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PREFACE 

In this thesis we describe new results and directions in the theory 

of nonself-adjojnt operator algebras. The subject areas are detailed in 

the following list of contents and the first chapter presents a bird's eye 

view of the entire work. The mathematics is developed formally in the pub-

lished papers and manuscripts that are bound in this volume, together with 

additional original text. A detailed breakdown of this assemblage is 

given at the end of Chapter 1. 
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1t3,sT ?-A CT 

Bas'.ic, topics in the theory - of nest algebras arid nonseif-adjoint operator algebras are 
developed, with particular.rèfereflce to three' connected theories: (i) Distance formulae and 
best approximation; (ii) Factori-sation and decomposition -theory '; and (Iii) -Dilation theory. 
and tensor products. 	 . 

;We begin wi-th, two-approachès to' tlie'..distance: formula- fo'r'net algebras, together with 
applications' to Hankeloperators.,.-.to triangular- trace class operators, and to- quasitriangu- 
lár algëbas. A'quasit-r'i.ariul'ar aigebrais..shown to'-be a-subspace of best approximation, or 
prox'irfiinal subspace, and this serves as motivation for a general study of best approximation 
in a C*_algebra for. spaces of type S+I. Here' S -is a closed 'nonsel'f-adjoint subspace and I., 

.1is'a closed two-sided i.deãl. We obtain general Banach'spacegenera1-isations by using'the 
nethods of M-i deal s, and alternative constructive procedures in the C*_algebraic context 
-tisshdwn that-- many CSL algebras fai'T'.to be hyperrefTexive, that is,, they fail to possess 

• , distance formula -with constant, and, in particular, the -  infinite spatial tensor product 
2f nontrivial nest algebras. is not hyperreflexive. 	••. 	 .• 

--A unified accountisgiven for- -thefactorisation of positive operators relative to outer 
perato.rs in -a-nest'ai:gebra, and for the class.ical.oUter:factorisatiofl of positive matrix 
allied functions onthe unit;circle. The basic construction is - an operator theoretic version 
f the Cholesky algorithm -. .  Thi's..associates with a•positive operator-,.. C, and a projection 

• 

 iest E, a. positive operator-valued measure C(t) defined on the Borel a-algebra of E. Genera 
;.izations are obtained-of:Arveson's -inner-outer factorisation theory, and the Riesz-type 
áctorisation of trace class operators in a- nest, algebra, and these 'generalisations extend 
o the context of - II factors. The construction also. provides a new approach to the e.xtremal 
uter factorisation 'f = hh+g (h outer, g positive and.minimal) of-a positive operator 
alued function onthe'iinit circle, and gives new information on the relationship between 
and f and between the' prediction-error operator h(0)h(0)*  and f. 

• Sz-Nagy's-dilation theOrem, and the Sz-Nagy-Foias commutant lifting theorem are key 
tructure theorems for - contraction operators which bear on' model theory and the analysis 

• • f contractive 'representations of function algebras. • We .develop'an'analogous dilation 
heory for representations of  - finite dimensional nest algebras. The main dilation theorem. 
is then established for c ,-weakly contractive representations of. a general nest algebra, and 
his requires an understanding of the subtle nonself-adjoint semi discreteness structure of 

•e nest algebra. Lifting - theorems are obtained for commuting contractive representations, 
d for an operator in the commutant of a representation. . These results are .necessary for 

the analysis  of complete operator'cross norms on the algebraic tensor product of nonseif -

ad 	operator algebras. .Inparticular we identify the maximal and minimal complete 
O

~joint
erator cross norms  for  the algebras 1(n) 	P(ID), T(n) ® 1(m), and 1(n 1 ) ® T(n 2 ) 	T(n, 

 We also consider complementary topics, such as the infinite (minimal) tensor products 

(n 1 ) øT(n 2 )o ..., and the approximately ,  finite nest algebras limkT(mk). 



1.1 

CHAPTER 1 	 INTRODUCTION 

The study of nonself-adjojnt operator algebras is of Considerable con-

temporary interest. The many recent conference proceedings, monographs, 

and published papers confirm this and reveal a deepening involvement with 

nearby areas of analysis, such as. self-adjojnt operator algebras, single 

operator theory, complex function theory and harmonic analysis. 

Nest algebras were introduced by Ringrose in 1965 and have come to 

represent the most well understood class of weakly closed nonseif-adjoint 

operator algebras being i.n many respects the most natural infinite dimen-

sional analogues of the simplest noncoimlutative context,namejy the algebra 

1(n) of upper triangular n x n matrices. Also nest algebras provide 

important special cases i.n more general categories such as the commutative 

subspace lattice (CSL) algebras, subdiagonal algebras, and nonself-adjojnt 

crossed products. 

We shall present a systematic account of much of the structure theory 

of nest algebras and roughly speaking our topics fall into three broad 

themes: 

(1) Distance formulae and best approximation (Chapter 2); 

Factorisation and decomposition theory (Chapter 3); 

Dilation theory and tensor products (Chapters 4,5,6,8). 

In describing these areas below we confine our remarks to comments about 

the text and the topics theorein and make no detailed commehtaryon histori- 

cal development or on recent relevant literature; such accounts can be found 

within the text. 

1 
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Arveson's distance formula and its various proofs play an important 

part in the-general theory and in Chapter 2 we discuss two proofs and 

associated ideas relating to trace class operators and the predual of the 

quotient space L(H)IA when A is a nest algebra. As applications we 

obtain an analogue of Hardy's inequality for H t  functions in the context 

of trace class triangular integral operators, and a proof of Nehari's 

theorem on Hankel operators. In fact Nehari's theorem can be thought of 

as an invariant form of the distance formula for the nest algebra T(Z), 

and indeed there is a Continuing parallel between a nest alcjebra and the 

Banach algebra H 	
which becomes even more apparent within topics (ii) 

and (iii). Section (2.5) pursues the analogy between the quasitriangular 

algebra A + K 
and the space H + C and serves as an introduction to 

section (2.6) which contains the main body of material of Chapter 2. In 

this section quite general methods are developed in the context of nonseif-

adjoint subspaces of C*_algebras for the study of subspaces of best approxi-

mation (proximinal subspaces). However the main applications are in the 

context of nest algebras. In particular a formula is obtained for the 

distance dist(X, A+K) 
in terms of X and the underlying projection nest. 

We remark that two more new proofs of Arveson's distance formula are 

obtained later as corollaries of the lifting theorems of Chapter 5 (see 

section (5.4)), and of the matrix completion theory of Chapter 6 (see 

Remark 2.6). 

In the final section (2.7) it is shown how even in the context of a 

commutative subspace lattices L the operator 'norm distance dist(X, Alq L) 
need not be comparable to the quantity 	(X) = sup{IlLXLJJ: I E L}. This 
settles a problem that had been open for some time and - shows that CSL 
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algebras need not be hyperreflexive. Also it is shown that an infinite tensor 

product of (nontrivial) nest algebras fails to be hyperreflexive. 

In Chapter 3 we give a unified account of aspects of factorisation 

theory in the context of nest algebras. The fundamental construction here 

is an operator theoretic version of the Cholesky algorithm which associates 

a certain positive operator valued measure C.() to a positive operator C 

and a projection nest E. For trace class operators this leads to certain 

new integral representations and decompositions. As an - easy application 

we obtain Lidskii's theorem on the equality of trace and spectral trace. 

We give a new approach and generalisation of Arveson's inner-outer factori-

sation theory, based on the derivation of the Cholesky factorisation C = A*A, 

of a positive operator C, with A an outer operator in a nest algebra, 

through the analysis of C(s). We are also able to answer some questions 

of Shields and to generalise his Riesz factorisation theorem for trace 

class operators in T(Z) to the case of a general well ordered nest algebra. 

Only a certain weak factorisation is available for trace class operators 

in a general nest algebra A, but this still leads toa Nehari-type theorem 

for bounded Hankel forms on the Hilbert space An C2 . In fact this result 

extends to the context of nest subalgebras of II factors. An alternative 

analysis of these ideas is also available by means of the lifting theorems 

of Chapter 5 (section 5.4). 

In the rest of the chapter we turn to the analysis of the extremal 

outer decomposition f= hh*+g of a positive operator valued function f 

on the unit circle, which arises through the analysis of C(s) in the 

context of a nest of uniform multiplicity and order type L The explicit 

nature of the construction of C(s) leads to new information, and in 
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particular to the solution of an old problem of Wiener on Masani on 

whether an explicit expression for the prediction-error operator 

(h(0)h(o)*) can be found in terms of the spectral density. f. Even in  

the case where g = 0 and f admits the outer factorisation hh* we can 

obtain new information on the relationship between h and f as well as 

new proofs of classical results. The approach here is based in part on 

the remarkable formula 

HHf  

Semidiscreteness and approximately finite structure are well under- 

stood concepts in the theory of C*_algebras and von Neumann algebras, with 

many ramifications 	
In Chapter 4 we begin the analysis of semidiscreteness 

and related approximation properties in the context of nest algebras and 

certain other reflexive operator algebras (usually considered, for con-

venience only, on separable Hubert spaces). In particular, by carefully 

examining the spectral type of a general projection nest E we can con-

struct subalgebras of the nest algebra Aig E which are completely is-

metric copies of finite dimensional nest algebras A 1 ,A2 ,..., with good 

approximation properties. More precisely we obtain the approximately 

commuting diagrams 

A 	id 	•> A 

'P  \n A /4n 

which is to say that !O(P 	
converges pointwise to the identity map in the 

weak operator topology, with each q 	cr-weakly continuous and completely 
contractive, and 	a completely isometric embedding. 
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We do not know which CSL algebras are semidiscrete in the above sense, 

relative to finite dimensional CSL algebras. Nevertheless for the com-

pletely distributive CSL algebras we can obtain a good substitute property, 

which we call the complete CSL subalgebra approximation property, abbrevi- 

ated CCAP (see section (4.3)). 

The significance of the semi discreteness of nest algebras arises partly 

from the fact that contractive representations of a finite dimensional nest 

algebra are completely contractive. We give a new simple direct proof of 
if 

this fact in Chapter fl' by explicitly constructing *-dilations. From semi- 

discreteness it follows that a contractive cr-weakly continuous representa-

tions of a nest algebra is completely contractive. With the help of 

Arveson's dilation theory for completely contractive maps this leads to a 

general dilation theory for nest algebras. We remark that it seems to be 

an open problem whether every contractive representation of a nest algebra 

is completely contractive. 

The Sz-Nagy Foias commutant lifting theorem and the closely related 

theorem of Ando on the existence of a commuting unitary dilation for a pair 

of commuting contractions, have played a prominent role in the dilation 

theory for contractions and in related areas of operator theory, such as 

interpolation problems. In Chapter 5 we develop analogous lifting theorems 

for contractive representations of a nest algebra. For example it is shown 

that if ,%l:  T(n) 	L(H) and 12: 1(m) - L(H) are commuting contractive 

unital representations then there exists a Hilbert space K D 11 and com-

muting unital *-representations 11: M - L(K), IT2: Mm -+ L(H) such that 

p1(A1)p2(A2) = PHIT1(Al )rr 2 (A2 ) 

9 
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for all A1  in 1(n) and A2  in T(m). The principal tool (Theorem 1.1 

in Chapter 5) is essentially a structured form of the commutant lifting 

theorem for operators lying in certain spectral subspaces of a nilpotent 

automorphism. We also obtain a new proof of a lifting theorem of Ball and 

Gohberg for a contraction commuting with a contractive representation of a 

finite dimensional nest algebra, and this is also generalised to the con-

text of general nest algebras. As an application we obtain a Proof of the 

Nehari-type theorem for abstract Hankel operators. 

In Chapter 6 we begin a study of dilation theory for contractive maps 

on certain subspaces of matrices defined by a sparcity pattern, and this 

includes the case of finite dimensional CSL algebras. The analysis here 

has considerable independant interest and is closely tied to completion 

problems for partially defined matrices. We obtain new proofs and generali-

sations of results of Dym-Gohberg, of Grone-Johnson-.Sa-Wolkowicz, and a 

result of Haagerup on the completely bounded norm of a Schur product map 

on M. 

Up to now our comments have been directed at either finite dimensional 

operator algebras, or at weakly closed operator algebras. Eventually there 

must be a closer harmony between the norm-closed and weakly closed contexts, 

as there is between C*_algebras and von Neumann algebras, but the study of 

norm closed nonself-adjoint operator algebras is, at the present time, 

fragmented. In Chapter 7 and in section (8.4) we discuss nest subalqebras 

of C*_algebras and infinite tensor products of upper triangular matrix 

algebras, namely, T(n 1 ) ® 1(n2 )
10 ... . We consider general structure 

and isomorphism theorems and pay particular attention to the analysis of 

all closed two-sided ideals. The reader can find further introductory 

remarks in the individual sections. 

M. 
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The theory of operator norms for the tensor product of nonse1f-.adjoin 

operator algebras is complicated by the fact that even for very simple 

unital finite dimensional operator algebras, A1  and A2  say, the norm 
induced by a faithful representation p: A1 0 A2 - L(K), of the algebraic 

tensor product, with the property that the restrictions PlA
,  i = 1,2 are 

completely isometric isomorphisms, need not be uniquely determined. The 

supremum of all such norms in fact gives what we call the maximal complete 

operator cross norm 	max Also it can be shown that each norm 	domi- 
nates 11 

"spat' where 11 
"spat is the norm induced by the natural repre- 

sentation coming from the Hubert space tensor product of the underlying 

spaces, and so we can identify 11 "spat as the minimal complete operator 
cross norm. 	In the first three sections of Chapter 8 we develop these 

ideas and show that nevertheless H 11 
min = H "max  for 1(n) o P() and 

for T(n) ® T(m). These results and certain generalisations depend on the 

lifting theorems of Chapter 5. It is an interesting point that an analysis 

of complete operator cross norms for nonself-adjojnt operator algebras can 

hardly begin without essential involvement of the rather deep commutant 

lifting theorem of Sz-Nagy and Foias. lhis connection of ideas will undoub-

tedlybe very significant in future studies for other CSL algebras and 

function algebras. 

-1 



THE MANUSCRIPT 

We now explain how the entire text has been assembled from the 

following published papers and unpublished manuscripts together with 

original text. 

Analysis in nest algebras, Surveys of Recent Results in Operator Theory, 
Editor J. Conway, Pitman Research Notes in Mathematics, Longman, 1987 
to appear. 

(with K.R. Davidson) Best approximation in C*_algebras, J. fur der 
Reine und Angew. Math. 368 (1986), 43-62. 

(with K.R. Davidson) Failure of the distance formula, Journal L.M.S. 
32 (1985), 157-165. 

Commutators with the triangular projection and Hankel forms on nest 
algebras, Journal L.M.S. 32 (1985), 272-282. 

Nuclear operators in nest algebras, J. Operator Theory 10 (1983), 
337-352. 

Another proof of Liskii's theorem on the trace, Bull. London Math. 
Soc.-15 (1983), 146-148. 

A Hardy-Littlewood-Fejer inequality for Volterra Integral operators, 
Indiana Univ. Math. J. 33 (1984), 667-671. 

Factorisation in Analytic Operator Algebras, J. Funct. Anal. 67 
(1986), 413-432. 

Spectral Characterisation of the Wold-Zasuhin decomposition and 
prediction-error operator, to appear in J. of Functional Analysis. 

(with C. Foias) Outer factorisation and Hankel operators, in 
preparation. 

(with J. Ward and V.I. Paulsen) Semi-discreteness and dilation theory 
for nest algebras, to appear in the J. of Functional Analysis. 

(with V.I. Paulsen) Lifting theorems for nest algebras, preprint, 1987. 

(with V.I. Paulsen) Schur products and matrix completions, in 
preparation. 

(with V.I. Paulsen) Tensor products and dilation theory for nonseif-
adjoint operator algebras, in -preparation. 
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Infinite tensor products of upper triangular matrix algebras, 
preprint, 1987. 

On ideals of nest subalgebras of C*_algebras, Proc. London Math. Soc. 
50 (1985), 314-332. 

Chapters 2 and 3 concern the material in the papers 1 to 10. The main 

results in Chapter 2 are the closing sections (2.6) and (2.7) which are the 

published papers 2, 3 (appendices 1 and 2). The sections (2.1) to (2.5) 

comprise original text which describes results in papers 1, 4, 7. Papers 

4 and 7 appear as appendices 3 and 6. We have not included the survey 

paper 1, which is not yet published, but this is compensated for by the 

original text in both Chapters 1 and 2, which we have introduced to make 

a coherent and readable manuscript. 	 - 

Chapter 3 describes results in the papers 5, 6, 8, 9 and 10. The 

published papers 5, 6, 8 are appendices 4, 5 and 7, and the unpublished 

papers 9 and 10 appear as. sections (3.4) and (3.5). 

In Chapter 4 section (4.1) is taken from paper 4, section (4.2) is 

paper 11, and section (4.3) is unpublished and forms part of the authors 

research with V.I. Paulsen on noncorr,nutative dilation theory. Chapter 5 

is paper 12. Chapter 6 is taken from a preliminary version of paper 13. 

Sections (8.1) to (8.3) of Chapter 8 is material that will appear in 14. 

Section (8.4) is the preprint 15. 

Finally, Chapter 7 is paper 1$, which appears as appendix 8, together 

with auxiliary text. 



CHAPTER 2 	 Distance formulae and 
	 2.1 

Best Approximation in C*_algebras 

We start by introducing the basic concepts and notation. Let H 

be a complex Hubert space. We refer to closed linear subspaces of H 

simply as subspaces. A subspace nest or nest in H is a family of 

subspaces which contains {O} and H and which is totally ordered by 

inclusion. A complete nest is a nest that is closed under the formation 

of closed unions and arbitrary intersections. To each nest there is a 

unique minimal complete nest containing it called the completion. The 

nest algebra associated with 'a nest is the algebra of all bounded 

operators that have each element of the nest invariant. 

Let c be a totally ordered set and suppose that H has an ortho-

normal basis indexed by c, namely {e: w € 01. Then the subspaces 

NW = closed span{ea:a < w) w € 

together with {O} and H form a nest. Let T(c2) denote the nest 

algebra associated with 0. If c has finite cardinality n, then 

T(c) is simply the algebra of upper triangular nxn matrices, which 

we write as T(n). Of particular interest are the algebras 1(11), T(2Z) 

and 1(W), for the natural numbers, integers, and rationals, respectively. 

We prefer to talk of projection nests rather than subspace nests. 

A complete projection nest E is a totally ordered family of self-ad- 

joint projections which contains 0 and I, and is closed in the strong 

operator topology. The nest algebra associated with E is denoted 

Aig E. Thus 

Aig E = { A: (I-E)AE = 0 for E € E} 

10 
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More generally we write Alg L for the operator algebra of operators 

which leave invariant each projection in L, where L is a family of 

self-adjoint projections. Taking the dual viewpoint, if A is an algebra 

of operators then we write Lat A for the set of invariant self-adjoint 

projections L. That is 

Lat A = {L: L 2  = L = L*, (I-L)AL = 0 for A € Al 

It is easily checked that Lat A is indeed a lattice relative to the 

usual ordering of self-adjoint projections. We say that A is a reflexive 

operator algebra if A=Alg Lat A, and that A = Alg L is a commutative 

subspace lattice, or CSL algebra,if L is family of commuting projections. 

The canonical continuous projection nests are those associated 

with L2{0,1] and with L2 (R). We say that the Volterra nest for 

L2 [0,1] is the nest E of projection associated with the subspaces 

12fo,t] c L2[O,l] for 0 < t < 1. The Volterra nest for L 2 (R) is 

defined similary in terms of the subspaces of functions supported on the 

intervals (_co,t). Abusing earlier notation write T([0,1]) and T(R) 

for the associated nest algebras. 

The algebras T(n), T(IN), T(),T() and T(R) have the property 

that A n A*  is a maximal abelian operator algebra. These algebras are 

multiplicity free nest algebras, in the sense that the operator algebra 

A n A*  is multiplicity free (or, equivalently, possess a cyclic vector). 

If E is a projection nest on a finite dimensional Hubert space 

then Alg E is called a finite dimensional nest algebra, and indeed 

every finite dimensional nest algebra is of this form, and is unitarily 

equivalent to an algebra of block upper triangular matrices. 
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Let L  be a strongly closed commutative lattice of projections. 

An interval of L is any non zero projection of the form F-E with 

E,F in L. An atom of L is a minimal interval. If E E L, E > 0, 

define E_ in L by 

E_ = up{F: F I E}. 

If L is a (complete) projection nest then every atom has the form 

Q = E - E_, and in this 'case E_ is called the immediate predecessor 

of E. A projection nest is purely atomic if it is generated by its 

atoms Q in the sense that E = 	Q where the sum is taken over atoms 
Q< E 

Q and converges in the strong operator topology. In particular the 

nest of T() is purely atomic. If the projection nest E possesses 

no atoms then it is said to be continuous. In Chapter 4 we derive the 

spectral representation theorem for projection nests acting on a 

separable Hilbert space. 

The rank one operators in a nest algebra Alg E form an important 

class. We write e ®f for the rank one operator R such that 

Rx = <x,f>e. It is easy to prove that .R c Alg E if and only if there 

is a projection E in E such that (I-Ejf = f and Ee = e. 

We write C(H)' for the von Neumann-Schatten classes of operators 

on the Hubert space H, 1 < p < 	and K(H) for the compact operators. 

(2.1) The AVVesondistance'formüla 

The following theorem of Arveson plays an important role in the 

general theory of nest algebras and quasitriangular algebras. We write 

dist(X,A) for the operator norm distance. 

vi. 
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(2.1.1) THEOREM. Let A be a nest algebra associated with the 

projection nest E. Then for each operator X 

dist(X,A) = supflj(I-E)xE: E € E} 

The original-proof made use of analysis of the invariant subspaces 

of the inflation algebra CI €A on £2(J1)  €11. We give two further 

proofs, each of which leads to further structure theory. 

The first proof is an induction argument, the induction step of 

which is facilitated with the following fundamental lemma. 

(2.1.2) LEMMA (Parrott). The minimum operator norm of the operator 

matrix [A B], for variable X, is attained by an operator of the 

form X1  = C 1 A*B1 . This minimum is equal to the maximum of the norm of 

the operators [J, [ g]. 
Proof. Without loss assume that the maximum norm of the last two operators 

is unity, so that AA* + BB* < Q and A*A + CC < P where P (resp. Q) 

is the orthogonal projection onto the first summand in the decomposition 

of domain (resp. range) implied by the operator matrix presentation. 

Since BB* < Q - 	and C*C < P - A*A, by a well known factorization 

lemma of Douglas there exists contractions B 1 , C 1  such that 

8* = B 1 (Q_M*) 	and C = C 1 (P_A*A). In particular let X 0  = _C1 A*B 1  

and we have 

ABi rQ 	oir A 	(Q_M* ) '/2rp 01 

Lc 
	

X 

0 

	c 1J [(P_A*A)' 2 	_A* [o 	B1j 
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The middle matrix is a unitary operator, since A(P_A*A)L"2 = (Q_AA*) /2A, 

and so the operator norm at X 0  is unity. The stated maximum is a lower 

bound, and so the proof is complete. 

(2.1.3) Remarks. The last lemma is closely related to a circle of 

important ideas related to the Sz-Nagy Foias comutant lifting theorem, 

(see Chapter 5) and embbdies the idea of "one step extenti.on". Here 

this is achieved by Douglas factorization and matrix construction. 

Similar Constructions are used in the proof of the Sz-Nagy Foias theorem 

(Sz-Nagy Foias E1). One corollary of such explicit constructions is that 

if the operator A is Lemma 2.1.2 lies in a particular ideal then the 

minimizing operator X 0  can be chosen from the same ideal. Parrott [to] 

showed in how the fundamental lemma leads to an immediate proof of the 

Nehari theorem for matricial Hankel operators. Prior proofs relied on the 

lifting theorem or on generalized Riesz factorization ideas that go back 

to Sarason's proof of an early version of the lifting theorem. In this 

version one step extension is achieved in a less explicit way by the Hahn 

Banach theorem. Parrott also showed how the fundamental lemma does indeed 

lead to a new proof of the lifting theorem. In Chapter 5 we return to 

these ideas. In fact we obtain yet another proof there of the Arveson 

distance formula as a corollary of a general lifting theorem for the 

comutant of a representation of a nest algebra. With the two proofs of 

this chapter, and with yet another proof in Chapter 6, based on Arveson's 

extension theorem for completely positive maps, we have, in fact, a total 

of 4 different proofs of the Arveson distance formula. 

(2.1.4) LEMMA. The minimum operator norm, a say, of the operator 

matrices 

14 
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rx1,1 	x1,2  . . 

	

2il 	
2,2 	•• 

S 	• 	• s 	. 
S. 	• 

j 
n2 •• Xn , nJ 

where the upper - triangular entries X 	are variable and the Yij  are 

fixed, is achieved and is equal to the maximum of the operator norms of 

the lower triangular block matrices. That is a = 8 where 8 is the 

maximum norm of the operator matrices 

• • 	'k,k-1 

Bk= 	1<k<n. 

	

Yn,l 	S  • 

Proof. Define the operators X 	 that lie in the first row and the 

last column to be the zero operator (on the appropriate summand space). 

Choose X2,2  using the last lemma, so that the operator norm of 

S.. 	X2,2  

S 	 • 

n,1 

is no greater than a . Now, using the lemma again, choose X 33  in a 

similar way for the submatrix 

Is 
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Y31 '32 	33 

V 41  V42 	V43  

nl 'n2 	
Y3 

In this way construct X 22 ,X33 ,...,X 11 . Similarly we can construct 

successive diagonals of X 	until all are defined and the resulting
ii  

operator has norm no greater than 	, and hence equal to, 8. 

Proof of Theorem 2.1.1. 

A Is the intersection of the nest algebras Aig F taken over all 

finite subsets F of E. Moreover dist(X,F) = supII(I -E)XEI(: E E F} 

by the last lemma. It suffices to show that 

dist(X,A) = sup[dist(X,Alg F): F c E, finite}. 

Let a denote this suprenum and let E < 0. Then the set 

CF = {A € Aig F: tJX-All  <a + 

is a nonempty set which is compact for the weak operator topology. The 

sets CF 	have the finite intersection property, and so there is an 

operator A in the intersection, and hence in A with JIX-AI < a + E. 

Hence dist(X,A) < a. The reverse inequality is clear and so the proof 

is complete. 

References. Arveson distance formula; Arveson [2.],  Lance [I)],  Power [i4], 

[3L ], [21], [26], Parrott [7.0], Davis Kahan and Wienberger [6],  Ball and 

Gohberg [14.]. 
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(2.2) Nehar1'sthecjremfor Hankel Operators 

Later we shall obtain some generalizations of the following theorem 

of Nehari on Hankel operators. We give a proof due to Parrott which in 

fact adapts easily to matricial Hankel operators. See also our remarks 

in 2.1.3. 

Let H c L, 1 < p < , be the Hardy spaces for the unit circle, 

with norms determined by normalized Lebesgue measure and let P: L2 - H 2  

be the Riesz projection. We write M 4)  for the multiplication operator 

on L 2  determined by 4)  in L, and we write H4) = (I-P)M 4) 1H 2  for 

the Hankel operator determined by 4), acting from H 2  to (H 2). Clearly 

H 	0 if 4) € H, and with respect to the orthonormal bases, 

{z'1 : n > 01, and 	'n > 01, for H 2  and (H2 ) 	respectively, the 
CO operator H 4)  has representing matrix (a+)0 where a = 4)(-l-n) 

for n = 0,1,..., and where cp(k) is the kth Fourier coefficient of 

4,, namely (k) = <,2k> So we see that H 4)  depends only on the 

negative Fourier coefficients of 4,. Moreover, H4) = H4)+h, for h in 

H, and so IIH,II < II4)+hJL 9  and hence IIH,II < dist(4,,H) where the 

distance is computed in I 

(2.2.1) THEOREM. For 4) in L, IIH,IJ = dist(4,H). 

Proof (Parrott). By Lemma 2.1.2 •there is a complex number a_ 1  such 

that the operator determined by the matrix 

a_ 1  a0  a 1  

a 0  a 1  

. I 

has norm equal to 	flAil 	where 	A 	is the given bounded 
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CO 

Hankel Operator 	(a+)0. 	Repeating this argument with 

A replaced by A_ 1  we obtain a 2  and the Hankel operator A_ 2 , and, 

continuing in this way A_ 3 ,A_ 49 ... . It follows that the matrix 

determines a bounded operator B in £2()  which we 

identify with L2 , canonically, so that PB H 2 = A. If F is the unitary 

operator on L 2  such that Fzn
= z 1 , for n = 0,1,2,... and F 2  = it 

then it can be verified that FB commutes with the bilateral shift M 2 , 

and so FB = M 	for some multiplication operator, with 	= JIBII = hAil. 

Moreover, 	(n) = a 	for 	n = 0,1,2,..; . . In 

particular if A is identified with H 	then H = H* , and so h = 	- ip 

belongs to H 	and 11H 11 = 110-hhi. In view of the remarks preceding the 

theorem, the proof is complete. 

(2.2.2) Remarks. In many ways Nehariss  theorem is the invariant form of 

the Arveson distance formula for T(). It is useful to bear in mind 

these function theoretical .connections since it may be that the analogous 

connections between distance problems for T() €T() and bidisc 

function theory may shed some light on such problems. See section 2.7 for 

a discusssion of distance formulae in more. general contexts. 

The usual proof of Nehari's theorem makes use of the Riesz factori-

zation of an H2  function f as a product f = f 1  f  2  with f1 ,f2  in H2  

and 11fJJ1 = 11f 1 11 2 11f2 11 2 . With this available the Hankel operator A can 

be used to define a bounded linear functional on H 1 . This is extended, 

by the Hahn Banach theorem to a functional on L', with the same norm, 

from which we obtain a symbol function ip for A (i.e. A = H) with 

IhPhi 	hAil.. 	Wesee in section.(.3.3) that there is an analogue 

19 
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of Riesz factorisation for trace class operators in certain nest algebras. 

References. Nehari [11], Page [ 1 8], Bonsalliand Power [5], Parrott [20], 

Power [afl, [is], [31]. 

(2.3) Dual Space Methods 

Recall that C1 (H), the space of trace class operators on the 

separable Hilbert space H, is identified with the Banach space dual of 

K(H) with the pairing <K,T> = trace(KT) for K in K(H) and T in 

C1 . The following Lemma of Lance [13] provides a different approach to 

the distance formula and leads to decomposition theorems for trace class 

operators in a nest algebra. The proof depends on a linear decomposition 

of a positive operator. We investigate such decompositions.in  the next 

chapter where they form the basis of much factorization theorem. 

(2.3.1) LEMMA. Let A be a trace-class operator and let E be an 

orthogonal projection such that (I-E)AE = 0. Then there exists a 

decomposition A = A1  + A2  such that 

(I-E)A1  = 0, A2E = 0 

1Ail 1  = hA1 bI 	+ hIA2il1 

PrOof. See Lance [13] or Power [2-6]. 

Let E be a complete nest of projections on H with nest algebra 

A. 	Let A1  = A n C 1 	and let 4 {A 	A1 : QAQ = 0 for all atoms Q of E}. 

(2.3.2) LEMMA. (i) The extreme points of the unit ball of A 1  (resp. 

II 
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4 ) are the rank one operators of unit norm in A 
l 
 (resp. 4). 

(ii) For E > 0 and an operator A in A1  (resp. 4) there 

exist rank one operators R 1 ,R2 ,... in A (resp. 4) such that 

A = R 1  + R2  + ... 	and 11R 1 111 + fR2 I 1  + •. < IAII. + 

Proof. Power [i.q]. 

In fact it follows easily from Lemma 2.3.1 that if A is an extreme 

point of the ball of A 1  then A = EA(I-E_) 	for some projection E in 

E. Now if .  A = ZAk is any rank one Schmidt decomposition of A we can 

deduce that Ak = EAk(I_E_) and hence Ak € A for all k, and hence 

since A is extreme, A = Ak for some k. The assertion for 4 is 

obtained similarly (with E_ above replaced by E). 

For the proof of (ii) in the case of A 1  we let S denote the 

closed linear span in the operator norm of the rank one operators R such 

that R = ER(I-E) for some projection £ in E. It follows that A 1  

is the annihilator of S, and hence that A
l  is the dual space of 

K(H)/S. In particular by the Krein Millman theorem the unit ball of 

A 1  is the closed convex hull of the extreme points, where the closure 

is taken in the weak star topology, which in this case corresponds to 

the weak operator topology. But if Tn  is a sequence of finite rank 

operators such that T  	I in the weak operator topology, and 

IITII 1  < 1, IITIi = 1, it follows that IlTn_TIIl - 0. The case of 4 
is proved similarly. 

Second proof of Arveson distance formula 

L(H)/A is the Banach space dual of the preannihilator A of 
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the nest algebra A, where A = {T E C1 : trace(TA) = 0 for all A in A). 

We claim that A coincides with {T € C1 : ETE = 0 for all E in El = 4. 
First note that EXE1  e A 	for all X € L(H), and so ETE_ = 0 

for all I in A , and so A c A. On the other hand Lemma 2.3.2 

(ii) shows that 4 is the closed span of rank one operators R such 

that ERE = R. Such R lie in A 	and so A = 4. Now we compute,. 

using Lemma 2.3.2 again, 

dist(X,A) = II[X]IL(H) IA 

= sup{Itrace(XT)I: 1 E 4, 11Th1 <. 11 

= sup{Itrace(XR)I: R = ERE', R rank one, 11R111 < 1, E € El 

= sup{ltrace(E'XEY)f.: V rank, IIYhJ1 < 1 9  E E El 

= sup{IIE'XEJJ: E € El. 

References: Lance [Is],  Power  [z], Power [3 ]. 

(2.4) A Hardy-Litt1ewood-Fejr inequality fortraceclass integral operators 

We now describe an application of the decomposition theory of the 

previous section to integral operators. 

Let .i denote a a-finite Borel measure on the real Lie R, and 

let h(x,y), k(x,y) denote measurable kernel functions which induce 

bounded integral operators mt h and mt k on L 2 (j) in the sense 

of Halmos and Sunder[%].Let dom k be the linear space of functions 

f(y) in L2 (p) such that k(xky)f(y) is integral for almost every x 

and the function (mt k)f(x) =Jk(xY)f(Y)dy belongs to L 2 (i). If 

21 



2.13 

dom k is dense and. It(Int  k)fJJ 2 <.cIffI2  for all f is dom k, and 

some constant c, independent of f, then we say that k induces a 

bounded operator, namely the continuous extension of (mt k)(dom k.) 

(2.4.1) THEOREM. If h(x,.y) = 0 for all x.> y, and if k(x,y) > 0 

for x < y then 

jjh(x.y)jk(x.y)dpdp < hInt khjhhInt h1J1 

(2.4.2) COROLLARY. (A.L. Shields). 

nest algebra T(IN). Then 

Itij i 

•ji 
 1+j-i .. 7rT 

Let T = (t) be an operator in the 

(2.4.3)COROLLARY. Let h(x,y) be a measurable kernel with respect to 

Lebesgue measure which induces a bounded integral operator mt h 

which-belongs to T(R). Then 

( jh(x,y)I 
) .1 	y-x 	dxdy < 7TIIInt h1I 1 . 

yix 

To obtain the first corollary let i be counting measure on 11 

and let k(i,j) = (1+j-i)for all i,j except the pairs i,i+l, 

for which k(i,i+l) = 0. This is essentially Hilberts second matrix 

which is known to have operator norm ir. Similarly, for the second 

corollary notice that the kernel k(x,y) = (y-x 	induces modulo 

a constant multiplier, the Hilbert transform on L2  (R), as a singular 

integral operator, with norm 71. Although mt k is not an integral 

operator in the sense above (since its domain is the zero function) the 

proof of the theorem is easily adapted. 

2.2 
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The first corollary was obtained by AL. Shields in an interesting 

paper emphasizing problems for upper triangular operators analogous to 

various problems in analytic function theory and harmonic analysis. His 

proof relied on a Riesz factorization theorem for upper triangular trace 

class operators (see Chapter 3). Both corollaries are analogue. of the 

co  inequality 	I Jui(n)J(n+1)< irIhIj l 	for the Fourier coefficients of a 
n=O 

function in the Hardy class H 1 . 

The proof of Theorem 2.4.2 in Power [3z.] is different and is more 

analogous to that used in the atomic and molecular theory of analytic 

functions, where boundedness with respect to a "one norm" is first easily 

checked for special molecule functions and then shown to hold true in 

general by involving a decomposition theorem which expresses each analytic 

function in the space as a sum of molecules. The decomposition of 

Lemma 2.3.2 (ii) plays this role here. We leave it to the reader to verify 

Theorem 2.4.1 in the special case when mt h has rank one. 

References: Shields [33], Power [32.1 

(2.5) AbstractHankel operators and quasitriangular algebras 

In this section we introduce some ideas encircling the quasitriangular 

algebra QT(E) = 1(E) + K associated with a projection nest E of order 

type 14, with finite dimensional atoms. We obtain a formula for 

dist(X,QT(E)) by elementary means and explain why this distance is always 

achieved. In the next section we develop more general theorems and 

methods. Our framework here involves abstract Hankel operators and 

further analogues of theorems for classical Hankel operators and function 



theory on the circle. 

Let E be a projection nest on the Hubert space H consisting of 

o and I and finite rank projections P 1 ,P2 ,... that increase to the 

identity. Regard C2 (H) as a Hilbert space with inner product 

2 	2= trace(BB 1 ). Let P be the projection of triangular truncation 

from C2  onto A2 , where A2  = T(E) ri C2 . For X € L(H) define the 

abstract Hankel operator H x by H = (I - P)LP where Lx  is the operator 

on C2  of left multiplication by X. Let Q denote the orthogonal 

projection of C2  onto the subspace C2(P n_Pn_0 n = 1,2,... 	Then a 

simple calculation shows that with respect to the decomposition 

C = 	eCQ wehave 
n  

00 

H= IC2Q 
n=l 	P XP 

Moreover IIH 	C2QII = !IPnn n 	
XP, 	and so, by Arveson's theorem (2.1.1) 

pxpn  

IIH;I = dist(X,T(E)), in direct analogy with Nehari's theorem (2.2.1). 

The first part of the next theorem is a direct analogue of Hartman's 

theorem for Hankel operators (t!HfJ = dist(4,H i-C)). The second part 

is analogous to the fact that the commutator MP-PM, associated with 

€ L 	and the Hardy space projection P, is a compact operator if 

and only if 4 e QC = (I-I°°i-C) n (H°°-'-C). 

(2.5.1) THEOREM. Let X be a bounded operator. Then 

(i) the Hankel operator H  	is a compact operator if and only if 

X belongs to the quasitriangular algebra QT(E). Moreover 

dist(Hx,K(C2)) = dist(X,QT(E)) ; 

14 
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(ii) the commutator LP - PL x determines a compact operator on 

C2  if and only if X belongs to the C*_aglebra 

QT(E) n QT(E)*. 

In the direct sum decomposition for H X given above the summands 

H 	IC2Q 
n 	

have finite rank and norm IIPXPtI. From part (i) above 
PXPn  

it follows that QT(E) = {X: PXP - 0 as n - }, and that 

dist(X,QT(E)) = urn 11P 1  XP 11. 
n- 

The proof of Theorem 2.5.1 (Power [t]) is an argument analogous 

to the proof of Hartman's theorem, the key idea being the distance formula 

expressed in the form 11H X 11 =  dist(X,T(E)). The Hankel operator methodology 

is useful here in that it suggests that like H + C, the quasitriangular 

algebra QT(E) is a space of best approximation, or proximinal space, in 

L(H). That is, the distance of any operator X to QT(E) is always 

attained. (The methods of the next section show the proximinality of 

QT(E) for' 	nest E.) We sketch a proof here that uses a theorem 

of Axier, Berg, Jewell and Shields. (This theorem is also obtained in 

the following section,) 

(2.5.2) THEOREM. Let E be a nest of finite rank projections. For 

each operator X there exists an operator Y such that 

11X-Y11 = dist(X,QT(E)). 

Proof. Let P 1 ,P2 ,... be the nontrivial projections of the nest, as 

before, and let X = PXP. Then11HX  11 . 11H  11 and the sequence 
n 

H 	consists of finite rank operators converging to Hx  in the strong 
n 

is 
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operator topology. It follows from the main result i.n Axier, Berg, Jewell, 

and Shields [ 3, that there is a compact Hankel operator H 	such that - 

11H 
X_  H

y ll = dist(H,K(C2 )), which, by Theorem 2.5.1, aggres with 

dist(X,QT(E)). Moreover V € QT(E). But 11H X_ Y 
11 = IIH x. y Jt = 

dist(X-Y, T(E)) = IIX-Y-AI!, for some operator A in T(E) (since 1(E) 

is a-weakly closed), and so dist(X,QT(E)) = IJX-(A+Y)fI with A+Y 

in QT(E), as desired. 

References. Hankel operators on the circle; Nehari [fl], Hartman [ii], 

Power [v], [ts], Leuking [t(]. Abstract Hankel operators; Power {i.J, 

Power [3o], Paulsen and Power [7] (see Chapter 7). Quasitriangular 

algebras; see references of section 2.6 below. 
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CHAPTER 3 DECOMPOSITION THEORY AND FACTORISATION THEORY 

In this chapter we consider an ordered decomposition associated 

with a positive operator C and a projection nest E. In the matrix 

case this is a finite sum decomposition C = C
l  + C2  +...+ C, associated 

with the Cholesky algorithm, but in general the decomposition is a positive 

operator valued measure C(), defined on the Borel subsets A of E, 

with the order topology, possessing certain minimality properties relative 

to the nest, with C(E) = C. We call C() theCholeskymeasure 

associated with C and E. It will become clear that this construction 

plays a fundamental role in many aspects of the structure theory of 

operators in a nest algebra.. In sections (3.1) and (3.2) we describe 

the Cholesky measure and its implications for the decomposition theory 

of trace class operators in a nest algebra. On the way we recover a 

classical theorem of Lidskii on the trace of a trace class operator. In 

section (3.3) we develop a new approach to and generalisations of the 

Arveson inner-outer factorisation theory for operators in a nest algebra. 

In particular we characterise nests such that every positive operator C 

admits an outer factorisation C = A*A, with A an outer operator of 

the nest algebra. In subsequent sections we study the constructive 

Cholesky method in the outer factorisation of positive matrix valued 

functions on the unit circle. This new approach provides unity with the 

Arveson theory, and, being constructive, leads to new information, such 

as the description of the prediction-error operator in spectral terms 

and certain continuity properties for the outer factors. 

21 
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(3.1) Construction:of:theCho1eskyfleasUre 

We now outline the construction of C() given in Power fL6J. 

As usual when we say an operator C is positive we mean more precisely 

that C is positive semidefinite. 

(3 1.1) ,  LEMMA. (E.C. Lance) Let C be a positive operator which has 

an operator matrix [* ] with respect to a given decomposition of H. 

Then D
l = urn B*(A+nI)B exists in the strong operator topology and 

the following hold. 

D 1  <D. 

The operator Cl =1 is positive. 
1. 	1J 

If U is an operator on H and UC has the form ro ], 
then UC 1  and U(C-C 1 ) have, respectively, the forms 

11*] and  

Let C2  = C - C 1  so that C = C 1  + C2 . This is the Cholesky 

decomposition of C relative to the trivial nest 	O,E,I} associated 

with the projection E onto the first summand space. Note.that from 

(i) and (ii) it follows that C 1  < X for any positive operator X 

with XE = CE. 

Let [E,F) denote the Borel set in E of projections E 1  in E 

with E < E 1  < F. Define C([O,E)) = C 1  as above, define 

C([E,F)) = C([O,F)) - C(to,E)), and in general define C() for any 

in the ring R(E) generated by the semi-open intervals EE,F). The 

minimality properties can be used to show that .C() is a well defined 

additive operator valued measure on R(E). Moreover it can be shown 

that on R(E), C() is countably additive 	(left continuous), and so 

NA 



by standard operator measure theory, C(L) extends to a positive operator 

measure on the Borel sets of E. That is C() countably addiive 

relative to the weak operator 'topology. 

In view of property (iii) it follows that if A € 1(E) has polar 

decomposition I = UC with U a partial isometry and C positive, 

then the operator T(fE,F)) = UC(tE,F)) has the following properties 

T(fE,F)) = FT(tE,F))E, 

(F-E)T(tE,F))(F-E) = (F-E)T(F-E). 

The first equality shows that the operator valued measure T() = UC() 

provides an upper tria,ngular decomposition for T. In the case of trace 

class operators we can do better. 

(3.2) 	 tri ahoUlar'ttace Class operators. 
Let C1  = C1 (H) denote the trace class. Recall that a C 1 -valued 

function f on a a-finite measure space (c2,E,p) is (weakly) measurable 

if w - <f(w)x,y> is measurable for all pairs of vectors x,y in K, 

and is integrable if in addition the function IIf(t)11 1  is integrable. 

(3.2.1)' 'THEOREM.' Let E be a complete nest on a separable Hubert 

space, and let I be a trace class operator in C 1 . Then there exists 

a finite positive Borel measure T on E, and an integrable C 1 -valued 

function E -' T  on E, such that 

T = JE T E  d (E) 

IITIIi 	
fE 

 IIT Ell  ldT 

T  = ET(I-E ) almost everywhere. 

7.9 
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Thee idea of the proof is to consider I = UC and C() as in 

the previous section, and to note that for the scalar measure 

T(L) = trace(C(t)), if, t() = 0 then C(L) = 0. Using the 

appropriate Radon Nikodyn theorem, (the trace class operators form a 

separable dual space),we can obtain an integral representation of C(A) 

and this leads to the desired integral representation. 

The theorem above is the continuous version of Lemma 2.3.2. It 

is natural to ask whether the € of that lemma can be removed, that is 

whether every trace class operator of .T(E) admits an exact sum decom-
N 

position I = . 	Rn  with R1 ,R2 ,... rank one operators of T(E) such 
n=1 

that. 1117111 
= n1 IIRII

1 . This is not true in general. . However the theorem 

and methods above can be used to obtain the following theorem. 

(3.2.2) THEOREM. (i) Let E be a countable nest. Then every trace 

class operator I in T(E) admits an exact rank one decomposition. 

(ii) Let E be a general nest. If I is a trace class operator 

with positive imaginary part, then T admits an exact rank one decom-

position. 

We finish this section by outlining how Theorem 3.2.1 leads to a 

proof of the following theorem of Lidskii. 

(3.2.3) THEOREM. (Lidskii). The trace of a trace class operator is 

the sum of its eigenvalues, counted with their algebraic multiplicities. 

By the invariant subspace theorem for compact operators, together 

with Zorn's lemma we can construct a maximal projection nest E for a 

given trace class operator T so that I € 1(E). By maximality the 

ME 



nonzero atoms E - E are one dimensional. By an elementary argument, 

we can reduce to the case where (E-E_)T(E-E_) = 0 for all E in E, 

so that I has no nonzero eigenvectors, and we are required to show 

that trace I = 0. In this case we have, in the integral decomposition 

of Theorem 3.2.1, (E_E_)TE(E_E) = 0 and hence trace(TE) = 0, for 

all E. It follows that 

trace(T) = JE trace(TE)dT(E) = 0 9  

as required. 

References. Power 	J,jL1J 	, Lance [is], Erdos [8], Lidskii [Is]. 

(3.3) The Arveson-Choleskyfactorisationand related topics 

We now give a new approach to Arveson's inner-outer factorisation 

theory for nest algebras, which leads to generalisations and further 

results. Let A = Aig E be a nest algebra. 

(3.3.1) DEFINITION. (Arveson) (i) An operator A in A is said to 

be outer if the range projection of A commutes with E and for every 

projection E in E 

(AEti) = (AH 	EH. 

(ii) An operator U in A is called inner if U is a partial 

isometry whose initial projection UU commutes with E. 

For certain projection nestS E of discrete type the inner and 

outer operators play the role of inner and outer functions in the 

algebra H 	of bounded analytic functions on the unit disc. 

31 
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We shall obtain analogues of the following factorisation results 

in function theory. 

1. 	The Szego or outer facthrisation of a positive function 	f: 

f = hR with h 	outer. 

2. The inner-outer factorisation of an H function g: 

g = uh with an inner and h outer. 

3. The Riesz factorisation of H 1  functions: 

h = h 1 h2  with 	11h11 1  = 11h 1 11 2 11h 2 11 2 . 

The operator variants of 2 and 3 are Theorems 3.3.6 and 3.3.7, and 

these follow quickly from the Szego-type theorem 3.3.5. Our approach 

is unifying in that it also leads to the outer function factorisation 

f = hh* of a positive matrix valued function on the unit circle, when 

this factorisation is known to exist. More generally we can obtain the 

extremal outer decomposition f = hh* + g of any positive operator 

valued function. (The usual approach to these matters is through the 

Bearhny-Lax-Halmos theorem for shift invariant subspaces, and is 

accordingly less constructive.) 

Note that if. A € A has the strict density property AEH = EH 

for E in E then A is outer. Also if A is invertible in L(H) 

then A is outer if and only if A is invertible in A. On the other 

hand every operator in the diagonal algebra A n A* is outer. The 

next lemma characterizes the outer operators relative to a trivial three 

element projection nest. The precise nature of outerness for a well 

ordered nest can be understood in the proof of Theorem 3.3.5(See 

Theorem'Li. in Power [3°]), 

T2 
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(3.3.2) DEFINITION. Let C be a positive operator and let E be a 

self-adjoint projection. Then C is said to be E-nilnirnal if 

ECE1  = s-urn E'C(tE+ECE)CE 
t.+o 

where the inverse indicated is computed in L(EI1). 

We have already observed the existence of the strong limit in the 

above definition, in Lemma 3.1.1. 

Let us write R  for the range projection of the operator X. 

The proof of the next lemma is closely related to the constructions 

needed for the proof of Lemma 3.1.1. 

(3.3.3) LEMMA. The following conditions are equivalent for an operator 

A with invariant self-adjoint projection E such that RAE = ERA. 

(1) (AEH) = (M) n EH. 

RAE 	REA(I_E). 

A*EA is E-minimal. 

Moreover a positive operator C is E-minimal if and only if 

C = .AA 1  where A1  = EA 1  and A1  satisfies condition (ii). 

Proof. Since (I-E)AE = 0 the equivalence of (i) and (ii) is elementary. 

Suppose now that (ii) holds and let 

a b 
EA= 	1 	1 

00 

so that R 	>R. Then a 1 — b1  

s-lim b1*a1(tE+a1*a1) -la  1*b1 
t-3-O 

= s-urn bl*(tE+a l air)a l a l *b i  
t-,o 

= b 
1 a1 
*R b1  = b1*b1 = EA*EAE ' . 

33 
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and so. (iii) holds. On the other hand, if (iii) holds then this 

computation shows that b 1 *b 1  = b1*R 
a1 b

1  and so (ii) holds. 

Now consider an E-minimal positive operator with operator matrix 

representation 

C - Lb* c 1  

Let et denote the spectral projection for the operator a 

corresponding to the interval (t,co). Then, for t > 0, 

IIb*a h'2 et II 2 = urn IIb* (sE+a) /'2 et (sE+a)_ 112b1 

urn flb*(sE+a)bIJ 
s-O 

.- liclil. 

It follows that the operator dt = b*a 1'2 et  converges strongly to an 

operator d as t 	0. Since C1 > b*a 1I'2 eta I'2b it follows that 

c1 > dd*. On the other hand 

ía b 1 = {a  h/ 2  0Jfi/2 d*T >0 

[*dd*J Ld 	dJLO 	oJ 

and so, by minimality, dd* > C 1 . It is clear from the definition of 

d that the range projection of a (namely e 0 ) dominates the range 

projection of d*. So C has the form required in the last part of 

the lemma. 0 

Using the notation of the proof above we observe that the positive 

operator 

ra b C 	i 
- Lb*cJ 

3L 
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factorises as C = A*A with 

A= [a
l /2  	d* 

 o 	(e-c 1  ) 112  

In view of the lemma A is an outer operator with respect to the nest 

{O,E,I}. 

A consequence of the computations made in the above proof is the 

following algebraic feature of the outer factor: 

X€LOf) xc=[] 	xA*=[j. 

This is also a consequence of the following more general lemma 

which echoes the essential property of an H function h: If 

€ L 	and 4h € H 	then 0 € H. 

(3.3.4) LEMMA (Arveson). Let A € A be an outer operator and let X 

be an operator such that XA € A and X = 0 on (AH). Then X belongs 

to A. 

The next theorem generalises a result of Arveson. 

(3.3.5) THEOREM. Let E be a well ordered nest of projections with 

nest algebra A and let C be a positive operator. Then there exists 

a factorisation C = A*A with A an outer operator in A. Moreover 

the outer factor belongs to the von Neumann algebra generated by C 

and the nest. 

Proof. See Power [30], [ii]. 

It is well known and easily proven that the outer factor is unique 

up to a unitary diagonal factor, and in particular is uniquely determined 

3S 
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if the diagonal part of A is a positive operator. 

For universal factorisation it is necessary that the nest be well-

ordered. 

(3.3.5)' THEOREM, Let E be a projection nest such that every positive 

operator C admits a factorisation C = A*A with A belonging to 

Alg E. Then E is well ordered. 

PrOof. Power [3o], [3 1]. 

It is curious that in the following generalisation of Arveson's 

inner-outer factorisation theorem we can drop the requirement that the 

projection 0 has a successor. 

(3.3.6) THEOREM. Let E be a complete projection nest such that 

E t E 	for all nonzero projections E, and let T E Aig E. Then 

T = UA where U E  Aig E is an inner operator and A c Aig E 

is an outer operator. 

If I =. UA = VB are two such factorisations then there is a 

partial isometry W in (Aig E) n (Aig E)* such that WW = R, 

W14*=R8 , B=WA and V=UW. 

If I = UA, as in (i), then U and A belong to the von 

Neumann algebra, generated by T and E. 

'Proof. Power [3o], [3t]. 

Let us introduce the following terminology to formulate the next 

theorem, which was obtained 'by Shields, by different methods, in the 

special case of the nest algebra T(J1). A projection lattice L is 

said to admit Riesz factorisation if for each T in (Aig L) n C l  

3' 
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there exists operators A1,A2  in (Aig L) n C2  such that 

T = A 1 A2  and 11111 1  = 11A 
1 222 

(3.3.7) 'THEOREM. Let E be a well ordered projection nest. Then E 

admits Riesz factorisation. 

'Proof. 'Power [oL [3%]. 

It is an open problem exactly which projection lattices or nests 

admit Riesz factorisation. For nest it can be shown that the following 

condition is necessary: For all 0 < E < I, E +  t E_. 

For the Hardy Space H 1  associated with the ball or sphere in 

several complex dimensions it is known that Riesz factorisation fails, 

but that a good substitute is available, namely weak factorisation: each 

H 1  function f admits a decomposition f =Zgk h 	 with 

Z]1902 11h  012 < cJjfff. for some universal constant weak factorisation for 

nest algebras. 

(3.3.8) THEOREM. Let A. be the trace class operators of a nest 

algebra A and let € > 0. Then for each operator I in A 1  there 

exist rank one operators R 1 ,R2 ,.., 	and S 1 ,S2 ,... in A such that 

T = k1 RkSk 

JJJRkII2IfSkIl2 1. (1+c)JIT11 1  

As in the function theory contexts, weak factorisation can be used 

to characterize the bounded Hankel forms on A 2  = A ri C2 . A Hankel 

form on A 	 is a complex bilinear form [ , ] such that 

31 
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[A 1 A2 ,A3 ] = [A1 ,A2A3 ] 

for all 3-tuples A11A2 ,A3  in A2 . The form is bounded if 	[A1 ,A2  

is bounded as 	A1 ,A2  range in the unit ball of A 
2•  We write lIE , 	311 

for the least such bound. 

(3.3.9) THEOREM. Let f , 3 be a bounded Hankel form on A 2' Then 

there is an operator X such that IIXII = lIE , .311 and 

[A 1 ,A2 3 = trace(A 2XA 1 ) for all A1  A2  in A. 

The proofs of (3.3.8) and (3.3.9) are given in Power E:2 i3, [3°] 

and, in [3o] more general theorems are obtained in the context of finite 

factors, and their associated noncommutative LP-spaces. Nevertheless 

the essential ideas already exist in the I 	context discussed here. 

However, not all the results of this section have immediate natural 

counterparts in the context of finite factors. For example the literal 

translation of Theorem 3.3.5 is not valid since the methods of this 

section can be used to show that for a nest E, in a Ill  factor M, 

with order type 2Z, 'every positive operator C in M admits a 

Cholesky factorisation relative to the nest subalgebra M n Aig E. A 

general outer factorisation theory for the II I  context, even in the 

hyperfinite case, is not yet well understood. However the Gohberg 

Krein factorisation theory, which mainly concerns the LDU factorisation 

of invertible operators, can be carried out in the II I  and II 	contexts. 

This has been done by-Pitts [34]. also, there are other approaches 

which we shall not go into here based on the boundedness of triangular 

truncation in the noncommutative L 2  space L2 (M,T) associated with a 

semifinite factor M, with faithful normal semifinite trace T. 

References. Arveson [2.] 	, Shields[], Power  

Pitts [.]. 
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(3,4) The outer 

Let f be an essentially bounded positive matrix valued function 

on the unit circle. If f(e18) > 61 almost everywhere for some 6 > 0, 

then it is well known that f admits a factorisation f = hh* where h 

is an analytic matrix valued function. The analysis of such factorisations 

formed the basis of Wiener and Masani's approach to the theoretical and 

computational aspects of the prediction theory of multi-variate stationary 

stochastic processes. The usual methods involve an analysis of the 

shift invariant subspaces of the multiple shift. 

In the following two papers we develop an alternative approach, based 

on the more explicit methods of the Cholesky decomposition. Consequently 

we can obtain.-much more information on the relationship between the 

outer factor - and the given function. 

14 



(3. 	'. 

SPECTRAL CHARACTERISATION OF THE WOLD-ZASUHIN 

DECOMPOSITION AND PREDICTION-ERROR OPERATOR 

S.C. Power, 
Department of Mathematics, 

University of Lancaster, 
England, LAI 4YL. 

1. Introduction 

Nearly thirty years ago Wiener and Masani pointed out in the 

introduction of their celebrated paper [31] that for a general multivariate 

stationary stochastic process no relation had been given for the predictjonerror 

matrix in terms of the spectrum of the process. In particular it was unknown 

how to characterise the rank of the process in spectral terms (cf.Masanj [12, p369 

Question 1]). Despite explicit progress in this Connection with certain regular 

processes , such as the series representations in [32],[1 l],[221,[19J , or the iterative 

approach of [28],[29] , and despite progress in the structure theory of degenerate 

processes ([ 10],[ 14J,[8],[26],[J5]) ,a general relation or series expression has remained 

elusive. 

In this paper we obtain spectral formulae ((2.2) and (2.5)) for the 

prediction-error matrix for a wide class of processes , namely those with 

essentially bounded spectral density. The characterisation is obtained in terms of 

Hubert space operators. A new Constructive approach is employed which is based 

on the linear decomposition of positive operators, rather than the traditional shift 

invariant subspace theory. We also obtain formulae for the Outer factor that 

ensure the inheritance of Smoothness and local properties in the case of a regular 

dcnsity,as well as a new characterisation of regularity (for essentially bounded 

Spectral densities). 

Let f(z) be an essentially bounded positive operator valued function on 

the unit circle, which is not identically zero, and consider the problem of 	40 
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obtaining a decomposition  

f(z) - h(z)h(z) + g(z) 

where g is also Positive operator valued and where h is analytic, Outer (in a 

Sense Specified below) and extremal in the Sense that the function g is minimised. 
 

For scalar functions the Szego alternative provides the following Solution. Subject 

to the normalisation h(0) ) 0 there exists a unique maximal outer function h 

and either h 0 or g 0. In the latter case we Say that f admits Outer 

factorisation, and a necessary and sufficient Condition for this is the integrability 

of logf. For matrix valued functions the work of Wiener and Masani [31], 

Wiener and Akutowjcz [30] and Helson and Lowdenslager [8] shows that the 

integrability of logdetf is a sufficient condition for Outer factorisation and this 

in turn was generalised to the setting of Operator valued functions by Devjnatz 
[3].See also [5]. 

If f(z) is the matricjal Spectral density of a multivariate 

stationary stochastic process then the process is purely non deterministic if and 

only if f admits outer factorisation However the only known necessary and 

Sufficient criterion for this event which is also valid for operator functions, 

seems to be that of Lowdenslager, namely 

(1 (zTl(q2 f) 010 	 (0). 

Here z denotes the shift on a vectorial Hilbert space L
21  with Hardy subspac H 21. 

Lowdenslager's Condition is intimately Connected with the usual approach 

to factorisation through the analysis of invariant subspaces and the 

theorem, as exemplified in the books of Hclson [7] and 

Sz-Nagy and Foias [27]. However, this approach does not reveal the dependence 

of the (essentially unique) Outer term h on the original function f . Indeed in 

Prediction theory there does not exist a spectral expression for the rank or the 
	14. 1 



prediction error matrix h(o)h(o) of a general stationary stochastic process. Also 

in the case of a regular (purely nondeterininistic) process it is not clear how the 

outer factor is structurally related to the spectral density. Despite this, and 

despite the absence of an integral representation analogous to that for scalar 

Outer functions, there are several such structure theorems in the literature ([22], 

[23] for example). We shall see how such results follow from a general 

inheritance principle based on the theory of Hankel operators and the remarkable 

formula 

Ih*Hh* HT 1 H 
(1.1) 

where Hf is a Hankel operator and Tf is a Toeplitz operator associated with the 

regular spectral density f . 	The formula arises naturally in our constructive 

approach to the extremal decomposition of f. 	The method is based on an 

operator theoretic generalisation of the Cholesky factorisation of Positive 

hermjtian matrices and originates in the author's analysis [21] of the inner-outer 

factoration theory of Arveson [1] for operators in a nest algebra. 

It would be desirable to write down a multiplicative integral formula 

for the prediction-error matrix or Outer factor in terms of the Spectral density(cf. 

[131). An indication of the difficulty of this goal is expressed in (1.1) ; Outer 

factorisation is closely tied to the inversion of matricial Toeplitz operators, On 

the other hand, perhaps the local inheritance properties for the outer factor 

(dISCUSSed in section 2) Provide some evidence for the existance of such a 

formula. 

The author is very grateful to G.Tunnjcliffe Wilson and P. Masanj for 

guidance in the literature of multivariate stochastic processes. 

2. The main results  

Our first purpose is to formulate the context, state the main results of 

the paper and to discuss some consequences, 
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Let K be a complex Hilbert space with Hubert space tensor products 

H 1 2 (Z) & K, H. I 2 (Z) @ K 

associated with 1 2 (Z) and 12 (Z+), the usual complex sequence Hubert spaces for 

the integers and the non-negative integers, respectively. Regard II as the 

naturally embedded subspace of H with orthogonal projection P . When K is 

separable there are familiar identifications of H and H+  with the functional 

Hubert spaces L 21  and H 2K respectively.  Our development is independent of 

these realisations but nevertheless we shall retain some functional notation, even 

though K may be non-separable. Thus we write z for the bilateral shift on H 

we let Lw denote the commutant of this shift, and we write f, g, h, etc. for the 

operators in L . 	We also let Hw  denote the subalgebra of C consisting of the 

operators that leave + invariant. 	An operator h in Hw is said to be outer if 

(hH) = (hH)H. 	When h is nonzero and dim K = I this notion coincides 

with the usual concept of an essentially bounded Outer function, whilst if h has 

dense range then h is outer in the sense of Sz-Nagy and Foias [27]. We let Q 

denote the orthogonal projection of H onto Ce 0  Q K where e0  is the central basis 

element of 1 2 (Z). Notice that an operator f in L* is uniquely determined by 

the operator Qf 

In the next Section we Construct an extrepial decomposition f - hh+g 

for each positive operator f in LCI. When K has finite dimension and f is 

interpreted as a function on the unit circle representing the matricial spectral 

density of a multivariate stationary stochastic process then g is the spectral 

density for the deterministic part and h is the Outer factor, or generating 

function, for the purely nondeterministic part. The extreinal decomposition 

thus represents the spectral density decomposition associated with the 

Wold-Zasuhin decomposition of the process, and the operator G(f) - (QhQ)(QhQ) 

is the prediction-error matrix. These constructs are identified in the next 

theorem where we retain the prediction theoretic terminology even though K may 



be a general complex Hubert space. 

We write 

Tf PfP, Tf Pf P1 . Hf = P 1 fP, 

for the Toeplitz operators and Hankel operator associated with f 	We say that 

an operator X on H is asymptotically vanishing if the limit of the sequence 

z-'Xzn  exists in the weak operator topology and is the zero operator. 

THEOREM Let f be a positive operator in L 	Then the limit 

* 	I 
urn Hf. OP + TfY'Hf 
t-'O+ 

(2.1) 

exists in the strong operator topology and determines a positive operator Cf. 

(i) 	The prediction-error operator 0(f) associated with the spectral 

density f is given by 

0(f) - QfQ - QCfQ. 	 (2.2) 

The Outer factor, or 	generating function, for the 	purely 

nondeterministic part of f is the Outer operator in H given by the identity 

Qh = G(f) TQ(Tf - Cf). 	 (2.3) 

A purely nondeterministic process is determined by the spectral 

density f if and only if the operator Cf is asymptotically vanishing, and in this 

event we have the following relationship for the outer factor h 

HheHhs - Cf. 	 (2.4) 

The, operator Cf is in fact determined as an increasing limit and it 

follows readily that under the normalisation Hf II 4 I the prediction-error operator 
4.4. 

can be expressed as the following infinite series, convergent in the strong 
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Operator topology for K 

- 1-f 

G(f) - Q - QQ - 
Q4,pi.4,Q  - Q p.L pi4Q 	Q4(pI,pi)TQ -...- . (2.5) 

Recall that the rank of the multivariate stationary stochastic process associated 

with a matricial spectral density f is defined to be the rank of G(f). Thus the 

formulae (2.2) and (2.5) provide a spectral determination of rank (cf [12]). 

A rational spectral density gives rise to a purely nondeterministic process 

and a classical result of Rosanov [22] asserts that the generating function is also 

rational. This can be seen immediately from the third part of the theorem in 

view of the correspondence between finite rank Hankel operators and rational 

symbol functions. Similarly, if there exists a scalar function 8 in H with fO 

in H then HfT8 = Hf 8 = 0, and so Hhse = 0 which means that h0 is also in 

H (cf [23, Theorem 3.1]). 

If f is an invertible operator in L then the operator Cf is 

asymptotically vanishing because the operator Tf is invertible and H gZ converges 

to zero in the strong operator topology for every symbol operator g. In this case 

formula (2.4), combined with the theory of Hankel and Toeplitz operators, leads 

to the very precise inheritance of structural properties. For example Hhs belongs 

to a given von Neumann-Schatten class C(II). or Schatten-Lorentz class, precisely 

when Hf does. 	In particular, by the results of Peller [17), h*  belongs to the 

vectorial Besov class B,/P(CM)  precisely when 1 does. 	Similarly there is 

inheritance for matricial function spaces that are defined in terms of the 

singular numbers of Hankel operators (or equivalently, in terms of rational 

approximation) such as the so called R-spaces ( [18, Chapter 3]). Also, if the 

invertible matricial density function f is given by a matrix of functions of 

vanishing mean oscillation, then the same holds true for h since 
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such functions correspond to compact vectorial Hankel operators ([16], [24]). We 

also observe from standard local techniques that if the matrix entries for f are 

of vanishing mean oscillation on a given open arc, then h will inherit this 

property. Of course finer localisation methods, such as that expressed in [6], 

lead to finer inheritance. 

In view of part (iii) of the theorem, a sufficient condition for regularity 

is that the operator C1 be compact,or lie in a given von Neumann-Schatten class 

If f is invertible then Cr-membership coincides with the notion of 

C2-regularity, characterised by Peller and Hruscev [18]. But in general the 

condition expresses a weaker concept, and it is not clear to the author how this 

type of regularity may be otherwise characterised. 

3. The proof of the theorem 

We start with some general constructions for positive operator matrices. 

The first lemma embodies an important idea of E.C. Lance [9] (see also [2], [25]) 

and is the foundation Stone of the approach. For the sake of completeness we 

give, full details of all proofs. 

LEMMA I Let H be a complex Hilbert space with orthogonal decomposition H 

H1  Q H and let C be a positive operator on It Then there exists a unique 

Positive operator C1 whose restriction operator C1 IHI agrees with CIH1 and is 

minimal with respect to this property in the sense that 

C2 ) 0, C2 I H, - Cl!!1 	C1 4  C2 

Furthermore if C is represented by the operator matrix 

a b 

c 

then C1 is represented by the operator matrix 
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a b 

b C1 

where c 1  is the strong operator topology limit of the increasing sequence 

Proof. 	First recall that if a is an invertible operator on H1  then the operator 

C = a b 
1b* c 

is positive if and only if c > b*a b. 	Indeed the operator 

I 	I 

a 	ab 
A= 

0 	1 2 

is invertible and 

V 	 C'=A 

 * [I 

	0 

V 	O • 	c -b'a'b 

From this principle it follows that the increasing sequence b(a+n'1 1 b is 

dominated by the decreasing sequence c + n 1 1 1  and so converges in the strong 

operator topology to an operator c1 ( c. Thus the operator C1 is positive and 

satisfies the required minimality condition. 

We call the operator C1 the H1-minimal part of C and if C 	C1 we 

say that C is H1 -minimal. Note that the operator c 1  can be expressed as dd 

I 

where d is the bounded operator aTb. Consequently 

I 	 I 

V ay 0 	ay 	d • 	• 	
• 	C= 	* 

d 	0 	0 	0 4-1 
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Here d is an operator satisfying d 	Ed where E is the range projection of a T
I 

 

In 	fact if a 	2x2 	operator 	matrix 	admits such a factorisation 	then it 	is 
RI -minimal. 

Now assume that the Hilbert space H has the finite orthogonal 

decomposition 

H=H1  QH2Q...QEI 

qn d recursively define the positive operators C1,...,C. 	Let C1 be the 

J71-minimal art of C. and, given C1,...,Ck, where lckcn, let C 1be the Mk-minimal 
part of C-(Cl+....+Ck), where Mk = H1  @ ... Q H. Also let C = C-
(C1+...+C_ 1 ) so that we arrive at the decomposition 

C C1 + C2 +...+ CD 

which we call the Cholesky decomposition of C with respect to the given 

decomposition of H The next lemma expresses the convenient fact that this 

decomposition may be obtained through any reasonable recursive procedure. 

LEMMA 2. For 1 k < n the operator C1+...+Ck isthe  Mk-minimal part of C. 

Proof. 	Suppose first that k-2 and D is the M2-minimal part of the positive 

Operator C. 	Let D 1  be the H1-minimal part of D and write D - D, + D2. 
Since C1 JH1 - D 1  JH1  it follows from Lemma 1 that C1 = D 1 . Also we have 
DM2  - (C1 + C2)1M2 and so, by minimality, D 1  + D2( C1 + C2 and hence 

D2 ( C2. But DIM2 (Cl + C2)IM2 and so by the minimality of C2 we have 

C2 	D2 and hence C2 = D2. The lemma is true for n=2 and the general case 

follows by induction with this special case. 
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LEMMA 3 Let H be a complex Hubert space with orthogonal decomposition 

Hi 

and let 

M= 0 
--<k (n 

If C is a positive operator on H then there exists a unique representation 

C=C+ Y Ck 
ID 

where C_, and Ck are  positive operators, such that the series converges in the 

stràng operator topology, and such that the operator 

C, + 	Ck 

is the Me-minimal part of C. 

In view of Lemma 2 there is no notational ambiguity in writing 

C c) + 	+ C 11 +...+c 1  + C + 
for the 

Cholesky decomposition of the positive operator C with respect to the 

orthogonal decomposition" 

II=M fl IOH@QHON 

Clearly the bounded Sequence R() converges to zero in the strong operator 

topology. 	
Also, by minimality, the sequence C') is decreasing and Converges in 

the strong operator topology to a Positive operator C,. 	The final assertions of 



the lemma follows from Lemma 2. 

More general decompositions than that of Lemma 3 have been obtained 

in [20]. The part of this decomposition represented by the series is, in a sense, 

the factorisable part of C. 	Indeed we have, in view of our earlier remarks, 

Ck 

where Ak has the form 

00 0 

Ak= 0 akT  dk 

00 0 

with respect to Afk., 0 Hk 0 Nk,  and so it follows that 

AkAk 

S f Ak}1 Ak} 

- AA 

where A is the weak operator topology sum of the series EAk and has upper 

triangular form with respect to the nest of subspaces Mk, k - 0, ± 1,... 

We now return to the Context and notation of the last section and apply 

this analysis to a positive operator C - f in L' 	This operator is represented 

by an infinite operator matrix with respect to the decomposition 	
50 



12 

H @K 

and possesses the Laurent form of constancy along diagonals. 	It follows that in 

the decomposition f - C.,, + AA obtained above that A and C_ also have 

representing matrices of this form and we therefore write h 	A*, g = C. 

Clearly h 	belongs to H 	and we obtain the 	important identities 

TT =Tf - Cf 	 (3.1) 
h h 

(QhQ)(QhQ) = QfQ - QC1Q . 	 (3.2) 

The connection between the outerness of an operator h 1  in H and 

minimality lies in the following assertion. The operator h 1  is Outer if and only 

if the operator h1(I-P)h 1  is 11.-minimal, where H denotes the range of I-P. In 

view of our earlier remarks this follows if we show that outerness is equivalent 

to the range projection of P 1h 1 P1  dominating that of P1h 1 P. But this is cleir 

from the definition. We use this Connection in the next lemma. 

LEMMA 4 The following conditions are equivalent for a positive Operator f in 

f admits a factorisation f hh with h an Outer operator in H 

Cf - Mh*
* 	

i Hhs for some Outer operator h n H 

The operator Cf is asymptotically vanishing. 

Proof. 	(i) => (ii). Note that f - hh* 	PhPhP + h(I.P)h*. Since h is Outer 

the 	Operator 	h(I-P)h 	is 	H_-minimal. 	From Lemma 1 it follows that 
( 

Cf=Ph(I.p)h*p 
= Hh*Hhs . 

U- 

=> 	(iii). Simply observe that Hhsz 	converges to zero in the strong 

Operator topology. 
g 

=> 	(i). Consider the decomposition f - hh* + g obtained above. 
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Then g 	is 	trivially 	zero if 	the M-minimal part of f converges to zero in 	the 
strong operator topology as n 	- . 	 With respect to the decomposition 

In_I 1 	1 	•l 

1 	J
K 
	

(fl 	J 

this minimal part has an operator matrix of the form 

Xny 

Y11 ZCfZ 

and so our hypothesis is equivalent to the condition g = 0. By the 

Construction of h we see that h(I-P)h = ' Ck is H-minimal, and hence h is outer. 

LEMMA S. Let f be a positive operator in L and let f = hh + g be the 

decomposition obtained by the Construction following Lemma 2. Then if h 1  is 
an Outer operator in H a such that I A h 1 h 1  then hh ) h 1 h 1 '. 

Proof Note that g + h(I-P)h is the H-minimal part of 1, by our Construction, 

and is thus dominated by (f-h 1 h 1 ) + h1(I-P)h. 	Since zh(I-P)hz converges 

to zero in the weak operator topology as n 	it follows that g C f - hjh 1 ..as 
required. 

The last lemma shows that the decomposition f - hh + g is extremal. It 

remains only to show that this corresponds to the Wold-Zasuhin decomposition 

and that (QhQ)(QhQ) corresponds to the prediction-error matrix, in the case of 

finite dimensional K .(For then the formulae (2.2) and (2.3) follow from (3.2) and 

(3.1) respectively). We do this, by a well known argument with *the Wold 

decompositions of shift invariant subspaces (see [27] and 126]). 

Let L 2 K and H 2  be the natural vector function space realisations of H 
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and 11+ 
 respectively. Let F be a positive operator in L realised as a function 

 
f(z) on the circle IzIE 1 with values as operators on K, vwLd.64

-90 th-i-j the 
Prediction-error, matrix G(f) associated with the spectral density I(z) is the 

Operator on K defined by 

2n 
(G(f)a,a) - jnf f P(z)'f(z)p(z) 

p(0)=a 0  

where the infimum is taken Over K-valued analytic Polynomials (with 
K realised 

as complex column vectors). The Closed subspace  (H2) is shift invariant 
and we have the Wold decompositions 

[Vf-2 

1•=; 	CD 	 1 	
'TL2 r-

[ QD

1 rJ tznii[ 	KJ 	ZDFJ 	N, 

Where N is a reducing subspace for the shift and F is a wandering subspace with 
dim F ( dim K. 	

Let • be a partial isometry that commutes with the shift and kL 	a. skpac C  c 	1< c 	43 4.4t 	F  canonically Identifies Q zF with Qz'1G. Let R 1  be the orthogonal 
Projection onto Qz nF and let R2 be the orthogonal projection onto zfTH 2gJ 
Observe that h1 - 0R1bq is an outer Operator in CI 	

Moreover, 
we have 

(G(f)a,a) - inf 
P(0)=a 

2 f P(Z)f(Z)p(z) : 

o 

a 
inf 	Ifri(a-q)11 2  

q(0)=O 
K 5.3 



a 

- II(I.R 2)hhi afl 2  

- II(I-R2)R 1'9 .1 1 
0 

2 
lJ(I.R2)RJT  all  L2 

2 
= llQh all 

= (h1(0)h 1 (0)a,a) 

- (G(h1h 1 )a,a). 

TLb utrftcc 4L • 

ctto.is t?r.o.t 	if g is the positive matrix func tion f-h 1 h 1  then G(g) = 0 and g 

corresponds to a purely deterministic process. 	If h2 is an Outer operator in B oo  

such that f hfh2 then h2 x"i, with X a contraction. 	Since h2 belongs to 

H it follows that 

XN = Xfl( zfl(1tH21)) C ( (z11 (h2H 2 	) - (0) • 

n=O 	 n=O 

Hence X - XR 1  , h2 - Yh 1  with Y a contraction, and the decomposition 
j w~tqx 

 f=h 1 h 1 +g is extremal. 	Apply the construction above to f to obtain the 

extremal outer factorisation 1 - h'h1 + g 1  so that f - hh 1  + 	- h3h3 + 
 PO 

say, an extremal outer decomposition with 9 1  a deterministic spectral density. By 

Lemma 5 this decomposition agrees with our construction (that 	is g - h11) 	and 

since G(f) = G(i1'i1) = G(hh) - (QhQ)(QhQ), the proof is complete. 
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(3.5) 	Outer factorisation and .Hankel operators 

Let K be a complex Hubert space of dimension k (1 < k < co) and 

let i be a positive operator in the commutant of the bilateral shift 

Z for the tensor product H = £2() €K. There has been much interest 

in the determination of when 0 admits an outer factorisation o = OO, 

and in the connection between 0 and the essentially unique outer factor 

0. This interest stems from several sources; the classical origins in 

the Szego theorem that represents a positive function on the unit circle 

with integrable logarithm as. the modulus of an appropriate analytic 

function, the factorisation of spectral den:ity functions in multivariate 

prediction ([2], [5], [14], [15]), and in the connections with operator 

theory ([1], [9], [11], [13]). More generally it is known (Proposition 4.2 

of [ 1 3]) that there always exists an essentially unique extremal outer 

decomposition 	.= .00* + d where 	> o, 0 is an outer operator, and 

00* is maximal with respect to the inequality. 	> 00*. This decomposition 

is of particular significance for the prediction theory of nonregular 

multivariate stationary stochastic processes ([13,  p.224], [12], [101). 

A new constructive approach to the extremal Quter decomposition was 

obtained recently by the second author ([91,  [101) through a study of 

minimal positivity and the linear decomposition of positive operators. 

Explicit limiting formulae were obtained for the outer factor 0 and 

the purely deterministic component 
d  in terms of Hankel and Toeplitz 

operators associated with 1D. A feature of this characterisation is the 

factorisation of a positive operator as H*H  with H a Hankel operator. 
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In this note we characterise operators of the type I + .H*H, where 

T is a positive Toeplitz operator and H is .a Hankel operator, and we 

relate the analysis to extremal outer decomposition. Moreover it is 

shown that the outer factor in the extremal decomposition of 	is the 

limit as t - 0, in the weak operator topology, of the outer factor 

appearing in the factorisations 

tI + 0 = 

of the invertible positive operator tI + b for t > 0. This result 

seems to be new, even i-n the context of finite dimensional K, and it 

enables the transference of known factorisation procedures for the regular 

case 	 = 0) to the general context. 

1. Let V be a contraction and let W be a pure isometry of multi-

plicity k (1 < k <) acting on the Hubert spaces H 1 ,H2  respectively. 

Let 

= T + H*H 
	

(1.1) 

where I is a positive operator satisfying V*TV.=  I and H is an 

operator from H. to H2  of Hankel type, satisfying W*H = HV. The 

following conditions hold: 

V*CV < C, 

dim{(C_V*CV)H2 } < k. 

• THEOREMA. Let C be a positive operator on the Hilbert space H 1 . 

Then C admits a factorisation of the form (1.1) if and only if the 

conditions (i) and (ii) hold. Moreover, C admits - the factorisation 

WO 



H*H if and only if, in addition, V* fl CV fl  -* b in the strong operator 

topology as n - 

PrOof. Let C have the form (1.1) with I = 0. Then, since W is a 

unilateral shift the sequence V*' l CV fl  = H*W*nWnH decreases to zero in 

the strong operator topology. 

Assume now that C is a positive operator fulfilling conditions (i) 

and (ii),. let I be the strong operator limit of the decreasing sequence 

V*CV", and let C l  = C - T. Since VTV = I the operator C 1  satis-

fies the conditions (i) and (ii) and V*flC1Vfl  .0 in the strong operator 

topology.. Let R = (C 1 _V*C 1 V) 2 . Then 

IIC1hII2 = (C1h,h) . 	IIRhI1 	+ (C 1 Vh,Vh) 

= IIRhII 2  + IIRVhII 2  + (C 1 V 2h,v 2h) 

=IIRVh 112_+ ( 1 V 	h,Vk+l h) 

00 
-. 	 =. 	

IIRVhIJ 
n=0 

Let W be the unilateral shift on £2()  8K, where K = ( RI-1 1 Y, 

and define the operator H from Hi 
 to £2() 0 K by 

Hh = (Rh,RVh,RV 2h,... ) 	(h E H1 ). 

Then (IHhlI 2  = IIC" 2 hII 2 , C1 = H*H, and HV = W*H, as required. 

Remarks 1. When V = W 	the theorem provides a characterisation.of 

the positive operators of the form 11*  where I commutes with the 

unilateral shift W (cf. [13],  Proposition 5.1.). 

2. Hruscev and Peller have asked ([3],  page 94, problem 2) for 

gct 
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a characterisation of the positive operators that are unitarily equi-

valent to the modulus 	 of a scalar Hankel operator. Here 

V = W and k = 1. TheoremA allows us to reformulate the problem; 

Determine the positive operators D for which there exists a scalar 

unilateral shift V such that D2 - V*D 2V is a positive operator of 

rank 1 and V*D2Vfl -3- 0 An the strong operator topolgy. (For compact 

operators the second condition always holds and this restricted problem 

has almost been resolved (cf. [7],  section 2).) 

2. Returning to the context of the introduction we say that the 

factorisation 0 = 00* isthebUterfactOrisationof the positive 

operator 0 if the following conditions are met; 0 is also an 

operator in the commutant of the shift Z and is analytic in the 

sense that 0 leaves invariant the subspace 

= 	 (2Z 4 	®K, 

0 is outer in the sense that 

{ran 01H+} = (ran oY n 

and, finally, PKOIK > 0, where PK
is the orthogonal projection onto 

the subspace 	e0  0K. Here e0  is the central basis element in 

the standard basis for 

The outer factor is unique when the outer factorisation exits 

([13]) and we shall see that it can be understood in terms of the 

Hankel and Toeplitz operator entries of the representing operator matrix 

for 4 	with respect to the orthogonal decomposition H = H e 



H* T 1  

Here we have T = PIH+ , 
 TD = p.LlH,. and H, = P1IH+, where P is 

the orthogonal projection onto H. It is well known that the Toeplitz 

operators T, for 'Y in the commutant of Z, are precisely the 

solutions I to the operator equation .TTTz = T, and that the Hankel 

operators .H are characterised by the operator equation TH  = HTz 

([6], [8]). 

In general, when a positive operator matrix is given, say 

ra i 
C:=I 

b

cJ 
I., 

b* 
(2.1) 

with respect to some arbitrary nontrivial orthogonal decomposition, then 

the limit of the sequence b*(n+a) - 'b exists in the strong operator 

topology and determines a positive operator c 1  with C1 < c. (See 

Lance [4] and Power [9]).  In fact c1 = b*ab where the inverse 

indicated is the pseudo-inverse: a- I y = x when x is the unique 

element orthogonal to the kernel of a satisfying ax = y. For 	as 

above we write 

C := HT;'H : urn H*(tP±+T 
t+o 

• LEMMA 1. T*C 1 < C 	and dim{ran(C _T*C  T )Y < k. 
zz — 	 ( ZZ 

• Proof. Suppose first that cD is an invertible positive operator 

commuting with Z. Then through the Beurling-Lax-Halmos theorem 

applied to the simply invariant subspace 	
1/2 H

+ we obtain 	= 00* 
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where 0 and 	are analytic operators. Observing that 	= 

we compute that 

C = 

= POP (TbTo*Y1P(DP 

= poplo*pi(r icr_i )p.L®p O* p 

= 1.1* U 
0* 0* 

Since i ZHJ =HT Tz ,for all operator symbols W, we have 

C - T*C T = W* (T_* )u 
zz 	0' 	zz"0* 

= U* flu 
0*' '0* 

where Q is the orthogonal projection onto the subsapce Z*(Ue0  ®K). 

To deduce the lemma in the general case first observe that if 

= tI + , for t > 0, then P 	 is invertible, H= H, and 
t 

C 	is the increasing limit in the strong operator topology of the 

operators C , as t -- 0. The lemma now follows from the computations 
t 

above, and the observation that if T  - T in the strong operator 

topology then rank T < lim inf rank T 

COROLLARY 2. The operator C admits a decomposition 

C =T 	+H*H 
	

(2.2) 

where cd  is a positive operator in the commutant of the bilateral 

shift Z:, and H is a Hankel operator satisfying TzH = HTz. 

This corollary is an immediate consequence of Theorem A and the 
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lemma. The operator 
d  is uniquely determined and 

we have labelled this symbol operator as 	d  because it coincides with 

the deterministic summand od  in the extremal outer decomposition of 0. 
Indeed, one of the main results in [10] is the fact that the outer factor 

0 in the extremal decomposition 0 = ®®* + d can bedéfihed as the 

unique (outer) operator 0 with PKOIK > 0 satisfying 

T0T0  = 	 (2.3) 

This shows that 

C = T + T®0  - T®T®
Od  

= T + HH0  

which justifies this notation 	
d 
 in Corollary 2, and indicates that 

the Hankel operator H, which is essentially uniquely determined in view 

of Proposition 3 below, is associated with an outer operator symbol. This 

fact indicates that the operator Cci  has structural features in addition 

to the basic properties (i) and (ii) expressed in Lemma 1. 

PROPOSITION'3. Let H 1 ,H2  beHankel operators satisfying 

HkTZ = TZHk ,  k = 1,2. If HH 1  = HH2  then H 1  = XH2  where X is a 

partial isometry on £2() 19. K of the form I 

Proof. Assume that HH 1  = HH2  so that there exists a contraction X, 

that is isometric on the range space ran H 1  of H 1 , such that 

H2  = XH 1 . Observe that Tz>l = 	H 2 	H 
2  T  2 = xH1Tz 'xIzH2 So that 

( zx_'z ) lt 	H 1  = 0. By the Sz-Nagy Foias lifting theorem there exists 

an anal3 tic operator h 1  in the commutant Of Z which is contractive, 
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such that Xlran  H1 = Th Iran H 1 . Similarly obtain a contractive 
1 

analytic operator h., such that H 1  = Tk 2 H
2 . This means we have the 

U 

following commutative diagram 

ran H 

ran H, 	) ran H 

However, ran H 1  and ran H2  are invariant subspaces for the backward 

shift 	and hence. have the forms HOvI-1, HOvH 	respectively, for 

some inner operators (analytic partial isometries in the commutant of Z) 

v 1  and v2 . From the usual divisibility properties of inner operators 

we conclude that h 1  Iran H 1  has the form I oX 1  Jran H 1  where X 1  is 

an operator on K, as desired. 

3. The cOe,genceOf:outerfactors 

THEOREMC. Let 	be a positive operator in the commutant of the bi- 

lateral shift Z on the Hubert space £2() 0K with the unique 

extremal outer decomposition 	
d 

+ oer. Let the operator tI + 

for t > 0, have the unique outer factorisations 	Then 

0 = w-lim 0 
t+0 

where the limit is taken in the weak operator topology. 

PrOOf. The proof rests on.the essentially contru.ctive formula for 0 

given in formula (2.3). This formula shows that 

'4- 



T0T =  s-urn (Tt+ - HTJH) 

	

s-lim 	_ H* T 1 H =  
t-{) 	

t+() t+ 

= s-urn (T0 To*) 

	

.t-*o. 	t• t 

With respect to the decomposition I-1 = K e K1  write 

112 	

10* 	
A'12 	A_h/'2B1 

	

A1"2B1 	= 	 . 
T0 	

[ 	 * j 

(using the generalised inverse A" 2 ) and observe that At - A and 

B in the strong operator topology. Since {Ot:  0 < t < II is a 

norm bounded set and since 

PKOt = [0 4/2 c1I2B], 

with respect to H ® K K 1 , the theorem will follow if it is shown 

that A112Bt -.  -1/2 B in the weak operator topology as t - 0. 

To this end let L be a limit in the weak operator topology of 

some subnet A 112B. For f in H and g in K we have a 	a 	 + 

(Lf,A 1 " 2g) = lim(AlI2Bf,AL/2g) 

= 

= lim(Bfg) 

= (Bf,g) 

= (A 1 " 2Bf,A1 " 2g). 

65 
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It follows that if P 	 is the range projection of A, then all limit 

points of {PAA"2B1::  0 < t < 11, as t - 0, coincide with A 112B 

and hence 

= w-lim P A 112 B At 	t.  

In the special case when A is injective (and in particular in the 

multivariate context when A has full rank) the proof is now complete. 

But in general we.need the following additional argument. 

Using the identities P =P - TZT and ToTzTT=TzTbTTz, 

observe that 

I P T* = s-urn I P T* 
OKO 	1:9-0 eKe 

In particular, examining the operator matrix entries we have 

BA 1 B = s-urn B*A 1 B 
t-)- 

Nowintroduce the notation X = A 112Bt X = A' 2B so that PAXt  X 

(wot) and iXti -- lxi (sot) as t 	0. We now show that these conditions 

imply that X. 	X (wot) as t - 0, as required. 

Let X. = Ut1Xt1and X = uiXi be the polar decompositions, and 

let Pu be the range projection of lxi. Then PAUtIXtI 	UiX, (wot), 

and so, since IX.I - lxi (sot), we have PAUtP U IXtI 	PAUPU IXI (wot) 

as t 	0. Hence 



w-1imP 
A  U  t.  Pu =PAUPu 

 =U. 

Let M be any limit point of the set {PUP:0 < t < 11 as t -- 0. 

Then, since U + M is a contraction, MP = 0, and U is a partial 

isometry, it follows that M = 0. Hence UP -* UP 	Not), and 

X. -' X (wot) as t 	0, completing the proof. 

I I. 

(1 
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CHAPTER 4 DENSITY, SEMIDISCRETENESS, AND DILATION THEORY 

We now examine various density properties and finite dimensional 

structure in nest algebras, culminating in the dilation theorem for 

y-weakly continuous contractive representations of a nest algebra. 

This may be viewed as a noncommutative analogue of Sz-Nagy's theorem 

that contractions possess unitary dilations. In the following 

chapter we will see a continuing analogy between the representation 

theory of a nest algebra and that for the complex polynomial algebra 

P(D) for the disc. 

In section 4.3 of this chapter we discuss analogous finite 

dimensional structure for various reflexive algebras with commutative 

subspace lattice. 

(4.1) The Erdos density Theorem. 

There is no natural analogue of the Kaplansky density theorem 

for nonseif-adjoint operator algebras and so special arguments are 

often needed to show that the unit ball of a dense subalgebra is 

dense in the unit ball of the full algebra. The Erdos density 

theorem ((4.1.1) below) can be obtained in various ways. It is 

a consequence of the more general result Corollary 2.7 of section 2.6, 

it may be obtained by the direct construction of an approximate 

identity of finite rank operator, and it is a consequence of duality 

arguments combined with Lemma (2.3.2) (ii). We give the third proof 

below. In the next section we will obtain a refinement of the 

second approach to show that there exists certain 'good' subalgebras 

An c A, which are finite dimensional and consist of finite rank 

operators, such that the union of the unit balls of the subalgebras 

An is a-weakly dense. This approach entails a close examination of 
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the spectral representation of the projection nest E of the nest 

algebra A. 

(4.1.1)' 'THEOREM'(Erdos). The finite rank operators in the unit ball 

of a nest algebra are dense in the cr-weak topology. 

Proof. A typical rank one operator in the nest algebra A = Alg.E has the 

form EX(I-E) where E lies in E and X is a rank one operator. 

Thus a trace. ciassopera1xr A lies in the annihilator of the closed 

linear span, R 'say, of the rank one operators of A if and only if 

0 = tr(AEX(I-E )) = tr((I-E)AEX) 

for all rank one operators X and E in E. It follows that this 

annihilator is equal to 4 where 

4 = {A € C 1 : (I-E_)AE = 0 for all E in E}. 

We now compute the annihila 

agrees with the annihilator 

4 . Each such operator has 

rank one and 'E € E. Since 

= A. 

tor of 4 in L(H).  By Lemma 2.3.2 (41 ) 

of the collection of rank one operators in 

the form EX(I-E), with X € L(H) of 

tr(AEX(I-E)) = tr(I-E)AEX) it follows that 

Thus we have the following natural identification of the dual 

+ 
spaces of R and C 1 /A 1 . 

Ru = 

(C 1 /4)' = A;. 

Moreover the weak star. topology on 'A coincides with the a-weak 

topology. 'By Goldstine's theorem the unit ball of R is weak star 

dense in the unit ball of the second dual R, and so we are done. 



The density theorem has many uses. For example it provides a 

simple proof that the linear span A + K(H), where K(H) is the 

ideal of compact operators, is norm closed. It is also used in 

the characterization of the a-weakly closed ideals of a nest algebra 

(cf. Erdos and Power ['i]). However in the study of representation 

of a nest algebra we need the more refined density properties of 

semidiscreteness discussed in the following section. 

References: Erdos [1], Power  

4.3 
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(4.2) SEMI DISCRETENESS AND DILATION THEORY 	 - 

In this note we show that a contractive oweakly. continuous Hubert space represen-

ttion of a nest algebra admits a ôrweakly 'coniiôus dilation to the containing algebra 

of alit  operators Oii'r'method is to establish fist the complete contractivity of contractiye 

representations through a semi-discretenesspropeitY for nest algebras relative to finite 

dimensional jiest algebras (Theorem 2.1). This is obtained by anexamination of the order 

type,spectal typeand multiplicity of the nest, and by the construction of subalgebras 

• that are com pletily isometiic copies offinite dimensional nest algebras, with good approx-

1maion'properties. 'Withcompléte contractivity at hand, the desired dilation follows from 

Aveson's dilation theorem and auxiliary arguments. -  

'We need to know that.contractie representations of .  finite dimensional nest algebras 

-'are completely contractive, a fact fist obtained by McAsey'and Muhl'y [5); We obtain 

this by the explicit construction of star dilations for contractive representations of finite 

dimensional-nest algebras and-without recourse to Arveson's theorem. 

An alternative approach to the  dilation theorem, can be found in--Paulsen and Power 

[7), [8] based on the weaker notion of semi-discreteness relative to modules of M for the 

diagonal subalgebra, and 

 

on the dilation 'theory of contractive module representations. 

This alternative approach leads togeneralizations of the results here to certain reflexive 

operator 'algebras with commutative invariant ,subspace lattice, and to the analysis of 

bounded representations. We also remark that the 'methods of this paper can be used in 

the dilation .'theory of commuting representations of nest algebras [8]. - 

- - In the'-first section we constructively dilate contractive representations -of finite di-

mensional nest algebras.' 'In the second section 'we ,establish the semi-discreteness of nest 

algebras, and 'in the last section we obtain the dilation theorem. 

Recall that a nest algebra is an algebra A of operators on a complex Hubert space 

- R such that each operator in A leaves invariant all subspaces in a preassigned nest of 

subspaces. We always assume R to be separable, and if R is finite dimensional we refer 

to A as a finite dimensional nest algebra. Such algebras are completely isometrically 

isomorphic to block upper triangular subalgebras of the complex matrix algebras M, 

n = 1,2..... 

Let S be a subspace of L(R), the algebra of all operators on R, and let p: S -+ L(H) 
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be a linear representation of S as operators on the Hubert space H. Write p,  for the 

induced map between the naturally normed spaces Ms (S) and M(L(H)). We say that 

p is completely contractive (reap. completely positive, reap. completely bounded) if the 

maps p are contractive (reap. positive, reap. bounded) for n = 1,2..... 

The paper is self-contained except for the proof of Arveson'8 dilation theorem which 

we now state. General facts concerning completely bounded maps and dilations can be 

found in [6].. Basic properties of neat algebras are discussed in [] 

If A is a subalgebra of C*algebra  B and if p: A - L(H) is a representation then we 

say that 7r : B -. L(K) is a B-dilation of p if w is a *-representation of B on a Hubert space 

K J H such that p(A) = PHIr(A)IH for all A in A. 

THEOREM (Arveson [11). Let A be a subalgebra of the C-algebra B and let 

p : A - L(H) be a unital homomorphism. Then the following conditions are equiva- 

lent: 

(1) p  has a B-dilation, 

p is completely contractive, 

the induced map A : A + A - L(H), defined by ,3(A 1  + A) = p(A i ) + p(A2)*, 

is completely positive. 

Recall that the dilation of the completely contractive representation p is achieved 

by first extending p to a completely contractive linear map from B to L(H), and then 

dilating this map to a star homomorphism by means of Stinespring's dilation theorem. In 

particular, if B and H are separable then the dilation space K is separable. 

1. Representation of finite dimensional nest algebras. 

The contractive representations of a finite dimensional nest algebra have a simple and 

explicit characterization. The necessary and sufficient condition for contractivity is that 

the images of the matrix units are contractions. In fact we shall obtain an explicit dilation 

to a star representation of the enveloping matrix algebra from which it can be seen that 

contractive representations are completely contractive. We prove these facts and related 

observations in this section. 

PROPOSITION 1.1. Let A be a finite dimensional nest algebra with enveloping matrix 
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algebra B, and let p be a representation of A on the Hilbert space H such that II p(ej,3)  :5  1 

for each matrix unit e,,cA. Then there exists a Hubert space K containing H as a subspace, 

and a star representation r of B on K, such that 

p(A) = Pir 	I  
for all A in A. 

Proof. Since p(l) is an orthogonal projection we may assume, without loss of generality, 

that p is unital. Consider first the case of the vi x ,i upper triangular matrix subalgebra 

A of the matrix algebra B = M, so that A is spanned by the matrix units e, for 

1 < i < j < vi. For each i the operator p(e 1 , 1 ) is a self-adjoint projection, E1  say, with 

range space Hi and H = H1  ... H,. Since p is a homomorphism the contraction 

X1, = p(C sj ) has range contained in Hi and kernel containing (H1)-'-, for 1 S  i < j :5 n. 

Let T1, = EX, IH1,  for 1 :5 i < j vi, and we have p((aj1)) = (aj1T13 ) as an operater 

matrix on H1  ... H,, for (aj,) in A, and T1, = T1,1 +1  ... T,_1,,. Clearly the operators 

Ti = T1 11+1, i = 1, ..., vi - 1 determine the representation. Conversely any family {Ti} = 

of contractions Ti : H1+i - Hi gives rise to a representation P{T1}  of A, 

with 11 p(e,) 11 < 1. 

We now construct a dilation P{}  for  P{;}  with VI ,..., Vn— 1 isometries. To simplify 

notation we restrict to the case where the dimension of Hi is constant and these subspaces 

are identified. If this does not already hold we can dilate p in a trivial way to a representa-

tion which does have this property. Let Ki = R R ED ... with R = Hi identified with the 

first summand. Let V1 be the operator on Ki which is the isometric dilation of Ti given by 

V1 (ri,r2,...) = ( T1 r1,D1 r1,r2, ... ), 

where Di = (I - T1 T4. Observe that for i < j, 

TTs+l ... T,=PR(VIVI+l ... V,)IR. 

Hence if Pi = P{v} is the representation of A on K = K 1  $ ... K, n times, induced by 

{V}= {V 1 ,...,V_ i },we have p(A) = PHpI(A) IH,for A in A. 
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Now consider the isometry W = I V1  ED V1  V2 9 ... ® V1 .. .V,1 _ 1  on K, and the 

*..representation ir of M. on K given by ir((b1)) = (b 1JIK 1 ). Observe that p i (A) = 

Vr(A)V for A in A. Thus after identifying H with VH, we have that  p(A) = PH7r(A) IH 

for A in A. 

It remains to consider the case of a general finite dimensional nest algebra A associated 

with a subnest of the canonical projection nest in M. The proof above can be modified 

easily. On the other hand we can use the following useful general principle ([6, Proposition 

2.121). 

Let M be a subspace of a unital C-algebra which contains the identity and let 

M -p L(H) be a unital contraction. Then 0 extends uniquely to a positive map 

M + M* L(H) with given by (a + b) = (a) + (b) for a,b in M. 

In our context the representation p of A induces a representation p,, of the subalgebra, 

A of upper triangular n x n matrices. Moreover the representation p(A) = PHIr(A) Iii 

leads to the positive extension map 0 : M -, L(K) where (B) = PHIr(B) JH for B 

in Mn = A + (An). But, it must be that j = ik since they agree on A.  In particular 

p(A) = P jjrir(A) IH  for operators A in A as required. U 

Corollary 1.2. Let A be a finite dimensional nest algebra with enveloping matrix algebra 

M, and let p- be a representation of A with II p(e1) I1:5, 1 for each matrix unit e1 in A. 

Then p is completely contractive. 

Remark 1.3. Let (7r, K) be a unital star representation of the matrix algebra Mn on 

the Hubert space K, and let M be a subspace of K which is semi-invariant for ir(A) 

where A is a finite dimensional nest algebra contained in Mn . Then the compression map 

A - PM(lr(A)) IM determines a representation (p, M) of A. Such representations are 

called sub-star representations by Ball and Gohberg [2]. From Proposition 1.1 we see that 

every contractive representation is of this form. 

1.4. The complete contractivity of representations of finite dimensional nest algebras 

can also be observed in the following way. Once more it will be enough to consider the 

algebra A of upper triangular ii x ti matrices and a unital contractive representation (p, H). 

Observe that the induced positive map of Mn is an inflated Schur product map in the 

following sense. There is an ti x n operator matrix T = (T13 ) such that. ((x5)) = 
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where 4'T((zj)) = (z1T,). Here if 	is in A, we set T11 = T. We want to show that 

the map 	: Mk(A) —' M, (L(H)) is contractive for every k. Equivalently we must 

show that 	) is positive for every k. However (k)  is the inflated Schur product map on 

Mkn = Mk(Mn) associated with the operator matrix T(k),  the k x k matrix all of whose 

entries are T. Since A is a positive map, T is a positive operator matrix and therefore so is 

T(c). It is sufficient then to see that a positive r x r operator matrix S = (S), determines 

a positive mapping t/is of Mr. Clearly s(C) > 0 if C > 0 and C has rank one. Since every 

positive operator in Mr is a positive linear combination of rank one operators we are done. 

1.5. If p is a homomorphism from the upper triangular matrix algebra A of Mn into 

L(H) then p is similar to a contractive representation. In fact we can first choose an 

invertible operator S1 in L(H) so that pi (9) = Sj'p(.)Si determines a contractive (unital 

star) representation when restricted to the diagonal algebra A fl A. A standard averaging 

argument achieves this (See [6, p.  1271 for example). The representation Pi is determined 

by the operators Xi  = pl(e,,+i). Let S2 be the diagonal operator diag{1,t, ...,t''} and 

we have S'p1(e,1+i)S2 = tX. Thus (S1 S2)'p(.)S1S2 is a contractive representation if 

t is sufficiently small. 

1.6. The methods of this section also apply directly to certain nest algebras associated 

with a projection nest which is of order w. However to treat the general case we need to 

establish the semi-discreteness property in the next section. 

2. Semi-discreteness of nest algebras. 

Recall that a von Neumann algebra M is said to be semi-discrete if there exists nets of 

a-weakly continuous completely positive maps : M — Mfl A  , : Mn,, —' M such that 

0 (p)  (X) —p X c-weakly, for all X in M. The main result of this section is the following 

theorem which expresses an analogous property for nest algebras. In the case of a purely 

atomic nest E it is easy to obtain an elementary direct proof. However the general case 

requires an examination of the measure type and the spectral multiplicity of the projection 

nest. 

THEOREM 2.1. Let A be the nest algebra associated with the nest of projections e 
acting on a separable Hubert space H. Then there exists, 
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(1) a sequence Aft of finite dimensional nest algebras, 

or-weakly continuous completely contractive maps 0. : A - Aft, 

oweakly continuous completely isometric homomorphisms On  : A - A, 

such that On  o co(A) - A a-weakly for all A in A. 

We shall see from the proof below that on  and 0. are restrictions of completely 

positive mappings : L(H) —' 8,, &, : Bn — L(H) associated with the finite dimen-

sional enveloping C-algebras Bn  containing the algebras A ft , and where ,, & have the 

properties required to show the semi-discreteness of L(H). Thus, amongst the many pairs 

of sequences of maps which establish the semi-discreteness of L(H), we find maps which 

respect upper triangularity. 

Let L 2  (&) denote the Hilbert space of square integrable functions associated with a 

finite positive Borel measure is on the unit interval [0,1]. For 0 < t < 1 let M (respectively 

M_) be the operator of multiplication by the characteristic function of the interval [0,t] 

(respectively [0,t)). As usual we write Jk >> !hk+i when the measure k+1  is absolutely 

continuous with respect to jik. 

The following spectral theorem for projection nests acting on a separable Hubert space 

is well known (See also [41). For completeness we give a proof. 

PROPOSITION 2.2. Let 46 be a complete projection nest on a separable Hilbert space. 

Then there exists a sequence j >> JU2 >> ... of regular Borel measures on [0,1] such that 

is unitarily equivalent to the standard projection nest on L2(i i)ED L 2 (L2) ... consisting 

of the projections 	 Mt  9 	Et_ = Mt- e Mt- ED ... for 0<t<1. 

Proof. Suppose first that x is a unit cyclic vector for the nest e on H, and let a be 

the left continuous function from t, with the strong operator topology, to [0,1] given by 

a(E) =fl Ex 11 2  . Let Eo  be the algebra of sets generated by the necessarily non zero 

intervals (a(E),a(F)] for E < F in t. The function t((a(E),a(F)]) = a(F) - a(E) 

extends to a finitely additive set function on E0 and using the extension theorem, j,t 

extends to a measure on the a-algebra E generated by E0 also denoted by 1A. We can 

extend jh to a Borel measure in a natural way, so that j&((a(E_), a(E)]) = 

whenever E_ < E, where E_ is the strong operator limit of projections F < E with 
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F in E. Now verify that if It = (a(Ek), a(Fk)J, 1 —< k —< n are disjoint intervals with 
characteristic function xz, then the linear mapping W defined by 

n 

W (> ak(Fk —Ek)x) = >akXI k  
k=1 

extends to a unitary operator W from H onto L 2 (p). Moreover W(W is the standard 
projection nest on L 2 (p) 

In general we may choose a sequence of orthogonal unit vector z1, z2, ... so that 
H = H1  ED H2 ... when ilk is the reducing subspace for C generated by C and zk. 
Obtain the associated probability Bore] measures 171, 172, ... constructed as above, together 
with unitary operators W1,W2, ..., and we see that if W = W 1  CD W3 ... then WCW* 
is the standard projection nest on L 2 (7 1 ) • L2 ( 172) 9 ... . Finally 

we can observe that this standard projection nest is unitarily equivalent 
to the standard nest on L 2 (jz i ) L2 (02) ..., and that Mi >>,"2 , -- - 

In view of the representation given above it will be enough to establish Theorem 2.1 

for the special case of the standard projection nest on the Hubert space 

associated with the measures Mi >> P2 >> ... >> p,. Indeed if we obtain the required 
maps 4,r and v,b,,,, n = 1,2, ..., in this case, and make natural subspace identifications, 
then the maps n = 1,2,..., have the required properties, J,.C 5 Ui 646 UAJy &. 

To treat the special case we make a preliminary simplification. Let 
1k be the Radon-

Nikodym derivative dpk/dpi, for k=2, ..., r, and let Jr = { t : f(t) > 0) 50 that 
J2  ) J3 ) ... ) Jr , modulo sets of pi-measure zero. Then the standard projection nest on 
L 2 (p i) • ... e L 2  (p,) is unitarily equivalent to the standard nest on 
L 2  (P1) e V (.12 ,Pi) ... e L2 (J,1). The implementing unitary operator is the oper-
ator I ED X2  ... e Xr  where Xk denotes multiplication by f 1/2  

PROPOSITION 2.3. Let p be a regular Borel measure on [0,1) with support J1  and 
let J1  D J2 D ... D Jr be Bore] subsets of [0,1]. Then the nest algebra associated with 
the standard projection nest on L2( j1'  A) ...0 L2 (jr, 

is) is semi-discrete in the sense of 
Theorem 2.1. 
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Proof. The main idea is to proceed directly with the construction of the subalgebras of A 

that are completely isometric copies of finite dimensional nest algebras. The subalgebras 

are associated with refining dissections of [0,1] in such a way that their union is dense in 

the ultra weak topology. Care must be taken to ensure that the matrix units taken to 

define these algebras do belong to .4, and in fact this is why we consider-first the nest for 

H=L 2 (JI,  A)  ... 

Without loss of generality we may assume that p({1}) = 0. Fix a natural number n 

and choose finite families of disjoint intervals F,. F,_1 g ... F1 where each interval has 

the form [a,b), with (b-a)<1/n, and for each i the union Ui of the intervals in F1  satisfies 

Jh (U1  LJ) < 1/n. Enumerate the intervals in &h. = [(1k, bk), k = 1, ..., m such that if 

k < £ then bk <at, and define (1i = {k IkeF,),) = 1,...,r. 

We now construct "matrix units". For kd),., let El be the canonical partial isom-

etry on H with initial space L 2 (Ik fl J,.,i) 	L2 (J,,is) and final space L 2 (Ik fl J,, JA) 

L 2 (J,j.i), 1 < i,j ( r. If k€12g\fl11 then define E' to be the canonical partial isometry onkk 

H with initial space L 2 (IkflJL,p) g L  (J,,u) and final space L 2 (IkflJt,14) g L 2 (J1 ,j&) for 

1 < i,j, < 1. Note that E has been defined for 1 < i,j :5 rk, where rk = max{o : IkEFa }. 

To construct the remaining matrix units, for 1 <— i <— r, let 4 denote the characteristic 

function of the set Ik  fl 4, normalized so that it has unit length and regarded as an 

element of L 2 (J1 ,1i). For k < 1, we let E'1 = 4 0  4 denote the rank 1 operator with 

initial space contained in L2 (J1,) and final space in L 2 (J1 ,ii) whose action is given by 

4 0 4(f) =< f,4> 4 for f€L2 (J1,). 

Now let {ekt} and {f,} denote systems of matrix units for Mm and M,., respectively. 

Let A n  ç Mm 0 M, denote the subspace spanned by {ekt 0 fq : 1 < k < £ < m, 

1< i < r, 1< j rj}, i.e., for precisely those values of (k, 1, i,j) for which we have 

defined E. It is not difficult to see that A, is a nest algebra and that the map eAt ® fij -+ 

E defines a completely contractive homomorphism. Indeed, to see that this map is 

completely contractive by Proposition 1.1 it is sufficient to check that fi E'1  II:5 1 and that 

{E} multiply like matrix units. This defines the map t&,1  

To define a map 0,, : A -' A. we simply set 

80 
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= 	<Ae,4 > ekt®f1, 

which is essentially the compression of A to the span of {e}. 

It is easy to check that i o &, is the identity map on A and hence 0, must be 

completely isometric. Also, for X e t(A, 1 ) we will have that 0,, o 	= X. 

Let H = span{4: 1 i 5 rj,,1 k 5 m}. We claim that for every vector e in 

H, dist(e, H,,) -' 0 as n -, +00. Using a simple approximation argument it is sufficient 

to show this for e = XI (the characteristic function of some interval I regarded as a 

vector in L2(JI, u)). But this follows readily from the fact that the intervals in F form an 

increasingly finer cover of J1 as ii - +oo. 

It remains to show that for each operator X in A, Oh 0 cik(X) -' X in the a-weak 

topology. Note that the sequence Xk = 0 4k(X) is bounded so we need only check 

convergence in the weak operator topology. Let P, denote this orthogonal projection onto 

H,,, so that P. -+ I in the strong topology. A computation shows that PkXkPk = PkXPk, 

for each k. Considering the identity 

<Xf,g> — <Xkf,g>=<Xf,g> — <PkXPkf,g> 

— < Xkf,g > + < PkXkPkf,g > 

we see that it suffices to check that (Xk - XkPk)f - 0 for each vector f, and this is the 

case. U 

The proof of Theorem 2.1 is now complete. We can also modify the proof a little to 

obtain the following stronger density property. 

COROLLARY 2.4. Let A be a nest algebra acting on a separable Hubert space H. 

Then there exists subalgebras C1, C2, ... which are completely isometrically isomorphic to 

finite dimensional nest algebras, and are such that dist(K, C,1 ) - 0, as n - cc, for every 

compact operator K in A. 

Proof. Once again it will suffice to establish the corollary in the context of Proposi-

tion 2.3. Let the discrete component of the measure be supported on the countable 

or finite set D. Fix a natural number n and choose finite families of disjoint intervals, 
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Fr c Fr—i C ... F1 , where each interval may be open, semi-open, closed, or a singleton, 

of length < 1/n. Arrange that the union of the singleton sets have u measure greater than 

- 1/n, and that the union Ui of the intervals in F satisfies L(U1J) < I .  Enumerate 

the intervals in F1 as I, 12,...' Im, where the points, or point, in I lie to the left of points 

in Define fl, = {k IkeF,},j = 1,...,r, and tk = max{S : IkEF.}. 

Exactly as in the proof of Proposition 2.3 we can construct matrix units E, for 

1 < i,j r, and 1 S k < £ < m, which determine a finite dimensional subalgebra, C, 

say, which is completely isometrically isomorphic to a finite dimensional nest algebra. As 

before these algebras have the semi-discreteness density properties expressed in Theorem 

2.1. 

Each rank one operator R in A has the form e 0 f where for some projection E in the 

nest for A, Ee = e and (I— E_)f = f. Here E_ is the supremum of nest projections strictly 

less then E, and we observe that E_ <E precisely when E = and ,4{t}) > 0. 

Our construction of the subalgebras Cn has the property that (E - E_)R(E - E_) lies 

in C, for all large enough n. We claim that the distance of the operators ER(I - E) 

and E_ R(I - E_) from C, tends to zero as n - oo. Since these operators have the form 

Ee 0 (I - E)f and E_e 0 (I - E_)f, this is a consequence of a simple approximation 

argument using the fact that dist(g, H) -, 0 for every vector g in H. We have now 

shown that dist(R, C ft ) -. 0 for every rank one operator in the nest algebras. Since every 

compact operator in the nest algebra can be approximated by a linear span of such rank 

one operators (see [3] and [91), the proof is complete. • 

3. Contractive representations of nest algebras. 

We can now use the semi-discreteness properties of a nest algebra to extend the main 

results of section 1 for finite dimensional nest algebras to the general case. Notice however 

that the order is reversed; we first deduce the complete contractivity of a-weakly continuous 

representations, and then use Arveson's dilation theorem to show that such representations 

admit star dilations to the enveloping algebra of all operators. 

THEOREM 3.1. Let p be a contractive representation of a nest algebra acting on a sep- 

arable Hubert space, which is continuous for the a-weakly topology. Then p is completely 
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contractive. 

Proof. Let A be the nest algebra and let (A 13 ) be a matrix in MI, (A). By Theorem 

2.1 there exist finite dimensional nest algebras A1, A2, ... and certain a-weakly continuous 

maps q5,,: A — 	: A ft  —+ A such that t o q6. (A) —' A a-weakly as n —' oo for all A 

in A. Let A 	(o 	Then (A) — (A 11) a-weakly, and so (p(A)) —* (p(A,))    

a-weakly. Now 11 (p(A1)) 1 :5 urn sup II (p(A,)) I :5 urn sup 11 (Ar,) fi, by Corollary 1.2. 

Since tfi,, oo,, is completely contractive we now obtain 11 (p(A 13 )) I:5I1 (A 13 ) 11, as required. 

THEOREM 3.2. Let A be a nest algebra on a separable Hilbert space R, and let p be a 

unital contractive a-weakly continuous representation of A on a separable Hubert space H. 

Then there exists a separable Hilbert space K containing H as a subspace, and a a-weakly 

continuous *representation  v of L(R) on L(K) such that 

p(A) = PHIr(A) IH for all A in A. 

Proof. Let Si  denote the C-subalgebras of L(R) generated by the identity and the 

compact operators, and let A1 = An Si.  By Theorem 3. 1, p  is completely contractive on A 

and hence on A1, so by Arveson's theorem there exists ri : BI L(K) such that p(A) = 

PHIrI (A)  IH for all A in Al. By Stzinesprings theorem, since Si  and H are separable, K 

is separable. 

The representation wl of 9 decomposes as r, = v e 7ro  where 7ro  is zero on the 

compacts and r is unitarily equivalent to an ampliation of the identity. By considering 

a sequence {K} in Al which converges a-weakly to the identity we see that p(1) = 

PHIr(1) IH . Hence H is orthogonal to the space on which 7ro  acts, and consequently 

p(A) = PHIr(A) IH for all A in A1. 

The representation ir clearly extends to all of L(R) since an ampliation of the identity 

is a-weakly continuous. We still write ir for this extension. But then p(A) = PHIr(A) Iii 

holds for all A in A, since both sides of this equation are a-weakly continuous and A1 is 

a-weakly dense in A. 

Mb  
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Corollary 3.3. Let .4 be a nest algebra on a separable Hubert space R and let p be a 

a-weakly continuous contractive representation of A on H. Then there exists a sequence 

of bounded operators V. : H - R such that the series E V, AV ft  converges *-strongly to 

p(A) for every A in A. 

Proof. Let (jr, K) be as in Theorem 3.2. In the proof of Theorem 3.2, we saw that 

K is unitarily equivalent to R ED R ED ..., and that ir is unitarily equivalent to the map 

A -. A A ... . Since H C K this unitary yields an isometry V : H - R is R ..., such 

that PHIr(A) IH = V (A A e ...)V. Letting V, denote the projection of V onto the n-th 

copy of R yields the desired result. U 

Remark 3.4. Let B1 be the algebra of compact operators with identity, with subalgebra 

Ai = .4 n BI, as in the proof of the last theorem. A B1-dilation ir of a representation p of 

on H is said to be minimal if the span of vectors Bh, with B in B1, h in H, is dense 

in the dilation space. Since .41 + is norm dense in B, standard elementary arguments 

show that every pair of minimal 81-dilations are unitarily equivalent, in the usual sense. 

From this follows the uniqueness up to unitary equivalence of minimal c-weakly continuous 

L(R)-dilations of representations of nest algebras. 

14 	
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(4.3) The coPilëté apPtoxiftti on: property :  f or :  CSLälgebras 

In the last section it was shown how the semidiscreteness property 

of a nest algebra could be used to extend the finite dimensional dilation 

theorem to general nest algebras. We now examine related structural 

properties for more general reflexive operator algebras. 

• Sep1idisetens:dcoppletoxirnationby°sUbalgebras 

A Dn_bimodule  is a subspace of the complex matrix algebra M  

which is a bimodule for the diagonal algebra D 	of M. A unital 

D - bimodule is one that contains, the identity, and hence contains D. 

The category of unital D - bimodules which are also subalgebras of M 

coincides (up to unitary equivalence) with the class of reflexive 

subalgebras of M 	with commutative subspace lattice. Such algebras 

are called finite dimensional CSL algebras. 

(4.3.1) DEFINITION. Let A be a cr-weakly closed unital algebra of 

operators on a Hilbert space. Then A is said to be semidiscrete 

relative to finite dimensional CSL algebras, or CSL-semidiscrete, if 

there exists 

finite dimensional CSL algebras S 	indexed by a directed 

set, 

a-weakly continuous completely contractive maps cpa:  A 

completely isometric isomorphisms ipa:  S -' A, such thatCt  

0p(A) - A a-weakly for all A in A. 

In a similar way we could define semidiscreteness relative to 

D-bimodu1es but we shall not develop this here. 

CSL-semidiscreteness is a strong property that implies hyper- 



finiteness in the category of CSL algebras. However additional 

structure is built in, from which it follows (as in the nest algebra 

case - see Theorem 3.1 in section 4.2) that if. p: A -* L(H) is a 

a-weakly continuous map and pIPc (S) is completely contractive for 

every a, then p is also completely contractive. This conclusion 

follows from the fact that lbrtheimatricial algebra.. M n (Pa (S)) (for 

fixed n), the union 

U ball M (pa  (S)) 

is a-weakly dense in ball M(A). 

We formally identify this apparentlyweaker property in the next 

definition. 

(4.3.2) DEFINITION. Let A be a a-weakly closed unital algebra of 

operators on a Hubert space. Then A is said to have the complete CSL 

algebra approximation property CCAP if there exist subalgebras 

A 	A indexed by a directed set such that 
a 

A 	is completely. isometrically isomorphic to a finite 

dimensional CSL algebra 

for n = 1,2,... and for every operator matrix A in 

M(A) there exiS.t operators A 	in Mn(Aa) such that 

hAl! < JA II and A -)- A a-weakly.
ot  

We do not know that CCAP is strictly weaker than CSLsemidis-

creteness. Our main motivati:on.,for introducing this property is that 

we can show that certain CSL operator algebras have property CCAP, 

whilst it is not at all clear how to construct the maps 	
a 
 required 

in the definition of CSL semidiscreteness. 

't 10 

ME 



'1 . I _l 

On the other hand we remark that it is easy to show that a finite 

spatial tensor product of net.-aigebras is' .CSL-- semi discréte. It 

can also be shown that infinite tensor products of nest algebras are 

CSL-semidiscrete, but we will not develop these facts here. 

• CbflpletelydistribUti veCSL'algebras  

Let A be aCSL algebra (reflexive .operatr algebra with commutative 

subspace lattice) which enjoys the property that the linear span of the 

rank one operators.in  A is a-weakly dense. By a result of Laurie 

and Longstaff [14.]'.  this occurs if and only if the projection lattice 

L = Lat A is completely distributive, and for this reason we use the 

acronym of Gilfeather and Moore [o] and refer to A as a CDC algebra 

(completely distributive commutative lattice algebra). Nevertheless 

we only make use of the, rank one density property of such algebras in 

the arguments below. 

The next proposition shows that a reflexive operator algebra with 

commutative subspace lattice possess completely isometric copies of 

finite dimensional CSL algebras which uniformly 'approximate the rank 

one operators in the algebra, should. such operators exist. From now 

on all operator algebras exist on a .separable Hubert space. 

(4.3.3)' 'PROPOSITION. Let A be a CSL .algebra on a separable Hubert 

space. Then there exist unital subalgebras M 1 ,M2 ,... of A such 

that Mn  is completely isometrically isomorphic to a unital finite 

dimensional CSL algebra, and dist(RMn) -' 0 as n -'- 	for every rank 

one operator R in A. 

Proof.' Let R = e' of be the rank one operator , g - <g,f>e, and 

suppose that R lies in A. Let L be the support projection of e, 

MR 



• LU 

namely L = AE € L: Ee = e}, and let L_ = V{E € L: E J Li. Then 

L_f = 0. Indeed, if Lf. 0, then Ef 	0 for some projection E 

in L with E 	L, and hence E1e 	0. Thus E 1 (e. ®f)E = E 1e ®Et 	0 1  

contrary to our assumption. On the other hand if for some projection 

L we have Le = e and Lf = f, then a similar argument shows that 

eøf lies in A. 

Since the underlying Hubert space R say is separable we can choose 

a set of projections L 1 ,L 2 ,... in L which is dense in L relative 

to the strong operator topology. Recall that an atom of L is a 

minimal nonzero projection of the form F - E with F,E in L. We 

can assume that the sequence L 1 ,L 2 ,... is chosen so that if L 	is 

the finite sublattice generated by 	 then each atom Q of 

L appears as an atom of L for some n. Note that each projection 

L in L 	is of the form Q1 +...+ Q,. where Qk is an atom of L. 

Moreover the atoms of L are partially ordered by the relation 

Q < Q' if and only if QAQ' = QL(R)Q'. 

Choose nonzero vectors x 1 ,x 2 ,... in R so that the closed 

subspace R   spanned by {Lx: L} in L are pairwise orthogonal and 

have closed span R. Let Pn be the orthogonal projection onto R. 

Clearly QP 	 belongs to A for k = 1,2,... and each atom Q of Ln• 

Define S 	 to be the algebra of operators spanned by the rank one 

operators 

(i) Qlxk 0 Q 2x; 1 < k < t < n, 	Q1 ,Q2  atoms of L 	with 

1 

Qxk ®Qxk; 1 < - k < n, Q an atom of L. 

By the orthogonality of the vectors Qxk,  for 1 < k < n, and Q 

go 
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an atom of Lns  it is clear that S 	is completely isometrically 

isomorphic to aDm_module,  where m is the number of these vectors 

which are not zero. Bythe transitivityof < the space 'S is an 

algebra. Unfortunately the projections of type (ii) need not belong 

to A. (This will be the case however if Q is an atom of L and 

hence Q < Q.) Define M to be the subalgebra of A spanned by 

the rank one operators of type (i) as before, together with the operators 

(ii)' QPk1  1 < k < n, Q an atom of L 	but not an atom of L. 

Since Xk  is cyclic in Rk
for L it follows that QP

k =  0 

if and only if Qxk €Qxk = 0.. Moréover, 

QPk(QXk €Q1Xz) = (Qxk €Qlxk)(Qxk (&Q1X) 

when Q < Q1, and so there is a natural algebra isomorphism 
an:  M _.S,'  

This map is given by X - EnXEn where  En  is the orthogonal projection 

onto the span of the vectors Qxk,  for Q an atom of L and 

1 < k < n. In particular ct 	is completely contractive. But in fact 

E commutes with S and so X = EX @ EX. Since EX = ED, where 

D is the diagonal part of X, it follows that IIEXII < IXII and hence 

IfXII = ! EXII. Similarly, o is completely isometric. 

It remains to show that dist(RsMn) -)..0 for each rank one operator 

R in A. Suppose then that R = eef with Le = e and Lf = f for 

some projection L in L. Observe that if LL 0 then the projection 

Q = LL 	is an atom of L. (If Q' is a proper subinterval of Q then 

L_ + j L and L_ + > L_ contrary to the definition of .L.) In 

this case then we see from our construction that dist(QRQM) -* 0. On 

the other hand, from the density of {Ln}  in L,  and the construction, 

c{o 
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it follows that. dist(QR(L 1-Q),M) + 0, and dist((L-Q)RLM) - 0. 

(If Q 1 Q2  are atoms in Ln  .with  Q1 < L - Q and Q2  < L 	then 

Ql < Q2 , etc.). Hence dist(RM) - 0, completing the proof. 	0 

In the case of a nest algebra on a separable Hilbert'space there 

exists a sequence of finite rank contractions that converge to the 

identity in the a-weak topology. We want this feature in the more 

general context of a CDC algebra. 

(4.3.4) 'PROPOSITION. Let R 	be a sequence of finite rank operators 

which converges to the identl:ty in the weak operator topology. Then 

there exists convex combinations. S 	of ' {Rn } such that I!SIJ - 1 

and S 	I in thé.' a-weak topology. 

Proof. By the Banch Steinhaus theorem IJRIJ is bounded, and the 

proposition follows from a simple convexity argument. (Also see section 

(2.6), Lemma. 4.3). 

(4.3.5) 'THEOREM. Let .4 be a CDC algebra on a separable Hilbert space. 

Then A has.the complete CSL algebra approximation property. 

Proof. Using the last proposition we see that there is a sequence of 

contractive operators R 	 in the linear span of the rank one operators 

of A, which - converges to the identity, in the a-weak topology. 

Proposition 4.3.2 shows that there exist subspace M1 ,M2 ,... satisfying 

condition (i) of Definition 4.3.2. such that dist(RMn) -' 0 as n + 

for every rank one operator R. Let (A)  be a matrix in Mr (A) 	and 

let R 	 = R 	... 	n = 1,2,..., be the diagonal matrix in Mr(A)• 

1k t 
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Set (A?) = R(r)(A..)R(r) and note that (A?) - (A) (Y-weakly, 

and. KA?)IJ . II(A)II.; Since diSt((A?j)Mr(Mm)) +0 as m -'- oo 	for 

each n, it follows that'condition (ii) of.Definition 4.3.2 holds, 

completing the proof. 

The last theorem is useful in the dtation 

theory of certain CSL algebras. We should remark however that at the 

time of writing' (July 1987) the dilation:theory•for contractive repre-

sentations of finite dimensional CSL algebra,is.incomplete. Also it is 

not known whether there exists a CSL algebra which fails to be CSL 

semidiscrete or fails to have the CCAP property. 

References: The concepts and results of this section have not yet 

been published. They form part of the author's research with 

V.1. Paulsen on noncommutative non self-adjoint dilation theory 

(as do Chapters 4,5,6 and 8). 



CHAPTER 5 LIFTING THEOREMS FOR NEST ALGEBRAS 

The dilation and model theory for contractions on a Hubert space 

begins with the Sz-Nagy dilation theorem which asserts that every con-

traction possessesa unitary dilation, or equivalently., that every con-

tractive representation of the normed polynomial algebra P(ID) admits 

a *_dilation to C(T). Jn the last chapter we obtained the dilation 

theorem for a-weakly continuous contractive representations of nest 

algebras. For pairs of commuting contractions Sz-Nagy's theorem has 

two appareiiy different, but actually equivalent, generalisations, 

namely, Ando's dilation theorem and the Sz-Nagy-Foias commutant lifting 

theorem. In the present chapter (the text of which is taken from the 

preprint "Lifting theorems for nest algebras" by V.I. Paulsen and 

S.C. Power) we obtain analogues of these results for representations 

of nest algebras. 

Recently Ball and Gohberg have studied the contractive represen-

tations of upper triangular matrix algebras which have *_dilations  to 

the containing full matrix algebra, and in this context they obtain 

lifting theorem for a contraction commuting with the representation. 



In section 1, we prove the analogue of Ando's theorem for 

a finite dimensional nest algebra and a commuting contraction, 

which yields a new proof of the Ball-Gohberg result. In sec-

tion 3 we use the results of [9] to extend this result to 

arbitrary nest algebras on separable Hubert spaces. 

In section 2, we prove the analogue of Ando's theorem where 

both contractions are replaced by commuting contractive 

representations of finite dimensional nest algebras. We then 

extend this result in section 3 to arbitrary nest algebras on 

separable Hilbert spaces. In particular, we show that a 

pair of commuting cr-weakly continuous contractive representa-

tions of a pair of nest algebras admits a pair of commuting 

cr-weakly continuous *....dilations. 

In section 4 we use a lifting theorem to characterise the 

operator norm of abstract Hankel operators H   associated 

with a nest algebra A. We find that 

IIHx JI = dist(X,A) = 	sup JI(I -E)xEJI 
EELat A 

which is analoguous to the Nehari theorem for classical Hankel 

operators, and which also includes the Arveson distance 

formula. 

The lifting theorems have fundamental implications for 

tensor products of various non-selfadjoint operator algebras. 

We discuss this and related matters in another paper. 

McAsey'and Muhly have observed in [6] that contractive 

representations of upper triangular matrix algebras are 

14 



completely contractive, and so, by Arveson's. dilation theorem, 

admit *...dilations.  This was obtained by direct construction 

in [9], and here we pursue similar techniques together with 

the Sz.-Nagy-Foias lifting theorem to obtain generalised 

lifting and dilation theorems in the finite dimensional case. 

The extension to a-weakly continuous contractive representa-

tions of nest algebras is obtained by exploiting the semi-

discreteness property obtained in [9].  This property says 

that for the given nest algebras A on a separable Hubert 

space there are finite dimensional nest algebras A ni  com-

pletely contractive a-weakly continuous maps n  A - 

and completely contractive homomorphisms 4r: An -+ A, such 

that fn0n 	converges to X a-weakly for each X in A. 

This paper is self-contained with the exception of the 

proofs of semi-discreteness and the following two well-known 

results. 

The Sz.-Nagy-Foias lifting theorem. Let T be. a contraction 

on a Hubert space H with isometric dilation V on a Hilbert 

space K D  H, and let X be an operator with XT = TX. Then 

there exists an operator Y on K commuting with V such 

that IIYII = lixil and X = H'H' where P 	 is the orthogonal 

projection from K to H. 

We usually consider the isometric dilation V on 

K = H 9 H QD ... defined by V(h1,h2,...) = (Thl,DThl,h2 .... ), 
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where DT = (I_T*T)"2. It is important to note that Y 

can be chosen in this case so that Y*H c H, where H is 

identified with the first summand of K. (See [15].) In 

particular, we have T n  X  m =HVnymlHl for n,m = 0,1,2 ..... 

The Arveson dilation theorem [2].  Let A be a unital sub-

algebra of the C*_algebra  8, and let p: A -+ L(H) be a 

contractive unital representation. Then the following con-

ditions are equivalent: 

p is completely contractive; 

there is a uriital *-representation ii: B - L(K) 

on a Hubert space K D H such that p(A) = PHil (A) 1 H for 

all A in A. 

Recall that a linear map cp from a space of operators S 

into L(H) is said to be completely contractive if the induced 

maps cp between the normed operator matrix spaces M(S) 

and M(L(H)) are :contractive for n = 1,2,... . The 

implication (ii) 	(i) is elementary, and the direction 

(i) 	(ii) is obtained in two stages. First the completely 

positive map P  defined on A + A* by '(A1  +A) = 

is extended to a completely positive map p from B to L(H), 

by an extension theorem of Arveson. Then p is dilated to ii 
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by means of Stinespring's theorem [14]. In particular, if 

B and K are separable, the dilation space K can be 

assumed separable. Further details may be found in [2] and 

[ 8 ]. 

A nest algebra A on a Hilbert space R is an algebra 

of operators which leaves invariant the subspaces in a pre-

assigned nest of subspaces. We always take R to be separ-

able, and if R is finite dimensional we call A a finite 

dimensional nest algebra. General facts about nest algebras, 

and the density of compact and finite rank operators, may be 

found in the lecture notes [13], or the forthcoming book of 

Davidson [ 5 ]. 

• We write C(T) for the C*_algebra  of continuous complex 

valued functions on the unit circle, and write A(D) for the 

disc algebra regarded as a closed subalgebra of C(T). 

Ti 
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1. Lifting theorems for finite dimensional nest algebras. 

The lifting theorem of Ball and Gohberg [4] asserts that 

if an operator X commutes with a contractive representation 

p of a finite dimensional nest algebra A then there is a 

norm preserving lifting Y commuting with the *-dilation 11 

of P. 	Theorem 1.2 below is a generalisation of this 

which obtains a lifting with much more structure, and can 

be viewed as an analogue of Ando's theorem that commuting 

contractions admit commuting unitary dilations. Recall 

that Ando's theorem and the Sz.-Nagy-Foias lifting theorem 

are essentially equivalent. The deduction of the lifting 

theorem from Ando's theorem is elementary, whilst the other 

direction is obtained by a somewhat non trivial two-stage 

argument. For details, see the discussion in Parrott [7] 

and our remark 1.8 below. 

The following result is a structured from of the Sz-Nagy 

Foias lifting theorem which will be used in the proofs of 

Theorems 1.2 and 2.1. 

THEOREM 1.1. Let X1 , X2  and T be contractions on the 

Hilbert space H such that X 
1  T = TX2 , and such that with 

respect to the decomposition H = H 1 	H1  (m times), we 

have representing operator matrices 



x. 

0 

X. 
1 

x. i,2 

0 	.• 

x. 
i 

0 

1.2 

T2 
T= 

 
I T 
L. m 

for i = 1,2, (where the unspecified entries are zero). Then 

there are isometric dilations 	on the Hubert space 

H=HEK... of the form 

o 	3. 

0 

iL= 
2. 	 0 

U 

, i=1,2, 

with respect to if 
=1 

 &. . . 
	(m times), where 

= 	e H 1  s..., where U is the unilateral shifton VI 

and there is a contraction T on H of the form 

T = T1 FO. . tO T n 
I 	such that X 

1  T = TX2 , and 



T.= 1 

2. * * 

with respect to the decomposition li = H to 	e 
1 	i 	rn. 

Proof. Define X 	 on H 1  by S3(hi,h2,...) =ij 

(X..h1 ,D..h11 h2 ,...), where 	= (I_xx..)l/2! 	i 	1 < 2,ii 

1 	j rn-i and observe that the associated operator 31 is 

an isometric dilation of X1 . By the Sz.-Nagy-Foias lifting 

theorem there is a contraction T on H of the form 

10-1 
T=I I L*J 

with respect to 	H = II 	(H), such that 	= TX 2* 

Let D be the diagonal operator I WI ø.. w 1I on 

H 
= 	 where w is the primitive mt1 root of 

unity, and note that D*XiD = wX 1 , i = 1,2, and D*TD = T. 

Also D has a natural extension 	on 	such that 

D*XD = wX1 . Observe that (D*)j TD has compression equal 

to T and also intertwines X1  and X2 . It follows that 

-1 m the operator T = m 	(D*) J TDJ  has the required 
j=l 

properties. 

1.3 
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The proof of the next theorem contains the basic construc-

tion used in [9} of *_dilations  for contractive representations 

of finite dimensional nest algebras A C Mn• 

THEOREM 1.2. Let p be a contractive representation of a 

finite dimensional nest algebra A C M on the Hilbert space 

K, and let X be a contraction that commutes with p(A), 

for all A in A. Then there exists a Hubert space K D K, 

a *_homomorphjsm ii': M -+ L(K), and a unitary operator U 

on K which cornmu bes with v(B), for all B in B, such 

that 

X"p(A) = PHUr(A) 'K' 

for n = 0,1,2,..., and A in A. 

lot 
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Proof. We may assume that p is unital. We first consider 

the case where A = A u  is the upper triangular matrix 

algebra in N. 

For each i the operator E = P(e1) is a self-adjoint 

projection, with range space K 	and H = I1E?.. .eH. The 

contraction p(e. .) has range contained in H and kernel 

containing (H) 1  for 1 5 i S j 5 n. Let T 	 = E.P(e.)E.ij  

and we have 	((a)) = (aT) as an operator matrix on 

H 1 . . 	for (a)  in A, and T 	 = T+i.ij 

1 s i j s n. The representation p is determined by the 

contractions T i = T+i and we write P 
={T} 

 to indicate 

such a representation. Since X commutes with p we see that 

X = Xi••• (DX  n a diagonal operator on 111"n'  and that 

X . = T  i+1 , for 1 5 i s n-l. 
11 	i  

Without loss of generality we assume that H=H for 

all 1 s i,j n. If this does not already hold then we can 

arrange it to be true for a trivial dilation of the pair p 

and X obtained by adding trivial summands. 

102. 
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Let T  be the isometric dilation of the operator T1  

acting on this space H= H1  e3 H 83 •.., given by 

T.(h11 h21 ...) = (T.h1 ,C.h 11 h21 ...) where C. = (I_TT1)'1'2, 

1 5 i 5 n-l. By Theorem 1.1 (with reversed notation) there 

exist contractions X. on H. 
1  of the form 1  

r. 
I' 

with respect to the decomposition H = H e (H e H 1 ), such 

that X1T = TX1+1 	for 1 s i s n-l. 

These relations imply that X commutes with p(A) = 

on H and that X 1 p(A) = P if (A) I for all n = 0,1,2,..., 

and A in A. 	Here we identify H with ti 83 0 • 0... 

in H.. 
1 

Now define an isometry W on H by setting W(h 11 ...,h) = 

,T1 . . .T 1h) and define a *_homomorphjsm  

ITO: M - L(H) via IT 0 (e.) = E.., where e.. are the canoni-

cal matrix units in Mn  and E.. are the canonical matrix 

units for H = H 
1 
 83...EI3H 

fl 
. (Recall that H. = H. and so 

1 	3 
H. = H.). Let Y = X183. . 

tD3 
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We claim that W*Y"110(A)W = X'' i 0 (A) for all n = 0,1,..., 

and A in A• To see this, note that for 2 n i < j n, 

W*YEW is the operator matrix which is 0 except for the 

(i,j)-th entry which is, 

a * 	a * a a 	 * 	a * 	a * a 	 A 	 a fl a 	 a 	 a a 

T. 	...T XT ...T. 	= T. 	...T T ...T. 	X.T....T. 	= X'T. 1 1 	j-1 	i-1 	1 1 	i-i 1 1 	3-1 	1 

This last quantity is clearly the (i,j)-th entry of 

which is also 0 in its remaining entries. The calculation 

for other E.. 13 in A U  follows similarly. 

	

Thus,  for any h, k in 	K, we have 

<Xp(A)h,k> = <YiT 0 (A)Wh,Wk>. 	If we identify 1-1 with 

wit C K, then this last equation becomes xnp(A) = P11YIT0(A) 

Finally, if we let U 1  be the unitary dilation of X 1  on 

K 0 , H c K 0 , set U = U1e ... f3U1  on K = 	 (n copies), 

and let i: M -* L(K) be the obvious representation,we then obtain 

the desired result, for the case that A is the algebra of 

upper triangular matrices. Note that H is contained in 

the i-th copy of K. 

The case of a general nest subalgebra A of M is deduced 

by first restricting p to the upper triangulars A, 

applying the above result to obtain (ii,U), and observing 

that the desired relations also hold for all A in A as 

well as just in A.  To see this it will be sufficient to 

(04. 
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let i < j such that e 3].  .. c A and show that X'p(e. 1 ) = 

PHUTr(e.) 'H 

	

Let W. 
1 	1 
: H. 	0 -+ K be the isometric inclusion obtained 

above, so that W: II -* K defined by W(h 11  ... ,h) = 

(W1h1 ,...,wh) satisfies XT1p(A) = W*tJ"iT(A)W, for A in 

A. In terms of operator matrices this says that, 

= WUW., 

for n = 0,1,2,..., and 1 	i 	j 	n, with T. = I.H. 

Since p(E. .)p(E..) = p(E..), we have that T. .T.. 
= 13 	31 	 11 	 13 31 

3. 

	

* 	* 	* 	 * 
Hence, W 1  .W J  .W J  .W ]. . = W 1  .W 1  . and so W 3  

.W 
3  
.W 

1  
. = W.. Thus, 

3. 

X'T . 
= (W*U11w ) (WW ) = WU''W , and so the operator matrix 

Jil 	iii 	ii 	jli 

X11 p(E ) ii 	 j]. 
is equal to W*U' ii (E .)W. After again identifying 

H with wH, we obtain the desired result, 	 a 

What we have really shown in the above proof, is that the 

relations XT = TX+i, i = l,...,n-1, have a representation 

(U11 W11 ...,W), where U1  is unitary and the W1  are isometries, 

such that XT = W1UW ~1I  and W.W.W.1 = W 41 . The 

initial relations determine a representation P
IT and 

1 '  
commuting contraction X, while the latter clearly yield 

the dilation. 

o5 
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Let A c m be a nest algebra and let Mn(C(T)) = MC(T) 

denote the algebra of n x n matrices with entries from 

C(T). We identify A € A(D) with the subalgebra of Mn(C(T)) 

consisting of those matrices of functions (f) such that 

f. 	belongs to A(D) and f.:ij = 0 if e.. does not 

belong to A. The next corollary is an immediate consequence 

of the last theorem and the complete contractivity of com-

pression mappings and *_representations . By Arveson's 

dilation theorem it is in fact equivalent to Theorem 1.2. 

COROLLARY 1.3. Let A be a finite dimensional nest algebra 

and let p1 : A - L(H) and p2 : A-(D) - L(H) be commuting 

contractive representations. Then the representation 
P1 g P2 

of A ® A(D) defined by p1 	p2 ((f)) = 	Pi(f)P2(e) 
1,] 

is completely contractive. 

COROLLARY 1.4. (Ball and Gohberg) Let A be a finite dimen-

sional nest algebra with enveloping matrix algebra 	let 

(p,K) be a representation of A with a contractive 

dilation (IT,K), and let X be an operator on H such that 

Xp(A) = p(A)X for all operators A in A. Then there exists 

an operator Y on 	K such that IIYII = IIXIJ, Yn (A) = u (A)Y 

for all A in M, and X = P 
H'I1 

It" 



1.10 

Proof: Let M be the minimal reducing subspaces for i (M) 

which contains the subspace H. Then the associated restric-

tion representation is a minimal M-dilation of (p,H), and 

is unique up to the usual notion of unitary equivalence of 

dilations. 

Without loss, let X be a contraction, and let (ji 1 ,K 1 ) 

and U in L(K 1 ) be the commuting dilations of (p,H) and 

X provided by Theorem 1.1. 	If M is the minimal reducing 

subspace for ir 1 (M) containing H, then (rr,M) and (rr 1 ,M1 ) 

are unitarily equivalent dilations, and so we may identify 

them. Define Y = PMUIM and note that Y commutes with 

the 	operators Tr(A)I M . Let Y = Y0  e 0 on M 	= K and 

we are finished. 

Remark 1.5. The intertwining version of the lifting theorem 

concerns an operator X satisfying Xp 1 (A) = p2 (A)X for 

all A in A, where p1  and p are contractive represen-

tations of the nest algebra A. The existence of an inter-

twining extension for dilations
11 2  of p1 , p2  follow 

easily from the theorem above and the familiar observation 

that the contractive representation p = p 	p1  commutes 

with the operator 

ox 1o o 

tol 
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1.6. 	Ball and Gohberg provide two proofs of the lifting 

theorem above both of which are quite different from ours. 

The most elaborate of these, which also yields information 

about all the commuting liftings, makes use of the Krein 

space approach to the analysis of invariant subspaces for 

representations of nest algebras ([3],[4]). The other argu-

ment uses a dual extremal formulation and a use of the 

Hahn-Banach theorem. This latter argument is analogous to 

Sarason's proof of his early version of the lifting theorem 

for contractions related to the unilateral shift. 

1.7. 	A different proof of Theorem 1.2 can be given that is 

similar to arguments used to deduce Ando's theorem from the 

Sz.-Nagy-Foias lifting theorem as discussed by Parrott [7]. 

Here the lifting theorem is used to obtain a dilation of 

T commuting with the isometric dilation 3 of the contrac-

tion X. At this point it must be observed that the pair 

X provide a commuting power dilation of the commuting pair 

T, X. Next an extension T of T is constructed using the 

unitary dilation X of X, so that T and X provide a 

commuting power dilation for the pair T, X. In fact T is 

essentially the strong limit of the sequence (X*)x". In 

this way the dilation problem is reduced to the case of a 

commuting pair where one of the contractions is unitary, and 

there are direct methods to treat this. 

log 



1.12 

Suppose now that we have, as before, contractions on a 

common Hubert space satisfying the relations X.T.1= TX+i, 

i = l,...,n-1, and hence a representation p of the upper 

triangular n x n matrix algebra commuting with the contrac-

tion X1  ... 	n e, X . Let X and X be the natural isometric 

and unitary dilations respectively for X, with summands on 

a common dilation space. Then, using the lifting theorem, 

we can obtain dilations 	of T1 , satisfying the dilated 
3.

relations, and hence a representation ' of p such that 

' and 	are a commuting dilating pair for p and X. As 

in the last paragraph we next construct the norm preserving 

extension T 1  of T 	at the strong limit of the sequence 

to obtain a representation 	such that 	, X 

form a commuting dilating pair for p, X. Once more we 

have reduced to the case where X is a unitary contraction 

and various direct methods can be used for this case. One 

such method is indicated in the next remark. 

1.8. 	For doubly commuting contractions Ando's theorem has 

a more elementary proof. Similarly, if both X and X* 

commute with the representation p in the statement of 

Theorem 1.2, then we can provide more elementary arguments. 

A useful result in this context is the lifting theorem of 

Arveson for the commutant of the range of a completely 

1 04 
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positive mapping (see [2] and [8, p.162]): if Ti. is a unital 

*_representation of a.C*_algebra B, on the Hubert space 

K, and if P: K - H is an orthogonal projection, then there 

is a *....isomorphism from the commutant {Pn(5)P}' onto 

{(B)}' fl {P}'. Using this principle we can obtain a dilation 

Tr 	of p commuting with X1  and X, where X1  is a 

dilation of X. Applying the principle again, for the 

C*_algebra  generated by the unitary dilation U of X 1 , 

we obtain a representation n commuting with U, with the 

required properties. 

IW 
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2. Commuting contractive representations of finite dimensional 

nest algebras. 

We now turn to the proof of an Ando-type dilation theorem 

for a pair of commuting contractive representations of finite 

dimensional nest algebras. 

THEOREM 2.1. Let p1  and p2  be contractive unital repre-

sentations of the finite dimensional nest algebras A 1  and 

A 21  on the common Hubert space H, such that p1 (A1 )p2 (A2 ) 

= p2(A2 )p1 (A1 ) for all A in 	i = 1,2. Then there 

exist unital *-representations 
n .' 2 of the enveloping 

matrix algebras B ]  and B 2 respectively, on a Hubert space 

K J  H, such that 

	

(1) 	p1(A1)p2(A2) = PHTT1(Al)1r2(A2) 1H 

	

(ii) 	 = rr 2 (B 2 )n 1 (B1 ) 

for all A1  in A 	and B i in 	i = 1,2. 



2.2. 

Proof. Assume first that A1  and A 2  are the algebras of 

upper triangular n x  n and in x  in matrices, respectively, 

spanned by the matrix units e 13 , 1 s i s j s n, and 

1 s i s j s in, respectively. Let 
Hi =

Ili
( e 1 )t1, 1 s I s n, 

and let H 
1
. 
,) 

. =
02 J

(f. .
J 1.  )H. for 1 	j s in. Without loss we 

.  

may assume that H. 	Hl 
 1 for all i, j. With respect 1,] 

to the decomposition H1  e...€ ti 	the operators 

T = p1 (e12  +...+ e_1, ) and X = 	+•••- 

have representing operator matrices 

0 	T1  

T=L0 T2 

	

n 0 	T-1  

l  

=L x2 
X 

	

.. 

ftl 



and with respect to H. = H i 	 H. 
1 	,l 	 1,111 

we have 

2.3 

T. 1,1 

T. 
1 

T12  

T. 
1 ,rn 

for 1 	i r= n-i, and, 

0 	x. 
1,1 

fo 
X. 

xi,2  

Xi m  

for 1 i n. Note that X commutes with T if and only 

if X. 1,3  .T i,j+1  . 	
1 

= T. ,) .i+i,jX , for 1 5 i fi n-i and 

1 5 j 5 rn-l. Conversely if we have Operators satisfying these 

relations then the operators T 1 ,...,T 1  determine a repre-

sentation of A commuting with the representation 

113, 
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1 	n 
= 	 of A2  on H, determined by the representa- 

tions p of A2  on H. associated with the contractions 

Xi  ,...,X in , for l5i5n. ,i 	i,-1 

By Theorem 1.1, and its proof, if X. . 
1,3 is the usual 

isometric dilation of X. 
13 	 ]. 

. on H. ,j 
	- 

= H. ,:j . 	H 
1,3  
. . B... for 

1 s ifi n, 1 s j s rn-i, then there are dilations 

= i l l 	i,m of T, 1 s i s n-i, such that 

i,ji,j+l = 	 Hence we obtain associated commuting 

contractive representations P
i

and p2 . Moreover, in view 

of the special form of the operators T13 , products of the 

operator T. .1,3  dilate the corresponding products of the 

operators T 3 	and hence p1  (A1 ) p2  (A2) = PH (A1 )' 2  (A2) 'H' 

for A. in A.1 , I = 1,2. 1  

Exchanging the roles p1  and p2  in. the .argurent above 

we may assume that p, is the dilation of 	obtained by 

the canonical isometric dilations Til ...,Tft-i of T1 ,...,T 1 , 

and thatis a contractive commuting dilation such that 

this pair '' 2 dilate the pair p1, p2 . Write Xi••@Xn 

.for 
	1, for the dilation ' (f 2 	n- ,n 

+...+f 	of X. 

As in the proof of Theorem 1.2, define the isometry W on 

by W(h11...,h) = 	iTih2TiTn_ihn ) 	and define 

the *-isomorphism a1: M  - L(H) by a1(e1) =ij, where 

is the partial isometry identifying the j th and  1th 

summands of H. Let Y = 	 (n times), and observe 

that, as before, for A in A11 . 

Xp1(A) = PHY%-l(A) 
'H 	 114 
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where we have identified H with WH c H. Using Y we 

can construct a contractive unital representation ¶ = 

(n times) of A 2 , which commutes with a1 , and satisfies 

= PH-r(A2)al(Al) 'H 

for 
A i 

in Ai . i = 1,2. We have now reduced to the case 

where one of the representations is an inflation and this can be 

dealt with in a very explicit way. 	Let 
'2 

1 
• Mm - L(K 1 ), 

K 1 D H 1  be the canonical *-dilation of T 	Let 

Ti 2  = 14 	T4 (n times) on K = K1  ...e K 1  and let 

rr 1 : M - L(K) be the obvious representation, which dilates 

and commutes with iT 2 . 	Then n 	 and TI 2  give the 

desired dilation of p1  and p2 . 

The case of general finite dimensional nest algebras, 

A1 l? A2  is now derived by first restricting p.1  and p2  

to the upper triangular subalgebras A l ' up 42u respec-

tively. and obtaining the dilating commuting pair Ti 1 , Tr 2  

for the restrictions of p1  and p. The argument in the 

final paragraph of the proof of Theorem 1.1 already shows 

that 111 and 112  necessarily have the dilation properties 

for A1 . A 2 . 

us- 
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3. Dilation and lifting theorems. 

We now generalise the results of the last two sections 

to general nest algebras acting on a separable Hubert space 

R. Our method is to use the semidiscretness of nest alge-

bras to obtain the complete contractivity of a representation 

of a spatial tensor product algebra associated with the 

given representations. 

It was shown in [9] that a nest algebra A on a separable 

Hubert space is semidiscrete in the sense that there are 

finite dimensional nest algebras A1 ,A21 ..., completely 

contractive a-weakly continuous maps 	A 	and com- 

pletely isometric a-weakly continuous homomorphisms 

A - A, such that 	o(A) - A a-weakly for all A 

in A. Moreover, we can arrange that dist(K,4i(A)) -+ 0 

for each compact operator K in A,- and we shall need this 

extra detail in the proofs below. 

THEOREM 3.1. Let A be a nest algebra on a separable Hilbert 

space R, let p be a a-weakly continuous contractive repre-

sentation of A on H, and let X be a contraction on 11 

that commutes with P(A). Then there is an inflation 

ii: L(R) - L ( R 	...) given by Tr (A) = A 3 A &.., with at 

most countably many copies, a unitary U that commutes with 

ri(A), and an isometry V: K - R 	R &.., such that 

X'p(A) = V*U(A)V 

U' 
for all n = 0,1,2,..., '  and A in A. 
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Proof. Let B denote the C*_algebra generated by the com-

pact operators and the identity and let A 1  = A fl S 1 . We 

regard A 1  ® AD) as a subalgebra of the C*_algebra 

® C(T). 

Let C 11 C 2 ,... be subalgebras of A which are completely 

isometric images of finite dimensional nest algebras, and 

satisfy dist(K 1 C) - 0 for every compact operator K in A. 

Clearly, dist(A 1 C) - 0 for every A in A1 . 

By Corollary 1. 3, X and pC gives rise to a completely 

contractive representation of C ® A OD) . From this it 

follows that 	X 	and pJA1  gives rise to a completely contrac- 

tive representation of the algebra A1  ® ACID). 

Hence, there exists a separable Hubert space K, a 

*_homomorphism 	- L(K), a unitary U on K which 

commutes with 1T(B), and an isometry V: H - K such that 

XnP(A) = v*U(A)v, 

n = 0,1,2,..., and A in A1 . 

III 
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The *_homomorphism ii decomposes as v 03 Tr 	 on 

K = K 1  03 K with iT faithful on the compacts and n zero 

on the compacts. Relative to this decomposition U = U 1  03 U0  

with U. in the commutant of i j (81 ) I = 1,2. 

Now using the a-weak continuity of p, and choosing a 

sequence K of compacts in A 1  which converges a-weakly to 

the identity (see [13] or [5]), we see that in fact, VH C  K 1  

and X'p(A) = V*U 1 (A)V for A in A 1 . Note that rr 1  is, 

up to unitary equivalence,a countable direct sum of the iden-

tity representation. Hence, TT 	is a-weakly continuous, 

and since A 
l 
 is a-weakly dense in A the remainder of 

the proof follows. 

The following corollary generalises the Ball-Gohberg 

theorem and is obtained easily from Theorem 3.1 and elementary 

arguments. 

COROLLARY 3.2. Let A be a nest algebra on R, let p be a 

a-weakly continuous contractive representation of A on H, 

with a-weakly continuous L(R)-dilation ii on K D  11, and 

let X be an operator commuting with therange of p. Then 

there exists an operator Y on K which commutes with the 

range of ii and satisfies IIYI! = lixi!, X = 

Itz 
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THEOREM 3.3. Let A 1 , A2  be nest algebras on separable 

Hubert spaces R1 , R2 . Let p1 , p2  be a-weakly Continuous 

representations of A 1  and A2  on the separable Hubert 

space H, such that p1 (A1 )p2 (A2 ) = p2 (A2 )p1 (A1 ) for all 

in A., i = 1,2. Then there exist a-weakly continuous 

*_isomorphisms v , IT 2 of L(R1 ) and L(R2 ) on a separable 

Hilbert space K D K, such that 

W 	p1(A1)p2(A2) = PH 1i1(Al) 11 2 (A2 ) Il_f ,  

(ii) 	1T 1 (B1 )TT 2 (B2 ) = 

for all A. 
1 

in A.1 , B. 1 	 1. 
in L(R.), i = 1,2. 

Proof. Let 	 i =1,2, be subalgebras of Au 

which are completely isometric images of finite dimensional 

nest algebras, and which satisfy dist(K1,C(1)) - 0 for every 

compact operator K  in A1 . Let A be the C*_al gebra  

generated by the compact operators in A. 	with the 

identity operator. 

By Theorem 3.1 the representation 	 restricted to 

CM ® C 	 is completely contractive. From this it 

follows that p ® P is completely contractive on the opera-

tor algebra A 1  e A C L(R1  ® R2 ). Hence there exists a 

separable Hubert space K D H and a *-isomorphism ii of 

(where B i is the C* algebra generated by the 

I 
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identity and compacts on R) which dilates p1  ® p2 . As 

in the proof of Theorem 3.1 	ii decomposes as 

on K1 ED K 1  with Tr 	 faithful on the compacts and 

zero on the compacts. Using the cr-weak continuity of 

® 	arid choosing sequences of compact operators 

in A., which converge cr-weakly to the identity, we see 

that K c K 1 , and that the restriction representations u'J81  

and T I2 provide the desired commuting dilations of p 1  

and p2. 	 a 

110 
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4. Generalised Hankel operators 

It is well known that Nehari's theorem for Hankel operators 

on the Hardy space H 2  is a simple consequence of the 

Sz.-Nagy--Foias lifting theorem. Ball and Gohberg obtained 

an analogous Nehari theorem in the triangular matrix context, 

where triangular truncation replaces the Riesz projection. 

More general .Nehari type theorems were also obtained indepen-

dently in [11],  [12], for general nest algebras and for nest 

subalgebras of semi-finite factors, the main tools there being 

generalised Riesz factorisation, and Arveson's distance formula. 

Here we note how such results and Arveson's distance formula 

follow from the lifting theorem, Theorem 3.1. 

To prove these results, it will be useful to consider anti- 

representations, i.e., multiplication reversing representations. 

A general principle says that every dilation theorem about 

representations has a corresponding statement for anti-repre-

sentations and we wish to point out why this is so. Let A 

be a subalgebra of the C*_algebra  B and suppose that 

P: .A -+ L(H) is a contractive anti-representation and we wish 

to know if p dilates to a *_antj_homomorphjsm 1: 5 - 

H c K. We call this an anti-dilation. If we let B 
op 
 denote 

-  

B with multiplication reversed then B 	 is a C*_al gebraop  

and ir is a *_homomorphism on B• Moreover, p is a 

representation of the subalgebra A0 . Thus, by Arveson's 

III 
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theorem it is enough to know that p is completely con- 

tractive on A0 . We must be careful though because the 

norms on N (A ) are inherited from N (5. ). We use n op 	 n op 

11(b)Ii 0 	to denote the norm of (b) in Mn(Sop)• We 

leave' it to the reader to check that iI(b)II 0  = II(bij)tIII 

where t denotes the transpose. Thus, to see that an anti-

homomorphism has an anti-dilation one needs to verify that 

II (o(a) ) II f  II (a) JI 0 , = II (aj)tII 

Now if A is a nest algebra and p: A - L(I1) is a contrac-

tive anti-representation, consider 	: A - L(H), (a) = p(a). 

This is a contractive representation, and so completely 

contractive. Thus, 	Ika)II 	II((a))Il = I1(P(a))II 0  = 
II(p(aij )) t II from which it follows that P has an anti-

dilation. Hence, we have that every contractive anti-representa-

tion of a nest algebra has an anti-dilation. 

Similar, arguments yield "anti" versions of our other 

theorems concerning nest algebras and we use these freely in 

what follows. 

Let E be a complete nest of projections on a separable 

Hubert space R, with nest algebra A. 	Let C 2  be the 

Hubert space of Hubert-Schmidt operators on R and let 

H 2 (E) = C 2  fl A be the upper triangular subspace, with ortho-

gonal projection I: C 2  - H 2 (E). For X in L(R) define the 
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generalised multiplication operator L X on C 2  and the 

generalised Hankel operator H: H 2 (E) - (H 2 (E)), by 

LxT=XT , 	T E C 2 , 

HxA=PLxP 2 
H (E) 

THEOREM 4.1. Let X E L(R). Then there exist an operator 

Y E L(R) such that H  = H 	and IYI = IIH X II. Moreover, 

IIHxIJ = dist(X,A) = supjI(I -E)xEI 
EEE 

Proof. Let p1 , p be the a-weakly continuous contractive 

unital anti-representations of A on H 2 (E) and (H 2 (E)) 

given by 

Pi  (A) = RAI2 

= P'RAI2 

where RA  is the right multiplication operator on C 2 , 

RAT = TA. Then, for A1  in H2 (E) and A in A we have 
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P2(A)HXA1 = p 2 (A)P(XA1 ) 

= P'((P 1 (XA1 ))A) 

= P((P'(xA1 ) + P(XA1 ))A) 

= P'((xA1 )A) 

= P(x(A1A)) 

= HxPl(A)Ai 

By the intertwining version of the antirepresentation 

version of Theorem 3.1, there is a operator 	on C 2  such 

that 

IIIl = IFhi x IJ 

Tr 2 (B) Y = iir 1 (B), 	B E L(R), 

H  = ' J 2 
H (E) 

where iv 3  and Tr 
2 
 are the *_anti_jsomo rphjsms  of L(R) on 

C 2  given by u(B) = RB, and which are R(L)-dilations of 

pl  P 2  

Condition (ii) implies that Y = L for some operator y 

in L(R) with JIYII = YII, and so the first part of the 

theorem follows. Note that if H  = H then A = X-Y belongs 

to A, and so dist(X,A) 5 IIYII = IIHX !I. The inequality 

IIHx II S dist(X,A) is elementary, and so the first equality 

tl1. 
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holds. It remains only to show that 

IJIIxPI = supjj(I-E)XEJJ. 
EEE 

Note that if 	Q = E-E_ is an atom of E 	then 	C 2  Q 	is a 

reducing subspace for 	Lx  and 

Hx IH 2 (E)Q = HxIEC2Q = L 
E 	

1c 2Q. 
XE 

If C is purely atomic then C 2  = C 2Q, where the direct 

sum is taken over all atoms, and so 11H X 11 =  SuplIL 	Ic 2 Q11 =  
EXE 

supJIEXEIj, as desired. 

In a general nest it is easy to see that if F < E then 

IIH x II 	(I-E) XFJJ,  by considering the subspace FC 2  (E-F) of 

H 2  (E). Thus if E_ = E we have 11H x 11 	II (I-E) XEII.  Our 

earlier reasoning gives this inequality when E is an atom 

(E 30 E_) and so it follows that we need only show that IIHX II 
is dominated by suplf(I-E)XEJf. Choose A E H 2 (E) and 

EEE 

B E (H 2 (E)) 	of unit norm so that <XA,B> 	IIHxIi_. There 

is a finite nest E c E so that lIT'_BfI c  < EIjXII, where 

is the. trucation operator for H2 (E). Let B1  = PB and 

note that H 2 (E) D  H 2 (E). Then, using the formula in the 

finite (purely atomic) case, we have 

7-5 



max II(I-E)XEII = IIPL P Jj 
EEE 	 n X n 

n 

kxA,P1 B>I 

IkXA,B>I - E 

IIFIII_2E 

and so 

sup(I-E)XEjf ? IlH x Il 
EEE 

as desired. 

4.6 
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CHAPTER 6 	SCHUR PRODUCTS, MATRIX.COMPLETIONS, AND DILATION THEORY 

We saw in Chapter 	that a contractive Hubert space representation 

of a finite dimensional nest algebra is completely contractive, and this 

result served as the cornerstone for a general dilation theory for nest 

algebras. To carry out a similar program for reflexive algebras with 

commutative subspacêlattice,the so called CSL-algebra, requires an 

examination of Schur product maps and inflated Schur product maps on 

certain subspaces and subalgebras of M. Such a study has considerable 

independent interest and, as we shall see, is closely tied to completion 

problems for partially defined matrices. 

In the next two sections we prove that a necessary and sufficient 

condition for a. given partially positive matrix to have a positive 

completion is that a certain Schur product map defined on a certain 

subspace of matrices is a positive map.. By analysing the positive 

elements of this subspace we obtain new proofs of the results of Dym-

Gohberg [5] and Grote-Johnson-Sá-Wolcowitz [7]. We also observe that 

Arveson's distance formula is a consequence of this analysis. In the 

third and fourth sections we give some applications and some generali-

sations of these results to partially defined operator matrices. In 

the last section we discuss dilation theory and various open problems. 
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1. Introduction. An n x n complex matrix is partially defined if only 

some of its entries are specified with the unspecified entries treated as 

complex variables. A completion of a partially defined matrix is simply a 

specification of the unspecified entries. Matrix completion problems are 

concerned with determining whether or not a completion of a partially 

defined matrix exists which enjoys some property, e.g., contraction, positive, 

Toeplitz, Hankel. Generally, one knows that every fully specified submatrix 

already has this property. 

Perhaps the best known result of this type is due to Dym-Gohberg [5]. 

They proved that if T = (t) is a partially defined n x n matrix, 

i,j = l,...,n, such that tj 'is defined only for Ii-ji :5 ic, where 

0 < k < n-i, which has the property that all its fully defined k x k 

principal submatrices are positive semi-definite, then T can be com-

pleted to a positive semi-definite matrix. That is, if we are given com-

plex numbers {t}, ij = 1, ..., n, Ii-ji 5 k such that each k x k matrix 

Ti = (ti+,i+), i,j = 1,...,k is positive semi-definite, 10, ..., n-k, 

then we may choose {t, 3 ), Ii-ji ) k such that T = (t 1 ,) is a positive 

semi-definite matrix. This result is usually summarized by saying that 

every partially positive banded matrix has a positive completion. Dym-

Gohberg [5] also proved the analogous result for block-banded patterns. 

The best result about positive completions is due to [7].  Before de-

scribing this result, it will be convenient to fix some notation. 

A subset J of {l,...,n) x {l,...,n} will be called a pattern. A par-

tially defined n x n matrix T = (t) will be said to have pattern J if 

tj ,j is specified if and only if (i,j) G J. A pattern J will be called 
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symmetric if (j,i) E  J for all i and if (i,j) E J then (j,i) E  J. A par-

tially defined matrix T will be called symmetric provided that its pat-

tern J is symmetric, that t 11  is real for all i, and that whenever tjj is 

specified,. then tjj = t. 

Let T be a partially defined n x n matrix with pattern J. By a 

specified submatrix of T we mean any K x L matrix of the form B=(bk,J), 

where bk,1 = tikljl 	and (ik,jl) CJ for 1 :5 k :5 K, 1 15 1 :9 L. A princi- 

pal specified submatrix of T is a k x k specified submatrix B = (bj.,j) 

with bk,1 = tik,il where (ik,il) E J for 1 5 k,1 5 K. 

Throughout this paper, we shall use positive to mean positive semi-

definite. 

A partially defined matrix T is partially positive if it is symmetric 

and if every principal specified submtrix of T is positive. 

Clearly, a necessary condition for a partially defined symmetric 

matrix to have a positive completion is that it is partially positive. How-

ever, not every partially positive matrix can be completed to a positive 

matrix, examples have been given in [7],  and in section 3, we give a means 

of generating many new examples. 

We give (Theorem 2.1) a necessary and sufficient condition for a given 

partially positive matrix to have a positive completion. 

In [7], a characterization is given of those symmetric patterns J 

such that-every partially positive matrix with pattern J has a positive 

completion. Their result implies the results of Dym-Gohberg cited above 

since the banded and block-banded patterns can be easily seen to meet this 

characterization. Not surprisingly, the characterization of these patterns 

in [7] is combinatorial. We. describe this characterization in section 2. 
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To each pattern J we associate a subspace S of the n x n matrices, 

M, by setting, 

S = { (au) E M: Bij = 0 if (i,j) 9  J }. 

If T = (t) is a partially defined matrix with pattern J, then T 

yields a well-defined linear map 	 - OT: Si 	S. via •T  ((ajj)) = (aijtjj) 

We shall refer to such maps as Schur product maps. 

We prove in section 2, that a partially positive matrix T has a posi-

tive completion if and only if 0 is a positive map. That is, if and only 

if T(P)  is positive for every positive P in S. This result yields dif- 

ferent proofs of theorems of Grone-Johnson-Sa-Wolkowitz [7], Dyin-Gohberg 

[5], and Haagerup [8]. In section 3, we study generalizations of these 

results to partially defined matrices of operators. 

There is another characterization of the above subspaces and maps 

which will be central; Let D E Mn be the subalgebra of Mn consisting of 

diagonal matrices. A D-bimodule is a subspace of Mn which is invariant 

under left and right multiplication by elements of D. 

An operator system S is a subspace of a unital, C*_algebra  which con-

tains the identity and has the property that if S € S then S C  S. 

The following is immediate. 

Proposition 1.1. Let S  Mn be a subspace, then Sis a D-bimodule if 

and only if S = S for some pattern J. Moreover S is also an operator 

system if and only if J is symmetric. 
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Let q be a D-bimodule. A map 4' : S - Mnis a D-bimodule map pro-

vided that $(D1AD2)Dl$(A)D2 for all D1,D2 C  171-, and A C 
Si - It is not dif- 

ficult to check that • is a D-bimodule map if and only if there is a 

partially defined matrix T with pattern J such that 4' = 

More generally, let R, ..., 	be Hilbert spaces, H H ...e iç, 

and let L(H) denote the bounded linear operators on H. If for some pat-

tern J we are given bounded linear operators Tij:Hj 4  Hi for every 

(i,j) E J, then we may define a linear map 

4'T Si 
 4 L(J1) via 4'((aij )) = (aid 

We shall refer to T = (T) as a partially defined operator matrix and call 

an inflated Schur product map. If we identify D C  D with the cor- 

responding diagonal operator on H, then we may regard 1(11) as a D-bitnodule 

also. Clearly, a map 4' : S 4  L(E) will be a D-bimodule map if and only 

if it is the inflated Schur product map given by some partially defined 

operator matrix. 

Our main technical tool will be a theorem of Arveson [1]. Let A be a 

C*_algebra  with 1, then there is a C*_algebra  consisting of n x n matrices 

with entries from A, denoted M(A). In the case of L( we can identify 

M(L(II)) with L(ff(D... 9 B) (n copies). If Sis an operator system in A, 

and •:S4 1(11) is a linear map, then we can define linear maps 

(): Ms (S) 4 M(L(B)) via  •() ((aij)) = (4'(aij)). 

The map 4' is called positive if •(p) is positive for every positive p in S, 

and completely positive if ()) is positive for every n. 
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Arveson's [11 Extension Theorem 1.1. Let A be a unital C*_ algebra , 

let Dbe a tmital C*_subalgebra  of A and L(B), and let sE A be an oper-
ator system and D-bimodule. Then every completely positive D-bimodule 

map •: S-' L(B), can be extended to a completely positive D-bimodule map 

on A. 

This theorem is proved, except for the D-bimodule part, in [1].  The 

inclusion of the D-bimodule action is standard and can be found in [3] or 

[10]. However, since the D-bimodule version is not well-known, we indicate 

how it can be deduced from the usual version of Arveson's extension theorem 

for the special case of D = D. 

Recall the Schwarz inequalities for completely positive maps [3]: 

~ Us(l)U 2  •( a*a ), 

~ I(l)u 2  •( aa*). 

Now given a decomposition H = III . . .® bç, a subspace S E Mn and a 

D-bimodule map • =
: S -* L(B), let +:M - L(If) be any completely 

positive extension of •. We argue that + = +- for some operator matrix 

T. To see this fix a matrix unit Ej . , so that +(Ei)  has some operator 

matrix (Bk]). Applying the two Schwarz inequalities with a = E13 , one 

finds that necessarily Bk,] = 0, except when (k,]) = (i,j). 

Proposition 1.2. Let H = HI a . ..e bç, let P = (Ti) C L(R) be an oper-

ator matrix, and let •T:Mn 4  L(B) be the inflated Schur product map asso- 

ciated with P. Then the following are equivalent: 

j) T  is completely positive, 

" 	is positive, 

iii) T 	is positive. 
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Proof. Clearly, (i) implies (ii). Let P be the matrix of all l's. 

Since P is positive, and •T(P) = T, we have that (ii) implies (iii). 

Now assume that T is positive, let b € H, h = h1  a ... 	h, and let 

A = (j aj ) be  typical rank one positive in M. Then 

<Tl7'3> = < Tha ,ha> 1 0, where ha  = (a1h1) ED ... 	(a4.). 

Since every positive in Mn is  a sumof rank 1 positives, we have that 

is positive. Thus, (iii) implies (ii). But now notice that 

where T(k)  is the operator matrix on H... H (k copies) which is T in 

every entry, i.e., T(k) = TOP where P is the k x k matrix of l's. Since 

T(k) is positive, 41  is positive and 	is completely positive. 

Corollary 1.3. Let J be a symmetric pattern, H = 14 ED ... Aç. and let 

T be a partially defined operator matrix on H with pattern J. Then T has 

a positive completion if and only if the inflated Schur product map 0 T  is 

completely positive. 

Proof. If T has a positive completion, T, then 	is completely posi- 

tive and hence so is 	= 	. Conversely, if 	is completely posi- 

tive, then by Arveson's extension theorem, it has a completely positive 

4-bimodu1e extension • to M. But • = • for some Tand clearly T is a 

completion of T. 

We also obtain a new proof of an old result of Choi's. 
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Corollary (Choi [41) 1.4. Let *:Mn -  L(Ii'), then # is completely posi-

tive if and only if ((E)) is positive, where Eij are the standard matrix 

units. 

Proof. If is completely positive then 	= 	 is pos- 

itive. Convers1y, if T = 	is positive then 0 T.Mn - L(KG. .. A') 

(n copies) is completely positive. . Also, the map S:L(K ... A') -, L(E) 

defined by 17((B)) = ZiBjj can be easily seen to be completely positive. 

Hence, ' = S .T  is completely positive. 
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2. Matrix Completions. In Dym-Gohberg [5] and Grone-Johnson-Sa-

Wolkowitz [71 conditions on a symmetric pattern J were studied that en-

sured that every partially positive matrix with pattern J has a positive 

completion. In this section, we derive a general condition that ensures 

that a given partially positive matrix will have a positive completion. 

We obtain some new information on the positive elements in the subspaces 

of the form S with J a symmetric pattern. 

Every partially defined matrix also gives rise to a linear functional 

T 	- C via 
	((aij)) = Zi 

Theorem 2.1. Let J be a symmetric pattern and let T be a partially 

defined matrix with pattern J. Then the following are equivalent: 

T has a positive completion, 

T : Si  4 Mn  is positive, 

iii)'T  : S, 
4  C is positive. 

Proof. Let P be a positive completion of T. Note that for A in S 

T (A) = •(A). Since Schur products of positive matrices are positive, if 

A is positive, then 'A) is positive. Thus, (i) implies (ii). 

The map S-Mn 4 C defined by S((ajj)) = Eijaij is positive and 

= S ' 	. Thus, (ii) implies (iii) 

Finally, if 1,T  is positive, then by Krein's theorem (the 1-dimensional 

case of Arveson's theorem) T  extends to a positive functional t' on M. 

Set iij = '(E1), so that T = (t) is a completion of T. If X1 .... X are 
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complex numbers, then 

	

. 	t. 
= 
	X.X. = i". 	'(X.X.E. .) 	= '((X.X.)) ? 0 1  1J1 iJ 3 1 	1J1 	3 1 13 	1 3 

since (XjX) is a positive matrix. Thus, P is a positive completion of P. 

Let I denote the n x n identity matrix, then an n x n matrix A is a 

contraction if and only if the 2n x 2n matrix 

I IA 
I AI 

is positive. 

If T = (t) is a partially defined matrix with pattern J, then 

= (tj) is. the partially defined matrix with pattern J = 

(i,j) € J ). If P is partially defined then P = (4 )   is a partially 

defined 2n x 2n matrix, with pattern J' and 

AB '  J. 
= 	C D 	A,D 

C M , B,C*E S) 

Corollary 2.2. Let P be a partially defined matrix with pattern J and 

( let 	I T 
=Then P can be completed to a contraction if and only if 

p:Sj + M 2  is positive. 

We now turn our attention to the result of [7). We first need to in-

traduce some notation from graph theory. Note that if J is a symmetric 

pattern, then we may associate a graph G with J. The graph G has ver- 

tices {v 1 ,...,v} with vi and Vj adjacent if and only if (i,j) C  J. 

A k-cycle in a graph G is a subset {w 1 , .. 	Wk) of distinct vertices 
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of G, such that Wk and w 1  are adjacent and Wj and Wj+j are adjacent, 

1 5 i :~ k-i. A graph G is chordal if every k-cycle in G contains three 

vertices which form a 3-cycle. A vertex v in C is perfect or simplicial, 

if any time v is adjacent to w. and v is adjacent to w, w and w' are them-

selves adjacent. A graph C on n vertices has a perfect vertex elimination 

scheme if there is an enumeration of the vertices {w 1 , ..., w) such that 

w1  is a perfect vertex in the graph C 1  generated by (w, ..., W), 

1 :5 i 5 n. 

The theorem of [7] states that for a fixed symmetric pattern J, every 

partially positive matrix with pattern J will have a positive completion if 

and only if G is a chordal graph. The results of Dym-Gohberg [5] follow 

from this result by observing that every block-banded pattern gives rise to 

a chordal graph. 

Lemma 2.3. Let J be a symmetric pattern and let T be a partially 

defined matrix with pattern J. Then T is partially positive if and only if 

is positive for every rank 1 positive in S3 . 

Proof. Let 1 :5 i 1  5 i. 	... 
5  k 5 n with (ik,iJ) in J, for 

1 :5 k,1 5 k. Then the Ic x Ic principal submatrix (tik,il) is positive 

if and only if 	is positive where P is the matrix with l's in the 

(ik,il) positions and 0's elsewhere. Note that P is rank 1 since P = A*A 

where A is the matrix which is 0 except for the first row, which has l's in 

the ik  positions. 

Conversely, assume T is partially positive. If P = (j aj) is a rank 1 

positive in S, then since &i xj = 0 for (i,j) 	J, we have that there is 

some subset 1 :5 i1 :5 ... 
:5  ik 5 n such that z ]  = 0 unless i = k for some 
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1 :5 ic :5 K. But then 	is positive if and only if the k x ic matrix 

t 11 , 1) is positive. This latter matrix is the Schur product of 

two positive K x K matrices and hence is positive. 

Theorem 2.4. Let J be a symmetric pattern, then the following are 

equivalent: 

there exists a permutation of the numbers (1,2, ..., n) such 

that with respect to this re-numbering every positive P in S 3. 

factors as P = A*A with A E S and A upper triangular, 

every positive P C  S is a sum of rank 1 positives in S, 

every partially positive matrix with pattern J has a positive 

completion, 

the graph G is chordal, 

the graph G has a perfect vertex elimination scheme. 

Proof. 	Assuming (ii), let T be partially positive. By Lemma 2.3, 

is positive for every rank 1 positive and hence for every positive P 

that can be expressed as a sum of rank 1 positives. Thus, T  is a positive 

map and so by Theorem 2.1, P has a positive completion. By [7], (iii) and 

(iv) are equivalent. In fact, we only need the "easier" implication. 

Namely that (iii) implies (iv). 

The proof that (iv) implies (v) can be found in [6, Theorem 4.1]. We 

remark that the converse is easy to see. 

Now assume that G has a perfect vertex elimination scheme, and let 

.., w1.j be the enumeration of the vertices so that Wj is perfect in 

the graph spanned by {Wj, ..., w}. Re-number so that W1 = v. We need to 
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recall the Cholesky algorithm. If P = (P1) is a positive matrix, then 

P2 = P - P' (P . P .) is positive and is 0 in the first row and column. 
Ii 	1 1 	1J 

Let A be the matrix which is 0 except for its first row which is 6- % P j 

then P2  = P - AA 1 . Note that AA 1  E S if and only if (i,j) 	J implies 

that PjjPij = 0. But if (i,j) 9 J, then since 1v 1  is a perfect vertex 

either (l,i) jO J or (l,j) 0 J and hence either P1]  or Pj j is 0. Thus, 

A 1 , AA 1 , and P2  are all in S, .. 

Repeating this step on P2 , we obtain a matrix A2  which is 0 except for 

the 2nd row, which is an appropriately scaled version of the 2nd row of F 2 , 

and, in particular, 0 in the (2,1)-entry. The fact that ATh2 € S,  follows 

from the fact that v 2  is perfect in the graph generated by {v 21  ..., V1}. 

Thus, by the Cholesky algorithm, we obtain matrices A 1 , ..., A, in S 

with AA1 E S, , Ai  supported on the i-th row, such that A = A 1  + ... + An  

is upper triangular, in S., and A*A = AA I  + ... + A*An  = P. Thus, (v) 

implies both (i) and (ii). 

To complete the proof it will be sufficient to prove that (i) implies 

(v). Assume that the renumbering has been made. We will show that v 1  is 

simplicial. Let (l,i) and (l,j) be in J. Consider the positive matrix 

k 	 11 
with p = 2, Pij = Pj i  = pj j  = p1j = ru = p,jj = 1 and the re-

maining entries 0. If P = A*A with A upper triangular, then A is unique up 

to multiplication by a diagonal unitary. Computing the Cholesky factoriza- 

tion of P, we find that a. . 	0. Since A € S we have that (i,j) j is in J. 
13 	 1 	41 

Thus, v 1  is a simplicial vertex. 
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The remainder of the proof that {v 1 , ..., v} forms a perfect vertex 

elimination scheme follows similarly. 

Remark 2.5. The statement that every positive in S factors as A*A 

with A in Si  is not equivalent to the above conditions. Let G be non-

chordal and consider the 2n x 2n matrices, 

Si = (( AB ) .  C D 	A E Si 	€ M) 

+* It is not hard to show that every positive in S- can be factored as X X, 

with X of the form ( 	),B,C,D E  M. However, J is not chordal since J 

is not.- 

Remark 2.6. In [5], Dyni-Gohberg observe that Arveson's distance for-

mula [2] can be deduced from their completion result for partially positive 

banded matrices. From the above results we see that a proof of Dym-Goh-

berg's result can be derived, which uses Arveson's (Krein's) extension 

theorem. Thus, the distance formula can be deduced as a consequence of 

the extension theorem. Since this seems to have gone unnoticed before, we 

sketch in the key steps needed to deduce the distance formula from the 

extension theorem. 

Arveson's distance formula says that a necessary and sufficient 

condition for a partially defined matrix T with only the lower triangular 

entries specified to be completable to a contraction is that it be a 

partial contraction, that is, only if each rectangular block below the 

main diagonal is a contraction. It is easily seen that T is a partial 

1 contraction if and only if the banded matrix P = i I T*I  T j is partially pos- 

itive. Thus, by Corollary 2.2, to prove Arveson's distance formula, it 	141 
is enough to show that the map •, or 	induced by this partially positive 
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banded matrix is positive. Note that when J is a banded pattern, or even 

block-banded, then we may apply the Cholesky algorithm directly, with no 

re-ordering, to decompose positive elements in S into sums of rank l's 

in S. Thus, by Lemma 2.3, if P is partially positive and J is block-

banded, then 4F' 
 is positive. Thus, P has a positive completion. This last 

statement combined with Theorem 2.1 is the Dym-Gohberg theorem [53. 
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3. Completely Bounded Maps. In [8],  Haagerup obtained a characteri-

zation of those matrices T for which the Schur product map T: Mn -  Mnis 

a contraction, and proved additionally that jo To= Bpcb' which we shall 

define in a moment. In this section we re-derive this result via matrix 

completions. In addition, we obtain a Hahn-Banach type extension theorem 

for Schur product maps defined on subspaces of Mn-  We then extend these 

results to inflated Schur products. 

If A and B are C*_algebras,  ME A, NE B subspaces, then we endow 

M(A1) and M(N) with the norms they inherit as subspaces of M(A) and 

M(B), respectively. Given a map •:M- Nwe define maps 0('):M(i41) - M(N) 

via fl((aj)) = ((a 1j)). It is not difficult to check that if • is 

bounded, then •(') is bounded. However, in general, SP 	nH need not 

be finite. When it is, we say that • is completely bounded and use Aøcb 

to denote this supremum. 

Let Qn  denote the partially defined n x n matrix whose diagonal entries 

are 1, and whose remaining entries are unspecified. If T is a partially 

defined n x n matrix, then T(m)  denotes the partially defined matrix in 

Mmn  = Mm(Mn) whose (k,1)-th block is T. In some sense T(m)  is the tensor 

of T with the m x m matrix of all l's. Note that if T has pattern J, then 

the map 	Mm (Si ) - Mm(Mn) is given by the Schur product with T(m), 

i.e., •m) = 

Finally, given a pattern j,  let .5 = f{ D A ) D11D2 BD2 	
E D, A, B E S J 	 j 

Note that there is a pattern J so that, indeed 	= Sj. 

Lemma 3.1. Let T be a partially defined matrix with pattern J and let 14 4 



3.2 

I Q T 
T 	

Then •T: Si - 	is a contraction if and only if 

S  3 	S  3 is positive. 

Proof. Assume that • 1,is positive and let A E Sj  with ØA :5 1, then 

R = ) is positive in 53 and so 

I OT(A) 	I 	I 

= I •T*(A) 	I I = I 0 T 

	

is positive. Hence, 	5 1 and so 4, 
T  is a contraction. 

I be 

	

Conversely, assume that 	 A is a contraction, and let t A 1)2 j  

positive in S3, with D 1  and D 2  also invertible. Then 

	

it 	D1  A 1 = 	•D1 •T(A) 	= 

	

P 1  A* D 	40T  

DO 	I 

D 's. (A)*D 
2 	2 T 

D3fI o 	I 

0 D 	 • (D 	AD)* 
2 	T 1 	2  

Dl'.T(A)D 	11 D o 1 
1 

I 	ito 2) 

it (DAD) 	D 	0 
T 1 	2 

I 	0 

ID A 1 . 	 . . 	 -c -3 However, since i 	, 	 is positive, we have that D 1  AD 2 	~ 1. Since 
'. It 	U2 ) 

is a contraction, the middle term in the above product is positive. 

Hence,0 p (( D , A 	is positive, when D 1  and D2 are also assumed to be 

invertible. But since such the invertible positives are clearly dense in 
 145- 

all the positives in S, •i,  is positive. 



It is interesting to note that in the above calculation, we have 

directly used, for the first time, the fact that $ is a Dn-bimodule map. 

Theorem 3.2 Let T = (t) be a partially defined matrix with pattern 

J. Then-*: S -' S,  is a contraction if and only if there exists vectors 

V1, ..., Vn, W1, ..., wn in cn of norm less than or equal to 1, with 

tj = <wj,vj>, whenever tjj is specified. 

Proof. If 
0 , 

is a contraction, then by Lemma 3.1 and Theorem 2.1, 

P 	
0=posesses a positive completion P. Factor P = A A with A 

'dfl ) (v w1 	 * upper triangular, so A = 	and note that V W is a completion of T. 

Thus, if we let Vj denote the i-th column of V and Wj the j-th column of 

W, then tij = <wj , Vj> wherever specified. The fact that the norms of 

these vectors is less than or equal to 1 follows from the fact that the 

diagonal entries of P are l's. 

Conversely, assume that we are given such a representation of T. It 

will be sufficient to show that for T = (<wj,Vj>), the map • : Mn -  Mnis 

a contraction. To this end let X = (X 1,, ..., Xe), p = (ps, ..., 	be 

unit vectors in en  and let A =(ajj) be a contraction in M. Then 

rXnwi:i i1 

	run

iyil
< $(A)A,p> 	zi,j 	 = < A 	I 	.1 >

P 	 pJ 	 VpJ 

and this last inner product is less than one since A is a contraction and 

3.3 

eachof these vectors has norm less than or equal to 1. 
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Corollary 3.3. Let T = (t1) be a partially defined matrix with pat-

tern 3. Then T has a completion T such that the extended map o satisfies 

0 o To = N 4 j0. Moreover, l oTl = ITIcb = Iacb = 

Proof. We may assume 10 T o = 1. Set T = (<wj,vj>), then lo T1 

1. Since 4m) = 	to see that øTUcb 5̀  Ricb :5 1, it is sufficient 

to note that T(m)  has the form required in Theorem 3.2. One needs only to 

repeat the v's and w's m times. 

Remark 3.4. Corollary 3.3 shows that every D-bimodule map 0 into M 

defined on a 4-bimodule in Mn has a norm preserving extension 	to a 

D-bimodule map on all of M. 

Haagerup [8] obtains the representation of Theorem 3.2 for Schur pro-

duct maps whose domain is all of Mn and the equality of the norm and 

cb-norm. It is interesting to note that his proof uses Grothendieck-type 

inequalities in a non-trivial fashion. Also, given the equality of the 

norm and cb-norm for • we can deduce the existence of the extension from 

the cb-generalization of Arveson's theorem [11], [14]. 

Remark 3.5. Lemma 3.1 allows one to construct many examples of par-

tially positive matrices with no positive completions. Notice that in 

the matrix P, the only fully defined principal submatrices are all of the 

form ( 	 with tjj specified. 

Thus P will be partially positive as long as all the specified entries 

of T satisfy Itj.jI 5 1. However, P will have a positive completion only if 14-1 
5 

1. 
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For an interesting example, let T be the n x n matrix whose upper 

triangular entries are l's and whose lower triangular entries are 0's, so 

that •T:Mn -, Mn is "triangular truncation". It is known [9] that jo T1 is 

of the order of in n. Thus the corresponding P has no positive completion. 

In fact, for P to have a positive completion, its diagonal entries of 1 

would need to be replaced by numbers on the order of in a. 

It is interesting to note that the graph associated with the pattern 

for P, when T is fully specified, is the bipartite graph on 2n vertices. 

This graph is in some senses not too far from chordal. Every cycle in 

this graph contains 4 vertices which lie on a 4-cycle. 
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4. Inflated Schur Products. In this section, we study the problem of 

when a partially defined operator matrix T = (T1) on H = EeD ... 914 can 

be completed to a positive operator. In particular, we will study whether 

or not the condition that the inflated Schur product map •T: S -, L(R) is 

positive, is sufficient. By Arveson's extension theorem, if 	is com- 

pletely positive, then T can be completed to a positive operator. Thus, 

we are concerned with studying whether or not •T positive, implies that 

is completely positive. 

When S3  = M then by Proposition 1.2 these two statements are equi-

valent. The condition that 0 is positive is equivalent to requiring that 

0 Tx  is positive for all x = ( X ]  ... ; xc), where Tx = (( Ti , j  x,x1 )) is a 

partially defined scalar matrix (Lemma 4.1). Thus, when 0 is positive, 

every Tx  will have a positive completion. Hence, the question we are 

interested in studying is an interpolation type problem. Namely, if for 

every x, Tx  = (( Tj xj ,xj )) has a positive completion, then can we choose 

operators such that T = (T1) has a positive completion? 

We have been unable to obtain a definitive answer, but we obtain sev-

eral positive results. We also relate this question to a problem concern-

ing positive elements in M(S) for 3 symmetric. 

We begin with some positive results. 

Let T = (T1) be a partially defined operator matrix on 11= He ... eDHn 
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4.2 

with pattern J, and for each x = x 1  ... 	in Hlet Tx  = (<Tx,x>) be 

the partially defined matrix of scalars. We summarize the above observa-

tions in two lemmas. 

Lemma 4.1. Let T = (T) be a partially defined operator matrix on H.  

Then 4' :S 4 L(1l) is positive if and only if • : S - S is positive, for T 	 Tx J 	J 

every x in H. 

Lemma 4.2. Let T = (Tj) be a partially defined operator matrix on H. 

Then T is partially positive if and only if oT(P)  is positive for every 

rank 1 positive P in 53 . 

Proof. It is easy to see that Tis partially positive if and only if 

Tx  is partially positive for all s. But this implies that 
T  (P) is posi-

tive for every rank 1 positive P in S3  and every x, which yields the result. 

Theorem 4.3. Let T = (T) be a partially defined operator matrix on H 

with symmetric pattern J. If G3  is chordal, then every partially positive 

operator matrix has a positive completion. 

Proof. We need to prove that O:S3 - L(H) is completely positive. Note 

that 4, is positive, by Lemma 4.2 and the fact that every positive in S is 

a sum of rank 1 positives in S3 . 

Now 4m) = p(m) and since P is partially positive, T(m)  is partially 

positive. The domain of 4 (
Tm) is M1(s3) 	5j(m)' where 

3(m) 
 is a symmetric i 50 

pattern on mn vertices. Thus, if we can prove that Gj(m)  is chordal then 



4.3 

by the above argument 4m) win be positive. 

The graph Gj (m) can be obtained from G3  as follows: Replace each ver-

tex v 1  in G by a complete graph G 1  on m vertices If v and v. are adja-

cent, then every vertex in C 1  is adjacent to every vertex in G. 

It is easy to see that if C3  is chordal, then the graph obtained from 

C3  in this manner is also chordal. This completes the proof. 

We finish this section by observing that a necessary and sufficient 

condition for the complete positivity of every positive map 0 on S 

is that the positive cone of Mr(Sj) = $j ®M y. coincides with 

(M 4, the cone generated by elementary tensors of positive 

elements. 

• THEOREM 44. Let J be a symmetric pattern. Then every positive map 

OT on S 	is completely positive if and only if 

(S €iMr)+ = (S) € (Mr )+  for every r. 

Proof. This theorem is a special case of a more general result for 

operator systems. See Corollary 5.7 of Paulsen [11], for example— .0 
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5. Dilati on: theory 

(5.1) DEFINITION. Let A be a finite dimensional CSL algebra, so 

that for some matrix algebra 	we have 	cA c M  where 

is the diagonal algebra for M. Then A is said to be a chordal 

algebra if A + A* = 	and G 	is a chordal graph. 

Thus A is a chordal algebra if and only if its associated 

(undirected) graph G is a chordal graph. 

(5.2) THEOREM. Let p be a contractive unital representation of a 

chordal algebra A c M. Then p is completely contractive. 

Proof. Since p is contractive and unital the induced well defined 

mapping p'  on A + A* is a positive map. See, for example, 

Proposition 2.4 of Paulsen [%t]. Moreover, if T = (T) is the 

partially defined operator matrix with pattern J given by 

T ii =  (e), for the matrix units e 	 in A + A*, then 

(A) = T(A). By hypothesis J is chordal and so by Theorem 4.3 T 

has a positive completion. By Lemma 4.1 and Proposition 1.2 

and hence 	are completely positive unital maps. It follows that 

p is completely contractive, as required. 	 El 

The last theorem provides another proof that contractive repre-

sentations of finite dimensional nest algebras are completely contractive. 

It is also easy to recognize other matrix algebras as being chordal 

algebras. 

• Examçle. Let A  c T(n) be spanned by v,,  and the matrix units 

for 1 < •i < n. Then A is a chordal algebra. 



Example 	Let A'166' a finite dimensional CSL al-'gebra such that the 

graph G for A + A* is a tree 	Then, sinceG contains no 

cycles whatsoever, A is a chordal algebra 

Example 	Let 1 < k <'n. and let Ac 1(n) be the algebra spanned by 

the matrix units e 3  such that 1 <1 < 	<-. n .   and i < k 	Then A is 

achorda algebra  

In•.view of-the distinguished nature .ofthordal algebras it J.  s 

profitable o corihder CSL algebras that are-semi discrete relative to - 

(finite dimensional) chordal CSL algebras, or have the property CCAP 

re1atie tochorda1 subá1.gebras.' (See'* Chapter 4' sec tio.n.4.3). I.ndeed,.., 

for such algebras every contractive c.weak1y continuous representation 

- 

	

	i1i be copietéTycOfltraCti'Ve; andhence .Iadmi.t-diiatiOflS!- However 

thereare non chordal .a1gebras:fo' whih every ::contractiverePreSefltatiOfl 

• 	;is :completely contractive (for example • T(n) 0, T(m)), and so, from 

the point of view of dilation-theorythe "chordally approximable" CSL 

algebra will fornra very special class. A general dilation theory 

for CSL algebras must await abetter understanding of the completely 

• 	 inflated-Schr productmapsonpattern subspaces of Mpositive 	 .  • 
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CHAPTER 7 	SUBALGEBRAS OF .C*_ALGEBRAS 

(7.1)' 'IntrOduction 

In this chapter we introduce" some classes of nest subalgebras of 

C*_algebras and examine various structural and approximation properties 

particularly in connection with ideals. The analysis is summarised 

in the introduction of section (7.2) which appears in Appendix 8. 

Of particular interest are the'appOxirnatelyfiflite'nèst'algebras 

which are obtained as direct limits of directed systems 

T(n 1 ) - T(n2 ) 

where the embeddings are injective, unital, and are obtained by 

refinement. This means that the image of 'the canonical nest in T(nk) 

appears as a subnest of-the canonical nest in T(nk+l). 	Of necessity 

nk divides n k+l 
 for all k, and we can regard the direct limit as a 

nest subalgebra of a UHF C*_a,lgebra. A somewhat more, general class 

is. obtained by considering nest subalgebras of AF C*_algebras,  which 

we call approximately finite nest subalgebras. (It should be noted 

that all nests are canonical in the sense that they are associated 

with a regular maximal abelian subalgebra of the AF C*_algebra).  This 

class corresponds to direct systems of finite dimensional algebras 

of the form 

Later, in (8.4), we consider infinite tensor products of the 

form T(m 1 ) €T(m2 ) ®... , which can be regarded as subalgebras of 

an ,  associated approximately finite nest algebra. 

(7.2) See'Appendix8 



(7.3)' DilatiOn'theory 

In section (4.2) it was shown that a contractive Hubert space 

representation of the operator algebra T(n -) is completely contractive. 

This fact extends in a trivial way to approximately finite nest algebras, 

and more generally, to approximately finite nest subalgebras, and so 

we have a natural dilation theory for the contractive representations 

of this class of subalgebras of approximately finite C*_algebras. 

It is of considerable interest to pursue dilation theory in more 

general C*_algebraic contexts, and this general theme is sure to 

develop further in the near future'. Apart from the intrinsic interest 

of such a study there are implications for the theory of tensor 

products of operator algebras, and we develop this in the next chapter. 

For example the result of Chapter  can be extended to the case of 

contractive representations of approximately finite nest subalgebras 

A 1  and A 
2'  and this leads to the equality of the maximal and minimal 

complete operator cross norms on the algebra A 1  ®P(JD) and 

A1  €A2 . 
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CHAPTER 8 TENSOR PRODUCTS OF NON SELF-ADJOINT OPERATOR ALGEBRAS 

(8.1) ThërMxiF1cbrnØ1été:OperatbrcrOSs:nOrm. 

Let A l  and A2  be algebras of operators - on the complex Hubert 

spaces I-I. and H2 , respectively, which contain the identity operator. 

In this section we study a n1aximumoperator -4oss norm on the 

algebraic tensor product A 1  €A2 . An operator norm on A 1  €A2  is a 

norm induced by a faithful unital representation on a Hubert space. It 

is natural in our context to restrict attention to those operator norms 

for which the embeddings A 1  -- A 1 e A2 , i = 1,2, are complete isometrical 

isomorphisms. This is because we view an operator algebra A as 

carrying not only the given norm structure, but the induced operator norm 

structure on the matrix algebras M(A). That is, operator algebras are 

matricially nor'medtspaces, and we choose to restrict attention to operator 

norms on A1  ®A2  under which A 1  ®U (and t 0 A2 ) can be identified 

with A1  (and A2) as matricially formed spaces. We call such a norm 

a complete operator:cross norm on A 1 	A2 . 

The spatial norm 	!Jspat on A1  ®A2  is the complete operator 

norm induced by the inclusion A
l  €A2  c L(H 1  ®H2 ). For C*_algebras  

it is well known that the spatial norm is the minimal C*_cross norm. Even 

in our wider generality, 11 11spat  coincides with the minimal complete 

operator cross norm on A 1  €A2 . (We leave this as an exercise.) 

Given commuting unital representations p:  A 1  -'- L(H), i = 1,299 

we writep. €p2  for the induced unital representation of A 1  €A2 . 

We use the induced seminorms 	PIOP2 from such pairs to define the 

following maximal norm. 

Throughout this section we write A1  ®A2  for the algebraic tensor 

Si 
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product and A 1 * €)  min A2 A1  0' max 2 when normed by the spatial and 

maximal operator cross norms. For convenience we also write p 1  €p2  

for the representation of A1  ®A2  induced by commuting representations 

P i  of AV  i = .1 9 2. 

(8.1.1) DEFINITION.. The maximal norm 11 'max on A1  ®A2  is the 

supremum of the seminormsij II P1 ®P2 induced by all pairs p 19 p2  of 

commuting completely contractive unital representations of A 1  ,A2 . 

By taking direct sums over representations it can be seen that 

'max is a complete operator cross norm with II 	< 	IL for any max —
other such 

We now look at two illustrative examples where the maximal and 

spatial norm coincide, preceded by an elementary example where they 

differ.. 

(8.1.2) Example. 	Let A c M2  be the two'-dimensional operator algebra 

spanned by the identity and the matrix unit 6 1 . Let r1 = 

be the identity representation and note that the matrix e1 2 	I + I 

has the form 

0110 
0001 
0001 
0000 

which has norm J2-. On the other hand, the image of this operator under 

PI ®p2  is the matrix, 

o 2 
to Ui' 

whic'h has norm 2. In particular 	"spat 	max 
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(8.1.3) Example. Let P(D) be the usual normed algebra of complex 

polynomials on the unit disc. Any pair of commuting completely 

contractive representations p 1 ,p2  of P(D) is determined by a pair 

of commuting contractions T 19 T2 . By Ando's theorem there are commuting 

unitaries U 1 ,U 2  which dilate T1 ,T2  in the sense that Tç'T 	is 

the compression of Un U 	 for all n,m = 0,1,2,... . From this, and 

the contractive character of unital *...representations of C(ll x  ii), we 

see that the induced representation p 1  ®p2  of P(D) ®P(D1, with 

the spatial norm, is contractive. It follows that 11 11 spat = 11 	1max 

(8.1.4) Example. Let T(2) c M 	 be the unital operator algebra of 

upper triangular 2 x:2 matrices and let p 1 ,p 2  be completely contractive 

commuting representations of T(2), P(D), respectively, on the 

Hilbert space H. Then there is a decomposition H = H 1 	with 

respect to which p 1  and p 	have the form 

[a ll I, 	a12TI 
p1: (a) 	

0 	a221 2j 

[x 1 ) 	0 - 

P2: p(z) 	L 0 	p(X2)] 

where X 11 X 2 ,T are contractions with XT = TX 2 . By the Sz-Nagy-Foias• 

lifting theorem there is a contraction f and unitary dilations 

X1 
2 
 of X 1  ,X2  acting on K1 	and K2  c  H2  respectively, such 

that Rl  T =2  and T = 	. The operators —X i  ,X2 ,T determine  rX 
12 

commuting representations p 1 ,p2  of T(2) and P(ID) on the Hubert 

space 	K = K1 0 K2  such that p 1  ®p2  = PH. 	0 2)IH. Since 

extends to a unital *_representation  of C(D). it follows, by elementary 
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arguments, that p l  ® 	is contractive (as a map from the spatially 

normed tensor product). Thusspat 
	IJ 11max on 1(2) €P(1)). 

The last two examples illustrate how the equality of. 	
1spat 

and I! 11 max  is closely related to the possibility of lifting 

commuting representations 	A 	LU-I) to commuting dilations of 

containing C*_a. lgebras. The following proposition is. a consequence of 

Arveson's dilation theorem for completely contractive maps. 

(8.1.5) PROPOSITION. Let 8 1 ,82 be unital C*_algebras with 

11 	min 	11 	onon M(81) € 82 for n = 1,2,...,. and 	A c 8., 

i = 1,2, be unital subalgebras. Then the following conditions are 

equivalent: 

II 11min 	!t 	11max on M(A1) ®l 
	for n  

For every pair of commuting completely contractive unital 

representations p 1 : A 1  + L(H), Pa:A2 - LU-fl, there 

is a Hubert space K D H and commuting unital *-representations 

-- L(K), 7T 2 	82 + L(K) 	such that 

PllP22) = PHJr2(al)1 .r2(a2)J H  for all a 1  in Al . a2  in 

Proof. (i) 	(ii). Let p 1  p2  be as in (ii).. By (i), the induced 

representation p 1  ®p 2  of Al 	minA2  is contractive. Furthermore, 

the induced representation (p 1 	 of M(A1 ®mth2)  is 

contractive for each n.= 2,3,.. because M(A1 €;mjflA2)  and 

M(A1) ®min2  are canonically isometrically isomorphic. Since 

1 ®P2  is completely contractive and unital, there exists, by Arveson's 

theorem, a *_representation ir of : 8 . ®rnin82 which dilates p 1  ®p 2 , 

t(DD 



and the restrictions of TT to 8 1. ® m i n  Q and T
€min 82 give the 

desired representations ir 1  and 7r2 . 

(i) Let p 1  and p2  be commuting completely contractive unital 

representations of A1  and A 2'on H, and let a € M(A1) € 42. Then, 

in view of the existence of 7T 1 ,rr 2 , as in (ii), we have 

Jj(pøp2)(a) 	= II( l(n) 
 (8.rr2 )(a)I 

< 11a1j 	(B
I 
 ) ® max 82 

IaIJ8 	
®min82 

= 

and so (i) holds. 	 U 

References: Paulsen and Power 



(8.2) T(n).®P(D): and T(n):øT(m). 

In chapter 5 we obtained lifting theorems for commuting (completely) 

contractive representations for the pair 1(n), P(D) and also for the 

pair 1(n), 1(m). Moreover . -it is well known that 	min 	umax on 

Mn €C(ri) and on M €Mm•  Using these facts we otain the following 

theorem as acorollary to Proposition 8.1.5. 

(8. 2.1 	THEOREM. For positive integers n,m the minimum and maximum 

complete operators cross norms agree on P(D) ®T(n) and on 1(n) CT(m). 

(8.2.2) REMARK. The last theorem extends to P(ID) €A1  and A1  €A2  

where A 1  and A2  are approximately finite nest algebras (see Power [iQ]). 



8.7 

(8.3) .T(n 1 )..€.T(n 2 ).€'.T(n 3 ) 

The next two propositions imply that there is noeasy characterisation 

of the contractive representations or the completely contractive repre-

sentations of the higher order tensor products of nest algebras and 

disc algebras. Although the second proposition immediately generalises 

the first, we include the proof of the former since it illustrates the 

close connection between multinest algebras and polydisc function algebras. 

(8.3.1) PROPOSITION. There is a positive integer n 0  such that 

min $ 11 11max on T(n)' €T(n) 	T(n) for all n > n o . 

(8.3.2) pROpOSITION, 	11
min 	"max on T(2) ®T(2) €T(2). 

Proofs. We first show that. 11 11 jfl 	umax on T() øT() 0 T() 

by considering P(D 3 ) as a subalgebra. of this operator algebra with 

the spatial norm, and exploiting a counterexample of Parrott. 

Let R be the Hilbert space on which T() acts, and let G be 

another complex separable Hubert space. Define 

p 1 : T() - T() 	min  T() 	min  T() . 	mi n 
L(H) 

by p1(e) = 	®I ®I (&X J-1  , for j > i, where X 1  is a contraction 

on G. Similarly, for contractions X2 ,X 3  on G define p2  and p3  

such that p 2 (e.j ) = I €e 	€1 e X 	 andp3(e) = I ®I 	®X'. 

These representations are well defined and completely contractive by 

the results of Chapter 4. We now show that the representation 

= Pl ® 2  ®p3  need not be contractive on T() ®min  T() (& min 
 T(7Z). 

Let X 1 ,X 2 ,X3  be a.commuting triple of contractions for which there 

is a polynomial p in P(0). such that. IJp(X1 , X2 , X3)Il > 	(Parrott [t (Q0) 
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Let W be the bilateral shift in T() and define W1  = W.®I: ®I, 

W2  = I ®W €1, W3  = I €1 €W and Wk Wk ®Xk, k = 1,2,3. We claim 

that 	Ip(p(W 1 ,W2 ,W3 ))I = IIp(I 1 ,ti2 ,i3 )I1 > IIPIL= IIP(Wl 42 143)II spat 	The 

first and last equalities are clear. To see the inequality consider 

unit vectors Xn in H such that. IIWx, -  xII - 0 as n -* . Let f,g 

be unit vectors in G and let f = x ®x €x ®f, 

g = x ®Xn 	 Then, 'if p has the expansion

013  
= 	 we compute p(z 1 z2z3 )  

= 

=azxx2x3f,g> + o(n) 

= <p(X 1 ,X 2 ,X3 )f,g> + o(n). 

Choosing f,g appropriately, the claim follows, and so p is not 

contractive. 

Let P 	 be the diagonal projection in T() given by 

= e 1,1  +...+ enn 	so that PT()P 	is naturally completely 

isometrically isomorphic to T(n). Moreover, if = RkhT(t1) for 

k = 1,2,3, are the commuting completely contractive representations 

of T(n) indued by k  then n) 
® 4n) ®p"(A) = p(A) for A 

in 1(n) €'T(n) ®T(n) 	(identified as a subalgebra of 

T() ®T() OT()). Since IIPAPII * hAil the proposition follows 

from the noncontractivity of p. 

We now turn to a direct proof that in fact even T(2) ®T(2) ®T(2) 

does not have II t1min = 	max 

Let U,V be unitary operators in M 2  and consider the operators 



0., 

R 	loul 	PO iv-ooJ' 	_ 	
oJ' T -  LoO - 	 j 

in M4 . Let P 
R'S'T  be the contractive representations of 1(2) 

into M32  = M2  ®M2  M2  øM4  given by 

PR(e12) = e 12  ®I ®I ®R 

PR(ell) e 1 	01 ®I €1 

pR(e22) = e22 	I 01 01 

p5 (e 12 ) = I ®e 	®I 0 S 

PS  (e ll =  I ®e 	®I 11 I 

pS (e22 ) = 	I 	®e2 (&. 1 €1 

p1 (e12 ) =1 	®I 	4ge12• €T 

p1 (e 11 ) 	= I ®I ®e11  €I 

PT22 ) I € I ®e22  01 

Then p 
R'S'T  are contractive representations and are mutually 

commuting since all products of R,S,T are zero. Furthermore, 

R®S ®p1  can be interpreted as the mapping which transports the 8x8 

matrix (a) in 1(2) ®T(2) ®T(2) to the inflated Schur product 

(aI) 	II I S 0 R 0 0 0 

	

IT 	R  

	

I 	R 

	

IS 	R 	0 

ITS 0 
IS 
IT 

I 

where I is the 4x4  identity matrix, and where undefined entries 

are also zero. Notice that the inflated Schur product map has norm 

dominating the norm of the submap 
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bO'1 las bR 
0 dl. r JcT 0 dR
efJ L0 eTtSJ 

Considering the special form of R,S,T thissubmap has norm •agreeing 

with the norm of the inflated Schur map 

ra b oJ Tal bU 0] 
IcOdi -' Icy 	0 dUl 
LOefJ 	LO eVfIJ 

The norm of the image matrix agrees with the norm of 

[al b 	0 
Id 	0 	dl 
L0 ci fUV*U*V 

(Multiplying left and right by appropriate diagonal unitaries.) Now 

make the choice 

V  = ~l ll 	u= [_l 
 -I 

and note that 

i 	0 	ri 
Ii 	0 	1 	.+ II 	0 	I 
Lo 1-1 	Lo 1+1 

The first matrix has norm J while the latter has norm 2. Hence 

PR ®PS OPT is not contractive. 

• Refërénces. Paulsen and Power [2..].  (The simple argument above for 

1(2) 	T(2) 4D T(2) was obtained with Ken Davidson). 

U. U) 
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INFINITE TENSOR PRODUCTS OF UPPER TRIANGULAR MATRIX ALGEBRAS 

Stephen Power* 

Let n > 2 be an integer and let T(n) be the algebra of n x  n complex 

matrices which have zero entries below the main diagonal. Under the operator 

norm T(n) is a Banach algebra, and for a sequence 	of such integers there 

is a natural way to associate a unital Banach algebra 

T((nk)) 	T(n1 ) a T(n) x 

which is an infinite tensor product in the sense of inductive limits. 

In what follows we determine the group AutT((nk))  of Banach algebra 

automorphisms of T((nk)).  The quotient group Out T((nk)), obtained from the 

normal subgroup of pointwise inner automorphisms, turns out to be the 

discrete group of permutations ir such that n  = '(k)' k = 1,2,... 	Thus, 

up to composition by pointwise inner automorphisms the set of outer auto-

morphisms may be uncountable, countable, finite, or even trivial. In fact 

we describe all isomorphisms and epimorphisms between these Banach algebras. 

We also determine the structure of the complete lattice IdT))nk))  of 

all closed two-sided ideals of T((nk)),  with the natural lattice operations. 

The abstract framework needed concerns primary approximatly finite lattices, 

and we develop a little general theory in this direction, inspired by 

Arveson's unique factorization theorem for primary complete distributive 

metric lattices. It turns out that the unordered set {n 1 ,n2 , ... } is a 

complete lattice isomorphism invariant for the AF Lattice IdT((nk))  and 

hence a complete Banach algebra isomorphism invariant for the algebras. 

This research was supported by a D.G. Bourgin visiting scholarship at the 
University of Houston, by a Fulibright travel grant, and by the Science 
and Engineering Research Council of Great Britain. 	

10 
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The algebras T((nk))  can be regarded as the approximately finite 

versions of reflexive operator algebras associated with certain commuta-

tive subspace lattices defined on an infinite tensor product Hubert space. 

Such algebras were introduced and studied by Arveson (l,Chapter 31. He 

obtained complete similarity invariants for these algebras as a consequence 

of a unique factorization theorem mentioned above. We use a similar 

result in the class of approximately finite lattices and our proof derives 

directly from Arveson's arguments. However the arguments simplify 

considerably in our setting since the lattices under consideration are 

lattices of sets, under the usual set operations. Moreover we can also 

obtain the complete algebra isomorphism invariant purely from the factoriza-

tion theory of finite primary lattices. 

We can define T((nk)) as a subalgebra of the well known Glimxn algebra, 

or UHF C*_algebra,  

M((nk)) = M(n1 ) a M(n2 ) 

Here M(n) indicates the full n x  n matrix complex algebra and the infinite 

tensor product is the C*_algebra  direct limit of the direct injective unital 

system M(n 1) - M(n 1n2 ) - ... , under natural embeddings. The isomorphism 

theory and automorphism groups of these algebras are well understood (see 

[4],[51,[7],[9], for example) and, being approximately finite C *_algebras, 

K0  theory is also available as a complete invariant. Thus M((nk)) 

and M((m.K)) are isomorphic if and only if the sequences of partial 

products 	
l'"'k and (m1 , .... m.), satisfy the Glimm 

dinsibility criterion: each term from one sequence must divide some term 

of the other. In other language, 	and (m,) must determine the same 

supernatural number. It follows then that T((nk))  and  T((mk))  may fail to 

be isomorphic even though their associated UHF algebras are isomorphic, 
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just as with finite tensor products. We show that the K 0  group of T((nk)) 

coincides with the K 0  group of the diagonal subalgebra, from which it 

follows that K-theory provides poor invariants for the algebras T((nk)). 

However unlike the UHF algebras, which are simple, there is a rich ideal 

structure, and this structure can serve to study morphisrns and the auto-

morphism group. For example the automorphisms that fix the ideal lattice 

are precisely the pointwise inner automorphisms. 

The results above and related matters are organized in the following way. 

In section one we define approximately finite lattices and note relevant 

examples and key properties such as complete distributivity and zero-one 

laws for factorizations. In section two we determine the ideal lattice 

of T((nk))  as an AF lattice. Here we use standard approximation techniques 

associated with natural expectation mappings on the containing UHF algebra. 

We have used similar methods in [81 to study ideals in another class of 

non-self-adjoint subalgebras of AF algebras, namely in nest subalgebras 

associated with a maximal projection nest in the diagonal. Sections 

three and four use ideas of Arveson and develop the structure of prime 

elements in finite and approximately finite primary lattices, respectively. 

In section five we determine the nature of isomorphisms, epimorphisms and 

the automorphism group. In the final section we compute K0 . 

For general lattice theory the reader may consult the standard 

reference Birkhoff [3],  where ideal completions of lattices are discussed 

a little. Arveso&s results are also described in his lecture notes [2]. 

It is a pleasure to record my thanks here for the warm hospitality 

that I received from the Department of Mathematics at the University of 

Houston, in the fall semester of 1986, when the research was completed. 

Vern Paulsen. gets extra thanks for our endless mathematical conversations. 
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1. Approximately finite lattices 

Let L0  be a lattice with respect to meet and join operations V and A 

respectively. An ideal of L0  is a subset J which is closed under joins and 

is such that if a < b, with a € L0  and b e J, then a £ J. In the lattice 

of all subsets of L0  the collection of all ideals, including the empty set, 

forms a complete lattice L known as the ideal completion of L0 . The 

lattice L0  is injectively embedded in L as the sublattice of principal 

ideals of L0 . 

We say that a complete lattice L is approximately finite if there is 

a countable sublattice L0  c  L such that L is isomorphic to L 0  as a lattice. 

More precisely we require that the natural injection L 0  - L extends to an 

isomorphism L - f. 

Let L1  C  L2  C •.. be a chain of finite sublattices of L 0  with union 

equal to L0 . Then there is a one to one correspondence between elements 

and certain chains of ideals J C J C ... , where each J is an 

ideal in Lk.  The correspondence is given by 

J-Jfl Li.  JflL2 , 

(and so we require that the chain have the fullness property, 

= (UJ) fl L, for all k). 

Approximately finite lattices often arise naturally as the direct 

limit of a direct system of finite lattices. In fact the class of such 

limit lattices, which we shall define in terms of an ideal completion, 

coincides with the class of AF lattices, as we now indicate. 

An injective direct system of finite lattices is a sequence of finite 

lattices M1 ,M2 ,... together with injective embeddings 

M1 -* H2  - ... 

rio 
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The collection M00  of increasing sequences (m.), with m.K E  Mk, and which 

are eventually constant, forms a lattice in a natural way. Identifying 

eventually equal sequences we obtain a countable lattice M 0  in which each 

lattice 
M i 

is naturally and injectively embedded, say M. - cx(M.). Moreover 

is the union of the chain a(M1 )c cx(M2)  c •.. . We define the direct 

limit L of the original system to be the ideal completion of M 0 , and we 

write L = limkMk. 

We usually consider lattices which possess both a first and last 

element, denoted by 0 and 1 respectively,, and refer to such as unital 

lattices. A morphism between unital lattices is said to be unital if it 

maps 0 to 0 and 1 to 1. 

An element c of a lattice is join-irreducible, or prime, if c = a V b 

implies that a = c or b = c, and a unital lattice is primary if the unit 1 

is prime. An element c is meet-irreducible if c = a A b implies a = c or 

b = c. If the first element 0 of a unital lattice is meet-irreducible then 

we say that the lattice itself is meet-irreducible. There is an elementary 

duality between the theory of primary lattices and meet-irreducible lattices 

that arises through the converse lattice, (L,<) say, of the lattice (L,<); 

a < b in (L,<) if and only if b < a in (L,<), a A b in (L,<) is the supreinum 

aVbin(L,<) and aVbin(L,A) is the infirnum aAbin(L,z). It is 

easy to check that (L,<) is primary if and only if (L,<) is meet-

irreducible. 

A finite lattice is primary if the supremum of all elements strictly 

less than 1 is also strictly less than 1, and is meet-irreducible if the 

infimuin of all elements strictly greater than zero is also strictly greater 

than zero. 

flt 
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We now give some examples to illustrate the concepts above. 

Examples 1. For n = 2,3,... write L(n) for the totally ordered unital 

lattice {O,l,...,n - l}. In particular L(2) is the trivial unital lattice. 

These lattices are primary and meet-irreducible. 

For n,m = 2,3,... let L(n) x  L(m) be the product lattice of L(n) 

and L(m) with the product partial ordering. For n,m > 2 these lattices are 

neither primary nor meet-irreducible. 

A subset A of the product set fl,... ,n -1} x (1,... ,m - 1}' for 

n,m > 2, is said to be increasing if (j1,j2)  belongs to A whenever j1 < 

and j2 < k for some element (k 1 ,k2 ) in A. The totality of increasing 

sets, together with the empty set (which is also regarded as an increasing 

set), forms a lattice of sets (under the set operations) which we denote 

by Inc(n,m). Thus Inc(n,2) and Inc(2,n) are just copies of L(n). Similarly 

we can define Iric(n 1 ,.. . ,n) for integers n1 ,... ,n that are greater than 

unity, and there are natural unital injections 

Inc(n 1 ,.. . ,n) - Inc(n 1 ,. .. ,n) 

for r < s. Here the increasing set A gets mapped to the increasing set 

A x  N r+1 x •.. xN s 	j 
, where N= {l,...,n. - l}. Note that the lattice 

Inc(n1 ,.. . ,n) is generated by r sublattices L 1 ,. .. ,L where Lk  is a copy 

of the nest lattice L(nk).  These lattices are primary and meet-

irreducible. 

For a sequence 	of integer nk ' 2, we can define the direct 

limit AF lattice associated with the system 

Inc(n 1 ,n2 ) - Inc(n1 ,n2 ,n3 ) -, ... 

V1 I 
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We see later that such lattices are primary and meet-irreducible. The 

lattice can be thought of as the infinite tensor product of the nest 

lattices L(n1 ),L(n2 ) ..... 

5. Let A be a partially ordered set with a last element a, and 

let L be a unital lattice. Then the collection, I.nc(A,L) say, of increasing 

functions from A to L. forms a unital lattice. Thus f belongs to Lnc(A,L) 

if f: A - L and f(b) < f(c) if b < c. If L is a finite meet-irreducible 

lattice then Inc(A,L) is also meet-irreducible. For if 0+  is the unique 

successor of 0 in L then the function f, such that f(a) = 0+ and f(b) = 0 

for all b # a, is the unique successor of the zero function. 

For example, if L is a lattice then Inc(L,L(2)) is the lattice of 

increasing subsets of L. 

The lattice structure that we will be concerned with in later sections 

is the lattice IdA of closed ideals of a unital Banach algebra A. Here the 

join operation is closed linear span and meet is intersection. Clearly IdA 

is a complete unital lattice. We shall look at a class of inductive limit 

Banach algebras where the ideal lattice IdA can be identified as a direct 

limit of explicit finite lattices. This identification is fairly standard 

analysis, but the analysis of the structure of IdA requires quite a bit of 

lattice theory. The payoff is that the structure of meet-irreducible 

elements can be made quite explicit (see Theorem 4.2) and this has 

considerable implications for the nature of isomorphisms and automorphisms 

of the algebra A. 

We complete the present section by establishing complete distributi-

vity, factorizations, and zero-one laws in the context of Al-lattices. 

ri 
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This information will be needed for the lattice theory in section 4. 

PROPOSITION 1.1. Let L be an AF lattice and let c 1 ,c2 ,... and b be elements 
CO 

of L. Then V (bAc.) = b A ( V c.). 

	

j=l 	3 	j=lJ 

Proof. This is immediate because L is a lattice of sets, and such lattices 

are completely distributive. • 

DEFINITION 1.2. Sublattices L1  and L2  of a lattice are said to be independent 

of the following property holds: if aflb<a' Vb', with a, a' in L 1  and b,b' 

in L2 , then a < a' or b < b'. 

DEFINITION 1.3 (Arveson (11). Let L be a complete unital lattice. A factori-

zation of L is a sequence of sublattices L 1 ,L2 ,... such that 

Ci) L = L1  V L 2  V 

For every j the lattices L and k#j Lk are independant. 

00  nfl1 n 	n+1  (L VL 	v...)  

Similarly we shall say that L 1 ,.. 	is a factorization of L if (1) 

and (ii) hold. Property (iii) is called the zero-one law for the sequence 

L1 ,L2 .....The next proposition shows how zero-one laws arise naturally in 

certain direct limit ÀY lattices. 

PROPOSITION 1.4. Let L 1 ,L2 ,... be unital sublattices of a lattice L such that 

for each n the lattices L 1 
 ,.. .,L form a factorization of the lattice that 

n 

	

they generate. If L 	limn(L1V  ... VLn)  then L1 ,L2 ,... is a factorization 

of L. 

Proof. Let M 	 = L1  V... V Lk  so that L is (isomorphic to.) the ÀY lattice 

lim.KMk. This means that L is identified with the lattice of ideals of the 

rlLt. 
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countable sublattice L 0 = k= U  lK  
N. . Moreover each such ideal 0 of L

0  is asso-

ciated uniquely with the increasing sequence o fl M, o 11 M2 .....In view 

of this correspondence we can establish properties of elements 0 in L by 

arguing locally with the finite lattice of ideals 8  (1 MK  in  Mk. 

First we obtain property (ii) of Definition 1.3. Let N =V L., and 
r ]#r 3 

note that Hr  is simply the sublattice of ideals of 
CO 

	

U (L V.. .V L 	V L 	V... V L ). Moreover for n > r N fl M is the lattice 
k=l 1 	r-1 r+1 	k 	 - 	r n 

of principal ideals determined by the sublattice LiV••VLr_iVLiV•••VLn• 

Suppose then that 88 '  £ Nr and cx,a' E L   (where all elements are ideals in L0 ), 

and that a A 0 < cx'V 3', which means a ii 8 C a '  U 3', as sets. Then 

a A a fl m  = ( an Mn)  A (o ii Mn) is contained in (a' fl Mn)  U (8'  fl N). From the 

given indepenceof Ll.  ...,L it follows that a n 	ca'flM or 8flM c8'  fl M n 	 n 	n 	n 	n 

This alternative holds for all n > r, and so a Ca '  or 8 c . 8 ' , as required. 

Similarly it can be shown that if 8  c L   V  L+i  V... , then for n < m 

8 11 M is an ideal in L n  V... in 
V L , and for n > in o fl  mm  = {0} or Mm  . Hence cc  

for y  c 11 CL V L 	V...) we have y A M = {0} or M for all m, and so 

	

n1 fl 	n+l 	 in 	 m 

property (iii) holds. U 

DEFINITION 1.5. We say that the factorization L 1 ,L2 ,... of the AF lattice L 

is a coherent factorization if L is isomorphic to the approximately finite 

lattice lim (L1 V ... VL) as in the statement of Proposition 1.4. 

PROPOSITION 1.6. Let L1,L2,...  be a coherent factorization of the unital AF 

lattice L, and let PkC Lk for k = 1 9 2 	Then either Akpk  is the zero 

element or 
Pk=  1 for all but a finite number of k. 

Proof. Let P = Akpk which is identified with the ideal {x c L 0 : x <Pk  for 

all k}, where L0  is as in the proof of Proposition 1.4. Let x c p fl M, 

15 
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where H =L V.. .VL, as before. Then x A 1 < 0 V 	for all k, and so, 

by the independence of the lattices Mr  and  Lk  for k > r, it follows that 

x < 0 or1 < 	Thus if 	# I for an infinity of k, then x = 0. Hence 

a=o. 

Our last proposition in this section is also an elementary consequence 

of local arguments. A similar assertion holds with primary replaced by 

meet-irreducible arguments. 

PROPOSITION 1.7. Let L lim.KLk be the AF-lattice determined by finite 

primary unital lattices Lk.  Then L is primary. 

M 
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2. IdT((nk))  as an AF lattice 

	

The following notation will be useful. Let 	be a sequence of 

integers, with n k > 2 for all k, to avoid trivalities. Let 
M 	 CO 

A = T((n )) = 	T(n, ), B 	M((n )) = 	M(n ), C 	C((n )) . 	C(n ), where k 	k=l 	' 	 k 	-kill 	k 	 k .=kill 	k 

C(nk) is the diagonal algebra T(nk)  fl T(nk ) * . Also, for r 	1,2,..., let us 

write A r
p  Br and C   for the finite tensor product algebras associated with 

the r-tuple nl...nr*  regarded as the canonical subalgebras of A, B and C 

respectively. 

We now define some important expectation maps on the algebra B. For 

r < s let Urs  be the unitary group of the diagonal algebra 

C(n 1 ) 0 . . .Q C(n) c C, and let du denote Haar measure on Urs•  The 

linear contractive map 0 rs  defined on B5  by 

	

J u*xudu, 	x in B5 , 

r,s 
is a projection and has range equal to the subalgebra 

M(n1 ) s... ØM(nr) C(n 1 )Q ...  C(n5 ). Since r,t  extends  r,s  when s < 

we can define 4 on B as the pointwise limit 

Or  (x) 	urn 0 r,r+n(x). 

The map 0 r  is a contractive projection onto the subalgebra Br  A  C(nr+i) 

In particular 	- x as r - 	for every x in B. 

PROPOSITION 2.1. Let J be a closed subspace of B that is a C-module. Then J 

is the closed union of the subspaces J fl B, n = 1,2 .... .In particular 

this holds true for ideals J of the subalgebra A. 

t-1-1 
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Proof. Note that if x belongs to J then so do 0 r,s( 	and 4r(x)  for all 

r < s. However $ r,s (x 	 S 
) lies in B fl J, $r s (x) - O r  (x) as s - , and 

- x, so the proposition follows. • 

The synthesis property expressed in the last proposition 

to required to identify the ideal lattice of A. In fact the same feature 

holds for appropriate modules in general approximately finite C+_algebras 

(see [8]). 

Let us introduce a twisted partial ordering on the set of pairs 

6(n) = {(i,j): 1 < i < j < n}, 

which reflects the ideal structure of T(n). We write (i,j) < (k,9.) when 

i > k and j < 1. If S is an increasing subset of 6(n) with respect to this 

ordering then the set J of matrices in M(n) supported by S is an ideal. 

Conversely every ideal arises in this way. More generally we have the 

following elementary proposition. 

We write 2 for the trivial unital lattice L(2), and we use the notation 

of example 5 in section 1. 

PROPOSITION 2.2. (i) The ideal lattice IdT(n) is isomorphic to Inc(6(n),2). 

(ii) If A is any complex algebra then the ideal lattice 

Id(T(n) A) is isomorphic to the lattice Inc(6(n),IdA). 

In particular T(n2 ) 2 T(n2 ) has an ideal lattice which is isomorphic to 

Inc (6(n1 ), Inc(6(n2 ),2)), and we write this more simply as Inc(6(n 1),6(n2 ),2). 

Similarly the r-fold tensor product T(n 1 ) . 	T(nr) has an ideal lattice 

denoted by Inc(6(n1 ),...,6(n),2). 

l-Th 
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There are natural einbeddings 

Inc(6(n1),.. 	(nr),2) - Inc(5(n1),.. . 

when r < s, which are most easily identified by checking first that 

is isomorphic to Inc(5(n1 )x ... xS(n ),2), the lattice 

of increasing subsets of the partially ordered product space 

The embeddings above correspond precisely to the embedding IdA -, IdA+l 

of the ideal lattice of IdA r . (Here an ideal J in IdA is identified with 
r 

the ideal J in IdA 1  that it generates.) 

THEOREM 2.3. The ideal lattice of T((nk))  is isomorphic to the approximately 

finite lattice limklnc(6(nl)x  ... xó(nk),2). 

Proof. We have observed that the limit lattice in the statement of the 

theorem is isomorphic to limkldAk  in a natural way, and so it remains only 

to show that IdA is isomorphic to lim.IdAk. 

By Proposition 2.1 we can identify idA with the set of sequences 

J ii A,J fl A2 ,... , for J in ldA. An increasing sequence J1,J2,...  of 

ideals J of Ak,  is such a sequence precisely when J r = Afl (Tkk),r = 1,2 

Let us call such a sequence an inductive sequence of ideals. Then, more 

precisely, Proposition 2.1 allows us to identify IdA with the lattice of 

increasing inductive sequences of ideals. From the definition of direct 

limits of lattices, we see that IdA is isomorphic to 1 i1nKIdAk. U  

We have already observed that the limit lattice of a unital direct system 

of primary lattices is primary. Similar reasoning or direct arguments with 

Proposition 2.1 show that the ideal lattice IdT((nk)) is meet-irreducible. 

Remark. Similar reasoning applies in the context of nest subalgebras of 

AF algebras considered in [8]. For example it is possible to define a 
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natural upper triangular subalgebra, TM((nk))  say, of M((nk)),  which is 

the inductive limit algebra lim,T(n 1  ... k'  with certain natural embeddings 

(by 'refinement'). For this algebra we can obtain the identification 

Id MT((nk)) 	limklnc(cS(nl ... nk),2). 

ISO 
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3. Finite primary lattices 

We now collect together some elementary facts concerning finite 

factorizations and finite primary lattices. The arguments here have been 

extracted from Arveson's paper [1]. 

PROPOSITION 3.1. Let M be a finite unital lattice with unital sublattices 

.,L which form a factorization of M. If each factor Lk  is primary 

then N is primary. 

Proof. Let 	 be the largest non-units in 	 respectively. 

Suppose that 1 = a V b where 

2. 	 2. 
a = V a 	, b 	V b  

k=l 	 k=l 

and where each element a   or  b   is a finite meet of elements in the union 

of the lattices L ,...,L . Define. 1 	n 

ak < elV...Ve} ,  

a' = V{ak: a  j e V... Ve }, 

	

1 	n 

so that a = a 	Va' for each m = l,...,n. 	Note that a' belongs to 
in 	in m 

L 1 VL 2 V ... VL. 	Indeed if a 	= X1 A ... AX, and a   j elV...Ven 	with 

each x 1  lying in the union of then x.je 1 V ... Ve 	for all i. 

Thus, if x.1 then x. lies in the union of L 	,. .. ,L 
1 	 1 rn+l 	n 

In a similar way construct the elements 0 	0 	 for b, and observe that 

1a V b 	(a V) V (a'V') 

<(e1 V...Ve) V (a'V') 
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and so, by independence, 

1 < e2 	 ci V...VeV ' V ' . 

Continuing in this way obtain 1 < 	V 3. Since 	and 	are decreasing 

sequences we conclude that either 	1 for all m, or 	= 1 for all n. 

Hence a = 1 or b = 1 as required. U 

In view of Proposition 1.7 we now deduce that if L 1 ,L2 ,... is a 

coherent factorization of the approximately finite lattice L, then L is 

primary if each factor Lk  is primary. 

COROLLARY 3.2. Let M be a finite unital lattice with unital sublattices 

L1 ,. . .,L which form a factorization of M. If p is a prime element of L. 

for some i, and if M is primary, then p is a, prime element of M. 

Proof. Let p be a non-zero prime element of L 1  and define N = p AM, 

N  = pALk, for k = 1,...,n. We claim that N 1 ,... ,N is a factorization of N. 

Clearly, 	 generate N. Fix r and elements a,a' in L, b,b' in 

V L., and assume that 
jr 3 

(pAa) A (pAb) < (pfla') V (pAb'). 

If r = i then (pAa)Ab = (pAa) A (pAb) < ((pAa')Vb') A p < (pAa') V b'. 

Hence p A a < p A a' or b < b'. On the other hand if r # i then a A (p A b) 

= (pAa) A (pAb) < (pna') V (pAb'), and so a < a' or pAb<pAb'. In 

both cases we have the desired alternative, p A a < p A a' or p A b < p A b'. 

We next show that each of the lattices N   is primary, and the corollary 

will follow from Proposition 3.1. 
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Assume that p = ( p A a) V (p A b) with a and b in Nk.  If k = i then 

p A a = p or pA b p because p is prime in L.. On the other hand if k # 1 

then p Al = p =p A (aV b) < a V b 0 V (aVb) and so, by independence, 

p<OorlaVb. Hence laVb and alorbl because MiS 

primary. Hence p A a = p or p A b = b as required. • 

COROLLARY 3.3. Let M be a unital primary lattice with unital primary 

sublattices Li•Ln which form a factorization of M. Let p be an element 

of the form p = A p where each p is a prime in M . Then p is prime in M. 
rlr 	 r 	 r 

Proof. By Proposition 3.1 it suffices to show that each of the sublattices 

p A L. is primary. Suppose then that a,b are elements of L. such that 

p=(pAa)V(pAb), and p#0. LetqApsothatp.1 Aq.1 	p 
ro 

((p.
1 
 A a) V (q.1  A b)) A q 1 . Since the lattices L. and VL. are independent 1 

	

j:0 i

it follows that p = (p 1A a) V (q1  A b) and hence p, = 	A a or p. = p. A b, 

since p, is prime. Hence p = p A a or p = pAb, and pAL, is primary. I 

The converse to the last corollary is also valid; every prime element p 

of the lattice M is of the form p 1 A . . .Ap where each Pkis prime in Lk. 

We see this in the next section where we obtain an analogous representation 

for prime elements in certain approximately finite lattices admitting a 

factorization L1,L2,... by finite primary sublattices. 

01 
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4. Prime elements and the unique factorization theorem 

Our context in this section concerns approximately finite lattices L 

which arise as in the statement of Proposition 1.4, that is, L is isomorphic 

to the approximately finite lattice urn (L1 V ... VL) associated with the 

sequence L 1 ,L2 ,... which is a factorization of L by finite lattices. We 

refer to such a factorization as a coherent factorization. It was noted in 

the last section that if each of the lattices Lk  is primary then L is 

primary. 

A factorization L 1 ,L2 ,... of L is said to be indecomposable when none 

of the sublattices Lk  admits a nontrivial factorization. We shall obtain 

the following unique factorization theorem, which may be regarded as the 

approximately finite analogue of a theorem of Arveson for distributive 

metric lattices (1,Theorern 3.3.21. 

THEOREM 4.1. Let L1 ,L2 ,... and N1 ,N2 ,... be two indecomposable coherent 

factorizations of the approximately finite unital primary lattice L. 

Then there is a permutation ir of the natural numbers such that 

= L(k) for all k. 

A key step in the proof of this result is the following theorem, which 

is the approximately finite version of Theorem 3.2.4 in [11,  with a simpler 

proof. Note in particular that every prime p admits a finite representation 

p = p1 A... Ap 

THEOREM 4.2. Let L 111L2 ... be a coherent factorization of the approximately 

finite primary unital lattice L. Let Pk be a prime of Lk  for k =  

Then the element 

P=P1AP2/\•••APm 
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is a prime in L. Moreover, every prime eelement p has this form, for some 

integer m depending on p. 

Proof. We first show that for each prime p 0 0,1 we have 

pA{ak: ak > p akELk}. 

(This is the AF version of Theorem 3.1.2 in (21).  Let p1  denote the 

infimum and let p n =A{a: a > p ,a c L1  V... V L}. Then p1  A p 	
.1p, and in 

fact it will be enough to show that for each n, p > p1  A p. To see that this 

is enough, note that 

PPiAPn PiAPn)PitPn)PlA 1  

The last two equalities here follow from infinite distributivity and the 

zero-one law, Propositions 1.1 andl.4 respectively. 

Supppse then that x > p. We show that x > p 1  A p. Let 
l'•Z 

 be 

an enumeration of the elements of the form x 1 
 A... 

 n-1  
Ax 	with x 

1  . in L 1  .. 

Consider the collection N of elements of the form 

klk A  ck) 

with c  in L V L+i  V... . Then N is a lattice and by Proposition 1.1, 

a complete lattice. Hence for some ci,  .... c I we have 

p . x = 
k=lkk 

Since p is a prime element it follows that p <k A c  for some k, and so 

and p < Ck. We have P1:!  Ok  and Pn  < Ck and so p 1  A p < Ok 
A ck < X 

as required. 

We now obtain the last statement of the theorem. Let 

A{ak: a  > peak c  Lk,ak  is prime}. 

115 
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Suppose that Pk  aVb with a,b in L . Let q =A p.. Then k 	 k 	k i#k' 
= 	A 	= ( aVb) A q = (aAq) V (bAq) and so p = a A 	or p = bAq. 

Suppose that p aAq. Then p = pAqaAq< aVO. By independence 

Pk < a (since q k 160). Also a < a V b = k' and so P k = a. The other case, 

namely p = b A qn  leads to p b. 

In view of Corollary 3.2 asnd Corollary 1.5 the proof is complete. • 

The proof of Theorem 4.1 is completed exactly as in Arveson's paper. 

Thus from Proposition 4.1 the following refinement theorem is obtained in 

a straightforward way by using the sublattices L mn  = Lm fl N. (See 

Theorem 3.3.1 in (11).  Under the assumptions of the statement of Theorem 4.1 

there is a double sequence L m   ,m,n > 1 of finite sublattices of L such that - 

For each m (resp. n) L 	is the trivial sublattice {0,I} for all but 

finitely many values of n (resp. m), and 

L l ,L,... and L in  , 2n
L ,... are factorizations of L m  and L n 

respectively. 

In fact the above is obtained without using the assumption that the 

factorizations are indecomposable. With this assumption it follows that the 

doubly infinite matrix (L) has exactly one nontrivial entry in every row 

and in every column. Let ¶T be the permutation such that L n,ir  -1 (n) 
 is the 

nontrivial entry in the nth row. Then L = L V L V... = L 	and n 	ni 	n2 	n,i((n) 
so L TT(n) = L rr(n),n = V j  

.L •]. 
fl 

= N n , as required. 

Remark. We have obtained the unique factorization theorem above without 

recourse to Arveson's factorization theorem for distributive metric lattices. 

It seems logical to make the elementary context independent of the topologi-

cal one. However, it may well be possible to deduce our theorem from 

Arveson's by constructing normal valuations on AF lattices. 
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5. Isomorphisms and the automorphism group of T((nk)) 

The following theorem characterizes the Banach algebra isomorphisms 

and epimorphisms between the algebras T((nk))  and  T((mk))  where, as usual, 

and (m,) are sequences of positive integers greater than unity !  

THEOREM 5.1. (i) T((nk))  and T((m.)) are isomorphic if and only if there is 

a permutation ¶ such that m. = 	
k = 1,2..... 

(ii) There is an onto unital homomorphism from T((nk))  to T((m,)) 

if and only if there are finite sets of positive integers F 1 ,F2  and a 

bijection : N + 	such that 

m.Kn(k) 	,k$F2 

mk<n(k) 	, kcF2  

We give two related proofs of the first part of this result. In 

one proof we focus on the structure of the countable lattice of invariant 

projections, LatT((nk)),  and show that isomorphisms induce projection 

lattice isomorphisms. The set {n 1 n2 ,...} is a complete lattice isomorphism 

invariant for LatT((nk))  and this fact depends only on the finite primary 

lattice factorization theory of section three. In the other, proof, which we 

give first, we use the structure of the complete lattice of closed ideals, 

ldT((nk)). Clearly Banach algebra isomorphisms induce ideal lattice 

isomorphisms, and once more the set {n 1 ,n2 ,. . .} is a complete invariant for 

the lattice structure, although this is a consequence of the approximately 

finite primary lattice factorization theory of section four. 

In some ways the ideal lattice approach seems more revealing, and is 

well adapted to the second part of the Theorem. 



First Proof. Let L((nk)) be the approximately finite unital lattice 

	

limklnc(IS(nl) , ... 	tk),2) so that by Proposition 2.3 L((nk)) and 

IdT((nk)) are isomorphic. By Proposition 1.7 L((nk)) is meet-

irreducible. There are canonical identifications of the lattice 

L. = Inc(ó(n)2) as a unital sublattice of L((nk)) and, by Proposition 1.4 

L11 L2 ,... is a factorization of L((nk)). However the factorization is not 

indecomposable. Each sublattice L. admits a factorization L V L, where 

L and L are copies of the nest lattice L(n): 

L CL = { clnc(ó(n.),2): q((i,j)) = l-1 < I < t} 

{p c lnc(6(n.),2): 	( U 	+ 	l} i)) = 0 +t < j < 	. 

	

J 	t 

With the converse order L((nk))  is a primary unital approximately finite 

lattice with coherent indecomposable factorization La L  La  L 1' 1 ' 2' 2 

Suppose now that T((nk))  and  T((m.K))  are isomorphic as Banach algebras. 

Then L((nk)) and  L((mk)) are isomorphic lattices. By Theorem 4.1 and the 

discussion above we obtain the desired permutation ¶ for the first part of 

the theorem. 

For the second part consider the ideal J that is the kernel of an onto 

unital homomorphism from T((nk))  to  T((m.x)).  Since IdT((m.)) is meet-

irreducible the zero ideal is not the intersection of two nonzero ideals. 

It follows that J is a meet-irreducible element of the ideal lattice 

LdT((nk)). (Equivalently, J is a prime element of the primary lattice 

with the converse order.) By Proposition 4.1 we conclude that J is the 

finite join k V  ... VJk  of nontrivial elementary ideals k '•'k 1 	r 	 1 	r 

By an elementary ideal J we mean the meet-irreducible ideal generated by 

a meet-irreducible ideal J k 
 in one of the coordinate subalgebras T(nk). 

Thus, T(nk)/k is isomorphic to T(n) for some 1 < n< n k' 
 and 

/ 
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= T(n1 ) 	T(nk_l) a J k  Q T((n 1 ) 

Note that we may have 	= 1. Indeed we set F 1  to be the finite set of k 

with n = 1. In view of the first part of the theorem it remains to show 

that the quotient algebra T((nk))/J  is isomorphic to T(n) 9 T(n) 

where we write n 
=k  if k 0 k   for some i = 1,... ,r. However, there is a 

natural isomorphism 

T(nk )... Q T(n )/J V...V J - T(n 1  ) 	T(n ). 
1 	 r 	 1• 	r 

which is induced by a compression mapping. From this we obtain the 

required identification for the quotient T((nk))/J. U  

Second proof of part W. Write Lat T((nk))  for the commutative lattice 

of self-adjoint projections p in M((nk))  such that (1-p)ap = 0 for all a in 

It follows, by standard arguments, that p lies in the diagonal 

algebra C((nk)),  and indeed, since distinct commuting projections cannot be 

close, p lies in the union of the projections in the finite dimensional 

aubalgebras C(n 1 ) 	 k = 1,2.....Thus LatT((nk))  is simply 

the union of the projections in the relative lattices Lat(T(nl)  ... T(nk)), 

computed in M(n 1 ) 0 . ..M(nk). 

Suppose now that a: T((nk)) - T((nk)) is a Banach algebra isomorphism. 

Then for each projection p in LatT((nk)),  a(p) = &(p) + s where (p) is a 

self-adjoint projection in C((mk))  and r belongs to the Jacobson radical. 

The Jacobson radical coincides with the strictly upper triangular subalgebra 

of T((nk)) and it is straightforward to obtain the direct stun decomposi-

tion T((nk)) = C((nk)) + radT((nk)) (See (81). There are elements x,y in 

T((mk)) such that x(1-ct(p)) = 1 - (p) anda(p)y = &(p), and so we conclude 

that for a in T((nk)),  (l-(p))a(a)a(p) = x(l-cx(p))ct(a)ct(p)y = 

xct((l-p)ap)y = 0. Since a has an inverse isomorphism and since the 
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projections commute we conclude that & is a lattice isomorphism from 

LatT((nk)) onto  LatT((nk)).  The relative lattice Lat(T(nl)...T(nk)) 

is isomorphic to the finite primary lattice Inc(n1,... ,nk).  It now follows 

easily from the structure of prime elements, given in section three, that & 

induces the desired permutation ir. • 

The automorphism group. We can use the last theorem to obtain the following 

key lemma for the determination of the group AutT((nk))  of Banach algebra 

automorphisms of T((nk)).  In the subsequent two lemmas we determine that the 

automorphisins fixing the ideal lattice are precisely the pointwise inner 

automorphisms. We write a for the canonical permutation automorphism of
IT 

T((nk)) associated with a permutation n such that n k = n(k) for all k. 

LEMMA 5.2. Let a c AutT((nk)).  Then a = °a where alT  is a permutation 

automorphism and 0 is an automorphism with a(J) = J for every two-sided 

ideal J. 

Proof. We know from the proof of the last theorem that the meet irreducible 

ideals are precisely the ideals of the form Jk V ... VJk , where each 
1 	r 	 i 

is an elementary meet-irreducible ideal associated with the distinct 

coordinate algebra T(n). Notice that the partially ordered set of meet-

irreducible ideals of T(n)  is anti-isomorphic to S(n.), and therefore 

that the partially ordered set of all meet-irreducible ideals of T((nk)) 

has a particularly transparent structure: given the converse order it 

coincides with the partially ordered set, 6(n 1 ) x  6(n2 ) x •.. say, of 

finitely non-zero sequences (t 1 ,t2 ,...), with t. in 6(n.), with the product 

partial ordering. The automorphism a induces an automorphism & of this 

partially ordered set. But the automorphisms of 6(n 1 ) x  6(n2 ) x 

are compositions of a permutation automorphism & and an automorphism 
IT 
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which acts locally. In fact each 6(n.) supports a flip automorphisin 

(exchanging coordinates in ó(n.)), and must either fix or flip each 

coordinate. Since derives from the algebra automorphism = cioa 1, 

it is easy to check that in fact R has no flip action, and hence that 
(J) = J for every elementary ideal, and hence for all ideals. U 

The hypothesis in the next lemma cannot be relaxed too much as can be 

seen from the following example. Let A be the subalgebra of T(4) spanned 

by the matrix units e.. of T(4) other than e 12  and e34 . It can be seen 

that A admits automorphisms that preserve ideals but which are not inner. 

For example consider the automorphism a such that a(e 14 ) = -e14  and 

ci(e.. ii  ) 	ij 
e for all other matrix units in A. This fails to be inner 

because a fails to preserve the rank of some elements. (See (6] for 

related matters). 

LEMMA 5.3. Let A be a subalgebra of the algebra T(n) which contains the 

matrix units e ii ,  i 
e , for 1 < i < n. If a is an automorphism of A such 
n 	- - 

that a(J) = J for every two sided ideal J then a is an inner automorphism. 

Moreover the same holds true for ideal preserving automophisms of the 

algebraic tensor product A 11 8, where B is a commutative unital C*algebra. 

Proof. By the ideal invariance of a we see that a(e 11 ) = e11  

Let a be a nonzero coefficient with r > 2 and let S (A) = I + Ae
lr 

Then S 	Sir(_A) and we see that S 1 (A) is an invertible element of 

A such that 

(S (A) a( 
	A)) e )S ( 	= a lr 	- 1 
	

11 lr 	ir 	lr 
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It follows that we may construct an invertible element S in A such that 

S 1 cL(e )S =11 	 e1. 

Since ci is an automorphism we observe that for 1 < i < j 

- 	 -1 
(S 1ci(e jj )S) ir  = (e 

S cL(e )S) 1 1 	ij 	ir 

(S-1  a(e e )S) 

	

llij 	ir 

= 0. 

Thus ci leaves invariant the subalgebra, A 1  say, spanned by {e..: e.. e A,2 < i}. 

In particular, with respect to the associated decomposition 
çfl = • n-1 

ci has the form 

a: 	a 	- a(A) 	a  

0 	A 	ci1(A) 

where a1  is the restriction of ci to Al.  and sS is a linear map on the linear 

space of row vectors a. 

We shall show that ci is inner by induction on n. By the induction 

hypothesis a1  is implemented by an invertible element T 1  of the algebra A 1 . 

Conjugating by T = e 11  $ T obtain a new ideal preserving automorphism which 

is the identity map on A 1 . Without loss then, we assume that ci already has 

this form. In particular 6(aA1 ) = 6(a)A1  for all operators A in Al.  from 

which it follows that S(e lj 	j ij 
) = d.e for some scalars d. (associated with 

indexes j > 2 for which e 1  is in A). Suppose e 1  lies in A. Then 

d n ln e 	= 6(e ln 	lj ) = S(e 	jn  e 	l . ) = 5(e )ó(e. in 	i 
) = d l j e e 

in  
. = d i ine . Thus all the 

d. coincide with a single scalar d say. Thus ci() = 	D where D is the 

diagonal matrix with entries l,d,d,...,d, and the first assertion is 

proven. 
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Note that A ® B can be considered as the algebra of matrices from A 

whose entries are operators in B. Replacing the role of the scalar field 

by B in the argument above leads to an almost identical proof for the 

second assertion of the proposition. • 

The next lmma characterizes the ideal fixing automorphisms as the 

pointwise inner automorphisms. 

LEMMA 5.4. Let a be an automorphism of T((nk))  such that a(i) = J for 

every closed two sided ideal J. Then there exist invertible operators Sr 

with Sr  and S- 
1  in T((nk)),  for r 	1,2,... , such that S1XS - a(X) 

as r - 	for every element X of T((nk)). 

r 	r r 	r 	cc 

Proof. Let A = 	T(n ), A = Q T(n ), C = 	C(n ) C = 	C(n ), r k=1  k 	k=r+l k 	r k1  k 	kr+1 k 

regarded as the usual subalgebras of T((nk)).  The Jacobson radical radAr 

of the subalgebra A   is the strictly upper triangular part of A   and we 

have Ar = r + radAr. Moreover J = A 	radA' is an ideal such that the r 

quotient T((nk))/J  is canonically isomorphic to A   0 C 
r.  To see this 

observe that Ar radAr  is the kernel of the natural contractive homomor-

phism from T((nk))  to  A   Q 
Cr).  In particular, since J is invariant, 

a induces an automorphism a 
r  of A r 	r, and moreover a r 

 leaves invariant 

the ideals of A r 
	r. The ascending subalgebras A r 	have dense union 

in T((nk)).  and so it will be sufficient to show that each automorphism a 

is inner. This follows from the second part of Lemma 5.3, since the 

algebras A   are subalgebras of T(n1n2 ... 	 of the required form. • 

The results above are summarized in the next theorem. We write 

Out(T((nk))) for the quotient group determined by the normal subgroup of 

pointwise inner automorphisms. 

IA 
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THEOREM 5.5. Let 	be the discrete group of permutations n such 

that n = fl(k)k = 1,2.....Then each automorphism a in AutT((nk)) 

admits a decomposition ci = Poa with 0 a pointwise inner automorphism and
Iff 

in 	 In particular OutT((nk))  is the discrete group II((nk)). 

"4. 
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6. The K group 

Let A be the algebra T((nk))  with diagonal subalgebra C = C((nk)) ,  

associated as usual with integers n  > 2, k = 1,2..... We show that 

K0(A) = K0 (C). In particular K0  does not distinguish the isomorphism 

type. 

Recall that A decomposes as a direct sum A = C + radA, where radA 

is the Jacobson radical. Let p (p..) be an idempotent in M(A) and let 

p..13 = c 13  .. + r 13  .. with c ii  . 	
1 

in C and r. 3 	 1 
in radA, so that c = (c. 3  .) is an 

idempotent in M(C). We show that there is continuous path of idempotents 

0 < t < 1, in M(A), such that p 2  p  and  p0  c. From this it will 

follow that the natural map K0 (A) - K0 (C) induced by the quotient mapping, 

is an isomorphism. 

Let dtk  be the invertible element of C given by 

Dtk 	1 	 0 < t < l• 

t 

t2  

Then the inner automorphism ctk:  a - d1kadk is a contractive on A. 

It follows that we can define the pointwise inner homomorphism a by 

cx (a) = lim cx 
k-,— t,l o ctt , 2 0 ... o cLt , k(a). 

Indeed, this limit exists on a dense subspace, and the composed automorphisms 

are contractive. Note that a is a homomorphism and cxt(a),O < t < 1, is a 

continuous path in A. A simple approximation argument shows that if a = c + r 

withc in C and r in radA, then ct0 (a) = lim a. (a) = c. Thus the idempotents 
t-O 
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Pt = 
	

form a path with the desired properties. 

In fact a similar argument works for any subalgebra A 1  of a nest sub-

algebra A of an Al algebra, as defined in [8],  with the property that A 1  

contains the diagonal algebra of A. 



REFERENCES 

W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. 

100 (1974), 433-532. 

W.B. Arveson, Ten lectures in operator theory, CBMS regional conference 

series, No. 55, Amer. Math. Soc., 1984. 

G. Birkhoff, Lattice theory, 2nd  rev. ed., Amer. Math. Soc. Colloq. 

Pubi., 25, Providence, R.I., 1948. 

E.G. Effros, Dimensions and C*_algebras,  C.B.M.S. regional conference 

series, No. 46, Amer. Math. Soc., 1981. 

G. Elliot, On the classification of inductive limits of sequences of 

semi-simple finite dimensional algebras, J. Algebra 38(1976), 29-44. 

F. Gilfeather and R.T. Moore, Isomorphisms of certain CSL algebras, 

J. Functional Anal., 67(1986), 264-291. 

E.C. Lance, Inner automorphisms of UHF algebras, J. London Math. Soc. 

43(1968), 681-688. 

S. C. Power, On ideals of nest subalgebras of C * algebras, Proc. London 

Math. Soc., 50(1985), 314-332. 

6t&L...ar, C*_algebras and their automorphism groups, Academic Press, 



R.l 

RFFFPrNCrc 

Note that there are individual lists of references, for the approp-

riate sections, in-Chapters 5 and 	and sections (2.6), (2.7), (3.4), 

(3.5), (4.2), (7.2) and (8.4), wherein we have incorporated published and 

recent unpublished papers. References sited in all the other sections 

refer to the list below. 

C. Apostol, L. Fialkow, D. Herrero and D. Voiculescu, Approximation 
of Hilbert space operators, Vol-II, Pitman Research Notes in Mathe-
matics, Vol.102, 1984. 

W.B. Arveson, Interpolation problems in nest algebras, J. of Func-
tional Analysis, 20 (1975), 208-233. 

S. Axier, I.D. Berg, N. Jewell and A. Shields, Approximation by com-
pact operators and the space H+C, Ann. Math 109 (1979), 601-612. 

J.A. Ball and I. Gohberg, A commutant lifting theorem for triangular 
matrices with diverse applications, J. Integral Equ. and Operator 
Th. 8 (1985), 205-267. 

F.F. Bonsall and S.C. Power, A proof of Hartman's theorem for com-
pact Hankel operators, Math. Proc. Camb. Phil. Soc. 78 (1975), 447-450. 

C. Davis, W.M. Kahan and W.F. Wienberger,. Norm-preserving dilations 
and their applications in optimal error bounds, SIAM J. Numer. Anal. 
19 (1982), 445-469. 

J.A. Erdos, Operators of finite rank in nest algebras, J. London Math. 
Soc. 43 (1968), 391-397. 

J.A. Erdos, On the trace of a trace class operator, Bull. London 
Math. Soc. 6 (1974), 47-50. 

J.A. Erdos and S.C. Power, Weakly closed ideals in nest algebras, 
J. of Operator Theory 7 (1982), 219-235. 

F. Gilfeather and R.L. Moore, Isomorphisms of certain CSL algebras, 
J. of Functional Analysis 67 (1986), 264-291. 

V.5 
P.R. Halmos an 	under, Bounded Integral Operators on-L' Spaces, 
Springer-Verlag, New York, 1978. 



R.2 

P. Hartman, On completely continuous Hankel matrices, Proc. Amer. 
Math. Soc. 9 (1958), 862-866. 

E.C. Lance, Cohomology and perturbation of nest algebras, Proc. 
London Math. Soc. 43 (1981), 334-356. 

C. Laurie and W.E. LOngstaff, A note on rank one operators in reflexive 
algebras, Proc. Amer. Math. Soc. 89 (1983), 293-297. 

V.B. Lidskii, 'Non-self-adjojnt operators with a trace', Dokl. Akad. 
Nauk S.S.S.R. 125 (1959), 485-487; Amer. Math. Soc. Transi. 47 (1965), 
43-46. 

D.Luecking, The compact Hankel operators form an M-ideal in the space 
of Hankel operators, Proc. Amer. Math. Soc. 79 (1980), 222-224. 

Z. Nehari, Bounded bilinear forms, Ann. of Math. 65 (1957), 153-162. 

L.B. Page, Bounded and compact vectorial Hankel operators, Trans. 
Amer. Math. Soc. 150 (1970), 529-539. 

S. Parrott, Unitary dilations of commuting contractions, Pacific J. 
Math. 34 (1970), 481-490. 

S. Parrott, On a quotient norm and the Sz-Nagy Folas lifting theorem, 
J. Func. Anal. 30 (1978), 311-328. 

V.I. Paulsen and S.C. Power, Lifting theorems for nest algebras, 
preprint 1987. 

V.I. Paulsen and S.C. Power, Tensor products of nonself-adjoint 
operator algebras, in preparation. 

S.C. Power, Hankel operators on Hilbert space, Bull. London Math. 
Soc. 12 (1980), 422-442. 

S.C. Power, The distance to upper triangular operators, Math. Proc. 
Camb. Phil. Soc. 88 (1980), 327-329. 

S.C. Power, Hankel operators on Hubert space, Pitman Research Notes 
in Mathematics, No.64, London 1982. 

S.C. Power, Nuclear operators in nest algebras, J. of Operator Th. 
10 (1983), 337-352. 

S.C. Power, Another proof of Lidskii's theorem on the trace, Bull. 
London Math. Soc. 15 (1983), 146-148. 

S.C. Power, On ideals of nest subalgebras of C*_algebras, Proc. 
London Math. Soc. 50 (1985), 314-332. 



R.3 

S.C. Power, Commutators with the triangular projection and Hankel 
forms on nest algebras, J. London Math. Soc. 32 (1985), 272-282. 

S.C. Power, Factorisation in analytic operator algebras, J. Functional 
Anal. 67 (1986), 413-432. 

S.C. Power, Analysis in nest algebras, in 'Surveys of recent results 
in operator theory', ed. J. Conway, Pitman Research Notes in Mathe-
matics, Longman, 1987, to appear. 

S.C. Power, A Hardy-Littlewood..Fejer inequality for Volterra integral 
operators, Indiana Univ. Math. J. 33 (1984), 667-671. 

A.L. Shields, A analogue of a Hardy-Littlewood_Fejer inequality for 
upper triangular matrices, Math. Zeit. 182 (1983), 473-484. 

B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert 
space, American Elsevier, New York, 1970. 

D. Pitts, Factorisation problems and the K0  groups of nest algebras, Doctoral Dissertation, Berkeley, 1986. 

200 



Best approximation in C* a1gebras 

By Kenneth R. Davidson*)  at Waterloo and Stephen C. Power at Lancaster 

In this paper, methods are developed for obtaining best approximations to ideals 
of (generally non self-adjoint) subalgebras and subspaces of C* algebras. Suppose / is 

an ideal of a C* algebra  91. Let 5" be a subspace of 91 such that 5" n / is /-weakly 

dense in 5 (see section one). Then 5" n / is proximinal in 5 and the natural map 

:/n/ 	+/// 

is isometric. 

Our methods use the M-ideals introduced by Alfsen and Effros [2], and in fact 
yield a general Banach space theorem. The special topologies needed are introduced in 
section one, and the approximation theorem is proved in section 2. In section 3, a 
constructive proof is given based on the method of Axier, Berg, Jewell and Shields [4]. 
This section can be read independently on the first two sections. In fact, this was our 
original method of proof and was highlighted in a previous version of this paper. 
However, the hypotheses are apparently more stringent (although Corollary 2. 7 shows 
that this is not really the case). In section 4, the usefulness of approximate identities for-
/ in 9 n / is pointed out. 

Section 5 is devoted to applications to nest algebras. The most significant result in 
this section is a distance formula for an arbitrary operator T to the quasitriangular 

algebra .9 (.iV) in terms of the function PT taking .A1  into (.°) given by ,  

for N in 1V. In [10], it is shown that T belongs to 9iV) if and only if cb,- is norm 
continuous and 'compact valued. It is shown that the distance of 1T  to the ideal of norm 
continuous compact valued functions is exactly the distance of T to .99(.A 1). 

In section 6, nest subalgebras of the compact operators are studied. It turns out 
that only in three simple cases can 5 (.iV) n be proximinal in 17. The methods of this 
section mimic those of [17], and use the useful matricial arguments of [16], [7]. 

*) Research partially supported by grants from NSERC (Canada) and SERC (Great Britain) 
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II. Topologies on C* a1Igebras  

The situation to be considered is the following: 91 is a C*algebra  with a (closed 
two-sided) ideal /, and .9° is a (closed) subspace of W. If S is an element of 9', is there 
an element J in 9' n / such that 

lis +ill = IIS+fII? 

The existence of such best approximations in 9 itself can have many ramifications. (See 
section 5 for some applications.) Naturally, such approximations do not always exist. It 
is perhaps surprising then that if one stipulates that 9° n / is "sufficiently rich", such an 
approximation is always possible. 

We need some topologies on 91 induced by / analogous to the weak operator 
topology, sttong operator topology and strong*  operator topology. A net A will be 

jW said to converge to A in the f-weak topology (A --) A) provided 

cl (AJ) -f cP (AJ) 

for all J in / and cb in /*. Similarly, the net A converges in the f-strong topology 
' (A S  
-) A) provided 

AJ -p AJ 

for all J in f. Lastly, A converges to A in the /strong*  topology (A "
Is% A) provided 

A—-A and 

This last topology is also known as the f-strict topology, and was introduced by Busby 
[5] for the purpose of studying extensions of C* algebras . 

There is a natural homomorphism taking 91 into the multiplier algebra d/ (/) of 
/. Since .11(f) imbeds naturally into the bounded operators on /, one sees readily that 
the f-topologies (weak, strong, strong*)  correspond with the topologies induced by the 
corresponding operator topologies on .(/). For example, if the C*algebra  is 
the space of bounded operators on a Hilbert space Ae , and the ideal is the ideal of 
compact operators i(, then the -weak topology is precisely the weak*  (or ultra weak) 
topology on The s-strong and strong*  topologies are the ultra-strong and 
ultrastrong* topologies. 

The reader familiar with these topologies on (.-') will not be surprised by the 
following lemma. 

Lenriniia 1 . L The continuous linear functionals on 91 with respect to the f-weak, 
f-strong and /strong*  topologies coincide. In particular, they have the same closed 
convex sets. 
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Proof. Identify 2f with its image in (/). By [8], Theorem VI. 1. 4, the weak 
operator topology and strong operator topology on () have the same continuous 
linear functionals for any Banach space X. For the /strong*  topology, note that the 
dual has .an adjoint operation 

Ji*(A)_ 0  (A*) 

which is continuous since adjoint is /strong*  continuous. (The same applies to the /-
weak topology.) Thus, one may assume that k =. . In particular, Ii  is real on the sell 
adjoint part ¶Usa , and the /-strong and /strong*  topologies agree on lsa:  The real 
version of the above general theorem shows that 0 is /-weak continuous on Now 
linearly extending this to all of ¶!i shows that 0 is /-weak continuous as well. The other 
direction is trivial. D 

The, condition that 9' n / is "sufficiently rich" can now be stated as the 
requirement that 9' r / is /-weakly dense in 91. Lemma 1. 1 shows that it is therefore 
/ strong* dense. In Corollary 2. 7, it will be shown that, moreover, the unit ball of 
9 r / is /strong*  dense in the unit ball of Y. This condition will be used to obtain 
more constructive methods in section 3. 

A closed subspace ii of a Banach space ec is said to be an M-ideal [2] if there is 
a linear projection 

from the dual space SC" onto the annihilator jjJ  of A' in * such that for all cP in 	, 

III = IIiII + II-nII. 
In this case, 	is said to be an L-summand of g*  and t is called the L-projection 
onto #'. The fact that M-ideals are proximinal ([2], Corollary 5. 6 and [13], section 4 
for an elementary proof) has been exploited by several authors (for example, [15] and 
[20]). 

• The M-ideals in a C*algebra  are precisely the two sided ideals [20]. We indicate 
a proof that ideals are M-ideals which is convenient for our purposes., Recall that ¶U** 
may be identified with the enveloping von Neumann algebra of W. Let P denote the 
central support projection for / in 2V. Then define the mapping ii on 91" by 

(P)(A)= 'P((I—P)A). 

This is an L-projection onto ¶U*(I_P)=/I.  So / is an M-ideal (see Takesaki [21], 
p. 171 for details about 91**). 

Our approximation results can be put in a general Banach space setting. To state 
them, the analogue of the /weak topology is required. Let t be an M-ideal on a 
Banach space Y, and let , be the L-projection of l*  onto J1. One can identify ff* 
with the range of 1 - i. Indeed, this identification associates to any 0 in #" its unique 
Hahn-Bañach extension in p1*.  The  jj*4opology  on X is the weakest topology in 
Which each is continuous. In particular, one has that a net Ma  of elements of 4T 
converges h"'' to X in X if and only if 

lirn 0 (M.) 	(X) 
at 

for all 4 in 
31 Journal für Mathematik. Band 368 
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It is frequently the case that T is an M-ideal in 	For example, this is the case 
if X = ((P), l<p <co, the space of compact operators on eP  [14]. In this case, the 

*.topology  is precisely the weak*  topology on £?(. 

Returning to the setting of an ideal / in a C*algebra  91 we have the following 

Lemma 1. 2. The /* topology and the / weak topology coincide. 

Proof. The /* topology is determined by the unique Hahn-Banach extensions 
of functionals 4) in /*. The /-weak topology is determined by the functionals ip (.J) for 
ip in /* and J in /. It will suffice then to show that each 4) in /* may be factored as 
4) = Jip where Jip indicates the functional ip(.J) for some ip in /', J in /. Observe that 
/* is in fact a left Banach module for / under this multiplication. Moreover, if {E} is 
an approximate unit for / then it can be shown that {E} is an approximate unit for 
/*. Thus Cohen's factorisation theorem is applicable, and each 4) in /* admits the 
required factorisation. LI 

2. Proximinality of ideal perturbations 

The main result of this paper can now be stated. 

Theorem 2. 1. Let .11 be an M-ideal in a Banach space X. Suppose that 5° is a 
subspace of X such that 9' r .A' is if *.dense  in 5°. Then 

5" n if is an M-ideal in 5°, and the quotient map 

a:5/—*b°+if/if 

is isometric, 

9 +,#/g is an M-ideal in C15", 

if .9° is proximinal in et, so is 5° +.A 

Corollary 2. 2. Let / be an ideal in a C*algebra  91. Suppose that .9° is a subspace 
of 91 such that 9 r / is /-weakly dense in Y. Then for each S in 5°, there is an element 
J of I/'r/ such that 

IIS+JII = IIS+/Il. 

Corollary 2. 3. Let 9 be a weak*  closed subspace of () such that 91  r X is 
weak* dense in Y. Then the map 

o:b°/5°r 	-- 5°+t7.)t 

is isometric and 91  n i( is proximinal in Y. Furthermore, .9° + L't' is proximinal in J(.°). 

Proof of Theorem 2. 1. Let q be the L-projection of et" onto if -'- . First, we show 
that p5° -'-  is contained in 91•  So let 0 belong to 	For any S in II', let S be a net in 
9° r' if converging to S in the if"-topology. Then since (1 - 	5 belongs to if", 

no (S)=(S)—(1—i1) cl(S) 

= lirn (1 - 	(Se) = - lirn 4 (S) = 0. 
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Since 	leaves 9' invariant, it induces a projection 	from 	/,91 onto 
Now E*/,9  is isomorphic to ,9', and A" + 9'L/,9o!  (A' ,9')'/5°' is 

identified in ,92*  with the annihilator of A' r Y. It is clear that 7 is an L-projection, and 
thus A' m 9° is an M-ideal in Y. In particular, 9 r' A' is proximinal in 9' 

Furthermore, if p belongs to A" + 9°' = (A' r' .9')', then t1V belongs to A" and 
(1— ) ip belongs to (1 - ) 9' which is contained in 9". So if S belongs to 9°, 
p(S)=pp(S). Whence V  

d(S, 9'r A')=sup lip (S): II'pII < 1, ip e 

=sup {qv  (S):  11 ip II <1, ip e A"+b°'} 

= sup {4 (S): 110 II 1, 0 E A"} = d (S, A'). 

Hence the natural map 

- 

is isometric. Thus if S belongs to 9, there is an element M of .9' r' A' such that 

11 S — M 11 =d(S, A'). 

For assertion (ii), note that (/9')*  is isometrically isomorphic to 5°', and the 
annihilator of A' + ,9'1.9° is just A" r 9'. Since q leaves 5°' invariant, the restriction 
to 9' is the desired L-projection onto (A' + 9°19)'. 

To prove (iii), take any X in X. By (ii), there is an element of M in A' such that 

d(X—M, 9')=d(X, 5°+A'). 

Since .9° is proximinal, there is an element S of .9' such that 

IIX — (M+S)Il=d(X — M,5°)=d(X, 5° +A'). LII 

Proof of Corollaries. Corollary 2.2 is immediate from (i) and the equivalence of 
the /-weak and /*topoIogies.  For Corallary 2. 3, note that weak*  closed subspaces 
are always proximinal in (.'). F V 

Corollary 2. 4. Suppose X is an M-ideal in **, and that 9 is a weak*  closed 
subspace of ** such that .9° n X is weak*  dense in 9. .9° + X is proximinal in ", 
9 r-  T is proximinal in 5°, and the map 

a: 	r) 	9'+(/ 

is isometric. 	 01 

A special case of this is somewhat stronger than the main result of [4]. 

Corollary 2. 5. Let .9° be a subspace of (1), 1 <p  <co, which is the weak* 
closure of .9° r' X' (e"). Then if S belongs to 5°, there is a compact operator K in .9° such 
that 

IIS+Kul = ulSul. 

Furthermore, .9° +. is proximinal in R (e"). 
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In [10], a subspace .9° of .(°) is called local if 9° is the weak*  closure of 
They show that the map 

- 

is isometric. Thus they obtain that 91 + ,*' is closed. However, they do not obtain that 
the more natural map 

o.9'/.9°n— 	+j/ 

is isometric. This now follows immediately from Corollary 2. 4. 

The proof of Theorem 2. 1 allows us to deduce more from JI*density,  namely 
that the unit ball is .,ff*dense  in the ball as well. 

Proposition 2. 6. Let dl be an M-ideal in a Banach space X. Suppose that .9' n '  
is Al*dense  in Y. Then the unit ball of .9' n .A' is .Il*dense  in the ball of Y.  

Proof. There is a natural contractive linear map x of 9 into .'N given by 

S) (4) = i(S) 

for chin J(*  The condition that .9' r' .A' is dl*.dense  is precisely that t (.9°) r .A' be 
weak* dense in r(9'). 

Since the L-projection il leaves .9'-'-  invariant, .9±  splits as the L' direct sum 

,921_(.9O1) 	(1—).9°1. 

And from the proof of Theorem 2. 1, one also has 

(Y n 

 it is apparent that in dl  one has 

(t (9) (- 	= (1— i)  9 = t (9')'. 

Thus t (9) is identified with (a subspace of) (x (.9°) n 

A well known theorem in functional analysis states that the unit ball of any 
Banach space cc is weak*  dense in the unit ball of its bidual Applying this to 
T (9) r' .11 yields that the ball of t (9) r .# is weak*  dense in the ball of r (.9'). Since t is 
isometric on 9 r dl, the ball of ,97  n dl is dl*dense  in the ball of Y. fl 

Corollary 2. 7. Let / be an ideal in a C*algebra  W. Suppose that .9' is a subspace 
of 21 and .9' n / is /-weakly dense in 9. Then the unit ball of 9° r' / is /strong*  dense 
in the ball of 9. 

Proof. Apply Proposition 2.6 and Lemma 1. 1. LII 

3. A constructive approach 

The purpose of this section is to modify the technique of [4] to get a constructive 
method of obtaining best approximants. Corollary 2. 7 shows that /-weak density 
implies the much stronger condition of bounded, /strong*  density. The price to be 
paid here is that we assume, a priori, that such bounded nets are at hand. 
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The first lemma is an easy application of the functional calculus. A proof may be 
found in [1], Theorem 4.3. 

Lemma 3. 1. Let / be a (closed two-sided) ideal of a C*algebra  W. For any A in 
.t, there is an element J in / such that 

IIA+JIl = IIA+/II 
and 

,IJII = IIAII — IIA+/II. 

Corollary 3. 2. Every ideal of a C*algebra  is proximinal. 

This corollary is immediate and elementary. It also follows from the M-ideal 
theory (see section 1 or [20]). 

Next, we need another elementary result. This lemma is straight-forward in the 
commutative case, but is a bit more subtle in general. 

Lemma 3. 3. Let A and B be positive elements of a C*algebra.  Then 

IIA+BII 	max  {IIAII, IIBII}+IIABII+. 
'Proof. Assume for convenience that A and B are operators. Suppose A+B 

attains its norm, so that there is a unit vector x with 

(A+B)x=IIA+BII x. 

Write Ax=cx+y and Bx=f3x—y, where y is orthogonal to x. Let '= Ilyll. To simplify 
computations, let us further normalize so that 1 = ct The compression of A to 
span {x, y} is positive, and is greater than 

[1 	y 

I_y 	
),2,

] . 

Thus 1 1 All > 1+y2 . Also 

liABhi ~! (ABx, x)I = I(A/3x, x)—(Ay, x)l = Ifl — y 2 1. 
Hence 	 1 

hAil + hlABhi 2 	1+y 2 +I/3 — y 2 l 2 	1 +13  
where the desired inequality follows from elementary calculus. 

The general case is obtained by using approximate eigenvectors. Li 

The next lemma is the appropriate analogue of Theorem 2 of [4] for arbitrary 
ideals instead of the compacts. The interested reader should note that in the case of the 
compacts, this proof can be simplified to some extent. To our minds, it provides a direct 
and more natural proof of the theorem in [4]. 

Lemma 3. 4. Let / be an ideal in a C*algebra  W. Suppose A belongs to 9 1, and 

Ba  is a net of elements such that B a  0. Then for each e> 0, there is an Lx o  so that for 

all x~!ct, 

hiA+Bahi <max {hlAiI, hlA+/II + hiBahi}+a. 
32 Journal fur Mathematik. Band 368 
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Proof. By Lemma 3. 1, obtain J in / so that 

IIA+JII=IIA+/II and  IIJII=IIAII — IIA+/ 

Since Ba -- 0, one can choose c o  so that for 

	

E2 	 C2 

	

BaJ*II 
<2 	

and IIJ*Ba II < 

Let Ma=max{IIJII, I!BaII} Then 

IIBaJII 2 = IJ(Ba _J)* (B—J)II 

< IIBB+JJII + IBJ+J*BII 

<IIBBa +J*JII +C2 . 

Since 

IIBBaJ*JII 	IIBII  IIBaJ*II  liJil <M—, 

Lemma 3.3 implies that 

IIBa_JiI2<M+(M2 
C 

a —
2) 

2+C2<(M+C)2 

It now follows immediately that 

IIA+BaII < IA+JII + IB a JII 

IIA+/II+max(IIAII—IIA+/II, IIBaII}+C 

= max {IIAII, IIA+/II+IIBaII}+C. 	D 

From this, we deduce the analogue of the main theorem of [4]. Note that in the 
case that {J} is a sequence, the boundedness condition is automatic by the Banach-
Steinhaus Theorem. 

Theorem 3. 5. Let / be an ideal in a C*algebra  91. Suppose that A in 91 is not in 
and J,, is a bounded net in / converging /strong*  to A. Then there is an element J in 

the closed convex hull of {Ja}  such that 

IIA — Jil = IIA+/II. 

Proof For convenience, normalize so that 11 A + / 11 = 1. Let B. = A - a and 
fi = SUP 	Clearly, Ba  tends to zero in the /strong*  topology. Choose real numbers 

co  tk >0 so that 	 tk = 1, and for all m > 1, 
k=1  

tk>uitm. 
k2tm 

(For example, take C > fi and tk = C 1  (1 - C 1)k_ 1 . ) 

Now we will inductively choose cik so that for all m 0, 

M 

	 II 

tk B ajI<1. 
k=1 	II 
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This is trivial for m =0, suppose it holds for Xm 
= 	

tk Ba,,. Apply Lemma 3. 4 with 
k = 1 

 

e=min{i_IiXmiI 	tkfltm+1}. 

Note that 

IIXm+/II
=( 	

tk) IIA+/II= 

Take a = am +1 so large that 

X.+ t m + 1 BalI <e + max { IIXmII, IIXm +,f  II + 	II Ba  II } 

<c+max{ 	

m 

	

IIXmII, 	tk+Ptm+1} = l. 
k= 1 

OD  It is now immediate that B 
= 	

tkB ak  converges in 91 and ,satisfies IIBII 1. It is 
k=1 

 

also clear that 
00 

A — B=> tkJ a,,=J 

belongs to /. Thus 

IIBII = IIA+/iI= 1 . 	LI 

4. Approximate identities 

It often occurs in our applications that 9° is in fact a subalgebra of W. In this 
case, a simple criterion for the /-weak density of 9 n / in .9° is the existence of an 
appropriate approximate identity. 

Lemma 4. 1. Let / be an ideal in a C*algebra  W. Suppose that 9 is a subalgebra 
of 21 such that 9' r / contains an approximate identity {E a} for J. Then .9' n / is /-
weakly dense in Y. If furthermore, {E a } is bounded, then EaSEa  converges boundedly, / 
strong* to S. 

Proof. For S in 9, the net SE,, belongs to .9' n /. If J belongs to / and 4 
belongs to /*, then 

j4(SJ)(SEaJ)j:!!~ II4)II II'II IIJEaJII 30. 

Hence SEa  converges /-weakly to S. 

If E2  is bounded, and J belongs to /, 

SJ Eçj,SEJ =(SJ - Ea SJ)+ Ea S(J - E2 J) 

which converges to zero in norm. Similarly J(SEa SEa) tends to zero. Hence Ea SEa  15 

a bounded net converging /strong*  to S. 	El 
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It happens that approximate identities with nice norm properties can be used to 
compute the distance to ideal perturbations of subalgebras. These will be of interest in 
the applications, so we develop the general framework in this section. 

Lemma 4. 2. Let 2i be a C*algebra  with ideal /. Let 9° be a subalgebra of 9f 
such that 5" r / contains a norm one approximate identity E for / satisfying 

urn DI — EII = 1. 

Then for any A in 21, 

d(A, 9'+/)=lim d(A(I—E), 5"). 

Proof. Since A (I — E) is a / perturbation of A, the right hand side dominates 
d(A, 9'+/). Conversely, if J is in / and S is in .9°, then 

(A —S—J)(I—E)=A(I---E)—S(I—E)—(J—JE). 

Since IJ — JEII tends to zero, and S(I—E) belongs to 5", 

urn d(A(I — E), .9°) ~ lim II(A — S — J)II III — EII = IA — S — J. 

Thus equality is assured. 	LI 

The next lemma shows that the desired approximate identities can be obtained 
from less well behaved ones. 

Lemma 4. 3. Let 21 be a separable C*algebra.  Suppose {R k } is a bounded left 
approximate identity for 21. Then there exist convex combinations E of {R k } such that 

lim II E  II = lim Ill — E II = 1 
n-   co 

and E is a two sided approximate identity for W. 

Proof. Let Q. j ~! 1, be a fixed approximate unit for 21 satisfying 
0 :!!~ = Qj ~ 1. Let C = sup liRkil,  and let N be a given integer. Choose an 
integer M ~!: C2  N 2 . Let J = N, and alternately choose ji  and k, 1 :!~ i :!~ M, such that 

IIQJ1 — RkQJjI 

1IRk — Rk 1 QJI + l II 

and 

II Q, — QhQh+l II 

Then let 

EN 
	

Rk. 

and 

FN =MY,  Qji  
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Now QN :!!~ FN  :!~; I, so FN is an approximate unit for 21 satisfying the desired 
inequality. So compute 

IIEN — FNU 	Rk.  — QJ. 

= 	
(R - Rk . Q± ) + Rk.(QJ.+I - Q) + (R.QJ1 

- QJ1) 

where z1 i = 	- Q.. In the case in which Q3  are projections, this term is readily 

bounded by CM - < N'. In general, note that for i -ii 2, one has 

AA i II<. 

Split the sum into the odd and even terms, and estimate them separately. 

MM 

Rk./i 	
Rk2jL12jz12JRjM 

ieven 	 i1 j1 

M 

I- 
( 	

IIRk 2,AR 21 II 	c2• 

4)  

1 /M 

The odd term is the same, so one obtains 

IIEN — FNII 

Thus 

urn PIENII = 1 = urn III — ENII 	[I] 
n— cc 

I 

5. Applications to nest algebras 

A nest .K is a totally ordered complete chain of subspaces in a Hubert space W'. 
The associated nest algebra 9- = 9- (X) consists of all operators leaving each element of 
the nest invariant. The quasitriangular algebra of .A is the algebra 

It was the study of this algebra that led to the development of 
this paper. 

It is a result of [10] that .'A") is closed, but our results yield a much stronger 
result. 

33 Journal für Mathematjk. Band 368 
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Theorem 5. 11. Let .iV be a nest. Then the quasitriangular algebra -2.!T is closed, 
and the map 

is isometric. Furthermore, 9 r . is proximinal in 9 and .9.9 is proximinal in 

Proof. By [9], 9 n .( contains a bounded approximate identity for i(. Thus 
.9 n i is 	strong* dense in 	. The theorem is an immediate consequence of 
Corollary 2. 3. 	LI 

The fact that a is isometric has been noticed (unpublished) by several people. The 
first author together with F. Gilfeather and D. Larson constructed a proof of this using 
the approach of Lemma 4. 2. However, their proof that such an approximate identity 
exists was much more difficult than the general technique used in Lemma 4. 3. The 
second author constructed a proof similar in flavour to [4] using the methods of [19]. 
We have also heard that N. T. Andersen had a third argument. 

The proximinality of .29(.iV) in (.*) can also be approached by the methods of 
[19]. Also Timothy Feeman [11], [12] shows that for a discrete nest, 25(.iV) is 
proximinal in B('). He proves this using both M-ideals and constructively as in [4]. 

In [10], the operators in 25(.K) are characterized among all operators in (') 
in terms of their behaviour with respect to the nest (see below). It is natural to hope 
that a distance formula can be obtained along these lines. The methods of this paper 
will be used to obtain such a formula. 

Let the nest 41  be endowed with the order topology (equivalent to the strong 
operator topology). Note that .K is compact and Hausdorif. Let C (.A 1, 9 (.)) denote 
the C*  algebra of all *strongly  continuous functions from .K into (°). Let 
C(.K, X) denote the norm closed, two sided ideal of norm continuous functions from 
.1V into Y. Let it denote the quotient map 

it: 	(K, (p2)) - C (.K, 9 ())/C (.K, .). 

For F in C,* (_*', a (')), let liFlie denote  IIirF 

Consider the map P : (°) —p 	(°)) given by 

Ji(A) (P) = P1  A P (P e .K). 

It is clear that 'P is a concrete linear map with kernel 5 (.K). Furthermore, it is an 
immediate consequence of the distance formula for nests [3] (see also [17]) that 

II(A)II = dist(A, 9(.iV)). 

Thus 0 factors through the quotient map 

(-4 a (/.9T(iY). 

Let 0 : (Yt0)1 (.iV) - C ('V, 9 (s'))  be the induced isometric imbedding. 

In [10], it is shown that an operator A in () belongs to 	if and only if 
A5(A) is continuous and compact valued. That is, 29(.iV') coincides with the kernel of 
it o 45 •  So 

C,, (X, .'fl. 
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Since 4 is isometric, it follows that 

(.r)/ 9 (iV) = ( (r)/)/(P2 .9 (K)/.9) 

is isometric to Im b/Im 	(say via c). Let 

- 

and 

Im P/Im(PI() - Im 0 + C, (-4/, ir)/C(K, ) 

be the canonical quotient maps. Both are contractive. We have the following diagram 

40019-01) C(.K, 

Im Ji/Im (I1) ' 	(iY,9 (f))/C(.iV *) 

Our aim is to show that ip is isometric, which yields 

d(A, 29r(41))= II4)I1 e 

Our methods yield the proximinality of Y(.iV) in 	as well. 

Theorem 5. 2. Let K be a nest on a Hubert space A. Then for every A in 
there is an operator T in 9 (K) such that 

IIA — TlI =d(A, 	3r(.,4c))... 114 (A)II e . 
Proof Let E be a bounded approximate identity for 3(.iV) r .2t'. Then EAE 

converges to A in the weak*  topology by Lemma 4. 1. From the definition of P, it is 
apparent that cli  takes weak*  converging sequences to functions which are uniformly 
weak* convergent. Since norm continuous functions in C(.K, ) have compact range, 
it follows that cli takes weak*  converging sequences to C(.jV, it')-weakly converging 
sequences. Thus - 

P( 	
C(.K,Y()-w

, 

 

EAE) 

Hence by Theorem 3. 5 there is a compact operator K such that 

I(4 	K)Il = II( 4)IIe 
Thus the map 'p is isometric. Now .(K) is weakly closed and hence proximinal, so 
there is an operator T in .(.K) such that 

IA - K - Til = d(A - K, 5(K)) 

= 110(A - K)II = II(4)Ile 
<d(A, 	(K)). 

Thus IIA — (T+K)II = IIcb(A)IIe=d(A, . 9'V)) as desired. 	0 
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Remark 5.3. Take the special case of a nest 9 = {P, n I  of finite rank 
projections increasing with supremum 1. Then 29 - (Y) () is the classical quasitriangular 
algebra. For A in ($''), the map 0 becomes 

0 (A)(n)= IIP1 APII. 

For Ii(A) to belong to C,,(-q, if') merely means that 

lim IIP,API  =0. 

In this context, our formula yields a distance formula due to Arveson [3], 

d(A, 	'))=lim sup IIPAPII. 

However, this formula can be obtained much more simply by combining the distance 
formula for 9(9) with the fact that P, is a norm one approximate identity for if' in 
9 () r if' such that II P  II = 1 as in Lemma 4. 2. 

Indeed, it follows from Erdos's approximate identity of compacts in a nest algebra 
[9] and Lemma 4. 3 that there is always an approximate identity E in 9(.K) r if' such 
that 

lirn lIEII =lim 111 — EII = 1. 

Thus, Lemma 4.2 yields the formula 

d(A,,92T(.iV'))=lim d(A(I—E), 9-  (A')) 

= lim lim lIP1  A (I - E) P 
n -. oo PeA" 

Remark 5. 4. In [18], the second author defined the notion of a nest subalgebra 
d of an A F algebra . If / is any ideal of PA, he showed that d + / is closed and the 
map 

is isometric. Observing that d n / always contains an approximate identity for / 
yields this corollary from Lemma 4. 1 and Theorem 2. 1. L 

1ennark 5. 5. Consider the crossed product C*algebra  L' (2) x,R corresponding 
to the translation action of R. Let .9' be the nest subalgebra of elements A for which 
Pj- AP=0 for all projections P  in L' (2) corresponding to the intervals (—cc, t] for all 
t in ll. There is a natural, faithful semifinite trace on this crossed product that 
determines a closed ideal / generated by the positive finite trace elements. One can 
check that the directed set of finite projections in Lm(R) provides a bounded 
approximate identity for / in / r'.9'. Consequently, .9' + / is proximinal. 
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6. Nest subalgebras of the compact operators 

Let .jV be a nesf. By Corollary 5. 1, 9 n .( is always proximinal in 3r•  However, 
it turns out that 9 n 	is rarely proximinal in 	as the following theorem shows. 

Theorem 6. 1. 9(X) n 	is proximinal in .( if and only if the order type of 'A" 
is finite, tslupo}, {—}u—iI, or {—co}uu{+co}. 

Lemma 6. 2. If A, B and C are operators in 	9 	°) and 	°2) 

respectively, then there is an operator X on '2 such that 

TA B 1 " 

xj={ 	
B] II[]}. 

Furthermore, if A is compact, then X can be taken to be compact. 

Proof. This lemma except for the last sentence is a result in [16], [7]. In [6], it is 
shown that X can be taken to be of the form KAL for certain operators K and L, thus 
X is compact if A is. El 

Proof of theorem 6. 1. First suppose that .A is finite. Then elements of the nest 
algebra are upper triangular n x n matrices with operator entries. If K is compact, then 
K is an n x n matrix (K,) with compact entries. The distance formula for nest algebras 
gives 

d(K, )= max  IIP,KPkll 
1 :5k<n 

where 13, is the diagonal projection onto the first k blocks. Following the technique of 
[17], we start with the lower triangular entries of K and fill in the remaining blocks 
successively without increasing the norm of the blocks. Lemma 6. 2 ensures that the new 
blocks are all compact, so a best compact approximant is obtained. 

Next suppose that K = {P, n 11 and P increase to the identity. Given K 
compact but not triangular, one can find an integer N so large that 

IIPKII <d(K,  .fl. 

Consider the lower triangular partial matrix 

By the distance formula and the choice of N, all the complete rectangles have norm at 
most d(K, 9). So the matrix can be filled in as in the preceding paragraph. 
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The complementary nest {P,', n > 11 is dealt with in the same way. Finally, if 
= {P, n E '} with inf P,, =0 and sup P,, = I, proceed in a similar way. Given K 

compact but not triangular, choose N and M so that 

PKiI <d(K, 9),  

I1KPMI1 <d(K, 7-)• 

Consider the partial matrix 

KPM  

Kii 

DJ- 

M<j<i<N. 

This is filled in the same manner. 

Now, suppose that .iV has some other order type w. Then co has a limit point 
other than 0 or I. That is, Al' contains a projection P + {0, I} which is either of the form 

P=V{P'e:P'<P} or P=A{P'e:P'>P}. 

For convenience, assume the former. Let x be a unit vector such that x = Px but 
x4P'x for any P in .iV less than P. Let y be a unit vector such that y=P1 y. Set 

K=(x+y)®(x+y)*. 

So K is twice the rank one projection onto the span of x + y. For any projection Q, 

IIQ 1 KQII = IIQ'(x+y)il iiQ(x+y)ii sup{ab a 2 +b 2  =2} = 1. 

Hence 

d(K, .)=sup{iiQ 1 KQii Qe.K} = DP'KPII = iiIi lxii = 1. 

Let T be any triangular operator such that 11 K - TI = 1. Since K x = x + y and 
P1 (K - T) x = P1  Kx = y, it follows that P(K - T) x = 0. Therefore Tx = x. Let P be a 
strictly increasing sequence in 'V with sup P = P, and let Q, = P - P. Then 

Qx =QTx=Q(P1  T) Px= Q(P,11  TP1) Px = QT(Qx). 

Hence 11 Q,, T 1 1. But Q,, tends to zero in the strong operator topology. Thus if T were 
compact, one would have 

lim iiQTii==O. 

This shows that there is no best compact triangular approximant to K. 	Li 
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Example 6. 3. It is interesting to make a more detailed analysis of ,a special case 
of the counterexamples produced in this proof. Let .A = {P, 0 t 11 be the nest on 
L2  (0, 1), where P .° is the set of functions supported on [0, t]. The operator K may be 
taken to be the projection 10 1 where 1 is the constant function. Or, one might prefer 
to take K to be the Volterra operator V given by 

Vf(y) =11(t) dt. 

It is routine to verify that 10 1 - V is a compact operator in the nest algebra 9r(14/). 

As in the proof above, 

1 
d(V, 1 )=IIP1 VP1 II 

2 	22 

and V has no best compact triangular approximant. 

Let D be the diagonal operator 

yf(y) 

~y~ 1. 

It will be shown that II V - D II = 4, so that 

IIV  —  DII =d(V, T)=d(V, ) 
where 	is the multiplication algebra on L? (0, 1) by L' (0, 1) functions. 

Fix an integer N. Let 

x1=j/ix 	, 1i2N. 
[-2N--] 

Let QN  be the orthogonal projection onto span {x, 1 :!9 i :!g 2N}. An easy computation 
shows that 

	

0 	i>j, 

	

(Vx,x)=1 	i=j, 

1<], 

	

0 	i+j, 

(Dx,x)= 	i=j, 1<i<N, 



0 	0 	0 

1 	—1 
2N 2 AT 

0 

1 
2N 2 

0 
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Thus QN (V—D) QNIQN has the form 

I 	 1 	—1 
2N 2N 

1 	 1 	1 
2N 	 2N 2N 

Think of this as a 2 x 2 matrix with N x N entries 

[Ri . 0 

R 2  

where P is the rank one projection onto span {(1,..., 1)}. By inspection, one sees that 
each row of R 1  is orthogonal to every other row and to the range of P. Hence 
R 1 =R1 P--  and 

11R111 = max huh _row of R 1  
1 :5i5N 

(iN 
1 	/N1 2 2 1 N—i 2  

I(N-1)
)

2 

 2N )1 =( N ) < 
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It follows that 

1rR 1 111 lIrR 1 p'lII 

Lp
2 max 

{uRII 4}= 

Similarly, R 2 =P1 R 2  and [--p, R 2
1=

- . Thus 

2R 1  olrp1 0 lrj  .0 1 
2QN (V—D) 	 = 0 ij [p pi QN = o 2R2 ] 

The centre factor on the right side is a partial isometry, so the product has norm (at 
most) one. Hence 

IIQN(V — D) QNII 

Since QN  tends strongly to I, it follows that 

IIV — DII =- 

as desired. 

This best appróximant is not unique, as D+cxP1V*Pj  is equally close for all 
1 	 2 

c :!E~ --. We do not know if there are other best approximations. 	E 

Finally, we mention another curious fact about the classical nest case. 

Theorem 6. 4. Let Al' = {P; n I  be a nest of increasing finite rank projections 
P with sup P, = I. Then for all A in 

d(A, Y r ifl= max {d(A, .*'), d(A, ,fl} 

=max 11A II, sup iiPAPii 
?1 ~-*1 

Proof. The proof follows what is by now a familiar line. Given e >0, choose N so 
large that 	 . 

IIP.Ali <il1tIie+t 
Then consider the partial matrix 

r1 
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The rectangles filled in already have norm at most 

max {IIPAII, 11P,APII, 1:!!~ n:5;N-1} 

which is less than max {d (A, .*'), d (A, 
)} 

+ c. The "filling in" procedure produces a 
finite rank upper triangular approximation. 	D 
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t'VL$ 2. 

FAILURE OF THE DISTANCE FORMULA 

KENNETH R. DAVIDSON AND STEPHEN C. POWER 

Given any reflexive algebra d of operators on a Hubert space .?V, there is a 
convenient lower bound for the distance of an operator Tin .(..W) from d in terms of the lattice of invariant subspaces. Laid, of the algebra d: 

inf 11 T—A l 	sup I!(I—P)TPI. 
PELatd 

Furthermore, it is easy to see that when the right-hand side vanishes, then T belongs to W. None the less, it is not too surprising that these measures are not comparable 
in general [12]. However, in two important cases, they are comparable—when 

d is a nest algebra, they are equal (Arveson [2], see also (16. 13]). and when d is a type I 
von Neumann algebra, they agree within a factor of two (Christensen [6]. see also 
(17]). It has been asked [1.8,10,13,14] if these measures are comparable for all 
algebras with commutative subspace lattices [3]. This has proved to be a rather elusive 
problem, and the purpose of this note is to provide a large class of counterexamples 
For example, if 2' is the tensor product of infinitely many non-trivial nests, then 
Mg 2' fails to have a distance formula. 

1. The key example 
by Let A 0  = [ I] be a I x I matrix. For ii > 0. let A 1  be the 3t3 x 3 	matrix given 

[AO A A
A n*2 A 0 A 

 A, 0 
Let .9', denote the set of all 3' x 3' matrices S such that the zero entries of S include 
all the non-zero entries of A. Let denote the algebra of 3n  x 3n diagonal matrices. 
Then b' = {[0]. b' = . and $' Consists of all matrices of the form 

X] S12  S13  
S21  X2  S23  
S31  S32  X3  

where X, are arbitrary 3' x 3' matrices, and Saj  belong to .Y,. Finally, define an algebra d Consisting of all 2 3" x 2' 3' matrices of the form 

I D, S 
0 D2  

Received 16 July 1984. 
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such that D 1  and D belong to 9, and S belongs to .5'. Note that d,, is reflexive, and 
that £f, = Lat d is a commutative subspace lattice Consisting of all diagonal projections P = P, ED P, such that the range of Y. P2  is contained in the range of P1 . Consider the matrix 

T  10 A 
Lo o 

Comparison of the two distance measures to W. will show that the distance constant 

sup T 2' 	r 
 

is at least (' 

THEOREM 1.1. With a',, and 7; as above, 

fi( 1;1)= sup IIP7;Plj=2I, 
Y. and 	 PE  

d(T,,,d,j= inf 
A E 

LEMMA 1.2. Given Y, X1 , X2  and A'3  in (JV), 

Illy 

Y  
i A'2 y 	flYf!. 

LY Y X3 J 
Equality is achieved by taking A'1  = A'2  = A'3  = - Y. 

Proof. 11 is - well known that in the scalar case 

	

r1l,
inf 	x2  'I=2EC 	 I x3 J 

and the infimum is attained by taking x 1  = x2  = x3  = - i. Let x and i be unit vectors such that y = I(Yx,y)I is close to H Y I ,. Let P = x®x and P. = v(9v be the rank 
one projections with ranges Cx and Cy, respectively. Then, setting x, = (A', x, r), we obtain 

IA'1 Y Y 	1F, 0 01 

ryy,''
1P 0

Y A'2 ' yJ 	0 R Ox2 yjo j::; 0 

	

Y Y X3J 	tO 0 J,J 	Y X3J LO 0 P 
fx1  y 

= I. x2 

1' y  x3J 
Taking the supremum over pairs x, r results in the desired inequality. 

With X1 =%2  = X3 = — Y, we have 

[—Y 	Y 	y 	 ' 	11 

	

f Y —Y Y 	= I I -I ® Y = Y H. I. Y 	Y 	-U'J 	1. 1 	1 —J 
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REMARK 1.3. An analogous result can be obtained for any fixed array of 

operators Yin a matrix. The constant obtained will be precisely the constant obtained 
in the scalar case. 

Proof of Theorem 1.1. Since the non-zero entries of 5' coincide with the zeros 
of A. it is easy to see that fl(T,7) is the maximum norm of all rectangular arrays of 
ones occurring in A. namely max (kl)f over all k x 1 arrays of ones. For A. this is seen to be '2 by inspection. As A 7 .,. 3  = A®A, it follows readily by induction that 

fl7.,. 1 ) = 21fi(T,) = 2I- 3 ) 

Now suppose that fR,,= [ 
	

] belongs to d7  and 

= 
Then 	

Ii 
 

d(7. 	IA 7 —B 7  = inf{IA 7 —Sj5ey 
Think of A n  and B7  as 

[A,-, 

0 	A_, 	-i1 	rx3 s, S3
= 	0 	A_ .B = JS2 A'2  S 3 

 A_, 	0 J 	S31  S32  x3  
Given a permutation it on three elements, then it acts on a 3 x 3 matrix by 
simultaneously permuting the rows and columns. It is clear that this action preserves 
both A. and Yn. Each diagonal term is taken to each diagonal position twice, and 
the off-diagonal entries are cyclicly permuted as it runs through all of S3 . By averaging over S3 , we may assume that the nearest B 7  in Yn to A has the form 

[x S S 
B 7 = s A' S 

[S S x 
Thus an application of Lemma 1.2 yields that 

11 [An_j—S 

-x A 71 —S A.—S 

	

l:A 7 —B 7 I;= k7-1S 	-x 	A 7 .. 1 —S 
 A 73 —S —X 

inf III A n - 2 1 —Sj:Se$' 3 ). 

Furthermore, equality holds here. so  the desired equality follows by induction. 

2. The general Situation 

The result mentioned in the introduction* will be obtained by imbedding the 
previous examples into our given algebras. Recall that if 2'is a commutative subspace 
lattice and L 3 ,L 2 e.o are such that L 1  = L 2 . then the subspace L I eL 2  is called 
an interval. Minimal intervals are called atoms. For finite lattices, the atoms span 
the space. There is a partial order >- on atoms given by setting F< £ if FAIg2'E = F(.*' )E and F.$ E if FAlg.°E= 10 11 . These two possibilities are 
mutually exclusive. In general, one extends -< to intervals by setting F -< £ if F Aig £°E = F.1(jV ) E. but naturally F 4 £ is a weaker notion. 
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LEMMA 2.1. Suppose that 2 = 	 is a tensor product of non-trivial 
nests. Let A = (a,,) be a k x Ic matrix of :eros and ones. Then 2 contains intervals 
G....., G, and H1, ..., Hk  such that G,.< H, ifa ij  = 0 and G,(Alg £° )H, = 0 otherwise. 

Proof. Since .A is a non-trivial nest, it can be split into intervals E. Er and F. Fr such that Er < r, Er+Er < F, and 

Et a1g.4F -  
To see this, note that if .A has two atoms G < H. then Er = Fr = G and 
Er = 	= H will suffice. If not, then .4. has a continuous part order isomorphic to 
[0.1]. Taking Er, Fr,  E and Fr corresponding to [0, 3 ). H. U. [] and [. I], respectively, meets the requirements. 

Now for I < i < Ic, define 

Gi=Ec® ... ®EI.l®Er(&Er®®E 

Using the matrix (a,,), define 
Hj  F11, 

where e = + if a 1  = 0 and e = - if a11  = 1. It is immediate that G, and H1  have the desired properties. 

THEOREM 2.2. Suppose that the ..4 1  are non-trivial nests for I < I 3", and 2' is 
an; commutative subspace lattice; let 2 ®.A 3 . Then the distance 
constant for AIg 2 is at least ()4". 

Proof. Let A = (a11 ) be the 3" x 3" matrix defined in Section 1. Let G, and H1  be the intervals of £, = .A(9 ...e4; provided by Lemma 2.1. Let x, and Y. be unit vectors in G1  and H,, respectively. Let u1 , be the rank-one partial isometry taking .; 
onto x,. Let P2  and P,, be the projections onto the span of {x,: I < I 3"} and U,: I j 3"), respectively. Let . be the Hilbert space which supports £". It is clear 
from this construction that P2  (.W,) P is linearly isometric to A. in such a way that P2  Alg.P,, corresponds to 2,,. This correspondence sends 

3 ,' 

onto A,,. 
Since the map taking X to P2  XP is contractive, it follows that 

AT, Alg2,) ? d(A,,,2,,) = () fl; 

indeed, this is easily seen to be an equality. On the other hand, suppose that P is a projection in .. If a, = 0, then G .(r) H1  is contained in AIg 2'. Thus if PH, :0 0, it follows that P-G = 0. Let I be the set off such that PH, * 0. Then the set I of I such that P G. :0 0 is contained in the set I' of i such that the entries a,, with (i,j) in I ,  x I consist entirely of ones. Hence 

II P' TP = fJP(L i: u0P 	I J D1 < 21". 
€) JeJ 

This shows that the distance constant for Y. is at least (P)ln. 
Finally, for 2' = 2'O®2", take the operator T(9I. Now every operator in A1g2' 

is contained in Alg2,®(jr). This latter algebra can be thought of as all infinite 
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bounded matrices (A 1 ) with entries from AIg .4 In this context, T®I is the matrix 
with entries Ton the diagonal and zero elsewhere. Thus 

d(T01, Alg2') > d(T®L Alg.ØV)) 

inffl T— A, I:A 11 eAlg.Y' 0 

= aT, Alg.9'). 

Now £°' is a commutative subspace lattice, so it is contained in a a-complete 
Boolean algebra of projections if. The projections P of the form 

P=P®E, 

where the P belong to Y, and the E are pairwise orthogonal elements of if, are 
strongly dense in Without loss of generality, we shall always suppose that 
I_ E, = I, so that 

oc  

x 
P' I 1®E,— T. P,1 ®E= I P'®E,. 

fl—I 	 Il—I 	 fl—I 

Hence 

sup 	11 P-L( T(91) P 11 < sup 1 1 P-'(T®l)PJj = sup 	(P-RI TPfl ®Efl ) 
P€ Aln— 

= sup sup 11 P.L  TP, H = sup 11 P.'. TPH. 

	

Pe? n 	 PC YO  

Thus the distance constant for £° is at least as great as that for £'. 

COROLLARY 2.3. If .9' is the infinite tensor product of non-tririal nests, then 2'fails 
to haze a distance formula. 

REMARK 2.4. The key ingredient of this proof is Lemma 2.1 which says that 
arbitrary 0, 1 matrices can be imbedded in the graph of the order for .9' (see [3]). 
It can be seen that this can be accomplished in many lattices of 'infinite width'. 
However, this does not hold for all lattices of infinite width, as the following example 
shows. 

EXAMPLE 2.5. Let le.: ii ? 1 11  be an orthogonal basis for .W. Let 9 be the diagonal 
algebra, and let .9' denote all operators with zero diagonal. Let d be the algebra of 
all operators on .W Ø.W of the form 

IDi S 
Lo D2  

where Di  belong to 9 and S belongs to Y. 

CLAIM. Lat A has infinite width, and distance constant at most 3. 

Proof. Let T= [Tfl ] be a 2 x 2 operator acting on 1 1' (Dir. Note that for any 
diagonal projection P. PeO and IP are invariant projections for d. Hence 
fl( T) = supQ e  , , I Q' .  TQ is at least 

max {sup H PT11 P11. sup 1 , P..T22 P1. H T21 . 1k5(7; 2 ) 1::. 

6 	 )L ,4 32 
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where 6(7) is the diagonal of T,,.By [6.17], every type-I von Neumann algebra has 
distance constant 2. So there are diagonal operators D1  and D2  such that 

	

max (11 T, I  D, II, 11 T22—D2  II) 	2fi(T). 
Since 

A [D. 	12 6(7 2 ) 

belongs to d, we obtain 

d(T,d) < 
1[71_D1 T22—D2]ItH[T21 ti2)]1 

3fi(T). 

Hence d has distance constant at most 3. 
Let {E:n > 1) and (F,:n ? I) be the atoms of (DO and 	with the natural 

correspondence. Let < be the partial order on the atoms of Lat d. It is clear that 

E < E1 .=.i=j, 

F.<F1 c.i=j, 

F4E, for all Q. 

If Lat d had width n, there would be n linear orders -<,. 	k < n, so that £ -< F if 
and only if E <k Ffor I < k ii. Consider the first n+ I atoms F1,..., F. For each 
k, pick fk  so that 

Fjk <kFj 	for 1jn+I 

Let j, be chosen in I]_ ., 	l)\lj......,j,j. Then 

k 1 < k FJO  
for every k. I < k n. Hence 	<Fjo, which is absurd. Thus Lat it has infinite width. 

3. Lattice perturbations 

Two lattices are said to be close if there is a lattice isomorphism 9 of one onto 
the other such that 119—id II is small. (The distance between two subspaces is taken 
to be the norm of the difference of the projections onto them.) Two algebras are said 
to be close if the Hausdorif distance between their unit balls is small. There are nice 
perturbation results for various classes of algebras giving the equivalence of close 
algebras, close lattices and similarity (or unitary equivalence) via an operator close 
to one [11, 5,4]. In particular, it is shown in [4] that this situation holds for algebras 
close to finite-dimensional CSL algebras. 

In [9]. it is shown that if d is a CSL algebra and 9 is a norm-closed algebra close 
to d, then Lat 2 is close to Lat d. In this section. it will be shown that the failure 
of the distance constant gives rise to lattices which are similar and close, but for which 
any implementing similarity is necessarily far from the identity. This puts certain limits 
on the potential perturbation results for this class of algebras. 

Let Jt' be a commutative subspace lattice without a distance constant. Let 0 <e < 13 
be given, and let T be an operator such that 

11 TIi =d(T,Alg2)= I, 	fi(T) = sup 1PTPI: <.t. 
Pe 
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Let 	
Then is invertible I/V-I11 2, d(v, AJ2)afld 

fi(J') < 
V2. Clearly, 	is similar to 2 and V(Alg2) 	Aig. The map 

by 

is obviousiy a lattice isomorphism.  
8(L) = ilL 

First it will be shown that 118—id fl <2g. To see this, fix L in £° and Al VL. Lt 
L and M be the orthogonal projectjo5 onto 

L and M, respectively ,  then IIPL_FMll=lIPLPAi_FFl: 
max 

;IpLp1! lLFMl!. Now if x isa unif vector in M, then y Vx belongs to Land I!'i: 2. Thus II PL' PMXII 	IIPiVPLI! 
 Hence Ii F M I! <e. 

Decomposing P, relative to LL we have 

1x i'-
yo zi and (Yzj i 	JJE.Jll <i. in particular, 

II X—
II <e2.11 YY0 Since 0 X i, i 

contained in fO, 2c2J Ufl — follows from the functional calculus that the spectrum of 
X is 

29, U. So  either j '— XII <2 or I! I—xjj I 	Thus llFLP;dI!__I;fI_X,_yJl1 <.2e2  or I! P M I 	I —2c2> . 
This latter inequality, however, is impossible as, for eve

ry  
Yin L, 	

l( V')j  F 	 .If2J/( Tv) l II y // 

and thus 	
Af." 	

Hence 

f! Thus 18—idt <2c. 	" . L 	2'2/3  

Now Suppose that Sis an invertible operator such that S2' = 
	

< 
Then S' V takes 2 onto Y. and the automohism 'P 	

-* and IS—fj! 
induced by S - I V satisfies 1 'P—id I 	118—id 11+ 11 S-111 < I. But any two projections in 2 

differ by I in norm so that 'P id. In particular, 
A S'' V belongs to AIg.°. Hence 

a contradiction Thus, any similarity S implementing 8 is far from I. 

4. Further remarks 
I. It is known 1 1 - 141 

that the existence of a distance formula for a reflexive 
operator algebra is equivalent to the follong decomposability property 

of the 
preannihilator d 	 wi ,: there exists a constant c> 

0 such that each trace class operator and 
'A I R4. i 	c j Tj 

Tin 	
admits a representation = 1k R. where RA- are rank-one operators in d 

, 
Ofcourse it makes sense to ask whether this decomposability 

6-2 
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property holds for any closed space of trace class operators that is known to be the 
closed linear span of its rank-one members. Our key example and this duality provide 
many indecomposable spaces. For example, let B1  = [ l]bea I x  matrix, and for  ? I 
let B,,. be the 3" x 3" matrix given by 

[Bn  B,, 0 ]. 
B,,,,= B,, 0 B,, 

0 B. B,, 

let B, be the infinite matrix whose upper left-hand blocks of order 3" agree with B,,_ 1  
for n = 0, L.... Then the zero entries of B, specify a class of rank-one matrix units 
whose closed span, in the trace class, is indecomposable. 

2. We indicate two function-theoretic connections that point to the importance 
and difficulty of establishing distance formulae for reflexive operator algebras. First, 
let e,,:n 1} be an orthonormal basis for X. and let '€ denote the set of those 
operators C whose matrix (CJ,.) satisfies 

for I = 2.3. .... Let d be the algebra of all operators on . 	ir of the form 

IA! C 
Lo ,/ 

where ;.. p are complex numbers and C belongs to 116. The existence of a distance 
formula for d is thus equivalent to the decomposibility of the preannihilator j. 
However. W L  is the space of trace class Hankel operators. and the proof that this is 
decomposable depends on the recently discovered decomposition properties of 
Bergman spaces obtained by Coifman and Rochberg [7] (see also [151). 

For the second connection let e,,:n = 0. ± I, ...l be an orthonormal basis for Jf' 
and let r6 denote the set of those operators C such that CJk = 0 whenever k—f belongs 
to A = JI.2.4.8, ..}. In this case a rectangular submatrix that is disjoint from the 
support of IK must consist of a single row or a single column. Consequently a distance 
formula is valid for the associated (commutative subspace lattice) algebra d, 
constructed as above, if and only if the distance 

inf J T—Cf 

is equivalent to the supremum of the Hilbert-space norm of certain lacunary subrows 
and subcolumns of T. If T is a multiplication operator corresponding to the V 
function 0 this supremum is seen to be 

1 . 

flQ=( 	I(2k)I 2) 
A-fl 

where 0(n) denotes the n-th Fourier coefficient. Moreover, by a standard averaging 
argument the distance from T to ' is achieved by a multiplication operator in the 
class LX = ipeLx :e(2 1 ) = O.k = 0. 1. .... So a distance formula ford leads to the 
existence of a universal constant c such that 

inf :0-, 
€ 

for all 0 in V. 
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The existence of such a constant was shown to us by W. Rudin. The set L is weak 
closed, and its preannihilator in V is 

LX = {feL':J(n) = 0 for n4A). 

Since A is lacunary, there is a constant C such that 

11fII2C11fII1 	 (4.1) 

for all  in LX  [18, Section 5.7.7]. Hence 

inf, 11 0 - V 11 = sup (t <,f> I: fe LX ,  II f V 	1) 
Pc-LA 

	

SUP 1110 IA 112 11 f 112: 11 Jr I! 	I 

C). 

Conversely, since the Fourier transforms of L 31  functions are dense in P. a reversal 
of this argument shows that the existence of a distance constant C implies that (4.1) 
holds for all! in L. 
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COMMUTATORS WITH THE TRIANGULAR PROJECTION 
AND. HANKEL FORMS ON NEST ALGEBRAS 

STEPHEN POWER 

Let s,,,  I < p < oo, denote the von Neumann-Schatten classes and let R denote 
the bounded linear operators acting on a separable complex Hilbert space. Let . 
denote the compact operators. Associated with every totally ordered family, or nest, 
of self-adjoint projections in 9 there is a nest algebra d and a transformation 9 1  of 
lower triangular truncation. It is known that 9 possesses boundedness and weak type 
properties on the classes s,,,  I <p < oo, and on the Schatten-Lorentz classes, 
respectively, that are analogous to those of the Riesz projection (for functions on the 
unit circle). See [12, 13, 2] for example. 

We take the parallel with the Riesz projection further. For certain triangular 
projections of discrete type it is shown that the commutator 

'B-B, 

determines a compact operator on 9. if and only if the operator B (acting as a left 
multiplier) belongs to the C*algebra 

(d+jr)n(A+ir)*. 

This algebra plays the role of the bounded functions on the circle of vanishing mean 
oscillation (the quasicontinuous functions). For function space contexts see [33, 35, 
6]. The triangular conjugate 2 of an operator X on P is introduced to provide an 
alternative description of this C-algebra. Moreover, a characterisation of + I is 
given that is analogous to Fefferman's description [11] of L-+  as the functions 
of bounded mean oscillation. The main idea involved is an 'atomic' decomposition 
property for the predual of 9 + h.  

Our approach to commutators involves characteñsing the bounded bilinear forms 
on the Hilbert-Schmidt subspace d, =a, n d that satisfy the identity 

[A, A t. AJ = [A 1 , A 2  A] 

for all triples in d2. Such forms are known as Hankel forms. The characterisation 
is based on a weak factorisation property for the operators in d 1 , the triangular 
trace-class operators, together with the weak star density of the finite-rank operators 
of .W. These facts are related, and the latter, due to Erdos [8], is given a new proof. 
The factorisation property is linked closely to the atomic decomposition mentioned 
above, to the distance formula of Arveson [3,4], and to related ideas discussed in [17, 
27, 28,18]. 

An operator I in 2 determines a Hankel operator Hx  on d2  such that 

HA = (J-9)XA 

Received 2 July 1984. 

1980 Mathematics Subject Claxs(fication 47D25. 

J. Loido,, Math. Soc. (2) 32 (1985) 272-282 
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for A in d,. In the case of a finitely ascending discrete nest of order type N the 
compactness of Hx  is shown to correspond to the quasitriangularity of the symbol 
operator I. This connection is a useful one. We deduce that the difference of two 
truncation operators is compact precisely when their corresponding nests are 
asymptotic. Also the techniques of Axler, Berg, Jewell and Shields are applicable and 
we conclude that d +.*' is proximal in this case; that is, every operator possesses 
a best quasi triangular approximant in the operator norm. More general results on the 
proximinality of perturbed spaces are obtained in [7]. 

I. Weak factorisation and Hankel forms 

Throughout the paper we let (s,,. till,,). I p < cx, denote the von Neumann-
Schatten classes of operators that act on a complex separable Hilbert space W. The 
Banach space of compact operators is denoted by it' and we identify the dual space 
with ., by means of the pairing 

<K, B> = trace (BK) 

for B in 9 and Kin.*'. The dual space of 9, is identified with a in the same manner. 
In this section we consider a complete nest of self-adjoint projections Eon W. 

Thus I contains the projections 0 and 1, if is closed in the strong operator topology, 
and any two projections are comparable with respect to the usual ordering; F < E 
if and only if E—F is a non-zero positive operator. If EEl and E> 0 then 

= sup {FEI:F< E}. Similarly, if Eel and E< I, we let E = inf{FEI:F> E}. 
If F> E then the projection F—E is called an interval of I. The atoms of I are 
the irreducible intervals. The nest algebra d associated with I is the set 
(A E .: (I— E) AE = 0 for Eel). This consists of the operators that leave invariant 
all the subspaces E.*', and is often written as AlgI. We shall write d for the 
collection of those operators A in d for which QAQ = 0 for all atoms Q. We also 
let d,, = d fl a. and d = d,, n d, for I < p < oo . 

We first obtain a decomposition for operators in d, that has proved to be useful 
[29,30]. We give a quick existential approach to this that is based on the Krein—Millman 
theorem rather than the constructive methods of [28]. Our starting point however is 
the same fundamental lemma of Lance [17]. 

LEMMA 1.1. Let A be a trace-class operator that leaves invariant a proper closed 
subspace, and let Edenote the orthogonal projection onto this subspace. Then there exists 
a trace-class decomposition A = A,+ A, such that 

II A II I  = II A,  IJ+ H A s  

A,= EA, and A,E=O. 

LEMMA 1.2. The extreme points of the closed unit ball of d 1  are the rank-one 
operators in the unit sphere. Each such operator has the form e Of where Ee = 0 and 
Ef =ffor some £ in I, and where e andf are unit vectors. 

Proof. Let A be an extreme point. First we show that there is a projection E in 
such that A = E,A(J—E). 
Suppose that Eel, A # EA and AE :O 0. Let A = A 1 +A, be the decomposition 

of Lemma 1.1 associated with E. Then A, E = AE, and so A,00. Also 
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(I— E) A= (I—E) A 2, and so A 2  :A 0. Thus by Lemma 1.1(i) A is not an extreme point. 
This contradiction shows that we have the alternative, A = EA or AE * 0, for all 
EE 9. Now let E= sup F:AF= O}.It follows that AE= O and A = GA for all G> E. 
Hence A = E, A(I— E). 

Let A = I AkRk be a Schmidt decomposition for A, with 2, 22, ... the singular 
number sequence of A, and R 1 , R 2 , ... rank-one operators of unit norm. Then 

A = EA(I—E) = E k E+ Rk(1—E). 

Since 11 A ll 1 = Z 2k it follows that A. = 	II 4 Rk(I— E) IJ 1  for all k. In particular 
Rk = 4 R,(1— E) for all Ak  :0 0. But this condition on Rk implies membership of d. 
Since A is an extreme point it follows that 22 = 2. = ... = 0. 

To complete the proof observe that a rank-one operator of unit norm is an extreme 
point in the unit ball of 9 1 .  

LEMMA 1.3. Let c>0 and Aed 1 . Then there exists a sequence R 2 , R 2 , ... of 
rank-one operators in d such that 

(i)A=R 1 i-R 2 +..., 
(ii) Z II Rk III < 11 A II+e. 

Proof. In view of the Krein—Millman theorem, Lemma 1.2 and elementary 
functional analysis, it will be sufficient to show that d1  is a dual space. Let .9' denote 
the norm-closed linear span of the rank-one operators R such that R = ER(I— E) for 
some E in S. Then an operator A in 9, belongs to the annihilator of .9' if and only 
if - 

trace (X(I—E)AE) = trace (AEX(I—E)) = 0 

for all E in 5, and all rank-one operators I. It follows that d 1  is the annihilator of 
.9', and thus equal to the dual space of ./b" through standard duality. 

COROLLARY 1.4 [8]. The finite-rank operators in the operator norm unit ball of a 
nest algebra are dense in the uliraweak topology. 

Proof. The rank-one operators of d are described in Lemma 1.2 (this part of 
the lemma is a well-known and useful fact due to Ringrose [31]). Let - denote the 
closed linear span of these operators with respect to the operator norm. Then, as in 
the proof of Lemma 1.3, the annihilator of - in 9, is dj'. Also the operators of 
dj admit a decomposition into rank-one operators as in Lemma 1.3. (The proof 
follows the same pattern.) It is now clear that the annihilator of dj in . is equal 
to the annihilator of the rank-one operators of d. But this is the collection of 
operators A for which 

trace (X(I—E)AE) = trace (EX(J—E)A) =0 

for all E in Sand all rank-one operators X, and so coincides with d. 
We have shown that d is the second annihilator of 	in the standard duality, 

and thus is naturally identified with the second dual of -. Moreover the weak star 
topology corresponds to the relative weak star, or ultraweak topology on d. A 
well-known Banach space principle (sometimes called Goldstine's theorem) now 
shows that the unit ball of R -  is weak star, and so ultraweakly, dense in the unit ball 
of d. The corollary follows. 
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REMARKS. The original proof of Corollary 1.4 made use of the representation 
theory of nests and is quite different in character from the one above. A consequence 
of the density is the apparently weaker assertion that a nest algebra is local in 
the sense of [10]; that is, the finite-rank operators of d are ultraweakly dense in the 
algebra. In fact the Erdos density result may be obtained from localness by using the 
duality arguments of the proof of Corollary 1.4. However no real simplification arises 
through this approach since the core of the proof of localness in [10] requires Lidskii's 
theorem that the trace and the spectral trace of a trace-class operator agree. Indeed, 
it appears to be of more interest to obtain the surprisingly difficult theorem of Lidskii 
from triangular density properties, as in [9, 29]. These ideas seem to be strongly tied 
to the Hubert space setting (see [16, 20]). 

The finite-rank operators of d are operator norm dense in d fl K [8]. This simple 
consequence of Corollary 1.4 is in fact not so deep and may be obtained by direct 
methods which are valid in wider Banach space contexts (such as the natural nests 
on L(R, p), I <p < cx)) where decomposition theorems for triangular nuclear 
operators are not at hand. 

One of the consequences of localness obtained in [10] is that the sum d + is 
closed. It is amusing to note that this may be obtained directly from Corollary 1.4 
and the Banach space arguments of Rudin [32] for spaces of type H + C. Approximate 
identity arguments of this nature also appear in [19]. 

THEoREM 1.5. Let e > 0 andA Ed 1 . Then there exist rank-one operators B1 , B2 , 

and C1 , C2, ... in d such that 

A=,,B,,C,,, 

lk II B,,  III II C,,  112 < II A  IL+e. 

Proof. Suppose first that REd 1  is a non-zero rank-one operator and thus of the 
form e Of with Ee = 0 and Ef =f for some EE 4f (Lemma 1.2). If E < E, let g be 
a unit vector in the range of E—E, so that the operators B = g Of and C = e Øg 
belong to d. Then .R = BC and II R  I11 = II B  112 II CIII. On the other hand, if £ = E, 
choose F> E so that I R—R(I—F)  Il  <c. Let R(1— F) = R 1  = e1  Of and choose a 
unit vector g 1  in the range of F— E so that B1  = g1  Of and C1  = e1  0 g1  belong to 
d. Then R 1  = B1  C1  and II R1  fl = 11 B, 11211  C1  III. 

In conjunction with Lemma 1.3 the constructions above show that for e > 0 and 
A in d1 , there exist rank-one operators B1 , B2, ... and C1 , C2, ... in d such that 

B,, II 	C,,  112 < fl A  1I1+e and  II A —E,, B,, C,, ll <e. 
Iterative use of this principle completes the proof. 

A bilinear form [,] on a complex algebra is called a Hankel form if the identity 
[A 1  A 2 , A 3] = [A 1 , A 2 AJ holds for all triples. A bilinear form [,Jon a normed space 
is said to be bounded if I [A 1 , AJ I is bounded for all couples A 1 , A 2  in the unit ball. 
Characterisations of bounded Hankel forms on function spaces have been found by 
Nehari [22] for the complex polynomials with the H2  norm, by Coifman, Rochberg 
and Weiss [6] for complex polynomials in several variables and the Hilbert space norms 
for the unit sphere and ball, and by Peetre [23] for other Bergman space norms. A 
key step in obtaining these results, as with our next theorem, is the use of weak 
factorisation (A = E B,, C,,). 
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THEoJuM 1.6. Let [ , J be a bounded Hankelform on d 2 . Then there exists abounded 
operator X such that 

[A 1 , A,J = trace (A 2 XA 1)for all A 1 , A 2  in d2 , 

II XII = sup I [A 1 , AJf: 0 A1  112 1< 1, 11 A 2  112 < ]). 

Proof. Using Corollary 1.4 fix a bounded sequence R of operators in a that 
converge to the identity in the ultraweak topology. Let A = E B,, C, be a weak 
factorisation of an operator A in d1 , as given by Theorem I.S. Since the series also 
converges in the Hilbert—Schmidt norm we have 

I [B,, CkJ = Jim E [Bk , Ck RJ 
k 	 n  

= limE [Bt  Ck,  R] 
n  

=lim[EBk Ck, R) 
n k 

= lim[A, R.I. 

Let us denote this limit by b(A) and thereby define a linear functional on d1 . Thus 
I(A) = [A,, A,] if A = A 1  A 2  with A 1 , A 2  in d2 . If a denotes the supremum in 
Theorem 1.6(u) we have 

I(b(A)I < EI[Bk, C,]I 1< X 1 11 Bk 11211 C,  II k 	 k 

and so it follows from Theorem 1.5 that the norm of (I) is no greater than a. Hence 
the norm is precisely a. Let Xbe an operator in 9 that implements any norm-preserving 
extension of 'L to a functional on R, With this X the theorem follows. 

REMARKS. Let [ , )x  denote the Hankel form determined by an operator X in 
and the equation [A 1 , AJx  = trace (A 2 XA 1 ). Then, by weak factorisation, the form 
is the zero form if and only if I is in the annihilator of d1 , and therefore (as in the 
proof of Corollary 1.4), if and only if I is in d. It now follows from Theorem 1.6 
that 

sup {I[A 1, AJxl: II A(  112 < 1, i = 1,2) = dist(X, .ci) 

The quantity on the left is called the norm of the form. 
As mentioned earlier, the space dj also admits a decomposition as in Lemma 

1.3, and this leads to the characterisation of the Hankel forms on the product space 
x d2. In this case the norm of the form implemented by the operator I is 

dist (I, d). 
The theorem suggests the attractive problem of characterising the bounded Hankel 

forms on reflexive algebras, both on Hilbert space and general Banach spaces. Because 
of the close connections with the existence of distance formulas progress will probably 
depend on new developments in this topic. 

2. Commutators and triangular conjugation 

In this section we specialise to a nest 4f that consists of 0, 1 and an increasing 
sequence of finite-rank projections P1 . P2. ... that converge in the strong operator 
topology to the identity. We regard . as a complex Hilbert space with an inner 
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product given by (B1 , B,) = trace (B B1 ). The triangular projection associated with 
g is the orthogonal projection 9 1  of , onto d,. We write _ = 1-9 for the 
complementary projection and . for the orthogonal projection with range d. A 
complex linear unitary operator W is defined on 2, by the adjoint operation; WB = B. 

Consider the bounded Hankel form [A 1 , A,] = trace (A, XA 1 ) that is induced by 
a bounded operator I. If A, e dl and A,ed, then 

[A,, A] = trace (XII, A,) 

= (A 1 , (XA,)*) 

= (A 1 , 1(XA 2)) 

= (A 1, '(XA,)) 

=(A 1 , 

where Hx  is the Hankel operator (!—)X. The Hankel operator belongs to 
and we can see from the above that its operator norm coincides with the norm of the 
Hankel form on d, x d. Thus by our remarks in Section 1 we have 

II Hx  11 = dist (I, d). 

Tioi 2.1. Let X be abounded operator. Then 

the Hankel operator Hx  is a compact operator if and only if I belongs to the 
quasirriangular algebra d + K. Moreover 

dist (J1.  K(,)) = dist (I, d + K); 

the commutator X - £X determines a compact operator on 9, if and only if 
I belongs to the C-algebra 

(it +K)n(d+K)*. 

Proof. Notethat Hx  = 0 if Xe d. Also, if X= P, XP, for some n, then Hx  has 
finite rank. Indeed, if Aed,, then XA(J—P)ed,, and so the range of Hx  is 
contained in (I— ) Id, P. = (1-69

) 
XP, d, P, which is finite dimensional. Since 

O H fl 11111 it follows that H is a compact operator when Xe Jr, and so too when 
Xed+K. 

Suppose now that Hx  is a compact operator. For n = 1, 2, ... let 
S, = n'P, + (I— P) so that S. is a bounded sequence of invertible operators that 
converge to zero in the strong operator topology. The operator of left multiplication 
by S. on R, also converges to zero in the strong operator topology (of (,)) and 
so, using the compactness of H, we see that H8 = Hx  S. converges to zero in 
operator norm. By the identity preceding Theorem 2.1 there exist operators A Ed 
such that the norm of XS, +A tends to zero as n tends to infinity. Let x(T) denote 
the coset of Tin the Calkin algebra s/K. Then 

0 ,r(X+A,, S) II < II i'c(XS+A)  III! ir(S)  II 

and II 7r(S;1)  II < I. Since AS'ed+K, it follows that Xed+K. 
Now let Ke 	so that the operator K& converges to zero, where once again 

S. is regarded as a left multiplier. For large enough n, we have 

II H.+Kj ? II H3 +KSn  11 > 11 Hxs. IHe 
= diSt(XS, d)E > dist(X, d+K)C. 
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On the other hand, by our opening comments, if Yed+., we have 

dist(H, 	= dist(H +1, () < 111+ YII, 
and so the proof of (I) is complete. 

(ii) Note that 

Xt? X = (X9-9X_9)—(_9X-9X_9) = H - (Hx.)*, 

so that, by (i), the condition on X is sufficient for compactness. On the other hand, 
if the commutator is compact then so too are the operators X—X and 
X9—X". Thus, by (i) again, the condition is necessary. 

It has been shown by Plastiras [25] that another finitely ascending nest, Q1, Q2, 
say, determines the quasitriangular algebra d + Jr if and only if {P} and {Q,,} are 
asymptotic. This means that P. - Qfl+k converges to zero in norm, as n tends to 
infinity, for some fixed integer k. Ken Davidson noticed the following consequence. 

COROLLARY 2.2. Let 9 and .@ be the projections of triangular truncation deter-
mined by the finitely ascending nests P 1 . F2, and Q1, Q2, ... respectively. Then —1 
is a compact operator if and only if U Pn — Qn+k II —.0, as n - cao,for some integer k. 

Proof. Let E = P,,—P1 _1  and F = 	For an operator Xwe have 

(—.92)X= E Pk XEk +l — E Qk XFk+l  
k-i  

= (Pk—Qk)XEk +i+ E 
k-i 	 k-i 

= E (Pk —Q k)XEk+i + E Qk X(Pk+i —Q k+l)— I QX(P—Q). 
k-i 	 k-i 	 k-i 

Since the projections E and Q, have finite rank it follows that Y -2 is a compact 
operator if the nests are asymptotic. 

On the other hand, if 9 is a compact perturbation of then the Hankel operator 
(1— ) XI? is compact if and only if the Hankel operator (1- 2) X2 is compact. By 
Theorem 2.1 the quasitriangular algebras for I? and for .2 coincide, and so, by our 
earlier comments, (P) and {Q,j are asymptotic. 

Rrxs. (I) If X is a bounded operator and X. = P. XP., then the bounded 
sequence H. of finite-rank Hankel operators converges to Hx  in the strong topology. 
Because of this the results of [5] may be applied to show that there exists a compact 
Hankel operator H1  such that 

II H - H1  II = dist (Hr, Jr(. 2)). 

In conjunction with the equality II Hx  11 = dist (X, d) this leads to the fact that d + Jr 
is proximinal; that is, every operator possesses a best approximation in the operator 
norm from the quasitriangular algebra d + Jr. The proof follows that of [5] 
concerning the proximinality of H + C in L. However, there are rather more direct 
methods available, including the M-ideal techniques of Alfsen and Effros [1], and 
these are discussed in [7]. These methods cover the context of quasi triangular algebras 
with respect to an arbitrary nest, as well as certain Banach space contexts. The M-ideal 
approach was exploited by Leucking [21] to obtain the proximinality of H + C. 
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The first part of the theorem yields another proof that the operators X 
that are quasitriangular with respect to P1 . P2. ... ((!- P)XP. -O as n -. ) are 
precisely the operators in the quasitriangular algebra d+.. Indeed, let Q 
denote the orthogonal projection of R, onto the subspace 9,(P. - P._,). Then 
lix Qn = Q, "(I-P.) x,,, Q. Consequently 

Hx ED  0 = ED H(J_p) xp,1. 

Since the symbol operators for the summands are of finite rank, the summands 
themselves are compact operators, and so, by the quasitriangularity of I, it follows 
that Hx  is compact. 

The equalities at the beginning of this section show that Hx  is closely related 
to the Hankel operator S. on d2  that is defined by 

Sx:A 

For example, S. is compact if and only if the symbol operator X belongs to d + + Jr. 
This assertion does not hold for more general nests, such as the Volterra nest for 
L2[0, 1]. In the case of the standard multiplicity-one nest of order type N or Z the 
following characterisations can be made: 

(1) Sx  is of finite rank if and only if the representing matrix of 9 is finitely 
non-zero; 

Sx  ? 0 if and only if X is a positive diagonal operator modulo d; 
Sx  is a Hilbert-Schmidt operator if and only if 

(j-k+') Ix,k1 2  
is finite, where X = (Xjk). 

More generally, it is possible to use the decomposition for Hx  above to 
characterise when Hx  and Sx  belong to a given von Neumann-Schatten class. The 
corresponding characterisations for the classical Hankel operators are due to Peller 
[24]. 

9-triangular conjugates 

There is a strong formal similarity between Theorem 2.1 and certain function space 
settings involving classical Hankel operators, commutators, and the space 
(H + C) n (H + C). See [14, 33, 26]. This mirroring can be taken further with the 
notion of the triangular conjugate of an operator. 

Let 6 be a nest of multiplicity one and order type N or Z, and let Jr denote the 
associated linear space of matrices with only a finite number of non-zero entries. The 
dual space of F of (conjugate) linear functionals is identified with the space & of 
all matrices under the pairing (M, F) = trace (F M), for F in F and M in .t. The 
9-triangular conjugate of a matrix M is defined to be the matrix 

A? = (-i.9 +i9.JM. 

Note that for every matrix M the matrix Mi-iA? is upper triangular, and if M 
has zero diagonal, then Mi- iM = 2.9.,. M. If we let denote the linear space of 
diagonal matrices, it follows easily from these facts that 

(se +jr)n(d+jr)* = 
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This provides an alternative description of the C*.algebra  of Theorem 2.1. In fact we 
can give an analogue of Fefferman's characterisation [11] of L + LE00  as the functions 
of bounded mean oscillation. The identification of 9 +1 with the dual space of F 
follows elementary duality principles as in the function space setting. However, the 
realisation of B+A as a certain space of matrices for which the 'oscillation' 
II ME— EMIl is bounded, for E€, lies as deep as the decomposition result of 
Lemma 1.3. We see these facts in the next theorem. 

For a matrix M in 9 + 9 define the norm 

11  11. = inf (max (fl Fli, 11  I):M = F+ 0, F. GE}, 

so that 	UII) is a Banach space. Let F denote the completion of F with 
respect to the norm 

U FII.,1  = U FU1 -s-  11P H. 

THEoIM 2.3. The following conditions are equivalent for a matrix M: 

Mbelongs :o.+& 

M determines a continuous functional on the Banach space F1 ; 

the diagonal of M is bounded and the set of commutators ME— EM, for E in 
, -is unformly bounded in operator norm. 

Also the Banach space 9+4 is isometrically isomorphic to the dual of F1 . 

Proof (i)=1.(ii) If M= B 1 + 2  with B1 , B2  in , and if Fis a matrix ofF, then 

(M, F) I = I (B1  + 2' F) I = I (B 1 , F) - (B2 , F) I 	II B1  lilt Fli1 + II B2  Ii ti F iii. 
Thus !(M. F)l < fl MI! II Fli,,. 

(ii) (i) Let Abe the linear map between the Banach spaces 	and 
sucL that (B 1  ® B2)—. B1  + E2 . Then the induced mapping on the quotient space 
(e)/kerA is an isometrical isomorphism. It follows that the predual of 9+4  
is naturally identifiable with the annihilator of kerA in the predual 9, ED 9, However 
the operator B, ED B 2  belongs to this kernel if and only if b2  = - B1 , which is the 
condition 2  = A. Thus the annihilator consists of operators C1  C2  such that 

trace ((C1 ±) B) = trace (C1 B+C2 ) =0 

for all B in 9 with zero diagonal and with A in .. Hence the annihilator is identified 
with the subspace of elements of the form - C2  ED C2 . Clearly this subspace is 
isomorphic to F1 . 

(iii) Let the matrix M determine a U li,,-continuous functional of norm 
> 0. Let R = e ®f where e and  are unit vectors such that Ee = 0 and Ef=f, 

for some E ins. Since R belongs to d, it follows that II A  Ii 	2 and Ii R  II,, 
We have 	(M, R) = trace (R*M) = (Me,J) = (E M(I—E)e,f) 

and so fi E+  M(1—E) Ii 3x. Since II F  Ii,, = II F  II,, it follows that 
fi E 1. M(I— E) U < 3m The boundedness of these norms is equivalent to property (iii). 

(ii) By the assertions above, if (iii) holds for a matrix M then for some 
fi> 

 
Owe have I (M, R) I fi and I (M, R) I fi for all R in d of rank one and unit 

operator norm. Let Fbe a self-adjoint operator in the unit ball of F, Let R, denote 
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a decomposition of F+ LP, as provided by Lemma 1.3, with LII R t  114 2. Then 
F= LA k , where A t  = 1(R4-Rr), and so 

I(M, F)I i L(I(M, Rk)I+I(M, RZ)I) 4C fl; 
(ii) now follows. 

REMARKS. The last part of the proof shows that elements of the Banach space 
Jr, admit an atomic decomposition (in the sense of harmonic analysis) into sums of 
operators of bounded rank. 

A constructive approach to the (Lm + £9-representation of a function of bounded 
mean oscillation has been given by Jones [15]. It would be interesting to discover an 
operator-theoretic variant of this process and thereby give a direct proof of the 
implication (iii) (1), and possibly provide insight into how the Arveson distance 
formula is attained. 

Like BMO, the space 	has the following monotonicity property. If 
o < I y 	xij  and the matrix I = (x,) belongs to 9 + 4, then so does the matrix 
I = (ye). This result follows from weak factorisation and is dual to the Hardy 
inequality of Shields [34] (see also [30]). 

Note added in proof. T. G. Feeman has also obtained the proximality of quasi-
triangular algebras associated with discrete nests (in a paper to appear in Trans. Amer. 

Math. Soc.). Theorem 1.6(i) has been generalised to semifinite factors in the author's 
preprint 'Factorisation in analytic operator algebras'. 
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NUCLEAR OPERATORS IN NEST ALGEBRAS 

S. C. POWER 

1. INTRODUCflON 

The main result shows that each nuclear operator T in a nest algebra Mg 
admits a representation 

T = 

where r is a finite positive Borel measure on the nest and T -. TE  is a nuclear ope-
rator valued function on ir such that TE  = ET(I - E_) almost everywhere. This 
representation leads to conditions under which T can be decomposed into an exact 
sum of rank one operators in Alg 'in the following sense: 

Go  T= 	R4 , 	 1T 1J1 = 	IIR1II1 

with R1 , R2 , ... rank one operators in Mgi. We call this property exact decom-
posability and it is shown, in particular, that Tis exactly decomposable if if  is coun-
table or if T is dissipative. 

A basic result required in the analysis is a construction of Lance, Lemmas 3.2, 
3.3 of [II], which splits an upper triangular 2 x 2 operator matrix into a sum of 
two operators of the form { * * 1 and 1 0 * 1. An indication Of some of the 

	

10 0J 	10 *J 
power of this decomposition is given in the fact that it leads naturally to a useful 
result of Parrott [14]. In [11] it is used to derive Arveson's distance formula [I], to 
which Parrott's result is closely related [15]. 

In Section 3 we make inductive use of the lemma, and an inherent left 
continuity, in order to associate with each positive operator C and nest 8' a positive 
operator valued Borel measure C(4) on 4'. If this construction is applied to the posi-
tive part C of an operator T = UC in Alg8' then the operator measure UC(4) 
on 4' provides the appropriate generalisation of Lance's construction, and in case 1 
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has three elements coincides with this construction. In Section 4 we give a Radon-Ni-
kodym theorem for nuclear operator valued measures. For a nuclear operator T 

this allows us to form the derivative Tr  of the measure UC(4) with respect to the 

scalar measure r(4) = trace C(4) and thereby obtain the main result. The relation-

ship between C and C(4) seems to be worthy of further analysis. - 

In Section 5 we complete the proof of the main result and give various appli-
cations. A natural corollary, of wider interest, is discussed more fully in [16]. This 
is Lidskii's theorem that the trace of a nuclear operator is the sum of its eigen-
values (counted with their algebraic multiplicity). 

NOTATION. We fix a separable complex Hubert space H. The term subspace 

means closed linear subspace. We let S denote a complete nest of self-adjoint pro-

jections on H. Thus S is a totally ordered (under range inclusion) family which 

contains the projections 0 and I, and which is closed in the strong operator topo-

logy. If E ES and E # 0 (resp. E:0 I) then we define E_ (resp. E) as the supremum 

(resp. infimum) of the collection of F in S with F < E (resp. F S. E). The algebra 

of all bounded linear operators on Fl is denoted by B(H), and B1(H) denotes the class 

of nuclear operators (trace class operators). The nuclear operators form a Banach 

space under the norm 

11Th1 = tr((TT)112) 

where tr denotes the trace on B1(H). 
The nest algebra AlgS associated with a nest S is the algebra of all operators T 

such that (I - E)TE = 0 for all E e S. We denote the family of nuclear operators 

in Mg S by Mg 1  S. The rank one operator x -' (u, x)v is denoted u ® v. 

2. A LEMMA OF E. C. LANCE 

Our starting point is the following fundamental lemma of [11], reformulated 

in a manner appropriate for later induction. 

LEMMA 2.1. Let C be a positive operator which has an operator matrix 

I .B*
AB1with respect to a given decomposition of H. Then the limit, as n -, oo, of  

the sequence B(A + n 'l) -1B exists in the strong operator topology. If D 1  denotes 

this limit then the following hold. 

D1  < D- 

(ii) The operator C1 
= [.B$ DjJ 	

positive. 
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(iii) If U is an operator on H and UC has the form 
	

then UC 1  and 

U(C - C 1) have, respectively, the forms [ 
	] 

and 
 [° 

*1. 

COROLLARY 2.2. If T = [T
1  T21 is a nuclear operator then there exist T 

0 Ts  

and T' so that f R = [ 
	] 

  and S = [° T2" 	T= R + S and 11T111= 

= 1IR111 -I- IISLk. 

Proof. The corollary follows immediately from an application of the lemma to 
the ,polar decomposition T = UC. Note that 

11T111 = tr(C) = tr(C3) + tr(C - C) = 11UC1111 + IIU(C - C0111, 

so we may take .R = UC1  and S = U(C - Q. 

The corollary may be used now to obtain a useful result of Parrott (see [14] 
and its footnote for partial anticipations). The proof below makes free use of the 
B1(H), B(H) duality and is closely related to the discussions of the distance formula 
in [11] and [12]. 

COROLLARY 2.3. 

inf 
 11

X A 	 I U ro Ai 	U [0 01 

Bill 	maxillo BJd'IIL. 0  Bill) 

Proof. Let us suppose that the operator matrices are relative to an orthogonal 
decomposition H = 14 H2 . If Z e B(H) then write Z for the functional on 

the annihilator of B(H1) which is induced by Z. That is, Z determines a functional 

on B1(H) and Zr  is the restriction of Z to the annihilator mentioned. This annihilator 
is simply the collection of nuclear operators whose first operator matrix entry is 

zero. If Z= 
o A 

B 

ir x A1 
(2.1) 	 IIZrII 	infli I 	III, 

ILC BJII 

since operators X in B(H1) induce the zero functional on the annihilator. On the 
other hand, by the Hahn-Banach theorem, Z has a norm maintaining extension, 
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and so equality occurs in (2.1). But, using Corollary 2.2, we see that 

IJZ,ll= 	sup 	tr[0  Ulz\ I 

	

'Ito U-)jj 	'Lv wJ )j llb wJJjz 

= 	 sup 	
1tr(IOLv w1 J IIiII 10 w,J I! i 	, ° 1 Z)  

+ r ([0 U 
1 \ I = 

	

FO 0' III 	ro 	U' II owJ)I 

	

sup 	
itr([0

0 0   11 	A]) 
+tr([° U 	]J 

i V W1 j0 B 	OWJ[CB = 

	

:i ii+ ii 	—1 

RO
O A1I]J 	

°max {Bit! ' 	B11} 
The last equality follows because the supremurn of t  (1 0 0 110 A 

tLV W1  J0 B 
as 

 [

0 0 ] varies in the unit ball of B1(H), is the operator norm of [0 A] .  
VW1 0 B 

The corollary is now proven. 

A well known result of Ringrose (see Erdos [5]) asserts that each operator T 
in Alg with finite rank n may bewritten as a' sum ofn rank one opera-
tors in Aig e. Lemma 2.1 provides an alternative proof of this with the strengthen-
ing of the conclusion to an exact sum, as we now show. Moreover the method 
provides a constructive rather than existential approach and so may be of added 
interest. Extensions of Ringrose's result have been made by various authors to 
reflexive algebras AIg 2" for certain commutative subspace lattices T. We refer 
the reader to Hopenwasser and Moore [10] for a good discussion of this and for 
the following two results: 

(1) decomposition into rank ones is possible if 2 has finite width (although 
the length of the sum may have to be greater than the rank), 

(ii) there is a totally atomic 2 and a rank two operator in AIg 2' that 
cannot be written as a sum of 'rank one operators in Mg 2. 

Before proceeding it is convenient to introduce the following concept. 

DEFINITION 2.4. An operator T in Mg 9 is said to be suspended by a 
set W G 9 if(E— 1)T(E— F)=O whenever the interval (F, E] is disjoint from (. 
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If T is suspended by two disjoint intervals then T looks like this 

\ 

One can verify that T is suspended by a singleton £ , 0 if and only if 
ET(J - E_) = T. Each rank one operator in Mg 9 is thus suspended by a singleton 
since, as is well known, it may be expressed as e of with feE and eEI—E_, 
for some £ ,& 0. If T E Mg, is suspended by the singleton E then it is easy to 

obtain an exact decomposition of T. Let C = Co  be any decomposition of 

C into positive rank one operators where T = UC is the polar decomposition of 

T. Then T = UC, is an exact sum. Also 
1-1 

co 	 cc 
UC, = T= ET(I— E4 = EUC,(I— E...), 

and so IIEUC,(J - E_)111 = IIUC,III, i = 1, 2,. . ., and hence each summand UC, 
belongs to Alga and is suspended by E. 

OD  It can be shown that every exact sum X = X,, with each I, of rank one, 

must arise through a rank one positive decomposition of the positive part of the 
nuclear operator I. One often takes a spectral decomposition for the positive part, 
giving a Schmidt expansion for 1V, but in our context this takes no account of 
the invariant subspaces of X and need not correspond to the internal exact decom-
position for Alga obtained below. 

COROLLARY 2.5. Let T e Mg1  g  be a finite tank operator of rank n. Then 
there are rank one operators RI , R,, ...,R,, in Alg with T= R1  + R,+... + B.., 
and 11Th1 = 11R1111 + IIR,111 + . . . + IIR.111 

Proof. We use the notation of Lemma 2.1. Let T= UC be the polar decom-
position, let E e g,  E 0 0, 1 and let C1  be constructed from C, as in Lemma 2.1, 
relative to the decomposition induced by E. Let C, = C - C1. We first show 
that rank C1  + rank C. = rank C. 
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Let P denote the range projection of A. Then the positivity of C1  shows that 
B*P = B* (see Lance's proof). Thus 

= urn B*(A + n)'B = lim B*P(A + n'PB = B*(PAP)B 

where (PAP) -' denotes, informally, the operator which is 0 on (I —P)H and the 
inverse of PAP on PH. Let S be the invertible operator 

s=[B*(p'P)l 
I] 

Then since B*(PAP)_1A = B*P = fl*, and B*(PAP)_B = D, we have 

(2.2) 	 c,=s 	B 

o oj 
Also 

(2.3) 	 c2 = SC,  =s[° 
D—D1] 

Since BF = B* we have 

A B1* 	IA 01 
ken 	I 	kerI 

	

0 0J 	10 0JJ 

and thus 

1 
rank 

AB 
= rank A. 10 0J 

Hence 

A B1 	10 	0 1 	IA 	B 
rank 	I + rank i 	I = rank I 

0 0J 	10 D—D,J 	10 D—D, 1 
Now 'apply' S to this last equation and use (2.2), (2.3) to see that rank C, + 
+ rank C. = rank C, as desired. 

To complete the proof the above is used inductively until we obtain C = K, + 
-,- K, + ... + K. relative to 0 = Eo  < E, < ... <E,_, <Ek  = I with the 
following properties: 

rank K, > 0; 

rankC= 	rankK,;. 

UK1  is suspended by [E1 _ 1 , E1), i= 1,2,... 
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(iv) K 4  cannot be further decomposed with non zero summands relative to. 

any projection in [E,_1 , Es). 

Plainly, (iii) and (iv) show that UK4  is in fact suspended by a single projection. 
The proof is now completed. 

REMARK. As observed in [I I] there is a version of Corollary 2.2 for upper 
triangular operator matrices relative to decompositions of both domain space and 
range space. For example suppose F, Q are self-adjoint projections with Q <P 
and that T has the form 

P 
T=QIIIT! 

10 T3  

We construct an associated operator T, so that fis upper triangular and 

010 0 
= TT2 0 

o!.T3  0 

It can be checked that the Lance decomposition of ?provides an associated decom-

position of T. 
With the ideas above one can obtain a version of Corollary 2.5 for finite rank 

operators in a weakly closed operator module of AIg f, and hence a strengthening 
of Lemma 2.1 of [8]. 

3. OPERATOR VALUED MEASURES 

We now make inductive use of Lemma 2.1 to associate with each positive 
operator C in B(H) a positive operator valued measure. This association will depend 
only upon the fixed nest If. The construction of Lemma 2.1 has an inherent left 
continuity property with respect to the weak operator topology. This is expressed 
in Lemma 3.2 and provides just the continuity property required for extending 
finitely additive measures to measures. 

Let F be the finite subnest 0= E0  < E < ... <E = I oft. Let C be a 

fixed positive operator on H and decompose C as in Lemma 2.1 with respect to E1  
to obtain C = C1  + C. Next decompose C with respect to E2  to obtain C = C2  + 
± C, and so on, until we have the following decomposition 

(3.1) 	 CC1+C2+...+Ca 
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associated 	form A Bland C=C—C1 , and so 
1B* DJ 

on.) We now define C,EE,_ 1 , E,) = C,, I = 1, 2, . . ., n. The next lemma shows 
that C,[E, F) is independent of the subnest ., and so we shall denote the common 
value by C[E, F). 

Let a(S) be the ring of subsets of S generated by the collection of semi-inter-
vals [E, F) with E, FE 5, £ < F. 

LEMMA 3.1(1) The operator C[Ej ...a, E,) is independent of -F, the finite nest 
containing Ei-IL and E,. 

(ii) The correspondence [E, F) -, C[E, F) extends to a finitely additive positive 
operator valued function on s(S). 

Proof. We first claim that the decomposition (3.1) arises independently of 
the order of successive applications of Lemma 2.1. More specifically consider a 
quadruple subnest 0= E0  < E <E2  <E3  = I. Use Lemma '2.1 to decompose 
C as C ± C relative to £2. Next decompose C relative to E as C = Cl'+ C. 
We show that, with the notation used earlier, C1' = C1 , C = C2  and C = C3 . 

That C = C1  should be clear. Since C1  + C2  is positive and (C1  + C2)E2  = C'E2  
it follows, by the minimality property of Lemma 2.1(i), that C < C1  + C2 . Hence 
C + C2 < C1  + C2  and C.' C2 . But CE2  = C2E2 ,and so, by minimality again, 
C2  < C. Thus C2  = C and C3  = C. Our original claim now follows easily by 
induction with the quadruple case. 

The proof of (i) is now immediate, because if two finite subnests -4w L  and '2 determine C, [E, F) and C, [E, F) then, from the above, C, [E, F) = 
= C, up,, [E, F) = Co  [E, F). 

To establish (ii) we need only verify that if E < F < G belong to S then 
CIE, C) = CIE, F)  + qF, C). This too is an immediate consequence of the claim 
and its proof. 

LEMMA 3.2. If E e  and E_ = E then C[F, £) converges to zero in the weak 
operator topology as F increases to £ with F < E. 

Proof Note that, with respect to the Hilbert space decomposition induced 

by E, CIO, F) has the form 14 8], 
as in Lemma 2.1. Also with respect to the 

decomposition induced by F (F < E), qo, F) has the form B' ]. 
Moreover, 

since E_ = E, we have A' - A, B' - B in the weak operator topology as F-s E, 
F < E. Thus the monotone increasing net C[O, F) converges in the weak operator 

IA Ri topology to an operator I 	 . CjO, E) which has the form [.B* 
zj 	

respect to 
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E. But, by the minimality of D1 , C[O,E)X. Hence X=C[O,E) and the 
lemma follows. 

From the last two lemmas and the basic theory of positive operator valued 

measures, [2, P.  151, there is a unique positive operator valued set function C(4) 
defined on the Borel subsets 4 of 4'(8 is metnzed by the strong operator topology), 

which coincides with C[E, F) on (f), and is such that 

(3.2) 	 C(4) = 	C(4) 

whenever 4 is a disjoint union on Borel subsets 4, and convergence is with respect 
to weak operator topology. 

It follows from Lemma 2.1 (iii) and the constructions above that if UC E Aig g 

then UC[E, F) E Mg e and is suspended by [E, F)  for each E, FE 9, E < F. 

4. A RADON-NIKODYM THEOREM 

We now establish some integration theory for nuclear operator valued functions 
sufficient for our application. No attempt is made at generality. 

Let (Q, 1, p) be a sigma finite measure space. A function f: Q -. B1(H) is said 

to be measurable if the function 1 -. (f(i)x, y), t €0, is measurable for every pair ol 

vectors x, y in H. In view of our separability assumption on H it would suffice here 
to require measurability for x, y in a dense subset. 1ff is such a measurable function 
then, again by separability, t - ILftt)Ik is measurable. The function f is said to be 

integrable if t - ILf(t)111 is integrable. Simple applications of Lebesgue's dominated 
convergence theorem reveal that for an integrable function f the sesquilinear form 

[,] defined by 

[x, y] = (f(t)x, y)dp(t) 

satisfies 
00 

[x,,yJI <1 IIf(t)II1dis(t) 

for every pair of orthonormal sequences {x a).j , 	Hence there exists a 

nuclear operator T such that [x, y] = (Tx, y) for x, y e H. The operator T is called 

the integral off and we write T = fdjz. 

THEoM 4.1. Let (0, 1, p) be a sigma finite measure space and let C(4) be an 
operator valued measure on I such that C(Q) is nuclear and C(4) =0 whenever 4 e I 
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and p(4) = 0. Then there exists a positive integrable nuclear operator valued function,  

D(t) such that C(4) =5D(t)d(r)for all 4 E I. 

Proof. Let Q denote a subset of H consisting of all linear combinations, 
with coefficients in Q + iQ of a fixed orthonormal basis e1 , e2 ......For x, y in H 
let ,denote the scalar complex measure on I defined by p, (4) = (C(4)x, y). 
By the Radon-Nikodym theorem there exists a measurable integrable function 

D,. 1, such that p ,(4) = 5 D, ,(t)dp(t). The derivative D ,(t) is determined almost 

everywhere. Thus it is possible to choose a null set N so that for all t # N the mapping 
x, y -+ D,(1) is a finite and sesquilinear form, over Q + iQ on the vector pairs 
x, y in Q. Also, by the monotone convergence theorem, 

• 	 De. e (tl) dp(t) = 	5 D... (t) djz(t) = 

a (4.1) 

= 	lie , e(Q) 	(C(Q)e, e1) = tr(C(Q)). 

Hence we can arrange N so that 	De. e (t) is finite for all 't # N. It follows by 

standard arguments that for each t # N there exist a positive nuclear operator D(t) 
such that D,(t)=(D(t)x,y) for all X,YEQ. Set D(t)=O for leN. Since Q is 
dense it .follows that D(t) is measurable and, by (4.1), integrable. Since 

(C(4)x, y) = 	=D ,(t)dp(t) = 

=5 (D(t)x, y)dp(t) = (5D(t)d(t)x) for x, ye 

the theorem follows. 

The integral of an integrable function has been defined in a weak sense and 
such a description could be used to integrate suitable B(H) valued functions. For 
B1(II) valued functions however the integral exists in the following, much stronger, 
sense, and this will be useful. 

THEOREM 4.2. Let (Q, 2, jz) be a sigma finite measure space and let D(t) bean 
integrable nuclear operator valued function on Q. Then for each c > 0 there exists a 
measurable partition A,, A 2  ...,4, of Q and t,e4, for i= 12, ... r such that 

5 
D(t)dji(t) — 	D(t)p(4 	< C. 

iI 
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Proof. We make the simplifying assumption that p(Q) = I and that IID(t) 1k 
M almost everywhere since the theorem follows easily from this special case 

Let P, n = 1, 2, ... be finite rank projections such that P tends strongly to the 

identity. If XE B1(H) then P,JXP, -. X in B1(I-I). Thus PD(t)P - D(t) in B1(H) 

for almost every 1. In particular there is a measurable set K with 1z(K) < 

and an integer No  such that 1P1 D(t)P - D(t)11 1  <-f- for all n > N0  and t K. 

Also there exists an N> No  such that 

— it P,,D(t)P,,dp(t) - D(t)dp < C . 
5 

Since PND(t)PN  is an integrable operator valued function with values in B(C") 
it follows from the integration theory. for scalar functions that there exists a partition 
41,42, ... ,4, of Q such that 

P,,D(t)P.,dp(t) - 	P,,D(t1)P,,1t(4) 
<_f__ 

for almost every choice of t i  e4, i = 1, 2, . . ., r. We can also assume that K=U4g 
g-1 

for some s < r. It follows that 

I.: 	 C 
P,,D(11)P0t(4 1) - 	PND(tj)PNP(Aj) 

t-g+1 	 lii 

	

PND(tj)PN(4g) - ± D(tjjz(4) 	
£ 

I I,_:+i 	 III 	5 

and 

	

r II 	£ 
D(t1)p(4) - 	D(t1)p(4 1) <-. 

g-i 	Iii 	5 

Combine the displayed inequalities above and the theorem follows. 

S.. MAIN RESULT AND APPLICATIONS 

THEOREM 5.1. Let T E Mg, . Then there exists a finite positive Borel measure 

r one' and an integrable nuclear operator valued function £ - 	on such that 

(f) 	 T=Tth(E), 
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11 1111 = IITzIIidt(E), 

(iii) 	 T5  = ET(I - E_) almost everywhere. 

Proof. Let T = UC be a polar decomposition of T with U an isometry and 
C a positive operator. By the construction of Section 3 there is a nuclear operator 
valued measure C(4) defined on the Borel algebra oft, such that UC[E, F) is sus-
pended by [E, F) whenever E, F €tf, E < F. Let r be the scalar Borel measure 
on S defined by r(4) = tr(C(4)). Plainly C(4) is absolutely continuous with respect 
to r and so, by Theorem 4.1, there exists a positive integrable B1(H) valued deri- 

vative E -. D5  such that C(4) = D dr(E). Define TE = UD. Then E -. TE 

is integrable and (i) and (ii) follow. 
Let 9F be a countable order dense subset of 9 and let 5 be the collection of 

intervals 4 = (F, G] whose endpoints belong to 97. To establish (iii) it will be suffi-
cient, in view of the remarks following Definition 2.4, to show that for almost every 
E we have 4T54 =0 for every projection 4 = G - F with 4 e S and E # A. (The 
notational economy here should cause no confusion.) 

Fix M, N in 9F with M < N and consider a scalar step function 4P(E) on [M, N) 

on the form (E) = i akyk(E),  where 4,, = [E,,...1 , E,,) and M = E0  <E < 

= N is a finite measurable partition. Since TE dt = UC(A k) is sus- 

pended by 4,, it follows that 4p(E)T5  dv is suspended by [M, N) and thus that 

[M. N) 

q,(E)4TE4dt = 4q(L)Tdt 4 = 0 

for every 4 e 0 which is disjoint from (M, N). Since q is arbitrary it follows that 
there is a null set AM, N such that ATEA =0 for all E e [M, N) \ Am . jq and all 4 
disjoint from [M, N). Let 4*  be the union of all the sets 4M,N  with M, N in 9F. 
Then it follows that if £ # 4 * then 4TE4 =0 for all 4 e .1 with E # 4. Thus (iii) 
is proven, since r(4*) = 0. 

Recall that an operator T e Mg 1 1 is said to be exactly decomposable if there 

exist rank one operators R1 , R2 , ... in Mg 9 such that link = 	I1R,ik and T = 

CO 

= A. 
0-1 
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COROLLARY 5.2. (i)If dr is countable then each Tin Mg, is exactly decomposable. 
(ii) Let T € Mg 1  sand let c > 0. Then there exist rank one operators R1 , R2 ,... 

cc
CO  

in Aig 9 such that T = 	.R, and Y, IIR,Ik < 11TH1 + e. 

Proof. (i) Theorem 5.1 shows that T = 	r([E))Tv  and that this sum is exact. 
E€ 

Since TjE is nuclear and suspended by a singleton, our remarks following Definition 
2.4 show that each TE is exactly decomposable. This proves (i). 

(ii) Note first that if S E A1g1  f is suspended by a finite number of points 
then S is exactly decomposable. This is a consequence of Theorem 5.1 but follows 
from Corollary 2.2 more directly. Theorems 5.1 and 4.2 show that there is an approxi-
mating sum S1 , which is suspended by a finite number of points, such that 11 T— S1  fi 
<c/2. Similarly obtain S2 . S3 . ... each suspended by a finite number of points, 
such that 

n=1,2,... 

n=2, 3..... 

co  Write each S1 as an exact decomposition S1  = R. Then T = R and 

IIRI( J)  III  <11 71k + z. 

R&ARx. The second part of the corollary shows that every nuclear operator 
is approximately decomposable, and shows that in the unit ball of Alg1  9 the finite 
rank operators are dense. This could also be obtained as a consequence of Erdos' den-
sity theorem: In the unit ball of Alga the finite rank operators are dense in the weak 
operator topology [5]. This useful result (e.g. see [6], [8]) is usually applied in the 
equivalent form: there'is a net F. of finite rank operators in Alga With IIFgII < 1 
and F -' I in the weak topology. This looks like a bounded approximate identity 
for the weak operator topology, and in fact provides a (norm) bounded approximate 
identity for the Banach algebra (Mgi) n Jr with the operator norm (jr = the 
compact operators). In particular factorisation is possible (by means of Cohen's 
fáctorisation theorem [3, p.  61]). This algebra is rather interesting, being radical if 
'is continuous. All closed ideals can be described by using the methods of [8]. Each 
closed ideal J of (Mgi) fl . is of the form 

J= {X€ (Mgi) n 1(1 - )XE =0, all £ € f) 

where E -, X is a left continuous order homomorphism oft, with Z < £ for all 
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E in. A similar description holds for the closed ideals of the Banach algebra 

(Alg,6, IIIl). 
REMARK. It also follows from Corollary 5.2 (ii) that the upper triangular 

integral (in the usual sense. [7]) of an operator T e Alg, converges to Tin the nuclear 

norm. That is, if 'f jr(T) = LE1T(Ei - E_,) is the upper triangular sum associated 

with a finite subset F = {E0  <E, < ... <E} then 'W,(T) converges 11 11, L  to the 

operator T as F runs through the directed set of all finite subsets. 
This contrasts sharply with the well known fact that &.w(X) need not converge 

II 11 3L  for Xe B,(H) (although it does converge 11 fl,,, 1 <p <co). Indeed the 

canonical projection from BI(H) to Alg, e is not II 11 1L  bounded if e is infinite. 

Let us digress a moment to indicate that A1g 1  d' has no complement in B,(H). The 

proof is modeled on Newman's proof that H' has no complement in L' [9]. Speci-

fically we show that if there is a continuous projection 7r BI(H) -' Alg, e then, 

by averaging, we can deduce the uniform boundedness of certain canonical projec-

tions on MgF, F a finite subnest of , and thus obtain a contradiction. Indeed for 

a given finite subnest F let G, denote the unitary group in F" (the double corn-

mutant) with Haar measure dU. Define 

U*ir(UXV*)VdUdV. 

Go G 

This exists as a Riemann integral of II 11, continuous B,iiI) valued functions on 

G, x G,. We have lit,!! 117r 1l, for the operator norms of these mappings, and, since 

G,Alg1  = (A1g1  )G,= A1g1  e' it follows that it, is a projection. Since ir,(WXY) = 

= Wir,(X)Y for W, Ye G, it follows that ir,(SXT) = Sit,(X)T for S. Te F". 

In particular 
(EJ_EJJ 7r,(X)(Ek — Ek- 1) O  

for >k. If R , denotes the restriction to operators X with 0 = (E - E_ 1)X(E - 

— E) then it follows that ii., is the canonical projection into Mg F. Now we have 

11i'r.,11< tutu  for all F, which is a contradiction. 

THEOREM 5.3. Let T e Mg, S. If T is dissipative then T is exactly decomposable. 

Proof. Recall that an operator is dissipative if i(T* - T)'>, 0. Let T = 

= TE dr be the decomposition of Theorem 5.1. Since tr(TE) = 0 when E_ = E 

we have, 

tr(i(T - T)) = Str(i(T - 
7's)) dr = 

= i tr(7 - T5)dr 

AP 
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where 2 = {E : El <E}. This shows that is non void if T* - T 0. Let H0  
be the closed span of {(E - E_)H : E E }. This is the subspace on which ff is 
totally atomic. More precisely, if P is the orthogonal projection onto H0  then P 
commutes with and if P0 then g o  = EP : Ee d'} is a totally atomic nest on 
H0 . Moreover tf, = {E(J - P) : E e tf) is a continuous nest on 1f = (I - P)H 
if PI. Let us write 

T=1T1 T2 

[T8  i' 

relative to the decomposition H0 	H1 . Since 7'4  is also dissipative and belongs to 
the continuous nest algebra AIg if,, by our initial observation T4  is self-adjoint. 
Hence T,1  = 0. But since T is dissipative this now implies that T2  = T. Thus 
TT2  = T3T2  = (I - P)TPT(I - P) is a compact self-adjoint operator in a conti-
nuous nest algebra, and so 7'2 = 0. By Corollary 5.3(1) T1  is exactly decomposable 
relative to tr0, and this provides an exact decomposition relative to e. 

REMARK. The first part of this proof shows that anon zero dissipative nuclear 
operator cannot possess a Continuous nest of invariant subspaces. In fact it is a 
theorem of Lidskii that the closed range of Tis the closed linear span of the principal 
vectors of T. This is a simple consequence (see [17, p.  149]) of another well known 
theorem of his, namely that the trace of a nuclear operator is the sum of the eigen-
values counted with their algebraic multiplicity [13], 14, p. 1104], [17, p. 139],[18, 

Chapter 3], [6]. It is shown in [16] how the formula tr(T) = tr(T) dr also leads 

to this result, thereby providing a triangularisation proof. (The triangularisation 
proof of [6] uses Erdos' density theorem.) 

REMARK. If T € Aig f and C(4) is the operator measure for C = I TI then it 
may happen that r(4) = tr(C(4)) is a locallyfinite measure in the sense that T((E,F)) < 
<± oo for all E>0 and F <1 and O = 0 and I_ = 1. In this case we could 
refer to T as a locally nuclear operator. Such an operator admits a representation 

T = T5 dr which exists, for example, as a weak integral. One can obtain a mild 

generalisation of Lidskii's trace theorem: If T is locally nuclear with eigenvalues 
counted 	with their algebraic multiplicity, such that 

Go 

I2,(T)I < + oo then 

A 1 (T) = limtr((F - E)T(F - E)) as E J. 0, F t I. 

It may be of interest to obtain external characterisations of locally nuclear operators 
and of the sigma nuclear operators, where sigma nuclear means r(4) is sigma finite. 
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REMARK. We do not have an example of a nuclear operator T which is not 
exactly decomposable. 

If the measure v of Theorem 5.1 is discrete then, as in the proof of Corollary 
5.2(i), T is exactly decomposable. However there are exactly decomposable operators 
for which r is continuous. 
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ANOTHER PROOF OF LIDSKII'S THEOREM 
ON THE TRACE 

S. C. POWER 

An important theorem of Lidskii [5, p.  1011 shows that the trace of a nuclear 
(trace class) operator on a Hilbert space is the sum of the eigenvalues (repeated 
according to their algebraic multiplicities). Most proofs require developing 
properties of the determinant on the trace class and some complex function theory. 
See for example [2], [9] and [10]. An exception is in Erdos [4] where the result is 
obtained by a reduction to triangular form. The key to the proof is a rather delicate 
density property: the finite rank operators in the unit ball of a nest algebra are 
strongly dense [3]. 

We indicate here an alternative approach which uses the triangular form. The 
idea is to decompose a nuclear operator T as an integral 'along the diagonal" of 
building block nuclear operators of the form 

1 \ 0 I 	1 
I 	I 	* 	I 
I 	 I 
I 	 I 

TE =l 	" 	I .  
0 	\ 0l 

It then follows that the trace of  is the integral of the scalar function E - trace(TE ). 

However, by choosing an appropriate basis, the trace of TE  is easily computed (it 

depends on how T meets the diagonal) and this leads to the theorem. 

Preliminaries. We fix a separable complex Hilbert space H. We let f denote a 

(complete) nest of self-adjoint projections on H. Thus is a totally ordered (under 
range inclusion) family which contains the projections 0 and I, and which is closed in 

the strong operator topology. If E  6 and E 0 then we define E.. as the 

supremum of the collection of F et with F < E. A nest is said to be simple if rank 

(E—E_) < I for all Ee f. The nest algebra A1g4' associated with the nest 4 is the 

collection of bounded operators X for which (I— E)XE = 0 for all E e 01 . We denote 

the collection of nuclear operators in Alg8 by A1g 1  4, and we write IIXIR for the 

nuclear norm. 
By saying that a nuclear operator T is triangularised we mean that there is a 

simple nest for which T e A1g 1  8' That such a nest exists is a consequence of the 
invariant subspace theorem for compact operators and a little induction with Zorn's 
lemma. Such details can be found in [1], [2] or [9]. For each E e 4 we can define the 

diagonal coefficient T) e C as follows. If E = E_ then E(T) = 0. If E_ < E then 

(T) is the unique scalar in the spectrum of the rank one operator 

(E—E_)T I (E—E_)H. The non zero diagonal coefficients are in fact eigenvalues of 

T. Indeed if E(T) 0 consider the restriction operator R = ( E(T)I— T) I EH. 

From the definition of the diagonal coefficient we see that R has proper range and so 

Received 2 June, 1982. 
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is not invertible. Thus by Riesz—Schauder theory E(  T) is an eigenvalue of T I EH 
and therefore of T. 

We can give d' the strong operator topology (equivalent to the order topology 
here) and consider integrals with respect to Borel measures p on 4' as follows. A 
nuclear operator valued function E -+ XE is said to be integrable with respect to p if 
E -+ (XE f, g) is measurable for all f, g e H and if E - IIXEII1 is integrable with 
respect to p. In this case J XEdp exists as the unique nuclear operator implementing 
the sesquilinear from f, g - J (X E  f, g)djt. 

Details of the next decomposition theorem and some applications are in [8]. At 
the bottom of the proof is a construction of Lance [6, Lemmas 3.2, 3.3] which 
asserts the theorem when 4' has three elements! The general version below is 
achieved by exploiting (i) induction, (ii) a continuity inherent in Lance's construction 
and (iii) a natural Radon—Nikodym theorem for nuclear operator valued measures. 

THEOREM. Let T e Alg 1  S. Then there exists a finite positive Borel measure t on 4' 
and an integrable nuclear operator valued function E -* TE on 4' such that 

T=JTEdt, 

II Tfl1 = J I7'lI dv, 

TE  = ETE(I—E_) almost everywhere. 

COROLLARY (Lidskii [7]). The trace of a nuclear operator is the sum of the 
eigenvalues, counted with their algebraic multiplicities. 

Proof. We first repeat a simple argument ([5, p. 103]) to reduce to the 
quasinilpotent case. Let ,Tbe  the closed linear span of all principal vectors for the 
nuclear operator T which correspond to non zero eigenvalues. Thus 91T= closed 

span {x e H I (21— TTx = 0 for some n > 0, 1 0). In view of the Riesz—Schauder 
theory we can obtain an orthonormal basis x 1 , x 2 , ... for •T by successive 
orthogonalisation of principal vectors, such that 

co 	 GD 

trace (T I g,) = 	( Tx 1 , x1) 
= i1 

1(T), 

where 2 1 (T), 22(T), ... are the eigenvalues of T counted with their algebraic 
multiplicities. Let P denote the orthogonal projection onto YT. By the invariance of 

Twe have 

T = TP+PT(1—P)+(I—P)T(1—P) 
and so 

trace (T) = trace (T I YT)+ trace ((1P)T(lP)). 

Since the operator (1—P)T(I—P) can have no non-zero eigenvalues (by Riesz- 
Schauder theory) it is now sufficient to establish the corollary in the case when T has 
no non-zero eigenvalues. 

Let T be nuclear and quasinilpotent. We may assume, by our earlier comments, 
that T e A1g 1  4' with 4' a simple nest. The theorem applies and there exists a 

'ii) and (iii). measurable function £ -' T. and a Borel measure r on 4' satisfying (i), (  
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Let be the countable set {E E t '  I E_ < E}. Then, by (iii), trace(TE) = 0 for almost 
every E c 	So by (1), and Lebesgue's dominated convergence theorem, 

trace (T) = ftrace (TE)dT' = 	trace (T)t({E}). 	 (I) 
EeY 

Now if F.. < F then by (i) and (iii) 

(F—F)T(F—F4 = J(F_F4TE(F_F4dz = (F—F.)TF(F—F4t({F}). 

Hence 

trace (TF)1({F}) = trace ((F—F_)T,(F—F_))t({F}) 

= trace ((F—F_)T(F—F_)), 	 (2) 

which is the diagonal coefficient of T at F. Since T is quasinilpotent these coefficients 
are zero and so, by (1) and (2), trace (T) = 0, completing the proof. 

REMARKS. (i) In fact (1) and (2) show directly that the trace is the sum of the 
diagonal coefficients. 

(ii) Since the integrals above actually exist as fl limits of approximating sums 
it can be deduced from the theorem that the finite rank operators are II 11 1  dense in 
the unit ball of Alg 1  S. This fact, which was used in [4], also follows from Erdos' 
density result. 
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A Hardy-Littlewood-Fejér Inequality for 
Volterra Integral Operators 

S. C. POWER 

For an operator Ton the Hubert space €2  (N) that is upper triangular with respect 
to the standard basis, the following inequality holds, 

ItI_ 	
ITIITII,. 

J•i 	3 

Here (t11 ) denotes the representing matrix of T (and so tij  = 0 for i > j), and  11Th1 
denotes the trace of (T*T)hi' 2 . This result was obtained by Shields [9] as a natural 
analogue of the Hardy-Littlewood-Fejér inequality 

Ih(n)I 
+ 

n=o n 	I 

for the Fourier coefficients h(n) of a function h in the usual Hardy space H' of 
the circle (see [5, page 70]).  Thus the upper triangular operators in the Schatten 
class C1 , the space of operators T for which II T 1  is finite, play the role of the 
space H'. The space C, is referred to as the space of trace class, or nuclear, 
operators. 

In Theorem 1 we give a version of (1) for an integral operator on L2(p) (where 
p is a a-finite Borel measure on the real line) whose kernel function is upper 
triangular in the obvious sense. Two special cases, where p. is counting measure 
for the integers, and where p. is Lebesgue measure on R, resolve problems raised 
in [9].  Shields' account, which prompted this note, should be consulted for a full 
historical perspective on the ideas interlacing (1) and (2). 

A crucial step [9, Lemma 3] used in obtaining (1) is the factorization T = AB, 
with A,B upper triangular Hubert-Schmidt operators such that 11Th, = IIAIh2IIBhI2, 
where hIX112 denotes the Hilbert-Schmidt norm (tr(X*X))'l'2.  After this the proof 
runs in perfect parallel with the proof of (2) that is based on the Riesz factorization 
h = h,. h2 , with h 1 ,h2  functions in 112  such that hIhhl, = hIh1I12hIh2hI2. Our method is 
different and rests on a decomposition of an upper triangular integral operator of 
trace class into a sum of rank one upper triangular operators, with control of the 

11111 norms (Lemma 2). This approach resembles that used in the atomic and mo-
lecular theory of analytic functions [2].  In that theory the boundedness of an op- 

667 
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eration with respect to a "one norm" is first easily checked for special molecule 
functions and then shown to hold true in general by invoking a decomposition 
theorem which expresses each analytic function as a sum of molecules. It is the 
decomposition theorem that embraces the hard analysis, and that is the case here. 
The molecular (atomic?) analogues are the rank one summands. 

The inequalities. Let denote a or-finite Borel measure on the real line R, 
and let h(x,y), k(x,y) denote kernel functions which induce bounded integral op-
erators mt h, mt k on L 2(i) in the sense of Halmos and Sunder [4, page 17]. 

Theorem 1. If h(x,y) = Ofor all x > y, and if k(x,y) Ofor x y, then 

(3) 	
fR fR 

Ih(x,y)Ik(x,y)dp4 	hInt khhhlint hhI1. 

Remarks. The substance of the inequality (3) (and similarly for (1) or (2)) is 
that it is an assertion for I h(x,y)h. Moreover, (3) may fail if h(x,y) is not upper 
triangular. This is a consequence of the unboundedness (when L 2(p) has infinite 
dimension) of the mapping mt k - Int I k I with respect to the trace class norm. 
This in turn is easily derived from the unboundedness of the upper triangular 
projection mapping with respect to the trace class norm. (On the other hand, if 
k(x,y) is upper triangular one can drop the upper triangular assumption on h and 
(3) is valid.) 

Notation. Let Z denote the natural nest of distinct projections on L 2(p.) cor-
responding to (perhaps not all) intervals of the form (—oo,x) and (—,x], together 
with the projections 0 and I. Recall that the nest algebra Alg is the family of 
operators which leave invariant each projection in . Thus the operator mt h of 
Theorem 1 belongs to Aig 6. A converse of this also holds [9, Proposition 1]. 
For a rank one integral operator this coincides with a special case of the char-
acterization (Ringrose [8])  of rank one operators in a general nest algebra. Dif-
ferently said, the following three assertions coincide: (a) The rank one operator 
u v belongs to Aig Z. (b) There exists a projection E in for which Ev = v 
and (I - E_)u = u, where E_ is the supremum of F in with F < E. (c) The 
integral operator hit h, with h(x,y) = v(x)u(y), is upper triangular. 

The following lemma is the key to the proof of Theorem 1. 

Lemma 2. Let hit h be a trace class integral operator in Mg , and let a > 
0. Then there exist rank one operators T1 , 1'2, ... in Mg 161  such that 

(i)mnth=. 1 T1 , 

(ii) 	
I 11T11I1 	lint h111 + 	. 

Remarks. 1. This lemma is a special case of Corollary 5.2(u) of E7] which 
concerns nuclear operators in general nest algebras. The proof is rather involved 
and uses a Radon-Nikodym theorem for nuclear operator valued measures. 

2. A different proof of Lemma 2 can be given, as we now indicate, by ap- 
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pealing to the Erdos density theorem [3].  This important (but nonelementary) re-
suit states that the finite rank operators in the unit ball of a nest algebra are dense 
in the strong operator topology. Consequently (exercise) the finite rank operators 
in the 1111, unit bail of (Alg ron C 1  are 1111, dense. For this reason it is enough to 
establish the lemma for a finite rank operator. But in this case a strong form of 
the lemma holds in the sense that E can be taken to be 0. For this fact and its 
proof see Corollary 2.5 of [7].  The proof rests on a decomposition lemma of 
Lance [6, Lemma 3.3] for 2 X 2 upper triangular trace class operator matrices. 

3. There is a stronger version of Lemma 2 available for countable discrete 
nests in which we can take c = 0 and assert equality in (ii). See Corollary 5.2(i) 
of [7). 

Lemma 3. Let h,k be as in Theorem 1 and suppose that mt h has rank one. 
Then inequality (3) is valid. 

Proof. We have mt h = u v, where u,v belong to L 2(), and h(x,y) is the 
triangular kernel v(x)u(y). Thus 

IJR lh(x,y)lk(x,y)dij4ii = (( It k)l u , vI) 

lint  k1l 1 1u112 11v112 
= lInt k1l jjInt hl11. 

The proof of Theorem 1 now follows. Let mt h. = Ti , with T, as in Lemma 2, 
so that h(x,y) 	h,(x,y) almost everywhere. Thus 

lh(x,y)Ik(x,y)dI.sdp. 	fR JR h1(x,y)k(x,y)dp.dp. JR JR 
 

hint h.hl111Int ku 

(hInt h111 + r)lhInt ku ,  

and 50 (3) follows. 

Remark. The constant hInt k1l is not necessarily the sharpest bound in (3) (for 
fixed k) because certain lower triangular perturbations of mt k do not affect the 
left-hand side. It can be seen from the proofs of Lemma 3 and the theorem that 

sup hjE(mnt k)(I - E_)ll 
Er?€ 

is the best possible replacement. Using Arveson's distance formula [1] we can 
also write this constant as 

dist(Int k, (Alg3)*) 
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This is the operator norm distance from mt k to (A1g,)*,  where Alg are 
the strictly upper triangular operators (those operators X in Mg satisfying 
QXQ = 0 for every atomic projection Q). 

Shields' inequality (1) follows from Theorem 1 by letting p. be the counting 
measure on N and by taking k(i,j) = (1 + j - i) for all i,j except the pairs 
i,i + 1, for which k(i,i + 1) = 0. This is (essentially) Hubert's second matrix 
which has operator norm it. Similarly a version of (1) holds for e2 (Z). To obtain 
natural variants for the real line consider the kernel k(x,y) = (y - x)' which 
induces (modulo a constant multiplier) the Hilbert transform on L 2(R), as a sin-
gular integral operator, with norm it. Although mt k is not an integral operator 
in the sense used above, the next corollary follows from Theorem 1 and a little 
elementary approximation. The operators mt h of this corollary are Volterra in-
tegral operators. 

Corollary 4. Let h(x,y) = Ofor all x > y. Then 

I f Ih(x,y)I 
I 	dxdy1TIImnthII 1 . 

 )X 

Remark. The constant it is best possible in (4) because ii is the operator norm 
of EX(1 - E), where X is the Hilbert transform (with kernel (y - x)) and E is 
projection onto L 2(—oo,0). (A natural proof uses the Fourier-Plancherel transform.) 

Shields asks whether the norm exact factorization T = AB mentioned in the 
introduction holds for trace class operators T in an arbitrary nest algebra. From 
such a fact would follow alternative proofs of the above results. Let T be a rank 
one operator in a general nest algebra of the form x ® y, where Ey = y and 
(I - E_)x = x. Suppose moreover that E_ <E. Then the factorization is valid 
since one can take A = e ® y and B = x e, where e is any unit vector in 
E - E_. Consequently, in view of Remark 3 above, for (general) nests of order 
type N or Z we have the following exact weak factorization for a trace class 
operator T in Mg ; 

T = 	A.B,, 	IITII = 	11A111211B116, 

where A 1 , A 2 , ... and B 1 , B 2 , ... are rank one operators in AIg . 

Question. Is the exact decomposition (5) valid in an arbitrary nest algebra? 

A weaker question still is to ask whether the e in Lemma 2 can be dispensed 
with. Equivalently, in the terminology of [7], we ask the following. 

Question. Is every trace class triangular integral operator exactly decompos-
able? 
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ON IDEALS OF NEST SUBALGEBRAS OF C*ALGEBRAS 

S. C. POWER 
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One of the attractions of non-self-adjoint operators and operator algebras is given by 
the connection and the parallels that exist with analytic function spaces and harmonic 
analysis. These parallels can serve as a source for interesting conjectures. See, for 
example, work by Arveson [1,2] and Loebl and Muhly [16] for algebras and 
analyticity, and Shields [23] and Power [19] for operators and harmonic ana-
lysis. The non-self-adjoint context we consider here, namely nest subalgebras of 
C*algebras, is a setting where analytic function theory and operator algebras 
combine quite strongly, especially when the ambient C*al gebra  is infinite. In this 
paper we begin an analysis of the norm closed ideals of nest subalgebras of C* 
algebras. 

The theory of ideals of the algebra of upper triangular n x n matrices is easily 
understood. Each ideal I is described by an order homomorphism a from the finite 
lattice {0, 1, ..., n} into itself, such that a(k) < k. We write 

I = I[c] = {(x): x, = 0 whenever i> (J)} 

This is the space of matrices which vanish below the boundary determined by a. A 
precise analogue of this result for the weakly closed ideals of a nest algebra was 
obtained by Erdos and Power [9]. Whilst the determination of various norm closed 
ideals of a nest algebra is of importance (see Ringrose [20], Lance [15], Erdos [8], 
and Hopenwasser [14], for example), the analysis of all such ideals for a non-self-
adjoint algebra is more natural and tractable in the context of nest subalgebras of 
C* algebras. These are the norm topology analogues of nest subalgebras of von 
Neumann algebras, and have received less attention than their weakly closed 
brothers. Witness the work of Gilfeather and Larson [10, 11, 12] and the literature 
cited therein. 

Our analysis is arranged as follows. In the first section we consider approximately 
finite C*algebras  and nest subalgebras with respect to a maximal subnest of a 
(prescribed) diagonal algebra. (It is shown in Proposition 1.6 that such algebras do 
nct depend on the choice of the projection nest). This setting lies closest to that of 
finite dimensionality. In § 2 we look at C*.algebras  of operators on L 2 [0, 1] and their 
Volterra nest subalgebras. The boundary a of an ideal of such an algebra appears as a 
certain increasing function from [0, 11 to [0, 1]. We observe that under fairly natural 
circumstances, involving simple C*.al gebras, to each boundary function a there 
correspond a minimal ideal I(a) and a maximal ideal I[x]. Using natural represen-
tations we see that these considerations apply to elementary crossed products, such as 
C ® T, where T is the rotation group and C is a commutative C*.al gebra  of functions 
on T, and to the Cuntz algebras O [5]. Section 3 is devoted to the C*algebra 02 and 
its Volterra nest subalgebra. Theorem 3.10 gives an alternative, representation free, 
description of this algebra. 
A.M.S. (1980) subject classification: primary 47D; secondary 46L. 
Proc. London Moth. Soc. (3), 50 (1985), 314-332. 
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For many basic examples the quotient of a nest subalgebra by the Jacobson radical 
may be represented as a commutative function algebra. In the AF case this quotient is 
seen to be a copy of the diagonal, but in other settings, and in particular for 02, 
analytic function algebras may appear, associated with certain maximal ideal points 
of the diagonal. In this way the ideal theory is tied to the ideal theory of function 
algebras. Thus the sum of two closed ideals need not be closed, because this 
phenomenon occurs in the disc algebra. On the other hand, for approximately finite 
nest subalgebras (as defined in § 1), a variant of Arveson's distance formula, and an 
inductivity property for ideals, show that such sums are automatically closed 
(Theorem 1.9). Further consequences for the nest subalgebra A of 02, obtained by 
exploiting function theory of the disc algebra, are the following assertions. Ideals that 
contain the radical are principal ideals (Corollary 3.9). A spectral corona condition, 
namely, 

Ia1(x)I+...+Ia(x)Iö, 

for x in the ideal space of A/rad A, provides a necessary and sufficient condition on 
the n-tuple a 1 , ..., a in A for the solution (in A) of the interpolation problem 

b 1 a1 +...+ba=1. 

The group of invertible elements of A is pathwise connected. 
When the containing C*algebra  is simple it happens that the nest subalgebras we 

consider are 'ideal irreducible' (see Corollary 1.4 and Theorem 2.3), as in the n x n 
matrix case. That is, non-zero closed ideals have non-zero intersection (another 
algebraic parallel with analytic function spaces). This is probably true in a very wide 
generality. 

This research was completed during a visit to Michigan State University. I would 
like to thank students and faculty, and in particular, Sheldon Axler, for their warm 
hospitality and their stimulation. 

I am in debt to Geoffrey Price for suggesting Lemma 1.2 and to Alan Hopenwasser 
and Ken Davidson for some useful suggestions. 

Notation. We write M(n) for the C*algebra  of n x n complex matrices and N(n) for 
the subalgebra of upper triangular matrices. More generally, if n = (n 1 , ..., n,) e J', 
we write M(n) for the standard finite-dimensional C*algebra  M(n 1 ) ED ... M(n,), 
and N(n) for its upper triangular subalgebra. 

1. AF nest subalgebras and AF nest algebras 

The results of this section concern a maximal nest subalgebra A of an approxi-
mately finite C*algebra  B, and the (closed) ideals of A. It is shown that A is a 
principal ideal algebra and, in the case when B is simple, that non-zero ideals have 
non-zero intersection. A variant of Arveson's distance formula leads to the automatic 
closure of the sum of two ideals. The key property required for all these asser-
tions is the inductivity of the ideals of A. 

A nest of projections in a unital C*algebra  is a totally ordered family of self-adjoint 
projections containing 0 and 1. If L is a.nest of projections in a C*algebra  B then we 
let Alg L denote the nest subalgebra 

A1gL = {be B:(1 —p)bp = 0, p  e L} 
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that is determined by L. 
In this section we fix a unital AF algebra B with an ascending chain of finite-

dimensional C*algebras  B,, B2, ... whose closed union is B. In order to construct a 
nest L we chose a chain C 1 , C2 , ... of maximal abelian self-adjoint subalgebras of 
B 1 , B21  ... respectively, and take L to be a maximal nest of projections in their union. 
In fact L is also a maximal subnest in C, the clOsed union of C 1 , C2 ..... Any two nest 
subalgebras constructed in this way are isometrically isomorphic (see Proposition 1.6 
and the following discussion), and so we may speak of the approximately finite nest 
subalgebra associated with B and the family B 1 , B2

. --- . In the hyperfinite case, where 
every B is a copy of a matrix algebra, it seems appropriate to refer to the algebra 
Alg L as an approximately finite nest algebra. Indeed, it follows from Proposition 1.6 
that these algebras are the direct limits of directed systems 

N(n 1 ) -+ N(n 2) —. 

of upper triangular matrix algebras. The embeddings indicated here are those that 
respect the standard nest L of projections in the diagonal of N(n). (L consists of the 
projections Pk = ell+...+ekk, together with 0, where are the diagonal 
matrix units.) That is, under the above embedding, we obtain a directed system of 
nests 

L, -. L2 

(These embeddings are not the usual standard embeddings in the sense of Goodearl 
[13] or Effros [7, p.  9]. However, they are the natural embeddings that arise when 
N(n) is represented as an operator algebra on L 2 [0, 1] in the obvious way, using a 
partition of [0, 1] into n equal subintervals.) 

Let us now fix C, L, and A = AlgL as above. If X is a subspace of B then we define 
an X-module to be a closed subspace of B that is closed under multiplication by 
elements of X. In particular, an A-module that is contained in A is a (two-sided closed) 
ideal of A. Since the analysis of A-modules is similar to that of ideals we shall consider 
this generality. Moreover, modules appear naturally as coefficient spaces for a nest 
subalgebra of 02  (see (3.10)). The following terminology is convenient, and the 
concept is crucial. 

DEFINITION 1.1: A closed subset I of B is said to be inductive if I is the closed union of 
the subsets Ir-  B, for n = 1,2..... 

Thus C is an inductive m.a.s.a. An elementary C*alg ebraic  argument [25, p.  21], 
using the isometric nature of injective maps, gives the well-known result that closed 
ideals of AF algebras are inductive. We show that more is true. Any C-module (and 
therefore any ideal of A) is inductive. 

In the proof of the next lemma we will use the fact that when B is a factor we have 

B = span{vx: v e B, x e B}. 	 (1.1) 

Here X signifies the commutant of X in B. To see this note first that B is the closed 
span of B n B,, for r = n, n + 1,... (see [25, p. 11]). Since the span of(1.1) is closed it 
suffices to verify that 

B, = span{vx: v e B, x E B r) B,), 

for r = n, n + I,.... By our hypothesis, and standard arguments, it is enough to 
consider the case where B = M(n), appearing as a standard unital subalgebra of 
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B, = M(n). Thus n = (n1 ,..., ni), n, = nk, for some natural numbers k,,... k 5 , and 
M(n) is embedded with multiplicity k 1  +... + k in the natural (standard) sense. For the 
case where s = 1 the required assertion is readily verified, and the general case follows 
naturally from this. 

LEMMA 1.2. Let I < n <r, let e1 ,..., ep  be the minimal projections of B.c r B,, and 
define 

e.xe 1 , for x e B. 

Then cojx) = jim, (p., Xx) exists and may be written as q,,,(x) 
= 	1 v 1d where v 1 , ..., V I  

are the matrix units of B, and d, is in the closed span of C,, 1 , C 2  

Proof. Suppose first that B. is a factor, with matrix units v 1 , ..., v 1 . Using (1.1) write 
x in B in the form 	v3x with x3  in B. Then 

. ,(x) 
=

vp ,(x). 

As noted earlier, Bc. is an approximately finite C* algebra.  Indeed, it is the closed 
union of B m B,, for r > n. Thus, as r -, , q,(x) converges to an element of the 
diagonal of B. 

In the general case B. possesses minimal central projections f1,..., J. Each minimal 
projection of B r B, appears as a subprojection of one of these, and so it is clear that 
çø,,, may be decomposed as 

= 	... 

where q,/), is defined in terms of the subprojections of f, for 1 j t. But the lemma 
has been established for the context of the factors fB,,f and the corresponding 
mappings (o,, and so the general case follows. 

LEMMA 1.3. A C-module is inductive. 

Proof. Let M be a C-module and x an element of M with unit norm. For c > 0 
choose n and y in B. with 11 y—x II <a. Notice that y = co,,,(y) = q,,(y) and so 

II co,,(x)—x  II 	II co,,(x)—y  II + II y—x  II 	2e. 

We have q,,(x) = 	v,d, as in Lemma 1.2. Since p,,(x) is in M, by the module 
property, so too is each v,.d. In fact if e,, fi  are minimal projections in C. such that 
e,v,f, = v• then 

vd 1  = e.v1f1d, = L e4vfd = 
j=1 

Now, for each i, consider the set {d e On 1): v,d e M} where C is the closed span 
of Ck, Ck+l .....This is an ideal of and therefore inductive with respect to 
Ck, C,, 41 ..... Combining the above we see that q,,,(x) is in the closed span of 
B,,C,, 4 , n M, for r = 1,2,..., and thus that M is inductive. 

COROLLARY 1.4. Let A be an approximately finite nest subalgebra of the AF algebra 
B. Then each closed ideal is a principal ideal. If B is simple then proper ideals have 
proper intersection. 
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Proof. We may assume that matrix units have been chosen in all the algebras Bk  
so that each matrix unit in Bk  is a sum of matrix units in Bk+l  (see, for example, 
[25, p. 14]). Let I be a proper closed ideal of A. Consider the sequence of matrix units 
v 1 ,V 2 ,..., Which successively exhausts the matrix units of Ir'IBk , for k = 1,2..... 
Form a subsequence w 1 , w2, ... by successively striking out v& that are 'subordinate' to 
a previous matrix unit. In this way we obtain a sequence w 11  w 2 , ... such that if 
Wk = Lv,, with v,, matrix units in B, then no v,, appears in the sequence 

- Wk + 1' Wk + 2 .....The resulting sequence has the following two properties. 
The ideal generated by w1 1  w2, ... coincides with 1. In fact since ideals are 

inductive, by Lemma 1.3, we need only show that the ideal contains each Vk. But to 
each Vk there exists a w1  to which Vk is subordinate. That is Vk = qkWlPk where q, = VkV 
and Pk = vk vk  are the final and initial projections of Vk. These projections belong to C 
and so the assertion (i) is justified. 

Fix k and assume that Wk = L v, i  as above. Then, if p, , and q 1 , i  are the initial 
and final projections of v,, we have, for each i, 

= 0 for j < k. 

This should be clear after a moment's thought. The raison d'être of the deletion 
process is that these equalities remain true for all w in B 1 , B 2 ,..., B,, with the unique 
exception of Wk. 

We claim that I is the principal ideal, 1(x) say; generated by the element 
X 	

Wk 

= k1 

By (i) above it suffices to show that Wk is in 1(x). However, we see from (ii) that the 
norm of 

Wk 

tends to zero as I tends to infinity, and now the claim follows. 
We now show that non-zero ideals I,J of A have proper intersection when B is 

simple. 
By the inductivity of ideals there exists an n such that I r B. and J r B. contain 

non-zero matrix units u and v respectively. Let e 1 , ..., e, be the minimal projections of 
C. arranged in the order determined by L. That is, e appears before f if and only if 
there exists pin L r C. such that pf = 0 and pe = e. In this circumstance we easily see 
that eBf a A. (Indeed, for any q in L we have the alternative qf = 0 or qe = e.) Let e 
denote the initial projection of u and let f denote the final projection of v, and 
suppose for the moment that e appears before f. Since B is simple, {0} 96 eBf 
[25, Chapter 1], and so there is a non-zero element exf in A. Thus uexfv is a non-
zero element of I r) J. If f appears before e, then the initial projection of v appears 
before the final projection of u and so the above argument, with u and v switched, is 
valid. 

REMARK. In fact the proof above shows that C-modules are singly generated. 

The uniqueness of A 
We next show that the algebra A does not depend on the particular choice of 

maximal subnest L of the diagonal algebra C. 
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Elementary arguments show that L = U L where L = L r B. In fact we claim 
that 

A = (AlgL)rB = closed span{(AlgL)r'B}. 	 (1.2) 

Because A is itself inductive this amounts to the claim that 

the reverse inclusion being clear. To see this pick q e L\L and consecutive 
projections P1 ,  P2 of L, such that Pi  <q <P2.  Note that if x e B then 

(1 — q)xq = (1 — q)(p2xp 1  +(1 — p2)xp 2)p. 

Thus if x also belongs to Aig L then 

(1 — q)xq = (1 — q)(l — p 1 )(p2xp 1 )q = (1 — q)p2(1 — p 1 )xp 1 q = 0. 

Now fix L', another maximal subnest of C, so that (1.2) holds with V and L in place 
of L and L. The next elementary lemma is needed to construct isomorphisms 6,, 
between (AlgL,,) r' B,, and (AIgL) r B. in such a way that 6,,, extends 6,, for m > n. 
The procedure is analogous to fundamental C*algeb ra  arguments of Bratteli [3]. 

LEMMA 1.5. Let P and Q be two maximal subnests of dfinite-dimensional C* algebra  
D and let R be a maximal subnest of a C*al gebra  D1  contained in D such that 
R c P Q. Then there exists a unitary element u in D such that u*  Alg Pu = AIg Q and 
uxu = xfor all x in (AlgR)rD 1 . 

Proof. Let E = {e 1 , ..., e} (respectively F = {f1, ..., f}) be maximal families of 
minimal projections in PCC  (respectively QCC)  with the ordering determined by P 
(respectively Q). Similarly, let g,, ..., g,, be a maximal set of minimal projections in Rcc .  
Then there exist numbers 1 = j(0) < j(1) < ... < j(u) = v such that 

\ 	j(i) 

ik,  for i=1,...,p. 
k=J0_1)\ 	k=j(i-1)\ 

Clearly there is a unitary element v, in g1Dg1  such that v?E1v1 = F,, as unordered sets, 
where 

E, = {e(_ 1), •.., 
eJ()}, F, = {f_ , ..., f,}, for i = 1,..., ji. 

Moreover, v, can be chosen so that if e, e' are equivalent projections in E1  and e appears 
before e', then vrev1  appears before v~Vv i  in the ordered set F. (Use the transposition 
unitaries which exchange such projections and leave the other elements of E. fixed.) 
Set v = v 1  0 ... v,,. Then v is a unitary element and 

E = {e 1 ,..., e) = (v*fj v,...,v*ff} = v*Fv  

as unordered sets, and such that if E' is an ordered subset of equivalent projections in 
E, then E' appears as an ordered subset of the ordered set V*FV.  Let p,, ..., p and 
q l , ..., q,, be the non-zero projections in P and Q respectively. 

Thus 
I 	 I 

em , q,= 	fm, for l=I,...,p. 
M = 1 	 m1 

By our construction of v, if z is a minimal central projection of D then 

{zp,}. 1 
= {zv*q,v}1. 
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(Indeed, if e,e' are in E and ze and ze' are non-zero, then e and e' are equivalent.) Thus 
zAlgP = z Alg(v*Qv) = zv*(AIg Q)v , and hence AIgP = v*Alg Qv , since both al-
gebras contain the central projections. Now because R c P r Q it follows that the 
mapping x -, v *xv  defines an automorphism of (AIg R) r D1  which fixes the pro-
jections in R. This automorphism is implemented by a unitary element din RCC  (finite-
dimensional exercise). That is, vxv = d*xd for appropriate x. Set u = vd* and the 
lemma is proved. 

PROPOSITION 1.6. AIg L and Alg L' are isometrically isomorphic. 

Proof. Let A. = (Alg L,,) n B. and A = (AIg L) r B,,. We need only show that there 
exist unitary operators u,, in B. such that u,,A,,u,, = A. and the automorphic action of 
u,, +1  on A,, 1  extends that of u. on A,,. By Lemma 1. 5, u 1  exists. Assume that u 1 , ..., u,, 
have been constructed. Let A +1  = and L ' +  so that 
L +1  n L' . + , contains L,. By Lemma (jthere exists a unitary element v,, 1  in B. 
such that v. 1  A + 1v,, j = A", i  and such that the automorphism for v,, +1  fixes A,,. 
Thus 

V,,+1U'A,,+IU,,V'+1 = A,, 1  and v,, +1u'A,,u,,v' +1  = u,,A,,u,,, 

since A = u,, 	.. A,,u,,. Set u,, 1  = 	and the induction step is complete. 
To complete our original assertion, that approximately finite nest subalgebras 

depend only on the chain B 1 , B 2 ,..., we need to show that A1gL is isometrically 
isomorphic to AIgL when L is a maximal subnest of the union of C, C2,..., another 
chain of maximal abelian subalgebras. This is now straightforward. There is an 
automorphism (p of B such that q'(C,,) = C,,. Since AIg IL and AIg p(L) are isometrically 
isomorphic, and, by Proposition 1.6, Alg q(L) and Alg L are similarly isomorphic, we 
have finished. (Notice, however, that we have not shown that the isomorphism class of 
AIgL is independent of B 1 , B2 , ... although this is probably true.) 

Sum of ideals and modules 
Let 0 = Po <Pi <... <p = 1 be the canonical subnest associated with the algebra 

N(n). Furthermore, let a be a mapping from {0, 1, ..., v} into itself with (i) < a(j) for 
i j, and set 

I[ct] = {x e M(n): (1 —P,,(,))xPj = 0, i = 0, 1,..., v}. 

We omit the elementary verifications that I[a]N(n) I[cz], N(n)I[a] c I[c], and that 
all N(n)-modules in M(n) arise in this fashion. Note that I[a] is an ideal if (i) < i for 
all 1. The following lemma is a variation on a theme of Arveson [2]. The essentials of 
the proof can be found in [18]. 

LEMMA 1.7. For x in M(n) the following distance formula holds 

dist(x, J[c]) = max{ 11 (1 Pa(i))xPj II: i = 1,..., v}. 

LEMMA 1.8. Let 'i,'2  be two N(n) modules and let x 1  e11 , x2  c 12.Then 

dist(x 1  +X2,1, i J) = max{dist(x 1 , I r '2), dist(x2, '1 

Proof. Iff 1  and a 2  are the associated boundary maps for 1 ,  12 respectively, then 
1 1  r 12  = I[x] where a(i) = min{ 1 (i), 2(i)}, for i = 0, 1,..., v. Also if k e {1, 21 and 
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x(i) = rxk(z) then (1 — Pa(i))XkPI = 0. Hence the set of numbers 110 —p2(1))(xl +x2)p1  11 ,  
with i = 1,..., v, coincides with the numbers 11 (1 Pa(j))XkPj fl, for k = 1,2 and 

= 1, ..., v. The lemma now follows from Lemma 1.7. 

THEOREM 1.9. Let 1 and 12  be closed modules for an approximately finite nest 
subalgebra. Then 11  + 12 is closed. Moreover, if x 1  e 11 and x 2  12 then 

dist(x 1 +X2,  I I  r 12) = max{dist(x 1 , I 	12), dist(x 2 , IL - 

Proof. We may assume, by Proposition 1.6, that for a given k, Bk = M(nk) and 

Ak = Bk A = N(n,3, so that the distance formula of Lemma 1.8 holds for the 
A,,-modules, I r Bk  and 12 Bk. Since, by Lemma 1.3 the module I r-  12 is induc-
tive, this gives the required distance formula for I, I. This formula shows that 

I,/I  12 + 12/I1 I. is a closed subspace of the quotient space B1I 1  r 12, and so 

11  + '2 is norm closed, which completes the proof. 

REMARKS. 1. An elementary consequence of the inductivity of ideals is that the 
radical and the commutator ideal of an approximately finite nest subalgebra A 
coincide with the closed union of rad(A r ) Be), for n = 1, 2,.... The elements of this 
ideal are characterized as those elements of A that satisfy a natural Ringrose-type 
criterion (see [20]) with respect to finite partitions induced by the nest. Also we have 
A = C+radA. 

2. For general nest subalgebras of C*algebras  sums of ideals need not be closed, 
and A/rad A need not be isomorphic to the diagonal algebra C, even when this 
quotient is known to be commutative. We shall see this in § 3. However, the following 
natural example shows this, and is of independent interest. Verifications are left to the 
reader. 

Let B be the operator algebra on L 2(T) generated by the continuous functions C(T), 
acting as multiplication operators, and the Hardy space projection p. These are the 
usual spaces and operators associated with the circle T. Let E be the discrete nest 
consisting of the projections 0, 1 and p, with n E 7L, where p,, has range equal to the 
closed span of {z': k < n}. The algebra A = B n Alg E is the algebra of operators in B 
whose representing matrices are upper triangular. The commutator ideal of B is equal 
to K, the space of compact operators. (This, and other facts about B, can be found in 
[6], for example.) The radical of A, which is also the commutator ideal, is the algebra 
of strictly upper triangular compact operators. The quotient B/K is isomorphic to 
C(T) C(T) under a map that sends the coset of multiplication by z to z e z, and that 
of p to 0 1. The quotient A/rad A is isomorphic to a function algebra on 

1 ulu! 2  

where D, D 2  are open unit discs. The centres of the closed discs 0, and 0 2  are 
identified with the point - X and + co of the two-point compactification 2 of 1, and 
the function algebra consists of the continuous functions on F3, u 7L u 02 that are 
analytic on the discs. (The topology is the natural one.) 

The ideals I of A are specified by a boundary map cc from 2 to 2, such that 
cc(m) cc(n) if m < n and cc(n) < n, for all m,n in 2. If cc(—cx) = - 	then we 
must additionally specify an ideal 1_ 	of the disc algebra A(D 1 ). Similarly, 
if cc( + co) = + co then we must specify an ideal I + ,,. Each ideal is thus determined 
by a triple (I_,cL,I +r,j. 
5388.3.50 	 U 
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Many facts about A may now be deduced from the corresponding facts for the disc 
algebra. For example, 

A is a principal ideal algebra (cf. [2]), 
there are closed ideals in A whose sum is not closed. 

2. Volterra nest subalgebras 

In this section L denotes the Volterra nest of projections on L 2 [O, 1]. Thus L 
consists of the projections p,, for 0 < t < 1, where p, is the orthogonal projection 
onto L 2 [0, t], viewed as a subspace of L 2 [0, 1]. For a fixed C*algebra B of operators 
on L 2 [0, 1] we define the Volterra nest subalgebra as the algebra 

A 	 11. 
In contrast to the approximately finite nests, L is a complete lattice, and the definition 
of the boundary map of an A-module (within B) is a natural one. 

DEFINITION 2.1. Let 1 be a closed subspace of B which is an A-module. The boundary 
map of I is the function c(t) from [0, 1] to [0, 1] defined by 

a(t) = inf{ct e [0, 1]: (1 -p)Xp 1  = 0, for all x in J}. 

PROPOSITION 2.2. The boundary map ot of an A-module satisfies the following: 
(0)=0; 

a is increasing; 
a is left continuous. 

Proof. (i) and (ii) are clear. To see that a is left continuous at a point t in (0, 1] pick 
any value fi < (t). Then there exists an operator x in the module such that 
(1 Pfi)XPt 0. Hence (I —p)xp, 96 0 for some s < t (by weak operator topology 
continuity). Hence fl < a(s) and (iii) follows. 

Under a mild assumption, which we now impose, the boundary maps of modules 
are characterized by the properties of Proposition 2.2. We assume henceforth that 
(p—q)B(p—q) # { O} for all p, q in L with p > q. For a function a, satisfying (i)-(iii) 
above, the following modules have or as a boundary map, 

I[c] = J X e B: (1 —p U(f) )xp, = 0 for all t e [0, 1]}, 	 (2.1) 

I(cz) = closed span {x e B: x = p,x(l —ps)  for some t and P < a(t)). 	(2.2) 

The strict inequality fi < x(t) should be noted since replacement by fJ c(t) may lead 
to an intermediate module. 

If n(t) = t denotes the position function on [0, 1] then 1(x) c rad A, the radical of A. 
This is because 1(n) is generated by operators x for which there exists a positive integer 
n = n(x) such that (ax) = 0 for all a in A. If it can be shown that A/I(n) is 
commutative then we have 

radA 1(n) z corn A, 

where corn A denotes the commutator ideal of A. In the examples below, this is the 
case, and often these ideals coincide (cf. §§ I and 3). 

We now indicate that for a large class of C*algebras  the module J(c) is the minimal 
module with boundary map a. 
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Let F denote a dense subgroup of the unit circle, and for y  in F let u denote the 
rotation unitary operator such that (u1f)(x) = f(x+y) for f in L 2 [0, 1]. Here, and 
later, we identify the circle with [0, 1] in the usual way and take addition modulo 1. 

The following theorem, although somewhat specialized, applies to a wide class of 
crossed products and to the nest subalgebra in the next section. 

THEOREM 2.3. Let B be a simple C*algebra of operators that contains the operators 
p, ufor y in F. If I is a closed module for the Volterra nest subalgebra, with boundary 
map a, then I contains I(c). 

REMARKS. 1. We omit the uninspiring proof of this theorem, since it follows closely 
the procedure for showing that I = I[a] when I is a module for N(n). Thus the 

simplicity of B and operator matrix arguments are used to show that 'small 
superboundary compressions' of I are equal to the corresponding compressions of B. 
These compressions are then 'swept out', under the action of A, giving the generators 
of I(x). 

If A is a Volterra nest subalgebra, as in Theorem 2.3, then the ideals I(c) have 
proper intersection. (Compare this with Corollary 1.5.) Just how general is this 
phenomenon? 

If we drop the simplicity assumption then the conclusion can fail in various ways. 
Let B be the C* algebra B 1  + K, where K denotes the compact operators and B 1  
denotes the operator algebra generated by PC = C*({L}) (piecewise continuous 
multiplications) and the full rotation group of unitary operators u7 , for y  e T. The 

algebra B 1  provides a faithful realization of the crossed product PC (D T and is simple 
because PC has no proper rotation-invariant ideals. Each module I of the Volterra 
nest subalgebra B 1  r AIg L determines a boundary a and an essential boundary a. 
with a,, 	. The function a,, is computed in the Calkin algebra in the obvious way. 
The appropriate analogue of the theorem is that each module I of B contains 
(I(a:) () K) + I(C e) 

On the other hand, let B be the highly non-simple C*algebra L(T) ® T. Rudin 
[22] has shown the existence of a measurable subset E of the circle for which E and 

T\ E are permanently positive. This concept, for a set E, means that the intersection of 
any finite number of translates of E has positive measure. It readily follows that the 
characteristic functions for E, and T\ E, generate different rotation-invariant ideals in 
L(T). From this, and the elementary ideal theory for crossed products, we obtain 
distinct ideals of B and proper modules of the Volterra nest subalgebra without the 
property of the theorem. 

It is natural at this point to mention the non-self-adjoint subalgebra H ® T of 

L(T) ® T and its Volterra nest subalgebra. The ideal theory here requires knowl-. 
edge of all the rotation-invariant ideals of H. The ideals fH are the obvious ones. 

What others are there? 

Crossed products 
Let F be as above, a dense subgroup of the unit interval, and let C be a F-invariant 

C*subalgebra of L[0, 1] which contains the nest L. = {p1 : y e r}. Moreover, 
suppose that C has no r-invariant ideals. Then the crossed product C ® r is a simple 
C*algebra isomorphic to the norm closed operator algebra B on L 2 [0, 1] generated 
by uy , for y € F, and the multiplication operators associated with C. Theorem 2.3 
applies to B and can be used to obtain a characterization of the ideals of the Volterra 
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nest subalgebra A = B r AIg L = B r AIg L. Each closed ideal of A is specified by a 
boundary map a together with a prescription of how the operators of the ideal can 
'vanish on the boundary'. A crucial step is to obtain the following, coefficient 
characterization ((2.4) below) of C-modules. (Precisely this kind of characterization 
was needed by Muhly [17] in a different context concerning analytic crossed 
products.) 

To each x in B can be associated a generalized Fourier series 

x - 	(p1u, with q, e C, 	 (2.3) 'er 
where ço 7  = E(xu) and E is the conditional expectation of B relative to the diagonal 
algebra C. This expectation may be defined by 

E(x) = urn 	- p "2 1)x(p - p ), 

where the limit is taken as the size of the f-partition, 0 = pt) <p '  < ... < p n  = 1, 
tends to zero. A vital property of the series of (2.3) is that Bochner—Fejér approxi-
mation is valid. This means that x is a norm limit of finite sums 

v€fi 

where {r 0 : y e Q}, for n = 1, 2,..., are finite sets of real numbers. (This can be 
obtained from the general theory of Banach space-valued almost periodic functions 
[4].) This kind of Cesaro sum approximation serves as an analogue of inductivity in 
the AF case. (In fact it may be used to establish inductivity for the C-modules of 
uniformly hyperfinite AF algebras through their realization as tensor product 
algebras.) Suppose now that M(C) is the Gelfand space of C and Z, c M(C), for y € 
is a family of compact subsets. Then 

I = {x e B: x = 	co(z) = 0, z e Z} 	 (2.4) 

is clearly a C-module. The approximation property shows that all such modules arise 
this way. 

3. A nest subalgebra 0f02 

In [5] Cuntz has shown the importance of the class of C*algebras O, for n = 2, 3,..., within the theory of infinite C*algeb ras. In this section we consider a 
triangular, non-self-adjoint subalgebra A of 02. This algebra may be specified by its 
generators, or as a Volterra nest subalgebra of a natural realization of 0 2  on L 2 [0, I]. 
The equivalence of these descriptions is given by Theorem 3.10. The proof requires the 
inductivity of modules of uniformly hyperfinite nest algebras (cf. § 1) together with a 
fundamental Cesaro-sum convergence property for the generalized Fourier series of 
elements of 02. This convergence property is Lemma 3.8 and, like inductivity, and the 
Bochner—Fejér summability of the series (2.3), plays a key role in the description of 
modules for the diagonal. Since most of the basic properties of A follow more readily 
from the generator specification of A, we shall introduce A in this way and postpone 
the connections with 02 until later. 

The algebra A and its radical 
Let a, fi, y, , with at <fi and y <ö, be four dyadic points in the unit interval [0, 1] 

such that 6-y = 2fl(fl_) for some integer n. Then v = v(,fl,y,ö) denotes the 
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natural partial isometry with initial space L 2 [c, fill and final space L 2 [y, (5],. and n is 
called the index of dilation of v. We refer to these operators as the dyadic partial 
isometries. We see that v(a, fi, v (5) belongs to the Volterra nest algebra if and only if 
one of the following conditions hold: 

n = 0 and y a; 
n <0 and v a; 
n > 0 and 6 P. 

We define the operator algebra A as the norm closed linear span of the dyadic 
partial isornetries that lie in the Volterra nest algebra AIg L. We see later that the 
closed algebra B generated by all the dyadic partial isometries is a faithful realization 

Of 02 and that A = Br AIgL. 
First we obtain a representation of A/rad A, where rad A denotes the Jacobson 

radical of A, as a commutative function algebra. 
It was shown by Ringrose [20] that the radical of a full nest algebra of operators 

may be described as the intersection of certain diagonal ideals (not to be confused with 
ideals of the diagonal algebra A A*).  We give a direct proof of the analogue of this 
result for A. 

The diagonal ideals of A are the norm closed ideals I0 , I, 1 + , 1, for 0 < t < 1, 
defined in terms of the Volterra nest L = {p,: 0 < t 1} as follows: 

I0 ={xEA:pxp-0as(5--+0}; 

11 = { x E A: (1 —p)x(l —p s) - 0 as 6 -+ 1); 

= {x e A: (I+oP)X(1't+oP,) - 0 as 6 -+ 01; 
1, - = {x E A: (p—p,_)x(p j —p g _) - 0 as 6 -+ 01. 

Recall that it is the trivial boundary map 7t(t) = t, that I(it) is given by (2.2), and that 
corn A is the ideal generated by the commutators of A. 

LEMMA 3.1. The commutator ideal of A satisfies comA = I(7r) = fl,4, where the 
intersection is taken over all diagonal ideals 4. 

Proof. Note first that for x E B, r E [0, 1), and s e [0, 1) we have 

(p,—p,_o)x(p, +o—p t) -+ 0 as 6 - 0. 	 (3.1) 

Indeed this property follows at once for the dyadic partial isometries that generate B. 
Suppose that the operator x belongs to the intersection of the diagonal ideals. Then, 

by a compactness argument, there exists a partition 1 = q 1  +... + q by projections q, 
of dyadic intervals such that II q,xq, 11 < a for i = 1, ..., n. Thus it will follow that 
x e 1(ir) if we show that x—(q 1 xq 1  +... +qxq) belongs to 1(n). This follows quickly 
from the definition of 1(it) and the property of (3.1). Since I(n) is contained in each 
diagonal ideal, it follows that 1(z) coincides with their intersection. 

To see that A /1(m) is commutative we need only show that the cosets v + I and w + I 
commute when I is a diagonal ideal and v and w are dyadic partial isometries in Alg L. 
Suppose that I = 1, +. Note that if v = v(a,fl,y,t5) then v+1 96 0 if and only if 
a = y = t. Since v e A it follows that 6 P. Similarly, if w = v(a',fl',y',(5') and 
w+1 :0 0, then a = a' and a' fi'. But in this case vw = wv, so in all cases v + I and 
w +1 commute. 
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We have shown that I(ir) corn A. For the reverse inclusion consider the operator 
matrix identity 

12 0] 
[
0 x]  [0 x] [2 

01 - [
0 

o i o 0 	0 o 1Lo  0 

and it becomes clear that the commutator ideal (in fact even just the linear span of the 
commutators) contains elements of the form py(1 —p)where y e A and  is dyadic. In 
view of(3.1) the linear span of such elements is precisely I(it). Thus corn A = I(7r) and 
the proof is complete. 

In fact it follows from the proof of Lemma 3.1 that the intersection may be taken 
over the dyadic points only, and that the quotient norm in A/corn A may be 
computed as 

	

1 x+comA = tim maxj  11 qxq 11, 	 (3.2) 

where q, are the projections associated with the intervals 

[(j_l)21c , j/2k], for j= 12k 

It is possible to describe the quotient A/rad A as a commutative function algebra. 
This algebra contains a copy of the diagonal algebra A r A* (which turns out to be 
the commutative C* algebra C generated by dyadic (diagonal) projections) together 
with disc algebras that appear over dyadic maximal ideal points of C. (Compare with 
the example of Remark 2 following Theorem 1.9.) Thus all questions concerning ideals 
that contain the radical are reduced to questions about this function algebra. 

Let M(C) denote the maximal ideal space (character space) of C. As a set M(C)-is 
identified with the non-dyadic points a e (0, 1) together with dyadic pairs a +, a - that 
correspond to the right limit and left limit evaluation functionals of dyadic points 

e [0, 1]. (Of course we do not have 0— or 1+.) Let X be the subset ofM(C)xEt 
containing the points (t,0), for non-dyadic t, and the sets {t} x 0 , for dyadic 
characters t, where D is the open unit disc, and D its closure. 

The diagonal algebra C can be realized as the subalgebra of L[0, 1] generated by 
the characteristic functions x of intervals (, fi] whose endpoints are dyadic. With no 
real confusion we let denote both the Gelfand transform, a continuous function 
on M(C), and the function on X given by 

where (t, z) e X. 

If t is a dyadic point in M(C) and if f is a function in the disc algebra with f(0) = 0, 
then we define f on X by 

1If(z) ifs=t, 
= o 	if s t. 

Define A to be the function algebra on X generated by the functions f(t)  above, and the 
functions X(.pJ• 

TIoREM 3.2. (a) rad A = corn A = 
(b) A/rad A is naturally isometrically isomorphic to the function algebra A. This 

isomorphism associates (the cosets of) the dyadic partial isometries v = v(, fi, y, ö) of A 
with functions in A as follows: 

(i) if cz = y and fi = 6 then v is mapped to 
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if a = y and 6 <fi then v is mapped to z 	where - k is the index of dilation of v; 

if Ii = (5  and y < oc then v is mapped to z p  where k is the index of dilation of v: 
in all other cases v is mapped to the zero function. 

(c) The natural mapping p such that 

q: A/radA -.A/4, 

and where the direct sum extends over all the diagonal ideals, is an isometric algebra 
monomorphism. 

Proof. We first show that under the coset correspondence indicated in (i)—(iv) the 
quotient algebra A/corn A is isometrically isomorphic to A. 

Let A 0  denote the unclosed algebra generated by the dyadic partial isometries v in 
A. Then v + corn A is non-zero if and only if v = v(cx, fi, y, (5) with 

=y and fl= c5, or 
a= y andb <fl or 
fl = 6 and y <. 

We distinguish these three classes by saying that 
v is a diagonal operator, 
v is associated with +, and 
v is associated with J-. 

For each x e A the coset x + corn A can be written almost uniquely in the reduced 
form 

/ 	,,(') 	\ 
x + corn A = ( d + 	), ) + corn A, 

where d is an operator in C, 0 is a finite (dyadic) subset of M(C), lj  are complex 
numbers, and v, is a dyadic partial isometry associated with t whose index of dilation 
has modulus 1. There is some choice available for the v, but d and A,, i  are uniquely 
determined. It was observed in the last proof that the coset of vv., is zero if t s. It 
follows then that the map 6 from A 0  + corn A to A, defined by 

n(i) 

	

6(x+comA)=J+ 	111Z, 	 (3.3) 
tEfli=1 

is well defined and a homomorphism. 
We now show that 6 is isometric. Let x e A 0  have a coset represented as above. Fix 

an integer k and let q, be the projections of (3.2). Then 

Ilx+comAII = 	q,xq,+comA 
J= 1 	 11 

= max 11 qxq+comA II 

n(t) 

= Max dq+> >A.,vq+comA . 	(3.4) 
tcflil 

Also, if 2j  denotes the function on X, associated with q, then 
n(t) 

6(x+com A) II = max A 1z 	. 	 (3.5) 
J 	 ten il 
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Now if we take k large enough, so that the functions j, separate the points of f, then 
the summations in (3.4) and (3.5) simplify. Thus, to see that 6 is isometric on 
A 0 + corn A we need only show that, with the Xj  so chosen, we have 

n(t) 	 ( 	 11(t) 

dg+ 	A,vq+comA = max .flIdgIL, a(t)l+ 	A '. jv . 	(3.6) 
1=1 	 1 	 1=1 	) 

when r is associated with an endpoint of x. Indeed, in this case, the quantity on the 
left-hand side of (3.6) is precisely the function norm of 

n(t) 

d 3 + 	(jZt)Xj. 

The equality (3.6) follows from (3.2) and the observation that if f(v,) is any polynomial 
in 1 and v,, with t = + say, then forall S > 0, 

II f(v,)  II = II f(vj(p 2+o —p) II. 
A similar assertion holds when t = 13—. Thus A is isometric. 

We know that rad A m 1(x) (see § 2) and that 1(x) = corn A. The equality of these 
ideals will follow therefore if we show that corn A is the intersection of the ideals of 
codimension 1. (Indeed the Jacobson radical of a unital Banach algebra coincides with 
the intersection of the maximal left ideals.) Let I be such an ideal; then I => corn A. On 
the other hand, for each point w in X, the collection, J. say, of all a in A such that 6(a) 
vanishes at w is a maximal ideal, and, in view of the first part of the proof, corn A is 
precisely the intersection of these ideals. 

It remains to prove (c). Since rad A is the intersection of the diagonal ideals I,, p is 
well defined. To see that q' is isometric it suffices to show that II p(w)  II = 1 w 1 1 for w in 

A 0 . This follows from elementary considerations, as in the first part of this proof. 

Let us write a -, a for the homomorphism from A to A obtained from Theorem 3.7. 
The corollaries below follow from their analogues for the disc algebra. 

COROLLARY 3.3. The sum of two closed ideals of A need not be closed. 

COROLLARY 3.4. A closed ideal of A that contains the radical is a principal ideal. 

COROLLARY 3.5 (Corona Theorem). Let a 1 , ..., a11  belong to A. In order that there 
exist elements b,,..., b 11  in A satisfying 

b 1 a1 +...+b11a11 =1 

it is necessary and sufficient that there exist 5 > 0 such that 

61(x)I+...+Ià11(x)I6, forxeX. 

Proofs. Corollary 3.3. The algebra A/I 0  is a copy of the disc algebra; so we may 
choose closed ideals J1 , J2  for which J1  + J2  is not closed. (See Stegenga [24], for 
example.) Now 10  + J1  and Jo  + J2  are closed ideals of A with non-closed sum. 

Corollary 3.4. We first show that A is a principal ideal domain in the Banach 
algebra sense. Let I be an ideal of A. Choose d in C so that Jgenerates the ideal I r C 
in C. For each dyadic point t in M(C) let g(f)  be a function in the disc algebra that 
generates the ideal of functions g(z) such that g(z) = h(t, z) for some h in I and all z in 
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the disc. This choice is possible because the disc algebra is a principal ideal domain 
(Rudin [21]). Now let f = J+,czg, where c> 0, Lc, is finite, and summations 

extend over all dyadic points of M(C). Then f e A and f is a generator for the ideal I. 

Suppose now that I is an ideal of A which contains the radical. Choose a e A so 

that a generates land choose r in rad A so that the ideal generated by r is rad A (this 

possibility follows from Theorem 2.3). It follows, by Theorem 2.3, that the ideal 

generated by a+ r is I. 
Corollary 3.5. First recall the elementary corona theorem for the disc algebra. 

Given functions fl ,..., f. such that If1(z)I+...+If(z)j > 5 for I  1, there exist 

functions g 1 , ..., g in the disc algebra such that f1 g 1  +... + fg = 1. Now fix a 

dyadic point t in [0, 1] and consider the quotient A/It, which is a copy of the disc 
algebra. It follows from the hypothesis on a,,..., a. that there exist in A 

such that ba1 +...+ba = 1 modulo I. Thus for some 6 = 5(t) >0 and pro- 

jection q = Pt+oPt we have 

1 q(bqa1  +... 	 <4. 	 (3.7) 

A simple compactness argument leads to a dyadic partition 1 = q,1  +... + qj, such that 

(3.7) holds for each q, = q 1 . Let 

c 
= 

so that =  1. Since a—,q 1aq, belongs to the radical, it follows that 

c.aJ  e 1 + rad A, and is therefore left invertible with left inverse c say. Set b = ccj  

and the proof is complete. 

REMARKS. I. The pathwise connectedness of the set of invertible elements of A is 

another consequence of Theorem 3.2. 
The algebra A is subdiagonal in the sense that there is an expectation of B relative 

to C that is multiplicative on A (cf. [1]). Indeed the diagonal algebra C is 

complemented in A by the closed two-sided ideal of elements a such that à(t, 0) = 0 for 

all t in M(C). 
It seems most likely that A is a principal ideal algebra. 

The algebra 02 

Let s 1  = v(0, 1,0,4) and s2  = v(0, 1, -211 
1). These are the natural isometries that 

squeeze L 2 [0, 1] into L 2 [0, 4] and L 2 [4, 1] respectively, and satisfy the relation 

s 1 s +s2s = 1. Up to isomorphism, a unique C*algebra is generated by any two 
isometries that satisfy this relation. This is a result of Cuntz [5] and the algebra is 
denoted 02. Our presentation of 02  as a certain operator algebra on L 2 [0, 1] is one 
where it is natural to consider the Volterra nest subalgebra 02 r AlgL. A little 

reflection is sufficient to see that 02 = B. Indeed any dyadic partial isometry can be 
written as a word in the operators s 1 ,s2 ,s',s. It does not seem clear however that 

02 r AIg L = A. Loosely put, this assertion states that the triangular subalgebra of 

B (= 02) is generated by those generators of B (the dyadic partial isometries) that are 
triangular. There is an obvious parallel here with continuous functions, trigonometric 
polynomials, and analyticity (triangularity). However, this parallel is dangerous 
because (unlike the disc algebra) A has a curious non-Dirichiet property (cf. [1]): 

A+ A*  is not dense in 02. This follows from Theorem 3. 10, the main result of this 

subsection. 



330 	 S. C. POWER 

We require four lemmas. For basic facts about 02, including Lemma 3.7, we refer 
the reader to [5]. 

Let 1V denote the words of length kin the letters 1, 2. If .t = JU1 ... /k e Wk  then write 
S 'U = 	... 	1(1u) = k, for the length of p, and let 

Every word in the operators s 1 , s2  and their adjoints can be reduced to the form s41s 
for certain unique words jz, v. 

LEMMA 3.6. Let p,  v e Wk. Then ss is the canonical partial isometry with initial 
space L2 [d(v), d(v) + 2_k]  and final space L2[d(p), d(p) + 2J. 

Thus {ss: ji, v e W} is a set of matrix units for a finite-dimensional operator 
algebra, Fk  say, isomorphic to M(2"). We write F for the closed union of these 
algebras. Thus F is a uniformly hyperfinite C*.al gebra, embedded in 02 . 

LEMMA 3.7(Cuntz). Each operator a in the star algebra generated by s1  and s2  has a 
unique representation 

N 	 N 
a= 	(s') 1a_ 1 +a0 + 	as 	 (3.8) 

i=1 	 i=1 

with a 1  e F. Moreover, the maps E,4a) = ai  extend to continuous contractive linear maps 
from 0 2  to F. 

The extension of E. to 02  is also denoted by E.. Thus each a in 02  determines a 
coefficient sequence ai  = E(a) and an associated generalized Fourier series, namely 
the infinite-sum version of (3.8). The next lemma expresses the convergence of the 
Cesaro sums of this series. We use the automorphisms PA'  where I LI = 1, of 02, that 
are determined by the equations 

PA(51) = As 1 , p(s2) = As2. 

LEMMA 3.8. If a E 02 and a, = Ej(a), then a is the norm limit of the sequence 
NI 	\ 

a+ 	( 1-- )((sr)a_1+a1s). 	 (3.9) 
i=1\ 	N 1  

In particular, a = 0 if and only if a. = Ofor all i. 

Proof. The function A - pA(a) is a continuous 0 2-valued function on the circle and 
is uniformly approximated by its Cesaro sums, ON(A) say. In particular, (l) 
converges in norm to a. However, since p  fixes F, the Fourier coefficients of 
A - p(a) are just the terms of the generalized Fourier series for a. Thus a41) is the 
limit of the sequence given by (3.2), and the proof is complete. 

The following modules for the uniformly hyperfinite nest algebra F r Aig L turn out 
to be the Fourier coefficient spaces for the operators of A: 

forn?0; 

M_={xeF:(1—p112 )xp1 =0,0t1} for n>0. 
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LEMMA 3.9. Let a E 02. Then a e A if and only if a e M. for all integers n. 

Proof. We have s 1 p, = p,j2S 1  for 0 t < 1, and so 

(1 - p)as'p = (1 - 

for n 0, and 

(1 _p,)(s)nap1 = (sr)(1 —p 112 n)a_.p 

for n > 0. Use the second part of Lemma 3.8 for the operators (1 —p,)ap, and the 

lemma follows. 

THEOREM 3.10. The nest subalgebra 02 n AIg L is generated by the words in 

S , s2 , st', s that are contained in 02 r AIgL. Moreover, 
if l(ji) 1(v) then ss e 02 m Alg L if and only if d(p) < d(v), 
if l( j e) <1(v) then ss e 02 r AIg L if and only if 

d(p)+2 	d(v)+2'. 

Proof. By Lemma 1.3, the F-modules M are inductive. Therefore the first statement 
of the theorem follows from Lemmas 3.8 and 3.9. 

Let r = l(jt) and s = 1(v). If r = s then (i) follows immediately from Lemma 3.6. Now 

suppose that r> s with k = r—s and let lkV denote the word composed of v and the 

letter I appearing ktimes. Thus ss = ssss = SUSlkS, which belongs to A if and 

only if sUsl k ' e Mk. By Lemma 3.6 this is the case if and only if d(l kv) ? 2d(1z), which 

is precisely the condition d(v) 
On the other hand, if r < s let k = s—r. Then ss  e A if and only if 1kUs'  e M. 

But 1kU' 
is the canonical partial isometry from 

L2[d(v),d(v)+21 to L2[d(lkp), d(lkz)+2'j. 

Examining how M- j, is defined we see that this operator lies in M-A, if and only if 

d(v)+2_5  > 2k(d(1 k )+2_s), 

which is the condition 

d(v)+2 5  ? d(p)+2' 

REMARKS AND PROBLEMS. 1. The asymmetry present in the assertions (i) and (ii) of 
Theorem 3.10 reflect the fact that A is non-Dirichlet in the sense that A+ A* is not 
dense in 02•  In fact let v = v(a, 13, y, ö) be a dyadic partial isometry with a <y <ö < P. 
Then v belongs to A + A* only when the fixed point of the function from [a, 13] to [y, 5] 
that implements v is dyadic. 

A similar analysis can be made of the infinite C*.algebra associated with unitaries 
on L 2(R) that are induced by the homeomorphisms x - ax + b, where a, b E R. Here 
analytic almost periodic functions appear. It is natural then to enquire: what kind of 
function algebra can be realized as the quotient A/I 0  of a Volterra nest subalgebra A? 
(Io  = {x e A: p 6xp6  -. 0 as 6 -. 0)). 

Let H(s 1 ), H(s2) denote the weakly closed operator algebras on L 2 [0, 1] that 
are generated by s and S2 respectively. Define A to be the Volterra nest subalgebra 
of C*(H(si),  H(s2)). A reasonable blind guess is that A/I 0  is a copy of H and that 
'A is to H as A is to the disc algebra'. Is this so? 
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4. Of course nest subalgebras with A/I 0  non-commutative have not been touched 
in this paper. In this context it would be interesting to construct a multiplicity-1 
nest subalgebra A with A isomorphic to A/I 0 . 

References 
W. ARVESoN, 'Analyticity in operator algebras', Amer. J. Math., 89 (1967), 578-642. 
W. ARVESON, 'Interpolation problems in nest algebras', J. Funct. Anal., 20(1975), 208-233. 
0. BRATTELI, 'Inductive limits of finite dimensional C*algeb ras , Trans. Amer. Math. Soc., 171 (1972), 

195-234. 
C. CORDUNEANU, Almost periodic functions, Tracts in Pure and Applied Mathematics (Interscience, 

New York, 1968). 
J. Curz, 'Simple C*algeb ras  generated by isometries', Comm. Math. Phys., 57 (1977), 173-185. 
R. G. DOUGLAS, 'Local Toeplitz operators', Proc. London Math. Soc. (3), 36 (1978), 243-272. 
E. G. EFntos, Dimensions and C* algebras, C.B.M.S. Regional Conference Series in Mathematics 46 

(American Mathematical Society, Providence, R.I., 1981). 
S. J. A. Etwos, 'On some ideals of nest algebras', Proc. London Math. Soc. (3), 44 (1982), 143-160. 

J. A. Etwos and S. C. Powmt, 'Weakly closed ideals of nest algebras', J. Operator Theory, 7 (1982), 
219-235. 

F. Giu'a.majt and D. LARSON, 'Nest subalgebras of von Neumann algebras', Adv. in Math., 46(1982), 
171-199. 

F. GILr.4meg and D. LARSoN, 'Nest subalgebras of von Neumann algebras: Commutants modulo 
compacts and distance estimates', J. Operator Theory, 7 (1982), 279-302. 

F. GILFEATHER and D. LARSON, 'Structure in reflexive subspace lattices', J. London Math. Soc. (2), 26 
(1982), 117-131. 

K. 000DEARL, Notes on real and complex C* algebras  (Shiva, London, 1982). 
A. HOPENWASSER, 'Hypercausal linear operators', preprint, University of Oslo, 1983. 
E. C. LANCE, 'Some properties of nest algebras', Proc. London Math. Soc. (3), 19 (1969), 45-68. 
R. I. LOEBL. and P. S. MUHLY, 'Analyticity and flows in von Neumann algebras', J. Funct. Anal., 29 

(1978), 214-252. 
P. S. MUHLY, 'Radicals, crossed products, and flows', Ann. Polon. Math., 43 (1983), 35-42. 
S. C. Powai, 'The distance to upper triangular operator', Math. Proc. Cam. Phil. Soc., 88 (1980), 

327-329. 
S. C. Powai, 'A Hardy-Littlewood-Fejer inequality for Volterra integral operators', Indiana Univ. 

Math. J., (1984), to appear. 
J. R. RINGROSE, 'On some algebras of operators', Proc. London Math. Soc. (3), 15 (1965), 61-83. 
W. RUDIN, 'The closed ideals in an algebra of analytic functions', Canad. J. Math., 9 (1957), 426-434. 
W. RUDIN, 'Invariant means on Lw', Studio Math., 44 (1972), 219-227. 
A. L. SHutws, 'An analogue of a Hardy-Littlewood-Fejer inequality for upper triangular trace class 

operators', Math. Z., 182 (1983), 473-484. 
D. STEGENGA, 'Ideals in the disk algebra', J. Funct. Anal., 25 (1977), 335-337. 
S. SmAnLA and D. Voicui..escu, Representations of AF-algebras and the group U(), Lecture Notes in 

Mathematics 386 (Springer, Berlin, 1975). 

Department of Mathematics 
University of Lancaster 

Lancaster LA 1 4 YL 



1 
Reprinted from JOURNAL OF FUNCTIONAL ANALYSIS 	 Y . 	 Vol. 67, No. 3, July 1986 

All Rights Reserved by Academic Press, New York and London 	 / 	- 	 Printed in Belgium 

Factorization in Analytic 
Operator Algebras 

S. C. POWER 

University of Lancaster, Lancaster, LA 1 4 YL, England 

Communicated by C. Foias 

Received July 23, 1985; revised January 20, 1986 

A constructive and unified approach is used to obtain the upper—lower fac-
torization of positive operators and the outer function factorization of positive 
operator valued functions on the circle. For a projection nest ' it is shown that 
every positive operator admits a canonical factorization C=A *A,  with A an outer 
operator, if and only if 6 is well ordered. With new methods we generalize the 
inner—outer factorizations obtained by Arveson, for nests of order type 7/, and the 
Riesz factorization, due to Shields, for trace class triangular operators. Weak fac-
torization is obtained in noncommutative H' spaces associated with (general) nest 
subalgebras of a semifinite factor. Characterizations of a Nehari type are given for 
the associated Hankel forms and Hankel operators. © 1986 Academic Press. inc. 

Contents. I. Introduction. 2. Arveson—Cholesky factorization. 3. Factorization of 
positive operator functions. 4. Riesz factorization and weak factorization. 5. Hyper-
finite and purely atomic nests. 6. Continuous nests and compatible nests. 7. Duality 
methods. 8. Hankel operators. . 

1. INTRODUCTION 

The lower—upper factorization of an operator has played a significant 
role in various areas of analysis, both in the solutions of specific problems 
in numerical analysis, integral equations, and prediction theory, for exam-
ple, and in the general structure theory of Hubert space operators. The fac-
torization of a positive invertible finite matrix C as A*A with A and its 
inverse in upper triangular form is known, especially to numerical analysts, 
as the Cholesky decomposition. Using an operator theoretic variant of the 
inner—outer factorization of Hardy space functions, Arveson [2] extended 
this to Hilbert space operators in the context of triangularity with respect 
to a fixed projection nest of order type Z. Earlier, in work of significance to 
integral operators, Gohberg and Krein [9] obtained lower—upper fac-
torizations with respect to arbitrary projection nests in the case of 
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operators that differ from the identity by a sufficiently compact pertur -
bation. Their methods were different and relied on the convergence of the 
triangular operator integral in symmetrically normed ideals. In the recent 
startling advances in the similarity theory of nests, initiated by Andersen 
[1] (see [4, 6] for different perspectives), Larson [13] has shown that 
there exist operators of the form identity plus compact that do not admit a 
lower—upper factorization with respect to a continuous nest. All these 
results are principally concerned with factorizations of invertible or essen-
tially invertible operators. 

Using a limiting argument, valid for nests of multiplicity one and order 
type N, Shields [24] obtained Cholesky decompositions for all positive 
operators. This was shown to be significant for the associated noncom-
mutative Hardy spaces, and variants of the Riesz factorization of functions 
and Hardy's inequality were obtained. The lack of a general Cholesky 
decomposition, even for a finite nest, impeded the extension of these results 
to more general nests. However, it was observed in Power [21, 22] that 
weak factorization and trace class decompositions could be used as a good 
substitute for Riesz factorization. This approach is reminiscent of the suc-
cess of weak factorization [5, 18] and molecular decomposition [23] in 
higher dimensional Hardy spaces and Bergman spaces. 

In this paper we give a new direct approach, that is essentially of a con-
structive nature, to obtain factorizations of Cholesky—Arveson type and 
which can be applied to arbitrary positive operators in the presence of a 
well-ordered nest. The well-ordered context is the appropriate framework 
for such universal factorization (see Corollary 2.5). In this way our view-
point differs from that of Larson [13, Sect. 4] who has shown that the 
countability of the (complete) nest is the necessary and sufficient condition 
for the outer factorization C = A *A  of every positive invertible operator. In 
contrast to Arveson's methods our constructions lead directly to the outer 
factor. From this main result we easily obtain generalizations and different 
proofs of the inner—outer factorization of operators and Shields' Riesz fac-
torization mentioned above. 

We also obtain weak factorization in noncommutative H' spaces 
associated with general nests in a semifinite factor. In this way we are able 
to characterize the associated Hankel forms and Hankel operators. For 
example, the celebrated theorem of Nehari [16] has its analog in the for-
mula 

IHJI = dist(x, H(M, S, r)), 

where H,, is the Hankel operator related to left multiplication by the 
operator x in the semifinite factor M (Theorem 8.1). 
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It is notable that in the context of positive operator valued functions q 
on the circle, the construction also leads directly to the factorization 

= hh* with h an outer operator valued function with h(0) positive, when 
this factorization is known to exist. Such factorization is usually obtained 
indirectly through the Beurling—Lax—Halmos theorem (as in Helson's book 
[10], for example). Moreover in Theorem 3.1 we obtain a new condition 
for such factorization, namely 

lim T 2H.f=0 
n 

where O(z) = () and where Hç , and To  are the associated Hankel and 
Toeplitz operators. The possibly unbounded operator T must be 
appropriately interpreted, and the limit taken in the strong operator 
topology. Thus we have a new perspective on the rich ideas encircling outer 
factorization, prediction theory, and the Beurling—Lax—Halmos theorem. 

The nest subalgebras H(M, of, t), defined below, are related to (but 
usually quite distinct from) the analytic operator algebras of McAsey, 
Muhly, and Saito [15], and, of course, to certain subdiagonal algebras 
introduced by Arveson [2]. Moreover, as nest subalgebras, they fall within 
the context studied by Gilfeather and Larson [8]. There are interesting 
connections with these studies but we do not pursue them here. 

We use the following notation. Let M be a factor with faithful semilinite 
normal trace t and let 

L"=L'(M)=L"(M,t), 	lpzci, 

be the usual noncommutative Lebesgue spaces. Let 61  be a complete nest of 
self-adjoint projections in M and define the noncommutative Hardy space 

HP=HP(M,g)=H/'(M,g, t) 

to be the closed subspace of L" of elements x for which (I - e) xe = 0 for 
all e in . In particular L = M and H is the nest subalgebra of M 
induced by off. Also write 

H=H(M, )=H(M, , r) 

for the closed subspace of H" of elements x for which t(xa) = 0 for all a in 
H. The von Neumann algebra generated by 6 is called the core of 6 and 
the nest is said to be compatible with t, or simply compatible, if the restric-
tion of r to the core is semifinite. 

An atom of the nest g  is a non-zero projection of the form e + - e, where 
e =inf{f:f>e, f in 9 1 is the immediate successor of e, and the nest is 



416 	 S. C. POWER 

said to be purely atomic if the identity operator is the sum, in the strong 
operator topology, of these atoms. If no atoms exist then 9 is said to be a 
continuous nest. For any projection e <I in any nest 9 we define e + as 
above, and similarly, if e>O, we let e = sup {f:f<e, fin}. A nest is 
well ordered if e <e + for all e <I. We write Alga for the nest algebra 
associated with 9, so that 

H=LAlgt 

For convenience we assume that all Hilbert spaces are complex and 
separable. We usually write .' for the underlying Hilbert space, and f'() 
for the associated algebra of bounded operators. 

2. ARVESON—CHOLESKY FACTORIZATIONS 

In finite dimensions the result of the next theorem is more easily 
obtained and, when used inductively, leads to a Cholesky type decom-
position for an arbitrary positive operator. The proof of the general case 
below builds on an idea of Lance [12]. 

THEOREM 2.1. Let C be a positive operator on a Hilbert space with 
operator matrix 

I I a 
* 

with respect to a prescribed decomposition. Then the limit A of the sequence 

[(a + n - 1
) 
 1/2 	(a+n')2b 	1 

0 	( c _b*(a + n _I)_I b) 1 12 ] 

exists in the weak operator topology. Moreover C = A *A  and UA * has upper 
triangular form if and only if UC has upper triangular form. 

Proof. Recall that if a is an invertible positive operator then 

I a b 
b* c 

is positive if and only if c ?.b*ab. Since c+nI>0 it follows that 
b*(a + n hI i ) b<c+n'I2 , where I, 11,12 are the appropriate identity 
operators. The increasing sequence b*(a  +n'11 ) b converges in the weak 
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operator topology to an operator c 1  c. Let e 1  denote the spectral projec- 

tion for the operator a corresponding to the interval (t, x). Then, for I > 0, 

IIb*a_ 2e : 11 2  = Jim lIb*(a + n')'12  e 1 (a + n_ 1)_I/2 
bII 

n-03 

lim IIb*(a+n)_I bli 

Ilcill. 

It follows that d, = b*a -' /2 e,  converges to an operator d in the star strong 

topology as t -+0. Moreover c, = dd. To see this note first that 

I a 	b 1 [a" 2  011a"2  d* 

b* dd*j[ d oiL 0 01 

and so, by our earlier argument, with dd*  replacing c, we have c 1  < dd*. 

On the other hand, 

b(a+n')' bb*(a+n t ) - /2  e,(a+n')- "2  b 

and so c, 	 Let t-+0 and it follows that c, dd*. Now let 

[

a 1/2 	d* 

0 (c_dd*2] 

and it remains only to show that UA * is upper triangular when UC is. But 

if 

U= I 
[u 1  U2 

[u3  U4 

and u3a + u4 b*=0 then 

u 3 a 2  + u4d* = lim(u 3 a + u4 b*) a-' /2 e,  = 0, 
1-0 

completing the proof. 
We now obtain a Cholesky factorization relative to a well-ordered nest. 

The case of a finite nest is particularly straightforward, but in general some 
care must be taken with the accumulation points. 

THEOREM 2.2. Let 61  be a well-ordered nest of projections and let C be a 
positive operator. Then there exists a factorization C= A *A, with A in 
Alg 9, with the property that UA * belongs to Alg whenever U is an 
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operator such that UC belongs to Aig ff. Moreover A belongs to the von 
Neumann algebra generated by C and the nest. 

Proof. It has been shown in [4] how the constructions used in the 
proof of Theorem 2.1 lead to a positive operator valued measure C(4), 
defined on the Borel algebra of S, with the order topology, that has the 
following properties. The total mass is C(s) = C, and if Q = [E, F) is a half 
open interval of S then C(Q) has the form 

	

00 	0 	E 

	

C(Q)= lim 0 a 	b 	(F—E).f 
0 b* b*(a+n_I)_I b I (I—F).°. 

(Indeed CEO, F) is defined in this way, with CEO, F) F= CF, and CEO, F) = 
CEO, E) + C[E, F). C(A) is constructed first on the ring generated by the 
semiintervals, and then after establishing the required continuity, extended 
to a positive operator valued measure, with convergence in the weak 
operator topology). 

From the proof of Theorem 2.1 we may write C(Q)=AA Q  where A Q  
has the form 

	

00 	0 	Ea° 
A Q =Jim 0 a 2  e 1 a"2b (F—E)Yt' 

	

1-0 

0 0 	0 	1 (I—F)r, 

and where e, is the spectral projection for the positive operator a for the 
interval (t, co), and convergence occurs in the star strong topology. Now 
let Q be a partition of \{I} by disjoint intervals Q of the above form. 
Then, since C(4) is a positive operator measure we have 

C=EQ C(Q)=EQ AA Q  

with convergence in the weak operator topology. If . is a finite subset of 
Q then 

(

AQ)*( 	
AQ)= 

QE. 	 QEF 

In particular the finite sums of the series EQ A Q  are uniformly bounded in 
the operator norm. It is clear that the series 

2 Q (A Q X, y) 

converges when the support of y is contained in a finite number of the 
intervals of Q. Since the collection of these vectors is dense, we conclude 
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that the series EQ A Q  converges in the weak operator topology to an 
operator A such that C=A*A. 

We now use the hypothesis that if is well ordered. In this case the set 

{ [E, E, j: E in , E I} is a maximal partition of e, and the associated 
operator A, constructed above, belongs to Aig . It follows from the proof 
of Theorem 2.1 that A belongs to the von Neumann algebra generated by 
C and 61 , and has the desired property. 

We refer to the specific factorization obtained in the proof of 
Theorem 2.2 as the Cholesky factorization of C associated with the well-
ordered nest é. The next two corollaries show that this decomposition 
generalizes results of Arveson obtained for invertible positive operators 
relative to nests of order type N. Following Arveson we say that an 
operator A in Alg of is an outer operator if the range projection of A com-
mutes with and if AEYt' is dense in AY° c E.Yt° for every projection E in 
S. In particular if A is invertible, with inverse in Alg S , then A is outer. 

COROLLARY 2.3. Let 9 be a well-ordered nest and let C = A *A be the 
Cholesky factorization. Then A is an outer operator. Moreover if C is inver-
tible then A is invertible with inverse in Alg of . 

Proof. In view of the special form of the operators A  in the. represen-
tation A = EQ A Q  it is possible to check that A is an outer operator. If C is 
an invertible operator then A will be seen to be invertible if we show that 
the range of A is dense. This in turn is a consequence of the fact that the 
operator a in the representation of A Q  is an invertible operator on Q', for 
every Q. To see this observe that the operator E CE on E ° is inver-
tible and has the form 

B 	1E 
E CE + 

 [ECE 
B*(ECE) 1  B+a] (E ~ —E)  AF 

Hence, noting that B = EB, we see that the operator 

[ECE O][ECE 	B 	1[' —(ECE)'B 

[ B* aj[  B* B*(ECE)B+ aj[O 	I 

is invertible, and so a is invertible, as required. 

COROLLARY 2.4. Let be a well-ordered nest of projections and let T be 
an operator in Alg . that is invertible. Then T= UA, where U, A belong to 
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A1g, U is an isometry, and A is invertible with inverse in AIg . Moreover 
U and A belong to the von Neumann algebra generated by T and 01 . 

Proof. Let T= VC be a polar decomposition of T, with C a positive 
invertible operator and V an isometry. Let C2  =A *A be the Cholesky fac-
torization of C2  and define U= VCA* .  Since VC'C 2  is in Alga it 
follows that U is also in Aig . Also U*U= AC2A* = I. The remaining 
assertions follow from Corollary 2.3 and the constructive nature of the 
proof of Theorem 2.2. 

If we relax the hypothesis that the nest is well ordered then there are 
operators that do not admit a Cholesky factorization. 

COROLLARY 2.5. Let 9 be a projection nest. Then every positive operator 
admits a Cholesky factorization with respect to f' if and only if iff is well 
ordered. 

Proof. We need only show that if E is a projection in the nest with 
E=E (Es I) then there is a non-factorizable positive operator. Let fbe a 
unit vector such that f = (I - E) f and (F - E) f zAO for all F> E, and let 
C=E+f®f Suppose that C=A*A is a Cholesky factorization. Then 
E=EA*AE=EA*EAE and EAE is an isometry on E.°. Since 

1 1 A 11 = 11 C11 = lit follows that the range of EA(I—E) is orthogonal to the 
range of AE. But A is an outer operator and so this entails EA(I— E) = 0, 
and hence f®f=(E -l- AE J )* (E'AE - )=A?A 1  say. Since A 1  is of rank 
one and E=E it follows that A 1 (F—E)=0 for some projection F>E, 
and this now contradicts our hypothesis on the vector f 

Remarks 1. The inner and outer factors of Corollary 2.4 belong to the 
von Neumann algebra generated by the nest and the operator. It follows 
that this inner—outer factorization of invertible operators is valid in any 
nest subalgebra of a von Neumann algebra M associated with a well-
ordered nest contained in M. In particular, since the positive operators of a 
von Neumann algebra constitute a spanning set, it follows from 
Corollary 2.3 that 

L(M) = span{h*h :  h invertible in H(M, fl} 

in the case of a well-ordered nest S, in the semifinite factor M. In fact a 
weaker structural condition, with h unrestricted in H°(M, tf'), holds more 
generally. Indeed, using factorization in nests of order type 7L, Larson [13, 
Proposition 4.13] deduced that every invertible positive operator C admits 
a factorization A A with A leaving invariant any prescribed nest. However, 
A is not necessarily invertible or outer. 
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Corollary 2.4 is in fact a special case of a general inner—outer fac-
torization theorem concerning arbitrary operators T in a nest algebra 

Alg9 such that S has the property E:AE ±  for all E0 (well ordered 

except, possibly, at 0). 
There is clearly a. strong formal analogy between the inner—outer fac-

torization of operators and that of functions. However, the operator ver -

sion in the case of the multiplicity one nest of order type N is weaker. In 
fact any operator T in Alg N with non-zero diagonal is an outer operator 

and T*T is the Cholesky factorization of the positive operator T* T. In par-
ticular, as Arveson has already observed in [3], the operator factorization 
of a coanalytic Toeplitz operator Tk is quite unrelated to the functional 
inner—outer factorization of h. However, we see in the next section that 
functional factorization is closely related to the Cholesky construction in 
the case of order type Z. 

3. FACTORIZATION OF POSITIVE OPERATOR FUNCTIONS 

It is instructive to examine the Cholesky construction in the context of 
the multiplication operators M on the Hubert space L 2 (T), for the circle 

T, with respect to the nest consisting of 0, the identity operator, and the 
projections E onto the subspaces z"H 2 ( T), for integers n, where H2 ( T) is 
the Hardy subspace. Indeed a function fin H(T) is an outer function if 
and only if the multiplication operator M7 is an outer operator with 
respect to this nest. The nest S is not well ordered. Nevertheless to each 
positive function 0 in L(T), and associated positive operator C=M, 
there is a uniquely determined positive operator valued measure C(A), as 
described in the proof of Theorem 2.2 and more fully. in [20, Sect. 3]. In 
particular, 

[A, Bkl E,.$" 
- 	C([0Ek))=[B* Dkj (I—E k ) 

where Ak = EkM#Ek, Bk = EkM(I - Ek), and Dk = lim,, 

B,.(n'+A,.)' Bk. Also 

[0 01 Ek °  
[ C([EkI))=0 Fj (I—E,.) °  

10 0  01 Ek. 

=10 a b 

Lo b* cJ (I—E,.1)Yt', 
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and so 

100 	0 'E,*' 

C({Ek})=O a 

	b 	j (Ek,I—Ek)° 
{ 0 b* b*ab (I—Ek+l)°, 

where a and b are defined as above in terms of the first row of Fk = 
(I— Ek) M(I —  Ek ) - Dk. The multiplication operator C has a Laurent 
matrix (constant on diagonals) and from this it follows that the operators 
Ck=C({Ek }) are simply translates of each other, and that the operator 
C((0, I)) = Ek Ck is a multiplication operator. As in the proof of 
Theorem 2.2 the operators Ck  factors as A,'Ak and C((0, I)) = A *A, where 
A = A k  is a coanalytic multiplication operator with Laurent 
representing matrix 

• 	I 	 b2 
A= 	0 	la 	/W77  b, 

0 	v 

If 0 = hi', with h an invertible outer function and h(0) = 1, then A = Mh. 
In fact one can verify directly that Fk  reduces to the operator (I— Ek) 
Mh(I— Ek) M'(I— Ek) by making use of the relations EkM /I M/Ek  = 
EkMhEkM/iEk and (EkMhEk)=EkM'Ek. Thus C=C((0,I)) and 
C({0})=0. On the other hand, since we always have C= C({0})+ 
C((0,I))=C({0})+A*A it follows that in general 0=00+1h12 , where his 
outer and q is positive. In particular if 0 = 0 on a set of positive measure 
then, since h cannot so vanish, h = 0, 0 = 0, and C = C({0}). 

The moral to be drawn from the last remark is that in certain cir-
cumstances, for non-well-ordered nests, the measure C(4) may be concen-
trated at zero, or have mass at zero, and that the Cholesky factorization is 
not automatic. We can identify this circumstance precisely, even, as we now 
indicate, in the setting of infinite multiplicity, and this leads to a new 
operator theoretic perspective, and approach to, the circle of ideas 
surrounding the outer function factorization of a positive operator valued 
function, as investigated by Devinatz [7], Masani and Wiener [14], 
Helson and Lowdenslager [11], and many others since. First we need a lit-
tle more notation. The context that follows is well known and developed, 
for example, in the books of Helson [10] and Sz-Nagy and Foias [25]. 
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Here too can be found discussions of outer function factorization by means 
of the Beurling—Lax—Halmos theorem. 

Let " be a separable Hubert space, let L, = L2 (T) ® 1, with subspace 
H = H2 (T) ® it, and let P denote the orthogonal projection of L onto 
H. Define L ()  as the algebra of bounded operators on L whose 
representing operator matrices, with entries in £e(.t'), have the Laurent 
form of constancy along diagonals. In fact L ()  is the commutant of the 
bilateral shift M 2  ® I which we denote simply by z. Let ff- be the nest con-
taining 0, the identity operator, and the projections E = E ® I, for n in 7L, 
and write for the intersection of L ( ,,- )  and (Alg Finally, for 0 
in L ()  we let To  = POP and H = (I— P) OP. These are the Toeplitz and 
Hankel operators associated with g, defined in our context as operators on 
r2 

For a positive operator 0 = C in L () , the arguments above apply. It 
follows that there is a factorization C = A *A with A an outer operator 
relative to S, and moreover belonging to (H () )*, if and only if 

C( 0 }) =0. (There is a natural dual formulation, with the dual nest, that 
leads to a factorization C = B*B with B an outer operator, relative to the 
dual nest, and belonging to H ( - ) .) Our notion of outer operator here 
coincides precisely with the usual notion of outer for these model spaces, 
namely that the restriction of B to , H 2  should have dense range in 

n ran B. 

THEOREM 3.1. Let 0 be a positive operator in L ()  and let Vi(z) = q(±). 
Suppose that 

urn lim z"H,,(T ç, +m')' H.z=0, 
n 	m 

where the limit exists in this strong operator topology. Then there exists a 
factorization 0 = hh*, with h an outer operator in H () . In particular qfi 
admits such a factorization if 0 is invertible. 

Proof. With q = C we see from the definition of the operator measure 
C(A), as above, that 

C([0, E)) = 	n-' 	 — 1 

where X=Jim. POP'(P'OP' +m')' P-L OP. Thus C([0, E,)) decreases 
to zero in the weak star topology, as n —* —aj, if and only if z"Xz con-
verges to zero in the weak operator topology as n — —. This is 
equivalent to the stated condition,, as can be seen by conjugation with the 
natural unitary operator that exchanges past and future. As we observed 
before, and the argument applies equally well in the present higher mul-
tiplicity setting, C admits the desired factorization if and only if C( {0 }) = 0, 
and so the' first part of the theorem is established. 
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If q is invertible, as well as positive, then the Toeplitz operator To  is 
invertible. Moreover for a vector g in L'

,, 
 we have 

Jim Hzg=lim PJi(I—P)zg 

=lm Pfrzg 

from which it follows that fH ç1, T'H,z" converges to zero in the weak 
operator topology, completing the proof of the theorem. 

Remarks. 1. In general T"2  is an unbounded self-adjoint operator, 
but the proof of Theorem 2.1 shows that since q$ is positive the operator 
T "2  Hz. is bounded. Thus the condition of the theorem coincides with 
that stated in the Introduction. 

The theorem applies to positive matrix valued functions on the circle 
which may fail the non-degenerate requirement of prediction theory of the 
integrability of log det q$. Indeed det 0 may be identically zero. It seems 
likely then that the Cholesky construction is significant for non-deter-
ministic multivariate stationary stochastic processes, since factorization of 
the spectral density function is a key step in the analysis. 

If the Hankel operator H, has finite rank then the operator T 1/2  H* 
is well defined and also has finite rank, so the hypothesis of the theorem 
holds. Hence such 0 admit outer function factorization. In particular if qf is 
a positive rational n x n matrix function then q admits factorization. Such 
factorization is well known in prediction theory' but our particular view-
point seems to be new. 

Riisz FACTORIZATION AND WEAK FACTORIZATION 

We introduce some terminology and show how weak factorization in an 
abstract, possibly noncommutative, Hardy space leads to the identification 
of the associated bounded Hankel forms. 

Let H denote a complex algebra carrying norms II lI 	II 112 such that 
lIablI, < ha112 hIbI12 for all a, b in H. We say that H has the finite weak fac-
torization property if there exists a constant K, such that each element a in 
H admits a representation a=b,c1  + +bc, with factors in H, such 
that 

IIb1I12 Ihc,i12+ ... 4- hIbih2 I1C112K1 Ihahh,. 
1  P. Masani, Recent trends in multivariate prediction theory, in "Multivariate Analysis" 

(P. R. Krishnaiah, Ed.), pp.  351-382, Academic Press, New York, 1966. 
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The index n is unrestricted. If we can take K, equal to unity then we say 

that H admits exact finite weak factorization. 
Denote the completions of H with respect to 11 11 1  and II 112 by H' and 

H2 , respectively. A simple iterative argument shows that if H admits finite 

weak factorization with constant K, then H' admits weak factorization 

with constant K 2 , in the following sense. Every element a in H' admits a 

representation a =bkck with bk, Ck in H and 

00 

Iibdl2 lIckII2K2 hail,. 
k= I 

Moreover we can choose K 2  > K, to be arbitrary close to K,. If K, = 1 we 

say that H' admits almost exact weak factorization. If in fact it is possible 

to take K2  = 1 we say that H' admits exact weak factorization. 
It is a simple consequence of the Riesz factorization of H 2  functions that 

the algebra of complex polynomials, endowed with the Hardy space norms, 
has the finite weak factorization property. In fact K, can be chosen 
arbitrarily greater than unity, and the length of the factorization can be 
restricted to two terms. Coifman, Rochberg, and Weiss [5] have shown 
that weak factorization is valid for the Hardy space of the sphere and ball 
in C's. It follows that the space of complex polynomials in n complex 
variables admits finite weak factorization. 

A bounded Hankel form [ , ] on H is a bilinear form such that 

[ab, c] = [a, be] 

for all a, b, c in H, and such that 

l[a,ell 	K3  llahI2 lIcIl2 

for all a, c in H. Similarly we can define bounded Hankel forms on the 
completion H2, where we take a, c in H2  and b in H and require that H2  be 

a two sided H-module. 
A sequence r in H is said to be a II 1 2-approximate identity if 

flar - all2 - 0 and lIra - all2 - 0, as n -p co, for all a in H. The next 
lemma concerns Hankel forms on H, but clearly there is an analogous 
result for Hankel forms on H2  when H' admits weak factorization. Trivial 
examples, with H H = {O } for example, show that the approximate iden-
tity hypothesis cannot be dropped. 

LEMMA 4.1. Let H, 1 1 ll 1, II 112 be as above and suppose that H possesses 
the finite weak factorization property and a II II 2-approximate identity. Then 
for each bounded Hankel form [ , ] on H there exists a functional 0 in the 
dual space of H' such that [a, b] = P(ab) for a, b in H. 
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Proof. Let r be the approximate identity. Define çji on H by (a) = 
[b 1 , Ci]+ + [b., Cm],  where a=b,c, + is any factorization 
of a. Since 

M 	 Fn 

[b,, Ck] = urn 	j; [bk , ckr,,] 
k=I 

= urn Y [bk c k , r,,] 
fl  —.cfl k—I 

=limEa, rfl ], 

the functional 0 is well defined. Moreover, by appropriate choice of fac-
torization, we have 

(a)I 	Y  I[bk,ckII 

K3 	 I1 bkI1 2 11 C 11 1 
k=J  

K 3 K, Dali,. 

Thus 0 can be extended to a continuous linear functional on H' with norm 
no greater than K 3  K 1 , where K 1  is the factorization constant, and K 3  is the 
norm of the form. This completes the proof. 

It follows from the Hahn—Banach theorem that Ji, and therefore [ , ], is 
implemented by an element of the dual of L', the natural enveloping 
Lebesgue space. For the contexts below this means that the Hankel form is 
implemented by an element x in L°(M, t), in the sense that [a, b] = 
t(bxa). Moreover x can be chosen with lIxil = K, 11  , ]ii where K 1  is the 
weak factorization constant and 11  , ]fl denotes the norm of the form, 
namely, the supremum of I [a, b]i for a, b in the 11 I12 - unit ball of H2 . 

The strongest form of weak factorization in H' is, of course, when every 
element h can be factored as h, h 2  with h,, h 2  in H' and 11h1l, = 11h,112 11h2I12. 
We say that H' admits Riesz factorization in this case. 

THEOREM 4.2. Let r be a faithful semUinhte normal trace on 	°) and 
let & be a well ordered projection nest. Then H'(2'(-Ye), 9, t) admits Riesz 
factorization. 

Proof. Let h be an operator in HI with a polar decomposition h = uc. 
By Theorem 2.2 we may factor c as a*a  with a and ua* leaving the nest 
invariant. Let h, =ua' and h2 =a. Then h=h,h2  is a Riesz factorization 
with respect to the von Neumann—Schatten norms as desired. 
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Similarly the space H'(M, 61 , r) admits Riesz factorization when 16 is a 
well-ordered nest in the semifinite factor M. This may be seen by repeating 
the constructions of Theorems 2.1 and 2.2 in the context of L'(M, t), the 
details of which we leave to the reader. In the next three sections we obtain 
weak factorization in more general contexts. In Sections 5 and 6 we in fact 
only need Riesz factorization for finite nests (which does not require the 
construction of the measure C(A)). In Section 7 we use completely different 
duality methods based on Arveson's distance formula. 

5. HYPERFINITE NESTS AND PURELY ATOMIC NESTS 

We note two elementary settings wherein weak factorization and the 
characterization of Hankel forms is obtained easily by approximation 
through finite dimensional subalgebras. 

Let M be the hyperfinite II, factor with a given sequence of nested 
matrix algebras B 1  B 2 	whose union is dense. Let f, be a maximal 
projection nest in B such that c 	.... The weakly closed union 41  of 
these nests is a complete nest in M and determines a nest subalgebra 
H(M, 6"). Moreover H(M, 6') is the weak operator topology closed 
union of the subalgebras H(B, ,, r,), where r,, is the normalized trace 
on B, 1 . Similarly, writing r for the normalized semifinite normal trace on 
M, H(M, 6', c) is the II 11 n-closed union of the isometrically embedded 
spaces HP(B, ff,, for 1 < p . We refer to the nest 6' as a canonical 

nest associated with M. Clearly it is maximal and continuous. The finite 
dimensional spaces H 1 (B, 6',, r,,) admit Riesz factorization, by 
Theorem 2.2 and the proof of Theorem 4.2 (also see Shields [24]), and so 
H 1 (M, 6', z) admits almost exact weak factorization. 

In a similar way, if 6' is a purely atomic nest, not necessarily compatible, 
in a semifinite factor M, then H'(M, 6', r) can be viewed as the closed 
union of a sequence of finite dimensional H' spaces and we obtain that 
H'(M, 6', z) admits almost exact weak factorization. The following two 
theorems now follow from the arguments of the last section. 

THEOREM 5.1. Let 6" be a canonical nest in the hyperfinite II factor M 
and let r denote the normalized trace. If [ , ] is a bounded Hankel form on 
H2 (M, 6', r) then there exists an operator x in M such that [a, b] = t(bxa) 
and IIxII = II[ 	]II. 

THEOREM 5.2. Let 6" be a purely atomic nest in the semJinite factor M 
with faithful semfinite normal trace T. If [ , ] is a bounded Hankel form on 
H2 (M, 6', r) then there exists an operator x in M such that [a, b] = t(bxa) 

and IIxII = II[ , ]II. 
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6. CONTINUOUS NESTS AND COMPATIBLE NESTS 

We now characterize the Hankel forms on H2(M, , r) when M is a 
semifinite factor and 9 is any compatible nest. The weak factorization of 
H'(M, S , t) is obtained through the decomposition H' = L'(D, r) + H, 
where D is the diagonal algebra H (Hc)*, and the fact that H,' admits 
almost exact weak factorization in case 5 is continuous. For this reason we 
only obtain the estimate IIxM < 3 ME , ] 11 for the implementing operator. It 
may be that the constant 3 is just an artifact of our proof. 

PROPOSITION 6.1. Let be a continuous nest in a II, factor M and let 

Ho =span{ex(1—f):xEM,e,fe,e<f}. 

Then H0  admits almost exact weak factorization. 

Proof. Let x belong to H0 . Since 61  is continuous we may choose a suf-
ficiently fine subnest 0 =e0 <e, < <e,= 1 of (g'  so that t(e1 —e 1 ,)= 
n' for j=l,...,n and 

x—e,x(1—e 4 )+(e2 —e,)x(1 —e 5 )+ 	+ (en  _ 4 —e_ 5 )x(l —e,_,). 

Since M is a factor there is a partial isometry v with initial space equal to 
the range of e - e, and such that ye, = 0, (e,— el - , ) v = v(e 1  - e.) for 
j=1,...,n-1. 

Let w= v" 2  and note that for j= 4,..., n - I we have 

w(e13 - e1 _ 4 ) x(l - e) w = (e , - e12 ) wxw(l - e 12 ) 

and so wxw leaves the finite subnest invariant. By the proof of Theorem 4.2 
there is a Riesz decomposition wxw=rs with IPwxwM, = IrM2 MsM2 and r, s 
operators in M that leave invariant the finite subnest. However x = 
w * wxww * and so x = ( w *r)( sw *) is a norm exact factorization. Since r and 
s leave invariant e, ,..., e,, it follows that w *r  and sw" belong to H0 . To 
complete the proof we need only show that the subspace H = H(M, , r) 
defined in the Introduction, coincides with the M 11, closure of H0 . This 
follows from the inequality lixil, 1< Hx112 t(1) and elementary arguments (or 
from Theorem 7.1 below). 

THEOREM 6.2. Let & be a compatible nest in the semUinite factor M with 
faithful normal semflnite trace T. If [ , ] is a bounded Hankel form on 
H2 (M,, t) then there exists an operator x in M such that [a, b] = t(bxa) 
and lxii 3  lI[ , ]Ii. 

Proof. Suppose first that M is a finite factor. To establish the theorem 
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in this case it will be enough to show that H admits weak factorization 
with constant arbitrarily close to 3. There is a Ii fi ,-continuous projection 

E, from L'(M, r) to L'(D, t), where D = H r (1J0')*  and L'(D, r) is 

identified with the ii 11, -closure of D in L'(M, r). In fact let E, be the pro-

jection on B defined by a finite subnest 4 of 9, where E, (x)= qxq, the 
sum being taken over the atoms q of A. Then lim A  llE(x) - E(x)11 2  = 0, for 

x in M, where E is the normal expectation of M onto D. Hence 

lim 11E4(x) - E(x)lI, = 0, and so E, can be defined as the continuous 
extension of E, and 11 E, II = 1. Since t(x) = z(E(x)) it follows that H,', is the 
kernel of the restriction of E, to H' and that H' = L'(D, r) + H,',. If 

x=k+h with k in L'(D, r) and h in H!  then likil, lixili and 
lihIl, 2 JJxJJ,. Since k can be exactly factored in terms of L 2 (D, t), which is 

contained in H2 , we will obtain the required factorization if we show that 
H,', admits almost exact weak factorization with respect to H2  (not Hg!). 
When 4' is continuous we have already observed this in Proposition 6.1. 
Since M has no minimal projections there exists a continuous nest .iV in M 
that contains 4'. Observe that H,',(M, 4', t) is contained in H(M, .A, r) and 

that H(M, .K, r) is contained in H2 (M, 4', z). In view of Proposition 6. 1, 

H,',(M, .K, t) admits almost exact weak factorization relative to 
H(M, .iV, t) and so H,'J(M, 4, t) admits almost exact weak factorization 
relative to H2 (M, 4', t), as desired. 

To deduce the general case use the compatibility of 4' to obtain a 
sequence p,, of projections in the weak closure of 4' that converge strongly 
to the identity. Since S. = p4' is a nest in the finite factor M,1  = pMp,, the 
theorem applies and the restriction of [ , ] to H2 (M,,, , r) is implemen-
ted by an operator x, of appropriate norm, in M,,. It follows that [ , ] is 
implemented by any weak operator topology cluster point of {x,, }, and this 
completes the proof. 

7. DUALITY METHODS 

Returning now to the context of an arbitrary nest 4' in a semifinite factor 

M we have the following variant of Arveson's distance formula, 

dist(x, H(M, 4', )) = sup 11(1 - e) xeII. 
eE, 

This can be obtained from the proof given in [19] of Arveson's distance 
formula and which is based on constructive arguments of Parrott [17] for 

the 2 x 2 case. These constructions involve only the factors in the polar 
decompositions of compressions of x and so the distance from x to the full 
nest algebra associated with if is achieved by an element of M. 

The Banach space H,',(M, 4', t) is the preannihilator of H0 ,  and so has a 
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dual space that is naturally isometrically isomorphic to L/H. It follows 
from this duality and the distance formula that the unit ball of HI is the 
closed convex hull of elements of the form h = ey( 1 - e), where e is in X, y 
in L' and IlII 1. By an elementary approximation argument every 
element h in H0  admits a decomposition h =t hk, where 	IihJl i 
(1 +e) 11h111 and hk has the special form hk=ekhk(l — ek) with ek in off. We 
now factorize these elementary block operators to obtain an almost exact 
weak factorization for HI relative to H2  and H. 

THEOREM 7.1. Let& be a projection nest in the semfinite factor M with 
faithful semfinite normal trace t, let h belong to HI (M, 0 0 , t) and let E>0. 

Then there exist elements x 1 , x 2 ,... in H(M, S, t) and elements Yi, Y2,••• in 
H2 (M, 00, ) such that 

(i) h=>lxkyk 

11 xk112 I1 Yk112<(l +) iihli1. 

Proof. We may assume that h = eh(1 - e) for some e in &. Write L', and 
L for the unit balls of L' and L 2 . Suppose first that e_ <e, where e_ = 
sup{g: g <e, g in }. Then eL 2(e - e _) is contained in H2  and 
(e—e) L 2 (1 —e) is contained in H. It will be sufficient then to show that 
L 1  is contained in the II ii 1 -closed convex hull of the set F= {x(e - e) y: 
x, yeL}. Fix z in L{ and let z=z 1 z 2  with z1, z 2  in L. Let {q} be an 
orthogonal family of self-adjoint projections each of which is equivalent to 
a subprojection of e - e, and such that q = 1. Let (x,,= liz1 qII2 Ii 112 
and w=cç'z 1 qz 2  so that ilwii1 z1 and z=>c,1w.  By the Cauchy—
Schwarz inequality cç 1<  1. Since qn  = u(e - e -) v for some partial 
isometries u, v,, in M it follows that w,, belongs to F, and that z lies in the 
closed convex hull of F, as desired. 

If, on the other hand, e = e then there is a projection f in with f < e 
and lI(f - e)  h1i1  </2. Let h 1  = h - (f—c) h so that Ilh - h 1  ii </2  iihll and 
h 1  =Jh1 (1 —e). Now fL 2 (e—f) and (e — f) L 2 (l —e) belong to H, and so 
we may obtain an almost exact weak factorization of h 1  relative to H 2  if we 
show that L is contained in the ii 11 ,-convex hull of L(e -f) L. This 
follows as above. A simple iterative argument completes the proof. 

8. HANKEL OPERATORS 

Let P and P0  be the orthogonal projections from L 2 (M, r) onto 
H2 (M, e , r) and r), respectively. Define the Hankel operator 
H = (I—F) L, P on L 2 , where L is the operator of left multiplication by 
the operator x in M. Let J be the conjugate linear isometry y - p y on L2 
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and note that J(I— P) = P0 J. Thus for h in H, h, in H2  and h0  in HI we 
have 

(JHh,, hh0 )= (P0 J(xh,), hh 0 ) 

= (J(xh 1 ), hh 0 ) 

= (h*J(xh i ), h 0 ) 

= (J(xh 1 h), h 0 ) 

= (JH(h1 h), h 0 ). 

Define [h,, h0 ] = (h0 , JH,,h,) and we thereby establish a correspondence 
between bounded Hankel operators H,, and bounded Hankel forms [ , ] 
on H2 xH. Moreover [h 1 ,h0 ]=r(h0 xh 1 ). By Theorem 7.1 this form 
determines a bounded linear functional on H' whose norm is the operator 
norm IIHII. By the Hahn—Banach theorem the functional is implemented 
by an operator y with IIII = IIHII. Thus H,= H, and so x— y belongs to 
H, the set of symbol operators that determine the zero Hankel operator. 
Thus we have the following Nehari type theorem in semifinite factors. The 
I case is also in [22]. 

THEOREM 8.1. Let S be a projection nest in the semfinite factor M with 
faithful semfinite  normal trace T. Let x be an operator of M that determines 
the Hankel operator HX  on L 2 (M, t). Then 

11 HjI = dist(x, H' (M, S, t)). 
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