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Lay summary  

 

Ongoing global change (such as habitat destruction, pollution, climate change) 

imposes negative impact upon every living thing. This is why during the last couple of 

decades, many evolutionary biologists have been focusing their research on understanding 

adaptation to harmful conditions populations are not naturally adapted to and which 

impose the risk of extinction. This process of adaptation is termed evolutionary rescue. The 

main aim of these studies is to reveal all the factors positively or negatively associated with 

the chance of evolutionary rescue, so we could estimate which species will be the most 

likely to go extinct under global change and potentially prevent extinctions. The impact of 

many factors influencing the probability of evolutionary rescue is now well-known, but a 

few still remain insufficiently understood, namely the way that species reproduce and how 

they interact with one another. 

The main goal of my research was to investigate whether and how the way that 

species reproduce and interact with one another affect the probability of evolutionary 

rescue. To achieve this goal, I set up a series of experiments, by cultivating the populations 

of a single cell alga, Chlamydomonas reinhardtii, exposed to various stressful conditions, 

and monitoring their survival and density. To investigate how the way that species 

reproduce affects survival, I allowed the populations to reproduce either sexually, asexually 

or both. To investigate how the presence of other species affects survival, I cultivated the 

populations either in the presence or absence of different competitors. 

I first let the environment deteriorate in three different rates by increasing the level 

of salinity. I found that populations were more likely to survive and adapt if environmental 

change proceeded in small steps. The influence of mode of reproduction was less 

prominent, with sex proving to be most beneficial when environment changed in a 

moderate way. 

I then tested whether sex is beneficial if the populations of the focal species 

compete with another species (Chlamydomonas moewusii) while the environment 

deteriorates. I found that sexual populations were more likely to survive both in the 

presence and absence of the competitor. 
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I then tested will the chance of evolutionary rescue change if more related 

competitors compete. Similarly, I investigated whether species that naturally occur in 

similar habitats compete more intensely and thus may be more likely to go extinct. I found 

that the identity of competitor affects the probability of survival, but I found no effects of 

relatedness or habitat similarity between species on the probability of evolutionary rescue. 

Finally, to test under which environmental factors sex could be beneficial enough to 

be maintained within populations for the longer intervals of time, I subjected experimental 

populations to environment changing in a directional way or fluctuating over the course of 

time and monitored whether the frequency of sex increases. The frequency of sex 

remained approximately the same if environment changed directionally, and dropped if 

environment fluctuated over the course of time. 

My results show that both sex and competition affect the chance of evolutionary 

rescue. Sex was mostly beneficial and competition was detrimental for the population 

survival. However, these effects may depend on other factors, such as mode of 

environmental change or the identity of a competitor species. 
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Abstract 

 

Ongoing global change has made understanding the factors that affect adaptation 

and survival of populations in the context of changing environments a central problem in 

evolutionary biology. Special focus has been given to the probability of survival through 

genetic adaptation to lethal environments; a process termed evolutionary rescue. Many 

studies of this process, both theoretical and empirical, have been carried out over the last 

two decades. As a result, we now understand how a number of factors may affect the 

probability of population survival. However, two factors that are known to affect 

evolutionary responses, mode of reproduction and interspecific interaction, have received 

limited attention.  

The main aim of my work was to investigate whether and how mode of 

reproduction and negative interspecies interactions (competition) affect the probability of 

evolutionary rescue. To achieve this goal, I set up a series of selection experiments, by 

propagating populations of unicellular alga Chlamydomonas reinhardtii in various stressful 

conditions, and monitored their survival and fitness. To investigate the effect of sex in these 

experiments, I manipulated mode of reproduction, by constructing the experimental 

populations allowed to reproduce either only sexually or asexually or both. To investigate 

the effect of competition, I manipulated the presence of the competitor(s) in the 

experimental populations, by cultivating them either in presence or absence of the 

competitor. 

I first tested the effect of rate of environmental deterioration and mode of 

reproduction on extinction dynamics and evolutionary rescue of the experimental 

populations. I found positive correlation between the rate of extinctions and the rate of 

environmental deterioration. The experiment revealed an interaction between mode of 

reproduction and the rate of deterioration, manifested through significantly reduced 

extinction rate of sexual populations relative to asexual populations in environment 

deteriorating at intermediate rate. 

I then investigated the effect of sex and competition on the probability of 

evolutionary rescue, by propagating the experimental populations in environment 
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deteriorating in a simple way (the change comprising a single abiotic factor) and complex 

way (the change of both abiotic and biotic factors). I found the negative effect of 

competition on the probability of evolutionary rescue, and beneficial effect of sex in both 

types of environmental deterioration, reflected in higher number of rescued populations 

relative to asexual group. 

I then tested whether phylogenetic relatedness between a competitor and the focal 

species and the extent of their ecological similarity affect the likelihood of evolutionary 

rescue, by subjecting the experimental populations to the presence of 10 different 

competitors, isolated from two different types of habitats, and each being positioned on a 

different branch of the phylogenetic tree of Chlamydomonas genus. The probability of 

evolutionary rescue was contingent on the identity of a competitor species, but the results 

showed no significant effects of phylogenetic relatedness and ecological similarity. 

Finally, I investigated which experimental factors could potentially select for the 

long-term maintenance of sex, by subjecting the experimental populations to different 

types of selective environments (directional and fluctuating change of abiotic factors, the 

presence of the competitor) and monitoring the frequency of sex over the course of time. 

No selective environment significantly increased the rate of sex in the experimental 

populations. In contrast, I found reduction in frequency of sex in the populations subjected 

to fluctuating environmental change. 

 My results demonstrate that both mode of reproduction and competition affect the 

probability of evolutionary rescue, which is generally positively affected by sex and 

negatively affected by competition. However, these general effects may be altered by other 

factors, namely mode of environmental change and the identity of the competitor species. 
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1. General Introduction  

 
 

1.1 Evolutionary rescue  

 

Adaptation to changing environmental conditions has always attracted attention of 

evolutionary biologists (for example Darwin, 1859; Weissmann, 1889; Fisher, 1930; Muller, 

1932; Wright, 1932; Haldane, 1957). During the recent decades, this general interest has 

increased due to widely the recognized issue of global change (for example Falkowski et al., 

1994; Chivian and Bernstein, 2008; Folger, 2009; Barnosky et al., 2012), which is already 

moving environmental conditions outside the range of physiological tolerance of many 

species (Parmesan, 2006). Consequently, the rate of species extinctions has become 

unprecedented, being as far as 1000 times higher than the background extinction rate for 

some groups of organisms (May and Lawton, 1995; Chivian and Bernstein, 2008), and 

recognized by some scientists as “the sixth mass extinction event” (Chivian and Bernstein, 

2008). Hence, understanding the patterns of survival and extinctions among species has 

becoming increasingly important for assessment of vulnerability of the extant species, 

which could potentially help contribute to conservation efforts, with the main goal of 

mitigating the detrimental effects of global change. 

The response of a species to a changing environment occurs via at least two 

different mechanisms. Firstly, a species may respond through phenotypic plasticity (without 

genetic change). Examples of such plastic responses include a change in phenology of 

European plants, manifested thorough an earlier onset of leafing, flowering and fruiting, 

due to an increase of mean monthly temperatures preceding these events (Menzel et al., 

2006); a response to a single stressful factor of budding yeast may include activation of 

general stress response mechanism, protecting against other types of stressors (Berry and 

Gasch, 2008). The second type of response includes migration to less detrimental habitats. 

For instance, there is a general trend in range shift of species towards the poles (Parmesan 

and Yohe, 2003) and higher elevations (Telwala et al, 2013), arisen as a consequence of 

climate change.   
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If neither of these two mechanisms can provide an adequate response to a 

changing environment, a species must adapt through genetic change or go extinct (to 

“adapt or die”; Bell and Collins, 2008). If alleles conferring an advantage exist in the genetic 

pool of the population, selection can act on standing genetic variation, resulting in the rise 

in frequency of these alleles (a process termed “sorting”; Bell, 2008). However, if such 

alleles are absent, a population must adapt through de novo mutations. This process of 

adaptation to conditions that would have otherwise led to extinction of the ancestral 

population has been termed “evolutionary rescue” by Gomulkiewicz and Holt (1995), who 

were the first to provide a basic theoretical framework for this phenomenon. The general 

concept of evolutionary rescue is summarized in Figure 1.1 (see below). A maladapted 

population has negative growth rate in novel, detrimental conditions, and consequently, 

mean fitness of the population (population density) decreases as a function of time. 

Gomulkiewicz and Holt (1995) developed a heuristic concept of a critical (low) population 

density (assigned as Nc in Figure 1.1) manifested through high susceptibility of the 

population to detrimental effects of environmental or demographic stochasticity (e.g. 

fixation of deleterious alleles due to genetic drift), which increase the risk of extinction. The 

population reaching Nc at the time point tE is vulnerable to extinction because of negative 

growth rate. Extinction will occur if all individuals die out before a resistant genotype 

appears through mutation in the hypothetical time point tR, and rise in frequency above the 

critical low density, at hypothetical time point tP. The period of the highest probability of 

extinction corresponds to an interval between tP and tE (Gomulkiewitz and Holt, 1995). As 

firstly suggested by Maynard Smith (1989), adaptation to a stressful environment could be 

comprehended as a “race” between (negative) demographic processes and evolution 

(Gomulkiewitz and Holt, 1995). 

To the best of my knowledge, the first experimental evidence of evolutionary 

rescue event was recorded by Bell and Gonzalez (2009), who subjected the experimental 

populations of yeast to lethal concentrations of salt. They obtained the “U”-shaped curve of 

population growth, characterized by the initial decline of maladapted populations and 

subsequent recovery, which is a hallmark of evolutionary rescue predicted by Gomulkiewicz 

and Holt (1995). Furthermore, they manipulated population size and found that probability 

of evolutionary rescue is directly proportional to population size. Numerous experimental 

studies have been performed after this pioneering study, in order to identify factors 
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positively or negatively correlated with the probability of evolutionary rescue (for the most 

recent review of the topic, see Carlson et al., 2014).  

 

 

Figure 1.1 – The basic concept of evolutionary rescue (adapted from Gomulkiewicz and Holt, 1995); 
Nc – threshold of a critical population density; tE – time point at which population size reaches the 
critical threshold; tR - time point at which a resistant genotype potentially arises; tP - - time point at 
which the genotype conferring resistance increases in frequency above threshold of a critical 
population density and becomes fixed in a population. 

 

The probability of adaptation (and therefore evolutionary rescue) depends on the 

rate of environmental deterioration, since higher rates of change impose a proportionally 

higher demographic cost of adaptation, which in turn, as demonstrated by the classic work 

of Haldane (1957), limits the rate of evolution (Ridley, 1993). In addition, a high rate of 

environmental change implies high initial level of maladaptation, which in turn increases 

the rate of population decline and probability of drop under a threshold of critical 

population size (Carlson et al., 2014). Lynch and Lande (1993) considered a quantitative 

trait under stabilizing selection with a moving optimum imposed by a gradual 

environmental change and found that the maximal rate of environmental change that a 

population can sustain is governed by the maximal reproductive rate of the population. This 

is because populations with larger reproductive output could track the moving optimum 

more efficiently (less burdened by demographic load imposed by selection). Furthermore, 
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they found that the maximal rate of change that could be withstood by a population 

increases with mutation supply rate, due to a proportional increase of genetic variance 

available for selection (Lynch and Lande, 1993).  

Several experimental studies provided further evidence that probability of 

evolutionary rescue is negatively correlated with a rate of environmental change. Perron et 

al. (2007) manipulated the environmental harshness in Pseudomonas aeruginosa, by 

subjecting the populations to five antibiotic treatments (single antibiotics, alternating 

exposure to one out of two antibiotics and two antibiotics simultaneously) and found that 

resistance arose more readily when populations were subjected to a single antibiotic 

treatment. Furthermore, the probability of resistance of ‘sink’ populations subjected to 

antibiotics was proportional to the immigration rate from the source population. Bell and 

Gonzalez (2011) subjected metapopulations of yeast to three different rates of increasing 

salinity and manipulated mode of dispersal of component populations (either local or 

global). They found that a slower rate of environmental deterioration and local dispersal 

resulted in higher probability of evolutionary rescue. Lindsey et al. (2013) subjected 

experimental populations of Escherichia coli to three different rates of increasing 

concentration of a single antibiotic and found the highest number of evolutionary rescue 

events in the treatment group subjected to the most gradual rate of antibiotic increase. In 

addition, they found that the mutational pathway leading to evolutionary rescue changes 

with a rate of environmental deterioration. Adaptation to a high rate of increase of the 

antibiotic concentration occurred through fixation of single mutations in all populations. In 

contrast, adaptation to a gradual and moderate rate of increasing antibiotic concentration 

always occurred through fixation of multiple mutations. However, the first mutation arisen 

during exposure to the gradual and moderate rate of antibiotic increase did not overlap 

with any mutation conferring advantage to the high rate of antibiotic increase (with the 

exception of a single population). The authors inferred that mutations conferring advantage 

to the gradual and moderate rate of environmental change are inaccessible under the high 

rate of change, which in turn, affects dynamics of adaptation.  

The rate of environmental change also affects dynamics of adaptation (Kopp and 

Hermisson, 2007; Collins and de Meaux, 2009). Adaptation to a high rate of environmental 

change occurs via fixation of mutations of large fitness effects (Collins and de Meaux, 2009). 

These mutations arise rarely (Kassen and Bataillon, 2006; Eyre-Walker and Keightley, 2007), 
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but undergo a rapid sweep through a population once appeared (Collins and de Meaux, 

2009). However, once fixed, these mutations may limit the rise of any subsequent mutation 

due to sign epistasis (a dependence of the fitness effect of a mutation on the genetic 

background) (Weinreich et al., 2005), thus hampering the adaptive walk of a population. 

Adaptation to a gradual rate of change occurs via mutations of small effects which are the 

most frequent in the distribution of mutations (Eyre-Walker and Keightley, 2007). However, 

due to weaker selection, which operates during the gradual environmental change, these 

mutations may fail to reach fixation, or otherwise fix in less predictable time (periodic 

fixation; Collins and de Meaux, 2009). Furthermore, in large asexual populations with 

higher input of mutations, adaptation may slow down due to competition of multiple 

beneficial mutations through clonal interference (Gerish and Lenski, 1998). In addition, the 

gradual rate of environmental change reduces the fitness effect of fixed beneficial 

mutations (Collins et al., 2007). However, due to availability of more mutational pathways 

under the gradual rates of environmental change, populations may better explore the 

fitness landscape (Collins and de Meaux, 2009), and reach the fitter endpoints of adaptive 

walk. This is experimentally demonstrated by Collins and de Meaux (2009) who subjected 

the treatment groups of Chlamydomonas reinhardtii experimental populations to the same 

final magnitude of stress (low phosphate - starvation), but at different rates of phosphate 

decrease. They found that the level of adaptation, measured as growth rate in the final 

environment, was significantly higher for the populations subjected to more gradual level 

of phosphate decrease. Hence, these populations reached fitter endpoint of adaptation. 

The initial population size is the primary determinant of the rate of change a 

population can withstand (Carlson et al., 2014), since adaptation to a higher rate of 

environmental change is proportional to a demographic load (the cost of adaptation). 

Consequently, smaller populations can withstand comparatively lower rates of 

environmental change. Furthermore, small populations are more likely to reach the critical 

low population size and may persist under high risk of extinction for shorter intervals of 

time relative to larger populations (Gomulkiewicz and Holt, 1995). Population size is also 

usually positively correlated with the amount of genetic variation (for example, Hague and 

Routman, 2016). Hence, selection may operate faster in larger populations.  

The impact of a population size on the probability of evolutionary rescue has been a 

subject of several experimental studies. Willi and Hoffmann (2009) maintained populations 
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of Drosophila birchii of different census sizes (20, 100 and 1000 individuals) for 10 

generations, before subjecting them to a heat-knockdown selection (for 5 generations). The 

smallest populations suffered a rapid extinction due to adverse effects of genetic drift, 

lower growth rate and higher stochasticity in growth rate across generations (Willi and 

Hoffmann, 2009). In contrast, larger populations had a higher reproductive output and less 

variation in growth rate. The authors used these fitness parameters to predict the 

probability of survival under the environmental change in a computer simulation study and 

found that median survival time (in generations) is directly proportional to a population 

size. Ramsayer et al. (2013) manipulated the microcosm volume of Pseudomonas 

fluorescens and monitored the incidence of evolutionary rescue events as a response to 5 

different doses of antibiotics. The microcosm volume was positively correlated with the 

probability of evolutionary rescue. Moreover, the advantage of larger population size on 

the probability of evolutionary rescue was consistent for all doses of antibiotics. In addition 

to the advantageous effects of increasing the probability of evolutionary rescue, population 

size is positively correlated with mean fitness of the rescued populations. Samani and Bell 

(2010) manipulated a culture volume of yeast and measured the fitness of the rescued 

populations subjected to a deteriorating environment (an increasing salt concentration). 

They found that adaptation to the deteriorating environment (measured as a doubling rate) 

was a log-linear function of population size.  

Since selection acts more efficiently in populations with higher additive genetic 

variance for fitness (Fisher, 1930), the probability of evolutionary rescue will depend on 

standing genetic variation of a population (Burger and Lynch, 1995), unless the 

advantageous alleles are absent from the genetic pool of the populations, which may 

impose a genetic limitation on evolutionary rescue (or “genostasis”, as defined by 

Bradshaw, 1991; Carlson et al., 2014). Standing genetic variation depends on population 

size, because finite populations may suffer a reduction in genetic variation due to 

detrimental effects of environmental stochasticity (Burger and Lynch, 1995) or genetic drift. 

Agashe (2009) manipulated a degree of genetic diversity of populations of flour beetle 

Tribolium castaneum (by manipulating the number of strains per treatment group), and 

subjected them to a different habitat treatment (ancestral or novel food source and 

combination of both). She found a strong correlation between genetic diversity and 

probability of survival and importantly, higher effects of genetic diversity in novel 

environment. In addition, Agashe et al. (2011) demonstrated that genetically variable 
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populations of the same model organism adapt faster to novel environment by enhancing 

the growth rate and maintain a larger population size in the long term. Ramsayer et al. 

(2013) subjected genetically diverse and clonal populations of Pseudomonas fluorescens to 

different concentrations of streptomycin and recorded a higher number of evolutionary 

rescue events in genetically diverse populations (60-80% of populations in this treatment 

group were rescued, contrasting with 40% of the clonal treatment group). In the study by 

Lachapelle and Bell (2012), genetically diverse populations of Chlamydomonas reinhardtii 

survived for a longer interval of time than asexual clonal populations, when subjected to a 

gradually deteriorating environment (an increase of salt concentration). 

In the absence of alleles conferring an advantage in a changing environment or 

recombination generating novel (favourable) combinations of alleles on different loci, 

adaptation occurs solely through fixation of novel beneficial mutations. Hence, the 

probability of evolutionary rescue of a clonal population depends on mutation supply rate 

(Bell and Gonzalez, 2009). This can be defined by the equation: P = 2N0Uϕ (r0–r1)/r0, which 

shows that probability of fixation of beneficial mutation depends on population size (N0), 

mutation rate (U), proportion of beneficial mutations (ϕ), and the extent of a change of the 

current (negative) growth rate of a population (r0) before the rise of a mutation which 

beneficially affect growth (r1) (Orr and Unckless, 2008; Bell, 2008; Bell and Gonzalez, 2009). 

Furthermore, the probability of fixation of beneficial mutations directly depends on the 

probability of “avoiding” their stochastic loss by genetic drift (Kirkpatrick and Peischl, 2013). 

Haldane (1927) found that  fixation probability for a beneficial mutation is proportional to a 

selective advantage it confers: Π = 2s. However, beneficial mutations are relatively rare 

events (Eyre-Walker and Keightley, 2007), and most of them confer small fitness advantage 

(de Visser and Rozen, 2005). The estimate of the rate of beneficial mutations in Escherichia 

coli is 5.9 X 10-8 per genome per generation (Rozen et al., 2002). Since the rate of 

spontaneous mutations of the same species is estimated to be 0.0025 per genome per 

generation (Drake et al., 1998), only one mutation in every 104 will be beneficial (Rozen et 

al., 2002). The estimated average fitness effect of beneficial mutations (s) is 0.024, 

contrasting with 3-4 times higher fitness effects of mutations that ultimately reached 

fixation (Rozen et al., 2002). Thus, due to a relatively low occurrence and slow fixation rate 

of beneficial mutations, total mutation supply rate will be primarily driven by population 

size and mutation rate. 
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The probability of evolutionary rescue may also increase if exposure to lethal 

conditions is preceded by exposure to sub-lethal level of the same stressor. In a previously 

described experiment by Samani and Bell (2010), mutations conferring the advantage in 

lethal medium started to spread in the population in sub-lethal level of stress. Furthermore, 

a degree of beneficial effect of these mutations (an increase of a doubling rate) was 

proportional to effective population size, which was interpreted as genetic correlation 

between a response to two successive levels of stress (Samani and Bell, 2010). Gonzalez 

and Bell (2013) subjected experimental populations of two yeast species, Saccharomyces 

cerevisiae and Saccharomyces paradoxus to various levels of salt concentration, before 

subjecting them to lethal salt concentration. They found an interaction between species 

and salt concentration on the probability of evolutionary rescue. The number of 

evolutionary rescue events was proportional to the salt concentration experienced prior to 

exposure to lethal conditions in S. cerevisiae, but the pattern was reversed in S. paradoxus. 

Furthermore, for both species, mean fitness of the rescued populations was the highest for 

large populations with the previous history of exposure to lower level of salt, and small 

populations with the history of exposure to higher level of salt (Gonzalez and Bell, 2013). 

Overall, the probability of evolutionary rescue will be higher for larger populations 

with a higher genetic variation and mutation supply rate, subjected to lower rates of stress 

and with the history of exposure to sub-lethal levels of stress. Other factors that affect the 

probability of evolutionary rescue which received less attention in the experimental studies 

are mode of reproduction and a type of interspecies interaction. Since the main aim of this 

Thesis was to investigate the effect of these factors on evolutionary rescue, I will cover 

them in more details in the following sections. 

 

1.2  The effects of sex on adaptation and evolutionary rescue  

 Despite the fact that the great majority of extant eukaryotes are sexual, sex still 

remains one of the most intriguing puzzles in evolutionary biology (Otto and Lenormand, 

2002). The reason for this reflects the numerous disadvantages and costs of sex. These 

costs can be significant, and so the continued existence of sex implies large potential 

benefits. Unexpected difficulty in providing an explanation for such a widespread 

phenomenon brought sex the title of “the Queen of problems in evolutionary biology” (Bell, 

1982). Since considering the effects of sex on adaptation to deteriorating environments 
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requires explaining the effects of sex in a more general context, I will review current major 

hypotheses for the maintenance of sex by natural selection, before explaining its potential 

influence on the probability of evolutionary rescue.   

An inevitable consequence of eukaryotic sexual cycle is a re-assortment of genes as 

a result of crossing-over and independent assortment of chromosomes. These processes 

can potentially break up favourable combinations of alleles, accumulated through selection 

(Barton and Charlesworth, 1998), resulting in a decrease of mean fitness of a population 

termed recombination load, which is experimentally confirmed (for example Greig et al., 

1998; Colegrave et al., 2002). Furthermore, sex imposes direct costs, such as arrested 

growth due to meiosis (considerably slower than mitotic division) or direct contact between 

gametes (a prerequisite for fertilization) being associated with several types of risks 

(parasite transmission, exposure to predation) (Lewis, 1987). Moreover, an obligate sexual 

female suffers a two-fold reduction in a reproductive output as a cost of producing males 

(compared to a hypothetical asexual female), termed “the two-fold cost of sex” or “the cost 

of males" (Maynard Smith 1971; Williams, 1975). Considering all these costs, the question 

which factor accounts for the maintenance of sex by natural selection could be rephrased: 

why does amixis not replace sex? However, sex is a prevalent strategy of most organisms 

(Bell, 1982) despite the costs, which implies that sex must confer a compensatory selective 

advantage for an individual or a population. 

A group of hypotheses, suggested as an explanation for the maintenance of sex, are 

based on an argument that sex provides a proximate (immediate) benefit on an individual 

level. The major argument of a ‘DNA repair hypothesis’ is that processes involved in 

recombination provide a template for repair of double-stranded DNA damage (Bernstein et 

al., 1988; Michod and Levin, 1988). While these processes could account for the evolution 

of sex (Barton and Charlesworth, 1998), they are not sufficient to explain its maintenance in 

extant populations. The reasons lie in the fact that DNA repair does not require the bringing 

together of homologue chromosomes, except for double-stranded damages which are 

actively induced during meiosis (Barton and Charlesworth, 1998). The fact that the same 

type of damage is actively induced during the very process for which the suggested function 

is to eliminate it, represents a major disadvantage of this hypothesis. Furthermore, there is 

evidence that double strand breaks can be efficiently repaired even during mitosis (Nassif 

and Engels, 1993).  
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Sex might be maintained as a by-product of mechanisms that enable transfer of an 

infectious genetic element to another host (Redfield, 2001; Otto and Lenormand, 2002). 

However, under this interpretation, a host does not benefit from sex while still pays the 

costs, which implies that each asexual mutant, freed from such costs, should rise in 

frequency and outcompete the sexual individuals. Furthermore, while providing an 

explanation for the maintenance of outcrossing, this hypothesis does not explain the 

maintenance of recombination. 

Recombination might potentially be beneficial due to immediate reduction of 

deleterious mutations (Kondrashov, 1993), as a result of the cellular processes activated 

during (but not directly linked to) meiosis and recombination. However, maintenance of 

such mechanisms by natural selection requires that deleterious mutations always have a 

particular molecular nature, which is unlikely (Kondrashov, 1993). 

 Overall, the hypotheses regarding the maintenance of sex by natural selection 

based on its potential proximate benefits lack generality and/or experimental evidence. 

Hence, most contemporary evolutionary biologists argue that advantageous effects of sex 

are manifested indirectly, through an increase of genetic variability among the progeny, 

and thus more efficient response of selection. While the original idea stemmed from 

Weismann (1889), many population-genetic models (hypotheses) have been derived during 

the last century to provide a theoretical framework for this concept. All of them assume the 

presence of two mechanisms: a) a mechanism for generating a constant directional 

selection (a source of additive genetic variance for fitness); b) a mechanism that generates 

negative associations between beneficial alleles on different loci (negative linkage 

disequilibrium) (Burt, 2001). Kondrashov (1993) united these hypotheses under a collective 

term “Variation and Selection hypotheses”. 

 The Fisher-Muller hypothesis for the maintenance of sex has been mathematically 

formulised by the classic work of Fisher (1930) and Muller (1932). Generally, this concept 

assumes a changing environment and presence of mutations conferring an advantage to 

novel conditions being under negative linkage disequilibrium, generated by genetic drift in 

finite populations. Because of negative linkage disequilibrium, adaptation is impeded. 

Furthermore, adaptation may be reduced due to interference of selection acting 

simultaneously on different (linked) loci, termed Hill-Robertson effect (Hill and Robertson, 

1966). The major advantage of sex based on the concept of the Fisher-Muller hypothesis is 
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a faster assembly of multiple beneficial mutations in a single individual, which in turn 

increases the response of natural selection. More efficient selection in sexual populations 

implies faster adaptation to a changing environment than asexual populations. Slower 

fixation rate of beneficial mutations in asexual populations can ultimately result in 

competition of genotypes carrying different mutations (Muller, 1932), consequently 

slowing down the adaptation (the process termed clonal interference; Gerrish and Lenski, 

1998). A potential limitation of this hypothesis is an assumption of a relatively low mutation 

rate, because with a sufficiently high mutation rate, multiple beneficial mutations may 

appear in asexual populations (Kim and Orr, 2005) and thus the advantage of sex 

diminishes. Furthermore, the effect of sex might be reduced in infinite populations, 

because under this condition, all beneficial mutations may appear in the expected 

frequency (linkage disequilibrium diminishes) (Kim and Orr, 2005). 

The Fisher-Muller hypothesis has gained substantial empirical support during the 

recent two decades. Greig at al. (1998) manipulated the genetic background of sexual 

populations of yeast (either homozygous or heterozygous) and allowed a direct 

competition with asexual populations in stressful conditions (an elevated temperature). 

They found that heterozygous populations outcompeted the asexual counterpart in great 

majority of mixed populations. Given that homozygous populations did not show the same 

advantage, the likely explanation for the competitive success of heterozygous sexual 

populations was accumulation of multiple beneficial mutations. Colegrave et al. (2002) 

allowed a single sexual episode in populations of Chlamydomonas reinhardtii and compared 

the rate of adaptation in novel environments (heterotrophic growth in all combinations of 

four different carbon sources) with that of the asexual populations. After the initial 

decrease (attributable to recombination load), followed by an increase of variance in 

fitness, mean fitness of sexual populations exceeded that of asexual populations (Colegrave 

et al., 2002). Despite the fact that mean fitness of both types of populations equalised by 

the end of the experiment, the results indicate that adaptation to novel environment can 

be facilitated after only a single episode of sex. However, sex did not provide a significant 

advantage in complex environments. Kaltz and Bell (2002) performed a similar experiment, 

with the main difference in induction of three successive episodes of sex during adaptation 

to novel environments. The results showed that repeated episodes of sex provided a long-

term advantage in mean fitness relative to asexual populations. Importantly, the advantage 

of sex increased with an increase of environmental complexity. Colegrave (2002) subjected 
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the experimental populations of C. reinhardtii to novel growth medium and found that the 

relative fitness of sexual populations compared to asexual populations was directly 

proportional to population size prior to induction of sex. This result suggests that sex 

reduces the constraint of adaptation imposed by the clonal interference in larger 

populations. Becks and Agrawal (2011) subjected sexual and asexual populations of 

monogont rotifer Brachionus calyciflorus to novel environments (elevated concentration of 

NaCl and novel food source) and found that sexually derived offspring had higher fitness 

(measured as lifetime reproduction per female) than asexually produced genotypes in the 

initial stages of adaptation, but the pattern reversed when adaptation plateaued (Becks and 

Agrawal, 2011). Bell (2013) found that the populations of C. reinhardtii with the history of 

obligate sexual reproduction had higher probability of survival relative to asexual 

populations, when subjected to growth in the absence of light. 

Another explanation for the maintenance of sex, proposed by Muller (1964), is also 

based on the effect of random genetic drift in finite populations, which causes a gradual 

loss of a mutation-free genotype (Kondrashov, 1993). This process proceeds in a fashion 

analogous to a ratchet, in which a single click corresponds to a loss of a genotype least 

loaded with deleterious mutations (hence the term of the effect, “the Muller’s ratchet”). 

Thus, in absence of recombination and backward mutations, an asexual population will 

gradually accumulate deleterious mutations, which may consequently lead to a mutational 

meltdown (Lynch et al., 1993). In contrast, a sexual population will be able to restore the 

genotype least loaded with deleterious mutations by means of recombination. However, 

Muller’s ratchet operates slowly in large populations (Judson and Normark, 1996; Eyre-

Walker and Keightley, 2007). Furthermore, several factors other than recombination could 

slow down (or arrest) the ratchet, such as lower mutation rate per locus or lower genome 

size (Judson and Normark, 1996). Kondrashov (1994) found that sufficiently strong 

synergistic epistasis between deleterious mutations may also arrest the ratchet. In addition, 

this hypothesis fails to explain the “ancient asexual” species (e. g. bdelloid rotifers), which 

had persisted for millions of years without any evidence of meiosis or recombination 

(Judson and Normark, 1996), and would have likely suffered the negative effects of Muller’s 

ratchet due to substantial accumulation of deleterious mutations. 

Deleterious mutations may act synergistically (negative epistasis) (Kimura and 

Maruyama, 1966), so the potential benefit of sex may still reflect in reduction of mutation 
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load, as predicted by Muller (1964). By assembling these mutations in some individuals 

which are, due to a low fitness caused by mutation load, likely to be eliminated from a 

population, sex potentially makes purging of deleterious mutations more efficient relative 

to asexual mode of reproduction (Eyre-Walker and Keightley, 2007). This hypothesis, 

termed “Mutational Deterministic Hypothesis” (Kondrashov, 1993), requires two conditions 

to be met to be operational: a) deleterious mutation rate (U) >1 (Kondrashov, 1982; 

Kondrashov, 1988) and b) synergistic epistasis between mutations must be common. If 

these conditions were met, sexual populations would be more efficient in purging of 

deleterious mutation than asexual populations, irrespective of population size (Elena and 

Lenski, 1997; Eyre-Walker and Keightley, 2007). Keightley and Eyre-Walker (2000) found 

that, while most of the mutations are deleterious, the mutation rate is directly proportional 

to a generation time, being well under 1 in slower reproducing taxa. The experimental 

studies investigating the frequency of negative epistasis showed ambiguous results, both 

supporting (De Visser et al., 1996; Whitlock and Bourget, 2000) and dismissing (Elena and 

Lenski, 1997) the Mutation Deterministic hypothesis. Zeyl and Bell (1997) provided 

evidence for higher efficiency of purging of deleterious mutations in sexual populations of 

yeast relative to asexual populations, manifested through significantly higher relative 

fitness of sexual populations in the ancestral (benign) medium. However, the authors could 

not differentiate between two possible fitness effects of deleterious mutations (either 

synergistic or additive). In contrast, Renaut et al. (2006) found no evidence for mutation 

clearance in Chlamydomonas reinhardtii, given that sexual and asexual populations of this 

alga had similar mean fitness in benign conditions. 

 Negative linkage disequilibrium may be established under selection alone (in the 

absence of random effects such as drift) if there is a negative epistasis between two alleles 

on different loci, which makes this haplotype disadvantageous in the current environmental 

conditions. However, this haplotype may become favourable when conditions change, but 

still remain underrepresented in a population due to the past operation of (negative) 

selection. This in turn, reduces the additive genetic variance for fitness and, consequently, 

decreases the rate of adaptation (Barton, 1995). Consider the situation in a hypothetic 

haploid population with two loci (i.e. A and B) affecting a quantitative trait, each with two 

alleles (A+ and A-, B+ and B-). Another assumption is that + alleles are advantageous, but 

under negative epistatic interaction, and all alleles are represented at equal frequencies 

(hence the expected haplotype frequencies under equilibrium would be 0.25 for each 
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haplotype). Due to negative interaction between the alleles in the favourable haplotype, 

the most represented haplotypes would be the ones conferring intermediate fitness (either 

A+B- or A-B+), which implies a decrease in the additive genetic variance for fitness. This in 

turns impedes the response of the selection when environmental conditions change. The 

modifier alleles which increase the rate of recombination and sex could rise in frequency if 

there is a long-term advantage of sex (a condition to be met here is a change of 

environmental conditions) compensating for the short-term disadvantage (a rise in 

frequency of alleles under negative epistasis which implies a decrease of mean fitness of a 

population). Given that this hypothesis does not rely on a large population size or genetic 

drift, it is referred to as “Environmental Deterministic Hypothesis” (Kondrashov, 1993). 

However, the modifier alleles increasing the frequency of recombination and sex could only 

rise in frequency provided there is negative and weak epistasis (Barton, 1995; Otto and 

Gerstein, 2006). However, to date, there is no conclusive experimental evidence that either 

negative and/or weak interactions between alleles on different loci are common in nature, 

which is why this hypothesis is unlikely candidate to explain the maintenance of sex in 

nature (Otto and Gerstein, 2006).  

A group of hypotheses (in some literature collectively referred to as “ecological 

hypotheses”; for example, Lively and Morran, 2014) consider spatial heterogeneity as the 

primary factor that could select for the maintenance of sex. Williams (1975) set out the 

“Sib-competition model”, by assuming a competition among the progeny (and a 

competition of progeny with the parents) for the limited resources. He argued that if 

environment comprises different patches of resources, a genetically diverse progeny 

(generated by sex) would be able to exploit more available patches, which will, in turn, 

reduce the competition. Furthermore, a sexual offspring could outcompete an asexual 

(clonal) progeny, due to higher diversity of habitats it could utilise (Williams, 1975; Stearns, 

1985). Even though some quantitative-genetic models have provided a support for 

Williams’s hypothesis (for example, Bulmer, 1980), the major critique of the Sib-

competition model is its limited applicability (only for organisms with high fecundity) 

(Stearns, 1985). Williams (1975) also suggested “the Lottery model”, by arguing that, if 

there is a temporal fluctuation of environmental conditions, a generation of genetically 

variable offspring could increase the chance that some genotypes will match the current 

environmental conditions. Under this hypothesis, sex is a bet-hedging strategy (Lively and 

Morran, 2014), because temporal variance in fitness of the progeny is reduced at the 
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expense of lowered arithmetic mean fitness (definition of bet-hedging sensu Ripa et al., 

2010). The main prediction that stems from the Lottery model is the prevalence of sex in 

temporarily variable environments (Lively and Morran, 2014). Bell (1982) suggested that 

sexual progeny may be advantageous if there is an availability of multiple niches in a 

spatially structured environment, which could reduce the competition among the progeny 

(“the Tangled Bank Hypothesis”). Hence, the main prediction of this hypothesis is the 

prevalence of sex in spatially heterogeneous environments. In addition, Bell performed an 

extensive analysis of geographical distribution of sexually reproducing species and found 

that sex is more often associated with constant (predictable) environments, thus dismissing 

the Lottery model. Despite the fact that the distribution of sexual species was consistent 

with the Tangled Bank Hypothesis, the major drawback of this hypothesis was reflected in a 

reliance on the restrictive parameters to operate, such as randomisation of the niches at 

each generation or one gene involved in specialisation to an individual niche parameter 

(Gray, PhD Thesis, 2011). For these reasons, the hypothesis was dismissed.  

Sex may be maintained by natural selection because of the pressure of the biotic 

component of an environment. Parasites are selected to exploit the most common 

genotypes of a host (Van Valen, 1973; Jaenike, 1978; Hamilton et al., 1990; Lively and 

Jokela, 2002). Hence, rare host genotypes gain a selective advantage and may rise in 

frequency, thus imposing a selective pressure on the genotypes of parasites that could 

exploit it. This dynamic of co-evolution has been termed “the Red Queen” by Van Valen 

(1973), who made a well-known analogy to the Lewis Carroll’s Red Queen (“you have to run 

as fast as you can to stay in the same place”; Carroll, 1872). In the same fashion, in order 

not to be eliminated from the “arms race”, both predator and prey must constantly evolve. 

Bell (1982) suggested that sex could provide an advantage in this co-evolutionary race, by 

generating the host’s genotypes parasites are not adapted to exploit (since they are rare), 

thus increasing the probability of survival of individuals which carry them. However, some 

studies suggested that this model operates on relatively restrictive conditions. Peters and 

Lively (1999) found that sign epistasis between haplotypes conferring an advantage to the 

biotic pressure has to fluctuate every 2-5 generations for this mechanism to account for the 

maintenance of sex. In addition, they found that sex is advantageous only if parasite 

virulence is moderate or high. Moreover, the Red Queen model assumes strong selection 

per gene, which requires a high incidence of species interaction and a large effect of these 

interactions on fitness (Otto and Gernstein, 2006). Nevertheless, many field and 
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experimental studies provided evidence consistent with The Red Queen hypothesis. Lively 

(1992) found a positive correlation between the frequency of males in the facultative sexual 

species Potamopyrgus antipodarum and the presence of parasites (trematodes). In 

addition, in a repeated study, carried out 10 years after the first one, he found similar 

correlation between sex and infection, which indicates that selection imposed by the 

parasite remains constant over the longer time scales (Lively and Jokela, 2002). 

Furthermore, there is evidence that coevolution with pathogen species (bacterium Serratia 

marcescens) selects for outcrossing in a facultative sexual Caenorhabditis elegans (Morran 

et al., 2011). 

 Most evidence suggests two hypotheses as the most plausible explanations for the 

maintenance of sex by natural selection: The Fisher-Muller and the Red Queen (Hartfield 

and Keightley, 2012). Generally, sex is the most beneficial under directional change of the 

abiotic component of environment, and fluctuating change of the biotic component of 

environment. The advantage of sex is manifested through the increase of the efficiency of 

selection, allowing populations to adapt more rapidly and maintain adaptation more 

effectively. Dynamic environments changing in directional or fluctuating manner are 

common in nature (Willi and Hoffmann, 2009). Hence, there is an ever-present selective 

pressure on populations to dynamically adapt to new combinations of the abiotic and biotic 

factors. Failure to adapt often results in a fitness decline and in the more extreme cases – 

local extinction (Willi and Hoffmann, 2009).  

Given that sex facilitates adaptation to novel environments, we might suggest that 

it would be beneficial in deteriorating environments, and therefore affect the likelihood of 

evolutionary rescue. Survival in harsh environments could be facilitated by sex through 

faster accumulation of beneficial mutations and clearance of deleterious mutations which 

could reduce population size decline of a maladapted population, and thus increase the 

probability of the rise of new beneficial mutations which confer advantage to higher levels 

of stress.   

Experimental studies investigating the effects of sex on the probability of 

evolutionary rescue have started relatively recently. Goddard et al. (2005) tested the rate of 

adaptation of sexual and asexual yeast populations in benign and deteriorating conditions 

(an increase of osmolarity and temperature). While mean fitness of both treatment groups 

was equal in a benign environment, relative fitness of sexual populations (measured as 
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growth rate) was significantly higher in a deteriorating environment. Lachapelle and Bell 

(2012) manipulated genetic diversity (low and high) and mode of reproduction (obligate 

sexual, facultative sexual and asexual) of Chlamydomonas reinhardtii populations, and 

monitored the extinction dynamic while the environment gradually deteriorated (an 

increase of salinity). They found that a combination of obligate sexuality and high genetic 

diversity significantly increased the survival rate. Furthermore, obligate sexual and high-

diversity populations had significantly higher level of adaptation (measured as population 

size) relative to other treatment groups. Moreover, some populations (with the history of 

sexual reproduction), that had become adapted to grow in conditions lethal to the 

ancestral populations, evolved positive growth in marine conditions in a subsequent 

continuation of the experiment (Lachapelle, 2015). Since C. reinhardtii is normally found in 

freshwater or terrestrial habitats, but not seawater, sex had not only rescued it from 

extinction, but also expanded the ecological niche of these experimental populations. 

The results of the experimental studies performed to date clearly indicate that sex 

is beneficial in deteriorating environments, which is reflected in an increase of both survival 

rate and adaptive rate. However, there are still outstanding questions. While all the 

experiments have been conducted in environments that deteriorated relatively gradually, it 

is unclear whether the effect of sex depends on the rate of environmental change. There is 

evidence that the dynamics of adaptation depend on the rate of environmental change 

(Collins and de Meaux, 2009), so we might expect variability in the effects of sex as a 

consequence. Furthermore, while all the experimental studies to date considered 

environments deteriorating in a relatively simple manner, it is still uncertain whether the 

effects of sex change in environments deteriorating more complexly. This is plausible, since 

evidence suggests that relative adaptive rate of sexual populations (Kaltz and Bell, 2002) 

and frequency of sex (Luijckx et al., 2017) increase with an increase of novel environment 

complexity. 

  

1.3 Interspecies interactions and evolutionary rescue  

Most theoretical and experimental studies of evolutionary rescue have considered 

a single species (Osmond and de Mazancourt, 2013). More realistically, each species is 

interconnected with a biotic component of the environment through a multitude of 

interactions. Hence, we might expect the extinction dynamic to be contingent on the 
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nature of these interactions (Jones, 2008). Therefore, incorporating interspecies 

interactions into studies is essential for predicting the outcomes of adaptive evolution in a 

context of a deteriorating environment. However, only recently evolutionary biologists 

have started to investigate evolutionary rescue within a multi-species context. While most 

studies have been focused on relatively simple models of two-species interactions, only a 

few empirical studies have been conducted.  

The probability of adaptation and survival in harsh environments may depend on a 

type of interspecies interactions (Northfield and Ives, 2013). I will first review the studies 

considering the +/- interactions between species (fitness of individuals of one species 

increases at the expense of another species), which comprise parasite-host and predator-

prey interactions. Zhang and Buckling (2011) subjected the experimental populations of a 

parasite (a DNA phage) to a deteriorating environment (an elevated temperature), and 

monitored the extinction dynamics within a host (Pseudomonas fluorescence) which either 

co-evolved with the phage or remained evolutionary constant (the ancestral type). They 

found a higher extinction rate and a higher total number of extinctions of the phage 

populations within co-evolving bacterial populations. The negative effects of coevolution on 

the probability of survival of the parasite were manifested through reduced population size 

of the phage and a trade-off between adaptation to the elevated temperature and 

infectivity. Jones (2008) modelled a predator-prey interaction in a context of a changing 

environment and tested the extinction probability of both species in isolation and while 

interacting. He found that mean time of extinction (measured in generations) of both 

predator and prey significantly increased when interacted. Furthermore, this result was 

consistent for different rates of environmental change and different strengths of selection. 

The positive effect of this interspecies interaction on the probability of evolutionary rescue 

has been interpreted as removal of maladapted individuals in both constituent species 

(Carlson, 2014). Northfield and Ives (2013) modelled predator and prey co-evolution in a 

context of climate change which increases the intrinsic rate of increase of one constituent 

species. They found the negative co-evolutionary feedback: if population density of a 

predator increases, it will cause a higher investment of a prey in defensive strategies, which 

in turn reduces an increase of the predator density; similarly, if population density of a prey 

increases, it will cause higher investment of a predator in a predation rate, which in turn 

reduces an increase of the prey density. Yamamichi and Miner (2015) modelled a predator-

prey interaction in a context of a deteriorating environment and found that evolutionary 
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rescue of a predator could be facilitated by evolutionary rescue of a prey, if there is a trade-

off between investment in a defence against the predator and adaptation to deteriorating 

conditions. The authors termed this process “indirect evolutionary rescue” (of a predator).  

Relatively few studies have been carried out to investigate the +/+ interactions 

(fitness of individuals of both species increases due to an interaction) in the context of a 

changing environment. Northfield and Ives (2013) found that climate change may alter 

mutualistic interactions, by producing conflicting mutualism (for instance, species A may be 

under selection for increased strength of interspecies interactions, but not species B; 

Northfield and Ives, 2013). Under this scenario, climate change will be more beneficial for 

one species (species A) and detrimental to another (species B). Alternatively, an increased 

investment of one species could be beneficial for the other counterpart, which gives rise to 

a non-conflicting mutualism, beneficial for both species (Northfield and Ives, 2013). Hom 

and Murray (2014) performed an experimental study by artificially selecting for obligate 

mutualism between Chlamydomonas reinhardtii and Saccharomyces cerevisiae. Two 

species were subjected to a selective regime lethal for each of them, which both could have 

been able to survive only if engaged in a mutualistic interaction (C. reinhardtii could have 

obtained CO2 for photosynthesis only through metabolic processes of S. cerevisiae; the 

yeast could have obtained the source of nitrogen (ammonium) only through metabolic 

processes of C. reinhardtii – converting nitrites to ammonium). Even though the results of 

this study have not been directly interpreted by the authors as evolutionary rescue, they 

clearly indicate that survival of conditions lethal to both constituent species could be 

facilitated by mutualism. 

The effects of competitive interactions between species (a decline in fitness of both 

constituent species, -/-) on the probability of adaptation and survival have been the subject 

of several theoretical studies. Johansson (2008) modelled a competition between two 

species in a changing environment and found that the species disfavoured in a competition 

suffers a decline in effective population size, which in turn reduces the maximal adaptive 

rate. Furthermore, competition in stressful conditions can result in a trade-off between 

adaptation to the abiotic and biotic component of environment (Collins, 2011; Lawrence et. 

al, 2012). Collins (2011) allowed three strains of Chlamydomonas reinhardtii to compete in 

a deteriorating (sub-lethal) environment (increasing concentration of CO2). The strains 

exposed to the elevated concentrations of CO2 that had evolved higher growth rate in the 
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presence of a competitor were less fit when propagated alone. Furthermore, the 

experimental evidences indicate that competition increases the likelihood of extinction (e.g. 

Bengtsson 1989; Bengtsson and Milbrink, 1995). Bengtsson (1989) showed that 

competition increases the probability of extinction of three species of Daphnia cultivated in 

a benign medium, which was primarily driven by the overlap in the resource use. Bengtsson 

and Milbrink (1995) corroborated this result, by demonstrating the significant increase of 

extinction rate of two Daphnia species (D. magna and D. longispina) when propagated 

together than when grown in isolation. 

Given that most theoretical and empirical results indicate the general negative 

effects of competitive interactions on adaptation to novel conditions and survival in benign 

conditions, we might predict that competition will generally have a negative impact on the 

probability of evolutionary rescue. However, to the best of my knowledge, no experimental 

study testing the effect of competition on evolutionary rescue has been performed. Given 

that negative ecological interactions potentially have the most serious conservation 

implications (Jones, 2008), I will focus my research to investigate the effects of competition 

in the context of evolutionary rescue. 

Negative effects of competition are manifested through a reduction of population 

size (for example, Ayala, 1969), which in turn reduces the rate of adaptation (Johansson, 

2008). Based on this concept, we could predict that the probability of evolutionary rescue 

will be mostly negatively affected by competition. However, there is evidence that 

competition could affect the adaptive dynamics of species in a less predictable way. The 

recent models proposed by Jones (2008) and further developed by Osmond and de 

Mazancourt (2013), are the first to indicate that evolutionary rescue can be promoted by 

competition. These models assume that competition in optimal conditions usually causes 

character displacement. For instance, competition of two species of Darwin’s finches for 

seeds of different size caused a divergence in beak size between species (Grant and Grant, 

2006). When conditions change, both competitors will likely be maladapted, since 

environmental change is usually perceived as detrimental by most organisms (Bell and 

Collins, 2008.) and the average phenotype of both species will lag behind the phenotype 

optimal in new conditions (Jones, 2008). However, if the environmental change selects for a 

character frequent in some species, but not in the other, the species will be unequally 

maladapted (Jones, 2008). The species that starts closer to the optimum could benefit from 
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competition, if selection for survival in new conditions has the same direction as selection 

caused by competition (Jones, 2008).  I will explain this using an example of Darwin’s 

finches (genus Geospiza). A drought of 1977 in Galapagos reduced the availability of small 

seeds, thus favouring the species with larger beaks (Boag and Grant, 1981). This 

environmental change has increased selective pressure in populations of Geospiza fortis 

(medium-size beaks) to adapt to the new conditions, and individuals with larger beaks had 

selective advantage. However, the evolutionary dynamics have been significantly altered by 

the presence of a competitor species (Grant and Grant, 2006). G. fortis failed to adapt to 

the new conditions if it competed with Geospiza magnirostris, which has larger beaks 

(competition selected in the opposite direction than the environmental change; Osmond 

and de Mazancourt, 2013). In contrast, the presence of Geospiza fuliginosa, a species with 

smaller beaks, increased the probability of survival of G. fortis, by reducing the fitness of G. 

fortis individuals with smaller beaks, which were further away from the moving optimum. 

Thus, competition and environmental change selected in the same direction, aiding the 

persistence of G. fortis. 

The models described above have considered character displacement preceding the 

environmental change. The effect of competition in lethal conditions not preceded by 

character displacement is less certain, and may depend on the factors such as differences in 

the initial maladaptedness caused by an environmental change. For instance, differential 

thermal sensitivity may affect the adaptive dynamic if the environmental change comprises 

an increase of temperature). In a model of two-species subjected to environmental change, 

small differences in mean absolute fitness in new conditions could provide one counterpart 

with initial advantage. If that species possesses sufficient genetic variability, the augmented 

section could “push” the favourable genotype towards the moving optimum, thus aiding 

persistence. 

Overall, the effects of competition on evolutionary rescue in deteriorating 

environments could be both positive and negative, which may depend on the identity of a 

competitor species and a type of environmental change. However, empirical evidence is 

required. Furthermore, at least in the initial stages of adaptation, competition will likely 

negatively affect the population abundance, and thus mean fitness. Hence, it will increase 

the complexity of environmental deterioration. Given that effects of sex in an environment 

deteriorating complexly are still uncertain, incorporating a competitor into an environment 
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with a deteriorating abiotic component would provide an opportunity to investigate the 

impact of both mode of reproduction and competition, as well as interaction of these 

factors, on the probability of evolutionary rescue. 

 

1.4  Experimental evolution  

The experimental approach used in this Thesis was experimental evolution. The 

defining feature of this technique is a selection experiment (Bell, 2008), which involves 

cultivation of different living organisms in a controlled laboratory environment (Buckling et 

al., 2009). The major unit of experimental evolution is a lineage (experimental line, or 

simply, line) (Bell, 2008). Experimental lines are individual (independent) populations 

allowed to undergo through many generations in selective conditions, chosen by an 

experimenter. Selection is natural, given that the experimenter controls the selective 

environment, but does not directly impose the artificial selection (Buckling et al., 2009). 

Furthermore, lineages usually diverge during the selection experiment, because each may 

accumulate genetic changes caused by rare events, such as the rise of beneficial mutations 

or fixation of mutations due to genetic drift (Bell, 2008). The major advantage of 

experimental evolution technique is providing an experimenter with means to record (rare) 

evolutionary events, thus providing empirical evidence of evolutionary change and study 

evolution in real time (Buckling et al., 2009). 

Various types of species have been used as model organisms in studies based on 

experimental evolution. Examples include, but are not confined to: plants (Roles and 

Conner, 2008), Drosophila melanogaster (Flexon and Rodell, 1982), Escherichia coli (Lenski 

et al., 1991), Caenorhabditis elegans (Morran et al., 2009), yeast (Bell and Gonzalez, 2009) 

and Chlamydomonas reinhardtii (Colegrave, 2002). However, unicellular species stand out 

as the most suitable potential model organisms. Their advantages include short generation 

time, large population size and relatively simple requirements for laboratory cultivation. 

Furthermore, the possibility of sampling and long-term storing of microorganisms offers the 

potential of assaying experimental populations against the ancestral populations, thus 

providing an insight into the patterns of adaptation. Moreover, microorganisms tend to 

have relatively simple, well understood (sequenced) genomes (Buckling et al., 2009), which 

can contribute to understanding of patterns of evolutionary change at a molecular level. 
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For all the reasons above, experimental evolution has been widely employed as an 

experimental technique during the last couple of decades, significantly contributing to 

general understanding of evolutionary processes such as competitive interactions between 

species (for example, Gauze, 1934), adaptation to novel environment through de novo 

mutations (for example, Lenski et al., 1991), evolution of sex (for example, de Visser et al., 

2005) and many more. 

 

1.5 Chlamydomonas reinhardtii as a model organism 

Chlamydomonas reinhardtii (described by Dangeard, 1888) is a unicellular haploid 

(17 pairs of chromosomes) chlorophyte alga (Figure 1.2), normally inhabiting either 

freshwater or terrestrial habitats. The cell is usually oval (approximately 10 µm), 

surrounded by cellulose cell wall. The major (distinctive) cell features include two apical 

flagella, a single cup shaped chloroplast, a nucleus prominent in cross section and an 

eyespot (Harris, 2001). In optimal growth conditions (temperature: 20°C - 25°C; light 

intensity: 200– 400 µEinsteins/m2 sec; minimal medium), the average generation time is 

approximately 6-8 h (Harris, 2001). Vegetative cells (zoospores) undergo 2-3 successive 

rounds of mitosis, thus releasing 4-8 daughter cells (zoospores), which differentiate into 

adult vegetative cells (Harris, 2001). When deprived of a nitrogen source (ammonium or 

nitrate), this isogamous organism undergoes gametogenesis by producing two types of 

gametes (mt+ and mt-), which may mate under bright light, thus producing zygotes. A 

zygote matures in the darkness by acquiring additional layers of a cell wall, thus 

transforming into a resting stage (zygospore), which can withstand harsh conditions (e.g. 

low temperature). A zygospore germinates on a solid medium under bright light by dividing 

meiotically, which results in formation of 4 haploid daughter cells (zoospores), which 

develop into adult vegetative cells. Details of life cycle and cultivation in the laboratory 

conditions can be found in “The Chlamydomonas Sourcebook” by Harris (2009). 

C. reinhardtii is widely used as a model organism (Harris, 2009) due to its fast 

growth rate and possibilities of manipulating the life cycle in laboratory conditions (a shift 

between asexual and sexual cycle). Furthermore, apart from photosynthetic growth, it can 

grow heterotrophically by utilising acetate as a carbon source (both in the light and dark). 

Moreover, it readily evolves growth on exotic carbon sources, as previously demonstrated 
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(for example, Colegrave et al., 2002). The further advantages of this species as a model 

organism include the sequenced and publicly available genome (http://genome.jgi-

psf.org/Chlre3/Chlre3.home.html) and relatively easy isolation of mutants (Harris, 2001). 

 

 

Figure 1.2 - Chlamydomonas reinhardtii 

 

 

1.6 Aims of the Thesis 

The main aim of this Thesis was to contribute to understanding of general principles 

of evolutionary rescue, with a special focus on impact of mode of reproduction and 

competitive interactions. The model organism chosen for the research was a unicellular 

chlorophyte alga Chlamydomonas reinhardtii, widely used in the experimental study 

(Harris, 2009), due to short generation time and possibilities of sexual cycle manipulation. I 

used experimental evolution as a technique, by imposing different selective regimes and 

monitoring fitness and survival of experimental populations. 

http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
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In Chapter 2, I focused on investigating the effects of sex in different rates of 

environmental deterioration. I manipulated mode of reproduction of experimental 

populations and subjected them to one of three different treatments, each corresponding 

to the different rate of continual increase of salinity level in the medium. 

The main aim of Chapter 3 was to investigate the combined effect of sex and 

competition on the probability of evolutionary rescue under similar selective regime as in 

Chapter 2 (increasing concentration of salt). I manipulated mode of reproduction of 

experimental populations of Chlamydomonas reinhardtii, and subjected them to one of two 

competition treatments: cultivation in the presence or absence of a competitor species 

(Chlamydomonas moewusii). 

In Chapter 4, I aimed to test whether the effects of competition on evolutionary 

rescue are influenced by phylogenetic relatedness of a focal species and a competitor, and 

a degree of their ecological similarity. 

Finally, in Chapter 5, I investigated which experimental factors could potentially 

select for the long-term maintenance of sex, by subjecting the experimental population to 

various types of selective environments (directional and fluctuating change of the abiotic 

factors and the presence of a competitor) and monitoring the frequency of sex over the 

course of time. 
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2. The effects of mode of reproduction and a rate of 

environmental deterioration on extinction dynamics 

and evolutionary rescue in Chlamydomonas 

reinhardtii 

 

2.1 Introduction 

An adverse anthropogenic impact on the Biosphere has produced environmental 

change at a rate unprecedented in the Cenozoic (Barnosky et al., 2012). Some of these 

negative effects include but are not confined to: climate change, habitat destruction or 

fragmentation and pollution. This change has increased the rate of biodiversity loss by two 

orders of magnitude in comparison with the background extinction rate (Pereira et al., 

2010.). A recent study predicted that up to 35% of all species could face extinction by 2050, 

given the current extinction dynamics (Thomas et al., 2004.). For all these reasons, 

understanding the patterns of species’ response to global change has become increasingly 

important focus of evolutionary biology during the last couple of decades (Bell and Collins, 

2008). 

Most organisms are assumed to be reasonably well adapted to the current state of 

their environment through the past operation of natural selection, so most environmental 

change is usually perceived as detrimental (Bell and Collins, 2008). Selection acting on 

standing genetic variation may restore the mean fitness of a maladapted population if 

genotypes conferring an advantage in new conditions are present in the genetic pool of the 

population (Bell, 2008). Alternatively, a population can respond through phenotypic 

plasticity. For example, a single stressor may activate physiological pathways of a general 

stress response, which confer resistance to various stressors (Samani and Bell, 2016). 

Organisms can also react to change by dispersal and migration to less stressful habitats (Bell 

and Collins, 2008). In the absence of these mechanisms, a population has to adapt through 

de novo mutations, via a process termed evolutionary rescue (Gomulkiewicz et al., 1995). 

Many previous theoretical studies have investigated the effect of environmental 

change on the probability of adaptation and evolutionary rescue through quantitative 

genetic models, by considering a trait under stabilising selection (Orr and Unckless, 2008). 
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When conditions change, the mean phenotype of the population will lag behind the 

optimal value, resulting in a decrease of mean fitness of a population (Gomulkiewitz and 

Holt, 1995), termed as lag load (Maynard Smith, 1976). Lag load (the extent of 

maladaptation) is directly proportional to the rate of environmental change (Willi and 

Hoffmann, 2009), since a higher rate of change implies larger difference in mean fitness of a 

population prior to change and the fitness of the phenotype optimal in new conditions. 

Thus, the probability of adaptation and survival is also contingent on the rate of 

environmental change.  

A higher rate of environmental change implies large initial maladaptedness and 

tracking of moving optimum occurs via strong selection, which causes a demographic 

pressure on a population manifested through higher proportion of selective deaths (Burger 

and Lynch, 1995). Consequently, a population may be adapting to the changing conditions, 

but simultaneously going extinct due to demographic load. Under a more realistic scenario, 

sudden environmental change is followed by the period of stasis (absence of change). As a 

consequence, the optimal value of the phenotype will remain constant, and despite the 

decline of a population size, a population may recover the mean fitness by fixing de novo 

mutations of large fitness effects (Collins and de Meaux, 2009). Thus, the persistence of a 

population becomes a “race” between adaptation and extinction (Maynard Smith, 1989; 

Gomulkiewicz and Holt, 1995; Kopp and Matuszevski, 2014). 

 A more gradual rate of environmental change implies lower initial maladaptedness 

and thus, a lower rate of population size decline. However, it also affects dynamics of 

adaptive evolution, which proceed at a lower rate, due to weaker selection. In contrast to a 

high rate of environmental change, gradual change usually occurs over longer intervals of 

time, during which mean fitness of a population constantly decreases by a small amount 

and may be recovered by fixation of beneficial mutations of smaller effects (Collins and de 

Meaux, 2009). Without fixing these beneficial mutations after each step of environmental 

change, a population may track the moving optimum less efficiently and consequently go 

extinct (Kopp and Matuszevski, 2014). 

Many experimental studies have provided evidence that patterns of adaptations to 

lethal conditions are contingent on the rate of environmental change. Perron et al. (2007) 

manipulated the environmental harshness in populations of Pseudomonas aeruginosa, and 

found that exposure to a single antibiotic resulted in more rapid evolution of resistance. 
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Furthermore, higher immigration rate in combination with the lowest level of 

environmental harshness maximized the level of resistance. Bell and Gonzalez (2011) 

manipulated the rate of environmental deterioration (an increase of NaCl level) and mode 

of dispersal (local and global) in metapopulations of yeast and found that probability of 

evolutionary rescue was the highest for the populations subjected to a gradual level of 

deterioration and local dispersal.  Lindsey et al. (2013) manipulated the rate of increase of 

an antibiotic rifampicin concentration (sudden, moderate and gradual) and found that the 

probability of evolutionary rescue in Escherichia coli populations was inversely proportional 

to the rate of rifampicin increase.  

Another factor that affects the likelihood of adaptation in a changing environment 

is mode of reproduction. Numerous empirical studies have provided evidence that sex 

enhances adaptation to novel environments relative to that of asexual populations through 

faster assembly of mutations beneficial in new conditions (Kaltz and Bell, 2002), reduction 

of clonal interference between beneficial mutations (Colegrave, 2002), an increase in 

fitness of progeny (Becks and Agrawal, 2011) and an increase of adaptation to the presence 

of pathogenic species (Morran et al., 2011). Furthermore, sex increases adaptation rate 

(Goddard et al., 2005) and survival rate (Lachapelle and Bell, 2012) in deteriorating 

environments relative to that of asexual populations, thus increasing the likelihood of 

evolutionary rescue. While general beneficial effects of sex in novel and deteriorating 

environments are relatively well understood, an outstanding question that still lacks 

empirical evidence is whether the effect of sex depends on the rate of environmental 

change.  

Adaptation to lethal conditions involves an increase in the frequency of de novo 

beneficial mutations. The mutational pathway (“adaptive walk”; Collins et al., 2007) leading 

to evolutionary rescue changes with a rate of environmental deterioration (Lindsey et al., 

2013). Populations adapt to gradual and moderate rate of change by fixing multiple 

mutations, which are inaccessible under higher rates of change (Lindsey et al., 2013). In 

contrast, adaptation to higher rates of change may involve single mutations (Lindsey et al., 

2013). Based on this concept, we might also expect that the mechanisms of the beneficial 

effect of sex will depend on a rate of environmental deterioration. A population subjected 

to a gradual rate of environmental deterioration will likely suffer lower population decline 

than a population subjected to a high rate of environmental change. As a result, supply of 
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beneficial mutations will be proportionally higher. Given that at the initial stages of 

environmental change, selection will be weaker (since the total magnitude of change would 

still be relatively low), some mutations may not become fixed or alternatively, individuals 

carrying different beneficial mutations may compete through process termed clonal 

interference (Muller 1932; Gerrish and Lenski, 1998). Consequently, the rate of adaptation 

may slow down, hampering a population’s tracking of moving optimum. In this context, sex 

can be beneficial through reduction of clonal interference, as previously demonstrated by 

Colegrave (2002). Adaptation to a rapid rate of environmental change occurs though 

fixation of small number of mutations of large effects, as experimentally demonstrated by 

Lindsey et al. (2013). Mutations of large effect are a rare event (Kassen and Bataillon, 2006) 

and consequently may arise in a detrimental genetic background, either due to stochastic 

processes such as random drift and genetic hitchhiking (Barton, 1995) or selection (Otto 

and Lenormand, 2002). The beneficial effect of sex under these circumstances may occur 

through “releasing” of these mutations from an inferior genetic background. In contrast, 

such mutation may fail to reach fixation in a clonal asexual population, or may otherwise 

become lost through genetic drift.  

Despite the fact that mechanisms of the effects of sex may potentially vary under 

different rates of environmental change, the net effect (faster adaptation and higher 

probability of evolutionary rescue) should remain the same, irrespective of a rate of 

change. Hence, there should be no interaction between mode of reproduction and the rate 

of environmental deterioration. In order to test this hypothesis, I designed a selection 

experiment by manipulating the rate of environmental deterioration and mode of 

reproduction of unicellular alga Chlamydomonas reinhardtii in a fully factorial design and 

monitored the extinction dynamics and evolutionary rescue of experimental populations.  

 

2.2 Materials and methods  

 

2.2.1. Base populations of C. reinhardtii 

In order to establish genetically variable experimental populations of the focal 

species, C. reinhardtii, mass mating of 10 different wild types strains (cc-1952, cc-2935, cc-

2344, cc-1690, cc-1691, cc-2937, cc-2343, cc-2938, cc-2932 and cc-2342) was performed. 
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The mass mating was performed by using the same experimental protocol as described in 

‘Sexual cycle’ (section 2.2.4.) section below, with the only difference in the freezing 

procedure, being carried out by transferring the cultures with zygotes on agar plates prior 

to freezing. Due to practical reasons of easier handling of numerous experimental 

populations, freezing was performed in liquid cultures in the selection experiment. The 

zygotes obtained from the mass mating were plated on agar and allowed to germinate by 

producing zoospores. The zoospores differentiated into adult vegetative cells which were 

allowed to undergo several rounds of mitotic divisions until visible colonies appeared on 

agar plates. Each colony represents a single (unique) genotype derived from an individual 

cell. C. reinhardtii is an isogamous species and each cell represents one of two mating types 

(mt): mt+ or mt-. A library of genotypes was established by randomly picking 20 colonies of 

each mating type from the agar plates by sterile loop. The mating type was determined by 

crossing the culture derived from each genotype with tester isolates (cc-1690 mt+ and cc-

1691 mt-).  

The experimental populations were constructed by random selection of 10 

different genotypes from the library. Each experimental population represents a unique 

combination of 10 genotypes. Three sets of facultative sexual populations and three sets of 

obligate sexual populations (24 populations per each set, 72 populations per each mode of 

reproduction) were established by combining 5 mt+ and 5 mt- isolates per population; 

three sets of asexual populations (24 populations per each set, 72 populations in total) 

were established by combining 10 mt+ and 10 mt- isolates per population, respectively (an 

equal proportion of populations comprising either mt+ or mt- isolates). However, a single 

isolate had been incorrectly assigned as a plus mating type which was noted after the 

experiment had already commenced. As a result, 14 asexual experimental populations 

comprising this isolate have been withdrawn from the analyses of the experiment: 7 

gradual rate populations, 1 moderate rate population and 6 high rate populations. 

2.2.2. Selection experiment 

  The experiment comprised two phases. In the first phase, the experimental 

populations were subjected to one of three types of deteriorating environments, created 

by a constant increase of NaCl (hereafter referred to as salt) level in the medium in regular 

intervals. Salt was chosen as a stressor since previous experiments (e.g. Lachapelle and Bell, 

2012; Lachapelle et al., 2015) demonstrated the detrimental effect of elevated salt 
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concentration on C. reinhardtii populations, manifested through osmotic and ionic 

disbalance in cells (Lachapelle et al., 2015). The experimental populations were allowed 4 

growth cycles of asexual reproduction (by undergoing approximately 4-6 rounds of mitotic 

divisions per growth cycle) during which the salt level remained constant. After completing 

all 4 growth cycles, a sexual cycle had been initiated in all the populations, but completed 

only in sexual populations, due to presence of both mating types (see the section ‘Sexual 

cycle’ for details). After completion of each sexual cycle, a phase of 4 asexual growth cycles 

was reinitiated, during which the experimental populations experienced an increased    

level of salt.  

Depending on the rate of salt increase, three treatment groups of experimental 

populations were established. Each of the three treatment groups experienced a  different 

rate of environmental deterioration: the populations in gradual rate treatment group were 

subjected to a relatively mild rate of salt increase of 1 g/l after every 4 growth cycles; the 

populations in high rate treatment group experienced a relatively abrupt change of 3 g/l of 

salt increase after every 4 growth cycles; the moderate rate populations were subjected to 

the intermediate level of salt increase of 2 g/l after every 4 growth cycles.  

Three treatment groups were established with respect to mode of reproduction. 

The populations within both obligate sexual and facultative sexual groups were allowed to 

complete a number of rounds of sexual reproduction during the experiment (see below for 

details). In the populations of obligate sexual group, gametes which failed to mate were 

eliminated by freezing. Thus, only sexually derived progeny were transferred to the next 

phase of asexual growth cycles. In facultative sexual groups, this step was omitted, resulting 

in mixed progeny derived from both zygotes and unmated gametes. Asexual populations 

were reproducing entirely mitotically throughout the course of the experiment. 

In the second phase, at the point which salt concentration had reached and 

surpassed the level which could potentially completely stop the growth of ancestral 

populations (8 g/l; Reynoso and de Gamboa, 1982; Moser and Bell, 2011), thereby 

increasing the risk of extinctions, I started to run a parallel experiment. The parallel 

experiment involved sub-sampling of experimental populations and propagating each in a 

selective medium comprising the same salt concentration as at the time of sub-sampling, by 

means of serial passaging. During this phase, the salt concentration remained constant. The 

purpose of this procedure was to evaluate whether evolutionary rescue occurred, 
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manifested through positive growth in stressful conditions. Simultaneously, I continued to 

run the main selection experiment by subjecting the main populations to another step of 

salt increase. 

 

2.2.3. Cultivation and Transfer Procedure  

All the experimental populations of C. reinhardtii were cultivated in 24-well plates 

in Bold’s basal medium (Bischoff and Bold, 1963), widely used for algal cultivation (Harris, 

2009), under standard conditions (26°C, 100 μE illumination, shaking at 180 rpm and 

covered with sterile breathable membranes to prevent cross-contamination and uneven 

evaporation across the plates). A serial passage was performed after every 3-4 days by 

transferring 5 % of each population to the fresh medium. After every second growth cycle 

and prior to induction of each sexual cycle, each population was sampled (150 µl) and 

population size estimated spectrophotometrically by measuring optical density (OD750) of 

the culture.  

 

2.2.4. Sexual Cycle   

Prior to each step of salt increase (after completion of asexual growth phase), 

sexual populations were allowed to undergo a sexual cycle. The first sexual cycle followed 

the first two asexual growth cycles completed in a benign medium (Bold’s without 

additional salt supplemented). Each subsequent sexual cycle was induced after 4 asexual 

growth cycles. A sexual cycle was induced under the following protocol. Firstly, all 

populations were centrifuged at 5000 rpm for 10 minutes, re-suspended in nitrogen-free 

medium to initiate gametogenesis and incubated in standard conditions under bright light 

for another 24 hours to allow for mating and formation of zygotes. Immediately following 

this period, the plates containing experimental populations were wrapped in aluminium foil 

and incubated in the dark for additional 4-5 days to allow the zygotes to mature. Since sub-

lethal stress may affect the mutation rate, the effects of sex may be confounded with 

effects of mutations (Goho and Bell, 2000; Colegrave et al., 2002). Hence, the nitrogen 

starvation treatment was also applied to asexual populations, but since they were made up 

of single mating types, no mating took place. After incubation in darkness, the plates with 
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mature zygotes were placed in a freezer for 4 hours (-20˚C) in order to eliminate unmated 

gametes. The zygotes develop the additional layers of cell wall during maturation in the 

darkness, thereby acquiring resistance to stressful conditions (Harris, 2009). The pilot 

experiments in our laboratory revealed that this feature enables the zygotes to withstand 

low temperature. Given the lack of resistance of unmated gametes to freezing, this step 

was omitted for asexual populations and facultative sexual populations, the latter group 

being allowed to transfer both the produced zygotes and unmated gametes to the next 

round of asexual growth cycles. The zygotes of obligate sexual C. reinhardtii populations 

were then transferred to agar plates by sterile loop and incubated in bright light for two 

days to allow for germination and several rounds of mitotic divisions. The produced zygotes 

(if any) of facultative sexual populations were transferred the same way as obligate sexual 

populations, along with additional aliquot (of about 50-100 µl) to prevent a population 

bottleneck in the case that low number of zygotes were produced. Asexual C. reinhardtii 

populations were transferred to agar plates by pipetting (an aliquot of 200 µl) and 

incubated for the same period of time as sexual populations. After the given period, all 

cultures in the agar plates were flooded with 4 ml of Bold’s medium (supplemented with 

salt which concentration increased than prior to induction of the sexual cycle, depending on 

the rate) for approximately an hour. The population size of each experimental population 

on agar was estimated spectrophotometrically (OD750) and diluted to the same optical 

density as prior to induction of sexual cycle. This experimental procedure ensures that 

effects of sex are not confounded with a variation in population size. All the populations 

were then returned to the liquid medium by pipetting. 

Mating in C. reinhardtii requires sufficiently dense populations, to ensure the 

contact of gametes and thus production of zygotes. Due to different dynamics of a 

population size decline caused by differences in the rate of environmental deterioration, 

unequal number of sexual cycles could have been induced for each treatment group. 

Consequently, gradual, moderate and high rate treatment groups underwent 10, 4 and 3 

rounds of sexual reproduction, respectively. 

2.2.5. Recording the extinction events 

 Each experimental population was visually inspected under microscope before each 

transfer to record the possibility of an extinction event (absence of living cells). If 

observation under microscope failed to reveal surviving cells, a sample of the population 
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(200 µl) was transferred to agar plate and incubated for 3-4 days in order to confirm an 

extinction event. The selection experiment continued until all experimental populations 

went extinct. 

 

2.2.6. Recording the evolutionary rescue events 

 After completion of the last (fourth) growth cycle in a given level of salt 

concentration (starting from 8 g/l), a parallel experiment was initiated. The populations 

were sub-sampled (by pipetting 5% of the culture), and these samples were used for 

evolutionary rescue assays. Simultaneously, the main selection experiment continued, with 

the main experimental populations being subjected to another step of salt increase. Each 

sampled population was then transferred to 24-well plates containing a medium 

supplemented with the same salt concentration the populations had been subjected to 

prior to the transfer. Each subculture was propagated in the corresponding selective 

medium for 3-4 additional growth cycles during which the salt concentration remained 

constant. The population size of each population was estimated spectrophotometrically 

(OD750) after each growth cycle. Furthermore, each population was allowed a single growth 

cycles in the corresponding selective medium in 96-well plates, during which the population 

size was recorded spectrophotometrically (OD750) twice a day, until the cultures reached a 

mid-log/ stationary phase (after approximately 3.5 days). The purpose of the assay in 96-

well plates was to estimate the growth rate of the populations, by calculating yield as a 

function of time. The populations were scored as “rescued” if they scored clear positive 

growth in both assay environments, manifested through the same or higher population size 

recorded after both assays. The growth parameters of these populations were compared 

with those of the ancestral isolates, assayed in the medium with the corresponding 

concentration of salt prior to commencing of the selection experiment (see the next section 

for details). 
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2.2.7.  Assay of the ancestral isolates in high salt environments  

 All 39 ancestral isolates were assayed for growth in Bold’s supplemented with an 

elevated concentration of salt, ranging from 0 g/l (benign medium – ancestral environment) 

to 10 g/l (detrimental). The assay was performed in 96-well plates using the identical 

procedure described in the previous section. All populations were allowed two growth 

cycles (3-4 days per cycle; 5% of a culture passaged), but were assayed only during the 

second cycle, to avoid possible carry-over effects after plating from slant agar tubes, used 

for storing the cultures. The fitness parameters of the ancestors used for comparison with 

the previously described assayed experimental populations were Maximal O.D. of the 

populations obtained during the assay and growth rate measured as an average yield per 

time point.  

 

2.3 Data analysis  

 

 The effect of elevated salt concentration on fitness of the ancestral isolates was 

analysed by Kruskal Wallis rank sum test, with ‘salt concentration’ as a continuous 

independent variable. The continuous responsive variable was ‘maximal O.D.’  

The population size dynamics of each treatment group was analysed by fitting Two-

way ANOVA with two factors: ‘mode of reproduction’ and ‘the rate of salt increase’, both 

considered fixed factors. The dependent continuous variable was slope of the regression 

line representing a mean change of a population size as a function of time (growth cycles).  

 The extinction dynamics of each factor (‘mode of reproduction’ and ‘the rate of salt 

increase’) was analysed by fitting The Kaplan-Meier estimator of survival. The time units 

used for the analyses were ‘growth cycle’ and ‘salt concentration’ (reached when extinction 

occurred). The survival curves were analysed by Weibull regression model, used to 

investigate the influence of a factor or a covariate upon timing of an event.  

 The probability of evolutionary rescue was analysed by fitting Binomial regression 

models, with two factors, ‘mode of reproduction’ and ‘level of salt increase’, both 

considered independent categorical variables. The binary responsive variable was 

survival/death. 
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 The mean fitness of the rescued populations with respect to both population size 

and the growth rate was analysed by fitting one-way or two-way ANOVA. The responsive 

continuous variables were O.D. (for mean population size) and slope of the regression line 

representing a mean change of population size as a function of time (for the growth rate). 

 All the analyses were performed using R (R Core Team, 2017). 

2.4 Results  

 

2.4.1. Fitness assay of the ancestral populations in high salt medium 

 An elevated concentration of salt was detrimental for the ancestral isolates of 

experimental populations. There was a negative correlation between salt concentration 

and average maximal O.D. (Kruskal Wallis rank sum test; χ2= 271.4; df = 10; P < 0.00001) 

(Figure 2.1). The salt concentration of 5 g/l reduced the maximal population size by 60%, 

which is 12% higher than previously reported (Reynoso and de Gamboa, 1982). The salt 

concentration of 8 g/l reduced the maximal population size by 71%. This is inconsistent with 

the results of previously reported authors, who found that the salt concentration of 8 g/l 

supresses the growth of C. reinhardtii almost completely.  

Figure 2.1 – Average maximal population size of the ancestral isolates of experimental populations 
per each level of salt concentration (g/l); O.D. (750 nm) represents a proxy for population size; the 
bars represent standard error of the mean;  
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2.4.2. Selection experiment 

2.4.2.1.  Population size dynamics 

The rate of environmental deterioration affected the rate of mean population size 

decrease (two-way ANOVA; F2,201 = 102.99, P < 0.00001) (Figure 2.2). Decline in population 

size was slowest in the populations subjected to the gradual rate of salt increase, and 

significantly different compared to both moderate (t = -3.08, df = 135, P = 0.002) and high 

rate of salt increase (t = -3.92, df = 130, P = 0.0001). There was no significant difference 

between the rate of mean population size decline between moderate rate and high rate 

groups (t = 1.08, df = 136, P = 0.28) (see Figure 2.4 for the population size dynamics per 

each mode of reproduction, for each rate of salt increase). 

Mode of reproduction affected the rate of mean population size decrease (two-way 

ANOVA; F2,201 = 102.26, P < 0.00001) (Figure 2.3).  Decline in population size was highest in 

asexual populations for all rates of salt increase, and significantly different compared to 

both obligate sexual group (t = -9.82, df = 129, P < 0.00001) and facultative sexual group (t = 

-9.17, df = 129, P < 0.00001). There was no significant difference between sexual groups of 

populations in this respect (t = -0.72, df = 143, P = 0.47) (see Figure 2.5 for the population 

size dynamics per each rate of environmental deterioration, for each mode of 

reproduction). 

 There was a significant interaction between mode of reproduction and the rate of 

environmental deterioration (Two-way ANOVA; F4,201 = 10.15, P < 0.00001). Post-hoc 

Tukey’s HSD analysis was conducted on all possible pairwise comparisons and revealed 

statistically significant difference (P < 0.005) between the following pairs of groups: gradual 

rate - asexual (M = -0.13, SD = 0.002) and gradual rate - obligate sexual (M = -0.005, SD = 

0.003), gradual rate - asexual and gradual rate - facultative sexual (M = -0.005, SD = 0.003); 

moderate rate - asexual (M = -0.015, SD = 0.003) and moderate rate - obligate sexual (M = -

0.008, SD = 0.002), moderate rate - asexual and moderate rate - facultative sexual (M = -

0.012, SD = 0.003), moderate rate - obligate sexual and moderate rate - facultative sexual; 

high rate - asexual (M = -0.016, SD = 0.002) and high rate - obligate sexual (M = -0.013, SD = 

0.002), high rate - asexual and high rate - facultative sexual (M = -0.012, SD = 0.002). There 

was no significant difference between the following groups: gradual rate - obligate sexual 
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and gradual rate - facultative sexual (P = 0.99); high rate - obligate sexual and high rate - 

facultative sexual (P = 0.49). 

 

Figure 2.2 – Slope of the regression line representing mean decline of population size as a function 
of time, for all rates of environmental deterioration; the bars represent standard error of the mean;  

 

 

Figure 2.3 – Slope of the regression line representing mean decline of population size as a function 
of time, per each mode of reproduction; the bars represent standard error of the mean;  
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Figure 2.4 – Population size dynamics of treatment groups with respect to both mode of 
reproduction and the rate of salt increase; the colour of geometric points corresponds to mode of 
reproduction; the shape corresponds to the rate of salt increase; mean population size corresponds 
to the average OD750; the bars represent standard error of the mean;  

 

Figure 2.5 – Population size dynamics of treatment groups with respect to both mode of 
reproduction and the rate of salt increase; the colour of geometric points corresponds to the rate of 
salt increase; the shape corresponds to mode of reproduction; mean population size corresponds to 
the average OD750; the bars represent standard error of the mean;  
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2.4.2.2. Extinction dynamics 

The rate of salt increase affected the extinction dynamics of experimental 

populations relative to time in growth cycles (Weibull regression model; χ2 = 1026.24; df = 

2; P < 0.00001) (Figure 2.6). The rate of extinction was directly proportional to the rate of 

salt increase, being the highest in high rate group of populations and the lowest in gradual 

rate group. The extinction rate within gradual rate group was significantly different than 

that of both high rate (z = 57.96, P < 0.00001) and moderate rate group (z = 9.32, P < 

0.00001). Likewise, there was a significant difference between the extinction dynamics 

between high rate and moderate rate group (z = 14.72, P < 0.00001). 

 

 

Figure 2.6 – Cumulative extinction dynamics of experimental populations per each rate of salt 
increase (irrespective of mode of reproduction); extinctions are plotted against time in number of 
growth cycles which preceded each extinction event; the 95% confidence interval for each survival 
curve is represented with the shaded area between upper and lower boundary. 

 

 The overall effect of mode of reproduction on cumulative extinction dynamics (all 

rates of salt increase combined) relative to time in growth cycles was not statistically 

significant (Weibull regression model; χ2 = 0.84; df = 2; P = 0.66) (Figure 2.7). However, the 

relative advantage of individual levels within ‘mode of reproduction’ factor was contingent 

on the rate of salt increase. There was a significant interaction between mode of 

reproduction and rate of salt increase on the extinction dynamics of experimental 
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populations relative to time in growth cycles (Weibull regression model; χ2 = 12.32; df = 4; P 

= 0.015). While the survival curves of each mode of reproduction group did not differ 

significantly in gradual and high rate of salt increase (Figures 2.8 and 2.10, respectively), 

obligate sexual group had significantly different extinction dynamics relative to both 

asexual group (z = 3.07, P = 0.002) and facultative sexual group (z = -2.15; P = 0.03) when 

subjected to moderate rate of salt increase (Figure 2.9), reflected in higher number of 

surviving populations per each time point. There was no significant difference between the 

extinction dynamics of facultative sexual and asexual groups (z = 1.02, P = 0.31).  

 

 

Figure 2.7 – Cumulative extinction dynamics of experimental populations per each mode of 
reproduction (irrespective of rate of salt increase); extinctions are plotted against time in number of 
growth cycles which preceded each extinction event.  
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Figure 2.8 – The extinction dynamics per each mode of reproduction in the gradual rate of salt 
increase; the 95% confidence interval for each survival curve is represented with the shaded area 
between upper and lower boundary. 

 

 

Figure 2.9 – The extinction dynamics per each mode of reproduction in the moderate rate of salt 
increase; the 95% confidence interval for each survival curve is represented with the shaded area 
between upper and lower boundary. 
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Figure 2.10 – The extinction dynamics per each mode of reproduction in the high rate of salt 
increase; the 95% confidence interval for each survival curve is represented with the shaded area 
between upper and lower boundary. 

 

  The rate of salt increase affected the extinction dynamics of experimental 

populations relative to maximal salt concentration reached when each extinction occurred 

(Weibull regression model; χ2 = 18.9; df = 2; P < 0.0001) (Figure 2.11). Gradual-rate group of 

populations had the slowest extinction rate with respect to salt concentration. The 

extinction dynamics of this treatment group was significantly different relative to both high 

rate (z = 3.8; P = 0.0001) and moderate rate group (z = 2.2; P = 0.03). No populations went 

extinct before salt concentration reached 27 g/l, 60% reached and 26% survived 30 g/l of 

salt concentration. The last populations went extinct while being subjected to 32 g/l of salt 

concentration. The extinction dynamics between high rate and moderate rate groups was 

significantly different (z = 2.38; P = 0.2). First extinctions for high rate group occurred in salt 

concentration of 18 g/l, 32% went extinct by the time corresponding to 24 g/l, 45% reached 

and 20% survived 30 g/l of salt concentration. The last extinctions in this treatment group 

occurred in salt concentration of 36 g/l. First extinctions for moderate rate group 

corresponded to the 12 g/l of salt concentration, followed by the long interval during which 

only a single extinction occurred (between 12 g/l and 26 g/l). The majority of populations 

(96%) went extinct within a relatively brief interval of time corresponding to salt 

concentrations between 26g/l and 30 g/l; 20% of populations reached, but none survived 

30 g/l of salt concentration. 
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 The overall effect of mode of reproduction on cumulative extinction dynamics (all 

rates of salt increase combined) with respect to salt concentration was not statistically 

significant (Weibull regression model; χ2 = 1.67; df = 2; P = 0.43) (Figure 2.12). However, as 

in the previous model regarding the extinction dynamics with respect to time in growth 

cycles, the relative advantage of individual levels within ‘mode of reproduction’ factor 

depended on the rate of salt increase. There was a significant interaction between mode of 

reproduction and rate of salt increase on the extinction dynamics of experimental 

populations relative to salt concentration (Weibull regression model; χ2 = 9.99; df = 4; P = 

0.04). In the gradual rate of salt increase, the extinction dynamics of facultative sexual 

group was significantly different than that of both obligate sexual (z = 2.08, P = 0.04) and 

asexual group (z = -2.85, P = 0.004), due to higher number of extinct populations in 

comparison to each of these groups during most of the extinction period (27 g/l – 30 g/l) 

(Figure 2.13). In moderate rate of salt increase, there was a significant difference between 

the extinction dynamics of facultative sexual and asexual groups (z = -2.51, P = 0.01) (Figure 

2.14). Similarly, a significant difference was recorded between facultative sexual and 

asexual groups in high rate of salt increase (z = -2.51, P = 0.01) (Figure 2.15). 

 

 

Figure 2.11 – Cumulative extinction dynamics of experimental populations per each rate of salt 
increase (irrespective of mode of reproduction); extinctions are plotted against salt concentration 
reached when extinction occurred; the 95% confidence interval for each survival curve is 
represented with the shaded area between upper and lower boundary. 
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Figure 2.12 – Cumulative extinction dynamics of experimental populations per each mode of 
reproduction (irrespective of rate of salt increase); extinctions are plotted against salt concentration 
reached when extinction occurred; 

 

 

Figure 2.13 - The extinction dynamics per each mode of reproduction, in the gradual rate of salt 
increase; extinctions are plotted against salt concentration reached when extinction occurred; the 
95% confidence interval for each survival curve is represented with the shaded area between upper 
and lower boundary. 
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Figure 2.14 - The extinction dynamics per each mode of reproduction, in the moderate rate of salt 
increase; extinctions are plotted against salt concentration reached when extinction occurred; the 
95% confidence interval for each survival curve is represented with the shaded area between upper 
and lower boundary. 

 

 

Figure 2.15 - The extinction dynamics per each mode of reproduction, in the high rate of salt 
increase; extinctions are plotted against salt concentration reached when extinction occurred; the 
95% confidence interval for each survival curve is represented with the shaded area between upper 
and lower boundary. 
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2.4.2.3. Examination of evolutionary rescue events in the treatment groups  

In parallel with propagating the main experimental populations in increasing 

concentration of salt, another experiment was carried out. Before being subjected to the 

next step of salt increase, each experimental population was sub-sampled and assayed for 

growth in the same level of salt as at the time of sub-sampling. The purpose of the assays 

was investigating whether evolutionary rescue had occurred during the main selection 

experiment. 

I recorded 119 evolutionary rescue events in total, out of 475 assayed populations 

(25%). The probability of evolutionary rescue was significantly affected by the rate of 

environmental deterioration (Binomial regression; χ2 = 24.77; df = 2; P < 0.00001). Of 130 

gradual rate populations tested, 45 were rescued from extinction (35%); of 213 moderate 

rate populations tested, 60 survived (28%); of 132 high rate populations tested, 14 were 

rescued from extinction (11%). A significant difference in the number of extinction events 

was detected between the high rate treatment group and both the gradual rate (z = -2.75; P 

= 0.006) and moderate rate (z = -2.3; P = 0.02) treatment groups. However, no significant 

difference between the gradual rate and moderate rate treatment groups was recorded (z 

= -0.96; P = 0.34). Within the gradual rate treatment group, 17 g/l was the maximal salt 

concentration for which evolutionary rescue had been recorded, while the maximal salt 

concentration reached by both the moderate rate and high rate treatment groups is 12 g/l. 

Mode of reproduction did not significantly affect the probability of evolutionary 

rescue (Binomial regression; χ2 = 3.94; df = 2; P = 0.14); of 139 asexual population tested, 32 

survived (23%); of 168 obligate sexual populations tested, 51 were rescued from extinction 

(30%); of 168 facultative sexual populations tested, 36 survived (21%). No significant 

interaction was detected between the rate of salt increase and mode of reproduction 

(Binomial regression; χ2 = 1.39; df = 4; P = 0.85). 

 

2.4.2.3.1 Gradual rate 

I recorded 45 evolutionary rescue events in total for treatment groups subjected to 

the gradual rate of salt increase, occurring during exposure to salt concentrations of 16 g/l 

and 17 g/l. Due to technical difficulties with a culture maintenance, I could not obtain a 

reliable number of surviving populations for lower salt concentrations. The probability of 
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evolutionary rescue was contingent on the level of salt increase (Binomial regression; χ2 = 

4.14; df = 1; P = 0.04). Seventeen evolutionary rescue events were recorded for salt 

concentration of 16 g/l, while 28 populations survived salt concentration of 17 g/l (Figure 

2.16). Mode of reproduction did not affect the probability of evolutionary rescue (Binomial 

regression; χ2 = 2.31; df = 2; P = 0.31). Twenty evolutionary rescue events were recorded in 

the obligate sexual group, 13 in the facultative sexual group and 12 in the asexual group 

(Figure 2.17). No significant interaction between the level of salt increase and mode of 

reproduction was recorded (Binomial regression; χ2 = 2.01; df = 2; P = 0.37). The number of 

evolutionary rescue events occurring during exposure to salt concentration of 16 g/l was 

approximately equal in all treatment groups (6 in each sexual group and 5 in asexual 

group). Most evolutionary rescue events during exposure to salt concentration of 17 g/l 

were recorded in obligate sexual group (14) (Figure 2.18). 

 

Figure 2.16 - Percentage of evolutionary rescue events relative to total number of populations of 
gradual rate treatment group (65), with respect to both levels of salt increase; the numbers in 
brackets correspond to the number of evolutionary rescue events. 
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Figure 2.17 – Percentage of evolutionary rescue events per each mode of reproduction of gradual 
rate treatment group; the numbers in brackets correspond to the number of evolutionary rescue 
events. 

 

 

Figure 2.18 - Percentage of evolutionary rescue events per each mode of reproduction of gradual 
rate treatment group, with respect to each level of salt increase; the numbers in brackets 
correspond to the number of evolutionary rescue events. 

 

 

Mode of reproduction did not affect mean fitness of the rescued populations (Two-
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salt increase on mean fitness of the rescued populations (Two-way ANOVA; F1,44 = 0.005; P = 

0.94) (Figure 2.19). 

      

Figure 2.19 – Mean fitness of the rescued populations per each mode of reproduction of gradual 
rate treatment group, with respect to each level of salt increase; the bars represent standard error 
of the mean. 

 

In order to rule out the possibility that the observed response of the rescued 

populations to detrimental environments had occurred through phenotypic plasticity rather 

than adaptive evolution, I compared the growth parameters (mean population size and 

growth rate) of these populations (with respect to mode of reproduction) with those of the 

ancestral isolates, assayed in the corresponding salt concentration prior to commencing of 

the selection experiment. Since the assay was not performed for salt concentrations higher 

than 10 g/l, the ancestors were subsequently tested in additional assay, by monitoring their 

growth rate in the range of salt concentrations between 11-17 g/l. 

The mean population size of populations rescued in 16 g/l of salt concentration was 

significantly different among treatment groups (one-way ANOVA; F3,55 = 30.65; P < 0.00001) 

(Figure 2.20). The rescued populations of each treatment group had significantly higher 

mean population size than the ancestral isolates (t = 5.53, df = 43, P < 0.00001 for the 

asexual group; t = 6.35, df = 44, P < 0.00001 for the facultative sexual group; t = 6.65, df = 

44, P < 0.00001 for the obligate sexual group). There was no significant difference between 
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each sexual treatment group and asexual treatment group (t = -0.26, df = 10, P = 0.79, for 

the difference between the asexual and facultative sexual group; t = -0.48, df = 10, P = 0.63, 

for the difference between the asexual and obligate sexual group). Likewise, no significant 

difference was detected between sexual groups (t = -0.23, df = 11, P = 0.82). 

      

Figure 2.20 – Comparison of mean population size of gradual rate rescued populations with that of 
the ancestors assayed in the same conditions (16 g/l); the bars represent standard error of the 
mean. 

 

The growth rate in the selective environment (16 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time was 

contingent on the treatment group (one-way ANOVA; F3, 55 = 30.32; P < 0.00001) (Figure 

2.21). A significant difference was detected between the growth rate of the ancestors and 

the rescued populations within all three treatment groups (t = 5.49, df = 43, P < 0.00001, for 

the difference between the ancestors and asexual group; t = 6.27, df = 44, P < 0.00001, for 

the difference between the ancestors and facultative sexual group; t = 6.65, df = 44, P < 

0.00001, for the difference between the ancestors and obligate sexual group). The 

differences among other treatment groups were not statistically significant. 
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Figure 2.21 - Comparison of growth rate of gradual rate rescued populations (with respect to mode 
of reproduction) with that of the ancestors assayed in the same conditions (16 g/l); the bars 
represent standard error of the mean. 

 

 

The mean population size of populations rescued in 17 g/l of salt concentration was 

significantly different among treatment groups (one-way ANOVA; F3,66 = 60.72; P < 0.00001) 

(Figure 2.22). The rescued populations of each treatment group had significantly higher 

mean population size than the ancestral isolates (t = 6.91, df = 45, P < 0.00001 for the 

asexual group; t = 7.88, df = 45, P < 0.00001 for the facultative sexual group; t = 11.56, df = 

52, P < 0.00001 for the obligate sexual group). There was no significant difference between 

each sexual treatment group and asexual treatment group (t = -0.74, df = 13, P = 0.46, for 

the difference between the asexual and facultative sexual group; t = -1.65, df = 20, P = 0.1, 

for the difference between the asexual and obligate sexual group). Likewise, no significant 

difference was detected between sexual groups (t = 0.8, df = 20, P = 0.43). 
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Figure 2.22 – Comparison of mean population size of gradual rate rescued populations with that of 
the ancestors assayed in the same conditions (17 g/l); the bars represent standard error of the 
mean. 

 

The growth rate in the selective environment (17 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time was 

contingent on the treatment group (one-way ANOVA; F3, 66 = 59.02; P < 0.00001) (Figure 

2.23). A significant difference was detected between the growth rate of the ancestors and 

the rescued populations within all three treatment groups (t = 7.08, df = 45, P < 0.00001, for 

the difference of the ancestors and asexual group; t = 7.73, df = 45, P < 0.00001, for the 

difference of the ancestors and facultative sexual group; t = 11.29, df = 52, P < 0.00001, for 

the difference of the ancestors and obligate sexual group). The differences among other 

treatment groups were not statistically significant. 
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Figure 2.23 - Comparison of growth rate of gradual rate rescued populations (with respect to mode 
of reproduction) with that of the ancestors assayed in the same conditions (17 g/l); the bars 
represent standard error of the mean. 

 

2.4.2.3.2 Moderate rate 

I recorded 60 evolutionary rescue events in total for treatment groups subjected to 

the moderate rate of salt increase. All evolutionary rescue events occurred during exposure 

to salt concentrations of 8 g/l, 10 g/l, and 12 g/l. The probability of evolutionary rescue was 

contingent on the level of salt increase (Binomial regression; χ2 = 6.71; df = 2; P = 0.03) 

(Figure 2.24); 28 evolutionary rescue events were recorded for the salt level of 8 g/l, 15 

populations survived in 10 g/l and 17 evolutionary rescue events occurred in 12 g/l of salt 

concentration. Mode of reproduction did not significantly affect the probability of 

evolutionary rescue (Binomial regression; χ2 = 1.43; df = 2; P = 0.49). Twenty-four 

evolutionary rescue events were recorded in the obligate sexual group and 18 in the 

facultative sexual and asexual group, respectively (Figure 2.25).  There was a significant 

interaction between the level of salt increase and mode of reproduction (Binomial 

regression; χ2 = 23.7; df = 4; P < 0.001) (Figure 2.26). The highest number of evolutionary 

rescue events during exposure to salt levels of 8 g/l and 12 g/l was recorded in the obligate 
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sexual group (11 and 12, respectively). Most evolutionary rescue events for salt level of 10 

g/l occurred in asexual populations (9). 

 

Figure 2.24 – Percentage of evolutionary rescue events relative to total number of populations of 
moderate-rate treatment group (71), with respect to each level of salt increase; the numbers in 
brackets correspond to the number of evolutionary rescue events. 

 

 

Figure 2.25 - Percentage of evolutionary rescue events per each mode of reproduction of 
moderate-rate treatment group; the numbers in brackets correspond to the number of evolutionary 
rescue events. 
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Figure 2.26 - Percentage of evolutionary rescue events per each mode of reproduction of 
moderate-rate treatment group, with respect to each level of salt increase; the numbers in 
brackets correspond to the number of evolutionary rescue events. 

 

Mode of reproduction significantly affected mean fitness of the rescued 

populations (two-way ANOVA; F2,59 = 4.0; P = 0.024) (Figure 2.27). This part of the results 

requires cautious interpretation, since some treatment groups comprise only a single 

rescued population. Generally, both sexual groups had higher mean fitness in salt 

concentrations of 8 g/l and 10 g/l. A single rescued asexual population had the highest 

fitness in salt concentration of 12 g/l. Mean fitness of the rescued populations was 

contingent on salt concentration (two-way ANOVA; F2,59 = 67.7; P <0.00001). The average 

population size was the highest in salt concentration of 8 g/l, irrespective of mode of 

reproduction of the rescued populations. No significant interaction between mode of 

reproduction and salt concentration was detected (two-way ANOVA; F4,59 = 2.09; P = 0.1). 

 As in the previous section, the growth parameters of the rescued populations 

(mean population size and the growth rate) were compared with those of the ancestral 

isolates, assayed in the corresponding salt concentration prior to commencing of the 

selection experiment. 
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Figure 2.27 – Mean fitness of the rescued populations per each mode of reproduction of moderate 
rate treatment group, with respect to each level of salt increase; the bars represent standard error 
of the mean (absent in treatment groups comprising a single rescued population). 

 

The mean population size of the populations rescued in salt concentration of 8 g/l 

was contingent on treatment group (one-way ANOVA; F3,66 = 18.71; P < 0.00001) (Figure 

2.28). The rescued populations of each treatment group had significantly higher mean 

population size than the ancestral isolates (t = -2.86, df = 46, P = 0.006 for asexual group; t = 

5.45, df = 47, P < 0.00001 for the facultative sexual group; t = -6.02, df = 49, P < 0.00001 for 

the obligate sexual group). A significant difference was recorded between the rescued 

populations in obligate sexual treatment group and asexual treatment group (t = -2.03, df = 

18, P = 0.047). A marginal difference was recorded between the asexual and facultative 

sexual group (t = -1.86, df = 16, P = 0.07). No significant difference was detected between 

sexual groups (t = 0.084, df = 19, P = 0.93). 
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Figure 2.28 – Comparison of mean population size of moderate rate rescued populations with that 
of the ancestors assayed in the same conditions (8 g/l); the bars represent standard error of the 
mean. 

 

The growth rate in the selective environment (8 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time, was 

contingent on the treatment group (one-way ANOVA; F3, 66 = 47.81; P < 0.00001) (Figure 

2.29). A significant difference was detected between the growth rate of the ancestors 

relative to that of the asexual group (t = 7.22, df = 46, P < 0.00001), obligate sexual group (t 

= 9.04, df = 49, P < 0.00001) and facultative sexual group (t = 7.98, df = 47, P < 0.00001). No 

significant differences were detected among the treatment groups of the rescued 

populations. 

 There was a marginal difference between mean population size of populations 

rescued in 10 g/l of salt concentration (one-way ANOVA; F3,53 = 2.68; P = 0.057) (Figure 

2.30). The difference between the facultative sexual group and the ancestors was 

significant (t = 2.4, df = 43, P = 0.02). There was no significant difference in mean fitness 

between sexual groups (t = -0.39, df = 5, P = 0.7). The difference between the obligate 

sexual group and the ancestors was undetected by the model, likely due to presence of a 

single rescued population in the former treatment group (t = 1.57, df = 8, P = 0.12). The 

difference in mean population size between the asexual group and the ancestors was not 

significant (t = 0.69; df = 46, P = 0.49).  
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Figure 2.29 – Comparison of growth rate of moderate rate rescued populations (with respect to 
mode of reproduction) with that of the ancestors assayed in the same conditions (8 g/l); the bars 
represent standard error of the mean. 

 

The growth rate in the selective environment (10 g/l), measured as slope of the 

regression line representing  mean change of population size as a function of time, was 

contingent on the treatment group (one-way ANOVA; F3, 53 = 4.16; P = 0.01) (Figure 2.31). A 

significant difference was detected between the growth rate of the ancestors relative to 

that of the asexual group (t = 2.52, df = 46, P = 0.02) and a single rescued obligate sexual 

population (t = 2.08, df = 8, P = 0.04). A marginal difference was detected between the 

ancestors and the facultative sexual group (t = 2.0, df = 43, P = 0.05). No significant 

differences were detected among the treatment groups of the rescued populations. 
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Figure 2.30 – Comparison of mean population size of moderate rate rescued populations with that 
of the ancestors assayed in the same conditions (10 g/l); the bars represent standard error of the 
mean. 

 

 

Figure 2.31 – Comparison of growth rate of moderate rate rescued populations (with respect to 
mode of reproduction) with that of the ancestors assayed in the same conditions (10 g/l); the bars 
represent standard error of the mean. 

 

There was a significant difference between mean population size of populations 

rescued in 12 g/l of salt concentration among treatment groups (One-way ANOVA; F3,55 = 

5.47; P = 0.002) (Figure 2.32). There was a significant difference between mean population 
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size of the ancestors relative to the asexual (t = 2.06; df = 38; P = 0.04) and obligate sexual 

groups (t = 3.55, df = 50, P = 0.0008). However, mean population size of the rescued 

facultative sexual populations did not significantly differ from that of the ancestors (t = 

1.35, df = 42, P = 0.18). The difference between asexual and both sexual groups  was not 

detected, nor the difference between sexual groups. 

 

Figure 2.32 – Comparison of mean population size of moderate rate rescued populations with that 
of the ancestors assayed in the same conditions (12 g/l); the bars represent standard error of the 
mean (absent in treatment groups comprising a single rescued population). 

 

The growth rate in the selective environment (12 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time was 

contingent on the treatment group (one-way ANOVA; F3,55 = 26.65; P < 0.00001) (Figure 

2.33). A significant difference was detected between the growth rate of the ancestors 

relative to that of the asexual group (a single population) (t = 3.35, df = 38, P = 0.001), 

obligate sexual group (t =8.13, df = 50, P = < 0.00001), and facultative sexual group (t = 3.79, 

df = 42, P < 0.00001). No significant differences were detected among the treatment groups 

of the rescued populations. 
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Figure 2.33 - Comparison of growth rate of moderate rate rescued populations (with respect to 
mode of reproduction) with that of the ancestors assayed in the same conditions (12 g/l); the bars 
represent standard error of the mean (absent in treatment group comprising a single rescued 
population). 

 

 

2.4.2.3.3 High rate 

I recorded 14 evolutionary rescue events in total for treatment groups subjected to 

the high rate of salt increase. All evolutionary rescue events occurred during exposure to 

salt concentrations of 9 g/l and 12 g/l. The probability of evolutionary rescue did not 

depend on the rate of salt increase (Binomial regression; χ2 = 3.0; df = 1; P = 0.08; 4 

evolutionary rescue events were recorded for the salt level of 9 g/l and 10 populations 

survived in 12 g/l (Figure 2.34). Likewise, mode of reproduction did not significantly affect 

the probability of evolutionary rescue (Binomial regression; χ2 = 1.88; df = 2; P = 0.39). 

Seven evolutionary rescue events were recorded in obligate sexual group, 5 in facultative 

sexual group and 1 in asexual group (Figure 2.35).  No significant interaction between the 

rate of salt increase and mode of reproduction was detected (Binomial regression; χ2 = 1.8; 

df = 2; P = 0.4). The highest number of evolutionary rescue events during exposure to salt 

level of 9 g/l was recorded in facultative sexual group (2). Most evolutionary rescue events 

for salt level of 12 g/l occurred in obligate sexual populations (6) (Figure 2.36). 
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Figure 2.34 – Percentage of evolutionary rescue events relative to total number of populations of 
high rate treatment group (66), with respect to both levels of salt increase; the numbers in brackets 
correspond to the number of evolutionary rescue events; 

 

 

 

Figure 2.35 - Percentage of evolutionary rescue events per each mode of reproduction of high rate 
treatment group; the numbers in brackets correspond to the number of evolutionary rescue events; 
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Figure 2.36 - Percentage of evolutionary rescue events per each mode of reproduction of high rate 
treatment group, with respect to each level of salt increase; the numbers in brackets correspond to 
the number of evolutionary rescue events; 

 

Mode of reproduction marginally affected mean fitness of the rescued populations 

(two-way ANOVA; F2,13 = 4.2; P = 0.06) (Figure 2.37). Mean fitness of the rescued 

populations depended on salt concentration (two-way ANOVA; F1,13 = 20.34; P = 0.002). The 

average population size was higher in salt concentration of 9 g/l for both sexual groups of 

the rescued populations; the rescued asexual populations had similar population size 

recorded for both salt concentrations. A marginally significant interaction between mode of 

reproduction and salt concentration was detected (Two-way ANOVA; F2,13 = 3.64; P = 0.08). 

As in the previous section, the growth parameters of the rescued populations 

(mean population size and the growth rate) were compared with those of the ancestral 

isolates, assayed in the corresponding salt concentration prior to commencing of the 

selection experiment.  

A marginal difference in mean population size was detected among the treatment 

groups rescued in 9 g/l of salt concentration and the ancestors (One-way ANOVA; F3,42 = 

2.44; P = 0.08) (Figure 2.38). 
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Figure 2.37 – Mean fitness of the rescued populations per each mode of reproduction of high rate 
treatment group, with respect to both levels of salt increase; the bars represent standard error of 
the mean (absent in treatment groups comprising a single rescued population). 

   

Figure 2.38 – Comparison of mean population size of high rate rescued populations with that of 
the ancestors assayed in the same conditions (9 g/l); the bars represent standard error of the mean 
(absent in treatment groups comprising a single rescued population). 

 

The growth rate in the selective environment (9 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time, was 
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contingent on the treatment group (one-way ANOVA; F3, 42 = 4.42; P = 0.009) (Figure 2.39). 

The facultative sexual populations rescued after propagation in 9 g/l of salt concentration 

had significantly higher growth rate than that of the ancestral populations, (t = 2.64, df = 

40, P = 0.01). A marginal difference was detected between the ancestors and obligate 

sexual (t = 2.02, df = 39, P = 0.05) and asexual (t = 1.76, df = 39, P = 0.09) groups. No 

significant differences in the growth rate among the treatment groups of the rescued 

populations were recorded. 

 

 

Figure 2.39 – Comparison of growth rate of high rate rescued populations (with respect to mode of 
reproduction) with that of the ancestors assayed in the same conditions (9 g/l); the bars represent 
standard error of the mean. 

 

 No significant difference in mean population size between the ancestors and the 

populations rescued in 12 g/l of salt concentration was detected (one-way ANOVA; F3,48 = 

1.42; P = 0.25) (Figure 2.40). 

The growth rate in the selective environment (12 g/l), measured as slope of the 

regression line representing mean change of population size as a function of time was 

contingent on the treatment group (one-way ANOVA; F3, 48 = 13.99; P < 0.00001) (Figure 

2.41). A significant difference was detected between the growth rate of the ancestors 

relative to that of the asexual group (t = 2.32, df = 39, P = 0.025), obligate sexual group (t = 
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5.19, df = 44, P < 0.00001), and facultative sexual group (t = 3.87, df = 41, P = 0.0004). No 

significant differences were detected among the treatment groups of the rescued 

populations. 

 

Figure 2.40 – Comparison of mean population size of high rate rescued populations with that of 
the ancestors assayed in the same conditions (12 g/l); the bars represent standard error of the 
mean (absent in treatment group comprising a single rescued population). 

 

 

Figure 2.41 – Comparison of growth rate of high rate rescued populations (with respect to mode of 
reproduction) with that of the ancestors assayed in the same conditions (12 g/l); the bars 
represent standard error of the mean. 
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2.5 Discussion  

 

 The aim of this study was to investigate the effect of mode of reproduction on the 

extinction dynamics and the probability of evolutionary rescue of experimental populations 

of C. reinhardtii, in environments which were deteriorating at different rates. The main 

prediction of the experiment was the relative advantage of sexual populations reflected in 

lower extinction rate and higher number of evolutionary rescue events for all rates of 

environmental deterioration (no interaction between mode of reproduction and the rate of 

environmental deterioration). 

 The extinction rate among treatment groups was positively correlated with the rate 

of environmental deterioration. Populations subjected to a gradual rate of deterioration 

showed the lowest rate of extinction. The earliest extinctions within gradual rate treatment 

group commenced after all the populations in other two groups had already gone extinct. 

The advantage held by this treatment group is also reflected in lower extinction dynamics 

with respect to salt concentration. No extinctions occurred prior to and during the exposure 

to 24 g/l of salt concentration, contrasting with the high rate group, which had lost almost a 

third of populations by the time of exposure to this concentration. The advantage relative 

to the moderate rate group was less prominent, since only 4% of moderate rate 

populations had gone extinct up to this time point. After exposure to 30 g/l of salt 

concentration, the gradual rate group had a slight advantage of 6% in number of survived 

populations relative to the high rate group, while moderate rate populations had gone 

extinct entirely. The advantage of the gradual rate group could be attributed to the lowest 

population size decline, which likely resulted in higher supply of beneficial mutations 

compared to other two groups, and consequently more efficient tracking of the moving 

optimum. 

 The difference in the extinction dynamics between the high rate and moderate rate 

groups was statistically significant, in respect to both time in growth cycles and salt level 

reached prior to extinction. The majority of moderate rate populations survived the period 

after extinction of last high rate populations. As in the case of the gradual rate group, 

slower decline of a population size of moderate rate group relative to high rate group of 
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populations could have likely influenced these differences in extinction rate. However, a 

noticeable fluctuation in the extinction dynamics of these groups relative to salt 

concentration is less straightforward to explain. Moderate rate groups had advantage of 

28% in the number of surviving populations relative to high rate group up to and including 

the level of stress corresponding to 24 g/l of salt concentration. However, this advantage 

started to decline very abruptly when salt concentration reached and surpassed 26 g/l, 

which culminated in extinction of all the populations by the time salt concentration had 

reached 30 g/l/. In contrast, 30% of high rate populations survived this salt concentration.  

This sudden increase in the likelihood of extinction of moderate rate populations 

requires an explanation. It is possible that salt concentration of 26 g/l is near the limit of 

physiological tolerance for C. reinhardtii. In the study of Lachapelle and Bell (2012), 35% of 

all the experimental populations of C. reinhardtii went extinct during the exposure to salt 

concentrations between 26g/l and 30g/l. This is consistent with the result of this 

experiment. Immediately after the salt concentration had surpassed 26 g/l, gradual rate 

populations started to go extinct (first 14% of the populations went extinct) and moderate 

rate groups lost 55% of the populations. 

Why have only the high rate and gradual rate groups survived this “mass-

extinction” (Lachapelle and Bell, 2012) period? One of the possible explanations is that 

survival of the upper limits of physiological tolerance of this species involves mutational 

pathways available only under high rate of change. Mutational pathways are contingent on 

the rate of environmental deterioration (Lindsey et al., 2013), so there is a possibility that 

only stronger selection operating in the high rate of environmental deterioration could 

have led to fixation of mutations of large effects that conferred advantage under high 

magnitude of stress. The response of gradual rate populations could have been realized 

through slow, but progressive fixation of beneficial mutations available due to less 

prominent decline of mean population size. Consequently, in the absence of strong 

selection or more stable influx of beneficial mutations, moderate rate populations 

responded the least efficiently when the magnitude of stress had reached the level of 

upper physiological tolerance.  

Contrary to my prediction, the advantage of sex was not consistent for all the rates 

of environmental deterioration and significant interaction between mode of reproduction 

and the rate of salt increase was detected, both with respect to time in growth cycles and 
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salt concentration reached before the extinction event. The only difference in extinction 

rate among treatment groups with respect to mode of reproductions was recorded during 

moderate rate of environmental deterioration. Notably, obligate sexual group had the 

slowest extinction rate, significantly different than that of both facultative sexual and 

asexual groups. This advantage was the highest during the interval of “mass extinctions” 

(26-30 g/l) which suggests that the beneficial effect of sex might have been realized 

through release of beneficial mutations of large effect from inferior genetic background, 

crucial for survival of the interval of high extinction probability. The supply of these 

mutations could have likely been very limited due to a large drop in population size caused 

by the severe stress. However, moderate rate obligate sexual populations underwent only 4 

sexual cycles, the last of which was induced during exposure to 8 g/l of salt concentration – 

long before the period of mass extinctions. Hence, the beneficial effect of sex must have 

occurred prior to the interval corresponding to the increased likelihood of extinctions. It is 

possible that sex increased genetic variance for fitness which enabled populations to track 

the moving optimum and survive for longer interval of time than asexual populations, but 

that was not sufficient to overcome higher magnitude of environmental stress. 

The probability of evolutionary rescue was contingent on the rate of deterioration. 

Gradual rate treatment groups reached the maximal salt concentration for which 

evolutionary rescue had been recorded and had the highest percentage of rescued 

populations than either of two other groups. The lowest number of extinction events 

occurred in high rate treatment group. These findings are consistent with previously shown 

results (Bell and Gonzalez, 2011; Lindsey et al., 2013), which demonstrated the inverse 

relationship between the occurrence of evolutionary rescue events and the rate of 

environmental deterioration.  

Mode of reproduction did not significantly affect the probability of evolutionary 

rescue. The obligate sexual group had only a marginal advantage over other two treatment 

groups in the number of extinction events, and the rescued populations did not have 

significantly higher fitness both with respect to the growth rate and population size. The 

only advantage of sex was recorded within the moderate rate treatment groups: higher 

mean fitness of the populations of both sexual groups rescued in 8 g/l of salt concentration 

relative to asexual group and higher number of rescued events (obligate sexual group) in 12 

g/l of salt concentration. 
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The results of this experiment indicate a large effect of rate of environmental 

deterioration on both the extinction dynamics and evolutionary rescue and comparatively 

modest effect of mode of reproduction, mostly reflected in mitigation of negative effects of 

stress, manifested through reduction of population size decline. The populations subjected 

to the gradual and moderate rate of environmental deterioration tracked the moving 

optimum more efficiently than the populations within high rate group, which is reflected in 

lower rate of population size decline, lower extinction rate and higher probability of 

evolutionary rescue. However, probability of survival when exposed to the highest level of 

stress was lower for the moderate rate group, relative to other treatment groups. Notably, 

sex provided no significant effect in the groups which were more likely to survive the period 

of increased chance of extinction, but delayed extinctions within a moderate rate group. 

This indicates that, in the context of survival, sex might be the most beneficial strategy 

when the probability of extinction starts to increase rapidly.  
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3. Sex promotes evolutionary rescue in 

Chlamydomonas reinhardtii in an environment 

deteriorating in a complex manner 

 

3.1   Introduction 

There is a general consensus that the current pace of environmental change is 

unprecedented in recent human history (Thomas et al., 2004; Bell and Collins, 2008; Bell 

and Gonzalez, 2009; Barnosky et al., 2012). Facing this global change, many species are 

likely to be exposed to conditions outside of the range of their ecological niche. If the rate 

of change is too severe, maladapted species could potentially face extinction.  

A population can respond to a detrimental environmental change via two different 

mechanisms: migration to less detrimental habitats or phenotypic plasticity. The only 

possible alternative, if neither of these mechanisms is available, is a genetic change through 

adaptive evolution (Bell and Collins, 2008). This process of adaptation of a population so 

that it can persist in conditions that would have ultimately caused extinction of the 

ancestral population has been termed evolutionary rescue (Gomulkiewicz and Holt, 1995). 

It is manifested through the rise in frequency of alleles advantageous in harmful conditions 

through the operation of natural selection acting on standing genetic variation, or de novo 

beneficial mutations. Consequently, the population may restore mean fitness and 

ultimately avoid extinction. 

The growing awareness of the adversity of an ongoing global change has stimulated 

various types of experimental studies of evolutionary rescue during the last two decades 

(recently reviewed by Carlson et al., 2014). These studies have identified numerous factors 

positively or negatively correlated with the likelihood of evolutionary rescue. For instance, 

the probability of evolutionary rescue is higher in large populations due to a proportionally 

higher influx of beneficial mutations (Bell and Gonzales, 2009; Ramsayer et al., 2013) and 

reduced detrimental effect of genetic drift (Willi and Hoffmann, 2009). Furthermore, higher 

standing genetic variation in a population enhances the response to selection and thereby 

increases the likelihood of survival (Agashe, 2009; Agashe et al., 2011; Lachapelle and Bell, 

2012; Ramsayer et al., 2013). The probability of evolutionary rescue is inversely 

proportional to the rate of environmental deterioration (Perron et al., 2007; Bell and 
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Gonzales, 2011; Lindsey et al., 2013) given that rapid change implies large initial 

maladaptation and thus a greater decline of a population size (Carlson et al., 2014). 

Mode of reproduction is another factor that affects the likelihood of evolutionary 

rescue (Lachapelle and Bell, 2012.). Sex can increase genetic variance available for selection 

and thereby enhances adaptation to a changing environment (for example: Weismann, 

1889; Fisher, 1930; Muller, 1932; Burt, 2000). Beneficial effects of sex on adaptation include 

but are not confined to: faster assembly of beneficial mutations (Fisher, 1930), clearance of 

deleterious mutations (Muller, 1964) and breaking of negative linkage disequilibrium 

(Barton, 1995). A large body of data provides a support for hypothesis that sex enhances 

adaptation to both novel environment (Colegrave et al., 2002; Kaltz and Bell, 2002; 

Colegrave, 2002; Morran et al., 2009; Becks and Agrawal, 2011; Bell, 2013) and a 

deteriorating environment (Greig et al., 1998; Goddard et al., 2005; Lachapelle and Bell, 

2012; Lachapelle et al., 2015).  

To date, all experiments looking at the effect of sex on evolutionary rescue in 

deteriorating environments have used relatively simple environments. The study conducted 

by Lachapelle and Bell (2012) demonstrated the advantage of sex in an environment 

deteriorating in a simple way, manifested through lower extinction rate of sexual 

populations than asexual populations. This study investigated the effect of change in a 

single abiotic component of environment (increasing salinity). It is still uncertain whether 

sex provides an advantage in an environment deteriorating in a more complex fashion. 

Complex environmental deterioration implies the change in two or more components of 

environment, which both negatively affect the mean fitness of a population. Kaltz and Bell 

(2002) investigated the effect of repeated episodes of sex on adaptation to both simple and 

complex novel environments. They found that sexual populations maintain higher mean 

fitness than asexual populations in most environments, but the advantage increases with 

the increase in environmental complexity. Since similar factors determine the adaptation to 

both novel and a deteriorating environment, it is likely that sex will be more advantageous 

in a complexly deteriorating environment.  

The complex environmental deterioration may comprise the simultaneous change 

in abiotic and biotic component of an environment. The Biotic component of an 

environment is a factor that often affects the mean fitness of a population (Begon et al., 

2006) and thus may produce a significant impact on chances for population survival when 
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conditions change. Most of the studies of evolutionary rescue have considered a single 

species. In nature, the ability to adapt depends on interactions between coexisting species 

(Jones, 2008; Osmond and de Mazancourt, 2013.). Incorporating these interactions into 

studies is essential for predicting the outcomes of adaptive evolution in the context of a 

deteriorating environment and investigating the potential benefits of sex in a complexly 

deteriorating environment.  

In this study, I focus on the competitive (negative) interactions among species, 

since recent studies (Johansson 2008; Collins 2011) had demonstrated that competition 

restricts adaptation. Johansson (2008) modelled a competition between two species in a 

changing environment and found that the species disfavoured in a competition suffers a 

decline in effective population size, which in turn reduces the maximal adaptive rate. 

Furthermore, competition in stressful conditions can result in a trade-off between 

adaptation to abiotic and biotic component of environment (Collins, 2011; Lawrence et. al, 

2012). Collins (2011) allowed three strains of Chlamydomonas reinhardtii to compete in a 

deteriorating environment (increased concentration of CO2). The strains exposed to the 

elevated concentrations of CO2 that had evolved higher growth rate in the presence of a 

competitor were less fit when propagated alone. Based on the restrictive effect of negative 

interspecies interactions on adaptation, we might predict that competition should also 

reduce the probability of evolutionary rescue in conditions that would initially drive a 

population extinct. However, to my knowledge, no experimental study has been performed 

in environment lethal to the constituent species, so the question whether and how 

competition can affect evolutionary rescue still remains unresolved.  

Despite the fact that both competition and sex independently affect the likelihood 

of evolutionary rescue, there is still no experimental evidence whether the interaction of 

these factors alters the probability for survival. If a competitor is incorporated into a 

deteriorating environment of a focal species, it will increase the complexity of 

environmental deterioration and intensify the decline of the mean fitness. However, if 

there is a difference in initial maladaptedness between competitors, one species (more 

maladapted counterpart) could increase the probability of survival of other species (less 

maladapted counterpart) because selection imposed by moving optimum would be 

augmented by competition selecting in the same direction (for instance, if the change 

involves a resource one species can exploit more efficiently than the other species) (Jones 
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2008; Osmond and de Mazancourt, 2013). An asexual (clonal) population will likely be 

limited in a diversity of genotypes available for selection. In contrast, sex could generate 

such genotypes and, coupled with competition, restore the mean fitness of the population.  

In this study, I attempt to contribute to a growing body of experimental studies 

investigating the effect of sex in deteriorating environments. I test the hypothesis that sex 

remains beneficial in a complexly deteriorating environment, which both components, 

abiotic and biotic, negatively affect the mean fitness of a population, thereby reducing the 

chance for survival. The effect of competition on evolutionary rescue is less predictable and 

current studies suggest two alternative possibilities. I test the hypothesis that competition 

will maximize the likelihood for evolutionary rescue of the focal species, if coupled with sex. 

In contrast, the isolated focal species will have less chance for survival irrespective of mode 

of reproduction. 

To test these hypotheses, I allowed populations of the unicellular green algae 

(Chlamydomonas reinhardtii) to evolve in an environment to which they were initially 

poorly adapted, such that in the absence of evolutionary change the populations would go 

extinct. I manipulated both their mode of reproduction (either entirely asexual, or with 

history of sexual reproduction) and the presence of a competitor in a fully factorial design. 

Two predictions arise from my hypotheses:  

I. If sex increases the likelihood for evolutionary rescue in a complexly 

deteriorating environment, sexual populations will have higher number of 

rescue events than asexual populations in the presence of the competitor. 

II. If combination of sex and competition maximizes the likelihood for 

evolutionary rescue, the number of rescue events will be the highest in sexual 

populations propagated with the competitor; 

 

 

 

 

 



 

76 
 

3.2 Materials and Methods  

 

3.2.1. The species used in experiment  

 

3.2.1.1. Base Populations of C. reinhardtii 

Each experimental population (96 in total) was established by random selection of 

10 isolates from the library of C. reinhardtii isolates, built for the experiment described in 

Chapter 2, thus representing a unique combination of 10 genotypes: 48 sexual populations 

were established by combining 5 mt+ and 5 mt- isolates; two sets of 24 asexual populations 

were established by combining 10 mt+ and 10 mt- isolates, respectively.  

3.2.1.2. The Competitor Species (Chlamydomonas moewusii)  

The competitor species used in this study was another unicellular chlorophyte alga, 

C. moewusii. This freshwater species was selected for the experiment due to diversity of 

strains isolated from natural habitats and similar growth requirements as C. reinhardtii. I 

obtained 4 wild type strains (cc-1419, cc-1420, cc-1480 and cc-1481) from the University of 

Minnesota algae collection (http://www.chlamycollection.org/strains/).  

 

3.2.2 Assay of the experimental species for growth in high salt  

The probability of evolutionary rescue of the focal species might be affected by the 

potential differences in high salt sensitivity between C. reinhardtii and C. moewusii. To 

investigate this possibility, prior to commencing of the selection experiment, all 39 

ancestral isolates used for constructing the experimental C. reinhardtii populations 

(obtained from the library of C. reinhardtii isolates; see Chapter 2 for details) and all four C. 

moewusii wild type isolates were assayed for growth in a selective medium (Bold’s 

supplemented with 15 g/l of salt) and a benign medium (Bold’s) as a control. The 

populations of both species were allowed two growth cycles (3-4 days; 5% of culture 

passaged), but were assayed only during the second cycle, to avoid the possible carry-over 

effects after plating from agar slant tubes, used for storing the cultures. The assay was 

performed in 96-well plates and growth estimated spectrophotometrically, by measuring 

http://www.chlamycollection.org/strains/


 

77 
 

OD750 twice a day (approximately every 12 hours) until the cultures reached the stationary 

phase (after approximately 4 days). The fitness for growth in each salt concentration was 

estimated by calculating the maximal yield of each species (Maximal OD - Initial OD). The 

maximal yield was selected as a measure of fitness, since it does not depend on the initial 

population size (Lachapelle and Bell, 2012). 

3.2.3. Selection experiment   

Experimental evolution was carried out in two phases. In the first phase, 

populations of the focal species experienced a deteriorating environment in which salt 

concentration increased to lethal level. In the second phase, their ability to adapt to these 

conditions was monitored in both the presence and absence of a competing species. 

3.2.3.1. Cultivation and Transfer Procedure  

  All the experimental populations of C. reinhardtii were cultivated in 24-well plates 

in Bold’s broth medium under standard conditions (26˚C, 3200 lux illumination, shaking at 

180 rpm and covered with sterile breathable membranes to prevent cross-contamination 

and uneven evaporation across the plates). A serial passage was performed after every 3-4 

days by transferring 5 % of each population to the fresh medium. After every second 

growth cycle, each population was sampled (150 µl) and population size estimated 

spectrophotometrically by measuring optical density (OD750) of the culture. The 

experimental populations were propagated in a medium supplemented with NaCl 

(hereafter referred to as salt), in which the concentration gradually reached 15 g/l in three 

equal steps of increase (5 g/l). The salt concentration of 15 g/l was chosen as an endpoint 

because it completely inhibits the growth of C. reinhardtii (Reynoso and de Gamboa, 1982). 

The stepwise increase in salt level was selected as an experimental procedure since the 

immediate exposure to the lethal stress would have likely resulted in a too abrupt decline 

of the population density. The likelihood of contact between two opposite gametes 

decreases in a sparse population which can consequently hamper the completion of the 

sexual cycle (production of zygotes).  

3.2.3.2. Sexual Cycle  

Prior to each step of salt increase (after every two growth cycles), sexual 

populations were allowed to undergo a sexual cycle. I allowed three sexual cycles in total, 
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since Kaltz and Bell (2002) had demonstrated that three successive episodes of sex provide 

a long-term increase of the adaptive rate of sexual populations. Each sexual cycle was 

induced by using the same experimental procedure as described in Chapter 2 (see Section 

‘Sexual Cycle’ for details). Sexual populations in this experiment were not allowed to 

transfer unmated gametes to the next phase of growth cycles (eliminated by freezing) 

Hence, mode of reproduction of these populations was obligate sexual. 

3.2.3.3. Establishing and Cultivation of Mixed Populations  

To examine the interaction between mode of reproduction and competition, during 

the second phase of the experiment I manipulated the presence or absence of a competitor 

(summarized in Figure 3.1, see below). In this phase of the experiment, at the point which 

the environment had reached its maximum salt concentration, the mixed population were 

assembled by combining each wild type of C. moewusii (cultivated separately in standard 

conditions prior to assembling with the focal species) with six sexual populations and six 

asexual populations of C. reinhardtii. The control asexual and sexual C. reinhardtii 

populations were not combined with the competitor.  

Figure 3.1 – Two phases of the experiment. In the first phase of experiment, which lasted until salt 
concentration reached 15 g/l, both species were cultivated separately: two groups of sexual 
populations of C. reinhardtii, two groups of asexual populations of C. reinhardtii and a single 
population of each wild type of C. moewusii; each circle represents a single population. During this 
phase, populations in sexual groups of C. reinhardtii underwent three sexual cycles. In the second 
phase, each wild type of C. moewusii was combined with six populations of one sexual C. reinhardtii 
group and six populations of asexual C. reinhardtii group. The remaining sexual and asexual groups 
comprised the control populations, propagated without the competitor. 
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Both counterparts of the mixed populations started this phase of the experiment 

with equal cell densities, estimated the following way. Nine randomly chosen populations 

of C. reinhardtii and the population of each wild type of C. moewusii were sampled (150 µl) 

and population size estimated by cell counting with a haemocytometer. Each of the C. 

moewusii wild type populations were then diluted to the culture density corresponding to 

the average cell number of the sampled C. reinhardtii populations. 

All the mixed populations and control C. reinhardtii populations were cultivated in 

the Bold’s broth medium supplemented with 15 g/l of salt throughout the rest of 

experiment, maintained by serial passage (5 % of each population) performed after every 3-

4 days. Prior to each passage to the fresh medium, a sample (200 µl) of each population 

was serially diluted (10-1 or 10-2 - fold dilution) and transferred to the corresponding Petri 

dish with Bold’s agar medium supplemented with sodium-acetate. Each sampled 

population was incubated until colonies appeared (approximately 4 days) and the cell 

number estimated by colony counting. The cell number of the population sample was 

converted to the cell number (per ml) of the whole population by using the equation: cell 

number per ml = number of colonies / dilution factor X sample size (0.1 ml). After given 

interval of time, all the mixed populations were wrapped in aluminium foil and incubated in 

dark for 3-4 days to determine the population size of each species. 

3.2.3.4. Distinguishing the two species 

To distinguish the two species, I grew them under conditions in which they would 

show different growth characteristics on agar plates. I made use of the fact that C. 

reinhardtii grows well in the dark on acetate supplemented agar plates, whilst C. moewusii 

does not.  

Both species are facultative heterotrophs, capable of utilizing sodium-acetate while 

incubated in light. However, C. moewusii cannot metabolize sodium acetate in the dark or 

otherwise shows poor growth (Harris, 2009.). In contrast, C. reinhardtii cells utilize sodium 

acetate and continue dividing in the dark, although with a reduced growth rate than under 

light conditions. This biological feature had been exploited in this experiment, given that C. 

reinhardtii colonies clearly increased in size after incubation in darkness, thus becoming 

distinguishable in a mixed culture. Furthermore, colonies could have been differentiated 
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based on the individual cell features. The cells of C. reinhardtii are oval or spherical, while 

the moewusii colonies comprise the elongated and ellipsoid cells (personal observation). 

3.2.3.5. Recording the evolutionary rescue events 

The experiment continued until one or both species of all the mixed populations 

and all the control populations went extinct or showed clear positive growth. The species-

constituent of a mixed population had been scored as ‘rescued’ if it repeatedly scored the 

same or higher number of cells/ml each time sampled, thus showing the positive growth in 

lethal conditions. Each species had been scored as ‘extinct’ if no cells were detected after 

visual inspection of liquid culture or plating on agar.  

 

3.3   Data analysis 

The probability of evolutionary rescue was estimated by fitting Generalised Linear 

Model (binomial logistic regression) with two factors as categorical independent variables 

(‘mode of reproduction’ and ‘competition’), and survival/extinction as a binary responsive 

variable. ‘Mode of reproduction’ comprises two levels (sexual or asexual populations) while 

‘competition’ comprises five levels: absence of the competitor and each of the four wild 

types being considered as a different level. The factors were regarded as fixed effects. The 

interaction between mode of reproduction and competition was incorporated into the 

model.  

The mean fitness of the surviving populations was analysed by fitting two-Way 

ANOVA, with two factors as categorical independent variables (‘mode of reproduction’ and 

‘competition’) and ‘mean population size per growth cycle’ as a continuous responsive 

variable. The levels within each factor were analysed with unpaired t-test. 

All the analyses were performed using R (R Core Team, 2017). 
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3.4 Results 

 

3.4.1.    Assay of the experimental species for growth in high salt  

      In a benign medium, the average maximal yield of C. reinhardtii isolates was 35% 

higher than that of C. moewusii wild type isolates (Figure 3.2). The average growth of C. 

moewusii wild type isolates in a selective medium was positive, despite considerable 

reduction in maximal yield in comparison to a benign medium (by 89%) (Figure 3.3). In 

contrast, the average growth of C. reinhardtii isolates was negative. Wild type strains of C. 

moewusii showed variation for growth in a selective medium (Figure 3.4). The wild type 

strain cc-1480 scored negative growth, while the other wild type strains showed positive 

growth, reaching different maximal yields. 

 

 

 

 

 

 

    

 

 

 

Figure 3.2 – The average yield of C. reinhardtii ancestral isolates (blue) and C. moewusii wild type 
isolates (red) per each time point (h), measured in a benign medium (Bold’s); the error-bars 
represent standard error of the mean. 



 

82 
 

 

Figure 3.3 - The average yield of C. reinhardtii ancestral isolates (blue) and C. moewusii wild type 
isolates (red) per each time point (h), measured in a selective medium (Bold’s supplemented with 
15 g/l of salt); note the difference in scale in comparison to Figure 3.2; the error-bars represent 
standard error of the mean. 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 3.4 – The average yield of four C. moewusii wild types per each time point (h), measured in 
a selective medium (Bold’s supplemented with 15 g/l of salt); no error-bars are present since the 
experimental populations were not replicated. 
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3.4.2. Selection experiment  

 

3.4.2.1. Evolutionary rescue  

 

Sex affected the probability of evolutionary rescue (Binary logistic regression; χ2 = 

5.75; df = 1; P = 0.016). Of the initial 48 populations for each mode of reproduction, 19 

sexual populations survived the lethal treatment (40%); in contrast, only 9 asexual 

populations (19%) avoided extinction (Figure 3.5). Competition treatment also affected the 

probability of evolutionary rescue (Binary logistic regression; χ2 = 15.04; df = 4; P = 0.005). 

Of the initial 48 populations propagated without the competitor, 20 populations survived 

the lethal conditions (42%). Of the initial 48 populations propagated with one of the four 

different wild types, 8 populations (17%) in total were rescued (Figure 3.6). Post-hoc 

Tukey’s HSD analysis was conducted on all possible pairwise comparisons and revealed 

statistically significant difference (P = 0.02) between survival in presence of cc-1419 wild 

type (no population survived) and the absence of the competitor. There was no significant 

difference in survival between the populations propagated without the competitor and the 

populations propagated with cc-1420 wild type (4 populations survived), cc-1481 wild type 

(3 populations survived) and cc-1480 wild type (a single population survived), despite the 

fact that 33%, 25% and 8% of the initial 12 populations, respectively, survived when these 

wild types were present.  

In the absence of the competitor, 14 sexual populations (58%) and 6 asexual 

populations (25%) survived the lethal conditions. When the competitor was present, the 

probability of evolutionary rescue declined for both modes of reproduction: 5 sexual 

populations (21%) and 3 asexual populations (12%) survived the lethal treatment (Figure 

3.7). When cc-1480 and cc-1481 wild types were present, evolutionary rescue was recorded 

only in sexual populations (1 and 3 populations survived, respectively). Sex was 

disadvantageous when cc-1420 wild type was present (1 population survived, contrasted 

with 3 rescued asexual populations). No mode of reproduction provided advantage when 

cc-1419 wild type was present, given the extinction of all the populations (Figure 3.8).  

Despite differential survival in the presence of different wild types, no significant 
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interaction between mode of reproduction and competition treatment was detected 

(Binary logistic regression; χ2 = 8.06; df = 4; P = 0.09). 

 

 

Figure 3.5 – Total probability of evolutionary rescue for sexual and asexual populations 
irrespective of the type of environment; the number of rescue events per each mode of 
reproduction is presented above each bar plot, with a percentage of surviving populations out of the 
initial 48 populations in brackets.  

 

 

Figure 3.6 – Total probability of evolutionary rescue of the focal species in both environments, 
irrespective of mode of reproduction; the number of rescue events per each type of environment is 
presented above each bar plot, with a percentage of surviving populations out of the initial 48 
populations in brackets. 
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Figure 3.7 – Probability of evolutionary rescue for the focal species when propagated with and 
without the competitor. The number of surviving populations per each treatment group is 
presented above each bar plot, with a percentage of surviving populations out of the initial 24 
populations in brackets. 

 

Figure 3.8 – Probability of evolutionary rescue for both modes of reproduction of the focal species, 
per each level of competition treatment; the probability of evolutionary rescue is presented as a 
percentage of surviving populations per each treatment group, with a number of surviving 
populations out of the initial 24 populations (for ‘no competitor’ treatment) and 6 populations (for 
each of the wild type strain of the competitor) in brackets; no population of the focal species 
survived when propagated with cc-1419 wild type. 
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3.4.2.2. Mean fitness of the rescued populations 

In order to determine the effect of competition on fitness of the rescued 

experimental populations, I estimated the population size of the focal species after each 

growth cycle by counting the colonies appeared on agar plates after 4 days. Mean fitness of 

each treatment group (sexual/asexual and presence/absence of the competitor) 

corresponds to the average number of cells / ml per each growth cycle. Sex significantly 

affected mean fitness of the rescued experimental populations (two-way ANOVA; F = 4.97; 

df = 1; P = 0.03). Sexual populations had more than two-fold higher mean populations size 

(Figure 3.9). The effect of competition on mean fitness of the rescued experimental 

populations was not significant (two-way ANOVA; F = 0.24; df = 1; P = 0.63), (Figure 3.10). 

There was no significant interaction between mode of reproduction and competition on the 

mean fitness of the rescued populations (two-way ANOVA; F = 0.88; df = 1; P = 0.36), since 

the rescued sexual populations had higher mean population size than asexual populations 

irrespectively of the presence of the competitor. However, the difference in the population 

size was significant only in the absence of the competitor (unpaired two-sample t-test; t = 

2.13, df = 18, P = 0.047) (Figure 3.11; two rightmost interval plots). In contrast, there was 

no difference in mean fitness of sexual and asexual rescued populations propagated in the 

presence of the competitor (unpaired two-sample t-test; t = 0.72; df = 6; P = 0.5) (Figure 

3.11; two leftmost interval plots). There was no significant difference in mean fitness 

between the rescued sexual populations propagated with and without the competitor 

(unpaired two-sample t-test; t = 0.84; df = 17; P = 0.41). Likewise, the difference in mean 

fitness between the rescued asexual populations propagated in the presence and absence 

of the competitor was not significant (unpaired two-sample t-test; t = 0.85; df = 7; P = 0.42). 

 



 

87 
 

 

Figure 3.9 – Mean population size of the rescued populations of the focal species per each mode of 
reproduction, irrespective of the presence of the competitor; the bars represent standard error of 
the mean; the sqrt-transformed mean population size is plotted on the y axis.  

 

Figure 3.10 – Mean population size of the rescued populations of the focal species in both 
environments, irrespective of mode of reproduction; the bars represent standard error of the 
mean; the sqrt-transformed mean population size is plotted on the y axis. 
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Figure 3.11 – Mean population size of the rescued populations of the focal species; the bars 
represent standard error of the mean; the sqrt-transformed mean population size is plotted on the y 
axis; the colour corresponds to the mode of reproduction;  

 

3.5 Discussion  

 

Sex is beneficial when environment deteriorates in a simple way, as shown by 

previous studies (Lachapelle and Bell, 2012; Bell, 2013; Lachapelle et al., 2015). This is 

consistent with my results, given that probability of evolutionary rescue was more than 

two-fold higher for sexual populations than that of asexual populations. Furthermore, the 

rescued sexual populations have higher mean fitness, given the two-fold larger mean 

population size.  

To the best of my knowledge, this is the first study that demonstrates the 

advantageous effect of sex in a complexly deteriorating environment. Whilst evolutionary 

rescue was less likely if a competitor was present, sexual populations maintained the 

advantage in number of rescue events when the competitor was present (40% higher than 

that of asexual populations). The consistency of higher number of rescue events in both 

environments explains the lack of significant interaction between sex and competition 

treatment. However, sex was not advantageous in the presence of cc-1420 wild type, whilst 
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the populations of both modes of reproduction failed to survive while propagated with cc-

1419 wild type. This suggests that the beneficial effects of sex may be constrained by the 

genotype of the competitor.   

 The difference in mean fitness of the rescued sexual and asexual populations 

propagated with the competitor was not significant. Notably, the rescued sexual 

populations suffered a 40% reduction in mean population size in comparison to the 

populations propagated in the absence of the competitor. Despite the fact that the 

difference in mean fitness between these two treatment groups was not statistically 

significant, this indicates that the main negative effect of competition in my experiment is a 

reduction in the population abundance of the focal species, as previously shown (Ayala 

1969; Bengtsson 1989; Martin and Martin, 2001). Reduced population size can in turn 

negatively affect the supply of beneficial mutations, thus hampering the adaptive walk in 

the lethal environment, which could have been completed in the absence of the 

competitor. This may explain a remarkable difference in fitness of rescued sexual and 

asexual populations propagated without the competitor, but no difference in the presence 

of the competitor. 

Competition significantly reduced the likelihood of evolutionary rescue. The focal 

species was driven to extinction in 83% of all the mixed populations. The average extinction 

of the focal species per wild type of the competitor was 25% higher than in the absence of 

the competitor. The high salt assays revealed lower sensitivity of C. moewusii to high salt 

than C. reinhardtii, which is a plausible explanation for the elimination of the focal species 

in the majority of mixed populations.  I found general differences in survival of the focal 

species when propagated among different wild types. The proportion of extinct populations 

varied from 66% for cc-1420 to 100% for cc-1419 wild type. This is not surprising, given that 

the pilot experiment performed prior to commencing of the selection experiment revealed 

the differences in absolute fitness of the wild types when grown in high concentration of 

salt. However, there is no evidence that presence of different wild types systematically 

affected the general negative effect of competition, given that the focal species suffered 

the reduction in number of rescued populations when propagated along any of the four 

wild types.  

The probability of evolutionary rescue was reduced irrespectively of modes of 

reproduction when the competitor was present. Despite the relative advantage of sexual 
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populations over asexual populations in total survival, sex could not compensate for the 

negative effect of competition. This is reflected in 37% reduction in survival of sexual 

populations than in the absence of the competitor, which refutes my hypothesis that 

interplay of sex and competition maximizes the chance for evolutionary rescue. A decline in 

population abundance caused by competition likely affected the availability of favourable 

genotypes and thus increased the probability of extinction. 

This experiment provided clear evidence that sex promotes and competition 

impedes evolutionary rescue. An outstanding question is: will the effects of sex remain the 

same if degree of complexity of environmental deterioration increases? Sex increases the 

rate of adaptation in more complex novel environment (Kaltz et al., 2002). Similar pattern 

can be expected for a deteriorating environment, but experimental evidences are required. 

Will competition always lead to a decrease in mean fitness? The negative effect of 

competition is proportional to the niche overlap between competitors (Osmond and de 

Mazancourt, 2013). Two ecologically separated competitors would potentially suffer lower 

population decline than the ones characterized by similar patterns of resource use. 

Similarly, the phylogenetic distance between competitors may indirectly influence the 

likelihood of evolutionary rescue, under the hypothesis that the level of competition is 

directly proportional to relatedness between competitors (Naughton et al., 2015). 

However, C. moewusii and C. reinhardtii occupy different ecological niches, the former 

being a freshwater organism and the latter terrestrial. Moreover, both species are on the 

opposite ends on the phylogenetic tree of Chlamydomonas genus, thus being distantly 

related. This indicates that the effect of competition on evolutionary rescue will remain 

negative, regardless of the type of the competitor. Whether this is the widespread pattern 

in nature yet remains to be investigated.  
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4. Investigating the effect of an ecological similarity 

and phylogenetic relatedness between competitors 

on the probability of evolutionary rescue of the 

focal species 

 

4.1 Introduction 

Global change will impose an inevitable negative impact upon many species. Due to 

the lack of dispersal abilities or response by phenotypic plasticity, many populations will 

face extinction unless they adapt in situ (Eizaguirre and Baltazar-Soares, 2014) via the 

process termed evolutionary rescue (Gomulkiewicz and Holt, 1995). Understanding the 

factors that affect the probability of evolutionary rescue is important for assessing the 

vulnerability of species and can contribute to conservation effort aimed at preventing 

potential extinctions. 

Most experimental studies of evolutionary rescue have been performed using a 

single species. However, in natural conditions, a species rarely exists in isolation. More 

realistically, species are interconnected with the biotic component of the environment 

through a multitude of interactions. Hence, incorporating ecological realism into the study 

of evolutionary rescue is important for assessing the likelihood of evolutionary rescue of a 

focal species. 

Competitive interactions among species generally negatively affect the adaptation 

rate of a population subjected to a novel environment, as shown by both theoretical 

(Johansson, 2008) and experimental studies (Collins, 2011). This negative effect is reflected 

in a reduction of population abundance in the presence of  a competitor (Johansson, 2008) 

or a trade-off between adaptation to the abiotic and biotic component of environment 

(Collins, 2011). The experimental evidence indicates that competition increases the 

probability of extinction (e.g. Bengtsson 1989; Bengtsson and Milbrink, 1995). Bengtsson 

(1989) showed that competition among three species of Daphnia cultivated in a benign 

medium increased their likelihood of extinction, primarily due to their overlapping resource 

use. Bengtsson and Milbrink (1995) corroborated this result by demonstrating that the 
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extinction rate of two Daphnia species (D. magna and D. longispina) increased significantly  

when they were propagated together rather than in isolation. 

Based on the negative effects of competition, manifested through a reduced rate of 

adaptation and an increased extinction rate, we might predict that competition should 

reduce the probability of evolutionary rescue. In Chapter 3, I showed that the presence of a 

competitor reduced the chance of evolutionary rescue of Chlamydomonas reinhardtii 

populations, which suffered a 25% reduction in their survival rate when propagated in the 

presence of the competitor. However, this study only investigated the effect of a single 

species of competitor, and thus the general conclusion regarding the negative effect of 

competition on evolutionary rescue may not be generalizable to more natural conditions. 

Competitors often differ in various ecological and evolutionary traits which may 

affect the mean fitness of the focal population and thus, indirectly, its survival. If two 

species use similar resources (high niche overlap), we might predict that competition will 

reduce the abundance of one or both species, resulting in reduced rate of adaptation to a 

changing environment. The model by Osmond and de Mazancourt (2013) indicates that the 

probability of evolutionary rescue in the presence of a competitor is negatively correlated 

with the amount of niche overlap between competitors. Competition will impede 

evolutionary rescue if the focal population is forced to adapt to a niche occupied by a 

competitor, which implies high niche overlap (Osmond and de Mazancourt, 2013). 

Conversely, if the focal population is forced to adapt to a niche partially occupied by the 

competitor, competition could facilitate adaptation by increasing the selective pressure on 

phenotypes closer to the new niche (Osmond and de Mazancourt, 2013). 

Thus, the degree of ecological similarity or divergence between competitors can be 

an important determinant of the probability of evolutionary rescue. However, to the best of 

my knowledge, no experimental study investigating the effect of competition on 

evolutionary rescue has considered the ecological traits of the competitors. 

Ecological similarity between species is often assumed to be directly proportional to 

their degree of phylogenetic relatedness (Naughton et al., 2015). This assumption, dating 

back to the observation of Darwin (1859) that closely related species rarely coexist in 

nature (Naughton et al., 2015), has led to the Competition-relatedness hypothesis (CRH) 

which predicts higher level of competition between closer relatives (Cahill et al., 2008). This 
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hypothesis has been both supported (Maherali and Klironomos, 2006; Strauss et al., 2006; 

Valiente-Banuet and Verdú, 2008; Castillo et al., 2010; Jiang et al., 2010; Burns and Strauss, 

2011; Violle et al., 2011; Peay et al., 2012) and refuted (Cahill et al., 2008; Best et al., 2012; 

Kunstler et al., 2012; Narwani et al., 2013; Venail et al., 2014; Godoy et al., 2014; Fritschie 

et al., 2014; Alexandrou et al., 2015; Naughton et al., 2015) by various experimental and 

meta-analytic studies.  

The explanation for the lack of conclusive evidence for or against the CRH may lie in 

the fact that competitive success can depend on the hierarchical distances in species’ 

competitive abilities (for instance, unequal abilities to exploit limiting resources, differential 

susceptibility to predation and variation in reproductive output per parent; Mayfield and 

Levine, 2010), rather than ecological or phylogenetic similarities between species (Kunstler 

et al., 2012). Moreover, relevant ecological traits are not always phylogenetically conserved 

(Best and Stachowicz, 2013), which implies that phylogenetic distance between species 

cannot be considered a priori as a proxy for ecological similarity (and therefore for the 

strength of competition). However, some important attributes of species’ niches do show 

phylogenetic signal, such as germination time in plants (Burns and Strauss, 2011) and body 

mass and fecundity in Seagrass Amphipods (Best and Stachowicz, 2013), which implies that 

the strength of competition could be positively correlated with the degree of relatedness at 

least in some taxa, as demonstrated by Burns and Strauss (2011). This suggests that the 

probability of evolutionary rescue of some species may depend on the phylogenetic 

relatedness to their competitors. However, I am unaware of any experimental studies 

testing the effect of competition on evolutionary rescue which have directly manipulated 

phylogenetic relatedness between competitors. 

In this study, I aimed to expand our understanding of the effect of competition on 

evolutionary rescue, by manipulating the level of ecological similarity and degree of 

phylogenetic relatedness between competitors. I allowed competition under lethal 

conditions between experimental populations of a focal species (C. reinhardtii) and one of 

each of 10 competitor Chlorophyte species. Each of the competitors differed in ecological 

traits, being isolated either from a freshwater or a terrestrial habitat, and phylogenetic 

distance to the focal species, being positioned on a different branch of the Chlamydomonas 

phylogenetic tree. 



 

94 
 

If the probability of evolutionary rescue is negatively correlated with the degree of 

niche overlap between competitors (higher ecological similarity), I predict a higher 

extinction rate in experimental populations of C. reinhardtii (isolated from terrestrial 

habitats) propagated with a terrestrial competitor. If the probability of evolutionary rescue 

is positively correlated to phylogenetic distance between competitors, I predict a higher 

extinction rate in experimental populations of the focal species in the presence of more 

closely related competitors. 

 

4.2 Methods 

 

4.2.1. The species used in experiment  

 

4.2.1.1. Base populations of C. reinhardtii  

Each experimental population of the focal species (240 in total) was constructed by 

assembling 10 isolates randomly chosen from the library of C. reinhardtii isolates, 

established for the selection experiment described in Chapter 2. Two equal sets of 

populations comprising either mt+ or mt- were established (120 populations for each 

mating type). The populations remained entirely asexual throughout the course of 

experiment, given that each comprised the isolates of a single mating type. 

 

4.2.1.2. The Competitor Species    

The competitive species chosen for this study were 10 unicellular Chlorophyte 

algae, currently or previously classified within the genus Chlamydomonas (Table 4.1). I 

obtained 8 species (Lobochlamys segnis, Lobochlamys culleus, Microglena monadina, 

Chlorogonium capillatum, Haematococcus pluvialis, Chlamydomonas sphaeroides, 

Chlamydomonas applanata and Chlamydomonas leiostraca) from the algae collection of 

the University of Gottingen (The SAG Culture Collection of algae; http://www.uni-

goettingen.de/en/45175.html). Two species (C. globosa and C. moewusii) were obtained 

http://www.uni-goettingen.de/en/45175.html
http://www.uni-goettingen.de/en/45175.html
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from the algae collection of the University of Minnesota 

(http://www.chlamycollection.org/strains/).  

Two criteria were considered regarding the selection of competitors for the 

experiment. The first criterion was phylogenetic relatedness to the focal species. The 

phylogenetic tree of the genus Chlamydomonas (which includes other genera previously 

classified as Chlamydomonas) comprise the 8 main branches (clades) (the most recent 

revision of Chlamydomonas phylogenetic tree is by Yumoto et al., 2013). I chose two 

species from each of 5 clades. Thus, each selected pair of species is characterized by a 

different degree of phylogenetic relatedness with C. reinhardtii. The second criterion for 

the choice of competitors for the experiment was the natural habitat from which the 

species were isolated. Since the majority of Chlamydomonas strains have been isolated 

from either freshwater (e.g. marshes, lakes and ponds) or terrestrial habitats (e.g. 

agricultural habitats and gardens), I selected an equal number of species isolated from each 

habitat (5). Hence, the selected pair of species from each clade comprised a single 

freshwater and a single terrestrial natural isolate.  

Microorganisms stored in laboratory conditions are subjected to different selective 

pressures than in their natural environments, which may result in adaptive evolution 

(Collins and de Meaux, 2009). Consequently, the ecological traits of an ancestral population 

may change in a population cultivated in a laboratory. In order to examine whether the 

experimental species preserved the ancestral ecological features, I performed an assay for 

growth in the media simulating their original natural environment (see the section 

‘Examination of the ecological features of the experimental species’). 

 In order to quantify phylogenetic relatedness between C. reinhardtii and each 

competitor species, I compared the 18S rDNA sequence of each species (obtained from the 

supplier or Yumoto et al., 2013) using the Basic Local Alignment Search Tool (BLAST) 

(http://www.uniprot.org/blast/) (Table 4.2). 

 

 

 

 

http://www.chlamycollection.org/strains/
http://www.uniprot.org/blast/
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Clade Freshwater species Terrestrial species 

1
st

 Reinhardiinia Chlamydomonas globosa (cc-3349) Chlamydomonas 

sphaeroides (4.83) 

2
nd

 Oogamochlamydinia Lobochlamys segnis (1.79) Lobochlamys culleus 

(53.72) 

3
rd

 Monadinia / Polytominia Microglena monadina (31.72) Chlamydomonas 

applanata (11-9) 

4
th

 Chlorogonia Haematococcus pluvialis (34-1b) Chlorogonium capillatum 

(12-2b) 

5
th

 Moewusiinia Chlamydomonas moewusii (cc-2684) Chlamydomonas 

leiostraca (11-49) 

 

Table 4.1 – List of the competitors used for the experiment (the isolate code in brackets); selection 
of competitors was based on: a) relatedness with the focal species; 5 pairs of species were chosen 
with respect to the clade within the Chlamydomonas phylogenetic tree; the clades were ranked with 
numbers corresponding to a degree of relatedness between each pair of competitors and 
Chlamydomonas reinhardtii, which forms the upward gradient of relatedness between the 1

st
 pair 

(the most closely related to the focal species) and the 5
th

 pair (the most distantly related to the focal 
species); b) original habitat; each clade comprise a single species isolated from a freshwater habitat 
and a single species isolated from a terrestrial habitat.  

 

Species Branch length BLAST similarity (%) 

C. reinhardtii 0 100 

C. globosa 0.0028 99.674 

C. sphaeroides 0.0071 99.348 

L. culleus 0.0595 95.313 

L. segnis 0.0659 94.922 

C. leiostraca 0.0787 91.656 

C. applanata 0.0841 95.055 

M. monadina 0.0890 92.283 

C. capillatum 0.1014 94.867 

H. pluvialis 0.113 93.819 

C. moewusii 0.1729 91.451 
 

Table 4.2 – Phylogenetic relatedness between C. reinhardtii and each of the competitors; the 
estimation was obtained by comparing the 18S rDNA sequences of species using the BLAST. 
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4.2.2. Assay of the experimental species for growth in high salt  

If the competitor species differ in sensitivity to the elevated concentration of salt, 

the effect of ecology and relatedness might be confounded with the effect of this factor 

(hereafter referred to as the initial maladaptedness). To investigate this possibility, prior to 

commencing of the selection experiment, all the competitors were assayed for growth in a 

gradient of salt concentration, ranging from 1 g/l (permissive) to 17 g/l (lethal). All the 

species were allowed two growth cycles (3-4 days; 5% of culture passaged), but were 

assayed only during the second cycle, to avoid the possible carry-over effects after plating 

from agar, used for storing the cultures. The assay was performed in 96-well plates and 

growth estimated spectrophotometrically, by measuring OD750 twice a day (approximately 

every 12 hours) until the cultures reached the stationary phase (after approximately 4 

days). The fitness for growth in each salt concentration was estimated by calculating the 

maximal yield of each species (Maximal OD - Initial OD). The maximal yield was selected as 

a measure of fitness, since it does not depend on the initial population size (Lachapelle and 

Bell, 2012). 

 

4.2.3. Examination of the ecological traits of the experimental species  

Prior to commencing the selection experiment, I examined the ecological similarity 

between the competitor species and the focal species, by performing an assay in four types 

of media. Two types comprised: Bold’s broth (simulating a freshwater habitat) and Bold’s 

broth supplemented with soil-extract (simulating a terrestrial habitat), hereafter referred to 

as ‘Bold’s’ and ‘Soil-extract Bold’s’, respectively. The other two comprised  spent media 

from each of these treatments, obtained from stationary phase cultures of C. reinhardtii 

propagated in Bold’s and Soil-extract Bold’s, respectively. 

The spent media were obtained as follows. Thirty populations of the focal species, 

randomly chosen from the library of C. reinhardtii isolates, were propagated for 5 days in 

Bold’s and Soil-extract Bold’s, respectively, until reaching the stationary phase. After a given 

period, the cultures were centrifuged at 5000 rpm for 10 minutes, and the collected mixed 

supernatant injected through a syringe filter (0.22 µm diameter) to eliminate cells.  
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All the species were allowed two growth cycles and assayed during the second 

growth cycle, using the identical experimental procedure as in the previous section (see 

‘Assay of the experimental species for growth in high salt’ for details). 

 

4.2.4. Selection experiment 

 

The experiment consisted of two phases. In the first phase, populations of the focal 

species were allowed to undergo two growth cycles in a benign environment. In the second 

phase, each population was subsampled and divided into two parts, which resulted in 

establishing of two sets of 240 populations. Ten groups of twenty-four populations within 

one set were assembled with one of the competitors, while the populations comprising the 

second set were cultivated without the presence of the competitor. During this phase, both 

sets of populations were subjected to lethal level of salt, and their ability to survive with or 

without a competing species was monitored. 

 

4.2.5. Establishment and Cultivation of Mixed Populations  

 

The focal species and the competitors were cultivated separately in 24 well-plates 

in standard conditions (26:C, shaking at 180 rpm and enclosed with sterile breathable 

membranes). Half of the populations were propagated in Bold’s medium, while the other 

half was cultivated in Soil-extract Bold’s medium. Two types of media were used to 

investigate whether the chance of survival is affected by the similarity of the selective 

environment to the original habitat of the focal species (soil). The competitor species were 

maintained in Bold’s medium during this stage of the experiment. All the populations were 

allowed two growth cycles (3-4 days, with a serial passage of 5% of each population). After 

a given period, the population size of each C. reinhardtii population was estimated 

spectrophotometrically (OD750) and by cell counting with a haemocytometer. The recorded 

OD750 of each population was converted to the cell number using the equation obtained 

from an OD750 - cell number calibration curve (Figure 4.1). The population size of the 

competitor species was estimated with a haemocytometer. All the base populations were 
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then diluted to the same population density (approximately 50 000 cells per ml). Two 

subsets of each experimental population of C. reinhardtii were then created, each 

containing approximately 5000 cells inoculated from the base populations (for the 

summary of experimental design, see Figure 4.2). The populations within one subset were 

then assembled with the corresponding competitor species in order to form mixed 

populations. The mixed populations were established by combining each of the 10 

competitor species (using inoculums of approximately 5000 cells) with 24 populations of 

the focal species. The other subset of each experimental population was propagated 

without the presence of the competitor throughout the course of the experiment. Both 

subsets of 240 populations were maintained in the ancestral medium (Bold’s or Soil-extract 

Bold’s) supplemented with 15 g/l of salt, by serial passaging after every 3-4 days.  

 

 

Figure 4.1 – OD750 – cell number calibration curve for C. reinhardtii experimental populations.  
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Figure 4.2 – Two phases of the experiment; In the first phase of experiment, populations of all the 
species were propagated separately in benign conditions; each circle represents a single population. 
In the second phase, each experimental population of C. reinhardtii was subsampled and divided into 
two subpopulations. As a result, two sets of 240 populations of the focal species were formed; each 
competitor species was combined with 24 populations of one set; the populations comprising the 
other set were propagated without the competitor. 

 

4.2.6. The method for distinguishing pairs of species grown on a solid medium 

The population size of each experimental population was monitored by plating a 

sample (100 µl) of each culture on a solid medium (agar) after the completion of each 

growth cycle. A sample was plated directly from the culture (low density populations) or 

serially diluted (10-1 or 10-2 - fold dilution; high density populations) prior to transfer to the 

corresponding Petri dish. Prior to commencing the selection experiment, a series of pilot 

experiments were performed in order to determine the combination of growth factors that 

maximize differentiation in growth of species after propagation on a solid medium. The 

results of these experiments, summarised in Table 4.3, provide a rationale for utilizing a 

specific combination of growth factors for each pair of species while plated on agar. 

Each sampled population was incubated on 26°C under bright light for 4-7 days 

until colonies appeared; the mixed populations comprising L. segnis, C. moewusii or C. 

capillatum were wrapped in aluminium foil and propagated for 3 additional days in the 

darkness. The population size of each species in a mixed culture was estimated by 
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converting the number of colonies obtained after plating on a solid medium to the cell 

number, using the equation: cell number per ml = number of colonies / dilution factor X 

sample size (0.1 ml). 

 

Competitor in a 

mixed population 

Intervals of growth in the 

light/dark 

Additional carbon or nitrogen 

source 

L. segnis 4 days in light / 3 days in 

dark 

Sodium-acetate 

C. moewusii 4 days in light / 3 days in 

dark 

Sodium-acetate 

C. capillatum 4 days in light / 3 days in 

dark 

Sodium-acetate 

H. pluvialis 7 days in light Sodium-acetate and Proteose-

Pepton 

M. monadina 7 days in light Sodium-acetate and Proteose-

Pepton 

C. globosa 7 days in light Sodium-acetate and Proteose-

Pepton 

L. culleus 7 days in light Sodium-acetate 

C. leiostraca 7 days in light Sodium-acetate 

C. sphaeroides 7 days in light Acetamide (0.01 mM) 

C. applanata 7 days in light Acetamide (0.01 mM) 

 

Table 4.3 – The combination of growth factors utilised to differentiate C. reinhardtii from each 
competitor within the corresponding mixed population;  

 

4.2.7. Recording the evolutionary rescue events 

The experiment continued until one or both species of all the mixed populations 

and all the populations propagated without the competitor either went extinct or showed 

clear positive growth. The evolutionary rescue of the focal species was assayed during the 
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last three growth cycles of survived mixed populations, by visual inspection of liquid 

cultures and plating of 100 µl sample of each culture on agar plates. The number of 

colonies obtained after the incubation was converted to the number of cells per ml as 

described in the previous section. The mean fitness of the rescued populations was 

estimated by calculating the average number of cells /ml scored during the assay.  

The species-constituent of a mixed population was recorded as ‘rescued’ if it had 

repeatedly scored the same or a higher number of cells/ml each time it was sampled, thus 

showing positive growth in lethal conditions. Each species was recorded as ‘extinct’ if no 

cells were detected after visual inspection of liquid culture or plating on agar.  

Despite the fact that no colonies of the competitor species were detected in the 

majority of agar plates during the assay (see the section ‘Results’ for details), I cannot rule 

out the possibility that the competitors were present in the mixed populations (e.g. some 

individual cells of the competitor may have remained in the liquid culture after sampling). 

Therefore, the evolutionary rescue assay of C. reinhardtii populations may have been 

carried out in the presence of the competitors. 

 

4.3 Data analysis 

 

The effects of competition, the competitor species and the environment on the 

probability of evolutionary rescue were analysed by fitting Generalised Linear Mixed 

Models. One model was fitted per each of these independent categorical variables, all 

being considered fixed factors.  The random factor incorporated in all the models was 

‘population’, being nested within the factor ‘population group’ (two subsets of populations 

propagated either in the presence or absence of a single competitor), nested within the 

factor ‘species’. The factor ‘competition’ comprises two levels (presence/absence of the 

competitor); ‘the competitor species’ includes 10 levels, each species being considered a 

single level; ‘environment’ comprises two levels, corresponding to the two types of media 

used in the selection experiment. 

The effects of the ecological traits of the competitors and their relatedness to the 

focal species on the probability of evolutionary rescue were analysed by fitting a 

Generalised Linear Mixed Model, with both independent categorical variables being 
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considered fixed factors. The random factor incorporated in the model was identical as in 

the previous two models. The factor ‘phylogenetic relatedness’ was considered a 

continuous variable; ‘ecology’ includes two levels: ‘freshwater’ and ‘terrestrial’. The 

covariate ‘initial maladaptedness’ was introduced due to results of the pilot experiment 

(see the ‘Results’ section).  

The mean fitness of the rescued populations, which corresponds to the average 

population size estimated after counting of colonies obtained after the last three growth 

cycles, was analysed by fitting a General linear model. The model incorporates the 

following factors (all being considered categorical variables): ‘population subset’ comprising 

two levels, corresponding to either presence or absence of the competitor; ‘group’, 

comprising 10 levels, each level corresponding to the competitor allocated to the 

population group; ‘environment’, comprising two levels, corresponding to two types of 

selective media. 

The binary responsive variable in all the models estimating the probability of 

evolutionary rescue was survival/extinction. The continuous responsive variable in the 

model estimating the mean fitness of the surviving populations was ‘mean population size’.  

All the analyses were performed using R (R core team, 2017). 

 

4.4 Results 

 

4.4.1. Assay of the experimental species for growth in high salt  

An elevated concentration of salt was detrimental for all the competitor species, 

which differed with respect to the level of high salt sensitivity (Figure 4.3). The most 

sensitive species (M. monadina, H. pluvialis, C. capillatum and C. leiostraca) showed 

negative yield for all the levels of salt concentration. The yield of L. culleus, C. sphaeroides, 

C. globosa, L. segnis and C. applanata decreased with an increase of the level of salt, and 

dropped to zero in salt concentration ranging from 3 g/l – 11 g/l. The yield of C. moewusii 

showed the opposite trend, gradually increasing in salt concentration ranging from 1 g/l – 9 

g/l and decreasing in salt concentration higher than 9 g/l, without dropping to zero. 
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The competitor species were assayed in the salt concentration chosen for the 

selection experiment (15 g/l), by propagating the cultures until the stationary phase of 

growth (approximately 4 days) and recording the yield twice a day as a measure of fitness. 

The yield of all the species was negative (dropping to zero or below zero), except for C. 

moewusii, which showed slow, but positive growth (Figure 4.4). 

The results of these assays provide evidence of different abilities of the competitors 

for growth in high salt conditions. Notably, C. moewusii stands out as the only competitor 

that can sustain positive growth in the selective environment. This difference in the initial 

maladaptedness to the selective environment between the competitor species will be 

considered in the analysis of the evolutionary rescue of the focal species, by introducing the 

factor ‘initial maladaptedness’ with two levels: ‘low initial maladaptedness’ (C. moewusii) 

and ‘high initial maladaptedness’ (other competitors). 

 

Figure 4.3  – Maximal yield of each competitor species in a gradient of salt concentration ranging 
from 1 g/l to 17 g/l; no error-bars are present since the experimental populations were not 
replicated; the yield of M. monadina, H. pluvialis, C. capillatum and C. leiostraca was negative for all 
the levels of salt concentration; L. culleus, C. sphaeroides, C. globosa, L. segnis and C. applanata 
showed negative yield for salt concentration higher than 3 g/l, 5 g/l, 7 g/l, 10 g/l and 11 g/l, 
respectively; The yield of C. moewusii was positive for all the levels of salt concentration. 
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Figure 4.4 – Yield of each competitor species per time unit (h) in salt concentration of 15 g/l; yield 
of all the competitor species (except for C. moewusii) dropped to zero or below zero by the end of 
the assay; no error-bars are present since the experimental populations were not replicated; 

 

4.4.2. Examination of the ecological traits of the experimental species  

When tested in both types of fresh media, each competitor species scored higher 

maximal yield in a different medium (Figure 4.5). L. segnis, C. applanata, C. globosa and C. 

moewusii scored higher maximal yield in Soil-extract medium. H. pluvialis, C. capillatum, L. 

culleus, C. sphaeroides and C. reinhardtii showed higher maximal yield in Bold’s medium. M. 

monadina and C. leiostraca failed to grow in both media during the pilot experiment. The 

average maximal yield per species was approximately two-fold higher in soil-extract spent 

medium, except for L. segnis which showed minimal growth in Bold’s spent medium and 

negative growth in Soil-extract spent medium (Figure 4.6).  

The reduction of growth of the species in each spent medium relative to the growth 

in the corresponding fresh medium was calculated by dividing the maximal yield obtained 

in the spent medium by the maximal yield obtained in the corresponding fresh medium. C. 
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reinhardtii showed an ecological similarity with H. pluvialis, C. capillatum, L. culleus, C. 

sphaeroides, C. applanata and C. moewusii, given that each of these species scored higher 

growth reduction in Bold’s spent medium. C. globosa and L. segnis showed higher reduction 

in Soil extract spent medium, which indicates ecological divergence from C. reinhardtii 

(Figure 4.7). These differences in ecological similarity between C. reinhardtii and the 

competitors will be considered in the analysis of the evolutionary rescue of the focal 

species, by introducing the factor ‘ecological similarity to C. reinhardtii’ with two levels: 

‘ecologically divergent species’ (C. globosa, C. segnis and C. leiostraca) and ‘ecologically 

similar species’ (the other seven species). C. leiostraca and M. monadina were allocated to 

the former and the latter level, respectively, based on their original habitat, given the 

failure of growth of these species in the pilot experiment. 

 

 

Figure 4.5 – Maximal yield of the focal species and each of the competitor species in both types of 
fresh media;  
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Figure 4.6 - Maximal yield of the focal species and each of the competitor species in both types of 
spent media;  
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Figure 4.7 – Reduction of growth of each species in Bold’s and Soil-extract Bold’s spent media, 

respectively, relative to growth in Bold’s and Soil extract Bold’s fresh media, respectively; C. 
reinhardtii showed higher reduction of growth in Bold’s spent medium (last species from the left).  
Thus, higher reduction of growth of a competitor species in this spent medium was considered as a 
proxy for higher niche overlap between C. reinhardtii and other species; C. leiostraca and M. 
monadina failed to grow in the fresh media during the pilot experiment and were thus not 
incorporated into the analysis; reduction of growth of all the species (except for C. globosa and L. 
segnis) was higher in Bold’s spent medium, thus indicating the ecological similarity between C. 
reinhardtii and  these species. C. globosa and L. segnis showed higher reduction in Soil extract spent 
medium, which indicates the ecological divergence from C. reinhardtii.  
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4.4.3. Selection experiment 

 

4.4.3.1. Evolutionary rescue 

The total probability of evolutionary rescue of C. reinhardtii was 85%, given the 

survival of 203 out of 240 populations. Competition significantly affected the probability of 

evolutionary rescue (Generalised Linear Mixed Model; χ2 = 6.01; df = 1; P = 0.01). Within a 

set of 240 populations propagated with one of 10 competitors, 208 populations survived 

(87%). Within a set of 240 populations propagated in the absence of the competitor, 229 

populations (95%) survived. Of the 37 extinct populations of the focal species, 26 

populations (70%) went extinct in the presence of the competitor, while surviving when 

propagated alone; 5 populations (14%) went extinct in the absence of the competitor while 

surviving in the presence of the competitor; 6 populations (16%) went extinct under both 

treatments.  

The competitor species significantly affected the probability of evolutionary rescue 

(Generalised Linear Mixed Model; χ2 = 47.62; df = 9; P < 0.00001) (Figure 4.8). All the 

populations survived when propagated along with C. globosa, C. sphaeroides and C. segnis. 

One extinction was recorded for the populations competed with M. monadina, C. 

leiostraca, C. applanata and H. pluvialis (4% of the initial 24 populations). Two extinctions 

were recorded for the populations propagated with L. culleus and C. capillatum (8% of the 

initial 24 populations). Twenty-four extinctions occurred in the presence of C. moewusii 

(100% of the initial 24 populations). Despite the differences in survival of the focal species 

when propagated with different competitors, only C. moewusii significantly affected the 

probability of survival (accounts for 65 % of all extinctions) (Generalised Linear Mixed 

Model; z = -2.84; P = 0.005). 

Phylogenetic relatedness between the focal species and each competitor did not 

affect the probability of evolutionary rescue (Generalised Linear Mixed Model; χ2 = 0.1; df = 

1; P = 0.75) (Figure 4.8). The ecology of competitors (with respect to the original habitat) 

did not affect the probability of evolutionary rescue of C. reinhardtii (Generalised Linear 

Mixed Model; χ2 = 0.51; df = 1; P = 0.48) (Figure 4.9). Likewise, the probability of 
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evolutionary rescue was not significantly affected by ecological similarity to C. reinhardtii 

(Generalised Linear Mixed Model; χ2 = 0.54; df = 1; P = 0.46).  

The covariate ‘the initial maladaptedness’ explained the variation in the number of 

rescue events (Generalised Linear Mixed Model; χ2 = 40.51; df = 1; P < 0.00001). The 

competitor with low initial maladaptedness drove 24 populations to extinctions. The other 

competitors, characterised by higher initial maladaptedness, drove 8 populations to 

extinctions.  

The environment significantly affected the probability of evolutionary rescue 

(Generalised Linear Mixed Model; χ2 = 14.38; df = 1; P = 0.0001). Of 37 extinct population of 

the focal species, 24 populations (65%) went extinct in Bold’s medium, while 13 populations 

(35%) went extinct while propagated in Soil-extract Bold’s medium. 

 

 

Figure 4.8 – The probability of evolutionary rescue for experimental populations of C. reinhardtii 
with respect to: a) the competitor species; the number of evolutionary rescue events ranged from 
24 (100% of the initial 24 populations – e.g. C. globosa) to 0 (0% of the initial 24 populations – e.g. C. 
moewusii), depending on the competitor species; b) degree of phylogenetic distance of each 
competitor species from the focal species; the number below each species corresponds to a degree 
of relatedness between each competitor and Chlamydomonas reinhardtii, which forms the upward 
gradient of relatedness between the 1

st
 competitor (the most closely related to the focal species) 

and the 10
th

 competitor (the most distantly related to the focal species).  

 



 

111 
 

 

 

Figure 4.9 – The probability of evolutionary rescue of C. reinhardtii with respect to the ecology of 
the competitors (the original habitat); 4 leftmost bar plots represent freshwater species (blue 
colour) and 5 rightmost bar plots represent terrestrial species (brown colour); 26 extinctions 
occurred in the presence of a freshwater competitor (24 extinctions when C. moewusii was present); 
6 extinctions occurred in the presence of a terrestrial competitor.   

 

 

4.4.3.2. Mean fitness of the rescued populations 

The mean fitness of the rescued populations within 10 different groups of C. 

reinhardtii populations was significantly different (General linear model; F = 9.11; df = 9; P < 

0.001) (Figure 4.10) and varied from the most fit group (‘C. applanata’ with approximately 

12000 cells per ml/growth cycle) to the least fit group (‘H. pluvialis’ with approximately 

3500 cells per ml/growth cycle). 

The mean fitness of the rescued populations within two subsets of populations 

(propagated with and without the presence of the competitor) was significantly different 

(General linear model; F = 78.24; df = 1; P < 0.001) (Figure 4.11). The subset of experimental 

populations propagated in the absence of the competitor had a more than two-fold higher 

average population size than the subset propagated in the presence of the competitor. The 
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mean fitness of the rescued C. reinhardtii populations propagated with C. globosa could not 

be estimated due to high similarity between the colonies formed by some C. reinhardtii 

genotypes and C. globosa colonies, which made the differentiation of these species 

insufficiently reliable.  

There was a significant interaction between the factors ‘group of populations’ and 

‘the population subset’ (General linear model; F = 5.76; df = 7; P < 0.001) (Figure 4.13), 

despite the fact that for all the groups of populations, the subset propagated with the 

competitor showed consistently lower average population size than the subset propagated 

without the corresponding competitor (except for C. sphaeroides). 

The mean fitness of the rescued populations was contingent on the type of 

environment used for cultivation of the experimental populations (General linear model; F 

= 6.76; df = 1; P = 0.01) (Figure 4.12). The average population size of all the experimental 

populations was 23% higher in Soil-extract Bold’s medium. 

 

 

Figure 4.10 - Mean fitness of the rescued populations within each group of populations; each 
group was assembled with one of the competitor species. 
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Figure 4.11 – Mean fitness of the rescued populations within both sets of populations (propagated 
either in the presence or absence of the corresponding competitor). 

 

 

Figure 4.12 – Mean fitness of the rescued populations with respect to the environment. 
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Figure 4.13 – Mean fitness of the rescued populations per each group of populations (defined by 
the competitor species), per each set of populations (propagated either in the presence or absence 
of the corresponding competitor); no population of ‘C. moewusii’ subset propagated in the presence 
of the competitor survived; ‘C. globosa’ subset propagated in the presence of the competitor was 
not analysed as explained in the main body of the text. 

 

 

4.5 Discussion 

 

 The probability of evolutionary rescue was affected by competition, which 

corroborates the findings described in Chapter 3. The results indicate that the presence of 

different competitor species alters the probability of evolutionary rescue. However, of all 

the species, only the presence of C. moewusii showed a significant effect, while the effect 

of other species on evolutionary rescue was either neutral or positive/negative, but not 

statistically significant. Thus, despite the statistical significance of the presence of different 

competitor species affecting the probability of evolutionary rescue, a cautious 

interpretation is required. The results indicate a relatively simple pattern of influence of a 

competitor on evolutionary rescue (strong negative or weak/insignificant effect) which may 

not be the general pattern in nature.  
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   The variation in the effect among competitors could not have been explained by 

the extent of ecological and phylogenetic similarity to C. reinhardtii. A plausible explanation 

is that the effects of ecology and phylogenetic relatedness of the competitors on 

evolutionary rescue could not have been detected due to a relatively low and equal number 

of extinctions of C. reinhardtii per competitor species (except for the subset propagated 

with C. moewusii).  

Another explanation is reflected in the fact that most competitors went extinct in 

the early stage of experiment. I observed faster reduction in population size of most 

competitors in comparison with C. reinhardtii (except for C. moewusii), regardless of their 

ecological and phylogenetic traits, ultimately resulting in the extinction of the great 

majority of competitor species in the mixed populations. For instance, I did not observe any 

individual cells of H. pluvialis, M. monadina and C. capillatum in any mixed population after 

only three growth cycles. In contrast, C. reinhardtii showed positive growth in 96% of the 

mixed populations which comprised these three competitors. This suggests that unequal 

survival between pairs of competitors was mainly governed by variation in their initial 

maladaptedness to high salt concentration (lower sensitivity of C. reinhardtii to high salt 

compared to most competitors).  

C. moewusii drove 100% of the initial 24 populations to extinction (56% of all 

extinctions, both in the presence and absence of the competitor). A likely explanation for 

this disproportionally high number of caused extinctions in comparison with other 

competitors is the lowest initial maladaptedness of this species to the selective 

environment. C. moewusii is the only competitor capable of positive (albeit very slow) 

growth in 15 g/l of salt concentration, as shown in the results of the pilot experiment. 

Furthermore, this is the only competitor species which survived in all the mixed 

populations. In contrast, of all the other competitors, a single C. applanata population 

survived (although survival of C. globosa could not be determined in a reliable way, due to 

high morphological similarity with C. reinhardtii). This suggests that initial maladaptedness 

might be a factor that generally affects the probability of evolutionary rescue. However, 

this interpretation should be taken with caution, given that the maladaptedness of species 

was not directly manipulated in this experiment. Incorporating a proportional number of 

competitors with respect to their degree of maladaptedness is necessary to test whether 

this is a common pattern in nature. 
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The total probability of evolutionary rescue was unexpectedly high (85%) in 

comparison with a selection experiment described in Chapter 3 (29%), performed using an 

identical type of stressor. There are three possible explanations for this result, which are 

not mutually exclusive. Firstly, half of the experimental populations were cultivated in Soil-

extract Bold’s medium, which supports larger populations. Secondly, the experimental 

populations were not subjected to a sub-lethal level of stress prior to commencing the 

selection experiment, which would likely have resulted in lower initial average population 

size. Higher initial population size implies higher input of beneficial mutations and thus 

higher probability of survival (Bell and Gonzalez, 2009). Finally, the average light intensity 

that the experimental populations were subjected to was two-fold higher than in the 

previous selection experiment (due to technical reasons caused by the change of an 

incubator), which could have stimulated growth, resulting in a slower decline of population 

size.  

The type of environment significantly affected the probability of evolutionary 

rescue. Soil-extract Bold’s was less hostile environment, which is reflected both in the 

number of rescue events and the mean fitness of the rescued populations. This result might 

suggest that the environment more closely related to the original habitat of the focal 

species (soil) increases the chance of survival. However, this explanation is disputable due 

to the discrepancy between the expected results based on the pilot experiments, which 

showed lower population size of C. reinhardtii in a benign environment simulating a 

terrestrial habitat, and the results obtained after the selection experiment. The general 

features of Soil-extract Bold’s (enriched medium, in comparison with Bold’s, which is a 

minimal medium) is a more plausible explanation for the difference in survival, given the 

experimental evidences that this medium stimulates bacterial growth (Taylor, 1951), which 

indicates that similar effects might be expected for other microorganisms.   

The mean fitness of the rescued populations with the history of exposure to a 

competitor was lower than that of the rescued populations propagated without a 

competitor. In addition, this result was consistent for all the groups of populations, except 

for the ones assembled with C. sphaeroides. This result can be interpreted as a trade-off 

between adaptation to the abiotic and biotic component of environment, as previously 

shown by Collins (2011).  
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Taken together, these results provide no evidence that evolutionary rescue is 

influenced by the ecological characteristics and phylogenetic relatedness of a competitor to 

the focal species. However, the results also indicate that the probability of evolutionary 

rescue might be altered by a different competitor species and suggest that the initial 

maladaptedness of a competitor species is potentially an important factor affecting the 

probability of survival. However, I cannot rule out the possibility that the effect of ecology 

and relatedness were confounded with the effect of the initial maladaptedness. Thus, 

additional experiments are necessary in which the initial maladaptedness of the 

competitors is controlled. Likewise, to test the generality of conclusions regarding the 

effects of the initial maladaptedness, a direct experimental manipulation of this factor is 

required.  
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5. Investigating which environmental factors select for 

the long-term maintenance of sex 

 

5.1  Introduction 

The great majority of extant eukaryotic species are sexual (Bell, 1982). Despite its 

ubiquity, sex still remains an unresolved challenge for evolutionary biology due to the lack 

of conclusive evidence that unequivocally could explain how this phenomenon is 

maintained by natural selection. This is why sex has been a subject of numerous theoretical 

and experimental studies for more than a century (Kondrashov, 1983).  

The paradox of sex is reflected in the fact that it entails various types of costs that 

are disadvantageous for an individual and a population. For example, sex often results in a 

decrease of mean population fitness as result of a break-up of favourable combinations of 

alleles, termed recombination load (Barton and Charlesworth, 1998), as experimentally 

confirmed (for example: Greig et al., 1998; Colegrave et al., 2002; Kaltz and Bell, 2002; 

Becks and Agrawal, 2011). In addition to such genetic costs, sex can impose direct costs as 

well. For instance, sex is associated with meiosis, which is several orders of magnitudes 

slower than mitosis, resulting in diminishing of synthetic processes within a cell and 

temporarily arrested growth (Lewis, 1987). Sex requires a physical contact between 

organisms or their gametes, which generates other direct costs associated with several 

groups of risks. These include increased likelihood of transmission of pathogens and 

parasites between individuals or their gametes, or reduction of motility, which increases 

vulnerability to predation (Lewis, 1987). Moreover, sex entails the two-fold reduction of 

reproductive output per female as a cost of producing males, which has been termed “the 

two-fold cost of sex” or “the cost of males" (Maynard Smith, 1971; Williams, 1975; 

Maynard Smith, 1978).  

 Many hypotheses have been proposed as an explanation for the maintenance of 

sex by natural selection (Kondrashov, 1993). Most of them gravitate towards the idea that 

sex generates variation within a population available for selection and thus enhances 

adaptation to a changing environment (Weismann, 1889; Fisher, 1930; Muller, 1932; 

Felsenstein, 1974; Burt, 2000). While the initial concept dates back to Weismann (1889), 

the complete theoretical framework has been formalised by Fisher (1930) and Muller 
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(1932). The major argument of this concept is the occurrence of multiple beneficial 

mutations, independently arising in different individuals within a population, which could 

be assembled faster within a single individual by means of sex and recombination. As a 

result, natural selection would operate faster in sexual populations. In contrast, the fixation 

of beneficial mutations would proceed at slower rate (one at a time) in asexual populations, 

which would ultimately result in a competition of genotypes carrying different mutations 

(Muller, 1932), consequently slowing down the adaptation (the process termed clonal 

interference; Gerrish and Lenski, 1998).  

 The variation-selection hypotheses have been the subject of various types of 

experimental studies (Hartfield and Keightley, 2012), which provided evidence for the 

beneficial effect of sex in both novel and deteriorating environments. Malmberg (1977) 

manipulated the rate of recombination in populations of T4 phage and found that the rate 

of adaptation to the novel environment (proflavine) is directly proportional to the rate of 

recombination. Greig at al. (1998) directly competed sexually and asexually reproducing 

individuals in mixed populations of yeast in stressful conditions (elevated temperature). 

They found that sexual individuals with a heterozygous genetic background outcompeted 

the asexual individuals in great majority of mixed populations, despite the initial 

disadvantage caused by the recombination load. Kaltz and Bell (2002) showed that sexual 

populations of C. reinhardtii maintain consistently higher adaptive rate in comparison with 

asexual populations. In addition, they demonstrated this advantage was directly 

proportional to the degree of environmental complexity. Colegrave (2002) subjected the 

experimental populations of C. reinhardtii to novel growth medium and found that the 

relative fitness of sexual populations compared to asexual populations was directly 

proportional to the population size prior to induction of sex. This result suggests that sex 

reduces the constraint of adaptation imposed by the clonal interference in larger 

populations. Bell (2013) found that the populations of C. reinhardtii with the history of 

obligate sexual reproduction had higher probability of survival than asexual populations 

when subjected to growth in the absence of light. Lachapelle and Bell (2012) demonstrated 

that sexual populations of C. reinhardtii had lower extinction rate than that of asexual 

populations when subjected to a deteriorating environment. 

These results demonstrate that sex is beneficial in changing environments, which is 

manifested through the enhanced adaptation rate of sexual populations. However, all 
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aforementioned studies provided evidence for the group (population) advantage of sex. If 

the costs of sex on the individual level (short-term disadvantage) outweigh the benefits, sex 

could be selected against despite the long-term advantage. Thus, in order to provide an 

explanation for the maintenance of sex, it is crucial to identify the environmental factors 

that provide a constant selective advantage for sex.  

Several experimental studies investigated the factors which could potentially select 

for the long-term maintenance of sex. Morran et al. (2009) provided experimental evidence 

for increased level of outcrossing in the wild-type population of Caenorhabditis elegans, 

when subjected to elevated mutation rate and a novel environment (the presence of 

bacterial pathogen). A later study by Becks and Agrawal (2011) demonstrated that 

frequency of sex increases during adaptation to novel environment (elevated concentration 

of NaCl and novel food source) of monogont rotifer Brachionus calyciflorus (measured as 

proportion of fertilized mictic eggs). Furthermore, sexually derived offspring had higher 

fitness (measured as lifetime reproduction per female) than asexually produced genotypes, 

but this advantage was constrained during the early phase of adaptation. Most recently, 

Luijckx et al. (2017) manipulated a degree of complexity of environmental change, by 

exposing the populations of Brachionus calyciflorus to different combinations of stressful 

abiotic factors (increasing salinity and heavy metal concentration – CuSO4, decreasing 

temperature). They found that the rate of sex proportionally increases with the increase of 

environmental change complexity. 

These studies indicate that frequency of sex increases in the populations exposed 

to both novel environment (Morran et al., 2009; Becks and Agrawal, 2011) and 

deteriorating environment (Luijckx et al., 2017). However, several other factors that could 

potentially increase the propensity for sex within a population have still not been 

experimentally tested. I will discuss these factors in the following review. 

The benefits of sex may include generation of phenotypes optimal in conditions of a 

changing biotic component of environment (the Red Queen dynamics in a co-evolving 

system of parasite-host or predator-prey) (Bell, 1982). As a result, we should expect the 

maintenance of sex in the populations under constant selective pressure imposed by the 

biotic component of the environment. Lively (1992) found a positive correlation between 

the frequency of males in the facultatively sexual species Potamopyrgus antipodarum with 

the presence of parasites (trematodes). Furthermore, there is evidence that coevolution 



 

121 
 

with pathogenic species (bacterium Serratia marcescens) selects for outcrossing in a 

facultatively sexual Caenorhabditis elegans (Morran et al., 2011). However, to the best of 

my knowledge, there is no experimental study testing the effect of the presence of a 

competitor species on the rate of sex in the focal species. In Chapter 3, I demonstrated the 

beneficial effect of sex on survival of the focal species in the presence of the competitor. It 

is still uncertain whether a competitor could select for the long-term maintenance of sex 

within a population of the focal species. 

Deteriorating environments may increase the rate of sex, as previously shown 

(Luijckx et al., 2017). However, it has still not been experimentally tested whether the rate 

of environmental deterioration affects the rate of sex. In Chapter 2, I showed that the 

effect of sex on extinction dynamics of experimental populations of C. reinhardtii is altered 

by the rate of environmental deterioration. This is manifested through the increased 

survival rate of sexual populations relative to that of asexual populations with an increase 

of the rate of environmental deterioration. It remains yet to be investigated whether higher 

rate of environmental change could select for sex in a facultatively sexual species such as C. 

reinhardtii. 

The direction of natural selection is likely to vary over the course of time in natural 

populations (Bell, 2010). Consequently, the haplotypes that have selective advantage in one 

environment may have lower fitness when conditions temporarily change. Fluctuating 

selection has been observed both in the field (for example, Gibbs and Grant, 1987; Grant 

and Grant, 1995) and experimental studies (for example, Hall at all, 2011). While there is 

evidence that sex is beneficial when fluctuating environmental change involves a biotic 

component (which corresponds to Red Queen dynamics), there is still the lack of 

experimental evidence for the benefits of sex in the fluctuating change of abiotic 

components of an environment. 

In order to test which of the described environmental factors could select for the 

long-term maintenance of sex, I designed a selection experiment by creating the selective 

environments which simulate these factors (the presence of the competitor, different rates 

of environmental deterioration, fluctuating stressful environment). I subjected the 

facultatively sexual experimental populations of Chlamydomonas reinhardtii to these 

environments and monitored the change in the rate of sex over the course of time. 
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5.2 Materials and methods 

 

5.2.1.  Base populations of C. reinhardtii  

Each experimental population of C. reinhardtii (120 in total) was constructed by 

assembling 10 isolates randomly chosen from the library of C. reinhardtii isolates, 

established for the selection experiment described in Chapter 2. Each population 

represents a unique combination of an equal number of isolates of both mating types 

(5mt+ and 5 mt-). 

 

5.2.2. Selection experiment   

Four sets of 24 experimental populations were allowed two growth cycles in 4 

different selective environments (see the section ‘Selective Environments’ for details). The 

fifth set of 24 experimental populations was cultivated in a benign medium (Bold’s broth 

medium; hereafter referred to as Bold’s) as a control.  After every second growth cycle, a 

sexual cycle was induced and completed in all populations. After completion of sexual cycle, 

the experimental populations of each set were allowed another two growth cycles in the 

corresponding selective environment, except for the populations subjected to the 

competition treatment, which were allowed two growth cycles in isolation and one growth 

cycle in the presence of the competitor (see the section ‘Selective Environments’ for 

details). 

5.2.2.1.   Selective Environments  

 The selective environment was defined by a type of change imposed on the 

experimental populations, resulting in the establishment of three treatments. In the first 

treatment, two equal sets of experimental populations were subjected to the constant 

directional change in salt concentration. One set of populations was subjected to relatively 

low rate of salt increase (1 g/l after each sexual cycle); the other set of populations was 

subjected to high rate of salt increase (3 g/l after each sexual cycle).  
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The second treatment group comprised the set of populations subjected to a 

fluctuating change of environment, by alternating two types of stressors after every sexual 

cycle (5 g/l of salt and 50 µM Copper (II) sulphate pentahydrate, CuSO4 X 5 H20). I aimed to 

select the fixed concentration of both stressors which will be perceived as stressful by 

experimental populations, without causing a substantial decline in population size which 

would have likely prevented a mating reaction. Hence, I selected the concentration of both 

stressors which reduce the maximal growth of C. reinhardtii by 50 %, as previously shown 

by Reynoso and de Gamboa (1982), Moser and Bell (2011) for salt, and Prasad et al., (1998) 

for Copper (II) sulphate.  

The third treatment group comprised the set of populations propagated in a benign 

environment which were allowed one additional growth cycle in the presence of the 

competitor (Chlamydomonas sphaeroides) prior to induction of each sexual cycle. C. 

sphaeroides was chosen as the competitor species, because pilot experiments revealed that 

this species shows slower growth in benign environments compared to C. reinhardtii (both 

in liquid and solid medium). A species less competitive than C. reinhardtii was used in the 

experiment because a strong competitor could have considerably reduced the population 

size resulting in a low mating reaction or even eliminated C. reinhardtii from the mixed 

populations prior to commencing of the sexual cycle. Given that both species could not 

have been separated once assembled on agar plates (a procedure performed during sexual 

cycle, see ‘Sexual cycle’ section for details), it is likely that at least some proportion of C. 

sphaeroides populations were transferred to liquid selective media once the asexual growth 

cycles were resumed. 

 One set of the experimental populations was propagated in a benign environment 

(Bold’s) until the completion of experiment and served as a control for the populations 

propagated in selective environments. 

 

5.2.2.2 Cultivation of Populations and Selection Experiment Procedure 

All the experimental populations of C. reinhardtii were cultivated in 24-well plates 

in Bold’s medium under standard conditions (26˚C, 6000 lux illumination, shaking at 180 

rpm and covered with sterile breathable membranes to prevent cross-contamination and 

uneven evaporation across the plates). All the populations were allowed two growth cycles 
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(3-4 days) in the corresponding selective medium by transferring 5 % of each population to 

the fresh medium after each growth cycle. Each population subjected to the competitor 

prior to induction of the sexual cycle was mixed with an inoculum of C. sphaeroides 

containing an equal number of cells as mean population size of the whole population set. 

The population size of each C. reinhardtii population was estimated spectrophotometrically 

(OD750). The average OD750 of the treatment group was converted to average cell number 

using the equation obtained from an OD750 - cell number curve calibration, described in 

Chapter 4 (see Section 4.2.5 for details). The average cell number of C. sphaeroides 

population was estimated with a haemocytometer.  

 

5.2.2.3. Sexual cycle  

 After every second growth cycle, a sexual cycle was induced by using the identical 

experimental procedure as in Chapter 2 and Chapter 3 (see ‘Materials and Methods’ section 

of any of these chapters for details). The differences in the experimental procedure 

included resuspending the experimental populations in two times lower volume of 

nitrogen-free medium (0.5 ml per culture, instead of 1 ml used for previous experiments) to 

stimulate the contact of gametes by increasing the cell density. The experimental 

procedure of freezing the cultures in liquid medium was omitted, to avoid direct selection 

on forming zygotes and consequently for sex. As an alternative procedure, I transferred the 

whole populations (0.4 ml) to agar plates, which included both zygotes and unmated 

gametes.   

 

5.2.3. Assaying the rate of sex  

 After initiating the sexual cycle, all the populations were sampled and fixed on 

microscope slides. The images of each culture sample were used for estimation of the 

number of zygotes and unmated gametes for each population. The ratio of zygote number 

to the number of unmated gametes per population of each treatment group per time point 

(after each sexual cycle) was considered an estimate of rate of sex. 
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5.2.3.1. Fixation of cultures on microscope slides 

The populations re-suspended in nitrogen-free medium were incubated under 

bright light for four hours, to allow for gametogenesis and mating. The chosen period of 

four hours is a minimal interval of time required for a differentiation of gametes which 

acquire the mating competence (Abe et al., 2004; Lin and Goodenough, 2007). After given 

interval of time, each population was sampled by pipetting (20% of a culture - 100 µl) and 

incubated in Lugol’s Iodine solution (Scientific Laboratory Supplies) for 10 minutes to kill 

cells. In addition, this solution acts as a preservative, helps fixation on microscope slides 

and easier visualisation under microscope. The cultures were then centrifuged at 5000 rpm 

(minicentrifuge) for 5 minutes, and re-suspended in 100 µl of sterile double distilled water. 

A sample of each culture (50 µl) was then plated on the corresponding microscope slide 

(Poly-L-Lysine coated glass slides; 25 x 75 mm; Sigma-Aldrich) and dried in sterile conditions 

for approximately one hour. After given period, the cultures fixed on microscope slides 

were enclosed with cover slips (22 X 22 mm; Scientific Laboratory Supplies) by adding 

approximately 10 µl of Mounting medium (Sigma-Aldrich) and dried for at least one hour. 

     

5.2.3.2. Bright field microscopy and image analysis 

The cultures were observed on a ZEISS Axio Imager.Z1 microscope (Carl Zeiss 

MicroImaging) with ZEISS α Plan-Apochromat 100x 1.46 objective (oil immersion). For each 

culture, five images were taken by random selection of five microscope fields of view. The 

images were taken with a Hamamatsu digital CMOS Orca-Flash 4.0 camera and controlled 

by the Micro-Manage 1.4.23 software (the average exposition time of 500 ms). Image 

analysis was performed using ImageJ software, in the following way. Twenty zygotes with 

clear morphological distinction from unmated gametes were selected (a single zygote per 

treatment group per each sexual cycle; see Figures 5.1 – 5.5). The pixel area of each zygote 

was calculated to obtain the threshold parameters used for differentiation of zygotes from 

unmated gametes (an average pixel area, 46731; minimal pixel area, 29424; maximal pixel 

area 64038; the resolution of each image, 2048 X 1536 pixels). The images were visually 

inspected by manually measuring the parameter of all the cells by using the ‘Freehand 

selections’ tool. The estimated parameter was used for the software calculation of the pixel 

area of each cell. The cells which pixel area corresponded to the values below the minimal 
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zygote pixel area (29424) were considered unmated gametes; all the cells above that 

threshold were considered zygotes. Five populations per treatment were selected for cell 

counting, carried out for the samples taken after the initial and the last (fourth) sexual 

cycle. The rationale for the small population set used for cell counting was the technical 

difficulty in quantifying the number of cells for all of the populations for each time point, 

due to considerable clumping or multiple-layer aggregation of gametes, which was 

frequently observed during imaging. 

The frequency of sex of each treatment group per time point (sexual cycle) was 

estimated by calculating the ratio of zygotes: unmated gametes. I did not choose the 

absolute number of zygotes as a measure of frequency of sex, given that cultivation in 

different environments directly affects the cell density, which in turn influences the number 

of zygotes produced.  

During the subsequent analysis of the images, I had technical difficulties in 

distinguishing between C. reinhardtii and C. sphaeroides, which do not differ in any 

recognizable morphological feature. Given that the number of zygotes produced could have 

been confounded with the relative frequency of both species, I concluded that I cannot 

estimate the frequency of sex in a reliable way for this treatment group. Hence, I withdrew 

the competition treatment group from the statistical analyses.    

 

 

5.3 Data analysis 

The effects of treatment (each type of selective environment) on the frequency of 

sex was analysed as a change in proportion of produced zygotes (relative to the cell density 

of the whole population) between the initial and the last sexual cycle. The results were 

analysed by fitting one-Way ANOVA. ‘Treatment’ was considered a fixed factor with five 

levels, each level representing a different treatment group. The continuous responsive 

variable in the model was ‘change in sex frequency’.  

All the analyses have been performed using R (R Core Team, 2017). 
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Figure 5.1 – Images of four different control populations chosen due to the presence of distinct 
zygote(s) and selected after one of the four sexual cycles; top left – 1

st
 sexual cycle; top right – 2

nd
 

sexual cycle; bottom left – 3
rd

 sexual cycle; bottom right – 4
th

 sexual cycle. The zygotes chosen for 
the estimation of the average zygote pixel area are marked with an arrow.  
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Figure 5.2 – Images of four different populations subjected to the fluctuating environment chosen 
due to the presence of distinct zygote(s) and selected after one of the four sexual cycles; top left – 
1

st
 sexual cycle; top right – 2

nd
 sexual cycle; bottom left – 3

rd
 sexual cycle; bottom right – 4

th
 sexual 

cycle. The zygotes chosen for the estimation of the average zygote pixel area are marked with an 
arrow.  
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 Figure 5.3 – Images of four different populations subjected to a directional environmental change 
(high rate) chosen due to the presence of distinct zygote(s) and selected after one of the four 
sexual cycles; top left – 1

st
 sexual cycle; top right – 2

nd
 sexual cycle; bottom left – 3

rd
 sexual cycle; 

bottom right – 4
th

 sexual cycle. The zygotes chosen for the estimation of the average zygote pixel 
area are marked with an arrow.  
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Figure 5.4 – Images of four different populations subjected to a directional environmental change 
(low rate) chosen due to the presence of distinct zygote(s) and selected after one of the four 
sexual cycles; top left – 1

st
 sexual cycle; top right – 2

nd
 sexual cycle; bottom left – 3

rd
 sexual cycle; 

bottom right – 4
th

 sexual cycle. The zygotes chosen for the estimation of the average zygote pixel 
area are marked with an arrow.  
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Figure 5.5 – Images of four different populations subjected to the presence of the competitor prior 
to induction of each sexual cycle, chosen due to the presence of distinct zygote(s) and selected 
after one of the four sexual cycles; top left – 1

st
 sexual cycle; top right – 2

nd
 sexual cycle; bottom left 

– 3
rd

 sexual cycle; bottom right – 4
th

 sexual cycle. The zygotes chosen for the estimation of the 
average zygote pixel area are marked with an arrow.  
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5.4 Results 

 The factor ‘treatment’ affected the change in frequency of sex (one-way ANOVA; 

F3,19 = 4.58; P = 0.017). The significant difference was detected between the levels ‘control’ 

(benign environment) and ‘fluctuating environment’ (t = -2.66, df = 9, P = 0.02) (Figure 5.6). 

The average ratio of zygotes to unmated gametes decreased for treatment group subjected 

to fluctuating environmental change. No significant differences between other levels of the 

factor ‘treatment’ were detected. 

 The total number of cells of a population sample served as an estimate of the cell 

density of the whole population, used to estimate the change in average population density 

per each treatment group. For all treatment groups, the population density increased 

between the initial and the last sexual cycle (Figure 5.7). However, the change in average 

cell density was only marginally contingent on ‘treatment’ factor (one-way ANOVA; F3,19 = 

2.79; P = 0.07). 

 

 

Figure 5.6 – The average change in frequency of sex for all treatment groups, measured as a 
difference in ratio of zygotes to unmated gametes between the initial and the last sexual cycle; the 
bars represent standard error of the mean. 
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Figure 5.7 – The average change in total number of cells (both zygotes and unmated gametes) for 
all treatment groups between the initial and the last sexual cycle; the bars represent standard error 
of the mean. 

 

5.5  Discussion 

 

Out of four selective environments tested, only a single environment significantly 

affected the change in rate of sex, measured with respect to the initial sexual cycle. The 

fluctuating environment selected against sex (a twelve-fold decrease in frequency of sex 

relative to Grand mean of all treatment groups). This cannot be attributed to the negative 

effect of stress on the population size which could have reduced the total amount of 

zygotes. The results indicate the opposite pattern, reflected in the increase of average 

population size of this treatment group compared to the initial sexual cycle. A possible 

explanation for the reduced frequency of sex might be an interference between selection 

acting on traits that could directly mitigate the negative effect of stress (for example, 

smaller cells might be favoured because of comparatively smaller surface area exposed to a 

stressor) and maintenance for the rate of sex. However, this result should be taken with 

caution, given the error in the experimental design which lacks the appropriate control for 

the fluctuating environment. The adequate control would correspond to simpler 

environments with a single type of stressor (either elevated salt concentration or copper (II) 
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sulphate). Consequently, it cannot be precisely determined whether the observed effects of 

sex are due to the treatment itself (alternation of two stressors) or the effect of one 

particular stressor. 

Despite the increase in average cell density compared to the initial sexual cycle, the 

treatment groups subjected to both types of deteriorating environments did not show 

significant change in zygote: unmated gametes ratio. Unlike in the group subjected to the 

fluctuating change, the rate of sex remained relatively constant, which may indicate that 

the cost of sex was lower than in the group subjected to the fluctuating environment, but 

high enough to hamper the increase in ratio of zygotes to unmated gametes. Furthermore, 

the production of gametes may have ceased once the magnitude of stress reached a high 

value. Namely, the directional change high-rate populations had been subjected to 12 g/l of 

salt concentration (sub-lethal stress) prior to induction of the last sexual cycle, which may 

have affected the total amount of gametes produced or kinetics of gametogenesis. The 

results of Chapter 2 suggest that beneficial effect of sex will increase in higher rates of 

environmental change. Based on these results, we might predict an increase in frequency in 

the rate of sex under such mode of environmental change. However, the results described 

here do not provide a support for this prediction. Nevertheless, populations under high rate 

of directional change show higher variance in zygote: unmated gametes ratio. Based on 

this, we might argue that there is a higher genetic variation for the propensity of sex 

selection can act on in these populations. Potentially, selection would have increased 

zygote: unmated gametes ratio had the experiment continued after the fourth sexual cycle. 

A non-significant change in the ratio of zygotes to unmated gametes in a benign 

environment is not unexpected. In the study of Becks and Agrawal (2011), the rate of sex of 

Brachionus calyciflorus declined after adaptation to novel environment plateaued. Renaut 

et al. (2006) did not detect the difference between mean fitness of the sexual and asexual 

populations of Chlamydomonas reinhardtii when cultivated in a benign environment. These 

results suggest that once a population becomes adapted (in the absence of a continuous 

environmental change), sex provides no further advantage and it will likely be selected 

against (the frequency of sex will decline).  

The results of this experiment indicate that at least some stressful environments 

may affect the frequency of sex. However, this experiment had a limited power to detect 

any significant differences between treatment groups, given that only 5 populations (20% 
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of total number of populations) could have been used for the analysis. Hence, the results 

may not reflect the real patterns in nature and further evidence is required. 
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6. General discussion and future directions  

 
The aim of this Thesis was to investigate the impact of mode of reproduction and 

competitive interactions on the probability of evolutionary rescue, with a goal to contribute 

to our previous understanding of adaptation of organisms to global change.  

 

6.1 The effects of sex  

 

Previous empirical work has shown an advantage of sex for populations adapting to 

novel environment. The results presented in this Thesis indicate that the advantage of 

sexual populations, relative to asexual populations, depends on the context of 

environmental change. In environments deteriorating in a simple way, the effect of sex was 

contingent on the rate of environmental change. Sex was beneficial only when environment 

deteriorated in an intermediate way, but not under a gradual or high rate of change.  

Asexual populations can track the environmental change equally efficiently as sexual 

populations when environment deteriorates gradually, hence the relative advantage of sex 

diminishes. On the other hand, the high rate of environmental deterioration may be highly 

detrimental for all the populations, which will result in a significant lag behind the moving 

optimum for all the populations, irrespective of mode of reproduction, and consequently, 

an equal probability of extinction. In Chapter 2, exposure to the gradual and high rate of 

environmental deterioration resulted in similar extinction dynamics of all treatment groups, 

irrespective of mode of reproduction, despite the initial advantage of sexual groups which 

maintained higher average population size during the initial phase of experiment (sublethal 

level of stress).  

However, under moderate strength of selection, sex may be the most efficient 

strategy. In Chapter 2, obligate sexual populations had clear advantage relative to both 

facultative sexual and asexual populations, manifested through the lowest population size 

decline and the slowest extinction rate. The possible underlying explanation is that sexual 

populations likely suffer lower demographic costs of adaptation than in the high rate of 

environmental change and asexual populations keep up with the environmental change less 

efficiently than in the gradual rate of change, hence the benefit of sex is maximal.  
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However, sex may be beneficial even under the higher rates of environmental 

change, if the change does not continue indefinitely. This was demonstrated in Chapter 3, 

which considered even the higher rate of environmental change (5 g/l after each sexual 

cycle) than in the experiment described in Chapter 2 (3 g/l after each sexual cycle for the 

high rate treatment groups), with the main difference in lower total number of steps of 

change. Furthermore, sex conferred the advantage, reflected in higher probability of 

evolutionary rescue and larger population size, to even higher final magnitude of stress (15 

g/l of salt concentration) than in Chapter 2. Moreover, this advantage is maintained in 

higher complexity of environmental deterioration, which adds to previous finding by Kaltz 

and Bell (2002) that sex is more advantageous in more complex novel environments. 

In Chapter 3, obligate sexual mode of reproduction conferred the advantage by 

significantly increasing the probability of evolutionary rescue relative to asexual mode of 

reproduction (by 25%). Contrary to this result, I found no evidence of such advantage of 

obligate sexual populations in Chapter 2, despite the marginal advantage in the number of 

rescue events relative to both asexual (by 7%) and facultative sexual groups (by 9%). The 

discrepancy in the results of these chapters requires an additional explanation. In Chapter 

3, the rescued populations were subjected to three rounds of salt increase. In contrast, the 

great majority of the populations rescued during the selection experiment described in 

Chapter 2 were subjected to the environmental deterioration occurring via more rounds of 

salt increase (between 4 and 17). Consequently, the longer interval of environmental stasis 

may have reduced the population size decline of the populations in Chapter 3, which may 

have increased the likelihood of rise of beneficial mutations and thus, evolutionary rescue. 

In contrast, prolonged environmental deterioration in Chapter 2 may have imposed the 

constant lag load to the adapting populations, which increased the probability of extinction. 

Taken together, the results of this Thesis corroborate the results of previous studies 

- the advantageous effect of sex in a changing environment. The new findings described 

here expand the range of beneficial effects of sex. In sub-lethal level of stress, sexual 

populations will be fitter than asexual populations regardless of the rate of change. If the 

environmental change occurs in a complex manner, sex will remain the most efficient 

strategy. However, this advantage will be limited if a change reaches the lethal level, and 

the effect of sex on the probability of survival will likely be influenced by the strength of 

selection. 
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In nature, many organisms are characterized by obligate sexual reproduction (for 

example birds and mammals). The fact that the species used in the experiments described 

here mainly reproduces asexually, with intermittent sexual episodes, raises a logical 

question how common the observed patterns of adaptation in natural conditions are. 

Obligate sexual organisms tend to have longer generation time and thus slower 

reproductive output. Hence, without sufficient standing genetic variation, we could predict 

slower adaptive rate and potentially higher extinction risk for these species. Sex could 

increase the response of selection through well understood mechanisms, such as faster 

assembly of beneficial mutations, clearance of deleterious mutations and the release of 

mutations from detrimental genetic background, thus prolonging a population persistence, 

if population density drops under a threshold of critical low population size. However, given 

that primary response to a long-term environmental change involves adaptation through de 

novo beneficial mutations, which are unlikely to arise fast enough in slower reproducing 

organisms, we could predict relatively modest long-term effects of sex, and phenotypic 

plasticity (for example migration or behavioural change) as the main adaptive response of a 

population. Hence, the applicability of the results of this Thesis will be the most relevant for 

fast reproducing, small organisms, with larger population size and sufficient beneficial 

mutation supply rate (e.g. microorganisms). 

 

6.2 The effect of competition 

 

Competition may negatively affect the probability of evolutionary rescue, as 

demonstrated in the experiments described in Chapter 3 and Chapter 4, which is consistent 

with evidence of negative impact of competition on extinction in benign environments 

(Bengtsson 1993; Bengtsson and Milbrink, 1995) and the results of evolutionary 

experiments demonstrating the negative impact of competition on adaptive rate (Collins, 

2011). However, the general applicability of this result in natural conditions can be 

questioned. The reason reflects in the fact that negative effects of competition were mainly 

attributable to the presence of a single species (C. moewusii), being a strong competitor 

probably due to higher ability to tolerate the stressor chosen for the selection experiment. I 

detected the significant effect of the identity of the competitor on the probability of 

evolutionary rescue. The other nine competitors have produced neutral, positive or 
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negative effects. Despite the fact that their impact was not conventionally significant, this 

result demonstrates that the effects of competition may be altered, depending on the 

competitor.  

 I found no significant impact of either phylogenetic relatedness of a competitor to 

the focal species or ecological similarities between competitors to the probability of 

evolutionary recue, which is consistent with results of the group of experimental studies 

which indicate that these factors do not predict the outcome of competition (for example, 

Naughton et al., 2015). This result should be interpreted cautiously, given the potential 

confounding effect of the initial maladaptedness of the competitors to the elevated salt 

concentration. To investigate the general applicability of this result in nature, further 

experiments are required (potentially with a similar design as employed for the experiment 

described in Chapter 4), with control of the initial maladaptedness of the competitors. This 

could be achieved through selection of the stressor each competitor will be equally 

sensitive to. Furthermore, the initial maladaptedness of competitors could be 

experimentally manipulated, to test whether the probability of evolutionary rescue is 

altered by differences in initial maladaptedness of competitors. Other potential approaches 

to the research of this topic may include: allowing competition in benign conditions which 

precedes the environmental deterioration, or manipulating the degree of complexity of 

competitive interaction, by allowing multiple-species competition. 

 

6.3 Concluding remarks  

 

In a globally changing environment, sex is likely to be the important factor 

mitigating the negative effect of stress and prolonging survival of declining populations, 

though this effect will depend on the mode of environmental change. This suggests that 

mode of reproduction will be the important factor determining the probability of survival 

and should be considered during the assessment of extinction probability of extant species. 

However, the rate and complexity of environmental change remain the predominant 

factors of survival of extant populations. Whether the current environmental change will 

proceed in a pace the organisms will be able to keep up with - yet remains to be seen. 
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