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Abstract 

Monitoring physiological parameters such as pH at the site of a disease are important 

in determining the health status in patients.  

Current approaches are based on the analysis of arterial blood to measure systemic 

blood pH along with other parameters such as PO2 and PCO2, to allow assessment of 

gaseous exchange and ventilation efficiency. There has been a drive to develop 

improved sensors capable of continuous and dynamic monitoring of these aspects. 

Optical sensing devices have gained popularity as they can be designed to 

incorporate inexpensive optical fibres and miniaturised and mass-produced detectors 

and LED-based light sources.  

In addition to monitoring pH in a clinical situation, the development of physiological 

sensing tools for use at a cellular level has been critical in being able to non-invasively 

assess cellular response to a host of insults be it drug treatment or other cellular 

modulation strategies. The move towards three-dimensional (3D) cell culture has 

become increasingly attractive as a mimic of the 3D architecture and gradients found 

in vivo. The development of spatially selective sensors capable of measuring these 

physiological features could provide a tool in understanding cell-drug responses.   

In this thesis, multiple approaches were developed to enable SERS pH sensing based 

on both an optical fibre as well macroscopically entrapped SERS sensors applied as a 

means of observing extracellular pH within a 3D cell culture system. This included 

the use of pH responsive reporter molecules on nanoparticles (Chapter 2), their 

entrapment within macro-scale supports such as polymer beads and (Chapter 3), and 

paper (Chapter 4). 
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Lay Abstract 

All life exists in a delicately balanced state. There are trillions of chemical reactions 

happen simultaneously in the body, driving the processes that keep a human body 

‘alive’. Specific organs and tissues work together to control and maintain this balance 

which ensures that the body continues to function normally.  For example, the lungs 

are responsible for gas exchange to and from the blood, and in doing so keeps the 

oxygen concentration and blood pH levels constant. pH is a measure of how acidic or 

alkaline a solution is, and by measuring physiological parameters such as blood pH 

or the pH within the lungs, the health status of a patient can be monitored. On a much 

smaller scale, looking at pH on a cellular level can indicate if the cells are functioning 

correctly.  

There has been a drive to develop improved sensors capable of continuous 

monitoring of these parameters. Optical sensing devices have gained popularity as 

they can be designed to incorporate inexpensive optical fibres and miniaturised and 

mass-produced detectors and LED-based light sources.  

In this thesis, a technique called surface enhanced Raman scattering (SERS) is used to 

measure pH. Raman scattering detects molecular vibrations and the addition of gold 

nanoparticles boosts the vibration signals. Molecules sensitive to pH are bound to 

gold nanoparticles and the nanoparticles were attached to the end of an optical fibre, 

using either a glassy-like glue, 3D polymer beads, or filter paper.  

In addition to measuring pH through an optical fibre using SERS, it was used to 

measure pH on a cellular level. Multicellular tumour spheroids (MTS) are small 

bunches of cells that mimics the environment of tissue much better than typical cell 

cultures which are grown in a 2D layer. Here, SERS was used to monitor the pH 

gradients between the central and outer regions of the MTS before and after the 

addition of a drug. The development of these spatially selective sensors offers a 

means to understanding cell-drug responses.    
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1. Introduction 

 

1.1 The Role and Control of pH in Biological Systems 

 

In the early 1900’s, Lawrence Henderson studied blood and the respiratory function. 

At the time it was known that blood was able to resist changes in pH, though the 

relationship between buffering capacity and the hydrogen ion concentration had not 

yet been realised. It was he who put forward an equation linking the composition of 

a buffer and [H+] (equation ( 1.1)).1  

 
[H+]  =  𝐾𝑎  

[acid]

[𝑠𝑎𝑙𝑡]
  

( 1.1) 

 

It was not until 1916, that Karl Hasselbach merged Henderson’s formula with 

Sørensons pH scale to express a formula now known as the Henderson-Hasselbach 

equation (equation ( 1.2)). Over physiological ranges, pH can be calculated using the 

Henderson-Hasselbach equation where Ka is the dissociation constant of the weak 

acid, pKa = -log Ka, and [HA] and [A-] are the molarities of the weak acid and its 

conjugate base.1 Equation ( 1.3) is the dissociation equilibrium of the weak acid to the 

conjugate base of the acid (A-) and hydrogen ions (H+).  

 

  
𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔 

[𝐴−]

[𝐻𝐴]
  

( 1.2) 

 

 𝐻𝐴 ⇌   𝐴− + 𝐻+ ( 1.3) 
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Both intracellular (pHi) and extracellular pH (pHe) are tightly regulated, any slight 

deviation from the norm (centred around pH 7.4) can result in the widespread 

disorder of cell function.2 Intracellular pH (pHi) regulation is critical for most cellular 

processes including cell volume regulation, vesicle trafficking, cellular metabolism, 

cell membrane polarity, muscular contraction, and cytoskeletal interactions, to name 

but a few.3  Extracellular pH (pHe) is known to affect ion transport processes, and is a 

key biomarker of diseases such as breast and liver cancers.4,5 

Due to the importance of pH regulation there exist several large scale mechanisms to 

prevent pH deviation, each operating on different timescales; physiological buffers 

offer a swift and localised pH correction, the respiratory system can correct on the 

medium-term (minutes), while renal acid-base control occurs on a much longer time-

frame (days).2 

 

1.1.1 Respiratory System and pH 

A recent analysis of deaths relating to respiratory illnesses has shown that the UK has 

the highest proportion of deaths among the EU-28 average, at 14.1% compared to 

8.5%.6,7 These deaths result from a variety of conditions such as pneumonia, chronic 

obstructive pulmonary disease, and asthma.7 Improving health through a better 

understanding of the fundamental disease processes would be of great value in the 

drive to improving the capability of diagnosis and treatment.  

The respiratory system’s main purpose is gas exchange, allowing the intake of oxygen 

(O2) and removal of carbon dioxide (CO2) to and from the blood (Figure 1.1) This 

process occurs within the small air sacs known as alveoli and the surrounding 

microvasculature. There are millions of these alveoli within the lung, providing a 

large surface area for gas exchange to occur. Through diffusion, the O2 can pass 
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through from the alveolus, where the O2 concentration is high, to the deoxygenated 

blood, which has a lower O2 concentration. The reverse occurs for CO2, where it 

passes from the blood to the lungs to be expelled. The walls of the alveolus and 

capillary are one cell thick allowing for rapid transport of the gases. 

The mechanisms employed by the body to correct the pH imbalance include 

increased ventilation in an attempt to reduce the formation and expel excess CO2, 

often resulting in the blood pH returning to normal within minutes.  The kidneys can 

also compensate for acidosis, through excretion of excess acid. 2 

Figure 1.1 Cardiovascular system delivering O2 to tissues. A) Cardiovascular system 

comprising the lungs, heart, and blood vessels. Deoxygenated blood is delivered from the 

body into the heart and pumped to the lungs via the pulmonary artery. Gas exchange occurs 

and oxygenated blood is delivered back to the heart to be pumped round the body. B) Alveoli 

which are situated at the ends of the bronchiole are covered in capillaries. C) Illustration of gas 

exchange between an alveolus and capillary. Images retrieved and adapted from 

istockphoto.com 

B) A) 

C) 
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If the ability of the lungs to carry out efficient gas exchange is disturbed, the outcome 

is that an insufficient amount of O2 will reach the blood, in combination with the 

accumulation of CO2. The build-up of CO2 can cause acidosis, where the pH of the 

blood falls below pH 7.35.2 

In healthy lungs, the alveoli should be sterile compartments, devoid of any infiltrating 

bodies such as inflammatory cells and pathogens. However, diseases such as 

pneumonia result in immune cells invading into the alveoli. These cells employ an 

assortment of killing mechanisms to target pathogens, including the secretion of 

oxidative and proteolytic proteins. The microbicidal mechanisms do not only destroy 

pathogens, but are also capable of disrupting the delicate balance of the alveoli and 

causing damage to host tissue.8  

Studies conducted by Vukovac et al. have shown that pH can be indicative of the local 

inflammatory burden in patients suffering from the acute exacerbation of COPD 

(AECOPD), finding the pH of the lung to be higher than that in stable COPD patients.  

9,10 Notably, in situ pH measurements were conducted using pH indicator test strips, 

placed onto a region of interest. While a simple process, there are limitations to using 

these test strips: the test strips are unable to offer dynamic pH sensing and are sent 

through the working channel of the bronchoscope individually, increasing the 

procedural time significantly; while the quantification of the strips relies on a 

colorimetric interpretation by eye, therefore introducing sources of error.11 

A thin (100 µm) mucus gel-aqueous sol complex lines the surface of the airways in 

the lungs, known as the airway surface liquid (ASL). In the alveoli, it is alveolar 

subphase fluid (AVSF) with a pulmonary surfactant that lines the surfaces.12 

Compared to the pH of blood (pH 7.35-7.45), the pH of the ASL is acidic, having been 

measured as pH 6.6 in vivo in healthy humans using an electrode based pH meter, 

that was capable of being deployed through a bronchoscope.8,12,13 In patients with a 

pneumonia infection, the pH of the bronchi was found to be significantly lower than 

that of healthy patients, at around pH 6.5 compared to pH 6.7, respectively.  
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While the environmental pH may play a role in the innate defence against pathogens,  

the lowering of the pH during infection can encourage bacterial growth and promote 

resistance by decreasing the effectiveness of some antimicrobials, particularly 

aminoglycosides, a class of antimicrobials used to treat a range of respiratory 

infections, including tuberculosis.13–15 The ability to monitor pH in the alveolar 

regions, specifically the AVSF, could offer a key biomarker of the lungs’ innate 

defence while also allowing clinicians to select optimal therapies.  

 

1.1.2 Cancer and pH 

1.1.2.1 The Hallmarks of Cancer 

As previously discussed, pH has a significant role among many disease states.  

Considering its role within cancer specifically, it’s important to regard the 

characteristics of cancer. Hanahan and Weinberg examined the so-called “Hallmarks 

of Cancer” which characterise ten biological indicators which present during the 

development of tumours (Figure 1.2).16,17 While it is thought that cancers must 

demonstrate all the hallmarks, the order of acquiring these capabilities varies between 

cancer types. 

Sustaining proliferative signalling: One of the most fundamental features of cancer 

cells is the ability to undergo continual proliferation. Typically, healthy cells carefully 

control the release of signalling molecules, such as growth factors and extracellular 

matrix components, which promote cell growth. Cancer cells, however,  can evade 

control and regulation through a number of channels, they may produce growth 

factors themselves; mimic growth signals to stimulate normal cells; or increase the 

number of receptor proteins, causing the cells to become “hyperresponsive”.17 
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Evading growth suppressors: As well as promoting proliferation, cancer cells must 

also be able to avoid the mechanisms used to restrict proliferation through tumour 

suppressor genes. There are two notable proteins, retinoblastoma-associated protein 

(RB) which responds to signals occurring extracellularly, and tumour protein p53 

(TP53), which reacts to intracellular signals to prevent uncontrolled proliferation. 

Cancer cells may exhibit defects along the protein production pathways, meaning 

that the tumour suppressing capabilities normally carried out are not properly 

functioning.17 

Figure 1.2 Illustration of the ten “Hallmarks of Cancer”, characterising biological features 

during cancer development, as defined by Hanahan and Weinberg17.  Image reproduced from 

Hanahan and Weinberg, Cell, Volume 144, Issue 5, 4 March 2011, Pages 646-674 with 

permission from Elsevier. 
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Avoiding immune destruction: Despite cancer cells going through constant immune 

selection pressure, some will emerge and ‘escape’ immune surveillance. Three of the 

major escape mechanisms are: lack of tumour-antigen recognition; resistance to cell 

death; induction of immunological tolerance via immunosuppressive factors secreted 

by tumour cells. Cancer cells can modify the cytotoxic mechanisms of the immune 

system through secretion of immunosuppressive factors or recruitment of 

immunosuppressive inflammatory cells.17,18 

Enabling replicative immortality: Healthy cells typically have a finite number of 

growth and division cycles, with the lifespan of the cell ending in non-proliferative, 

but viable state called senescence. Some cells which can circumvent senescence 

undergo a second phenomenon known as crisis, where the majority of the cells in the 

population will die. Occasionally, cells emerge from a population in crisis showing 

the ability to continually replicate, known as immortalisation. It is thought that this 

ability is due to the increased production of telomerase, an enzyme which maintains 

the telomere length by adding repeat segments of hexanucleotides to the ends of 

chromosomes. In normal functioning cells, the telomeres become shorter with each 

growth cycle, it is the telomere length which determines the number of cycles the cell 

can undergo. In cancer cells, the increase in telomerase activity offsets the progressing 

telomere loss that would otherwise occur.17  

Tumour promoting inflammation: Immune cells, primarily tumour associated 

macrophages (TAMs), can contribute to multiple hallmark capabilities by supplying 

bioactive molecules to the tumour microenvironment, such as growth factors that can 

sustain proliferation, proangiogenic growth factors, and matrix-degrading enzymes 

that aid invasion. TAMs can also release immunosuppressive molecules, allowing the 

tumour to evade the immune system.17   

Activating invasion and metastasis: The ability to invade and metastasize distant 

sites is a key hallmark of cancer progression. A growing tumour will eventually 

generate cells which move out of the original tumour site to invade adjacent tissues 

followed by the migration to distant sites where new colonies are formed. The 
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function of cell-to-cell adhesion molecule, E-cadherin, is lost in invading cancer cells, 

whereas N-cadherin shows increased levels in migrating cancer cells, a molecule that 

aids cancer cells to pass through blood vessels during invasion.17 

Inducing angiogenesis: As with normal tissues, tumours require a blood supply to 

transport nutrients and remove waste. The arrangement of blood vessels is usually 

fixed, with angiogenesis typically switched off, and it is only switched on for 

processes such as wound healing. Cancer cells have angiogenesis activated 

constantly, stimulated by growth factors such as vascular endothelial growth-factor 

(VEGF). The newly formed vasculature are not well organised and considered to be 

“leaky” compared to healthy blood vessels.17  

Genome instability and mutation: Considered an enabling characteristic, the 

mechanisms responsible for the detection and resolution of DNA defects ensures that 

the degree of spontaneous mutations occurring remains very low during each cell 

growth cycle. However, when these mechanisms are compromised, the rate of 

mutations increases. As cancer cells evolve, mutations which can overcome these 

anticancer defences in genes that normally function in maintaining the stability of the 

genome are selected. Genomes vary widely between different tumour types, but 

nearly all of them have DNA repair defects. Thus, genome instability and mutation 

are essential to tumour progression.17 

Resisting cell death: Faults and defects in cells, such as DNA damage, would 

typically result in the cell undergoing apoptosis. The most common strategy found 

among cancer cells to avoid apoptosis is the loss of the p53 tumour suppressor 

function, which is involved in signalling for apoptosis.  Without this protein 

functioning correctly, the cell may not be able to resist apoptosis, and may also be 

able to evade growth suppressors as mentioned above.17  

Deregulating cellular energetics: The Warburg effect refers to an observation that 

cancerous cells tend to produce lactate via the glycolytic pathway, regardless of 

oxygen concentrations, instead of producing energy through oxidative 

phosphorylation.5,19 Although seemingly counterintuitive, as there is much less ATP 
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produced through glycolysis compared to oxidative phosphorylation, cancer cells 

have increased uptake and utilisation of glucose, meaning that there is an increased 

rate of production of ATP, allowing rapid and sustained proliferation. Further, cancer 

cells undergoing aerobic glycolysis also produce many intermediate biosynthetic 

precursors. These molecules are used as building blocks to produce proteins, lipids 

and DNA required by the rapidly dividing cells. The hypoxia inducible factor (HIF) 

is not only a response to low oxygen levels, it may be stimulated in response to a 

variety of triggers, such as radiation induced DNA damage, signalling from other 

proteins, growth factors and the occurrence of pyruvate. Once activated, HIF can go 

on to activate genes that support aerobic glycolysis and repress genes involved in 

normal respiration.17 
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Figure 1.3 The tumour microenvironment. Gradients form as the tumour grows further away 

from vasculature.  
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1.1.2.2  The Role of pH in Cancer 

The role of pH along with the development of the tumour microenvironment is a 

further important consideration of cancer. It is well known that cancerous tissues are 

associated with a hypoxic and more acidic microenvironment than found in non-

cancerous tissues.4 Studies carried out in the 1950s recognised that tumours beyond a 

distance of around 200 µm from a blood supply can become necrotic.20 It is this poor 

vascular perfusion which contributes to the heterogeneity of the tumour 

microenvironment. Poor vasculature prevents waste removal and regional hypoxic 

gradients can occur. With the increased metabolic demand of cancer cells, this can all 

lead to a decreased extracellular pH: extracellular acidosis, where the pH has been 

reported as low as pH 6.5.19,21 Conversely, if the pHe is acidic, the pHi will be slightly 

alkaline (pHi > 7.4), which is not typically observed in healthy cells (pHi ~7.2).19,22,23  

The pHe changes on a more drastic scale than the pHi as there are several mechanisms 

responsible for regulating pHi, many of which efflux protons to the extracellular 

space. There are a number of mechanisms contributing to the acidification of the 

tumour microenvironment through the maintenance of pHi, including Carbonic 

Anhydrases (CAs); Vacuolar-ATPase; monocarboxylate transporters (MCTs);  HCO3- 

transporters; and Na+/H+ exchangers (NHEs) .19 CAs are metalloenzymes, which 

maintain the acid-base balance both intra- and extracellularly by converting CO2 to 

bicarbonate and protons. In particular, CAIX, is an important regulator of tumour pH, 

making it a potential therapeutic target.19,22 Vacuolar-ATPases transport protons from 

the cytoplasm to intracellular vesicles (e.g. lysosomes). Mono-carboxylic acids such 

as lactate and pyruvate are transported across plasma membranes via 

monocarboxylate transporters (MCTs). Importantly, MCTs are often over expressed 

in cancer cells, leading to an increased efflux of glycolytic by-products (lactate and 

protons), and therefore causing a reduction in pHe.19,22 The HCO3- transporters 

regulate movement of HCO3- across the plasma membrane, allowing either 

acidification or alkalinisation of the pHi. Finally, the NHE family can be considered 

one of the most active transporters in pHi regulation, especially NHE1 which 



11 

 

hyperactively ferries protons extracellularly. It is thought that the increased activity 

of NHE1 is largely responsible for increased invasion and metastasis.19,22 As the 

maintenance of pHi is permissive to cancer progression, these transporter families 

have become attractive therapeutic targets, with pHe changes used as an approach to 

monitor drug efficacy.24  

 

1.1.3 Challenges 

There are two main approaches typically employed to determine pH in biological 

samples: electrochemical and optical based techniques. Currently, glass electrode-

based measurements can be considered as the gold standard for pH sensing due to 

their selectivity and reliability over a wide pH range.25,26 However, using electrode 

sensors presents several challenges, hindering their translation into biomedical 

applications. These challenges can be overcome by optical based methods. 

Comparing the two approaches: a glass electrode is fragile and can be difficult to 

miniaturise, conversely, it is relatively easy to miniaturise optical devices using 

optical fibres; electrochemical sensors require an reference electrode, whereas internal 

standards can be applied to optical sensors;  optical devices can employ multiple 

wavelengths to provide multiplexing capabilities, and do not suffer from electronic 

interference.26,27  

Considering the advantages of optical vs electrochemical devices in the context of the 

space limited regions of the lung, an optical platform for sensing physiological 

parameters was investigated.  
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1.2 Raman and Surface Enhanced Raman Spectroscopy 

1.2.1 Raman Spectroscopy  

Inelastic scattering of light was originally theorised by A. Smekal in 1923, and was 

first observed in 1928 when C. V. Raman detected a change in the frequency of 

scattered light arising from the incident light through focusing sunlight on a series of 

liquids and their vapours.28,29 The phenomenon has since been known as Raman 

spectroscopy.  In general, spectroscopy is the study of the interaction between matter 

and electromagnetic radiation, where photons may be absorbed, emitted, scattered, 

or non-interacting. Different energy transitions within a molecule can be explored by 

employing certain types of radiation; electronic transitions may be studied by 

ultraviolet (UV) and visible light, vibrational transitions by infrared (IR), and 

rotational transitions by far-IR and microwaves.28–30 

The process of absorption requires a matching of the energy of the incident photon 

and the energy gap between a molecule’s ground state and the excited state, whereas 

scattering requires no such suitable pairing. IR spectroscopy is typically used to study 

vibrational transitions by measuring the absorbance (or emission) of radiation, 

however the incident radiation may also be scattered. It is this scattered light that is 

measured in Raman spectroscopy. Rayleigh scattering is the predominant type of 

scattering, where there is no change in frequency between the incident and scattered 

light. A small proportion of photons (approximately 1 in 107) undergo an energy 

change in a process known as inelastic scattering. These photons can either lose 

energy to the molecule, known as Stokes scattering, or gain energy from the molecule, 

known as anti-Stokes scattering. It is possible to gain information from both 

vibrational and rotational transitions with carefully selected incident light sources; 

however only vibrational Raman scattering has been used in this project. Figure 1.4 

compares the process of Raman scattering with fluorescence emission and IR 

absorption.  
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Raman spectroscopy can provide several advantages over more conventional 

methods such as fluorescence or chemiluminescence approaches, which offer limited 

characteristic structural information and broad emission spectra, often requiring 

multiple wavelengths of light. Generally, optical detection techniques that employ 

the use of fluorophores give rise to broad emission bands, provide little characteristic 

structural information and large spectral overlap when multiple molecules are 

present. Using Raman spectroscopy, specifically surface enhanced Raman 

spectroscopy (SERS), can produce sharp fingerprint spectra, that are molecularly 

specific, providing a way to gain multiparameter information using a single 

wavelength of light.31,32  
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Figure 1.4 Jablonski diagram illustrating transitions between energy levels between 

fluorescence, infrared absorption, and light scattering processes.  
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1.2.2 Surface Enhanced Raman Spectroscopy (SERS) 

A significant enhancement of Raman signals can be seen when an analyte is adsorbed 

on to a roughened metal surface, this phenomenon is known as surface enhanced 

Raman spectroscopy (SERS).33–37 The SERS effect was first observed in 1974 by 

Fleishmann et al. when an increase in the Raman signal intensity of pyridine was seen 

when adsorbed onto a roughened silver electrode.33 Early theories proposing the 

origin of the enhancement were in disagreement, with Van Duyne and Jeanmaire 

suggesting enhancement was due to an electromagnetic effect, whereas a chemical 

enhancement was proposed by Albrecht and Creighton.34,35,38 While detailed 

mechanisms on enhancement effects are still relatively unknown, it is widely 

acknowledged that the enhancement results from a combination of electromagnetic 

and chemical enhancements.  

 

1.2.2.1  Electromagnetic Enhancement 

The electromagnetic effect requires the analyte to be held in close proximity, or 

adsorbed, onto a roughened metal surface, such as a nanoparticle. Following laser 

irradiation, the delocalised electrons on a metal surface collectively move, it is this 

movement which is known as surface plasmon resonance.29 The incident light causes 

the surface electrons to oscillate, increasing the local electromagnetic field 

experienced by the adsorbed analyte, and thus intensifying polarisation of the 

molecule resulting in significantly enhanced scattering efficiency (Figure 1.5).29,37,39 

This enhancement does not happen evenly around a nanoparticle, the greatest 

enhancement occurs at points where the nanoparticles are in contact, forming “hot 

spots” which afford a strong SERS signal, enabling single molecule detection.40–42 
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1.2.2.2 Chemical Enhancement 

In addition to electromagnetic enhancement, thought to be the primary contributor 

to enhancement in SERS signal, a contribution from chemical (or charge transfer) 

enhancement can also occur. New electronic states form as the analyte adsorbs onto 

the surface of the metal nanoparticle, where there is a charge transfer in the analyte 

being probed from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO) of the electronic energy levels.37,39,43,44 

 

1.2.2.3  Materials used for SERS 

A range of materials exist that are capable of achieving a SERS effect. The most 

common materials typically consist of colloidal suspensions made by reducing Au or 
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Figure 1.5 Free electrons responding to an external electric field, resulting in oscillations of 

the electrons, a phenomenon known as surface plasmons, which create regions of strong 

intensity electromagnetic fields at the surface of the nanoparticle. The molecules held near 

the nanoparticle experience increased polarisation, resulting in enhanced Raman scattering 

efficiency 
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Ag salts, however other metals including Cu, Al, Li, Na, K, and In have also been 

used.45–47 A diverse range of substrates such as electrodes,33–36 planar surfaces,48 and 

nanoparticles in a variety of shapes (e.g. spheres, stars, shells, rods)49–51 have also been 

employed as SERS substrates.  

Some of the major advantages of using nanoparticles include their high surface area 

and ease of functionalisation, allowing simple preparation of sensitive and selective 

nanosensors, which are amenable to biological probing. 

 

1.3 Raman Spectroscopy in Biology and Medicine 

 

While this thesis primarily focuses on the application of SERS, it is also worth 

mentioning the progress in Raman spectroscopy within the field.  

 

1.3.1  Raman Spectroscopy for in vitro Analysis of Cells  

As the basic biological unit of all living organisms, the cell and the study of them as 

individual and cell populations to better understand cellular dynamics and processes 

is undeniably important, particularly when analysing indicators of disease. As a non-

destructive and label free technique requiring minimal sample preparation, Raman 

spectroscopy is a popular method to interrogate biological samples, particularly live 

cells. Imaging techniques have been developed to combine spectral information with 

spatial information, making it possible to distinguish the cellular architecture such as 

proteins, lipids, and DNA, without requiring staining.52–54   

Majzner et al. used 3D confocal Raman imaging to examine endothelial cells, 

illustrating the heterogeneity within a single cell. The size, volume, shape and 

biochemical composition of cellular organelles inside a single cell was defined 
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without the need for special sample preparation and so did not disrupt the spatial 

integrity.53  

Heraud et al. demonstrated the advantage of Raman spectroscopy as a tool for live 

cell imaging, investigating the phenotypic changes of oocytes through their 

maturation.  Differences between live oocytes and fixed oocytes were studied, 

identifying any fixation induced architectural changes (Figure 1.6).55 As such, they 

were able to identify a spectral marker only found in live cells, providing a method 

to assess the health of the oocytes.55 
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Figure 1.6 A photomicrograph of (a) functional and (b) fixed oocytes in the MII stages; 

Integration Raman maps of a specific bands were obtained with 532 nm excitation; K–

means Clustering (KMC) results with 8 main classes were presented with an average 

spectrum for each class. In a”, presented is the zoom-in of the spectral region showing the 

band at 1602 cm−1 for the single spectra extracted from the nucleic acid class, which is only 

observed in the in vivo state. The Raman intensities in the region of 300–1900 cm−1 were 

scaled by factor of 2 comparing to CH-stretching region and lower region below 300 cm−1. 

(Adapted with permission from reference 55 under the Creative Commons Attribution 4.0 

Unported Licence) 
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1.3.2 Raman Spectroscopy for Ex Vivo/In Vivo Analysis 

Transitioning from in vitro to in vivo studies presents a range of technological hurdles 

to overcome. Clinical applications of Raman spectroscopy can employ optical fibres 

due to the ease of access to in vivo locations, facilitating the technique as a minimally 

intrusive tool for monitoring and detection of disease. Due to relatively weak 

scattering properties, the Raman signals can be hidden by a range of background 

signals originating from fluorescence, scattering, or even the measurement systems 

themselves, as the signals can be easily influenced by instrumentational and fibre 

probe designs. Employing near-infrared lasers can reduce the autofluorescence 

arising from tissue, while clever fibre designs can minimise the signals from the silica 

fibres (as mentioned in Section 1.4.5).8,56,57 

As a diagnostic tool, Raman spectroscopy has proven its effectiveness for the accurate 

identification of healthy and diseased tissues in a wide range of cancers, including 

skin58,59, oesophageal60,61, cervical62, colorectal and bladder cancer57,63, using both ex 

vivo and in vivo sample analysis.  

Other non-cancerous application examples include using Spatially Offset Raman 

Spectroscopy (SORS) to measure bone composition in vivo.64 Several biofluids have 

proven to be useful samples in disease and infection identification through Raman 

spectroscopy, analysing the spectra obtained from fluids such as sputum65,66, serum, 

blood, or urine.57,67–71 
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1.4  Surface Enhanced Raman Spectroscopy in Biology 

and Medicine 

 

While Raman spectroscopy offers advantages in that it is label-free and non-invasive, 

meaning that there is no need for external markers such as stains or labels to detect a 

response, the signal is inherently weak, leading to either longer acquisition times, or 

the use of high laser powers which are not always suitable for biological samples. 

Combining the molecular specificity of Raman spectroscopy with the improved 

sensitivity due to the plasmonic nanostructures, SERS provides a method of probing 

biological samples to examine disease processes. SERS reporters, or tags, are 

commonly used in detection and imaging applications.49,54  SERS can be used as a 

Figure 1.7 Direct and indirect approaches to surface enhanced Raman spectroscopy. Label-

free nanoparticles can be used to directly measure the analyte’s intrinsic Raman signals, 

whereas nanoparticles functionalised with reporter molecules offer an indirect measurement 

approach, for instance with an immunoassay.  
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direct or indirect method, i.e. using label-free or labelled nanoparticles, to measure 

biological processes (Figure 1.7).  

 

1.4.1 Surface Enhanced Raman Spectroscopy for In Vitro 

Analysis 

1.4.1.1  Unlabelled Nanoparticle Investigations 

The intrinsic analysis of cells via label free SERS investigations (using unlabelled 

nanoparticles - without reporter molecules) can provide a wealth of information 

relating to both cellular components as well as cellular processes occurring in the 

direct vicinity of the nanoparticles.  

Components of cells can be identified by analysing intrinsic spectral bands. Kneipp 

et al measured signals originating from the native cell constituents such as DNA, 

RNA, amino acids, and proteins demonstrating the distribution of DNA and protein 

by the presence of their respective spectral peaks found at ~1120 cm-1 and ~1004 cm-

1.72 It is worth noting that the distribution of the cell components was only detected in 

regions where nanoparticles were present, and the non-uniformly distribution of 

nanoparticles throughout the cell will not provide a complete depiction of the cell in 

its entirety.72 

While exploring the molecular composition of native cell constituents is an interesting 

application, label-free SERS also offers a way to observe biological processes and 

functions such as endocytosis.73–75 Huefner et al characterised spectral features 

associated with the maturation process of endosomes to lysosomes such as the 

decrease of pH along the transition pathway, the degradation of lipids and proteins, 

and the breakdown of nucleic acids within the lysosomes.74,75  

The study of biological processes and functions using label-free SERS typically relies 

on the intracellular uptake of nanoparticles. However, intercellular signalling 
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pathways often result in the secretion of a small number of molecules, whilst 

extracellular chemical signalling pathways are involved in many biological and 

physiological processes. Using a glass nanopipette covered with nanoparticles, 

metabolites secreted from Madin-Darby canine kidney (MDCKII) epithelial cells, 

namely pyruvate, lactate, ATP, and urea, were detected simultaneously.76 

Additionally, this approach has been used to measure ATP, glutamate, acetylcholine, 

γ-aminobutyric acid (GABA) and dopamine, among other neurotransmitters by 

placing the SERS probe near mouse dopaminergic neurons.77  

In a similar way to using Raman spectroscopy, to differentiate between cancerous and 

non-cancerous tissues as described in Section 1.3, nanoparticles may be introduced 

into tissue samples to enhance intrinsic signals, therefore aiding discrimination 

between cell types.78,79  

Gaining information from cells using label-free SERS approaches can be challenging, 

the irregular dissemination of nanoparticles throughout the cell, the formation of 

variable sized nanoparticle aggregates, and the generation of large and complex data 

sets requires advanced analysis to extract important features, all require careful 

consideration.  

 

1.4.1.2  Labelled Nanoparticles  

Functionalising nanoparticles with reporter molecules facilitate the active imaging or 

sensing of biological targets. Simple nano-labelling systems are most common, where 

a single reporter molecule is used to functionalise the nanoparticle surface. More 

complicated arrangements of nanoparticle functionalisation range from multiple 

reporter molecules on a single nanoparticle, to combining reporter molecules with 

specific targeting compounds such as oligomers80,81, peptides82,83, or antibodies.49,84–86  

SERS has been applied to biological samples in various formats to detect disease in 

vitro. Combining targeted SERS approaches with live cell microscopy enables further 
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capabilities such as high spatial resolution imaging of specific cellular biomolecules. 

Targeting approaches such as the conjugation of antibodies to nanoparticles can 

provide information on the presence and distribution of biomarkers within cells. Lee 

et al. reported the use of gold or silver nanoparticles functionalised with monoclonal 

antibodies specific to phospholipase Cγ1, which is overexpressed in 

hyperproliferating tissues and found in many cancers.84  

In addition to the detection of biomarkers found in diseased human tissues, pathogen 

detection is critically important as antimicrobial resistance increases. Kearns et al. 

demonstrated the use of silver nanoparticles functionalised with a Raman reporter 

with bacterial strain specific antibodies. Employing a sandwich-type assay, bacterial 

cell concentrations as low as 10 CFU/mL were detected in single pathogen tests, and 

using the multiplex system, three bacterial strains were isolated and detected: 

Escherichia coli (E. coli), Salmonella typhimurium (S. typh), and methicillin-resistant 

Staphylococcus aureus (MRSA).86 

While targeting of biomolecules provides high spatial resolution imaging of specific 

cellular biomolecules, nanoparticles functionalised with only reporter molecules can 

provide information on the intracellular distribution of the particles. McAughtrie et 

al. reported the first combined 3D Raman and SERS imaging in cells. Cells were 

treated with a mix of nanoparticles, functionalised with a range of reporter molecules, 

and their location within the cell determined. In addition to SERS imaging, intrinsic 

Raman signals from the cells were also analysed, demonstrating SERS imaging and 

the simultaneous confirmation of nanoparticle uptake along with multiple cellular 

component detection.54  

Blood, sputum, and urine are common biofluids analysed for indications of infection 

and disease. Indirect detection is the predominant approach to employing SERS in 

biofluid based assays (Figure 1.7). Much of the early work was established by Vo-Dinh 

et al., reporting on the first DNA-SERS probe, where labelled nucleic acid sequences 

were used to target specific complementary nucleic sequences.87 This has enabled 
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SERS to be used as a tool in the detection and identification of viral and bacterial DNA 

for possible disease diagnosis.80,81,88–90 

 

1.4.1.3  3-Dimensional Cell Culture and Surface Enhanced Raman 

Spectroscopy 

There is no doubt that cell culture has become a crucial tool in understanding 

fundamental biological mechanisms which underpin cell behaviour. These 

behaviours such as differentiation, migration and growth can be affected by the cell’s 

microenvironment. Cell culture is an accepted approach to study cell behaviour, 

however, there is much evidence to suggest that the behaviour of cells grown as 2D 

culture diverge significantly from the response seen in vivo.91,92 Figure 1.8 illustrates 

the difference between 2D and 3D environments and the biophysical cues cells 

receive. In traditional 2D cell culture a stiff, flat surface provides support for the cells 

to adhere. These 2D cell culture supports (typically polystyrene or glass) provide an 

easy way to handle cells in a homogenous manner, with the cells grown as 

monolayers. This aids growth reproducibility as the cells receive comparable 

amounts of nutrients, or drugs, applied to the cells. What these supports lack, 

however, is the ability to offer a means of allowing the cells to “find” a niche 

comparable to their natural environment. The external support can influence cell 

shape, which in turn affects the regulation of biophysical cues determining cell 

behaviours, such as migration, proliferation, and in some cases, differentiation.   In 

addressing this issue, there has been much effort made in recent years to investigate 

methods which move away from the growth of monolayer cell cultures to look at 

more complex “cell structures” which can mimic the behaviours seen in vivo.91–94  

Advances in the fields of cell biology and tissue engineering have provided a range 

of methods in which to culture cells in three dimensions. Self-organising  models such 

as multicellular tumour spheroids (MTS), or models that employ scaffolds (such as 

hydrogels), both provide a relatively simple and scalable method of production, 
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offering high reproducibility, the possibility of co-culture, and are also amenable to 

high throughput for drug screening.92,94–96 However, with their simplicity lies several 

drawbacks;  the architecture of these cultures can lack the complexity seen in tissue, 

while some commercial scaffolds can have significant variations between batches due 

to their biological origin.94 Techniques such as 3D bioprinting offer the ability to create 

custom in vivo-mimicking architectures with physical and chemical gradients.94,95 

Most recently, Noor et al. printed thick cardiac patches, matching the biochemical and 

immunological fingerprint of a patient.97 

Figure 1.8 Missing cues. The physical, mechanical and chemical cues cells encounter is 

considerably different between 2D and 3D microenvironments. Reprinted from reference 92 

with permission from Journal of Cell Science. 
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Current methods used to analyse physiological parameters in 3D culture models 

often involve destruction of the sample.98–100  

Combining SERS with 3D cell culture models presents several challenges, including 

excitation of SERS probes through “tissue” and the corresponding signal detection. 

As 3D cell culture becomes more popular, Raman techniques are being employed as 

an identification method as well to monitor the physiological environment in a 

spatially resolved and quantitative manner. 

The use of Raman techniques in 3D cell culture is still in its infancy. However, as 

multicellular tumour spheroids (MTS) are a simple production method of 3D cell 

culture, several studies have implemented SERS in this setting.23,101,102 Jamieson et al. 

used a regional targeting approach to investigate the intracellular pH and redox 

gradients that occur across live MTS (outer, intermediate, and centre regions, Figure 

1.9), and the subsequent response to drug or radiation treatments.23  

Altunbek et al. demonstrated the cellular responses to Doxorubicin (Dox) and 

Paclitaxel treatments on HeLa cell spheroids. Due to apoptosis, an increase in the 

cholesterol peak at 555 cm-1 was attributed to the destabilisation of the endolysosomal 

membrane, while the activation of GTPases resulted in an increase in a signal 

associated to the guanine (675 cm−1). A drug specific response was also noted with the 

increased cholesterol peak intensity at 705 cm−1 after Dox treatment, due to the 

induced cholesterol synthesis on the endolysosomal membrane.102 

As a way to improve signal obtained through tissue, Nicolson et al. used surface 

enhanced resonance Raman spectroscopy (SERRS). NIR Raman reporters in 

resonance with the excitation wavelength, enabling detection through tissue barriers 

using conventional Raman spectroscopy. Through their biological model 

nanoparticles were taken up by cells in an MTS arrangement then placed behind 

porcine tissue. The SERRS signals were detected at a depth of 5 mm of tissue.101  
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1.4.2 Surface Enhanced Raman Spectroscopy for Molecular 

Sensing 

Biological systems exist in a balanced state and alterations to parameters such as pH, 

redox potential, and the concentration of reactive oxygen species (ROS) can have 

significant impact on cell functions, with changes to the physiological homeostasis 

observed in disease processes. As such, SERS reporters have been developed to 

measure these parameters. Early work by Lyandres et al. created glucose sensors 

using silver coated spheres functionalised with mercaptohexanol and decanethiol, 

creating “holes” where glucose molecules could position themselves and the 

resulting response measured by SERS.103 The group reported the quantification of 

glucose within a clinically relevant range of 0.56−25 mM, under physiological pH and 

in the presence of interfering analytes. 

Measuring intracellular pH by SERS often employs the pH sensitive molecules 4-

mercaptobenzoic acid or 4-mercaptopyridine as both display ratiometric peak 

changes.51,104 Using this approach, SERS-based investigations have explored the 

endocytic pathway by monitoring pH changes in vesicles.72,74,105 Through measuring 

intracellular pH, Pallaoro et al. found that the majority of nanoparticle containing 

locations within the cell registered pH values between 4-5, with a smaller number of 

sites measuring pH 6, and even fewer at pH 7-8. From this, they hypothesised that 

the main pathway by which nanoparticles enter cell was through receptor mediated 

endocytosis, as the other pathways, caveolae mediated endocytosis or 

micropinocytosis, would tend to result in higher pH compartments.106 The 

intracellular pH has also been shown to be affected by external influences such as the 

extracellular pH and inflammation.107 Jaworska et al. demonstrated that intracellular 

acidosis occurred in endothelial cells treated with tumour necrosis factor-α (TNFα), 

a cell signalling protein involved in systemic infection.107  

In addition to pH, cellular redox potential has been investigated due to its 

involvement in a number of biochemical processes.108  Previous work by Campbell et 
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al. has included the synthesis of a suite of redox probes, consisting of small molecules 

sensitive to redox potential, attached to gold nanoparticles (Figure 1.9).109,110 These 

SERS redox probes have been used to measure intracellular redox potential in a 

number of cell lines under stresses such as hypoxia or oxidative stress.109–111 In 

addition, simultaneous measurements of intracellular pH and redox potential, along 

with the application of the nanosensors to 3D multicellular tumour spheroids (MTS) 

models has been reported (Figure 1.9).23,112  

Involved in many physiological mechanisms such as cell signalling and the regulation 

of gene expression, reactive oxygen species (ROS) such as ●OH, hydrogen peroxide 

and singlet oxygen, are important in biological systems.113 In instances where ROS are 

overproduced, cell components such as proteins, DNA, and lipid membranes can be 

Figure 1.9 A) Molecular structure of 4-MBA and NQ with its electron transfer scheme. B) pH 

and C) redox potential gradients in MCF7 MTS measured by SERS. Average SERS spectra 

acquired for core, intermediate and outer regions of MTS with targeted MBA-functionalised 

nanoshells (B) and NQ-functionalised nanoshells (C) along with a schematic showing average 

pH and average adjusted redox potential values for each condition (Adapted with permission 

from reference 23 under the Creative Commons Attribution 3.0 Unported Licence). 

H+ 

-H+ 

B) C) 

A) 



29 

 

damaged. As such, the detection and quantification of ROS can be indicative of cell 

health.75 Sensitive and selective SERS H2O2 probes have been developed using boronic 

acid sensors, based on 4-carboxyphenylboronic acid (4-CA) and, which decorate the 

Figure 1.10 A) Illustration of the nanoparticles functionalised with 4-CA for H2O2 sensing in 

living cells (Adapted with permission from reference 114. Copyright 2015 Elsevier B.V.). B) 

SERS-based scheme for detecting H2O2 by a boronate nanoprobe. H2O2 selectively oxidizes 3-

MPBA (green spectra) to 3-HTP (red spectra), which yields easily distinguished changes in the 

SERS spectra (Adapted with permission from reference 115: X. Gu, H. Wang, Z. D. Schultz and 

J. P. Camden, Anal. Chem., 2016, 88, 7191–7197. Copyright 2016 American Chemical Society). 

A) 

B) 

Resultant 
Resultant: 

4-CA 

4-CA: 
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surface of gold nanoparticles (Figure 1.10).114 Gu et al. used 3-mercaptophenyl boronic  

cid (3-MPBA), which upon reacting with H2O2 produces 3-hydroxythiophenol (3- 

HTP), with each species affording a distinct spectral fingerprint (Figure 1.10). From 

this, it was possible to detect and quantify both endogenous and exogenous H2O2 in 

live cells. Further, combining these nanosensors with glucose oxidase (GOx), they 

reported the quantitative and selective detection of glucose in human serum.115 

Other sensing targets include the detection of gaseous signalling molecules, carbon 

monoxide (CO) and nitric oxide (NO). These have been highlighted as potential 

therapeutic agents with CO becoming accepted as cytoprotective, and NO has 

emerged as a potential therapy for acute respiratory distress syndrome (ARDS), 

because it decreases pulmonary arterial pressure without affecting the systemic blood 

pressure.116,117 Novel sensing compounds for CO and NO which can be assembled 

onto a nanoparticle surface have been developed. The CO detection approach 

employed nanoparticles modified with a cyclic palladium complex, while the NO 

sensor used nanoparticles functionalised with o-phenylenediamine (OPD). These 

nanosensors have been used to detect endogenous CO and NO in living cells.118,119  

 

1.4.3 Surface Enhanced Raman Spectroscopy and Tissue 

Imaging 

The current gold standard for analysing patient biopsy samples is by 

immunohistochemical practices. Using nanoparticles in place of fluorescent probes 

enables SERS to complement current practice. Several advantages that SERS 

demonstrates are that background contributions are less of an issue than with an 

intrinsic Raman method, aiding in quicker image acquisitions. Further, multiplexing 

abilities facilitate the detection of multiple markers in a single measurement, using a 

single laser line. 
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Applying SERS to tissue imaging and subsequent disease detection was first reported 

by Schlücker et al., a system comprising a small molecule reporter linking the 

nanoparticle and antibody was used to detect and locate prostate-specific antigen 

(PSA) in patient tissue samples.120 Further work by the group used this technique to 

assess and monitor PSA expression in tissues.121 Drawing attention to the 

Figure 1.11 A) Illustration of the composite organic-inorganic nanoparticles (COINs). B) 

Spectral deconvolution from a single point in the map. The measured spectrum (grey) and 

best-fit spectrum (black, beneath grey spectra) are shown in the upper spectrum. Extracted 

spectra for BFU-CK-18 (red), AOH-PSA (green), and YOYO (blue) are given below. C) 

Brightfield image of a section of prostate tissue, targeted with antibody-labelled SERS probes. 

The image spans the tissue features: gland lumen (L), epithelia (E) from two separate prostate 

glands, and stromal tissue (S) between the glands. D) Component and co-localisation of SERS 

probes. The COIN probe for detection of (i) PSA via conjugation with anti-PSA antibody and 

the Raman dye acridine orange (AOH-PSA, green), and (ii) CK-18 via conjugation with anti-

CK-18 antibody, and the Raman dye basic fuchsin (BFU-CK-18, red). (iii) A DNA fluorescent 

dye (YOYO) labelled nuclear regions. (iv) Co-localisation of the combined COIN and DNA 

signals. Scale bars 10 μm. Adapted with permission from reference 122 B. R. Lutz, C. E. 

Dentinger, L. N. Nguyen, L. Sun, J. Zhang, A. N. Allen, S. Chan and B. S. Knudsen, ACS Nano, 

2008, 2, 2306–2314. Copyright 2008, American Chemical Society. 

A) 

B) 

C) 

D) 

iii) iv) 

i) ii) 
AOH-PSA BFU-CK-18 
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multiplexing capabilities of SERS, Lutz et al. developed composite organic-inorganic 

nanoparticles (COINs), applied them to tissues samples, demonstrating the ability to   

simultaneously target two different antibodies, cytokeratin-18 (CK-18) and PSA 

(Figure 1.11).122 

 

 

1.4.4  Surface Enhanced Raman Spectroscopy and In Vivo 

Imaging 

 

The utilisation of both targeted and non-targeted SERS probes, where SERS probes 

are either functionalised with a molecule which binds to a specific biomarker or are 

left without the biorecognition molecule, have been studied for in vivo applications. 

Early SERS in vivo studies compared the tumoral uptake of targeted vs non-targeted 

SERS probes. Antibodies conjugated to gold nanoparticles were introduced into mice 

via tail injection, and SERS signals recorded from tumour and liver locations. The 

results showed that targeted probes accumulated in the tumour up to 10 times more 

efficiently than the non-targeted probes, and that there was some non-specific uptake 

of both types of nanoparticles by the liver and spleen.123  

With disease processes complex, it is likely that no single targeting probe will provide 

enough information for complete disease diagnosis. As such, multiplexed imaging in 

vivo has become a research focus, with the aim of detecting disease at an earlier stage. 

Simultaneous detection of two non-target probes in vivo was demonstrated by 

Gambhir in 2008.124 Further work by the group extended the multiplexing capabilities 

to 10 different SERS probes, administered at separate injection points, and the 

identification of 5 probes administered intravenously (Figure 1.12).50 

Aside from cancer detection, SERS has been used to detect biomarkers of 

inflammation in vivo. Here, nanoparticles were conjugated to anti-intercellular 
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adhesion molecule 1 (ICAM-1) antibodies, as ICAM-1 expression in vasculature is an 

early indication of inflammation and atherosclerosis. After inflammation was 

induced in the ear pinnae of a mouse, by administering lipopolysaccharide, the SERS 

signals were measured demonstrating significantly higher detection over the isotype 

control. It was also reported that, compared to conventional fluorophore-antibody 

conjugates, SERS reporters produce higher sensitivity detection of ICAM-1.125  

SERS imaging can offer improvements in spectral definition, depth resolution, and 

significant signal-to-noise ratio gains in vitro, ex vivo, and in vivo. 
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Figure 1.12 Multiplexing in vivo. A) Detection of 10 different SERS particles injected 

subcutaneously in a murine model. The grayscale bar to the right depicts the Raman intensity. 

B) Spectra of five unique Raman SERS tags. C) Deep-tissue multiplexed imaging 24 h after 

intravenous injection of five unique SERS nanoparticle batches simultaneously. Raman image 

of liver overlaid on digital photo of mouse, showing all five SERS probes accumulating in the 

liver after 24 h. Panels below depict separate channels associated with each of the injected 

SERS nanoparticle batches. Adapted with permission from reference 50. 

A) 

B) 

C) 



35 

 

1.4.5 Fibre-based Raman Sensors  

In addition to conventional microscopy-based instruments, there have been massive 

efforts to use remote sensing techniques, i.e. sensing and imaging through an optical 

fibre. Remote sensing allows for identification and detection of disease at sites located 

away from the spectrometer and other optical measurement devices, without which 

access would be impractical and unreasonable (e.g. in vivo procedures). The fibre-

based Raman sensors can be used for direct sensing measurements, for example, 

when it is possible to obtain the Raman signal from tissue itself, or the sensing fibres 

can measure analytes indirectly, using reagent mediated sensors. Reagent mediated 

sensors are useful when the sample has no intrinsic optical properties, and so the 

analyte will instead interact with a chosen reagent, resulting in an observable change 

to the optical properties of the reagent. The fibre-based work in this thesis explores 

reagent mediated sensing. 

 

1.4.5.1  Fabrication of Optical Fibres 

Optical fibres are usually employed because they offer a way to sense remotely. Often, 

this requires the fabrication of fibres, flexible and robust enough to be able to be 

placed in vivo. These characteristics provide constraints around which novel fibres 

can be designed.  

Typically, an optical fibre consists of the core, the cladding, and a polymer coating 

(Figure 1.3). The core through which light propagates, is most commonly made from 

fused silica glass126–128, however, they can also be plastic129–131, or even hollow56,132–135. 

In this thesis, I have used silica-based optical fibres. The cladding has a lower 

refractive index than the core and thus confines light to the core through total internal 

reflection, known as a step-index fibre. Frequently, germanium (Ge) doped silica is 

used as the core combined with a pure silica cladding, as it lowers the core’s refractive 

index.136,137 Alternatively, to produce a core with a lower refractive index, fluorine can 
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be employed as a dopant. The step index fibres can be further classified as being either 

single mode or multi-mode. A single mode fibre has a much smaller diameter core 

than a multi-mode fibre, often <10 µm, which can only guide a single spatial mode of 

light. A multi-mode fibre (Figure 1.3) typically has much larger core diameters, 

capable of guiding multiple spatial modes of light along the fibre.  

The role of the fibre can be considered as being either inert or active. In inert optical 

fibre sensors, it is only the optical signals which are transported to and from the 

sample environment, be it using a single unmodified fibre bundle or two fibre, 

bifurcated bundles (for excitation and collection). In active optical fibre sensors, the 

fibre itself is altered to include analyte sensing reagents. The fibre tips can be modified 

depending on the sensing application, affording either a flat-surface (unmodified), 

pitted cores, or a sharpened fibre tip (Figure 1.14). The modified cores are typically 

achieved through an etching process where hydrofluoric acid is able to etch Ge-doped 

Figure 1.13 Illustration of A) multimode and B) single mode fibre showing the coating, 

cladding, and core, along with light propagation through the fibre.   

A) 

B) 
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silica at a faster rate than pure silica, likely due to the disruption the Ge causes 

between the SiO2 bonds.   

The sensing reagents frequently employed for fibre-based Raman sensing are 

nanoparticles functionalised with a reporter molecule. The immobilisation of 

nanoparticles to the distal end of the optical fibre is commonly carried out using a sol-

gel based material, allowing retention of the nanoparticles whilst being porous 

enough for analytes to pass through.  

 

 

Figure 1.14 Possible optical fibre configurations: A) single fibre bundle used for excitation and 

collection, B) bifurcated fibre bundle with separate excitation and collection fibres. Activated 

distal ends with either a C) flat-surface tip, D) etched fibre to leave a pitted core, and E) an 

etched fibre resulting in a sharpened needle probe. 

A) B) C)   D)   E) 
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1.4.5.2  Fibre-Based Applications of Surface Enhanced Raman Spectroscopy 

Instrumental design is often a limiting factor in the translation of Raman and SERS to 

in vivo applications, where microscopes or traditional spectrometers may not be ideal. 

Advances in instrumentation have facilitated remote sensing through an optical 

fibre.126,128,138 

When combining SERS with an optical fibre, the fibre can be considered as either 

active or passive. Employing an endoscopic probe to image and detect SERS particles 

applied to a biological model (e.g. intravenously or topically) would be considered as 

passive, where functionalising the fibre probe itself with SERS active particles can be 

considered active.  

Passive fibre applications include imaging SERS particles in vivo using a fibre. This 

can enable the reliable detection of premalignant lesions in animal models that closely 

mimic disease development in humans.139–143 Garai et al. developed an endoscope 

where a rotating mirror enables intraluminal imaging (Figure 1.15).141 Further work by 

Harmsen et al. used surface-enhanced resonance Raman spectroscopy (SERRS) to 

enhance sensitivity of particle detection in vivo.139 This technique facilitated the clear 

definition of tumour margins, with the SERRS-NP signals enabling the detection of 

much smaller lesions. In particular, SERRS detection does not depend on the 

morphology of the lesions, or the presence of biomarkers, so that even flat lesions 

(usually missed with conventional white-light endoscopy) can be seen.139 

Active optical fibre sensors, where the SERS nanoparticles are attached to the distal 

end of the fibre, provide an alternative way to measuring physiological 

parameters.8,144,145 Typically, modified fibre tips have been developed to measure 

physiological parameters label-free, dynamic, and in real-time.128,138,144–146  

There have been methods described in literature detailing the fabrication of SERS 

fibre probes, from noble metal evaporation or sputtering,147,148 photo-induced 
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deposition of metal nanoparticles,149,150 and assembly or growth of metal colloidal 

nanoparticles.8,76,138,145,151,152 Shape and structure of fibre tips have also been 

investigated for SERS applications.138,148 Tapered optical fibre probes have been 

employed in several remote sensing applications.145,147,151,152 Liu et al. demonstrated the 

Figure 1.15  Illustration of a Raman-imaging system for the detection of SERS particles. (A) 

Shows the Raman fibre can be integrated with a clinical endoscope. (B) Schematic of the distal 

end of the device. The rotating motor allows the mirror to sweep 360 degrees, enabling luminal 

imaging without requiring tissue contact.  (Adapted with permission from reference 141. 

Copyright 2015 Garai et al.) 

B) 

A) 
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remote detection of levofloxacin lactate, and Jin et al. established a method for 

identifying expired tetracycline hydrochloride, both using tapered optical fibre tips 

coated in gold nanoparticles.153,151  

Choudhury et al. developed an endoscope deployable optrode to sense pH within the 

alveolar regions of an ex vivo ovine lung model.8 Here, an asymmetric dual core fibre 

consisting of a 2 µm pump core and a 28 µm collection core was used to remove the 

intrinsic silica background with gold nanoshells functionalised with 4-MBA were 

attached to the distal end of the fibre (Figure 1.16). Using the device, the authors were 

able to monitor the consequence of ceasing ventilation, which led to the acidification 

of the alveolar surface fluid over time.8  

Figure 1.16 Illustration of the optical fibre sensing system for measuring pH. The optrode can 

be deployed through a conventional bronchoscope, reaching the alveolar region. The sensing 

fibre consists of 2 cores, a 2 µm excitation core and 28 µm collection core. The face of the distal 

endcap (outer diameter 1.2 mm) was coated in gold nanoshells functionalised with 4-MBA. 

(Adapted with permission from reference 8 under the Creative Commons Attribution 4.0 

Unported Licence) 
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1.5 Aims of Thesis 

 

The aim of this thesis was to develop a range of substrates to extend the use of SERS 

nanosensors in several pH sensing applications: combining nanosensors with an 

optical fibre, and to also use them within a live 3D cell culture environment.  

 

Fibre-based physiological sensing, particularly within the lungs to reach the alveolar 

space, presents as a challenge for in vivo sensing applications as they are still limited 

by the size of the sensors. This research presents the development of simple SERS-

based optical-fibre sensors to provide a compact and miniaturised sensing system, 

capable of measuring physiological parameters locations remote to the optical 

system. 

 

In addition to fibre-based sensing, the substrates for the SERS nanosensors have been 

utilised as a way of measuring pH of the extracellular space within multicellular 

tumour spheroids (MTS). MTS are an important tool in cell culture, mimicking the in 

vivo tumour microenvironment more closely than traditional monolayer culture 

techniques. However, much of the research employing SERS sensing in biological 

applications focusses on the delivery of nanoparticles intracellularly, measurements 

concerning the extracellular spaces are somewhat lacking. Thus, these SERS 

nanosensors substrates have been investigated as a way to measure the extracellular 

pH within MTS, providing a quantitative tool which could be used to monitor pH 

changes in response to drug delivery or other types of cancer therapy. 
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2 Nanosensors 

 

2.1 Surface Enhanced Raman Spectroscopy Nanosensor 

Selection 

 

There exists a range of molecules capable of responding to changes in pH, where 

observed spectral changes correspond to either the protonation or deprotonation of 

the reporter molecule,51,154 and others where pH alters the aggregation of 

nanoparticles resulting in an intensity change (via formation of hot-spots).155 The most 

extensively used SERS pH reporter molecules are 4-mercaptobenzoic acid (4-

MBA),51,105,154,156 4-mercaptopyridine (4-MPY),104,157,158 and 4-aminothiophenol (4-

ATP).159,160  

The way in which these SERS nanosensors report on pH is by alterations in peak 

intensities within their spectra, typically in response to protonation or deprotonation 

of the sensor molecule. An ideal pH reporter molecule would demonstrate multiple 

strong SERS signals with ratiometric spectral changes. This could be with a single 

peak changing with pH against a static reference peak or by means of 2 peaks which 

change in opposite directions to one another with pH. The sensing range of reporters 

typically covers ca. 2-3 pH units, centred on the pKa of the sensing moiety. An 

important point to note when selecting appropriate pH reporters for SERS 

applications, is that the pKa measured in solution may shift when bound to the 

surface of a nanoparticle, therefore basing sensor choice solely on the solution pKa’s 

of the unbound molecules may not be helpful.  
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2.2 Aims of the Chapter 

The aims of this chapter are to set out the selection and characterisation of a suitable 

SERS pH reporter and characterise its spectral responses to pH, followed by the 

combination of the nanosensors with an optical fibre and similarly demonstrating the 

response to pH through fibre.  

 

 Calibration Set Up 

A selection of pH SERS sensors were evaluated by attachment to a particle surface, 

followed by drying them onto a substrate for analysis with respect to pH. Due to the 

high Raman signal given by glass slides (Figure 2.1), an alternative which eliminates 

this background signal was prepared. Microscope slides cut to approximately 1 x 1 

cm “chips”, sputter coated with Cr and Au (3 and 150 nm respectively, by Dr Andrew 

Garrie (University of Edinburgh, UK)). Figure 2.1 illustrates the reduction in signal 

originating from glass when coated with Au. 

 

The set up for pH calibrations (Figure 2.2) consisted of the Au coated glass chip glued 

to a microscope slide, with a self-sealing PDMS superstructure (Schott Nexterion, US) 

surrounding the chip. Poly-L-lysine (PLL) was used to adhere the functionalised 

AuNPs by electrostatic forces with the AuNPs. PLL (50 µL, 0.1 mg mL-1) was pipetted 

onto the gold surface, left for approximately 2 h then rinsed with dH2O. 

Functionalised AuNP (~1.8x108 particles) were added and left to dry completely. 

Buffers (pH or redox) were then placed within the chamber, and spectra recorded 

from the submerged chip. Between each buffer, the chip was rinsed with dH2O. All 

pH calibration-on-chip experiments involved obtaining the Raman spectra of AuNP 

(150 nm) functionalised with a reporter molecule (either 4-MBA, 4-MPY, or 4-ATP) 

while in the presence of different pH buffers. Prior to each experiment, the pH of each 

buffer was measured using an electrochemical based pH meter (Mettler-Toledo). 
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Spectrometer choice and its set-up is also an important variable that needs to be 

controlled. Here, three spectrometers were used; a Renishaw In Via system, an Ocean 

Optics QE Pro spectrometer, and an in-house built spectrometer.161 The Renishaw In 

Via system can achieve a spectral resolution of ~1 cm-1, whereas the Ocean Optics kit 

has a resolution of 6 cm-1, but has the advantage of being modular and therefore much 

more portable than the In Via system. The spectrometer built in-house had a 25 cm-1 

resolution, however it had the advantage of being able to carry out time-resolved 

measurements.161–163  
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Figure 2.1 Removing Raman glass signal. Raman spectra of glass and gold coated glass (both 

from microscope slides). Spectra obtained using a Renishaw In Via system, with 785 nm 

illumination, ~100 mW, 5 accumulations with a 7s integration time. 
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 4-Mercaptobenzoic Acid as a pH Sensor 

4-MBA has been a popular choice for pH based SERS sensing and has been shown to 

be useful for biological sensing, with many research efforts focussed on intracellular 

pH measurements.107,112,147,164 

The Raman modes of 4-MBA have been well characterised and the spectra of 4-MBA 

on AuNP can be found in Figure 2.3.51,154,164,165 The most prominent features in the SERS 

spectra are the two intense peaks at 1076 cm-1 and 1598 cm-1, due to ring breathing 

modes154,164 (Figure 2.3 (A)). The visibly less intense peaks at 1400 cm-1 and 1707 cm-1 

exhibit variable intensities dependent on the pH of the surrounding environment 

(Figure 2.3 (B)). These peaks have been assigned to a COO‾ stretching mode at 1400 

cm-1 (νs(COO‾)), and a C=O stretching mode of non-dissociated COOH groups at 1707 

cm-1.154,164 A summary of these observations can be found in Table 2.1.  

Figure 2.2 Illustration of the calibration set-up. A gold coated glass chip was attached to a 

microscope slide, surrounded by an adhesive PDMS chamber. Poly-L-lysine (50 µL; 0.1 mg 

mL-1) was left for ca. 2 h, rinsed with dH2O and functionalised AuNPs (50 µL; 1.8 x108 

particles) and left to dry on the gold surface overnight. The pH buffer (1 mL) was placed in 

the chamber and the spectra recorded. The buffer was removed, the chip rinsed with dH2O 

(1 mL) and new buffer added to the chamber.  
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The 1st derivative of these spectra ((Figure 2.3 (C), (D)) can aid in locating the peak 

positions, making it easier to see a peak shift occurring between 1396 to 1421 cm-1 with 

increasing pH. An 8-point baseline was subtracted, and peak heights were 

determined using the peak finding function and the 1st derivative method. 

Analysing the spectrum using different peak combinations would provide varied 

accuracies, so a range of peak combinations were considered for comparison (Figure 

2.4 -Figure 2.6). A Boltzmann fit was applied to the calibration data, using equation 

2.1. This equation can be employed to determine pH in a range of biological models, 

where A1 = initial y value, A2 = final y value, 𝑥0 = calculated pKa (midpoint of the 

curve), d𝑥 = time constant.166  

A summary of the calculated pKa (with adjusted R2 values) is given in Table 2.2. The 

calibration plots showed peak combinations vs pH that seemed to demonstrate a 

wide range of pKa values, largely between 8.99-7.59, with the exception of the plots 

1396 / 1076 cm-1 and 1396 / 1589 cm-1 which gave lower pKa values of around 6.6 

(coupled with lower adjusted R2 values). From these plots, Figure 2.5 (A) gave the 

best fit, with the Boltzmann fit giving an adjusted R2 of 0.99732 and apparent pKa of 

8.9.  From the calibration plot in Figure 2.5 (A), pH values between approximately 6 

and 10 should be able to be measured accurately. Outside this range the gradient of 

the curve decreases significantly making measurements less accurate.  

 𝑦 = 𝐴2 + (
𝐴1 −  𝐴2

1 + 𝑒(
𝑥−𝑥0

𝑑𝑥
)
) ( 2.1 ) 

   

Rearranged to give pH: 

 
𝑥 = ln ((

𝐴1−𝐴2

𝑦− 𝐴2
) − 1) 𝑑𝑥 +  𝑥0  

 

( 2.2 ) 

 

 
𝑝𝐻 = ln ((

𝐴1−𝐴2

𝑟𝑎𝑡𝑖𝑜− 𝐴2
) − 1) 𝑑𝑥 +  𝑥0  ( 2.3 ) 
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Deriving pH measurements from the 150 nm AuNP-MBA using the Renishaw In Via 

system, the ratio between 1397 cm-1 ± 25 cm-1 (COO-) and 1707 cm-1 ± 40 cm-1 (COOH) 

was used with the following equation 2.4. 

 𝑝𝐻 = ln ((
−3.2653

𝑟𝑎𝑡𝑖𝑜− 3.5226
) − 1) 1.02468 +  8.90  ( 2.4 ) 

 

 

1000 1200 1400 1600 1800

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

D
e

ri
v
a
ti
v
e

Raman Shift (cm
-1
)

 pH 1

 pH 7.4

 pH 10

1000 1200 1400 1600 1800

0

2

4

6

8

10

12

14

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm
-1
)

 pH 1

 pH 7.4

 pH 10

1400 1600 1800

0

2

4

6

8

10

12

14

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm
-1
)

 pH 1

 pH 7.4

 pH 10

1400 1600 1800

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

D
e

ri
v
a
ti
v
e

Raman Shift (cm
-1
)

 pH 1

 pH 7.4

 pH 10

Figure 2.3 Examples of spectral changes of 4-MBA. A) is the general spectrum recorded 

from 4-MBA, B) is a zoom section highlighting the spectral changes found at 1397 cm-1 

and 1707 cm-1 in more detail, with arrows indicating the direction of change with 

increasing pH. C) and D) are the 1st derivatives of A) & B) on the same Raman shift scale. 

Spectra obtained using a Renishaw In Via system, with 785 nm illumination, at 0.1 mW, 

60x objective, and 1s integration time. 

A) B) 

C) D) 
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Table 2.1 Summary of main peaks found from SERS spectra of 4-MBA 

 

 

Table 2.2 Peak and area under curve (AUC) combinations used in calibration plots of 4-MBA.  

Calc. 

Basis 
Peak Combination 

pKa 

(from plot) 

Adjusted R2 

Value 
Figure 

AUC 1372-1423 / 1677-1729 cm-1 8.99 0.99082 Figure 2.4 

AUC 1362-1453 / 1677-1729 cm-1 8.93 0.98496 Figure 2.4 

AUC 1372-1423 / 1665-1744 cm-1 8.90 0.99732 Figure 2.5 

AUC 1362-1453 / 1665-1744 cm-1 8.85 0.98744 Figure 2.5 

Intensity 1396 / 1677 cm-1 8.74 0.99350 Figure 2.6 

Intensity 1396 / 1076 cm-1 6.66 0.91629 Figure 2.6 

Intensity 1396 / 1589 cm-1 6.56 0.93951 Figure 2.6 

Intensity 1707 / 1076 cm-1 7.61 0.98866 Figure 2.6 

Intensity 1707 / 1589 cm-1 7.59 0.99726 Figure 2.6 

 

 

Observed Peak Position (cm-1) Assignation Responsive to pH 

1076 Ring breathing No 

1396-1421 COO- stretch Yes 

1589 Ring breathing No 

1707 C=O stretch Yes 
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Figure 2.4 Calibration plots using area under the curve (AUC). All spectra were normalised to 

between 0-1 before integrating pH changing regions at ~1400 cm-1 and ~1707 cm-1. Plots A) and 

B) illustrate the differences between using an integration window of ± 25 cm-1 about the 1707 

cm-1 peak against a ± 25 cm-1 window about peak position at pH 7.4 and an integration of the 

full changing peak area at around 1400 cm-1.  Plots C) and D) are derived from the integration 

of regions highlighted in A) and B) vs pH. The black curve represents a Boltzmann fit to the 

plotted data, the red curve is the theoretical Henderson-Hasslebach plot derived using the 

experimentally determined pKa (x0). Spectra obtained using a Renishaw In Via system, with 

785 nm illumination, at 0.5 mW, 60x objective, and 1s integration time.  

A) B) 

C) D) 
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Figure 2.5 Calibration plots using area under the curve (AUC) calculations. All spectra were 

normalised between 0-1 before integrating pH changing regions at ~1400 cm-1 and ~1707 cm-1. 

Plots A) and B) illustrate the differences between using an integration window of the full 

changing peak area around the 1707 cm-1 peak against a ± 25 cm-1 window or the full changing 

peak area at around 1400 cm-1. Plots C) and D) are based on the integration of regions 

highlighted in A) and B) vs pH. The black curve represents a Boltzmann fit to the plotted data, 

the red curve is the theoretical Henderson-Hasslebach plot derived using the experimentally 

determined pKa (x0). Spectra obtained using a Renishaw In Via system, with 785 nm 

illumination, at 0.5 mW, 60x objective, and 1s integration time.   

 

A) 
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Figure 2.6 Calibration plots using area peak intensities. All spectra were normalised to between 

0-1 before integrating pH changing regions at ~1400 cm-1 and ~1705 cm-1 The black curve 

represents a Boltzmann fit to the plotted data, the red curve is the theoretical Henderson-

Hasslebach plot derived using the experimentally determined pKa (x0). Plots A) represents 

peak intensity of the 1396 cm-1 peak against the peak at 1707 cm-1. B) represents peak intensity 

of the 1396 cm-1 peak against the peak at 1076 cm-1. C) represents peak intensity of the 1396 cm-

1 peak against the peak at 1589 cm-1. D) calibration plot based on 1707 cm-1 peak against 1076 

cm-1 reference peak, and E) 1589 cm-1 reference peak. Spectra obtained using a Renishaw In Via 

system, with 785 nm illumination, at 0.5 mW, 60x objective, and 1s integration time.   
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 4-Mercaptopyridine and 4-Aminothiophenol as pH 

Reporters 

Other small molecule SERS reporters which respond to pH include 4-

aminothiophenol (4-ATP) and 4-mercaptopyridine (4-MPY). Figure 2.7 illustrates the 

equilibrium between the protonated and neutral states of 4-MPY and 4-ATP, along 

with spectra acquired for each reporter at an acidic and basic pH.  

  

2.2.3.1 4-MPY 

Five peaks were chosen for calibration calculations, with their peak combinations 

detailed in Table 2.3. The most obvious spectral changes seen between low and high 

pH in Figure 2.7 correspond to the relative intensities between the ~1000 cm-1 and 

~1100 cm-1 peaks, the splitting of the peak at ~1600 cm-1, and the varying intensities of 

the peaks between 1200-1300 cm-1. The observed peaks at 1000 cm-1 and 1100 cm-1 

correspond to ring breathing, with the latter coupled with a C-S stretch. The 1055 cm-

1 and 1200 cm-1 peaks are due to C-H in plane bending of the ring, with the peak at 

1600 cm-1 due to C=C stretching.  

The calibration plots showed peak combinations vs pH that seemed to demonstrate a 

wide range of pKa values, largely between 7.48-7.90, although there were some pKa 

values as low as 4.34. While pKa values around 7.5 are relevant for biological 

applications, their fits to the Boltzmann derived curves were generally much poorer 

than those of 4-MBA.  
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2.2.3.2 4-ATP 

Five peaks were chosen for calibrations, with the peak combinations detailed in Table 

2.4 Peak combinations for used in calibration plots of 4-ATP. The peak at ~1500 cm-1 

appeared to be most sensitive to pH, assigned to a b2-type mode. The peaks at 1077 

cm-1 and 1581 cm-1 are due to ring breathing modes, considered to be insensitive to pH 

changes.  

Calibrations carried out with 4-ATP showed widely variable responses, however, it 

is known that 4-ATP can dimerize under certain conditions. It has been reported that 

dimerization (either between nanoparticles or on the same particle) could occur under 

thermal influences, or under basic conditions.167,168 This behaviour may add 

complexity to the sensing ability and as such was deemed to be a less appropriate pH 

reported that either 4-MBA or 4-MPY.  

All calibration plots for both 4-MPY and 4-ATP generally had a poorer fit than those 

from 4-MBA. For this reason, 4-MBA was selected as a pH reporter for all further 

work. Further calibration plots based on a range of peak combinations can be found 

in Chapter 8, Section 8.1, in Figure 8.1-Figure 8.2. 

 



54 

 

 

800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm
-1
)

 pH 8.7

 pH 1.2

800 1000 1200 1400 1600 1800 2000

0.0

0.2

0.4

0.6

0.8

1.0

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm
-1
)

  pH 1.2

  pH 10.8

Figure 2.7 Evaluating 4-MPY and 4-ATP as SERS pH sensors. Calibration plots using area and 

peak intensity. All spectra were normalised to between 0-1 before integrating pH changing 

regions at the specified points. The black curve represents a Boltzmann fit to the plotted data, the 

red curve is the theoretical Henderson-Hasslebach plot derived using experimentally determined 

pKa (x0). Illustrations A) and B) represent protonation of 4-MPY and 4-ATP respectively. Plots C) 

and D) show spectral changes between an acidic and basic environment. Plots E) and F) peak 

intensity ratios of the 1613 cm-1 peak against area under curve (AUC) between 1549-1601 cm-1 for 

4-MPY, and AUC between 1456-1542 cm-1 against 1581 cm-1 for 4-ATP. All spectra recorded using 

a Renishaw InVia system, with 785 nm illumination, ~0.5 mW, and with a 1 s integration time.  
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Table 2.3 Peak combinations for used in calibration plots of 4-MPY 

Calc. 

Basis 
Peak Combination 

Apparent 

pKa 

(from plot) 

Adjusted 

R2 
Figure 

AUC 1613 / 1549-1601 cm-1 7.48 0.98815 Figure 2.7 

AUC 1002 / 1549-1601 cm-1 7.66 0.77973 Figure 8.1 

AUC 1549-1601 / 1002 cm-1 7.83 0.65418 Figure 8.1 

AUC 1549-1601 / 1613 cm-1 7.59 0.98601 Figure 8.1 

Intensity 1092 / 1002 cm-1 4.34 0.93636 Figure 8.2 

Intensity 1002 / 1092 cm-1 4.67 0.89648 Figure 8.2 

Intensity 1055 / 1002 cm-1 4.96 0.83882 Figure 8.2 

Intensity 1585 / 1613 cm-1 7.90 0.67106 Figure 8.2 

Intensity 1613 / 1585 cm-1 7.78 0.80920 Figure 8.2 

 

Table 2.4 Peak combinations for used in calibration plots of 4-ATP 

Calc. 

Basis 
Peak Combination 

Apparent 

pKa 

(from plot) 

Adjusted 

R2 
Figure. 

AUC 1456-1542 / 1581 cm-1 4.45 0.93093 Figure 2.7 

Intensity 1077 / 1581 cm-1 3.16 0.90104 Figure 8.3 

Intensity 1581 / 1077 cm-1 3.88 0.88774 Figure 8.3 

Intensity 1179 / 1581 cm-1 4.01 0.84741 Figure 8.3 

Intensity 1439 / 1581 cm-1 7.58 0.47230 Figure 8.3 
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2.3 Surface Enhanced Raman Spectroscopy through an 

Optical Fibre 

As mentioned in Chapter 1, combining SERS sensing with fibre-based sensing would 

offer advantages as it would allow remote environmental sensing of difficult regions 

such as the alveolar space. Unfortunately, however, endoscopic sensing has several 

limitations, such as the strong intrinsic Raman signal generated from the fibre itself 

(Figure 2.8). This is due to when light travels through an optical fibre, it is scattered by 

silica throughout the whole length of the fibre (Figure 2.8). The signal of interest, from 

a sample in close proximity to the distal end, can be masked by the fibre background. 

Interference from auto-fluorescent tissue may also cause Raman signals to be masked. 

There has been some effort to overcome this problem by introducing specialised fibre 

design, or suppression of background through complex processing methods.8,169 

Through the use of nanosensors and consequently the SERS effect, the signal can be 

enhanced and so overcome the fibre background issue.  

 Deposition Variability 

As briefly described in Chapter 1, fibre-based Raman sensing must overcome certain 

challenges in order to become a reliable tool for measuring physiological parameters. 

These include generating a large enough signal in order to be seen above the often 

high, intrinsic fibre background.  

Using nanoparticles attached to the distal end of a fibre would allow generation of a 

SERS response to address the limitations outlined above, such as enhancing signal. 

However, attempts to reliably deposit them onto fibre tips afforded their own 

difficulties.  

Initial studies carried out involved dipping a fibre tip, pre-functionalised with poly-

L-lysine, into a concentrated solution of AuNP-MBA (3.6 x1011 particles mL-1). Though 
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a simple strategy, the signal afforded from this approach was intense (Figure 2.8), 

easily overcoming the fibre background. However, functionalising the fibre with  

 AuNPs using this approach often resulted in substantial variability as there is little 

way of controlling how many nanoparticles were transferred on to the distal end in 

any single dip. This added a further complication to the functionalisation of the fibre 

as the addition of nanoparticles to the fibre tip needed to be carried out “live”, 

A) 

Figure 2.8 SERS signal generated from AuNP-MBA attached to the end of an optical fibre. (A) 

Light (red arrow) interacts with the fibre core material at every stage, generating a Raman 

signal (grey). The light continues to the end of the fibre where the AuNP-MBA sensors are 

located and a SERS signal generated (gold). (B) AuNP-MBA on a fibre. Spectra of the intrinsic 

background from a 1 m length of fibre (200 µm core diameter, 0.39 NA), and of the same fibre 

with AuNP-MBA attached onto the distal end. Spectra were recorded using an Ocean Optics 

QE Pro spectrometer, exciting with a 785 nm laser (ThorLabs), 0.8 mW output power, and 30 s 

integration time.  
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meaning that the fibre must first be coupled to the spectrometer to allow real time 

monitoring of AuNP deposition. It was observed that 3-4 dips of the fibre into 

concentrated AuNP-MBA solutions was optimal, with additional dipping frequently 

resulting in loss of signal (Figure 2.9).   

 Effects of Contact 

It is realistic to reason that the distal end of the fibre will be in contact with tissue 

surfaces as well as biological fluids if used in vivo. Yet, the transfer of AuNP to the 

Figure 2.9 Dip coating variation in signal intensity. Measurements taken from 3 fibres, each dipped 

into a concentrated AuNP solution (3.6 x1011 particles mL-1) and their spectra recorded. Spectra 

obtained using 0.8 mW output power and 30 s integration time. Ocean Optics QEPro spectrometer 

with a 785 nm excitation source.  
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sample must be limited. A protective layer (for the fibre and sample) was thus 

implemented. In addition, use of the fibre without coatings or a protective layer 

results in significant reduction in signal intensity via AuNP loss.  

After AuNP deposition (Blot 0, Figure 2.10) it can be seen by both the white light image 

and the Raman map that the AuNPs concentrate around the edges of the fibre, with 

irregular signals arising across the distal face, however there is a strong signal seen 

through the fibre which overcomes the background. The unevenness of the AuNPs 

illustrates the inherent variability of employing a dip coating method. Placing the 

functionalised fibre into solutions followed by contact with a surface, conditions 

which might be expected for in vivo pH sensing, resulted in a significant transfer of 

the AuNP from the fibre to the solution or surface and thus a reduction in signal. 

Spectra recorded after dipping the fibre tip into water and gently blotting against 

filter paper also demonstrated a substantial reduction of the SERS signal, further 

exemplified by Raman mapping of the tip of the fibre after each submersion/blot cycle 

(Figure 2.10). The greatest loss of signal was found to be following the first blot, after 

which the subsequent signal was considered too weak to use carry out pH calibrations 

using the current commercial system (Ocean Optics QE Pro spectrometer).  

As a means to prevent AuNP loss from the end of the fibre, the distal end was coated 

with a layer of Sol-Gel. Prepared by the hydrolysis of tetramethyl orthosilicate 

(TMOS) under acidic conditions leads to the formation of SiO2, first going through a 

gel state followed by the dehydration to a glass. Sol-Gel provides a porous glassy 

layer which prevents direct contact between the AuNP and sample while supporting 

sufficient fluid exchange to allow dynamic sensing. The Sol-Gel layer was prepared 

via the method set out by Grant et al170 and applied in a similar way to the AuNP 

deposition, by dipping the distal end of the fibre into an iced solution of the Sol-Gel 

mixture and allowing to dry overnight under ambient conditions. Though simple in 

preparation, the resultant surface appears cracked and flaky (Figure 2.11) which may 

pose a risk if in contact with a sample, such as tissue. There are similar considerations 

to those arising from dip coating the fibre with AuNPs, notably the reliably of the 
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coating the end in a suitable manner taking in aspects such as the reproducibility of 

the coating thickness, porosity, while the potential of the of the sol-gel layer to flake 

may limit the potential scale-up if further translation to an in vivo environment is to 

be considered. 
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Figure 2.10 Signal over multiple blots. Distal end of an optical fibre (200 µm core diameter, 

0.39 NA) dipped into concentrated solution of AuNP-MBA (~3.6 x1011 particles mL-1). The 

fibre was dipped in H2O and gently blotted on to filter paper. Spectra were recorded after 

each blot. White light images and distal end maps taken using a Renishaw In Via 

spectrometer, using StreamLine function, 785 nm laser with ~10 mW power. Colour intensity 

bar represents arbitrary lower and upper values of 5000 and 100000 respectively. The through 

fibre spectra were recorded using an Ocean Optics QE Pro spectrometer, 785 nm laser 

(ThorLabs), 0.8 mW output power, and 30s integration time. 

0 

1 

2 

3 

Blots Distal End Map Through fibre White Light 



61 

 

 

 

 

Figure 2.11 SEM image of sol-gel coatings on the distal end of the fibre. A) Fibre with AuNS 

without a sol-gel coating. B) Close up of AuNS on distal end. C) Fibre tip with sol-gel coating 

before measurements. D)  Expansion of C) showing cracked and flaking nature of the sol-gel 

coating. E) Distal end after multiple pH calibration experiments. F) Close up of distal tip 

showing the AuNS still attached.  
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 Overcoming Background 

As described above, challenges in combining SERS with a fibre-based approach for 

dynamic pH sensing applications originate in overcoming the intrinsic fibre 

background and the entrapment of the SERS sensors. One approach to overcoming 

this challenge is to employ a sophisticated set up such as time-correlated single 

photon counting (TCSPC) spectroscopy, to enable a background free Raman 

spectrum to be produced from a miniaturised fibre probe and enhanced signal from 

the AuNP to be separated by time.  

Work relating to the use of time-resolved spectroscopy was carried out in 

collaboration with Katjana Ehrlich (Heriot-Watt University, UK) and has been 

published.161,171   

TCSPC is typically used for fluorescence lifetime measurements. It allows the 

measurement of how long a molecule stays in its excited state (following excitation). 

However, it can be applied to Raman spectroscopy to separate the signal of interest 

generated from the sample from the background signal generated from the optical 

fibre thus affording a background free signal.  

This approach to reducing the fibre background is a move away from complex fibre 

designs aimed at tackling the same issue, as it has been shown to work with 

commercially available optical fibres, providing a low cost means of optical sensing, 

making it an attractive option.  

Raman signal is generated from the interaction of light with the fibre core material 

when the signal of interest is produced from a relatively small area (Figure 2.12). 

Taking advantage of the different time profiles of fibre Raman scattering and SERS 

signal, temporal separation of these signals can be achieved. In addition to fibre 

background suppression, TCSPC can be utilised to separate the SERS signal from 

fluorescence (Figure 2.12).161 
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In a similar way to Section 2.3.1, the distal end of a fibre (2.7 m, 50 µm diameter, 0.22 

NA) was functionalised with poly-L-lysine, followed by dipping the end into a 

concentrated solution of 4-MBA functionalised gold nanoshells (AuNS) while 

monitoring the signal intensity using a commercial spectrometer. A sol-gel layer was 

applied before recording measurements.  

Comparing non time-resolved measurement obtained from the commercial 

spectrometer and the time-resolved spectrometer (Figure 2.13), it can be seen that the 

spectra appear visually similar. While demonstrating a higher efficiency (signal 

amplitudes are larger overall) the slight loss of peak visibility and broadening of the 

4-MBA peaks as seen in the spectrum obtained by the time-resolved spectrometer are 

due to reduced spectral resolution. Post-processing time-gating* allows time 

windows to be applied after measurements are recorded (Figure 2.14) so the fibre 

 

 

* Measurements obtained and processed by K. Ehrlich (Heriot-Watt University, UK) 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.12 Time profiling signals through an optical fibre. A) Light (red arrow) interacts with 

the fibre core material at every stage, generating a Raman signal (grey). The light continues to 

the end of the fibre where the nanosensors are located and SERS signal generated (red). B) 

Illustration of the progression of time signals through an optical fibre (not to scale).   

A) 

B) 

Time 

In
te

n
si

ty
 

785 nm 

Dark Counts 

Backscattered Raman 
signal from fibre 

Laser  Fluorescence  

SERS Signal  

Reflected forward 
scattering from fibre 



64 

 

background can be removed, resulting in an increase in the signal to noise of the 4-

MBA peaks. It is possible to “recover” the true 4-MBA spectra by the subtraction of 

the measured fibre signal (from the appropriate time window) from the SERS signal 

(Figure 2.14).  

As demonstrated above in Section 2.2.2, some of the spectral features of 4-MBA 

change in response to environmental pH. By taking the ratios of the AUC, within a 

spectral window of ± 30 cm-1 (±4.75 nm) about the peaks of 1380 cm-1 (880 nm) and 

1700 cm-1(906 nm), and plotting against pH, the advantages to applying TCSPC can 

be clearly observed (Figure 2.15). Comparing the time-gated data with the non-time-

resolved data (Figure 2.15 (A)), the time-gated data clearly shows improved selectivity 

and a reduction in the standard deviation of the mean, over 3 replicate measurements. 

Further improvement can be made by increasing the integration time from 10 s to 60 

s (Figure 2.15 (B)). 

The ability to separate the signal of interest (e.g. 4-MBA) from the fibre background 

has other advantages in other applications where there is a large separation between 

A) B) 

Figure 2.13 Commercial vs time-resolved spectrometers. 10s measurement of a 2.7 m optical 

fibre with AuNS-MBA at the distal end. A) Spectra of non-functionalised fibre and 

functionalised fibre obtained using a commercial spectrometer (Ocean Optics, QE Pro). B) 

Non-time resolved spectra of functionalised fibre obtained using the time-resolved 

spectrometer. DC: Dark counts. Figures reproduced from K. Ehrlich et al. (2017), Optics 

Express with permission via the Creative Common Attribution 4.0 License.  

  Time-Resolved   Commercial 

  Wavelength (nm)   Wavelength (nm) 
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the sample and spectrometer (e.g. oil and gas remote sensing) the fibre background 

is known to scale with length, and so it becomes more difficult to observe a signal of 

interest that can overcome the background signal.  

 

  

A) 

 D) C) 

Figure 2.14 Time resolved SERS signal through an optical fibre. 10s measurement of a 2.7 m 

optical fibre with AuNS-MBA at the distal end. A) Time-resolved measurement represented 

using colour as an indicator of Raman intensity. B) Time-resolved measurement in a 3-D 

representation. C) Time-resolved spectra from indicated time windows in A); each window 

is 2.1 ns. D) Recovered spectrum of 4-MBA on AuNS by subtraction of fibre signal. Figures 

reproduced from K. Ehrlich et al. (2017), Optics Express with permission via the Creative 

Common Attribution 4.0 License. Figure B) reproduced from K. Ehrlich et al., Proceedings 

Volume 10685, Biophotonics: Photonic Solutions for Better Health Care VI; 106850Q (2018). 
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Figure 2.15 Conventional vs time resolved pH sensing. AUC ratios (± 30 cm-1 around 1380 cm-1 

and 1700 cm-1 peaks) against pH, between pH 4.5-9.0. Red data points represent time-resolved 

measurements, blue data points represent non-time-resolved measurements. Measurements 

obtained using average excitation power of 0.8 mW and 20 MHz pulse repetition rate. A) 10 s 

integration time. B) 60 s integration time. Figure reproduced from K. Ehrlich et al. (2017), Optics 

Express with permission via the Creative Common Attribution 4.0 License.  

A)  B) 
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2.4 Conclusions  

Here, several small molecules were evaluated as potential SERS pH reporters (4-MPY, 

4-ATP, and 4-MBA). AuNP functionalised with 4-MBA demonstrated the best pH 

sensitivity over a physiological range (pH 4-9), and thus proved to be the most 

suitable pH SERS reporter molecule for biological applications.  

Following nanosensors selection, AuNP-MBA were deposited on the end of an optical 

fibre for remote sensing. During this process several limitations were overcome: 

preventing the loss of AuNPs from the distal end of the fibre, and the intense signal 

from the fibre background.  

Loss of AuNPs was negated by the application of a Sol-Gel layer, providing a porous 

layer enabling fluid exchange to occur. Overcoming the intrinsic fibre background 

was achieved by combining time correlated single photon counting spectroscopy 

(TCSPC) with SERS fibre-based sensing. TCSPC facilitated the temporal selection of 

the SERS signal, thereby diminishing the impact of the signal generated by the silica 

fibre. The TCSPC set up clearly demonstrates a strong improvement in sensing 

capabilities over conventional Raman spectroscopy, despite the sophisticated set up.  
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3 Polymeric Substrates for 

Nanosensors 

 

 

3.1 3D Surface Enhanced Raman Spectroscopy Substrates 

 

SERS sensing substrates while applied to a variety of surfaces, are usually deposited 

on to a 2D surface, making them easier to locate. Here macroscopic particles (5-300 

µm) were loaded with functionalised NPs for SERS-based sensing as a means of 

forming localised hot-spots of NPs in a controllable manner, while also providing a 

method to locate and track particles easily due to their size, offering robust SERS-

based sensors.  

The immobilisation or encapsulation of nanoparticles into a larger microsphere has 

been demonstrated to have a wide variety of uses, in part due to ease of tracking as 

well as the potential for multiplexed measurements. Applications include high- 

throughput suspension arrays, biological labelling, drug delivery, magnetic 

resonance imaging (MRI) contrast enhancement, and catalysis.172–178  However, the use 

of macroscopic substrates for SERS sensors is still relatively uncommon. The 

immobilisation of nanoparticles onto a larger resin bead has been demonstrated for 

so-called “barcoding” applications, largely related to solid-phase peptide synthesis, 

using this approach to monitor reaction progression.179–181   
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3.2 Aims of the Chapter 

 

In this chapter, a method of producing spherical macroscopic scaffolds loaded with 

SERS sensors for fibre-based sensing applications as well as cellular analysis within 

3D culture is demonstrated.  

 

3.3 Development of Spherical SERS Scaffolds 

Resins typically used for solid-phase peptide synthesis have proven to be an 

incredibly useful basis for 3D SERS scaffolds. Amine functionalised polystyrene-PEG-

based beads have proven to be an easy to handle tool which allowed simple 

manipulation of the NPs for SERS based sensing applications.  

 

 Loading Efficiencies 

The amine functionalised TentaGel beads (0.5 mg, 10 µm) were incubated with citrate 

capped AuNPs (150 nm, 1.5 mL, 3.6 x109 particles mL-1). The AuNP uptake was 

readily observed by eye, with the beads generating a strong red colour within a few 

hours (Figure 3.1) indicating substantial uptake of the AuNPs by the beads. Due to 

the relatively large size of the TG beads sedimentation of the TG-AuNP conjugates 

occurred on a timescale of minutes, allowing simple visual inspection of the 

supernatant to assess loading. It was found that adding 1.4 x1010 particles AuNPs to 

1 mg of TG resin resulted in saturation of the beads, leaving some AuNPs in the 

supernatant (Figure 3.1). Also noticeable was the colour intensity of the sedimented 

pellet, which unsurprisingly afforded a more intense colour with increasing addition 

of AuNPs.  
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SEM images of the TG-AuNP beads showed a fascinating surface morphology 

(Figure 3.2) with the protrusions of the nanoparticles clearly visible across the beads’ 

surface. To examine this in more detail the beads were “sliced” and imaged by TEM. 

This showed that the beads had not penetrated deeply into the bead due to their size  

(TentaGel beads have a molecular weight cut off of about 2000-3000 Da)182,183 but were 

immobilized on the surface of the beads. As Figure 3.2 shows, the AuNPs formed 

small aggregates, which is known to enhance the SERS effect.29 Thus, having the 

AuNPs localised to the surface of the TG beads is actually preferable as opposed to 

dispersing them throughout the bead. In addition, there is confidence that a true 

representation of the bead’s environment will be recorded in regards to pH 

analysis.182–184 

Further characterisation of loading was carried out by assessing signal intensity of 

the 1587 cm-1 peak vs number of AuNPs added per 1 mg of TG resin (Figure 3.3). SERS 

maps show representative spectra taken from each map illustrating the intensity of 

the reference peak at 1587 cm-1, with a darker red colour indicating a lower signal 

Figure 3.1 AuNPs incubated with TentaGel beads. A) Generic preparation method of labelled 

TG-AuNP conjugates. B) Loading of AuNPs via increasing ratio of AuNPs (150 nm) to TG 

beads (10 µm, 0.1 mg). L-R: AuNP:TG (v:w), 0.5:1, 1:1, 2:1, 3:1, 4:1.  

0.5 1 2 3 4 

A) 

B) 
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intensity, and the lighter yellow colours indicating a higher signal intensity. Figure 3.3 

shows an obvious difference between samples 0.5 to 2, with a somewhat less obvious 

intensity increase between samples 2 and 3. The intensity increase between 2 and 3 

was confirmed by looking at individual spectra from the maps. From this data, most 

of the work was carried out with a ratio TG:AuNP of 1:3 (w/v; 1 mg: 1.1 x 1010 particles 

AuNP). 

5 µm 1 µm 

5 µm 

Figure 3.2 SEM and TEM images of TG-AuNP. A) and B) SEM images of 10 µm 

TentaGel beads loaded with 150 nm AuNPs showing a high density of AuNPs 

embedded on the surface of the resin particles. C) TEM image of a 10 µm cross-section 

through a 10 µm TG bead loaded with unlabelled 150 nm AuNPs showing a strong 

localisation of the AuNPs on the outer surface of the microsphere. 

 

A) B) 

C) 
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Figure 3.3 TGs loaded with varying concentrations of AuNPs. AuNPs (150 nm) conjugated to 

TentaGel beads (10 µm) in various ratios; AuNP:TG (v:w), 0.5:1, 1:1, 2:1, 3:1. Intensity Raman 

maps and representative spectra are shown for each condition are shown.  StreamLine 

configuration used with 785 nm excitation source, 2 s integration time, 0.1 mW, 20x objective. 

Colour bar represents the 1587 cm-1 peak intensity with upper and lower limits of 0 and 700000 

respectively.  
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 Effects of Surface Charge on TentaGel-Nanoparticle 

Loading 

To investigate the effect of surface charge on loading efficiency, the amino 

functionalised TentaGel beads were modified by capping with either an acetyl group 

(TG-Ac) or a carboxylic acid group (TG-C4H8-COOH or TG-PEG-COOH). The amino 

group (TG-NH2) is protonated at physiological pH and the beads displayed a positive 

zeta potential (+14.6 ± 1.89 mV), which upon capping with acetic anhydride (to 

produce an amide: TG-Am) gave beads with a zeta potential of 5.76 ± 1.33 mV. The 

coupling of adipic acid or PEG bis(carboxymethyl) ether induces a negative charge 

on the beads at physiological pH with the resulting TentaGel beads (TG-C4H8-COOH 

or TG-PEG-COOH) having a zeta potential of -22.9 ± 1.52 mV and -22.1 ± 1.95 mV 

respectively (Figure 3.4). When treated with the citrate capped AuNPs (-29.7 ± 1.32 

mV, Figure 3.5) the “surface change” was shown to have a dramatic effect on AuNP 

uptake (Figure 3.4 (C)) – with only the original TG-NH2 beads showing uptake (likely 

due the positive charge on the TentaGel beads and the negative charge on the citrate 

coated AuNPs).  

To explore further the effect of whether surface charge was the driving force behind 

uptake, or the physisorption of the amine groups on the TGs interacting with the gold, 

the AuNPs were functionalised with 4-MBA (0.1 mM) or PLL (0.1 mM), resulting in 

zeta potentials of -27.45 ± 2.61 and +17.78 ± 1.92 mV respectively (Figure 3.5). After 

combining the modified TGs with the functionalised AuNPs overnight (TG:AuNP 

1:2, w/v), forcing the conjugates back into suspension, the particles were allowed to 

settle over a period of about an hour (Figure 3.5 (B)). The best uptake, as observed by 

the formation of a pellet, is from the combination of 4-MBA functionalised AuNPs 

with the positive zeta charged beads (TG-NH2 and TG-Am). There was a slight 

appearance of conjugates forming in a pellet from the combination of positively 

charged AuNPs (PLL) and negatively charged TGs (TG-C4H8-COOH and TG-PEG-

COOH), again hypothesized due to the complementary charges on the particles. 

However, all modified samples contained a reddish supernatant, indicating that not 
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all AuNPs were taken up by the TGs. This is in contrast to combining, in the same 

proportion (TG:AuNP, 1:2), unfunctionalised AuNPs with unmodified TGs (TG-NH2) 

which results in a complete uptake of the AuNPs, leaving a clear supernatant (Figure 

3.4 (C)).  

While complementary surface charges have been shown to affect AuNP uptake, it is 

well known that certain functional groups such as thiolates, amines, and phosphines 
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Figure 3.4 Modification of TG Beads. A) Amino functionalised TG beads were modified with 

adipic acid or poly(ethylene glycol) bis(carboxymethyl) ether (1 and 4, respectively), with an 

amide group (2), or left unmodified. B) Zeta potential measurements of the modified TG beads. 

C) Images of the corresponding modified TG beads combined with unfunctionalised AuNPs 

after an overnight incubation, showing AuNP uptake is best with the unmodified TGs (NH2). 

Amide 
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have a strong affinity for gold.185–191 Considering this, it is simpler to combine TG-NH2 

with unfunctionalised AuNPs prior to functionalisation with a SERS reporter. 

However, for TG-AuNPs functionalised with multiple SERS reporters another 

strategy may be required.  

 

 

Concentration studies were carried out on unmodified TG beads loaded with AuNPs, 

functionalising the TG-AuNPs with between 0.1 mM to 1.0 mM 4-MBA. All samples 

were analysed in solution as well as dried on to gold substrate, displays the intensity 

across concentration at 1587 cm-1. This peak, due to ring breathing, was chosen to 

measure intensity as it the strongest peak present in the 4-MBA spectrum, and 

remains constant across changes in its environment.51,112 Six separate spectra were 

recorded across the samples then averaged. The nature of drying TG-AuNPs down 

onto a solid surface can lead to a non-uniform layer consisting of large aggregates. 

A) 

Figure 3.5 Effect of surface charges on AuNP uptake into the TG beads. A) Zeta potential 

measurements of unfunctionalised, 4-MBA, or PLL functionalised AuNPs. B) Visual 

illustration of uptake between functionalised TG beads with PLL or MBA functionalised 

AuNPs. The +/- denote zeta potential of the TG beads (in grey rectangle) and of the AuNPs 

(overlaid in image).  
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The formation of these aggregates creates so called “hot-spots” which can further 

enhance the SERS signal intensity, far outweighing the enhancement contributions 

arising from the reporter concentrations. Therefore, to support findings from the 

dried samples, labelled TG-AuNPs in solution were also measured. A 50 µL droplet 

was placed onto the gold substrate immediately prior to the measurement being 

taken. The labelled TG-AuNPs in solution follow a similar trend in that a 

concentration of 0.8 mM MBA in EtOH afford the highest signal intensity. All spectra 

were normalised to the background at 950 cm-1. 

 

 

 

Figure 3.6 Effect of 4-MBA concentrations on signal intensity in TG-AuNPs. Change in 1587 

cm-1 peak intensity in Raman spectra of TG-AuNP-MBA measured in dried form (left) and in 

solution (right) showing optimised loading of AuNPs to be 0.8 mM. Spectra recorded using 

Ocean Optics QE Pro spectrometer with accompanying probe, with a 10 s integration time 

and 19.7 mW output. All spectra were normalised to background at 950 cm-1. 

Dried In Solution 
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 Versatility of Microsphere Size 

While initially focussing on 10 µm TG particles, Figure 3.7 shows employing a 

microsphere as a substrate for AuNPs can be extended, with AuNPs successfully 

taken up by a variety of different sized amino-functionalised microspheres. Here, six 

sizes of microsphere were investigated (ranging from 5 to 300 µm). This approach 

proved versatile, as the conjugates could be tuned as a “pick and mix” type selection. 

Nanoparticles may be chosen for their SERS ability at a chosen wavelength, with the 

size of the microsphere selected based on application. It was observed that for beads 

above 150 µm the SERS intensity per bead dropped (Figure 3.7), while small beads (5 

– 30 µm) begin to reach AuNP saturation at around 3 mL AuNP (1.1 x1010 particles) 

per 1 mg of TG. The larger sizes (above 150 µm) tend to reach saturation far below 

this level, at around 0.5 mL AuNP (1.8 x 109 particles). Even once saturated, the larger 

sizes have a lower intensity (Figure 3.7). 
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30 µm 200 µm 300 µm 

50 µm 50 µm 50 µm 

10 µm 5 µm 5 µm 
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300 µm 100 µm 20 µm 

Figure 3.7 Size versatility of TG Beads. Raman intensity maps and SEM images of amino 

functionalised TG beads of various sizes loaded with AuNP-MBA (150 nm).  StreamLine 

configuration used with a 785 nm excitation, 2 s integration time, 0.1 mW, 20x objective. 

Colour bar represents 1587 cm-1 peak intensity with upper and lower limits of 0 and 500000 

respectively for beads 5, 10, 20 and 30 µm, and upper and lower limits of 0 and 50000 for beads 
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 pH Response of TentaGel-Nanoparticle Beads 

To assess their pH response of the TG-AuNP-MBA conjugates were analysed. 

submerged in pH buffers was carried. A gold coated glass chip was prepared with 

poly-L-lysine (50 µL, 0.1 mg mL-1; as described in Section 2.2.1). The TG-AuNP-MBA 

conjugates were then pipetted onto the same area as the PLL and left to dry 

completely. The functionalised chip was submerged with pH buffers and spectra 

recorded. Between each buffer, the chip was rinsed with dH2O. All pH calibration-

on-chip experiments involve obtaining the Raman spectra of TG beads (10 µm) 

loaded with gold nanoparticles (150 nm, 1.1 x 1010 particles) functionalised with 4-

MBA, while in the presence of a range of different pH buffers, carried out in a random 

order. A total of 57 measurements were recorded. Prior to each experiment, the pH 

of each buffer was measured using an electrochemical based pH meter (Mettler-

Toledo). 
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Figure 3.8 pH calibration plot for TG-AuNP-MBA (10 µm TG with 150 nm AuNP, 1.1 x 1010) 

using area under the curve (AUC) calculations. 3 replicate calibrations were carried out, 

measuring pH in a random order each time. All spectra were normalised before integrating 

the pH changing regions at 1400 cm-1 and 1707 cm-1. The black curve represents a Boltzmann 

fit to the plotted data. All spectra recorded using Renishaw InVia, 60x objective, 785 nm, ~0.5 

mW, 1 s integration time.  
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The data set had an 8-point baseline subtracted and peak heights were determined 

using the peak finding function and the 1st derivative method. The data was 

normalised by scaling between 0 and 1, with the peak at 1587 cm-1 used as the 

reference peak as it had the maximum intensity value. Using a spectral window of ± 

50 cm-1 around the peaks at 1400 cm-1 and 1707 cm-1, the area under curve (AUC) of 

these regions was measured across the range of pH buffers (Figure 3.8). From the data 

plotted in Figure 3.8 a Boltzmann fit was applied, providing a pKa of 8.99 (with and 

adjusted R2 value of 0.992).  

A Boltzmann fit was applied to the calibration data, using equation ( 3.1 ) to determine 

pH in a range of biological models, where A1 = initial y value, A2 = final y value, 𝑥0 = 

calculated pKa (midpoint of the curve), d𝑥 = time constant.166  

 𝑦 = 𝐴2 + (
𝐴1 −  𝐴2

1 + 𝑒(
𝑥−𝑥0

𝑑𝑥
)
) ( 3.1 ) 

   

Rearranged to give pH: 

 
𝑥 = ln ((

𝐴1−𝐴2

𝑦− 𝐴2
) − 1) 𝑑𝑥 +  𝑥0  

 

( 3.2 ) 

 

 
𝑝𝐻 = ln ((

𝐴1−𝐴2

𝑟𝑎𝑡𝑖𝑜− 𝐴2
) − 1) 𝑑𝑥 +  𝑥0  ( 3.3 ) 

 

Deriving pH measurements from the 10 µm TG beads decorated with 150 nm AuNP-

MBA using the Renishaw In Via system, the ratio between 1396.7 cm-1 ±25 cm-1 (COO-

) and 1707 cm-1 ±25 cm-1 (COOH) was used with the following equation ( 3.4 ). 

 𝑝𝐻 = ln ((
−2.82687

𝑟𝑎𝑡𝑖𝑜− 3.63468
) − 1) 1.02468 +  8.99946  ( 3.4 ) 
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The calibration data shows that the 4-MBA functionalised AuNPs incorporated into 

the TG beads were capable of dynamic pH sensing, making them attractive macro-

scale SERS sensors.  

3.4  Analysing Multicellular Tumour Spheroids Using 

TentaGel-Nanoparticle Sensors 

 

 3D Culture Challenges 

Currently, 2D cell culture remains the most common strategy in which to initially test 

a wide range of novel drug candidates. However, there are major limitations to this 

methodology as it stands; cells grown in monolayer are known to behave in a 

different way to tissue, and thus reduces its parallels to in vivo studies. Many 

techniques have been employed to measure nutrient gradients have been designed 

using monolayer culture. However, the methods used to interrogate the health of the 

multicellular tumour spheroids (MTS) are limited by z penetration depths of current 

imaging techniques, and so often require breaking up the spheroid therefore making 

it difficult to monitor physiological changes over time.98,192  

Acidosis, where the extracellular pH falls, is a key feature of tumour tissue with the 

production of acidic metabolites, such as lactic acid, caused by anaerobic glycolysis.5 

The Warburg Effect theorises that lactate is produced via the anaerobic glycolytic 

pathway instead of oxidative phosphorylation, irrespective of whether there is 

sufficient oxygen for energy production. In contrast to monolayer cultured cells, MTS 

afford a gradient, radiating from the core outwards (Figure 3.9). Access to nutrients, 

oxygen, and the reduced ability to remove waste build up from the centre of the MTS 

can hasten the formation of a necrotic core. 

3D cell culture provides a way to monitor the biological activity of compounds. Here, 

TG-AuNP conjugates were employed to measure the pH gradient of multicellular 
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tumour spheroids (MTS). MTS can be either grown as clusters of cells from single cell 

suspensions, or grown in a hanging-drop, using gravity to drive self-assembly. 

 

 

 2D Sensing 

Before investigation the TG-AuNP-MBA beads in MTS, an MTT assay was carried out 

to assess the effect on the viability of MCF-7 cells after an overnight incubation with 

either AuNP, AuNP-MBA, TG, TG-AuNP, or TG-AuNP-MBA. Figure 3.11 

demonstrates that the treated MCF-7 cells showed no significant impact compared to 

the control. 

An attempt to measure the extracellular pH of MCF-7s in a monolayer culture was 

conducted. TG-AuNP-MBA (10 µm/150nm respectively) beads were dried down onto 

PLL coated to CaF2 windows and placed in a 6-well plate of MCF-7 cells (1 x105 cells 

per well) overnight. Each well had the culture medium exchanged for fresh medium 

containing staurosporine (STS; 1 µM, 2 mL), a strong tyrosine kinase inhibitor, used 

to induce apoptosis. Raman spectra were obtained from samples incubated with STS 

between 0-1, 1-2, 2-3, 4-5, and 6-7 hours. For each condition between 25-50 samples 

Figure 3.9 MTS microenvironments. MTS grow in organised spherical structures containing 

proliferating, quiescent and dead cells. Gradients develop due to insufficient mass transport 

of nutrients and waste. Adapted from Lin et al. 
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were recorded, the ratio calculated using equation ( 3.4 ) determined from using the 

Renishaw In Via system. To avoid differing atmospheric conditions, each sample was 

incubated until immediately prior to recording spectra, minimising the time the 

sample was out of the incubator. There was no significant difference (as measured by 

a one-way ANOVA) between the untreated and treated samples (Figure 3.10). This is 

likely due to the buffering capacity of the medium dominating the pH measurements, 

demonstrating that this method is not appropriate for 2D culture.  
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Figure 3.11 Cytotoxicity results for MCF-7 cells treated with TGs and AuNPs. % Viability is 

compared to the controls.  

Figure 3.10 Distribution of pH in monolayer culture of MCF-7 cells, and the difference in pH 

between populations untreated and treated with staurosporine over time. pH calculated 

using TG-AuNP-MBA. 

Untreated 0-1 hr 1-2 hr 2-3 hr 4-5 hr 5-6 hr 6-7 hr

0

1

2

3

4

5

6

7

8

9

10

11

12

p
H

After Treatment with STS



84 

 

Table 3.1 Average pH as measured using TG-AuNP-MBA in MCF-7 monolayer culture after 

treatment with staurosporine 

Treatment with STS Average pH 

Untreated 8.95 ± 1.54 

0-1 hr 8.34 ± 0.85 

1-2 hr 8.43 ± 0.75 

2-3 hr 9.01 ± 0.94 

4-5 hr 8.87 ± 0.78 

5-6 hr 8.87 ± 0.94 

6-7 hr 8.77 ± 1.28 

 

 

 Loading Beads into Multicellular Tumour Spheroids 

MTS were grown using the hanging drop method (as detailed in Chapter 6 Section 

6.4.8), typically seeded with 6000 MCF-7 cells and harvested after 9 days of growth. 

The efficient number of beads per spheroid sample was investigated. Ideally, it would 

be beneficial to have many beads dispersed evenly throughout a spheroid in order to 

collect data on the pH gradient. The TG-AuNPs-MBA were combined with MCF-7 

cells at the seeding stage of MTS formation. In contrast to the preparation of zoned 

SERS active cells in spheroids, where AuNP treated cells are introduced throughout 

the growth phase of MTS formation,23 it was found that introducing the TG-AuNPs-

MBA during seeding resulted in them being dispersed throughout the spheroid. If 

required, the beads could be introduced to spheroids after 5 days to position them 

solely on the outer regions of the spheroid.  

Initial attempts at loading with high concentrations of around 1800-9000 TG-AuNP-

MBA beads per spheroid (Figure 3.12) showed intense loading, too high to be useful, 

as the signal generated from a single TG-AuNP-MBA bead is often so intense that 

signal can be picked up from surrounding areas of the particles, thus is difficult to 

differentiate 1 bead from another. By reducing the laser power, the resolving 
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capabilities between beads may be improved, although at a cost of reduction in signal 

intensity. This would primarily benefit imaging in 2D, as trying to image a volume 

would complicate matters further, where it is much more difficult to differentiate 

beads on multiple planes, not to mention the huge increase in total measurement time 

required for 3D imaging compared to 2D. Instead, lowering the TG-AuNP-MBA 

loading to a number where a relatively fast 2D map can be acquired on a timescale of 

minutes (rather than hours required for a 3D map). Figure 3.14 shows Raman intensity 

maps (4-MBA peak at 1587 cm-1) of MCF-7 MTS loaded with either ~180 or ~20 beads. 

While the beads are not solely constrained to a particular “zone” within the spheroid, 
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Figure 3.12 Microscope images of MCF-7 spheroids with high TG-AuNP-MBA (10 

µm/150nm) bead loadings of between 1800-9000 beads per spheroid. The beads are seen as 

dark spherical objects heavily dispersed throughout the spheroids (arrows indicate example 

locations).   
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the MTS treated with approximately 180 beads shows clumping in the centre, making 

it difficult to resolve a single bead. The MTS treated with ~20 beads shows a much 

more even dispersity. Figure 3.13 is a representative spectrum obtained from the 

Raman map in Figure 3.14 . 

Table 3.2 gives the approximate number of beads in 1-0.001 mL of the prepared TG-

AuNPs, with the equivalent number per spheroid sample.  Having a relatively low 

number of beads per spheroid coupled with a higher laser power ensures that signal 

is gained from beads dispersed throughout the spheroid and not simply on the 

surface. TEM analysis was carried out on sections of MTS containing TG-AuNP-MBA 

to examine the location of the beads within the spheroid in relation to an intracellular 

or extracellular setting.  

Figure 3.15 illustrates the TG-AuNP-MBA beads are not taken up by cells (most likely 

due to their size) and are still located in the extracellular space of the spheroids, and 

that the AuNPs are held on the surface of the polymer beads. 

 

 

Table 3.2 Number of TG-AuNP-MBA beads per MCF-7 spheroid 

 

Aliquot from Stock 

TG-AuNP (mL) 

Beads  

(40000 cells/mL) 

Beads 

(per spheroid (6000 

cells/15 µL)) 
1.0 1,200,000 18,000 

0.5 600,000 9000 

0.25 300,000 4500 

0.1 120,000 1800 

0.01 12,000 180 

0.001 1,200 20 
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Figure 3.13 Representative spectrum of TG-AuNP-MBA within a spheroid. Obtained with a 

785 nm excitation source, 2 s integration, 10 mW, 5x objective. 
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Figure 3.14  Raman intensity maps of MCF-7 MTS loaded with 20 or 180 TG-AuNP-MBA beads 

per spheroid. StreamLine configuration used with 785 nm excitation, 2 s integration time, 10 

mW, 5x objective. Colour bar represents 1587 cm-1 peak intensity with upper and lower limits 

of 10000 and 50000 respectively. 
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 Measuring pH in MCF-7 MTS 

Having successfully shown that the TG-AuNP-MBA beads can be incorporated into 

MCF-7 MTS, the next step was to assess pH across different regions (central or outer).  

Intensity maps were made (as such in Figure 3.14) with MTS loaded with around 

twenty 10 µm TG-AuNP-MBA beads. For the purpose of this study, the spheroids 

were treated as 2 separate “zones”: outer or central. The outer regions relate to the 

proliferation zone, where nutrient and waste gradients have not yet formed. The 

central region refers to the quiescent zone, which encompasses the necrotic core (if 

formed), where the development of nutrient and waste gradients can form. 

The MTS formed in hanging drops had the medium removed (15 µL) and replaced 

with either fresh medium, or staurosporine (STS, 10 µM, 15 µL), then left to incubate 

for 5-6 hours in a humidified environment with 5% CO2. Following incubation, the 

samples were removed and immediately mapped. Figure 3.16 shows the difference in 

distribution of pH values (calculated using equation ( 3.4 )) between outer and central 

regions, and between untreated samples and those treated with STS. For both 

conditions (STS treatment) there was a significant difference in pH between the zones. 

Figure 3.15 TEM images of TG-AuNP beads located in MTS. MTS grown with 10 µm beads 

confirms beads are located extracellularly.  
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The untreated samples afforded average pH values of 7.51 ± 0.38 and 8.09 ± 1.34 

relating to the central and outer regions, respectively. Likewise, after treatment with 

STS the central regions had a lower pH than that of the outer region (7.11 ± 0.56 and 

7.90 ± 0.68). A Shapiro-Wilke test was used to assess the normality of distribution 

across the populations, followed by a one-way ANOVA used to assess if the 

populations showed a difference to a significance at the 0.05 level (as indicated by * 

in Figure 3.16).  

 

Table 3.3 pH of central and outer zones in MCF-7 MTS 

 

Position Untreated Treated STS 

Centre 7.51 ± 0.38 7.11 ± 0.56 

Outer 8.09 ± 1.34 7.90 ± 0.68 

Treated Centre Treated Outer Untreated Centre Untreated Outer
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Figure 3.16 Distribution of pH between central and outer regions of MCF-7 spheroids, and 

the difference in pH between untreated and treated with staurosporine (10 µM, 5-6 hour 

incubation) populations. pH was calculated using 10 µm TG-AuNP-MBA in MCF-7 cells in 

spheroids.  

* 
* * 
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Previous work carried out by other members of the group used SERS to investigate 

intracellular pH in MCF-7 MTS, showing that cells in the central region of the 

spheroids exhibited an increased pH.23 Combined with the results presented here, a 

reduced pHe was found within the centre of the spheroid, these match findings 

presented in the literature,193–196 demonstrating that SERS can be used to measure 

intra- and extra-cellular pH, as well as the dissipation of the pH gradient with drug 

treatments.  

This approach allows for the easy discrimination of zones and simultaneous 

monitoring of inner and outer regions, with the potential to observe the response to 

a drug treatment as a function of pH. While demonstrated in a breast cancer cell line 

here, extracellular acidity is also a pathological feature of inflammation.197,198 

Providing that there are suitable reporter molecules available, this technique may be 

extended to simultaneous intracellular and extracellular sensing applications, as well 

as multiplexed sensing for parameters such as, redox potential, oxygen, as well as 

metabolites of interest. 

 

 

3.5 Fabrication of a Multicore pH Sensing Fibre 

 Multimode Multicore Optical Fibres 

Multicore optical fibres offer great sensing versatility. Through selectively etching 

pits into the distal end of the optical fibre, the ability to load pH and redox sensor TG-

AuNPs into differing cores could be achieved. This sensing architecture has the 

potential to extend to other sensing probes (for example, oxygen). 

For this body of work, multimode-multicore fibres were used. Each fibre consisted of 

19 cores with a core diameter of 10 µm and a core separation of 21 µm. The fibres 

were prepared by the draw and stack method as described in Chapter 6, Section 
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6.1.4.3, using germanium doped silica surrounded by a pure silica cladding.† Each 

core was able to be individually illuminated by coupling light into the proximal end 

of the fibre, using the set up described in Chapter 6, Section 6.1.4.1 (Figure 3.17).  

 

 

With the objective of loading single TG-AuNP particles into individual cores of the 

fibre, small pits were created in each core at the distal end of the fibre. The pits were 

created by chemical etching using hydrofluoric acid (HF).‡ The HF selectively etched 

the Ge-doped silica to create cavities in the glass cores at the distal surface (Figure 

3.18). To prepare the TG-AuNP-MBA for loading into the pits, a small aliquot 

containing approximately 1800 beads was prepared, and washed twice in 70% EtOH. 

As much supernatant as possible was removed from the sample leaving a pellet of 

beads. The etched fibre could then be gently pressed into the pellet, with 

simultaneous “live” monitoring of a core to check for loading. Typically, around 14-

15 out of 19 cores would afford signal after loading (Figure 3.18).  

 

 

† Fibres designed and fabricated by K. Harrington and H. Wood, University of Bath, UK 
‡ HF etching carried out by Dr D. Choudhury, Heriot-Watt University, UK 

Figure 3.17 Illumination of single core in 19-core multimode fibre. 
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Figure 3.18 19 core, multimode etched fibre loaded with TG-AuNP-MBA (10 µm TG beads; 150 

nm AuNP). A) Illustration of “force loading” fibre by pushing into a pellet in minimal solution 

volume (~10 µL). (B) Lateral view of HF etched fibre with arrows indicating pits. Taken with 

whitelight microscope (C) White light image of the distal end of a 10 µm TG-AuNP-MBA 

loaded fibre. (D) Raman intensity map of (C), StreamLine configuration used with 785 nm 

excitation, 2 s integration, 10 mW, 50x objective. Colour bar represents 1587 cm-1 peak intensity. 

(E) Representative spectra obtained through fibre, 0.2 mW, 10 s integration. (F) Spectra 

obtained through fibre, after submersion in pH 4 and 9 buffers, 0.2 mW, 60 s integration 
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 Redox Sensors 

As the individual microspheres can generate a high signal, this aspect lends itself to 

the ability of multiplexing. Each bead functionalised with separate SERS sensor can 

be loaded into separate etched cores of the fibre affording a multiplexed sensing fibre, 

capable of sensing different physiological parameters. Redox potential can be used as 

a metric of assessing health status.199 Previous work by the group have demonstrated 

the use of SERS redox sensors in biological applications.23,110,112 TG-AuNP conjugates 

were functionalised with napthaquinone derivative 1,8-diaza-4,5-dithian-1,8-di(2-

chloro-[1,4]-naphthoquinone-3-yl)octane (NQ), a dimer which is thought to dissociate 

on the conjugation to surface of the nanosensors. This reporter molecule is sensitive 

to redox potential (Figure 3.19).110,112,200  

The multiplexing of a multicore fibre was by combining equal volumes of TG-AuNP-

MBA and TG-AuNP-NQ (10 µm, 0.1 mL), washing in 70% EtOH, followed by the 

removal of much of the supernatant, leaving a pellet. The distal end of an etched fibre 

(19-core, 20 µm core diameter) was dipped into the TG mixture, resulting in NQ and 

MBA filled cores, where A-F denotes the corresponding through-fibre spectra in (A) 

and the core positions in (B) (Figure 3.20). 

Figure 3.19 NQ: Redox potential sensor. A) Structure of NQ on AuNP. B) SER spectrum of 

NQ functionalised TG-AuNP.  
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Figure 3.20 Multiplexed fibre with redox and pH SERS reporters. 19-core multimode fibre 

loaded with TG-AuNPs (10 µm TG beads; 150 nm AuNP) functionalised with NQ (blue) or 4-

MBA (red). A) Spectra recorded through fibre, B) Raman map of distal end. A-F denotes the 

corresponding through-fibre spectra in A) and the core positions in B). A) Recorded using 

Ocean Optics QE Pro spectrometer with 785 nm excitation source, 30 s integration. B) Maps 

obtained using Renishaw In Via spectrometer with 785 nm excitation. 
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Although loading of beads into the etched pits was a simple process, the ability to 

retain them on the end of a fibre proved difficult, as most of the beads were removed 

upon contact with solution. A range of chemical (glues: sol-gels, Araldite, Nafion, cell-

tac) and physical (nylon meshes) approaches to holding the beads on fibre were 

attempted, unfortunately these attempts did not result in prolonged retention.  

 

3.6 Fabrication of Single Core pH Sensing Fibre 

 

The multicore fibre would be of great interest to develop further as it demonstrates 

obvious multiplexing capabilities. However, as retention of the particles within the 

etched pits proved more complex than anticipated, a simpler option was developed.  

Moving towards a strategy which circumvents the requirement for advanced 

instrumentation or engineered components, the polymer-SERS conjugates were 

employed with a commercially available single core fibre (200 µm core diameter). 

The so-called “SERS chamber”, comprised a large core fibre combined with large TG-

AuNP-MBA conjugates (~200 µm). The rationale for this approach was that larger TG 

beads would be easier to manipulate into position onto the distal end of the fibre, as 

well as being easily held by simple and abundantly available materials: nylon mesh 

from cell strainers. It was thought that simply using mesh to hold the SERS particles 

in place would negate the need for a layer such as sol-gel, which could produce 

uneven thicknesses with variable porosity.  

The fabrication of the packaged distal end is illustrated in Figure 3.21. A section of 

nylon mesh (100 µm pore size) was placed on top of a rubber ring. A ceramic fibre 

ferrule suitable for a 200 µm core diameter fibre was pushed through the ring, 

resulting in the mesh flush across the top of the ferrule. Table 3.4 highlights the 

components used to fabricate the packaged end portion. 
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Figure 3.21 Fabrication of the SERS Chamber. A) Illustrating of the fabrication of the complete 

“SERS chamber” fibre. B) Packaged distal end of the fibre and 20 pence for scale. C) Packaged 

ferrule with TG-AuNP-MBA placed atop to flow down centre. D) Nylon mesh (100 µm pores) 

used to hold the TG-AuNP-MBA in place. E) Fibre secured against TG/mesh in ferrule with 

Blu-Tac. Numbered items represent components in Table 3.4 
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Table 3.4 Components of SERS Chamber 

Number Component 

1 Fibre ferrule for 200 µm core diameter fibre 

2 Section of rubber used to secure mesh in place 

3 100 µm pore nylon mesh from cell strainer (Corning FalconTM) 

4 ~200 µm TG beads with 150 nm AuNP-MBA 

5 200 µm single core fibre (ThorLabs) 

 

Fibre optic sensing of pH has been demonstrated previously,8,161 and it is known that 

the background Raman scattering from the fibre can overpower the SERS signal. 

Although some of these issues may be lessened using complex fibre designs, these 

are often bulky, necessitating sophisticated manufacturing.8,128,201 Additionally, as 

shown in Chapter 2, many fibres for use with SERS sensing are prepared by dipping 

the fibre into nanoparticle solutions, leading to unknown and inconsistent 

concentrations at the distal end.8,128,161,201 With the SERS Chamber approach, the signal 

was easily seen over the fibre background (Figure 3.22), with observable changes at 

the pH sensitive peaks (1400 cm-1 and 1700 cm-1).  
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Figure 3.22 Spectra from SERS Chamber recorded in air A), and B) averaged spectra recorded 

with distal end submerged in pH 4, 7, and 9 buffers. 785 nm, 30 s integration time, 0.8 mW 

output.  
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Aqueous pH buffers were prepared from pH 4-9 and verified with an electrochemical 

pH meter (Mettler-Toledo). The packaged distal end of the fibre was submerged in 

buffer and the spectrum recorded continuously for 5 min (30 s integration time). 

Between readings the SERS chamber was rinsed in dH2O. The fibre had three replicate 

calibrations where the pHs were measured in a random order. The spectra were 

analysed by first normalising the spectra to the magnitude of a reference peak (1070 

cm-1), followed by measuring the area under the curve (AUC) within ± 25 cm-1 of the 

peaks at 1380 cm-1 and 1700 cm-1. Plotting pH against the AUC ratio, the fibre 

demonstrated variation within the physiological range (Figure 3.23). 

While proving a simple method for pH sensing, one limitation of this approach is the 

observed hysteresis. During pH calibration measurements it was noticed that changes 

to the spectra were often delayed after changing from one pH buffer to the next. This 

lagging effect was more obvious going from an acidic environment to a more basic 

environment, with the reverse direction changing quickly. Figure 3.23 (A) shows the 

sensing capability after submerging the distal end in buffer for 5 min, while Figure 

3.23 (B) results after 30 s submersion. While using this device does not exhibit instant 

dynamic changes, it may pose more valuable in situations where the device may 

remain in place for an extended period of time.  

Figure 3.23 pH measurements with respect to time submerged. (A) Distal end of fibre 

submerged in pH buffer for 5 min before recording spectra, (B) submerged for 30 s before 

recording measurement in. 785 nm laser, 30 s integration time, 0.8 mW output, Ocean Optics 

QE Pro spectrometer used.  
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3.7 Conclusions  

The use of TentaGel beads as a substrate for nanoparticles to facilitate pH sensing has 

been shown. 

The use of 3D scaffolds as a sensor in spatially sensitive regions within 3D cell culture, 

as well for loading on to the distal end of an optical fibre has been demonstrated.  

These beads have also been used in the measurement of extracellular pH within MTS. 

It has been shown that the central and outer regions of the MTS have different pHs, 

and the monitoring of extracellular pH could prove a useful tool in the assessment of 

novel drug development. Further to this, the scaffolds as used for 3D cell culture 

could be extended to simultaneously investigate intra- and extracellular pH/redox 

potentials with carefully selected nanosensors.  

Initial studies have proven the capabilities of using the TG-AuNP beads to provide 

multiplexed fibres, capable generating signal intensities large enough to overcome 

the Raman fibre background. Future investigations into precision positioning of the 

scaffolds into the etched cores provides the potential to multiplex the 19-core fibre 

with a larger variety of SERS sensors than demonstrated here (redox and pH). Special 

consideration into retaining particles on the end of the fibre would prove valuable in 

the furthering of this work.  
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4 Dual Purpose Fibres – pH 

Sensing Combined with Bacterial 

Analysis 

 

While physiological sensing through fibre can afford of wealth of information, it 

rarely negates the requirement for the analysis of a physical sample. This chapter 

describes a method by which both sensing, and fluid extraction can be carried out to 

gain information on both physiological environment and the pathogen. Much of the 

work presented in this chapter can be found in the Analyst publication “Dual purpose 

fibre – SERS pH sensing and bacterial analysis” (DOI: 10.1039/C8AN01322E).  

 

4.1 Introduction 

 Current Identification and Analysis of Pulmonary Bacteria 

With the rising global challenge of antimicrobial resistance, there is an urgent need to 

reduce unnecessary antimicrobial prescriptions.202 Ventilator-associated pneumonia 

(VAP) is a common infection found in the critically unwell in intensive care units 

(ICUs), with Pseudomonas aeruginosa behind many of these infections.203 The treatment 

strategy for suspected VAP in patients is typically to administer broad spectrum 

antibiotics, however, using broad spectrum antibiotics in an indiscriminate manner 

is implicated in the development of antimicrobial resistance.204 Tailoring treatments 

to target the specific strain of bacteria would help reduce the elimination of healthy 

bacteria within the lung,205,206 but also help reduce the formation of antimicrobial 

resistant strains.  
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Studies have shown that standard methods used to identify specific infectious agents, 

often by the interpretation of non-specific clinical or radiological features combined 

with culture techniques from sputum samples, are not able to diagnose lower tract 

respiratory infection which requires processing of bronchoalveolar lavage fluid 

(BALF) samples.207  

However, culture from BALF typically takes several days and suffers from a lack of 

both sensitivity and specificity due to aspirated fluid being prone to contamination 

from the upper respiratory tract. Molecular sequencing, which often employs 

polymerase chain reactions (PCR) to overcome issues concerning sample size, can be 

overly sensitive, potentially leading to patient overtreatment. Overtreatment 

combined with poor sampling techniques, can result in a significantly negative 

impact on patient health.208–211  

The correct identification of pathogens causing respiratory infections and the 

monitoring of their antimicrobial sensitivity is of great importance in assisting with 

diagnosis and treatment choice. Recently, major advances in pulmonary investigation 

methods have demonstrated the in situ detection of Gram-negative bacteria in human 

lungs.212  In addition to identification, knowing details of the physiological 

environment at the site of interest can hold great value. pH is tightly regulated within 

cells and tissues, with deviations indicative of disease. Within the lung, an acidic pH 

can encourage the growth of bacteria, reduce the efficiency of endogenous cationic 

antimicrobial peptides and inactivate some antibiotics - all factors that contribute to 

antimicrobial resistance and worsening patient outcome.15,213  

 

 

 Paper Based Sensing 

Introduced as a scientific tool in the early 1800s by Swedish chemist Jöns Berzelius, 

filter paper is a widely used and versatile tool for analysing and handling fluids, in a 
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broad range of applications from molecular separation in chromatography, swabs for 

biological samples and as a microfluidic device.214–216  It’s attractiveness as a substrate 

stems from its abundance, inexpensiveness, and compatibility in many biological and 

chemical environments, and due its wicking ability does not require external forces 

for the transport of fluid through the paper.  

Analysis through an optical fibre has been previously reported, however, challenges 

include difficulties in reproducibility from fibre to fibre, as well as generating SERS 

signals dominated by the intrinsic silica fibre background. As a result, much of the 

focus in this area has been on background suppression through complex fibre designs 

and correction methods.8,161,169  

Paper based substrates utilising NPs for analyte detection and SERS sensing are 

gaining traction as point-of-care systems due to their low cost and flexible nature.217–

220 One of the difficulties of using paper is directing the deposition of NPs, due to the 

inherent wicking ability of filter paper which is both quick and uncontrolled. The use 

of patterning with a hydrophobic ink can assist with some of these issues, by defining 

a specified SERS sensing region.221,222 

Here, a facile and cost-effective method of using AuNPs on a wax patterned paper is 

demonstrated. This substrate is capable of ratiometrically measuring pH using SERS, 

whilst retrieving a biological fluid sample through the combination of paper attached 

to a fibre-based system. The advantages of a wax patterned paper sensing substrate 

are two-fold, it allows simple control of particle deposition and also facilitates an easy 

way to retrieve biological samples. The paper-fibre combination was designed to be 

small enough to be bronchoscope deployable with the ability to reach alveolar regions 

within the lung, allowing for site specific information to be gathered about both host 

and pathogen. This approach has also overcome many of the outlined challenges with 

SERS applications, by achieving an easily repeatable fabrication process and 

generating reproducible high signal to noise ratios.  
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4.2 Paper SERS Substrate Design  

 

The main goal of this research was to provide a simple SERS substrate to combine 

with a fibre-based approach to sensing, specifically pH. For this purpose, filter paper 

was chosen as the preferred material due to its wide availability and porous nature.  

 4-Mercaptobenzoic acid functionalised AuNPs (4-MBA; 150 nm, 3.6x108 particles/µL) 

were pipetted on to filter paper. Repeated depositions of AuNPs (2 µL) were applied, 

to a final volume of 2-8 µL, with drying stages in between, to avoid a loss of AuNPs 

through soaking and washing through the paper. The sizes of the spots were defined 

by the volume of the solution, however there was much variance in shape and spread, 

or wicking, of the AuNPs within the spots (Figure 4.1 (A) I).  

In an effort to overcome the influence of non-uniform capillary wicking, and therefore 

the low reproducibility, a hydrophobic wax mask was printed onto the filter paper 

(Figure 4.1 (A) II).§ Wax printing is a simple, inexpensive, and quick method, amenable 

to mass production. Patterning paper with a wax mask allows containment of the 

wicking action, confining the dispersion to hydrophilic areas.221–223 By limiting the 

solution containing the AuNPs to a defined area, there was a reduction in variability 

in the AuNP concentration at any point within the hydrophilic area. A substantial 

difference between applying the AuNPs to filter paper with and without the wax 

barrier could be clearly seen by eye (Figure 4.1 (A)). The image shows both an 

increasing spot size, as well as a non-uniform spread of AuNPs across the filter paper 

where a wax barrier was not used. SERS mapping (1587 cm-1 peak intensity, Figure 4.1 

(B)) was used to reveal the unevenness further (Figure 4.1 (C)). The patterned paper 

allowed the AuNPs to be deposited to the filter paper in a controlled manner, filling 

the entire hydrophilic area evenly (Figure 4.1 (D)). SEM images from paper substrates 

 

 

§ Prepared by Angus Marks, University of Edinburgh 
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with the printed wax barrier show a high density of AuNPs on the cellulose fibres, 

which may help in the formation of SERS “hot-spots”, further enhancing signal 

intensity (Figure 4.2).   

  

 

A) 

C) D) 

B) 
I 

II 

II

I 

2 µL 8 µL 4 µL 6 µL 

2 µL 4 µL 6 µL 8 µL 

4 3 2 1 

Figure 4.1 Differences between filter paper with waxed boundaries and no boundary.  

A) I: Solutions of AuNPs were pipetted onto filter paper without a defined wax boundary, 

II: images of the filter paper with wax boundaries printed, III: AuNPs deposited onto waxed-

masked features. All AuNPs depositions used 2 µL drops with 3.6x108 particles/µL. B) SERS 

spectra of 4-MBA, with the highlighted peak at 1587 cm-1 used for intensity comparisons. C) 

and D) Raman intensity maps of filter paper and patterned filter paper (respectively), 

deposited with varying levels of deposited AuNPs. 
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4.3 Fibre Sensing 

 Translation to fibre.  

While pH sensing using an optical fibre has been demonstrated previously,8,161 the 

background Raman signal from this fibre is strong and can overwhelm the SERS 

signal from the deposited particles on the distal end. Although some of these issues 

can be alleviated using sophisticated fibre designs, these are often bulky and require 

multiple fibres or fibres with large bores.8,128,201 Additionally, as shown in Chapter 2, 

typically fibres for use with SERS sensing are prepared by dipping the distal end into 

concentrated nanoparticle solutions, leading to unknown and variable concentrations 

on the fibre tip.8,128,161,201 This has an impact on how irreproducible, and therefore 

scalable, the production of the fibre sensors can be. Keeping in mind the possible 

applications, the ideal set-up would consist of a single fibre being bronchoscope 

deployable, with simple fabrication steps and minimal packaging requirements.  

Plain Paper Paper with AuNPs 
Patterned paper with 

AuNPs 

Figure 4.2 Scanning electron microscopy (SEM) images of plain filter paper (without AuNPs), 

2 µL droplet AuNPs (with 3.6x108 particles/µL) on filter paper fibres, and wax patterned filter 

paper with a 2 µL droplet AuNPs. Scale bar 10 µm. Images show a higher density of AuNPs 

using the wax patterned paper.  

  



106 

 

The fabrication of the packaged ferrule end was a simple process (Figure 4.3 (A)), 

whereby a 2 mm wide strip of the wax printed AuNP paper was placed, facing 

upwards, on to a ring-shaped section of rubber. The ferrule was pushed through the 

ring with the paper flush across the top surface. A commercially available 200 µm 

single core (NA 0.39), multi-mode fibre was then threaded through the ferrule until 

it abutted against the paper and was secured in place at the base of the ferrule. 

Through combining the fibre with the paper-based SERS substrate, a controlled 

particle deposition was achieved, providing confidence that the same signal intensity 

can be reached in any location where the fibre tip is placed on the AuNP paper. This 

extends to being able to reliably reproduce a strong signal when moving between 

fibres. Three separate fibres with packaged distal ends were prepared and their 

Figure 4.3  Translation of the paper SERS substrate to the end of a fibre. A) The fabrication 

process to combine the AuNP containing paper with a 200 µm core optical fibre.  I: 2 mm 

section of AuNP paper was cut, II: AuNP paper secured across a fibre ferrule, III: fibre 

threaded through and secured in place. B) SERS spectra obtained from 3 separate fibres 

showing similar signal intensities. Intrinsic fibre background represented by the spectrum in 

black (which is much smaller than the generated SERS signals). Illumination using 785 nm, 1 

mW, 1 s integration time.  
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spectra recorded in air. It can be seen that across the three fibres reproducibility of the 

paper-based system was demonstrated by strong signals of similar intensities (Figure 

4.3 (B)). Moreover, the strong signal intensity generated by the paper-based SERS 

sensor easily overcomes the intrinsic fibre background using relatively low laser 

power and integration time (1 mW and 1 s respectively). Importantly, the fibre 

background did not impose significantly on the pH sensitive peaks at 1380 cm-1 and 

1700 cm-1. 

 

 pH Sensing.  

The reporter molecule, 4-MBA, has been shown in previous chapters to be sensitive 

to pH, and has been previously demonstrated as a suitable choice for biologically and 

clinically relevant pH sensing.8,23,51,224 The peaks observed at 1380 cm-1 and 1700 cm-1 

(Figure 4.4 (A)-(B)) are spectral features most dependent on pH. Under basic conditions 

(pH 9 and above), AuNP-MBA will be in the anionic form, affording a strong response 

in the 1380 cm-1 peak. Conversely, under acidic conditions (pH 5 and below), the 

carboxylic acid (neutral form) will be the dominant species, generating a clear 

response in the peak found at 1700 cm-1. 

Aqueous pH buffers were prepared from pH 4-10 and verified with an 

electrochemical pH meter (Mettler-Toledo). The packaged distal end of the fibre was 

submerged in the buffers and the spectrum recorded after 10 s. Between readings the 

AuNP-paper substrate was rinsed in dH2O and blotted dry. Each fibre had three 

replicate calibrations with the pHs used in random order, with three sensing fibres in 

total measured. The spectra were analysed by first normalising the spectra to the 

magnitude of a reference peak (1070 cm-1), followed by evaluating the area under the 

curve (AUC) within a ± 25 cm-1 window of the peaks at 1380 cm-1 and 1700 cm-1. 

Plotting pH against the AUC ratio, demonstrated consistent variation within the 

physiological range for all three fibres (Figure 4.4 (C)), indicating the suitability of the 

paper SERS substrate for fibre sensing and possible in vivo application.  
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The loss of nanoparticles over time from the distal end of the fibre would be 

problematic, not only due to loss of signal, but also because loss of AuNPs would not 

be possible for use in in vivo applications. With the fibres which have been dip-coated 

into nanoparticles, typically, a porous sol-gel layer is used to protect the distal end. 

However, this coating can also suffer from variations in both coating depth and the 

porosity of the sol-gel layer, which may affect the speed at which measurements can 

Figure 4.4 pH responses from the sensing fibre.  A) SERS spectra of 4-MBA, through an optical 

fibre between pH 4-10; B) zoomed peaks of interest at 1380 cm-1 and 1700 cm-1 at pH 4-10 

(arrows indicate changes with increasing pH). C) Ratio of AUC within a ± 25 cm-1 window of 

1380 cm-1 and 1700 cm-1 plotted against pH with data shown for 3 fibres. Boltzmann curve 

fitted to data. Each measurement was taken with illumination at 785 nm, 1mW, 10 s 

integration time. D) Intensity of the 1587 cm-1 reference peak (inset) obtained during each 

measurement of the pH calibration plotted in chronological order. 
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be acquired. The paper-based SERS substrate showed no significant signal loss over 

the course of the pH measurements (approximately 60 min per fibre). The intensity 

of the 1587 cm-1 peak was plotted over time, with the slight oscillations being 

attributed to the drying and wetting of the SERS samples. The average intensities 

between the first and last sets of pH measurements differed by less than 10% of the 

overall signal intensity (Figure 4.4 (D)).  

 

 

4.4 Extraction and Culture of P. aeruginosa  

 

There has been a considerable increase in the number of infections with lower 

respiratory tract infections responsible for the second highest burden of disease 

globally.225–227 Within ICUs, the development of pneumonia is associated with high 

mortality rates.228 The investigation of respiratory disease can involve biopsies, an 

invasive procedure, and the collection of BALF, which can become contaminated by 

bacteria found in the upper respiratory tract.  The ability to sample fluid at specific 

sites can alleviate issues related to contamination. The optical fibre presented here has 

been designed keeping in mind that it should be deployable through a conventional 

bronchoscope, once encased in an outer sheath. In this way, it could be extended and 

retracted at specific regions of interest, with visualisation to allow for positioning, 

therefore minimising the contact between the distal end of the probe and the upper 

respiratory tract. 

The porous nature of the filter paper not only provides a suitable substrate for the 

capturing of nanoparticles but also lends itself to retrieving a sample of fluid. Herein, 

it was demonstrated that using waxed patterned paper, in a packaged ferrule device, 

is capable of sampling liquid containing bacteria. These samples can then be cultured 
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and counted or extracted and imaged. A clinical isolate of P. aeruginosa 3284 was 

cultured and used is this study.  

 Sample Retrieval Efficiency 

To evaluate whether samples containing bacteria could be retrieved using waxed 

patterned paper, and to investigate the limit of detection, 10-fold serial dilutions of 

PA3284 ranging from 6 x108 – 6 x100 CFUs (colony forming units)/mL were prepared.  

The paper was dipped briefly into the solution of bacteria and pressed gently 4 times 

across a lysogeny broth (LB) agar plate (Figure 4.5). This process was repeated for each 

of the dilutions alongside control plates consisting of 3x 20 µL droplets of each 

dilution. The plates were incubated overnight (37 °C) and counted manually the 

following morning (Figure 4.5 (B)-(C)). It was observed that colonies formed via 

pressing paper onto a plate matched that of the control plates, with the lowest 

colonies formed as low as 60 CFUs/mL.  

This demonstrates the ability of the paper to be used as a so called “sponge” regarding 

retrieving a fluid sample.  

 In a similar manner, the ferrule tip containing the AuNPs soaked paper was dipped 

into the bacterial containing solutions and gently pressed into LB agar plates, with 

three presses per dip. This process was repeated a total of three times per dilution. 

After an overnight incubation the colonies were counted and compared to the control, 

consisting of 3x 20 µL droplets at each dilution (Figure 4.6). It was again observed that 

a similar number of colonies were formed between the packaged ferrule  and 

standard methods, with a LOD of 60 CFUs/mL in both the paper-based methods and 

the control (Miles and Misra) method, thus efficiently detecting below the clinical cut 

off which is considered infectious above 104 CFUs/mL.208,229  
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Figure 4.5 Assessing bacterial retrieval using waxed masked paper. A) Illustration showing 

method by which bacteria were sampled by dipping a strip of waxed masked paper into serial 

dilutions of PA3284 and pressing into LB agar plates followed by overnight culture. B) PA3284 

cultures from paper pressing at serial dilutions of 6 x108 – 6 x101 CFU/mL. C) Control cultures. 

3x 20 µL droplets of each dilution cultured overnight and counted manually the following 

day. 
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Figure 4.6 Assessing bacterial retrieval using the packaged ferrule. A) Illustration showing 

the packaged ferrule (with AuNP soaked paper) dipped into serial dilutions of PA3284 and 

pressing into LB agar plates followed by overnight culture. B) Plated cultures from serial 

dilutions of 6 x108 – 6 x101 CFU/mL using the ferrule, and control method of 3x 20 µL droplets 

of each dilution. Colonies were counted manually following overnight culture. 
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 Imaging Extracted Bacteria 

While culture techniques provide a platform for analysis and analysis of treatment 

pathways (i.e. drug responsiveness treatment), there is still a delay in the analysis 

pathway (requires overnight culturing). Being able to both perform culture and 

imaging techniques from the same extracted sample allows for a quick determination 

on whether or not bacteria is present. Extraction of bacteria from the paper was 

carried out after pressing the paper into agar by placing the paper strip in PBS (500 

µL) and lightly vortexing. Using an in-house ubiquicidin based bacterial stain (5 

µM),230 it was possible to image the live bacteria shortly after retrieval, without the 

need for a washing step, by confocal laser scanning microscopy (CLSM; Figure 4.7).230–

232 

Figure 4.7 CLSM fluorescence images from extracted and labelled P. aeruginosa in PBS. The 

ferrule was dipped into bacteria (6 x102 CFU/mL), pressed into agar, then submerged in PBS. 

The “extracted” bacteria was stained with UBI-based dye (5 µM). Top panel, wide field view, 

bottom panel, zoom in of P. aeruginosa. Leica SP8, 488 nm excitation, 63x oil immersion. 

Images were brightness and contrast enhanced with proprietary software. 
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 Direct Imaging of Bacteria on Paper 

Imaging bacteria directly on the paper itself was investigated. Unfortunately, the 

filter paper used exhibits high autofluorescence (Figure 4.8), limiting the imaging 

approach due to difficulties in imaging “green on green”. However, shifting the 

excitation wavelength to image the bacteria with a far-red dye proved to be beneficial. 

Thus, the bacteria were labelled with a Syto60 (5 µM), a red fluorescent nuclear stain, 
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Figure 4.8 Widefield fluorescence images of AuNP soaked paper. Top row: Waxed paper 

without AuNP imaged using green channel displaying intense autofluorescence. Middle row: 

AuNP-paper without bacteria, imaged using Cy5 channel. Bottom row: AuNP-paper dipped in 

6x 105 CFU/mL bacterial solution of P. aeruginosa, stained with Syto60 (λex652 nm, λem678 nm). 

Speckle indicate bacteria, highlighted by arrows. Imaged using an EVOS microscope equipped 

with a Cy5 light cube.  
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before introducing the AuNP-paper strips into the solution containing bacteria at 6 

x105 CFUs/mL. While this approach moved away from the autofluorescence seen in 

the green channel, there was still some autofluorescece signal observed in the cy5 

fluorescence channel. Nevertheless, despite the background signal the labelled 

bacteria could clearly be detected by widefield imaging, indicating that augmenting 

the collected samples with an appropriate far-red bacteria-specific stain could enable 

in situ bacterial detection without any need for a processing step. This could pave the 

way for simultaneous measurements for bacteria and pH through a single fibre. 

 

 

4.5 Conclusions 

 

In this study, a facile, inexpensive and reproducible paper-based SERS sensor has 

been integrated with optical fibre technology for use in pH sensing across a 

physiological relevant range. Using a patterned wax printed stencil to control the 

wicking boundary of AuNPs, the distribution of particles can be controlled across the 

paper. In addition, due to the wicking nature of the filter paper, it was possible to 

extract the bacteria, P. aeruginosa, demonstrating the dual-purpose ability of the paper 

substrate to acquire physiological and pathogenic information. 
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5 Conclusions 

 

In this work, the aim was to develop a range of substrates to extend the use of SERS 

nanosensors in several pH sensing applications: combining nanosensors with an 

optical fibre for remote sensing and to also use them within an in vitro tumour model 

– multicellular tumour spheroids (MTS). pH is a tightly regulated and vitally 

important cellular characteristic, any disruption of the finely balanced pH state in 

cells can result in the widespread disorder of cell function which has been implicated 

in disease progression. While research regarding pH is often focused on intracellular 

pH as a detrimental factor in maintaining healthy cell functioning, this research is 

directed towards the extracellular pH of cells. Additionally, fibre-based physiological 

sensing, particularly within the lungs to reach the alveolar space, presents as a 

challenge for in vivo sensing applications as they are still limited by the size of the 

sensors. 

 

In Chapter 2, a suitable SERS reporter molecule sensitive to environmental pH was 

selected for physiological pH sensing. Following nanosensors selection, AuNP-MBA 

were deposited on the end of an optical fibre for remote sensing. During this process 

some limitations were overcome: preventing the loss of AuNPs from the distal end of 

the fibre and the removal of the intense signal from the fibre background. The 

application of a sol-gel layer provided a porous layer enabling AuNP retention while 

allowing fluid exchange to occur. The intrinsic fibre background was overcome 

through the utilisation of time correlated single photon counting spectroscopy 

(TCSPC). TCSPC facilitated the temporal selection of the SERS signal thereby 

diminishing the impact of the signal generated by the silica fibre. TCSPC clearly 

demonstrated a strong improvement in sensing capabilities over conventional Raman 

spectroscopy despite the sophisticated set up.  
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Macroscopic polymer beads employed as scaffolds for nanosensors was presented in 

Chapter 3, demonstrating the first example of in situ extracellular pH sensing SERS 

measurements within MTS. MTS are an important tool in cell culture, mimicking the 

in vivo tumour microenvironment more closely than traditional monolayer culture 

techniques. However, much of the research employing SERS sensing in biological 

applications focusses on the delivery of nanoparticles intracellularly, measurements 

concerning the extracellular spaces are somewhat lacking. These 3D scaffolds were 

used to measure pH in spatially sensitive regions within the MTS, showing a pH 

gradient between the central and outer regions of the MTS. The quantitative 

monitoring of extracellular pH could prove a useful tool in the assessment of novel 

drug development, drug delivery or other types of cancer therapy. Further, these 

scaffolds as used for 3D cell culture could be extended to simultaneously investigate 

intra- and extracellular pH/redox potentials with carefully selected nanosensors. 

In addition to measuring pH gradients in MTS, initial studies have proven the 

capabilities of using the AuNP loaded beads in multicore fibres, extending from a 

single-plexed pH sensing fibre to a multiplexed pH and redox potential sensing fibre. 

These beads were capable of generating signal intensities large enough to overcome 

the intrinsic Raman fibre background. Future investigations could include looking 

into precision positioning of the scaffolds into the etched cores providing the 

potential to multiplex the 19-core fibre with a larger variety of SERS sensors than are 

demonstrated here (redox and pH). Special consideration into retaining particles on 

the end of the fibre would prove valuable in the furthering of this work.  

 

Chapter 4 presented a simple, low-cost and reproducible paper-based SERS 

nanosensor substrate combined with an optical fibre for use in pH sensing across a 

physiological relevant range. A patterned wax printed stencil was used to control the 

wicking boundary of AuNPs controlling the distribution of particles across the paper. 

In addition, due to the wicking nature of the filter paper, it was possible to extract 
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and image the bacteria, P. aeruginosa, demonstrating the dual-purpose ability of the 

paper substrate to acquire physiological and pathogenic information. 

 

Overall, this project has employed SERS for the quantitative and dynamic 

measurements of pH. This research demonstrates the first example of in situ 

extracellular pH sensing SERS measurements within MTS, and also presents the 

development of simple substrates for SERS-based optical-fibre sensors to provide a 

compact and miniaturised sensing system, capable of measuring pH at locations 

remote to the optical system.  

However, there are several improvements that could be investigated to expand the 

application of these sensors: 

For all sensing applications, the selection and evaluation of different sensing targets 

could be employed to extend the range of physiological parameters such as hydrogen 

peroxide or oxygen concentration, or the redox potential.109,114 This would enable 

multiple measurements to be conducted simultaneously on the same sample.  

For the fibre-based work, the dual-purpose pH sensing and sample retrieval fibre 

could be combined with a time resolved spectrometer to facilitate both Raman and 

fluorescence measurements through a single-fibre, including the quantitative 

determination of pH, with a qualitative analysis of the presence of bacteria.  The 

development of a single fibre capable of obtaining fluorescence and Raman data 

would greatly aid in the development of small and compact sensors.  
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6 Materials and Methods 

 

6.1 General 

 Chemicals and Solvents 

All chemicals were purchased from Sigma Aldrich Co. and were used without further 

purification, unless stated otherwise. The redox active compound 1,8-diaza-4,5-

dithian-1,8-di(2-chloro[1,4]-napthaquinone-3-yl)octane (NQ) was synthesised by Dr. 

P. I. Thomson. All solid gold nanoparticles were purchased from Sigma Aldrich Co, 

sizes were selected based on their SERS activity using a 785 nm excitation wavelength. 

 

 pH Calibration Buffers 

All pH calibration buffers were prepared at room temperature in distilled water using 

the hydrochloric acid (HCl, 0.2 M) and potassium chloride (KCl, 0.2 M) (pH 1.0 – 2.5), 

potassium hydrogen phthalate (0.1 M) and HCl (0.1 M) (pH 3.0 – 4.0), citric acid (0.2 

M) and sodium citrate (0.2 M) (pH 4.0 – 5.5), KH2PO4 (0.1 M) and sodium hydroxide 

(NaOH, 0.1 M) (pH 6.0 – 8.0), Tris(hydroxymethyl)aminomethane (tris, 0.1 M) and 

HCl (0.1 M) (pH 8.0 – 9.0), sodium bicarbonate (0.05 M) and NaOH (0.1 M) (pH 10.0 

– 11.0), and KCl (0.2 M) and  NaOH (0.2 M) (pH 12.0 – 13.0). The pH values were 

measured using a glass-electrode pH meter (Mettler Toledo), and where necessary 

adjusted using the appropriate acid or base. 
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 Instruments 

6.1.3.1 Bright Field Microscopy  

• An Olympus CK2 was used for general cell culture and an Olympus CK2 with 

attached QCapture software to record images. 

 

6.1.3.2 Confocal Fluorescence Microscopy 

• Leica TCS SP8 - laser scanning confocal microscope 

 

6.1.3.3 Fluorescence Microscopy 

• Life Technologies EVOS FL Auto Cell Imaging System equipped with GFP 

and Invitrogen Cy5 light cubes (GFP excitation = 470⁄22 nm, emission 510/42 

nm, and Cy5 excitation = 628/40, emission = 692/40 nm). 

 

6.1.3.4 Plate Reader 

• BIOTEK Synergy HT plate reader 

 

6.1.3.5 Scanning Electron Microscopy 

• Hitachi 4700 II cold Field-emission Scanning Electron Microscope 

• EmScope sputter coater 

 

6.1.3.6 Transmission Electron Microscopy 

• Philips / FEI CM120 Biotwin transmission electron microscope 
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6.1.3.7 Zeta Potential 

• Malvern Zetasizer Nano ZS using a Dip Cell accessory as necessary. 

 

 Raman Spectroscopic Measurements 

6.1.4.1 Instrumentation 

SERS spectra were recorded using four different instruments: 

• A Renishaw in Via confocal Raman microscope and spectrometer 

• An Ocean Optics QE Pro 

• An Ocean Optics QE Pro combined with an optical fibre set up (Figure 6.1) 

• Custom-built spectrometer combined with optical fibre set up (Figure 6.1) for 

TCSPC measurements** 

 

 

** Built by Katjana Ehrlich, Heriot Watt University 

Figure 6.1 Optical fibre rig set up for fibre-based Raman measurements. See Table 6.1 for a 

list of components. 
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Table 6.1 List of optical components for fibre-based Raman measurements 

 

Number Component 

1 Continuous-wave 785 nm laser (Thorlabs) 

2 Single mode fibre patch cable (1 m, 785 nm) 

3 Moulded glass aspheric lenses (650 – 1100nm broadband 

antireflective (AR) coating). In all cases, compact aspheric lenses 

were used, where identical lenses were used in all locations to give 

unity magnification of the laser source 

4 Mirror 

5 Short pass filter 

6 Long pass dichroic mirror 

7 Lens 

8 Fibre to sample (single core multimode fibre in chapters 2 and 4; 

multicore-multimode fibre as described in chapter 3) 

9 Long pass filter 

10 Mirror 

11 Beamsplitter 

12 Compact USB 2.0 CMOS camera connected to display. For imaging 

distal end of sample fibre 

13 Lens 

14 Spectrometer collection (Ocean Optics QEPro) 
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6.1.4.2 SERS Glass Substrate 

Characterisation of SERS substrates were carried out on gold coated glass microscope 

slides. These were prepared by first cutting microscope slides into approximately 1 x 

1.5 cm glass chips, soaking them in potassium hydroxide (KOH) overnight. The 

following day, the chips were rinsed in dH2O and dried under a stream of air. The 

chips were placed in a petri dish and coated first with a 3 nm layer of chromium, then 

with 150 nm layer of gold, by Andrew Garrie, School of Physics and Astronomy, 

University of Edinburgh.   

 

6.1.4.3 Optical Fibres 

Several different fibres were used. Single core multimode 200 µm core diameter (NA 

0.39) fibres were used in chapters 2-4.  

Custom made fibres were made by Jim Stone (University of Bath) via the stack and 

draw process. First, a Ge-doped optical fibre preform surrounded by a thin pure silica 

jacket, with a parabolic refractive index profile (ø = 32 mm, numerical aperture = 0.3, 

Draka-Prysmian) was drawn down to form smaller rods (ø = 5.75 mm). The Ge-doped 

rods were surrounded by pure silica tubing (outer ø = 10 mm), to increase the core-

to-core separation within the resulting fibre. The jacketed rods were then drawn 

down further (ø = 2.4 mm). Subsequently, 19 of the rods were then stacked in a 

hexagonal, close-packed formation, positioned within a jacket tube, and drawn under 

vacuum to form the 19-core fibre with a final core diameter of 10 µm, and an outer 

diameter of 125 µm.  

For etching the distal ends of the fibres, 1 m lengths of fibre were cut. At the end of 

the fibre to be etched, a 5 cm portion of the plastic coating was removed with a razor 

blade. The fibres were then cleaved to leave a flat surface. The prepared fibres were 

then cleaned in deionized water within an ultrasonic bath for 3 min prior to etching 
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with 40% hydrofluoric acid (HF) for 60 s.†† The etched fibres were subsequently 

placed in deionized water within an ultrasonic bath for 5 min. Caution - hydrofluoric 

acid (HF) is a highly corrosive inorganic acid. It must be handled with extreme 

caution. 

 

 

6.2 General Techniques  

 General Cell Culture Procedures 

The majority of the cell work was carried out using the MCF-7 human breast cancer 

cell line. Cells were cultured in Dulbecco’s modified eagle’s medium (DMEM; Gibco), 

supplemented with 10% heat in-activated foetal calf serum (FCS), L-glutamine (200 

nM), 1% penicillin/streptomycin (10,000 U/mL), and incubated at 37 °C in a 

humidified 5% CO2 environment. Cells were regularly passaged after reaching 

confluency in T75 flasks. Cells were gently washed with warmed phosphate buffered 

solution (PBS; Gibco), followed by the addition of warmed trypsin with 

ethylenediaminetetraacetic acid (0.5%; EDTA, 1 mL) added and incubated for 3-5 min. 

The flasks were tapped to detach cells, before adding DMEM (9 mL) and transferring 

the cell solution to a centrifuge tube before centrifugation (2000g, 4 min). The medium 

was removed, and the cell pellet resuspended in fresh medium (10 mL). Cells were 

then transferred to a new flask containing fresh medium.  

For storage, cells were trypsinised as for passaging, with the cell pellet resuspended 

in a “freeze mixture” consisting of 10% dimethyl sulfoxide (DMSO) and 90% FCS. 

Aliquots of the cell suspension were transferred to cryovials and stored at -80 °C.  

 

 

†† Etching was carried out by D. Choudhury, Heriot Watt University, UK.  
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Cells were thawed by removing from -80 °C storage, wiping vials with 70% EtOH, 

and allowing the cells to thaw. The thawed cell suspension was transferred to a 

centrifuge tube containing medium, centrifuged (2000g, 4 min) before resuspending 

in fresh media and seeding for culture as required. 

 

 Cell Counting 

Cells were counted either by using haemocytometry or by automation using a 

NucleoCounter. 

Using haemocytometry to determine the number of cells, an aliquot (10 µL) of cell 

suspension was combined with 0.2% trypan blue (10 µL) on a surface (e.g. parafilm). 

The mixture was transferred to a Bright Line™ Haemocytometer for counting.  

The cell concentration was determined by equation 2.1, where C = cell concentration 

(cells/mL), N = number of cells, and Q = number of quadrants counted (5).  

𝐶 =
𝑁

𝑄
× 2 × 104 

The cell concentration was also determined by using a NucleoCounter, where a 

sample of the cell suspension (100 µL) was lysed and stabilised using proprietary 

solutions (Chemometec), followed by analysis using a microfluidic device which 

could take up a sample of the cell suspension, and contained the stain propidium 

iodide (PI). 

 

 MTT Assay 

Cells were seeded at 15,000 per well in supplemented medium (100 µL) into a 96-well 

plate. Cells were allowed to adhere to the well plate overnight at 37 °C and 5% CO2 

in a humidified environment. The assays 10 µm TGs and 150 nm AuNPs were used. 

The addition of TGs in medium (100 µL, 15 mg/ mL TG particle concentration), TG-
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AuNP (100 µL, 15 mg/ mL TG particle concentration, 5.4 x1010 particles/ mL AuNPs), 

TG-AuNP-MBA (100 µL, 15 mg/ mL TG particle concentration, 5.4 x1010 particles/ mL 

AuNPs, and was incubated overnight. The following day, a solution of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in PBS and medium 

(7:3, v/v; 1.7 mM). The cells were washed twice with PBS (2x 100µL), with the MTT 

solution (100 µL) added and incubated for 4 hours. Solubilising solution (100 µL), 

comprising 10% Triton-X 100 in acidic isopropanol (0.1N HCl), was added to the cells, 

covered in foil and shaken for 45 min. The absorbance was measured while shaking. 

 

 

6.3 Chapter 2 Experimental – Nanoparticle 

Functionalisation 

 

 AuNP Functionalisation with 4-MBA 

AuNPs were functionalised overnight with 0.1 mM 4-MBA in 10% EtOH. The 0.1 mM 

solution was prepared by first dissolving 4-MBA (ca. 2 mg) in EtOH to make a 1 mM 

solution.  A 1 mL aliquot of AuNPs (3.6 x109 particles/mL) was centrifuged (5500 rpm, 

10 min) and the supernatant (900 µL) removed, leaving the pellet of AuNPs 

undisturbed. To the pellet, dH2O (800 µL) was added, followed by the 4-MBA 

solution (100 µL, final concentration 0.1 mM). The AuNPs were sonicated to force 

resuspension and left overnight. The following day, the AuNPs were washed by 

centrifugation (5500 rpm, 10 min), the supernatant removed (900 µL) and 

resuspended in dH2O (900 µL). The washings were repeated twice more before use. 
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 AuNP Functionalisation with 4-MPY 

AuNPs were functionalised overnight with 0.1 mM 4-MPY in 10% EtOH. The 0.1 mM 

solution was prepared by first dissolving 4-MPY (ca. 1 mg) in EtOH to make a 1 mM 

solution.  A 1 mL aliquot of AuNPs was centrifuged (5500 rpm, 10 min) and the 

supernatant (900 µL) removed, leaving the pellet of AuNPs undisturbed. To the 

pellet, dH2O (800 µL) was added, followed by the 4-MPY solution (100 µL, final 

concentration 0.1 mM). The AuNPs were sonicated to force resuspension and left 

overnight. The following day, the AuNPs were washed by centrifugation (5500 rpm, 

10 min), the supernatant removed (900 µL) and resuspended in dH2O (900 µL). The 

washings were repeated twice more before use. 

 

 AuNP Functionalisation with 4-ATP 

AuNPs were functionalised overnight with 0.1 mM 4-ATP in 10% EtOH. The 0.1 mM 

solution was prepared by first dissolving 4-ATP (ca. 1 mg) in EtOH to make a 1 mM 

solution.  A 1 mL aliquot of AuNPs was centrifuged (5500 rpm, 10 min) and the 

supernatant (900 µL) removed, leaving the pellet of AuNPs undisturbed. To the 

pellet, dH2O (800 µL) was added, followed by the 4-ATP solution (100 µL, final 

concentration 0.1 mM). The AuNPs were sonicated to force resuspension and left 

overnight. The following day, the AuNPs were washed by centrifugation (5500 rpm, 

10 min), the supernatant removed (900 µL) and resuspended in dH2O (900 µL). The 

washings were repeated twice more before use. 

 

 pH Calibrations 

Gold coated glass chips (as described in Section 2.2.1) were used as a substrate for the 

AuNP during pH calibrations. A single chip was glued to a microscope slide and an 

adhesive PDMS chamber placed surrounding the gold-coated chip.  



128 

 

A droplet of poly-L-lysine (PLL; 50 µL; MW 30 000–70 000; 0.1 mg/mL) was pipetted 

onto the gold-coated glass and left under cover for around 2h. The excess PLL was 

rinsed off using dH2O and the AuNPs (50 µL, ~1.5 x108 particles) pipetted on to the 

now PLL coated area. The sample was allowed to dry overnight under ambient 

conditions before use.  

For each of the calibrations, buffers between pH 1-12 were used. For each pH, buffer 

solution (0.5 mL) was placed within the PDMS chamber, the spectra recorded, and 

the buffer removed. Between each pH buffer the chip was rinsed with dH2O.  Each 

calibration composed of three replicates, with the pH solutions being used in a 

random order.  

 

 Fibre preparation 

6.3.5.1 Nanoparticle Loading 

Three commercial optical fibres (200 µm core diameter, 0.39 NA) were functionalised 

with poly-L-lysine and placed in the fibre rig (Figure 6.1). While “live”, each fibre was 

dipped into a concentrated solution of AuNP-MBA (~3.6 x1011 particles mL-1) and the 

resulting spectra recorded after each dip up to a total of 5 dips, using 785 nm laser 

source, 0.8 mW output power and 30 s integration time. 

 

6.3.5.2 Effects of Contact 

After the initial addition of AuNP-MBA to the fibre, the AuNPs were left to dry. 

Following this, the fibres were dipped in H2O, gently blotted on to filter paper and 

their spectra through fibre recorded. This was repeated a total of 3 times. Similarly, 

white light images and distal end Raman maps were taken of a fibre tip between blots, 

using a Renishaw In Via spectrometer, StreamLine function, 785 nm laser with ~10 

mW power. 
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6.3.5.3 Sol-Gel Coating 

Sol-Gel layer was prepared via the method set out by Grant et al.170 Tetramethyl 

orthosilicate (TMOS, 0.5 mL) was added to milliQ water (1.0 mL) and HCl (10 µL, 0.04 

M) and sonicated on ice for 30 min. Following sonication, 0.5 mL of the solution was 

added to PBS (1.0 mL). The Sol-Gel was applied in a similar way to the AuNP 

deposition, by briefly dipping the distal end of the fibre into the iced solution of the 

Sol-Gel mixture and allowed to dry overnight under ambient conditions. 

 

 Time Correlated Single Photon Counting  

6.3.6.1 Instrumentation 

Two spectrometers were used for comparative purposes: a custom-built spectrometer 

containing an in-house CMOS SPAD line sensor163,171, and an Ocean Optics QE Pro 

spectrometer. For fibre measurements with either spectrometer, the fibre set up 

described in Section 6.1.4.1 was used (Figure 6.1). 

 

6.3.6.2 Fibre Preparation 

The distal end of a fibre (2.7 m, 50 µm diameter, 0.22 NA) was functionalised with 

poly-L-lysine, followed by dipping the end into a concentrated solution of 4-MBA 

functionalised gold nanoshells while monitoring the signal intensity using the fibre 

imaging set up described in Section 6.1.4.1, and a commercial spectrometer. A sol-gel 

layer (as described in Section 6.3.5.3) was applied before recording pH measurements.  

 



130 

 

6.3.6.3 pH Calibration 

For the calibrations, buffers between pH 4.5-9.0 were used. For each pH, the distal 

end of the fibre would be gently placed in an Eppendorf containing the buffer solution 

(0.5 mL) and the spectra recorded using 785 nm laser source, 0.8 mW output power, 

and either 10 s or 60 s integration time. Between each pH buffer the fibre was rinsed 

with dH2O.  Each calibration composed of three replicates, with the pH solutions 

being used in a random order.  

 

6.4 Chapter 3 Experimental – TG Substrates 

 TentaGel-Nanoparticle Scaffolds  

Amine functionalised TentaGel® beads (TG; 5, 10, 20, 30, 100, 200, and 300 µm) were 

purchased from Rapp-Polymere. Typically, 10 µm TGs with a loading of 0.2-0.3 

mmol/g were used unless stated otherwise.  

A portion of TGs were weighed, and AuNPs added from stock, in general, to 1 mg of 

TGs, 3 mL of AuNPs (to give 1:3 w/v ratio) from stock would be added and left 

overnight. The following day, the supernatant was removed and the TG-AuNPs 

resuspended in 70% EtOH (final concentration of 1mg/mL TGs).  

 

 TG-AuNP Functionalisation with 4-MBA or NQ 

For TG-AuNP beads, the AuNPs were functionalised overnight (after TG 

conjugation) with either 4-MBA (0.8 mM) or NQ (0.8 mM) in 10% EtOH. The 0.8 mM 

solution was prepared by first dissolving 4-MBA (ca. 2 mg) in EtOH to make a 5 mM 

solution. A 1 mL aliquot of TG-AuNPs (1 mg/mL) was centrifuged (7000 rpm, 1 min) 

and 900 µL of the supernatant removed, leaving a pellet in the centrifuge tube. The 4-

MBA (5 mM) solution was added to the pellet, the conjugates were sonicated to force 
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resuspension and left overnight. The following day, the AuNPs were washed by 

centrifugation (7000 rpm, 1 min), the supernatant removed (900 µL) and the beads 

resuspended in dH2O (900 µL). The washings were repeated twice more before use. 

The same process was followed for the functionalisation of the varying sizes of TG 

beads (5-300 µm), as shown in Section 3.3.3. 

 

 TG Modifications 

6.4.3.1 Adipic Acid Coupling 

A solution containing adipic acid (1.5 eq) in anhydrous dimethylformamide (DMF) 

(10 mg/mL) was activated with N,N,N',N'-Bis(tetramethylene)-O-(N-

succinimidyl)uranium hexafluorophosphate (HSPyU) (2.1 eq) and DIPEA (6 eq) at 

40⁰C for 1h. Once the activation is complete the solution is added to the TG resin beads 

together with DIPEA (3 eq) and shaken at rt overnight. The reaction was monitored 

via the ninhydrin test. The solution containing the resin was washed with DMF until 

colourless wash solution, DCM (3x5 mL) and MeOH (3x5 mL). The zeta potential of 

the beads was then measured.  

 

6.4.3.2 Polyethylene Glycol Diacid Coupling 

A solution containing polyethylene glycol diacid (HO2C-PEG-COOH, M.W 600) (1.5 

eq) in anhydrous dimethylformide (DMF) (10 mg/mL) was activated with N,N,N',N'-

Bis(tetramethylene)-O-(N-succinimidyl)uranium hexafluorophosphate (HSPyU) (2.1 

eq) and DIPEA (6 eq) at 40⁰C for 1h. Once the activation is complete the solution is 

added to the TG resin beads together with DIPEA (3 eq) and shaken at rt overnight. 

The reaction was monitored via the ninhydrin test. The solution was drained, and the 

resin washed with DMF until colourless wash solution, DCM (3×5 mL) and MeOH 

(3×5 mL). The zeta potential of the beads was then measured.  
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6.4.3.3 Acetylation 

A solution containing TG resin beads, acetic anhydride (2 eq), pyridine (3 eq) DMF 

(15 eq) was shaken at room temperature for 30 min. The reaction was monitored via 

the ninhydrin test. The solution was drained, and the resin washed with DMF until 

colourless wash solution, DCM (3×5 mL) and MeOH (3×5 mL). The zeta potential of 

the beads was then measured.  

 

 AuNP Functionalisation with 4-MBA 

AuNPs were functionalised as described in Section 6.3.1. The zeta potential of the 

beads was then measured.  

 

 AuNP Functionalisation with PLL 

AuNPs were functionalised overnight with PLL (0.1 mg/mL; MW 30 000–70 000) in 

dH2O. A 1 mL aliquot of AuNPs (3.6 x109 particles) was centrifuged (5500 rpm, 10 

min) and the supernatant (900 µL) removed, leaving the pellet of AuNPs undisturbed. 

To the pellet, dH2O (800 µL) was added, followed by the PLL solution (100 µL, final 

concentration 0.1 mg/mL). The AuNPs were sonicated to force resuspension and left 

overnight. The following day, the AuNPs were washed by centrifugation (5500 rpm, 

10 min), the supernatant removed (900 µL) and resuspended in dH2O (900 µL). The 

washings were repeated twice more before use. The zeta potential of the beads was 

then measured.  
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 pH Calibration 

Gold coated glass chips (as described in Section 2.2.1) were used as a substrate for 

AuNP during pH calibrations. A single chip was glued to a microscope slide and an 

adhesive PDMS chamber placed surrounding the gold-coated chip.  

A droplet of PLL (50 µL; MW 30 000–70 000; 0.1 mg/mL) was pipetted onto the gold 

coated glass and left under cover for approximately 2h. The PLL was rinsed off using 

dH2O and the TG-AuNP-MBA sample pipetted on to the PLL coated area. The sample 

was allowed to dry overnight under ambient conditions.  

For each of the calibrations, buffers between pH 1-12 were used. For each pH, buffer 

solution (0.5 mL) was placed in the PDMS chamber, the spectra recorded, and the 

buffer removed. Between each pH buffer the chip was rinsed with dH2O.  Each 

calibration composed of three replicates, with the pH solutions being used in a 

random order. 

 

 Monolayer Cell Culture 

In a sterile environment, CaF2 windows were cleaned and soaked in 70% EtOH for 1 

hr, the solution removed, and the windows allowed to dry within a laminar flow 

hood. Each window was coated with PLL (50 µL; MW 30 000–70 000; 0.1 mg/mL; 0.1 

mg/ml) and left for approximately 2 hr. The windows were rinsed with sterile tissue 

culture (TC) water and allowed to dry.  

TG-AuNP-MBA (10 µm, 1 mg mL-1) were soaked in 70% EtOH overnight, followed 

by 3 washings by centrifugation (7500 rpm, 5 min), the supernatant removed (950 µL) 

and resuspended in 70% EtOH (950 µL), with sonication to aid resuspension. A 

sample of the suspension (20 µL) was pipetted onto the pre-functionalised CaF2 

windows and allowed to dry completely in a sterile environment.  
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Each window was placed in a separate well of a 6-well plate, to which a suspension 

of cells in medium (1 x105 cells, 2 mL) was added. The cells were incubated overnight 

at 37 °C in a humidified 5% CO2 environment to allow adhesion to the windows.  

 

6.4.7.1 Drug Responses 

Staurosporine (STS) was used to induce apoptosis. Following overnight incubation of 

cells on the CaF2 windows, each CaF2 window was placed into 35 mm petri dish, and 

a solution of STS in medium (1 µM, 2 mL) added. One sample was left untreated as a 

control, with fresh medium added instead. All samples were placed in an incubator 

at 37 °C in a humidified 5% CO2 environment for at least 30 min prior to imaging. 

Each STS dosed sample was incubated for either 0-1, 1-2, 2-3, 4-5, 5-6, or 6-7 hours, 

and imaged immediately upon removal from the incubator.  

 

6.4.7.2 Measuring Extracellular pH of Monolayer Culture 

TG-AuNP-MBA beads which were surrounded by at least 3 cells were used for 

measuring pH. All spectra were recorded using the Renishaw In Via spectrometer, 

using Edge 785 nm laser, 5x objective, ~100 mW, 7s integration time with 5 

accumulations.  

All data was processed using WiRe 4.4, Origin9 software, and Excel.  

 

 Multicellular Tumour Spheroids (MTS) 

The hanging drop technique was used to prepare MTS. Cells were first grown in a 2D 

monolayer. The cells were trypsinised, and the cell solution transferred to a centrifuge 

tube before centrifugation (2000g, 4 min). The medium was removed, and the cell 

pellet resuspended in fresh medium (4 x104 cells/mL). Droplets (15 µL) of the cell 
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suspension were pipetted onto the lid of a plastic Petri dish. The lid was placed on 

the bottom of the dish containing medium (10 mL) and incubated at 37 °C in a 

humidified 5% CO2 environment. The MTS were typically grown over a period of 7 

days, with the droplets containing the MTS having fresh medium exchanged on days 

4 and 6. 

 

6.4.8.1 Incorporation of TG into Multicellular Tumour Spheroids (MTS) 

TG-AuNP-MBA (10 µm, 0.01 mg mL-1 TG) were soaked in 70% EtOH overnight, 

followed by 3 washings by centrifugation (7500 rpm, 5 min), the supernatant removed 

(450 µL) and resuspended in sterile PBS (450 µL).  On the last centrifugation step, as 

much supernatant was removed as possible, leaving a pellet of TG-AuNP-MBA in 

<10 µL sterile PBS. To the pellet, 1 mL of cells in medium was added (4 x104 cells mL-

1), pipetting the solution gently to resuspend the pellet of beads. Droplets (15 µL) of 

the cell/bead mixture was pipetted onto the lid of a plastic Petri dish. The lid was 

placed on the bottom of the dish containing medium (10 mL) and incubated at 37 °C 

in a humidified 5% CO2 environment. The MTS were typically grown over a period 

of 7 days, with the droplets containing the MTS having fresh medium exchanged on 

days 4 and 6. 

 

6.4.8.2 Drug Responses  

Staurosporine (STS) was used to induce apoptosis in the MTS. After 7 days of growth, 

the medium containing the droplets was removed and replaced with either fresh 

medium (20 µL), or STS in medium (10 µM, 20 µL).   All samples were placed in an 

incubator at 37 °C in a humidified 5% CO2 environment for at least 30 min prior to 

imaging. Each STS dosed sample was incubated for either 0-1, 1-2, 2-3, 4-5, 5-6, 6-7 

hours, or overnight, and imaged immediately upon removal from the incubator. 
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6.4.8.3 Imaging of TGs incorporated in MTS 

After approximately 7 days of growth, the MTS formed via the hanging drop method 

were harvested for imaging.  

Mapping whole MTSs was possible in situ using the Renishaw In Via spectrometer. 

The MTS were mapped using the StreamLine 785 nm laser, 5x objective, ~100 mW, 2s 

integration time. A 20 x 14.2 µm (x,y) step size in each direction was used. A single 

spectrum was extracted from each TG bead (approximately in the centre) and 

categorised as either “Centre” or “Outer” depending on location of the particle.  

All data was processed using WiRe 4.4, Origin9 software, and Excel.  

 

6.4.8.4 Setting MTS in Matrigel® 

All equipment (Matrigel®, pipette tips, CaF2 windows) was chilled on ice prior to 

introduction of the MTS. MTS were gently pipetted into desired volume of chilled 

Matrigel® onto a CaF2 window, and allowed to set in an incubator at 37 °C with 5% 

CO2 for 30 min.  

 

 MTS TEM 

MTS were fixed in 0.5% glutaraldehyde in PBS for 2 hours. Osmium tetroxide staining 

of the fixed samples were carried out by Steve Mitchell (School of Biological Science, 

University of Edinburgh). The samples were sectioned, transferred to copper imaging 

grids, and examined using a Jeol JEM transmission electron microscope.  
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 Multicore Multimode Fibre 

Fabrication of the 19 core, multimode fibre was carried out via the “stack and draw” 

process as described in Section 6.1.4.3. Through fibre Raman measurements were 

carried out using the fibre set up as shown in Figure 6.1 coupled to an Ocean Optics 

QE Pro spectrometer. Raman mapping of the distal fibre end was carried out using a 

Renishaw InVia system.  

Functionalised TG-AuNPs (10 µm / 150 nm) were loaded into etched cores of the 

multicore fibre via force loading. A sample of TG-AuNPs containing approximately 

1800 microspheres, and comprising either only TG-AuNP-MBA, or a mixture of TG-

AuNP-MBA and TG-AuNP-NQ in 70% EtOH were allowed to settle into a loose 

pellet. The supernatant was removed as much as possible to leave <10 µL. The distal 

end of the fibre was then pressed gently into the pellet of microspheres. Typically, 

loading was carried out with live monitoring of a single core.  

 

 Single Core Fibre 

6.4.11.1 Fabrication 

A single core, multimode, silica based optical fibre (1 m length, core diameter of 200 

µm, NA 0.39) was used for the SERS chamber work (Section 3.6). Both the optical fibre 

(200 µm core diameter, NA 0.39) and fibre ferrules were purchased from Thorlabs. 

Larger TG-AuNP-MBA (~200 µm TG bead size) conjugates were prepared for the 

SERS chamber work in the same way as outlined in Section 6.4.2.  

Fabrication of the chamber in which a single TG-AuNP-MBA bead would sit was 

prepared by first cutting a strip from a cell strainer mesh (Falcon CorningTM; ~2 mm 

wide, 100 µm pore size). This was placed on top of a rubber ring, and a fibre ferrule 

was pushed through resulting in the mesh placed flush on the top of the ferrule. A 
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single TG-AuNP-MBA bead was pipetted into the open end of the ferrule and pushed 

into place by the fibre and secured in place. 

 

6.4.11.2 pH Sensing 

For the calibrations, buffers between pH 4.0-9.0 were used. For each pH, the distal 

end of the fibre would be gently placed in an Eppendorf containing the buffer solution 

(0.5 mL) and the spectra recorded using a 785 nm laser source, with an output power 

of 0.8 mW, and a 30 s integration time. Between each pH buffer the fibre was rinsed 

with dH2O.  Each calibration composed of three replicates, with the pH solutions 

being used in a random order.  

 

6.5 Chapter 4 Experimental – Paper substrates 

 General 

Filter paper (Whatman, grade 114) was purchased from Scientific Laboratory 

Supplies Ltd. Lysogeny Broth was purchased from Thermofisher. Both the Optical 

fibre (200 µm core diameter, NA 0.39) and fibre ferrules were purchased from 

Thorlabs. 

 

6.5.1.1 Preparation of functionalised nanoparticles 

 Gold nanoparticles (5 x 1 mL aliquots, 3.6 x109 particles/mL, ~150 nm) were prepared 

for functionalisation by centrifuged at 5500 rpm for 10 min. For functionalising the 

particles, following centrifugation, the supernatant (900 µL) from each aliquot was 

removed without disturbing the pellet. The pellet was resuspended in deionised 

water (800 µL) and 4-MBA (100 µL, 1 mM in EtOH) and left overnight. Unbound 4-
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MBA was removed via washing and centrifugation at 5500 rpm for 10 min. The 

supernatant (900 µL) was removed without disturbing the pellet, followed by 

resuspension in dH2O (900 µL). The samples were vortexed and sonicated to ensure 

the particles were forced back into suspension. The washing and centrifugation 

process was completed a total of 3 times.  

The functionalised nanoparticles were then concentrated and combined. The samples 

were centrifuged at 5500 rpm for 10 min, and the supernatant (950 µL) was removed 

without disturbing the pellet. The AuNPs were forced back into suspension in the 

remaining volume of dH2O (~50 µL) through sonication and vortexing. The 5 aliquots 

were combined, centrifuged at 5500 rpm for 10 min, and the appropriate amount of 

supernatant was removed to give a final volume of 50 µL (1.8 x1010 particles). 

 

 Fabrication of paper SERS substrate  

Preparation of the filter paper: an array of circular stencils was designed.‡‡ A Xerox 

ColourQube8580 was used to print in standard waxed based ink on to the surface of 

the filter paper, leaving 3 mm diameters disks of bare paper. The wax printed paper 

was placed on a hotplate (150 °C) and compressed with a weight for 60s.  

For fabrication of the SERS-active substrate, 2 µL droplets of the concentrated 4-MBA 

functionalised AuNPs were pipetted on to the filter paper disk and allowed to dry at 

room temperature for an hour. A further 6 µL of AuNPs was dropped on to each disk 

in 2 µL aliquots with drying in between to a total of 8 µL (2.9 x109 total particles 

deposited). 

 

 

 

‡‡ Drawn and printed by Angus Marks, University of Edinburgh 
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 Fibre sensing 

For preparation of the fibre-based sensor: Silica based optical fibres (3 x 1 m length, 

core diameter of 200 µm, NA 0.39) were used throughout. The filter paper disks 

containing functionalised AuNPs had a 1 mm wide strip down the centre of the disk. 

The “top side” (the side of the filter paper to which AuNPs had been applied) was 

placed facing upwards on top of a rubber ring. A fibre ferrule was pushed through 

the ring resulting in the filter paper placed flush on the top of the ferrule. Following 

the preparation of the packaged ferrule, the fibre tip was threaded through to meet 

the filter paper and secured in place. A total of 3 fibres were prepared for calibration. 

A SERS spectrum was obtained using the packaged distal end of the fibre from 7 

separate pH buffers from pH 4-10. SERS spectra were acquired while the fibre tip was 

fully submerged in each buffer for the total period of the spectral acquisition time. 3 

independent fibres were used each with 3 replicate measurements between pH 4-10, 

with the order of the measurements within each replicate being random. 

 

 Bacterial Culture and Extraction of P. aeruginosa 3284 

An inhouse clinical isolate Pseudomonas aeruginosa 3284 was used for this 

investigation. A single colony was inoculated in Lysogeny Broth (LB; 10 mL) and 

incubated overnight (37 °C, 250 RPM), followed by a further subculture (100 µL of 

overnight culture in 10 mL LB) and incubated at the same conditions for 4 hours until 

mid-log phase growth was reached.  

The optical density at 595 nm (OD595) of the resulting culture was measured and 

adjusted to a value of 1 to give an approximate bacterial concentration of 6 x108 

CFU/mL. Serial dilutions (6 x 108 to 6 x 100 CFU/mL) were prepared with sterile PBS.   

For each dilution, the packaged ferrule was dipped into the bacteria containing 

solution and pressed in succession across an LB agar plate. To compare, 3 x 20 µL 
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samples of each dilution was dropped on lysogeny broth (LB) agar plates for CFU 

analysis. Plates were incubated at 37 °C with 5% CO2 overnight, with CFUs manually 

counted as a standard method. 

 Fluorescence Imaging of Bacteria 

Bacteria were stained with either an in-house ubiquicidin based fluorescent dye (5 

µM)212, or nuclear stain (Syto60, 5µM, Thermofisher).  

The ferrule was dipped into bacteria (6 x102 CFU/mL), pressed into agar, then 

submerged in PBS. The “retrieved” bacteria were stained with UBI-based dye (5 µM), 

and imaged using a Leica SP8 CSLM, 488 nm excitation, 63x oil immersion objective. 

Images were brightness and contrast enhanced with proprietary software. 

Widefield fluorescence images of bacteria on filter paper AuNP soaked paper. Before 

the introduction of the paper, a bacterial solution of P. aeruginosa (6x 105 CFU/mL), 

was stained with Syto60 (5 µm, λex652 nm, λem678 nm) as per manufacturer’s 

instructions. Waxed paper without AuNP or bacteria was imaged using the GFP 

lightcube with the EVOS FL Auto Cell Imaging System. AuNP-paper without 

bacteria, imaged using Cy5 light cube. Waxed paper containing AuNPs was dipped 

into the stained bacterial solutions and imaged on the using the Cy light cube.  
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8 Appendices 

8.1 Supporting data from Chapter 2 

 4-MPY Calibration Plots 

All spectra were normalised to between 0-1 before integrating pH changing regions. 

The black curve represents a Boltzmann fit to the plotted data, the red curve is the 

theoretical Henderson-Hasselbach plot derived using the experimentally determined 

pKa (x0). Spectra obtained using a Renishaw In Via system, with 785 nm illumination, 

at 0.5 mW, 60x objective, and 1s integration time.   
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Figure 8.1 4-MPY calibration plots using peak intensities and area under the curve (AUC) 

calculations. Plot (A) represents the ratio between the 1002 cm-1 peak against the AUC 

between 1549-1601 cm-1. (B) represents the ratio between the AUC between 1549-1601 cm-1 

and the 1002 cm-1 peak. (C) represents the ratio between the AUC between 1549-1601 cm-1 and 

the 1613 cm-1 peak.  
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Figure 8.2 4-MPY calibration plots using peak intensities calculations. Plot (A) represents the 

ratio between the 1092 cm-1 peak against the 1002 cm-1 peak. (B) represents the ratio between the 

1002 cm-1 peak against the 1092 cm-1 peak. (C) represents the ratio between the 1055 cm-1 peak 

against the 1002 cm-1 peak. (D) represents the ratio between the 1585 cm-1 peak against the 1613 

cm-1 peak. (E) represents the ratio between the 1613 cm-1 peak against the 1585 cm-1 peak. 
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 4-ATP Calibration Plots 

All spectra were normalised to between 0-1 before integrating pH changing regions. 

The black curve represents a Boltzmann fit to the plotted data, the red curve is the 

theoretical Henderson-Hasslebach plot derived using the experimentally determined 

pKa (x0). Spectra obtained using a Renishaw In Via system, with 785 nm illumination, 

at 0.5 mW, 60x objective, and 1s integration time. 
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Figure 8.3 4-ATP calibration plots using peak intensities calculations. Plot (A) represents 

the ratio between the 1077 cm-1 peak against the 1581 cm-1 peak. (B) represents the ratio 

between the 1179 cm-1 peak and the 1581 cm-1 peak. (C) represents the ratio between the 

1439 cm-1 peak and the 1581 cm-1 peak. (D) represents the ratio between the 1581 cm-1 peak 

and the 1077 cm-1 peak. 
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