent of the parameter \(\boldsymbol{\xi}\) in \(\underset{\sim}{f}\), for which
\[
V_{i j}=\tau^{2} e^{\xi^{\star}\left(t_{i}-t_{j}\right)} \frac{\left(e^{2 \xi^{\star} t} j-1\right)}{2 \xi^{\star}} \quad \text { for } i \geqslant j
\]
(3) The standard variance structure \({ }_{\text {§ }}\) in (1) plus an observation error, for which
\(V_{i j}=\tau^{2}\left[\left(\frac{1}{2}+\frac{1}{2} \sin \alpha^{\star}\right) e^{\xi\left(t_{i}-t_{j}\right)} \frac{\left(e^{2 \xi t} j-1\right)}{2 \xi}+\left(\frac{1}{2}-\frac{1}{2} \sin \alpha^{\star}\right) I_{i j}\right]\)

This uses the same type of parameterization as [4.2.4] to constrain terms to lies between 0 and 1.
(4) The variance structure with a separate parameter \(\xi^{\star}\) plus an observation error, for which
\[
\begin{array}{r}
V_{i j}=\tau^{2}\left[\left(\frac{1}{2}+\frac{1}{2} \sin \alpha^{\star}\right) e^{\xi^{\star}\left(t_{i}-t_{j}\right)} \frac{\left(e^{2 \xi^{\star t}} j-1\right)}{2 \xi^{\star}}+\left(\frac{1}{2}-\frac{1}{2} \sin \alpha^{\star}\right) I_{i j}\right] \\
\text { for } i \geqslant j .
\end{array}
\]

Models (2) to (4) enable the validity of Dhanoa and Le Du's (1982) model to be tested both for the connection between \(\boldsymbol{\xi}\) in \(\underset{\sim}{f}\) and \(\xi^{\star}\) in \(\underset{\sim}{V}\), and for the inclusion of an observation error. The particular choice of parameterization of the observation errors given by (3) and (4) above has been made to ensure that the parameters can fit the full range of possible models, whilst remaining bounded, without the use of more than one scaling parameter \(\tau^{2}\). If \(\alpha^{\star}\) equals \(\pi / 2\) there is no observation error, and if \(\alpha^{*}\) equals \(-\pi / 2\) observation error is the sole source of error. Model (0) corresponds to a \(\operatorname{GARMA}(0,0)\) process, models (1) and (2) to \(\operatorname{GARMA}(1,0)\) processes and models (3) and (4) to \(\operatorname{GARMA}(1,1)\) processes.

It should be noted that these simple models do not take special account of any effects resulting from the onset of pregnancy or changes in environment such as leaving winter housing, rather they are subsumed within the general error model.

\subsection*{6.4.3 Method of estimation}

The models were all fitted separately to the data from each cow by maximum likelihood estimation (that is by minimizing \(L_{M}\)), and by residual maximum likelinood estimation (that is by minimizing \(L_{R}\)), as defined in [2.3.2]: The results were in good
agreement, so only the maximum likelihood results have been presented because \(L_{M}\) is computationally simpler to evaluate, and the interpretation of \(L_{R}\) is not clear when parameters occur in both the regression function and in the variance matrix.

To obtain good initial estimates for the parameters in the iterative optimization routine the models were fitted sequentially. Parameter values were guessed from the data to provide starting values for model (0). The parameter estimates from model (0) were then used as starting values for model (1), those obtained for model (1) were used to start the iterations for models (2) and (3) and finally those for model (3) were used to start the iterations for model (4).

\subsection*{6.4.4 Results - likelihood comparisons}

Table 6.4-1 shows the minimized values of \(L_{M}\) (the negative log-likelihood) for each model fitted to the data from each cow. For each cow the model with the lowest Akaike Information Criterion (AIC) (see Akaike, 1973), that is \(L_{M}\) plus the number of model parameters, is underlined. AIC has recently become popular in time-series analysis for choosing between models. On the basis of this criterion the choice of best model varies considerably among cows: on seven occasions model (0) is chosen, on eight occasions model (1) is chosen, on two occasions model (2) is chosen, once model (3) is chosen and on five occasions model (4) is chosen. When \(L_{M}\) is averaged over all cows AIC simply involves adding the number of model parameters as above, and the best fit is model (2). Models (2), (3) and (4) are generalizations of model (1) so they can be compared on the basis of the asymptotic properties of the likelihood ratio test. Models (2) and (3) have one extra

Table 6.4.1
Neilson's data; minimum values of the negative log-likelihood \(\left(L_{M}\right)\) for different models.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & \multirow[t]{2}{*}{independent errors} & \multicolumn{2}{|l|}{correlation parameter} & \multicolumn{2}{|l|}{+ observation error} \\
\hline & & & \(\xi\) & \(\xi^{*}\) & \(\xi\) & \(\xi^{*}\) \\
\hline & Model & (0) & (1) & (2) & (3) & (4) \\
\hline Cow & Number of Parameters & 4 & 4 & 5 & 5 & 6 \\
\hline 1 & & 60.1 & 57.6 & 57.6 & 57.6 & 57.6 \\
\hline 2 & & 70.3 & 61.4 & 55.2* & 61.4 & 55.2* \\
\hline 3 & & 74.3 & 73.6 & 73.5 & 73.5 & 73.5 \\
\hline 4 & & 54.7 & \(\overline{52.3}\) & 52.2 & 52.3 & 52.2 \\
\hline 5 & & 44.9 & 43.1 & 42.3 & 40.3* & 38.1** \\
\hline 6 & & 50.1 & 51.3 & 50.1 & 50.1 & 50.1 \\
\hline 7 & & \(\underline{40.3}\) & 42.1 & 40.3 & 40.3 & 40.3 \\
\hline 8 & & 70.6 & 62.5 & 60.7 & 62.5 & 58.7** \\
\hline 9 & & 34.8 & 40.2 & 34.8* & 34.8* & 34.8* \\
\hline 10 & & 78.2 & 77.1 & 76.8 & 76.6 & 76.3 \\
\hline 11 & & 53.1 & \(\overline{52.3}\) & 51.8 & 50.9 & 50.0 \\
\hline 12 & & 43.0 & 41.0 & 41.0 & 41.0 & 41.0 \\
\hline 13 & & 45.7 & \(\overline{45.8}\) & 45.2 & 44.8 & 43.7 \\
\hline 14 & & 41.7 & 38.7 & 36.3* & 38.7 & 34.3** \\
\hline 15 & & 31.4 & 29.6 & 26.7* & 29.6 & 26.6* \\
\hline 16 & & 62.7 & 56.8 & 53.0* & 56.8 & 50.6** \\
\hline 17 & & 40.8 & 42.6 & 40.8 & 40.8 & 40.8 \\
\hline 18 & & 45.8 & 46.4 & 45.6 & 45.7 & 45.6 \\
\hline 19 & & 46.1 & 45.0 & 44.4 & 45.0 & 44.1 \\
\hline 20 & & 44.9 & \(\underline{42.6}\) & 41.9 & 42.3 & 41.9 \\
\hline 21 & & 58.6 & 58.7 & 58.6 & 58.6 & 58.6 \\
\hline 22 & & \(\overline{51.3}\) & 47.4 & 46.4 & 47.4 & 46.4 \\
\hline 23 & & 52.8 & \(\overline{53.0}\) & 52.8 & 52.7 & 52.7 \\
\hline Average & & 52.0 & 50.5 & 49.0* & 49.7 & 48.4* \\
\hline
\end{tabular}

For each cow the model with the lowest value of Akaike's
Information Criterion has been underlined.
Models (2) to (4) with significantly lower \(L_{M}\) than model (1) at \(5 \%\) level denoted by an asterisk.

Model (4) with significantly lower \(L_{M}\) than model (2) at \(5 \%\) level denoted by a second asterisk.
parameter and so are a significant improvement over model (1) at the \(5 \%\) level if \(L_{M}\) has been decreased by more than 1.9 , that is the 95 percentile of \(\frac{1}{2} x_{1}^{2}\). Model (4) has two extra parameters so a decrease in \(L_{M}\) of 3.0 (95 percentile of \(\frac{1}{2} x_{2}^{2}\)) is sufficient to reject model (1). Models which are a significant improvement are marked with an asterisk. In particular, model (4) is chosen in preference to model (1) on seven occasions.

Model (4) is also a generalization of model (2) with one extra parameter to specify the observation error, so a decrease of 1.9 is sufficient to reject model (2). Data sets for which model (2) is rejected are marked with a second asterisk in the table.

Model (4) is prefered to model (2) on four occasions.
The same tests were also applied to the values of \(L_{M}\) for each model averaged over all cows. The significant decrease for a model with one extra parameter is 0.8 (the 95 percentile of \(\frac{1}{46} x_{23}^{2}\)) and with two extra parameters it is 1.4 (the 95 percentile of \(\frac{1}{46} x_{46}^{2}\)), once again appealing to the asymptotic properties of the likelihood ratio test. (Equivalent tests could have been performed using \(L_{M}\) summed over all cows.) On average, models (2) and (4) are better than model (1) but the improvement of (4) over (2) is not significant. However, the significant improvement from using model (4) for 4 cows is sufficient to justify its use because there is less than a 3 percent probability of model (2) being rejected on four or more occasions if it were in fact correct. The conclusion therefore is that Dhanoa and Le Du's model is found inadequate for the data set in two respects: the parameter \(\boldsymbol{\xi}\) cannot be assumed to be common to both the regression function (f) and the variance matrix \((\underset{\sim}{V})\), and an observation error is necessary.

\subsection*{6.4.5 Results - parameter estimates}

Parameter estimates and standard errors inevitably vary between cows for a particular model. In order to summarize the results three simple and widely used statistics have been derived: two statistics relate to the parameter estimates and are the mean and standard deviation of the between-cow distribution; the third statistic is the average standard error. To define these summary statistics more explicitly consider the parameter \(B_{1}\) in a particular model: this was estimated as \(\hat{\beta}_{1}^{\{j\}}\) with a standard error of s.e. \(\left(\hat{\beta}_{1}^{\{j\}}\right)\) using the data from the \(j\) th cow. The mean of the estimates is
\[
\hat{\beta}_{1}=\sum_{j=1}^{23} \hat{\beta}_{1}^{\{j\}} / 23,
\]
the standard deviation of the estimates is
\[
\checkmark\left\{\sum_{j=1}^{23}\left(\hat{\beta}_{1}^{\{j\}}-\hat{\beta}_{1}\right)^{2} / 22\right\}
\]
and the average standard error is
\[
\sum_{j=1}^{23} \text { s.e. }\left(\hat{\beta}_{1}^{\{j\}}\right) / 23 .
\]

Table 6.4.2 gives the results. These statistics are obviously discarding some information, but they are adequate for making some important comparisons between models and for assessing whether a parameter could take a common value for all cows.

In the table \(e^{\hat{\xi}}\) and \(e^{\hat{\xi}^{\star}}\) are presented instead of \(\hat{\xi}\) and \(\hat{\xi}^{\star}\) because on occasions the latter took large negative values. Also, \(\vec{\tau}^{2}\) is not given because in models (1) to (4) it is too highly correlated with estimates of \(\xi\) and \(\xi^{\star}\) to be interpretable when the latter took large negative values.

Table 6.4.2
Neilson's data; means and standard deviations of parameter estimates over all 23 cows for each model, and average errors (see [6.4.5]).

Model
(0) indep. errors
\begin{tabular}{l}
\(\beta_{1} \quad \beta_{2} \quad e^{\xi} \quad e^{\xi^{\star}} \quad \alpha^{\star}\) \\
\hline
\end{tabular}

Means of estimates
(1) cor. param. \(\xi\)
46. \(\quad-0.82 \quad 0.33\)
48. \(\quad-0.87 \quad 0.31\)
(2) cor. param. \(\xi^{\star}\)

47 . \(\quad 0.85\)
0.32
0.29
(3) \(\xi+\) obs. error

44 . -0.79
0.34
0.5
(4) \(\xi^{\star}+\) obs.error
47.
\(-0.85\)
0.31
0.47
0.5

\section*{standard deviations of estimates}
(0) indep. errors
17.
0.47
0.12
(1) cor. param. \(\xi\)
24.
0.65
0.12
(2) cor. param. \(\xi^{\star}\)
18.
0.50
0.13
0.23
(3) \(\xi+\) obs. error
17.
\(0.46 \quad 0.11\)
1.3
(4) \(\xi^{\star}+\) obs.error
17.
0.49
0.12
0.34
1.0

\section*{average standard errors}
(0) indep. errors
10.
\(0.20 \quad 0.07\)
(1) cor. param. \(\xi\)
9.
\(0.16 \quad 0.06\)
(2) cor. param. \(\xi^{\star}\)
11.
\(0.21 \quad 0.07\)
0.11
(3) \(\xi+\) obs. error
9.
\(0.18 \quad 0.07\) 1.3
(4) \(\xi^{\star}+\) obs.error
11.
\(0.21 \quad 0.07\)
0.17
1.4

A feature of particular note in the table is the good agreement between the mean values of \(e^{\xi}(0.32)\) and \(e^{\xi^{\star}}(0.29)\) in model (2). This seems to suggest model (1) is correct in assuming that \(\xi\) is equal to \(\xi^{\star}\) and using a single parameter, and as a consequence reducing the average standard error of the estimator of \(e^{\xi}\) from 0.7 in models (0), (2), (3) and (4) to 0.6. However, although the average values of the estimates of \(e^{\xi}\) and \(e^{\xi^{\star}}\) are in good agreement there is no evidence of a relationship between these two parameters for individual cows and the correlation coefficient between them over the 23 cows is -0.2 . Figure 6.4.1 shows the 23 estimates of \(e^{\xi}\) for model (2) ranked in ascending order, together with estimates of \(e^{\xi^{\star}}\) for model (2) and estimates of \(e^{\xi}\) for model (1), arranged in the same order, plotted against the integers 1 to 23. From this it can be seen that using a single parameter biases the estimate of \(\boldsymbol{\xi}\). In fact the combined parameter consists of approximately \(80 \%\) of the weight appropriate to the coefficient in the regression function and \(20 \%\) to the coefficient appropriate to the correlation structure. Therefore, although the close agreement between the mean values of \(e^{\xi}\) and \(e^{\xi^{*}}\) in model (2) is of interest it is no justification for assuming that \(\xi\) and \(\xi^{\star}\) are equal.

Although the likelihood ratio tests indicate significant differences between the models these do not seem to have any effect on average on the regression parameter estimates. The mean estimates, standard deviations and average standard errors are very similar for all models. This is probably because although the errors are significantly positively correlated this correlation coefficient is small in value so the assumption of independent errors does not reduce the efficiency by much. Also, standard

\section*{Figure 6.4.1}

Neilson's data; the estimates of \(e^{\xi}(X)\) for model (2) ranked in ascending order, the estimates of \(e^{\xi^{\star}}(+)\) for model (2) and the estimates of \(e^{\xi}(*)\) for model (1), arranged in the same order, plotted against the integers 1 to 23.

deviations of estimates exceed the standard errors for all parameters except \(\alpha^{\star}\), on average they are twice as big, so there is no evidence for parameters being constant over all cows.

Figures \(6.4 .2,6.4 .3,6.4 .4\) and 6.4 .5 show the data for cow number 8 together with the fitted regression function and predicted values using earlier observations (described ịn [2.3.6]) plotted against time for models (0), (1), (2) and (4) respectively. The eighth cow was selected as one of the four data sets for which model (4) gave the best fit. As such, it is not typical of the other cows, but rather serves to highlight the differences in fit between models. The fitted curve in model (1) reaches its linear asymptote less quickly than in the other three models because \(\xi\) is describing both the regression function and the correlation structure. The predicted values for model (4) give the best agreement with the data because this model can allow for more correlation between errors than model (1) whilst also allowing an observation error component which is absent from model (2).

\subsection*{6.4.6 Resumé}

The evidence from Neilson's data is that the model advocated by Dhanoa and Le Du is inappropriate and if used will lead to biased estimates of \(\xi\). An ARMA \((1,1)\) process seems to be the simplest model capable of describing the error correlation structure, allowing for both persistent correlations and an observation error component. However, the difference this makes compared with least-squares estimation is small and does not appear to be sufficient to justify its use.

\section*{Figure 6.4.2}

Neilson's data, cow number 8, model (0) fitted by maximum likelihood estimation; observed milk yields (\(X\)) and the fitted curve (_) plotted against time.

Figure 6.4.3
Neilson's data, cow number 8 , model (1) fitted by maximum likelihood estimation; observed milk yields (X), the fitted curve (---) and the predicted values (- -) conditional upon earlier observations plotted against time.

Neilson's data, cow number 8, model (2) fitted by maximum likelihood estimation; observed milk yields (\(X\)), the fitted curve (----) and the predicted values (_-_) conditional upon earlier observations plotted against time.

Neilson's data, cow number 8, model (4) fitted by maximum likelihood estimation; observed milk yields (\(X\)), the fitted curve (---) and the predicted values (-) conditional upon earlier observations plotted against time.

\subsection*{6.5.1 Introduction}

The weights of five non-pregnant female cattle fed ad libitum were recorded every second week from weaning at 12 weeks of age for periods of up to 5 years, resulting in between 82 and 133 observations per animal. These animals were part of a multibreed experiment, set up to study genetic variation between breeds and genetic inter-breed relationships for a wide spectrum of traits, in order to examine the problems of between-breed testing and selection (Thiessen, Hnizdo, Maxwell, Gibson and Taylor, 1984). The animals were of the following breed types: one Hereford, one Dairy Shorthorn, two British Whites and one British Friesian.

\subsection*{6.5.2 Models}

A vector of observations \(y_{1}, \ldots, y_{n}\), denoted \(\underset{\sim}{y}\), of weights of a single animal at times \(t_{1}, \ldots, t_{n}\), denoted \(\underset{\sim}{t}\), measured in weeks are assumed to be multivariate normally distributed with mean \(\underset{\sim}{f}\) where
\[
\begin{array}{r}
f_{i}=f(\infty)+\sum_{k=1}^{2}\left\{f(0) k_{1 k}+f^{\langle 1\rangle}(0) k_{2 k}-f(\infty) \xi_{2} \frac{k_{2 k}}{\lambda_{k}}\right\} e^{t_{i} \lambda_{k}} \\
\text { for } i=1, \ldots, n
\end{array}
\]

This is simply a restatement of equation (6.3.7) except for \(Y(0)\) being replaced by \(f(0), E\left(Y^{\langle 1\rangle}(0)\right)\) by \(f^{\langle 1\rangle}(0)\) and some algebraic manipulation resulting from \(\left(B \psi_{1}\right)\) having been replaced by \(\left(\xi_{2} f(\infty)\right)\). This reparameterization reduces the number of parameters from six to five which is convenient because only five are estimable for a regression model described by a constant plus
the weighted sum of two exponential functions. The terminology \(f(\infty)\) has been used because, provided \(\left|e^{\lambda}\right|<1\), as \(t_{i}\) increases \(f_{i}\) tends to the limit \(f(\infty)\).

> Several different models for the variance matrix (진 will be considered:
(0) Independent observations with equal variances \(\tau^{2}\) :
\[
v_{i j}=\tau^{2} I_{i j},
\]
where \(\underset{\sim}{I}\) is the identity matrix of size \(n\).
(1) The standard variance structure appropriate to a secondorder stochastic differential equation if the right side of equation (6.3.5) were simply \(Z(t)\), plus an observation error, for which
\[
\begin{aligned}
v_{i j}=\tau^{2}\left[\left(\frac{1}{2}\right.\right. & \left.+\frac{1}{2} \sin \alpha^{\star}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} k_{2 k} k_{2 \ell} \frac{\left(e^{t_{i j} \lambda_{k}+t_{j} \lambda_{\ell}}-e^{\left(t_{i}-t_{j}\right) \lambda_{k}}\right.}{\left(\lambda_{k}+\lambda \ell\right)} \\
\left.+\left(\frac{1}{2}-\frac{1}{2} \sin \alpha^{\star}\right) I_{i j}\right] & \text { for } i>j \text {. }
\end{aligned}
\]

This equation may be derived from equation (6.3.8) by noting that as \(\psi_{1}\) increases, \(\kappa_{1} / \psi_{1}\) converges to \(-K_{21}\) and \(\kappa_{2} / \psi_{1}\) converges to \(-K_{22}\), and this is all that is required for equation (6.3.5) to approximate to the above specification in which the right side is dominated by the term in \(Z(t)\). The parameterization of the observation error component using \(\alpha^{\star}\) is the same as in [6.4.2] to constrain terms to lie between 0 and 1 .
(2) The standard variance structure as given by equation (6.3.8) plus an observation error, for which
\[
\begin{aligned}
v_{i j}=\tau^{2}\left[\left(\frac{1}{2}\right.\right. & \left.+\frac{1}{2} \sin \alpha^{\star}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} k_{k} k_{\ell} \frac{\left(e^{t_{i} \lambda_{k}+t_{j} \lambda_{\ell}}-e^{\left(t_{i}-t_{j}\right) \lambda_{k}}\right)}{\left(\lambda_{k}+\lambda_{\ell}\right)} \\
\left.+\left(\frac{1}{2}-\frac{1}{2} \sin \alpha^{\star}\right) I_{i j}\right] & \text { for } i>j>
\end{aligned}
\]
(3) The variance structure but with separate parameter \(\underset{\sim}{\xi}\), plus an observation error, for which
\[
\begin{aligned}
v_{i j}=\tau^{2}\left[\left(\frac{1}{2}\right.\right. & \left.+\frac{1}{2} \sin \alpha^{\star}\right) \sum_{k=1}^{2} \sum_{\ell=1}^{2} k_{k} k_{\ell} \frac{\left(e^{t_{i} \lambda_{k}^{\star}+t_{j} \lambda_{l}^{\star}}-e^{\left(t_{i}-t_{j}\right) \lambda_{k}^{\star}}\right)}{\left(\lambda_{k}^{\star+\lambda_{l}^{\star}}\right)} \\
& \left.+\left(\frac{1}{2}-\frac{1}{2} \sin \alpha^{\star}\right) I_{i j}\right] \quad \text { for } i \geqslant j,
\end{aligned}
\]
where \(\lambda_{1}^{\star}, \lambda_{2}^{\star}\) are the roots of
\[
x^{2}-\xi_{1}^{\star} x-\xi_{2}^{\star}=0 .
\]

An observation error has been included in all the above models because there will inevitably be some errors of this sort when large animals are being weighed. As in section 6.4, the choice of parameterization of the observation errors has been so as to ensure that the parameters can fit the full range of possible models, whilst remaining bounded, without the use of more than one scaling parameter \(\tau^{2}\). Model (1) enables model (2) to be tested against a simpler alternative and model (3) enables the assumption in model (2) that parameters are shared in common between the regression function \(\underset{\sim}{f}\) and the variance matrix \(\underset{\sim}{V}\) to be tested. Model (0) corresponds to a \(\operatorname{GARMA}(0,0)\) process whilst models (1), (2) and (3) are all \(\operatorname{GARMA}(2,2)\) processes.

\subsection*{6.5.3 Method of estimation}

All the models were fitted separately to each data set by maximum likelihood estimation, that is by minimizing \(L_{M}\) as defined in [2.3.2]. For these models it would have been difficult to use residual maximum likelihood estimation because the first derivative of the regression function with respect to the model parameters would have been required.

Initial estimates of the parameter values for each model were obtained from the final estimates from the next "smaller" model and initial guesses were used for model (0). Convergence difficulties were encountered because of high correlations among the parameter estimators. This could possibly have been circumvented by reparameterizing, but for simplicity of programming, different initial estimates were tried instead and the number of iterations in the optimization algorithm increased. A consequence of this parameterization was that estimates of standard errors could not be obtained from a quadratic approximation to \(L_{M}\) at the minimum.

\subsection*{6.5.4 Results - likelihood comparisons}

Table 6.5.1 shows the minimized values of \(L_{M}\) (the negative log-1ikelihood) for each model fitted to the data from each animal. For each animal the model with the lowest Akaike Information Criterion, that is \(L_{M}\) plus the number of model parameters, is underlined. On the basis of this criterion the best model is (3), except for animal 3 where model (2) is adequate.

Likelihood ratio tests are not necessary to show that the improvement of model (3) over models (0), (1) and (2) is sufficient to reject the simpler models for all except animal 3. The conclusion from this evidence is that the variance matrix needs to be parameterized separately from the regression function.

\subsection*{6.5.5 Results - parameter estimates}

Table 6.5 .2 shows the means and standard deviations of the parameter estimates over all animals for each model. The summary statistics were defined and discussed in [6.4.5]. As already

Table 6.5.2

Theissen's data; minimum values of the negative log-likelihood (\(L_{M}\)) for different models.
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
independent \\
errors
\end{tabular} & \begin{tabular}{c}
model with \\
\(\psi\) omitted
\end{tabular} & \begin{tabular}{c}
standard \\
model
\end{tabular} & \begin{tabular}{c}
sep. cor. \\
param.
\end{tabular} \\
\((0)\) & \((1)\) & \((2)\) & \((3)\)
\end{tabular}

Model
(0)
(1)
(2)
(3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Animal & Number of Parameters & 6 & 7 & 8 & 10 \\
\hline 1 & & 411.1 & 346.5 & 341.4 & 330.7 \\
\hline 2 & & 312.8 & 287.7 & 279.1 & 274.7 \\
\hline 3 & & 402.3 & 323.0 & 306.0 & 305.0 \\
\hline 4 & & 333.2 & 294.0 & 285.8 & 279.0 \\
\hline 5 & & 209.2 & 209.2 & 209.0 & 194.5 \\
\hline Average & & 333.7 & 292.1 & 284.3 & 276.9 \\
\hline
\end{tabular}

For each animal the model with the lowest value of Akaike's Information Criterion has been underlined.

\section*{Table 6.5.2}

Theissen's data; means and standard deviations of parameter estimates over all 5 animals for each model.

Model
\[
f(0) \quad f^{<1\rangle}(0) \quad 10^{2} \xi_{1} \quad 10^{4} \xi_{2} \quad f(\infty) \quad 10^{2} \psi \quad 10^{2} \xi_{1}^{\star} \quad 10^{4} \xi_{2}^{\star} \quad \alpha^{\star}
\]

\section*{Means of estimates}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (0) indep. errors & 96. & 4.6 & -6.8 & -10.9 & 690. & & & & \\
\hline (1) model with \(\psi\) omitted & 95. & 4.6 & -6.0 & -9.2 & 710. & & & & 0.2 \\
\hline (2) standard model & 95. & 5.1 & -5.8 & -8.9 & 690. & 2.5 & & & 1.4 \\
\hline (3) sep. cor. param. \({\underset{\sim}{*}}^{*}\) & 94. & 4.8 & -7.0 & -10.8 & 690. & 0.9 & -16. & -200. & 1.5 \\
\hline & & \multicolumn{4}{|l|}{standard deviations of estimates} & & & & \\
\hline (0) indep. errors & 7. & 2.1 & 6.5 & 11.2 & 30. & & & & \\
\hline (1) model with \(\psi\) omitted & 6. & 1.5 & 4.8 & 7.9 & 30. & & & & 1.0 \\
\hline (2) standard model & 5. & 1.5 & 4.5 & 7.7 & 30. & 2.3 & & & 0.1 \\
\hline (3) sep. cor. param. \({\underset{\sim}{\xi}}^{*}\) & 5. & 1.2 & 6.1 & 9.8 & 30. & 2.3 & 27. & 330. & 0.1 \\
\hline
\end{tabular}
explained, standard errors could not be obtained for these models. It is recognised that some of the differences between animals are being ignored in forming these statistics, but this simple approach is adequate for making certain important comparisons between the different models.

The parameter estimates are in good agreement except that \(\hat{\xi}_{1}\) and \(\vec{\xi}_{2}\) in models (1) and (2) are greater than in models (0) and (3). This arises because \(\underset{\sim}{\xi}\) parameterizes both the regression and error structure in models (1) and (2), whilst in models (0) and (3) \(\underset{\sim}{\xi}\) only parameterizes the regression function, and in model (3) a separate parameter \({\underset{\sim}{*}}^{\star}\) is used to model the errors and is estimated as being quite different from \(\underset{\sim}{\xi}\).

The standard deviations are greatest for model (0) as is to be expected because the assumption of independent errors leads to inefficient estimators. The standard deviations for \(\underset{\sim}{\hat{\xi}}\) are less in models (1) and (2) than in model (3) because the information in error structure is also being used in the estimation procedure. However, this appearance of increased precision is an illusion because models (1) and (2) have been rejected by the data so the estimators are meaningless anyway.

Figures \(6.5 .1,6.4 .2,6.5 .3\) and 6.5 .4 show the data for animal 4 together with the fitted regression function and predicted values using earlier observations (described in [2.3.6]) for models \((0),(1),(2)\) and (3) respectively. The systematic departures of the fit in model (1) illustrates the effect of assuming a high correlation among observations, and was the reason for the choice of animal 4 for plotting.

\section*{Figure 6.5.1}

Thiessen's data, animal number 4, model (0) fitted by maximum likelihood estimation; observed weights (\(X\)) and the fitted curve (——) plotted against time.

\section*{Figure 6.5.2}

Thiessen's data, animal number 4, model (1) fitted by maximum likelihood estimation; observed weights (\(X\)), the fitted curve (---) and the predicted values (-_) conditional upon earlier observations, plotted against time.

Time (weeks)

Thiessen's data, animal number 4, model (2) fitted by maximum likelihood estimation; observed weights (\(X\)), the fitted curve (----) and the predicted values (-) conditional upon earlier observations, plotted against time.

Figure 6.5.4
Thiessen's data, animal number 4 , model (3) fitted by maximum likelihood estimation; observed weights (\(X\)), the fitted curve (----) and the predicted values (-) conditional upon earlier observations, plotted against time.

\subsection*{6.5.6 Resumé}

The notion of using the \(s\) ame parameters to model both the regression function and the error structure in animal growth is an attractive one. However, in examples such as the above where the data do not support the model the approach cannot be recommended. It may give the appearance of improved precision but in fact the estimators are biased.

\subsection*{6.6 Discussion}

The technique considered in this chapter is to model data by linear stochastic difference and differential equations with constant coefficients. The parameters in the model are estimated utilizing the information both in the main trend of the data and in the local stochastic fluctuations. The techniques were applied to two data sets, one of milk yields and the other of weights, for neither of which were there any theoretical justification for using such models. Therefore it was perhaps not surprising to find that in neither case did the models fit well, there being no evidence of a link between the parameters required to describe the regression function and those required to describe the correlation structure. If the parameters are linked together then the resulting estimators are biased, so the methods of chapters 4 and 5, where the error structure is modelled empirically on the basis of the observed data, would seem more appropriate to these types of application. In other words, if a differential equation is to be used then the deterministic form should be used with the error process "tacked on" at the end. This result is in direct contradiction to the arguments of Sandland and McGilchrist (1979), quoted in [6.3.1], and to the recommendations made implicitly by Dhanoa and Le Du.
7. Stochastic compartment models with constant coefficients

\subsection*{7.1 Introduction}

This is the second of three chapters which consider the use of mechanistic models in order to estimate regression parameters when errors are serially correlated. Sometimes the theoretical justification for fitting a weighted sum of exponentials as a regression function is that a compartment system is a realistic model for the generation of the data. The fundamental assumption is that the system to be modelled may be divided into homogenous components called compartments, and that material flows between these compartments according to some specified kinetics. Such reasoning lay behind the choice of weighted sums of exponential functions to fit Colquhoun's and Dale's data in chapter 4, discussed for the respective cases by Colquhoun and Hawkes (1977) and Bauermeister, Dale, Williams and Scobie (1980). The opportunity arises, as it did for difference and differential equations in chapter 6, to incorporate stochastic variability into the basic model rather than to add error onto the deterministic solution in order to model the observations. Provided a stochastic compartment model is appropriate, this approach will improve the efficiency of parameter estimation and help identify the correct order of compartment system.

The stochastic variability considered in this chapter is that arising from having only a finite number of particles in the compartmental system, each behaving independently. This has been denoted type Pl by Matis and Wehrly (1979) who also considered other sources of variability. In section 7.2, the first and
second moments are derived for a type of variate specified by the model, and this variate is shown to be a cGARMA process. In section 7.3, Colquhoun's data is modelled using stochastic compartment models and the results compared with the empirical approach to modelling used in section 4.3. In section 7.4, Dale's data is modelled in a similar way. Finally, in section 7.5 the usefulness of stochastic compartment models in estimating regression parameters in the presence of serially correlated errors is critically assessed.

The mathematical development of stochastic compartment models given in section 7.2 is not new, see the literature review in [1.3.6]. At the theoretical level, what is original in this chapter is the link made with CGARMA processes which allows the Gaussian likelihood, or variants of it, to be evaluated simply. Therefore, parameters in a stochastic compartment model can be estimated using the computer program REGAME. The applications of the stochastic model to the two situations represented by the two data sets are also original, previous analyses not having utilized the link between the regression and error structures.
7.2. Theory

\subsection*{7.2.1 Model}

The situation envisaged is where a sequence of observations \(y_{1}, \ldots, y_{n}\) (denoted \(\underset{\sim}{y}\)) have been made at times \(t_{1}, \ldots, t_{n}\) (denoted \(\underset{\sim}{t}\)) on a single experimental subject. It is assumed that the vector \(\underset{\sim}{y}\) is a realisation at times \(\underset{\sim}{t}\) of a random
variate \(Y(t)\), indexed by \(t\) over a continuous finite or infinite interval, which is a weighted sum of the number of particles in each of \(p\) compartments of a stochastic compartment system.

Therefore
\[
\begin{equation*}
Y(t)=\sum_{i=1}^{p} \mu_{i} N_{i}(t) \tag{7.2.1}
\end{equation*}
\]
where \(N_{i}(t)\) is the random number of particles in compartment \(i\) at time \(t\) and \(\mu_{i}\) is the constant weight given to particles in compartment i.

The stochastic compartment system is defined as follows:
a) a particle in compartment \(i\) at time \(t\) is in compartment \(j(\neq \boldsymbol{i})\) at time \(t+\delta t\) with probability \(Q_{i j} \delta t+o(\delta t)\), has left the system with probability \(q_{j} \delta t+o(\delta t)\) and is otherwise still in compartment \(\mathbf{i}\), independently of what happens to all other particles and what happens at all earlier times, where \(o(\delta t)\) denotes terms of order less than \(\delta t\) and \(\delta t \geqslant 0\);
b) the number of particles entering compartment \(\mathfrak{i}\) from outside the system between times \(t\) and \(t+\delta t\) is Poisson distributed with expectation \(r_{i} \delta t+o(\delta t)\).
Diagramatically this can be represented as:

The rate constant \(Q_{i j}\) denotes a coefficient in a square matrix
\(\underline{\sim}\) of size \(p\), all of whose off-diagonal elements must be non-negative for the definition above to make sense as \(\delta t\) approaches zero. Constants \(\mathrm{q}_{\boldsymbol{i}}\) and \(\mathrm{r}_{\boldsymbol{i}}\), which denote coefficients in vectors \(\underset{\sim}{q}\) and \(\underset{\sim}{r}\), both of length \(p\), must also be non-negative. For obvious reasons, \(\underset{\sim}{r}\) is called the immigration rate and \(\underset{\sim}{q}\) the emigration rate. If all coefficients in both \(\underset{\sim}{q}\) and \(\underset{\sim}{r}\) are zero the system is said to be closed, otherwise it is said to be open.

\subsection*{7.2.2 Solution}

The solution that follows is an amalgam of the analyses given by Cox and Miller (1965, pp.178-186), Chiang (1980, pp.451-498) and Colquhoun and Hawkes (1977). The diagonal elements of \(\underset{\sim}{Q}\), which were unspecified in [7.2.1], are defined by
\[
Q_{i j}=-\sum_{j \neq i} Q_{i j}-Q_{i} \quad \text { for } \quad i=1, \ldots, n .
\]

Therefore \(\left(1+Q_{i j} \delta t+o(\delta t)\right)\) is the probability of a particle in compartment \(i\) at time \(t\) being in compartment \(i\) at time \(t+\delta t\).

The probability that a particle in compartment \(i\) at time \(t\) will be in compartment \(j\) at time \(s(\geqslant t)\) is dependent only upon the time separation (\(s-t\)) and is denoted:
\[
\begin{equation*}
P_{i j}(s-t)=\sum_{\ell=1}^{p} K_{i j}^{\{\ell\}} e^{(s-t) \lambda_{\ell}}, \tag{7.2.2}
\end{equation*}
\]
where the coefficients \(\lambda_{1}, \ldots, \lambda_{p}\) in the \(p\)-vector \(\underset{\sim}{\lambda}\) are the eigenvalues of \(\underset{\sim}{Q}\), which are assumed to be all distinct, and \({\underset{\sim}{K}}^{\{1\}}, \ldots, \underset{\sim}{K}{ }^{\{p\}}\) are square matrices of size \(p\), whose coefficients are specified by
\[
K_{i j}^{\{\ell\}}=G_{i \ell}\left({\underset{\sim}{G}}^{-1}\right)_{\ell j} \quad \text { for } \quad i, j, \ell=1, \ldots, p,
\]
where \(\underset{\sim}{G}\) is the matrix of right eigenvectors of \(\underset{\sim}{Q}\).

The number of particles in compartment \(j\) at time \(s\) which were not in the system at an earlier time \(t\) is also dependent only upon the time separation (s-t) and is Poisson distributed with expectation denoted by
\[
\begin{equation*}
b_{j}(s-t)=\sum_{\ell=1}^{P} k_{j}^{\{\ell\}}\left(e^{(s-t) \lambda_{\ell}}-1\right), \tag{7.2.3}
\end{equation*}
\]
where \({\underset{\sim}{k}}^{\{1\}}, \ldots, \underset{\sim}{\{p\}}\) are vectors of length \(p\) whose coefficients are specified by
and
\[
\begin{aligned}
k_{j}^{\{\ell\}} & =\frac{1}{\lambda_{\ell}} \sum_{i=1}^{p} r_{i} k_{i j}^{\{\ell\}} & & \text { if } \lambda_{\ell}>0, \\
& =0 & & \text { if } \lambda_{\ell}=0 .
\end{aligned}
\]

It is convenient to distinguish between the number of particles in the various compartments at time \(t\) that were in the system at time zero, denoted \(\cdot{\underset{\sim}{N}}^{\{1\}}(\mathrm{t})\), and the number of particles that entered the system after time zero, denoted \({\underset{\sim}{N}}^{\{2\}}(\mathrm{t})\). From equation (7.2.1)
\[
\begin{aligned}
E(Y(t)) & =\sum_{i=1}^{p} \mu_{i} E\left(N_{i}^{\{1\}}(t)+N_{i}^{\{2\}}(t)\right), \\
& =\sum_{i=1}^{p} \mu_{i}\left[E \left\{E \left(N_{i}^{\{1\}}(t){\underset{\sim}{N}}_{\left.N(0))\}+E\left(N_{i}^{\{2\}}(t)\right)\right]}\right.\right.\right.
\end{aligned}
\]
by conditioning on \(\underset{\sim}{N}(0)\), the number of particles in compartments at time zero,
\[
\begin{equation*}
=\sum_{i=1}^{p} \mu_{i}\left[\sum_{j=1}^{p} n_{j} P_{j i}(t)+b_{i}(t)\right], \tag{7.2.4}
\end{equation*}
\]
where \(E(\underset{\sim}{N}(0))\) is denoted by \(\underset{\sim}{n}\),
\[
=\sum_{i=1}^{p} \mu_{i}\left[\sum_{j=1}^{p} n_{j} \sum_{k=1}^{p} k_{j i}^{\{k\}} e^{t \lambda_{k}}+\sum_{\ell=1}^{p} k_{i}^{\{\ell\}}\left(e^{t \lambda_{\ell}}-1\right)\right],
\]
by substituting for \(\underset{\sim}{P}(t)\) and \(\underset{\sim}{b}(t)\) from equations (7.2.2) and (7.2.3),
(7.2.5) \(\begin{aligned}= & -\sum_{i=1}^{p} \sum_{\ell=1}^{p} \mu_{i} \kappa_{i}^{\{\ell\}} \\ & +\sum_{k=1}^{p}\left\{\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} n_{j}{ }^{\{k j\}}+\sum_{i=1}^{p} \mu_{i} k_{i}^{\{k\}}\right\} e^{t \lambda_{k}},\end{aligned}\)
by rearranging terms. From this it can be seen that the functional form of \(E(Y)\) is a constant plus a weighted sum of \(p\) exponentials.

Also from equation (7.2.1), because \({\underset{\sim}{N}}^{\{1\}}(t)\) and \({\underset{\sim}{N}}^{\{2\}}(t)\) are independent
(7.2.6) \(\operatorname{cov}(Y(s), Y(t))=\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} \mu_{j}\left[\operatorname{cov}\left(N_{i}^{\{1\}}(s), N_{j}^{\{1\}}(t)\right)\right.\) \(\left.+\operatorname{cov}\left(N_{i}^{\{2\}}(s), N_{j}^{\{2\}}(t)\right)\right]\).
I shall consider \(\underset{\sim}{N}\{1\}\) and \({\underset{\sim}{N}}^{\{2\}}\) separately, and restrict to the case when \(s>t\). By a standard probability formula, conditioning on \(\underset{\sim}{\sim}(0)\),
\[
\begin{aligned}
\operatorname{cov}\left(N_{j}^{\{1\}}(s), N_{j}^{\{1\}}(t)\right) & =E\left[\operatorname { c o v } \left(N_{i}^{\{1\}}(s), N_{j}^{\{1\}}(t) \mid{\underset{\sim}{N}}_{N(0))]}\right.\right. \\
+ & \operatorname{cov}\left[E\left(N_{i}^{\{1\}}(s) \mid{\underset{\sim}{N}}_{N}(0)\right), E\left(\left.N_{j}^{\{1\}}(t)\right|_{\sim} ^{N}(0)\right)\right], \\
& =E\left[\sum_{k=1}^{p} N_{k}(0)\left(P_{k j}(t) P_{j i}(s-t)-P_{k j}(t) P_{k i}(s)\right)\right] \\
& +\operatorname{cov}\left[\sum_{\ell=1}^{p} N_{\ell}(0) P_{\ell j}(s), \sum_{k=1}^{p} N_{k}(0) P_{k j}(t)\right], \\
& =\sum_{k=1}^{p} n_{k}\left(P_{k j}(t) P_{j i}(s-t)-P_{k j}(t) P_{k j}(s)\right) \\
& +\sum_{k=1}^{p} \sum_{\ell=1}^{p} \operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right) P_{k j}(t) P_{\ell j}(s),
\end{aligned}
\]
where the derivation of the first term can be understood by considering a single particle: if it is in compartment \(k\) at time zero then it contributes 1 to \(\left(N_{i}^{\{1\}}(s) N_{j}^{\{1\}}(t)\right)\) only if it moves to compartment \(j\) by time \(t\) and then to compartment \(i\) by time \(s\) and otherwise contributes 0 , contributes 1 to \(N_{i}^{\{1\}}(s)\) by moving to compartment \(i\) by time \(s\), and contributes 1 to \(N_{j}^{\{1\}}(t)\) by moving to compartment \(j\) by time \(t\). By applying the same standard formula to \({\underset{\sim}{N}}^{\{2\}}\), but this time conditioning on \({\underset{\sim}{N}}^{\{2\}}(t)\),
\[
\begin{aligned}
& \operatorname{cov}\left(N_{i}^{\{2\}}(s), N_{j}^{\{2\}}(t)\right)=E\left[\operatorname{cov}\left(N_{i}^{\{2\}}(s), N_{j}^{\{2\}}(t) \mid N_{\sim}^{\{2\}}(t)\right)\right] \\
& \quad+\operatorname{cov}\left[E\left(N_{i}^{\{2\}}(s) \mid N_{\sim}^{\{2\}}(t)\right), E\left(N_{j}^{\{2\}}(t) \mid{\underset{\sim}{N}}^{\{2\}}(t)\right)\right] .
\end{aligned}
\]

Because
\[
\begin{aligned}
& \operatorname{var}\left(N_{j}^{\{2\}}(t) \mid{\underset{\sim}{N}}^{\{2\}}(t)\right)=0, \\
& \operatorname{cov}\left(N_{j}^{\{2\}}(s), N_{j}^{\{2\}}(t) \mid{\underset{\sim}{N}}^{\{2\}}(t)\right)=0
\end{aligned}
\]
and the first term above is zero. Therefore
\[
\begin{aligned}
& \operatorname{cov}\left(N_{i}^{\{2\}}(s), N_{j}^{\{2\}}(t)\right) \\
& \\
& =\operatorname{cov}\left[\sum_{k=1}^{p} N_{k}^{\{2\}}(t) P_{k i}(s-t)+b_{j}(s-t), N_{j}^{\{2\}}(t)\right],
\end{aligned}
\]
because particles that are in compartment \(i\) at time \(s\), but were not in the system at time zero, either were in some compartment \(k\) at time \(t\) and moved to compartment \(i\) before time \(s\), or entered the system between times \(t\) and \(s\),
\[
\begin{aligned}
& =\sum_{k=1}^{p} \operatorname{cov}\left(N_{k}^{\{2\}}(t), N_{j}^{\{2\}}(t)\right) P_{k j}(s-t), \\
& =b_{j}(t) P_{j i}(s-t),
\end{aligned}
\]
because \(N_{k}^{\{2\}}(t)\) and \(N_{j}^{\{2\}}(t)\) are uncorrelated unless \(k\) equals \(j\), in which case \(\operatorname{var}\left(N_{j}^{\{2\}}(t)\right)\) equals \(E\left(N_{j}^{\{2\}}(t)\right)\) because the variate is Poisson distributed.

When these results are incorporated into equation (7.2.6) they give
(7.2.7) \(\operatorname{cov}(Y(s), Y(t))=\)
\[
\begin{aligned}
& \sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} \mu_{j}\left[\sum_{k=1}^{p} n_{k} P_{k j}(t)\left(P_{j i}(s-t)-P_{k i}(s)\right)\right. \\
+ & \left.\sum_{k=1}^{p} \sum_{\ell=1}^{p} \operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right) P_{k j}(t) P_{\ell i}(s)+b_{j}(t) P_{j i}(s-t)\right] .
\end{aligned}
\]
7.2.3 Distribution of \(N(0)\)

Up to this point no mention has been made of the distribution of \(\underset{\sim}{N}(0)\), that is the number of particles in the system at time zero, beyond denoting its expectation by \(\underset{\sim}{n}\). Three particular distributions which have appeared in the literature and tie in well with the other components of a stochastic compartmental model, are:
a) The null distribution, that is \(\underset{\sim}{N}(0)\) is a vector of constants and in particular the covariance coefficients required in equation (7.2.7) are specified by \(\operatorname{cov}\left(N_{k}(0), N_{e}(0)\right)=0\).
b) The multinomial distribution, so that in particular \(\operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right)=n_{k}\left\{I_{k \ell}-n_{\ell} / \sum_{i=1}^{p} n_{i}\right\}\), where \(I_{k \ell}\) is the \((k \ell)\) th coefficient in the identity matrix \(\underset{\sim}{I}\) of size \(p\).
c) Each coefficient of \(\underset{\sim}{N}(0)\) is an independent Poisson random variate, so that in particular \(\operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right)=n_{k} I_{k \ell} \quad\) for \(k, \ell=1, \ldots, p\). The uses of different starting distributions are discussed as they arise practically in sections 7.3 and 7.4.

\subsection*{7.2.4 Relation to cGARMA property}

By substitution of \(\underset{\sim}{P}(t)\) and \(\underset{\sim}{b}(t)\) from equations (7.2.2) and (7.2.3), equation (7.2.7) becomes
\[
\begin{aligned}
\operatorname{cov}(Y(s), Y(t))= & \sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} \mu_{j}\left[\sum_{k=1}^{p} n_{k} \sum_{g=1}^{p} \sum_{h=1}^{p} k_{k j}^{\{g\}} e^{t \lambda_{g}}\right. \\
& \quad\left(K_{j i}^{\{h\}} e^{(s-t) \lambda_{h}}-k_{k i}^{\{h\}} e^{s \lambda_{h}}\right) \\
& +\sum_{k=1}^{p} \sum_{\ell=1}^{p} \operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right) \sum_{g=1}^{p} \sum_{h=1}^{p} K_{k j}^{\{g\}} e^{t \lambda_{g}} k_{\ell i}^{\{h\}} e^{s \lambda_{h}} \\
& \left.+\sum_{g=1}^{p} \sum_{h=1}^{p} k_{j}^{\{g\}}\left(e^{t \lambda_{g}}-1\right) K_{j i}^{\{h\}} e^{(s-t) \lambda_{h}}\right],
\end{aligned}
\]
\[
=\sum_{h=1}^{p} e^{s \lambda_{h}}\left\{\sum _ { i = 1 } ^ { p } \sum _ { j = 1 } ^ { p } \mu _ { i } \mu _ { j } \left[\sum_{k=1}^{p} \sum_{g=1}^{p} n_{k} k_{k j}^{\{g\}} e^{t \lambda} g\left(k_{j i}^{\{h\}} e^{-t \lambda_{h}}-k_{k i}^{\{h\}}\right)\right.\right.
\]
\[
+\sum_{k=1}^{p} \sum_{\ell=1}^{p} \sum_{g=1}^{p} \operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right) k_{k j}^{\{g\}} e^{t \lambda_{g}} K_{\ell i}^{\{h\}}
\]
\[
\left.\left.+\sum_{g=1}^{p} k_{j}^{\{g\}}\left(e^{t \lambda g}-1\right) k_{j i}^{\{h\}} e^{-t \lambda h}\right]\right\} \quad \text { when } s \geqslant t
\]
by rearranging terms. This is the sum of \(p\) products of a term dependent only upon \(s\) and a term dependent only upon \(t\). Therefore \(\underset{\sim}{\gamma}\) is a \(\operatorname{CGARMA}(p, 0)\) process by the definition in [2.2.7] and, of more importance, the discrete realisation \(\underset{\sim}{y}\) is a GARMA(p,p-1) process. Therefore, the computer program REGAME can be used to fit a stochastic compartment model to a vector \(\underset{\sim}{y}\) of observations.

\subsection*{7.2.5 Parameter estimators}

Unlike the models considered in previous chapters, the realisation \(\underset{\sim}{y}\) of a stochastic compartment model is not normally
distributed, in fact a single element is distributed as a weighted sum of Poisson variates and terms in a multinomial random variate, and joint distributions between elements are even more complicated. Because the likelihood function is so complicated, Matis and Wehrly (1979) fitted the models by generalized least-squares estimation. In the examples that follow, other sources of error have been included and Gaussian likelihood estimation (that is using \(L_{M}\)) has been used instead of generalized least-squares estimation (that is using \(L_{S}\)), because, as discussed in \([2.3 .2]\), \(L_{S}\) cannot be used when the variance matrix has parameters in it which are not in the regression function. The third optimization function considered in the thesis, the residual Gaussian likelihood, has not been employed in this chapter because of the complications involved in deriving the design matrix \(\underset{\sim}{X}\), defined in [2.3.2]. As discussed in [1.3.8], asymptotic properties do apply to regression parameter estimators, but this is because of the replication in particles, rather than the replication in observation times. The computer program, REGAME which was described in section 2.4, has been used to fit the models in the following sections, and has derived approximate variances of parameter estimators by inverting the Hessian matrix.

\subsection*{7.3 Colquhoun's data}

\subsection*{7.3.1 Introduction}

Compartment models have been proposed to explain the relaxation of drug-induced currents, see for example Colquhoun and

Hawkes (1977). Colquhoun's data, first considered in section 4.3, is an example of this type of data. The theory derives from the observed current being the sum of the currents flowing through each of the ion-channels in a muscle end-plate membrane. Each channel is assumed to be in one of several states, some of which are conducting with a particular constant conductance and some of which are non-conducting. It is assumed that each channel changes state independently of all other channels, according to the probabilistic laws of a stochastic compartment model. With these assumptions, the observed current is a linear combination of the number of channels in each state and corresponds with the variate \(Y(t)\) considered in section 7.2.

The compartments actually correspond to different possible molecular states of each channel, the transitions between which are known, from chemical physics, to be well approximated by a Markov process. It is therefore slightly misleading to use the term "compartment model", which originated in order to describe much more empirical situations. However, I do not consider the distinction between empirical and mechanistic models to be sufficient to warrant the use of a different name to describe mathematically equivalent stochastic processes.

\subsection*{7.3.2 Closed two-compartment model}

The simplest model of drug action is one in which each channel has only a single conducting state and a single non-conducting state. Every channel is in one or other of these states, there being neither immigration nor emigration, so the system is closed. It may be represented diagramatically as:

The current at time \(t\) is
\[
Y(t)=\mu_{1} N_{1}(t),
\]
where \(\mu_{1}\) is the current flowing through a single ion-channel in state one and \(N_{1}(t)\) denotes the number of channels in this state at time \(t\). Because of the direction in which the current was measured \(\mu_{1}\) is actually the negative of the current (denoted \(\tau^{2}\) because, for reasons that will become apparent later, it may be viewed as a scaling parameter).

The distribution of channels between states at time zero, \(\underset{\sim}{N}(0)\), is assumed to be multinomial (binomial in this case) because this ensures the desirable property. that \(\underset{\sim}{\mathcal{N}}(t)\) is then multinomially distributed for all later times \(t\). The electrical circuits by which \(\underset{\sim}{y}\) was recorded introduce measurement error which, for lack of any other information, is assumed to be white noise. This serves to add an extra term \(\sigma^{2} I_{\text {st }}\) into the expression for \(\operatorname{cov}(Y(s), Y(t))\). Therefore, from equation (7.2.4)
\[
E(Y(t))=-\sum_{j=1}^{2} \tau^{2} n_{j} P_{j 1}(t),
\]
and from the modification to equation (7.2.7)
\[
\begin{aligned}
\operatorname{cov}(Y(s), Y(t)) & =\tau^{2}\left\{\sum_{k=1}^{2} \tau^{2} n_{k} P_{k 1}(t)\left(P_{j 1}(s-t)-P_{k 1}(s)\right)\right. \\
& +\sum_{k=1}^{2} \sum_{\ell=1}^{2} \tau^{2} \operatorname{cov}\left(N_{k}(0), N_{\ell}(0)\right) P_{k 1}(t) P_{\ell 1}(s) \\
& \left.+\sigma^{2} / \tau^{2} I_{s t}\right\},
\end{aligned}
\]
with terms in \(\underset{\sim}{b}(t)\) omitted because there is no immigration. The
current, \(\tau^{2}\), can be treated as a scaling parameter, and therefore estimated separately, provided that \(\tau^{2} \underset{\sim}{n}\) is estimated in place of \(\underset{\sim}{n}\) and \(\sigma^{2} / \tau^{2}\) in place of \(\sigma^{2}\). From the above covariance structure \(\underset{\sim}{y}\), the realisation of \(\underset{\sim}{Y}\) at discrete times \(\underset{\sim}{t}\), is a GARMA \((2,2)\) process. However, because the system is closed, one of the eigenvalues of the transition matrix \(\underset{\sim}{Q}\) is zero and as a consequence \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(1,1)\) process.

The model was fitted to Colquhoun's data by minimizing the negative Gaussian log-likelihood \(\left(L_{M}\right)\) using transformations of the parameter estimates obtained in chapter 4 as starting values in the iterative process. The parameter estimates, standard errors and correlation coefficients are given in table 7.3.1. The minimum value of \(L_{M}\) was -65.4.
7.3.3 \(\tau^{2} n_{2}\) held constant

The iterative convergence was slow, from which, upon examination, it became apparent that \(\tau^{2} n_{2}\) is known with little precision despite its estimated standard error (based on the quadratic approximation to \(L_{M}\)) being small. With \(\tau^{2} n_{2}\) held constant at either 200 or 1000 , the model was refitted and the parameter estimates that were obtained are given in tables 7.3.2 and 7.3 .3 respectively. The increase in \(L_{M}\) to -65.0 is small and, in particular, is not sufficiently large to reject the hypothesis that \(\tau^{2} n_{2}\) is equal to 1000 , on the basis of the asymptotic properties of the likelihood ratio test. This uses the property that the Gaussian likelihood converges to the true likelihood function as the number of particles in the compartment system increases. Therefore, purely on the basis of the data, it

Table 7.3.1
Colquhoun's data, closed two-compartment model fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccrcc}
& \(Q_{12}\) & \(Q_{21}\) & \(\tau^{2} n_{1}\) & \(\tau^{2} n_{2}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & 0.0057 & 0.135 & 9.4 & 83.3 & 2.6 & 0.030 \\
se & 0.0118 & 0.009 & 1.0 & 7.8 & 1.8 & 0.021
\end{tabular} correlations
\begin{tabular}{lll}
\(Q_{21}\) & -0.88 & \\
\(\tau^{2} n_{1}\) & -0.30 & 0.07
\end{tabular}
\begin{tabular}{llllrl}
\(\tau^{2} n_{2}\) & \(\underline{0.99}\) & -0.87 & -0.41 & & \\
\(\sigma^{2} / \tau^{2}\) & 0.78 & -0.70 & -0.20 & 0.77 & \\
\(\tau^{2}\) & -0.86 & 0.77 & 0.24 & -0.85 & \(\underline{-0.97}\)
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Table 7.3 .2
Colquhoun's data, closed two-compartment model with \(\tau^{2} n_{2}\) fixed at 200, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccc}
& \(\mathrm{Q}_{12}\) & \(\mathrm{Q}_{21}\) & \(\tau^{2} n_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 0.085 & 0.062 & 9.0 & 11.4 & 0.0067 \\
se & 0.002 & 0.001 & 0.6 & 4.8 & 0.0022
\end{tabular}
correlations
\begin{tabular}{lrrrr}
\(Q_{21}\) & \(\underline{0.92}\) & & & \\
\(\tau^{2} n_{1}\) & -0.50 & -0.68 & & \\
\(\sigma^{2} / \tau^{2}\) & -0.06 & -0.08 & 0.13 & \\
\(\tau^{2}\) & 0.04 & 0.06 & -0.11 & \(\underline{-0.92}\) \\
\hline
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}
is not possible to distinguish whether \(\tau^{2} n_{2}\) is equal to 83 or 1000. This is possibly because direct observations are made on compartment 1 but not on compartment 2.

However, consideration of the experimental conditions under which the data were collected indicates that the current \(\tau^{2}\) is closer to 0.0045 nAmps, as estimated when \(\tau^{2} n_{2}=1000\), than to 0.0300 nAmps, as estimated when \(\tau^{2} n_{2}=83\). This is because the conductance of a single ion-channel is somewhere between 20 and 40 pSiemens and the potential across the membrane was 160 mVolts, which implies a current of between 0.0032 and 0.0064 nAmps.

An understanding of why problems arose when estimating parameters in a two-compartment model may be gained by examining the functional form of the expectations. This is a single exponential function plus a mean term and therefore only requires three parameters to describe it. However, there are four parameters in the compartment model: \(n_{1}, n_{2}, Q_{12}, Q_{21}\); so information on the fourth parameter can only be obtained from the covariance structure. We are led to conclude that there is very little extra information coming from the second-order moments.

\subsection*{7.3.4 Open one-compartment model}

The problem of overparameterization can be circumvented if it is assumed that the expected number of channels in a non-conducting state at time zero \(\left(n_{2}\right)\) is sufficiently large to be considered infinite. There is some justification in making this assumption because it has already been noted that when \(\tau^{2} n_{2}\) is large the estimated current \(\hat{\tau}^{2}\) takes a more reasonable value than when \(\tau^{2} n_{2}\) is small. The closed two-compartment model becomes an open
one-compartment model, which can be represented diagramatically as:

In practical terms, this means that at any particular time nearly every ion-channel is in a non-conducting state, and these provide a large reservoir of potentially conducting channels.

If it assumed that \(N_{1}(0)\) is Poisson distributed, then this ensures that \(N_{1}(t)\) is Poisson distributed for all later times \(t\), and in a sense this may be considered to be the "natural" starting distribution. The conductance \(\tau^{2}\) can once again be treated as a scaling parameter provided that \(\tau^{2} r_{1}\) is estimated in place of \(r_{1}\). The observations \(\underset{\sim}{y}\) once again constitute a \(\operatorname{GARMA}(1,1)\) process. From equations (7.2.4) and (7.2.7), with the Poisson starting distribution incorporated,
\[
\begin{aligned}
E(Y(t)) & =-\tau^{2}\left\{n_{1} P_{11}(t)+b_{1}(t)\right\}, \\
& =-\frac{\tau^{2} r_{1}}{q_{1}}+\left(\frac{\tau^{2} r_{1}}{q_{1}}-\tau^{2} n_{1}\right) e^{-t q_{1}}, \\
\operatorname{cov}(Y(s), Y(t)) & =\tau^{4}\left\{n_{1} P_{11}(t) P_{11}(s-t)\right.
\end{aligned}+b_{1}(t) P_{11}(s-t) .
\]
and

The model was fitted by minimizing \(L_{M}\) and the estimates are given in table 7.3.4. Figure 7.3.1 shows the data, fitted curve of expectations and predicted values based on past observations (as described in [2.3.7]) plotted against time. \(L_{M}\) is minimized as -64.9, which is close to the value of -65.0 for the two-compartment model with \(\tau^{2} n_{2}=1000\). This is not surprising because the two

Table 7.3.3
Colquhoun's data, closed two-compartment model with \(\tau^{2} n_{2}\) fixed at 1000, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccc}
& \(Q_{12}\) & \(Q_{21}\) & \(\tau^{2} n_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 0.134 & 0.0129 & 9.0 & 16.9 & 0.0045 \\
se & 0.003 & 0.0003 & 0.6 & 7.2 & 0.0015
\end{tabular}
correlations
\(Q_{21}\)
\(\tau^{2} n_{1}\)
\(\sigma^{2} / \tau^{2}\)
\(\tau^{2}\)

e 7.3 .4

Colquhoun's data, open one-compartment model fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crcrcc}
& \(\tau^{2} r_{1}\) & \(\mathrm{q}_{1}\) & \(\tau^{2} \mathrm{n}_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 13.0 & 0.147 & 9.0 & 18.3 & 0.0042 \\
se & 0.3 & 0.003 & 0.6 & 7.8 & 0.0014
\end{tabular}
correlations
\begin{tabular}{ll}
\(q_{1}\) & \(\underline{0.97}\) \\
\(\tau^{2} n_{1}\) & -0.65
\end{tabular}
\(\sigma^{2} / \tau^{2}\)
-0.09
-0.09
0.15
\(\tau^{2}\)
0.07
0.07
\(-0.13 \quad-0.92\)

Correlation coefficients exceeding 0.9 underlined.

Figure 7.3.1
Colquhoun's data, open one-compartment model fitted by Gaussian likelihood estimation; observed currents \((X)\), expected currents (----) and predicted currents (-_) conditional upon earlier observations, plotted against time.

models are very similar: as \(\tau^{2} n_{2}\) increases, the two-compartment approximates to a one-compartment model, with \(\left(\tau^{2} n_{2} Q_{21}\right)\) converging to \(\tau^{2} r_{1}\) and \(Q_{12}\) converging to \(q_{1}\).

\subsection*{7.3.5 Separate covariance parameterization}

To test the adequacy of the stochastic compartment model a different emigration parameter, denoted \(q_{1}^{\star},-\) was introduced into the variance matrix. Therefore
\[
\operatorname{cov}(Y(s), Y(t))=-\tau^{2}\left\{E(Y(t)) e^{-(s-t) q_{1}^{\star}}-\sigma^{2} / \tau^{2} I_{s t}\right\},
\]
and the covariances decay exponentially at rate \(q_{1}^{*}\) rather than at rate \(q_{1}\) as in [7.3.4]. The reparameterization facilitates the assumption to be tested that covariances between observations decay at the same rate \(q_{1}\) as the expectation function approaches its asymptote.

The parameters were estimated by minimizing \(L_{M}\). The decrease in \(L_{M}\) to -65.3 is not sufficiently large for the addition of one extra parameter to reject the hypothesis that \(q_{1}^{\star}\) is equal to \(q_{1}\), on the basis of the asymptotic properties of the likelihood ratio test. The parameter estimates are given in table 7.3.5. It can be seen that \(\mathrm{q}_{1}\) is estimated much more precisely than \(\mathrm{q}_{1}^{\star}\), the standard errors being 0.005 and 0.106 respectively. Therefore, if the two parameters are combined into one, as they were in [7.3.4], the pooled estimate is dominated by the contribution from the component which controls the rate at which the function of expected values approaches its asymptote. This is borne out by \(\hat{q}_{1}\) in table 7.3 .4 (0.147) being much closer to \(\hat{q}_{1}\) (0.150) in table 7.3 .5 than it is to \(\hat{\mathrm{q}}_{1}^{*}\) (0.059).

Table 7.3 .5
Colquhoun's data, open one-compartment model with separate covariance parameter, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crccccc}
& \(\tau^{2} r_{1}\) & \(q_{1}\) & \(\tau^{2} n_{1}\) & \(q_{1}^{\star}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } est imate & 13.2 & 0.150 & 8.8 & 0.059 & 19.7 & 0.0040 \\
se & 0.4 & 0.005 & 0.6 & 0.106 & 8.8 & 0.0015
\end{tabular}
correlations
\(\mathrm{q}_{1}\)
\(\tau^{2} n_{1}\)
\(\mathrm{q}_{1}^{\star}\)
\(\sigma^{2} / \tau^{2}\)
\(\tau^{2}\)
0.96
-0.68 -0.65
\(\begin{array}{lll}-0.56 & -0.62 & 0.31\end{array}\)
\(\begin{array}{llll}-0.21 & -0.22 & 0.21 & 0.26\end{array}\)
\(\begin{array}{llll}0.26 & 0.28 & -0.23 & -0.39\end{array}\)
\(-0.93\)

Correlation coefficients exceeding 0.9 underlined.

\section*{Table 7.3.6}

Colquhoun's data, open one-compartment model parameterized without the use of a scaling parameter, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccrcc}
& \(r_{1}\) & \(q_{1}\) & \(n_{1}\) & \(\sigma^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 3140. & 0.147 & 2160.0 & 0.076 & 0.0042 \\
se & 1060. & 0.003 & 770.0 & 0.013 & 0.0014
\end{tabular}
\begin{tabular}{lllll}
\(\mathrm{q}_{1}\) & -0.01 & & & \\
\(\mathrm{n}_{1}\) & \(\underline{0.98}\) & -0.17 & & \\
\(\sigma^{2}\) & 0.35 & -0.09 & 0.36 & \\
\(\tau^{2}\) & \(\underline{0.998}\) & -0.06 & \(\underline{0.98}\) & 0.35 \\
& & & & \\
\hline
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

\subsection*{7.3.6 Estimation without use of scaling parameter}

In order to obtain direct estimates of \(r_{1}, n_{1}\) and \(\sigma^{2}\), the conductance \(\tau^{2}\) cannot be treated as a scaling parameter as previously. When this reparameterized model was fitted using REGAME the convergence was very slow, which illustrates the usefulness of the earlier parameterization that enabled \(\tau^{2}\) to be omitted from the iterative procedure (see [2.3.4]). The final results are summarized in table 7.3.6.

\subsection*{7.3.7 Reparameterization using \(\underset{\sim}{\beta}\)}

It is illuminating to relate the results of this section to those given in section 4.3 , where a single exponential regression function (parameterized by \(\underset{\sim}{\beta}\)) with an \(\operatorname{ARMA}(1,1)\) error process was fitted to the same set of data. The one-compartment model differs from this earlier model in only two respects: the variances change through time; and the covariances decay at the same rate as the expectation (or regression) function approaches its asymptote.

We may reparameterize the compartment model using \(\underset{\sim}{\beta}\), where
by letting
\[
\begin{aligned}
E(Y(t)) & =\beta_{1}+\beta_{2} e^{-t / \beta_{3}}, \\
\tau^{2} n_{1} & =-\beta_{1}-\beta_{2}, \\
\tau^{2} r_{1} & =-\beta_{1} / \beta_{3},
\end{aligned}
\]
and
\[
q_{1}=1 / \beta_{3}
\]

The parameters, \(\underset{\sim}{B}\) together with \(\sigma^{2} / \tau^{2}\) and \(\tau^{2}\) as in [7.3.4], can be estimated by minimizing \(L_{M}\). The estimates, which are simply a transformation of those given in table 7.3.4, are given in table 7.3.7.

Table 7.3.7
Colquhoun's data, open one-compartment model reparameterized using regression parameters \(\underset{\sim}{B}\), fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crrrrr}
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & -88.3 & 79.3 & 6.78 & 18.3 & 0.0042 \\
se & 0.5 & 0.7 & 0.16 & 7.8 & 0.0014
\end{tabular}
correlations
\begin{tabular}{lrrrr}
\(\beta_{2}\) & -0.57 & & & \\
\(\beta_{3}\) & -0.69 & 0.02 & & \\
\(\sigma^{2} / \tau^{2}\) & -0.05 & -0.09 & 0.09 & \\
\(\tau^{2}\) & 0.03 & 0.09 & -0.07 & \(\underline{-0.92}\)
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

\section*{Table 7.3.8}

Colquhoun's data, open one-compartment model reparameterized using regression parameters \(\underset{\sim}{\beta}\), with separate covariance parameter, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crrrrrr}
& \multicolumn{1}{c}{\(\beta_{1}\)} & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{3}^{*}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & -88.0 & 79.2 & 6.67 & 17.0 & 19.7 & 0.0040 \\
se & 1.0 & 1.0 & 0.23 & 30.6 & 8.8 & 0.0015
\end{tabular}
correlations
\(\beta_{2} \quad-0.82\)
\begin{tabular}{lll}
\(\beta_{3}\) & \(-0.78 \quad 0.43\)
\end{tabular}
\(B_{3}^{\star}\)
\(\begin{array}{lllll}\sigma^{2} / \tau^{2} & -0.18 & 0.06 & 0.22 & -0.26\end{array}\)
\begin{tabular}{llllll}
\(\tau^{2}\) & \begin{tabular}{lllll}
0.24 & -0.12 & -0.28 & 0.39 & \(\underline{-0.93}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
Correlation coefficients exceeding 0.9 underlined.

If a separate parameter \(\beta_{3}^{\star}\) is used in the covariances, as in [7.3.5], where
\[
q_{1}^{\star}=1 / \beta_{3}^{\star},
\]
and the model is fitted by minimizing \(L_{M}\), then the estimates, which are simply a transformation of those given in table 7.3.5, are given in table 7.3.8.

The estimate of \(\underset{\sim}{B}\) in table 7.3 .8 is very close to that in table 4.3.3 which is not surprising because the models differ only in whether or not the variances are constant. The estimate of \(\underset{\sim}{\beta}\) is also very close to that in table 7.3.7, but the standard errors are larger, because the covariances among the observations are not being used to give extra information about \(\beta_{3}\). This illustrates the gain in efficiency of estimation, when appropriate, through using the same parameters to describe both the function of expectations and the covariance structure of data.
7.3.8 Open two-compartment model

Colquhoun proposed a model in which each ion-channel can be in one of three states, only the first of which is conducting, to account for the double exponential form of the regression previously fitted in [4.3.7]. The model may be represented as follows:

which requires seven parameters once \(n_{1}, n_{2}\) and \(n_{3}\) have been included. If the number of channels in the third state is considered to be large then, analogous with the preceding
simplification of a two-compartment model, the model reduces to an open two-compartment model as follows:

There are six parameters, including \(n_{1}\) and \(n_{2}\), to be estimated, although the expectation function can be parameterized by five. Mindful of the difficulties encountered in fitting a closed two-compartment model, I held \(\tau^{2} n_{2}\) constant in order to obtain good starting values for the optimization algorithm; values for the remaining five parameters were found so that they were consistent with:
\[
E(Y(t))=-90.4+25.0 e^{-t / 3.3}+58.6 e^{-t / 9.2}
\]
which was the least-squares fit of the double exponential regression function to Colquhoun's data, given in table 4.3.9. For a range of values of \(\tau^{2} n_{2}\), the values for the other parameters were found and are given in table 7.3.9. When \(\tau^{2} n_{2}\) was less than 200, values could not be found for the other parameters.

Because the system is open, the distribution of \(\underset{\sim}{N}(0)\) was assumed to be Poisson, as in [7.3.4]. The inclusion of observation errors means that \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(2,2)\) process. With \(\tau^{2} n_{2}\) held constant at either 500 or 8000 the remaining parameters were estimated by minimizing \(L_{M}\), and the resulting estimates are given in tables 7.3.10 and 7.3.11 respectively. The corresponding values of \(L_{M}\) are -74.5 and -74.9. There is little difference in \(L_{M}\) between the two models although the parameter estimates are

Table 7.3.9
Alternative sets of parameter values in open two-compartment model (specified in [7.3.8]) consistent with
\[
E(Y(t))=-90.4+25.0 e^{-t / 3.3}+58.6 e^{-t / 9.2}
\]
\begin{tabular}{crrrrrr}
Set No. & \(Q_{12}\) & \(Q_{21}\) & \(\tau^{2} r_{2}\) & \(q_{2}\) & \(\tau^{2} n_{1}\) & \(\tau^{2} n_{2}\) \\
\hline 1 & 0.18 & 0.082 & 56.0 & 0.28 & 5.4 & 200.0 \\
2 & 0.15 & 0.028 & 61.0 & 0.12 & 7.5 & 500.0 \\
3 & 0.19 & 0.015 & 107.0 & 0.09 & 7.4 & 1000.0 \\
4 & 0.22 & 0.007 & 248.0 & 0.09 & 7.1 & 2000.0 \\
5 & 0.23 & 0.004 & 537.0 & 0.10 & 7.1 & 4000.0 \\
6 & 0.25 & 0.002 & 1143.0 & 0.10 & 7.0 & 8000.0 \\
\hline
\end{tabular}

Table 7.3 .10
Colquhoun's data, open two-compartment model with \(\tau^{2} n_{2}\) fixed at 500, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccc}
& \(\mathrm{Q}_{12}\) & \(\mathrm{Q}_{21}\) & \(\tau^{2} r_{2}\) & \(q_{2}\) & \(\tau^{2} n_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } & 0.24 & 0.031 & 94.0 & 0.135 & 6.9 & 114.0 & 0.00077 \\
estimate & 0.07 & 0.002 & 26.0 & 0.008 & 0.7 & 40.0 & 0.00025
\end{tabular}
correlations
\begin{tabular}{lllllll}
\(\mathrm{Q}_{21}\) & \(\frac{0.97}{0.98}\) & & & & & \\
\(\tau^{2} r_{2}\) & \(\underline{0.98}\) & \(\underline{0.90}\) & & & & \\
\(\mathrm{q}_{2}\) & 0.53 & 0.36 & 0.70 & & & \\
\(\tau^{2} n_{1}\) & -0.69 & -0.82 & -0.58 & -0.04 & & \\
\(\sigma^{2} / \tau^{2}\) & -0.17 & -0.22 & -0.11 & 0.14 & 0.26 & \\
\(\tau^{2}\) & 0.08 & 0.14 & 0.03 & -0.17 & -0.19 & \(\underline{-0.92}\)
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Table 7.3.11
Colquhoun's data, open two-compartment model with \(\tau^{2} n_{2}\) fixed at 8000, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crrrrrrr}
& \(\mathrm{Q}_{12}\) & \(\mathrm{Q}_{21}\) & \(\tau^{2} r_{2}\) & \(\mathrm{q}_{2}\) & \(\tau^{2} n_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 8 } & 0.28 & 0.0020 & 1420.0 & 0.109 & 6.9 & 131.0 & 0.00067 \\
estimate & 0.28 \\
se & 0.08 & 0.0001 & 490.0 & 0.016 & 0.8 & 90.0 & 0.00041
\end{tabular}
\begin{tabular}{lll}
\(Q_{21}\) & \(\underline{0.98}\) & \\
\(\tau^{2} r_{2}\) & \(\underline{0.99}\) & \(\underline{0.94}\)
\end{tabular}
\begin{tabular}{lrrrrrr}
\(\mathrm{q}_{2}\) & \(\underline{0.95}\) & 0.87 & \(\underline{0.99}\) & & & \\
\(\tau^{2} \mathrm{n}_{1}\) & -0.79 & -0.87 & -0.71 & -0.62 & & \\
\(\sigma^{2} / \tau^{2}\) & 0.05 & 0.09 & 0.03 & -0.00 & -0.15 & \\
\(\tau^{2}\) & -0.09 & -0.12 & -0.06 & -0.03 & 0.17 & \(\underline{-0.98}\)
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.
quite different. It would appear that once again we are trying to estimate more parameters than the data can identify. However, the agreement between the data and the fitted models is excellent. For example, figure 7.3 .2 shows the fit when \(\tau^{2} n_{2}\) is held constant at 8000.

One solution would be to assume that \(\tau^{2} n_{2}\) is large. The system would reduce to one-compartment but the rate of immigration would change with time according to an exponential relationship and this would move us outside the theory of section 7.2 in which all rate parameters are constant over time.

\subsection*{7.3.9 Resumé}

The open one-compartment system appears to be successful in modelling the data. This is in accord with existing belief in the scientific community that ion-channels behave approximately like particles in stochastic compartment models. However, the estimation procedure does not seem to extend readily to larger systems because of lack of identifiability of larger numbers of parameters.
7.4 Dale's data

\subsection*{7.4.1 Introduction}

Compartment models have been proposed to explain leaf transport systems, see for example Bauermeister, Dale, Williams and Scobie, 1980. Dale's data, first considered in section 4.4 , is an example of this type of data. It is postulated that \({ }^{14} \mathrm{C}\) atoms in

Figure 7.3.2
Colquhoun's data, open two-compartment model with \(\tau^{2} n_{2}\) fixed at 8000, fitted by Gaussian likelihood estimation; observed currents \((X)\), expected currents (---) and predicted currents (-) conditional upon earlier observations, plotted against time.

the leaf may be either in molecules which are available for transportation out of the leaf or in molecules which are stored within the leaf. On the assumption that molecules switch between states or leave the leaf independently of one another, at probabilistic rates constant over time, the process may be modelled using an open two-compartment system, thus:

The observations \(\underset{\sim}{y}\) are a constant proportion of the \({ }^{14} \mathrm{C}\) atoms in the two compartments, with the constant (denoted \(\tau^{2}\)) being the rate of emission of \(\beta\)-particles from a single \({ }^{14} \mathrm{C}\) atom multiplied by the rate of detection by a Geiger counter. As in section 7.3, \(\tau^{2}\) may be treated as a global scaling parameter by reparameterizing.

\subsection*{7.4.2 Estimation}

The distribution of \(\underset{\sim}{N}(0)\) was assumed to be Poisson. Observation errors were included in the model with variance \(\sigma^{2} E(Y(t))\) at time \(t\), as in section 4.4, to take account of the Poisson nature of the sampling variability associated with radioactive emission. With these assumptions, the observed counts \(\underset{\sim}{y}\) form a \(\operatorname{GARMA}(1,1)\) process.

There are five parameters in the model, including \(n_{1}\) and \(n_{2}\), but the expectation which is a weighted sum of two exponentials has only four, so we may expect problems of indeterminancy. To obtain good starting values for the
optimization algorithm, \(\tau^{2} n_{2}\) was held constant and values for the remaining four parameters found consistent with:
\[
E(Y(t))=818 e^{-0.0142 t}+702 e^{-0.00067 t},
\]
which was the least-squares fit of the double exponential regression function to Dale's data, given in table 4.4.1. For a range of values of \(\tau^{2} n_{2}\), the values for the other parameters were found and are given in table 7.4.1.

The parameters were estimated by minimizing \(L_{M}\) for the two extreme cases in table 4.4.1, that is with \(\tau^{2} n_{2}=0\) in one case and with \(Q_{12}=0\) in the other case, and the estimates of the remaining parameters are given in tables 7.4.2 and 7.4.3 respectively. In both cases, and also in fact in all intermediate cases between these extremes, \(L_{M}\) was minimized as 387.4. Therefore, purely on the basis of the data, it is impossible to distinguish among the alternative sets of parameter values.
7.4.3 Temporary immigration to generate the initial distribution

It is necessary to introduce further information about the experiment which generated the data in order to reduce the number of parameters in the mode1. \({ }^{14} \mathrm{C}\) was fed to the leaf as radioactive carbon dioxide at a constant rate for five minutes prior to time zero. This can be represented as temporary immigration at rate \(r_{1}\) into the first compartment between times -5 and 0. After time zero the immigration rate is zero. This single parameter replaces both \(n_{1}\) and \(n_{2}\) :

The new parameter set was estimated by minimizing \(L_{M}\) and the estimates are given in table 7.4.4. Once again \(L_{M}\) is equal to 387.4. Temporary immigration in this case is equivalent to

Table 7.4.1
Alternative sets of parameter values in two-compartment model consistent with \(E(Y(t))=818 e^{-0.0142 t}+702 e^{-0.00067 t}\).
\begin{tabular}{cccccr}
Set number & \multicolumn{1}{c}{\(\mathrm{Q}_{12}\)} & \multicolumn{1}{c}{\(\mathrm{Q}_{21}\)} & \(\mathrm{q}_{1}\) & \(\tau^{2} \mathrm{n}_{1}\) & \(\tau^{2} \mathrm{n}_{2}\) \\
\hline 1 & 0.00572 & 0.00120 & 0.0080 & 1520.0 & 0.0 \\
2 & 0.00467 & 0.00104 & 0.0092 & 1320.0 & 200.0 \\
3 & 0.00320 & 0.00088 & 0.0108 & 1120.0 & 400.0 \\
4 & 0.00165 & 0.00076 & 0.0125 & 970.0 & 550.0 \\
5 & 0.00 & 0.00067 & 0.0142 & 851.0 & 669.0 \\
\hline
\end{tabular}

Table 7.4.2
Dale's data, two-compartment model with \(\tau^{2} n_{2}\) fixed at 0 , fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{crccrcc}
& \(Q_{12}\) & \(Q_{21}\) & \(q_{1}\) & \(\tau^{2} n_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & 0.0080 & 0.0015 & 0.0101 & 1606.0 & 0.034 & 3.6 \\
se & 0.0014 & 0.0002 & 0.0011 & 80.0 & 0.013 & 1.1 \\
correlations & & & & & & \\
\(Q_{21}\) & 0.65 & & & & & \\
\(\mathrm{q}_{1}\) & 0.68 & 0.23 & & & & \\
\(\tau^{2} n_{1}\) & 0.10 & 0.03 & 0.16 & & \\
\(\sigma^{2} / \tau^{2}\) & -0.15 & 0.02 & -0.09 & -0.04 & & \\
\(\tau^{2}\) & 0.07 & -0.05 & 0.12 & -0.12 & -0.89 & \\
& & & & & & \\
\hline
\end{tabular}

Table 7.4.3
Dale's data, two-compartment model with \(Q_{12}\) fixed at 0 , fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccrrrr}
& \(Q_{21}\) & \(\mathrm{q}_{1}\) & \(\tau^{2} n_{1}\) & \(\tau^{2} n_{2}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } est imate & 0.0008 & 0.0188 & 860.0 & 745.0 & 0.034 & 3.6 \\
se & 0.0001 & 0.0023 & 67.0 & 63.0 & 0.013 & 1.1
\end{tabular}
correlations
\begin{tabular}{lrrrrr}
\(q_{1}\) & 0.45 & & & & \\
\(\tau^{2} n_{1}\) & -0.27 & -0.29 & & & \\
\(\tau^{2} n_{2}\) & 0.34 & 0.48 & -0.25 & & \\
\(\sigma^{2} / \tau^{2}\) & 0.10 & -0.13 & 0.07 & -0.12 & \\
\(\tau^{2}\) & -0.05 & 0.09 & -0.06 & -0.09 & -0.89
\end{tabular}

Table 7.4.4
Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{ccccccc}
& \(\mathrm{Q}_{12}\) & \(\mathrm{Q}_{21}\) & \(\tau^{2} r_{1}\) & \(\mathrm{q}_{1}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 7 } estimate & 0.0079 & 0.0015 & 329.0 & 0.0103 & 0.034 & 3.6 \\
se & 0.0013 & 0.0002 & 17.0 & 0.0011 & 0.013 & 1.1.
\end{tabular}
correlations
\begin{tabular}{lcccrr}
\(Q_{21}\) & 0.65 & & & & \\
\(\tau^{2} r_{1}\) & 0.14 & 0.04 & & & \\
\(\mathrm{q}_{1}\) & 0.68 & 0.23 & 0.21 & & \\
\(\sigma^{2} / \tau^{2}\) & -0.15 & 0.03 & -0.04 & -0.09 & \\
\(\tau^{2}\) & 0.06 & -0.05 & -0.11 & 0.12 & -0.89
\end{tabular}
assuming that the coefficients in \(\underset{\sim}{N}(0)\) are both Poisson distributed, with \(\tau^{2} n_{1}=1574\) and \(\tau^{2} n_{2}=31\). The data, fitted curve of expected values and predicted values from past observations (as described in [2.3.7]) are plotted against time in figure 7.4.1.

\subsection*{7.4.4 Separate covariance parameterization}

The models fitted so far in this section assume that the covariances between observations decay to zero with increasing time separation at a rate which is the sum of two exponentials, which are the same two exponentials that describe the rate of decay of the function of expectations to zero. To test this assumption, a different set of parameters corresponding to \(Q_{12}, Q_{21}\) and \(q_{1}\) were used in the covariances, denoted \(\mathrm{Q}_{12}^{\star}, \mathrm{Q}_{21}^{\star}\) and \(\mathrm{Q}_{1}^{\star}\). These are the three parameters which jointly specify the two exponential terms. This is analogous to the approach taken in [7.3.5] when the assumption of a common single exponential term was tested in Colquhoun's data.

The parameters were estimated by minimizing \(L_{M}\) and the estimates are given in table 7.4.5. Figure 7.4.2 shows the data, fitted curve and predicted values plotted against time. The value of \(L_{M}\) has been reduced to 384.4. This is a decrease of 3.0 compared with the results in [7.4.3] for the addition of 3 parameters which, on the basis of asymptotic likelihood theory, is not a sufficient change to reject the model with shared parameters. This uses the property that the Guassian likelihood converges to the true likelihood function as the number of particles in the compartment system increases.

Figure 7.4 .1
Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), fitted by Gaussian likelihood estimation; observed radioactive discharges (X), fitted values (---) and predicted values (-) conditional upon earlier observations, plotted against time.

\section*{Table 7.4.5}

Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]) and separate covariance parameterization, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccccccc}
& \(\mathrm{Q}_{12}\) & \(\mathrm{Q}_{21}\) & \(\tau^{2} r_{1}\) & \(\mathrm{q}_{1}\) & \(\mathrm{Q}_{12}^{\star}\) & \(\mathrm{Q}_{21}^{\star}\) & \(\mathrm{q}_{1}^{*}\) & \(\sigma^{2} / \tau^{2}\) & \(\tau^{2}\) \\
\cline { 2 - 9 } estimate & 0.0067 & 0.0014 & 304.0 & 0.0082 & 0.0197 & 0.0006 & 0.18 & 0.0056 & 21.3 \\
se & 0.0011 & 0.0002 & 16.0 & 0.0012 & 0.0352 & 0.0006 & 0.15 & 0.0105 & 39.6 \\
correlation & & & & & & & & \\
\(\mathrm{Q}_{21}\) & 0.54 & & & & & & & \\
\(\tau^{2} r_{1}\) & 0.70 & 0.24 & & & & & & \\
\(\mathrm{q}_{1}\) & 0.77 & 0.35 & 0.42 & & & & \\
\(\mathrm{Q}_{12}^{\star}\) & 0.25 & 0.06 & 0.23 & 0.25 & & & \\
\(\mathrm{Q}_{21}^{\star}\) & 0.25 & 0.21 & 0.10 & 0.38 & -0.03 & & \\
\(\mathrm{q}_{1}^{\star}\) & 0.02 & -0.01 & 0.05 & 0.05 & -0.76 & -0.13 & & \\
\(\sigma^{2} / \tau^{2}\) & 0.20 & 0.12 & 0.12 & 0.25 & 0.86 & 0.35 & -0.88 & \\
\(\tau^{2}\) & -0.22 & -0.11 & -0.17 & -0.25 & -0.87 & -0.35 & 0.88 & -0.995 \\
& & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Correlation coefficients exceeding 0.9 underlined.
}

Figure 7.4.2
Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), and separate covariance parameterization, fitted by Gaussian likelihood estimation; observed radioactive discharges (X), fitted values (---) and predicted values (conditional upon earlier observations, plotted against time.

\section*{at 0.1}

To obtain direct estimates of \(r_{1}, q_{1}\) and \(\sigma^{2}\), the rate of emission \(\tau^{2}\) cannot be treated as a scaling parameter. The estimates resulting from minimizing \(L_{M}\) are given in table 7.4.6.

Particularly worthy of note is the estimate of \(\sigma^{2}\) as 0.12 . The observations are ten-minute averages of Geiger counts, so if in any single minute the distribution is Poisson, then the variance of the average will be one tenth of the mean. To test this, \(\sigma^{2}\) was fixed at 0.1 and the other parameters were re-estimated. The results are summarized in table 7.4 .7 and figure 7.4 .3 shows the fitted values plotted against time. \(L_{M}\) is minimized at 388.0 which is only 0.6 more than when \(\sigma^{2}=0.12\). Therefore the data is consistent with the hypothesis that \(\sigma^{2}\) is equal to 0.1 , on the basis of the asymptotic properties of the likelihood ratio test.

\subsection*{7.4.6 Resumé}

Although the preceding analysis has appeared to produce a model which fits the data adequately, one particular feature nullifies this conclusion: the estimate of \(\tau^{2}\) is 3.6. If molecules in the leaf behave independently of one another then \(\tau^{2}\) should represent the rate of emission of a single \({ }^{14} \mathrm{C}\) atom multiplied by the rate of detection of a Geiger counter. However, the product of these rates is miniscule and the value 3.6 is utter nonsense. Therefore the stochastic compartment model does not describe the transport mechanism, maybe because molecules do not act independently but in groups.

There is certainly not the same degree of belief in the stochastic compartment model describing the transport mechanism as

Table 7.4.6
Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), parameterized without the use of a scaling parameter, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(Q_{12}\) & \(\mathrm{Q}_{21}\) & \(r_{1}\) & \(\mathrm{q}_{1}\) & \(\sigma^{2}\) & \(\tau^{2}\) \\
\hline estimate & 0.0079 & 0.0015 & 92.0 & 0.0103 & 0.12 & 3.6 \\
\hline se & 0.0013 & 0.0002 & 28.0 & 0.0011 & 0.02 & 1.1 \\
\hline \multicolumn{7}{|l|}{correlations} \\
\hline \(\mathrm{Q}_{21}\) & 0.65 & & & & & \\
\hline \(r_{1}\) & -0.04 & 0.06 & & & & \\
\hline \(\mathrm{q}_{1}\) & 0.68 & 0.23 & -0.08 & & & \\
\hline \(\sigma^{2}\) & -0.22 & -0.03 & 0.15 & 0.01 & & \\
\hline \(\tau^{2}\) & 0.06 & -0.05 & -0.99 & 0.12 & -0.20 & \\
\hline
\end{tabular}

Correlation coefficients exceeding 0.9 underlined.

Table 7.4.7
Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), \(\sigma^{2}\) fixed at 0.1, parameterized without the use of a scaling parameter, fitted by Gaussian likelihood estimation; parameter estimates with associated estimated standard errors and estimated correlation coefficients.
\begin{tabular}{cccccc}
& \(Q_{12}\) & \(Q_{21}\) & \(r_{1}\) & \(q_{1}\) & \(\tau^{2}\) \\
\cline { 2 - 6 } estimate & 0.0082 & 0.0015 & 85.0 & 0.0103 & 3.9 \\
se & 0.0014 & 0.0002 & 26.0 & 0.0012 & 1.1
\end{tabular}
correlations
\(Q_{21} \quad 0.65\)
\begin{tabular}{lll}
\(r_{1}\) & -0.03 & 0.06
\end{tabular}
\(q_{1}\)
\begin{tabular}{ll}
0.70 & 0.22 \\
0.04 & -0.06
\end{tabular}
-0.07
\(\tau^{2}\)
\(\begin{array}{lll}-0.06 & -0.99 & 0.11\end{array}\)
Correlation coefficients exceeding 0.9 underlined.

Dale's data, two-compartment model with temporary immigration (specified in [7.4.3]), \(\sigma^{2}\) fixed at 0.1, fitted by Gaussian likelihood estimation; observed radioactive discharges (\(X\)), fitted values (---) and predicted values (-_) conditional upon earlier observations, plotted against time.

there is in it describing the behaviour of ion-channels, considered in section 7.3. At best it is an approximation to reality. Therefore, although it may be reasonable to expect the long term trend in the data to be adequately described by a compartment model, it may be taking the model too far to expect it also to explain the covariance structure of the observations. In that case the empirical approach of chapter 4 would seem to be preferable to the analysis in the present section which may be compared to building a tower on sand. However, the method of chapter 4 also has its deficiencies, a partial resolution of which will be presented in chapter 9.

\subsection*{7.5 Discussion}

The technique considered in this chapter is to model data, which are postulated to have arisen from a compartment system, by a simple type of stochastic compartment model. The parameters in the model are estimated utilizing the information both in the main trend of the data and in the local stochastic fluctuations. There are theoretical reasons for proposing compartment models as generating mechanisms for both Colquhoun's and Dale's data. Judged on the basis of goodness-of-fit, stochastic compartment models appear to perform well in both applications. However, at this point the similarities end. For Colquhoun's data, the parameter estimates were consistent with other information about values they should take. But, for Dale's data this was not the case. I think the difference between the two problems is that in one the stochastic model comes very close to describing the true
mechanism, whereas in the other, although a deterministic model may be a reasonable approximation to reality, the sources of stochastic variability are much more complex than they are assumed to be in a stochastic compartment model. Misleading results can be produced in fitting an inappropriate stochastic model because parameters do not have the same interpretation as in a deterministic model, and may have no physical meaning at all. Therefore, if there is any doubt about the validity of a stochastic compartment model, it would be better to fit a deterministic model with an empirical choice of error model, as described in chapters 4 and 5.

\section*{8. Cumulative count models}

\subsection*{8.1 Introduction}

This is the last of three chapters describing the use of mechanistic models in order to estimate regression parameters when errors are serially correlated. In the approach adopted here the correlations arise through cumulative numbers of events up to particular times being used as the dependent variate. The situation envisaged is where a fixed number of events, \(N\) say, occur in a particular interval of time, and the times of the events are independent identically distributed random variables.

In section 8.2, the variate indexed by continuous time of the cumulative number of events is shown to be a \(\operatorname{cGARMA}(1,0)\) process and the generalized sum of squares, \(S\), (defined in [2.3.2]) is shown to be Berkson's \(\chi^{2}\) statistic. This helps to illuminate the relation between the correlated structure of the cumulative numbers of events and the approximate independence of events in non-overlapping time intervals. However, the formulation as a GARMA process permits other types of correlation structure to be used intermediate between that predicted by the mechanistic model and the simple-minded assumption of independence. In section 8.3, the technique is applied to seed germination data previously analysed by Hunter, Glasbey and Naylor (1984). Finally, in section 8.4 the technique is evaluated critically.

\subsection*{8.2.1 Model}

The model to be considered is for a sequence of observations \(y_{1}, \ldots, y_{n}\) (denoted \(\underset{\sim}{y}\)) which have been made at monotonically increasing times \(t_{1}, \ldots, t_{n}\) (denoted \(\underset{\sim}{t}\)), where \(y_{i}\) is the number of events that have occurred up to time \(t_{i}\). It is assumed that \(\underset{\sim}{y}\) is a realisation at discrete times \(\underset{\sim}{t}\) of a random variate \(Y(t)\) indexed by continuous time, which is itself the sum of \(N\) independent random variates \(Y^{\{1\}}(t), \ldots, Y^{\{N\}}(t)\), where \(Y^{\{k\}}(t)\) is an indicator random variable that denotes whether or not the event indexed by \(k\) occurred before time \(t\). If the event labelled \(k\) occurs at time \(t^{\{k\}}\), then
\[
\begin{aligned}
y^{\{k\}}(t)=0 & \text { if } t<t^{\{k\}} \\
1 & \text { if } t \geqslant t^{\{k\}} .
\end{aligned}
\]

It is further assumed that \(t^{\{k\}}\) is a positive random variate with cumulative probability function \(p(t)\), therefore
\[
P\left(t^{\{k\}} \leqslant t\right)=p(t) \quad \text { for all } t \geqslant 0 .
\]
8.2.2 Solution

From [8.2.1] it follows that
\[
\begin{aligned}
E(Y(t)) & =\sum_{k=1}^{N} E\left(Y^{\{k\}}(t)\right), \\
& =N E\left(Y^{\{1\}}(t)\right)
\end{aligned}
\]
because the \(N\) events occur independently of one another and are identically distributed,
\[
=N P\left(t \geqslant t^{\{1\}}\right)
\]
by the definition of \(Y^{\{1\}}(t)\) above,
\[
=N p(t) .
\]

Also,
\[
\begin{aligned}
\operatorname{cov}(Y(s), Y(t)) & =\sum_{k=1}^{N} \operatorname{cov}\left(Y^{\{k\}}(s), Y^{\{k\}}(t)\right), \\
& =N \operatorname{cov}\left(Y^{\{1\}}(s), Y^{\{1\}}(t)\right), \\
& =N\left[E\left(Y^{\{1\}}(s) Y^{\{1\}}(t)\right)-E\left(Y^{\{1\}}(s)\right) E\left(Y^{\{1\}}(t)\right)\right], \\
& =N\left[P\left(s, t \geqslant t^{\{1\}}\right)-P\left(s \geqslant t^{\{1\}}\right) P\left(t \geqslant t^{\{1\}}\right)\right], \\
& =N(p(t)-p(s) p(t)) \quad \text { for } s \geqslant t, \\
& =N(1-p(s)) p(t) .
\end{aligned}
\]

This is the product of a term dependent only upon \(s\) and a term dependent only upon \(t\), so \(Y(t)\) satisfies the definition in [2.2.7] and is a \(\operatorname{cGARMA}(1,0)\) process. As a consequence, \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(1,0)\) process.

At this point it is worth noting that another way of viewing the above model is as an open one-compartment system with \(N\) particles in the system at time zero, no immigration and a time-varying rate of emigration,
\[
q(t)=\frac{1}{1-p(t)} \frac{\partial p(t)}{\partial t}
\]
provided \(p(t)\) is differentiable with respect to \(t\) and not equal to unity. This is closely related to the model applied by Matis and Wehrly (1979) to fish survival data in their review of stochastic compartment models.

\subsection*{8.2.3 Relation between the generalized sum of squares and Berkson's}

\section*{\(x^{2}\) statistic}

In what follows I forge a link between the approach to correlated errors taken in this thesis and the more conventional way of tackling the particular type of covariance structure associated with cumulative counts data. At the same time, this
serves as another illustration of the decomposition of the variance of a GARMA process in terms of lower-triangular band matrices, as specified in [2.2.2].

The vector of observations \((\underset{\sim}{y})\) is a realisation of a multivariate distribution with mean \(\underset{\sim}{f}\) and variance matrix \(\underset{\sim}{V}\), where
\[
\begin{aligned}
f_{i} & =N p_{i} & & \text { for } i=1, \ldots, n, \\
v_{i j} & =N\left(1-p_{i}\right) p_{j} & & \text { for } i \geqslant j,
\end{aligned}
\]
and \(p\left(t_{j}\right)\) is denoted \(p_{i}\). Because \(\underset{\sim}{y}\) is a \(\operatorname{GARMA}(1,0)\) process, from [2.2.2] (\(\Phi \underset{\sim}{V} \underset{\sim}{\Phi})^{\top}\) is diagonal, where \(\underset{\sim}{\Phi}\) is a lower triangular matrix with bandwidth 2 defined by
\[
\Phi_{i j}=1 \quad \text { for } \quad i=1, \ldots, n
\]
and
\[
\Phi_{i} V_{i, i-1}+\Phi_{i, i-1} V_{i-1, i-1}=0 \quad \text { for } i=2, \ldots, n .
\]

Therefore
\[
\Phi_{i, i-1}=\frac{-\left(1-p_{i}\right)}{\left(1-p_{i-1}\right)} \quad \text { for } \quad i=2, \ldots, n
\]

It follows that
\[
\begin{array}{r}
\left(\underset{\sim}{\Phi} \underset{\sim}{\vee}{\underset{\sim}{\top}}_{\top}^{\top}\right)_{i i}=\Phi_{i j}^{2} V_{i j}+2 \Phi_{i j} \Phi_{i, i-1} V_{i, i-1}+\Phi_{i, i-1}^{2} V_{i-1, i-1} \\
=N\left(1-p_{i}\right) p_{i}-2 \frac{\left(1-p_{i}\right)}{\left(1-p_{i-1}\right)} N\left(1-p_{i}\right) p_{i-1}+\frac{\left(1-p_{i}\right)^{2}}{\left(1-p_{i-1}\right)^{2}} N\left(1-p_{i-1}\right) p_{i-1} \\
\quad \text { for } i=1, \ldots, n,
\end{array}
\]
where \(p_{0}\) is taken to be zero,
\[
=\frac{N\left(1-p_{i}\right)\left(p_{i}-p_{i-1}\right)}{\left(1-p_{i-1}\right)} .
\]

From [2.2.2], \(\underset{\sim}{\ominus}\) is a diagonal matrix with
\[
\theta_{i i}=\gamma\left(\underset{\sim}{\Phi} \underset{\sim}{v}{\underset{\sim}{\Phi}}^{\top}\right)_{i i} \quad \text { for } i=1, \ldots, n
\]

In [2.3.3], the generalized sum of squares, \(S\), is defined by
\[
S={\underset{\sim}{z}}^{\top} \underset{\sim}{z},
\]
where
\[
\underset{\sim}{z}={\underset{\sim}{\theta}}^{-1} \underset{\sim}{\Phi} \underset{\sim}{e},
\]
and
\[
\underset{\sim}{\mathrm{e}}=\underset{\sim}{y}-\underset{\sim}{f} .
\]

Therefore,
\[
z_{i}=\left(\Phi_{i j} e_{i}+\Phi_{i, i-1} e_{i-1}\right) / \theta_{i i} \quad \text { for } \quad i=1, \ldots, n,
\]
where \(e_{o}\) is defined to be zero,
\[
=\frac{e_{i}-\left(1-p_{i}\right) e_{i-1} /\left(1-p_{i-1}\right)}{\left.\sqrt{\left\{N\left(1-p_{i}\right)\left(p_{i}-p_{i-1}\right) /\left(1-p_{i-1}\right)\right.}\right\}},
\]
and
\[
\begin{aligned}
S & =\sum_{i=1}^{n} \frac{e_{i}^{2}-2\left(1-p_{i}\right) e_{i} e_{i-1} /\left(1-p_{i-1}\right)+\left(1-p_{i}\right)^{2} e_{i-1}^{2} /\left(1-p_{i-1}\right)^{2}}{N\left(1-p_{i}\right)\left(p_{i}-p_{i-1}\right) /\left(1-p_{i-1}\right)}, \\
= & \sum_{i=1}^{n} e_{i}^{2}\left[\frac{\left(1-p_{i-1}\right)}{N\left(1-p_{i}\right)\left(p_{i}-p_{i-1}\right)}+\frac{\left(1-p_{i+1}\right)}{N\left(1-p_{i}\right)\left(p_{i+1}-p_{i}\right)}\right] \\
& -\sum_{i=2}^{n} \frac{2 e_{i} e_{i-1}}{N\left(p_{i}-p_{i-1}\right)}
\end{aligned},
\]
with \(p_{n+1}\) taken as 1 . Rearrangement of terms leads to
\[
\begin{aligned}
S & =\sum_{i=1}^{n} e_{i}^{2}\left[\frac{1}{N\left(p_{i}-p_{i-1}\right)}+\frac{1}{N\left(p_{i+1}-p_{i}\right)}\right]-\sum_{i=2}^{n} \frac{2 e_{i} e_{i-1}}{N\left(p_{i}-p_{i-1}\right)} \\
& =\sum_{i=1}^{n+1} \frac{\left(e_{i}-e_{i-1}\right)^{2}}{N\left(p_{i}-p_{i-1}\right)}
\end{aligned}
\]
with \(e_{n+1}\) defined to be zero. This is Berkson's \(x^{2}\) statistic: the \(i\) th term has a numerator: \(\left(e_{i}-e_{i-1}\right)^{2}\) which is the squared difference between the observed and the expected number of events between times \(t_{i-1}\) and \(t_{j}\), and a denominator equal to the
expected number of events. Thus, there are two routes to the same optimization function \(S\) : either take account of the correlation structure between cumulative counts and form a generalized sum of squares; or form a new variate, the number of events between observation times, and construct Berkson's \(\chi^{2}\) statistic.

\subsection*{8.3 Naylor's data: seed germination tests.}

\subsection*{8.3.1 Introduction}

Approximately one hundred seeds were placed in each of 33 petri-dishes inside a germination cabinet. Every few hours for the following week the seeds which had germinated (that is had a radicle at least 4 mm in length) were counted and removed. The numbers of seeds remaining ungerminated at the end of the test were also counted. The number of observations per dish varied between 7 and 12. These data have been used by Hunter, Glasbey and Naylor (1984) to illustrate an efficient way to fit a curve to cumulative counts taking account of the correlations among the observations. Previous methods presented in the seed germination literature (see for example Nicholas and Heydecker, 1968) had inappropriately assumed the observations to be independent. In this section the flexibility of REGAME in handing different variance matrices will be used to illustrate the use of the model considered in section 8.2 and to explore the use of related models.

The germination times of seeds are assumed to be log-normally distributed with a time origin 48 hours after the start of the experiment, except for a probability of non-germination (denoted \(\beta_{3}\)). Therefore the probability of a seed having germinated by observation time \(t_{i}(\geqslant 48)\) is
\[
\begin{array}{r}
p_{i}=\left(1-\beta_{3}\right) \int_{-\infty}^{\left(\ln \left(t_{i}-48\right)-\beta_{1}\right) / \sqrt{ } \beta_{2}} \frac{e^{-x^{2} / 2}}{\sqrt{(2 \pi)}} d x \\
\text { for } i=1, \ldots, n,
\end{array}
\]
where \(\beta_{1}\) and \(\beta_{2}\) are the mean and variance of the distribution of log-times to germination of seeds which germinate. This is the distribution that was found to be appropriate by Hunter, Glasbey and Naylor (1984).

Several different models for the variance matrix \((\underset{\sim}{V})\) of the observations will be considered:
(0) Independent observations with binomial type variances:
\[
v_{i j}=\tau^{2} N\left(1-p_{i}\right) p_{i} I_{i j},
\]
where \(\tau^{2}\) is a variance parameter and \(I_{i j}\) denotes the (ij)th coefficient of the identity matrix (I) of size \(n\). This is a type of variance matrix commonly assumed in the germination literature, although it should be inappropriate for cumulative data.
(1) The standard variance structure, for which
\[
v_{i j}=N\left(1-p_{i}\right) p_{j} \quad \text { for } \quad i \geqslant j ;
\]
shown in [8.2.2] to be appropriate to cumulative data,
where \(N\) is the number of seeds in a petri-dish.
(2) The standard variance structure in (1) together with an independent observation error with a standard deviation
proportional to the rate of germination, denoted error type (a), this leads to variance matrix coefficients:
\[
v_{i j}=N\left(1-p_{i}\right) p_{j}+\left(\sigma^{\{a\}} \frac{\partial p_{i}}{\partial t_{i}}\right)^{2} I_{i j} \quad \text { for } \quad i>j,
\] where \(\sigma^{\{a\}}\) is a proportionality constant.
(3) The standard variance structure in (1) together with an independent observation error with constant standard deviation \(\sigma^{\{b\}}\), denoted error type (b), this leads to variance matrix coefficients:
\[
V_{i j}=N\left(1-p_{i}\right) p_{j}+\left(\sigma^{\{b\}}\right)^{2} I_{i j} \quad \text { for } i \geqslant j
\]
(4) A scaled version of the standard variance structure in (1), for which
\[
V_{i j}=\tau^{2} N\left(1-p_{i}\right) p_{j} \quad \text { for } i \geqslant j
\]
with \(\tau\) a proportionality constant. This may for example result from the responses of seeds being correlated rather than independent.
(5) A scaled version of the variance structure in (1) plus observation error of the type denoted (a), which leads to variance matrix coefficients:
\[
V_{i j}=\tau^{2} N\left(1-p_{i}\right) p_{j}+\left(\sigma^{\{a\}} \frac{\partial p_{i}}{\partial t_{i}}\right)^{2} I_{i j} \quad \text { for } i \geqslant j
\]
(6) A scaled version of the variance structure in (1) plus an observation error of the type denoted (b), which leads to variance matrix coefficients:
\[
V_{i j}=\tau^{2} N\left(1-p_{i}\right) p_{j}+\left(\sigma^{\{b\}}\right)^{2} I_{i j} \quad \text { for } i \geqslant j
\]

If observation errors arise through misclassifying seeds that are on the point of germinating then error type (a) will be appropriate, because the chance of misclassifying is proportional to the rate of germination at that time. Observation error type
(b) has been included to provide an alternative form for the variances. Inclusion of a scaled version of the variance structure enables the magnitude of the variances assumed in model (1) to be tested.

Model (0) corresponds to a \(\operatorname{GARMA}(0,0)\) process, models (1) and (4) to \(\operatorname{GARMA}(1,0)\) processes and the remaining models to \(\operatorname{GARMA}(1,1)\) processes.

\subsection*{8.3.3 Method of estimation}

Among the various models only (1) could be fitted by minimizing the generalized sum of squares \(S\) (which was shown in [8.2.3] to be equivalent to Berkson's \(x^{2}\) statistic) because the other models have a scaling term in the variance matrix. Models (0) and (4) have single global scaling parameters and so could be fitted by minimizing \(L_{S}\), defined in [2.3.2]. The other models require the term \(\ell n|\underset{\sim}{V}|\) to be in the function to be minimized, so the choice when using the computer program REGAME is between \(L_{M}\) and \(L_{R}\), as defined in [2.3.2]. In this application \(L_{M}\) is the negative Gaussian log-likelihood (Whittle, 1961) and not the true negative log-likelihood, because the observations are not normally distributed. When minimizing \(L_{M}\), the scaling parameters are estimated without taking account of the number of other parameters to be estimated. This can introduce severe biases when the average number of observations per petri-dish is only ten and three other parameters are being estimated. Therefore the negative residual Gaussian log-likelihood \(L_{R}\) was chosen as the optimizing function, and for consistency was used to fit all seven models.

To obtain good initial estimates for the parameters in the iterative optimization routine the models were fitted
sequentially. Parameter values obtained by Hunter, Glasbey and Naylor (1984) were used to provide starting values for model (1). The parameter estimates from model (1) were then used as starting values for models (0), (2), (3) and (4), and those finally obtained from model (4) were used as starting values for models (5) and (6). With this scheme no convergence problems were encountered. I could have eliminated one parameter from the iterative procedure by reparameterizing \(\underset{\sim}{V}\) to have a global scaling parameter, as I did in chapter 7. But, because there were no convergence difficulties I preferred to retain the original parameters.

\subsection*{8.3.4 Results - likelihood comparisons}

Table 8.3.1 shows the minimized values of \(L_{R}\) (the negative residual Gaussian log-likelihood) for each model fitted to the data from each petri-dish. For each dish the model with the lowest value for an approximation to the Akaike Information Criterion (AIC) using \(L_{R}\), instead of \(L_{M}\), plus the number of model parameters, is underlined. AIC (Akaike, 1973) has already been used in sections 6.4 and 6.5. Model (1), the one considered in section 8.2 , is preferred on this basis for \(60 \%\) of dishes.

Models (2) to (6) are all generalizations of model (1) and so can be compared on the basis of the asymptotic properties of the likelihood ratio test. This uses the fact that the residual Gaussian likelinood converges to the true likelihood function as the number of seeds increases. Models (2), (3) and (4) each have one extra parameter and so are a significant improvement over model (1) at the \(5 \%\) level if \(L_{R}\) has been decreased by more than 1.9 , that is the 95 percentile of \(\frac{1}{2} x_{1}^{2}\). Models (5) and (6) have two

Table 8.3.1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tablenel & Naylor's Gauss & \begin{tabular}{l}
data; \\
an log
\end{tabular} & In imum lkellhoo & lues of (\(L_{R}\)) for & & \begin{tabular}{l}
tive resid \\
ent models
\end{tabular} & \\
\hline & & & ndard var & lances & & scaled var & ances \\
\hline & errors & & \begin{tabular}{l}
+ error \\
(a)
\end{tabular} & \begin{tabular}{l}
+ error \\
(b)
\end{tabular} & & \[
\begin{gathered}
+ \text { error } \\
\text { (a) }
\end{gathered}
\] & \begin{tabular}{l}
+ error \\
(b)
\end{tabular} \\
\hline Model & (0) & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline \begin{tabular}{l}
Number of \\
DIsh Parameters
\end{tabular} & 4 & 3 & 4 & 4 & 4 & 5 & 5 \\
\hline 1 & 5.6 & 5.4 & 4.7 & 5.4 & 4.8 & 4.1 & 4.8 \\
\hline 2 & 8.1 & 7.6 & 6.2 & 5.0* & 5.9 & 5.9 & 4.8 \\
\hline 3 & 5.9 & 4.2 & 4.0 & 4.1 & 4.1 & 3.9 & 4.1 \\
\hline 4 & 10.1 & 8.8 & 7.7 & 8.6 & 8.1 & 7.7 & 8.1 \\
\hline 5 & 7.9 & 6.8 & 6.8 & 6.8 & 6.7 & 6.7 & 6.7 \\
\hline 6 & 8.4 & \(\underline{6.1}\) & 6.1 & 6.1 & 6.1 & 6.1 & 6.1 \\
\hline 7 & 7.4 & 5.3 & 5.3 & 5.3 & 4.6 & 3.7 & 4.6 \\
\hline 8 & 7.5 & \(\overline{5.8}\) & 5.8 & 5.8 & 5.8 & 5.8 & 5.8 \\
\hline 9 & 6.0 & 5.1 & 5.0 & 5.1 & 5.1 & 4.4 & 5.1 \\
\hline 10 & 9.8 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\hline 11 & 7.4 & 7.1 & 7.1 & 7.1 & 7.1 & 7.1 & 7.1 \\
\hline 12 & 7.6 & 7.9 & 7.5 & 7.6 & 7.5 & 7.4 & 7.5 \\
\hline 13 & 9.2 & 8.7 & 7.8 & 7.5 & 7.9 & 7.8 & 7.5 \\
\hline 14 & 10.6 & 8.1 & 6.7 & 8.0 & 7.3 & 6.6 & 7.3 \\
\hline 15 & 7.2 & 4.9 & 4.8 & 4.9 & 4.8 & 4.4 & 4.8 \\
\hline 16 & 13.9 & 12.4 & 11.9 & 12.1 & 11.1 & 11.1 & 11.1 \\
\hline 17 & 6.1 & 5.0 & 5.0 & 5.0 & 4.2 & 4.2 & 4.2 \\
\hline 18 & 9.6 & 8.0 & 8.0 & 7.8 & 7.8 & 7.8 & 7.8 \\
\hline 19 & 0.1 & 4.1 & 4.1 & 4.1 & 2.2* & 2.2 & \(0.2 *\) \\
\hline 20 & 8.5 & 10.6 & 8.2* & 8.4* & 8.1* & 8.0 & 8.1 \\
\hline 21 & 8.5 & 9.2 & 8.9 & 7.8 & 8.1 & 8.1 & 7.8 \\
\hline 22 & 4.2 & 4.4 & 4.4 & 4.4 & 3.4 & 3.4 & 3.4 \\
\hline 23 & 8.4 & 5.8 & 5.7 & 5.8 & 5.5 & 1.9* & 5.5 \\
\hline 24 & 9.0 & 8.8 & 7.9 & 8.8 & 7.9 & 7.8 & 7.9 \\
\hline 25 & 3.6 & 4.2 & 4.2 & 4.2 & 2.6 & 2.6 & 2.6 \\
\hline 26 & 7.3 & 5.6 & 5.6 & 5.6 & 5.6 & 5.6 & 5.6 \\
\hline 27 & 6.3 & 7.5 & 7.5 & 6.2 & 7.2 & 7.2 & 6.1 \\
\hline 28 & 8.0 & 8.2 & 8.2 & 7.7 & 7.7 & 7.7 & 7.6 \\
\hline 29 & 6.9 & 5.9 & 5.9 & 5.7 & 5.8 & 5.8 & 5.3 \\
\hline 30 & 8.9 & 9.9 & 7.7* & 9.3 & \(7.8 *\) & 7.6 & 7.8 \\
\hline 31 & 10.7 & 9.5 & 9.5 & 8.8 & 9.3 & 9.3 & 8.7 \\
\hline 32 & 9.2 & 11.5 & 11.4 & 9.0* & 10.0 & 10.0 & 8.4* \\
\hline 33 & 10.4 & 11.5 & 11.2 & 10.0 & 10.0 & 10.0 & 9.7 \\
\hline Average & 7.8 & 7.3 & 6.9 & 6.8 & 6.6 & 6.4 & 6.4 \\
\hline
\end{tabular}

For each dish the model with the lowest value of an approximation to Akalke's Information Criterion has been underlined. Models (2) to (6) with significantly lower \(L_{R}\) than model (1) at \(5 \%\) level denoted by an asterisk.
extra parameters so a decrease in \(L_{R}\) of 3.0 (the 95 percentile of \(\frac{1}{2} x_{2}^{2}\)) is sufficient to reject model (1). Models which are significant improvements are marked with an asterisk. Only 11 of the 165 tests are significant which is close to the expected number of 8 arising by chance if model (1) is correct. However, because the 5 tests for each petri-dish are correlated with each other it is not possible to assess how substantial the difference is between the observed number of 11 and the expected number of 8 . If model (1) is correct then the 33 differences between \(L_{R}\) in model (1) and model (2) should be independent deviates from \(\frac{1}{2} x_{1}^{2}\). To assess this, the 33 differences were ranked and plotted against the corresponding quantiles of \(\frac{1}{2} x_{1}^{2}\) in figure 8.3.1. Except for a preponderance of observations at zero the agreement with the predicted straight line is very good. Figure 8.3 .2 shows a similar plot of the ranked differences between \(L_{R}\) in models (1) and (6) against the quantiles of \(\frac{1}{2} x_{2}^{2}\) with even better agreement. The values of \(L_{R}\) for each model averaged over all dishes are given at the foot of table 8.3.1. The significant decrease for a model with one extra parameter is 0.7 (the 95 percentile of \(\frac{1}{66} x_{33}^{2}\)), and with two extra parameters 1.3 (the 95 percentile of \(\frac{1}{66} x_{66}^{2}\)), once again appealing to the asymptotic properties of the likelihood ratio test. Model (1) is adequate as it is not rejected in favour of any of the other models on the basis of this test. The improvement in fit obtained by using a scaled version of the variance matrix (model (4)) is close to the \(5 \%\) level and, because the mean estimate of \(\tau\) is 1.2 , this result suggests that the covariances are slightly larger than those predicted in the standard model for cumulative counts.

Figure 8.3.1
Naylor's data; ranked differences in minimum values of the negative residual Gaussian log-likelihood between models (1) and (2) plotted against quantiles of \(\frac{1}{2} x_{1}^{2}\) distribution.

Figure 8.3.2
Naylor's data; ranked differences in minimum values of the negative residual Gaussian log-likelihood between models (1) and (6) plotted against quantiles of \(\frac{1}{2} x_{2}^{2}\) distribution.

\subsection*{8.3.5 Results - parameter estimates}

Table 8.3.2 shows the means and the standard deviations of the parameter estimates over all dishes for each model together with the average standard errors supplied by REGAME. To define what these summary statistics are (they were previously discussed and used in [6.4.5] and [6.5.5]) consider the parameter \(\beta_{1}\) in a particular model; this was estimated as \(\hat{\beta}_{1}^{\{j\}}\) with a standard error of \(\operatorname{se}\left(\hat{\beta}_{1}^{\{j\}}\right)\) using the data from the \(j\) th petri-dish. The mean of the estimates is
\[
\hat{\beta}_{1}=\sum_{j=1}^{33} \hat{\beta}_{1}^{\{j\}} / 33
\]
the standard deviation of the estimates is
\[
\checkmark\left\{\sum_{j=1}^{33}\left(\hat{\beta}_{1}^{\{j\}}-\hat{\beta}_{1}\right)^{2} / 32\right\}
\]
and the average standard error is
\[
\sum_{j=1}^{33} \operatorname{se}\left(\hat{\beta}_{1}^{\{j\}}\right) / 33
\]

Some of the differences between petri-dishes is being ignored in forming these statistics, but this simple approach is adequate for making some important comparisions between models and for assessing whether a parameter could take a common value for all dishes. The mean parameter estimates are in close agreement over all models, as are the standard deviations, but the standard errors are on average only half the size in model (0) that they are in the other models. The agreement among models (1) to (6) is not surprising since models (2) to (6) are generalizations of model (1) which were found in [8.3.4] not to be significant improvements. The estimated precision in model (0) is too great because the assumption that the

Table 8.3.2
Naylor's data; means and standard deviations of parameter estimates over all 33 dishes for each model, and average standard errors (see [8.3.5]).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Mode & & \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\tau\) & & \({ }_{\sigma}\{\mathrm{b}\}\) \\
\hline & & \multicolumn{6}{|c|}{means of estimates} \\
\hline (0) & indep. errors & 3.24 & 0.39 & 0.085 & 0.6 & & \\
\hline (1) & standard variances & 3.25 & 0.39 & 0.082 & & & \\
\hline (2) & + obs error(a) & 3.25 & 0.39 & 0.084 & & 0.7 & \\
\hline (3) & + obs error(b) & 3.24 & 0.37 & 0.086 & & & 0.5 \\
\hline (4) & scaled variances & 3.25 & 0.38 & 0.084 & 1.2 & & \\
\hline (5) & + obs error(a) & 3.25 & 0.39 & 0.084 & 0.9 & 0.6 & \\
\hline (6) & + obs error (b) & 3.24 & 0.37 & 0.087 & 1.0 & & 0.3 \\
\hline
\end{tabular}
standard deviations of estimates
\begin{tabular}{lccccccc}
\((0)\) & indep. errors & 0.19 & 0.20 & 0.046 & 0.2 & & \\
\((1)\) & standard variances & 0.19 & 0.18 & 0.045 & & & \\
\((2)\) & + obs error (a) & 0.19 & 0.18 & 0.045 & & 0.7 & \\
\((3)\) & + obs error(b) & 0.19 & 0.18 & 0.044 & & & 0.6 \\
\((4)\) & scaled variances & 0.19 & 0.18 & 0.044 & 0.3 & & \\
\((5)\) & + obs error(a) & 0.19 & 0.17 & 0.045 & 0.4 & 0.8 & \\
\((6)\) & + obs error(b) & 0.19 & 0.19 & 0.044 & 0.4 & & 0.5
\end{tabular}
(0) indep. errors
\(0.030 .04 \quad 0.014 \quad 0.2\)
(1) standard variances
0.07
\(0.07 \quad 0.029\)
\(\begin{array}{lllll}(2) & + \text { obs error }(a) & 0.07 & 0.08 & 0.029\end{array}\)
(3) + obs error(b)
0.07
0.07
0.031
1.1
(4) scaled variances
0.07
0.08
0.033
0.3
(5) + obs error(a)
0.07
0.07
\(0.027 \quad 0.4\)
1.6
(6) \(\quad+\) obs error (b)
0.07
0.07
\(0.031 \quad 0.4\)
1.0
observations are independent assumes that the data contain more information than they actually do. With the exception of model (0) the results agree very well with those of Hunter, Glasbey and Naylor (1984) which were estimated by full maximum likelihood and therefore took account of distributional properties of the observations and not simply first and second moments.

Figures 8.3.3 and 8.3.4 show the data for dish 2 together with the fitted curve and predicted fit using earlier observations (described in [2.3.6]) plotted against time for models (1) and (3) respectively. Although model (3) gave a significant improvement over model (1) for this particular dish, that being the reason for its selection for plotting, the differences are difficult to detect in the plots because there are so few data points. The figures are shown in the same form as in other chapters for completeness.

\subsection*{8.3.6 Resumé}

For Naylor's data the standard variance model is adequate and is superior to the model in which errors are assumed to be independent. This confirms the assumptions made by Hunter, Glasbey and Naylor (1984). It has been demonstrated that REGAME is capable of fitting models which combine both types of error, although the full generality was found unnecessary for this data set.

\subsection*{8.4 Discussion}

Data which are cumulative counts are serially correlated, but in a way that can be modelled very easily. So this is a rather

Figure 8.3.3
Naylor's data, dish number 2, model (1) fitted by residual Gaussian maximum likelihood estimation; observed germination counts (X), the fitted curve (---) and predicted values (- _) conditional upon earlier observations, plotted against time.

Figure 8.3.4
Naylor's data, dish number 2, model (3) fitted by residual Gaussian maximum likelihood estimation; observed germination counts (\(X\)), the fitted curve (---) and predicted values (- _) conditional upon earlier observations, plotted against time.

trivial example of a mechanistic approach to specifying the error covariance structure. However, by setting this within the context of the preceding chapters in the thesis, we acquire the capability to include and test for other sources of error. In the particular illustration, using Naylor's data, these extensions proved to be unnecessary. The general modelling technique would be of particular use if cumulative counts were observed subject to unavoidable sampling errors.

Of the three chapters considering mechanistic modelling, the type considered in this chapter is the least suspect. For data such as Naylor's, there is no doubt that the mechanistic approach outperforms by far an empirical approach to modelling the error covariance structure.

\section*{9. Conservative estimates of the variances of}
regression parameter estimators

\subsection*{9.1 Introduction}

This chapter is quite distinct from all the other chapters in the thesis, which were concerned with the estimation of regression parameters conditional upon the error variance matrix being known except for a few parameters. Here the emphasis is on obtaining valid estimates of the variances of regression parameter estimators without making gross assumptions about the error covariance structure. The comments of Efron (1982, p3) in introducing jackknifing and bootstrapping are equally valid here:
> "An important theme of what follows is the substitution of computational power for theoretical analysis. The payoff, of course, is freedom from the constraints of traditional parametric theory, with its overreliance on a small set of standard models for which theoretical solutions are available."

Previous chapters may be divided into those in which the choice of variance matrix is empirical (4 and 5) and those in which the variances are an integral part of the overall model (6, 7 and 8). In the empirical case, the choice of a variance matrix "close" to the true matrix will improve the efficiency of estimation of regression parameters relative to ordinary least-squares estimation. However, if this approximating variance matrix is assumed true, the estimated variances of the parameter estimators will be biased. The discussions in sections 4.6 and 5.4 highlight this problem. Essentially, there is a difficulty in estimating regression parameters from observations which are correlated in an unknown manner.

For a particular fitted regression it is desirable to estimate variances of the parameter estimators such that they will be valid for a wide range of possible error variance matrices. A general method of approaching the problem is presented in section 9.2. A computer program, CEVOPE, which can be used to implement this technique on real data sets, is described in section 9.3. In section 9.4 the method is illustrated by a small example. Then in sections 9.5, 9.6 and 9.7 the method is applied to Colquhoun's, Dale's and Bruce's data which were originally analysed in chapter 4. Finally, the usefulness of the technique is evaluated in section 9.8.

\subsection*{9.2 Method}

\subsection*{9.2.1 Regression parameter estimators}

It is assumed that the m-vector of unknown regression parameters, \(\underset{\sim}{\beta}\), is estimated by generalized least-squares by minimizing the optimization function

Here \(\underset{\sim}{y}\) is the \(n\)-vector of observations, \(\underset{\sim}{f}\) is the \(n\)-vector of regression values (which are functions of \(\underset{\sim}{\beta}\)), \(\underset{\sim}{W}\) is a known \(n\) by \(n\) diagonal matrix of weights, \(\underset{\sim}{e}\) is the \(n\)-vector of weight-corrected departures of the observations from the regression and \(\underset{\sim}{R}\) is a known \(n\) by \(n\) positive-definite symmetric matrix. It is further assumed that \(\underset{\sim}{f}\) is linear in \(\underset{\sim}{B}\) and so can be expressed as
\[
\underset{\sim}{f}=\underset{\sim}{W} \underset{\sim}{X} \underset{\sim}{B},
\]
where \(\underset{\sim}{x}\), is the \(n\) by \(n\) weight-corrected regression design matrix.

It is a standard result that the estimator of \(\underset{\sim}{\beta}\), denoted \(\underset{\sim}{\hat{B}}\), is given by
\[
\begin{align*}
& ={\underset{\sim}{U}}^{\top}{\underset{\sim}{W}}^{-1} \underset{\sim}{y} \text {, } \tag{9.2.1}
\end{align*}
\]
if an \(n\) by matrix \(\underset{\sim}{U}\) is defined by
\[
\underset{\sim}{U}={\underset{\sim}{R}}^{-1} \underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{R}}^{R^{-1}} \underset{\sim}{x}\right)^{-1} .
\]

It is convenient at this stage to note that \(\underset{\sim}{x} \underset{\sim}{U}=\underset{\sim}{I}\).
At this point some comments my help to clarify the
situation. The use of a matrix of weights may appear rather arbitrary, but it is convenient in what follows to be able to handle heteroscedasticity separately from other features of the variance matrix of \(\underset{\sim}{y}\). The choice of \(\underset{\sim}{R}\) does not affect the mathematical development in this section and so, for the sake of generality, has been left deliberately vague. Finally, the assumption that the regression function is linear in \(\underset{\sim}{\beta}\) is not too restrictive in practice because, provided \(\underset{\sim}{f}\) is differentiable with respect to \(\underset{\sim}{B}, \underset{\sim}{f}\) may be approximated by a linear function in the region of \(\underset{\sim}{\beta}\) close to \(\underset{\sim}{\hat{B}}\) with
\[
\underset{\sim}{X}=\left.{\underset{\sim}{W}}^{-1} \underset{\sim}{\partial \underset{\sim}{\beta}}\right|_{\underset{\sim}{\beta}} ^{\underset{\sim}{\beta}}=\underset{\sim}{\hat{\beta}}
\]

Provided the approximation, which is precisely that used in non-linear regression to obtain standard errors of parameter estimators, is good what follows in this section still applies in the non-linear case.

If it is assumed that \(E(\underset{\sim}{y})=\underset{\sim}{f}\), then \(\underset{\sim}{\dot{\beta}}\) is an unbiased estimator of \(\underset{\sim}{\beta}\). Further, if \(\underset{\sim}{V}\) is the \(n\) by \(n\) symmetric
positive-definitelmatrix of the weight-corrected observations, that is \(\operatorname{var}(\underset{\sim}{\underset{\sim}{\mid}} \underset{\sim}{y})=\underset{\sim}{V}\), then \(\operatorname{var}(\underset{\sim}{\hat{B}})={\underset{\sim}{U}}^{\top} \underset{\sim}{V} \underset{\sim}{U}\), and in particular
\[
\operatorname{var}\left(\hat{B}_{s}\right)={\underset{\sim}{u}}^{\top} \underset{\sim}{v} \underset{\sim}{u},
\]
where \(\underset{\sim}{u}\) denotes the sth column of \(\underset{\sim}{U}\). Strictly, the notation should include an indication of \(s\) in \(\underset{\sim}{u}\), but this has been omitted in order to simplify what follows. All subsequent
references in this section will be to a single parameter \(\beta_{s}\) and must be repeated for each value of \(s\) from 1 to \(m\).
9.2.2 Form of estimator of \(\operatorname{var}\left(\hat{\beta}_{\mathrm{s}}\right)\)

The variance of \(\hat{\beta}_{s}\) may be rewritten as
\[
\operatorname{tr}\left(\underset{\sim}{u} \underset{\sim}{u}{\underset{\sim}{u}}^{\top}\right)
\]
where \(t r\) denotes the trace of a square matrix. In order to estimate this variance it is necessary to estimate \(\underset{\sim}{v}\) using the only information available, the vector of weight-corrected departures, \(\underset{\sim}{\hat{e}}\), where
\[
\begin{equation*}
\underset{\sim}{e}={\underset{\sim}{W}}^{-1}(\underset{\sim}{y}-\underset{\sim}{\hat{f}}), \tag{9.2.2}
\end{equation*}
\]
and \(\underset{\sim}{f}\) is the estimated regression function. The ideal would be to find an estimator of \(\underset{\sim}{V}\) which was unbiased for a wide range of possible variance matrices, say all matrices belonging to some set \(\Omega\). Unless very restrictive assumptions are made about \(\Omega\), such as
\[
\Omega=\left\{\underset{\sim}{V}: \underset{\sim}{V}=\tau^{2} \underset{\sim}{I}, \tau^{2} \geqslant 0\right\}
\]
(using the set notation defined in the conventions section at the front of the thesis), this does not seem to be possible.

The next best alternative is for the estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\) to be conservative, that is upward biased (or more precisely, not downward biased) for all \(\underset{\sim}{V}\) belonging to \(\Omega\) because marginal
confidence intervals placed on \(\beta_{s}\) will then never have higher error probability levels than they should have.

I considered this problem for some time but failed to find an estimator of \(\underset{\sim}{V}\) which ensured that \(\operatorname{var}\left(\hat{B}_{s}\right)\) was conservative for any reasonable set \(\Omega\). So instead, I decided to estimate \(\underset{\sim}{V}\) simply using \(\underset{\sim}{e} \underset{\sim}{e}{\underset{\sim}{e}}^{\top}\), but sought to substitute a symmetric \(n\) by \(n\) matrix denoted \(\underset{\sim}{C}\) in place of \(\underset{\sim}{u m}{ }^{\top}\) in the estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\). The problem is then to find \(\underset{\sim}{C}\) such that
\[
E\left(\operatorname{tr}\left(\underset{\sim}{C} \underset{\sim}{e} \underset{\sim}{e}{\underset{\sim}{e}}^{\top}\right)\right) \geqslant \operatorname{tr}\left(\underset{\sim}{u} \underset{\sim}{u}{\underset{\sim}{V}}^{\top} \underset{\sim}{V} \text { for all } \underset{\sim}{V} \in \Omega .\right.
\]

The estimator may be rewritten as
\[
{\underset{\sim}{e}}^{\top} \underset{\sim}{c} \underset{\sim}{e},
\]
and it becomes apparent that it is a quadratic form of the weightcorrected departures \(\underset{\sim}{e}\). It is desirable for \(\underset{\sim}{C}\) to be positivesemidefinite because then the variance estimator cannot take negative values. For the sake of generality \(\Omega\) will remain unspecified at present, but will be discussed in detail in subsections [9.2.11] to [9.2.17].

\subsection*{9.2.3 Expectation of \({\underset{\sim}{e}}_{\underset{\sim}{C}}^{\sim} \underset{\sim}{\underset{\sim}{e}}\)}

It follows from equation (9.2.2) that
\[
\begin{aligned}
\underset{\sim}{e} & ={\underset{\sim}{W}}^{-1}(\underset{\sim}{y}-\underset{\sim}{W} \underset{\sim}{x} \underset{\sim}{\hat{\beta}}), \\
& =(\underset{\sim}{I}-\underset{\sim}{x} \underset{\sim}{U}) \underset{\sim}{W}{ }^{-1} \underset{\sim}{y},
\end{aligned}
\]
after substitution for \(\underset{\sim}{\hat{\beta}}\) from equation (9.2.1). Therefore \(\underset{\sim}{\hat{e}}\) is orthogonal to \(\underset{\sim}{U}\) because
\[
{\underset{\sim}{U}}^{\top} \underset{\sim}{e}=\left({\underset{\sim}{U}}^{\top}-\underset{\sim}{U}{ }^{\top}\right) \underset{\sim}{w}{\underset{\sim}{w}}^{-1} \underset{\sim}{y} .
\]

Also,
\[
\begin{aligned}
E\left({\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}\right) & =\operatorname{tr}\left(\underset{\sim}{C} \underset{\sim}{E}\left(\underset{\sim}{e} \underset{\sim}{e}{\underset{\sim}{e}}^{\top}\right)\right) \\
& =\operatorname{tr}\left(\underset{\sim}{C}\left(\underset{\sim}{I}-\underset{\sim}{X}{\underset{\sim}{U}}^{\top}\right) \underset{\sim}{V}(\underset{\sim}{I}-\underset{\sim}{U} \underset{\sim}{X})\right), \\
& =\operatorname{tr}(\underset{\sim}{C}),
\end{aligned}
\]
provided that \(\underset{\sim}{C} \underset{\sim}{x}=\underset{\sim}{0}\).

Without loss of generality we can restrict our choice to \(C\) orthogonal to \(\underset{\sim}{X}\) because, as \(\underset{\sim}{\hat{e}}\) is orthogonal to \(\underset{\sim}{U}\), only the component of \(\underset{\sim}{C}\) orthogonal to \(\underset{\sim}{x}\) contributes to \(\underset{\sim}{\underset{\sim}{e}}{ }^{\top} \underset{\sim}{C} \underset{\sim}{e}\). Discussion of other distributional properties of \({\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}\) is deferred to [9.2.18].

\subsection*{9.2.4 Specification of relative bias}

If a symmetric matrix \(\underset{\sim}{C}\) can be found such that
\[
\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) \geqslant{\underset{\sim}{u}}^{\top} \underset{\sim}{V} \underset{\sim}{u} \quad \text { for all } \underset{\sim}{v} e \Omega,
\]
and \(\underset{\sim}{C}\) is orthogonal to \(\underset{\sim}{X}\), then \({\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}\) ean be used as a conservative estimator of \(\operatorname{var}\left(\hat{\beta}_{S}\right)\). However, if a matrix \(\underset{\sim}{C}\) exists that meets the specification, then it is not unique; for example \(\underset{\sim}{2 C}\) is also valid. Therefore, some means of choosing between competing matrices is needed.

A sensible approach would seem to be to choose the estimator with smallest bias. The relative upward bias of \(\underset{\sim}{\underset{\sim}{e}}{ }_{\sim}^{C} \underset{\sim}{e} \underset{\sim}{e}\) as an estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\) is
\[
\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) /\left(\underset{\sim}{u}{\underset{\sim}{\top}}_{\sim}^{V} \underset{\sim}{u}\right)-1
\]
when the true error variance matrix is \(\underset{\sim}{V}\). There are various ways in which this bias can be specified for all \(\underset{\sim}{V} \in \Omega\), such as
\[
\begin{equation*}
\underset{\sim}{v} \underset{\sim}{\operatorname{average}}\left(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{v}) /\left(\underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{v} \underset{\sim}{u}\right)-1\right) \tag{i}
\end{equation*}
\]
where the averaging is with respect to some well behaved measure on \(\Omega\),
or (ii) \(\quad \underset{\sim}{V} \max _{\in \Omega}\left(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{v}) /\left(\underset{\sim}{u}{ }_{\sim}^{V} \underset{\sim}{v}\right)-1\right)\),
but if \(\Omega\) is large, in some unspecified sense, then many unrealistic variance matrices will be included. Therefore, and also to simplify the problem, the bias I have chosen to minimize is that for a specific choice of \(\underset{\sim}{V}\), denoted \(\underset{\sim}{\underset{V}{V}}\). The way in which \(\hat{v}\) is estimated or otherwise chosen is irrelevant to what follows in this section. It will be considered in subsequent sections when real data are encountered.

The search for an estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\) can now be expressed formally as an optimization problem:
\[
\begin{array}{ll}
\text { minimize } & \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) \quad \text { with respect to } \underset{\sim}{C}, \\
\text { subject to constraints } & \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) \underset{\sim}{u}{ }_{\sim}^{V} \underset{\sim}{V} \underset{\sim}{u} \text { for } \text { al. } \underset{\sim}{V} \underset{\sim}{\text { e }} \Omega, \\
\text { for } & \underset{\sim}{C} \text { symmetric and } \underset{\sim}{C} \underset{\sim}{x}=\underset{\sim}{0} .
\end{array}
\]

To illustrate what the constraints mean, consider the case
when
\[
\Omega=\left\{\underset{\sim}{V}: V_{i j} \geqslant 0 \text { if }|i-j| \leqslant u \text { and } V_{i j}=0 \text { if }|i-j|>u\right\}
\]
for some non-negative integer \(u\). The constraints are then equivalent to
\[
c_{i j} \geqslant u_{i} u_{j} \quad \text { for } \quad|i-j| \leqslant u
\]

\subsection*{9.2.5 Relation to ordinary least-squares}

It may be enlightening at this stage to relate the above remarks to ordinary least-squares when \(\underset{\sim}{V}=\tau^{2} \underset{\sim}{I}\). For this subsection alone let
\[
\begin{aligned}
& \underset{\sim}{R}=\underset{\sim}{W}=\underset{\sim}{I}, \\
& \Omega=\left\{\tau^{2} \underset{\sim}{I}: \tau^{2} \geqslant 0\right\}, \\
& \underset{\sim}{U}=\underset{\sim}{X}(\underset{\sim}{X} \underset{\sim}{X})^{-1},
\end{aligned}
\]
and if
\[
\underset{\sim}{c}=\left(\underset{\sim}{I}-\underset{\sim}{x}{\underset{\sim}{u}}^{\top}\right) \underset{\sim}{u}{\underset{\sim}{u}}_{u}^{u} /(n-m),
\] the constraints in the optimization problem are exactly satisfied because
\[
\begin{aligned}
\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) & =\operatorname{tr}\left(\tau^{2} \underset{\sim}{C}\right), \\
& =\tau^{2} \operatorname{tr}\left(\underset{\sim}{I}-\underset{\sim}{x} \underset{\sim}{U}{ }^{\top}\right){\underset{\sim}{u}}_{\sim}^{\top} \underset{\sim}{u} /(n-m), \\
& =\tau^{2} \underset{\sim}{u} \underset{\sim}{u}, \\
& =\underset{\sim}{u}{\underset{\sim}{V}}^{\top} \underset{\sim}{v} \underset{\sim}{u} \quad \text { for all } \underset{\sim}{V} \in \Omega,
\end{aligned}
\]
and
\[
\underset{\sim}{C} \underset{\sim}{X}=\underset{\sim}{0} .
\]

Therefore, \(\underset{\sim}{C}\) minimizes \(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V})\) provided that \(\underset{\sim}{\hat{V}} \in \Omega\), and the estimator of the variance of \(\hat{\beta}_{S}\) is
\[
{\underset{\sim}{e}}^{\top} \underset{\sim}{c} \underset{\sim}{e}=\hat{\tau}^{2} \underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{u},
\]
where
\[
\hat{\tau}^{2}={\underset{\sim}{e}}^{T} \underset{\sim}{e} /(n-m) .
\]

Therefore, the conservative estimator of variance chosen by the optimization problem specified in [9.2.4] with the restrictive assumption about \(\Omega\), is the same as the standard estimator.

\subsection*{9.2.6 Optimization problem}

I now return to the general theory. The optimization problem in [9.2.4] has \(n(n+1) / 2\) variables corresponding to the elements in \(\underset{\sim}{C}\), \(n m\) constraints arising from the requirement that \(\underset{\sim}{C}\) be orthogonal to \(\underset{\sim}{X}\), and a potentially large number of other constraints dependent on the choice of \(\Omega\). Therefore this is a very large problem. For example, if \(n\) is equal to 200 and \(m\) is equal to 4 , then there are 20100 variables and at least 800 constraints. Also, the solution of the problem may not result in a choice of \(\underset{\sim}{C}\). which is positive-semidefinite. Therefore \(\underset{\sim}{\underset{\sim}{e}}{ }^{\top} \underset{\sim}{C} \underset{\sim}{e}\)
may take negative values with non-zero probability, which is
undesirable for a variance estimator.
Any symmetric matrix \(\underset{\sim}{C}\) may be decomposed as
\[
\underset{\sim}{c}=\sum_{k=1}^{\mathrm{t}} \mathrm{x}_{k}{\underset{\sim}{c}}^{\{k\}}{\underset{\sim}{c}}^{\{k\}^{\top}},
\]
for some value of \(t\) not exceeding \(n\), with coefficients \(x_{1}, \ldots, x_{t}\), denoted \(\underset{\sim}{x}\), and vectors \(\underset{\sim}{c}{ }^{\{1\}}, \ldots, \underset{\sim}{c}{ }^{\{t\}}\), for example by using the eigenvalues and eigenvectors of \(\underset{\sim}{C}\). Constraining all the coefficients \(x_{k}\) to be non-negative ensures that \(\underset{\sim}{C}\) is positive-semidefinite. The decomposition also enables the optimization problem to be reformulated in a computationally more tractable form.

The optimization problem may be restated as:
minimize \(\left.\sum_{k=1}^{t} x_{k}{\underset{\sim}{c}}^{\{k\}^{\top}} \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{\{k\}}\right)\),
with respect to \(x_{k}\) and \(\underset{\sim}{c}\{k\}\) for \(k=1, \ldots, t\),
subject to \(\sum_{k=1}^{t} x_{k}\left({\underset{\sim}{c}}^{\{k\}} \underset{\sim}{v} \underset{\sim}{c}{ }^{\{k\}}\right) \geqslant \underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{v} \underset{\sim}{u}\) for all \(\underset{\sim}{v} \in \Omega\),
for \(\quad x_{k}>0\) and \(\underset{\sim}{c}{ }^{\{k\}^{\top}} \underset{\sim}{x}=0 \quad \underset{\sim}{x} \quad k=1, \ldots, t\).
The constraints on \({\underset{\sim}{c}}^{\{k\}}\) are sufficient, but not necessary, to ensure that \(\underset{\sim}{C}\) is orthogonal to \(\underset{\sim}{X}\). This problem is linear in \(\underset{\sim}{x}\) and quadratic in \({\underset{\sim}{c}}^{\{k\}}\) for \(k=1, \ldots, t\).

\subsection*{9.2.7 Dual optimization problem}

Provided \(\Omega\) is a convex set, the optimization problem with respect to \(\underset{\sim}{x}\) with \(\underset{\sim}{\underset{\sim}{f}}\{1\}, \ldots, \underset{\sim}{c}{ }^{\{t\}}\) held fixed (orthogonal to \(\underset{\sim}{x}\)) has a dual:
maximize \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) with respect to \(\underset{\sim}{v}\),
 The solution to this problem is also the solution to the primal problem in [9.2.6]: the maximum and minimum are equal and the Lagrangian multipliers are the optimal coefficients in \(\underset{\sim}{x}\) in the primal problem. The optimal \(\underset{\sim}{V}\) is the matrix within \(\Omega\) for which the relative bias of \(\underset{\sim}{\underset{\sim}{e}}{ }^{\top} \underset{\sim}{C} \underset{\sim}{e}\) as an estimator of \(\operatorname{var}\left(\hat{B}_{s}\right)\) is most severe.

For a particular set of vectors, \({\underset{\sim}{c}}^{\{1\}}, \ldots,{\underset{\sim}{c}}^{\{t\}}\), the linear optimization problem in [9.2.6] can be solved to find the coefficients \(\underset{\sim}{x}\) to associate with these vectors in order to obtain the estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\) with smallest relative bias if the error variance matrix is \(\underset{\sim}{\hat{V}}\). In order to improve upon this solution, in other words to find an estimator with an even smaller relative bias, it is necessary to change the set of c-vectors. Examination of the dual optimization problem suggests a way in which this can be done, and this will be considered in the following subsections.
9.2.8 Selection of \(\underbrace{\underset{\sim}{c}}{ }^{\text {(t+1\} }}\)

Denote the optimal choice \(\underset{\sim}{V}\) in the dual problem by \(\underset{\sim}{V}\). If a vector \(\underset{\sim}{c}\) can be found such that
\[
\underset{\sim}{c}{ }^{\top} \underset{\sim}{\mid r} \underset{\sim}{c}>{\underset{\sim}{c}}^{\top} \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{c},
\]
and \(\underset{\sim}{c}\) is added to the constraints as \(\underset{\sim}{c}{ }^{\{t+1\}}\), then \(\underset{\sim}{\mid v}\) no longer satisfies all the constraints and so becomes infeasible.

Therefore, the maximum in the new problem, and hence the bias in the estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\), will be reduced.

To ensure that \(\underset{\sim}{c}\) is orthogonal to \(\underset{\sim}{X}\), it can be found as an eigenvector of
\[
\begin{equation*}
\left(\underset{\sim}{I}-\underset{\sim}{x}\left({\underset{\sim}{x}}^{\top} \underset{\sim}{x}\right)^{-1}{\underset{\sim}{x}}^{\top}\right)(\underset{\sim}{v}-\underset{\sim}{V})\left(\underset{\sim}{I}-\underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{\top}}^{x}\right)^{-1}{\underset{\sim}{x}}^{\top}\right) \tag{9.2.3}
\end{equation*}
\]
with a negative eigenvalue. Because this last matrix is real and symmetric all eigenvalues and eigenvectors are real. The columns of \(\underset{\sim}{X}\) are eigenvectors with zero eigenvalues, so provided the eigenvalue corresponding to \(\underset{\sim}{c}\) is non-zero, \(\underset{\sim}{c}\) will be orthogonal to \(\underset{\sim}{X}\). Also, although \(\underset{\sim}{c}\) will not in general be an eigenvector of \((\underset{\sim}{V}-\underset{\sim}{V}),{\underset{\sim}{c}}_{\underset{\sim}{T}}^{T}(\underset{\sim}{V}-\underset{\sim}{V}) \underset{\sim}{\mid r}\) will be negative. (As an aside, it may be noted that this would not have been the case if \(\underset{\sim}{c}\) had been found as an eigenvector of
\[
(\underset{\sim}{I}-\underset{\sim}{U} \underset{\sim}{x})(\underset{\sim}{V}-\underset{\sim}{V})(\underset{\sim}{I}-\underset{\sim}{x} \underset{\sim}{U})
\]

This transformation would have ensured that \(\underset{\sim}{c}\) was orthogonal to \(\underset{\sim}{X}\), but because in general
\[
\left(\underset{\sim}{I}-\underset{\sim}{x}{\underset{\sim}{U}}^{\top}\right) \underset{\sim}{c} \neq \underset{\sim}{c},
\]
\({\underset{\sim}{c}}^{\top}(\underset{\sim}{V}-\underset{\sim}{V}) c\) would not necessarily have been negative.)
If all the eigenvalues of equation (9.2.3) are non-negative, then the existing solution to the dual optimization problem cannot be made infeasible. Therefore, the positive-semidefinite matrix \(\underset{\sim}{C}\) has been found which gives a conservative estimator of \(\operatorname{var}\left(\hat{\beta}_{s}\right)\) with smallest possible relative bias if the error variance matrix is \(\underset{\sim}{\hat{V}}\).
9.2.9 Interpretation of \(\underset{\sim}{c}{ }^{\{t+1\}}\)

The constraint \(\underset{\sim}{c}{ }^{\top} \underset{\sim}{v} \underset{\sim}{c} \leqslant{\underset{\sim}{c}}^{\top} \underset{\sim}{v} \underset{\sim}{c}\) is linear in elements of \(\underset{\sim}{v}\), so every vector \(\underset{\sim}{c}\) orthogonal to \(\underset{\sim}{x}\) defines a constraining hyperplane in the space of \(\underset{\sim}{V}\). Figure 9.2 .1 gives a crude

\section*{Figure 9.2.1}

An illustration in the space \(V_{11}, V_{22}\) of the optimal value of \({\underset{\sim}{u}}^{\top} \underset{\sim}{V} \underset{\sim}{u}\) subject to the boundary imposed by the global set of constraints \(\underset{\sim}{\sim}{\underset{\sim}{c}}^{\top} \underset{\sim}{V} \underset{\sim}{c} \leqslant \underset{\sim}{c}{ }_{\sim}^{T} \underset{\sim}{v} \underset{\sim}{c}\) for all vectors \(\underset{\sim}{c}\) orthogonal to \(\underset{\sim}{x}\).

An illustration in the space \(V_{11}, V_{22}\) of the optimal value of \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) subject to a finite set of constraints of the form

diagrammatic representation, simply in terms of two elements in \(\underset{\sim}{V}\). There is a global boundary defined by all possible c-vectors. The point on this boundary at which \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) is maximized corresponds to the best possible positive-semidefinite matrix \(\underset{\sim}{C}\). A finite set of constraints corresponding to \({\underset{\sim}{c}}^{\{1\}}, \ldots,{\underset{\sim}{c}}_{\{t\}}^{\{t}\) is less restrictive and the value \(\underset{\sim}{v}\) maximizing \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) will, in general, lie outside the region defined by all \(\underset{\sim}{c}\) (see figure 9.2.2). The new vector \(\underset{\sim}{c}{ }^{\{t+1\}}\) is so chosen that \(\underset{\sim}{V}\) is outside the boundary of the new constrained region. The vector \(\underset{\sim}{c}\) which would maximize the separation of \(\underset{\sim}{\mid}\) " from the new boundary would be the one that lay on the global constraining surface in the direction of \(\underset{\sim}{\underset{\sim}{V}}\), that is the vector \(\underset{\sim}{c}\) will maximize
\[
\frac{{\underset{\sim}{c}}^{\top} \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{c}}{{\underset{\sim}{c}}^{\top} \underset{\sim}{v} \underset{\sim}{c}}
\]

This can be found, after incorporation of the constraint \(\underset{\sim}{c}{\underset{\sim}{c}}^{x}=\underset{\sim}{0}\), as the eigenvector with largest negative generalized eigenvalue (\(\mu\)) which satisfies

9.2.10 Algorithm for obtaining \({\underset{\sim}{c}}^{\{t+1\}}\)

A simple algorithm exists for finding the eigenvector of a matrix with the eigenvalue of greatest absolute magnitude, originally due to Aitken (1937) and refined by Wilkinson (1954). This can be modified to enable \(\underset{\sim}{c}\) to be found as specified in [9.2.8]. Starting with any initial vector \(w^{\{0\}}\), we may transform this to
\[
{\underset{\sim}{w}}^{\{1\}}=\left(\underset{\sim}{I}-\underset{\sim}{x}\left(\underset{\sim}{x^{\top}} \underset{\sim}{x}\right)^{-1}{\underset{\sim}{x}}^{\top}\right)(\underset{\sim}{V}-\underset{\sim}{\mid r})\left(\underset{\sim}{I}-\underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{\top} \underset{\sim}{x}\right)^{-1} \underset{\sim}{x}\right) \underset{\sim}{w}\{0\}
\]
and standardize the resultant vector to have a largest element of
unity. After repeated transformations, \(\underset{\sim}{w}\) \{i\} converges to the eigenvector with eigenvalue of largest absolute magnitude (say \(\mu\)) provided this is unique. If the eigenvalue of largest absolute magnitude happens to be positive then a new transformation can be applied:
which after repeated application ensures \(\underset{\sim}{c}\) converges to the eigenvector with the largest negative eigenvalue. If the largest negative eigenvalue is not unique the algorithm will not converge. However, in the course of iteration \(\underset{\sim}{\underset{\sim}{w}}{ }^{\{i\}}\) may be found such that
\[
{\underset{\sim}{w}}^{\{i\}} \underset{\sim}{\mid} \underset{\sim}{w}{\underset{\sim}{w}}^{\{i\}}>{\underset{\sim}{w}}^{\{i\} T} \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{\underset{\sim}{w}}\{i\}
\]
and this is all that is required since every \(\underset{\sim}{w}{ }^{\{i\}}\) is automatically orthogonal to \(\underset{\sim}{X}\).

The alternative approach for finding \(\underset{\sim}{\underset{\sim}{f t+1\}}}\) as the solution of the generalized eigenvalue problem, which was discussed in [9.2.9], has not been pursued. No algorithm equivalent to the above exists and more general algorithms for finding all the eigenvectors proved to be prohibitively costly in computer time.
9.2.11 The choice of \(\Omega\)

At this stage the choice of \(\Omega\) needs to be considered. The first point that should be made is that \(\Omega\) cannot be made so large as to contain all positive-definite symmetric matrices. If it did then \(\tau^{2} \underset{\sim}{I}+\sigma^{2} \underset{\sim}{X} \underset{\sim}{X}{ }^{\top}\) would belong to \(\Omega\) provided that \(\tau^{2}\) and \(\sigma^{2}\) were positive. Applying the results of [9.2.1], for variance matrices of this form,
\[
\begin{aligned}
\operatorname{var}(\underset{\sim}{\dot{\beta}}) & =\underset{\sim}{U^{\top}}\left(\tau^{2} \underset{\sim}{I}+\sigma^{2} \underset{\sim}{x} \underset{\sim}{x}{ }^{\top}\right) \underset{\sim}{U}, \\
& =\tau^{2}{\underset{\sim}{U}}^{\top} \underset{\sim}{U}+\sigma^{2} \underset{\sim}{I},
\end{aligned}
\]
because \({\underset{\sim}{x}}^{\top} \underset{\sim}{U}=\underset{\sim}{I}\), and from [9.2.3]
\[
\begin{aligned}
E\left(\hat{\sim}_{\sim}^{\top} \underset{\sim}{C} \underset{\sim}{e}\right) & =\operatorname{tr}\left(\underset{\sim}{C}\left(\tau^{2} \underset{\sim}{I}+\sigma^{2} \underset{\sim}{X} \underset{\sim}{x}\right)\right), \\
& =\operatorname{tr}\left(\tau^{2} \underset{\sim}{C}\right),
\end{aligned}
\]
because \(\underset{\sim}{C}\) is orthogonal to \(\underset{\sim}{X}\). From the above we notice that the variance of \(\underset{\sim}{\hat{\beta}}\) depends on \(\sigma^{2}\), but the quadratic form of departures is independent of \(\sigma^{2}\). Therefore, no matrix \(\underset{\sim}{C}\) exists such that
\[
E\left({\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}\right) \geqslant \operatorname{var}\left(\hat{\beta}_{S}\right) \quad \text { for all } \sigma^{2}>0
\]

One explanation of this problem is that when the variance matrix is of the above form \(\sigma^{2}\) is confounded with the regression parameters. The situation will be encountered again in [9.4.9].

In order that the upward bias in the variance estimator of \(\hat{\beta}_{s}\) should be small, the set \(\Omega\) should be as small as possible consistent with containing all "reasonable" error variance matrices and leading to a mathematically tractable optimization problem. The dual problem in [9.2.7] has \(n(n+1) / 2\) variables (corresponding to the elements in the symmetric matrix \(\underset{\sim}{V}\)) and \(t\) constraints, and so is already very big. Two particular limitations can be placed on \(\Omega\) without making the optimization problem any larger by adding more constraints. These can be represented as:
\[
\underset{\sim}{V} \in \Omega(\omega, v) \text { if and only if }
\]
(i) \(\underset{\sim}{v}\) is symmetric
(ii) \(\left(\Delta^{\omega} \underset{\sim}{v}\right)_{i j} \geqslant 0\) for \(i \geqslant j\)
and (iii) \(V_{i j}=0 \quad\) if \(i>j+u\),
where \(\omega\) and \(u\) are non-negative integers, \(\Delta\) is the matrix operator
\[
(\Delta V)_{i j}=V_{i j}+V_{i+1, j-1}-V_{i+1, j}-V_{i, j-1} \quad, \quad \text { for } i \geqslant j,
\]
with
\[
v_{n+1, j}=v_{i, 0}=0,
\]
and
\[
\left(\Delta^{0} \underset{\sim}{v}\right)=\underset{\sim}{v} .
\]

First of all I will demonstrate how the choice of \(\Omega\) can be incorporated into the optimization problem when \(\omega\) is equal to 0 , 1 or 2. Then I will go on to discuss how \(\Omega\) can be interpreted and what other choices are possible.
9.2.12 Dual Problem for \(\Omega(0, u)\)

If \(\underset{\sim}{V} \in \Omega(0, u)\), then \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) can be re-expressed as
\[
\sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} v_{i j}\left(2 u_{i} u_{j} /\left(1+I_{i j}\right)\right),
\]
where \(I_{i j}\) is an element in the identity matrix, \(\underset{\sim}{I}\), of size \(n\). Therefore, the dual optimization problem of [9.2.7] can be restated as:
\(\operatorname{maximize} \sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} V_{i j}\left(2 u_{i} u_{j} /\left(1+I_{i j}\right)\right)\)
with respect to coefficients \(V_{i j}\),
subject to \(\sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} V_{i j}\left(2 c_{i}^{\{k\}} c_{j}^{\{k\}} /(1+1 i j)\right) \leqslant{\underset{\sim}{c}}^{\{k\}} \underset{\sim}{v}{\underset{\sim}{c}}^{\{k\}}\) for \(k=1, \ldots, t\),
for \(\quad v_{i j} \geqslant 0 \quad j=1, \ldots, n, i=j, \ldots, \min (j+u, n)\).
This is a linear programming problem. The number of variables \(V_{i j}\) have been reduced to \((2 n-u) \cdot(u+1) / 2\), and no constraints have been added because the boundary constraints \(V_{i j} \geqslant 0\) are incorporated into the standard linear program.
9.2.13 Dual problem for \(\Omega(1, u)\)

Lower-triangular elements in an \(n \times n\) matrix \(\underset{\sim}{\underset{\sim}{\sim}}\) are specified by
\[
\Psi_{i j}=(\Delta \underset{\sim}{V})_{i j} \quad \text { for } i>j
\]

If \(\underset{\sim}{V} \in \Omega(1, u)\), then
and
\[
\Psi_{i j}=0 \quad \text { for } i>j+v,
\]
\[
V_{g h}=\sum_{i=g}^{n} \sum_{j=1}^{h} \psi_{i j} \quad \text { for } g \geqslant h
\]
because
\[
\begin{aligned}
\sum_{i=g}^{n} \sum_{j=1}^{n} \Psi_{i j} & =\sum_{i=g}^{n} \sum_{j=1}^{h} V_{i j}+\sum_{i=g+1}^{n} \sum_{j=1}^{h-1} V_{i j} \\
& -\sum_{i=g+1}^{n} \sum_{j=1}^{n} V_{i j}-\sum_{i=g}^{n} \sum_{j=1}^{n-1} V_{i j} \\
& =\sum_{j=1}^{h} V_{g j}-\sum_{j=1}^{h-1} V_{g j} \\
& =V_{g h} .
\end{aligned}
\]

Therefore
\[
\begin{aligned}
& {\underset{\sim}{u}}^{\top} \underset{\sim}{v} \underset{\sim}{u}=\sum_{h=1}^{n} \sum_{g=h}^{n} 2 u_{g} u_{h}\left(\sum_{j=1}^{h} \sum_{i=g}^{n} \Psi_{i j}\right) /\left(1+I_{g h}\right), \\
& =\sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} \Psi_{i j}\left(\sum_{h=j}^{i} \sum_{g=h}^{i} 2 u_{g} u_{h} /\left(1+I_{g h}\right)\right) .
\end{aligned}
\]

It is convenient at this point to note that \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{v} \underset{\sim}{u}\) is always non-negative because each coefficient \(\Psi_{i j}\) is non-negative by definition and it is multiplied by a term which can be re-expressed as a sum of squares:
\[
\left(\sum_{h=j}^{i} \quad u_{h}\right)^{2},
\]
and so is also non-negative. Therefore, all matrices in \(\Omega(1, u)\) are positive-semidefinite.

The optimization problem of [9.2.7] can be restated as:
maximize
\[
\sum_{j=1}^{n} \sum_{i=j}^{\min (j+v, n)} \Psi_{i j}\left(\sum_{h=j}^{i} \sum_{g=h}^{i} 2 u_{g} u_{h} /\left(1+I_{g h}\right)\right)
\]
with respect to coefficients \(\Psi_{i j}\),
subject to \(\sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} \Psi_{i j}\left(\sum_{h=j}^{i} \sum_{g=h}^{i} 2 c_{i}^{\{k\}} c_{j}^{\{k\}} /\left(1+I_{i j}\right)\right) \leqslant{\underset{\sim}{c}}_{\{k\}}^{\{k} \underset{\sim}{v}{\underset{\sim}{c}}^{\{k\}}\) for \(k=1, \ldots, t\),
for \(\quad \psi_{i j} \geqslant 0 \quad j=1, \ldots, n, i=j, \ldots, \min (j+u, n)\).
Once again this is a linear programming problem, and it has the same numbers of variables and constraints as the problem in [9.2.12].
9.2.14 Dual problem for \(\Omega(2,0)\)

Lower-triangular elements in an \(n \times n\) matrix \(\underset{\sim}{T}\) are specified by
\[
T_{i j}=\left(\Delta^{2} \underset{\sim}{V}\right)_{i j} \quad \text { for } i \geqslant j
\]

If \(\underset{\sim}{V} e \Omega(2, u)\), then as in [9.2.13],
\[
T_{i j}=0 \quad \text { for } i>j+u \text {, }
\]
and
\[
\Psi_{g h}=\sum_{i=g}^{n} \sum_{j=1}^{h} T_{i j}
\]
for \(g \geqslant h\).

The optimization problem of [9.2.7] can be restated as:
\(\operatorname{maximize} \sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} T_{i j}\left(\sum_{h=j}^{i} \sum_{g=h}^{i} 2 u_{g} u_{h}(i+1-g)(h+1-j) /\left(1+I_{g h}\right)\right)\)
with respect to coefficients \(T_{i j}\), subject to
\[
\begin{aligned}
& \sum_{j=1}^{n} \sum_{i=j}^{\min (j+u, n)} T_{i j}\left(\sum_{h=j}^{i} \sum_{g=h}^{i} 2 c_{g}^{\{k\}} c_{h}^{\{k\}}(i+1-g)(h+1-j) /\left(1+I_{g h}\right)\right) \\
& \leqslant{\underset{\sim}{c}}^{\{k\}} \underset{\sim}{v} \underset{\sim}{v}{\underset{\sim}{c}}^{\{k\}} \quad \text { for } k=1, \ldots, t \text {, } \\
& \text { for } \quad T_{i j} \geqslant 0 \quad j=1, \ldots, n, i=j, \ldots, \min (j+u, n) \text {. }
\end{aligned}
\]

Once again this is a linear programming problem with the same number of variables and constraints as the problem in [9.2.12].
9.2.15 Interpretation of \(\Omega(\omega, n-1)\) for a Markov process

If \(\underset{\sim}{V}\) is a symmetric matrix with a Markov structure, that is
\[
V_{i j}=\begin{array}{ll}
1 & \text { when } i=j \\
& \prod_{\ell=j}^{i-1} \rho_{\ell}
\end{array} \quad \text { when } i>j
\]
for a set of coefficients \(\rho_{1}, \ldots, \rho_{n}\), then:
(i) \(\quad \underset{\sim}{V} \in \Omega(0, n-1)\) if and only if
where \(\rho_{0}=0\), so in this instance
\[
0<\rho_{\ell} \leqslant 1 \quad \text { for } \ell=1, \ldots,(n-1) ;
\]
(iii) \(\underset{\sim}{v} e \Omega(2, n-1)\) if in addition i-1
\(T_{i j}=\left(\prod_{\ell=j} \rho_{\ell}\right)\left(1-2 \rho_{i}+\rho_{i} \rho_{i+1}\right)\left(1-2 \rho_{j-1}+\rho_{j-1} \rho_{j-2}\right)\)
\(>0\)
for \(i \geqslant j\),
where \(\rho_{-1}=\rho_{0}=0\) and \(\rho_{n}=1\); so in this instance
\[
0<\rho_{\ell}<1 \text {, }
\]
\[
\rho_{\ell} \geqslant\left(2 \rho_{\ell-1}-1\right) / \rho_{\ell-1}
\]
and \(\rho_{\ell} \leqslant 1 /\left(2-\rho_{\ell-1}\right)\) for \(\ell=1, \ldots, n\), with \(\rho_{0}=\rho_{n}=0\).

\subsection*{9.2.16 Discussion about \(\Omega(\omega, u)\)}

The set \(\Omega(\omega, v)\) has the desirable properties that if
\[
{\underset{\sim}{v}}^{\{1\}}, \underset{\sim}{v}\{2\} e \Omega(\omega, v),
\]
then \(v^{\{1\}}+v^{\{2\}} \in \Omega(w, v)\),
and
\[
k{\underset{\sim}{v}}^{\{1\}} e \Omega(\omega, u) \quad \text { provided } k \geqslant 0 .
\]
\[
\begin{aligned}
& \rho_{\ell}>0 \quad \text { for } \ell=1, \ldots,(n-1) \text {; } \\
& \underset{\sim}{V} \in \Omega(1, n-1) \text { if in addition } \\
& \Psi_{i j}=\left(\prod_{\ell=j}^{i-1} \rho_{\ell}\right)\left(1-\rho_{i}\right)\left(1-\rho_{j-1}\right) \\
& \geqslant 0 \\
& \text { for } i>j \text {, }
\end{aligned}
\]

Therefore, in particular, sums of Markov processes satisfying the restrictions of [9.2.15] also belong in \(\Omega(\omega, n-1)\).

The choice of \(w\) equal to 1 appears to have much to commend it. It ensures that \(\underset{\sim}{V}\) is positive-semidefinite and that its elements decrease monotonically away from the diagonal in any direction. It is also necessary that the rate of decay should decrease, so the matrix
\[
\left[\begin{array}{lllll}
6 & 4 & 1 & 0 & 0 \\
4 & 6 & 4 & 1 & 0 \\
1 & 4 & 6 & 4 & 1 \\
0 & 1 & 4 & 6 & 4 \\
0 & 0 & 1 & 4 & 6
\end{array}\right]
\]
is not a member of \(\Omega(1,3)\) because the lower-triangular elements of \(\underset{\sim}{\Psi}\) are
\[
\left[\begin{array}{rrrrr}
2 & & & & \\
3 & -1 & & & \\
1 & 2 & -1 & & \\
0 & 1 & 2 & -1 & \\
0 & 0 & 1 & 3 & 2
\end{array}\right]
\]
which are not all non-negative. I consider this to be an undesirable feature of the set. It may be noted that
\[
\Psi_{i j}=-\operatorname{cov}\left(e_{i+1}-e_{i}, e_{j}-e_{j-1}\right) \quad \text { for } i \geqslant j,
\]
so the condition \(\omega=1\) is the same as the assumption that the covariances among the first differences of the error process are all non-positive.

Specifying \(\omega>2\) imposes additional, possibly unrealistic, constraints on \(\underset{\sim}{V}\). In particular, the constraint on \(\rho_{\ell}\) in [9.2.15] may be unreasonable if the observation times are unequally spaced. Also \(\rho_{1}\) and \(\rho_{n-1}\) must each be less than 0.5.

One choice of general interest, although not of interest in a thesis on correlated errors, is \(\Omega(0,0)\), which is the set of all diagonal matrices with non-negative elements. Thus, it would be appropriate for a situation where errors are independent but have heterogeneous variances of an unknown form.

\subsection*{9.2.17 Other choices for \(\Omega\)}

Other possible restrictions that could be placed on \(n\) by \(n\) matrices \(\underset{\sim}{V}\) that belong to \(\Omega\) are:
\[
\begin{array}{ll}
V_{i i}=\tau^{2} & \text { for } i=1, \ldots, n ; \\
V_{i j} \geqslant V_{i+1, j} \text { and } V_{i, j-1} & \text { for } i \geqslant j . \tag{ii}
\end{array}
\]

The second set of constraints is more restrictive than those above when \(\omega=0\) but less restrictive than when \(\omega=1\). These alternative sets of constraints, although realistic in some applications, cannot be incorporated into the optimization problem without greatly increasing its complexity.
9.2.18 Distribution of \(\underbrace{\hat{e}^{\top}} \underset{\sim}{C} \underset{\sim}{e}\)

Up to this point attention has focused on the expectation of \({\underset{\sim}{e}}^{-T} \underset{\sim}{C} \underset{\sim}{e}\) and its distribution has been ignored, except to note that the variate is always non-negative because \(\underset{\sim}{C}\) is constrained to be positive-semidefinite by the way it is constructed.
\[
\begin{aligned}
& \text { If } \underset{\sim}{\underset{\sim}{y}} \text { is normally distributed then } \\
& \begin{aligned}
E\left(\left(\hat{e}_{\sim}^{T} \underset{\sim}{C} \underset{\sim}{e}\right)^{2}\right)= & \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{\ell=1}^{n} C_{i j} C_{k \ell}\left(E\left(\hat{e}_{i} \hat{e}_{j}\right) E\left(\hat{e}_{k} \hat{e}_{\ell}\right)\right. \\
& \left.+E\left(\hat{e}_{i} \hat{e}_{k}\right) E\left(\hat{e}_{j} \hat{e}_{\ell}\right)+E\left(\hat{e}_{i} \hat{e}_{\ell}\right) E\left(\hat{e}_{j} \hat{e}_{k}\right)\right), \\
= & (\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}))^{2}+2 \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V} \underset{\sim}{V}) .
\end{aligned}
\end{aligned}
\]

Therefore
\(\operatorname{var}(\underset{\sim}{e} \underset{\sim}{C} \underset{\sim}{e})=2 \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{v} \underset{\sim}{C} \underset{\sim}{V})\).
A quadratic form of normal deviates is not, in general, \(x^{2}\) distributed. However, it may be approximated by a \(x^{2}\) distribution by equating the first and second moments (Satterthwaite, 1946). In this example it means assuming that \({\underset{\sim}{e}}^{-} \underset{\sim}{C} \underset{\sim}{e} \underset{\sim}{e}\) is distributed as \(\frac{1}{r} \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}) x_{r}^{2}\), where the non-integer degrees of freedom \(r\) is defined by
\[
r=\frac{(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}))^{2}}{\operatorname{tr}(\underset{\sim}{V} \underset{\sim}{C} \underset{\sim}{V})}
\]

The degrees of freedom can be used, after substituting \(\underset{\sim}{\hat{V}}\) for \(\underset{\sim}{V}\), to obtain t-statistics in order to construct approximate marginal confidence intervals for \(\beta_{s}\).

It would be desirable to incorporate the variance of \(\underset{\sim}{e} \underset{\sim}{C} \underset{\sim}{e}\) in the optimization problem rather than just concentrating on the expectation of the estimator. However, this cannot be achieved without greatly complicating the problem and, in particular, forfeiting the linearity in the optimization problem.

It is important to note that these degrees of freedom are conditional upon \(\underset{\sim}{v}\) being the true error variance matrix which may seem rather inconsistent since the whole justification for this chapter is that the error variance matrix cannot be assumed to be \(\underset{\sim}{v}\). It will always be conservative, and therefore safe, to assume that \(r\) is equal to unity, although the marginal confidence intervals may be much wider than otherwise.

\subsection*{9.3.1 Programming philosophy}

The computer program CEVOPE, Conservative Estimates of the Variances Of regression Parameter Estimators, implements the method described in section 9.2. It is the program used in subsequent sections to apply the techniques to real data sets. In fact, without the existence of powerful computers the method in section 9.2 would only be of academic interest. The program is written in FortranIV. All arrays are declared in the main program and transferred to subroutines where all operations are performed except for input and output. Because of the amount of computer time required by the algorithm, efforts have been made to reduce the CPU and disc times to as low values as possible. Under these restrictions clarity of code has been a priority. There is strict checking of input parameters, clear error messages and well annotated output. An indicator variable can be set to generate the printing of all intermediate results in the program.

A brief description of the program structure, input and output follows. Then, some specific features of the program are considered, which serves to bridge the gap between the mathematical discussion in section 9.2 and the problems associated with computer programming. Elsewhere, I have discussed the computational problem in more detail (Glasbey, 1984).

\subsection*{9.3.2 Program structure}

The main program calls a sequence of subroutines:
CVINPT, to input the arrays associated with the model (output from REGAME);

CVVARS, to calculate the model dependent parameter estimator variances;

CVSTTC, to select the first set of c-vectors;
CVINIT, to set-up the input arrays for the linear program;
CVLINP, to find the best combination of c-vectors using NAG library routine HO1ADF;

CVEIGC, to find a new c-vector by solving an eigenvalue problem;

CVMODI, to modify input arrays for the linear program; CVINCR, to increase the first dimension of array XLHS if necessary.

Then CVLINP is called again, followed by CVEIGC, and so the algorithm loops round. Once a stopping condition has been reached CVRESU is called to calculate the results of using the conservative estimator.

Auxiliary subroutines which are used are:
REGTRA, already described in chapter 2;
CVIXXT, to apply the transformation \(\left(\underset{\sim}{I}-\underset{\sim}{X}\left(X_{\sim}^{\top} \underset{\sim}{X}\right)^{-1}{\underset{\sim}{X}}^{\top}\right)\);
CVOMEG, to calculate the parameters in the linear program corresponding to a choice of set \(\Omega(\omega, v)\);
CVVOPT, to apply the transformation \(\underset{\sim}{\text { " }}\).
General output routines /NINOUT/,MATPNO,MATPN1,MATPRO,MATPR1 and MATPR2 are also used. The program is listed in Appendix C.
9.3.3 Input

Control is from channel NIN5. Ten parameters are required to initiate each run of the program, in 1017 format:

ND, the number of data sets to advance from channels NIN3, NIN4, (<0 to stop the program);

NVARS, 1 to calculate model dependent results in CVVARS;
NS, number of parameter (s) for which conservative estimate sought;

NSEED, seed for NAG random number generator (if 0 seed chosen at random, if < 0 c-vectors restored from channel NIN2);

NT, initial number (\(t\)) of c-vectors (unless NSEED<0)
NOMEGA, difference operator in \(\Omega\) (i.e. \(\omega\) in \(\Omega(\omega, u)\));
NLAG, lag beyond which covariances are zero (i.e. \(u\) in \(\Omega(\omega, v))\);

NITER, maximum number of iterations;
NCPU, maximum CPU time;
NPRI, 1 to output intermediate calculations.
Arrays associated with a model are input from channels NIN3 and NIN4. These correspond to the output from REGAME to channels NOUT8 and NOUT9.

If c-vectors found by a previous run of CEVOPE are to be re-used, these are restored from channel NIN2.

\subsection*{9.3.4 Output}

Output is to channel NOUT6. Initially, if NVARS \(=1\), the following is output from CVVARS:

Parameter estimates (\(\underset{\sim}{\hat{\beta}}\)) ;
standard errors \(V(\underset{\sim}{u} \underset{\sim}{\top} \underset{\sim}{v} \underset{\sim}{u})\);
parameter estimator variances assuming an error variance of
\(\underset{\sim}{v},(\underset{\sim}{U} \underset{\sim}{V} \underset{\sim}{V})\);
lower bounds on variances, \(\left({\underset{\sim}{x}}^{\top}{\underset{\sim}{V}}^{-1} \underset{\sim}{x}\right)^{-1}\);
efficiency of estimators, \(\quad V\left(\underset{\sim}{u}{\underset{\sim}{v}}^{\top} \underset{\sim}{v} \underset{\sim}{u}\right) / V\left(\left({\underset{\sim}{x}}^{\top} \underset{\sim}{v}-1 \underset{\sim}{x}\right)^{-1}\right)_{S S}\) for \(s=1, \ldots, m\).

Then there follows a heading giving \(s, \underset{\sim}{u} \underset{\sim}{v} \underset{\sim}{v}, v(\underset{\sim}{u} \underset{\sim}{v} \underset{\sim}{v})\) and NSEED and the iterative history:

ITER, number of iterations;
ICPUT, total CPU time used in seconds;
NT, number of c-vectors (\(t\)) in current solution;
ITEIG, number of iterations required in CVEIGC to find new c-vector;

ICPU, CPU time used by CVEIGC on last call;
IDIS, disc time used by CVEIGC on last call;
QUAD, the value of \({\underset{\sim}{c}}^{\{t+1\}^{\top}}(\underset{\sim}{\underset{V}{V}-\underset{\sim}{V}}) \underset{\sim}{\underset{\sim}{c}}{ }^{\{t+1\}}\);
ITLP, number of iterations required by linear program;
ICPU, CPU time used by linear program on last call;
IDIS, disc time used by linear program on last call;
XOPT, lowest estimate of standard error so far found for \(\operatorname{vtr}(\underset{\sim}{C} \underset{\sim}{V}) \equiv \bar{V}\left(\underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{V} \underset{\sim}{u}\right)\);
BIAS, relative bias of conservative estimate of standard error \(\quad V(\underset{\sim}{u} \underset{\sim}{\top} \underset{\sim}{V} \underset{\sim}{u}) / v(\underset{\sim}{u} \underset{\sim}{\top} \underset{\sim}{v} \underset{\sim}{u})-1\).
Once iterations have ceased the following are output from CVRESU:
Number of data sets advanced, ND;
Number of parameter, NS;
Estimate of parameter value, \(\hat{\beta}_{s}\);
Mödel dependent results
Variance of estimator assuming error variance \(\underset{\sim}{v},{\underset{\sim}{u}}^{\top} \underset{\sim}{v} \underset{\sim}{u}\);
S.e. of estimator assuming \(\underset{\sim}{v}, v(\underset{\sim}{u} \underset{\sim}{\top} \underset{\sim}{\hat{v}})\);

Expected results from conservative estimator
Difference operator applied to \(\Omega\), NOMEGA;
Lag beyond which covariances are zero, NLAG;
Expected value of conservative estimator of variance assuming \(\underset{\sim}{v}, \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{v}) ;\)

Expected conservative estimator of s.e. assuming \(\underset{\sim}{V}\), \(\operatorname{vtr}(\underset{\sim}{C} \underset{\sim}{V})\);
Relative bias in s.e. assuming \(\underset{\sim}{v}, v(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{v})) / V\left(\underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{v} \underset{\sim}{u}\right)-1\); Variance of conservative estimator of variance, \(2 \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V} \underset{\sim}{C} \underset{\sim}{V})\);

Approximate degrees of freedom (\(r\)) of conservative estimator \(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V})^{2} / \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V} \underset{\sim}{C} \underset{\sim}{V}) ;\)

Approximate 95\% t-statistic ;
Actual results from conservative estimator
Estimate of variance using conservative estimator, \({\underset{\sim}{e}}^{\top} \underset{\sim}{C} \underset{\sim}{e}\);
Estimate of s.é. using conservative estimator, \(\mathcal{V}\left(\underset{\sim}{e}{ }^{\top} C \underset{\sim}{e}\right)\);
Approximate \(95 \%\) lower confidence bound for parameter,
\(\hat{\beta}_{s}-t_{r}(95 \%) V\left(\underset{\sim}{e}{ }^{\top} \underset{\sim}{C} \underset{\sim}{e}\right) ;\)
Approximate \(95 \%\) upper confidence bound for parameter, \(\bar{\beta}_{s}+t_{r}(95 \%) \gamma\left(\underset{\sim}{e}{ }_{\sim}^{T} \underset{\sim}{C} \underset{\sim}{e}\right)\).

An example of output is given in appendix \(D\), and is discussed further in section 9.4.

The final c-vectors are output to channel NOUTIO for possible future restoration via channel NIN2.

\subsection*{9.3.5 Stopping conditions}

Iterations cease when one of four conditions is reached:
a) there are no negative eigenvalues, so the optimal matrix \({ }_{\sim}^{C}\) has been found;
b) XOPT has not decreased in the last iteration;
c) the maximum number of iterations has been reached;
d) the CPU time is about to exceed its maximum allocation.

Only in case (a) can the user be sure of having found the best matrix \(\underset{\sim}{C}\). In case (b) a better solution may be found starting from a different seed. In cases (c) and (d) the existing solution can be restored from channel NIN2 and further improved.

If any of these conditions is met then CVRESU is called. CVRESU is also called in the event of two error conditions being encountered:
e) NT has exceeded its maximum value (30);
f) CVEIGC fails to converge after 1000 iterations. In case (e) all that can be done is to restart from a different random number generator seed in the hope of finding a better solution, because the program cannot be restarted from the final set of c-vectors as they exceed the capacity of the program. Condition (f) may mean that the current solution is close to being optimal.

If any other failure condition is encountered then meaningful output cannot be produced by CVRESU, so the run ends and new input is requested.

\subsection*{9.3.6 Algorithm for linear program}

The revised simplex algorithm (see for example Garvin, chapter 13, 1960) has been used to solve the dual optimization problem in order to avoid having to use the enormous square matrix corresponding to the \((2 n-u)(u+1) / 2\) auxiliary variables required by the inequality constraints given in [9.2.12] for example. Because elements in the large matrix of constraints are accessed by the algorithm row by row whereas FortranIV stores array elements by columns, it is more efficient to store the transpose of the
matrix. Also, if the first dimension of the array XLHS holding the constraints matrix is of fixed size 30 , that is the maximum value of \(t\), and there are 10,000 constraints, then with double precision variables the array is of size 2.4 Mbytes. However, the central processor unit (CPU) space available on the Prime 550 computer is only 1.7 Mbytes. Therefore, in paged virtual memory parts of the array have to be moved in and out of the CPU as required. This incurs disc I/O time and dramatically increases the total run time for the program. If instead, the first dimension of the array is set close to \(t\) then, when \(t\) is less then 30 , elements in the constraints matrix may be placed in closer proximity in computer store and if no other job is running concurrently on the computer, disc I/O may be unnecessary. In order to achieve this, the first dimension of the array has to be variable so that it can be changed as \(t\) is changed between linear programs. Another technique that is being used is to place all variables used in the linear programming algorithm into a single common block. This increases the chances of variables required consecutively being on the same page of virtual memory, which reduces access time.

A linear programming routine in the NAG library, H01ADF (Numerical Algorithms Group, 1983), has been used in which any degeneracy encountered is resolved by the perturbed problem technique described for example by Garvin (chapter 14, 1960). It is almost certainly possible to improve upon the general routine for this particular problem, for example by using as a starting value the solution of the preceding linear program rather than allowing H01ADF to set all the variables to zero initially. Also,
until the final few iterations, the time-consuming search performed by the simplex algorithm could be restricted to a subset only of the large number of constraints.

\subsection*{9.3.7 Algorithm for calculating XLHS}

Because of the size of the array XLHS the algorithm used to calculate its elements is of critical importance. In order to calculate the element in a row of XLHS, denoted \(\underset{\sim}{w}\), corresponding to a c-vector, denoted \(\underset{\sim}{c}\), for \(\Omega(\omega, v)\) a doublyrecursive algorithm has been used:

First, \(k=0\)
\[
\text { For } \begin{aligned}
& i=1, \ldots, n \\
& \text { For } j=i, i-1, \ldots, \max (1, i-v) \\
& k=k+1 \\
& w_{k}=2 c_{i} c_{j} /\left(1+I_{i j}\right) \\
& \text { End }
\end{aligned}
\]

End.
This gives the elements appropriate for \(\Omega(0, u)\), previously specified in [9.2.12].

Then if \(\omega>0\)
\[
\text { For } \begin{aligned}
& \ell=1, \ldots, \omega \\
& \begin{aligned}
k & =0 \\
h & =0
\end{aligned} \\
& \text { For } \quad i=1, \ldots, n \\
& \text { For } j=i, i-1, \ldots, \max (1, i-u) \\
& k=k+1 \\
& \text { If } j<i \quad w_{k}=w_{k}+w_{k-1}+v_{i-j} \\
& \text { If } j<i-1 \quad w_{k}=w_{k}-v_{i-j-1}
\end{aligned}
\]
\[
\begin{aligned}
& \qquad \begin{array}{l}
\text { For } j=i, i-1, \ldots, \max (1, i-v) \\
h=h+1 \\
v_{i-j+1}=w_{h}
\end{array} \\
& \text { End }
\end{aligned}
\]

This gives the elements appropriate for \(\Omega(\omega, u)\), with the same results for \(\omega\) equal to 1 or 2 as previously given in [9.2.13] and [9.2.14]. A listing of this algorithm implemented in FortranIV is given in subroutine CVOMEG in Appendix \(C\).

\subsection*{9.3.8 Algorithm for obtaining eigenvectors}

From a random initial vector \(\underset{\sim}{w}{ }^{\{0\}}\) orthogonal to \(\underset{\sim}{x}, \underset{\sim}{w}\{1\}\) is derived by the transformation
\[
{\underset{\sim}{w}}^{\{1\}}=\left(\underset{\sim}{I}-\left(\underset{\sim}{X}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{\top}\right)^{-1} \underset{\sim}{X}\right)\left[(\underset{\sim}{V}-\underset{\sim}{V})-\mu^{\{0\}} \underset{\sim}{I}\right] \underset{\sim}{w}\{0\},\right.
\]
which is obtained by transforming by each component matrix in turn. The transformation \(\underset{\sim}{V}\) is given in [9.3.9]. Then \(\underset{\sim}{w}\{1\}\) is standardized to have a largest element of unity, by dividing by its element of largest absolute magnitude, denoted \(\lambda^{\{1\}}\). The difference between \(\underset{\sim}{\underset{\sim}{\mid r}}\{1\}\) and \(\underset{\sim}{\underset{\sim}{w}}\{0\}\) is calculated as
\[
x^{\{1\}}=\sum_{i=1}^{n}\left|w_{i}^{\{1\}}-w_{i}^{\{0\}}\right|
\]
\left. This is then repeated for \({\underset{\sim}{w}}^{\{2\}}, \underset{\sim}{w}, \ldots 3\right\}\).
At the start \(\mu^{\{0\}}=0\), but every 5 iterations if \(\lambda^{\{i\}}>0\) then
\[
\mu^{\{i\}}=\mu^{\{i-1\}}+\lambda^{\{i\}} .
\]

After every 250 iterations, or when \(x^{\{i\}}<10^{-10}\), the ratio of quadratic forms
\[
\left.y^{\{i\}}={\underset{\sim}{w}}^{\{i\} T}(\underset{\sim}{\hat{V}}-\underset{\sim}{V}){\underset{\sim}{w}}^{\{i\}} /{\underset{\sim}{w}}^{\{i\}}\right\}{\underset{\sim}{w}}^{\{i\}}
\]
is calculated as

If \(y^{\{i\}}\) is negative, or if \(x^{\{i\}}<10^{-10}\) and \(\lambda^{\{i+1\}}<0\), then the algorithm can stop with \({\underset{\sim}{c}}^{\{t+1\}}\) set to \(\underset{\sim}{\underset{\sim}{w}}{ }^{\{i\}}\). Otherwise, iteration continues with
\[
\mu^{\{i+1\}}=\mu^{\{i\}}+y^{\{i\}}
\]
until either the above conditions are satisfied or 1000 iterations are completed, in which case an error state is entered. A listing of this algorithm implemented in FortranIV is given in subroutine CVEIGC in Appendix \(C\).
9.3.9 Algorithm for transforming with respect to \(\underset{\sim}{\text { V }}\)

The first time the transformation is to be used, a vector \(\underset{\sim}{w}\) is created using the output from the linear program HOLADF (MOPT \((1, \ldots, t)\) and \(\operatorname{VOPT}(1, \ldots, t))\). For \(\Omega(\omega, u)\) a doubly-recursive algorithm has been used which in some senses is the inverse of that given in [9.3.7]:
\[
\begin{aligned}
& \underset{\sim}{w}=\underset{\sim}{\sim} \\
& \text { For } \ell=1, \ldots, t \\
& \\
& k=0 \\
& \text { For } i=1, \ldots, n \\
& \\
& \quad \text { For } j=i, i-1, \ldots, \max (1, i-u) \\
& \quad k=k+1 \\
& \quad \text { if } \operatorname{MOPT}(\ell)=k \quad w_{k}=\operatorname{VOPT}(\ell) \\
& \quad \text { End }
\end{aligned} \quad \begin{aligned}
& \text { End }
\end{aligned}
\]

End.

If \(\omega>0\)
\[
\begin{aligned}
& \text { For } \ell=1, \ldots, \omega \\
& \underline{v}=\underline{0} \\
& k=(2 n-v)(u+1) / 2+1 \\
& h=k \\
& \text { For } i=n, n-1, \ldots, 1 \\
& \text { For } j=\max (1, i-u), \ldots, i-1, i \\
& k=k-1 \\
& w_{k}=w_{k}+v_{j} \\
& \text { If } j>\max (1, i-v) \quad w_{k}=w_{k}+w_{k+1}-v_{j-1} \\
& \text { End } \\
& \text { For } j=\max (1, i-u), \ldots, i-1, i \\
& h=h-1 \\
& v_{j}=w_{h} \\
& \text { End } \\
& \text { End }
\end{aligned}
\]

End.
Then, and on subsequent occasions, the transformation
\[
\underline{v}^{\{2\}}=\underline{v}^{\{1\}}
\]
is obtained by
\[
\begin{aligned}
& \underline{v}^{\{2\}}=\underline{0} \\
& k=0 \\
& \text { For } i=1, \ldots, n \\
& \text { For } j=i, i-1, \ldots, \max (1, i-v) \\
& k=k+1 \\
& \quad v_{i}^{\{2\}}=v_{i}^{\{2\}}+w_{k} v_{j}^{\{1\}} \\
& \quad \text { If } i \neq j \quad v_{j}^{\{2\}}=v_{j}^{\{2\}}+w_{k} v_{i}^{\{1\}} \\
& \text { End }
\end{aligned}
\]

End.
\(\dot{A}\) listing of this algorithm implemented in Fortran IV is given in subroutine CVVOPT in Appendix C.

\subsection*{9.3.10 Algorithm for t-statistics}

The degrees of freedom of the conservative estimator of variance are
\[
r=(\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V}))^{2} / \operatorname{tr}(\underset{\sim}{C} \underset{\sim}{V} \underset{\sim}{\mathcal{V}} \underset{\sim}{\mathcal{V}}),
\]
as given in [9.2.18]. This can be calculated using the decomposition of \(\underset{\sim}{C}\) in [9.2.6] and
\[
A_{k \ell}=\sqrt{x_{k} x_{\ell}}{\underset{\sim}{c}}^{\{k\}} \underset{\sim}{\underset{\sim}{v}} \underset{\sim}{c}{ }^{\{\ell\}} \text { for } k, \ell=1, \ldots, t,
\]
because then
\[
\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{\underset{V}{\hat{V}}})=\sum_{k=1}^{\mathrm{t}} A_{k k},
\]
and
\[
\operatorname{tr}(\underset{\sim}{C} \underset{\sim}{\hat{V}} \underset{\sim}{C} \underset{\sim}{\hat{V}})=\sum_{k=1}^{t} \sum_{\ell=1}^{t} A_{k \ell} A_{\ell k}
\]

The appropriate t-statistics are then obtained by interpolation between the t-statistics at integer degrees of freedom using a geometric scale.

\subsection*{9.4 An illustrative example}

\subsection*{9.4.1 Model}

To illustrate the algebra of section 9.2, a particularly simple numerical example will be analysed. A vector \(\underset{\sim}{y}\) of 5 observations is defined to be a realisation from the model:
\[
\underset{\sim}{y} \sim N\left(\underset{\sim}{f}, \tau^{2} \underset{\sim}{I}\right),
\]
where
\[
\begin{aligned}
& f_{i}=\beta_{1}+\beta_{2} i \\
& \tau^{2}=1
\end{aligned}
\]
and
\[
{\underset{\sim}{\underset{\sim}{\beta}}}^{\top}=(0,0) .
\]

Therefore, the design matrix \(X\) is
\[
\left[\begin{array}{ll}
1, & 1 \\
1, & 2 \\
1, & 3 \\
1, & 4 \\
1, & 5
\end{array}\right]
\]

If \(\underset{\sim}{\beta}\) is estimated by ordinary least-squares then, in the notation of [9.2.1],
and
\[
\underset{\sim}{W}=\underset{\sim}{R}=\underset{\sim}{I}
\]
\[
\underset{\sim}{U}=\underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{x}\right)^{-1}=\left[\begin{array}{cc}
0.8, & -0.2 \\
0.5, & -0.1 \\
0.2, & 0.0 \\
-0.1, & 0.1 \\
-0.4, & 0.2
\end{array}\right] .
\]

In what follows the conservative estimators of \(\operatorname{var}\left(\hat{\beta}_{\mathrm{s}}\right)\) (for \(s=1\) or 2) with the minimum biases will be found for a range of choices of \(\Omega\), on the assumption that \(\underset{\sim}{\underset{V}{V}}=\underset{\sim}{I}\). One particular case, that is when \(s\) is equal to 2 and the error variance matrix is restricted to belong to the set \(\Omega(1,4)\), is considered in detail in subsections [9.4.2] to [9.4.8]. Other cases with s equal to 2 are considered in [9.4.9] to [9.4.11], and cases with \(s\) equal to 1 are considered in [9.4.12].

The effect of the choice of \(\underset{\sim}{V}\) on the best conservative estimator is illustrated in [9.4.13]. Finally, in [9.4.14] the potential of the technique to aid in the selection of the estimators of the regression parameters themselves is demonstrated.
9.4.2 Dual optimization problem for \(s=2, \Omega(1,4)\)

If \(\underset{\sim}{V}\) is assumed to be diagonal with constant elements, then for simplicity \(\underset{\sim}{V}\) can be specified as \(\underset{\sim}{I}\). Further, if it is assumed that \(\underset{\sim}{V} \in \Omega(1,4)\), then transforming to a new set of variates \(\underset{\sim}{\Psi}\) in accord with [9.2.13], the optimization problem becomes, in the case when \(s=2\) :
maximize \(\quad 0.04 \Psi_{11}\)
\[
\begin{aligned}
& +0.09 \Psi_{21}+0.01 \Psi_{22} \\
& +0.09 \Psi_{31}+0.01 \Psi_{32}+0.00 \Psi_{33} \\
& +0.04 \Psi_{41}+0.00 \Psi_{42}+0.01 \Psi_{43}+0.01 \Psi_{44} \\
& +0.00 \Psi_{51}+0.04 \Psi_{52}+0.09 \Psi_{53}+0.09 \Psi_{54}+0.04 \Psi_{55}
\end{aligned}
\]

Subject to \(c_{1}^{\{k\}^{2}}{ }_{\Psi}{ }_{11}\)
\[
\begin{aligned}
& +\left(c_{1}^{\{k\}}+c_{2}^{\{k\}}\right)^{2} \Psi_{21}+c_{2}^{\{k\}^{2}} \Psi_{22} \\
& +\left(c_{1}^{\{k\}}+c_{2}^{\{k\}}+c_{3}^{\{k\}}\right)^{2} \Psi_{31}+\left(c_{2}^{\{k\}}+c_{3}^{\{k\}}\right)^{2} \Psi_{32}+c_{3}^{\{k\}^{2}} \Psi_{33}
\end{aligned}
\]
\[
+\left(c_{1}^{\{k\}}+c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}\right)^{2} \Psi_{41}+\left(c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}\right)^{2} \Psi_{42}
\]
\[
+\left(c_{3}^{\{k\}}+c_{4}^{\{k\}}\right)^{2} \Psi_{43}+c_{4}^{\{k\}^{2}} \Psi_{44}
\]
\[
+\left(c_{1}^{\{k\}}+c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}+c_{5}^{\{k\}}\right)^{2} \Psi_{51}
\]
\[
+\left(c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}+c_{5}^{\{k\}}\right)^{2} \Psi_{52}
\]
\[
+\left(c_{3}^{\{k\}}+c_{4}^{\{k\}}+c_{5}^{\{k\}}\right)^{2} \psi_{53}
\]
\[
+\left(c_{4}^{\{k\}}+c_{5}^{\{k\}}\right)^{2} \Psi_{54}+c_{5}^{\{k\}^{2}} \Psi_{55}
\]
\[
\leqslant{\underset{\sim}{c}}^{\{k\}}{\underset{\sim}{c}}^{T k\}}
\]
\[
\text { for } k=1, \ldots, t
\]
for
\[
\underset{\sim}{\Psi} \geqslant \underset{\sim}{0}
\]

\subsection*{9.4.3 Solution when \(t=1\)}

The above problem requires the c-vectors to be specified. These vectors, or in fact a single vector, \(c\) an be generated by a
random process. For simplicity consider a single vector, that is \(\mathrm{t}=1\). A vector orthogonal to \(\underset{\sim}{X}\) is chosen at random and standardized to have a largest element of unity:
\[
{\underset{\sim}{c}}^{\{1\}^{\top}}=(-0.1275,-0.4467,1.0000,-0.1498,-0.2760)
\]

The above optimization problem is solved by
\[
\begin{array}{cl}
\Psi_{i j}=80.81 & \text { if }(i, j)=(5,2) \\
0 & \text { otherwise }
\end{array}
\]

Therefore, back-transforming, the optimal choice of \(\underset{\sim}{V}\) in \(\Omega(1,4)\) is
\[
\stackrel{\sim}{\sim}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 80.81 & 80.81 & 80.81 & 80.81 \\
0 & 80.81 & 80.81 & 80.81 & 80.81 \\
0 & 80.81 & 80.81 & 80.81 & 80.81 \\
0 & 80.81 & 80.81 & 80.81 & 80.81
\end{array}\right],
\]
and \(\underset{\sim}{u}{ }^{\top} \underset{\sim}{V} \underset{\sim}{u}=3.233\), where \(\underset{\sim}{u}\) is the second column of \(\underset{\sim}{u}\). The Lagrangian multiplier gives the solution to the primal problem as
\[
x_{1}=2.459
\]
and
\[
\operatorname{tr}(\underset{\sim}{C})=x_{1}{\underset{\sim}{c}}^{\{1\}^{\top}} \underset{\sim}{c}{ }^{\{1\}}=3.233 .
\]

Therefore, the solutions of the primal and dual problems agree as they should do. The relative bias in the standard error is
\[
v(\underset{\sim}{u} \underset{\sim}{\top} \underset{\sim}{v} \underset{\sim}{u}) / v\left(\underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{u}\right)-1=4.685
\]
9.4.4 The search for \(\underset{\sim}{c}{ }^{\{2\}}\)

Once the optimization problem has been solved the next step (as described in [9.2.8]) is to find \(\underset{\sim}{c}{ }^{\{2\}}\) as the eigenvector with largest negative eigenvalue in
\[
\left(\underset{\sim}{I}-\underset{\sim}{x}\left(\underset{\sim}{x}{ }_{\sim}^{\top} \underset{\sim}{x}\right)^{-1}{\underset{\sim}{x}}^{\top}\right)(\underset{\sim}{I}-\underset{\sim}{V})\left(\underset{\sim}{I}-\underset{\sim}{x}\left(\underset{\sim}{x}{\underset{\sim}{x}}^{x}\right)^{-1} \underset{\sim}{x}\right) .
\]

Starting with a vector orthogonal to \(\underset{\sim}{x}\) chosen at random,
\[
(0.5771,-0.9315,-0.1105,0.7069,-0.2420)^{\top}
\]
this is transformed, using the algorithm described in [9.3.8], on the first iteration to
\[
(1.0, \quad-0.9804,-0.5099,-0.0391,0.5294)^{\top}
\]
with \(\lambda^{\{1\}}=-18.08\), on the second iteration to
\[
(-0.9994,1.0,0.4994,-0.0012,-0.4988)^{\top}
\]
with \(\lambda^{\{2\}}=31.34\), thence to
\[
\left.\begin{array}{l}
(1.0,-1.0,-0.5,0.0,0.5), \quad \lambda^{\{3\}}=31.30 \\
(-1.0,1.0,0.5,
\end{array}, 0.0,-0.5\right), \quad \lambda^{\{4\}}=31.32, ~ \$
\]
and
\[
(1.0,-1.0,-0.5,0.0,0.5), \quad \lambda^{\{5\}}=31.32
\]

It appears that the matrix has at least two eigenvalues of equal largest magnitude because the algorithm is not converging. At this point, after 5 iterations \(\lambda^{\{5\}}>0\) so \(\mu^{\{5\}}\) is set to 31.32. On the next iteration the vector is transformed to
\[
(1.0,-1.0,-0.5,0.0,0.5), \lambda^{\{6\}}=-62.65,
\]
to which it converges exactly in the course of the next ten iterations. Therefore the matrix has a single eigenvalue of -31.3 and at least one eigenvalue of 31.3 , and introducing the shift of 31.32 has ensured the eigenvalue of largest magnitude is unique and negative.

\subsection*{9.4.5 Solution when \(t=2\)}

The new optimization problem with \(\underset{\sim}{c}{ }^{\{2\}}\) incorporated is solved by
\[
\begin{array}{cl}
\Psi_{i j}=7.188 & \text { if }(i, j)=(3,1) \\
0.703 & \text { if }(i, j)=(5,2) \\
0 & \text { otherwise . }
\end{array}
\]

Therefore
\[
\underset{\sim}{\underset{V}{V}}=\left[\begin{array}{lllll}
7.188 & 7.188 & 7.188 & 0.0 & 0.0 \\
7.188 & 7.891 & 7.891 & 0.703 & 0.703 \\
7.188 & 7.891 & 7.891 & 0.703 & 0.703 \\
0.0 & 0.703 & 0.703 & 0.703 & 0.703 \\
0.0 & 0.703 & 0.703 & 0.703 & 0.703
\end{array}\right]
\]
and \(\quad \underset{\sim}{u}{ }_{\sim}^{T} \underset{\sim}{v} \underset{\sim}{u}=0.6750\).
The primal solution is
\[
{\underset{\sim}{x}}^{\top}=(0.4514,0.0327),
\]
and the relative bias equals 1.598 .

\subsection*{9.4.6 New c-vectors and bias}

From this solution, a new c-vector can be found
\[
(-0.5515,0.3101,1.0000,-0.7242,-0.0343)^{\top}
\]
which reduces the relative bias to 1.491 when incorporated in the optimization problem. On succeeding iterations the c-vectors and relative biases are:
\[
\left.\begin{array}{llll}
(0.4924, & 0.0341, & -0.5452, & -0.9812, \\
(-0.6156, & 0.1218, & 1.00000
\end{array}\right)^{\top}, \quad 1.491,
\]

\subsection*{9.4.7 Final solution}

After 18 iterations the relative bias stops decreasing and 4 c-vectors remain. However, they are all very similar and the solution has 1.00008 degrees of freedom \((r)\). Examination of the solution reveals that the optimum corresponds to \(\underset{\sim}{c}=x \underset{\sim}{c} \underset{\sim}{c}{ }^{\top}\), for
a single vector with \(x\) equal to 0.36 and
\[
\left.\begin{aligned}
\underset{\sim}{c}
\end{aligned} \right\rvert\,=(-1 / 3,-1 / 6,1,-1 / 6,-1 / 3) . ~(-0.3333,-0.1667,1.0000,-0.1667,-0.3333) . ~ l
\]

It is because of the effects of rounding error that the final solution does not give this single vector exactly.

The solution of the optimization problem has
\[
\begin{aligned}
\underset{\sim}{V} & =\left[\begin{array}{lllll}
2.5556 & 2.5556 & 0.0 & 0.0 & 0.0 \\
2.5556 & 2.5556 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 2.5556 & 2.5556 \\
0.0 & 0.0 & 0.0 & 2.5556 & 2.5556
\end{array}\right], \\
\underset{\sim}{\underset{\sim}{u}} \underset{\sim}{\text { VI }} \underset{\sim}{u} & =\left[\begin{array}{rrrrr}
\text { C } & =\left[\begin{array}{rrrrr}
0.04 & 0.02 & -0.12 & 0.02 & 0.04 \\
0.02 & 0.01 & -0.06 & 0.01 & 0.02 \\
-0.12 & -0.06 & 0.36 & -0.06 & -0.12 \\
0.02 & 0.01 & -0.06 & 0.01 & 0.02 \\
0.04 & 0.02 & -0.12 & 0.04 & 0.04
\end{array}\right], \\
0.46, & & & \\
\operatorname{tr}(\underset{\sim}{C}) & =1.145, \\
\text { relative bias } & =1.0 .
\end{array}\right. \\
\text { and d.f. (r) } & =1
\end{aligned}
\]

\subsection*{9.4.8 Output from CEVOPE}

Appendix \(D\) shows the output from CEVOPE for the preceding problem, including the numerical results when
\[
{\underset{\sim}{y}}^{\top}=(0.2247,0.4873,-1.081,-0.8700,-0.5833) .
\]

In this case
\[
\begin{aligned}
& {\underset{\underset{\beta}{B}}{ }}^{\top}=(0.5274,-0.2973), \\
& \hat{\tau}^{2}=0.3354,
\end{aligned}
\]
and
\[
{\underset{\sim}{e}}^{-\top}=(-0.0054,0.5545,-0.7169,-0.2081,0.3759) .
\]

The model dependent standard error of \(\hat{\beta}_{2}\) is
\[
v\left(\hat{\tau}^{2} \underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{u}\right)=0.1831
\]
which has 3 degrees of freedom. Therefore \(95 \%\) marginal confidence bounds are
\[
\begin{aligned}
& -0.2973 \pm 0.1831 \mathrm{t}_{3}(95 \%) \\
= & -0.88 \text { and } 0.29,
\end{aligned}
\]
which encompass the true value of zero as we would expect. The \(95 \%\) bounds based on the conservative estimator are
\[
-7.14 \text { and } 6.55
\]

These are much wider and are the price that has to be paid in order to have marginal confidence limits which are valid for all variance matrices in the set \(\Omega(1,4)\).
9.4.9 Dual optimization problem for \(s=2, \Omega(0,1)\)

To illustrate the effect of \(\Omega\) on the problem, consider the situation as above but with the weaker assumption that \(\underset{\sim}{V} \in \Omega(0,1)\). The optimization problem is, in accord with [9.2.12]:
maximize \(\quad 0.04 \mathrm{~V}_{11}\)
\[
\begin{aligned}
+0.04 v_{21} & +0.01 v_{22} \\
& +0.00 v_{32}+0.00 v_{33}
\end{aligned}
\]
\[
+0.00 V_{43}+0.01 v_{44}
\]
\[
+0.04 V_{54}+0.04 V_{55}
\]
subject to \(c_{1}^{\{k\}^{2}} v_{11}\)
\[
\begin{aligned}
& +2 c_{1}^{\{k\}} c_{2}^{\{k\}} V_{12}+c_{2}^{\{k\}^{2}} V_{22} \\
& +2 c_{2}^{\{k\}} c_{3}^{\{k\}} V_{32}+c_{3}^{\{k\}^{2}} V_{33} \\
& \\
& +2 c_{3}^{\{k\}} c_{4}^{\{k\}} V_{43}+c_{4}^{\{k\}^{2}} V_{44} \\
& \\
& +2 c_{4}^{\{k\}} c_{5}^{\{k\}} V_{54}+c_{5}^{\{k\}^{2}} v_{55} \\
& \text { for } k=1, \ldots, t,
\end{aligned}
\]
for \(\quad \underset{\sim}{V} \geqslant \underset{\sim}{0}\).
This has a dual (which is in fact the original primal problem):
minimize
\[
\sum_{k=1}^{t} x_{k}{\underset{\sim}{c}}^{\{k\}}{ }_{\sim}^{\top}{\underset{\sim}{c}}^{\{k\}}
\]
subject to \(\sum_{k=1}^{t} x_{k} c_{1}^{\{k\}^{2}} \geqslant 0.04\)
\[
\sum_{k=1}^{t} x_{k} 2 c_{1}^{\{k\}} c_{2}^{\{k\}} \geqslant 0.04
\]
\[
\sum_{k=1}^{t} x_{k} c_{2}^{\{k\}^{2}} \quad \geqslant 0.01
\]
\[
\sum_{k=1}^{t} x_{k} 2 c_{2}^{\{k\}} c_{3}^{\{k\}} \geqslant 0.00
\]
\[
\sum_{k=1}^{t} x_{k} c_{3}^{\{k\}^{2}} \quad \geqslant 0.00
\]
\[
\sum_{k=1}^{t} x_{k} 2 c_{3}^{\{k\}} c_{4}^{\{k\}} \geqslant 0.00
\]
\[
\sum_{k=1}^{t} x_{k} c_{4}^{\{k\}^{2}} \quad \geqslant 0.01
\]
\[
\sum_{k=1}^{t} x_{k} 2 c_{4}^{\{k\}} c_{5}^{\{k\}} \geqslant 0.04
\]
\[
\sum_{k=1}^{t} x_{k} c_{5}^{\{k\}^{2}} \quad>0.04
\]
for
\[
\underset{\sim}{x} \geqslant \underset{\sim}{0} .
\]

For this problem to be solvable it is necessary, in particular, for the expression
\[
\sum_{k=1}^{t} x_{k}\left(2 c_{1}^{\{k\}} c_{2}^{\{k\}}+c_{2}^{\{k\}} c_{3}^{\{k\}}+c_{3}^{\{k\}} c_{4}^{\{k\}}+2 c_{4}^{\{k\}} c_{5}^{\{k\}}\right)
\]
to be greater than zero. However, each \(\underset{\sim}{c}\) is orthogonal to \(\underset{\sim}{X}\) so
and
\[
c_{1}+c_{2}+c_{3}+c_{4}+c_{5}=0
\]
\[
c_{1}+2 c_{2}+3 c_{3}+4 c_{4}+5 c_{5}=0 .
\]
'Therefore
\[
\begin{aligned}
& c_{4}=\frac{1}{2}\left(c_{1}-c_{3}-3 c_{5}\right), \\
& c_{2}=\frac{1}{2}\left(-3 c_{1}-c_{3}+c_{5}\right),
\end{aligned}
\]
and \(2 c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4}+2 c_{4} c_{5}\)
\[
\begin{aligned}
& =\frac{1}{2}\left(-3 c_{1}-c_{3}+c_{5}\right)\left(2 c_{1}+c_{3}\right)+\frac{1}{2}\left(c_{1}-c_{3}-3 c_{5}\right)\left(c_{3}+2 c_{5}\right) \\
& =-3 c_{1}^{2}-c_{3}^{2}-3 c_{5}^{2}-2 c_{1} c_{3}+2 c_{1} c_{5}-2 c_{3} c_{5} \\
& =-\left(c_{1}-c_{5}\right)^{2}-2\left(c_{1}+c_{3} / 2\right)^{2}-2\left(c_{5}+c_{3} / 2\right)^{2} \\
& \leqslant 0 .
\end{aligned}
\]

Therefore no c-vectors exist satisfying all the constraints. So, if no greater constraint can be placed on \(\underset{\sim}{V}\) than that it belongs to \(\Omega(\omega, u)\) with \(\omega=0\) and \(u \geqslant 1\), then no bound \(c\) an be placed on the variance of the estimator \(\hat{\beta}_{2}\).

\subsection*{9.4.10 Solutions when \(s=2\)}

Table 9.4.1 gives the relative biases of the minimum biased estimators for a range of values of \(\omega\) and \(u\) in \(\Omega(\omega, v)\) when \(s=2\). As \(\omega\) increases, or \(u\) decreases, the relative bias decreases. This is as it should be because
and
\[
\begin{aligned}
& \Omega(\omega, v) \subset \Omega(\omega-1, v), \\
& \Omega(\omega, v) \subset \Omega(\omega, v+1) .
\end{aligned}
\]

Also, when \(u=0\) the differencing operator has no effect so
\[
\Omega(\omega, 0)=\Omega(0,0) \text { for all } \omega \text {, }
\]
and this is consistent with the relative biases all being equal in. the table when \(u=0\).

When \(v=0\), the optimal choice of \(\underset{\sim}{c}\) is \(x_{1} \underset{\sim}{c} \underset{\sim}{c}{ }^{\top}\) where
\[
\left.\begin{array}{rl}
\sqrt{x_{1}} \underset{\sim}{c}
\end{array}\right)=(1 / 5,-2 / 15,-2 / 15,-2 / 15,1 / 5) .
\]

This example will be used further in [9.4.11]. When \(\omega=1\) and \(v=1,2,3\) or 4 , once again a single vector is optimal:
\[
\checkmark x_{1}{\underset{\sim}{c}}^{\top}=(-0.2,-0.1,0.6,-0.1,-0.2)
\]
which was given in [9.4.7]. When \(\omega=2\) and \(v=1,2,3\) or 4 the combination of two vectors is optimal, with the second being the reverse of the first:

Similarly when \(\omega=3\) and \(u=1,2,3\) or 4 , two vectors are optimal:
\[
\begin{aligned}
& \checkmark x_{1}{\underset{\sim}{c}}_{\{1\}^{\top}}=(-0.1846,0.2277,0.0214,0.0126,-0.0770) \\
& \checkmark x_{2}{\underset{\sim}{c}}^{\{2\}^{\top}}=(-0.0770,0.0126,0.0214,0.2277,-0.1846) .
\end{aligned}
\]

\subsection*{9.4.11 Comparison with standard estimator of variance}

The standard least-squares estimator of the variance of \(\hat{\beta}_{2}\) is
\[
\operatorname{var}\left(\hat{\beta}_{2}\right)=\hat{\tau}^{2} \underset{\sim}{u}{ }^{\top} \underset{\sim}{u}
\]
where
\[
\dot{\tau}^{2}={\underset{\sim}{e}}^{\top} \underset{\sim}{e} / 3 .
\]

Therefore
\[
E\left(\operatorname{var}\left(\hat{\beta}_{2}\right)\right)=\frac{0.1}{3} \operatorname{tr}\left(\left(\underset{\sim}{I}-{\underset{\sim}{x}}^{X_{\sim}^{W}}{\underset{\sim}{U}}^{\top}\right) \underset{\sim}{V}\left(\underset{\sim}{I}-\underset{\sim}{U}{\underset{\sim}{X}}^{\top}\right)\right)
\]

If \(\underset{\sim}{V} \in \Omega(0,0)\), that is the variance matrix is diagonal, then
\[
E\left(\operatorname{var}\left(\hat{\beta}_{2}\right)\right)=0.013 V_{11}+0.023 V_{22}+0.027 V_{33}+0.023 V_{44}
\]

This may be compared with
\[
+0.013 V_{55}
\]
\[
\begin{aligned}
\operatorname{var}\left(\hat{B}_{2}\right)= & \underset{\sim}{u}{ }_{\sim}^{\top} \underset{\sim}{v} \underset{\sim}{u} \\
& =0.040 v_{11}+0.010 v_{22}+0.000 v_{33}+0.010 v_{44} \\
& +0.040 V_{55}
\end{aligned}
\]
and the expected value of the conservative estimator given in [9.4.10]:
\[
\begin{aligned}
& \checkmark x_{1}{\underset{\sim}{c}}^{\{1\}^{\top}}=(-0.1993,0.2728,0.0351,-0.0915,-0.0171) \\
& \checkmark x_{2}{\underset{\sim}{c}}^{\{2\}^{\top}}=(-0.0171,-0.0915,0.0351,0.2728,-0.1993) .
\end{aligned}
\]
\[
\begin{gathered}
\mathrm{E}(\underset{\sim}{e} \mathrm{~T} \underset{\sim}{C} \underset{\sim}{e})=0.040 \mathrm{~V}_{11}+0.018 \mathrm{~V}_{22}+0.018 \mathrm{~V}_{33}+0.018 \mathrm{~V}_{44}+0.040 \mathrm{~V}_{55} . \\
\text { Whatever the positive values of diagonal elements in } \underset{\sim}{V}
\end{gathered}
\]
\[
E\left(\hat{e}^{\top} C \hat{e}\right) \geqslant \operatorname{var}\left(\hat{\beta}_{2}\right)
\]
but \(\operatorname{var}\left(\hat{\beta}_{2}\right)\) is sometimes downward biased. Figure 9.4.1 illustrates this for the particular case when \(V_{11}=V_{33}=V_{55}=1\) and \(V_{22}=V_{44}\). When \(V_{22}=1\) all the error variances are equal (this is the assumption made in the standard analysis) and \(\operatorname{var}\left(\hat{\beta}_{2}\right)\) is unbiased. However, when \(V_{22}<1 \operatorname{var}\left(\hat{\beta}_{2}\right)\) on average underestimates the variance of \(\hat{\beta}_{2}\).

\subsection*{9.4.12 Solutions when \(s=1\)}

Table 9.4.2 gives the relative biases of the minimum biased estimators for a range of values of \(\omega\) and \(u\) in \(\Omega(\omega, v)\) when \(s=1\). When \(\omega=0\). and \(u \geqslant 1\) no solution is possible for the same reason as in [9.4.9] when \(s=2\). Also, when \(\omega=1\) and \(u=4\) the primal problem includes a constraint
\[
\sum_{k=1}^{t} x_{k}\left(c_{1}^{\{k\}}+c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}+c_{5}^{\{k\}}\right)^{2} \geqslant 1.0
\]
but
\[
c_{1}^{\{k\}}+c_{2}^{\{k\}}+c_{3}^{\{k\}}+c_{4}^{\{k\}}+c_{5}^{\{k\}}=0
\]
so once again no solution is possible.
It has not been possible to find in all cases the optimal c -vectors in simple form as it was when \(\mathrm{s}=2\). However it has been possible in three cases. When \(v=0\) the optimal \(\underset{\sim}{C}\) is the combination of two vectors:
\[
\begin{aligned}
\sqrt{x_{1}}{\underset{\sim}{c}}^{\{1\}^{\top}} & =(0.8,-0.8,-0.4,0.0,0.4) \\
\sqrt{x_{2}}{\underset{\sim}{c}}^{\{2\}^{\top}} & =(0, \quad-1 / 70,-2 / 70,1 / 10,-4 / 70) \\
& =(0.0,-0.0143,-0.0286,0.1,-0.0571)
\end{aligned}
\]

Table 9.4.1
Relative biases (degrees of freedom in brackets) of best conservative estimators of standard error of \(\hat{\beta}_{2}\) for a range of values of the parameters in \(\Omega(\omega, v)\) and the model specified in [9.4.1], with \(\underset{\sim}{V}=\underset{\sim}{I}\).
\begin{tabular}{ccccccc}
\hline & \(\omega=\) & 0 & 1 & 2 & 3 \\
\(u\) & & & & & \\
0 & & \(0.153(1.0)\) & \(0.153(1.0)\) & \(0.153(1.0)\) & \(0.153(1.0)\) \\
1 & - & \(1.145(1.0)\) & \(0.575(1.8)\) & \(0.360(1.8)\) \\
2 & & - & \(1.145(1.0)\) & \(0.575(1.8)\) & \(0.360(1.8)\) \\
3 & - & \(1.145(1.0)\) & \(0.575(1.8)\) & \(0.360(1.8)\) \\
4 & - & \(1.145(1.0)\) & \(0.575(1.8)\) & \(0.360(1.8)\) \\
\hline
\end{tabular}

Table 9.4.2
Relative biases (degrees of freedom in brackets) of best conservative estimators of standard error of \(\hat{\beta}_{1}\) for a range of values of the parameters in \(\Omega(\omega, u)\) and the model specified in [9.4.1], with \(\underset{\sim}{\underset{\sim}{v}}=\underset{\sim}{I}\).
\begin{tabular}{ccccccc}
\hline & \(\omega=\) & 0 & 1 & 2 & 3 \\
\(u\) & & & & \\
0 & \(0.211(1.0)\) & \(0.211(1.0)\) & \(0.211(1.0)\) & \(0.211(1.0)\) \\
1 & - & & \(1.564(1.4)\) & \(0.581(1.3)\) & \(0.342(1.3)\) \\
2 & - & \(2.000(1.0)\) & \(0.609(1.0)\) & \(0.352(1.1)\) \\
3 & - & \(2.387(1.1)\) & \(0.609(1.0)\) & \(0.352(1.1)\) \\
4 & - & - & \(0.609(1.0)\) & \(0.352(1.1)\) \\
\hline
\end{tabular}

\section*{Figure 9.4.1}

The variance of \(\hat{\beta}_{2}\) and expected values of the conventional estimator and a conservative estimator (for \(\Omega(0,0)\)) of \(\operatorname{var}\left(\hat{\beta}_{2}\right)\) for the model specified in \([9.4 .1]\), except that \(V_{11}=V_{33}=V_{55}=1\) and \(V_{22}=V_{44}\), plotted against \(V_{22}\).

\(v_{22}\)

When \(\omega=1\) and \(u=2\) a single vector is optimal:
\[
v_{1}{\underset{\sim}{c}}^{\top}=(0.8, \quad 0.5, \quad-2.8, \quad 0.9, \quad 0.6)
\]

When \(\omega=2\) and \(u=2,3\) or 4 , a single vector is optimal:
\[
\begin{aligned}
\checkmark x_{1}{\underset{\sim}{c}}^{\top} & =(-(9+\sqrt{ } 145) / 20,(\sqrt{2} 45) / 10,(19-\sqrt{ } 145) / 20,-1 / 10,-4 / 10) \\
& =(-1.0521,1.2042,0.3479,-0.1,-0.4) .
\end{aligned}
\]
9.4.13 Dependence on \(\underset{\sim}{\underset{\sim}{V}}\)

All the preceding results in this section have been dependent on the assumption that
\[
\underset{\sim}{V}=\underset{\sim}{I} .
\]

For other choices of \(\underset{\sim}{v}\) the expected relative biases will be different and the best estimators may be different. For example, if \(\underset{\sim}{V}\) has a \(\operatorname{AR}(1)\) structure so that
\[
\vec{v}_{i j}=\rho^{i-j} \text {, when } i \geqslant j
\]
for some value of \(\rho\) between 0 and \(1, \underset{\sim}{V} e \Omega(1,4)\). In the case when \(s=2\) and it assumed that \(\underset{\sim}{V} \in \Omega(1,4)\) the single c-vector given in \([9.4 .7]\) remains optimal but the relative bias changes with \(\rho\), as illustrated in table 9.4.3. The relative bias is never less than zero because of the constraints in the optimization problem.

Although the c-vector in [9.4.7] was optimal for the above choices of \(\underset{\sim}{v}\) it is not optimal for all variance matrices in \(\Omega(1,4)\). For example, if
\[
\underset{\sim}{\underset{\sim}{v}}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 100 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],
\]

Table 9.4.3
Relative biases of best conservative estimator of standard errors of \(\hat{B}_{2}\) for \(\Omega(1,4)\) and the model specified in [9.4.1], when \(\underset{\sim}{v}\) has an \(\operatorname{AR}(1)\) structure as specified in [9.4.13].
\begin{tabular}{cc}
\(\underline{\rho}\) & Relative bias \\
0.0 & 1.145 \\
0.2 & 0.894 \\
0.4 & 0.646 \\
0.6 & 0.413 \\
0.8 & 0.199 \\
0.9 & 0.098 \\
0.99 & 0.010
\end{tabular}
then the preceding c-vector has a relative bias of 18.0 . The best choice of vector is
\[
\checkmark x_{1}{\underset{\sim}{c}}^{\top}=(0.3,-0.6,0.0,0.6,-0.3)
\]
with a relative bias of 2.0 .

\subsection*{9.4.14 Optimal choice of \(\underset{\sim}{\hat{\beta}}\)}

An interesting but unresolved question raised by the approach to conservative estimators developed in this chapter can be illustrated by example. If the true variance of \(\underset{\sim}{y}\) is proportional to \(\underset{\sim}{W} \underset{\sim}{R} \underset{\sim}{W}\) (I in this example), then estimation of \(\underset{\sim}{\beta}\) by the use of \(\underset{\sim}{U}\) given in [9.2.1] provides the unbiased estimator with the minimum variance. However, it does not necessarily give the linear unbiased estimator with the minimum expected conservative estimator of variance for a particular choice of \(\Omega(\omega, v)\). The question is: what choice of \(\underset{\sim}{U}\) does minimize the expected conservative estimator of variance?

In the above example, when \(s=2\) and \(\underset{\sim}{v}=\underset{\sim}{I}, \hat{\beta}_{2}={\underset{\sim}{e}}^{\top} \underset{\sim}{u}\) (with \left.\({\underset{\sim}{u}}^{\top}=(-0.2,-0.1,0.0,0.1,0.2)\right)\) is the best estimator of \(\beta_{2}\), with a variance of 0.1 . But if we assume only that \(\underset{\sim}{V} \in \Omega(1,4)\), the expected value of the conservative estimator of variance is 0.46 if \(\underset{\sim}{V}\) is equal to \(\underset{\sim}{I}\). When \(\beta_{2}\) is instead estimated using
\[
\left.\begin{array}{rl}
{\underset{\sim}{u}}^{\top} & =(-2 / 7, \quad 1 / 14, \quad 0, \quad-1 / 14, \quad 2 / 7) \\
& =(-0.2857,0.0714,0.0,-0.0714, \\
0.2857
\end{array}\right)
\]
its variance is 0.1735 when \(\underset{\sim}{V}\) is equal to \(\underset{\sim}{I}\), but the best conservative estimator on the assumption that \(\underset{\sim}{V} \in \Omega(1,4)\) is derived from a single vector:
\[
\begin{aligned}
\checkmark x_{1}{\underset{\sim}{c}}^{\top} & =(-2 / 7,1 / 14,3 / 7,1 / 14,-2 / 7) \\
& =(0.2857,0.0714,0.4286,0.0714,-0.2857)
\end{aligned}
\]
with an expected value of 0.3571 if \(\underset{\sim}{V}\) is equal to \(\underset{\sim}{I}\). Therefore, if no confidence can be placed in the conjucture that \(\underset{\sim}{v}\) is equal to \(\underset{\sim}{I}\), and a conservative estimator of the variance of \(\hat{\beta}_{2}\) is to be used by assuming only that \(\underset{\sim}{V} \in \Omega(1,4)\), then the second estimator above is preferable to the conventional first estimator.

\subsection*{9.5 Colquhoun's data}
9.5.1 Choice of regression parameter estimators and \(\underset{\sim}{\hat{V}}\)

Both a single exponential regression and a double
exponential regression model were fitted to Colquhoun's data by three methods described in section 4.3: least-squares estimation (LS); maximum likelihood estimation with an \(\operatorname{ARMA}(1,1)\) error model (ML); and residual maximum likelihood estimation with an \(\operatorname{ARMA}(1,1)\) error model (REML). The least-squares residuals were found to be incompatible with the assumed error variance matrix \(\tau^{2} \underset{\sim}{I}\), so it does not seem appropriate to assume that \(\underset{\sim}{V}\) is equal to \(\tau^{2} \underset{\sim}{I}\) when obtaining conservative estimators. Instead, ARMA \((1,1)\) models were fitted to the least-squares residuals by both maximum likelihood (LS/ML) and residual maximum likelihood (LS/REML) estimation, thus giving four choices of estimator and \(\underset{\sim}{V}\). Strictly, the method in section 9.2 is not applicable when regression and variance parameters have been jointly estimated from the same data because dimensionality in the residuals will have been lost to the variance model as well as to the regression model. However, this has been ignored in what follows.
9.5.2 Choice of \(\Omega(\omega, v)\)

The smallest set of matrices to which \(\underset{\sim}{v}\) belongs in the \(\Omega\) class is \(\Omega(1,123)\). The fact that \(\omega\) is equal to 1 follows directly from [9.2.15] by observing that \(\underset{\sim}{V}\) is the sum of two matrices with Markov structure and \(\omega\) cannot exceed 1 because the correlations exceed 0.5. The value of \(u\) is 123 because
\[
\hat{v}_{124,1}>0
\]
and in particular when the single exponential regression model is fitted by REML the estimated correlation between \(y_{1}\) and \(y_{124}\) exceeds 0.999.

\subsection*{9.5.3 Single exponential regression results}

Considering first the single exponential regression model, the variance of. \(\hat{\beta}_{1}\) is unbounded when \(\underset{\sim}{v}\) belongs to \(\Omega(1,123)\) for all three methods of estimation (LS, ML and REML) This is a repeat of the situation encountered when estimating a global mean in [9.4.12]. Conservative estimators of variances were found for both of the other regression parameters for all four combinations of estimators and \(\underset{\sim}{\underset{\sim}{V}}\). In all cases, the maximum CPU time of 30,000 seconds was reached before the best estimator could be found. Table 9.5.1 summarises the results.

The four pairs of marginal confidence intervals are equally valid, each being at least at the \(95 \%\) level for all variance matrices in \(\Omega(1,123)\). The expected standard errors derived from the conservative estimators of variance, and hence the expected widths of marginal confidence intervals, are very similar for each parameter over all four methods of estimation. It does not necessarily follow that because ML and REML estimators are more

\section*{Table 9.5.1}

Colquhoun's data, single exponential regression with ARMA \((1,1)\) error model estimated by four methods; summary results of using conservative estimators of the variances of the regression parameter estimators on the assumption that \(\underset{\sim}{V} \in \Omega(1,123)\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Estimation method & Parameter number & Parameter estimate & \begin{tabular}{l}
Model \\
based s.e.
\end{tabular} & Expected s.e. & Relative bias & Aprox. d.f. & Estimated s.e. & Approxi
confiden & te \(95 \%\) limits \\
\hline \multirow[t]{3}{*}{LS/ML} & & & & & & & & & \\
\hline & 2 & 77.4 & 1.0 & 2.2 & 1.16 & 3.3 & 3.9 & 65.5 & 89.4 \\
\hline & 3 & 7.24 & 0.22 & 0.52 & 1.33 & 3.2 & 0.34 & 6.19 & 8.28 \\
\hline \multirow[t]{3}{*}{LS/REML} & & & & & & & & & \\
\hline & 2 & 77.4 & 2.1 & 2.4 & 0.16 & 3.3 & 3.0 & 68.3 & 86.5 \\
\hline & 3 & 7.24 & 0.43 & 0.60 & 0.38 & 3.5 & 0.23 & 6.56 & 7.91 \\
\hline \multirow[t]{2}{*}{ML} & 2 & 79.4 & 1.0 & 1.7 & 0.74 & 3.0 & 3.2 & 69.1 & 89.6 \\
\hline & 3 & 6.77 & 0.18 & 0.47 & 1.61 & 3.7 & 0.63 & 4.94 & 8.60 \\
\hline \multirow[t]{3}{*}{REML} & & & & & & & & & \\
\hline & 2 & 78.6 & 1.6 & 1.7 & 0.12 & 3.0 & \[
\begin{aligned}
& 2.6 \\
& 0.82
\end{aligned}
\] & \[
\begin{gathered}
70.4 \\
4.21
\end{gathered}
\] & \[
\begin{gathered}
86.8 \\
8.97
\end{gathered}
\] \\
\hline & 3 & 6.59 & 0.23 & 0.53 & 1.29 & 3.6 & \[
0.82
\] & 4.21 & \[
8.97
\] \\
\hline LS/ML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by maximum likelihood from residuals & \multicolumn{9}{|l|}{regression parameters estimated by least-squares, ARMA \((1,1)\) error variance matrix estimated by maximum likelihood from residuals} \\
\hline \multicolumn{10}{|l|}{LS/REML regression parameters estimated by least-squares, ARMA \((1,1)\) error variance matrix estimated by residual maximum likelihood from residuals} \\
\hline ML regression parameters and \(\operatorname{ARMA}(1,1)\) error variance matrix jointly estimated by maximum likelihood & \multicolumn{9}{|l|}{regression parameters and \(\operatorname{ARMA}(1,1)\) error variance matrix jointly estimated by maximum likelihood} \\
\hline REML re & parameter & and ARMA(& ,1) error \(v\) & riance mat & rix joint & estim & ted by res & dual maxi & \\
\hline
\end{tabular}
efficient than LS estimators that they will give smaller conservative estimates of variances. (This relates to the optimal choice of \(\underset{\sim}{\hat{\beta}}\) considered in [9.4.14].) The estimated standard errors show less consistency between methods of estimation; in part this is because a different value of \(\underset{\sim}{\underset{\sim}{v}}\) is being used in each case, and in part it results from sampling variability.

It is not possible to choose from among the estimators the one with the smallest estimated standard error without invalidating the 95\% interpretation of the marginal confidence interval. If a choice is to be made between estimators then it should be on the basis of the expected standard error, the approximate degrees of freedom and the appropriateness of \(\underset{\sim}{\underset{v}{v}}\). The estimation methods ML and REML have slightly lower expected standard errors and about the same degrees of freedom as LS/ML and LS/REML, but REML is preferable in being based on a probably more realistic estimate of \(\underset{\sim}{V}\). It has already been observed in chapter 4 that ML does seem to give downward biased estimates of \(\underset{\sim}{V}\). This may account for the estimated standard errors of \(\hat{\beta}_{2}\) for both LS/ML and ML exceeding what would have been their \(95 \%\) limits if the assumed value of \(\hat{V}\) had been correct.

\footnotetext{
9.5.4 Double exponential regression results

The variance of \(\beta_{1}\) is unbounded as in the single exponential regression case. Conservative estimators of variances were found for the other four parameters, although not ones with minimum relative bias because the maximum CPU time was reached during the iterations. Table 9.5.2 gives the best results found.

The expected standard errors for each parameter are similar for LS/ML, LS/REML and ML but larger values were obtained for
}

\section*{Table 9.5.2}

Colquhoun's data, double exponential regression with \(\operatorname{ARMA}(1,1)\) error model estimated by four methods; summary results of using conservative estimators of the variances of the regression parameter estimators on the assumption that \(\underset{\sim}{V} \in \Omega(1,123)\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Estimation method & Parameter number & Parameter estimate & Model based s.e. & \[
\begin{gathered}
\text { Expected } \\
\text { s.e. }
\end{gathered}
\] & Relative bias & Aprox. d.f. & Estimated s.e. & \multicolumn{2}{|l|}{Approximate 95\% confidence limits} \\
\hline \multirow[t]{4}{*}{LS/ML} & 2 & 25.3 & 7.7 & 26.3 & 2.43 & 6.3 & 36.8 & -63.9 & 114.5 \\
\hline & 3 & 3.28 & 0.68 & 2.27 & 2.32 & 7.1 & 2.77 & -3.25 & 9.82 \\
\hline & 4 & 58.6 & 7.9 & 27.0 & 2.43 & 6.9 & 33.0 & -19.8 & 137.0 \\
\hline & 5 & 9.22 & 0.82 & 2.83 & 2.45 & 6.2 & 3.50 & 0.70 & 17.73 \\
\hline \multirow[t]{4}{*}{LS/REML} & 2 & 25.3 & 12.7 & 33.0 & 1.60 & 5.8 & 35.0 & -61.1 & 111.7 \\
\hline & 3 & 3.28 & 1.07 & 2.92 & 1.71 & 6.6 & 3.12 & -4.17 & 10.74 \\
\hline & 4 & 58.6 & 12.9 & 34.4 & 1.67 & 6.0 & 36.3 & -30.3 & 147.5 \\
\hline & 5 & 9.22 & 1.36 & 3.57 & 1.62 & 5.4 & 3.30 & 0.92 & 17.51 \\
\hline \multirow[t]{4}{*}{ML} & 2 & 26.1 & 8.5 & 28.3 & 2.32 & 6.3 & 37.9 & -65.7 & 117.8 \\
\hline & 3 & 3.41 & 0.71 & 2.33 & 2.27 & 7.6 & 2.91 & -3.38 & 10.19 \\
\hline & 4 & 57.6 & 8.7 & 28.9 & 2.34 & 6.8 & 36.4 & -29.0 & 144.2 \\
\hline & 5 & 9.29 & 0.90 & 3.02 & 2.35 & 5.9 & 3.94 & -0.40 & 18.98 \\
\hline \multirow[t]{4}{*}{REML} & 2 & 31.5 & 21.0 & 51.8 & 1.47 & 6.0 & 49.1 & -88.8 & \\
\hline & 3 & 3.86 & 1.29 & 3.48 & 1.70 & 5.9 & 2.90 & -3.28 & 11.00 \\
\hline & 4 & 51.8 & 20.5 & 51.8 & 1.52 & 6.5 & 46.6 & -60.2 & 163.8 \\
\hline & 5 & 9.83 & 2.45 & 6.01 & 1.45 & 6.1 & 5.33 & -3.20 & 22.85 \\
\hline
\end{tabular}

LS/ML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by maximum likelihood from residuals
LS/REML regression parameters estimated by least-squares, ARMA (1,1) error variance matrix estimated by residual maximum likelihood from residuals
ML regression parameters and ARMA(1,1) error variance matrix jointly estimated by maximum likelinood REML regression parameters and \(\operatorname{ARMA}(1,1)\) error variance matrix jointly estimated by residual maximum likelihood

REML. This may be due, in part, to elements in \(\underset{\sim}{V}\) estimated by REML being larger than for the other estimation methods. The estimated standard errors are all greater than expectation except for the REML ones. However, interpretation is hindered by the potentially large correlations between the conservative estimators.

As already stated, all four sets of marginal confidence intervals are valid. If a choice has to be made then, given the closeness of expected standard errors and degrees of freedom for LS/ML, LS/REML and ML, the LS/REML estimates seem to be preferable because of the ease of interpretation of least-squares estimators and the approximate unbiasedness of residual maximum likelihood estimates of \(\underset{\sim}{V}\) from the least-squares residuals.

\subsection*{9.6 Dale's data}
9.6.1 Choice of regression parameter estimators, \(\underset{\sim}{v}\) and \(\Omega(\omega, v)\)

As for Colquhoun's data in [9.5.1], there are four choices of estimator and \(\underset{\sim}{V}\) available from the models fitted in section 4.4. The smallest set of matrices to which \(\underset{\sim}{v}\) belongs is \(\Omega(1,137)\).

\subsection*{9.6.2 Results}

Conservative estimators of variances were found for all four parameters for all combinations of estimators and \(\underset{\sim}{\hat{V}}\). The maximum CPU times were reached before minimum biased estimators were found. Table 9.6.1 summarises the best results found.

The expected relative biases are larger than those previously encountered and most of the final estimators have only one degree

\section*{Table 9.6.1}

Dale's data, regression with \(\operatorname{ARMA}(1,1)\) error model estimated by four methods; summary results of using conservative estimators of the variances of the regression parameter estimators on the assumption that \(\underset{\sim}{V} \in \Omega(1,137)\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Estimation method & Parameter number & Parameter estimate & Model based s.e. & Expected s.e. & Relative bias & Aprox. d.f. & \[
\begin{aligned}
& \text { Estimated } \\
& \text { s.e. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Approximate 95\% confidence limits} \\
\hline \multirow[t]{4}{*}{LS/ML} & 1 & 818. & 42. & 765. & 17.21 & 1.0 & 1123. & -13204. & 14841. \\
\hline & 2 & 0.0142 & 0.0017 & 0.0048 & 1.88 & 2.3 & 0.0064 & -0.0101 & 0.0385 \\
\hline & 3 & 702. & 31. & 1516. & 47.30 & 1.0 & 1772. & -21750. & 23154. \\
\hline & 4 & 0.00067 & 0.00005 & 0.00097 & 17.19 & 1.0 & 0.00125 & -0.01486 & 0.01619 \\
\hline \multirow[t]{4}{*}{LS/REML} & 1 & 818. & 151. & 1202. & 6.94 & 1.0 & 1326. & -15837. & 17474. \\
\hline & 2 & 0.0142 & 0.0027 & 0.0066 & 1.49 & 1.6 & 0.0054 & -0.0199 & 0.0483 \\
\hline & 3 & 702. & 284. & 2290. & 7.07 & 1.0 & 2647. & -32810. & 34214. \\
\hline & 4 & 0.00067 & 0.00023 & 0.00152 & 5.71 & 1.0 & 0.00162 & -0.01962 & 0.02096 \\
\hline \multirow[t]{4}{*}{ML} & 1 & 809. & 36. & 442. & 11.44 & 1.0 & 108. & -506. & 2125. \\
\hline & 2 & 0.0205 & 0.0015 & 0.0044 & 1.99 & 3.4 & 0.0079 & -0.0028 & 0.0439 \\
\hline & 3 & 785. & 35. & 940. & 25.54 & 1.0 & 130. & -864. & 2434. \\
\hline & 4 & 0.00081 & 0.00006 & 0.00069 & 11.12 & 1.0 & 0.00015 & -0.00103 & 0.00265 \\
\hline \multirow[t]{4}{*}{REML} & 1 & 806. & 63. & 494. & 6.85 & 1.0 & 68. & -26. & 1637. \\
\hline & 2 & 0.0210 & 0.0016 & 0.0049 & 1.96 & 3.5 & 0.0083 & -0.0034 & 0.0454 \\
\hline & 3 & 816. & 125. & 1064. & 7.55 & 1.0 & 254. & -2361. & 3994. \\
\hline & 4 & 0.00084 & 0.00013 & 0.00078 & 5.19 & 1.0 & 0.00016 & -0.00111 & 0.00279 \\
\hline
\end{tabular}

LS/ML regression parameters estimated by least-squares, ARMA (1,1) error variance matrix estimated by maximum likelihood from residuals
LS/REML regression parameters estimated by least-squares, \(\operatorname{ARMA}(1,1)\) error variance matrix estimated by residual maximum likelihood from residuals
ML regression parameters and \(\operatorname{ARM}(1,1)\) error variance matrix jointly estimated by maximum likelihood
REML regression parameters and ARMA \((1,1)\) error variance matrix jointly estimated by residual maximum likelihood
of freedom. The unexplained exception is found for the second parameter. As a consequence, the marginal confidence intervals are much wider than those obtained in chapter 4 . If a choice is to be made between estimators, then ML and REML have much smaller expected standard errors, and REML is preferable as it is based on a more reliable matrix \(\underset{\sim}{\underset{\sim}{V}}\).

\subsection*{9.7 Bruce's data}
9.7.1 Choice of regression parameter estimators, \(\underset{\sim}{\underset{v}{v}}\) and \(\Omega(\omega, u)\)

As for Colquhoun's and Dale's data there are four choices of estimator and \(\underset{\sim}{v}\) from models fitted in section 4.5. The smallest set of matrices to which \(\underset{\sim}{v}\) belongs is \(\Omega(1,199)\). However, this means that the dual optimization problem has 20100 variables whereas CEVOPE has an upper limit of 10000 . The correlation coefficients between the errors in the models fitted to Bruce's data decay more rapidly than in either Colquhoun's or Dale's data, so that for example the REML estimated correlation between \(y_{i}\) and \(y_{i+30}\) is 0.05 . It seems reasonable to assume that after 30 days have elapsed there should be no carry-over of errors. Therefore, it is assumed that the true error variance matrix belongs to \(\Omega(1,30)\).

\subsection*{9.7.2 Results}

Conservative estimators of variances were found for all four methods of estimation. Before minimum biased estimators could be found the maximum number of c-vectors (30) was reached in half the
cases and the maximum CPU time reached in the rest. It is possible that the large number of c-vectors and the large number of degrees of freedom in the final solution could be because the parameter \(u\) is less than its maximum possible value of \(n-1\). Table 9.7.1 summarises the best results found.

As already seen in section 4.5 , there is little to choose between ML and REML in this example. In general, both have lower expected standard errors and larger degrees of freedom than either LS/ML or LS/REML so both appear to be acceptable.

\subsection*{9.8 Discussion}

An impasse was reached in chapters 4 and 5. Empirical models of the error variances were there assumed and used to estimate regression parameters, but the final results were sensitive to the choice of model. Because no information was available for choosing \(\underset{\sim}{V}\) except for that contained in the data, the problem appeared to be intractable. The method presented in this chapter has gone a long way towards overcoming the problem. When applied to real data the new technique provides marginal confidence intervals which have very general validity, although they are very wide in certain circumstances.

The method should be applicable to any situation where regression parameters and standard errors are to be estimated from data with serial correlation of unknown form except for some very general specification. Partly because of the novelty of the approach it has several unresolved problems. These are discussed in the category of future work in section 10.2.

Table 9.7.1
Bruce's data, regression with ARMA(1,1) error model estimated by four methods; summary results of using conservative estimators of the variances of the regression parameter estimators on the assumption that \(\underset{\sim}{V} \in \Omega(1,30)\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Estimation method & Parameter number & Parameter estimate & Model based s.e. & Expected s.e. & Relative bias & Aprox. d.f. & Estimated
s.e. & \multicolumn{2}{|l|}{Approximate 95\% confidence limits} \\
\hline \multirow[t]{2}{*}{LS/ML} & 1 & 0.75 & 0.10 & 0.27 & 1.64 & 3.1 & 0.23 & 0.04 & 1.46 \\
\hline & 2 & 0.068 & 0.002 & 0.004 & 1.00 & 5.7 & 0.005 & 0.057 & 0.080 \\
\hline \multirow[t]{2}{*}{} & 3 & 1.6 & 0.2 & 0.5 & 1.36 & 1.4 & 0.2 & -0.1 & 3.33 \\
\hline & 4 & 0.57 & 0.05 & 0.21 & 3.33 & 2.1 & 0.18 & -0.15 & 1.29 \\
\hline \multirow[t]{4}{*}{LS/REML} & \multirow[b]{4}{*}{2
3
4} & 0.75 & 0.11 & 0.19 & 0.66 & 4.4 & 0.13 & 0.40 & 1.10 \\
\hline & & 0.068 & 0.002 & 0.006 & 1.26 & 5.4 & 0.004 & 0.059 & 0.078 \\
\hline & & 1.6 & 0.2 & 0.7 & 2.20 & 2.8 & 0.5 & -0.1 & 3.3 \\
\hline & & 0.57 & 0.05 & 0.09 & 0.79 & 5.0 & 0.09 & 0.34 & 0.81 \\
\hline \multirow[t]{4}{*}{ML} & \multirow[t]{4}{*}{1
2
3
4} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.61 \\
& 0.067 \\
& 1.3 \\
& 0.48
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.07 \\
& 0.003 \\
& 0.2 \\
& 0.04
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.18 \\
& 0.003 \\
& 0.4 \\
& 0.14
\end{aligned}
\]} & 1.55 & 4.7 & 0.15 & 0.23 & 0.99 \\
\hline & & & & & 0.31 & 9.0 & 0.003 & 0.060 & 0.074 \\
\hline & & & & & 1.42 & 7.0 & 0.5 & 0.1 & 2.5 \\
\hline & & & & & 2.21 & 3.1 & 0.19 & -0.12 & 1.08 \\
\hline \multirow[t]{4}{*}{REML} & \multirow[t]{4}{*}{1
2
3
4} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.60 \\
& 0.067 \\
& 1.3 \\
& 0.48
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.07 \\
& 0.003 \\
& 0.2 \\
& 0.04
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.21 \\
& 0.004 \\
& 0.5 \\
& 0.10
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1.89 \\
& 0.31 \\
& 1.84 \\
& 1.22
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 3.3 \\
& 9.3 \\
& 2.8 \\
& 6.7
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 0.20 \\
& 0.004 \\
& 0.5 \\
& 0.12
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{gathered}
0.00 \\
0.058 \\
-0.3 \\
0.19
\end{gathered}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1.20 \\
& 0.076 \\
& 3.0 \\
& 0.77
\end{aligned}
\]} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

LS/ML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by maximum likelihood from residuals
LS/REML regression parameters estimated by least-squares, ARMA(1,1) error variance matrix estimated by residual maximum likelihood from residuals
ML regression parameters and \(\operatorname{ARMA}(1,1)\) error variance matrix jointly estimated by maximum likelihood REML regression parameters and ARMA \((1,1)\) error variance matrix jointly estimated by residual maximum likelihood

\section*{10. Conclusions/Future work}

\subsection*{10.1 Conclusions}

\subsection*{10.1.1 General}

Ordinary least-squares regression parameter estimators are inefficient and estimated standard errors are biased when errors are correlated. If an incorrect variance structure is assumed and used in the estimation procedure, then the new estimators may be even less efficient and the estimated standard errors more biased. Moreover, regression parameters change their meaning in the presence of a correlated errors model. This is because it is the conjunction of a regression model and an error model which describe a data set, so if the error model is changed the regression model has also to change in order to compensate. For example, if errors are assumed to: be highly correlated, then the fitted regression model will exhibit much larger systematic departures from the data than if the errors had been assumed to be independent. Therefore, although within the last few years it has become computationally easy to estimate regression parameters with almost any choice of variance matrix, it is statistically difficult and fraught with dangers. In a word, contrary to most advice in the literature, beware!

\subsection*{10.1.2 Empirical models}

It was found in the research reported in this thesis to be easier to model empirically the correlation coefficients of an error process than to model the spectral function. The recommended procedure is:
a) Estimate the regression parameters by (possibly weighted) least-squares.
b) Examine the residuals for autocorrelation, and if these are inconsistent with the assumption of independent errors identify a low-order ARMA model.
c) Jointly estimate the regression and error parameters by residual maximum likelihood using the variance matrix of the assumed ARMA model.
d) Compare the results with the least-squares estimates, if they. are inconsistent return to the least-squares results and obtain variances of the estimators by some other means, such as using the method described in chapter 9 to derive conservative estimates of the variances valid over wide classes of possible error variance structures.

\subsection*{10.1.3 Mechanistic model}

If the assumed model is (almost) correct, then the use of a mechanistic model makes for the most efficient use of the data, but if not then the results can be very misleading. The recommended procedure is always to include an observation error, always to test the goodness-of-fit by refitting the model with separate sets of parameters for the regression and error components, and never to use a model without a sound scientific basis.

\subsection*{10.1.4 Conservative estimates of the variances of regression} parameter estimators

The technique described in chapter 9 makes heavy use of computer CPU time but light use of explicit statistical models.

Estimates of the variances of regression parameter estimators are obtained which are valid when errors are serially correlated in an unknown manner. The price that sometimes has to be paid for this robustness is the large upward biases in the estimates of the variances of regression parameter estimators. The present method may still be some way from being of routine use but it has potential for further development, as discussed in [10.2.3].

\subsection*{10.2 Future work}

\subsection*{10.2.1 Empirical models}

The comparison between maximum likelihood and residual maximum likelihood estimates of regression parameters when errors are correlated warrants further study beyond the small-scale simulations reported in chapter 4, particularly when the process is close to non-stationarity.

Empirically modelling the spectral function of the error process is a more recent technique than modelling the correlation coefficients in order to estimate regression parameters, and seems to offer more potential for future work. It ought to extend more easily to handle large numbers of regression parameters such as treatment effects in designed experiments, and to higherdimensional correlation structures such as spatial processes. Another possibility is to explore the relationship between the parameterized spectrum approach in this thesis and the non-parametric approach of Duncan and Jones (1966).

\subsection*{10.2.2 Mechanistic models}

I expect many more models in future literature to be mechanistic rather than empirical, although how mechanistic most of them will be is open to question. One particular gap of which I am aware is the lack of any successful attempt to introduce stochasticity into non-linear growth equations.

It is possible to generalize the difference and differential equations considered in chapter 6, and the compartment models considered in chapter 7, by allowing the parameters to vary with• time. In fact, the model considered in chapter 8 may be thought of as a single compartment with a time-varying rate of emigration. Whether or not the solutions are GARMA and CGARMA processes has yet to be resolved, although it would seem that the solution of a p -compartment model is a \(\operatorname{cGARMA}\left(\mathrm{p}^{2}, 0\right)\) process, \(r\) ather than a cGARMA \((p, 0)\) process as it is with time-constant parameters.

\subsection*{10.2.3 Conservative estimates of the variances of regression} parameter estimators

The area of conservative estimates of the variances of regression parameter estimators is the one in which I am most conscious of the potential for further work. The computer CPU time used by the program CEVOPE should be reducible through better linear programming and eigenvector algorithms and through special algorithms for specific choices of \(\Omega\) such as \(\Omega(0,0)\) and \(\Omega(1, v)\). Also, improved algorithms are required to cope with rounding errors, especially as the optimum solution is approached.

Further work could be put into other choices of \(\Omega\), for example more restrictive assumptions to reduce the variance bias in
some applications, and to other types of correlation structure such as might arise in spatial data or two-way tables.

More fundamentally, methods are required to incorporate the variance of the variance estimator into the optimization problem (see [9.2.18]) and to find the regression parameter estimator which minimizes the expected value of the conservative estimator of variance (see [9.4.14]).

\section*{Appendix A}

REGA:ME computer program listing (see section 2.4).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 0193 \\
& 0194 \\
& 0195
\end{aligned}
\] & C
\(C\)
\(C\) & & & & & & \begin{tabular}{l}
MODEL \\

\end{tabular} & \[
\begin{aligned}
& \text { NAG } \\
& =======
\end{aligned}
\] & OTHER ====== \\
\hline 0196 & C & 1 & REGAME: & E04HBF & & & & & \\
\hline 0197 & C & & ==s==== & E04JBF & & & & & \\
\hline 0198 & C & & & & REGLIK & & & & \\
\hline 0199 & C & & & REGVAR & & & & & \\
\hline 0200 & C & & & REGOUT & & & & & \\
\hline 0201 & C & & & REGCVI & & & & & \\
\hline 0202 & C & & & & & & & & MATPN1 \\
\hline 0203 & C & & & & & & & & MATPRO \\
\hline 0204 & C & & & & & & & & MATPR1 \\
\hline 0205 & C & & & - & - & - & - & - & - \\
\hline 0206 & C & & & & & & & & \\
\hline 0207 & C & & & EO4HBF : & REGLIK & & & & \\
\hline 0208 & C & & & ====== & & & & & \\
\hline 0209 & C & & & & & & & & \\
\hline 0210 & C & & & E04JBF : & REGLIK & & & & \\
\hline 0211 & C & & & ======= & REGMON & & & & \\
\hline 0212 & C & & & & & & & E04JBQ & \\
\hline 0213 & C & & & - & - & - & - & . & - \\
\hline 0214 & C & & & & & & & & \\
\hline 0215 & C & 2 & & & REGLIK: & REGAMD & & & \\
\hline 0216 & C & & & & ====3== & REGTRA & & & \\
\hline 0217 & C & & & & & & REGMOD & & \\
\hline 0218 & c & & & & & & REGDER & & \\
\hline 0219 & C & & & & & & & F03ABF & \\
\hline 0220 & C & & & & & & & & MATPRO \\
\hline 0221 & C & & & & & & & & MATPR1 \\
\hline 0222 & C & & & & & & & & MATPR2 \\
\hline \[
\begin{aligned}
& 0223 \\
& 0224
\end{aligned}
\] & C & & & - & - & - & - & - & - \\
\hline 0225 & c & 3 & & & REGMON: & & & & \\
\hline 0226 & C & & & & =====3= & & & & \\
\hline 0227 & C & & & - & - & - & - & - & - \\
\hline 0228 & C & & & & & & & & \\
\hline \[
\begin{aligned}
& 0229 \\
& 0230
\end{aligned}
\] & C & 4 & . & REGVAR: & REGLIK & REGTRA & & & \\
\hline 0231 & C & & & (REGVRF) & & & & F01ABF & \\
\hline 0232 & C & & & & & & & & MATPR2 \\
\hline 0233 & C & & & - & - & - & - & - & - \\
\hline 0234 & C & & & & & & & & \\
\hline 0235 & \({ }^{\text {c }}\) & 5 & & REGOUT: & & & & & PLTACR \\
\hline 0236 & C & & & ======= & & & & & PLTLNG \\
\hline 0237 & C & & & - & - & - & - & - & - \\
\hline 0238 & C & & & & & & & & \\
\hline 0239 & C & 6 & & REGCVI: & & Regamd & & & \\
\hline 0240 & C & & & ======= & & REGTRA & & & \\
\hline 0241 & C & & & & & & REGMOD & & \\
\hline 0242 & C & & & & & & REGDER & & \\
\hline 0243 & C & & & & & & & F01ABF & \\
\hline 0244 & C & & & & & & & & MATPR2 \\
\hline 0245 & C & & & - & - & - & - & - & \\
\hline 0246 & C & & & & & & & & \\
\hline 0247 & C & 7 & & & & REGAMD: & & F03AGF & \\
\hline 0248 & C & & & & & ======= & & F04ATF & \\
\hline 0249 & C & & & & & & & F04JGF & \\
\hline 0250 & C & & & & & & & XO2AAF & \\
\hline 0251 & C & & & & & & & & MATPRO \\
\hline 0252 & C & & & & & & & & MATPR1 \\
\hline 0253 & C & & & & & & & & MATPR2 \\
\hline 0254 & c & & & - & - & - & - & - & \\
\hline 0255 & C & & & & & & & & - \\
\hline 0256 & C & 8 & & & & REGTRA: & & & MATPR1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 0321 & c & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{/REGCM3/ SHARED BY REGAME, REGLIK}} \\
\hline 0322 & C & & \\
\hline 0323 & c & Y(200) & DATA VECTUR OF OBSERVATIONS \\
\hline 0324 & C & F(200) & \multirow[t]{2}{*}{VECTOR OF FITTED VALUES} \\
\hline 0325 & C & Z(200) & \\
\hline 0326 & C & \(\operatorname{VAR}(200,11)\) & VECTOR OF RESIDUALS FROM MODEL \\
\hline 0327
0328 & \({ }_{C}\) & THETA \((200,6)\) & SECOND MATRIX IN TRIANGULAR BAND DECOMP. OF VAR \\
\hline 0328
0329 & C & NL & NUMBER OF OBSERVATIONS \\
\hline 0329 & \({ }^{\text {c }}\) & NPQA & NUMBER OF COLUMNS IN VAR (\(\mathrm{NP}+\mathrm{NQ}+1\)) \\
\hline 0330 & C & NPA & NUMBER OF COLUMNS IN PHI (\(\mathrm{NP}+1\)) \\
\hline 0331 & \({ }^{\text {c }}\) & NQA & NUMBER OF COLUMNS IN THETA (\(\mathrm{NQ}+1\)) \\
\hline 0332 & C & NP & GENERALIZED AUTOREGRESSIVE ORDER \\
\hline 0333 & C & NQ & GENERALIZED MOVING AVERAGE ORDER \\
\hline 0334 & C & NLIK & OPTIMIZATION CRITERION \\
\hline 0335 & C & NM & \\
\hline 0336 & C & & DIMENSION OF DERIV (WHEN NLIK=2 OR NCVI \(=1\)) \\
\hline 0337 & C & NDER & 1 IF DERIVATIVE SUBROUTINE REGDER AVAILABLE \\
\hline 0338 & C & NLMAX & MAXIMUM SIZE ALLOWED FOR NL (\(=200\)) \\
\hline 0339 & C & NPMAX & MAXIMUM SILE ALLOWED FOR NP (=5) \\
\hline 0340 & C & NQMAX & MAXIMUM SIZE ALLOWED FOR NQ (\(=5\)) \\
\hline 0342 & C & & \\
\hline 0343 & C & & \\
\hline 0344 & C & LOCAL & \\
\hline 0345 & C & BOUNDL (15) & LOWER BOUNDS ON PARAMT IN EO4J8F \\
\hline 0346 & C & BOUNDU(15) & UPPER BOUNDS ON PARAMT IN EO4JBF \\
\hline 0347 & C & EPS(15) & STEP LENGTH TO CALC. DERIVS. IN EO4JBF \\
\hline 0348 & C & ETA & ACCURACY OF 1-D SEARCH IN EO4JBF \\
\hline 0349 & C & HESO(15) & DIAG. OF DECOMPOSITION OF SECOND DERIVS. \\
\hline 0350 & C & HESL(105) & LOWER TRIANGLE OF DECOMP. Of SECOND DERIVS. \\
\hline 0351 & C & & LENGTH INDEX \\
\hline 0352 & C & IFAILT & FAILURE INDICATOR IN REGVAR \\
\hline 0353 & C & J & INDEX \\
\hline 0354 & C & JZ & NPAR+1-J \\
\hline 0355 & C & K & INDEX \\
\hline 0356 & C & KU & UPPER BOUND ON K DO-LOOP \\
\hline 0357 & \({ }^{\text {c }}\) & LOGJBF & DUMMY VARIABLE (LOGICAL) \\
\hline 0358 & C & MCONST(15) & dENOTES CONSTRAINED PARAMETERS IN EO4JBF \\
\hline 0359 & C & MWK (2) & WORK SPACE IN EO4HBF, EO4JBF \\
\hline 0360 & C & NBOUND & SPECIFIES TYPE OF BOUNDARIES IN E04JBF \\
\hline 0361 & C & NCALL & NUMBER OF CALLS TO REGLIK BY E04HBF \\
\hline 0362 & C & NCALMT & MAX. CALLS TO REGLIK FROM E04JBF, \\
\hline 0363 & C & & HALVED IF IFAIL RETURNED SET TO 4 \\
\hline 0364 & C & NFLAG & DUMMY USED IN CALLING REGLIK \\
\hline 0365 & C & NHESL & DIMENSION OF HESL \\
\hline 0366 & C & NMMAX & MAXIMUM OF NM \\
\hline 0367 & C & NMONIT & SPECIFIES FREQUENCY OF CALLS TO REgMon \\
\hline 0368 & C & NMWK & DIMENSION OF MWK \\
\hline 0369 & C & NN & NUMBER OF ELEMENTS USED IN HESL \\
\hline 0370 & C & NPARMX & MAXIMUM OF NPAR \\
\hline 0371 & \(\stackrel{C}{C}\) & NPEST & NUMBER OF PARAMETERS TO BE ESTIMATED \\
\hline 0372 & C & NPR I & 1 IF INTERMEDIATE RESULTS OUTPUT \\
\hline 0373 & C & NSTYPE & SPECIFIES START CONDITIONS IN EO4JBF \\
\hline 0374 & C & NWK & DIMENSION OF WK \\
\hline 0375 & C & PARAMT (16) & RESCALED PARAM \\
\hline 0376 & C & RSCALE & SQUARE-ROOT OF SCALE \\
\hline 0377 & C & WK(135) & WORK SPACE IN EO4HBF, E04JBF \\
\hline 3378 & C & XLIKD(16) & FIRST DERIVATIVE OF XLIKT W.R.t. Paramt \\
\hline 0379 & C & XLIKT & RESCALED OPTIMIZATION FUNCTION \\
\hline 3380 & \({ }^{\text {c }}\) & XLKMIN & LOWER BOUND ON XLIKT USED BY EO4JBF \\
\hline 0381 & C & XX & WORK SPACE \\
\hline 0383 & C & & \\
\hline 0384 & C & & \\
\hline
\end{tabular}

EXTERNAL REGLIK,REGMON,EO4JBQ
DATA NMMAX,NPARMX,NHESL, NMWK, NWK, LOGJBF
1 / 5, 15, 105, 2, 135, .TRUE./
WRITE (NOUT6,938)
IF (NOUT.GE.1) WRITE (NOUT10,942)
NLMAX \(=200\)
NPMAX \(=5\)
NQMAX \(=5\)
C
C
C
CHECK PARAMETERS ARE IN RANGE
NL=NLT
NLIK = NLIKT
NSCALE=NSCALT
NM = NMT
NDER \(=\) NDERT
NPAR \(=\) NPART
IF ((NL.LT.1).OR.(NL.GT.NLMAX)) GO TO 017
IF (ACCTOL.LE.O.000) GO TO 019
IF ((NLIK.LT.1).OR.(NLIK.GT.3)) GO TO 021
If ((NM.LT.O).OR.(NM.GT.NMMAX)) GO TO 023
\(K=N P A R\)
If (NSCALE.EQ.1) K=NPAR+1
IF (NPARVR.LT.K) GO TO 025
IF ((NPAR.LT.1).OR.(NPAR.GT.NPARMX)) GO TO 027
\(00001 \mathrm{I}=1, \mathrm{NL}\)
\(Y(I)=Y T(I)\)
SET PARAMETERS TO BE ESTIMATED
\(K=0\)
DO \(002 \mathrm{~J}=1\), NPAR
IF (SE(J).LT.-1.00-12) GO TO 029
\(\operatorname{PARAMM}(J)=\operatorname{PARAM}(J)\)
\(\operatorname{PARAMS}(J)=S E(J)\)
IF (SE(J).LT.1.OD-12) GO TO 002
\(K=K+1\)
MLEST(K)=J
\(\operatorname{PARAMT}(K)=0.0 \mathrm{DO}\)
002 CONTINUE
NPEST=K
\(K=k+1\)
\(\operatorname{MLEST}(K)=0\)
IF (NPEST.LT.1) GO TO 032
C
C OUTPUT HEADINGS
WRITE (NOUT6,939)
IF (NOUT.LT.1) GO TO 003
WRITE (NOUT10,943)
WRITE (NOUT10,944)
WRITE (NOUT10,945) NCALMX, NLIK, NSCALE , NM, NDER, ACCTOL , NVAR, NPEST,
1 (PARAMS (I), \(I=1\), NPAR)
WRITE (NOUT10,946)
C
C
003 NPRI \(=0\)
If (NOUT.GE.4) NPRI=1
NSTAGE=1
XLIKM \(=0.000\)
XLIKS=FLOAT(NPEST)
CALL REGLIK (NFLAG, NPEST, PARAMT, XLIKT, XLIKD,MWK,NMWK,WK,NWK)
```

0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0 4 7 0
0 4 7 1
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0 4 9 1
0492
0 4 9 3
0494
0495
0496
0497
0498
0 4 9 9
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511.01
0512.01
C
IF (XLIKT.GT.9.9D19) GO TO 031

```

0449 0451 452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0470 0472 0473 0474 0475 0476 0478 0479

0481
0482
0483
0484
0486
0487
0488
0490
0491
0492
0494
0495
0496
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510 0511.01
0512.01
```

    XLIKM=XLIKT*XLIKS-XLIKS
        IFAIL=1
        CALL EO4HBF(NPEST,REGLIK,PARAMT,NCALL,EPS,HESL,NHESL,HESD,
        1 XLIKT,XLIKD,MWK,NMWK,WK,NWK,IFAIL)
            IF (NPRI.NE.1) GO TO 004
            CALL MATPR1 (EPS,NPEST,1)
            CALL MATPR1(HESD,NPEST,1)
            CALL MATPRO(XLIKT,1)
            CALL MATPR1(XLIKD,NPEST,1)
    004 IF (IFAIL-1) 007,034,005
    005 WRITE (NOUT6,906)
    IF (NOUT.GE.1) WRITE (NOUT10,906)
    906 FORMAT (' *** REGAME: EO4JBF CANNOT START FROM THIS POINT ***')
    GO TO }01
    C
    007 IF (NCALMX.GT.0) GO TO 008
            IFAIL=3
            GO TO 012
    008 NCALMT =NCALMX
        NMONIT=1
        NSTYPE=1
        ETA=0.500
        IF (NPEST.EQ.1) ETA=0.000
        STEPMX=1.000
        XLKMIN=-1.0DO
        NBOUND=1
        IFAIL=1
    C
    C
    0 0 9
    CALL EO4JBF(NPEST,REGLIK,REGMON,NMONIT,LOGJBF,NSTYPE,EO4JBQ,
    1 CALL EO4UB (NCALMT,ETA,ACCTOL,STEPMX, XLKMIN,EPS,NBOUND,BOUNDL,
        l NCALMT,ETA,ACCTOL,STEPMX,XLKMIN,EPS,NBOUND,BDU
        1 BOLNDU,PARAMT,HESL,NHESL,HESD
            IF (IFAIL.EQ.1) GO TO 036
            IF (IFAIL.EQ.1) GO TO 036
            WRITE (NOUT6,910)
            IF (NOUT.GE.1) WRITE (NOUT10,910)
    910 FORMAT (' *** REGAME: EO4JBF FAILED BUT BEING RESTARTED ***')
        NSTYPE=0
        NCALMT=NCALMT/2
        GO TO 009
    011 CALL REGLIK(NFLAG,NPEST,PARAMT,XLIKT,XLIKD,MWK,NMWK,WK,NWK)
        IF (IFAIL.EQ.3) IFAIL=4
        IF (IFAIL.EQ.2) IFAIL=3
        IF (NPRI.NE.1) GO TO 012
        NN=((NPEST* (NPEST-1)))/2
        CALL MATPR1(HESL,NN,1)
        CALL MATPR1(HESD,NPEST,1)
        CALL MATPN1(MCONST,NPEST,1)
        CALL MATPR1(XLIIKD,NPEST,1)
    C
            CALCULATE PARAMETER VARIANCES AND RESULTS FOR OUTPUT
        C
    012
        CALL REGVAR(NVAR,HESL,NHESL,HESD,ACCTOL,NPEST,XLIKT,NL,NPARVR,
        1 PARAMT, PARVAR,SE,MWK,NMWK,WK,NWK,NPRI,IFAILT)
        IF (IFAILT.NE.0) IFAIL=IFAIL+10
        IF (NSCALE.EQ.1) XLIKD(NPAR)=0.000
        K=NPEST
        DO 013 JZ=1,NPAR
        XX=0.0D0
        J=NPAR+1-JZ
    ```
\begin{tabular}{|c|c|c|}
\hline 0513.01 & & IF (K.EQ.O) GO TO 013 \\
\hline 0514.01 & & IF (MLEST(K).NE.J) G0 TO 013 \\
\hline 0515.01 & & \(X \mathrm{X}=\mathrm{XLIKD}(\mathrm{K})\) \\
\hline 0516.01 & & \(k=k-1\) \\
\hline 0517.01 & 013 & XLIKD(J) \(=\) XX \\
\hline 0518 & & NPART \(=\) NPAR \\
\hline 0519 & C & \\
\hline 0520 & & XLIK=XLIKT*XLIKS+XLIKM \\
\hline 0521 & & \(\mathrm{K}=1\) \\
\hline 0522 & & DO \(014 \mathrm{~J}=1\), NPAR \\
\hline 0523.01 & & XX=0.000 \\
\hline 0524.01 & & If (MLEST (K).NE.J) GO TO 014 \\
\hline 0525.01 & & XX=PARAMT (\(K\)) \\
\hline 0526.01 & & \(k=K+1\) \\
\hline 0527.01 & 014 & \(\operatorname{PARAM}(J)=X X * P A R A M S(J)+\operatorname{PARAMM}(J)\) \\
\hline 0528.01 & C & \\
\hline 0529 & & RSCALE \(=\) DSQRT (SCALE) \\
\hline 0530 & & DO \(016 \mathrm{I}=1, \mathrm{NL}\). \\
\hline 0531.01 & & \(\mathrm{Z}(\mathrm{I})=\mathrm{Z}(\mathrm{I}) /\) RSCALE \\
\hline 0532.01 & & 2T (I\()=\) L (I) \\
\hline 0533.01 & & DO \(015 \mathrm{~J}=1\), NQA \\
\hline 0534.02 & 015 & \(\operatorname{THETA}(\mathrm{I}, \mathrm{J})=\operatorname{THETA}(\mathrm{I}, \mathrm{J})\) *RSCALE \\
\hline 0535.01 & & \(00016 \mathrm{~J}=1\), NPQA \\
\hline 0536.02 & 016 & \(\operatorname{VAR}(\mathrm{I}, \mathrm{J})=\operatorname{VAR}(\mathrm{I}, \mathrm{J}) * S C A L E\) \\
\hline 0537.02 & C & \\
\hline 0538.02 & C & OUTPUT OF RESULTS \\
\hline 0539.02 & C & \\
\hline 0540 & & WRITE (NOUT6,940) IFAIL, XLIK,(PARAM(J), J=1,NPAR) \\
\hline 0541 & & WRITE (NOUT6,941) (SE(J), \(=1\), NPAR) \\
\hline 0542 & & IF (NPAR.GE.2) WRITE (NOUT6,950) PARVAR(2,1) \\
\hline 0543 & & If (NPAR.LT.3) GO TO 51 \\
\hline 0544 & & DO \(50 \mathrm{~J}=3\), NPAR \\
\hline 0545.01 & & . \(\mathrm{KU}=\mathrm{J}-1\) \\
\hline 0546.01 & 50 & WRITE (NOUT6,951) (PARVAR (\(J, K), \mathrm{K}=1, \mathrm{KU})\) \\
\hline 0547 & 51 & If (NOUT.GE.1) CALL REGOUT(IFAIL, XLIK, XLIKD, PARAM, NPAR, SE, \\
\hline 0548 & & 1 PARVAR,NPARVR, Y, F, Z, THETA , NLMAX, \\
\hline 0549 & & 1 NL, NQA, VAR, NPQA,NP, NQ, NOUT) \\
\hline 0550 & & IF (NCVI.EQ.1) CALL REGCVI(VAR,NLMAX,NL, NPQA,NPA,NQA,NP,NQ, \\
\hline 0551 & & 1'. Y,F,PARAM, PARAMM, PARAMS, PARAMT, \\
\hline 0552 & & 1 MLEST, NPAR,NM,NDER,NOUT, IFAIL) \\
\hline 0553 & & RETURN \\
\hline 0554 & c & \\
\hline 0555 & C & ERROR MESSAGES \\
\hline 0556 & C & \\
\hline 0557 & 017 & WRITE (NOUT6,918) NL \\
\hline 0558 & & IF (NOUT.GE.1) WRITE (NOUT10,918) NL \\
\hline 0559 & 918 & FORMAT (' *** REGAME: NL =', I5,' OUT OF RANGE ***') \\
\hline 0560 & & IFAIL \(=1\) \\
\hline 0561 & & RETURN \\
\hline 0562 & 019 & WRITE (NOUT6,920) ACCTOL \\
\hline 0563 & & IF (NOUT.GE.1) WRITE (NOUT10,920) ACCTOL \\
\hline 0564 & 920 & FORMAT (' *** REGAME: ACCTOL \(=1,1 \mathrm{PG12.4,'}\) OUT OF RANGE ***') \\
\hline 0565 & & IFAIL \(=1\) \\
\hline 0566 & & RETURN \\
\hline 0567 & 021 & WRITE (NOUT6,922) NLIK \\
\hline 0568 & & IF (NOUT.GE.1) WRITE (NOUT10,922) NLIK \\
\hline 0569 & 922 & FORMAT (' *** REGAME: NLIK \(=^{\prime}, 15,1\) OUT Of RANGE ***') \\
\hline 0570 & & IFAIL=1 \\
\hline 0571 & & RETURN \\
\hline 0572 & 023 & WRITE (NOUT6,924) NM \\
\hline 0573 & & IF (NOUT.GE.1) WRITE (NOUT 10,924) NM \\
\hline 0574 & 924 & FORMAT (' *** REGAME: NM = ', \(15, \mathrm{O}\) (OUT OF RANGE ***') \\
\hline 0575 & & IFAIL \(=1\) \\
\hline 0576 & & RETURN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& 0577 \\
& 0578
\end{aligned}
\] & 025 & \begin{tabular}{l}
WRITE (NOUT6,926) NPARVR \\
IF (NOUT.GE.1) WRITE (NOUT 10,926) NPARVR
\end{tabular} \\
\hline 0579 & 926 & FORMAT (' *** REGAME: NPARVR \(=1,15, '\) OUT OF RANGE ***') \\
\hline 0580 & & IFAIL=1 \\
\hline 0581 & & RETURN \\
\hline 0582 & 027 & WRITE (NOUT6,928) NPAR \\
\hline 0583 & & IF (NOUT.GE.1) WRITE (NOUT 10,928) NPAR \\
\hline 0584 & 928 & \\
\hline 0585 & & IFAIL=1 \\
\hline 0586 & & RETURN \\
\hline 0587 & 029 & WRITE (NOUT6,930) SE(J) \\
\hline 0588 & & If (NOUT.GE.1) WRITE (NOUT10,930) SE(J) \\
\hline 0589 & 930 & FORMAT (' *** REGAME: SE = \({ }^{\prime}\), lPG12.4, \({ }^{(1)}\) OUT OF RANGE ***') \\
\hline 0590 & & IFAIL=1 \\
\hline 0591 & & RETURN \\
\hline 0592 & 032 & WRITE (NOUT6,933) \\
\hline 0593 & & IF (NOUT.GE.1) WRITE (NOUT10,933) \\
\hline 0594 & 933 & FORMAT (' *** REGAME: ALL PARAMETERS CONSTRAINED ***') \\
\hline 0595 & & IFAIL=1 \\
\hline 0596 & & RETURN \\
\hline 0597 & 031 & WRITE (NOUT6,934) \\
\hline 0598 & & IF (NOUT.GE.1) WRITE (NOUT10,934) \\
\hline 0599 & 934 & FORMAT (' *** REGAME: XLIK CANNOT BE EVAL. AT PARAM START ***') \\
\hline 0600 & & IFAIL=1 \\
\hline 0601 & & RETURN \\
\hline 0602 & 034 & WRITE (NOUT6,935) \\
\hline 0603 & & IF (NOUT.GE.1) WRITE (NOUT10,935) \\
\hline 0604 & 935 & FORMAT (' *** REGAME: EO4HBF PARAMETER OUT OF RANGE ***') \\
\hline 0605 & & RETURN \\
\hline 0606 & 036 & WRITE (NOUT6,937) \\
\hline 0607 & & IF (NOUT.GE.1) WRITE (NOUT10,937) \\
\hline 0608 & 937 & FORMAT (' *** REGAME: EO4JBF PARAMETER OUT OF RANGE ***') \\
\hline 0609 & & RETURN \\
\hline 0610 & C & \\
\hline 0611 & C & FORMAT STATEMENTS \\
\hline 0612 & C & \\
\hline 0613 & 938 & FORMAT (//9X, 'RESULTS FROM PROGRAM \\
\hline 0614 & & 1 'R E G A M E') \\
\hline 0615 & 939 & FORMAT (//' NITER NCALL XLIK XLIKCH SLOPE ', \\
\hline 0616 & & 1 'PARACH COND'/21X,'PARAM.....') \\
\hline 0617 & 940 & FORMAT (/' IFAIL \(=1,13,1 P G 14.6 / 19 \mathrm{X}, 5 \mathrm{G12.4/}\) \\
\hline 0618 & & 1 19X,5G12.4/19X,5G12.4/19X,5G12.4) \\
\hline 0619 & 941 & FORMAT (\(13 \mathrm{X},{ }^{\prime} \mathrm{S} . \mathrm{E}=\mathrm{=}\) ', 1P5G12.4/ \\
\hline 0620 & & 1 19X,5G12.4/19X,5G12.4/19X,5G12.4) \\
\hline 0621 & 950 & FORMAT (/12X, 'CORREL ',5(F8.4,4X)/ \\
\hline 0622 & & 1 19X,5(F8.4,4X)/19X,5(F8.4,4X)/19X,5(F8.4,4X)) \\
\hline 0623 & 951 & FORMAT (19X,5(F8.4,4X)/ \\
\hline 0624 & & \(119 \mathrm{X,5}\) (F8.4,4X)/19X,5(F8.4,4X)/19X,5(F8.4,4X)) \\
\hline 0625 & 942 & \\
\hline 0626 & & \(1^{\prime}\) REGAME - C.A.GLASBEY'J) \\
\hline 0627 & 943 & FORMAT (/1x,119('*') \\
\hline 0628 & & \\
\hline 0629 & & \\
\hline 0630 & & 1 , 35X, 'F', \(3 \mathrm{X},{ }^{\prime} U^{\prime}, 5 \mathrm{X},{ }^{\prime} U^{\prime}, 3 \mathrm{X},{ }^{\prime} 0^{\prime}\) \\
\hline 0631 & & \\
\hline 0632 & & \\
\hline 0633 & & 1 , 31X, 'A', 3x, '*', 3X, 'S', 1X, 'E', 3x, '*', 3x, 'S' \\
\hline 0634 & & \(1 / 1 X,{ }^{\prime} E^{\prime}, 3 \mathrm{X},{ }^{\prime}+\mathrm{l}, 3 \mathrm{X},{ }^{\prime} S^{\prime}, 1 \mathrm{X},{ }^{\prime} A^{\prime}, 3 \mathrm{X},{ }^{\prime}+1,3 \mathrm{X},{ }^{\prime} S^{\prime}\) \\
\hline 0635 & & \\
\hline 0636 & & \\
\hline 0637 & & \\
\hline 0638 & & \\
\hline 0639 & & \\
\hline 0640 & & 1 /1x,119(1*')/) \\
\hline
\end{tabular}


```

0770
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789.01
0790.01
0791.01
0792.01
0793.01
0794.01
0795.01
0796.01
0797.01
0798.01
0799.01
0800.01
0801.02
0802.02
0803
0804.01
0805.02
0806.02
0807.03
0808.02
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818.01
0819.02
0820.01
0821.01
0822.01
0823.01
0824.02
0825.01
0826.02
0827.02
0828.03
0829.02
0830
0831

```
C
```

C
006 IF (NM.EQ.0) GO TO 004
006 IF (NM.EQ.0) GO TO 004
IF (NDER.NE.1) GO TO 007
IF (NDER.NE.1) GO TO 007
IFAIL=0
IFAIL=0
CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT,IFAIL)
CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT,IFAIL)
IF (IFAIL.NE.0) GO TO 031
IF (IFAIL.NE.0) GO TO 031
GO TO 010
GO TO 010
C
C
007 NFDIF=1
007 NFDIF=1
IFAIL=1
IFAIL=1
k=1
k=1
DO OO9 J=1,NM
DO OO9 J=1,NM
XX=EPSL
XX=EPSL
IF (MLEST(K).EQ.J) XX=EPSL*PARAMS(J)
IF (MLEST(K).EQ.J) XX=EPSL*PARAMS(J)
PARAM(J)=PARAM (J)+XX
PARAM(J)=PARAM (J)+XX
CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,W1, VAR ,NPQA,NP ,NQ,NTEQ,
CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,W1, VAR ,NPQA,NP ,NQ,NTEQ,
1 NOUT,IFAIL)
1 NOUT,IFAIL)
XY=0.000
XY=0.000
IF (MLEST(K).NE.J) GO TO 008
IF (MLEST(K).NE.J) GO TO 008
XY=PARAMT(K)
XY=PARAMT(K)
K=K+1
K=K+1
008 PARAM(J)=XY*PARAMS(J)+PARAMM(J)
008 PARAM(J)=XY*PARAMS(J)+PARAMM(J)
IF (IFAIL.NE.0) GO TO 033
IF (IFAIL.NE.0) GO TO 033
DO 009 I=1,NL
DO 009 I=1,NL
009 \operatorname{DERIV}(I,J)=(W1(I)-F(I))/XX
009 \operatorname{DERIV}(I,J)=(W1(I)-F(I))/XX
C
C
010 DO 012 J=1,NM
010 DO 012 J=1,NM
00 012 K=1,J
00 012 K=1,J
XX=0.000
XX=0.000
00 011 I=1,NL
00 011 I=1,NL
011 xX=xX+DERIV(I,J)*DERIV(I,K)
011 xX=xX+DERIV(I,J)*DERIV(I,K)
012 DD(K,J)=XX
012 DD(K,J)=XX
IFAIL=1
IFAIL=1
CALL F03ABF(DD,5,NM,DDDET,W1,IFAIL)
CALL F03ABF(DD,5,NM,DDDET,W1,IFAIL)
IF (IFAIL.NE.0) GO TO 035
IF (IFAIL.NE.0) GO TO 035
IF (NPRI.NE.1) GO TO 013
IF (NPRI.NE.1) GO TO 013
CALL MATPR2(DERIV,NLMAX,NL,NM,1)
CALL MATPR2(DERIV,NLMAX,NL,NM,1)
CALL MATPR2(DO,5,NM,NM,1)
CALL MATPR2(DO,5,NM,NM,1)
CALL MATPRO(DDDET,1)
CALL MATPRO(DDDET,1)
C
C
013 DO 017 J=1,NM
013 DO 017 J=1,NM
DO 014 I=1,NL
DO 014 I=1,NL
014 WI(I)=DERIV (I,J)
014 WI(I)=DERIV (I,J)
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,0,0,W2,NOUT,NPRI,IFAIL)
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,0,0,W2,NOUT,NPRI,IFAIL)
CALL REGTRA(W2,NL,THETA,NLMAX,NQA, 1,0,W1,NOUT,NPRI, IFAIL)
CALL REGTRA(W2,NL,THETA,NLMAX,NQA, 1,0,W1,NOUT,NPRI, IFAIL)
IF (IFAIL.NE.0) GO TO 030
IF (IFAIL.NE.0) GO TO 030
00 015 I=1,NL
00 015 I=1,NL
DERIV(I,J)=W1(I)
DERIV(I,J)=W1(I)
00 017 K=1,J
00 017 K=1,J
xx=0.000
xx=0.000
D0 016 I= 1,NL
D0 016 I= 1,NL
016 x x=xX+DERIV(I,J)*DERIV(I,K)
016 x x=xX+DERIV(I,J)*DERIV(I,K)
017 DD(K,J)=XX
017 DD(K,J)=XX
IFAIL=1
IFAIL=1
CALL FO3ABF(DD,5,NM,DDTDET,W1,IFAIL)
CALL FO3ABF(DD,5,NM,DDTDET,W1,IFAIL)
IF (IFAIL.NE.0) GO TO 035

```
 IF (IFAIL.NE.0) GO TO 035
```

```
0833
0 8 3 4
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0 8 7 2
0 8 7 3
0874
0875
0876
0877
0878
0879
0880
0 8 8 1
0882
0883
0884
0885
0886
0887
0888
0889
0890
0 8 9 1
0892
0893
0894
0895
0896
```

```
 IF (NPRI.NE.1) GO TO 018
```

    IF (NPRI.NE.1) GO TO 018
        CALL MATPR2(DERIV,NLMAX,NL,NM,1)
        CALL MATPR2(DERIV,NLMAX,NL,NM,1)
        CALL MATPR2(DD,5,NM,NM,1)
        CALL MATPR2(DD,5,NM,NM,1)
        CALL MATPRO(DDTUET,1)
        CALL MATPRO(DDTUET,1)
    C
C
018 IF (NSTAGE.EQ.2) GO TO 019
018 IF (NSTAGE.EQ.2) GO TO 019
SCALE=1.000
SCALE=1.000
IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL-NM)
IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL-NM)
019 XLIKT=((FLOAT(NL-NM)*DLOG(SCALE)+SS/SCALE)/2.000+XLDET
019 XLIKT=((FLOAT(NL-NM)*DLOG(SCALE)+SS/SCALE)/2.000+XLDET
1 +DLOG(DDTDET/DDDET)/2.0D0-XLIKM)/XLIKS
1 +DLOG(DDTDET/DDDET)/2.0D0-XLIKM)/XLIKS
RETURN
RETURN
C N
C N
C NLIK=3 SUM OF SQUARES
C NLIK=3 SUM OF SQUARES
===\#== =============\#=
===\#== =============\#=
XLIK=0.5*NL*LOG(SCALE)+0.5*SS/SCALE
XLIK=0.5*NL*LOG(SCALE)+0.5*SS/SCALE
020 IF (NSTAGE.EQ.2) GO TO 021
020 IF (NSTAGE.EQ.2) GO TO 021
SCALE=1.000
SCALE=1.000
IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL)
IF (NSCALE.EQ.1) SCALE=SS/FLOAT(NL)
021 XLIKT=((FLOAT(NL)*DLOG(SCALE)+SS/SCALE)/2.000-XLIKM)/XLIKS
021 XLIKT=((FLOAT(NL)*DLOG(SCALE)+SS/SCALE)/2.000-XLIKM)/XLIKS
RETURN
RETURN
C
C
C ERROR MESSAGES
C ERROR MESSAGES
022 WRITE (NOUT6,923)
022 WRITE (NOUT6,923)
IF (NOUT.GE.1) WRITE (NOUT10,923)
IF (NOUT.GE.1) WRITE (NOUT10,923)
923 FORMAT (' *** REGLIK: REGMOD CANNOT EVALUATE F OR VAR ***')
923 FORMAT (' *** REGLIK: REGMOD CANNOT EVALUATE F OR VAR ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
024 WRITE (NOUT6,925) NP
024 WRITE (NOUT6,925) NP
IF (NOUT.GE.1) WRITE (NOUT10,925) NP
IF (NOUT.GE.1) WRITE (NOUT10,925) NP
925 FORMAT (' *** REGLIK: NP =',I5,' OUT OF RANGE ***')
925 FORMAT (' *** REGLIK: NP =',I5,' OUT OF RANGE ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
026 WRITE (NOUT6,927) NQ
026 WRITE (NOUT6,927) NQ
IF (NOUT.GE.1) WRITE (NOUT10,927) NQ
IF (NOUT.GE.1) WRITE (NOUT10,927) NQ
927 FORMAT (' *** REGLIK: NQ =',I5,' OUT OF RANGE ***')
927 FORMAT (' *** REGLIK: NQ =',I5,' OUT OF RANGE ***')
XLIKT=1.0D20
XLIKT=1.0D20
RETURN
RETURN
028 WRITE (NOUT6,929) NPQA
028 WRITE (NOUT6,929) NPQA
IF (NOUT.GE.1) WRITE (NOUT10,929) NPQA
IF (NOUT.GE.1) WRITE (NOUT10,929) NPQA
929 FORMAT ('**** REGLIK: NPQA =',15,' NOT EQUAL TO NP+NQ+1 ***')
929 FORMAT ('**** REGLIK: NPQA =',15,' NOT EQUAL TO NP+NQ+1 ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
030 XLIKT=1.0D20
030 XLIKT=1.0D20
RETURN
RETURN
031 WRITE (NOUT,932)
031 WRITE (NOUT,932)
IF (NOUT.GE.1) WRITE (NOUT10,932)
IF (NOUT.GE.1) WRITE (NOUT10,932)
932 FORMAT (' *** REGLIK: REGDER CANNOT EVALUATE DERIV ***')
932 FORMAT (' *** REGLIK: REGDER CANNOT EVALUATE DERIV ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
033 WRITE (NOUT6,934)
033 WRITE (NOUT6,934)
IF (NOUT.GE.1) WRITE (NOUT10,934)
IF (NOUT.GE.1) WRITE (NOUT10,934)
934 FORMAT (`*** REGLIK: REGMOD'CANNOT EVALUATE F FOR NLIK=2 ***')     934 FORMAT (`*** REGLIK: REGMOD'CANNOT EVALUATE F FOR NLIK=2 ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
035 WRITE (NOUT6,936)
035 WRITE (NOUT6,936)
IF (NOUT.GE.1) WRITE (NOUT10,936)
IF (NOUT.GE.1) WRITE (NOUT10,936)
936 FORMAT (' *** REGLIK: DETERMINANT FOR NLIK=2 NOT POS. DEF. ***')
936 FORMAT (' *** REGLIK: DETERMINANT FOR NLIK=2 NOT POS. DEF. ***')
XLIKT=1.0020
XLIKT=1.0020
RETURN
RETURN
END

```
 END
```




| 1025 | C | INPUT |  |
| :---: | :---: | :---: | :---: |
| 1026 | C | NVAR | 1 IF PARVAR TO BE EST. BY DIFFERENCE ME THOD |
| 1027 | C | HESL (NHESL) | LOWER TRIANGLE OF APPROX. TO SECOND DERIVS. |
| 1028 | C | NHESL | DIMENSION OF HESL |
| 1029 | C | HESD (NPEST) | DIAGONAL OF APPROX. TO SECOND DERIVATIVES |
| 1030 | C | ACCTOL | ACCURACY TO WHICH PAKAMETERS EST. BY EO4JBF |
| 1031 | C | NPEST | NUMBER OF PARAMETERS ESTIMATED |
| 1032 | C | XLIKT | RESCALED OPTIMIZATION FUNCTION AT MAX. |
| 1033 | C | NL | NUMBER OF OBSERVATIONS |
| 1034 | C | NPARVR | DIMENSIONS OF PARVAR |
| 1035 | C |  |  |
| 1036 | C | INPUT/OUTPUT |  |
| 1037 | C | PARAMT (16) | RESCALED ESTIMATED PARAMETERS AT MAX. |
| 1038 | C |  |  |
| 1039 | C | OUTPUT |  |
| 1040 | C | PARVAR(NPARVR, NPARVR) | ESTIMATED VARIANCES OF PARAMETERS, |
| 1041 | C |  | CORRELATIONS BELOW DIAGONAL |
| 1042 | C | SE(16) | Standard errors of parameters |
| 1043 | C |  |  |
| 1044 | C | DUMMY |  |
| 1045 | C | MWK (NMWK) |  |
| 1046 | C | NMWK |  |
| 1047 | C | WK (NWK) |  |
| 1048 | C | NWK |  |
| 1049 | C |  |  |
| 1050 | C | CONTROL |  |
| 1051 | C | NPRI | 1 INTERMEDIATE RESULTS OUTPUT |
| 1052 | C | IFAILT | 1 If parvar cannot be evaluated |
| 1053 | C |  |  |
| 1054 | C |  |  |
| 1055 | C |  |  |
| 1056 |  | DOUBLE PRECISION |  |
| 1057 |  | 1 HESL(NHESL), HESD(NPEST), ACCTOL, XLIKT, PARAMT(16), |  |
| 1058 |  | 1 PARVAR(NPARVR, NPARVR), SE ( 16 ), WK (NWK), |  |
| 1059 |  | 1 PARAMM (16), PARAMS (16), XLIKM, XLIKS, STEPMX,SCALE, |  |
| 1060 |  | 1 EPSV,REGVRF, $\operatorname{TRAN}(16,16), W 1(16), W 2(16), \operatorname{XLDER}(17,16)$, |  |
| 1061 |  | 1 XMM, XMP, XPM, XPP |  |
| 1062 |  | INTEGER |  |
| 1063 |  | 1 NVAR, NHESL, NPEST, NL, NPARVR, MWK (NMWK) , NMWK, NWK, NPRI, IFAILT, |  |
| 1064 |  | 1 MLEST(16),NPAR, | , NOUT, NSCALE, NSTAGE, |
| 1065 |  | 1 I, IFAILV, J, JF, J | JS, $\mathrm{K}, \mathrm{L}, \mathrm{NFLAG}, \mathrm{NPARN}, \mathrm{NPESTA}, \mathrm{NPESTN}, \mathrm{NPESTZ}$, |
| 1066 |  | 1 NTRAN, NXLDER |  |
| 1067 |  | COMMON |  |
| 1068 |  | 1 /REGCM1/ PARAMM, PA | ARAMS, XLIKM, XLIKS, STEPMX,MLEST,NPAR, NOUT |
| 1069 |  | 1 /REGCM2/ SCALE,NSCALE,NSTAGE |  |
| 1070 |  | 1 /NINOUT/ NIN1,NIN2 | 2 , NIN3,NIN4, NIN5, NOUT6, NOUT7, NOUT8, NOUT9, NOUT10 |
| 1071 | C ${ }^{\text {a }}$, |  |  |
| 1072 | C |  |  |
| 1073 | C |  |  |
| 1074 | C | LOCAL |  |
| 1075 | C | EPSV | STEP USED TO CALC SECOND DERIVS OF XLIKT |
| 1076 | C | I | I NDEX |
| 1077 | C | IFAILV | INTERNAL FAILURE INDICATOR |
| 1078 | C | J | I NDEX |
| 1079 | C | JF | UPPER BOUND ON J DO-LOOP |
| 1080 | C | JS | LOWER BOUND ON J DO-LOOP |
| 1081 | C | K | 1 NDEX |
| 1082 | C | L | INDEX |
| 1083 | C | NFLAG | DUMMY VARIABLE IN REGLIK |
| 1084 | C | NPARN | NPAR (+1 If NSCALE=1) |
| 1085 | C | NPESTA | NPESTN+1 |
| 1086 | C | NPESTN | NPEST ( +1 IF NSCALE $=1$ ) |
| 1087 | C | NPESTZ | NPESTN-1 |
| 1088 | C | NTRAN | DIMENSION OF TRAN |



| 1153.02 |  | MWK,NMWK,WK,NWK, NOUT, NPRI, IFAILV) |
| :---: | :---: | :---: |
| 1154.02 |  | If (IFAILV.NE.0) GO TO 010 |
| 1155.02 |  | XMM $=$ REGVRF ( $\mathrm{I}, \mathrm{J},-1,-1, \mathrm{~W} 1, \mathrm{~W} 2, E P S V, N P E S T N, T R A N, N T R A N, ~ P A R A M T, ~ N P E S T, ~$ |
| 1156.02 |  | 1 MWK,NMWK,WK,NWK,NOUT,NPRI,IFAILV) |
| 1157.02 |  | IF (IFAILV.NE.0) GO TO 010 |
| 1158.02 |  | IF (J.EQ.I) GO TO 008 |
| 1159.02 |  | XMP = REGVRF ( $1, \mathrm{~J},-1,1, W 1, W 2, E P S V, N P E S T N, T R A N, N T R A N, ~ P A R A M T, ~ N P E S T, ~$ |
| 1160.02 |  | 1 M M K , NMWK, WK, NWK, NOUT, NPRI, IFAILV) |
| 1161.02 |  | IF (IFAILV.NE.0) GO T0 010 |
| 1162.02 |  | XPM=REGVRF ( $1, J, 1,-1, W 1, W 2, E P S V, N P E S T N, T R A N, N T R A N ~, ~ P A R A M T ~, ~ N P E S T, ~$ |
| 1163.02 |  | 1 MWK, NMWK, WK , NWK,NOUT,NPRI, IFAILV) |
| 1164.02 |  | IF (IFAILV.NE.0) GO TO 010 |
| 1165.02 |  |  |
| 1166.02 |  | $X \operatorname{LDER}(\mathrm{~J}, \mathrm{I})=\mathrm{XLDER}(\mathrm{I}, \mathrm{J})$ |
| 1167.02 |  | G0 T0 009 |
| 1168.02 | 008 | XLDER (I, J) = (XPP-2.000*XLIKT+XMM)/(EPSV*EPSV) |
| 1169.02 | 009 | CONTINUE |
| 1170 |  | GO TO 014 |
| 1171 | C |  |
| 1172 | 010 | IF (IFAILT.EQ.1) G0 TO 025 |
| 1173 |  | WRITE (NOUT6,911) |
| 1174 |  | IF (NOUT .GE.1) WRITE (NOUT10,911) |
| 1175 | 911 | FORMAT ('*** REGVAR: FAILURE, VARIANCES AN APPROX. ***') |
| 1176 | 034 | IFAILT $=1$ |
| 1177 |  | DO 013 I=1,NPESTN |
| 1178.01 |  | DO $012 \mathrm{~J}=1, \mathrm{NPESTN}$ |
| 1179.02 | 012 | $\operatorname{XLDER}(1, J)=0.000$ |
| 1180.01 | 013 | $\operatorname{XLDER}(\mathrm{I}, \mathrm{I})=1.000$ |
| 1181 |  | GO TO 014 |
| 1182 | 014 | IF (NPRI.EQ.1) CALL MATPR2(XLDER,NXLDER,NPESTN,NPESTN,1) |
| 1183 | C |  |
| 1184 | C | MATRIX OF SECOND DERIVATIVES ON PARAMT SCALE XLDER |
| 1185 | C |  |
| 1186 |  | $00016 \mathrm{I}=1, \mathrm{NPESTN}$ |
| 1187.01 |  | DO $015 \mathrm{~J}=1$, NPESTN |
| 1188.02 | 015 | W1 (J) $=\operatorname{XLDER}(\mathrm{J}, \mathrm{I}$ ) |
| 1189.01 |  | CALL REGTRA(W1 , NPESTN, TRAN, NTRAN, NPESTN, $0,0, W 2$, NOUT, NPRI , IFAILV) |
| 1190.01 |  | DO $016 \mathrm{~J}=1$, NPESTN |
| 1191.02 | 016 | $\operatorname{XLDER}(\mathrm{J}, \mathrm{I})=\mathrm{W} 2(\mathrm{~J})$ |
| 1192.02 | C |  |
| 1193 |  | DO 018 I=1,NPESTN |
| 1194.01 |  | DO $017 \mathrm{~J}=1$, NPESTN |
| 1195.02 | 017 | W1 (J) $=$ XLDER ( $1, \mathrm{~J}$ ) |
| 1196.01 |  | CALL REGTRA(W1,NPESTN, TRAN,NTRAN,NPESTN, $0,0, \mathrm{~W} 2, N 0 U T, N P R I, I F A I L V)$ |
| 1197.01 |  | DO $018 \mathrm{~J}=1$, NPESTN |
| 1198.02 | 018 | $\operatorname{XLDER}(\mathrm{I}, \mathrm{J})=\mathrm{W} 2(\mathrm{~J})$ |
| 1199.02 | C |  |
| 1200.02 | C | VARIANCE MATRIX PARVAR , STANDARD ERRORS SE |
| 1201.02 | C | (OBTAINED BY INVERTING RESCALED XLDER) |
| 1202.02 | C |  |
| 1203 |  | IFAILV=1 |
| 1204 |  | CALL F01ABF (XLDER,NXLDER,NPESTN, PARVAR,NPARVR,W1, IFAILV) |
| 1205 |  | NPESTA $=$ NPESTN+1 |
| 1206 |  | If (NPRI.EQ.1) CALL MATPR2(XLDER,NXLDER,NPESTA,NPESTN,1) |
| 1207 |  | If (IFAILV.NE.0) GO TO 010 |
| 1208 | C |  |
| 1209 |  | $\mathrm{K}=1$ |
| 1210 |  | D0 $024 \mathrm{I}=1, \mathrm{NPARN}$ |
| 1211.01 |  | IF (MLEST(K).EQ.I) GO TO 021 |
| 1212.01 |  | DO $020 \mathrm{~J}=1, \mathrm{NPARN}$ |
| 1213.02 |  | $\operatorname{PARVAR}(\mathrm{J}, \mathrm{I})=0.000$ |
| 1214.02 | 020 | $\operatorname{PARVAR}(1, J)=0.000$ |
| 1215.01 |  | GO TO 024 |
| 1216.01 | 021 | L=K |



Wl（I）＝FLOAT（IS）＊EPSV
W1（J）＝FLOAT（JS）＊EPSV
CALL REGTRA（W1，NPESTN，TRAN ，NTRAN ，NPESTN $1,1,1, W 2$, NOUT ，NPRI ，IFAILV）
IF（IFAILV．NE．0）RETURN
$00001 \mathrm{~K}=1$ ，NPESTN
001 W2 $(K)=W 2(K)+\operatorname{PARAMT}(K)$
IF（NSCALE．EQ．1）SCALE＝W2（NPESTN）
CALL REGLIK（NFLAG，NPEST，W2，REGVRF，XLIKD，MWK，NMWK，WK，NWK）
IF（REGVRF．GT ．9．9019）IFAILV＝1
$W 1(\mathrm{I})=0.000$
$W 1(J)=0.000$
RETURN
END
SUBROUTINE REGOUT（IFAIL，XLIK，XLIKD，PARAM，NPAR，SE，PARVAR，NPARVR，
1
Y，F，Z，THETA，NLMAX，NL，NQA ，VAR，NPQA，NP，NQ，NOUT）
C
$\begin{array}{ll}C \\ C & \text { REGOUT }\end{array}$
玉＝ニニ＝$=$
OUTPUT COMPREHENSIVE SET OF RESULTS TO NOUTIO

## INPUT

IFAIL
XLIK XLIKD（NPAR） PARAM（NPAR）
NPAR SE（NPAR） PARVAR（NPARVR，NPARVR） NPARVR
$\mathrm{Y}(\mathrm{NL})$
F（NL）
Z（NL）
THETA（NLMAX，NQA）
NLMAX
NQA $\operatorname{VAR}(200, N P Q A)$
NPQA
NP
NO CONTROL nOUT

FAILURE INDICATOR FOR REGAME
FINAL VALUE OF OPTIMIZATION FUNCTION
FIRST DERIVATIVES OF XLIKT W．R．T．PARAMT
PARAMETER ESTIMATES
NUMBER OF MODEL PARAMETERS
STANDARD ERRORS OF PARAMETERS
PARAMETER VARIANCES，CORRELATIONS BELOW DIAG．
DIMENSIONS OF PARVAR
DATA VECTOR OF OBSERVATIONS
VECTOR OF FITTED VALUES
VECTOR OF STANDARDIZED RESIDUALS FROM MODEL
SECOND MATRIX IN TRIANGULAR BAND DECOMP．OF VAR
FIRST DIMENSION OF THETA，VAR
NUMBER OF OBSERVATIONS
BAND WIDTH OF THETA
BELOW DIAGONAL ELEMENTS OF VARIANCE MATRIX
NUMBER OF COLUMNS IN VAR
GENERALIZED AUTOREGRESSIVE ORDER
generalized moving average order

CONTROLS OUTPUT
1 IFAIL，XLIK，XLIKD，PARAM，SE，PARVAR OUTPUT
2 AND $Y, F, Z, V A R, N P, N Q$
$>2$ AND PLOTS OF Y，F，Z，VAR

| C |
| :--- |
| $C$ |

            DOUBLE PRECISION
        1 XLIK, XLIKD (NPAR), PARAM(NPAR), SE (NPAR), PARVAR(NPARVR, NPARVR),
            1 Y(NL), F (NL), Z (NL), THETA(NLMAX,NQA), VAR(NLMAX,NPQA),
            AST, BLA, SGN , VARCHR(11), VARMAX (11), VARMIN(11), VARNUM(11),
        1 W(200,4),WCHR(4),WSGN(16)
            INTEGER
        1 IFAIL, NPAR, NPARVR, NLMAX ,NL, NQA, NPQA, NP , NQ, NOUT ,
        1 I, IZ, J, JF, JFF,L,MAXIS (200), MCHN(11),MPL(2,1)
            COMMON
        \(1 /\) NINOUT/ NIN1,NIN2, NIN3,NIN4,NIN5, NOUT6,NOUT7,NOUT8, NOUT9, NOUT10
    C
    

| 1409.01 |  | IF (NPQA.GT.4) WRITE (NOUT10,929) (VAR(I, J), J=5,JFF) |
| :---: | :---: | :---: |
| 1410.01 |  | IF (NPQA.GT.8) WRITE (NOUT10,930) (VAR (I, J), J=9, NPQA) |
| 1411.01 | 005 | CONTINUE |
| 1412 |  | WRITE (NOUT10,921) AST |
| 1413 |  | IF (NOUT.LT.3) RETURN |
| 1414 | C |  |
| 1415 | C | NOUT>2 OUTPUT PLOTS OF Y,F,Z,VAR |
| 1416 | C |  |
| 1417 |  | WRITE (NOUT 10,931) |
| 1418 |  | $\operatorname{MCHN}(1)=1$ |
| 1419 |  | $\operatorname{MCHN}(2)=1$ |
| 1420 |  | $\operatorname{MCHN}(3)=1$ |
| 1421 |  | DO $006 \mathrm{I}=1$, NL |
| 1422.01 |  | MAXIS $(1)=1$ |
| 1423.01 |  | $W(1,1)=Y(1)$ |
| 1424.01 | 006 | $W(1,2)=F(I)$ |
| 1425 |  | CALL PLTLNG(W,NLMAX,NL, 3, VARMAX, VARMIN, $0, \mathrm{MCHN}, \mathrm{WCHR}, 1$, MAXIS $, 1,0$ ) |
| 1426 | C |  |
| 1427 |  | $\operatorname{MCHN}(2)=0$ |
| 1428 |  | $\operatorname{MCHN}(4)=2$ |
| 1429 |  | $00007 \mathrm{I}=1, \mathrm{NL}$ |
| 1430.01 |  | $W(1,1)=W(1,1)-F(1)$ |
| 1431.01 |  | $W(1,3)=W(1,3)-F(1)$ |
| 1432.01 | 007 | $W(1,4)=2(1)$ |
| 1433 |  | CALL PLTLNG(W,NLMAX,NL, 4, VARMAX, VARMIN, 0, MCHN, WCHR, 1, MAXIS $, 1,1$ ) |
| 1434 | C |  |
| 1435 |  | $\operatorname{MPL}(1,1)=4$ |
| 1436 |  | $\operatorname{MPL}(2,1)=2$ |
| 1437 |  | CALL PLTACR(W,NLMAX, NL, 4, VARMAX, VARMIN, $0, M P L, 1, M A X I S, 0)$ |
| 1438 | C |  |
| 1439 |  | $\operatorname{VARMAX}(1)=0.000$ |
| 1440 |  | $\operatorname{VARMIN}(1)=0.000$ |
| 1441. |  | $00008 \mathrm{I}=1, \mathrm{NL}$ |
| 1442.01 |  | DO $008 \mathrm{~J}=1, \mathrm{NP}$ Q |
| 1443.02 |  | $\operatorname{VARMAX}(1)=\operatorname{DMAXI}(\operatorname{VARMAX}(1), \operatorname{VAR}(1, j))$ |
| 1444.02 | 008 | $\operatorname{VARMIN}(1)=\operatorname{DMIN1}(\operatorname{VARMIN}(1), \operatorname{Var}(1, \mathrm{~J})$ ) |
| 1445 |  | DO $009 \mathrm{~J}=1, \mathrm{NPQA}$ |
| 1446.01 |  | $\operatorname{VARMAX}(J)=\operatorname{VARMAX}(1)$ |
| 1447.01 | 009 | $\operatorname{VARMIN}(\mathrm{J})=\operatorname{VARMIN}(1)$ |
| 1448 |  | $00010 \mathrm{~J}=1, \mathrm{NP}$ Q |
| 1449.01 |  | $\operatorname{MCHN}(J)=1$ |
| 1450.01 |  | $L=N P Q A+1-J$ |
| 1451.01 | 010 | $\operatorname{VARCHR}(J)=\operatorname{VARNUM}(\mathrm{L})$ |
| 1452 |  | CALL PLTLNG(VAR, NLMAX, NL, NPQA, VARMAX, VARMIN, 1 , MCHN, VARCHR, 1 , |
| 1453 |  | 1 M MAXIS,1,1) |
| 1454 |  | RETURN |
| 1455 | C |  |
| 1456 | 911 | FORMAT (////' R E S U L T S') |
| 1457 | 912 | FORMAT (//16X,'IFAIL', I4) |
| 1458 | 913 | FORMAT (/' NEG. LOG-LIKELIHOOD ',1PG14.6) |
| 1459 | 914 | FORMAT (/' FIRST DERIVATIVES ',1P7G14.6/22X,7G14.6/22X, 7G14.6) |
| 1460 | 917 | FORMAT (/12X,7114/12X,7114/12X,7114) |
| 1461 | 915 |  |
| 1462 | 916 | FORMAT ( $'$ STANDARD ERRORS ', $1 \mathrm{P} 7 \mathrm{G14.6/22X,7G14.6/22x,7G14.6)}$ |
| 1463 | 918 | FORMAT (/' (CO)VARIANCES ') |
| 1464 | 919 | FORMAT ( $15 \mathrm{X}, \mathrm{I} 6,1 \mathrm{X}, 1 \mathrm{P} 7 \mathrm{G14.6/22X}$, 7G14.6/22X, 7G14.6) |
| 1465 | 925 | FORMAT ( $/$ ' CORRELATIONS ') |
| 1466 | 926 | FORMAT ( $15 \mathrm{X}, \mathrm{I} 6,1 \mathrm{X}, 7$ ( $\mathrm{F} 10.6, \mathrm{~A} 2,2 \mathrm{X}) / 22 \mathrm{x}, 7(\mathrm{~F} 10.6, \mathrm{~A} 2,2 \mathrm{X}) /$ |
| 1467 |  | 1 22X,7(F10.6,A2,2X)) |
| 1468 | 920 | FORMAT (/22x,'(CORRELATIONS EXCEEDING 0.9 IN MAGNITUDE', |
| 1469 |  | 1 ' INDICATED BY ',A2, ')') |
| 1470 | 927 |  |
| 1471 |  |  |
| 1472 | 928 | FORMAT (I4,1P3G14.6,0PF12.6,A2,4X,1P4G14.6) |




```
1601
1602
1603
1604
1605
1606
1607
1608
1609.01
1610.02
1611.02
1612.02
1613.02
1614
1615
1616
1617
1618
1619
1620
1621
1622.01
1623
1624.01
1625.01
1626.01
1627.01
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640.01
1641.01
1642.01
1643.01
1644.01
1645.01
1646.01
1647.01
1648.01
1651.01 DO 010 I=1,NL
1653.02 C
1655
1656.01
1657.02
1658.02
1659.01
1660.01
1661.01 C
1662.01 C
1663.01
1664.01
```

```
1649.01 009 PARAM(J)=XY*PARAMS (J)+PARAMM(J)
```

1649.01 009 PARAM(J)=XY*PARAMS (J)+PARAMM(J)
1650.01 IF (IFAILP.NE.0) GO TO 025
1650.01 IF (IFAILP.NE.0) GO TO 025
1652.02 010 DERIV(I,J)=(W1(I)-F(I))/XX
1652.02 010 DERIV(I,J)=(W1(I)-F(I))/XX
1654 011 IF (NPRI.EQ.1) CALL MATPR2(DERIV,NLMAX,NL,NM,1)
1654 011 IF (NPRI.EQ.1) CALL MATPR2(DERIV,NLMAX,NL,NM,1)

```
C
```

C
NWRITE=MINO(NM,NPAR)
NWRITE=MINO(NM,NPAR)
WRITE (NOUT9,903) NM,NWRITE
WRITE (NOUT9,903) NM,NWRITE
IF (NWRITE.GT.0) WRITE (NOUT9,904) (PARAM(J),J=1,NWRITE)
IF (NWRITE.GT.0) WRITE (NOUT9,904) (PARAM(J),J=1,NWRITE)
C
C
C
C
WEIGHT CORRECTED PHI, THETA DECOMPOSITION OF VAR
WEIGHT CORRECTED PHI, THETA DECOMPOSITION OF VAR
DO 005 I=1,NL
DO 005 I=1,NL
00 005 J=1,NPQA
00 005 J=1,NPQA
K=I+J-NPQA
K=I+J-NPQA
XX=1.000
XX=1.000
IF (K.GT.0) XX=WT(K)
IF (K.GT.0) XX=WT(K)
VAR(I,J)=VAR(I,J)/(WT(I)*XX)
VAR(I,J)=VAR(I,J)/(WT(I)*XX)
NTEQ=0
NTEQ=0
IFAILP=0
IFAILP=0
CALL REGAMD(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,PHI,THETA, XLDET,
CALL REGAMD(VAR,NLMAX,NL,NPQA,NPA,NQA,NP,NQ,NTEQ,PHI,THETA, XLDET,
1
1
IF (IFAILP.NE.O) GO TO 021
IF (IFAILP.NE.O) GO TO 021
WRITE (NOUT8,903) NPA,NQA
WRITE (NOUT8,903) NPA,NQA
DO 006 J=1,NPA
DO 006 J=1,NPA
006 WRITE (NOUT8,904) (PHI(I,J),I=1,NL)
006 WRITE (NOUT8,904) (PHI(I,J),I=1,NL)
DO 007 J=1,NQA
DO 007 J=1,NQA
WRITE (NOUT8,904) (THETA(I,J),I=1,NL)
WRITE (NOUT8,904) (THETA(I,J),I=1,NL)
C
C
WEIGHT CORRECTED FIRST DERIVATIVES
WEIGHT CORRECTED FIRST DERIVATIVES
IF (NM.LE.0) RETURN
IF (NM.LE.0) RETURN
IF (NDER.NE.1) GO TO 008
IF (NDER.NE.1) GO TO 008
IFAILP=0
IFAILP=0
CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT,IFAILP)
CALL REGDER(PARAM,NPAR,NLMAX,NL,NM,DERIV,NOUT,IFAILP)
IF (IFAILP.NE.0) GO TO U23
IF (IFAILP.NE.0) GO TO U23
GO TO 011
GO TO 011
C
C
0 0 8 ~ E P S L = 1 . 0 D - 4 ~
0 0 8 ~ E P S L = 1 . 0 D - 4 ~
NFDIF=1
NFDIF=1
IFAILP=0
IFAILP=0
K=1
K=1
DO 010 J=1,NM
DO 010 J=1,NM
XX=EPSL
XX=EPSL
IF (MLEST(K).EQ.J) XX=EPSL*PARAMS(J)
IF (MLEST(K).EQ.J) XX=EPSL*PARAMS(J)
PARAM(J)=PARAM(J)+XX
PARAM(J)=PARAM(J)+XX
CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,Wl,VAR,NPQA,NP,NQ,NTEQ,
CALL REGMOD(PARAM,NPAR,NLMAX,NL,NFDIF,Wl,VAR,NPQA,NP,NQ,NTEQ,
1
1
NOUT,IFAILP)
NOUT,IFAILP)
XY=0.000
XY=0.000
IF (MLEST(K).NE.J) GO TO 009
IF (MLEST(K).NE.J) GO TO 009
XY=PARAMT (K)
XY=PARAMT (K)
K=K+1
K=K+1
DO 014 J=1,NM
DO 014 J=1,NM
00 012 I=1,NL
00 012 I=1,NL
Wl(I)=(DERIV(I,J))/WT(I)
Wl(I)=(DERIV(I,J))/WT(I)
012 DERIV(I,J)=W1(I)
012 DERIV(I,J)=W1(I)
WRITE (NOUT9,904) (DERIV(I,J),I=1,NL)
WRITE (NOUT9,904) (DERIV(I,J),I=1,NL)
C
C
C
C
C
C
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,0,0,W2,NOUT,NPRI,IFAILP)
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,0,0,W2,NOUT,NPRI,IFAILP)
CALL REGTRA(W2,NL,THETA,NLMAX,NQA,1,0,W1,NOUT.NPRI.IFAILP)

```
 CALL REGTRA(W2,NL,THETA,NLMAX,NQA,1,0,W1,NOUT.NPRI.IFAILP)
```

| 1665.01 |  | IF (IFAILP.NE.0) GO TO 027 |
| :---: | :---: | :---: |
| 1666.01 |  | CALL REGTRA(W1, NL, THETA, NLMAX, NQA, 1,1,W2, NOUT, NPRI, IFAILP) |
| 1667.01 |  | IF.(IFAILP.NE.0) GO TO 027 |
| 1668.01 |  | CALL REGTRA(W2,NL, PHI, NLMAX,NPA, 0, 1,W1,NOUT, NPRI, IFAILP) |
| 1669.01 |  | DO $013 \mathrm{I}=1, \mathrm{NL}$ ( ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ |
| 1670.02 | 013 | DERIVT(I, J) =W1 (I) |
| 1671.01 | 014 | CONTINUE |
| 1672.01 | C |  |
| 1673 |  | DO $016 \mathrm{~J}=1$, NM |
| 1674.01 |  | DO $016 \mathrm{~K}=\mathrm{J}$, NM |
| 1675.02 |  | X $\mathrm{X}=0.000$ |
| 1676.02 |  | $00015 \mathrm{I}=1, \mathrm{NL}$ |
| 1677.03 | 015 | $X X=X X+D E R I V T(I, J) * \operatorname{DERIV}(1, \mathrm{X})$ |
| 1678.02 |  | $D D(K, J)=X X \quad$ ( ${ }^{\text {d }}$ |
| 1679.02 | 016 | DO $(\mathrm{J}, \mathrm{K})=\mathrm{XX}$ |
| 1680 |  | IF (NPRI.EQ.1) CALL MATPR2(DO,NDD,NM,NM,1) |
| 1681 |  | IFAILP $=1$ |
| 1682 |  | CALL FO1ABF (DD, NDD, NM, DDI, NDDI, W1, IFAILP) |
| 1683 |  | IF (IFAILP.NE.0) GO TO 029 |
| 1684 |  | DO $017 \mathrm{~J}=1$, NM |
| 1685.01 |  | $00017 \mathrm{~K}=\mathrm{J}$, NM |
| 1686.02 | 017 | $\operatorname{DDI}(\mathrm{J}, \mathrm{K})=\operatorname{DDI}(\mathrm{K}, \mathrm{J})$ |
| 1687 |  | If (NPRI.EQ.1) CALL MATPR2(DDI,NDDI,NM,NM,1) |
| 1688 | C |  |
| 1689 |  | DO $020 \mathrm{~J}=1$, NM |
| 1690.01 |  | $00019 \mathrm{I}=1$, NL |
| 1691.02 |  | $x \mathrm{X}=0.000$ |
| 1692.02 |  | $00018 \mathrm{~K}=1$, NM |
| 1693.03 | 018 | $x \mathrm{X}=\mathrm{XX} \times \mathrm{DERIVT}(\mathrm{I}, \mathrm{K}) * \operatorname{DDI}(\mathrm{~K}, \mathrm{~J})$ |
| 1694.02 | 019 | $\operatorname{DERIV}(\mathrm{I}, \mathrm{J})=\mathrm{XX}$ |
| 1695.01 | 020 | WRITE (NOUT9,904) (DERIV (I, J), $\mathrm{I}=1, \mathrm{NL}$ ) |
| 1696 |  | IF (NPRI.EQ.1) CALL MATPR2(DERIV,NLMAX,NL, NM, 1) |
| 1697 |  | RETURN |
| 1698 | C | - |
| 1699 | C | ERROR MESSAGES |
| 1700 | C |  |
| 1701 | 021 | WRITE (NOUT6,922) |
| 1702 |  | IF (NOUT.GE.1) WRITE (NOUT10,922) |
| 1703 | 922 | FORMAT (' *** REGCVI, REGAMD FAILS ***') |
| 1704 |  | RETURN |
| 1705 | 023 | WRITE (NOUT6,924) |
| 1706 |  | If (NOUT.GE.1) WRITE (NOUT10,924) |
| 1707 | 924 | FORMAT (' *** REGCVI, REGDER FAILS ***') |
| 1708 |  | RETURN |
| 1709 | 025 | WRITE (NOUT6,926) |
| 1710 |  | IF (NOUT.GE.1) WRITE (NOUT10,926) |
| 1711 | 926 | FORMAT ( ${ }^{\text {( } * * \text { REGCVI, REGMOD }}$ FAILS ***') |
| 1712 |  | RETURN |
| 1713 | 027 | WRITE (NOUT6,928) |
| 1714 |  | IF (NOUT.GE.1) WRITE (NOUT10,928) |
| 1715 | 928 | FORMAT (' *** REGCVI, REGTRA FAILS ***') |
| 1716 |  | RETURN |
| 1717 | 029 | WRITE (NOUT6,930) |
| 1718 |  | IF (NOUT.GE.1) WRITE (NOUT10,930) |
| 1719 | 930 | FORMAT (' *** REGCVI, FOIABF FAILS, MATRIX NOT POS. DEF. ***') |
| 1721 |  | RETURN END |
| 1722 |  |  |
| 1723 |  | SUBROUTINE REGAMD(VAR, NLMAX, NL, NPQA, NPA, NQA, NP, NQ, NTEQ, PHI, |
| 1724 |  | 1 THETA, XLDET,NOUT,NPRI, IFAIL) |
| 1725 | C |  |
| 1726 | C |  |
| 1727 | C |  |
| 1728 | C | REGAMD |




| 1857.03 |  | NV1=MAXO(IJ, IL ) |
| :---: | :---: | :---: |
| 1858.03 |  | NV2=NPQA-IABS (IJ-IL) |
| '1859.03 | 003 | WA (LAQ, $)=\operatorname{VAR}(N V 1, N V 2)$ |
| 1860.02 |  | NV2=NPQA-L |
| 1861.02 | 004 | $W B(L A Q)=-\operatorname{VAR}(1, N V 2)$ |
| 1862.02 | C |  |
| 1863.01 |  | NJGF $=0$ |
| 1864.01 |  | IFAIL=1 |
| 1865.01 |  | CALL FO4ATF (WA,NPMAX,WB, JF,WC,W,NPMAX,W1,W2, IFAIL) |
| 1866.01 |  | If (IFAIL.EQ.0) GO TO 006 |
| 1867.01 | C |  |
| 1868.01 | C | If SImULTANEOUS EQNS. NOT Of FULL RANK USE FO4JGF |
| 1869.01 | C |  |
| 1870.01 |  | NJGF=1 |
| 1871.01 |  | NCJGF=NCJGF +1 |
| 1872.01 |  | IFAIL $=1$ |
| 1873.01 |  | TOL=X02AAF ( $X X$ ) |
| 1874.01 |  | D0 $005 \mathrm{~J}=1, \mathrm{JF}$ |
| 1875.02 | 005 | WC(J) $=$ WB (J) |
| 1876.01 |  | CALL FO4JGF (JF, JF, WA, NPMAX, WC, TOL, LOGJGF, $X$, |
| 1877.01 |  | IF (IFAIL.NE.0) GO TO 021 |
| 1878.01 | C |  |
| 1879.01 | 006 | DO $007 \mathrm{~J}=1, \mathrm{JF}$ |
| 1880.02 |  | $J P=N P A-J$ |
| 1881.02 | 007 | $\operatorname{PHI}(\mathrm{I}, \mathrm{JP})=W \mathrm{C}(\mathrm{J})$ |
| 1882.01 | 008 | CONTINUE |
| 1883.01 | C |  |
| 1884 |  | IF (NCJGF .EQ.0) GO TO 011 |
| 1885 |  | WRITE (NOUT6,910) NCJGF |
| 1886 |  | IF (NOUT.GE.1) WRITE (NOUT10,910) NCJGF |
| 1887 | 910 | FORMAT (' *** REGAMD: AUTOREGRESSIVE ORDER<NP IN', I5,' ROWS ***') |
| 1888 | 011 | IF (NPRI.NE.1) GO TO 012 |
| 1889 | c |  |
| 1890 |  | CALL MATPR2(VAR,NLMAX, NL, NPQA,1) |
| 1891 |  | CALL MATPR2(PHI, NLMAX, NL, NPA, 1) |
| 1892 | C |  |
| 1893 | C | THETA |
| 1894 | C | ===== |
| 1895 | C |  |
| 1896 | C | CALCULATE RECTANGULAR MATRIX THETA(NL, NQA) FROM |
| 1897 | C | MATRICES PHI(NL, NPA) AND VAR(NL,NPQA) USING |
| 1898 | C |  |
| 1899 | C | THETA(I,NQA-L) $=$ SUMK PHI(I-L,NPA-K)*PHIVAR ( $L+K+1$ ) |
| 1900 | c |  |
| 1901 | C | SUMK FROM 0 TO MIN(NPA, 1-L,NQA-L)-1 |
| 1902 | C | FOR L FROM 0 TO MIN(NQA, I)-1 |
| 1903 | C |  |
| 1904 | C | WHERE |
| 1905 | C | PHIVAR(L+K+1) = SUMJ PHI (I,NPA-J)*COV(I-J,I-L-K) |
| 1906 | C |  |
| 1907 | C | SUMJ FROM 0 TO MIN(NPA, I)-1 |
| 1908 | C | FOR L+K+1 FROM 1 TO MIN(NPQA, I) |
| 1909 | C |  |
| 1910 | C | - |
| 1911 | C | FOR I FROM 1 TO NL |
| 1912 | C |  |
| 1913 | C |  |
| 1914 | 012 | DO $013 \mathrm{I}=1$, NQA |
| 1915.01 |  | $00013 \mathrm{~J}=1, \mathrm{NQA}$ |
| 1916.02 | 013 | $\operatorname{THETA}(\mathrm{I}, \mathrm{J})=0.000$ |
| 1917.02 | C |  |
| 1918 |  | $00017 \mathrm{I}=1, \mathrm{NL}$ |
| 1919.01 |  | LKAF $=$ MINO(NPQA, I) |
| 1920.01 |  | DO 015 LKA $=1$, LKAF |


| 1921.02 |  | ILK $=1+1-L K A$ |
| :---: | :---: | :---: |
| 1922.02 |  | $X \mathrm{X}=0.000$ |
| 1923.02 |  | $J A F=M I N O(N P A, I)$ |
| 1924.02 |  | 00014 JA=1,JAF |
| 1925.03 |  | $\mathrm{J}=\mathrm{JA}-1$ |
| 1926.03 |  | $\mathrm{IJ}=\mathrm{I}-\mathrm{J}$ |
| 1927.03 |  | NVI=MAXO(IJ,ILK) |
| 1928.03 |  | NV2=NPQA-IABS(IJ-ILK) |
| 1929.03 |  | $J P=N P A-J$ |
| 1930.03 | 014 | $X X=X X+P H I(1, J P) * V A R(N V 1, N V 2)$ |
| 1931.02 | 015 | $\operatorname{PHIVAR}(L K A)=X X$ |
| 1932.02 | C |  |
| 1933.01 |  | LAF $=$ MINO(NQA, I) |
| 1934.01 |  | DO 017 LA $=1$, LAF |
| 1935.02 |  | $L=L A-1$ |
| 1936.02 |  | $\mathrm{IL}=\mathrm{I}-\mathrm{L}$ |
| 1937.02 |  | $X \mathrm{X}=0.000$ |
| 1938.02 |  | KAF $=$ MINO(NPA, IL , NQA-L) |
| 1939.02 |  | DO $016 \mathrm{KA}=1, \mathrm{KAF}$ |
| 1940.03 |  | $K=K A-1$ |
| 1941.03 |  | $K P=N P A-K$ |
| 1942.03 |  | $L K A=L A+K$ |
| 1943.03 | 016 | XX $=$ XX $\mathrm{P}+\mathrm{PHI}$ (IL, KP)*PHIVAR(LKA) |
| 1944.02 |  | $L Q=N Q A-L$ |
| 1945.02 | 017 | THETA ( $1, L Q$ ) $=\mathrm{XX}$ |
| 1946.02 | C |  |
| 1947 |  | IF (NPRI.EQ.1) CALL MATPR2(THETA, NLMAX, NL, NQA, 1) |
| 1948 | C |  |
| 1949 | C | CHOLESKY DECOMPOSITION OF BAND MATRIX THETA |
| 1950 | C |  |
| 1951 |  | IFAIL=1 |
| 1952 |  | CALL FO3AGF (NL, NQ, THETA, NLMAX, THETA, NLMAX, NQA, XLDET, NDET, IFAIL) |
| 1953 |  | IF (IFAIL.NE.0) GO TO 019 . |
| 1954 | C |  |
| 1955 |  | D0 $018 \mathrm{I}=1, \mathrm{NL}$ |
| 1956.01 | 018 | THETA ( I, NQA $=1.000 /$ THETA $(1, N Q A)$ |
| 1957 |  | XLOET $=($ DLOG $(X L D E T)+F L O A T(N D E T) * D L O G(2.000)) / 2.000$ |
| 1958 |  | IF (NPRI.NE.1) RETURN |
| 1959 | C |  |
| 1960 |  | CALL MATPRO(XLDET,1) |
| 1961 |  | CALL MATPR2(THETA, NLMAX, NL, NQA, 1) |
| 1962 |  | RETURN |
| 1963 | C |  |
| 1964 | C | ERROR MESSAGES |
| 1965 | C |  |
| 1966 | 021 | WRITE (NOUT6,922) |
| 1967 |  | IF (NOUT.GE.1) WRITE (NOUT10,922) |
| 1968 | 922 | FORMAT (' *** REGAMD: FO4JGF FAILS, PHI CANNOT BE FOUND *** |
| 1969 |  | IFAIL=1 |
| 1970 |  | RETURN |
| 1971 | 019 | WRITE (NOUT6,920) |
| 1972 |  | IF (NOUT.GE.1) WRITE (NOUT10,920) |
| 1973 | 920 | FORMAT (' *** REGAMD: VARIANCE MATRIX NOT POSITIVE DEFINITE ***') |
| 1974 |  | RETURN |
| 1975 |  | END |
| 1976 |  | SUBROUTINE REGTRA(X,NL, BAND, NLMAX, NBAND, NINV,NTRA, Y,NOUT, NPRI, |
| 1977 |  |  |
| 1979 | C |  |
| 1980 | C |  |
| 1981 | C |  |
| 1982 | C | REGTRA |
| 1983 | C | ==E=E= |
| 1984 | C |  |



2049
2050
2051
2052
2053
2054
2055.01
2056.01
2057.01
2058.02
2059.02 2060.01

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073.01
2074.01
2075.01
2076.02
2077.02
2078.01

2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094.01
2095.01
2096.01
2097.01
2098.02
2099.02
2100.01
2101.01

2103
2104
2105
2106
2107
2108 2109
2110
2111
2112

```
c. Y(I) = SUMK BAND(I,K) * X(I+K-NBAND)
```

c. Y(I) = SUMK BAND(I,K) * X(I+K-NBAND)
00 003 I=1,NL
00 003 I=1,NL
XX=0.000
XX=0.000
KS=MAXO(NBANDA-1,1)
KS=MAXO(NBANDA-1,1)
OO OO2 K=KS,NBAND
OO OO2 K=KS,NBAND
J=I+K-NBAND
J=I+K-NBAND
XX=XX+BAND(I,K)*X(J)
XX=XX+BAND(I,K)*X(J)
Y(I)=XX
Y(I)=XX
IF (NPRI.EQ.1) CALL MATPRI(Y,NL,1)
IF (NPRI.EQ.1) CALL MATPRI(Y,NL,1)
RETURN
RETURN
C
C
NINV =0 NTRA = 1
NINV =0 NTRA = 1
Y(I) = SUMJ BAND(J,NBAND+I-J) * X(J)
Y(I) = SUMJ BAND(J,NBAND+I-J) * X(J)
SUMJ FROM I TO MIN(I+NBAND-I,NL)
SUMJ FROM I TO MIN(I+NBAND-I,NL)
D0 006 I= 1,NL
D0 006 I= 1,NL
XX=0.0DO
XX=0.0DO
JF=MINO(I+NBANDZ,NL)
JF=MINO(I+NBANDZ,NL)
DO 005 J=1,JF
DO 005 J=1,JF
K=NBAND+I -J
K=NBAND+I -J
XX=XX+BAND(J,K)*X(J)
XX=XX+BAND(J,K)*X(J)
Y(I)=XX
Y(I)=XX
IF (NPRI.EQ.1) CALL MATPRI(Y,NL,1)
IF (NPRI.EQ.1) CALL MATPRI(Y,NL,1)
RETURN
RETURN
NINV =1 NTRA = 0
NINV =1 NTRA = 0
==ッニッキッ= ========
==ッニッキッ= ========
Y(I) = (X(I) - SUMK BAND(I,K) * Y(I+K-NBAND) ) / BAND(I,NBAND)
Y(I) = (X(I) - SUMK BAND(I,K) * Y(I+K-NBAND) ) / BAND(I,NBAND)
SUMK FROM MAX(NBAND+1-I,1) TO NBAND-1
SUMK FROM MAX(NBAND+1-I,1) TO NBAND-1
007 IF (BANO(1,NBAND).EQ.O.000) GO TO 023
007 IF (BANO(1,NBAND).EQ.O.000) GO TO 023
Y(1)=X(1)/BAND(1,NBAND)
Y(1)=X(1)/BAND(1,NBAND)
IF (NL.EQ.1) GO TO 011
IF (NL.EQ.1) GO TO 011
DO 010 I=2,NL
DO 010 I=2,NL
XX=X(I)
XX=X(I)
IF (NBAND.EQ.1) GO TO 009
IF (NBAND.EQ.1) GO TO 009
KS=MAXO(NBANDA-I,1)
KS=MAXO(NBANDA-I,1)
DO 008 K=KS,NBANDZ
DO 008 K=KS,NBANDZ
J=I+K-NBAND
J=I+K-NBAND
XX=XX-8ANO (I,K)*Y(J)
XX=XX-8ANO (I,K)*Y(J)
IF (BAND(I,NBAND).EQ.0.000) GO TO 023
IF (BAND(I,NBAND).EQ.0.000) GO TO 023
Y(I)=XX/BAND(I,NBAND)
Y(I)=XX/BAND(I,NBAND)
IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1)
IF (NPRI.EQ.1) CALL MATPR1(Y,NL,1)
RETURN
RETURN
NINV = 1 NTRA = 1
NINV = 1 NTRA = 1
======== ========
======== ========
Y(I) = ( X(I) - SUMJ BAND(J,NBAND+I-J) * Y(J) ) / BAND(I,NBAND)
Y(I) = ( X(I) - SUMJ BAND(J,NBAND+I-J) * Y(J) ) / BAND(I,NBAND)
SUMJ FROM I+1 TO MIN(I+NBAND-1,NL)

```
 SUMJ FROM I+1 TO MIN(I+NBAND-1,NL)
```





## Appendix B

Example of output from REGAME to channel NOUT10 (see [2.4.7]).
(1) Colquhoun's data, single exponential regression with independent errors, fitted by least-squares estimation (see [4.3.2]);
(i) history of iterations,
(ii) parameter estimates and standard errors,
(iii) fitted model,
(iv) line printer plots.
(2) Colquhoun's data, single exponential regression with ARMA $(1,1)$ errors, fitted by maximum likelihood estimation (see [4.3.4]).

RESULTS FROM PROGRAM REGAME C C.A.GLASBEY


ITERATIONS

|  | $\begin{aligned} & \text { NCALMX } \\ & 100 \end{aligned}$ | $\underset{1}{\text { MLIK }}$ | $\begin{array}{r} \mathrm{NM} \\ 3 \end{array}$ | $\begin{gathered} \text { NDER } \\ 1 \end{gathered}$ | $\begin{aligned} & \text { ACCTOL } \\ & 1.00-04 \end{aligned}$ | $\begin{gathered} \text { NVAR } \\ 1 \end{gathered}$ | $\begin{gathered} \text { NPEST } \\ 3 \end{gathered}$ | $\begin{aligned} & \text { PARAMS..... } \\ & 1.00000 \end{aligned}$ | 1.00000 | 0.200000 | $0.0000000 \times 00$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{0}{\text { NITER }}$ | $\begin{gathered} \text { MCALL } \\ 0 \end{gathered}$ | $\begin{aligned} & \text { XLIK } \\ & 103.692 \end{aligned}$ | $\begin{aligned} & \text { XLIKCH } \\ & 1.00-10 \end{aligned}$ | $\begin{gathered} \text { SLOPE } \\ 01.40+01 \end{gathered}$ | parach $1.00-10$ | $\begin{aligned} & \text { COND } \\ & 1.60 \div 01 \end{aligned}$ |  | $\begin{aligned} & \text { PARAM..... } \\ & \text {-90.0000 } \end{aligned}$ | 80.0000 | 7.00000 | -1.57080 |
| 1 | 6 | 59.6059 | $1.00+00$ | $01.80+00$ | 5.00-01 | $7.60+00$ | C | -89.8687 | 80.1165 | 7.19689 | -1.57080 |
| 2 | 13 | 34.0910 | 6.10-01 | $13.90-01$ | 3.40-01 | $1.80+01$ |  | -89.5717 | 79.6061 | 7.34952 | -1.57080 |
| 3 | 18 | 15.3577 | 4.60-01 | 14.50-01 | 3.00-01 | $1.10+01$ | c | -89.3397 | 78.6399 | 7.36940 | -1.57080 |
| 4 | 23 - | -1.70056 | 4.00-01 | $13.00-01$ | 2.50-01 | 3.00+01 | C | -89.0894 | 71.6844 | 7.33817 | -1.57080 |
| 5 | 27 | -4.19857 | 1.50-01 | 1 1.70-01 | 2.40-01 | $2.80+01$ | c | -88.7165 | 71.1758 | 7.18296 | -1.57080 |
| 6 | 31 | -6.33802 | 1.40-01 | 1 7.70-03 | 1.10-01 | $2.70+01$ |  | -88.8766 | 71.4458 | 1.24023 | -1.57080 |
| 7 | 35 | -6.34258 | 6.40-03 | 3 1.00-02 | 1.10-02 | 3.00+01 |  | -88.8567 | 71.4558 | 7.23293 | -1.57080 |
| 8 | 39 | -6.34460 | 4.30-03 | 3 1.10-03 | 3.50-03 | 3.50+01 |  | -88.8626 | 77.4476 | 7.23488 | -1.57080 |
| 9 | 43 -6 | -6.34463 | 4.80-04 | 4 9.80-05 | 2.80-04 | $3.30+01$ |  | -88.8629 | 11.4483 | 7.23504 | -1.57080 |
| 10 | 50 | -6.34463 | 6.80-05 | 5 2.70-06 | 6.30-05 | $3.10+01$ |  | -88.8628 | 71.4483 | 7.23500 | -1.57080 |
| 10 | 57 | -6.34463 | 1.00-10 | 0 2.70-06 | 1.00-10 | $3.10+01$ |  | -88.8628 | 11.4483 | 7.23500 | -1.57080 |

```
RESULTS
```

Ifail 0
MEG. LOG-LIXELIHOOO -6.34463
FIRST OERIVATIVES -6.0737170-05 $2.6092640-05-7.1728820-05 \quad 0.0000000+00 \quad 0.0000000+00$

|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| parameter estimates | -88.8628 | 77.4483 | 7.23500 | -1.57080 | 0.332096 |
| Stakdard errors | 0.121258 | 0.299208 | 5.8111930 -02 | $0.0000000+00$ | 4.2176150-02 |
| (co) variances |  |  |  |  |  |
| 1 | 1.4703400-02 |  |  |  |  |
| 2 | 6.4304520-03 | 8.9525260-02 |  |  |  |
| 3 | -5.7519350-03 | -1.0415150-02 | 3.3769970-03 |  |  |
| 4 | $0.0000000+00$ | 0.0000000+00 | $0.0000000+00$ | $0.0000000+00$ |  |
| 5 | $2.0546150-08$ | 9.1697910-08 | 1.1864890-08 | $0.0000000+00$ | 1.7788270-03 | correlations




| 96 | -86.6700 | -86.4174 | -86.4174 | -0.438270 | 0.332096 |
| ---: | :--- | :--- | :--- | ---: | ---: |
| 97 | -86.9140 | -86.5005 | -86.5005 | -0.717556 | 0.332096 |
| 98 | -86.4260 | -86.5807 | -86.5807 | 0.268485 | 0.332096 |
| 99 | -86.6700 | -86.6582 | -86.6582 | -0.020425 | 0.332096 |
| 100 | -86.6700 | -86.7311 | -86.7331 | 0.109505 | 0.332096 |
| 101 | -86.4260 | -86.8054 | -86.8054 | 0.658428 | 0.332096 |
| 102 | -86.9140 | -86.8753 | -86.8753 | -0.067133 | 0.332096 |
| 103 | -86.9140 | -86.9428 | -86.9428 | 0.050003 | 0.332096 |
| 104 | -87.1580 | -87.0080 | -87.0080 | -0.260248 | 0.332096 |
| 105 | -86.9140 | -87.0710 | -87.0710 | 0.272473 | 0.332096 |
| 106 | -87.4020 | -87.1319 | -87.1319 | -0.468741 | 0.332096 |
| 107 | -87.4020 | -87.1907 | -87.1907 | -0.366727 | 0.332096 |
| 108 | -87.8900 | -87.2475 | -87.2475 | -1.114992 | 0.332096 |
| 109 | -87.6460 | -87.3023 | -87.3023 | -0.596382 | 0.332096 |
| 110 | -87.6460 | -87.3553 | -87.3553 | -0.504414 | 0.332096 |
| 111 | -87.6460 | -87.4065 | -87.4065 | -0.415568 | 0.332096 |
| 112 | -87.8900 | -87.4560 | -87.4560 | -0.753148 | 0.332096 |
| 113 | -87.6460 | -87.5038 | -87.5038 | -0.246828 | 0.332096 |
| 114 | -88.1350 | -87.5499 | -87.5499 | -1.015282 | 0.332096 |
| 115 | -88.3790 | -87.5945 | -87.5945 | -1.361313 | 0.332096 |
| 115 | -88.6230 | -87.6376 | -87.6376 | -1.709972 | 0.332096 |
| 117 | -88.1350 | -87.6792 | -87.6792 | -0.790948 | 0.332096 |
| 118 | -88.8670 | -87.7194 | -87.7194 | -1.991413 | 0.332096 |
| 119 | -88.1350 | -87.7582 | -87.7582 | -0.653804 | 0.332096 |
| 120 | -88.1350 | -87.7957 | -87.7957 | -0.588705 | 0.332096 |
| 121 | -88.8670 | -87.8320 | -87.8320 | -1.796039 | 0.332096 |
| 122 | -88.1350 | -87.8670 | -87.8670 | -0.465065 | 0.332096 |
| 123 | -88.6230 | -87.9008 | -87.9008 | -1.253191 | 0.332096 |
| 124 | -88.1350 | -87.9335 | -87.9335 | -0.349682 | 0.332096 |

(RESIDUALS 2 EXCEEDING 2.5 IN MAGNITUDE IMDICATED BY**)

THERE FOLLOW:

[^0]REVEALS LACK Of FIT)
REVEALS HETEROGE NEITY of YRRIANCE AMO OUTLIERS)
(OISLLAYS FITTED COVARIANCE STRUCTURE)



$$
!
$$

| VARIABLE | Channel | minimum | maximum | - VT( 1 ) | +VT(2) | Character |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | -1.4182817 | 1.5022474 | 1).804993 | 27.752495 | $Y$ |
| 3 | 1 | -1.4182817 | 1.5022474 | 17.804993 | 27.752495 | $p$ |
| 4 | 2 | -2.4611098 | 2.6068135 | 10.260613 | 81.752495 | 2 |





- 370 - (This should be page 379)




| VARIABLE | CHANNEL | MINImun | Max Imum | *VT(1) | +VT(2) | CHARACTER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| **** | *-5E*** |  | 33209551 | 22. 19647 | 500 | - |
| 1 | 1 | $0.000000000+00$ | 0.33209551 | 322.19647 | 2.5000000 | 0 |



!:

AUTOCORRELATVOMS OF RESIDUALS
$\begin{array}{lllllllllll}0.6953660 & 0.6379363 & 0.5984393 & 0.5295662 & 0.4735971 & 0.4007144 & 0.4184132 & 0.3884956 & 0.3422894 & 0.2864343\end{array}$

$\begin{array}{llll}\text { VALUES EXCEEDIMG } & \mathbf{1 . 5} & \text { SE DENOTEO } \mathrm{BY}\end{array}+$

```
 RESULTS FROM PROGRAM REGAME - C.A.GLASBEY
```



|  | $\begin{aligned} & \text { MCALMX } \\ & 200 \end{aligned}$ | $\underset{1}{\text { NLIK }} \underset{1}{\text { HSCALE }}$ | $\begin{array}{r} \mathrm{NH} \\ 3 \end{array}$ | $\begin{gathered} \text { NDER } \\ 1 \end{gathered}$ | $\begin{aligned} & \text { ACCTOL } \\ & 1.00-04 \end{aligned}$ | nYar 1 | $\begin{gathered} \text { NPEST } \\ 5 \end{gathered}$ | $\begin{aligned} & \text { PARAMS ...... } \\ & 1.00000 \\ & 0.500000 \end{aligned}$ | $\begin{gathered} 1.00000 \\ 0.0000000+00 \end{gathered}$ | 0.500000 | 0.500000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { NTTER } \\ 0 \end{gathered}$ | $\begin{gathered} \text { MCALL } \\ 0 \end{gathered}$ | ${ }_{\substack{\text { LLIX } \\-60.1152}}$ | $\begin{aligned} & \text { XLIKCH } \\ & 2.00=10 \end{aligned}$ | $\begin{gathered} \text { SLOPE } \\ 4.30-01 \end{gathered}$ | PARACH $1.00-10$ | $\begin{aligned} & \text { CONO } \\ & 1.20+01 \end{aligned}$ |  | $\begin{aligned} & \text { PARAM..... } \\ & -88.8600 \\ & 1.00000 \end{aligned}$ | $\begin{aligned} & 77.4500 \\ & -1.57080 \end{aligned}$ | 1.23500 | 0.600000 |
| 1 | 7 | -62.0261 | 4.90-01 | 1.00400 | 5.00-01 | $1.10+01$ | C | $\begin{aligned} & -88.7900 \\ & 1.07611 \end{aligned}$ | $\begin{array}{r} 78.4331 \\ -1.57080 \end{array}$ | 7.19978 | 0.611338 |
| 2 | 14 | -63.7521 | 5.20-01 | 7.50-01 | 3.40-01 | $1.10+01$ | C | $\begin{aligned} & -88.8552 \\ & 1.19220 \end{aligned}$ | $\begin{aligned} & 79.3587 \\ & -1.57080 \end{aligned}$ | 7.05543 | 0.631651 |
| 3 | 20 | -63.8697 | 1.40-01 | 8.50-01 | 1.90-01 | 1.10401 |  | $\begin{aligned} & -88.8661 \\ & 1.14741 \end{aligned}$ | $\begin{aligned} & 79.9548 \\ & -1.57080 \end{aligned}$ | 6.92813 | 0.729627 |
| 4 | 28 | -64.3515 | 2.90-01 | 2.60-01 | 5.10-02 | 1.20+01 |  | $\begin{aligned} & -88.8137 \\ & 1.21835 \end{aligned}$ | $\begin{gathered} 79.8802 \\ -1.57080 \end{gathered}$ | 6.91838 | 0.698945 |
| 5 | 35 | -64.5542 | 1.90-01 | 2.00-01 | 1.40-01 | 2.00401 |  | $\begin{aligned} & -88.6942 \\ & 1.24405 \end{aligned}$ | $\begin{array}{r} 79.4715 \\ -1.57080 \end{array}$ | 6.88506 | 0.762024 |
| 6 | 42 | -64.6742 | 1.50-01 | 2.50-01 | 8.70-02 | $1.70+01$ |  | $\begin{aligned} & -88.5440 \\ & 1.28393 \end{aligned}$ | $\begin{array}{r} 79.5282 \\ -1.57080 \end{array}$ | 6.78034 | 0.814035 |
| 7 | 48 | -64.6994 | 6.80-02 | 1.70-01 | 2.70-02 | 1.70+01 |  | $\begin{aligned} & -88.4958 \\ & 1.27147 \end{aligned}$ | $\begin{array}{r} 79.4580 \\ -1.57080 \end{array}$ | 6.17065 | 0.820533 |
| 8 | 55 | -64.7337 | 8.00-02 | 9.70-02 | 6.90-02 | $1.60+01$ |  | $\begin{aligned} & -88.3650 \\ & 1.27131 \end{aligned}$ | $\begin{aligned} & 79.2862 \\ & -1.57080 \end{aligned}$ | 6.76365 | 0.797585 |
| 9 | 62 | -64.7466 | 4.90-02 | 1.40-02 | 2.90-02 | $1.50+01$ |  | $\begin{aligned} & -88.3369 \\ & 1.25701 \end{aligned}$ | $\begin{aligned} & 79.3653 \\ & -1.57080 \end{aligned}$ | 6.76929 | 0.779641 |
| 10 | 69 | -64.7468 | 6.40-03 | 3.10-03 | 5.10-03 | 1.50+01 |  | $\begin{aligned} & -88.3493 \\ & 1.25721 \end{aligned}$ | $\begin{aligned} & 79.3753 \\ & -1.57080 \end{aligned}$ | 6.77164 | 0.778737 |
| 11 | 76 | -64.7469 | 2.00-03 | 2.40-03. | 1.30-03 | 1.10+01 |  | $\begin{aligned} & -88.3491 \\ & 1.25656 \end{aligned}$ | $\begin{aligned} & 79.3741 \\ & -1.57080 \end{aligned}$ | 6.77203 | 0.776897 |
| 12 | 83 | -64.7469 | 6.4D-04 | 2.50-04 | 1.50-04 | $1.10+01$ |  | $\begin{aligned} & -88.3494 \\ & 1.25648 \end{aligned}$ | $\begin{aligned} & 79.3742 \\ & -1.57080 \end{aligned}$ | 6.77187 | 0.776859 |
| 13 | 90 | -64.7469 | 8.10-05 | 1.50-05 | 4.00-05 | 1.20+01 |  | $\begin{aligned} & -88.3495 \\ & 1.25646 \end{aligned}$ | $\begin{aligned} & 79.3742 \\ & -1.57080 \end{aligned}$ | 6.77192 | 0.776839 |
| 13 | 95 | -64.7469 | 1.00-10 | 1.50-05 | 1.00-10 | $1.20+01$ |  | $\begin{aligned} & -88.3495 \\ & 1.25646 \end{aligned}$ | $\begin{aligned} & 79.3742 \\ & -1.57080 \end{aligned}$ | 6.77192 | 0.776839 |


| IFAIL | 0 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NEG. LOG-LIKELIH000 | -64.7469 |  |  |  |  |  |  |
| first oerivatives | $1.2047530-06$ | 7.3854620-06 | 1.1255400-05 | -4.4252800-06 | 6.8836700-06 | 0.0000000400 | 0.0000000000 |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| PARAMETER ESTIMATES | -88.3495 | 79.3742 | 6.17192 | 0.776839 | 1.25646 | -1.57080 | 0.517483 |
| Standard errors | 0.651737 | 0.978568 | 0.226243 | 0.302573 | 0.149382 | 0.0000000400 | 0.367237 |
| (CO) VAR IANCES |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| 2 | $-0.305306$ |  |  |  |  |  |  |
| 3 | $-9.3246980-02$ | $3.2283590-02$ | 5.1186090-02 |  |  |  |  |
| 4 | 4.2916130-02 | -1.6113350-02 | -3.6409210-02 | 9.1550370-02 |  |  |  |
| 5 | $2.1743270-02$ | -1.4306600-02 | -1.9240660-02 | 3.8909920-02 |  |  |  |
| 6 | $0.0000000+00$ | 0.0000000+00 | 0.00040 $010 \times 00$ | $0.000000 D+00$ | $0.0000000 \div 00$ | $0.0000000400$ | 0.134863 |

        correlations
            \(\begin{array}{rrrrlll}2 & -0.478709 & & & & & \\ 3 & -0.632392 & 0.145819 & -0.531870 & & & \\ 4 & 0.217530 & -0.054421 & 0.05095 & & \\ 5 & 0.223333 & -0.097869 & -0.569304 & 0.860856 & 0.000000 & \\ 6 & 0.000000 & 0.00000 & 0.00000 & 0.00000 & \\ 7 & 0.222463 & -0.068567 & -0.550917 & 0.971304 * * & 0.915869 * * & 0.000000\end{array}\)
    |  | datal ${ }^{\text {a }}$ ) | FIT(F) | PREDICTIONS | RESIDUALS(2) | COVARIANCES(V | AR) ( NP - 1 | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -22.2170 | -22.3539 | -22.3539 | 0.190295 | $0.0000000 \times 00$ | $0.0000000+00$ | 0.517483 |
| 2 | -24.4140 | -24.7458 | -24.6323 | 0.543507 | $0.0000000+00$ | 0.429344 | 0.517483 |
| 3 | -27.3440 | -27.0511 | -26.8295 | -1. 390202 | 0.418825 | 0.429344 | 0.517483 |
| 4 | -29.2970 | -29.2728 | -29.2751 | -0.050700 | 0.418825 | 0.429344 | 0.517483 |
| 5 | - 31.7380 | -31.4140 | -31.4249 | -0.872121 | 0.418825 | 0.429344 | 0.517483 |
| 6 | -33.9350 | -33.4175 | -33.6101 | -0.908146 | 0.418825 | 0.429344 | 0.517483 |
| 7 | -36.1330 | -35.4663 | -35.1210 | -1.152388 | 0.418825 | 0.429344 | 0.517483 |
| 8 | -38.0860 | -37.3830 | -37.7901 | -0.827988 | 0.418825 | 0.429344 | 0.517483 |
| 9 | -39.3070 | -39.2302 | -39.7412 | 1.215051 | 0.418825 | 0.429344 | 0.517483 |
| 10 | -41.5040 | -41.0105 | -41.3420 | -0.453397 | 0.418825 | 0.429344 | 0.517483 |
| 11 | -42.7240 | -42.7263 | -43.1119 | 1.085650 | 0.418825 | 0.429344 | 0.517483 |
| 12 | -44.4330 | -44.3798 | -44.6069 | 0.486716 | 0.418825 | 0.429344 | 0.517483 |
| 13 | -46.6310 | -45.9735 | -46.1281 | -1.407407 | 0.418825 | 0.429344 | 0.517483 |
| 14 | -47.6070 | -47.5094 | -47.8535 | 0.689972 | 0.418825 | 0.429344 | 0.517483 |
| 15 | -49.3160 | -48.9896 | -49.2305 | -0.239189 | 0.418825 | 0.429344 | 0.517483 |
| 16 | -50.7810 | -50.4161 | -50.6840 | -0.271341 | 0.418825 | 0.429344 | 0.517483 |
| 17 | -52.4900 | -51.7910 | -52.0896 | -1.120577 | 0.418825 | 0.429344 | 0.517483 |
| 18 | -53.4670 | -53.1160 | -53.5612 | 0.263755 | 0.418825 | 0.429344 | 0.517483 |
| 19 | -54.6870 | -54.3930 | -54.7911 | 0.291368 | 0.418825 | 0.429344 | 0.517483 |
| 20 | -55.4200 | -55.6237 | -55.9721 | 1.545043 | 0.418825 | 0.429344 | 0.517483 |
| 21 | -57.1290 | -56.8098 | -56.9374 | -0.536210 | 0.418825 | 0.429344 | 0.517483 |
| 22 | -58.1050 | -57.9530 | -58.1511 | 0.128907 | 0.418825 | 0.429344 | 0.517483 |
| 23 | -59.8140 | -59.0547 | -59.2302 | -1.633922 | 0.418825 | 0.429344 | 0.517483 |
| 24 | -60.3030 | -60.1164 | -60.5121 | 0.585164 | 0.418825 | 0.429344 | 0.517483 |
| 25 | -61.0350 | -61.1397 | -61.4453 | 1.148297 | 0.418825 | 0.429344 | 0.517483 |
| 26 | -62.7440 | -62.1259 | -62.2663 | -1.337033 | 0.418825 | 0.429344 | 0.517483 |
| 21 | -62.9880 | -63.0763 | -63.3969 | 1.144484 | 0.418825 | 0.429344 | 0.517483 |
| 28 | -63.4760 | -63.9923 | -64.1479 | 1.880392 | 0.418825 | 0.429344 | 0.517483 |
| 29 | -63.9650 | -64.8751 | -64.7686 | 2.249003 | 0.418825 | 0.429344 | 0.517483 |
| 30 | -65.6740 | -65.7259 | -65.3131 | -1.010115 | 0.418825 | 0.429344 | 0.517483 |
| 31 | -66.4060 | -66.5459 | -66.2819 | -0.347297 | 0.418825 | 0.429344 | 0.317483 |
| 32 | -56.8940 | -67.3362 | -67.1263 | 0.650226 | 0.418825 | 0.429344 | 0.517483 |
| 33 | -67.6270 | -68.0978 | -67.8038 | 0.494716 | 0.418825 | 0.429344 | 0.517483 |
| 34 | -68.3590 | -68.8318 | -68.4770 | 0.330302 | 0.418825 | 0.429344 | 0.517483 |
| 35 | -68.8470 | -69.5392 | -69.1477 | 0.841692 | 0.418825 | 0.429344 | 0.517483 |
| 36 | -69.0920 | -70.2209 | -69.7235 | 1.767342 | 0.418825 | 0.429344 | 0.517483 |
| 37 | -59.5800 | -70.8780 | -70.1500 | 1.595173 | 0.418825 | 0.429344 | 0.517483 |
| 38 | -70.8010 | -71.5112 | -70.5819 | -0.613118 | 0.418825 | 0.429344 | 0.517483 |
| 39 | -70.8010 | -72.1215 | -71.2992 | 1.394323 | 0.418825 | 0.429344 | 0.517483 |
| 40 | -71.0450 | -72.7097 | -71.7160 | 1.877927 | 0.418825 | 0.429344 | 0.517483 |
| 41 | -72.0210 | -73.2765 | -72.0492 | 0.079042 | 0.418825 | 0.429344 | 0.517483 |
| 42 | -72.2650 | -73.8228 | -72.6148 | 0.978876 | 0.418825 | 0.429344 | 0.517483 |
| 43 | -73.7300 | -74.3493 | -73.0364 | -1.941187 | 0.418825 | 0.429344 | 0.517483 |
| 44 | -73.2420 | -74.8568 | -73.8426 | 1.680989 | 0.418825 | 0.429344 | 0.517483 |
| 45 | -73.4860 | -75.3458 | -74.1256 | 1.790089 | 0.418825 | 0.429344 | 0.517483 |
| 46 | -74.9510 | -75.8171 | -74.3809 | -1.595477 | 0.418825 | 0.429344 | 0.517483 |
| 47 | -74.7070 | -76.2713 | -75.0895 | 1.070475 | 0.418825 | 0.429344 | 0.517483 |
| 48 | -74.9510 | -76.7091 | -75.4092 | 1.282280 | 0.418825 | 0.429344 | 0.517483 |
| 49 | . 75.6830 | -77.1310 | -75.6868 | 0.010574 | 0.418825 | 0.429344 | 0.517483 |
| 50 | -76.4160 | -77.5376 | -76.1273 | -0.807960 | 0.418825 | 0.429344 | 0.517483 |
| 51 | -76.4160 | -77.9294 | -76.6647 | 0.696065 | 0.418825 | 0.429344 | 0.517483 |
| 52 | -71.1480 | -78.3071 | -76.9717 | -0.476489 | 0.418825 | 0.429344 | 0.517483 |
| 53 | -71.3920 | -78.6711 | -77.4397 | 0.133615 | 0.418825 | 0.429344 | 0.517483 |
| 54 | -77.6370 | -79.0219 | -77.8023 | 0.462741 | 0.418825 | 0.429344 | 0.517483 |
| 55 | -78.1250 | -79.3599 | -78.1067 | -0.051140 | 0.418825 | 0.429344 | 0.517483 |
| 56 | -79.1010 | -79.6858 | -78.4703 | -1.765237 | 0.418825 | 0.429344 | 0.517483 |
| 57 | -79.1010 | -79.9998 | -79.0565 | -0. 124473 | 0.418825 | 0.429344 | 0.517483 |
| 58 | -79.3450 | -80.3024 | -19.3994 | 0.152134 | 0.418825 | 0.429344 | 0.517483 |
| 59 | -79.3450 | -80.5940 | -79.6922 | 0.971843 | 0.418825 | 0.429344 | 0.517483 |
| 60 | -80.0780 | -80.8751 | -79.8619 | -0.604700 | 0.418825 | 0.429344 | 0.517483 |
| 61 | -80.5660 | -81.1460 | -80.2401 | -0.910371 | 0.418825 | 0.429344 | 0.517483 |
| 62 | -80.5660 | -81.4071 | - 80.6490 | 0.232368 | 0.418825 | 0.429344 | 0.517483 |
| 63 | -80.8100 | -81.6587 | -80.8873 | 0.216345 | 0.418825 | 0.429344 | 0.517483 |
| 64 | -81.2990 | -81.9012 | -81.1190 | -0.503816 | 0.418825 | 0.429344 | 0.517483 |
| 65 | -81.5430 | -82.1349 | -81.4411 | -0.285299 | 0.418825 | 0.429344 | 0.517483 |
| 66 | -81.7870 | -82.3602 | -81.7225 | -0.180551 | 0.418825 | 0.429344 | 0.517483 |
| 67 | -82.5190 | -82.5773 | -81.9800 | -1.508551 | 0.418825 | 0.429344 | 0.517483 |
| 68 | -82.2750 | -82.7865 | -82.4110 | 0.380731 | 0.418825 | 0.429344 | 0.517483 |
| 69 | -82.2750 | -82.9881 | -82.5696 | 0.824407 | 0.418825 | 0.429344 | 0.517483 |
| 70 | -82.5190 | -83.1824 | -82.5609 | 0.397138 | 0.418825 | 0.429344 | 0.517483 |
| 71 | -82.5190 | -83.3697 | -82.8064 | 0.804360 | 0.418825 | 0.429344 | 0.517483 |
| 12 | -82.5190 | -83.5502 | -82.8902 | 1.038904 | 0.418825 | 0.429344 | 0.517483 |
| 13 | -82.7630 | -83.7241 | -82.9376 | 0.488716 | 0.418825 | 0.429344 | 0.517483 |
| 74 | -83.0080 | -83.8918 | -83.0574 | 0.138265 | 0.418825 | 0.429344 | 0.517483 |
| 15 | -83.4960 | -84.0533 | -83.2204 | -0.771279 | 0.418825 | 0.429344 | 0.517483 |
| 76 | -83.7400 | -84.2090 | -83.5025 | -0.664772 | 0.418825 | 0.429344 | 0.517483 |
| 17 | -84.9610 | -84.3591 | -83.7612 | -3.358024** | 0.418825 | 0.429344 | 0.517483 |
| 78 | -84.4720 | -84.5037 | -84.3817 | -0.252774 | 0.418825 | 0.429344 | 0.517483 |
| 79 | -84.2280 | -84.6431 | -84.5588 | 0.925758 | 0.418825 | 0.429344 | 0.517483 |
| 80 | -84.4720 | -84.7174 | -84.5680 | 0.268731 | 0.418825 | 0.429344 | 0.517483 |
| 81 | -84.4720 | -84.9069 | -84.6657 | 0.542121 | 0.418825 | 0.429344 | 0.517483 |
| 82 | -84.4720 | -85.0317 | -84.1219 | 0.699460 | 0.418825 | 0.429344 | 0.517483 |
| 83 | -84.7170 | -85.1519 | -84.7537 | 0.102670 | 0.418825 | 0.429344 | 0.517483 |
| 84 | -84.9610 | -85.2678 | -84.8652 | -0.268032 | 0.418825 | 0.429344 | 0.517483 |
| 85 | -84.9610 | -85.3795 | -85.0236 | 0.175204 | 0.418825 | 0.429344 | 0.517483 |
| 86 | -85.2050 | -85.4872 | -85.1159 | -0.249370 | 0.418825 | 0.429344 | 0.517483 |
| 87 | -85.2050 | -85.5909 | -85.2630 | 0.162295 | 0.418825 | 0.429344 | 0.517483 |
| 88 | -85.9370 | -85.6909 | -85.3487 | -1.646458 | 0.418825 | 0.429344 | 0.517483 |
| 89 | -85.4490 | -85.7872 | -85.6796 | 0.645399 | 0.418825 | 0.429344 | 0.517483 |
| 90 | -85.6930 | -85.8801 | -85.6865 | -0.018311 | 0.418825 | 0.429344 | 0.517483 |
| 91 | -86.4260 | -85.9696 | -85.7832 | -1.798976 | 0.418825 | 0.429344 | 0.517483 |
| 92 | -85.9370 | -86.0559 | -86.1211 | 0.515356 | 0.418825 | 0.429344 | 0.517483 |
| 93 | -86.4260 | -86.1390 | -86.1319 | -0.823155 | 0.418825 | 0.429344 | 0.517483 |
| 94 | -85.6930 | -86.2191 | -86.3252 | 1.769465 | 0.418825 | 0.429344 | 0.517483 |
| 95 | -86.6700 | -86.2963 | -86.1568 | -1.436294 | 0.418825 | 0.429344 | 0.517483 |
| 96 | -86.6700 | -86.3707 | -86.4319 | -0.666318 | 0.418825 | 0.429344 | 0.517483 |


| 97 | -86.9140 | -86.4425 | -86.5937 | -0.896538 | 0.418825 | 0.429344 | 0.517483 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 98 | -86.4260 | -86.5116 | -86. 7822 | 0.996966 | 0.418825 | 0.429344 | 0.517483 |
| 99 | -86.6700 | -86.5782 | -86.7053 | 0.098693 | 0.418825 | 0.429344 | 0.517483 |
| 100 | -86.6700 | -86.6424 | -86. 7528 | 0.231714 | 0.418825 | 0.429344 | 0.517483 |
| 101 | -86.4260 | -86.7043 | -85.7801 | 0.991120 | 0.418825 | 0.429344 | 0.517483 |
| 102 | -86.9140 | -86.7639 | -86. 7018 | -0.593985 | 0.418825 | 0.429344 | 0.517483 |
| 103 | -86.9140 | -86.8214 | -86.8423 | -0. 200547 | 0.418825 | 0.429344 | 0.517483 |
| 104 | -87.1580 | -86.8767 | -86.9248 | -0.652713 | 0.418825 | 0.429344 | 0.517483 |
| 105 | -86.9140 | -86.9301 | -87.0666 | 0.427155 | 0.418825 | 0.429344 | 0.517483 |
| 106 | -87.4020 | -86.9816 | -87.0561 | -0.968217 | 0.418825 | 0.429344 | 0.517483 |
| 107 | -87.4020 | -87.0311 | -87.2368 | -0.462363 | 0.418825 | 0.429344 | 0.517483 |
| 108 | -87.8900 | -87.0789 | -87.3430 | -1.530773 | 0.418825 | 0.429344 | 0.517483 |
| 109 | -87.6460 | -87.1250 | -87.5929 | -0.148649 | 0.418825 | 0.429344 | 0.517483 |
| 110 | -87.6460 | -87.1694 | -87.6462 | 0.000621 | 0.418825 | 0.429344 | 0.517483 |
| 111 | -87.6460 | -87.2121 | -87.6712 | 0.087393 | 0.418825 | 0.429344 | 0.517483 |
| 112 | -87.8900 | -87.2533 | -87.6950 | -0.545614 | 0.418825 | 0.429344 | 0.517483 |
| 113 | -87.6460 | -87.2931 | -87.7989 | 0.427923 | 0.418825 | 0.429344 | 0.517483 |
| 114 | -88.1350 | -87.3314 | -87.7660 | -1.032684 | 0.418825 | 0.429344 | 0.517483 |
| 115 | -88.3790 | -87.3683 | -87.9341 | -1.245115 | 0.418825 | 0.429344 | 0.517483 |
| 115 | -88.6230 | -87.4038 | -88.1268 | -1.388623 | 0.418825 | 0.429344 | 0.517483 |
| 117 | -88.1350 | -87.4381 | -84.3341 | 0.557323 | 0.418825 | 0.429344 | 0.517483 |
| 118 | -88.8670 | -87.4711 | -88.2687 | -1.674586 | 0.418825 | 0.429344 | 0.517483 |
| 119 | -88.1350 | -87.5030 | -88.5110 | 1.052244 | 0.418825 | 0.429344 | 0.517483 |
| 120 | -88.1350 | -87.5336 | -88.3724 | 0.664488 | 0.418825 | 0.429344 | 0.517483 |
| 121 | -88.8670 | -87.5632 | -88.2902 | -1.614384 | 0.418825 | 0.429344 | 0.517483 |
| 122 | -88.1350 | -87.5917 | -88.5226 | 1.084801 | 0.418825 | 0.429344 | 0.517483 |
| 123 | -88.6230 | -87.6192 | -88.3783 | -0.684965 | 0.418825 | 0.429344 | 0.517483 |
| 124 | -88.1350 | -87.6456 | -88.4802 | 0.966161 | 0.418825 | 0.429344 | 0.517483 |

(residuals 2 exceeding 2.5 in magmitude indicated or **)

THERE FOLLON:
(A) A LONGITUDINAL PLOT OF LATA(Y), FIT(F), PREDICTIOM
(B) A LONGITUOIKAL PLOT OF DATA-FIT, PREDICTION-FIT,RESIDUALS(2)
(C) A CROSS-SECTIONAL PLOT OF RESIDUALS(Z) AGAINST FIT(F)
(D) A LONGITUDINAL PLOT OF COVARIANCES OF ERRORS
(REVEALS LACK OF FIT)
(REVEALS CORRELATIUN OF ERRORS)
(REVEALS HETEROGENEITY OF VARIANCE AND OUTLIERS) (DISPLAYS FITTED COVARIANCE STRUCTURE)



1.




| variable | CHANMEL | mintmun | maxtmus | -VT(1) | +VT ( 2 ) | Character |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - =a= | -****= |  |  | Easemesent |  |  |
| 1 | 1 | $0.000000000+00$ | 0.51748311 | 205.77003 | 2.500000 | 2 |
| 2 | 1 | $0.000000000+00$ | 0.51748311 | 206.77003 | 2.5000000 | 1 |
| 3 | 1 | $0.000000000+00$ | 0.51748311 | 205.77003 | 2.5000000 | 0 |


.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. n n ..


| MOY 0 | NPV= $\begin{gathered}0 \\ -3.65\end{gathered}$ | 2.17 | 6.22 | $5^{3} .14$ | $\stackrel{4}{1.91}$ | $-11.67$ | $8.56$ | $\begin{gathered} 7 \\ 9.34 \end{gathered}$ | $\begin{gathered} 8 \\ 13.89 \end{gathered}$ | + | $7^{9} .54$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.89 | 4.37 | -1.30 | -1.14 | -9.87 | -1.60 | 8.41 | 1.34 | -3.47 |  |  |
| 2 | 5.99 | -1.21 | 0.19 | -2.95 | 1.22 | -0.54 | 6.09 | -3.97 |  |  |  |
| 3 | 4.71 | -0.90 | -3.02 | -0.16 | 1.47 | 4.90 | 0.57 |  |  |  |  |
| 4 | 1.85 | -8.76 | 0.97 | 1.40 | 0.90 | 6.22 |  |  |  |  |  |
| 5 | -10.96 | -1.52 | -0.01 | 4.95 | 5.66 |  |  |  |  |  |  |
| 6 | 9.80 | 7.95 | 4.97 | 0.01 |  |  |  |  |  |  |  |
| 7 | 7.96 | 2.42 | -3.25 |  |  |  |  |  |  |  |  |
| 8 | 11.66 | -2.68 |  |  |  |  |  |  |  |  |  |
| 9 | 6.44 |  |  |  |  |  |  |  |  |  |  |

## STANDARO ERROR = 8.98

VALUES EXCEEDING 1.5 SE OENOTED BY * VALUES EXCEEDING 2.0 SE OENOTED BY $x$

Appendix C
CEVOPE computer program listing (see section 9.3).


0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126



| $\begin{aligned} & 0193 \\ & 0194 \end{aligned}$ | ${ }_{C}^{C}$ | SELECT FIRST SET OF C-VECTORS, USING CVSTTC |
| :---: | :---: | :---: |
| 0195 | C |  |
| 0196 |  | CALL CVSTTC (XT,NLMAX,NL, NPARMX, NPAR, X , NSEED, $\mathrm{C}, \mathrm{NTMAX}, \mathrm{NT}$, |
| 0197 |  | 1 W1,W5,ACCTOL, NPRI, IFAIL) |
| 0198 |  | IF (IFAIL.NE.0) GO TO 001 |
| 0199 |  | WRITE (NOUT6,906) NS, UVU(NS,NS),SE(NS),NSEED |
| 0200 | 906 | FORMAT (//18X,'*** O U T P U F R O M C EVOPE***'// |
| 0201 |  | $111 \times$ 'MODEL DEPENDENT ESTIMATE OF THE VARIANCE OF THE ESTIMATOR'/ |
| 0202 |  | 1 6X, 'OF PARAMETER NUMBER', 13,1 IS',1PG12.4, |
| 0203 |  | 1 ' AND THE S.E. IS',G12.4//18X, |
| 0204 |  | 1 'SEARCH FOR ROBUST ESTIMATOR WITH MINIMUM BIAS (NSEED=', 15,1 ' $/ /$ |
| 0205 |  | 1 ' ADD NEW C-VECTOR ', |
| 0206 |  | 1 ' FIND BEST COMBINATION OF C-VECTORS'/ |
| 0207 |  |  |
| 0208 |  |  |
| 0209 |  | 1. 'ITER ICPUT NT ITEIG ICPU IDIS QUAD ', |
| 0210 |  | 1' ITLP ICPU IDIS XOPT REL BIAS'/ |
| 0211 |  |  |
| 0212 |  |  |
| 0213 | C |  |
| 0214 | C | SET INPUT FOR LINEAR PROGRAM, USING CVINIT |
| 0215 | C |  |
| 0216 |  | NLHS $=$ NTAMAX-( ${ }^{\text {NTMAX -NT }}$ )/ NLHSSP $)$ *NLHSSP |
| 0217 |  | CALL CVINIT(U,NLMAX,NL,NPARMX,NPAR, PHI, NPAMAX,NPA, |
| 0218 |  | 1 THETA, NQAMAX, NQA, C, NTMAX, NT, NOMEGA, NLAG, NS, |
| 0219 |  | 1 XLLHS,NLHS, NTA, NVARMX,NVAR, XRHS,MINEQ, |
| 0220 |  | 1 W1,W2,W3,ACCTOL,NPRI, IFAIL) |
| 0221 |  | IF (IFAIL.NE.O) GO TO 001 |
| 0222 |  | ITER=0 |
| 0223 |  | XOPTLD $=1.0020$ |
| 0224 |  | G0 T0 008 |
| 0225 | C |  |
| 0226 | C | FIND NEW C-VECTOR, USING CVEIGC |
| 0227. | C |  |
| 0228 | 007 | ITER $=1$ TER +1 |
| 0229 |  | CALL CVEIGC (XT, NLMAX, NL, NPARMX, NPAR, X, PHI , NPAMAX, NPA, |
| 0230 |  | 1 THETA, NQAMAX, NQA, VOPT, NTBMAX, MOPT, NTMAX, NT, NOMEGA, |
| 0231 |  | 1 NLAG,NVAR,CNEW,QUAD, W1,W2,W3,NVARMX, |
| 0232 |  | 1 W5,ITEIG,ACCTOL, NPRI, IFAIL) |
| 0233 |  | IF (IFAIL.NE.0) GO TO 021 |
| 0234 |  | IF (QUAD.GE.-ACCTOL) GO TO 013 |
| 0235 | C |  |
| 0236 | C | MODIfy InPut for linear program, uSing cimodi |
| 0237 | C |  |
| 0238 |  | CALL CVMODI (PHI, NLMAX, NL, NPAMAX, NPA, THE TA, NQAMAX, NQA, |
| 0239 |  | 1 C,NTMAX,NT,CWT,CNEW,NOMEGA, NLAG, NVAR, |
| 0240 |  | 1 . XLHS,NLHS,NVARMX, XRHS, |
| 0241 |  | 1 W1,W2,W3,MW1,MW3,NTTMAX , ACCTOL , NPRI, IFAIL) |
| 0242 |  | IF (IFAIL.NE.0) GO TO 021 |
| 0243 | C |  |
| 0244 | C | INCREASE FIRST DIMENSION OF XLHS IF NECESSARY, USING CVINCR |
| 0245 | C |  |
| 0246 |  |  |
| 0247 |  | NLHS $=$ NLHS+NLLSSS |
| 0248 |  | CALL CVINCR(XLHS, NLHS,NVARMX,NVAR,W1, NLMAX, W3, NT, NPRI) |
| 0249 | C |  |
| 0250 | C | OPTIMIZE COMBINATION OF C-VECTORS BY LINEAR PROGRAM, |
| 0251 | C | USING CVLINP |
| 0252 | C |  |
| 0253 | 008 | CALL CLOCK (TCPUA) |
| 0254 |  | TDIS=SNGL(DTIM\$A(INT4)) |
| 0255 |  | CALL CVLINP(XLHS,NLHS,NVARMX,NVAR,XRHS,NTMAX,NT, |
| 0256 |  | 1 MINEQ, XOPT, CWT, VOPT, NTBMAX,MOPT, NL, |

```
 l IF (IFAIL W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL)
```

    l IF (IFAIL W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL)
        IF (IFAIL.NE.0) GO TO OO1
        IF (IFAIL.NE.0) GO TO OO1
    C C. CALCULATE CPU AND DISC TIMES
C C. CALCULATE CPU AND DISC TIMES
CALL CLOCK(TCPU)
CALL CLOCK(TCPU)
ICPUT=INT(TCPU-TCPUST+0.5)
ICPUT=INT(TCPU-TCPUST+0.5)
ICPUI=INT(TCPUA-TCPULD+0.5)
ICPUI=INT(TCPUA-TCPULD+0.5)
ICPUZ=INT(TCPU-TCPUA+0.5)
ICPUZ=INT(TCPU-TCPUA+0.5)
IDISI=INT(TDIS-TDISLD+0.5)
IDISI=INT(TDIS-TDISLD+0.5)
TDISLD=TDIS
TDISLD=TDIS
TDIS=SNGL(DTIM$A(INT4))
        TDIS=SNGL(DTIM$A(INT4))
IDIS2=1NT(TOIS-TDISLD+0.5)
IDIS2=1NT(TOIS-TDISLD+0.5)
TDISLD=TDIS
TDISLD=TDIS
RBIAS=XOPT/SE(NS)-1.000
RBIAS=XOPT/SE(NS)-1.000
IF (ITER.GT.0) GO TO 010
IF (ITER.GT.0) GO TO 010
WRITE (NOUT6,909) ITER,ICPUT,NT,ICPUL,IDIS1,
WRITE (NOUT6,909) ITER,ICPUT,NT,ICPUL,IDIS1,
1 ITLP,ICPUZ,IDIS2,XOPT,RBIAS
1 ITLP,ICPUZ,IDIS2,XOPT,RBIAS
FORMAT (15,16,13,6X,215,9X,16,2I5,1PG12.4,G12.4)
FORMAT (15,16,13,6X,215,9X,16,2I5,1PG12.4,G12.4)
GO TO 012
GO TO 012
010 WRITE (NOUT6,911) ITER,ICPUT,NT,ITEIG,ICPU1,IDIS1,QUAD,
010 WRITE (NOUT6,911) ITER,ICPUT,NT,ITEIG,ICPU1,IDIS1,QUAD,
1 ITLP,ICPU2,IDIS2,XOPT,RBIAS
1 ITLP,ICPU2,IDIS2,XOPT,RBIAS
911 FORMAT (I5,16,I3,I6,2I5,1P09.0,16,215,G12.4,G12.4)
911 FORMAT (I5,16,I3,I6,2I5,1P09.0,16,215,G12.4,G12.4)
C
C
C
C
012 IF (XOPT.GT.XOPTLO*(1.ODO-ACCTOL)) GO TO 015
012 IF (XOPT.GT.XOPTLO*(1.ODO-ACCTOL)) GO TO 015
IF (ITER.GE.NITER) GO TO 017
IF (ITER.GE.NITER) GO TO 017
IF (2.0*(TCPU-TCPULD).GT.(TCPULM-TCPU)) GO TO 019
IF (2.0*(TCPU-TCPULD).GT.(TCPULM-TCPU)) GO TO 019
XOPTLD=XOPT
XOPTLD=XOPT
TCPULD=TCPU
TCPULD=TCPU
GO TO 007
GO TO 007
C
C
OUTPUT STOPPING CRITERION
OUTPUT STOPPING CRITERION
WRITE (NOUT6,914)
WRITE (NOUT6,914)
914 FORMAT (/' ITERATIONS CEASED, OPTIMUM REACHED')
914 FORMAT (/' ITERATIONS CEASED, OPTIMUM REACHED')
G0 TO 021
G0 TO 021
015 WRITE (NOUT6,916)
015 WRITE (NOUT6,916)
916 FORMAT (/' ITERATIONS CEASED, NO DECREASE IN XOPT')
916 FORMAT (/' ITERATIONS CEASED, NO DECREASE IN XOPT')
GO TO 021
GO TO 021
0 1 7 WRITE (NOUT6,918)
0 1 7 WRITE (NOUT6,918)
918 FORMAT (/' ITERATIONS CEASED, NITER REACHED')
918 FORMAT (/' ITERATIONS CEASED, NITER REACHED')
GO TO 021
GO TO 021
WRITE (NOUT6,920)
WRITE (NOUT6,920)
920 FORMAT (/' ITERATIONS CEASED, CPU LIMIT MAY BE EXCEEDED ON NEXT ',
920 FORMAT (/' ITERATIONS CEASED, CPU LIMIT MAY BE EXCEEDED ON NEXT ',
l 'ITERATION')
l 'ITERATION')
C
C
C
C
0 2 1
0 2 1
CONTINUE
CONTINUE
CALL CVRESU(PARAM,NPARMX,NPAR,RESID,NLMAX,NL,
CALL CVRESU(PARAM,NPARMX,NPAR,RESID,NLMAX,NL,
1 PHI,NPAMAX,NPA,THETA, NQAMAX,NQA,UVU,
1 PHI,NPAMAX,NPA,THETA, NQAMAX,NQA,UVU,
C C,NTMAX,NT,CWT,ND,NS,NOMEGA,NLAG,
C C,NTMAX,NT,CWT,ND,NS,NOMEGA,NLAG,
GO TO 001 W1,W2,W4,NTBMAX,NTAMAX,NPRI)
GO TO 001 W1,W2,W4,NTBMAX,NTAMAX,NPRI)
C
C
C
C
023 WRITE (NOUT6,924)
023 WRITE (NOUT6,924)
924 FORMAT (' *** CEVOPE, NT OUT OF RANGE ***')
924 FORMAT (' *** CEVOPE, NT OUT OF RANGE ***')
GO TO 001
GO TO 001
025 WRITE (NOUT6,926)
025 WRITE (NOUT6,926)
926 FORMAT (' *** CEVOPE, NOMEGA OUT OF RANGE ***')

```
 926 FORMAT (' *** CEVOPE, NOMEGA OUT OF RANGE ***')
```

| 0321 |  | GO TO 001 |
| :---: | :---: | :---: |
| 0322 | 027 | WRITE (NOUT6, 928) |
| 0323 | 928 | FORMAT (' *** CEVOPE, NLAG OUT OF RANGE ***') |
| 0324 |  | GO TO 001 ( ${ }^{\text {a }}$ |
| 0325 | 029 | WRITE (NOUT6,930) |
| 0326 | 930 | FORMAT ( 1 *** CEVOPE, NITER OUT OF RANGE ***') |
| 0327 |  | GO TO 001 , |
| 0328 | 031 | WRITE (NOUT6,932) |
| 0329 | 932 | FORMAT ( ${ }^{\text {a** }}$ CEVOPE, NL AND NVAR COMBINED OUT OF RANGE ***') |
| 0330 |  | GO TO 001 ( |
| 0331 | 033 | WRITE (NOUT6,934) |
| $\begin{aligned} & 0332 \\ & 0333 \end{aligned}$ | 934 | FORMAT (' *** CEVOPE, NS OUT OF RANGE ***') GO TO 001 |
| 0334 |  | END |
| 0335 |  |  |
| 0336 |  | SUBROUTINE CVINPT(PARAM, NPARMX, NPAR,RESID, NLMAX, NL, U, X, XT, |
| 0337 |  | 1 PHI, NPAMAX, NPA THETA, NQAMAX, NQA , |
| 0338 |  | 1 XVIX,XVIXI,W1,ACCTOL,NPRI,IFAIL) |
| 0339 0340 | ${ }_{C}^{C}$ | INPUT AND CHECK MATRICES |
| 0341 | C |  |
| 0342 |  | DOUBLE PRECISION |
| 0343 |  | 1 PARAM (NPARMX), RESID(NLMAX), |
| 0344 |  | 1 U(NLMAX, NPARMX) , X (NLMAX, NPARMX) , XT (NLMAX, NPARMX), |
| 0345 |  | 1 PHI (NLMAX, NPAMAX), THETA (NLMAX, NQAMAX), |
| 0346 |  | 1 XVIX (NPARMX, NPARMX), XVIXI (NPARMX, NPARMX), W1 (NLMAX), ACCTOL, $X$ X |
| 0347 0348 |  | COMMON |
| -0349 | C | 1 /NINOUT/ NIN1,NIN2, NIN3, NIN4, NIN5,NOUT6, NOUT7, NOUT8, NOUT9, NOUT10 |
| 0350 | C |  |
| 0351 | C | READS OUTPUT FILE CREATED BY REGAME. |
| 0352 | ${ }^{\text {c }}$ | INPUT FROM NIN4: NL (2I5) |
| 0353 | C | RESID(1...NL) (5624.16) |
| 0355 | C | PARARAM (1 NPAR) |
| 0356 | C | X (1...NL, J) |
| 0357 | C | (1...., $\mathrm{J}=1 . \ldots$. ${ }^{\text {NPAR }}$ |
| 0358 | C | U(1...NL, J) ${ }^{\text {a }}$ ( |
| 0359 | C | (1..NL, J=1...NPAR |
| 0360 | C |  |
| 0361 |  | READ (NIN4,901) NL |
| 0362 | 901 | FORMAT (215) |
| 0363 |  | IF ( ${ }^{\text {(NL.LT.1) }}$.OR.(NL.GT.NLMAX)) GO TO 017 |
| 0364 |  | READ (NIN4,902) (RESID(I), $\mathrm{I}=1, \mathrm{NL}$ ) |
| 0365 | 902 | FORMAT ( 5 G 24.16 ) |
| 0366 |  | IF (NPRI.EQ.1) CALL MATPRI(RESID,NL, 1) |
| 0367 |  | READ (NIN4,901) NPAR |
| 0368 |  | IF ((NPAR.LT.1).OR.(NPAR.GT.NPARMX)) G0 TO 019 |
| 0369 |  | READ (NIN4,902) (PARAM (J), J=1,NPAR) |
| 0370 |  | IF (NPRI.EQ.1) CALL MATPRI (PARAM, NPAR,1) |
| 0371 |  | DO $003 \mathrm{~J}=1$, NPAR |
| 0372.01 | 003 | READ (NIN4,902) ( $\mathrm{X}(\mathrm{I}, \mathrm{J}$ ) , $\mathrm{I}=1, \mathrm{NL}$ ) |
| 0373 |  | IF (NPRI.EQ.1) CALL MATPR2(X,NLMAX,NL, NPAR,1) |
| 0374 |  | DO $004 \mathrm{~J}=1, \mathrm{NPAR}$ |
| 0375.01 | 004 | READ (NIN4,902) ( U ( $1, \mathrm{~J}$ ), $\mathrm{I}=1, \mathrm{NL}$ ) |
| 0376 | C | IF (NPRI.EQ.1) CALL MATPR2(U,NLMAX, NL, NPAR,1) |
| 0378 | C | CALCULATES $X T=X(X T X)-$ |
| 0379 | C |  |
| 0380 |  | DO $010 \mathrm{I}=1$, NPAR |
| 0381.01 |  | D0 $010 \mathrm{~J}=1$, NPAR |
| 0382.02 |  | $X \mathrm{X}=0.000$ |
| 0383.02 |  | DO $009 \mathrm{~K}=1, \mathrm{NL}$ |
| 0384.03 | 009 | $x \mathrm{X}=\mathrm{XX} \times \mathrm{X}(\mathrm{K}, \mathrm{I}) * \mathrm{X}(\mathrm{K}, \mathrm{J})$ |



| 0449 | 928 | FORMAT (' *** CVINPT, PHI SINGULAR ***') |
| :---: | :---: | :---: |
| 0450 |  | IFAIL $=1$ |
| 0451 |  | RETURN |
| 0452 | 029 | WRITE (NOUT6,930) |
| 0453 | 930 | FORMAT (' *** CVINPT, THETA SINGULAR ***') |
| 0454 |  | IFAIL=1 |
| 0455 |  | RETURN |
| 0456 |  | END |
| 0457 |  |  |
| 0458 |  | SUBROUTINE CVVARS(PARAM, NPARMX,NPAR, U, NLMAX, NL, $X$, |
| 0459 |  | 1 PHI, NPAMAX, NPA, THETA, NQAMAX, NQA, |
| 0460 |  | 1 UVU, XVIX,XVIXI,SE,W1,W2, |
| 0461 |  | 1 NVARS,NPRI,IFAIL) |
| 0462 | C |  |
| 0463 | C | CALCULATE PARAMETER ESTIMATOR VARIANCES |
| 0464 | C | ASSUMING ERROR VARIANCE MATRIX IS $V$ |
| 0465 | C |  |
| 0466 |  | DOUBLE PRECISION |
| 0467 |  | 1 PARAM (NPARMX), U(NLMAX, NPARMX), X (NLMAX, NPARMX), |
| 0468 |  | 1 PHI (NLMAX, NPAMAX), THETA(NLMAX, NQAMAX), |
| 0469 |  | 1 UVU(NPARMX, NPARMX), XVIX (NPARMX, NPARMX), |
| 0470 |  | 1 XVIXI(NPARMX, NPARMX), SE(NPARMX), |
| 0471 |  | 1 W1(NLMAX),W2(NLMAX), XX |
| 0472 |  | COMMON |
| 0473 |  | 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 |
| 0474 | C |  |
| 0475 |  | DO $004 \mathrm{~J}=1$, NPAR |
| 0476.01 |  | $00001 \mathrm{I}=1, \mathrm{NL}$ |
| 0477.02 | 001 | W1 ( 1 ) $=\mathrm{U}(1, \mathrm{~J}$ ) |
| 0478.01 |  | CALL REGTRA(W1,NL, PHI , NLMAX, NPA , 1, 1,W2,0,NPRI, IFAIL) |
| 0479.01 |  | CALL REGTRA(W2,NL, THETA, NLMAX, NQA , $0,1, W 1,0$, NPRI, IFAIL) |
| 0480.01 |  | CALL REGTRA(W1, NL, THETA, NLMAX, NQA , $0,0, W 2,0$, NPRI, IFAIL) |
| 0481.01 |  | CALL REGTRA(W2,NL, PHI , NLMAX,NPA, 1,0,W1,0,NPRI, IFAIL) |
| 0482.01 |  | DO $003 \mathrm{~K}=1, \mathrm{~J}$ |
| 0483.02 |  | $\mathrm{XX}=0.000$ |
| 0484.02 |  | DO $002 \mathrm{I}=1, \mathrm{NL}$ |
| 0485.03 | 002 | $X X=X X+W 1(1) * U(1, K)$ |
| 0486.02 |  | $\operatorname{UVU}(\mathrm{K}, \mathrm{J})=\mathrm{xX}$ |
| 0487.02 | 003 | $\operatorname{UVU}(J, K)=X X$ |
| 0488.01 | 004 | $\operatorname{SE}(\mathrm{J})=\operatorname{OSQRT}(\operatorname{UVU}(\mathrm{J}, \mathrm{J})$ ) |
| 0489 |  | IF (NVARS.NE.1) RETURN |
| 0490 | C |  |
| 0491 | C | IF NVARS=1 OUTPUT RESULTS |
| 0492 | C |  |
| 0493 |  | WRITE (NOUT6,905) |
| 0494 | 905 | FORMAT (/' PARAMETER ESTIMATES') |
| 0495 |  | CALL MATPR1(PARAM, NPAR,0) |
| 0496 |  | WRITE (NOUT6,906) |
| 0497 | 906 | FORMAT (/' STANDARD ERRORS') |
| 0498 |  | CALL MATPR1(SE,NPAR,0) |
| 0499 |  | WRITE (NOUT6,907) |
| 0500 | 907 | FORMAT (/' PARAMETER ESTIMATOR VARIANCES ASSUMING V') |
| 0501 |  | CALL MATPR2(UVU,NPARMX,NPAR,NPAR,0) |
| 0502 | C |  |
| 0503 | C | CALCULATE EFFICIENCY OF ESTIMATORS |
| 0504 | C |  |
| 0505 |  | DO $010 \mathrm{~J}=1$, NPAR |
| 0506.01 |  | D0 $008 \mathrm{I}=1$, NL |
| 0507.02 | 008 | W1 (I) = X ( $1, \mathrm{~J}$ ) |
| 0508.01 |  | CALL REGTRA(W1, NL, PHI , NLMAX, NPA $0,0, W 2,0$, NPRI , IFAIL) |
| 0509.01 |  | CALL REGTRA (W2,NL, THETA, NLMAX, NQA , 1, $0, W 1,0$, NPRI , IFAIL) |
| 0510.01 |  | CALL REGTRA(W1,NL, THETA, NLMAX, NQA , 1, 1,W2,0,NPRI, IFAIL) |
| 0511.01 |  | CALL REGTRA(W2,NL, PHI, NLMAX, NPA , $0,1, W 1,0$, NPRI, IFAIL) |
| 0512.01 |  | DO $010 \mathrm{~K}=1, \mathrm{~J}$ |


| 0513.02 |  | $x \mathrm{x}=0.000$ |
| :---: | :---: | :---: |
| 0514.02 |  | DO $009 \mathrm{I}=1, \mathrm{NL}$ |
| 0515.03 | 009 |  |
| 0516.02 |  | $X V I X(K, J)=X X$ |
| 0517.02 | 010 | $X V I X(J, K)=X X$ |
| 0518 |  | If (NPRI.EQ.1) CALL MATPR2(XVIX,NPARMX,NPAR,NPAR,1) |
| 0519 | C |  |
| 0520 |  | IFAIL $=1$ |
| 0521 |  | CALL FOIAAF (XVIX, NPARMX, NPAR, XVIXI, NPARMX,W1, IFAIL) |
| 0522 |  | IF (IFAIL.NE.O) GO TO 014 |
| 0523 |  | WRITE (NOUT6,911) |
| 0524 | 911 | FORMAT (/' LOWER BOUNDS ON VARIANCES') |
| 0525 |  | CALL MATPR2(XVIXI,NPARMX,NPAR,NPAR,0) |
| 0526 | C |  |
| 0527 |  | DO $012 \mathrm{~J}=1, \mathrm{NPAR}$ |
| 0528.01 | 012 | W1 (J) =XVIXI (J, J)/UVU(J, J) |
| 0529 |  | WRITE (NOUT6,913) |
| 0530 | 913 | FORMAT (/' EFFICIENCY OF ESTIMATORS') |
| 0531 |  | CALL MATPR1 (W1,NPAR,0) |
| 0532 |  | RETURN |
| 0533 | C |  |
| 0534 | 014 | WRITE (NOUT6,915) |
| 0535 | 915 | FORMAT (' *** CEVOPE, XVIXI SINGULAR ***') |
| 0536 |  | RETURN |
| 0537 |  | END |
| 0538 |  |  |
| 0539 |  | SUBROUTINE CVSTTC (XT,NLMAX,NL, NPARMX, NPAR, $X$, NSEED, $\mathrm{C}, \mathrm{NTMAX}$, NT, |
| 0540 |  | 1 W1,W5,ACCTOL,NPRI, IFAIL) |
| 0541 | C |  |
| 0542 | C | SELECT FIRST SET OF C-VECTORS |
| 0543 | C |  |
| 0544 |  | DOUBLE PRECISION |
| 0545 |  | 1 XT(NLMAX, NPARMX), X (NLMAX, NPARMX), |
| 0546 |  | 1 C(NLMAX, NTMAX), |
| 0547 |  | 1 W1 (NLMAX), W5 (NLMAX), ACCTOL, GO5DDF, XX |
| 0548 |  | INTEGER |
| 0549 |  | 1 G05DYF |
| 0550 |  | COMMON |
| 0551 |  | 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4, NIN5,NOUT6,NOUT7, NOUT8, NOUT9, NOUT10 |
| 0552 | C |  |
| 0553 |  | IF (NSEED) 006,001,002 |
| 0554 | C |  |
| 0555 | C | INITIAL C-VECTORS CHOSEN AT RANDOM |
| 0556 | C |  |
| 0557 | 001 | CALL G05CCF |
| 0558 |  | NSEED $=$ GO5DYF ( 1,9999 ) |
| 0559 | 002 | CALL G05CBF (NSEED) |
| 0560 |  | DO $005 \mathrm{~J}=1$, NT |
| 0561.01 |  | $00003 \mathrm{I}=1, \mathrm{NL}$ |
| 0562.02 | 003 | $W 1(1)=G 05 D D F(0.000,1.000)$ |
| 0563.01 |  | IF (NPRI.EQ.1) CALL MATPR1 (W1,NL,1) |
| 0564.01 |  | CALL CVIXXT(W1,NLMAX,NL, XT, NPARMX,NPAR, X , W5,ACCTOL, |
| 0565.01 |  | 1 NPRI, IFAIL) |
| 0566.01 |  | If (IFAIL.NE.0) RETURN |
| 0567.01 |  | XX=0.000 |
| 0568.01 |  | $00004 \mathrm{I}=1, \mathrm{NL}$ |
| 0569.02 |  | If ( $\operatorname{DABS}(\mathrm{Wl}(\mathrm{I})$ ).GT. $\operatorname{DABS}(\mathrm{XX})$ ) $\mathrm{XX}=\mathrm{Wl}$ (I) |
| 0570.02 | 004 | CONTINUE |
| 0571.01 |  | DO $005 \mathrm{I}=1, \mathrm{NL}$ |
| 0572.02 | 005 | $C(1, J)=W 1(1) / X X$ |
| 0573 |  | IF (NPRI.EQ.1) CALL MATPR2(C,NLMAX,NL,NT,1) |
| 0574 |  | RETURN |
| 0575 | C |  |
| 0576 | C | C-VECTORS RESTORED FROM CHANNEL NIN2 |


| 0577 | C |  |
| :---: | :---: | :---: |
| 0578 | 006 | NSEED $=-$ NSEED |
| 0579 |  | CALL GO5CBF (NSEED) |
| 0580 |  | READ (NIN2,907) NT |
| 0581 | 907 | FORMAT (I5) |
| 0582 |  | DO $008 \mathrm{~J}=1, \mathrm{NT}$ |
| 0583.01 | 008 | READ (NIN2,909) (C(I, J), $\mathrm{I}=1, \mathrm{NL}$ ) |
| 0584 | 909 | FORMAT (5024.16) |
| 0585 |  | IF (NPRI.EQ.1) CALL MATPR2(C,NLMAX,NL,NT,1) |
| 0586 |  | RETURN |
| 0587 |  | END |
| 0588 |  |  |
| 0589 |  | SUBROUTINE CVIXXT(W1,NLMAX,NL,XT,NPARMX,NPAR, X,W5,ACCTOL, |
| 0590 |  | 1 NPRI, IFAIL) |
| 0591 | C |  |
| 0592 | C | PERFORM TRANSFORMATION Wl=( $\mathrm{I}-(\mathrm{XT}) \mathrm{X}) \mathrm{Wl}$ |
| 0593 | C |  |
| 0594 |  | DOUBLE PRECISION |
| 0595 |  | 1 XT(NLMAX, NPARMX), ${ }^{\text {( }}$ (NLMAX, NPARMX), |
| 0596 |  | 1 W1(NLMAX),W5 (NLMAX), ACCTOL, XX, XY, XZ |
| 0597 |  | COMMON |
| 0598 |  | 1 /NINOUT/ NIN1,NIN2, NI N3, NIN4, NIN5, NOUT6, NOUT 7, NOUT8, NOUT9, NOUT 10 |
| 0599 |  | DO 005 ITER=1,3 |
| 0600.01 |  | $00002 \mathrm{I}=1$, NPAR |
| 0601.02 |  | XX=0.000 |
| 0602.02 |  | $00001 \mathrm{~J}=1, \mathrm{NL}$ |
| 0603.03 | 001 | X $\mathrm{X}=\mathrm{XX} \times \mathrm{X}$ ( $\mathrm{J}, \mathrm{I}$ )*W1 (J) |
| 0604.02 | 002 | $W 5(1)=x X$ |
| 0605.01 |  | IF (NPRI.EQ.1) CALL MATPR1(W5,NPAR,1) |
| 0606.01 | C |  |
| 0607.01 |  | $x Y=0.000$ |
| 0608.01 |  | $X Z=0.000$ |
| 0609.01 |  | DO $004 \mathrm{I}=1, \mathrm{NL}$ |
| 0610.02 |  | $X Y=X Y+D A B S(W 1(I))$ |
| 0611.02 |  | $X X=0.000$ |
| 0612.02 |  | D0 $003 \mathrm{~J}=1$, NP AR |
| 0613.03 | 003 | $x \mathrm{X}=\mathrm{XX} \times \mathrm{XT}(\mathrm{I}, \mathrm{J}) * W 5(\mathrm{~J})$ |
| 0614.02 |  | W1 (I) = W1 (I)-XX |
| 0615.02 | 004 | $X Z=x Z+\operatorname{ABS}(\mathrm{XX})$ |
| 0616.01 |  | IF (NPRI.EQ.1) CALL MATPR1(W1,NL, 1) |
| 0617.01 |  | IF (XZ/XY.LT.ACCTOL) RETURN |
| 0618.01 | 005 | CONTINUE |
| 0619 |  |  |
| 0620 | 906 | FORMAT ( ${ }^{\text {*** }}$ CVIXXT, FAILURE TO CONVERGE ***') |
| 0621 |  | IFAIL=1 |
| 0622 |  | RETURN |
| 0623 |  | END |
| 0624 |  |  |
| 0625 |  | SUBROUTINE CVINIT(U,NLMAX,NL, NPARMX, NPAR, PHI, NPAMAX, NPA, |
| 0626 |  | 1 THETA, NQAMAX, NQA, C , NTMAX, NT, NOMEGA, NLAG, NS, |
| 0627 |  | 1 XLHS,NLHS, NTA, NVARMX,NVAR, XRHS , MI NEQ, |
| 0628 |  | 1 W1,W2,W3,ACCTOL,NPRI,IFAIL) |
| 0629 | C |  |
| 0630 | C | SET INPUT FOR LINEAR PROGRAM |
| 0631 | C |  |
| 0632 |  | DOUBLE PRECISION |
| 0633 |  | 1 U(NLMAX, NPARMX), |
| 0634 |  | 1 PHI (NLMAX, NPAMAX), THETA (NLMAX, NQAMAX), |
| 0635 |  | 1 C(NLMAX, NTMAX), |
| 0636 |  | 1 XLHS(NLHS, NVARMX), XRHS (NTMAX),W1(NLMAX),W2(NLMAX), |
| 0637 |  | 1 W3(NVARMX), ACCTOL, CVC |
| 0638 |  | INTEGER |
| 0639 |  | 1 MINEQ (NTMAX) |
| 0640 |  | COMMON |


| 0641 |  | 1 /NINOUT/ NIN1,NIN2, NIN3, NIN4, NIN5, NOUT6, NOUT7, NOUT8, NOUT9, NOUT10 |
| :---: | :---: | :---: |
|  | C |  |
| 0643 |  | $000011=1, N T M A X$ |
| 0644.01 | 001 | MINEQ( 1 ) $=-1$ |
| 0645.01 | C |  |
| 0646 |  | DO $004 \mathrm{~J}=1, \mathrm{NT}$ |
| 0647.01 |  | D0 $002 \mathrm{I}=1, \mathrm{NL}$ |
| 0648.02 | 002 | Wl( 1 ) $=\mathrm{C}(1, \mathrm{~J})$ |
| 0649.01 |  | CALL CVOMEG(W1,NLMAX,NL, PHI, NPAMAX, NPA, THETA, NQAMAX, NQA, |
| 0650.01 |  | 1 NOMEGA,NLAG,CVC, W3, NVARMX,NVAR, |
| 0651.01 |  | 1 W2,ACCTOL,NPRI,IFAIL) |
| 0652.01 |  | If (IFAIL.NE.0) RETURN |
| 0653.01 |  | D0 $003 \mathrm{~K}=1$, NVAR |
| 0654.02 | 003 | XLHS ( $\mathrm{J}, \mathrm{K}$ ) $=$ W3 3 ( K ) |
| 0655.01 |  | XRHS (J) = CVC |
| 0656.01 | 004 | CONTINUE |
| 0657 |  | IF (NPRI.EQ.1) CALL MATPR1(XRHS,NT,1) |
| 0658 | C |  |
| 0659 |  | D0 $005 \mathrm{I}=1, \mathrm{NL}$ |
| 0660.01 | 005 | W1 (I) $=$ U(I,NS) |
| 0661 |  | CALL CVOMEG(W1,NLMAX,NL, PHI, NPAMAX, NPA, THETA, NQAMAX, NQA, |
| 0662 |  | 1 NOMEGA,NLAG,CVC,W3, NVARMX,NVAR, |
| 0663 |  | 1 W2,ACCTOL,NPRI, IFAIL) |
| 0664 |  | IF (IFAIL.NE.0) RETURN |
| 0665 |  | NTA $=$ NT+1 |
| 0666 |  | DO $006 \mathrm{~K}=1$, NVAR |
| 0667.01 | 006 | XLHS (NTA, K) $=-$ W3( K ) |
| 0668 |  | RETURN |
| 0669 |  | END |
| 0670 |  |  |
| 0671 |  | SUBROUTINE CVOMEG(WI, NLMAX, NL, PHI, NPAMAX, NPA, THETA, NQAMAX, NQA, |
| 0672 |  | NOMEGA, NLAG,CVC, W3, NVARMX, NVAR, |
| 0673 |  | W2,ACCTOL, NPRI, IFAIL) |
| 0674 | C |  |
| 0675 | C | CALCULATES $\mathrm{CVC}=(\mathrm{W} 1) \mathrm{V}(\mathrm{W} 1)$ |
| 0676 | ${ }^{\text {c }}$ | AND W3 IS L.H.S. IN LINEAR PROGRAM (DEPENDS ON NOMEGA,NLAG) |
| 0677 | C |  |
| 0678 |  | DOUBLE PRECISION |
| 0679 |  | 1 PHI (NLMAX, NPAMAX), THETA(NLMAX, NQAMAX), |
| 0680 |  | 1 W1 (NLMAX), W2 (NLMAX), |
| 0681 |  | 1 W3(NVARMX), ACCTOL, CVC, XX |
| 0682 |  | COMMON |
| 0683 |  | 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10 |
| 0684 | C |  |
| 0685 | C | CALCULATE CVC |
| 0686 | C |  |
| 0687 |  | CALL REGTRA(W1,NL, PHI,NLMAX,NPA, 1,1,W2,0,NPRI, IFAIL) |
| 0688 |  | CALL REGTRA(W2,NL, THETA, NLMAX, NQA , $0,1, W 3,0$, NPRI , IFAIL) |
| 0689 |  | CVC $=0.000$ |
| 0690 |  | DO 001 I=1,NL |
| 0691.01 | 001 | CVC $=$ CVC+W3 3 (I)*W3 (I) |
| 0692 |  | IF (NPRI.EQ.1) CALL MATPRO(CVC,1) |
| 0693 |  | IF (CVC.LE.0.0D0) GO TO 007 |
| 0694 | C |  |
| 0695 | C | CALCULATES W3 IF NOMEGA=0 |
| 0696 | C |  |
| 0697 |  | NLAGA=NLAG+1 |
| 0698 |  | $K=0$ |
| 0699 |  | DO $002 \mathrm{I}=1, \mathrm{NL}$ |
| 0700.01 |  | JZF = MINO( NLAGA, I) |
| 0701.01 |  | DO $002 \mathrm{JZ}=1, \mathrm{JZF}$ |
| 0702.02 |  | $\mathrm{J}=\mathrm{I}+1-\mathrm{JZ}$ |
| 0703.02 |  | $\mathrm{K}=\mathrm{K}+1$ |
| 0704.02 |  | W3 ( X ) $=\mathrm{W} 1$ (I)*W1 (J) |

```
0705.02
0706.02 002
0707
0708
0709
0710
0711
0712
0713.01
0714.01
0715.01
0716.02
0717.02
0718.03
0719.03
0720.03
0721.03
0722.03
0723.03
0724.03
0725.03
0726.02
0727.03
0728.03
0729.01
0730.01
0731.01
0732
0733.01
0734.01
0735
0736
0737
0738
0739
0 7 4 0
0741
0742
0743
0744
0745
0746
0747
0748
0749
0 7 5 0
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0 0 2
IF (I.NE.J) W3(K)=2.000*W3(K)
CONTINUE
IF (NPRI.EQ.1) CALL MATPRI(W3,NVAR,1)
IF (NOMEGA.EQ.0) RETURN
C
C
CALCULATES W3 IF NOMEGA>O
DO 005 IOMEGA=1,NOMEGA
K=0
KK=0
00 004 I=1,NL
JZF=MINO(NLAGA,I)
DO 003 JZ=1,JZF
J=I+1-JZ
JZZ=JZ-1
JZY=JZ-2
XX=0.000
 IF (JZ.GE.2) }XX=XXX+W3(K)+W2(JZZ
 IF (JZ.GE.3) }XX=XXX-W2(JZY
 K=K+1
003
 W3(K)=W3(K)+XX
 DO 004 JZ=1,JZF
 KK=KK+1
 W2(JZ)=W3(KK)
 IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1)
 CONTINUE
```



```
DO 006 K=1,NVAR
 IF (W3(K).LE.ACCTOL) W3(K)=0.000
 CONTINUE
 RETURN
 C
007 WRITE (NOUT6,908)
908 FORMAT (' *** CVOMEG, CVC NON-POSITIVE ***')
IFAIL=1
RETURN
END
SUBROUTINE CVEIGC(XT,NLMAX,NL,NPARMX,NPAR,X,PHI,NPAMAX,NPA,
1 THETA,NQAMAX,NQA,VOPT,NTBMAX,MOPT,NTMAX,NT,NOMEGA,
1 NLAG,NVAR,CNEW,QUAD,W1,W2,W3,NVARMX,
1 W5,ITEIG,ACCTOL,NPRI,IFAIL)
C
C
FIND NEW C-VECTOR
DOUBLE PRECISION
1 XT(NLMAX,NPARMX), X(NLMAX,NPARMX),
1 PHI(NLMAX,NPAMAX),THETA(NLMAX,NQAMAX),
l VOPT(NTBMAX),CNEW(NLMAX),
1 W1(NLMAX),W2(NLMAX),
1 W3(NVARMX),W5(NLMAX),QUAD,CNEIG,ACCTOL, SHIFT, XDIF, XX ,XY ,GO5DOF
 INTEGER
1 MOPT(NTMAX)
 COMMON
 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT1O
 C
C
FROM A RANDOM STARTING VECTOR REPEATEDLY APPLY TRANSFORMATION:
CNEW = (I-(XT)X) ((V-VOPT) CNEW - (SHIFT) CNEW)
IN THE FOLLOWING STEPS:
Wl=CNEW
W5=(VOPT)W1
```



| 0833.01 |  | 1 SHIFT $=$ CNEIG+SHIFT |
| :---: | :---: | :---: |
| 0834.01 |  | IF (NPRI.EQ.1) CALL MATPRO(SHIFT,1) |
| 0835.01 | 008 | continue |
| 0836.01 | C |  |
| 0837 |  | WRITE (NOUT6,909) |
| 0838 | 909 | FORMAT (' *** CVEIGC, FAILURE TO CONVERGE ***') |
| 0839 |  | IFAIL=1 |
| 0840 |  | ITEIG=1001 |
| 0841 |  | QUAD=0.000 |
| 0842 |  | RETURN |
| 0843 |  | ENU |
| 0844 |  |  |
| 0845 |  | SUBROUTINE CVVOPT(W1,NLMAX,NL, VOPT, NTBMAX,NT,MOPT,NTMAX, |
| 0846 |  | 1 NOMEGA,NLAG,NVAR,ITEIG,W5,W2, |
| 0847 |  | 1 W3,NVARMX,NPRI) |
| 0848 | C |  |
| 0849 | C | CALCULATES W5=(VOPT)(W1) |
| 0850 | C |  |
| 0851 |  | DOUBLE PRECISION |
| 0852 |  | 1 VOPT (NTAMAX), |
| 0853 |  | 1 W1(NLMAX), W2 (NLMAX), |
| 0854 |  | 1 W3(NVARMX), W5 (NLMAX), XX |
| 0855 |  | INTEGER |
| 0856 |  | 1 MOPT(NTMAX) |
| 0857 |  | IF (ITEIG.NE.1) G0 TO 008 |
| 0858 | C |  |
| 0859 | C | CALCULATE W3 WHEN ITEIG=1 IF NOMEGA=0 |
| 0860 | C |  |
| 0861 |  | DO 001 I= 1,NVAR |
| 0862.01 | 001 | W3(I) $=0.000$ |
| 0863 |  | NLAGA $=$ NLAG +1 |
| 0864 |  | DO $003 \mathrm{~L}=1, \mathrm{NT}$ |
| 0865.01 |  | IF (MOPT(L).GT.NVAR) GO TO 003 |
| 0866.01 |  | $\mathrm{K}=0$ |
| 0867.01 |  | DO $002 \mathrm{I}=1, \mathrm{NL}$ |
| 0868.02 |  | JZF = MINO(NLAGA, I) |
| 0869.02 |  | DO $002 \mathrm{JZ}=1, \mathrm{JZF}$ |
| 0870.03 |  | $\mathrm{J}=1+1-\mathrm{JZ}$ |
| 0871.03 |  | $\mathrm{K}=\mathrm{K}+1$ |
| 0872.03 |  | IF (MOPT(L).NE.K) GO TO 002 |
| 0873.03 |  | W3 ( $K$ ) = VOPT (L) |
| 0874.03 | 002 | CONTINUE |
| 0875.01 | 003 | CONTINUE |
| 0876 |  | IF (NPRI.EQ.1) CALL MATPR1(W3,NVAR,1) |
| 0877 |  | IF (NOMEGA.EQ.0) GO TO 008 |
| 0878 | C |  |
| 0879 | C | CALCULATE W3 WHEN ITEIG=1 IF NOMEGA>0 |
| 0880 | C |  |
| 0881 |  | NLA $=$ NL +1 |
| 0882 |  | DO 007 IOMEGA $=1$, NOMEGA |
| 0883.01 |  | $00004 \mathrm{~J}=1, \mathrm{NL}$ |
| 0884.02 | 004 | W2 ( J$)=0.0 \mathrm{O} 0$ |
| 0885.01 |  | $K=N V A R+1$ |
| 0886.01 |  | KK=NVAR+1 |
| 0887.01 |  | DO $006 \mathrm{IZ}=1, \mathrm{NL}$ |
| 0888.02 |  | I = NLA 12 |
| 0889.02 |  | JS=MAXO( I-NLAG,1) |
| 0890.02 |  | DO $005 \mathrm{~J}=\mathrm{JS}$, I |
| 0891.03 |  | $x \mathrm{x}=\mathrm{W} 2$ (J) |
| 0892.03 |  | $J Z=J-1$ |
| 0893.03 |  | IF (J.GT.JS) $x X=x X+W 3(K)-W 2(J Z)$ |
| 0894.03 |  | $\mathrm{K}=\mathrm{K}-1$ |
| 0895.03 | 005 | W3 3 ( $)=W 3(K)+X X$ |
| 0896.02 |  | D0 $006 \mathrm{~J}=\mathrm{JS}, \mathrm{I}$ |


| 0897.03 |  | KK=KK-1 |
| :---: | :---: | :---: |
| 0898.03 | 006 | W2 (J) $=\mathrm{W} 3(\mathrm{KK})$ |
| 0899.01 |  | If (NPRI.EQ.1) CALL MATPRI(W3,NVAR,1) |
| 0900.01 | 007 | CONTINUE |
| 0901.01 | C |  |
| 0902.01 | C | CALCULATE W5 |
| 0903.01 | C |  |
| 0904 | 008 | NLAGA $=$ NLAG +1 |
| 0905 |  | DO $009 \mathrm{I}=1, \mathrm{NL}$ |
| 0906.01 | 009 | $W 5(1)=0.000$ |
| 0907 |  | $\mathrm{K}=0$ |
| 0908 |  | $00010 \mathrm{I}=1$, NL |
| 0909.01 |  | JZF=MINO(NLAGA, I) |
| 0910.01 |  | D0 $010 \mathrm{JZ}=1, \mathrm{JZF}$ |
| 0911.02 |  | $\mathrm{J}=1+1-\mathrm{JZ}$ |
| 0912.02 |  | $K=K+1$ |
| 0913.02 |  | W5 (I) $=$ W5 (I) +W3 (K)*W1 (J) |
| 0914.02 |  | If (I.NE.J) W5 (J) =W5 (J)+W3 (K)*W1 (I) |
| 0915.02 | 010 | CONTINUE |
| 0916 |  | IF (NPRI.EQ.1) CALL MATPRI(W5,NL,1) |
| 0917 |  | RETURN |
| 0918 |  | END |
| 0919 |  |  |
| 0920 |  | SUBROUTINE CVMODI(PHI,NLMAX,NL,NPAMAX,NPA, THETA, NQAMAX, NQA, |
| 0921 |  | 1 C,NTMAX,NT,CWT,CNEW, NOMEGA, NLAG, NVAR, |
| 0922 |  | 1 XLHS,NLHS, NVARMX, XRHS, |
| 0923 |  | 1 W1,W2,W3,MW1,MW3,NTTMAX,ACCTOL,NPRI, IFAIL) |
| 0924 | ${ }^{C}$ |  |
| 0925 | C | MODIFY INPUT FUR LINEAR PROGRAM |
| 0926 | C |  |
| 0927 |  | DOUBLE PRECISION |
| 0928 |  | 1 PHI (NLMAX, NPAMAX), THETA (NLMAX, NQAMAX), |
| 0929 |  | 1 C(NLMAX, NTMAX), CWT (NTMAX), CNEW(NLMAX), |
| 0930 |  | 1 XLHS (NLHS, NVARMX), XRHS (NTMAX),W1(NLMAX),W2(NLMAX), |
| 0931 |  | 1 W3(NVARMX), ACCTOL, CVC |
| 0932 |  | INTEGER |
| 0933 |  | 1 MW1(NTMAX), MW3 (NTTMAX) |
| 0934 |  | COMMON |
| 0935 |  | 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT 8 , NOUT9, NOUT10 |
| 0936 |  | $N T A=N T+1$ |
| 0937 | C |  |
| 0938 | C | REMOVE C-VECTORS FOR WHICH CWT $=0$ |
| 0939 | C |  |
| 0940 |  | NEWLOC=NTA |
| 0941 |  | NSHIFT=0 |
| 0942 |  | $\mathrm{K}=0$ |
| 0943 |  | $L=N T A$ |
| 0944 | 001 | $\mathrm{K}=\mathrm{K}+1$ |
| 0945 |  | IF (K.EQ.L) G0 TO 004 ( 0 TO |
| 0946 |  | IF (CWT(K).GE.ACCTOL) GO TO 001 |
| 0947 |  | IF (NEWLOC.NE.NTA) GO TO 002 |
| 0948 |  | NEWLOC $=\mathrm{K}$ |
| 0949 |  | G0 TO 001 |
| 0950 | 002 | L=L-1 |
| 0951 |  | IF (K.EQ.L) GO TO 004 |
| 0952 |  | IF (CWT(L).LT.ACCTOL) GO TO 002 |
| 0953 |  | NSHIFT=NSHIFT+1 |
| 0954 |  | MW1 (NSHIFT) $=\mathrm{K}$ |
| 0955 |  | MW3 (NSHIFT) $=\mathrm{L}$ |
| 0956 |  | DO $003 \mathrm{I}=1, \mathrm{NL}$ |
| 0957.01 | 003 | $C(1, K)=C(1, L)$ |
| 0958 |  | $C W T(K)=C W T(L)$ $\times \operatorname{CHS}(K)=X R H S(L)$ |
| 0959 |  | XRHS $(\mathrm{K})=\mathrm{XRHS}(\mathrm{L})$ |
| 0960 |  | GO. T0 001 |


| 0961 | c |  |
| :---: | :---: | :---: |
| 0962 | 004 | IF (NEWLOC.EQ.NTA) $K=K+1$ |
| 0963 |  | IF (K.GT.NTMAX) GO TO 013 |
| 0964 |  | $N T=K-1$ |
| 0965 |  | If (K.GT.NLHS) GO TO 005 |
| 0966 |  | IF (K.EQ.NTA) GO TO 005 |
| 0967 |  | NSHIFT=NSHIFT+1 |
| 0968 |  | MW1 ( NSHIFT) =K |
| 0969 |  | MW3 (NSHIFT) = NTA |
| 0970 | 005 | IF (NPRI.NE.1) GO TO 006 |
| 0971 |  | CALL MATPNO(NSHIFT,1) |
| 0972 |  | If (NSHIFT.EQ.O) GO $T 0006$ |
| 0973 |  | CALL MATPN1(MW1,NSHIFT,1) |
| 0974 |  | CALL MATPN1(MW3,NSHIFT,1) |
| 0975 | C |  |
| 0976 | C | ADD NEW C-VECTOR CNEW |
| 0977 | C |  |
| 0978 | 006 | $00007 \mathrm{I}=1, \mathrm{NL}$ |
| 0979.01 | 007 | C(I,NEWLOC) $=$ CNEW( I |
| 0980 |  | CWT (NEWLOC) $=0.000$ |
| 0981 |  | CALL CVOMEG(CNEW, NLMAX,NL,PHI,NPAMAX,NPA, THETA, NQAMAX,NQA, |
| 0982 |  | 1 NOMEGA,NLAG,CVC, W3,NVARMX, NVAR, |
| 0983 |  | 1 W2,ACCTOL,NPRI, IFAIL) |
| 0984 |  | If (IFAIL.NE.0) RETURN |
| 0985 |  | XRHS (NEWLOC) =CVC |
| 0986 |  | IF ( $\mathrm{NT}+1 . \mathrm{GT} . \mathrm{NLHS}$ ) GO TO 012 |
| 0987 |  | $N T A=N T+1$ |
| 0988 |  | IF (NSHIFT.EQ.0) GO TO 010 |
| 0989 |  | DO $009 \mathrm{I}=1$, NVAR |
| 0990.01 |  | DO $008 \mathrm{~J}=1$, NSHIFT |
| 0991.02 |  | $\mathrm{K}=\mathrm{MW1}$ (J) |
| 0992.02 |  | L=MW3(J) |
| 0993.02 | 008 | XLHS $(\mathrm{K}, \mathrm{I})=\mathrm{XLHS}(\mathrm{L}, \mathrm{I})$ |
| 0994.01 | 009 | XLHS (NEWLOC, I ) =W3 ( $)$ |
| 0995 |  | GO T0 012 |
| 0996 | 010 | 00011 I = 1, NVAR |
| 0997.01 | 011 | XLHS(NEWLOC, I ) =W3 (I) |
| 0998.01 | C |  |
| 0999 | 012 | IF (NPRI.NE.1) RETURN |
| 1000 |  | CALL MATPR2(C,NLMAX,NL,NT,1) |
| 1001 |  | CALL MATPR1 (CWT,NT, 1) |
| 1002 |  | CALL MATPR2(XLHS,NLHS,NTA,NVAR,1) |
| 1003 |  | CALL MATPR1 (XRHS,NT,1) |
| 1004 |  | RETURN |
| 1005 | C |  |
| 1006 | 013 | WRITE (NOUT6,914) |
| 1007 | 914 | FORMAT (' *** CVMODI, NEW NT OUT OF RANGE ***') |
| 1008 |  | IFAIL $=1$ |
| 1009 |  | RETURN |
| 1010 |  | END |
| 1011 |  |  |
| 1012 |  | SUBROUTINE CVINCR(XLHS,NLHS,NVARMX,NVAR,W1,NLMAX,W3,NT,NPRI) |
| 1013 | C |  |
| 1014 | C | INCREASE FIRST DIMENSION OF XLHS |
| 1015 | C |  |
| 1016 |  | DOUBLE PRECISION |
| 1017 |  | 1 XLHS (NLHS,NVARMX),W1(NLMAX),W3(NVARMX) |
| 1018 | C |  |
| 1019 |  | $N T A=N T+1$ |
| 1020 |  | JOLD $=$ INTS( (INTL(NVAR)*INTL(NT) -1)/INTL(NLHS)+1) |
| 1021 |  |  |
| 1022 |  | $J=$ NVAR +1 |
| 1023 |  | DO $002 \mathrm{JZ}=1$, NVAR |
| 1024.01 |  | $\mathrm{J}=\mathrm{J}-1$ |

```
1025.01 I=NTA
```

1026.01
1027.02
1028.02
1029.02
1030.02
1031.02
1032.02
1033.01
1034.01
1035.01
1036.02

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072.01
1073.01

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

```
 DO 001 IZ=1,NT
```

    DO 001 IZ=1,NT
    I=1-1
    I=1-1
    10LD=10LD-1
    10LD=10LD-1
    If (IOLD.GE.1) GO TO 001
    If (IOLD.GE.1) GO TO 001
    10LD=NLHS
    10LD=NLHS
    JOLD=JOLD-1
    JOLD=JOLD-1
    Wl(I)=XLHS(IOLD,JOLD)
    Wl(I)=XLHS(IOLD,JOLD)
    W1(NTA)=W1(NT)
    W1(NTA)=W1(NT)
    W1(NT)=W3(J)
    W1(NT)=W3(J)
    DO 002 I=1,NTA
    DO 002 I=1,NTA
        XLHS(I,J)=W1(I)
        XLHS(I,J)=W1(I)
        IF (NPRI.EQ.1) CALL MATPR2(XLHS,NLHS,NTA,NVAR,1)
        IF (NPRI.EQ.1) CALL MATPR2(XLHS,NLHS,NTA,NVAR,1)
        RETURN
        RETURN
        END
        END
        SUBROUTINE CVLINP(XLHS,NLHS,NVARMX,NVAR,XRHS,NTMAX,NT,
        SUBROUTINE CVLINP(XLHS,NLHS,NVARMX,NVAR,XRHS,NTMAX,NT,
            l
            l
                        MINEQ, XOPT, CWT, VOPT, NTBMAX,MOPT,NL,
                        MINEQ, XOPT, CWT, VOPT, NTBMAX,MOPT,NL,
                            W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL)
                            W4,NTAMAX,MW1,MW2,NTVRMX,MW3,NTTMAX,ITLP,NPRI,IFAIL)
    C
C
OPTIMIZE COMBINATION OF C-VECTORS BY LINEAR PROGRAM
OPTIMIZE COMBINATION OF C-VECTORS BY LINEAR PROGRAM
DOUBLE PRECISION
DOUBLE PRECISION
1 CWT(NTMAX), VOPT(NTBMAX),
1 CWT(NTMAX), VOPT(NTBMAX),
1 XLHS(NLHS,NVARMX),XRHS(NTMAX),
1 XLHS(NLHS,NVARMX),XRHS(NTMAX),
1 W4(NTBMAX,NTAMAX), XMIN, XO2AAF, XOPT
1 W4(NTBMAX,NTAMAX), XMIN, XO2AAF, XOPT
INTEGER
INTEGER
l MINEQ(NTMAX),MOPT(NTMAX),MW1(NTMAX),MW2(NTVRMX),
l MINEQ(NTMAX),MOPT(NTMAX),MW1(NTMAX),MW2(NTVRMX),
1 MW3(NTTMAX)
1 MW3(NTTMAX)
COMMON
COMMON
1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10
1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NOUT7,NOUT8,NOUT9,NOUT10
XMIN=X02AAF(XOPT)
XMIN=X02AAF(XOPT)
NITLP =NT*NL
NITLP =NT*NL
NTA=NT+1
NTA=NT+1
NTB=NT+2
NTB=NT+2
NTVAR =NT+NVAR
NTVAR =NT+NVAR
NTT=2*NT
NTT=2*NT
IFAIL=1
IFAIL=1
CALL HO1ADF(XLHS,NLHS,NT,NVAR,MINEQ, XRHS,XMIN,NITLPP,
CALL HO1ADF(XLHS,NLHS,NT,NVAR,MINEQ, XRHS,XMIN,NITLPP,
1 NTVAR,NTT,NTA,NTB,MW1,W4,NTBMAX,MW2,
1 NTVAR,NTT,NTA,NTB,MW1,W4,NTBMAX,MW2,
1 MH3,MOPT,VOPT, XOPT,ITLP,IPAR,IFAIL)
1 MH3,MOPT,VOPT, XOPT,ITLP,IPAR,IFAIL)
IF (IFAIL.NE.O) GO TO 003
IF (IFAIL.NE.O) GO TO 003
IF (IPAR.NE.0) GO TO 005
IF (IPAR.NE.0) GO TO 005
C
XOPT=DSQRT(-XOPT)
XOPT=DSQRT(-XOPT)
DO 002 I=1,NT
DO 002 I=1,NT
CWT (I) =DSQRT(DABS(W4(NTA,I)))
CWT (I) =DSQRT(DABS(W4(NTA,I)))
IF (NPRI.NE.1) RETURN
IF (NPRI.NE.1) RETURN
CALL MATPR2(W4,NTBMAX,NTA,NT,1)
CALL MATPR2(W4,NTBMAX,NTA,NT,1)
CALL MATPRI (CWT,NT,1)
CALL MATPRI (CWT,NT,1)
CALL MATPN1 (MOPT,NT,1)
CALL MATPN1 (MOPT,NT,1)
CALL MATPR1(VOPT,NT,1)
CALL MATPR1(VOPT,NT,1)
RETURN
RETURN
C
003 WRITE (NOUT6,904) IFAIL
003 WRITE (NOUT6,904) IFAIL
904 FORMAT (' *** CVLIN, HO1ADF FAILS, IFAIL. =',I3,' ***')
904 FORMAT (' *** CVLIN, HO1ADF FAILS, IFAIL. =',I3,' ***')
RETURN
RETURN
005 WRITE (NOUT6,906) IPAR
005 WRITE (NOUT6,906) IPAR
906 FORMAT (' *** CVLIN, HO1ADF FAILS, IPAR =',I3,' ***')
906 FORMAT (' *** CVLIN, HO1ADF FAILS, IPAR =',I3,' ***')
IFAIL=1
IFAIL=1
RETURN
RETURN
ENO

```
 ENO
```

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

```
SUBROUTINE CVRESU(PARAM,NPARMX,NPAR,RESIO,NLMAX,NL,
 l PHI,NPAMAX,NPA,THETA,NQAMMAX,NQA,UVU,
 1 PHI,NPAMAX,NPA,THETA,NQAMAX,NQA,UV
 1 W1,W2,W4,NTBMAX,NTAMAX,NPRI)
C
 CALCULATE FINAL RESULTS
 DOUBLE PRECISION
 1 PARAM(NPARMX),RESID(NLMAX),
 1 PHI(NLMAX,NPAMAX), THETA(NLMAX,NQAMAX),
 1 UVU(NPARMX,NPARMX),
 1 C(NLMAX, NTMAX),CWT(NTMAX),
 1 W1(NLMAX),W2(NLMAX),
 1 W4 (NTBMAX,NTAMAX),TS̉TAT(34),TDF (34),
 1 XX,SUVU,TRCV, STRCV,RBIAS,VARECE,DF,T,ECE,SECE,CILOW,CIUPP
 COMMON
 1 /NINOUT/ NIN1,NIN2,NIN3,NIN4,NIN5,NOUT6,NUUT7,NOUT8,NOUT9,NOUT10
 DATA
 1 TSTAT
 1/ 12.70600, 4.30300, 3.18200, 2.77600, 2.57100,
 l 2.447DO, 2.36500, 2.30600, 2.26200, 2.22800,
 1 2.20100, 2.17900, 2.16000, 2.14500, 2.13100,
 1 2.12000, 2.11000, 2.10100, 2.09300, 2.08600,
 1 2.08000, 2.07400, 2.06900, 2.06400, 2.06000,
 l 2.056D0, 2.052DO, 2.048D0, 2.04500, 2.042DO,
 1 2.02100, 2.00000, 1.98000, 1.96000%,
 1 TDF
 l/ 1.000, 2.000, 3.000, 4.000, 5.000,
 1 6.000, 7.000, 8.000, 9.000, 10.000,
 I 11.000, 12.000, 13.000, 14.000, 15.000,
 1 16.000, 17.000, 18.000, 19.000, 20.000,
 1 21.000, 22.000, 23.000, 24.000, 25.000,
 1 26.000, 27.000, 28.000, 29.000, 30.000,
 1 40.000, 60.000, 120.000, 1.0010/
C
 WRITE (NOUT6,901)
 FORMAT (//)
C
 WRITE (NOUT6,902) ND
902 FORMAT (/' NUMBER OF DATA SETS ADVANCED (ND)
 1 ',7X,15)
 WRITE (NOUT6,903) NS
 FORMAT (/' NUMBER OF PARAMETER (NS)
 1 ',7X,I5)
 WRITE (NOUT6,904) PARAM(NS)
 FORMAT (/' ESTIMATE OF PARAMETER VALUE (PARAM(NS))
 1 ',1PG16.8/)
C
 MODEL DEPENDENT RESULTS
 WRITE (NOUT6,905)
905 FORMAT (/' MODEL DEPENDENT RESULTS',
 l /' ======3================')
 WRITE (NOUT6,906) UVU(NS,NS)
 FORMAT (/' VARIANCE OF ESTIMATOR ASSUMING V IS ERROR VARIANCE MATR
 1IX (UVU(NS,NS)) ',12X,1PG16.8)
 SUVU=DSQRT(UVU(NS,NS))
 WRITE (NOUT6,907) SUVU
 907 FORMAT (/' S.E. OF ESTIMATOR ASSUMING V IS ERROR VARIANCE MATRIX (
 ISQRT(UVU(NS,NS))) ',1PG16.8/)
 EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR
noo
```

```
1153
```

```
 WRITE (NOUT6,908)
```

        WRITE (NOUT6,908)
    908 FORMAT (/' EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR'
    908 FORMAT (/' EXPECTED RESULTS FROM CONSERVATIVE ESTIMATOR'
        1 /' ==============================================1)
        1 /' ==============================================1)
        DO 012 K=1,NT
        DO 012 K=1,NT
        DO 009 I=1,NL
        DO 009 I=1,NL
    009 W1(I)=CWT(K)*C(1,K)
009 W1(I)=CWT(K)*C(1,K)
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0,NPRI,IFAIL)
CALL REGTRA(W1,NL,PHI,NLMAX,NPA,1,1,W2,0,NPRI,IFAIL)
CALL REGTRA(W2,NL,THETA,NLMAX,NQA,0,1,W1,0,NPRI,IFAIL)
CALL REGTRA(W2,NL,THETA,NLMAX,NQA,0,1,W1,0,NPRI,IFAIL)
CALL REGTRA(W1,NL,THETA,NLMAX,NQA,0,0,W2,0,NPRI,IFAIL)
CALL REGTRA(W1,NL,THETA,NLMAX,NQA,0,0,W2,0,NPRI,IFAIL)
CALL REGTRA(W2,NL,PHI,NLMAX,NPA,1,0,W1,0,NPRI,IFAIL)
CALL REGTRA(W2,NL,PHI,NLMAX,NPA,1,0,W1,0,NPRI,IFAIL)
DO Oll L=1,NT
DO Oll L=1,NT
XX=0.000
XX=0.000
DO 010 I=1,NL
DO 010 I=1,NL
XX=XX+C(I,L)*W1(I)
XX=XX+C(I,L)*W1(I)
011 W4(L,K)=XX*CWT(L)
011 W4(L,K)=XX*CWT(L)
012 CONTINUE
012 CONTINUE
IF (NPRI.EQ.1) CALL MATPR2(W4,NTBMAX,NT,NT,1)
IF (NPRI.EQ.1) CALL MATPR2(W4,NTBMAX,NT,NT,1)
C
C
13 FORMAT (/' DIFFERENCE OPERATOR APPLIED TO CLASS OF VARIANCE MATRIC
13 FORMAT (/' DIFFERENCE OPERATOR APPLIED TO CLASS OF VARIANCE MATRIC
IES (NOMEGA) ,19X,15)
IES (NOMEGA) ,19X,15)
WRITE (NOUT6,914) NLAG
WRITE (NOUT6,914) NLAG
914 FORMAT (/' LAG BEYOND WHICH VARIANCE TERMS ARE ZERO (NLAG)
914 FORMAT (/' LAG BEYOND WHICH VARIANCE TERMS ARE ZERO (NLAG)
l
l
C
C
TRCV=0.000
TRCV=0.000
DO 015 K=1,NT
DO 015 K=1,NT
TRCV=TRCV+W4(K,K)
TRCV=TRCV+W4(K,K)
WRITE (NOUT6,916) TRCV
WRITE (NOUT6,916) TRCV
916 FORMAT (/' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF VARIANCE AS
916 FORMAT (/' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF VARIANCE AS
ISUMING V (TR(CV)) , 12X,1PG16.8)
ISUMING V (TR(CV)) , 12X,1PG16.8)
STRCV=DSQRT(TRCV)
STRCV=DSQRT(TRCV)
WRITE (NOUT6,917) STRCV
WRITE (NOUT6,917) STRCV
917 FORMAT (/' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF S.E. ASSUMI
917 FORMAT (/' EXPECTED VALUE OF CONSERVATIVE ESTIMATOR OF S.E. ASSUMI
ING V (SQRT(TR(CV))) ',1PG16.8)
ING V (SQRT(TR(CV))) ',1PG16.8)
RBIAS=STRCV/SUVU-1.000
RBIAS=STRCV/SUVU-1.000
WRITE (NOUT6,918) RBIAS
WRITE (NOUT6,918) RBIAS
918 FORMAT (/' EXP. REL. BIAS OF CONSERVATIVE EST. OF S.E. (SQRT(TR(CV
918 FORMAT (/' EXP. REL. BIAS OF CONSERVATIVE EST. OF S.E. (SQRT(TR(CV
1))/SQRT(UVU(NS,NS))-1) ',24X,1PG16.8/)
1))/SQRT(UVU(NS,NS))-1) ',24X,1PG16.8/)
C
C
VARECE=0.0DO
VARECE=0.0DO
DO. 019 K=1,NT
DO. 019 K=1,NT
DO 019 L=1,NT
DO 019 L=1,NT
019 VARECE=VARECE+W4(K,L)*W4(L,K)
019 VARECE=VARECE+W4(K,L)*W4(L,K)
VARECE=2.000*VARECE
VARECE=2.000*VARECE
WRITE (NOUT6,920) VARECE
WRITE (NOUT6,920) VARECE
920 FORMAT (/' VARIANCE OF CONSERVATIVE ESTIMATOR OF VARIANCE (2*TR(CV
920 FORMAT (/' VARIANCE OF CONSERVATIVE ESTIMATOR OF VARIANCE (2*TR(CV
1CV)) '',24X,1PG16.8)
1CV)) '',24X,1PG16.8)
DF=2.000*TRCV*TRCV/VARECE
DF=2.000*TRCV*TRCV/VARECE
WRITE (NOUT6,921) DF
WRITE (NOUT6,921) DF
921 FORMAT (/' APPROX. D.F. OF CONSERVATIVE ESTIMATOR OF VARIANCE (TR(
921 FORMAT (/' APPROX. D.F. OF CONSERVATIVE ESTIMATOR OF VARIANCE (TR(
ICV)**2/TR(CVCV)) ',24X,1PG16.8)
ICV)**2/TR(CVCV)) ',24X,1PG16.8)
C
C
IF (DF.LT.1.000) DF=1.000
IF (DF.LT.1.000) DF=1.000
00 022 I=1,33
00 022 I=1,33
IF (DF.LT.TDF(I)) GO TO 023
IF (DF.LT.TDF(I)) GO TO 023
CONTINUE
CONTINUE
IZ=1-1
IZ=1-1
IF (IZ.LT.1) IZ=1
IF (IZ.LT.1) IZ=1
T=TSTAT(I)+(TSTAT(IZ)-TSTAT(I))*(1.0DO/DF-1.000/TDF(I))
T=TSTAT(I)+(TSTAT(IZ)-TSTAT(I))*(1.0DO/DF-1.000/TDF(I))
1 /(1.0D0/TDF(IZ)-1.0D0/TDF(I))
1 /(1.0D0/TDF(IZ)-1.0D0/TDF(I))
WRITE (NOUT6,924) T
WRITE (NOUT6,924) T
924 FORMAT (/' APPROXIMATE 95% T-STATISTIC
924 FORMAT (/' APPROXIMATE 95% T-STATISTIC
l !.24X,1PG126.8/)

```
 l !.24X,1PG126.8/)
```

| 1217 | C |  |
| :---: | :---: | :---: |
| 1218 | C | ACTUAL RESULTS FROM CONSERVATIVE ESTIMATOR |
| 1219 | C |  |
| 1220 |  | WRITE (NOUT6,925) |
| 1221 | 925 | FORMAT (/' ACTUAL RESULTS FROM CONSERVATIVE ESTIMATOR', |
| 1222 |  | 1 /' =========================================1; |
| 1223 |  | ECE $=0.000$ |
| 1224 |  | D0 $027 \mathrm{~K}=1$, NT |
| 1225.01 |  | XX=0.000 |
| 1226.01 |  | D0 026 I=1,NL |
| 1227.02 | 026 | XX $=\mathrm{XX} \times$ RESID $(1) * C(1, K)$ |
| 1228.01 |  | $X X=X X * C W T(K)$ |
| 1229.01 | 027 | ECE $=E C E+X X * X X$ |
| 1230 |  | WRITE (NOUT6,928) ECE |
| 1231 | 928 | FORMAT (/' ESTIMATE OF VARIANCE USING CONSERVATIVE ESTIMATOR (ECE) |
| 1232 |  | 1 ',12X,1PG16.8) |
| 1233 |  | SECE=OSQRT (ECE) |
| 1234 |  | WRITE (NOUT6,929) SECE |
| 1235 | 929 | FORMAT (/' ESTIMATE OF S.E. USING CONSERVATIVE ESTIMATOR (SQRT(ECE |
| 1236 |  | 1)) ',1PG16.8/82X, $=========={ }^{\prime} /$ ) |
| 1237 | C |  |
| 1238 |  | CILOW=PARAM (NS)-T*SECE |
| 1239 |  | WRITE (NOUT6,930) CILOW |
| 1240 | 930 | FORMAT (/' APPROXIMATE 95\% LOWER CONFIDENCE BOUND FOR PARAMETER VA |
| 1241 |  | ILUE ${ }^{\text {, ,1PG16.8) }}$ |
| 1242 |  | CIUPP=PARAM (NS) +T*SECE |
| 1243 |  | WRITE (NOUT6,931) CIUPP |
| 1244 | 931 | FORMAT (/' APPROXIMATE 95\% UPPER CONFIDENCE BOUND FOR PARAMETER VA |
| 1245 |  | ILUE ',1PG16.8) |
| 1246 | c |  |
| 1247 | C | DUMP OF FINAL C-VECTOR TO CHANNEL NOUT10 |
| 1248 | C |  |
| 1249 |  | WRITE (NOUT10,932) NT |
| 1250 | 932 | FORMAT ( I5) |
| 1251 |  | DO $033 \mathrm{~J}=1, \mathrm{NT}$ |
| 1252.01 | 033 | WRITE (NOUT10,934) (C(I, J), $\mathrm{I}=1, \mathrm{NL}$ ) |
| 1253 | 934 | FORMAT (1P5D24.16) |
| 1254 |  | RETURN |
| 1255 |  | END |



AITKEN, A.C. (1934), On least-squares and linear combinations of observations, Proceedings of the Royal Society of Edinburgh, 55, 42-48.

AITKEN, A.C. (1937), The evaluation of the latest roots and vectors of a matrix, Proceedings of the Royal Society of Edinburgh, 57, 269-304.

AKAIKE, H. (1973), Information theory and an extension of the maximum likelihood principle, 2nd International Symposium on Information Theory, Budapest: Publishing House of the Hungarian Academy of Sciences, 267-281.

ANDERSON, R.L. (1954), The problem of autocorrelation in regression analysis, Journal of the American Statistical Association, 49, 113-129.

ANDERSON, T.W. (1971), The Statistical Analysis of Time Series, New York: Wiley.

ANSLEY, C.F. (1979), An algorithm for the exact likelihood of a mixed autoregressive-moving average process, Biometrika, 66, 59-65.

ANSLEY, C.F. and NEWBOLD, P. (1979), On the finite sample distribution of residual autocorrelations in autoregressive-moving average models, Biometrika, 66, 547-553.

ATKINSON, A.C. (1969), The use of residuals as a concomitant variable, Biometrika, 56, 33-41.

BARD, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.

BARTLETT, M.S. (1946), On the theoretical specification and sampling properties of autocorrelated time-series, Supplement to Journal of Royal Statistical Society, 8, 27-41.

BARTLETT, M.S. (1978), An Introduction to Stochastic Processes, with special reference to Methods and Applications, (3rd edition), Cambridge: University Press.

BAUERMEISTER, A., DALE, J.E., WILLIAMS, E.J. and SCOBIE, J. (1980), Movement of ${ }^{14} \mathrm{C}$ - and ${ }^{11} \mathrm{C}$-labelled assimilate in wheat leaves: the effect of IAA, Journal of Experimental Botany, 31, 1199-1209.

BLIGHT, B.J.N. and OTT, L. (1975), A Bayesian approach to model inadequacy for polynomial regression, Biometrika, 62, 79-88. BLOOMFIELD, P. and WATSON, G.S. (1975), The inefficiency of least squares, Biometrika, 62, 121-128.

BOX, G.E.P. and JENKINS, G.M. (1976), Time Series Analysis; Forcasting and Control (Revised Edition), San Francisco: Holden-Day.

BOX, G.E.P. and PIERCE, D.A. (1970), Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American Statistical Association, 65, 1509-1526.

BRAND, L. (1966), Differential and Difference Equations, New York: Wiley.

BRUCE, J.M. (1980), Modelling the climatic energy demand of suckler cows, Animal Production, 30, 449-450.

BURNETT, G.A. and BRUCE, J.M. (1978), Thermal simulation of a
suckler cow, Farm Building Progress, 54, 11-13.

CAMPBELL, M.J. and WALKER, A.M. (1977), A survey of statistical work on the Mackenzie river series of annual Canadian lynx trappings for the years 1821-1934 and a new analysis, Journal of the Royal Statistical Society, Series A, 140, 411-431.

CHATTERJEE, S. and PRICE, B. (1977), Regression Analysis by Example, New York: Wiley.

CHIANG, C.L. (1956), On regular best asymptotically normal estimates, Annals of Mathematical Statistics, 27, 336-351. CHIANG, C.L. (1980), An Introduction to Stochastic Processes and Their Applications, New York: Krieger.

CHIPMAN, J.S. (1979), Efficiency of least-squares estimation of linear trend when residuals are autocorrelated, Econometrica, 47, 115-128.

CLIFF, A.D. and ORD, J.K. (1981), Spatial Processes; Models and Applications, London: Pion.

COBBY, J.M. and LE DU, Y.L.P. (1978), On fitting curves to lactation data, Animal Production, 26, 127-133.

COCHRANE, D. and ORCUTT, G.H. (1949), Application of least squares regression to relationships containing autocorrelated error terms, Journal of the American Statistical Association, 44, 32-61.

COLQUHOUN, D. (1978), Critical Analysis of numerical biological data, The 6 th International CODATA Conference, CODATA Bulletin, 29, 26-33.

COLQUHOUN, D. and HAWKES, A.G. (1977), Relaxation and fluctuations of membrane currents that flow through drug-operated channels, Proceedings of the Royal Society of London B, 199 , 231-262.

COOK, D.G. and POCOCK, S.J. (1983), Multiple regression in geographical mortality studies, with allowance for spatially correlated errors, Biometrics, 39, 361-371.

COOPER, D.M. and THOMPSON, R. (1977), A note on the estimation of the parameters of the autoregressive-moving average process, Biometrika, 64, 625-628.

COX, D.R. and MILLER, H.D. (1965), The Theory of Stochastic Processes, London: Methuen.

CRAMÉR, H. (1946), Mathematical Methods of Statistics, Princeton: University Press.

CROWDER, M.J. (1976), Maximum likelihood estimation for dependent observations, Journal of the Royal Statistical Society, Series B, 38, 45-53.

CROWDER, M.J. and TREDGER, J.A. (1981), The use of exponentially damped polynomials for biological recovery data, Applied Statistics, 30, 147-152.

DHANOA, M.S. and LE DU, Y.L.P. (1982), A partial adjustment model to describe the lactation curve of a dairy cow, Animal Production, 34, 243-247.

DUNCAN, D.B. and JONES, R.H. (1966), Multiple regression with stationary errors, Journal of the American Statistical Association, 61, 917-928.

DURBIN, J.(1960), Estimation of parameters in time-series regression models, Journal of the Royal Statistical Society, Series B, 22, 139-153.

DURBIN, J. and WATSON, G.S. (1950), Testing for serial correlation in least squares regression I, Biometrika, 37, 409-428. DURBIN, J. and WATSON, G.S. (1951), Testing for serial correlation in least squares regression II, Biometrika, 38, 159-178.

DURBIN, J. and WATSON, G.S. (1971), Testing for serial correlation in least-squares regression III, Biometrika, 58, 1-19. EFRON, B. (1982), The Jackknife, The Bootstrap and Other Resampling Plans, Philadelphia: Society for Industrial and Applied Mathematics.

ENGLE, R.F. (1974), Specification of the disturbance for efficient estimation, Econometrica, 42, 135-146.

FINNEY, D.J. (1958), The efficiencies of alternative estimators for an asymptotic regression equation, Biometrika, 45, 370-388.

FINNEY, D.J. (1978), Growth curves: their nature, uses, and estimation, in Patterns of Growth \& Development in Cattle, (eds. H. de Boer and J. Martin) The Hague: Martinus Hijhoff, 658-672.

FISK, P.R. (1967), Models of the second kind in regression analysis, Journal of the Royal Statistical Society, Series B, 29, 266-281.

GALLANT, A.R., and GOEBEL, J.J. (1976), Nonlinear regression with autocorrelated errors, Journal of the American Statistical Association, 71, 961-967.

GARVIN, N.W. (1960), Introduction to linear programming, New York: McGraw-Hill.

GASTER, M. and ROBERTS, J.B. (1977), The spectral analysis of randomly sampled records by a direct transform, Proceedings of the Royal Society of London, Series A, 354, 27-58.
GILL, P.E. and MURRAY, W. (1972), Quasi-Newton methods for unconstrained optimization, Journal of the Institute of Mathematics and its Applications, 9, 91-108.

GLASBEY, C.A. (1979), Correlated residuals. in non-linear regression applied to growth data, Applied Statistics, 28, 251-259.

GLASBEY, C.A. (1980), Nonlinear regression with autoregressive time series errors, Biometrics, 36, 135-140.

GLASBEY, C.A. (1982), A generalization of partial autocorrelations useful in identifying ARMA models, Technometrics, 24, 223-228.

GLASBEY, C.A. (1984), CEVOPE - a program for finding conservative estimates of the variances of regression parameter estimators when errors are serially correlated, Compstat 1984, Vienna: Physica-Verlag, 55-60.

GRIZZLE, J.E. and ALLEN, D.M. (1969), Analysis of growth and dose response curves, Biometrics, 25, 357-381.

HARVEY, A.C. and PHILLIPS, G.D.A. (1979), Maximum likelihood estimation of regression models with autoregressive-moving average disturbances, Biometrika, 66, 49-58.

HOEL, P.G., PORT, S.C. and STONE, C.J. (19.72), Introduction to Stochastic Processes, Boston: Houghton Mifflin. HUNTER, E.A., GLASBEY, C.A. and NAYLOR, R.E.L. (1984), The analysis of data from germination tests, Journal of Agricultural Science, 102, 207-213.

JENNRICH, R.I. (1969), Asymptotic properties of non-linear least squares estimators, Annals of Mathematical Statistics, 40, 633-643.

JOHNSTON, J. (1972), Econometric Methods (2nd edition), New York: McGraw-Hill.

JONES, R.H. (1981), Fitting a continuous time autoregression to discrete data, in Applied Time Series Analysis II, (ed. D.F. FINDLEY) New York: Academic Press.

JUDGE, G.G., GRIFFITHS, W.E., HILL, R.C., and LEE, T-C. (1980), The Theory and Practice of Econometrics, New York: Wiley.

KODELL, R.L. and MATIS, J.H. (1976), Estimating the rate constants in a two-compartment stochastic model, Biometrics, 32, 377-390.

KOWALSKI, C.J. and GUIRE, K.E. (1974), Longitudinal Data Analysis, Growth, 38, 131-169.

KRÄMER, W. (1980), Finite sample efficiency of ordinary least squares in the linear regression model with autocorrelated errors, Journal of the American Statistical Association, 75, 1005-1009.

LEHOCZKY, J.P. and GAVER, D.P. (1977), A diffusion-approximation analysis of a general n-compartment system, Mathematical Biosciences, 36, 127-148.

LJUNG, G.M. (1982), The likelihood function for a stationary Gaussian autoregressive-moving average process with missing observations, Biometrika, 69, 265-268.

LJUNG, G.M. and BOX, G.E.P. (1978), On a measure of lack of fit in time series models, Biometrika, 65, 297-303.

MALINVAUD, E. (1980), Statistical Methods of Econometrics, (3rd edition), Amsterdam: North Holland.

MANN, H. and WALD, A. (1943), On the statistical treatment of linear stochastic difference equations, Econometrica, 11, 173-220.

MATIS, J.H. and HARTLEY, H.O. (1971), Stochastic compartmental analysis: Model and least squares estimation from time series data, Biometrics, 27, 77-102.

MATIS, J.H. and WEHRLY, T.E. (1979), Stochastic models of compartmental systems, Biometrics, 35, 199-220.

MITCHELL, A.F.S. (1968), Exponential regression with correlated observations, Biometrika, 55, 149-162

NEILSON, D.R., WHITTEMORE, C.T., LEWIS, M., ALLISTON, J.C., ROBERTS, D.J., HODGSON-JONES, L.S., MILLS, J., PARKINSON, H. and PRESCOTT, J.H.D. (1983), Production characteristics of high yielding cows, Animal Production, 36, 321-335.

NEWBOLD, P. (1981), Some recent developments in time series analysis, International Statistical Review, 49, 53-66. NICHOLS, M.A. and HEYDECKER, W. (1968), Two approaches to the study of germination data, Proceedings of International Seed Testing Association, 33, 531-540.

NUMERICAL ALGORITHMS GROUP (1983), Library Manual Mk 10, NAG Central Office, 256 Banbury Road, Oxford, OX2 7DE.

PANDIT, S.M. and WU, S.M. (1975), Unique estimates of the parameters of a continuous stationary stochastic process, Biometrika, 62, 497-501.

PARKS, J.R. (1975a), The animal growth phase plane, Journal of Theoretical Biology, 55, 371-380.

PARKS, J.R. (1975b), A theory of animal weight response to controlled feeding, Journal of Theoretical Biology, 55, 381-391.

PATTERSON, H.D. and SILVEY, V. (1980), Statutory and recommended list trials of crop varieties in the United Kingdom, Journal of the Royal Statistical Society, Series A, 143, 219-252.

PHADKE, M.S. and WU, S.M. (1974), Modeling of continuous stochastic processes from discrete observations with application to sunspots data, Journal of the American Statistical Association, 69, 325-329.

PIERCE, D.A. (1971a), Distribution of residual autocorrelations in the regression model with autoregressive-moving average errors, Journal of the Royal Statistical Society, Series B, 33, 140-146.

PIERCE, D.A. (1971b), Least squares estimation in the regression model with autoregressive-moving average errors, Biometrika, 58, 299-312.

PIERCE, D.A. (1972), Least squares estimation in dynamicdisturbance time series models, Biometrika, 59, 73-78.

PRIESTLEY, M.B. (1981a), Spectral Analysis and Time Series, Volume 1: Univariate Series, London: Academic Press.

PRIESTLEY, M.B. (1981b), Spectral Analysis and Time Series, Volume 2: Multivariate Series, Prediction and Control, London: Academic Press.

PURDUE, P. (1979), Stochastic compartmental models: a review of the mathematical theory with ecological applications, in Compartmental Analysis of Ecosystem Models (eds. J.H. Matis, B.C. Patten and G.C. White), 223-260, Maryland: International Co-operative Publishing House. QUENOUILLE, M.H. (1947), A large-sample test for the goodness of fit of autoregressive schemes, Journal of the Royal Statistical Society, 110, 123-129.

QUENOUILLE, M.H. (1958), Discrete autoregressive schemes with varying time-intervals, Metrika, 1, 21-27.

RAO, P and GRILICHES, Z. (1969), Small-sample properties of several two-stage regression methods in the context of autocorrelated errors, Journal of the American Statistical Association, 64, 253-272.

RIPLEY, B.D. (1981), Spatial Statistics, New York: Wiley. ROBINSON, P.M. (1977), Estimation of a time series model from unequally spaced data, Stochastic Processes and their Applications, 6, 9-24.

ROBINSON, P.M. (1978), Alternative models for stationary stochastic processes, Stochastic Processes and their Applications, 8 , 141-152.

ROSS, G.J.S. (1978), Exact and approximate confidence regions for functions of parameters in non-linear models, Compstat 1978, Vienna: Physica-Verlag, 110-116.

SANDLAND, R.L. and McGILCHRIST, C.A. (1979), Stochastic growth curve analysis, Biometrics, 35, 255-271.

SATTERTHWAITE, F.E. (1946), An approximate distribution of estimates of variance components, Biometrics, 2, 110-114. SPITZER, J.J. (1979), Small-sample properties of nonlinear least squares and maximum likelihood estimators in the context of autocorrelated errors, Journal of the American Statistical Association, 74, 41-47.

THIESSEN, R.B., HNIZDO, E., MAXWELL, D.A.G., GIBSON D. and TAYLOR, St.C.S. (1984), Multibreed comparisons of British Cattle. Variation in body weight, growth rate and food intake, Animal Production, 38, 323-340.

THORNLEY, J.H.M. (1976), Mathematical Models in Plant Physiology: a Quantitative Approach to Problems in Plant and Crop Physiology, London: Academic Press.

WATSON, G.S. (1955), Serial correlation in regression analysis I, Biometrika, 42, 327-341.

WATSON, G.S. and HANNAN, E.J. (1956), Serial correlation in regression analysis II, Biometrika, 43, 436-448.

WEBER, J.E. and MONARCHI, D.E. (1982), Performance of the DurbinWatson test and WLS estimation when the disturbance term includes serial dependence in addition to first-order autocorrelation, Journal of the American Statistical Association, 77, 117-128.

WEDDERBURN, R.W.M. (1974), Quasi-likelihood functions, generalized linear models and the Gauss-Newton method, Biometrika, 61, 439-447.

WHITE, J.S. (1958), The limiting distribution of the serial
correlation coefficient in the explosive case, Annals of
Mathematical Statistics, 29, 1188-1197.
WHITTLE, P. (1961), Gaussian estimation in stationary time series, Bulletin of the International Statistical Institute, 33, 105-129.

WILKINSON, G.N., ECKERT, S.R., HANCOCK, T.W. and MAYO, O. (1983), Nearest neighbour (NN) analysis of field experiments, Journal of the Royal Statistical Society, Series B, 45, 151-211. WILKINSON, J.H. (1954), The calculation of the latent roots and vectors of matrices on the pilot model of the A.C.E., Proceedings of the Cambridge Philosophical Society, 50, 536-566.

WILKINSON, J.H. and REINSCH, C. (1971), Handbook for Automatic Computation. Volume II Linear Algebra, Berlin:

Springer-Verlag.
WOOD, P.D.P. (1967), Algebraic model of the lactation curve in cattle, Nature, 216, 164-165.

WOODWARD, W.A. and GRAY, H.L. (1983), A comparison of autoregressive and harmonic component models for the lynx data, Journal of the Royal Statistical Society, Series A, 146, 71-73.

ZYSKIND, G. (1967), On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models, Annals of Mathematical Statistics, 38, 1092-1109.


[^0]:    (A) A LONGITUDINAL PLOI OF DATA(Y),FIT(F),PREDICTIOM
    C) A CROSS-SECTIONAL PLOT OF RESIOUALS (Z) AGAINST FIT(F)
    (C) A CROSS-SECTIONAL PLOT OF RESIOUALS (Z) AGAINS
    (O) A LONGITUDINAL PLOT OF COVARIANCES OF ERROAS

