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Abstract 
 

Schizophrenia is a highly heritable complex neuropsychiatric disorder with a lifetime 

prevalence of around 1%. It is often characterised by impaired white matter structural 

dysconnectivity. In vivo and post-mortem alterations in white matter microstructure have been 

reported, along with differences in the topology of the structural connectome; overall these 

suggest a reduced communication between distal brain regions. Schizophrenia is characterised 

by persistent cognitive impairments that predate the occurrence of symptoms and have been 

shown to have a neural foundation reflecting aberrant brain connectivity. So far, 179 

independent genome-wide significant single nucleotide polymorphisms (SNPs) have been 

associated with a diagnosis of schizophrenia. The high heritability and polygenicity of 

schizophrenia, white matter parameters and cognitive functions provides a great opportunity 

to investigate the potential relationships between them due to the genetic overlap shared 

among these factors. 

 

This work investigates the psychopathology of schizophrenia from a neurobiological, 

psychological and genetic perspective. The datasets used here include data from the Scottish 

Family Mental Health (SFMH) study, the Lothian Birth Cohort 1936 (LBC1936) and UK 

Biobank. The main goal of this thesis was to study white matter microstructure in 

schizophrenia using diffusion MRI (dMRI) data. Our first aim was to examine whether 

processing speed mediated the association between white matter structure and general 

intelligence in patients diagnosed with schizophrenia in the SFMH study. Secondly, we 

investigated specific networks from the structural connectome and their topological properties 

in both healthy controls and patients diagnosed with schizophrenia in the SFMH study. These 

networks were studied alongside cognition, clinical symptoms and polygenic risk factor for 

schizophrenia (szPGRS). The third aim of this thesis was to study the effects of szPGRS on 

the longitudinal trajectories of white matter connectivity (measured using tractography and 

graph theory metrics) in the LBC1936 over a period of three-years. Finally, we derived the 
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salience network which has been previously associated with schizophrenia and examined the 

effect of szPGRS on the grey matter nodes associated with this network and their connecting 

white matter tracts in UK Biobank. 

 

With regards to the first aim, we found that processing speed significantly mediates 

the association between a general factor of white matter structure and general intelligence in 

schizophrenia. These results suggest that, as in healthy controls, processing speed acts as a 

key cognitive resource facilitating higher order cognition by allowing multiple cognitive 

processes to be simultaneously available. Secondly, we found that several graph theory 

metrics were significantly impaired in patients diagnosed with schizophrenia compared with 

healthy controls. Moreover, these metrics were significantly associated with intelligence. 

There was a strong tendency towards significance for a correlation between intelligence and 

szPGRS that was significantly mediated by graph theory metrics in both healthy controls and 

schizophrenia patients of the SFMH study. These results are consistent with the hypothesis 

that intelligence deficits are associated with a genetic risk for schizophrenia, which is mediated 

via the disruption of distributed brain networks. In the LBC1936 we found that higher szPGRS 

showed significant associations with longitudinal increases in MD in several white matter 

tracts. Significant declines over time were observed in graph theory metrics. Overall these 

findings suggest that szPGRS confer risk for ageing-related degradation of some aspects of 

structural connectivity. Moreover, we found significant associations between higher szPGRS 

and decreases in cortical thickness, in particular, in a latent factor for cortical thickness of the 

salience network. 

 

Taken together, our findings suggest that white matter connectivity plays a significant 

role in the disorder and its psychopathology.  The computation of the structural connectome 

has improved our understanding of the topological characteristics of the brain’s networks in 

schizophrenia and how it relates to the microstructural level. In particular, the data suggests 
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that white matter structure provides a neuroanatomical substrate for cognition and that 

structural connectivity mediates the relationship between szPGRS and intelligence. 

Additionally, these results suggest that szPGRS may have a role in age-related changes in 

brain structural connectivity, even among individuals who are not diagnosed with 

schizophrenia. Further work will be required to validate these results and will hopefully 

examine additional risk factors and biomarkers, with the ultimate aims of improving scientific 

knowledge about schizophrenia and conceivably of improving clinical practice.  
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Lay abstract 
 

Schizophrenia is a devastating disorder and affects around 1% of the world’s 

population. As schizophrenia is a complex and heterogeneous disease, and because its 

underlying causes remain relatively unknown, the development of more effective treatments 

is hindered. Currently, the treatment of schizophrenia is mostly symptomatic. Cognitive 

functions are persistently impaired in schizophrenia and usually appear before clinical 

symptoms. Cognitive functions are believed to be have a neural foundation, pointing towards 

impaired functional and structural brain connectivity in the disorder. It is well established that 

schizophrenia, brain connectivity and intelligence are very heritable; further, these factors 

share a genetic overlap between them, providing a great opportunity to investigate the 

potential associations between these factors. 

 

This thesis examines structural imaging data from patients diagnosed with 

schizophrenia and healthy controls. We derived quantitative data from individual white matter 

tracts and computed networks describing the characteristics of the whole brain. Thus, the work 

presented here focuses on examining the relationships between brain connectivity, intelligence 

and genetic risk factors for schizophrenia. For instance, we found that processing speed, which 

describes how the brain receives and responds to information, mediates the association 

between white matter and intelligence, suggesting that processing speed has a key role in 

facilitating important cognitive abilities by allowing multiple processes to be simultaneously 

available. Moreover, we found that white matter connectivity supports the association between 

a genetic risk factor for schizophrenia and cognitive functions. We found that even among 

healthy participants, a higher genetic risk for schizophrenia has an adverse effect on brain 

connectivity over time.  
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1.1.  Introduction 

Schizophrenia is a highly heritable and complex neuropsychiatric disorder with a 

lifetime prevalence around 1%. It is positioned as one of the leading causes of disability 

worldwide and its morbidity and mortality rates are noteworthy (Gurung and Prata, 2015). 

The onset generally manifests during adolescence or early adulthood, and its symptoms are 

usually chronic and devastating. In general, the understanding of a disease and its 

corresponding diagnosis is based on the identification of aetiological factors (such as genetic 

and environmental risks) and pathogenesis (the mechanisms by which the etiologic agents 

produce the disorder). However, the aetiology and pathogenesis of most psychiatric disorders 

have not yet been determined and therefore, the diagnosis still relies on the patient’s 

description of symptoms and the examiner’s observations. Schizophrenia has a multiple and 

varied phenotypic expression which hinders an adequate definition; thus, the lack of 

appropriate clinical descriptions that relate to the underlying pathophysiology impedes an 

improved treatment or prognosis for the patients. Thus, increasing effort is being directed to 

define an adequate biological construct of schizophrenia. Moreover, the disorder is 

characterized by severe neurocognitive impairments that precede the onset of positive and 

negative symptoms. The cognitive deficits have been suggested to reflect both general 

intellectual decline and domain-specific impairments (Ahmed and Bhat, 2014). Cognitive 

impairments have a neural foundation, suggesting that they may reflect structural and 

functional abnormalities in connectivity and neurotransmission; with increasing evidence 

proposing that cognitive impairments contribute to symptom severity, relapse, and disability 

(Chen et al., 2005; Lipkovich et al., 2009), clinical research has focused on improving 

neurocognition from pharmacological, therapeutic and brain stimulation perspectives. 

Therefore, schizophrenia can be recognised and diagnosed with much agreement; however, 

its aetiology and pathophysiology are yet uncertain. With progress in the fields of genetics 
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and neuroimaging, it should eventually be possible to diagnose schizophrenia objectively and 

validly. 

 

1.2. General overview 

Emil Kraepelin (1919-1971) was the first clinician to comprehensively study 

schizophrenia and termed the disorder dementia praecox, describing the disorder as “a series 

of states, the common characteristic of which is a peculiar destruction of the internal 

connection of the psychic personality” (Kraepelin and Robertson, 1919). This terminology 

refers to its early onset (“praecox”) and the severe cognitive and behavioural decline described 

in the patients (“dementia”); stressing also the importance of the chronicity and poor outcome 

as the defining characteristics of the disorder. Moreover, Kraepelin distinguished 

schizophrenia from manic depression as two forms of psychosis and contributed to the 

development of a mental illness classification guideline. 

 

The work of the psychiatrist Bleuler (1911-1950) was complementary to Kraepelin, 

integrating the symptomatology and signs found in his patients. Due to the intrinsic 

heterogeneity of the disorder, he conceptualized schizophrenia as “the group of 

schizophrenias”. For Bleuler, the core aspect of the disorder was the presence of a 

fragmentation of thought, which he referred to as a “loosening of associations”. It was he who 

termed the disorder as we currently know, “schizophrenia”, deriving the concept from the 

Greek verb schizein to the split (“schizo”) of the mind (“phrene”). Bleuler was the first 

clinician to introduce the classification of symptomatology into primary and secondary 

symptoms, suggesting that the four fundamental symptoms of schizophrenia included 

associational disturbances, ambivalence, affective disturbances, and autistic behaviour (now 

considered negative symptoms), whereas hallucinations and delusions were classified as 

secondary (or accessory) symptoms of the disorder. 
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Another great contribution to the understanding of schizophrenia came from the work of 

Kurt Schneider (Schneider, 1959), who attempted to identify specific features that were 

characteristic of schizophrenia. He emphasised diagnostically discriminating symptoms that 

could be observed and be present enough to be useful to classify different diagnoses. He 

identified certain delusional and hallucinatory symptoms that he believed were exclusive of 

schizophrenia, such as thought insertion, voices in third person, thought broadcasting, etc., 

while the rest of hallucinations and delusions were present in a broader range of psychotic 

disorders. Schneider’s work has been very influential at the level of diagnosis as his 

conceptualizations were incorporated in structured interviews and diagnostic algorithms.  

 

1.3. Diagnosis and clinical description 

The work of Kraepelin, Bleuer, and Schneider have been the foundation of our current 

conceptualization of schizophrenia, establishing the importance of first-rank symptoms which 

now have been found to best describe the positive symptoms in schizophrenia (Schneider, 

1959). Nowadays, the diagnosis of schizophrenia is generally obtained through a structured 

interview and meeting the criteria of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-I, DSM-II, DSM-III, DSM-III-R, DSM-IV, DSM-IV-TR and DSM-V; 

American Psychiatric Association, 1952, 1968, 1980, 1987, 1994, 2000, 2013) or the 

International Classification of Diseases and Related Health Problems (ICD), established by 

the World Health Organization (WHO, 1994). For instance, the DSM diagnostic criteria across 

editions is based on three principals resulting from the early work on schizophrenia. Three 

main roots are reflected in DSM: (1) Kraepelin’s work on avolition, chronicity, and poor 

outcome (Kraepelin, 1971), (2) Bleuler’s view on the relevance of negative symptoms and 

dissociative pathology (Bleuler, 1950), and (3) Schneider’s focus on positive symptoms 

(Schneider, 1959). 
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Characteristic symptoms of schizophrenia include a range of cognitive, behavioural, 

and emotional impairments; however, no single symptom is pathognomonic of the disorder. 

The adequate diagnosis involves the recognition of a variety of signs and symptoms associated 

with occupational or social functioning. Prodromal symptoms often precede the active phase 

and subthreshold symptoms may be observable in the residual phase. Negative symptoms are 

frequently described in the prodromal and residual phases and can be severe. Lack of social 

interactions may occur also in the prodromal phase and be an indication of the development 

of the disorder. Psychotic symptoms tend to decrease over the life course, likely to be 

associated with reduced dopamine activity with age. On the other hand, negative symptoms 

are more closely related to prognosis and tend to be more persistent. Additionally, cognitive 

impairments may not improve over the course of the disorder. Figure 1 represents the clinical 

and pathophysiological course of schizophrenia.  

 

 

Figure 1 Clinical and pathophysiological course of schizophrenia. Adapted from Lieberman 

et al. 2001 and Tandon et al. 2008. 
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There are five symptomatic domains characteristic of psychotic disorders: delusions, 

hallucinations, disorganised thinking, abnormal motor behaviour (including catatonia), and 

negative symptoms. Delusions are fixed beliefs that are not responsive to change even with 

conflicting evidence against them. Their subject may include different themes, such as 

persecutory, somatic, grandiose, etc., and they can be classified as bizarre or non-bizarre 

depending on the understanding by same-culture peers. Hallucinations are perception-like 

experiences that appear without an external stimulus. They can occur in any sensory modality; 

however, auditory hallucinations are the most prevalent in the disorder. They can appear as 

voices and are perceived differently from the individual’s own thoughts. Disorganised 

thinking is usually inferred from the individual’s speech; it can be presented as constant 

changes of topic, answers tangentially related or completely unrelated to the question, and 

sometimes speech may be severe enough to be completely incomprehensible. Abnormal motor 

behaviour can range from child-like behaviours to erratic agitation. This also includes 

catatonic behaviour, where the patient presents a decrease in reactivity to the environment. 

Negative symptoms account for a great portion of morbidity in schizophrenia. Diminished 

emotional expression and avolition are the most prominent negative symptoms found in the 

disorder. Diminished emotional expression includes reductions of facial expressions, eye 

contact, body movements, etc. Avolition refers to a decrease in self-motivation activities. 

Other negative symptoms comprise alogia (diminished speech output), anhedonia (decreased 

ability to experience pleasure or positive stimuli), and asociality (lack of interest in social 

interactions). 

 

1.3.1.  Diagnostic tools   

Both the DSM-V and ICD-10 classifications are the result of clinical observation and 

scientific research providing a reliable diagnosis of schizophrenia. Tables 1 and 2 provide a 

summary of the criteria needed for the diagnosis. The DSM and ICD are intentionally different 



22 
 

in purpose, use, and function. ICD is a nomenclature that is used by different professionals, 

not only in the clinical practice. For that reason, its format is easier to use, less detailed, and 

more useful in a practical manner. On the other hand, DSM was designed to cover scientific 

and academic challenges and for clinical professionals. Therefore its contents and diagnostic 

assessments are more comprehensive (Biedermann and Fleischhacker, 2016). Furthermore, 

both criteria require that other diagnoses should be first ruled out: mood disorders with 

psychotic symptoms, schizoaffective disorders, and drug-induced psychoses. Despite their 

discrepancies, DSM and ICD are sufficiently similar in order to promote cross-site validity.  

Despite the apparent reliability of diagnosis, schizophrenia manifests itself with a highly 

complex and heterogeneous profile with most of its core characteristics being inferential and 

where subjective experiences play a significant role. Additionally, patients usually manifest 

other psychiatric comorbidities, varied longitudinal course, and difficulties adhering to 

treatment. A number of studies have begun to examine social, cultural, and demographic 

differences in the pathogenesis of psychotic symptoms and conceptualization of the disorder  

(Bauer et al., 2011; Pérez-Álvarez, 2012).  

 

Table 1 DSM V 

Criterion A.  

Two (or more of the following), each present for a significant period of time during a 1-

month period (or less if successfully treated). At least one of these should include 1-3.  

1. Delusions  

2. Hallucinations  

3. Disorganised speech  

4. Grossly disorganized or catatonic behaviour  

5. Negative symptoms, e.g. avolition, alogia, diminished emotional expression  

Criterion B.  

Social/ Occupational Dysfunction  

Criterion C.  

Duration of at least six months, with at least one month of active symptoms. 
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Table 2 ICD 10 

 

 

 

 

Either at least one of the syndromes, symptoms, and signs listed under (1) below, or at 

least two of the symptoms and signs listed under (2) should be present for most of the time 

during an episode of psychotic illness lasting for at least 1 month (or at some time during 

most of the days).  

(1) At least one of the following must be present:  

(a) thought echo, thought insertion or withdrawal, or thought broadcasting;  

(b) delusions of control, influence, or passivity, clearly referred to body or limb 

movements or specific thoughts, actions, or sensations; delusional perception;  

(c) hallucinatory voices giving a running commentary on the patient’s behavior, 

or discussing the patient among themselves, or other types of hallucinatory voices coming 

from some part of the body;  

(d) persistent delusions of other kinds that are culturally inappropriate and 

completely impossible (e.g., being able to control the weather, or being in communication 

with aliens from another world). 

  

(2) Or at least two of the following:  

(a) persistent hallucinations in any modality, when occurring every day for at least 

1 month, when accompanied by delusions (which may be fleeting or half-formed) without 

clear affective content, or when accompanied by persistent overvalued ideas;  

(b) neologisms, breaks, or interpolations in the train of thought, resulting in 

incoherence or irrelevant speech;  

(c) catatonic behavior, such as excitement, posturing or waxy flexibility, 

negativism, mutism, and stupor;  

(d) negative symptoms, such as marked apathy, paucity of speech, and blunting 

or incongruity of emotional responses (it must be clear that these are not due to depression 

or to neuroleptic medication). 
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1.4. Cognitive impairments 

In recent years, the study of cognitive deficits in schizophrenia and their neural 

foundation has gained much attention, as they are essential predictors of impairments in 

functional domains and potential therapeutic targets. Historically, cognitive deficits were 

thought to be present exclusively in older patients diagnosed with schizophrenia. However, 

this conceptualization has been challenged as it has become evident that cognitive deficits are 

present and often precede the onset of the disorder. Many attempts have been made to elucidate 

the prevalence, degree, and nature of these impairments. It has been suggested that cognitive 

deficits may be independent of the long-term course of symptoms and contribute to relapses 

and remissions (Falkai et al., 2015). Thus, understanding the underlying process is essential 

to provide a better treatment and improve the outcome of patients.  

 

One of the biggest meta-analyses carried out to investigate the cognitive impairments 

in schizophrenia was conducted by Heinrichs and Zakzanis (1998). Their dataset comprised 

204 studies, consisting of 7420 patients with schizophrenia and 5865 controls. Effect sizes 

were obtained for several neurocognitive tests which included domains of memory, motor, 

attention, general intelligence, spatial ability, executive, and language functions. The greatest 

impairment was observed in global verbal memory. However, as multiple specific domains 

were significantly impaired, this may reflect a widespread reduction in general cognitive 

functioning. As reviewed in O’Carroll (2000), several studies found evidence indicating that 

clinical features and cognitive deficits may have a different underlying pathophysiology. For 

instance, Goldberg et al. (1993) showed a symptomatic improvement in patients with 

schizophrenia using clozapine that was not accompanied by an improvement in cognitive 

functions, suggesting that certain cognitive functions may be independent of psychotic 

symptoms and enduring features of schizophrenia.  
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There are several lines of thought regarding the course of cognitive impairments in 

the disorder. The term ‘dementia praecox’ was termed to highlight the continuing cognitive 

decline observed in patients. Nonetheless, as previously mentioned, recent studies on 

prodromal phases and clinical high risk have garnered more support for the idea that cognitive 

decline predates the onset of the illness (Bora et al., 2014; Erlenmeyer-Kimling et al., 2000; 

Gottesman and Erlenmeyer-Kimling, 2001). This is in line with recent studies reporting the 

high hereditability and polygenicity of intelligence (Davies et al., 2011). In general, cognitive 

deficits are stable across time; however, recent evidence has suggested that these deficits may 

not follow a normal pattern of age-related decline in the disorder (Bora and Murray, 2014). A 

longitudinal study investigated the rate of decline using the Mini-Mental State Examination 

(MMSE), which measures cognitive impairment, in a dataset that comprised 107 

institutionalised patients with schizophrenia (aged 25-80 years) and 132 healthy controls (aged 

50-80 years) (Friedman et al., 2001). They concluded that the greatest rate in cognitive decline 

was observed in the subgroup aged above 65, with the greatest decline at that age. Two main 

conclusions can be drawn from the numerous studies carried out: first, that there are two key 

points where cognitive decline is greatest, around the first psychotic episode and around 65 

years old, and second, that these two points may be the most suitable for cognitive 

rehabilitation (Bora et al., 2014).   

 

Specific cognitive domains have been associated with the disorder, such as attention, 

working memory, learning, memory, and executive function (Elvevåg and Goldberg, 2000). 

On average, the Intelligence Quotient (IQ) scores for schizophrenia patients are one standard 

deviation below healthy controls with an overlap of distribution of scores of 41.1% (Burdick 

et al., 2009). First episode patients also show early cognitive deficits, suggesting that this 

impairment is not entirely dependent on symptoms or medication, but possibly an 

endophenotype of the disorder. As suggested above, intelligence deficits are found in the 

premorbid period before psychotic symptoms appear (Woodberry et al., 2008). However, not 
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all the patients present significant cognitive impairments when compared to controls. In this 

line, it has been proposed that these patients may not show significant reductions in cognitive 

performance but may have suffered decrement when compared with their own premorbid level 

(Keefe et al., 2005; Reichenberg et al., 2009). The implications of impaired cognitive 

functions for these patients are tremendous, hindering an optimal adaptation in life by having 

consequences in functional social problem solving, social skill acquisition, etc. (Green, 1996). 

Consequently, neurocognition has become a fundamental target for treatment of 

schizophrenia. 

 

1.5. Genetic risk factors  

It is well established that genetic predisposition is a major risk factor for developing 

schizophrenia. Familial, adoption and twin studies have contributed greatly to the 

understanding of genetic risk factors in the disorder (see Figure 2). Several adoption studies 

examined the risk for schizophrenia in offspring of parents with schizophrenia adopted by 

healthy parents and healthy offspring adopted by parents with schizophrenia. Results showed 

that there was an increased risk for schizophrenia that was related to the presence of the 

disorder in the biological parents (Heston, 1966; Kety et al., 1976). Twin studies have been 

useful to calculate the heritability of schizophrenia, which measures how much variation in 

phenotypic expression can be attributable to genetic variation in the same population. It has 

been estimated that genetic effects and its interactions with environmental factors contribute 

to around 80% of the liability for schizophrenia (Cannon et al., 1998; Cardno et al., 1999; 

Sullivan et al., 2003). Monozygotic twin studies have shown an increase of at least three-fold 

more concordance for the disorder compared to dizygotic twins (Gottesman and Shields, 1976; 

Sullivan et al., 2003). Dizygotic studies showed that if one twin develops schizophrenia, the 

other has a risk of between 10-15%, very similar to that found in siblings. However, 
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monozygotic twins show a greater risk of about 40-50% if one of the twins presents the 

disorder (Tandon et al., 2008).  

 

Figure 2 Lifetime risk for developing schizophrenia as a function of genetic relatedness to a 

patient diagnosed with schizophrenia. Note that the risk increases with increasing relatedness. 

However, variation within categories may be caused by epigenetic effects or mutations. 

Reproduced from Gottesman (1991) and Schwartz et al. (2013).  

 

Several chromosomal regions have been associated with the disorder; however, no 

single gene variation has been consistently shown to increase the likelihood of developing 

schizophrenia (Tandon et al., 2008). In the last years, large-scale genomic studies have 

contributed to the discovery of specific DNA variants and several risk alleles to the disorder. 

The latest schizophrenia genome-wide association study (GWAS) – which included a meta-

analysis with 40675 cases and 64643 controls – identified 179 schizophrenia-associated 

genetic loci that were enriched among genes expressed in the brain and tissues involved in the 

immune system (Pardiñas et al., 2018; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014), determining that schizophrenia is highly polygenic. This study 

also highlighted that the distribution of associations was not random, but specific to genes that 
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were expressed in certain tissues and cellular types that may potentially serve as therapeutic 

targets.    

 Based on this aspect of high polygenicity, Sullivan (2012) proposed that the most 

parsimonious way of integrating this aspect is considering schizophrenia as a pathway disease, 

where variation in one or several genetic pathways contribute to the risk of the disorder. As 

genetic studies have already shown, reductionist approaches that focus on a single gene variant 

and usually are not able to integrate all the features of schizophrenia. However, an approach 

based on the combination of hundreds of genes and their interactions may be able to better 

capture the nature of the disorder. Moreover, the genetic risk for schizophrenia seems to be 

highly pleiotropic, referring to the mechanism where one gene or allele can affect multiple 

phenotypic traits that appear unrelated. In the case of psychiatric disorders, for instance, 

schizophrenia and bipolar disorder share some risk factors. In this conceptualization of 

schizophrenia as a pathway disorder, disruption of a genetic node in a pathway may result in 

a different clinical expression rather than a gradual presentation of schizophrenia. 

 

Therefore, we can conclude that schizophrenia is a highly heritable disorder, 

characterised not only by putative genetic variations but by a more segregated expression of 

hundreds of genes that ultimately contribute to the risk for the disorder. However, the 

development of schizophrenia is not exclusively the result of genetic risk factors but of the 

interactions between genetic and environmental risk factors, such as migration, urbanicity, 

gender, and trauma.  

 

1.6. Neurobiology of white matter  

Human white matter accounts for approximately 40% of Central Nervous System (CNS) 

tissue (Morell and Norton, 1980). In the mammalian CNS, neurons only represent 10% of the 

total number of cells, while astrocytes, microglia, and oligodendrocytes account for most of 
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the remaining 90%. Oligodendrocytes, a type of glial cell, arise in the late stages of 

development once most neurons have appeared, upon which they migrate towards the grey 

and white matter and subsequently differentiate into myelin-forming cells. Oligodendrocytes 

form the myelin sheath that insulates the axons, enhancing signal conduction, and their 

damage can potentially impair sensory, motor, and cognitive functions. The diameter of the 

axon and the thickness of the myelin sheath are therefore proportionally related to conduction 

velocity along the axon. The other type of glial cells found in the white matter, the astrocytes, 

have numerous functions relating to insulation, signalling regulation, and nourishment of 

neurons. Although glial cells are not directly involved in the generation of action potentials, 

it has been shown that they participate in neuro-glial signalling processes. The microstructure 

heterogeneity in the white matter is evident: axons of different diameters, glial cells of 

different shapes and sizes, and irregular distribution of extra-cellular space all contribute to 

the different biophysical properties of the white matter. Figure 3 shows a representation of the 

principal glial cells. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Principal types of glial cells in the Central Nervous System. Adapted from Alberts 

et al. (2002) and Schwartz et al. (2013). 

 

A Oligodendrocyte B Astrocyte 
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A surprisingly diverse number of psychiatric and nervous system diseases are linked 

to abnormalities in white matter or in myelin genes. Polymorphisms for several myelin genes 

have been discovered as risk factors for schizophrenia, depression, and obsessive-compulsive 

disorder, suggesting that white matter deficiencies are a contributing cause for many 

psychiatric diseases (reviewed in Fields, 2008). Even though abnormalities at the synapse 

level are the cellular basis for most psychiatric disorders, impaired communication between 

distant brain regions can affect numerous neurological processes. It has been suggested that 

impaired cognitive abilities, mood changes, hallucinations, and disorganised thinking which 

accompany many neuropsychiatric disorders may be the result of desynchronised brain 

connectivity. Evidence from neuroimaging studies, similarities with demyelinating diseases 

(such as metachromatic leukodystrophy and multiple sclerosis), age-related changes in white 

matter, abnormalities in myelin-related genes, and morphologic abnormalities in 

oligodendroglia have now converged to support the implication of white matter in 

schizophrenia (Davis et al., 2003). 

 

1.7. The dysconnection hypothesis  

Cognitive functions and their underlying neurodynamics have been studied from two 

different perspectives: to consider the brain as a set of segregated areas, each of them serving 

a specific function, or to consider cognitive functions the result of the integration between 

distant brain regions. The former perspective was first proposed by Wernicke (1906), who 

postulated that psychoses were the result of the anatomical disruption of association fibres. In 

addition, Bleuer’s disintegration of the psyche (Bob and Mashour, 2011) suggested that the 

phenomenal aspects of dissociation and disintegration of the consciousness may be related to 

an underlying impaired neural integration and a disruption in brain’s connectivity. Taken all 

together, these perspectives provide complementary evidence to support the conceptualization 

of schizophrenia as a failure in brain’s integration. Therefore, the difficulty of understanding 
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schizophrenia as a circumscribed brain deficit, accompanied by the evidence that supports the 

existence of impairments in brain connectivity, indicates that the integrative perspective may 

be able to better encapsulate the heterogeneous and complex presentation of the disorder.  

 

For instance, hallucinations and delusions can be better explained as a result of 

impaired brain integration rather than as a deficit in a specific brain region. Moreover, 

abnormal integration of prefrontal neural activity in subcortical, limbic, and temporal brain 

regions have been consistently described in the disorder (Friston and Frith, 1995). Overall, the 

dysconnection hypothesis suggests that schizophrenia may be understood in terms of 

cognition and pathophysiology as a brain integration failure (Friston, 1998). 

 

1.8. Aims and outline of the thesis 

This work investigates the psychopathology of schizophrenia from a neurobiological, 

psychological, and genetic perspective. The second chapter is dedicated to white matter 

imaging and it captures both Magnetic Resonance Imaging (MRI) – in particular, Diffusion 

Tensor Imaging (DTI) – and the structural connectome. Chapter 3 summarises main findings 

of white matter connectivity in schizophrenia and its associations with symptoms, cognitive 

functions, and genetic risk factors, and provides a brief discussion on accelerated white matter 

ageing in the disorder. Chapters 4, 5, 6 and 7 present the results from the different projects 

undertaken; each of these chapters is briefly introduced and discussed. The datasets used here 

include data from the Scottish Family Mental Health (SFMH) study, the Lothian Birth Cohort 

1936 (LBC1936), and UK Biobank. The main goal of this thesis was to study white matter 

microstructure in schizophrenia using diffusion MRI (dMRI) data. Our first aim was to 

examine whether processing speed mediated the association between white matter structure 

and general intelligence in patients diagnosed with schizophrenia in the SFMH study. 

Secondly, we investigated specific networks from the structural connectome and their 
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topological properties in both healthy controls and patients diagnosed with schizophrenia in 

the SFMH study. These networks were studied alongside cognition, clinical symptoms and 

polygenic risk factor for schizophrenia (szPGRS). The third aim of this thesis was to study the 

effects of szPGRS on the longitudinal trajectories of white matter connectivity (measured 

using tractography and graph theory metrics) in the LBC1936 over a period of three-years. 

Finally, we derived the salience network which has been previously associated with 

schizophrenia and examined the effect of szPGRS over the nodes and edges involved in this 

network using data from UK Biobank. Chapter 8 comprises an overall summary of the main 

findings presented in this thesis and a general discussion of limitations and considerations for 

future work. 
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Chapter 2 Magnetic resonance imaging 
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2.1 Introduction 

Recent advancements in neuroimaging have enable scientists the possibility of 

observing the human brain in vivo and develop methods to study its function and structure. 

This work aimed to study the water diffusion parameters in white matter and organizational 

properties of brain’s networks. Therefore,  in this chapter, I will describe the basics of 

Magnetic resonance imaging (MRI) with particular interest on diffusion MRI (dMRI) and the 

tensor fitting model, discussing it strengths and limitations in the context of this work. Finally, 

this chapter is dedicated to the description of the connectome, graph theory metrics, and 

network thresholding options.  

 

2.2 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) uses the magnetic properties of the hydrogen 

atom to produce comprehensive images of internal body structures and other tissues. The 

hydrogen nucleus is used due to its abundance in water and fat. Under normal circumstances, 

the hydrogen protons spin with their axes randomly aligned. However, when the body is 

placed under a static magnetic field (B0), the proton’s axes are aligned parallel or anti-parallel 

to the direction of the magnetic field and rotate along the axis. The quality of the images is 

dependent on the strength of the magnetic field and currently it can range from 0.5 to 7 Tesla. 

When additional energy in the form of radio frequency (RF) is introduced, protons are excited 

and jump to a higher energy state (anti-parallel to B0) and the magnetic vector (sum of proton 

spin axes) is deflected. When the RF is switched off, the protons release their previously 

absorbed energy and the magnetic vector returns to its resting state (relaxation phase), causing 

a signal to be emitted. Two relaxation times can be measured: the first is the time taken for 

the magnetic vector to return to its resting state (T1) and the second for the axial spin to return 

to its resting state (T2*). 
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The construction of contrast images is based on the differing T1 and T2* relaxation 

properties of different brain tissues. In most structural MRI studies, a T1 contrast is used to 

obtain the images, while a T2* contrast is used for functional MRI. For a more thorough 

description of MRI one can refer to Hashemi et al. (2004). The work presented in this thesis 

will focus on structural MRI, specifically in diffusion MRI (dMRI). 

 

Since the introduction of MRI, fMRI has been widely used, partly due to the numerous 

advantages it offers regarding studies relating behavior and function. Most typically, the 

method applied is based on Blood Oxygenation Level-dependence (BOLD). It is based on the 

magnetic susceptibilities of deoxyhemoglobin; when the brain is activated under a task, there 

is a net increase in signal intensity, which is attributed to a greater increase in regional 

oxygenated blood flow that exceeds regional oxygen consumption. Although the implications 

derived from fMRI studies have been of great interest in the field, it is out of the scope of this 

thesis to comprehensibly review all fMRI literature. Therefore, I will highlight the importance 

of such studies only in relation to schizophrenia. There have been numerous fMRI studies in 

schizophrenia, with results suggesting impaired brain activity in dorsal and ventral prefrontal, 

anterior cingulate and posterior cortical regions (Minzenberg et al., 2009); and across several 

cognitive tasks: motor, working memory, attention, word fluency, emotion processing, and 

decision making (reviewed in Gur and Gur, 2010). However, much inconsistency is observed 

in the literature, with studies reporting increases in functional connectivity within the default 

mode network (Whitfield-Gabrieli et al., 2009) while others finding both impairments and 

mixed connectivity between nodes of this network (for a review see Fornito et al., 2012). More 

support for the hypothesis of impaired functional connectivity in schizophrenia comes from 

resting state fMRI studies (Fornito and Bullmore, 2010; Jafri et al., 2008; Lynall et al., 2010; 

Salvador et al., 2010), defined as the statistical correlation between spatially distributed 

neurophysiological time-series (Friston, 1994). For instance, Damaraju et al., (2014) showed 

that during resting state, patients with schizophrenia showed hypoconnectivity within sensory 
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regions (auditory, motor and visual) and hyperconnectivity between the thalamus and these 

sensory regions. Taken together, fMRI studies offer valuable information about the 

relationship between brain and behaviour; however, as with any MRI modality, much 

inconsistency is found in the literature, probably indicating the use of different methodological 

techniques and heterogeneity of the disease. 

 

 

2.3. Diffusion MRI 

Diffusion MRI (dMRI, Johansen-Berg and Behrens, 2009; Jones, 2011; Le Bihan et 

al., 2006, 1986) is currently the only technique capable of mapping in vivo fibre architecture 

of tissue –  such as nervous and muscle tissue, hence triggering enormous interest in the 

medical field. Ultimately, dMRI measures the dephasing of water proton spins due to diffusion 

when a strong magnetic field is applied. The longer the protons are allowed to diffuse 

(“diffusion time”) and the higher the displacement per unit time, the more molecules will be 

displaced from their origin with different phase shifts. This dispersion leads to a loss of signal 

amplitude or signal attenuation. The portion of dephasing – resulting from the protons’ motion 

– can be derived by comparing the signal amplitude with and without the diffusion gradient 

applied. Therefore, signal attenuation reflects generally the mobility of water molecules 

depending on temperature, viscosity, the presence of other molecules, and other factors (Jones 

et al., 2013). However, it is also dependent on biological microstructures, e.g. cell membranes, 

myelin sheaths, and microtubules (Beaulieu, 2002). Therefore, dMRI measures the amount of 

restriction experienced by water molecules moving along the axis of the gradient applied and 

averaged over the voxel. One of the several functionalities of dMRI is the ability to study the 

microstructural properties of tissues.  
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2.3.1. Diffusion Tensor Imaging  

In this thesis, dMRI data were modelled using the diffusion tensor. While dMRI refers 

to the contrast of acquired images, Diffusion Tensor Imaging (DTI) is one of the methods to 

model dMRI data. The diffusion of water molecules in biological environments is 

characterised by Brownian motion. If diffusion is not hindered, the position of each water 

molecule will be random and describe a Gaussian distribution over time (Pfefferbaum et al., 

2000). White matter tracts consist of densely packed axons, different types of neuroglia, and 

other cells (Mori and van Zijl, 2002).  The brain's white matter is highly organised into discrete 

fibre bundles that have a complex geometry in the brain. Therefore, diffusion of water 

molecules in white matter tracts is hindered, restricting the movement across the long axis of 

axons. The degree of restriction in diffusion is called anisotropy. As shown by Basser et al. 

(1994a) the outcomes obtained from DTI not only provide measures of diffusion anisotropy, 

but also the predominant direction of water molecules in each voxel (Mori and van Zijl, 2002). 

 

The introduction of DTI allowed the non-invasive indirect study of the degree of 

anisotropy and structural orientation of white matter tracts (Basser et al., 1994a, 1994b; 

Pierpaoli et al., 1996). Based on the assumption that water diffusion in white matter is hindered 

along the axon resulting in higher anisotropy than in grey matter or in cerebral-spinal fluid 

(CSF); Basser et al. (1994b, 1994a) modelled the diffusion process as an ellipsoid which 

mathematically can be represented as a 3x3 symmetric matrix or tensor: 

 

                                     	𝑔 =
𝑔$
%𝑔&'
𝑔(

              𝐷 = [
𝐷$$ 𝐷$& 𝐷$(
𝐷$& 𝐷&& 𝐷&(
𝐷$( 𝐷&( 𝐷((

] 

 

where the vector g is the applied gradient and D the apparent diffusion tensor. The diagonal 

elements of D (Dxx, Dyy and Dzz) represent the diffusion along those directions, while the off-
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diagonal elements represent the covariance between each pair of axes. The process of eigen-

decomposition of the tensor provides the eigenvectors (e1, e2, e3) and eigenvalues (l1, l2, l3). 

Both eigenvectors and eigenvalues are paired in what are called eigenpairs, so that e1 is paired 

with l1. The eigenvalue (e.g., l2) represents the diffusion value of the tensor in the direction 

of the corresponding eigenvector (e.g., e2). The eigenvector e1 that is associated with the 

largest eigenvalue is also designed as the principal eigenvector and indicates the predominant 

orientation of the axon, while its associated eigenvalue (l1) denotes the maximum value of 

diffusion. Figure 4 represents different diffusion cases and their associated ellipsoid models 

and eigenvalues.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 This figure represents tissue architecture (top row), ellipsoid models (medium row) 

and associated eigenvalues (bottom row). Figure A) represents an isotropic case, where water 

diffusion is not hindered and describes a Gaussian function over time, its associated diffusion 
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ellipsoid is spherical, and its eigenvalues are of equal order. B) Highly anisotropic case, where 

diffusion is restricted along the long axis, represented by an ellipsoid with a principal 

eigenvalue indicating main direction of diffusion. C) Two crossing fibres, two main directions 

of diffusion are present and therefore two leading eigenvalues, this case is particularly difficult 

to model using DTI as it can only represent a single fibre population. Figure adapted from 

Engwer et al. (2015). 

 
Common quantitative measures that are obtained from DTI include fractional 

anisotropy (FA), mean diffusivity (MD), and radial and axial diffusivity (RD, AD), which are 

calculated in each voxel  and can be sensitive to different tissue properties, such as axonal 

ordering and density, degree of myelination, etc., without being specific to any of them (Basser 

et al., 1994a; Jones et al., 2013; Song et al., 2002). 

 

FA estimates the degree of anisotropy of a diffusion process and can vary between 0 

(isotropic diffusion) and 1 (anisotropic diffusion):  

 

𝐹𝐴 = .3
2
1(𝜆4 − 𝜆)7778 + (𝜆8 − 𝜆)7778 + (𝜆: − 𝜆)7778

1𝜆48 + 𝜆88 + 𝜆:8
 

 

where 𝜆̅ is the average between the three eigenvalues. 

 

On the other hand, MD is a scalar measure that estimates the average diffusion within 

a specific voxel:  

𝑀𝐷 =
𝜆4 + 𝜆8 + 𝜆:

3
 

 

AD corresponds to the diffusion in the first eigenvalue and RD to the average between the 

second and third eigenvalues. RD is a measure that represents the perpendicular diffusion to 

the principal diffusivity direction. 
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Changes in these estimates, specifically increases in MD and decreases in FA, are 

usually interpreted as deficits in the microstructure of white matter tracts.  

 

2.3.2. Neurobiological interpretation of diffusion parameters 

 Several attempts have been made to study the relationship between dMRI parameters 

and their biological interpretation within white matter microstructure. Discrete associations 

have been reported; for instance, FA has been linked to axonal loss after stroke (Pierpaoli et 

al., 2001), and MD with tissue cellularity in a brain tumour patient (Gauvain et al., 2001). 

However, none of the dMRI parameters are a direct measure of white matter compartments 

and are highly influenced by a number of factors (Wozniak and Lim, 2006). The presence of 

macromolecules, cellular membranes, organelles, degree of myelination, internal axonal 

structure, axon packing, membrane permeability, and tissue water content may also affect the 

quantification of microstructural properties. The degree of anisotropy has often been 

associated with axon count and density while the degree of myelination has been linked with 

FA (Beaulieu, 2011). However, FA does not determine tissue anisotropy as it has also been 

shown in non-myelinated axons (Hecke et al., 2015). Moreover, as axon count and degree of 

myelination are strongly correlated, it becomes impossible to disentangle them when 

observing FA changes (Curran et al., 2016).  

 

 MD measures the average diffusivity in a particular voxel independently of its 

direction. Hence, it will be higher in areas where water molecules are not restricted, such as 

in the ventricles, and lower in areas with a high tissue complexity, such as in the grey matter. 

MD has been repeatedly investigated within neurodevelopmental frameworks; as brain water 

content decreases with maturation, due to the extracellular spaces present in unmyelinated 

axons (Engelbrecht et al., 2002), structures become more complex and packed, restricting the 

diffusion of water molecules. Thus, differences in MD could represent differences within the 

intra-extra cellular spaces and reductions in the neuropil (Selemon and Goldman-Rakic, 1999) 
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or increases in CSF. 

 There are relatively few studies that have directly investigated the relationship 

between water diffusion parameters and tissue microstructure. Significant associations 

between them have been shown in clinical samples (e.g. multiple sclerosis, Alzheimer’s 

disease, epilepsy). Overall, significant correlations have been found between diffusion 

anisotropy and MD with myelin content and several axonal characteristics, such as axon count 

and density (Concha et al., 2010; Gouw et al., 2008; Schmierer et al., 2008, 2007). There are 

multiple reasons that could be responsible for an increase/decrease in water diffusion 

parameters and thus, interpretation will depend on the groups studied, acquisition parameters, 

etc. Nonetheless, quantitative measures obtained from DTI  are useful in describing white 

matter connectivity and alongside histological studies, they have proven to be particularly 

revealing about the structural properties of white matter. 

 

2.3.3. DTI methods 

There are numerous methods for measuring DTI parameters in structures of interest 

that can be categorised and the most optimal one will depend on the goal of the investigation. 

Other subdivisions are possible, but for the purpose of this thesis I will briefly describe region 

of interest (ROI), voxel based (VBA), and tractography analyses.  

 

2.3.3.1. Region of interest analysis 

Region of interest analysis (ROI) relies on the delineation of a predefined brain region. 

One of the main advantages is the high sensitivity of the method. Some ROI analyses are 

performed in native space and thus, post-processing errors are avoided. Because they are only 

carried out in specific regions of the brain defined a priori (hypothesis driven), rather than 

whole-brain analysis, ROI analyses removes the need for correcting for multiple comparisons, 

thus potentially improving our statistical power. This methodology can be performed in 

individual participants by manually selecting a brain region, although it requires a normal 
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distribution of the data and shows low repeatability and high variability (Hakulinen et al., 

2012). On the other hand, predefining specific regions may exclude possible interesting results 

and thus, bias results. 

 

2.3.3.2. Voxel-based analysis 

Voxel-based analysis (VBA) is an exploratory technique that examines differences in 

water diffusion measures in each voxel across the whole brain and does not necessarily require 

a priori hypotheses. This technique has its own advantages and limitations when compared to 

ROI and tractography analyses; for instance, VBA relies on the assumption that the spatial 

location of each voxel is constant between subjects and thus, the registration step is an 

essential characteristic of this approach, avoiding spatial differences caused for example, by 

pathology (Ardekani et al., 2003). The spatial registration of each individual's scan must be 

performed in standard space, and a voxel-by-voxel unbiased whole brain statistical 

comparison between groups can be achieved. One disadvantage of this method is that different 

image quality between subjects may potentially affect the registration's step. Moreover, VBA 

is not appropriate for data which fails to achieve the random Gaussian assumption of water 

diffusion (Mukherjee et al., 2008). Thus, results using VBA are parameter dependent and will 

be only relevant when the registration step is successfully achieved. 

 

2.3.3.3. Tract-based Spatial Statistics 

Tract-based Spatial Statistics (TBSS) is a very popular type of VBA that investigates 

differences in water diffusion parameters in a white matter skeleton mask (Smith et al., 2006). 

TBSS is based on identifying differences in white matter parameters by registration of all 

individual's scans into standard space and creating a common white matter skeleton. TBSS 

minimises the misalignment generated by VBA by projecting all FA data into a standardised 

skeleton before any statistical analyses, allowing registration errors and partial volume effects 
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(pve) to be reduced. TBSS aims to reduce alignment and smoothing issues typically found in 

VBA analyses while allowing to study the whole brain and being fully automated (Smith et 

al., 2006). This is achieved by identifying a common registration target and aligning all 

participants’ FA images to this target using a non-linear registration; and then creating a group 

mean FA skeleton that represents the centres of all white matter pathways that are common to 

the participants studied. Subsequently, all each participant’s FA data is projected onto the 

mean FA skeleton to account for misalignments between participants, where each skeleton 

voxel takes the FA value of the local centre of the nearest relevant tract and statistics can be 

performed on the skeleton-space FA data. Moreover, an atlas-based segmentation analysis –

or ROI analysis – can be carried in the same space using one of the available white matter 

atlases in FSL software package. Figure 5 shows a summary of the principal steps followed 

in this thesis.1 However, as TBSS is more commonly used, certain limitations have been 

reported (Bach et al., 2014). Registration may be affected when using diseased individuals, 

resulting in large anatomical changes. Also, the skeleton of TBSS is based on peaks of FA 

values, which are the centre of each tract. Thus, TBSS may not be sensitive enough to discern 

differences that are not uniform along the tract, as Dening and Thomas (2013) pointed out, 

and probably less sensitive in disease. Moreover, differences in peripheral voxels may not be 

detected with great sensitivity by TBSS but by VBA, as voxels outside the white matter 

skeleton are discarded by the former (Zalesky, 2011). 

                                                
1 Chapter 4 presents the results of TBSS analysis using the John Hopkins University white matter 
tractography atlas. 
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Figure 5. Summary pf the main steps used in this thesis to obtain diffusion tensor parameters. 

 

2.3.3.4. Tractography 

Tractography methods investigate white matter tract architecture at the voxel level to 

represent a 3D model of each tract. The majority of tractography algorithms are based on line 

propagation to construct white matter tracts. These methodologies are known as deterministic 

streamline fibre tractography. They rely on: accurate initial seed point placement, propagation 

of the track, and termination of the track when appropriate criteria have been met (Tournier et 

al., 2011). Fibre trajectories follow the primary eigenvector at each voxel and thus, 

deterministic tractography only provides a single estimate for each white matter tract from 

each seed point, is not able to track multiple fibres in each voxel (reviewed in Soares, Marques, 

Alves, & Sousa, 2013) and does not include estimate errors (Mukherjee et al., 2008). Thus, 

confidence intervals around the estimate are not represented. On the other hand, probabilistic 

tractography estimates the orientation distribution in each voxel (Behrens et al., 2007; Parker 

and Alexander, 2005), and the mean of that distribution will represent the orientation used in 

determinist tractography. The width of the distribution is proportional to the uncertainty in 

fibre direction. However, probabilistic tractography is a much more computationally 

demanding method compared to deterministic approaches. Probabilistic tractography was 

computed for all analyses presented in this thesis as implemented in the TractoR package for 

fibre tracking and analysis (http://www.tractor-mri.org.uk/ (Clayden et al., 2011; Muñoz 

Maniega et al., 2017). 
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2.3.4.  General limitations of the model 

One of the advantages of DTI is the reduction of complex neuroanatomical 

information into quantifiable parameters. However, this oversimplification has several 

implications to consider when interpreting DTI data. For instance, the lack of specificity of 

DTI measures, model limitations, demographics of participants, severity of clinical 

populations and complications during acquisition and analysis are some of the main factors 

that will confound the interpretation of results.  

Even though it is beyond the scope of this thesis to go into detail on the limitations of 

the tensor model, I consider two main points to be useful when interpreting dMRI data. For 

instance, the tensor model assumes water diffusion as a Gaussian distribution, when in fact, 

intracellular diffusion is by definition hindered and therefore, does not follow a Gaussian 

distribution. The tensor model also assumes a unique fibre direction at each voxel, however, 

the mammalian neural tissue is highly complex and rarely satisfies this assumption. This 

complexity in tissue architecture is one of the most important confounds in DTI analysis. 

Crossing fibres have a significant impact on FA because in the presence of several fibres with 

their individual diffusion characteristics, there is no principal water diffusion direction and 

therefore, individual profiles average out. Abnormalities in water diffusion parameters are 

usually defined in relation to a comparison group because there is still a lack of established 

universal thresholds and standard acquisition and analysis protocols. Subject demographics 

such as age, sex, ethnicity, educational level, and substance abuse have been shown to be some 

of the confounds that should be considered when describing DTI results (Hecke et al., 2015). 

The interpretability and reliability of studies can then be improved by assuring proper data 

acquisition, reducing artefacts pre- and post-processing, and dealing accordingly with 

confounds in the analysis.  

 

2.3.5.  Summary 

Tractography methods are an indispensable tool when studying brain connectivity. 
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Their main advantage is that they can be performed in the native space, avoiding some of the 

errors derived from projecting all dMRI data into a standardised space. Despite its own 

limitations, an adequate use of tractography can be a powerful tool when addressing specific 

questions (Jbabdi and Johansen-Berg, 2011). In addition, some studies have reported non-

significant differences while comparing methods (Adluru et al., 2013). A few caveats must be 

considered when applying tractography to the datasets reported here. A fundamental problem 

is our poor knowledge of the human brain; and therefore, finding the exact termination of 

white matter pathways, detecting collaterals, etc., can become a difficulty (Jbabdi and 

Johansen-Berg, 2011). Another important limitation is the poor spatial resolution of MRI data 

(typically 1 to 3 mm voxels), meaning that some white matter pathways are not perfectly 

resolved, and mistakes can be made by jumping from one tract to another (Campbell, 2013). 

Nonetheless, depending on our a priori hypothesis we may be missing regions from our 

analysis that may be relevant to our study. Taken all together, the inconsistencies of DTI 

findings across the literature may reflect the numerous and different neuroimaging methods 

available, populations, heterogeneity of the disease and/or different statistical analyses.2  

 

2.4. The connectome 

2.4.1. Overview 

Anatomical studies of the brain’s architecture, cellular organization, and fibre systems 

have shown how highly structured the organization of the brain is. The recent advances in 

neuroimaging techniques have prompted the aim of trying to map the human brain’s networks,  

which, combined with network science, studies the dynamics and structure of complex 

systems (Estrada, 2011; Newman, 2010). This recent affiliation has allowed the study of the 

brain from the perspective of a complex system. A number of studies have already begun to 

develop methods to measure structural brain connectivity in order to map comprehensively 

                                                
2 See Chapter 3 for a detailed summary of DTI findings across the literature. 
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the large-scale topological architecture of the brain through the quantification of pair-wise 

connections between whole-brain regions (Sporns, 2011). The term connectome was coined 

independently in analogy to the genome – the complete mapping of an individual genetic 

profile (Hagmann, 2005; Sporns et al., 2005). A quantitative approach to measure 

organizational properties of the structural connectome can be computed through graph theory 

– a mathematical framework that studies pair-wise relations between interacting elements 

(Bollobás, 1985). With the model proposed by Watts and Strogatz (1998) describing a small-

world network (see Figure 6) with regional specialization and efficient global information 

transfer, the field of network science was propelled forward, especially in neuroimaging. The 

reductionist conceptualisation of complex systems, demonstrated for instance in the field of 

behaviour, highlighted the vast limitations of understanding a system exclusively through 

independent elements. Rather, an approach based on the interaction of those elements within 

the system is needed to understand the system overall. In regard to the brain, is difficult to 

conceive the brain as the ensemble of independent neurons or regions. However, a dynamic 

system of interactions between distinct brain regions may be able to explain the complexity 

of the brain and its emergent behaviours.  

 

 

 

 

 

 

 

Figure 6 Small-world diagram taken from Watts and Strogatz (1998). The model started by 

connecting each node with its nearest neighbour, the result was the regular graph with high 

clustering coefficient and high average path length. With a probability p equal to one, edges 

were randomly connected, with a network with short clustering coefficient and path length. 
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However, with a probability p between zero and one, networks showed local clustering and 

some long-range paths. Thus, this network was a small-world, characterised by high clustering 

and low path length.  

 

2.4.2. Network construction 

Although currently there is not a standard method for the construction of dMRI 

networks, there are essential steps that are common across all studies (Fornito et al., 2012). 

First, parcellation of 3D T1- weighted volumes either by (i) registration to neuroanatomical 

atlases or (ii) surface parcellation based on cortical sulci and gyri. The choice of the number 

of nodes will undoubtedly have an effect on the construction of the network and subsequent 

network properties. There are several approaches to parcellate the cerebral cortex that include, 

for instance, a priori anatomical parcellations and random parcellations. Second, alignment 

of the diffusion space and the cortical labels. Third, the construction of white matter tracts is 

performed by deterministic or probabilistic tractography. Connections between nodes are then 

computed and weighted, for instance, by a measure of white matter microstructure such as 

diffusion anisotropy. Finally, individual connections can be compared between groups or 

graph theory metrics can be derived to characterise the topological properties of the network. 

See Figure 7 for a simplified illustration of the main steps involved.  
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Figure 7 Illustration of the main steps involved in the construction of dMRI networks used in 

this thesis. The imaging modalities used here are DTI and T1-weighted imaging. The second 

row represents the step of anatomical parcellation into distinct nodes. The parcellation method 

adopted in this thesis was based on the Desikan atlas of into 85 cortical (Desikan et al., 2006) 

regions-of-interest (ROI) or nodes using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). 

Once the nodes have been delineated, the edges connecting them should be defined. In this 

thesis whole-brain probabilistic tractography was performed using FSL’s 

BedpostX/ProbTrackX algorithm (Behrens et al., 2007). The fourth step involved computing 

a weighted matrix representing inter-regional connectivity. Shown here is an example of a 

symmetric matrix where each voxel represents the FA value of the edge connecting two given 

nodes. Based on these matrices, a graph-based representation of the brain network 

connectivity can be computed, and several measures of network connectivity and topological 

properties can be derived. Adapted from Fornito et al. (2012). 
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2.4.3. Metrics 

Before describing the individual graph theory metrics, I will first define some basic 

notation (Rubinov and Sporns, 2010).  N represents all nodes in the network, while n is the 

number of nodes and b the undirected weighted graph, stored as a n × n adjacency matrix, 

where aij indicates the connection weight between node i and node j. The graph is defined as 

G = {V, E}, where V represents the nodes or vertices and E the set of edges. An edge {i, j} is 

said to join the nodes i and j. Figure 8 shows a simplified network. The use of weighted 

measures implies that most graph theory metrics would be highly correlated with each other. 

For instance, as can be observed in the mathematical formulae below of the different metrics, 

it is quite obvious that mean edge weight and mean strength will show high collinearity. In 

addition, it has been highlighted what the effect density has on the computation of graph theory 

metrics. Ultimately, the fraction of present edges will undoubtedly alter the subsequent 

calculation of metrics. 

 

 

 

 

 

 

 

 

Figure 8 Example of a simple graph, with nodes a, b, …, i and edges ab, bc, cd, de, ef, fa, ah, 

ai, bg, bh, cg, ci, dh, di, eh, eg, fi and fg.  

 

For a weighted graph (bounding values between 0 - 1), mean edge weight is: 

a

b

c

d

e

f
g

hi
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𝑀 =	
1
𝐸
? 𝑎AB
A,B∈E

 

The strength (bounding values between zero and infinite) of a node i 

𝑤A = 	?𝑎AB
B∈G

 

The mean node strength (network strength) 

𝑊 =	
1
𝑛
?𝑤A
A∈G

 

Global efficiency (bounding values between zero and infinite; see Figure 9) 

𝐸 =
1
𝑛
	?

∑ 𝑑ABL4B∈G,BMA

𝑛 − 1
A∈G

 

 

Considering a node’s set of directly connected neighbours, the weighted clustering coefficient 

(bounding values between zero and infinite) (Onnela et al., 2005; Watts and Strogatz, 1998) 

of a node i is calculated,  

𝑐A =
1
𝑛
	?

∑ (𝑎AB𝑎AO𝑎BO)4 :⁄
B,O∈G

𝑘A(𝑘A − 1)A∈G

 

 

The mean clustering coefficient (bounding values between zero and infinite)is a global 

measure of a network’s clustering (see Figure 9) 

𝐶 =
1
𝑛
	?𝑐A
A∈G

 

 

Measures of centrality may be used to identify highly connected nodes, such as network hubs. 

The betweenness centrality (Freeman, 1978) of a node i is,  

 

𝑏A =
1

(𝑛 − 1)(𝑛 − 2)
	 ?

𝜌OB(𝑖)
𝜌OBO,B∈G,OMB,OMA,BMA
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where ρh j is the number of shortest paths between h and j and ρh j (i) is the number of shortest 

paths between h and j that pass-through i. Essentially, betweenness centrality measures the 

fraction of shortest paths in the network that pass-through a given node.  

 

 

 

 

 

 

 

Figure 9 Graphical representation of clustering coefficient (in purple) and global efficiency 

(dashed lines between nodes a to e through the minimum number of steps between them: a, 

b, c, d, e).  

 

2.4.4.  Network threshold 

The elevated number of possible connections that the connectome computes, raises 

the question of whether these pathways are biologically relevant. Each step of the process is 

manually checked; however, in general, the elimination of spurious connections may not be 

feasible, partly because of our lack of neuroanatomy knowledge. Thresholding methods aim 

to reduce the density of brain networks in order to eliminate those spurious connections, thus 

increasing specificity. Additionally, thresholding matrices allows the study of the network’s 

topological properties that may be obscured by differences in edge weights. However, 

thresholding can also disregard useful information. Therefore, the approach taken will depend 

on the research questions.  

 

a b

c d
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The simplest approach is a weight-based threshold which relies on the principle that 

edges with a weight lower than a certain threshold will be eliminated (Sotiropoulos and 

Zalesky, 2017). One of the main disadvantages is the possible elimination of edges of interest 

combined with the lack of a principled way to choose the threshold. Therefore, when 

comparing networks, differences between them may ultimately be a consequence of differing 

network’s densities. This scenario can occur in clinical studies where patients may show 

impaired connectivity (i.e. impairments in connections’ weights). Thus, when differences in 

graph theory metrics are found, it is unclear whether this is the result of genuine differences 

or differing network densities.  

 

Density-based threshold (Wijk et al., 2010) approaches aim to maintain equal density 

across subjects by retaining a certain percentage of the strongest edges and eliminating the 

rest. However, this adds a new confound as the number of spurious connections between 

subjects may differ. Concisely, each individual network will preserve equal density whilst not 

necessarily the same connections across participants. Global methods are susceptible when 

applied to clinical samples because they are based on the assumption that a weak connection 

is a spurious one. White matter impairments in schizophrenia will result in differently 

weighted matrices compared to healthy controls (Zalesky et al., 2011). Taken all together, 

both methods will fail in determining whether differences between networks are the result of 

inherent topological differences between them or the result of comparing networks composed 

of different connections. 

 

The minimum spanning tree (MST) has been proposed to overcome the issue of 

network fragmentation caused by global thresholds (Alexander-Bloch et al., 2010). MST is 

the smallest subset of stronger edges – minimum sum of edge weights – that connects all nodes 

together. Additional edges can be added to the MST a posteriori to reach the desired density. 

However, this method relies on the forcing of a property onto the network.   
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Consensus thresholding is characterised by maintaining all edges with a weight of at 

least x in at least y percentage of subjects. This method ensures equal density across networks 

while eliminating spurious connections (de Reus and van den Heuvel, 2013). This model is 

based on two assumptions: first, the existence of little biological variation in the presence of 

connections across individuals and second, connections that are consistently identified in 

larger percentages of subjects are more likely to exist than those that are detected in few 

subjects. Therefore, in this thesis, we used consensus thresholding in most of our analyses. 

 

Although thresholding is not a necessary step, it is often applied in order to eliminate 

spurious connections, facilitate the interpretation of results and control for density differences 

when comparing two groups, etc.; overall, maximising the specificity of brain graphs 

(Sotiropoulos and Zalesky, 2017; Zalesky et al., 2016).  

 

 

2.4.5. Tractography and the connectome 

Diffusion MRI-based tractography has offered multiple advantages to study white 

matter in vivo. However, there are still limitations regarding its anatomical accuracy, leading 

to challenges in the reconstruction of the connectome with both high sensitivity and high 

specificity. Specific limitations associated with tractography algorithms are presented in 

Chapter 2. Alternative approaches to DTI can be used to reconstruct white matter pathways in 

the brain: high-angular resolution diffusion imaging (HARDI), constrained spherical 

deconvolution (CSD), spherical-deconvolution informed filtering of tractograms (SIFT), 

Diffusion Spectrum Imaging (DSI), Q-Ball Imaging (QBI), Q-Space Imaging (QSI), etc. For 

instance, CSD models the diffusion profile in each voxel with multiple fibre orientations, 

which results in a fibre orientation distribution (FOD) that can have several peaks and allows 
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crossing fibres to be modelled. Another novel method, SIFT, aims to improve the quantitative 

nature of whole-brain tractography by applying spherical deconvolution and reconstructs 

fibres whose streamline densities are proportional to the cross-sectional area of the fibre. 

Due to the inherent limitations of these techniques, not all white matter pathways can 

be computed with the same accuracy, and therefore, two main errors can be found when 

reconstructing the connectome, the appearance of false positive and false negative 

connections. False positive connections may occur when nodes are erroneously connected; 

while missing existing connections would give rise to false negative connections. De Reus 

and van den Heuvel (2013) showed that the balance between the elimination of false positives 

and the prevention of false negatives can be achieved by applying a group threshold. 

Importantly, the authors showed that the choice of threshold had substantial implications in 

the computation of graph theory metrics, reporting significant differences between values 

across the different thresholds. The tractography algorithm has a large effect on global 

network density, which has an effect on most graph theory metrics. Thus, research on the 

reconstruction of the connectome is a necessary and challenging topic. Previous work has 

focused on the effect of cortical parcellation, seed point placement and reproducibility of 

graph theory metrics. For instance, the choice of number of nodes alters significantly the 

computation of graph theory metrics; in a test-retest study using HARDI, Dennis et al. (2012) 

showed that most metrics were affected by the change in the number of nodes, specifically 

path length and global efficiency, as networks tend to fracture at low sparsities. Bastiani et al. 

(2012) supported their results by showing that the choice of tractography class, FA threshold, 

angle and probabilistic percentiles, influenced network measures. Zalesky et al. (2010) 

reported a difference of 95% between template of 100 nodes and a template of 400 nodes, 

while the identification of brain hubs has been shown to be affected by the placement of the 

tractography seed point (Li et al., 2012). Taken together, the choice of reconstruction 

parameters seems to have a significant impact on the resulting connectome, indicating the 

urgent need of more research on this topic and guidelines on quality of the reconstruction. 
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Chapter 3 White matter connectivity and correlates 
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3.1. Overview 

Schizophrenia has been often described as a disorder characterised by impaired brain 

connectivity (Friston, 1998; Friston and Frith, 1995). Literature has frequently obviated the 

apparent importance of white matter – grey matter has been classically the main tissue of 

interest. Nonetheless, correlations between white matter, symptoms, and cognitive functions 

have been extensively reported, both in clinical and non-clinical samples. The high heritability 

and polygenicity of schizophrenia, white matter parameters, and cognitive functions provide 

a great opportunity to investigate the potential relationships between these factors, due to their 

shared genetic overlap. In this chapter, I will review the main associations between white 

matter connectivity and cognitive functions, genetics, and clinical symptoms in schizophrenia.  

 

3.2. Summary of functional MRI findings in schizophrenia. 

Since the introduction of MRI, fMRI has been widely used, partly due to the numerous 

advantages it offers regarding studies relating behavior and function. Most typically, the 

method applied is based on Blood Oxygenation Level-dependence (BOLD). It is based on the 

magnetic susceptibilities of deoxyhemoglobin; when the brain is activated under a task, there 

is a net increase in signal intensity, which is attributed to a greater increase in regional 

oxygenated blood flow that exceeds regional oxygen consumption. Although the implications 

derived from fMRI studies have been of great interest in the field, it is out of the scope of this 

thesis to comprehensibly review all fMRI literature. Therefore, I will highlight the importance 

of such studies only in relation to schizophrenia. There have been numerous fMRI studies in 

schizophrenia, with results suggesting impaired brain activity in dorsal and ventral prefrontal, 

anterior cingulate and posterior cortical regions (Minzenberg et al., 2009); and across several 

cognitive tasks: motor, working memory, attention, word fluency, emotion processing, and 

decision making (reviewed in Gur and Gur, 2010). However, much inconsistency is observed 

in the literature, with studies reporting increases in functional connectivity within the default 
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mode network (Whitfield-Gabrieli et al., 2009) while others finding both impairments and 

mixed connectivity between nodes of this network (for a review see Fornito et al., 2012). More 

support for the hypothesis of impaired functional connectivity in schizophrenia comes from 

resting state fMRI studies (Fornito and Bullmore, 2010; Jafri et al., 2008; Lynall et al., 2010; 

Salvador et al., 2010), defined as the statistical correlation between spatially distributed 

neurophysiological time-series (Friston, 1994). For instance, Damaraju et al., (2014) showed 

that during resting state, patients with schizophrenia showed hypoconnectivity within sensory 

regions (auditory, motor and visual) and hyperconnectivity between the thalamus and these 

sensory regions. Taken together, fMRI studies offer valuable information about the 

relationship between brain and behaviour; however, as with any MRI modality, much 

inconsistency is found in the literature, probably indicating the use of different methodological 

techniques and heterogeneity of the disease. 

 

3.3. White matter abnormalities in schizophrenia 

White matter impairments have been extensively reported in schizophrenia. Post-

mortem studies have shown cellular and density reductions of oligodendrocytes in patients 

with schizophrenia, specifically in layer III and VI of the prefrontal cortex and superior frontal 

gyrus (Davis et al., 2003; Hof et al., 2003; Uranova et al., 2004). Thus far, a number of studies 

using MRI have provided evidence regarding the dysconnectivity hypothesis by reporting 

structural and functional connectivity abnormalities between different brain regions and 

across the whole spectrum of psychosis (Samartzis et al., 2014; Schmidt et al., 2015). The 

most common finding in terms of localisation, is the frontal lobe, and to a lesser extent, fronto-

temporal, corpus callosum and dysconnectivity from the anterior cingulate cortex to other 

cortical and subcortical areas (Pettersson-Yeo et al., 2011). It has been suggested that 

abnormalities in white matter microstructure may produce the anatomical substrate for the 

dysconnectivity hypothesis (Alvarado-Alanis et al., 2015a; Weinberger, 1987).  
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White matter parameters are highly heritable, though the extent is a function of the 

white matter tract under study (Kochunov et al., 2015; Skudlarski et al., 2013). Such 

heritability seems to be relatively consistent across lifespan, with peaks during the neonatal 

and childhood periods  (Kochunov et al., 2012, 2011; Voineskos, 2015). White matter 

impairments have been also reported in first-degree relatives, suggesting that white matter 

may be a potential phenotype to study in schizophrenia. Thus, imaging, post-mortem, and 

genetic studies have suggested the essential functional and structural role of white matter in 

schizophrenia, potentially identifying it as a target for pharmacological interventions 

(Rapoport et al., 2005). 

The study of the early phases of psychosis has led to the development of a novel 

research approach that overcomes the difficulties associated with illness chronicity, such as 

the effects of medication, age, etc. Thus, the study of those at clinical high risk (CHR) and 

first episode of psychosis (FEP) has improved our understanding of the disorder and the early 

changes found in these patients. For instance, during the prodromal phase, cognitive 

impairments can be observed along with deficits in social functioning and quality of life (see 

Figure 1). These impairments are associated with an underlying affected neurobiological 

structural and functional connectivity. In a recent review, Samartzis et al. (2014) reported that 

the most common impairment found in white matter in the early stages of the disorder was 

localized in fronto, fronto-temporal, and fronto-limbic connections, with reductions in FA. 

 

3.3.1.  Clinical High Risk (CHR) 

Samartzis et al. (2014) also reported consistent impairments in the cingulum bundle 

in CHR subjects, and deficits mainly in frontal, temporal, and to a lesser extent, occipital and 

parietal regions. However, increased FA in specific areas has also been reported in the CHR 

group (Hoptman et al., 2008), highlighting the need for increased sample sizes and 
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standardisation of imaging protocols. In a longitudinal study, Saito et al. (2017) reported 

reduced FA in the corpus callosum in CHR compared to healthy controls. Moreover, this 

reduction in FA was significantly correlated with a deterioration in negative symptoms in the 

CHR group. Increased MD in the CHR sample in the superior longitudinal fasciculus, 

posterior corona radiata, and corpus callosum has been reported (von Hohenberg et al., 2014). 

Muñoz Maniega et al. (2008) reported reduced FA in the limbs of the internal capsule of 

relatives of patients with schizophrenia compared to healthy participants. Interestingly, a 

progressive deterioration of FA has been identified in a study that analysed three groups: CHR, 

FEP, and healthy controls. The authors showed that CHR presented FA impairments 

compared to healthy participants, but less severely than FEP. Particularly, frontal regions were 

more affected in those CHR that later transitioned to schizophrenia than those who did not 

(Carletti et al., 2012).  

 

3.3.2.  First Episode of Psychosis (FEP) 

Specific reductions in FA in FEP compared to healthy controls have been reported in 

the inferior longitudinal fasciculus (Cheung et al., 2008; Liu et al., 2013), superior longitudinal 

fasciculus (Guo et al., 2012), cingulum (Wang et al., 2013), fornix (Fitzsimmons et al., 2014; 

Guo et al., 2012), internal and external capsule (Cheung et al., 2008; Filippi et al., 2014; Guo 

et al., 2012), uncinate fasciculus (Mandl et al., 2013), anterior corona radiata (Wang et al., 

2013), arcuate (Mandl et al., 2013), genu and splenium (Cheung et al., 2008; Gasparotti et al., 

2009), and occipital-frontal fasciculus (Cheung et al., 2008; Liu et al., 2013). A recent study 

by Alvarado-Alanis et al. (2015a) also reported reductions in FA in projection, association, 

commissural, and brain stem tracts compared to healthy participants. Taken all together, it has 

been consistently reported that even in first-episode drug-naïve patients, white matter 

impairments are already present, discarding the hypothesis that long-term use of medication 

is the only factor that alters white matter microstructure. 
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3.3.3.  Chronic patients 

Several publications have investigated the effects of white matter coherence on 

chronic patients diagnosed with schizophrenia and found significant reductions in FA in 

several white matter tracts (Ellison-Wright and Bullmore, 2009); however, due to the 

heterogeneity of the results, it remains unclear which specific white matter tracts are 

consistently impaired. The most replicated finding is a reduction in FA in the cingulate, a 

structure involved in error checking, attention, and is a link between limbic and higher cortical 

functions (White et al., 2008). Impairments in white matter have also been observed in the 

corpus callosum and in the frontal lobe. The corpus callosum integrates both hemispheres and 

is implicated in the adequate transfer of neural signals. Several studies have reported decreased 

FA in the corpus callosum, with global decreases, only on the genu or the splenium (Bora et 

al., 2011; Buchsbaum et al., 2006; Holleran et al., 2014). Other reductions in FA have been 

reported in the parietal, temporal, and occipital lobes (White et al., 2008).  

 

In particular, white matter tracts responsible for intralobal and interlobal signal 

communication have also been reported to have lower FA. Examples include the superior, 

inferior, and longitudinal fasciculus (Asami et al., 2013; Bora et al., 2011; Liu et al., 2013), 

fronto-occipital longitudinal fasciculi (Liu et al., 2013), uncinate (Burns et al., 2003; Mori et 

al., 2007), frontal longitudinal fasciculus (Buchsbaum et al., 2006), and arcuate (Burns et al., 

2003). In addition, several other white matter tracts have been shown to have reduced FA. 

These include the fornix (Bora et al., 2011), cerebellar peduncles, cingulum (Mitelman et al., 

2007; Mori et al., 2007), internal and external capsules (Bora et al., 2011; Holleran et al., 

2014), and the thalamic and optic radiations (Bora et al., 2011; Mitelman et al., 2007). 

Reduced FA was also found in the anterior limb of the internal capsule, the posterior thalamic 

radiation, as well as the genu and body of the corpus callosum (Oestreich et al., 2017; White 
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et al., 2013). The ENIGMA consortium has recently published one of the largest meta-analytic 

DTI studies, consisting of 2359 healthy controls and 1963 schizophrenia patients, and reported 

widespread significant reductions in FA. Notably, the greatest effect sizes were found for the 

anterior corona radiata (d = 0.40) and corpus callosum (d = 0.39). Figure 10 shows the most 

commonly reported white matter tracts in schizophrenia. 

 

Thus, the literature on white matter abnormalities in schizophrenia is extensive, 

however, the heterogeneity of these results is outstanding. The varied imaging methods, 

statistical approaches, and the diversity of the disorder itself contribute altogether to such 

distinct results. Moreover, the neurological marks that characterise schizophrenia usually lack 

diagnostic specificity, as sometimes they are shared across different disorders, such as bipolar 

disorder and other major affective disorders (Ahmed et al., 2013). Thus, the significance of 

neuroimaging to the phenomenology of schizophrenia has to be established through studies 

that investigate neuroanatomy in relation with symptomatology, cognition, and genetics. 

 

 
 

Figure 10 Right sagittal views of some of the most commonly reported white matter tracts 

impaired in schizophrenia. Figure adapted from Catani and Thiebaut de Schotten (2008). ILF: 

Inferior longitudinal fasciculus; IFOF: inferior fronto-occipital fasciculus. 

Arcuate ILF Uncinate 
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Callosum 
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3.4. Connectome alterations in schizophrenia 

Volume, tract-based, and network analyses suggest an overall reduced white matter 

volume and altered microstructure of large-scale projections, indicating that white matter 

plays an essential role in the pathology of schizophrenia. White matter abnormalities have 

relatively pronounced effects on the organization of the connectome in schizophrenia, which 

suggests a more segregated pattern of network organization. Alterations in structural brain 

connectivity and network topology have been reported in schizophrenia (Wheeler and 

Voineskos, 2014). Impairments in structural connectivity have been reported within 

subnetworks in chronic patients (Collin et al., 2013; Skudlarski et al., 2010; Zalesky et al., 

2011), first episode medication naïve patients (Zhang et al., 2015), and unaffected relatives 

(Collin et al., 2014) who are at higher genetic risk for developing the disorder, suggesting that 

altered connectome organization may be reflective of an inherited neurodevelopmental 

vulnerability to schizophrenia.  

 

Graph theoretical studies of the whole network have reported small-world 

organization and reductions in integration and efficiency in chronic patients (Bassett et al., 

2008; Ottet et al., 2013; van den Heuvel et al., 2013, 2010; Wang et al., 2012; Zalesky et al., 

2011; Zhang et al., 2012), first episode medication naïve (Zhang et al., 2015), and unaffected 

relatives (Collin et al., 2014). Reductions in overall structural connectivity, specifically 

projections linking frontal, temporal, and parietal regions in chronic patients and their 

unaffected siblings have been reported (Collin et al., 2014; van den Heuvel et al., 2013). 

Structural studies have generally found evidence of increased segregation (i.e., clustering and 

modularity), reduced integration (higher path length and lower global efficiency and rich-club 

organization), and a loss of frontal hubs (van den Heuvel et al., 2010; van den Heuvel and 

Fornito, 2014). These studies have also found evidence of longer path lengths and reductions 
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in global communication efficiency, suggesting a reduced communication between more 

distal brain regions (van den Heuvel and Fornito, 2014).   

 

Frontal and temporal brain regions showed altered clustering and longer 

communication paths, as well as reduced global efficiency. Numerous investigations focusing 

on different morphometric parameters have revealed altered network topology and a reduced 

hierarchical structure, indicating an impaired organization, particularly in cortical regions. 

Some regions such as the superior frontal cortex and lateral precuneus have shown reduced 

levels of closeness and betweeness centrality, suggesting that these structures may have a less 

central role in the network (van den Heuvel and Fornito, 2014).  

 

In contrast, abnormalities in functional connectivity are less consistent, usually 

reporting reductions in connectivity; however, several investigations reported increases in 

specific neural systems (review in Fornito and Bullmore, 2015), likely as a result of 

neurodevelopmental or compensatory features (O’Donoghue et al., 2015). Nevertheless, much 

inconsistency is present in brain connectivity studies, and network comparability issues 

represent one of the major challenges in the field (Sotiropoulos and Zalesky, 2017; Wijk et 

al., 2010). These discrepancies are likely due to differences in methodological approaches for 

connectome construction and posterior analyses, as currently there is no consensus on a 

preferred approach to analyse the connectome. Another source of variability is the high 

complexity of schizophrenia, with pathological manifestations and symptoms’ profiles 

extremely variant between patients. 

 

3.5.  Symptoms 

There is a growing body of literature that recognises the importance of white matter 

in the clinical presentations observed in the disorder. Impaired connectivity may be the 
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neuroanatomical substrate for positive psychotic symptoms, showing short and long-range 

frontal connectivity deficits in schizophrenia (O’Donoghue et al., 2015). Although white 

matter impairments are likely to be clinically relevant, much uncertainty remains regarding its 

role in symptom severity. Most studies have approached this issue using exploratory analyses 

resulting in bivariate correlations between DTI measures and different scales: SANS (Scale 

for the Assessment of Negative Symptoms (Andreasen, 1983)) and PANSS negative (Positive 

and Negative Syndrome Scale). The majority of studies report positive associations between 

FA and positive symptoms and negative associations between FA and negative symptoms 

(Samartzis et al., 2014). In this chapter, I will highlight some of the most recent studies that 

have addressed this issue. 

 

3.5.1. Positive symptoms 

Reduced FA in the corpus callosum of schizophrenia patients is a well-documented 

finding and has been reported to be positively associated with psychotic symptom severity 

(Hubl et al., 2004; Knöchel et al., 2012; Rotarska-Jagiela et al., 2008; Whitford et al., 2010). 

Several other tracts (measured using FA) have been positively associated with psychotic 

symptoms; for instance, the cingulum bundle (Hubl et al., 2004), arcuate fasciculus (Hubl et 

al., 2004), superior longitudinal fasciculus (Seok et al., 2007), and inferior fronto-occipital 

fasciculus (Szeszko et al., 2008). On the other hand, reduced FA of the right inferior 

longitudinal fasciculus, arcuate fasciculus, medial temporal lobe, and medial-frontal regions 

have been reported to be associated with increasing severity in positive symptoms (Ahmed et 

al., 2013; Ohtani et al., 2015; Seitz et al., 2016). Specific domains have also been investigated; 

Bopp et al. (2016) reported significant associations between FA and core symptom dimensions 

in schizophrenia using TBSS and factor-analysis of symptoms. For instance, hallucinations 

were positively associated with FA of the left uncinate fasciculus and left corticospinal tract. 

Ego-disturbances was positively correlated with the FA of the right anterior thalamic radiation 
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and positive formal thought disorders negatively with the right cingulum bundle. In contrast, 

Viher et al. (2016) reported significant associations between the FA of motor tracts and the 

psychomotor domain, reporting non-significant associations between FA and delusions, 

hallucinations, and disorganised speech.  

 

Similarly, correlations between the structural connectome and positive symptoms 

have been documented. For instance, positive symptoms have been negatively associated with 

network efficiency (Wang et al., 2012). Drakesmith et al. (2015) found topological differences 

in the structural connectome in individuals with subclinical psychotic experiences, 

particularly, reductions in global efficiency and density. Patients with 22q11.2 deletion 

syndrome (22q11DS) are exposed to a higher risk of developing schizophrenia, and it has been 

suggested that altered structural connectivity is predictive of psychotic symptoms in the 

disorder (Padula et al., 2017). Hence, the authors proposed structural network properties as a 

possible biomarker for an increased risk of psychosis.  

 

3.5.2. Negative symptoms 

Thus far, negative symptoms have been greatly studied, mainly indicating significant 

negative associations between white matter and severity of negative symptoms. For instance, 

reductions in FA of the inferior frontal white matter have been significantly associated with 

increased negative symptoms (Szeszko et al., 2008; Wolkin et al., 2003). Szeszko et al. (2008) 

examined correlations between FA and negative symptoms in recent-onset schizophrenia and 

reported that lower FA in the bilateral uncinate fasciculus was correlated with greater severity 

of negative symptoms – in particular, alogia and affective flattening– and worse verbal 

learning/memory function. Several other white matter tracts have been linked to the presence 

of negative symptoms: the left internal capsule, left superior fronto-occipital fasciculus, 

anterior parts of the corpus callosum (Asami et al., 2014), connections of the medial orbito-
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frontal cortex and the rostral anterior cingulate cortex (Ohtani et al., 2014a), right ventral 

cingulum bundle  (Bopp et al., 2016), reductions in FA of the medial-frontal regions (Ohtani 

et al., 2015), white matter microstructure of the prefrontal, right and medial temporal lobes 

(Ahmed et al., 2013; Viher et al., 2016). Decreased FA in frontal areas has also been associated 

with impaired social functioning in schizophrenia (Ahmed et al., 2013). However, findings 

are inconclusive, including positive associations between FA and negative symptoms in 

certain white matter tracts such as the right anterior thalamic radiation (Bopp et al., 2016) and 

the right inferior fronto-occipital fasciculus (Lee et al., 2013). 

 

3.6. Cognition and white matter 

As summarised previously, patients with schizophrenia show a broad spectrum of 

cognitive deficits. These impairments have been suggested to precipitate psychotic symptoms, 

to be relatively stable over time, persist after the remission of positive symptoms, and to be 

associated to negative symptoms (reviewed in Antonova, 2004). Notably, brain structure and 

intelligence have been shown to be positively correlated, and this correlation is strongly 

influenced by genetic factors. However, very little is known about how variation in brain 

structure and intelligence interacts with schizophrenia.  

 

There is an emerging consensus that intelligence cannot be circumscribed to the 

function of a unique region, but rather it is best described as the result of the interaction 

between multiple areas or networks. This conceptualization implies that for the correct 

transmission of cognitive information, the system must be undisrupted. The study of 

intelligence has established that individual differences exist in three different levels: general 

intelligence, domains of distinctive cognitive functioning, and test-specific variations (Deary, 

2012). So far, several studies have reported significant associations between FA and 

intelligence in healthy participants (Chiang et al., 2009; Deary et al., 2006; Penke et al., 2010; 
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Yu et al., 2008). However, the relationship between white matter connectivity and cognition 

in schizophrenia is still an active area of research.  

 

Nevertheless, some associations have been reported in the disorder. Wexler et al. 

(2009) reported that those schizophrenia patients with no cognitive impairment (within 0.5 

SD of healthy participants) did not show white matter differences when compared to healthy 

participants. On the other hand, patients with cognitive deficits had significant white matter 

reductions in various brain regions. The authors suggested that white matter may have an 

essential role in cognitive functions and the differences found between the two groups may 

relate to differences in the disease process. Specific white matter tracts have been associated 

with cognitive performance; Seitz et al. (2016) reviewed significant correlations between the 

FA and RD of the cingulum bundle with memory performance and processing speed in 

schizophrenia. Nestor et al. (2013) found similar results, showing that patients with the 

greatest impairments in intelligence showed correlations with the FA of the cingulum bundle, 

which was consistent with previous work from the same group (Nestor et al., 2010). Roalf et 

al. (2015) found significant FA reductions in patients diagnosed with schizophrenia compared 

to healthy controls, and from these FA values, the authors were able to predict cognitive 

performance after correcting for sex, age, and education. 

 

To date, several studies have investigated the associations between the structural 

connectome and intelligence. In a sample of 79 healthy young adults, Li et al. (2009) reported 

significant associations between the summary metrics of the Chinese Revised Weschler Adult 

Intelligence Scale and clustering coefficient, path length, and global efficiency. Significant 

associations between the structural connectome and cognition in schizophrenia have also been 

studied. Zalesky et al. (2011) reported correlations between clustering coefficient, path length, 

and efficiency with scores of the Wechsler Test of Adult Reading – premorbid cognitive 

function – in controls and patients. In a longitudinal study, Collin et al. (2016) found that 
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altered organization of the connectome – measured using clustering coefficient – was 

significantly associated with a decrease in IQ (r = 0.54) over a period of three years in a group 

of patients diagnosed with schizophrenia. Notably, this effect was not found for their relatives 

or the control group. Yeo et al. (2016) found that longer characteristic path length and reduced 

overall connectivity were able to predict general cognitive ability across both patients with 

schizophrenia and healthy controls.  

 

3.7. Genetic associations  

3.7.1.  Heritability of white matter connectivity 

As previously mentioned, several studies have found white matter connectivity 

impairments not only in patients diagnosed with schizophrenia but also in their relatives, 

identifying overlapping areas between them. This suggests that familial and genetic factors 

may possibly contribute to this effect. Among white matter heritability studies, the most used 

neuroimaging phenotype are volumetric, white matter hyperintensities, diffusion-weighted 

measures or quantitative T1 or T2-weighted imaging. For the purpose of this thesis, I will 

focus on the findings derived from the main diffusion-weighted parameters FA and MD and 

the structural connectome. It is important to bear in mind that the different approaches 

available will affect the heritability estimate; for instance, the choice of voxel-wise analysis, 

ROI, or tractography analysis, and also the timepoint of the lifespan used will all undoubtedly 

have an impact on the results (Voineskos, 2015).  

 

The first study on DTI heritability of the corpus callosum comprised 15 monozygotic 

and 18 dizygotic twins (Pfefferbaum et al., 2001). The authors found that the variance 

explained by genetic factors was 67% and 49% for the FA of the genu and splenium, 

respectively. However, Chiang et al. (2009) reported that the variance explained by genetic 

factors was between 75-90% in almost every white matter region, particularly the genu, 
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splenium, the right cerebral peduncle, right inferior longitudinal fasciculus, right inferior 

fronto-occipital fasciculus, and the anterior limbs of the internal capsule bilaterally. The 

authors showed that FA was under strong genetic control and was highly heritable in bilateral 

parietal, bilateral frontal, and left occipital lobes. This study also examined the association 

between FA and intellectual performance, reporting to be highly correlated in the corpus 

callosum, cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, 

isthmus, and the corona radiata. They concluded that common genetic factors mediated the 

association between intelligence and FA, suggesting a common underlying physiological and 

genetic mechanism for both. The same group examined the heritability of FA in a younger 

sample, controlling for IQ, age, sex, and socioeconomic status, finding that the heritability of 

FA was related to the level of IQ: above average IQ showed a higher heritability of FA up to 

80% in certain tracts while for the lower IQ group, heritability dropped to 40% (Chiang et al., 

2011).  

 

 Meta and mega-analyses have supported even further white matter heritability. One 

meta-analysis study reported that FA of the genu and splenium of the corpus callosum and 

longitudinal fasciculus showed moderate heritability values (Blokland et al., 2012). A mega-

analysis conducted with the ENIGMA consortium using a sample size of 2248 individuals 

found that practically every white matter tract’s FA showed high rates of heritability, ranging 

from 0.4 to 0.7 (Kochunov et al., 2014). The B-SNIP (Bipolar Schizophrenia Network on 

Intermediate Phenotypes) consortium group published a multi-site study that involved patients 

with schizophrenia and psychotic bipolar disorder, their unaffected first-degree relatives, and 

a group of healthy controls. Their results showed a significant decrease in FA in multiple 

white matter tracts in patients compared to healthy controls. The authors reported no 

significant differences in FA between psychotic disorders nevertheless relatives showed 

decreases in FA compared to healthy controls, representing a continuum of decreased FA from 

healthy participants to relatives to psychotic patients.  
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In a recent study, Bohlken et al. (2016) reported that reductions in white matter 

coherence had a genetic overlap with schizophrenia liability. The authors reported that 83.4% 

of the association between global white matter and schizophrenia liability was explained by 

common genes, with 8.1% of genetic variation in global FA being shared with genetic variance 

in liability for schizophrenia. However, due to its novelty, much uncertainty still exists about 

the heritability of the topological properties of the structural connectome, and only a handful 

of studies have addressed this issue. In a previous study, Bohlken et al. (2014) investigated 

the heritability of these topological measures, namely path length and clustering coefficient. 

The authors established the heritability to be 68% and 57%, respectively. These genetic 

influences were found to overlap with microstructural and volumetric properties of white 

matter; however, the largest component of genetic variance was unique to the network metrics, 

indicating that network metrics are able to provide distinctive information on the genetic 

influences on brain structure. Other studies support this hypothesis by reporting network 

impairments in unaffected relatives (Collin et al., 2014). 

 

3.7.2. Polygenic risk score for schizophrenia 

The largest GWAS performed to date identified 179 schizophrenia-associated genetic 

loci that were enriched among genes expressed in the brain and tissues involved in the immune 

system (Pardiñas et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). Thus, schizophrenia is established as a highly polygenic disorder, with 

thousands of alleles of very small effect. Consequently, the study of szPGRS may more 

precisely capture the nature of the disorder, rather than single mutations.  

 

To date, very few investigations have studied the effects of szPGRS on the white 

matter phenotype. A recent study investigating the association between white matter FA and 

szPGRS reported that after multiple comparison correction, no significant correlations were 
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found between szPGRS and the neuroimaging phenotype (Voineskos et al., 2016a). However, 

Oertel-Knöchel et al. (2015) found in a smaller sample that higher szPGRS was significantly 

correlated with reductions in white matter volume. Ritchie et al. (2017) reported a significant 

longitudinal association between szPGRS and a general factor of tract-averaged MD (b = -

0.120, SE = 0.059, p = 0.041, where a negative association indicates a link with unhealthy 

ageing), using a threshold of  p = 1.00 (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014) and 3-year change in a dataset comprised of relatively healthy 

elderly (LBC1936). This nominal association did not, however, survive correction for multiple 

comparisons (pFDR > 0.05). A recent study using UKBiobank data did not find any significant 

associations between white matter microstructure – measured using FA and MD – and PGRS 

for major psychiatric disorders, including schizophrenia (Reus et al., 2017).  

 

Given the common overlap between schizophrenia and cognitive functions, there is 

an increasing interest in determining whether this relationship may be mediated by shared 

genetic mechanisms. Despite being an emerging field of research, some significant 

associations have already been found between szPGRS and cognitive functions. Shafee et al. 

(2018) reported that higher szPGRS was significantly associated with lower scores on the 

Brief  Assessment of Cognition in Schizophrenia (BACS; r = - 0.17, p = 6.6 × 10−4 at 

PT = 1 × 10−4), but not with premorbid intelligence or educational attainment, and even among 

healthy older adults, szPGRS has been reported to be negatively associated with cognitive 

functions (Liebers et al., 2016). Two other studies have addressed this issue: McIntosh et al. 

(2013a) found a negative association between szPGRS and cognitive decline between the ages 

of 11 to 70 in the LBC36, and Lencz et al. (2014) who also found a negative association 

between szPGRS and cognitive functioning in a meta-analysis of 4302 healthy participants. 

Interestingly, creativity has been found to be positively correlated with szPGRS, suggesting 

that both traits share common genetic variants (Power et al., 2015). 
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These findings contribute to the understanding of the genetic overlap between 

schizophrenia, white matter, and cognition; however, its striking variability highlights the 

need of increasing sample size in order to improve risk prediction. Research on polygenic risk 

scores is mainly focused on functional connectivity, and scores are often derived from major 

depressive disorder and other major disorders. Therefore, further research is required to assess 

and validate these results with an explicit focus on schizophrenia. Moreover, the high 

polygenicity of intelligence (Davies et al., 2011) and schizophrenia (Pardiñas et al., 2018; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) together with 

the high the heritability of white matter provides a great opportunity to investigate their 

potential relationships due to the genetic overlap shared among these factors. 

 

3.7.3. Genetic and environmental factors 

The onset of schizophrenia has been associated with several environmental factors; 

migration, childhood trauma, urbanicity, substance abuse and gender are among the most 

commonly reported, suggesting that exposure to these factors may have an impact on the 

developing brain in more vulnerable life-periods. For instance, in siblings of patients 

diagnosed with schizophrenia, who are at higher genetic risk for developing the disorder, the 

psychotomimetic effects of cannabis and growing up in a urban environment are higher 

compared to controls (reviewed in van Os et al., 2010). Another possibility is that environment 

may moderate the levels of expression in a gene that is in the causal pathway to schizophrenia 

(van Os et al., 2008). Thus, the conceptualization that genetic or environmental influences 

may independently and on their own be determinants in the development of schizophrenia 

seems somehow reductionist. Genetic factors without an interaction with environment may be 

limited in their ability to comprehensibly describe schizophrenia. 
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3.8. Schizophrenia and accelerated white matter ageing  

It has been previously suggested that schizophrenia and other disorders are 

characterised by accelerated ageing with an elevated rate of aging-related clinical, functional, 

and biological decline. In particular, schizophrenia has been postulated to increase the risk for 

accelerated ageing and interestingly, the literature suggests that white matter connectivity may 

be affected by this process.  

 

The transition from adolescence to adulthood entails profound changes in the brain’s 

architecture, involving synaptic elimination, dendritic pruning, and myelination. Interestingly, 

this period is not only characterised by these processes that constitute normal maturation, but 

it is also associated with the highest incidence rates of psychoses. In addition, ageing is 

characterised by regional changes in tissue properties and a general brain shrinkage. Thus, 

dynamic changes in brain structure occur in development, maturation, and aging.  

 

Several recent studies have shown that changes in grey and white matter volumes 

associated with ageing are not characterised by neuronal loss but by microstructural changes 

in brain connectivity (reviewed in Collin and van den Heuvel, 2013). These changes include 

loss in myelinated fibres, alterations in fibre diameter, degeneration of myelin sheath, and 

morphological changes in dendritic the arbor, spines and synapses (Morrison and Hof, 1997; 

Paus, 2010; Peters, 2002; Salat, 2011). Consistent with this are the findings of diffusion MRI 

parameters across lifespan, characterised by a slow decline in FA and an increase in MD in 

the fourth decade until midlife and an abrupt decline in the last decade of life. White matter 

diffusion MRI parameters are highly heritable and describe a quadratic change for most white 

matter tracts, showing a rapid development in childhood followed by a slower maturation in 

adolescence and young adulthood, and a stabilization and/or reversal of developmental 
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processes during adulthood and older age (Cox et al., 2016; Hasan et al., 2010; Kochunov et 

al., 2015, 2012, 2011; Lebel et al., 2012; Westlye et al., 2010). These microstructural changes 

are thought to have an effect in information transfer and efficacy and therefore, it is possible 

that these age-related impairments may impact the overall functioning and organization of the 

brain. In particular, long cortico-cortical connections have been shown to be more susceptible 

to ageing (Peters and Rosene, 2003), which may underlie the reported reduced connectivity 

strength with advancing age. Moreover, this decline in white matter has been associated with 

cognitive impairments. Together, these findings suggest a link between the decline of the 

structural connectome and decreasing cognitive functions.  

 

This pattern in white matter ageing seems to share certain characteristics with 

schizophrenia and, as noted previously, Kirkpatrick et al. (2008) suggested the 

conceptualization of schizophrenia as a syndrome of accelerated ageing. Significant declines 

in white matter coherence more than twice that of age-matched controls have been reported 

(Kochunov et al., 2013), with this reduction being linear from early adulthood and steeper as 

a function of increasing age (Cropley et al., 2017). Machine learning approaches have been 

used to predict the age of an individual based on MRI parameters, and when applied to patients 

diagnosed with schizophrenia, the authors found that the average brain-age of the patients was 

more than three years greater than their chronological age (Koutsouleris et al., 2014; Schnack 

et al., 2016). This accelerated decline in white matter may reflect the neuropathology 

associated with the loss of microstructural properties (e.g. loss of axonal myelin, 

oligodendrocytes, etc.) characteristic of the disorder.  
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Chapter 4 Information processing speed mediates the 

relationship between white matter and general 

intelligence in schizophrenia 
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4.1. Overview 

This chapter investigates the relationship between a general factor for intelligence and 

two general factors derived from white matter diffusion parameters (FA and MD) in a sample 

of patients diagnosed with schizophrenia. Due to the apparent overlap between brain structure 

and intelligence, we hypothesised that decline in white matter structure would be linked to 

worse cognitive performance. In addition, information processing speed –which measures the 

individual’s ability to perform a cognitive task– may act as a key cognitive resource facilitating 

higher order cognition by allowing multiple cognitive processes to be simultaneously 

available and therefore we hypothesised that processing speed would mediate the relationship 

between white matter and intelligence. These associations have not yet been studied in 

schizophrenia. This chapter has been published in Psychiatry Research: Neuroimaging.  

 

This study was conceived by CA, SRC, MEB, HCW and SML. CA processed and 

analysed the data and wrote the manuscript. SRC, MEB, HCW and SML were the main 

supervisors of this project. BD and SIS collected the cognitive and imaging data. All authors 

reviewed the manuscript for publication. 

 

Citation: Alloza, C., Cox, S.R., Duff, B., Semple, S.I., Bastin, M.E., Whalley, H.C., Lawrie, 

S.M., 2016. Information processing speed mediates the relationship between white matter and 

general intelligence in schizophrenia. Psychiatry Res. 254, 26–33. 

https://doi.org/10.1016/j.pscychresns.2016.05.008 

 

 

4.2. Abstract 

Several authors have proposed that schizophrenia is the result of impaired 

connectivity between specific brain regions rather than differences in local brain activity. 

White matter abnormalities have been suggested as the anatomical substrate for this 
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dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource 

facilitating higher order cognition by allowing multiple cognitive processes to be 

simultaneously available. However, there is a lack of established associations between these 

variables in schizophrenia. We hypothesised that the relationship between white matter and 

general intelligence would be mediated by processing speed. White matter water diffusion 

parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-

of-interest (ROI). Principal component analysis was conducted on these white matter ROI for 

fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract 

general factors of white mater structure (gFA, gMD), general intelligence (g) and processing 

speed (gspeed). There was a positive correlation between g and gFA (r = 0.67, p = 0.001) that 

was partially and significantly mediated by gspeed (56.22% CI: 0.10 to 0.62). These findings 

suggest a plausible model of structure-function relations in schizophrenia, whereby white 

matter structure may provide a neuroanatomical substrate for general intelligence, which is 

partly supported by speed of information processing. 

 

4.3. Introduction 

Several authors have proposed that schizophrenia is the result of impaired 

connectivity between specific brain regions rather than differences in local brain activity 

(Wernicke, 1906; Friston, 1998; Friston and Frith, 1995). This dysconnection hypothesis 

suggests that schizophrenia may be understood in terms of cognition and pathophysiology as 

aberrant brain integration (Friston, 1998). It has been suggested that abnormalities in white 

matter microstructure may produce the anatomical substrate for the dysconnectivity 

hypothesis (Alvarado-Alanis et al., 2015b; Weinberger, 1987). White matter deficits are the 

most consistent neuroimaging findings in this disorder and it has been shown that white matter 

integrity may be predictive of conversion to schizophrenia and functional outcome (reviewed 

in Karlsgodt et al., 2012). Furthermore, Kochunov and Hong (2014) reviewed the overlap 

between the developmental trajectory of cerebral white matter and the onset of schizophrenia 
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linking the neurodevelopmental and neurodegenerative theories with white matter as the 

strategic component.  

 

 Thus far, a number of studies using functional and diffusion tensor MRI (DT-MRI) 

have provided evidence regarding the dysconnectivity hypothesis by reporting structural and 

functional connectivity abnormalities between specific brain regions (Samartzis et al., 2014; 

Schmidt et al., 2015). The most replicated findings are fronto-temporal, corpus callosum and 

anterior cingulate cortex dysconnectivity to other cortical and subcortical areas (Pettersson-

Yeo et al., 2011).  As the symptomatology of schizophrenia is so varied, it is unlikely to be 

attributable to a circumscribed brain deficit, while the dysconnectivity hypothesis may be able 

to explain its heterogeneous and complex manifestations (Fornito et al., 2012).  

 Cognitive impairments are a core characteristic of schizophrenia (Elvevåg and 

Goldberg, 2000). For example, patients diagnosed with schizophrenia often show cognitive 

deficits in numerous domains, such as attention, learning, memory and executive functions 

(Elvevåg and Goldberg, 2000). Recent evidence suggests that differences in white matter may 

account for this variance in cognitive performance (Wexler et al., 2009). Complex cognitive 

functioning depends on synchronised activity between distributed brain networks. Thus, 

proper speed and efficiency of information transfer between distal brain regions relies on 

white matter microstructure (Turken et al., 2008). Indeed, information processing speed has 

been proposed as a key cognitive resource facilitating higher order cognition by allowing 

multiple cognitive processes to be simultaneously available (Kail and Salthouse, 1994). 

Individual differences in processing speed are likely to be dependent on structural variations 

in white matter, which facilitates and constrains communication among nodes of brain 

pathways (Turken et al., 2008).    

 

Slowed information processing speed has been proposed as a potential endophenotype 

for schizophrenia (Antila et al., 2011). These deficits have been repeatedly reported in patients 
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and high risk individuals (Badcock et al., 2015; Bora et al., 2009; Dickinson D et al., 2007; 

Mesholam-Gately et al., 2009; Morgan et al., 2014; Muñoz Maniega et al., 2008; Rodríguez-

Sánchez et al., 2007; Sprooten et al., 2011). Rodriguez-Sanchez et al. (2007) reported that 

when processing speed was removed from a multivariate model, the cognitive deficits 

observed in patients with schizophrenia were no longer significant compared with healthy 

controls. Furthermore, schizophrenia patients show an accelerated ageing decline in cerebral 

white matter linked to an accelerated decay in processing speed when compared to healthy 

participants in cross-sectional and longitudinal studies (Karbasforoushan et al., 2015; 

Kochunov et al., 2013; Liu et al., 2013; Ritchie et al., 2015). Thus, deficits in speed of 

information processing represent an important cognitive marker of risk (Gur et al., 2014; 

Seidman et al., 2010). 

 Two previous studies of cognitive ageing have reported that nearly half the variance 

in water diffusion parameters across major white matter tracts can be accounted for by a single 

general factor in a large cohort of healthy subjects in their seventies (Penke et al., 2012, 2010). 

Moreover, this general factor of white matter fractional anisotropy (FA) was positively 

correlated with general intelligence, and this was completely mediated by processing speed. 

However, whether an association between FA and general intelligence holds in schizophrenia 

– and is mediated by processing speed - has not yet been studied (Penke et al., 2012, 2010; 

Turken et al., 2008). 

 

 The aim of this paper is therefore to examine the relationship between white matter 

structure and general intelligence in schizophrenia and the possible attenuation effect caused 

by processing speed. We hypothesise that a general factor of white matter integrity can be 

extracted from water diffusion parameters measured in patients diagnosed with schizophrenia, 

and this general factor accounts for a substantial amount of variance in general intelligence, 

with a statistically significant portion of this variance mediated by processing speed. 
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4.4. Methods 

Participants 

Information about participants has been reported in detail previously (Whalley et al., 

2015a). Participants were recruited across Scotland as part of the Scottish Family Mental 

Health Study. DT-MRI data were acquired from a total of 28 individuals diagnosed with 

schizophrenia aged between 23 and 57 years old, with the diagnosis confirmed using the 

structured clinical interview for DSM IV (SCID) administered by one of two trained 

psychiatrists (First et al., 2002). No control cohort was included in the current analysis. 

Exclusion criteria included any major medical or neurological conditions, or any personal 

history of substance misuse in the last year. Additionally, subjects were excluded if there were 

MRI safety considerations. A detailed description of the study and written informed consent 

were given to all recruited individuals. The study was approved by the Multicentre Research 

Ethics Committee for Scotland (09/MRE00/81). 

 

 

Scan acquisition 

MRI data were collected on a Siemens Magnetom Verio 3T scanner running the syngo 

MR B17 software (Siemens Healthcare, Erlangen, Germany). Whole brain diffusion-weighted 

MRI scans were acquired using a single-shot spin-echo echo-planar (EP) imaging sequence 

with diffusion-encoding gradients applied in 56 directions (b=1000 s/mm2); six T2-weighted 

(b=0 s/mm2) baseline scans were collected at the beginning of the acquisition scheme. Fifty-

five 2.5 mm thick axial slices were acquired with a field-of-view of 240 mm and matrix 96 × 

96 giving 2.5 mm isotropic voxels. The repetition and echo times for the EP sequence were 

10200 and 74 ms respectively. The examination took approximately 12 minutes. 
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Imaging analysis 

DT-MRI data pre-processing 

DT-MRI datasets were pre-processed using FSL tools 

(http://www.fmrib.ox.ac.uk/fsl). All volumes were aligned to the first T2-weighted EP volume 

using eddy_correct. This alignment corrects for eddy current induced distortions produced by 

different diffusion gradient directions and head movement (Horsfield, 1999). Images were 

visually assessed at every stage of pre-processing. Next, brain extraction was performed using 

FSL's Brain Extraction Tool (BET) (Smith, 2002), which removes non-brain tissue. FMRIB's 

Diffusion Toolbox (FDT/FSL) (Behrens et al., 2003) was then used to fit a diffusion tensor 

model to the data to obtain parametric maps of FA and mean diffusivity (MD). 

 

Tract-based Spatial Statistics (TBSS) 

Whole brain statistical analysis of each subject’s FA and MD data was performed 

using Tract-based Spatial Statistics (TBSS; Smith et al., 2007, 2006) as part of the FSL 

software package. First, the FA data were non-linearly registered into standard space 

(FMRIB58_FA) to make local comparison possible while controlling for overall white matter 

structure. Next, a mean of all FA volumes was obtained, and an FA skeleton created. The mean 

FA skeleton was thresholded at 0.2 in order to exclude voxels that were grey matter or CSF 

(Smith et al., 2006). Then each subject's aligned FA and MD data were projected onto the 

mean FA skeleton to account for misalignments between participants. 

 

Following the protocol described by the ENIGMA consortium 

(http://enigma.ini.usc.edu; Jahanshad et al., 2013), an atlas-based segmentation was 

performed on the FA skeletons using binary masks derived from the John Hopkins University 

(JHU) white matter atlas available in FSL (see Figure 11). We extracted 46 white matter 

structures as indicated by this atlas (see Table 3). Mean FA and MD values were calculated 

from voxels in each subject’s white matter skeleton within these regions-of-interest (ROI), 
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thereby minimising individual anatomical differences, registration errors and partial volume 

effects. 

 

 

 

 

 

 

Figure 11. Axial (left), coronal (centre) and sagittal (right) views from an individual subject’s 

white matter skeleton with ROIs provided by the JHU white matter atlas. Average white 

matter water diffusion parameters were obtained from these labelled regions (see Table 3).  

 

Table 3. White matter regions analysed in this study obtained from the JHU white matter atlas. 

 

 

Abbreviations White matter tract 

GCC Genu of corpus callosum 

BCC Body of corpus callosum 

SCC Splenium of corpus callosum 

FX Fornix (column and body of fornix) 

CST-R,L Corticospinal tract 

ML-R,L Medial lemniscus 

ICP-R,L Inferior cerebellar peduncle 

SCP-R,L Superior cerebellar peduncle 

CP-R,L Cerebral peduncle 

ALIC-R,L Anterior limb of internal capsule 

PLIC-R,L Posterior limb of internal capsule 

RLIC-R,L Retrolenticular part of internal capsule 

ACR-R,L Anterior corona radiata 

SCR-R,L Superior corona radiata 

PCR-R,L Posterior corona radiata 

PTR-R,L Posterior thalamic radiation (include optic radiation) (Cont.) 
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SS-R,L Sagittal stratum (include inferior longitudinal fasciculus and inferior 

fronto-occipital fasciculus) 

EC-R,L External capsule 

CGC-R,L Cingulum (cingulate gyrus) 

CGH-R,L Cingulum (hippocampus) 

FX/ST-R,L Fornix / Stria terminalis (cannot be resolved with current resolution) 

SLF-R,L Superior longitudinal fasciculus 

SFO-R,L Superior fronto-occipital fasciculus 

IFO-R,L Inferior fronto-occipital fasciculus 

UNC-R,L Uncinate fasciculus 

 

Note: R: right, L: left. 

 

Cognitive testing 

Patients underwent cognitive assessment using tests from the Brief Assessment of 

Cognition in Schizophrenia (BACS; Keefe et al., 2004), Cambridge Neuropsychological Test 

Automated Battery (CANTAB; Robbins et al., 1994), Wechsler Adult Intelligence Scale 

(WASI; Wechsler, 1955) and the National Adult Reading Test (NART; Nelson and Willison, 

1991) using standard administration and scoring procedures. Participants also provided 

information on antipsychotic medication which was transformed into chlorpromazine 

equivalents (CPZ) (Woods, 2003). 

 

 To calculate a general intelligence factor, we used the raw scores of Symbol Coding 

and Digit Sequencing from the BACS, Spatial Working Memory from the CANTAB, Block 

Design and Matrix Reasoning from the WASI and Vocabulary from the NART. These tests 

were selected because they represent different cognitive domains and for their high reliability; 

though the general intelligence factor appears to remain constant, irrespective of the specific 

tests used (Johnson et al., 2004). The tests used for the calculation of the processing speed 

factor are shown in Table 4. 
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Table 4. Individual cognitive tests used for the calculation of general intelligence (g) and 

information processing speed (gspeed). The table describes the cognitive domain each test 

represents and the outcome measure of each test. 

 

 Outcome measure 

General intelligence factor 

Digit Sequencing a Number of correct responses and longest sequence  
recalled 

Spatial Working Memory b Number of correct responses 

Block Design c 

 
 
Number of correct responses in increasing complexity  
and limit of time 

Matrix Reasoning c 
Vocabulary d 

Number of correct responses 
Total number of errors 
  

Processing speed factor  

Symbol Coding a Number of correct responses in 90 s 
Reaction Time 5-Choice b Response latency and movement time 
Reaction Time task b Response latency and movement time 

aTests from the BACS; bfrom the CANTAB; cfrom the WASI; dfrom the NART.  
 

 

Statistical analysis 

Principal component analysis (PCA) was performed on all FA and MD ROI data and 

cognitive task raw scores. Specifically, we ran a separate PCA for each of FA, MD, general 

intelligence and processing speed. All PCA was performed with no rotation and age was 

partialed from all the general factors. For the calculation of the PCA for white matter diffusion 

parameters we took a highly conservative approach by entering left and right tracts separately 

(rather than averaging the tracts in both hemispheres), which results in a greater degree of 

potentially residual left-right variance which may not necessarily be explained by a first 

component. Using this form of data reduction allows the relatively robust quantification of an 
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underlying construct which is theoretically being measured to a large degree by all entered 

terms. Thus, test-specific error variance (and also some other test-specific variance) present 

in the scores of each individual cognitive test are theoretically excluded from the resultant 

component score. For instance, diffusion measures of white tracts across the brain tend to be 

highly collinear. A latent score of FA therefore captures this tendency, quantifying the general 

level of FA for each participant which is shared across all tracts (such that those with a higher 

gFA tend to have generally higher FA across all tracts). In order to conserve data points, we 

imputed those values where missingness was ≤ 40% using multiple imputation in SPSS 

version 20.0 (www.ibm.com/software/analytics/spss). Missing data was random for 

participants with ≤ 40% of missing data (Little’s MCAR test p>0.05). For participants who 

were not able to complete cognitive testing (missingness > 40%) imputation was not 

performed.  

 

The tests used in this study were partly determined by the distribution of the data and 

outliers and partly by the type of data obtained from TBSS. Partial correlational analyses were 

used to study possible relationships between the white matter (FA and MD) and cognitive 

factors (general intelligence and processing speed) controlling for age. Mediation analysis was 

then used to examine the hypothesis that impaired white matter integrity is related to poorer 

general intelligence via processing speed. We employed the MEDIATE macro in SPSS 20.0 

(Hayes and Preacher, 2014) to formally quantify mediation effects using 5000 bootstrapped 

samples. Due to our clear directional hypothesis, one tailed test of mediation was conducted 

(http://www.afhayes.com). Mediation effects were considered significant if the confidence 

interval did not include zero (Preacher and Hayes, 2008). Results were considered significant 

at P < 0.05 for bivariate analyses. All statistical analyses were performed with SPSS version 

20.0, with age as a covariate in all analyses. 
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4.5. Results 

Demographics 

Characteristics and cognitive scores of the sample are presented in Table 5.  

 

Table 5. Demographic and cognitive scores for each subtest used in the calculation of principal 

factors. 

 

 

 

 

 

 

 

 

 

a Measured using CPZ equivalents (Woods, 2003) 

 

 

Principal component analyses 

General white matter factors 

The results for FA showed a clear principal component; the first unrotated component 

explained 46.4% of the variance among all white matter regions. The left uncinate showed the 

lowest loading (r = 0.408), while the right superior corona radiata showed the highest (r = 

0.863). The principal component for MD explained 53.8% of the variance. The left superior 

fronto-occipital fasciculus showed the lowest loading (r = 0.351), while the right superior 

corona radiata showed the highest (r = 0.918). The pattern of tract loadings did not exhibit any 

  Mean (SD) 

Age in years  

Antipsychotic medication a 

39.0 (10.1) 

434.9 (371.9) 

Gender (%) F:M 57.1 : 42.9 

5-Choice Reaction Time (ms) 401.7 (91.7) 

Block Design 43.3 (15.8) 

Digit Sequencing 21.7 (4.6) 

Matrix Reasoning 26.3 (4.8) 

Reaction Time task Simple (ms) 560.2 (155.9) 

Spatial Working Memory 30.0 (18.8) 

Symbol Coding 49.1 (12.1) 
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clear pattern (strongest-weakest) based on tract functionality or hemisphere. While we found 

no influence of the number of voxels on mean levels of FA or MD measured for each tract, 

smaller tracts exhibited a significantly greater variability in their estimates across participants 

for FA (r = 0.729, p < 0.001) and MD (r = -0.636, p < 0.01). All loadings are presented in 

Appendix I Supplementary Tables 1 and 2. Scree plots of the PCAs for FA and MD are 

presented in Appendix I Supplementary Figures 1 and 2. 

 

General cognitive factors 

There was a clear principal component for general intelligence which explained 

63.83% of the variance, with all loadings > 0.7. The general processing speed factor showed 

a clear first component which explained 57.51% of the variance, with all loadings > 0.6. 

Higher values on this factor indicate slower information processing speed. The loadings are 

presented in Appendix I Supplementary Tables 3 and 4. Scree plots of the general factor for 

general intelligence and processing speed are presented in Appendix I Supplementary Figures 

3 and 4. 

 

Correlational analyses 

Partial correlations are presented in Figure 12. Accounting for age, we found that the 

general intelligence factor was significantly positively correlated with the general FA factor, 

sharing over half the variance (r = 0.667; p =0.001; R2 = 0.445). There was no significant 

association between the general MD factor and general intelligence (r = -0.212; p > 0.05; R2 

= 0.045). General factors of FA and processing speed showed a significant correlation (r = - 

0.626, p < 0.001) but not between the general factors of MD and processing speed (r = 0.197, 

p > 0.05). The negative correlation between FA and processing speed indicates that generally 

less coherent water diffusion (lower FA) across all measured tracts is associated with slower 

processing speed. Even though the correlations with MD were non-significant they were in 

the expected direction. Antipsychotic medication (CPZ equivalents) and gender were not 
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significantly associated with any of the variables studied. 

 

 

 

 

 

 

 

 

 

 

Figure 12 Partial correlations between the main variables analysed, controlled for age. The 

numbers indicate the correlation coefficient between each pair of variables. Note that higher 

values of gspeed indicate slower processing speed (less favourable). *p < 0.05. gFA and gMD are 

the general FA and MD factors. 

 

 

Mediation analysis 

The results of these bivariate associations indicate that FA-processing speed-

intelligence is a viable candidate for mediation analysis. As illustrated in Figure 13A, we 

tested whether the direct effect of white matter FA and intelligence was significantly mediated 

by processing speed (i.e. magnitude of change from path c to path c’). The results are shown 

in Figure 13B. A bias-corrected bootstrap confidence interval for the indirect effect (c' = 0.142, 

p = 0.292) based on 5000 bootstrap samples served as a formal statistical test of the degree to 

which processing speed mediated the relationship between FA and intelligence. The change in 

magnitude (0.667 to 0.292; 56.22%) was significant (confidence intervals entirely above zero; 

0.1025 to 0.6165). There was no significant mediation effect for MD-processing speed-

intelligence (90% CI (-0.4030 to 0.2003)).  
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We further analysed the possible mediation effect of age in the associations between 

FA, general intelligence and processing speed. There was a significant mediation effect of age 

in the association between the FA and processing speed 90% CI (-0.2733 to -0.0011) but not 

between FA and general intelligence (90% CI (-0.0293 to 0.0013)). Thus, results from 

mediation analysis shown above are controlled for age due to its significant effect on white 

matter parameters and cognitive performance.  

 

 

 

Figure 13. A) Schematic representation of relationships where an independent variable (X) 

and an outcome (Y) are hypothesised to be explained by a mediator (M). The direct effect of 

X on M is a, the effect of M on Y is b, and c the effect of X on Y. c’ denotes the effect of X on 

Y when M is taking into account in the model. B) Representation of the variables analysed in 

this study, where X= the general FA factor (gFA), Y= General intelligence and M= Processing 

speed. Asterisks represent statistically significant partial correlations.  

 

4.6. Discussion 

Our aim was to investigate possible associations between general intelligence, 

processing speed and structural brain parameters in a clinical cohort diagnosed with 

schizophrenia. We did this by adopting a recently established approach taken in non-

pathological ageing research described by Penke et al. (2010). Their results suggest that 

individual differences in white matter water diffusion measures are, to some extent, common 

B. A. 
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across tracts in older age, and that this common variance is cognitively meaningful. In the 

current study, we have shown that the same phenomenon seems to occur in schizophrenia, 

with white matter FA correlating with general intelligence through speed of information 

processing. For instance, the fact that the general FA factor accounts for a large proportion of 

the shared variance between tracts indicates that when one has high FA in one tract, there is a 

strong tendency to also exhibit high FA in all other tracts included in the PCA. Similarly, for 

general intelligence, the high degree of shared variance between tests reflects the fact that 

individuals who perform well on one test tend to perform well on others. Thus, associations 

between general FA and general intelligence indicate that having a generally higher level of 

cognitive performance, relative to the other participants included in the cognitive PCA, is 

associated with having generally higher FA across the tracts included in the PCA. In the 

context of the dysconnectivity hypothesis, these findings suggest a plausible model of 

structure-function relations in schizophrenia, where white matter structure may provide a 

neuroanatomical substrate for general intelligence, which is partly supported by speed of 

information processing within brain networks.  

 

Results showed that the right superior corona radiata has the highest communality for 

FA and MD, suggesting that this tract shares the highest amount of variance with all other 

white matter tracts. On the other hand, the left uncinate and left superior fronto-occipital 

fasciculus for FA and MD, respectively, shared the lowest amount of variance with all other 

tracts. These results indicate that, while there was clearly a strong tendency for all tracts 

measured to share variance in diffusion characteristics, not all white matter tracts exhibited 

this general tendency to the same degree. 

 

In the current study, we found that correlations of white matter DT-MRI biomarkers 

and cognitive variables were stronger for FA than MD, though both were in the expected 

directions. These two parameters provide distinct, but complementary information about the 
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diffusion of water molecules in vivo. Thus, our findings indicate that cognitive abilities in our 

schizophrenia participants were more strongly related to the directional coherence of water 

diffusion than to its general magnitude. It has been suggested that FA is highly sensitive to a 

variety of subtle microstructural changes, whereas MD more specifically represents an inverse 

measure of membrane density and fluid viscosity (Alexander et al., 2011), though diffusion 

data in isolation precludes a direct inference on specific microstructural tissue properties 

which underlie the associations reported herein.  

 

We found that the correlation between general intelligence and FA was higher (R2 = 

0.445) than that reported by Penke et al. (2012, 2010) who found that approximately 10% of 

the variance in general intelligence was accounted for by a general white matter factor in a 

study of generally healthy older subjects in their seventies. Consistent with functional and 

structural data, our findings suggest that patients with schizophrenia present a broader 

distribution of white matter networks associated with cognitive performance (Tan et al., 2006; 

Voineskos et al., 2013). Therefore, subtle perturbations in vulnerable networks may more 

dramatically affect cognitive performance in this disorder, potentially due to decreased 

cognitive reserve. This hypothesis is supported by several authors (reviewed in Tucker-Drob, 

2009) who propose a model of ability differentiation in which intercorrelations between 

cognitive tests are higher in those subjects with lower IQ. Detterman and Daniel (1989) 

postulate that subjects with cognitive deficits experience impairments in central processes by 

limiting the efficiency of all other processes in the system. Thus, these participants will 

perform more uniformly on cognitive tests, whereas, subjects without deficits will show more 

variable performance as their central processes remain intact. Nevertheless, the sample size of 

the current study hampers our ability to make an accurate and definitive estimate of the precise 

magnitude of association between intelligence and white matter microstructure in 

schizophrenia, and it is likely that larger samples would provide a more readily-generalizable 

estimate.  
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 There is an increasing interest in correlating measures of higher cognitive functions 

with structural and functional features of individual brain regions (Jung and Haier, 2007). 

Some neural correlates have been described, suggesting that the interaction between parietal 

and frontal brain regions sustained by efficacious white matter tracts supports individual 

intelligence differences (Jung and Haier, 2007; Ritchie et al., 2015). Processing speed has been 

proposed as a key cognitive resource, an intermediate between brain structure and cognition. 

Prior studies have noted the importance of white matter coherence for synchronised brain 

activity. Impairments in white matter structure may be the result of neurodevelopmental or 

degenerative processes which ultimately affect brain connectivity (Davis et al., 2003; Wright 

et al., 2015). Thus, appropriate performance in processing speed relies on white matter 

coherence. Lower cerebral FA and lower speed of information processing are highly replicable 

findings in schizophrenia that are likely interlinked (Wright et al., 2015), yet this is the first 

study to examine whether such relationships might partly underpin intellectual ability in 

schizophrenia. 

 

 The dysconnectivity hypothesis proposed for schizophrenia is often characterised by 

impairments in white matter coherence. General disturbances in neural networks caused by 

white matter disruptions could account for the key global characteristics of the illness, 

including cognitive deficits (Knowles et al., 2010; White et al., 2011). Moreover, this 

dysconnectivity leads to an impaired speed of information processing which may also 

influence other cognitive functions (de Weijer et al., 2011; McCarthy-Jones et al., 2015). Thus, 

the dysconnectivity hypothesis may be in keeping with the diverse spectrum of deficits and 

symptoms observed in schizophrenia. 

 

 Processing speed and white matter coherence decline during normal ageing. It has 

been suggested that this decline in processing speed is caused by a reduction in the propagation 

of action potentials across cortical networks (Wright et al., 2015). In recent years, several 
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authors (Friedman et al., 2008; Mori et al., 2007; Phillips et al., 2012; Wright et al., 2015, 

2014) have reported that schizophrenia patients show a more pronounced ageing of white 

matter compared with controls. This might be a rational line of enquiry for future studies using 

the approach described here. Furthermore, increased cognitive decline has been described in 

subjects with high genetic risk for schizophrenia (McIntosh et al., 2013). Another potential 

hypothesis is that relationships between white matter microstructure and processing speed are 

driven by share genetic factors which influence variations in FA and processing speed. For 

example, Kochunov et al. (2016) suggest that common genetic variations that contribute to 

white matter integrity may also sustain their associated cognitive performance. These two 

phenotypes may be uncovering the genetic risk factors for schizophrenia where reduced FA 

and decreased speed of information processing are consistently reported and thought to be 

interlinked (Ellison-Wright and Bullmore, 2009; Penke et al., 2010; Rodríguez-Sánchez et al., 

2007).  

 

Previous studies have examined the association between intelligence and white matter 

structure in healthy controls, albeit usually with respect to individual cognitive tests and/or 

individual white matter tracts (Nestor et al., 2010, 2008; Ohtani et al., 2014b; Pérez-Iglesias 

et al., 2010; Ritchie et al., 2015; Royle et al., 2013; Yamawaki et al., 2015). This is the first 

time, to our knowledge, where principal components of white matter water diffusion 

parameters and a broad variety of cognitive domains have been analysed in a clinical cohort 

diagnosed with schizophrenia. We report results which suggest that a common white matter 

integrity factor provides the neuroanatomical substrate for a general intelligence factor, partly 

mediated by speed of information processing within brain networks. 
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4.7. Limitations 

This study was limited by being unable to assess whether the relationship between 

white matter water diffusion parameters and general intelligence also exists in a fully-matched 

control cohort of similar size; therefore, it is unknown if the effects found in patients are 

analogous or dissimilar to healthy participants, beyond the older non-pathological samples 

analysed elsewhere. Moreover, this is a cross-sectional study; thus, it is difficult to make any 

causal inference based on these results. Also, the patients sample size is relatively small by 

contemporary standards raising the possibility of Type II error. Given the relatively small 

sample size we choose to control for age rather than examine its effects. 

 

One potential criticism is the use of PCA in such a small sample with large number 

of variables, especially for several white matter tracts. However, it has been suggested that 

considering the variables-to-observations ratio is not an optimal way to determine the 

suitability of applying such data reduction techniques to small sample sizes, particularly in 

instances where the variables in question exhibit a high degree of collinearity (de Winter et 

al., 2009; Preacher and MacCallum, 2002). Both the cognitive and DT-MRI data exhibit a 

clear first component with high loadings and explained variance comparable to prior studies 

using similar data in larger samples (Penke et al., 2012, 2010). PCA allows the quantification 

of important tendencies in the data, and the resulting latent measures (principal components, 

in this case) have the advantage of excluding error variance specific to each individual 

measure, mitigating for instance the higher variability found in smaller tracts. However, this 

method also necessarily excludes variance specific to individual white matter tracts or 

cognitive tests which may also be of interest. For instance, we did only analyse the first 

component of each PCA, excluding other components that may be of interest in the future. 
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However, we chose to study the first component since it explains by far the largest 

amount variance compared to the rest. We also acknowledge the limitation inherent to TBSS 

in that it only includes the centre of the white matter tracts common to all participants, and 

that the estimates of the smaller ROIs may be less reliable (though they did not exhibit 

systematically different diffusion estimates, they did exhibit greater SD). Nevertheless, when 

this point is considered with the lack of power and possibility of redundant hypothesis testing 

(and the increased multiple comparisons and necessary correction that this entails), we believe 

this statistical approach is the most suitable, but clearly precludes direct comment on the 

nature of tract- and test- specific effects.  
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4.9. Chapter discussion 

This chapter offers valuable data on the relationship between general intelligence and 

brain structure in schizophrenia. These results suggest that patients with schizophrenia present 

a broader distribution of white matter networks associated with cognitive performance 

whereby subtle perturbations in vulnerable networks may more dramatically affect cognitive 

performance, potentially due to decreased cognitive reserve. Taken all together, our results 

suggest that in schizophrenia, white matter structure may provide a neuroanatomical substrate 

for general intelligence, which is partly mediated by speed of information processing within 

brain networks.  
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Chapter 5 Central and non-central networks, 

cognition, clinical symptoms and polygenic risk 

scores in schizophrenia 
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5.1. Overview 

This chapter focuses on the study of two subnetworks derived from the connectome 

and their associations with the pathophysiology of schizophrenia in a sample comprised by 

patients and healthy controls. Using graph theory metrics obtained from the average network, 

this chapter also investigates the topological characteristics of the brain and their relationships 

with intelligence, symptoms and genetics. The paper is published in the journal Human Brain 

Mapping.  

This study was conceived by CA, SRC, MEB, HCW and SML. CA analysed the data 

and wrote the manuscript. SRC, MEB, HCW and SML were the main supervisors of this 

project. MEB processed the imaging data and calculated the graph theory metrics. JG created 

the polygenic risk scores. BD and SIS collected the cognitive and imaging data. All authors 

reviewed the manuscript for publication. 

 

Citation: Alloza, C., Bastin, M.E., Cox, S.R., Gibson, J., Duff, B., Semple, S.I., Whalley, 

H.C., Lawrie, S.M., 2017. Central and non-central networks, cognition, clinical symptoms, 

and polygenic risk scores in schizophrenia. Hum. Brain Mapp. 

https://doi.org/10.1002/hbm.23798 

 

 

5.2. Abstract 

Schizophrenia is a complex disorder that may be the result of aberrant connections 

between specific brain regions rather than focal brain abnormalities. Here, we investigate 

relationships between brain structural connectivity as described by network analysis, 

intelligence, symptoms and polygenic risk scores (PGRS) for schizophrenia in a group of 

patients with schizophrenia and a group of healthy controls. Recently, researchers have shown 



100 
 

an interest in the role of high centrality networks in the disorder. However, the importance of 

non-central networks still remains unclear. Thus, we specifically examined network-averaged 

fractional anisotropy (mean edge weight) in central and non-central subnetworks. Connections 

with the highest betweenness centrality within the average network (>75% of centrality 

values) were selected to represent the central subnetwork. The remaining connections were 

assigned to the non-central subnetwork. Additionally, we calculated graph theory measures 

from the average network (connections that occur in at least 2/3 of participants). Density, 

strength, global efficiency and clustering coefficient were significantly lower in patients 

compared with healthy controls for the average network (pFDR < 0.05). All metrics across 

networks were significantly associated with intelligence (pFDR < 0.05). There was a tendency 

towards significance for a correlation between intelligence and PGRS for schizophrenia (r = 

-0.508, p = 0.052) that was significantly mediated by central and non-central mean edge 

weight and most graph metrics from the average network. These results are consistent with 

the hypothesis that intelligence deficits are associated with a genetic risk for schizophrenia 

which is mediated via the disruption of distributed brain networks. 

 

5.3. Introduction 

Schizophrenia is a neuropsychiatric disorder characterised by delusions, 

hallucinations, absence of function and cognitive impairments. It is increasingly seen as the 

result of aberrant connections between specific brain regions rather than focal brain 

abnormalities (Friston, 1998; Friston and Frith, 1995; Stephan et al., 2009, 2006). The 

dysconnectivity hypothesis of schizophrenia suggests that abnormal brain integration may 

underlie the cognitive profile and symptoms found in the disorder. There is consistent evidence 

supporting reduced levels of overall structural connectivity in schizophrenia using diffusion 

tensor MRI (DT-MRI) with frontal, parietal and temporal projections being the most 

consistently impaired in the disorder (Skudlarski et al., 2010; van den Heuvel et al., 2010; van 
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den Heuvel and Fornito, 2014; Zalesky et al., 2011). Additionally, more specific white matter 

alterations in the uncinate fasciculus, corpus callosum, cingulum and arcuate fasciculus are 

consistently described (reviewed in Burns et al., 2003; Ellison-Wright and Bullmore, 2009; 

McIntosh et al., 2005). Even though a number of studies have discussed the importance of 

white matter impairments in schizophrenia, there is still no consensus on how to measure 

structural dysconnectivity in the disorder. One approach is to characterise how impairments 

in white matter microstructure affect the organization of the structural connectome using graph 

theory, which conceives the brain as a network composed of nodes and the connections (edges) 

between them (Bullmore and Sporns, 2009). 

 

 

Graph theory segregation measures, such as clustering coefficient and modularity, are 

reportedly altered in schizophrenia (Alexander-Bloch et al., 2010; van den Heuvel et al., 2013; 

van den Heuvel and Fornito, 2014; Zalesky et al., 2011) suggesting a more segregated pattern 

of network organization. In line with this hypothesis, numerous authors have found longer 

path lengths and reductions in communication efficiency, proposing reduced communication 

between more segregated areas of the brain (reviewed in van den Heuvel and Fornito, 2014). 

 

Nodes and edges can be associated with peripheral or more central tasks, depending 

on their degree of connectivity and their position within or between modules (Sporns, 2011). 

Nodes characterised by high degree and high centrality are termed ‘hubs’. Several lines of 

investigation have suggested that topological organization of hub nodes appear to be altered 

in schizophrenia. Both structural covariance and structural connectivity studies in 

schizophrenia suggest a less hierarchical organization, a less prominent role of high degree 

hub regions such as the prefrontal and parietal cortex, while non-frontal hubs emerge more 

prominently (Bassett et al., 2008; Collin et al., 2013; Zhang et al., 2012). Rubinov et al. 
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(2009a) suggested that a characteristic of the disorder is a randomization of connections, an 

alteration of community structure which results in impaired integration and segregation, and 

reduced centrality of cortical hubs. Most brain imaging studies in schizophrenia focus on these 

effects in networks with high centrality while the remaining connections are overlooked 

(Collin et al., 2014; Schmidt et al., 2016). Due to the apparent hierarchical disorganization of 

the brain in schizophrenia the role of these central nodes may be displaced to other brain 

regions or networks. Thus, in this study we address specifically networks based on centrality 

to investigate this hypothesis. Even though the cognitive and symptomatic implications of 

various network metrics have been addressed, there has been little discussion about the role 

of non-central networks in the disorder.  

 

 

 Schizophrenia is associated with cognitive deficits; some correlations between 

intelligence and the brain's function and structure have been described in healthy participants. 

Although there are a small number of established associations between intelligence and brain 

basic structural parameters, such as fractional anisotropy (FA), the relationship between the 

observed white matter alterations in schizophrenia and intelligence remains unclear. However, 

graph theory metrics may be able to provide greater explanatory power for these cognitive 

deficits in schizophrenia than more traditional structural connectivity measures, such as FA 

(Alloza et al., 2016). There is some evidence that structural network metrics are related to 

intelligence and that there is a degree of shared genetic overlap between schizophrenia and 

these measures. For instance, Li et al. (2009) found significant correlations between 

intelligence and network properties in a healthy cohort of subjects. Specifically, higher 

intelligence scores were associated with shorter path lengths and higher global efficiency. Yeo 

et al. (2016) showed that global measures of increased characteristic path length and reduced 

overall connectivity predicted lower general intelligence in a group of patients with 

schizophrenia, while van den Heuvel et al. (2009b) also found a strong negative correlation 
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between characteristic path length and IQ suggesting that more efficiently connected brains 

tend to show higher levels of intelligence. Hence, graph theory metrics may provide an insight 

into the underlying brain structural substrate for intelligence.  

 

 Differences in structural connectivity are useful for establishing brain topology 

abnormalities in schizophrenia compared with healthy participants. However, as our aim is to 

shed light on the clinical manifestation of schizophrenia we therefore examine the extent to 

which clinical symptoms are associated with brain extracted measures. What we know about 

brain connectivity and clinical symptoms is largely based upon empirical studies that 

investigate the relationship between white matter and different symptom’s scales. For 

instance, FA of specific white matter tracts has been significantly associated with positive 

symptoms in the disorder. These tracts include the internal capsule, fronto-occipital fasciculus, 

superior longitudinal fasciculus, cingulum and corpus callosum (Mitelman et al., 2007; 

Rotarska-Jagiela et al., 2008; Seok et al., 2007). To date, several authors have examined the 

effects of graph theory metrics of connectivity on symptomatology in schizophrenia. Positive 

symptom severity has been associated with reduced overall connectivity, increases and 

decreases in structural and functional coupling, strength of temporal and frontal regions, 

reduced network efficiency and reduced clustering (reviewed van den Heuvel and Fornito, 

2014). Wang et al. (2012b) found significant associations between global efficiency and 

positive, negative and total symptoms. However, most studies focus on functional connectivity 

determined using fMRI and thus, uncertainty remains regarding the relationship between 

structural connectivity measured in central, non-central and average networks and genetic risk 

factors. 

 

  Graph theory analysis has shown that impairments present in patients with 

schizophrenia are also found in their relatives suggesting a genetic basis (Clemm von 

Hohenberg et al., 2014; Collin et al., 2014; Skudlarski et al., 2013). Moreover, topological 
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network properties have been found to be heritable (see Thompson et al., 2013). For instance, 

in white matter FA, the variance explained by genetic factors has been reported to be between 

75-90% in almost every white matter tract (Chiang et al., 2011). Moreover, in the same study, 

heritability of FA was associated with the level of IQ. Genome-wide association studies 

(GWAS) have indicated a polygenic component of schizophrenia with hundreds of common 

alleles of small effect at the population level having been reported (International 

Schizophrenia Consortium et al., 2009; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). Thus far, only a small number of studies have analysed the 

relationship between polygenic risk scores (PGRS), neuroimaging biomarkers and/or 

cognition (Birnbaum and Weinberger, 2013; McIntosh et al., 2013; Whalley et al., 2015b). 

Connectomic measures are, potentially, possible intermediate phenotypes between genetic 

liability and cognitive deficits in schizophrenia. 

In the current study we investigate relationships between brain structural connectivity 

described by network-averaged FA (mean edge weight) measured in central and non-central 

networks and by graph theory metrics calculated from the average network (defined as 

networks in which connections that occur in at least 2/3 of participants are retained) in relation 

to intelligence, clinical symptoms and PGRS for schizophrenia in patients with schizophrenia 

and healthy controls. We will focus on graph theory metrics that have been consistently 

reported to be impaired in schizophrenia, namely mean edge weight, density, strength, 

clustering coefficient and global efficiency in the average network. Due to the severely 

affected hierarchical disorganization of the brain found in schizophrenia, our aim is to 

investigate the roles central and non-central network mean edge weight play in this disorder. 

Thus, this is the first study where intelligence, symptoms and PGRS have been studied 

together in relation to networks based on their centrality. Specifically, we hypothesized that 

impaired structural organization of the networks (decreased mean edge weight, density, 

strength, clustering coefficient and global efficiency) will be associated with lower 

intelligence, higher genetic risk factor for schizophrenia and higher symptom score. 
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5.4. Methods 

Participants 

Information about participants has been reported in detail previously (Whalley et al., 

2015). Participants were recruited across Scotland as part of the Scottish Family Mental Health 

Study. DT-MRI data were acquired from a total of 28 individuals diagnosed with 

schizophrenia and 36 healthy controls. Diagnosis of schizophrenia was confirmed using the 

structured clinical interview for DSM IV (SCID) administered by one of two trained 

psychiatrists (First et al., 2002). Exclusion criteria included any major medical or neurological 

conditions, or any personal history of substance misuse in the last year. Additionally, subjects 

were excluded if there were MRI safety considerations. A detailed description of the study 

and written informed consent were given to all recruited individuals. The study was approved 

by the Multicentre Research Ethics Committee for Scotland (09/MRE00/81). 

 

 

Scan acquisition 

All imaging data were collected on a MAGNETOM Verio 3T MRI scanner running 

Syngo MR B17 software (Siemens Healthcare, Erlangen, Germany). For each subject, whole 

brain DT-MRI data were acquired using a prototype single-shot spin-echo echo-planar (EP) 

imaging sequence with diffusion-encoding gradients applied in 56 directions (b=1000 s/mm2) 

and six T2-weighted (b=0 s/mm2) baseline scans. Fifty-five 2.5 mm thick axial slices were 

acquired with a field-of-view of 240 × 240 mm and matrix 96 × 96 giving 2.5 mm isotropic 

voxels. In the same session, a 3D T1-magnetization-prepared rapidly acquired gradient-echo 

(MPRAGE) volume was acquired in the coronal plane with 160 contiguous slices and 1 mm 

isotropic voxel resolution. 
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Image analysis 

Image processing 

Each 3D T1-weighted MPRAGE volume was parcellated into 85 (Desikan-Killiany 

atlas; Desikan et al., 2006) and 165 (Destrieux atlas) regions-of-interest (ROI) using 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu). The results of the segmentation procedure 

were then used to construct grey and white matter masks for use in network construction and 

to constrain the tractography output as described below. Using tools provided by the FDT 

package in FSL (http://fsl.fmrib.ox.ac.uk/fsl), the DT-MRI data were pre-processed to reduce 

systematic imaging distortions and bulk subject motion artifacts by affine registration of all 

subsequent EP volumes to the first T2-weighted EP volume (Jenkinson and Smith, 2001). 

Skull stripping and brain extraction were performed on the registered T2-weighted EP 

volumes and applied to the FA volume calculated by DTIFIT in each subject (Basser and 

Pierpaoli, 1996; Smith, 2002). The neuroanatomical ROIs determined by Freesurfer were then 

aligned from 3D T1-weighted volume to diffusion space using a cross-modal nonlinear 

registration method. As a first step, linear registration was used to initialize the alignment of 

each brain-extracted FA volume to the corresponding FreeSurfer extracted 3D T1-weighted 

brain volume using a mutual information cost function and an affine transform with 12 degrees 

of freedom (Jenkinson and Smith, 2001). Following this initialization, a nonlinear deformation 

field based method (FNIRT) was used to refine local alignment (Andersson et al., 2007). 

FreeSurfer segmentations and anatomical labels were then aligned to diffusion space using 

nearest neighbour interpolation. 

 

Tractography 

Whole-brain probabilistic tractography was performed using FSL’s 

BedpostX/ProbTrackX algorithm (Behrens et al., 2007). Probability density functions, which 

describe the uncertainty in the principal directions of diffusion, were computed with a two-

fibre model per voxel (Behrens et al., 2007). Streamlines were then constructed by sampling 
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from these distributions during tracking using 100 Markov Chain Monte Carlo iterations with 

a fixed step size of 0.5 mm between successive points. Tracking was initiated from all white 

matter voxels (Buchanan et al., 2014) and streamlines were constructed in two collinear 

directions until terminated by the following stopping criteria designed to minimize the amount 

of anatomically implausible streamlines: (i) exceeding a curvature threshold of 70 degrees; 

(ii) entering a voxel with FA below 0.1 (Verstraete et al., 2011); (iii) entering an extra-cerebral 

voxel; (iv) exceeding 200 mm in length; and (v) exceeding a distance ratio metric of 10. The 

distance ratio metric (Bullitt et al., 2003), excludes implausibly tortuous streamlines. For 

instance, a streamline with a total path length 10 times longer than the distance between end 

points was considered to be invalid. The values of the curvature, anisotropy and distance ratio 

metric constraints were set empirically and informed by visual assessment of the resulting 

streamlines. 

 

 

Network construction 

FA-weighted networks were constructed by recording the mean FA value along 

streamlines connecting all ROI (network node) pairs. The endpoint of a streamline was 

considered to be the first grey matter ROI encountered when tracking from the seed location. 

 

In this study we assume the existence of a central subnetwork that is shared across 

participants (Reijmer et al., 2016). To identify this central subnetwork, the average brain 

network across both patients and controls was determined by including those connections 

which occurred in more than 2/3 of the participants (de Reus and van den Heuvel, 2013). 

Connections with the highest centrality (the fraction of all shortest paths in the network that 

contain a given connection, also referred as “edge betweenness centrality”) within this average 

network (> threshold value of 75 %) were selected and used to create a mask representing the 

central subnetwork. The remaining connections were assigned to the non-central subnetwork 
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mask. Therefore, connections with high values of centrality are involved in a large number of 

shortest paths and as a consequence contribute to the global efficiency of the network. These 

masks were then used as templates and applied to each participant’s connectivity matrix to 

select central and non-central subnetworks. Since the threshold value of 75% is arbitrary, 

analyses were repeated for thresholds of 25 and 50 % of connections with highest centrality. 

 

Organizational properties of the different networks were then obtained using the brain 

connectivity toolbox (www.brain-connectivity-toolbox.net). For each FA-weighted 

connectivity matrix for the average network, five global network measures were computed, 

namely: mean edge weight (mean value of FA across the network), density (the fraction of 

present connections to possible connections), strength (the average sum of weights per node), 

clustering coefficient (fraction of triangles around a node) and global efficiency (the average 

of the inverse shortest path length). As a result of possible alterations in topology when 

extracting central and non-central networks, only mean edge weight was computed for these 

subnetworks (Reijmer et al., 2016). 

 

Polygenic risk score calculation 

PGRS is a method to aggregate the small effects that contribute to the liability of 

schizophrenia on predicting the disorder. The capacity to predict onset of schizophrenia has 

been established and has been reported to explain up to 7% of additive genetic liability for the 

disorder (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

PGRS for schizophrenia were created for all individuals with suitable genotype data; only 

genotypes passing stringent quality control were used in analyses. PGRS for schizophrenia 

were estimated using summary data from an independent GWAS of schizophrenia in 150064 

individuals (36989 cases and 113075 controls), conducted by the Psychiatry Genomics 

Consortium (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 
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PGRS were estimated using the PRSice software package according to previously described 

protocols (Euesden et al., 2015), with linkage disequilibrium and distance thresholds for 

clumping of r2 = 0.2 and within a 300kb window. Five scores were created for each individual 

using single-nucleotide polymorphisms (SNPs) selected according to the significance of their 

association with the phenotype at nominal p-value thresholds of 0.01, 0.05, 0.1, 0.5 and 1.0 

(all SNPs). For the analysis we used the threshold of 0.5 which explained the most variance 

in our data and has been reported to maximally capture schizophrenia liability (International 

Schizophrenia Consortium et al., 2009). The four multidimensional scaling factors were 

entered as additional ‘nuisance’ covariates to control for population stratification, along with 

age. 

 

Cognitive testing and medication 

Participants underwent cognitive assessment using tests from the Wechsler Adult 

Intelligence Scale (WASI; Wechsler, 1955) using standard administration and scoring 

procedures. Symptom severity was assessed using the Positive and Negative Symptoms Scale 

(PANSS; Kay et al., 1987). Full-scale IQ was derived from four subtests of the WASI: 

Vocabulary, Block Design, Similarities and Matrix Reasoning. Participants also provided 

information on antipsychotic medication which was transformed into chlorpromazine 

equivalents (CPZ) (Woods, 2003). 

 

 

Statistical analysis 

Group differences were analysed using a multivariate general linear model (GLM). 

Dependent variables were mean edge weight for central, non-central and connectivity metrics 

for the average networks separately. Age, sex, diagnosis and the interaction between diagnosis 

and sex were entered as predictors. FA was added as additional predictor in the average 

network analysis. Due to small sample size, effect sizes were then calculated using Hedges’ g 
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and based on the p-value of the individual analysis of covariance (ANCOVAS). Using the 

whole sample, regression analyses were then performed separately for central, non-central and 

average metrics and IQ. Due to the distribution of data, PANSS positive, negative and total 

symptom scores were only analysed in the patient sample. For both models, age, gender and 

CPZ were used as covariates. P-values (alpha = 0.05) were corrected for multiple comparisons 

using False Discovery Rate (FDR; pFDR) (Benjamini and Hochberg, 1995). Analyses were 

repeated for varying threshold values to define the number of central connections (25, 50 and 

75 %). Analyses were also repeated for different Freesurfer brain atlases (Desikan and 

Destrieux). Regression models were then applied to investigate the association between risk 

score and case-control status in the whole sample. Connectivity metrics were dependent 

variables and principal components for population stratification, PGRS, age, gender and 

diagnosis as predictors. All statistical analyses were performed with R version 3.2.3 

(https://www.r-project.org). 

Mediation analysis was subsequently used to examine the hypothesis that higher 

PGRS is related to poorer intelligence via reduced structural connectivity. We employed the 

PROCESS macro in SPSS 22.0 (Hayes and Rockwood, 2016) to formally quantify mediation 

effects using 5000 bootstrapped samples. Due to our clear directional hypothesis, a one tailed 

test of mediation was conducted (http://www.afhayes.com). Mediation effects were 

considered significant if the confidence interval did not include zero (Preacher and Hayes, 

2008).  
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5.5. Results 

 

Table 6 shows demographic data for both healthy controls and schizophrenia patients. 

 

 

Average network 

Diagnosis (F (5, 54) = 703.1, p < 0.001, partial eta squared = 0.080), age (F (5, 54) = 

137.64, p < 0.001, partial eta squared = 0.030), sex (F (5, 54) = 19.80, p < 0.001, partial eta 

squared = 0.032), mean edge weight (FA) (F (5, 54) = 15263.7, p < 0.001, partial eta squared 

= 0.001) effects were significant for the average network graph theory metrics. 

As indicated in Table 7, there were significant differences in network density 

(Hedges’ g = 0.54 (0.03, 1.05), pFDR = 0.04), strength (Hedges’ g = 1.08 (0.54, 1.62), pFDR < 

0.001), global efficiency (Hedges’ g = 1.95 (1.34, 2.56), pFDR < 0.001) and clustering 

coefficient (Hedges’ g = 1.94 (1.33, 2.55), pFDR < 0.001) between groups. Mean edge weight 

showed a tendency towards significance (Hedges’ g = 0.43 (-0.07, 0.93), pFDR = 0.08). All 

  HC SZ p-value 

Age in years (SD) 37.22 (14.99) 38.04 (10.34) 0.807 

Sex, M/F (%) 53/47 57/43 0.733 

IQ (SD)  116.11 (10.75) 105.09 (15.89) 0.003 

PANSS positive (SD) [Range] 
 

12.30 (5.19) [7, 28] 
 

PANSS negative (SD) [Range]  13 (7.05) [7,35]  

PANSS total (SD) [Range]  51.64 (17.33) [34, 91]  

Age of onset in years  25.25 (9.89)  

Duration of illness in years  13.58 (10.30)  

CPZ (SD)   434.97 (371.90)    

 

Note. HC = healthy controls, SZ = schizophrenia. CPZ= chlorpromazine equivalents. 

SD= Standard deviation. Bold typeface indicates significant group difference (p < 0.05). 
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metrics were reduced in patients compared to healthy controls. Boxplots for group differences 

can be found in Appendix II Supplementary Material Figure 1. 

 

Table 7. Mean ± standard deviation (SD) values of connectivity metrics the average network 

for healthy controls and patients with schizophrenia. 

 

 

 

 

 

 

 

 

Note: HC = healthy controls, SZ = schizophrenia; bold typeface indicates significant group 

difference (pFDR < 0.05).  

a These results are a consequence of the fact that in this covariance analysis we decided to add 

mean edge weight as a nuisance variable due to the computation of the graph theory metrics 

in this study. Because we chose to compute FA-weighted matrices, and our aim was to study 

topological properties, we considered necessary to remove the effect of FA in each participant, 

making the group differences significant.  

 

Central subnetwork 

Figure 14 shows network maps for the central (> 75 % of centrality values) and non-

central subnetworks across all participants. There was no significant difference in central 

subnetwork mean edge weight between patients with schizophrenia and healthy controls 

(mean HC = 0.45, SD = ± 0.02; mean SZ = 0.44, SD = ± 0.02) (Hedges’ g = 0.36 95% CI (-0.14, 

 
           Average 

Metric HC SZ pFDR 

Mean edge weight 0.44 ± 0.02  0.43 ± 0.02 0.08 

Density 33.15 ± 0.92 32.56 ± 1.25 0.04 

Strength 12.31 ± 0.57 11.88 ± 0.73 < 0.001 

Global efficiency 0.30  ± 0.01 0.30 ± 0.01 < 0.001a 

Clustering coefficient 0.30  ± 0.01 0.30 ± 0.01 < 0.001a 
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0.86), p > 0.05). Central mean edge weight was reduced in patients compared with healthy 

controls. 

 

Figure 14. Medial view of (A) central (> 75 % of centrality values) and (B) non-central 

subnetworks for all 

participants indicating node 

location and edge (FA) 

strength. The nodes which are 

connected by edges with the 

highest weights (FA > 0.5) in 

the central subnetwork are 

brainstem, left hemisphere 

precuneus cortex, thalamus, 

caudate, ventral diencephalon 

and superior frontal gyrus, 

and bilateral caudal anterior 

division of the cingulate 

cortex and isthmus division of 

the cingulate gyrus. Nodes are 

colour-coded to indicate in 

which lobe they are situated. 

 

 

Non-central subnetwork 

There was a tendency towards significance for a difference in mean edge weight 

between patients with schizophrenia and healthy controls (mean HC = 0.44, SD = ± 0.02; mean 
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SZ = 0.43, SD = ± 0.02) (Hedges’ g = 0.45 95% CI (-0.06, 0.95), p = 0.07). Non-central mean 

edge weight was reduced in patients compared with healthy controls. 

 

Age, antipsychotic medication and illness duration 

There were positive significant associations between age, mean edge weight (r = -

0.290, p = 0.02) and clustering coefficient (r = -0.269, p = 0.03) for the average network. 

However, these associations did not survive multiple comparison correction (pFDR > 0.05). 

Antipsychotic medication shows a significant effect on mean edge weight (r = -0.262, pFDR = 

0.048), strength (r = -0.287, pFDR = 0.048), global efficiency (r = -0.263, pFDR = 0.048) and 

clustering coefficient (r = -0.270, pFDR = 0.048) for the average network. Neither antipsychotic 

medication nor age had a significant effect on central mean edge weight. However, age (r = -

0.313, p = 0.012) and CPZ (r = -0.271, p = 0.033) showed a significant effect on non-central 

mean edge weight. There were no significant associations between network metrics and illness 

duration for any of the metrics (pFDR > 0.05).  

 

IQ 

Regression coefficients between IQ and the average network graph theory metrics are 

shown in Table 8. All metrics were significantly associated with IQ (r range 0.284 to 0.471). 

For central network, mean edge weight was significantly associated with IQ (r = 0.344, p = 

0.010). For non-central network, mean edge weight was also significantly associated with IQ 

(r = 0.338, p = 0.014). Medication, as CPZ equivalents, did not show any significant effect in 

central, non-central and average networks. Scatterplots with the associations between metrics 

and IQ can be found in Appendix II Supplementary material Figures 2 and 3. 
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Table 8.  Correlation matrix for IQ and connectivity metrics for the average network. 

 

 

 

 

 

 

Note: Bold type indicates significant associations (pFDR < 0.05). 

 

 

Clinical symptoms 

Table 9 shows the regression coefficients for positive, negative and total symptom 

scores and central, non-central mean edge weight and average network connectivity metrics. 

Central network mean edge weight showed a tendency towards significance in relation to total 

symptoms (r = -0.348, p = 0.073). The addition of medication as a covariate in the model made 

the associations weaker and non-significant (p > 0.05). However, medication did not have any 

significant effect in the regression model. 

 

 

 

 

 

 

 

Metric r   pFDR 

Mean edge weight 0.343 0.016 

Density 0.284 0.045 

Strength 0.471 0.004 

Global efficiency 0.394 0.007 

Clustering coefficient 0.434 0.004 
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Table 9. Correlation matrix for PANSS and connectivity metrics for central (> 75% of 

centrality values), non-central and average networks. 

 

 

 

 

 

 

 

 

 

Note: This table shows the associations between symptoms and metrics using CPZ as a 

covariate. 

 

 

Polygenic risk score 

The association between genetic risk score at a threshold of p ≤ 0.5 and case-control 

status in the total sample was significant (p < 0.05). The regression estimate of the genetic risk 

score at the threshold p ≤ 0.5 was 0.44 (Adjusted R-square = 0.057; p = 0.029).  

Next, we studied the association between central and non-central mean edge weight 

and average network graph theory measures and PGRS. None of the connectivity metrics were 

significantly associated with PGRS across networks (pFDR > 0.05). Regression analysis 

between IQ and PGRS at a threshold of p ≤ 0.5 showed a tendency towards significance (r = 

-0.742, p = 0.052). There were no significant correlations between PGRS and symptoms (pFDR 

> 0.05). 

 
Metric Positive Negative Total 

 
Central mean edge weight -0.282 -0.184 -0.348 

 
Non-central mean edge weight -0.206 -0.163 -0.268 

A
ve

ra
ge

 

Mean edge weight -0.101 -0.118 -0.178 

Density -0.195 -0.041 -0.092 

Strength -0.201 -0.114 -0.193 

Global efficiency -0.132 -0.133 -0.195 

Clustering coefficient -0.114 -0.119 -0.178 
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Mediation analysis 

We aimed to identify mediation candidates that were consistent with the hypothesis 

that a greater genetic predisposition for schizophrenia is partly related to lower intelligence 

through the disruption of brain connectivity. As indicated by the bivariate association, the 

correlation between IQ and PGRS (r = -0.742, p = 0.052) showed a tendency towards 

significance. The negative correlation between PGRS and IQ suggests a genetic liability to 

intelligence; mediation analysis allows us to quantify the role of topological network measures 

in this relationship. Given the substantial effect sizes, and the need to consider mediation in 

terms of zero and non-zero rather than using p-values in isolation (Hayes, 2009), we tested 

whether the direct effect of PGRS and IQ was significantly mediated by mean edge weight  

and average network metrics (i.e. magnitude of change from path c to path c′; see Figure 15A). 

The results are shown in Figures 15B and 15C. A bias-corrected bootstrap confidence interval 

for the indirect effect based on 5000 bootstrap samples served as a formal statistical test of the 

degree to which mean edge weight mediated the relationship between PGRS and IQ. The 

30.52 % reduction in magnitude (β = -0.154 to β = -0.107) identified central mean edge weight 

as a significant partial mediator (confidence interval not containing zero; -0.363 to -0.055). 

For non-central mean edge weight (Figure 13C), the reduction in magnitude was 46.62% (β = 

-0.474 to β = -0.253) identifying also non-central mean edge weight as a significant partial 

mediator (confidence interval -0.673 to -0.050). The model was corrected for age and 

population stratification components. Additionally, Table 10 shows mediation results for the 

metrics of the average network. 
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Figure. 15. A) Schematic representation of relationships where an independent variable (X) 

and an outcome (Y) are hypothesised to be explained by a mediator (M). The direct effect of 

X on M is a, the effect of M on Y is b, and c the effect of X on Y. c′ denotes the effect of X 

on Y when M is taking into account in the model. B) Representation of the variables analysed 

in this study, where X= Polygenic risk score for schizophrenia (PGRS at p ≤ 0.5), Y= IQ and 

M= mean edge weight (central). C) X= Polygenic risk score for schizophrenia (PGRS at p ≤ 

0.5), Y= IQ and M= mean edge weight (non-central). Asterisks represent statistically 

significant mediations and bold indicates significant associations. 

 

 

 

 

 

 

Independent
       (X)

Outcome
     (Y)

Mediator
    (M)
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-0.343 0.338

-0.474

-0.253*

A B C



119 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
  

  
β 

%
 

M
ed

ia
tio

n 
m

od
el

 
X

 
Y

 
M

 
c 

c' 
A

tte
nu

at
io

n 
F(

df
) 

Lo
w

er
 C

I 
U

pp
er

 C
I 

PG
R

S 
IQ

 
M

ea
n 

ed
ge

 w
ei

gh
t 

-0
.4

56
 

-0
.2

69
 

41
.0

1 
8.

32
 (2

, 4
3)

 
-0

.6
71

 
-0

.0
57

 
PG

R
S 

IQ
 

D
en

si
ty

 
-0

.5
14

 
-0

.1
79

 
65

.1
7 

4.
87

 (2
, 4

3)
 

-0
.4

83
 

0.
00

6 
PG

R
S 

IQ
 

St
re

ng
th

 
-0

.2
67

 
-0

.4
54

 
-7

0.
03

 
14

.1
5 

(2
, 4

3)
 

-0
.9

11
 

-0
.1

21
 

PG
R

S 
IQ

 
G

lo
ba

l e
ffi

ci
en

cy
 

-0
.3

83
 

-0
.3

42
 

10
.7

 
10

.8
2 

(2
,4

3)
 

-0
.7

76
 

-0
.0

91
 

PG
R

S 
IQ

 
C

lu
st

er
in

g 
co

ef
fic

ie
nt

 
-0

.4
03

 
-0

.3
25

 
19

.3
6 

12
.0

4 
(2

, 4
3)

 
-0

.7
76

 
-0

.0
76

 
 

T
ab

le
 1

0.
 M

ed
ia

tio
n 

an
al

ys
is 

fo
r t

he
 a

ve
ra

ge
 n

et
w

or
k.

 

X
: i

nd
ep

en
de

nt
 v

ar
ia

bl
e,

 Y
: o

ut
co

m
e 

va
ria

bl
e,

 M
: m

ed
ia

to
r, 

c:
 p

at
h 

fro
m

 X
 to

 Y
, c

’: 
pa

th
 fr

om
 X

 to
 Y

 a
cc

ou
nt

in
g 

fo
r M

. B
ol

d 
ty

pe
 

fa
ce

 in
di

ca
te

s 
si

gn
ifi

ca
nt

 m
ed

ia
tio

n 
ef

fe
ct

 (c
on

fid
en

ce
 in

te
rv

al
s 

do
 n

ot
 in

cl
ud

e 
0;

 P
re

ac
he

r a
nd

 H
ay

es
, 2

00
8)

. A
ll 

te
sts

 o
f m

ed
ia

tio
n 

ar
e 

on
e-

ta
ile

d 
an

d 
bi

as
-c

or
re

ct
ed

. B
ol

d 
ty

pe
 fa

ce
 in

di
ca

te
s s

ig
ni

fic
an

t m
ed

ia
tio

n 
ef

fe
ct

 a
fte

r F
D

R
-c

or
re

ct
io

n 
(p

FD
R 

< 
0.

05
). 

 



120 
 

 

 

Additional analyses: Network density 

Using network density as a covariate did not significantly affect the results of any of 

the regression models described above. 

 

Additional analyses: Thresholds 

Results for the different thresholds of centrality (25 and 50 %) showed that 

associations between intelligence, symptoms and mean edge weight were comparable across 

thresholds (data not shown). 

 

Additional analyses: Destrieux atlas  

Group differences using the Destrieux atlas (165 regions) as a parcellation scheme 

showed no significant differences between patients and controls for mean edge weight for 

both central and non-central mean edge weight (p > 0.05). Graph theory metric results from 

the average network showed larger differences between groups and stronger associations with 

intelligence. Results were in the expected direction. Nevertheless, analyses showed 

comparable results across both atlases for central and non-central mean edge weight and 

metrics from the average network (data not shown). 

 

5.6. Discussion 

This study was set out to assess the ability of graph theory metrics in schizophrenia 

to build a coherent model from brain structure, cognition and genetics. This is, to our 

knowledge, the first study reporting results for both high and low centrality networks in 

schizophrenia and provides much-needed structural MRI perspective on links between brain 

connectivity and intelligence in this population. We sought to investigate the evolving 
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hypothesis that schizophrenia is a hub disease in which central connections are more severely 

affected in contrast to non-central connections. Our data indicate that this may not be the case. 

Instead, schizophrenia may be a disorder characterised by the disruption of distributed brain 

regions affecting the whole brain, rather than exclusively affecting hubs. Our study supports 

the conceptualization of schizophrenia as a disorder characterised by impaired integration 

between brain regions rather than local brain abnormalities. 

 

The network analysis reported here shows that structural connectivity abnormalities 

are present in the schizophrenia patient group. Specifically, most graph theory metrics from 

the average network were significantly reduced in the patient sample compared with healthy 

controls. These results are consistent with previous findings (van den Heuvel and Fornito, 

2014), in particular, density, strength, global efficiency and clustering coefficient were 

significantly reduced in the patient group compared with controls. The central subnetwork 

was principally composed of subcortical areas and regions located in the frontal and parietal 

lobes. Mean edge weight (FA) for central and non-central subnetworks, was not significantly 

different between patients and healthy controls. Taken together, these results suggest that in 

schizophrenia the structural connectome is characterised by weaker connections being less 

segregated and less integrated compared with healthy controls. Thus, here we have shown that 

differences between patients and controls can be found in the average network, suggesting the 

presence of more extensive impairments that are seemingly not limited to central connections. 

 

We also found that every graph theory metric across the different networks was 

significantly associated with IQ. These results are likely to reflect the integrative nature of 

intelligence, involving distributed brain networks that comprise a wide variety of cognitive 

functions (Colom et al., 2010). The absence of an interaction between graph theory metrics 

and group indicates that the same effect occurs in healthy participants and schizophrenia 

patients. These results are consistent with those of Li et al. (2009) who reported that IQ was 
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positively correlated with global efficiency and negatively with path length. Central and non-

central mean edge weight (FA) were positively associated with IQ, this is in accordance with 

numerous investigations assessing for instance, relationships between intelligence and general 

factors of FA (Alloza et al., 2016; Chiang et al., 2009; Deary et al., 2006; Penke et al., 2010; 

Yu et al., 2008). Thus, in this study we have been able to establish robust associations between 

intelligence and the structural connectome in schizophrenia. 

 

The dysconnection hypothesis proposes that altered topological connectivity and 

abnormal integration between distinct brain regions may underlie the symptomatology found 

in the disorder (Stephan et al., 2009, 2006). In this study, none of the graph metrics were 

significantly associated with positive, negative or total symptoms. These results suggest that 

symptoms may be specifically based on deficiencies in distinctive networks. For instance, 

positive symptoms include hallucinations, delusions and thought disorders, while negative 

symptoms comprise blunted affect, alogia, anhedonia, asociality and avolition. These 

processes are likely to comprise distant and unique regions (i.e. visual hallucinations could be 

associated with visual processing) and therefore, may not be captured by an average network 

or by networks based on centrality. Thus far, a number of functional studies have investigated 

the effects of graph theory metrics on symptomatology (Bassett et al., 2012; Skudlarski et al., 

2010). One study reported that higher levels of positive and negative symptoms were 

associated with reduced clustering coefficient and increased path lengths (Shim et al., 2014). 

A further study found that local connectome organization relates to longitudinal increases in 

overall PANSS, in particular, these associations were driven by clustering coefficient (Collin 

et al., 2016). Previous studies have found negative correlations between FA (using DTI) and 

positive, negative and total PANSS score (Michael et al., 2008; Skelly et al., 2008). For 

instance, negative correlations between FA and negative symptoms in specific white matter 

tracts, such as the corpus callosum, have been reported (Nakamura et al., 2012). However, the 

inconsistency of the findings may be the result of different methodological techniques, use of 
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medication and heterogeneity of the disease.  

 

In the central and non-central subnetworks, comparable associations were found 

between intelligence and mean edge weights across all thresholds. Stronger associations were 

found for symptoms with non-central mean edge weight when considering the top 75% of 

network connections based on their centrality. A lower centrality threshold (25-50% central 

connections) showed weaker correlations; probably because of a reduced specificity of the 

subnetwork and exclusion of some important connections.  

 

There is an overlap between the genetic risk factor for schizophrenia and intelligence 

(Glahn et al., 2007; McIntosh et al., 2013; Toulopoulou et al., 2007) and thus, brain structure 

may be an intermediate phenotype between genetics and intelligence. In this study we have 

shown that central and non-central mean edge weight significantly mediated the relationship 

between genetics and intelligence between 30 and 47%, respectively. Moreover, most graph 

theory metrics from the average network significantly mediated this relationship. Thus, we 

propose that structural brain topology measures are potential intermediate phenotypes in this 

model. Although metrics were not significantly associated with polygenic risk scores, 

statistical significance of all paths is not a pre-requisite to determining a mediation model 

(Hayes and Rockwood, 2016). The approach taken here detected moderate effect sizes and 

had the ability to formally quantify the degree and significance of the mediation. However, 

better-powered studies are needed to confirm this. 

 

These findings suggest that prominent associations and disruptions occur also in 

average and non-central networks which are not driven by medication effects and are present 

across different brain parcellation schemes. We hypothesise that the construction of 

subnetworks in schizophrenia may be affected by its inherent reduced centrality and thus, 

central networks may include less central connections. This is in line with a recent publication 
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where the authors propose that schizophrenia may not be entirely, nor specifically, a hub 

disease (Griffa et al., 2015). Based on previous literature and the limitation of our own study, 

we propose that schizophrenia is a disorder characterised by the disruption of distributed brain 

regions affecting the whole brain rather than hubs exclusively. Our study therefore supports 

the conceptualization of schizophrenia as a disorder characterised by impaired integration 

between brain regions rather than local brain abnormalities.  

 

5.7. Limitations 

Our findings are limited by the intrinsic nature of the methodology implemented. For 

example, limitations associated with DT-MRI, a technique that relies on water diffusion as an 

indirect marker for white matter microstructure which has not yet been able to resolve complex 

fibre architecture (Jones et al., 2013), need to be acknowledged. Other limitations include the 

fact that most of the patients in this study used antipsychotic medication, which may affect 

structural brain connectivity (Szeszko et al., 2014). Nonetheless, it should be noted that 

impaired white matter connectivity has also been shown in never-medicated patients (Cheung 

et al., 2008; Mandl et al., 2013). Additionally, the patients were recruited from outpatient 

clinics, thus generalisability of the results may be less applicable to more severely affected 

populations. Moreover, the sample size used is small by contemporary standards raising the 

possibility of Type II errors. Thus, interpretations of our novel but preliminary results should 

be taken cautiously. To further validate the results presented here, replication of this study 

using larger datasets is needed. 

 

5.8. Acknowledgements 

We would like to thank all the participants who took part in this study and the 

radiographers who acquired the MRI data at the Clinical Research Imaging Centre, University 

of Edinburgh (http://www.cric.ed.ac.uk). We are also grateful to Professor Edwin van Beek 



125 
 

for assistance with overall co-ordination of the study and for radiological reporting of the 

structural MRI scans. The investigators also acknowledge the financial support of National 

Health Service (NHS) Research Scotland, through the Scottish Mental Health Research 

Network (http://www.smhrn.org.uk) who provided assistance with subject recruitment and 

cognitive assessments. This work was supported by an award from the Translational Medicine 

Research Collaboration – a consortium made up of the Universities of Aberdeen, Dundee, 

Edinburgh and Glasgow, the four associated NHS Health Boards (Grampian, Tayside, 

Lothian, and Greater Glasgow and Clyde), Scottish Enterprise and Pfizer, who have reviewed 

and approved the manuscript. Imaging aspects also received financial support from the Dr 

Mortimer and Theresa Sackler Foundation. Dr Simon Cox gratefully acknowledges support 

from an MRC grant (MR/M013111/1). The authors would also like to thank Dr. Thorsten 

Feiweier from Siemens Healthcare for providing the prototype diffusion sequence used in this 

study. 

 

5.9. Chapter conclusion  

This chapter supports the conceptualization of schizophrenia as a dysconnection 

syndrome characterised by impaired integration between brain regions rather than local brain 

abnormalities. Moreover, this study has shown significant associations between topological 

properties of the networks and general intelligence, reflecting the integrative nature of 

intelligence, which involves distributed brain networks comprising a wide variety of cognitive 

functions. Therefore, even though we were not able to conclude that schizophrenia is a hub 

disease, our results suggest that schizophrenia may be characterised by more widespread 

impairments involving the whole brain and that topological brain properties may be an 

intermediate phenotype in the association between genetic risk for schizophrenia and 

intelligence.  
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Chapter 6  Polygenic risk score for 

schizophrenia and structural brain connectivity 

in older age: a longitudinal connectome and 

tractography study 
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6.1. Overview 

This chapter is dedicated to the study of the longitudinal change in white matter 

connectivity and its associations with genetic risk for schizophrenia in relatively healthy, 

community-dwelling older adults. White matter connectivity was measured using two 

methods: graph theory measures derived from the connectome and probabilistic tractography 

of twelve major white matter tracts. We hypothesised that there would be a decline in brain 

connectivity (water diffusion MRI parameters and connectome network properties) over time, 

and that lower initial levels and steeper declines in these brain parameters would be found in 

those subjects with higher genetic liability for schizophrenia. The paper is published in the 

journal NeuroImage.  

This study was conceived by CA, SRC and MEB. CA analysed the data and wrote the 

manuscript. SRC and MEB were the main supervisors of this project with co-supervision 

provided by HCW and SML. MEB, SMM and MDC processed the imaging data, diffusion 

parameters and graph theory metrics. SJR created the polygenic risk scores. PR provided all 

the data. MBC and EMT-D aided with the interpretation of the results. JMW and IJD are the 

Principal Investigators of this cohort. All authors reviewed the manuscript for publication. 

 

Citation: Alloza, C., Cox, S.R., Blesa Cábez, M., Redmond, P., Whalley, H.C., Ritchie, S.J., 

Muñoz Maniega, S., Del C Valdés Hernández, M., Tucker-Drob, E.M., Lawrie, S.M., 

Wardlaw, J.M., Deary, I.J., Bastin, M.E., 2018. Polygenic risk score for schizophrenia and 

structural brain connectivity in older age: A longitudinal connectome and tractography study. 

NeuroImage. https://doi.org/10.1016/j.neuroimage.2018.08.075 
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6.2.  Abstract 

Higher polygenic risk score for schizophrenia (szPGRS) has been associated with 

lower cognitive function and might be a predictor of decline in brain structure in apparently 

healthy populations. Age-related declines in structural brain connectivity—measured using 

white matter diffusion MRI —are evident from cross-sectional data. Yet, it remains unclear 

how graph theoretical metrics of the structural connectome change over time, and whether 

szPGRS is associated with differences in ageing-related changes in human brain connectivity. 

Here, we studied a large, relatively healthy, same-year-of-birth, older age cohort over a period 

of 3 years (age ~ 73 years, N = 731; age ~76 years, N = 488). From their brain scans we 

derived tract-averaged fractional anisotropy (FA) and mean diffusivity (MD), and network 

topology properties. We investigated the cross-sectional and longitudinal associations between 

these structural brain variables and szPGRS. Higher szPGRS showed significant associations 

with longitudinal increases in MD in the splenium (β = 0.132, pFDR = 0.040), arcuate (β = 

0.291, pFDR = 0.040), anterior thalamic radiations (β = 0.215, pFDR = 0.040) and cingulum (β 

= 0.165, pFDR = 0.040). Significant declines over time were observed in graph theory metrics 

for FA-weighted networks, such as mean edge weight (β = -0.039, pFDR = 0.048) and strength 

(β = -0.027, pFDR = 0.048). No significant associations were found between szPGRS and graph 

theory metrics. These results are consistent with the hypothesis that szPGRS confers risk for 

ageing-related degradation of some aspects of structural connectivity.  

 

6.3. Introduction  

Patients with schizophrenia show white matter impairments in post-mortem 

examinations and in in vivo studies using diffusion MRI (Harrison, 1999; Kubicki and 

Shenton, 2014). Less healthy brain white matter microstructure and the structural connectome 

have been associated with cognitive impairments in schizophrenia (Alloza et al., 2017, 2016; 

Kochunov et al., 2017; Yeo et al., 2016). Reports of less healthy water diffusion MRI 
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parameters in schizophrenia are well documented; specifically, impairments are observed in 

the uncinate fasciculus, corpus callosum, cingulum and arcuate fasciculus (Burns et al., 2003; 

Ellison-Wright and Bullmore, 2009; Kelly et al., 2017; McIntosh et al., 2005). Likewise, 

healthy relatives who are at high risk of developing schizophrenia for genetic reasons also 

show white matter abnormalities in several tracts (Muñoz Maniega et al., 2008).  

 

Graph theory segregation measures, such as clustering coefficient and modularity, 

have been reported to be altered in schizophrenia (Alexander-Bloch et al., 2010; Collin et al., 

2013; van den Heuvel and Fornito, 2014; Zalesky et al., 2011), suggesting a more segregated 

pattern of network organization. Longer path lengths and reductions in communication 

efficiency between regions have also been found in patients diagnosed with schizophrenia, 

suggesting that schizophrenia may be characterized by reduced communication between distal 

brain regions (reviewed in van den Heuvel and Fornito, 2014). Graph theoretical studies have 

also reported small-world organization and reductions in integration and efficiency in 

unaffected relatives (Collin et al., 2014), indicating a genetic basis for schizophrenia. Despite 

the difficulties of coupling graph theory metrics and the underlying neurobiology, graph 

theory metrics have consistently shown associations with cognitive functions (Alloza et al., 

2017; Collin et al., 2016; Li et al., 2009), symptoms (Collin et al., 2016; van den Heuvel and 

Fornito, 2014; Wang et al., 2012), heritability (Bohlken et al., 2014) and sensitivity to disease 

(Lynall et al., 2010; Rubinov et al., 2009b), indicating that they do compute relevant properties 

of the brain’s structure in this disorder. 

 

Schizophrenia is both highly heritable and polygenic, with many common alleles of 

small effect, and increasing numbers of genome-wide significant loci being identified as 

sample sizes increase (Hilker et al., 2018; International Schizophrenia Consortium et al., 2009; 
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Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). The largest 

twin study in schizophrenia to date estimated its heritability to be 79%, and the proband-wise 

concordance rate in monozygotic twins to be 33%, suggesting that illness vulnerability is 

partly, but not exclusively, due to indicated by genetic factors (Hilker et al., 2018). The latest 

schizophrenia genome wide association study (GWAS) included a meta-analysis with 40675 

cases and 64643 controls; it identified 179 independent genome-wide significant single 

nucleotide polymorphisms (SNPs) (P < 5 ×10-8) associated with a diagnosis of schizophrenia 

(Pardiñas et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014). Summary statistics from large-scale GWAS allow the degree of genetic 

liability for a heritable trait (in this case, schizophrenia) to be estimated in healthy subjects 

outside the population in which the original GWAS was conducted (Van der Auwera et al., 

2017, 2015). 

  

In addition to schizophrenia, advancing age is associated with an increased risk for 

neurodegeneration, including white matter microstructure (Aboitiz et al., 1992; Cox et al., 

2016; Hasan et al., 2010; Kochunov et al., 2015, 2012, 2011; Lebel et al., 2012; Marner et al., 

2003; Meier-Ruge et al., 1992; Peters, 2002; Westlye et al., 2010) and cognitive decline 

(Deary et al., 2009; Verhaeghen and Salthouse, 1997). Therefore, identifying the determinants 

of the degree to which an individual experiences these cognitive and brain declines with age 

is a high priority (Corley et al., 2018). In ageing populations, a higher genetic risk for 

schizophrenia has been associated with both poorer cognitive function and with less healthy 

white matter (McIntosh et al., 2013; Muñoz Maniega et al., 2008). However, the 

neurobiological underpinnings of these apparent differences in cognitive ageing have not yet 

been fully explored.  

 



131 
 

Thus far, only a small number of studies have analysed the relationship between 

polygenic risk score for schizophrenia (szPGRS) and neuroimaging biomarkers in healthy and 

patient samples (Alloza et al., 2017; Birnbaum and Weinberger, 2013; McIntosh et al., 2013; 

Ritchie et al., 2017; Van der Auwera et al., 2015; Whalley et al., 2015b). Emerging evidence 

suggests that higher szPGRS might be a predictor of accelerated decline in brain 

microstructure in older age. Ritchie et al. (2017) reported a significant longitudinal association 

between szPGRS and a general factor of tract-averaged mean diffusivity (MD; b = -0.120, SE 

= 0.059, p = 0.041, where a negative association indicates a link with unhealthy ageing), using 

a threshold of  p = 1.00 derived from a previous GWAS (Schizophrenia Working Group of 

the Psychiatric Genomics Consortium, 2014) and 3-year change in the same dataset presented 

here (the Lothian Birth Cohort 1936, LBC1936). This nominal association did not, however, 

survive correction for multiple comparisons. Nevertheless, the largest published schizophrenia 

GWAS to date has improved considerably its predictive power (Pardiñas et al., 2018) and 

fibre tracking and analysis have been updated significantly to improve tract segmentation in 

this sample (Muñoz Maniega et al., 2017). These developments allow a more thorough 

investigation of the relationships between genetic risk for schizophrenia and structural brain 

connectivity in this ageing population than has hitherto been possible.  

 

In this paper, we therefore investigated the hypothesis that szPGRS relates to white 

matter microstructure in older age by first mapping the trajectories of water diffusion MRI 

parameters (using fractional anisotropy (FA) and mean diffusivity (MD)) measured in twelve 

major tracts and the topological properties of FA-weighted networks in the LBC1936 across 

a three-year period. Secondly, we investigated the effect of szPGRS on these longitudinal 

tractography and connectome microstructural properties. We hypothesised that there would 

be a decline in brain connectivity (water diffusion MRI parameters and connectome network 

properties) over time, and that lower initial levels and steeper declines in these brain 
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parameters would be found in those subjects with higher genetic liability for schizophrenia. 

As an additional analysis, we also investigated the hypothesis that higher szPGRS is 

associated with a steeper decline in cognition via change in white matter structure in older 

age. 

 

6.4. Methods 

Participants 
 

The LBC1936 study (Deary et al., 2012, 2007; Taylor et al., 2018) provides 

longitudinal data on cognitive and brain ageing. The cohort comprises participants of the 

Scottish Mental Survey of 1947 (SMS1947, n = 70,805) in which most Scottish schoolchildren 

born in 1936 sat the Moray House Test Number 12 at ~11 years of age (Scottish Council for 

Research in Education, 1949). Most participants resided in the Edinburgh and Lothian regions 

of Scotland at recruitment age ~70 years. The sample has been repeatedly tested in later life 

with participants undergoing detailed medical, physical, and psycho-social assessments, 

including a brain MRI examination (Wardlaw et al., 2011). The first testing wave took place 

at a mean age of 69.53 years (SD, 0.83 years) in 2004–2007 (n = 1,091, 543 females); the 

second testing wave took place at a mean age of 72.49 years (SD, 0.71 years) in 2007–2010 

(n = 866, 418 females); and the third testing wave took place at a mean age of 76.25 years 

(SD, 0.68 years) in 2011–2014 (n = 697, 337 females). The data in the present report come 

from the second and third waves of the study at which points structural brain imaging was 

performed. A total of 731 participants (343 females) agreed to undergo brain imaging at a 

mean age of 72.68 years (SD, 0.72 years), and 488 (228 females) at a mean age of 76.38 years 

(SD, 0.65 years), none of whom were known to have schizophrenia. Only one participant was 

diagnosed with bipolar disorder. However, the data indicated that this participant was not an 

outlier (+/- 2.5 SD for all brain imaging measures) and therefore, this subject was not excluded 

from the analysis. The study was approved by the Multi-Centre Research Ethics Committee 
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for Scotland (MREC/01/0/56), the Lothian Research Ethics Committee (LREC/2003/2/29) 

and the Scotland A Research Ethics Committee (07/MRE00/58). All participants completed 

written informed consent forms before any cognitive, MRI, or other measurements were taken. 

 

Scan Acquisition 
 

All structural and diffusion MRI data were acquired using a GE Signa Horizon HDx 

1.5 T clinical scanner (General Electric, Milwaukee, WI, USA) using a self-shielding gradient 

set with maximum gradient strength of 33 mT · m−1, and eight-channel head array coil. 

Diffusion-weighted echo-planar volumes (b = 1000 s · mm−2) were acquired in 64 non-

collinear directions, along with seven T2-weighted volumes (b = 0 s · mm−2). Each volume 

comprised seventy-two contiguous axial 2-mm-thick slices acquired with 2 × 2 mm in-plane 

resolution. Repetition and echo times were 16.5 s and 95.5 ms respectively. A 3D T1-weighted 

inversion recovery-prepared fast spoiled gradient-echo (FSPGR) volume was also acquired in 

the coronal plane with 160 contiguous slices and 1.3 mm3 voxel dimensions. Full details of 

the imaging protocol are available (Wardlaw et al., 2011). The scanner underwent a major 

upgrade just prior to the first wave of imaging and was regulated continuously within a tight 

quality control environment across the duration of the study; all scans were acquired with the 

same imaging protocol and scanner software platform (Wardlaw et al., 2011) throughout. 

 

Image processing 
 

Each 3D T1-weighted FSPGR volume was parcellated into 85 cortical (Desikan et al., 

2006) regions-of-interest (ROI) using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), which 

comprised 34 cortical ROIs and eight sub-cortical ROIs per hemisphere, plus the brainstem. 

Segmentations were visually checked, then used to construct grey and white matter masks for 

use in network construction and to constrain the tractography output as described below. Using 

tools provided by the FDT package in FSL (http://fsl.fmrib.ox.ac.uk/fsl), the diffusion MRI 

data were pre-processed to reduce systematic imaging distortions and bulk subject motion 
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artefacts by affine registration of all subsequent EP volumes to the first T2-weighted EP 

volume (Jenkinson and Smith, 2001). Skull stripping and brain extraction were performed on 

the registered T2-weighted EP volumes and applied to the mean diffusivity/fractional 

anisotropy (MD/FA) volumes calculated by DTIFIT in each subject (Basser and Pierpaoli, 

1996; Smith, 2002). The neuroanatomical ROIs determined by FreeSurfer were then aligned 

from 3D T1-weighted volume to diffusion space using a cross-modal nonlinear registration 

method. As a first step, linear registration was used to initialize the alignment of each brain-

extracted FA volume to the corresponding FreeSurfer extracted 3D T1-weighted brain volume 

using a mutual information cost function and an affine transform with 12 degrees of freedom 

(Jenkinson and Smith, 2001). Following this initialization, a nonlinear deformation field based 

method (FNIRT) was used to refine local alignment (Andersson et al., 2007). FreeSurfer 

segmentations and anatomical labels were then aligned to diffusion space using nearest 

neighbour interpolation. 

 

Tractography 
 

Whole-brain probabilistic tractography was performed using FSL’s 

BedpostX/ProbTrackX algorithm (Behrens et al., 2007). Probability density functions, which 

describe the uncertainty in the principal directions of water diffusion, were computed using a 

two-fibre model per voxel (Behrens et al., 2007). Twelve major tracts were identified in each 

participant using probabilistic neighbourhood tractography (PNT), as implemented in the 

TractoR package for fibre tracking and analysis (http://www.tractor-mri.org.uk/ (Clayden et 

al., 2011; Muñoz Maniega et al., 2017); PNT is an automatic tract segmentation method that 

has shown good reproducibility (Clayden et al., 2009b). This technique optimizes the choice 

of seed point placement for tractography by estimating the best matching tract from a series 

of candidate tracts generated from a neighbourhood of voxels (typically 7 × 7 × 7) placed 

around a central voxel transferred from standard to native space against a reference tract that 

was derived from a group of healthy volunteers aged 25 to 64 years (Muñoz Maniega et al., 
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2017). The topological tract model was also used to reject any false positive connections, 

thereby significantly improving tract segmentation (Clayden et al., 2009a). The seed point 

best matching each tract to the reference was determined in this manner and probabilistic white 

matter tracts masks were reconstructed by sampling 5000 streamlines. All segmented white 

matter tracts were visually assessed to ensure they were an anatomically accurate 

representation of the fasciculi-of-interest. The resulting tractography masks were applied to 

the MD/FA volumes of each participant; this permitted tract-specific mean values of FA and 

MD, weighted by the connection probability, to be obtained for each tract in each subject. The 

twelve tracts segmented were the genu and splenium of corpus callosum, and bilateral 

cingulum, anterior thalamic radiations (ATR), arcuate, uncinate and inferior longitudinal 

fasciculi.  

 

Structural connectome 
 

Using the probability density functions generated from BedpostX/ProbTractX, 

streamlines were then constructed by sampling from these distributions during a tracking 

process that involved all white matter voxels using 100 Markov Chain Monte Carlo iterations 

with a fixed step size of 0.5 mm between successive points. Tracking was initiated from all 

white matter voxels (Buchanan et al., 2014) in two collinear directions until terminated by the 

following stopping criteria designed to minimize the amount of anatomically implausible 

streamlines: (i) exceeding a curvature threshold of 70 degrees; (ii) entering a voxel with FA 

below 0.1 (Verstraete et al., 2011); (iii) entering an extra-cerebral voxel; (iv) exceeding 200 

mm in length; and (v) exceeding a distance ratio metric of 10. The distance ratio metric (Bullitt 

et al., 2003), excludes implausibly tortuous streamlines. For instance, a streamline with a total 

path length 10 times longer than the distance between end points was considered to be invalid. 

The values of the curvature, anisotropy and distance ratio metric constraints were set 

empirically and informed by visual assessment of the resulting streamlines. 
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Network construction 
 

FA-weighted networks were constructed by recording the mean FA value along 

streamlines connecting all 85 ROI (network node) pairs from the default FreeSurfer cortical 

(Desikan et al., 2006) and subcortical regions. The endpoint of a streamline was considered to 

be the first grey matter ROI encountered when tracking from the seed location. The average 

brain network across the cohort was determined by including those connections which 

occurred in more than 2/3 of the participants at baseline (de Reus and van den Heuvel, 2013). 

This baseline network mask was then propagated to the second wave of connectivity matrices. 

Organizational properties of the different networks were then obtained using the brain 

connectivity toolbox (www.brain-connectivity-toolbox.net). For each FA-weighted 

connectivity matrix for the average network, five global network measures were computed, 

namely mean edge weight (mean value of FA across the network), density (the fraction of 

present connections to possible connections), strength (the average sum of weights per node), 

clustering coefficient (fraction of triangles around a node) and global efficiency (the average 

of the inverse shortest path length). 

 

Polygenic risk score calculation 
 

The majority of participants provided blood samples at the first testing wave (age 70 

years) that were used to extract DNA for the genetic analyses. To measure single-nucleotide 

polymorphisms (SNPs) we used the Illumina 610-Quadv1 whole-genome SNP array; 

measurements were completed at the Wellcome Trust Clinical Research Facility Genetics 

Core, Western General Hospital, Edinburgh (https://www.wtcrf.ed.ac.uk). Stringent quality 

control analyses were applied to the genotype data which resulted in 549692 of the 599011 

SNPs on the Illumina 610 chip being retained in 3511 individuals (2115 females). The sample 

collection, quality control and genotyping process is described in greater detail elsewhere and 

non-European individuals were carefully excluded from the current analysis (Davies et al., 

2011). PGRS summarise the small effects across all SNPs that contribute to the genetic 
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liability of a phenotype (in this case, schizophrenia). The out-of-sample validation of the 

capacity of szPGRS to predict onset of schizophrenia has been reported to explain 24.43% 

(the estimate assumes a population risk of 1%) of the variance in liability (Pardiñas et al., 

2018). szPGRS were created for all individuals with suitable genotype data; only genotypes 

passing stringent quality control were used in analyses. szPGRS were estimated using the 

recent summary data from a GWAS of schizophrenia comprising a meta-analysis of two 

studies (Pardiñas et al., 2018; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, 2014), which included 40675 cases and 64643 controls. szPGRS were estimated 

using the PRSice software package according to previously described protocols (Euesden et 

al., 2015), with linkage disequilibrium and distance thresholds for clumping of r2 = 0.2 and 

within a 250kb window. Five scores were created for each individual using SNPs selected 

according to the significance of their association with the phenotype at nominal p-value 

thresholds of 0.01, 0.05, 0.1, 0.5 and 1.0 (all SNPs). Our primary analyses used scores 

generated from a list of SNPs with a GWAS training set of p ≤ 1.0 threshold as recommended 

previously in order to allow replication by other studies and to maximise the potential 

predictive capacity (Ware et al., 2017). However, results at p ≤  0.1 and p ≤ 0.5 thresholds are 

presented in Appendix III Supplementary Material Tables 3 and 4. Four multidimensional 

scaling factors (estimated from SNP data) were entered into the models as additional 

‘nuisance’ covariates to control for population stratification, along with age. These 

multidimensional scaling factors have been previously identified to be adequate for 

accounting for population structure in this sample (Davies et al., 2011). 

 

Statistical analyses 
 

First, age-related changes for white matter tract MD/FA values and global graph 

theory measures were calculated using linear mixed models for those participants who 

completed both assessments. The package used for the linear mixed models was 'nlme' 

(Pinheiro et al., 2018) in R and standardised betas were reported. Age in days at the time of 
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MRI acquisition and sex were entered as fixed effects and participant as a random effect. 

Moreover, for each connectivity metric, residuals were calculated from a linear regression 

predicting each metric from density (fraction of present connections to possible connections), 

and these were used in all analyses. This is because several global graph theory metrics depend 

on density and comparisons at constant density allow differences related to the topological 

reorganization of links to be assessed longitudinally. The use of graph theory to study network 

topology is a valuable framework while also being a challenging task. For instance, the 

number of nodes (N) or network’s degree (k) will influence the computation of global theory 

metrics (see Brain Connectivity Toolbox for a detailed description of metrics: 

https://sites.google.com/site/bctnet). Therefore, comparing networks with different N or k can 

yield spurious results (Wijk et al., 2010). Instead of restraining all networks to a fixed k 

parameter, we chose to control each subject’s graph theory measure for edge density. 

Therefore, models presented below compute density as a fixed effect for each graph metric. 

This allowed us to compare metrics longitudinally independently of their differences in 

density.  

 

We then estimated a structural equation model (SEM) for each white matter tract 

MD/FA values and global graph theory measures. We estimated a separate model for each 

MRI metric (density-corrected network metric or white matter tract MD/FA value), which 

were set as the dependent variable in each model. Latent change score models (McArdle, 

2009) were used to assess associations of szPGRS with the cross-sectional (baseline level, age 

~73 years) and longitudinal change (73-76 years) in diffusion MRI parameters. Latent scores 

were derived from bilateral white matter tracts. We constrained the loadings for left and right 

tracts across waves to be equal (i.e. the left loadings were equal across waves and independent 

of right loadings) (Persson et al., 2014). For interhemispheric white matter tracts (genu and 

splenium) and graph theory metrics, we used a single indicator model (Gollwitzer et al., 2014). 

Figure 16 shows a simplified diagram of the SEM framework. Within the model, each brain 



139 
 

imaging measure was adjusted for its respective age in days at the time of scanning and sex at 

the manifest level, while szPGRS was adjusted for sex and population stratification 

components. Due to the apparent association between schizophrenia and cardiovascular 

disease (Curkendall et al., 2004), we adjusted the linear mixed models and latent change score 

models for high blood pressure at each time point in order to reject the hypothesis that higher 

cardiovascular risk may contribute to a steeper decline in diffusion MRI parameters over time. 

For each model, we tested the association at the brain baseline level and change with szPGRS. 

SEM was performed using the package 'lavaan' (Rosseel, 2012) in R with full-information 

maximum likelihood estimation to use all data available. 

 

As an additional analysis, we examined the hypothesis that higher szPGRS was 

associated with a steeper decline in cognition via change in white matter structure. We used 

SEM in the ‘lavaan’ package (Rosseel, 2012) with full-information maximum likelihood 

estimation to derived a latent score of general fluid intelligence (gf) for each wave from six 

non-verbal tests of cognitive function from the Weschler Adult Intelligence Scale IIIUK 

(Wechsler, 1955): matrix reasoning (non-verbal reasoning), block design (constructional 

ability), symbol search and digit symbol (processing speed), letter number sequencing and 

digit span backwards (working memory). Within the model, each cognitive test was adjusted 

for age in days at the time of assessment and sex at the manifest level. We constrained the 

loadings for each individual raw score across waves (i.e. equal loadings for matrix reasoning 

at baseline and follow-up). Beyond the analyses of szPGRS to the mediator (A path), to test 

whether the mediation (change from path C to C’) was statistically significant (pFDR < 0.05), 

we tested whether the direct path of szPGRS to gf (path C) and the indirect path from the 

mediator to gf (path B) were significant. Figure 17 shows a simplified diagram of the model 

that was used to examine this hypothesis. All significance (p) values (α = 0.05) were corrected 

for multiple comparisons using false discovery rate (FDR, pFDR) (Benjamini and Hochberg, 

1995).  
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Figure 16. Diagram of the structural equation model (SEM) for white matter connectivity. A 

separate model was applied to each white matter tract (FA and MD) and each graph theory 

measure. Water diffusion and graph theory metrics were measured at baseline (age 73) and 

follow-up (age 76). From each individual bilateral white matter tract, a latent score was 

calculated for FA and MD. For callosal tracts and graph theory metrics a latent score was 

derived after the manifest variable was corrected for scaled age at scanning and sex. From 

these models, a latent change score variable was calculated for each model (D Connectivity). 

Relation between baseline FA/MD/graph theory measures and polygenic risk score for 

schizophrenia (szPGRS) is indicated by path A; path B represents the association between 

change in white matter FA/MD/graph theory measures and szPGRS. For all bilateral tracts, 

we further constrained equality of the factor loading of the left hemisphere (c). szPGRS was 
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corrected for sex and population stratification while water diffusion MRI and graph theory 

measures at the manifest level were corrected for scaled age at scanning and sex at each time 

point within the model (paths not shown). Note that graph theory metrics were corrected for 

density outside the SEM model. 

 

 

 

Figure 17. Diagram of the mediation model. The SEM model for white matter connectivity 

has been already described in Figure 16. From each individual cognitive test, a latent score 

was calculated for general fluid intelligence (gf ). From this model, a latent change score 

variable was calculated (D gf). Relation between polygenic risk score for schizophrenia 

(szPGRS) and change in white matter is indicated by path A; path B represents the association 
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between change in white matter and change in gf. Path C represents the association between 

szPGRS and change in gf. C’ denotes the effect of szPGRS on change in gf when change in 

white matter is taken into account in the model. 

 

6.5.  Results 

Descriptive statistics, valid sample sizes after quality controls and longitudinal change 

for each brain imaging measure are provided in Tables 11 and 12. At baseline, seven hundred 

and thirty-one subjects met the inclusion criteria with a mean age at MRI scanning of 72.73 

(SD 0.72) years. At follow-up, four hundred eighty-eight subjects with a mean age at MRI of 

76.43 (SD 0.65) years were scanned. Baseline data (age 73) on the structural connectome have 

already been published elsewhere (Wiseman et al., 2018). Descriptive statistics of cognitive 

tests and health conditions are presented in Appendix III Supplementary Material Tables 1 and 

2. 

 

Table 11. Demographic information across both waves (age 73 and 76 years).  

 

 

 

 

 

 

 

 

 

 

 

Note: SD: Standard deviation. 

  n Age 73 n Age 76 
Age in years (SD) 731 72.73 (0.72) 488 76.43 (0.65) 
Females (%) 731 46.92 488 46.72 
szPGRS (SD) 640 -6.4 (0.2)   
Diabetes  10.71%  12.03% 
Hypertension  48.81%  54.22% 
High cholesterol  41.52%  47.68% 
History of cardiovascular disease  27.23%  33.34% 
Cognition     

Matrix reasoning (SD) 690 13.37 (4.90) 574 13.16 (5.00) 
letter-number sequencing (SD) 690 10.98 (3.02) 573 10.49 (2.98) 
Block Design (SD) 690 34.07 (10.07) 577 32.43 (10.15) 
Symbol search (SD) 689 24.63 (6.19) 573 24.53 (6.58) 
Digit symbol (SD) 689 56.24 (12.27) 570 53.73 (12.78) 
Digit span backwards (SD) 692 7.84 (2.33) 581 7.76 (2.36) 
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Table 12. Descriptive statistics for bilaterally averaged white matter water diffusion MRI 

parameters and graph theory metrics across both waves (age 73 and 76 years).  
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Longitudinal Changes in Brain Structural Connectivity 
 
White matter FA 
 

Results of the linear mixed models for FA are presented in Table 12 and Figure 18.A. 

Significant longitudinal reductions in FA were found for the splenium (β = -0.056, SE = 0.021, 

pFDR = 0.019) and arcuate fasciculus (β = -0.062, SE = 0.016, pFDR < 0.001). The genu (β = -

0.027, SE = 0.024, p = 0.280), cingulum (β = -0.014, SE = 0.023, p = 0.541) and inferior 

longitudinal fasciculus (β = -0.018, SE = 0.016, p = 0.420) showed a non-significant decline 

over time (pFDR > 0.05). Two white matter tracts showed significant longitudinal increases in 

FA, specifically the anterior thalamic radiations (ATR; β = 0.056, SE = 0.022, pFDR = 0.019) 

and uncinate fasciculus (β = 0.117, SE = 0.024, pFDR < 0.001). Sex had a significant effect on 

the FA of the splenium (βsex = 0.111, SE = 0.036, pFDR = 0.007), cingulum (βsex = -0.093, SE = 

0.035, pFDR = 0.019) and inferior longitudinal fasciculus (βsex = 0.142, SE = 0.035, pFDR < 

0.001). Positive effects (βsex) represent higher FA values in females compared to males, 

whereas negative effects represent higher FA values in males compared to females. As an 

additional analysis we tested for blood pressure effects; however, we did not find any 

significant effect of higher blood pressure on the longitudinal change of FA for any white 

matter tract (pFDR > 0.05).  

 

White matter MD 
 

Results of the linear mixed models for MD are presented in Table 12 and Figure 18.B. 

Significant longitudinal increases in MD were found for genu (β = 0.333, SE=0.023, pFDR < 

0.001), splenium (β = 0.171, SE=0.023, pFDR < 0.001), arcuate (β = 0.377, SE=0.014, pFDR < 

0.001), ATR (β = 0.361, SE = 0.021, pFDR < 0.001), cingulum (β = 0.452, SE = 0.020, pFDR < 

0.001), uncinate (β = 0.345, SE = 0.019, pFDR < 0.001) and inferior longitudinal fasciculus (β 

= 0.279, SE = 0.023, pFDR < 0.001). Sex had a significant effect on the MD of the genu (βsex = 

-0.117, SE = 0.033, pFDR = 0.001), arcuate (βsex = 0.116, SE = 0.036, pFDR = 0.003), cingulum 

(βsex = 0.127, SE = 0.032, pFDR < 0.001) and inferior longitudinal fasciculus (βsex = -0.079, SE 



145 
 

= 0.033, pFDR = 0.027). Positive effects (βsex) represent higher MD values in females compared 

to males, whereas negative effects represent higher MD values in males compared to females. 

Higher blood pressure was not significantly associated with longitudinal change in MD for 

any white matter tract (pFDR > 0.05).  
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Graph theory metrics 
 

Results of the linear mixed models for graph theory are presented in Figure 19 and 

Table 12. There were longitudinal decreases in most graph theory metrics across all subjects. 

For instance, mean edge weight (β = -0.039, SE = 0.017, pFDR = 0.048) and strength (β = -

0.027, SE = 0.011, pFDR = 0.048) declined significantly between waves. Global efficiency (β 

= -0.027, SE=0.016, pFDR = 0.120) and clustering coefficient showed no significant changes 

over time (β = -0.001, SE=0.016, pFDR = 0.935). Sex did not have any significant effect on 

graph theory metrics (pFDR > 0.05). 

 

Figure 19 Trajectories of graph theory metrics between age 73 and 76 years. Plotted are 

residuals for each participant from the regression of the graph metric as the dependent variable 

and density and sex as the predictor variables. The x-axis represents age in days at MRI 

scanning. The black line represents linear regression. Beta: standardised estimates from the 

linear mixed models. Asterisks represent significance from the linear mixed models (pFDR < 

0.05). 
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Latent Change Score Modelling 
 

Results of the SEM analyses are shown in Table 13. The models examining 

associations of szPGRS with white matter water diffusion MRI parameters fit the data well 

(white matter tract FA: RMSEA < 0.058, CFI > 0.940, SRMR < 0.030 and white matter tract 

MD: RMSEA < 0.075, CFI > 0.923, SRMR < 0.039). Associations between FA and szPGRS 

were non-significant for level or change in any tract (pFDR > 0.05). Associations between MD 

and szPGRS were non-significant for level (pFDR > 0.05). However, change in MD showed 

significant associations with szPGRS for the splenium (r = 0.132, pFDR = 0.040), arcuate (r = 

0.291, pFDR = 0.040), ATR (r = 0.215, pFDR = 0.040) and cingulum (r = 0.165, pFDR = 0.040). 

Scatterplots of the relationship between the percentage of change in MD from significant 

associations in the SEM models (from 73 years to 76 years) and szPGRS at p ≤ 1.0 are 

presented in Appendix III Supplementary Material Figure 1. Results of the SEM analyses for 

FA and MD using szPGRS at P ≤ 0.1 and 0.5 thresholds are presented in Appendix III 

Supplementary Material Tables 3 and 4. 

 

Models examining associations between the level and change of szPGRS and graph 

theory metrics showed excellent fit to the data (RMSEA < 0.029, CFI > 0.985, SRMR < 

0.021). There were no significant associations between szPGRS and the baseline level of 

graph theoretical metrics (r < 0.042, pFDR > 0.05) or with their 3-year change (r < -0.039, 

pFDR > 0.05; Table 13). The addition of blood pressure as a covariate did not have any 

significant effect on the results of any of the SEM models described above (pFDR > 0.05). 

Results of the SEM analyses for graph theory measures using szPGRS at P ≤ 0.1 and 0.5 

thresholds are presented in Appendix III Supplementary Material Tables 3 and 4. 
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Table 13. Structural equation modelling results. Standardised estimates from the associations 

between polygenic risk score for schizophrenia (szPGRS) at a threshold of P ≤ 1.0 and level 

and change in connectivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Level (age 73) Change (age 73 to 76) 

  r SE pFDR  r SE pFDR  

FA 
      

Genu 0.039 0.040 0.674 -0.042 0.049 0.477 

Splenium -0.009 0.058 0.930 -0.082 0.063 0.266 

Arcuate 0.021 0.003 0.930 -0.073 0.002 0.477 

ATR 0.019 < 0.001 0.930 -0.135 0.001 0.266 

Cingulum 0.125 0.004 0.147 -0.268 0.004 0.266 

Uncinate 0.061 0.002 0.674 -0.074 0.003 0.477 

ILF -0.005 0.003 0.930 -0.156 0.004 0.477 

       
MD 

      
Genu 0.003 0.069 0.946 0.007 0.093 0.875 

Splenium -0.037 0.112 0.821 0.132 0.158 0.040* 

Arcuate 0.007 < 0.001 0.946 0.291 < 0.001 0.040* 

ATR -0.035 < 0.001 0.830 0.215 0.001 0.040* 

Cingulum -0.118 < 0.001 0.098 0.165 < 0.001 0.040* 

Uncinate -0.052 < 0.001 0.821 0.024 0.001 0.704 

ILF -0.032 0.007 0.830 0.304 0.011 0.434 

       
Connectome 

      
Mean edge weight 0.042 0.002 0.369 -0.039 0.001 0.551 

Strength 0.037 0.038 0.369 -0.035 0.033 0.551 

Global efficiency 0.039 0.001 0.369 -0.035 0.001 0.551 

Clustering coefficient 0.040 0.001 0.369 -0.034 0.001 0.551 

 
Note: SE: Standard error, FA: fractional anisotropy, MD: mean diffusivity, ATR: anterior 

thalamic radiations, ILF: inferior longitudinal fasciculus, p-values are corrected for multiple 

comparison using FDR. Asterisks represent significance (pFDR < 0.05). 
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Associations between extracted slopes from the SEM models and baseline levels for FA, MD 

and graph theory metrics are presented in Figure 20. These results illustrate that changes are 

highly coupled within diffusion MRI parameters and graph theory measures for level (age 73) 

and longitudinal change (age 73 to age 76) for structural brain connectivity in older age. 

Diagonal coefficients show the associations between level and change for structural 

connectivity and indicates that participants with lower (‘healthier’) MD values show greater 

increases in MD, and those with higher (‘healthier’) FA values show steeper decreases in FA. 

Similarly, those with higher graph theoretical metrics at baseline showed steeper declines over 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Heatmap illustrating Spearman’s correlation coefficients for baseline level (age 73 

years old, lower diagonal) and change (73 to 76 years old, upper diagonal) in white matter 

diffusion parameters and graph theory metrics. Diagonal coefficients represent the association 

between baseline and change for each metric derived from the SEM models described in 

Figure 16. Individual slopes for change were derived from the SEM models. Blank cells 
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denote those associations that did not survive multiple comparisons correction (pFDR < 0.05). 

ATR = Anterior thalamic radiations; ILF = Inferior longitudinal fasciculus.  

 

Mediation analysis 

We aimed to identify mediation candidates that were consistent with the hypothesis 

that a higher genetic predisposition to schizophrenia is related to lower cognitive functions 

through the disruption of structural brain connectivity (for a detailed description of the model 

see Figure 17). First of all, a model examining associations between szPGRS and gf was 

computed which showed good fit to the data (RMSEA = 0.059, CFI = 0.935, SRMR = 0.049). 

There was a significant association between szPGRS and the baseline level of gf (r = -0.145, 

p = 0.001) but not with 3-year change in gf (r = 0.003, p = 0.962). Full results of associations 

between szPGRS and in baseline levels and changes gf and MD are presented in Appendix III 

Supplementary Material Tables 5. Given we did not find any significant associations between 

szPGRS and level/change in gf and MD, there were no plausible candidates for a mediation 

model.  

 

6.6. Discussion 

The present study found significant associations between a greater genetic risk for 

schizophrenia and longitudinal increases in MD in the splenium, arcuate, ATR and cingulum 

fasciculi over 3 years using the largest schizophrenia GWAS to date (Pardiñas et al., 2018) 

and an improved reference tract segmentation analysis (Muñoz Maniega et al., 2017). We did 

not find any significant associations between szPGRS and change in FA or graph theoretical 

metrics. The results of this investigation show that there were significant differences in the 

microstructure of most white matter tracts studied here and network topology over a short 

period of time in this older age cohort. Over a three-year-old period we found significant 

differences in white matter microstructure for a range of major white matter tracts; for some 
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of these tracts we reported significant age-related decreases in FA and increases in all white 

matter tract’s MD as well as reductions in all graph theory measures.  

Numerous studies have shown consistent structural brain alterations in patients with 

schizophrenia. These include reductions in both grey and white matter compared to healthy 

controls. However, cross-sectional studies analysing the effect of szPGRS on brain structure 

in non-clinical samples have not been conclusive (Van der Auwera et al., 2017, 2015). Ritchie 

et al. (2017) showed a significant positive longitudinal association between szPGRS - derived 

from a previous GWAS- and 3-year change in a general factor of tract-averaged MD in the 

sample used in the present study. However, a limitation of generating a general factor from 

water diffusion MRI parameters measured in multiple tracts is that it describes commonalities 

among white matter tracts while excluding tract-specific individualities. Our findings indicate 

that the association of szPGRS with white matter MD is strongly driven by the splenium, 

arcuate, ATR and cingulum, all tracts previously implicated in schizophrenia. Structural 

abnormalities in the corpus callosum in schizophrenia have been well documented affecting 

interhemispheric communication in patients (Foong et al., 2000; Woodruff et al., 1995). The 

arcuate fasciculus as an associative fibre connects the frontal cortex with the temporal and 

parietal cortices and may underlie language processing anomalies in the disorder (Abdul-

Rahman et al., 2012). The ATR serves as a link between the thalamic nuclei and the prefrontal 

cortex, and dysfunction of the thalamus has been associated with the pathophysiology of 

schizophrenia, particularly with cognitive deficits and negative symptoms (Mamah et al., 

2010).  The cingulum is the most prominent white matter tract in the limbic system and has 

been previously reported to be impaired in schizophrenia (Fujiwara et al., 2007). 

 

To our knowledge, there are no studies that have investigated the association between 

the structural connectome and genetic risk for schizophrenia; the fact that we did not find a 

significant effect of szPGRS on either the baseline level or change in structural brain 

connectivity (as measured by graph theoretical metrics) suggests that common genetic variants 
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for schizophrenia and topological brain characteristics may not share a direct genetic 

mechanism. Nevertheless, szPGRS evinced non-significant detrimental relations with all brain 

structural metrics. The fact that the LBC1936 comprises relatively healthy, community-

dwelling older adults, none of whom have schizophrenia, coupled with the relatively brief (3 

year) period of follow-up may have limited our ability to detect slighter effects. Interestingly, 

a previous study on targeted genetic analysis showed that differentially expressed genes in a 

well-characterised rat model of vascular white matter disease were associated with white 

matter hyperintensities (which exhibit elevated MD and reduced FA) in the LBC1936 and 

these included genes associated with schizophrenia and neurodevelopmental intellectual 

disabilities (Lopez et al., 2015). These results suggest that genetic risk for schizophrenia may 

have a role in age-related changes in brain structural connectivity, even among individuals 

who are not diagnosed with schizophrenia. Previous studies have suggested the 

conceptualization of schizophrenia as a syndrome of accelerated ageing (Kirkpatrick et al., 

2008) indicating, for instance, significant declines in white matter coherence more than twice 

that of age-matched controls (Kochunov et al., 2013), with this reduction being linear from 

early adulthood and steeper as a function of increasing age (Cropley et al., 2017). Therefore, 

it may be possible that higher szPGRS confers certain risks for accelerated white matter ageing 

in healthy older participants. It is also likely that other factors such as gene-gene interactions, 

rare variants, and gene-environment interplay may help to explain the association between 

risk variants for schizophrenia and brain structural impairments (Van der Auwera et al., 2017).   

 

Some white matter tracts showed significant reductions and increases in FA 

(standardised r from 0.056 to -0.062) and all showed increases in MD (standardised r from 

0.171 to 0.452) as a function of increasing age. These results are in line with those of previous 

studies where white matter microstructure declines with age (reviewed in Bennett & Madden, 

2014). For instance, we found that MD of more frontal white matter tracts was more affected 
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while more occipital tracts were more resilient to the effects of age (see Table 12). This is 

consistent with the hypothesis that ageing has region-specific effects, in particular the 

existence of an anterior-posterior gradient of age-related decline whereby tracts that are the 

last to develop are the most vulnerable to the ageing process (Bennett and Madden, 2014; Cox 

et al., 2016; Qiu et al., 2015). This pattern could be a consequence of the finding that later 

developed tracts are more thinly myelinated and therefore more susceptible to decline 

(Bartzokis et al., 2004). ATR and uncinate fasciculi, conversely, showed an increase in FA 

with age in this study. White matter fibres within these tracts are known to have a complex 

architecture due to the presence of a large number of crossing fibres (Niida et al., 2013; Olson 

et al., 2015). Since FA is highly dependent on white matter architecture (Pierpaoli et al., 1996), 

it is possible that a loss of white matter fibres might lead to an increase in FA if the remaining 

fibres are more uniformly orientated than they were previously (Jones et al., 2006). Therefore, 

the observed increase of FA in the ATR and uncinate fasciculi may reflect the overall effect 

of loss of crossing fibres resulting from age-related neurodegeneration. This combination of 

observations provides some support for the conceptual premise that diffusion MRI parameters 

are significantly associated with cognitive decline in ageing cohorts (Madden et al., 2012) as 

well as in patients diagnosed with schizophrenia (Alloza et al., 2016; Kochunov et al., 2017).  

 

This study found that those participants with ‘healthier’ white matter at baseline 

showed a steeper decline over time (see Figure 20). This same pattern for other brain imaging 

parameters has previously been reported in this sample and has been suggested to represent 

the Law of Initial Value and regression to the mean (Ritchie et al., 2015; Wilder, 1957), 

indicating that there may be more neurobiological processes that can affect those with 

‘healthier’ white matter at baseline than those with a less healthy white matter. Given that 

there were no significant associations between szPGRS and baseline white matter measures 

in this study, it is perfectly reasonable for the associations between szPGRS and change in 
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MD, and between baseline level of MD and change in MD to be non-coincidental phenomena 

– that is, for the common variance between szPGRS and change, and between baseline and 

change, to be mutually exclusive.  

 

As an additional analysis we tested whether change in MD would mediate the 

association between szPGRS and change in fluid intelligence. We found significant negative 

associations between baseline levels of MD in the splenium, arcuate and ATR and baseline 

levels of gf as well as a significant negative association between szPGRS and baseline gf. These 

results indicate that higher baseline gf is associated with a ‘healthier’ baseline white matter 

microstructure in this cohort. However, we did not find an association between szPGRS and 

change in gf and thus, the data did not support the hypothesis that these candidates were 

plausible for a mediation model. It is likely that the relatively brief (3 year) period of follow-

up may have limited our ability to detect modest effects, indicating that longer follow-ups and 

potentially the study of other factors that contribute to cognitive decline in older age, may be 

required. Ritchie et al. (2015) reported significant associations between change in FA and 

change in fluid intelligence, indicating that MD of the white matter tracts studied here may be 

more pertinent to other cognitive functions.  Further work is required to investigate this 

hypothesis. Therefore, these data show that szPGRS is related to some selective MD changes 

over time, but not to cognitive decline over this same period. 

 

This study is one of the first to examine the ageing of the human structural 

connectome longitudinally from healthy older participants. By taking a longitudinal approach, 

our results shed light on age-related brain structural decline by minimizing problems inherent 

to cross-sectional mediation methods (Hofer and Sliwinski, 2001; Lindenberger et al., 2011) 

while allowing age-related changes and associations with genetic risk factors to be 
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investigated independently of age. The current study found subtle decreases in all graph theory 

metrics over a period of three years. Mean edge weight and strength decreased significantly 

over time while decreases in global efficiency and clustering coefficient did not reach 

significance. Reductions in graph theory measures, which describe topological aspects of the 

brain’s networks were found to co-exist with microstructural declines in white matter tracts 

over time as shown in Figure 20. These results are consistent with the modest pre-existent 

literature on structural connectivity in ageing populations (Damoiseaux, 2017). In a cross-

sectional study, Gong et al. (2009) reported lower overall connectivity and local efficiency as 

a function of age, but no differences in global efficiency. Zhao et al. (2015) using streamline 

density as a weighted measure, found an inverted U-shape for strength and global efficiency 

and a U-shape trajectory for clustering coefficient across the lifespan. This latter finding may 

be able to explain the nominal change in clustering coefficient in our study. Moreover, 

functional and structural connectivity studies seem to show closely related differences 

associated with age (Betzel et al., 2014; Fjell et al., 2016; Zimmermann et al., 2016).  

 

6.7. Limitations 

The generalisability of these results is subject to certain limitations. For instance, this 

study only covered a period of three years, which may not be sufficient to capture the effect 

of more subtle age-related changes. Measurement across only two occasions precludes 

consideration on non-linear trends or accelerating changes as a function of genetic liability to 

schizophrenia. Likewise, as sample sizes increases for GWAS better predictive power will be 

achieved by szPGRS. The choice of the most liberal SNP inclusion threshold (all SNPs, p = 

1.00) may have affected the results presented here; however, this threshold has been 

recommended previously in order to allow replication by other studies and to maximise the 

potential predictive capacity (Ware et al., 2017). Furthermore, we present results for the SEM 
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analysis at p ≤  0.1 and p ≤ 0.5 szPGRS thresholds in Appendix III Supplementary Material 

Tables 3 and 4. 

 

For tractography, we extracted water diffusivity MRI parameters from twelve major 

white matter tracts, overlooking the rest of the connections. However, these tracts were well-

characterised and reliably measured as previously reported (Bastin et al., 2010; Muñoz 

Maniega et al., 2017); moreover, we took account of all these connections by calculating 

whole-brain mean edge weight to include mean FA of all connections identified in the 

structural connectome. We also acknowledge the possibility that tract measures of FA and 

MD could potentially be affected by partial volume effects (pve) of cerebrospinal fluid (CSF). 

However, in the current analysis we segmented the tracts of interest using probabilistic 

neighbourhood tractography, which uses single seed point tractography, followed up by a 

streamline rejection criterion where individual streamlines are retained or rejected based on 

their probabilities under the topology model (Clayden et al., 2009a). This results in a tract 

made up from a ‘core’ of the streamlines that follow the expected tract topology, which is 

potentially less sensitive to pve than other tractography methods which segment larger white 

matter regions. In addition, we calculated tract-averaged MD and FA values weighted by the 

connection probability, which is usually lower at the edges of the tract, with the result that 

white matter voxels closer to CSF structures would have lower contribution to the mean. 

 

The global metrics calculated across the entire structural connectome cannot address 

the possibility that specific networks (i.e. subsets of nodes or edges) show age-related changes 

that are more sensitive to szPGRS. In addition, network comparability issues may arise as a 

result of differing density between networks since the number of nodes or network’s degree 

influences the computation of global theory metrics (see Brain Connectivity Toolbox for a 

detailed description of metrics: https://sites.google.com/site/bctnet). Therefore, we chose to 

control each subject’s graph theory measure for edge density. The validity of the correction 
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of density remains an issue in need of further exploration. For instance, correcting for density 

may affect regression coefficients due to the apparent multicollinearity between graph theory 

metrics. Further limitations inherent to longitudinal studies include attrition and loss of follow-

up. However, we implemented maximum likelihood estimation methods that reduce missing 

data bias derived from longitudinal attrition. Finally, we implemented latent change score 

models across all parameters, including those in which we only had a single indicator (graph 

theoretical and callosal metrics). We did so to maintain comparability of analytic approach 

and results across all analyses, but the single indicator change score models should essentially 

be considered difference scores because they are unable to parse out error variance (Gollwitzer 

et al., 2014).  

 

Finally, further research is required to examine whether any of the associations 

between water diffusion metrics and szPGRS are sex-specific, or alternatively show similar 

patterns in males and females. Recently, a growing number of studies have suggested a 

reduced leftward structural asymmetry in schizophrenia compared to healthy controls (Ribolsi 

et al., 2014), hence in this study we did not constrain the loadings to be equal for the left and 

right white matter tracts in the SEM analysis. However, further research is needed to address 

in greater detail this hypothesis.  

 
 
Conclusion 
 

The present longitudinal study was designed to determine the association of genetic 

risk for schizophrenia with brain structure. We found a significant association between higher 

szPGRS and increasing MD for the splenium, arcuate, ATR and cingulum, consistent with the 

hypothesis that higher genetic liability for schizophrenia is related to accelerated brain ageing 

among relatively healthy older adults. We also present some valuable data on the nature of 

brain connectivity changes in older age. Over a three-year-old period we found significant 
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differences in white matter microstructure for a range of major white matter tracts; for some 

of these tracts we reported significant age-related decreases in FA and increases in all white 

matter tract’s MD. This decline in white matter microstructure was accompanied by 

disruptions at the topological level. All graph theory metrics showed subtle decreases over 

this narrow timeframe. However, only mean edge weight and strength reached our specified 

significance level. In this study we also examined the hypothesis that higher szPGRS is 

associated with a steeper decline in cognition via change in white matter structure in older 

age. Significant negative associations between baseline levels of general fluid intelligence and 

szPGRS and baseline levels of MD in the splenium, arcuate and ATR were found. Taken 

together, these findings suggest subtle age-related declines in white matter connectivity which 

take place over a relatively short period of time in older age with szPGRS conferring some 

risk for these changes in brain structure. 

 

6.8. Acknowledgements 

This work was funded by Age UK (Disconnected Mind project 

http://www.disconnectedmind.ed.ac.uk) and the UK Medical Research Council 

(MR/M01311/1 and G1001245/96077). This study was conducted in the Centre of Cognitive 

Ageing and Cognitive Epidemiology (CCACE; http://www.ccace.ed.ac.uk), part of the cross-

council Lifelong Health and Wellbeing Initiative (MR/K026992/1). The work was also 

supported by the US National Institutes of Health (National Institute on Aging; 

1R01AG054628-01A1), the Scottish Funding Council through the Scottish Imaging Network, 

a Platform for Scientific Excellence (SINAPSE; http://www.sinapse.ac.uk) and the Row Fogo 

Charitable Trust. Brain imaging was performed in the Brain Research Imaging Centre (BRIC; 

http://www.bric.ed.ac.uk). We thank the Lothian Birth Cohort 1936 participants who took part 

in this study, the radiographers at BRIC, and LBC1936 team research associates who assisted 



161 
 

with data collection. The authors report no real or potential conflicts of interest concerning 

this work. 

 

6.9. Chapter discussion 

This study found significant associations between higher genetic risk for 

schizophrenia and greater decline in white matter microstructure in a sample of healthy elderly 

participants; consistent with the hypothesis that higher genetic liability for schizophrenia is 

related to accelerated brain ageing among relatively healthy older adults. Moreover, this 

chapter offers valuable data in regard to longitudinal trajectories of white matter connectivity 

and is one of the first studies investigating the longitudinal change in graph theory metrics in 

older age. 
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Chapter 7 Neurostructural properties of the salience 

network and polygenic risk scores for schizophrenia 

in UK Biobank 
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7.1.  Overview 

This chapter focuses on the investigation of the neurostructural properties of the 

salience network in a large sample of healthy participants. Functional and structural MRI 

studies of the salience network have consistently reported impairments in schizophrenia. From 

a connectome perspective, a mask containing all nodes implicated in the salience network was 

derived and the FA of the connecting pathways between nodes was computed. Therefore, the 

aim of this chapter was to analyse the potential associations between genetic risk for 

schizophrenia and white matter FA and grey matter volume and thickness of the nodes within 

this network. We hypothesised that higher genetic risk for schizophrenia would be associated 

with less ‘healthy’ brain structure (lower FA in connecting pathways and lower grey matter 

volume/thickness). Moreover, we sought to investigate whether the grey or white matter 

components of this network would mediate the relationship between genetic risk for 

schizophrenia and psychotic symptoms.  

This study was conceived by CA, SRC and MEB. CA derived the networks, analysed 

the data and wrote the manuscript. SRC and MEB were the main supervisors of this project 

with co-supervision provided by HCW and SML. SRC and MEB derived the connectivity 

matrices from structural MRI data provided by UKBiobank group. MBC aided with the 

imaging analysis. JG created the polygenic risk scores. 

 

Citation: Alloza, C., Blesa Cábez, M., Bastin, M.E., Buchanan, C., Gibson, J., Whalley, H.C., 

Cox, S.R, Lawrie, S.M. Psychotic-like experiences, polygenic risk scores for schizophrenia 

and structural properties of the salience, default mode and central-executive networks in 

healthy participants from UK Biobank (in preparation). 
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7.2. Introduction 

Schizophrenia is a highly heritable neuropsychiatric disorder with a lifetime 

prevalence around 1%, being placed as one of the leading causes of disability worldwide 

(Gurung and Prata, 2015). Schizophrenia has a multiple and varied phenotypic expression 

which hinders an adequate definition and thus, the lack of appropriate clinical descriptions 

that relates to the underlying pathophysiology impedes an improved treatment or prognosis 

for the patients; and thus, increasing effort is being directed to define an adequate biologically 

construct of the disorder. Patients usually present with a range of positive and negative 

symptoms that may be accompanied by cognitive impairments. Positive symptoms include 

delusions, hallucinations, and disorganised thinking and while not in a consistent manner, its 

severity has been linked to impaired brain structure. From the early descriptions by Bleuler 

(1911-1950) and subsequently by Friston and Frith (1995), the study of schizophrenia has 

been directed towards its conceptualization as a “dysconnection syndrome”, suggesting that 

the disorder may be understood in terms of cognition and pathophysiology as a brain 

integration failure (Friston, 1998). Neuroimaging studies have supported this hypothesis by 

reporting multiple structural connectivity impairments with specific brain networks being 

implicated in schizophrenia.  

 

The human brain consists of several distinct, interactive networks. In this context, the 

salience network is a system involved in the identification of biological and behaviourally 

relevant stimuli and the subsequent coordination of neural resources to guide flexible 

behaviour (Menon, 2015; Uddin, 2015). This network has been identified through resting state 

fMRI studies (Seeley et al., 2007; Sridharan et al., 2008), involving mainly the cortical regions 

of the insula and the anterior cingulate cortex and limbic areas of the amygdala, thalamus, 

ventral striatum, and substantia nigra. Further evidence comes from DTI studies which have 
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identified white matter tracts connecting the insula and the anterior cingulate cortex by 

performing deterministic tractography between these two nodes (Uddin et al., 2011; van den 

Heuvel et al., 2009a). However, the precise pathways connecting cortical and subcortical 

regions within the salience network have so far only been described in non-human primates 

(Mesulam and Mufson, 1982; Nieuwenhuys, 2012; Schmahmann and Pandya, 2009). Recent 

structural and functional studies have suggested that impairments within the salience network 

are a key feature of many neuropsychiatric diseases; with aberrant intrinsic functional 

connectivity of the salience network in schizophrenia (Manoliu et al., 2014; Orliac et al., 2013) 

and in individuals at risk for psychosis (Wotruba et al., 2014). In addition, cortical thickness 

and white matter have been proposed as possible endophenotypes of schizophrenia due to their 

high heritability (Gogtay et al., 2007; Goldman et al., 2009; Jahanshad et al., 2013; Kochunov 

et al., 2010; Winkler et al., 2010). 

 

Schizophrenia is both highly heritable and polygenic, with many common alleles of 

small effect, and increasing numbers of genome-wide significant loci have been identified as 

sample sizes increase (Hilker et al., 2018; International Schizophrenia Consortium et al., 2009; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). One of the 

largest schizophrenia genome-wide association studies  (GWAS) performed to date included 

36989 cases and 113075 controls; it identified 108 independent genome-wide significant 

single nucleotide polymorphisms (SNPs) (P < 5 ×10-8) associated with a diagnosis of 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). It is further noteworthy that summary statistics from large-scale GWAS allow the 

degree of genetic liability for a heritable trait (in this case, schizophrenia) to be estimated in 

healthy subjects outside the population in which the original GWAS was conducted (Van der 

Auwera et al., 2017, 2015). 
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Nevertheless, thus far, only a small number of studies have analysed the relationship 

between polygenic risk score for schizophrenia (szPGRS) and neuroimaging biomarkers in 

healthy and patient samples (Alloza et al., 2018, 2017; Birnbaum and Weinberger, 2013; 

McIntosh et al., 2013; Ritchie et al., 2017; Van der Auwera et al., 2015; Whalley et al., 2015b). 

All these studies used a previous GWAS (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014), while a previous study from our centre (Alloza et al., 2018),3 

the largest GWAS currently available (Pardiñas et al., 2018). Even though the PGRS predictive 

power is principally driven by the number of participants in the originating GWAS, it is also 

true that sufficiently large samples in the ‘test’ sample are also required in order to more 

reliably detect the likely modest effect sizes.  

Thus, in this paper, we investigated the hypothesis that szPGRS relates to the 

neuroanatomy of the salience network by mapping the trajectories of water diffusion MRI 

parameters (using fractional anisotropy (FA)), grey matter thickness and volume of the regions 

involved in this network in a large sample of healthy participants from UK Biobank (N = 

1789). We used a novel approach based on ROI-ROI analysis (derived from connectome 

processing) which allows a much finer-grained network approach than using other approaches 

to quantifying white matter connectivity without specific linkage to cortical or subcortical 

regions. 

7.3. Methods 

Participants 
 

UK Biobank (http://www.ukbiobank.ac.uk/) comprises around 500,000 community-

dwelling participants recruited from across Great Britain between 2006 and 2014 (Allen et al. 

2012; Collins 2012; Miller et al., 2016). A subset of the participants who were part of the 

initial recruitment began attending for head MRI scanning. MRI and genetic data from 1789  

                                                
3 See Chapter 6 for full results of this analysis. 
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participants were available for the present study (mean age = 62.59 years, SD = 7.59, range = 

45.42 – 78), collected at an average of around 4 years after the initial visit, and completed on 

an MRI scanner in Manchester, UK (all data presented in this analysis were collected on the 

same scanner). There were 789 females (mean age = 62.21, years, SD = 7.45, range = 45.58 

to 78) and 1000 males (mean age = 62.90 years, SD = 7.68, range = 45.42 to 77.83). UK 

Biobank received ethical approval from the Research Ethics Committee (reference 

11/NW/0382). The present analyses were conducted as part of UK Biobank application 16124. 

All participants provided informed consent to participate. Further information on the consent 

procedure can be found here: http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id = 200. 

 

Scan Acquisition 
 

Full details of the image acquisition and processing can be found on the UK Biobank 

website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367), Brain Imaging 

Documentation (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977) and in Miller et al. 

(2016). MRI data for all participants were acquired on a single Siemens Skyra 3 T scanner. 

Briefly, the acquired 3D MPRAGE T1-weighted volumes were preprocessed and analyzed 

using FSL tools (http://www.fmrib.ox.ac.uk/fsl) by the UK Biobank brain imaging team. This 

included a raw, de-faced T1-weighted volume, a reduced field-of-view (FoV) T1-weighted 

volume, and further processing, which included skull stripping, bias field correction and gross 

tissue segmentation using FNIRT (Andersson et al., 2007) and FAST (Zhang et al., 2001), 

yielding cerebrospinal fluid (CSF), grey and white matter volumes. Where large, common 

artefacts, such as head movement, were identified during scanning, image acquisition was re-

started. However, visual quality control was not systematically undertaken by the UK Biobank 

team; this would be unfeasible due to the very large sample size (Alfaro-Almagro et al., 2018). 

No significant changes were made to scanner hardware or software during the period of MRI 

data acquisition; full details on protocol phases and relevant upgrades are available at the 

following URL:  http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. 
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Image processing 
 

Each 3D T1-weighted FSPGR volume was parcellated into 85 (Desikan et al., 2006) 

regions-of-interest (ROI) using FreeSurfer (http://surfer.nmr.mgh.harvard.edu), which 

comprised 34 cortical ROIs and eight sub-cortical ROIs per hemisphere, plus the brainstem. 

Segmentations were visually checked, then used to construct grey and white matter masks for 

use in network construction and to constrain the tractography output as described below. Using 

tools provided by the FDT package in FSL (http://fsl.fmrib.ox.ac.uk/fsl), the diffusion MRI 

data were pre-processed to reduce systematic imaging distortions and bulk subject motion 

artefacts by affine registration of all subsequent EP volumes to the first T2-weighted EP 

volume (Jenkinson and Smith, 2001). Skull stripping and brain extraction were performed on 

the registered T2-weighted EP volumes and applied to the mean diffusivity/fractional 

anisotropy (MD/FA) volumes calculated by DTIFIT in each subject (Basser and Pierpaoli, 

1996; Smith, 2002). The neuroanatomical ROIs determined by FreeSurfer were then aligned 

from 3D T1-weighted volume to diffusion space using a cross-modal nonlinear registration 

method. As a first step, linear registration was used to initialize the alignment of each brain-

extracted FA volume to the corresponding FreeSurfer extracted 3D T1-weighted brain volume 

using a mutual information cost function and an affine transform with 12 degrees of freedom 

(Jenkinson and Smith, 2001). Following this initialization, a nonlinear deformation field based 

method (FNIRT) was used to refine local alignment (Andersson et al., 2007). FreeSurfer 

segmentations and anatomical labels were then aligned to diffusion space using nearest 

neighbour interpolation. 

 

Structural connectome 
 

Whole-brain probabilistic tractography was performed using FSL’s 

BedpostX/ProbTrackX algorithm (Behrens et al., 2007). Probability density functions, which 

describe the uncertainty in the principal directions of water diffusion, were computed using a 
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two-fibre model per voxel (Behrens et al., 2007). Streamlines were then constructed by 

sampling from these distributions during a tracking process that involved all white matter 

voxels using 100 Markov Chain Monte Carlo iterations with a fixed step size of 0.5 mm 

between successive points. Tracking was initiated from all white matter voxels (Buchanan et 

al., 2014) in two collinear directions until terminated by the following stopping criteria 

designed to minimize the amount of anatomically implausible streamlines: (i) exceeding a 

curvature threshold of 70 degrees; (ii) entering a voxel with FA below 0.1 (Verstraete et al., 

2011); (iii) entering an extra-cerebral voxel; (iv) exceeding 200 mm in length; and (v) 

exceeding a distance ratio metric of 10. The distance ratio metric (Bullitt et al., 2003), excludes 

implausibly tortuous streamlines. For instance, a streamline with a total path length 10 times 

longer than the distance between end points was considered to be invalid. The values of the 

curvature, anisotropy and distance ratio metric constraints were set empirically and informed 

by visual assessment of the resulting streamlines. 

 

Network construction 
 

For each subject, two networks were constructed, the number of streamline (NOS) 

network, that was created using the number of streamlines connecting each pair of the 85 ROI 

(network node) pairs from the default FreeSurfer cortical (Desikan et al., 2006) and subcortical 

regions; and the FA-weighted networks, that were constructed by recording the mean FA value 

along streamlines. The endpoint of a streamline was considered to be the first grey matter ROI 

encountered when tracking from the seed location. In order to reduce the number of spurious 

connections derived from probabilistic tractography, we applied  to the NOS matrices, using 

the numbers of streamlines connecting all 85 ROI and preserving exclusively the top 30% 

white matter tracts that were more consistent across subjects (Roberts et al., 2017). This mask 

was then applied to the FA-weighted connectivity matrices. For each FA-weighted 

connectivity matrix for the thresholded network, the salience network mask was applied based 

on our bilateral nodes of interest: insula, caudal anterior cingulate (CAC), thalamus, amygdala 
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and ventral diencephalon (VDC). 

 

Polygenic risk score calculation 
 

The details of the array design, genotyping, quality control and imputation have been 

described previously (Hagenaars et al., 2016). Quality control included removal of 

participants based on missingness, relatedness, gender mismatch and non-British ancestry. 

Polygenic profiles were created for schizophrenia in all the genotyped participants using 

PRSice (Euesden et al., 2015). PRSice calculates the sum of alleles associated with the 

phenotype of interest across many genetic loci, weighted by their effect sizes estimated from 

a genome-wide association study of that phenotype in an independent sample. Before creating 

the scores, the SNPs with a minor allele frequency <1% were removed and clumping was used 

to obtain SNPs in linkage equilibrium with an r2 < 0.25 within a 200 bp window. Five scores 

were created for each individual using SNPs selected according to the significance of their 

association with the phenotype at nominal p-value thresholds of 0.01, 0.05, 0.1, 0.5 and 1.0 

(all SNPs). Our primary analyses used scores generated from a list of SNPs with a GWAS 

training set of p ≤ 0.1, 0.5 and 1.0 thresholds. Fifteen multidimensional scaling factors 

(estimated from SNP data) were entered into the models as additional ‘nuisance’ covariates to 

control for population stratification, along with age and genotyping array. For the present 

study, data was available for 1789 participants who were unrelated, survived the quality 

control process and had full imaging data available. 

 

Statistical analyses 
 

First, associations between szPGRS and white matter tract FA values, cortical 

thickness and volume were calculated using linear regression models. Previous studies have 

suggested that schizophrenia is a syndrome of accelerated ageing (Kirkpatrick et al., 2008) 

indicating, for instance, significant declines in white matter coherence more than twice that of 

age-matched controls (Kochunov et al., 2013). Therefore, we included an interaction between 
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age at MRI and szPGRS in all analyses. Age at the time of MRI acquisition and sex were 

entered as covariates and the interaction between were entered as a predictor. For each node’s 

cortical thickness, average total brain cortical thickness and for each node’s volume, 

intracranial volume (ICV) were entered as additional covariates. Analyses were performed in 

R (https://www.r-project.org) and standardised betas were reported. 

 

We then estimated a structural equation model (SEM) for FA values, cortical thickness 

and volume. We estimated a separate model for each MRI metric, which were set as the 

dependent variable in each model. Latent score models were used to assess associations of 

szPGRS with MRI parameters. Specifically, three latent scores were derived: a cortical 

thickness factor was derived from the bilateral cortical nodes, a volume factor including all 

bilateral cortical and subcortical nodes, and an FA factor derived from all pathways connecting 

bilateral nodes. Figure 21 shows a simplified diagram of the SEM framework. Within the 

model, each brain imaging measure was adjusted for its respective sex and ICV (for volume) 

at the manifest level, while szPGRS was adjusted for sex, population stratification components 

and genotyping array. Due to the apparent association between schizophrenia and accelerated 

ageing (Kirkpatrick et al., 2008), we added the interaction between szPGRS and age in the 

SEM analysis in order to test the hypothesis that higher risk for schizophrenia is associated 

with a steeper decline in brain structure as a function of increasing age. SEM was performed 

using the package 'lavaan' (Rosseel, 2012) in R with full-information maximum likelihood 

estimation to use all data available. All significance (p) values (α = 0.05) were corrected for 

multiple comparisons using false discovery rate within each szPGRS threshold (FDR, pFDR) 

(Benjamini and Hochberg, 1995). 
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Figure 21. Diagram of the structural equation model (SEM) for neurostructural properties of the 

salience network. A separate model was applied to FA, grey matter thickness and grey matter 

volume. From each individual bilateral node (L: left; R: right) or pathway, a latent score was 

calculated for FA, grey matter thickness and grey matter volume. Relation between 

FA/thickness/volume and polygenic risk score for schizophrenia (szPGRS) is indicated by path A; 

path B represents the association between the interaction of age and szPGRS and 

FA/thickness/volume factors; path C represents the association between age and the latent factor. 

szPGRS was corrected for sex and population stratification (paths not shown). 

 
 
 
 
 

7.4. Results 

Demographic, pairwise complete data for genetic and imaging sample sizes after 

quality control and each brain imaging measure are provided in Tables 14 and 15.  
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Table 14. Demographic data and descriptives for nodes within the salience network 

for white matter water diffusion MRI.  

 

 

 
Note: SD: Standard deviation, Min: minimum value, Max: maximum value, szPGRS: 
polygenic risk score for schizophrenia, L: left, R: right, CAC: caudal anterior cingulate, ICV: 
intracranial volume. 
 
 
 
 
 
 

 

 

 

  Valid N Mean SD Min Max 
Age (years) 1789 62.59 7.59 45.42 78 
Sex (% females)  1789 44.10%    
szPGRS 0.1 1789 -0.00143 6.74x10-05 -0.00165 -0.00121 
szPGRS 0.5 1789 -0.00079 2.71 x10-05 -0.00087 -0.00070 
szPGRS 1 1789 -0.00051 1.73 x10-05 -0.00057 -0.00045 
Grey Matter Thickness (mm)     

L - CAC 1789 2.754 0.278 1.484 3.847 
R - CAC 1789 2.587 0.257 1.712 3.631 
L - Insula 1789 2.954 0.156 1.822 3.460 
R - Insula 1789 2.942 0.163 2.392 3.588 

Grey Matter Volume (mm3)     
L - CAC 1789 1878.42 474.41 673 4258 
R - CAC 1789 2130.84 484.55 808 4006 
L - Insula 1789 6539.52 733.76 2957 9010 
R - Insula 1789 6827.79 811.02 4488 9519 
L - Thalamus 1789 7853.40 775.23 4209 11051 
R - Thalamus 1789 7664.37 749.24 4988 10668 
L - Amygdala 1789 1282.87 250.26 552 2240 
R - Amygdala 1789 1243.20 281.93 418 2437 

ICV (mm3) 1789 1215648.46 116203.83 866567.8 1665260.9 
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Table 15. Descriptives for pathways identified connecting nodes within the salience network 

for white matter water diffusion MRI.  

 
 
 
White matter tract Valid N Mean FA SD Min Max 

L-Thalamus : L-VDC 1789 0.653 0.034 0.446 0.777 
L-Thalamus : R-Thalamus 1789 0.570 0.028 0.322 0.667 
L-Thalamus : R-VDC 1789 0.580 0.026 0.402 0.674 
L-Thalamus : L-CAC 1788 0.497 0.028 0.413 0.614 
L-Thalamus : L-Insula 1789 0.502 0.032 0.307 0.641 
L-Thalamus : R-Insula 1789 0.554 0.025 0.465 0.638 
L-Amygdala : L-VDC 1789 0.282 0.034 0.180 0.429 
L-Amygdala : L-Insula 1789 0.311 0.042 0.182 0.510 
R-Thalamus : R-VDC 1789 0.538 0.057 0.359 0.719 
R-Thalamus : R-CAC 1788 0.508 0.029 0.382 0.614 
R-Thalamus : R-Insula 1789 0.477 0.029 0.318 0.588 
R-Amygdala : R-VDC 1789 0.300 0.040 0.177 0.456 
R-Amygdala : R-Insula 1789 0.296 0.042 0.163 0.459 
R-VDC : R-Insula 1789 0.445 0.063 0.255 0.618 

 
Note: SD: Standard deviation, Min: minimum value, Max: maximum value, FA: fractional 
anisotropy, L: left, R: right, CAC: caudal anterior cingulate, VDC: ventral diencephalon. 
 
 
 

SEM analyses 

Latent factor for grey matter volume within the Salience Network 

The models examining associations of szPGRS at p ≤ 0.1, 0.5 and 1.0 thresholds and 

grey matter thickness fit the data well (RMSEA < 0.037, CFI = 0.991, SRMR < 0.022). The 

association between the latent factor for grey matter volume and szPGRS at a threshold of p 

≤ 0.1 was significant (r = -0.050, SE = 0.014, p = 0.036), however this association did not 

survive FDR-correction (pFDR = 0.108). Associations between the latent factor for volume and 

szPGRS at p ≤ 0.5 and 1.0 were not significant (r = -0.030, SE = 0.015, pFDR = 0.314; r = -

0.022, SE = 0.015, pFDR = 0.366, respectively). Age showed a significant negative effect on 
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the latent factor (r = -0.204, SE = 0.015, p < 0.001). However, the interaction between age and 

szPGRS was not significant at any threshold (pFDR > 0.05). Figure 22 shows the standardised 

coefficients for all latent factors across all szPGRS thresholds. 

 

Latent factor for grey matter thickness within the Salience Network 

The models examining associations of szPGRS at p ≤ 0.1, 0.5 and 1.0 thresholds and 

grey matter thickness fit the data well (RMSEA < 0.044, CFI > 0.982, SRMR < 0.019). 

Associations between the latent factor for grey matter thickness and szPGRS were significant 

at a threshold of  p ≤ 0.1 (r = -0.071, SE = 0.018, pFDR = 0.048). At the thresholds of p ≤ 0. 5 

(r = -0.058, SE = 0.019, pFDR = 0.061) and p ≤ 1.0 (r = -0.050, SE = 0.019, pFDR = 0.061), the 

associations showed a tendency towards significance. Age showed a significant positive effect 

on the latent factor (r = 0.120, SE = 0.021, p < 0.001). The interaction between age and 

szPGRS was not significant at any threshold (pFDR > 0.05).  

 

Latent factor for white matter FA within the Salience Network 

The models examining associations of szPGRS at p ≤ 0.1, 0.5 and 1.0 thresholds and 

white matter FA fit the data well (RMSEA = 0.048, CFI = 0.933, SRMR = 0.036). There were 

no significant associations between the latent factor for FA and szPGRS at any threshold 

(pFDR > 0.05). Age showed a significant effect on the latent factor (r = 0.058, SE = 0.021, p = 

0.022). The interaction between age and szPGRS was not significant at any threshold.  
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Figure 22. Magnitude of standardised r coefficients (represented in circles) and standard 

errors (in bars) from the SEM analysis across all szPGRS thresholds for grey matter volume, 

cortical thickness and fractional anisotropy (FA). Asterisks indicate significance from the 

SEM models (pFDR < 0.05) and black dots tendency towards significance (pFDR = 0.06). 

 
 
Linear regressions between szPGRS and individual Salience Network components 
 
Cortical and subcortical volumes 
 

The volume of the right thalamus showed a negative significant association with 

szPGRS at a threshold of 0.1 (β = -0.037, SE = 0.014, p = 0.011). However, this association 

did not survive multiple comparison correction (pFDR = 0.087). The volumes of the right 

thalamus and left CAC showed a tendency towards significance at a threshold of 0.5 (β = -

0.027, SE = 0.014 , p = 0.067 and β = -0.042, SE = 0.022, p = 0.059), but none survived 

multiple comparison correction (pFDR = 0.244 for both). Age and sex showed some significant 

associations with grey matter volumes (pFDR < 0.05; see Appendix IV Supplementary Material 

Table 1 for more detailed information). There were no significant age × sex interaction effects 

(pFDR > 0.05). 

* 

. . 
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Cortical thickness 
 

Significant negative associations were found between the right insula and szPGRS at 

a threshold of 0.1 (β = -0.046, SE = 0.021, p = 0.024), 0.5 (β = -0.049, SE = 0.021, p = 0.016) 

and 1 (β = -0.049, SE = 0.021, p =0.018). However, none of these associations survived 

multiple comparison correction (pFDR = 0.070, pFDR = 0.067, pFDR = 0.071, respectively). The 

left insula showed a significant association with szPGRS at a threshold of 0.1 (β = -0.042, SE 

= 0.021, p = 0.034) but did not survive multiple comparison correction (pFDR = 0.070). There 

were no significant associations between the thickness of the CAC and szPGRS at any 

threshold (pFDR > 0.05). Age and sex showed significant associations with cortical thickness 

(pFDR > 0.05; see Appendix IV Supplementary Material Table 1 for more detailed information). 

We found a significant age × sex interaction for the right CAC at a threshold of 0.1 (β = -

0.064, SE = 0.023, pFDR = 0.025). Figure 23 shows the beta coefficients of the associations 

between cortical thickness and szPGRS across all thresholds. 

 

 

Figure 23. Magnitude of standardised beta values (represented in circles) and standard errors 

(in bars) from the linear regression analysis across all szPGRS thresholds for cortical 

thickness. CAC: caudal anterior cingulate, L: left, R: right. 
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White matter FA 

There were no significant associations between white matter FA and szPGRS at any 

threshold (pFDR > 0.05). Age and sex showed significant associations with several white matter 

tracts (pFDR > 0.05; see Appendix IV Supplementary Material Table 2 for more detailed 

information). In addition, there were no significant  age × sex interaction effects (pFDR > 0.05). 

 

Additional analysis: Specificity of the salience network 

In order to test whether the significant effect of szPGRS on cortical thickness of the 

salience network was specific to this network, as an additional analysis we computed the 

average cortical thickness of all non-salience nodes and performed linear regression analysis 

between this factor and szPGRS. We found that the non-salience network was not significantly 

associated with szPGRS at any thresholds (p ≤ 0.1: β = -0.0024, SE = 0.0054, p = 0.654; p ≤ 

0.5: β = -0.0047, SE = 0.0054, p = 0.930; p ≤ 1: β = -0.0016, SE = 0.0054, p = 0.977). 

Moreover, we were able to reject the null hypothesis that standardised coefficients from the 

association between cortical thickness and szPGRS were equal for the salience and non-

salience networks (szPGRS threshold p ≤ 0.1: 95%CI [-0.0986, -0.0385], p ≤ 0.5: 95% CI [-

0.0856, -0.0255] and p ≤ 1: 95%CI [-0.0776, -0.0175]). Differences between correlations were 

considered significant if the confidence interval did not include zero (Zou, 2007). 

 

7.5. Discussion 

The present study found significant associations between genetic risk for 

schizophrenia and certain neurostructural properties of the salience network in a large sample 

of healthy participants. In particular, greater genetic risk for schizophrenia was associated with 

a lower latent measure of cortical thickness across the salience network which was specific to 

this network, which was strongest in the insular cortex. However, we did not find any 
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significant association between the FA of the pathways involved in the salience network and 

szPGRS. This is, to our knowledge, the first study to investigate the structural properties of 

the salience network from a connectome perspective.  

 

Due to its relevance in the identification of biological and cognitive events and its role 

in facilitating the flexibility of subsequent responses, abnormalities in the salience network 

have been previously linked to several neuropsychiatric disorders. Impairments in the salience 

network have been observed in schizophrenia, proposing that a misattribution of salience to 

external and internal stimuli may be able to explain the characteristic psychotic symptoms. 

While functional studies report deficiencies in functional connectivity (Palaniyappan et al., 

2012; Uddin, 2015), reductions in the volume and cortical thickness of the insula and 

reductions in the volume of the anterior cingulate have been consistently reported in 

schizophrenia (White et al., 2010); with these impairments being linked to severity of reality 

distortion (Palaniyappan et al., 2011). White matter impairments are also frequently reported 

in schizophrenia, in particular in commissural and associative fibres (Burns et al., 2003; 

Ellison-Wright and Bullmore, 2009; Kelly et al., 2017; McIntosh et al., 2005; Rotarska-Jagiela 

et al., 2008). However, the relationship between white matter architecture of the salience 

network in schizophrenia has not yet been fully explored.  

 

In this study, we found that a latent factor for cortical thickness was significantly 

associated with genetic risk for schizophrenia that was specific to the salience network. 

However, we did not find any significant association between the latent factors for grey matter 

volume and FA and szPGRS. As previously discussed, brain structure and schizophrenia are 

highly heritable, with evidence indicating impaired brain structure in patients diagnosed with 

schizophrenia and their relatives (Carletti et al., 2012; Lawrie et al., 2008; Muñoz Maniega et 
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al., 2008).4 Thus, the null findings observed here may partly be due to the aggregation of 

genetic and environmental risk factors in affected individuals and their relatives compared to 

healthy individuals. Figure 22 shows the pattern of distribution of standardised coefficients 

from SEM for all latent factors across all szPGRS thresholds, suggesting that more restrictive 

thresholds showed numerically larger associations with cortical thickness and grey matter 

volumes while the opposite is observed for FA.  

 

Studies in humans using DWI analysis have shown connections from the anterior 

insula to the anterior cingulate, frontal and orbitofrontal and anterior temporal regions, while 

the posterior section of the insula showed connections to the posterior temporal, parietal and 

sensorimotor areas (Cerliani et al., 2012; Cloutman et al., 2012; Ghaziri et al., 2017; Uddin et 

al., 2017, 2011). The insula has been repeatedly implicated in schizophrenia with consistent 

reductions in cortical thickness and volume. In one of the largest meta-analysis to date which 

comprised 4474 schizophrenia patients and 5098 healthy controls, the ENIGMA consortium 

reported that the thickness of the bilateral insula showed one of the largest negative effect 

sizes compared with healthy controls (van Erp et al., 2018). In addition, the authors found that 

earlier age of onset and longer duration of illness were associated with a thinner insula. In this 

study, we have found significant associations between the right insula and szPGRS albeit none 

of these associations survived multiple comparison corrections. However, these associations 

did not survive our correction for multiple comparisons due to our design based on correcting 

within szPGRS threshold instead of per node of interest. Figure 23 shows the pattern of 

distribution of beta coefficients for cortical thickness and szPGRS; indicating that szPGRS 

may indeed have a negative effect on the cortical thickness of the right insula. Although 

abnormalities in grey matter thickness, volume, cellular structure, and protein’s expression 

                                                
4 See Chapter 3 for a detailed summary of white matter impairments in patients diagnosed with 
schizophrenia and their relatives.  
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have been observed in the insula of patients diagnosed with schizophrenia, the contribution of 

the insula to disease pathology remains unknown (reviewed in Wylie and Tregellas, 2010). 

The insula plays a significant role in processing emotional and sensory stimuli and is involved 

in interoception. This awareness of the body’s internal state comprises emotional responses, 

complex cognitive states, and the sense of self (Critchley et al., 2004; Damasio, 2003); this 

loss of self-awareness is a common characteristic of schizophrenia where there is a difficulty 

in discriminating self-generated from externally-generated stimuli. An example of this duality 

is represented by psychotic symptoms where those patients who present hallucinations make 

more errors in external attributions that those without hallucinations (Costafreda et al., 2008; 

Johns et al., 2001).  

 

Results of the present study showed negative associations between the volume of the 

right thalamus and genetic risk for schizophrenia. However, this association did not remain 

significant after accounting for multiple comparisons. The thalamus acts as a relay for 

information passing between sensory pathways, brain stem, cerebellar and subcortical areas 

to distributed cortical regions. For instance, Csernansky et al. (2004) reported a significant 

reduction in thalamic volume in schizophrenia compared with healthy controls. However, this 

reduction became non-significant once total brain volume was taken into account. In a meta-

analysis comprising 485 cases and 500 controls, Konick and Friedman (2001) reported also a 

significant reduction in the volume of the thalamus, although the effect size was statistically 

significant, it was modest compared to other brain regions involved in schizophrenia.  

 

Impairments in white matter microstructure are commonly reported in schizophrenia 

mostly being localised in commissural and associative tracts. Similarly, healthy relatives who 

are genetically at higher risk of developing schizophrenia also exhibit impairments in FA in 

several tracts (Muñoz Maniega et al., 2008). Albeit given these numerous findings, there is 

still much inconsistency in the results. In this study, we did not find any significant association 
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between the FA of the pathways involved in the salience network and szPGRS. These results 

are in accordance to those reported by Reus et al. (2017), who also found non-significant 

associations between a general factor of FA (including 27 major white matter tracts across the 

brain) and szPGRS in a previous release of this data (n = 816). Despite the apparent 

impairments in white matter structure in schizophrenia, only a small number of studies have 

reported significant associations between genetic risk factor and white matter in healthy and 

clinical samples (Alloza et al., 2018, 2017; Ritchie et al., 2017; Terwisscha van Scheltinga et 

al., 2013). Interestingly, Hulshoff Pol et al. (2004) reported significant reductions in global 

white matter volume in dizygotic twins discordant for schizophrenia while reductions in 

global grey matter were exclusively observed in patients diagnosed with schizophrenia. A 

more recent study supported their results by concluding that white matter has a stronger 

genetic component (explaining 63% of the variance) while grey matter volumes are more 

likely to be associated with environmental factors (43%) (van Haren et al., 2012). Therefore, 

it is possible that other factors such as gene-gene interactions, rare variants, and gene-

environment interplay may help to explain the association between risk variants for 

schizophrenia and brain structural impairments (Van der Auwera et al., 2017).  

 

7.6. Limitations 

The generalisability of these results is subject to certain limitations. Due to our a 

priori hypothesis, this study only looked at a specific brain network overlooking with the same 

fidelity the rest of the brain, suggesting that the salience network may not be sufficient to 

capture the effect of szPGRS across different structural parameters in a healthy sample. 

However, in order to determine whether the effect of szPGRS on cortical thickness was 

specific to the salience network, we computed an average cortical thickness factor including 

all non-salience nodes. We found that szPGRS was not significantly associated with the non-

salience cortical thickness at any threshold. However, due to our approach, it is possible that 
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we were not able to detect more subtle variation within the non-salience network. Future 

studies should investigate the implication of szPGRS in other brain networks such as the 

default-mode network and the central-executive network and additional structural properties 

such as surface area. Moreover, as sample sizes increase for GWAS, better predictive power 

will be achieved by szPGRS  (Visscher et al., 2017). In regard to tractography, in order to 

remove spurious connections, we applied a consistency-based threshold preserving 

exclusively the top 30% white matter tracts that were more consistent across subjects. 

However, principles of white matter connectivity in humans are not sufficiently 

comprehensive (when compared to the mouse, for example; Goulas et al., 2017) to allow the 

confident implementation of anatomical priors; therefore, it is possible that pathways 

identified as part of the salience network may not be anatomically plausible. Nonetheless, 

constraining tractography using a priori anatomical information in order to reduce false-

positives may hinder the ability of the technique to describe pathways that are currently 

unknown. Finally, we aimed to investigate whether the neurostructural properties of the 

salience network would mediate the association between szPGRS and psychotic experiences. 

However, only a minority of participants responded affirmatively to the questions regarding 

psychotic experiences (see Appendix IV Supplementary Material Table 3). Therefore, due to 

the low frequencies found in this sample, we could not proceed with the computation of the 

mediation models. Therefore, further research is needed to address the hypothesis that the 

salience network may mediate the association between polygenic risk scores and psychotic 

symptoms. 

 
The present study was designed to determine the association of genetic risk for 

schizophrenia with several neurostructural properties of the salience network. We found 

significant associations between higher szPGRS and decreases in cortical thickness, in 

particular, in a latent factor for cortical thickness including both the insula and CAC. This 

study also found a significant negative association between thalamic volume and szPGRS and 
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cortical thickness of the insula and szPGRS, albeit none these associations survived multiple 

comparison correction. We also present valuable descriptive information on cortical thickness, 

volumes and white matter microstructure of the salience network, alongside their associations 

with age, sex and the interaction between age and genetic risk factor for schizophrenia. Taken 

together, these results are consistent with the hypothesis that higher genetic liability for 

schizophrenia is related to subtle neurostructural impairments among healthy participants.  

 
7.7. Chapter discussion 

 
This chapter was dedicated to the study of the neurostructural properties of the 

salience network and their relationships with genetic risk for schizophrenia in a large sample 

of healthy participants. Significant associations were found between szPGRS and a latent 

factor of cortical thickness. The computation of pathways from the connectome tends to result 

in numerous possible connections and without appropriate neuroanatomical priors, it is likely 

that spurious connections were included. These results suggest that improved tractography 

algorithms with previous anatomical knowledge and strict rejection criteria may better 

describe white matter microstructure. 
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8.1. Overview 

The work presented in this thesis focused on the study of white matter connectivity in 

schizophrenia. The main goal of this work was to investigate white matter (using DTI and 

brain network topology) in relation to cognition and symptoms among both patients diagnosed 

with schizophrenia, and in healthy individuals along a continuum of genetic risk for 

schizophrenia. Three different populations were studied here: the Scottish Family Mental 

Health (SFMH) study, which comprises patients with schizophrenia and a group of healthy 

controls, the Lothian Birth Cohort 1936 (LBC36), a longitudinal sample of healthy elderly 

community-dwelling participants and UK Biobank, a large healthy UK-based cohort.5  

 

As described in Chapter 1, schizophrenia is a chronic and heterogenous 

neuropsychiatric disease, characterised by a complex underlying neurobiology and genetic 

profile; it results in the expression of positive and negative symptoms that may be 

accompanied by cognitive impairments. Research has proposed that schizophrenia is the result 

of a failure in brain’s integration caused by neuroanatomical abnormalities in distributed brain 

regions and the networks to which they conform. Indeed, several neuroimaging studies have 

supported this hypothesis by showing significant white matter impairments and aberrant 

network properties in the disorder; with these alterations in brain connectivity being linked to 

cognitive impairments and severity of symptoms.6 However, these results are highly 

inconsistent across the literature, possibly reflecting the inherent limitations of the field, such 

as the use of small sample sizes and varied methodological approaches. In particular, network 

analysis is yet a novel approach in neuroimaging and very few studies have investigated its 

application in schizophrenia and its corresponding psychopathology. 

                                                
5 Chapters 4 and 5 report the results from the analysis of the SFMH study; Chapter 6 is dedicated to the 
longitudinal analysis of the LBC36 and Chapter 7 presents the results from UKB. 
 
6 For a detailed review on white matter connectivity, cognitive impairments and symptoms see Chapter 
3. 
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Chapter 3 describes the high heritability of schizophrenia, white matter, and cognitive 

functions has prompted several scientific studies, establishing a genetic overlap between them. 

Interestingly, this genetic overlap allows the study of healthy individuals based on their 

genetic profile and genetic risk for developing schizophrenia. Although distinct associations 

between white matter, cognition and symptoms have been reported in the disorder, the role of 

genetic risk for schizophrenia it is yet unclear. 

 

There is an emerging consensus that intelligence cannot be circumscribed to the 

function of a single region, but rather it is best described as the result of the interaction between 

multiple areas or networks. This conceptualization implies that for the correct transmission of 

cognitive information, the system must be undisrupted and dependent on synchronised activity 

between distributed networks. Recent evidence suggests that differences in white matter may 

account for variance in cognitive performance (Wexler et al., 2009); with proper speed and 

efficiency of information transfer between distal brain regions relying on white matter 

microstructure. One of the main characteristics of schizophrenia is the presence of cognitive 

impairments, which have been previously linked to white matter deficiencies;7 supporting the 

idea that cognitive functions depend upon white matter coherence. Albeit the apparent link 

between them, most of the studies to date have been performed in healthy populations (Chiang 

et al., 2009; Deary et al., 2006; Penke et al., 2010; Yu et al., 2008); and therefore, it is 

necessary to further investigate whether cognitive impairments in schizophrenia have a 

neurostructural basis.  

 

Although pharmacological treatments can alleviate psychotic symptoms, there is still 

no effective treatment for negative symptoms, cognitive and social functioning. Given the 

                                                
7 For a detailed summary of published articles on associations between white matter and cognitive 
functions see Chapter 3. 
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complexity of the disorder and the need for an improved diagnosis; a thorough study and 

comprehension of the pathology of schizophrenia is needed in order to develop individualised 

treatments and reduce diagnostic error. 

 

This thesis therefore aimed: 

1. To investigate the cross-sectional pattern of white matter connectivity in patients 

diagnosed with schizophrenia and based on previous findings in healthy older 

adults (Penke et al., 2010), to determine if a general factor of processing speed –

a key cognitive resource that allows multiple cognitive processes to be 

simultaneously available–, would mediate the association between white matter 

and general intelligence.  

2. To determine whether schizophrenia is characterised by impairments in high 

centrality networks – or hubs – and whether graph theory metrics derived from 

distinct brain networks would be associated with genetic risk for schizophrenia, 

cognitive functions and symptoms in a sample that included both patients and 

healthy controls. 

3. To test the hypothesis of accelerated ageing in schizophrenia by examining 

longitudinally whether a higher genetic risk factor for schizophrenia would confer 

an increased risk of decline in white matter diffusion parameters and graph theory 

metrics in a group of relatively healthy community-dwelling older adults. 

4. To assess whether a higher genetic risk factor for schizophrenia would affect the 

neurostructural properties of the salience network, a network that has been 

previously identified to be linked to schizophrenia. 

 

To achieve this, data from patients diagnosed with schizophrenia was analysed and 

contrasted with healthy participants (to address aims 1 & 2), and healthy samples were 

examined based on their genetic profile and risk for developing schizophrenia (with respect 
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to aims 3 & 4). The aim of this thesis was to investigate the associations among latent 

constructs in the first instances and then examine secondary exploratory analyses of the 

individual white matter tracts, given the degree of ambiguity in the extant literature. The use 

of latent approaches allows the study of latent constructs that would be unrealistic to expect 

from single indicators (i.e a single test on cognitive performance will not be a reliable measure 

of higher-order cognitive functions); instead, the use of multiple indicators or manifest 

variables will capture better the underlying structure of the data while simultaneously 

accounting for measurement error. The work presented here used advanced statistical methods 

–including longitudinal designs–, leveraging genetic data to investigate schizophrenia 

hypotheses in healthy samples, to allow more stringent testing of a causal hypothesis using 

observational data. Moreover, the use of the connectome and graph theory measures alongside 

more standard microstructural indices of white matter, allowed us to examine the hypothesis 

that microstructural changes would have an effect on the organizational properties of the brain 

networks. 

 

Since each of the result chapters contains its own discussion, here I will briefly 

summarise the main results and offer a general discussion. I will also aim to discuss the 

strengths and limitations of the work described here and offer some ideas for further work and 

general implications of the findings. For a detailed summary of the parameters used in this 

thesis, please refer to Appendix V. 

 

8.2. Main results 

Overall, this work found that white matter connectivity impairments are present not 

only in schizophrenia but also in those healthy participants with a higher genetic risk for 

developing the disorder. Associations between structural connectivity, cognition, symptoms, 

and genetics were identified, supporting the hypothesis that schizophrenia is the result of the 
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disruption in brain’s connectivity. Interestingly, already in the early descriptions of 

schizophrenia by the psychiatrist Bleuler (1911-1950), who described the core characteristic 

of the disorder to be the presence of thought fragmentation – referred to as “loosening of 

associations”–, termed the disorder derived from the Greek verb schizein to the split (“schizo”) 

of the mind (“phrene”). Followed by Friston and Frith, who described schizophrenia as a 

“dysconnectivity syndrome”; suggesting that schizophrenia may be understood in terms of 

cognition and pathophysiology as a brain integration failure (Friston, 1998). Neuroimaging 

studies have supported this conceptualization of schizophrenia by reporting structural 

connectivity deficits in patients. This thesis provides even further evidence of this 

phenomenon, finding not only significant connectivity impairments in schizophrenia, but also 

associations between brain structure and schizophrenia’s psychopathology. In particular, the 

work presented here have shown that white matter connectivity –using microstructural indices 

of white matter and organizational properties of the brain networks– provides the 

neuroanatomical substrate for higher-order cognitive functions in schizophrenia.8 The novel 

approach of using genetic data to investigate schizophrenia hypotheses in healthy participants 

indicated that higher genetic risk factor for schizophrenia is associated with less healthy brain 

structure. Chapter 6 showed that this genetic risk factor was also linked to a worse decline in 

white matter connectivity in healthy older participants; supporting the hypothesis of 

accelerated ageing in schizophrenia. Interestingly, we were able to show that longitudinal 

change in microstructural indices of white matter was coupled with changes in the 

organization of the brain networks which suggests that white matter microstructure has an 

apparent effect on the topological organization of the brain. Taken all together, the difficulty 

of understanding schizophrenia as a circumscribed brain deficit indicates that an integrative 

                                                
8 In particular, Chapters 4 and 5 address this issue by reporting significant associations between white 
matter connectivity and cognitive functions in schizophrenia. 
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perspective may be able to better encapsulate the heterogeneous and complex 

presentation of the disorder.  

Previous studies have emphasised the importance of white matter coherence for 

synchronised brain activity that results in optimal cognitive performance; suggesting that 

impairments in brain connectivity may result in individual differences in cognitive functions. 

The work presented in this thesis investigating cognitive functions and their relationships with 

brain structure in schizophrenia suggested that white matter connectivity may (at least partly) 

underlie the deficits in higher cognitive functions exhibited in schizophrenia. By using TBSS, 

probabilistic tractography and graph theory analysis, we were able to report significant 

associations between brain structure and intelligence both in schizophrenia and healthy 

participants (see Chapters 4 and 5). In addition, this thesis provides further evidence for the 

overlap between the genetic risk factor for schizophrenia and intelligence (Glahn et al., 2007; 

McIntosh et al., 2013; Toulopoulou et al., 2007), suggesting that brain structure may be an 

intermediate phenotype between genetics and intelligence.  

 

It has been previously suggested that schizophrenia is characterised by accelerated 

ageing with an elevated rate of aging-related clinical, functional, and biological decline 

(Kirkpatrick et al., 2008); suggesting that white matter connectivity may be affected by this 

process. However, this would ideally require longitudinal data to asses (problems associated 

with cross-sectional data such as the inability to study causal relationships or model time). 

Thus, the difficulty of testing this hypothesis partly relies on the study design; in Chapter 6, 

by taking a longitudinal approach, advanced statistical methods and follow-up of a large same-

year-old cohort of healthy elderly participants, we were able to adequately test the hypothesis 

of accelerated white matter ageing in schizophrenia. In this thesis, we found longitudinal 

associations between change in white matter and polygenic risk for schizophrenia. In 

particular, participants with higher genetic risk for schizophrenia showed a higher decline in 
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brain structure over time. This evidence supports the conceptualization of schizophrenia as an 

accelerated white matter ageing disorder, with microstructural changes in white matter being 

coupled with changes in the organizational properties of the brains network. This accelerated 

decline in white matter may reflect the neuropathology associated with the loss of 

microstructural properties (e.g. loss of axonal myelin, oligodendrocytes, etc.) which are a 

feature of the disorder. 

In an attempt to address one of the main disadvantages of diffusion tensor imaging 

and try to model complex fibre architecture, such as crossing fibres, we aimed to apply 

spherical deconvolution to the SFMH study. Briefly, spherical deconvolution estimates a 

white matter fibre Orientation Distribution Function (fODF) by assuming that the diffusion 

signal measured from any white matter tract is properly described by a single response 

function (Tournier et al., 2007). In particular, we applied spherical deconvolution to two 

clinical groups, including patients diagnosed with schizophrenia and carriers of the genetic 

translocation DISC1, and an additional healthy control group. However, the quality of the 

resulting images was suboptimal. This may have been a consequence of the acquisition 

parameters used in this study. For instance,  Dell’Acqua and Tournier (2018), offer some 

considerations in order to properly apply methods such as spherical deconvolution or multi-

shell approaches, for instance consisting of 60-90 diffusion weighted directions at b = 

2000/3000 s/mm2, which were not available for the SFMH study (b =1000 s/mm2 , 56 diffusion 

weighted directions and 2.5 mm isotropic voxels). 

 

8.3. Challenges and future work 

Brain imaging, in particular magnetic resonance imaging, has undoubtedly 

contributed to our understanding of schizophrenia and other neuropsychiatric disorders. 

However, its practicality within the clinical psychiatric practice is very limited; MRI is mostly 

used for diagnosing organic diseases whose imaging hallmarks are well-known, but not for 
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diagnosing and designing a therapeutic plan for the patient. This is especially true for 

schizophrenia, where the specific cerebral features are not well established. A thorough study 

of the possibilities and challenges in translating neuroimaging findings in the clinical practice 

is needed in order to improve the diagnosis, develop individualised treatments, predict the 

effects of the intervention and potentially implement those before the onset. 

 

 As previously described, DTI is currently the only available technique to study white 

matter structure in vivo which is characterised by an easy implementation and has provided 

some plausible results. However, even though DTI provides invaluable information, several 

caveats need to be addressed.9 For instance, diffusion MRI measures, such as FA and MD, 

have limitations when describing complex tissue architecture. FA and MD can be conceived 

as sensitive and reliable metrics albeit being non-specific; thus, post-morten studies are 

necessary in order to describe adequately the source of variation in these metrics (e.g 

myelination, axonal damage, etc.) and their biological causes. The use of new imaging maps 

(e.g neurite orientation dispersion and density imaging (NODDI)) in conjunction with already 

existing maps may improve the interpretability of results; however, the majority of these maps 

require multi-shell acquisitions (Zhang et al., 2012), which were not applied in the work 

presented here.  Moreover, the use of low b-values (< 1000 s mm-2) leads to almost no signal 

attenuation due to the displacement of intra-axonal water perpendicular to the axon (Jones et 

al., 2013). Higher b-values compared to the ones used in this thesis (1000 s mm-2), obtained 

from strong gradients and long diffusion times, will lead to complete dephasing and total loss 

of signal for the extra-axonal water molecules and to anisotropic signal loss for the intra-

axonal water; therefore, higher b-values are more sensitive to fibre orientation and profile 

description.  

 

                                                
9 See Chapter 2 for a full description of limitations associated with DTI. 
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The reconstruction of the connectome involves several distinct steps, and currently 

there are multiple available methods that can be applied at each level. I have previously 

mentioned other available techniques at the level of tractography, such as DSI, CSD, etc. 10 

At the level of the connectome, it has been shown that the brain is economically but not 

minimally wired; meaning that the sum of all distances between nodes is less than if the same 

nodes were randomly connected. This observation implies that evolution may have promoted 

large-scale brain networks (Bullmore and Bassett, 2011). However, most brain networks 

derived from MRI have short wiring length, with a probability distribution heavily tailed and 

minimal presence of long edges; in addition, strength has shown an exponential decay with 

connection length (Sotiropoulos and Zalesky, 2017). To minimize this issue, distance between 

nodes can be used as a weighting measure, in which the edge’s weights are used in the 

computation of graph theory measures. Other approaches to preserve long-distance white 

matter tracts can be achieved through thresholding methods; one available technique is to 

apply a consistency-based threshold (Roberts et al., 2017), which preserves connections strong 

for their length. A recent development has taken into account the fact that these consistency-

based thresholds still favor short-range connections because consistency across subjects is in 

itself distance-dependent, with short connections appearing more consistently. Thus, Betzel et 

al. (2018) propose a new method that overcomes this issue by allowing the threshold to vary 

as a function of distance. Advances in fibre reconstruction software, connectome 

reconstruction and translational approaches using for instance post-mortem data – which 

allows the study of cytoarchitectural properties of brain tissue, validation of neuroanatomy, 

comparative neuroanatomy, etc.–, will help future studies to develop and validate these issues. 

 

Functional connectivity from resting state fMRI is generally inferred from the 

correlations in BOLD signals between grey matter regions; providing complementary 

                                                
10 Please see Chapter 2 “Tractography and the connectome”. 
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information to that of structural connectivity. Currently, the challenge remains in developing 

effective methods to merge these techniques and interpret results adequately. A variety of 

approaches have already been implemented, such as studies investigating the structural 

connectivity of functional networks or the functional connectivity between two structurally 

connected nodes. The extensive evidence of the brain’s resting state provides a unique 

opportunity to link the pattern of functional connectivity with the underlying structural 

networks. Several studies have indicated that structural connectivity is highly predictive of 

functional connections, suggesting that topological properties are generally conserved 

between modalities (reviewed in Bullmore and Sporns, 2009). However, as Uddin (2013) 

points out, functional connectivity shows high plasticity and flexibility with observable 

changes due to development, injury and possibly, disease; this indicates that the interpretation 

of the relationship between structure-function may not be as straightforward as believed. Mišić 

et al. (2016) found robust statistically patterns between functional and structural subnetworks. 

However, the authors reported a non-one-to-one correspondence between edges and 

concluded that the brain network’s organization promotes the occurrence of several functional 

networks that sometimes differ from the underlying structural connectivity. This is supported 

by recent evidence highlighting the difficulties of conflating two matrices with different 

sparsities; suggesting that brain structure is not best described by fully connected matrix, 

whereas under functional connectivity, given its flexibility (state-dependent) and the 

fluctuations in BOLD signal, this scenario is plausible (Park and Friston, 2013). 

 

In regard to the connectome, one of the most concerning issues is the lack of apparent 

reliability and repeatability between studies. Nowadays, there is a great variety of 

methodologies available to generate the connectome. Each of the steps involved in deriving 

the networks contributes to errors in the pipeline; and unfortunately, there is yet no consensus 

on the preferred approach, which contributes to the lack of consistency in the field. Thus, 

further research is required to develop a standardised protocol that will reliably measure brain 
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connectivity and allow for comparability across studies. However, the approach taken here 

has been explicitly tested for test-retest and has features which have offered improvements 

over more standard methods (e.g. seeding in the white matter) (Buchanan et al., 2014). In 

addition, specific issues that arise when comparing networks across groups is the fact that the 

number of nodes (N) or network’s degree (k) will influence the computation of global theory 

metrics. Therefore, the choice of N will determine the topology of the network and hinder the 

comparison between networks with different N or k. Instead of restraining all networks to a 

fixed k parameter, in this thesis I chose to fix N and to control each subject’s graph theory 

measure for edge density. Therefore, the results presented in this thesis have computed density 

as a fixed effect for each graph theory metric.  

 

Another important issue is the validation of the connectome from a neuroanatomical 

perspective. The elevated number of possible connections that the connectome computes, 

raises the question of whether these pathways are biologically relevant. Each step of the 

process must be manually checked and rejected if necessary in order to avoid false positives; 

however, in general, the elimination of spurious connections may not be feasible, partly 

because of our lack of neuroanatomy knowledge. In addition to this, currently there is a lack 

of a standardised parcellation protocol and the different choice of parcellation granularity may 

have great implications for the resultant connectome. However, in this thesis we have 

consistently used the Desikan atlas (85 parcellations, Desikan et al., 2006) in order to aid 

comparability with other studies and its reasonable correspondence to major cytoarchitectural 

fields. Moreover, in Chapter 5, we applied the Destrieux atlas (165 parcellations)  in order to 

validate our graph theory results. Therefore, a better characterisation of the brain’s 

neuroanatomy may lead to a development in tractography methods and constraints; ultimately 

improving the computation of networks and interpretability of results.  
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Despite all the evidence suggesting the crucial role of white matter in psychosis and 

particularly in schizophrenia, scientific research has mainly focused on the structural 

properties of grey matter, as can be observed in the literature. In spite of the rapid 

implementation, progress and increasing evidence for the involvement of white matter in 

neuropsychiatry, diffusion MRI parameters obtained from DTI are not sufficient to describe 

adequately white matter microstructure; and thus, a translational approach including 

histological, cellular and molecular studies is necessary in order to fully understand white 

matter pathology. Therefore, even though we have reported, for instance, associations between 

decreasing MD and higher szPGRS, we cannot interpret this confidently as being related to a 

specific neurobiological process. Even though it is now clear that white matter plays a 

significant role in brain integration and information processing, due to its complexity, a great 

deal remains to be discovered before we can make inferences about its pathology in 

schizophrenia. 

 

Schizophrenia is both highly heritable and polygenic, with many common alleles of 

small effect, and increasing numbers of genome-wide significant loci being identified as 

sample sizes increase (Davies et al., 2011). However, so far very few studies have investigated 

the association between polygenic risk scores and brain structure, with most studies reporting 

null associations (Oertel-Knöchel et al., 2015; Reus et al., 2017; Voineskos et al., 2016b). This 

may be due to the fact that current studies have a lack of power to detect modest effects; and 

therefore, as sample sizes increase for GWAS, better predictive power will be achieved by 

PGRS. In addition, a limitation that may have obscured significant results is the use of healthy 

(rather than patients diagnosed with schizophrenia) participants. In this thesis, three datasets 

were studied with only the SFMH study including patients diagnosed with schizophrenia. As 

stated before, observed white matter impairments in schizophrenia tend to have modest effect 

sizes and therefore, associations between white matter connectivity and genetic risk for 

schizophrenia in healthy samples may be too subtle to be detected in smaller sample sizes. 
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One of the most comprehensive studies, UK Biobank, has aimed to follow up the health and 

wellbeing of 500 000 participants and provides a wide range of medical and psychological 

measurements. This tendency of increasing sample sizes will undoubtedly increase not only 

the predictive power of PGRS but of other neuroimaging phenotypes; for instance, improving 

the diagnostic accuracy by using the genetic profile and neuroimaging and cognitive 

biomarkers of the patient. 

 

In this work, we found significant negative associations between szPGRS and 

longitudinal change in MD.11 However, in Chapter 7 we reported non-significant associations 

between the FA of the salience network and the interaction of szPGRS and age. Further work 

would therefore constitute computing MD-weighted matrices in the LBC1936 and 

UKBiobank datasets to examine: i) whether pathways derived from the salience network 

would be significantly associated with the interaction between szPGRS and age, and ii) 

whether the longitudinal MD findings are stronger in the salience network connections. 

Unfortunately, it is out of the scope of this thesis to address these issues due to the large 

amount of re-processing required to generate the MD-weighted matrices. 

 

Although schizophrenia is highly heritable, recent work in environmental risk factors 

highlights its importance in the development of the disorder; indicating that the aetiology of 

schizophrenia is the result of the interaction between genes and environment. The following 

are a brief mention of potentially important risk factors for schizophrenia diagnosis, depending 

on the phase they may act during the life course: neurodevelopmental, childhood and 

adulthood. Aspects such as obstetric complications, infections or maternal stress are 

categorised as risk factors involved in the neurodevelopmental phase. Child abuse would 

constitute the most determinant risk factor in childhood; while migration, ethnicity, social 

                                                
11 Chapter 6 presents results from this analysis. 
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status and urbanization some of the most prominent during adulthood (reviewed in Dean and 

Murray, 2005). In particular, the relationship between socio-economic status (SES) and 

mental illness has been the object of intense study and debate over decades. Unfortunately, it 

is out of the scope of this thesis to fully address this fundamental issue; nevertheless, due to 

the extensive evidence of a negative association between SES and psychotic disorders along 

with cognitive functions, I consider pertinent to mention the main studies carried out (Adler 

et al., 1994; Goldberg et al., 2011; Holzer et al., 1986). SES is amongst the strongest predictors 

of health and yet, paradoxically, its measurement represents still a highly challenging task. 

Therefore, based on the considerable evidence and in the context of increasingly aggressive 

neoliberal policies, further refinement and more robust methods for assessing associations 

between lower SES and poorer mental health offer a vital opportunity to improve global health 

and prevent psychiatric (and other SES-related) diseases. 

 

The differential diagnosis of schizophrenia from other psychotic disorders such as 

bipolar disorder and mood disorders currently represents a major clinical challenge. For 

instance, both schizophrenia and bipolar disorder share genetic risk factors and tend to present 

overlapping features. Traditionally, these two disorders have been described as separate 

entities with differing underlying etiologies. However, some authors have proposed a 

continuum approach to psychosis (Crow, 1990); suggesting that there may not be a neat 

biological distinction between schizophrenia and bipolar disorder. For instance, a recent study 

found that szPGRS is a better predictor of bipolar disorder (BD) with manic psychosis than 

other subgroups of BD, suggesting that bipolar patients with manic psychosis are genetically 

more similar to schizophrenia than to other BD patients (Markota et al., 2018). Therefore, the 

results presented in this thesis investigating the role of a genetic risk factor for schizophrenia 

in brain structure and cognitive functions may not be entirely unique to schizophrenia but 

common to closely related disorders. Future studies should address this issue using larger 

sample sizes and integrating several imaging modalities in order to establish the 
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neuroanatomical and neurophysiological correlates that are unique to schizophrenia and 

distinct from other neuropsychiatric disorders.  

 

8.4. Concluding remarks 

This thesis investigated the role of white matter connectivity in schizophrenia using 

diffusion MRI and network approaches. We sought to study the associations within the 

pathophysiology of the disorder, including white matter, cognitive functions, symptoms and 

a genetic risk factor for schizophrenia. Through cross-sectional and longitudinal approaches, 

our findings suggest that white matter impairments are present in patients diagnosed with 

schizophrenia at the microstructural level, measured using tractography and at the 

organizational level, measured using graph theory. Network analyses showed topological 

impairments within the average, central and non-central networks in patients compared to 

healthy controls. Interestingly, graph theory metrics were associated with cognitive 

functioning and served as mediators for the association between genetic risk for schizophrenia 

and intelligence. These results are consistent with the hypothesis that intelligence deficits are 

associated with a genetic risk for schizophrenia, which is mediated via the disruption of 

distributed brain networks.  

 

Several studies have suggested that schizophrenia is characterised by accelerated 

aging. Through a longitudinal design, we were able to report that in healthy elderly 

participants, those with higher genetic risk for developing schizophrenia showed more 

prominent connectivity impairments over time; supporting the hypothesis that schizophrenia 

is characterised by accelerated white matter aging. This was the first study to investigate the 

longitudinal trajectories of graph theory measures and their associations with szPGRS in older 

age, and comprehensibly described white matter connectivity changes over a period of three 

years in the same-year-old cohort. 
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 This work also found significant associations between genetic risk for schizophrenia 

and certain neurostructural properties of the salience network in a large sample of healthy 

participants. The novel approach taken here was based on the computation of a subnetwork 

derived from the structural connectome. Built on previous literature on the salience network, 

certain nodes were selected, and their connecting pathways computed. In particular, using this 

method, we found that increased genetic liability was significantly associated with reduced 

cortical thickness.  

 

Results from this thesis are consistent with the hypothesis that higher genetic liability 

for schizophrenia is related to subtle neurostructural impairments even among healthy 

participants. The diverse age ranges, clinical status and design (e.g cross-sectional versus 

longitudinal) of our studies may well have hindered our ability to describe and 

comprehensively elucidate the phenomena, but the work in this thesis has shed some light on 

the pathophysiology of schizophrenia and supported its conceptualization as a 

“dysconnection” syndrome. 
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Appendix I: Chapter 4 
 
 
 
 
Supplementary Table 1. Individual white matter tracts and their corresponding loadings for 

gFA. 

 
White matter tract Loadings  White matter tract Loadings 
GCC 0.751  SCR-L 0.764 
BCC 0.611  PCR-R 0.807 
SCC 0.765  PCR-L 0.855 
FX 0.496  PTR-R 0.771 
CST-R 0.707  PTR-L 0.761 
CST-L 0.508  SS-R 0.721 
ML-R 0.664  SS-L 0.661 
ML-L 0.578  EC-R 0.686 
ICP-R 0.728  EC-L 0.776 
ICP-L 0.712  CGC-R 0.829 
SCP-R 0.504  CGC-L 0.768 
SCP-L 0.525  CGH-R 0.661 
CP-R 0.643  CGH-L 0.726 
CP-L 0.530  FX/ST-R 0.519 
ALIC-R 0.687  FX/ST-L 0.659 
ALIC-L 0.711  SLF-R 0.858 
PLIC-R 0.705  SLF-L 0.851 
PLIC-L 0.680  SFO-R 0.432 
RLIC-R 0.720  SFO-L 0.556 
RLIC-L 0.750  IFO-R 0.670 
ACR-R 0.610  IFO-L 0.420 
ACR-L 0.685  UNC-R 0.553 
SCR-R 0.863  UNC-L 0.408 

 
Note. A list of abbreviations is provided in Table 3. 
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Supplementary Table 2. Individual white matter tracts and their corresponding loadings for 

gMD. 

 
White matter tract Loadings  White matter tract Loadings 
GCC 0.652  SCR-L 0.902 
BCC 0.643  PCR-R 0.866 
SCC 0.874  PCR-L 0.867 
FX 0.431  PTR-R 0.816 
CST-R 0.768  PTR-L 0.762 
CST-L 0.680  SS-R 0.827 
ML-R 0.737  SS-L 0.802 
ML-L 0.707  EC-R 0.643 
ICP-R 0.828  EC-L 0.678 
ICP-L 0.733  CGC-R 0.706 
SCP-R 0.665  CGC-L 0.630 
SCP-L 0.595  CGH-R 0.676 
CP-R 0.679  CGH-L 0.604 
CP-L 0.557  FX/ST-R 0.679 
ALIC-R 0.803  FX/ST-L 0.727 
ALIC-L 0.750  SLF-R 0.893 
PLIC-R 0.817  SLF-L 0.855 
PLIC-L 0.701  SFO-R 0.658 
RLIC-R 0.887  SFO-L 0.351 
RLIC-L 0.864  IFO-R 0.714 
ACR-R 0.803  IFO-L 0.582 
ACR-L 0.710  UNC-R 0.604 
SCR-R 0.918  UNC-L 0.473 

 
Note. A list of abbreviations is provided in Table 3.  
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Supplementary Table 3. Individual cognitive tests and their corresponding loadings for 
general intelligence (g). 
 
 
 

Subtest Loadings 
Digit Sequencing 0.818 
Spatial Working 
Memory -0.701 

Block Design 0.850 
Matrix Reasoning 
Vocabulary 

0.877 
0.733 

 
 
 
 
 
 
 
 
Supplementary Table 4. Individual cognitive tests and their corresponding loadings for 
information processing speed (gspeed). 
 
 
 
 

Subtest Loadings 
Reaction Time 
Simple 

0.752 

Reaction Time 5-
Choice 

0.696 

Symbol Coding -0.815 
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Supplementary Figure 1. Scree plot obtained from the PCA for gFA. 
 

 
 

 

 

Supplementary Figure 2. Scree plot obtained from the PCA for gMD. 
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Supplementary Figure 3. Scree plot obtained from the PCA for g. 
 

 
 
 
 
 
Supplementary Figure 4. Scree plot obtained from the PCA for gspeed. 
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Appendix II: Chapter 5 
 
Supplementary Material Figure 1. Group differences for the average network. 
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Supplementary Material Figure 2. Scatterplots for associations between central and non-

central mean edge weight and IQ. Orange dots represent healthy controls and blue dots 

patients with schizophrenia. 
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Supplementary Material Figure 3. Scatterplots for associations between metrics of the 

average network (y-axis) and IQ (x-axis). Orange dots represent healthy controls and blue dots 

patients with schizophrenia. 
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Appendix III: Chapter 6 
 
 
Supplementary Material Table 1: Descriptive statistics of individual cognitive tests from 

the Wechsler Adult Scale - III across both waves (age 73 and age 76).  
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Supplementary Material Table 2: Percentage of health conditions across both waves (age 

73 and age 76).  

 
 
 
 
 
 
 
 
 
 
 
 
  

Health Age 73 Age 76 
Diabetes 10.71% 12.03% 
Hypertension 48.81% 54.22% 
High cholesterol 41.52% 47.68% 
History of cardiovascular disease 27.23% 33.34% 
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Supplementary Material Figure 1. Scatterplot of the relationship between the percentage of 

change in MD (mean of left-right values from 73 years to 76 years) and szPGRS at p ≤ 

1.0. Standardised linear regression coefficients (b ) were derived from the regression between 

percentage of change in MD and residuals from szPGRS with MDS components and sex. Note 

that these plots and the accompanying betas (using complete data only) correspond well with 

the SEM-implied significant associations reported in the main manuscript which account for 

missingness (FIML) and treat variables and their change as latent (it is inadvisable to extract 

factor scores directly from the SEM due to issues of factor score indeterminacy, e.g. Grice, 

2001). Black line represents linear regression and in grey the 95% confidence interval. 
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Supplementary Material Table 3. Structural equation modelling results. Standardised 

estimates from the associations between polygenic risk score for schizophrenia (szPGRS) at 

a threshold of P ≤ 0.1 and level and change in connectivity.  

 

 
 
 

 
Note: SE: Standard error, FA: fractional anisotropy, MD: mean diffusivity, ATR: anterior 
thalamic radiations, ILF: inferior longitudinal fasciculus, p-values are corrected for multiple 
comparison using FDR. Dots tendency towards significance. 
 
 
 
 
 
 

 Threshold of P ≤ 0.1 

 Level (age 73) Change (age 73 to 76) 

  r SE pFDR  r SE pFDR  
FA       

Genu 0.021 0.153 0.899 -0.037 0.156 0.664 
Splenium -0.004 0.209 0.935 -0.077 0.196 0.458 
Arcuate -0.023 0.011 0.899 -0.046 0.007 0.689 
ATR 0.017 0.008 0.899 -0.098 0.008 0.572 
Cingulum 0.122 0.014 0.385 -0.230 0.013 0.458 
Uncinate 0.063 0.009 0.899 -0.066 0.009 0.664 
ILF -0.048 0.011 0.899 -0.173 0.011 0.689 

       
MD       

Genu 0.045 0.263 0.526 -0.01 0.28 0.847 
Splenium -0.047 0.431 0.526 0.116 0.507 0.079 · 
Arcuate -0.008 0.001 0.873 0.207 0.001 0.079 · 
ATR -0.063 0.002 0.526 0.173 0.002 0.115 
Cingulum -0.124 0.001 0.231 0.189 0.001 0.079 · 
Uncinate -0.094 0.001 0.339 0.025 0.001 0.734 
ILF 0.022 0.023 0.873 0.076 0.029 0.734 

       
Connectome       

Mean edge weight 0.035 0.006 0.537 -0.014 0.004 0.862 
Strength 0.031 0.132 0.537 -0.010 0.100 0.862 
Global efficiency 0.035 0.004 0.537 -0.013 0.003 0.862 
Clustering coefficient 0.031 0.004 0.537 -0.012 0.003 0.862 
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Supplementary Material Table 4. Structural equation modelling results. Standardised 

estimates from the associations between polygenic risk score for schizophrenia (szPGRS) at 

a threshold of P ≤ 0.5 and level and change in connectivity.  

 

 
 

 Threshold of P ≤ 0.5 

 Level (age 73) Change (age 73 to 76) 

  r SE pFDR  r SE pFDR  
FA       

Genu 0.032 0.071 0.868 -0.036 0.072 0.583 
Splenium -0.008 0.097 0.868 -0.97 0.091 0.175 
Arcuate 0.010 0.005 0.868 -0.060 0.003 0.596 
ATR 0.051 0.004 0.868 -0.150 0.004 0.175 
Cingulum 0.110 0.006 0.581 -0.239 0.006 0.175 
Uncinate 0.055 0.004 0.868 -0.056 0.004 0.583 
ILF -0.025 0.005 0.868 -0.322 0.005 0.583 

       
MD       

Genu 0.034 0.122 0.583 -0.018 0.129 0.730 
Splenium -0.055 0.200 0.465 0.152 0.235 0.021* 
Arcuate -0.041 0.001 0.583 0.212 < 0.001 0.059 · 
ATR -0.098 0.001 0.324 0.230 0.001 0.052 · 
Cingulum -0.115 0.001 0.324 0.160 0.001 0.059 · 
Uncinate -0.084 0.001 0.324 0.030 0.001 0.581 
ILF 0.013 0.011 0.866 0.149 0.013 0.477 

       
Connectome       

Mean edge weight 0.065 0.003 0.233 -0.046 0.002 0.460 
Strength 0.060 0.061 0.233 -0.041 0.046 0.460 
Global efficiency 0.061 0.002 0.233 -0.042 0.001 0.460 
Clustering coefficient 0.063 0.002 0.233 -0.044 0.001 0.460 

 
Note: SE: Standard error, FA: fractional anisotropy, MD: mean diffusivity, ATR: anterior 
thalamic radiations, ILF: inferior longitudinal fasciculus, p-values are corrected for multiple 
comparison using FDR. Asterisks represent significance (pFDR < 0.05) and dots tendency 
towards significance. 
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Supplementary Material Table 5. Structural equation modelling results. Standardised 

estimates from the associations between polygenic risk score for schizophrenia (szPGRS) at 

a threshold of P ≤ 1.0 and level and change in white matter microstructure and in general fluid 

intelligence. 

 
 

Path type Path r        SE pFDR  
Level - Level szPGRS- gf -0.145 0.029 0.001* 

 Splenium MD - gf -0.113 0.032 0.020* 
 Arcuate MD - gf -0.132 0.032 0.012* 
 ATR MD - gf -0.115 0.028 0.044* 
 Cingulum MD - gf -0.067 0.030 0.184 
     

Level - Change (Δ) szPGRS- Δ gf 0.003 0.015 0.962 
 Splenium MD - Δ gf -0.129 0.017 0.122 
 Arcuate MD - Δ gf -0.112 0.018 0.176 
 ATR MD - Δ gf -0.171 0.016 0.122 
 Cingulum MD - Δ gf -0.109 0.017 0.183 
 gf - Δ Splenium MD 0.057 0.036 0.264 
 gf - Δ Arcuate MD -0.130 0.022 0.134 
 gf - Δ ATR MD -0.261 0.029 0.012* 
 gf - Δ Cingulum MD -0.090 0.033 0.212 
     

Change (Δ) – Change (Δ) Δ gf - Δ Splenium MD 0.026 0.295 0.916 
 Δ gf - Δ Arcuate MD -0.021 0.186 0.916 
 Δ gf - Δ ATR MD 0.051 0.279 0.916 
 Δ gf - Δ Cingulum MD -0.010 0.274 0.916 

 
Note: SE: Standard error, gf : general fluid intelligence, MD: mean diffusivity, ATR: anterior 
thalamic radiations, p-values are corrected for multiple comparison using FDR. Asterisks 
represent significance (pFDR < 0.05). 
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Appendix IV: Chapter 7 
 
 
 
 
Supplementary Material Table 1. Standardised estimates obtained from the regression 

models for age and sex and cortical thickness and grey matter volumes of the salience network. 

 

Note: L: left, R: right, beta: standardised estimates from the regression models, CAC: caudal 
anterior cingulate. Asterisks represent significance from the linear mixed models (pFDR < 
0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Age Sex Age pFDR Sex pFDR 
Cortical thickness (mm)     

L CAC 0.015 -0.162 < 0.001* < 0.001* 
R CAC 0.018 -0.251 < 0.001* < 0.001* 
L Insula 0.009 0.169 < 0.001* < 0.001* 
R Insula 0.005 0.235 0.109 < 0.001* 

     
Grey matter volume (mm)     

L CAC -0.005 -0.084 0.122 0.201 
R CAC -0.003 -0.090 0.308 0.201 
L Insula 0.007 0.034 < 0.001* 0.566 
R Insula 0.004 0.175 0.180 < 0.001* 
L Thalamus -0.026 0.012 < 0.001* 0.756 
R Thalamus -0.027 0.024 < 0.001* 0.568 
L Amygdala 0.006 0.204 0.122 < 0.001* 
R Amygdala < 0.001 0.253 0.888 < 0.001* 
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Supplementary Material Table 2. Standardised estimates obtained from the regression 

models for age and sex and fractional anisotropy (FA) of the pathways involved in the salience 

network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: L: left, R: right, beta: standardised estimates from the regression models, CAC: caudal 
anterior cingulate, VDC: ventral diencephalon. Asterisks represent significance from the 
linear mixed models (pFDR < 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Age Sex Age pFDR Sex pFDR 
L-Thalamus : L-VDC -0.011 0.242 0.002* < 0.001* 
L-Thalamus : R-Thalamus 0.012 0.204 < 0.001* < 0.001* 
L-Thalamus : R-VDC 0.009 0.223 0.013* < 0.001* 
L-Thalamus : L-CAC 0.008 0.215 0.018* < 0.001* 
L-Thalamus : L-Insula -0.009 0.111 0.013* 0.028* 
L-Thalamus : R-Insula 0.005 0.139 0.103 0.005* 
L-Amygdala : L-VDC 0.006 0.065 0.095 0.170 
L-Amygdala : L-Insula 0.005 0.077 0.101 0.115 
R-Thalamus : R-VDC -0.012 0.485 < 0.001* < 0.001* 
R-Thalamus : R-CAC 0.001 0.255 0.865 < 0.001* 
R-Thalamus : R-Insula -0.007 0.185 0.027* < 0.001* 
R-Amygdala : R-VDC 0.006 0.096 0.088 0.056 
R-Amygdala : R-Insula 0.016 0.082 < 0.001* 0.095 
R-VDC : R-Insula 0.007 -0.156 0.027* 0.002* 
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Supplementary Material Table 3. Frequencies and percentages (in parenthesis) of responses 

to psychotic symptoms. 

 
 

Question Yes No 
Preferred not 

to answer 

Did you ever believe that there was 
an unjust plot going on to harm you 
or to have people follow you, and 
which your family and friends did 
not believe existed? 

4 (0.22%) 1300 (72.67%) 485 (27.10%) 

Did you ever believe that a strange 
force was trying to communicate 
directly with you by sending special 
signs or signals that you could 
understand but that no one else 
could understand (for example 
through the radio or television)? 

3 (0.17%) 1301 (72.67%) 486 (27.16%) 

Did you ever hear things that other 
people said did not exist, like 
strange voices coming from inside 
your head talking to you or about 
you, or voices coming out of the air 
when there was no one around? 

22 (1.23%) 1280 (71.55%) 487 (27.22%) 

Did you ever see something that 
wasn't really there that other people 
could not see? 

20 (1.12%) 1275 (71.27%) 494 (27.61%) 

 
Note: Results based on N=1789 participants. 
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Appendix V: Methods 
 
Supplementary Material Table 1. Table describing each parameter used in this thesis by 

chapter. 

 
  Chapter 4 Chapter 5 Chapter 6 Chapter 7 

Eddy current 
correction eddy_correct (FSL) default parameters 

Brain 
extraction FSL's Brain Extraction Tool (BET) default parameters 

Distortions 
and motion 

FDT in FSL by affine registration of all subsequent EP volumes to the first T2-
weighted EP volume 

Tensor fit DTIFIT 

Tractography 

Tract-based 
Spatial 
Statistics 
(TBSS; Smith 
et al., 2006) 

- 

Probabilistic neighbourhood 
tractography (PNT),  TractoR 
(Clayden et al., 2011; Muñoz 
Maniega et al., 2017) 

- 

White matter 
atlas 

John Hopkins 
University 
(JHU) white 
matter atlas 
available in 
FSL 

- - - 

Tissue 
parcellation - 

Each 3D T1-
weighted 
MPRAGE 
volume was 
parcellated 
into 85 
(Desikan-
Killiany atlas; 
Desikan et al., 
2006) and 165 
(Destrieux 
atlas) regions-
of-interest 
(FreeSurfer) 

Each 3D T1-weighted FSPGR volume was 
parcellated into 85 (Desikan-Killiany atlas; 
Desikan et al., 2006)  regions-of-interest 
(FreeSurfer) 

Connectome         

Whole-brain 
tractography - 

FSL’s BedpostX/ProbTrackX algorithm, 100 Markov Chain 
Monte Carlo iterations with a fixed step size of 0.5 mm between 
successive points. Tracking was initiated from all white matter 
voxels. 

Alignment T1 
- Diffusion 

space 
- Cross-modal nonlinear registration 

Thresholding - 
Including  connections which occurred in more 

than 2/3 of the participants (de Reus and van den 
Heuvel, 2013) 

Consistency-
based, 
conserving 
the top 30% 
(Roberts et 
al., 2017) 
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