
COMPUTER DATA BASE

ASSESSMENT OF MASONRY BRIDGES

by

LAWRENCE SIHWA

A thesis submitted in fulfilment of the requirements

for the Degree of Doctor of Philosophy in

Electrical Engineering

University of Edinburgh

1987

BEST COPY

AVAILABLE

Variable print quality

i

DECLARATION

I hereby declare that this thesis was composed by myself, and the original works and

results reported were obtained solely by myself, unless otherwise stated.

Edinburgh,,,, Tune, 1987

Qi

L. Sihwa

11

DEDICATION

TO MY MOTHER

and

MY LATE FATHER

CONTENTS

DECLARATION ...
i

DEDICATION ...
ii

CONTENTS .. iii

ACKNOWLEDGEMENT ...
ix

ABSTRACT .. x

CHAPTER 1

INTRODUCTION

1.0 BACKGROUND .. 1

1.1 MAINTENANCE CONSIDERATIONS .. 2

1.1.1- Safety Considerations ..
2

1.1.2 Economic Considerations ...
2

1.1.3 Other Considerations ..
3

1.2 BRIDGE MANAGEMENT SYSTEMS ...
3

1.2.1 Decision Support Systems ..
4

1.3 PROJECT WORK AND SUMMARY OF THESIS
5

CHAPTER 2

STONE MASONRY STRUCTURES

2.0 HISTORICAL BACKGROUND .. 8

2.1 BENDING AND COMPRESSION STRUCTURES

... 11

2.2 COMPONENT PARTS OF MASONRY ARCH

AND THEIR FUNCTIONS .. 14

2.2.1 Arch Ring ... 14

2.2.2 Spandrel Walls and Fill Material ... 16

2.2.3 The Arch Barrel ... 16

- iv -

2.2.4 Abutments, Piers and Foundations .. 16

2.3 DEFECTS AND DETERIORATION

OF MASONRY STRUCTURES .. 17

2.3.1 Deterioration of Spandrel Walls ... 17

2.3.2 Change in Shape of Arch ... 18

2.3.3 Cracks in Barrel .. 18

2.3.4 Downward Displacement of Individual Stones 21

2.3.5 Leaching .. 21

2.3.6 Spalling .. 22

2.3.7 Defects in Fill Material .. 22

2.3.8 Defects in Foundations ... 22

2.4 MECHANISMS OF COLLAPSE OF AN ARCH 27

2.5 INTERACTION OF COMPONENT PARTS OF MASONRY ARCH
REFERENCES AND BIBLIOGRAPHY ... 29

CHAPTER 3

CURRENT METHODS OF ASSESSMENT AND MAINTENANCE

OF STONE MASONRY STRUCTURES

3.0 BACKGROUND .. 30

3.1 ASSESSMENT TECHNIQUES ... 31

3.2 PRESENT ASSESSMENT METHODS ... 32

3.2.1 Visual Inspection and Coring ... 32

3.2.2 Modified MEXE Method .. 33

3.2.3 Static Loading ... 36

3.2.4 Dynamic Signature ... 38

3.2.5 Sonic Assessment ... 40

3.2.6 Tale Tales .. 44

-V-

3.3 TECHNIQUES FOR REPAIR AND MAINTENANCE

OF MASONRY BRIDGES ... 45

3.3.1 Filling of Cavities by Injection ... 45

3.3.2 Improvements of Drainage and Water Evacuation Systems 47

3.3.3 Waterproofing of the Extrados .. 41

3.3.4 Repointing and Restoration of Masonry 48

3.3.5 Installation of Steel Cross Ties .. 48

3.3.6 Installation of Steel Ties ... 53

3.3.7 Repairs to Abutments and Piers ... 53

3.3.8 Repairs to Arch Barrels ... 54

3.3.9 Repair of Spandrell Walls .. 56

3.3.10 Repair to Road Surfacing ... 57

3.4 OVERVIEW .. 57

REFERENCES AND BIBLIOGRAPHY
... 57

CHAPTER 4

DATA BASES AND DATA BASE MANAGEMENT SYSTEMS

4.0 BACKGROUND..:.......
... 59

4.1 DATA PROCESSING ... 60

4.1.1 The Traditional Approach ... 60

4.1.2 The Data Base Approach .. 62

4.2 DATA BASE MANAGEMENT ARCHITECTURE 64

4.3 DATA BASE MODELS ... 66

4.3.1 Hierarchical Model ... 67

4.3.2 Network Model ... 68

4.4 DATA BASE NAVIGATION IN FORMATTED SYSTEMS 60

4.5 EVALUATION OF FORMATTED SYSTEMS 70

REFERENCES AND BIBLIOGRAPHY ... 70

- V1

CHAPTER 5

THE RELATIONAL MODEL

5.0 INTRODUCTION :....................:.. 72

5.1 BASIC CONCEPTS OF A RELATIONAL DATA BASE 73

5.2 PROPERTIES OF THE RELATIONAL MODEL 73

5.3 DATA MANIPULATION LANGUAGES

FOR THE RELATIONAL MODEL ... 74

5.3.1 Relational Calculus .. 75

5.4 RELATIONAL DATA BASE DESIGN ...
76

5.4.1 Normalisation .. 78

5.4.2 Third Normal Form ... 81

5.4.3 Boyce/Codd Normal Form (BCNF) ... 81

5.5 EVALUATION OF THE MODELS ..
83

5.6 EXAMPLES ON MASONRY BRIDGES ..
84

REFERENCES AND BIBLIOGRAPHY ..
85

CHAPTER 6

THE INGRES RELATIONAL DATA BASE MANAGEMENT SYSTEM

6.0 BACKGROUND ..
87

6.1 USING THE INGRES RELATIONAL DATA

BASE MANAGEMENT SYSTEM .. 88

6.2 QUEL AND INGRES UTILITY COMMANDS 89

6.3 EQUEL .. 91

6.4 THE INGRES PROCESS STRUCTURE .. 91

6.4.1 UNIX ... 91

6.4.2 Invoking INGRES from UNIX .. 92

6.4.3 Indirect Interaction with INGRES :........... 93

6.5 INGRES STORAGE STRUCTURES .. 94

6.5.1 Heap .. 94

- vii --

6.5.2 Hash .. 95

6.5.3 Isam ... 95

6.5.4 Secondary Indices .. 95

6.5.5 Compression .. 96

REFERENCES AND BIBLIOGRAPHY .. 96

CHAPTER 7

DEVELOPMENT OF THE INTERFACE

7.0 BACKGROUND .. 99

7.1 BASIC STRUCTURE OF USER INTERFACE 100

7.2 ROLE OF THE THREE PROCESSES .. 102

7.2.1 Parent Process .. 102

7.2.2 INGRES (Child 1) and Child 2 ... 102

7.3 PROCESS CONTROL ...: 102

7.4 INTERPROCESS COMMUNICATION ... 104

7.5 OPERATION OF INTERFACE .. 105

7.5.1 Communication Between Parent and INGRES
105

7.5.2 Communication Between INGRES and Child 2
107

REFERENCES AND BIBLIOGRAPHY ..
108

CHAPTER 8

APPLICATION OF THE SYSTEM

8.0 BACKGROUND .. 109

8.1 STRUCTURE OF SYSTEM ... 110

8.1.1 Information Retrieval ... 110

8.1.2 Associative Process ... 112

8.2 SYSTEM CHARACTERISTICS .. 113

8.3 SYSTEM PERFORMANCE ... 113

8.4 SYSTEM MODIFICATION ... 115

- viii -

8.5 RUNNING THE SYSTEM ... 117

8.6 DATA BASE DESIGN FOR THE SYSTEM 117

CHAPTER 9

DEMONSTRATION RUN

9.1 SHOW RELATIONS IN A DATA BASE 119

9.2 LIST DOMAIN NAMES AND FORMATS 120

9.3 PRINT OUT CONTENTS OF A RELATION 121

9.4 VIEW CONTENTS OF QUERY BUFFER 122

9.5 INFORMATION RETRIEVAL ... 123

9.6 DECISION SUPPORT SOFTWARE ... 126

9.7 CREATING AND MAINTAINING A

A DATA BASE USING INGRES ..
129

9.7.1 Create an Empty Relation ...
130

9.7.2 Forming a Relation From Existing Relations
131

9.7.3 Destroy a Relation .. 131

9.7.4 Erase Contents of a Relation ..
132

9.7.5 How to Copy Whole Relations to INGRES
132

9.7.6 Modify System Relations ...
133

9.7.7 To Destroy a data base .. 134

9.7.8 Storage Structures in INGRES ... 134

9.7.9 Quit Sub Menu to Main Menu ... 135

CHAPTER 10

DISCUSSION

10.0 CONCLUDING REMARKS .. 136

10.1 IMPLICATIONS TO CIVIL ENGINEERS 138

10.3 DISCUSSION .. 139

ix

APPENDIX 3 .. 141

MEXE METHOD

APPENDIX 6A ... 149

QUEL COMMANDS -

APPENDIX 6B .. 152

INGRES UTILITY COMMANDS

APPENDIX 8 ... 157

LISTING OF CURRENT RELATIONS

APPENDIX 10 ... 162

LISTING OF THE INTERFACE BETWEEN THE USER

AND THE INGRES RELATIONAL DATA BASE SYSTEM

-X-

ACKOWLEDGEMENTS

The author wishes to thank Professor J. Mayor, head of the Department of Electrical

Engineering for placing the facilities of this Department at his disposal at all times. The

author is grateful to Professor A. W. Henry, head of Department of Civil Engineering

for his help in the project work.

The author is particularly grateful to Dr. H. W. Whittington and Dr. G. C. Coghill for

their supervision. Their advise was invaluable in carrying out the project work as well

as in the preparation of this thesis.

The author is indebted to the staff at the Highway Department, the British Rail Civil

Engineering Department, and the Scottish Development Department, all in Edinburgh,

for allowing me to look into their records and for the time they spent discussing the

project with me.

The author also wishes to thank his mother, brother and sisters for their moral and

financial support at all times.

The financial support of the Science and Engineering Research Council is gratefully

acknowledged.

-Xi

ABSTRACT

This thesis is concerned about the development of computer data base management

system for the assessment of masonry bridges.

The various techniques of assessment and remedial measures of masonry bridges are

outlined, their shortcomings described. A justification for an alternative method of

assessment is given.

A review of computer data base management systems is carried out. The reasons for

adopting data base management systems is given as well as the reasons for choosing a

particular type of data base management system.

The common faults associated with masonry structures are described and the problems

of identifying these faults are described. The part played by the individual components

of a masonry arch bridge is given and the significance of faults on the individual com-

ponents of the structure is described.

A detailed description of the type, in general of the data base system chosen is given

followed by a detailed description of a special case of the type chosen, which is the sys-

tem that was used for the project.

A description of how the system was developed is given followed by the way the system

operates.

A detailed description of how the system can be used is then put forward and the prob-

lems associated with the development of the system are outlined.

Finally, a description of the implications of the system to the practising engineer is

given.

1

CHAPTER I

INTRODUCTION

1.0 BACKGROUND

Bridges form a key part of the highway, railway and aqueduct network because of

their strategic location and of the undesirable consequences if they fail or if their capa-

city is impaired. Particular attention must therefore be given to the systematic assess-

ment of bridges as an essential part of the surveillance and management of the tran-

sport system.

Like all engineering structures, bridges, for the most part, start to deteriorate from the

moment they are built. Also, it is common experience that they are subjected to

increased vehicular loading as they age often well above that for which they were con-

ceived. In order to repair and maintain these structures, the engineer requires

knowledge on their design details as well as their operational and maintenance his-

tories. In the case of recently constructed structures, this information is normally avail-

able, but unfortunately, in the past, little or no thought was given to maintenance

when designing structures and there was very little feedback from maintenance to

design. Consequently, in assessing old structures for repair and maintenance, the

engineer is faced with difficulties as a result of:

" non-availability of records for the structures;

" the structures are in themselves very old;

" non-uniform design and construction methods were used and

" some repair work has often been done but not documented.

-2-

1.1 MAINTENANCE CONSIDERATIONS

1.1.1 Safety Considerations

Failures of bridges in service do occur, but are fortunately rare, particularly those lead-

ing to personal injury. More common is accidental damage arising from impact by

vehicles or vessels.

Linked with safety is the concept of serviceability. This entails that the bridge must to

an acceptable degree of probability, perform its specified functions without undue

expense in terms of both capital and maintenance costs. It should do so for the whole

of its expected life without being non-operational (except for reasonable short mainte-

nance overhauls) without detriment to its appearance and to public confidence in its

safety.

1.1.2 Economic Considerations

It is a vital necessity to keep a close and systematic watch on the bridge structure and

its constituent elements, in order to ensure that the necessary action is taken in time

and most economically. In fact, if traffic has to be interrupted across a bridge as a

result of the occurrence of serious damage before there has been time to plan repairs or

reconstruction, the cost to the community can be of a very high order. For example,

there have been incidences where the road user costs due to an unplanned and unex-

pected replacement of a bridge have been of the order of five times the cost of rebuild-

ing the bridge, reference [3.4(1)].

In the United Kingdom the bridge stock is in excess of 120,000 representing a replace-

ment cost of approximately £15,000 million. Several thousand of these bridges are

stone masonry bridges, dating back, in most cases, for over two hundred years and

presenting a major, and expensive, problem for their responsible Authorities. The

-3-

maintenance of stone masonry structures can be extremely expensive undertaking

because of the following points:

" the replacement materials are expensive and often difficult to obtain;

" the maintenance personnel need to be highly skilled, hence wage costs are

high;
11

" in many instances, when planned repairs are begun additional bridge faults

become apparent when the structure is partly dismantled.

1.1.3 Other Considerations

In a significant number of cases, the bridges are listed structures with statutory obliga-

tions in terms of preservation, for example, for architectural interests. Hence, rather

than consider replacement, the Engineer must maintain and repair. In addition, the

legal liability with which authorities or even the individual bridge Engineer may be

faced can be an important incentive for setting up or perfecting bridge maintenance

schemes.

Even if there are no legal sanctions, the sight of neglected, deteriorating or damaged

bridges may affect public confidence and subject the responsible bridge authority to

severe criticism. Moreover, in an era that has witnessed on the one hand unpre-

cedented increases in international transport, travel and tourism and on the other ever

more complex and spectacular engineering structures, the publicity likely to be given to

serious bridge accidents or failures may have an adverse influence on professional or

national prestige.

-4-

1.2 BRIDGE MANAGEMENT SYSTEMS

Timely and economic planning and programming of remedial and preventative mainte-

nance and repair work, or even bridge replacement, with the minimum effect upon

traffic, are dependent upon systematic and detailed bridge inspection (see Chapter 3)

and the expert assessment of data.

It is possible that with present assessment methods (see Chapter 3), some bridges may

be selected for repair while more seriously damaged structures are missed. It follows

that if maintenance scheduling could be optimised by making available to the Engineer

responsible for their repair and maintenance, the collected expertise of practitioners

over many years, there would be consequent attractive associated cost benefits. This

would be both in terms of improved interpretation of the results of inspection and test-

ing and of allowing the ranking of bridges in order of need for repair such that the

most serious cases were dealt with first.

Hence, if software aids for repair and maintenance scheduling were made available to

the engineer, they could provide the following advantages:

" more effective ranking;

" more effective repair strategy;

" reliable and safer transport routes.

1.2.1 Decision Support Systems

Effective access to expert knowledge is possible by consulting an expert, but even then

it is often considered necessary to seek a second opinion. If the combined knowledge

of many experts is available, the process becomes even more attractive, but, in practice

this is very difficult to achieve or very expensive.

However, with appropriate software, computer Data Base Management can effectively

-5-

make it possible for an engineer to access the collected experience of many experts and

of the archives of many bridge authorities.

To demonstrate the feasibility of the decision support software in maintenance and

repair scheduling, the area chosen has been that of maintenance and repair of stone

masonry bridges because of the following reasons:

" the structures are very old, in most cases over 200 years of age;

" no documentation exists for these structures;

" the structures are of non-standard design;

" assessment of the structures by quantitative means is not suitable because

of the non-homogeneous nature of the materials of construction.

" archive data is available in different forms;

" much of the assessment is based on Engineer's experience and not on

theory and

" testing is expensive and of limited value.

1.3 PROJECT WORK AND SUMMARY OF THESIS

The project work can be broken down into three major parts, viz:

(i) the generation of a data base of test inspection, repair and maintenance

information relevant to stone masonry structures;

(ii) the development of a user friendly interface for retrieval of archived data

from the data base;

(iii) the development of a basic decision support program to demonstrate the

feasibility of the technique to the practising engineer and to allow future

feedback from potential users;

-6-

Chapter 2 gives a historical background to the masonry arch, that is, how, it came

about and the reasons as to why there are several thousand masonry arch bridges in the

United Kingdom. The various component parts of a masonry arch bridge and their

respective functions are described in turn. This is followed by a description of the

defects and types of deterioration that are common to masonry arch bridges.

Chapter 3 outlines the techniques currently employed for the assessment of stone

masonry bridges as well as their shortcomings. The techniques described are: visual

inspection and coring, modified Military Engineering Experimental Establishment

(MEXE) method, static loading, dynamic signature and sonic assessment. The various

methods for the repair and maintenance of stone masonry bridges are described.

Chapter 4 gives a review of data bases. The disadvantages associated with the tradi-

tional approach to data processing systems are outlined. The advantages of the data

base approach to data processing over the traditional approach are outlined. Two data

base models, the hierarchical model and the network model are described in turn and

their drawbacks are outlined.

Chapter 5 describes the third data base model, the relational model. The advantages of

this model over the other models described in Chapter 4 are outlined thereby providing

a justification for using this type of model for the project work.

Chapter 6 looks in depth at the INGRES Relational Data Base Management System,

that is, the relational data base model adopted for this project. This chapter describes

the essential features of INGRES that were used in the project work.

Chapter 7 describes how an interface between INGRES and the user was developed as

well as how it operates. The three major processes that make up the system are

described, that is, how they were developed and how they communicate with each

other.

-7-

Chapter 8 describes how the user interface described in Chapter 7 was put into use.

The two major components of the system, that is, information retrieval and associative

processes are described in turn. The major problems that were encountered in the

development of the system are outlined with the ways in which they were overcome.

This chapter also gives a detailed description of how the system could be modified to

suit future user needs. This is followed by a description of how the system could be ini-

tially run.

Chapter 9 gives examples of typical investigations through the data base using the vari-

ous facilities which have been developed, with explanations which would enable the

user to use the data base unaided, with reference only to this thesis. Examples of each

of the facilities developed are given in chapter 9.

Chapter 10 is a discussion of the project work. The implications to Civil Engineers of

the project work are outlined. This chapter also outlines the advantages that the system

would offer to the user over a conventional data base system.

-8-

CHAPTER 2

STONE MASONRY STRUCTURES

2.0 HISTORICAL BACKGROUND

Our distant forebears in many parts of the globe, struggling to overcome the transpor-

tation problems of their primitive trail-worlds, invented not only the simple beam

bridge but also the far more sophisticated, even ultramodern forms of suspension and

cantilever.

In the interior of South America men first learned to swing across a chasm on a vine,

like monkeys. In China cantilevers were built by extending heavy timbers outward

from a solid store abutment. For early man, with his limited access to materials and his

limited means of refining them, these bridge forms, had only very restricted value.

They served for narrow crossings under favourable circumstances.

Civilisation demanded something better. Above all, the invention of the wheel, with its

dramatic train of carts, wagons, roads, highways, merchants, wealth, towns, and cities,

brought the problem of river crossing to the fore.

The invention that solved the bridge problem of ancient civilisation ranks second only

to the wheel itself. It is the arch. How this marvel came into being is as deep a mystery

as the origin of the wheel. Engineers discount the older guess that man built arches in

imitation of nature, for the natural arch formed by erosion is structurally quite dif-

ferent from the stone arch. Archaeologists have found that the arch appeared in tombs

and underground temples long before it was used as a bridge. Recent excavations have

disclosed underground vaults going back to fourth millennium B. C. at Ur and else-

where in ancient Sumer, the earliest Tigris-Euphrates civilisation. Egyptians, too knew

vaulting by the year 3000 B. C.

. 9-

The Greeks had used beam and column, construction for many centuries. However,

the only materials abundantly available were stone, brick or combinations of the two.

Arches were built of these materials which are suitable for structures in compression

and could resist buckling.

The Sumerians and Babylonians apparently had the false arch (Figure 2.1 (a)) at a

very early date, and perhaps derived the true arch (Figure 2.1 (b)) from it. The false

arch, built of overlapping bricks laid horizontally and held together by mortar, will

stand, but will not carry a load. A true arch, on the other hand, will sustain an enor-

mous weight even without any mortar.

I A-

(a) (b)

Figure 2.1 False and True Arch

Restricted to what amounted to a decorative role in tombs, temples, and palaces, the

arch existed for at least two thousand years before it was ever used as a bridge. For its

serious application, the stone arch, like many other Greek, Persian and Egyptian

inventions, awaited the coming of the gifted Romans.

To appreciate the Roman achievements one should first take some note of the basic

problems involved in bridging a wide, deep river. To bridge a river with five stone

arches required four piers in the stream, two of them near the middle. Since the bot-

tom of a river is mud, the problem was how to build a pier on a mud river bottom.

Supporting a heavy stone arch demanded a pier of considerable dimensions. The

longer the arch span, the thicker the pier. Roman arch bridges, almost without excep-

-10-

tion, had semicircular profiles, with the width of each intermediate pier 1/4 to 1/3 of

the clear opening (span). The Romans usually made their arches from 15 to 27 meters

in span, and their piers from 5 to 11 meters thick. All the arches of a bridge were not

necessarily the same length, more frequently the centre span or two centre spans were

longer than the outside spans.

The Romans arrived at this semicircular profile by trial and error, and by the same

process discovered that piers of the above proportion proved most satisfactory. Also,

because they relied on empirical proportioning they were ignorant of the structural

principles governing the stability of arches.

The old Roman semicircular stone arch persisted for century after century and was

only superseded by the flat, elliptical arch on the eve of the metal bridge. Such an arch

has a profoundly different structural effect from that of the semicircular arch. Where

the semicircular arch presses down in a wholly vertical direction, the segmental arch

introduced the element of horizontal thrust. In many locations the semicircular arch

demanded steeply inclined roadways, while a flatter arch could keep the roadway level

enough for easy wagon passage. Also, the segmental arch required fewer piers in the

stream than the semicircular arch thereby offering less obstruction to navigation and at

the same time freer passage to floodwaters.

The stone used in the construction of masonry arches was mostly ashlar; that is, rec-

tangular blocks properly tooled on the external face only. In some cases the arches

were built of local shistos stone, commonly called "whin", which quarries in thin flat

pieces long enough to form the thickness of an arch but with very irregular edges and

faces. The most regular of these stones were chosen for the facing of the arch on the

elevations and irregular pieces were used to make up the rest of the arch. Since car-

riage was usually at least as much if not more than the price of the stone itself, in the

majority of cases, the stone used was from local quarries. Alternatively, in some cases,

- 11 -

it was imported usually by water since this was often easier and cheaper than by land.

In general, masonry was laid in lime mortar, but sometimes, especially when exposed

to continual wet conditions, it was laid in wax and pitch or in resin applied hot.

The eighteenth century was a century of revolutions. One of these revolutions was the

industrial revolution. As commerce grew, and manufacturing in turn'grew to feed com-

merce, and basic industries, especially coal mining, grew to feed manufacturing, the

rapidly expanding economic machine demanded new, quicker, better, transport. Hence

there are several thousand masonry bridges in the United Kingdom. These structures

are several hundred years old, while the design life of many structures today is approxi-

mately 75 - 100 years, which is an indictment on our current technology.

2.1 BENDING AND COMPRESSION STRUCTURES

One of the most important structural forms is the beam. This type of structural form

transmits forces by bending. However, force transmission by bending is not efficient in

comparison to axial force transmission structures such as trusses.

The two simple structural forms suited for carrying forces by compression alone are the

column and the arch. A column is a straight member loaded along its centroidal axis

with a compressive load. Except when it is extremely short, the column is less efficient

than a tensile member because it has the tendency to buckle when compressed.

A third form is the dome which can be created by revolving a parabolic or circular

arch about a vertical axis through its highest point.

There are three types of arches depending on the support conditions: three-hinged,

two-hinged, and hingeless (fixed) arches, Figure 2.2.

The 3-hinged arch is the only arch type where movement of the support will not pro-

-12-

duce stresses in the arch. If a fixed arch is used, the foundations must be very rigid

because slight translation or rotation of the ends will produce substantial stresses in the

arch. Two hinged arches are not affected by foundation rotation but are sensitive to

Three-hinged Two-hinged Hingeless

Figure 2.2 Arch Types

2.1.1 Comparison of Beam and Arch

Q

6

L
ru

Ipb
T

ý-ý

N
V

ý

Figure 2.3 Comparison of Beam and Arch

-13-

Force transmission by bending is not efficient in comparison to axial force transmis-

sion. In general, arches provide a marked reduction in bending moment but at the

expense of both large horizontal forces at the supports. All arches develop horizontal

reactions that produce moments opposite to those developed by the vertical reactions

and loads. This behaviour can be best illustrated by considering the state of internal

forces in a beam and an arch over the same span length L (Figure 2.3). At a point just

to the left of the load Q the bending moment M, shear force V and axial force N in

the beam are as follows:

M=Q. a. b
L

V=Q. b
L

N=0

At the same point in the arch, the corresponding values are:

M= Q'a=b
-H. h

L
Q. b. cos 9

-H. sin 0
L

x= QL'b-.
sin 9+x. cvs 9.

It is thus evident that both M and V are lower in the arch than in the beam.

Bending members place special requirements on materials since the material must be

capable of carrying both tensile and compressive stresses of about the same magnitude.

This creates no problem with most metals, except for the possibility of buckling tenden-

cies on the compression side of the beam, but it rules out the use of a material weak in

tension, such as masonry.

- 14 -

2.2 COMPONENT PARTS OF MASONRY ARCH AND THEIR FUNCTIONS

Figure 2.4 shows the details of a masonry arch bridge. The following sections describe

the various components of the bridge and their respective functions. Photographs I and

II show single and double arch bridges respectively.

Parapet

Coping ,\
ýý

.
Spandrel

Figure 2.4 Details of a Masonry Arch Bridge

2.2.1 Arch Ring

The arch ring forms the basic structural component of the bridge and is made up of

voussoirs (Figure 2.4). For a large span arch the voussoirs would normally be carefully

cut and a minimum of mortar used for their assembly while roughly cut stones, with

thicker mortar would be used for smaller arches.

- 15 -

Photograph I General View of Single Span Masonry Bridge

Photograph II General View of Double Span Masonry Bridge

- 16 -

2.2.2 Spandrel Walls and Fill Material

Spandrel walls are built on the arch rings on the two faces of the bridge to restrain the

infilling material. It is because of this function that spandrel walls are a contributing

factor to the carrying capacity of the bridge. The fill for small bridges is usually a com-

position of rubble of earth or gravel or hoggin built up to the desired height to carry

the road surface. The fill material contributes the larger proportion of the dead weight

of the bridge. Although a non structural component of the bridge, the infill provides a

medium for the distribution of the applied loading to the extrados of the arch.

In -the ý case of larger bridges, a series of walls is constructed over the haunches and

these walls have similar functions as those described above for the infill.

2.2.3 The Arch Barrel

This is the continuous prismatic structure that is formed by neighbouring arch rings.

As already mentioned in Section 2.0, the masonry is not well cut behind voussoirs,

although this is seldom the case for larger spans. Hence, in most cases, the voussoirs

have varying axial lengths implying that the neighbouring parallel arch rings interlock

and are not necessarily independent. The varied axial lengths also imply that the thick-

ness of the visible arch ring on the external face of a bridge is not necessarily the thick-

ness of the barrel under the roadway. This should be noted in determining the thick-

ness of the arch barrel (see Chapter 3, Section 3.2.2).

2.2.4 Abutments, Piers and Foundations

Abutments and piers provide the resistance to the horizontal thrust of the arch; and

hence the end supports of the arch and at the same time distribute the load from the

arch to the foundations.

- 17 -

2.3 DEFECTS AND DETERIORATION OF MASONRY STRUCTURES

Considering that masonry arches are at present carrying live load much in excess of

that for which they were designed, these bridges have given excellent services in terms

of strength and durability. Nonetheless, many defects and types of deterioration do

occur due to degradation of bridge with time or to the accidental occurrence such as

impact, flooding or excessive loading. Also, recent increases in traffic loads and densi-

ties has led to defects and deterioration of these bridges.
.

The following sections outline some of the commonly found defects, deformations and

types of deterioration found in masonry bridges and their respective causes.

Photographs III - VI show some of the defects and deformations found in masonry

bridges.

2.3.1 Deterioration of Spandrel Walls

Apart from deterioration due to such factors as weather, loss of pointing etc., spandrel

walls deteriorate because of lateral pressures developed in the infill by dead and live

loading as a result of the following factors:

" lateral spread of the infilling as it is subjected to traffic loading. This is

more pronounced in bridges where traffic approaches the edges of the

bridge, which is often the case in bridges without footways;

" frost heave which occurs when the water trapped in the fill material freezes

thereby expanding and exerting very high pressure on the walls;

" direct impact on walls by traffic which is more likely in bridges without

footway to prevent traffic approaching the edges of the bridge.

The overall effect of the above mentioned lateral forces is the outward movement of

- 18 -

the walls which may be in the form of:

bulging of wall;

" rotation of wall from arch barrel;

" sliding of wall from arch barrel;

" displacement of wall together with the arch ring.

Besides the outward movement of the walls due to lateral pressures, cracking at the

haunches may take place as an indication of some form of flexibility of the arch ring

over the centre half of the span.

2.3.2 Change in Shape of Arch

This is often a result of a'partial failure of the arch which may be due to impact from

traffic or from movements at the abutments.

2.3.3 Cracks in Barrel

In the following, section, -settlement is the vertical movement of the ground due to

compressibility of soil while subsidence is the movement of the earth due to collapse of

soil containing cavities, usually due to mineral mining.

The cracks in the barrel are mainly distinguishable by their orientation and their loca-

tion The following cracks may be observed on the barrel:

" longitudinal cracks, close to the edge of the arch, caused by the factors

already mentioned above (Section 2.3.1) as shown in Figure 2.5 (a) and

Photograph III.

" differential settlement of the abutments leads to longitudinal cracking of

the barrel, Figure 2.5 (b). There is cause for alarm if these cracks are

large (>3mm), as this indicates that the arch has subdivided into narrow

-19-

. 0.

segments which are less efficient of transferring the load than the unseg.

mented arch.,,

" lateral cracks - these may result from the reasons already discussed above

(Section 2.3.1).
I

subsidence at the sides of the abutments causes diagonal cracking of the

barrel, Figure 2.5 (c). Such cracks normally originate at the vicinity of

the sides of the arch at its springing (Figure 2.1) spreading upwards

towards the crown of the bridge. When pronounced (>3mm) reference

[3.41, such cracks signal a dangerous state of affairs in the overall condi-

tion of the bridge.

Longitudinal cracks near edge of

. arch, bulging of spandrel walls

caused by live load near edge of arch.

Figure 2.5 (a) Defects In Masonry Arches

-20-

Figure 2.5 (b) Defects in Masonry Arches

Diagonal cracks caused by

subsidence at the sides of the

abutment.

Figure 2.5 (c) Defects in Masonry Arches

.w

-21-

2.3.4 Downward Displacement of Individual Stones

The uneven cut of masonry as already mentioned in Section 2.0, implies

that some masonry projects above the barrel and is therefore subjected

to concentrated loads such as from services. This is more likely to

occur at the crown where the infill is minimal and may therefore be

inadequate. This results in the downward displacement of individual

stones as shown in Figure 2.5 (d).

Downward displacement of

individual stones caused

by insufficient fill over

the arch and/or services

producing point loads.

Figure 2.5 (d) Defects in Masonry Arches

2.3.5 Leaching and Spalling

The leakage or seepage of water through joints may dissolve out lime at the joints or

the fill material. This phenomenon known as leaching is the removal of material usu-

ally lime, from concrete or masonry by percolation of water.

This form of deterioration is more likely to occur in arches which are continuously wet

or are indicative of frequent penetration of dampness.

.0

-22-

Spalling is the detachment of fragments, usually flaky, from a larger mass which may

result from: a blow, or the action of weather (onion weathering), or internal pressure

due to expansion in icy weather of water trapped in cracks of masonry, or impact from

traffic.

2.3.6 Defects in Fill Material

Defects and deterioration may take place in the fill itself, on account of poor quality

material, lack of compaction, or loss of fill (Section 2.3.5). These defects may some-

times be detected by "tracking" becoming visible in the road deck surfacing. In some

of the old bridges, strengthening has been achieved by the removal of the infill

material and replacing it with concrete. Saturation of the infill material due to poor

drainage leads to a reduction in the shear strength of the infill which may result in the

overall deterioration of the bridge.

2.3.7 Defects in Foundations

Foundations of masonry arch bridges do tend to be highly susceptible to deterioration.

This is because, during the times they were constructed, it was a much greater com-

parative task than would be the case in today's standards to excavate to a suitable stra-

tum or drive piles to bear the foundations. As a result, less consideration was given to

scour and settlement than would be the case in today's standards.

- 23 -

Photograph III Longitudinal Cracking Close to Edge of Arch.

-24-

Photograph IV Separation of Arch Ring From Spandrel Walls.

- 25 -

Photograph V Spalling of Voussoirs

/

0fý .ý 7>r ... 1 I

I,,, .. ý ýi
., ý"3

Photograph VI Gouging of Stones Caused by Passing River Traffic

-27-

2.4 MECHANISMS OF COLLAPSE OF AN ARCH

In Figure 2.6 (b) an idealised semi-circular arch is supposed to be acted upon by its

own weight and by a single point load. As this point load is imagined to increase

slowly in magnitude, the self weight of the arch will have less effect on the shape of the

funicular polygon; in the limit, the thrust line will consist of the two straight lines

shown. For the particular dimensions sketched in Figure 2.6 (b) it is evident that a

sufficiently large point load cannot be supported by two straight thrust lines lying

wholly within the masonry as the point load increases in magnitude, a stage will be

reached when the arch collapses by the mechanism of four hinges sketched in Figure

2.6 (c).

(a)

Figure 2.6 Mechanisms of Collapse of an Arch.

The idealised arch has been drawn with very particular proportions; in Figure 2.6 (a) it

will be seen that straight thrust lines can be drawn within the masonry to support a

point load placed at the crown. This implies that the arch can carry a point load of any

-28-

intensity at the crown (provided the strength of the material against crushing is not

exceeded). The four-bar chain, Figure 2.6 (c) is the basic mechanism of collapse of an

arch.

A full account on the mechanisms of collapse of arches can be found in Heyman,

reference [2.2]

2.5 INTERACTION OF COMPONENT PARTS OF MASONRY ARCII

As already discussed above, masonry bridges comprise various components which

interact with each other and their environment to varying degrees. The overall perfor-

mance of the bridge depends on the condition of the individual elements as well as

their overall interaction. To ensure the satisfactory performance of the bridge, it is

essential that the bridge be monitored frequently to detect any defects and deteriora-

tion that might have occurred. Chapter 3 describes the techniques currently used for

the assessment of stone masonry bridges as well as typical remedial measures that could

be used on masonry bridges.

-29-

REFERENCES AND BIBLIOGRAPHY

[2.11 Gies J., 'Bridges and Men", Cassell and Company Ltd., London, 1964, pp 2-

33.

[2.2] Heyman J., "The Masonry Arch", Ellis Horwood Series in Engineering Sci-

ence, 1979, pp 50 - 62.

[2.3] Hopkins H. J., "A Span Of Bridges", Newton Abbot, David and Charles, 1970,

pp 71 - 93.

[2.4] Ruddock T., "Arch Bridges and Their Builders", 1735-1835, Cambridge

University Press, pp 112 - 140.

[2.5] White R. N., Gergely P., and Sexsmith R. G., "Structural Engineering, Introduc-

tion to Design Concepts and Analysis", John Wiley and Sons, Inc., 2nd ed.,

1972, pp 172 - 180.

-30-

CHAPTER 3

CURRENT METHODS OF ASSESSMENT

AND MAINTENANCE OF

STONE MASONRY BRIDGES

3.0 BACKGROUND

Checking the adequacy of an existing structure sometimes becomes necessary as a

result of:

" defects in design and construction;

" deterioration with time or in service;

" accidental damage or collapse;

" for purchase, insurance, or legal purposes;

" change of use;

" future safety or serviceability.

The overall purpose of bridge assessment is to ensure that the bridge performs its speci-

fied functions without:

" running into undue maintenance costs;

" totally or partially disrupting the services;

" destroying public confidence in its safety.

The assessment process requires a knowledge of the integrity of the structure. To

obtain this knowledge entails inspection, analysis and calculation followed by interpre-

tation and Engineering judgement. Because of the complexity and heterogeneous

-31-

nature of bridge construction, calculation and analysis are normally applied to the arch

barrel. Assessment of the spandrel walls, substructures, foundations and wing walls is

normally by qualitative judgements of information obtained from inspection.

3.1 ASSESSMENT TECHNIQUES

For all bridges, attempts must be made to assess all relevant features of the construc-

tion. Several complementary test methods may have to be used, but even then the final

decision will still rest with the professional Engineer responsible for the bridge.

Considerations of safety and serviceability of a structure and its components are closely

related to assessment techniques. These techniques cover a wide spectrum ranging from

assessment by the naked eye up to complex electronic-based techniques.

The testing of masonry structures has traditionally been limited to the direct determina-

tion of the mechanical properties of samples, taken as representatives of the structure

under consideration. Recent developments in non-destructive test techniques such as

non-destructive sonic testing (Whittington, 1984) which although limited in its value

on its own, provides additional information to traditional methods and have the added

advantages that they can be applied in-situ to full scale structures.

Partially destructive or destructive tests are also employed but only to determine the

compliance of physical, mechanical, chemical of other properties with the requirements

of standards or specifications as well as instruments used for research purposes. Their

significance lies on providing information which assists in the development of other

new techniques or the improvement of existing ones. Because of their nature, non-

destructive assessment techniques are mainly used in bridge inspection, since here in

situ testing is essential, in many cases.

-32-

3.2 PRESENT ASSESSMENT METHODS

None of the techniques described below should be considered as the best one but a

combination of the different methods will usually give acceptable conclusions.

3.2.1 Visual Inspection and Coring

This is the most commonly used method of assessment of stone masonry structures.

Visual inspection requires considerable skill and background knowledge and is an

essential feature of any assessment programme.

A 'bridge inspector with experience may accomplish a satisfactory visual assessment

using virtually, no tools or equipment except for his naked eye. Because of limitations

on what the naked eye can in most cases achieve, standard inspection tools such as

pocket knifes, magnifying glass, cameras etc., are used to aid the naked eye.

In carrying out a visual inspection, the engineer should take consideration of not only

the condition of the individual components of the bridge but also of the structure as an

entity and of specific features which are indicative of structural deterioration.

The main points to be observed to ascertain the general state of the bridge by visual

inspection are:

" deterioration and crumbling of exposed surfaces due to weathering leading

in more severe cases, to spalling and splitting of stones;

" opening of joints and movements of supports as such movements will cause

the loss of bedding mortar between components of arch and, in severe

cases, to displacement of stone blocks;

" drainage of infill materials between spandrel walls. High porosity materials

have the potential of storing a substantial volume of water, increasing

undesirably the load on the arch and also accelerating the deterioration of

-33-

materials, particularly under frost action;

" accumulation of debris and vegetation. Because of the likelihood of the

accumulation of soil in various parts of the structures, a good deal of vege-

tation can be supported on the bridge. The root system can however, cause

damage;

" overall alignment and geometry - undesirable changes of shape can some-

times be detected visually before the structure is unserviceable.

Apart from visual inspection, the most common present assessment technique is coring

the bridge. This involves the removal of sections of the bridge for inspection and if

necessary, mechanical testing for the strength of the material and engineering proper-

ties. Such testing is generally limited to a few points on the bridge and, although it

provides information, this information is limited to the location cored.

3.2.2 Modified MEXE Method

The method is based on Pippard's pre-war papers reported in Civil engineer in war

[3.5]. Pippard confined his analysis to that for a single point load at mid-span. Pippard

was aware that in theory an arch rib is weakest under the action of a point load at

quarter points rather than at the crown. However, he argued reasonably for the use

of the result for the central load on the grounds of the distribution of the load from the

road surface through the fill to the arch proper. If a conventional 90 wedge angle is

taken for the dispersion of the load, then the effective width of the arch when the load

acts at the crown is 2h (Figure 8.1). A greater width of arch will be available to carry

the point load at quarter span, since the load will be dispersed through a greater thick-

ness of fill.

It should be noted, however, that this method assumes pinned supports. This method

may be used to estimate the carrying capacity of the arch barrel only and has been

-34-

adopted from the method set out by the Military Engineering Experimental Establish.

ment (MEXE), reference [3.6]. The method is based on past experience and is limited

to:

" single span arches, of span not greater than 18m;

" arches which are not appreciably deformed or flattened.

The method uses equations as in Appendix 3 from which a provisional allowable axle

load for a particular arch may be derived which is then adjusted to allow for:

" shape of arch;

" quality of the material in the arch ring and in the fill;

" dimensions of the arch barrel and presence of any defects;

" condition, of the joints.

Engineering judgement still finds its way in this method in the determination of the

nature of materials and the state of the structure. Hence, the method is a combination

of practical experience backed by a theory of elastic behaviour.

The modification yields the modified axle load which is then multiplied by appropriate

axle factors to give the allowable axle loads for all vehicles operating under the Con-

struction and Use (C&U) regulations.

The axle factors cover two situations. The first, is the 'no lift-off case, which is more

usual when all wheels of the vehicle are assumed to be in contact with the road surface

at all times. The 'lift-off case relates to circumstances when an axle of double or triple

axled bogie can lose contact, either partially or completely, with the road surface and

transfer some of its load to the other axles in the bogie. The derivation of the Axle

Factors can be found in reference [3.4].

It should be noted that these allowable axle loads may not represent the strength of the

bridge as a whole. This may be affected by the strength of the spandrel walls,

-35-

foundations etc. Should the strength of any of these items be assessed as being lower

than the barrel strength, then the lowest value should be taken as the strength of the

bridge as a whole.

The maximum gross weight of the C&U vehicles which the arch can carry is then

found in accordance with reference [3.6]; which is the maximum weight for which both

the single and where applicable, the double axle load calculated for the arch are satis-

fied.

The essential features of this MEXE approach to the assessment of masonry arches are

that:

" There is considerable emphasis on the geometrical properties of the bridge;

the arch span and the total crown thickness serve to define a provisional

value of the axle loading, and the actual shape of the arch is later intro-

duced in the form of modifying factors. One curiosity is that the thickness

of the arch ring does not enter directly into the calculations, although it

does have a small effect on the value of the material factor;

" the arch is treated, in a late nineteenth-century way, as an elastic redun-

dant structure. A long series of simplifying assumptions is made, but the

state of the arch under given loading is evaluated using established elastic

techniques;

" the final criterion for the load-carrying capacity of the arch is based upon

the attainment of a limiting value of compressive stress.

The whole assessment depends on the values of the thrust and bending moment that

have been evaluated at the crown of the arch. The value of the thrust will not be

much affected by the various assumptions made in the elastic analysis, but the value of

the bending moment is sensitive to these assumptions. On the face of it, therefore, this

way of assessing the provisional value of axle load must be regarded with some

-36-

suspicion.

However, the criterion of a limiting compressive stress does impose, as it turns out in

practice, some uniformity in the assessment.

Further, the MEXE method finds a place for engineering judgement as to the nature

of the materials and the state of the structure. However the method is, in the last

analysis, an amalgam of practical experience backed by a theory of elastic behaviour

which does not really apply to the masonry structure. Also, considering that commer-

cial vehicles and trains have many axles; and railway masonry bridges are multiple

arches, this method is of limited value.

3.2.3 Static Loading

This is the conventional civil/structural method of loading a structure or its components

by distributed, point or other types of loads and measuring the resulting deflection.

Results can be used as a proof test of the structure, i. e. deflections are not in excess of

expected values for the applied loading, or bending moments could be computed from

the results thereby defining the integrity of the structure.

The load is applied across the width of the bridge at prechosen points, a typical exam-

ple being at quarter point sections, by hydraulic jacks. The jack loads would be

applied through steel beams and timber spreaders to a concrete strip, cast on the road

surface. The jacks react against. steel beams and the load from each is transmitted to

the ground by ground anchors drilled into the rock under the bridge. Figure 3.1 shows

the arrangement of a typical loading system.

Displacement transducers are mounted to measure horizontal and vertical displace-

ments at the abutments, quarter points and crown of the arch.

Jacks

Timber Packing

Reaction Beams

0

Support Beam

----I

I'.
Spreader Beams

Section at 1/4 Span

Figure 3.1 Typical Details of Loading Arrangement

However, the method has the following disadvantages:

" expensive because of the heavy machinery in carrying out the tests;

" dangerous as the structure may collapse without warning as a result of

rapidly propagating faults such as brittle failure.

The advantages of this type of test are that it gives a failure load and the failure mode

of the bridge under test as already outlined in Section 2.4. Also, results from such full

scale tests provide information concerning the behaviour of stone masonry arches

which would assist in the development of analytical methods for the assessment of the

strength of bridges of this type.

-37-

The British Transport and Research Laboratory (T. R. R. L.) have embarked on a pro-

gramme of research work with the object of developing methods for the assessment of

-38-

masonry arch bridges. Such tests have been undertaken on behalf of T. R. R. L. by the

Civil Engineering Department of Edinburgh University. The test methods used, results

obtained, parallel model tests and some comparisons with calculations of two such tests

are outlined in references [3.1,3.2].

3.2.4 Dynamic Signature

The dynamic signature method of nondestructive testing, developed and known by the

acronym SHRIMP, reference [3.6], uses a swept frequency vibration of low level to

interrogate the structure. The vibrations sweep is injected into the structure at a given

point and the responses are monitored by piezoelectric sensors at other points.

Periodic testing by SHRIMP will give an assessment of the structure's integrity (Figures

3.2 and 3.3), and the same method used diagnostically will delineate the fault(s). This

is a systems testing method, where the entire structure participates in making up the

response at a given point. If a fault such as an internal propagating crack, interrupts

the elastic load path from the vibrator to the sensor, the oscillating stress waves making

up the signal must travel a different path, thus changing the spectral character of the

response.
Constant Input Transducer Response

from vibrator (Harmonics of Fundamental

... cis
w

Frequency Hz.

Figure 3.2 Acceleration Signal vs Frequency

SHRIMP testing has also advanced recently by the use of remotely exciting structures

-39-

and remotely monitoring the responses. This is accomplished by sonic means and is

useful for the interrogation of high voltage ceramic insulators, detecting voids around

scwers, etc.

Interpretation of the data is specialised and requires a data bank back-up. This can be

achieved by normalising the results from this type of test, for example by storing the

amplitudes of the various harmonics (Figure 3.3). Equipment also is specialised and

expensive, but companies are available to provide this particular kind of service.

In nondestructive systems testing, a static or dynamic signature is obtained from the

entire structure as a response to a disturbing force. An included fault is shown up as a

change in that signature, regardless of fault location. Hence the method only signals

the presence of a fault, but does not tell where and what type of fault it is, making the

method of limited use on its own, and would be of better use with additional back-up

information as is provided by a data base.

Fault Initiation and

commencement of deterioration

1
I

ý"
4

N

x, ý3

ýf
ý ý w ý;

Increasing slope

. changes with $

o il 4S -º

Time - Days, Months, Years.

Figure 3.3 Frequency Response As It Changes With

Time, Due To Growing Fault.

-40-

3.2.5 Sonic Assessment

The sonic assessment technique allows rough determination of the following parame-

ters, viz, thickness of different structural parts, for example, abutment, location of

internal changes in sonic properties (these may be associated with cracks or with inter-

faces between materials of different sonic characteristic), and, by calculation of average

velocities of sound at different points on the bridge, the local material strength can be

inferred. If the sonic-velocity measurements are made at regularly-spaced grid points

over the bridge, a sonic-profile may be obtained (Figure 3.6). This, in turn, can be

used to indicate the extent of regions of broadly similar sonic velocity, and, by implica-

tion, broadly similar material and mechanical properties, (Whittington, 1984). The

method yields a crude assessment of the bridge parameters but is, in itself, not defini-

tive. It requires considerably more complementary information about a given bridge

before its results can be used with any confidence.

Sonic velocities can be determined by measuring transit times for sonic compression

wave propagation between points *hose distance apart is known or by indirect reflec-

tion, where calibration of the technique is done at two or more coring points and the

assumption is made that data from these points may be used for other measurement

points on the bridge. The most accurate results are obtained by the straight path

method but even here some very broad assumptions must be made regarding the homo-

geneity of the material through which the sonic wave passes.

The basic principle of the technique entails the propagation of a compression wave

through the material of the structure, produced by a blow using a conventional ham-

mer covered with several layers of soft paper, to avoid damaging the brick surface.

Two piezo-electric transducers are attached to the two opposite ends of the structure,

using water pump grease as an acoustic coupling medium. The transducers are placed
4'

opposite each other at the same height above the base of the structure and are con-

-41-

nected to a two channel transient recorder.

do .

The time scale and sensitivity of the transient recorder are adjusted such that a rela-

tively light hammer blow, very close to transducer A, (Figure 3.4) would generate a

compression wave which would travel between the transducers A and B.

To Channel A of the

Transient Recorder

Figure 3.4 Set Up For Transmission Test

Interpretation of Results

To Channel B of the

Transient Recorder

Under idealised conditions, when a compression wave propagates through the struc-

ture, it will have a shape which can be derived by Fourier's analysis (Figure 3.5).

Rise Time Peak
u

It)

... 0.
E

Typical Elastic Precursor

Figure 3.5 A Typical Acoustic Emission Signal

Time t

This type of signal with an exponential rise and decay is common in ultrasonic testing.

Indeed all the traces obtained do have this exponential rise and decay in common.

-42-

However, masonry is a heterogeneous material and additionally masonry is usually

cracked. Therefore the traces obtained are more complicated than the idealised case.

The complication is due to interference of reflected waves from masonry-mortar joints,

any crack or discontinuity and the surface waves generated at the transducer.

The relative proportion of the initial signal transmitted or reflected from a discon-

tinuity, is dependent upon the magnitude, shape and orientation of the discontinuity.

For example, a vertically continuous void results in no transmission to the end of the

wall as the characteristic impendance of air is much lower than that of brickwork and

hence almost total reflection occurs.

In this way sonic profiles may be obtained (Figure 3.6) for use as one element in the

assessment process for a given bridge.

Regions of Broadly Similar Sonic Velocity

Sonic Profiles

Figure 3.6 Sonic Profiles

Velocity of Propagation

The velocity (v) of propagation of sonic compression waves in any medium is governed

by density (p) and the modulus of elasticity (E) of the medium, viz

v= 1/E/p

Because of this dependence on E and p, it is possible to infer mechanical properties to

materials on the basis of measured sonic velocities. It has been found that the value of

-43-

E, for most structural materials, is very sensitive to the mechanical quality of the

materials, whereas the density variations are less marked.

Transmission Tests

Here, two transducers are used, one to record the sending end signal and one for the

receiving end. The time between the signal being sent and received can be used to

determine the propagation velocity of the sonic compression wave. This velocity, in

turn, is a measure of the quality of the material between the transducers. Basically

good material is characterised by a high sonic transmission velocity and poor quality

material by a low velocity although wide variations in measured velocities will exist for

the same material.

Typical values of transmission velocities obtained from sonic tests, in metres per second

are:

" good brickwork (uncracked) - 3100 ;

" poor brickwork (cracked) - 2500 - 2700;

" uncracked reinforced cavity - 3500;

" cracked reinforced cavity 2700 - 3000;

" structural concrete - 4500;

" loose soil - 300;

" compacted soil - 500;

" stone - 2000 - 7000.

Reflection Tests

Here, a single transducer is used to monitor both the transmitted sonic signal and any

reflections which occur. This technique can be used to determine the wall thickness of

different parts of the structure such as abutments and barrel and the quality of the

-44-

material in the wall. It is used in conjunction with conventional coring, where the core

provides a reference for both wall thickness and a datum for material quality assess-

ment. However, since coring just tests the material in the core, using the core results as

a reference could be erroneous, hence the method is of limited value.

The sonic testing systems can be calibrated in the following ways.

" the velocity of transmission of signals across the width of the bridge can be

calculated directly, since the width of the bridge can be measured;

" the transmission velocity of the materials extracted by conventional coring

can be measured directly;

" the apparent thickness of a given wall from sonic testing can be confirmed

by coring at the point of sonic testing;

"a data base of the sonic characteristics of different materials can be

developed and is used to give reference information on any bridge under

test. For example, a relatively low transmission velocity is characteristic of

poor quality material since the transmission velocity is a function of

Young's modulus for a given material. It must be emphasised that the

velocity associated -with acceptable quality material will change from,

masonry structure to masonry structure making the development of a

data-base essential for the successful application. This would enable the

common features to be stored, then in future, after retesting, changes can

be identified.

3.2.6 Tale Tales

This method a means of continuous monitoring of cracks on a structure. Two points

are marked at both sides of the crack as shown in Figure 3.7. The separation (d)

between these points is. measured, and at a later date, the same, measurements are

made. Any change in the separation of these points can thus be detected. For example,

. 45.

an increase in the separation indicates that the crack has widened.

FINre 3.7 Tale Tales

3.3 TECHNIQUES FOR REPAIR AND

MAINTENANCE OF MASONRY BRIDGES

A distinction can be made between ordinary and special maintenance: the former

includes simple operations such as cleaning of drainpipes, filling small cracks and

replacing individual bricks or stones which may have fallen. Operations in Sections

3.3.1 " 3.3.5 fall into the category of special maintenance. Where it is necessary to

carry out a major restoration operation, these are better classified as repair rather than

as maintenance. The remainder of this section describes such repairs.

Repair solutions can differ markedly depending upon the extent and the type of dam-

age. For example, if a span of a footbridge is entirely removed by vehicle collision, a

new span would be provided, Photograph 3.1. Repairs to a structure which is intact

and usable should be carefully detailed so that they are effective and can be executed

safely and with the minimum of disturbance to users of either the structure or the facil-

ity beneath. Possible methods of repair for different types of structures are described in

the following sections with comments on their suitability in particular circumstances.

3.3.1 Filling of Cavities or Cracks by Injection

It is advisable to limit this operation to cracks no larger than 5mm. Larger ones should

be dealt with by means of partial replacement of the areas concerned.

Masonry can also be injected with cement products; in such cases care should be taken

-46-

that the grouts have a low level of sedimentation and are non-shrinking. This can be

ensured by means of the same technique as those used for filling post tensioning ducts

(high-speed mixers to prepare the grouts, which should be of the colloidal type to per-

mit low water/cement ratios).

Care should be taken to avoid obvious mistakes such as injecting and thus blocking the

drainage systems; a rigid bond between the masonry and the support should also be

avoided, insofar as this could prevent the arch from moving freely in response to

changes in temperature.

It should be kept in mind that simply filling in cracks in the structure of an arch,

without attempting to tackle the causes of the cracking, is not only useless, but may

well be counter-productive. For example, the relative settlement of the piers due to

overloads on the road beneath the structure can produce cracks in the crown; these

remain active and, if plugged, will re-form until such time as the causes cease, the set-

tlement reaches its limit, or, better, the pier is reinforced.

Cracks in the arch can also give rise to more extensive breakdown processes, not

directly related to the original causes. These, for example, can result in movements

between the stones or bricks which in turn lead to irregular distribution of pressures in

the arch. In such cases it is necessary to have to resort to the suitable maintenance

interventions described below.

Finally, it should be remembered that the structure and functioning of the arch are

such that when horizontal cracks develop in the crown, wedge-shaped in the direction

of the thickness starting from the intrados, it can be presumed that a similar cracking

process is taking place in the springing; this is identical in every way except that it

starts from the extrados, and thus appears to be less serious and more circumscribed,

but is of similar size inside the body of the vault. Without going into a discussion of

the origin of such crack patterns, which may be due either to overloads or to thermal

-47-

phenomena, decides to fill them, such cracks in the springing will require much deeper

injections than might seem necessary at first sight. In particular, there is a propor-

tionately greater risk that the injection material will disperse into secondary cracks in

the masonry.

3.3.2 Improvements of Drainage and Water Evacuation Systems

Copings of waterproof materials were not common in the past, and consequently many

surviving structures not so equipped are characterised by substantial and undesirable

internal circulation of water.

In other cases the longitudinal slopes and crossfalls on the extrados are not sufficient to

drain off the rainwater. Depending upon circumstances, it is thus necessary to equip

the structure with gutters and pipes which will carry off the water without discharging

it on the piers or supports, or with efficient outlets which correspond with the drainage

system. if such already exists. Where such systems are lacking, a series of collectors can

be installed at the points most susceptible to penetration by water; they may also serve

to collect water circulating within the structure, in the absence of more thorough meas-

ures.

It is evident that the zone to be treated must be carefully selected, possibly on the basis

of suitable tests; similar care should be taken in choosing the diameter of drainpipes,

which may possibly be slotted or perforated and protected with a covering of non-

woven fabric so as to limit the transport and loss of fine aggregates.

3.3.3 Waterproofing of the Extrados

The waterproofing layer should closely follow the profile of the arch, and be laid over

a well-smoothed support layer. Caping layers of cement mortar are not recommended

insofar as they may tear the waterproofing material. The most suitable materials to

-48-

employ are asphalt and bituminous sheeting.

3.3.4 Repointing and Restoration of Masonry

This operation represents the most suitable way to restore the original appearance of

the structure.

It is sometimes not necessary to replace the stones or bricks themselves, but only to

replace the mortar bedding. In such cases one starts by carefully chiselling away all the

old binder or washing it out with high pressure jets of water, possibly removing tem-

porarily certain of the masonry elements. The resulting cavities should be cleaned,

smoothed and dampened so as to receive the fresh mortar, which must be carefully

inserted and compacted.

3.3.5 Installation of Steel Cross Ties

These serve mainly to prevent the breaking away and bulging of the side walls with

respect to the structure of the arch itself, but also to prevent the spread of possible

longitudinal cracks.

The cross ties can be very useful, but may also lead to unforeseen redistribution of

forces; they should be employed with care, in suitable numbers and be of limited diam-

eter. Close attention must be given in boring the holes for the ties: the methods will

vary according to whether it is necessary to bore through the supports or the arch

structure itself. The tie rods are protected with scaled sheaths; the bolts and anchor

plates, which must be of sufficient size to' prevent the concentration of stresses on the

masonry facings, are provided with anti-corrosive protections. Photographs 3.11 and

3.111 show this type of maintenance.

Photograph 3.1 Replacement of Span With Concrete Deck

Photograph 3.11 Replacement of Old Stonewokk With New Stonework

Photograph 3.111 Installation of Steel Cross Ties

- 51 -

Photograph 3. IV Installation of Steel Cross Ties

- 52 -

Photograph 3. V Replacement of Coping

" ý:
a'+ý

,,

w

__
'ý " 'fr ýý3 -_ . .. f ýý- : rý.

_ -c
, ý`
-_ - ý_ '. -...

ti

1

ý

ý, ý_. ý... << ýy _
.1

Photograph 3. VI Ties in Coping

-53-

3.3.6 Installation of Steel Ties

These serve mainly to increase the carrying capacity of the arch or to remedy a defect.

A typical case in which they are employed is when a system of cracks develops in the

crown and in the springings foreshadowing a yielding under load. They can also be

utilised, however, in cases where the intermediate piers are out-of-plumb due to excess

loading, but sometimes without the appearance of cracking in the crown. In this case

the cracks in the springings will be longer and more extensive than usual, the breaks in

the springing opposite the out-of-plumb pier being especially so.

It is advisable to combine the installations of the tie rods with injections into the

masonry. In general, the injections are performed first, and then the tie rods are put

under tension and the mortar allowed to set. The filling material for the sheaths may

be the same as that used for the injections.

3.3.7 Repairs to Abutments and Piers

A system of small diameter bored piling has been shown to be an extremely useful

means of providing extra support needed to limit settlement or where additional load-

ing is anticipated. In order to provide continuity the piles are bored through and cast

into the existing abutment. Where the abutment itself is weak it may require grouting

or stitching together by some means, as example being the system shown in Figure 3.8.

Stitching

Figure 3.8 Small Diameter Bored Piling and Stiching

"54-

Many arch bridges were built on very shallow foundations. This leads to frequent

undercutting due to scour and if underpinning is required it is prudent to build a con-

crete apron or invert slabs around the abutments or pier in order to protect the toe of

the masonry, Figure 3.9.

Figure 3.9 Use of Concrete Apron

3.3.8 Repairs to Arch Barrels

The most common means of strengthening an arch barrel is to cover it with reinforced

concrete saddle or relieving arch. The advantage of this method is that it not only

strengthens the arch but also improves load distribution and ties together any cracked

sections. When using this method care must be taken to ensure that the thrust is

transmitted to the abutment and that the abutment is capable of carrying the additional

load, Figure 3.10.

Figure 3.10 Concrete Saddle

-55-
It is usual to cast the saddle directly onto the existing extrados thus ensuring composite

action. Where no extra stress must be carried by the existing arch then a smooth

debonding layer must be introduced. To reduce induced shrinkage stresses the saddle

should be thoroughly cured and consideration given to casting segmentally.

If extra thrust cannot be accepted by the abutments then a concrete slab may be built

taking the necessary support from the abutments, Figure 3.11.

Figure 3.11 Concrete Relieving Slab

Where there is a large depth of fill or where the headroom beneath the bridge is not

critical and appearance is not important, it is often economic to place a relieving arch

underneath. This may be conveniently provided by sprayed concrete techniques or by

placing a corrugated metal or glass reinforced liner within the arch and pumping con-

crete into the gap between the liner and the existing intrados, Figure 3.12. As a tem-

porary measure during the passage of a mining wave, steel colliery arches may be used,

supported by walings bolted to the abutments, Figure 3.13; bent inverted T or I rolled

steel beams may also be used to provide support for the arch.

-56-

Figure 3.12 Strengthening From Underneath the Arch

Steel Colliery Arches

supported by Walings

Figure 3.13 Use of Colliery Arches

3.3.9 Repair of Spandrel Walls

The traditional means of repairing walls that were deforming, tilting or sliding off the

barrel was to tie both walls together with rods and large spreader plates on the outside

of the bridge as outlined in Section 3.3.5. This is unsightly, but has the advantage that

it can be carried out without disrupting traffic. Another solution is to expose the walls

and backfill them with concrete. If a barrel is being saddled, this is always the most

-57-

appropriate method. Alternatively, consideration can be given to the use of needling

through the spandrel walls.

3.3.10 Repair to Road Surfacing

Surfacing must be kept in good repair as irregularities cause increased impact loading.

Pot holes, lack of camber and cracks allow entry of water. Particular care should be

taken to ensure that service trenches are properly backfilled and the surfacing released.

3.4 OVERVIEW

From the outline of the methods of assessment it is evident that Engineering judgement

plays a major role in the assessment process while itself heavily relying upon informa-

tion thereby making it very essential that all available information pertaining to a struc-

ture such as soils data and past inspection records be collected and made available.

This would facilitate in determining what future information should be obtained from

inspection and which components of the bridge require special attention.

The following chapter gives an overview of data bases and data base management sys-

tems.

REFERENCES AND BIBLIOGRAPHY

[3.1] Henry, A. W., Davies, S. R. and Royles R., 'Test on Stone Masonry Arch at

Bridgemill, Girvan", Department of Transport and Road Research Laboratory,

Crowthorne, Contractor Report 7,1985, pp 2-6.

[3.2] Henry, A. W., Davies, S. R. and Royles R., 'Testing of Masonry Arch Bridge

-58-

at Bargower, Stratclyde", University of Edinburgh, C. E. R. T. I., Report to

T. R. R. L., 1985, pp 1-9.

[3.3] Heyman J., 'The Estimation of the Strength of masonry arches", Proceedings of

Institution of Civil Engineers, 1969, p. 921.

[3.4] Organisation For Economic Co-Operation And Development (OECD), "Bridge

Inspection", A Report Prepared by an OECD Research Group, July 1976, pp

14 - 36.

[3.5] Pippard, A. J. S., 'The Appropriate Estimation of Safe Loads on Masonry

bridges", Civil Engineer in War, Volume 1, London, The Institution of Civil

Engineers, 1948, p 365.

[3.6] Savage R. J., and Hewlett P. C., "SHRIMP", Annual Conference on NDT, Brit-

ish Institute of NDT and Society of X-ray Technology, University of Aston,

Birmingham, Sept. 1978, pp 82 - 93.

[3.7] Scottish Development Department, "The Assessment of Highway Bridges and

Structures", Technical Memorandum(Bridges) SB3/84, Printed and Published by

the Scottish Development Department, 1984.

[3.8] Scottish Development Department, 'The Assessment of Highway Bridges and

Structures", Annex I to Technical Memorandum(Bridges) SB3/84, Printed and

Published by the Scottish Development Department, 1984.

[3.9] Structural Faults 83, Proceedings of the International Conference on Structural

Faults, University of Edinburgh, 22-24 March, 1983, Edited by Forde M. C.,

Whittington H. W., and Whyte I. L.

[3.10] Whittington H. W., "Sonic Testing of Civil Engineering Sub- and Super-

Structures", Proceedings of IEEE, Symposium, Ultrasonics, Dallas, U. S. A.,

1984.

-59-

CHAPTER 4

DATA BASES AND DATA BASE

MANAGEMENT SYSTEMS

4.0 BACKGROUND

The successful everyday running of any enterprise relies on the resources at its disposal.

The nature of these resources varies according to the nature of the enterprise. More

commonly, these resources are taken to be such items as the equipment and machinery

people, money and materials, buildings etc. Although abstract and less tangible, data

are indeed a resource to any enterprise.

Systems that provide this data vary from the most primitive systems based on pieces of

paper to systems which make use of modern computer hardware and software. Within

this wide spectrum of systems is the data base system which is the latest means of data

storage.

Computer data storage dates back to the 1880s reference [4.4] when Dr Herman Hol-

lerith of The U. S. Bureau of Census invented punched cards which remained the lead-

ing means of data storage for the next 60 years. By the mid 1960's, the idea of

Management Information System (MIS) gained momentum but was short lived because

of its lack of application-program and language independence, that is, intergration.

This however, highlighted the need for greater intergration and in 1965 General Elec-

tric (now owned by Honeywell) produced the Intergrated Data Store (IDS) which was

a forerunner of the modern Data Base System. MIS packages based on intergrated files

for major systems soon came to the scene after IDS, but soon the problem of lack of

coordination between the files of the major systems became apparent.

-60-

The essentiality of a data base containing a generalised intergrated collection for all

systems of an organisation serving all its application programs was realised from the

problems outlined above. This lcd to the concept of a data base which was application

program and language independent. This concept of a data base took off in the early

1970s. A number of data Base Systems based on this concept appeared on the market

giving variable performance and hardly any compatibility.

In the late 1960's Codasyl developed an interest in data bases and his work led to the

development of standard data base model, the Codasyl model reference [4.1]. At the

same time IBM Research Laboratories produced two models, the Relational Data Base

Model and the Data Independence Accessing Model.

4.1 DATA PROCESSING

4.1.1 The Traditional Approach

Data processing systems, in the traditional approach were mostly systems designed in

isolation, that is, independent of other related subsystems. A typical system would

consist of a large number of small programs with many files each containing frag-

mented information. Thus, operating systems were principally batch-oriented with a

complex application split up into a series of jobs, each operating on its own particular

files, to be performed in some predefined logical manner. Unfortunately, inherent in

this application oriented file structure approach were several disadvantages in the fol-

lowing major areas:

 Redundancy

To carry out particular tasks, in the traditional approach, it is necessary to create

duplicate copies of files, as for instance one application may need the same data

as another but sorted in a different manner. Also, frequently-run applications

-61-

often use independently maintained subsetted files for improved overall system

efficiency and unless considerable care is exercised in the management of these

copies, changes made to the originals would be reflected in the copies with conse-

quent data inconsistencies arising.

 Sharing

The sharing of data between different application systems is in most cases a diffi-

cult task usually requiring the development of an independent system to reconcile

the various implementation and structure differences.

 Standards

Application oriented files may apply different rules for the representation and

validation of the same data items. However these rules are contained in the pro-

cedural logic of the application program, hence, the same item of data in one

part of the system may be treated differently in another.

 Data Independence

File descriptions are directly related to an application, implying that any change

in the physical organisation of a file or any logical modification to the file, e. g.

the addition of a new data item, would necessitate source changes to all the appli"

cation programs using that particular file. In other words, application programs

are data dependent.

 Access Control

Any form of detailed privacy constraints are difficult to achieve as programs

would either be completely denied access to a file or wholly permitted access to

the file.

-62-

 Different Data Views

Providing different views of the data for different applications requires that the

data files be sorted or shuffled in some way. This often destroys one of the

advantages claimed for the traditional approach, namely that application-oriented

file structures provide the most efficient solution to a data management problem.

4.1.2 The Data Base Approach

Developments in disk technology made the storage of large volumes of data in directly

accessibly form an economically viable proposition, leading to a development of

interest in the data base approach to data management problems. This approach over-

came the problems associated with the application-oriented approach by providing a

data base management system which:

" controlled redundancy -a data base reduces data duplication and provides

consistent and up-to-date data.

" facilitated data-sharing -a data base permits more than one program to

access the data base at the same time, thus maximising resource utilisation.

" applied standards uniformly and consistently.

" enabled sophisticated access controls to be applied - in a data base, privacy

and integrity of data can be controlled.

" provided independence of data and program - this is the prime advantage

of a data base. Both the data base and the program can be altered

independently of each other. This saves both time and money spent on

modifying them to retain consistency.

" supported different views of the data base.

" provided rich data structuring capabilities -a data base containing a mass

-63-

of data items will be of little use unless the data is structured in a mean-

ingful way. Therefore, a DBMS must provide data structuring facilities

which are capable of expressing the often complex relationships which may

exist between the data items (e. g. which products have ordered by which

customers in what quantities and which suppliers can supply them?).

Furthermore, the DBMS must enable quick access to the data to satisfy the

various needs of users.

" provided ease in systems design -a systems designer in a data base

environment is not concerned with extensive file design, data duplication,

data inconsistency, maintenance and backup facilities of a conventional

system. In a data base, data exists in a form suitable for all applications,

hence the designer has only to select what he needs thereby making sys-

tems design easier.

" eased programming - the programming task is significantly reduced since

the programmer is relieved of the details of file processing, file updates

and extensive sorting associated with file systems.

" supported multiple host languages - language independence is another vir-

tue of a data base system. A data base can support a number of host

languages thereby offering the user the choice of the language most suited

for a particular application.

" enabled the development of evolutionary systems - the user of a data base

can build up the data base gradually, learning from experience. Facilities

for reorganising the data base to optimise the overall performance are pro-

vided. Because of data independence, as already mentioned above, the

changes in the data base would not affect the application programs.

The disadvantage of a data base is the cost. It is expensive to install, run and maintain.

-64-

4.2 DATA BASE MANAGEMENT ARCHITECTURE

Figure 4.1 shows a generaliscd structure of a data base management system. In this

architecture, data is perceived in a number of different views, as follows:

" the schema (or logical data model) is a description of all the data and its

structure and will include any access or integrity constraints which apply to

the data;,

" the sub-schema (or logical data sub-model) which describes the local views

of the data base required by the application program; program; Sub-

schemas normally provide a restricted view of the data which the applica-

tions programs require thereby providing a privacy mechanism;

" the storage data model provides the system with a perception of how data

is to be stored and accessed. This model defines which records are to be

stored and how they are to be accessed;

" the device data model is the view of the actual physical data, the data that

can be seen if a dump of the data base were to be printed;

" the data base control system (DBCS) is a software module which will

access the data base in response to a data manipulation language (DML)

commands.

Between each of the first four components mentioned above, together with the applica-

tion programs, are definitions of the way records are associated with one another, that

is, mappings. The DBCS is responsible for effecting these mappings. At each level of

data model, a data description language enables the particular model required to be

clearly expressed.

In order to obtain an idea of how the generalised architecture works in practise, con-

sider the following example:

-65-

Application

program 1

Application

program 2

Subschema

A

Subschema

B

Query language

4.
program,

ý

ý

DBCS SCHEMA

Storage data Storage

Mod

i

Model

Figure 4.1 Data Base Architecture

Device data

ý_ -_ý%- I-

Model
�Pb

ý

. 11, i

Subschema

C

1

Mappings

/ý

Supposing an application program 1 (Figure 4.1) issued a DML command to store a

new record in the data base. The DBCS would consult the application program's sub-

-66-

schema, the schema, the storage data model and the mappings associated with them in

order to find out how the record should be stored. The DBCS could then command

the operating system to store the record in the data base. Finally, a message would be

sent to the application program to say whether or not the operation was successful.

This sort of generalised architecture is designed to meet the objectives of the data base

approach, as outlined in Section 4.1.2. The user of schema which provides rich data-

structuring capabilities, enables controlled redundancy to be applied to data, data shar-

ing, and the enforcement of uniform standards. Use of the schema concept also allows

sophisticated access controls to be applied. The various models provided for data at dif-

ferent levels facilitates data independence, and the sub-schema concept provides dif-

ferent views of the data base.

4.3 DATA BASE MODELS

Data bases can basically be divided into two groups, namely, the formatted and the

relational. Classification of data base management systems tends to be based upon the

way in which their schemas (or logical data models) enable data to be structured. From

formatted data bases two major classifications have evolved, namely the Hierarchical

model and the Network model, while from the relational data bases has evolved the

Relational Model.

In formatted data bases a variety of data structures is used to represent relationships.

These structures are complex and usually involve pointers to relate records logically. A

range of data structures from simple to complex is supported to facilitate the required

access paths, which must be specified explicitly. Hence, a data structure can support

only a limited number of predefined access paths and, unless an access path is specially

provided, a given unit of data cannot be accessed.

On the other hand, in relational data bases, all data structures are reduced to two

-67-

dimensional tables of specified characteristics, which are mathematically known as rela-

tions. Access is provided to each item directly through algebraic operations on rela-

tions; i. e. access is universal. The Relational model is discussed in chapter 5 while the

rest of this chapter concentrates on the formatted models.

4.3.1 Hierarchical Model

A hierarchical file is a file with a tree structure relationships between the records. A

tree is composed of a hierarchy of elements, called nodes. A branch may become a

node thereby generating further branches, thus giving rise to successive levels of hierar-

chy. ' A node is known as the parent while branches from the node are known as chil-

dren. A tree is identified by its top most node, the root commonly called the root

record.

Root record A

i

ý

-- -- Level 1

ý_

- Level 2

- Level 3

-- -- -Level 4

Figure 4.2 Tree Structure with Four Levels of Hierarchy

Figure 4.2 is an example of a tree structure. The records in the tree could be the com-

ponents and subcomponents of a product A which is made up of part numbers B1, B2

and B3. Part number B1 is made up of part number C1, which is composed of D1 and

-68-

D2. Likewise, part number B3 consists of C2, C3 and C4, C3 itself being constructed

from D3, D4 and D5. The example illustrates a tree showing four levels of hierarchy.

Returning to the concept of hierarchical file, if we replace the term 'element' in the

definition of a . tree by 'record', then we have the definition of a hierarchical file. Fig-

ure 4.3 illustrates a hierarchical file structure with two levels.

DEPARTMENT

LECTURER

i Figure 4.3 Hierarchy

4.3.2 Network Model

Using the description of a tree structure, if the child in a data relationship has more

than one parent, then the relationship cannot be strictly hierarchical. In these cir-

cumstances, the structure is described as a network. Figure 4.4 is an example of a net-

work structure.

DEPARTMENT

I

COURSE LECTURER

Figure 4.4 Network Structure

-69-

4.4 DATA BASE NAVIGATION IN FORMATTED SYSTEMS

The way in which applications access and update a data base varies according to the

data base model employed. Associated with each model is a Data Manipulation

Language (DML) whose syntax and semantics vary from implementation to implemen-

tation. However, in general terms, the language constructs employed are similar in that

they reflect the underlying structures of the particular model in use.

In formatted systems, it is essential to be able to navigate the data base and then using

these occurrences as a base from which to traverse the various pre-defined relationships

that connect record occurrences together. To demonstrate this, consider the hierarchi-

cal structure (Figure 4.3), to be searched for all lecturers belonging to the Engineering

department. The following data manipulation statements may be deployed:

FIND DEPARTMENT RECORD WHERE

DEPT_NAME='ENGINEERING'

5 FIND NEXT LECTURER RECORD

VIA LECTURERS-IN-DEPT SET

IF [END_OF_SET] STOP

PRINT LECTURER-NAME

GOTO5

The first statement finds the particular record occurrence in the data base of the

DEPARTMENT record which has the value 'ENGINEERING'. Having found this

record occurrence, the next statement traverses those LECTURER records connected

to the Engineering department record. (The relationships in formatted data bases are

often referred to as sets; hence the use of the term SET in conjunction with the rela-

tionship name LECTURERS-IN-DEPT). The third statement simply tests to find out

if the LECTURER records connected to the Engineering department record have all

been processed and, if so, to stop the application.

-70-

Data manipulation languages for formatted systems contain a variety of facilities for

the modification, deletion, and establishment of relationships amongst record

occurrences. These languages are normally accessed through a high level programing

language such as FORTRAN or COBOL. The statements are either directly recognised

by the high level language compiler, or, more commonly, the source code of the appli-

cation containing data manipulation statements is pre-processed by special purpose pro-

gram which converts the data manipulation statements into appropriate CALL state-

ments in the host language prior to submission to the high level language compiler.

4.5 EVALUATION OF FORMATTED SYSTEMS

The principal drawback with formatted systems is that relationships are expressed expli-

citly and are predefined. In the relational model described in the following chapter, the

basic data structure is pre-defined, but record relationships are not defined until they

are used. This ability to dynamically define relationships, combined with the basic sim-

plicity of the relational model, makes it potentially more flexible and user friendly than

either the hierarchical or network approaches.

REFERENCES AND BIBLIOGRAPHY

[4.1] Codasyl A., "CODASYL Data Base Task Group Report", Proceedings of the

Conference On Data Systems Languages (CODASYL), Pennysylvania, April

1971, pp 33 - 41.

[4.2] Cardenas A. F., 'Data Base Management Systems", Allyn and Bacon, Inc.,

Second Edition, 1985.

-71-

[4.3] Date C. J., "An Introduction to Database Systems", Addison-Wesley Publishing

Company, Philippines, 1981, pp 32 - 47.

[4.4] Deen S. M., "Fundamentals of Data Base Systems", 'The Macmillan Press Ltd,

,
1977, pp 23 - 37.

[4.5] Hillingdale S. H., and Tootil G. C., "Electronic Computers", Pelican, London,

1970.

[4.6] Martin J., "Principles of Data-Base Management", Prentice-Hall, 1976.

[4.7] McFadden F. R., and Hoffer J. A., "Data Base Management", Prentice-Hall,

1978.

[4.8] Sundgren B., "Data Base Design in Theory and Practise, Towards an Integrated

Methodology", Issues in Data Base Management, Stockholm Sweeden 1979, pp

121-135.

[4.9] Weber H., and Wasserman A. I., Editors, 'Proceedings of the Fourth Interna-

tional Conference on Very Large Data Bases, 13-15 September, 1978, West

Berlin, Germany.

-72-

CHAPTER 5

THE RELATIONAL MODEL

5.0 INTRODUCTION

A relation is a mathematical term for a two-dimensional table consisting of rows and

columns, with each entry comprising a data item value. Unlike a matrix, which is

homogeneous in its rows and columns, a relation is only homogeneous in its columns

and not in its rows.

The idea of developing data bases based on relations started in the late 1960s, but all

the systems developed then were special-purpose systems which did not have any gen-

eral data-processing characteristics. The idea of a generalised relational Data Base Sys-

tem came up in 1970 from E. F. Codd, reference [6.4]. His idea was to develop a sys-

tem which would provide data independence and data consistency both of which are

difficult to achieve in the formatted Data Base Systems.

As already mentioned in Chapter 4, in formatted data bases, the data structures are

designed to meet the access requirements, which implies that a change in access

requirements necessitates a change in the data structures. Fortunately, in the relational

model such considerations are not necessary since the access paths are universal, that

is, any data item value, or any set of data item values, can be retrieved from one or

more relations with equal ease. This ease of access is achieved by:

" expressing relations in what is known as the third normal form which is

described in Section 5.4.2

" using a powerful data retrieval language based on relational algebra. as

outlined in Section 5.3.

-73-

5.1 BASIC CONCEPTS OF A RELATIONAL DATA BASE

In relational literature, a relation, as already mentioned, is a table. The rows of the

table are called tuples while each column contains attribute values belonging to the

attribute domain (Figure 5.1). The number of columns defines the degree of the rela-

tion and the number of rows its cardinality.

Relation name

Domains

Employee No. Employee Name Salary Extension

11234 G. Blogg 2345 234

11235 B. Honey 2467 123

11236

11237

11238

V. Mews

T. Moyo

F. Fredy

3456

3475

3587

234

336

223

Degree of relation =4

Cardinality =5

Figure 5.1 Component parts of a relation

5.2 PROPERTIES OF THE RELATIONAL MODEL

A tuple

Attribute

value

The major properties of a relation in a relational data base are:

" the intersection of each row and column contains a single attribute value,

that is, multiple values are not permitted;

" the ordering of The domains is not significant. this is achieved by insisting

-74-

that each column within a relation has a distinct domain name;

" the ordering of the tuples is immaterial; that is, the rows can be inter-

changed without affecting the information content of the relation;

" each tuple in a relation must be unique; no two rows can have the same

attribute values throughout. The significance of this property is that a row

can always be uniquely identified by quoting an appropriate combination

of attribute values.

5.3 DATA MANIPULATION LANGUAGES

FOR THE RELATIONAL MODEL

A Data Manipulation Language (DML) is the language which the programmer uses to

cause data to be transferred between his program and the data base. The DML is not

a complete language by itself but relies on a host programming language to provide a

framework for it and to provide the procedural capabilities required to manipulate

data. Basically there are three principal approaches to the design of languages for

expressing queries about relations. The notation for expressing queries is usually the

most significant part of a DML. The nonquery aspects of a relational DML, or "Query

Language" are often straightforward, being concerned with the insertion, deletion and

modification of tuples. On the other hand, queries, which are arbitrary functions

applied to relations often use a rich, high-level language for their expression.

Query languages for the relational model break down into two broad classes:

" Algebraic languages, where queries are expressed by applying specialised

operations to relations, and

" Predicate calculus languages, where queries describe a desired set of tuples

by specifying a predicate the tuples must satisfy.

-75-

The calculus based languages can be further divided into two classes, depending

on whether the primitive objects are tuples or are elements of the domain of some

attribute, making a total of three distinct kinds of query languages. Examples of

these languages are:

" ISBL - Algebraic language;

" QUEL -A tuple calculus language which is the data manipulation language

in INGRES and is described in Chapter 6.

" Query-By-Example -A domain calculus language.

5.3.1 Relational Calculus

The idea of using predicate calculus as the basis for a query language originated from

Kuhns, reference [5.4]. The concept of a relational calculus (that is, an applied predi-

cate calculus specially tailored to relational databases) was first proposed by Codd,

reference[5.2]. Codd further presented a language explicitly based on this calculus,

Data Sublanguage Alpha (DSL Alpha), reference[5.2]. Although DSL Alpha was

never implemented, a language similar to it, QUEL, was developed and is the query

language in the system INGRES.

A fundamental aspect of the calculus of Codd and of languages based on it, is the idea

of tuple variables. A tuple variable is a variable that "ranges over" some named rela-

tion, that is, a variable whose only permitted values are tuples of that relation. For

example, if the tuple variable S ranges over relation R, then, at any moment, S

represents some individual tuple of R.

An alternative relational calculus, the "domain" calculus, in which instead of tuple vari-

ables, are domain variables, that is, variables that range over the underlying domain

instead of relations was proposed by Lacroix and Pirotte, reference [5.5]. An example

of the implementation of the domain calculus is Query By Example.

-76-

5.4 RELATIONAL DATA BASE DESIGN

One of the reasons for designing a data- base oriented system is that it is hoped to be

much more viable than a conventional system. However, this does not mean that the

design of a data base will not have to be changed, but it is hoped that changes will be

easier to carry out when they are needed.

When designing a relational database, we are often faced with a choice among alterna-

tive sets of relation schemes, with some choices more convenient than others as demon-

strated by the following example.

SUPPLIERS

Relation

NAME ADDRESS ITEM PRICE

Bloggs 3 Dew Rd. nuts 450

Smith 2 Fred Pl. bolts 230

Jones 4 Gut Ter. wine 270

Fraser 3 Dom Drive bricks 465

Consider the relation SUPPLIERS indicated above, with attributes NAME,

ADDRESS, ITEM, PRICE. Each supplier has a name, an address, and charges a

price for the item they supply.

This relation has undesirable features associated with it such as:

redundancy - The address of the supplier is repeated once for each item

supplied;

" potential inconsistency (update anomalies) - As a consequence of the

redundancy, we could update the address for a supplier in one tuple, while

leaving it fixed in another. Thus we would not have unique address for

each supplier as we intuitively feel we should;

-77-

" insertion anomalies - We cannot record an address for a supplier if the

supplier does not currently supply at least one item. We might put null

values in the ITEM and PRICE components of a tuple for that supplier,

but would we remember to delete the tuple with the null value? Worse

still, ITEM and SNAME form a key for the relation, and it might be awk-

ward or impossible to look up tuples with null values in the key;

" deletion anomalies - The inverse problem to insertion anomaly is that

should we delete all items supplied by one supplier, we inevitably lose

track of his address.

The above problems can be eradicated by splitting the relation into two relation

schemes

SA(NAME, ADDRESS)

SIP(NAME, ITEM, PRICE)

The first relation scheme, SA, gives the address for each supplier exactly once; hence

there is no redundancy. Furthermore, we can enter an address for a supplier even if he

currently supplies no items. The second relation scheme, SIP, gives the names of the

suppliers, the items they supply, and the price each supplier charges for each item.

However, there does arise some problem with this decomposition. To find the address

of the supplier of an item, we must now take a join which is expensive, while with the

single relation SUPPLIERS, we could simply do a selection and projection. The idea

of decomposition of relations as in the above example illustrates a process known as

normalisation which is described in the following section. It is worth noting that the

process of normalisation is useful in the design process but is not a panecia. However,

familiarisation with the theory of normalisation is essential, although the design should

not be based solely on normalisation principles alone.

. 78-

5.4.1 Normalisation

Normalisation is a step-by-step process of elimination of certain undesirable features

from an initial unnormalised relation. A normalised relation is one which has the pro-

perties outlined in Section 5.2. The process is often described in terms of what are

known as normal forms. A relation is said to be in a certain normal form if it satisfies

certain constraints. For example, a relation which has the properties described in Sec-

tion 5.2 is said to be in the first normal form.

A number of different properties, or "normal form" for relation schemes with depen-

dencies have been defined. The most significant of these are called "third normal form"

and "Boyce-Codd normal form". These guarantee that most of the problems of redun-

dancy and anomalies outlined in Section 5.3 do not occur.

A full account on normalisation can' be found in references [5.1,4.3,5.3]. Before

describing the two normal forms, is is necessary to define a few terms.

Keys and Attributes

Within a given relation there is frequently one attribute with values that are unique

within the relation and can thus be used to identify the tuples of that relation. Such an

attribute is said to be the primary key of that relation. It sometimes happens that more

than one attribute or a set of attributes could be the key of a record. Such alternate

choices are referred to as candidate keys.

An attribute that forms a part of a candidate key is referred to as a prime attribute of

the tuple and the other attributes are said to be nonprime. Consider a tuple of a rela-

tion BRIDGES with the following attributes: bridge code, region code, route, No. of

arches. Each bridge has a code number, is located in a region with code number, has a

certain number of arches and lies on a certain route. The bridge can be uniquely iden-

tified by either bridge code + region code, or region code + route, which are the two

-79-

candidate keys. The nonprime attribute in this case is No. of arches while the remain-

ing attributes are prime attributes.

Functional Dependence

In attempting to lay out the relationships between data items, concern over which data

items depend on which other is of significance. Functional dependence can be best

described by considering two data items, A and B, which belong to a record R. B is

said to be functionally dependent on A if A identifies B, that is, knowing the values of

A, the values of B associated with A can be found. Consider the student relation

STUDENT(NAME, ADDRESS, AGE)

with attributes in parenthesis. NAME apparently determines ADDRESS in the rela-

tion and there is said to be a "functional dependence" of ADDRESS on NAME.

Furthermore, a data item or a collection of data items, B is said to be fully functionally

dependent on another collection of data items, A, if B is functionally dependent on the

whole of A but not on any subset of A.

Transitive dependence

A record may have a data item which is not a key but which itself identifies other data

items. This is referred to as a transitive dependence.

Suppose A, B and C are three data items or distinct collection of data items of record

R. If C is functionally dependent on A and B is functionally dependent on A, it fol-

lows that C is functionally dependent on A. However, if A is not functionally depen-

dent on B or B is not functionally dependent on C, then C is said to be transitively

dependent on A.

Consider the following two examples relating some part numbers named A, B, C, and

so on.

-80-
im --

Subassembly A

i
Part D

Figure 5.2 A and B are transitively (directly) dependent on

B and C respectiely, but A Is intransitively (indirectly)

dependent on C.

In Figure 5.2, part B is a direct component of subassembly A and part C is a direct

component of part B, but part C is not a direct component of subassembly A.

Subassembly A is therefore directly or intransitively dependent on part C, part B being

intransitively dependent on part C. However, in Figure 5.3 part C is made a direct

component of both subassembly A and part B, and therefore subassembly A is now

intransitively dependent on both part B and part C, the relationship between part B

and C remaining unchanged.

[Subassembly
A

Figure 5.3 Both A and B are transitively dependent on C

-81

5.4.2 Third Normal Form (3NF)

A normalised relation is said to be in third normal form if all its nonprime attributes

are nontransitively and fully dependent on each primary key. Consider the relation

schema

HOUSES(BUILDER, STYLE, PRICE)

that is, a house is built by a builder who charges a certain price for a style of the

house. This relation is not in 3NF, since the nonprime attribute PRICE is transitively

dependent on the primary key, BUILDER. The transitive dependency can be elim-

inated by splitting the relation into two relations,

HOUSES(BUILDER, STYLE)

COST(STYLE, PRICE)

These two relations cannot contain any transitive dependencies since they are each only

of degree two.

5.4.3 Boyce/Codd Normal Form (BCNF)

A normalised relation is in BCNF if and only if every determinant is a candidate key.

It is worth noting that the definition of BCNF refers to candidate key, not just the pri-

mary key as is the case with 3NF. The 3NF definition does not satisfactorily handle the

case of a relation with two or more composite and overlapping candidate keys. From

the definition of BCNF, the following can be asserted:

" all nonprime attributes must be fully dependent on each key;

" all prime attributes must be fully dependent on all keys of which they are

not part;

" no attribute (prime or not) can be fully dependent on any set of attributes

that is not a key.

-82-

Since each key is fully dependent on every other key, the keys are functionally

equivalent. That is, for every pair of keys there are functions in both directions con-

necting them. By the first and last restrictions, all nonprime attributes are dependent

only on the keys. Consider a case in which a value for a nonprime attribute is altered

in some tuple. Since the only functional dependencies that exist for that attribute are

those mapping a key into that attribute and since each key value is unique within the

relation, there can be no other tuples affected by the update. Thus, ' the value of each

nonprime attribute in a tuple is independent with respect to all other tuples.

Prime attributes, have no identity of their own within functional dependencies, but

rather exist only as part of some key. Altering the value of a prime attribute in a tuple

is therefore equivalent to altering the value of a key. Consider the case in which a

value for a prime attribute is altered in some tuple. Equivalently, it can be assumed

that a key value for that tuple has been altered. However, by definition, all keys are

distinct, hence this change can only affect the tuple whose key value was changed. All

other tuples have key values different from the one that was altered and therefore can-

not be affected.

This point can best be illustrated by an example in which such an alteration can

matter. In the example the notation A-B, that is, A functionally determines B, is used

as abbreviation. Consider a relation R(A, B, C. D) with AB-C and B-. D as the func-

tional dependencies in the relation. AB is the only key for R. If a value of B is

changed in one tuple, this changes the key for that tuple. However, it is possible that

some other tuple is affected, since some other key value may have the same value of B

as the one that was altered. The discrepancy can be eliminated by replacing B-D by

AB-. D. Changing a value of B is now equivalent to changing the key value. Since by

definition no other tuple can have the same key value, no other tuple can be affected.

-83-

5.5 EVALUATION OF THE MODELS

The evaluation of the three models requires that a criteria by which they should be

judged be stated initially. The two primary concerns are:

" Ease of use - It is essential for the model that makes accurate program-

ming and the phrasing of queries easy.

" Efficiency of implementation - For large databases, the cost of storage

space and computer time dominate the overall cost of implementing a

database. The need is for a data model in which it is easy for the DBMS

to translate a specification of the conceptual-to-physical mapping into an

implementation that is space efficient and in which queries can be

answered efficiently.

The relational model is in no doubt the superior by the criterion of ease of use. It pro-

vides only one construct that the programmer or user must grasp, that is, the relation.

Furthermore, as already discussed in Section 5.3, there are rich, high level languages

for expressing queries on data represented by the relational model. These languages

make systems based on the relational model available to persons whose programming

skill is not great.

In comparison, the network and hierarchical models require the understanding of both

record types and links and their interelationships.

Considering the potential for efficient implementation, the network and hierarchical

models score high. This is due to the fact that many-to-many mappings are not effi-

ciently implemented. Relations can and often do, represent many-to-many mappings.

However, some specialised data structures can be used to implement relations, as well.

The level of the Data Manipulation Language (DML) can profoundly affect the ease

with which a DBMS can be used, just as it is easier to program in Fortran than in

-84-

Assembly language. Relational DBMS's have stressed languages of very high level,

while DBMS's based on the other models have tended to have languages of lower level.

One of the high-level relational languages, QUEL, is described in Chapter 6.

In the past, commercial database systems have undoubtedly been almost uniformly

based on the formatted data base models because the emphases of such systems has

been on the maintenance of large data bases, and these models lend themselves most

easily to the necessary efficient implementation. However, with the latest attention the

relational model has obtained recently, it has become clearer that the same concepts

used to design large data bases apply as well to small and medium scale data bases, and

there are many more small databases than large ones.

Second, many of the apparent inefficiences of the relational model can be eliminated.

Some of the optimisation techniques for relational data manipulation languages that

allow-these languages to use time efficiently have been developed. A full account of

these techniques can be found in reference [5.8]. Research aimed at producing good

physical implementations of relations is also currently underway.

Two well known relational data base systems that have been developed are system R

(IBM, San Jose) and INGRES (University of California, Berkley) which was used in the

work described in this thesis. Chapter 6 describes the INGRES system..

5.6 EXAMPLES ON MASONRY BRIDGES

An example of attribute keys that fully define a bridge are its location and the route on

which the bridge lies. On the other hand the name of the bridge is not a key attribute

as different bridges could have the same name. Also, the location on its own is not

necessarily a key attribute as there could be two or more bridges on the same location.

The location of a bridge defines its geology and hence the material of construction it is

likely to be constructed on. Also, the route on which the bridge, lies is related to the

-85-

traffic the bridge will carry. Hence, in choosing the parameters that best describe a

bridge before any information can be relied upon as describing that particular bridge,

enough qualifications should be added to the retrieval statement (see Chapter 9).

The defects that may be found on a bridge are dependent on the conditions of the

various components of the bridge. For example, the cracks on the arch barrel may be

due to the movements of the spandrel walls (see Section 2.3.3). Also, the maintenance

details are dependent on the authority on which the bridge is located.

In Figures 5.2 and 5.3, the Subassembly can be thought of as the various components

that make up the bridge. The dependences of the various defects on the component

parts of the bridge are as outlined in Section 2.3.

REFERENCES AND BIBLIOGRAPHY

[5.1] Codd E. F., "Further normalisation of the data base relational model", in Data

Base Systems, edited by R. Rustin, Prentice Hall, Englewood Cliffs, New

Jersey. pp 33-64

[5.2] Codd E. F., "Relational Completeness of Data Base Sublanguages", In Data Base

Systems, Courant Computer Science Symposium 6 Series, Vol. 6, Englewood

Cliffs, NJ., Prentice Hall, 1972, pp 73 - 79, pp 67 - 70.

[5.3] Howe D. R., 'Data Analysis for Data Base Design", Edward Arnold (Publish-

ers) Ltd, 1983. Sons, New York, 1979, pp 111 - 123.

[5.4] Kuhns J. L., "Answering Questions By Computer; A Logical study, Report RM

-5428 -PR, Rand Corp., Santa Monica, California, 1967, pp 18 -25.

-86-

[5.5] Lacroix M., and Woton P., "A Comprehensive Formal Query Language for a

Relational Data Base", R. A. I. R. O. Informatique/Computer Science 11, No. 2,

1977, pp 11-17.

[5.6] Tsichritzis D. C., and Lochovsky F. H., "Data Base Management Systems",

Academic Press, Inc., New York, 1977.

[5.7] Tsichritzis D. C., and Lochovsky F. H., "Data Models", Prentice Hall, 1982.

[5.8] Ullman J. D., "Principles of DATABASE SYSTEMS", Computer Science

Press, Inc., 1982, pp 97 - 113.

-87-

CHAPTER 6

THE INGRES RELATIONAL DATA

BASE MANAGEMENT SYSTEM

6.0 BACKGROUND

INGRES (Interactive Graphics and Retrieval System) is a relational database system

which is implemented on top of the UNIXt operating system developed at Bell Tele-

phone Laboratories, reference [6.14]. Figure 6.1 shows INGRES's relationship with its

UNIX neighbourhood. ' The UNIX process which runs as the front end is described in

later sections of this Chapter.

User

Terminal

UNIX

INGRES

UNIX

Figure 6.1 The INGRES Environment

t UNIX is a trademark of Bell Telephone Laboratories, Inc.

-88-

The implementation of INGRES is primarily programmed in C, a high level language

in which UNIX itself is written. Complete descriptions of the INGRES data manage-

ment system are contained in references [6.9,6.11,6.13].

The advantages of a relational model for database management systems are extensively

discussed in references [6.4,6.6,6.7]. In choosing the relational model, the particular

motivation was the high degree of data independence that such a model offers, and the

provision of an entirely procedure-free facilities for data definition, retrieval, update,

access control, support of views and integrity verification.

6.1 USING THE INGRES RELATIONAL

DATA BASE MANAGEMENT SYSTEM

INGRES is designed to support an Information System and to enable end-users to

access and control that system, either

" directly by using a terminal as in Figure 6.2(a) or

" indirectly via an application program as in Figure 6.2(b).

From the point of view of using the system, it is well to recognise that these two

methods of using the system are more or else equivalent. In the first case an end-user

interacts with the system directly, while in the second case a programmer (who is a sys-

tem designer) has to interact with the system. In both cases the facilities offered to

each user group are more or less the same, and for this reason the system supports a

data sub-language (QUEL) and an embedded data sublanguage (EQUEL). This

thesis is mainly about the area in the dotted box in Figure 6.2(b).

-89.

1

End User.

I** ...

NV

INGRES

RDBMS

Data Base

W

(

I
I

I

$

I

.

.

S

I
I
t
e
1

.a.....

INGRES

RDBMS

006""""

Data Base

(b)

Figure 6.2 Using the INGRES Relational

Data Base Management System

cai

6.2 QUEL AND INGRES UTILITY COMMANDS

I

-"a""""""

QUEL is a complete INGRES query language which frees the programmer from con-

cern for how data structures are implemented and what algorithms are operating on

stored data reference [6.5].

A QUEL interaction includes at least one RANGE statement of the form:

RANGE OF variable-list IS relation-name.

&0

End User

a0
f-

6e

C Program

0000000606 so
6

(Application Program)

.
S

S

S

S

S

$

S
I

$

The purpose of this statement is to specify the relation over which each variable ranges.

The variable-list portion of a RANGE statement declares variables which will be used

-90-

as arguments for tuples (tuple variables).

Furthermore, an interaction includes one or more statements of the form:

Command [result-name] (target-list)

[where Qualification]

where "Command" is either RETRIEVE, APPEND, REPLACE, or DELETE. For

RETRIEVE and APPEND, the "result-name" is the name of the relation which quali-

fying tuples will be retrieved into or appended to. For REPLACE and DELETE,

"result-name" is the name of a tuple variable which, through the qualification, identi-

fies tuples to be modified or deleted. The target-list is a list of the form:

result-domain = QUEL Function....

The result-domains are domain names in the result relation which are to be assigned

the value of the corresponding function. Appendix 6. A shows some examples which

demonstrate some valid QUEL interactions for each of the QUEL commands. A

complete description of the QUEL language can be found in reference [6.11].

In addition to the above QUEL commands, INGRES supports a variety of utility com-

mands. These can be classified into the following major categories:

" invocation of INGRES;

" creation and destruction of databases;

" creation and destruction of relations;

" copy of data to and from INGRES;

" storage structure modification;

" miscellaneous.

A description of each of these utility commands is given in APPENDIX 6B.

-91-

6.3 EQUEL

Although QUEL alone provides the flexibility for many data management require-

ments, there are some applications which require the flexibility of a general purpose

programming language in addition to the database facilities offered by QUEL. To this

end, has been implemented a new language, EQUEL (Embedded QUEL) which con-

sists of QUEL embedded in the general purpose programming language C as illustrated

in Figure 6.3.

C
C

Program

+

to

QUEL

itements statements

Figure 6.3 From Quel to EQUEL

6.4 The INGRES PROCESS STRUCTURE

s EQUEL

Program

As already mentioned in Section 6.1, INGRES can be invoked in two ways. One way

is by direct invocation from UNIX, and the other is by calling it (INGRES) from a

host language. These two methods of interaction with INGRES are discussed in turn,

but before doing so, a few details will be said about INGRES.

6.4.1 UNIX

Processes in UNIX may create child processes by using the UNIX "fork" system call

which creates an exact duplicate of the parent process. There is only one difference

between the two processes, the child process has has a zero number process identity

(pid), while the parent process always has a positive number as its process identity.

These processes may communicate with each other via an interprocess communication

facility called "pipes". A pipe is a one direction communication link which is written

- 92'-

into one process and read by the second one. Synchronisation of pipes is maintained by

UNIX, hence no messages are lost.

Furthermore, each process has a standard input device and a standard output device.

These are usually the user's terminal but may be directed by the user to files, pipes to

other processes or other devices. A full account on the UNIX system can be found in

reference [6.20].

6.4.2 Invoking INGRES from UNIX

Issuing INGRES as a UNIX command causes the process structure shown in Figure 6.4

to created.

INGRES

Terminal Monitor

"front end process"

Database

Commands

INGRES

processes 1
Figure 6.4 INGRES Structure (Direct Interaction)

The INGRES interactive terminal monitor allows the. user to formulate, print, edit,

and execute collections of INGRES commands. The monitor maintains a workspace

with which the user interacts until satisfied with the interaction. The contents of the

workspace are then passed down to the INGRES process when execution is desired.

The full set of commands accepted by the current INGRES terminal monitor is given

in reference [6.13].

-93-

6.4.3 Indirect Interaction with INGRES

In an indirect interaction with INGRES there is a need to call INGRES from a host

language. This can be achieved in three separate ways which are:

(i) altering the compiler to accept INGRES commands

(ii). writing a precompiler to convert QUEL statements and

(iii) writing a subroutine call interface.

Altering the compiler is clearly a major task. In order to implement EQUEL, a

precompiler was developed to convert an EQUEL program into valid C program with

QUEL statements converted to appropriate C code and calls to INGRES.

EQUEL

Program ý

C

Precompiler

C Program

"front end process"
r

The resulting C program is then compiled by the normal C compiler, producing an

executable module. It is worth noting that when an EQUEL program is run, it is this

executable module that is used as the front end process instead of the interactive termi-

nal monitor as shown in Figure 6.5.

A full account on the functions of the C precompiler can be found in reference [6.1].

C Program

"front end"

process Commands

I Database INGRES

processes

: ommands

processes

Figure 6.5 The INGRES Structure (Indirect Interaction)

-94-

A condition code is returned through the UNIX interprocess message systems to indi-

cate success or the type of error encountered. The functions performed by the EQUEL

translator are fully discussed in reference [6.1].

The subroutine call interface works in a similar manner as an EQUEL program. Dur-

ing execution of the front-end program, database commands (QUEL statements in the

C program) are passed between the application program and the INGRES process over

the UNIX interprocess message systems (pipes) and arc processed by INGRES.

6.5 INGRES STORAGE STRUCTURES

INGRES supports three storage structures for a relation, namely, heap, hash and Isam.

A brief description of each of these storage structures will be given in this section. A

detailed description can be found in reference [6.9]. Any user created relation can be

converted to any of the storage structures outlined below by using the "modify" com-

mand (Appendix 6B).

6.5.1 Heap

When a relation is first created, it is created as a heap, that is, an unordered collection

of tuples. A relation stored as heap has duplicate tuples and the location of the tuples

is unknown. Hence, query processing involves the scanning of the entire relation in a

logically sequential order, one page at a time. This type of storage structure is only

suitable for:

" very small relations, where the added cost of other storage structures is unjustifi-

able;

" transitional storage of data as is the case when data is being moved into or out

of the system by COPY;

-95-

" certain temporary relations created as intermediate results during processing a

query.

6.5.2 Hash

Hashing is a direct-accessing technique in which the key to a domain is converted to a

pseudo-random number from which an address is derived for the required tuple. A

hashed relation contains no duplicate tuples.

This mode of storage is well suited for situations whereby access is to be conditioned

on an exact value of a qualification. Using the hashing the main page of the tuple

satisfying the qualification is identified. That particular page is then scanned through

to identify the required tuple.

In the case where more tuples hash to a location than can fit on one page, overflow

pages are created and are linked to the original page using pointers.

6.5.3 Isam (Indexed Sequential Accessing Method)

In a relation which is Isam, the index associated with the relation is first searched to

determine the page that the the required tuples would fall on, and processing follows as

in a hashed relation. Duplicate tuples are also removed in this type of storage.

This mode of storage is suitable for locating tuples referenced in a qualification by both

exact values and range of values. An Isam structure is never as efficient as a hash

structure, since the Isam directory must be searched to locate tuples.

6.5.4 Secondary Indices

If a relation is not hash or Isam on a domain, but has a secondary index on that

domain, the secondary index is searched to find the logical page number and offset

-96-

within the page of the qualifying tuples. All pages containing a qualifying tuple are

read, and the data in qualifying tuples located. It is worth noting in this case that the

secondary index identifies the qualifying tuples. Hence, unlike in the case of an Isam

or hash structure, a data page does not have to be exhaustively searched.

6.5.5 Compression

In the above-mentioned storage structures, fixed length tuples are stored. In addition,

the above-mentioned storage structures can be used in conjunction with data compres-

sion techniques, reference [6.10], in situations where increased storage utilisation

outweighs the overhead of encoding and decoding of data during access. These modes

are known as compressed hash and compressed Isam. Note that it does not make sense

to compress a heap structure.

REFERENCES AND BIBLIOGRAPHY

[6.1] Allman E., Held G., and Stonebraker M., "Embedding a Data Manipulation

Language in a General Purpose Programming Language", Proceedings of the

1976 ACM - SIGPLAN - SIGMOD Conference on Data Abstraction, Defini-

tion, and Structure, Salt Lake City, UT, March 1976, pp. 25 - 35.

[6.2] Bratsbergsengen K., and Risnes 0., "ASTRAL -a Structural Relational Appli-

cations Language", Proceedings of the SIMULA Users Conferenece", September

1977.

[6.3] Chamberlin D., et al., "A Unified Approach to Data Definition, Manipulation,

and Control", IBM Journal of Research and Development, Vol. 20, No. 6.,

November 1976, pp. 560-575.

-97-

[6.4] Codd E. F., "A Relational Model of Data for Large Shared Data Banks", Com-

munications of the ACM Vol. 13, No. 6, June 1970, pp. 377 - 387.

[6.5] Codd E. F., "A Data Base Sublanguage Founded on The Relational Calculus",

Proceedings of the 1971 ACM - SIGFIDET Workshop on Data Description

Access and Control, San Diego, CA, November 1971, pp. 35-68.

[6.6] Codd E. F., and Date C. J., "Interactive Support for Non-programmers, the

Relational and Network Approaches", Proceedings of the 1974 ACM - SIGFI-

DET Workshop on Data Description, Access and Control, Ann Arbor, MI,

May 1974, pp 33 - 42.

[6.7] Date C. J., and Codd E. F., 'The Relational and Network Approaches: Com-

parison of the Application Programming Interfaces", Proceedings of the 1974

ACM - SIGFIDET WOrkshop on Data Description, Access and Control, Ann

Arbor; MI, May 1974, pp. 84 - 113.

[6.8] Date C. J., "An Architecture for High-Level Language Database Extension",

Proceedings of the 1976 ACM-SIGPLAN-SIGMOD Conference on Data

Abstraction, Definition, and Structure, Salt Lake City, UT, March 1976.

[6.9] Epstein R., "Creating and Maintaining a Database Using INGRES", Memo No.

M 77-71, Electronics Research Laboratories, University of California, Berkely,

CA, December 1977, pp 99 - 105.

[6.10] Gottlieb D., et al., "A Classification of Compression Methods and Their Use-

fulness in a Large Data Processing Centre, " Proceedings of the 1975 AFIPS

National Computer Conference, Vol. 44, Anaheim, CA, May 1975, pp. 453-

458.

[6.11] Held G., Stonebraker M., and Wong E., "INGRES: A Relational Data Base

Management System", Proceedings of the 1975 AFIPS National Computer

Conference, Vol. 44, Anaheim, CA, May 1975, pp. 409-416

-98-

[6.12] Hutt A. T. F., "A Relational Data Base Management System, " John Willey &

Sons, New York, 1979.

[6.13] INGRES Version 6.2 Referenece Manual, Memo No. M79-43, Electronics

Research Laboratories, University of California, Berkely, July 1979, pp 112 -

. 123.

[6.14] Ritchie D., "C Reference Manual, Bell Telephone Laboratories, Murray Hill,

NJ, 1974, pp 23 - 27, pp 45 - 51.

[6.15] Rowe L., and Shoens K., "Data Abstraction, Views and Updates in RIGEL",

Proceedings of the 1979 ACM-SIGMOD Conference on the Management of

Data, Boston, MA, June 1979.

[6.16] Schmidt J., "Some High Level Language Constructs for Dat of Type Relation, "

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977, pp.

247-261.

[6.17] Stonebraker M., Wong E., Kreps P., and Held G., 'The Design and Imple-

mentation of INGRES, " ACM Transactions on Database Systems, Vol. 1, No.

3, September 1976, pp. 198 - 222.

[6.18] Stonebraker M., "A Functional View of Data Independence", Proceedings of

the 1974 ACM - SIGFIDET Workshop on Data Description and Control, Ann

Arbor, MI, May 1974.

[6.19] Wong E., and Youssefi K., "Decomposition: A Strategy for Query Processing"

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976, pp.

223 - 241.

[6.20] UNIX Version 4.2 Reference Manual, Electronics Research laboratory,

University of California, Berkely. Electronics Research Laboratory, Univer-

sity of California, Berkely, April 1975, pp 36 - 45, pp 63 - 71.

[6.21] Stonebraker M., Editor, 'The INGRES Papers, Anatomy of a Relational

Database System", Addison-Wesley Publishing Company, 1986.

-99-

CHAPTER 7

DEVELOPMENT OF THE INTERFACE

7.0 BACKGROUND

As already mentioned in Chapter 6 (Section 6.4.3), there are three ways of developing

user interfaces. Designing a language like EQUEL as outlined in Chapter 6 faces the

difficulty of attaching a database system clearly to a programming language. This

results from the fact that the two environments do not have the same underlying type

system. For example, the database has a type, "relation" that is not supported in the

programming language environment. Moreover, one would like to pass references to

tuples as arguments to programming language procedures. Such a feature is impossible

as the programming language does not know the structure of a tuple returned at run

time from the database. This problem can be solved by building a new programming

language, which could do both general purpose computation and database access in

one environment. Alternatively, one could extend a modern programming language

(e. g. Pascal) with desired features. However, this is a subject for the programming

language research community. Writing a preprocessor is definitely a big task. It is for

these reasons and because this project is application oriented that a subroutine call

interface was adopted.

The problem that had to be overcome was to attach a database system to a program-

ming language, C. The reason for the use of C language is that this is the language

upon which UNIX is developed which is the future language for computer systems.

Furthermore, INGRES, is itself return in C.

-100-

7.1 BASIC STRUCTURE OF USER INTERFACE

Figure 7.1 shows the basic structure of the interface between INGRES and the user. There

are three processes that make up the entire interface, the parent process, and two child

processes that are spawned by the fork system call (see reference [6.20]). Communication

between the three processes is established by the use of bidirectional pipes as discussed in

Section 7.4.

PARENT

fork

Output Device

Figure 7.1 Structure of Interface.

-101-

PARENT
'Activate

data base to be consulted
ý

PARENT

Set up two pipes P1, P2

-fork

i-ý--fork
Child 2

Interptret user

d
Read and filter

INGRES messages

before displaying

command from menu

and send to INGRES

ý-ý P2

Child 1

ý

1 Call INGRES and

connect I/O to:

4-- 0 p2 (write)

P1 -4, pl (read).

Interpret message

from parent and

send results to

output filter.

0

[iosciown

Figure 7.2 Operation of Interface.

-102-

The first call to 'fork' creates Child 1 which in turn invokes INGRES as described in

Appendix 6B. The second call creates the Child 2. The roles of each of the three

processes is described in Section 7.2. Synchronisation of the processes is achieved by

the use of signals as outlined in Section 7.3.

7.2 ROLE OF THE THREE PROCESSES

Figure 7.2 indicates the role played by each individual process.

7.2.1 Parent Process

Besides giving birth to the two children, the parent process has the role of interpreting

the QUEL and the INGRES utility commands and then sending them to Child 1,

INGRES. The parent also has the added duty of establishing when the conversation

among the "family" is completed and terminating the child processes when this hap-

pens.

7.2.2 INGRES (Child 1) and Child 2

Child 1 has the responsibility of accepting the instruction sets from the parent process,

processing the queries asked for and sending the results to Child 2. Child 2 in turn,

accepts the output from Child 1, filters the output and consequently sends them to the

appropriate output device. Also Child 2 is responsible for sending synchronisation and

another signals to the parent process.

7.3 PROCESS CONTROL

Signals are fundamental to process control in Unix and are the only means by which a

process can control another. A signal can be considered as an interrupt which is sent to

a process to cause it to either stop or to initiate some appropriate action. The latter can

-103-

be achieved by the use of subroutines containing the relevant actions to be taken as

demonstrated by the example below.

main() /* Main program

{

int flag a 0; /* Initially set control flag to zero value */

int wait_for_ingres(); /* Tell compiler 'wait_for_ingres',

int wait_for_signal(); 'wait_for_signal' and 'func' are

int func(); routines */

pid = getpid(); /* Get process identity of parent process

pidl = fork();

if (pid2 = fork() == 0) wait_for_ingres(};

/* Create two child processes, Child 1 and Child 2,

get their identities. Child 2 then listens to INGRES

wait-for-signal(); /* Call 'wait-for-signal' routine */

}

wait_for_ingres() /* Child 2 listens to INGRES

kill(pid, SIGINT); /" Child 2 sends synchronisation signals

to parent process '/

}

wait_for_signal() /* Parent process waits for signals */

do

{
signal(SIGINT, func);

-104-

/" Trap synchronisation signal and cause parent process to execute

the routine 'func' when the signal, SIGINT, is received */

}
while flag ==0;

flag = 0; /* Reset control flag to zero value */

func()

{

flag = 1; /' Set value of control flag to one '/

}

A full account on signals, how they are sent and received by the processes can be

found in references [6.20].

7.4 INTERPROCESS COA111IUNICATION

As already mentioned in Chapter 6 (Section 6.4.1), the standard shell, sh, offers only

one-way pipelines and does not offer any notation to set up two-way communication

between processes, although there are experimental shells that do so. Bidirectional

pipes are set up from C programs using the pipe system call as outlined below.

Interprocess channels are created using the pipe system call which creates an

input/output (I/0) mechanism called a pipe. Each pipe has both the reading end and

the writing end. Having created the pipes, two or more cooperating processes created

by subsequent fork calls can pass data through the pipes with read and write (see refer-

ence 6.20) system calls. It is worth noting that the child processes created by subse-

quent fork calls inherit the communication system that is already established. The

interprocess communication for this interface was established in routine 'myopen' (see

Appendix 10).

-105-

7.5 OPERATION OF INTERFACE

Figure 7.2 is a flow diagram showing the operation of the interface. The initial step is

to invoke the INGRES data base from within the application program. Two pipes are

then created as described in Section 7.3 and the 1/0 mechanism of the two pipes is set

up such that the reading end of pipe 2 (P2) and the writing end of pipe 1 (Pl) arc con-

nected to INGRES. This leaves the writing end of P1 and the reading end of P2 open

to other processes (parent and Child 2) for communication to be established between

the processes.

7.5.1 Communication Between Parent and INGRES

The interface is menu driven, hence a set of QUEL commands and INGRES utility

commands from a particular selection from the menu are sent to the INGRES

workspace for each selection. These sets of instructions are sent in small "chunks" until

the entire instruction is built up, at which moment the instruction to process the query

is sent (see Appendix 6B). The example below illustrates how a query to print relations

in a data base (see Appendix 6B) would be carried out by the interface.

Example 1: Print relations in a data base.

main()

{
int to_ingres; /* File descriptor for writing end of P1 */

int run_ingres(; /* Tell compiler 'run_ingres and

int show_rels_in_db(); 'show_rels_in_db' are routines

char param[40]; /* 'param' is type character to hold

a maximum of 40 characters

char com; /* 'com' is of type character */

switch(com) /* Multiple-choice control structure

-106-

{

case 'P':

case 'p': showv_rels_in_db();

break;

}

}
show_rels_ir-dbs()

{
sprintf(param, "help\n");

write(to_ingres, param, strlcn(param));

run-ingres(;

}
run_ingres()

{

write(to_ingres, '\\g\n", 3);

/* Process the query, transmit to INGRES, and run

}

The above example illustrates how in general, instructions from the menu (parent pro-

cess) are sent to the INGRES monitor, processed, transmitted and run.

All input and output is done by two system calls, read and write, which are accessed

from C by functions of the same name. For both, the first argument is a file descriptor.

The second argument is an array of bytes that serves as the data source or destination.

The third argument is the number of bytes to be transferred.

-107-

The function sprintf has the general format sprintf(s, format). This function places

'output' in the string s.

7.5.2 Communication Between INGRES and Child 2

Having processed the query, INGRES writes the results onto the write end of P2.

Child 2 in turn reads from the read end of P2 the results from INGRES and filters the

results and finally sends them to the output device. The example below illustrates how

this is achieved.

Example 2: Reading output from INGRES and sending output to Visual Display

Unit (VDU).

main()

{

0

}

int from_ingres; /* File descriptor for reading end of P2

wait_for_ingres(; /* Tell compiler 'wait_for_ingres'

is a routine */

char c; /* c is of type character

if ((pid2 = fork()) == 0) wait_for_ingres(;

/' Create Child 2 and get it to listen to INGRES '/

wait for_ingres()

{
read(from_ingres, &c, l); /* read one character at a time

-108-

putchar(c); from INGRES and output on VDU */

}

Filtering is achieved by C statements within the 'wait_for_ingres' routine which specify

what is to be filtered. This is not shown in the above example but can be found in this

routine (see Appendix 10).

Chapter 8 describes how the interface can be used and also gives an example on how

the system could be modified to suit the varied needs of the user.

REFERENCES AND BIBLIOGRAPHY

[7.1] Bourne S. R., 'The Unix System", Bell Laboratories, Addison-Wesley Publishing

Company, 1983.

[7.2] Kernigham B. W., and Ritchie D. M., 'The C Programming Language", Bell

Laboratories, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632,1978.

[7.3] Purdum J. J., Leslie T. C., Stegemollcr A. L., "C Programmer's Library", Que

Corporation, Indianapolis,

[7.4] Rochkind M. J., "Advanced Unix Programming", Prentice-Hall, Inc., Englee-

wood Cliffs, New Jersey 07632,1985.

[7.5] Stroustrup B., 'The C+ + Programming Language", AT &T Bell Laboratories,

Addison-Wesley Publishing Company, New Jersey, 1986.

-109-

CHAPTER 8

APPLICATION OF THE INTERFACE

8.0 BACKGROUND

The purpose of a data base is to receive, retain, and provide information about a slice

of reality. A data base should be looked upon as a tool and not an end by itself. Giv-

ing back all the information a database knows "by heart" is one aspect of the system.

Another aspect of the system is to deduce an answer from other facts by means of pro-

grams. A third aspect is to store previously deduced information as if it had been

entered from the external world.

These three mechanisms of the system can be best illustrated by thinking of the way a

human being achieves answers to the following questions:

" What is 4 minus 3? --- Answer is achieved by "heart".

" What is 28 plus 42? --- Answer is achieved by deduction (computation).

" What is 42 plus 28 --- Answer is achieved by memorising the previous

answer.

In fact these three mechanisms are organised as hierarchy similar to a memory hierar-

chy in a computer system:

First, see if you know the answer by heart, in case of failure try to deduce it by some

appropriate rule (program) and in case of success keep the result for a while in case of

a future identical question.

- 110 -

8.1 STRUCTURE OF SYSTEM

Figure 8.1 shows the structure of the interface. The system can be used in two ways. It

can be used for information retrieval and as an associative process. These two functions

are described in turn below.

MANAGEMENT

PROGRAM

ARCHIVE

RETRIEVAL

DATA BASE

REAL OR DUMMY

Figure 8.1 Structure of System

8.1.2 Information Retrieval

ASSOCIATIVE

PROCESS

One may interrogate the data base and obtain information in an easier manner than by

direct inquiry in the real world. This is further made easier by the user friendly inter-

face which carries out a dialogue with the user, thereby guiding the user as to what

information is available in the data base.

- 111 -

The user is thus not expected to have any knowledge of the INGRES query language

(QUEL) as is the case in a direct interaction with the data base. The system builds up

the query step by step as the user answers to simple questions asked by the interface.

Also, qualifications to the query are built up in steps, thus enabling the user to gradu-

ally narrow their query to the desired one.

Another aspect of the system is that it allows the user to build queries from incomplete

knowledge of the information asked for by the interface. This is achieved by the use of

special character matching characteristics which are built into the data management

system, reference [6.13]. For example, if the user is not sure of the exact detail of the

information asked for by the interface, a few characters could be given to the system

and that would be sufficient for the system to work out all the possible queries that

satisfy that character combination. By adding qualifications the query could then be

pruned down based on the information already supplied by the data base. Hence, a

full knowledge of the data base is not required for successful application of the system.

Another aspect of the information -retrieval system, is that it has been structured in

such a way that further information could be added to the data base and further rou-

tines added to the interface to meet the added needs of the user without alteration of

the basic structure of the system. This is achieved by the use of the "switch" multiple

choice structure, (see switch, reference [6.20]).

Searching a data base is expensive with respect to search time. To eliminate repeated

search for the same information, the system has been incorporated with a memory

which stores previous queries, thus making it possible for the system to directly give

back answers without searching the data base, to previously asked questions as illus-

trated in the example in Section 8.0.

- 112 -

8.1.2 Associative Process

This section of the system uses information already stored in the data base together

with information supplied by the user to help the user make decisions. In order to be

able to assess completely a particular bridge, the following parameters have been iden-

tified:

(1) category of rail or road on which bridge lies - the categorisation used was

adopted from British Rail, Highway Department, and Scottish Develop-

ment Department. Bridges on major trunk roads and on intercity lines are

classified as Class A while those on side roads and railway branches are

classified as Class B.

(2) archived data - this information is available from Authorities responsible

for the maintenance of bridges, that is, British Rail, Highway Department

and Scottish Development Department. These authorities were visited and

the following records obtained:

" name and location of bridge on road or railway line;

" records of visual inspection carried out every four years dating back

for the last twenty years;

" repairs done on the bridges over the past twenty years;

" statutory obligations attached to bridge;

(3)

(4)

(5)

(6)

recent visual inspection results;

non-destructive test results, if any;

coring results if available;

bridge dimensions.

Appendix 9 gives a listing of the contents of the current data base, that is, the informa-

tion listed above. The routine 'decision-support' (see Appendix 10) demonstrates how

-113-

the above information can be utilised to assess a bridge. A full account on the MEXE

method of assessment applied in this routine can be found in refences [3.4]

Appendix 9 shows the data that is currently available from the data base.

8.2 SYSTEM CHARACTERISTICS

The system has the following characteristics:

" the system is able to evolve - reality changes with time, hence the data base

model will also change with time. Also, the needs of an enterprise change with

time. The system was developed with this in mind and was developed in such a

way as to enable modifications to be done with no change to the basic structure

of the system. Section 8.4 outlines how the system could be modified to meet

the added requirements of the user;

" efficiency as outlined in Section 8.3 below;

the way of interrogating the system is independent of the mechanism it uses to

get the answer. this quality is known as "semantic data independence".

8.3 SYSTEM PERFORMANCE

In INGRES, a user is allowed to execute a RETRIEVE INTO statement which creates

a new relation and hence alters the relational schema, that is, the description of the

database. This is analogous in general purpose programming language to allowing a

user to create space for variables at run time. However, in programming languages,

such variables are local to an invocation of the program and space disappears when the

program terminates.

In INGRES, relations created during execution do not disappear when the program

terminates (since the programmer may wish to use such relations again). In fact

- 114 -

INGRES keeps relations for a period of time specified by a database administrator and

provides a SAVE command should the user wish that they be kept longer (see Appen-

dix 6B).

This causes several problems. If the relation schema is to be altered at run time the fol-

lowing dilemmas occur:

(i) it may be impossible to do the alteration because the relation to be created

at run time may depend on other relations (created by other routines)

which do not yet exist in the schema (because the other routines have not

yet been called upon).

(ii) there may be name conflicts; that is, a user may be required not to use the

same name for a relation in different routines;

(iii) DESTROY relation_name is a legal command, and in this case the

schema cannot be altered until all routines have been called upon;

(iv) it may be impossible to alter the schema because changes could easily

depend on run time values.

Dilemmas (i) and (iv) were overcome by synchronisation of the three processes The

INGRES monitor prints an asterisk ("*) at the beginning of each line to remind the

user that INGRES is ready for the next input. Also, the monitor rings a bell after com-

pleting to process each query. By trapping these two messages, from INGRES, and

using synchronisation signals, the second child and the parent process were forced to

wait until INGRES had completed its tasks.

Dilemma (ii) was overcome by keeping in memory all created relations and automati-

cally naming new relations with names that do not exist in the schema. Problem (iii)

was avoided by destroying all relations that were created during execution of the pro-

gram. This has the disadvantage of not allowing the user to keep relations for as long

-115-

as they require. However, the information may be kept on the UNIX level if required

and transferred to INGRES using the COPY command (see Appendix 6B). This

approach was taken to avoid repeated crushing of the system due to conflict in the

names after several repeated usage of the system. Routines 'wait_for_ingres',

'wait_for_signal' and 'clean_up_ingres' (Appendix 10) carry out the above operations.

8.4 SYSTEM MODIFICATION

As already mentioned in Section 8.2, one of the characteristics of the system is being

able to evolve. The following example describes how an additional relation could incor-

porate into the system. The example assumes that the relation has already been added

to the data base.

In the following description, the line numbers refer to Appendix 10. Consider the case

where the relation NEW_RELATION is to be incorporated into the system. The pro-

cedure with reference to Appendix 10 would be as follows:

 Under the section headed 'DECLARE DATA BASE BRIDGE'S DETAILS'

(above line 358)

(i) NEW_RELATION would be added in routine'rel_name' (line 358);

(ii) The routine 'NEW_RELATION_dom_name' specifying the domains of

new_relation would be added as in the routine 'specify_dom_name' (line

367).

 Under the section headed 'DECLARE VARIABLES FOR VARIOUS SELEC-

TIONS' (above line 404)

(i) The declaration "char NEW_RELATION_SELECTION" would be added

(after line 410).

 In routine 'infor_retr' (line 416)

- 116 -

(i) mesg4 (lines 418 - 421) would be modified to include NEW_RELATION

as one of the choices of relations available in the data base.

(ii) An additional case statement would be incorporated in the switch state-

ment (after line 448) with the variables in brackets as in the other case

statements in lines 441 - 448.

 Immediately above the section 'EQUALITY OPERATORS' after line 573)

(i) the routine NEW_RELATION' would be added, taking 'specify' routine

as an example, an exact copy of this routine would be created. The mes-

sage statement in the routine should be altered to give domains of

NEW_RELATION as well as 'n' in "mcsgn" which should be greater than

the maximum n already used as the system grows. This can easily be deter-

mined by using the editor (see reference [6.20]).

(ii) routine 'specify_selection' should be changed to

(iii) routine 'specify_dom_name' should be changed to

'NEW_RELATION_dom_name'

 Under the section headed 'QUALIFICATIONS FOR INFORMATION

RETRIEVAL' (above line 620)

(i) a case statement with 'NEW_RELATION_qual' routine should be added

to the switch statement, (after line 639) with the variables in brackets as

with the other case statements (lines 632 - 639).

 Immediately above 'EQUALITY' (above line 853) should be placed

(i) the 'NEW_RELATION_qual' routine, (below line 852) also a copy of the

'specify_qual' routine.

(ii) in the printf statement, 'specifications' in the printf statement should be changed

to 'NEW_RELATION' and the rest of the changes are as outlined above for

the 'specify' routine.

- 117 -

In a similar manner, additions to domains can be accommodated by the system

although this would seldom be done as it would result in loss of data already stored in

the relation and should be done in exceptional cases only.

8.5 RUNNING THE SYSTEM

The system developed is currently available on the VAX (edee) machine in the

Department of Electrical Engineering at the University of Edinburgh. The source file

is called 'inter. c'. To use the system, the user must compile the program by the normal

C compiler to produce an executable module. The command for this is

cc inters -Im

where the '-Im' flag specifies a special mathematics link-library which is used in the

routine 'decision.
-support'.

The executable module produced by the C compiler is used

as the front end process to INGRES. The command for running the executable module

1S

a. out

which will get the system running. Chapter 9 demonstrates how the data base relating

to bridges is used.

8.6 DATA BASE DESIGN FOR THE SYSTEM

The system will give optimum performance if the design of the data base is as

described in Chapter 5, Section 5.4. However, the sytem will still operate even if the

data base is not as designed as described in Chapters. It is worth noting that the idea

of normalisation should not restrict the user from creating relations that do not fall into

the category of third normal form.

- 118 -

CHAPTER 9

DEMONSTRATION RUN

This chapter gives a demonstration run that would enable the user to use the system

developed. The italics refer to the system prompts, while the bold face refer to the user

responses. On typing a. out as already mentioned in Section 8.5 the initial prompt from

the system would be:

Do you wish to obtain a list of available databases? (yin): y

This enables the user to find out what data bases are available in INGRES at that par-

ticular time. This would vary as other users create their own data bases. A typical

response would be:

demo hydrosite bridge

The data base demo gives a demonstration run on how one would use INGRES

without the system. For the purposes of this thesis, the data base bridge is relevant.

The next prompt from the system would be:

Enter name of database you wish to consult: bridge

This would invoke INGRES as described in Section 7.5. The system would then

inform the user that data base bridge already exists. In the case where a user gives a

data base name which does not exist, that data base would be created. The system then

prompts the user with:

INGRES version 7.10 login

Tues Apr 2 15: 01: 09 1987

go

The first two lines include the INGRES version number (in this case version 7.1) and

the current date. The "go" indicates that INGRES is ready for your interactions. This

is followed by a print of the facilities offered by the system (menu), viz:

- 119 -

(I]NFORMATION RETRIEVAL

(DJECISION SUPPORT SOFTIVARE

(SJIIO1V RELATIONS IN A DATA BASE

(L]IST DOMAIN NAMES AND FORMATS

(PJRINT OUT CONTENTS OF A RELATION

(VJIEW QUERY BUFFER

[CJREATING AND MAINTAINING A DATA BASE USING INGRES

[Q] UIT INGRES

The facilities offered by the system will be demonstrated in turn. The following exam-

ples demonstrate how the facilities would be used.

9.1 SHOW RELATIONS IN A DATA BASE

A print out of the menu as above is followed by the dialogue:

Enter square bracketed letter for your selection.

Select: s

The following output would be obtained:

relation name relation owner

attribute lfms

maint Ifits

relation lfms

indexes Ifits

ndt Ifins

specify ! fins

arch dims Ifnts

defects ! fits

integrities Ifms

-120-

type Ifins

protect ! fins

tree Ifnis

vi inspect Ifrns

gvw rest Ifn: s

This shows what relations are in data base bridge. The relations ("attribute", "relation",

"indexes", "integrities", "protect", and "tree") are INGRES built in system relations.

This is the followed by the prompt:

Enter in for MAIN menu m

9.2 LIST DOMAIN NAMES AND FORMATS

The main menu as above is listed and the dialogue continues.

Enter square bracketed letter for your selection.

Select: I

This selection will offer information about a particular relation. Supposing we wished

to know about the relation "vi-inspect", the dialogue would be:

Enter name of relation: vi inspect

This would result in the following output:

Relation: vi inspect

Owner: lfms

Tuple width: 60

Saved until: Tue Apr 22 16: 36: 481986

Number of tuples: 9

Storage structure: paged heap

Relation type: user relation

- 121 -

attribute name type length

name c 20

vi date c 10

vi details c 30

This facility lists overall information about the "vi_inspect" relation together with each

attribute, its format type and its length.

INGRES supports three data types: integer numbers, floating point numbers, and char-

acter strings. Character domains can be from 1 to 255 characters in length. Integer

domains can be 1,2, or 4 bytes in length. This means that integers can obtain a max-

imum value of 127; 32,767; and 2,147,483,647 respectively.

The maximum number of domains that a relation may have is 49. The number of

tuples refers to the number of bridge information currently stored in the relation. The

"tuple width" is the sum of the individual lengths of the attributes, that is, 20 + 10 +

30 = 60. The "heap" storage is as described in Section 6.5.1.

9.3 PRINT OUT CONTENTS OF A RELATION

After a listing of the main menu the dialogue continues as follows:

Enter square bracketed letter for your selection.

Select: p

Enter name of relation: vi inspect

The above dialogue would yield:

-122-

vi inspect relation

I name I vi date I vi details i
I -- I

IGorgie 116109/19S7Ilongitudinal cracks near arch edge I

I Craiglockhart 112102/19591 bulging of spandrel walls I

IAbbeyhill 12317/1961 Idepressions on bridge deck I

Taster Rd 118/1011963 I cracking(longitudinal) barrel I

I Powderhall 117/09119651 cracking(diagonal), barrel I

IPowderhall 103/06119671 bulging(spandrel walls) I

I Portobello 114/12/19691 arch out of shape I

Ilnveresk 12S/06/1971I1ack of mortar at joints

INewtongrange 105108119731 cracks, spandrels at 1 /4 points I

I -- I

This facility enables the user to look up all domains of a relation. The domain names,

"name", "vi-date", and "vi-details" give the name of the bridge, the date on which the

visual inspection was carried out, and the details of the visual inspection respectively.

9.4 VIEW CONTENTS OF QUERY BUFFER

Having obtained a listing of the main menu, the dialogue is as follows:

Enter square bracketed letter for your selection.

Select: V

This facility is only used during the development of the system. It enables the system

developer to check that the message sent to the query buffer by the system is as

intended.

-123-

9.5 INFORMATION RETRIEVAL

Information can be retrieved from the data base as in the following dialogue:

Enter square bracketed letter for your selection.

Select: I

Which of the following do you require to consult?

I. Specifcation 2. Ndt 3. MMfaintenance 4. Visual Inspection

5. None of the above

Select by Number: 13

This gives a listing of the relations that are currently supported by the information

retrieval system. Additional relations can be added as need be as outlined in Section

8.4. A typical selection such as 13 would be followed by the prompt:

Of which of these on Specification do you require information?

1. Name 2. Location 3. Category 4. Route

Select by Number: 13

This indicates the domains that are in the relation that offers the specification of the

bridge and enables the user to choose those domains they require to obtain information

on. A typical selection of 13 would result in the prompt:

Of which of the following on Maintenance do you wish to obtain

information?

1. Name 2. Maintenance Date 3. Maintenance Details

Select by Number: 3

This gives a list of the domains that are in a relation that offers information on the

maintenance of the bridges.

The above dialogue implies that the user has requested for the name of the bridge, its

category, and the details of the maintenance that has been carried out on the bridge.

This is then followed by the prompt:

-124-

Do you wish to qualify your requests? (yln): n

which enables the user to add qualifications to the request. The above response would

result in the following output from the system:

requestedO relation

I name I category I mnt details I

I -- I

I Abbeyhill

I Craiglockhart

l Easter Rd

I Gorgie

Ilnveresk

I Newtongrange

l Portobello

I Powderhall

I Powderhall

I rail l bolting of spandrels

frail dill replaced with concrete I

I rail I replacement of spandrels I

I rail I grouting on spandrels I

frail I

I road I

I rail I

frail 1

i
I

i
i

I rail I replacement of arch I

I -- I
The blanks in the maintenance details section indicate that no such records exist for

the bridge in question.

In the case where the user wishes to add qualifications to their requests, that is, the

response to the prompt:

Do you wish to qualify your requests? (yIn): y

is as above, that is, a "yes", the dialogue would proceed as follows:

Do you wish to qualify Specification?

Do you wish to qualify Name? n

Y

Do you wish to qualify Category? Y

How many qualifications do you wish to place on this domain? 1

-125-

Which one of these qualifications do you wish to apply?

1. Equal 4. Greater than or equal

2. Not Equal S. Less than

3. Greater than 6. Less than or equal

Select by Number: 1

A typical selection such as 1, that is, an equality qualification would result in:

Which one of the following pattern matching constructs

do you ºvish to use for your qualification?

1. Know the full qualification

2. Know the first characters of the qualification

3. Know the middle part of the qualification

4. Know only the last characters of the qualification

Select by Number: 1

In the case where the user does not know the full qualification, choices 2,3, or 4 can

be used to make up the qualification as appropriate which would yield:

Please enter your qualification. rail

If the user does not know the full qualification and made choice 2 from above, the

qualification "ra" would still suffice. The dialogue continues as follows:

Do you wish to qualify Maintenance? Y

Do you ºvish to qualify nuts details? Y

How many qualifications do you wish to place on this domain? 1

Which one of these logical operators do you wish to apply?

1. And

2. Or

3. Not

Select by Number: 1

Which one of these qualifications do you wish to apply?

- 126 -

1. Equal 4. Greater than or equal

2. Not Equal S. Less than

3. Greater than 6. Less than or equal

Select by Number: I

Which one of the following pattern matching constructs

do you wish to use for your qualification?

1. Know the full qualification

2. Know the first characters of the qualification

3. Know the middle part of the qualification

4. Know only the last characters of the qualification

Select by Number: 1

Please enter your qualification. rail

The above interrogation implies that the user wishes to obtain information about

bridges that belong to the category "rail" and have maintenance details beginning with

the letters "bolt". The following output is obtained:

requestedl relation

I name' I category Inint details I

I --I

I Abbeyhill I rail l bolting of spandrels I

I ---" I

9.6 DECISION SUPPORT SOFTWARE

This section demonstrates how the information in the data base can be used to deter-

mine the load carrying capacity of a single span arch of span less than 18 meters in

terms of either full Construction and Use (C&U) loading or specified gross vehicle

weights. After a listing of the main menu, the dialogue is as follows:

-127-

Enter square bracketed letter for your selection.

Select: d

Please enter name of bridge you wish to assess: Gorgie

Enter location of bridge: Slateford

The relation "arch-dims" (arch dimensions) has all the dimensions shown in Appendix

3 (Figure 8.1), which are required for the computation of the various factors that are

required for the assessment of a structure by the MEXE method. The system will look

up the thickness of the barrel from the relation "arch-dims" and the following message

will be printed:

Thickness of barrel is 0.04 metres

The system then lists the details of the construction of the joints viz:

1. Unpointed joints, pointing in poor condition and joints with tip

to 12mnt front the edge insufficiently filled.

2. Joints with front 12ntm to one tenth of the thickness of the barrel

insufficiently filled.

3. Joints insufficiently filled for more than one-tenth the thickness

of the barrel.

4. Pointed joints in good condition

Select by number the construction of joint: 1

The system will provide the depth factor that corresponds to the choice of construction

of the joint. The factors are in Appendix 3, Table 3.5. In the case where the selection

above is "3", the system will ask for an estimate of the depth of missing mortar, and

the arch barrel thickness will be reduced by this amount. This is then followed by the

request for information regarding the barrel details.

1. Granite and Nhitstone whether random or coursed and all

built-in-course masonry except limestone, all with large

-128-

shaped voussoirs.

2. Concrete or engineering bricks and similar sized masonry

(not limestone).

3. Limestone, whether random or coursed, good random masonry

and building bricks, all in good condition.

4. Masonry of any kind in poor condition (many voussoirs flaking

or badly spalling, shearing etc.). Some discretion is permitted

if the dilapidation is only moderate.

Select by number the arch barrel details: 1

The system then looks up the barrel factor that corresponds to the above choice (see

Appendix 3, Table 3.1) and then provides the user with the possible fill materials, viz:

1. Concrete

2. Grouted materials (other than those with a clay content)

3. Well compacted materials

4. Weak materials evidenced by tracking of the carriageway surface.

Select by number the filling: 4

The fill factor corresponding to the above choice is provided by the software (see

Appendix 3, Table 3.2). and the system offers information on the widths of the joints,

viz:

1. Joints with widths up to 6mnt

2. Joints with widths between 6mnt and 12mnt

3. Joints with widths over 12mnt

Select by number the width of joints: 3

The width factor corresponding to the chosen width of joint is then provided by the

software (see Appendix 3, Table 3.3) and the condition of joint is requested by:

-129-

1. Mortar in good condition

2. Loose or friable mortar

Select by number the condition of joint: 2

The mortar factor corresponding to the chosen joint condition is provided by the sys-

tem (see Appendix 3, Table 3.4). Finally the dialogue would be as follows:

Enter condition factor of bridge (0 -1.0): 0.3

Guidance on the choice of condition factor is given in reference [3.5] The system will

prompt the user with the following messages:

Immediate consideration should be given to the repair or

reconstruction of the bridge.

Modified Axle Load = 5.5 tonnes

Maximum Gross Vehicle Weight = 32.5 tonnes

This is for a HGV (lleaºy Goods Vehicle) with 4 axles

The routine axle-lift-off computes the Axle factors and then finds the maximum gross

weight of the C&U vehicles from the relation "gvw_rest" (gross vehicle weight restric-

tions for masonry structures).

9.7 CREATING AND MAINTAING A DATA BASE USING INGRES

This section demonstrates how to create, structure and maintain relations in INGRES

using the software. On obtaining a listing of the main menu, the dialogue would be as

follows:

Enter square bracketed letter for your selection.

Select: C

This would then be followed by a listing of the facilities available for creating and

maintaining relations. The sub-menu listing would be as follows:

-130-

[C]reate an empty relation

(F)orming a relation from existing relations

[D]estroy a relation

(E)rase contents of a relation

[fl]ow to copy whole relations to INGRES

[M]odify system relations

[T]o destroy a data base

(S)torage Structures in INGRES

[Q]uit sub menu to MAIN MENU

9.7.1 Create an Empty Relation

Suppose we wished to create the relation "donation" with attributes: name, amount and

ext (extension); where the attributes refer to the name of the donor, the amount they

donated and their telephone extension number respectively. A listing of the sub-menu

would be followed by the dialogue:

Enter square bracketed letter for your selection.

Select: c

Enter name of relation: donation

Enter number of domains: 3

Enter domain name: name

Enter format type: c15

Enter domain name: amount

Enter format type: f4

Enter domain name: ext

Enter format type: 12

The format types are as outlined in Section 3 of Appendix 6B. The above dialo-

gue results in the creation of the relation "donation" with no tuples is it.

- 131 -

9.7.2 Forming a Relation From Existing Relations

This facility enables the user to form a new relation from one or more existing

relations. Suppose the user wishes to create a new relation, "ncw_relation", with

attributes, name (name of bridge), location (bridge location), and vi-details

(visual inspection details). The first two attributes are in "specify" relation while

the third attribute is in "vi_inspect" relation (see Appendix 9). The dialogue after

a listing of the sub-menu would be as follows:

Enter square bracketed letter for your selection.

Select: f

Enter name of new relation:: new relation

Enter number of source relations: 2

Enter name of source relation : specify

Enter name of source relation : vi inspect

Enter number of domains to be retrieved: 3

Enter domain name: name

Enter domain name's relation: specify

Enter domain name: location

Enter domain name's relation. specify

Enter domain name: vi details

Enter domain name's relation. vi inspect

Enter name of domain common to all relations: name

9.7.3 Destroy a Relation

This facility removes relations from the data base, and removes constraints or per-

missions from a relation. Only the relation owner may destroy a relation or its

permissions and integrity constraints. Suppose the user wishes to destroy the rela-

-132-

tion "donation", created above. The procedure after a listing of the sub-menu

would be as follows:

Enter square bracketed letter for your selection.

Select: d

Enter name of database you wish to destroy: donation

9.7.4 Erase Contents of a relation

This facility enables the user to delete tuples from a relation. The user must be

the owner of the relation. Consider the case where the user wishes to delete the

tuples in the relation "new_relation". The procedure after a listing of the sub-

menu would be as follows:

Enter square bracketed letter for your selection.

Select: e

Enter name of relation: new relation

9.7.5 How to Copy Whole Relations to INGRES

This facility may be used to move data between standard UNIX files and

INGRES. This is used when data is being entered into a relation for the first

time. To use this facility, the user must first create a UNIX file (typically using

"ed", see Section 6, Appendix 6B) containing the data. For example, to create

data for the "donation" relation using the editor, would be as follows:

% ed newdom

a

bill, 3.50,302

susan,, 100

W

-133-

q

The "%" sign indicates the UNIX shell prompt. To use this facility, the pro-

cedure would be as follows:

Enter square bracketed letter for your selection.

Select: h

Enter name of file: newdom

Enter name of relation: donation

Enter number of domains: 3

Enter domain name: name

Enter domain name: amount

Enter domain name: ext

The relation "donation" would now look like:

mnameamount text I

----------------------------- -----------------
(bill 0.500 002

Isusan 1 1100

--------------------------- -I

9.7.6 Modify System Relations

This facility is as outlined in Section 5 of Appendix 6B. The procedure after a

listing of the sub-menu is as follows:

Enter square bracketed letter for your selection.

Select: m

Enter name of data base: bridge

modifying relation

-134-

modifying attribute

modifying indexes

modifying tree

modifying protect

modifying integrities

The system relations are modified to gain maximum access performance when

running INGRES.

9.7.7 To Destroy a data base

This facility is as outlined in Section 3 of Appendix 6B. The procedure after a

listing of the sub-menu would be as follows:

Enter square bracketed letter for your selection.

Select: t

Enter name of data base you wish to destroy: junk

Data base junk has been used for demonstration purposes, as the other data bases

are of use.

9.7.8 Storage Structures In INGRES

This facility is as outlined is Section 6.5. A fill factor is used to specify how full

to make each primary page. This decision should be based on whether more

tuples will be appended to the relation. For example, a fill factor of 25 will leave

each page 25% full, or in other words 75% empty. The dialogue after a listing of

the sub-menu would proceed as follows:

Enter square bracketed letter for your selection.

Select: s

Do you wish to know what relations are in

-135-

the data base? (yln): n

Enter name of relation whose storage structure

you wish to modify: donation

Which one of the following storage structures do yo wish

to apply to the relation:

1. Hash 2. Isam 3. Heap

Select by Number 1

Do you wish to know what domains are in the relation? (y/n): n

Enter name of domain whose storage structure you

wish to nnodify: name

Do you wish to specify afll factor? (yln): y

Enter fill factor (1 - 100): 50

9.7.9 Quit Sub Menu to Main Menu

This will result in the following prompt:

(Enter 'm' for MAIN AIENUJ

which will result in a listing of the main menu. The facility QUIT INGRES, ter-

minates the software.

The system will also prompt the user with the message:

Do you wish to obtain a copy of your request? (yln):

after every query has been processed. This enables the user to choose the infor-

mation that they would require printed on paper. This information is stored in a

file called 'bard-copy". The user must then send this file for printing to a relevant

printer. This file is deleted each time the system is run, that is each time "a. out" is

run. Hence, the user must send for a print out before the next rerun of the sys-

tem.

-136-

CHAPTER 10

DISCUSSION

10.0 CONCLUDING REMARKS

At the present moment, it would be difficult to subject the arguments in favour of

bridge inspection to a quantitative economic analysis. There are considerable differ-

ences between the existing types of structure, the materials used and the construction

regulations applied when building the bridges. In addition the "history" of bridge

inspection still covers too short a period for it to be feasible to make a systematic sta-

tistical analysis, comparing the behaviour of bridges which have not been inspected

with that of bridges which have been subjected to periodic inspection and assessment.

Bridge documentation should be considered as indispensable for assessing bridge struc-

tures for managerial and engineering purposes. It provides all the information needed

for making decisions on engineering, economic and policy matters.

Engineering aspects are mainly linked with the technicalities of assuring safety and ser-

viceability of bridge structures.

Against this background, the requirements for appropriate bridge documentation can

be identified as:

" systematic collection and filing of relevant data, information, records and docu-

ments;

" continuous updating during the total actual life of the structure;

" retrieving of data and ' information relevant to the actual form and level of

organisation and to the scale of the problem.

-137-

These requirements are best met by the use of a data system such as described in this

thesis.

Considerations of the available information should lead to one of the following conclu-

sions:

the bridge is adequate for current use for its normal life provided

" that it is maintained properly

" the bridge, although adequate at present, may not remain so in future

" the bridge is inadequate for the current use but may or may not be adequate

for alternative uses

" the bridge is inadequate and needs remedial measures

" the bridge is unsafe and beyond normal repair

" the information is not sufficient to reach a definite conclusion.

The information stored in the data base is made easily available to the Engineer by the

information retrieval software, thereby enabling the above conclusions to be made with

greater ease than would be the case when information is not easily available. For

example, by looking at the maintenance records, it would be possible to decide if the

bridge is properly maintained. Also, by using the decision support software (see Sec-

tion 9.6), together with the information stored in the data base, it is possible to deter-

mine the maximum gross weight of the C&U vehicles which the arch can carry. The C

&U regulations are in relation C&U_Reg, Appendix 8.

The advantages of the system over a conventional system are that it highlights those

parts of the data that are essential in the decision making process (see Section 9.5).

Furthermore, a conventional system only retrieves data from the data base and can not

make use of it after the retrieval process. On the other hand the system retrieves data

and can make use it as is the case with the determination of the maximum gross weigth

-138-

of the C&U vehicles using the decision support sofware.

The remedial measures that could be carried out on masonry bridges are as outlined in

Section 3.3. These may be summarised as; grouting, pointing and major overhall.

10.1 IMPLICATIONS TO CIVIL ENGINEERS

Bridge inspection is not an end in itself. It should be seen as an essential element of the

ov all system comprising design, construction, inspection, bridge classification, opera-

tion, maintenance, repair, reconstruction, research and related specifications.

The reasons for bridge inspection have been outlined in Chapter 1 and refer broadly

speaking, to ensuring safety, conserving initial investments, and responding to a

number of complementary (often not less important) requirements and trends.

A well established inspection data system will provide the necessary information for the

control of traffic using the structure, especially exceptional vehicles or convoys. The

routine 'decision-support' (Appendix 10) demonstrates how this is achieved.

Detection of defects and deterioration set the needs for maintenance, repair or replace-

ment. The identification of early signs of distress can considerably reduce the total cost

of the remedial measures to be taken.

Results from inspection may form the basis for future research with the objective of

analysing the observations of damage which have not been fully explained, and of

enhancing knowledge on the structural behaviour of the bridges. In particular inspec-

tion data highlighting defects that are common to a specific type of structure, will show

the need for in depth studies. For example, there have been cases that observations

made on a single bridge have drawn the attention to defects which so far had not been

detected but were relevant to a whole set of bridge types, reference [3.2].

-139-

10.2 DISCUSSION

The associative process of the system could not be fully developed at this stage due to

the fact that most of the project time was spent developing the interface between the

user and INGRES. Furthermore, for a successful development of the associative pro-

cess, it is essential that a comprehensive data base be developed initially. This can be

best achieved by a feed back from the practising engineer.

Initially, a specific interface for bridge inspection was developed. This was abandoned

on the realisation that a specific interface requires a well defined data base. Hence the

approach for specific but generalised interface was adopted.

Because of its flexibility, the system can be easily used by different departments until a

fully fleshed data base has been developed. With a well documented data base it would

then be possible, using the information retrieval process, to identify common modes of

failures as well as their relationships to such factors as geographical location, soil type

and traffic patterns. This would be an efficient way of categorising the bridges accord-

ing to common defects and such data as those bridges located in positions where there

is likelihood of damage due to impact from vehicles.

The development of distributed data bases, that is data bases that can communicate,

makes this project potentially viable to large organisations such as British Rail and

Highways Department as these organisations would be able to share data from various

regions.

A considerable amount of research is required in the improvement of the assessment

techniques before they can be of any practical use to the assessment process. However,

with the use of data bases, it is possible to improve the standards of assessment using

the idea of fuzzy logic for the decision making process. Fuzzy logic enables decisions to

be arrived at with incomplete data available which is usually the case with real life

-140-

problems and far much so with masonry bridges.

This type of work can only be carried out when a fully fleshed data base is available.

For this project data was collected from British Rail, Highway Department, and Scot-

tish Development Department in Edinburgh only. This data was then used as a guide-

line to the type of data that is available. In future the development of an expert system

would be more attractive than a data base management system. The expert system

approach allows the use of fuzzy logic in the decision software development.

In developing the associative process, in some cases, dummy data was employed to

enable the development of the system. However, most of the data used (95%) was real

data. Appendix 8 shows the type of data that is currently available in the data base

"bridge".

The user can by adding suitable qualifications to the information retrieval process

obtain any relationships between for example types of defects and the location of the

bridge.

-141-

APPENDIX 3: AIEXE METHOD

Road Surface

Figure 8.1 Arch Dimensions

Figure 8.1 shows the dimensions of the arch that are required for the assessment of a

masonry arch bridge by the modified MEXE method which is used in routine decision

support (see Appendix 10). The provisional axle loading (PAL) is given by the expres-

sion:

PAL
740(4+h2

L 1.3

The provisional axle load is then modified by various factors to allow for the shape of

the arch, construction materials, dimensions of the arch barrel and any defects (see

reference 3.4).

-142-

MODIFYING FACTORS

Span/Rise Factor

The strength of flat arches under a given loading is less than that of arches with a

steeper profile, hence the provisional assessment need to be adjusted to take this into

account. Figure 3 gives the appropriate span/rise factor for the different ratios (from

reference [3.41).

Profile Factor

Elliptical arches are not as strong as segmental and parabolic arches of similar span/rise

ratio and barrel thickness, reference [3.4]. Adjustment is made to allow for a profile

other than the standard parabolic, for which rq/rc = 3/4. The profile- factor for ratios

rq/rc less than or equal to 0.75 is taken to be unity, and for ratios greater than 0.75 is

calculated from the expression:

0.6

F=2.3 r`--s-
P rý

Material Factor

The material factor (Fm) is obtained from the following formula:

F=
(Fb. d)+(Fj. h)

md +h

where the barrel factor (Fb) and the fill factor (Ff) are as in Tables 3.1 and 3.2 (taken

from refence 3.4).

Joint Factor

The strength and stability of the arch barrel depend, to a large extent, on the size and

-143-

condition of the joints. The joint factor (Fj) is obtained from the following formula:

l" F
wWF d, F

mo

where the width factor (Fw) and the mortar factor (Fmo) are obtained from Tables

3.3 and 3.4 respectively (taken from reference 3.4). The depth factor (Fd) is

obtained from Table 3.5.

Condition Factor

The estimation of the preceding factors is based on quantitative information obtained

from a close inspection of the structure. The factor for the condition of the bridge

depends much more on an objective assessment of the importance of the various cracks

and deformations (see Chapter 2) which may be present and how far they may be

counter-balanced by indications of good material and workmanship. Guidance on the

choice of condition factor is given in references [3.3 and3.4]. a condition factor of 0.4

or less implies that the bridge should be rehabilitated immediately).

Modified Axle Load

The span/rise profile, material, joint and condition factors should be applied together

with the provisional axle loading obtained above in order to determine the modified

axle load (tonnes) which represents the allowable loading on the arch from a double

axled bogie configuration with no 'lift-off' rom any axle. The modified axle load is

calculated from the following equation:

MAL =F sr .Fp. F
m.

Fj. F
C*

PAL

Axle lift-off

The lift-off case relates to circumstances when an axle of double or triple axled bogie

can loose contact, either partially or completely, with the road surface and transfer

-144-

some of its load to the other axles in the bogie. A lift-off case results from the pres-

ence of any of the following conditions:

" vertical road alignment with a small radius of curvature e. g. a humped back

bridge.

" arch located at the bottom of a hill or on a straight length of road where

approach speeds are likely to be high..

" irregularities in the road surface.

The unrounded value of the midified axle load is then multipled by the appropriate

axle factors Figure 3.3 (reference 3.4) to give the allowable axle loads for single and

multiple axles.

1.0

0.9

0.8

0.7

0.6

456

Figure 3 Span/Rise Factor

7

i
i

ý 1

8

-145-

Arch Barrel

Granite and Whitstone whether random or coursed

and all built-in-course masonry except limestone

limestone, all with large shaped voussoirs.

1.5

Concrete or engineering bricks and similar sized 1.2

masonry (not limestone).

Limestone, whether random or coursed, good random 1.0

masonry and building bricks, all in good conditon.

Masonry of any kind in poor conditon (many voussoirs

flaking or badly spalling, shearing etc.). Some

discretion is permitted if the dilapidation is only

moderate.

Table 3.1 Barrel Factor

Filling Fill Factor (Ff)

Concrete 1.0

Grouted materials (other than those with 0.9

a clay content)

Well compacted materials 0.7

Weak materilas evidenced by tracking of the 0.5

carriageway surface.

Barrcl Factor (Fb)

0.7

Table 3.2 Fill Factor

-146-

Width of Joint Width Factor (Fw)

Joints with widths up to 6mm 1.0

Joints with widths between 6mm and 12mm 0.9

Joints with widths over 12mm 0.8

Table 3.3 Width Factor

Condition of Joint, Mortar Factor (Fmo)

Mortar in good condition 1.0

Loose or friable mortar 0.9

Table 3.4 Mortar Factor

Construction of Joint

Unpointed joints, pointing in poor condition

and joints with up to 12.5mm from the edge

insufficiently filled.

Depth Factor (Fd)

0.9

Joints with from 12.5mm to one tenth of the 0.8

thickness of the barrel insufficiently filled.

Joints insufficiently filled for more than At the Engineer's

one-tenth the thickness of the barrel.

Pointed joints in good condition

Table 3.5 Depth Factor

discretion

1.0

-147-

2.

Single axle

1.5

1.0

0.5
0

I

3 axle bogie - 2.7m spread

ý3 axle bogie - -'ý,, 3 axle bogie - \ý
1.4m spread I 2. Om spread
3 lU 15 20

Arch span (m)

1.0

0.5

Figure 3.2 (a) No Axle Lift-Off

3a xle bogie

2 axle o gle

2.0 fn spread

3i axle bogie - 3 axle bogie -

1.4 spread 2.7m spread

,5 10

Figure 3.2 (b) With Axle Lift-Off

15
Arch span (m)

Figure 3.3 Conversion of 'Modified Axle Loads

20

to Single, Double, and Triple Axles.

-148-

APPENDIX 6A: QUEL COMMANDS

STUDENT NAME DEPT YEAR DOS AGE

Bloggs History 2 Carlson 20

Smith Geography 4 Wilson 24

Judy Engineering 3 Hardy 20

Jones History 1 Betty 23

Figure 6A. 1 STUDENT Relation

Indicated above is a student relation with domains NAME, DEPT, YEAR, DOS

and AGE. Each student has a name, belongs to a department, is attending some par-

ticular year of the course, has a Director of Studies(DOS) and has an age. The QUEL

statements that follow suggest some valid QUEL statements and are based on this par-

ticular relation.

Example 1: Finding the birth date of Judy.

RANGE OF S IS STUDENT

RETRIEVE INTO W (BDATE = 1986 - S. AGE)

WHERE S. NAME = "Jones"

In this case, S is a tuple variable which ranges over the STUDENT relation and

may be thought of as a marker which moves down the STUDENT relation. S, by

itself, refers to the STUDENT relation while S. NAME refers to the NAME domain of

the STUDENT relation.

All tuples in the relation are found which satisfy the qualification

has a single domain, BDATE that has been calculated for each tuple. If the result rela-

-149-

tion is omitted, qualifying tuples arc returned to the calling process. If this process is

the terminal monitor, it in turn prints them on the user's terminal. Other front end

processes may do what they wish with such tuples.

Furthermore, in the target-list, the "result-domain" may be omitted if function is

of the form Variable. Attribute (for example, NAME - S. NAME may be written as

S. NAME - see Example 5. Note also that Jones must be in quotes ("Jones"). The only

way INGRES will recognise character strings (for example words) is to enclose them in

quotes.

Example 2: Deleting the information about student Bloggs.

RANGE OF S is STUDENT

DELETE S WHERE S. NAME = 'Bloggs"

In this example, all tuples corresponding to all students named Bloggs are deleted

from the relation.

Example 3: Increasing the age of student Judy by 10 percent.

RANGE OF S IS STUDENT

REPLACE S(AGE BY 1.1 * S. AGE)

WHERE S. NAME = "Judy"

In this case S. AGE is to be replaced by 1.1 * S. AGE for the tuples where

S. AGE = "Judy". (Also, note that the keywords IS and BY may be used interchange-

ably with "=" in any QUEL statement, which improves the readability of the query).

INGRES supports arithmetic operators such as multiplication (*), subtraction and

unary negation (-), as well as aggregation operators which include as ABS (absolute

value), MAX (maximum) and AVG (average). Also INGRES supports equality

operators such as greater than (>), equal to (=). A brief but complete description of

-150-

what is supported by INGRES can be found in [6.13].

Examples 4 and 5 demonstrate the use of some of the aggregation operators.

Example 4: Replacing the age of all History Department students by the average His-

tory Department age.

RANGE OF S IS student

REPLACE S (AGE BY AVG(S. AGE WHILE S. DEPT = "History"))

WHERE S. DEPT = "History"

The average (AVG) is to be taken of the AGE attribute for those tuples satisfy-

ing the qualifications S. DEPT = "History". Note that AVG (S. AGE WHERE

S. DEPT = "History") is a scalar valued and consequently will be called an aggregate.

More general aggregates are possible as suggested by examples.

Example 5: Finding those Departments whose average age exceeds the University-wide

average age, both averages to be taken only for those students whose age exceeds 23.

RANGE OF S IS STUDENT

RETRIEVE INTO HIGHAGE(S. DEPT)

WHERE AVG(S. AGE BY S. DEPT WHERE SAGE > 23)

AVG(S. AGE WHERE S. AGE > 23)

Here, AVG(S. AGE BY S. DEPT WHERE S. AGE > 23) is an aggregate func-

tion and takes a value of S. DEPT. This value is the aggregate AVG (S. AGE WHERE

S. AGE > 23 and S. DEPT = value).

The qualification expression for the statements is then true for departments for

which this aggregate function exceeds the aggregate AVG(S. AGE WHERE S. AGE >

23).

- 151 -

APPENDIX 611: INGRES UTILITY COMMANDS

In addition to the QUEL commands described in Appendix 6A, INGRES supports a

variety of utility commands which can be classified into six major categories.

1) Invocation of INGRES:

INGRES can be invoked by executing from UNIX the command

INGRES database-name

This command executed from UNIX 'logs in" a user to a specified database.

Thereafter, the user may issue all other commands (except those executed directly from

UNIX) within the environment of the invoked database.

2) Creation and Destruction of Databases

A database can be created or destroyed only from the UNIX level. The command for

creating a database is

CREATDB database-name

and the command for destroying the database is

DESTROYDB database-name

The invoker of CREATDB must be authorised to create databases by the super-user

and automatically becomes the database administrator with the authority to destroy the

database.

3) Creating and destroying relations.

INGRES supports two ways of creating relations,

CREATE relation-name (domain-name IS format

-152-

RETRIEVE INTO [rcsult-name](targct-list)

[WHERE Qualification]

CREATE is used to create a new relation with no tuples in it. RETRIEVE INTO is

used to form a new relation from one or more existing relations. A relation can be

destroyed by the command

DESTROY relation-name

These commands create and destroy relations within the current database. The invoker

of the the CREATE (or RETRIEVE INTO) command becomes the owner of the rela-

tion created with the power to destroy the created relation.

The current format types accepted by INGRES are:

" il, i2, i4 (1,2 and 4 byte integers);

" f4, f8 (4 and 8 byte floating point numbers);

" c1, c2,.... c255 (1,2,..... 255 byte fixed length ASCII character strings.

4) Copying Data To and From INGRES

The command for copying data to and from INGRES is of the general form

COPY relation-name (domain-name IS format,

domain-name IS format,....)

direction "present working directory filename"

COPY transfers an entire relation to or from a UNIX file whose name is "filename".

Direction is either TO or FROM. The format for each domain is a description of how

it appears (or is to appear) in the UNIX file. The relation relation-name must exist and

have domain names identical to the ones appearing in the COPY command. However,

the formats need not necessarily be identical, and copy will automatically convert data

types. The copy command also supports dummy and variable length fields in a UNIX

-153-

file. A stylised version of COPY is the PRINT command

PRINT relation-name

PRINT copies a relation onto the user's terminal, formatting it as a report.

5) Storage Structure Modification

The relation created by the user can be converted to any of the storage structures sup-

ported by INGRES using the MODIFY command

MODIFY relation-name TO storage-structure ON (keyl, key2.....)

The MODIFY command changes the storage structure of a relation from one access

form to another. The access methods currently supported by INGRES are discussed in

Section 6.5. The indicated keys are domains in relation-name which form the keyed

domains. Only the owner of a relation may modify its storage structure.

A secondary Index of a relation can be created by the command

INDEX ON relation-name IS indexname(keyl, key2......)

It has domains of keyl, key2...... pointer. The domain "pointer" is the unique identifier

of a tuple in the indexed relation having the given values of keyl, key2..... Consider

indexing the AGE domain for the STUDENT relation (APPENDIX 6a). An index

named AGEindex for the STUDENT relation might br the binary relation shown in

Table 6B. 1.

The relation "INDEXNAME" is the treated and accessed just like any other relation,

except it is automatically updated when the relation it indexes is updated. Only the

owner of a relation may create and destroy indexes for this relation.

-154-

AGEINDEX AGE Pointer

20 Identifier for Bloggs's tuple

24 Identifier for Smith's tuple

20 Identifier for Judy's tuple

23 Identifier for Jones's tuple

Table 6B. 1 Binary Relation

6) Miscellaneous

HELP [relation-name of manual - section]

HELP provides information about the system or the database invoked.

When called with an option argument which is a command name, HELP

returns the appropriate page from the INGRES reference manual,

reference [6.13]. If the option

argument is a relation name, overall information about that relation together

with each attribute, type and length of attribute.

SAVE relation-name UNTIL expiration - date

SAVE is the mechanism by which a user can declare an intention to

keep a relation until a specified time.

PURGE database-name

PURGE is a UNIX command which a database administrator may use

to delete all relations whose "expiration dates" have passed.

SYSMOD database-name

SYSMOD (modify system relations predetermined storage structures) should

-155-

be run on a data base when it is first created and periodically

thereafter as relations are created and the data base grows. This

will remove most overflow pages and improve system response time.

Only the data base administrator has powers to run the SYSMOD command.

Interactive Terminal Monitor Commands

There are a number of commands which may be entered by the user

to affect the query buffer or the user's environment. They are all

preceded by a backslash ('V), and all are executed immediately

(rather than at execution time like queries). This section gives

some of the commonly used commands. A complete list of the monitor

commands supported can be found in reference [6.13].

\r (reset) - erases the entire query (rest the query buffer). The previous contents

of the buffer are irretrievably lost.

\p (print) - prints the current contents of the buffer.

\e (editor) - causes temporary shift from the monitor to the UNIX text editor (see

ED in [6.13]). To return to the INGRES monitor the editor command 'w' fol-

lowed by 'q' is used.

\g (go) - causes the current contents of the query buffer to be processed. The con-

tents of the query buffer are processed, transmitted to INGRES, and run.

\q (quit) - is used to exit from INGRES.

-156-

APPENDIX 8: LISTING OF CURRENT RELATIONS

This Appendix provides a listing of the relations that are currently available in data

base 'bridge", with their respective attributes, data types and lengths. The attribute

"name" in all these relations refers to the name of the bridge. Only the other attributes

will be explained in the following section.

Relation: specify

Owner: lfms

Tuple width: 107

Saved until: Tue Apr 22 15: 42: 19 1986

Number of tuples: 9

Storage structure: paged heap

Relation type: user relation

attribute name type length

name c 20

location c 20

category c 10

route c 30

class c2

stat_obligs c 25

The attributes in relation "specify" are:

" location - the location of the bridge, for example, Slateford;

" category - category of the bridge, for example, road or rail;

" route - the route on which the bridge lies, for example, Edinburgh to

Glasgow route.

0

-157-

class - the categorisation of the bridge according to its importance as out-

lined in Section 8.1.2.

stat_obligs - the statutory obligations attached to the bridge.

Relation: arch-dims

Owner: lfms

Tuple width: 40

Saved until: Wed Nov 19 03: 16: 59 1986

Number of tuples: 9

Storage structure: paged heap

Relation type: user relation

attribute name type length

name c 20

span f4

bar-thick f4

fill_thick f4

half-rise f4

qtr-rise f4

The attributes in relation "arch_dims" (arch dimensions) are as in Figure 8.1 (Appen-

dix 3) where:

" span - is the span(s) of the bridge, in the case of skew

" spans this is measured parallel to the principal axis of the arch;

" bar_thick - is the thickness of the barrel;

" fill.
_thick - is the thickness of the arch barrel adjacent to the keystone;

-158-

" half_rise
_

is the rise of the arch barrel at the crown.

" qtr_rise - is the rise of the arch barrel at the quarter points;

Relation: defects

Owner: lfms

Tuple width: 60

Saved until: Wed Nov 6 16: 28: 16 1985

Number of tuples: 0

Storage structure: paged heap

Relation type: user relation

attribute name type length keyno.

name c 12

component c 12

location c 12

type c 12

orientation c 12

The attributes in relation "defects" refer to the following:

" component - the component of the bridge, for example, the barrel;

" location - the location of the defect on the component;

" type - the type of defect, for example, cracking;

" orientation - the orientation of the defect in the case of cracking.

Relation:

Owner:

Tuple width:

Saved until:

Number of tuples:

Storage structure:

Relation type:

-159-

vi_inspect

lfms

60

Tue Apr 22 16: 36: 48 1986

9

paged heap

user relation

attribute name type length keyno.

name

vi_date

vi-details

C 20

C 10

c 30

The relation "vi_inspect" has attributes:

0 vi-date - date of the visual inspection;

" vi-details - details of the visual inspection.

Relation:

Owner:

Tuple width:

Saved until:

Number of tuples:

Storage structure:

Relation type:

maint

lfms

60

Tue Apr 22 17: 11: 47 1986

9

paged heap

user relation

attribute name type length

name

maint_date

c 20

c 10

-160-

mnt_details c 30

The relation "maint'"' has the attributes:

" maint_date - date the maintenance was carried out;

" mnt_details - the details of the maintenance carried out.

Relation: ndt

Owner: lfms

Tuple width: 60

Saved until: Tue Apr 22 16: 58: 02 1986

Number of tuples: 9

Storage structure: paged heap

Relation type: user relation

attribute name type length

name c 20

ndt_date c 10

ndt_observs c 30

The relation "ndt" (non destructive testing) has the attributes:

" ndt_date - the date the non destructive test was carried out;

" ndt_observs - the non destructive test observations.

Relation:

Owner:

Tuple width:

Saved until:

Number of tuples:

Storage structure:

Relation type:

-161-

gvw_rest

lfms

27

Mon May 11 03: 38: 04 1987

8

paged heap

user relation

attribute name type length

single f4

double f4

max_gvw f4

veh_type c 15

The relation gvw_rest has attributes:

" single - allowable axle load (tonnes) for single axle load;

" double - allowable axle load (tonnes) for double axle load;

" max_gvw - maximum gross vehicle weight (tonnes) of the C&U vehicles;

" veh_type - type of vehicle.

-162-

APPENDIX 10

LISTING OF THE INTERFACE BETWEEN

THE USER AND THE

INGRES RELATIONAL DATA BASE SYSTEM

NOTES

This appendix gives a listing of the interface between INGRES and the user. The

statements enclosed between "/*" and "*/" are comment statements as in: /* this is a

comment statement */.

-163-

GLOBAL DECLARATIONS FOR INGRES INTERFACE

1 #include <stdio. h>

2 #include <ctype. h>

3 #include "signal. h"

4 #define READER 0

5 #define WRITER 1

6 #define BELL 7

7 #define CR 10

8 #define LF 13

9 #define TRUE 1

10 #define FALSE 0

11 #define NL 10

12 #define SIZE 40

13 #define PAGESIZE 22

14 #define EOS '\O'

15 #define until-quit while(com 1= 'Q' && com !_ 'q')

16 #define STRING1 (sizeof (keytabl)/sizeof (struct key))

17 #define STRING2 (sizeof (keytab2)/sizeof (struct key))

18 int to_ingres, from_ingres;

19 int func(), funcl(), domain_c, relation_c;

20 int flag= 0, w-flag= 0;

21 char domain_n[SIZE], ddbase_n[SIZE];

22 char relation[SIZE];

23 char s_relation[NL][SIZE], temp[SIZE];

24 static char c_domain_r[NL] = "name";

-164-

25 static char param[SIZE], dbase_n[SIZE];

26 char range_n[NL] = {'a', 'b', 'c', 'd', 'e', 'f ,' g''h', 'i', 'j'};

27 char PATHNAME[NL];

28 FILE *fpw, *fpr, *fpa;

29 COUNTER = 0;

30 static int pid, pidl, pid2;

31 static struct key

32 {

33 char *keyword;

34 }`

35 keytabl[] _

36 {

37 "[I]NFORMATION RETRIEVAL",

38 "[D]ECISION SUPPORT SOFTWARE",

39 "[S]HOW RELATIONS IN A DATA BASE",

40 "[L]IST DOMAIN NAMES AND FORMATS",

41 "[P]RINT OUT CONTENTS OF A RELATION",

42 "[V]IEW QUERY BUFFER",

43 "[C]REATING AND MAINTAINING A DATA BASE USING INGRES",

44 "[Q]UIT INGRES"

45 };

46 struct key keytab2[] _

47 {

48 "[C]reate an empty relation",

49 "[F]orming a relation from existing relations",

50 "[D]estroy a relation",

-165-

51 "[E]rase contents of a relation",

52 "[H]ow to copy whole relations to INGRES",

53 "[M]odify system relations",

54 "[T]o destroy a data base",

55 "[S]torage Structures in INGRES",

56 "[Q]uit sub menu to MAIN MENU"

57 };

1*************************

THE MAIN MODULE

*************************1

58 main()

59 {

60 char com, ch;

61 get_pathname();

62 pid= getpid(); /*get process identity of parent

63 sprintf(param, "cat /dev/null > hard-copy");

64 system(param);

65 printf("Do you wish to obtain list of available databases? (y/n): ");

66 if ((ch = yes_or_noO) == 'Y' 11 ch == 'y')

67 {

68 sprintf(param, "cd /usr/ingresldata/base/; ls");

69 system(param);

70 }

71 printf("Enter name of database you wish to consult: \t");

72 scanf("%s", dbase_n);

73 sprintf(param, "creatdb %s", dbase_n);

74 system(param);

-166-

75 sprintf(param, "ingres %s0, dbase_n);

76 if ((pidl = myopen(param)) 0)

77 {

78 printf("Can't open ingres\n");

79 exit(1);

80 }

81 if((pid2 = fork())= = 0)

82 {

83 close(to_ingres);

84 wait_for_ingres();

85 }

86 if (pid2 -1)

87 {

1... READER MMS1

88 fprintf(stderr, "Can't fork \n");

89 myclose(pidl);

90 exit(1);

91 }

92 close(from_ingres); /*** WRITER ** */

93 do

94 {

95 switch(com = menu(keytabl, STRING1,0))

96 {

97 case 'I'; infor_retr();

98 case 'i'; wait-for-signal();

99 break;

100 case 'D': decision-support();

101 case 'd': break;

102 case 'S': show_rels_in_db();

-167-

103 case 's': wait-for-signal();

104 break;

105 case 'L': list d();

106 case '1': wait_for_signal();

107 break;

108 case 'P': print_relO;

109 case 'p': wait_for_signal();

110 break;

111 case 'V': view-bufo;

112 case 'v': wait-for-signal();

113 break;

114 case 'C': create_maint();

115 case 'c': break;

116

117

case 'Q':

case 'q':

118 case 'Q': clean_up_ingres(;

119 case 'q': wait-for-signal();

120 stop_ingres();

121 myclose(pidl);

122 break;

123 default: printf("No such facility, Please try again. \n");

124 break;

125 }

126 }

127 until_quit;

128 fprintf(stderr, '\nCHEERIO : "); /* wrap up

129 system("echo $HOME");

130 system("date");

-168-

131 }

/******************

* WAIT FOR INGRES : an' => ingres is ready to input the next line.

132 wait_for_ingres()

133 {

134 int lcount;

135 char c; -

136 lcount = 0;

137 if((fpw = fopen("ingres-junk", "w")) NULL)

138 {

139 fprintf(stderr, "\n\tError: Can't open ingres_junk(w)\n");

140 exit(1);

141 }

142 do

143 {

144 while(read (from-ingres, &c, 1) I= 1);

145 if (c == BELL)

146 {

147 while (c != '*')

148 {
149 read (from-ingres, &c, 1);

150 putchar(c);

151 write(fileno(fpw), &c, l);

152 }
153 Icount = 0;

154 kill(pid, SIGINT); /*send synchronisation signal to parent '/

-169-

155 continue;

156 }

157 putchar(c);

158 write(fileno(fpw), &c, 1);

159 if(c== '\n') lcount++;

160 if(lcount == PAGESIZE)

161 {

162 kill(pid2, SIGURG); /' send pagesize signal

163 lcount = 0;

164 continue;

165 }

166 }

167 while(TRUE);

168 fflush(fpw);

169 fclose(fpw);

170 }

1. * R**t* t"! ":. *

* WAIT FOR SIGNAL : synchronisation routine

171 wait_for_signal()

172 {

173 do

174 {

175 signal(SIGINT, func); /* catch synchronisation signal

176 signal(SIGURG, funcl); /* catch pagesize signal

177 } /*and act accordingly*/

178 while (flag ==0);

-170-

179 flag= 0;

180 }

181 func()

182 {

183 flag=1;

184 }

185 /* Gives a screenfull at a time

186 funcl()

187 {

188 char ch, s[4];

189 kill(pid2, SIGSTOP);

190 printf('\n[Enter'm' for MORE]\n");

191 do

192 {

193 ch = wait-for-more();

194 }

195 while (ch 1= 'm' && ch 1= 'M');

196 kill(pid2, SIGCONT);

197 }

I*******

*MENU : list of existing utilities.

198 menu(p_menu, limit, m_flag) struct key *p_menu; int limit;

199 {

200 char ch, s[4];

201 int i;

- 171 -

202 char c;

203 if (w_flag == 0) wait-for-signal();

204 if (w_flag ==1)

205 {

206 printf("\nDo you wish to obtain a copy of your request? (y/n): \t");

207 if ((ch = yes_or_no()

208 {

) 'Y'11ch=='y') ==

209 if((fpr = fopen("ingres_junk", "r")) NULL)

210 {

211 fprintf(stderr, " \nError: Can't open ingres-junk(r)\n)");

212 exit(1);

213 }

214 if((fpa = fopen("hard copy", "a")) NULL)

215 {

216 fprintf(stderr, "\nError: Can't open hard-copy(a)\n");

217 exit(1);

218 }

219 while ((c = getc(fpr)) != EOF) putc(c, fpa);

220 sprintf(param, "cat /dev/null > ingres_junk");

221 system(param);

222 fflush(fpr);

223 fflush(fpa);

224 fclose(fpr);

225 fclose(fpa);

226 }

227 if (ch 'N' 11 ch 'n')

228 {

229 sprintf(param, "cat /dev/null > ingres_junk");

-172-

230 system(param);

231 }
232 if (m_flag ==0)printf('\n\t[Enter 'm' for MAIN MENU]\t");

233 else printf('\n\t[Enter 'm' for SUB_MENU]\t");

234 do

235 {

236 ch = wait-for-more();

237 }

238 while (ch I= 'm' && ch 1= 'M');

239 }

240 w_flag =1;

241 printf('\n\n");

242 for(i=1; i<=limit; i++) printf('\t%s\n", 'p_menu++);

243 printf('\nEnter square bracketed letter for your selection. \n");

244 printf('\nSelect: ");

245 return(getcom());

246 }

/* GET SELECTION FROM MENU */

247 getcom() /* get selection from menu

248 {

249 char c;

250 while((c = getchar()) == NL);

251 printf(" \n");

252 return(c);

253 1

.1

-173-

/' RUN INGRES AND THEN CLEAR WORSPACE :

254 run_ingres()

255 {

256 write(to_ingres, '\\g\\r\n", 5);

257 }

/* DESTROY TEMPORARY RELATIONS */

258 clean_up_ingres()

259 {

260 int i;

261 for(i

262 {

= 0; i< COUNTER; i+ +)

263 sprintf(param, "destroy requested %d\n", i);

264 write(to_ingres, param, strlen(param));

265 }

266 run-ingres();

267 }

/' STOP INGRES : terminates ingres from the background.

268 stop_ingres()

269 {

270 write(to_ingres, '%\q\n", 3);

271 }

/* MYOPEN : form 2 pipes connecting parent and ingres.

272 myopen(cmd)

273 char *cmd;

274 {

275 int pl[2], p2[2], pidl;

.1

.1

-174-

276 if(pipe(pl) <0 jjpipe(p2) <0)return(0);

277 if((pidl = fork()) 0)

278 {

279 close(pl[WRITER]);

280 close(p2[READER]);

281 if(p2[WRITER] 1=1)

282 {

283 dup2(p2[WRITER], 1);

284 close(p2[WRITER]);

285 }

286 if(pl[READER]! =0)

287 { dup2(pl[READER], 0);

288 close(pl [READER]);

289 }

290 execl('Ybin/sh", "sh", "-c", cmd, 0);

291 exit(1);

292 }

293 if(pidl -1)

294 {

295 close(pl[READER]);

296 close(pl [WRITER]);

297 close(p2[READER]);

298 close(p2[WRITER]);

299 return (0);

300 }

301 close(p2[WRTTER]);

302 close(pl[READER]);

303 to_ingres = pl[WRITER];

-175-

304 fron-ingres= p2[READER];

305 return(pidl);

306 }

/* MYCLOSE : closes program opened by myopen

307 myclose(pidl)

308 int pidl;

309 {

310 register r;

311 int status;

312 close(to_ingres); /'"close file descriptors

313 close(from_ingres);

314 signal(SIGINT, SIG_IGN);

315 signal(SIGQUIT, SIG_IGN);

316 signal(SIGHUP, SIG_IGN);

.1

317 kill(pid2, SIGKILL); /* terminate LISTENER */

318 while((r = wait(&status))! = pidl && r! = -1);

319 if(r== -1) status = -1;

320 return(status);

321 }

322 get_number() /* get numerical selection from user

323 {

324 char num;

325 while(TRUE)

326 {

327 while (((num = getcharO) LF) 11 (num == CR));

328 switch (num)

-176-

329 {

330 case '1': return(num);

331 case '2': return(num);

332 case '3': return(num);

333 case '4': return(num);

334 case '5': return(num);

335 case '6': return(num);

336 case '7': return(num);

337 case '8': return(num);

338 case '9': return(num);

339 default: printf('Please enter digit\n");

340 }

341 }

342 }

343 char *get_selection() /* return selection

344 {

345 static char ch[SIZE];

346 char i, c;

347 do

348 c= getcharO;

349 while (lisalnum(c));

350 for(i = 0; ((c! = LF) &&(c! = CR));)

351 {

352 if (isdigit(c)) ch[i++] = c;

353 c= getcharO;

354 }

355 ch[i] = '\0';

-177-

356 return (ch);

357 }

, #**

DECLARE DATA BASE BRIDGE'S DETAILS

358 char *re)_name(n) int n; /* return name of n-th relation

359 {

360 static char *name[]

361 {

362 "specify", "ndt", "maint", "vi_Inspect"

363 };

364 return(name[n]);

365 }

366

367 /* return n-th name of specify domains

368 char *specify_dont. name(n) int n;

369 {

370 static char *specify_domains[] _

371 {

372 "name", 'location", "category", "route"

373 };

374 return(specify_domains[n]);

375 }

376 char *ndt_dom_name(n) int n;

.1

377 /* return n-th name of ndt domains */

-178-

378 {

379 static char "ndt_domains[]

380 {
381 "name", "ndt_date", "ndt_observs"

382 };

383 return(ndt_domains[n]);

384 }

385

386 char 'maint_dom_name(n) int n;

387 /* return n-th name of maint domains

388 {

389 static char 'maint_domains[]

390 {

391 "name", "maint_date", "mnt_details"

392 };

393 return(maint_domains[n]);

394 }

395 char *vi inspect dom_name(n) int n;

396 /* return n-th name of vi-inspect domains */

397 {

398 static char *vi_inspect domains[] _

399 {

400 "name", "vi_date", "vi_details"

401 };

402 return(vi inspect domains[n]);

403 }

-179-

DECLARE VARIABLES FOR VARIOUS SELECTIONS

404 char temp_memory_selection[SIZE];

405 char memory_selection[NL][SIZE];

406 char rel_selection[NL];

407 char specify_selection[NL];

408 char ndt_selection[NL];

409 char maint_selection[NL];

410 char vi_inspect_selection[NL];

411 char quaLselection;

412 char pi, si, ch;

413 int reLc, i, ti, tj, fi;

414 int check_flag = 0;

415 COUNT = 0;

1*********************************

INFORMATION RETRIEVAL

"********************************1

416 infor_retr()

417 {
418 char *mesg4 = '\n\

419 Which of the following do you require to consult? \n\

420 1. Specification 2. Ndt 3. Maintenance 4. Visual Inspection\n\

421 S. None of the above\n";

422 printf(mesg4);

423 printf('\nSelect by Number: ");

424 strcpy(rel_selection, get_selection());

-180-

425 rel_c = strlen(reLselection);

426 for (i = 0; i< rel_c;)

427 {

428 ti = relselection[i+ +]- '0';

429 range(range_n[ti-1], reLname(ti-1));

430 }

431 sprintf(param, "retrieve into requested%d (\n", COUNTER);

432 write(to_ingres, param, strlen(param));

433 for (i=0; i< rel_c;)

434 {

435 fi = i;

436 si = rel_ selection[i++];

437 temp_memory_selection[COUNT++] = si;

438 ti = (si - '0') -1 ;

439 switch (si)

440 {

441 case '1': specify(range_n[ti], (rel_. c-1), fi);

442 break;

443- case '2': ndt(range_n[ti], (relc-1), fi);

444 break;

445 case '3': maint(range_n[ti], (rel_c-1), fi);

446 break;

447 case '4': vi_inspect(range_n[ti], (reLc-1), fi);

448 break;

449 default: break;

450 }

451 }

452 write(to_ingres, ")fin", 2);

- 181 -

453 printf("\nDo you wish to qualify your requests? (y/n): \t");

454 if ((ch = yes_or_no()) 'N' ch 'n')

455 {

456 if (rel_c >1)

457 {

458 sprintf(param, 'wvhere\n");

459 write(to_ingres, param, strlen(param));

460 for (i=0; i< rel_c-1; i++)

461 {

462 pi = reLselection[i];

463 si = rel_selection[(i+1)];

464 fi = i;

465 common_domain(fi, pi, si, 0);

466 }

467 }

468 temp_memory_selection[COUNT++] = '\0';

469 if (COUNTER 1= 0) query_memory(0);

470 print_requested_relation(0);

471 COUNT = 0;

472 }

473 else with_qual();

474 }

475 specify(sl, s2, s3)

476 char *sl;

477 int *s2, *s3;

478 {

479 char *mesg5 = '\n\

- 182 -

480 Of which of these on Specification do you require information? \n\

4811 1. Name 2. Location 3. Category 4. Routc\n";

482 int j, pj, tj;

483 printf(mesg5);

484 printf("\nSelect by Number: ");

485 strcpy(specify_selection, get_selection());

486 domain_c = strlen(specify_sclection);

487 for (j=0; j< domain-c; j++)

488 {

489 pj = specify_selection[j];

490 tj = pi -'0';

491 temp_memory_selection[COUNT++] = pj;

492 sprintf(param, "%c. %s", sl, specify_dom_name(tj-1));

493 write(to_ingres, param, strlen(param));

494 if (s3 == s2 && j== (domain_c -1))

495 write(to_ingres, "\n", 1);

496 else write(to_ingres, ", \n", 2);

497 }

498 }

499 ndt(sl, s2, s3)

500 char *sl;

501 int *s2, *s3;

502 {

503 char 'mesg6 = "\n\

504 Of which of these on non-destructive testing (Ndt) do you wish\n\

505 to obtain information7\n\

506 1. Name 2. Ndt Date 3. Ndt Observation\n";

-183-

507 int j, pj, tj;

508 printf(mesg6);

509 printf('\nSelect by Number:

510 strcpy(ndt_selection, get_selection());

511 domain_c = strlen(ndt selection);

512 for (j = 0; j< domain-c; j++)

513 {
514 pi = ndt_selection[j];

515 tj = pi - '0';

516 temp_memory_selection[COUNT++] = pj;

517 sprintf(param, "%c. %s", sl, ndt_dom_name(tj-1));

518 write(to_ingres, param, strlen(param));

519 if (s3 == s2 && j=_ (domain_c -1))

520 write(to_ingres, " Vl", 1);

521 else write(to_ingres, ", \n", 2);

522 }

523 }

524 maint(sl, s2, s3)

525 char *sl;

526 int *s2, *s3;

527 {

528 char *mesg7 = '\n\

529 Of which of the following on Maintenance do you wish to obtain\n\

530 information7\n\

531 1. Name 2. Maintenace Date 3. Maintenance Details\n";

532 int j, pj, tj;

533 printf(mesg7);

-184-

534 printf("VzSelect by Number: ");

535 strcpy(maint_selection, get_selection());

536 domain_c = strlen(maint_selection);

537 for (j=0; j< domain-c; j++)

538 {

539 pj = maint_selection[j];

540 tj = pj - '0';

541 temp_memory_selection[COUNT++] = pj;

542 sprintf(param, "%c. %s", sl, maint_dom_name(tj-1));

543 write(to_ingres, param, strlen(param));

544 if (s3 == s2 && j=_ (domain_c -1))

545 write(to_ingres, '1n", l);

546 else write(to_ingres, ", \n", 2);

547

548

}

}

549 vi_inspect(sl, s2, s3)

550 char *sl;

551 int *s2, 's3;

552 {

553 char *mesg8 = "\n\

554 Of which of the following on Visual Inspection do you wish to\n\

555 obtain information? \n\

556 1. Name 2. Visual Inspection Date 3. Details\n";

557 int j, pj, tj;

558 printf(mesg8);

559 printf("\nSelect by Number: ");

560 strcpy(vi inspect_selection, get_selection());

-185-

561 domain_c = strlen(vi_inspect_sclection);

562 for (j=0; j< domain-c; j++)

563 {

564 pj = vi_inspect_selection[j];

565 --'0'; pi

566 temp_memory_selection[COUNT++] = pj;

567 sprintf(param, "%c. %s", sl, vi_inspect_dom_name(tj-1));

568 write(to_ingres, param, strlen(param));

569 if (s3 == s2 && j=_ (domain_c -1))

570 write(to_ingres, "\n", 1);

571 else write(to_ingres, ", \n", 2);

572 }

573 }

/*******************************

EQUALITY OPERATORS

574 char *equality(n) int n;

575 {

576 static char *equality[] _

577 {

578

579 };

H= HH1
=,

1f, 0> I$>$$>
=

1,

>90\
/NfIf

\
/=�

ýj

580 return(equality[n]);

581 }

582 char *equality_mesg = '\n\

583 Which one of these qualifications do you wish to apply? n\

-186-

584 1. Equal 4. Greater than or equal\n\

585 2. Not Equal 5. Less than\n\

586 3. Greater than 6. Less than or equal\n';

/! ********************************

LOGICAL OPERATORS

t##t#*"##R"##RM**##t"t"*titttiRRti"#RM/

587 char *logical(n) int n;

588 {

589 static char *logical[] _

590 {

591 "and", "or", "not"

592 };

593 retum(logical[n]);

594 }

595 char *1ogica)_mesg= '\n\

596 Which one of these logical operators do 'you wish to apply? \n\

597 1. And 2. Or 3. Not\n";

598 char *qual_count_mesg = "\n\

599 How many qualifications do you wish to place on this domain? \t";

600 char 'quaLor_not mesg = "\n\

601 Do you wish to qualify %s (y/n)? \t';

602 char *qual_mesg = '\n\

603 Please enter your qualification. \t";

604 char *help_qual_mesg = "\n\

-187-

605 Which one of the following pattern matching constructs\n\

606 do you wish to use for your qualification? \n\

607 1. Know the full qualification\n\

608 2. Know the first characters of the qualification\n\

609 3. Know the middle part of the qualification\n\

610 4. Know only the last characters of the qualification\n";

611 int ne, nl;

612

613

614

615

616

617

618

619

int qual_flag = 0;

int qual_check_flag = 0;

int logical-selection;

char equality-selection;

char qualification[SIZE];

char temp_quai_memory[SIZE];

char qual_memory[NL][SIZE];

char quaLcount;

1*************************************M**M**M***********

QUALIFICATIONS FOR INFORMATION RETRIEVAL

###/

620 with_qual()

621 {

622 char si;

623 int reLc, i, ti, fi;

624 rel_c = strlen(rel_selection);

625 for (i=0; i< rel_c;)

626 {

627 fi = i;

628 si = rel_selection[i++];

-188-

629 ti - (si -'o') -1 ;

630 switch (si)

631 {

632 case '1': specify_qual(range_n[ti]);

633 break;

634 case '2': ndt_qual(range_n[ti]);

635 break;

636 case '3': maint_qual(range_n[ti]);

637 break;

638 case '4': vi_inspect_qual(range_n[ti]);

639 break;

640 default: break;

641 }

642 }

643 if (rel_c > 1)

644 {

645 for (i = 0; i< rel_c -1; i++)

646 {

647 pi = rel_selection[i];

648 si = rel_selection[i+ 1];

649 fi = i;

650 common_domain(fi, pi, si, 1);

651 }

652 }

653 temp_memory_selection[COUNT++] = 1\0';

654 if (COUNTER 1= 0) query_memory(1);

655 print_requested_relation(1);

656 COUNT = 0;

-189-

657 temp_qual_memory[0]

658 quaLflag = 0;

659 qual`checl-flag = 0;

660 1

661 specify_qual(sl)

662 char 'sl;

663 {

664 char ch;

665 int j, pj tj , i;

666 printf('\nDo you wish to qualify specifications? (y/n): \t");

667 if ((ch = yes_or_noO) 'Y' 11 ch 'y')

668 {

669 temp_memory_selection[COUNT++] _ 'Y';

670 domain_c = strlen(specify_selection);

671 for (j = 0; j< domain-c; j++)

672 {

673 pj = specify_selection[j];

674 tj = pj- '0' -1;

675 printf(qual_or_not_mesg, specify_dom_name(tj));

676 if ((ch = yes_or_no()) 'Y' 11 ch 'y')

677 {

678 temp_memory_selection[COUNT++] _ 'Y';

679 if (qual_checljflag ==0)

680 {

681 sprintf(param, "where\n");

682 write(to_ingres, param, strlen(param));

683 qual`checl-flag = 1;

-190-

684 }

685 printf(quaLcount_mesg);

686 quaLcount = get_number()

687 temp_memory_selection[COUNT++] m quaLcount;

688 for (i=1; i <_ (quaLcount - '0'); i++)

689 {
690 if((qual_flag 0))

691 {

692 equality_operator(sl, specify_dom-name(tj));

693 qualify();

694 qual_flag = 1;

695 }

696 else

697 {

698 logical_operator();

699 equality_operator(sl, specify_dom_name(tj));

700 qualify();

701 }

702 }

703 }

704 else temp_memory_selection[COUNT++] _ 'N';

705

706

}
}

707 else temp_memory_selection[COUNT++] = 'N';

708 }

709 ndt_qual(sl)

710 char*sl;

- 191 -

711 {

712 charch;

713 int j, pj tj , i;

714 printf("\nDo you wish to qualify non destructive tests? (y/n): \t");

715 if ((ch = yes_or_no()) 'Y' 11 ch == 'y')

716 {

717 temp_memory_selection[COUNT++] _ 'Y';

718 domain_c = strlen(ndt_selection);

719 for (j = 0; j< domain-c; j+ +)

720 {
721 pj = ndt selection[j];

722 tj = pj- '0' -1;

723 printf(qual_or_not_mesg, ndt_dom name(tj));

724 if ((ch = yes-or-no('Y' 11 ch 'y')

725 {

726 temp_memory_selection[COUNT++] _ 'Y';

727 if (qual_checlc..
-flag ==0)

728 {

729 sprintf(param, "where\n");

730 write(to_ingres, param, strlen(param));

731 quaLcheck_flag = 1;

732 }

733 printf(qual_count_mesg);

734 quaLcount = get_number()

735 temp_memory_selection[COUNT++] = quaLcount;

736 for (i=1; i <_ (quaLcount -'0'); i++)

737 {

738 if((quaLflag == 0))

-192-

739 {

740 equality-operator(sl, ndt_dom_namc(tj));

741 qualify();

742 qual_flag a 1;

743 }

744 else

745 {
746 logical-operator(;

747 equality_operator(sl, ndt_dom_name(tj));

748 qualify(;

749 }

750 }

751 }

752 else temp_memory_selection[COUNT++} 'N';

753

754 }

}

755 else temp_memory_selection[COUNT++] = 'N';

756 }

757 maint_qual(sl)

758 char 'sl;

759 {

760 char ch;

761 int j, pj tj , i;

762 printf('%nDo you wish to qualify maintenance? (y/n): \t");

763 if ((ch = yes_or_noO) 'Y' 11 ch 'y')

764 {

765 temp_memory_selection[COUNT+ +1 _ 'Y';

-193-

766 domain_c = strlen(maint_sclection);

767 for (j=0; j< domain-c; j+ +)

768 {

769 pj = maint_selection[j];

770 tj = pi- '0' -1;

771 printf(qual_or_not_mesg, maint_dom_name(tj));

772 if ((ch = yes-or-no('Y' 11 ch 'y')

773 {

774 temp_memory_selection[COUNT++] _ 'Y';

775 if (qual_checl:,
_flag

0)

776 {

777 sprintf(param, "where\n");

778 write(to_ingres, param, strlen(param));

779 qual_checl-flag = 1;

780 }

781 printf(qual_count_mesg);

782 quaLcount = get_number() ;

783 temp_memory_selection[COUNT++] = qual_count;

784 for (i=1; i <_ (qual_count -'0'); i++)

785 {

786 if((qual_flag == 0))

787 {

788 equality-operator(sl, maint_dom_name(tj));

789 qualify();

790 qual_flag = 1;

791 }

792 else

793 {

-194-

794 logical_operator();

795 equality_operator(sl, maint_dom_name(tj));

796 qualify();

797 }

798 }

799 }

800 else temp_memory_selection[COUNT++] 'N';

801 }

802 }

803 else temp_memory_selection[COUNT++] _ 'N';

804 }

805 vi_inspect_qual(sl)

806 char *sl;

807 {

808 char ch;

809 int j, pj tj , i;

810 printf('\nDo you wish to qualify visual inspection? (y/n): \t");

811 if ((ch = yes_or_no()) 'Y' 11 ch 'y')

812 {

813 temp_memory_selection[COUNT++] _ 'Y';

814 domain_c = strlen(vi inspect_selection);

815 for (j=0; j< domain-c; j++)

816 {

817 pi = vi inspect_selection[j];

818 tj = pj- '0' -1;

819 printf(qualor_not_mesg, vi_inspect_dom_name(tj));

820 if ((ch = yes-or-no()) __ 'Y' 11 ch =_ 'y')

-195-

821 {

822 temp_memory_selection[COUNT++] _ 'Y';

823 if (qual_checkJ1ag 0)

824 {

825 sprintf(param, "wherein");

826 write(to_ingres, param, strlen(param));

827 qual_checl_flag = 1;

828 }

829 printf(qual_count_mesg);

830 qual_count = get_number()

831 temp_memory_selection[COUNT++] = quaLcount;

832 for (i = 1; i <_ (quaLcount -'0'); i+ +)

833 {

834 if((quaLflag == 0))

835 {

836 equality-operator(sl, vi_inspect_dom_name(tj));

837 qualify(;

838 quaLflag = 1;

839 }

840 else

841 {

842 logicaLoperator(;

843 equality_operator(sl, vi_inspect dom_name(tj));

844 qualify();

845 }

846 }

847 }

848 else temp_memory_selection[COUNT++] _ 'N';

-196-

849 }

850 }

851 else temp_memory_selection[COUNT++] Q 'N';

852 }

I*********

* EQUALITY: This routine adds the equality operator.

853 equality_operator(sl, s2)

854 char *sl ;

855 char *s2;

856 {

857 printf(equality_mesg);

858 printf('\n\tSelect by Number: , '\ .

1,

859 equality-selection = get_number() ;

860 ne =((equality-selection Al -1

861 temp_memory_selection[COUNT++] = equality_selection;

862 sprintf(param, "%c. %s %s ", sl, s2, equality(ne));

863 write(to_ingres, param, strlen(param));

864)

LOGICAL : This routine adds the logical operator.

865 logical operator()

866 {

867 printf(logical_mesg);

868 printf('\n\tSelect by Number: ");
869 logical_selection = get_number() ;

-197-

870 nl =((logicaLselection 201 -1);

871 temp_memory_selection[COUNT++] a logicaLselection;

872 sprintf(param, "%s ", logical(nl));

873 write(to_ingres, '\n", 1);

874 write(to_ingres, param, strlen(param));

875)

/************

QUALIFY: This routine adds the qualification

876 qualify()

877 {

878 char qi;

879 int qual_type_count;

880 printf(help_qual_mesg);

881 qual_selection = get_number() ;

882 temp_memory_selection[COUNT++] = qual_selection;

883 printf(qual_mesg);

884 scanf("%s", qualification);

885 strcat(temp_qual_memory, qualification);

886 switch(qual_selection)

887 {

888 case '1': sprintf(param, 'V"%s\' fin", qualification);

889 break;

890 case '2': sprintf(param, 'V'%s*\"\n", qualification);

891 break;

892 case '3': sprintf(param, '%'%* %s*\"\n", qualification);

893 break;

-198-

894 case '4': sprintf(param, "*%s\' fin", qualification);

895 break;

896 default: break;

897 }

898 write(to_ingres, param, strlen(param));

899)

900 common_domain(sl, s2, s3, c_dom_flag)

901 char *sl, s2, s3;

902 {

903 int ti, tj;

904 ti = s2 - '0' -1;

905 tj = s3 '0' -1;

906 if ((*sl == 0) && (c_dom-flag == 0))

907 {

908 sprintf(param, "%c. %s=%c. %s\n", range_n[ti],

909 c_domain_r, range_n[tj], c_domain_r);

910 write(to_ingres, param, strlen(param));

911 }

912 else

913 {

914 sprintf(param, "and %c. %s= %c. %s\n", range_n[ti],

915 c_domain_r, range_n[tj], c_domain_r);

916 write(to_ingres, param, strlen(param));

917 }

918 }

919 query_memory(qual_marker)

920 {

-199-

921 int i;

922 if (qual_marker == 1)

923 {

924 for (i = 0; i< COUNTER; i++)

925 {

926 if((strcmp(memory_selection[i], temp_mcmory_sclection) QQ 0)

927 && (strcmp(quaLmemory[i], temp_qual_memory) _= 0))

928 {

929 check_flag = 1;

930 write(to_ingres, '\\r\n", 3);

931 wait-for-signal();

932 sprintf(param, "print requested%d", i);

933 write(to_ingres, param, strlen(param));

934 }

935 }

936 }

937 else for (i=0; i< COUNTER; i++)

938 {

939 if (strcmp(memory_selection[i], temp_memory_selection) 0)

940 {

941 check_flag = 1;

942 write(to_ingres, '\\r\n", 3);

943 wait-for-signal();

944 sprintf(param, "print requested%d", i);

945 write(to_ingres, param, strlen(param));

946 }

947 }

948 }

- 200 -

949 print_requested_relation(qual_mark)

950 {

951

952

953

954

955

956

957

if (checl-flag ==

{
o)

sprintf(param, "print requested%d\n", COUNTER);

write(to_ingres, param, strlen(param));

if (quaLmark == 1)

{
strepy(memory_selection[COUNTER], temp_memory_selection);

958 strcpy(qual_memory[COUNTER], temp_qual_memory);

959 }

960 else strcpy(memory_selection[COUNTER], temp_memory_selection);

961 COUNTER+ +;

962 }
963 else check-flag = 0;

964 run_ingres();

965 }

966 char *bar_factor_mesg = "\n\

967 1. Granite and Whitstone whether random or coursed and all\n\

968 built-in-course masonry except limestone, all with large\n\

969 shaped voussoirs. \n\

970 2. Concrete or engineering bricks and similar sized masonry\n\

971 (not limestone). \n\

972 3. Limestone, whether random or coursed, good random masonry\n\

973 and building bricks, all in good conditon. \n\

974 4. Masonry of any kind in poor conditon (many voussoirs flaking\n\

975 or badly spalling, shearing etc.). Some discretion is permitted\n\

- 201 -

976 if the dilapidation is only moderatc. \n';

977 char *filLfactor_mesg = '\n\

978 1. Concrete\n\

979 2. Grouted materials (other than those with a clay content)\n\

980 3. Well compacted materials\n\

981 4. Weak materilas evidenced by tracking of the carriageway surface. \n\

982 S. When assessing an arch for construction and use vehicles, and\n\

983 details of the fill are unknown or there is evidence of weakness\n\

984 from the condition of the road surface\n";

985 char *width-factor_mesg = "\n\

986 1. Joints with widths up to 6mm\n\

987 2. Joints with widths between 6mm and 12.5mm\n\

988 3. Joints with widths over 12.5mm\n";

989 char *mort_factor_mesg = "\n\

990 1. Mortar in good condition\n\

991 2. Loose or friable mortar\n';

992 char * depth_factor_mesg = "\n\

993 1. Unpointed joints, pointing in poor condition and joints with up\n\

994 to 12.5mm from the edge insufficiently filled. \n\

995 2. Joints with from 12.5mm to one tenth of the thickness of the barrel\n\

996 insufficiently filled. \n\

997 3. Joints insufficiently filled for more than one-tenth the thickness\n\

998 of the barrel. \n\

999 4. Pointed joints in good condition\n";

1000 char * mort_thicLmesg = '\n\

- 202 -

1001 Enter estimate of thickness of missing motar(mm) (e. g. 12.5)\n";

1002 char * alarm_mesg = '1n\

1003 Immediate consideration should be given to the repair or\n\

1004 reconstruction of the bridge\n';

1005 int choice; /* choice of factors "/

1006 char *dims_dom name(n) int n; /*n#*/

1007 {1

1008 static char *dims_domains[] a

1009 {

1010 "name", "span", 'bar_thick", "lill_thick", "hali_rise", "gtr_rise"

1011 };

1012 return(dims_domains[n]);

1013 }

1014 decision support()

1015 {

1016 FILE 'fd;

1017 char DIMS[SIZE];

1018 char name[NL], ch;

1019 float span; bar_thick, fili_thick, half_rise, gtr_rise;

1020 float mort_thick, MoF, DF, BF, FF, WF, MF, JF, CF;

1021 float PAL, MAL, sum, bnum, bdenom, quot;

1022 float SRR, SRF, PF, RR;

1023 char bridge_name[SIZE];

1024 char bridge_location[SIZE];

1025 printf('\nPlease enter name of bridge you wish to assess:

1026 scanf("%s", bridge_name);

19) ;

- 203 -

1027 printf('%nEnter location of bridge: ");

1028 scanf("%s", bridge_location);

1029 rel_c = 8;

1030 sprintf(param, "range of %c is arch_dims\n", range_n[rel_c]);

1031 write(to_ingres, param, strlen(param));

1032 sprintf(param, "range of %c is specify\n", range_n[rei_c+ 1]);

1033 write(to_ingres, param, strlen(param));

1034 sprintf(param, "retrieve into temp_dims(\n");

1035 write(to_ingres, param, strlen(param));

1036 for (i = 1; i <= 5; i++)

1037 {

1038 sprintf(param, "%c. %s", range_n[rel_c], dims_dom_name(i));

1039 write(to_ingres, param, strlen(param));

1040 if (i 1= 5) write(to_ingres, ", \n", 2);

1041 else write(to_ingres, "fin", 1);

1042 }

1043 write(to_ingres, ")\n", 2);

1044 sprintf(param, "where %c. name = \'%* %s*\'\n",

1045 range_n[reLc], bridge_name);

1046 write(to_ingres, param, strlen(param));

1047 sprintf(param, "and %c. location = \'%*%s*\"\n",

1048 range_n[reLc+ 1], bridge-location);

1049 write(to_ingres, param, strlen(param));

1050 run_ingres();

1051 wait-for-signal();

1052 sprintf(param, "copy temp-dims (\n");

1053 write(to_ingres, param, strlen(param));

1054 for (i = 1; i <= 5; i++)

- 204 -

1055 {

1056 sprintf(param, "%s = c10", dims_dom_namc(i));

1057 write(to_ingres, param, strlen(param));

1058 if (i 1= 5) write(to_ingres, ", \n", 2);

1059 else write(to_ingres, "\n", 1);

1060 }

1061 write(to_ingres, ")\n", 2);

1062 sprintf(param, "into \"%s/temp_file\V`, PATHNAME);

1063 write(to_ingres, param, strlen(param));

1064 sprintf(param, "destroy temp-dims");

1065 write(to_ingres, param, strlen(param));

1066 run_ingres();

1067 wait-for-signal();

1068 if ((fd = fopen("temp_file", NULL)

1069 {

1070 fprintf(stderr, "\nError: Can't open temp-file(r)\n");

1071 exit(1);

1072 }

1073 for(i = 0; i< SIZE;)

1074 {

1075 if (fscanf(fd, "%c", &DIMS[i++]) <= 0)

1076 {

1077 DIMS[i] = EOS;

1078 break;

1079 }

1080 }

1081 sscanf(DIMS, "%10f %10f %10f %10f %10f',

1082 &span, &bar_thick, &fill_thick, &half-rise, >r_rise);

- 205 -
1083 if (span 0 && bar-thick =-0 && fill-thick 0 &&

1084 half
_rise -=0 && qtr-rise =- 0)

1085 {

1086 printf("Sorry, no dimensions available for this bridge");

1087 exit(1);

1088 }

1089 printf('Thickness of barrel is %10.2finetres\n", bar_thick);

1090 printf(depth_factor_mesg);

1091 printf('\nSelect by number the construction of joint: ");

1092 scanf("%d", &choice);

1093 if (choice == 1) DF = 0.9; /* DF - Depth Factor */

1094 if (choice == 2) DF = 0.8;

1095 if (choice == 3)

1096 {

1097 printf(mort_thick_mesg);

1098 scanf("%5f', &mort_thick);

1099 bar-thick = bar-thick - (mort_thick/100.0);

1100 }

1101 if (choice == 4) DF = 1.0;

1102 sum = bar_thick + fill_thick;

1103 bnum = 740.0 * (pow(sum, 2.0));

1104 bdenom = pow (span, 1.3);

1105 PAL = bnum / bdenom ; /* Provisonal axle loading

/* The value of SRR is calculated from Figure 3.3, see Appendix 3)

1106 SRR = span / half-rise; /* Span/Rise Ratio */

1107 if (SRR <= 4.0) SRF = 1.0; /* SRF - Span/Rise Factor

1108 if (SRR > 4.0 && SRR <= 5.0) SRF = 0.855 + 0.145*(5.0 - SRR);

1109 if (SRR > 5.0 && SRR <= 6.0) SRF = 0.750 + 0.105*(6.0 - SRR);

-206-

1110 if (SRR > 6.0 && SRR <-7.0) SRF - 0.675 + 0.075 * (7.0 - SRR);

1111 if (SRR > 7.0 && SRR <= 8.0) SRF - 0.615 + 0.060* (8.0 - SRR);

1112 RR = half-rise / qtr_rise;

1113 if (RR <= 0.75) PF - 1.0; /* PF - Profile Factor

1114 else

1115 PF = pow(((halLrise-qtr_rise)/halLrise), 0.6) * 2.3;

1116 printf(bar_factor_mesg);

1117 printf('\nSelect by number the arch barrel details: ");

1118 scanf("%d", &choice);

1119 if (choice == 1) BF = 1.5; /* BF - Barrel Factor */

1120 if (choice == 2) BF = 1.2;

1121 if (choice == 3) BF = 1.0;

1122 if (choice == 4) BF = 0.7;

1123 printf(fill_factor_mesg);

1124 printf('\nSelect by number the filling: ");

1125 scanf("%d", &choice);

1126 if (choice == 1) FF = 1.0; /* FF - Fill Factor

1127 if (choice == 2) FF = 0.9;

1128 if (choice ==3 11 choice == 5) FF = 0.7;

1129 if (choice == 4) FF = 0.5;

1130 MF = ((BF * bar_thick)+(FF * fill_thick))/(bar_thick+filLthick);

1131 printf(widtl-factor_mesg);

1132 printf('\nSelect by number the width of joints: ");

1133 scanf("%d", &choice);

1134 if (choice == 1) WF = 1.0; /* WF - Width Factor */

1135 if (choice == 2) WF = 0.9;

1136 if (choice == 3) WF = 0.8;

1137 printf(mort factor_mesg);

- 207 -

1138 printf('%nSelect by number the condition of joint: ");

1139 scanf("%d", &choice);

1140 if (choice == 1) MoF = 1.0; /* MoF - Mortar Factor

1141 if (choice -= 2) MoF - 0.9;

1142 JF = WF * DF * MoF;

1143 printf("Enter condition factor of bridge (0 -1.0): \n");

1144 scanf("%5f', &CF);

1145 if (CF < 0.4) printf(alarnLmesg);

1146 MAL = SRF * PF * MF * JF * CF * PAL;

1147 printf("Modified Axle Load = %10.2f', MAL);

1148 axle-lift off(span, MAL);

1149 fclose(fd);

/* SHOW RELATIONS IN A DATA BASE

1150 show_rels_in_db()

1151 {

1152 sprintf(param, "help\n");

1153 write(to_ingres, param, strlen(param));

1154 run-ingres(;

1155 }

/* LIST DOMAIN NAMES AND FORMATS

1156 list-do

1157 {

1158 char relation[SIZE];

1159 printf("Enter name of relation: \t");

1160 scanf("%s", relation);

1161 sprintf(param, "help %s\n", relation);

1162 write(to_ingres, param, strlen(param));

.1

- 208 -

1163 run_ingres();

1164 }

/#MttMMM*tMMMtMf*********************************

PRINT OUT CONTENTS OF A RELATION

################M########################M######/

1165 print_rel()

1166 {

1167 char c;

1168 printf("Enter name of relation: \t");

1169 scanf("%s", relation);

1170 sprintf(param, "print %s", relation);

1171 write(to_ingres, param, strlen(param));

1172 run_ingres();

1173 }

ý*****************************

VIEW QUERY BUFFER

*****************************1

1174 view_buf()

1175 {

1176 write(to_ingres, '\\p\n", 3);

1177 }

1178 char *store_struct (n) int n;

1179 {

1180 static char *struct_store[] _

1181 {

1182 "hash", "isam", "heap"

1183 };

- 209 -

1184 ' return(struct_store[n]);

1185 }

- 210 -
/ttMtt#t***

CREATING AND MAINTAINING A DATA BASE USING INGRES

t####t####Mt##tt#t###t#t###t#tt##t#tttt##ttt#t#M#tt#t##t##M##t#t#t/

1186 create_maint()

1187 {

1188 char com;

1189 do

1190 {

1191 switch(com = menu(keytab2, STRING2,1))

1192 {

1193 case 'C':

1194 case 'c':

1195 create-r();

1196 wait-for-signal();

1197 break;

1198 case 'F:

1199 case 'f':

1200 retrieve-into();

1201 wait-for-signal();

1202 break;

1203 case 'D':

1204 case 'd':

1205 destroy-r();

1206 wait-for-signal();

1207 break;

1208 case 'E':

1209 case 'e':

1210 erase_rel();

-211-

1211 wait-for-signal();

1212 break;

1213 case 'H':

1214 case 'h':

1215 how-to copy_rel();

1216 wait-for-signal();

1217 break;

1218 case 'M':

1219 case 'm':

1220 sys_mod(;

1221 break;

1222 case 'T':

1223 case T:

1224 to_destroy_db(;

1225 break;

1226 case 'S':

1227 case 's':

1228 choose_storage_structures(;

1229 wait-for-signal();

1230 break;

1231 case 'Q':

1232 case 'q':

1233 break;

1234 default:

1235 printf('No such facility, Please try again. \n");

1236 break;

1237 }
1238 }

- 212 -

1239 untii_quit;

1240 }

/*Creates a relation with no tuples in it

1241 create_r()

1242 {

1243 char format_t[5];

1244 int i;

1245 printf("Enter name of relation: \t");

1246 scanf("%s", relation);

1247 sprintf(param, "create %s(\n", relation);

1248 write(to_ingres, param, strlen(param));

1249 printf("Enter number of domains: \t");

1250 scanf("%d", &domain_c);

1251 for (i = 1; i <= domain-c; i++)

1252 {

1253 printf("Enter domain name: \t");

1254 scanf("%s", domain_n);

1255 printf("Enter format type: \t");

1256 scanf("%s", format_t);

1257 sprintf(param, "%s = %s", domain_n, format_t);

1258 write(to_ingres, param, strlen(param));

1259 if (i 1= domain-c) write(to_ingres, ", \n", 2);

1260 else write(to_ingres, "\n", 1);

1261 }

1262 write(to_ingres, ")\n", 2);

.
1263 run_ingres();

1264 }

- 213 -

/* Creates a relation from existing relaions

1265 retrieve_into()

1266 {

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

char n_relation[SIZE], c_domain_n[SIZE];

int i, j;

printf("Enter name of new relation: \t");

scanf ("%s", rterelation);

printf("Enter number of source relations: \t");

scanf ("%d", &relation_c);

for (i = 0; i< relation_c; i++)

{
printf("Enter name of source relation : \t");

scanf("%s", s_relation[i]);

range(range_n[i], s_relation[i]);

}
sprintf(param, "retrieve into %s(\n", n_relation);

write(to_ingres, param, strlen (param));

printf("Enter number of domains to be retrieved: \t");

scanf(' %d", &domain_c);

for (i = 1; i<= domain_c; i++)

{
printf("Enter domain name: \t");

scanf("%s", domain-n);

printf("Enter domain name's relation: \t");

scanf("%s", temp);

for(j = 0; j< = relation-c; j++)

{
if(strcmp(temp, s_relation[j]) == 0)

- 214 -

1292

1293 {
1294 sprintf(param, "%c. %s", range_n[j], domain_n);

1295 write(to_ingres, param, strlen(param));

1296 if(i != domain-c) write(to_ingres, ", \n", 2);

1297 else write(to_ingres, ' n", 1);

1298

1299

1300

}

}
}

1301 write(to_ingres, ")fin", 2);

1302 printf("Enter name of domain common to all relations: \t");

1303 scanf("%s", c_domain_n);

1304 for (i =0; i< relation-c; i+=2)

1305 sprintf(param, "where %c. %s = %c. %s", range_n[i], c_domain_n,

1306 range_n[i+ 1], c-domain-n);

1307 write(to_ingres, param, strlen(param));

1308 runingres();

1309 }

/* Destroys a relation or its contents */

1310 destroy_r()

1311 {
1312 printf("Enter name of relation: \t");

1313 scanf("%s", relation);

1314 sprintf(param, "destroy %s", relation);

1315 write(to_ingres, param, strlen(param));

1316 run_ingres();

1317 }

- 215 -

/* Deletes tuples in a relation'*/

1318 erase_rel()

1319 {

1320 printf("Enter name of relation: \t");

1321 scanf("%s", relation);

1322 sprintf(param, "modify %s to truncated", relation);

1323 write(to_ingres, param, strlen(param));

1324 runingres(;

1325 }

/' Copies relations to INGRES

1326 how_to_copy_rel()

1327 {

1328 int i;

1329 char filename[SIZE];

1330 printf("Enter name of file: \t");

1331 scanf("%s", filename);

1332 printf("Enter name of relation: \t");

1333 scanf("%s", relation);

1334 sprintf(param, "copy %s(\n", relation);

1335 write(to_ingres, param, strlen(param));

1336 printf("Enter number of domains: \t");

1337 scanf("%d", &domain_c);

1338 for (i = 1; i <= domain-c; i+ +)

1339 {
1340 printf("Enter domain name: \t");

1341 scanf("%s", domain_n);

1342 sprintf(param, "%s = cO", domain_n);

- 216 -

1343 write(to_ingres, param, strlen(param));

1344 if (i 1= domain-c) write(to_ingres, ", \n", 2);

1345 else write(to_ingres, "fin", 1);

1346 }
1347 write(to_ingres, ")\n", 2);

1348 sprintf(param, "from \"%s/%s\"", PATHNAME, filename);

1349 write(to_ingres, param, strlen(param));

1350 run_ingres();

1351 }

/* Declares a variable to range over a relation

1352 range(sl, s2) char "sl, *s2;

1353 {

1354 sprintf(param, "range of %c is %s\n", sl, s2);

1355 write(to_ingres, param, strlen(param));

1356 }

/* Modifies system relations to predetermined structures

1357 sys_mod()

1358 {

1359

1360

1361

1362

1363

1364

1365

1366

1367

char 'mesgl = '\n\

Have to be the Database Administrator!!! \n\

This should be done initially after the data base\n\

is created and subsequently as relations are created. 0;

printf(mesgl);

printf("Enter name of data base: n\"

,

scanf("%s", dbase_n);

sprintf(param, "sysmod %s", dbase_n);

system(param);

- 217 -

1368 }

1369

1370 to_destroy_db()

1371 {

1372 printf('Enter name of database you wish to destroy: \t");

1373 scanf("%s", ddbase_n);

1374 sprintf(param, "destroydb %s", ddbase_n);

1375 system(param);

1376 }

1377 choose_storage_structures()

1378 {

1379 char ch, struct_selection;

1380 int ff, ne;

1381 char *rel_help_mesg = "\n\

1382 Do you wish to know what relations are in the data base? (y/n)\n';

1383 char *store_rel_mesg = "\n\

1384 Enter name of relation whose storage structure you wish to modify\n";

1385 char *struct selection-mesg = "\n\

1386 Which one of the following storage structures do yo wish to apply\n\

1387 to the relation\n\

1388 1. Hash 2. Isam 3. Heap\n";

1389 char *domain_help_mesg = '1n\

1390 Do you wish to know what domains are in the relation? (y/n)\n";

1391 char *dom_selection_mesg = "\n\

1392 Enter name of domain whose storage structure you wish to modify\n";

1393 printf(rel_help_mesg);

1394 if ((ch = yes_or_no()) 'Y' 11 ch =_ 'y')

-218-

1395 {

1396 show_rels_in_db();

1397 wait-for-signal();

1398 }

1399 printf(store_re)_. mesg);

1400 scanf("%s", relation);

1401 printf(struct_selection_mesg);

1402 struct_selection = get-number();

1403 ne = ((struct_selection -'0') - 1);

1404 printf(domain_help_mesg);

1405 if ((ch = yes-or-no()== 'Y' 11 ch =_ 'y')

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

{
sprintf(param, "help %s\n", relation);

write(to_ingres, param, strlen(param));

run`ingres();

wait-for-signal();

}
printf(dom_selection_mesg);

scanf ("%s", domain_n) ;

sprintf(param, "modify %s to %s on %s", relation, store_struct(ne),

domain-n);

write(to_ingres, param, strlen(param));

printf('Do you wish to specify a fill factor? (y/n)");

if ((ch = yes-or-no()) == 'Y' 11 ch == 'y')

{
printf("Enter fill factor (1 - 100):

scanf("%d", &ff);

sprintf(param, " where fill factor = %d", ff);

1423

1424

1425 }

- 219 -

write(to_ingres, param, strlen(param));

run_ingres();

1426 else run_ingres();

1427 }

1428 wait_for_more()

1429 {

1430 char s[4];

1431 fgets(s, 4, stdin);

1432 return (s[0]);

1433 }

/* YES OR NO : */

1434 yes_or_no()

1435 {

1436 char ch;

1437 while(TRUE)

1438 {

1439 while (((ch= getchar()) LF) II (ch == CR));

1440 switch (ch)

1441 {

1442 case 'Y':

1443 case 'y':

1444 return(ch);

1445 case 'N':

1446 case 'n':

1447 return (ch);

1448 default:

- 220 -

1449 printf("Please answer 'y' or 'n': ");

1450 break;

1451 }

1452

1453 }

}

1454 get_pathname() /* get process pathname

1455 {

1456 FILE *fd;

1457 system("pwd > pwd_junk");

1458 fd = fopen("pwd_junk", "r");

1459 fscanf(fd, "%s", PATHNAME);

1460 fclose(fd);

1461 }

/* Determine the Axle Factor */

1462 char * axle_mesg =" 1463 axle_lift_off(s, m)

1464 {

1465 float NAF, AF, AAL;

1466 float *m, *s;

/* No Axle Lift Off NAF is calculated from Fig 3.3, Appendix 3

1467 if(s <= 4.0) NAF = 1.0;

1468 if(s >4 && s <= 7.5) NAF = 1.0 + 0.1428(s - 4.0);

1469 if(s > 7.5 && s <= 14.0) NAF = 1.5 + 0.4615 * (s -7.5);

1470 if(s > 14.0) NAF = 1.75;

1471 if(s <= 2) NAF = 1.0;

1472 if(s >2 && s< 4) NAF = 0.68 + 0.16 * (4.0 - s);

1473 if(s > 4) NAF = 0.68;

1474 if(s <= 4) NAF = 1.0;

- 221 -

1475 if(s >4 && s <= 7.2) NAF = 0.68 + 0.1 * (7.2 - s);

1476 if(s > 7.2) NAF = 0.68;

/* With Axle Lift Off, AF is obtained from Figure 3.3 see Appendix 3

1477 if(s <= 11.0) AF = 0.8;

1478 if(s > 11.0 && s <= 20.0) AF = 0.8 + 0.0167(s - 11.0)

1479 if(s <= 2.0) AF = 0.8;

1480 if(s > 2.0 && s <= 4.0) AF = 0.54 + 0.13 * (4.0 - s);

1481 if(s > 4.0 && s <= 10.0) AF = 0.54 + 0.0233(s - 4.0);

1482 if(s > 10.0) AF = 0.68;

1483 if(s <= 4.0) AF = 0.8;

1484 if(s > 4.0 && s <= 10.0) AF = 0.68 + 0.02 * (10.0 -s);

1485 if(s > 10.0) AF = 0.68;

1486 if(s <= 11.0) AF = 0.8;

1487 if(s > 11.0 && s <= 15.0) AF = 0.68 + 0.03 * (15.0 -s);

1488 if(s > 15.0) AF = 0.68;

1489 if(s <= 6.0) AF = 1.0;

1490 if(s > 6.0 && s <= 15.0) AF = 0.68 + 0.356 * (15.0 - s);

1491 if(s > 15.0) AF = 0.68;

1492 AAL =m* AF;

1493 printf('Do you consider that there is any axle-lift? " (y/n);

1494 printf(axle_mesg);

1495 if((ch = yes_or_no()) 'Y' 11 ch 'y'
1496 {

1497 AAL =m* AF;

1498 }

1499 else

1500 {

1501 AAL =m* NAF;

- 222 -

1502 }

1503 sscanf(DIMS, "%10f %10f %10f %10f

1504 &single, &double, &max-gvw, &veh_type);

1505 do

1506 {

1507 sscanf(DIMS, "%10f %10f %10f %10f',

1508 &single, &double, &max_gvw, &veh_type);

1509 }

1510 while(AAL > double)

1511 MGV = max-, gvw;

1512 printf("Maximum Gross Vehicle Weight = %f10.2 tonnes, MGW");

1513 printf This is for a %s with %s axles", veh_type);

1514 }

