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Abstract

We propose a method to determine the flow of large crowds of agents in a scene such

that it is filled to its capacity with a coordinated, dynamically moving crowd. Our

approach provides a focus on cooperative control across the entire crowd. This is

done with a view to providing a method which animators can use to easily populate

and fill a scene. We solve this global planning problem by first finding the topology

of the scene using a Reeb graph, which is computed from a Harmonic field of the

environment. The Maximum flow can then be calculated across this graph detailing

how the agents should move through the space. This information is converted back

from the topological level to the geometric using a route planner and the Harmonic

field. We provide evidence of the system’s effectiveness in creating dynamic motion

through comparison to a recent method. We also demonstrate how this system allows

the crowd to be controlled globally with a couple of simple intuitive controls and how

it can be useful for the purpose of designing buildings and providing control in team

sports.
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Chapter 1

Introduction

1.1 Motivation

Crowds and the associated behaviour of large groups of people emerge from the lo-

calised interaction of individual humans. They occur when a large number of people

have goals which cause them to intersect, using local collision avoidance and particular

crowd specific behaviours, all at once. Generally, simulation of these crowd situations

for graphics focuses on a similar local agent based perspective, with the primary met-

rics of success or failure being the collisions between agents, such as in Kapadia et al.

(2011a), or the realism of the scene produced, measured by comparing emergent arte-

facts to those found in actual crowds as in Helbing and Molnár (1995). Methods which

perform well at these tests are poor at producing scenes where a crowd moves in a dy-

namic fashion. Here we define a dynamic crowd as consisting of a constant and high

degree of motion across all of the agents without congestion or queueing. Examples

of these types of situations are found in many animations and include such scenes as

panicked people rushing away from a disaster or an army charging together towards a

specific target. Such scenes focus on the motion of the crowd as a whole rather than lo-

cal realism and they require additional cooperation between the agents either because

the crowd are cooperating, as in an army, or to avoid congestion (which would detract

from the dynamic motion of the crowd and be undesirable for the overall composition

of the scene), as in a fleeing group of panicked people. We are interested in taking

a different approach which utilises global control methods to provide a system which

prioritises control and ease of use over realism for the purposes of creating such scenes.

This is a worthwhile direction for a few reasons:

1. A method which can fill a scene with a dynamic crowd with minimal control

1



2 Chapter 1. Introduction

inputs would have great utility in crowd animation for producing scenes where

the intended focus is on the motion of the crowd.

2. There are also currently few methods (discussions of which can be found in

Section 2.2.2) which tackle the problem of producing the motion of coordinated

crowds or groups of agents, particularly over the entire course of the motion.

3. We believe that providing additional controls for animators to produce crowds

and alter their behaviour at a crowd-wide level should be a higher priority and

would represent a useful step in generating crowd scenes.

1.2 Problem Definition and Goals

1.2.1 Problem Definition

Coordinating crowds. Previous methods generally utilise some form of local con-

troller for the agents in a crowd, which plan primarily for the next state of each agent

based on the current state. Such controllers are generally selfish, with each agent max-

imising its own return in both its local avoidance and its path planned towards the goal.

For local avoidance such selfishness produces desirable realism. However, for entire

crowds the lack of cooperation between agents which results from this may cause unde-

sirable collisions and delays, especially around bottlenecks in any given scene. Current

methods are very poor at avoiding such delays, especially those which will occur in

some future state of the crowd. We define a function f which plans for the long term

motion of the crowd such that:

Xpaths = f (scene,Yagents,starts,goals), (1.1)

where scene is the available space and the position and size of the obstacles within it,

Yagents is the list of agents to be used and starts and goals are the positions of the start

and goal points for the agents. Xpaths is a path for each agent for their entire progress

through the scene. This f will provide more long term planning which is necessary to

ensure that the crowd has the required coordination to produce dynamic motion which

avoids congestion. Furthermore, we intend that these global paths would not prescribe

an exact route for the agents but rather would be more akin to a series of waypoints. As

a result they could be followed by any local controller, making our proposed system

more of a compliment than a replacement to most current methods.
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Additionally, in order for the crowd to be able to appropriately fill the scene without

creating congestion at bottlenecks we also need to compute the number of agents which

will fill it to capacity. Here we define the capacity of a scene as being the number

of agents who can move from the given starts to the given goals without causing

congestion or queueing at bottlenecks along that route (that is, filling each route up to

its capacity). Thus when we talk about filling the scene we do not mean that all of the

open space within the scene will be occupied, but rather that each route from the starts

to the goals will be filled according to its capacity (normally determined by the width

of the bottleneck on that route). Finding the capacity of the scene and suitable routes

to fill it is a non-trivial problem, as there are not only a large number of ways to split

up a group of agents into any given set of routes, but the interactions of those agents in

the future are non-trivial to predict. To perform this task we define a further function g

which provides the list Yagents for f :

Yagents = g(scene,goals), (1.2)

here g will perform analysis of the scene and goals to create a list of agents such that

they will fill the scene to its capacity, but not beyond. This prevents scenes becoming

overfilled and allows f to find cooperative paths for the agents which avoid congestion.

Providing controls. Current methods, particularly agent based ones, often provide

a means to control the behaviour and actions of each member of the crowd. However,

there are no controls which allow a more generalised control of the crowd as a single

entity. For global control of this type controls are needed which have a direct rela-

tionship to some characteristic of the crowd and the way it interacts with the scene.

We propose that f could be further adapted to take input from a user defining crowd

behaviours:

Xpaths = f (scene,agents,starts,goals,θ), (1.3)

where θ is a set of controls which can be set by the user. Global planning over a large

number of agents is non-trivial due to the uncertainty in how they will react to any new

instructions and how those reactions will effect other aspects of the crowd behaviour.

Using f and the agents from g will allow us abstract the crowd’s interaction with a

given scene in such a way that intuitive controls can be provided for control of crowds.

Here we define intuitive to mean that the effect of the control can be easily understood

by the user without further experimentation or explanation. In this case specifically we

use coordination and congestion, thus it can be easily understood that by decreasing

either of these the crowd will become less coordinated or less congested respectively.
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1.2.2 Goals

The goals for this research project can be defined as follows:

1. Given a particular scene, to provide control and coordination for a crowd which

will fill that scene to its capacity with a crowd which moves dynamically across

the entire course of its motion. The crowd will avoid congestion and the agents

will avoid crossing one another’s paths such that the dynamic motion of the

crowd is preserved. This will be done with minimal input from the animator.

2. Having produced a dynamic crowd scene, controls will be provided which allow

alteration of the type of crowd motion which results. These controls will be

simple, such that the entire crowd can be controlled with just a few variables.

The controls will also have a high level of clarity, in order that the effect they

will have can be intuitively understood. Finally, they will allow the creation of

number of different varieties of scenes.

3. Control will be demonstrated over other types of crowd scenes, such as evacua-

tions and team sports. This will be in such a manner that not only can examples

of such scenes be produced, but that additional information is provided which

gives useful tools and understanding.

1.3 Key Issues

There are several key issues and problems which need to be solved in producing the

desired system:

1. Complexity. Planning across both the spatial and temporal space of a scene is

very complex. There is an extremely large solution space within which there are

very few solutions, even fewer of which are both valid and satisfy the require-

ments laid out in Section 1.2.2. In order to solve the problems laid out here this

system must find abstractions which simplify the planning domain such that it is

possible to produce suitable plans.

2. Validity of the Planning. The plans produced must be valid, that is they will

allow agents not only to progress through the scene but to progress towards spe-

cific goals and to do so while filling the scene to its capacity along the routes

towards those goals. In order to demonstrate that produced plans achieve such



1.4. Publications 5

validity a comparison must be provided to a previous method in the area and

show that the plans represent improvement.

3. Dynamics of the Motion The routes provided by our system must create dy-

namic motion across the entire scene. Such motion will allow interaction be-

tween agents while still producing a high degree of motion towards the goals

with a minimal amount of interruption or slowing. Such dynamism will be eval-

uated through analysing the overall motion of the crowd across the course of its

progress and comparing it to another globally aware method.

Over the course of this work we will attempt to demonstrate that it deals with each of

these criteria in turn.

1.4 Publications

The work presented here has been published in Barnett et al. (2013).

1.5 Methodology Overview

In order to satisfy these goals and overcome these issues a number of methods are

utilised to create our system. In this section we give an overview of the methodology

used in this system, with particular reference to how each method will be applied to

solve the issues raised in Section 1.3.

Topological Representation Initially we compute a Harmonic field across the avail-

able space and from this we find a Reeb graph. This provides a graph which defines the

topology of the scene according to the mapping of the Harmonic field. By abstracting

into this topological space we can then find the Maximum flow over this graph, pro-

viding a guidance which demonstrates, in the maximum flow case, how many agents

will be where in the scene. This three step process provides the solution to the com-

plexity described in Section 1.3, allowing a generalised plan to be made which details

the movement of agents throughout their progress through the scene.

Producing Routes The topological plans are converted back into the geometry of

the given scene. This is done using the relationship of the Harmonic field to the Reeb

graph along with careful stepping through the graph to obtain routes which are valid not

only in reaching from the start to the goal, but also in their efficiency and coordination
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with one another. This process helps to satisfy the validity of the planning problem

described in Section 1.3.

Providing controls Next we satisfy the goal given in Section 1.2.2, to provide con-

trol over this type of crowd scene. This is done firstly by defining two variables which

alter the make up of the routes provided thus far, these are called Congestion and Co-

operation.

Additional Applications Additionally, the system is adapted to a couple of other

problems. Firstly, to evacuation scenarios, again using the routes produced to demon-

strate additional information about building structures which can be used in their de-

sign. Secondly, applying the principles of topology and maximum flow to the control

of agents in team sports, allowing coordinated optimal decisions to be made for the

team as whole.

1.6 Thesis Structure

The structure of the rest of the thesis is as follows. Firstly, Chapter 2 provides a review

of some of the related work, then in Chapter 3 the computation of Harmonic field and

associated Reeb graph are described. Chapter 4 explains how the maximum flow is

calculated over this Reeb graph and Chapter 5 explains how the information in the

graph is converted into paths for the agents. In Chapter 6 the experimental results of

the system are presented, then in Chapter 7 we describe some additional applications

of our method. Finally, conclusions are given in Chapter 8.



Chapter 2

Related Work

In this chapter we will provide an overview of the field of crowd simulation for com-

puter graphics. There are other similar areas of study of some relevance, in robotics

and the associated path planning, and in simulations for crowd study and evacuation

simulation. For our purposes the work of primary importance is focussed in the area

of graphics. We will be paying attention to how the works here relate to our own in

regard to their relevance to our focus on coordinated crowd motion and to providing

specific tools to an animator.

Within the computer graphics community there has been a significant amount of

work done on the problem of crowd simulation. It is important both for easily animat-

ing scenes and for providing scenarios through which players can navigate in computer

games. In both cases as computation power increases so the demand for large seamless

crowds to fill in the backdrop is also increasing, as it provides a simple realistic way to

provide fluid and believable settings for any scene.

Many different divisions have been proposed for the work in this field. We choose

to roughly follow one of the two dimensions proposed in Zhou et al. (2010), dividing

the work into local and global methods (in Section 2.1 and Section 2.2 respectively).

This division was chosen as it lends itself well to comparison with our own work. Obvi-

ously there are some issues with the division, as often local systems will involve some

form of global pathfinding and nearly all global works provide some local avoidance.

Here we specify local control as that where the knowledge used in making the deci-

sion for each agent is primarily local to that agent’s space, as in agent based methods or

flocking Reynolds (1987a). For global control the focus is more on global information,

often even making decisions for the crowd as a whole, as in field based methods.

7
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2.1 Local Systems

In this section we will analyse the many different systems proposed for crowd control

which are focussed on local control. Specifically, on those works which allow control

of a number of agents moving at once within the same scene, as opposed to motion

graphs or similar works which deal only with creating movement for a single individ-

ual. Local methods are generally preferred because they allow much more intuitive

control whereby each member of the crowd is treated as its own individual agent.

Within the collection of local controllers there are a number of different approaches.

Firstly, we will look at geometric based methods in Section 2.1.1, which base the rules

for each agent around the position of nearby agents and a series of geometric rules re-

lating them. Next, we will look at particle based methods in Section 2.1.2, these treat

each agent in the crowd as a particle pulled about by various forces based on its local

situation, its movement is then the aggregate of those forces. Nex,t in Section 2.1.3 we

will look at agent based methods which give a series of rules to each agent dictating

their movements to produce a particular kind of behaviour. Finally, in Section 2.1.4

we will look at methods which directly model or create their crowd behaviour using

examples from data.

2.1.1 Geometric Systems

Geometric based systems focus on the local area around each agent and the rules which

it uses to avoid other agents and obstacles. As a result typically the focus is on avoiding

collisions rather than on allowing control or producing realism. The advantage of this

is locally smooth efficient motion, the disadvantage is that over larger time scales or

distances efficiency is not considered and may be compromised.

In the field of Robotics geometric control is a much more studied area of research,

though in those cases the problem being dealt with is quite different as the robots

must deal with incomplete and noisy information about the world. Nonetheless some

systems have crossed over from there into animation, particularly the work done on

Velocity Obstacles in Fiorini and Shillert (1998). Here each obstacle is extrapolated

out into the robot’s velocity space to allow definition of the set of all velocities which

will cause collisions, this allows the choice to be made from the remaining velocities

which will avoid collisions. This allows a single representation to take account of

the collisions with all nearby obstacles, the disadvantage is that searching the reduced

velocity space for an appropriate velocity is quite inefficient.
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The main extension of the Velocity Obstacle method, which has been applied in

Robotics but also in Graphics, is the reciprocal velocity obstacles (RVO) method pre-

sented in van den Berg et al. (2008a). Here the other agent obstacles are assumed to

be using a similar avoidance methodology which will result in them also reacting to

the current agent, this leads to reduced avoidance. The representation of obstacles in

general is also improved by representing each one by a much simpler half plane on the

velocity space, this reduces the search for a new velocity to a set of linear constraints

defining a convex region, massively simplifying the search. Even so there are still

problems whereby agents can fail to pass one another causing oscillations.

These problems of oscillations in RVO have been tackled in a number of ways.

In Snape et al. (2011) it is enforced that the agents pass one another on a particular

side by enlarging the velocity obstacle on that side. Equally in van den Berg et al.

(2008b) the system is extended with simple global plans for each agent computed at

every step. Nonetheless both of these approaches still suffer from poor foresight which

can result in extreme congestion and even deadlock at bottlenecks.

There are other approaches which deal with local geometric details outside of the

RVO framework. In Guy et al. (2009) the velocity obstacles method is parallelised on a

number of levels with some additional relaxation of the collision constraints. However,

the changes from the original velocity obstacles are few enough that it has many of the

same problems with oscillations occurring. The work in Jund et al. (2012) offers a

simplification of the process of checking for other agents to avoid by dividing the

space into a variable resolution mesh, allowing checks against only significant regions

of the mesh. In Kapadia et al. (2009) each agent projects an egocentric field across its

local path. This field allows for local path planning, but also for avoidance between

agents as they use the field to detect areas into which other agents intend to travel and

treat them as less desirable for pathfinding as a result. Similarly, in Golas et al. (2013)

agents estimate the potential for future collisions by representing other agent’s future

position with Gaussians which are increasingly less well defined the further ahead

they are being projected. This allows avoidance to be carried out which lets agents to

see the potential obstacles presented by large crowds, without being unduly effected

by individual agents. In Singh et al. (2011) agents use simple space time prediction

to estimate where other nearby agents will be, they also use reactive motions to take

account of unexpected near collisions, all of which is done with each agent having a

limited (and so more realistic) perceptual field.

The work in Kapadia et al. (2009) and Singh et al. (2011) are compared to one
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another and to an implementation of the RVO method in Kapadia et al. (2011a). Here

they analyse how close the methods come to the optimal path length and how close

they come to the optimal time, finding roughly that they achieve about 75% of optimal

performance. More significant for our purposes is that they also found that all three

methods were only able to successfully handle 60% of the chosen scenarios, where

failure is characterised by either a significant collision or a complete deadlock. The

fact that there were so many failures with all of these geometric methods tested seems

to indicate that they are not, on their own, enough for a full crowd control solution.

2.1.2 Particle Based Systems

Particle based methods treat each member of a crowd as an individual particle which

is influenced by a series of forces, its movement is found by taking a weighted com-

bination of these forces. In this way various behaviours such as avoidance and leader

following can be combined into a single crowd behaviour model. This is the oldest

form of crowd simulation and it was initially introduced in Reynolds (1987b). Here

the local forces combine to form a crowd which moves in a way reminiscent of flocks

of birds. To produce the forces required to do this each agent looks at other local

agents and produces three forces, one to make it move to avoid any others which are

too close, one takes their average direction of travel and moves to match it and one

finds their average position and moves to match it. The produced flocking behaviour

is an emergent result of these three simple forces.

The issue with the emergent flocking behaviour created in Reynolds (1987b) is

the very fact that it is emergent from the interactions between three forces. As a re-

sult it is difficult to predict what effect additional forces will have on the behaviour

created and so it is hard to put the method to specific use. Some attempt was made

in Bayazit (2004) by making use of a Probabilistic Roadmap of the environment to al-

low the flocking agents to explore the environment or steer towards specific locations.

However, extending such particle based systems has been abandoned recently by the

graphics community in favour of more modern methods.

One area where particle based methods are still widely used is in evacuation sim-

ulation, for the purpose of designing and evaluating real world scenarios and build-

ings. This is generally done through the social forces model presented in Helbing and

Molnár (1995). Here again there are three forces involved, an avoidance force which

attempts to maintain a certain distance from other agents and obstacles, an acceleration
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term which attempts to move towards a desired goal at a desired velocity and a third

term which models attractions between agents, allowing for, for instance, the creation

of small subgroups within the crowd representing families moving together. The big

differences with these forces is that they are produced from non-linear equations and

that the values which they use (such as the desired velocity) are in most cases taken

from actual data gathered in real crowds. Due to the increased realism of this rep-

resentation additional behaviours can be created in a more intuitive way, for instance

in Helbing et al. (2000) it is described how panicked crowds (and their associated prob-

lems with crowding and congestion) can be modelled in part by increasing the desired

velocity of the panicking agents.

The above methods have been partially combined for a more recent work in Pelechano

et al. (2007). Here there are a large number of local forces modelled on actual real

world data as in Helbing and Molnár (1995), however, the equations for their com-

putation are mostly either geometric or linear as in Reynolds (1987b). This method

allows modelling of a number of crowd behaviours, from natural lane formation when

groups of agents pass one another, to panic and its propagation through the crowd, at a

much faster speed than the full social forces model.

Particle based methods provide an emergent mimicry of human behaviour, but this

means that they are only reactive and allow little space for user control. The emergent

nature of the combination of different forces also makes adding extra behaviours an

unpredictable process.

2.1.3 Agent Based Systems

Agent based methods are those where each agent is controlled by its own individual set

of behaviours and rules and they are similar to particle based methods in many ways.

The primary difference with agent based systems is that these behaviours are mutually

exclusive states, with only one active at any time. This makes it considerably simpler

to add new behaviours for agents, as they will be active only on their own so there

is much less chance of them interacting unexpectedly with current behaviours. The

classic example of this is Tu and Terzopoulos (1994), here the agents controlled are

fish with behaviours deciding whether they are predators or prey and whether they are

schooling fish. The decision about which behaviour a given agent should be following

at any time is based on a decision map, which is navigated based on the senses of

the agent (such as whether the fish is about to collide with anything). The chosen
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behaviour is then followed using local geometric controllers until the decision map is

rechecked at the next time step.

An early example of agent based control for crowds can be found in the work

in Musse and Thalmann (1997) and Musse and Thalmann (2001). Here the control of

large crowds is simplified by reducing them to larger groups of agents which can be

controlled in a flocking type method. The grouping is a state which agents move into

and out of. Each agent has a list of goals and interests and they choose to move into

or out of a group based on a comparison of these interests. This method is extended

in Musse and Thalmann (2001) by adding a script based language which allows simple

IF and WHEN logical statements to describe additional environmental or conditional

behaviours.

The work from Tu and Terzopoulos (1994) is extended in Shao and Terzopoulos

(2005) for use in pedestrian crowds with a focus on populating historical scenes, such

as an ancient temple in Shao and Terzopoulos (2006). Here decision networks are used

for much the same purpose as the logical statements described above, to decide upon

specific higher level behaviours based on the current situation, such as moving to a

certain shop in the scene. This work in Yu and Terzopoulos (2007) provides a natural

extension to this, with more complex decision networks which allow the representa-

tion of decisions involving more than one character and reactive agents who take into

account the behaviour and state of surrounding agents. The lower level avoidance be-

haviours throughout these methods are handled by checking for particular pedestrian

states, such as an oncoming collision or finding oneself in a temporary crowd, these

situations are checked for one by one, with each activated behaviour overriding the

previous ones. The ordering for the checking of these avoidance behaviours was de-

cided by exhaustively checking all possible permutations to find the one which caused

the least collisions, this fact means that unfortunately adding in new such behaviours

would be a time consuming process.

A classic approach in agent based control is the use of a Finite State Machine

(FSM) to determine the movement of agents between different behaviours and an ex-

ample of this can be seen in Sung et al. (2004). Here the current state of the agent

provides a probability which determines how likely it is to move between states in the

FSM, such as moving from heading to a target to performing local avoidance. They

also allow users to define location specific extra behaviours for certain areas of a scene,

such as sitting on a bench, and these can easily be added as simply an extra state in the

FSM.
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It is also possible to describe the agents at a much higher level, where the differ-

ent states represent different psychological states or personalities. For instance in Guy

et al. (2011) they demonstrate how to create agents who are shy, tense or have a high

level of extraversion, all based on results from personality theory. These are repre-

sented using the RVO approach from van den Berg et al. (2008a), with different person-

alities emerging from the use of different parameters, for instance extraverted agents

have a larger radius and prefer to move faster. In this method the agents cannot move

between different personality states, but rather they allow the creation of heterogeneous

crowds where agents can be seen to have a variety of reactions to various scenarios.

This work was extended in Kim et al. (2012) where the extraverted and introverted

personalities instead represent two different behaviours for the agents. Agents in this

work are typically introverted and careful, but when their personal stress value reaches

a certain level (caused by situations such as a nearby fire) then they switch to being

extroverted and become more aggressive in pursuing their goals. This allows the sim-

ulation of scenes such as evacuations, where panic slowly spreads through a crowd.

In Yeh et al. (2008) agents with different personalities are again represented, this time

their different personalities are created through the addition of composite agents. Com-

posite agents are additional hidden agents who only appear in the avoidance portion

of the simulation making them effectively an area of repulsive force, this allows them

to clear areas such as doorways of other agents without any actual obstruction. These

composite agents are used to simulate personalities by attaching them to other agents,

for instance creating a more aggressive agent by attaching a composite agent ahead of

them, simulating the way they force their way through a crowd and push other agents

out of their way.

Agent based methods are extremely adaptable and can produce a wide variety of

different and heterogeneous results. However, though they have many different ap-

plications, their primary problem is that they must be hand crafted towards whatever

task they are required for, and the agents created for one scene may not be suitable for

another, requiring a user to create a whole new agent.

2.1.4 Crowd Control from Data

Crowd simulation from data involves recording a crowd at some level of detail, then

taking the recorded crowd and attempting to replicate it. The idea is simple, that by

modelling based on actual crowds the realism of movements will be guaranteed. There
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are a great number of approaches taken to this problem, and some of them even allow

control of particularly large crowds of agents, but the focus is still always on the local

interactions between agents within those large crowds.

One class of approaches involves trying to replicate local behaviour of individual

pedestrians. A particularly low level example can be seen in Arechavaleta et al. (2006)

where people were tracked as they performed local path planning such as moving so

they are in a certain spot facing a certain direction. The results show that they follow a

series of clothoid arcs (curves whose curvature grows as they move from their origin),

this is extended to a full control method in Laumond et al. (2011), where simulated hu-

man paths are described through increasing or decreasing the curvature over the course

of the motion. Such highly detailed methods have been used for graphical simulation

in Pettré et al. (2009), here the focus was on simulating scenes of people passing one

another. Observing such motion allows them to create geometric rules which describe

aspects of the motion, such as the fact that the avoidance is not merely reactive but also

includes an observation phase. The produced motion allows avoidance with minimal

disturbance from their original path for both agents, though they admit that such con-

sidered avoidance may not be valid for more crowded situations. Similar principles are

used for a full crowd simulation method in Guy et al. (2010), here the method is based

on replicating the Principle of Least Effort, an observation that organisms of all kinds

will always attempt to expend the least effort possible to reach their goal. This motion

is created by optimisation for each agent which attempts to minimise the time it takes

to reach the goal while staying at a constant velocity. In their method of optimising the

velocity there are some similarities to RVO, as a similar velocity space representation is

used. Again they demonstrate that when simulating two agents crossing the avoidance

motion involves only a minimal disturbance from the agents original motion.

Another set of approaches involve trying to match the current crowd situation with

observed real world ones, the observed movements can then be replicated. This ap-

proach can be seen in Lerner et al. (2007), here captured data was described in terms

of the awareness of an active agent and their current situation. Agents make decisions

by finding the captured situation which best matches their current awareness and acting

as in the same way as in the data. This method was extended in Lerner et al. (2009)

where the data was manually labelled based on the action it represented. This allows

the actions to be grouped by type into an FSM and the comparison is instead made to

each entire group of actions improving the accuracy. Another approach is found in Lee

et al. (2007), here again the data is captured of crowds from above, but the data is not



2.1. Local Systems 15

labelled, instead linear regression is used by the agents to match their current situation

to the closest one from the data. This control is paired with a high level decision mech-

anism, which allows agent to deviate from the data. Finally in Ju et al. (2010) a number

of crowd formations are taken as input, some from data and some artificial, with each

formation divided into distributions of similar situations which represent it. The agents

choose a trajectory from the set of all available ones used in their given formation, then

the result of that trajectory is followed if it results in a formation which matches one

of the associated distributions. The method also allows blending between two crowds

using bipartite matching to match sets of points in the distributions in either forma-

tion and then linearly blending between the two to produce a set of distributions for a

blended formation.

An approach which does not used captured data is presented in Yersin et al. (2009).

Here the data used is made up of a number of patches, each of which is a cyclical 3

dimensional representation of the motion of agents through a crowd, with one of the

dimensions being time. By laying down these patches one at a time each new patch can

be made to match the patches on either side, with agents entering it where they leave

them and vice versa. Matching up entry and leaving points, performing smoothing and

avoidance, and applying some restrictions (such as ensuring that agents cannot move

back through time) allows the creation of a valid new patch. A scene can then be

made up entirely by adding patches one at a time. This is an interesting method, but

it has a few drawbacks, firstly it is not clear how well these patches would operate in

a very crowded scene, as the avoidance internal to each patch is a simple forced based

method, secondly as each patch is cyclical a user looking at one point for too long

might be able to notice it repeating itself.

The final type of approach to creating crowds from data involves recording the

motion of crowds or groups of agents and using it with as few changes as possible

to preserve the interactions. One example of this is in Kwon et al. (2008), here the

motion of a group of agents moving through a scene is represented as a mesh where

nodes are the positions of each agent at a particular time step and edges represent either

connections between those agents or connect the agents to themselves at time steps

before and after. By using Laplacian mesh deformation techniques the motion can then

be twisted to allow a motion from one scene to fit into another differently shaped scene,

with some small scale corrections to ensure no agent is forced to move too fast by the

deformation. These ideas are extended in Kwon et al. (2008) to allow the deformation

and editing of actions where agents are directly interacting (rather than just walking
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along near one another), with some additional restrictions to ensure that the point of

interaction is properly preserved. In Lai et al. (2005) a method is introduced that

attempts to replicate the motion graphs method from Kovar et al. (2002) for crowds.

The entire motion of a group of agents is broken into similar chunks, these are then

connected up into a FSM such that new motion can be created by moving between

the states and assigning agents positions from the chunks associated with each state.

These positions are then followed using flocking, with matching the position within

the chunk as one of the agent’s forces. Finally, large crowd scenes are constructed

using much smaller pieces of captured motion in Shum et al. (2008). Here pieces of

motion which allow valid interactions between multiple characters are combined into

interaction patches, these interaction patches are then combined with one another to

produce much larger motion comprising many agents across an entire scene.

As this demonstrates, there are many useful methods which allow the creation of

crowds from data. The primary problem with this approach is that actually obtaining

and processing data of large crowds is extremely difficult and costly. As a result using

these methods is, for the moment, restricted to local simulation.

2.2 Global Systems

In this section, we will analyse the various methods for crowd simulation which are

based on global control. These are distinct from local controllers in the fact that they

primarily take into account global factors of the scene. They normally also include

local controllers, for collision avoidance and other finer adjustments, but the focus is

on the global control provided. Using such global information allows the crowd to be

more coordinated and more easily controlled, but this generally comes at a cost to the

realism of the crowd, as individual members of a crowd generally don’t have global

information. The methods in this section provide a much more relevant comparison to

our own proposed method, as our method is also primarily global in its solution to the

crowd control problem, as a result we will attempt to give much closer comparisons to

our system and the reasons for the differing choices which we made.

There are a number of different approaches to global control and for the purposes of

clarity we have divided them into subsections based on the types of approaches which

they favour. The first of these are field based methods, described in Section 2.2.1.

These utilise some form of field computed over the free space of the scene. Whether

this field accounts for other agents and how it deals with obstacles varies, but in all
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cases the field is used to direct the navigation of the agents. The other type of approach

is topological based methods, described in Section 2.2.2. This is a much broader ban-

ner but it serves to describe those systems which utilise topological methods in con-

trolling the agents. In some cases this is used to produce a simpler description of the

scene over which more complex routes can be planned, or in other approaches topo-

logical approaches are utilised in the production of the scene in more oblique ways. As

with any division these categories are not perfect, in particular many topology based

systems utilise fields in some form, but the papers have been divided according to what

we saw as their primary focus.

2.2.1 Field Based Systems

Field based methods involve computing a field across the space, taking into account the

obstacles along with other factors, and then using this field for navigation. They may

be continuous, but generally they are approximated on a grid of the free space for ease

of computation. These types of approaches have been around for a long time in other

areas of research, such as potential field based methods in robotics as in Krogh (1984),

and fluid simulation methods used in crowd simulation for the study of evacuation and

building design such as in Henderson (1974). It is only more recently that some of

these methods have percolated into the arena of computer graphics.

One particular type of field used in crowd control is the Harmonic field. They

are useful primarily due to their lack of local minima and in robotics they were first

introduced in Connolly et al. (1990). An example of this type of field control is Silveira

et al. (2010a) and it was later applied for gaming in Silveira et al. (2010b). Here a

discretized Harmonic field is generated by setting the potential value of the edge of

every obstacle and the arena to be 1 and the potential value of the target to be 0. This

ensures that wherever an agent is in the scene they can always follow the gradient of the

field to arrive to the target. However, because every obstacle has such high potential it

also means that agents will always follow the centre of any corridor rather than being

able to spread out through the space, leading to much less efficient routes being used

and groups of agents crowding together.

Another approach is to use the geodesic distance field to direct agents towards the

goal. This is done in Torchelsen et al. (2010) for arbitrary surfaces. Here they compute

the geodesic distance in a multi-resolution manner, using a fast and rough calculation

to immediately direct agents once they get a new goal, then refining this direction in
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later iterations as a more detailed calculation is made. The local avoidance is then

carried out using the GPU. The basic method used here is quite well known, its main

advantage is its ability to work on arbitrary surfaces, though that isn’t an especially

desirable quality. Another example which uses a geodesic field is Patil et al. (2011).

Here a simple gradient field is computed using Dijkstra’s algorithm to compute the

distance to the goal from each point, and so the direction that agents should be moving

from each grid cell. The big difference is that they allow the user to draw directed

lines onto the space which agents should follow. These directed lines are taken as the

gradient in the cells which they cover, then for adjacent cells the gradient is taken as

an average of their surrounding cells to ensure smooth transitions between the directed

cells and the rest of the gradient field. The result is a simple field which directs agents

towards the goal, but through which users can define the specific paths or routes which

they want agents to take. This is a powerful method and it allows a level of control

which ours does not, but we would argue that for large scale examples, with many

obstacles, it would be infeasible to define the direction for agents along every corridor

(a process which our system takes care of automatically).

The final and most influential form of field based crowd simulation is based on fluid

dynamics. As previously mentioned in Henderson (1974) in the field of engineering

and evacuation simulation, fluid dynamics have long been used. In Narain et al. (2009)

they follow the fluid simulation quite closely. Here each grid square of the space com-

putes the average flow through that square, based on the desired movement of each

agent towards its goal. The flow of adjacent squares are then combined, taking into ac-

count the universal incompressibility of fluids, this provides a new flow of each square

which prevents it from crushing nearby squares. The agent’s final motion is then a

combination of its desired motion and the final flow found from the square. Using in-

compressibility like this ensures that extremely dense scenes can be simulated without

collisions between agents, something which is not possible in any other method. In

situations where the incompressibility does not come into account though (with less

dense crowds) the method approaches a grid based version of flocking.

More recently in evacuation research inspiration was taken from fluid based meth-

ods, but instead the crowd were treated as so called thinking fluids, that i,s a contin-

uum whose behaviour is effected by its situation, this method is summarised in Hughes

(2003). Here the crowd is treated as a continuous flow, but there are three additional

assumptions used in the equations for its control. Firstly, that an agent’s speed is deter-

mined by the density of the crowd, secondly, that agents try to reduce their distance to
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the goal and finally, that agents attempt to avoid areas of high density. A potential field

is then computed taking into account all of this, according to the agent’s current knowl-

edge. This work has been applied across a range of simulations including simulating

the flow of pedestrians in Mecca Hughes (2002) and simulating ancient battle scenes

in Clements and Hughes (2004), demonstrating its efficacy as a simulation method-

ology. This approach was adapted to the field of graphics research in Treuille et al.

(2006). Here they follow closely the assumptions from Hughes (2003) but discretising

the computation across a grid and using the additional assumption that each agent has

global knowledge about the scene. This assumption allows agents to re-plan to avoid

congestion at a bottleneck even if they cannot currently see that bottleneck. This is use-

ful, but it also slows the method and in order to achieve a good enough performance

they had to simplify the approach by separating the crowd out into groups and treating

each of them as a single agent for the purposes of computing the potential field (as

otherwise each individual agent would require its own field calculation). This work is

extended somewhat in Jiang et al. (2010) where they allow computation of the field

in complex environments. This involves altering the calculations per grid such that, in

areas with finer detail, a lower grid size is used. They also demonstrate how multilevel

scenes are connected for calculating the field up stairs and add a discomfort field to

obstacles to improve the method’s performance around bottlenecks. The Continuum

method for is clearly useful for graphics, it can deal with controlling very large crowds

and provides realistic results. Still, though it allows the agents full knowledge of the

scene, there is very little planning ahead. There is some, in the form of a discomfort

field which each agent projects out in front of it, this means that when a bottleneck

is about to become full agents will avoid it, but the discomfort is not projected far

enough to allow it to provide much predictive power. As we plan over the full duration

of any scene, avoiding congestion at such bottlenecks is the primary advantage which

our method has over the continuum approach.

2.2.2 Topology Based Systems

Topology based methods deconstruct the scene or the crowd into a series of simpler

representations which describe its shape. This abstracts away all but the detail which

is necessary for pathfinding and allows much more advanced planning across the space

for the motion of individual agents or a whole crowd. Equally, the representation may

be such that it allows for much simpler search based planning methods, such as A*



20 Chapter 2. Related Work

search, to explore through it and find plans much more easily than they could on a

simple grid. In this section we will review the methods which create these topologies

and the various different ways in which they are used.

Probably the classic topological method in graphics is the navigation mesh, Snook

(2000). This involves dividing the space up into a mesh made up of a number of

distinct regions. The navigation can then be done based on the connectivity of those

regions to one another and further decisions can be made based on the situation within

those regions. There is no commonly defined method for calculating such a mesh

and a number of different approaches have been proposed. In system in Pettré et al.

(2006), Morini et al. (2007) and Maı̈m et al. (2009) they follow a method in which the

entire space is divided up into navigable cylinders. This is done by first taking a random

sampling of points in the space, these points are filtered to ensure that they are evenly

spaced and that those furthest from the edges are used. Cylinders are then placed over

each of these points with a radius equal to the distance to the edge of the navigable area

at that point. Finally the edges of the mesh are found by looking for any intersection

between two cylinders. This intersection also provides an line defining where the two

areas meet and this allows control of where agents cross between regions. Finally

the path planning based on this method is done using Dijkstra’s algorithm to make

an ordered list of the paths through the space, and agents decide on which path to use

based on the density of agents along it, with potential fields used to allow local obstacle

avoidance.

In the method in Geraerts (2010), for a set of convex obstacles the space is divided

up into Voronoi regions, those areas which are closer to one obstacle than any other,

which separate the space into a set of walk-able areas. Also calculated is the medial

axis, which is a group of lines describing all the points equidistant from more than one

point on the obstacles, these describe connections between all of the Voronoi regions

which are guaranteed to have the highest clearance. Routes can then be described in

terms of the medial axis giving a corridor of allowable movement. As the distance

to nearby objects is known at all points along these routes this allows plans to be

made which can account either for the width of agents or which give the maximum

clearance from all obstacles. This approach is extended in van Toll et al. (2012b)

where path planning is done more directly over the medial axis using A* search, with

additional re-planning to find new paths in cases when density is too high. However,

unlike in Pettré et al. (2006), here the density replanning only takes account of high

density areas which are near the agent, as more distant sections of the path may become
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less congested long before the agent arrives there. Equally, the corridor map method

from Geraerts (2010) is utilised in Karamouzas et al. (2009), which allows users to

draw a route through the space which they want followed. By matching this route to

the set of Voronoi regions which it passes through, the medial axis which corresponds

to the route can be found. This medial axis path provides a corridor and itself is a

maximum clearance path, both of which are used along with the originally entered

route in a force based method to pull agents along the route. Finally in van Toll et al.

(2012a) they explain how the kind of mesh used in these papers can be recalculated

on the fly to allow the mesh to account for dynamic obstacles. This is done by finding

the set of local points based on the Voronoi regions which have been interrupted by

the new or moved obstacle. The Voronoi regions can then be updated by iteratively

re-examining the relationship of them to only those local points.

Graph based methods often create their graph in much the same way as mesh based

methods, but here the focus is on graph itself with the regions represented by any in-

dividual node ignored. The classic example of a graph used for navigation is the Prob-

abilistic Roadmap method described in Overmars (1992). Here points are placed at

random throughout the open space of a scene, with connections being drawn between

close by pairs based normally on local path planners. However, the graphs which are

produced as a result generally end up being overcomplicated, with many unnecessary

loops and dead ends which make pathfinding and planning difficult. As a result of this

complexity most recent methods do not use graphs except where they allow the ap-

plication of graph theory methods from mathematics. One such example is Lamarche

and Donikian (2004) where the graph of the space is built by performing Delaunay tri-

angulation on the obstacles and boundary of the arena. A set of edges is added to this

describing the shortest distance between each corner and the nearest wall. Finally the

produced mesh is simplified by merging adjacent triangles to produce a series of con-

vex cells, doing so while still preserving local bottleneck information. The resulting

set of cells can then be connected up to produce a graph describing the topology of the

space, this graph is then further simplified by removing dead ends and collapsing cor-

ridors into a single node, while preserving the topology. This allows very quick path

planning on the simplified topological graph which can then be converted to a more

complex plan in the actual space. Local pathfinding and avoidance is then carried out

using a series of pre-defined rules. Due to the topological abstraction used, it is not

clear whether agents take the length of their chosen path into consideration and unlike

previous methods they do not consider the density of the path to be followed
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So far three topological methods have been presented and though on the surface

they are approaching the problem of controlling a crowd in a similar way to our system,

in practice we believe there is a single significant difference. Namely that although

all of them allow agents to use global information when making their choices, they

are doing so individually with no coordination between the different members of the

crowd. It is our belief that the ability to produce such globally coordinated control

is one of the advantages of using a topological abstraction. One example of this can

be found in van den Akker et al. (2010). Here the scene is represented as a graph

with directed edges each of which has an associated traversal time. They then model

the path planning problem for a crowd at one point on the graph as a dynamic flow

problem, which attempts to compute paths for all the agents such that they all arrive

at the goal in the shortest possible time. Dynamic flow is an NP hard problem, so

they solve it iteratively with column generation, starting with a simple path and adding

new ones only when they will reduce the cost of getting the agents to the goal. This

work is further extended in Karamouzas et al. (2013) which allows undirected edges

and takes into consideration the capacity of nodes in the graph. It also explains the

generation of the graph and providing of paths to the agents using the medial axis

as presented in Reynolds (1987b). These two papers solve a very similar problem

to our system and are capable of solving certain problems which we cannot, such as

non-homogeneous agents or non-static scenes. However, their approach is somewhat

different as they deal with moving pre-existing agents between locations rather than

filling a scene for an animator. They also offer no solution to the problem of crossovers

which can occur when several agents following a graph move into and out of a single

node in intersecting paths, we discuss this issue, along with our solution, in more detail

in Section 5.1.
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Harmonic Fields and Topology

Discovering the topology of a scene is central to the effectiveness of our method. Given

a scene with as few as 2 obstacles forming a bottleneck, there may be points of conges-

tion which are very difficult, if not impossible, to plan for with either agent based or

field based methods of crowd control (examples of this can be seen in Section 6.3). The

topological map provides full information which demonstrates how the available space

can be navigated and using this it is possible to anticipate obstructions and navigations

well ah ead of time.

The topology is found using a Reeb graph computed over a Harmonic field. There

are a number of other approaches which would also yield the topology of the scene,

in particular the medial axis has proven popular. The reason we use the Reeb graph

is because of its strong links to the Harmonic field, this has a definite gradient from

the start points to the goal points which are used throughout the system. Specifically,

they are useful to provide paths for the agents, as described in Section 5.3, they also

allow the optimisation of the maximum flow calculation by using them to fill in more

desirable routes first, as described in Section 4.3, finally and most importantly they

allow the routes through the space to be put in order after computing the maximum

flow to allow the system to avoid giving agents paths which cross one another, as

described in Section 5.1. In addition by specifically calculating the Harmonic field

based on the position of some start and goal points this considerably simplifies the

structure of the produced Reeb graph, making the computation of the maximum flow

much easier.

In this section we will first explain why the Harmonic Fields were chosen to repre-

sent the space and then how they are computed. Next, we will talk about how they are

used as input to the Reeb Graph method to produce the topology of the scene. Finally,

23
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we will cover the method used to compute the flowlines with some details about the

simplifications which we found were necessary and the justification for their use.

3.1 Harmonic Field

In this section we will give the details regarding our use of the Harmonic Field. First,

we will provide the decision process which led to its use as the particular input for

the Reeb Graph. Next, we will also describe the precise method for its calculation.

Next, the method for calculating the gradient of the field will be explained. Finally, the

computation of the paths through the space generated from the field, called Flowlines,

is explained.

3.1.1 Use of the Harmonic field

The Reeb Graph can take as input any continuous scalar function. The only require-

ment we had for the system was that we wanted to compute the crowd movement plans

for a given set of start points and end points. With this in mind a measure of geomet-

ric distance between these points originally seemed like a good fit. However, early

experiments showed that when following the gradient this only provided the shortest

path between these points. This is a problem as we wanted to use the gradient of the

function to provide paths for our agents to follow, and this is what led to the decision

to use the Harmonic field.

The Harmonic field is computed with the only extrema located at the given start

and end points. This means that there are no local extrema and the Reeb Graph will

begin and terminate precisely on those points, simplifying the path planning problem

considerably. By setting its values to zero at the start points and one at the end points it

also has the highly desirable property that following its gradient upwards is guaranteed

to provide a path towards an end point. From this it is reasonable to assume that

this gradient provides a good approximation of the direction which each agent will be

moving in at all points in the available scene. This assumption allows us to use the

Harmonic Field for other purposes such as providing paths for the agents to follow, as

explained in Section 5.3, and gauging the available width of the space as agents move

through it, as explained in Section 4.1.

The harmonic field copes easily with non-convex obstacles (an example of this can

be seen in Section 6.6.1 in Figure 6.20, where the non-convex obstacle is made up
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of several overlapping convex obstacles). It can also be adapted to cope with non-

axis alligned obstacles and irregular polygons as demonstrated in Dong et al. (2005).

However, for the purposes of our work here we stick to a grid based representation.

3.1.2 Computing the Harmonic field

The harmonic field is computed by discovering a discrete harmonic function over a

computed mesh applied to the space itself. This mesh takes the form of a series of

grid squares of n length, each bisected into two equivalent triangular polygons. Also

applied to this mesh are the start and goal points, whose values are constrained to 0 for

start points and 1 for goal points.

The method for computing the harmonic field is the method presented in Dong et al.

(2005) however, we are able to simplify the weight calculations involved due the the

regular grid which we use to represent the space. In this paper they use the harmonic

field as a method to compute smooth edges across three dimensional objects, for the

purposes of quadrilateral remeshing.

For the use of this method the harmonic field values are computed for each value

of the grid, represented by u, such that:

∆u = 0, (3.1)

where ∆ is the Laplace-Beltrami operator. In order for this to be computed weights for

the edges of the grid must be set, this is again done using the methods from Dong et al.

(2005), as shown here:

wi j =
1
2
(cotαi j + cotβi j), (3.2)

where wi j is the weight of the edge between the vertex i and j. α and β are the two

angles opposite the current edge within the two triangles which it helps define, as

shown in Figure 3.1.

These weights have an added advantage as they allow us to represent different

kinds of spaces. They can easily adapt to different types of grids, especially using

this calculation. They could also be altered to represent the difficulties with travelling

through variations in terrain, such as up a hill, down into a valley or across swampy

ground.

With the weights calculated it is possible to rewrite equation (3.1) into the solvable

linear system:

Au = b, (3.3)
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Figure 3.1: The left image shows the angles α and β used to compute the weight of the

connection between i and j as described in equation (3.2). The right image shows the

harmonic field values hA−C used to calculate the gradient g as described in equation

(3.6).

where:

Ai j =


1 if i = j

wi j if there is an edge from i to j and i 6∈C

0 otherwise

(3.4)

and

bi =

{
ci if i ∈C

0 otherwise
(3.5)

and C is the list of constrained values ci for the nodes i which are either start or goal

points (their constrained values being either 0 or 1 respectively) and the weights denote

the edges within A. This problem now becomes a system of sparse linear problems and

as such is suitable for solving with sparse linear solvers specifically aimed at this kind

of problem, in this case CSparse, Davis (2006), is used.

These results can be easily plotted to demonstrate and some examples are shown

in Figure 3.2. Here the smooth shape of the field can be seen in image (a). A scene

with obstacles is seen in image (b), the influence of these obstacles on the field is

evident. The obstacles are included into the computation by simply removing the grid

where they exist (or, in practice, choosing to ignore these connections), thus forcing

the computed field to compensate appropriately. Also shown in (c) is an example with

multiple start and end points. This extension takes no extra computation and it is easily

set up by the user. In fact entire areas within the grid can be set to either extreme to

produce a variety of effects. However, as described in Section 5.2.3 this cannot be

used to create crossing flows, as a result it can only produce a subset of the examples
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Figure 3.2: Three example Harmonic fields. In (a) there is a start point on the left and

a goal point on the right, (b) has the same configuration of start and goal but with three

obstacles included and (c) demonstrates the effects when there are multiple start points

(on the left and top) and end points (on the right and bottom).

with multiple start and end points where there is no crossing. As discussed in Ni et al.

(2004), even in the case that there are multiple start or end points there still will not

be any local minima in the field. However, there will be saddle points, flat areas in

the gradient of the harmonic field. If agents were sent directly along the gradient of

the harmonic field this could cause them to become trapped. However, because we

compute a series of flowlines as paths for the agents paths which become trapped in a

saddle point are discounted before being given to an agent.

3.1.3 Finding the Harmonic field Gradient

As explained previously in Section 3.1.1 the harmonic field is also used to discover

paths for the agents to follow and to determine the width of those paths in the direction

perpendicular to the one we expect them to be following, the methods for finding each

of these can be found in Section 3.1.4 and Section 4.1 respectively. In order for either

of them to work we need to first discover the gradient of the harmonic field in each

polygon.

The methodology used for this is similar to that applied in Dong et al. (2005).
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However, as we are only operating in a plane (unlike over three dimensional objects)

we do not have to take account of a third dimension in our equations. As a result we

can simplify their gradient equation to get:[
vA−vB

vC−vA

][
g0

g1

]
=

[
hA−hB

hC−hA

]
, (3.6)

where A, B and C are the three nodes of the polygon, vA is the vector position of the

A node and hA is the harmonic field value at the A node, as shown in Figure 3.1. The

only unknowns in this equation are g0 and g1, which are the gradient of this polygon

in the x and y direction respectively. As a result it is possible to solve this equation

by shifting the matrix of vectors over to the right hand side resulting in the following

solution:

g0 =
(hA−hB)(vC · y−vA · y)

det
+

(hC−hA)(vB · y−vA · y)
det

g1 =
(hA−hB)(vA · x−vC · x)

det
+

(hC−hA)(vA · x−vB · x)
det

(3.7)

where vC ·y is the y component of the vector vC and det is the determinant of the vector

matrix, that is:

det = (vA · x−vB · x)(vC · y−vA · y)− (vA · y−vB · y)(vC · x−vA · x). (3.8)

The gradients for each polygon can now be computed, after which they are normalised.

This provides a definition of the shape of the space according to the harmonic field at

every localised spot which, as previously mentioned, will be used throughout the rest

of the system.

3.1.4 Flowlines

In this section we explain how the gradients computed in the previous section are

used to compute flowlines across the space. These flowlines follow the gradient of the

harmonic field from 0 at the start points to 1 at the end points. They are useful for a

number of purposes which are explained in more detail in Section 4.3 and Section 5.3.

For the moment it is only necessary to say that their importance lies in the fact

that we assume that they are representative of the paths which agents will take through

the space, as they follow the gradient, leaving from a start point in any direction will

always (with a few small exceptions) take an agent to the goal.

In Dong et al. (2005) they use a method of producing flowlines which carefully

tracks the gradient of the harmonic field, ensuring that the produced line enters and
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leaves each polygon at the correct place along each of its edges. This leads to a number

of special cases which must be detected and dealt with (such as when the gradient

converges on the edge between two polygons or when the line being tracked lands

precisely on the node of a polygon). Our experimentation with this method showed

that the increased complexity made it much slower to trace each flowline and that

the increased accuracy made negligible difference to the overall shape of the resulting

flowline.

As a result of the complexity of this method we used a faster, simplified method

to trace out flowlines in the space. The small loss of accuracy is acceptable for our

purposes as we are providing general paths rather than exactingly re-meshing objects

as in Dong et al. (2005) and the inaccuracy only occurs at the polygonal level. Here

we provide a definition of that simplified method. Firstly, each flowline is seeded by

picking a point anywhere in the space. Two separate flowlines are now built from this

point, one moving down the gradient back until it reaches a start point and the other

moving up it until it reaches an end point. These two flowlines can then be joined (after

first reversing the initially generated one) to provide a full route from the start to the

goal point.

The same process is followed in building a flowline forwards or backwards (though

in the backwards case the negative of the gradient is used). The gradient is found for

the current point and then the next point is placed in the direction of the gradient at a

distance of half the width of one edge of the mesh defined in Section 3.1.2. After this

move the old position is recorded as one node in the flowline and the entire process

repeats. This continues until one of the current targets (either a start or goal points

depending on which direction we are travelling) is reached.

For each seed point a flowline is traced both forwards and backwards (up and down

the gradient) until it arrives at one of the start or end points in the scene respectively

(or until it halts as described below). As these start/end points are minima/maxima in

the harmonic field the flowlines will always progress steadily towards them. Once a

forwards and backwards progressing flowline have both been traced for a given seed

point (each of which reaches a start or end point respectively) they are joined into a

single flowline which has fully traced the scene and which represents a path within that

scene from a start to an end point through the given seed point.

This new methodology is much simpler, and more importantly much quicker. With

this approach the only special cases which need to be accounted for are when a move

may place the new current point either outside of the defined area of the grid, or into an
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obstacle. In both of these cases the flowline drawing is halted at this point and, though

the partial flowline produced is kept, it is given a far lower preference for later use than

the other complete ones.

This occasional halting means that a flowline is not guaranteed to traverse all the

way from the start point to the goal. This is not caused by local minima as, as dis-

cussed in Ni et al. (2004), there are no local extrema in the harmonic field. However,

there are saddle points in the scene, caused either by obstacles or by points equidistant

between several start points. These saddle points are what cause the halting flowlines.

This is not a major problem as these failed flowlines are relatively rare and the compu-

tational cost of producing them was found to be far less than that of following the more

accurate method from Dong et al. (2005). Additionally by finding flowlines and thus

discounting using paths along such saddle points, it allows us to prevent the possibility

of agents arriving at them and becoming trapped.

The runtime of the flowline calculation is directly related to the length of the flow-

lines, as it consists of a series of small operations (placing the next node in the flowline

based on the current gradient) which only terminate when the start/goal is reached.

As a result, it is difficult to give an accurate runtime for this algorithm as it is tied to

this length, and the length of flowlines is so variable based on their seed point and the

given scene, however it is possible to limit it within some bounds. In the worst case

the calculation of the flowline will take O(x2) where x is the the width of the scene.

This would occur with a single start point in the top left corner and a single goal point

in the bottom right and between them a maze of infinitesimally small obstacles which

result in the shortest path between them zig zagging from left to right over and over.

Clearly this runtime is quite bad, however this case cannot occur in our system as all

obstacles have width. As a result, what we can say is that for any given scene the worst

case runtime of the flowline calculation is directly related to the length of the longest

path between any start and goal in the scene.

One of the challenges in generating the flowlines, is that it is preferable to have

a good spread covering as much of space and encompassing as many of the different

routes through it as possible. This is controlled through the choice of the seed points,

these are produced in two waves. The first wave is positioned evenly in a circle around

each start point, at a radius of r with n flowlines created for each point. Although this

provides a good sampling of the directions each agent could travel in from the start,

it may fail to provide flowlines which pass through certain areas of the space. This is

because some routes from the start points to the goal points may be a lot less direct
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Figure 3.3: The black lines in these two images are flowlines calculated over the Har-

monic field gradient using our method with varying configurations of obstacles. In the

centre of the right image a flowline can be seen colliding with an obstacle. This is the

halting problem described in Section 3.1.4 and it occurs when the seed point for that

flowline falls into a saddle in the gradient of the harmonic field.

and, because of the way the harmonic field operates, they may easily fall into a section

smaller than the sections which the above generation method samples.

The solution to this is the second wave of flowlines. These are generated from a

series of seed points placed in a simple x×x grid throughout the space. Here x is set to

4
√

n, where n is the number of obstacles in the scene. This ensures that for every addi-

tional obstacle in the scene there are additional seed points. This is done to guarantee

that even for complex scenes there is still a good coverage of the scene. It is also done

with a lower bound on the value for x, to ensure that even in empty scenes there is still

a good coverage. This grid based seeding ensures that flowlines are generated even

in spaces between obstacles which lie roughly perpendicular to the general direction

of flow of the flowlines. In practice some of the flowlines generated will not form a

connection all the way from a start point to a goal point (due to collisions with ob-

stacles, as described earlier in this section). Equally some of the seed points from the

grid structure may fall within obstacles, in which case no flowline may be produced

from this point. A good spread covering the space is still produced. The entire set of

generated flowlines can be seen for a couple of cases in Figure 3.3.

3.2 Reeb Graph

In this section we will first explain some related work which utilises Reeb graphs.

Then we will describe the specific process by which we calculate the Reeb Graph for
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our system. Finally we will give examples of the Reeb Graph in action to demonstrate

its usefulness.

3.2.1 Related Reeb Graph Work

Reeb Graphs were originally introduced as a part of Morse theory by Georges Reeb

in Reeb (1946). Given a topological space X and a continuous function f : X →R, the

Reeb graph is the connectivity of the level sets of the produced R.

Reeb Graphs were first introduced to the field of Computer Graphics in Shinagawa

et al. (1991) as a means of representing both two and three dimensional shapes in a

simplified manner and they have continued to be used for this purpose in the field,

as seen in Xiao et al. (2003) and Biasotti (2004). In relation to our work Contour

trees (which are actually a simpler subset of Reeb Graphs) were used in Berg and

Kreveld (1993) and van Kreveld et al. (1997), in two dimensions and three dimensions

respectively, as a means of analysing paths between different points in mountainous

terrain.

Multiresolution Reeb Graphs were first introduced in Hilaga et al. (2001). Here the

Reeb Graph is computed at multiple resolutions, by dividing the scalar function first

into two sets, then four, then eight, up to one hundred and twenty eight. The Reeb

Graph methods used in our method have most in common with these as we allow the

user to change the resolution for the inclusion or exclusion of smaller obstacles as can

be seen in Figure 3.4.

3.2.2 Computing the Reeb Graph

In this section we will describe how the Reeb graph is calculated. Initially we have a

mesh over the space with an associated harmonic field value at each node, as described

in Section 3.1.2. First these nodes are divided up into level sets of specific field values.

Each of these sets describes a node in the Reeb graph and their connectivity to one

another determines the edges of the Reeb graph.

The first step in defining the Reeb graph is choosing its resolution, denoted by the

value R. This determines how many level sets the field will be divided into and thus

how large each of them will be. The value of R can be set by the user if they wish,

however, we recommend a default value of R = 6. This because if R is too low then

local features may not be preserved and obstacles are not recognised, as demonstrated

in Figure 3.4. This may or may not be desirable depending on whether the user wants
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Figure 3.4: The coloured areas here represent the Reeb regions computed using our

method for a value of R = 4 in image (a) and R = 5 in image (b). Here it can be seen

that when the regions are connected to form a full graph the right hand obstacle in

image (a) will not be registered in the topology of the graph, and it will be fully present

in the graph drawn from image (b).

those obstacles to be accounted for by our global planner or by whatever localised

planner they choose to use. Generally we found that R = 6 is suitable for accounting

for almost all obstacles in the cases which we dealt with, however, the option is there

if the user wishes to have much smaller obstacles to increase R.

It is also possible to automate the process of choosing R. This can be done if we

treat the produced Reeb Graph as a directed graph, with each edge only moving from

the lower valued Reeb nodes to the higher valued ones. In this case we can use the

following calculation:

γ = (
i<N

∑
i=1

Si)− (G−1) (3.9)

where N is the number of nodes in the graph and S is the number of edges leaving each

node greater than 1, that is the splits in the graph, as wherever a node has more than one

edge leaving it that represents a change in the detected topology of a scene. Then G is

the number of goal points, as each one of these beyond the first will produce another

split in the Reeb graph. γ will then be the number of objects which are accounted for

in the discovered topology of the scene. Therefore the value of R should be increased

until γ is equal to the number of distinct obstacles in the scene (that is, obstacles which

do not contact another obstacle or the edge of the scene).

Whatever value is chosen for R there will be 2R different levels sets in the Reeb

Graph (each of which may consist of multiple regions) and each of these levels will

span a space of 1
2R of the harmonic field’s values.

Now over this mesh the polygons are sorted into a series of sets Si, where the
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polygons in each set have at least one node with a harmonic field value within the

region n, where:

(i−1)
1
2R ≤ n≤ i

1
2R . (3.10)

It is worth noting that this division of polygons is not unique. That is, a given

polygon may exist both in Si−1 and Si. In Hilaga et al. (2001) they deal with this by

subdividing each polygon which spans any edge of a Reeb region. For our system such

a solution is not needed as this is never causes a problem as long as the Reeb levels

are large enough that no polygon spans any three of them. That is, no polygon has

nodes which exist both in Si−1 and in Si+1. In this case, it could cause issues with the

connectivity of the resulting graph. Realistically with the size of mesh which we use

this will never happen until R is increased into double figures (and perhaps not even

then) and this is never necessary for capturing the detail of any given scene.

Having found the entire series of sets Si these can now be sorted. First this is done

within each i, as each level may in fact consist of several separate regions which are not

interconnected. This search process simply involves creating a new region r. A single

polygon from Si is then chosen and added to Sir then each of its nodes which are within

the n band for that level Si are found and added to a list of contained nodes. Each of

these contained nodes are checked against the rest of Si and any polygons which utilise

them are considered to be connected and are also added to Sir and their nodes are added

to the list. This process is continued until there are no new nodes to be checked against

Si at which point Sir1 is labelled as a full region and, if there are any polygons within

Si which are not within Sir1 , then the process is started again for a new Sir2 .

Having divided S into a series of different regions at each i, the regions must then

be connected. This is done starting at S0r1 . Here each of the polygons is checked, but

this time for a node which lies within (or on the boundary) of the region of S1. If such a

node is found then each of the r regions at S1 is checked and any which have a polygon

containing this same node are considered connected to S0r1 and a connection is stored

between the two of them in the Reeb Graph. By stepping upwards, through the regions

at each i and through the different i levels the entire connectivity of the Reeb Graph

is discovered. An example of this can be seen in Figure 3.5. It is worth noting that

the graph obtained details the connectivity of the different regions, but once this is

obtained it is an abstract graph of topology and the nodes involved do not explicitly

contain any information about their position. For the purposes of display in Figure 3.5

the average positions of the polygons involved in each region were used to obtain a
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Figure 3.5: An example Reeb graph, with the Reeb regions represented by the coloured

areas and the graph shown overlaid above them. Note that although this demonstrates

the shape of the graph, these nodes actually have no geometric position, here for the

sake of clarity they have been placed in the average position of their corresponding

Reeb region.

rough representation of the position of each Reeb Graph node.

In experiments over 100 tests with 2 obstacles the running time of our Reeb Graph

calculation was 212ms with standard deviation of 11ms. The amount is largely effected

by the number and size of the obstacles and it actually improves as they take up more

space (either through becoming larger or more numerous or both). This is because

it is computed over the polygons in the open space of the scene and the obstacles

obscure open space (that is, they define polygons over which the harmonic field does

not need to be calculated). The Reeb graph resolution has very little influence on the

speed and what effect it does have is mostly related to storing a larger data structure.

The complexity of the algorithm in the worst case is O(n2) where n is the number of

polygons in the space. This is because in the worst case, in finding the connections

between reeb regions every polygon will have to be checked against every other one

before a single connection is found. In reality the reeb regions will only need to be

compared to those above and below so it is much faster. There are faster methods,

proposed more recently. The work in Doraiswamy and Natarajan (2009) proposes an

algorithm with a complexity of O(n logn(log logn)3). However, such gains are not

necessary as, as also explained in Section 6.2 the Reeb graph calculation is quite a
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small part of the overall system’s precomputation.



Chapter 4

Maximum Flow

There exist many methods to compute the maximum flow of a graph however, there

are some challenges involved in adapting them to this specific problem, as well as in

providing the capacities for the graph. In this chapter we will explain these challenges

and the solutions we provided to overcome them.

On a given network, with a set of vertices connected by edges and capacities for

each of the edges, the maximum flow represents the maximum capacity which the

network can take from a given input vertex through to an output vertex. For a given

network the maximum flow will always be the same, though there may be many ways

of filling up the various edges to achieve that level of flow. This is useful for crowd

control because we can abstract the situation of a crowd moving from one place to

another to a maximum flow problem. This makes sense as a way of planning the

movement of the crowd through a limited space, of determining exactly how they might

best plan their paths around the obstacles.

Within our system the maximum flow is calculated over the topology of the given

space using the Reeb Graph. The discovered maximum flow values are used to deter-

mine both how many agents can move through the system when it is filled to capacity

and which edges they will move along in this case. Finding the capacity of a scene is

useful because it allows the space to be fully filled if necessary, it also allows defining

control for the animator in terms of this capacity. This provides our congestion control

which allows a simple value to be used to determine how congested the scene should

be, full details on this controller are given in Section 5.5. Equally, knowing the number

of agents who will move along each edge in the full capacity case allows the division of

the space into a series of routes through which the agents can be directed. The process

of assigning these routes is described in Chapter 5.

37
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In the rest of this chapter we will first describe how we find the capacities for

the edges of the Reeb Graph using the harmonic field in Section 4.1. Then we will

describe the particular methodology of the maximum flow method used on our system,

along with some background on maximum flow methods in Section 4.2. Finally in

Section 4.3 specific details will be given about how the maximum flow method was

altered to better apply to a crowd flow situation.

4.1 Finding the Capacities

In this section we describe how we find the capacities for each of the edges of the Reeb

Graph. As previously described, these capacities are necessary in order to be able to

compute the maximum flow over the graph. This is another place where the harmonic

field described in Chapter 3 are useful in describing the space being used by the agents.

Calculating the capacity of an edge uses a process similar to that described in

Section 3.1.4, but rather than computing lines which follow the gradient of the har-

monic field, here lines are computed which are perpendicular to this gradient called

iso-flowlines. The reason that these are such a good representation of the space avail-

able is because, by defining them in terms of the direction which we assume agents

will be moving, they tell us how wide the space will be relative to the movement of

the agents. The exact process for computing the iso-flowlines is described below in

Section 4.1.1.

4.1.1 Computing Iso-flowlines

In this section we describe how we compute the iso-flowlines. First, we explain why

iso-flowlines at multiple values are needed for any given Reeb edge, and how those

values are computed. Second, we explain the computation process for an individual

iso-flowline. Finally, we explain why the methodology for these iso-flowlines differs

so greatly from that described in Section 3.1.4.

Each iso-flowline represents the width of the space at a particular point. They are

each drawn at each space between Reeb regions for a particular value of the Harmonic

field and they follow this value through the Reeb regions. In calculating the capacity

of the space between two Reeb regions it is necessary to calculate a number of iso-

flowlines. This is because the width of the space between them may vary and, as we

are using the iso-flowline to capture this, a number of them are needed to ensure that
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Figure 4.1: An example displaying the iso-flowlines (shown as dotted lines) computed

for a given Reeb graph. The spread of iso-flowlines between each pair of Reeb graph

nodes can be clearly seen.

the thinnest section is represented.

For a pair of Reeb regions Ri and Ri−1 which are linked by a Reeb edge, first the

average value of each region is found vi and vi−1 (that is, the centre of its range). Then

iso-flowlines are computed at the values given below:

viso = vi−1 +
x(vi− vi−1)

n
, (4.1)

where x varies from 1 to n− 1 and vi is greater than vi−1. This spreads n− 1 iso-

flowlines along each Reeb edge, which we found was enough to ensure that an even

spread of the area was measured. From these iso-flowlines the length of the shortest

is taken to be the capacity of the edge of the Reeb graph between Ri and Ri−1. An

example set of iso-flowlines computed from this process can be seen in Figure 4.1.

Now we will describe how we compute the iso-flowline for each value of viso. The

first step in doing so is that a complete set of all involved polygons S is collated by

combining the sets from the two Reeb nodes (Ri and Ri−1). This set is then cut down to

a sub-set Siso which contains every polygon from S which has vertices with harmonic

field values both above and below viso (or has a vertex with a value equal to viso). Any

iso-flowline (or collection of iso-flowlines) at the value viso must involve every polygon

in Siso, an example set of such polygons can be seen in Figure 4.3 image (b). Once
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Siso is produced a start point is found from within the set and the iso-flowline is drawn

in two directions along viso from that point until it reaches the edge of the allowable

space. To create the isoflowline from the starting polygon, first the polygon is marked

as having been visited, then the edge in that polygon is found which involves viso (that

is, which has a value above and below it). The new vertex of the iso-flowline is the

point at which viso crosses that edge. The next polygon is then found by finding all of

the unvisited polygons involved in that edge. The process can then repeat from that

point. The algorithm terminates when no new unvisited polygons have been found,

which indicates that either the edge of the allowable space has been reached, or the

iso-flowline has looped back around on itself (as can be seen to happen around the

start and end points in Figure 4.1). The pseudo-code for this process can be found in

Algorithm 1.

Data: Siso, viso

Result: An iso-flowline through Siso

currentVertex = FindStart(Siso);

involvedPolygons = PickStartDirection(FindInvolved(currentVertex));

isoFlowline = [];

isoFlowline← currentVertex;

while size(involvedPolygons) > 0 do
if size(involvedPolygons) == 1 then

This is case (a) in Figure 4.2;

currentVertex = FindOppositeEdge(involvedPolygons, currentVertex);

else
This is case (b) in Figure 4.2;

poly = FindNextPoly(involvedPolygons,);

currentVertex = FindOppositeEdge(poly, currentVertex);

end
isoFlowline← currentVertex;

SetVisited(involvedPolygons);

involvedPolygons = FindInvolved(currentVertex);

end
Algorithm 1: The process to compute the iso-flowline in one direction.

In Algorithm 1 the function FindInvolved returns the polygons from Siso which

contain the edge along which currentVertex is situated and which have not been visited
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Figure 4.2: The two cases encountered when stepping through the grid drawing iso-

flowlines. In both cases the previously visited polygon is coloured in light red, the

currently involved edges are coloured in red, the polygons containing the current iso-

flowline vertex are coloured green and the next edge found is coloured black. The blue

line is the path taken by the actual value of viso through the space. Image (a) shows

the simpler case, where there is only one other involved polygon and only one potential

edge to choose from. Image (b) shows the case where the current position of the iso-

flowline falls at a one of the polygon’s vertices (shown as the red circle). In this case

the appropriate polygon (shown in orange) must be chosen from the set of involved

polygons such that the next edge can be found.

yet (in both cases these are shown in Figure 4.2 highlighted in green). The function

PickStartDirection deals with the special case when we have just generated a start-

ing point from Siso using FindStart. In this case there will be two edges within the

polygon containing the starting point which contain viso so we must pick one as the

direction in which we will first travel (the code shown in Algorithm 1 is used to travel

first in one direction and then used again in the other from a given start point, keep-

ing track of the visited polygons across both cases). Given a set of involved polygons

as returned by FindInvolved there are two special cases to deal with in finding the

next vertex for the iso-flowline. These two cases are both shown in Figure 4.2 and are

described in more detail in the following two paragraphs.

The simpler and more common case in Figure 4.2, shown in image (a), is dealt

with in Algorithm 1 through the if case of the if-else. Here the list of involvedPolygons
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Figure 4.3: These images demonstrate the sequential stages involved in computing the

iso-flowline. In (a) there is an iso-flowline following some value viso through the space

but it is not known. In (b) the polygons which involve viso have been picked out and are

shown in dark grey. Then in (c) the actual iso-flowline found by our system is shown in

red.

only contains a single polygon and the function FindOppositeEdge is called which

returns the opposite edge in the polygon to the one containing currentVertex which

also contains viso. In Figure 4.2 image (a) this opposite edge is shown in black (with

the current edge marked in red). The new currentVertex can then be found where viso

crosses that opposite edge and the whole process can begin again to find the next node.

The special case is shown in Figure 4.2 image (b) and dealt with in Algorithm 1 in

the else part of the if-else. This occurs when currentVertex falls directly on one of the

polygons vertices. In this case the set of involvedPolygons must first be searched using

FindNextPoly to find the polygon which contains the next edge (that is the one with

values above and below viso (not counting vertices with values equal to viso). Once this

is found FindOppositeEdge can be called to find the next edge the iso-flowline will

be crossing.

This process terminates when there are no more involvedPolygons which are re-

turned by FindInvolved. The list of all polygons Siso can then be checked to see if all

of the polygons are marked as visited, if not then the iso-flowline has only been gen-

erated in one direction from the start point, and its open end is extended again using

Algorithm 1 with the open end used as the start point. Once this is done every poly-

gon in Siso is marked as visited. This allows us to demonstrate the correctness of the

approach as we know that if every polygon in Siso is marked as visited then the entire

available space at the value viso will have been covered.

Finally then, the length of each iso-flowline is found as simply the sum of the length

of its edges. These can then be compared to give a value for the capacity of the edge
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of the Reeb Graph. This value does not currently take the form of any estimation of

numbers of agents, instead all the way up until the agents are actually spawned simple

scalar values are used. This is to allow the system to be easily scaled such that the

number of agents which can fit through a passage can be determined by the size of the

agents.

4.2 Computing the Maximum Flow

In this section we will describe the primary method we use to calculate the maximum

flow. In our system, at the worst case each new obstacle could double the number of

edges in the Reeb Graph. This was potentially problematic as the complexity of most

maximum flow algorithms varies based on the number of edges or vertices. After some

investigation we found that not only is the magnitude of the problem manageable (a

scene with 30 obstacles has a Reeb Graph with only 68 edges and 53 vertices), but

also the problems which our system sets up are quite simple for most maximum flow

algorithms. This is primarily due to the nature of the problem as, although we do not

assume that the edges are directed (that is, that the flow can only pass in one direction

along them), in practice the flow found along them nearly always moves from the start

to the end points. That is, solutions found nearly always show the flow moving across

all edges from the start points to the goal points. This fact means that there are very

rarely any cycles of the flow within our system and this significantly speeds up the

computation of the Maximum flow.

The precise method used to calculate the Maximum flow was introduced in Boykov

and Kolmogorov (2004). This method is used as part of a vision based system to detect

edges in images. It is an augmenting path technique, which means essentially that the

flow is grown out in a pair of trees from the source nodes and sink nodes until they

meet in the centre of the graph. It is suitable for our purposes as, even for examples

with a great many obstacles, it runs in a negligible amount of time (for more details see

Section 6.2). This method computes the optimal maximum flow, that is, the maximal

flow through the scene, however, for our purposes we alter the method such that it may

in fact not compute the optimal value, the reasons for this are explained in Section 4.3.

Finally in a basic computation of the Maximum flow we must make a small change

for situations where there are multiple start and end points (though as described in

Section 5.2.3 even in these cases crossing flows cannot occur). In this case an extra start

(and/or goal) is added for the computation of the Maximum flow. These new nodes
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Figure 4.4: Two examples demonstrating the potential problems with maximum flow

solutions. Assuming that the capacity of each edge is 1 agent, case (a) and (b) are both

valid solutions filling the scene up to a maximum flow of 1. Even though (b) represents

a far quicker route for that agent to take.

are connected to the current start points by edges, these are given a capacity greater

than the total length of the current space, thus ensuring that they do not influence the

calculation of the Maximum flow. This allows the Maximum flow to be found as

normal across this slightly extended graph.

4.3 Problems with Pure Maximum Flow

Having computed the Maximum flow, it should then be possible to see how many

agents it will take to fill the graph and where they will be moving through the graph in

this case. However, there is a problem with it directing where the agents go. Specif-

ically, that there may be more than one way of filling the graph to its Maximum flow

and some of these solutions may direct the agents more efficiently than others. This

problem can be seen in more detail in Figure 4.4, here it is clear that one way of filling

the space is less efficient, though as far as the Maximum flow solution is concerned

there is no difference. This problem is exacerbated by our use of the Reeb Graph, as

within it any route from a start point to a goal which does not backtrack through the

level sets is guaranteed to take the same number of steps through the graph.1

The solution to this problem is to use the flowlines (whose generation was ex-

plained in Section 3.1.4) as a guide. Due to the fact that we know the length of each

of the discovered flowlines, we can use these to fill in the capacity of the Reeb graph

1This is because for a given reeb resolution R there will be 2R different level sets each representing a
different band of harmonic field values. At each one of these level sets there may be many nodes, but as
long as a route always steps from the nth level set to the n+1th level it will always take 2R steps to get
from a start to a goal point. This is problematic for the maximum flow calculations, as it means in terms
of the topology of the graph there is no differentiation between a winding route around the outside edge
of a scene or a direct one straight through the middle (both will take 2R steps).
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starting with the shortest flowline and working up. For each flowline, we find its route

through the Reeb graph and check to find the value of the capacity remaining along it.

If this remaining capacity is above zero then that route is filled up to that value, with

the capacity of each of the edges being reduced by that amount. This process continues

until there are no flowlines remaining, with the flow so far being tracked by adding the

amount reduced from the graph each time. Then the Maximum flow is found over what

remains using the method described above in Section 4.2 and the amount it discovers

is added to the flow so far value to find the total Maximum flow through the graph.

It is worth noting that by carrying out this process with the flowlines it is no longer

guaranteed that the actual Maximum flow will be found, due to some edges being

pre-filled by the process with the flowlines. Our experiments demonstrated that in

practice there was rarely a difference between the original pure maximum flow and

our augmented maximum flow. The primary reason for this is that the flowlines tend

to only follow the more direct routes through the space, that is, the ones which we

would expect to be filled up anyway. This means that by filling up the flow initially

by flowlines in this way, what is actually happening is that the shorter routes are being

chosen, as shown in Figure 4.4 (b).





Chapter 5

Directing the Agents

In this chapter we will describe how the information condensed in the Reeb graph is

converted into a set of paths which are provided for the agents to follow through the

space. Thus far the Maximum flow of the graph has been calculated, this describes

both how many agents total can fit through the scene and, in this case, how many

agents will be moving along each Reeb edge. As yet the actual routes which the agents

will take through this graph have not been described. Here the word route is used to

describe a sequential list of nodes in the Reeb Graph which a group of agents will pass

through, along with a value which describes the number of agents contained within this

group. Once a set of such routes has been defined it still remains to convert them to

actual paths through the space which can be used to direct and control the movement

of individual agents.

In the sections which follow, first, we explain why finding routes through the graph

is not a trivial task in Section 5.1. Next, we describe the solution to this problem

provided by the RouteTree method in Section 5.2, here first the RouteTree structure is

described in Section 5.2.1, then the general methodology is given in Section 5.2.2 and

detail about how specific routes are ordered is given in Section 5.2.3. Having created

these routes we then describe how they are converted into specific geometric paths for

the agents using flowlines in Section 5.3. A potential problem with the use of flowlines

and its solution is discussed in Section 5.3.1. Then, in Section 5.4 we explain precisely

how the paths produced are followed by the agents. Finally, in Section 5.5 we talk

about how our system adapts the information about the routes and their various sizes

to provide control over both the congestion and cooperation which occurs within a

given scene.

47
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5.1 Route Planning Problems

Currently we have found the available flow over the Reeb graph using the maximum

flow calculations, finding a series of routes which fill the graph up to this flow level

is trivial. Any series of nodes connected by edges with available flow constitute a

valid route, with the size of the group moving along that route being determined by

the available flow. Simply moving through the graph along edges with available flow

will provide a route, this can be filled with agents following that path, removing that

available flow, and another route found. This naive process is guaranteed to fill the

space successfully, this is because for every node in the graph the amount of flow

moving into and out of it is equal. Essentially the Maximum flow calculations have

already done the job of determining how to distribute agents without any becoming

stuck. Initially in this work we assumed that this would be enough. However, a serious

problem emerged when this naive method was used to fill in this graph, we have termed

this problem cross overs.

A simple example of a cross over occurring is demonstrated in Figure 5.1. Here (b)

shows provided routes which fill the graph according to the available flow, but when

the agents move through the space according to this available flow the two groups will

cross over one another’s paths. The example in (c) is a set of routes which are equally

valid according to the available flow provided by the Maximum flow calculation, but in

this case the agents no longer cross over. Given a direction of flow for the agents these

crossover situations can be avoided in all cases by having agents who arrived on the

left leave on the left and vice versa. The method which we used to do this is described

in Section 5.2.

Before describing the solution to this problem, it is worth providing a more detailed

definition of why this is considered to be a problem. There is a reasonable argument

to be made that in actual crowds such cross overs do occur, therefore it is unrealistic

to remove them. There are a number of reasons why it was felt that having such

crossovers would be detrimental to the effectiveness of this method. The reason for

this, which is that we found that where cross overs occur they cause ugly build up of

agents and delay. This runs counter to our desire to provide a dynamic movement for

agents through the space and for many scenes where the crowd motion is merely a

background, may provide artefacts which undesirably draw attention. As a result we

avoid such scenes by limiting ourselves to only those cases where they do not occur,

as discussed in Section 5.2.3.
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Figure 5.1: This demonstrates the cross over problem. (a) shows the Reeb graph for

this scene with the associated flows through each edge. (b) demonstrates one solution

to filling in (a) with agents, it results in these two sets of agents crossing over one

another’s paths. (c) shows the more desirable solution to (a) which involves no cross

over.

5.2 Route Planning Methodology

In order to avoid groups of agents crossing over one another’s paths some planning

is required in converting the Reeb graph and available flow into a set of routes. In

this section we describe the method used for this purpose. This is done by stepping

through the graph between the level sets of the Reeb graph in a method reminiscent

of breadth first search. As the graph is stepped through a record is made of the routes

up to that point, this record is kept in data structures we call RouteTrees and these are

explained in Section 5.2.1. The process of stepping through the graph is explained in

Section 5.2.2. In order to keep the RouteTrees ordered so they do not cause cross over

it is important to keep track of where they enter and leave each node relative to one

another, the method for doing this is explained last in Section 5.2.3. Finally for further

clarification we provide some pseudo-code of the method described in this section in

Section 5.2.3.

5.2.1 Using the RouteTrees

The RouteTree is a data structure used to keep track of the different routes which

groups of agents take as we step through the graph. It is an ordered tree, with each of
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the leaves representing a path through the graph and their ordering defining where they

entered their current node relative to one another, from left to right. The RouteTree at

a specific node needs to keep track of all of the routes up to that node, as well as how

big they are (that is, how many agents can fit along them).

There are two types of RouteTree. The first is a leaf, which simply consists of a

route which lists the nodes of the Reeb graph passed through in reaching that point,

along with a value denoting how many agents that route can contain. The second is a

collection, this consists of a list of other RouteTrees all of which may be either other

collections or leaves. The important thing about the collection is that the RouteTrees it

contains are ordered, with the order corresponding to where those RouteTrees fall from

left to right, as they travel through the Reeb graph. This ordering is explained in more

detail in Section 5.2.3. Each collection also has an associated value which shows the

total summed size of all of the RouteTrees involved in that collection, that is, the total

size of the group of agents who are currently constituted in this collection. An example

RouteTree can be seen in Figure 5.2. This is a single RouteTree stored for a particular

node of the Reeb graph, showing the different routes used to fill up the graph to that

point. Here the routeTree consists of two collections, shown in red, which contain

ordered lists of other collections and/or leaves. There are also three leaves shown in

blue. The leaves each have a value which indicates how many agents can fit along it

and the collections are valued by the sum of the size of their component leaves. The

leaves are ordered from left to right. An example graph with the RouteTrees at each

stage is shown in Figure 5.3, here the RouteTrees at stage (a) are leaves and the one at

stage(c) is a collection.

As the system moves through the Reeb graph, at each stage the RouteTrees will be

extended by moving them to a new node and adding the identity of this new node to the

route of that RouteTree (or to the routes of each of the leaves involved in a collection).

It may also be neccessary to combine the RouteTrees into a new collection, if several

smaller RouteTrees are moving onto a single larger route, as seen in Figure 5.3 when

moving to node d. It is also sometimes necessary to split up the RouteTrees, if a large

leaf is moving onto two edges with smaller available flow, as seen in Figure 5.3 when

moving to nodes f and g. This process of splitting and combining, along with the

details of traversing the Reeb graph are described in Section 5.2.2.

It is worth mentioning the complexity of this process, as it may seem that a large

amount of information is needing to be stored. In actuality only the leaves and collec-

tions at the current level set of the Reeb graph need to be stored, as they contain all
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Figure 5.2: An example RouteTree consisting of 3 leaves in blue, with their associated

routes. These are ordered into a single RouteTree through two collections shown in red.

In both cases the elements are labelled by the size of the group which passes along

them to this point.

Figure 5.3: The RouteTrees generated at three stages moving through the given graph,

each edge of the graph is marked with the flow along it as found by the maximum flow

calculation and at each stage the nodes in the current level set are coloured red. The

first stage (a) shows the RouteTrees at nodes a and b. The second stage (b) shows

these RouteTrees recombining into a collection at node d. Finally the third stage (c)

shows how one of the leaves of the collection is split up to account for the variation in

flow in moving to nodes e and f .
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Figure 5.4: This image demonstrates the four kinds of splitting and merging situations

which may occur throughout the graph whenever there are more than two edges enter-

ing and leaving a Reeb node.

information from the previous steps. Additionally, each obstacle added to a scene only

adds at most one split to the graph, this means that in the worst case at the final step

there will be a number of RouteTree leaves equal to the number of obstacles (and each

of these must have a list of length equal to the resolution of the Reeb graph).

5.2.2 Stepping Through the Graph

The algorithm for stepping through the graph and building the full set of RouteTrees

works similarly to breadth first search. Beginning at the start points, at each step it

moves down through the Reeb graph to the next level set, that is, those nodes which

are associated with the next range of Harmonic field values. At any level set there

will be a number of nodes in the Reeb graph and the idea is that for each of these a

RouteTree will be built whose components depend upon the connected nodes at the

previous level set. It is done in steps in this way because several of the RouteTrees

from the previous level set may need to be combined or split to produce one at the

current level set (as in Figure 5.3 stage (b) and (c)).

At each new step there are a number of different cases which may arise, these

can be seen in Figure 5.4. An example of case (a), the merge case, can be seen in

Figure 5.3 when moving from the level set which contains nodes b and c to that which

only contains d. Here the incoming edges are ordered from left to right, using the

method described below in Section 5.2.3, and a RouteTree collection is built with the

incoming RouteTrees placed within it according to their order (from left to right, so

here the RouteTree from b comes first, then the RouteTree from c). Explaining this

through the RouteTree in Figure 5.2, we can see that at some previous level set the

leaf of size 1 and the collection of size 5 were on different nodes. These were then

combined in a merge situation, where two edges merged into this one, and the ordering
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was preserved with the size 1 leaf to the left.

The second case in Figure 5.4 (b) is the split case, an example of this can be seen in

Figure 5.3 when moving the level set which contains node e to that containing nodes

f and g. In this case the outgoing edges are ordered, again from left to right, then the

leaves of the RouteTree at the current node are unpacked into these in order. If a leaf

is too large for the available flow of the leftmost edge, then it is split into two smaller

leaves. This can be seen in Figure 5.3 where the leftmost leaf in the collection at e had

to be split between the nodes f and g. The leaves continue to be moved from left of

the current RouteTree to the leftmost nodes at the new level set until they have all been

accounted for. Explaining this through the RouteTree in Figure 5.2, when we step to

the next level set we will preserve the ordering of the agents. That means if stepping

to the next level set involves a split scenario, then this RouteTree will be split with the

leftmost leaves sent to the left and vice versa.

The third and fourth cases in Figure 5.4, (c) and (d), are initially dealt with by the

same process. This is because any time when we are moving to a node which has

multiple edges both entering and leaving it, the first thing which must be done is to

order all of these entering and leaving edges. This allows us to tell whether this is case

(c), in which case all of the entering edges will be next to one another in the ordering

and as a result so will the exiting edges. In this case the solution is simply to treat

this as a single merge case followed by a single split case using the methods explained

above. In the case that the entering and leaving edges alternate in the order then this

is a (d) case, these cases are extremely rare but they do occur. For these cases first

the system takes note of the involved edges and nodes before waiting for until the next

level set. That is, instead of dealing with the nodes at level sets n and n−1, the saddle

point cases are dealt with by looking at the nodes at n−1, n and n+1 all at once. Once

this next step occurs, the already obtained ordered list of all the incoming and outgoing

edges at the n node is stepped through and each incoming edge is unpacked as though

this were a split case into any available outgoing edges, if there are any, to its direct

left and right. This process is repeated over every incoming edge, then again for all of

those edges which still have available leaves in their RouteTrees, until the entire set of

RouteTrees have been appropriately allocated. It may seem as though there is potential

for this process to go awry, in actual fact because of the Maximum flow calculations

we know that the size of the incoming RouteTrees and the outgoing edges at this node

will always be equal so there are never any issues.

This process is initialised with a single RouteTree at each start point in the Reeb
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graph with their sizes set to the Maximum flow. After the first step of the algorithm

they will each have taken on a size appropriate to the available flow from that start

point and the entire set of active RouteTree’s size will then add up to the Maximum

flow. The whole system then proceeds until the final step, at which point there will be

a number of RouteTrees at the goal point or goal points. The leaf components of these

RouteTrees are split out to form the list of valid routes through the space. These consist

of a route of Reeb nodes through which the agent should pass and a value indicating

how many agents should pass along that route. The conversion of these routes into

actual specific paths for the agents to follow is described in Section 5.3.

To prove the correctness of this route ordering method we can first look at a simple

sub example. If we consider the merge-split example in figure 5.4, we know that the

flow entering this node will be equal to that leaving it, as it was computed as such

by the maximum flow. Thus it will always be possible to order routes entering and

exiting the node such that their ordering does not change (that is, those on the left

stay on the left). This means that each merge-split case can be treated as only a single

node wherein we know the ordering will be kept. Equally the split and merge cases

are both simply special cases of the merge-split so the same applies. The saddle point

(Figure 5.4 (d)) is a special case. Here the saddle can be seen to be made up of a series

of split cases, wherein each incoming node is repeatedly split into the outgoing edges

on either side of it. Again by doing so we can guarantee that the left to right ordering

of the routes will be kept. This means that the saddle points can equally be treated as a

single node within which the ordering is a solved sub-problem. Finally then, as these

are all of the cases possible, it can be seen that we can successfully order the entire

graph.

5.2.3 Ordering the Edges

In order for the algorithm described in Section 5.2.2 to function it is often necessary to

order the Reeb edges connected to a particular region in the Reeb graph. This process

is done by traversing along the boundary of the Reeb region producing an ordered list

of the adjacent Reeb regions in the order that they are encountered.

Specifically, using Figure 5.5 as an example, here there are four regions connected

to the central blue region marked as Ri. The boundary of Ri can be followed by looking

for two types of polygon. The first of these are those who have no adjacent connected

polygon on the grid, that is, those who are adjacent to an obstacle (as in the bottom of
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Figure 5.5: An example case where the edges entering and leaving a node need to be

ordered. Here the relevant Reeb node is the central one representing the region Ri in

blue. The edges are ordered by traversing the edge of this region.

Ri in Figure 5.5. The second are those who exist both in Ri and in one of the adjacent

regions, these can be recognised by looking at the Harmonic field values at each of

the three nodes they involved. When these are found the Reeb region being passed

can be discovered by searching each of the connected region’s lists of polygons for

the currently traversed one. The discovered region is then added to the ordered list of

regions. By traversing the entire edge of Ri in an anti-clockwise direction, checking at

each step which type of polygon is being traversed, we produce an ordered list which

is used by the method from Section 5.2.2 to avoid cross overs.

5.2.4 Route Planning Pseudo-code

Pseudo-code for the route planning method is provided in Algorithm 2. Here, lines

1 to 5 create the list to contain all the RouteTrees and initialise a tree for each start

point using CreateRoute, which takes as inputs a value for the capacity of the route

(here set to MaxInt as we wish the capacity for each route to be limited by the edges

along which it travels) and a path (here simply the given start point). The rest of the

code is the main loop, and it continues iterating until Incomplete returns false on the

full list of RouteTrees, that is, there are still RouteTrees which have not arrived at goal

points (thus are incomplete).

The first half of each iteration (lines 8-14) deals with the split cases. Here for each

RouteTree in the full routetree list the available connections (that is, the reeb edges

moving out from the back node of its current path) are found using FindConnections

and they are then ordered in place from left to right using OrderConnections (as

described in Section 5.2.3). Then for each connection in the ordered list a new route
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is created using CreateRoute and the minimum capacity between the RouteTree and

the new connection. Importantly this line is also where the splitting happens should

it be needed. When several RouteTrees are combined into one (explained below and

included in Algorithm 2 line 22) then their paths are combined into an ordered list of

paths, each of which has a number denoting the capacity of that path. In line 12, when

the RouteTree has a greater capacity than the outgoing node, then the paths it contains

are removed from the current RouteTree in order and added to the newly created one

until their combined capacity meets that of the new connection. Finally in this loop

each new RouteTree created it added to the hashmap RouteMap which maps reeb node

IDs to a list of RouteTrees, this is used to detect when many RouteTrees are arriving

at a single node at once and need to be merged.

Finally then the second half of each iteration deals with the merge cases in lines

17 to 24. Here the RouteMap is iterated through to find the list of RouteTrees arriving

at each node in the graph. If there is only 1 such node then it is added to the newly

cleared list of all RouteTrees ready for the next iteration. If there are many RouteTrees

arriving at that node then first they are ordered using OrderConnections. Next they

are combined into one single RouteTree using CombineRoutes. This function creates a

single RouteTree whose capacity is equal to the sum of all of the combined RouteTrees

and whose path is an ordered list of paths from the RouteTrees (each with it’s own

associated capacity). This process essentially means that a RouteTree can have many

RouteTrees nested within it (in order) and even further RouteTrees nested within them.

This combined RouteTree is then also added to the list of all routetrees ready for the

next iteration.

5.2.5 Crossing Streams of Agents

The planning described here in Section 5.2 allows us to avoid two groups of agents

from crossing one another’s paths. However, the effect of this methodology is that

with our method it is not possible to produce scenes such as in Figure 5.6 image (a).

In the case that our system is given multiple start and goal points in such a manner the

route planning will specifically avoid the occurence of any crossing groups as shown

in Figure 5.6 (b). The reason for this is that crossing groups are directly opposed to the

type of scene which our system is trying to replicate. Two groups of agents moving

through one another’s paths will cause congestion and perhaps even queueing, slowing

the scene down and dramatically reducing it’s dynamism. Crossing scenes do occur in

reality and there are many methods capable of replicating them, however, we felt there
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1 AllRoutes = [];

2 foreach StartPoint in StartPointsList do
3 RouteTree = CreateRoute(MaxInt, StartPoint);

4 AllRoutes← RouteTree;

5 end
6 while Incomplete(AllRoutes) do
7 RouteMap = {};
8 foreach RouteTree in AllRoutes do
9 Connections = FindConnections(RouteTree.path);

10 OrderConnections(Connections);

11 foreach connection in Connections do
12 NewRoute = CreateRoute(min(RouteTree.capacity,

connection.capacity), route.path← connection.node);

13 RouteMap [connection.targetNode]← NewRoute;

14 end

15 end
16 AllRoutes = [];

17 foreach key in RouteMap do
18 if size(RouteMap [key]) == 1 then
19 AllRoutes← RouteMap [key];

20 else
21 OrderConnections(RouteMap [key]);

22 AllRoutes← CombineRoutes(RouteMap [key])

23 end

24 end

25 end
Algorithm 2: The algorithm described in Section 5.2 for providing a full set of non-

crossing routes through the space.
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Figure 5.6: An example showing the type of crossing stream situation our system avoids

in image (a). Here each s denotes a start point and each g denotes a goal point. Given

a scene set up with these points (b) shows how our system will direct the agents.

was no method which allowed the automation of avoiding the crossing of agents, as a

result our efforts were focussed on this problem.

It would be possible to create a scene with two or more crossing streams using our

system. To do so two or more separate scenes would need to be created and solutions

computed, for the example in Figure 5.6 (a), one with the agents moving from bottom

to top and one with the agents moving from left to right. The results of these two runs

could then be overlaid. To account for the congestion caused by the groups of agents

crossing, the flow along each route could be reduced by some percentage depending

on how many crossing situations it was likely to be involved in. However, we do not

believe that this would be a fruitful application of our system, the crossing groups are

bound to obstruct one another making the scene very different from the type which we

are aiming to produce. For this reason we have not explored such solutions further.

In conclusion, although it is plausible to create simple examples of crossing groups

of agents using our method we do not believe it is advisable to do so as it is not the

intention of the work to create such scenes. There are currently many works capable

of creating crossing flows. However, producing dynamic scenes which avoid such

situations is a much less studied problem.
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Figure 5.7: An couple of examples showing how the flowlines spread out to fill the

whole space. It is worth nothing that for ease of viewing only a subset of the generated

flowlines are shown here. Also of note is that there are routes through this space for

which there is no single flowline following the entirety of the route, for instance any route

between the obstacles labelled 1 and 2 in the left image.

5.3 Providing Paths

In Section 5.2 a series of routes were generated to guide the agents through the space,

these routes consisted of a series of nodes in the Reeb graph which the agents should

pass through. The Reeb nodes do not directly correspond to a particular location in

the space, instead they describe a large set of often extremely spread out polygons.

As such it is useful to convert this series of nodes into a more exact description of a

set of paths through the space which the agents can follow. For this purpose the flow-

lines, whose computation was described in Section 3.1.4, are used to provide definite

geometric paths for the agents to follow. They are ideal for this purpose because they

represent smooth and efficient routes through the space which avoid obstacles as well

as beginning and ending at the start and goal points. They also spread nicely in open

space to use the entirety of the available room. This is demonstrated in Figure 5.7.

Each flowline, as it is being created, records a list of polygons it passes through.

These lists are then compared to the polygons contained in each Reeb node region to

define a set, for each Reeb node, of the flowlines which pass through it. In most cases

for a given route of Reeb nodes, these sets can then be compared to provide a list of

flowlines which follow the entire length of that entire route. That list is then used by the

local controller to provide paths for the agents to follow when moving along that route.

There are rare cases where there is no single flowline which follows the entirety of a

route. This cannot be avoided as there will always be saddle points (local peaks) in the

gradient of the harmonic field (as in Figure 5.7 on the left between obstacles 1 and 2)
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and no flowline will naturally cross these as it would require travelling up the gradient.

In this case we require further computation as described below in Section 5.3.1.

5.3.1 Connecting partial paths

It may not be possible to find any flowlines which follow the entirety of a given route

through the space. This is normally due to the particular route having a section which

moves perpendicular (or nearly so) to the gradient of the harmonic field. For such

sections the gradient is normally such that any flowline which progresses into the area

or is seeded within it, will end up colliding with an obstacle before escaping the area, an

example of this can be seen in Figure 5.7 between the obstacles marked 1 and 2 in the

leftmost image. In the case that no single flowline follows the whole of a route. First

the route is broken up into sections for which there are representative flowlines. These

sections are then stitched together to produce one single flowline which represents the

entire route.

In order to stitch together two flowlines, first the two groups of flowlines are found

which represent the two sections of the route to be stitched together, as shown in Fig-

ure 5.8 (a). Generally each of these flowlines will follow the given route up to some

node N or onwards from some node M, in Figure 5.8 (a) N and M are both 3. How-

ever, we assume that the portion of the flowline which occurs in N or M will represent

a divergence from the route so we instead take each flowline up to node N−1 or from

node M + 1, this process can be seen in Figure 5.8 (b) with the divergence which is

thus removed evident in (a). The ends of these two sets of curtailed flowlines are then

compared to find the pair, one from each set, which are closest to one another.

Finally in order to stitch the two flowlines, a new harmonic field is generated with

the now end point of the first flowline set to zero (as the start point) and the now start

point of the second flowline set to one (as the end point). Finding a new harmonic field

in this way is not computationally costly as it is only recomputed for the local area (as

defined by the start and end points and any local obstacles). A seed point is then chosen

for generating a new connecting flowline, in Figure 5.8 the seed point is chosen from

region 3, as the only section between the two sets of flowlines. In some cases there

will be a larger break of regions for which there is no representative flowline. In these

cases the central region in the break is chosen from which to take the seed point, as this

ensures that the newly generated flowline will take the same path around obstacles as

the route itself. Given the random nature of the chosen flowline a number may have to
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Figure 5.8: This image demonstrates the process of stitching together a flowline for

a route which moves between the Reeb regions labelled 1, 2, 3, 4 and 5. First the

flowlines representing the beginning and end parts of this region are picked out as

shown in (a). Then the relevant sections of these flowlines are picked out as shown in

(b). Finally the two closest flowlines are found and a new flowline drawn between the

two of them, as shown by the dotted line in (c).

be picked before finding a successful one, that is, one which arrives at the two dangling

ends of the current flowlines. Such a successful flowline will connect these two ends

up in a smooth way, creating a single flowline which follows this entire section of the

route as seen in Figure 5.8 (c). This process is repeated for however many breaks there

are in the representation of the route by the flowlines, until there is a single complete

flowline which represents the entire route.

5.4 Applying the Paths

For each route through the Reeb graph there is now an associated size and set of paths

describing how many agents can travel along this path and where they should move to

do so. In order to convert these into actual motion we take a number of smaller steps,

all of which are explained in this section. First we explain how we choose the size

of the agents and how this effects the overall resulting scene. Next we explain how

we exploit the variety of paths representing each route to ensure efficient movement.

Finally we explain the controller used to handle the individual agents movement along

the paths and collision avoidance as they do so.

Up until this point the actual scale of the scenes being created has only been talked

about in very abstract terms, in order to determine the scale of a scene different sizes
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of agents are used and they are easily applied to our system. Each route through the

graph has an associated width value, but that size is not relative to anything concrete.

Agents are assumed to be circular for the purposes of simulation, but it can be seen

that depending upon the diameter of these circles a very different number of agents

could fit along any route of a given size. For a given scene this should be set such

the agents are the correct size relative to the obstacles in the scene. For instance for a

scene with four obstacles, the computation is the same whether the obstacles are four

trash bins or four buildings and the size of the scene is determined by the size of the

agents (for examples see Figure 6.1 for a smaller scale scene and Figure 6.6 for a larger

scale scene). The significance of this is that it means the pre-computation time of our

system will be the same for a scene involving 100 agents or one with 100,000. For

more details on how this value is varied see Section 6.1, which shows some examples

of a single scene but filled with agents with different diameters.

Having found the diameter of the agents, this tells us how many agents can move

along each route by dividing the size of the route by the diameter and rounding down.

In the case that there is a large remainder to this division, that is > 0.5, this is carried

over to the next iteration of the system as an extra agent. At this point it is worth

discussing how our system might tackle agents which move at different speeds (or

areas of the scene through which agents move at diferent speeds). This could be dealt

with by treating the speed of an agent as being related to its flow, that is agents which

are moving more quickly take up less flow (as they spend less time in bottlenecks) and

agents which move more slowly take up more flow. This could be formalised if we say

that the default speed for agents is s0 and the speed of an individual agent is sx, then

the flow taken up by that agent will be:

F =
s0

sx
(5.1)

where F is the flow per agent. The division of each route into a set of agents can then

be done based on those agent’s speeds and the resulting obstruction which they are

going to provide on that route. Equivalently spaces within the scene which will slow

the movement of agents can be represented by reducing the available flow in the same

manner (by the percentage by which they will slow the agents).

Having performed the calculations to discover how many agents can move along

each route we will have some number of agents n to be divided up among a set of

paths of size p, the simplest thing to do would be to divide the agents up into groups

of roughly n
p and send this number along each path, this is roughly what happens with
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Figure 5.9: This image shows a subsection of a set of flowlines, they have been roughly

coloured so that it can be seen that in order to progress around this corner, those in

yellow take the most efficient paths and those in green take the least efficient.

one addition. It was observed that for any set of flowlines following a route there will

be some which are far less efficient than others, to the point of being much slower. An

example of this can be seen in Figure 5.9 where all of the green flowlines are a lot less

efficient and some even involve the agents moving backwards to begin with. It is also

desirable that as they move through open space the agents remain spread out somewhat.

This problem is solved by ordering the list of available paths for each route and only

using the shortest half, the n agents being spread as evenly as possible between these.

We chose to limit the used routes to the shortest half as this was found to remove the

flowlines which took the most obviously inefficient paths while still including enough

flowlines to give a good spread of agents through the space. It may also be desirable to

discard some of the shorter paths if they are coming too close to the corners of objects.

Since we have an ordered list of flowlines it is possible to extend this method to also

discard the shortest of these, thus avoiding this issue. However, we did not find it to be

a problem in our simulations.

Each agent in the system now has a flowline which it must follow to find its way

from the start to the goal. For the purposes of the system it was preferable for there to

be as little local control as possible. This is because the entire focus of the work is on

providing global controls for such crowds, not on local avoidance and, while there are

many local controllers available which could take our paths as input, they nearly all
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do at least some form of local planning. As a result there is a danger that, particularly

in areas of high interaction between agents, it would be difficult to ascertain which

motions were as a result of the direction provided by our method and which were as

a result of the local controller. The simplest solution is to have the agents directly

moving along the flowlines which they have been provided, with no consideration for

one another or obstacles, however, this produces very ugly motion with agents happily

intersecting with one another. As a result was decided to use a flocking controller based

on the work in Reynolds (1987a) to provide local collision avoidance. The reasoning

behind this decision was that we wanted to use as simple as possible a local controller

so that the contributions of our own method could be more clearly seen. Finally, as

each path originates at the same start point, each agent is added into the scene at some

point n along their particular path to ensure that they don’t all originate on top of one

another. Although there is still some occasional overlap between agents, it is taken care

of very quickly by the avoidance portion of the flocking. Each agent then progresses

along it’s given path, heading to each new point along it in turn until reaching the goal.

5.5 Congestion and Cooperation

In this section we describe how the controls over the congestion and cooperation within

the crowd, are implemented. These were described in Section 1.2 in equation (1.3)

(repeated below for clarity):

Xpaths = f (scene,agents,starts,goals,θ). (5.2)

The two controls which we chose are the congestion which occurs in the scene,

represented by θcongestion, and the cooperation within it, represented by θcooperation. In

this section we describe how both of these can be set at runtime by a user of the system

to alter the behaviour of the crowd as a whole. It can be seen that both of these features

are implicit in the routes and sizes which have been calculated thus far. The sizes of

the routes found over the scene in Section 5.2, describe the situation when the scene is

at its maximum capacity without becoming congested. Equally the paths produced in

Section 5.3 describe a set of ways through the environment and so, by comparing their

lengths, we can discover the shortest, and so most selfish and least cooperative, route

to take. In the basic state of the system when each route is being filled the agents are

at their most cooperative. These features were specifically chosen because they have a

clear intuitive meaning to any user.
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Figure 5.10: Three examples of the congestion value being raised and lowered for a

single scene. The congestion value is marked in the top left of each scene.

In its normal run state the congestion value of the system is θcongestion = 1, at a value

of 1 the agents being sent into the scene will exactly fill it up to its capacity without

causing congestion, as determined by the Maximum flow calculation. The value for

θcongestion can be altered down to a minimum of 0 and up to a maximum of 2 (though

the potential maximum is ∞ in reality going above 2 is not practical or useful, as can

be seen in Figure 5.10). Mathematically a value of θcongestion = 2 means that the scene

is filled to two times its capacity, that is two times more than the maximum flow found

for the scene. When the value is altered what actually happens is that the size values

for each route are multiplied by θcongestion for any θcongestion value above 1 before the

agents at that iteration are spawned, creating a larger or smaller number of agents along

each route. For values of θcongestion below 1 the reduction of agents happens from the

outer routes first according to a reduction to the total number of agents in the scene.

That is, if the total size of all of the routes is 100 and θcongestion is set to 0.8, then

the scene will have 20 less agents moving through it, but these agents will be taken

from the longest routes through the scene first. This is because for smaller values

of θcongestion simply multiplying each route results in any routes with a smaller size

having very low numbers of agents sent along them, which looks strange especially if

those routes happen to be among the shortest and most direct available to the agents

in the scene, an example of this can be seen in Figure 5.11. In either case this process

happens somewhat in real time, that is the next iteration will cause the scene to be

more or less congested as instructed, but the agents currently in the scene will not be

removed so it will not instantly alter the current makeup. The results of this process on

an actual scene can be seen in Figure 5.10 and further study of the effectiveness of this

method can be found in Section 6.4.

The cooperation is represented through the routes found for the agents by our sys-

tem. Defined by the maximum flow and the choice of routes relating to it, taken to-

gether these routes represent the most cooperative situation which the agents could
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Figure 5.11: An example demonstrating what happens if a low congestion value is used

to reduce the agents along each route evenly, rather than reducing the agents from the

longest routes first.

Figure 5.12: Three examples of different cooperation values for a single scene. The

cooperation value is marked in the top left of each scene.

utilise to together reach the goal. In the normal state of the system, when all of these

routes are being used, the cooperation value is θcooperation = 1. The range for this value

is from 0 to 1, so it can only be reduced from the original value, by doing so making the

agents less cooperative and more selfish. When the value is altered what actually hap-

pens is that the number of routes used by the agents is reduced by removing longest and

the agents who were previously travelling along those routes are redistributed evenly

among those remaining, the assumption being that taking the shorter routes is the more

selfish option. The routes are removed by first ordering the entire list of routes R ac-

cording to the length of their shortest associated flowline. The number of agents sent

through the space is then reduced, by removing them from the longest routes first, until
Current agents sent

Original number of agents sent = θcooperation. Once this value is reached, the removed agents

are redistributed among the routes from which no agents were removed. In the case

that θcooperation = 0 (or if it is very small) all of the agents will be removed, they are

then all re-added to the single shortest route. This situation, where there is no cooper-

ation between the agents, comes the closest to the type of solution which most other

methods would provide for this type of problem. An example of the application of this

method can be seen in Figure 5.12 and again further study of its effectiveness can be

found in Section 6.4.
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Experimental Results

In order to demonstrate the efficacy of the system laid out this far we performed a

number of experiments and explorations. In Section 6.1 we demonstrate the effec-

tiveness of the method in a number of different scenarios. In Section 6.2 we provide

some analysis of both the actual computational costs of the system and the theoretical

optimal costs, providing a detailed explanation for the discrepancies between the two.

In Section 6.3 we provide a comparison to a state of the art method, giving details of

both phenomenological and statistical differences. In Section 6.4 further explorations

and demonstrations are given of the Cooperation and Congestion controls presented

in Section 5.5. Finally, in Section 6.5 we provide some background explaining the

difficulty with demonstrating the realism of our method.

6.1 Real World Examples

We have simulated a number of different scenes to demonstrate the running of our

system. In this section we will present these examples of our system running on a

small town scene and a large town scene, both of which demonstrate the coordination

of the agents. Also a large castle attack scene and a monster attack scene, both of

which demonstrate the types of dynamic scenes to which our system is best suited. We

will also demonstrate the system working across an evacuation scene. Finally to show

the scalability of our system we will give an example of it working for an extremely

large number of agents. All experiments have done on one core of an Intel core duo

E8400 with 4GB of ram. The times given are for providing the full paths for the agents

in the crowd to follow, which is all done as a precomputation. Times at runtime are not

given as this is not the primary concern of our system. Once the precomputation has

67
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Figure 6.1: An example of a small town scene shown both in our system, below, and

animated fully above (animations in this figure and in Figure 6.2 and Figure 6.3 pro-

duced in Maya with the kind help of Myung Geol Choi). The agents are moving from a

start on the left towards a goal on the right and the images track their progress (again

from left to right).

been carried out the only operation performed by our system is to create new agents

when neccessary and provide them with the appropriate paths through the scene. The

entire remainder of the computation is performed by the local controller following

those paths. For all examples unless otherwise stated: a Reeb graph resolution R (as

described in Section 3.2.2) of 5 was used (giving a Reeb graph with 32 separate layers),

and the Congestion and Cooperation values were both set to 1.

The first example shows our system working on a small town scene with a few

small buildings through which the agents must navigate, it can be seen both within

our system and fully simulated in Figure 6.1. Here there is one start point on the left

and one goal on the right, with 7 obstacles between. 324 agents are generated each of

whom have a radius of r, from Figure 6.1 it can be seen that the crowd repeatedly splits

up to navigate each obstacle, making for a slower route to the goal for each individual

agent, but a much quicker one for the crowd as a whole. The pre-computation time for

this example is 4.87 Seconds.

The second example shows a larger scale city scene with again a single start and

goal point and 26 unique obstacles (where a unique obstacle is one which is uncon-

nected to any other obstacle in the space). Here, to reflect the larger scale of the scene,

the agents have a radius of r
2 , allowing for 1430 to fit within the scene. This exam-

ple can be seen in Figure 6.2, again the agents can be seen seamlessly splitting up to
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Figure 6.2: An example of a large town scene with the agents progressing through the

city from left to right

Figure 6.3: An example of an evacuation scene. Here there are a number of start points

representing stairs arriving on the ground floor of the building (represented by the blue

cylinders) and a number of goal points which are exits from the building (represented

by the red cylinders)

navigate obstacles and cooperating in their course through the city. In this example

the pre-computation time was 6.69 Seconds (it may seem surprising that this example

with more obstacles was actually faster than the previous and slower example, we will

provide a full analysis of why this is the case in Section 6.2).

In the third example we demonstrate the effectiveness of our system in cases where

there are a greater number of start and goal positions, in this case 5 and 6 respectively.

This example, seen in Figure 6.3, is an evacuation scenario. Each of the start points,

seen as the blue cylinders, representing the stairs arriving on the ground floor of a

tower block and each of the end points, seen as the red cylinders, representing an exit

from the building. Here there are 701 agents each again with a radius of r
2 and the

pre-computation time was 6.64 Seconds.

The fourth and fifth examples both demonstrate the dynamism of our system. In

the fourth, shown in Figure 6.4, an army of 3348 agents attack a castle from all sides,

while avoiding self obstruction and keeping smooth dynamic flow throughout. Here

there are 4 start points around the outsides and 1 goal point at the castle. The pre-

computation took 3.34 seconds and the agents each have a radius of r
2 . In the fifth

example, shown in Figure 6.5, there are 297 agents weaving in and out of cars along

a street to escape a monster. Here there is just one start point and one goal point. The
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Figure 6.4: A scene with an army rushing to surround a castle, the army is made up of

3348 agents. The four tents signify the four start points and the castle the single goal

point.

Figure 6.5: A scene with a crowd of pedestrians rushing along a city street away from

a monster.

pre-computation took 2.2 seconds and the agents have a radius of r. This example

demonstrates the effectiveness of our method on a much smaller scale scene where

finer control is needed.

Finally we wanted to demonstrate the effectiveness of the scaling of our method

so we created a large scale scene shown in Figure 6.6. Here at its peak there are

over 70,000 agents en route between the single start and goal point. The extra scale

is achieved firstly by giving each agent a radius of r
6 . In order to also achieve the

level of detailed required to register the topology of the much smaller obstacles in

the scene the Reeb graph resolution had to be increased to 7 (128 separate layers).

This leads to the slower pre-computation time of 8.86 Seconds. In this example one

particularly noticeable feature is the columns or lanes (not to be confused with laning

mentioned in Section 6.5) which the agents fall into. This is primarily because although

the local controller causes the agents to spread out around the given flowline which

they are following, in reality they will still adhere to it to some extent. In extremely

high resolution cases such as this the agents are too small to spread out and the shape
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Figure 6.6: A large scale scene with agents with over 70,000 agents, they are progress-

ing from the left to the right of the scene.

of the Harmonic field as it bends around obstacles becomes evident. The result is the

lanes which can be seen here. Obviously this is undesirable and could be fixed by

creating a much denser spread of flowlines throughout the space, but with the system

as it currently is doing so would cause considerable slowdown for reasons explained

in Section 6.2.

One thing not mentioned in this section is the runtime computation of the system.

As described in Section 5.4 we use flocking for the local control specifically because it

is a more basic method, which will not gloss over any of the errors of our system. One

of the downsides of this is that it tends to run quite slowly when computing the paths

for a large number of agents, particularly for the extremely large scale scene shown in

Figure 6.6. The reason for this is that, as the flocking was not a focus of our work it is

largely unoptimised and does not cope well with more than 1,000 agents. The runtime

speed is solely determined by whatever local crowd controller is used to follow the

given paths and there are plenty which are capable of extremely fast speeds for even

large numbers of agents.

6.2 Computational Costs

We have thus far provided the pre-computation times for our system, but given little

explanation for these or for how they are changed by scenes with a higher level of com-

plexity. In this section we will provide an in depth investigation of these matters. An

initial break down of our system can be seen below in Table 6.1, with the computation

times and their standard deviations given in milliseconds. These example times were

for a simple scene with two randomly placed large obstacles and a single start and goal

point and the results were averaged over 100 runs. In the following paragraphs we

will examine each of the processes involved in this table, explaining what they involve

and why they take the time which they do. For more specific runtime analyses of each
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Stage of Pre-computation mean std. dev.

Initialising 955ms 21ms

Computing the Harmonic field 765ms 61ms

Creating the flowlines 430ms 26ms

Creating the Reeb graph 212ms 11ms

Finding the Capacities 1131ms 47ms

Calculating the Maximum flow 5ms 7ms

Finding the routes 276ms 111ms

Stitching the routes 29ms 6ms

Total 3805ms 145ms

Table 6.1: The computation times and standard deviations for different stages of our

system.

individual component see their individual Sections.

The first steps to look at in Table 6.1 are the initialising step and computing the

Harmonic field. Involved in the Initialising step is the allocation for all of the memory

for every node, edge and polygon involved in the scene, along with several tables for

agents to quickly lookup which polygons they are currently occupying (and ultimately

what their associated gradients are). Also included in this are other smaller segments,

such as computing the gradients for each polygon in the space along with some simple

book keeping operations which re-allocate values throughout the grid. The Harmonic

field section computes the harmonic field value for every node in the grid, as described

in Section 3.1.2. The most important fact about these two sections are that their com-

putation times only vary in the size of the grid and only linearly with this increase

(such an increase might be necessary for an especially large scene, though we never

found it so). As a result we do not view these as especially problematic to the scaling

up of our system to more complex scenes.

Other stages have an extremely low computation time which is not altered to a

significant degree by changing the scene or variables. These stages are creating the

Reeb graph, calculating the Maximum flow and Finding the routes. Creating the Reeb

Graph collects the polygons of the space into areas with similar harmonic field values,

adding connections when they are adjacent, as described in Section 3.2.2. Calculating

the Maximum flow finds the maximum number of agents who can travel through this
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Figure 6.7: This graph demonstrates how the computation time is effected when the

number of obstacles in the scene are increased. The standard deviation also shown at

each point.

graph, as described in Section 4.2. Finding the routes involves stepping through the

Reeb graph finding valid routes for agents to follow along the discovered flow such that

they do not cross, as described in Section 5.2. Again these stages are not considered to

be problematic as scaling them up to larger or more complex situations causes only a

negligible increase in their computation time.

The final stages to mention are: creating the flowlines, finding the capacities and

stitching the routes. Creating the flowlines involves drawing flowlines which follow

the gradient of the Harmonic field from the start to the goal points, as described in

Section 3.1.4. Finding the capacities involves finding iso-flowlines for every edge in

the Reeb graph, these run perpendicular to the gradient of the Harmonic field and give

an indication of the number of agents who could traverse along that edge, as described

in Section 4.1. Stitching the routes involves finding flowlines which match an agent’s

route through the space. Crucially, when no flowline follows an agent’s route the partial

ones which do exist will be stitched together, by drawing a new flowline to connect

them, this process is described in Section 5.3. These stages all have in common that

they compute some kind of flowline through the space. The significant thing about this

is that these are the processes which change the most as the number of obstacles is

increased and this can be seen in Figure 6.7, discussed below.

In Figure 6.7 it can be seen how the computation time scales with the number
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of obstacles. Here the Reeb graph resolution R was again increased to 7 in order

to allow it to register smaller obstacles (which were needed to achieve such a high

number of obstacles). The obstacles were each of size n by n and were added randomly

throughout the space with the only stipulation being that they did not contact any of

the already existing obstacles. At each number of obstacles the experiments were run

100 times with a different configuration of obstacles each time. As suggested the vast

majority of the increased computation time comes from the increased numbers of iso-

flowlines and stitching which increased obstacles require. However, as can be seen

from the graph this increase is linear in its effect. The exact source of the increase is

that with each new obstacle there will be more edges in the Reeb Graph, which means

a larger number of capacities need to be found, additionally with each new obstacle

there is an increased chance that there will be some route used for which there exists

no single flowline, and so stitching must be carried out. However, it is difficult to

predict exactly how each new obstacle will effect the computation, as they increase the

variation in the computation time increases, as can be seen in the standard deviation.

This is because with obstacles which are alligned with one another (in relation to the

start and goal points) the amount of stitching required will be much lower (an effect

which is also helped by larger obstacles than are used here). Overall we do not regard

this as a problem as the increase is both linear and for the examples which we will

be considering (such as those in Section 6.1) it will be towards the bottom end of the

variation shown here.

6.3 Comparison

In order to demonstrate the efficacy of the coordination produced by our system we

compared it to an implementation of the Continuum crowds method Treuille et al.

(2006) as described in this original paper. It was chosen as a suitable candidate par-

tially because it also allows the agents global knowledge of the scene, allowing for a

slightly fairer comparison, but partially also because it is highly regarded within the

field. The main purpose of this comparison was to satisfy one of the key issues laid

out in Section 1.3, that of ensuring the validity of our produced plans. We measured

this by comparing the relative success between our system and the Continuum crowds

in getting a crowd from the start to the goal as dynamically and efficiently as possible.

Here we use the definition of dynamic as laid out in Section 1.1, however for experi-

mental purposes we define our measure of dynamic to be the average movement speed
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Figure 6.8: The experimental cases on which we compared our system to Continuum

Crowds.

of the crowd. That is, a control method should keep each agent moving as close as

possible to its maximum motion.

There are other methods against which we considered comparing our method. For

example methods such as reciprocal velocity obstacles (van den Berg et al. (2008a)),

which are more adept at local avoidance than Continuum Crowds. However, these

were not used because our method is primarily global in terms of the control which it

provides to the crowd and these are precisely the kinds of problems which reciprocal

velocity obstacles is poor at solving. That is, situations in which agents are required

to cooperate to progress, as observed in Kapadia et al. (2011b) where they mention

that complex interactions and deadlocks cause problems for all of the studied meth-

ods (including RVO). Equally there are global methods against which we could have

compared, most particularly there are definite similarities between our method and the

directable navigation fields presented in Patil et al. (2011). Here they also provide a

means to create dynamic motion for the entire crowd. However, the primary differ-

ence is that with their method any coordination between agents comes from user input.

Therefore such a comparison would result in comparing the automated routes of our

system to a set of user input routes provided for their system. Finally, comparison to

local agent based methods would be undesirable, primarily because we regard our sys-

tem not as a replacement but rather as a compliment for such approaches and a hybrid

of our approach with these would be an interesting further project.
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Figure 6.9: Shows the magnitude of the velocity averaged across every agent in every

scene shown in Figure 6.8 at each iteration. The standard deviation is plotted in the

paler lines for each iteration.

The comparisons were made across a number of example cases shown in Fig-

ure 6.8. In each case there is a single start point on the left and a single goal on

the right. These cases were chosen to represent a particular set of situations. Specif-

ically, examples 7, 8, 9 and 10 in Figure 6.8 all represent a form of bottleneck which

requires forward planning to avoid and account for, a situation in which we feel our

method will heavily outperform Continuum Crowds. Examples 4, 5 and 6 all represent

cases where the natural flow of the crowd around the obstacles should be close to the

maximum flow through the scene, that is they are scenes where we feel our system

and Continuum Crowds ought to perform quite closely. Finally examples 1 ,2 and 3

are designed to check both systems on a few individual cases, respectively they are:

a larger case where a central route is available but where outer routes will need to be

utilised for maximum efficiency, a single obstacle where the choice about splitting the

crowd needs to be taken early on and finally an example of a simplified scene with a

non-convex obstacle.

We compared the average velocity of all of the agents across every experimental

case as a measure of the dynamism of the entire crowd motion and the results can be

seen in Figure 6.9. Here the maximum velocity for an agent is set to 2, a value which

our system manages to maintain across the entire course of the run. Continuum crowds

however whilst it starts well, quickly slows, this is because it sends all agents along
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Figure 6.10: Snapshots of our system (a) and Continuum crowds (b) running on the

example 7 from Figure 6.8.

the optimal route, even when there is not enough space for them all to fit through that

route. Additionally, due to this lack of planning, there is a much greater variation in the

speed provided by Continuum Crowds from run to run, as can be seen by the standard

deviation. An example of this in action can be seen in Figure 6.10 which shows both

systems operating on the top left experimental case. Here it can be clearly seen that

our system plans around the bottleneck in the centre where Continuum crowds does

not.

It can be seen that in Figure 6.9, though our system keeps the agents far closer to the

optimal velocity, the absolute difference in velocities is quite small (only about 0.1).

The reason for this is that the Continuum crowds method is good at keeping constant

velocity throughout the crowd. If we instead compare the velocity towards the goal, as

seen in Figure 6.11, the difference between methods can be more clearly seen. These

values represent the progress of agents towards the goal on the right and penalise the

creation of situations where agents are forced to backtrack (creating velocities which

move away from the goal). Looking at this figure it can be seen that the our method

provides a much larger improvement over Continuum crowds, as all of the motion is

in the direction of the goal, whereas with Continuum crowds much of the motion of

the crowd involves agents moving away from the goal as they backtrack from points

of congestion. Additionally there is a much greater variation in the control provided

by Continuum crowds, particularly towards the beginning of the run and around the

300 to 350 iterations mark. The reason for this latter increase is due to the bottleneck

problem discussed previously and it can be seen in much more detail in Figure 6.12.

Here we provide the results for only the bottleneck cases. It can be seen that Continuum
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Figure 6.11: Shows the x component of the velocity averaged across every agent in ev-

ery scene shown in Figure 6.8 at each iteration. In this case agents moving backwards

will have a negative value, lowering the average. The standard deviation is plotted in

the paler lines for each iteration.

crowds performs much better initially, even outperforming our method for the first 100

iterations. However, after this there is a significant drop off which continues below

an average x velocity of 1. This is defines the point at which the agents controlled by

Continuum Crowds all arrive at the bottleneck and are unable to proceed beyond. Note

that, even though these are only the bottleneck cases, there is still a large variation in

the motion produced by Continuum Crowds from 250 to 400 or so iterations, this is

because some of the bottlenecks are more difficult to navigate around once encountered

(case 7 in Figure 6.8 as compared to case 8 for example).

6.4 Cooperation and Congestion

In this section we will demonstrate the effects of the Cooperation and Congestion

values on our system. The precise details of the operation and application of these

values were described in Section 5.5.

The Cooperation value, Coop, describes how much the agents cooperate globally

in their progress to the goal. The value ranges from 0, where there is no cooperation,

to 1, where they are fully cooperating and taking advantage of every route to fill the

space to its full capacity. A range of values can be seen demonstrated on both the small
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Figure 6.12: Shows the x component of the velocity averaged across every agent in

the scenes with bottlenecks shown in Figure 6.8 (scene numbers 7, 8, 9 and 10). As in

Figure 6.11 agents moving backwards will have a negative value, lowering the average.

The standard deviation is plotted in the paler lines for each iteration.

town scene in Figure 6.13 and on the large town scene in Figure 6.14. Here it is clear

how reducing the value of Coop effects the degree to which the agents cooperate with

one another. It can be seen how lower values divert agents from the longer routes to

shorter ones, which are more immediately beneficial to them, and how this diversion is

detrimental to the crowd as a whole, with very large gridlock appearing in the shortest

routes.

The Congestion value, Cong, describes the amount of congestion in the scene. In

this case it is not an effect on the type of behaviour between the agents but rather

on the type of crowd produced. Setting the value of Cong to 1 fills the scene to its

capacity, values below 1 remove agents to produce a more sparse and less congested

scene, values above 1 fill the scene above capacity such that it becomes congested

and gridlock occurs around the bottlenecks or points of lowest capacity. Theoretically

there is no upper limit on the values which could be assigned to Cong, but in practice we

found that increasing it beyond 2 simply congested the scene well beyond the point of

any usefulness, so for this reason this was chosen as an upper limit. A range of values

of Cong can be seen demonstrated on both the small town scene in Figure 6.15 and the

large town scene in Figure 6.16. Here it can be clearly seen how lower values lead to

an emptier scene, while values above 1 lead to extreme crowding and even gridlock

in the more extreme cases. There are a few features worth mentioning, firstly values
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Figure 6.13: Example runs of our system on the small town example, with 6 different

values for the cooperation variable.

Figure 6.14: Example runs of our system on the large town example, with 6 different

values for the cooperation variable.
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Figure 6.15: Example runs of our system on the small town example, with 6 different

values for the congestion variable.

below 1 reduce the crowding by removing agents from the longer routes first, rather

than reducing the crowding across all routes at once. This approach was taken because

reducing across all the routes evenly quickly led to a very small number of agents

taking long routes around when there was space on shorter routes and this produced

and artificial seeming effect as shown in Figure 5.11. Equally it is worth noting that

even in the extremely congested cases the agents still make good progress through the

scene, this is because in such crowded cases the flocking method does not operate well

and sometimes allows agents to intersect. Even so the effects of producing a more

congested scene are still obvious in these examples.

6.5 Realism of the system

One of the primary concerns of any work in computer animation is that it needs to be

realistic. That is, it cannot look obviously wrong to an observer. The standard within

crowd animation systems is to demonstrate realism by providing evidence that certain

phenomena observed in actual crowds are also reproduced by the system. We will

look at the two most popular of these phenomena and explain why they are not valid

measures of the realism of our system.

The first real world phenomena is laning. That is, when two opposing groups

of agents intersect, as shown in Figure 6.17. In these cases the agents moving in

either direction form lanes, with the lanes allowing some continuation of the motion

and preservation of the initial group structure while still giving way for the opposing

group to also continue forward momentum. This is a very well known example and
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Figure 6.16: Example runs of our system on the large town example, with 6 different

values for the congestion variable.
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Figure 6.17: Three examples of laning formed in crowds. Image (a) is a real world exam-

ple, (b) is a diagram demonstrating how this occurs, these are both taken from Helbing

et al. (2003). Shown in (c) is a reproduction of laning by the Continuum crowds system,

taken from Treuille et al. (2006).

recreation of it is taken as a good indication of the realism of the model. Sadly it is a

localised phenomena, that is, its occurrence depends not on the agent’s global plan, but

on the local avoidance of other agents. It would be possible to produce situations like

Figure 6.17 (b) in our system, but where the flowlines being followed by the agents

intersect, the formation of lanes would be entirely dependent on the local planner.

Currently we use flocking, as described in Section 5.4. As a result of this locality,

attempting to create laning within our system would not evaluate the realism of our

model, but of whichever local planner it was used in conjunction with.

The second real world phenomena often used to demonstrate realism is vortices and

these do deal with a more global interaction. These occur when a number of groups

of agents greater than 2 (normally 4) intersect at once, with their paths all crossing

some central point. Here the popular understanding seems to be that a vortex should

form as all of the agents move past one another, giving the entire crowd a rotational

motion, as seen in Figure 6.18. However, it appears that this is not in fact a real world

phenomena, rendering its recreation far less meaningful. The most definite reference

we were able to find was in Treuille et al. (2006), where Helbing et al. (2003) is cited as

evidence that vortices are the realistic result of these kinds of multi-group intersection.

Looking at Helbing et al. (2003) it appears that this is a misunderstanding as they

specifically state that “no stable pattern exists when three or more pedestrian streams

intersect“. The misunderstanding is widespread and it is used to measure the validity

of the system by many papers, Treuille et al. (2006), Narain et al. (2009) and Guy et al.
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Figure 6.18: An image taken from Treuille et al. (2006) demonstrating their system

producing a vortex phenomena.

(2010) are just a selection of such papers. We believe the above quote makes it fairly

clear that this is not a common real world phenomena, and as such recreating it has

little significant meaning.

This explains why more attempts were not made to provide proof of the realism

of our method. Additionally, as previously stated, realism was of a lesser concern

in producing our model. Rather the aim was to provide a greater ease of control and

creation of scenes which could then be adapted and tweaked by the animator to produce

the effects they desire.

6.6 Comparing Reeb Graph to Medial Axis

In this section we will provide a comprehensive comparison of the Reeb graph to the

Medial Axis from the viewpoint of finding the topology of a scene for crowd simu-

lation. The Medial Axis is one of the more, if not the most, popular methodology

for this purpose. A few examples which use the Medial Axis for crowd simulation

are Karamouzas et al. (2009), Pettre et al. (2005) and van Toll et al. (2012b). It there-

fore makes sense to provide a comparison in order to better justify our decision to use

the Reeb Graph.
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Given a scene filled with obstacles, the Medial Axis is the set of all points which

have more than one closest point on the boundary of those obstacles. This means

that it is a graph which accurately describes the topology of the terrain and as such it

could potentially take this role in our system which is currently provided by the Reeb

Graph. Additionally the edges of the Medial Axis by definition describe the maximum

clearance path through any section of the scene. This means that by checking their

distance to the surrounding scene they also provide an alternative to the iso-flowlines

(as described in Section 4.1) for finding the capacity of each region. These two differ-

ences, finding the topology and finding the capacities, are two significant parts of our

approach which could be replaced by the Medial Axis. As a result these are the two

aspects on which we will focus our comparison.

In the rest of this section we will first compare the topology of the Reeb Graph to

that of the Medial Axis in Section 6.6.1, discussing the advantages and disadvantages

of each approach with some examples. Then, in Section 6.6.2, we will compare the

capacities found using the Medial Axis to those found by our system through the iso-

flowlines, this will be done both at the local level of individual capacities and at the

global level, examining the effect it has on the maximum flow calculation. Finally, in

Section 6.6.3, the conclusions of our comparison will be provided. Throughout the rest

of this section where the Medial axis is computed it is done using Fortune’s algorithm

(Fortune (1987)) with the obstacles treated as solid and the edge of the available area

taken as a further obstacle in the space.

6.6.1 Medial Axis Topology Comparison

In this section we will compare the topology of the Reeb Graph to that of the Medial

Axis, in the process discussing the strengths and weaknesses of each method. A simple

example of both used on a scene with 5 obstacles can be seen in Figure 6.19. For this

example a reeb resolution of R = 5 was used.

In Figure 6.19 the first thing to note is that both graphs are homeomorphic, that is

they register the presence of all of the obstacles as loops in the topology of the graph.

Although, as mentioned in Section 3.2.2, the parameters must be chosen for the Reeb

graph such that it captures the full topology of the scene, a factor which does not feature

in the medial axis. One effect of its generation is that the Reeb Graph is connected to

the provided start and end points. This means that for the purposes of path planning

the Reeb Graph is a specialised solution, which is more useful for the case where there
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Figure 6.19: The topology graph of a simple scene as found by the Reeb Graph above

and the Medial Axis below. The Reeb regions associated with each node in the Reeb

Graph are also shown coloured according to their value set.

are a specific set of known sources and sinks between which the crowd is moving. The

Medial Axis is a more general solution and it can be connected to given start and end

points, however doing so requires it to be further extended.

Though the two graphs are homeomorphic, the Medial Axis is also more complex

than the Reeb Graph (in Figure 6.19 the Reeb Graph has 128 edges whereas the Medial

Axis has 3551). This will slow down the maximum flow calculation, which is directly

bounded by the number of edges, but it is also part of a more complex problem. Within

the Medial Axis there are edges which take account of non-convex features of the

scene but which, generally, will not describe the navigable topology within it. This can

be seen somewhat in the corners of Figure 6.19, however clearer examples are given
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Figure 6.20: The topology graph of two scenes (left and right) given by the Reeb Graph,

top, and the Medial Axis, bottom. The left scene has a simple non-convex obstacle in

the centre, the right scene is a single obstacle with a bumpy edge. In both cases it can

be seen that the Reeb Graph returns the graph of the navigable topology (according to

the given start and end points), whereas the Medial Axis includes extra edges.

in Figure 6.20. In this Figure both scenes represent cases where the Reeb Graph is

considerably less complex than the graph provided by the Medial Axis. In left example

there is a non-convex obstacle in the centre of the scene, which generates extra edges

for the inside of the obstacle. In the right example there is merely a single obstacle with

a bumpy surface, but each bump on the surface of the obstacle generates at least one

extra edge (with a more detailed real life obstacle this problem could be significantly

exacerbated). In both cases there are many extra edges which are not required for the

problem represented here (moving from the start point on the left to the goal point on

the right). Simplifying the Medial Axis to produce only the navigable topology will

require extra steps which could result in information about the capacity of the scene

being lost. While this could be overcome, it nevertheless represents an extra level of

uncertainty to a problem to which the Reeb Graph already represents a good solution.
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6.6.2 Medial Axis Capacity Comparison

In this section we will compare the way our method computes the capacity of an open

space, as described in Section 4.1, to the same computations done using the Medial

Axis. This comparison is important as it represents the other (other than the topology)

aspect of our system which could be effectively replaced by the Medial Axis.

Figure 6.21: The top image shows Medial Axis along with the capacities found at var-

ious points by both my system (in black) and the Medial Axis (in red) on the example

from Figure 6.19. The bottom three images are close ups of particularly problematic

cases, specifically: (a) demonstrates issues with comparison near start or goal points,

(b) demonstrates problems with comparison in large open spaces and (c) shows a com-

parison of values found in a bottleneck of the scene.

A comparison of both methods can be seen in the top image of Figure 6.21. In this

figure the width in the scene for a given point x was found using our system by gener-

ating an iso-flowline starting from the polygon containing x for the average harmonic

field value of that polygon. These iso-flowlines and their lengths are shown in black.
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Using the Medial axis the width at x was found first by finding the closest point on

the Medial Axis to x, here called y. The closest points on the obstacles or edge of the

allowable area to y were then found, resulting in one or more radii defining a circle

around y. The width at x was then taken as the diameter of this circle (for illustration

purposes only the radii found and the value of the diameter are displayed, both in red).

The widths and their associated lines have been shown for a number of different values

of x throughout the scene.

In the bottom half of Figure 6.21 three close up examples have been given. The first

of these, image (a), demonstrates how the width given by the iso-flowline is different

to that provided by the Medial Axis near to the start or goal points. This is because

the Harmonic field limits are situated at these points, so naturally the gradient of the

field forms a peak or valley centred on them. For our purposes this is desirable, as we

consider these to be the areas where agents are emenating from or to and so we want

them to be able to arrive or leave from all directions.

The second example in the bottom of Figure 6.21, image (b), shows another place

where the results are very different with each method. Here the entirety of the iso-

flowline was not included, though it can be seen in the above image spanning the entire

width of the scene. The Medial Axis is giving the accurate local width at this point in

the scene, however there is an argument in favour of the value provided by the iso-

flowline here. Specifically it is that in this scene we know agents will be progressing

from the left to the right of the scene and it is providing the width relative to this

direction of travel.

The final example in Figure 6.21, image (c), shows the values found at a couple

of points at a corridor in the scene. Firstly at the opening of the corridor, on the

right, the length of the lines is close but there is some difference. It can be seen that

this difference is due to the curve in the iso-flowline at this point which means it is

travelling a greater distance and giving a somewhat inaccurate reading about the width

of the space here. This is because the harmonic field at this point spreads out as it

moves into the open space. Secondly, if we look at the lines deep within the corridor, on

the left, the values found for the width are identical. This is because in any bottleneck

within the scene the gradient of the harmonic field will be progressing directly parallel

to that bottleneck, giving iso-flowlines which provide the exact, or very close to exact,

width of that part of the scene (as can be seen in the other examples in bottlenecks in

Figure 6.21 above).

Maximum Flow As Figure 6.21 demonstrates the capacities found by both meth-
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ods can vary by quite some amount. However, the only reason why we obtain the

width of any point within the scene is to find capacities which can be used to compute

the maximum flow. For this reason it is important to also compare the maximum flow

calculated by using our system to that found using the Medial Axis and the results are

for the scene from Figure 6.21 are given below in Table 6.2.

Method used for widths Maximum Flow found.

Medial Axis 365

RG (R = 7) 365

RG (R = 6) 365

RG (R = 5) 365.099

RG (R = 4) 365.2613

Table 6.2: The Maximum flow found for the example in Figure 6.19 by using the Medial

axis and various resolutions of Reeb Graph.

For the results in Table 6.2 four different values for the Reeb resolution were used

along with the Medial Axis. The results show the validity of using the iso-flowlines to

compute the capacities. Although there are potential inaccuracies to the iso-flowline,

as shown in Figure 6.21 image (c), in bottlenecks within the scene the values found

are normally extremely close or identical to those given by the Medial Axis. For lower

Reeb resolutions there is some innaccuracy, however it is well within what we would

consider acceptable levels (for all of the examples in Section 6.1 the smallest radius

of an agent used is still greater than one, so none of these errors will create any extra

agents in the scene). All the same it is important to analyse where this inaccuracy

came from. In order to achieve this we performed this comparison for a large number

of cases and were able to create Figure 6.22 which represents a worst case for our

system.

In Figure 6.22 the Reeb Graph displayed has a resolution of 4 and the iso-flowlines

shown are the shortest found for each Reeb Edge (that is, they are the ones used to

determine the capacity). The issue here is that because the obstacles are so thin relative

to the direction of the gradient of the harmonic field the iso-flowlines drawn in the

bottleneck are more curved. As shown in Figure 6.21 image (c), near the edge of a

bottleneck the gradient becomes curved and less accurate and with a thinner obstacle

the majority of space in the bottleneck is near the edge.
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Figure 6.22: A simple example of the worst case for our system with the Reeb Graph

displayed, also shown is the shortest iso-flowline found for each edge. It can be seen

that for the gaps between some of these obstacles the iso-flowlines are curving (thus

will report slightly more than the actual width at this point).

The results for calculating the maximum flow on Figure 6.22 are shown in Ta-

ble 6.3. Here it can be seen that our system performs worse than in the previous

example due to the more difficult thinner obstacles. For the lower resolutions there is

an error of greater than 1 which is high, but still not particularly large given that this

is the worst case for our system. One of the reasons for this is that there will be more

edges in the Reeb graph at bottlenecks, as these are the points where the harmonic

field’s gradient is at its steepest (as can be seen in Figure 6.22 the reeb regions are a lot

thinner and closer together at the bottlenecks). In spite of this we do recommend that

users should be aware of the potential for the maximum flow to be too high in cases

where obstacles are very thin relative to the direction of flow of the harmonic field.

6.6.3 Medial Axis Comparison Conclusion

For the purposes required by our system the Reeb Graph and Medial Axis are, in the

main areas, interchangeable. This can be seen in the topology as we have demonstrated

that the Reeb Graph and Medial Axis are homeomorphic. We have also shown that

though there are inaccuracies at very low Reeb Graph resolutions, the iso-flowline

capacity calculations are equal to those performed using the width of the Medial Axis

for the specific purposes of computing the maximum flow.

In order to use the Medial Axis within our approach additional extension would
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Method used for widths Maximum Flow found.

Medial Axis 200

RG (R = 9) 200

RG (R = 8) 200.099

RG (R = 7) 200.1231

RG (R = 6) 200.6698

RG (R = 5) 201.7343

RG (R = 4) 202.5551

Table 6.3: The Maximum flow found for the example in Figure 6.22 by using the Medial

axis and various resolutions of Reeb Graph.

be required. This is true in terms of adapting the graph to the specific topology of a

start and end point. It is also true in terms of providing pathing information to the

agents. The pathfinding with our system is provided by the Harmonic field which is

computed as part of the Reeb Graph, in the form of flowlines. However, entire papers

have been dedicated to pathfinding with the Medial Axis, such as in Geraerts (2010),

and these do not do so in a manner which allows providing paths for groups of agents

while avoiding them obstructing one another at bottlenecks.

In conclusion our method is simply better tuned to this specific problem. There are

some small accuracy gains which could be had from using the Medial Axis, but they

are outweighed by the implementation problems and difficulties which would come

with using a more general methodology.



Chapter 7

Additional Applications

In addition to producing a controller for crowd scenes, we also applied the ideas be-

hind the system to two further problems. In this chapter we describe these experiments.

Firstly, we used the system to simulate evacuation routes as a tool for designing build-

ings, this is described in Section 7.1. Secondly, we created a controller for the motion

of teams of players in team sports by adapting the ideas behind the system, this is de-

scribed in Section 7.3. These experiments were intended primarily to show that there

was potential to develop the system in these areas and to demonstrate that the system

presented generalises to a broader class of multi-agent control problems.

7.1 Evacuation Design

In this section we explain how we applied our system to the problem of designing

buildings with evacuation in mind. Our system generates a series of agent paths, and

also estimates how many agents will move along each path (this is described in Sec-

tion 1.2.1, with equations (1.1) and (1.2) both repeated below for clarity).

Xpaths = f (scene,Yagents,starts,goals) (7.1)

Yagents = g(scene,goals) (7.2)

By combining the information which we have provided in the form of these Xpaths

and Yagents we already have useful information about how the layout of buildings will

shape the behaviour of pedestrians. By providing this information in a structured way

the system can be applied to both the design of new buildings and the adaptation of

existing buildings.

93
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There are two ways of using our system in this area. Firstly, the Xpaths can be

extracted to provide immediate visual feedback about the optimal evacuation paths

through a given structure. Additionally, further information can be gathered from the

Yagents numbers. This is useful for evaluation of the building and to suggest modifi-

cations, this process is described below in Section 7.2.1. Secondly, the shape of the

Xpaths can be analysed to provide information about where exit signs are most needed,

this process is explained in Section 7.2.2.

As previously explained in Section 6.1 our system is applied to evacuation situa-

tions by setting up each building as a series of sources, where people are originating,

and sinks, at the exits from the building. An example such system was given by Fig-

ure 6.3. Such a representation assumes that agents within the building arrive from

common points of origin rather than any haphazard location. This models staircases

arriving on the ground floor or central lecture rooms, and we believe that such evacua-

tion situations are ubiquitous enough (as in any multi-floor building) that this is not an

issue.

7.2 Related Work

In this section I will give a brief overview of the previous work done in evacuation

simulation with details about how it relates to this method. Often these are not research

but commercial applications, with the methods consisting of a large integrated set of

different systems, however, I will attempt to present the essential idea behind each

method.

The most common approach by far is agent based systems where each agent in the

crowd is modelled individually with their own attributes, decision making and knowl-

edge about the world. For instance in Lee et al. (2010) they use the BDI framework

(originally presented in Rao and Georgeff (1991)) which models agents as a set of be-

liefs, desires and intentions, with each contributing to the agent’s decisions. There are

also much more detailed systems such as the EXODUS model, Gwynne et al. (2005),

which model agent attributes such as age, breathing rate and running speed, as well as

adapting these in reaction to environmental aspects, such as toxic gases. The EXO-

DUS model bears many similarities to our own, as it uses an abstract network of nodes

and edges to represent the given building. However, as their system is agent based, the

agents move around this network of their own accord, progressing towards the exits

based on their individual attributes and reactions to the environment. Agent models
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are used primarily because they allow the modelling of different types of environmen-

tal factors in modelling situations such as evacuees with disabilities as in Christensen

and Sasaki (2008) and evacuating from a building through which fire is spreading as

in Shi et al. (2009). One big disadvantage of agent based approaches is that they are

very computationally expensive, which means it is difficult for them to provide a visual

representation of what is happening within a building. The main difference between

our method and these agent based approaches is their lack of global information. This

means that we are able to identify overall features in the scene such as the likely bot-

tlenecks, whereas they are better able to model aspects such as panic within crowds.

Another class of approach in evacuation modelling is cellular automata, where the

scene is abstracted away to a grid where each square is either occupied or not and

agents move based on some weighting into a neighbouring cell at each timestep. There

are a few examples of this type of model, SGEM (Lo et al. (2004)), PedGo (Klüpfel and

Meyer-König (2003)) and EGRESS (Ketchell et al. (1993)). They differ in complexity,

from simply providing a list of exit routes, to providing full simulation with simple

behavioural attributes for the agents, but they all work on some sort of field propogated

over the grid from the exits. The main advantage of these approaches is that they are

fast, because they abstract much of the detail of the system. This means that they can

even provide visual representations of the simulation as it is occuring. Their primary

drawback is that because they discretise the space a lot of information is lost and this

can lead to innaccuracies.

The most important comparison for our method is EVACNET+ (Kisko and Francis

(1985)). There are many similarities between this method and ours. They are also a

network based method, which again represents a building as a series of nodes (rooms)

and edges (corridors/doors), so they solve a similar flow based problem. The fea-

tures they offer are also very similar to our method, such as finding optimal evacuation

plans, identifying bottlenecks and giving floor clearing times. There are a few advan-

tages which our system has over theirs. Firstly, they require that a building be entered

manually as a series of nodes and edges, with the values given for each, while this is a

process which we wholly automate. Secondly, they provide no visual representation of

the evacuation in action, as they do not have agents, only a set of numbers to represent

the situation of the building. Finally, although they are able to offer information to

users, they are not able to do so interactively. With our system a user can change the

structure of a building and see within a few seconds how that alters bottlenecks within

it (as described in Section 7.2.3).
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Figure 7.1: The evacuation routes found by our system for two example exit configura-

tions, the sources are marked with the blue circles and the potential sinks with the red

circles. (b) is less desirable as the agents from the larger staircase have to split up to

fully utilise the exits, something which would be difficult to enforce in practice.

There is much we can learn from looking at other evacuation systems. For instance

for future development of our evacuation approach it would certainly be useful to al-

low the system to take CAD drawings of buildings as inputs (something many of the

above methods do). While our method is not as comprehensive as some of the large

commercial systems presented above, it contributes some useful new insights.

7.2.1 Pathing Analysis

In this section we demonstrate how our system provides immediate feedback to a de-

signer on the paths which agents will follow when leaving a building. This is impor-

tant as it provides information on where emergency exits should be placed expressly to

avoid certain undesirable situations, such as large groups of agents all heading towards

too small an exit. It is possible to see the paths of all agents based on a sample run of

our system, simply watching what paths they take from step to step, and to get a better

idea of the overall manner in which the agents are utilising the environment. This is

a useful approach, however it is time consuming and potentially difficult to visualise.

For the pathing analysis explained here it is much clearer to display the shortest path

provided to the agents along each route as shown in Figure 7.1.

In Figure 7.1 a very simple evacuation scene is shown for demonstration. Here

there are two sources, representing a large and a small staircase in the centre of the

building, there are also three sinks set up to represent the potential exits from the

building. The same number of agents can evacuate in both case (a) and (b), but in

case (b) there are two routes from the larger stairwell, one leading upwards and one to
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the rightmost entrance. This split happens because the agents from the larger staircase

cannot all leave via the top exit, as they must also accommodate agents from the smaller

staircase. This split is clearly undesirable, as it requires that the group of evacuees who

reach the bottom of the large stairwell must make a decision to split up and travel in two

different directions. In a real world scenario even assuming that some sort of barrier

is used to direct the crowd, such a perfect split would be difficult to attain. In case (a)

it can be seen that by switching the secondary exit from the right to the left hand side

of the building, this provides a route for the evacuees from the smaller staircase and

allows those from the larger staircase to all take the main exit at the top.

As well as providing feedback about the paths of individual agents, we also provide

further information at the request of the user based on analysis of these paths and the

Yagents numbers. Specifically, we can inform the user about the length of the shortest

path associated with each route out of the building, along with the average path. We

can furthermore state how many people evacuate the system in the maximum flow

case for each different configuration. Finally we can also indicate the Minimum cut

of the graph. The Minimum cut is the set of edges which can be cut to segment the

Reeb graph into two while cutting through the least amount of capacity (that amount

of capacity will be equal to the Maximum flow). It provides an immediate indication,

even in complex scenes, of where the bottlenecks are and thus where to expand the

scene to allow an increased flow.

This type of analysis of different building configurations can be performed in a

matter of seconds with our model, and provides useful feedback about the optimal

evacuation routes. It is a simple and effective extension of the pre-existing methods of

our system which could quickly and easily be used to make decisions about building

safety such as the placement of emergency exits.

7.2.2 Signage Analysis

In this section we explain how our system can be used to assist in placing emergency

exits in a building. This must be done to give residents proper information about which

exit they ought to be proceeding to in order to safely evacuate. In NFPA (2006), the

fire safety guidebook put together by the National Fire Protection Association of the

United States, they state:

7.10.2 Directional Signs. A sign complying with 7.10.3 with a di-
rectional indicator showing the direction of travel shall be placed in every
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location where the direction of travel to reach the nearest exit is not appar-
ent.

Often the required direction of travel will be simple to determine, e.g. a staircase

will terminate at an emergency exit. However, all too often with large empty lobbies or

long corridors with many turns it is non-trivial to determine not only which exits people

should be heading towards but also at what point in their path this will no longer be

apparent to them (and thus need signs directing them). Failure to properly direct people

in such situations may cause significant issues, such as too many evacuees heading to

one single exit, causing dangerous delays and congestion. In this section we explain

how, by analysing the curvature of the paths provided by our system, it is possible to

take some significant steps towards automating the placement of these signs.

We make the assumption that places where agents are making significant turns in

their paths out of a building will also be places where their next direction of travel may

not be apparent to them (and thus where signs are needed). Therefore in order to mark

the areas which require signage, each path out of the building is analysed in turn to

find the points where these paths have the highest curvature, that is, where the agents

will be altering their direction. For each route the shortest path is chosen. These paths

are made up of flowlines through the environment as described in Section 3.1.4 and

they consist of a list of points describing the path for the agents to follow. To find the

areas of highest curvature the list is stepped through starting from the ith point on the

list, where i is initialised to s and s is a value determining the size of the steps we are

taking through the list. The curvature value C for a given i is found using the equation:

Ci =
V−i ·V+i∥∥∥V−i

∥∥∥∥∥∥V+i

∥∥∥ , (7.3)

where V−i is the vector between the ith point on the path and the (i−s)th point and V+i

is the vector between the ith point and the (i+ s)th point. Here it can be seen that s is

the resolution at which curves are being examined, which allows the system to ignore

very small curves. The list is stepped through in this way in increments of s and at each

point i there is said to be a large enough curve if the following condition is satisfied:

Ci +Ci+s > T, (7.4)

where T is a threshold value set to ensure that the curvature of two adjacent sections

of the path Ci and Ci+s must both be high. Subsequent values for i which also have a

value greater than T are considered to be a part of the same curve and they are grouped
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Figure 7.2: Two example scenes with the primary path for each route displayed and the

points of high curvature, found by our system, highlighted along each of these by the

green boxes. In each scene the sources are marked by the blue circles and the sinks

(exits) by the red circles.

together. Once a group is complete a boundary is drawn around them representing the

area where agents are turning in their paths. These boundaries are recorded for every

path for easy display to the user.

An example of the output from this algorithm is shown in Figure 7.2, where image

(a) is a simulated environment and the scene in image (b) is based on the floor plan

of a real building. Here it can be seen that areas where agents are undergoing a large

change of direction are highlighted, indicating that they are prime candidates for sign

display. It is worth pointing out that turns which happen over a very large region may

go undetected, such as the bottom left of Figure 7.2 (a). This is dependent partially on

the value for the threshold T , but for large curves such as this it is more reliant upon the

step size s. Additionally, in both examples in Figure 7.2 there are a number of smaller

curves which can be seen near the start and end points which have not been marked by

our system. These are being intentionally ignored, as in complex scenes such as these

the curvature of the flowlines is nearly always extremely high near to the start and end

points. As a result marking these would cause a great number of false positives.

7.2.3 Evacuation System Experiments

We performed a number of experiments to demonstrate the effectiveness of these meth-

ods. Firstly, as discussed in Section 7.2.1 we performed some experiments providing

feedback on the Minimum cut and Maximum flow of a scene, these can be seen in
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Figure 7.3: Here both images show a scene with two entrances on the left and one

exit on the right, with the Reeb graph and maximum flow displayed. The scene is

complex and it is difficult to locate the bottlenecks. Image (a) shows the min-cut edges

highlighted in green. Image (b) shows the system after improvements are made to avoid

that bottleneck, with a new max-flow and min-cut.

Figure 7.3. Here both images show an evacuation scene with two sources and a single

sink separated by a complex corridor filled with obstacles. It is difficult to determine

where the Minimum cut is along this corridor. Our system is able to inform the user of

the Maximum flow through this scene and identify the Minimum cut in the scene, as

shown in image (a). Once the Minimum cut is highlighted it can be seen that shrinking

the obstacle marked ’1’ will increase the flow, as shown in (b). This demonstrates how

easily our system can be used to find and avoid bottlenecks even in complex scenes.

Secondly we further demonstrate the effectiveness of our signage analysis pre-

sented in Section 7.2.2. Figure 7.4 shows another large building evacuation scene, this

time with one lecture theatre also occupied implying an internal source. Here again it

can be seen that what we would expect to be the main decision points have been high-

lighted. To further verify the validity of this method we also compared the results of

our system from Figure 7.2 image (b) to the signs found in the building upon which it

was based and the result of this can be seen in Figure 7.5. This is a good match for our

system, with many of the actual exit signs placed near, or within line of sight of, our

indicated placements points. This indicates strongly that our method is a valid metric

for indicating the placement of signs throughout a building.

There are several signage points which can be seen through Figure 7.5 (a) to exist

in the real world, but which our system does not currently replicate. Firstly, along

corridors the actual building has signs placed wherever there is a door such that in any

section of the building the required exit is clearly indicated. By placing doors in our
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Figure 7.4: An additional example evacuation scene with two exits from the building and

5 sources within it, again taken from the floor plan of a real building. The points of high

curvature along the paths are marked with the green boxes, the sources are marked

with blue circles and the sinks are marked with the red.

system it would be possible to replicate this effect simply by looking for where any

route crossed a door. Secondly, in large open spaces the exit signs are placed by the

exit and are specifically designed to account for line of sight. This can be seen at the

two positions in the centre marked as ’1’ and ’2’ in Figure 7.5 (a), here ’1’ is on a wall

such that it can be seen by agents approaching from the right, and ’2’ is placed to be

seen from above. We believe it would be useful to incorporate some representation of

line of sight into our system to take account of large open spaces in such cases. In

this case simulating the line of sight is relatively simple, since the paths we have give

us a direction of travel from one node to the next we know which direction the agents

will be facing. Given a normal field of view (humans have a a large frontal field of

view) we can then trace this outwards from any decision point to nearby walls. Further

simulation could involve restricting this field of view to a certain distance, to simulate

the conditions in a smoky building.

Our system is best suited to problems such as these shown here, where there are a

specific set of sources where agents will enter the scene and another set of sinks where

they will leave, as in the ground floor of a high rise building. It is less well suited to

evacuation scenarios where the agents are pre-existing, already spread throughout the

scene, as in the stands of a football stadium. Here the same method could be applied

but it would require that the scene be abstracted somewhat, with each large group of

agents (each section of seats in the stands) combined and treated as a single source
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node in the graph. Simulation within one of these combined nodes could be done by a

separate method, with our approach dealing with the flow exiting from each such node.

7.2.4 Evacuation System Conclusion

In summary, we have provided extended our system to provide a surprising depth of

information about a building and its structure and it does so quickly and with no ad-

ditional input. We examine the optimal situation as found by our maximum flow cal-

culation and this means that we are simulating an ideal evacuation, clearly there are

useful insights to be found from studying such situations. In future we would like to

extend this work to provide further automation. Specifically, it should be possible to

give warnings automatically about undesirable situations, such as the agents splitting

up, as discussed in Figure 7.1. Also extending the agent controller to provide some

representation of panic could allow us to provide a greater depth of information.

7.3 Football Controller

Additionally, we explored how the concepts presented in this thesis could be adapted

and applied to the control of cooperating groups of agents in team sports. Specifically,

we wish to control the movements of a team of football agents in avoiding their attack-

ers and successfully manoeuvering the ball to the goal. Unlike the evacuation design

this is quite a different problem to our main system. Specifically, we are looking to

find the function h as defined:

Tt+1 = h(Tt ,Ot ,Bt), (7.5)

where Tt is the full set of positions of the team we are controlling at time t, Ot is the

positions of the opposition team at time t and Bt is the position of the ball or puck.

Here h should be structured to optimise the Tt+1 in order to most improve that team’s

chances of winning the game. The fundamental difference from our main system is that

in this scenario we only try to find the best next move for the agents on the controlled

team, rather than planning out the entire motion. This is because the future positions

of the opposition team are unknown and difficult to plan for without a full model of

their behaviour. Nevertheless many of the same principles from our main system still

apply. Specifically, we drew a graph which describes the current state and applied the

maximum flow calculation to this graph, in order to evaluate the current state. The h

function is then based upon this evaluation of the current state.
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Figure 7.5: Here (a) shows a building blueprint with exits marked in red, points of arrival

on the ground floor marked in blue and emergency exit signs marked in magenta. The

signage suggested by running our system on this building shape are shown in (b). The

suggested signage is overlaid on the blueprint in (c). It can be seen that in tight spaces

there is a close match between our suggested placement and the actual signs. In open

spaces the exit signs are instead placed within clear line of sight of the regions marked

by our system.
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This approach could be easily applied to a number of team games, in the work

here it was used to provide control for the attacking team, as T , in a game of football,

when they are in possession of the ball, with the opposing team O being the defenders.

Controlling the attacking team involves not just deciding where to move, but also when

to pass and shoot in order to get the ball into the goal. The solution could be just as

well applied to the problem of defending against such an attack, but for demonstration

purposes we wrote our own basic defender controller. The system operates primarily

by providing an evaluation of the current state of the game in any given situation and

this is described in Section 7.3.1. We then explain how this evaluation is used by

the system to provide control for the agents and what additional rules were used to

provide control for shooting and passing situations, this is in Section 7.3.2. Next in

Section 7.3.3 we explain the control which we produced for the defending players. In

Section 7.3.4 we present our experiments and evaluation of this system. Finally in

Section 7.3.5 we present our conclusions along with discussion current limitations and

how they will be overcome.

7.3.1 Evaluating the Game State

In this section we explain how the game state is evaluated. This is a three step process:

first a graph is built which represents the possibilities in the game, then the edges of

the graph are evaluated, then the graph as a whole is evaluated based on the values of

those edges. The intuition of this whole process is that team games can be modelled

as graphs, where each of the edges represents a potential pass or shot at goal, and the

value of the state is represented by the maximum flow from the player with the ball,

as a source, through passes and shots to the goal, as the sink. This gives an evaluation

of the game state which takes into account all current possible routes from the ball to

the goal. This provides an excellent metric for evaluating the entire game state at any

point in time which naturally returns that evaluation as an easily usable single number.

The first stage in performing this evaluation is to create the graph. This is done by

adding an edge between every pair of attacking players, and between every attacking

player and the centre of the goal. In total this means there will be n(n−1)
2 edges between

the n players, plus n edges to the goal. We found this size of graph to be easily dealt

with, especially as there is a maximum of 11 attackers. An example such graph can be

seen in Figure 7.6.

Once the edges are in place they are evaluated by considering the length of the edge
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Figure 7.6: An example graph of a football game produced by our system. Here the

attacking players are in red, the defending players are in blue, the goal is at the top and

the player at the bottom can be seen to be in possession of the ball. The edges are

coloured according to their value, with edges with a value greater than a threshold p

shown in black and those below p shown in grey (see Section 7.3.2 for an explanation

of p).

and the distance from the defenders to the edge. This is done using the equation below:

Ei =
η

li
(∏

d
Ddi)

κ, (7.6)

here the value of each edge is given by Ei, the length of those edges is given by li and

the interference value for each defender d on the edge i is given by Ddi. Additionally, η

and κ are values used to determine the relative importance of the length of passes and

the interference of defenders respectively, and the values chosen are explained below.

The interference value itself is found using the equation below:

Ddi =
1

1+ e
30−Xd j

10

, (7.7)

this models a Gaussian influence for each defender on every pass, with a much higher

influence at closer distances. Here Xd j is the distance of a given defender d j from the
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edge i. It also allows multiple defenders to contribute towards blocking the same pass.

The parameters in Equations (7.6) and (7.7) were chosen because they were found

experimentally to replicate desired effects from actual games. In our experiments we

chose η = 1000 and κ = 5. These values were chosen to give defenders close to a pass

a high influence over it, defenders far away very little influence and passes without

interference a large value unless they are very long.

Finally we extend these equations to include shots at goal. The value of an edge

between a player and the goal is computed as follows:

EShot
i = Ei cos(σ), (7.8)

with Ei evaluated as in Equation (7.6). Here σ is the angle between the shot and the

vertical, indicating the fact that shots from directly in front of the goal are quite easy,

but shots from oblique angles off to the side have a smaller target and are much more

difficult. Every edge in the graph is evaluated through these equations and examples

can be seen in Figure 7.6.

Having created the graph and evaluated each of the edges all that remains is to

compute a value for the current game state. As mentioned this is done by using the

maximum flow computed over the graph, with the player with the ball as the source

and the goal as the sink. This process takes into consideration all possible routes to the

goal simultaneously. The actual calculation of the maximum flow is done by the same

method from Boykov and Kolmogorov (2004) as described in Section 4.2.

7.3.2 Controlling the Attackers

In this section we explain how the value of the game state, described in Section 7.3.1,

is used to control the attacking agents. Initially this was done with the finite differ-

ences method, that is by varying the position of each agent and then re-applying the

evaluation of the game state to see how it was effected, as shown in Figure 7.7 (a).

This allowed us to construct a Jacobian describing the gradient for the current state

over which we could optimise, to find the best combination of movements for the set

of agents. Although this evaluation metric looks at the team position as a whole, agents

tended to move individually towards local minima of their own spaces, which is unde-

sirable in a team based game and precludes any motion which represents cooperation.

As a result we decided to abstract away the positions of all of the team by instead

looking at the formation of the attackers as a whole and varying the shape of this
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Figure 7.7: An example demonstrating the individual control system for the attackers

(a) and the formational control (b). In (b) the dashed arrows represent the 4 variants of

formational control used, specifically: moving the entire formation along the x and the y

axis, or expanding/shrinking the formation, also along the x and the y axis.

formation. This is an especially useful abstraction as most team sports use formations

as a means to control the positions of players on the field. Formations were shown

to have a significant effect on the outcome of passes within actual games by Bradley

et al. (2011) and they have also been used for evaluation of game state in Robocup

tournaments e.g. Almeida et al. (2009).

In order to control the team through the formation we first allow expansion or

shrinking of the formation in both the x and y direction by finding the average position

of the agents and then moving them all towards or away from that position. We also

allow translation of the entire formation, moving every agent in both the x and y direc-

tion without changing their position relative to one another. Both processes can be seen

in Figure 7.7. Taking such a representation locks down the attackers into their current

formation to some extent and this can cause issues in limiting formation changes, but

a considerable range of motion can be produced from just these two simple alterations

to the formation. By using the same representation it would also be possible to add a

much greater range of movement by including other formation based movements such

as rotating around a single point or skewing the formation around a single edge. Most

significantly, using formational control in conjunction with the maximum flow eval-

uation allows the players to make moves which are worse for them individually but

which improve the situation for the entire team.

The control of the attackers is then performed by finding the gradient caused by
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moving a small amount in the positive and negative x and y directions for both expan-

sion of the crowd and translation of the crowd. The next motion can then be found

by computing this gradient and moving in the optimal direction for both formational

movements. The pseudo-code for this method can be found below in Algorithm 3.

Data: CurrentAttackerPositions, FormationChanges

Result: An updated CurrentAttackerPositions

Movements = [-n, 0, n];

ChangesToMake = [];

foreach Change in FormationChanges do
Maximum = EvaluatePosition(CurrentAttackerPositions);

BestMove = Null;

foreach Move in Movements do
TempPosition = ChangeFormation(Change, Move,

CurrentAttackerPositions);

if EvaluatePosition(TempPosition) ≥ Maximum then
Maximum = EvaluatePosition(TempPosition);

BestMove = Move;

end

end
ChangesToMake← (Change, BestMove)

end
newPosition = CurrentAttackerPositions;

foreach (Change, Move) in ChangesToMake do
newPosition = ChangeFormation(Change, Move, newPosition);

end
CurrentAttackerPositions = newPosition;

Algorithm 3: The algorithm which updates the positions of the attackers.

In Algorithm 3 we show how all of the attacker positions are updated. The input to

the algorithm is the current attacker positions and the formation changes (those demon-

strated in image (b) of Figure 7.7, expanding, shrinking and moving in both the x and

y directions). The formation changes are applied in turn with the ChangeFormation

which takes as input a type of formational change, an amount to change by for that

change and a set of positions for the attackers. The amounts to change the formation

by are taken from Movements which consists of small changes of degree n (here n
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is set to 1/5 the width of a player). After applying each change it is evaluated using

EvaluatePosition which uses the maximum flow to evaluate the game state as de-

scribed in Section 7.3.1. The best move from Movements for each type of formation

change are recorded then these are all applied to produce a new position which is then

applied to the attackers.

This controls the movement of the attackers, but for a full game simulation passing

and shooting behaviour is also needed, we did this with a simple hierarchy of rules

which determine when passing or shooting should happen. Passes occur in two situa-

tions, firstly, the player with the ball looks at all available passes and considers those

which have a value greater than some threshold p as being valid. Each valid pass is

then evaluated by simulating switching control of the ball to the player at the other end

of that pass and re-evaluating the game state in that situation. If any of the valid passes

would result in an improvement of the game state then the one which will cause the

biggest improvement is chosen and taken. Secondly, if there are valid passes but none

which improve the game state are available then a clear path to goal is also looked for.

That is, a series of passes and shots, starting from the player with the ball and ending

at the goal, all of which are above the threshold p. The reason why these are needed is

that because the entire game state is being evaluated all at once, there are rare situations

where a pass may improve the ball’s chances of reaching the goal without raising the

value of the game. Passing along such clear path is a likely successful route to score a

goal and as a result when one is found then the first pass in that path is taken. Shots at

goal occur simply whenever they are available and above the threshold.

When a pass is occurring, in order to avoid agents changing direction and moving

out of the path of the ball being passed to them, the evaluation is put on hold and

instead the entire formation moves along the same gradient as it chose the last time an

evaluation occurred. This ensures that movements can be predicted for the purposes of

passing. This is not an issue as passes generally take less than 3 time steps as they are,

as might be expected, quite fast.

7.3.3 Controlling the Defenders

As previously mentioned football is a dynamic game so playing without defenders or

with static defenders provides no clear indication of the validity of the method. For this

reason we also had to produce controllers for the defence. It would be possible to use

the same evaluation metric to control the defenders, that is, control them to minimise
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the maximum flow from the ball to the goal, but we felt that a simpler controller would

be more suitable for a preliminary exploration of the method.

Figure 7.8: An example demonstrating the sight radius and rules which control the

defender’s behaviour. The three targets for the defenders are marked by the blue arrows

and are numbered in order of their priority.

The control of defenders is rule based and these rules are summarised in Figure 7.8.

Each defender has a sight radius s. The first priority is that if the ball is within s of the

defender then it will move towards it as seen in Figure 7.8 marked ’1’. If this is not

the case then it makes a list of all of the potential passes and shots within s, of these it

moves towards the shortest edge so long as that edge has a length of less than l as seen

in Figure 7.8 marked ’2’. If there are no edges within s with a length of less than l then

the defender will move towards the nearest edge as seen in Figure 7.8 marked ’3’. We

found these rules elicit a good chasing and shutting down of opportunities behaviour

by the defenders which keeps the game dynamic while still leaving the emphasis of

control of the motion on the attackers and our proposed controller.

7.3.4 Football System Experiments

To demonstrate the system in action we have provided some example runs of our sys-

tem in Figure 7.9, Figure 7.10 and Figure 7.11. In Figure 7.9 there are three attackers

against three defenders and we have included six steps from a complete game. Here it

can be seen that the ball is passed first to the leftmost attacker, then to the rightmost,

providing it with a clear path to the goal avoiding all defenders. It can also be seen that

over the course of the motion the formation is stretched along the y-axis and flattened
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Figure 7.9: An example football game played out using our football controller. The time

step numbers are given for each image and the movement of the players and ball in

each scene are shown with arrows. The passes can be seen happening in images (b)

and (d) and the final successful shot can be seen being initialised in image (f).
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Figure 7.10: An example football scene with the full 10 attackers against 11 defenders.

Image (a) shows the start state. Image (b) shows a play by play of the game, with the

passes marked out by green edges and the numbering indicating the order in which

players had possession of the ball after these passes (so the bottom centre player was

the 1st, 8th and 12th player to hold the ball). Image (c) shows the final state of the game

after 129 iterations.

Figure 7.11: An example football scene with the full 10 attackers against 11 defenders.

Image (a) shows the start state. Image (b) shows a play by play of the game, with the

passes marked out by green edges and the numbering indicating the order in which

players had possession of the ball after these passes. Image (c) shows the final state

of the game after 81 iterations.



7.3. Football Controller 113

on the x-axis in order to better facilitate this process at each stage. Figure 7.10 and

Figure 7.11 both show larger examples with a full compliment of attackers and de-

fenders. It is worth pointing out that in both of these scenes there is a defender in goal,

this player does not have an influence on the value of the shots which pass by it. This

is because otherwise it effects every pass in the game and has a disproportionate influ-

ence on the behaviour of the entire formation of players. We believe this is justified

as in football the focus is on setting up a shot on goal, with the position of the goalie

when that shot happens being a lesser concern than getting the ball past the defenders.

In Figure 7.10 it can be seen that the ball is passed up the less defended right side

and then manoeuvred past the two defenders near the goal, the final formation gives

an idea of how the players moved in order to bypass these defenders. In Figure 7.11

again a gap in the defence is exploited, but this time it is through the centre of the field.

We believe these scenes show not only the ability of our system to cope with the most

difficult problems which team games can offer, but also that they produce dynamic and

reactive motion while doing so.

The method is fast, with an average running time 1 per iteration of 27ms in the

larger examples (as shown in Figure 7.10 and Figure 7.11, both with 11 attackers).

However, there is significant variation to this value. This variation is caused by the

iterations where the ball is in motion the attackers all just follow the current gradient, as

these are almost instantaneous. The slowest iterations are those which use the attacker

control, as described in Section 7.3.2, to find the new formation. If the passing is

disabled then every iteration updates the attacker formation using the attacker control

and the average iteration time is 58ms, with a standard deviation of 7ms. As these

times are for the case containing 11 attackers (a full football team) they represent the

worst case for the system. With fewer attackers the system is much faster, for instance

in the example in Figure 7.9 each iteration takes only 8ms (with a standard deviation

of 2ms).

7.3.5 Football System Conclusion

Within the field of computer graphics sports are a rarely tackled problem. In Shum

et al. (2008) they give brief examples of how their multi-character control can ap-

ply to American football, but it is in terms of the interactions between pairs of play-

ers. Equally in Takahashi et al. (2009) they give some examples where they use their

1All experiments were run on one core of an Intel core Duo E8400 with 4GB of ram
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method to move characters into particular football formations, but these are keyframed

formations which are provided for the system. There are a number of games, such as

FIFA and Madden, which focus on sports. However, despite this and the large amount

of research published in producing AI for games it is rare that sporting games are

considered. As discussed in McGee and Abraham (2010), what approaches there are

normally use reinforcement learning. This can be to many different purposes for in-

stance in Mozgovoy and Umarov (2011) they focus on learning believable behaviour

for football games from data of real players playing (and so mimicking behaviours like

hesitance and uncertainty). In Laviers et al. (2009) and Laviers and Sukthankar (2011)

they focus on American football and learning opponent behaviours such that the best

and most appropriate team behaviour can be chosen. This case highlights one of the

interesting problems, that for reinforcement learning, particularly for teams, the state

evaluation needs some method of evaluating the reward. For American football this is

a simple matter, as the success or failure of a play can be measured in how many yards

were gained or lost. However, most sports are more continuous, so for regular football

the value of a series of passes is not so clearly defined unless it results in a goal. Our

method provides and immediate and simple way to provide such evaluations.

The main other area of comparison with our system is in robotics, specifically in

Robocup. Introduced in Kitano et al. (1997) this is a competition to provide control

for various classes of robots in an adapted form of football. Here much of the work is

done on sub-problems of the football control problem such as keepaway, where one set

of players try to keep possession of the ball against another set, as seen in Stone et al.

(2005) and Jung and Polani (2012), or on half field offence, where players attack over

half a football pitch, as in Kalyanakrishnan et al. (2006). There are two difficulties

involved with comparing our system to these approaches. The first is that they deal

with a different problem, the robotic nature of the Robocup competition means that

they must cope with sensor noise, incomplete information, noisy actions and limited

communications between agents. The second is that they are primarily hybrid methods

using a number of approaches and heuristics and little global control, this is due to the

high dimensionality of the problem and the high state space. However, here the reward

structure is equally a problem and ongoing area of research, as shown in Devlin et al.

(2011) and so again we believe that our graph based metric for evaluation could be of

some assistance in the training of agents. As a result our method is complimentary to

theirs and could act as an evaluation metric for global coordination, with the formation

which we provide being used as a guide within which each robot could perform its
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local control. For future work we would be interested in adapting our system for use

in reinforcement learning for both gaming and robocup.

Within this football domain there are occasional cases which cause problems for

our model. In particular if all of the defenders are off to one side of the attacking

formation, then the formation will move off in the other direction even to the point of

crowding up against the edge of the allowable space. This is obviously undesirable,

though not a serious problem as it is reasonable to expect the defenders to be dis-

tributed evenly throughout the attacking formation. We have shown the effectiveness

of our method on the particular football problem which we presented, clearly it also

generalises. In the first case it could be used in a similar type of controller to decide

the movement of a defending team. Also with very few changes it could also be used

to control a basketball or hockey team and in fact the graph representation applies to

any team game which involves the passing of some ball or puck.





Chapter 8

Conclusion

8.1 Contributions

We present a global controller which allows easy creation of crowd scenes where the

crowd movement is both dynamic across the entire course of the motion and where

the crowd is specifically tuned to fill the scene to its capacity. By filling the scene

up to, but not beyond, its capacity this also allows simple avoidance of congestion at

bottlenecks with no further effort on the part of the animator. Where by capacity we

mean the available capacity across the routes defined by the start and end points, that

is the maximal number of agents who can be sent through the scene without causing

congestion. We further adapted this method to provide intuitive control over the entire

crowd. Unlike most previous approaches, these controls can be seen to not just alter

the behaviour of individual agents, but rather that of the crowd as a whole. Finally,

we demonstrated the potential that this system has when adapted to other problems.

Firstly, to the design of buildings with evacuation in mind, a problem to which it is

already well tailored and could be applied towards with only a few small changes.

Secondly, to team sports, a wide ranging control problem, which we demonstrated that

the ideas behind this system could be adapted to handle with some modifications.

8.2 The Bigger Picture

At this point we felt it was important to give some sense of where our proposed system

fits in with the corpus of crowd simulation research. It does not in fact represent a

replacement for most current systems, rather it is a compliment. The paths provided

to agents by our system could be followed by the vast majority of local controllers.

117
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Rather it is a step towards providing coordinating control for a scene over its entire

duration particularly for cases where dynamic scenes are required. Through the global

variables computed it also provides globally based controls with which to alter the

crowd.

We believe that this represents a promising direction of new research for crowd

simulation. Local realism is a desirable property, but of far more use is allowing an-

imators to effectively create functional scenes which fit the specifications which they

have and localised control offers very little potential in this area. Tools such as those

provided here or those present in Patil et al. (2011) provide a much simpler route for

animators to produce a good initial scene, which they can then develop and tweak into

a final product. This does not mean that local controllers are not important, but rather

that higher level control which can compliment them is also needed and has thus far

been neglected.

8.3 Future Work

There are a number of potentially promising directions for future work. The first and

biggest of these is that we believe there is high potential for the use of our system in

games, particularly in real-time strategy games. This is the case because these involve

a problem which is almost identical to the one we are solving here, that is, moving

a group of agents from a current location or set of locations to a single target in the

most efficient way possible, while avoiding local obstacles. Comparison with modern

versions of such games demonstrates that our system solves these problems much more

efficiently than the current solutions. However, in order to apply our system properly

to such areas it would obviously need to be significantly faster as the demands of

such programs dictate that it should be not just real-time, but ideally much faster (to

allow for all the further calculations also happening in such games). We believe that

it is possible to achieve this performance through a number of adaptations. Firstly, by

treating the Reeb graph as a navigation mesh, with each region representing a section

of the mesh, and using this for navigation of the agents. Secondly, by performing

the computation at multiple levels, providing a very low level rough calculation to get

agents moving as quickly as possible, and refining this movement with a more high

level recalculation once it is available. Finally, simply by providing a more optimised

code which is more directed to this particular problem.

An additional advantage of adapting the system to work in real time is that there
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might be potential for it to adaptively react to obstacles as they are placed. It could also

allow other desirable features such as the use of non-homogeneous agents. Further

experimentation would be needed to fully explore the potential of such a system.

Finally as alluded to in Section 8.2, we believe there is great potential for big strides

to be made in global controllers for large crowds and associated tools. We propose that

looking for further descriptors of a similar nature to those presented in Section 5.5,

which allow for global manipulation of the entire crowd’s behaviour would be a fruitful

exploit.
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222:847–849.

Reynolds, C. W. (1987a). Flocks, herds and schools: A distributed behavioral model.

SIGGRAPH Comput. Graph., 21(4):25–34.

Reynolds, C. W. (1987b). Flocks, herds and schools: A distributed behavioral model.

SIGGRAPH Comput. Graph., 21(4):25–34.

Shao, W. and Terzopoulos, D. (2005). Autonomous pedestrians. In Proceedings of

the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA

’05, pages 19–28, New York, NY, USA. ACM.

Shao, W. and Terzopoulos, D. (2006). Populating reconstructed archaeological sites

with autonomous virtual humans. In Proceedings of the 6th international conference

on Intelligent Virtual Agents, IVA’06, pages 420–433, Berlin, Heidelberg. Springer-

Verlag.

Shi, J., Ren, A., and Chen, C. (2009). Agent-based evacuation model of large public

buildings under fire conditions. Automation in Construction, 18(3):338–347.

Shinagawa, Y., Kunii, T., and Kergosien, Y. (1991). Surface coding based on morse

theory. Computer Graphics and Applications, IEEE, 11(5):66 –78.



Bibliography 129

Shum, H. P. H., Komura, T., Shiraishi, M., and Yamazaki, S. (2008). Interaction

patches for multi-character animation. In ACM SIGGRAPH Asia 2008 papers, SIG-

GRAPH Asia ’08, pages 114:1–114:8, New York, NY, USA. ACM.

Silveira, R., Dapper, F., Prestes, E., and Nedel, L. (2010a). Natural steering behaviors

for virtual pedestrians. Vis. Comput., 26(9):1183–1199.

Silveira, R., Fischer, L., Ferreira, J. A. S., Prestes, E., and Nedel, L. (2010b). Path-

planning for rts games based on potential fields. In Proceedings of the Third interna-

tional conference on Motion in games, MIG’10, pages 410–421, Berlin, Heidelberg.

Springer-Verlag.

Singh, S., Kapadia, M., Hewlett, B., Reinman, G., and Faloutsos, P. (2011). A mod-

ular framework for adaptive agent-based steering. In Symposium on Interactive 3D

Graphics and Games, I3D ’11, pages 141–150 PAGE@9, New York, NY, USA.

ACM.

Snape, J., van den Berg, J., Guy, S., and Manocha, D. (2011). The hybrid reciprocal

velocity obstacle. Robotics, IEEE Transactions on, 27(4):696–706.

Snook, G. (2000). Simplified 3d movement and pathfinding using navigation meshes.

Game Programming Gems, 1:288–304.

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005). Reinforcement learning for robocup

soccer keepaway. Adaptive Behavior, 13(3):165–188.

Sung, M., Gleicher, M., and Chenney, S. (2004). Scalable behaviors for crowd simu-

lation. Computer Graphics Forum, 23(3):519–528.

Takahashi, S., Yoshida, K., Kwon, T., Lee, K. H., Lee, J., and Shin, S. Y. (2009).

Spectral-based group formation control. In Computer Graphics Forum, volume 28,

pages 639–648. Wiley Online Library.

Torchelsen, R. P., Scheidegger, L. F., Oliveira, G. N., Bastos, R., and Comba, J. a. L. D.

(2010). Real-time multi-agent path planning on arbitrary surfaces. In Proceedings

of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,

I3D ’10, pages 47–54, New York, NY, USA. ACM.

Treuille, A., Cooper, S., and Popovi, Z. (2006). Continuum crowds. ACM Trans.

Graph, 25:1160–1168.



130 Bibliography

Tu, X. and Terzopoulos, D. (1994). Artificial fishes: Physics, locomotion, perception,

behavior. In Proceedings of the 21st annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’94, pages 43–50.

van den Akker, M., Geraerts, R., Hoogeveen, H., and Prins, C. (2010). Path planning

for groups using column generation. In Proceedings of the Third international con-

ference on Motion in games, MIG’10, pages 94–105, Berlin, Heidelberg. Springer-

Verlag.

van den Berg, J., Lin, M. C., and Manocha, D. (2008a). Reciprocal velocity obstacles

for real-time multi-agent navigation. In IEEE INTERNATIONAL CONFERENCE

ON ROBOTICS AND AUTOMATION, pages 1928–1935. IEEE.

van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M. C. (2008b). Interac-

tive navigation of multiple agents in crowded environments. In SYMPOSIUM ON

INTERACTIVE 3D GRAPHICS AND GAMES, pages 139–147. ACM.

van den Berg, J., Patil, S., Sewall, J., Manocha, D., and Lin, M. C. (2008c). Interac-

tive navigation of multiple agents in crowded environments. In SYMPOSIUM ON

INTERACTIVE 3D GRAPHICS AND GAMES, pages 139–147. ACM.

van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., and Schikore, D. (1997).

Contour trees and small seed sets for isosurface traversal. In Proceedings of the

thirteenth annual symposium on Computational geometry, SCG ’97, pages 212–

220, New York, NY, USA. ACM.

van Toll, W. G., Cook, A. F., and Geraerts, R. (2012a). A navigation mesh for dynamic

environments. Comput. Animat. Virtual Worlds, 23(6):535–546.

van Toll, W. G., Cook, IV, A. F., and Geraerts, R. (2012b). Real-time density-based

crowd simulation. Comput. Animat. Virtual Worlds, 23(1):59–69.

Xiao, Y., Siebert, P., and Werghi, N. (2003). A discrete reeb graph approach for the

segmentation of human body scans. In 3-D Digital Imaging and Modeling, 2003.

3DIM 2003. Proceedings. Fourth International Conference on, pages 378 – 385.

Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., and Lin, M. (2008). Com-

posite agents. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, SCA ’08, pages 39–47, Aire-la-Ville, Switzerland,

Switzerland. Eurographics Association.



Bibliography 131
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