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Abstract 

Translational control is a powerful means to alter gene expression and 

regulates synaptic plasticity, learning and memory. 4E-BP2 (Eif4ebp2, Eukaryotic 

Initiation Factor 4E-Binding Protein 2) is the predominantly expressed 4E-BP in the 

mammalian brain and represses cap-dependent translation initiation, by binding to 

eIF4E (Eif4e, eukaryotic Initiation Factor 4E). As a master regulator of protein 

synthesis in the mammalian brain, 4E-BP2 has been implicated in learning, memory 

and Autism Spectrum Disorder (ASD).  

Upon phosphorylation by mTOR (mammalian Target Of Rapamycin, mTOR) 

which occurs in most tissues, 4E-BP2 cannot bind to eIF4E, failing to repress 

translation initiation. However, in early postnatal brain development, 4E-BP2 

undergoes brain-specific post-translational deamidation on asparagines N99 and 

N102, which are converted to aspartic acid. Asparagine deamidation is not catalysed 

by enzymes but can occur spontaneously and is induced by alkaline pH. Deamidated 

4E-BP2 was shown to regulate the kinetics of excitatory synaptic transmission in early 

postnatal brain development, suggesting that it may be important for synaptic function 

during that crucial developmental period. N99/N102 deamidation decreases the 

affinity of 4E-BP2 for eIF4E and increases its binding to the mTORC1 protein Raptor. 

The significance of enhanced Raptor binding to deamidated 4E-BP2 is yet unclear 

because 4E-BP2 phosphorylation is very low in adult brain. Moreover, the role of 

deamidated 4E-BP2 and the downstream effects of deamidated 4E-BP2 translational 

control in the mammalian brain are not known but of cardinal importance given the 

pervasive role of 4E-BP2 in regulating brain function. 

In this thesis, we describe a previously unidentified mechanism during early 

postnatal brain development, whereby the constitutively deamidated form of the 

cardinal brain translation initiation repressor 4E-BP2 is more susceptible to ubiquitin 

proteasomal degradation (as compared to unmodified, WT protein) because it binds 

with higher affinity to a complex, comprising the mTORC1 protein Raptor and the 

ubiquitin E3 ligase CUL4B. Deamidated 4E-BP2 (2D) stability is regulated by 

mTORC1 and AMPAR activity but not NMDARs. We also showed that 4E-BP2 

deamidation is neuron-specific and occurs in human brain. We explored whether 

deamidated and WT 4E-BP2 have a similar subcellular distribution in neurons, 

indicating that there is very low co-localization of them in both soma and dendrites. 

We studied WT and 2D structures, with Synchrotron radiation circular dichroism 
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(SCRD), Small angle X-ray scattering (SAXS) and Nuclear magnetic resonance 

(NMR) spectroscopy of full-length recombinant 4E-BP2 (WT or 2D) expressed in E. 

Coli and purified, and we identified that they share a similar structure, with only minor 

differences in a few residues. Moreover, using unbiased translatome mapping, we 

discovered that overexpression of deamidated 4E-BP2 represses the translation of a 

distinct pool of mRNAs linked to cerebral development, mitochondria and chiefly NF-

κB activity. Collectively, these data describe a previously unidentified brain-specific 

translational control mechanism that could be crucial for postnatal brain development 

in neurodevelopmental disorders such as ASD. 

 

 

 



 

 

Lay summary 

Complex behaviours such as perception, memory or emotions are the result 

of complicated computations carried out by our brains. Neurons in our brains carry 

out the processing and transmission of information through electrochemical 

connection structures called synapses. Information processing between neurons 

through synapses requires synthesis of specific proteins in neurons and the process 

controlling this synthesis spatially and temporally is called protein synthesis. 

Therefore, protein synthesis is indispensable for maintenance of synaptic structure 

and function since imbalance of this process has been linked to the development of 

neuropsychiatric diseases, such as Autism Spectrum Disorders (ASD). A master 

repressor of protein synthesis is Eukaryotic initiation factor 4E-binding protein 2 

(Eif4ebp2-4E-BP2). Genetically modified mice in which 4E-BP2 is inactivated were 

characterised by impaired memory and learning, underlying the importance of this 

protein in these complex behaviours.  

The role as well as the activity of most proteins is controlled by specific 

chemical modifications that occur on them and can either activate, inactivate or even 

change their function inside the cells. In most tissues, 4E-BP2 is regulated by a 

chemical modification called phosphorylation. When 4E-BP2 is phosphorylated, it 

cannot inhibit protein synthesis. Interestingly, only in the brain and after birth, apart 

from phosphorylation, 4E-BP2 undergoes another chemical modification, called 

asparagine deamidation. In this thesis, we describe how this modification, 

deamidation, enables 4E-BP2 to control synthesis of specific proteins that are 

required for neuronal function after birth. Firstly, we studied whether the two protein 

forms, deamidated and unmodified 4E-BP2, are located in the same 

compartments/areas in neuronal cells and discovered that they do not have the exact 

same distribution, indicating a different role of the deamidated protein compared to 

the unmodified. Moreover, we characterised the three-dimensional protein structure 

called secondary structure of deamidated 4E-BP2 and identified a few residues that 

exhibit local variations compared to the unmodified 4E-BP2 but overall the secondary 

structure of the protein is not altered by deamidation. Interestingly, we showed that 

deamidated 4E-BP2, is more susceptible to degradation by a specific protein 

complex, consisted of two proteins, CUL4B and DDB1. Therefore, after CUL4B-DDB1 

complex breaks down deamidated 4E-BP2 to its constituent amino acids, deamidated 

4E-BP2 can no longer repress protein synthesis, allowing this process to promote the 
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synthesis of specific proteins. What is the role of these newly synthesized proteins by 

this novel mechanism that involves deamidated 4E-BP2? Importantly, we identified 

that these newly synthesized proteins regulate the activity of another protein in 

neurons called NF-κB and the development of the cerebral cortex in the brain. NF-κB 

is a crucial factor that can either promote or inhibit axonal growth depending on the 

chemical modifications that occur on its subunits. Thus, 4E-BP2 undergoes 

deamidation to promote synthesis of specific proteins that regulate probably major 

postnatal neuronal processes such as axonal growth through NF-κB. Collectively, 

these data describe a previously unidentified mechanism, specific to the brain, which 

regulates protein synthesis and could be crucial for postnatal brain development in 

neurodevelopmental disorders such as ASD. 
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1. Introduction 

Prologue  

  During the past 15 years, the sequencing of different genomes has enabled 

us to unravel the genetic content of different cell types within organisms. Moreover, it 

has provided invaluable information, hence estimating that 20,000-25,000 genes 

encode proteins within each human cell (International Human Genome Sequencing, 

2004). Protein synthesis is the last stage of gene expression, following transcription. 

During this process, the coding sequence of each mRNA is translated into amino 

acids and polypeptides are assembled (Hershey et al., 2012). Posttranslational 

modifications can occur in response to various stimuli, allowing each cell to regulate 

and modify the functions of its proteins in an energy-efficient way and according to 

the environmental conditions. Posttranslational modifications increase the possible 

molecular variations of proteins in cells by many orders of magnitude (Walsh et al., 

2005). The mechanisms by which specific residues of proteins undergo these 

modifications involves about 5% of human enzymes that catalyse these chemical 

reactions (Venne et al., 2015). Understanding these modifications is challenging if 

one considers that the human proteome is 10-100 times more complex than the 

genome (Cho, 2007). The present thesis examines the regulatory mechanisms 

associated with the posttranslational asparagine deamidation of Eif4ebp2 (eukaryotic 

Initiation Factor 4E-Binding Protein 2, 4E-BP2). The Eif4ebp2 gene encodes for the 

4E-BP2 protein, an inhibitor of cap-dependent translation in higher eukaryotes, 

fundamental for the regulation of protein synthesis (translational control). For 

simplicity, we will refer to eIF4E-Binding Proteins as 4E-BPs in the remainder of this 

thesis. 
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1.1 Translation 

1.1.1 Overview of translational machinery   

The translational machinery that catalyses protein synthesis in higher 

eukaryotes consists of the following essential components for efficient translation: the 

mRNA, the 80S ribosome (40S and 60S ribosomal subunits), various eIFs (eukaryotic 

Initiation Factors), the aminoacyl-tRNAs and ATP (Hershey et al., 2012). The mRNA 

contains the genetic information that will be translated into protein sequence by 

ribosomes. Translating ribosomes are composed of two subunits (small-40S, large-

60S), each subunit includes ribosomal RNA (rRNA) and proteins (Hershey et al., 

2012). eIFs are indispensable for the initiation of translation. These are multi-protein 

complexes composed of many subunits, required for regulating translation (Hershey 

et al., 2012), the role of most eIFs will be outlined in section 1.1.2). Aminoacyl-tRNAs 

have undergone aminoacylation catalysed by the enzyme aminoacyl-tRNA 

synthetase and carry amino acids to the ribosome (Pang et al., 2014). Another unique 

characteristic of aminoacyl-tRNAs is the presence of the anticodon loop. This 

structure is required for binding to the mRNA and is complementary to mRNA codons 

(Hershey et al., 2012). All these components render translation a highly regulated 

process, divided into three major steps: initiation, elongation and termination/recycling 

(Hershey et al., 2012).   

     

1.1.2 Initiation of Translation  

Eukaryotic mRNAs are translated via different mechanisms of initiation of 

translation dependent on their structural elements. The predominant mechanism for 

most eukaryotic mRNAs is cap-dependent initiation. Nascent mRNAs which harbour 

the structure m7GpppN (where m is a methyl group and N is any nucleotide) at their 

5’ end are called ‘’capped’’. The cap plays multiple roles throughout the life cycle of 

an mRNA (Gingras et al., 1999). Regarding protein synthesis it marks the 5' terminus, 

hence it can be recognized by eIF4E (Marcotrigiano et al., 1997; Sonenberg et al., 

1979). Mature eukaryotic mRNAs also possess a poly (A) tail at their 3' terminus of 

50-300 adenylates, responsible for the interaction with PABP [poly(A)Binding Protein] 

(Hershey et al., 2012). However, there is a number (5%-10%) of cellular and viral 
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mRNAs that are translated via a different mechanism involving the non-cap mediated 

recruitment of the 40S ribosomal subunit, called IRES (Internal Ribosome Entry Site)-

dependent initiation (Gingras et al., 1999). These mRNAs have a specific IRES 

structure in which the 40S ribosomal subunit binds directly, avoiding the recognition 

step of the m7GpppN cap (Hershey et al., 2012).   

Cap-dependent initiation is regulated by twelve or more initiation factors 

(Hershey et al., 2012). The first step is formation of the ternary complex, composed 

by Met-tRNA, eIF2 and GTP. Following its assembly, ternary complex associates with 

the 40S ribosomal subunit, on which factors eIF1A and eIF3 are already bound and 

form the 43S preinitiation complex. The consequent step is binding of mRNA to the 

preformed 43S complex, thus 48S preinitiation complex is now assembled. The 

formation of the 48S complex requires also translation factors eIF4E, eIF4G, eIF4A 

and eIF4B. The factors eIF4E, eIF4G and eIF4A form eIF4F complex: eIF4E binds to 

the cap of mRNA and associates with eIF4G. The latter forms a bridge between the 

40S ribosomal subunit and mRNA by binding to eIF3 (Clemens et al., 2013). eIF4A is 

a helicase that unwinds the secondary structure of mRNA (Svitkin et al., 2001). At this 

phase, the downstream scanning begins until an initiation codon (AUG) is recognized 

(Hershey et al., 2012). As soon as the codon AUG is recognized, the 60S ribosomal 

subunit is added to the initiation complex in an eIF5-dependent step concomitant with 

hydrolysis of GTP and removal of eIF3 from the ribosome. Therefore, the 80S initiation 

complex is assembled and starts the protein synthesis by entering the elongation 

phase (Clemens et al., 2013). Figure 1.1 illustrates the mechanism of initiation, 

presenting the complexes that are formed in each stage.  
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Figure 1.1 Initiation of Protein Synthesis in Eukaryotes. 

Each complex is assembled in the presence of specific eIFs. As soon as the AUG initiation 

codon is recognized, the 60S ribosomal subunit binds to the 48S pre-formed complex, forming 

the 80S complex that enters the elongation phase (Jackson et al., 2010).  
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1.1.3  Elongation   

Elongation is strongly conserved from bacteria to higher organisms. The main 

steps that are required to occur during each cycle of elongation are : a) the correct 

tRNA binds to the ribosome A (Aminoacyl) site (Hershey et al., 2012) and recognizes 

the corresponding codon of mRNA (Spiegel et al., 2007); b) a new peptide bond is 

formed between the polypeptide chain and the new amino acid; c) the newly formed 

peptidyl-tRNA and the mRNA translocate from A to P (peptidyl) which is the second 

binding site for tRNA, leaving the A binding site unoccupied for the next cycle 

(Hershey et al., 2012). After each cycle, the polypeptide chain continues to elongate 

one amino acid at a time (Spiegel et al., 2007). Each cycle requires two GTPases: 

eEF1A (eukaryotic Elongation Factor 1A) and eEF2. eEF1A provides the aminoacyl-

tRNA to the A site as a component of the complex eEF2-GTP. eEF2 catalyses the 

translocation step of elongation with consequent GTP hydrolysis. Translocation will 

leave the A site empty, P site occupied by peptidyl-tRNA and E site occupied by 

deacetylated tRNA. The next codon will be presented in the A site since the movement 

of tRNA is concomitant with the movement of mRNA by three bases (Frank et al., 

2007).    

 

1.1.4 Termination/Recycling   

Termination of translation occurs when the ribosome reaches the end of the 

coding sequence. Therefore, an aminoacyl-tRNA combined with a stop codon (UAA, 

UGA, UAG) enters the A site. In the termination process, two factors are essential in 

eukaryotes, eRF1 (eukaryotic Release Factor 1) and eRF3. eRF1 recognizes the stop 

codon with high-fidelity and also hydrolyses the peptidyl-tRNA whereas eRF3 is a 

translation GTPase that is released after the hydrolysis of GTP (Dever and Green, 

2012).   

1.2 Regulation of Protein Synthesis  

Regulation of protein synthesis takes place mainly at the initiation step (Hershey 

et al., 2012). Global regulation of protein synthesis depends on the phosphorylation 

state of one or more initiation factors, reflecting their activation or inhibition. There are 



  Introduction 

32 

 

many mechanisms of translational control; three of them are predominant in higher 

eukaryotes. The first mechanism acts on the formation of the ternary complex (eIF2, 

GTP, Met-tRNA). eIF2 hydrolyses GTP to GDP and dissociates from the mRNA, 

allowing binding of 60S ribosomal subunit. eIF2α upon phosphorylation at Ser51 acts 

as a negative regulator of initiation of translation by inhibiting the exchange of GDP 

for GTP and thus formation of ternary complex (Costache et al., 2012).  

    A second regulatory mechanism involves PABP. PABP enhances translation 

as it bridges the 3'-terminal poly (A) tail of mRNA and eIF4G by binding to both and 

thereby circularizing mRNA (Kahvejian et al., 2001). In mammals, two proteins 

interact with PABP: PAIP2A (PABP Interacting Protein 2A) and PAIP2B. Both proteins 

inhibit translation by removing PABP from the poly (A) tail (Berlanga et al., 2006).  

A third level of regulation of protein synthesis occurs through a family of 

inhibitory proteins, 4E-BPs. This family is composed of three members, 4E-BP1, 4E-

BP2 and 4E-BP3. 4E-BPs are capable of inhibiting cap-dependent initiation (Raught 

and Gingras, 1999). They compete with eIF4G for binding to eIF4E and hinder the 

assembly of eIF4F complex (Haghighat et al., 1995). The activity of 4E-BPs is 

determined by their phosphorylation state. Hypophosphorylated 4E-BPs bind to eIF4E 

and inhibit translation initiation. Upon phosphorylation on several sites, they 

dissociate from eIF4E, a functional eIF4F complex is assembled and initiation is 

promoted (Raught and Gingras, 1999).   

Control of protein synthesis is also achieved by trans RNA–Binding Proteins 

(RBPs) or non-coding RNAs (ncRNAs), microRNAs (miRNAs) which bind to the 

structural elements of mRNAs such UTRs and can either repress or activate 

translation of these transcripts (Fabian et al., 2010; Imig et al., 2012). Furthermore, 

cis–acting elements of the transcripts such as upstream open reading frames 

(uORFs) can directly repress the translation of the mRNAs that they belong to, by 

interacting with ribosomes (Somers et al., 2013).  
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1.3 eIF4E-Binding Proteins (4E-BPs)  

1.3.1 Activity and tissue distribution of 4E-BPs 

4E-BP1 and 4E-BP2 were identified as eIF4E-binding proteins by Far-Western 

interactions (Pause et al., 1994) whereas 4E-BP3 was identified later (Poulin et al., 

1998). The three members of the family specifically inhibit eIF4E-dependent 

translation in vitro and in vivo by impeding the formation of eIF4F complex, which is 

essential for the recruitment of ribosome to the mRNA (Pause et al., 1994). 

Particularly, they compete with eIF4G for binding to the convex dorsal surface of 

eIF4E (Mader et al., 1995). Interestingly, the interaction of 4E-BPs and eIF4E is based 

on two motifs instead of one that is required for eIF4E-eIF4G interaction. These motifs 

are the canonical 54YXXXXLΦ60 and the 78IPGVT82 site (Lukhele et al., 2013). Figure 

1.2 (A) shows the percentage of sequence identity between 4E-BPs. Despite the fact 

that all three 4E-BPs repress cap-dependent translation (Pause et al., 1994), they 

exhibit different tissue expression levels, as Figure 1.2 (B) indicates. 4E-BP1 is highly 

expressed in adipose tissue and muscle whereas 4E-BP2 is abundant in the brain 

(Banko et al., 2005; Tsukiyama-Kohara, 2001). Moreover, RNA and protein 

expression of 4E-BP1 and 4E-BP2 differs within different brain structures, as Figure 

1.2 (C) shows, indicating that 4E-BP2 is the prevailing isoform in the brain (Banko et 

al., 2005; Tsukiyama-Kohara, 2001).    
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Figure 1.2 The three 4E-BPs show a high percentage (more than 50%) of primary sequence 
but differ in their RNA and protein tissue expression. 

A. Schematic of the major domains in 4E-BPs: regulatory domains (RAIP), mTOR 
phosphorylation sites [Threonine (T), Serine (S) residues], eIF4E binding site and Raptor 
binding domain [containing the TOS (TOR signalling) motif] (Martineau et al., 2013). B. 
Western blot of 4E-BPs in different tissues from Eif4ebp1 (+/+) and (-/-) mice (Tsukiyama-
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Kohara, 2001). C. RNA and protein expression of 4E-BP1 and 4E-BP2 in different brain 
structures (The Human Protein Atlas). 

1.3.2 Structure of 4E-BPs 

4E-BPs belong to the family of intrinsically disordered proteins (IDPs), thus 

they lack stable secondary and tertiary structure and contain intrisically disordered 

regions (IDRs). They form dynamic interactions to mediate their biological role and 

may undergo a disorder-to-order transition when they interact with proteins (Lukhele 

et al., 2013). 4E-BPs are small polypeptides (100-120 amino acids) unstructured in 

solution. However, they gain alpha helical structure when they are tethered to eIF4E 

(Tomoo et al., 2005). Furthermore, they are remarkably stable to heat or acid as their 

original name denotes (PHAS, phosphorylated heat and acid-stable protein regulated 

by insulin) (Blackshear et al., 1982). Structure of 4E-BPs is discussed in more detail 

in Chapter 4. 

1.3.3 Regulation of activity  

Different extracellular stimuli affect translation by changing the 

phosphorylation state of specific serine/threonine residues of 4E-BPs. Figure 1.2 (A) 

illustrates the phosphorylation sites (red) that are present in each form and the major 

domains/motifs on their sequences. Insulin stimulation of rat adipocytes evokes 

phosphorylation of 4E-BP1 (Blackshear et al., 1982; Wang et al., 2007). Moreover, 

hormones, growth factors, cytokines, G-protein coupled receptor ligands and 

adenovirus infection induce phosphorylation of 4E-BP1 whereas heat shock in certain 

cell types and infection with poliovirus decrease its phosphorylation (Kleijn et al., 

1998). Similarly, various stress stimuli differently affect phosphorylation of 4E-BP2 

and thereby initiation of translation. Cerebral ischemia and ischemia-reperfusion 

injury induce phosphorylation and dephosphorylation of 4E-BP2 in Thr37/46, 

respectively (Ayuso et al., 2015).  

1.3.4 Phosphorylation of 4E-BPs 

The phosphorylation of 4E-BPs is regulated by an evolutionarily conserved 

Ser/Thr kinase termed mTOR (mammalian/mechanistic Target Of Rapamycin). 

mTOR has a vital role in regulating protein synthesis as well as cell growth and 

metabolism through control of anabolic and catabolic processes in response to 
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nutrients and growth factors (Laplante and Sabatini, 2013). mTOR forms two 

functional complexes, mTORC1 and mTORC2. Each complex consists of different 

components and has different activity (mTOR signalling pathway is discussed in detail 

in section mTOR).  

Upon activation through different stimuli, mTORC1 phosphorylates residues 

Thr37 and Thr46 in human 4E-BPs. Interestingly, the phosphorylation of these sites 

acts as a priming event for the phosphorylation of Ser65 and Thr70. These 

phosphorylation sites are conserved between the three mammalian 4E-BPs and the 

lower eukaryotes (Gingras et al., 2001) and exhibit different sensitivity to stimulation. 

The Thr37/Thr46 residues can be phosphorylated even upon serum starvation, thus 

absence of growth factors. Conversely, serum-stimulation evokes phosphorylation of 

residues Thr70 and subsequently Ser65 which are proximal to C-terminus and close 

to the eIF4E-binding site (Gingras et al., 2001). Alterations on the phosphorylation 

levels of 4E-BPs do not affect levels of global protein synthesis but only translation of 

‘’eIF4E-sensitive’’ mRNAs (Colina et al., 2008; Dowling et al., 2010; Lynch et al., 2004; 

Petroulakis et al., 2009). Those mRNAs encode proteins that play major roles in 

proliferation and survival and their translation is selectively stimulated by the 

mTORC1 complex (Dowling et al., 2010).  

 Phosphorylated 4E-BPs dissociate from eIF4E, allowing the formation of eIF4F 

complex (Pause et al., 1994). The hierarchical phosphorylation of 4E-BPs is critical 

for their activity (Gingras et al., 2001). Hypophosphorylated 4E-BP1 at Ser65 and/or 

Thr70 is still bound to eIF4E, implying that only hyperphosphorylated 4E-BPs 

dissociate from eIF4E (Gingras et al., 2001). Importantly, hypophosphorylated 4E-

BPs preferably inhibit the translation of mRNAs with unstructured 5’ UTRs and are 

GC-rich (Gingras et al., 1999). For efficient phosphorylation of 4E-BPs, two motifs are 

required in their protein sequence, the RAIP (Arg-Ala-Ile-Pro) in the NH2- and the TOR 

signalling motif (TOS, Phe-Glu-Met-Asp-Ile) in the COOH- terminus region of protein 

(Choi et al., 2003). Figure 1.2 (A) indicates the position of both motifs on the primary 

sequence of 4E-BPs. 4E-BP3 lacks RAIP motif. The TOS motif is essential for binding 

and interaction with Raptor, a component of mTORC1 complex, that recruits 

substrates to mTOR for phosphorylation (Nojima et al., 2003). Figure 1.3 delineates 

the activity of hypophosphorylated 4E-BP2, inhibiting the initiation of translation (left 

panel) and hyperphosphorylated 4E-BP2, allowing the assembly of eIF4F complex 

and translation initiation (right panel). 
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Figure 1.3 4E-BP2 is a repressor of cap-dependent translation in the brain.  

Hypophosphorylated 4E-BP2 binds to eIF4E and prevents the assembly of eIF4F complex, 
thus inhibiting the initiation of protein synthesis. Upon mTOR phosphorylation, 4E-BP2 
dissociates from eΙF4E, allowing the formation of eIF4F complex and initiation of protein 
synthesis. 

  



  Introduction 

38 

 

1.4 mTOR   

1.4.1 mTORC1 and mTORC2 

 The mTOR kinase forms two distinct complexes, mTORC1 and mTORC2. 

mTORC1 complex is composed of mTOR; Raptor which acts as a scaffolding protein 

by recruiting substrates to the complex; PRAS40 (Proline-Rich AKT substrate 40kDa) 

and Deptor, both inhibiting the complex; mLST8 with yet unknown function; and tti1 

and tel2, both scaffolding proteins, controlling the stability of the complex. mTORC2 

consists of mTOR; Rictor that is another scaffolding protein; mSin1 which regulates 

the assembly of the complex and interaction with SGK1; protor1/2 that increases 

mTORC2 – dependent activation of SGK1 and mLST8; Deptor, tti1 and tel2 (Laplante 

and Sabatini, 2012). mTORC1 regulates various cellular processes such as growth, 

cell cycle, metabolism; is responsive to amino acids, energy levels, growth factors, 

oxygen and is blocked by rapamycin. On the contrary, mTORC2 controls metabolism, 

cell survival and cytoskeletal organization; is responsive to growth factors but is not 

inhibited by rapamycin (Laplante and Sabatini, 2013).  

1.4.2 Upstream and downstream of mTOR   

The activation of mTORC1 is dependent on various stimuli (they are described 

in the previous paragraph). In response to these stimuli, RTKs (Receptor Tyrosine 

Kinases) are activated which in turn activate PI3K (Phosphoinositide-3-Kinase). PI3K 

converts PIP2 (Phosphatidylinositol 4,5-bisphosphate) into PIP3 

(Phosphatidylinositol-3,4,5-triphosphate) whereas PTEN (Phosphatase and tensin 

homolog) catalyzes the opposite reaction. PDK1 (Phosphoinositide-dependent 

protein kinase1) and AKT/PKB (Protein kinase B) bind to PIP3, allowing 

phosphorylation and activation of AKT. In addition, mTORC2 complex acts on the 

hydrophobic motif of AKT by phosphorylating it. Three successive events are part of 

the cross-talk between mTORC1 and mTORC2 complexes. Firstly, phosphorylated 

AKT inhibits TSC2 (Tuberous Sclerosis Complex 2) by phosphorylating it in various 

sites. The inhibition of TSC2 allows activation of Rheb (Ras homolog enriched in 

brain) which in turn activates mTORC1. Active mTORC1 complex phosphorylates 4E-

BPs, allowing their dissociating from eIF4E and initiation of translation (Topisirovic 

and Sonenberg, 2011). A second target of mTORC1 complex are S6 kinases (S6K1 
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and S6K2). Upon activation, they phosphorylate ribosomal protein S6 (rpS6) which 

has been associated with enhanced rate of translation (Topisirovic and Sonenberg, 

2011). mTORC1 preferentially regulates the translation of mRNAs that possess 

extensive secondary structure at their 5’ UTR or are rich in pyrimidine bases at their 

5’ UTR (TOP mRNAs) (Ruvinsky and Meyuhas, 2006).  

 The PI3K/Akt pathway is not the only pathway that can stimulate mTORC1 

complex. Other kinases that can also activate mTORC1 complex are the 

serine/threonine kinase 11/LKB1/AMP-kinase (LKB1/AMPK) (Topisirovic and 

Sonenberg, 2011). 

The other pathway that plays a fundamental role in translational control is the 

Ras/MAPK pathway. This pathway can be activated through G protein–coupled 

receptors (GPCRs), protein kinase C (PKC) and RTKs (Topisirovic and Sonenberg, 

2011), and encompasses two different signaling pathways that result in the 

phosphorylation of eIF4E. Firstly, stimuli such as growth factors, hormones and 

phorbol-esters activate Ras GTPase which in turn stimulates Raf kinase, an initial 

GTPase-regulated kinase (MAPKKK). Then, a subsequent activation of intermediate 

kinases occurs that activate the effector extracellular signal-regulated kinases 1 and 

2 (ERK 1 and 2). Conversely, upon stimulation of Ras due to different cellular 

stresses, a cascade of successive activation events engenders activation of p38 

MAPKs. Both ERK1 and 2 and p38 MAPKs activate MNKs (MAPK signal–integrating 

kinases 1 and 2) that phosphorylate eIF4E (Topisirovic and Sonenberg, 2011).  
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Figure 1.4 The mTOR signalling pathway.  
 
mTOR kinase is part of two distinct complexes with different components: mTORC1 and 
mTORC2. Various stimuli such as amino acids and growth factors activate mTORC1 complex 
through PI3K/AKT pathway (Huber et al., 2011).  
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1.5 Translational Control in learning and memory 

Translational control refers to changes in the rate of translation of mRNA 

(Gkogkas et al., 2010). The different mechanisms of translational control can induce 

rapid changes in protein amounts, according to the needs of a cell at a specific time 

(Schwanhausser et al., 2011). Furthermore, translational control endows spatially 

distinct protein synthesis since many physiological processes require specific proteins 

to be synthesized at specific sites (e.g. dendritic neuronal translation) (Rangaraju et 

al., 2017). Translational control in neurons is fundamental for controlling mnemonic 

processes through modification of synaptic connections named as synaptic plasticity. 

Therefore, complex behaviours such as learning and memory are dependent on 

protein synthesis. Specifically, long-term memory requires de novo protein synthesis, 

underlying the active role of translation in the mechanisms of memory storage 

(Gkogkas et al., 2010).  

Since this thesis is focused on a key modulator of protein synthesis, 4E-BP2, 

it is important to outline the characteristics of knock out models for 4E-BP2. Eif4ebp2 

-/- mice display normal spontaneous locomotor activity compared to Eif4ebp2 +/+ 

mice when tested in an open field test (Banko et al., 2007). However, checking the 

overall activity on the rotating rod task, Eif4ebp2 -/- mice exhibit reduced performance 

regarding motor coordination, balance and learning compared to Eif4ebp2 +/+ mice 

(Banko et al., 2007). Moreover, after testing their anxiety-like behaviour using a 

light/dark test and a step-through passive avoidance task, Eif4ebp2 -/- mice show a 

significant longer latency to cross into the dark chamber on the training day, albeit 

overall there are no differences in the number of crosses compared to Eif4ebp2 +/+ 

mice (Banko et al., 2007). Interestingly, after checking working memory on a T-maze 

of spontaneous alternation, Eif4ebp2 -/- mice exhibit a reduced alternation rate, 

choosing left or right arms with equal frequency compared to their WT counterparts, 

denoting that working memory requires 4E-BP2 (Banko et al., 2007). Moreover, 4E-

BP2 KO mice demonstrated enhanced memory for conditioned taste aversion, 

avoiding in a higher frequency saccharin and NaCl solutions than WT mice (Banko et 

al., 2007). Thereby, 4E-BP2 is a key mediator of translational control in the brain and, 

thus of memory formation and learning processes (Banko et al., 2007; Banko et al., 

2005). Formation of memory requires new protein synthesis which is pivotal for 

synaptic plasticity. Two major forms of synaptic plasticity, LTP (Long-Term 

Potentiation) and LTD (Long-Term Depression) are different in Eif4ebp2 -/- mice 
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compared to Wild Type (WT). Specifically, Eif4ebp2 -/- mice show increased DHPG-

induced mGluR-LTD compared to WT mice (Banko et al., 2006). Furthermore, 

rapamycin inhibited DHPG-induced eIF4E complex formation in WT slices but not in 

slices from 4E-BP2 KO mice (Banko et al., 2006). This finding underlines the 

importance of 4E-BP2 during mGluR-LTD. In contrast to LTD, LTP-inducing 

stimulation increases assembly of eIF4F complex in both WT and 4E-BP2 KO mice, 

distinguishing the engagement of 4E-BP2 and cap-dependent translation between 

LTP and DHPG-LTD (Banko et al., 2006). Although basal synaptic transmission levels 

are not differentiated between Eif4ebp2 -/- and WT mice, stimuli that induce early-

phase LTP to WT mice, elicit late-phase LTP to Eif4ebp2 -/- mice (Banko et al., 2005). 

Lastly, Eif4ebp2 -/- mice display deficits in spatial learning and memory on a Morris 

water maze and a conditioned fear paradigm (Banko et al., 2005). Importantly, 4E-

BP2 KO mice exhibit autistic-like behaviours since they are characterized by social 

interaction deficits on a three-chamber social test, a self-grooming test and a marble-

burying test (Gkogkas et al., 2013). Also, this autistic-like behaviour was associated 

with increased translation of neuroligins in 4E-BP2 KO mice compared to WT mice 

and is rescued after inhibiting eIF4E-eIF4G interaction (Gkogkas et al., 2013). 

Therefore, there is increasing evidence to support the importance of 4E-BP2 in 

multiple brain functions.  

1.5.1 Translational control and synaptic plasticity 

Short-term memory (STM) endures for seconds or minutes whereas long-term 

memory (LTM) can last for hours, days or years. LTM depends on protein synthesis 

to such an extent that synthesis of specific proteins determines if a mnemonic process 

will be stored transiently or permanently in the brain (Buffington et al., 2014). In ex 

vivo hippocampal slices, induction of late-phase LTP was dependent on protein 

synthesis but early-phase LTP was not (Kandel, 2001). In agreement with this finding, 

in hippocampal slices from mice with reduced phosphorylation of eIF2α [either lacking 

GCN2 (General Control Nonderepressible 2) kinase that phosphorylates eIF2α or 

lacking the phosphorylation site of eIF2α which was converted to alanine], the 

threshold in which the late-LTP was inducted was reduced in many behavioural tasks 

compared to slices from WT mice (Morris water maze, associative fear conditioning, 

conditioned taste aversion) (Costa-Mattioli et al., 2005; Costa-Mattioli et al., 2007). 

Therefore, changes in key regulators of translational control such as eIF2α have an 
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impact on long-lasting modifications of synaptic strength (Costa-Mattioli et al., 2009).  

Similarly, activation of metabotropic glutamate receptors induced LTD which also 

required protein synthesis (Huber et al., 2000). This translation – dependent memory 

storage will either strengthen existing synapses (LTP) or form new synaptic 

connections. Interestingly, certain types of memory are associated with weakening 

synaptic connections (LTD) (Malenka and Bear, 2004). Thus, induction of late–phase 

LTP and metabotropic GluRs–dependent induced LTD, both require protein 

synthesis. 

1.5.2 Local protein synthesis and synaptic plasticity 

The presence of the components of translational machinery in dendrites and 

dendritic spines (Steward and Schuman, 2001; Sutton and Schuman, 2006) was 

crucial for the discovery that long–lasting plasticity could be induced by local protein 

synthesis independently from transcription in the soma  (Costa-Mattioli et al., 2009). 

Specifically, BDNF (Brain-derived neurotrophic factor) could engender LTP in pre- or 

postsynaptic pyramidal neurons that were de-attached from their somas and 

translation inhibitors could inhibit that LTP (Kang and Schuman, 1996). Another 

process that is regulated by local protein synthesis is stabilisation of new synapses 

during learning in Aplysia (Casadio et al., 1999; Martin et al., 1997). 5 min application 

of serotonin activates local translation and promotes stabilisation of new synapses 

even 72 h after the signal. Inhibition of translation 24 h after the serotonin application 

can remove new synapses (Miniaci et al., 2008). It is not clear yet whether this 

mechanism responsible for the stabilisation involves CPEB (Cytoplasmic 

Polyadenylation Element Binding protein) and/or increased translation of TOP 

mRNAs (Costa-Mattioli et al., 2009). Therefore, long-term synaptic plasticity and 

stabilisation of new synaptic connections is strongly dependent on local protein 

synthesis at synapses. 

1.5.3 Local protein synthesis and glutamate receptors 

Glutamate is the predominant excitatory neurotransmitter in the mammalian 

CNS (Central Nervous System) and is involved in the developmental mechanisms 

that drive the growth, branching, chemotropic turning, filopodial motility of axons and 

synaptogenesis that occurs when axons reach their target areas (Hsu et al., 2015; 

Schmitz et al., 2009; Tashiro et al., 2003; Zheng et al., 1996). During development, 



  Introduction 

44 

 

glutamate mediates all these effects through activation of AMPA (α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid) receptors and upregulation of protein synthesis 

in whole neurons and axons disconnected from their somas (local protein synthesis). 

Similarly, BDNF can also increase translation in these axons (Hsu et al., 2015).  

Upon glutamate stimulation, AMPA receptors get activated in axons and Ca2+ 

can flow through AMPA Ca2+- permeable receptors and voltage-gated Ca2+ channels, 

entailing their involvement in the upregulation of protein synthesis (Hsu et al., 2015). 

Moreover, metabotropic glutamate receptors 1 (mGluR1) and subsequent activation 

of TPRC (Transient Receptor Potential-Canonical) channels as well as group 2 

mGluRs, play also a role in this glutamate–stimulated enhancement of local protein 

synthesis. Interestingly, increased translation in axons upon glutamate stimulation 

was abolished by EGTA that chelates extracellular Ca2+ and was partly inhibited by 

W7 treatment or rapamycin, blocking calmodulin or mTOR signalling, respectively. 

Thus, extracellular Ca2+, calmodulin and mTOR signalling also participate in the 

mechanism of enhancement of translation in axons upon glutamate and BDNF 

stimulation (Hsu et al., 2015).  

However, in whole neurons, global translation is affected by NMDA (N-methyl-

D-aspartate) but not AMPA receptors but the reasons for this difference are still 

unclear. It could be due to the presence of extrasynaptic glutamate receptors in 

severed axons whereas in whole neurons there are both synaptic and extrasynaptic 

receptors. Moreover, the difference could be due to artificial effects of the chip–assay 

used in these experiments or it can be an indication that the mechanisms for increase 

of protein synthesis in whole neurons and axons differ significantly. Figure 1.5 shows 

the activated signalling pathways upon glutamate and BDNF stimulation (Hsu et al., 

2015).  
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Figure 1.5 Glutamate and BDNF stimulation increase translation through specific signalling 
pathways.  

AMPA receptors get activated in axons and Ca2+ can flow through AMPA Ca2+- permeable 
receptors and voltage-gated Ca2+ channels. Moreover, metabotropic glutamate receptors 1 
(mGluR1), TPRC channels and group 2 mGluRs are activated upon glutamate stimulation,   
(Hsu et al., 2015). 

 

AMPA receptors are also involved in another mechanism responsible for 

upregulation of local protein synthesis through activation of D1/D1 dopaminergic 

receptors in hippocampal dendrites (Smith et al., 2005). Specifically, GluR1 is one 

protein upregulated through this mechanism along with enhanced incorporation of 

GluR1 receptors at synaptic sites and increased frequency of miniature synaptic 

events, relating local translation with synaptic plasticity after activation of dopamine 

receptors (Smith et al., 2005). Another subunit of AMPA receptors, GluR2, is also 

translated in isolated hippocampal dendrites and incorporated into the plasma 

membrane (Rebola et al., 2008) upon stimulation with DHPG [(RS)-3-5-

dihydroxyphenylglycine] (Kacharmina et al., 2000).  
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NMDA receptors belong to the family of ionotropic glutamate receptors as 

AMPA receptors and are also key regulators of long-term synaptic plasticity at the 

synapses (Derkach et al., 2007; Santos et al., 2009). They are composed of two 

GluN1 (1A-4A) and two GluN2 (2A-2D) subunits and their expression is differentially 

regulated during development (Traynelis et al., 2010). Their expression and insertion 

into the membrane (surface expression) is dependent on synaptic activity similarly to 

AMPA receptors (Grosshans et al., 2002; Kwon and Castillo, 2008). GluN2A mRNA 

is localized to the dendrites along with the protein complex that regulates its 

expression: CPEB [(Cytoplasmic Polyadenylation Element)–Binding protein] which 

binds to CPE of 3’ UTR of the mRNA, Gld2, a poly(A) polymerase, and Ngd 

(neuroguidin), an eIF4E-binding protein (Udagawa et al., 2012). Synaptic stimulation with 

glycine induces CPEB complex-dependent local translation of GluN2A mRNA and 

insertion of GluN2A–containing NMDA receptors into the dendritic membrane of 

hippocampal neurons (Swanger et al., 2013).    

NMDA receptors are associated with activity–dependent Ca2+ entry into 

neurons and activation of different signalling pathways through generation of 

secondary messengers such as cAMP, IP3 and DAG (Diacylglycerol) (Dell'Acqua et 

al., 2006; Sabatini et al., 2002; Vanhouttey and Bading, 2003). Depending on which 

signalling pathway gets activated, the outcome of NMDA receptor activation on 

protein synthesis is different. cAMP, IP3 and DAG will activate cAMP–dependent 

kinase (PKA) and protein kinase C (PKC) and subsequently the MAPK pathway 

(Coogan et al., 1999; Cullen and Lockyer, 2002) that will result in phosphorylation of 

eIF4E whose function on translation is not clear (Kleign et al., 1998; Raught and 

Gingras, 1999; Scheper and Proud, 2002). PKA will also activate eEF2 kinase which 

will inhibit general translation elongation by phosphorylating eEF2, and concomitantly 

will increase translation of TOP mRNAs (Scheetz et al., 2000; Sutton et al., 2007). 

Influx of Ca2+ will also activate Ca2+/calmodulin–dependent protein kinase II (CaMKII) 

and Aurora kinase. These kinases phosphorylate CPEB that will result in translation 

of specific mRNAs that contain CPEs along with the involvement of PABP and eIF4G 

(Cao and Richter, 2002). Therefore, NMDA receptors also play a major role in 

regulating local protein synthesis that is dependent on synaptic activity.  
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1.6 The Ubiquitin Proteasome system 

1.6.1 Overview of the Ubiquitin Proteasome system 

Protein are continuously synthesized and degraded to maintain cellular 

function and survival and this process is named ‘’protein turnover’’ (Alvarez-Castelao 

and Schuman, 2015). Local regulation of protein content can be achieved either 

through activation of different signalling pathways that generate protein–protein 

interactions, protein trafficking and posttranslational modifications or with precise 

regulation of protein turnover though local translation and degradation (Tsai, 2014). 

The Ubiquitin–Proteasome System is a key mediator of intracellular protein 

degradation (Hamilton and Zito, 2013). It has also been characterised as an 

indispensable molecular event for critical neuronal processes such as long–term 

potentiation, homeostatic plasticity and acute regulation of neurotransmitter release 

(Hamilton and Zito, 2013) that require fast information processing. Protein 

degradation is adapted rapidly to changes of synaptic plasticity, positioning 

proteasome directly dependent on neural activity state (Hamilton and Zito, 2013). 

Stimulation or inhibition of synaptic activity precisely regulates proteasome activity 

(Bingol and Schuman, 2006; Bingol et al., 2010; Djakovic et al., 2009) and its 

subcellular localization (Bingol and Schuman, 2006; Shen et al., 2007) within minutes.  

Ubiquitination is the process where ubiquitin, a 76-residue molecule, is tagged 

on proteins as single moieties or polyubiquitin chains, targeting these substrates for 

protein degradation by a large protease complex, the 26S proteasome (Ding and 

Shen, 2008; Hamilton and Zito, 2013). However, ubiquitination also regulates other 

major cellular events such as intracellular trafficking, endocytosis, regulation of 

protein activity and lysosomal degradation (Nandi et al., 2006; Woelk et al., 2007) 

depending on which specific lysine residues of ubiquitin will create a polyubiquitin 

chain and the subsequent three–dimensional structure (Woelk et al., 2007). The 

minimal requirement for proteasomal degradation is a ubiquitin chain of four 

molecules linked at the lysine at position 48 (K48)(Thrower et al., 2000). 

1.6.2 Structure of the Proteasome   

In mammals, proteasomes are mainly cytosolic but can also be found in the 

plasma membrane, ER, cytoskeletal elements and nucleus where they also degrade 
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proteins (Nandi et al., 2006). The 26S proteasome is composed of a 20S core particle 

surrounded by at least one 19S regulatory particle (van Tijn et al., 2008). The 20S 

core subunit consists of four stacked rings, two inner and two outer, forming a barrel 

structure that has proteolytic activity. Each inner ring is composed of seven β-subunits 

and each outer of seven α–subunits (van Tijn et al., 2008). The proteolytic activity is 

designated into chymotrypsin-like, trypsin-like and peptidyl-glutamyl-peptide, 

hydrolysing activity in the β 5, β 2 and β 1 subunits, respectively (van Tijn et al., 2008). 

The 19S regulatory complex is composed of a structure attached to the 20S core, 

forming the base part, and another structure on top of the base made up of eight 

different subunits at least. The base structure consists of ATPases and non-ATPase 

subunits. The 19S regulatory complex is responsible for substrate recognition and 

removal of ubiquitin chain, each one attributed to specific subunits (van Tijn et al., 

2008). Other functions that have been attributed to this regulatory complex are 

unfolding of substrates and opening of orifices to enable the entrance of the 

substrates into the barrel structure (Ciechanover; and Brundin, 2003).  

1.6.3 The mechanism of the Ubiquitin Proteasome System  

Ubiquitination takes place in three steps along with the active participation of 

three enzymes, each one catalysing a different reaction. Firstly, an E1–activating 

enzyme is charged with ubiquitin, hydrolysing ATP (Ding and Shen, 2008; Hamilton 

and Zito, 2013). A covalent bond is shaped between the C-terminal glycine of ubiquitin 

and active–site cysteine of the enzyme, activating ubiquitin (Ding and Shen, 2008). 

Then, Ubiquitin is transferred and coupled to an E2 ubiquitin conjugating enzyme 

through a new thioester bond with G76 of Ubiquitin (Ding and Shen, 2008). The newly 

formed Ub–E2 complex charges the attached Ubiquitin through its carboxy–terminal 

glycine to the target protein, interacting with an E3 ubiquitin ligase (Hamilton and Zito, 

2013).  

There are only two E1 (Ding and Shen, 2008), 30 E2 and hundreds of E3 

enzymes that constitute the largest family of ubiquitin ligases (Hamilton and Zito, 

2013; Pickart, 2001), conferring ubiquitination specificity (Hamilton and Zito, 2013; 

Pickart, 2001) and positioning the third ubiquitination step as the rate – limiting  one 

(Tsai, 2014). Specifically, there are two categories of E3 enzymes (Pickart, 2001) 

based on the structural motifs that they share (Ciechanover; and Brundin, 2003): 

HECT (Homologous to E6-associated protein C-Terminus) and RING (Really 



  Introduction 

49 

 

Interesting New Gene) domain (Pickart, 2001). A third class of E3 enzymes was 

identified, named U-box-containing E3 enzymes (van Tijn et al., 2008).  

Although addition of single molecules of ubiquitin is catalysed by a similar 

mechanism as polyubiquitination, these substrates are mostly catalysed by the 

lysosome/vacuole (Ciechanover; and Brundin, 2003). Polyubiquitin chains will stem 

from additional ubiquitin moieties that may be bound to one of the 7 internal lysines 

of ubiquitin (Hamilton and Zito, 2013). The targeting motif usually is exposed to enable 

binding of a specific ligase and can be a single amino acid, a sequence or a domain. 

Sometimes, recognition of the substrate by E3 enzymes is not sufficient to enable 

ubiquitination and either the substrate or the E3 ligase must undergo specific 

posttranslational modifications in response to external cues to be active and allow 

substrate recognition (Ciechanover; and Brundin, 2003). Μodifications on either the 

enzyme, changing its stability, or on the substrate, modulating its binding affinity for 

other ligases, occur through Ubiquitin-Like (UBL) proteins. UBLs require E1, E2 and 

possibly E3 enzymes that catalyse a similar mechanism to ubiquitination. The 

specificity of ubiquitination depends also on the stability of other auxiliary proteins. 

Molecular chaperones, transcription factors, kinases, DNA sequences all play a 

critical role in the recognition of the substrate (Ciechanover; and Brundin, 2003).  

Ubiquitylated substrates need to come to proximity with the proteasome using 

different mechanisms since the E3 enzymes do not reside at the proteasome (Tai and 

Schuman, 2008). The 19S subunits RPT5 and RPN10 can act as scaffolding proteins 

to bring together the proteasome and the substrate as they can bind polyubiquitin 

(Hartmann-Petersen et al., 2003). In PSDs (Postsynaptic densities), molecular 

chaperones such as HSP40, HSP70 and chaperone – associated E3, CHIP, have 

been identified, implying that they serve as docking sites for ubiquitylated 

postsynaptic proteins (Li et al., 2004).  

Apart from the addition of ubiquitin, the ubiquitination process is also regulated 

by the removal of ubiquitin moieties or chains by deubiquitinases (Hamilton and Zito, 

2013). Specifically, while the ubiquitinated substrate is degraded by the proteasome, 

cleaving it in short peptides, deubiquitinases release ubiquitin which then reuse for 

new ubiquitination cycles (Ding and Shen, 2008). Deubiquitinases confer many 

functions by recycling ubiquitin moieties. They can rescue target proteins from 

degradation by removing the polyubiquitin chain at the entrance of proteasome or 

recycling ubiquitin molecules by disassembling free polyubiquitin chains (van Tijn et 

al., 2008).  
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Following proteasomal degradation, either short peptides are released from 

the proteasome and further processed by cytosolic amino- and carboxypeptidases or 

truncated products are generated that are then active like in the case of NF-κB 

(Nuclear Factor kappa-light-chain-enhancer of activated B cells) (Ciechanover; and 

Brundin, 2003). Moreover, a small fraction of these released peptides is transferred 

through the endoplasmic reticulum (ER) membrane and presented to cytotoxic T cells, 

following binding to the MHC class I molecules (Ciechanover; and Brundin, 2003). 

The 26S proteasome recognises and destructs only ubiquitinated substrates. Only in 

the case of the polyamine synthesizing enzyme ornithine decarboxylase (ODC), it 

degrades the substrate without prior ubiquitination but after its association with 

another protein, named antizyme (Ciechanover; and Brundin, 2003).   

Proteasome degradation has different regulatory mechanisms acting on 

different steps of the process: subunit composition, proteolytic activity, subcellular 

localization and interactions of UPS with other proteins, all dependent on neuronal 

activity (Alvarez-Castelao and Schuman, 2015). Intriguingly, NMDA activation 

disassembled the 26S proteasome and lowered its proteolytic activity (Tai et al., 

2010). Moreover, after TTX inhibition of voltage – gated sodium channels, the 

degradation of a chimeric proteasome substrate decreased whereas after bicucculine 

degradation increased (Djakovic et al., 2009). On the other hand, proteasome 

inhibitors recruited CamKII to phosphorylate the proteasome in response to glutamate 

with the concomitant block of spine outgrowth (Hamilton et al., 2012).  

1.7 Protein synthesis and Proteasome degradation – Half-life 

of proteins 

Protein turnover is highly dynamic, even when neurons are under basal 

activity, with both protein synthesis and protein degradation working concomitantly to 

achieve a fine-tuned renewal of the protein pool (Alvarez-Castelao and Schuman, 

2015). Protein synthesis and proteasome degradation of synaptic proteins have been 

characterized as indispensable components of synaptic plasticity (Alvarez-Castelao 

and Schuman, 2015). Proteasomal inhibition with Lactacystin (Fonseca et al., 2006) 

or inhibition of protein synthesis with Anisomycin (Krug et al., 1984) disrupted 

hippocampal late LTP (Fonseca et al., 2006; Krug et al., 1984). Intriguingly, LTP was 

rescued after concomitant inhibition of both protein synthesis and degradation 
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(Fonseca et al., 2006). On the other side, synaptic activity can change the distribution 

of proteasomes within neurons. Specifically, increased synaptic activity leads to 

accumulation of proteasomes in dendritic spines (Bingol and Schuman, 2006). Apart 

from the proteasome, ubiquitination is also dependent on neuronal activity. Blockage 

of activity leads to decrease of polyubiquitinated protein in the PSD and induction of 

activity to an increase (Ehlers, 2003). Therefore, there are specific mechanisms that 

confer bidirectional control of protein content in local neuronal domains as in dendrites 

and axons (Steward and Schuman, 2003).  

Key components of these regulatory mechanisms are polyribosomes that are 

synthesized in synapses (SPRCs, synapse – associated polyribosomes complexes), 

and signalling pathways, responsible for the regulation of local translation (Steward 

and Schuman, 2003). SPRCs have been found in non-spine and spine synapses, 

accosting postsynaptic sites and docking at the spine base, respectively (Steward et 

al., 1996). Activation of these signalling pathways is activity – dependent and can lead 

to translocation of the polyribosomes from the base to the spine head (Ostroff et al., 

2002). The postsynaptic spine head is biochemically isolated from the dendrites and 

the translocation of molecules from the base to the head is activity – dependent 

(Bloodgood and Sabatini, 2005). In addition, after LTP stimulation, apart from the 

number of the polyribosomes, the size of the PSDs is larger, suggesting that local 

protein synthesis causes growth of PSDs (Ostroff et al., 2002). The number of SPRCs 

depends on the cell type and the developmental stage, reaching a high number during 

maximal synaptogenesis periods (Steward and Falk, 1986).  

Local translation can be triggered after NMDA, mGluR, glutamate activation, 

activation of growth factor receptors (GFRs) and depolarization depending on the 

mRNAs (Steward and Schuman, 2003). Furthermore, regulation of dendritic 

translation can also be regulated by key signalling pathways as mTOR since major 

components as 4E-BP1 and 4E-BP2 have been found in dendrites (Steward and 

Schuman, 2003). Conversely, local degradation is also triggered by NMDA activation 

since recruitment of proteasomes is increased into spines after NMDA activation 

(Bingol and Schuman, 2006). Therefore, activity or neuronal stimulation does not 

have one whole effect on protein turnover but affects differently each process. 

Interestingly, even a single biological process is not affected towards one direction 

only (Alvarez-Castelao and Schuman, 2015).  

 Protein synthesis and degradation work together to maintain the required 

protein pool quantitatively and qualitatively (Alvarez-Castelao and Schuman, 2015). 
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Furthermore, their crosstalk is sometimes required for translational control of some 

protein. UPS degrades proteins – components of the translational machinery, 

regulating in this way protein synthesis (Alvarez-Castelao and Schuman, 2015).  

Protein turnover and renewal of the proteome is also crucial for other neuronal 

functions apart from the main maintenance of proteins concentration in the cells 

(Alvarez-Castelao and Schuman, 2015). UPS also affects presynaptic 

neurotransmitter release by regulating the size of the vesicle pool and the Ca2+-

dependent vesicle release through SCAPPER (F-box/LRR-repeat protein 20), an E3 

enzyme and its substrate RIM1 (Yao et al., 2007). 

 Brain proteome has been characterized with very slow protein half–lives, 

having an average lifetime of 9 days. This slow protein turnover rate emerges from 

stable brain–specific proteins and proteins expressed also in other tissues but 

exhibiting a slow turnover rate only in the brain (Price et al., 2010). However, a protein 

half–life can also be modified by the subcellular localization of the protein, the activity 

state and the developmental stage of the cell. Moreover, posttranslational 

modifications play a fundamental role in modulating protein stability (Alvarez-Castelao 

and Schuman, 2015).  

 Specifically, subcellular localization of the protein plays a critical role in 

determining its half – life (Dörrbaum et al., 2018). Membrane proteins associated with 

plasma membrane, ER and Golgi were characterized as short–lived proteins 

compared to mitochondrial proteins that were characterized as long–lived (Dörrbaum 

et al., 2018). Thus, different degradation mechanisms might be responsible for 

degradating cytosolic and membrane proteins (Tai and Schuman, 2008). 

Furthermore, molecular function also affects protein half–lives. Receptors and 

signalling molecules were shown to have short half–lives to endow rapid and fine–

tuned regulation of synaptic plasticity (Dörrbaum et al., 2018).  

1.7.1 Dendritic and axonal mRNAs  

mRNAs that have been found to exhibit extensive dendritic localization encode 

for cytoplasmic, cytoskeletal, integral membrane and membrane–associated proteins. 

The subcellular localization varies between different cell types and different 

developmental periods. Some mRNAs are present during early development and 

absent from mature neurons (Steward and Schuman, 2003). Moreover, this dendritic 

localization is enhanced after depolarisation by KCl (Tiruchinapalli et al., 2003) or 
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neurotrophin treatment (Knowles and Kosik, 1997), denoting its dependence from 

neuronal activity and major signalling pathways that mediate synaptic responses 

(Steward and Schuman, 2003). Therefore, since the dendritic branch is capable of 

synthesizing and degrading proteins, owing translational machinery and UPS 

(Alvarez-Castelao and Schuman, 2015), and can be individually regulated by synaptic 

activity along with the associated synapses (Branco and Hausser, 2010), this cluster 

may be the fundamental computational neuronal unit (Alvarez-Castelao and 

Schuman, 2015).  

 Proteins encoded by dendritic mRNAs are components of key protein 

complexes for mediating postsynaptic responses such as CAMKII, Shank, Insp3 

(Inositol trisphosphate), Arc (Activity-regulated cytoskeleton-associated), assembling 

the NMDA receptor complex (Husi et al., 2000). However, it is not known whether the 

components (Knowles and Kosik, 1997) are synthesized and the complex is formed 

away from the synapse and then translocates into synaptic areas or the components 

replace molecules in existing synaptic complexes (Steward and Schuman, 2003). 

Different half-lives that have been found for protein components of the same complex 

(Ehlers, 2003) and presence of ribosomes–associated with the postsynaptic density 

(Asaki et al., 2003) support the second theory. Furthermore, activity–mediated 

translocation of ribosomes to the spine head (Ostroff et al., 2002) suggest that newly 

synthesized protein can stem from mRNAs being translated in these areas, closely to 

the PSD (Steward and Schuman, 2003).  

Dendritic mRNAs are not concomitantly axonal mRNAs, implying the 

existence of precise but different mechanisms of mRNAs transportation and protein 

synthesis in dendrites and axons. Specifically for the dendritic mRNAs, it has been 

demonstrated that cis–acting elements in the 3’ UTR play the role of ‘’zip–codes’’ for 

dendritic delivery (Tiedge and Brosius, 1996) through granules that consist of mRNAs 

and translocate in dendrites (Knowles and Kosik, 1997). There are many other 

regulatory elements located in either the 3’or 5’ UTR, controlling the translocation, 

localization, stabilization and translation of the mRNAs (Andreassi and Riccio, 2009). 

RNA – binding proteins bind to these elements and attach the RNAs to cytoskeletal 

motor or adaptor proteins that drive their localization (Czaplinski, 2014). Alternative 

polyadenylation plays an important role to this process since it will provide the 

diversity of the 3’ UTRs of the mRNAs (Tian and Manley, 2017). Regarding local 

translation, mRNAs containing cytoplasmic polyadenylation elements (CPEs), have 
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been found to exhibit increased translation after neuronal stimulation (Wells et al., 

2001).  

 

1.8 Posttranslational Modifications  

  The activation of many Initiation Factors relies on their phosphorylation. 

However, other posttranslational modifications have also been identified. Even though 

many of these modifications target factors whose function is clear, their effects on 

these proteins and consequently on translation are unknown. Recently, it was 

discovered that 4E-BP2 is the only isoform of 4E-BPs which undergoes asparagine 

deamidation in two sites only in the brain (Bidinosti et al., 2010b). However, the role 

of deamidated 4E-BP2 in translation remains to be elucidated.   

1.8.1 Deamidation  

Deamidation is a post-translational modification that can take place in vivo and 

in vitro. It is the spontaneous conversion of asparagine (Asn) and glutamine (Gln) 

residues to aspartyl (Asp) and glutamyl (Glu) residues (Robinson and Robinson, 

2001). After each deamidation event, each of the following products can be produced: 

L-aspartic acid, D-aspartic acid, L-iso-aspartic acid and Disoaspartic acid residue 

(Hipkiss, 2006). The rate of the reaction depends on multiple factors such as primary 

sequence, three-dimensional (ED) structure, pH, temperature, ionic strength, buffer 

ions and other solution properties. Deamidation introduces a negative charge at the 

residue that takes place at neutral pH (Robinson and Robinson, 2001) and increases 

the mass of protein 1Da (Washington et al., 2013). Therefore, many biological and 

structural differences can occur in proteins due to deamidation (Hipkiss, 2006; 

Robinson and Robinson, 2001).   

The two residues, Asn and Gln exhibit different susceptibility in deamidation. 

Asparagine residues are more prone to deamidation than glutamine and the reaction 

on Asn is faster than on Gln residues (Hipkiss, 2006).  There is evidence that the motif 

NGxG (where N is any nucleotide, G is a Glycine on the carboxyl-terminus and a 

second Glycine in the position x+3) exhibits increased susceptibility to deamidation of 

Asn residues in vivo (Mikkat et al., 2013). For many years deamidation was thought 

as non-specific but there is evidence that it is a highly regulated process in some 
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proteins. Deamidation in Gln residues can occur enzymatically and nonenzymatically 

(Robinson and Robinson, 2004). Regarding deamidation in Asn residues, no enzyme 

was known to catalyse deamidation until recently where PFAS 

(PhosphoribosylFormylglycinAmidineSynthetase) was found to be the first protein 

deamidase. PFAS is recruited after specific viral infections. RIG-I (Retinoic acid-

Induced Gene I) is a pattern recognition receptor which can recognize pathogen 

associated molecular patterns (PAMPs). After the detection of PAMPs and IFN 

(Interferon) stimulation, it exhibits increased expression. Following infection with 

gamma herpesviruses, vGAT, (herpes viral homolog of Glutamine 4 

AmidoTransferase) recruits cellular PFAS for deamidation of RIG-I, thus the virus 

evades cytokine production and immune response (He et al., 2015).   

   Deamidation has been characterized in a variety of proteins and has been 

associated with many biological processes. The heterotrimeric G protein Go is the 

most abundant G protein in mammalian brain with its α subunit undergoing 

deamidation (Kim et al., 1997). Moreover, Bcl-xL (B-cell lymphoma-extra large), an 

important anti-apoptotic protein, becomes deamidated in vivo and probably in vitro 

(Aritomi et al., 1997). Deamidation can also change the intracellular localization and 

the interactions of proteins (Pepperkok et al., 2000) . Interestingly, deamidated PKA 

exhibited different intracellular localization and associated with decreased 

phosphorylation of CREB (transcription factor Camp-responsive element binding 

protein) compared to the WT PKA (Pepperkok et al., 2000). Non-specific deamidation 

can take place spontaneously especially in aged proteins that are targeted for 

degradation (Reissner and Aswad, 2003). Deamidation in these aged proteins results 

in accumulation of IsoAsp residues in their sequence (Reissner and Aswad, 2003).  

These examples of deamidation indicate that this modification has pivotal biological 

effects on proteins, therefore, it is important to identify its precise effects on various 

cellular processes.  

1.8.2 Mechanism of Asn deamidation  

The deamidation mechanism is spontaneous and includes formation of a 

short-lived intermediate product, succinimide. The formation of succinimide can arise 

from deamidation on Asn residues or dehydration of aspartate (final deamidation 

product) (Reissner and Aswad, 2003).   
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The first step of the mechanism is rearrangement of the peptide bond in Asn 

or Asp residues. The α-amino group of the C-terminal peptide bond is responsible for 

nucleophilic attack on the amide of Asn- or Asp-side chain group. Subsequently, the 

linkage of the peptide bond through the β-carboxyl group of Asn- or Asp occurs and 

succinimide is formed, which is quickly hydrolysed to a mixture of aspartyl (30%) and 

isoaspartyl (70%) linkages. In a protein sequence, Asn is replaced by Asp (Reissner 

and Aswad, 2003). Many studies support the idea that levels of isoAp in proteins may 

provide a novel regulating mechanism for protein function. Therefore, isoAsp levels 

may be a way to regulate protein function (Robinson and Robinson, 2004). Figure 1.6 

shows a simple model of the basic mechanism of Asn deamidation.    
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Figure 1.6 Mechanism of Asn deamidation. 

The first product is a metastable succinimide which hydrolyses to a mixture of products isoAsp 

and Asp residues in a ratio 70:30 (Adapted from Reissner and Aswad, 2003). 

The change of the amino acid composition that arises from deamidation of 

asparagines can be repaired partially by an enzyme called PIMT (Protein Isoaspartate 

Methyltransferase) (Hipkiss, 2006). The α-carboxyl group at an isoAsp site is the 

target of PIMT. PIMT facilitates reformation of the intermediate product which again 

hydrolyses to Asp and isoAsp (ratio 30:70) (Geiger and Clarke, 1987; Stephenson 

and Clarke, 1989). PIMT -/- mice have shown the importance of this enzyme in the 

brain. They exhibited accumulation of abnormal polypeptides mostly in their brains 
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and decreased lifespan (Kim et al., 1997). Furthermore, after silencing of PIMT in the 

brain, many proteins such as synapsins, dynamins and α/β tubulins are prone to Asp 

isomerization and deamidation (Qin et al., 2013). Thus, PIMT exhibit important 

protective effect on proteins with high isoAsp levels (Reissner and Aswad, 2003).   

1.8.3 Deamidation of 4E-BP2  

The aim of this thesis is to investigate the role of deamidated 4E-BP2 in the 

regulation of translation in the mammalian brain. 4E-BP2 undergoes postnatal 

posttranslational deamidation in two sites, N99 and N102, only in brain tissue. 

Deamidated 4E-BP2 exhibited enhanced interaction with Raptor and reduced 

association with eIF4E (Bidinosti et al., 2010b). Apart from protein-protein 

interactions, deamidation also altered synaptic activity. Upon genetic deletion of 4E-

BP2, mice exhibited increased excitatory synaptic activity. In more detail, mEPSCs 

(miniature Excitatory Postsynaptic Currents) of 4E-BP2-/- neurons expressing 

deamidated 4E-BP2 displayed slower rise and decay time compared to those 

expressing WT 4E-BP2. This may facilitate increased signal integration and, therefore 

plasticity (Bidinosti et al., 2010b). However, there is also evidence that deamidated 

4E-BP2 may have a different role than the WT protein. Interestingly, the expression 

of deamidated 4E-BP2 in post-synaptic pyramidal neurons of 4E-BP2-/- mice restored 

the increased charge transfer of mEPSCs whereas the expression of WT protein did 

not (Bidinosti et al., 2010b). Thus, deamidated 4E-BP2 is associated with translation 

and probably with synaptic responses. Since deamidation is brain specific and 

spontaneous (not regulated enzymatically), it is important to elucidate the regulatory 

mechanisms downstream of 4E-BP2 deamidation to facilitate our understanding of 

translational control in the brain. 
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1.9 Thesis Aim 

Given the established role of 4E-BP2 in learning, memory, synaptic plasticity, 

and its implication in Autism Spectrum Disorders, the aim of this thesis was to 

investigate the role of a brain-specific posttranslational modification of 4E-BP2, 

asparagine deamidation, in protein synthesis. To achieve this goal, the presented 

thesis was divided into four main aims, resulting in four results chapters: 

➢ Aim 1 (Chapter 3): Study the mechanism of regulation of deamidated 4E-BP2. 

Furthermore, examine whether it is a cell-specific modification and whether it 

is present in humans 

➢ Aim 2 (Chapter 4): Study the subcellular localization of WT and deamidated 

4E-BP2 in neurons 

➢ Aim 3 (Chapter 5): Identify translated mRNAs that are regulated by WT and 

deamidated 4E-BP2  

➢ Aim 4 (Chapter 6): Examine the tertiary structure of WT and deamidated 4E-

BP2 
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2. Materials and Methods 

2.1 Animals 

All procedures were in accordance with UK Home Office on Animal Care 

regulations and were approved by the University of Edinburgh. C57Bl/6J background 

animals were used (backcrossed for more than 10 generations; pregnant dams to 

collect E16-18 embryos and P56 males). Food and water were provided ad libitum, 

and mice were kept on a 12 h light/dark cycle. Pups were kept with their dams until 

weaning at postnatal day 21. After weaning, mice were group housed (maximum of 6 

per cage) by sex. Cages were maintained in ventilated racks in temperature (20-21 

oC) and humidity (~55%) controlled rooms, on a 12-hour circadian cycle (7am-7pm 

light period). 

2.2 Human tissue 

Post – mortem human brains were acquired from the MRC Edinburgh Brain & Tissue 

Bank. Information about sex, age, brain area and MRC brain bank number can be 

found in Table 2.1.  

Table 2.1 Post-mortem human brains 

ID Sex Age Area 
MRC BRAIN 

BANK NUMBER 

SD038/15 Male 44 Posterior Cyngulate Gyrus BA23 BBN 26313 

SD034/15 Male 69 Posterior Cyngulate Gyrus BA23 BBN 26308 
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2.3 Table of materials 

Unless otherwise stated, chemicals were from Merck and tissue culture 

reagents were from Thermo Fisher Scientific. The list of primary and secondary 

antibodies, plasmids, chemicals, commercial assays, softwares and algorithms used 

can be found in Table 2.2. Links for softwares and algorithms can be found in 

Appendix. 

Table 2.2 Table of materials 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Primary and Secondary 

Antibodies 
 

4E-BP2 Cell Signalling Technologies 2845S 

4E-BP1 (53H11) Cell Signalling Technologies 9644S 

Phospho-4E-

BP1 (Thr37/46) (236B4) 
Cell Signalling Technologies 2855S 

Phospho-S6 Ribosomal 

Protein (Ser240/244) 
Cell Signalling Technologies 2215S 

Ribosomal 

Protein S6 Antibody (C-8) 
Santa Cruz Biotechnology           sc-74459 

c-Myc Antibody (9E10) Santa Cruz Biotechnology    sc-40 

Anti-Cullin 4B antibody Abcam    ab67035 

DDB1 Cell Signalling Technologies    5428S 

HA Tag 

Monoclonal Antibody 

(2-2.2.14), DyLight 680 

ThermoFisher Scientific 26183-D680 

Anti-rabbit IgG, HRP-

linked Antibody 
Cell Signalling Technologies 7074S 

HSC 70 Antibody (B-6) Santa Cruz Biotechnology sc-7298 
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DYKDDDDK Tag 

Monoclonal Antibody (L5), 

Alexa Fluor 488 

ThermoFisher Scientific 
MA1-142-

A488 

Anti-mouse IgG, HRP-

linked Antibody #7076 
Cell Signalling Technologies 7076S 

p44/42 MAPK (Erk1/2) 

(137F5) Rabbit mAb 
Cell Signalling Technologies 4695S 

GAPDH (14C10) Rabbit 

mAb 
Cell Signalling Technologies 2118S 

Monoclonal Anti-β-

Actin antibody produced in 

mouse 

Merck 
A5316-

100UL 

Monoclonal ANTI-FLAG® 

M2 antibody produced in 

mouse 

Merck 
F1804-

200UG 

Phospho-p44/42 MAPK 

(Erk1/2) 

(Thr202/Tyr204) Antibody 

Cell Signalling Technologies 9101S 

Anti-mouse IgG for IP 

(HRP) 
Abcam ab131368 

Ubiquitin Cell Signalling Technologies 3933S 

-Tubulin Sigma-Aldrich T9026 

Phospho-Threonine-Proline Cell Signalling Technologies 9391S 

Anti-HA.11 Epitope Tag 

(Formerly Covance MMS-

101R-500) 

Cambridge Bioscience 901514 

PSD95 (D27E11) XP® 

Rabbit mAb 
Cell Signalling Technologies 3450S 
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Monoclonal Anti-

Glial Fibrillary Acidic Protein 

(GFAP) antibody produced 

in mouse - 100UL 

Merck 

G3893-

100UL 

 

Histone H3 (D1H2) Cell Signalling Technologies 12648S 

Synaptophysin - 1 Synaptic Systems 101 011 

Raptor (24C12) Rabbit mAb Cell Signalling Technologies 2280S 

His-Tag Antibody Cell Signalling Technologies 2365S 

UBE2L3 Antibody Cell Signalling Technologies 3848S 

Experimental models: Cell 

Lines 
 

Human Embryonic Kidney 

cells (HEK-293H 

ATCC® CRL-1573 

Thermo Fisher Scientific 

11631017 

 

Plasmids  

pCDNA3-3HA–4E-BP2 WT Bidinosti et al., 2010b N/A 

pCDNA3-3HA–4E-BP2 

N99D/N102D 
Bidinosti et al., 2010b N/A 

pCDNA3-3HA–4E-BP2 

ΤΟS 
Bidinosti et al., 2010b N/A 

pCDNA3-3HA–4E-BP2 

N99A/N102A 
Bidinosti et al., 2010b N/A 

pGEX-6P-1-4E–BP2 WT Bidinosti et al., 2010b N/A 

pGEX-6P-1-4E–BP2 

N99D/N102D 
Bidinosti et al., 2010b N/A 

Myc-Raptor Addgene 1859 
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mCerulean3-4E-BP2 WT This thesis N/A 

mCerulean3-4E-BP2 

N99D/N102D 
This thesis N/A 

mCerulean3-4E-BP2 

N99A/N102A 
This thesis N/A 

4E-BP2 WT–mCerulean3 This thesis N/A 

4E-BP2–N99D/N102D 

mCerulean3 
This thesis N/A 

4E-BP2 N99A/N102A–

mCerulean3 
This thesis N/A 

mCherry2–4E-BP2 WT This thesis N/A 

mCherry2–4E-BP2 

N99D/N102D 

This thesis N/A 

mCherry2–4E-BP2 

N99A/N102A 
This thesis N/A 

4E-BP2 WT–mCherry2 This thesis N/A 

4E-BP2 N99D/N102D–

mCherry2 
This thesis N/A 

4E-BP2 N99A/N102A–

mCherry2 
This thesis N/A 

AAV9-hSyn1-3XFlag-4E-

BP2 WT-IRES-GFP-WPRE 
This thesis 

Vector 

Biolabs 

AAV9-hSyn1-3XFlag-4E-

BP2 N99D/N102D-IRES-

GFP-WPRE 

This thesis 
Vector 

Biolabs 

His-Ubiquitin (Hock et al., 2011) N/A 

Chemicals  
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Cycloheximide Merck C7698-1G 

Lactacystin Merck L6785-.2MG 

MG132 (Z-Leu-Leu-Leu-al) Merck C2211-5MG 

Homoharringtonine (HHT) Merck 
SML1091-

10MG 

Torin1 Tocris Bioscience 4247 

U0126 Tocris Bioscience 1144 

Betullinic acid Merck B8936 

NBQX Abcam ab120046 

D-AP5 HelloBio HB0225 

Rapamycin LC Laboratories R-5000 

Critical Commercial 

Assays 
  

TriFECTa DsiRNA Kit for 

hs.Ri.RPTOR.13 

IDT N/A 

TriFECTa DsiRNA Kit for 

hs.Ri.CUL4B.13  

IDT N/A 

Clarity 

Western ECL Substrate 
Biorad 1705061 

Pierce™ ECL Western 

Blotting Substrate 
ThermoFisher Scientific 32106 

TruSeq Ribo Profile  

(Mammalian) Kit 

Illumina 
RPHRM121

26 

Ribo-Zero Gold 

(Human/Mouse/Rat) Kit 
Illumina MRZG126 
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Agilent Small RNA Kit Agilent Technologies 5067-1549 

NEXTflex Small RNA 

Sequencing Kit v3 
Bioo Scientific 

NOVA-5132-

06 

Software and Algorithms  

Adobe Illustrator Adobe  

GraphPad PRISM Graphpad  

Fiji ImageJ software 

 

Open source  

Imaris software 

 

Bitplane  

NIS-Elements-v4.13 

software 
Nikon  

Huygens Software 4.5.1p3 Scientific Volume Imaging  

ImageStudio Software LI-COR  

ATSAS software suite (Konarev et al., 2003)  

DAMMIN (Svergun, 1999)  

GASBOR (Svergun et al., 2001)  

Multifastats -  

UTRdb/UTRscan (Grillo et al., 2010).  

Ingenuity Pathway Analysis 

(IPA) 
Qiagen  

Database for Annotation, 

Visualization and Integrated 

Discovery (DAVID) 

(Huang da et al., 2009)  
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2.4 Protocols 

2.4.1 Adeno-associated viruses (AAV) and infection of cortical 

cultures 

All AAVs were from Vector Biolabs. AAV vectors were cloned by Vector 

Biolabs: AAV9-hSyn1-3Xflag-4E-BP2 WT-IRES-GFP-WPRE and AAV9-hSyn1-

3Xflag-4E-BP2 N99D/N102D-IRES-GFP-WPRE and were used to generate 

~3.5x1013 GC/ml for each AAV. Primary dissociated cortical neuronal cultures were 

infected at DIV10 with 7x1011 GC/ml of each virus and collected at DIV25. 

2.4.2 Transfection in Human Embryonic Kidney cells  

Human Embryonic Kidney cells (HEKs) were transfected with 1-2ug DNA (the 

amount of DNA was balanced to get equal protein expression for each plasmid) and 

1ul of Lipofectamine 3000 (L3000008, Thermo Fisher Scientific) in Opti-MEM 

(31985070, Thermo Fisher Scientific). The mix was added directly on the cells. 

2.4.3 Primary dissociated cortical neuronal cultures 

All reagents for cell culture were from Thermo Fisher Scientific unless stated 

otherwise. E16-18 mouse embryos were collected from pregnant dams and cortices 

were dissected from the brain and immersed in ice cold HBSS solution (14170146) 

supplemented with 1x Antibiotic/antimycotic mix (15240062) and HEPES solution at 

concentration 10 mM (15630106). Cells were dissociated after addition of 1 mg/ml 

Trypsin (LS003702, Lorne Laboratories) and incubation fοr 15 min at 37 oC. Then, 

0.05 mg/ml Dnase I (D5025-15KU, Merck) was added and cells were incubated for 5 

min at 37 oC. After the incubation, Neurobasal media (21103049) was added twice, 

supplemented with 1x Antibiotic/antimycotic mix, 1x Glutamax (35050038), B-27 

(17504044) and 10% Horse Serum (26050088) to inhibit Trypsin. Then, DNAse I was 

re-added and tissue was triturated. Cells were plated on dishes that were coated with 

0.05 mg/ml Poly-D-Lysine (P7886, Merck) for 2 h the day before tissue dissection. 5 

h after plating, the media was removed and replaced by new media without serum. 

Half of the media was replaced every 3 days, supplemented with 1 Μ Cytosine –

D–arabinofuranoside hydrochloride (Ara-C, C6645-25MG, Merck). To obtain glial 
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cultures, Ara-C-free DIV10 neuronal cultures were trypsinised with Trypsin-EDTA 

(25300054). Cells were washed twice in 1x PBS and re-plated in DMEM (11995065) 

supplemented with 10% fetal bovine serum (10500064) and 1% Pen/Strep 

(15140148). 

2.4.4 Protein stability assay 

HEK-293H cells were transfected with 1-2 µg DNA (or 10 nM siRNA). Pilot 

experiments were carried out to calculate the required µg for each plasmid construct 

to ensure equal starting amounts of protein. For protein stability assays, after 48 h, 

transfected HEK-293H cells, (non-transfected cultured neurons or isolated 

synaptoneurosomes) were treated with 100 g/ml Cycloheximide (C7698-1G, Merck), 

5 M Lactacystin (L6785-.2MG, Merck), 20 M MG132 (Z-Leu-Leu-Leu-al, C2211-

5MG, Merck), 2 g/ml HHT (SML1091-10MG, Merck), 10 µg/ml Anisomycin, 250 nM 

Torin1 (4247, Tocris Bioscience), 20 M U0126 (1144, Tocris Bioscience), 2.5 g/ml 

Betullinic acid (B8936, Merck), 10 M NBQX (ab120046, Abcam) and 50 M D-AP5 

(HBO225, HelloBio) for the indicated period of time.  

2.4.5 In vivo ubiquitination assay 

HEK-293H cells were transfected with 5-10 g of 3xHA-plasmids expressing 

either WT or 2D 4E-BP2 [pilot experiments were carried out to determine the required 

amount (µg) for each plasmid construct to ensure equal starting amounts of protein] 

and 10 g His-Ubiquitin (Hock et al., 2011). After 48 h of transfection, cells were 

treated with 20 M MG132 for 6 h. Cells were lysed in urea buffer (8 M Urea, 0.1 M 

NaH2PO4, 0.1 M Tris-HCl [pH 8.0], 0.05% Tween 20, and 10 mM imidazole [pH 8.0]). 

5 mg of total protein was incubated with Ni-NTA Agarose beads (30210, Qiagen) 

overnight to pull down ubiquitinated proteins. The beads were washed twice with 

denaturing wash buffer (8 M Urea, 0.1 M NaH2PO4, 0.1 M Tris-HCl [pH 8.0], 0.05% 

Tween 20, 20 mM imidazole [pH 8.0]) and then with native wash buffer (0.1 M 

NaH2PO4, 0.1 M Tris-HCl [pH 8.0]. Protein was dissolved in Laemmli sample buffer 

(50 mM Tris, pH 6.8, 100 mM DTT, 2% SDS, 10% glycerol, 0.1% bromophenol blue) 

and resolved by SDS-PAGE. Monoclonal antibody HA.11 (901514, Cambridge 

Bioscience) was used to detect ubiquitinated 4E-BP2.   
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2.4.6 In vitro ubiquitination assay 

In vitro ubiquitination assay was performed in 100 μl reaction mixture at 37 °C 

for 2 h. The reaction mixture included 100 ng purified human recombinant 4E-BP2 

WT and N99D/N102D, 100 ng purified human recombinant UBE1 (E1 enzyme, E-

304, BostonBiochem), 500 ng UbcH7/UBE2L3 (E2 enzyme, E2-640, 

BostonBiochem), 10 μg ubiquitin (U-530, BostonBiochem), 2.5 μg purified human 

recombinant CUL4B (E3 enzyme, H00008450-P01, Novus Biologicals), 50 ng purified 

human recombinant DDB1 (ab114333, abcam), purified human recombinant Raptor 

(H00057521-P01, Novus Biologicals) in an ATP-regenerating system [50 mM Tris-

HCl, pH 7.6, 10 mM MgCl2, 2 mM ATP (R0441, ThermoFisher Scientific) 10 mM 

creatine phosphate (10621714001, Merck), 3.5 U/mL creatine kinase (10127566001, 

Merck) and 0.6 U/mL inorganic pyrophosphatase (M0361S, New England Biolabs)], 

in the presence of 5 μM ubiquitin aldehyde (U-201, BostonBiochem) and 50 μM 

MG132. Proteins were dissolved in Laemmli buffer and resolved by SDS-PAGE.  

2.4.7 Immunoprecipitation 

HEK-293H cells were transfected with 5 g DNA of the HA plasmids 

expressing either WT or 2D (the amount of DNA was balanced to achieve the same 

intensity/protein expression for each plasmid) and 10 g of Myc – Raptor. After 48 h 

of transfection, cells were rapidly homogenized in ice cold lysis buffer (50mM HEPES 

pH 7.5, 1% CHAPS, 150mM NaCl, protease and phosphatase inhibitors), on ice. 

Homogenates were incubated at 4 oC with constant rotation and centrifuged at 15,000 

x g for 10 min at 4 oC. Supernatants were collected and precleared with 100 l of 

protein G agarose beads (37478S, Cell Signalling Technologies). 7 mg of precleared 

supernatant was incubated with 3 g of c-myc antibody [(9E10), sc-40, Santa Cruz] 

for 30 min at 4 oC, followed by incubation with protein G agarose beads overnight at 

4 oC. Beads were then centrifuged at 3,500 x g for 1 min at 4 oC and washed three 

times with lysis buffer for 10 min. Immunoprecipitates were dissolved in 2X Laemmli 

buffer, resolved by SDS-PAGE and probed with anti-myc and anti-HA antisera. 

2.4.8 Immunoblotting 

HEK-293H cells, dissociated cortical neuronal cultures or mouse/human 

tissue were lysed in RIPA buffer (150 mM sodium chloride, 1.0% NP-40, 0.5% sodium 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/creatine-kinase
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deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) supplemented with protease and 

phosphatase inhibitors (Roche) unless otherwise specified, in a Dounce glass 

homogeniser by applying ~30 strokes, on ice. Samples were further incubated on ice 

for 15 min, with occasional vortexing, and cleared by centrifugation for 20 min at 

16,000 x g at 4 °C. The supernatant was used for Western blotting after protein 

concentration of each sample was determined by measuring A280 absorbance on a 

NanoDrop (ThermoFisher Scientific). 50 g of protein per lane was prepared in 

Laemmli sample buffer, heated to 98 °C for 2 min, and resolved on 10%–16% 

polyacrylamide gels. Proteins were transferred to 0.2 m nitrocellulose membrane 

(Bio-Rad), blocked in 5% milk in TBS-T (10mM Tris, pH 7.6, 150mM NaCl, 0.1% 

Tween20) for 1 h at room temperature, incubated with primary antibodies 1:1000 (1% 

BSA in TBS-T containing 0.02% Na azide) overnight at 4 °C and with secondary 

antibodies 1:5000 for 1 h at room temperature (5% milk in TBS-T). Between 

incubations, membranes were washed three times in TBS-T. For re-probing, 

membranes were stripped by incubation with 0.2 M NaOH for 10 min and blocked with 

5% milk in TBS-T for 1 h. Proteins were visualized using enhanced 

chemiluminescence (1705061, Biorad and 32106, ThermoFisher Scientific) after 

exposing on X-ray films (34089, ThermoFisher Scientific) processed with an Ecomax 

Film Processor (ProTec). 

2.4.9 Quantification of Immunoblotting 

The intensity of each protein band was measured from original images (no 

brightness or contrast adjustments) with ImageStudio Software (Li-COR Biosciences) 

in triplicate and averaged to minimize measuring variability. Loading controls were 

used in each experiment. Data are shown as protein expression (arbitrary units) after 

normalization to control. For quantification of endogenous 4E-BP2 in brain, the 

intensity of the bottom band was measured for WT 4E-BP2 and the intensity of both, 

middle and top band, corresponding to single and double deamidated 4E-BP2 

respectively, was measured for 2D 4E-BP2. Figure legends include information about 

band sizes on all blots. 



Materials and Methods 

71 

 

2.4.10 Phosphatase Treatment 

Whole brains or cortical neuronal cells at the indicated ages were 

homogenized as described previously (2.4.8) in 1X phosphatase buffer [PMP Buffer, 

B0761S, New England Biolabs, (50 mM HEPES, 100 mM NaCl, 2 mM DTT, 0.01 % 

Brij 35, pH 7.5)] supplemented with protease inhibitors (Roche) and 1 mM MnCl2 

(B1761S, New England Biolabs). The protein concentration of supernatant was 

determined by measuring A280 absorbance on a NanoDrop (Thermo Fisher Scientific). 

Extracts were diluted to 2 g/l in a total volume of 90 l. 9 l of the phosphatase 

(P0753S, New England Biolabs) was added per sample and the samples were 

incubated at 30 oC for 45 min. The reactions were stopped by addition of Laemmli 

sample buffer and samples were analysed by Immunoblotting (2.4.8). 

2.4.11 Isolation of purified synaptoneurosomes 

Purified synaptoneurosomes were prepared from fresh mouse brain tissue. 

Cortices were isolated from WT mice aged 8-12 weeks, and each hemisphere was 

homogenized in 5 ml of ice–cold sucrose buffer (320mM Sucrose, 5mM Tris, 1mM 

EDTA, pH 7.4) and the homogenates were centrifuged for 10min, at 1000 x g, 4 oC. 

For each tube, the supernatant was transferred on a new tube and kept on ice (part 

of the supernatant was used as a control sample to compare the purity of 

synaptoneurosomes and labelled as crude) and the pellet was resuspended in 10 ml 

sucrose buffer and centrifuged again for 10 min, 1000 x g at 4 oC. The supernantants 

were combined and the pooled supernatant was then centrifuged for 10 min, at 21,000 

x g at 4 oC to pellet out synaptoneurosomes. The pellet was resuspended in 3% 

Percoll (GE Healthcare) of sucrose buffer and layered on top of a discontinuous 

Percoll gradient (layers of 24% and 10% Percoll in sucrose media, preparation of 

Percoll gradients is described in Table 2.3). The gradients were centrifuged at 30750 

x g, for 9 min at 4 oC with minimum acceleration and no deceleration on JA-25.50 

fixed angle rotor in a Beckman Avanti JA-25 centrifuge. The material between layers 

24% and 10% was collected, resuspended in 10 ml Ionic Media (20mM HEPES, 10 

mM Glucose, 1.2mM Na2HPO4, 1 mM MgCl2, 5mM NaHCO3, 5mM KCl, 140mM 

NaCl, pH 7.4) and centrifuged at 21,000 x g, for 15 min at 4 oC. The pellets from the 

duplicate preparations from the same animal were combined, resuspended in 2 ml 

Ionic Media and centrifuged at 21,000 x g, for 15 min at 4 oC. The protein 
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concentration of the samples was determined by measuring A280 absorbance using 

Nanodrop.  

Table 2.3 Preparation of Percoll gradients 

% 

(v/v) 

100% Percoll 

(ml) 

5XSET 

(ml) 

H2O  

(ml) 

24% 7.2 6 16.8 

10% 3 6 21 

3% 1.2 6 22.8 

 

2.4.12 Stimulation of synaptoneurosomes 

The pellet of purified synaptoneurosomes was resuspended in 200ul Ionic 

Media and vortex briefly. Then, the resuspended volume was shared in tubes 

depending on the number of different treatments and stimulations that would be 

performed. All the treatments of resuspended synaptoneurosomes were performed at 

37 oC for 1h. Then, resuspended synaptoneurosomes were lysed in RIPA buffer and 

protein concentration was determined by measuring A280 absorbance on a NanoDrop. 

Proteins were dissolved in Laemmli sample buffer and resolved by SDS-PAGE 

electrophoresis.  

 

2.4.13 Proteasome activity assay 

The chymotrypsin-like activity of the proteasome was determined using 

a specific proteasome substrate (Proteasome Substrate III, Fluorogenic, Suc-

Leu-Leu-Val-Tyr-AMC, 539142-5MG, Calbiochem). Total lysates or the 

synaptoneurosome fractions (10 µg) were incubated with the substrate (40 μM) in 100 

μl of proteasome assay buffer [0.05 M Tris-HCl (pH 8.0), 0.5 mM EDTA, 1 mM ATP, 

and 1 mM dithiothreitol (DTT)] at 37 °C for 1h. After the incubation, proteasome 

activity was measured every 20 min and the plate was kept at 37 °C. The fluorescence 

of the released AMC was detected using a fluorescence microplate reader system 

(GloMax Explorer Multimode Microplate Reader, Promega) at 380-nm excitation and 

460-nm emission wavelengths. 
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2.4.14 Cohesive-End restriction cloning of eif4ebp2 WT and 

mutants in fluorescent vectors  

GeneBlocks eif4ebp2 fragments (encoding for WT, double deamidated and 

Alanine mutant protein) were designed according to the Consensus Coding Sequence 

Database (https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi) (CCDS ID 

for eif4ebp2 WT sequence, Homo sapiens: 7303.1) and were from IDT. Fluorescent 

vectors were from Addgene [mCherry2-C1 (54563), mCherry2-N1 (54517), 

mCerulean3-C1 (54605), mCerulean3-N1 (54730)]. (See Appendix for sequences of 

geneblock fragments) 

Geneblocks were resuspended in 20ul of buffer (10 mM Tris pH 8.0, 1 mM 

EDTA) to a final concentration of 10 ng/µl. Then, the following reaction of restriction 

digestion (Table 2.4) was set up for each geneblock:  

 Table 2.4 Restriction digestion on geneblocks 

Component µl per 1 reaction 

CutSmart Buffer 10X (B7204S, New 

England Biolabs) 

3 

DNA 10 (100 ng) 

EcoRI (R0101S, New England Biolabs) 1 (20 units) 

XhoI (R0146S, New England Biolabs) 1 (20 units) 

BSA 10 µg/µl 0.3 

ddH2O 14.7 

Total 30 

 

The reactions were incubated at 37 oC for 1 h. DNA was purified using QIAquick Gel 

Extraction Kit (28704, QIAGEN), according to the manufacturer's instructions and 

DNA concentration was measured using a Nanodrop (A260). 

Fluorescent vectors were linearized by restriction digestion and the following 

reaction (Table 2.5) was set up for each vector:  

https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi_
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Table 2.5 Restriction digestion on vectors 

Component µl per 1 reaction 

CutSmart Buffer 10X  3 

DNA 2 (1 µg) 

EcoRI 1  

XhoI 1 

BSA 10 µg/µl 0.3 

ddH2O 22.7 

Total 30 

 

The reactions were incubated at 37 oC for 1 h. Then, linearized vectors were 

dephosphorylated with alkaline phosphatase using the following reaction (Table 2.6): 

Table 2.6 Dephosphorylation of vectors 

Component µl per 1 reaction 

CIAP Buffer 10X (M1821, Promega) 5 

DNA 2 (1 µg) 

CIAP (M1821, Promega) 1 (0.01 units) 

ddH2O 42 

Total 50 

 

The reactions were incubated at 37 oC for 30 min and were stopped by addition of 

300 µl CIAP stop buffer (M1821, Promega). Then, linearized and dephosphorylated 

vectors were mixed with SYBR Safe DNA Gel Stain (S33102, ThermoFisher 

Scientific), were resolved with TAE buffer (40mM Tris base, 40mM acetate, 1mM 

EDTA) on a 1.5 % agarose gel and purified (QIAquick Gel Extraction Kit), according 

to the manufacturer's instructions.  
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Ligation reactions of geneblocks and vectors were set up in a molar ratio 4:1, 

respectively. To calculate the amount of DNA of geneblocks needed for the ligation 

reaction with each vector (50 ng) according to the ratio 4:1, we used the following 

formula:  

𝑛𝑔 (𝑣𝑒𝑐𝑡𝑜𝑟) × 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 × 𝑔𝑒𝑛𝑒𝑏𝑙𝑜𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏𝑝)

𝑣𝑒𝑐𝑡𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏𝑝)
= 𝑛𝑔 𝑔𝑒𝑛𝑒𝑏𝑙𝑜𝑐𝑘 

 

For mCerulean3-C1 (4750 bp) and mCherry2-C1 vectors (4750 bp) and geneblocks 

(384 bp): 

16.168 ng of geneblock needed for ligation reaction 

 

For mCerulean3-N1 (4750 bp) and mCherry2-N1 vectors (4750 bp) and geneblocks 

(381 bp): 

16.042 ng of geneblock needed for ligation reaction 

Table 2.7 shows all the different combinations of geneblocks and vectors that were 

constructed. Table 2.8 and Table 2.9 describe the ligation reactions that were 

prepared. 

Table 2.7 Geneblocks cloned in fluorescent vectors 

 

vector Geneblock (CCDS) ng geneblock 

mCherry2-C1 4E-BP2 WT 16.168 

mCherry2-C1 4E-BP2 

N99D/N102D 

16.168 

mCherry2-C1 4E-BP2 

N99A/N102A 

16.168 

mCherry2-N1 4E-BP2 WT 16.168 

mCherry2-N1 4E-BP2 

N99D/N102D 

16.168 
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The following ligation reactions were set up: 

 

Table 2.8 Ligation reaction for geneblocks with mCerulean3-C1 and mCherry2-C1 

Component µl per 1 reaction 

Quick Ligase Reaction Buffer 2X 10 

Linearized vector 2.75 

geneblock 1.6168 (16.168 ng)  

Quick Ligase 1 

ddH2O 4.6332 

Total 20 

 

  

mCherry2-N1 4E-BP2 

N99A/N102A 

16.168 

mCerulean3-C1 4E-BP2 WT 16.042 

mCerulean3-C1 4E-BP2 

N99D/N102D 

16.042 

mCerulean3-C1 4E-BP2 

N99A/N102A 

16.042 

mCerulean3-N1 4E-BP2 WT 16.042 

mCerulean3-N1 4E-BP2 

N99D/N102D 

16.042 

mCerulean3-N1 4E-BP2 

N99A/N102A 

16.042 
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Table 2.9 Ligation reaction for geneblocks with mCerulean3-N1 and mCherry2-N1 

Component µl per 1 reaction 

Quick Ligase Reaction Buffer 2X 10 

Linearized vector 2.75 

geneblock 1.604 (16.1042 ng)  

Quick Ligase 1 

ddH2O 4.646 

Total 20 

 

The reactions were incubated at Room Temperature (25 oC, RT) for 5 min. Then, 

XL1blue Cells (200236, Agilent technologies) were used for transformation of the 

cloned geneblocks. 2 µl of ligation mixture was added in 25 µl of competent cells and 

cells were incubated at 4oC for 30 min. Heat shock was performed at 42oC for 45 s 

and then, cells were kept for at 4 oC for 2 min. 250 µl of pre-warmed SOC (Super 

Optimal Broth) medium was added to each transformation reaction and reactions 

were incubated at 37 oC for 1 h in a shaking incubator. Lastly, 125 µl of transformation 

reactions were plated on LB (Luria-Bertani) plates with 100 µg/ml ampicillin.  

 Single bacterial colonies were picked and incubated in 5 ml LB at 37 oC in a 

shaking-incubator for 16 h. DNA was isolated using QIAprep Spin Miniprep Kit 

(QIAGEN), according to the manufacturer's instructions. DNA concentration was 

measured using a Nanodrop (A260). All samples were sequenced using Source 

BioScience DNA sequencing service. 

 3 x HA-4E-BP2 expressing plasmids (WT, double deamidated, Alanine 

mutant) have been described and FLAG-4E-BP2 expressing plasmids were 

constructed from Vector Biolabs. 
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2.4.15 Immunofluorescence and Confocal Imaging 

Primary cortical neuronal cultures were prepared from E17 mouse embryos. 

Cells were plated on coverslips, previously coated with 0.05 mg/ml poly-D-lysine 

(P7886, Merck) for 2 h and 10 g/ml laminin (23017-015, Invitrogen) for 1 h, at a 

density of 80,000 cells/well in 24-well dishes. Four days after plating, neurons were 

co-transfected with 0.25 g of HA-4E-BP2 WT plasmid and 0.25 g of FLAG – 4E-

BP2 N99D/N102D using 0.5 l of Lipofectamine 3000 in pre-warmed Opti-MEM 

supplemented with 1x Glutamax. Following 1 h of transfection, neurons were returned 

to conditioned media. Neurons were fixed at DIV16 in 4% PFA in phosphate-buffered 

saline (PBS) for 8 min and washed three times for 5 min in PBS. Cells were 

permeabilised with 0.1% Triton-X 100 for 5 min and blocked with 2.5% BSA in 1x PBS 

for 30 min. Then, cells were incubated with 1:50 anti-FLAG Tag Monoclonal Antibody 

(L5), Alexa Fluor 488 (MA1-142-A488, Thermo Fisher Scientific) and 1:25 anti-

HA Tag Monoclonal Antibody (2-2.2.14), DyLight 680 (26183-D680, Thermo Fisher 

Scientific) for 2 h. Coverslips were incubated with DAPI 1:10000 (4',6-Diamidino-2-

Phenylindole, Dihydrochloride, D1306, Thermo Fisher Scientific) for 5 min. Then, the 

coverslips were washed and mounted with Lab Vision PermaFluor Aqueous Mounting 

Medium (TA-030-FM, Thermo Fisher Scientific). Images of co-transfected neurons 

were acquired on a Nikon A1R microscope using a 60X objective. For the 

quantification and colocalization analysis experiments, z-stack images were taken 

with a pixel size of 60 × 60 nm2 and z-step size of 150 nm. Excitation laser 

wavelengths for the different samples were: 488 nm for FLAG tag, 680 nm for HA tag, 

and 401.5 nm for DAPI. Microscope control and image acquisition were done using 

the NIS-Elements-v4.13 software.  

 

2.4.16 Imaging analysis 

Deconvolution of confocal images was performed using Huygens Essential 

(Huygens Software 4.5.1p3) before subsequent analysis. Co-localization analysis 

was performed on 3D, deconvolved images and quantified using ImarisColoc (Imaris 

v8.2.1, Bitplane Inc, software available at http://bitplane.com). All image analysis and 

quantification of images acquired with confocal microscopy were performed on 

http://bitplane.com/
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deconvolved images without any additional processing. Brightness and contrast 

settings were adjusted in Imaris for presentation purposes only. 

2.4.17 Cell lysis for Ribosome Profiling 

Primary dissociated cortical neurons were prepared according to the protocol 

described previously (section 2.4.3). Similarly, infection of cortical neurons with AAVs, 

overexpressing either WT or deamidated 4E-BP2 was described in previous section 

(2.4.1). Cells were treated with CHX (100 µg/ml) for 5 min and then, they were washed 

with ice-cold PBS twice. Then, cells were collected by scraping and lysis was 

performed as described previously (section 2.4.8) in Mammalian Polysome Buffer (20 

mM NaCl, 150 mM Tris pH 7.5, 5 mM MgCl2, 100 µg/ml CHX, 2 mM DTT, 0.5 % Triton 

X-100, 0.5 % NP-40), supplemented with protease inhibitors. The supernatant was 

collected, and RNA concentration was measured on a Nanodrop (A260). 

 

2.4.18 Ribosome Profiling  

For ribosome footprinting samples, 5 units of TruSeq Ribo Profile Nuclease 

(RPHRM12126, Illumina) were added per A260/ml and then, samples were kept at 4 

°C for 45 min with constant agitation. Nuclease digestions were quenched by adding 

300 units SUPERase In RNase Inhibitor (AM2696, ThermoFisher Scientific). RPFs 

were purified using Illustra MicroSpin S-400 columns (27514001, Scientific Laboratory 

Supplies). Columns were equilibrated with Mammalian Polysome Buffer and were 

centrifuged at 600 x g for 4 min at room temperature (RT). 100 μl of the nuclease-

digested sample were added immediately and columns were centrifuged at 600 x g 

for 2 min at RT, collecting the flow-through. SDS was added to both the nuclease-

digested sample and undigested lysate to a final concentration of 1% and RNA was 

extracted using the RNA Clean & Concentrator™-25 Kit (R1017, Zymo Research).  

All samples were quantified using a Nanodrop, to calculate input for the rRNA 

depletion reaction using the Ribo-Zero Gold Kit (MRZG12324, Illumina). rRNA 

depletion was followed by a purification using the RNA Clean & Concentrator™-5 Kit 

(R1016, Zymo Research). RPFs were size selected on a 15% TBE-Urea 

Polyacrylamide gel (EC68852BOX, ThermoFisher Scientific) and purified. Total RNA 

samples were randomly heat-fragmented and both samples were end-repaired using 

a Polynucleotidekinase (Illumina), following the manufacturer’s instructions. cDNA 
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libraries for sequencing were generated from fragmented RNA with NEXTflex® Small 

RNA Sequencing Kit v3 for Illumina Platforms (NOVA-5132-06, Bioo Scientific). 

After the end-repair, samples were quantified using the Agilent Small RNA Kit 

(5067-1548, Agilent Technologies). Input was balanced between samples to ensure 

similar output. The manufacturer’s protocol was followed, using the lowest input 

option, due to total sample quantities below 1 ng. Briefly, an adenylated 3' adapter 

was ligated, followed by an adenylated 5' adapter ligation. The RNA fragments were 

then, reverse transcribed into cDNA and amplified using PCR (18 cycles). During the 

PCR, individual samples were barcoded for multiplex sequencing using the barcoding 

primers compatible with Illumina sequencing, included in the kit. Indexing primers 

used are summarised in Table 2.10. The PCR products were size selected on an 8% 

native TBE-PAGE gel (EC62152BOX, ThermoFisher Scientific) and purified from the 

gel according to the manufacturer’s instructions. The cDNA libraries were then 

analysed for size, quantity and quality using the Agilent High Sensitivity DNA kit 

(5067-4626, Agilent Technologies). Samples were balanced and pooled for 

sequencing with Edinburgh Genomics on NovaSeq S1/2 flow cells yielding 50 bp 

paired-end reads. All sequencing was performed with Edinburgh Genomics. 

Ribosome Profiling was performed by Konstanze Simbriger. 

 

2.4.19 Bioinformatics Analysis 

Bioinformatic and statistical consulting was provided by 

omics2view.consulting GbR, Kiel (Germany). All bioinformatic analysis was 

performed by omics2view, using a customised pipeline, adapted for ribosome profiling 

results. In summary, the FASTX Toolkit v0.0.14 (Gordon and J. Hannon, 2010) was 

used to trim adapter sequences from raw reads of both RPF and total RNA samples 

and RPF reads below 18 bp removed from the data. Next, undesired sequences 

(ribosomal RNAs and tRNAs) were removed from the datasets using Bowtie v1.1.2 

(Langmead et al., 2009). The Filtered RPFs and total reads were then aligned to an 

indexed reference genome (built from GRCm38 primary genome assembly and the 

corresponding gene structure information, retrieved from GENCODE), using STAR 

v2.5.2b (Dobin et al., 2013). Only uniquely mapped reads were considered for the 

output. Data, including counts was summarised in a table including several columns: 
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• Ensembl gene ID 

• Gene symbol 

• Gene type 

• Chromosome 

• Gene length 

• Non-coding or coding sequence 

• Pseudogene  

• Entrez gene ID 

• Official gene ID (gene description) 

 

Furthermore, the table included RPKM and TE values for each gene/condition 

and were calculated as: 

 

where is     is the number of reads mapped to a gene      of length  

 

is the sum of read counts for the given sample over all      genes in the reference 

genome. Results were rounded to 4 decimal places. 

 

For each gene        in a given sample, the translational efficiency              was 

calculated as: 

 

 

  

 

   and       is the respective number of reads mapped to gene 

 

for for the ribosome protected fragments and total mRNA.   and      and 

 

 

 

are the sums of the read counts, respectively, over all genes  
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in the reference genome. Again, results were rounded to four decimal places. Both 

these values were added to table summarising the results. Further, the pipeline 

produces graphical outputs summarising the data: 

 

Table 2.10 NEXTflex™ Indexing Primers 

NEXTflex™                           Index Sequence                   Reverse Complement 

PCR Primer 1                       CGTGAT                              ATCACG 

PCR Primer 2                       ACATCG                              CGATGT 

PCR Primer 3                       GCCTAA                              TTAGGC 

PCR Primer 4                        TGGTCA                             TGACCA 

PCR Primer 5                        CACTGT                             ACAGTG 

PCR Primer 6                        ATTGGC                             GCCAAT 

PCR Primer 7                        GATCTG                             CAGATC 

PCR Primer 8                        TCAAGT                              ACTTGA 

PCR Primer 9                        CTGATC                             GATCAG 

PCR Primer 10                      AAGCTA                             TAGCTT 

PCR Primer 11                      GTAGCC                             GGCTAC 

PCR Primer 12                      TACAAG                             CTTGTA 

PCR Primer 13                      TTGACT                              AGTCAA 

PCR Primer 14                      GGAACT                             AGTTCC 

PCR Primer 15                      TGACAT                              ATGTCA 

PCR Primer 16                      GGACGG                            CCGTCC 

PCR Primer 17                      CTCTAC                              GTAGAG 

PCR Primer 18                      GCGGAC                             GTCCGC 

PCR Primer 19                      TTTCAC                               GTGAAA 

PCR Primer 20                      GGCCAC                             GTGGCC 

PCR Primer 21                      CGAAAC                              GTTTCG 

PCR Primer 22                      CGTACG                              CGTACG 

PCR Primer 23                      CCACTC                              GAGTGG 

PCR Primer 24                      GCTACC                              GGTAGC 

PCR Primer 25                      ATCAGT                               ACTGAT 

PCR Primer 26                      GCTCAT                               ATGAGC 
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PCR Primer 27                      AGGAAT                               ATTCCT 

PCR Primer 28                      CTTTTG                                CAAAAG 

 

 

Histogram of translational efficiencies The translational efficiencies across all 

replicates are averaged for each protein coding gene. 0 values are excluded and all 

remaining values are log2-transformed and plotted as superimposed histograms. 

Violin plots of translational efficiencies the same values as for the histograms 

are plotted in violin plots. Changes in TE and transcription were analysed for pairwise 

comparisons, based on experimental design, using microarray normalisation methods 

(Quackenbush, 2002). For each treatment, an average across replicates was 

calculated for TE/RPKM values, using the geometric mean on a per-gene basis. Two 

statistics were then derived from these averages, for each gene: 

 

Ratio which is calculated by dividing the value for the transgenic (deamidated 4E-

BP2) by the value for the WT 4E-BP2. 

Intensity which is calculated by multiplying the afore-mentioned values Data was 

ordered by increasing log10(Intensity). Along this ordered set of values, mean 

log10(Intensity) as well as mean and standard deviation of log2(Ratio) were calculated 

within a sliding window of 100 genes at steps of 50 genes. Each gene was assigned 

to the window with a mean log10(Intensity) closest to the gene’s log10(Intensity). A z-

score was calculated for each gene i using the respective window’s log2(Ratio) mean 

and standard deviation as follows: 

 

 

p-values were derived for each gene i from the z-score by treating it as a quantile of 

the standard normal distribution: 
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The sliding window was used to adequately represent the inherent structure of the 

data. Similar to microarray data, TE ratios and particularly – transcription ratios are 

more variable at low intensities. With z-scores simply calculated from the overall mean 

and standard deviation of the data, one might misidentify extreme log2(Ratio) values 

as significant at low intensities. At higher intensities, on the other hand, genes with 

significant log2(Ratio) values might not be identified. The intensity-dependent z-score 

is calculated with a subset of data from genes with similar intensity. This takes local 

data structure into account, allowing a more accurate determination of differential TE 

and transcription. For TE values, we further used the R package Xtail v1.1.5 (Xiao et 

al., 2016), a tool that has been specifically developed for analysing ribosome profiling 

data. For both the z-score-based p-values and the p-values derived with Xtail, false-

discovery-rates (FDR) were calculated (Benjamini and Hochberg, 1995), 

according to three (adjustable) parameters: 

• Low TE/RPKM ratio threshold (generally pre-set to 0.666) 

• High TE/RPKM ratio threshold (generally pre-set to 1.5) 

• Minimum across all samples (generally pre-set to 40) 

 

2.4.20 UTR analysis 

UTRs were obtained from Biomart ENSEMBL (Yates et al., 2016) using the 

GRCm38.p6 version of the mouse genome. 5 UTR motifs were predicted using 

UTRscan, pooling data from UTRdb (Grillo et al., 2010). Length in bp (base pairs) and 

%GC (Guanine-Cytosine) content were calculated using free Python-based scripts 

(Multifastats; https://github.com/davidrequena/multifastats). 

 

2.4.21 Gene Ontology and Pathway Analysis 

Gene Ontology (GO) and Pathway Analysis were performed using, 

respectively, the online tool DAVID  version 6.8 (Huang da et al., 2009), and the 

Ingenuity Pathway Analysis Software (IPA; Qiagen; version 42012434). Differentially 

translated genes were submitted to IPA and subjected to Core Analysis with analysis 

parameters set to include Direct and Indirect Interactions and Experimentally 

Observed data only. Networks data was obtained for all datasets and a Molecular 

https://github.com/davidrequena/multifastats)


Materials and Methods 

85 

 

Activity Predictor (MAP) analysis was applied based on the differentially regulated 

genes belonging to each individual network. For GO analysis, filtered gene lists set to 

highlight genes differentially repressed by WT or 2D were individually submitted to 

DAVID and GO annotation gathered for Biological Function, Molecular Function and 

Cellular Component.  

IPA analysis was performed by Ines Amorim. 

2.4.22 Protein expression and purification 

pGEX-6P-1 vectors expressing the human 4E-BP2 WT and 4E-BP2 

N99D/N102D protein with a N-terminal Glutathione S-transferase (GST) tag (Bidinosti 

et al., 2010a) were used for transformation in Escherichia coli BL21(DE3) (C600003, 

ThermoFisher Scientific). A 3C protease cleavage site is located between the GST 

tag and the protein, allowing tag removal and only two N-terminal residues (Gly-Pro) 

on the N-terminal side of the protein. Recombinant proteins were expressed in 

Escherichia coli BL21(DE3) by growing transformed cells in LB medium at 37 °C, 

inducing with 1 mM isopropyl β-D-1 thiogalactopyranoside (IPTG, I6758, Merck). After 

3 h of induction at 28 °C, the cells were harvested, washed with 100 mM Tris-HCl (pH 

7.5), 170 mM NaCl and lysed in 20 mM PBS, (pH 7.4), 270 mM NaCl, 5 mM KCl, 1 

mM DTT, 0.1 mg/ml lysozyme (L6876, Merck) by one freeze-thaw cycle, followed by 

sonication. Lysed cells were centrifuged at 16,000 x g for 30 min at 4 °C and the 

supernatant was loaded onto a glutathione-sepharose resin (GE17-0756-01, GE 

Healthcare), allowing the protein to bind for 4 h at 4 °C. The resin was then washed 

with 10mM PBS, (pH 7.4), 140 mM NaCl, 3 mM KCl and 1 mM DTT. Recombinant 

His-tagged 3C protease was added to the resin and incubated for 18 h at 4 °C. 

Tagless protein was collected and loaded onto a Ni-NTA resin (30230, Qiagen) to 

bind the 3C protease. Tagless protein was eluted with 20 mM imidazole. Eluted 

fractions were loaded onto a Superdex S200 16/600 column (GE Healthcare), 

equilibrated with 20 mM Tris-HCl pH 7.4 and 150 mM NaCl. 4E-BP2 gave one 

monodisperse peak, which was collected and 1 mM DTT was added. Protein samples 

were then concentrated using a 3 kDa MWCO spin concentrator to 4-11 mg/ml. 

Protein concentration was determined by absorbance measurements at 280 nm on a 

Nanodrop and protein identity was confirmed by tryptic in-gel digestion and mass 

spectrometry using the method described previously (Raasakka et al., 2015). (See 

Appendix for recombinant protein sequences) 
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Protein samples used for NMR were prepared as stated above but expressed 

in M9 minimal medium supplied with N15 labeled ammonium chloride. The buffer used 

in the final SEC purification step consisted of 20 mM PBS pH 7.4 and 150 mM NaCl. 

 

2.4.23 Size exclusion chromatography-multi angle light 

scattering 

The molecular mass of 4E-BP2 was determined with SEC-MALS, using a 

miniDAWN Treos MALS detector (Wyatt). Protein concentration was measured with 

an online RI detector. The SEC column, Superdex S200 Increase 10/300 (GE 

Healthcare), was equilibrated with 20 mM Tris-HCl (pH 7.4), 150 mM NaCl at 4 °C. 

The SEC-MALS system was calibrated using ovalbumin, and the concentration of the 

injected 4E-bP2 was 1.2 mg/ml. 

2.4.24 Synchrotron radiation circular dichroism 

Recombinant purified proteins were either diluted into a buffer (20 mM PBS pH 

7.4, 150 mM NaF and 0.5 mM DTT) just before the measurement or dialyzed against 

20mM phosphate pH 7.5 for 20 h at 4 °C. The ellipticity of each sample was measured 

between 170 and 280 nm in a quartz cuvette with a pathlength of 0.1 mm on the AU-

CD beamline at ASTRID2 (ISA, Aarhus, Denmark) at 10 °C. Sample concentrations 

were between 0.3-1.0 mg/ml and the same protein concentration was used, when 

different samples were compared. 

2.4.25 Small angle X-ray scattering 

SAXS data were collected on the BM29 beamline (Pernot et al., 2013) of the 

European synchrotron radiation facility (ESRF, Grenoble, France), using a 

wavelength of 0.9919 Å. For batch measurements, 20 frames were collected with 0.5 

seconds of exposure per frame at a temperature of 10 °C. Sample concentrations 

were within a range of 0.5-10 mg/ml. SEC-SAXS was also performed using an Agilent 

BioSEC-3 HPLC column, equilibrated with 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 

collecting one frame/s. Data were processed and analyzed using the ATSAS software 

suite (Konarev et al., 2003). The radius of gyration was calculated either based on the 
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Guinier region or using the Debye formula (Calmettes et al., 1994). 3D ab initio models 

were generated using DAMMIN (Svergun, 1999) and GASBOR (Svergun et al., 2001). 

2.4.26 Nuclear magnetic resonance 

Purified 15N labelled proteins (9 mg/ml) were measured in a buffer consisting 

of 20 mM PBS (pH 7.4), 150 mM NaCl and 1 mM DTT with 10% D2O and 2,2-dimethyl-

2-silapentane-5-sulfonate (0.1 mM), using an 850 MHz Bruker BioSpin 850 Ascend 

sepctrometer at 27 oC. 

SRCD and SAXS were performed by Erik Ingmar-Hallin (University of Bergen, 

Norway) and NMR was performed by Erik Ingmar-Hallin in collaboration with J. 

Underhaug at the Norwegian NMR platform in Bergen. 

2.4.27 Statistical Analysis and Experimental Design 

All data are presented as mean ±S.E.M. (error bars) and individual experimental 

points are illustrated in bar graphs. Statistical significance was set a priori at 0.05 

(n.s.: non-significant). The age of animals that were used for dissociated mouse 

cortical cultures and synaptoneurosomal preparations is mentioned in the description 

of the methods. The n number denotes biological replicates. For all experiments, the 

minimum number of biological replicates was 3, apart from Ribosome Profiling where 

2 biological replicates were processed. Quantification of Western Blot and specifically 

of 4E-BP2 was carried out by quantifying the intensity of both, the middle and slowest 

migrating bands for deamidated 4E-BP2 and by quantifying the intensity of fastest 

migrating band for WT (non-deamidated) 4E-BP2. Both 4E-BP2 forms were 

normalised to the loading control. Most experiments that included Western Blot were 

design to identify whether there is an effect on deamidated 4E-BP2 compared to WT 

after a specific treatment. For these experiments, two-way repeated measures 

ANOVA was used. For quantification of data, two-way ANOVA was used to enable us 

to compare the mean differences between groups that have been split on two 

independent variables. The intensity is the dependent, continuous variable 

(corresponding to protein expression) of 4E-BP2. The first independent variable is 

treatment/time and consists of the following categorical groups: Vehicle-0 h, Treated-

(1, 9, 48 h). The second independent variable is which specific 4E-BP2 form is 

affected and consists of two categorical groups (WT 4E-BP2, deamidated 4E-BP2). 
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Our main question is whether there is an interaction between treatment and specific 

4E-BP2 form on 4E-BP2 expression. The interaction term in a two-way ANOVA 

informs us whether the effect of treatment on the intensity is the same for WT and 

deamidated 4E-BP2 (and vice versa). Bonferroni’s posthoc does not assume that 

each comparison is independent of the others while Sidak method does. Thus, 

Bonferroni’s correction is the appropriate and was used for our data, because it is 

more stringent. Details for statistical and post-hoc tests used were provided within 

figure legends; Data summaries and statistical analysis were carried out using 

Graphpad Prism 6 unless otherwise stated.
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3. Investigating the Protein Turnover and 

Regulation of 4E-BP2  

3.1 Introduction 

Protein turnover is a crucial regulatory mechanism that enables cells to adapt 

to environmental changes by rapidly regulating their protein levels (Kristensen et al., 

2013). It also allows cells to replace their damaged, misfolded proteins with newly 

synthesized functional copies (Toyama & Hetzer, 2013). The balance between protein 

synthesis and degradation determines the turnover rate of a protein (Price, Guan, 

Burlingame, Prusiner, & Ghaemmaghami, 2010);(Kristensen et al., 2013). It can vary 

from minutes to days depending on the protein function, localization (Toyama & 

Hetzer, n.d.), host cell (dividing, non-dividing) (Cambridge et al., 2011);(Yen, Xu, 

Chou, Zhao, & Elledge, 2008) and organism (Belle et al., 2006);(Toyama & Hetzer, 

2013). Long-lived proteins evade protein turnover and are susceptible to 

accumulation of damage which may affect their physiological function (Toyama & 

Hetzer, 2013).  

Posttranslational modifications such as deamidation affect protein stability, thus 

playing a major role in regulating protein half-lives. Deamidation is  an age-dependent 

posttranslational modification of many aged proteins (Robinson and Robinson, 2001) 

such as crystallins, therefore promoting the formation of larger protein aggregates 

(Bloemendal et al., 2004). Consequently, the number of deamidated proteins 

increases with age in vivo in whole organisms and individual tissues (Robinson and 

Robinson, 2004). Protein degradation involves deamidation, according to the N-end 

rule pathway (Varshavsky, 2011). The N-end rule pathway denotes that the identity 

of N-terminal residue of a protein determines the in vivo half-life of the  protein 

(Varshavsky, 2011). Specifically, N-terminal Asn or Gln deamidation acts as a 
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degradation signal called N-degron which destabilises these residues, targeting them 

for degradation by the Ubiquitin-proteasome pathway (Varshavsky, 2011).  

Brain proteome has a long half-life compared to other tissues (Price et al., 

2010). 4E-BP2, the abundant isoform of 4E-BPs in the brain, is a long half-life protein 

(Graber et al., 2013). Since deamidation labels many aged proteins, acting as a 

damage signal, but can also target proteins for degradation when it is present at N-

terminal residues, we set out to determine whether and how deamidation of 4E-BP2 

can affect the stability of the protein. 

3.2 Experimental Aim 

 The main aim of this thesis is to investigate the role of deamidated 4E-BP2 in 

cap-dependent translation. To gain a further insight on the effect of deamidation on 

4E-BP2, we examined the half-life of different 4E-BP2 forms in Human Embryonic 

Kidney cells (HEKs), in dissociated mouse cortical neuronal cultures and mouse 

isolated synaptoneurosomes. By blocking protein synthesis using different inhibitors, 

we investigated the degradation rate of different 4E-BP2 forms whereas by inhibiting 

proteasome activity, we studied the accumulation rate of these forms, indicating the 

sensitivity to proteasome degradation. To study whether there are different regulatory 

mechanisms for deamidated and WT 4E-BP2 and identify which signalling pathways 

are responsible for this regulation, we inhibited key molecules–regulators of cap-

dependent translation in the brain. Moreover, we also investigated whether 

deamidation of 4E-BP2 is present in humans and different mouse models of Autism 

Spectrum Disorders. Overall, these experiments aim to shed light on the role of 

deamidated 4E-BP2 in the regulatory mechanisms of translational control in the 

mammalian brain that govern synaptic plasticity, learning and memory.  
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3.3 Results  

Before any data presented and discussed, Figure 3.1 shows the migration of 

endogenous 4E-BP2, endogenous phospho-4E-BP1 and endogenous phospho-4E-

BP2 on a SDS-PAGE gel from a murine +brain lysate.  

 
Figure 3.1 Schematic diagram of endogenous 4E-BP2, phospho-4E-BP1 and phospho-4E-
BP2 migration on a SDS-PAGE gel from a murine brain lysate.  

Top: Endogenous 4E-BP2 migrates as three bands on a SDS-PAGE gel. Bottom band (15 
kDa) corresponds to non-deamidated 4E-BP2, referred to this thesis as WT. Middle (16 k Da) 
and top (17 kDa) slower migrating bands correspond to single and double deamidated 4E-
BP2, respectively. Bottom: Phospho-4E-BP Thr37/46 recognizes endogenous 4E-BP1 forms 
(between 18-21 kDa) and endogenous 4E-BP2 forms (between 16-18 kDa) when 
phosphorylated at Thr37 and/or Thr46.  
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3.3.1 Deamidated 4E-BP2 undergoes accelerated degradation in 

Human Embryonic Kidney cells 

 

 Asn or Gln deamidation increases in aged-proteins (Robinson and Robinson, 

2001). Moreover, deamidated Asn or Gln at N-terminal in proteins determine the half-

life of them, acting as destabilising residues (Varshavsky, 1997). To examine the 

stability of 4E-BP2, we transfected plasmids that encode the following different forms 

of 4E-BP2: 4E-BP2 WT and 4E-BP2 N99D/N102D (encodes for the double 

deamidated protein), both present in mammalian brain; and 4E-BP2 N99A/N102A 

which was used as negative control of deamidation since the two asparagine sites are 

replaced by alanine and thus it cannot undergo deamidation. Specifically, in HEKs we 

transfected the following plasmids [(pcDNA3.1-3 x HA -Eif4ebp2 (WT), pcDNA3.1-3 x 

HA-Eif4ebp2 N99D/N102D (double deamidated), pcDNA3.1-3 x HA-Eif4ebp2 

N99A/N102A (alanine mutant)]. 48 h posttransfection, we treated the cells with 100 

µg/ml Cycloheximide (CHX) (Dai et al., 2013), a protein synthesis inhibitor that 

impedes elongation of the peptide chain (Balinga et al., 1969) for 0, 1, 2 and 6 h. Cells 

were lysed, followed by western blotting for HA (Figure 3.2).  

Using western blotting, we detected a significantly faster degradation of 

deamidated 4E-BP2 compared to WT 4E-BP2 or Alanine mutant (p < 0.05, Figure 

3.2). Moreover, Alanine mutant displays the slowest degradation of all 4E-BP2 forms 

(Figure 3.2). Interestingly, after 6 h of Cycloheximide treatment, we observed that 

protein levels of both deamidated 4E-BP2 and Alanine mutant increase by 20% 

compared to 2 h whereas 4E-BP2 WT remains stable (Figure 3.2). At the same 

indicated time point, 6 h, a slower migrating band >15kDa, which is the size of HA-

4E-BP2, is apparent on each blot of 4E-BP2, WT, deamidated and Alanine mutant. 

This slower migrating band denotes a posttranslational modification that has taken 

place, probably phosphorylation, after 6 h of Cycloheximide treatment (Figure 3.2). 

Taken together, these data suggest that 4E-BP2 N99D/N102D is prone to enhanced 

degradation. 
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Figure 3.2 Protein stability assay of 4E-BP2 Wild Type, 4E-BP2 double deamidated and 4E-

BP2 Alanine mutant. 

A. Representative immunoblots of lysates from transfected HEKs probed for HA. HA 4E-BP2 
WT and HA 4E-BP2 N99A/N102A appeared at 15 kDa whereas HA 4E-BP2 N99D/N102D 
appeared at 17 kDa. β-Αctin was used as a loading control and appeared at 42 kDa. ΗΕΚs 
were transfected with 3 x HA–4E-BP2 plasmids that express three different forms of 4E-BP2 
[WT, Double deamidated (N99D/N102D), Alanine mutant (N99A/N102A]. After 48 h of 
transfection, cells were treated with CHX (100 µg/ml) for 0, 1, 2, 6 h. Cells were lysed, followed 
by western blotting for HA. B. Quantitative analysis of the different 4E-BP2 amounts in (A). 
The intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against β-Actin. The intensity of the band at 0 h (lane 1) is set as 1. The data shown in (A) are 
representative of three independent experiments. Quantitative data with mean ± SEM are 
shown in (B). *p < 0.05 using Bonferroni-corrected two-way ANOVA. 
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3.3.2 Hypophosphorylated 4E-BP2 forms are unstable in Human 

Embryonic Kidney cells 

 

Apart from deamidation, phosphorylation can also have an impact on protein 

half-lives. Specifically, the first isoform of 4E-BPs, 4E-BP1, upon phosphorylation at 

sites 37/46 by the mammalian kinase mTOR, concurrently undergoes (Elia et al., 

2008). Additionally, phosphorylated 4E-BP1 is unstable when it is unbound to eIF4E 

and gets degraded after being ubiquitinated (Yanagiya et al., 2012). Therefore, we 

asked whether phosphorylation of 4E-BP2 affects protein stability. To answer this 

question, we transfected the same plasmids mentioned above that express three 

different 4E-BP2 forms (WT, double deamidated, Alanine mutant) in HEKs and 24 h 

after transfection, we treated them with 250 nM Torin1, a selective active-site mTOR 

inhibitor, for 12 h, thus inhibiting phosphorylation of 4E-BP2 (Thoreen et al., 2009). 

After 12 h of Torin1 treatment only hypophosphorylated 4E-BP2 forms are present 

(Figure 3.3). Then, we treated the cells with 100 µg/ml CHX for 0, 1, 2 and 6 h, to 

examine the stability of hypophosphorylated 4E-BP2. Cells were lysed, followed by 

western blotting for HA as shown in Figure 3.3.  

After 12 h of Torin1 and 1 h of CHX treatment, the protein amounts of all three 

4E-BP2 forms reduce to a level that is not detectable by western blotting, implying an 

accelerated degradation for all three hypophosphorylated 4E-BP2 forms (Figure 3.3). 

Blots were also probed for phospho-4E-BP2 37/46 but protein levels could not be 

detected even at 0 h of CHX treatment, showing that 12 h of Torin1 treatment 

effectively inhibits phosphorylation of 4E-BP2 (Figure 3.3). Thus, prolonged inhibition 

of phosphorylation reduces protein stability of 4E-BP2 in HEKs.  
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Figure 3.3 Protein stability assay of hypophoshorylated 4E-BP2 Wild Type, 4E-BP2 double 

deamidated and 4E-BP2 alanine mutant.  

Representative immunoblots of lysates from transfected HEKs probed for HA. β-Αctin was 
used as a loading control. ΗΕΚs were transfected with 3 x HA–4E-BP2 plasmids that express 
three different forms of 4E-BP2 [WT, Double deamidated (N99D/N102D), Alanine mutant 
(N99A/N102A)]. After 24 h of transfection, cells were treated with Torin1 (250nM) for 12 h and 
then with CHX (100 µg/ml) for 0, 1, 2 and 6 h. Cells were lysed, followed by western blotting 
for HA. The data shown are representative of three independent experiments.  
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 To test the stability of endogenous 4E-BP2 and compare it with the stability of 

transfected HA–4E-BP2 WT in HEKs, we treated untransfected HEKs with 100 µg/ml 

CHX for 0, 1, 2, 6 h. The cells were lysed, followed by western blotting and probed for 

4E-BP2 to test the protein stability of endogenous protein (Figure 3.4). For 

investigating the stability of hypophosphorylated endogenous 4E-BP2, we treated 

untransfected HEKs with 250nM Torin1 for 12 h and then, with 100 µg/ml CHX for 0, 

1, 2, 6 h (Figure 3.4). Figure 3.4 depicts immunoblots from a protein stability assay of 

endogenous 4E-BP2 WT and endogenous hypophosphorylated 4E-BP2 WT.  

Endogenous 4E-BP2 is stable and inhibition of protein synthesis with CHX 

does not affect its protein levels, even after 6 h of treatment (Figure 3.4). Transfected 

4E-BP2 WT is also stable after CHX treatment, as shown in Figure 3.2, denoting that 

both transfected and endogenous 4E-BP2 display comparable degradation rates. 4E-

BP1 exhibits a faster degradation rate as compared to 4E-BP2 (Figure 3.4). 

Furthermore, after 2 h and 6 h of CHX treatment, we detected only slower migrating 

forms (>17kDa), corresponding to hyperphosphorylated 4E-BP1, showing that CHX 

induce phosphorylation of 4E-BP1 (Figure 3.4). After Torin1 treatment for 12 h, we 

observed lower molecular weight bands (<15kDa) for 4E-BP2 and 4E-BP1, indicating 

that Torin1 effectively inhibits phosphorylation of both proteins (Figure 3.4). 

Hypophosphorylated endogenous 4E-BP2 and 4E-BP1 are also stable after inhibition 

of protein synthesis with CHX (100 µg/ml), displaying a different stability pattern 

compared to the transfected hypophosphorylated 4E-BP2 forms (Figure 3.3). 

Therefore, these data suggest that endogenous 4E-BP2 WT displays a similar 

stability compared to transfected HA–4E-BP2 WT apart from its hypophosphorylated 

form. Lastly, 4E-BP1 follows a different stability pattern than 4E-BP2.  
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Figure 3.4 Protein stability assay of endogenous 4E-BP2 Wild Type, endogenous 

hypophoshorylated 4E-BP2 WT and endogenous 4E-BP1.  

Representative immunoblots of lysates from untransfected HEKs probed for 4E-BP2, 4E-BP1, 
phospho – 4E-BP 37/46. β-Αctin was used as a loading control. Cells were treated with Torin1 
(250nM) for 12 h and then with CHX (100 µg/ml) for 0, 1, 2, 6 h. Cells were lysed, followed by 
western blotting. The data shown are representative of three independent experiments.  

 

3.3.3 Deamidated 4E-BP2 is degraded by the proteasome  

 

Since deamidation is responsible for targeting proteins for degradation 

according to N-end rule pathway (Varshavsky, 1997), we asked whether 4E-BP2 

deamidation plays a similar role. A number of proteins that undergo deamidation are 

then targeted by the Ubiquitin Proteasome pathway (Dho et al., 2013). For example, 

deamidation of Bcl-xL has been conserved from metazoan to human, denoting its 

crucial role in regulating protein levels (Dho et al., 2013). To study the proteasome 

sensitivity of each 4E-BP2 form, we transfected the aforementioned plasmids, which 

express the three different 4E-BP2 forms (WT, double deamidated, Alanine mutant) 

in HEKs and 48 h after transfection, we treated them with 5 µM Lactacystin, a 
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proteasome inhibitor (Fenteany et al., 1995), for 0 and 6 h. Then, cells were lysed, 

followed by western blotting for HA. Representative blots are shown in Figure 3.5. 

After 6 h of Lactacystin treatment, deamidated 4E-BP2 protein abundance 

significantly increases, as compared to WT 4E-BP2 or Alanine mutant [p < 0.001, 

Figure 3.5(A), (B)]. Inhibition of the proteasome with Lactacystin does not affect 

endogenous 4E-BP2 WT [Figure 3.5(C)], displaying a similar pattern as transfected 

4E-BP2 WT.   
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Figure 3.5 Deamidated 4E-BP2 accumulates after inhibition of proteasome with Lactacystin 

in HEKs. 

A. Representative immunoblots of lysates from transfected HEKs probed for HA. HA 4E-BP2 
WT and HA 4E-BP2 N99A/N102A appeared at 15 kDa whereas HA 4E-BP2 N99D/N102D 
appeared at 17 kDa. β-Αctin was used as a loading control and appeared at 42 kDa. ΗΕΚs 
were transfected with 3 x HA – 4E-BP2 plasmids that express three different forms of 4E-BP2 
[(WT, Double deamidated (N99D/N102D), Alanine mutant (N99A/N102A)]. After 48 h of 
transfection, cells were treated with Lactacystin (5 µM) for 0, 6 h. Cells were lysed, followed 
by western blotting for HA. B. Quantitative analysis of the different 4E-BP2 amounts in (A). 
The intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against β-Actin. The intensity of the band at 0 h (lane 1) is set as 1 (dotted line on graph). The 
data shown in (A) are representative of three independent experiments. Quantitative data with 
mean ± SEM are shown in (B). ***p < 0.001 using Bonferroni-corrected two-way ANOVA. C. 
Representative immunoblot of lysate from untransfected HEKs probed for 4E-BP2. β-Αctin 
was used as a loading control. Cells were treated with Lactacystin (5 uM) for 0, 6 h, then were 
lysed, followed by western blotting for 4E-BP2. The data shown are representative of 
independent three independent experiments. 
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To further confirm the accumulation of deamidated 4E-BP2 in HEKs after 

inhibition of the proteasome, we used a different proteasome inhibitor, MG132 

(Hayashi et al., 1992). We transfected HEK cells with the following plasmids 

[(pcDNA3.1-3 x HA-Eif4ebp2 (WT), pcDNA3.1-3 x HA-Eif4ebp2 N99D/N102D (double 

deamidated), pcDNA3.1-3 x HA-Eif4ebp2 N99A/N102A (alanine mutant)], and 48 h 

after transfection, we treated them with 20 µM MG132 for 0 and 6 h. The cells were 

lysed, followed by western blotting for HA. Representative blots are presented in 

Figure 3.6.  

After inhibition of proteasome with MG132, deamidated 4E-BP2 protein levels  

accumulate, as compared to WT or Alanine mutant (p < 0.05, p < 0.01, Figure 3.6). 

Moreover, we observed lower migrating bands (<15kDa) of deamidated protein, which 

appear only after proteasome inhibition, possibly these smaller species are present 

due to ubiquitin-induced fragmentation of the protein since they cannot be degraded 

after MG132 treatment (Figure 3.6). Therefore, these data suggest that N99D/N102D 

mutation in 4E-BP2 leads the protein to accelerated proteasomal degradation.  
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Figure 3.6 Deamidated 4E-BP2 accumulates after inhibition of the proteasome with MG132 

in HEKs.  

A. Representative immunoblots of lysates from transfected HEKs probed for HA. HA 4E-BP2 
WT and HA 4E-BP2 N99A/N102A appeared at 15 kDa whereas HA 4E-BP2 N99D/N102D 
appeared at 17 kDa. Tubulin was used as a loading control and appeared at 50 kDa. ΗΕΚs 
were transfected with 3 x HA–4E-BP2 plasmids that express three different forms of 4E-BP2 
[WT, Double deamidated (N99D/N102D), Alanine mutant (N99A/N102A)]. After 48 h of 
transfection, cells were treated with MG132 (20 uM) for 0, 6 h. Cells were lysed, followed by 
western blotting for HA. Low exposure of film corresponds to 1-3 min. High exposure of films 
corresponds to 15-20 min. B. Quantitative analysis of the different 4E-BP2 amounts in (A). 
The intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against Tubulin. The intensity of the band at 0 h (lane 1) is set as 1 (dotted line on graph). The 
data shown in (A) are representative of three independent experiments. Quantitative data with 
mean ± SEM are shown in (B). *p < 0.05, **p < 0.01 using Bonferroni-corrected two-way 
ANOVA. For quantification, only films that were exposed for 1-3 min (low exposure) were used.
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3.3.4 Deamidated 4E-BP2 is highly ubiquitinated in HEKs 

 

Since deamidated 4E-BP2 is rapidly degraded by the proteasome compared 

to WT 4E-BP2 or Alanine mutant, we proceeded to examine the ubiquitination status 

of 4E-BP2, using an in vivo ubiquitination assay. In HEKs, we transfected each of the 

three different plasmids that express WT, deamidated and Alanine mutant 4E-BP2 

along with His-Ubiquitin plasmid, and 48 h after transfection we treated cells with 20 

µM MG132 for 6 h. Then, we performed a pull-down assay using Ni-NTA agarose on 

a column to purify His-tagged ubiquitinated proteins, followed by western blotting for 

HA to detect ubiquitinated 4E-BP2 forms as Figure 3.7 indicates. Deamidated 4E-BP2 

immunoprecipitates with a greater amount of His-Ubiquitin than WT protein or Alanine 

mutant (Figure 3.7), supporting that this increased ubiquitination leads the protein to 

degradation by the Ubiquitin proteasome pathway. 
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Figure 3.7 Deamidated 4E-BP2 is highly ubiquitinated in HEKs. 

HA-4E-BP2 WT, deamidated and Alanine mutant plasmids were transfected in HEKs along 
with His-Ubiquitin, and cells were treated with 20 µM MG132 for 6 h, followed by in vivo 
ubiquitination assay. Proteins that were pulled-down were then analyzed by western blotting 
and probed for HA. HA 4E-BP2 WT appeared at 15 kDa whereas HA 4E-BP2 N99D/N102D 
appeared at 17 kDa in the total lysates (input). Expression of each 4E-BP2 form is shown in 
lysates/input that were used for the pull-down assay. β-Αctin was used as a loading control 
and appeared at 42 kDa. Low exposure of film corresponds to 1-3 min. High exposure of films 
corresponds to 15-20 min. 
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3.3.5 Raptor affects the stability of 4E-BP2 Wild Type and Alanine 

mutant  

3.3.5.1 Raptor co-expression reduces the stability of wild type 4E-BP2 

  

Regulation of 4E-BPs and consequently, of protein synthesis is mediated 

through mTOR kinase. mTOR phosphorylates 4E-BPs in a hierarchical manner, thus 

abrogating their affinity for eIF4E and allowing initiation of protein synthesis (Ma and 

Blenis, 2009).  Deamidated 4E-BP2 displays increased association with Raptor, a 

component of mTORC1 complex (Bidinosti et al., 2010b). Raptor is a large scaffolding 

protein, responsible for recruiting substrates to the mTOR kinase for phosphorylation 

(Ma and Blenis, 2009). Therefore, we asked whether the enhanced interaction of 

deamidated 4E-BP2 with Raptor plays a role in regulating the stability of the protein. 

To study the stability of all 4E-BP2 forms along with the interaction with Raptor, we 

transfected each of the three different 4E-BP2 plasmids that encode different protein 

forms (WT, deamidated, Alanine mutant) along with Myc-Raptor in HEKs and 48 h 

after transfection we treated the cells with 100 µg/ml CHX for 0, 1 and 2 h. Cells were 

lysed, followed by western blotting for HA and Myc. Representative blots and a graph 

for 4E-BP2 WT are shown in Figure 3.8.  

After co-expression of Raptor and inhibition of protein synthesis with CHX for 

2 h, 4E-BP2 WT protein amounts significantly decrease (p < 0.05, right blot, Figure 

3.8), denoting a rapid degradation compared to the exhibited slow degradation of 

transfected 4E-BP2 WT with empty vector (left blot, Figure 3.8). Thus, Myc-Raptor 

plays a major role in regulating the stability of 4E-BP2 WT in HEKs, since co-

expression of Myc-Raptor provokes 4E-BP2 WT to behave similarly as deamidated 

4E-BP2.  
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Figure 3.8 Protein assay stability of 4E-BP2 WT after co-transfection with Myc-Raptor.  

A. Representative immunoblots of lysates from transfected HEKs probed for HA and Myc. 
ΗΕΚs were transfected with HA – 4E-BP2 plasmid that express 4E-BP2 WT and Myc – Raptor 
or empty vector. After 48 h of transfection, cells were treated with CHX (100 µg/ml) for 0, 1, 2 
h. Cells were lysed, followed by western blotting for HA. HA 4E-BP2 WT appeared at 15 kDa 
and Myc-Raptor appeared at 151 kDa. β-Αctin was used as a loading control and appeared at 
42 kDa. Low exposure of film corresponds to 1-3 min. High exposure of films corresponds to 
15-20 min.  B. Quantitative analysis of 4E-BP2 WT amount (A). The intensities of the bands 
were measured using Image Studio Lite Ver 5.2 and normalised against β-Actin. The intensity 
of the band at 0 h (lane 1) is set as 1. The data shown in (A) are representative of three 
independent experiments. Quantitative data with mean ± SEM is shown in (B). *p < 0.05 using 
Bonferroni-corrected two-way ANOVA. For quantification, only films that were exposed for 1-
3 min (low exposure) were used. 
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3.3.5.2 Raptor co-expression does not affect the degradation rate of 

deamidated 4E-BP2 

 

Since deamidated 4E-BP2 displays enhanced interaction with Raptor 

(Bidinosti et al., 2010b), we asked whether overexpression of Myc–Raptor in HEKs 

will affect the stability of deamidated 4E-BP2. Therefore, we co-transfect HEKs with 

plasmids expressing double deamidated 4E-BP2 and Myc-Raptor. After 48 h of 

transfection, cells were treated with CHX 100 µg/ml (0, 1, 2 h). Then, cells were lysed, 

followed by western blotting for HA and Myc (Figure 3.9).  

Co-transfection with Myc-Raptor does not affect deamidated 4E-BP2 

degradation rate, as compared to empty vector transfected cells (Figure 3.9). It is 

possible that increased association with endogenous Raptor has already decreased 

the stability of the protein to a level that is very unstable, thus overexpression of 

Raptor cannot further reduce the stability of deamidated 4E-BP2. Furthermore, after 

co-transfection with Myc-Raptor, protein levels of deamidated 4E-BP2 reduce (0 h, 

right blot), independent of CHX treatment, as compared to the levels after co-

transfection with empty vector (0 h, left blot), (Figure 3.9). Therefore, expression of 

Myc-Raptor might reduce protein levels of deamidated 4E-BP2 very quickly prior to 

CHX treatment.
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Figure 3.9 Protein stability assay of 4E-BP2 N99D/N102D after co-transfection with Myc-

Raptor.  

A. Representative immunoblots of lysates from transfected HEKs probed for HA and Myc. 
ΗΕΚs were transfected with HA–4E-BP2 plasmid that express deamidated 4E-BP2 and Myc–
Raptor or empty vector. After 48 h of transfection, cells were treated with CHX (100 µg/ml) for 
0, 1, 2 h. Cells were lysed, followed by western blotting for HA. HA 4E-BP2 N99D/N102D 
appeared at 17 kDa and Myc-Raptor appeared at 151 kDa. β-Αctin was used as a loading 
control and appeared at 42 kDa B. Quantitative analysis of deamidated 4E-BP2 amount (A). 
The intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against β-Actin. The intensity of the band at 0 h (lane 1) is set as 1. The data shown in (A) are 
representative of three independent experiments. Quantitative data with mean ± SEM is shown 
in (B). Bonferroni-corrected two-way ANOVA.



 

 

3.3.5.3. Raptor co-expression reduces the stability of 4E-BP2 Alanine 

mutant 

  

Alanine mutant 4E-BP2 is a protein form than cannot undergo deamidation, 

thereby we questioned if Raptor will affect its stability since this specific form does not 

display increased interaction with Raptor as deamidated 4E-BP2 (Bidinosti et al., 

2010b). Specifically, Alanine mutant 4E-BP2 exhibits similar level of interaction with 

Raptor in HEKs as 4E-BP2 WT protein (Bidinosti et al., 2010b). We co-transfected 

4E-BP2 Alanine mutant and Myc–Raptor in HEKs and after 48 h, we treated the cells 

with 100 µg/ml CHX for 0, 1, 2 h. HEKs were lysed and proteins were resolved on an 

SDS-PAGE gel, followed by western blotting for HA and Myc. The stability of 4E-BP2 

Alanine mutant is depicted in one representative blot and graph in Figure 3.10.  

As expected, overexpression of Raptor has the same effect on the stability of 

the protein as in 4E-BP2 WT, making the protein very unstable (Figure 3.10). 

Specifically, after 1 h of CHX, protein amounts remarkably decrease (p < 0.05, Figure 

3.10) and are detectable only after long exposure of the film. Moreover, after 2 h of 

treatment, a band of higher molecular weight (>15kDa) is apparent on the blot (Figure 

3.10), possibly due to phosphorylation of the protein, induced by CHX treatment. 

Thus, these data suggest that interaction of 4E-BP2 with Raptor has a key role in 

determining the stability of 4E-B P2 protein. 
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Figure 3.10 Protein stability assay of 4E-BP2 N99A/N102A after co-transfection with Myc-

Raptor.  

A. Representative immunoblots of lysates from transfected HEKs probed for HA and Myc. 
ΗΕΚs were transfected with HA–4E-BP2 plasmid that express Alanine mutant 4E-BP2. After 
48 h of transfection, cells were treated with CHX (100 µg/ml) for 0, 1, 2 h. Cells were lysed, 
followed by western blotting for HA. HA 4E-BP2 N99A/N102A appeared at 15 kDa and Myc-
Raptor appeared at 151 kDa. β-Αctin was used as a loading control and appeared at 42 kDa. 
Low exposure of film corresponds to 1-3 min. High exposure of films corresponds to 15-20 
min. B. Quantitative analysis of deamidated 4E-BP2 amount (A). The intensities of the bands 
were measured using Image Studio Lite Ver 5.2 and normalised against β-Actin. The intensity 
of the band at 0 h (lane 1) is set as 1. The data shown in (A) are representative of three 
independent experiments. Quantitative data with mean ± SEM is shown in (B). *p < 0.05 using 
Bonferroni-corrected two-way ANOVA. For quantification, only films that were exposed for 1-
3 min (low exposure) were used.  

3.3.5.4 Raptor does not affect the stability of a 4E-BP2 mutant lacking the 

ΔΤΟS motif 

 

 4E-BPs interact with Raptor through the ΤΟS motif (TOR Signalling Motif) at 

the C-terminus (FEMDI) of 4E-BPs and is indispensable for phosphorylation of all 
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three 4E-BPs by the mTOR kinase (Schalm and Blenis, 2002). Furthermore, TOS 

motif is also crucial for regulation of cell growth through the mTOR signalling pathway 

(Schalm et al., 2003). Therefore, to study further the role of Raptor in regulation of 

stability of 4E-BP2, we questioned the stability of 4E-BP2 form in which TOS motif 

has been deleted, thus the interaction with Raptor has also been abolished (Bidinosti 

et al., 2010b). To answer this question, we co-transfected HEKs with a plasmid that 

expresses 4E-BP2 without the ΔΤΟS motif either with empty vector or with Myc–

Raptor and 48 h later we treated the cells with 100 µg/ml CHX for 0, 1 and 2 h. Cells 

were lysed, followed by western blotting for HA and Myc. Representative blots and 

graphs are shown in Figure 3.11.  

Overexpressing Myc–Raptor in HEKs does not affect the stability of 4E-BP2 

ΔΤΟS (Figure 3.11), demonstrating that the TOS motif is crucial for interaction with 

Raptor and thus regulation of stability of 4E-BP2 from Raptor. Since the TOS motif 

has been abolished, Raptor probably cannot bind to 4E-BP2 and consequently affect 

the stability of this protein form.    
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Figure 3.11 Protein stability assay of 4E-BP2 ΔΤΟS after co-transfection with Myc-Raptor.  

A. Representative immunoblots of lysates from transfected HEKs with probed for HA and Myc. 
ΗΕΚs were transfected with HA–4E-BP2 plasmid that express 4E-BP2 without ΔΤΟS motif. 
After 48 h of transfection, cells were treated with CHX (100 µg/ml) for 0, 1, 2 h. Cells were 
lysed, followed by western blotting for HA and Myc. HA 4E-BP2 ΔTOS appeared at 13 kDa 
and Myc-Raptor appeared at 151 kDa. β-Αctin was used as a loading control and appeared at 
42 kDa B. Quantitative analysis of 4E-BP2 ΔΤΟS amount (A). The intensities of the bands 
were measured using Image Studio Lite Ver 5.2 and normalised against β-Actin. The intensity 
of the band at 0 h (lane 1) is set as 1. The data shown in (A) are representative of three 
independent experiments. Quantitative data with mean ± SEM is shown in (B). *p < 0.05 using 
Bonferroni-corrected two-way ANOVA. 
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3.3.6 Knockdown of Raptor increases the stability of deamidated 

4E-BP2 in HEKs  

 

Overexpression of Raptor in HEKs does not affect stability of deamidated 4E-

BP2 as we observed in Figure 3.9. To confirm the vital role of Raptor in regulating the 

stability of deamidated 4E-BP2, we questioned the effect of down-regulation of 

endogenous Raptor in HEKs on the stability of deamidated 4E-BP2. To answer this 

question, we transfected HEKs with a plasmid encoding double deamidated 4E-BP2 

and concomitantly we used siRNA to knockdown endogenous Raptor from the cells. 

After 48 h of transfection, we treated the cells with CHX (100 µg/ml) for 0, 1 and 2 h. 

Cells were lysed, followed by western blotting for HA and Raptor. Figure 3.12 (A) 

shows the pilot experiment where we transfected HEKs either with scramble siRNA 

or siRNAs for Raptor, trying different concentrations of two siRNAs (0, 1, 10 nM), each 

one targeting Raptor. Efficient knockdown of Raptor is achieved after transfection of 

siRNA2 (10nM). Therefore, we used siRNA2 at 10 nM to investigate the stability of 

deamidated 4E-BP2 after down-regulating Raptor. Figure 3.12 (B), (C) illustrates one 

representative blot and graph, respectively.  

Our previous findings suggest that overexpression of Raptor does not affect 

the degradation rate of deamidated 4E-BP2, since CHX treatment does not change 

protein levels of deamidated 4E-BP2 even after 2h (Figure 3.9). Nevertheless, 

transient knockdown of Raptor using siRNA rescued the rapid degradation of 

deamidated 4E-BP2 since protein levels are stable (p < 0.05), as compared to 

scramble-transfected HEKs  [Figure 3.12 (B), (C)]. Thereby, Raptor plays an important 

role in regulating the stability of deamidated 4E-BP2 and enhanced interaction of 4E-

BP2 with Raptor is causal for decreased protein stability.     
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Figure 3.12 Protein stability assay of deamidated 4E-BP2 after down-regulating Raptor.  

A. Representative immunoblots of lysates from transfected HEKs with a non-target control 
siRNA (scramble) or siRNA targeting Raptor, probed for Raptor. siRNA1 and siRNA2 were 
used in the following concentrations:0, 1, 10 nM. HA 4E-BP2 N99D/N102D appeared at 17 
kDa and Raptor appeared at 150 kDa. β-Αctin was used as a loading control and appeared at 
42 kDa. B. ΗΕΚs were transfected with HA–4E-BP2 plasmid that express deamidated 4E-BP2 
and siRNA2 (10nM) targeting endogenous Raptor. After 48 h of transfection, cells were treated 
with CHX (100 µg/ml) for 0, 1, 2 h. Cells were lysed, followed by western blotting for HA and 
Raptor. C. Quantitative analysis of deamidated 4E-BP2 amount (B). The intensities of the 
bands were measured using Image Studio Lite Ver 5.2 and normalised against β-Actin. The 
intensity of the band at 0 h (lane 1) is set as 1. The data shown in (A) are representative of 
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three independent experiments. Quantitative data with mean ± SEM is shown. *p < 0.05 using 
Bonferroni-corrected two-way ANOVA.  

3.3.7 Raptor regulates the stability of deamidated 4E-BP2 through 

interaction with CUL4B-DDB1 E3 Ubiquitin ligase  

 

Our previous findings demonstrate that Raptor plays a major role in controlling 

the stability of deamidated 4E-BP2 since down–regulation of endogenous Raptor 

increases protein stability, showing a slow degradation (Figure 3.12). Raptor is a 

WD40 repeat-containing protein and interacts and binds to CUL4B (Cullin 4B)–DDB1 

(DNA Damage Binding Protein 1) complex, which is a Ubiquitin E3 ligase (Ghosh et 

al., 2008). Like others, WD40 proteins, Raptor acts as an adaptor protein, endowing 

CUL4B–DDB1 complex with substrate specificity (Ghosh et al., 2008). Loss of this 

complex displays similar effects as Raptor inactivation, setting the interaction of 

Raptor with CUL4B–DDB1 crucial for mediating Ubiquitin–dependent proteolysis of 

different proteins (Ghosh et al., 2008). For elucidating further the involvement of other 

proteins, apart from Raptor, in the regulation of stability of deamidated 4E-BP2, we 

asked whether deamidated 4E-BP2 apart from exhibiting increased interaction with 

Raptor also binds to the CUL4B – DDB1 complex. To answer this question, we co-

transfected each of the plasmids expressing different 4E-BP2 form along with Myc–

Raptor and 48 h after, we performed anti–Myc immunoprecipitation followed by 

western blotting for HA, Myc, CUL4B and DDB1 as shown in Figure 3.13 (A). 

We confirmed that deamidated 4E-BP2 binds to Raptor with a higher affinity 

than WT, as evidenced by the increased HA-tagged deamidated protein amounts 

measured by immunoblotting in the myc immunoprecipitated samples [Figure 3.13 

(A)]. Probing these samples with CUL4B and DDB1 antisera reveals increased 

binding of CUL4B to Raptor in the presence of deamidated but not WT 4E-BP2 [Figure 

3.13 (A)]. DDB1 binding does not change between all samples [Figure 3.13 (A)]. 

Moreover, 4E-BP2 ΔΤΟS displays no interaction with Raptor but increased interaction 

with CUL4B [Figure 3.13 (A)]. We did not observe any differences in protein 

expression in input lysates regarding myc-tagged Raptor, CUL4B or DDB1, showing 

that all differences in the immunoprecipitated samples emerge from actual differences 

in protein-protein interactions and not due to different protein expression between 

samples [Figure 3.13 (A)]. In conclusion, these data strongly suggest that decreased 
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stability of deamidated 4E-BP2 is mediated by increased binding to the Raptor-

CUL4B-DDB1 complex.  

To confirm that CUL4B-DDB1 complex is responsible for ubiquitination of 

deamidated 4E-BP2, we performed an in vitro ubiquitination assay with recombinant 

proteins of Ubiquitin Proteasome pathway [UBE1 (E1) enzyme, UBE2L3 (E2) 

enzyme, CUL4B (E3) enzyme] along with recombinant Raptor, DDB1, WT and double 

deamidated 4E-BP2. After 2 h incubation, samples were lysed, followed by western 

blotting. Figure 3.13 (B) shows a representative blot. Deamidated 4E-BP2 exhibits 

increased ubiquitination levels from CUL4B-DDB1 complex compared to WT protein 

[Figure 3.13 (B)].  

To determine the role of CUL4B to the stability of deamidated 4E-BP2, we also  

transfected HEKs with plasmid encoding double deamidated 4E-BP2 and 

concomitantly we used siRNA to knockdown endogenous CUL4B. After 48 h of 

transfection, we treated the cells with CHX (100 µg/ml) for 0, 1 and 2 h. Figure 3.13 

(C) presents a representative blot and graph. Transient knockdown of CUL4B from 

HEKs using siRNA rescued the rapid degradation of deamidated 4E-BP2 as protein 

levels do not change after CHX treatment [Figure 3.13 (C)]. Thereby, CUL4B, similarly 

to Raptor, plays a pivotal role in regulating the stability of deamidated 4E-BP2 and is 

responsible for driving deamidated 4E-BP2 to the Ubiquitin Proteasome pathway.     
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Figure 3.13 Raptor regulates the stability of deamidated 4E-BP2 through increased interaction 

with CUL4B-DDB1 E3 Ubiquitin ligase.  



Investigating the Protein Turnover and Regulation of 4E-BP2 

117 

 

A. HEKs were co-transfected with Myc–Raptor and each one of plasmids that express different 
4E-BP2 forms. Anti–Myc immunoprecipitation was performed on the lysates after they were 
checked for equal HA, Myc, CUL4B and DDB1 expression (input). β-Αctin was used as a 
loading control and appeared at 42 kDa. Pulled down lysates were probed for Myc, HA, CUL4B 
and DDB1. Myc-Raptor appeared at 151 kDa, HA 4E-BP2 WT and HA 4E-BP2 N99A/N102A 
appeared at 15 kDa, HA 4E-BP2 N99D/N102D at 17 kDa, HA 4E-BP2 ΔTOS at 13 kDa, 
CUL4B at 100 kDa and DDB1 at 127 kDa. Low exposure of film corresponds to 1-3 min. High 
exposure of films corresponds to 15-20 min. B. In vitro ubiquitination assay of purified GST-
4E-BP2 WT or 2D. The reactions were performed in the presence of purified CUL4B, Raptor, 
DDB1, His-Ubiquitin, UBE2L3 and UBE1 proteins and probed with the antisera against the 
indicated proteins. His-UBE1 appeared at 121 kDa, Raptor appeared at 150 kDa, CUL4B at 
100 kDa, DDB1 at 127 kDa, 4E-BP2 WT and 4E-BP2 N99D/N102D appeared at 15 kDa and 

17 kDa, respectively and His-Ub appeared at 10 kDa. C. Representative immunoblots from 

HEKs that were co-transfected with siRNA (scrambled or against CUL4B) and 2D HA-tagged 

4E-BP2. Experiment was carried out in the presence of 100 g/ml cycloheximide (CHX) for 0, 

1 or 2 h. -actin is the loading control and appeared at 42 kDa. HA 4E-BP2 N99D/N102D 
appeared at 17 kDa and CUL4B at 100 kDa. Bottom: Quantification of HA-expression 

(corresponding to WT or 2D) measured by immunoblotting, normalised to -actin.  For (C), 
data are shown as mean ±S.E.M. *p < 0.05 using Bonferroni-corrected two-way ANOVA.  
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3.3.8 Overexpression of 4E-BPs does not alter cell cycle 

progression in HEKs  

3.3.8.1 Overexpression of 4E-BPs does not change cell cycle 

progression in HEKs 

  

Apart from regulation of translation, 4E-BPs also regulate progression of cell 

cycle through mTORC1 signalling and interaction with Raptor without affecting cell 

survival or size (Dowling et al., 2010). Therefore, we asked whether a specific 4E-

BP2 form is responsible for regulation of the cell cycle. To test this hypothesis, we 

transfected each plasmid, that express different 4E-BP2 forms, in HEKs (WT, 

N99D/N102D, N99A/N102A) and checked the cell cycle distribution after each single 

transfection of 4E-BP2 plasmid using propidium iodide DNA staining. Figure 3.14 (A)–

(D) show the cell cycle distributions (left graphs) after transfecting different 4E-BP2 

forms and the gating of single cells (right plots) in each cell population. Figure 3.14 

(E) indicates the percentage of cells in each stage of cell cycle (G0/G1, S, G2/M).  

In all cell cycle distribution graphs [left graphs, Figure 3.14 (A-D)], the number 

of cells in G0/G1 phase is very high compared to the number of cells in phases S and 

G2/M. However, there is no significant difference between them.  
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Figure 3.14 Cell cycle distributions after overexpression of different 4E-BP2 forms.  

Cell cycle profiles (left graphs) and plots of single cell gating (right plots) from transfected 
HEKs with empty vector (A), 4E-BP2 WT (B), 4E-BP2 N99D/N102D (C), 4E-BP2 N99A/N102A 
(D). (E) Graph illustrating % percentage of cells in each phase of cell cycle after single 
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transfection. The data shown are representative of three independent experiments. 
Quantitative data with mean ± SEM is shown in (E). Bonferroni-corrected two-way ANOVA 

3.3.8.2 Overexpression of Raptor concomitant with 4E-BPs does not 

change cell cycle progression in HEKs  

 

Various stimuli such as serum and growth factors mediate proliferative events 

through 4E-BPs (Dowling et al., 2010). Specifically, in conditions where 4E-BPs are 

hypophoshorylated, they inhibit the progression from G1 to S phase stage of the cell 

cycle by suppressing the translation of eIF4E-sensitive mRNAs, required for cell cycle 

progression, such as cyclin D3, VEFG (Vascular Endothelial Growth Factor) and ODC 

(Ornithine Decarboxylase) (Dowling et al., 2010). Thus, we wondered whether 

overexpression of each 4E-BP2 form along with Raptor will influence cell cycle 

distribution using propidium iodide DNA staining. Figure 3.15 (A)–(D) depicts cell cycle 

distributions (left graphs) after transfecting each 4E-BP2 form along with Myc–Raptor 

and the gating of single cells (right plots) in each cell population. Figure 3.15 (E) 

indicates percentage of cells in each stage of the cell cycle (G0/G1, S, G2/M).  

After co–transfecting Myc–Raptor with deamidated 4E-BP2, there is a 

significantly lower number of cells in G0/G1 phase (p < 0.05), as compared to the 

number after co–transfecting Myc–Raptor with empty vector [Figure 3.15 (C), (E)]. 

However, there are no differences between deamidated 4E-BP2 and WT or 

deamidated 4E-BP2 and Alanine mutant. Therefore, we cannot conclude that 

overexpression of deamidated 4E-BP2 along with Raptor leads to increased cell cycle 

progression. [Figure 3.15 (C),(E)].  
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Figure 3.15 Cell cycle distributions after overexpression of different 4E-BP2 form and Myc-

Raptor.  
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Cell cycle profiles (left graphs) and plots of single cell gating (right plots) from co – transfection 
of Myc – Raptor in HEKs with empty vector (A), 4E-BP2 WT (B), 4E-BP2 N99D/N102D (C), 
4E-BP2 N99A/N102A (D). (E) Graph illustrating % percentage of cells in each phase of cell 
cycle after co-transfection. The data shown are representative of three independent 
experiments. Quantitative data with mean ± SEM is shown in (E). *p < 0.05 using Bonferroni-
corrected two-way ANOVA. 

 

Figure 3.16 illustrates the cell cycle profile after overexpression of each 4E-

BP2 form either alone or after co–transfection with Myc–Raptor. Overexpression of 

Myc–Raptor along with deamidated 4E-BP2 leads to increased cell cycle progression 

since a lower percentage of cells are in G0/G1 stage (p < 0.05), as compared to the 

percentage of cells after overexpressing only deamidated 4E-BP2 [Figure 3.16(C)].  
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Figure 3.16 Cell cycle distributions after overexpression of different 4E-BP2 form either alone 

or with co–transfection with Myc-Raptor.  

Graph illustrating % percentage of cells in each phase of cell cycle after transfection of (A) 
Empty vector, (B) 4E-BP2 WT, (C) deamidated 4E-BP2, (D) Alanine mutant 4E-BP2 with or 
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without Myc – Raptor in HEKs. The data shown are representative of three independent 
experiments. Quantitative data with mean ± SEM is shown. *p < 0.05 using Bonferroni-
corrected two-way ANOVA. 

 

3.3.9 4E-BP2 is also deamidated in human brain 

 

 4E-BP2 from murine brain migrates as three forms with different 

electrophoretic mobility on an SDS-PAGE gel (Banko et al., 2005; Tsukiyama-Kohara, 

2001) with the slower migrating forms (>15kDa) corresponding to double deamidated 

4E-BP2 (Bidinosti et al., 2010b). This unique migration pattern is brain–specific 

(Bidinosti et al., 2010b). We asked whether 4E-BP2 undergoes asparagine 

deamidation also in humans. To investigate this, we treated post mortem human 

lysates and mouse lysates from different tissues: brain, liver and spleen with λ 

phosphatase, followed by western blotting for 4E-BP2 and phospho-Threonine-

Proline. Figure 3.17 (A) shows treated and untreated lysates with λ phosphatase, 

probed for 4E-BP2.  

Three 4E-BP2 forms are apparent in all human and mouse brain lysates 

[Figure 3.17 (A)], even after treatment with λ phosphatase [Figure 3.17 (A), (B)], thus 

implying that the slower migrating forms are not due to phosphorylation. Moreover, 

double deamidated 4E-BP2 corresponding to the slowest migrating form, exhibits 

increased expression in human lysates compared to mouse lysates [Figure 3.17 (A)]. 

Regarding the other tissues that were studied, 4E-BP2 is expressed in mouse, liver 

and spleen lysates, indicating one band, but is not detectable in human liver and 

spleen lysates [Figure 3.17 (A)]. Figure 3.17 (B) indicates human and brain lysates 

treated with λ phosphatase probed for 4E-BP2 and phospho–Threo – Proline antibody 

that determines phosphatase treatment efficacy. Taken together, these data suggest 

that deamidation of 4E-BP2 is brain–specific in mice and occurs in humans. 
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Figure 3.17 4E-BP2 is also deamidated in human brain.  

A. Adult mouse lysates and post mortem human lysates from brain, liver and spleen were 
treated with λ phosphatase and analysed by western blotting. Membranes were probed for 
4E-BP2. GAPDH was used as a loading control and appeared at 37 kDa. 4E-BP2 appeared 
as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). Low 
exposure films for 4E-BP2 correspond to 1-3 min of exposure, medium exposure films 
correspond to 5-10 min and high exposure films to 15-20 min. For P-Thr-Pro signal, low 
exposure of films corresponds to 5 min and high exposure to 20 min. B. Adult mouse brain 
and post mortem human brain lysates were treated with λ phosphatase and analysed by 
western blotting. Membranes were probed for 4E-BP2 and phospho–Threo–Proline. Hsc70 
was used as a loading control and appeared at 70 kDa. 4E-BP2 appeared as three bands 
(bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). 
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3.3.10 Deamidated 4E-BP2 is neuron-specific 

  

Deamidation of 4E-BP2 occurs postnatally in mouse brain (Bidinosti et al., 

2010b). Our previous findings also indicate that deamidated 4E-BP2 also occurs in 

human brain (Figure 3.17). However, it is not known whether deamidation of 4E-BP2 

is cell–type specific. To identify the cells in which 4E-BP2 undergoes deamidation, we 

prepared two primary dissociated cortical neuronal cultures from mice, growing under 

different conditions: one mixed culture which after confluency was passaged, re-

plated and labelled as Glia passage 1 and one Neuronal culture. In mixed culture, 

neuronal cells were grown in Neurobasal Medium supplemented with B-27, 1x 

Glutamax and Horse Serum until DIV 10 and then, we used trypsin to dissociate cells 

from culture and re-plated them, thus effectively removed all neuronal cells. After 

passaging and re-plating, this culture is labelled as Glia passage 1. In the second 

culture, named neuronal (N), neuronal cells were grown until DIV 25 in Neurobasal 

Media supplemented with B-27, 1x Glutamax and Ara-C (cytosine arabinoside), which 

limits astrocyte proliferation. Lysates from different days from both cultures were 

analysed by western blotting as Figure 3.18 (A) shows.  

4E-BP2 migrates as three bands in the neurons on the gel from DIV 16 and 

this pattern is apparent until DIV 25 [Figure 3.18 (A)]. Moreover, the middle slower 

band starts being visible from DIV 12, denoting that deamidation starts occurring from 

this day [Figure 3.18 (A)]. In Glia culture passage 1, 4E-BP2 appears as one band 

that corresponds to 4E-BP2 WT and one band of lower molecular weight (<15kDa), 

probably corresponding to hypophosphorylated 4E-BP2 [Figure 3.18 (A)]. Thus, 

deamidation of 4E-BP2 is neuron–specific [Figure 3.18 (A)]. Phosphorylated 4E-BP1 

expression increases in mixed culture at DIV 10 and in Neuronal culture at DIV 12 

since in later days its expression decreases [Figure 3.18 (A)]. Phosphorylated 4E-

BP2 follows a similar expression pattern as phosphorylated 4E-BP1 with enhanced 

expression at DIV 10 for mixed and DIV 12 for Neuronal culture [Figure 3.18 (A)]. In 

later days as DIV 25 of Neuronal culture, hyperphosphorylated 4E-BP2 is apparent 

whereas in glia culture hypophoshorylated 4E-BP2 is present [Figure 3.18 (A)]. 

Moreover, 4E-BP1 is highly expressed in the Glia culture, as compared to Neuronal 

culture that is present but not in the same levels [Figure 3.18 (A)].  

Figure 3.18 (B) indicates that three bands, corresponding to deamidated and 

WT 4E-BP2, are still present after λ phosphatase treatment in neuronal lysates 
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(DIV25), implying that slower migrating forms do not stem from phosphorylation of 

4E-BP2. In Glia culture, 4E-BP2 is apparent as one band in treated and untreated 

lysates [Figure 3.18 (B)]. Phospho–4E-BP1 is expressed in both neurons and glia but 

phospho-4E-BP2 is detectable in neurons and not glia [Figure 3.18 (B)]. Phospho-

Threo–Proline antibody was used to determine the phosphatase efficacy [Figure 3.18 

(B)]. Therefore, deamidation of 4E-BP2 is postnatal and neuron–specific [Figure 3.18 

(B)]. Phosphorylated 4E-BP2 and 4E-BP1 levels decrease from early (DIV 10) to late 

(DIV 25) postnatal development [Figure 3.18 (A)] whereas hyperphosphorylated 4E-

BP2 is present in neurons (DIV25) and hypophosphorylated 4E-BP2 is present in Glia 

[Figure 3.18 (A)]. Furthermore, 4E-BP1 exhibits a high expression pattern in glia, as 

compared to neuronal cells (DIV 25) during late postnatal development [Figure 3.18 

(A)]. 
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Figure 3.18 4E-BP2 is deamidated in neurons and not in glia after DIV 12 in dissociated 

cortical neuronal cultures.  
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A. Deamidated 4E-BP2 is neuron-specific and occurs postnatally since three bands are 
apparent after DIV 16 in mouse cultured neurons. Mixed culture was grown until DIV 10 and 
then was passaged for having a glia culture. Neuronal (N) culture was grown until DIV 25. 
Lysates were analysed by western blotting and probed for 4E-BP2, p – 4E-BP 37/46 and 4E-
BP1. Hsc70 was used as a loading control and appeared at 70 kDa. 4E-BP2 appeared as 
three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). 4E-BP1 
appeared as three bands between 18-20 kDa. Phospho-4E-BP1 appeared between 18-21 kDa 
and phospho-4E-BP2 appeared between 16-18 kDa. Low exposure films of 4E-BP2 
correspond to 1-3 min of exposure and high exposure to 15-20 min. For p-4E-BP1 37/46, low 
exposure of films corresponds to 10 min and high exposure to 30-40 min. B. Mouse cortical 
neuronal and glia lysates were treated with λ phosphatase, followed by western blotting and 
probed for 4E-BP2, p – 4E-BP1 37/46, 4E-BP1 and p-Threo–Pro. Hsc70 was used as a loading 
control. appeared at 70 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, middle 
band: 16 kDa and top band: 17 kDa). Phospho-4E-BP1 appeared between 18-21 kDa and 
phospho-4E-BP2 appeared between 16-18 kDa 

3.3.11 Expression of deamidated 4E-BP2 is not altered in mouse 

models of autism  

 4E-BP2 has been implicated with Autism spectrum disorders because 

Eif4ebp2 -/- mice exhibit deficits in social interactions, altered communication 

between dams and pups and repetitive/stereotyped behaviours due to dysregulated 

protein synthesis (Gkogkas et al., 2013). Another mouse model of autism, Tsc2 -/+, 

display also impaired communication between dams and pups (Young D., 2010).  It 

is not known whether there is a link between deamidation of 4E-BP2 and autism and 

if deamidation of 4E-BP2 is impaired in mouse models of autism. Therefore, we 

investigated 4E-BP2 pattern expression in different mouse models of autism. We 

lysed brains from Fmr1 +/- (encoding for FMRP, Fragile X Mental Retardation Protein, 

B6.129P2-Fmr1 tm1Cgr/J, Stock No: 003025), Shank3 +/- (encoding for SH3 and 

Multiple Ankyrin Repeat domains 3, B6.Cg-Shank3 tm2.1Bux/J, Stock 

No:032169 |Shank3Δ4-22), Tsc2 +/- (B6;129S4-Tsc2 tm1Djk/J, Stock No:004686)and 

BTBR (BTBR T+ Itpr3 tf/J, Stock No:002282 |BTBR) mice which exhibit a 100% 

absence of the corpus callosum and a severely reduced hippocampal commissure 

(Wahlsten et al., 2003) and analysed them with western blotting for 4E-BP2. Figure 

3.19 shows 4E-BP2 expression in these transgenic mice.  

Protein amounts of WT and deamidated 4E-BP2 for Fmr1 +/- mice do not 

differentiate significantly [Figure 3.19 (A)], as compared to Fmr1 +/+mice. We also 

observed that there are no significant differences between protein levels of WT and 

deamidated 4E-BP2 in Shank3 +/-, as compared to Shank3 +/+ mice [Figure 3.19 

(B)]. Tsc2 +/- and BTBR mice display no difference in expression of WT and 

deamidated 4E-BP2, as compared to Tsc2+/+ and WT mice, respectively [Figure 3.19 
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(C), (D)]. To conclude, deamidated 4E-BP2 is not altered in these mouse models of 

autism that we studied. 

 

Figure 3.19 4E-BP2 pattern in transgenic mice.  
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A. Representative immunoblots brain lysates from FMRP, SHANK3, TSC2 heterozygous and 
BTBR mice were analysed by western blotting and probed for 4E-BP2. GAPDH was used as 
a loading control and appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom band: 15 
kDa, middle band: 16 kDa and top band: 17 kDa). B. Quantitative analysis of 4E-BP2 WT 
(bottom band) and deamidated (intermediate and top bands) amount (A). The intensities of 
the bands were measured using Image Studio Lite Ver 5.2 and normalised against GAPDH. 
The data shown in (A) are representative of three independent experiments. Quantitative data 
with mean ± SEM is shown in (B). Bonferroni-corrected two-way ANOVA. For the comparison 
of BTBR mice, C57Bl/6J background animals were used. 

 

3.3.12 Endogenous deamidated 4E-BP2 is a long-lived protein in 

neurons and is degraded by the proteasome 

  

Deamidated 4E-BP2 displays a faster degradation rate in HEKs, as compared 

to WT or Alanine mutant 4E-BP2 (Figure 3.2) and gets degraded by the proteasome 

since inhibition of the proteasome with Lactacystin (Figure 3.5) or MG132 (Figure 3.6) 

leads to its significant accumulation. However, in the brain, 4E-BP2 has a long half-

life as most proteins (Graber et al., 2013). Since deamidated 4E-BP2 is brain-specific 

in mice (Bidinosti et al., 2010b), we asked whether the stability of deamidated 4E-BP2 

is different from WT 4E-BP2 in the brain where deamidation takes place in vivo and 

in vitro. To test this hypothesis, we treated primary dissociated cortical neurons with 

inhibitors of protein synthesis and proteasome as in HEKs: CHX (100 µg/ml) for 0, 2, 

9 h, Lactacystin (5 µM) for 0, 9 h and MG132 (20 µM) for 0, 9 h but also with other 

elongation inhibitors of translation such as Homoharringtonine (HHT, 2 μg/ml) and 

Anisomycin (10 µg/ml). The duration of each treatment was longer compared to HEKs 

due to the long half-life of brain proteome (Graber et al., 2013). We used inhibitors of 

translation or proteasome degradation in concentration where neurons were still 

healthy and did not die, following the treatment. Figure 3.20 (A) and (B) present 

representative blots and quantitative graph respectively, of neuronal lysates treated 

with CHX, Lactacystin and MG132, followed by western blotting for 4E-BP2.  

Deamidated and WT 4E-BP2 protein amounts do not change after 2, 9 h of 

CHX [Figure 3.20 (A), (B)], thus implying that both 4E-BP2 forms have a long half-life 

in neurons. Inhibition of proteasome with Lactacystin for 9 h does not alter deamidated 

4E-BP2 or WT protein levels [Figure 3.20 (A), (B)]. Nevertheless, upon inhibition of 

proteasome with MG132 for 9 h, we detected a significantly higher accumulation of 

deamidated 4E-BP2 (p < 0.05), as compared to WT 4E-BP2 [Figure 3.20 (A), (B)]. 
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Figure 3.20 (C) displays blots from neuronal lysates, treated with CHX for 0, 2, 9 h, in 

which Puromycin (5 µg/ml) was added 30 min before cell collection and lysis. 

Puromycin gets incorporated in the elongating peptides, giving an indication of de 

novo protein synthesis in these neuronal cells. Figure 3.20 (C) displays that CHX does 

not change 4E-BP2 deamidated or WT protein levels, similarly to Figure 3.20 (A), and 

concomitantly, decreases Puromycin incorporation, denoting the efficacy of inhibition 

of protein synthesis with CHX. Figure 3.20 (D) illustrates western blotting from 

neuronal lysates treated with HHT for 0, 2 and 9 h. Similarly to CHX, HHT treatment 

does not change protein amounts of deamidated 4E-BP2 or WT [Figure 3.20 (D)], 

confirming that 4E-BP2 forms are stable in neurons. Figure 3.20 (E) shows western 

blotting from lysates treated with Anisomycin for the same duration of 0, 2 and 9 h, 

and Puromycin was added 30 min before cell collection. Protein levels of 4E-BP2 

forms do not change after treatment and Puromycin incorporation diminishes after 2 

and 9 h of Anisomycin, implying the efficient inhibition of translation [Figure 3.20 (E)]. 

Figure 3.20 (F) shows proteasome enzymatic activity of neuronal lysates that were 

analysed by western blotting in Figure 3.20 (A). The graph illustrates proteasome 

activity assay of 20S proteasome in control (0 h), MG132-treated (9 h) or 

Lactacystin-treated (9 h) cortical neurons [Figure 3.20 (F)]. The graph reveals that 

MG132 treatment decreases proteasome activity assay but Lactacystin does not 

decrease efficiently proteasome enzymatic activity [Figure 3.20 (F)], therefore a 

higher concentration of Lactacystin in neuronal cells is probably required. To 

conclude, these data suggest that deamidated and WT 4E-BP2 are stable in 

neurons and deamidated 4E-BP2 gets degraded by the proteasome.  
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Figure 3.20 Protein stability assays of endogenous 4E-BP2 in dissociated cortical neurons.  
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Representative immunoblots of mouse cortical neuronal lysates treated with different protein 
synthesis inhibitors or proteasome inhibitors, analysed by western blotting and probed for 4E-
BP2. Hsc70 appeared at 70 kDa and GAPDH appeared at 37 kDa and were used as loading 
controls. A. Dissociated cortical neurons were treated with Cycloheximide (100 µg/ml) for 0, 
2, 9 h, Lactacystin (5 µM) for 0, 9 h and MG132 (20 µM) for 0 and 9 h. B. Quantitative analysis 
of the deamidated and WT 4E-BP2 amounts in (A). The intensities of the bands were 
measured using Image Studio Lite Ver 5.2 and normalised against Hsc70. The intensity of the 
band at 0 h (lane 1) is set as 1 (dotted line on graph). Quantitative data with mean ± SEM is 
shown in (B). *p < 0.05 using Bonferroni-corrected two-way ANOVA. C. Dissociated cortical 
neurons were treated with Cycloheximide (100 µg/ml) for 0, 2, 9 h and Puromycin (5 µg/ml) 
was added 30 min before cell lysis. Lysates were probed for 4E-BP2 and Puromycin. D. 
Dissociated cortical neurons were treated with HHT (2 µg/ml) for 0, 2 and 9 h, followed by 
western blotting and probed for 4E-BP2. E. Dissociated cortical neurons were treated with 
Anisomycin (10 µg/ml) for 0, 2 and 9 h and Puromycin (5 µg/ml) was added 30 min before cell 
lysis. Lysates were probed for 4E-BP2 and Puromycin. F. Proteasome enzymatic activity was 
measured in treated lysates that were analysed by western blotting in (A). Proteasome activity 
is shown in RFU/min (+ s.e.m., n = 3). Bonferroni-corrected two-way ANOVA. The data 
shown in (A), (C), (D), (E) are representative of three independent experiments. 4E-BP2 
appeared as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). 
Low exposure films for 4E-BP2 correspond to 1-3 min of exposure, medium exposure films 
correspond to 5-10 min and high exposure films to 15-20 min. For quantification, only films 
that were exposed for 1-3 min (low exposure) were used. 

 

3.3.13 Deamidated 4E-BP2 protein amounts are regulated by mTOR 

but not by MAPK signalling 

   

Deamidated 4E-BP2 exhibits enhanced interaction with Raptor and decreased 

affinity for eIF4E compared to WT 4E-BP2 in HEKs (Bidinosti et al., 2010b). Based 

on this finding, we hypothesize that there might be a different regulatory mechanism 

of stability of deamidated 4E-BP2, as compared to WT protein in neurons. To 

investigate this hypothesis and elucidate the pathways that are responsible for 

regulating deamidated 4E-BP2, we treated cortical neuronal cultures with Torin1 (250 

nM), a selective active-site mTOR inhibitor (Thoreen et al., 2009) and U0126 (20 µM), 

a MEK/ERK inhibitor (Favata et al., 1998), for 9 h (short-term treatment) and 48 h 

(long-term treatment). Furthermore, we also activated these two major pathways of 

translational control in the brain by treating cortical neurons with Insulin (10 µM) for 9 

h and 48 h. Figure 3.21 (A) and (B) illustrates representative blots and graphs 

respectively, from Torin1-, U0126- and Insulin-treated neurons that were analysed by 

western blotting.  

After 9 h of Torin1 treatment, we discovered significantly higher protein levels 

of deamidated 4E-BP2 (p < 0.05), as compared to WT protein levels [Figure 3.21 (A), 
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(B)]. Torin treatment also inhibits phosphorylation of ribosomal protein S6, 4E-BP1 

and 4E-BP2 [Figure 3.21 (A)], thus showing efficient inhibition of mTOR by Torin1. 

Furthermore, total S6 levels are not different after Torin1 treatment [Figure 3.21 (A)] 

whereas 4E-BP1 levels are not detectable due to complete inhibition of 

phosphorylated 4E-BP1 [Figure 3.21 (A)]. After 9 h treatment with U0126, protein 

levels of WT and deamidated 4E-BP2 do not differentiate [Figure 3.21 (A), (B)]. 

However, phosphorylation of MAPK (ERK1/2) is also blocked, therefore showing 

U0126 treatment efficacy [Figure 3.21 (A)]. Total ERK1/2 levels do not change after 

9 h of U0126 treatment [Figure 3.21 (A)]. Moreover, activation of both pathways by 

Insulin does not alter protein levels of deamidated from WT 4E-BP2 [Figure 3.21 (A), 

(B)]. Moreover, higher intensity of the bands corresponding to phosphorylated 4E-

BP2, 4E-BP1 as well as total levels of 4E-BP1 after Insulin treatment is also apparent 

[Figure 3.21 (A)]. Thus, the stability of deamidated 4E-BP2 is regulated by the mTOR 

but not MAPK pathway.  
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Figure 3.21 Short-term inhibition of mTOR signalling for 9 h leads to accumulation of 
deamidated 4E-BP2 but inhibition of MAPK signalling or activation of both pathways with 
Insulin do not alter deamidated or WT 4E-BP2.  

A. Cortical neurons were treated with Torin1 (250 nM), U0126 (20 µM), Insulin (10 µM) for 9 
h and were analysed by western blotting. Hsc70 was used as a loading control and appeared 
at 70 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, middle band: 16 kDa and 
top band: 17 kDa). 4E-BP1 appeared as three bands between 18-20 kDa. Phospho-4E-BP1 
appeared between 18-21 kDa and phospho-4E-BP2 appeared between 16-18 kDa. ERK1/2 
and phospho-ERK1/2 appeared at 42, 44 kDa. rpS6 and phospho-S6, both appeared at 32 
kDa. Low exposure of films for 4E-BP2 corresponds to 1-3 min and high exposure to 15-20 
min. For quantification, only films that were exposed for 1-3 min (low exposure) were used. B. 
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Quantitative analysis of the different 4E-BP2 amounts in (A). The intensities of the bands ere 
measured using Image Studio Lite Ver 5.2 and normalised against Hsc70. The intensity of the 
bands at 9 h corresponding to Vehicle (lane 1, lane 3, lane 5) is set as 1 (dotted line on graph). 
The data shown in (A) are representative of three independent experiments. Quantitative data 
with mean ± SEM is shown in (B). *p < 0.05 using Bonferroni-corrected two-way ANOVA.  

  

Then, we asked whether long-term inhibition of these pathways will have the 

same effect on the stability of 4E-BP2. Figure 3.22 (A) depicts representative blots 

and Figure 3.22 (B) presents quantitative graphs of protein amounts from Torin1-, 

U0126- and Insulin-treated neuronal lysates for 48 h to test the effect of long-term 

inhibition of the same pathways on deamidated and WT 4E-BP2.  

After inhibition of mTOR signalling for 48 h, we detected a significantly higher 

accumulation of deamidated 4E-BP2 (p < 0.001), as compared to WT 4E-BP2 protein 

amounts [Figure 3.22 (A), (B)]. Moreover, Torin1 treatment completely blocks 

phosphorylation of S6, 4E-BP1 and 4E-BP2 whereas it does not change total levels 

of S6 [Figure 3.22 (A)]. 4E-BP1 levels are still detectable after 48 h of Torin1 but only 

hypophosphorylated forms are present [Figure 3.22 (A)]. After 48 h of U0126, there 

are no significant differences between the protein amounts of deamidated from WT 

4E-BP2 [Figure 3.22 (A), (B)]. U0126 treatment also inhibits phosphorylation of MAPK 

(ERK 1/2) but total levels of protein do not change [Figure 3.22 (A)]. Activation of both 

pathways with Insulin does not change protein levels of any of 4E-BP2 forms [Figure 

3.22 (A), (B)]. Thereby, the mechanism of regulation of neuronal stability of 

deamidated 4E-BP2 is mTOR- and not MAPK–dependent.   
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Figure 3.22 Long-term inhibition of mTOR signalling for 48 h leads to accumulation of 

deamidated 4E-BP2. 
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A. Cortical neurons were treated with Torin1 (250 nM), U0126 (20 µM), Insulin (10 µM) for 48 
h and were analysed by western blotting. Hsc70 was used as a loading control and appeared 
at 70 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, middle band: 16 kDa and 
top band: 17 kDa). 4E-BP1 appeared as three bands between 18-20 kDa. Phospho-4E-BP1 
appeared between 18-21 kDa and phospho-4E-BP2 appeared between 16-18 kDa. ERK1/2 
and phospho-ERK1/2 appeared at 42, 44 kDa. rpS6 and phospho-S6, both appeared at 32 
kDa. Low exposure films of 4E-BP2 correspond to 1-3 min of exposure, medium corresponds 
to 10-15 min and high exposure corresponds to 15-20 min. For p-4E-BP1 37/46, low exposure 

of films corresponds to 10 min and high exposure to 30-40 min. B. Quantitative analysis of the 
different 4E-BP2 amounts in (A). The intensities of the bands were measured using Image 
Studio Lite Ver 5.2 and normalised against Hsc70. The intensity of the bands at 48 h 
corresponding to Vehicle (lane 1, lane 3, lane 5) is set as 1 (dotted line on graph). The data 
shown in (A) are representative of three independent experiments. Quantitative data with 
mean ± SEM are shown in (B). ***p < 0.001 using Bonferroni-corrected two-way ANOVA. For 
quantification, only films that were exposed for 1-3 min (low exposure) were used. 
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3.3.14 mTOR or MAPK inhibition in glia does not alter stability of 

4E-BP2 

 

 We demonstrated that deamidated 4E-BP2 is present in neurons and not in 

glia (Figure 3.18). Moreover, we discovered that the regulatory mechanism of 

deamidated 4E-BP2 is mTOR–dependent and MAPK–independent (Figure 3.21, 

Figure 3.22). To confirm that the mTOR–dependent mechanism, responsible for 

regulating the stability of deamidated 4E-BP2 is specific to neurons, we performed an 

experiment of inhibition and activation of mTOR and MAPK pathways with Torin1 (250 

nM), U0126 (20 µM) and Insulin (10 µM) for 48 h in pure glia cells. Figure 3.23 shows 

representative blots from treated-glia lysates with the inhibitors.  

After 48 h of Torin1, 4E-BP2 WT protein amounts do not change [Figure 3.23 

(A), (B)]. Torin1 also inhibits phosphorylation of S6, 4E-BP1 and 4E-BP2, implying 

efficient inhibition of mTOR signalling [Figure 3.23 (A)]. Total 4E-BP1 levels decrease, 

denoting inhibition of expression of hyperphosphorylated 4E-BP1 forms since only 

bands of lower molecular weight (<17kDa) are detectable [Figure 3.23 (A)]. 

Interestingly, phosphorylation of ERK 1/2 also increases after 48 h of Torin1 treatment 

[Figure 3.23 (A)]. Similarly to Torin1 treatment, inhibition of MAPK pathway with 

U0126 for 48 h in glia does not change 4E-BP2 WT protein amounts [Figure 3.23 (A), 

(B)]. Phosphorylated MAPK levels are barely detectable, proving U0126 treatment 

efficacy [Figure 3.23 (A)]. Moreover, phosphorylated 4E-BP2 and 4E-BP1 and 

similarly, total ERK1/2 or 4E-BP1 levels do not change after U0126 treatment [Figure 

3.23 (A)]. Finally, as in neurons, insulin treatment for 48 h does not alter 4E-BP2 WT 

expression [Figure 3.23 (A), (B)]. Taken together, these data suggest that the mTOR–

dependent regulation of stability of deamidated 4E-BP2 is also a neuron–specific 

mechanism.  
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Figure 3.23 Inhibition of mTOR or MAPK signalling for 48 h does not alter 4E-BP2 WT in glia 
cells. Similarly, activation of both pathways with Insulin does not change 4E-BP2 WT 
expression.  

Mixed neurons and glia culture were grown (as it was described in section 3.3.10 Deamidated 
4E-BP2 is neuron-specific) and was trypsinised and passaged. A. The passaged glia culture 
was treated with Torin1 (250 nM), U0126 (20 µM), Insulin (10 µM) for 48 h and analysed by 
western blotting. Hsc70 was used as a loading control and appeared at 70 kDa. 4E-BP2 
appeared as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). 
4E-BP1 appeared as three bands between 18-20 kDa. Phospho-4E-BP1 appeared between 
18-21 kDa and phospho-4E-BP2 appeared between 16-18 kDa. ERK1/2 and phospho-ERK1/2 
appeared at 42, 44 kDa. rpS6 and phospho-S6, both appeared at 32 kDa. For p-4E-BP1 37/46, 
low exposure of films corresponds to 10 min and high exposure to 30-40 min. B. Quantitative 
analysis of 4E-BP2 amount in (A). The intensities of the bands were measured using Image 
Studio Lite Ver 5.2 and normalised against Hsc70. The intensity of the bands at 48 h 
corresponding to Vehicle (lane 1, lane 3, lane 5) is set as 1 (dotted line on graph). The data 
shown in (A) are representative of three independent experiments. Quantitative data with 

mean ± SEM is shown in (B). Bonferroni-corrected two-way ANOVA.  
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3.3.15 Short-term inhibition of AMPA receptors leads to 

accumulation of deamidated 4E-BP2 in dissociated cortical 

neurons whereas long-term inhibition of AMPA and NMDA 

receptors concomitantly decreases deamidated 4E-BP2 

 

  Deletion of Eif4ebp2 in mice leads to augmented synthesis of glutamate 

receptors GluA1 and GluA2 and facilitation of AMPA–mediated synaptic activity (Ran 

et al., 2013). Contrarily, deletion of Eif4ebp2 in mice does not affect NMDA–

dependent miniature excitatory postsynaptic currents (mEPSCs) (Ran et al., 2013). 

Therefore, we asked whether inhibition of glutamate receptors (AMPAR or NMDAR) 

will affect differently the stability of deamidated and WT 4E-BP2. To investigate this, 

we inhibited AMPA and NMDA receptors with 10 µM NBQX and 50 µM AP5 

respectively, in dissociated cortical neurons for 9 h and 48 h, and treated lysates were 

analysed by western blotting. Figure 3.24 (A) shows representative blots of treated 

neuronal lysates with AMPA and NMDA receptor inhibitors separately for 9 h and then 

together with both inhibitors for 9 h. Figure 3.24 (B) illustrates quantitative graphs of 

representative blots.  

After 9 h of NBQX treatment, deamidated 4E-BP2 protein amounts exhibit a 

significant increase (p < 0.05), as compared to WT protein levels [Figure 3.24 (A), 

(B)]. Conversely, inhibition of NMDA receptors with AP5 for 9 h does not differentiate 

WT and deamidated protein levels [Figure 3.24 (A), (B)]. Lastly, inhibition of both 

AMPA and NMDA receptors shows a similar effect as inhibition of NMDA receptors 

[Figure 3.24 (A), (B)]. Specifically, inhibition of both receptors does not differentiate 

significantly deamidated protein levels from WT 4E-BP2 levels [Figure 3.24 (A), (B)]. 

Membranes were also stripped and probed for phospho – 4E-BP 37/46 [Figure 3.24 

(A)]. Phosphorylated 4E-BP2 does not follow the same direction as total 4E-BP2 since 

it does not change after any treatment [Figure 3.24 (A)]. On the other hand, 

phosphorylated 4E-BP1 increases after 9 h of NBQX treatment and decreases after 

9 h of AP5 treatment [Figure 3.24 (A)]. Inhibition of both AMPA and NMDA receptors 

does not change phosphorylation of 4E-BP1 [Figure 3.24 (A)].  

Figure 3.24 (C) illustrates representative blots of neuronal lysates that were 

treated with 10 µM NBQX and 50 µM AP5 for 48 h to check the effect of long-term 
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inhibition of AMPA and NMDA receptors on the stability of deamidated and WT 4E-

BP2. Figure 3.24 (D) shows quantitative graphs of 4E-BP2 protein amounts. Long-

term inhibition of AMPA receptors with NBQX or NMDA with AP5 does not alter 

protein levels of deamidated from WT 4E-BP2 levels [Figure 3.24 (C), (D)]. However, 

after long-term inhibition of both receptors, we observed a significant decrease of 

deamidated 4E-BP2 protein amounts (p < 0.05), as compared to WT 4E-BP2 [Figure 

3.24 (C), (D)]. Membranes were again stripped and probed for phospho–4E-BP 37/46 

[Figure 3.24 (C)]. Levels of phosphorylated 4E-BP2 and 4E-BP1 decrease after AP5 

treatment alone or along with NBQX [Figure 3.24 (C)]. To conclude, duration of 

inhibition of glutamate receptors determines the effect on the stability of deamidated 

4E-BP2. Short-term inhibition of AMPA receptors increased protein amounts of 

deamidated 4E-BP2 whereas long-term inhibition of both AMPA and NMDA receptors  
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Figure 3.24 Inhibition of AMPA receptors for 9 h leads to accumulation of deamidated 4E-BP2 
whereas inhibition of both AMPA and NMDA receptors for 48 h decreased deamidated 4E-
BP2. 
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 A. Cortical neurons were treated with NBQX (10 µM), AP5 (50 µM) and then together for 9 h 
and were analysed by western blotting and probed for 4E-BP2 and phospho – 4E-BP2 37/46. 
Hsc70 was used as a loading control and appeared at 70 kDa. 4E-BP2 appeared as three 
bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). Phospho-4E-BP1 
appeared between 18-21 kDa and phospho-4E-BP2 appeared between 16-18 kDa. Low 
exposure of films for 4E-BP2 correspond to 1-3 min, medium exposure to 10-15 min and high 
exposure to 15-20 min. B. Quantitative analysis of the different 4E-BP2 amounts in (A). The 
intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against Hsc70. The intensity of the band at 9 h (Vehicle, lane 1) is set as 1 (dotted line on 
graph). The data shown in (A) are representative of three independent experiments. 
Quantitative data with mean ± SEM is shown in (B). *p < 0.05 using Bonferroni-corrected two-
way ANOVA. C. Cortical neurons were treated with NBQX (10 µM), AP5 (50 µM) and then 
together for 48 h and were analysed by western blotting and probed for 4E-BP2 and phospho 
– 4E-BP2 37/46. Hsc70 was used as a loading control and appeared at 70 kDa. 4E-BP2 
appeared as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). 
Phospho-4E-BP1 appeared between 18-21 kDa and phospho-4E-BP2 appeared between 16-
18 kDa. D. Quantitative analysis of the different 4E-BP2 amounts in (A). The intensities of the 
bands were measured using Image Studio Lite Ver 5.2 and normalised against Hsc70. The 
intensity of the band at 48 h (Vehicle, lane 1) is set as 1 (dotted line on graph). Bonferroni-
corrected two-way ANOVA. The data shown in (A) are representative of three independent 
experiments. Quantitative data with mean ± SEM is shown in (B). For quantification, only films 
that were exposed for 1-3 min (low exposure) were used. 

3.3.16 Inhibition of action potential firing does not affect 

deamidated 4E-BP2 degradation  

  

We show that inhibition of AMPA receptors for 9 h increases deamidated 4E-

BP2 protein amounts, but not WT 4E-BP2 [Figure 3.24 (A), (B)]). However, long-term 

inhibition of both AMPA and NMDA receptors decreases deamidated 4E-BP2 protein 

levels ([Figure 3.24 (C), (D). To further study the relation between synaptic activity 

and deamidated 4E-BP2, we inhibited action potential firing in dissociated cortical 

neuronal cultures by using TTX (Tetratodoxin) for 48 h. Firstly, we used 1 µM TTX at 

an early age DIV 12, and then we treated the lysates with λ phosphatase to be able 

to distinguish between phosphorylation and deamidation of 4E-BP2. Moreover, we 

also resolved on the gel a non-treated lysate from DIV 8 as a negative control for 

deamidation pattern. Then, we used 1 µM TTX at DIV 25 and we treated the lysates 

with λ phosphatase.  For this age, we resolved on the gel one non-treated neuronal 

lysate collected at DIV 21 where we were not sure if would get the full deamidation 

pattern as with lysates at DIV 25. Figure 3.25 presents representative blots of treated 

dissociated neuronal cells with TTX.  

On DIV 12, TTX treatment does not modify 4E-BP2 WT protein levels whereas 

phosphatase treatment completely abolishes the slower migrated band (>15kDa), 
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implying that this band corresponds to phosphorylated 4E-BP2 (Figure 3.25). On DIV 

25, TTX treatment does not change deamidated 4E-BP2 protein amounts which 

correspond to the slower migrating form (>15 kDa) that is still present after 

phosphatase treatment (Figure 3.25). At the same age, DIV 25, TTX treatment does 

not alter 4E-BP2 WT protein amounts, as we show at DIV 12 (Figure 3.25). Therefore, 

long-term inhibition of action potential firing does not affect proteasomal degradation 

of deamidated 4E-BP2. 

   

 

Figure 3.25 Inhibition of synaptic activity for 48 h does not affect deamidated 4E-BP2 protein 
levels.  

Cortical neurons were treated with TTX (1 µM), then lysed and treated with λ phosphatase, 
followed by western blotting and probed for 4E-BP2. Hsc70 was used as a loading control and 
appeared at 70 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, middle band: 
16 kDa and top band: 17 kDa). Low exposure of films for 4E-BP2 correspond to 1-3 min, 
medium exposure to 10-15 min and high exposure to 15-20 min. The data shown are 
representative of three independent experiments. 
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3.3.17 Deamidated 4E-BP2 gets degraded by the proteasome and is 

regulated by mTOR signalling in isolated synaptoneurosomes 

3.3.17.1 Deamidated 4E-BP2 is also expressed in isolated 

synaptoneurosomes and gets degraded by the proteasome 

 

 Deamidated 4E-BP2 affects synaptic transmission since expression of 

deamidated 4E-BP2 in Eif4ebp2 -/- neurons alters charge transfer of mEPSCs 

(Bidinosti et al., 2010b). Therefore, we asked whether 4E-BP2 is also deamidated in 

synaptic fractions. To answer this question, we isolated synaptoneurosomes from 

adult mice, and then we lysed and analysed them with western blotting. Brain lysed 

homogenate in sucrose buffer before centrifugation is labelled as crude. Figure 3.26 

(A) shows representative blots of lysed crude and synaptoneurosomes that were 

probed for 4E-BP2 and different synaptic, glial and nuclear proteins to study and 

compare the purity of synaptoneurosomes.  

We detected deamidated 4E-BP2 in synaptoneurosomal fractions along with 

synaptic proteins such as Synaptophysin (presynaptic) and PSD95 (postsynaptic) 

[Figure 3.26 (A)]. GFAP (Glial fibrillary acidic protein) and Histone H3 protein levels 

are barely detectable in synaptoneurosomes, as compared to crude, indicating their 

purity [Figure 3.26 (A)]. Then, we examined the stability of 4E-BP2 in 

synaptoneurosomes. To investigate this, firstly, we performed a proteasome activity 

assay to check levels of activity of 20S proteasome in crude and synaptoneurosomal 

fractions. Figure 3.26 (B) graph presents levels of activity assay in 20S proteasome 

between crude and synaptoneurosomes. 20S proteasome activity levels decreases 

in synaptoneurosomes (p < 0.001), as compared to crude [Figure 3.26 (B)].  

To focus on the study of stability of 4E-BP2 in synaptic fractions, we inhibited 

protein synthesis with 100 µg/ml CHX and proteasome with 20 µM MG132 or 10 µM 

Lactacystin in synaptoneurosomes for 1 h. Figure 3.26 (C) shows representative blots 

of treated synaptoneurosomes with different inhibitors.  Unexpectedly, results from 

inhibiting protein synthesis with CHX for 1 h are inconclusive due to high variability 

between replicates [Figure 3.26 (C)]. Deamidated and WT 4E-BP2 increases after 

CHX treatment for 1 h [Figure 3.26 (C), representative left blot] in 3 replicates and 

decreases in other 2 replicates [Figure 3.26 (C), representative right blot]. The graph 

in Figure 3.26 (D) shows that on average both WT and deamidated 4E-BP2 protein 
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amounts exhibit no significant change after CHX treatment of synaptoneurosomes. 

Inhibition of proteasome with MG132 increases deamidated 4E-BP2 protein levels (p 

< 0.01), as compared to WT protein [Figure 3.26 (C, left and right blot), (D)], implying 

that deamidated 4E-BP2 gets degraded by the proteasome in synaptoneurosomes. 

Figure 3.26 (C) and (D) illustrate representative blots of treated synaptoneurosomes 

with Lactacystin and quantitative graph of protein amounts, respectively. Proteasome 

inhibition with Lactacystin (a higher concentration was used compared to total 

neuronal lysates) in synaptoneurosomes increases protein amounts of deamidated 

4E-BP2 (p < 0.05), as compared to WT protein [Figure 3.26 (D)].  

To confirm that the higher concentration of Lactacystin that was used in this 

experiment effectively blocked proteasome activity, we measured activity levels of 

20S proteasome in treated synaptoneurosomes with Lactacystin for 1 h [Figure 3.26 

(E)]. Lactacystin completely inhibits 20S proteasome activity (p < 0.05), as compared 

to 0h-treated synaptoneurosomes [Figure 3.26 (E)]. Thus, 4E-BP2 is also deamidated 

in synaptic fractions and gets degraded by the proteasome in synaptoneurosomes.  
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Figure 3.26 Deamidated 4E-BP2 is expressed in synaptoneurosomes and gets degraded by 

the proteasome.  
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A. Crude and synaptoneurosome lysates were analysed by western blotting and probed for 
PSD95 (95 kDa), Synaptophysin (38 kDa), GFAP (50 kDa), Histone H3 (15 kDa) and 4E-BP2. 
GAPDH was used as a loading control and appeared at 37 kDa. 4E-BP2 appeared as three 
bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). B. Proteasome 
enzymatic activity was measured in treated lysates from crude and synaptoneurosomes that 
were analysed by western blotting in (A). Proteasome activity is shown in RFU/min (+ 
s.e.m., n = 3). C. Isolated synaptoneurosomes were treated with CHX (100 µg/ml), MG132 
(20 µM) and Lactacystin (10 µM) for 1 h and were analysed by western blotting and probed 
for 4E-BP2. GAPDH was used as a loading control and appeared at 37 kDa. 4E-BP2 appeared 
as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). Low 
exposure of films for 4E-BP2 correspond to 1-3 min and high exposure to 15-20 min. D. 
Quantitative analysis of the different 4E-BP2 amounts in (C). The intensities of the bands were 
measured using Image Studio Lite Ver 5.2 and normalised against GAPDH. The intensity of 
the band at 0 h (lane 1) is set as 1 (dotted line on graph). Quantitative data with mean ± SEM 
is shown in (B). E. Proteasome enzymatic activity was measured in treated synaptoneurosome 
lysates that were analysed by western blotting in (C). Proteasome activity is shown in 
RFU/min (+ s.e.m., n = 3). The data shown in (A), (B), (C), (D), (E) are representative of three 
independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, using Bonferroni-
corrected two-way ANOVA. For quantification, only films that were exposed for 1-3 min (low 
exposure) were used. 

 

3.3.17.2 Deamidated 4E-BP2 has a shorter half-life than WT in 

synaptoneurosomes 

  

We show that deamidated 4E-BP2 has a short half-life in HEKs transfected 

with different 4E-BP2 forms (Figure 3.2). However, CHX treatment in dissociated 

cortical neurons (Figure 3.20) or synaptoneurosomes (Figure 3.26) does not affect 

protein levels of deamidated 4E-BP2 Therefore, we used different protein synthesis 

inhibitors to investigate the stability of 4E-BP2 in synaptoneurosomes. To study this, 

we treated synaptoneurosomes with 2 µg/ml HHT or 10 µg/ml Anisomycin for 1 h, and 

then lysed and analysed them by western blotting. Puromycin (5 µg/ml) was also 

added 30 min before the end of HHT or Anisomycin treatment. Figure 3.27 (A) shows 

representative blots of treated synaptoneurosomes with HHT or Anisomycin that were 

probed for 4E-BP2. Figure 3.27 (B) presents a quantitative graph of protein amounts 

of deamidated and WT protein.  

After HHT treatment for 1 h, deamidated 4E-BP2 has a faster degradation rate 

(p < 0.05), as compared to WT protein in treated synaptoneurosomes [Figure 3.27 

(A), (B)]. Deamidated 4E-BP2 protein amounts in Anisomycin-treated 

synaptoneurosomes also exhibit a significant decrease (p < 0.05), as compared to 

WT protein [Figure 3.27 (A), (B)]. HHT and Anisomycin treatment also diminishes 
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Puromycin incorporation [Figure 3.27 (A)], proving efficacy of HHT and Anisomycin 

treatment. Thereby, deamidated 4E-BP2 is unstable in synaptic fractions of neurons. 

 

Figure 3.27 Protein stability assay in isolated synaptoneurosomes of deamidated 4E-BP2.  

 

A. Isolated synaptoneurosomes were treated with 2 µg/ml HHT or 10 µg/ml Anisomycin for 1 
h and were analysed by western blotting and probed for 4E-BP2 and Puromycin. GAPDH was 
used as a loading control and appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom 
band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). B. Quantitative analysis of the 
different 4E-BP2 amounts in (A). The intensities of the bands were measured using Image 
Studio Lite Ver 5.2 and normalised against GAPDH. The intensity of the band at 0 h (lane 1) 
is set as 1 (dotted line on graph). Quantitative data with mean ± SEM is shown in (B). *p < 
0.05 using Bonferroni-corrected two-way ANOVA. The data shown in (A), (B) are 
representative of three independent experiments. For quantification, only films that were 
exposed for 1-3 min (low exposure) were used.



 

 

3.3.17.3 Deamidated 4E-BP2 accumulates after inhibition of mTOR in 

synaptoneurosomes and this accumulation is rescued by proteasome 

activation 

  

We discovered that deamidated 4E-BP2 regulation in neurons is mTOR – 

dependent (Figure 3.21, Figure 3.22) and we wondered whether this regulation is also 

important in synaptic fractions where local protein synthesis is required for synaptic 

transmission, learning and memory (Cajigas et al., 2010). To answer this question, 

we treated synaptoneurosomes either with 250 nM Torin1 or 20 nM Rapamycin for 1 

h, lysed and analysed them by western blotting. Figure 3.28 (A), (C) show 

representative blots of treated synaptoneurosomes probed for 4E-BP2 and (B), (D) 

quantitative graphs of 4E-BP2 protein amounts. Deamidated 4E-BP2 protein levels 

accumulate after inhibition of mTOR, either with Torin1 or Rapamycin for 1 h, in 

synaptoneurosomes (p < 0.05), as compared to WT protein [Figure 3.28 (A), (B), (C), 

(D)].  Figure 3.28 (E) presents measured 20S proteasome activity levels in treated 

synaptoneurosomes with Torin1 or Rapamycin. mTOR inhibition either with Torin1 or 

Rapamycin decreased 20S proteasome activity levels in synaptoneurosomes [Figure 

3.28 (E)].  

To confirm, that accumulation of deamidated 4E-BP2 after inhibition of mTOR 

is due to inhibition of proteasomal degradation of deamidated 4E-BP2 specifically, we 

used a proteasome activator, Betullinic acid, and check if we could rescue the 

accumulation of deamidated 4E-BP2. For this reason, we treated synaptoneurosomes 

with 2.5 µg/ml Betullinic acid, Torin1 and then, Betullinic acid and Torin1 together for 

1 h. Figure 3.28 (G) depicts representative blot from treated synaptoneurosomes. 

Interestingly, inhibition of mTOR for 1 h and concomitantly, activation of proteasome 

with Betullinic acid, rescues increased protein levels of deamidated 4E-BP2, 

indicating that accumulation of deamidated 4E-BP2 after inhibition of mTOR is due to 

incomplete degradation of deamidated protein [Figure 3.28 (G)]. Therefore, inhibition 

of mTOR is causal for inhibition of proteasome that leads to accumulation of 

deamidated 4E-BP2. 
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Figure 3.28 Inhibition of mTOR causes accumulation of deamidated 4E-BP2 which emerges 

from incomplete proteasomal degradation of the protein.  
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A. Isolated synaptoneurosomes that were treated with Torin1 (250 nM) for 1 h were analysed 
by western blotting and probed for 4E-BP2. GAPDH was used as a loading control and 
appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, middle band: 
16 kDa and top band: 17 kDa). B. Quantitative analysis of the different 4E-BP2 amounts in 
(A). The intensities of the bands were measured using Image Studio Lite Ver 5.2 and 
normalised against GAPDH. The intensity of the band at Vehicle (lane 1) is set as 1 (dotted 
line on graph). Quantitative data with mean ± SEM is shown in (B). *p < 0.05 using Bonferroni-
corrected two-way ANOVA.C. Isolated synaptoneurosomes that were treated with 20 nM 
Rapamycin were analysed by western blotting and probed for 4E-BP2. GAPDH was used as 
a loading control and appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom band: 15 
kDa, middle band: 16 kDa and top band: 17 kDa). D. Quantitative analysis of the different 4E-
BP2 amounts in (C). The intensities of the bands were measured using Image Studio Lite Ver 
5.2 and normalised against GAPDH. The intensity of the band at Vehicle (lane 1) is set as 1 
(dotted line on graph). Quantitative data with mean ± SEM is shown in (D). *p < 0.05 using 
Bonferroni-corrected two-way ANOVA. E. Proteasome enzymatic activity was measured in 
Torin1- and Rapamycin-treated lysates from synaptoneurosomes that were analysed by 
western blotting in (A), (C). Proteasome activity is shown in RFU/min (+ s.e.m., n = 3). *p < 
0.05 using Bonferroni-corrected two-way ANOVA. F. Schematic diagram, illustrating our 
hypothesis. Inhibition of mTOR decreases proteasomal activity and degradation of 
deamidated 4E-BP2, leading to its protein accumulation as it is shown in (A). G. Isolated 
synaptoneurosomes were treated with 2.5 µg/ml Betullinic acid, 250 nM Torin1, 2.5 µg/ml 
Betullinic acid and 250 nM Torin1 and were analysed by western blotting and probed for 4E-
BP2. GAPDH was used as a loading control and appeared at 37 kDa. 4E-BP2 appeared as 
three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). H. Diagram 
indicates that Betullinic acid acts as a proteasomal activator. Red arrows on (A), (G) indicate 
the slower migrating bands that correspond to deamidated 4E-BP2. The data shown in (A), 
(B), (C), (D) are representative of three independent experiments. 

 

3.3.17.4 Stimulation of synaptoneurosomes does not change stability of 

deamidated 4E-BP2 

  

We showed that deamidated 4E-BP2 is a long half-lived protein in cortical 

neuronal cultures (Figure 3.20) but unstable in synaptoneurosomes where is also 

regulated by the mTOR and proteasome [(Figure 3.28 (A), (B), (G)]. These data 

indicate that deamidated 4E-BP2 might have a unique role in synaptic fractions of 

neurons. Thus, we asked whether stimulation of synaptoneurosomes will change the 

stability of the protein. To test this hypothesis, we treated synaptoneurosomes with 

KCl (50 mM) for 1 h with or without inhibiting translation and proteasome activity. The 

synaptoneurosomes were lysed after stimulation, followed by western blotting.  Figure 

3.29 (A) shows representative blots from stimulated synaptoneurosomes, treated with 

100 µg/ml CHX, 20 µM MG132 and 5 µM Lactacystin. Figure 3.29 (C) illustrates 

quantitative graphs of deamidated and WT 4E-BP2 protein levels from the 

representative blots depicted in Figure 3.29 (A). 
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Inhibition of protein synthesis or proteasome in stimulated 

synaptoneurosomes [Figure 3.29 (A)] has similar effects as on unstimulated [Figure 

3.26 (C)] synaptoneurosomes. After CHX treatment with concomitant KCl stimulation 

[Figure 3.29 (A), (C)], there are no significant differences between protein levels of 

deamidated 4E-BP2, as compared to WT protein. Inhibition of proteasome with 

MG132 and Lactacystin in stimulated synaptoneurosomes [Figure 3.29 (A), (C)] do 

not differentiate protein levels of deamidated from WT 4E-BP2.  

Since inhibition of translation with CHX in vehicle and stimulated 

synaptoneurosomes does not reduce protein levels of deamidated or WT 4E-BP2, as 

[Figure 3.29 (A)], we asked whether CHX could effectively inhibit protein synthesis in 

synaptoneurosomes. To answer this question, we treated synaptoneurosomes with 

CHX and KCl, either each one alone or together and 30 min before stopping the 

treatments, we added Puromycin (5 µg/ml). Figure 3.29 (B) presents one 

representative blot of the CHX and KCl treatments. After KCl stimulation for 1 h 

[Figure 3.29 (B), (lane 3 on the gel)], protein synthesis levels decrease (Puromycin 

antibody), as compared to Vehicle (1 h). After 1 h of CHX treatment [Figure 3.29 (B), 

(lane 4 on the gel] or CHX along with KCl stimulation [Figure 3.29 (B), (lane 5 on the 

gel], translation levels (Puromycin antibody) reduce, as compared to 0 h and 1 h 

Vehicle, showing that CHX effectively blocks protein synthesis. Deamidated 4E-BP2 

protein amounts do not differentiate, as compared to WT in any condition [Figure 3.29 

(B)]. Taken together, our findings indicate that KCl stimulation does not affect stability 

of deamidated 4E-BP2.   
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Figure 3.29 Stimulation of synaptoneurosomes does not affect the stability of deamidated 4E-

BP2.  

A. Isolated synaptoneurosomes were treated with 50 mM KCl along with 100 µg/ml CHX, 20 
µM MG132, 5 µM Lactacystin for 1 h and were analysed by western blotting and probed for 
4E-BP2. GAPDH was used as a loading control and appeared at 37 kDa. 4E-BP2 appeared 
as three bands (bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). Low 
exposure of films for 4E-BP2 correspond to 1-3 min and high exposure to 15-20 min. B. 
Isolated synaptoneurosomes were treated with 50 mM KCl and/or 100 µg/ml CHX for 1 h and 
were analysed by western blotting and probed for 4E-BP2. GAPDH was used as a loading 
control and appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom band: 15 kDa, 
middle band: 16 kDa and top band: 17 kDa). Puromycin (5 µg/ml) was also added 30 min 
before stopping the treatment. C. Quantitative analysis of the different 4E-BP2 amounts in (A). 
The intensities of the bands were measured using Image Studio Lite Ver 5.2 and normalised 
against GAPDH. The intensity of the band at 1 h KCl stimulation (lane 1) is set as 1 (dotted 
line on graph). Quantitative data with mean ± SEM is shown in (C). The data shown in (A), 
(C), (D), (E), (F) are representative of three independent experiments. Bonferroni-corrected 
two-way ANOVA. For quantification, only films that were exposed for 1-3 min (low exposure) 
were used.



 

 

3.3.18 Inhibition of AMPA or NMDA receptors do not change 

stability of deamidated 4E-BP2 in synaptoneurosomes 

 

We discovered that KCl stimulation does not change stability of deamidated 

4E-BP2 (Figure 3.29). Previously, we showed that inhibition of AMPA receptors 

increases deamidated 4E-BP2 protein levels whereas inhibition of NMDA receptors 

does not alter 4E-BP2 protein levels. We asked whether inhibition of AMPA and 

NMDA receptors in synaptic fractions will affect deamidated 4E-BP2 on the same 

direction as in cortical neurons. Thus, we used 10 µM NBQX and 50 µM AP5 in 

isolated synaptoneurosomes for 1 h either alone or together and check the stability of 

deamidated and WT 4E-BP2.  Figure 3.30 (A) shows representative blots of treated 

synaptoneurosomes with NBQX, AP5, NBQX + AP5 for 1 h and (B) presents 

quantitative graphs of each treatment of deamidated and WT protein levels.  

After inhibition of AMPA receptors in synaptoneurosomes with NBQX, or 

NMDA receptors with AP5 or inhibition of both receptors, protein levels of deamidated 

4E-BP2 do not alter from WT protein levels [Figure 3.30 (A), (B). Thus, inhibition of 

either AMPA or NMDA receptors in synaptoneurosomes does not change stability of 

deamidated 4E-BP2.   
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Figure 3.30 Inhibition of AMPA or NMDA receptors for 1 h does not affect stability of 
deamidated 4E-BP2.  

A. Isolated synaptoneurosomes were treated with NBQX (10 µM), AP5 (50 µM) and then, 
together for 1 h and were analysed by western blotting and probed for 4E-BP2. GAPDH was 
used as a loading control and appeared at 37 kDa. 4E-BP2 appeared as three bands (bottom 
band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). Low exposure of films for 4E-BP2 
correspond to 1-3 min, medium exposure to 10-15 min and high exposure to 15-20 min.  B. 
Quantitative analysis of the different 4E-BP2 amounts in (A). The intensities of the bands were 
measured using Image Studio Lite Ver 5.2 and normalised against GAPDH. The intensity of 
the band at 1 h (Vehicle, lane 1) is set as 1 (dotted line on graph). The data shown in (A) are 
representative of three independent experiments. Quantitative data with mean ± SEM is shown 
in (B). Bonferroni-corrected two-way ANOVA. For quantification, only films that were exposed 
for 1-3 min (low exposure) were used.



 

 

3.4 Discussion 

Protein turnover enables neurons to change their proteome depending on the 

environmental changes and neural activity, maintaining flexible synapses and 

simultaneously, contributing to synaptic plasticity. For many proteins, deamidation is 

traditionally viewed as an “aging by-product”, which labels long-lived proteins for 

degradation (Robinson, 2002). Deamidation of Bcl-xL mediates its degradation and 

subsequently, inactivates Bcl-xL prosurvival activity (Dho et al., 2013). In accordance 

with this, we observe that double deamidated 4E-BP2 (2D) is unstable compared to 

WT 4E-BP2 (transfected and endogenous protein), dictating that deamidation 

reduces protein stability 4E-BP2. Only the deamidated form and not an Alanine 

mutant (2A) exhibits reduced protein stability, suggesting that this phenotype is 

specifically induced by the conversion of asparagines to aspartates and not by a non-

specific mutation. We also discover that prolonged inhibition of phosphorylation 

decreases 4E-BP2 protein stability, regardless of the included mutations on 4E-B2 

sequence. We then proceed to show that 2D stability is regulated through the 

Ubiquitin proteasome pathway as deamidated 4E-BP2 gets highly ubiquitinated and 

also accumulates after inhibition of proteasome compared to WT protein.  

Deamidated 4E-BP2 exhibits increased interaction with Raptor (Bidinosti et 

al., 2010b), therefore we searched whether there is a causal relationship between 

increased affinity for Raptor and reduced protein stability of deamidated 4E-BP2. 

Indeed, overexpression of Raptor reduces significantly the stability of WT 4E-BP2 and 

Alanine mutant, denoting that association of 4E-BP2 with Raptor regulates 4E-BP2 

protein stability. Furthermore, protein levels of 4E-BP2 ΔΤΟS, which lacks the TOS 

motif required for association with Raptor, do not change after overexpression of 

Raptor, dictating that binding of Raptor to 4E-BP2 through TOS motif regulates its 

protein stability. Conversely, reduced protein stability of deamidated 4E-BP2 is 

rescued after down-regulating Raptor, proving a Raptor-dependent regulatory 

mechanism of 4E-BP2 protein levels. We then discovered that the responsible 

complex for the ubiquitination and degradation of deamidated 4E-BP2 is Raptor-

CUL4B-DDB1 complex as increased binding of Raptor and CUL4B is visible only in 

the presence of deamidated and not WT 4E-BP2. Moreover, increased ubiquitination 

levels of deamidated protein compared to WT 4E-BP2 by CUL4B and rescue of 
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decreased stability by downregulating CUL4B are indicative of the pivotal role of the 

CUL4B-DDB1 complex. 

 Interestingly, association of Raptor and deamidated 4E-BP2 also promotes 

cell cycle progression since, after overexpression of both proteins, more cells are in 

later stages S, G2/M of cell cycle compared to the number of cells on the S, G2/M 

stages after overexpression of Raptor and empty vector. Therefore, it is plausible that 

increased association of deamidated 4E-BP2 to Raptor and subsequent degradation 

of the protein by CUL4B-DDB1 complex might play a role in regulating cell cycle 

progression. Hypophosphorylated 4E-BPs inhibit cell cycle progression (Dowling et 

al., 2010). Therefore, overexpression of Raptor with deamidated 4E-BP2 might lead 

to increased phosphorylation of deamidated and WT 4E-BP2, allowing translation and 

thus, cell cycle progression.  

 To further characterise the potential role of deamidated 4E-BP2 in the brain, 

we sought to see whether 4E-BP2 is also deamidated in human brain. Indeed, 

deamidation of 4E-BP2 occurs also in human brains and is neuron-specific. Moreover, 

deamidated of 4E-BP2 occurs postnatally after DIV12 in cortical neurons, in 

accordance with previous studies (Bidinosti et al., 2010b). Brain proteome is 

characterised by a long half-life (Graber et al., 2013), thereby endogenous 

deamidated 4E-BP2 is stable in cortical neurons but unstable in isolated 

synaptoneurosomes, implying that deamidation of 4E-BP2 might play a specific role 

in synapses and local protein synthesis. Deamidated 4E-BP2 does not rescue 

increased charge transfer of mEPSCs in Eif4ebp2 -/- mice (Bidinosti et al., 2010b), 

supporting the hypothesis that this posttranslational modification might confer a 

synaptic function to 4E-BP2.  Moreover, stability of deamidated 4E-BP2 is regulated 

by mTOR signalling and this mechanism is also neuron-specific. Therefore, it remains 

to be elucidated which neuronal functions are regulated through proteasomal 

degradation of deamidated 4E-BP2 by this neuron-specific mechanism that involves 

Raptor-CUL4B-DDB1 complex and is mTOR- and AMPA-dependent.   



Studying the subcellular localization of 4E-BP2 

 

 

4. Studying the Subcellular Localization of 4E-

BP2  

4.1 Introduction 

Subcellular protein localization is tightly linked to protein function and activity 

(Geda et al., 2008). In eukaryotes, spatial compartmentalization of proteins is a highly 

dynamic process that allows cells to adapt to changes in the environment or stress 

conditions (Bauer et al., 2015; Geda et al., 2008). Thus, various stimuli activate 

signalling pathways which lead to efficient functional regulation of the proteome 

through control of protein localization (Geda et al., 2008). Therefore, proteins fluctuate 

between different subcellular compartments and this mechanism of regulating their 

precise distribution directly affects their activity (Geda et al., 2008). Furthermore, the 

subcellular distribution of a protein affects its activity by controlling access to that 

specific protein and determining its interaction partners (Scott et al., 2005). Therefore, 

refining protein localization often can provide invaluable information in characterising 

the role of newly discovered proteins (Scott et al., 2005).  

 Given the important role of 4E-BP2 in neurons, acting as a repressor of protein 

synthesis, we sought to study the subcellular distribution of endogenous 4E-BP2 in 

neurons. Regarding the subcellular distribution of 4E-BPs in cells, 4E-BP1 localizes 

in the cytoplasm with a fraction of 30% being in the nucleus in different cell lines and 

multiple tissues (Rong et al., 2008). 4E-BP2 follows a similar cytoplasm – nuclear 

localization as 4E-BP1 (Rong et al., 2008). Nuclear localization of 4E-BP1 is not 

dependent on the phosphorylation status of the protein or binding to eIF4E. On the 

contrary, 4E-BPs regulate eIF4E release from the nucleus since their interaction with 

eIF4E is indispensable for the nuclear localization of eIF4E (Rong et al., 2008). 

Moreover, inhibition of mTOR pathway is causal for nuclear accumulation of eIF4E 

through 4E-BPs (Livingstone et al., 2009). However, it is not known whether 4E-BP2, 



Studying the subcellular localization of 4E-BP2 

162 

 

which is the prevailing isoform in the brain, exhibits the same subcellular distribution 

in neurons as in other cells. 

4.2 Experimental aim 

The main aim of this thesis is to characterize the role of brain – specific 

deamidated 4E-BP2. To gain a further insight on the spatial distribution of 4E-BP2 in 

neurons, we set out to determine: 1) the subcellular localization of 4E-BP2 in neurons, 

2) whether deamidated 4E-BP2 exhibits different intracellular distribution than WT 4E-

BP2. 

4.3 Results 

4.3.1 4E-BP2 localizes in perinuclear puncta in the cytoplasm and 

dendrites 

4E-BP2 is the abundant isoform of 4E-BPs in the brain. Moreover, 4E-BP2 is 

localized in the cytoplasm in most cells with a fraction of 30% being in the nucleus 

along with eIF4E. Furthermore, this nuclear accumulation of 4E-BPs is dependent on 

the mTOR pathway. However, the intracellular distribution of 4E-BP2 in neurons 

remains unknown. To study the subcellular localization of 4E-BP2 in neurons, we fixed 

DIV16 dissociated cortical mouse neurons and processed them for 

immunofluorescence with 4E-BP2 antibody. Figure 4.1 shows the subcellular 

distribution of endogenous 4E-BP2 in neurons. 

4E-BP2 antibody recognises both 4E-BP2 forms, deamidated and WT, 

thereby the fluorescent signal denotes the subcellular localization of both 4E-BP2 

forms (Figure 4.1). 4E-BP2 localizes in perinuclear puncta in the cell body of neurons 

but also in the dendrites (Figure 4.1). Moreover, we observe fluorescent puncta of 4E-

BP2 in some distal dendrites (white arrows in Figure 4.1), supporting our previous 

findings that deamidated and WT 4E-BP2 are also expressed in synaptoneurosomes 

(Figure 3.26), probably playing a role in regulating local protein synthesis in these 

synaptic fractions.  
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Figure 4.1 Intracellular distribution of endogenous 4E-BP2 in cortical neurons. 

Dissociated DIV16 cortical mouse neurons probed first with antisera against 4E-BP2, followed 
by secondary antibody Alexa Fluor 488. Scale bars (20 µm) and arrows marking fluorescent 
puncta in distal dendrites are shown in white.  

 

4.3.2 Fusion of fluorescent proteins to the C – terminal of 4E-BP2 

affects 4E-BP2 expression 

Posttranslational modifications influence enzymatic activity, protein turnover, 

protein – protein interactions and localization. Therefore, they play a pivotal role in 

modulating protein function, having a great impact on the cellular microenvironment 

(Karve and Cheema, 2011). Specifically, deamidation at neutral pH introduces a 

negative charge at the deamidation site, hence affecting properties of the proteins 

(Robinson, 2002). Thereby, we asked whether deamidation of 4E-BP2 changes the 

subcellular localization of 4E-BP2. To test this hypothesis, we cloned human 4E-BP2 

(WT, double deamidated, Alanine mutant) in the mCerulean3-N1 and mCherry2-N1 

vectors to have fused proteins, expressing N-terminal 4E-BP2 and C-terminal 

fluorescent (Cerulean, Cherry) protein. To test whether the expression and 

localization of 4E-BP2 is dependent on the orientation of subcloned 4E-BP2 in the 
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fluorescent vectors, we cloned human 4E-BP2 (WT, double deamidated, Alanine 

mutant) in the mCerulean3-C1 and mCherry2-C1 vectors to have fused proteins 

expressing N-terminal fluorescent proteins and C-terminal 4E-BP2. To test the 

expression level of each plasmid, we transfected HEKs with all plasmids expressing 

each 4E-BP2 form at N-terminal or C-terminal. 48 h post – transfection, cells were 

fixed and imaged at epifluorescence microscope. Figure 4.2 depicts fluorescent 

images from transfected HEKs expressing different fluorescent 4E-BP2-fusion 

proteins. 

Figure 4.2 shows that the expression level of all 4E-BP2 forms is dependent 

on the orientation of 4E-BP2 in the cloned vector. In the plasmids that 4E-BP2 was 

expressed at the C-terminal of fused protein (top panel), fluorescent signal, depicting 

protein expression, is higher compared to the plasmids that 4E-BP2 was expressed 

at the N-terminal of fused protein (bottom panel) (Figure 4.2). Thus, when fluorescent 

tags are fused to the C- terminal of 4E-BP2, 4E-BP2 expression reduces as compared 

to N- terminal fusions (Figure 4.2). This finding is confirmed for all three 4E-BP2 forms 

(Figure 4.2). Specifically, for deamidated 4E-BP2, we did not detect any expression 

after transfecting fluorescent plasmid mCherry2, encoding N-terminal deamidated 4E-

BP2 (Figure 4.2). Figure 1.2 (A) illustrates the human sequence of 4E-BP2 and 

conserved regions, important for interaction with eIF4E and Raptor. FEMDI is the TOS 

motif, essential for binding to Raptor and its position is at the end of C-terminal 

(Nojima et al., 2003). Therefore, binding of 4E-BP2 to Raptor may play a pivotal role 

on the expression and subcellular localization of 4E-BP2. 
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Figure 4.2 Fusion of fluorescent protein to C-terminal of 4E-BP2 affects 4E-BP2 expression 

levels.  

Fluorescent microscopy of HEKs, transfected with 4E-BP2-mCherry2 (WT, 2D, Alanine 

mutant) (red) and 4E-BP2-mCerulean3 (WT, 2D, Alanine mutant) (blue) in both orientations. 

Scale bars (20 µm) are the same for all cells on this figure. 
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4.3.3 Deamidated 4E-BP2 colocalize in low levels with WT protein 

in neurons 

Previously, we confirmed that deamidation of 4E-BP2 is neuron – specific 

(Figure 3.18), thus we asked whether deamidation of 4E-BP2 causes a different 

subcellular distribution than WT protein in neurons. To answer this question and 

considering that we lack a specific antibody recognising deamidated 4E-BP2, we co 

– transfected DIV4 dissociated mouse cortical neurons with plasmids expressing N – 

terminally HA tagged and N – terminally FLAG tagged WT or double deamidated 4E-

BP2. On DIV16, we fixed transfected neurons and processed them for 

immunofluorescence and confocal imaging. Figure 4.3 depicts transfected 

dissociated cortical neurons, expressing both FLAG – 4E-BP2 WT (green) and HA – 

4E-BP2 N99D/N102D (double deamidated, red). Merged images (yellow), illustrating 

colocalization of WT and deamidated signals (Figure 4.3). 

The images indicate that both deamidated and WT 4E-BP2 exhibit a similar 

subcellular localization in the cell body and dendrites of neurons (Figure 4.3). 

Specifically, in the cell body there is a high number of colocalized puncta (yellow) of 

both 4E-BP2 forms (Figure 4.3). However, in distal dendritic areas (white arrows), we 

observed distinct fluorescent puncta of deamidated and WT 4E-BP2 (Figure 4.3). 

Thus, deamidated and WT 4E-BP2 appear to colocalize in the cell body but not in 

dendrites.  
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Figure 4.3 Dissociated DIV16 cortical mouse neurons transfected with either WT (FLAG-tag) 
or 2D (HA-tag) 4E-BP2.  

After fixation, neurons were probed first with antisera against FLAG- or HA- tags, followed by 
secondary antibodies (conjugated to: WT-green- Alexa Fluor 488; 2D-red- DyLight 680). Scale 
bars (27 µm) are the same for all cells in this figure and arrows marking distinct WT or 2D 
fluorescent puncta are shown in white.  

  

To explore the localization of deamidated 4E-BP2 and test whether it 

colocalizes with WT 4E-BP2 in neurons, we transfected and overexpressed both 4E-

BP2 forms in cortical neurons, but we increased the magnification and decreased the 

scan area to enable to zoom in the cell body and dendrites, separately. After image 

acquisition, we proceeded with colocalization analysis using Imaris software. Figure 

4.4 (A) presents transfected dissociated cortical neurons, expressing both FLAG – 

4E-BP2 WT (green) and HA – 4E-BP2 N99D/N102D (double deamidated, red). 
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Colocalization puncta are depicted in yellow [Figure 4.4 (A)]. Histograms of 

colocalization are also illustrated on the right panel [Figure 4.4 (B)]. 

 The images illustrate cell bodies from DIV16 dissociated transfected cortical 

neurons [Figure 4.4 (A)]. Surprisingly, colocalization analysis reveals very low 

colocalization of WT and deamidated 4E-BP2 in the cell bodies [Figure 4.4 (B)], 

implying that each form displays a distinct intracellular distribution in neurons. 

Pearson correlation coefficient (r=0.1464, r=0.0777, r=0.2389) of the colocalized 

volume of red (deamidated) over green (WT) channel confirms the different 

subcellular expression of each 4E-BP2 form [Figure 4.4 (B)]. Therefore, deamidation 

of 4E-BP2 does not change the spatial expression pattern of the protein, albeit it 

colocalizes in low levels with WT protein in neuronal cell bodies. 

 

  

Figure 4.4 Deamidated 4E-BP2 colocalize in low levels with WT protein in cell bodies of 
neurons. 
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A. Soma from dissociated DIV16 cortical mouse neurons transfected with either WT (FLAG-
tag) or 2D (HA-tag) 4E-BP2 and probed first with antisera against FLAG- or HA- tags, followed 
by secondary antibodies (conjugated to: WT-green- Alexa Fluor 488; 2D-red- DyLight 680). 

Scale bars (3 m) are the same for all cell bodies in this figure. B. Imaris generated 2D 
histograms showing quantification of fluorescent intensity measured images from C (soma) 
and D (dendrites), displaying Pearson correlation coefficient of the colocalized volume of the 
red (2D) over green (WT) channel.  

 

 We discovered that deamidated 4E-BP2 colocalize in low levels with WT 

protein in the soma of cortical neurons. The first observation of different distribution 

of the two 4E-BP2 forms emerges from the first microscopy images (Figure 4.3) where 

we could distinguish red (deamidated) from green (WT) puncta in some distal 

dendrites. To test whether the low colocalization of fluorescent signals of 2D and WT 

4E-BP2 characterizes also dendrites, we transfected the aforementioned plasmids, 

expressing both FLAG – 4E-BP2 WT (green) and HA – 4E-BP2 N99D/N102D (double 

deamidated, red), but we focused in individual dendrites as scan areas instead of the 

cell body of neurons. Figure 4.5 displays dissociated cortical neurons transfected, 

expressing both FLAG – 4E-BP2 WT (green) and HA – 4E-BP2 N99D/N102D (double 

deamidated, red). Colocalization puncta are depicted in yellow [Figure 4.5 (A)]. 

Histograms of colocalization are also presented on the right panel [Figure 4.5 (B)]. 

 The images indicate dendrites from DIV16 transfected cortical neurons [Figure 

4.5 (A)]. Apparently, we could recapitulate the different subcellular distribution of 

deamidated and WT 4E-BP2 in dendrites [Figure 4.5 (A), (B)]. Similarly, to cell bodies, 

there is very low colocalization of WT and deamidated 4E-BP2 in the dendrites, 

denoting that deamidated 4E-BP2 follows a different localization pattern from WT 

protein in neurons [Figure 4.5 (A), (B)]. Pearson correlation coefficient (r=0.4019, 

r=0.3232, r=0.0388) of the colocalized volume of red (deamidated) over green (WT) 

channel confirms the different subcellular expression of each 4E-BP2 form [Figure 4.5 

(B)]. Taken together, these data suggest that deamidation of 4E-BP2 does not change 

the spatial expression of 4E-BP2, but it does not colocalize in high levels with WT 

protein in the cell bodies and dendrites of neurons. Thus, deamidated 4E-BP2 may 

have a distinct role in synapses compared to WT protein. 
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Figure 4.5 Deamidated 4E-BP2 does not colocalize in high levels with WT protein in dendrites. 

 
Dendrites from dissociated DIV16 cortical mouse neurons transfected with either WT (FLAG-
tag) or 2D (HA-tag) 4E-BP2 and probed first with antisera against FLAG- or HA- tags, followed 
by secondary antibodies (conjugated to: WT-green- Alexa Fluor 488; 2D-red- DyLight 680). 
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Scale bars (3 m) are all the same for the dendrites shown in this figure. B. Imaris generated 
2D histograms showing quantification of fluorescent intensity measured images from C (soma) 
and D (dendrites), displaying Pearson correlation coefficient of the colocalized volume of the 
red (2D) over green (WT) channel. 
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4.4 Discussion 

Subcellular protein localization is firmly linked to protein function, especially in 

neurons where spatial and temporal compartmentalization of gene expression can 

confer invaluable information about protein function. Elucidation of protein intracellular 

localization can define their physiological role, depending on the compartments that 

they are localized to.  

Given the important role of 4E-BP2 as a repressor of cap-dependent 

translation, we examined the intracellular distribution of 4E-BP2 in neurons. We 

discovered that endogenous 4E-BP2 localizes in the soma and dendrites of cortical 

neurons. To investigate separately the localization of WT and deamidated 4E-BP2, 

we constructed plasmids that encode 4E-BP2 with HA or FLAG tag or fused to a 

fluorescent protein. We discovered that the two 4E-BP2 forms (WT, double 

deamidated) exhibit similar distribution in neurons, albeit they do not colocalize in high 

levels in the soma or dendrites. Dendritic expression of both 4E-BP2 proteins 

indicates that they probably play a role in the regulation of local protein synthesis in 

synapses, apart from translation in the cell body of neurons. Low number of 

colocalized puncta between WT and deamidated 4E-BP2 support the hypothesis that 

both 4E-BP2 proteins might regulate different types of synapses (excitatory, 

inhibitory). Furthermore, low levels of expression of fluorescent 4E-BP2 proteins with 

4E-BP2 fused at the N-terminal compared to other fluorescent proteins where 4E-BP2 

is at the C-terminal, indicates that possibly interaction with Raptor, through TOS motif 

at the C-terminal of 4E-BP2, can affect expression and intracellular distribution of 4E-

BP2. One explanation is that Raptor might drive 4E-BP2 to specific subcellular 

compartments. Therefore, colocalization analysis of WT and deamidated 4E-BP2 with 

Raptor would shed new light on the subcellular localization of 4E-BP2 and would 

determine whether this phenotype is Raptor–dependent or not.
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5. Investigating the Subset of mRNAs that are 

regulated by 4E-BP2 

5.1 Introduction 

 4E-BP2 is an inhibitor of protein synthesis and undergoes asparagine 

deamidation in the mammalian brain during postnatal development (Bidinosti et al., 

2010b). We determined that deamidated 4E-BP2 is neuron-specific (Figure 3.18) and 

is regulated by a different mechanism than WT (Figure 3.21). Specifically, deamidated 

4E-BP2 gets degraded by the proteasome and is unstable in isolated mouse 

synaptoneurosomes (Figure 3.26), as compared to WT protein. The stability of 

deamidated 4E-BP2 is regulated by mTORC1 and not MAPK signalling (Figure 3.28). 

Moreover, deamidated 4E-BP2 exhibits attenuated translational repression compared 

to WT, displaying decreased affinity for eIF4E, increased interaction with Raptor 

(Bidinosti et al., 2010b) and colocalize in low levels with WT protein in neurons (Figure 

4.4, Figure 4.5). Therefore, we aim to discover what is the function of deamidated 4E-

BP2 in the mammalian brain and whether it differs from WT 4E-BP2.  

 Translation is regulated through different signalling pathways. Key molecules 

of these pathways are main regulators of protein synthesis by stimulating or 

repressing translation of specific mRNAs (Kelleher and Bear, 2008). Therefore, 

depending on the state and the conditions that every cell is in (energy level, amino 

acid availability), protein synthesis is not always on or off at a global level, but certain 

mRNAs are preferentially regulated (Gilbert and Heng-Ye, 2014). eIF4E preferentially 

stimulates translation of mRNAs, harbouring extensive secondary structure at the 5' 

UTR or other elements on their sequence (Hay and Sonenberg, 2004; Koromilas et 

al., 1992). Interestingly, in mice knockout for 4E-BP2 and eIF4E-overexpressing mice, 

translation of mRNAs, encoding for synaptic adhesion molecules such as neuroligins, 

increases (Gkogkas et al., 2013). This preferential translation might be regulated 

through the 5' UTR of neuroligin mRNAs which possess a repeated structural element 
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(Gkogkas et al., 2013). These mice display autistic-like behaviours (social interaction 

deficits, altered communication and repetitive/stereotyped behaviours) and 

knockdown of Nlgn1 (Neuroligin1) improves social approach behaviour to wild-type 

levels, implying that selective translation of Neuroligin 1 is directly linked to the 

pathophysiology of ASD (Gkogkas et al., 2013).  

Since 4E-BP2 is a major inhibitor of translation, we sought to identify which 

mRNAs are regulated by each 4E-BP2 form, and thus understand the role of 

deamidated 4E-BP2 in protein synthesis in the mammalian brain. To answer this 

question, we performed Ribosome Profiling in mouse cortical neuronal cultures that 

were infected with AAVs (Adeno-Associated Viruses) overexpressing either WT or 

deamidated 4E-BP2. 

5.1.1 Methods of gene expression: RNA sequencing, Polysome 

Profiling, TRAP (Translating Ribosome Affinity Purification), 

Ribosome Profiling 

Translation is the final step of gene expression, determining the proteomic 

content of each cell every moment along with protein degradation (Harper and 

Bennett, 2016). Methods such as RNA sequencing measure mRNA abundance 

without providing information about the rate of protein synthesis, thus focusing on 

studying the transcriptome and not the translatome (Ingolia et al., 2012). Recently, 

specific approaches have been developed to study the translatome and thus, 

understand the translational regulation events (King and Gerber, 2016). These 

approaches include all mRNAs undergoing translation: Polysome profiling, Ribosome 

Profiling and Ribosome-Affinity techniques (King and Gerber, 2016). Polysome 

Profiling separates mRNAs depending on the number of the bound ribosomes using 

a sucrose gradient. Ribosome Profiling identifies mRNAs that undergo translation by 

sequencing ribosome protected mRNA fragments named footprints (RPFs). Lastly, 

ribosome-affinity purification involves the isolation of affinity-tagged ribosomes, 

enabling cell-specific analysis of translatome (King and Gerber, 2016). The main 

advantages of Ribosome profiling over the other two methods are that it does not 

require specialised equipment as with Polysome Profiling or genetic manipulation, as 

with Ribosome affinity purification (King and Gerber, 2016), and it also provides 

information regarding the position of the ribosomes on the transcripts and exact 

measurement of ribosome densities (Ingolia et al., 2012).  
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5.1.2 Ribosome Profiling 

Ribosome Profiling measures gene expression at the actual level of translation 

(Ingolia et al., 2012) and provides a quantitative measurement of the specific reading 

frames translated. The level of translation on these reading frames can be inferred 

from the density of footprints (Blair et al., 2017). Therefore, reading of ribosome 

density per mRNA corresponds to the level/rate of synthesis of specific protein (King 

and Gerber, 2016), indicating that ribosome profiling directly monitors translation and 

not transcriptional network (Ingolia et al., 2009). In more detail, each ribosome 

footprint corresponds to a translating ribosome and the number of footprints indicates 

the number of active ribosomes, synthesizing the encoded protein (Ingolia et al., 

2012). The amount of protein produced is proportional to this number of active 

ribosomes. Since the speed of protein synthesis does not change among different 

genes, the density of ribosome footprints determines the rate of protein synthesis for 

this transcript (Ingolia et al., 2012). The identification of specific points where 

ribosomes are stalled can also be identified by the unusual increased number of 

footprints on this site (Ingolia et al., 2012). After proper consideration of confounding 

factors (for example, more abundant mRNAs will tend to produce more footprints), 

these measurements can be compared between different mRNAs, and for a given 

mRNA across different physiological conditions (McGlincy and Ingolia, 2017). To 

conclude, Ribosome footprint density encompasses mRNA abundance and 

translation because higher mRNA abundance or increased translation will yield more 

ribosome footprints (Blair et al., 2017). 

Apart from quantitatively measuring translation, Ribosome profiling also 

provides positional information of the bound ribosomes, therefore shedding light on 

the mechanisms of translational regulation that are invisible to normal mRNA 

measurements (Blair et al., 2017). Positional information of ribosomes revealed 

unexpected ribosome occupancy in many parts of the transcriptome, reflecting 

substantial levels of non-AUG initiation, translation of cytosolic RNAs (Blair et al., 

2017) and transcripts that contain short open ORFs, corresponding to extended or 

truncated forms of proteins. These different translated isoforms may stem from 

different mRNA isoforms and different initiation sites on the same mRNA transcript 

(Ingolia et al., 2012). By examining the frequency distribution of ribosome footprints 

along a given mRNA(s), we can understand the nature of ribosomal movement and 

the effect of mRNA sequence on this movement (McGlincy and Ingolia, 2017). 
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Moreover, variations in the density of ribosomes within a reading frame reflect 

differences in the speed of ribosomes, providing insights into the mechanisms of 

translation as well (Blair et al., 2017).  

 

5.1.3 Brief description of Ribosome profiling method  

A translating ribosome protects a 30nt mRNA fragment from nuclease 

digestion. This protected fragment, called ribosome footprint (RPF), and its sequence 

will define the synthesized protein. Ribosome profiling confers a quantitative gene 

expression measurement, relying on deep sequencing of these RPFs, indicating 

ribosome positions (Ingolia et al., 2012). Figure 5.1 designates the basic steps of the 

method. Briefly, cells are briefly treated with CHX to capture the translational status 

of unperturbed cells (Blair et al., 2017). Then cells are lysed and harvested under 

appropriate conditions to maintain the ribosomes on mRNAs in vivo. Lysates are 

treated by nuclease digestion (nuclease footprinting) with RNase I, and ribosomes are 

recovered and pelleted by ultacentrifigation. To isolate ribosome footprints, RNA from 

the ribosomal pellet is resolved by electrophoresis through a denaturing gel, and then 

fragments of the expected size range are extracted from the gel (Ingolia et al., 2012; 

McGlincy and Ingolia, 2017). To analyze ribosome positions by high-throughput 

sequencing, the ribosome-protected mRNA fragments must be converted into DNA 

libraries, flanked with constant priming sites required by these sequencing 

technologies (Ingolia et al., 2012). Therefore, ribosome footprints are purified and 

ligated to a single stranded-linker that acts as a priming site for reverse transcription. 

Products from reverse transcription are circularized, providing a second priming site 

flanking the captured footprint sequence, which is used for PCR amplification of a 

deep sequencing library (Ingolia et al., 2012). A double-stranded DNA library of 

suitable structure and concentration for Illumina sequencing is then constructed from 

the single-stranded cDNA circles by means of a PCR reaction (McGlincy and Ingolia, 

2017). Total mRNA extraction and sequencing is performed in parallel, to normalize 

RPFs to mRNA abundance (King and Gerber, 2016). 
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Translational Efficiency (TE) = RPKM footprints/RPKM total mRNA 

Figure 5.1 Overview of Ribosome Profiling 

 
Polysomes are extracted from cells and the prepared lysate is processed for RNase I 
digestion, leaving RPFs intact. These fragments are purified and size selected before cDNA 
library generation for next generation sequencing (left panel). The prepared lysate is also 
processed for RNA Sequencing by random fragmentation and library generation (total RNA 
sample), (right panel). After bioinformatic processing of the sequencing results, normalised 
count values for sequencing reads aligning to each gene (RPKM, Reads Per Kilobase of 
transcript per Million) are obtained. RPKM values for the total RNA sample can be used to 
assess transcriptional changes. Translational efficiency (TE) values, corresponding to the 
translational state of a gene, are calculated dividing RPKM values of RPFs by RPKM values 
of total RNA for each gene [Figure adapted from (Brar and Weissman, 2015)].  
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5.2 Experimental aim 

4E-BP2 is a major regulator of cap-dependent translation. Deamidated 4E-

BP2 is less stable than WT and its stability is regulated differently from the WT protein. 

To understand the role of deamidated 4E-BP2 in translation, it is vital to identify the 

mRNAs that are regulated by each 4E-BP2 form. We hypothesize that deamidated 

4E-BP2 regulates a distinct pool of mRNAs that does not overlap with the mRNAs 

that are regulated by the WT protein, conferring a novel mechanism of translational 

regulation in the postnatal brain. Therefore, we will be able to link WT and deamidated 

4E-BP2 with specific neuronal processes, depending on the mRNAs that each 4E-

BP2 form preferentially regulates.  

5.3 Results 

5.3.1 Identification of mRNAs-targets of WT- or 2D-overexpressing 

neurons using Ribosome profiling 

Deamidation of 4E-BP2 is a neuron-specific posttranslational modification that 

could constitute a novel regulatory mechanism of translation, targeting a distinct pool 

of mRNAs, required for specific neuronal functions of early postnatal development. 

To test this hypothesis, we performed an experiment that would enable us to map the 

neuronal translatome under conditions of overexpression of deamidated or WT 4E-

BP2, thus mimicking conditions where deamidated 4E-BP2 is more active due to 

accumulation such as mTORC1 (Figure 3.21, Figure 3.22) or AMPAR inhibition 

(Figure 3.24). Therefore, we carried out unbiased translational profiling using 

ribosome footprinting coupled with RNA sequencing (Ingolia et al., 2012). Mouse 

cortical neuronal cultures were infected with AAV9 expressing FLAG-tagged WT or 

2D 4E-BP2 driven by the neuron-specific human Synapsin (hSyn) promoter on DIV10 

and were collected and lysed on DIV25 under conditions to maintain the ribosomes 

bound on mRNAs in vivo.   

Figure 5.2 (A) indicates a simple graph, depicting the infection and collection 

days in mouse cortical cultures (top). The same figure [Figure 5.2 (A)] presents a 

representative blot of AAV-infected neuronal lysates at DIV25 that were probed for 

anti-FLAG and 4E-BP2 to confirm overexpression of each 4E-BP2 form. Indeed, 
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immunoblotting reveals robust expression of WT or 2D 4E-BP2 after infecting the 

cultures with AAV9-FLAG WT or 2D 4E-BP2, respectively [Figure 5.2 (A)]. The 

cultures were infected appropriately to give a similar expression of each 4E-BP2 form 

(FLAG expression) [Figure 5.2 (A)]. Figure 5.2 (B) illustrates the basic principle and 

steps of Ribosome Profiling. Using a hypotonic lysis buffer, we extracted polysomes 

and subsequently ribosome protected footprints by RNAse I nuclease digestion 

[Figure 5.2 (B)]. In parallel, we isolated total RNA from neuronal culture lysates [Figure 

5.2 (B)]. From both ribosome protected footprints (a proxy for translation) and total 

mRNA (a proxy for transcription) we prepared libraries for RNA sequencing [Figure 

5.2 (B)].   
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Figure 5.2 Overexpression of FLAG-tagged 4E-BP2 (WT or 2D) using AAV9 in mouse cortical 
neurons.  

A. Representative immunoblots from DIV25 mouse cortical neuron lysates, infected at DIV10. 
GAPDH is a loading control and appeared at 37 kDa. 4E-BP2 appeared as three bands 
(bottom band: 15 kDa, middle band: 16 kDa and top band: 17 kDa). B. Diagrammatic depiction 
of the ribosome profiling experiment. 
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5.3.2 Novaseq produced high quality reads for footprint and mRNA 

libraries 

To test the quality of footprint and mRNA libraries, the Bioinformatics pipeline 

workflow produces specific graphs, characterizing the quality of the data. These 

graphs are the following:  

➢ Reproducibility Plots are pairwise plots between biological replicates, 

proving the reproducibility between replicates. The squared Pearson product-

moment correlation coefficient r2 is calculated as a coefficient of determination. 

These plots are generated from log2-transformed RPKM and TE values 

(Figure 5.3). 

➢ Per-sample size distribution Plots indicate the length (in nucleotides) of 

100,000 randomly sub-sampled RPF and total mRNA, respectively, for each 

sample in the same plot, to compare (Figure 5.4). 

➢ Cumulative reading frame usage plots show the relative abundance of 

respective reading frames within a sample. The reading frames are calculated 

as follows: 

ops mod 3 

 

ops stands for the offset 5’ end position of a read, relative to the start codon 

(as determined for the cumulative footprint 5’ end positions relative to all start 

and stop codons plots). mod 3 is the modulo, also called the remainder, after 

Euclidean division by 3. 5’ end positions are added up for each reading frame 

and converted to relative abundances. (Figure 5.5) 

➢ Cumulative footprint 5’ end positions relative to all start and stop codons 

plots are generated by mapping 5’ end positions to positions in a window of 

±30 nt around starting nucleotide of any start and stop codon, respectively. 

These mapped positions are then transformed into offset positions (relative to 

the start codon of the respective gene). These offset positions are combined 

for all genes and RPF positions are displayed as peaks, while total mRNA 

positions are visualised as a line in the background (Figure 5.6). 

 

Novaseq produced high quality reads for footprint and mRNA libraries, as 

evidenced first by the r2 of Reads Per Kilobase of transcript per Million mapped reads 

(RPKM) between biological replicates, which is >0.9 for both footprints and total 
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mRNA (Figure 5.3), second by the canonical distribution of footprint size (28-32nt) 

(Figure 5.4), third by the read distribution within the 3 frames (Figure 5.5) and fourth 

by the canonical periodicity of ribosomal footprints across mRNA coding and non-

coding regions (Figure 5.6). The clear trinucleotide periodicity with peaks at the first 

nucleotide position stems from the ribosome movement along the mRNA in a stepwise 

fashion one codon at a time, beginning at the start codon (Ingolia, 2014; Ingolia et al., 

2012; Michel and Baranov, 2013). This periodicity also allows assignment of the 

translation reading frame, distinguishing footprints arising from translating ribosomes 

from RNA fragments that are protected for any other reason (Jackson and Standart, 

2015). 
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Figure 5.3 Reproducibility plot between biological replicates 
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Figure 5.4 Per-sample size distribution Plots for each sample and each biological replicate. 
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Figure 5.5 Cumulative reading frame usage plot in each sample and biological replicate. 
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Figure 5.6 Cumulative footprint 5’ end positions relative to all start and stop codons plots for 

each sample. 
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5.3.3 Overexpression of deamidated 4E-BP2 affects the neuronal 

translatome but not the transcriptome 

To test whether overexpression of deamidated 4E-BP2 causes any changes to 

the transcriptome, we plotted Reads Per Kilobase of transcript per Million mapped 

reads (RPKM) of total mRNA of 2D 4E-BP2-overexpressed neurons and RPKM of 

total mRNA of WT 4E-BP2-overexpressed neurons [Figure 5.7 (A)]. Similarly, to check 

whether overexpression of deamidated 4E-BP2 alters neuronal translatome, we 

plotted translational efficiency [(TE): calculated by dividing RPKM values of RPF 

libraries by RPKM values of total RNA libraries] of 2D 4E-BP2-overexpressed neurons 

and TE of WT 4E-BP2-overexpressed neurons [Figure 5.7 (B)]. 

RPKM measurements of mRNA libraries demonstrate that there is no significant 

change in mRNA abundance between WT and 2D as evidenced by R2=0.972 [Figure 

5.7 (A)], suggesting that there are no differences in transcriptional responses following 

overexpression of either 4E-BP2 form. Conversely, RPKM reads of footprints 

normalised to mRNA abundance (translational efficiency; TE) show a pervasive 

change in the translational landscapes of WT versus 2D 4E-BP2 (R2=0.681) [Figure 

5.7 (B)]. Analysis of log2 of TE between 2D/WT replicates (0.667>ratio>1.5; p < 0.05) 

indicated that 212 genes are upregulated (repressed by WT overexpression), while 

238 genes are downregulated (repressed by 2D overexpression), revealing two highly 

dissimilar translatomes (Differentially Translated Genes; DTGs) for WT and 2D [ 

Figure 5.7(B)]. 
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Figure 5.7 Scatter plots and correlations of RPKM measurements of transcriptional response 
and translational efficiency from DIV25 overexpressing WT or 2D 4E-BP2 neurons. 

A. Scatter plot and correlation of RPKM measured from WT or 2D total mRNA from DIV25 
neurons, as a proxy for transcription, from DIV25 overexpressing neurons. B. Scatter plot and 
correlation of translational efficiency (footprint RPKM normalised to mRNA RPKM) between 
WT and 2D overexpressing DIV25 neurons (log2RPKM of 2D versus WT). Differentially 
translated Genes (DTGs), repressed by WT (orange) or 2D (blue) are shown for 
0.667>ratio>1.5. 
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5.3.4 WT-sensitive mRNAs contain long 5' UTR, enriched in eIF4E/ 

mTOR-dependent regulatory sequence motifs 

Since we discovered that overexpression of deamidated 4E-BP2 causes 

pervasive changes to the translatome, we proceeded to characterize the mRNAs 

which are regulated by either WT or 2D 4E-BP2. Cis-acting elements of mRNAs 

located either in the 5' or 3' UTR regulate the fate of newly synthesized mRNAs 

regarding their nucleo-cytoplasmic transport, stability, translational efficiency and 

subcellular localization (Grillo et al., 2010). Functional sequence elements and 

miRNAs found in UTRs can interact directly with key molecules of translational 

machinery or through RNA binding factors, modulating the expression of this gene 

(Grillo et al., 2010). These features can render the mRNAs sensitive to a certain 

regulatory mechanism of translation. Thus, elucidating these elements, we might 

understand the common elements that these mRNAs share and are regulated either 

by WT or 2D 4E-BP2. To characterise the mRNAs, we obtained 5΄ UTR sequences 

for both lists of targets (WT or 2D) and carried out length, GC content and motif 

analysis using UTRdb (Grillo et al., 2010).  

Figure 5.8 (A) illustrates the length and % GC content of 2D- and WT-sensitive 

mRNA 5΄ UTRs. 2D-sensitive mRNA 5΄ UTRs are shorter (p < 0.001) than WT-

sensitive mRNA 5΄ UTRs [Figure 5.8 (A)]. However, there is no significant change 

with respect to the % GC content between WT- and 2D-sensitive mRNA 5΄ UTRs 

[Figure 5.8 (A)]. Figure 5.8 (B) indicates other features that are different between the 

two lists of mRNAs. Specifically, 2D-sensitive mRNAs 5΄ UTRs harbour significantly 

fewer Terminal Oligopyrimidine Tract (TOP) (p < 0.001) and upstream Open Reading 

Frame (uORF) elements (p < 0.001) [Figure 5.8 (B)], as compared to WT-sensitive 

mRNA 5΄UTRs. To conclude, mRNAs which are identified as targets of deamidated 

4E-BP2, but not WT, have shorter 5΄UTRs with markedly fewer TOPs and uORFs 

compared to mRNAs-targets of WT 4E-BP2.  
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Figure 5.8 5 UTR analysis of DTGs versus mouse 5 UTR collection:  

A. length (nt), %GC content and B. UTRdb motifs.  

Data are shown as mean ±S.E.M. For length and %GC: One-way ANOVA; Bonferroni’s post-
hoc; ***p < 0.001. For motifs: Student’s t-test; #p < 0.001.  
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5.3.5 Gene ontology analysis using DAVID identified distinct 

categories regulated by WT and 2D 4E-BP2  

Gene ontology analysis was performed to identify enriched biological themes, 

depending on the genes we identified in each of the two groups, mRNAs that are 

regulated by WT, and mRNAs that are regulated by deamidated 4E-BP2. Figure 5.9 

shows the number of genes in each category whereas the order of categories is by 

decreasing p-value.  Multiple GO categories linked to transcription [p < 0.05; 

Biological Pathways (BP), Molecular Function (MF) and Cellular Compartment (CC)], 

are identified by DAVID analysis of the 212 WT-repressed genes (Figure 5.9), 

suggesting that overexpression of WT 4E-BP2 could elicit homeostatic modulation of 

transcription (left panel). In contrast, 2D-repressed genes display a DAVID GO profile 

(p < 0.05) which is distinct from WT including categories such as: MF: poly (A) RNΑ 

binding, NF-B binding; BP: cerebral cortex development, NF-B activity, glutathione 

metabolic process and oxidoreductase activity, CC: mitochondrion (Figure 5.9) (right 

panel). Targets (genes) that were identified to be repressed either by WT (yellow list) 

or 2D (blue list) and the actual p values are mentioned on the last page of the 

Appendix.  
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Figure 5.9  DAVID analysis of DTGs (WT left, orange; 2D right; blue) for Gene Ontology (GO) 

categories: Molecular Function, Biological Process and Cellular Compartment.  

The number of genes in each category is shown and the order of categories is by increasing 
p-value (decreasing significance), All p-values shown here are < 0.05. The actual p-values are 
mentioned on the last page of the Appendix. 
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5.3.6 Ingenuity Pathway analysis identified NF-B as the central 

node of top network predicted to be regulated by WT and 2D 4E-

BP2   

Moreover, we carried out Ingenuity Pathway Analysis of DTGs using the 

Molecular Activity Predictor (MAP) tool and we identified networks predicted to be 

regulated by WT and 2D 4E-BP2 (Figure 5.10). The top network is: Developmental 

Disorder, Hereditary Disorder and Neurological Disease (comprising 21 2D-sensitive, 

and 12 WT-sensitive genes) (Figure 5.10) with the central node being NF-B (Figure 

5.11). This predicted network suggests that the balance of WT-2D 4E-BP2 is 

important for regulating NF-B activity (Figure 5.11). In summary, deamidated 4E-

BP2 represses translation of a subset of mRNAs, which is distinct from WT 4E-BP2-

regulated mRNAs, and seem to play a pivotal role in the regulation of NF-B activity. 

Figure 5.10 Ingenuity Pathway Analysis of ribosome profiling DTGs with the Molecular Activity 
Predictor (MAP) analysis tool.  

The top 5 scoring networks are shown. 
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Figure 5.11 Detailed node graph of the top scoring network: Developmental Disorder, 

Hereditary Disorder, Neurological Disease, where NF-B is the central node.  

Direct and indirect relationships between nodes are shown for DTGs repressed by WT (red) 
or 2D (green) within the predicted network. 
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5.4 Discussion 

4E-BP2 is a repressor of cap-dependent translation. During postnatal 

development, deamidation of 4E-BP2 arises and is concomitant with reduced mTOR 

activity. To mimic conditions of accumulation of deamidated 4E-BP2, we 

overexpressed each 4E-BP2 form (WT, deamidated) after infecting mouse cortical 

neurons with AAVs expressing 4E-BP2 under a neuron-specific hSyn promoter. 

Interestingly, we identified specific mRNAs that are regulated after overexpression of 

WT and deamidated 4E-BP2 and comparably the two translatomes indicate very low 

correlation. Thereby, we discovered that the identified neuronal translatomes after 

overexpression of WT and deamidated 4E-BP2 are dissimilar whereas transcriptomes 

do not exhibit any robust differences. Our finding highlights the importance of using 

approaches such as Ribosome profiling to study differentially the transcriptome and 

translatome and agrees with other studies that have distinguished transcriptome and 

translatome responses upon stress exposure of yeast cells. Severe stress had 

profound effects on both transcriptome and translatome whereas mild stress 

preferentially affected translatome (Halbeisen et al., 2009).  

Cis-acting elements of mRNAs located either in the 5' or 3' UTR control the 

biological destiny of newly synthesized mRNAs by interacting with other translational 

or RNA binding factors and affecting the expression level, nucleo-cytoplasmic 

transport, stability, translational efficiency and subcellular localization of the mRNA 

(Grillo et al., 2010). Consequently, it was important to characterise these features on 

both distinct pools of mRNAs that we identified.  

Interestingly, mRNAs regulated by deamidated 4E-BP2 harboured shorter 5' 

UTRs with significantly less TOPs and uORFs than mRNAs regulated by WT 4E-BP2. 

Our finding that WT DTGs are enriched in 5΄ UTR features agrees with previous 

studies, characterising mTOR and eIF4E-sensitive mRNAs (Hsieh et al., 2012; 

Mamane et al., 2007; Thoreen et al., 2012; Truitt et al., 2015) and could result from 

the reduced binding of 2D to eIF4E (Bidinosti et al., 2010b), and/or from the increased 

sensitivity of 2D to mTOR inhibition. Differences regarding length of 5′ UTRs, number 

of TOP and uORFs in mRNA 5′ UTRs, indicate two different mechanisms of 

translation regulation of the WT – and 2D- regulated mRNAs. Long 5′ UTRs have 

been associated with low levels of translation across different cell types, indicating 

that length of 5′ UTRs affects translational efficiency (Blair et al., 2017). Regarding 

number of uORFs, ribosomes can initiate translation at uORFs, which affects 
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translation of the major open reading frame positively or negatively (Blair et al., 2017), 

underlining the important role of uORFs in protein synthesis. The importance of 

translation regulation through these cis-acting elements is also highlighted in 

identified changes of gene expression during neuronal differentiation. Ribosome 

occupancy in 5' UTR differs between human Embryonic Stem Cells (hESCs) and 

Neural Precursor Cells (NPCs), with specific genes having increased 5' UTR 

ribosomes during differentiation but decreased occupancy in the main ORF (Blair et 

al., 2017). Therefore, 5' UTR Ribosome occupancy downregulates protein synthesis 

in these genes. Long 5' UTRs have also been associated with low levels of protein 

synthesis in hESCs and NPCs whereas ORF length has been correlated with high 

ribosome occupancy in hESCs and NPCs (Blair et al., 2017). 

Using UTRscan of DTGs, we highlighted novel aspects of a wider brain-

specific mechanism involving 4E-BP2 deamidation. GO functional analysis displays a 

very small overlap between WT-2D translatomes, revealing that WT overexpression 

predominantly elicits widespread translational changes in genes involved in 

transcription, which could constitute a homeostatic response. Conversely, 2D-

regulated genes are involved in cerebral cortex development and NF-κB activity. 

Moreover, 2D DTGs show a high correlation with mitochondria as a cellular 

compartment whereas WT DTGs are correlated with nucleoplasm. 4E-BPs are 

involved in regulation of cell survival responses through mitochondrial activity 

because MTFP1  (Mitochondrial Fission Process 1) is identified as target of 

mTORC1/4E-BP2 pathway (Morita et al., 2017). Upon inhibition of mTORC1, 

translation of MTFP1 decreases, altering phosphorylation and localization of DRP1 

(GTPase Dynamin-Related Protein 1) and causing mitochondrial hyperfusion (Morita 

et al., 2017). 

To conclude, we discovered that 2D overexpression engenders a widespread 

alteration of the neuronal translatome, thus demonstrating that 4E-BP2 deamidation 

is highly regulated by major neuronal signalling pathways and receptor activity, and 

that it plays a key functional role in translation. The lower stability of 2D, together with 

the non-overlapping puncta of WT and 2D detected in dendrites, support this 

hypothesis that the two forms of 4E-BP2 may regulate the function of different types 

of synapses, by selective translational de-repression of different mRNAs.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mitochondrial-fission
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gtpase
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6. Elucidating the Structure of 4E-BP2 

6.1 Introduction 

 4E-BPs are repressors of initiation of protein synthesis by impeding the 

formation of eIF4F complex which consists of initiation factors eIF4E, eIF4G and 

eIF4A. Specifically, 4E-BPs and eIF4G share a YXXXXLΦ eIF4E-binding motif 

(canonical) and an overlapping binding surface on eIF4E, thus competing for binding 

to eIF4E. Binding of 4E-BPs to eIF4E sterically inhibits binding of eIF4G, thus blocking 

the assembly of eIF4F complex (Mader et al., 1995; Marcotrigiano et al., 1999).  

 4E-BPs are intrinsically disordered proteins (IDPs), lacking stable secondary 

and tertiary structure. The N terminal region of eIF4E is also disordered compared to 

other regions of the protein and is named as intrinsically disordered region (IDR). 

IDPs/IDRs display a pivotal role in mediating protein – protein interactions by using 

dynamic instead of well-defined structures, especially IDRs that undergo 

posttranslational modifications such as phosphorylation (Dyson and Wright, 2005; Xie 

et al., 2007). Depending on the interaction with other proteins, IDPs/IDRs undergo a 

transition from a disordered to an ordered state, albeit some IDPs remain still 

disordered up to a certain degree even upon binding to other proteins (Fuxreiter and 

Tompa, 2012; Mittag et al., 2010). To elucidate the role of these proteins like 4E-BP2, 

either unmodified or upon posttranslational modifications such as deamidation, it is 

important to define their different structural states, hence understanding the 

significance of every region in mediating protein–protein interactions.   

 Studies of structure of IDPs/IDRs are quite challenging because most 

structural methods such as X-ray crystallography are inappropriate for these proteins. 

Recent advances in NMR spectroscopy and newly developed methods such as small 

– angle X-ray scattering (SAXS) allow the detailed analysis of structure of IDPs 

(Lukhele et al., 2013). Regarding the structure of 4E-BP2, NMR spectroscopy 

indicates that human 4E-BP2 owns a transient secondary structure with a helical 

propensity within the canonical binding site to eIF4E (Lukhele et al., 2013). In 
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agreement with this finding, SAXS on 4E-BP from Strongylocentrotus purpuratus 

suggests that the protein possesses a quite steady central region with a high helical 

propensity (Gosselin et al., 2011).  

Recent studies of 4E-BP2 – eIF4E complex have identified that 4E-BP2 forms 

a bipartite interaction with eIF4E since a second motif, 78IPGVT82, on the 4E-BP2 

sequence, apart from the canonical site, is very important and affects dynamics of the 

complex (Lukhele et al., 2013). Moreover, the C terminus of eIF4E is also crucial for 

stable 4E-BP2 binding to eIF4E (Mizuno et al., 2008). The rest of 4E-BP2 remains in 

a disordered state upon binding to eIF4E (Fuxreiter and Tompa, 2012). Similarly, 

apart from the N terminus, the rest of eIF4E does not fold upon interaction with 4E-

BP2, implying that both proteins remain highly dynamic after formation of the complex 

(Lukhele et al., 2013). This dynamic structure facilitates the exposure of different sites 

of both proteins, allowing them to undergo posttranslational modifications by kinases 

and other partners (Dennis et al., 2011; Gingras et al., 1999b). Figure 6.1 illustrates 

a crystal structure of 4E-BP2 – eIF4E complex. 

Structural studies have also identified differences on the binding surfaces of 

4E-BP2 and eIF4G to eIF4E. Although 4E-BP2 and eIF4G share the canonical motif 

for binding to eIF4E, their binding surfaces differ significantly with 4E-BP2 displaying 

a more extensive surface than eIF4G which interacts mostly with the N terminus of 

eIF4E as NMR spectroscopy illustrates (Lukhele et al., 2013). Therefore, interaction 

of 4E-BP2 with eIF4E is not based only on the central region that involves the 

canonical motif, but it also includes regions outside of this motif as it was proved by 

the first SAXS study of the complex eIF4E-4E-BP2 (Gosselin et al., 2011). Apart from 

understanding the significance of protein regions in forming complexes with other 

partners, defining the structure of these proteins will allow us to design new or improve 

existing inhibitors/antagonists that could be used as therapeutic targets and dampen 

specific biological responses. For instance, the more extensive binding surface of 4E-

BP2 to eIF4E, could explain why in the presence of 4EGi-1, a compound that has 

tumour suppressor activity, 4E-BP still binds to eIF4E compared to eIF4G that 

dissociates from eIF4E (Moerke et al., 2007).  
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Figure 6.1 Crystal Structure of eIF4E in Complex with a Pro47-Thr70 4E-BP2 Peptide and m7 

GTP cap. 

Pro47-Thr70 4E-BP2 peptide (red) and m7 GTP cap (stick model; Protein Data Bank [PDB] 
code 3AM7; (Fukuyo et al., 2011). b strands (β), a helices (α), loops (L), and residues critical 
in cap binding are labeled.  
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Phosphorylation state of 4E-BPs determines their association with eIF4E. 

Hypo- or minimally phosphorylated 4E-BPs bind to eIF4E and inhibit protein synthesis 

whereas hyperphosphorylated 4E-BPs dissociate from eIF4E, allowing the initiation 

of protein synthesis (Hara et al., 2002). Posttranslational modifications such as 

phosphorylation can stabilise or destabilise specific regions of IDPs (Pufall et al., 

2005; Tee and Proud, 2002; Theillet et al., 2012) or more rarely induce conformational 

changes to the whole structure of IDPs. Phosphorylation of 4E-BP2 at T37 and T46 

induces folding of residues P18-R62 into a four-stranded β–domain which sequesters 

the canonical motif into a buried β – strand, blocking its access to eIF4E (Bah et al., 

2015). Hypophosphorylated 4E-BP2 at T37 and T46 has decreased affinity for eIF4E 

and upon binding to eIF4E, 4E-BP2 is characterized by a more disordered state. On 

the contrary, fully phosphorylated 4E-BP2 is more stable, having a significant reduced 

affinity for eIF4E (Bah et al., 2015). Interestingly, stability of hypo- or hyper- 

phosphorylated 4E-BPs is dependent on whether the proteins are in a free or bound 

state. Free hyperphosphorylated 4E-BPs are very stable whereas upon binding to 

eIF4E, the complex is unstable (Yanagiya et al., 2012).  

 

 

Figure 6.2 shows the structure of phosphorylated 4E-BP2, indicating that 

phosphorylation induces folding of 4E-BP2, leading the protein to a more stable 

secondary structure (Bah et al., 2015). On the other hand, free hypophosphorylated 

or non – phosphorylated 4E-BPs are unstable and are targeted for degradation. 

Hypophosphorylated 4E-BP1 is ubiquitinated at K57 by the KLHL25 – CUL3 E3 ligase 

(Yanagiya et al., 2012). Regarding 4E-BP2, we showed that hypophosphorylated 4E-

BP2 is also very unstable (Figure 3.3). Furthermore, we also discovered that 

deamidated 4E-BP2 is unstable and gets degraded by CUL4B – DDBP1 E3 ligase 

complex (Figure 3.13).  
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Figure 6.2 Phosphorylation-induced structure of R18–R62 of 4E-BP2.  

 
Cartoon (left) and surface (right) representations of the solution NMR structure. 
Phosphorylated residues, pT37 and pT46 (red), the surface formed by residues of the 
hydrophobic cluster (right, cyan) and Y54 (cyan stick representation (left) or dark cyan surface 
(right)) are shown. The residues in the canonical eIF4E binding site (YXXXXLW) are shown in 
green (left), demonstrating the binding-incompatible extended structure (stick model; Protein 
Data Bank [PDB] code 2MX4); (Bah et al., 2015) 

 

Nonenzymatic deamidation of asparaginyl or glutaminyl residues in vitro and 

in vivo changes protein structure. Deamidation at neutral pH introduces a negative 

charge on the residue and often leads to β – isomerization. Therefore, these changes 

in structure modify the properties of the proteins chemically and/or biologically by 

affecting the interactions with other proteins and/or their biological function, 

respectively (Robinson, 2002). Deamidated αA-crystallin has reduced chaperone 

activity and different secondary and tertiary structure than WT αA-crystallin (Gupta 

and Srivastava, 2004). Moreover, deamidated RNase U2 that contains isoAp32 

unfolds the secondary structure of the protein, thus affecting its hydrolytic activity 

(Noguchi, 2010). However, whether deamidation can affect the disordered structure 

of 4E-BP2 remains unclear. 
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6.2 Experimental aim 

The main aim of this thesis is to characterize the role of deamidated 4E-BP2 

in the brain. Since posttranslational modifications display a pivotal role in determining 

the protein function and deamidation can change the properties of the protein, we 

asked whether deamidation of 4E-BP2 changes the protein structure. To answer this 

question, we expressed and purified recombinant 4E-BP2 WT and N99D/N102D and 

then, used SAXS, NMR and SRCD (Synchrotron Radiation Circular Dichroism) to be 

able to observe any differences between the secondary structures of both 4E-BP2 

forms.   

6.3 Results 

6.3.1 Protein production and purification 

Both 4E-BP2 WT and N99D/N102D (2D) were expressed and purified 

successfully. Expression of recombinant protein was induced with IPTG for 3 h at 28 

oC. Figure 6.3 depicts results from the pilot tests after inducing expression of 

recombinant protein for 0, 1, 2, 4, 6, 8 h, o/n and resolving the soluble and insoluble 

fractions of lysed cells on an SDS-PAGE gel. After 3-4 h of induction of expression at 

28 oC, we achieved the highest intensity of all protein bands corresponding to highest 

protein expression in the soluble fractions for 4E-BP2 N99D/N012D (bottom panel, 

Figure 6.3). For 4E-BP2 WT, high protein expression was achieved between 1 – 4 h, 

thus we decided to follow the same induction protocol of 3 h for both proteins (Figure 

6.3).  

Figure 6.4 (A) shows the efficiency of different steps during the expression 

and purification of recombinant 4E-BP2 WT. Lane 1 and 2 [Figure 6.4 (A)] correspond 

to samples of soluble and insoluble lysates respectively, after induction of expression 

for 3 h at 28 oC. These conditions allow for efficient induction of expression and 

solubility of proteins comparing the intensity of the bands between the soluble and 

insoluble fraction [Figure 6.4 (A)]. Lane 3  [Figure 6.4 (A)] shows the non-specific flow 

through fraction that did not bind the GST resin and lane 4  [Figure 6.4 (A)] indicates 

the efficient collection of tagless 4E-BP2 WT (~15kDa) after addition of 3C protease. 

Figure 6.3 (B) indicates samples on an SDS-PAGE gel from different fractions 
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collected after upconcentration of the eluted purified protein and before gel filtration 

(Lane 1), collected fractions during gel filtration [Lane 2 on top and bottom gel, fraction 

4 (for WT) or 5 (for 2D),], (fraction 9, Lane 3 on both gels), (fraction 15, Lane 4 on 

both gels), [Lane 5 on both gels, (highest peak, upconcentrated eluted sample]. 

Collected fractions 4, 9, 15 (f4, f9, f15) from gel filtration corresponded to aggregated 

proteins and were separated successfully from the purified 4E-BP2 WT (Lane 5, top 

gel, Figure 6.4 ) and 2D (Lane 5, bottom gel, Figure 6.4). However, during the affinity 

purification step where the protein was bound to glutathione sepharose, we noticed 

that protein chaperone DnaK (~70kDa) from Escherichia coli was copurified [Figure 

6.3 (B), Lane 2 – 4) but could be removed using size exclusion chromatography. The 

SEC elution position of the protein was the same for 4E-BP2 WT and 2D.  
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Figure 6.3 Results of SDS-PAGE analysis of directly expressed 4E-BP2 WT and 2D.  

Expression was induced at 28 oC for 0, 1, 2, 4, 6, 8 h and o/n. Soluble and insoluble fractions 
of Escherichia coli cell lysates were analysed on an SDS-PAGE gel and Coomassie-stained 
protein bands were scanned.  
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Figure 6.4 Results of SDS-PAGE analysis of expressed and purified recombinant 4E-BP2 WT 

and 2D.  

A. Expression was induced at 28 oC for 3 h. Soluble (Lane 1) and insoluble (Lane 2) fractions 
of Escherichia coli cell lysates were analysed on an SDS-PAGE gel along with flow through 
fraction that did not bind GST resin (Lane 3) and eluted fraction corresponded to purified 
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tagless 4E-BP2 WT (Lane 4). Coomassie-stained protein bands were scanned. B. Samples 
collected before (Lane 1) and during gel filtration (Lane 2-5) were subjected to PAGE analysis 
and Coomassie-stained protein bands were scanned. Lane 5 corresponds to the 
upconcentrated 4E-BP2 protein that collected from the fraction showing the highest peak 
during gel filtration. Protein 3 = 4E-BP2 WT, Protein 4 = 4E-BP2 2D 

 

6.3.2 Deamidation of 4E-BP2 does not change the intrinsic 

disordered structure of the protein 

Purified recombinant 4E-BP2 WT and 2D were analysed by SAXS and SRCD 

to compare their structural characteristics. The SAXS scatter profiles of both proteins 

overlap quite well, presenting featureless profiles for the individual proteins as Figure 

6.5 (A) shows. However, a small concentration dependence can be seen at low q 

values for both proteins, giving lower concentration-normalized intensities after 

dilution [Figure 6.5 (A)]. Therefore, the different datasets collected at different protein 

concentrations were analyzed separately to get an understanding of how much 

structural variation is possible in the different dilutions. The determination of molecular 

mass of the proteins using the forward scattering, calibrated with water, shows that 

the mass of the protein particle is somewhere between monomeric and dimeric in size 

(Table 6.1). The Kratky plots of the SAXS scatter profile for both proteins indicate that 

they appear unfolded as Figure 6.5 (B) displays. The ellipticity spectra given for both 

analyzed proteins indicates that the secondary structure of these proteins are random 

coils by the negative peak located near 199 nm [Figure 6.6 (A)], which is in line with 

the Kratky plots results [Figure 6.5 (B)], suggesting that both proteins appear 

unfolded. Moreover, Figure 6.6 (A) illustrates that the shape of the spectra overlaps 

well between the two proteins. Figure 6.6 (B) shows that the size of the proteins 

appears to reduce in size when diluted, which could be that there is a dimer/monomer 

mixture present depending on the protein concentration. The molecular mass 

determined for 4E-BP2 using SEC-MALS gave a value of 15.2 kDa which is closer to 

a monomeric state. However, this measurement was made with a more diluted protein 

sample compared to what the highest protein concentration were in the SAXS 

measurements. Figure 6.7 illustrates the SAXS models generated by DAMMIN and 

GASBOR which fit the experimental data well and show a similar elongated shape for 

both proteins. For the GASBOR models, a forced P2 symmetry or doubling the 

amount of dummy residues resulted in a better fit with the experimental data 

compared to a P1 symmetry with the amount of dummy residues present in a 
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monomer. This is also one indication that the proteins may form a dimeric state. The 

collected SEC-SAXS data gives only one peak, suggesting that the solution is at least 

dominated by one oligomeric state. The scatter profile obtained for the different SEC-

SAXS runs overlap with the data obtained from batch measurements, which indicate 

that there were no present aggregates to distort the batch SAXS data. 

 Purified 15N labelled 4E-BP2 WT and 2D proteins were also analysed by NMR. 

Figure 6.8 presents the collected NMR spectra with peaks located in a narrow region, 

indicative of intrinsically disordered proteins. Most of the peaks in the WT protein 

overlap with the peaks of 2D (Figure 6.8), suggesting that they share a similar 

structure but with some minor differences for a few residues. 
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Figure 6.5 Biophysical data (A)SAXS scatter profiles, (B) Kratky plots on the 4E-BP  

WT and 2D. 
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Figure 6.6 Biophysical data on the 4E-BP WT and 2D.  

A. SRCD spectra, B. Rg calculated by the Debye function plotted versus the protein 
concentration during SAXS measurements. 
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Table 6.1 Extracted SAXS parameters for the different proteins measured at their 

highest concentration. 

The calculated masses based on DAMMIN models were made as described previously 
(Petoukhov et al., 2012). 

       4E-BP2 Guinier 

Rg 

(nm) 

Debye 

Rg 

(nm) 

Dmax 

(nm) 

MWcalc 

(kDa)        

MWI0 

(kDa)        

MWDAMMIN 

(kDa)        

Protein 

conc. 

(mg/ml) 

WT 3.8 4.1 15.1 13.1 20.7 32.2 10.8 

N99D/N102D 3.5 4.0 14.5 13.0 19.8 28.5 9.8 
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Figure 6.7 Ten superimposed DAMMIN models.  

These models were generated using the SAXS data from the highest protein concentration 
with the average 𝝌2 score and normalized spatial discrepancy (NSD) for the different 4E-BP2 
forms. 
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Figure 6.8 1H-15N HSQC spectra for purified recombinant WT (green) and 2D (red) 4E-BP2 

protein. 

 x-axis: ω1-15N (ppm); y-axis: ω2-1H (ppm) 
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6.4 Discussion 

Taken together, the results of the structural characterization using SRCD and 

SAXS cannot detect any obvious differences between the proteins. The SRCD 

spectra depict clearly that the proteins consist of random coils and the Kratky plots 

obtained from SAXS show that the proteins behave as unfolded. The early elution 

position of the proteins in the SEC chromatogram is also an indication of an unfolded 

protein, appearing as a protein significantly larger than a folded globular protein of the 

same size. The unfolded state of these proteins may be one explanation why a protein 

chaperone was copurified in the earlier steps during the purification.  

The size parameters that have been observed for other unfolded proteins 

using SAXS, giving a theoretical Rg of 3.8 nm and a Dmax of 10 nm for a protein of 

122 residues (Fitzkee and Rose, 2004), are similar to values obtained from the 4E-

BP experimental data. The even larger values of Dmax than expected from an 

unfolded protein suggests that 4E-BPs are more elongated than the average unfolded 

protein or alternatively may be the effect of dimerization. Interestingly, some of the 

experimental data strongly suggest that 4E-BP2 appears as dimeric unless their 

unfolded state makes them appear dimeric. The experimental data point the dimeric 

structure are the following : 1) the fact that the molecular mass determination give 

values between monomeric and dimeric masses using the forward scattering, 2)  twice 

the number of dummy residues gave a better fit to the experimental data for GASBOR 

model generation, 3) the mass determination using the volume of DAMMIN models 

suggest a dimeric mass. When analyzed in a more dilute protein concentration with 

SEC-MALS, the oligomeric state appears monomeric. A mixture of dimeric and 

monomeric state present depending on the protein concentration would also explain 

the concentration dependence seen in the SAXS data at low q values. 

In conclusion, any clear differences between 4E-BP2 WT and 2D could not be 

found using SRCD or SAXS. The differences seen between the generated SAXS 

models for WT and deamidated 4E-BP2are small compared to the variations between 

the generated models of one protein and therefore, SAXS is considered to have too 

low resolution to determine any potential differences. The largest difference between 

the different proteins was the position on SDS-PAGE gel, which could be a direct 

effect of their charge. Using NMR, small local variations could be observed for a few 

residues but the overall fold of these proteins is unlikely to be affected by these 

mutations.
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7. Discussion and Future Directions 

Proteins are synthesized and degraded simultaneously and continuously, 

responding to various stimuli that cells receive. Although protein synthesis is the last 

step of gene expression, the new assembled polypeptides can undergo different 

posttranslational modifications, allowing each cell to control and modify protein 

function in a rapid and energy-efficient way. Elucidating the role of these modifications 

is challenging if one considers that the human proteome is 10-100 times more 

complex than the actual genome (Cho, 2007). The present thesis examines the 

recently identified posttranslational asparagine deamidation of 4E-BP2, an inhibitor of 

cap-dependent translation, in the brain.  

7.1 Overview of main findings 

The goal of this thesis is to characterise the biological role of a novel 

posttranslational modification of 4E-BP2 in the mammalian brain. We describe a 

previously unidentified mechanism during early postnatal brain development, 

whereby the deamidated form of the cardinal brain translation initiation repressor 4E-

BP2 is more susceptible to Ubiquitin proteasomal degradation (as compared to WT 

protein) because it binds with higher affinity to a complex comprising the mTORC1 

protein Raptor and the Ubiquitin E3 ligase CUL4B. Deamidated 4E-BP2 stability is 

regulated by mTORC1 and AMPAR activity. Our data link this novel mTOR-dependent 

regulatory mechanism of deamidated 4E-BP2 to the regulation of translation of a 

distinct pool of mRNAs associated with cerebral development, mitochondria and 

primarily NF-κB activity.  
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7.2 Deamidated 4E-BP2 is susceptible to Ubiquitin 

proteasome degradation 

For many proteins, deamidation is traditionally viewed as an “aging by-

product”, which labels long-lived proteins for degradation (Robinson, 2002). In 

accordance with this, in Chapter 3, we do find that 2D is more ubiquitinated, less 

stable than WT 4E-BP2 and gets degraded by the proteasome. Only the deamidated 

form and not an alanine mutant (2A) exhibits reduced protein stability, suggesting that 

this phenotype is specifically induced by asparagine deamidation. Moreover, 2D 

stability is regulated by a major signalling pathway (mTOR) and the activity of 

AMPARs.  

The susceptibility of deamidated 4E-BP2 to degradation by the Ubiquitin 

proteasome system agrees with other studies, linking deamidation with decreased 

protein stability since its presence at the N terminal of the sequence determines a 

destabilising residue (Varshavsky, 1997). Most of the proteins that undergo 

deamidation are aged proteins such as human crystallin (Gupta and Srivastava, 

2004), albeit there are very few examples of proteins being regulated through 

deamidation during development. Bcl-xL, a pro-survival protein, undergoes 

asparagine deamidation and this mechanism is conserved from metazoans to 

mammals, providing increased cellular susceptibility to programmed cell death (Dho 

et al., 2013). Pattern recognition receptors, vital components of innate immunity and, 

specifically, RIG-I undergoes asparagine deamidation by viral homologues of 

phosphoribosylformylglycinamidine synthetase (PFAS) and, thereby herpes virus 

evades cytokine production (He et al., 2015). Our data revealed that deamidation 

provides a novel role to 4E-BP2 as only deamidated 4E-BP2 binds with higher affinity 

to the Raptor-CUL4B-DDB1 complex and is driven to the proteasome. We also 

showed that this mechanism of degradation is regulated by mTORC1 and AMPAR 

activity. Notably, 4E-BP1 is regulated by a different E3 Ubiquitin ligase, CUL3, which 

promotes hypo-phosphorylated 4E-BP1 ubiquitination and degradation, while hyper-

phosphorylated 4E-BP1 is refractory to degradation (Yanagiya et al., 2012). 

Nevertheless, 4E-BP1 is highly expressed in glial cells, while 4E-BP2 (both WT and 

2D) is predominantly expressed in neurons, suggesting a potential dichotomy 

between CUL4B-CUL3 mechanisms in neurons and glia.   

Moreover, we identified that 4E-BP2 deamidation occurs in mouse neurons, 

but not in glial cells; therefore it is a neuron- and brain-specific posttranslational 
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modification since it is only detected in postnatal brain, and not in other peripheral 

tissues examined (Bidinosti et al., 2010b). Thus, our data support a neuron-centric 

role for 4E-BP2 deamidation during early postnatal development and into adulthood.  

7.3 4E-BP2 undergoes asparagine deamidation in human 

brain; potential link with neurodevelopmental disorders 

Interestingly, in Chapter 3, we identified that deamidated 4E-BP2 is also 

present in human brain. Potentially, this mechanism is evolutionary conserved from 

rodents to humans to preferentially regulate neuronal translation during a crucial 

developmental period for brain growth: synapse regulation, neuronal proliferation and 

migration and ultimately circuitry formation and behaviour (Pressler and Auvin, 2013; 

Semple et al., 2013). The period when 4E-BP2 undergoes deamidation (P10-P21) in 

mice (concomitant with a decrease in mTORC1 activity) (Beirowski et al., 2017; 

Bidinosti et al., 2010b; Wang et al., 2016) would correspond to 10 months-3 years of 

age in human infants (Semple et al., 2013). mTORC1 activity is dysregulated in 

several monogenic disorders co-diagnosed with high rates of autism, such as Fragile 

X Syndrome and Tuberous Sclerosis (Kelleher and Bear, 2008). Global knockout of 

Eif4ebp2 engenders molecular, cellular and behavioural phenotypes, which are 

reminiscent of ASD (Gkogkas et al., 2013). Other studies have described a key role 

for 4E-BP2 in synaptic function, learning and memory (Banko et al., 2006; Banko et 

al., 2007; Banko et al., 2005; Ran et al., 2013). In this thesis, we studied the 

expression of deamidated and WT 4E-BP2 in different mouse models of ASD [Fmr1 

+/-, B6.129P2-Fmr1 tm1Cgr/J), Shank3 +/- (B6.Cg-Shank3 tm2.1Bux/J), Tsc2 +/- 

(B6;129S4-Tsc2 tm1Djk/J) and BTBR (BTBR T+ Itpr3 tf/J) but we identified no 

differences comparing these mouse models and WT mice. Given these studies and 

our work, it is conceivable that dysregulated deamidated 4E-BP2 degradation, as a 

result of altered mTORC1 signalling during development, could be linked to a 

prodromal period of neurodevelopmental disorders such as ASD (via aberrant 

translational control of neuronal mRNAs) but further work needs to be carried out to 

address this link.  

Deamidated 4E-BP2 is degraded by binding with higher affinity to the 

mTORC1 protein Raptor and the ubiquitin E3 ligase CUL4B, while pharmacological 

inhibition of mTORC1 promotes 2D accumulation and reduces Raptor-4E-BP2 
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binding (Schalm et al., 2003). Together, these data reveal that there is a causal 

relationship between Raptor-deamidated 4E-BP2 binding and protein stability, under 

the control of mTORC1 activity. Plausibly, accelerated 2D 4E-BP2 degradation 

(through formation of the Raptor-2D-CUL4B complex) could be part of a wider brain-

specific mechanism involving CUL4B and the proteasome, mediating translational de-

repression downstream of mTORC1 in certain synapses. Regulation of such 

synapses could be pivotal for the pathogenesis of ASD and other neurodevelopmental 

disorders, where there are known changes in mTORC1 activity (Costa-Mattioli and 

Monteggia, 2013; Huber et al., 2015; Kelleher and Bear, 2008).   

Furthermore, CUL4B is also associated with ASD pathophysiology as it is an 

X-linked intellectual disability (XLID)-associated gene and its deletion in mice leads to 

embryonic lethality (Chen et al., 2012, Jiang et al., 2012). In addition, CUL4B 

overexpression increases ubiquitination and proteasomal degradation of Tuberous 

Sclerosis 2 protein [TSC2; an inhibitor of mTORC1 and syndromic ASD gene (Short 

et al., 1995)] and thus promotes mTORC1 signalling (Ghosh et al., 2008). 

Interestingly, XLID-linked truncating or missense mutations in CUL4B were shown to 

be defective in promoting degradation of TSC2 (Wang et al., 2013).  

 

 

7.4 Mechanism of potential asparagine deamidation of 4E-

BP2 

Postnatal brain-specific asparagine deamidation of 4E-BP2 (N99D/N102D) is 

spontaneous and pH dependent, and there is no current evidence that it is catalysed 

by enzymes (Bidinosti et al., 2010b; Robinson, 2002). However unlikely it may be, a 

yet unidentified protein complex or enzyme could carry out 4E-BP2 deamidation, 

similarly to RIG-I (He et al., 2015), which regulates antiviral cytokine production or to 

the immune sensor c-GAS (cyclic GMP-AMP Synthase) (Zhang et al., 2018), where 

deamidation is catalysed by viral proteins.  

A second potential mechanism is that changes in intracellular pH during 

postnatal development might lead 4E-BP2 to undergo deamidation since 4E-BP2 is 

sensitive to alkaline-induced deamidation (Robinson, 2002). Carbonic anhydrases 

(CAs) are key molecules for the regulation of pH in neurons and glia, in the blood-
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brain barrier, in the interstitial fluid in the brain and at the level of the whole organism 

(Frost and McKenna, 2013). Interestingly, CA VII isoform expression in mouse CA1 

pyramidal neurons is very low from birth until the 2nd postnatal week and rises during 

3rd postnatal week, concomitantly with deamidation of 4E-BP2, reaching its peak after 

postnatal day 30 (Frost and McKenna, 2013). During the developmental window P10-

18, CA VII is the only cytosolic isoform, accounting for CA activity in pyramidal 

neurons (Frost and McKenna, 2013). Furthermore, the second isoform, CAII, exhibits 

very low levels of expression until postnatal day 18 when neurons start expressing 

both CAVII and CAII isoforms. Interestingly, CA VII is chiefly found in the CNS and is 

neuron-specific whereas CA II is expressed in neurons and glia (Frost and McKenna, 

2013). To test whether CA VII–mediated and/or CA II-mediated pH regulation 

contributes to the onset of 4E-BP2 deamidation in neurons, siRNAs will be used for 

both isoforms separately and together in mouse cortical neurons to downregulate their 

expression and check if expression of deamidated 4E-BP2 will be affected. To check 

whether changes of pH affect deamidation of 4E-BP2 in neurons, carbonylcyanide p-

trifluoromethoxyphenylhydrazone (FCCP), will be used as a protonophore and 

uncoupler of mitochondrial oxidative phosphorylation in mitochondria, and 

Niclosamide, a weak lipophilic acid, on early DIV in mouse cortical neurons to acidify 

the cytosol and check whether 4E-BP2 will undergo deamidation under these 

conditions. To examine whether deamidation of 4E-BP2 is facilitated with alkaline pH 

shifts, fused fluorescent mCherry2–4E-BP2 proteins (WT, double deamidated) will be 

co-transfected with SypHER2, a genetically encoded fluorescent pH-indicator, 

appropriate for measuring fast intracellular pH shifts (Matlashov et al., 2015). Then, 

using live cell imaging, we will measure pH in the subcellular compartments that each 

4E-BP2 form localizes.  

7.5 Where does deamidated 4E-BP2 localize in neurons? 

In Chapter 4, we explored the subcellular localization of different forms of 4E-

BP2 in HEKs and mouse cortical neurons. Interestingly, expression of fluorescent 4E-

BP2 fusion proteins is affected depending on the terminal where fluorescent protein 

was fused. mCherry2– and mCerulean3–4E-BP2 constructs where fluorescent 

protein is fused on the N-terminal exhibit markedly higher expression compared to 

4E-BP2-mCherry2 and -mCerulean3 constructs where fluorescent protein is on the 
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C-terminal. One potential interpretation for this finding is that fusion of fluorescent 

protein on the C-terminal affects interaction of 4E-BP2 with Raptor since TOS motif, 

which is essential for this interaction, is composed by the last 5 amino acids (FEMDI) 

of the C-terminal. To check that hindered interaction of Raptor and 4E-BP2 affects 

expression of the protein, site – directed mutagenesis will be performed on these 

amino acids (substitutions, deletion) on the mCherry2– and mCerulean3–4E-BP2 

constructs and test their subcellular expression levels.  

WT and 2D subcellular localization is similar, but there is little overlap between 

the fluorescent puncta corresponding to each form. Our main finding that deamidated 

4E-BP2 exhibits a different subcellular localization than WT 4E-BP2 will be further 

explored to see whether the two 4E-BP2 forms localize in different neuronal 

compartments. Therefore, we will perform immunofluorescence of the same co–

transfected neuronal cultures and we will stain neurons for Raptor, presynaptic and 

postsynaptic markers and check co-localization of WT and deamidated 4E-BP2 with 

each stained protein.  

7.6 Does tertiary structure of deamidated 4E-BP2 change in 

monomeric state or in complex with other proteins? 

Deamidation introduces a negative charge at the deamidation site and can 

also lead to β isomerization (Robinson, 2002). The pronounced slower migration of 

2D-corresponding bands on SDS-PAGE suggests that deamidation may affect 4E-

BP2. Moreover, mTORC1 phosphorylation induces folding of the intrinsically 

disordered 4E-BP2 protein (Bah et al., 2015). In Chapter 6, we investigated the 

secondary structures of WT and deamidated 4E-BP2. Surprisingly, we did not detect 

major changes in deamidated 4E-BP2 structure by SAXS, SCRD or NMR, as 

compared to WT. Both proteins are IDPs comprising random coils. Possibly, structural 

analysis of deamidated 4E-BP2 in complex with Raptor or eIF4E could reveal 

undetected conformational changes of its IDP state since the structure changes 

depending on the interaction with other protein partners.  
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7.7 A novel postnatal mechanism of translational control for 

regulation of NF-κB and cerebral cortex development  

In Chapter 5, we discovered that 2D overexpression engenders a widespread 

alteration of the neuronal translatome, thus demonstrating that 4E-BP2 deamidation 

is highly regulated by major neuronal signalling pathways and receptor activity, and 

that it plays a key functional role. The lower stability of 2D, together with the non-

overlapping puncta of WT and 2D detected in dendrites, support the hypothesis that 

the two forms of 4E-BP2 may regulate the function of different types of synapses, by 

selective translational de-repression of different mRNAs. In accordance with this 

premise, 2D was shown to preferentially regulate excitatory AMPA synaptic 

transmission (Bidinosti et al., 2010b). Moreover, our results, implying that AMPAR but 

not NMDAR inhibition promotes 2D degradation may hint that this is a calcium-

independent mechanism present in excitatory cell, both upstream and downstream of 

4E-BP2-dependent translation.   

Our Ribosome profiling data in Chapter 5 highlighted novel aspects of a wider 

brain-specific mechanism involving 4E-BP2 deamidation. Overexpression of 4E-BP2 

forms was carried out using AAV constructs driven by hSyn promoters in a culture 

which is predominantly neuronal (>90% of cells) (Davis and Temple, 1994), while we 

also demonstrated that deamidation arises in neurons, but not in glia.  However, we 

cannot exclude the possibility that the translational changes detected may be due to 

a non-neuron autonomous effect on glial cells. Cell type-specific ‘translatomics’ [such 

as TRAP (Heiman et al., 2014)] would be required to answer this question. We 

detected a low correlation between the changes in the translatome, following 

overexpression of the two 4E-BP2 forms, and no significant changes in transcription. 

Moreover, differences that we identified in 5' UTR features between WT and 2D 

DTGs, support that each of the two 4E-BP2 forms characterizes a distinct mechanism 

of translational control with different mRNAs targets.   

7.8 Link with mitochondria and Warburg effect 

Remarkably, the highest scoring network predicted by IPA is ‘Developmental 

Disorder, Hereditary Disorder, Neurological Disease’, and NF-κB is the central node. 

A main avenue for NF-κB activity regulation perinatally in brain is through de-
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repression, following phosphorylation of its inhibitor IκBα (nuclear factor of kappa light 

polypeptide gene enhancer in B-cells alpha). This mechanism is brain-derived 

neurotrophic factor (BDNF)-dependent prenatally and BDNF-independent postnatally 

(Gavalda et al., 2009; Gutierrez and Davies, 2011). Moreover, the top GO Cellular 

Compartment detected by DAVID in 2D regulated genes is the mitochondrion.  

Strikingly, 4E-BPs were shown to regulate mitochondrial dynamics and biogenesis by 

translational control of nucleus-encoded mitochondria-related mRNAs (Morita et al., 

2013; Morita et al., 2017). We identified 35 mitochondrial mRNAs in 2D-regulated 

DTGs.  

It is suggested that synaptic activity promotes a neuronal Warburg effect, 

shifting neuronal energy metabolism from oxidative phosphorylation towards aerobic 

glycolysis (Bas-Orth et al., 2017). In parallel, mitochondrial gene expression peaks 

during synaptogenesis (P0-P21) (Wirtz and Schuelke, 2011). Furthermore, the 

metabolic switch of the Warburg effect is underlined by the interplay between NF-κB 

and the tumour suppressor p53 through regulation of nuclear and mitochondrial gene-

expression (Johnson and Perkins, 2012). 4E-BPs are linked with p53 as they regulate 

senescence by controlling synthesis of the p53-stabilizing protein Gas2 (Petroulakis 

et al., 2009). Finally, deamidation of the mitochondrial transmembrane protein B cell 

lymphoma-extra large (Bcl-xL) is a critical switch in the apoptotic response following 

DNA damage and GO analysis of 2D 4E-BP2-regulated DTGs showed that 11 DTGs 

are linked to the GO category: cellular response to DNA damage, while this category 

is not detected in WT DTGs GO analysis.   
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Taken together, our ribosome profiling data and the existing evidence 

regarding NF-κB activity and mitochondria underline the importance of our proposed 

brain-specific translational control mechanism of mTORC1- or AMPAR-mediated, 

Raptor-dependent accumulation of deamidated 4E-BP2 during a critical period of 

postnatal brain development (Figure 7.1), which could go awry in neurodevelopmental 

disorders, such as ASD. 

 

Figure 7.1 Diagrammatic summary of the mechanism described in this thesis.  

Left: Diagram, illustrating that mTORC1 activity decreases whereas 4E-BP2 gets deamidated 
as we are moving from embryonic to postnatal development. After birth, there is a switch for 
NF-κB which is independent of BDNF-regulation and signalling through the canonical pathway 
in contrast to its embryonic regulation. Our model supports that mitochondria and proteasome 
activity possibly also depend on a regulatory switch before and after birth. Right: During 
embryonic stages, 4E-BP2 WT is a negative regulator of translation through phosphorylation 
by mTORC1 complex. During postnatal development, 4E-BP2 gets deamidated and is 
regulated through specific proteasomal degradation by the Raptor- CUL4B-DDB1 complex 
and concomitant with decreased mTORC1 activity. Our model connects this Raptor-
dependent proteasomal degradation of deamidated 4E-BP2 with the regulation of translation 
of mRNAs, associated with NF-κB activity and cerebral cortex development. 
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Appendix 

Geneblock sequences  

(For cloning at the C-terminal of fused 4E-BP2 fluorecent protein) 

4E-BP2 WT 

CGCCCTCGAGATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGC

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG

AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGAACAACTTGAACA

ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

TGAGAATTCCGGCG 

4E-BP2 N99D/N102D 

CGCCCTCGACATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGC

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG

AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGGACAATCTAGACA

ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

TGAGAATTCCGGCG 

4E-BP2 N99A/N102A 

CGCCCTCGACATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGT

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG
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AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGGCCAACTTGGCCA

ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

TGA GAATTCCGGCG  

(For cloning at the N-terminal of fused 4E-BP2 fluorescent protein) 

4E-BP2 WT 

CGCCCTCGAGATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGC

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG

AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGAACAACTTGAACA

ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

GAATTCCGGCG 

4E-BP2 N99D/N102D 

CGCCCTCGACATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGC

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG

AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGGACAATCTAGACA

ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

GAATTCCGGCG 

4E-BP2 N99A/N102A 

CGCCCTCGACATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGT

CGCGCCATCCCCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTC

ATGACTATTGCACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGG

AACTCGAATCATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCAT

GGCTCAGACCCCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTG

GCACCTTAATTGAAGACTCCAAAGTAGAAGTAAACAATTTGGCCAACTTGGCCA
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ATCACGACAGGAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATC

GAATTCCGGCG  

 

 Recombinant Protein sequences  
 

4E-BP2 WT 

ATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGCCGCGCCATCC

CCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTCATGACTATTG

CACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGGAACTCGAATC

ATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCATGGCTCAGACC

CCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTGGCACCTTAAT

TGAAGACTCCAAAGTAGAAGTAAACAATTTGAACAACTTGAACAATCACGACAG

GAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATCTGA  

 

4E-BP2 N99D/N102D  

ATGTCCTCGTCAGCCGGCAGCGGCCACCAGCCCAGCCAGAGCCGCGCCATCC

CCACCCGCACCGTGGCCATCAGCGACGCCGCGCAGCTACCTCATGACTATTG

CACCACGCCCGGGGGGACGCTCTTCTCCACCACACCGGGAGGAACTCGAATC

ATTTATGACAGAAAGTTTCTGTTGGATCGTCGCAATTCTCCCATGGCTCAGACC

CCACCCTGCCATCTGCCCAATATCCCAGGAGTCACTAGCCCTGGCACCTTAAT

TGAAGACTCCAAAGTAGAAGTAAACAATTTGGACAATCTAGACAATCACGACAG

GAAACATGCAGTTGGGGATGATGCTCAGTTCGAGATGGACATCTGA   
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Software and Algorithms 

Adobe Illustrator 
 

https://www.adobe.com/creativecloud.html 

GraphPad PRISM 
 

https://www.graphpad.com/scientific-software/prism/ 

Fiji ImageJ software https://fiji.sc/ 

Imaris software http://www.bitplane.com/ 

NIS-Elements-v4.13 

software 

https://www.nikoninstruments.com/en_GB 

 

Huygens Software 4.5.1p3 https://svi.nl/HuygensSoftware 

ImageStudio Software https://www.licor.com 

ATSAS software suite https://www.embl-hamburg.de/biosaxs/software.html 

DAMMIN https://www.embl-hamburg.de/biosaxs/dammin.html 

GASBOR https://www.embl-hamburg.de/biosaxs/gasbor.html 

Multifastats https://github.com/davidrequena/multifastats 

Ingenuity Pathway Analysis 

(IPA) 

https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis/ 

Database for Annotation, 

Visualization and Integrated 

Discovery (DAVID) 

https://david.ncifcrf.gov/ 

https://www.adobe.com/creativecloud.html
https://www.adobe.com/creativecloud.html
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://fiji.sc/
http://www.bitplane.com/
https://www.nikoninstruments.com/en_GB
https://svi.nl/HuygensSoftware
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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