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Abstract

In the last decade graphics processors (GPUs) have been extensively used to solve computation-

ally intensive problems. A variety of GPU architectures by different hardware manufacturers

have been shipped in a few years. OpenCL has been introduced as the standard cross-vendor

programming framework for GPU computing. Writing and optimising OpenCL applications is

a challenging task, the programmer has to take care of several low level details. This is even

harder when the goal is to improve performance on a wide range of devices: OpenCL does not

guarantee performance portability.

In this thesis we focus on the analysis and the portability of compiler optimisations. We

describe the implementation of a portable compiler transformation: thread-coarsening. The

transformation increases the amount of work carried out by a single thread running on the GPU.

The goal is to reduce the amount of redundant instructions executed by the parallel application.

The first contribution is a technique to analyse performance improvements and degrada-

tions given by the compiler transformation, we study the changes of hardware performance

counters when applying coarsening. In this way we identify the root causes of execution time

variations due to coarsening.

As second contribution, we study the relative performance of coarsening over multiple

input sizes. We show that the speedups given by coarsening are stable for problem sizes larger

than a threshold that we call saturation point. We exploit the existence of the saturation point

to speedup iterative compilation.

The last contribution of the work is the development of a machine learning technique that

automatically selects a coarsening configuration that improves performance. The technique is

based on an iterative model built using a neural network. The network is trained once for a

GPU model and used for several programs. To prove the flexibility of our techniques, all our

experiments have been deployed on multiple GPU models by different vendors.

i



ii



Lay Summary

In the last decade processors originally designed to compute the color of the pixels of a com-

puter screen (GPUs) have also been used to solve computationally intensive problems. A vari-

ety of GPU architectures by different hardware manufacturers have been shipped in a few years.

The OpenCL programming language has been introduced to provide a standard programming

framework for GPUs.

Writing and optimising OpenCL applications is a challenging task, the programmer has

to take care of several low level details. This is even harder when the goal is to improve

performance on a wide range of devices. OpenCL applications do not perform equally well on

devices of different types.

In this thesis we focus on the analysis and the portability of code transformations. We

describe the implementation of a portable compiler transformation: thread-coarsening. Its goal

is to reduce the amount of redundant instructions executed by the parallel application.

We first develop a technique to automatically analyse performance improvements and

degradations given by thread-coarsening. We also developed machine learning technique that

automatically selects a coarsening configuration that improves performance on a four different

GPU models.
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Chapter 1

Introduction

For decades the performance of computing processors has been improved by increasing clock

speeds. The side-effect of this trend was the consequent increment of power consumption and

operating temperatures. ”Power Wall” is the term used to identify the impossibility to scale

up processor frequency further due to heat constraints. The limits of frequency scaling became

apparent to the broad public in 2004 when Intel stopped the development of two architectures:

Tejas (the would-be successor of the Pentium 4) and Jayhawk. 1 These two processors were

both designed for high operating frequencies. The computer architecture industry then aimed

at lowering single core performance and integrating multiple cores on the same die. Hetero-

geneous devices have then been introduced with the goal of improving power efficiency. In

this scenario, fully programmable graphics processors (GPUs) have become mainstream for

solving highly parallel tasks. The application of GPUs for computational workloads has been

called General Purpose computation on Graphics Processors (GPGPU). With respect to CPUs,

GPUs offer much higher floating point performance per Watt, making them suitable for both

embedded and high performance computing.

GPUs are radically different from CPUs. CPU cores are designed to minimise the latency

of individual threads. GPUs, instead, are massively parallel machines that aim at minimising

the latency of the application by instantiating thousands of parallel threads, thus maximising

the throughput, i.e., the number of threads terminating per unit of time. CPUs are mounted

with a small number (usually less than 10) of powerful cores that aim at improving single-

thread performance with branch predictors, reorder buffers and several levels of data and in-

struction caches. The primal way to improve performance on the CPU is by exploiting the

maximum amount of instruction level parallelism (ILP) available. GPUs have instead a much

larger number (thousands) of far simpler cores. Such cores are often aggregated hierarchically

into clusters (called streaming multiprocessors by Nvidia). These clusters implement the logic

to schedule threads onto their cores. To simplify the design of the architecture all the cores in

1http://www.nytimes.com/2004/05/08/business/intel-halts-development-of-2-new-microprocessors.html

1



Chapter 1. Introduction 2

a cluster share the same instruction pointer, so that hardware threads running on a processor

cluster execute in lockstep. GPU cores have a much larger register file with respect to CPUs,

this is to enable the concurrent execution of a large number of threads. GPUs achieve high per-

formance through the synchronized scheduling of multiple threads to hide memory latencies,

this is called thread level parallelism (TLP). In summary, CPUs strive to keep their pipeline

busy with instructions, while GPUs aim to keep their clusters of cores busy with threads.

The wide success of GPUs in delivering high performance for non-graphics applications

has lead to the introduction in the market of many different hardware devices in a few years.

As a result the field of GPU architecture has rapidly evolved: many vendors have come into

play. Vendor diversity implied also diversity in the architecture and ISA designs.

Unfortunately, heterogeneity hinders code portability across devices. The first GPGPU

programming frameworks to be introduced where Close To Metal by ATI/AMD (2006) [56]

and shortly after CUDA by Nvidia (2007) [98]. Being developed by two different companies

these two programming models were incompatible. A programmer that wanted to deploy code

for the two architecture had to write the application twice.

In 2008 the Khronos consortium introduced a new GPGPU API and language called

OpenCL [67]. This is the result of the efforts of multiple companies to define a cross-platform

API for GPGPU. Being developed by a wide range of hardware vendors, the primal design

goal of OpenCL is to ensure code portability, i.e., a single program can successfully and trans-

parently execute on devices of multiple manufacturers. This is a major productivity boost,

allowing programmers to extensively reuse code.

The OpenCL API manages the GPU as an external accelerator and it is responsible for

scheduling parallel work on the GPU. It can allocate buffers on the graphics memory and

transfer data between the CPU and the GPU.

The efforts to define a portable standard fall short of achieving performance portability.

This means that different devices require different optimisation techniques. Performance porta-

bility affects all the aspects of the computation: memory management, data transfers between

CPU and GPU and compiler optimisations to apply to GPU code. For example, improving

memory transfers between CPU and GPU must take into account the device-specific memory

system. Software pipelining [58] can successfully improve performance for GPUs that do not

share main memory with the CPU. The same transformation might have little or no benefit

on systems that share main memory between CPU and GPU. The same applies to other code

transformations, such as the use of the GPU texture memory [138]. The relative performance

of texture memory and texture caches with respect to main GPU memory changes across hard-

ware vendors. Optimisation techniques that aim at adapting to the underlying hardware to

extract the maximum performance are various and touch all the aspects of the computation.

In this work we focus on the performance portability of the compiler optimisation settings
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for GPU code (called the kernel function). To achieve high performance in this context the pro-

grammer can either optimise code by hand for each device or rely on the compiler to perform

aggressive optimisations. The first approach is impractical, since optimising parallel programs

is extremely demanding. On the other side, the development of an optimising compiler for

multiple architectures is a challenging task for the compiler engineer. The heuristics that con-

trol the transformations must be tuned for all the devices of interest. This type of tuning can by

applied to high level transformations e.g. loop unrolling, tiling, fusion and fission. Back-end

optimisations, instead, are inherently non-portable, our work does not deal with those.

To showcase our analysis and prediction techniques we use a compiler transformation

specifically designed for a data parallel language: thread-coarsening. Thread-coarsening in-

creases the amount of work performed by a single thread and, to preserve the semantics of

the application, reduces the amount of threads concurrently running on the GPU. This is done

by logically merging the computation of multiple threads together. By applying this trans-

formation it is possible to reduce the overhead of redundant computation performed by the

application across threads. Previous works on coarsening [138, 125] lack implementation in

an optimising compiler and rigorous analysis of effects on performance. In this thesis we

provide a complete implementation, analysis and a methodology to select parameters for the

coarsening transformation that can improve the performance of OpenCL kernels on four GPU

architectures.

1.1 Contributions

This thesis makes the following contributions:

1. We provide implementation of the thread-coarsening compiler transformation. The trans-

formation is implemented using the LLVM compiler infrastructure and it works on LLVM

intermediate representation. The transformation makes sure to preserve high perfor-

mance memory accesses by address remapping. We also present a tool that we call

SymEngine that analyses GPU memory access patterns. The source code of our com-

piler passes is available as open-source [83, 84]. The design and the implementation of

all the compiler passes are documented in chapter 4.

2. We show the performance improvements given by thread-coarsening across four archi-

tectures [85]. We show how hardware performance counters change when applying

coarsening on four devices and we propose a technique based on regression trees to

simplify the task of performance analysis. The trees automatically identify the coun-

ters that are affected the most by the transformation and correlate their run-time changes

with execution speedup. This method is helpful in the identification of the root causes of

performance differences among program versions. Chapter 5 presents this work.
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3. We study the impact of the problem input size on the performance given by thread-

coarsening [87]. In particular we analyse how the best coarsening configuration changes

across input sizes. We show that the best coarsening configuration remains the same for

input sizes bigger than a threshold that is benchmark- and platform-specific. We call

this threshold saturation point. We propose to leverage saturation to speedup iterative

compilation. This study is reported in Chapter 6.

4. We developed a machine learning technique to attempt to predict the optimal coarsening

factor for a given program and architecture [86]. We also present a heuristic to estimate

the best thread-remapping policy to preserve the coalescing of memory accesses. Thus

we improve over previous chapter by automatically selecting the coarsening factor and

stride without the need of iterative compilation. The policy relies on the results of sym-

bolic execution of the kernel code using our tool SymEngine. This work is described in

chapter 7.

1.2 Thesis organization

This thesis is organized as follows:

Chapter 2 provides the technical background needed to understand the remainder of the work.

It includes: a description of GPGPU computing and OpenCL in specific, an overview of

the architectural structure of Nvidia and AMD GPUs, we describe the LLVM compiler

infrastructure and the relevant machine learning techniques employed in the thesis.

Chapter 3 presents the related work. It introduces and critically discuss prior work about

relevant compiler transformations, performance modelling and optimisation for GPU,

and the use of machine learning in compiler tuning.

Chapter 4 describes the design and the implementation of thread-coarsening. It presents the

design choices made in the construction of the compiler infrastructure, the implemen-

tation of divergence analysis, the coarsening transformation and the symbolic execution

engine SymEngine for memory access pattern analysis.

Chapter 5 presents the results of performance analysis. It shows how coarsening affects per-

formance of 17 GPGPU benchmarks on four GPU architectures. The chapter shows how

regression trees are used to ease the task of cross-platform performance analysis relying

on hardware performance counters.

Chapter 6 studies how the coarsening transformation affect run-time performance across mul-

tiple problem input sizes. It shows that the best coarsening configuration remains con-

stant across problem sizes bigger than a lower-bound that we call minimum saturation
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point. We describe how to exploit this property to speed up iterative compilation of

thread-coarsening.

Chapter 7 describes the prediction technique used to look for the best coarsening factor and

stride factor. We employ a neural network to decide whether to apply coarsening or not.

By iteratively querying the network we show that is possible to improve performance on

the four architectures taken into account. We also describe our heuristic to remap threads

so to preserve coalescing of memory accesses.

Chapter 8 concludes the thesis by summarising the contributions, the limitations and by de-

scribing possible future direction of research.



Chapter 2

Background

This chapter presents the relevant technical background needed to understand the remainder of

the thesis. Section 2.1 introduces the most important concepts of the OpenCL programming

language. Section 2.2 gives an overview of hardware features of Nvidia and AMD GPUs.

Section 2.3 describes the LLVM compiler infrastructure. Section 2.4 explains how we collected

hardware performance counter on Nvidia and AMD GPUs. Section 2.5 lists the benchmarks

that we used for experiments in our work. Section 2.6 presents the machine learning techniques

that we used: regression trees, neural networks and principal components analysis. Section 2.7

describes how we evaluate the performance of our machine learning methods. Section 2.8

concludes the chapter.

2.1 OpenCL

OpenCL [67] is the standard cross-platform data parallel programming model for multi-core

hardware. The OpenCL specification is extremely flexible, giving vendors the possibility to

support many different types of devices:

• Multicore CPUs, e.g. Intel i7 or ARM Cortex family.

• Graphics Processors:

– Discrete GPUs (the CPU and the GPU have different physical memories), e.g.

Nvidia GTX, Nvidia Tesla, AMD Radeon

– Integrated GPUs (the CPU and the GPU share the same physical memory), e.g.

ARM Mali, Intel HD series, AMD Kaveri APUs.

• Accelerators, e.g. Xeon Phi.

An OpenCL application compliant with the standard is guaranteed to correctly execute on

any of these devices. This improves the productivity developers who can write an application

6
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Application
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OpenCL-C

OpenCL Runtime

GPU Driver

GPU Hardware
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OpenCL Runtime

GPU Driver

GPU Hardware
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OpenCL Runtime

CPU Hardware

Vendor 3

Device

Independent

Device

Specific

Figure 2.1: OpenCL abstraction layers. A single application can be deployed on multiple plat-

forms.

once and run it to many devices. Figure 2.1 describes the OpenCL abstraction layers, clearly

identifying the portable and non-portable layers of the stack. In the figure, the OpenCL runtime

is a library that provides a C interface to schedule computation and to manage buffers on the

computing device. In the case of GPUs these low-level tasks are performed by the device

driver. Notice that the non-portable components are all provided by the hardware vendors, the

application developer does not have to deal with device-specific issues to achieve the expected

functionalities.

The OpenCL standard describes both an application programming interface and a pro-

gramming language called OpenCL-C. OpenCL programs are made of two components: a host

program written in C/C++ which run on the CPU and a device program written in OpenCL-C.

Host code The host code is a C program that implements the main functionalities of the

application. It uses the OpenCL API functions to schedule the compute-heavy sections of the

code to the parallel computing device available. The OpenCL application is initialized with the

creation of a Context, a container for the following data objects:

• Devices: set of available computing devices.

• Kernels: functions running on the parallel devices.

• Program Object: instance of the kernel function containing the code compiled for the

target device.

• Memory Objects: device memory buffers used to communicate with the host.
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kernel void transposeMatrix(global float* input ,
global float* output ,
size_t width , size_t height) {

size_t column = get_global_id(0);
size_t row = get_global_id(1);
size_t inputIndex = row * width + column;
size_t outputIndex = height * column + row;
output[outputIndex] = input[inputIndex];

}

Figure 2.2: Example of an OpenCL kernel written in OpenCL-C.

All these components are created by the programmer when setting up the computation. The

typical work-flow of an OpenCL application is the following:

1. Select the computing platform to use, a platform is a collection of devices from the same

hardware vendor.

2. Create a context for the chosen platform.

3. Select a computing device from the ones available for the chosen platform.

4. Create the command queue. The queue is responsible for sending commands to the

device, so to trigger data transfers and kernel invocations.

5. Create the program by compiling the kernel source code at run-time.

6. Allocate the buffers for data input/output on the device.

7. Transfer data from the host to the device.

8. Launch kernel execution

9. Transfer data from the device to the host.

10. Release all the OpenCL resources.

Device code The device code defines a kernel function, which is executed by the parallel

device on each data point of the iteration space. The kernel is written in OpenCL-C, a subset

of C99 with extensions to support multiple address spaces, vector data types and textures. Fig-

ure 2.2 shows an example of an OpenCL kernel that transposes the matrix input into output.

Each parallel thread reads and writes a single element of the matrix. The kernel is compiled

at run-time calling the API function clBuildProgram which invokes the vendor-specific com-

piler.
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Iteration space definition Kernels are instantiated within a multi-dimensional index-space,

specified at run-time, called NDRange space. A thread executing the kernel function in the

NDRange space is called a work-item. Each work-item is uniquely identified by a tuple called

the global-id. Work-items are associated to the cores in work-groups whose size is specified

at the kernel launch time. Each work-group is identified by a group-id. Within work-groups

work-items are identified by local-ids. The following list specifies all the names we use to

identify work-items, work-groups and their sizes. We will use the same notation throughout

the thesis.

• NDRange space size: (Gx,Gy)

• Size of each work-group: (Sx,Sy)

• Number of work-groups: (Wx,Wy)

• Work-item global indexes: (gx,gy)

• Work-group global indexes: (wx,wy)

• Work-item local indexes, inside the work-group: (lx, ly)

The following formulas correlate together the work-item identifiers and the sizes of the iteration

space:

• (gx,gy) = (wx ·Sx + lx,wy ·Sy + ly)

• (Wx,Wy) = (Gx/Sx,Gy/Sy)

• (wx,wy) = ((gx− sx)/Sx,(gy− sy)/Sy)

For the reminder of the thesis we consider only one- and two- dimensional kernel. We map

direction 0 to the x coordinate, while direction 1 to y.

2.1.1 Device abstraction

In order to support a wide range of devices the OpenCL standard provides a high level abstrac-

tion of the hardware. Figure 2.3 visualizes the abstract representation of an OpenCL device. A

parallel device is made of multiple compute units each containing several processing elements

(PE). Threads are scheduled in work-groups: all the work-items in work-group are associated

to a single compute unit. The individual work-items are then executed by the processing ele-

ments. Each PE has a segment of private memory, not visible to the other processing elements.

All the PEs in a compute unit share a piece of low-latency memory called local memory. With-

out atomic instructions the only way for work-items to safely communicate among each other is



Chapter 2. Background 10

. . .

Local Memory 1

Compute Unit 1

Processing Element 1 Private Memory 1

..
.

Processing Element N Private Memory N

Compute Unit N

Processing Element 1 Private Memory 1

..
.

Processing Element N Private Memory N

Local Memory N

Global Memory

Figure 2.3: Abstract representation of a parallel computing device according to the OpenCL

standard.

through local memory. Writes to local memory are guaranteed to be visible by the other work-

items in a work-group only after the invocation of a synchronization function called barrier.

Since work-items can communicate through local memory and local memory is private for a

compute unit, work-groups can not be migrated across compute units. Finally all the compute

units have access to global memory. This is where input/output buffers for host/device com-

munication are allocated. The OpenCL memory model is relaxed: the memory state visible

by one work-item is not guaranteed to be the same across work-items. This implies that, for

instance, writes to global memory are guaranteed to be visible to all the work-items only at the

termination of the kernel.

In summary, for the remainder of the thesis and in particular for the coarsening transforma-

tion it is important to remember the following properties of the standard:

• Thread synchronization is possible only within the work-items of a work-group with the

barrier function.

• Communication between the host and the device is possibly only through buffers in de-

vice memory. Pointers to these buffers must be passed to the kernel function as parame-

ters.
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Figure 2.4: Schematic representation of the Fermi GF100 architecture. Taken from [100]

2.2 GPU Architecture

This section presents the hardware characteristics of modern Nvidia and AMD GPU architec-

tures.

2.2.1 Nvidia

In this section we present the structure of the Nvidia Fermi Architecture [100]. In particular

we focus on the version named GF100.

The Nvidia Fermi architecture is the successor of the Tesla architectures, which was the first

architecture by Nvidia to support unified shader-cores (see section 3.1 for an overview of GPU

hardware). Fermi features scalable and reusable graphics cores. A variable amount of cores can

be employed at design time to match the performance needs of the device. Figure 2.4 presents

an overview of the architecture. The GPU is organized in Graphics Processing Clusters which

contain multiple Streaming Multiprocessors (SMs). Work scheduling happens in a hierarchical

way, the Giga Thread Engine is responsible for the scheduling of work-groups to the SMs,

while the per-SM Warp Scheduler schedules batches of threads (see section 2.2.1). To ensure

high bandwidth GF100 has six memory controllers, an L2 cache shared among all the cores

and private configurable L1 caches.
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Streaming Multiprocessor Streaming Multiprocessors group together 32 CUDA cores, see

figure 2.5. Threads are grouped into batches of 32 (called warps) which run concurrently on

the cores of the SM. Threads in a warp execute in lock-step, i.e., they share the same program

counter, meaning that they all execute always the same instruction. This execution model is

called SIMT (Single Instruction Multiple Threads): many threads execute a given instruction

at the same time. This methodology is effective in reducing the overheads associated with

instruction issue and decode. Each SM can support up to 48 warps concurrently. Mapping the

Nvidia notation to the OpenCL standard definitions, a CUDA core corresponds to a processing

element, while a SM corresponds to a compute unit.

Warp Scheduler Each SM has two warp schedulers. This allows two instructions coming

from different warps to be issued and executed concurrently. A schematic representation of

the scheduling of warps is given in figure 2.6. Warps in a work-group associated to a SM are

placed in a ready queue and sent to execution to the computing cores in round-robin fashion.

When threads stall due to a L1 cache miss rate they are placed in a waiting queue, the Miss

Holding Status Register. When the data comes from memory the warp in the MSHR waiting

for that data is reissued for the write-back stage.

Local Memory and Caches Each core is equipped with local memory. Local memory is used

as L1D cache and as a programmable scratch pad. See section 2.1.1 for description and uses

of local memory. L1 cache and local memory serve opposite roles. Local memory is designed

to improve memory accesses for applications with regular and predictable access pattern. L1

cache, instead, improves accesses for irregular algorithms where data addresses are resolved

only at run-time. GF100 streaming multiprocessors have 64KB of on-chip memory, 48KB for

L1 cache and 16KB for local memory. GF100 also has a 768 KB L2 cache shared among all

the cores of the GPU.

Coalescing of Memory Accesses An important concept for the optimisation of GPU appli-

cations is the coalescing of memory accesses. On GPUs the best memory pattern is achieved

when consecutive work-items in a warp access consecutive memory locations. This is called

a coalesced access. When a warp makes a memory request, say a float (4 Bytes) per thread,

data has to be fetched from main memory to the private L1 cache of the core. The size of

a transaction from main memory to the cache is equal to a cache line, 128 Bytes. So, if all

the addresses requested by the warp fall in the same cache line the request can be serviced

in a single transaction. In this case, all the data brought in the cache is used with no waste

of bandwidth. This case is depicted in figure 2.7a. If instead, the addresses requested by the

threads are scattered in memory (i.e., they are not consecutive for consecutive threads) multiple

transactions are needed to service the request. Thus, multiple lines have to be fetched into the
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(a) Schematic representation of a Streaming

Multiprocessor.

(b) Schematic representation of a CUDA Core.

Figure 2.5: Schemas of an Nvidia Streaming Multiprocessor and a CUDA Core. Both figures

are taken from [100].
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Figure 2.6: Schematic representation of the stages of warp scheduling for an Nvidia streaming

multiprocessor. The arrows represent the flow of warps in the functional units.

cache. Only part of the data brought in the cache is going to be actually used by the threads.

This type of accesses are called uncoalesced and must be avoided as much as possible. This

case is depicted in figure 2.7b. Similar concepts apply for AMD graphics hardware.

Compiler Toolchain Along with GPU hardware Nvidia ships to developers a library to com-

pile and execute OpenCL and CUDA programs. This library contains a proprietary compiler

that translates OpenCL programs to an intermediate representation called PTX (Parallel Thread

Execution) [4]. PTX is then further translated by a backend compiler into SASS: Nvidia as-

sembly format.

2.2.2 AMD

In this thesis we worked with two AMD architectures, the first one is called TeraScale and the

second one Graphics Core Next. These two are radically different.

2.2.2.1 TeraScale

The Terascale architecture [94] is the second one from AMD to ship a unified graphics core,

the first one was C1/Xenos1. TeraScale manages the massive parallelism grouping threads in

batches of 64, called wavefronts. The most distinctive characteristic of TeraScale are its 5-wide

VLIW cores. They offer high performance for graphics computation and for matrix operations.

This architecture has two main limitations. The first one is that instructions have to be statically

scheduled by the compiler to fill the VLIW slots. This is a hinders the performance of general

purpose workloads, where branches and unpredictable outcomes are more likely to happen

1http://www.beyond3d.com/content/articles/4/2 (June 2005)
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0 1 2 3 4 5 6 7Threads in a Warp

Global Memory

(a) Coalesced access to memory. Notice that the touched locations are aligned and contiguous. This

memory request can be serviced in one transaction.

0 1 2 3 4 5 6 7Threads in a Warp

Global Memory

(b) Uncoalesced access to memory. The touched locations are scattered. This memory request is

serviced in two distinct transactions.

Figure 2.7: Examples of coalesced and uncoalesced memory accesses. Each row of the

memory cells corresponds to a cache line. The grey squares represent memory locations that

are touched by a thread in the warp. The dashed rectangle represents all the data fetched from

main memory to the private caches. Notice that in the uncoalesced case the amount of data

touched by the warp is the same of the coalesced one, but the total amount of data transferred

is the double.

than in graphics workloads. The second limitation lies in the limited parallelism available in

the register file. It is not possible to schedule two consecutive ALU instructions, wavefronts

have to be interleaved to mitigate this problem. These issues were addressed in the design of

the next architecture: Graphics Core Next.

2.2.2.2 Graphics Core Next

The most recent AMD architecture is called Graphics Core Next [7, 31, 9] and it is a complete

redesign over TeraScale. It implements an entirely different ISA, which is more amenable for

computational workloads.

Compute Unit Compute Units (CU) are the main processing components of the GCN archi-

tecture. A GPU is mounted with a certain amount of CUs depending on its design require-
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Figure 2.8: Schematic Representation of the GCN architecture. Notice the four SIMD vector

units and the scalar unit. Figure taken from [8]

ments and its performance budget, the typical number is 32. Each CU contains 4 SIMD units,

called processing elements in the OpenCL parlance. These SIMD units execute the bulk of

the computational work. Each SIMD Unit executes simultaneously one instruction from 16

work-items. The GPU scheduler can assign up to 10 wavefronts to each SIMD Unit, there-

fore they will execute instructions from different wavefront, possibly coming from different

applications. The possibility to dynamically schedule work is a significant improvement in

flexibility over the TeraScale architecture. The CU schedules work for one SIMD Unit at the

time (over the four available) in round-robin fashion. Each CU is equipped with a scalar unit,

used to manage conditional branches and to generate the target addresses of jumps. Figure 2.8

shows the architecture of a compute unit.

Memory System Each CU has a private scratch-pad memory called Local Data Share. The

data cache hierarchy is organized as follows: L1 is 16KB, 4-way set associative with lines of

64 Bytes using the Least-Recently-Used replacement policy. Note that to achieve memory co-

alescing the memory accesses for a quarter of a wavefront (16 threads) must be all consecutive.

GCN cores introduce another improvement over TeraScale: cache coherency. L1 is coherent

for all the threads in a work-group and global coherency is achieved relying on L2. When

a wavefront finishes execution or when a barrier statement is executed the private content of

L1 cache is written L2 and becomes globally coherent. The last important characteristic of

GCN cores is virtual memory support. This has been introduced to make GCN available for

integrated GPUs as well, where CPU and GPU share the same physical memory.
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2.3 Compiler Infrastructure

This section presents the LLVM compiler we used to implement the coarsening pass.

2.3.1 LLVM

LLVM is an open-source compiler infrastructure initially developed by University of Illinois

at Urbana Champaign [73]. The original design goal of LLVM is to provide a framework for

aggressive code optimisation so to achieve high code quality keeping compilation times short.

LLVM is a robust modern compiler designed in a modular way that provides a wide range of

analysis and optimisations. In our experimental framework the OpenCL host code is compiled

with GCC (the compiler of choice of the benchmarks) while only the device code i.e., the kernel

function, is compiler with LLVM.

LLVM-IR The most significant innovation introduced by LLVM is its intermediate represen-

tation, called LLVM-IR. LLVM has the following design choices:

• IR uses operations simple enough to be easily mapped onto real hardware.

• IR is portable, allowing generation of assembly code for a wide range of devices.

• IR is independent of both the operating system and the input language. The type system

is generic enough to allow multiple languages to be easily mapped.

• IR supports metadata to enable optimisation transformations and generation of good ma-

chine code.

LLVM-IR is in static single assignment form [110, 29], this means that variables are assigned to

in only one location. This simplifies the implementation of analysis and transformations such

as constant propagation, dead code elimination and register allocation. LLVM programs are

organized in Modules, which correspond to a translation unit of the original program. Mod-

ules contain a set of Functions. Functions are made of Basic Blocks which then contain IR

Instructions. This organization reflects well the structure of C and C++ programs.

Pass Manager One of the most important components of the LLVM compiler is the Pass

Manager. It schedules analysis and transformation passes. LLVM supports passes working on

different IR structures: modules, functions and basic blocks. A function pass, for example,

works on a function at the time and the pass manager makes sure to run it on all the functions

in a module.
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Scalar Evolution This thesis makes use of an important LLVM analysis called Scalar Evo-

lution (SCEV). A SCEV of an LLVM value is a mathematical expression that describes its

value during the execution of the program. It provides an abstraction over the actual LLVM

instructions used to compute the value. The Scalar Evolution analysis is based on the work

of [11, 145, 126, 127, 18]. SCEV expressions are constructed recursively using a set of basic

types:

• Integer constant.

• Unknown value. For example an input parameter of the current function.

• Cast expression.

• Binary mathematical operation.

• N-ary operation.

• Add recurrence. This is used to represent the evolution of loop variables. This expression

is made of a starting value, an operator and a increment value. At each iteration of the

associated loop the current value of the expression is update using the operator and the

increment.

The following expression is an example of a SCEV expression for the computation of the load

address for transposeMatrix kernel (figure 2.2): ((4 * ((%width * %call) + %call1))+

%input). The values %width, %call and %call1 are local function variables, while %input

is the base pointer of the input buffer. SCEV expression can be rewritten and simplified [126]

thus to easily compare the values of different variables. Scalar Evolution works effectively for

integer computations, this makes it a good candidate for the analysis and the transformation of

loop iteration variables memory addresses. The Scalar Evolution pass fails in analysing com-

putation which depend on conditions evaluated at run-time, for example the trip-cont of a loop

iterating a NULL-terminated linked list. More details on Scalar Evolution can be found in [48].

LLVM and OpenCL Thanks to the flexibility of the compiler it is relatively easy to map

OpenCL constructs to LLVM-IR. Kernel functions in a module are listed in the metadata sec-

tion, which can be read by all the passes. Vector data types are natively supported by LLVM-

IR. Finally, memory address spaces (e.g. the ones identified by the keywords local and

global) can be simply represented using the addrspace keyword.

LLVM Tools LLVM has been designed in a modular way. The front-end, called clang, trans-

forms the input language, in our case OpenCL-C, into LLVM-IR. The opt tool invokes the pass

manager to schedule optimisation passes on the IR. Finally llc lower LLVM-IR to the target.

The whole process is summarized by figure 2.9.
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Figure 2.9: LLVM compilation stages. clang (the front-end) generates LLVM-IR, which is opti-

mised by opt. llc lowers the IR to the target assembly language.

2.4 Hardware Performance Counters

Our work makes extensive use of profiler counters. In particular, chapter 5 presents a method-

ology to quickly relate changes in the value of performance counters with changes in the per-

formance of the application. Here we present how we collected counters on Nvidia and AMD

devices. The available counters reflect the architectural configuration of the device and differ

across vendors and generations.

Nvidia The Nvidia profiler ships with the OpenCL SDK library, it is enabled by setting the en-

vironmental library COMPUTE PROFILE to 1 before the invocation of the executable. Tables A.1,

A.2, A.3 and A.4 in Appendix A list the available counters for an Nvidia GTX 480 and for an

Nvidia Tesla K20c. In these tables we only report the counters we collect. We ignore texture

memory counters, since the benchmarks we use do not use this type of memory. These two

devices are used in the experiments of chapter 5. Nvidia counters are highly accurate giving in-

formation about all the aspects of the computation. Nvidia hardware limits the execution time

of profile runs by collecting counters only on one of the cores of the GPU. Therefore, to obtain

a total estimate of the profiler values the output values have to be post-processed, according to

this formula:

T hread ratio =
Gx ·Gy

thread launched
(2.1)

Counter value = pro f iler counter · thread ratio (2.2)

Where thread launched is a counter recording the number of hardware threads that are actually

profiled by the Nvidia profiler. Gx and Gy identify the x and y dimensions of the NDRange thread

space.

AMD The AMD profiler is an executable called sprofile. It takes in input the name of

the OpenCL executable and outputs instruction counts for each kernel in the application. Ta-

bles A.5 and A.6 in Appendix A list the available counters for an AMD HD5900 and for an
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Program name Source

binarySearch AMD SDK

blackscholes Nvidia SDK

convolution AMD SDK

dwtHaar1D AMD SDK

fastWalsh AMD SDK

floydWarshall AMD SDK

mriQ Parboil

mt AMD SDK

mtLocal AMD SDK

mvCoal Nvidia SDK

mvUncoal Nvidia SDK

nbody AMD SDK

reduce AMD SDK

sgemm Parboil

sobel AMD SDK

spmv Parboil

stencil Parboil

Table 2.1: OpenCL applications used as benchmarks in this work.

AMD Tahiti 7970. Notice that the counters exposed by the AMD profiler are fewer an much

less precise than the one given by Nvidia.

2.5 Benchmarks

This section presents the benchmark programs that we used in this work.

Table 2.1 lists the OpenCL programs that we used in out experiments. We selected these

kernels from the AMD SDK, Nvidia SDK and Parboil benchmarks suites. For the Parboil

benchmarks we used the opencl base version. In the benchmarks selection process we avoided

programs with features that our coarsening pass does not support, such as atomic instructions

or texture memory. We also selected benchmarks that are easy to parametrize. In particular,

we changed the C/C++ host code so to be able to change freely the work-group size. In our

experiments we used various problem input sizes for the benchmarks, these are specified in

each technical chapter.
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Figure 2.10: Example of a regression tree. The tree maps geographical locations (Latitude

and Longitude) to house prices (the values in the leaf nodes). Example taken from:

http://www.stat.cmu.edu/ cshalizi/350/lectures/22/lecture-22.pdf

2.6 Machine Learning

This section presents the relevant statistical techniques used in this thesis. Machine Learning

is the field of computer science that develops algorithms that can improve with experience

over time. This technique is usually applied to model data and to make predictions about it.

In this thesis we apply supervised learning techniques. Supervised learning has the task of

determining an unknown function from labelled data. Data used for training the statistical

model comes in pairs < x,y >, one element of the pair is the set of features describing the data

point (x), while the other element is the value of the unknown function in the given point (y).

The algorithm uses training data to learn the shape of unknown function: x→ y and be able

to predict the value of y for a new data point. In the remainder of the section we describe the

characteristics of two techniques we used in the thesis: Regression Trees and Neural Networks.

2.6.1 Regression Trees

Regression problems deal with output responses y having real values. Regression trees [109]

attempt to solve these problems by splitting the input domain x in smaller regions and fitting

a simple model for each region. The recursive split of the input space is represented by a

decision tree. The tree contains two types of nodes: internal nodes and leaves. Internal nodes

represent a split in the input space according to one dimension with a comparison against a

predefined value, e.g. xi < threshold. Leaf nodes, instead, represent the prediction for the

output variable in the given subregion of the space. This is usually performed averaging the

response variable (y) in the given subregion. Figure 2.10 gives an example of a regression tree

mapping geographical coordinates to house prices. Finding the optimal regression tree for a

given space is NP-complete [97], therefore many different heuristics have been proposed in the

literature. A typical approach is the following. The construction of the tree starts top-down,

with the root containing all the training points. Various split points are evaluated for each
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Figure 2.11: Example of a multi layer neural network. This network is fully connected with three

layers: input, hidden and output

input dimension (feature). A pair input dimension / threshold point is selected if it maximizes

a heuristic value computed on the two resulting sets. One of the heuristics used is often the

difference between the variances of the two nodes with respect to the prediction.

Regression trees have advantages over other machine learning techniques: making predic-

tions from a tree is fast and they are easy for a human to read (in particular the features most

relevant for prediction appear close to the root of the tree). The most relevant drawbacks are:

trees are not well suited for predicting highly irregular spaces and trees tend to overfit. This

means that the resulting tree performs well on the training data but poorly on testing (unseen)

data. Techniques such as early pruning are employed to mitigate this issue.

2.6.2 Neural Networks

Artificial Neural Networks (NN) [19] are often used when the regression function to be learned

is non-linear and highly irregular. NN are composed of multiple neurons organized in layers.

Each neuron has a fixed number of input and output links to other neurons.

Figure 2.11 gives a schematic representation of a feed-forward neural network. Each edge

in the topology graph is associated with a weight w, while the output of each neuron is com-

puted according to this function: out put(x) = f (∑n
i=1 wi · xi). xi are the input values of the

neuron. f is called the activation function an it usually has domain over the real numbers and

range in [−1,1] or [0,1]. Examples of possible activation functions are: the hyperbolic tangent

( f (x) = tanh(x)) and the logistic function ( f (x) = 1
1+e−x ).

The output function is learned by updating the weights for all the neurons so that the error

between the output of the network and output value of the training data is minimised. The

current state of the art learning algorithm is called backpropagation. The algorithm works

iteratively. The weights are first initialized with random values. For each iteration the method

computes the output of the network and compares it against the actual output value of the

training data point. Then for each weight associated with the edges from the hidden layer to

the output layer the algorithm computes ∆w according to the formula ∆w = η · (y− ŷ) · x j
i (η
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Figure 2.12: Three stages of PCA

is the learning rate and xh
i is the value from the j-th hidden neuron to the i-th output neuron).

It then computes the same delta for the weight between the input and hidden layers. Finally,

update all the weights in the network using the deltas just computed. The algorithm stops when

the error converges below a pre-defined threshold or a maximum number of iterations have

been reached.

2.6.3 Principal Components Analysis

Principal Components Analysis (PCA) [20] is a statistical technique widely used for dimen-

sionality reduction. PCA is usually applied to feature spaces that are highly dimensional and

contain redundant information. Redundancy comes from dimensions that are highly correlated

with others, this means that they can be expressed as a linear combination of other dimen-

sions. PCA removes redundancy in a highly dimensional space by projecting the available data

onto the most representative directions. This can effectively improve the accuracy of predictive

models.

Consider the data in figure 2.12a. It lays out in a two-dimensional space data having a

strong distribution along a specific direction. PCA computes first the covariance matrix. This

is determined computing the correlation factor between all dimension pairs of the data. The

method then computes the eigenvalues and eigenvector for the covariance matrix. Figure 2.12b

shows the eigenvectors scaled by the eigenvalue after they have been made orthogonal. The

principal components are then the eigenvectors corresponding to the eigenvalues of greatest

magnitude. In the example the principal component is given by the symbolic formula c1x1 +

c2x2, where c1 and c2 are called loadings. PCA involves the determination of a threshold used

to define what components to discard. The last step of the PCA algorithm Figure 2.12c is to

project all the data onto the space of the selected principal components. This way the output

data is defined in a different space, with smaller dimensionality and less redundancy than the
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(a) A slice in the pie-charts represents the value of a loading of for the given input dimension.
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(b) After Varimax rotation one input dimension strongly contributes only to one output dimension.

Figure 2.13: Visual representation of the value of loadings for a hypothetical space before and

after Varimax rotation.

original space, and it still coveys similar amount of information.

Varimax Rotation One of the drawbacks of PCA is that the features of the transformed space

are a complex linear combination of the original ones. It is often hard to identify the meaning

of the new components and how they correlate to the original ones. In this context the Varimax

Rotation can be of help [88].

Varimax Rotation rotates the output space in such a way that the resulting principal com-

ponents have formulas having a large number of loadings set to 0 and a few (ideally only one)

loadings set to large magnitude value. This enables the possibility to identify what directions

of the input space strongly affect directions in the output space.

Figure 2.13 gives an example of the effects of Varimax rotation on a hypothetical space.

Subfigures represents a pie-chart for each dimension of a hypothetical six-dimensional space

D[1− 6]. The application of PCA, in our example, shrinks the original space to a four-

dimensional one. Each slice of a pie represent the relative contribution of the given input

dimension to the four output dimensions in figure 2.13a. We can see that normally each feature

strongly contributes to multiple output dimensions (for example the top right slice is large in

area for dimensions 1,2,3,4). After the application of Varimax an input dimension strongly

contributes to only one output dimension, see figure 2.13b. This property is particularly useful

since it is now possible to label output dimensions (a new feature) with the name of the original

direction (feature) that contributes to its value.
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2.7 Performance Evaluation

2.7.1 Performance Metrics

In the context of machine learning the metrics used to quantify the performance of a technique

are usually the mean squared error for regression problems and accuracy and precision for

classification problems. In the context of compiler optimisations, instead, the most important

performance metric is execution time difference between the newly tested technique and a

reference baseline for a run of the tested program. For this thesis we always use the execution

time speedup to measure this difference. The speedup is defined as

speedup =
tbaseline

tnew
(2.3)

Where tbaseline is the execution time of the program run with the configuration considered as

baseline, tnew is the execution time of the same program run with the compiler configuration

under exam. When aggregating speedups of multiple programs we use the geometric mean.

In this work we always measure the effectiveness of our compiler techniques against the best

attainable in our search space, the so called oracle. We thus compute the percentage of perfor-

mance that we achieve. Since in our experiments the maximum speedup is always greater than

one we compute performance percentage in the following way. If speedup is greater than 1:

per f ormance percentage = 100 · speedup−1
max speedup−1

(2.4)

If speedup is smaller than 1:

per f ormance percentage = 100∗ (speedup−1); (2.5)

This is a stricter metric over the simple ratio 100 · speedup
max speedup since we only account for the

speedup that we achieve over the baseline.

2.7.1.0.1 Correlation In this thesis we make use of the correlation coefficient to measure

the similarity of two sets of data, these are usually predicted values and actual experimental

data. Correlation measures the interdependence between two set of variables, in particular their

linear relationship. Given two set of values A and B, the correlation coefficient is computed as:

corr(A,B) =
cov(A,B)

var(A) · var(B)
(2.6)

Where cov is the covariance between the two input sets and var is the variance of the input

set. A positive correlation value means that when values in the A set increase values in the B

increase as well, and vice-versa. Negative value of correlation instead means that when values

in the A set increase values in the B set decrease. Values of 1 or −1 mean that data in set A

can be transformed into data in set B with a linear transformation and vice-versa. A value of 0

means that there is no linear relationship between the two sets.
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2.7.2 Cross Validation

Machine learning techniques are evaluated by dividing the available labelled data into training

and testing set. The model is then fitted on the training data and then evaluated on the testing

set. This process is called cross validation. Rigorous performance evaluation prescribes not to

draw conclusions about the performance of the model when evaluated on the training data. In

this work we employ a specific version of Cross Validation called Leave one out. For the neural

network model in chapter 7 we train the network on 16 of the 17 benchmark we use and we

evaluate its performance of the 17th. We repeat this process 17 times, one for each test case.

2.8 Summary

This chapter presented the technical background necessary to understand the remainder of the

work. We introduced the OpenCL language for programming graphics processors and we gave

an overview of the main characteristics of Nvidia and AMD processors. We then described the

LLVM compiler infrastructure, focusing on the components that we use in the implementation

of the work. Finally we gave an overview of regression trees, neural networks and PCA, these

are the machine learning techniques that we use to analyse the results of thread-coarsening.

Next chapter will give an overview of the academic publications related to this thesis.
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Related Work

This chapter reviews publications relevant for this thesis. Section 3.1 presents an overview of

the evolution of graphics hardware, from fixed hardware functionalities to fully programmable

processors. Section 3.2 describes the context of general purpose processing for GPUs, present-

ing its most important applications. Section 3.3 discusses the topic of performance analysis

and modelling for GPUs. Section 3.4 presents prior works on loop optimisations for single-

and multi-processors. These techniques have found new applications in the context of GPU

programming. Section 3.5 introduces techniques for the optimisation of GPU programs. In

Section 3.7 we give an overview the use of machine learning for compiler optimization. Sec-

tion 3.8 concludes the chapter.

3.1 History of Graphics Processing

This chapter overviews the history of the design of graphics processors.

Graphics processors have been designed with the goal of quickly computing the colour

of screen pixels when displaying a computer-generated image. Figure 3.1 gives a high level

overview of the stages to display images on the computer screen starting from a representation

of a 3D scene. This process is called rendering. The 3D scene is made of objects described in

memory by a set of points and 2D images called textures. These points represent the vertices

3D Scene

(Shape vertices

and Textures)

3D to 2D

Projection
Clipping

Rasterization Pixel Shading Screen Pixels

Figure 3.1: Overview of the graphics pipeline.

27



Chapter 3. Related Work 28

of triangles (called primitives) positioned on the surface of objects. Textures are images that

represent the colour of the surface of objects. The first step of the pipeline is the projection of

the 3D scene onto the 2D surface of the screen, transforming the world coordinates into screen

coordinates. This projection is described by a 4x4 matrix. The second step is the removal of

all the vertices that are invisible given the current orientation of the point of view in the 3D

world. Rasterization is the process of determining which triangle in the scene covers a pixel of

the screen. Finally pixels are coloured according to the colour of the triangle coving it and the

position of the lights, this process is called shading.

Fixed-Function Custom Hardware Dedicated hardware for rendering has been proposed as

early as the 1980s [27, 120]. These solutions we not parallel and had refresh times of the order

of seconds or minutes. Massively parallel architectures were then introduced to take advantage

of data parallelism inherent in the problem (the colour of each pixel can be determined inde-

pendently of all the others) [44]. These where limited in scalability or in programmability, for

example by fixing the number of cores to be able to manage a predefined number of pixels.

The Triangle Processor The work by Deering et al. [30] represents a major step forward

in the design of graphics processors, introducing a system architecture used as a reference for

years to come. The novel idea of this work is to split the rendering pipeline in two stages.

The first stage, called Triangle Processors, works on one triangle at a time to determine the

pixels that cover it. The second stage, called Normal Vector Shader, implements the shading

according to the Phong model [107]. This organization of the work-flow has been implemented

by all modern graphics processors. More in detail, the Vertex Processor (VP) works on the

vertices of a primitive transforming its coordinates from world-space to screen-space, and also

sets up colours and textures to be used by the fragment processor. The Fragment Processor

(FP) interpolates the data associated with the vertices of the primitive to set each pixel of the

appropriate colour. The two types of processors have different types of workloads, the VP

works with high precision on mathematical operations, while the FP works on texture filtering

(needed to map textures to primitives).

Programmable Vertex Processor The next big step in the definition of modern GPU archi-

tecture is the introduction of a programmable Vertex Processor [80]. The first GPU to ship this

type of processor was the Nvidia GeForce 256 in 1999. This device addressed the need for a

wider range of lighting effects. Graphics core are now programmable using the OpenGL [68]

(from the Khronos Group) and Direct3D [93] (from Microsoft) frameworks. It is important to

notice that usually graphic workloads are not evenly distributed among VPs and FPs. Scenes

with a large number of small triangles are put pressure on VPs, while scenes with a small num-

ber of large triangles make the VPs almost idle while keeping the FPs under high utilization.
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Any fixed choice of the number of FPs and VPs leads to workload imbalance and possible

under-utilization of the device.

Unified architecture The solution to this problem came with the introduction of an unified

architecture for the VPs and the FPs, so that vertex and fragment programs can be executed on

the same processor. The main drawbacks of the unification comes from the increase in com-

plexity in the processor logic and in power consumption. The first examples of this innovation

came from the Nvidia Tesla Architecture [81] and ATI Xenos. The introduction of a single pro-

cessor core on GPUs means having a fully-programmable highly parallel processors available

for computation. Exploiting this architecture for non-graphics workload is the goal of GPGPU.

3.2 General Purpose Computing on GPUs

This section gives an overview of General Purpose computing on graphics processors.

Even though GPUs are designed for graphics workloads the massive parallelism they ex-

pose and their power efficiency make them an attractive candidate for general purpose compu-

tation. The first programming framework that exploited the capabilities of modern GPUs for

General Purpose Computing is Brook [24]. The work introduces a programming model that

abstracts the graphics hardware using streams, kernels and reductions. Data stored in memory

is organized in streams, i.e., a set of data that can be modified in parallel. Streams have a base

type and a dimensionality. A kernel is a data parallel function which is executed for each ele-

ment of the data stream. Reductions provide a data-parallel method to compute a single output

value from a stream. From the implementations point of view Brook is composed of a compiler

and a runtime library. The compiler translates Brook programs into Cg shaders [89] (a shading

language by Nvidia) which are then translated to assembly by the vendor compiler. The run-

time implementation lowers the programming model down to OpenGL and DirectX constructs.

In 2007 Nvidia introduced its solution for general purpose computing for GPUs: CUDA [98].

CUDA, like Brook, is made of a compiler and a runtime system. The compiler translates

global functions into PTX assembly code and the runtime dispatches threads onto the GPUs.

The runtime system is also responsible for the management of memory buffers on the GPU and

the data transfers between the host CPU and the GPU.

The work by Owens et al. [103] presents an overview of the type of applications that can

benefit from GPGPU computing. Here follows a description of the most important applications

of GPGPU following the guidelines given by the paper.
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Basic Algorithms GPUs have proved to be capable of solving fundamental tasks of com-

puter science much more efficiently than multicore CPUs. Merril et al. [92] show that radix

sort can be improved more than 3x over a CPU implementation using an Nvidia GPU. Ye et

al. [141] have proposed an efficient implementation of merge sort, while Tanasic et al. [122]

have extended the work to support multiple GPUs. Hierarchical parallel array reduction is a

good fit for GPUs as showcased by an Nvidia tutorial by Mark Harris [52]. Merril et al. [91]

also provided an efficient implementation of array prefix sum (scan). This implementation is

one of the building blocks of a parallel graph Breadth First Search [90] on GPUs.

Linear Algebra Classical linear algebra problems expose high degrees of parallelism that can

be efficiently exploited by graphics processors. Dense matrix-matrix multiplication [121] is a

perfect candidate for GPUs. State of the art implementations all rely on graphics hardware.

Also sparse sparse matrix-vector multiplication have been extensively studied [137].

Domain-Specific Applications GPU are successful in a wide range of application-specific

numerical problems. Their superior power-efficiency makes them good candidate for large-

scale physical simulations for Nbody problems [47] or fluid simulation [51]. In these contexts

a single thread usually simulates a single body or a single node in a grid.

In 2012 the machine learning annual competition for identification of objects in photographs

called Imagenet was won for the first time by a neural network trained implementing the back-

ward propagation algorithm on a GPU [71]. The run-time improvements given by GPUs when

training deep neural networks allow the utilization of much larger data sets, leading to im-

provements in accuracy. The results are so significant that, after 2012, all winners of the annual

competition have used DNN trained on GPUs 1.

In the context of image synthesis with ray-tracing Optix [105] allows programmers to write

CUDA-like kernels to describe the properties of materials in 3D scenes. A custom compiler

generates GPU code and a runtime system dispatches threads on a GPU to execute the propa-

gation of the rays in the environment.

Lastly we cite the application of GPUs to data base query processing. The tool Red Fox by

Wu et al. [134] compiles relational queries to GPU code to exploit the massive parallelism for

the execution of new independent queries on large data sets.

In this section we saw how GPUs can be used to efficiently solve a variety of problems.

These machines are not a perfect fit for every problem. Lee et al. [77] and Bordawekar et

al. [22] show that carefully tuned CPU code can match or outperform GPU programs for highly

parallel problems. The authors claim that works advertising massive performance improve-

ments given by GPUs were comparing against suboptimal CPU implementations.

1http://on-demand.gputechconf.com/gtc/2015/presentation/S5715-Keynote-Jen-Hsun-Huang.pdf (March 2015)
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3.3 GPU Performance Analysis and Modelling

This section describes in techniques to analyse and predict performance of GPU accelerators.

We identified three main methodologies for the analysis of GPU performance: manual mod-

elling, simulation-based modelling and machine learning-based modelling. We also present

works that evaluate the portability of OpenCL application across different devices.

Manual Modelling The work by Hong et al. [53] is, to our knowledge, the first attempt to

develop an analytical performance predictor for GPU architectures. The paper approaches

the task of performance modelling analysing the available thread level parallelism and the

amount of computation performed by the application. The methodology integrates hardware

parameters, extracted with benchmarking, in an analytical model to estimate the execution time

of CUDA applications. The follow-up paper [54] extends the performance model to integrate

a power prediction as well. A more recent work from the same group extends the model

to analyse multiple program versions so to guide compiler optimisations [116]. The model

takes in input information about the dynamic instruction mix and other profiling information

obtained with Ocelot and with the Nvidia profiler [1]. The transformations used for analysis

involve prefetching, promotion to shared memory, unrolling and vectorization and were applied

manually. They show that the model can successfully predict the performance of multiple code

versions.

Baghsorkhi et al. [14] have developed a GPU performance model based on the control

flow graph. Instructions in basic blocks are coalesced together into groups and marked with a

label to identify the most dominant operation: global memory access, local memory access or

computation. The dependencies between the nodes and the latencies of the individual nodes

are used to determine the overall latency of the threads. The model also takes into account how

many warps execute a given node (depending on the control flow) by looking at the program

dependency graph [43]. The follow-up work from the same group [15] focuses on the analysis

of GPU memory and cache performance. It introduces a tool to instrument memory accesses

and to statistically select which accesses to instrument using a Monte Carlo method.

Zhang et al. [144] propose a set of micro-benchmarks to measure memory latencies to

identify performance bottlenecks. The model relies on code written directly in GPU native

instruction set. The authors use their performance model to improve performance of matrix

multiplication, tridiagonal solver and sparse matrix multiplication.

All the models presented in this section provide high predictive accuracy at the cost of

extensive manual labour. Such models are fit for a specific GPU model and cannot be easily

extended to others.
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Simulation-Based Modelling GPGPUSim [45, 16] is the state-of-the-art academic simulator

for Nvidia architectures. The tool simulates an Nvidia GPU by interpreting PTX and SASS

instructions generated from CUDA functions. GPGPUSim includes timing models for the

SIMT cores, caches, DRAM and interconnect. This simulator can provide valuable information

in particular about thread divergence within warps and the utilization of the cache hierarchy.

It is consistently used by researches for design-space exploration of GPU architectures such

as [59] and [99]. Multi2Sim [124], a simulator based on AMD TeraScale architecture that

aims at studying heterogeneous systems. The tool integrates a GPU and a x86 CPU simulator.

The GPU-side of the tool is used to study the utilization of the VLIW cores, the branching

divergence and the performance scalability of OpenCL kernels. Since it models an architecture

which has been replaced by newer ones this simulator has lost interest over time.

Machine Learning for Performance Modelling The works by Lee et al. [75], Dubach et

al. [38] and Ipek et al. [57] are the most significant in the context of performance modelling

of CPU cores with machine learning. Their goal is to predict the performance of various

configurations of the processor design space given a small sample to learn from. The remainder

of this section deals with the performance modelling of GPUs, these are challenging to model

due to their massive parallelism.

Jia et al. [59] tackle the task of hardware design space exploration for graphics processors.

The goal is to quickly identify the best performing GPU hardware configuration for a given

program. The authors explore a large space of parameters for GPGPU-Sim [16]. Using linear

regression to interpolate a small fraction of the search space they show it is possible to achieve

high prediction accuracy over the entire space. The paper describes also the process of selecting

the most relevant parameter for model accuracy using the R2 metric.

The same researchers have approached the problem of rapidly selecting algorithmic pa-

rameters [60]. They build a search space for GPGPU applications considering algorithmic

optimisation factors specific for each application. The performance of testing configurations is

evaluated using a regression tree which predicts both execution time and power consumption.

The methodology has been evaluated both on Nvidia and AMD GPUs. This paper is similar to

the work we present in chapter 5. Three are the main differences: (1) We employ a compiler

transformation to generate the search space, while they rely on human intervention (see chap-

ter 4). (2) Our regression tree methodology is device-specific, while their is kernel-specific. (3)

Our technique partitions the space of profiler counters, while theirs works on the program pa-

rameter space. In summary, Jia et al. aim at providing insightful information to the application

programmer, while our work is meant to be used by compiler engineers.

Kerr et al. [65] developed a methodology capable of generating performance models for

both multicore CPUs and GPUs. The authors employ the Ocelot emulator [33] to collect statis-
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tics about the dynamic characteristics of CUDA applications. They gather information such as

instruction count, branch divergence, memory footprint, and more. The large number of pro-

grams features extracted are then compacted into a small number using Principal Component

Analysis. Each output component is then labelled with a significant name depending on the

features that contribute to it the most, this is possible after a space rotation called Varimax [88].

The principal components are then used to perform linear regression on the program execution

time. The methodology to reduce and analyse the feature space is similar to the one that we

employ in chapter 7.

The follow-up paper [64] by the same group aims at automatically develop an infrastructure

for performance prediction formalising the development of models and reporting of results to

the users.

Memory Modelling In section 4.6 we propose a methodology to analyse memory access

patterns of GPU programs. Previous research in this field has been directed towards two main

goals: to analyse the GPU cache and to estimate the coalescing of memory transactions. Tang et

al. [123] propose a model for the L1 data cache of Nvidia GPUs. The paper extends the concept

of memory access reuse distance [17] to adapt it to graphics processors by taking into account

the concurrent execution of multiple threads, warps and work-groups. The authors statically

analyse the memory accesses of CUDA kernels and use them to feed an analytical model of

the memory system of a GPU. An improvement over this model is provided by Nugteren et

al. [99]. The authors enrich the reuse distance model to take into account the cache latency

and the presence of the miss status hold register. Both this aspects are ignored by the previous

work. Nugteren et al. use low-level micro-benchmarking to reverse-engineer properties of the

GPU cache to be used in the cache model. The accuracy of the model is validated comparing

against hardware profiler counters extracted from the Nvidia profiler [1]. This model is proved

to have accuracy comparable to the one of GPGPUSim: a fully-featured GPU simulator.

The other branch of research in this field studies the coalescing properties GPU programs.

Boyer et al. [23] propose to instrument CUDA source code so to record all the accesses made

by a CUDA application. With this information is then possible to compute the number of

coalesced accesses and the presence of race conditions among CUDA threads. Fuzia et al. [41]

propose to use dynamic instrumentation of NVIDIA PTX programs to guide the remapping

of memory accesses. Their method first identifies uncoalesced memory accesses and then

applies polyhedral code generation to remap accesses in local memory so to ensure coalescing.

They show performance improvements between 2x and 35x by removing uncoalesced patterns.

Karrenberg et al. [63] propose a technique to check whether consecutive OpenCL work-items

access consecutive memory locations. Their goal is to verify the safety of the application of

whole function vectorization [61] on CPU architectures which do not support gather and scatter
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operations. For each memory access the authors construct a logic formula using Presburger

Arithmetic. A SAT solver is then used to verify or disprove that consecutive work-item access

consecutive elements in memory. Their technique is extremely formal and capable of handling

complex scenarios. Since most memory accesses of OpenCL programs are regular or indirect

such formalization is rarely useful in practice. This is confirmed by the limited number of

benchmarks that the authors use in the paper.

OpenCL Performance Portability This section presents work focused on the evaluation of

performance portability of OpenCL. These papers compare the performance of OpenCL pro-

grams on multiple devices.

Rul et al. [111] consider three programs (cp, mri-fhd and mriQ) from the Parboil bench-

mark suite [2] and measure their execution time on Intel i7, Tesla, ATI FirePro and IBM Cell.

The authors apply manual transformations by unrolling and vectorising the code. Exploring

this search space they evaluate the performance of a benchmark optimised for a device and

run on another. The penalties for not optimising code for the target processors are as high as

100x. Similarly Komatsu et al. [70] compare various manual optimisation strategies and evalu-

ate performance difference between different runtime libraries: OpenCL and CUDA on Nvidia

GPUs. The authors also make absolute comparisons in terms of raw execution times among

the devices. This paper again confirms the idea that applications must be individually tuned for

the target hardware.

These works on performance portability often just present performance numbers without

providing a unique performance model capable of explaining performance in a portable way.

Pennycook et al. [106] focus on the performance evaluation of parallel LU decomposition.

The authors provide an interesting comparison between OpenCL and Fortran code, showing

how the Fortran PGI compiler can deliver better performance thanks to its broader set of opti-

misations. Further, the paper presents an MPI/OpenCL implementation on a 2-Nodes clusters

also comparing with the possibility to perform device fission [67] i.e., creating multiple virtual

GPUs aggregating the physical cores of a single one.

Dolbeau et al. [34] studies the performance implications of using a single OpenACC pro-

gram version [3] for a set of accelerators. The paper shows that it is possible to write a single

program version to perform on all the devices within 12% of the optimal. This is a rather sur-

prising result, in light of the previous body of work on the subject. A possible explanation for

this is the limited size of code transformations, since the authors only look at work-group size.

Grewe et al. [46] present a tool to automatically transforms OpenMP code into OpenCL

code to run on the GPU. The original CPU-friendly code is automatically transformed so to

ensure coalesced accesses on the GPU. The new runtime system is completed with a classifica-

tion tree model to decide on which device to execute a given piece of code depending on static
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code features and the problem input size.

3.4 Loop optimisations

This section gives an overview of loop optimisations for single- and multi-processors.

Most of the works cited here were developed for sequential or wide vector machines in the

1980s and 1990s. This body of work is still relevant today for highly parallel GPUs. Ideas

such as reduction of redundancy, exploitation of spatial and temporal locality are important

for modern hardware. Techniques such as tiling and unrolling can be successfully applied

to GPGPU programs, the main difference is that the outer-most loop will be implicit and the

data-parallelism is given by the programming model. In particular, the thread-coarsening trans-

formation described in the thesis is remarkably similar to loop unrolling applied to the parallel

loop of OpenCL programs.

Unrolling Unrolling replicates the body of the loop multiple times and reduces the number

of iterations of the loop accordingly. This technique has been extensively evaluated for For-

tran and C programs [35]. Bacon et al. [12] explain that the main advantages of unrolling

come from reducing the overhead of the computation of loop iteration variables, increasing

instruction level parallelism and improving data locality of registers and caches. Increasing the

number of instruction in the loop body can significantly improve the quality of code generation.

In particular, register allocation and instruction scheduling have more scope for optimisations.

This property makes unrolling an effective transformation for statically scheduled architec-

tures, such as VLIW machines [39]. The main drawback coming from the increase in the

number of instructions in the loop body is the consequent increase in instruction cache pres-

sure. Unrolling is relatively easy to implement for single-nested loops. Unrolling outer-most

loops, instead, implies the replication of inner loops. The overhead that incurs in the replication

of the inner loop can be mitigated by fusing the resulting loops. This technique is called unroll

and jam [26]. Unrolling can also be applied at the assembly level as explained by Abrash [5].

Transformations for data locality Given the relative performance differences between com-

puting cores and memory latencies efficient utilization of the cache hierarchy is central to

achieve high performance. The work by Lam et al. [72, 133] aims at increasing the locality of

loop nests with a mathematical model of the tiling transformation. The idea behind this is to

reuse data in the cache as much as possible before it is evicted. This is achieved with a transfor-

mation of the iteration space called tiling. Tiling transforms the iteration space that spans the

whole dimensions of the original matrices to work on sub-matrices. The tiling transformation is

composed of two steps, the first one transforms the code inserting appropriate parameters that

define the size of the blocks. The second stage involves the determination of such sizes. The
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optimal sizes depend on the memory layout of the system, in particular on the associativity and

size of the caches. The authors provide a mathematical description of the iteration space based

on polyhedral shapes. Linear algebra transformations are employed to define in mathematical

form the tiling optimisation. These works rely on data flow analysis for loop nests developed

by Feautrier [42].

3.5 GPU Optimisations

This section presents works in the context of code transformations for GPU hardware.

Ryoo et al. [112] present the first piece of research to propose optimisation for general

purpose computation on Nvidia graphics hardware with CUDA. Coalescing of global memory

accesses and tiling to local memory and loop unrolling are the primal optimisation techniques

presented in the paper. The follow up paper from the same group [113] addresses the problem

of pruning the optimisation space, so to speedup the search for the best performing config-

uration. The authors introduce two static metrics to estimate performance: Utilization and

Efficiency. They then focus the search for the optimal configuration to the configuration laying

on the Pareto frontier of the Utilization/Efficiency plot.

Mitigate branch divergence The high cost of executing branches on GPUs makes them tar-

gets for aggressive optimisations. The work by Han et al. [49] focuses on this aspect proposing

two optimisation techniques. The first one is called iteration delaying. It targets divergent

branches inside loops and it works by changing the execution order of iterations by grouping

together iterations that all take the same path of a branch. The second one, branch distribu-

tion, moves out of a divergent region instructions that are shared between the two paths of a

divergent branch. The two techniques have been applied manually to both micro-benchmarks

and full application showing speedups up to 80% and 16% respectively. A follow-up work

from the same group [50] proposes a way to reduce divergence of inner loops that have a trip

count that varies across work-items. This kind of irregularity leads to poor utilization of the

computing cores of the GPU. The authors propose to merge inner loops with outer ones, thus

creating a single loop that has a constant number of iterations for all the threads in a warp. This

technique improves performance up to 4.3x on Nvidia hardware. The main drawback is the

limited applicability of the technique only to kernels with nested loops. Zhang et al. [142] ad-

dress the problem of divergence by proposing a novel runtime system that attempts to make all

the threads in a warp go through the same execution path. This is accomplished by remapping

memory accesses so that all the threads in a warp loads values that make them not diverge. The

authors propose two methods, one changes the layout of the data in memory, while the second

redirects accesses using indirection. Taking into account the overhead of remapping the system
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gives within 1.3x and 2x over naive execution. Similar techniques have been applied by the to

mitigate the problem of uncoalesced memory accesses [143].

Input-Aware optimisations Liu et al. [82] propose an auto-tuner to adapt optimisation op-

tions to the size of the input buffers. The authors introduce a source to source compiler based

on Cetus called G-ADAPT that automatically searches the optimisation space using a hill-

climbing approach spanning multiple input sizes. The optimisations used in the paper are

limited to loop unrolling and thread block size. Once that the exploration terminates the tool

builds a regression tree that maps input sizes to compiler options. This tree is meant to be used

inside a JIT compiler to select the best options given the execution configuration. Samadi et

al. [114] tackle the problem of tuning StreamIt programs for multiple input sizes. All the op-

timisations presented in the paper are specific for the streaming programming model but they

correspond to common patterns: promotion to local memory, coarsening and coalescing. By

coupling the optimiser with a performance model they are able to outperform CUBLAS on

highly irregular input sizes.

3.5.1 Thread-coarsening

This section presents previous work on the thread-coarsening transformation for GPUs.

The first work to introduce thread-coarsening for general purpose computing for graphics

processors is from Volkov et al. [129, 128]. They tackled the problem of optimising linear alge-

bra codes on Nvidia GPUs. The benchmarks of interests were SGEMM, LU, QR and Cholesky

factorizations. The authors performed detailed benchmarking of memory latencies and arith-

metic performance for four GPU models. They showed that is possible to hide memory laten-

cies by increasing the computational intensity of individual threads. By applying this and other

manual optimisation they achieved state-of-the-art performance approaching full utilization of

the computing resources. These impressive results were obtained with painstaking low-level

performance benchmarking and analysis. The lack of compiler support for such optimisation

make this approach non-portable across different architectures.

Yang et al. [139, 138] proposed a fully automatic optimising compiler for OpenCL. Their

goal is to enable programmers to write easy unoptimised code and leave the burden of code

transformations to the compiler. The optimiser takes care of generating coalesced accesses

to global memory and to appropriately share data among threads in local memory. Thread-

coarsening is among the set of transformations proposed.

Their compiler works source-to-source relying on Cetus [13] thus modifying the AST. This

limits the applicability of their methodology only to simple linear algebra programs. Lastly

they do not provide an explanation for the different effects that the same code transformation

has on different devices.
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Coarsening for Nvidia GPUs has been further proposed by Unkule et al. [125]. Their study

of the transformation is limited to only five programs optimised by hand. The authors do not

provide any performance evaluation of the results obtained.

Coarsening is similar to the Whole Function Vectorization algorithm proposed by Karren-

berg et al. [61]. In the paper the authors describe in the detail the steps to merge together

logical threads. Their most important contribution is an algorithm that use masking to lin-

earise the control flow graph removing branches and managing loops appropriately. This is

need to ensure uniformity of the code for all vector lanes. Performance results on multicore

CPUs show both large improvements (up to 5x) and performance degradation for programs

with scattered accesses to memory. The authors do not address the problem of determining

when vectorization is beneficial.

3.5.1.1 Divergence Analysis

Thread-coarsening greatly benefits from an analysis pass known as Divergence Analysis. This

is because divergence analysis can identify uniform instructions. The coarsening transforma-

tion can safely avoid the replication of uniform instructions since their output does not change

across threads. Divergence analysis has been studied with the overall goal of reducing the

overhead of redundant instructions in parallel programs. Coutinho et al. [28] introduced a do-

main specific language to express the relationship of assembly instructions with the register

that identified the current thread. The DSL enables reasoning about the divergence properties

of branch instructions. They use divergence analysis to apply a branch fusion transformation:

reduce the number of divergent instructions by hoisting out of a divergent region common in-

structions between the two branches. Karrenberg et al. [62] use divergence analysis to improve

their Whole Functions Vectorization algorithm [61]. By identifying branches that depend on

the variable that identifies the current thread the authors are able to limit the linearisation of

the control flow graph to only the branches whose outcome could change across threads. This

improvements leads to speedups of up to 2x over naive vectorization.

Divergence analysis can be used to improve the run-time performance of code instrumenta-

tion, as showed by [40]. The authors use a combination of symbolic execution and instrumen-

tation for analysing memory traces of GPU applications. Symbolic execution (much faster than

instrumentation) can be used on non-divergent code sections. By applying divergence analysis

the authors were able to find the largest regions of code that can be analysed with symbolic

execution, thus reducing the penalty of instrumentation to a minimum. These techniques have

been implemented within the Ocelot project [33].

Lee et al. [79] address the problem of reducing the overhead of issuing and executing uni-

form instructions among the threads in a GPU warp. They propose to replace conventional

Nvidia assembly instructions with scalar instructions whenever the kernel properties allow so.
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A similar study has been performed by Xiang et al. [136]. They propose to extend the register

file specifically for uniform instructions. They analyse the profitability of uniform instructions

optimisation from the point of view of energy efficiency as well run time performance. Finally

Lee et al. [78] extend their previous work by exploring the design space of options concerning

divergent branch management. They leverage divergence analysis to reduce the overhead of

a complete software-based solution for the reconvergence of control-flow after a branch ex-

ecutes a divergent branch. Their improvements show that a software solution can match the

performance of a hardware solution, thus simplifying VLSI design of the GPU architecture.

3.6 Iterative Compilation

Iterative compilation is the technique that aims at finding the fastest compiler configuration in

a set of alternatives. Research in this field has been directed towards the definition of methods

to reduce the time taken to explore the space of compiler configurations. Bodin et al. [21]

address the problem of selecting a fast configuration for tiled and unrolled loops for embed-

ded platforms. They reduce the search space by selecting only configurations at predefined

values. Vuduc et al. [130] considered the problem of tuning tiling factors for a matrix multi-

plication program for super-computing applications. They employ a statistical method to stop

the search based on the expected probability of find a configuration faster than the best found

so far. Agakov et al. [6] rely on machine learning modelling to focus the search for the optimal

configuration. The technique uses code features to compare the program of interest against a

set of benchmarks used as training set. The search is then focused on the configurations that

gave high performance for a programs similar to testing one. This methodology is particularly

effective since it can be applied to any program/device search space. The authors demonstrate

this by using both an embedded device and a high-end CPU for experiments. Pan et al. [104]

approach the challenging problem of orchestrating compiler optimizations i.e., decide which

optimizations to apply to a piece of code and in what order. They focus the search by remov-

ing optimizations that have showed to have negative effect on performance during the search.

In chapter 6 we propose a technique to improve the performance of iterative compilation for

thread-coarsening by reducing the problem input size. We show that by carefully selecting an

input size on which to perform the search we can find a coarsening configuration that improves

performance on a much larger program size.

3.7 Compiler Optimisation Tuning with Machine Learning

This section gives an overview of the most relevant publications for compiler optimisation

techniques that employ machine learning.
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One of the first examples of statistical learning applied to compiler optimisation is the

work by Calder et al. [25]. The authors introduce the concept of evidence-based static pre-

diction which goal is to estimate branch probabilities using only static code features. They

show that using neural networks and regression trees is possible to improve the accuracy of

branch prediction over the state of the art. Stephenson et al. [118] introduce the concept of

Meta-optimisations. They develop new heuristics using genetic programming to control the

instruction scheduling and register allocation. Two pieces of work by Mosifrot et al. [96] and

Stephenson et al. [117] have the goal of improving the heuristics that control loop unrolling.

The first paper classifies loops based on the performance when unrolled using three categories:

unchanged, improved, degraded. The authors employ static code features to train classification

trees to characterize a loop. The system has been trained both on simple kernels and on loops

coming from SPEC. Stephenson et al. [117] attempt to solve the same problem using a more

sophisticated approach. The authors rely on lightweight profiler counters to correctly classify

loops according to the best performing unrolling factor. Both a Nearest Neighbour approach

and a Support Vector Machine are used for classification.

Chapter 7 presents a machine learning model for the prediction of the best coarsening

parameter for GPU architectures. This problem presents similarities with the problem of tuning

loop unrolling addressed by the papers presented in this section. The technique that we propose

in this thesis takes inspiration from these works. The process of feature selection and model

tuning that we employed is similar to the one described in [117]. The novelty of this thesis

lies in adapting these techniques to the context of graphics processors for general purpose

computation. This process involves mainly the development of new set of features capable

of describing the behaviour of massively parallel applications. We describe the prediction

technique in section 7.6.

Dubach et al. [37] address the problem of selecting the right set of optimisations for a given

micro-architecture. The model selects compiler optimisations relying on a description of the

architecture, source code features and profiler counters extracted with a single run of the un-

optimised program. The model achieves 67% of the maximum performance achievable. The

same group has proposed a reaction-based approach to compiler optimisation [36]. Given a

target program the code is randomly transformed and executed on the target processor. The

results of this exploration process are fed into a neural network that is trained to predict the

relative performance of a new compiler configuration. Leather et al. [74] tackle one of the

most challenging problems related to machine learning: the selection of features to character-

ize program behaviour. They propose generate program features using a language grammar

specifically designed. Features are then selected based on their contribution to the performance

of prediction models.

Stock et al. [119] developed a model to tune automatic loop vectorization. The authors de-
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veloped a source to source compiler that apply high level loop optimisations to reshape loops

with the goal making them more amenable to vectorization. The model then ranks loop ver-

sions based on their expected performance. This works is different from previous publications

because the model is trained on features collected from assembly programs rather than source

source code features. Zheng et al. [131] tackle the problem of mapping streaming applica-

tions written in StreaMIT to multi-core CPUs. Random streaming partitions are automatically

generated so to have a large number of training data.

Sanchez et al. [115] apply Support Vector Machines to guide code specialization for the

Java Virtual Machine. The technique aims at deciding which optimisations to enable for a

given snippet of code. The machine learning model is trained with dynamic code features

automatically extracted from the code during execution inside the JVM.

Lee et al. [76] address the problem of performance prediction in the context of high perfor-

mance applications for supercomputing. The goal is to estimate the performance of the whole

optimisation space given only a subset. The authors employ both a simple linear regression

and a neural network. The paper also describes techniques to filter the features based on their

correlation with the output variable.

3.8 Summary

This chapter has presented an overview of the publications related to the topic of this the-

sis. The survey stated with a history of GPU computing and the most important applications

of general purpose programming on GPUs. We presented the most important techniques for

performance modelling and analysis for GPUs. We then described classical loop compiler op-

timising transformations, these laid the foundations for modern compiler transformations for

GPUs. Finally we surveyed the use of machine learning techniques for compiler optimisations.

The following chapters present the contributions of this thesis. The next one describes the

compiler passes that we implemented in this work.



Chapter 4

Compiler Analyses and

Transformations

This chapter describes the design and the implementation of the compiler passes in this thesis.

We present all the stages of coarsening: divergence analysis, transformation, thread remapping

and the tools that we implemented to support them. We also present the SymEngine tool for

analysing coalescing of memory accesses. This chapter is structured as follows: Section 4.1

introduces the coarsening transformation presenting all its stages and providing an example.

Section 4.2 explains what divergence analysis is and why it is useful in the context of coarsen-

ing. Section 4.3 describes the implementation of the coarsening pass. Section 4.4 presents the

technique used to customize the compiler tool-chain, so to have a single portable compiler for

all the GPU architectures we use. Section 4.5 shows how the iteration space is transformed after

the application of the transformation. Section 4.6 presents SymEngine. This tool symbolically

executes OpenCL kernels to extract information about coalescing of memory accesses. We

describe its design and implementation and we also provide results of its accuracy. Section 4.7

concludes the chapter.

4.1 Introduction

Thread-coarsening is a transformation designed for data parallel programs. It increases the

amount of computation performed by a single thread by replicating the instructions in the

function body. To preserve the semantics of the original program it also reduces the number of

work-items running concurrently on the computing device. The transformation of the kernel

body takes place at compile-time, while the reduction of the number of work-items occurs at

run-time. The stages of the transformation are listed in figure 4.1. Both the divergence analysis

and coarsening have been implemented to work on LLVM-IR. The compiler pass is available

as open-source [83].

42
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Kernel

LLVM-IR

Divergence Analysis

(section 4.2)

Thread-coarsening

(section 4.3)

Coarsened LLVM-IR
OpenCL Backend

(section 4.4.1)
Coarsened OpenCL-C

Invocation of modified NDRange

(section 4.5)

Analysis of memory accesses with SymEngine

(section 4.6)

Figure 4.1: Stages of the coarsening transformation with references to sections with the de-

scription.

kernel void transposeMatrix(global float* input ,
global float* output ,
size_t width , size_t height) {

size_t column = get_global_id(0);
size_t row = get_global_id(1);
size_t inputIndex = row * width + column;
size_t outputIndex = height * column + row;
output[outputIndex] = input[inputIndex];

}

(a) Original kernel code. Instructions that depend on row (the work-item-id along dimension 1) are

underlined.

kernel void transposeMatrix(global float* input ,
global float* output ,
size_t width , size_t height) {

size_t column = get_global_id(0);
size_t row0 = 2 * get_global_id(1) + 0;

I size_t row1 = 2 * get_global_id(1) + 1;
size_t inputIndex0 = row0 * width + column;

I size_t inputIndex1 = row1 * width + column;
size_t outputIndex0 = height * column + row0;

I size_t outputIndex1 = height * column + row1;
output[outputIndex0] = input[inputIndex0];

I output[outputIndex1] = input[inputIndex1];
}

(b) Kernel code after coarsening with factor 2. Replicated instructions are identified by I, while the

computation of the remapping for the new instructions is highlighted in red.

Figure 4.2: Matrix transposition kernel before and after coarsening of factor 2 along direction 1.
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(a) Original 2-Dimensional NDRange space for the

kernel in figure 4.2a. Each cell represents a thread

and it works on one element of the input matrix.

0 1 2 3 4 5 6 7

0

1

2

3

Column

N
ew

R
ow

0

1

0

1

0

1

0

1

subId

(b) NDRange space modified by the coarsening

transformation. This is the iteration space for the

kernel in figure 4.2b. Notice that the number of rows

has been halved (since the coarsening factor is 2)

and now each work-item works on two elements of

the input matrix.

Figure 4.3: NDRange layout for the kernel in figure 4.2 before and after coarsening.

Thread-coarsening is a transformation designed for data parallel programs. It increases

the amount of computation performed by a single thread by replicating the instructions in the

function body. To preserve the semantics of the original program it also reduces the number of

work-items running concurrently on the computing device. The kernel body is transformed at

compile-time, while the reduction of the number of work-items occurs at run-time. The stages

of the transformation are listed in figure 4.1. Both the divergence analysis and coarsening have

been implemented to work on LLVM-IR. The compiler pass is available as open-source [83].

Figures 4.2a and 4.2b give an example of how thread-coarsening transforms an OpenCL

kernel that performs matrix transposition. Being a two-dimensional kernel, coarsening can be

applied in both directions. In this example, the coarsening transformation works on direction 1,

thus each transformed work-item will work on two rows, as figure 4.3b shows. Each divergent

instruction is replicated a number of times equal to the coarsening factor minus one. Replicated

LLVM-IR instructions are cloned and inserted right after the original ones. In figure 4.2b the

coarsened instructions are identified by the symbol I.

The newly inserted instructions will work on the data points referenced by the work-items

before the merging in the original iteration space as shown in figure 4.4. The Gx ·Gy work-items
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Figure 4.4: Mapping between the work-items in the original NDRange space (top of the figure),

with the work-items in the transformed NDRange space (bottom).

in the original iteration space are identified by origTid, where origTid ∈ [0,Gx ·Gy− 1]. The

symbols Gx and Gy are defined at page 9. The new iteration space resulting from coarsening

with factor f actor is newTid× subId where newTid ∈ [0,(Gx ·Gy− 1)/ f actor] and subId ∈
[0, f actor− 1] is the sub-index of the work-item being merged. Coarsening is defined by the

following transformation:

origTid 7→ newTid× subId (4.1)

with constraint

newTid· f actor+ subId = origTid. (4.2)

The coarsening transformation is controlled by three integer parameters:

Direction defines which direction to aggregate work-items in the iteration space. This option

is meaningful only for multi-dimensional iteration spaces. In the formulas in the remain-

der of the chapter we call this parameter direction. In our experiments this parameter

can have the following values: [0,1] depending on the dimensionality of the benchmark.

Factor defines how many times to replicate the body of the kernel, and, conversely, by how

many times to shrink the NDRange space. In the formulas in the remainder of the chapter

we call this parameter f actor. In our experiments this parameter can have the following

values: [1,2,4,8,16,32]

Stride defines how many work-items to interleave between the ones that are merged together.

This option is described in detail in section 4.3.2. In the formulas in the remainder of

the chapter we call this parameter stride. In our experiments this parameter can have the

following values: [1,2,4,8,16,32] Notice that a stride greater than 1 is only meaningful

for a coarsening factor greater than 1.

The following sections describe in detail the individual steps of the transformation.
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1: function FINDDIVERGENTINSTRUCTIONSFORSTRAIGHTLINECODE(kernel, direction)

2: seeds=get global id(direction) ∪ get local id(direction)

3: return FindDivergentInstructionsGivenSeeds(kernel, direction, seeds)

4: function FINDDIVERGENTINSTRUCTIONSGIVENSEEDS(kernel, seeds)

5: divergentInsts = /0

6: workingSet = seeds

7: while workingSet 6= /0 do
8: inst = pop(workingSet)

9: divergentInsts = divergentInsts ∪ inst

10: users = ForwardSlicing(inst)

11: workingSet = workingSet ∪ (users / divergentInsts)

12: return divergentInsts

Figure 4.5: Pseudo-code of divergence analysis for straight line programs only. The algorithm

analyses the body of the given kernel and returns the set of instructions which depend on the

work-item-id of the given direction.

4.2 Divergence Analysis

This section describes divergences analysis and its use for thread-coarsening.

The goal of divergence analysis is to distinguish the instructions in the kernel body in two

types: the ones which depend on the position of the work-item in the NDRange space and the

ones which do not. In the example of figure 4.2a divergent instructions that depend on row

(i.e., gy, refer to page 9) are underlined. The analysis is based on two simple ideas: the work-

item-id for the coarsening direction is divergent and instructions that use divergent instructions

are divergent themselves. The algorithm of the analysis of straight-line programs is given

figure 4.5. First, the output of get global id and get local id for the coarsening direction is

used to initialize the workingSet) of instructions. Each instruction in the set is then considered

individually adding it to the output set divergetInsts). The instructions that use the current

instructions are then added to the working set. This phase is called code-slicing [132] (see code

line number 10). Execution terminates when the working set is empty. This algorithm can

successfully identify data flow dependencies between instructions in the kernel body and the

work-item-id. Notice that this is a conservative approach: we mark divergent all the instructions

that could have divergent behaviour. The implementation is guaranteed to finish by the fact that

a given divergent instruction is placed in the workingSet only once and never reinserted again.

Management of branches Program with branches need special care. Consider figure 4.6.

Here the branch in BBA is divergent, the blocks that are control-dependent on it and its imme-

diate post dominator form a divergent region. The output of the phi-node in BBD (which is the
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. . .

BBA

br cond,BBB,BBC

BBB

x = . . .

BBC

y = . . .

BBD

z = φ(x,y)

. . .

Figure 4.6: Assume that cond is divergent, this implies that the branch in BBA is divergent too,

making this a divergent region. The phi-node in BBD has to be marked divergent because it

belongs to a block that is the immediate post dominator of a divergent branch.

1: function FINDALLDIVERGENTINSTRUCTIONS(kernel, direction)

2: seeds=get global id(direction) ∪ get local id(direction)

3: cfg = BuildCFG(kernel)

4: divergentInsts = /0

5: while seeds 6= /0 do
6: currentDivergentInsts = FindDivergentInstructionsGivenSeeds(kernel, seeds)

7: divergentInsts = divergentInsts ∪ currentDivergentInsts

8: divergentBranches = GetBranches(currentDivergentInsts)

9: cfg = MarkImmediatePostDominatorsAsDivergent(divergentBranches, cfg)

10: phis = GetDivergentPhisFromDivergentBlocks(cfg)

11: seeds = phis

12: return divergentInsts

Figure 4.7: This iterative algorithms finds all the divergent instructions starting from the work-

item ids. It first marks as divergent instructions that depend on the work-item id. It then marks

phi-nodes in blocks that are immediate post-dominators of divergent branches as seeds for the

next iteration. The algorithm stops when there are no more seeds.
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1: function KERNELCOARSENING(kernel, direction, f actor)

2: allDivergentInsts = FindAllDivergentInstructions(kernel, direction)

3: divergentBranches = GetBranches(allDivergentInsts)

4: divergentRegions =

5: GetDivergentRegions(divergentBranches)

6: divergentInsts =

7: GetInstsOutsideDivergentRegions(allDivergentInsts)

8: for all inst in divergentInsts do
9: for subId in [( f actor−1) . . . 1] do

10: newInst=ReplicateInst(inst, subId)

11: InsertInst(inst, newInst)

12: for all region in divergentRegions do
13: for subId in [( f actor−1) . . . 1] do
14: newRegion=ReplicateRegion(region, subId)

15: InsertRegion(region, newRegion)

Figure 4.8: Pseudo-code of thread-coarsening. The algorithm transforms kernel replicating in-

structions and regions that are divergent along direction. Instructions and regions are replicated

f actor−1 times, so to increase the amount of work performed by a single thread.

immediate-post dominator of BBA) defines the values of the alive instructions of the divergent

region. This phi-node should be marked as divergent, even though its arguments may not be.

This is because its output depends on the result of the divergent branch in BBA. The phi-node is

divergent even though its arguments are not, since they might have been replaced by constants

coming from BBB and BBC. We solve this by marking the immediate post dominators of a

divergent branch as a divergent block. In the case in the example BBD is the immediate post

dominator of BBA. Once we identify divergent blocks we mark their phi-nodes as divergent

and use these as seeds for the next iteration of code slicing. The overall implementation is

given in figure 4.7. Given a well-structured control flow graph the algorithm finds all divergent

instructions in the program. Informally, a well-structured CFG is one that can be generated us-

ing if-else and while statements. The -structurizecfg1 pass transforms an unstructured

program into a structured one. The next stage in the compilation pipeline is the coarsening

transformation.
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4.3 Coarsening

Once that divergent instructions have been identified we can apply the coarsening transforma-

tion. Each divergent instruction is replicated a number of times equal to the coarsening factor

minus one. The pseudo-code of our transformation is given in figure 4.8. Notice the function

replicateInst at line 10. It clones the given instruction modifying the operands of the new

one so to make it work on the data referenced by the given subId. The replicated instruction

is then added to the kernel function appending it after the original instruction. This is done by

insertInst at line 11.

4.3.1 Control Flow Management

Special care must be taken in the presence of control flow. A non-divergent (uniform) branch

means that is taken or not taken by all the work-items in the NDRange space. With respect to

coarsening, uniform branches can be safely maintained as their are: coarsening will replicate

the divergent instructions in the region controlled by the branch without modifying the CFG. If

instead the branch is divergent such approach is unsafe and does not preserve the semantics of

the program. We manage these cases treating the whole CFG region controlled by a divergent

branch as a single statement. All the basic blocks enclosed by the branch and its immediate

post-dominator are called a divergent region. During coarsening divergent regions are cloned

and placed right after the original ones. Divergent regions are identified starting from divergent

branches (figure 4.8, line 5) and replicated along with divergent instructions (line 14). Region

cloning presents two critical aspects:

• Unstructured control flow. Regions with multiple exit points cannot be safely copied.

We solve this issue by structurising the CFG as a preprocessing step. This is done with

the -structurizecfg LLVM pass.

• Region cloning is unsafe in the presence of synchronization (barrier function call)

inside regions since this would break the semantics of the program. Our transformation

instead is always safe since we clone only divergent regions. Here we exploit the property

that the OpenCL specification ensures that barriers can only be placed in regions which

behave in non-divergent fashion. Regions with barriers are therefore always treated as

non-divergent.

Region replication has a significant negative effect on performance since it implies exten-

sive code duplication. For more information about its impact on execution time see chapter 5.

1http://llvm.org/docs/doxygen/html/StructurizeCFG 8cpp.html
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Figure 4.9: Mapping between the work-items in the original NDRange space (top of the figure),

with the work-items in the transformed NDRange space (bottom) when a stride of 4 is applied.

4.3.2 The stride option

All the GPUs considered in this work have a warp-based architecture. This type of execution

model greatly benefits from coalesced accessed to memory (see section 2.2.1). Coarsening

programs that have coalesced accesses might make them lose this favourable property. For

this reason, we propose an extension to basic coarsening which restores the original coalesced

access pattern. We merge together non-consecutive work-items in the original space, we merge

work-items that are separated by a stride. The number of work-items to interleave between

merged work-items is the value of the stride parameter. The new constraint on the thread

iteration space transformation from formula 4.1 is:

bnewTid
stride

c· f actor·stride+newTid· mod (stride)+ subId·stride = origTid (4.3)

The effect of stride on the remapping is showed in figure 4.9. Figure 4.10 shows the memory

locations accessed by 8 work-items divided into 2 warps when performing a coalesced load (x

= A[work item id]) in 3 different cases: no coarsening (4.10a), coarsening by factor 2 and

stride 1 (4.10b), and coarsening by factor 2 and stride 4 (4.10c).

4.3.3 Limitations

In our implementation of the coarsening transformation we did not consider atomic instructions

or volatile data. We do not support these language constructs and none of the benchmark we

use in the next chapter have these features. We did not evaluated our transformation on texture

memory, even tough our implementation should be able to support it.

4.3.4 Effects of Coarsening on Program Structure

This section describes the effects of coarsening on the program shape with an example.

At the fundamental level coarsening attempts to reduce the amount of redundant instruc-

tions in OpenCL kernel code. This is done by reusing the computation of uniform instructions

to process multiple output data points. Parallel kernels use a number of uniform integer instruc-

tions (such as loop iterations variables) to compute output values, usually divergent floating
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(a) Original memory accesses for x = A[work item id]. Threads are divided in two warps with con-

secutive threads accessing consecutive memory locations.

0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3 4 5 6 7

Work-items

Memory locations

Work-items

Memory locations

Ti
m

e

(b) Memory accesses for the coarsened version of the load: x1 = A[2 * work item id]; x2 = A[2

* work item id + 1];. Accesses are no longer coalesced.
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(c) Recovered coalesced access pattern using a stride of 4: x1 = A[work-item-id % 4]; x2 =

A[work-item-id % 4 + 4];.

Figure 4.10: Three different memory access patterns from an originally coalesced load. No

coarsening (a), coarsening without stride (b), coarsening with stride (c). In the original config-

uration (a) threads are divided into two warps: [0,3] and [4,7]. When coarsening by factor two

(b–c) the number of warps is halved to one.
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kernel matrixMultiplication(global const float* first ,
global const float* second ,
global float* output ,
size_t size) {

size_t row = get_global_id(1);
size_t column = get_global_id(0);
float result = 0.f;
for (size_t index = 0; index < size; ++index) {

result += first[row * size + index] *
second[index * size + column];

}
output[row * size + column] = result;

}

(a) Original kernel code for a two-dimensional matrix multiplication benchmark. Notice that the for loop

and the load from second do not depend on row.

kernel matrixMultiplication(global const float* first ,
global const float* second ,
global float* output ,
size_t size) {

size_t row1 = 2 * get_global_id(1) + 0;
I size_t row2 = 2 * get_global_id(1) + 1;

size_t column = get_global_id(0);
float result1 = 0.f;

I float result2 = 0.f;
for (size_t index = 0; index < size; ++index) {
float secondValue = second[index * size + column];
result1 += first[row1 * size + index] * secondValue;

I result2 += first[row2 * size + index] * secondValue;
}
output[row1 * size + column] = result1;

I output[row2 * size + column] = result2;
}

(b) Kernel code after coarsening with factor 2 along dimension 1. Replicated instructions are identified

by I. The uniform value from second can be reused in a register, without issuing a second load.

Figure 4.11: Two version of matrix multiplication in OpenCL. The code computes out put =

f irst · second.
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f irst × second =

·

out put

(a) Memory accesses for the matrix multiplication program in figure 4.11a.

f irst × second =

··

out put

(b) Memory accesses for the matrix multiplication program in figure 4.11b. Notice that only one column

is traversed by the matrix second.

Figure 4.12: Memory locations accessed by a single work-item for the two versions of matrix

multiplication in figure 4.11, one is the original version (a), the other is the coarsened one (b).

Notice that the original version stores a single value to the output matrix. This is identified by

the dot.

point values. With coarsening we enable the possibility to reuse integer instructions for the

computation of multiple floating point outputs. This is realized in multiple ways:

• Reuse of integer instructions such as loop iteration variables for loops that are not diver-

gent.

• Reuse of uniform branches. When applying coarsening is possible to avoid the replica-

tion of branches that do not depend on the work-item-id. This reduces the overhead of

branching.

• When two work-items that load the same value from memory are merged together they

can reuse the loaded value in a register and avoid a redundant load instruction. 2 This

case is exemplified in figures 4.11 and 4.12. Figure 4.11a shows the kernel body of a

matrix multiplication example. The values loaded from second are uniform with respect

to the coarsening direction: number 1. This avoids replicating the load from second.

This is visually showed in the schemas in figure 4.12. The arrows represent the memory

locations accessed by a work-item. In the default case a work-item traverses a col-

umn of first and a row of second writing a single memory location for output. In

2Refer to http://blog.llvm.org/2009/12/introduction-to-load-elimination-in-gvn.html for
more information about redundant load elimination in LLVM.

http://blog.llvm.org/2009/12/introduction-to-load-elimination-in-gvn.html
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Figure 4.13: Schema of the use of axtor. clang generates an LLVM-IR module, opt runs

optimisation passes on it and axtor translates it back to OpenCL-C code.

the coarsened case a work-item computes two output values using only one column of

second. This property gives significant improvements on performance as we show in

section 5.6.1.

4.4 Compiler Set-up

This section describes the compiler infrastructure that we use to evaluate thread-coarsening.

4.4.1 OpenCL Backend

GPUs by different vendors use different ISAs. This poses a problem for compiler portabil-

ity, one of the main goals of this work. Extensive cross-architectural evaluation of compiler

transformations for GPUs is only possible with a source-to-source compiler. At the time of

this thesis, standard proposals for cross-platform intermediate representation (e.g. HSA [55]

and SPIR [66]) are not yet available for consumer products. In 2012 Nvidia merged its PTX

backend with the LLVM open-source repository. At the same time Nvidia released a mathe-

matical library meant to be linked against OpenCL programs to provide the implementation

of built-in functions [140]. This solution provides the full compiler support for Nvidia GPUs.

We chose not to use this since it is of no help for AMD GPUs. Previous works that develop

compiler transformations for multiple GPU architectures (such as [138]) employ the Cetus

compiler [13]. This source-to-source compiler builds an IR that represents the abstract syntax

tree of the program. Code transformation then effectively transform the AST. This type of

approach for compiler transformations is limited, and makes analysis based on data flow and

subsequent transformations hard to implement.

Axtor Our solution to this problem is to employ a so-called OpenCL backend, i.e., a compiler

pass that reads LLVM-IR and emits an equivalent piece of OpenCL-C code. Our compiler

toolchain is depicted in figure 4.13. The original OpenCL-C source code is translated to LLVM-

IR using the clang open-source C front-end. We then apply analysis and transformation passes

on the LLVM-IR using the opt tool. The transformed LLVM program is then translated back

to OpenCL-C using the axtor LLVM OpenCL-backend [95]. axtor has two main tasks:
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OpenCL App ld.so libOpenCL.so

Load clBuildProgram

(a) Normal loading of the clBuildProgram function from the libOpenCL.so shared library.

OpenCL App ld.so libOCLWrapper.so

libOpenCL.so

Load clBuildProgram (Customized)

clBuildProgram (Original)

(b) Interception of the invocation of clBuildProgram by libOCLWrapper.so using LD PRELOAD

Figure 4.14: Schemas representing a normal invocation of clBuildProgram using

libOpenCL.so (a) and interception of the same invocation by preloading libOCLWrapper.so

(b).

transform the unstructured control flow regions of the program into structured ones, and then

translate LLVM-IR instructions into C statements. The transformed OpenCL program is then

fed into the hardware vendor proprietary compiler for code generation. The OpenCL-C code

generated by axtor is highly redundant, since it keeps the same shape of the SSA code. This is

not actually an issue since the transformed code is then optimised by the vendor compiler.

4.4.2 Customization of the Compilation Process

To be able to test compiler options for OpenCL-C kernels we have to change the compilation

process of device code. OpenCL-C programs are compiled by the clBuildProgram function

which invokes the hardware vendor proprietary compiler. This compilation step can be cus-

tomized without changing the OpenCL host application. This is possible thanks to the dynamic

library loading mechanism used by the GNU/Linux operating system.

Hardware vendors ship OpenCL implementations in the form of a shared library called

libOpenCL.so. At build time, the application developer has to link his C program against the

OpenCL library. At run-time, the GNU/Linux loader (named ld.so) searches for OpenCL API

functions in the dynamic libraries contained in the directories listed in the LD LIBRARY PATH

environmental variable. Once that the appropriate function is found the loader executes it (see

figure 4.14a). This setting can be changed at run-time by using the LD PRELOAD environmental

variable. When this variable is set to contain the path of a shared library, the loader looks for

a dynamic symbol in that library first before looking anywhere else. Figure 4.14b shows how

the preloading of the new shared library changes the function resolution process.

Here follows the procedure to change the compilation process of an OpenCL kernel:
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• Implement a function called clBuildProgram with the same signature of the original.

This function will perform the following operations:

– Extract the program source code from the cl program object in input.

– Call the clang executable to generate LLVM-IR from OpenCL-C code.

– Read from environmental variables the compiler options that define the transfor-

mation to apply to the code.

– Call the opt executable to transform the LLVM-IR code.

– Call the axtor executable to translate the LLVM-IR code back to OpenCL-C.

axtor is presented in section 4.4.1.

– Invoke the original clBuildProgram function to compile the transformed OpenCL-

C code to machine target code.

• Compile the function into a shared library (in this example we call it

libOCLWrapper.so)

• Set the environmental variable LD PRELOAD to point to libOCLWrapper.so and set all

the options controlling the kernel compilation process.

• Execute the original OpenCL program.

4.5 Invocation

In order to preserve the semantics of the original program it is necessary to change the num-

ber of work-items launched on the computing device. The iteration space has to be reduced

by the thread-coarsening factor. This is done without recompilation of the program using

LD PRELOAD technique (see section 4.4.2). We wrote a library that provides a replacement

for clEnqueueKernel. The new function reads both the input arguments given by to the origi-

nal function and environmental variables for the coarsening direction and f actor. The wrapper

function then shrinks the NDRange space along direction by f actor. The new NDRange space

thus defined is then given in input to the OpenCL function by the hardware vendor to execute

the kernel.

4.6 Memory Accesses Modelling

This section describes an analysis useful for characterizing the memory access pattern of

OpenCL kernels. The tool we present here is used for the selection of the stride parameter

in section 7.5. In particular we aim to estimate the number of memory transactions performed

by the kernel. This corresponds to the number of cache lines transferred from main memory
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Figure 4.15: Overview of the computation of hardware memory transactions.
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Figure 4.16: Components of the SymEngine tool.

to L1 cache or vice versa. See section 2.2.1 for a description of how GPU memory transac-

tions work. To obtain this information it is necessary to estimate the addresses touched by a

load or a store when making a memory request. This is done using a compiler pass that sym-

bolically executes the code of the kernel function. We call the tool the performs this analysis

SymEngine. An overview of the computation of the memory accesses is given in figure 4.15.

In section 7.5 we present how we use the output of our memory modelling to select a suitable

stride parameter.

4.6.1 SymEngine

The goal of SymEngine is to compute what addresses in a buffer are touched during the com-

putation. SymEngine takes the following input parameters:

• LLVM-IR of the kernel function.

• Values of the integer kernel arguments. The values that are important for the task are the

ones used in the computation of addresses, these are usually the sizes of the input and

output buffers.

• The dimensions of the NDRange space ((Gx,Gy),(Sx,Sy)).
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1: function CREATEWARP((Sx,Sy), warpIndex, warpSize)

2: warp = []

3: firstThreadIndex = warpIndex ·warpSize

4: for all workItemIndex in [firstThreadIndex . . . firstThreadIndex +warpSize] do
5: localY = workItemIndex / Sx

6: localX = workItemIndex % Sx

7: warp.append((localX, localY))

8: return warp

Figure 4.17: Algorithm to compute which work-items compose a given warp. Sx and Sy are the

dimensions of the work-groups.

• The warp to simulate. This is identified by two sets of coordinates: the first one identifies

the work-group it belongs to and the second is the index of the warp in the work-group.

Figure 4.16 shows the stages to compute addresses starting from the inputs of SymEngine.

The first step of SymEngine is to identify which work-items in the NDRange space are part of

the warp to be simulated. The function CREATEWARP in figure 4.17 shows how this is done for

two-dimensional kernels. The algorithm starts by computing the index of the first work-item in

the warp (line 3). Then, for all the warpSize−1 subsequent work-items the algorithm computes

the 2D position of the work-item in the work-group with dimensions Sx and Sy (lines 5 and 6).

The function returns a list of all the 2D work-items in the warp.

The second stage is to compute what addresses the warp actually touches, this is imple-

mented by the function COMPUTEADDRESSES in figure 4.18. The first step of the algo-

rithm to extract a so-called Scalar Evolution representation (SCEV) from a memory instruction

(EXTRACTSCEV in line 3). See section 2.3.1 for a description of SCEV. SCEV provides a

mathematical representation of the computation of the address of a memory instruction. Then,

for each work-item in the warp the SCEV expression is folded (FOLDEXPRESSION in line 5)

replacing all the values passed as input such as: work-item id, iteration space (Sx, Sy, Gx, Gy)

and kernel arguments (line 5).

4.6.2 Transaction Computation

Once that we know which addresses are touched by the work-items in a warp we compute the

number of transactions performed by the work when executing the memory instruction. Once

that the addresses for the memory instruction of each kernel in the simulated warp the next

step is the computation of the number of transactions. This is done with the algorithm in fig-

ure 4.19. COMPUTETRANSACTIONNUMBER takes in input the warpSize addresses accessed

by the warp and the size of a cache line. It then computes in which cache line the addresses
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1: function COMPUTEADDRESSES(memoryInst, warp, (Sx, Sy, Gx, Gy), kernelArguments)

2: addresses = []

3: scev = EXTRACTSCEV(memoryInst)

4: for all workItem in warp do
5: address = FOLDEXPRESSION(scev, workItem, (Sx, Sy, Gx, Gy), kernelArguments)

6: addresses.append(address)

7: return addresses

Figure 4.18: Algorithm to compute the set of addresses touched by warp when executing

memoryInst.

1: function COMPUTETRANSACTIONNUMBER(addresses, cacheLineSize)

2: cacheLines = addresses / cacheLineSize

3: cacheLinesNumber = GetNumberOfUniqueValues(cacheLines)

4: return cacheLinesNumber

Figure 4.19: Algorithm to compute the number of transactions made by a warp that is accessing

the given addresses and with a GPU of the given cache line size.

fall by dividing them by the cache-line size. The number of transaction is then the number of

unique cache lines touched.

To keep the presentation simple, the algorithms reported in this section do not deal with

unknown addresses. Indirect accesses to memory or addresses computed using complex arith-

metic make the construction of SCEV expressions fail (line 3 of figure 4.18). We manage these

cases with a fall back that returns the maximum number of transactions. This number is equal

to the warpSize, as if all the threads in a warp make individual transactions. This is an rea-

sonable approximation since it is unlikely that indirect accesses to memory show coalescing

properties.

The computation of the transaction number can work in two modes. The first one simulates

the execution of a single warp. In this mode, the estimate of the total number of transactions

made by the application is the number of transactions per memory instruction for the simulated

warp multiplied by the total number of warps in the NDRange space. The second mode works

simulating all the warps in a work-group and then multiplying the results for the number of

work-groups. This mode takes into account the shape of control flow graph. In specific, we

build the program dependency graph (PDG) of the application [43] and we annotate each node

(a basic block) with a label. This label is a SCEV expression obtained combining the conditions

that control the execution of the parents of the block in the PDG. The label is evaluated by each

work-item that symbolically executes the block. If the folding of the SCEV returns true the

memory instructions in the block are symbolically executed and the number of transactions
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Figure 4.20: Comparison between actual and predicted transaction number for binarySearch

varying the stride parameter on Fermi .

is computed. If the folding returns false (meaning the block is not executed by the current

work-item) then the block is skipped. Baghsorkhi et al. [14] use this same methodology for

their GPU simulator to statically decide what warps execute what blocks in a CUDA program.

For the purposes of the prediction of the stride factor the first mode of execution is accurate

enough to give high prediction accuracy for most cases. We employ the second method the

reduce kernel from the AMD-SDK benchmark suite. This program computes the sum of all

the values in an array. Efficient parallel reductions employ a hierarchical method that makes

a single work-item per work-group perform a store to the output buffer. This is done using a

branch like the following:

if(local_work_item_id == 0) {
outputBuffer[position] = ... ;

}

This branch can be effectively predicted by SymEngine and account for the store only for the

first work-item in the work-group.

4.6.3 Evaluation

This section provides experimental data to validate accuracy of the output of SymEngine. Ta-

ble 4.1 reports the correlation between our prediction for loads and stores transactions and the

actual number collected with the Nvidia profiler on the Fermi device for all the kernels that we

use in our experiments. The meaning of the correlation coefficient is described in section 2.7.1.

The multiple versions of the benchmark have been computed varying the coarsening factor and

the stride. The correlation is above 0.9 in 29 cases out of 34, usually very close to 1. This

signifies the SymEngine is capable of statically approximating the execution-time memory ac-

cesses of OpenCL kernels. There are a few notable exceptions: binarySearch, dwtHaar1D

and convolution. The issue with binarySearch is that the whole program only makes a store
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Kernel Source Store Correlation Load Correlation

binarySearch AMD SDK NA 0.985

blackscholes Nvidia 1.000 1.000

convolution AMD SDK 1.000 -0.313

dwtHaar1D AMD SDK -0.737 1.000

fastWalsh AMD SDK 0.995 0.995

floydWarshall AMD SDK 0.903 0.982

mriQ Parboil 1.000 0.998

mt AMD SDK 1.000 1.000

mtLocal AMD SDK 1.000 1.000

mvCoal Nvidia 1.000 1.000

mvUncoal Nvidia 1.000 1.000

nbody AMD SDK 0.995 0.602

reduce AMD SDK 1.000 1.000

sgemm Parboil 1.000 1.000

sobel AMD SDK 1.000 1.000

spmv Parboil 0.900 0.733

stencil Parboil 1.000 0.988

Table 4.1: Correlation between transaction number prediction by SymEngine for loads and

stores and the actual number collected with the Nvidia profiler on Fermi .
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of a single integer value to main memory: the position of the searched value. This implies that

the number of transactions is always 1, irrespective of the coarsening factor or stride. For a set

of constant values the variance is 0, this means that the correlation, according to formula 2.6

cannot be computed. For binarySearch we provide figure 4.20. The black line at the bottom

of the plot represents the actual number of transactions (always 1), while the blue line at the

top is our prediction. Since we cannot statically predict the outcome of the branch that controls

the store, we assume that all the work-items in the NDRange space execute it. This leads to an

overestimation of the actual value, nonetheless we correctly estimate the constant value of the

counter. The convolution kernel computes at execution time the addresses to load from. Such

computation cannot be modelled correctly by SymEngine. For dwtHaar1D the problem lies in

the lack of support in LLVM SCEV infrastructure to deal with shift operators (<<, >>) use in

the computation of the addresses to load from. We will see how this failure in the modelling

leads to a miss-prediction for the stride parameter for dwtHaar1D in section 7.5.

4.7 Summary

This chapter has described the compiler passes that we implemented in this work. We presented

the stages of the coarsening transformation and the tools that we used to implement it. Finally,

we introduced SymEngine, a symbolic execution engine for the analysis of memory access.

Next chapter presents a technique to automatically analyse the effects of coarsening on

performance through hardware performance counters.
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Performance Counters Analysis

This chapter analyses performance improvements and degradations given by thread-coarsening

on 17 OpenCL benchmarks and four GPUs. We show that the same compiler configuration has

different effects on run-time performance for different devices We introduce a technique based

on regression trees to automatically analyse the hardware profiler counters collected during the

evaluation of the compiler transformation. This gives us a way to quickly draw conclusions

about what counters are affected the most by coarsening and their impact on performance.

Section 5.1 introduces the problem of performance portability and presents our approach to

the solution. Section 5.2 motivates the work showing how the same compiler configurations af-

fect performance differently on different devices. Section 5.3 describes the experimental set-up

and the compiler options used in the chapter. Section 5.4 presents the performance results given

by the exploration of the thread-coarsening space. Section 5.5 describes the technique based

on regression trees we used to analyse hardware profiler counters. Section 5.6 presents the

insights gained thanks to the construction of the regression trees on the four GPUs considered.

Section 5.7 shows how the value of profiler counters change when changing the coarsening

factor. Section 5.8 concludes the chapter.

5.1 Introduction

GPUs are the corner-stone of modern high performance computing. The success of these de-

vices for general purpose computing has lead to the introduction into the market of many

models by different vendors. In this context, OpenCL has been proposed as a common pro-

gramming framework for heterogeneous devices and is now supported by all major hardware

manufacturers.

OpenCL thus provides functional portability across a diverse range of platforms. Although

functionally portable OpenCL is far from being performance portable. OpenCL programs de-

signed and tuned for one system are unlikely to perform as well on another platform. This

63
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problem is particularly acute given the diversity of modern GPU architectures. Even hardware

from the same vendor might show different characteristics from one generation to the next.

AMD, for example, has changed their top-tier discrete GPUs from VLIW to SIMD cores [9]

as we described in section 2.2.2

This heterogeneity makes performance analysis and compiler tuning for multiple archi-

tectures extremely challenging. This happens because the same compiler transformation can

change performance differently on different GPU models. In this chapter we showcase this

performance portability issues with respect of the coarsening transformation presented in chap-

ter 4. We explain how coarsening changes the performance of 17 OpenCL applications on

four GPUs by Nvidia and AMD. With the goal of analysing performance differences between

program versions we run the multiple compiler configurations through Nvidia and AMD pro-

prietary profilers. In this scenario, we then propose a methodology to assist the analysis of the

profiler output. Our technique based on regression trees can select the most important counters

that are affected by coarsening and their relationship with output performance. This methodol-

ogy works effectively across hardware, helping the compiler developer to quickly understand

the effects of coarsening on performance for a new GPU architecture.

In this chapter we make the following contributions:

• We provide an evaluation of the performance given by the coarsening compiler transfor-

mation on 17 benchmarks and four devices by Nvidia and AMD.

• We propose a technique based on regression trees to analyse the profiler counters col-

lected on the four machines.

• We study the output of our performance analysis technique to understand the perfor-

mance differences that we see across benchmarks and devices.

5.2 Motivation

In this section we present the performance variability of thread-coarsening when evaluated on

a matrix transposition (mt) benchmark on four GPU architectures. The platforms are two AMD

GPUs (Cypress and Tahiti) and two Nvidia GPUs (Fermi and Kepler). Figure 5.1 shows for

each of these platforms the relative performance improvement achieved for different coarsening

factors with a baseline of 1 (i.e., no coarsening). As we can see, the impact of coarsening varies

widely depending on the device. For the two AMD GPUs, we achieve the highest speedups

around 3x with coarsening factor of 32. On the Nvidia Fermi GPU the optimal is achieved with

coarsening factor 8 and leads to about 25% improvement. Nvidia Kepler GPU achieves a 20%

improvement with a coarsening factor of 2; performance deteriorates with larger coarsening

factors. This simple example illustrates the challenges encountered by programmers when
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Figure 5.1: Speedup achieved by different coarsening factors on matrixTransposition on

four platforms.

Name Model GPU Driver OpenCL Version Linux Kernel

Fermi Nvidia GTX 480 304.54 1.1 CUDA 5.0.1 3.2.0

Kepler Nvidia K20c 304.54 1.1 CUDA 5.0.1 3.1.10

Cypress AMD HD5900 1084.4 1.2 AMD-APP 1084.4 3.1.10

Tahiti AMD HD7970 1084.4 1.2 AMD-APP 1084.4 3.1.10

Table 5.1: OpenCL devices used for experiments.

porting OpenCL programs. Choosing a single coarsening factor for all the devices would

lead to suboptimal performance even among devices from the same vendor. In section 5.6 we

provide an explanation for the performance differences we record on our devices.

5.3 Experimental Set-up

This section presents the experimental set-up for this chapter.

5.3.1 Devices

For our experiments we used four devices from two vendors: Nvidia and AMD. Table 5.1

presents the hardware set-up for each device and lists the names that we use in the chapter

to identify them. From Nvidia we used GTX480 and Tesla K20c. The first one is based on

the Fermi architecture [100] with 15 streaming multiprocessors (SM) and 32 CUDA cores for

each. The Tesla K20c instead, ships the Kepler architecture [101]. K20c has 13 SMs each with

192 CUDA cores. From AMD we used Radeon HD 5900 (Cypress) and HD7970(Tahiti). The

first one has 20 SIMD cores each with 16 thread processors, a 5-way VLIW core. The Graph-
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Parameter Possible values

Coarsening factor {1, 2, 4, 8, 16, 32}
Coarsening dimension {0, 1}
Stride {1, 2, 4, 8, 16, 32}
Local work-group size (for each dimen-

sion)

{Device min, . . . , 32, 64, 128, . . . , Device max}

Table 5.2: Parameter space. For Nvidia GPUs the maximum size of a work-group is 1024

work-items per direction and 1024 in total. For AMD GPUs this value is 256.

Device 1D 2D

Fermi / Kepler 211 1650

Tahiti / Cypress 155 1082

Table 5.3: Configuration number of the four devices. The number of configurations depend on

the dimensionality of the benchmark and the capabilities of the device.

ics Core Next architecture in Tahiti is a radical change for AMD. Each of the 32 computing

cores contains 4 vector units (of 16 lanes each) operating in SIMD mode. This exploits the

advantages of dynamic scheduling as opposed to the static scheduling needed by VLIW cores.

Section 2.2 gives more details about the architecture of both GPUs.

5.3.2 Coarsening Parameter Space

Section 4.1 introduced the parameters that control the thread-coarsening compiler transforma-

tion. Here we list the range of values used for the evaluation of the transformation. The pa-

rameter space we considered is shown in Table 5.2. We have three parameters controlling the

coarsening pass: factor, dimension and stride. The parameter in the last row, the work-group

size, determines the total number of work-items, along each dimension, in a work-group. This

maximum value is constrained by the device limitations on a per-kernel basis. We have exhaus-

tively explored all combinations of our parameters leading to about 150-300 configurations for

one dimensional kernels and 1000-2000 configuration for two dimensional kernels depending

on the device limitation. These sum up to about 43′000 configurations evaluated across all

programs and devices.

Table 5.3 records the total number of configurations for one- and two-dimensional pro-

grams for our four GPUs.
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Program name Source NDRange size

1) binarySearch AMD SDK 64K

2) blackscholes Nvidia 256K

3) convolution AMD SDK 1M

4) dwtHaar1D AMD SDK 2M

5) fastWalsh AMD SDK 512K

6) floydWarshall AMD SDK (6K x 6K)

7) mriQ Parboil 256K

8) mt AMD SDK (4K x 4K)

9) mtLocal AMD SDK (4K x 4K)

10) mvCoal Nvidia 256K

11) mvUncoal Nvidia 256K

12) nbody AMD SDK 64K

13) reduce AMD SDK 8M

14) sgemm Parboil (512 x 512)

15) sobel AMD SDK (512 x 512)

16) spmv Parboil 16K

17) stencil Parboil (512 x 510 x 62)

Table 5.4: OpenCL applications with the corresponding NDRange sizes, expressed in number

of work-items.

5.3.3 Benchmarks

We have used 17 benchmarks from various sources as shown in Table 6.3. The table also shows

the global size that we used (expressed in total number of work-items). We made sure that for

each benchmark we are able to change the work-group size at will, this involved changes in

OpenCL host code to parametrize hard-coded constants. In the benchmarks selection process

we avoided programs with features that our coarsening pass does not support, such as atomic

instructions or texture memory. The baseline performance reported in the results section is that

of the best work-group size as opposed to the default one chosen by the benchmark. This is

necessary to give a fair comparison across platforms when the original benchmark is written

specifically for one platform. All the performance numbers we report in section 5.4 are relative

to the kernel-only execution time of the original unmodified code after being transformed by the

axtor OpenCL-backend. This is done to factor out possible changes in the shape of the kernel

introduced by axtor. Each experiment has been repeated 15 times for GPUs aggregating the

results using the median.
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5.4 Performance Results

The section presents the performance impact of the exploration of the coarsening transforma-

tion for the 17 benchmarks on the four architectures.

5.4.1 Speedups

Figures 5.2 and 5.3 shows the maximum speedup obtained across all the transformation settings

(see section 5.3.2) for each program and device. We fixed the baseline performance to the one

of the original program (coarsening factor 1) with its best work-group size. This is a strict

baseline and ensures a fair comparison across devices. In the figure the baseline is represented

by the horizontal line at 1.0. The first bar reports the performance of the program run with the

original work-group size. This is often lower than 1.0 because this parameter has to be tuned

specifically for each platform as showed in [82].

The second bar shows the best speedup achievable when the application is coarsened. The

third one shows the additional gain from applying a stride values different from 1 to remap

work-items. Coarsening ensures significant speedups for most of the benchmarks across the

five devices. Speedups range from a few percent up to 4.59 for floydWarshall on Tahiti.

Platforms The two Nvidia GPUs (5.2a, 5.2b) show similar performance. The average im-

provement is 1.15x for Kepler and 1.2x for Fermi. The programs that improve the most after

coarsening are dwtHaar1D, floydWarshall, mt, mtLocal and sgemm. Other kernels do not

show significant improvements, in particular on Nvidia Kepler. This proves the need to thor-

oughly study performance so to select the compiler settings on a per-program basis. The two

GPUs by AMD (5.3a, 5.3b) instead show more significant and diversified speedups averaging

1.5 for Cypress and 1.37 for AMD Tahiti. Differences in the architectures design are reflected

in the speedup differences for benchmarks such as dwtHaar1D, nbody and sgemm.

Stride The stride optimisation is particularly effective for AMD GPUs giving an average

improvement of 1.14 and 1.07 over the best coarsening-only configuration for Cypress and

Tahiti respectively. On Nvidia devices the speedup given by the stride option is less consistent:

on average 1.05 on Fermi and 1.03 Kepler. On Nvidia applications such as dwtHaar1D, mt and

reduce show significant speedups up to 1.56. The stride values giving the best performance

are the largest ones in our space (16 and 32). This is because on Nvidia and AMD 16 or

32 consecutive hardware threads need to access consecutive memory locations to achieve a

coalesced memory transaction.

A detailed explanation of the overall behaviour of the benchmarks is given in section 5.6.
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Figure 5.2: Speedup given by the best coarsening configuration for Fermi and Kepler . The

baseline (the horizontal line at 1) is given by the execution time of the best work-group size for

each program. The first bar represents the performance of the application run with the work-

group size defined by the benchmark suite. The second one is the speedup achieved by the

best coarsening configuration. The third bar represents the performance of the best coarsening

plus stride configuration.
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Figure 5.3: Speedup given by the best coarsening configuration for Cypress and Tahiti . The

baseline (the horizontal line at 1) is given by the execution time of the best work-group size for

each program. The first bar represents the performance of the application run with the work-

group size defined by the benchmark suite. The second one is the speedup achieved by the

best coarsening configuration. The third bar represents the performance of the best coarsening

plus stride configuration.



Chapter 5. Performance Counters Analysis 71

5.4.2 Effect of Coarsening Factor

We now consider the effect of the coarsening factor on execution time. Figures 5.4 and 5.5

show the maximum achievable speedup for each coarsening factor when setting the work-

group size and stride to their best values, for all programs and architectures. The missing data

points represent configurations that fail to run. This is usually due to the fact that the kernel

function after the transformation would use a number of hardware registers larger than the

maximum allowed by the device. This overall view shows variability of the best coarsening

factor. The speedup curves of a single application look different across the four devices. For

example binarySearch (first row) is not sensitive to any coarsening factor on Nvidia Fermi

and Kepler, while it shows significant improvements on AMD Cypress and Tahiti. Furthermore,

the optimal coarsening factor is 2 for Cypress and 8 for Tahiti. The technique we introduce

in the next section automatically analyses this large amount of information providing useful

indication on what counters are important to understand changes in execution time.

5.5 Performance Analysis Methodology

This section fist introduces the rationale behind the methodology that we chose to analyse

performance. We then describe the technique in detail presenting its output and the insights

that we gain.

State of the art techniques for performance evaluation consist in building analytical models

by hand [53, 54, 116]. Such approaches fall short when dealing with an environment so hetero-

geneous as the one of GPU computing. Manually developing an analytical model for multiple

architecture by different vendors is infeasible. This is also true because the performance of

kernel functions depends on the GPU driver OpenCL compiler versions. A methodology that

can quickly adapt to any device is therefore extremely useful in this context.

To analyse the effects of our transformations we propose using profiler counters coupled

with regression trees [109]. Regression trees are a robust statistical analysis and offers two

advantages:

• It is platform-portable since creating the performance model is fully automated and re-

quires no human effort.

• The resulting model is easy to visualize and understand, and as such offers insights into

the factors that affects performance.

5.5.1 Profiling

In order to understand the effects of thread-coarsening on performance we collect profiling

information for each device. For all GPUs we used the proprietary OpenCL profiler from
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Figure 5.4: Maximum speedup for all the programs and devices as a function of the coarsening

factor.
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Figure 5.5: Maximum speedup for all the programs and devices as a function of the coarsening
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each vendor [10, 1]. Section 2.4 presents how to gather profiler counters and what type of

information is available on the four devices. Appendix A contains the list of all the counters

that we collected with the meaning of each of them.

Aggregation of Raw Counters The output of the Nvidia profiler is particularly detailed (re-

fer to tables A.1, A.2, A.3 and A.4). This level of resolution makes it hard to extract useful

information from the profiler output. Data has be aggregated so to reduce the amount of infor-

mation to process. We used the following formulas to aggregate counters so to obtain a more

significant representation of the data. Here we focus on counters related to the utilization of

the memory hierarchy.

• L1 Cache.

– The Nvidia profiler distinguishes cache accesses that are directed to global mem-

ory from the ones directed to local memory (a partition of global memory where

registers are spilled). We ignore this distinction and we aggregate the two types of

counters in a single value:

∗ l1Hit = l1 global load hit + l1 local load hit

∗ l1Miss = l1 global load miss + l1 local load miss

– l1HitRate = 100 · l1Hit /(l1Hit + l1Miss)

– The total number of memory requests is defined as the number of hits in L1 plus

the number of misses.

globalLoadTransactions = l1 global load miss + l1 global load hit

• L2 Cache

– L2 hits and misses are distinguished based on the memory partition they are as-

signed to. We ignore this distinction by adding the counters across all the parti-

tions.

∗ l2ReadHit = l2 subp0 read l1 hit sectors +

l2 subp1 read l1 hit sectors +

l2 subp2 read l1 hit sectors +

l2 subp3 read l1 hit sectors

∗ l2ReadMiss = l2 subp0 read sector misses +

l2 subp1 read sector misses +

l2 subp2 read sector misses +

l2 subp3 read sector misses
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∗ l2WriteMiss = l2 subp0 write sector misses +

l2 subp1 write sector misses +

l2 subp2 write sector misses +

l2 subp3 write sector misses

∗ l2ReadQueries = l2 subp0 read l1 sector queries +

l2 subp1 read l1 sector queries +

l2 subp2 read l1 sector queries +

l2 subp3 read l1 sector queries

∗ l2WriteQueries = l2 subp0 write l1 sector queries +

l2 subp1 write l1 sector queries +

l2 subp2 write l1 sector queries +

l2 subp3 write l1 sector queries

∗ l2WriteHit = (l2WriteQueries − l2WriteMiss)

– l2ReadHitRate = 100 · l2ReadHit / (l2ReadMiss + l2ReadHit)

– l2WriteHitRate = 100 · l2WriteHit / (l2WriteMiss + l2WrriteHit)

– dramWrites = fb subp0 write sectors + fb subp1 write sectors

– dramReads = fb subp0 read sectors + fb subp1 read sectors

Given the large amount of counters, it is hard to establish their relationship with perfor-

mance. Our methodology takes in input all this information and produces a synthetic result

that can be easily read.

5.5.2 Tree Construction

The overall goal of our technique is to correlate changes in the values of profiler counters

to changes in execution time performance (i.e., speedup). Let sp,c f be the speedup achieved

on program p with coarsening factor c f ∈ {1,2,4,8,16,32} and the best possible stride and

work-group size. The speedup are expressed for each program with respect to the uncoarsened

version, which means sp,1 = 1 ∀p. Let ~fp,c f be the vector of profiler counters extracted from

the same run.

We want to find a mapping between profiler counters ~fp,c f and speedup sp,c f to understand

what factors affect performance and how. To achieve this, we record the execution time and

profiler counters for all coarsening factors on all our programs for each platform.

The regression trees describe the mapping ~fp,c f → sp,c f acting as a broad model for the

speedups in figures 5.2 and 5.3. Once constructed, the trees can then be used to explain the

observed run-time performance behaviour. Tree construction involves recursively partitioning

the data into sets with similar speedup sp,c f based on the profiler counters ~fp,c f . To increase



Chapter 5. Performance Counters Analysis 76

sp1,1, ~fp1,1

sp1,2, ~fp1,2

. . .

sp1,32, ~fp1,32

sp2,1, ~fp2,1

sp2,2, ~fp2,2

. . .

sp2,32, ~fp2,32

. . .

spn,1, ~fpn,1

spn,2, ~fpn,2

. . .

spn,32, ~fpn,32︸ ︷︷ ︸
couter < threshold value

. . .. . .

speedupsspeedups . . .. . .
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TF FT

Figure 5.6: Input data used to construct a regression tree. spn,1 is the speedup given by program

n compiled with coarsening factor 1. ~fpn,1 is the set of program counters collected from program

n compiled with factor 1.

the accuracy of the model we used in the construction of the trees the top best 5 performing

configurations for each coarsening factor. This process is outlined in figure 5.6. We used the

R package tree (version 1.0-33) using deviance as impurity metric. Deviance is a measure

of the variance of the values in the leaves of a tree. The algorithm of the tree construction

tries to minimise it, having leaves as uniform as possible. The trees are then pruned using

cross-validation ensuring that the expected speedup has a correlation of at least 0.8 with the

curves showed in figures 5.4 and 5.5 and error about 10% for all the GPUs. The trees for each

platform are shown in figure 5.7. Each node represents the relative increase or decrease of a

profiler counter over its value for the baseline configuration. The right child of a node satisfies

the condition of that node while the left one does not. Based on the inherent property of a

regression tree, the conditions near the top of the tree are the ones that are best at distinguishing

bad performance from good performance. These regression trees provide a concise and visual

model to explain the performance of all the applications on a device.

5.6 Per-device analysis

5.6.1 Nvidia Fermi GPU

As can be seen in figure 5.7a, the number of memory loads is the most important counter to

consider. A reduction in the number of loads leads to a significant performance improvement:

1.70x on average. This is the case for 2 applications: sgemm and floydWarshall. Consecutive
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(a) Output regression tree for Fermi .

Loads < 0.92

Branches < 1.06

Cache Misses < 1.00

1.69
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T F

FT
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(b) Output regression tree for Kepler .

ALU Packing < 1.28

ALU Busy < 0.590.80

0.79 2.10

T F
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(c) Output regression tree for Cypress.

Loads < 0.92

Vector Insts < 0.702.87

0.71 1.73

T F
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(d) Output regression tree for Tahiti .

Figure 5.7: Regression trees for the four GPU architectures. The labels of the nodes identify

the profiler counter used to split the data. In each node the counter is compared against its

relative increase over its value in the default configuration. The numbers in the laves represent

the expected speedup of configurations in the specified partition.
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Figure 5.8: Relative value of hardware profiler counters as a function of the coarsening factor

for all devices (a, b) and for Nvidia devices (c, d, e). All values are normalized with respect to

the value of the counter for coarsening factor 1. Each line represents a kernel. The thick black

lines correspond to the benchmarks referenced in the text, the numbers beside them identify

the kernels according to table 6.3.
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(c) Vector Instructions (Tahiti)

Figure 5.9: Relative value of hardware profiler counters as a function of the coarsening factor for

AMD devices. All values are normalized with respect to the value of the counter for coarsening

factor 1. Each line represents a kernel. The thick black lines correspond to the benchmarks

referenced in the text, the numbers beside them identify the kernels according to table 6.3.
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work-items of these two applications were originally loading the same values from memory.

When coarsening, redundant load elimination successfully remove the unnecessary LLVM-IR

instruction, enabling the reusage of the loaded value in registers. This optimisation effectively

reduces the total number of loads executed. This behaviour is exemplified for matrix multipli-

cation (sgemm) in section 4.3.4.

Going down one level, the second most important counter is the number of branches. Con-

trol flow is critical for GPU performance [135, 32]. If the output of a branch diverges within a

warp all its work-items will execute both paths of the branch thus leading to a lower core oc-

cupancy. Configurations in the lower right corner, where the number of branches has increased

and the number of loads has not been reduced, show significant slowdowns. In this region fall

spmv, mvCoal and stencil with slowdowns on average 0.4x. The bodies of these three kernels

are enclosed in divergent regions that check that work-items do not overflow buffer boundaries.

These regions are entirely replicated by the coarsening pass (as explained in section 4.3.1). This

leads to an increase in the relative number of branches and hence lower occupation. Finally,

the last counter selected concerns the cache utilization (in this case it is l2CacheMisses). As

we show in figures 5.8 and 5.9 coarsening changes how the kernel utilizes the GPU memory

hierarchy. If the working set of the benchmark does not increase we experience a moderate

improvement: 1.06x. On the other hand trashing the cache leads to major performance drops.

More details and examples on this in section 5.7.3.

5.6.2 Nvidia Kepler GPU

As described in section 2.2.1 the Kepler architecture is an evolution of Fermi maintaining the

same design principles. This explains the similarities between the two trees in figures 5.7a

and 5.7b. The number of loads and branches are still the most important counters. In this case

though the tree shows higher sensitivity to branches. This is due to the change in the instruction

scheduling policy from a dynamic one in Fermi to a static one in Kepler [101]. While on Fermi

a relative increase of 2.8 of the number of branches leads to a significant slowdown (0.4x of

the original performance) this threshold is lowered to 1.06 for Kepler. Overall the expected

speedups given by the tree reflect the lower performance improvement achievable on Kepler

with respect to Fermi. The reason for this difference is the higher number of computing cores

mounted on a Kepler streaming multiprocessor (192 vs 32) which ensures better performance

to applications running a higher number of threads even if they execute redundant operations.

5.6.3 AMD Tahiti GPU

As seen on the Nvidia devices a reduction in the number of loads leads to a significant improve-

ment on Tahiti too: 2.87x on average. Descending on the right branch of the root the second

most important counter is related to the utilization of the vector unit mentioned in section 2.2.2.
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For benchmarks mt, mtLocal and nbody the increase in data-dependence-free instructions in

a single thread allows a better utilization of the vector lanes of the GPU cores. On the other

hand kernels like mvCoal, mvUncoal, spmv, stencil show a reduction in the vector utilization

due to the divergent regions they contain. These limit the scope of vectorization reducing the

utilization of the SIMD lanes.

5.6.4 AMD Cypress GPU

The cores of the Cypress GPU are based on a VLIW architecture. The ALUPacking counter

measures the utilization of the 5-way VLIW cores and is the most important counter. The in-

crease in the core efficiency is due to a better utilization of the functional units thanks to the

better scheduling now performed on the larger number of instructions available after coarsen-

ing. This beneficial effect of coarsening is similar to effect showed by unrolling and software

pipelining applied to loops on classical CPU architectures [39]. Notice that the core utilization

is more relevant for performance than a reduction in the number of loads which is not used

to discriminate benchmarks on this device. On Cypress the importance of the efficient utiliza-

tion of the computing cores is confirmed by the choice of ALUBusy as second most important

counter. Sufficient utilization of the ALU leads to a 2.10x speedup.

5.7 Performance Counters

The previous analysis identifies what are the important hardware counters related to perfor-

mance when applying coarsening. In this section, we now study how coarsening affects the

counters selected by the trees and how these affect performance, while others such as cache

misses are architecture specific. In figures 5.8 and 5.9 we plot the relative value of a profiler

counter as a function of the coarsening factor. Counters are normalized with respect to the

value of the counter of the baseline configuration (no coarsening): this value is always 1.

5.7.1 Memory Loads

We first look at the impact of coarsening on the number of memory loads in the program. This

is platform-independent counter is important for both Nvidia devices and Tahiti. Considering

figure 5.8a we see that for floydWarshall (6) and sgemm (14) the number of loads is decreases

as the coarsening factor increases. This is due to the reuse in registers of values originally

loaded by different work-items, thus leading to the elimination of the redundant loads. The

possibility to reduce the number of loads is extremely beneficial in GPUs given that these

devices are usually limited by memory latency.
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5.7.2 Branches

Figure 5.8b shows the effect of coarsening on the total number of branches. Here we report a

single plot representative for all GPU devices. Thread-coarsening generally reduces the number

of executed branches. This is due the fact that our coarsening pass, relying on divergence

analysis, preserves non-divergent branches replicating only the instructions they control (see

section 4.3.1). This leads to an overall reduction of the number of branches with respect to

the total number of instructions, consider for example sgemm (14). Important exceptions to

the trend are mvCoal (10), spmv (16) and stencil (17) which all show divergent regions as

explained in section 5.6. All these benchmarks show large performance degradations when

coarsening.

5.7.3 Cache Utilization

Figures 5.8c-5.9b describe the cache utilization for the two Nvidia GPUs and Tahiti. As we

can see from the general trend of the grey lines coarsening tends to put the cache under stress

increasing the miss rate. This is due to an increase in the working size of each thread. Consid-

ering for example sobel (15) we see that an increase in the cache miss rate for both Fermi and

Kepler: this justifies the performance drop we record in figures 5.4 and 5.5. Extreme cases are

mriQ (7) and nbody (12) for which we see that coarsening by high factors (4 and 8 on Fermi,

16 on Tahiti) leads to a large increase in the number of misses which corresponds to significant

performance penalties. The reason for this effect lies in the structure of the code: both these

kernels have a non-divergent loop in their body. The coarsening pass replicates the instructions

within the loop body thus increasing the loop working-set. After a certain threshold the ad-

vantage given in the reduction of the number of branches is outweighed by the penalty due of

cache misses. An exception to the general trend is sgemm (14) for which the possibility to save

load instructions also has a beneficial effect on the cache utilization.

5.7.4 Vector Instructions

Figure 5.9c shows the utilization of vector instructions for AMD Tahiti. This is the only archi-

tecture in which vector utilization is a significant factor for performance. Figure 5.9c shows the

utilization of vector instructions on Tahiti when coarsening. For applications like sgemm (14)

and mt (8) coarsening has a beneficial effect on the vector lanes utilization leading to significant

speedups.

5.7.5 ALU Packing

The degree of utilization of the 5-way VLIW cores for the Cypress architecture is showed in fig-

ure 5.9a. Applications such as nbody (12), mt (8), binarySearch (1) and mtLocal (9) show an
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increase in the utilization of the cores. This means that the AMD compiler can schedule more

efficiently the larger amount of data-dependency-free instructions available after coarsening.

As we can see from figures 5.4 and 5.5 the listed applications greatly benefit from coarsening

confirming the importance of improving the utilization of the arithmetic cores when tuning

programs for Cypress.

5.7.6 Instruction Cache Behaviour

Notice that the counters made available by Nvidia and AMD do not include information about

instruction cache. Therefore we cannot make statements about the effects that this component

has on performance. Nevertheless, we can assume that coarsening has an overall negative

impact on the instruction cache, since we are increasing the number of instructions executed

per thread.

Summarising the results of our analysis we can conclude that coarsening works the best

by reducing redundant computation. On GPUs the possibility to save loads and branches has

proven to be effective for performance. Attention must be placed in the kernel cache utilization

since coarsening usually increase the working set size. Architectures from AMD enjoy a better

utilization of the vector units after coarsening thanks to the larger number of data-dependency

free instructions now available to the compiler for scheduling.

5.8 Summary

In this chapter we proposed a methodology to rigorously analyse performance of multiple GPU

models. We applied it to the study of the thread-coarsening transformation. We can signifi-

cantly improve performance by exploring the coarsening parameter space (coarsening factor,

stride and work-group size). We showed that the coarsening space is highly target dependent.

The regression trees we introduced in this chapter are capable of relating changes of profiler

counters to execution time variations. This is a novel platform-independent analysis technique

that can effectively identify the root causes of performance variation across the coarsening

space.

In the next chapter we study the effects of thread-coarsening across the problem input size

space and we propose a way to speedup iterative compilation.



Chapter 6

Fast Tuning of the Coarsening

Transformation

This chapter presents a study on the effect of thread-coarsening on performance across multiple

input sizes. We want to evaluate how the best coarsening configuration changes across problem

sizes. Analysing how the utilization of the GPU varies across workload sizes we identify the

saturation point as the smallest problem size for which the device is fully utilized. We show

that the saturation point is the smallest input size for which the optimal coarsening factor gives

high speedups for a much larger input sizes as well. We exploit this property to improve the

performance of iterative compilation.

Section 6.1 introduces the chapter describing the goal of studying the how coarsening af-

fects performance across problem input sizes. Section 6.2 motivates the work showing how

the utilization of the GPU and the relative performance of transformation configuration change

across input sizes. Section 6.3 presents the experimental set-up and the compiler options space

used in the chapter. Section 6.4 shows experimental data presenting the computational through-

put for all the benchmarks in our set. Section 6.5 presents the technique that we use to exploit

hardware saturation so to speed-up iterative compilation. Section 6.6 shows the improvements

that we obtain by applying our technique. Section 6.7 concludes the chapter.

6.1 Introduction

This chapter analyses the performance of the coarsening optimisation space across multiple

problem input sizes. We do this with the goal of reducing the search-time for iterative compi-

lation. In our context iterative compilation aims at finding a configuration for the coarsening

transformation that improves performance over the baseline and approaches the maximum at-

tainable. Our search space is made of the coarsening factor, stride, coarsening direction and

work-group size.

84
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To reduce search time, application programmers often evaluate many different compiler

transformations on problem sizes smaller than their target. The aim is to have quick feedback

on what are the most effective optimisation options. This methodology assumes that compiler

configurations that work well on a small problem size will also work well on the target size,

which is usually much larger. The testing problem size must be chosen with care: too small

and it might not match the behaviour of the bigger target size, too large and it makes tuning too

expensive. Finding the right problem size on which to perform tuning is a crucial issue.

To tackle this problem we introduce the concept of saturation of hardware resources for

graphics processors. Saturation is achieved when an application is run with a problem input size

(i.e., number of work-items) sufficiently large to fully utilize hardware resources. Programs

running in such a region of the problem size space usually scale according to the complexity

of the problem and show performance stability across program optimisations. This means

that code transformations effective for a small problem size in the saturation zone are usually

effective for extremely large problem sizes too. We develop a search strategy that exploits

the Minimum Saturation Point (MSP) to reduce the total tuning time necessary to find good

optimisation settings.

In this work we describe the property of saturation in terms of the throughput metric: the

amount of work performed by a parallel program per unit of time, showing how this reaches

stability when the hardware saturates.

This chapter makes the following contributions:

• We show the existence of saturation for 16 OpenCL benchmarks on three GPU architec-

tures: Fermi and Kepler by Nvidia and Tahiti by AMD.

• We show that the best configuration for the coarsening configuration remains stable for

problem sizes larger than the saturation point.

• We show that the hardware saturation can be successfully exploited to speedup iterative

tuning of coarsening transformation leading to a reduction of search space of an order of

magnitude.

6.2 Motivation

This section introduces the problem by characterizing the coarsening optimization space across

input sizes. As an example we use the floydWarshall program running on the AMD Tahiti

GPU and the optimisation space of the thread-coarsening transformation. Figure 6.1 shows the

behaviour of our benchmark as a function of its input size. For OpenCL workloads there is

direct mapping between the input size and the overall number of work-items instantiated. We

measure the problem size using the total number of work-items.
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(a) Kernel execution time (in milliseconds) as a function of the input size (i.e., total number of work-items).
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(b) Normalized performance attainable performing the search on the input size at the bottom of the bar

and evaluating the best performing configuration found on the largest one (67M). For example the best

performing configuration for input size 1K when evaluated for 67M work-items achieves only 30% of the

maximum attainable by tuning coarsening directly on input size 67M. The barplot reaches 1 for 67M by

construction.

0

5

10

15

20

25

30

Throughput [G units of work / s]

1K 4K 16K 65K 262K 1M 4M 16M 67M
Number of Work-items

(c) Throughput as a function of the problem input size.

Figure 6.1: Execution time (a), relative performance (b) and throughput (c) of the program

floydWarshall running on AMD Tahiti as a function of the input size (expressed as total num-

ber of work-items). Notice the log-scale of the x-axes. The throughput is expressed in billions

units of work over seconds, see section 6.4.
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Figure 6.1a shows the execution time of the application as a function of the input size.

The largest data size, with 67 million work-items is the input size we want to optimise for.

Unsurprisingly this leads to the longest execution time. If we were to tune this application

by evaluating multiple versions, the time required to search the optimisation space would be

directly proportional to the execution time. It would be preferable to tune the application on

the smallest possible input size.

However, the performance of the best optimisation settings for a given problem size does

not transfer across input sizes as shown in figure 6.1b. In the barplot we show the relative

performance achieved by the best performing configuration found on one input size when eval-

uated on the target one (67 million work-items). Performance is computed as the ratio between

the speedup achieved by the search and the maximum attainable. The best optimisation settings

for the smallest input size achieves only a third of the performance of the best one correspond-

ing to the largest input size. This means, that if the application were tuned on smallest input

size, it would run three times slower than the best achievable on the large input size. A good

trade-off is an input size of 1 million work-items achieving performance close to the largest in-

put size. This represents a savings of 67× in search time (67 million / 1 million). The question

is how we can find the optimal input size without having to perform the search for all input

sizes in the first place.

One way to solve this problem is to look at the throughput metric, which is the number

of operations executed per second (the formal definition is given in section 6.4). Figure 6.1c

shows the throughput of the application as a function of the problem size. As we can see, the

throughput starts low and increases with the problem size. It flattens out at around 1 million

work-items which corresponds to the saturation of the hardware resources. We call this point

the minimum saturation point (MSP), because passed this point throughput remains constant.

Coincidentally, the MSP is smaller than the target input size (67 million work-items) and leads

to performance on par with the best achievable when searching on the largest input size.

The remainder of the chapter characterizes hardware saturation using the throughput metric

and shows that it can be used to reduce tuning time.

6.3 Experimental Set-up

This section presents the experimental set-up for this chapter.

6.3.1 Devices

The devices used for the experiments are the same as chapter 5. The only differences are driver

versions and operating system version. Refer to section 5.3.1 for a description.
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Name Model GPU Driver OpenCL version Linux kernel

Fermi Nvidia GTX 480 304.54 1.1 CUDA 5.0.1 3.2.0

Kepler Nvidia K20c 331.20 1.1 CUDA 5.0.1 3.7.10

Tahiti AMD HD7970 1084.4 1.2 AMD-APP 1084.4 3.1.10

Table 6.1: OpenCL devices used for experiments.

Parameter Possible values

Coarsening factor {1, 2, 4, 8, 16, 32}
Coarsening dimension {0, 1}
Stride {1, 2, 4, 8, 16, 32}
Work-group size (for each dimension) {Device Min, . . . , 32, 64, 128, . . . , Device Max}

Table 6.2: Parameter space. For Nvidia GPUs the maximum size of a work-group is 1024

work-items per direction and 1024 in total. For AMD GPUs this number is 256.

6.3.2 Coarsening Parameter Space

We tuned the transformation by considering all combination of our parameters leading to about

150-300 configurations for one dimensional kernels and 1000-2000 configuration for two di-

mensional kernels depending on the device limitation and the problem size. These add up

to about 160′000 configurations evaluated across all input sizes, programs and devices. This

large evaluation of the coarsening transformation is made possible by the our portable compiler

tool-chain described in chapter 4.

6.3.3 Benchmarks

In this chapter, we use 16 OpenCL benchmarks from various sources, as shown in Table 6.3.

The only missing benchmark from the programs in chapter 5 is spmv, for which the input size

cannot be changed automatically. In the case of programs from the Parboil benchmark suite we

used the opencl base version. The table reports the range of sizes for the input problem, these

are reported in terms of the total number of launched work-items. For the rest of the chapter

we consider the largest problem size as the target one, i.e., the one that we want to optimise the

program for. We used three platforms described in Table 6.1. In all our experiments we only

measure the kernel execution time. To reduce measurement noise each experiment has been

repeated 50 times aggregating the results using the median.
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Figure 6.2: Throughput, defined as billions units of work processed per unit of time (see formula

6.1), as a function of the total number of work-items (i.e., the problem input size) for all the

programs and the three devices.
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Figure 6.3: Throughput, defined as billions units of work processed per unit of time (see formula

6.1), as a function of the total number of work-items (i.e., the problem input size) for all the

programs and the three devices.
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Program name Source NDRange sizes limits

binarySearch AMD SDK [1M . . . 268M]

blackscholes Nvidia SDK [2K . . . 16M]

convolution AMD SDK [16K . . . 37M]

dwtHaar1D AMD SDK [32 . . . 2M]

fastWalsh AMD SDK [32K . . . 33M]

floydWarshall AMD SDK [9K . . . 67M]

mriQ Parboil [1K . . . 524K]

mt Nvidia SDK [1K . . . 16M]

mtLocal Nvidia SDK [1K . . . 16M]

mvCoal Nvidia SDK [256 . . . 16K]

mvUncoal Nvidia SDK [256 . . . 16K]

nbody AMD SDK [1K . . . 262K]

reduce AMD SDK [262K . . . 67M]

sgemm Parboil [256 . . . 9M]

sobel AMD SDK [4K . . . 1M]

stencil Parboil [1M . . . 97M]

Table 6.3: OpenCL programs used as benchmarks with the corresponding range of input sizes

we used for experiments

6.4 Throughput and Hardware Saturation

This section defines the concept of hardware saturation and presents its features.

Graphics processors are highly parallel machines containing a large amount of computing

cores. To harness the computing power of GPUs applications must run large amount of work-

items to fully exploit all the hardware resources. Programs running a small number of work-

items might show a behaviour which is not representative of larger ones due to under-utilization

of the hardware resources. We describe this using the notion of throughput which we formally

defined as :

throughput =
units o f work
execution time

(6.1)

where units o f work is a metric which depends on the algorithmic complexity of the applica-

tion. In case of linear benchmarks, this corresponds to the number of input elements processed

by the kernel: units o f work = input size. In case of non-linear programs the input size is

scaled according to the complexity. For example the nbody program is quadratic in complexity

and units o f work = (input size)2. Note that in our benchmarks the total number of work-

items is a linear function of the input size.

Figures 6.2 and 6.3 show the throughput as a function of the total number of running work-

items for each benchmark and our three platforms. Consider, for example, the top-left plot
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Figure 6.4: Plots showing the correlation between throughput and MemUnitBusy hardware

counter for sgemm on Tahiti using coarsening factor 1 and 16. MemUnitBusy is the percentage

of time in which the memory unit is busy processing memory requests. We can see that the

coarsened configuration does not suffer of low memory utilization leading much higher through-

put. Throughput is expressed in billions of units of work per second.

in figure 6.2, binarySearch running on Fermi. This graph clearly shows that the throughput

increases along with the problem size (i.e., total number of work-items) until 50 million work-

items. Passed this size the throughput reaches a plateau and stabilizes at around 180 billion

units o f work per second. We call this region of the problem input size space saturation

region. From the shape of the plot we can make two observations. The first one is that a

program executed with a small number of work-items behaves differently then when executed

with a large number of work-items. Small input sizes show low throughput, this means that they

are in proportion slower than large input sizes. Second, the fact that the throughput stabilizes

for sufficiently large input sizes shows that we hit the hardware saturation limit of the GPUs

and that applications scale according to the theoretical complexity of the algorithm.

6.4.1 Outliers Analysis

The Tahiti column in figures 6.2 and 6.3 show a number of outliers which do not show a

plateau. Examples of these are: mvUncoal, sgemm, stencil, mt and mtLocal. Being liner

algebra applications, these programs are usually memory bound [129]. We investigate these

cases using performance counters. Figure 6.4 reports the results of our analysis for sgemm.

The top sub-figure shows the throughput performance along with the value of the performance

counter MemUnitBusy as a function of the total number of work-items. MemUnitBusy is the

hardware counter that measures the percentage of execution time that the memory unit is busy

processing loads and stores. We can see that there is a high correlation between the two curves.

This signifies that performance for large input sizes is limited by the memory functional unit,

which is unable to handle efficiently a large amount of requests coming from different work-
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items. As shown in figure 6.4b the coarsening transformation mitigates this problem, leading

to much higher performance. The throughput curve still follows the hardware counter with

no decrease for higher input sizes. A similar analysis can be performed for programs such as

mvUncoal where the uncoalesced memory access pattern highlights the problem even more.

The mvUncoal benchmark is described in more detail in section 6.6.

6.5 Throughput-Based Tuning

Taking advantage of the saturation properties described earlier, this section introduces a method-

ology to accelerate iterative compilation.

6.5.1 Tuning Across Input Sizes

We now show how the best compiler settings found for a given input size perform on the largest

input size that we used in our experiments. Figures 6.5 and 6.6 shows this performance on all

benchmarks and devices for the full compiler transformation space descried in section 6.3. For

example a value of 1 for input size x means that the best performing coarsening configuration

for x is the best for the target size as well. A value of 0.5 means that the best configuration on

x gives half of the maximum performance when evaluated on the target. By definition the line

reaches 1 for the largest input size.

The overall trend for performance is to increase as the input size on which we perform the

search gets close to the target one. After a certain input size, performance reaches a plateau

and stabilizes in most cases. Small input sizes tend to have low and unpredictable performance

while large input sizes have performance close to that of the largest input size. This means

that for input sizes in that saturate the device performance reaches stability. This can be clearly

seen when comparing figures 6.2 and 6.3 with figures 6.5 and 6.6; when throughput saturates,

so does the performance.

6.5.2 Throughput and Coarsening Factor

Before introducing our search technique, we consider the impact of the coarsening factor on the

throughput as shown in figure 6.7. This figure shows the throughput for five different values of

the factor parameter (labelled on the right). The relative performance of the different coarsening

factors changes across input sizes (i.e., the lines in the plot overlap and cross) until saturation

is reached between 1M and 4M work-items. For all coarsening factors, the throughput reaches

a plateau and stabilizes for sizes larger than 4M work-items. In this example the factors 8 and

16 are the best parameters for problem sizes of about 4 million work-items remaining stable up

to 67 million work-items.
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Figure 6.5: Performance of the best optimisations settings found for a given input size evaluated

on the largest input size. The value that is plotted is the relative proportion of the maximum

performance attainable. A value of 1 means that the maximum performance is achieved.
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Figure 6.6: Performance of the best optimisations settings found for a given input size evaluated

on the largest input size. The value that is plotted is the relative proportion of the maximum

performance attainable. A value of 1 means that the maximum performance is achieved.
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Number of Work-items

Figure 6.7: Throughput as a function of problem input size (i.e., the total number of work-items)

for five different values of the coarsening factor (on the right) for floydWarshall running on

Kepler . Note the log-scale of the x-axis, this to highlight the throughput of small input sizes.

Throughput is expressed in billions of units of work per second. The relative performance of the

curves remains stable for problem sizes larger than 4 million threads.

This signifies that performing a search for the best parameter on an input size at the left of

the saturation point will probably lead to a bad choice when evaluating on the largest input size.

On the contrary, performing beyond the saturation should lead to good choices when evaluated

on the largest input size.

6.5.3 Throughput Based Input Size Selection

We now propose a tuning technique that takes advantage of the saturation plateau that exists for

both performance and throughput. Our method is the following. We first build the throughput

curve by running the benchmark using the default compiler parameters on multiple input sizes

within the range given in table 6.3. Once the throughput curve is built, we select the smallest

input size that achieves a throughput within a given threshold of the maximum one. The thresh-

old is used to deal with noise in the experimental data and small fluctuations in execution time

around the throughput plateau. The resulting selected input size is our Minimum Saturation

Point (MSP). These are presented in table 6.4 for all benchmarks and devices. The last step

consist of searching the coarsening space for an input size equal to the MSP. Following this

methodology, we expect that the best optimisation settings found at the MSP leads to perfor-

mance in par with the best for the largest input size. We refer to this searching technique as

MSP-Tuning.

The next section presents the results obtained applying the proposed tuning technique.
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Program name Fermi Kepler Tahiti

1) binarySearch 8M 16M 8M

2) blackscholes 1M 1M 1M

3) convolution 262K 802K 1M

4) dwtHaar1D 262K 524K 1M

5) fastWalsh 2M 2M 1M

6) floydWarshall 4M 4M 1M

7) mriQ 524K 131K 65K

8) mt 2.3M 4M 1M

9) mtLocal 1M 1M 262K

10) mvCoal 16K 16K 16K

11) mvUncoal 16K 1K 1K

12) nbody 32K 65K 131K

13) reduce 1M 1M 2M

14) sgemm 36K 65K 1M

15) sobel 262K 262K 1M

16) stencil 4M 4M 4M

Table 6.4: Minimum Saturation Point identified by the technique presented in section 6.5.3 for

all the benchmarks and architectures. MSP is expressed in number of work-items.

6.6 Results

This section provides results for the speedups in kernel execution time and in search time given

by MSP-Tuning.

Definition of Search Speedup In our experiments the baseline to compute kernel speedups

is represented by the execution time of the application run without applying the coarsening

transformation (i.e., coarsening factor 1 and stride 1) and with the default work-group size by

the benchmark suite. In all our experiments the problem size we are optimising for is the largest

of the range we record in table 6.3, we call this the target problem size. Figure 6.8 and 6.9 sum-

marizes the results of MSP-Tuning described in section 6.5.3 for our three OpenCL devices.

Consider the top barplot in each subfigure. It reports the speedup over the baseline attainable

using MSP-Tuning compared to the maximum speedup attainable with thread-coarsening. In

these results we chose to use a threshold of 10% for the identification of the MSP. The second

barplot reports the speedup in the search optimal configuration. The speedup is computed using

this formula:

Search speedup =
Timetarget

TimeMSP +Timethroughput
(6.2)
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(b) Kepler

Figure 6.8: Summary of the tuning results for Nvidia GPUs. In each subfigure, the top plot rep-

resents the kernel execution speedup attainable with MSP-Tuning in comparison with the maxi-

mum available speedup given by coarsening. The bottom plot shows the search-time speedup

given by MSP-Tuning, notice that in this plot the y-axis is in log-scale.
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(a) Tahiti

Figure 6.9: Summary of the tuning results for Tahiti . The top plot represents the kernel execu-

tion speedup attainable with MSP-Tuning in comparison with the maximum available speedup

given by coarsening. The bottom plot shows the search-time speedup given by MSP-Tuning,

notice that in this plot the y-axis is in log-scale.
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Here Timetarget is the time spent exhaustively searching for the best configuration on the target

input size, TimeMSP is the search time on the MSP input size and Timethroughput is the time

spent building the throughput curve.

6.6.1 Result Description

The kernel speedups achieved on Fermi, Kepler and Tahiti are respectively: 1.35×, 1.24× and

1.55×. Which represent 82%, 73% and 53% of the maximum performance. On the other hand

the search time speedup given by MSP-Tuning is about one order of magnitude for the three

devices. To understand the results in search time we have to take into account the algorithmic

complexity of the application. A program like sgemm ensures large tuning savings (even in the

order of thousands) thanks to its cubic complexity: halving the input size leads to a factor of

eight in tuning time saving. The overall results are similar for the two Nvidia GPUs, Fermi

and Kepler demonstrating the similarities of the two architectures. On the other hand the

Tahiti results show significant differences with higher speedups on average. The search fails

to achieve good performance on mtLocal, mvUncoal and stencil due to the erratic shape of

throughput and performance lines for these benchmarks, see figures 6.2, 6.3 and 6.5, 6.6.

Of particular interest is the application mvCoal. This is a matrix-vector multiplication

benchmark from the Nvidia SDK. Considering the search time speedup barplots (and compar-

ing tables 6.3 and 6.4) we can see that no reduction on the input size is attainable, i.e., the

selected MSP corresponds to the largest input size. This is because no saturation plateau is

reached, look at the corresponding plot in figures 6.2 and 6.3. The reason for this anomaly

lies in the structure of the algorithm: one thread processes one row of the input matrix and

the whole input vector producing a single element of the output. Thus we have only a thread

for each matrix row: a little number of work-items with respect to amount of data processed.

Scaling the problem to larger sizes is prohibitive, running 16K work-items means to work with

about 1GB of data, scale to 32K means to work with 4GB, hitting device hardware constraints.

In summary our target GPUs cannot full express the throughput potential of mvCoal due to lim-

itations in the available memory resources. Similar considerations can be made for mvUncoal,

a different version of the same program.

Noise Threshold Figure 6.10 shows how the choice of the noise threshold described in sec-

tion 6.5.3 affects the performance of our strategy. For the values of percentages between 0 and

15 it plots the achievable kernel speedup by implementing the search technique and the saving

in search time. As expected the search speedup increases with the threshold percentage, this

because the higher threshold values allows the selection of smaller input sizes as MSP. The ker-

nel speedup slightly decreases increasing the percentage. Our search technique works because

the speedup given by MSP search increases faster than the decrease of the kernel speedup.
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Figure 6.10: Plots showing the attainable kernel speedup and the search-time speedup as a

function of the noise threshold. A threshold of 0% means that we select as MSP the input size

giving the maximum throughput. We can see that by increasing the threshold we can improve

the search speedup with small degradation of the kernel speedup.
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Based on this data, we select a threshold of 10%, leading to marginal performance degradation

with respect to 0% and more than 10× improvement in search speed across platforms.

6.7 Summary

This chapter has introduced a way to improve the run-time performance of iterative compi-

lation by leveraging the properties of modern GPU architectures. In particular we exploit

hardware saturation. Saturation is reached when the device runs a problem large enough (in

number of work-items) so to fully utilize its hardware resources. We have provided experimen-

tal evidence of saturation on three devices from Nvidia and AMD. We have showed that the

thread-coarsening compiler transformation has stable performance across problem sizes that

saturate hardware resources. We then propose a technique to identify the lower–bound of the

saturation area in the problem input space (called MSP). We use this input size for fast tuning

of the parameters of the coarsening transformation without relying on iterative compilation.

Next chapter proposes a methodology to select a coarsening factor and a stride that can

improve performance over the baseline.



Chapter 7

Selection of Coarsening Parameters

This chapter presents a technique to select the coarsening factor and a methodology to select

the stride parameter. The coarsening factor is chosen by developing a neural network model

that can decide whether to coarsen a program or not. The stride is selected relying on symbolic

execution of the kernel function by our SymEngine tool. Section 7.1 introduces the problem

defining the goal of our prediction. Section 7.2 motivates the work specifically showing that the

coarsening factor parameter has to be chosen specifically for each program and architecture.

Section 7.3 describes the set-up for our experiments. Section 7.4 characterizes the optimisation

space for the coarsening and stride parameter. Section 7.5 presents our policy to select the stride

parameter. Section 7.6 describes the methodology that we used to train the neural network

model for the coarsening factor prediction. Section 7.7 presents the overall results for our

prediction methodologies. Section 7.8 concludes the chapter.

7.1 Introduction

Graphical Processing Units are widely used for high performance computing. They provide

cost-effective parallelism for a wide range of applications. The success of these devices has

lead to the introduction of a diverse range of architectures from many hardware manufacturers.

OpenCL is the industry-standard language for GPUs that offers program portability across

accelerators of different vendors: a single piece of OpenCL code is guaranteed to be executable

on many devices.

A uniform language specification, however, still requires programmers to manually opti-

mise kernel code to improve performance on each target architecture. This is a tedious process,

which requires knowledge of the hardware, and must be repeated each time the hardware is

updated. This is also true for the process of tuning compiler heuristics. This problem is partic-

ularly acute for GPUs which undergo rapid hardware evolution. The solution to this problem

is a cross-architectural optimiser capable of achieving performance portability.

103
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This chapter studies this issue focusing on the optimisation of the thread-coarsening com-

piler transformation described in chapter 4. Thread-coarsening merges together two or more

work-items, increasing the amount of work performed by a single work-item, and reducing the

total number of work-items instantiated. Selecting the best coarsening factor i.e., the number

of work-items to merge together, is a trade-off between exploiting thread-level parallelism and

avoiding execution of redundant instructions. Making the correct choice leads to significant

speedups on all our devices. Our data show that picking the optimal coarsening factor is dif-

ficult since most configurations lead to performance decrease and only careful selection of the

coarsening factor gives improvements. Selecting the best parameter requires knowledge of the

particular device since different GPUs have different optimal factors

In the previous chapter we showed how to speedup iterative compilation for the tuning of

the coarsening transformation. In this new piece of work we aim at selecting the coarsening

factor using an automated machine learning technique. We build our model based on a neural

network that decides whether it is beneficial to apply coarsening. The inputs to the model are

static code features extracted from the parallel OpenCL code. These features include, among

the others, branch divergence and instruction mix information. A different model is trained

for each of the four GPUs we use for experiments. This means that our training methodology

is the same for the four devices, the resulting model is different since it adapts itself to the

characteristics of the target GPU. We also introduce a technique to predict the stride parameter.

Our proposal is based on symbolic execution of OpenCL kernel with the goal of extracting

information about coalescing of memory accesses. The tool that perform the analysis is called

SymEngine (presented in section 4.6)

In summary this chapter makes the following contributions:

• We provide a characterization of the optimisation space for the coarsening factor and the

stride for our four GPU architectures.

• We propose a way to select an appropriate stride factor that relies on the static computa-

tion of memory transactions made by SymEngine.

• For each of the four devices we train a neural network model to predict whether to apply

coarsening or not.

• We show our performance results for our 17 benchmarks and four architectures.

7.2 Motivation

This section motivates the work explaining the importance of determining whether to coarsen,

and by how much. Figure 7.1 shows the speedup given by thread-coarsening over the baseline

(no coarsening) as a function of the coarsening factor for two benchmarks on different GPUs.
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Figure 7.1: Speedup achieved with thread-coarsening as a function of the coarsening factor for

nbody and binarySearch

The first figure (7.1a) shows the performance of nbody on two AMD architectures: Cypress

and Tahiti. Even though these two devices are from the same vendor, they have significant

architectural differences [9]. Cypress cores are VLIW while Tahiti cores have processing ele-

ments working in SIMD fashion. Such differences are reflected in the different effects that the

coarsening transformation has on the benchmarks. The higher degree of ILP made available by

coarsening in the nbody benchmark is successfully exploited by the VLIW cores of Cypress

ensuring a significant speedup. The same does not apply to Tahiti where no improvement can

be obtained and we record a significant slowdown for higher factors.

Differences across architectures also emerge for binarySearch, figure 7.1b. Here, we

make a comparison between the AMD Tahiti and the Nvidia Fermi architectures. On the first

device binarySearch ensures an improvement of 2.3x over the default for coarsening factor

8. On Nvidia, however, no improvement can be obtained.

From these simple examples it is clear that optimising coarsening is an important problem.

The coarsening factor must be determined on a per-program and per-device basis. Classical

hand-written heuristics are not only complex to develop, but are likely to fail due to the variety

of programs and ever-changing OpenCL devices available.

7.3 Experimental Set-up

This section presents the experimental set-up for this chapter.

7.3.1 Parameter Space

In this work we address the tuning of the coarsening factor and the stride parameters. The first

one controls how many work-items to merge together (see section 4.3), while the second defines

how many work-items to interleave between thread to merge together (see section 4.3.2). In

our experiments, we selected values 1,2,4,8,16,32 for both coarsening factor and stride. We
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Program name Source NDRange size

1) binarySearch AMD SDK 268M

2) blackscholes Nvidia SDK 16M

3) convolution AMD SDK 6K

4) dwtHaar1D AMD SDK 2M

5) fastWalsh AMD SDK 33M

6) floydWarshall AMD SDK (8K x 8K)

7) mriQ Parboil 524K

8) mt AMD SDK (4K x 4K)

9) mtLocal AMD SDK (4K x 4K)

10) mvCoal Nvidia SDK 16K

11) mvUncoal Nvidia SDK 16K

12) nbody AMD SDK 131K

13) reduce AMD SDK 67M

14) sgemm Parboil (3K x 3K)

15) sobel AMD SDK (1K x 1K)

16) spmv Parboil 262K

17) stencil Parboil (3K x 510 x 62)

Table 7.1: OpenCL applications with the reference number of work-items.

limited our evaluations to powers of two since these are the most widely applicable parameter

values, given the reference input sizes for the considered benchmarks.

7.3.2 Benchmarks

We use 17 benchmarks from various sources as shown in table 7.1. The table also shows the

global size (total number of work-items) used. The baseline performance reported in the results

section is that of the best work-group size (obtained with a search) as opposed to the default

one chose by the programmer. This is necessary to give a fair comparison across devices the

original benchmark is written specifically for one GPU. Each experiment has been repeated

50 times aggregating the results using the median. Chapter 6 has shown that the choice for

the optimal coarsening factor is consistent across input sizes. For this reason we restricted our

analysis to the input size (i.e., total number of work-items running) for the original kernel listed

in table 7.1.
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Name Model GPU Driver OpenCL version Linux kernel

Fermi Nvidia GTX 480 304.54 1.1 CUDA 5.0.1 3.2.0

Kepler Nvidia K20c 331.20 1.1 CUDA 5.0.1 3.7.10

Cypress AMD HD5900 1124.2 1.2 AMD-APP 1124.2 3.1.10

Tahiti AMD HD7970 1084.4 1.2 AMD-APP 1084.4 3.1.10

Table 7.2: OpenCL devices used for our experiments.

7.3.3 Devices

The devices used for the experiments are listed in table 7.2 and the same as for chapter 5. The

only differences are driver versions and operating system version. Refer to section 5.3.1 for a

description.

7.4 Optimisation Space Characterization

In the motivating example, in figure 7.1, we showed that different applications behave differ-

ently with respect to coarsening on different devices. In this section we expand on this topic

and present the overall optimisation space.

7.4.1 Distribution of Speedup

The violin plots in figure 7.2 show the distribution of the speedups (over no coarsening) achiev-

able by changing the coarsening factor and the stride parameter. The width of each violin cor-

responds to the proportions of configurations with a certain speedup. The white dot denotes

the median speedup, while the thick black line shows where 50% of the data lies. These plots

highlight differences and similarities in the spaces of different applications. Intuitively, violins

with a pointy top correspond to benchmarks difficult to optimise: configurations giving the

maximum performance are few. This is the case for mt and mtLocal (matrix multiplication

and matrix multiplication with local memory). At the same time, these two programs show

similar shapes among the two Nvidia and AMD devices. On the other hand nbody shows

different shapes among the four architectures: a large improvement is available on Cypress

while no performance gain can be obtained on the other three devices. Interesting cases for

analysis are benchmarks such as mvCoal and spmv. They have an extremely pointy top with

and the whole violin is below 1, meaning no performance improvement is possible on these

benchmarks with coarsening. Consider now the aggregate violin in the final column of each

subfigure. This shows the distribution of speedups across all programs. In all the four cases

the white dots lies well below the 1, near 0.5 in most cases. This result means that on average,

the coarsening transformation will slow programs down. This fact coupled with the different
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Figure 7.2: Violin plots showing the distribution of speedups for all the benchmarks and devices.

The shape of the violin corresponds to the speedup distribution. They indicate on how hard it is

to tune a program. The thick black line shows where 50% of the data lies. The white dot is the

position of the median.

optimisation distributions shows how difficult choosing the right coarsening factor and stride

is. The heuristic in section 7.5 and the model presented in section 7.6 tackle the problem of

selecting an appropriate configuration for each program on the four machines.

7.4.2 Coarsening Factor Characterization

One of the objectives of this work is the determination of the best thread-coarsening factor. In

this section we quantify how much this parameter varies across program and device. Figure 7.3

shows Hinton diagrams for each target device. For each benchmark and coarsening factor it

plots a square. The size of the square is proportional to the percentage of configurations having

the given coarsening factor among the top 5% performing ones. Intuitively: the larger the

square is, the more likely it is that the corresponding coarsening factor will perform well.

From these plots it is immediately clear that no single factor can give good performance for

all the programs. On the two Nvidia devices (Fermi and Kepler) the optimal coarsening factor

tends to be among 1, 2, or 4, with few exceptions. On the two AMD architectures (Tahiti and

Cypress) instead the best coarsening factor are often larger (4 or 8).

In section 7.7 we show the speedup we can achieve by using a single coarsening factor for all

the programs on a specific device. We compare our prediction model against this baseline.
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Figure 7.3: Hinton diagrams showing the percentage of configurations with the given coarsen-

ing factor in the performing top 5% configurations. Intuitively, the larger the square is the more

likely it is for the given coarsening factor to be the fastest.
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(b) Cypress: large strides have detrimental effect

on performance. The minimum execution time is

for stride 1.

Figure 7.4: Execution time (in milliseconds), for the mvUncoal kernel running on Fermi and

Cypress varying the stride parameter for multiple coarsening factors. The labels close to the

lines are the corresponding coarsening factor.

7.4.3 Stride Factor Characterization

This section describes how the performance of our benchmarks is affected by the stride param-

eter.

The goal of our analysis of the stride parameter is to find ways to simplify the problem of

selecting an appropriate value for it. We start by making two considerations. First, the stride

parameter is only useful for benchmarks that show coalesced memory accesses in their original

version. So, if a kernel does not have this property a stride larger than 1 might have a negative

effect, if any, on performance. For example, consider figure 7.4. It plots the execution time of

the mvUncoal kernel (which does not have coalesced accesses) running on Fermi and Cypress

when varying the stride parameter. For Fermi we see no impact on performance by varying

the stride parameter, while for Cypress we see that large stride slows the kernel down. The

second idea is that that real benefit of the stride parameter is achieved when all the accesses by

a memory instruction in a warp are consecutive. This property is achieved only for a coarsening

factor as large as the warp size: 32 hardware threads on Nvidia and 16 on AMD (a quarter of a

wavefront). We can see this in figure 7.5. Subfigure 7.5a shows a fully coalesced access pattern

(all the memory request are contiguous). The schema then shows three different memory access

patterns for the same memory operation after coarsening by factor 2. Subfigures b and c show

the memory access pattern for stride 1 and 2. None of them achieves full coalescing: the

accessed memory locations are not contiguous. Only the last configuration (7.5d) reaches

coalescing, this is because the selected stride equals the width of the warp (8 in this example).

Using these two considerations we can simplify the search to just two stride values: 1

and 32. Figure 7.6 shows, for all 4 devices, a comparison between the maximum speedup
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(b) Memory accesses for a stride of 1. The coalescing property is lost.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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(c) Memory accesses for a stride of 2. Full coalescing of memory accesses is not achieved.
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Coarsened work-items in a warp

(d) Memory accesses for a stride of 8. Memory accesses are now completely coalesced (the data

elements accessed by the warp in a single transaction are all consecutive).

Figure 7.5: Comparison of memory accesses for a kernel with warp size 8 coarsened by factor

2. White squares represent the work-items in a warp, while the grey squares represent memory

locations. Arrows are accesses to memory locations. Solid arrows represent the accesses

made by the original memory operation, dashed arrows represent the accesses made by the

replicated one. All the accesses for solid arrows happen a at the same time, while dashed ones

are a subsequent transaction.
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Figure 7.6: Comparison between the maximum performance attainable, second bar, with the

performance given by restricting the choice for the stride to just 1 and 32, first bar.

attainable in our original parameter space (the bar on the right) and the maximum speedup

attainable restricting the choice of the stride to 1 or 32 (the bar on the left). We can see that

the average performance penalty coming from this simplification is negligible. For Fermi,

Kepler, Cypress and Tahiti using just two stride values gives 99.2%, 97.7%, 91.8%, 93.2% of

the original performance on average across the benchmarks. Our optimisation policy, described

in section 7.5, discriminates between stride values 1 and 32 on a per benchmark-basis.

7.4.4 Relationship between Coarsening Factor and Stride

In this section we analyse the relationship between the coarsening factor and the stride pa-

rameter. We want to understand whether the choice for the optimal coarsening factor changes

in relationship to the stride. We performed the following analysis: for each program on each

device we select the coarsening factor which gives the best performance on average across

all the stride values: we call it c favg. We then evaluate the performance attained by c favg for

all stride values. If c favg performs better with respect to the other coarsening factors for each

stride value this means that the relative performance of this coarsening factor is actually stable

across stride values. This implies that the choice for the optimal factor is independent of the

stride. Figure 7.7 reports the results of this analysis for each kernel and device. In these plots

we show the average relative performance of c favg with respect to other coarsening factors for

all the stride values. This number is usually close to 1, meaning that the c favg is not only the

best coarsening factor on average, but also the absolute best. We can see that, by selecting

the coarsening factor independently of the stride, we lose at maximum 17% of the maximum

performance available on sgemm and dwtHaar1D on Fermi. From this we can conclude that the

choice for the optimal coarsening factor is independent of the stride. This simplifies the opti-

misation problem, since we can decouple it in two simpler problems: the choice of the stride

and the choice of the factor.
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Figure 7.7: Average performance of a single coarsening factor (called c favg) compared against

other factors across all stride values.

7.4.5 Cross-architecture optimisation portability

In this section we investigate if knowing the best coarsening factor and stride for one archi-

tecture can be successfully exploited to a new device. This study fulfils two purposes: (1) it

characterizes the diversity of the devices that are evaluated in this work, (2) it studies if an

optimiser tuned for a device would be effective when ported to another one. For this task we

explored all coarsening factors and strides on all the kernel and devices selecting the best for

each. Given two devices A and B we then evaluate for each kernel the performance of the

best configuration of A (Search-Device) on B (Target-Device). Figure 7.8 reports the results

of this analysis for all combinations of A and B. Our baseline (0%) is the performance of the

unmodified kernel on the target device.

From these plots we can see, for example, that performance transfers effectively from Fermi

to Kepler (first bar of figure 7.8b), where we reach 70% of the maximum speedup. Surprisingly

the opposite is not true (see the second bar of figure 7.8a), where 52% is attainable. Its impor-

tant to notice that porting performance across Nvidia and AMD leads to bad performance on

average. For example the best configurations from Fermi and Kepler when evaluated on Cy-

press lead to performance degradations (of -6% and -0.2%). Similarly, bad performance is

given when porting from Cypress and Tahiti to Kepler.
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Figure 7.8: The bars in these plots report the percentage of the maximum performance avail-

able on the target device (reported in the caption) achieved when porting the best configuration

found on the search device (at the bottom of the bars). The baseline (meaning a performance

improvement of 0%) is the performance of the unmodified kernel on the target device. When

Target-Device and Search-Device are the same the bar reaches 100% by construction. For ex-

ample, the Cypress bar in figure (a) shows that 37% of the maximum performance of Cypress

is achievable when using the best configuration coming from Fermi . Instead the Fermi bar in

figure (c) shows a performance degradation of 6%. Notice that the bar for Kepler in plot 7.8c

shows a performance degradation of -0.2%, that is the reason why no bar is visible.



Chapter 7. Selection of Coarsening Parameters 115

Consider that these results represent the upper bound of how an optimiser specialized for

one architecture would perform when applied to another one. Any realistic compiler heuristic

when applied to an unseen program, would perform considerably worse than this. This shows

that performance portability is not guaranteed when going across vendors. This justifies the

need to specialize the choice of the coarsening configuration on a per-device basis relying on a

flexible optimiser. The goal of the model is to decide a coarsening factor and a stride for each

kernel on a specific architecture.

7.5 Stride parameter selection

This section describes the technique that we use to select the stride parameter.

Our policy for the selection of the stride value relies on our understanding of the coalescing

of memory access and the way that the stride parameter changes the shape of the code, see

section 7.4.3. The core idea is that kernels showing coalesced accesses to memory will benefit

from a large stride value (32), independently of the coarsening factor. Kernels that do not

have coalesced accesses will either be insensitive to the stride or will benefit by a small stride

(1). Our technique can be then summarized as follows. We symbolically execute the kernel

with SymEngine to estimate which memory locations are touched by a kernel. Based on this

information we compute the number of transactions performed by each memory instruction as

we presented in section 4.6.2. If the kernel shows coalesced accesses, meaning the number of

transactions, per load, is 1, select stride 32. If, instead, the kernel shows uncoalesced accesses,

meaning the number of transactions per load cannot be statically determined by SymEngine (or

it is high, close to 32), select stride 1. Even though SymEngine has been verified on Nvidia

GPUs similar optimisation principles apply for AMD hardware. For this reasons we apply the

same heuristic on AMD devices as well.

7.5.1 Performance Evaluation

Figures 7.9 and 7.10 show the performance results that we obtain applying our methodology

to select the stride parameter. The three bars represent respectively: the speedup given by our

heuristic, the maximum speedup given by restricting the choice to just 1 and 32 and the maxi-

mum speedup over all the search space. The baseline for this experiment is the performance of

the application run with coarsening factor 1 and the optimal work-group size for each kernel.

On Nvidia 7.9 we can see our method achieves the maximum performance on the majority of

programs. The notable exception is dwtHaar1D. As we describe in section 4.6.3 we fail to anal-

yse the store access pattern for this kernel. Our method in these cases is to default the stride

parameter to 1. This choice prevents us from gaining most of the performance available for

dwtHaar1D. Similar considerations apply for AMD devices (figure 7.10). Here, benchmarks
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Figure 7.9: Barplots showing the performance of our method to predict the stride parameter for

the Nvidia devices. The first bar shows the performance of our method. The second bar shows

the maximum performance achievable restricting the choice of the optimal stride to 1 or 32. The

third bar shows the maximum speedup attainable overall.
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Figure 7.10: Barplots showing the performance of our method to predict the stride parameter

for the AMD devices. The first bar shows the performance of our method. The second bar

shows the maximum performance achievable restricting the choice of the optimal stride to 1 or

32. The third bar shows the maximum speedup attainable overall.
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Figure 7.11: Model training overview. In Phase 1 we collect static features of the kernel func-

tions. In Phase 2 we run the testing programs collecting the binary output variables.

like binarySearch and mtLocal have optimal stride factors different from 1 or 32 (identified

by the fact that the second bar does not reach the maximum). In this cases our simplifica-

tion prevents us from reaching the maximum performance. Overall our heuristics gives the

following performance: 75.7%, 75.6%, 88.4% and 80.5% Fermi, Kepler, Cypress and Tahiti

respectively.

7.6 Neural Network Model Description

7.6.1 Training

This section describes the training and the evaluation of our neural network model.

In this work we use Leave One Out Cross Validation for the evaluation of performance

results. See section 2.7.2 for a description of this technique.

Figure 7.11 gives a visual representation of the training process. OpenCL kernels from the

training set are compiled and run with the six different coarsening factors. During the compi-

lation step (Phase 1) a compiler-analysis pass collects static features of each different version

of the code. The full list of these features is given in section 7.6.3. In Phase 2 we run all the

different versions of the program arranging the results by increasing coarsening factor. The

binary training output variable is computed answering the following question: Is further coars-

ening going to improve the performance of the current version? Answering this question on

each version of the kernel function will generate a tuple of binary values. This idea of reducing

the classification problem to a binary decision has the advantage of simplifying the task and

increase the amount of training data available, since now every coarsened version of the pro-

gram can be used as training point. This technique is called called data augmentation, refer
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Figure 7.12: High-level view of the use of our neural network iterative model. Static source

code features of the program are extracted from the original kernel code and fed into the model

which decides whether to coarsen or not. If yes, new features are computed and the model is

queried again. From a high level point of view the model simply computes the best coarsening

factor from static program characteristics. At the end of the process the program is compiled

using the predicted factor.
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to [71] for another example. Then, for each kernel the 5 sets of features and the 5-tuple of

binary variables are used for training the machine learning model. In the case of neural net-

works, training consists in updating the weights on the edges of the network in such a way that

the error between the prediction and the expected result is minimized (see section 2.6.2) This

process is repeated for each target architecture independently. We thus obtain four different

models for the four GPUs we use.

7.6.2 Neural Network Model

Our model is built using a neural network for classification with one hidden layer. neural

networks [19] are a supervised learning algorithm that classify data-points assigning to each of

them the expected probability to belong to a given class. Given a previously unseen program

the model determines whether coarsening should be applied or not. If the answer is yes, the

model is applied again to the coarsened version of the program to determine if we should keep

going or stop coarsening. In the latter case, the model is called a third time deciding if the

program should be coarsened one more time and so on. Figure 7.12 gives an overview of how

the model is applied. Such model relies on the peculiar shape of the coarsening performance

curve, which shows improvement up until the optimal coarsening factor. Further coarsening

leads to performance degradation. This common behaviour is shown for all the benchmarks in

figures 5.4 and 5.5. Note that we actually compile the program multiple times for the extraction

of static features for programs with intermediate coarsening factors.

We choose the iterative predictor to implement a conservative approach. By iteratively

querying the model in multiple intermediate steps we make sure to limit the application of

thread-coarsening only to those applications which truly benefit from it. This is a beneficial

property, since large coarsening factors are rarely optimal (consider the Hinton diagrams in

figure 7.3).

7.6.3 Program Features

This section describes the selection of the static code features used for prediction. The model is

based exclusively on static characteristics of the target OpenCL kernel function. These charac-

teristics, called features, are extracted using an analysis pass that works on the LLVM-IR. Note

that, since our goal is to develop a portable optimiser, we don’t use any architecture-specific

feature. We apply our function analysis at the LLVM-IR level because this is the lowest level

of abstraction that is portable across architectures. In particular, we do not collect any infor-

mation after instruction scheduling or register allocation, since these are target-specific phases.

We first describe the candidate features. This is followed by the process used to reduce these

to a smaller and more useful subset.
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Feature Name Description

BasicBlocks Number of Basic Blocks

Branches Number of Branches

DivInsts Number of Divergent Instructions

DivRegionInsts Number of Instructions in Divergent Regions

DivRegionInstsRatio Ratio between the Number of instructions inside Di-

vergent Regions and the Total number of instruc-

tions

DivRegions Number of Divergent Regions

TotInsts Number of Instructions

FPInsts Number of Floating point Instructions

ILP Average ILP per Basic Block

Int/FP Inst Ratio Ration between Integer and Floating Point Instruc-

tions

IntInsts Number of Integer Instructions

MathFunctions Number of Mathematical Builtin Functions

MLP Average MLP per Basic Block

Loads Number of Loads

Stores Number of Stores

UniformLoads Number of Loads that do not depend on the Coars-

ening Direction

Barriers Number of Barriers

Table 7.3: Candidate static features used by the machine learning model.

7.6.4 Candidate Features

The full list of candidate features is given in table 7.3. We selected these based on the results

of chapter 5, where we analysed which hardware performance counters are affected by the

coarsening transformation. Our analysis based on regression trees identified the number of

executed branches, memory utilization (in terms of memory instructions and cache utilization)

and instruction level parallelism (ILP) as useful information to characterize thread-coarsening.

We approximate these dynamic counters using static code characteristics counterparts, such as

the total number of kernel instructions, static number of branches and divergent regions and

static ILP. We employ 17 candidate static features.

Absolute Features Divergent control flow has a strong impact on performance for graphics

processors because it forces the serialization of instructions that would normally be executed

concurrently on the different lanes of a warp [102]. The degree of thread divergence in a kernel

is measured using the results of divergence analysis. We count the total number of divergent
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1) Delta instructions

2) Delta divergence

3) Arithmetic Intensity

4) Instructions

5) Divergence

6) Delta Arithmetic Intensity

7) Instruction Parallelism

Table 7.4: Final features selected after the application of Principal Component Analysis.

instructions (for an explanation of what divergent instructions are see section 4.2), the total

number of divergent regions (CFG regions controlled by a divergent branch) and their relative

size with respect to the overall number of instructions in the kernel. Another counter related to

the complexity of the control flow of the kernel is the total number of blocks. We also compute

the average per-block theoretical ILP and Memory Level Parallelism (MLP) at the LLVM-IR

level. To compute the static ILP and MLP we followed the methodology presented in the

work by Sim et al. [116]. For ILP, we schedule the instructions in each basic block as early

as possible and we compute the depth of the schedule. The ratio between the total number of

instructions in the block and the depth of the schedule is our value for ILP. MLP is defined as

the average number of memory instructions between a load of a value and the use of that same

value. It is used to estimate how many outstanding memory requests the program can sustain.

Relative Features In addition to the absolute values for the features we also employ the rel-

ative difference between two program versions: before and after the application of coarsening.

The relative increase of a feature value after coarsening is computed according to the following

formula: ( f eatureA f ter− f eatureBe f ore)
f eatureBe f ore

, where f eatureBe f ore and f eatureA f ter are the values of the

feature before and after coarsening. In the remainder of the chapter delta features are identified

by Delta added to the feature name.

7.6.5 Feature Selection

This section describes how we select features starting from the candidate ones.

Principal Component Analysis The large number of features (absolute plus deltas) is auto-

matically reduced using the standard technique of Principal Component Analysis.

It is important to notice that we use the same set of features in table 7.3 for all devices

without manual intervention. Principal Components Analysis minimises the cross-correlation

of the input features by linearly aggregating those features that are highly correlated and there-

fore redundant. After application of PCA the 7 final selected features in table 7.4 describe 95%
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Figure 7.13: Result of the PCA analysis with Varimax rotation. The seven resulting components

are labelled on the left and sorted according to their relative importance (the amount of variance

of the feature space covered by each of them). On the right-end side each pie chart depicts the

contribution of each original feature to a given output principal component. Features are laid out

in rows according to the component they contribute to.

of the variance of the original space on average across the four devices.

With the goal of providing an understanding of the importance of each feature we ap-

plied to the results of naive PCA a space transformation called Varimax rotation [88] (see sec-

tion 2.6.3). This transformation makes sure that each feature of the original space contributes

either strongly or weakly to each new principal component. Such property makes it easier to

interpret the output of PCA and allows us to label each principal component with a meaningful

name based on the features that contribute to it. A similar approach to PCA has been followed

by [65] for prediction of execution time of parallel applications in heterogeneous environments.

See section 2.6.3 for a description of PCA analysis.

Figure 7.13 shows the result of the PCA with Varimax rotation when reducing the space

from 34 candidate features to the 7 components. The new principal components are organized

by rows and labelled on the left. Each pie chart shows which component a given original feature

contributes to. Components are sorted by rows according to their relative importance: how

much of the feature variance they cover. So the most important component is labelled Delta

Instructions. This component groups together features describing by how much the number of

instructions in the kernel body increases while coarsening.

The second most important component (Delta Divergence) describes the increase in the

amount of divergence. It is interesting to notice that the two most important components de-

scribe the difference of characteristics in the feature space rather then their absolute value.

Absolute features account for a smaller amount of variance of the feature space. Section 7.7.4

describes how two representative features of the first two components are related to the results

of the coarsening transformation and how they are used for prediction. This section presents
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the evaluation of our machine learning predictor.

7.7 Model Evaluation

This section presents the performance results for our iterative neural network model. All the

speedups reported here are relative to the execution time of the original application executed

without applying the coarsening transformation, i.e., coarsening factor 1.

7.7.1 Unique-Factor Model Description

To offer a rigorous evaluation of our machine learning model we compare its performance

against a simple heuristic. Given a set of training programs with the corresponding speedups

for each coarsening factor we compute the single best factor on average for that device. The

chosen value is then applied on the testing program (not present in the original training set).

This optimisation policy makes the assumption (often wrong) that coarsened programs behave

similarly to one-another and, therefore, similar optimisation parameters give comparable per-

formance. We employed this simple average-based policy because of lack of similar previous

work against which to compare our model. In the following sections we call this simple model

Unique Model. Our machine learning based predictor is called NN Model.

7.7.2 Performance Evaluation

Figures 7.14 and 7.15 shows the results of our experiments for the four target devices. We

report three bars: one for the performance of Unique Model, the second one for NN Model and

the final one shows the maximum speedup attainable with coarsening.

Performance of Unique Model We first observe that Unique Model performs poorly on all

the devices. On the two Nvidia it results in a slowdown on average, while on AMD its gives

a marginal improvement over the baseline. This difference of Unique Model across the two

vendors can be explained considering that on Nvidia the performance profile is quite irregular.

Either a benchmark greatly benefit from coarsening, such as sgemm and floydWarshall or it

does not at all, as in the case of spmv and stencil. Having these two types of effects makes

it hard to estimate performance based on the average trend without considering the inherent

properties of each benchmark. On AMD, Unique Model records on par with the baseline since

coarsening gives on average higher improvements (1.53x and 1.54x) and a larger number of

kernels benefit from it.

Divergent Kernels Applications such as mvCoal, spmv and stencil are penalized by coars-

ening on all the devices, i.e., the best factor is 1. The reason for this is the divergent behaviour of
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(b) Kepler

Figure 7.14: Barplots summarising the results. The first bar represents the speedup given by

Unique Model. The second bar is the speedup given by the NN Model. The third bar is the

maximum speedup attainable with thread-coarsening.
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(a) Cypress
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(b) Tahiti

Figure 7.15: Barplots summarising the results. The first bar represents the speedup given by

Unique Model. The second bar is the speedup given by the NN Model. The third bar is the

maximum speedup attainable with thread-coarsening.
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these applications. These kernels are enclosed into divergent regions checking for the bounds of

the iteration space. Such pattern is particular detrimental to the baseline performance on GPUs

and coarsening makes this problem worse. Unique Model leads to significant slowdowns on

these kernels since they deviate from the norm. The features DivRegions and DivRegionInsts

model the degree of divergence in the kernel body. Using this information NN Model suc-

cessfully predicts coarsening factor 1 for all the benchmarks for which Unique Model leads

to slowdowns. This positive result is a consequence of the conservative design policy of our

iterative model (section 7.6.2).

Uniform Kernels On the other hand NN Model enables coarsening effectively for bench-

marks such as sgemm and floydWarshall on all architectures. These two applications show

high speedups with coarsening. This is because they benefit from the reduction in redundant

memory operations that coarsening ensures. Such characteristic is expressed in the feature Uni-

formLoads. In chapter 5.7.1 we propose an explanation for this behaviour.

The two applications for which NN Model fails to achieve significant improvements are mt

and mtLocal. On AMD in particular these two kernels benefit from coarsening but the model

does not take advantage of the possible gain. The reason lies in the particular shape of the code

of these two programs. They contain few instructions, just loads and stores. Thus coarsening

leads to the replication of all the instructions in the function body. Consequently this makes

the feature Delta TotInst and Delta Divergent Insts have high values. Usually this signifies that

coarsening should be disabled.

The other outlier in our benchmarks is dwtHaar1D for which we loose performance without

exploiting the large speedup available on Nvidia devices. The reason for this loss is a wrong

modelling of the access pattern and a consequent miss prediction of the stride factor. We

explain this in detail in section 7.5.1

In summary, NN Model gives an average performance improvement of 1.08x, 1.05x, 1.24x,

1.13x on Fermi, Kepler, Cypress and Tahiti respectively, which is 31%, 30%, 60% and 40% of

the maximum performance available. The largest performance penalty (aside for dwtHaar1D)

is for sobel running on Tahiti and it is about 20%. If we were able to model the access patter of

the outlier dwtHaar1D correctly and consequently improve its performance we would be able

to achieve 50%, 70%, 62% and 42% of the maximum on Fermi, Kepler, Cypress and Tahiti

respectively.

7.7.3 Accuracy of prediction

Tables 7.5 and 7.6 show the predicted coarsening factor against the optimal one for all pro-

grams and devices. From this table we confirm the diversity of the best optimisation factor as

described by the Hinton diagrams in figure 7.3. We also see that NN Model overestimates the
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Kernel Fermi Kepler

Predicted Best Predicted Best

binarySearch 1 1 4 16

blackscholes 4 8 2 4

convolution 4 4 1 1

dwtHaar1D 4 8 4 4

fastWalsh 1 2 1 1

floydWarshall 4 16 4 8

mriQ 8 4 4 2

mt 1 8 4 2

mtLocal 1 8 4 4

mvCoal 1 1 1 1

mvUncoal 1 1 1 1

nbody 1 2 2 2

reduce 4 4 1 1

sgemm 8 32 2 16

sobel 1 1 2 2

spmv 1 1 1 1

stencil 1 8 1 1

Table 7.5: The table reports the best coarsening factors compared against the ones predicted

by NN Model for all programs on Nvidia Devices.
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Kernel Cypress Tahiti

Predicted Best Predicted Best

binarySearch 2 2 8 8

blackscholes 1 1 1 2

convolution 4 4 1 1

dwtHaar1D 4 4 2 4

fastWalsh 8 4 1 1

floydWarshall 4 4 4 16

mriQ 4 4 1 2

mt 4 32 4 32

mtLocal 4 32 1 32

mvCoal 1 1 1 1

mvUncoal 4 8 2 2

nbody 2 16 4 4

reduce 2 2 2 4

sgemm 4 8 2 16

sobel 1 4 8 4

spmv 1 1 1 1

stencil 1 1 1 1

Table 7.6: The table reports the best coarsening factors compared against the ones predicted

by NN Model for all programs on AMD Devices.
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Binary output in Feature Space
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Figure 7.16: All our training data-points laid out according to two of the most relevant features:

Delta TotInsts and Delta DivRegions. A dot identifies that coarsening is successful, a square

that is not. The red labels highlights different regions of the feature space.

factor only in 4 cases out of 68, and always predicts no coarsening (i.e., factor 1) when the

optimal is one.

7.7.4 Neural Network Model Analysis

This section provides an understanding of how the NN Model predicts the coarsening factor

relying on the distribution of the training points in the feature space. Figure 7.16 shows all

the points in our data set, i.e., all kernels for all the coarsening factors, arranged in the two

dimensional space of Delta TotInsts and Delta DivRegions for AMD Cypress. The plot shows

a dot for each benchmark for which coarsening is effective and a square when it is not, these are

our training data. From this plot we clearly see that Delta DivRegions (on the y-axis) splits the

data points in two clusters: one for which its value is 0 and one for which its value is positive.

For the first cluster other features will discriminate these points in a higher-dimensional space.

In the first cluster fall kernels such as mt, sgemm or mriQ which do not have any divergent

region. The second cluster instead contains mvCoal, stencil, spmv, kernels whose body

is enclosed by divergent branches. The feature on the x-axis instead represent the overall

difference in instructions in the kernel body before and after coarsening.

From the distribution of dots and squares we notice the following trends. (1) Configurations

at the bottom of the graph (with low Delta DivRegions) tend to benefit from coarsening. Not

having divergent regions in the original code means that coarsening is likely to be effective.

The opposite also holds, since configurations in the top half of the plot usually do not benefit
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from the transformation. (2) Configurations on the right-hand side of the plot are likely not to

benefit from coarsening. A sharp increase in the instruction number signifies a high level of

divergence leading to poor performance.

7.8 Summary

This chapter addressed the problem of developing a methodology to optimise the thread-

coarsening transformation. We first presented an evaluation of the complexity of the problem

by characterising the optimisation space. We showed that the optimal choice for the coarsen-

ing factor is hard to reach and device-specific. By relying on our previous work on perfor-

mance characterization and analysis of the coarsening transformation we select relevant code

features that characterize the effects that the coarsening transformation has on run-time. We

first introduced a technique to select the stride parameter using symbolic kernel execution with

SymEngine. We then developed a machine learning model that can predict a coarsening factor

that improves performance on four GPU architectures.

Next chapter concludes the thesis by summarising the results and by providing a critical

analysis of all the chapters.



Chapter 8

Conclusion

This thesis presented the design and implementation of the thread-coarsening compiler trans-

formation along with techniques to analyse its effect on performance and predict effective pa-

rameter configurations. Chapter 4 presented the implementation details of the compiler passes

that we developed in this work. Chapter 5 presented the effects of coarsening on run-time per-

formance. We introduced a technique based on regression trees to automatically identify which

counters are affected by the coarsening transformation and to study their relationship with run-

time performance. Chapter 6 studied how the performance of coarsened kernels changes across

problem input sizes. We showed the existence of a hardware saturation point and how to ex-

ploit it for fast iterative compilation. Chapter 7 introduced techniques to select the coarsening

factor and the stride.

8.1 Contributions of the Work

This section summarizes the contributions of the four technical chapters of the thesis.

8.1.1 Compiler Analyses and Transformations

Chapter 4 presented the design choices and the implementation details of the thread-coarsening

compiler pass and the SymEngine kernel analyser. As a first contribution we described all

the stages of the coarsening transformation. This is the first implementation of coarsening to

be implemented in LLVM and available as open-source. Previous works in the field relied

on source-to-source compilers or manual application of the transformation. We showed that

by employing divergence analysis it is possible to coarsen only divergent instructions, thus

mitigating the overhead of redundant (uniform) computations. The second contribution is the

introduction of SymEngine, a symbolic execution engine for the analysis of memory access

patterns or OpenCL kernels. We showed that through symbolic execution it is possible to

accurately predict the number of hardware transactions made by a kernel on an Nvidia GPU.
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8.1.2 Performance Counters Analysis

In Chapter 5 we provided an evaluation of the coarsening transformation for 17 OpenCL pro-

grams and 4 GPUs, two Nvidia and two AMD. We showed that the same program might behave

differently across devices making the task of compiler tuning for heterogeneous environments

challenging. With the goal of understanding how coarsening impacts performance we analyse

the changes of hardware profiler counters varying the coarsening factor. The results of profiling

are analysed using regression trees that relate changes in the values of counters to execution-

time speedups. We demonstrated how regression trees can effectively identify the root cause

of performance differences for multiple coarsening configurations.

8.1.3 Fast Tuning of the Coarsening Transformation

Chapter 6 presented an evaluation of the coarsening optimisation space across input sizes. First,

we analysed the absolute performance achieved by an OpenCL kernel using the throughput

metric (number of output data elements computed per unit of time). We experimentally prove

that the throughput is low for small problem input sizes and increases for large ones. The

throughput reaches a plateau for problem sizes larger than a threshold that we call minimum

saturation point (MSP). Along with raw performance analysis, we evaluated the coarsening

search space for each of the input sizes, recording the best configuration for each. We then

showed that the optimal configuration for the MSP performs well for much larger problem

sizes. Based on this observation, we introduce a technique to improve the performance of

iterative compilation. We explore the coarsening space for the input size corresponding to the

MSP and we port the best configuration found to the much larger target size. With this method

we improve performance over the benchmark baseline and we speedup up the search by 10x.

8.1.4 Selection of Coarsening Parameters

Our last technical Chapter, number 7, tackled the problem of selecting the coarsening factor and

the stride parameters. We first gave a characterization of the optimisation space: we showed

that fast configurations are rare and change across kernels and across devices. We then pro-

vided experimental data describing how the coarsening factor and the stride can be predicted

independently. Our heuristics for the determination of the stride parameter uses SymEngine to

compute the number of hardware transactions. If the original kernel shows coalesced memory

accesses (the number of transactions per memory instruction is minimized) we select a large

stride to preserve this favourable property. The determination of a suitable coarsening factor

is done using a neural network for classification. The model distinguishes between kernels

that are suitable for coarsening and kernels that are not. By iteratively querying the model we

determine when it is not profitable any more to coarsen the kernel. We our combined technique



Chapter 8. Conclusion 134

gives 31%, 30%, 60% and 40% of the maximum performance available on Fermi, Kepler, Cy-

press and Tahiti, improving over a simpler optimisation policy that selects a unique value for

the stride and coarsening factor for all the programs.

8.2 Critical Analysis

This section critically discusses the work in this thesis.

8.2.1 Compiler Analyses and Transformations

In our implementation for the coarsening transformation we leveraged the LLVM compiler

infrastructure, working on LLVM intermediate representation. This has posed the problem

of generating code for a variety of GPU architectures. We found the solution using the axtor

OpenCL backend: it generates OpenCL-C kernels from LLVM-IR modules. This introduces an

extra step in the compilation pipeline which might not be tolerable in a production environment.

In our evaluation results we factor out this extra step by using as baseline the performance of

the coarsened kernel after it has been transformed by axtor. In section 8.3 we propose future

extension to overcome this problem.

8.2.2 Performance Counters Analysis

The primal objective of our regression based technique is to be portable across devices, so to

provide a single methodology capable of explaining performance on a wide range of vendors.

This meant that we chose to settle for a solution less accurate then hand-tuned models for

specific GPUs. The insights provided by our methodology as still useful and hard to obtain

without detailed knowledge of the device hardware. Another important point to consider about

our regression trees is that they rely on the performance counters available on each device. We

showed that Nvidia GPU SDK provide a detailed profiler with low-level information in par-

ticular about the memory system. The same is not true for AMD where the available counters

are much fewer and much more coarse grained. These are inherent limitations for performance

analysis. An important cost associated with performance analysis is the execution time of pro-

file runs. Our methodology requires multiple profile runs for each coarsening factor for all

the devices under study. Depending on the accuracy of the profilers this process might take a

considerable amount of time. We judge this cost to be affordable since our technique is meant

for compiler engineers. These users can afford to spend more time in understanding program

performance than the end-users of the compiler.
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8.2.3 Fast Tuning of the Coarsening Transformation

In chapter 6 we analysed how the application throughput saturates when increasing the problem

input size. We also showed examples of applications deviating from this norm. For these

outliers our policy of MSP tuning does not achieve the same results as for the other applications.

Ideally, these outliers should be identified in advance. Take as reference the mvCoal kernel.

This program cannot reach saturation due to the large amount of data used per thread. One way

of detecting in advance this type of outliers is to compute the proportion between the number

of threads running concurrently and the amount of data touched by each thread as a function of

the problem size.

8.2.4 Selection of Coarsening Parameters

The main limitation of our prediction methodology is the small number of benchmarks avail-

able for training and performance evaluation. We worked on a small set of programs since

OpenCL benchmarks usually target a specific architecture applying code optimisations and we

manually selected programs that where easy to port to new devices. We can see the effects of

this limitation in section 7.7 where miss predicting the stride factor of dwtHaar1D leads to a

significant overall performance loss. Using a small set of programs forced us to use leave one

out cross-validation, meaning testing the model on one benchmark at the time an training on

the others. If more benchmarks were available, we could have applied K-fold cross-validation,

using multiple programs for testing. Section 8.3 proposes a way to overcome this limitation.

8.3 Future Work

Improve the compilation toolchain As we explained in section 8.2.1 the introduction of the

axtor OpenCL backend introduced a further step in the compilation toolchain. This can be

avoided lowering the transformed LLVM-IR to a portable cross-platform representation like

SPIR-V [69]. This new version of the SPIR language has been designed for both Vulkan

(graphics) and OpenCL (compute) workloads and therefore likely to find widespread applica-

tion.

Input size analysis A possible way to improve our proposal to speedup iterative compilation

is a quicker identification of the minimum saturation point, without the exploration of all the

input sizes of interest. This could be done evaluating the throughput of the application for

small input sizes only, and then use regression to obtain an estimate of the curves in figures 6.2

and 6.3.
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Better characterization of GPU programs The accuracy of trained models depends on the

capability of the program features to characterize their run-time behaviour and to distinguish

different benchmarks. Static features might fall short of this task. A possible solution for this

problem would be to run the LLVM-IR version of the body of the OpenCL kernel function

using the LLVM interpreter engine [108]. A modified version of the execution engine would

collect dynamic counts for LLVM instructions. This would enable the use of dynamic and yet

platform agnostic program information.

Automatic benchmark generation As we have seen in this work, the process of compiler

tuning is highly dependent on the quality and the amount of programs used to select the optimi-

sation parameters. Benchmarks must represent realistic workloads and, at the same time, cover

the optimisation space grasping all the nuances of modern GPUs. Just relying on standard

benchmark does not fully solve the problem since they might be tuned for a specific device or

thought for a specific case of use. To solve this problem we propose to automatically synthesize

training programs. This methodology would generate a set of random OpenCL-C programs in-

spired by standard OpenCL benchmarks and fit a model to predict their performance on a target

device. Based on the accuracy of the machine learning model our infrastructure would generate

another set of benchmarks. The process can be repeated until a predefined level of prediction

accuracy is reached. This would help avoid the problem of over-fitting on a small problem

sample size.

8.4 Summary

This chapter concludes the thesis. We summarized the contributions of the work, we provided

a critical analysis of the work showing its limitations and presented directions for future re-

search.



Appendix A

This appendix lists the hardware performance counters from our four GPUs. Tables A.1 and

A.2 refer to Nvidia Fermi, tables A.3 and A.4 refer to Nvidia Kepler, table A.5 refers to AMD

Cypress and table A.6 refers to AMD Tahiti.

Counter Name Description

regperworkitem Hardware registers used per work-item

inst issued Instructions issued

inst executed Instructions executed

l2 subp0 read sector queries Queries from L1 going to slice 0 of L2

l2 subp1 read sector queries Queries from L1 going to slice 1 of L2

l1 global load hit Global memory load hits in L1

l1 global load miss Global memory load misses in L1

l1 local load hit Hits in L1 coming from local memory requests (in Nvidia

terminology local memory is where registers are spilled)

l1 local load miss Misses in L1 coming from local memory requests

l1 shared bank conflict Bank conflicts in shared memory

l1 local store hit Store hits in local memory

l1 local store miss Store misses in local memory

l2 subp0 read sector misses Read misses in sector 0 of L2

l2 subp1 read sector misses Read misses in sector 1 of L2

l2 subp0 write sector queries Write requests in sector 0 of L2

l2 subp1 write sector queries Write requests in sector 1 of L2

l2 subp0 write sector misses Write misses in sector 0 of L2

l2 subp1 write sector misses Write misses in sector 1 of L2

Table A.1: Raw performance counters collected for Fermi (Part1)
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Counter Name Description

l2 subp0 read hit sectors Read hits in sector 0 of L2

l2 subp1 read hit sectors Read hits in sector 1 of L2

gld inst 8bit 8 bit global load instructions

gld inst 16bit 16 bit global load instructions

gld inst 32bit 32 bit global load instructions

gld inst 64bit 64 bit global load instructions

gld inst 128bit 128 bit global load instructions

gst inst 8bit 8 bit global load instructions

gst inst 16bit 16 bit global load instructions

gst inst 32bit 32 bit global load instructions

gst inst 64bit 64 bit global load instructions

gst inst 128bit 128 bit global load instructions

local load Loads from local memory (see note above about local

memory)

local store Stores to local memory

fb subp1 read sectors Read requests to partition 0 of DRAM

fb subp0 read sectors Read requests to partition 1 of DRAM

warps launched Total warps launched

threads launched Total work-items launched

active cycles Number of cycles in which at least one warp is active

active warps Accumulated number of warps active per cycle in a mul-

tiprocessor. At each cycle this value is incremented by

the number of active warps

branch Branches

divergent branch Divergent Branches (which result is not uniform across

the work-items)

fb subp0 write sectors Write requests to partition 0 of DRAM

fb subp1 write sectors Write requests to partition 1 or DRAM

global store transaction Transactions to store data

gld request Load instructions per warp

gst request Store instructions per warp

shared load Loads from shared memory

shared store Stores to shared memory

threads launched Threads launched during profiling

Table A.2: Raw performance counters collected for Fermi (Part 2)
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Counter Name Description

regperworkitem Hardware registers used per work-item

inst executed Instructions issued

branch Branches

divergent branch Divergent Branches (which result is not uniform across

the work-items)

l1 global load hit Global memory load hits in L1

l1 global load miss Global memory load misses in L1

l1 local load hit Hits in L1 coming from local memory requests (in Nvidia

terminology local memory is where registers are spilled)

l1 local load miss Misses in L1 coming from local memory requests

l2 subp0 write l1 sector queries Write requests in sector 0 of L2 coming from L1

l2 subp1 write l1 sector queries Write requests in sector 1 of L2 coming from L1

l2 subp2 write l1 sector queries Write requests in sector 2 of L2 coming from L1

l2 subp3 write l1 sector queries Write requests in sector 3 of L2 coming from L1

l2 subp0 read l1 sector queries Read requests in sector 0 of L2 coming from L1

l2 subp1 read l1 sector queries Read requests in sector 1 of L2 coming from L1

l2 subp2 read l1 sector queries Read requests in sector 2 of L2 coming from L1

l2 subp3 read l1 sector queries Read requests in sector 3 of L2 coming from L1

l2 subp0 read l1 hit sectors Hits in sector 0 of L2 coming from L1

l2 subp1 read l1 hit sectors Hits in sector 1 of L2 coming from L1

l2 subp2 read l1 hit sectors Hits in sector 2 of L2 coming from L1

l2 subp3 read l1 hit sectors Hits in sector 3 of L2 coming from L1

l2 subp0 write sector misses Write misses in sector 0 of L2

l2 subp1 write sector misses Write misses in sector 1 of L2

l2 subp2 write sector misses Write misses in sector 2 of L2

l2 subp3 write sector misses Write misses in sector 3 of L2

l2 subp0 read sector misses Read misses in sector 0 of L2

l2 subp1 read sector misses Read misses in sector 1 of L2

l2 subp2 read sector misses Read misses in sector 2 of L2

l2 subp3 read sector misses Read misses in sector 3 of L2

Table A.3: Raw performance counters collected for Kepler (Part 1).
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Counter Name Description

l1 local store hit Store hits in local memory

l1 local store miss Store misses in local memory

gld request Load instructions per warp

gst request Store instructions per warp

local load Loads from local memory

local store Stores to local memory

fb subp0 read sectors Read requests to partition 1 or DRAM

fb subp1 read sectors Read requests to partition 1 or DRAM

fb subp0 write sectors Write requests to partition 0 or DRAM

fb subp1 write sectors Write requests to partition 1 or DRAM

ihared load Loads from shared memory

shared store Stores to shared memory

shared load replay Re-executions of loads due to bank conflics in shared

memory

shared store replay Re-executions of stores due to bank conflics in shared

memory

warps launched Total warps launched

threads launched Total work-items launched

active cycles Number of cycles in which at least one warp is active

active warps Accumulated number of warps active per cycle in a mul-

tiprocessor. At each cycle this value is incremented by

the number of active warps.

thread inst executed Instructions executed

global store transaction Transactions to store data

threads launched Threads launched during profiling

Table A.4: Raw performance counters collected for Kepler (Part 2).
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Counter Name Description

VGPRs Vector general purpose registers used per work-item

SGPRs Scalar general purpose registers used per work-item

FCStacks Control-flow stacks used by the kernel

Wavefronts Wavefront executed

ALUInsts Average number of ALU instructions per work-item

FetchInsts Average number of global memory loads per work-item

WriteInsts Average number of global memory stores per work-item

LDSFetchInsts Average number of local memory loads per work-item

LDSWriteInsts Average number of local memory stores per work-item

ALUBusy Percentage of time ALU instructions are processed

ALUFetchRatio Ratio between number of load and ALU instructions

ALUPacking Efficiency (in percentage) of the packing of ALU instructions in VLIW

processing units.

FetchSize Amount of data fetched from global memory

CacheHit Percentage of loads that hit in cache

FetchUnitBusy Percentage of time the load unit is acitve

FetchUnitStalled Percentage of time the load unit is stalled

WriteUnitStalled Percentage of time the store unit is stalled

FastPath Amount of data written to global memory through the fast path

CompletePath Amount of data written to global memory through the complete path

PathUtilization Percentage of data written through complete or fast path over the toal

amount of data written to global memory

LDSBankConflict Percentage of time local memory is stalled due to bank conflicts

Table A.5: Raw performance counters collected for Cypress
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Counter Name Description

VGPRs Vector general purpose registers used per work-item

SGPRs Scalar general purpose registers used per work-item

FCStacks Control-flow stacks used by the kernel

Wavefronts Wavefront executed

VALUInsts Average number of vector ALU instructions per work-item

SALUInsts Average number of scalar ALU instructions per work-item

VFetchInsts Average number of global memory vector loads per work-item

SFetchInsts Average number of global memory scalar loads per work-item

VWriteInsts Average number of global memory vector stores per work-item

LDSInsts Average number of local memory loads and stores per work-item

VALUUtilization Percentage of active vector ALU instructions executed per work-item

VALUBusy Percentage of time vector ALU instructions are processed

SALUBusy Percentage of time scalar ALU instructions are processed

FetchSize Amount of data fetched from global memory

CacheHit Percentage of loads that hit in cache

MemUnitBusy Percentage of time the memory unit is acitve

MemUnitStalled Percentage of time the memory unit is stalled

WriteUnitStalled Percentage of time the write unit is stalled

LDSBankConflict Percentage of time local memory is stalled due to bank conflicts

WriteSize Total amount of data written to video memory

Table A.6: Raw performance counters collected for the Tahiti
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