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The reaction of ammonia and chiorodifluorophosphine, which was known 
to give aminodifluorop}oaphine, was shown under different conditions to 
produce cLtaminodifluorophosphorane, FIPF2(NH2)2. 	The compound, which 
was also formed by reaction of ammonia and aminodifluorophosphine, was 
characterised spectroscopically, and its structure interpreted in terms 
of a trigonal bipyramid, of C2  symmetry, with axial fluorine atoms. 

The molecular structures of bi a ( difluoropho aphino ) selenide, tn a ( di-. 
fluorophosphino ) amine, and diaminodifluoropho spkiorane were determined, 
in the gas phase, by electron diffraction. Bis(difluorophosphino)selenide 
was described in terms of torsional motion of the d.ifluorophosphino-
groups about a mean C2  symmetry, while tris(difluorophospiino)amine was 
shown to have a C3h  symmetry. Diaminodifluorophosphorane was found to be 
Of C2, symmetry in agreement with the spectroscopic evidence. Non-bonded 
distances in fluorophosphines are discussed. 

The possibilities of preparing new compounds and proposals for investi-
gating the co-ordination chemistry of species obtained in this work are 
presented. Molecules suitable for future electron diffraction studies are 
suggested. The usefulness of predicate observations in electron 
diffraction and of liquid-crystalline nm.r. in the determination of 
fluorophosphine structures is expressed. 
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SUM[VIARY 

The thesis describes the attempts to form difluoro-

phosphine derivatives of Groups V and VI elements. 

Preliminary exchange reactions were investigated at room 

temperature between bromodifluorophosphine, and silyl or 

germyl derivatives of the elements of these groups, the 

extent of reaction being followed by n.m.r. spectroscopy. 

In Group VI, a series of compounds of' the types 

(F2P)2y and F2PYMH3, (Y= 0, 5, Se or Te; M= Si or Ge) were 

formed, for which chemical shifts (1H, '9F, 31P and 77Se) 

and coupling constants (including relative signs) were 

obtained. 	The '9F spectrum of (F2P)23e was studied over a 

wide temperature range and variations in its n.m.r. parameters 

noted. 	By the same exchange route, bis(di±'luorophosphino) 

sulphide and -selenide were prepared and isolated, and 

characterised by mass, photoelectron, vibrational and n.m.r. 

spectroscopy. 	Various reactions of bis(difluorophosphino) 

selenide are described. 

The exchanges of brornodifluorophosphine with the silyl 

derivatives of Group V elements produced (difluorophosphino)-

disilyiphosphine, F2PP(SiH3)2, and evidence for the formation 

of (difluorophosphino)-silylphosphine, F2P?HSiH3, as the only 

novel compounds. 	These were characterisd by their n.m.r. 

parameters, and signs of coupling constants were obtained. 

since no new nitrogen derivatives were formed, alternative 

preparative methods were tried. 	This led to the formation 

of tris(difluorophosphino) and bis(difluorophosphino)-amines, 

(F2P)3N and (F2P)2NH, by the gas phase reactions of ammonia, 
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chlorodi±'luo ropho sphine and trimethylamine. Both compounds 

were characterised spectroscopically, and reactions of the 

tertiary amine with hydrogen halides, Group VI hydrides 

and chlorine were carried out. 

Boron trifluoride was found to react with aminodifluoro-

phosphine, in the gas or liquid phase, to give an adduct. 

Upon decomposition, this adduct formed difluorophosphino-

aminodifluoroborane, F2PNHBF2, which was characterised by 

its mass, photoelectron, n.m.r. and vibrational spectra. 

With excess aminodifluorophosphine, however, the adduct 

CD 

	 bi s( difluoropho sphino )amine and trifluoroborane-ammonia 

adduct. 

The reaction of ammonia and chiorodifluorophosphine, 

which was known to give aminodifluorophosphine, was shown 

under different conditions to produce diaminodifluorophos- 

phorane, I-F2  (NH 2)2. 	The compound, which was also formed 

by reaction of ammonia and aminodifluorophosphine, was 

characterised spectroscopically, and its structure interpreted 

in terms of a trigonal bipyramid, of C 2 symmetry, with axial 

fluorine atoms. 

The molecular structures of bis(difluorophosphino) 

selenide, tris(difluorophosphino)amine, and diaminodiflüoro-

phosphorane were determined, in the gas phase, by electron 

diffraction. 	Bis(difluorophosphino)selenide was described 

in terms of torsional motion of the difluorophosphino-

groups about a mean C2  symmetry, while tris(difluorophos-

phino)amine was shown to have a C 3 symmetry. Diaminodi- 

fluorophosphorane was found to be of C2  symmetry in agreement 
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with the spectroscopic evidence. 	Non-bonded distances in 

±'luorophosphines are discussed. 

The possibilities of preparing new compounds and 

proposals for investigating the co-ordination chemistry of 

species obtained in this work are presented. 	Molecules 

suitable for future electron diffraction studies are 

suggested. 	The usefulness of predicate observations in 

electron diffraction and of liquid-crystalline n.m.r. in the 

determination of fluorophosphine structures is expressed. 
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"Wherever (the reader) finds that I have 

ventured at any small conjectures at the 

cause-- of the things that I have observed, 

I beseech him to look upon them only as 

doubtful Problems, and uncertain ghesses, 

and not as unquestionable Conclusions, or 

matters of unconfutable Science. 	I have 

produced nothing here with intent to bind 

his understanding to an implicit consent." 

Robert Hooke 

Micrographia, 1665. 
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INTRODUCTION 

Although Moissan1  first prepared the parent fluoro-

phosphine, trifluorophosphine, in 1884, there was little 

activity in this field until the 1950s apart from sporadic 

reports e.g. work on bromo- and chlorofluorophosphines.2'3  

From th-is time on however, a lively literature has been 

built up and sustained with the main areas of study being 

phosphoramidous fluorides, alkyl-, aryl- and halogeno-

fluorophosphines, fluorophosphites and the extensive 

chemistry of fluorophosphine-co-ordination complexes. Since 

most of these compounds are volatile liquids or gases, and 

many have unpleasant smells, are poisonous, pyrophoric or 

easily hydrolysed, much of the synthetic work has made use 

of vacuum line techniques or inert atmospheres. 

The growth of interest in fluorophosphine chemistry 

has been monitored by many reviews. 	Scbinutzler,4  in 1965, 

covered general phosphorus fluorides, of which fluorophosphines 

form a part, and with Fild5  in 1972 reviewed halogeno- and 

pseudohalogenophosphines. 	Kruck6  has reported on transition 

metal-trifluorophosphine complexes, and Nixon7  has discussed 

developments specifically in fluorophosphine chemistry up 

to 1970. 

In spite of this considerable interest, many of the 

simpler fluorophosphine derivatives of main group elements 

remained unknown. This was particularly true of derivatives 

of Groups V and VI and so the principal aim of the research 

project became the synthetic, spectroscopic and structural 
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investigation of simple chalcogeno- and pnictodifluoro-

phosphines. 

Despite the many dialkyl- and diarylaminodifluoro-

phosphines reported, and the formation of the F2PNER group 

of compounds (R = Me, Et, BU and But)81it  was not until 

1971 that Rankin prepared F2PNH2, and noted the presence 

in the mass spectrum of the further nitrogen substituted 

difluorophosphines, (F2P)2NH and (F2P)3N.9  The existence 

of the series (F2P)2 	(R = Me, Et, Ph and m - cic6u4)10'11 

suggested that these compounds might be prepared. Although 

(F2P)2NR were synthesised by fluorination of the chioro-

derivatives, attempts to obtain (F'2P)2NH and (F2P)3N more 

directly were tried using halogenodifluorophosphine and 

ammonia, in the presence of trimethylamine. 	In the course 

of these preparations, chance reactions led to the formation 

of diarninodifluorophosphorane, HPF2(NH2)2, and difluorobo-

rylaminodifluoropho sphine, F2PNHIBF2. 

In addition, the known F2P- derivatives of phosphorus 

such as F2PPF2,12  F2PPH2,13  (F2p)3p14  and F2pP(cF3)215  

coupled with the reported preparations of F2PNCH3.Si(CH3)316 

and F2PNHSiH317  indicated that mixed difluorophosphine and 

silyl derivatives of Group V elements other than nitrogen 

might be stable. 	In an attempt to prepare such compounds 

exchange reactions between halogenodifluorophosphines and 

(H3  Si) ZH(3)  (z = N and P) were tried. 

Of the Group VI derivatives there was great bias 

towards oxygen, with a large number of the type F2POR 

known (R = alkyl or aryl). 	The other members of the group 

were less favoured with only four reported compounds. 
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While (F2P)20 had been well characterised, 
18,19  (F2P)2S 

had been discussed only in terms of its nuclear magnetic 

resonance spectrum with no details of preparation or 

characterisation published. 20,21  The other three non-

oxygen derivatives were all sulphur compounds: F2PSPF2(S)22  

was formed from (S)PF2SH and F2PN(CH3)2; F2PSCH323  from 

N(CH3)3, CH3SH and F2PC1; F2PSP(CF3)224  from (F2P)2S 

and [(F3C)2P]2s. 	There were no known selenium or tellurium 

difluorophosphines. 	As part of an attempt to form (F2P)2Se 

and (F2P)2Te exchange reactions were tried between F2PBr 

and (H3M)2Y (M = Si and Ge; Y = 0, S, Se and Te) in which 

several novel thio-, seleno- and tellurodifluorophosphine 

compounds were observed. 	The results of these reactions 

provided the impetus for the successful preparation of 

(F2P)2Se. 

In the study of phosphorus fluorides, spectroscopic 

techniques such as infra red, Raman, photoelectron and mass 

spectroscopy have been widely used. 	Nuclear magnetic 

resonance however has been particularly important because 

of the 100% natural abundance of 31P and 19F with nuclear 

spin quantum number, I = . 	For the difluorophosphines 

and phosphorane mentioned in this work emphasis has been 

given to collecting chemical shifts, coupling constants, 

and where possible relating the signs of these coupling 

constants. 	In some instances spectra more complicated than 

first order have been observed and attempts have been made 

to solve these. 	Compounds such as (F2P)2S21  and 

(F2P)2NR11  have been analysed as examples of [A[ X1212 spin 

systems and the equations of Harris et al.25  have been 
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similarly applied to (F2P)2Se and (F2P)2NH. 	However 

(F2P)3N provided an example of a system too complicated 

to solve, unlike the analogous, but deceptively simple, 

spectrum of (F2P)3P.14  Those parameters collected were 

invaluable for analytical purposes and the elucidation of 

structure. 	Some coupling constants are reported of which 

few examples are known, e.g. the first 1J(31P15N) was 

mentioned by Cowley et al. 26  for (F3C)2PNH2-[15N] as late 

as 1970. 	In such cases it is hoped that the additional 

information will provide a better insight into the nature 

of spin-spin coupling, and ultimately, bonding. Experi-

ments have also been carried out to investigate the effect 

temperature has upon coupling constants, where these appear 

to be strongly influenced by conformation. 

Finally, since many difluorophosphines are volatile, 

small molecules, they are ideal for gas phase molecular 

structure determinations, and many have been studied by 

microwave spectroscopy or electron diffraction. 	Since 

the early study of trifluorophosphine by Brockway and 

Wall 27  in 1934, the number of difluorophosphines investi-

gated by electron diffraction alone has grown into double 

figures and provides much information. 	Furthermore, these 

structural data can be compared with observations and 

inferences drawn from vibrational and nuclear magnetic 

resonance spectroscopy to provide a more complete character-

isation. With these aims in mind structural parameters 

were obtained by electron diffraction for (F9P)25e, 

(F2P)3N and HPF2(NH2)2. 
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(1UADm'Q 1 

EXCHANGE REACTIONS OF BROMODIFLUOROPHOSPHINE WITH SILYL 

AND GERIVIIYL DERIVATIVES OF THE GROUP VI ELEMENTS 

Introduction 

The desire to obtain difluorophosphino derivatives of 

the Group VI elements led to an investigation of the possi-

bilities of exchange between F 2 groups and the silyl and 

germyl groups of clisilyl and digermyl chalcogenides. This 

reaction scheme was adopted for a number of reasons, even 

though (F2P)20 had been prepared previously from iodo-

difluorophosphine and cuprous oxide. 18 

Firstly there had been several studies of exchange 

reactions between substituted silyl and germyl compounds 28 

which at equilibrium indicated the tendency of the more 

electronegative groups to be bound preferentially to silicon. 

In one of these studies 
28  germyl iodide reacted with tn-

chlorophosphine and produced germyl chloride. No such 

reaction however occurred with trifluorophosphine. 

Secondly, structural studies of (F2P)20,29  F2PNHSiH3,'7  

F2PNTH2  and F2PN(CH3)230  have suggested a similarity between 

the bonding of phosphorus to oxygen and nitrogen, and the 

bonding of silicon and germanium to these eiments. 

And finally, it was believed that if reaction proceeded 

it might be possible to identify the mixed species F2PYMH3  

+ Appendix 1 contains a paper published under the same title 
relating to this work. 



(M = Si or Ge; Y = 0, S, Se or Te) which in themselves 

would be of considerable interest. 

1.1 Results and Discussion 

During the early stages of this work several obser-

vations were made which influenced the use of starting 

materials and the conditions for later reactions. It was 

found that F2PC1 exchanged slowly with the digermyl Group VI 

compounds which resulted in low concentrations of mixed 

products, most of which were unstable over long periods at 

room temperature. While reactions of F2PC1 with the silyl 

derivatives were fast, expected products other than silyl 

chloride were not always seen. 	Consequently all the 

exchanges reported here made use of bromodifluorophosphine. 

Consideration of the exchange rates involving sulphur, 

selenium and tellurium indicated a relative ordering: 

Si>Ge and Te>Se>S. Also, the nature of the equilibria 

were such that if sufficient bromodifluorophosphine were 

present all silyl starting materials were used up but some 

germyl compounds remained. At no time however could high 

concentrations of F2PYMH3  be built up. 

The oxygen systems proved to be anomalous. With 

disilyl oxide, F2PJ3r gave only small amounts of silyl 

bromide over 24 hours, whereas with digermyl oxide reaction 

was too rapid even to observe the proton n.m.r. spectrum of 

starting materials. 	In neither system could F2POMH3  be 

detected and although MH3Br was formed, yields of bis(cli-

fluorophosphino) oxide were lower than expected; F 3  P 

appeared instead. 



TABLE 1.1 

Reactions of (MH3)2Y and PF2Br 

Reagents Molar ratio Reaction (MH3)2Y 
Observed products 

PF2Br+ PF2Br: (MEi3)2Y time/s remaining/yo MH3Br MH3YPF2  (F2P)2Y Others 

(SiH3)20 2.5 : 	1 80,000 65 
3.5 : 	1 80,000 55 J 

(GeH3)20 2 : 	1 600 0 O=PF2H 
1:1 600 0 PF3  

(SiH3)2S 1.8 : 	1 2000 60  
1.8 : 	1 50,000 30 .1 1 1 SiH3F 

(GeH3)2S 2.5 : 	1 7000 100 
2.5 : 	1 180,000 80 1 

(SiH3)2Se 2.5 : 	1 25,000 15 J 
3:1 4000 30 1 "I  I 
3:1 8000 0 V, 1 1 

(GeH3)2Se 2.5 : 	1 8000 90 1 
2.5 : 	1 200,000 60 1 Vt  I 

(SiH3)2Te 1 : 	1 2000 65 1 / I Te 
(GeH3)2Te 2 : 	1 5000 70 1 Te 
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Lastly, the products of reaction were unstable in 

that on standing, the sulphur and selenium systems 

precipitated traces of yellow solids and the tellurium 

system rapidly precipitated a lot of metallic tellurium. 

These solids did not hinder the recording of the n.m.r. 

spectra. 

These qualitative observations indicated that the 

tendency in fluorophosphine-silyl exchanges was for the 

more electronegative atoms to be bound to silicon, whereas 

in ±'luorophosphine-germyl systems the electronegative atoms 

tended to be bound to the phosphorus. 	Since ,--electron 

acceptor properties have been used to explain structural 

forms of silyl and germyl compounds, and difluorophosphine 

derivatives exhibit similar bonding,30  the F 2 group appears 

to have a n-electron acceptor behaviour intermediate in 

strength between silyl and germyl groups. 	If this behaviour 

accounts for the rate and the extent of reaction, chioro-

difluorophosphine would be expected to react more completely 

than bromodifluorophosphine with the silyl derivatives, but 

less completely with the germyl ones. 	This is largely 

consistent with experimental observation. 	Chlorodifluoro- 

phosphine reacted slowly with the germyl derivatives but 

products other than GeH3C1 decomposed as rapidly as they 

were formed and were not seen in the n.m.r. spectra. 	The 

silyl compounds on the other hand tended to give SiH3C1 

quickly, the reactions going to completion, but with further 

reactions occurring giving insoluble products. 

Details of the more important experiments with F2PBr 

are given in Table 1.1. 	In addition to those products 



TABLE 1.2 

Chemical Shifts 

Compound k191) o(31P 8(77Se) 

(SiH3)20 + 4.56 

(GeH3)20 + 5.28 

(F 2P)20 - 36.7 + ill 

(SIH3)2S + 4.29 

SiH3SPF2 + 4.35 - 57.3 + 229.5 

(GeH3)2S + 4.60 

GCH3SPF2  + 4.68 - 57.1 + 232.0 

(F2P)2S - 64.3 + 219.4 

(SiH3)2Se + 4.02 - 666.0 

SiH3SePF2  + 4.17 - 59.6 + 255.4 n.o. 

(GeH3)2Se + 4.18 - 611.5 

GeH3SePF2  + 4.30 - 59.5 + 258.9 fl.O. 

(F2P)2Se - 66.4 + 246.9 + 700.8 

SiH3)2Te + 3.59 

SiH3TePF2  + 3.94 - 68.5 + 297.0 

(GeH3)2Te ± 3.52 

(F2P)2Te - 72.6 + 295.8 

Note: 

n.o., not observed 

Refer to experimental section for shift conventions. 

Measured at 193K;  all other spectra recorded at 300K. 



listed there were small amounts of (F2P)20 and Y = PF2H 

(Y = S or Se), formed if traces of water were present. 

Those reactions involving oxygen compounds gave only 

bis(difluorophosphino) oxide and the silyl or germyl halide. 

In the digermyl telluride system the slow rate of formation 

and the rapid decomposition of fluorophosphine-tellurium 

compounds allowed only GeH3C1 to be observed. 	GeH3TePF2  

was not seen in the n.m.r. spectra. 

1.2 Chemical Shifts 

These are shown in Table 1.2 for the Group VI species 

studied and indicate several trends. 

The proton resonances show a downfield shift when 

F2   replaces an NH3  group in (H3M)2Y. 	This shift, which is 

similar in the case of silicon or germanium for a given 

element Y, nevertheless varies with Y in the order: 

Te>Se>S, and probably reflects the electron-withdrawing 

character of the difluorophosphine group. 	The variation 

in the shifts could, however, be due to the changes in the 

geometry of the molecules, as the extent of intramolecular 

hydrogen bonding in a five-membered ring (I) would be very 

dependent upon the precise bond lengths and valence angles 

in the compound. 

(I) 
H 	

S i 	P 
1 . 

 
X 

F ------/  



TABLE 1.3 

Coupling Constants for MH3?PF2  

Compound T 1J(PF) 3J(PH) 4J(FH) 

S±H3SPF2  300 - 1298 + 13.3 + 2.7 

GeH3SPF2  300 - 1285 + 11.8 + 3.4 

SiH3SePF2  300 - 1286 + 11.6 + 2.9 

GeH3SePF2  300 - 1287 + 11.2 + 3.3 

SiH3TePF2  203 11.4 3.0 

233 10.1 2.9 

273 9.6 2.7 

300 - 1253 + 	9.3 + 2.8 

Note: 

T, absolute temperature 

J, Hz. 



The 19F chemical shifincrease in the order 

o > S > Se > Te, a trend similar to one found for difluoro•-

halogenophosphines,31'32  and may be attributed to electro-

negativity differences. Also, for any element Y there 

is an ordering: 8[SiH3YPF21 8[GeH3YPF2]> 6E(F2P)2YJ. 

Phosphorus chemical shift values are helpful in 

confirming the compounds studied as derivatives of three-co-

ordinate phosphorus fluorides.33  The increases in the 

shifts as the corresponding 19F shifts decrease are much 

as would be expected.7  All the 31P shifts are higher 

than those Of the simple difluorohalogenophosphines with 

the consequence that those of the tellurium compounds are 

among the highest so far reported.. 	The phosphorus atoms 

are presumably in some form of extreme environment. 

The few selenium shifts that are given are difficult 

to interpret in view of the lack of comparable data. 	They 

could well be accounted for by electronegativity effects 

since, in a series of organo-selenium compounds 4  the 

electronegativity of substituents has been shown to cause 

shifts to high frequency. 

1.3 Coupling Constants 

The observed coupling constants for MH3YPF2  are 

given in Table 1.3 and show an increase in the magnitude 

of 1J(PF) with increasing electronegativity of the element. Y. 

Based on 1J(PF) being negative,' 6  the three bond coupling 

3J(PYMFfl is found to he positive and greater in compounds 

with lighter elements Y and M. 



TABLE 1.4 

Coupling Constants for (F2P)2Y 

T 1J(P 3J(PF)2(p)j J(F1  2J(F 
Compound 

(F2P)20 300 - 1365 + 14 5 0 

(F2P)2S 300 - 1303 + 28 274 8.5,2.5 

(F2P)2Se 293 - 1305 + 21 232 8.8,2.8 39 

273 - 1300 + 25 249 9.3,1.8 36 

253 - 1301 + 24 264 10.0,1.5 36 

233 - 1297 + 25 281 10.5,1.5 35 

213 - 1293 + 26 300 11.410.9 35 

193 - 1299 + 35 316 12.0,0.0 36 

173 - 1297 + 28 336 12.5,0.0 36 

(F2P)2Te 300 (1244) n.o. n.o. n.o. n.o. 

Note: 

n.o., not observed 

T, absolute temperature 

J, Hz 

(a) 	1 
1J(pF) + 3J(PF)I 
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Table 1.4 shows the coupling constants for the 

bis(difluorOphOSPhiflO) Group VI derivatives, and includes 

the temperature-variation of the 19F spectrum of (F2P)2Se 

determined at a series of temperatures covering the range 

173 to 293K. While temperatures quoted may be as much 

as 5K in error, the relative values are correct to within 

1K. 	The analogous behaviour of (F2P)2S with temperature 

has already been described. 21 

The spectrum (Figure 1.1) of (F2P)2Se is of second 

order and has been analysed, as in the case of (F2P)2S, by 

the method of Harris et al. 25 on the assumptions about the 

coupling constants such that: 1J(PF)-3J(PF) >> J(PP) >> 

4J(FF) , 4J(FF') . 	The parameters of Table 1.4 have been 

expressed, by least-squares fitting, as simple polynomial 

functions of temperatures, Table 1.5, and the results used 

to obtain Figure 1.2. 	This shows the line positions of 

the low-field half of the 19F spectrum within, and extra-

polated beyond, the temperature range studied experimentally. 

Parameters found for (F2P)2Se agree more with 

(F2P)2S than with (F2P)20,21  where all couplings across 

oxygen are small by comparison with the similar ones across 

sulphur and selenium. 	Particularly, 2J(PP) is only 5 Hz as 

opposed to over 200 Hz in the other two compounds, and no 

four bond fluorine-fluorine couplings are evident in (F A0
whereas the other (F 2  P)2

Y show two such couplings which 

average about 6 Hz. 	It is these very parameters which 

distinguish (F2P)20 most dramatically from the other bis-

(difluorophosphino) Group VI compounds, that change most 

significantly with temperature. 



TABLE 1.5 

Temperature-Dependence of n.m.r. Parameters of 

(F2P)2Se 

ô(19F) 
	= 69.05(8) - 0.009(1) T 	P.P.M. 

1J(PF) 
	= - 1284.7 (74) - 0.061(31) T 	Hz 

3J(PF) 
	= 44.2(78) - 0.077(33) T 	Hz 

= 525.2(152)-1.238(133) T+0.00081(29) T2  Hz 

4J ( FF) 
	= 4.0(7) - 0.022(3) T 	 Hz 

4J(FF) I 
	

= 18.1(3) - 0.032(1) T 	Hz 

2J(SeF) I 
	

= 36(1) 	 Hz 

Note: 

Estimated standard deviations are given in parentheses. 

T refers to absolute temperature. 
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It seems most probable that conformational changes 

are responsible. 	These changes could affect the long 

range couplings between atoms via the lone pairs of 

electrons present on every atom in the molecule. 	The 

wide POP angle (about 1400  in the gas phase) and staggered 

conformation of the F 2  P groups in (F2P)2O29'37  implies 

fairly small interactions between lone pairs on the 

phosphorus atoms, and between the remote pairs of fluorine 

atoms. Although the phosphorus atoms would be no closer 

in the sulphur, selenium and tellurium compounds, the PP 

angle would be narrower and a conformation that minimised 

long range fluorine-fluorine interactions would be adopted. 

Since the lone pairs on the phosphorus atoms could now 

come into greater direct contact, any temperature induced 

conformational changes would produce a larger effect on 

coupling constants. 	This interpretation although 

speculative, could likewise account for the variations seen 

in the parameters of SiH3TePF2  (Table 1.3). 

All these species are derivatives of three co- 

ordinate phosphorus. 	However S=PF2H36  and S=PMe3,39  

which are most stable in their pentavslent forms are unlike 

F2PSSiH3  and (CF 3)2PSH4°  which exist exclusively with 

phosphorus (III) atoms. 	One possible way to explain the 

preference for the trivalent phosphorus forms is that 

intramolecular hydrogen bonding could stabilise the last two 

compounds, where four bonds separate fluorine and hydrogen 

atoms. An alternative explanation could involve the 

possibility of delocalization of the lone pair electrons 

of the Group VI element into the vacant d orbitals of the 
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silicon, germanium or phosphorus atoms. 	For both 

F2PYMH3  and F2PYPF2  two such n-interactions would tend 

to stabilise the phosphorus (III) forms, as against the 

one possible phosphorus-Group VI element interaction in 

the corresponding phosphorus (v) derivatives. 
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CHAPTER 2 

THE PREPARATION AND THE CHFIICA.L AND SPECTROSCOPIC 

PROPERTIES OF BIS ( DIFLUOROPHOSPHINO) -SULPHIDF AND 

SELENIDE, (F2)2S and (F2P)2Se. 

Introduction 

The formation, on an n.m.r. tube scale, of the corn-

pounds MH3YPF2  and (F2P)2y (N = Si or Ge; Y = 0, S, Se or 

Te) discussed in Chapter 1, prompted an interest in these 

compounds from the preparative point of view. Attention 

was concentrated on (F2P)2S and (F2P)2Se since (F2P)2018  

had been successfully formed and characterised and would 

provide a source for comparison of the properties of bis(di- 

fluorophosphino) derivatives of the Group VI elements. 	It 

was also hoped that bis(difluorophosphino)-sulphide and 

-selenide might be used as starting materials, to extend the 

chemistry of difluorophospiines to other novel sulphur and 

selenium compounds. 

While this work has been successful in isolating and 

characterising (1?2P)2S as well as (F2P)2Se, it must be noted 

that the former has been prepared earlier. 21  However, it 

has only been the subject of n.m.r. study and no details of 

preparation nor of its other properties have been given in 

the literature. 	For completeness, the characterisation of 

(F2P)2S is included here with that of (F2P)2Se in order to 

allow more fully the comparison of the series (F2P)2Y. 



14 

Results and Discussion 

2.1. Preparations 

The details of the various preparations described 

below are given in the Experimental Section, Chapter 9. 

While the exchange reactions of Chapter 1 did produce 

(F2P)2S and (F2P)2Se, these were slow and incomplete under 

the conditions used and alternative methods of preparation 

were sought. 

Since (F2P)20 had been formed from Cu20 and PF2I,18  

a reaction involving sodium selenide and PF2C1 was tried. 

This however was unsuccessful, as was the attempted dehydro-

fluorination of a mixture of H2Se and PF3, with KF. 

Subsequent attempts to produce (F2P)2Se involved H2Se 

and various F 2  P compounds. 	In the formation of F2PSCH3,23  

trimethylamine had been used to abstract hydrogen chloride 

from PF2C1 and methyl thiol. 	In a manner similar to this, 

Me3N was reacted with a mixture of H2Se and PF2Br. Instead 

of the trimethylainmonium halide of the former preparation, 

trimethylammonium selenide was formed and no (F2P)2Se was 

produced. 	Despite certain similarities in the behaviour 

of silyl and difluorophosphine groups, and the known reaction 

of dimethylaminosilane with H2Se,41  Equation (1), no reaction 

took place between aminodifluorophosphine or dimethylamino-

difluorophosphine and hydrogen selenide. 

SiH Br 
H3SIN(CH3)2  + H2Se -> [H3SiSe][H2N(CH3)2] - 	>(H3Si)2Se + 

[(CH3)2NH2]Br ...........(l) 
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Furthermore when (F2P)3N and H23e reacted, Equation 

(2), they produced (F2P)2NH and Se=PF2H only, unlike the 

41 
analogous reaction involving (H3  Si) 3N, 	Equation (3). 

(F2P)3N + H2Se - 	(F2P)2N1-I + Se=PF2H • ,...........9(2) 

(H3  Si) 3N + 2H2Se -' (H3Si)2Se + [NH ][SeSiH3J  ...... (3) 

Since none of these routes gave the desired products, the 

exchange reactions were tried on a preparative scale. 

While little or no reaction occurred in the vapour phase, 

condensed samples of PF2X(X=Cl or Br) with (H3Si)2Se, and 

PF2Br with (H3Si)2S, gave essentially pure (F2P)2Se and 

(F2P)2S:- 

(H3SI)2Y + PF2X - F2PYSiH3  + H3six 

F2PYSiH3  + PF2X - (F2P)2Y + H3SiX 

However, in 'both preparations small amounts of Se=PF2H or 

S=PF2H arose from reactions of (F2P)2Y with impurities in 

the starting materials. 	These impurities were predominantly 

hydrogen halide, used in the preparation of difluorohalogeno-

phosphine, and hydrogen sulphide or selenide, from the 

formation of disilyl sulphide or selenide. 	Traces of 

moisture also gave rise to Y=PF2H. 

Both preparations were slow, taking several hours and 

required the silyl halide/difluorohalOgeflOphOsphifle mixture 

to be replaced by pure difluorohalogenophosphifle several 

times to achieve complete reaction. 	Also since SiH3F and 

orange solid were formed by thermal decomposition of the 

F2PYSiH3  intermediate [Equation (6)], temperatures were 



TABLE 2. 1. 

Mass Spectrum of (F2P)2S 

Relative Abundance Assignments 

172 2 [(F2P)234s] 

170 35 [(F2P)232sJ 
101 9 	 . [F2P32S] 

88 6 [F3P] 

84 4 [FP34sJ 

82 100 [FP32S1 

69 100 [F2pJ 

63 12. 

50 7 [FP] 

32 2 32S+  

31 1 

Metastable peak: 

39.5 (very strong) 	£(F2P)232S] -> PF3  + [FP32S] 

ImEurities  

186 	 1 [(0)PF2SPF2] 

154 	 2 [(F2P)2o] 

150) 	 4 148) 2  [FPBr] 

104 	 2 [F3PoJ 

86 	 2 [0=PF2H] 

18 	 6 [H2oJ 

Note: 

Ionizing voltage 70 eV. 



TABLE 2.2 

Mass Spectrum of (F2P)2Se, 

mZe Relative Abundance Assignments 

220-214 69 [(F2P)2Se] 

151-145 28 [F2PSe] 

132-126 64 [FPSe] 

113-107 20 [PSe] 

88 7 £F3P] 

82-76 35 Se 

69 100 [F2P] 

50 12 [FP] 

31 2 

Metastable peaks 

77.6 (803e) ) 

75.9 (78Se) 	
(strong) [(F2P)2Se] 	-'--' PF3  + [FPSe] 

Impurities 

236-230 	 2 	 E(0)PF2SePF2] 

154 	 s 	 E(F2P)2o] 
152-146 	90 	 [Se=PF2H] 

86 	 11 	 [0=PF2H] 

18 	 5 	 [H20J 

Note: 

Ionizing voltage 70 eV. 
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maintained at 209K for the selenium system and 273K  for 

the sulphur one. 

F2PYSiH3- H3SiF + 	
FP-Y 4 	.....................(6) 

2.2. Molecular Weights 

The molecular weights of samples of (F2P)2S and 

(F2P)2Se were determined as 169±3 g mol 	(Calculated 

170 g mol), and 212+ 4 g rnol 	(Calculated 217 g mol) 

respectively. 

2.3. Mass Spectra 

Tables 2.1 and 2.2 contain the mass spectral break-

down pattern for (F2P)2S and (F2P)2Se respectively. The 

spectra also contain impurities that have arisen from 

either starting materials, as in the case of PF2Br, or from 

reaction of the difluorophosphine Group VI derivatives with 

the large amount of moisture in the mass spectrometer. 

In the latter case these hydrolysis products comprise 

either S=PF2H and (0)F2PSPF21  or Se=PF2H and (0)F2PSePF'2, 

as well as 0=PF2H and (F2P)20. 	The presence in both 

spectra of Y=PF2H makes the breakdown routes difficult to 

determine. 	To clarify this several mass spectra of the 

(F2P)2S system were taken with varying amounts of (F2P)2S 

and SPF2H. 	Since [S=PF2H] was kri.own38  to lose H to 

[PFS] , it was essential to determine if [PF2 	was also 

arising from [(F2P)2S]. 	The results indicated that 

fragmentation did occur as in Equation (7). 

[(F2P)2S] 	PF2  + [PF2s] ...............(7) 
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T!BLE 2.3 

Photoelectron Spectra of (F2P)2Y 

(F 2P)20(F2P)2S (F2P)2Se Assignments 

11.2 10.8 10.2 Y 	lone pair 

108 10.7 P 	lone pairs 

11.2 
14.2 14.5 14.1 P-Y bonding 

16.5 16.0 15.9 F 	lone pairs 

17 - 19 17 - 18.5 17 - 18.5 P-F bonding 

Note: 

All vertical ionization potentials in eV: errors ± 0.1 eV. 

Reference 42 

See text. 
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The other main breakdown, which was characterised by 

a strong metastable peak at 39.5 rn/c units, involved the 

loss of PF..0 

[(F2P)2s] - PF3  + 

Both these routes, namely loss of PF9  and PF3, also 

occurred in (F2P)2Se but with the latter giving two meta- 

stable peaks due to the principal isotopes of selenium, 

80 Seand  78  Se. 	The lower m/e unit ions were generated by 

loss of F or P from [PF2Y] or [PFY]. 

Thus the pattern seems to be dominated by facile 

P-Y bond cleavage, with the formation of PF3  being particu-

larly favoured, no ions such as [F2PYPFJ, [F2PYP] or [PYP] 

being formed. 	In this respect (F2P)2018  differs from these 

other Group VI derivatives in forming [F2POPF]. 

2.4. Photoelectron pectra 

The photoelectron spectra of (F2P)2Y, including 

(F2P)2042  are depicted in Figure 2.1. and listed, with 

possible assignments in Table 2.3. 	The spectra of (F2P)2S 

and (F2P)2Se contain minute amounts of PF342  and S=PF2H or 

Se=PF2H4  as impurities, the bands of which are very weak 

in the figures. 

In the case of (F2P)201  the band at 12.4 eV has been 

assigned previously 42  to the P 3p lone pair levels with 11.2 

eV as the 0 2p lone pair, perhaps with one P-0 bonding level 

coincident. 	An alternative assignment is mentioned 

however, that due to the greater intensity of the 11.2 eV 

bend, this could correspond to the two P lone pairs with 



12.0 

11.0 

10.0 

9.0 

Figure 2.2. Group VI element lone pair ionisation 

potentials in some A 2  Y 

eV I 

0 	 S 	 Se 



the one lone pair on oxygen at 12.4 eV. 	This latter 

interpretation would seem more plausible when compared 

to the (F2P)2s and (F2P)2Se spectra. 
In (F2P)2S1  only one intense broad band occurs below 

14 eV and this must correspond to both phosphorus and 

sulphur lone pair levels. 	For (F2P)2S, the broad bands 

near 10.5 eV again would seem to contain the phosphorus and 

the selenium lone pairs. 	Of these, the lower band at 

10.2 eV is more intense and by analogy with (F 2P)20•could 

correspond to the two occupied phosphorus lone pair 

orbitals, leaving 10.7 eV to be the Se lone pair level. 

However, the presence of a band from residual Se=PF2H under 

this region may be giving more intensity to the 10.2 eV 

band. 	Furthermore, when other series of Group VI deriva- 

tives are considered the trend indicates 10.2 eV as the 

best fit for the Se level in (F2P)2Se. 	The Y lone pair 

levels of the H2Y44  and (MH 	(Y=0, S or Se; M=C, Si 

or Ge) group of compounds are depicted in Figure 2.2 

alongside those of (F2P)2Y. 	On these grounds the P lone 

pairs are assigned as 10.7 eV with the Se lone pair at 

10.2 eV. 

For a molecule of the type (F2P)2Y with C2  symmetry 

the P lone pairs and the Y lone pair would have bands of 

a1, b1  and b2  symmetry for which overlap would be possible. 

But although (F2P)2S and (F2P)2Se are assumed to tend to 02v' 

(F2P)20 does not have this symmetry, 29  and these assignments 

must therefore remain extremely tentative. 

Of the remaining bends, those at 14.5 eV and 141 eV 

may correspond to the two P-S and two P-Se bonding levels. 



840 vs,br 810 vs,br 

618 m 

579 in 570m 

524 w 
514 w 
507 w 

498 m 
462 w 

447 ms 436 s 

407 w 
401w 376m 

319m 318m 

Infra red 

Gas 	Solid 

TABLE 2.4 

Vibrational Spectra of (F2P)25 

Raman 

Matrix 	Liquid Solid Assignments 

855 w,br p 860 mw 
835 w,br ? p 844 m .., 	(PF) 
820 w,br ? dp 814 m 

791m 
631 w,p 621 w 

580 s,p 571 s V
s
(PsP) 

558s 
515 m,p a 	(PB'2) 

490 vw, ? dp 
454 m 

444 m,dp 434 m Va 

408 s,p 402 m (PB'2) 

318 irw, 	? dp 319 w p (PB'2) 
253 m 

237 s,p 234 s a OP) 
125 s,dp 133 s T 2) 

s = strong, m = medium, 	w = weak, br = broad, 
v = very, p = polarised, dp = depolarised 

444 m 
/407 m 
380 m 

322 m 

130 w 
Note: 	 -1 (a) Not studied above 500 cm 



TABLE 2.5 

Vibrational Spectra of (F2P)2Se 

Infra red Raman 

Gas Solid Matrix Liquid Solid Assignments 

850 vs,br 845 vw, ? p 840 w (PF) 
833 sh 820 viii, 	dp 810 w } 

800 	vs,br 

599m 612w 580 vw, ?p 

486  518s SlSvvw, ?p 
} (PF) 

482 in, p 476 s 

443 m 433 ms 443 in 445 vw, dp (PSeP) 
428 m, 

405 in 402 rn 
} 	W (PF2) 

399 m 393 m, p 395 in 

368 ms,br 365 m 365 rn,dp 355 s Va (PSeP) 

321 m 
292 
274 

in 
in 255 w, dp 256 m p (PF2) 

215 s, p 215 s 8 (PSeP) 
95 m, dp T (PF2) 

Note: 
(a) Not recorded above 500 cm. 	s = strong, 	m = medium, 	w = weak, 	br = broad, 

v = very, 	p = polarised, dp = depolarised. 



TABLE 2.6. 

Vibrational modes of (F2P)2Y, with 02V  symmetry 

P-F stretch 

P-Y stretch 

a1  a2  b1  b2  

PF2  scissors 

PF2  rock 

PF2 wag 

PF2  torsion 

PYP bend 
	

/ 
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The F lone pairs and P-F bonding orbitals are at typical 

values. 42 

2.5.. Vibrational Spectra 

These are given in Tables 2.4 for (F2P)2S and 2.5. 

for (F2P)2Se and comprise the gas, solid and matrix 

isolated solid infra red spectra, and the solid and liquid 

Raman spectra. 	The matrix material for the infra red 

spectra, recorded at 8K, was argon, in which the compounds 

were diluted by volume approximately 800 to 1. 

The vibrational spectra are very difficult to assign, 

since all bands are of fairly low frequency, and although 

the molecular symmetry is unknown there is likely to be 

extensive coupling of modes, the concept of group frequencies 

not being particularly helpful in this case. Although it 

is the conformation of the fluorine atoms that determines 

the overall molecular symmetry, initial results from an 

electron diffraction study of the structure of (F2P)2Se 

indicate that the structure could be considered in terms 

Of C2  symmetry with some torsional distortion. 	On the 

basis that the structure does tend to C2  symmetry the 

vibrational modes have been determined, Table 2.6, and the 

assignments of Tables 2.4 and 2.5 given. 

In both compounds PF stretching frequencies occur 

around 840 cm -. 	The next strongest bands in the infra 

red spectra of both molecules are at 447 cm 	and 368 cm- 

and both are of medium intensity and depolarised in the 

liquid Raman. 	Thus these are assigned to the asymmetric 
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PSP and PSeP skeletal stretches. 	Bands at 125 crn and 

95 cm in the Raman spectra could be torsional modes, 

whilst those at 237 cm and 215 cm and polarised, are 

probably the a1  skeletal bends of (F2P)2S and (F2P)23e 

respectively. 	Of the remaining a1  bands, scissors and 

wags of the PF2  groups are expected 46 around 500 cm and 

400 cm-1. 	The polarised bands at 515 cm and 408 cm, 

for sulphur, and 482 cm and 393 cm, for selenium, are 

correspondingly assigned to these modes, with their 

analogous b2  type vibrations being of similar energy. 

The skeletal PYP symmetric stretch, which could well couple 

strongly with any of the other a1  modes, must be assigned 

to the remaining polarised band. 	This produces an assign- 

ment of 580 cm in (F2p)2S and 428 cm in (F2P)2Se. 

Comparison of the PYP skeletal stretches with the 

analogous stretches in other compounds containing Group VI 

elements is not unfavourable. 	The averages of the symmetric 

and asymmetric stretches for (F2P)2S (512 cm) and (F2P)2Se 

(396 cm) are in reasonable agreement not only with 

(H3Si)2S (500  cm) and (H3Si)2Se (388 cm),4  but also 

with [(cF3)2P]2S (519 cm 1) and [(CF3)2P]2Se  (445 Cm_1).48 

These values also lie close to the observed ranges of 

stretching frequencies in a series of trico-ordinate 

phosphorus compounds containing the P-S-(C) linkage, given 

as 553 - 564 cm and 440 - 492 cm', and to the value 

of 350 cm-1, predicted for the P-Se-(C) linkage.4 
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2.6. Nuclear Magnetic Resonance Sectra 

The n.m.r. parameters of (F2P)2S and (F2P)2Se have 

been discussed previously in Chapter 1 and the 31P spectra 

of these compounds are presented in Figures 2.3 and 2.4. 

For (F2PSe, one further coupling constant is given here, 

1J(31P77Se) = + 365 Hz. 	This value is larger than that in 

Me2PSeMe,5° - 205 Hz, but comparable with four co--ordinate 

organo-phosphorus compounds containing P-Se single bonds 

such as Me2P(S)SeMe5°  and (C6H5)(t-C4H9)P(Se)SeMe51  which 

have .1J(PSe) coupling constants of -341 Hz and ±358 Hz. 

respectively. 	The presence of the electronegative fluorines 

in (F2P)2Se seems to have a similar effect in increasing 

the magnitude of the selenium-phosphorus coupling constant, 

when compared with Me2PSeMe, to that observed for Se = PF2H52  

and Se = PPh2H,53  which have 1J(PSe) of -1046 Hz and -740 Hz. 

Consideration of P,Se, 4  where the three basal phosphorus 

atoms have 
1J(PSe) of ±536 Hz compared with the value of 

±263 Hzfor the same coupling to the apical phosphorus, 

emphasises the extreme sensitivity of this coupling to 

substituents at both elements. 

Reactions 

Of the many reactions that could have been tried, only 

a few were attempted in an effort to gauge the scope of 

(F2P)2S and (F2  P)as reagents. 	
Most of these were con- 

centrated towards the behaviour of (F2P)9Se to P-Se bond 

cleavage, none of its possible reactions as a Lewis base, 

such as transition metal co-ordination complex and adduct 

formation, being investigated. 
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2.7. Reaction of (F2P)2S with HPMe2  

The one reaction that was undertaken with (F2P)2S 

was done in an n.m.r. tube with an equimolar amount of 

FMe2  and the products were identified by their n.m.r. 

parameters. 	No (F2P)2S remained, but some BIPMe2 (6('l P)= 

-99.1 p.p.m.) was left after about 30 min.s at room temper-

ature, at which time the solution was yellow with a yellow 

precipitate also present. 

In the 1H spectrum the principal products were 

identified as S=PHMe255  and Me2P(S)PMe2, 6  but with 

S=PF'2H52  also present, and some smaller unassigned peaks 

in the methylphosphine region at ca. 28. 	These compounds 

were observed and confirmed in the 31P spectrum by their 

characteristic phosphorus chemical shifts. 	In addition, 

PF3  accounted for most of the F 2  P units present, and so 

all but one very minor product could be assigned in terms 

of known compounds. 

This remaining one created somewhat more difficulty 

with two regions in the 31P spectrum, +130.8 and -39.9 p.p.m., 

which seemed to go together since a doublet splitting of 

342 Hz was present in both. At the higher frequency half 

of the spectrum, a triplet coupling of 1260 Hz indicated 

that two fluorines were bonded to this phosphorus, which 

at 130  p.p.m. seemed to come in the trico-ordinate F2P- 

chemical shift range. 	These two fluorines also produced 

a triplet splitting of 23 Hz in the -39.9 p.p.m. part of 

the spectrum. 	In both regions there appeared to be proton 

coupling from CH 3
-groups, which could be removed by proton 
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noise decoupling, but the weakness of the sample and poor 

resolution prevented any proton couplings being measured. 

Of the possible formulations for this compound, 

F2PPMe21  though agreeing with the Me
2P- 8(31P) region at 

-40 p.p.m. does not fit for the difluorophosphine 5(31P) 

which in PF2H and F2PPH213  comes at +224 and +294 p.p.m. 

Compounds containing (S)PMe2- units tend to give higher 

6(31P) than the -40 p.p.m. required here, e.g. (S)PMe2SeMe,50  

+41.0 p.p.m., and S=PMe3,57  +30.9 p.p.m. 	Since (S)PF2X 

compounds give high phosphorus chemical shifts, (e.g. X=H, 4  

SSnC1Me2,58  SSiMe3;58  o(31P)=62, 98 and 88 p.p.m.) (S)PF2PMe2  

produces the best approximation to the parameters, 	there- 

fore, with pIII_pV bonding giving the high 1J(PP) of 342 Hz, 

but which assumes a phosphorus chemical shift for the 

unit of 131 p.p.m. 	Obviously further information 

is needed to identify this particular compound. 

From the diversity of products it seems that several 

reactions are taking place involving not only the initial 

reagents, but also products formed. 	The reaction is 

certainly more complicated than expected, viz, simple P-S 

bond cleavage to give S=PF'2H and F2PPMe2, since neither of 

these were found. 	Extension to H2PMe and PMe3  may be of 

interest for both (F2P)2S and (F2P)2Se. 

Reactions of (F2P)2Se 

2.8. Reaction of (F2P)2Se with HX(X = Cl, Br, and CN) 

With hydrogen halides, (F2P)2Se gave quantitative 

yields according to Equation (9); 
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E2PSePF2  + FiX 	PF2X + Se=PF2H ............. (9) 

This is in agreement with the behaviour of I-fBr towards 

(F2P)2019  where it was postulated P-O bond cleavage was 

followed by rapid rearrangement of F2POH to the more 

stable O=PF2H, but contrasts with the trifluoromethyl 

analogues where reaction simply gives (CF 3)2PX and (CF3)2PYH 

(Y=0,59S 60 or Se 
61). 	The fluoro- and trifluoromethyl- 

compounds, x2P(s)SPX2,62  undergo a similar P 
III-  S bond 

cleavage but the thiol moiety so formed cannot rearrange. 

(s)Px2  SPX 2  + HC1 	> (s)x2PSH + PX2c1 ........ (10) 

(x = F or CF 3) 

No reaction took place between (F2P)2Se and HCN. 

2.9. Reaction of (F2P)2Se with ZH3  (Z=N, P or AS) 

While it was hoped that successive reactions of the 

type in Equations (11), (12) and (13) would occur, only 

ammonia reacted to give a small amount of F2PNH2. With 

PH3  and AsH3  even after 50 hours at room temperature no 

products were observed. As expected there was no reaction 

between F2PNH2  and (F2P)2Se. 

(F2P)2Se + ZH3 	F2PZH2  + Se=PF2H ...........(ii) 

(F2P)2Se + F2PZH2 - 	(F2P)2ZH + SePF2H .......(12) 

(F2P)2Se + (F2P)2ZH 	(F2P)3Z + Se=PF2H ......(13) 

(z=N only) 

Presumably the hydrides were not acidic enough, nor the 

formation of Se=PF0H a strong enough driving force, to allow 

reaction. 
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2,10. Reaction of (F2P)2Se with H,,Y ( Y = 0, S, Se or Te) 

By analogy with the hydrogen halides, reaction was 

expected to proceed by Equation (14) 

(F2P)2Se + H 2 	SePF2H + Y=PF2H ...........(l/4) 

All H 2  Y reacted to give Se=PF2H, but with H 2 
 0 and H2Te 

further reactions prevented the observation of 0=PF2H and 

Te=PF2H. 	In the former case the 31P spectrum indicated 

PF3, and a compound with a doublet, 1J(PH) of ca. 780 Hz, 

but the signals were broad and ill-resolved. 	The 

spectrum showed no coupling of this magnitude but four broad 

peaks centred at 9.43  8 with couplings of Ca. 80 Hz. Thus 

decomposition or further reaction occurred while the 

observations were being made. 	It has been reported by 

Centofanti et al. 65  and Charlton et al. 8  that decomposition 

follows the path:- 

2 0=PF2H - 	PF3  + FPO 2H2 •.................(15) 

and that further reaction can produce 0=PH(OH)2. 

Since previous attempts to form Te=PF'2H6  had 

resulted only in PH3  and Te, a reaction between H2Te and 

(F2P)2Se was attempted at reduced temperature. 	No 

reaction occurred onwa'ming from 200K to 273K; above this, 

rapid deposition of black metallic tellurium took place and 

Se=PF2H, PH3  and PF5  were identified. 	No (F2P)2Se remained. 

The presence of PF5  indicates that reaction other than 

reduction of Te=PF2H is taking place, perhaps involving HF 

attack on Se=PF2H or (F2P)2Se. 

For the H 2  S and H2
Se systems reaction was slow, going 

to completion only after about one hour at ambient temperatures. 
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Since these reactions might involve the formation of 

intermediates of the type F2PYH, a low temperature n.m.r. 

study was tried using H2Se and (F2P)2Se. 	No evidence for 

the existence of F2PSeH was found, rearrangement,if it is 

such, being rapid even at 200K. 

2.11. Reaction of (F2P)2Se with CH3YH (Y = 0 or s) 

From the behaviour of I-TX and H2Y, reaction could be 

expected to give Se=PF2H and F2PYCH3. And since F2POCH34  

and 0=PF2(CH3),6  and also F2PS0H323  and S=PF2  (CH 3)65  are 

known to be stable to interconversion, if formed, F2POCH3  

and F2PSCH3  should not rearrange. 	In fact both reactions 

do follow Equation (16), rapidly in the case of methanol, 

with no (F2P)2Se left after only a few minutes, but more 

slowly with CH3SH, reagents still remaining after an hour 

at room temperature. 

(F2P)23e + HYCH3  -> Se=PF2H + F2PYCH3  .......(l6) 

(Y = 0 or S) 

In addition to the major products both reactions 

contained a trace of F2P0C2H5 65   from ethanol (an impurity 

in the CHC13  n.m.r. lock) reacting with (F2P)2Se. 

Extension to other alkyl- or aryl-alcohols may therefore 

provide a general route to F2POR (and use of RSeH to the 

novel RSePF2  group of compounds). 	Also observed in the 

spectrum of the methanol system was a minor product 

consisting of a doublet of doublets of quartets whose chemical 

shift and coupling constants appeared to fit the formulation, 

Se=PFH(CH3). 	How this could have arisen is unknown. 



TABLE 2.7 

N.m.r. parameters of the (F2P)2Se/CH3YH reaction products 

Reactants Products 6(H) 6(CH3) o(P) 1J(PF) 1J(PH) 2J(HF) 2j  (PH) 3J(PH) 3J(HH) 4J(FH) 

(F2P)Se F2POCH3  - 3.88 112.4 1290 - - - 	8.3 - 	0.0 

CH OH Se= PF H 8.85 - 78.1 1193 705 91 - 	- - 	- 
Se= PFH(CHI3) n.o. n.o. 80.5 1135 675 n.o. 15.0 	- n.o. 	- 

(F2P)2Se F2PSCH3  - 2.49 237.1 71290 - - - 	+7.4 - 	+2.0 

CH SH Se= PF H n.o. - 78.9 1219 721 91 - 	- - 	- 
F2POC2H5  n.o. n.o. 114.3 1315 - - - 	7.5 - 	n.o. 

See Experimental section for chemical shift conventions 

See text. 

n.o.; not observed. 
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The various n.m.r0 parameters of the reaction products 

are given in Table 27, with the relative signs of coupling 

constants of F2PSCH3  (related to 1J(PF) which was assumed 

negative' 6) determined by spin-tickling experiments, 

and 1H-[31P]. 	The details are given in the 

Experimental section. 	Signs could not be related in 

F2POCH3, J(FH) being zero. 

The MH3SPF2  system (M=Si or Ge) has slightly larger 

3J(PH) and 4J(FH) than the corresponding methA analogue, 

and it is interesting to speculate whether F2PSCH3  will 

exhibit temperature dependent behaviour similar to that 

seen in F2PTeSiH3  (cf. Table 1.3) 

The formation of F2POCH3  and F2PSCH3  has an obvious 

parallel with the reaction of CH3OH or CH3SH with 

(S)PF2S9F222  which also involved cleavage of the P III-  S 

bond, but in which none of the expected F2PYCH3  was detected. 

(s)PF2sPF2  +'HYCH3 > (s)PF25H + [F2PYCH31 •....... (17) 

(Y = 0 or s) 

2.12 Reactions of (F2P)2Se with HM(CO)5  (M = Mn or Re) 

The products of these reactions, identified by their 

n.m.r. parameters were PF2H and Se=PF2H, with either an orange 

precipitate, in the case of manganese, or a white precipitate, 

in the case of rhenium. 	In both cases, reaction was rapid, 

with some (F2P)2Se remaining. 

These data can be rationalised as another example of 

the general HX reaction, with formation of an F2PM(CO)5  

intermediate, followed by its reaction with HM(C0)5 



N.m.r. parameters of the products of reaction between (F2P)2Se and C1  

Product _ 6(F) 1J(P 1J(PSe) 2J(FSe) Comments 

 PF2C13  -8.6 1083 

119.5 1083 
 Se= PF2C1 46.5 1304 1200 

-2.4 1304 165 

 PF C1 -25.7 1087 
31.5 1075 

 PF4C1 -50.1 1030 
-23.5 1032 

 FF014  -23.4 1020 
133.1 1012 

 Se=PF2X 52.5 1240 n.o. Triplet 
-12.6 1246 n.o. Doublet 

 ? 	(b) 	-102.0 n.o. Singlet 
 PF3  n.o. -36.8 1401 

 ? n.o. -45.7 1171 Doublet 
 PF5  n.o. -67.3 967 

n.o. = not observed. 
 See experimental section for chemical shift conventions. 
 See text. 
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(F2P)2Se + i-IM(CO)5  - 	[F2PM(CO)5] + SePF2H .......(l8) 

[F2PM(co)5] + HM(co)5  -- M2(CO)10 + PF2H..........(19) 

[ ] = not observed 

Thus Mn2(CO)10  and Re2(CO)10  would correspond to the 

orange and white precipitates, 66 though these were not 

isolated and identified as such. At no time however was 

the postulated intermediate, F2PM(CO)5, observed. 

2.13. Reaction of(F2P)2Se with C12  

(F2P)2Se and C12  were reacted in the ratio 1:2 in 

the expectation of obtaining oxidation products of the 

F 2  P moiety. 	The reaction was fast at room temperature, 

the solution becoming dark yellow and a black precipitate 

forming. 	No (F2P)2Se remained unreacted and at least 10 

products were formed. 	Of these, there were four main 

ones, with PF2C13  being of greatest intensity in the 

and 19  F spectra. 	The others were PF3C12, PFCl and the 

novel compound Se=PF2Cl. 	All remaining products were 

much less abundant. 	Table 2.8 lists the data for the 

compounds in descending order of amount as judged from 

the spectra. 

The assignment of the major product was straight-

forward except for Se=PF2C1, but selenium-77 satellites 

in both 31 	19 P and F spectra and the trends in the fluorine 

and phosphorus chemical shifts for the series O=PF2X, 

S=PF2X and Se=PF2X (X=H52  or C131,67) supported this 

interpretation. 	The couplings 1J(PSe) and 2J(FSe) are 

larger than those found in Se=PF2H52  (viz. _1046 Hz and 
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-99.6 Hz) and 1J(PSe) is well above the typical range for 

organo-selenophosphoryl compounds,51  Ca. 950 - 650 Hz, where 

for example, Se=P(OMe)353  has a particularly high 1J(PSe) 

of -963 Hz. 	If, as it seems, increasing the electro- 

negativity of the substituents on phosphorus increases 

1J(PSe), then Se=PF3  may provide a maximum value. 

Of the minor products, one had a high positive 

phosphorus shift which indicated an Se=PF2X compound, but 

was too weak for selenium satellites to be seen. 	Another, 

a singlet, had a particularly low phosphorus shift (-102.0 

p.p.m.), but could not be attributed to Pc15  (-80 p.p.m.). 

The effect of chlorine on the trifluoromethyl analogue 

[(0F3)2P]2 Se,  61  gives P(CF3)2C13  and P(CF3)2C1 as the major 

products, with selenium being deposited. 	For (F2P)2Se, a 

similar route would yield PF2C13  but with rearrangement of 

the intermediate F2PSeC1 to the more stable Se=PF2C1 taking 

place rather than elimination of selenium. 
Cl 

(F2P)2Se + Cl2  - PF2C1 + [F2PSeC1] 2> PF2C1 + 

Se=PF2C1 ...(2O) 

[ ]=not observed 

While phosphorus-selenium bond cleavage by chlorine accounts 

for the two main oroducts, the range of others implies that 

disproportionation and further chlorine oxidations must be 

occurring to an appreciable extent. 

2.14. Reaction of (F2P)2Se with Y=PF2H (Y = S or Se) 

In the course of some reactions, (F2P)2S or (F2P)2Se 

was present with either S=PF2H or Se=PF2H. In neither case 



was reaction observed. 

Summary of Reactions 

Figure 2.5 depicts those reactions attempted for 

(F2P) 2Se involving P-Se bond breaking by various acidic 

hydrogen containing molecules. 	There is no reason to 

suppose that (F 2P) 25 would be any less reactive. 
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CHAPTER 3 

EXCHANGE REACTIONS BETWEEN BROMODIFLUOROPHOSPHINE 

AND SILYL DERIVATIVES OF GROUP V ELEMENTS 

Introduction 

The measure of success obtained with exchange 

reactions involving the Group VI elements suggested the 

extension of this type of reaction to Group V compounds. 

Of these, several dif'luorophosphine derivatives viz. F2PNH2,9  

F2PPH2113  F2PPF212  and (F2P)3P,14  and one mixed silyldi-

f'luorophosphine derivative, F2PN}ISiH3,17  were already known. 

Although not prepared by an exchange process, the existence 

of the latter was particularly encouraging in that it 

showed mixed compounds of this type could be formed, and 

were stable. 

3F2PNH2  + 2SiH3Br -- PFBr + NH4  Br + 2F2PNHSiH3  ....(i) 

However, one potential route to further-substituted dif'luoro-

phosphine derivatives of nitrogen can be eliminated since 

silylaminodifluorophosphine was prepared in the presence 

of PF2Br, and exchange of a silyl for a difluorophosphine 

group does not take place. 

F2PNHSiH3  + PF2Br --" F2PNEPF2  + SiH3Br ............. (2) 

Despite' this, the susceptibility of silicon-phosphorus 

bonds to cleavage by phosphorus-halogen bonds has been 

shown in the reaction of (H3  Si) 3P with trihalogenophosphines.68  

PBr3  and PC13  both react to givephosphorus and silyl 

halide: PF3  however, does not react with (H3Si'3P. 



No. 	Reactants 

PF2Br + 

1. 	N(SiH3)3  

TABLE 3.1 

PF2X/(H3Si)Z H(3)  Reaction Products 

Molar Ratio 	Solvents 	 Products 

PF2X: Reactant 

3:1 	 a 	SiH.Br 
SiH2F2  
SiH4  

SiH3Br F2PNHS1H3  
N(SiH3)3  
SiH3Br F2PP ( SiH3  ) 2 

SiH3Br PH3  

H2PSiH3  
F2PPHSIH3  
F2PP(SiH3) 

SIH3Br PH3  

F2PPH2  
none observed 

HN(SiH3)2  

P(SiH3)3  

HP(S1H3)2  

H2PSIH3  

PH 3' N(CH3)3 

PF2C1 + 

S1H3Cl, NH3  

Note: 
(a) TMS/C6D6/CC13F 	(b) C6H6/C6D6/ CC13F 

2:1 
	

b 

3:1 
	

b 

2:1 
	

b 

2:1 
	

ro 

3:1:3 

2:1:4 
	

None SiH3F 
	

PF3  

N ( SiH3  ) 
	

F2PNH2  
F2PNH. SiH3  

Orange 
solid 

White 
solid 

Yellow 
solid 

Yellow 
solid 

Yellow 
solid 

Brown-Yellow 
solid 

White 
solid 



TABLE 3.2 

Silyl and Di±'luorophosphine Derivatives of Ammonia and Phosphine 

Nitrogen 
NH3  

F2PNH2 H2NSiH3 

(F2P)2NH F2PNH.SiH3  S 	
I(SiH3)2 

(F2P)3N (F2P)2NSiH3  F2PN(S1H3)2 	 N(SiH3)3  

Phosphorus 
PH3  

F2PPH2  H2PSiH3  

(F2P)2PH - - F2PPH.SiH3  r(SiH3)2  

(F2P)3P (F22 P) F2PP(SiH)2  P(SiH3)3  

Note: 

Compounds already knona 

Compounds observed as products, this work. 

+ Subsequently prepared, cf. Chapter 4. 

Subsequently prepared, J. Wright personal communication. 
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3.1. Results and Discussion of Reactions 

The reactions attempted are summarised in Table 3.1, 

and all except the one between ammonia and a chlorosilane-

chlorodifluorophosphine mixture were carried out in n.m.r. 

tubes. 	All products were identified by n.m.r. spectroscopy. 

Experimental details are presented in Chapter 9. 

The table shows that in all cases where exchange was 

possible SiH3Br was produced. 	All systems also gave 

solids, indicating that in general, products were not stable 

over long periods. 	Rates of exchange varied such that the 

HN(SiR3)2  and FIP(SiH3)2  systems were the only ones with no 

starting material remaining after about one hour at room 

temperatures; the other systems were much slower. 	For 

those reactions in which exchange did occur, it involved 

the substitution of only one silyl group, even with excess 

bromodifluorophosphine present. 	The compounds observed 	in 

the course of this work, and those previously known, are 

indicated in Table 3.2. which shows all possible products 

from these reactions. 

Both trisilylamine and trisilyiphosphine were slow to 

react, with the former after 9 days giving no new silyl-

nitrogen compounds, but a large amount of bright orange 

solid and bromosilane. 	The 31P spectrum indicated only 

PF2Br. 

Although slow, P(SiH3)3  did react, and after 9 days 

had gone an estimated 85% to completion of Equation (3). 

P(SiH3)3  + PF2Br 	> F2PP(SiH3)2  + SiH3Br ........ (3) 



TABLL_12.  
N.rn.r. 	parameters of some Silyl- and Difluorophosphino- 

Phosphine Derivatives 

Compound 

F2PP' (SiH3)2 	F2PP'H. S1H3 	F2PPtH2  HIP'(SiH3)2  P'(SiH3)3  

5(H) - n.o. 2.27 0.50 - 
5(SiH3) 3.82 n.o. - 3.72 3.93 

8(F) -84.3 n.o. -87.9 - - 
288.7 291.3 292.5 - - 

6(pt) -211.7 -168.0 -137.6 -322.3 _375 

1J(PF) -1225 1200 1185 - - 
]-j(ppt) -301 255 213 - - 
1J(P'Si) +38 n.o. - n.o. +42.2 

1J(P'H) - n.o. 187.5 +186 - 
2J(P'F) +70 78 82 - - 
2J(P'H) +17.0 n.o. - +17.0 _16•9(e) 

2J(PSI) ±24 n.o. - - - 
2J(PH) - n.o. 16.5 - 
3J(PH) +9.1 n.o. - - - 
31-(HF) - n.o. 22.0 - - 
3J(HH) - n.o. - +5.1 - 
4J(FH) +2.5 n.o. - - - 
References (b) (c) (d) 

Note: 

For chemical shift conventions see experimental section. 

Reference 13. 

Reference 70. 

Reference 71. 

See text. 
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Despite the 1e\9fh of reaction time and the excess of 

PF2Br (one PF2  for every silyl group in P(SiH3)3), no 

further difluorophosphine substitution into F2PP(SiH3)2  

took place. 	This is in accordance with the reaction of 

PF2Br with tris(trimethylsilyl)amine to give only bis(tri- 

methylsi1yl)dif'luorophosphino-amine.6 	It is possible 

that the presence of the PF2  group affects the reactivity 

of the remaining Group V element-silicon bonds. 	It is 

more likely that steric factors, such as crowding of the 

central phosphorus or nitrogen atom, are dominant. 	The 

latter interpretation is made particularly favourable by 

the tendency of PF2  groups to adopt structures maximising 

H"F interactions, as in the case of F2PNHSiH3J7  This 
would cause more crowding in the F 2  P substituted molecules 

than the unsubstituted N(SiMe3)3  or P(SiH3)3. 

The novel compound (difluorophosphino)-disilylphosphine 

was characteriséd by its n.m.r. parameters, the magnitude 

and signs of which were determined by direct observation 

and spin-tickling experiments. 	Details of the parameters 

are given in Table 3.3., and of the experiments in Table 

9.3.1. in the experimental section. 	The signs of coupling 

constants, which formed a self-consistent set, were related 

on the assumption that 
1  K(PF) was negative.3555,72 Generally 

these agreed well in magnitude and sense with those in 

analogous systems. 	One difference however was 2J(PH) which 

in P(SiH3)3  had been found to be negative.71  Consequently, 

spin-tickling experiments were performed on 14-IP(SiH3) 2  

(Table 9.3.2.)which confirmed the findings in F2PP(SiH3)2, 

even though the signs in the former were related on the 
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separate assumption that 1K(PH) was positive. 73  The dis-

parity with the findings in P(S1H3)3  may he dueto neglect 

in that work of the negative gyromagnetic ratio for silicon, 

which when taken into account makes 2J(PH) and 4J(ii) 

positive, all other signs remaining as before. 	As those 

signs were based on 1K(SiH) being positive, the 2J(PH) has 

been found to have the same sign in three different compounds 

on three separate assumptions. 

The long range couplings 3J(PH) and 4J(FH) in 

F2PP(SiH3)2  are of the same sign, and similar in size, to 

those in F2PNHSiH374  and in F2PYSiH3  (Y = S, Se and Te). 

When HNSiH3)2  reacted it did so rapidly to form 

F2PNHSiH
39 
 and bromosilane with which further reaction 

occurred to give N(SiH3)3. 

HN(SIH3)2  + PF2Br 	> F2PNHSiH3  ± SiH3Br ......... (4) 

4HN(SiH3)2  + SiH3Br 	-> 3N(SiH7)3  + NH4Br ,....... (5) 

The comparable I-fl(SiH3)2  reaction was not so straight-

forward. Although exchange as in Equation (4)  did take 

place, the hitherto unknown F2PPHS1H3  was detected only in 

very low concentration, preventing its complete n.m.r. 

characterisation. 	To account for this, and the other 

products, it is possible that the SiH3Br formed reacted 

further with F2PPHSiH3  to give F2PP(SiH3)2, and that any 

Fmr liberated could cleave Si-P bonds to H2PSiH3  and PH 3' 

BP(SiH3)2  + PF2Br -' F2PPHSiH3  + SiH3Br ........, (6) 

Lack of intensity, and peaks arising from F2PP(SIH3)2  and 



TABLE 3.4: 

15N and 31P Chemical Shifts of Silyl- and Difluorophosphino- 

Group V Derivatives 

____ Reference 

Compound 6(15N) 831 (P) N 	P 

ZH3  -21 -243 75 

H2ZSiH3  -278 

F2PZH2  21 -138 74 	13 

HZ(SiH3)2  -69 -322 74 

F2PZH.SiH3  14 -168 74 

(F2P)2zH 86 

Z(51H3)3  -80 -375 74 

F2PZ(SiH3) 2  -212 

(F2P)2ZSiH3  

(F2P)3z 139 46(b) 14 

Note: 

For chemical shift conventions see experimental section. 

Calculated from reference 14, which gives ()pF - o(p) 
= 245 p.p.m. 
Typical 	PF 2 

assumed 291 p.p.m. (from F2PPH2, 

F2PP(SiH3)2  and F2PPHSiH3) 
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H0PSIH3  in the 'H spectrum prevented parameters, other 

than those given in Table 3.3., from being measured for 

F2PPHS1H3. 
Silylphosphine underwent slow reaction to give the 

expected exchange product F2PPH2. 	Phosphine, the major 

decomposition product of F2PPH2  was also observed. 

H2PS1H3  + PF2Br - F2PPH2  + SiH3Br ............. (7) 

In the vigorous reaction between PH 3Y 
 PF2Br and 

N(CH3)3  no products other than brown-yellow solidswere 

detected. 	The remaining reaction, involving a mixture of 

chlorosilane and chlorodifluorophosphine with ammonia, 

gave as major products F2PNH2, N(SiH3)3  and F2PNHSiH3; no 

other mixed amines were formed wkc.k.. 	Z, 	bat-k. 6t13  

3.i4.. FP 9rop.. 

3.2. Chemical Shifts 

The 15N and 31P chemical shifts of the silyl-- and 

difluorophosphiflo- Group V derivatives are given in 

Table 3.4. 	Presented graphically, Figures 3.1. and 3.2., 

these indicate some striking trends into which the new 

compounds, F2PPHSiH3  and F2PP(SiH3)2, fit. 

For 6(15N) and 5(31P), replacement of a hydrogen atom 

by a silyl group produces a shift to low frequency, 

characteristic of silyl compounds, and observed also for 

silyl derivatives of 19 F76 77Se, and l25Te.77 Additional 

F2   units however, produce large steady increases in 

frequency, indicative of deshielding, of Ca. 50 p.p.m. for 

8(15N) and Ca. 100 p.p.m. for 6(31P). 	This is perhaps 

due to the electronegativity of the F2   group affecting the 
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paramagnetic term in the chemical shift which is thought to 

dominate the total screening constant for o( N) and 5(31p). 

75,78 These steady changes make it possible to predict, 

within a few p.p.m., the chemical shifts of those compounds 

as yet undiscovered. 
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CHAPTER L 

THE PREPARATION AND PROPERTIES OF BISLUOROPHOSPHO 

AND TRI S ( DI FLUOROPHO SPRINO) ANINES, 	 AND 

Introduction 

Since the exchange reactions discussed in the previous 

chapter failed to produce novel difluorophosphiflo-amines, 

more direct routes to these compounds were investigated. 

Although ammonia and halodifluorophosphiflehad been shown 

to react in the gas phase to give aminodifluorophosphifle, 

F2PNH2,9'79  further reaction to the secondary and tertiary 

amines, (F2p)2NH and (F2P)3N, was slow and incomplete. The 

reaction is similar in this respect to that of ammonia and 

chlorobis(trifluoromethYl)phOsPhifle which gives only primary 

amine, unless a base, trimethylamine, is added, when 

secondary amine is formed. 	To produce the tertiary amine, 

[(F3C)2P]3N,  it is necessary to go by way of the anion 

[(F3c)2P]2N -8O In an adaption of this method, namely 

the reactions of bromo- or chlorodifluorophOSphifle with 

ammonia in the presence of trimethylamine, it was found 

that by carefully controlling the conditions both secondary 

and tertiary difluorophosphino-amines could be prepared 

without recourse to the [(F 2P)2
N] anion. 	The choice of 

trimethylamine was made because of its suitable volatility, 

and the need for a non-protonic base which would not cleave 

P-N bonds. 	The importance of the latter point is demon- 

strated by the ease with which methylamine reacts with 

(F2P)2  NCH 3  to form F2PMiCH3.81 



Results and Discussion 

L--.i. Preparation 

The investigation into the preparation of the 

secondary and tertiary difluorophosphino-amines was 

difficult and time-consuming since the volatilities of all 

three amines, and of Ne3, were so similar that separation 

by trap-to-trap distillationas impossible. 	Reaction 

schemes using methyllithium, or potassium phosphide, in 

an attempt to produce the [(F2P)2N]-  anion failed, as did 

the use of 2,6-dimethyl--pyridine as an alternative base to 

NMe3. 	The following methods were the best ones found of 

preparing and isolating these compounds. 

Bis- and tris(difluorophosphino)-amines were prepared 

from either ammonia or aminodifluorophosphine. 	For the 

preparations of the teritary amine that used NH3, it is 

possible to describe the gas-phase reaction by Equation [l] 

NH3  + 3PF2C1 + 3NMe3  - (F2P)3N + 3[Me3NH]Cl ....... [1] 

However, ammonium chloride will also be formed to some 

extent, and therefore if NH3, PF2Cl, and NMe3  are used in 

the ratio 1:3:3,  complete conversion of the NH3  to (F2P)3N 

or [NH 41C' will take place and some NMe3  and PF2C1 will 

remain unreacted. 	In practice, no Me  was recovered, but 

primary and secondary difluorophosphino-amines were present. 

While additional Me  and PF2C1 would be expected to 

increase the proportion of tertiary amine in the products, 

it was found that as the initial NMe .) :NH 3 ratio was increased 

beyond 3:1, so the total yield of amines decreased. 	It was 
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necessary therefore to prepare a mixture of amines and to 

estimate the extent to which reaction had occurred, usually 

by infra-red spectroscopy. 	Then to add more PF2C1 (about 

1.5 per N-H bond remaining) followed by more NIVIe3  (about 1.0 

per N-H bond). 	This procedure was repeated until reaction 

to tris(difluorophosphino)-amine was essentially complete. 

If any NNe3  remained unreacted, it was removed by adding 

boron trifluoride which gave a solid involatile adduct with 

NMe3, but did not appear to form a stable adduct at room 

temperature with (F2P)3N. 

An alternative method, which gave less complicated 

mixtures of products, and was therefore easier to regulate, 

started with aminodifluorophosphine, and initially used 

reagents in the proportions of Equation [2]: 

F2PNH2  + 2PF2C1 + 2NMe3  -- (F2P)3N + 2[Me3NH]C1 .... [2] 

The subsequent stages were exactly as in the former method, 

except that it was usually possible to gauge quantities so 

that use of BF  was unnecessary. 

Study of the reactions of (F2P)3N with various hydrides 

showed that the secondary amine could be prepared in a pure 

form by removal of one F 2  P group with a hydrogen halide. 

This seemed to bo the best method of obtaining small amounts 

of really pure amine, and was the one adopted for the 

preparation of (F2P)2ND. 

A more direct route started with aminodi±'luorophosphine, 

chiorodifluorophosphine, and trimethylamine in the ratio 

1:2(excess):l, Equation [3] 

F2PNH2  + PF2C1 + NMe3  -* (F2P)2NH + [Me 3NH]C1 ....... [3] 
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This yielded a mixture of primary, secondary and tertiary 

amines in a ratio of approximately 30:65:5. 	When BF  

was added to this mixture, F2PNH2  decomposed (cf. Chapter 5), 

leaving a mixture of secondary and tertiary amines, 

inseparable by distillation. Alternatively, a hydrogen 

halide could be added to the mixture, destroying F2PNH2  

and converting (F2P)3N to (F2P)2NH. 

4.2. Reactions of (F2P)3N 

These were undertaken to determine the usefulness of 

(F2P)3N as a preparative intermediate, and eventually led 

to the best method of preparation of (F2P)2NH. 	Reaction 

with hydrogen halides was rapid for chloride and bromide, 

but slower for iodide, and resulted in cleavage of only one 

P-N bond per molecule, even when excess hydrogen halide 

was used. 

(F2P)3N + FIX -> (F2P)2NH + PF2X (x = Cl, Br, I) ... [41 

A small amount of white solid was formed, indicating -that 

further reaction did occur to a limited extent. 	However, 

as reaction of F2PNH2  with HX is fast, no other volatile 

products were observed. 	This rather surprising behaviour, 

with F2PNH2  and (F2P)3N being reactive, and (F2P)2NH being 

inert, is similar to that observed in the analogous series 

of (CF 3)2P- compounds, 
80  but contrasts sharply with the 

reactivity of (F2P)2NR towards hydrogen chloride. 82 

Group VI hydrides reacted in a manner similar to the 

hydrogen halides, but the presumed intermediates F2P-Y-H 

rearranged rapidly to the phosphorus (v) forms, Y = PF2H. 



-62.3(3) 

+150.3(l) 

+139.0(1) 

(-)1224(1) (b) 

+87.0(3) 

TABLE _/-i-.i 

N.rn.r. parameters of dif1uorophosphinoamifles 

FP'NH 	(F0P)015NH 
	

(F2P)315N 

o(1H) 

o(19F) 

6( 31P) 

o(15N) 

]j (PN) 

1J(NH) 

2J(PH) 

2- (NB') 

2J(PP') 

J(FH) 

3J(PF') 

4J ( FF') 

4J(.FF")  

+3.23(2) 

-58.1(2) 

+147.5(l) 

+21.4(2) 

-1200(l) 

+72.5(3) 

-80.4(4) 

+18.8(2) 

-6.4(4) 

+4.38(2) 

-62.0(1) 

+144.4(1) 

+86.3(3) 

-1253(l) 

+78.9(3) 

-74.7(2) 

+13.6(2) 

-3.6(2) 

+154(l) 

+11.2(2) 

+21.0 (5) 

+5.4(5) 

+5. 4(5) 

Note: 

Values of J are given in Hz. Estimated standard deviations 

are quoted in parentheses. 

Solutions in C6D6  :Me 4Si, ratio 1:1, at 308K. See 

experimental section for chemical shift conventions. 

J' 	 3  J(PF) + 2J(PF')I. 

Not determined due to complexity of spectra. See text. 
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As the remaining hydrogen is no longer acidic, further 

reaction did not occur. 

(F2P)3N + H 2  Y 	> (F2P)2
NH + Y=PF2H (YO, 4 Se, Te) .. [5] 

For selenium, the reaction was clean, and gave just the 

expected products. 	For sulphur, (F2P)2NH was obtained 

in high yield, but S=PF2H decomposed. 	For oxygen, both 

products underwent decomposition reactions, and PF3  was the 

main volatile product. 	For tellurium, the secondary amine 

remained intact, but the other products were PH 3' 
 PF3  and 

elemental tellurium. 	No Te=PF2H was observed. 

The reaction of (F2P)3N with chlorine seemed to involve 

P-N bond cleavage since PF2C1 was the only main product. 

Other minor compounds remained unidentified in the n.m.r. 

spectra. 

43. Spectroscopic Properties 

In compounds such as the difluorophosphino-amines, 

there is the possibility that the nitrogen atoms have a 

planar arrangement of ligands. 	The spectroscopic studies 

were therefore intended to give some indication of whether 

this was so, as well as to assist in the routine 

characterisation of the new compounds. 

N.m.r. parameters are listed in Table /-.l, together 

with those of F2PNH2, and were obtained mainly by direct 

observation of ]-H, 19F and 31P spectra. 	Information about 

the 15N spectra and signs of coupling constants were 

obtained by heteronuclear double resonance experiments, 

(listed in Tables 9.4.1. and 9.4.2.). 	The 15N chemical 



Figure 4.1 
'H n.m.r. spectrum. of (F221  215NH 

1J(1 N'H) 
	 •-'J( 19  F  1 H) 
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shift of (F2P)3N was found by selective noise-decoupling of 

15 	 3115 
the 	N spectrum while observing the 31P  15N splitting in 

the 	P spectrum, after the manner of Birdsall et al. 83  

The 'H spectrum of (F2P)215N11 appeared to be of the 

first order, the resonance being split by 15 31 
	19 N, 	P and F 

into a doublet of triplets of quintets, (Figure I..l); the 

spectrum similarly seemed to be first order. 	The 19F 

and 31P spectra, however, were of the second order, and 

showed long range PF and FF couplings. 	The spectra were 

analysed in terms of an [A[x]2]2MQ  spin system, 
25 assuming 

that M and Q caused only first order splittings of the A 

and X spectra. 	On cooling, the 19F spectrum became more 

complex, mainly due to changes in the long range J(FF), 

which were no longer equal. 	The only other coupling 

constant to change significantly was 2J(PP) which varied 

from 181 Hz at 223K to 154 Hz at 308K. 

The '9F and 31P spectra of (F2P)315N were complex, 

and full analysis for the [AX]213M spin system was 

impossible. 	However, it would appear that the long range 

JIFF) couplings are significant, probably of the same 

order of magnitude as in the secondary amine. 

Most of the observed parameters were as expected, 

an excption being 31P chemical shifts, which differed by 

small but significant amounts, the order being (F2P)2NH < 

F2PNH2  < (F2P)3N. 	The 15N resonance was shifted to high 

frequency on replacement of hydrogen by F2   groups. This 

probably reflects the electronegativity of the groups, 

rather than any 7--bonding involving the nitrogen lone pair 
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of electrons, as replacement of hydrogens by S1H3  groups 

results in a small low frequency shift .74  

The smaller absolute value of lJ(1SN1H)  i (F2P)NH 

than in F2PNH2  is surprising as this is normally associated 

with a smaller s-orbital contribution to the nitrogen-

hydrogen bond. 84  Increasing the number of F2P groups 

should, if anything, increase the s-orbital contribution 

to the remaining N-H bonds. 	However, 'J(NH) may also be 

affected by other factors, such as the presence nearby of 

electronegative atoms. 

The magnitudes and signs of the 1  J(31 P15  N) couplings 

are consistent with those few that have been determined 

previously. 26,74 

The small value of 2J(PP) in (F7P)2NH, and the 

probable smaller value in (F2P)3N, are perhaps the most un- 

expected parameters. 	A number of alkyl- and aryl-bis(di- 

fluorophosphino)amines have been studied, and the values 

of 2J(PP) in these all lie between 370 and 450 Hz. 11  More-

over, the magnitude of variation in 2J(PP) with temperature 

in (F2P)2NH is similar to that in (F2P)2NR.21'85 	It seems 

possible that this coupling constant is very sensitive not 

only to the intervening atom and its ligands, but also to the 

conformation adopted by the F 2  P groups, porhaps being 

related to the extent to which the phosphorus lone pairs 

interact. 	The small value found for (F2P)2018  could there- 

fore be related to the very wide angle at oxygen in this 

molecule, 29  while the much smaller angles likely in (F2P)2S 

and (F'2P)2Se would account for the large and temperature 

dependant 2J(PP) values in these compounds. 21,77 



TABLE 4,2. 

Vibrational spectra (cm) of (F2P)3N 

Raman 

I.r. 	(gas) (liquid) (CC13F solutionj Assignment 

1880 vw 2x939 

1750 vw 939+816, 912+838 

1167 w 816 + 363 

1075w 2x542 

1045 w 816 + 234 

1004 mw 542 + 468 

939 vs 936 w,dp 937 m 	) v (PN) 
912 vs 905 w,p 907 m 	) 
878 w,sh 

863 	P vs 858 	Q 874 m,p 869 s 

843 	P vs 
838 	Q 837 s,p (a) v (PF) 

833 ) R 
816 vs 805 rn,dp 805 in 

706w 363+345 

542 in 
558 
537 

vs,p 
vs,p 

557 
(a) 

vs 
) V 	PN) 

509 vw - 363+ 142 
503 vw 

468m 467m,p 466m ) 
450 in 447 m,dp 442 m 	) 8(PF2 ) and o(PN) 

421 ms,p 422 ms 	) 
404 ms,p ) 

366)P ) 
363 ) Q ins 389 vw,p (a) ) w(PF) 
359)R 
345 s 347 vw,? (a) ) 

295 m 295 vw,p 293 w p(PF2 ) 

251 s,p (a) 
) 

o"P N 
234 vs,p 231s 3 

142 in,? 145 S T(PF2 ) 

Note: 

s = strong, m = medium, w = weak, v = very, sh = shoulder, 

p = polarised, dp = depolarised. 

(a) Obscured by CC13F. 



TABLE /4.3. 

Vibrational spectra (cm) of (F2P)2NH and (F2P)2ND 

I.r. 	(g) Raman 

H D H(liquid) (olid) nment 

3373 m 2502 w ) 
3333 m 2472 w 3322 w 3313 w ) 

1248 ms 1066 m ) 	o(NH) 1210 ms 1044 m ) 

941 vs 

919 s 914 s 920 w 	ca. 930 w vasym(PNF) 
863 s 888 s 880 vs 885 vs 
830 vs 838 vs 830 m 838 s 
823 ) 832 vs,sh ?5(NH) 816 ) vs 816 vs 797 s 792 s 
MW 

747 m 741 m 743 m 775 s \ sYM  (PNF) 

669 m 

566m 571 vw 593w 
542 w 

508 vw 508 w 510 m ? 2 x 264 

470 vw 

444 m 449 w 430 s 430 w 6(PF2) 

427 w,sh 
361 m 360 m,sh ) 	w(PF2) 
323 w 350 m325 m ) 

291 w 296 w 295 w 280 w p(PF2) 

264 vs 265 m o(PNP) 

240 vw 
150 in 170 w T(PF2) 

Note: 
s = strong, m = medium, w = weak, v = very, 

sh = shoulder. 
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Infra-red and Raman data for (F2P)3N and (F2P)2NH 

are presented in Tables 4.2. and 4.3. 

Possible point groups for (F2P)3N are C3h,  C3, 

C3, C5  or Cl. 	Any of these could be consistent with 

a planar P 
3 
 N skeleton, and in the case of C 3 this is 

essential. 	The C 3 structure would give rise to 12 Raman- 

active fundamentals, four of which would be polarised, and 

9 infra-red active fundamentals. 	It is immediately obvious 

from Table 4.2. that this is not consistent with the 

observed spectra. 	Similarly, on the basis of the number 

of polarisedRaman bands, the C 3 
and C3  structures can be 

eliminated. 	This leaves only C5  and C1  symmetries, or 

possibly a mixture of conformers. 	Any conclusion about 

which of these possibilities is correct depends on assign- 

ment of the skeletal vibrations. 	These may, of course, be 

mixed with the vibrations of the F2P groups, but as bands 

occur in the regions normally expected for difluorophosphines, 

it is likely that the concept of skeletal vibrations is a 

useful one. 

After assignment of F2P group vibrations, three sets 

of bands remain unassigned; in the regions 1000-900 

about 550 cm 1, and about 250 cm-1 A planar P 
3 
 N skeleton 

could well have stretching vibrations in the higher 

frequency regions, and a deformation in the lowest region, 

by analogy with trisilylamin.86  The effect of the F2P 

groups would be to lower the skeletal symmetry from D3h. 

An overall C3  structure would allow the asymmetric 

skeletal stretch to be split into a' and all components, 

both Raman active, one polarised and one depolarised. 



Figure 4e2 

Possicle structures of 



Figure 4.3 

Possible conformations of (F2  11 2NH 

Cl  La 

Broken lines represent possible H ... F interactions. 



The symmetric stretch would remain as a single fundamental, 

but would become infra-red allowed. 

The Raman spectrum of the liquid phase, hbwever, 

includes bands at both 558 and 537 cm. 	These frequencies 

are rather high for F2   deformations, the only other 

reasonable assignment. 	Neither band can be accounted for 

in terms of Fermi resonance, as there is just one corres-

ponding band in the infra-red spectrum, and the two Raman 

bands have distinctly different widths and degrees of 

polarisation. 	These vibrations, and those at 251 and 234 cm 

therefore are tentatively assigned to skeletal vibrations of 

different conformers of (F2P)3N, one probably of Cs  symmetry, 

and one of another symmetry, possibly C3. 	The bands at 905 

and 936 cm are also assigned as skeletal modes, but these 

could both arise from a single conformer. 	Use of models 

of the molecule shows that the structures likely to 

minimise fluorine-fluorine interactions are those with 

and C3  or C 3 symmetry (Figure 4.2.) and the spectra have 

therefore been assigned in terms of these structures. 

The conformation of the F2   groups also affects the 

point group of (F2P)2NH. 	Studies of H...F interactions 

in this type of molecule, 17 indicate that the most stable 

conformations would have C s and C2  symmetry, with two HF 

interactions in each case (Figure 4.3.). 	Observation of 

two N-H deformation frequencies near 1200 cm-1  in the gas 

phase infra-red spectrum suggests strongly that two con-

formers are indeed present in the gas phase. 

As with (F2P)3N, a number of bands can readily be 

assigned to vibrations of the F 2  P groups. 	The three bands 



TRT.P. LLIJ 

Mass Spectra 
(F2P)3N (F2P)2NH 

Intensity Assignment Intensity 

221 32 [(F2 ) 3N] 153 90 

202 1.2 [(F2P)2N(PF)] 152 53 

171 0.3 IF2P) 2NFJ 134 7 

152 4 [(F2P)2N] 133 21 

133 53 [(F2P)N(PF)J 114 2 

114 27 [(FP)N(PF)] 88 10 

107 6 [PF4J 	and [P3N] 81 5 

95 0.5 [(FP)NP] 69 100 

88 46 [PF3] 65 70 

69 100 [PF2] 50 6 

66.5 <0.1 [(F2P)N(PF)]2  47.5 0.1 

50 9 46 48 

47.5 <0.1 [(FP)NF]2  34.5 <0.1 

45 1.0 [PN] 32.5 <0.1 

34.5 0.5 CPF2]2  31 1 

31 1.3 P 20 2 

Metastable Metastable 

58.1 weak £(F2P)N(PF)] — [PF3]+PN 115.6 weak 

80.0 strong [(F2P)3N] 	--> [(F2P)N(PF)] + PF3151.0 medium 

Assignment 

[(F2P) 2NH] 

[(F2P)NH(PF)J 

[(F2P)N(PF) J+  
[(F2P)NP] 

[P2F] 
PF2] 
[P)NH] 

[(FP)NPJ 2  
[PNH] 

12+  

[(FP)NH] 

[HF] 

r(F2P) 2NH1 -> [(F2P)N(PF)Y + HF 

[(F2P)2NHJ— [(F2P)2N] + H 
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between 790 and 890 cm will include P-F stretching modes, 

but the remaining N-H deformations (presumably two bands, 

one for each conformer) may also lie in this region. Bands 

at 920, 745 and 265 cm-1  have been assigned to skeletal 

modes, although these may be strongly coupled with F 2  P 

vibrations. 	Frequencies observed for (F2P)9ND are 

generally consistent with this assignment, although a 

strong band rather surisingly appears at 941 cm. 	This 

may be a P-F or P-N stretching mode raised in frequency by 

coupling with an N-D deformation. 

Details of the mass spectra of (F2P)3N and (F2P)2NH 

are presented in Table 4.4. 	It seems that the most 

important breakdown path for the tertiary amine involves 

the following reaction sequence: 

[(F2P)3N] 	-* [(F2P)N(PF)r + PB'3  ....... [6] 

[(F21P)N(PF)] 	_ 	[PF3] 	+ PN ............ [7] 

Other reactions involving F2P or F, and in one case a re-

arrangement, occur giving rise to the ion [(F2P)2NF]+, 

which must contain either an N-F bond, or a four co-ordinate 

phosphorus atom. 

The ion [(F2P)N(PF)I is also formed by loss of HF 

from the parent ion of (F2P)2NH. 

[(F2P)2NH] 	-- [(F2P)N(PF)] 	+ HF ......... [8] 

However, in this case, there are probably at least three 

other routes by which the parent ion can dissociate: 



TABLE L.5. 

Photoelectron spectra 

F2PNR2  (F2P)2NH (F2P)3N Assignment 

10.9 11.3 11.2 N 2p 	lone pair 

11.5 11.9 12.2 P ap 	lone pairs 
12.3 12.5 ) 

15.4 15.6 15•8(a) 
?N, NH 	bonding 16.0 ) 

16.7 16.8 
17.4 17.4 

) F 2p 	lone pairs 

17.9 18.5 18.7 PF 	bonding 

Note: 

Vertical ionisation potentials in eV; + 0.1 eV. 

(a) Intense, broad band. 
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[(F2P)2NH] 	-- [(F2P)2N] 	+ H .......... [9] 

[(F2P)2NH] 	-' [(F2P)NH(PF)] 	+ F •...... [10] 

[(F2P)2NH] 	- 	[(FP)NH 	+ PF3  .......... [ii] 

The last of these routes yields the ion [(FP)NH], one 

which has been observed in F2PNH2  to be particularly readily 

formed.9  

Some details of the He(I) photoelectron spectra of 

the three difluorophosphino—amines are given in Table 4.5. 

There is a general increase in binding energy with increasing 

replacement of hydrogen atoms by F2P groups. 	The fact that 

the nitrogen lone pair level in the tertiary amine is 

slightly lower in energy than in the secondary amine, 

probably reflects a change in the amount of interaction of 

this level with the phosphorus lone pair levels. 	This 

interaction in turn depending on the orientations of the 

phosphorus groups. 42 



CHAPTER 5 

PREPARATION AND PROPERTIES OF DIFLUOROPHOSPI1INOANINO-

DIFLUOROBORANE, F2PNHBF2  

Introduction 

In the work of the previous chapter, boron tn-

fluoride was used as a means of removing trimethylamine 

from reaction mixtures which contained mono-, bis-, and 

tnis(difluorophosphino)-amines. 	It was observed that the 

boron trihalide also reacted with aminodifluorophosphine to 

form an involatile white solid. 	Further investigation of 

this reaction indicated that formation of the solid was 

the last stage of a reaction which initially gave a new 

volatile compound. 	By careful control of conditions, this 

compound was isolated and identified as difluorophosphino-

aminodifluoroborane, F2PNHBF2. 

Results and Discussion 

5.1. Preparation 

F2PNHBF2  was prepared by both gas and liquid phase 

reactions of F2PNH2  and BF 3* 	The yield and purity of the 

product depended greatly upon the conditions and ratio of 

reagents used, and also varied appreciably within each 

particular set of conditions, perhaps due to local excesses 

of reagent. 	It was also found that excess aminodifluoro- 

phosphine led to the formation of bis(difluorophosphino)-

amine, (F2P)2NH. 

The preparation of F2PNHBF2  can best be described, 

Equation [1],  by adduct formation, followed by loss of 
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hydrogen fluoride. 

F2PNH2  + BF  -> F2PNH2.BF3  - F2PNHBF2  + HF .... [1] 

Although no attempt was made to identify the adduct, by a 

low temperature n.m.r. study for example, its presence was 

indicated by the observation that on warming a mixture of 

the reagents from 77 to 209 K, no volatile compounds were 

formed despite both starting materials and F2PNHBF2  being 

volatile at this temperature. 	Hydrogen fluoride, a product 

of Equation [1], was not observed directly, nor was silicon 

tetrafluoride., the product of its action upon glass. However, 

PF3  was a by-product in each preparation and its formation 

can be rationalised in the following terms; 

F2PNH2  + HF -> PF3  + NH3  .................... [2] 

The ammonia so formed can react with BF  to give an adduct, 

or with HF in the presence of BF  to produce ammonium tetra- 

fluoroborate. 	A simple representation of the overall 

reaction would therefore correspond to Equation [3]. 

3F2PNH2  + 3BF3  —2F2PNHBF2  + PF3 - [NH4  ]BF 4 ...... [3] 

To maximise the yield it was necessary to use a threefold 

excess of BF  and to carry out the reaction in the gas phase. 

This was the method favoured for the preparation of 

F2PNDBF2  and F2P15NUBF2. Attempts to improve yields by 

the use of hydrogen fluoride abstractors, such as potassium 

fluoride and aluminium metal, 
87  were unsuccessful. 

The adducts of BF  with ammonia and the difluoro-

phosphino-amines can be placed in the following order of 

stability; 
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NH3.BF3> F2PNH2.BF3> (F2P)2NH.BF3  (F2P)3N.BF3  

The primary amine adduct was undissociated at 209K, whereas 

those of the secondary and tertiary amines were weak enough 

to allow separation of these amines from BF  by low 

temperature fractionation. 	Relative stabilities of these 

adducts almost certainly accounted for the principal side 

reaction which occurred when the ratio BF3:F2PN}12  fell 

below 3:1. 

F2PNH2.BF3  + F2PNB2 - (F2P)2NH + NH3.BF3 ...... [4] 

In fact, if the ratio F2PNH2  :BF 3  exceeded 2:1, Equation [4] 

was--the only reaction giving a volatile product. However, a 

50:50% mixture of F2PNH2  and (F2P)2NH in a 2:1 ratio with 

BF  produced only (F2P)2NH; further substitution to tris-

(difluorophosphino)amine did not take place. 

(F2P)2NH. BF3  + F2PNH2 	X > (FP) 3N + NH3. BF3  .. ...... [5] 

The details of these experiments are given in the experi-

mental section, Chapter 9. 

5.2. Properties of F2PNHBF 

The compound was sufficiently stable in the gas 

phase to allow study of its spectroscopic properties, but as 

liquid underwent rapid decomposition, yielding the tn- 

fluorides of boron and phosphorus, and a white solid. 	On 

gently warming this solid, F2PNFF2  was regenerated with 

more BF  and PF3, and eventually some involatile white 

material remained. 	In this behaviour F2PNHEF2  closely 

resembled F2BNH2.88  As both compounds have Lewis acid and 



TABLE 5.1 
Mass spectrum of F2PNEIBF2 )  

m/e Rel. abundance Assignment(b)  

133 92 

132 17 [10MJ,[11M-HJ 

131 1 

114 5 [M-FJ 

113 4 [10M-F],[11M-HF] 

112 <1 [10M-HF 

94 8 [M-HF2] 

93 2 [10M-HF2] 

88 10 [PF3] 

84 5 [(F2P)NB] 

69 100 

68 4 111BF31 
67 1 110BF33 
65 12 [(FP)NH] 

64 2 

50 6 [FP] 

49 10 [11BF2] 

48 2 110BF21 
46 17 [PNHJ 

45 2 [PN],[(F11B)NH] 

44 <1 [(F10B)NH],[(F11B)N] 

31 1 

20 1 [IiFJ 

Note: Recorded at an ionising voltage of 70 eV. 
'1M = F2PNH'1BF2, 10M = F2PNH10BF2. 



51 

Lewis base properties, it is possible that the first solid 

formed was a cyclic or polymeric adduct,NH(PF2)BF2 	and 

the involatile solid, polymerous material, consisting of 

.NHPF4 and 4NHBF4 units produced by loss of BF  or PF3  

molecules. 	This liquid phase instability made a study of 

some properties impossible, and characterisation more 

difficult and less complete than normal. 

The molecular weight in the gas phase [Found 132.2 

+ 2.9;  Calculated for UIBF4NP, 132.8 g mo1], and the exact 

mass of the parent ion [Found 132.9874; Calculated for 

1H11B19F414N31P, 132.9876] were in agreement with the 

proposed formulation. 

Further details of the mass spectrum, Table 5.1, 

indicated initial loss of hydrogen, or fluorine atoms, or 

even larger units. 	In contrast with the [PF] and [PN] 

ions, there were no detectable [BF]+ or [BN]+ ions. 	From 

the spectrum, there was little evidence to show fluorine 

was lost preferentially from phosphorus or from boron. 	In 

addition to the spectral pattern of F2PNRBF2, a peak of unit 

relative abundance was observed which corresponded to the 

ion, [(F2PNH)2BF]. 	This compound might have arisen in the 

manner of Equation [6]. 

F2PMHEF2  + F2PNH2 - (F2PNH)2BF + HF .............. [6] 

5.3. Vibrationa1ectra 

The gas phase infra-red and solid phase Raman 

spectra of F2PNHBF21  which are given in Table 
5.2, provide 

good evidence for the suggested identity of the compound. In 

particular, bands at 3400 and 1205 cm 	imply that -there is,,,,  

1ETRY 



TLBLE 5.2 

Vibrational spectra of F2PNKBF2  

I.r. 	(gas) Raman (solid) 

F2PNHBF2  F2PNDBF2  F2PNRBF2  Assignment 

3400 m 2530 m 3386 m (NH) or 	(ND) 

1494) ) 
l/+89 	)s ) 
1485
1446 

 ) 

vs 1445 vs \)asym  (F2BN) 

1404 vs 1415 vs,br 1410 w,br 	) 

1355 w 1359 

1205 m 1055 m 8(NH) or o(ND) 

995 w 	) o(NH) 
952 m 954 w 961 w,br 	) v(Piz) 

851) 877s ) f \)P.- 
848 )S 860 s ) 
845) 842 vs 	) 

809 vs 814s 786m 
772 m 

780 s 6(ND) 

678 m 672 m 659 w,br '(PNB) 

592 m 590 w 604 w,br 	) 
541 m 530 w ) o(NBF'.,), 
508w 
434 w 434 

) 
w 6(PF2), 	and 

396 m,br 395 m 401 m 	) 'r(BF) 
356w 331m ) 
296 w,br 290 w 294 m 	) 

260 w 8(PNB) 

156 w T(PF2) 

Note: 

vs = very strong, 	s strong, m = medium, 

w = weak, br = broad. 



Figure 5.1 

Possible structure of F2PNHBF2 

Broken lines indicate possible H ... F interactions 



a secondary amine present; bands between 1400 and 1500 cm 

suggest the presence of a species containing fluorine bound 

to three co-ordinate boron; and absorptions between 800 and 

900 cm, and below 500 cm, are consistent with a difluoro-

phosphino-amine, rather than a phosphorus (v) species. 

The highest possible point group for F2PNHBF2  is Cs, 

generating 12 a' and 6 all vibrational modes. 	By analogy 

with the structures of other NBF2  containing molecules, 88'89  

the PNBF2  unit is expected to be planar, whilst the maximi-

sation of H ... F interactions17'30  would make one P-F bond also 

lie in the plane, giving overall C1  symmetry. 	However, the 

only difference, spectroscopically, between C5  and C1  point 

groups is that in the latter case all modes would be polarised 

in the Raman spectrum, instead of dust the a' modes of a C 

molecule. 	In the absence of polarisation data the spectra 

were therefore interpreted in terms of, and were consistent 

with, the higher symmetry. 

Moreover, the spectra were entirely consistent with 

there being only one conformer present in the gas phase, in 

marked contrast with F2PNHSiH317  and (F2P 2NH. 	This is not 

surprising, however, when the possibilities of H ... F inter- 

action, Figure 5.1, are considered. 	Delocalisation of 

nitrogen lone pair electrons into a boron 2p orbital may also 

affect the conformation, by reducing the degree of phosphorus - 

nitrogen lone pair - lone pair interaction. 

The bands at 3400 and 1205 cm, which shifted to 2530 

and 1055  cm on deuteriation, were assigned to the N-H stretch 

and N-H in-plane deformation of a secondary amine. 	Other 

assignments in Table 5.2 were much more tentative, and assumed 



TABLE 

N.m.r. parameters 
5.3 
for F2P15NF 

8(1H) +4.44(5) 

6( 19F) -62(1) 

8(19F') —116(1) 

8(31P) +150(1) 

-J(31P19F) 1240(10) 

1J(31P15N) 70(10) 

1J(15N1H) 77(1) 

Note: (a) Recorded at 273K in C6D6/CHC13. Error limits in 
parentheses. 

For chemical shift conventions refer to the experi-
mental section. 
Chemical shifts, 8, are in p.p.m., coupling 
constants, J, in Hz. 

TABLE 5.4. 
Photoelectron spectrum of F2PNRBF2  

Vertical 1p(a) 	Assignment 

11.5 	 N lone pair 

12.3 P lone pair 

15.3 	) 
15.9 P-N, N-H, B-N bonding 

16.6 ) 
17.2 F lone pairs 

18.0 P-F bonding 

Ca. 	18.7 (broad) B-F bonding 

Note: 	(a) In eV; 	± 0.1 eV. 

TABLE 5.5. 
Ionisation potentials of some difluorophosDhino- 

and difluorobory1-amines 

Compound N lone pair P lone pair Ref. 

(CH3) 2NPF2  9.6 10.5 42 

(CH 3) 2NBF2  9.7 - 93 
F2PNI 2  10.9 11.5 42 

F2PNHPF2  11.3 12.1 This work 

F2PNHBF2  11.5 12.3 This work 

note: 	(a) vertical I.P. in eV; + 0.1 eV. 
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considerable mixing of bond stretching and deformation modes. 

Those bands between 1400 and 1500 cm were correlated with 

the B-F asymmetric stretches of 11BF3  and 10BF3, but with the 

degeneracy lifted by replacement of one fluorine by nitrogen. 

The "symmetric" NBF2  vibration, corresponding to the band at 

890 cm in BF 
3' 
 was assumed to mix with the P-N stretch, 

also expected in this region and also of a' symmetry, to give 

bands at 952 and 678 cm-1. Remaining bands in this region 

were the P-F stretches, and the out-of-plane N-H deformation 

which appeared at 780 cm on deuteriation. 

The specific assignment of deformations in the region 

below 700 cm proved to be too difficult, except for those 

suggested. by consideration of the spectra of F2BN(CH3)2,90  

and (F2P)2NH and (F2P)3N. 

5.4. N.m.r. spectra 

The determination of the n.m.r. parameters quoted in 

Table 5.3 was made unusually difficult for two reasons. 

Firstly, the compound was unstable when in the liquid phase, 

or in solution. 	And secondly, the spectral lines were 

broadened by coupling to quadrupolar nuclei. While the use 

of FP15NHEF, removed the nroblem due to N. it was not 

possible to broad-band decouple 11B with the available equip- 

ment. ment. 	Neither could N or B chemical shifts be obtained 

by heteronuclear double resonance experiments while observing 

either the 1H or 31P spectrum. However,those parameters 

obtained were fully consistent with the proposed formula. 

19 Particularly, the F chemical shifts confirmed the presence 
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of a difluorophosphino_amine,91  and fluorine bonded to 

three co-ordinate boron. 92  Although the error margin in 

1J(31P15N) precludes further comment, both this and 

1J(15N1H) are comparable with the analogous couplings in 

mono-, bis-, and tris(difluorophosphino)-amines. 

5.5. Photoelectron spectrum 

Table 5.4 records the details of the He (IL) photo-

electron spectrum of F2PNHBF21  the first two bands of which 

were assigned to nitrogen and phosphorus lone pair levels, 

based on results from earlier studies of difluorophosphino-

nitrogen compounds. 42  These same two ionisation potentials 

for several F2P and F2   containing amines are presented in 

Table 5.5. 	It can be seen that both lone pair levels 

depend mainly on the number of fluorine containing 

substituents,and that replacement of F 2  P for F2   has little 

effect. 	This may only reflect the electronegativities of 

the two groups. 	Another possibility is that the extent 

of overlap of the nitrogen lone pair orbital with the vacant 

boron 2p orbital is matched by the overlap of the nitrogen 

lone pair and vacant phosphorus 3d orbitals. 



55 

CHAPTER 6 

PREPARATION AND CHARACTERISATION OF DIAi'4INODIFLuqo 

PHOSPHORANE, HFF2j 2l2  

6.1. Preparation  

During the preparation of F2PNHIBF2, from F2PNH2  and 

BF 31 difficulty was experienced in having to remove 

(F2P)2NH from reaction mixtures. 	Although due to a side- 

reaction, it was thought at first that (F2P)2NH was present 

in the F2PNH7, and to prevent this, F2PNH2  was prepared 

using a slight excess of ammonia. 	Upon fractionation this 

sample was found to contain a novel compound, whose subse-

quent characterisation showed it to be HPF2(NH2)2. 

From this chance observation further preparations 

from F2PNH2  or PF2Cl, and ammonia were successful. Although 

a simplification, reactions proceed by oxidative addition of 

NH3  to F2PNH2  according to Equations [1] and [2], in 25% or 

LfO% yields (based on difluorophosphine taken). 

F2PNH2 +NH3  >IHPF2  (NH 2)2 	................... 
[1] 

PF2C1 + 3NH3HPF2(NH2)2 + 	[NH]Cl 	......... [] 

These two routes meant that suitable preparations could give 

selectively deuteriated compounds which, despite a certain 

amount of scrambling of hydrogen and deuterium, were helpful 

in vibrational assignments. 

F2PNH2  + ND  > 	'tDPF2(NH2)(ND2) .............. 

F2PND2  + NH3  11IF2(ND9)(NH2)" .............. 	[41 

FootAdt.: efr Th 	p, f23() for 	c'L 	COIZAC C- S,  

ho 	pkospkor"s 	(0 L3V('S 	w;rt 	1°- H 	bd 
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Some Physical Properties of EF2(NH2)2  

Colourless liquid at 298 K. 

Exact Mass of 

102.015741 (observed), 102,015839 (calculated). 

Vapour pressure; 6 ± 1 torr at 292 K. 

Melting point; 270.0 + 0.5 K. 

Molecular weight; 101.4 + 3.4 g ino]T1  (observed), 

102.0 g mo1 	(calculated). 



TABLE 6.2 

Mass Spectra of HPF2 (NH2 ) 2  

Relative Abundance 

at 13 eV 	at 70 eV AssiEnments 

102 3 	 1 [HFF2 (NI-I2 ) 2] 

101 13 [PF2  (NH 2)211 	, [IIPF2  (NH 2 )(NH)] 

86 37 	100 

85 22 	 80 [PF2(NH2)] 	, [HPF2 (MH)] 

84 5 [PF2(NH)] 	, [HFFN] 

83 1 	 25 [PF2N] 	, [uPF(NH2 )2] 

82 100 	 16 [PF(NH2 )2J 	, [HPF(NH2 )(NH)] 

81 4 [pF(NH2)(NH)],[aPF(NH)2J 

78 6 	 1 [PFN2J 

69 42 [PF2J 

67 1 [HpF(NI-I2)] 

66 3 	 44 [PF2(NH2)] 	, [apF(NH)] 

65 4 [PF(NH)] 	, [HPFN] 

62 3 	 2 [P(Ni-I2 )(NH)J, [HP(NH)2] 

50 3 [PFj 

47 1 EPrH2] 	
, 

46 21 [PNH] 

45 - 	2 [PN] 

33 1 [NF] 

31 1 

20 3 [HF] 

16 

Metastable ions 

49.7 EPF2(NH2)1 	- HF + [PF(NH)] 

52.5 [EF(NH2 ) 2] + 

55.4 [F 2(H2)] NH3  + [PF2] 
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Results and Discussion 

Table 6.1 shows some physical properties, and 

Table 6.2 the mass spectrum with assignments, of HPF2(NH2)2. 

6.2. Mass Spectrum 

Lack of intensity of the parent ion seems common 

in fluorophosphoranes and HPF2(NH2)2  was no exception. 

For H2NPF4 4  and (H2N)2PF395  no parent ions were observed. 

Neither were they seen in HFF4  or H2PF3 6  where it was 

suggested that the stability of phosphonium ions, such as 

LPF 	and41 HIPF3], may be responsible. The recent 

preparation of [Me 2PF2][PF6] 97  seems to give support to 

this view. 

Fragmentation from H2NPF4 produced ions such as 

[IThJPF4], [PF4], and LH2NPF1, whilst (H2N)2PF3  gave 

[H2NPF3], [FThFF3], [PF3], and H2NFF21. 	Similar break- 

down routes were seen in HPF2(NH2)2  with loss of H,F, and 

HF, NH  and NH3  being most important. 

However, the ability to lose a proton bound to 

phosphorus or nitrogen made assignment particularly difficult. 

The presence of ions at 86 and 83 m/e units, which are most 

likely to be [HFF2(NH2)] and [HFF(NEi2)2], indicated NH  

and F loss from the parent ion not involving H-P bond cleavage. 

[HPF2(NH2)21F - NH  + [HPF2  (NH 2)] ....... [5] 

> F + [HFF(Mi2)2] ......... [6] 

These fragments in turn gave rise to metastable peaks at 

55.4 and 52.5 m/e when ammonia was eliminated. 

[HFF2  (NH 2)] 	> NH3  + [PF21 	.............. [7] 
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[HPF(NH2)2] 	- NH3  + [PF(NH)] ....... [8] 

A third metastable peak at 4.9.7 m/e could have arisen from 

HF elimination from [EIPF2(NH)], but since it is also seen in 

the mass spectrum of pure F2PNH219  it most probably occurs 

by Equation [9]: 

[F2PNE2] 	> HF + [FP(NH)] ............ [9] 

At 12 eV the intensity of the parent ion was greater 

than at 70 eV, and the main pattern was produced by NH2  and 

HF loss. 	From 12 to 13 eV corresponded to the appearance 

potential of the 101 m/e fragment. 

In both spectra the 82 m/e peak was strong, perhaps 

due to the stability of [FP(NiH2)2]. 	Harman and Sharp  have 

shown that molecules of this type can be formed by reaction 

of primary amine with difluorophosphines. 

3RNH2  + 2RNHPF2  - 2(RNH)2PF + [RNIi3][HF2J ..... [10] 

If Equation[l0] is regarded as HF abstraction, then 

formation of [(NH 2)2] by elimination of HF from 

[HPF2(NH2)2] is not unreasonable. 

6.3. N.m.r. Soectra 

From the parameters, it was apparent that HPF2(NH2)2  

was stereochemically rigid on the n.m.r. time scale at room 

temperature, with the fluorines axial in a trigonal bipyramid 

in agreement with the "apicophilicity" series of Cavell et 

98 	Although no intramolecular re-arrangement was 

taking place, rotation about the P-N bonds was making all 

amino protons equivalent. 	A sample was prepared containing 



Figure 64 	 1Hn.m.r. spectrum of 	212 

Note 
Intensities not to same scale 1J(15N1H') 
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Figure 6.3 

31P n.m.r. spectrum of HPF2('5NH212  
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TABLE 6.3 

Double Resonance Experiments for HPF2(15NH' 2)2  

Experiment 	Coupling Constants 	 Relative 
related 	 Signs 

1H-(15N) 2K(19F1H) 2K(19F15M) Equal 

1K(31P1H) 1K(31P15N) Equal 

1H-(19F) 2K(15N1H) 2K(19F15N) Equal 

1K( 31P'H) 1K( 31P19F) Opposite 

1H-(31P) 2K(19F1H) 1K( 31P19F) Opposite 

2J(15N1H) 1K(31P15N) Equal 

1H'-( 15N) 3K(19F1HI) 2K(19F15N) Equal 

2K(31P1H') 1K( 31P15N) Equal 

1H' -(19F) 1K('5N1HI) 2K(19F15N) Equal 

2K( 31P1H) 1K( 31P19F) Opposite 

1Ht_(31P) 3K( 9F'Ht) 1K(31P19F) Opposite 

lK('5N'HI) 1K( 31P15N) Equal 



Figure 6.4 

Signs of Coupling Constants in IMF,2(NH12 related b 

Double Resonance Ernerimeflts 

+NF 	 H'N+ 

Y /I  

HF+ 

FH- PF HI 
I 	+ 	I  

+ H N 

Reduced coupling constants, K 

- 

FH PF-HP 
+ 	I 

-HN 

Coupling constants, J 

Note: 
Solid lines indicate which coupling constants were related 

by experiments (Table 6.3) + or - refer to signs based On 

negative 1K(PF). 



Parameter 

Temp. (K) 

6( H) 

&( H'  

o(15N) 
,19 8¼ 	Fi 1  

"-, F) 

1J ( 31P'9F5 ) 

1J(15N1H') 

'J(31m'5N) 

2J(19F 'ax H) 
2J(19F ax  15N) 

3J('9  Fax 'HI) 

References 

3.14 

n. o. 

-51.3 

-58.6 

665 

87.5 

-81.5 

a. o. 

+14.5 

4l.5,i.O °  

95,105,106,107 

726 

n. o. 

n. o. 

TABLE 6.4 

N.m.r. parameters 	of HPF2(15NH21  )2  and analogous compounds 

Compounds 
}F2(15NH2)2  HPF H2PF3  HPF2(NH'CH3)2  F I P15NH2  F4P'5NHCH3  

273 133 183 298 298 193 
7.23 7.0 7.1 6.5 

2.89 3.2 n.o. 3.3 
28.6 n.o. n.o. n.o. 

-51.2 -27.4 -31.0 -62 -56.7 -60,-70 

-63.4 -53.6 -24.1 n.o. n.o. n.o. 

+836.0 1115 865 837 

-619.1 941 n.o. 655 760 755770(b) 

-85.0 n.o. 90.3 n.o. 

-45.0 n.o. n.o. n.o. 

+109.1 	148 	105 118 

-14.0 n.o. 	23.8 

+11.8 n.o. 	17.7 

-8.3 n.o. 

+19.7 n.o. 	-42 

96,101 91,96,102 	8 	 94 
	

103,104 

27.6 

F3P('5NH) 
	

F3F(NH'  t-C,H9)2  

233 
	

298 

3J('H18'), 3J(15N1H'), and 4J(H'H') < 0.5 Hz. in 

For chemical shift conventions see exoerimerital section; 6 in p.p.m., J in Hz. 

Due to non-equivalence of axial fluorines. 

At 298 K average 3J(1 9Fax'H') +20.7 Hz.; reference 105 

n.o. = not observed 



15N atoms in both amine groups. 	Firstly, since few para- 

meters involving 15N couplings in compounds of this type had 

been determined, and secondly to eliminate the problem of 

14 N quadrupolar broadening. 

With this sample the spectra in Figures 6.1, 6.21  

and 6.3 were obtained, from which the parameters were taken. 

The couplings 3J(HPMi), 3J(15NPN1H) and 4J(EPNH) were not 

observed and so the spectra were of first order. 	The relative 

signs of couplings constants and the 15N chemical shift were 

determined, while observing the proton spectrum, in a series 

of spin-tickling experiments. 	Corrected frequencies from 

these experiments are presented in the experimental section. 

Those experiments performed, Table 6.3, provided enough 

information to relate the signs of all coupling constants in 

a self-consistent manner. 	This could be done separately for 

phosphoranic and amino protons, and jointly, since both sets 

have 1J(PF), 1J(PN), and 2J(NF) in common. 	Figure 6.4 

indicates these relationships in terms of the coupling 

constant, J, and the reduced coupling constant, K, taking 

into account the negative value of the 15N gyromagnetic ratio. 

On the assumption that K(PF) is always negative '72   these 

results agree with the independent observation of 
1  K(15 1  N H) 

being positive. 99,100  

Comparison of the parameters with those for analogous 

compounds, Table 6.4, shows close agreement, and although 

no 15N chemical shifts seem to have been measured, the value 

of 28.6 p.p.m. for HPF2(i2 ) 2, and 21.4 p.p.m. for 

F2P15 i274  are similar. 	Since few 1J(31P15N) have been 

reported, the significance of the value here cannot be 
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assessed except to say that by comparison with F3P(15Mi2)2, 

F3P='5NPF2, and (F3C)2P'5NH2, which have values of -81.5, 

-53.2 (1J(PN)) and +93.8 (1J(P'N), and +52.6 Hz respectively, 107  

this coupling constant is as sensitive to the type of 

ligands at phosphorus as to the co-ordination number. 

The slow intramolecular re-arrangement which makes 

HPF2(NH2)2LstereochemicallY rigid at ambient temperatures 

is also observed in F3P( 2)2. 4  For various phosphoranes, 

including F4PNH2, the barrier to intramolecular ligand 

exchange by a Berry pseudorotation has been calculated to be 

high due to P-N 7-interaction. 108 	It is also suggested 

that on reducing the number of electronegative ligands from 

four, the exchange barrier increases. 	This is attributed 

to the preference of the transitory state, a square pyramid, 

for electronegative ligands in the four basal positions. It 

seems reasonable, therefore, that with two P-N IT-contributions, 

and only two fluorine atoms, HPF2(NH2)2  will have a ligand 

exchange barrier as high, if not higher, than F3P(NH2)2. 

The rotation about the P-N bond which averages couplings 

to the hydrogen atoms has been slowed sufficiently at 233 K 

in F3P(NE2)2106  to see two different 2J(FaXH) couplings, 41.5 

and 10 Hz. 	An attempt to do this with HPF2(NH2)2  failed 

when the solvents froze at 223 K before the P-N rotation had 

been slowed enough. 	However, both proton and fluorine 

spectra did show changes with temperature, Figures 6.5. and 

6.6, similar to those observed in F3P(NILI2)2. 

That the structures adopted by EF2(NH2)2  and 

F3P(NH2)2  are trigonal bipyramids, with the amino groups 

lying in the plane of the axial fluorines, is supported 
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on two counts. 	First, it has been shown that this 

produces the most stable configuration for F4PNI12108  by 

optimising P-N r-bonding, and second, it maximises I-I.•.F 

interactions which are known to be significant in these 

types of molecules. 	In F4PSCH'°9  and F4PM1CH3103  for 

example, the low temperature structures, influenced by these 

effects, produce different axial fluorine environments and 

coupling constants. 

Figure 6.7. 
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6.4. Vibrattonalpectra 

The frequencies, intensities, band shapes (where 

these are clear), states of polarisation and suggested 

assignments are presented in Tables 6.5, 6.6 and 6.7, for 

the molecule, with aiñwithout deuteriation. 	For 

DPF2  (NH 2) (ND 2) and HFF2(ND2) (NH2) mixing of hydrogen and 

deuterium has occurred, but the intended form has been 
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TABLE 6.8 

Vibrational Modes of FF2  (NH 2)2, point group C2  

a1  a2  1)1 

\) (PN)  

(PF)  

(PH) / 

o(PH)  

8 5(NH2) 

o 	(NH  2) I / 

o(NH2) 

T 	(PF2N2) / 

I.r. band shape C - A B 



TABLE 6.9 

NH and ND stretching frequencies of Diaminodifluorophosphorane 

Symmetry 	 l 

jHso 
Raman  (c

class 	 olid 	(liquid) 	lid) 

HFF2(NH2 )2  

b1  3567 3513 3546 3516  

a2  - - 3531 
v (NH) 

f 

a1 3476} 
3417 3440 3416 

b2  3468 

DPF2(ND2 ) 2  

b1  2678 2630 2645 2628 

2642 a2  - - , 	(ND) 
al 

J 
2541 2500 2515 2502 



61 

retained to an extent sufficient to help with assignments, 

e.g. HFF2  (ND 2)(NH2) shows only a P-H stretch while 

DPF2(NH2)(ND2) gives both P-H and P-D stretches. 	Also use- 

ful is the presence of the NHD group which has an effect 

intermediate between NH  and ND  vibrations. 

From the data available it is clear that interaction 

with neighbouring linkages occurs, causing bands to be mass 

sensitive and making assignments to a particular stretch or 

deformation less meaningful. 	In particular, the 1000-800 

cm region has many bands of the same symmetry class where 

mixing of modes could be taking place. 	The observation of 

bands of A, B and C shape in the spectra of the gas phase 

samples is consistent with the n.m.r. evidence that the 

molecule adopts a structure with C 2 symmetry. 
110 Assign-

ments have therefore been made on this assumption, Table 6.8 

From the vibrational data, NH stretches can be selected 

by frequency and band-shape, additional information being 

provided by deuteriation. 	As well as (NH) in NH2  groups, 

there is an intermediate vibration from this stretch in 

NHD units. 	A similar effect is observed for (ND). 	When 

Nil and ND stretching regions in FF2  (NH 2)2  and DPF2(ND2)2  

are compared, Table 6.9, it is possible to assign all four 

vibrational species. 	The a1  and b2  modes, which involve 

symmetric  stretching of the NH  groups, are assumed to be of 

similar energy, but are identifiable by their i.r. band 

shapes and different degrees of Raman polarisation. 

Deformations of the amino groups are observed at 

ca. 1560 and 1200 cm, shifting to 1410 and 1090 cm 	on 

partial deuteriation, and to 1200 and 935 cm on complete 
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deuteriation, and assigned to scissors and rocking modes, 

by analogy with other amine compounds, such as hydrazine. 111 

Of the large number of bands below 1000 cm, those 

at 879  and 582 cm-1  are Raman polarised with a C band-shape, 

and correspond to the symmetric P-N and P-F stretches, 

respectively. 	The corresponding asymmetric stretches are more 

difficult to place. 	A strong i.r. band at 1014 cm has a 

B-contour expected for a b2  species, such as the asymmetric 

P-N stretch, and occurs within a range of known P-N stretches, 

1053-873 cm_1!E This band does move on deuteriation, as 

does the symmetric P-N stretch, being an indication of the 

sensitivity of these stretches to substitution at nitrogen. 

For the asymmetric P-F stretch, the 730  cm vibration is 

most plausible, moving little on isotopic substitution and 

having an A band-shape. Both P-N and P-F asymmetric 

stretches although strong in the i.r., are too weak to be 

observed in the Raman spectra. 	Analogy of the P-F axial 

stretches with the values in PF5, PF3C12  and PF2C13112  is 

not unfavourable, and bands at 712 and 548 cm in F3P(NH2)2,95  

though not assigned as such, are comparable. 

The presence of a2  bands only in the Raman, makes it 

possible to assign the PF2N2  and NH2  torsions to 248 and 

454 cm respectively. 	The remaining a2  species, the 

amino group wag, can be assigned as 930  cm 1, shifting to 

695 cm
-.1  on deuteriation. 	This band is absent from both 

solid and gas phase i.r. spectra. 	Unfortunately, the 

corresponding NHD mode cannot be detected, the strong P-N 

stretch obscuring the region concerned. 
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Unassigned frequencies between 900 and 600 cm_i, 

at 840, 782 and 658 cm should correspond to the two PH 

deformations and the remaining NH2  group wag. 	Since all 

three bands are too weak to be seen in the Raman, and 

isotopic shifts are no help, the weakest band at 844 and 

836 cm must be ascribed to the b2  PH deformation giving a 

B band-shape. 	The other two bands both have A contours. 

Comparison with hydrazine places the 2  wag at 782 cm, 

leaving the PH deformation (b1  mode) at 658 cm. 

Below 600 cIn, PF2N2  group deformations may occur 

at 308 (a1  mode), 519 (b1  mode) and 420 cm 	(b2  mode). These 

frequencies conform to the expected band-shapes, and are 

relatively undisturbed by deuteriation effects. 	The 

remaining vibrations at 383 and 359 cm must then be the 

a1  skeletal deformation, and b1  amino group torsion. 

This assignment has so far made no mention of the 

single P-H stretch expected at 2460-2310 cm-1  for five co-

ordinate phosphorus compounds. 46 That two, medium 

intensity, C band-shape, Raman polarised bands are seen in 

the P-H and P-D stretching region cannot readily be explained. 

Of these two bands, the lower frequency one seems to have an 

i.r. band-shape more like the other C-types. 	It is more 

intense and also ialls within the known range. 	For these 

reasons, the P-H stretch is assigned at 2437 cm 1, and P-D 

stretch at 1786 cm; Figure 6.8 indicates these factors. 

What then causes this extra band? Conformation could 

be responsible, but both n.m.r. and electron diffraction 

evidence point conclusively to a single trigonal bipyramidal 



TABLE 6.10 

v (NH or ND) 

v (PN) 

\) (PF2) 

(PH or PD) 

8 (PH or PD) 

(PF2N2) 

s (NH2  or ND.) 

w (NH2  or ND 2) 

8 (NH, or ND2) 
p 

Vibrational Assignments 	of HPF2(NH2)2  and DPF2  (ND 2)2  
b2  

D 

	

3476 	2541 	3531 (b) 2642 	3587 2678 
	

3468 	2541 

	

879 	829 
	 1014 	854 

	

582 580 	 730 716 

2437 1786 

	

658 n.o. 	840 n.o. 

519 	505 	420 	n.ö. 

1560 1204 

930 (c) 	695 	782 	n.o. 

	

1240 	935 

/ 383 n.o. 

	

308 	n.o. 

	

1560 	1204 

	

1240 	935 

	

(NH2  or ND 2) 454 (c) n.o. 	359 

T (PF2N2) 	 248 (c) 	230 

NOTE: 	All frequencies in cm; n.o. = not observed. 
I.r. (gas phase) frequencies, unless stated otherwise. 
Raman (solid phase) frequencies. 
Raman (liquid phase) frequencies. 
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structure of C2  symmetry. 	Any effect therefore would have 

to result from amino group conformations, which seems un-

likely to produce a 70 cm shift in P-H stretching frequency. 

This is also made implausible since both FF4  and DPF4  

exhibit two P-H and two P-D stretches. 96 Interpretation 

of this observation in HPF4113  is by a combination band, but 

unfortunately this does not also account for the extra band 

in DPF4. 	It is interesting to note that E-IPF2(NUR)21  

(R= Me, Et and Bu n),8  all show two bands between 2502 and 

2414 cm, whereas F4PCH3103  and F3P(Mi2)2,95  although con-

taming ligands common to these other phosphoranes, do not 

show a combination band. 	Thus a P-H or P-D band seems 

essential, and a combination band with its intensity enhanced 

by Fermi resonance could be responsible for the ghost band. 

However, no binary combinations of a1  symmetry fall into the 

correct regions, the nearest being 5(NH2) + 5(PN2) 

(1560 + 879 = 2439 cm), and 6(ND2) + 3(PF2) (1204 + 580 

= 1784 cm). 	Consequently, it seems that the additional 

band is a product of Fermi resonance enhancing the intensity 

of a combination of vibrational modes, which belong solely 

to the HFF2X2  skeleton. 

A summary of the assignments suggested for HPF2  (NH 2)2  

is given in Table 6.10. 

6.5. Photoelectron Spectrum 

Figure 6.9 illustrates the He(I) photoelectron 

spectrum of diaminodifluorophosphorane, the vertical 

ionisation potentials and assignments of which are presented 

in Table 6.11. 



TABLE 6.11 

He(I) Photoelectron Spectrum of i-FF2(NH2)2  

Ionisation potential 
	

Assignment 

10.7 

11.4 
	 N lone pairs 

12.9 
	

P-H bonding 

13.9 
	

P-N bonding 

14.5 
	

P-N, N-H bonding 

16.5 
	

F lone pairs 

17-18 
	

P-F bonding 

All ionisation potentials in eV; + 0.1 eV. 



Figure 6.9. 	Photoelectron spectrum of Diaminodifluorophosphorane 
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Features of the spectrum include the two nitrogen 

lone pair bands, which have a separation of 0.7 eV, and 

two P-N bonding levels at 13.9 and 14.5 eV, with N-H bonding 

also appearing under the intense, broad band at 14.5 eV. 

These compare with values for F2PNH2  of 10.9 eV for the 

nitrogen lone pair level, and the higher ionisation potential 

of 15.4 eV for P-N and N-H bonding levels. 42 Fluorine lone 

pairs and P-F bonding orbitals occur at characteristic values 

4 2 	 114 
or three and five co-ordinate phosphorus compounds. 

The P-H bonding level at 12.9 eV lies closer to that of PH3  

(12.5 - 15.0 eV) 5  than PF2H(l5.l eV). 42 

6.6. Reactions 

Only two reactions were attempted. 	In the first, 

F2PNH2  was formed when PF2C1 was reacted with HPF2(NH2)2  

in the presence of N14e3, which acted as a hydrogen halide 

abstractor. 

HFF2(NH2)2  + PF2C1 + N14e3 -'- 2F2PNT-12 + [Me 3NH]Cl ....[li] 

Secondly, with hydrogen chloride, only PF2C1 and un- 

reacted HFF2(NH2)2  were observed. 	Reaction of HC1 would 

seem to be faster with F2PNH2  than HFF2  (NH 2)2, and proceed 

according to Equation [12] and [13]. 

HPF2  (NH 2)2  + HC1 - F2PNIH2  + [NH 43C' ......... [12] 

F2PNH2  + HC1 - PF2C1 + [NH 4]cl .............. [13] 

Details of these reactions are given in the experimental 

section. 



CHAPTER 7 

ELECTRONDIFFRACTION GAS PHASE MOLECULAR STRUCTURE DETER-

MINATION OF_(F22  Se, (F9 -,N and HPF22j2  

7.1. 	jFLUOROPHOSPHINOJSELENIDE 

The structure of bis(difluorophosphino)oxide has 

been the subject of two recent electron diffraction (ED) 

studies. 	While the earlier one interpreted the data in 

terms of one fixed conformer,29  the later study suggested 

a model which involved an appropriately weighted mixture of 

four conformers of Cl,  C21  C and C2  symmetries.37  Al-

though differing in overall conformation and bonded 

distances, both investigations produced wide POP angles, 

about 140°  on average, and P-O bond lengths short in 

comparison with the Shomaker-Stevenson predicted value of 

1.71A0. 116 The similarity of these parameters with those 

of the analogous silyl and germyl compounds, in which 

d-orbital participation in bonding to oxygen has been 

suggested, 117,118  led to the proposal of (p--;d) i-bonding 

in the phosphorus-oxygen bond. 
29  Since the silyl and 

gerinyl derivatives of the other Group VI elements gave bond 

lengths close to predicted values, and angles little 

different from those in the methyl analogues, it was 

concluded that (p—>d) 7-bonding was not sterically important 

in the sulphur and selenium compounds. 
119  The structure of 

(F2p)25e has therefore been determined to see if such 

behaviour is also observed in the difluorophosphino-

derivative. 

In addition to those factors affecting the P-Se bond 
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length and PSeP angle, the overall conformation, as deter-

mined by the orientations of the F 2  P groups, is of con- 

siderable interest. 	Particularly so with regard to the 

influence of lone pair-lone pair interactions between 

fluorine atoms and phosphorus atoms, their effect on con-

formation and such properties as the temperature sensitive 

coupling, 2J(PP), observed in n.m.r. experiments. 

7.2. Molecular Models and Refinements 

Because the difficulties in the structural deter-

mination of (F2P)20 due to overlap of the bonded distances 

were not present in (F2P)2Se (r(PSe) = 2.273A ' r(PF) = 

1.573 A), the major problem was that of conformation. 	This 

was tackled by use of two models. 	The simple model, (A), 

which produced a single fixed conformer, involved the P-F 

and P-Se bonded distances, angles FPF, FPSe, PSeP and two 

twist angles, and eleven non-bonded distances of which four 

were P ... F and four long range F ... F distances. 	The twist 

angles, one for each F2PSe unit, described the rotations 

about the P-Se bonds and were defined to be zero when the 

bisector of the FPF angle was trans with respect to the 

further P-Se bond. 

Assuming C2  symmetry, the bonded distances and their 

amplitudes of vibration, angles FPSe and PSeP, and the 

amplitude of vibration of the F... Se distance refined satis- 

factorily. 	However, the radial distribution curve, 

P(r)/r, contained a small peak at 2.01 A, due to the P=Se 

bonded distance in Se=PF2H,'2°  an impurity which arises 

readily from reaction of (F2P)2Se with traces of moisture. 
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A series of refinements was therefore carried out 

with different percentages of Se=PF2H contributing to the 

calculated intensity curves. 	Plots of R factor against 

percentage impurity for each camera height gave minima 

corresponding to 27 and 15% Se=PF2H in the 25 and 50 cm 

data sets respectively. 	Scale factors for each data set 

(equal to the product of the amount of impurity and the 

scale factor at that amount) and known parameters for 

Se=PF2H12°  were then used to calculate theoretical intensity 

data which were subtracted from the experimental intensity 

data. 	These corrected intensity data were used in all sub- 

sequent refinements (Figures 7.2 and 7.3). 

Having established the parameters cf the PSeP back-

bone of the molecule, the conformation was investigated for 

C2  and Cs  symmetries, the twist angles covering the range 

of angles 0 to 180°. 	On the assumption that the non- 

bonded P ... F and long F ... F distances must be greater than 

the sum of their Van der WaalC radii, and from relative 

values of the R factor, the possibility of twist angles 

greater than 3Q0  was eliminated. 	Refinements within this 

range produced rotational dependent distances between 4.0 and 

6.0 A. 	Although the experimental radial distribution 
curve appeared to have prominent peaks at the 4.0 to 5.01 

region, all attempts to fit these exactly to P ... F, or 

combinations of P...F and F ... F distances, failed. 	The 

single most favourable conformer had C2  symmetry with a twist 

angle of Ca. 20°, which when fixed allowed the FPF angle to 

refine. 
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This proved to be the limit of the simple model, and 

hereafter it was necessary to use a second model, (B) 

This was done for two reasons. 	Firstly, what appeared as 

peaks between 4.0 and 5.Oi. would have had amplitudes of 

vibration unreasonably small for such distances, and were in 

fact background ripples superimposed on an envelope in the 

radial distribution curve. 	Secondly, this envelope was 

taken as an indication of torsional motion of the F2P groups 

about the P-Se bonds, giving rise to a series of torsional-

dependent distances. 

Model (B) contained the same parameters as (A) except 

for those more appropriately defined by torsional displace- 

ments. 	These parameters were 8, an angle which replaced 

the two twist angles and represented the root mean squared 

amplitude of the F2P group torsion from 02V  symmetry; and 

the P•"F and long F••F distances which were dependent on 8. 

The model described the effect of torsional motion by a 

summation of weighted fixed conformers. 	To obtain these 

conformers, each F2P group torsion was assumed to be 

independent, and harmonic. 	The probability distribution of 

both F2P groups was therefore; 121 

1' 	= 	e( -( 	+ Ø)/2 
2} ....... [1] 

where Q was a normalisation factor, and 0,  and 02  were the 

angular displacements of the F2P groups from C2  symmetry 

(Figure 7.1). 



Figure 7_: 

70 

Se 

F4 

C2v 

(01 = 	
= 00) 

To produce a satisfactory distribution of torsion dependent 

distances, values of Ol  and 02  were selected to be equal to 

0, + 2 8/3, + Li 5/3 and -i- 2 5. 	Thus from an angular r.rn.s. 

amplitude of torsional rotation, 5, it was possible to 

calculate distances corresponding to pairs of torsional 

angles, Ø-  and 	and to weight these by the appropriate 

probability term, p( 112). 	In all, there were 16 different 

instantaneous conformations from the combinations of the 

seven possible values of each 0. 	The number of different 

torsional-dependent distances from model (B) was therefore 

large; 7 P ... F and 56 F ... F. 	The problem of the unwieldy 

number of F---F distances was overcome by the use of 28 

distances covering the range 3.20 to 5.90 1 in 0.10 	steps. 

Calculated F ... F distances that fell within ± 0.05 A of any 

of these steps were weighted and assigned to that particular 

step. 	For example, if an individual F...F distance was cal- 

culated as 4.24 A, it was said to occur at 4.20 A; likewise 



TABLE 7.1 

Weighting functions, correlations parameters, and scale factors 

Compound Camera As Smin s  s 2 5max. Scale factor 

(F2P)2Se 250 0.40 6.00 8.00 25.00 29.20 0.1990 0.635+0.020 

500 0.20 3.00 5.50 12.50 15.80 0.4945 0.612±0.027 

(F2P)3N 190 0.40 3.20 6.00 30.00 35.20 0.3839 0.748±0.011 

580 0.20 1.00 3.50 10.50 13.40 0.4876 0.838±0.013 

HPF2  (NH 2)2  250 0.40 6.00 9.00 26.00 30.00 0.4379 0.741±0.009 

500 0.20 1.80 4.50 12.50 16.00 0.4977 0.844+0.013 

Wavelength (A) 

0.05660 
0.05660 

0.05852 
0.05847 

0.05660 

0.05660 



TABLE 7.2 

(F2P)2Se: Least-Squares Correlation Matrix (x 1000) 

r l r 2 / 1 L 2 L 3 u 1 u 2 u 4 u5k 1 k 2  

1000 	-21 	-93 	-82 33 20 

1000 	417 	-514 -212 187 

1000 	-722 -658 337 

1000 256 -332 

1000 -66 

1000 

10 -18 9 24 6 r 	1 

83 133 114 268 196 r 	2 

-159 -35 175 483 359 L 	1 

-2 -194 -332 -475 -378 L 	2 

88 358 -132 -101 -29 L 	3 

297 308 65 710 374 u 	1 

1000 236 32 407 194 u 	2 

1000 172 424 357 u 	4 

1000 95 76 u 	5 

1000 463 k 	1 

1000 k 	2 



TABLE 7.3 

Molecular Parameters ofF2Pj2Se a) 

Distance (A) 	Amplitude (A) 

(A) Indpendent_Distances 

r 1 	(P - F) 	 1.573(3) 	0.047(5) 

r 2 	(P - Se) 	 2.273(5) 	0.057(5) 

(B) Dependent Distances 

d 3 (F ---F) 2.1+21(35) 0.078 (tied to u 2) 

d 4 (F... Se) 2.953(47) 0.130 (9) 

d 5 (P•P) 3.341(97) 0.112(27) 

d 6 (P•••F) 3.83 	(9) 

d 7 (P...F) 4.04 (10) 

d 8 (P...F) 4.22 (8) 

d 9 (P•'F) 4.39 	(12) 0.15(F) 

d 10 (P...F) 4.51 	(7) 

d 11 (P...F) 4.61 (II) 

d 12 (P••'F) 4.66 	(9) 

d 13 - d 40 	(F... F) 3.20-5.90 0.20(F) 

L 1 	(F- P- -F) 	 100.6(11) 

L 2 	(F- P- Se) 	 98.7(4) 

L 3 	(P - Se - P) 	 94.6(8) 

L 4 	R.m.s. torsional 
amplitude, 5 	20.0(F) 

N. B. 

Fixed parameters marked (F) 

(a) Refer to text for definition of torsional-dependent 

distances P...F and F...F in terms of 8. 
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Observed and 
	weighted difference molecular scattering 

illtensittes for nozzle-to--plate distaices of 250 mm (Figure 7.2) 

and 500 mm (Figure 7.3). 
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Figure 7.5: Radi1 distribution curve calculated from the 

(F2P)2Se parameters of Table 7.3. 
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for a distance of 4.16 A. 	The errors implicit in this 

approach were believed to be small in the calculated 

intensity curves representing the torsional motion of 

(F2P)2Se. 

Results from model (A) were taken as the starting 

point of model (B) refinements. 	All parameters that had 

refined with the simpler model also did so with model (B). 

The vibrational amplitudes of distances affected by 

torsional motion, P ... F and long F... F, were given the same 

value for all conforinational components of the particular 

distance. 	Refinement of the r.m.s. amplitude of torsion 

was not possible, but an R factor loop with fixed 8 values 

in the range 8 to 28°  indicated a minimum at 20 ± 40, with 

50% confidence.122  With 8 fixed at 20°, two further 

amplitudes of vibration were refined; those of the P---P 

distance, and of the short FF distance which was tied to 

the amplitude of the P-Se distance in the ratio 1:0.73.123 

Refinement of more parameters than those nine described 

was not possible, giving a final RG = 0.158 for the 

torsional model (B), significantly better than 0.179, 

achieved with the single conformer model (A). 

The parameters of model (B) are given in Table 7.3, 

while the elements of the correlation matrix, and the 

weighting function, correlation parameters and scale factor 

information are presented in Tables 7.2 and 7.1. 	For 

comparison, Figures 7.4 and 7.5 are the experimental radial 

distribution curve, and the radial distribution curve 

calculated from the parameters of Table 7.3. 

It must be stressed that the structure found for 



TABLE 7.4  

Bond lengths and angles in some A 
2  Y Group VI derivatives 

JA - Y) 

Y 	A 	Experimental CalculatedL  AYA Reference 

CH  1.416 - 111.5 128 

SiH3  1.634 1.749 144.1 117 
0 	GeFI3  1.766 1.829 125.6 118 

F2P 1.533 1.702 145.1 29 

1.631 135.2 37 

CH  1.943 - 96.8 129 

Se 	S±H3  2.273 2.274 96.6 134 

GeH3  2.344 2.352 94.5 119 

F2P 2.273 2.229 94.6 

Distance in ; angles in degrees. 

See text. 



(F2P)2Se, namely C2  symmetry with torsional motion of the 

F2P groups having a r.m.s. amplitude of 20, assumes 

harmonic motion of the F2P groups as expressed by 

Equation [i]. 	This assumption may not be entirely valid 

due to the possibility of physical interaction of the lone 

pairs on the phosphorus atoms making the zero twist position, 

C2. symmetry, energetically less favoured than at small 

displacement angles. 	If this were so, the function relating 

the potential energy of hindered rotation to torsional angle 

displacements (and thus their probabilities at a particular 

displacement angle) could approximate to a quartic expression, 

with the ground state of torsional motion lying either above 

or below the energy hump at zero displacement. 	Above this 

hump, harmonic motion would be an adequate approximation, 

but below, the F2P groups would spend most time displaced 

from C2  symmetry. 	In this situation the F2P groups could 

adopt either C2  or C symmetries. 	No attempt has been made, 

however, to investigate this more complicated interpretation, 

the present intensity data not being of sufficient quality. 

7.3. Discussion 

Table 7./+ contains some bond lengths and angles of 

Group VI derivatives with which to compare the P-Se bond 

length and PSeP angle found for (F2P)2Se. 	The predicted 

bond lengths have been calculated from the tetrahedral 

covalent radii derived from bond lengths in C2H6,124  

CH3SiH3,125  CH3GeH3,126  F2PCH3,127  (CH 3)20128  and (CH 3)2  Se. 29  

The values for (F2P)2Se are consistent with those of (MH3)2Se, 

(M = C, Si or Ge), in indicating the unimportance of multiple 
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bonding in the stereochemistry of these selenium compounds. 

Another estimate of the P-Se bond length, from the 

Shomaker-Stevenson rule, 
116  gives a value of 2.21+ A, also 

significantly shorter than the value found. 

The conformation of the F 2 groups, expressed in 

terms of several rota.meric forms, is a much more satisfactory 

description of the structure than a single frozen conformer. 

The r.m.s. torsional angle, o, in (F2P)2Se compares with 

(F2P)2N0H3  (11.6 ± 4.30  at 298  K)130  and 1. 2PPF2  (16.7 + 

400),131 both investigated in a similar manner. 

The relationship between 8 and the potential constant 

(Equation [2] below) also implies the temperature dependence 

of 8; 6 ,m4  T2. 	The structure of (F2P)2NCH3  was obtained at 

238 and 298 K when a difference of only 1.2°  was observed. 

The larger value of 6 at 298 K in (F2P)2Se may be sufficient 

to see a significant change, since raising the temperature 

J_ 373 K should increase 8 by 2.4
0. 	Hoever, it is first 

necessary to obtain a greater degree of accuracy in the 

existing value by better quality intensity data. 

Another implication of the conformation is the near 

right angle at selenium, and the extent to which the 

phosphorus lone pairs are directed towards each other. 	In 

F2PPF2  they are trans, 131 and in (F2P)2  NCH 3  the wide PNP 

angle (115.90)130  considerably reduces any interaction. 

Studies of the behaviour of coupling constants with temper-

ature in F2PPF2  and (F2P)2NCH3  indicate only small changes in 

2J(PP), the most sensitive coupling constant, over a 100 K 

range; 2 Hz in the former and 10 Hz in the latter. 
21 This 

contrasts sharply with (F2P)2Se where, over the same temperature 
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range 2J(PP) varies by 100 Hz. 	It seems possible that the 

mechanism responsible for this behaviour is through-space 

interaction of phosphorus-phosphorus lone pairs, made more 

effective at lower temperatures by a reductionin the 

torsional amplitude of the F 2 P groups. 

7.4. Torsional Frequency of the Dif1uorophosphinoGrop 

Knowledge of 6 allows an estimate to be made of the 

torsional frequency. 	Since harmonic torsion angle displace- 

ments are assumed (V = k00 
2/2, where V is the potential 

barrier to rotation) the potential constant, k02  is related 

to the r.m.s. amplitude by Equation [2];130132133 

= kT/82 	(J) .................... [2] 

The torsional frequency, v, can then be calculated from 

Equation [3] where Tr  represents the reduced moment of 

inertia about the P-Se bond. 

= (k/I 	/ 2 	(Hz) ........... [3] 

The experimental section contains details of this calculation 

which produced a frequency of 34 cm-1  at 298 K for (F2P)2Se. 

This value is considerably lower than the 260 + 50 cm 

found for the torsional frequency about the P-N bond in 

(F2P)2  NCH 3.130  Recalculation of this frequency using the 

published value of 6 suggested that moments were taken about 

the N-C and not the P-N bond. 	If this were so, a torsional 

frequency of Ca. 60 cm is obtained, in more reasonable 

agreement with the value for (F2P)2Se. 	Both frequencies are 

capable of measurement by infra red interferometric methods. 
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7. 5. TRI s(DIFLu0R0PH0sPHIN0) AMINE 

Structural studies of difluoroohosphino compounds 

containing bonds to three co-ordinate nitrogen atoms include 

a number of interesting problems. 	These centre round the 

possible co-planarity of the ligands to nitrogen, and the 

extent to which the P-N bond possesses multiple-bond character 

through the use of d-orbitals on the phosphorus atom. 	An 

electron diffraction (ED) study of F2PN}12  and F2PN(CH3)2  

found non-planarity of the PNX2  group with angles of 35°  and 

320  between the P-N bond and the NX2  plane.30  A microwave 

investigation, however, concluded that in both F2PN(CH3)2135  

and F2P1\TH2136  there was co-planarity of the ligands to 

nitrogen: an X-ray study of the former supported this inter- 

pretation.13' 	The recent ED structure determination of 

(F2P)2NCH3130  reported a planar P2NC arrangement, and in 

common with the other investigations, a P-N bond length 

short by comparison with the sum of the covalent single-bond 

radii. 

(F2P)3N is consequently of interest in relation to 

these problems and when compared with the earlier studies. 

In addition, conformations of the molecule, determined by 

positions of the F 2  P groups, will also be of considerable 

importance. 

7.6. Molecular Models 

Models were designed to elucidate the problems out-

lined previously, viz:- 

possible co-planarity of the P 
3 
 N skeleton. 

variety of conformers with symmetries C3h, C3., C39 Cs 

or Cl. 
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To this end F 2  P groups were treated as units with a plane 

of symmetry and identical parameters. 	With this 

restriction the structure was defined in terms of the two 

bonded distances, and the angles FPF, FPN, PNP and three 

twist angles; eight parameters in all. 	The twist angles, 

one for each F 2  P group, were measured from the bisectors of 

the FPF angle; e.g. when all three twist angles were either 

+90° or  -90,  with angle FPN 120°, the point group was C. 

The maximum possible number of different dependent P"•F and 

non-geminal F ... F distances was twelve in each case. 	For 

symmetries higher than C1  there were fewer different 

distances, some of which were degenerate. 	Symmetry 

constraints could be applied to the twists so that different 

conformations could be investigated. 	These constraints were: 

all twists equal. 	As such, twists of 00  or ± 90°  were 

particular cases, C 3 or C, of the general C3  symmetry. 

This gave rise to four groups, each of degeneracy three, for 

P---F and F••F distances alike. 

Cs  symmetry with two twists subtending equal, but 

opposite sign, angles at the mirror plane bisecting the 

0 
third F 2 group which has a twist angle of + 90 . 	This 

produced six groups of different P ... F and seven different 

F"F distances. 

(c) all twists equal, but one of opposite sign. 	A particular 

case of Cl  symmetry having four P••F distances and eight 

F••F distance different. 

(D) all twist independent. 	C1  symmetry with twelve different 

P••F and twelve different F ... F distances. 



intensities for nozzle-to-plate distances of JU mm Iji'igure 

7.6) and 530 mm (Figure 7.7). 

Figures 7.6  and 7,7 
Intensity Data of (F,)P)7N 



Figure 7. 

Radial Distribution Curve of (F2  

Observed and difference radial distribution curves, 

P(r)/r, for (F P) N. 	Before Fourier inversion, the 

data were multiplied by s exp (-0.0015s )/(zp-fp)(zF_fF) 

2 	'3 	'4 	'S 	'B 	'7 A 



7.7 

7.7. Refinements 

Reference to the radial distribution curve, P(r)/r, 

for 	(F2P)3N (Figure 7.8) indicates that the P 3  N skeleton was 

well defined by the peaks at Ca. 1.6, 2.5 and 3.0 A, which 

contain respectively, the P-F and P-N bonded distances, the 

geminal F ... F and F ... N, and the P ... P rson-bonded 

distances. 	From these peaks it was possible to refine the 

bonded distances, the angles F'PN and FPF, and the amplitudes 

of vibration of the P-F, F ... N, and P"'P distances. 	As the 

P-F and P-N distances were similar, their amplitudes were 

constrained so that the P-N amplitude was 1.08 times that 

of the P-F amplitude. 	Similarly the geminal F---F distance 

amplitude was constrained to be 0.87 times that of the F ... N. 

These ratios were derived from calculated mean amplitudes of 

vibration in difluoro(isocyanato)- and difluoro(isothiocyanato)-

phosphine,138  and from refined amplitudes in other aminodi-

fluorophosphines.30 '130,139  All these parameters refined 

to reasonable values. 123  

These parameters, however, gave no information about 

molecular conformation, which was determined by the P ... F and 

FWF distances greater than 3.0 A. 
With angle PNP fixed at 120°, and using model (A) which 

gave overall C3  symmetry, refinements were carried out on 

fixed twist angles in the range 0 to 160. 	A minimum R  

value was found at Ca. 100. 	The twist angle was allowed 

to refine, and remained steady at this value, not being heavily 

correlated with any of the other seven refining parameters. 

This gave four sets of P---F distances. 	The amplitudes of 

vibration of those at 3.0 and 3.2 1 were tied together with 
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a ratio of unity and allowed to refine, as were the 

amplitudes of those sets at 3.9 and 4.0 AO. 	The F"F 

distances also occurred in four sets at 3.7 and 4.0 A, and 

4.3 and 4.6 A. 	However, only the amplitudes of vibration 

of the two longest F ... F distance groups, when tied together 

with unit ratio, refined satisfactorily. 	The other two, 

occurring underneath the stronger P---F peak, did not refine 

well, and their amplitudes were left fixed at a reasonable 

value, 0.20 A. 	Since the PNP angle had remained fixed at 

120°, an R factor loop was carried out on this angle between 

118 and 120°  in 0.20°  steps. 	At each step the angle was 

fixed, but with the above mentioned ten parameters refining. 

It was found that over the 20  decrease in PNP angle, the 

twists decreased by approximately 60, to 40• 	However, a best 

fit was found at 120°, and the angle was fixed at this value. 

Refinement to convergence gave R  = 0.102 for the C3  model. 

Model (B)was then used to investigate the possibilities 

of C3  symmetry. 	Initially, the PNP angle was fixed at 120°, 

and all parameters other than the amplitudes of the P ... F and 

F"•F distances were refined as before. 	Refinements were 

carried out with two twist angles from 10 to -90, the third 

twist angle, that of the F 2  P group on the plane of symmetry, 

remaining at 90 throughout. 	The three twist angles 

therefore covered the range (-90, -90, + 900) to (+170, +10, 

+900). With this symmetry one of the F"F distances was 

always very short (although not always between the same pair 

of fluorine atoms) giving a maximum of 2.6 A at (-109, -71, 

+900). 	The shortest F••F distance in model (A) was 3.7 A. 

The lowest R   value was achieved at (-170, -10, +900)  but 
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produced an F---F distance of only 2.2 A. 	Consequently, 

subsequent refinements were done with the twist angles 

that maximised the shortest F•••F distance since this was 

the most plausible physical structure with C3  symmetry. As 

in model (A) the amplitudes of vibration of groups of P---F 

distances were refined, but those of F...]? distances did not. 

The PNP angle was again varied between 118 and 1200,  moving 

two F2   groups towards and away from the third, i.e., with 

twists (-109, -71, +900) and (+109, +71, -900). 	Both 

alterations gave a minimum R factor at 118.9
0  , a = 0.6 0. 

122 

However, since this was only 0.220, the C, model could be 

rejected with virtually absolute confidence. 

Since model (A) had produced the best fit, distortions 

from its C3  symmetry were studied using model (C). 	It was 

found that there was a significant improvement with this 

model, the twist angles (-10, -10, +100) and all other 

parameters as for (A) refining with acceptable values to 

produce a converged RG = 0.095. 

Model (D) was then used which allowed independent 

movement of the three twist angles. 	This was done to ensure 

that there were no more-favoured conformations, either 

between C3  symmetry (+10, +10, +lO°)and Cl  symmetry (-10, 

-10, +100),  or away from C1  symmetry towards C3  symmetry 

(-109, -71, +900). 	In the latter case, refinements were 

carried out starting either with twists at (-10, -10, +10°) 

or (+10, +10, -100). 	The twist angles were changed in small 

steps in the ratios -100:-60:+80, or -120:-80:+100, which 

would bring the structure towards C3  symmetry. 	All such 

shifts produced much less favourable results. 	In the former 



TABLE 7.5 

(F2P)3N: Least Squares CorrelationMatrix (x 1000) 

rlr2LlL2L4ulu4u5u7u9ul4klk2 

1000 	407 	-20 -145 33 14 -17 29 26 151 -27 56 31 r 1 

1000 	-146 -302 177 183 -67 46 140 591 -29 421 268 r 2 

1000 128 -787 30 718 -116 -745  -114  -99 13 47 L 1 

1000 -692 -43 -322 -133 -583 -487 -396 -111 -75 L 2 

1000 -15 -287 133 900 336 321 13 -13 L 4 

1000 139 125 28 164 0 611 287 u 1 

1000 -95  -284 93 95 186 151 u 4 

1000 177 -113 105 176 86 u 5 

1000 210 376 68 36 u 7 

1000 106 320 270 u 9 

1000 -6 0 u14 

1000 313 k 1 

1000 k 2 



TABLE 7.6 

Molecular Parameters of (F2P) 

Distance (A) 

Independent Distances 

r 1 (P - F) 	 1.574(3) 
r 2 (P - N) 	 1.712(4) 

(B) Dependent Distances 

d 3 (F ... F) 2.374(15) 
d 4 (F ... N) 2.499(18) 
d 5 (p ... P) 2.965(10) 
d 6 (P ... F) 2.997(15) 
d 7 (P ... F) 3.195(36) 
d 8 (P ... F) 3.846(16) 
d 9 (P ... F) 4.014(28) 
d 10 (F ... F) 3.618(21) 
d 11 (F ... F) 3.634(23) 
d 12 (F ... F) 3.991(54) 
d 13 (F ... F) 4.012(36) 
d 14 (F ... F) 4.297(20) 
d 15 (F ... F) 4.440(24) 
d 16 (F ... F) 4.534(41) 
d 17 (F ... F) 4.619 (3) 

(C) Angles (°_) 

L 	1 (F - P - F) 97.9(12) 

L 	2 (F - P - N) 98.9(7) 

L 	3 (P - N - P) 120.0(F) 

L 	4 Twist 1(a) -10.4(13) 

L 	5 Twist 2 -10.4(F) 

L 	6 Twist 3 10.4(F) 

(a) See text 
Fixed parameters marked (F) 

Amplitude (A) 

0.034(3) 
0.037 (tied to u 

0.070 (tied to u 4) 
0.081(11) 
0.102(6) 
0.203 (tied to u 7) 
0.203(17) 
0.150 (tied to u 9) 
0.150(20) 

0.200 (F) 

0.183(17) 
0.183 (tied to u 14) 
0.183 (tied to u 14) 
0.183 (tied to u 14) 



TABLE 7.7 

ED parameters 	of some Arninodifluorophosphines 

Bond length Angles 

Compound r(P-F) r(P-N) L FPF Z FPN Z PNP L PNX 

F2PNH2  1.581 1.661 95.3 101.0 - 119 

F2PNHSiH3  1.574 1.657 100.8 95.6 - 127.9 

F2PN(CH3) 2  1.589 1.684 99 97 - 118.3 

(F2P)2  NCH 3  1.583 1.680 95.1 99.6 115.9 122.0 

(F2P)3N 1.574 1.712 97.9 98.9 120.0 - 

Reference 

30 

17 

30 

130 

(a) Distances in ; angles in degrees. 



case, no combination of twist angles produced a better fit 

than that found using model (C). 	A structure with twists 

(-10, 0, +100 ) gave RG = 0.099, marginally better than the 

best for C3  symmetry. 	However, since model (c) gave 

RG = 0.095, better than 99.5% confidence can be placed in 

this structure on the R factor ratio test. 122  

The parameters gven in Table 7.6 therefore refer to 

those found using model (c) as the most probable fixed con- 

formation of (F2P)3N. 	Table 7.1 contains values of the 

weighting functions, correlation parameters and scale 

factors, while Table 7.5 gives the correlation matrix of 

refined parameters. 

7.8. Discussion 

The P-N bond length in (F2P)3N, (1.712 A), is short 

compared with the value of 1.762 A calculated from the 

Shomaker-Stevenson rule, 116  or 1.769 A in 113NF0, regarded 

as a 'normal' single bond length.140  Comparison with 

related aminodifluorophosphines, however, (Table 7.7)  indi-

cates that this bond is significantly longer in (F2P)3N than 

in the other compounds. 	While this may result from involve- 

ment of the nitrogen lone pair with three bonds, as against 

two in (F2P)2NCH3, and one in F2PN(CH3)2  and F2PNR2, steric 

factors may also be important. It is interesting to note 

the similarity of (F2P)3N and (F2P)2NCH3  with their silyl 

analogues which are also planar at nitrogen. 	The Si-N 

bond lengths decrease from (H 41  3  Si) 3N (1.738 A)' 	to 

(H3Si)2NCH3  (1.726 A),142  a process which is accompanied by 

° a widening of the SiNSi angle to 125.4. 	This last change 
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contrasts with (F2P)2  NCH 3, where the PNP angle narrows to 

115.9 0.130 	Since the factors affecting the silylamines 

have been interpreted in terms of (p - d) 7-bonding, it 

seems reasonable to assuie that involvement of the d-orbitals 

on phosphorus influences both P-N bond length and planarity 

of ligands at nitrogen. 

The conformation of (F2P)3N represents the most 

probable fixed orientations of the F 2  P groups, assuming 

independent torsions around the P-N bonds. 	Since there 

appears no physical reason why a barrier to torsional motion 

should exist at zero twist angle, and harmonic oscillation 

of the F'2P groups around zero would make this position 

most probable, 143  a simple harmonic approximation would not 

describe the torsional behaviour adequately. 	This torsion 

seems to be represented best by a most probable displacement 

of 100  from C 3 symmetry, for which twists (-10, -10, +10°) 

or (+10, +10, -100) would be three times more likely than 

(-10, -10, -100) or (+10, +10, +100). 	Perhaps the approach 

adopted in the structure determination of (F2P)2Se, in which 

the F 2 group torsional displacements from a mean position 

were described in terms of an angular root mean squared 

amplitude, might be applied to (F2P)3N. 	Such an investi- 

gation should produce a r.m.s. amplitude of about 10°  from 

C 3 symmetry. However, in view of the structure found in 

this study, it may be necessary to introduce anharmonicity 

into the potential function describing the F 2  P group 

torsions, so as to increase the probabilities of the angular 

displacements with respect to zero displacement. 	Since this 
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would give greater weight to conformations with non-zero 

displacements, and the structure would be represented by a 

summation of probability weighted instantaneous molecular 

conformations, it may represent more accurately the 

torsional motion of the F 2  P groups about C 3 symmetry. 

7.9. DIANINODIFLUOROPI-IOSPHORANE 

The characterisation of diaminodifluorophosphorane 

described in Chapter 6 indicated that the molecule had C 2V 

symmetry with the fluorines axial in a trigonal bipyramidal 

molecule. 	The effect on the n.m.r. spectra of reducing 

the temperature showed hindered rotation of the amino 

groups about the P-N bonds, and a preference for the NH2  

group and the fluorine atoms to be co-planar. 	This ED study 

was carried out to investigate these observations, and to 

provide further structural information about five co-ordinate 

pentavalent phosphorus compounds, few of which have been 

studied. 

7.10. Molecular Model 

The model was a particularly simple one which assumed 

C2  symmetry, with the planes of the amino groups perpendicular 

to the HEN2  plane and the C2  axis along the H-P bond. No 

provision was made to investigate either rofation of the Nil2  

groups about the P-N bonds, or non-coplanarity at nitrogen, 

since these effects would be determined by non-bonded 

distances involving hydrogen atoms, of little influence in 

the ED experiment. 	The seven independent parameters that 



TABLE 7.8 

HPF2(NH2)2  : Least-Squares Correlation Matrix (x 1000) 

r 2 r 3 r 4 Z 1 L 2 u 4 u 1 u12 u13 k 1 k 2 

1000 -832 80 -479 339 -11 -145 139 144 102 57 r 2 

	

1000 -130 394 -379 	0 151 -137 -181 -87 -31 r 3 

	

1000 -37  -180 	-31 	92 -45 	15 79 	32 r 4 

	

1000 -899 	-5 241.4. -268 149 -155 -174 L 1 

	

1000 	20 -250 264 -128 134  145 L 2 

	

1000 	25 	20 	-1 	95 	33 u 4 

	

1000 -50 -122 	274 186 u I.'- 

1000 

i

1000 -51 131 103 u 12 

	

1000 	-1 -110 u 13 

1000 107 k 1 

1000 k 2 



TABLE 7•2 

Molecular Parameters of HFF2  (NH 2)2  

Distance (A) Amplitudej 
(A) Independent Distance 

r 1 (P-H1) 1.430 (F) 0.085 (F) 

r 2 (P-F1) 1.643 (5) 0.043 (F) 

3 (P-N1) 1.640 (5) 0.043 (F) 

r 4 (N1-H2) 0.993 (11) 0.055 (19) 

(B) Dependent Distances 

d 5 (F1...H1) 2.165 (12) 0.080 (F) 

d 6 (N1...H1) 2.645 (10) 0.090 (F) 

d 7 (H1...H2) 3.209 (13) 0.200 (F) 

d 8 (P ... H2) 2.303 (ii) 0.100 (F) 

d 9 (F1...H2) 2.284 (12) 0.150 (F) 

d 10 (F1...H3) 3.296 (20) 0.150 (F) 

d 11 (F11..N1) 2.328 (10) 0.073 (5) 
d 12 (F1...F2) 3.285 (12) 0.037 (12) 

d 13 (N1...N2) 2.873(16) 0.111 (27) 
d 14 (N1...H4) 3.426 (19) 0.170 (F) 

d 15 (H2...H3) 1.720 (19) 0.100 (F) 

d 16 (H2...H4) 3.743 (21) 0.200 (F) 

d 17 (H2...H5) 4.119 (26) 0.200 (F) 

(C) Angles (°) 

L 1 (H1-P-F1) 89.3 (8) 

L 2 (H1-P-N1) 118.8 (5) 

L 3 (P-N1-H2) 120.0 (F) 

Fixed parameters marked (F). 



83 

defined the structure were therefore the bonded distances 

H-P, P-F, P-N and N-H, and the angles HPF, I-RN and PNH. 

7.11. Refinements 

The radial distribution curve, P(r)/r, of HPF2(NH2)2  

(Figure 7.11) showed that the principal scattering 

distances in the molecule, P-F and P-N, came together at 

ca. 1.64 A. 	Attempts to refine these distances and their 

amplitudes of vibration made the latter become unreasonably 

small, and caused the former to separate under the peak 

contour. 	Since the non-bonded F ... F peak could be clearly 

seen at ca. 3.28 A, the P-F distance must have a minimum 

value of 1.64 A. 	The amplitudes of vibration of the P-N and 

P-F distances were therefore fixed at reasonable values 123 

allowing refinement of these distances. As the N-H, FWN 

and F••F distances were well resolved, the angles HPN and 

HPF, the N-H distance, and the amplitudes of vibration of 

the distances N-H, F•••F and F•••N all refined. 	The re- 

maining geometrical parameters, the P-H distance and PNH 

angle, were not well defined. 	Lowest R factors were 

obtained with values of 1.43 A and 1200, and these were used 

in subsequent refinements. 	Finally the amplitude of 

vibration of the N••'N distance was found o refine despite 

the fact that the peak was not prominent in P(r)/r. 	Under 

these conditions refinements converged to give a final 

RG = 0.096. 

The parameters found for HPF2(NH2)2  are presented in 

Table 7.9, and Figure 7.12 depicts the structure. 	Tables 7.1 



Tntensitv Data of IF(NH ),, 

intensities for nozzle-to-plate distances of 250 mm (Figure 



Figure 7. 11 

Radial Distribution Curve of ,222 

Observed and difference radial distribution curves, 

P(r)/r, for HPF2(NH)21  showing contributions due to 

the non-bonded distances F•••N, N ... N and F'••F. Before 
Fourier inversion, the data were multiplied by s exp 

(_0.015s2)/(zp_fp)(zF-fF) 

2.328 
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Proposed gas phase conformation of 

FA 



TABLE 	7. 10 

Bond Lengths and Angles 	in some Fluorophosphoranes 

Compound X Y r(P_Fax) L axPXeq) L eq "eq) Reference 

PF5  F F 1.577 90 120 144 

HPF4 ' H F 1.594 90 124 145 

CH3PF4  C F 1.612 91.8 122.2 146 

(CH 3)2PF3  F C 1.643 89.9 118.0 146 

(CH 3) 3PF2  C C 1.685 90 120 147 

HPF2  (NH 2 ) 2  H N 1.643 89.3 118.8 

Bond lengths in ; angles in degrees. 

Microwave values, all other ED. 
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and 7.8 contain weighting functions, correlation para-

meters and scale factors, and the correlation matrix. 

Intensity curves are represented in Figures 7.9 and 7.10. 

The parameters of Table 7.9 were also used to calculate 

theoretical P(r)/r showing contributions due to the non- 

bonded distances F ... F, F ... N, and N ... N. 	Figure 7.11 

clearly demonstrates the compatability of the experimental 

and theoretical observations, and provides assurance for the 

assumptions about molecular geometry. 

7.12. Discussion 

Table 7.10 contains bond lengths and angles in some 

fluorophosphoranes. 	The values for I-]PF2(NH2)2  are 

unexceptional and there is a particular similarity with 

(CH 3)2PF3.146  The P-N bond length at 1.64 A is 0.02 A 

less than in F2PNH2, 30  not unreasonable when compared with 

the 0.01 A difference in P-C bond length between F2PCH3127  

and F2P(CH3)3.147  The small distortions from regular tn-

gonal bipyramidal geometry seem steric in origin, and not 

attributable to electronegativity effects. 	This can be seen 

in the displacement of axial and equatorial groups away from 

the least electronegative group, CR3, in CH3PF4  and (CH3)2PF 46  39  
whereas in HFF2  (NH 2)2, displacement is towards the least 

electronegative group and away from the INH 2  groups (Figure 

7.13). 	Insofar as this is valid, inclusion in a series of 

fluorophosph*r.neof the isoelectronic SF  148  allows ligands 

to be arranged in an approximate order of their distorting 

effect upon this geometry: 

lone pair> NH2  CH  > F H. 
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7.13. Non-Bonded Distances in Fluorophosphines 

In a series of substituted ethylenes and carbonyl 

derivatives, Bartell observed that while bond lengths were 

determined by valence forces, bond angles in crowded mole-

cules were governed mainly by non-bonded van der Waals 

forces between nearest neighbour atoms. 149 From these non-

bonded contact distances, 'hard sphere' radii for atoms 

bonded to a common central atom were obtained, the sum of 

two such radii giving a distance of minimum approach for the 

two atoms concerned. 	For example, the sum of fluorine and 

chlorine 'hard sphere' radii derived from half the F ... F 

distance in CH2=CF2  and Cl... Cl distance in CH2=CC12, would 

give a reasonable estimate of the F... Cl distance in 

CH2=CFC1. 	Although these radii related to a carbon central 

atom, the ideas have been extended to other central atoms, 

in silyl derivatives of nitrogen, 0  and several fluoro-

phosphine and fluorophosphoryl compounds.151  In the latter 

case, only the fluorine 'hard sphere' radius was found from 

the non-bonded F ... F distance in F2P moieties. 	From the 

non-bonded distances in these compounds, Tables 7.11 and 7.12, 

many other radii can be obtained however, both with, and 

without phosphorus as the central atom, Table 7.13. 	The 

'hard sphere' radii values with a particular central atom 

seem constant, irrespective of their source, as in the case 

of silicon obtained from H3SIN3  and (H3  Si) 2NCN,15°  1.57 A, 

and from F2PNHSiH3, 1.58 A. 	Consequently, they can be used 

in conjunction with bond lengths, predicted from electronega-

tivity-corrected covalent radii, to give estimates of valence 



TABLE 7.11 

Non-bonded Distances in some Di f1uoj2ho sphino-Comprids 

Y 
F2PX( Distance (fl z 
X Y Z F ... F F ... X P ... Y 	P...Z Method Reference 

H - - 2.406 2.233 - 	- MW 152 

CH  - - 2.398 2.570 - 	- MW 127 

C N - 2.365 2.545 2.956 	- MW/ED 151,153 

N H H 2.337 2.504 2.339 	- MW/ED 136,30 

N H SiH3  2.436 2.395 2.310 	3.034 ED 17 

N CH  CH. 2.1+20 2.456 2.692 	- MW/ED 135,30 

N PF2  CH  2.340 2.492 2.851 	2.767 ED 130 

N PF2  PF2  2.368 2.498 2.965 	- ED 

N CNPF2 - 2.451 2.378 2.682 	- ED 139 

N CO - 2.358 2.480 2.675 	.- ED 138 

N CS - 2.384 2.447 2.743 	- ED 138 

O CH  - 2.340 2.456 2.653 	- MW 154 

O PF2 - 2.420 2.378 2.925 	- ED 29,37 

Se PF2 - 2.421 2.953 3.341 	- ED 

F - - 2.364 - - 	- MW/ED 155,156 

Cl - - 2.352 2.754 - 	- MW/ED 157,158 

Br - - 2.386 2.896 - 	- ED 158 

I - - 2.439 3.132 - 	- ED 158 

P H H 2.398 2.884 2.640 	- MW 159 

P F F 2.415 2.900 - 	- ED 131 

(a) Where both microwave (MW) and electron diffraction (ED) 
data have been obtained, ED values are quoted. 



TABLE 7.12 

Non-bonded Distances in some Fluorophosphino- and Fluoro-
phory1 Compounds 

FP—Y 	 Distances (A) 

X 	Y 	Z 	F ... X F ... Y F...Z X ... Y 	Method 	Reference 

Cl Cl 	- 2.762 - - 	3.127 ED 158 

Br Br 	- 2.910 - - 	3.410 ED 158 

o H 	F 2.529 2.275 2.354 	2.420 MW 160 

o F 	F 2.521 2.355 - 	- MW/ED 161,162 

S F 	F 2.912 2.350 - 	- MW 161 

Se H 	F 3.051 2.271 2.365 	2.923 ED 120 

(a) Where both microwave (MW) and electron diffraction (ED) 

data have been obtained, ED values are quoted. 



TABLE 7.13 

Hard Sphere Radii derived from Fluorophosphine and Fluoro-

sphory1 Compounds 

Central atom 
Hard 	here 

radii (A) C (a) N Q P 	Se 

H 0.92 0.88 1.07 

C 1.25 1.26 1.19 1.37 

N 1.14 - - 1.27 

0 1.13 - - 1.28 

F 1.08 - - 1.19 
- 168(b) 

Si - 1.58 

P - 1.45 1.46 1.70 	1.67 

S - - - 1.72 

Cl 1.44 - - 1.57 

Se - - - 1.81 

Br - - - 1.71 

I - - - 1.94 

Values from reference 149. 

Derived from P(SiH3)3, reference 163. 



angles. 	This information, and the effect of van der Waals 

forces upon dihedral angles, therefore provides a reasonable 

basis for predictions about molecular structure. 
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CONCLUSIOUS AND FUTURE WORK 

Although the number of known difluorophosphino-

derivatives of Groups V and VI has been extended, large areas 

of Main Group chemistry still remain relatively unexplored. 

Group IV compounds, for example, are not known beyond the 

large number for carbon. 	Of these, the perfluorovinyl- 

fluorophosphines, 164 and the recent preparations of vinyl-

difluorophosphinel65  and propynyldif'luorophosphine,166  are 

particularly interesting. 	Suggested reactive and stereo- 

chemical likeness between silyl and difluorophosphino 

species30'139  implies F2PCCX, other than X=CH3, may be 

formed, since many H3SiC: 	
167 CX are known. 	In addition, 

the recent formation of (F3C)2PSiH31G8  indicates that the 

difluorophosphine analogue may be stable, fluoro- and 

trifluoromethyl compounds also being similar in many 

respects. 	 Although the nitrogen derivatives 

(F2P)2NH and (F2P)3N were prepared, attempts to form novel 

mixed silyl(difluorophosphino)amifles by exchange routes 

were unsuccessful. 	In view of the observation of F2PP(SiH3)2, 

it seemed unlikely that the nitrogen containing analogues 

were intrinsically unstable. 	Subsequent attempts to form 

such species by reactions making use of trimethylamine have 

vindicated this belief, resulting in the isolation of both 

-the silyl and germyl compounds, (F2P)2Mi and F2PN(3)2.169 

F2PP(GeH3) has also been prepared, in a similar manner to 

that of F2PP(SiH3)2.17°  As for the bis(difluorophosphino)-

Group VI derivatives, these may provide useful routes to 
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other compounds, particularly by the facile acidic hydrogen 

cleavage of the phosphorus-Group VI element bonds. More-

over, recent improved methods of preparation of both 

(F2P)28 and (F2P)2Se, using either bis(tri-n-.hutyltin)-

sulphide or -selenide, makes them readily available 

starting materials.17' 

While it was beyond the scope of this work to investi-

gate the complex-forming capabilities of the novel compounds, 

the molecules (F2)2s, (F2P)2Se and (F2P)2NH are all capable 

of acting as bidentate ligands, co-ordinating through 

phosphorus, to give transition-metal complexes similar to 

RN(PF2)2Mo(CO)4.172  It may even he possible to use (F2P)3N 

as a tridentate ligand. 	Developments have shown that using 

norbornadierie molybdenum tetracarbonyl and cycloheptatriene 

molybdenum tricarbonyl, complexes are in fact formed. By 

reaction at these co-ordinated ligands other new complexes 

could well be generated, since examples of P-Cs 81 P-F173  

and P-N174  bond cleavage in co-ordinated fluorophosphines 

are well known. 	In addition, reactions involving boranes 

and trihaloboranes could be studied, since there is the 

possibility of co-ordination through Group V or VI elements, 

as well as phosphorus atoms. 	In particular, any complex 

with (F2P)2s or (F2P)2Se would be most interesting in compari- 

son with the behaviour of (F2P)20. 	This forms only a mono- 

borane adduct, F2POPF2.BH3,7  attributed to reduction in the 

base strength of the unco-ordinated phosphorus via a a-system 

involving oxygen, a mechanism likely to be absent in the 

sulphur and selenium analogues. 	Furthermore, hydrogen 
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halide cleavage of the Group VI element bond to the unco-

ordinated phosphorus atom in such adducts may result in the 

complexes, HSPF2.BH3  and HSePF9.BH3. 	Uncomplexed, F2PSH 

and F2PSeH are unstable with respect to rearrangement to 

S=PF2H and Se=PF2H. 	In this context it is interesting to 

note that reaction of bromomanganese pentacarbonyl with 

S=PR2H (R= Me, Et or Ph), results in elimination of a 

carbonyl group and rearrangement of the thiophosphoryl to 

form (HS)PR2Mn(CO)Br.175 

The volatility of difluorophosphines makes them ideal 

for gas phase molecular structure determinations. Although 

electron diffraction (ED) studies have been carried out on 

only three molecules, others, such as (F2P)2S, F2PP(SiH3)2  

and F2PNFmF2  would also be worth investigating. The P-S 

bond length, PSP angle, and amplitude of the F2P torsion in 

(F2P)2S would not only be interesting parameters in them-

selves, but also in comparison with (F2P)2029'37  and 

(F2P)2Se. 	Also, since the torsion of the F2P group is. 

temperature dependent, structures determined at large 

enough temperature differences may be expActed to show 

significant differences in this parameter. 	With both 

(F2P)2S and (F2P)2Se, recent studies have shown this to be 

SO. 20'171  F2PP(S1H3)2  could be studied from the point of 

view of changes in bond distances and angles from P(SiH3)3, 

when F2P replaces an SiH3  group. 	Also of interest is the 

orientation of the F2P moiety, particularly since the 

isolation of F2PP(GeH3)2, and the determination of its ED 

structure, -indicates crowding of the ligands to the central 
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phosphorus atom, with the possibility of H---F interactions 

170 
affecting the overall conformation. 120, 
	Of most 

concern in F2PNI-fBF2  would be the position of the difluoro-

phosphino group and the supposed planarity of the PNHBF2  

skeleton, as well as the B-N bond length. 	This distance is 

important due to the n-acceptor character of the BF  moiety 

being in competition for the nitrogen iOflC pair electrons 

with the postulated d-orbital interaction of phosphorus. 

In F2BN(SIH3)2, it was concluded that the B-N bond length 

was unexceptional for these two three co-ordinate atoms, 

and that the BF2  group had about the same n-acceptor 

capacity as an SiH3  group. 176 Again due to stereochernical 

similarities between SiH3  and F 2 groups, 30,139 a B-N bond 

distance similar to that in F2BM(SiH3)2, and not appreciably 

shortened, may be found in F2PNI{BF2. 

In addition to ED, microwave (MW) studies on several 

of these molecules could also be carried out. 	The recent 

developments in ED, whereby predicate observations are 

used in the least-squares refinements of molecular structure 77  

make combined MW and ED investigations particularly useful. 

However, the predicate observations can be any set of 

structural parameters obtained by other techniques, not only 

MW, but also X-ray, vibrational analysis, or liquid-crystal-- 

line n.m.r. 	Knowledge of parameters in analogous systems, 

or non-bonded distance estimates may also be used, the 

predicate observations being weighted as to their reliability. 

Although deviations from the predicate values are allowed, 

the extent depends upon their weighting. 	Therefore care 
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must be exercised to prevent undue bias when interpreting 

the data aided by preconceptions held about the structural 

parameters. 	Despite this proviso, the method can be 

particularly powerful by easing high correlations between 

pairs of overlapping peaks in the radial distribution 

curve, and thus assisting resolution. 

Structural information about fluorophosphines may 

also be obtained from their n.m.r. spectra in the nematic 

phase of liquid-crystalline solvents. 	Since the earliest 

references by Saupe and Englert,178'179  both the theory, 180,181 

and reviews o developments 182,183 in this technique have 

appeared. 	Although only angles or ratios of molecular 

distances may be obtained, the method complements ED since 

both experiments determine internuclear distances averaged 

over molecular vibrations. 	Furthermore, if two distances 

were similar and produced overlapping peaks in the ED 

radial distribution curve, knowledge of the ratio of these 

distances from liquid-crystalline n.m.r. would enable them 

to be resolved. 	The P-F and P-N bond lengths in amino- 

difluorophosphines are one such case. 	There is still, of 

course, a difference in the phase in which the parameters 

would be obtained. 	However, results from PH3,18  and PF3,185  

are in good agreement with gas phase MW and ED data. Despite 

theoretical limitations, such as the vibrational motion of 

the molecule and anisotropies in indirect couplings, the 

detewiination of liquid phase structures by n.m.r. is ex- 

tremely useful. 	Applied to the 1000/6 abundance ofpin 

nuclei in fluorophosphines it could prove invaluable. 
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CHAPTER 9 

EXPERIMENTAL SECTION 

1. SYNTHETIC METHODS 

The volatile compounds were handled in a standard 

Pyrex-glass vacuum system fitted with greased ground-glass, 

and Sovirel polytetrafluoroethylene taps. 	Apiezon N and 

L greases were used on glass taps and joints. 	Apparatus 

with Sovirel taps, and detachable from the vacuum line, was 

used for off-line experiments. 	The amounts of volatile 

compounds, and molecular weights, were calculated from gas 

volumes, assuming Boyle's Law. 	Separation of materials 

was effected at convenient temperatures using slush baths 

of liquid nitrogen or solid carbon dioxide in a suitable 

solvent. 186 Commercially available solvents for use in 

n.m.r. 'tube reactions were purified as follows and stored 

under vacuum: CC13F, C6D6  and (CH 3)4Si were spectroscopically 

pure; C6H6  was distilled off sodium; CH2C12  and C6H12(cyclo-

hexane), distilled through flamed-out molecular sieve; 

CHC13, shaken with acti\ated alumina and distilled. 	Other 

solvents were either pure enough for use, like tetramethyl-

enesulphoxide, or were purified by standard methods. NH3  

and (02H5)20 were stored over sodium wire, then distilled; 

(CH 3)20 was distilled off LiA1H4  and fractionated in vacuo; 

and diglyrne was shaken with potassium and a'ithracene until 

dark blue, then distilled. 

Starting materials for reactions were prepared as 

outlined below, their purity being checked spectroscopically. 



Coound Pre2aration 	 Reference 

(1) C12PNMe2  PCi3  + HNMe2  187 

(2) F2PNNe2  (1) + SbF3, or NaF/TMSO 187 

(3) F2PX (2) + HX(x=C1, Br or I) 187 

(4) F2PNH2  (3) + NH3  9, 	79 

(5) GeH3Br GeH4  + I-IBr + .A1Br3  188 

(6) (GeH3)20 (5) + Pb(OH)2  45 

(7) (GeH3)2Y (5) + 	(SiH3)2Y(Y=S, 	Se or Te) 28, 189 

(8) SiH3Br PhSiC13  + LiA1H4, then HBr 190 

(9) SiH3C1 (8) + HgC12  (streaming) 86 

(10) (SiH3)3N (9) + NH3  191 

(II) (SiH3)2NH (9) + NH3  74 

 (SiH)2O (9) + H20 45 

 (SiH3)2Y (10) 	+ H2Y(Y= S, 	Se or Te), 	then(8) 41 

(14) (SiH3)3P (8) + KPH2  192 

(15) (SiH3)2PH (14) + LiCH3, then H2S 193 

 (SiH3PH2  (8) + KPH2  192 

 IJBr PBr3  + D20 186 

 H2Y Al2Y3 +kHC1(Y_  Se or Te) 186 

 ND  D20 + NH 4C1, then CaO, repeatedly 17 

 PH3  H3P03  + heat 66 

 AsH3  As203  + KBH4  186 

 HCN NaCN + H2SO4 186 

 HMn(CO)5  NMn(CO)5  + H3PO4  194 

(24) Fe(C0)5  NaRe(CO)5  + H3P0L 195 

All other compounds were either commercial products, or 

prepared by standard methods. 
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2. INSTRUMENTATION 

Infra red spectra were recorded on a Perkin-Elmer 225 

grating spectrometer (4000 - 200 cm), a Grubb Parsons 

Spectromajor (8500 - 400 cm), or a Beckmann RIIC FS720 

interferometer (400 - 50 cm), using gas cells equipped 

with CsI, KBr or polythene windows. Raman spectra were 

obtained using a Cary 83 spectrophotometer with argon-ion 

488 nm laser excitation, mass spectra with a double-focusing 

A.E.I. MS902 spectrometer, and ultra violet photoelectron 

spectra with a Perkin-Elmer PS16 spectrometer having He(I) 

excitation (21.22 eV). 	Assistance in running and inter- 

preting photoelectron spectra was given by Dr. S. Cradock. 

Also helpful were reviews concerned with the spectra of 

related molecules. 196,1917 	The 1H, 19F and 31P n.m.r. 

spectra were observed on Varian Associates HA100 and 

deuterium locking XL100 spectrometers operating at 100.0, 

94.1 and 40.5 MHz respectively, and equipped with variable 

temperature control. 198,199 Heteronuclear double-resonance 
1 11 13 15 19 

experiments involving irradiation of H, 	B, 	C, 	N, 	F, 

29Si  or 77Se were carried out using either a Schlumherger 
200 

F530 frequency synthesiser (for the HA100 	) or the 

Gyrocode decoupler of the XL100 instrument. 	Since the 

frequencies of the synthesiser and HA100 spectrometer were 

generated independently, these were monitored periodically 

to ensure consistency to at least one part in 107. Decoupling 

frequencies could then be used to calculate chemical shifts. 

To do this, the frequency was corrected, after the manner 

of McFarlane and White, 199  to its value in a field such 

that the proton resonance of (CH3)4Si was exactly 100 MHz. 



The chemical shift (a) was then given by:- 
r 	- i-' c L-15 	6 

a = -----, 	x 10 	(p.p.m.) 

where 	and 	were the corrected frequency of the 

sample, and the standard frequency. 	The chemical shift was 

therefore positive to high frequency of the standard. 	Those 

standards used are presented below:- 

Compound 	Nucleus 	Standard _Fregen, 	(Hz) 

(CH 3)4Si 'H 100 000 000 

(CH 3o)3B "B 32 084 657 

(CH3)4Si C 25 144 995 

(cH3)4NI 15N 10 133 352 

CC13F 19F 94 093 963 

(CH 3)4Si 29 Si 19 867 183 

H3PO4 31P 40 480 746 

(CH 3)2Se 77Se 19 071 433 

In the interpretation of chemical shifts, reviews of 

151\I,75 19F,91'201  and 31P  202 n.m.r. data were of particular 

value. 

Electron diffraction data were collected photographi- 

cally on Kodak Electron Image and Agfa Gevaert Replica 23 

plates, using Balzers' KD.G2 instruments, 203 with rotating 

sector, at the University of Manchester Institute of Science 

and Technology ((F2P)2Se and EF2  (NH 2)2), and the University 

of Oslo ('F2  P)3 
	The electron wavelength was determined 

directly by measurement of the accelerating voltage, and 

also from -the diffraction patterns of benzene and solid 

ZnO 	(at Oslo). 	For (F2P)2Se and HFF2  (NH 2)2, nozzle--to-plate 
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distances of 250 and 500 mm were used with the samples 

maintained at 228 K and room temperature (RT) respectively, 

and the nozzle at RT. 	Nozzle-to-plate distances of 190 

and 580 mm, with sample and nozzle temperatures of 235 K 

and RT, were obtained for (F2P)3N. 	A Joyce-Loebl auto- 

matic microdensitometer was used to convert the data to 

digital form, which was handled by established methods and 

prograrnmes302205 on the ICL 4/75 computer at the 

Edinburgh Regional Computer Centre. 	The complex scattering 

factors of Schafer,
206  Yates and Bonham 	have been used. 

Distances quoted were ra  values, coresponding to the 

centres of gravity of peaks in the radial distribution curve, 

P(r)/r.l21l43 Errors in distances, amplitudes of vibration, 

and angles have been increased to allow for systematic 

errors. 121  A general account of procedures in the electron 

diffraction study of gases has been given by Davis. 207 

3. EXPERIMENTAL DETAILS 

All reactions were carried out under vacuum in clean, 

dry apparatus. 	Products other than those in n.m.r. tubes 

were purified by trap-to-trap fractional condensation. 

Identification was made by infra red and n.m.r. spectroscopy.  

1.1. Exchange Reactions of F2PBr with (M 3).2Y,(M = Si or Ge), 

(L= 0, S, Se or Te) 

Reactions were followed by n.m.r. spectroscopy in 1:1 

mixtures of C6H12  (cyclohexane) and CC! 3F as both solvents, 

and proton and fluorine lock signals. (Mf-13)2Y (ca. 0.2 mmol) 

in the solvents (ca. 0.7 ml) was treated at RT with the 
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appropriate ratio of F2PBr (ca. 0.2 -• 0.7 mmol) for which- 

ever product was to be studied. 	Reaction times varied 

from minutes to several weeks. 

Preparations and Reactions of (F2P)2S and (F2P)2Se 

Experiments 2.1 to 2.7 and 2.10, and 2.8, were unsucc-

essful attempts to form (F2P)2Se, and (F2P)23. 

2.1. Reaction of F2PBr 2Se and NT4e.: 

In a clean, dry double-bulb apparatus of 1000 and 

100 ml capacity, Ne3  (4.0 mmol) was injected into a mixture 

of F2PBr (5.0 mmoi) and H2Se (2.0 mmol). 	Five minutes after 

- the immediate formation of clouds of (yellow-orange) solid?  

the only volatile products were PF3  (2.1 mmol) and F2PBr 

(0.9 mmol). 

2.2. Reactionof PF 2Se and KF:- 

PF3  (5 mmol) and H2Se (2 mmol) were condensed onto 

excess, dry K]? in a greaseless tap ampoule. No reaction had 

occurred after 30 minutes at RT, the reactants being re-

covered without loss. 

2.3. Reaction of F2PNH2 a 2S­ ­=-'----  

No reaction occurred between F2PNH2  (2 mmol) and H2Se 

(2 mmol) either in the gas of liquid phases. 

2.4. Reaction of F2PNH2.Lj125e and NMe.:- 

Vapour phase reaction between Ne3  (1.0 mmol), and 

H23e (2.0 mmol) and F2PNH2  (2.0 mmol) gave white solid, which 
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turned green-yellow on standing, and PF3  (0.1 mmol) and un 

reacted F2PNH2  (0.2 mmol) as the only volatile products. 

2.5. Reaction of F2PNMe2  and_H2Se:- 

When gaseous H23e (0.8 mmol) and F2PNNe2  (0.8 mmol) 

were mixed, no reaction occurred over 5 minutes. 	Co-conden- 

sation, and warming to RT produced only a trace of PF3, a 

little solid, and unreacted starting materials. 

2.6. Reaction 	F2PCl with Na 

F2  PC (2.0 mmol) was condensed onto freshly prepared 

Na2Se (5.0 mmol), whereupon red solid, and a volatile mixture 

- of O=PF2H, F2PC1, (F2P)20 and PF3  (0.5 mmol) was formed. A 

further addition of F2PC1 (2.0 mmol) returned F2PC1 and PF3  

(1.2 mmol). 

F2PC1 (4.0 mmol) and Na2Se (2.0 mmol) in dry diglyme 

gave after 10 minutes at RT; 0=PF2H (0.2 mmol), F2PC1, 

(F2P)20 and PF3  (1.0 mmol). 	Further F2PC1 (2.0 mmol) after 

15 minutes gave PF3  (1.4 mmol) and a mixture of 0=PF2H and 

Pci3  (0.3 mmol). 

2.7. Reaction of JF23N and H2Se:- 

Co-condensed (F2P)3N (0.5 mmol) and H2  Se(1.5 mmol) 

yielded yellow solid, PF3  (0.4 mmol), unreacted H28e (0.7 

mmol), and an (F2P)2NH, Se=PF2H mixture (ca. 0.5 mmol). 

When SiH3Br was allowed to stand over the solid for 12 hours 

at 195 K, a mixture of SiH3Br and SiH3F was recovered. 
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2.8. Reaction of F2 ç and jSiHj2S: - 

In a Sovirel tap ampoule (ca. 300 ml) (Sill 3)2S(7.2 

mmol) and F2PC1 (38.0 mmol) reacted for 24 hours at 195 K 

and 12 hours at 209 K, but gave no (F2P)2S. 

2.9. Preparation of (F22S:- 

(Sill 3)2S (7.2 mmol) and. F2PBr (16.0 mmol) were reacted 

in a Sovirel tap ampoule (ca. 300 ml) for 2 and 17.5 hours 

at 209 and 195 K, respectively. 	With the ampoule at 195 K, 

volatiles were condensed out to reveal an FPBr, Sill Br 3 

mixture. 	The mixture (16.0 mmol) and fresh F2PBr (16.0 

mmol) were returned to the ampoule and reacted for 63 and 

28.5 hours at 195 and 209 K. 	Fractionation at this stage 

indicated an H3SiS-species was still present. 	The Sill 3Br, 

F2PBr mixture was removed, and pure F2PBr (5.0 mmol) added, 

for 29.5, 16.5 and 5 hours at 195, 209 and 273 K, respectively. 

Again fractionation showed H3SiS- and so further reaction 

was effected at 273 K for 15 hours with another pure F2PBr 

sample (10.0 mmol). 

Finally, fractionation yielded pure (F2P)2S (3.8  mmol, 

54% on (SiH3)2S taken) involatile at 195 K, Sill 3Br, unreacted 

F2PBr, and some S=PF2H and Sill 3F. 	A little yellow solid 

remained in the reaction vessel. 

2.10 Reaction of F2PBr and (SiH 2S vapour phase:- 

Gaseous F2PBr (1.5 mmol) and (SiH3)2Se (0.5 mmol) failed 

to react over 15 minutes at RT, and were recovered without 

loss. 
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2.11 Preparation of 

In a Sovirel tap ampoule (ca. 300 ml),SiH2) 9Se 

(8.8 mmol) was reacted with occasional shaking with F2P01 

(19.0, 19.0 and 2.8 mmol) for 4 and 2 hours at 209 K and 

13 hours at 195 K. 	Before each addition of fresh F2PC1 

the reaction vessel was maintained at 195 K and the SiH3C1, 

F2PC1 mixture, volatile at this temperature, was condensed 

out. 	In the latter case, the F2PC1  reacted to completion, 

only pure SiH3C1 (2.8 mmol) being recovered. 	As the 

reaction was incomplete, the SiH3Cl, F2PC1 mixture (38.0 

mmol) was returned to the ampoule aid given a further 5 ana 

17 hours at 209 and 195 K. 

Fractionation of the product yielded pure (F2P)2Se 

(4.6 mmol, 520,10 on (S1H3)25e taken) involatile at 195 K, 

unreacted F2PC1, SiH3Cl, and traces of Se=PF2H, SIH3F and PF3. 

A little yellow solid remained in the reaction vessel. 

2.12. Preparation of(F22Se:- 

A Sovirel tap ampoule (ca. 300 ml) was charged with 

(SiH3)2Se (8.6 mmol) and F2PBr (47.0 mmol) and allowed to 

react, with periodic shaking, for 5 hours at 209 K, and 

84 hours at 195 K at which temperature F2PBr and SiH3Br were 

condensed out. 	Pure F2PBr (10.0 mmol) was returned to the 

reaction vessel for 22 hours at 209 K and 27 hours at 195 K 

before being removed, and further F2PBr (4.5 mmol) added. 

Reaction continued at 209 K for 7 hours. 	Between additions 

of fresh F2PBr the products were fractionated to assess the 

extent of reaction. 	At completion, the products were 
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(F2P)2Se (7.1 mmol, 833Io on (SiH3)2Se taken) involatile at 

195 K, unreacted F2PBr, SiH3Br, traces of Se=PF2H and SiH3F, 

and some involatile yellow solid. 

TABLE 

Preparations of (F?P)23 and 

9.2.1 

(F2P)2Se: 	Reaction Conditions 

Reactants (mmol) Total Reaction Yield 
Times 	s 

(SIH3)2S 	(SiI-13)2 Se F2PC1 F2PC1 273K 	209K 	195K 

- 	8.8 40.8 - - 	11 	30 52 

- 	8.6 - 61.5 - 	34 	111 83 

7.2 	- 33.0 - - 	12 	24 0 

7.2 	- - 47.0 20 	47 	110 54 

(a) Yield based on amount (SiH3)2Y taken. 

2.13. Molecular Weihts of (F22S and 
Molecular 

weight () 
Volume Pressure Temp. Weight 	Obs. 	Calc. 
.J1J (rnm) 	- (K) (g)  

(F2P)2s 	336.2 73.0 292.6 0.2270 	169±3 	170 

(F2P)2Se 	356.2 73.5 293.5 0.2864 	212±4 	217 

2.14. Reaction of (F22S and RPMe2:- 

Equimolar (ca. 0.2 mmol)amounts of materials were 

reacted in an n.m.r. tube containing a 3:4:3 solvent mixture 

of C6D6, C H C 1 3 
 and CC13F. 	1H, 31P, and 31P-(1H) spectra 

were recorded. 

2.15. Reaction ofF2P)2Se and HX (X = ClLrCN)-

With HEr or HC1, co-condensed equimolar amounts 
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(ca. 0.2 mmol) of (F2P)2Se and hydrogen halide when warmed 

to RT gave Se=PF2H (0.2 mmol) and F2PC1 (0.2 mmol). 

With HCN, no reaction occurred in liquid or vapour 

phases. 

2.16. Reaction of (F2222  Sewith ZH or F2PNH2IJ = N, P 

or As):- 

N.m.r. tube reactions using between 0.1 and 0.4 mmol 

of starting materials with solvents C6TJ6, CHC13  and 

CC13F (3:4:3) gave the following products:- 

Reactants 	Molar Ratio 	Products 
(F2P)2Se + 	- [()Se/ZF1] 

NH3 	 3.0 	PF3,Se=PF2H, F2PNH2  

PH3 	 3.0 	 None 

AsH3 	 1.6 	 None 

F2PNH2 	 1.0 	 None 

2.17. Reaction of (F2Lj,Se and H2Y; (Y = 0, 8, Se or Te):-

N.m.r. tube reactions using equal amounts of reagents 

(0.2 mmol) were carried out with (CH 7)4Si, C5D6  and CC13F 

as solvents. 	Products were identified by their 
1  H and 31P 

spectra. 	Additionally, the H2Se and H2Te reactions were 

followed over the temperature range 198 to 303 K with a C5  D6, 

CC13F (1:2) solvent mixture. 

2.18. Reaction ofjF2P)2Se with CH3YHL(Y = 0 or S):- 

Reagents (0.2 mmol) were reacted in n.m.r. tubes with 

C6D6, CHC13  (1:2) solvents at RT, and 'H and 31P spectra 

recorded. 



Figure 9.2.1 
2PSCH3  : signs of coupling constants 

	

H sPéctru: 	 Th 
2.4.98 

Experiment 1H line 	1 — : (Hz) 	Signs related 	Chemical shifts (p.p.m.) 

- (31P) 	1 	40 488 925 	4J(19F1H), 1J(19F31P) 	o(P) = 233 

	

2 	40 490 188 	 opposite 

- (19F) 	1 	94 086 616 	3J(31P1H), 1J(19F31P) 	8(19F) =-71 

	

4 	94 087 949 	 opposite 
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Data from the F2PSCH3  relative sign determination are 

given in Figure 9.2.1. 	The corrected frequencies, 

correspond to the centres of the methyl quartet in the 19F 

and P spectra. 

2.19. Reaction ofF2 j2Sec2ndJI'4 ( 	(M = Mno r Re):-  

N.m.r. tube reactions at RT, with C6  D6  and (CH 3)4Si 

(1:2) as solvents, were carried out with (F2P)2Se (ca. 0.3 - 

0.4 mmol) and E(Co)5, the amount of which was only estimated 

to be equimolar due to its involatility. 	Reaction gave an 

orange (Mn) or a white (Re) precipitate and products 

identified by 1H and 31P spectra as Se=PF2H and F2PH. 

2.20. Reaction of 

(F2P)2Se (0.3 mmol) and C12  (0.6 mmol) were reacted in 

C6  D6  and (CH 3)4S'
(1:2) as solvents, and 19F and 31P spectra 

recorded. 	At RT, the solution rapidly became dark yellow 

and a black precipitate formed. 

3.1. ExchangReactions be twe en F2PBrand the il1l 

Derivatives of Group V Elements:- lements:- 

Reactions Reactions 1-6 of Table 3.1 were carried out in n.m.r. 

tubes using between 0.1 and 0.3 mmol of silyl-amine or 

-phosphine. 	Products were identified by cTi:ect observation 

bf 1H, 19F and 31P spectra. 

In reaction 7, a gaseous mixture (2.9 mmol) of S1H3C1 

and F2PC1 (1:2) was added to NH3 (3.9  ramol). 	Immediately, 

dense white clouds (NH 4Cl) were formed. 	After 15 minutes, 



Figure 9.3.1 

f2LL(SiH,~.,; heteronuclear double resonance experiments 

1H-(31P') 
1 Parameters 

40 472 247 HF,FP' 
equal 

40 472 317 2J(P') = 
70 

HP,PP' 
opposite 

1J(P'p) = 
40 472 016 	301  

1H-(19F) 

Parameters 

94 086 844 ., HP,PF 
opposite 

1J(PF) = 
1222 

94 085 622 

r 

HP' , P' F 
equal 

2J(P'F) = 
70 

- 	 Parameters LL 

40 493 797 HF,FP 

40 492 572 equal 1J(PF)= 
1225 

HP', PIP 
opposite 

1J(PP' )= 
300 
31-P) = 
228.4 

40 492 272 

086 914 



Figure 9.3.2. I-ietero- and homonuclear double resonance experiments. 

1H-( 31P), 1H'-( 31P) 	 'H_('HT), 1H'-(1H) 

Oscillator - 	Signs Parameters frequency 	Signs 	Parameters 

40 467 6071 

40 467 791! 1 HIP 'J(HtP) = 
184 

40 467 607 	
eua1 	

31P) = 

40 467 791J 	
-322.3 

= 
18 

40 467 777 
40 467 795 
40 467 813} 

HH', 	F 
equal 

40 467 777 
40 467 795 
40 467 813 

} 2514 

} 2702 

2943 

} 2960  

HP, PH? 	1J(HIP) = 
equal 	188 

H'P, PH 	2j (HP)= 
equal 	17 
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fractionation yielded a sample (1.1 mmol) comprising 

F2PNH2, F2PNHSiH3  and N(SiH3)3  involatile at 177 K, and 

another (0.6 mmol) of F2PC1, SiH3Cl, SiH3F and a trace of 

PF3, volatile at this temperature. 

3.2. Double Resonance Experiments of F2PPH 2  and 

- 
Details of these experiments are contained in 

Figures 9.3.1 and 9.3.2. 

Preparations and Reactions of (F2 j2NH and (F7  

Reactions 4.1 4.3 were unsuccessful attempts to form 

bis- and tris(difluorophosphino)amineS. 

4.1. 	Reaction of F2PBr, F2P1 2 and 2,6 dimethylpy 

Equal  amounts (4 mmol) of reagents were condensed and 

warmed to RT, whereupon brown solid was formed with PF3  as 

the only volatile product. 

4.2. Reaction of 4LH2 with methyllithium:- 

F2PNH2  and LICH3  (1.5 rnrnol each) reacted in diethylethor 

at 227 K to give CH  (ca. 0.8 mmol). 	Addition of F2PBr 

(1.5 mmol) gave only a small amount of PF-, 

4.3. Reaction of F2PNH2 and 	- 

To a freshly prepared sample of KPH2  (ca. 3.5 mmol) was 

added F2PNH2  (1.0 rnmol). 	PH3  (0.5 mmol) was evolved, but 

no further reaction occurred on addition of F2PBr (3.5 rnmol). 
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4.4. PrarationoJ 2PJ: - 

This was achieved in apparatus consisting of two 

bulbs, of about 2 1 and 100 ml capacity, linked by a 

Sovirel tap. 	The reaction was done in three stages, with 

the apparatus being cleaned and dried between each stage, 

and final drying done by allowing SiH3Br or S1H3C1 to stand 

in the bulbs for a few minutes. 

In the first stage, the small bulb was filled with 

NMe3  (4.5 mmol) and the large one with an F2PNH2  (2.0 mmol) 

and F2PC1 (5.0  mmol) mixture. 	The connecting tap was 

opened to allow the pressures to equalise (admitting ca. 4 

mmol of NMe3), and closed again. 	Clouds of white trimethyl- 

ammoniurn chloride were formed. 	After 40 minutes, volatile 

products were removed and fractionated. 	The fraction 

retained at 195 K but passing 209 K consisted of 1.6 mmol 

(80% based on F2PNH2  taken) of a mixture of F2PNH2, 

(F2P)2NH and (F2P)3N. 

Secondly, NNe3  (1.05 mmol) was added from the small 

bulb to F2PC1 (3.2  mmol) and the mixed amines (1.6 mmol) in 

the 2 1 bulb. 	After 45 minutes, the volatile products were 

fractionated to yield ca. 1.4 mmol of tertiary amine con-

taining some secondary amine (about 90% based on amines 

taken). 

Finally, the second step was repeated so that the ratios 

of difluorophosphino-amines:F2PC1:NMe3  was 1.0:2.0:0.5. This 

time the fraction retained at 195 K but passing 209 K was 

essentially pure (F2P)3N. 	The yield over the three stages 

was 650% based on F2PNH2  used. 

The molecular weight of the product was found to be 
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221± 3 g. (calculated 221 g), and the vapour pressure was 

given by the expression, log p (mm) = -1625/T ± 7.911. 

vap was 31.20 kJ mol', ASvapwas 99.4 J mol IC1, and the 

extrapolated boiling point was 314 K. 

4.5. Preparation of (F2P-12jjH: - 

HBr (0.2 mmol) was added from an 103 ml bulb to 

(F2P)3N (0.2 mmol) in a 2 L bulb. 	A small amount of white 

solid was formed. 	Volatile products, separated by 

fractional condensation, were (F2P)2NH (0.1 mmol, 50% 9  

retained at 195  K) and F2PBr (0.16 mmol, 80%,  retained at 

143 K). 	Determination of vapour pressures was not possible, 

but the molecular weight was found to be 158±5 g. (calcu- 

lated 153 g). 	[Subsequent reactions have shown this pre- 

paration to be equally effective on larger scale samples.] 

4.6. Reaction of (F2P)iJTX; (x = CBr or 	.- 

Reactions were carried out in the liquid phase, con-

densing reagents together and allowing them to warm to RT, 

or in the gas phase, using a double-bulb apparatus. 	In a 

typical reaction, (F2P)3N (0.2 mmol) and HI (0.4 mmol) were 

co-condensed and warmed to RT. 	A small amount of white 

solid formed. 	The volatile products, sepdrated by 

fractionation were (F2P)2NH (0.15 mmol, 75% on amine taken), 

F2PI (0.11 mmol, 55%)  and excess HI. 	In general, yields of 

(F2P)2NH were higher for gas phase reactions than liquid 

phase ones, and the use of excess hydrogen halide reduced 

this yield. 	F2PNH2  was not observed in any of these 

reactions. 
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4.7. Reaction-of LF2PJ2NHwlthHCl.- 

When (F2P)2NH and UC1 were condensed together (ratio 

1:1 or 1:2) and allowed to warm to RT, no white solid 

formed, and the reagents were recovered unchanged. 

4.8. Reaction of (F2-- --------2-- P)-N and H 0:- — 
The reagents (0.2 mmol of each) were mixed in the 

gas phase and allowed to stand for 10 minutes. 	No solid 

material was formed. 	Fractionation of the products caused 

decomposition to white solid, (F2P)2NH (0.07 mmol, 35%  of 

amine) and PF3  (0.11 mmol). 

49. Reaction of 23N with H2S:- 

(F2P)3N and H2   reacted slowly (10 minutes or longer) 

in the gas phase to give (F2P)2NH in high yields (ca. 85%) 

and a trace of PF3  as the only volatile products. 	The in-- 

volatile residue was a colourless liquid or film of solid. 

4.10. Reaction of (F2PwfthH2Se:- 

(F2P)3N (0.2 mmol) and H2Se (0.6 mmol) were condensed 

together and warmed to RT. 	The volatile products were 

(F2P)2NH (0.12 mmol, 60%),  Se=PF2H (0.06 mmol), PF3  (0.05 

mmol) and unreacted H2  Se. 

4.11. Reaction of 2—  P)N and H Te:- - 	-j-----------2— 

(F2P)3N (0.2 mmol) and H2Te (0.25 mmol) were allowed to 

react in an n.m.r. tube containing C6D6, (CH 3)4S' (1:2) 

solvents at about 200 K. 	The products observed were 
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Figure 9.4.1 

Determination of 8 5N) in (F P) 15N by 31P- 5N) 

heteronuclear noise-decoupling 

Apparent 5N31P) splitting 

Broken line gives 8( 15N) of (F2P) 15N (139.0 p.p.m.) at the 

position of zero ( 15N 31P) splitting. 

(a) 50% XL100 Decoupler power 
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(F2P)2NH, PH 31 
 PF3  and elemental tellurium. 

4.12. Reaction o 2E _with Cl?:-  

(F2P)3N (0.2 mmol) and Cl2  (0.3 mmol), when mixed in an 

n.m.r. tube containing C6D6  and (CH 3)4S'solvents (1:2) at RT, 

gave F2PC1 as the only major product. 

4.13. Nuclear Magnetic Double Resonance Ex e riments 

For (F2P)315N, 8(15N) was found by observing the 

doublet splitting in the P spectrum, caused by the 

1J(15N31P) coupling, while irradiating with 50% decoupler 

power at selected frequencies in the 15N spectrum. 	Figure 

9.4.1 depicts the results of this exoeriment. 

For (F2P)215NH, the experiments performed to relate 

the signs of coupling constants are given below. 

TABLE_9.4.1 

--22 
15NH Double ResonanceExperiments 

Ex eriment çl ing Constants Related 	Relativen 

1H-(15N) 	K(1H19F)/2K(15N19F) 

2K(1H31P) /1K(15N31P) 

1H-(19F) 	1K(1H15N)/2K(15N19F) 

2K(1H31p)/1K(3lpl9F) 

1K(1H15N)/1K(15N31P) 

K(1H19F)/1K(31P19F) 

Equal 

Opposite 

Equal 

Opposite 

Opposite 

Opposite 

Preparations of F 2LNLBF-2 

All preparations involved the reaction of F2PNH2  

(1-  3 mmol) with BF 3P the products for several reactions 



TABLE 9.5 

Products of Reaction of F2PNH2  and BF 3  

Reaction Molar Ratio. Total Yield 
of amines() 

Estimated 	(b)  Estimated 	(b) Conditions 	2 H2J F2PNJ° HBF0 

5.1 1.0 0.75 80 - 
1.6 0.35 50 - 

5.2 1.0 0.50 80 20 

5.3 1.0 0.25 25 65 
1.3 0.50 80 - 

5.4 1.0 0.60 80 - 
(c) 	2.0 0.70 90 - 

3.0 0.50 95 - 
(c) 	3.0 0.80 90 - 

5.5 0.9 0.50 50 40 
0.5 0.30 0 60 
0.5 0.10 10 80 
0.3 0.30 0 50 

5.6 0.5 0..0 0 95 

N.B. 	(a) Yield of F2PNH21  F2PNHBF2  and (F2P)2NH iased on reactant F2PNH2  as unity. 

 Estimate of compound in total yield from infra red spectra. 

 Reaction time 15 minutes, all others 5 minutes. 
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being given in Table 9.5.1. 	The most successful method was 

5.4 below, using a 3:1 ratio of BF  to F2PNH2. 

5.1. Reaction of 2 _H2  with BF9dJase:- 

Reactants were condensed together and allowed to warm 

to RT, producing white solid, and volatiles consisting of 

difluorophosphino-amines, retained at 177 K, and PF3  and 

unreacted BF 3* 

5.2. Reaction of F2PNH2 and BFover aluminium:-  

As 5.1, but with the reaction vessel containing an 

excess of aluminium turnings. 

5.3. Reaction of F2PNH2 and BF 	otasum_fluoride: - 

As 5.1, but with an excess of finely-divided, dry 

KF in the reaction vessel. 

5.4. Reaction of FPH2  and BF 	 se:- 

BF  was allowed to expand from an 100 ml bulb into a 

2 2 bulb containing F2PNH2. 	A cloud of white solid formed 

which settled slowly onto the bulb walls. 	After about 

15 minutes the volatile products were fractionated, F2PNFmF2  

being retained at 177 K. 

Preparations ofF22NH 

5.5. Reaction of F2PMH2  and BF3 liaa l CL jhase: - 

As 5.1, with the reactant ratios those of Table 9.5.1. 
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5.6. Reaction of an 2P 2NH 	2P N ixture ithBF 

A mixture of (F2P)2N1-I and (F2P)3N (1:1) was reacted 

with BF  after the manner of 5.1, above. 

Preparations and Reactions 

6.1. Preparation fHPF2(NH2)2 fromF2PNH2  and_NH3:-    

F2PNH2  and NH3  (2.0 nmol each) were co-condensed in 

a dry, evacuated ampoule (100 ml) fitted with a Sovirel 

tap. 	Warming to RT produced some white solid. 	After 10 

minutes, products were fractionated to yield HPF2  (NH 2)2  

(0.49 mmol, 0.050 g, 250/6 on F2PNH2  taken) retained at 227 K, 

and a small amount of PF3  and unreacted F2PNIi2. 

6.2. Preparation of HPF22l2  from F2PC1 and NH3:- 

In a typical experiment, NH3  (8.4 mmol) expanded from 

an 100 ml bulb into a 1 £ bulb containing F2PC1 (2.8 mmol), 

with the immediate formation of white solid. 	After 3 min- 

utes, volatile products were condensed out of the reaction 

vessel, over the course of an hour, and fractionated. 

Retained at 227 K was a sample of FF2(NH2)2  (1.17 mmol, 

0.119 g, 429/6 on F2PC1 taken), at 177 K was F2PNH2  containing 

a trace of HPF2(NH2)2  (0.1 mmol), and at 77 K was a mixture 

(0.3 mmol) of PF3  and unreacted NH3. 

6.3. Preparation of DeuteriatedHPF2jNH2l2. 

Prior to reaction the vacuum system was flushed with 

D20, pumped out for several hours, then flushed with silyl-

halide which again was pumped out. 
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The 	compounds DPF2  (ND 2)2, "HPF2  (ND 2)(NHC)  11  and 

DPF2  (NH 2) (ND 2)11  were prepared as in 6.1 and 6.2 above from 

F2PC1 (3.3  mrnol) and ND  (10.0 mmol), F2PND2  (1.0 mmol) and 

NH3  (1.5 mmol), and F2PNH2  (1.0 mmol) and ND  (1.5 mmol), 

respectively. 	To maintain purity yields were not taken. 

6.4. Reaction of HFF2L2122PC1 and NMe3: - 

F2  (NH 2)2  (0.4 mmol) reacted in the gas phase with 

F2PC1 (2.8 mmol) and NNe3  (1.4 mmol) for 5 minutes giving 

white solid, F2PNH2  (0.8 mmol), and some unreacted F2PC1. 

6.5. Reaction ofF2212 and HCl:- 

Equimolar amounts (0.2 mmol) of HC1 and I-F2(NH2)2  

when co-condensed and warmed to RT yielded some involatile 

white solid, F2PC1 (0.05 mmol) and unreacted HFF2(NH2)2  

(0.10 mmol). 	No F2PNH2  was detected. 

6.6. Nuclear Magnetic Double Resonance Experiments:- 

These were carried out on a sample of HP 2( NH 2)2  

(0.4 mmol) with a C6D6, CHC13  (2:3) mixture as solvents and 

locks. 	Figure 9.6.1 gives the corrected frequencies of 

the main lines in the 15N, 19F and 31P spectra associated 

with a particular resonance in the 'H spectrum. 

7.1. Calculation of the Torsional Frequency of the Difluoro-

phoshine Group in (F2P)2Se:- 

The torsional frequency was calculated from the theory 

of references 130, 132 and 133 as expressed by:- 
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ic0  = kT/62   . 	 0.0 ............ 	[i] 

where; k0 is the potential constant (J) 

k is Boltzmann's constant (1.380 x lO 23J K) 

T is temperature (298 K) 

6 is r.m.s. torsional amplitude 	x r radians) 180 

AlsO:- 	 1 

v(kO/Ir)2/21T .................. [2] 

where; v is the torsional frequency (Hz) 

is the reduced moment of inertia about the P-Se 

bond calculated (in a.m.u.-A2) from the axis 

connecting the centres of gravity of the F2P 

and SePF2  units (50.1 x 1.650 x lO-47   kg m2 ) 

Since 1 Hz = 3.33561 x 10 11  cm, equation [2] readily 

gives the torsional frequency of 34 cm 
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Preparation and Molecular Structure of Silylaminodifluorophosphine 

By D. E. J. Arnold, E. A. V. Ebsworth, H. F. Jessep, and D. W. H. Rankin, Department of Chemistry, Univer-
sity of Edinburgh, West Mains Road, Edinburgh EH9 3JJ 

Silylaminodifluorophosphine has been prepared in high yield from the reaction between silyl bromide and amino-
difluorophosphine; the compound decomposes slowly at room temperature. Its i.r. spectrum indicates that there 
are two conformers in the vapour at room temperature, but that in the solid at 77 K one conformer is much the more 
stable; the electron diffraction pattern of the vapour can also be interpreted in terms of the presence of two con-
formers, in each of which there are short H ... F non-bonded distances. In each conformer the main structural 
parameters are taken to be the same, and are found to be: r(Si—N) = 1-720 ± 0008; r(N—P) = 1-667 ± 0-007; 
r(P—F) = 1574 ± 0-003 A; LSINP = 127-9 ± 0-7'; LFPF = 100-8 ± 1-2'; LFPN = 95-6'. The n.m.r. spectra 
('H,19 F) of SiH314 NHPF2  and SIH315 NHPF2  at room temperature show that the SiH protons behave as equivalent, 
as do the F nuclei, and that any NH exchange is slow on the n.m.r, timescale. 

REACTIONS (1) of excess of silyl (SiH3) chloride, bromide, 
or iodide with ammonia, primary amines, or secondary 
amines or related compounds are rapid at room tem-
perature and almost always lead 1  to complete replace-
ment of hydrogen bound to nitrogen by SIH3. We have 

3RNH2  + 2SiH3X —*- 2RNH3X + RN(SiH3)2  (1) 

been interested in the geometries and electronic struc-
tures of silicon—nitrogen compounds and have investig-
ated the reaction between silyl halides and PF2NH2. 

EXPERIMENTAL 

Silyl bromide,2  [2H3]silyl bromide ,3  silyl chloride,4  and 
PF2NH2  5  were prepared by established methods; 15NH3  

TABLE 1 

Weighting functions, correlation parameters, and 
scale factors 

Camera 
height/mm As s,,, s1  s2  sm, /h Scale factor 

250 	04 6-40 860 25'00 30-00 04368 1062 + 0-019 
500 	0-2 3'20 5-00 12•00 14'40 04123 0997 ± 0-012 

1000 	01 1-20 2-25 625 750 0-4934 0-770 ± 0-031 

(95% enriched) was purchased as ammonium chloride and 
ND, was made from ammonium chloride that had been 

200 cm'), mass spectra with a double-focusing AEI MS902 
instrument, and n.m.r. spectra with a Varian Associates 
HA100 spectrometer operating at 100 MHz (for 7H) or 
94'1 MHz (for 19F). 

Sectored electron diffraction data were recorded on 
Ilford N60 photographic plates by use of a Balzers KDG2 
gas diffraction apparatus.9  Plates obtained with nozzle-
to-plate distances of 250, 500, and 1000 mm were used, 
giving a range of 1'2-30'0 A-i in the scattering variable s. 
During the experiments the sample of compound was 
maintained at 273 K and the nozzle at 333 K. The 
electron wavelength (005659 ± 000003 A) was determined 
both by direct measurement of the accelerating voltage 
and from the diffraction pattern of powdered thallous 
chloride. A Joyce—Loebi automatic microdensitometer was 
used to convert the data into digital form and data re-
duction and least-squares refinements were carried out on 
the IBM 360/50 computer at the Edinburgh Regional 
Computing Centre, with established procedures and pro-
grammes.7,8  The complex scattering factors of Cox and 
Bonham 9  were used throughout. Values of weighting 
functions (defined as in ref. 7) used in setting up the off-
diagonal weight matrix, together with scale factors and 
correlation parameters,'° are listed in Table 1. The 
observed and final weighted difference molecular scattering 
intensities are shown in Figure 1; the uphill curves are 

TABLE 2 

Least-squares correlation matrix multiplied by 1000 
ri 	r2 	,4 Ll L3 L5 u6 Uil u19 hi h2 h3 

1000 	—690 	508 —15 107 —97 —202 —27 0 —204 3 40 rl 
1000 	—543 —94 —144 131 329 34 —37 223 34 —18 r2 

1000 292 111 —169 57 65 119 333 458 102 r4 
1000 663 —757 —48 102 308 243 249 —7 Li 

1000 —989 7 61 333 —10 130 42 L3 
1000 —12 —75 —349 —49 —176 —41 L5 

1000 44 —100 375 309 49 u6 
1000 90 158 116 7 ull 

1000 182 161 6 u19 
1000 376 38 hi 

1000 49 h2 
1000 k3 

dissolved twice in a large excess of D20 (99% enriched) and 
then treated with CaO and D20. I.r. spectra were obtained 
by means of a Perkin-Elmer 225 spectrometer (4000— 

U. Wannagat, Ado. Inorg. Chem. Radiochem., 1964, 6, 225. 
' G. Fritz and D. Kummer, Z. anorg. Chem., 1961, 308, 105. 

A. Stock and C. Somieski, Be,'., 1917, 50, 1739. 
' A. G. MacDiarmid, Ph.D. Thesis, Cambridge, 1955. 

D. W. H. Rankin, J. Chem. Soc. (A), 1971, 783. 
$ B. Beagley, A. H. Clark, and T. G. Hewitt, J. Chem. Soc. (A), 

1968, 658.  

available from the authors and the final least-squares 
correlation matrix is given in Table 2. 

Reaction of PF2NH2  with SiH3Br.—When SiH3Br (1.33 
D. M. Bridges, G. C. Holywell, D. W. H. Rankin, and J. M. 

Freeman, J. Organometallic Chem., 1971, 32, 87. 
8 G. C. Holywell, D. W. H. Rankin, B. Beagley, and J. M. 

Freeman, J. Chem. Soc. (A), 1971, 785. 
' H. L. Cox and R. A. Bonham, J. Chem. Phys., 1967, 47, 

2599. 
10  Y. Murata and Y. Morino, Acta Cryst., 1966, 20, 605. 



mmol) was allowed to react with PF1NH2  (2.00 mmol) at 
room temperature in the vapour phase, a faint white cloud 
of solid (presumably NH4Br) was produced, but this cannot 
have represented more than 1% reaction; there was no 
sign of further reaction during 1 h. When the reactants 

J.C.S. Dalton 

were condensed together at 250 K (40 mm), however, much 
solid was formed. Fractional distillation of the volatile 
products gave a fraction volatile at 177 K that was shown 
spectroscopically to consist of SiH., PF3, PF2Br, and 
SiH3Br; the fraction volatile at 210 K consisted of silyl-
aminodifluorophosphine (1.2 mmol) [Found: M vap. 
density), 115; SiH, 247; N, 12.2%. H4F5NPSi requires 
M, 115; SiH, 260; N, 12.2%], m.p. 167-169 K. Vapour 
pressures were measured between 200 and 273 K; within 
this range they were given by the equation log10  p/mmHg 
(1792/T) + 8327; the latent heat of vaporization calculated 
from this equation is 343 kJ mol, and the extrapolated 
b.p. is 329 K. After Ca. 20 min at temperatures above 
250 K in the liquid phase some traces of white solid wre 
formed, and the vapour pressure at 218 K was found to 
have risen from Ca. 1 mmHg to Ca. 3 mm. In clean i.r. 
cells the compound was stable as vapour at 330 K for at 
least 1 h, but in contaminated cells the spectra showed the 
formation of SiH3F after a few minutes. 

Reaction of PF5NH0  With SiH3CI.—When equimolar 
proportions of SiH5CI and PF2NH2  were allowed to mix in 
the vapour phase at room temperature, traces of white 
solid were formed; there was no further sign of reaction. 
The reactants were condensed together and held first at 
250 K and then at 230 K (40 mm); a little more solid was 
formed, but the i.r. spectrum of the products showed that 
little reaction had occurred. 

RESULTS 

Mass Spectrum.—In the mass spectrum, groups of peaks 
were observed at n/e values associated with the molecular 
ion (115) and with species that had lost up to 4 H atoms; 
strong groups of peaks associated with the fragments 
PFNHSiH3  (98), PF2NH (84), PNHSiH3  (77), and smaller 
fragments were observed, as well as peaks due to im-
purities including (PF0)3N (221), PF1N(SiH5)2  (145), and 
PF(NHSiH3) 2  (142). 

I.r. Spectra—Jr. spectra of SiH3 NHPF2, SiD5 NHPF3, 
SiH3 NDPF2, and SiD3 NDPF5  as vapours, and of 
SiH3 NHPF2  and SiH3 NDPF2  as solids, were recorded; 
the isotopically labelled compounds were prepared by use of 
labelled starting materials (isotopic purity estimated from 
i.r. spectra: SiD3Br, 98 atom-%; ND., 95 atom-%), 
though exchange while handling reduced the ND-enrich-
ment of the products to an estimated 80%. The presence 
of the enriched species was confirmed in each case by mass 
spectroscopy. The observed frequencies are set out in 
Table 3. 

Since the molecule is shown by electron diffraction to 
have no symmetry element other than I (point-group C5), 
the 21 vibrational modes can only be classified in a very 
general way in terms of group frequencies as vNH, vSiH 
(3 modes), 8NH (2 modes), 8SiH. (3 modes), skeletal 
stretches (2 modes), vPF (2 modes), SiH, rocking (2 modes), 
PF2  (3 modes), skeletal bending, and torsional modes (2). 

Some of these are easily identified in the observed spectra, 
but others are obviously strongly coupled, and even the 
isotopic labelling does not simplify the assignments much. 
For a molecule with only one NH bond, only one NH 
stretching fundamental would be expected in the vapour 
phase. The appearance of two bands of roughly equal 
intensity near 3400 cm' in the spectrum of the vapour of 
SiH5 NHPF2  is therefore surprising. The first explanation 
to come to mind is that one of the bands should ', )e assigned 
to an overtone or combination tone intensified by Fermi 

FIGURE 1 Observed and final weighted difference molecular 
scattering intensities for silylammnodifluorophosphine; nozzle-
to-plate distances (a) 250, (b) 500 and (c) 1000 mm 



TABLE 3 

I.r. frequencies of SiH3 NHPF2  and related species 
SiH8NDPF2 SiD3 NHPF2  SiD3 NDPF2  Assignment 

Vapour 	 Solid Vapour Vapour 
(3424w) 	 no. 3426m (3425m) NH 
(3370w) 	 no. 3364m (3370w) 

2540m 	 2480m 2540m ND 
2500m 	 2468m 2500m j 

2195vs 	 2170vs 2190w 2190w vSiH 

SiH3 NHPF2  

Vapour 	 Solid 
3427m 	 3380w 
3363m 
3150vw 
31 2Ovw 

2460vw 
2400vw 
2240vs,sh 
2194vs 
2189vs 
	

2175vs 
21 84vs 
21 45vs,sh 
1850vw 
1634vw 

} 
- 	6SiH3, 

' skeleton, 

J 
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-.1645vs,sh 	'-.1630vs,sh 
1601vs( 	1600vs 
1577vs 	1575vs 
1558vsJ 	1570vs 

—1558vs,sh 

1248s) 
1247s (1244mw) n.o. 1241s (1240mw) 

l235sJ 
1212s (1208mw) no. 1203s (1200mw) 

1070vvs I070vvs I064vvs 
990m 968vs 968vs 970s,sh 970msh 
952vs 955vs 942vs 942m 

925s 940vs 936vs 933m 
918vs 920vs 924m 

858s,sh 860s 858s,sh 
830s,sh 830vs,sh 834ssh 

810vs 804vs 800vs 820vs 806vs 
SOOvs SOOvs 790vs 802vs 801vs 
791vs 792vs 768vs 794vs 793vs 
779vs 780s,sh 
730m 730m 732vs 728vs 745vs 

720vs 700vvs 725vs 
690vs 685vs 

610m 
561m 560sh 

550vw 540m 550m 550m 
506w 507sh SlOsh 

475m 484m 450vw 480vw 

451s 
455m 

1490vw,vbr 
1450vw 
1388vw 
1 365vw 
1253s 
1247s 
124 is 
1210s 

970s,sh 
936vs 
926vs 
92ivs 

829vs 
806vs 

794vs 

729m 

650w 

550w 

496m 
488m 
478m 

466sh 
441w 
433w 

428m 	 424m,br 429m 	 412m,br 
390w 
362m 	 355m 	 360m,br 352w 	 365m,br 	360m,br 	8PF2  
320m1 	 320nc) 317m1 	316m 
315m- 	 311m 	 314m 312s 	 311m 	 311m 	 8PF2  
310mJ 	 308mJ 302mJ 	304mJ 
287m,sh 	 290w 	 263m 260m 	 .-280sh 	 255m,br 	?8SiNP 

s = Strong, m = medium, w = weak, v = very, br = broad. 	no. = Not observed 

resonance with the single fundamental. 	There are, how- bands in the spectra of SiH3 NHPF2  and of SiD3 NHPF2  

ever, two bands at almost exactly the same frequencies in near 1250 and 1200 cm'; in each case both bands are of 

the spectrum of SiD3 NHPF2  vapour; moreover, there are moderate intensity, and are so much weakened on N- 
two bands of almost equal intensity near 2500 cm' in the deuteriation that they must both be primarily associated 

spectra of both SiH3 NDPF2  and SiD3 NDPF21  shifted by with NH-modes. 	We assign them both to in-plane NH 

almost 1/1.41 from the frequencies in the NH-compounds. deformation modes. 
It is extremely unlikely that suitable combinations in all The only explanation we can offer for this doubling of 
four molecules should give rise to such similar Fermi NH stretching and bending modes is that in the vapour 

resonance, and so that explanation for the origin of the phase there are molecules in two different conformations at 

additional band must be rejected. 	Further, there are two room temperature. 	Such a suggestion would affect the 
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interpretation of the electron diffraction patterns and the 
n.m.r. spectra (see below). The jr. spectrum of a freshly-
sprayed film of solid SiH,-NH-PF, at temperatures near 
77 K showed two bands near 3400 cm' and two in the 
region 1200-1250 crn' (as in the spectrum of the vapour), 
but in each region the band a the higher frequency was 
much the weaker, and disappeared completely after a few 
minutes' standing at the low temperature. We conclude 
that interchange between the two conformers is possible 
even in solid films at 77 K, and that under these conditions 
the conformer giving the lower-frequency NH bands is the 
more stable. 

It is not possible to make detailed assignments for the 
remaining modes. There are strong bands in regions 
associated with SiH or SiD stretching; symmetrical but 
weak satellites associated with v(SiH) may be due to sums 
and differences involving the SiH3-torsion, which would 
then be expected at Ca. 50 cm'. The moderately strong 
bands in the spectra of both NH compounds near 1240 and 
1200 cIn' both shift on deuteriation, but their analogues in 
the spectra of the ND-species cannot be identified: a new 
and very strong band appears near 1070 cm in the spectra 
of SiD3 NDPF2  and of SiH3 NDPF2, but the shift (1240-
1070 cm') is far too small to arise simply from the mass 
effect of substituting D for H. The band at 1070 cm' is 
much more likely to represent a skeletal stretching mode 
that in the NH compounds is near 950 cm' but which is 
raised in frequency by coupling with (ND) in the N-
deuteriated species. There is a similar pattern of fre-
quencies in the spectra of (Me3Si),NH and (Me3Si)2ND, save 
that in the NH-species the band assigned to (NH) is not 
double.1' We have assigned the bands near 1240 and 
1200 cm-1  in the spectra of SiH3 NHPF2  and of SiD3 NH'PF2  
to the in-plane NH deformation modes of two conformers 
rather than to the in-plane and out-of-plane NH deformation 
modes of a single species because the spectra of (SiH3) 2NH 
and of (Me3Si)2NH each show only one band in this 
region 11,12 

The spectra between 1000 and 400 cm-1  are very com-
plicated. There are strong bands in the spectra of the 
SiH,-derivatives near 930 cm' that can be assigned to 

(SiH3), and these shift on Si-deuteriation to ca. 700 cm'; 
bands near 730 cm' (SiH species) are assigned to SiH, 
rocking modes. The very strong bands near 800 cm that 
are not affected by deuteriation are assigned to PF stretch-
ing modes.13  It is clear that at least one and possibly two 
bands near 950 cm-1  are not substantially shifted by 
deuteriation; one skeletal stretching mode and perhaps the 
out-of-plane NH deformation 11  would be expected in this 
region. However, the marked redistribution of intensity 
that occurs on N-deuteriation shows that there is extensive 
coupling and assignments to localized modes would be 
meaningless. Even the PF, deformation mode that is 
expected 13  between 400 and 500 cm' is involved in this 
coupling. Only the bands at 300 and 310 cm' (PF 
deformation modes) 13  and 205-290 cm' (tentatively 
assigned to the PNSi deformation mode) are relatively 
unaffected by deuteriation at either N or Si. 

N.m.r. Spectra—At 300 K the observed 'H n.m.r. 
spectrum of this compound can be analysed in terms of the 
structure given, on the assumption of equivalence of the 
two F atoms and of the SiH protons; the same is true of the 

11 H. Burger, Habilitationsschrift, Braunschweig, 1900. 
' 	B. J. Aylett and M. J. Hakim, J. Chem. Soc. (A), 1969, 639. 
13 D. E. C. Corbridge, 'Topics in Phosphorous Chemistry,' 

lnterscience, New York, 1971, vol. 6, p.  235. 

'H and '9F n.m.r. spectra of SiH3 15NHPF2, which also 
show that NH exchange, if it occurs, must be slow on the 
n.m.r. time-scale. At room temperature the spectra all 
appear to be of the first order. There is no feature suggest-
ing either non-equivalence of the F atoms or the presence of 
more than one conformer, so that if two conformers are 
present they must interchange rapidly on the n.m.r. time-
scale with one another. At 200 K further splitting is 
observed in the 'H spectrum; the number of additional 
lines is too great to be accounted for merely by postulating 
non-equivalence of the two fluorine atoms in a single 
conformer. 

The magnitudes of most of the coupling constants 
(Table 4) were obtained directly from the observed spectra. 

TABLE 4 
N.m.r. parameters a  for SiH3 NHPF2  

' (SiH) 	5.56(2) pp-. 	'J(F"N) 	4.2(2) Hz 
z (NH) 	7.11(2) pp-. 	'J("NH) 	4.1(1) Hz 
OF 	 55.2(3) pp-. 	3J(PH) 	8.0(2) Hz 
'J(PF) 	1215(5) Hz 	3J(FH) 	14.0(2) Hz 
'J(29SiH) 	224(1) Hz 	3J(NH) 	3.1(1) Hz 
iJ(15NH) 	73.1(3) Hz 	4J(FH) 	2.1(1) Hz 
'J(PH) 	18.8(2) Hz 

Measured for 10% solution in CCI3F-C6H12, 

The relative signs of these and the magnitudes and relative 
signs of other coupling constants, determined by studying 
the effects of weak spin decoupling on the n.m.r. spectra, 
are reported elsewhere. 14 

Molecular Structure —(a) Molecular model. Silylamino-
difluorophosphine has little symmetry and is therefore a 
fairly difficult subject for an electron diffraction study. It 
was necessary to make a number of assumptions in order to 
reduce the large number of geometrical parameters necessary 
to define the structure. These assumptions were (i) that 
the NSiH3  group possesses local C3  symmetry, (ii) that the 
NPF, group has local C3  symmetry, and (iii) that the 
hydrogen atom bound to nitrogen lies in the PNSi plane. 
The wide angle PNSi found subsequently probably justifies 
the third of these assumptions. Distortions from the 
idealised symmetry defined by (i) and (ii) probably show as 
unexpectedly large experimental amplitudes of vibration 
involving the fluorine or hydrogen atoms. With the 
assumptions, the structure is defined by 12 parameters, 
chosen to be the five bonded distances, the angles PNSi, 
FPF, FPN, NSiH, and PNH, and the angles of rotation of 
the PF2  and SiH3  groups about the P-N and Si-N bonds. 
Zero PF, twist is taken to be when the FPF bisector is 
eclipsed with respect to the N-H bond. The SiH3  twist is 
taken as zero when one SiH bond is trans with respect to the 
P-N bond. If a positive twist rotates the PF2  group 
clockwise when viewed along the P-N bond towards the 
nitrogen atom, then a positive SiH3  twist involves rotation 
of the group in a clockwise direction when viewed along 
the Si-N bond towards the nitrogen atom. 

(b) Refinement. Early refinements showed that it was 
easily possible to refine the bonded distances and valence 
angles that did not involve hydrogen atoms, with the 
exception that the angles FPF, FPN, and PNSi and the 
PF, twist were all strongly correlated. However, two 
independent structures were obtained, giving overall R 
factors [R&  = (U1WU/I1WI)1/2 where I and U are the 
vectors of observed intensities and residuals and W is the 
weight matrix] of 0l30 and 0129. The first of these had a 

14 
 J E. Bentham, E. A. V. Ebsworth, and D. W. H. Rankin, 

to be published. 
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PNS1 angle of 121° and a twist angle of 83°, whereas these 
angles in the second structure were 127 and 90° re-
spectively. The other geometrical parameters were similar 
in the two cases, but the first one involved an amplitude of 
vibration for the non-bonded P- Si distance that was 
approximately three times greater than those found for the 
F ... Si distances (0.28 A compared with 010 A). As this 
situation is virtually physically impossible, further work 
was limited to refining the second structure, the R factor 
for which eventually reached 0'098. 

Refinement of further geometrical parameters was 
difficult, owing to the strong correlations between the 
parameters and the weak contributions to the total scatter-
ing by atom pairs involving hydrogen. The problem was 
partly overcome by making a series of refinements in which 
one parameter was varied stepwise, and comparing R 
factors for the various refinements. The parameters 
obtained by this method have not all been refined simul-
taneously and so may be slightly in error. However, after 
the parameters concerned [r(NH), r(SiH), LFPN, LNSiH, 
LPNH, and SiH3  twist angle] had been estimated once, 
the whole procedure was repeated with the new values 
inserted for non-refining parameters. None of the new R 
factor minima was at a parameter value that differed 
significantly from the original one. The parameter set is 
therefore self-consistent. 

After completion of the work on the assumption that 
only one conformer was present (the results are in Table 5), 
the possible presence of a proportion of a second conformer 
was investigated. It was necessary to assume that the two 
forms are identical in all except the PF2  twist angle. A 
small peak at Ca. 36 A in the radial distribution curve 
(Figure 2), and the absence of further unassigned peaks, 
suggested that a proportion of the molecules might have a 
twist angle of Ca. 30°, with the longer F• . Si distance 

P (RI / R 

FIGURE 2 Observed and difference radial distribution curves, 
P(r)/r, for silylaminodifluorophosphine. Before Fourier in-
version the data were multiplied by s exp(-00015 s2)/ 
(Zp — fp)(ZF — fi) 

being about the same as when the twist angle is 90°. This 
angle refined to Ca. 26°  when the proportion of the original 
conformer was fixed at 0-65. This proportion was evaluated 
more precisely by making several refinements while fixing 
it at various values. Figure 3 shows the variation of R 

' W. C. Hamilton, Statistics in Physical Science,' Ronald 
Press, New York, 1964.  

factor with percentage of the predominant conformer, with 
95 and 99-5% confidence limits j'  marked. Thus it seems 

FIGURE 3 Variation in R factor with percentage of conformer 
with PF2  twist angle of 90°, showing 95 and 99.5% confidence 
limits 
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FIGURE 4 The two configurations of silylaminodifluorophos-
phine. Conformer (A) has a PF5  twist angle of 90° and 
conformer (B) has a twist of 26° 

that at 303 K the gas contains about 84% of a conformer 
with a PF2  twist angle of 90°  and 16% of a conformer with 
a twist angle of 26°. The parameters for the two forms 
are listed in Table 5 and the two conformations are shown 
in Figure 4. 

DISCUSSION 

The formation of a secondary amine as the sole 
volatile product of the reaction of PF2NH2  with silyl 
bromide is in contrast to reactions of silyl bromide with 
other primary amines. We have found no evidence for 
the formation of the tertiary amine (SiH3)2NPF2, nor 
was SiH4  found as a by-product; both of these observ-
ations probably reflect the weakly basic character of 
PF2NH2. It is usually supposed that reactions of silyl 
halides with amines involve nucleophilic attack by N at 
Si; if so, SiH3 NH'PF2  may well be too weakly basic to 
react further with excess of silyl bromide. The poor 
yields from the reactions between SiH3C1 and PF2NH2  
can be understood in terms of bond energies; the re-
action (2) produces one mole-proportion of difluoro- 

2SiH3X + 3PF2NH2  —*- 

PF2X + NH4X  + 2SiH3 NWPF2  (2) 

halogenophosphine. 	The bond-energy difference 
iE(PCl-SiCl) is much smaller 16  than is E(PBr-SiBr), 

16  E. A. V. Ebsworth, 'Organometallic Compounds of the 
Group IV Elements,' ed. A. G. MacDiarmid, Marcel Dekker Inc., 
New York, 1968, vol. 1, P.  48; T. L. Cottrell, 'Strengths of 
Chemical Bonds,' Butterworths, London, 2nd edn., 1958, pp. 
157-158. 

0116 

0112 

lk 

0108 

0104. 

0.100 



1686 

so that reaction (2) would be expected to be less exo-
thermic when X = Cl than when X = Br. The differ-
ence in lattice energy iU(NH4Cl—NH4Br) is quite small.17  
Although the compound is more stable 12  than is 
(SiH3)2NH, it is not stable enough at room temperature 
to allow an extensive study of its chemistry. The only 

J.C.S. Dalton 

than in N-dimethylsilylamine; 19  the P—N bond length 
is close to those 20  in PF2NH2  and PF2NMe2, and the 
PNSi angle is much the same as the SiNSi angles in the 
disilylamino-compounds. These results emphasize the 
similarity in structure between analogous Sill?- and 
PF2-compounds. It should be noted that the PF, PN, 

TABLE 5 

Molecular parameters 

Assuming 1 conformer present Assuming 2 conformers present, ratio 84: 16 

Conformer A Conformer B Both conformers 

Distance/A Amplitude/,k Distance/A Distance/A Amplitude/A 
(a) Independent distances 

rl (P—F) 1-575 (3) 0-045 (fixed) 1-574 (3) 0-045 (fixed) 
r2 (P—N) 1-654(6) 0048 (fixed) 1-657 (7) 0-048 (fixed) 
r3 (N—H) 0-998 • 0055 (fixed) 0-998 0-055 (fixed) 
r4 (Si—N) 1724 (7) 0-048 (fixed) 1-720(8) 0-048 (fixed) 
r5 (Si—H) 1-470 • 0-075 (fixed) 1470 0-075 (fixed) 

(b) Dependent distances 
d6 (F - - 	F) 2-442(22) 0.090(6) 2436 (21) 0-092 (7) 
€17 (F . . - N) 2-386(10) 0112 (tied to u6) 2395 (10) 0-115 (tied to u6) 
d8 (F - - -(N)H) 3-25 (2) 0-150 (fixed) 3-26 (2) 3-33 (3) 0-150 (fixed) 
€19 (F ... (N)H) 2.60(4) 0-150 (fixed) 2-52 (6) 2-40(5) 0150 (fixed) 
dlO (F... Si) 3-025 (30) 0-287 3-039 (50) 3-669(40) 0260° 
dli (F . . - Si) 3-972 (13) 0-098(13) 3-976 (13) 4-049(18) 0-095(10) 
d12 (F. - - (Si)H) 4-29(3) 0-200 (fixed) 4-31 (4) 4-59 (5) 0-200 (fixed) 
d13 (F ... (Si)H) 4-79 (4) 0-200 (fixed) 479 (6) 4.93(6) 0-200 (fixed) 
€114 (F - - - (Si)H) 2-66 (2) 0-200 (fixed) 2-67 (3) 3-64(2) 0-200 (fixed) 
d15 (F - - - (Si)H) 4-29 (4) 0-200 (fixed) 4-28 (7) 477 (7) 0-200 (fixed) 
€116 (F - - . (Si)H) 3-73 (3) 0-200 (fixed) 3-74(3) 4-65(5) 0-200 (fixed) 
d17 (F - - - (Si)H) 486 (2) 0-200 (fixed) 4-87 (2) 4-50(4) 0-200 (fixed) 
€118 (P - - - (N)H) 2-31 (2) 0-100 (fixed) 2-31 (2) 0-100 (fixed) 
€119 (Si - - - P) 3-033 (12) 0-122 (7) 3-034(12) 0-122(7) 
d20 (P. - - (Si)H) 4-19(2) 0-180 (fixed) 4.19(2) 0-180 (fixed) 
d21 (P... (Si)H) 3-40(3) 0-180 (fixed) 3-41 (3) 0-180 (fixed) 
€122 (P... (Si)H) 3-59 (3) 0-180 (fixed) 3-59 (3) 0-180 (fixed) 
d23 (N ... (Si)H) 2-61 (2) 0-105 (fixed) 2-61 (2) 0-105 (fixed) 
d24 (Si - - - (N)H) 2-31 (2) 0-100 (fixed) 2-31 (2) 0-100 (fixed) 
€125 (H(Si)H) 2-40(2) 0-100 (fixed) 2-40(2) 0-100 (fixed) 
d26 (H(Si) - - - (N)H) 2-66 (2) 0-160 (fixed) 2-65 (2) 0-160 (fixed) 
d27 (H(Si) - - - (N)H) 3-36 (2) 0-160 (fixed) 3-35 (2) 0-160 (fixed) 
d28 (H(Si) - - - (N)H) 3-22 (2) 0-160 (fixed) 3-21 (2) 0-160 (fixed) 

(c) Angles/' 
Li F—P—F 	 101-6 (12) 100-8(12) 
/2 F—P—N 	 95-2 95-6 
/3 P—N—Si 	 127-4(8) 127-9 (7) 
/4 N—Si—H 	 109-3 109-3 
/5 PF2  twist 	 89-9 (15) 	 90(3) 26 (3) 
LSP—N—H 	 118-8° 118-8° 
/7 SiH, twist 	 12-0° 12-0° 

These parameters were not included in the final least-squares refinements. The values quoted were obtained as described in 
the text. 	Many of the independent parameters involving H atoms were not included in the least-squares refinements. 	The 
quoted errors for non-bonded distances involving H have been increased to allow for this, but some uncertainty as to the errors in 
these measurements must remain. 

decomposition product we have identified is silyl 
fluoride; the other appears to be a P—N polymer. 

There is little question about the gross features of the 
molecular structure. The PNSi skeleton has the bond 
lengths and angles that would have been expected in the 
light of previous work. The Si—N bond length is close 
to those in disilylamine, N-methyldisilylamine, and 
tetrasilyihydrazine, molecules in which there are two 
Sill3  groups bound to each nitrogen atom,18  but is longer 

11  T. C. Waddington, Adv. Inorg. Chem. Radiocheni., 1959, 1, 
158. 

18 D. W. H. Rankin, A. G. Robiette, G. M. Sheldrick, W. S. 
Sheldrick, B. J. Aylett, I. A. Ellis, and J. J. Monaghan,  J. Chem. 
Soc. (A), 1969, 1224. 

and SiN bond lengths are so similar that it was im-
possible to refine their amplitudes of vibration. How-
ever, the amplitudes found for these bonds in other 
molecules vary over very narrow ranges, so that the 
refined distances should not have been affected sig-
nificantly by fixing the amplitudes. 

The conformations adopted by the molecule are of 
particular interest. The i.r. spectra leave little doubt 
that in the vapour at room temperature there are two 

19 C. Glidewell, D. W. H. Rankin, A. G. Robiette, and G. M. 
Sheldrick, J. Mol. Struct., 1969, 4, 215. 

° J. S. Harman and D. W. A. Sharp, Inorg. Chem., 1971, 10, 
1538. 



1972 
	

1687 

conformers in comparable concentrations and that the 
lower value for v(NH) is associated with the lower 
(NH); the n.m.r. spectra confirm that interconversion 

of these conformers is rapid in the liquid phase at room 
temperature but may well be slow at 200 K. The 
electron diffraction data indicate that in the predominant 
conformer the PF2  and SiH3  groups are rotated so that 
one fluorine atom is 252 A from the amino-hydrogen 
atom and the other fluorine atom is 267 A from one of 
the silyl hydrogen atoms. The sum of the van der 
Waals radii for F and H is 255 A, so that some form of 
intramolecular hydrogen bonding may well be responsible 
for the stability of this conformation, as well as for those 
of aminodifluorophosphine and dimethylaminodifluoro-
phosphine.8  Similar hydrogen bonding has been postu-
lated 20  to account for the non-equivalence of the axial 
fluorine atoms of methylaminotetrafluorophosphorane 
at 193 K. The widely different amplitudes of vibration 
for the two F ... Si distances reflect the relative changes 
in the distances on twisting the PF2  group by a small 
angle about the P—N bond. One amplitude is very 
large, suggesting that even within one conformation 
there is considerable rotational motion about the P—N 
bond. The large uncertainty of only one of the F . Si 
distances when the estimated standard deviation in the 
twist angle is also large is consistent with this explan-
ation of the vibrational amplitudes. 

Unfortunately it was not possible to determine 
structural parameters other than the PF2  twist angle 
for the other isomer, so we had to assume that the two 
conformers were otherwise identical. If this is so, the 
second conformer has F - . (N)H distances of 239 and 
333 A; the shortest F ... (Si)H distance is 364 A with a 
twist angle of 12° for the SiH3  group and effectively the 
same for the twist angle that minimises this distance. 
This conformer appears to have one strong and one  

much weaker hydrogen bond, both involving the amino-
hydrogen atom. Such hydrogen bonding almost cer-
tainly means that the molecules do not have the localised 
symmetries (C3  and C3)  for the NPF2  and SiH3N groups 
that have been assumed, although such deviations, if 
fairly small, cannot be detected on the basis of data from 
electron diffraction. Hydrogen bonding may also 
account for the unusually small FPN angles. Correlation 
between these angles and the FPF angle could mean 
that the one should be smaller and the others larger, but 
refinements in which the FPN angle was fixed at higher 
values all led to significantly higher R-factors. 

If there is significant hydrogen bonding in 
PF2 NWSiH3  it is of an unusual kind. Few examples 
of hydrogen bonding involving hydrogen bound to 
silicon have previously been described. Further, the 
bands due to vibration of the amino-hydrogen show no 
broadening. It is interesting that the lower NH 
stretching frequency appears to be associated with the 
conformer giving the lower NH deformation frequency; 
hydrogen bonding is normally supposed to lower NH 
stretching and to raise NH deformation frequencies, but 
the kind of hydrogen bonding suggested here is so 
unusual that its effect on the vibrational spectrum 
cannot be assumed to be the same as commonly observed. 
The large vibrational amplitudes are consistent with the 
easy interconversion between conformers that is implied 
by the n.m.r. spectra. The energy difference between 
the conformers, calculated from the estimated relative 
populations, is ca. 4 kJ mol'. 

We thank Professor D. W. J. Cruickshank and Dr. B. 
Beagley for experimental facilities, Imperial Chemical 
Industries Limited for a Fellowship (to D. W. H. R.), and 
the S.R.C. for a maintenance grant (to H. F. J.). 
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Exchange Reactions of Bromodifluorophosphine with Silyl and Germyl 
Derivatives of the Group VI Elements 

By D. E. J. Arnold, J. S. Dryburgh, E. A. V. Ebsworth, and D. W. H. Rankin, Department of Chemis-
try, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ 

The reactions of PF,X (X = Cl or Br) with (MH,),Y (M = Si or Ge; Y = 0, 5. Se, or Te) have been studied by 
n.m.r. spectroscopy. When X = Br and Y = S. Se. or Te, reaction occurs at room temperature to give the species 
MH,YPF,, (PF,) ZY, and M H,Br. "F and 'H N.m.r. and double-resonance techniques have been used to determine 
the chemical shifts ('H, "F, 31P. and "Se) and coupling constants (including relative signs) of the products. The 
PF,Se— and PF,Te— compounds have exceptionally low 31 P chemical shifts. The "F spectrum of (PF,),Se has 
been studied over a wide range of temperatures, and 'J(PP) and both 4J(FF) values are found to be strongly tem-
perature-dependent. The 'H spectrum of SiH,TePF, is also temperature-dependent. 

THERE have been a number of studies of exchange 
reactions involving substituted silyl and germyl com-
pounds.'-3  In general these have shown that in the 
equilibrium state the more electronegative groups are 
preferentially bound to silicon, but that kinetic factors 
may make some exchanges extremely slow.3  It is 
possible that this preference is associated with the 
tendency of atoms with lone pairs of electrons to indulge 
in it-bonding to a greater extent with silicon than with 
germanium. Our structural studies of fluorophosphine 
derivatives have suggested that bonds from phosphorus 
to nitrogen or oxygen have properties similar to those of 
bonds from silicon or germanium to nitrogen or oxygen.46  
We have, therefore, made a study of the reactions of a 
series of silyl and germyl Group VI derivatives with 
chloro- and bromo-difluorophosphine, to see whether 
chemical evidence would confirm or contradict our con-
clusions based on structural evidence. 

EXPERIMENTAL 

All manipulations of volatile materials were carried out 
in a conventional Pyrex vacuum system, with Apiezon L 
and N greases on taps and ground-glass joints. Tellurium 
compounds were handled in a grease-free section, with 
polytetrafluoroethylene taps. Bromo- and chioro-difluoro-
phosphine were prepared from hydrogen bromide or chloride 
and dimethylaminodifiuorophosphine.7  Silyl and germyl 
compounds of elements of Group VI were obtained by use of 
reactions (1)—(5). Purities were checked by i.r. spectro-
scopy. 

(SiH,),Y + H2O —*- (SiH,),O + H,Y 
(Y = S and Se) (1) 

(SiH,),N + 2H,Y —.*. NH4 YSiH, + (SiH,),Y 
(Y = S. Se, and Te) (ref. 8) (2) 

2SiH,Br + K,Y -- (SiH,),Y + 2KBr 
(Y = 5, Se, and Te) (refs. 9 and 10) (3) 

2GeH,Br + Pb(OH), —*.. (GeH3),O + H2O  + PbBr2  
(ref. 11) 	(4) 

2GeH,Br + (SiH,),Y —*- (GeH,),Y + 2SiH,Br 
(Y = 5, Se, and Te) (refs. 3 and 9) (5) 

K. Moedritzer and J. R. Van Wazer, Inorg. Chem., 1966, 5, 
547. 

2  J R. Van Wazer, K. Moedritzer, and L. C. D. Groenweghe, 
J. Organornetallic Chem., 1966, 6, 242. 

S. Cradock and F. A. V. Ebsworth, J. Chem. Soc. (A), 1967, 
1226. 

G. C. Holywell, D. W. H. Rankin, B. Ben gley, and J. M. 
Freeman, J. Chem. Soc. (A), 1971, 785. 

Reactions were studied in a 1 1 mixture of cyclohexane 
and CCI,F as solvent. Usually 02 inmol of the Group VI 
compound in Ca. 07 ml of solvent was treated at room 
temperature with 02-07 mmol of the fluorophosphine 
(the amount of the latter used depending on which products 
were to be studied) for periods of from a few minutes up to 
several weeks. 

N.m.r. spectra were recorded on a Varian Associates 
HA100 spectrometer operating at 100 MHz ('H) or 94075 
MHz ("F), the probes of which were double-tuned to 
accept a second radiofrequency provided by a Schlum-
berger frequency synthesizer." Although the circuits were 
designed for 'H—{19F} and "F—{'H} double resonance, 
satisfactory results have been obtained with irradiating 
frequencies of ca. 405 MHz, and 191 MHz in 'H—{"P}, 
"F—{"P}, and 19F—{77Se} spin-tickling experiments. 

Although the spectrometer and irradiation frequencies 
are derived from independent crystal sources, we find the 
relative frequencies to be stable to within a few parts in 
10' during several months. Consequently, by comparing 
irradiation frequencies for the same nucleus in different 
compounds, we have been able to determine chemical shifts 
for "P and "Se, without the need for continuous monitoring 
of the spectrometer operating frequency. 

Estimated standard deviations of quoted chemical shifts 
are 0.01('H), 0.1(19F), or 0.5(31P,17 Se) ppm. Errors in 
coupling constants are of the order of 2% of the value 
quoted. 

RESULTS AND DISCUSSION 

During the early stages of this work, a number of 
observations were made which influenced the choice of 
starting materials and conditions for subsequent re-
actions. The most important of these was that chloro-
difluorophosphine exchanged with the germyl Group VI 
derivatives only slowly, with the result that mixed 
products, most of which are unstable during long periods 
at room temperature, could only be obtained in low con- 

D. E. J. Arnold, E. A. V. Ebsworth, H. F. Jessep, and 
D. W. H. Rankin, J.C.S. Dalton, 1972, 1681. 

8 D. E. J. Arnold and D. W. H. Rankin, J. Fluorine Chem., 
in the press. 

J. G. Morse, K. Cohn, R. W. Rudolph, and R. W. Parry, 
Inorg. Synth., 1967, 10, 147. 

8 S. Cradock, E. A. V. Ebsworth, and H. F. Jessep, J.C.S. 
Dalton, 1972, 359. 

S. Cradock, E. A. V. Ebsworth, D. W. H. Rankin, J. Chem. 
Soc. (A), 1969, 1628. 

'° H. Burger and U. Goetze, Inorg. Nuclear Chem. Letters, 
1967, 3, 549. 

21 S. Cradock, personal communication. 
" A. Charles and W. McFarlane, Mol. Phys., 1968, 14, 299. 
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centrations. With the silyl compounds, reactions were 
fast, but expected products, other than silyl chloride, 
were not observed. Consequently, the results reported 
here all concern exchange reactions of bromodifluoro-
phosphine. 

Secondly, it was observed that with sulphur, selenium, 
and tellurium derivatives, relative exchange rates were 
Si> Ge and Te > Se > S. Moreover, the equilibria 
were such that, if sufficient bromodifluorophosphine was 
present, all the silyl starting materials were apparently 
consumed, whereas some germyl compounds remained. 
At no time could high concentrations of the mixed 
MH3YPF2  species be obtained. 

Thirdly, the disilyl ether exchange reaction was found 
to be slow, even with bromodifluorophosphine, only 
small amounts of silyl bromide being formed in 24 h,  

bromodifluorophosphine with the silyl derivatives, but 
to a lesser extent with the germyl ones. This is to a 
certain extent substantiated experimentally. With the 
germyl compounds reactions were slow, as shown by the 
rate of formation of germyl chloride, and the products, 
most of which are unstable, decomposed as rapidly as 
they were formed, and so were not observed in the 
n.m.r. spectra. With the silyl compounds, silyl chloride 
was formed in a few minutes, and the reactions appa-
rently went to completion. However further reactions 
occurred giving insoluble products. 

Some of the details of the more important experi-
ments with bromodifluorophosphine are in Table 1. 
In addition to the products listed there, small amounts 
of (PF2)20 and YPF2H (Y = S or Se) were also formed 
if traces of water were present. 

TABLE 1 

Reactions of (MH3) 2Y and PF2Br 

Reagents Molar ratio Reaction (MH3)2Y 
PF2Br PF2Br: (MH3) 2Y time/s remainingj% 

(SiH3) 20 25 	1 80,000 65 
35 	1 80,000 55 

(GeH3) 20 2 	1 600 0 
1:1 600 0 

(SiH3) 2S 1-8: 1 2000 60 
1'8: 1 50,000 30 

(GeH3) 2S 2'5: 1 7000 100 
2'5: 1 180,000 80 

(SiH3) 2Se 2'5: 1 25,000 15 
3:1 4000 30 
3:1 8000 0 

(GeH3) 2Se 2'5: 1 8000 90 
2'5: 1 200,000 60 

(SiH3) 2Te 1 2000 65 
(GeH3) 2Te 1 5000 70 

Observed products 

MH3Br MH3YPF2  (1?172) 2Y Others 
'I V 
V V 
V V OPF2H 
V PF3 
V V V 
V V V SiH3F 

V .' V 
V V V 
V V V 
V V V 
V 
V V V 
V V V Te 
V Te 

whereas digermyl ether reacted too quickly for the 
spectra of the starting materials to be observed. Neither 
oxygen system gave peaks which could be assigned to 
mixed MH30PF2  species, and although MH3Br was 
formed, yields of bis(difluorophosphino) ether were much 
lower than expected; trifluorophosphine appeared in-
stead. 

Finally, the reactions gave unstable products. The 
sulphur and selenium systems precipitated small amounts 
of yellow solids on standing, and the tellurium systems 
precipitated much metallic tellurium very rapidly. 
These solid products did not appear to interfere with the 
recording of n.m.r. spectra. 

These observations, although only qualitative, do 
include some important results. Most important, they 
show that the tendency is, in fluorophosphine-silyl 
exchanges, for the more electronegative atoms to be 
bound to silicon, whereas in fluorophosphine-germyl 
systems the electronegative atoms tend to be bound to 
phosphorus. This is consistent with the idea that in 
these and other fluorophosphine derivatives, the PF2  
group is a -electron acceptor intermediate in strength 
between the silyl and germyl groups.4  If this also 
explains why some reactions go rapidly and to com-
pletion while others do not, then one would expect 
chlorodifluorophosphine to react to a greater extent than 

Reactions involving germyl and silyl ethers gave only 
bis(difluorophosphino) ether and the appropriate halide, 
and no mixed species. GeH3TePF2  was not observed. 
As the germyl exchanges were slow, and decomposition of 
fluorophosphine-tellurium compounds was rapid, the 
products of this reaction, other than germyl bromide, 
were not observable in the n.m.r. spectra. 

Chemical Shifts.—Chemical shifts for all the Group VI 
species studied are in Table 2. The interpretation of 
chemical shifts is difficult and may be misleading. 
Nevertheless, a number of noteworthy trends are 
apparent in the shifts listed. 

There is a downfield shift in the proton resonances 
when one -MH3  group in (MH3)2Y is replaced by a 
-PF2  group. This shift, for a given element Y, is 
roughly the same when M is Ge as when it is Si, but it 
varies with Y in the order Te> Se> S. The downfield 
shifts probably reflect the electron-withdrawing charac-
ter of the -PF2  groups. The variations in the shift 
could be due to changes in the geometry of the molecules, 
as the extent of intramolecular hydrogen bonding, in a 
five-membered ring (i) would be very dependent on .the 
precise bond lengths and valence angles in the compound. 

19F Chemical shifts increase in the order 0 < S < 
Se <Te, and it is also noticeable that for any one 
elementY, (SiH3YPF2) -. 6(GeH3YPF2) <S(PF2YPF2). 
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The first of the trends is very similar to that found for 
the difluorohalogenophosphines,13"4  and may be attri- 
buted simply to electronegativity differences. Such 

TABLE 2 
Chemical shifts 

Compound 'r('H) 6(1 F) 3(31P) b 	8('7Se) 
(SiH3),O +5-44 
(GeH3) 20 +472 
(PF,),O +367 111 d 

(SiH,),S +571 
S1H3SPF2  +565 +573 —229-5 
(GeH3) 2S +5-40 
GeH,SPF, +532 +571 —232-0 
(PF2)2S +643 —2194 
(SiH3) 2Se +598 +6660 
SiH3SePF2  +583 +59-6 —255-4 	no. 
(GeH,),Se +582 +6115 
GeH3SePF2  +5-70 +59- 5 —258-9 	no. 
(PF,),Se 0 +664 —246-9 	—7008 
(SiH3) 2Te +6-41 
SiH3TePF2  +6-06 +68-5 —297-0 
(GeH3) 2Te +6-48 
(PF2),Te +72-6 —295-8 

No., Not observed. 
Ppm. to high field of CC13F. b  Ppm. to high field of 

85% H3P03. c Ppm. to high field of Me,Se. 	d  R. 	W. 
Rudolf, R. C. Taylor, and R. W. Parry, J. Amer. Chem. Soc., 
1966, 	88, 	3729. e Measured at 193 K. 	All other spectra 
recorded at 300 K. 

differences do not account for the second observed 
relationship, for which there is no obvious rationalis-
ation. 

H'I 	
/ 11-1 

F 
H--- F 

(1) 
Phosphorus chemical shifts are useful in that they 

confirm that the compounds studied are derivatives of 
trico-ordinate phosphorus.15  Variations are much as 
would be expected, with the shifts decreasing as the 
associated 19F shifts increase.16  All the shifts are lower 
than those in the corresponding simple difluorohalo-
genophosphines, with the consequence that those in the 
tellurium compounds are lower than any reported 
previously. Clearly, the phosphorus atoms are in some 
extreme environment: the multiplicity of explanations 
of phosphorus chemical shifts 17  makes it impossible for 
us at this stage to explain fully the nature of the bonding 
in these compounds. 

The selenium shifts are also difficult to interpret, this 
time because of the lack of comparable data in the 
literature. However, it seems probable that simple 
electronegativity effects can account for the observed 
shifts. We are now studying the effects of substitution 
on the chemical shifts (77Se and 125Te) of a variety of 
selenium and tellurium compounds, and hope to be able 
to rationalise the present results more fully. 

' A. Muller, E. Niecke, and 0. Glemser, Z. anorg. Chem., 1967, 
350, 256. 

" R. W. Rudolph, J. G. Morse, and R. W. Parry, Inorg. Chem., 
1966, 5, 1464. 

15 J. F. Nixon and R. Schmutzler, Specfrochim. Acta, 1964, 20, 
1835. 

16 J. F. Nixon, Adv. Inorg. Chem. Radiochem., 1970, 13, 363. 

Coupling Constants—The observed coupling constants 
for the mixed Group VI derivatives MH,YPF2  are in 
Table 3. The magnitudes of the directly bonded phos- 

TABLE 3 
Coupling constants for MH3YPF2  

Compound T/K 'J(PF)/Hz 3J(PH)/Hz 4J(FH)/Hz 
SiH3SPF2  300 —1298 +13-3 +2-7 
GeH,SPF, 300 —1285 +118 +34 
SiH3SePF, 300 —1286 +11-6 +2-9 
GeH,SePF, 300 —1287 +11-2 +3'3 
SiH3TePF5  203 11-4 30 

233 10-1 2-9 
273 9-6 2'7 
300 —1253 +9- 3 +2-8 

phorus—fluorine coupling constants increase with in-
creasing electronegativity of the third atom bonded to 
phosphorus, in the usual manner.18  The three-bond 
coupling, J(PYMH), is found to be positive [it being 
assumed that 1J(PF) is negative 1920]  in each compound 
studied, and to be larger in compounds with lighter 
elements Y and M. The positive sign is as expected 
for a three-bond coupling, and the trend in magnitude 
is also consistent with trends observed in other silyl and 
germyl derivatives of the Group VI elements.2' How-
ever, on the basis that reduced coupling constants are 
usually negative over even, but positive over odd, 
numbers of bonds, the fluorine—hydrogen coupling in 
each of these molecules should be negative. In each case 
it is positive. This may be accounted for, at least in 
part, by the possibility of direct interaction between 
hydrogen atoms on silicon or germanium, and the fluorine 
atoms bonded to phosphorus, as described above. Such 
direct interaction might well provide a positive contribu-
tion to the four-bond coupling. 

TABLE 4 
Coupling constants for (PF,) 2Y 

'J(PF)/ 'J(PF)/ 12J(PP)I 14J(FF)I I'J(FY)I 
Compd. T/K Hz Hz Hz Hz Hz 

(PF2) 20 300 —1365 +14 5 0 
(PF,)2S 300 —1303 +28 274 8-5,2-5 
(PF,),Se 293 —1305 +21 232 8'8, 28 39 

273 —1300 +25 249 9•3, 18 36 
253 —1301 +24 264 100, 15 36 
233 —1297 +25 281 10-5, 1-5 35 
213 —1293 +26 300 11-4,09 35 
193 —1299 +35 316 120,0-0 36 
173 —1297 +28 336 12-5, 00 36 

(PF,)2Te 300 (1244) no, n.o. n.o. no. 
n.o., not observed. 
VJ(PF) + 3J(PF)J 

Coupling constants for the bis(difiuorophosphino)-
Group VI derivatives are in Table 4. The '°F spectrum 
of (PF2)2S and its temperature-dependence have been 
described.22  We have studied the temperature-variation 

17 M. M. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark, 
and J. R. Van Wazer, Topics in Phosphorus Chem., 1967, 5, 19. 

18  G. Mavel, J. Chim. phys., 1968, 65, 1692. 
' J. A. Pople and D. P. Santry, Mo!. Phys., 1964, 8, 1. 

20 A. V. Cunliffe, E. G. Finer, R. K. Harris, and W. McFarlane, 
Mo!. Phys., 1967, 12, 497. 

21 C. Glidewell, D. W. H. Rankin, and G. M. Sheldrick, 
Trans. Faraday Soc., 1967, 65, 1409. 

22  R. W. Rudolph and R. A. Newmark, J. Amer. Chem. Soc., 
1970, 92, 1195. 
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of the 19F spectrum of (PF2)2Se in detail, and Table 4 
includes the parameters determined at each of seven 
temperatures. Absolute temperatures quoted may be 
up to 5 K in error, but relative values should be correct 
tor within 1 K. The spectra (Figure 1) are of the second 

Hz from CCI3F 

5900 	5800 	5700 	5600 	5500 

Low-field half of the 15F n.m.r. spectrum of 
(PF2) 2Se at 173 K; *77Se  satellites 

order, and have been analysed, on the assumption that 
I'J(PF) - 3J(PF)I > 1 2J(PP) 	4J(FF)I,4J(FF)'J, by 
the method of Harris et al.23  The parameters in the 
oxygen compound are remarkable in that all couplings 
across the oxygen atom are small compared with 
similar couplings in the sulphur, selenium, and tellurium 
compounds. In particular, 2J(PP) is only 5 Hz com-
pared with over 200 Hz in the other compounds and Ca. 
400 Hz in some (PF2)2NR compounds. Also, no four-
bond fluorine—fluorine coupling is evident, whereas all 
other (PF2)2X compounds studied show two different 
couplings, averaging Ca. 6 Hz. 

These parameters distinguishing (PF2)20 most 
dramatically from the other bis (difluorophosphino) -com-
pounds are also those that change most significantly with 
temperature in (PF2)2Se. The parameters for this 
compound listed in Table 4 have been expressed (by 
least-squares fitting) as simple polynomial functions of 
temperature. The results (Table 5) have been used in 

TABLE 5 

Temperature-dependence of n.m.r. parameters of (PF2) 2Se 
#(F) = 69.05(8) - 0'009(1)T ppm. 

'J(PF) = —1284.7(74) - 0061(31)T Hz 
3J(PF) 44.2(78) - 0.077(33)7' Hz 

12J (Pp) 525.2(152) - 1238(133)T + 000081(29)T2  Hz 
4J(FF) 1= 4.0(7) - 0.022(3)T Hz 

4J(FF)' = 18.1(3) - 0032(1)7' Hz 
°J(SeF) I= 36(1) Hz 

Estimated standard deviations are given in parentheses; 
T refers to absolute temperature. 

obtaining Figure 2, which shows how the various line 
positions in one half of the spectrum change with 
temperature. These positions have been extrapolated 
outside the temperature range studied experimentally. 

Although changes could be caused by movements of 
the positions of equilibria, it seems probable that the 
variations in these parameters, and in those for SiH3- 

23 R. K. Harris, J. R. Woplin, R. E. Dunmur, M. Murray, 
and R. Schmutzler, Bey. Bunsenges. phys. Chem., 1972, 76, 44. 

TePF2  (Table 3), are caused by conformational changes 
within the molecules, with the long-range couplings 
between various atoms being affected by the inter-
actions between the lone pairs of electrons, which are 
present on every atom in the molecules. The wide 
POP angle (over 140° in the gas phase) and staggered 
conformation of the PF2  groups in bis(difluorophos-
phino) ether 6  result in fairly small interactions be-
tween the lone pairs on the phosphorus atoms, and 
between the remote pairs of fluorine atoms. However 
in the sulphur, selenium, and tellurium compounds and 
in the amines, the PF2  groups can be much closer to-
gether, with consequent greater direct interaction. In 
addition to this, conformational changes with tempera-
ture will be possible in the Group VI compounds, where 
such changes might well be hindered by the presence 
of an alkyl or aryl group in the amines. Such an inter-
pretation must be speculative. Since further structural 
work will be invaluable in understanding the behaviour 
of these compounds we are investigating ways of pre-
paring them pure: the present reaction method is 
unsuitable as it gives several products of similar vola-
tility. 

Thus the extents to which these reactions proceed, 
and the various n.m.r. parameters of the products, give 
much information about the nature of the bonding in 
these compounds. One important question remains: 
why are these compounds apparently stable as phos-
phorus(m) derivatives, whereas other, similar, com-
pounds revert to the phosphorus(v) forms? Thus species 

300- 

200- 

Hz from CC( 3F 

FIGURE 2 Variation of the positions of lines in the low-field 
half of the 19F n.m.r. spectrum of (PF2)2Se with temperature 

such as F2PSH 24  and Me2PSMe 25  are more stable in 
their phosphorus(v) forms, whereas F2PSSiH3  and 
(CF3)2PSH 26  exist exclusively with phosphorus (iii). 
One possibility is that the stability of a particular form 
may be increased by intramolecular hydrogen bonding, 

24 T. L. Chariton and R. G. Cave!!, Inorg. Chem., 1967, 6, 2204. 
25 F. See! and K.-D. Velleman, Chem. Bey., 1972, 105, 406. 
26R.  C. Dobbie and B. P. Straughan, Spectrochisn. Acta, 1971, 

27, A, 255. 

FIGURE 1 
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readily possible in the last two cases, where four bonds 
separate the fluorine and hydrogen atoms. An alterna-
tive explanation, for the silyl and germyl derivatives, is 
that these groups, when attached to phosphorus, reduce 
the electron density there by delocalisation of the lone 
pair of electrons, if present, into their vacant d orbitals. 
This mechanism has been suggested to account for the 
low base strength of trisilylphosphine,27  and would 
certainly decrease the probability of forming phos- 

phorus(v) silyl (or germyl) derivatives. In addition 
there is the possibility of some additional stabilisation 
of the phosphorus(iii) forms by ( —* d)7r-interactions 
in the silicon—sulphur bonds. Further information is 
required to enable the structure-determining factors to 
be identified. 

[2/1205 Received, 261h May, 1972] 

27 C. Glidewell and E. A. V. Ebsworth, J. Chem. Soc. (A), 1969, 
352. 



Preparation and Properties of Bis(d ifluorophosph mo) - and Tris(d ifluoro-
phosphino)-amine 
By David E. J. Arnold and David W. H. Rankin, Department of Chemistry, University of Edinburgh, west 

Mains Road, Edinburgh EH9 3JJ 

Ripint,d from 

JOURNAL 
OF 

THE CHEMICAL SOCIETY 

DALTON TRANSACTIONS 

1975 



1975 	 889 

Preparation and Properties of Bis(difluorophosphino)- and Tris(difluoro-
phosphino)-amine 
By David E. J. Arnold and David W. H. Rankin, Department of Chemistry, University of Edinburgh, West 

Mains Road, Edinburgh E119 3JJ 

Bis(difluorophosphino)amine, (F2 P) 2N H. and tris (difluorophosphino) amine, (F8P) 3N, have been prepared by 
the gas-phase reaction of ammonia, trimethylamine, and chlorodifluorophosphine. The compounds have been 
characterised by i.r.. Raman, n.m.r., mass, and photoelectron spectroscopy. The tertiary amine reacts with hydrides 
HX (X = CI, Br. or I) and H 2Y (Y = 01 S. Se. or Te) to give the secondary amine and PF 2X or YPF2H; OPF2 H. 
S=PF2H, and TePF2 H decompose further. 

AMMONIA and difluorohalogenophosphines have been 
shown to react in the gas phase to give the primary 
amine, aminodifluorophosphine, F2PNH2.1'2  Further 
reaction to give secondary and tertiary amines is slow 
and incomplete, probably reflecting the electronegative 
character of the difluorophosphino-group, rather than 
any delocalisation of the nitrogen lone-pair electrons into 
phosphorus 3d orbitals. Chlorobis(trifluoromethyl)-
phosphine and ammonia also give only a primary amine, 
but on addition of a base (trimethylamine) the secondary 
amine is formed. The tertiary amine, [(F3C)2P]3N, is 
formed only by way of the anion [{(F3C)2P}2N].3  We 
have now studied the reactions of chioro- and bromo-
difluorophosphine with ammonia in the presence of tri-
methylamine, and find that by controlling the conditions 
carefully it is possible to prepare secondary and tertiary 
difluorophosphino-amines. 

RESULTS AND DISCUSSION 
Preparation.—The preparation of the secondary and 

t 	Liary difluorophosphino-amines is exceedingly difficult 
and time-consuming, and the volatilities of all three 
amines and of trimethylamine are so similar that separ-
ation by trap-to-trap distillation is impossible. The 
techniques described here represent the best methods 
that we found of preparing and isolating the compounds, 
having tried 57 varieties of physical and chemical condi-
tions. 

Secondary and tertiary difluorophosphino-amines were 
both prepared starting with ammonia or with aminodi-
fluorophosphine. For the preparations of the tertiary 
amine that used ammonia it is possible to describe the 
gas-phase reaction in terms of equation (1). However, 

NH3  + 3PF2C1  + 3Me3N —p- 
(F2P)3N + 3[Me3HN]Cl (1) 

it is expected that ammonium chloride will also be formed 
to some extent, and therefore if ammonia, chlorodi-
fluorophosphine, and trimethylamine are used in the 
ratio 1: 3: 3 complete conversion of the ammonia to 
(F2P)3N or NH4C1 will take place and some trimethyl-
amine and chlorodifluorophosphine will remain un-
changed. In practice no trimethylamine was recovered, 
and some of the secondary and primary amines remained. 
Additional trimethylamine and chlorodifluorophosphine 
are expected to increase the proportion of tertiary amine 
in the products, but it was found that as the initial tri- 

D. W. H. Rankin, J. Chem. Soc. (A), 1971, 783. 
2  J E. Smith and K. Cohn, J. Amer. Chem. Soc., 1970, 92, 

6185. 

methylamine : ammonia ratio was increased beyond 3: 1 
so the total yield of difluorophosphinoamines decreased. 
So it was necessary to prepare a mixture of amines and to 
estimate the extent to which reaction had occurred 
(usually by i.r. spectroscopy), and then to add more 
chlorodifluorophosphine (ca. 1'5 mol per remaining 
N-H bond) followed by more trimethylamine (Ca. 1 mol 
per N-H bond). The whole procedure was repeated 
until the reaction was essentially complete. If there was 
any trimethylamine left in the product after completion 
of this process it was removed by adding a small excess 
of boron trifluoride which gave a solid involatile adduct 
with trimethylamine but did not appear to give a stable 
adduct with the tertiary difluorophosphinoamine. 

An alternative method, which gave less complicated 
mixtures of products and was therefore somewhat easier 
to regulate, started with aminodifluorophosphine and 
initially used reagents in the proportions in equation (2). 

F2PNH2 -J-  2PF2CI  + 2Me3N P. 
(F2P)3N + 2[Me3HN]Cl (2) 

The subsequent stages were exactly as in the former 
method, except that it was usually possible to gauge 
quantities so that use of boron trifluoride to remove 
excess of trimethylamine was unnecessary. 

A study of the reactions of (F2P)3N with various 
hydrides showed that the secondary amine could be pre-
pared in a pure form by removal of one of the PF2  groups 
with a hydrogen halide. This seems to be the best 
method of obtaining small amounts of really pure amine 
and was the one adopted for the preparation of 
(F2P)2ND. A more direct route starts with aminodi-
fluorophosphine, chlorodifluorophosphine, and trimethyl-
amine in the ratio 1: 2 (excess) : 1. These yielded a 

F2PNH2  + PF2CI  + Me3N - 
(F2P)2NH + [Me3HN]Cl (3) 

mixture of primary, secondary, and tertiary amines in a 
ratio of ca. 30: 65: 5. When boron trifluoride was added 
to this mixture the primary amine decomposed,4  leaving 
a mixture of secondary and tertiary amines, inseparable 
by distillation. Alternatively, a hydrogen halide could 
be added, destroying the primary amine and converting 
the tertiary to secondary amine. 

Reactions of (172P)3N.—Reactions of tertiary difluoro-
phosphinoamine were undertaken to determine its useful-
ness as a preparative intermediate and eventually led to 

A. B. Burg and J. Heners,  J. Amer. Chem. Soc., 1965, 87, 
3092. 

D. E. J. Arnold and D. W. H. Rankin, unpublished work. 
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the best preparative route to the secondary amine. 
Reaction with hydrogen halides was rapid for chloride 
and bromide, but rather slower for iodide, and resulted in 
cleavage of just one P-N bond per molecule, even when 
excess of hydrogen halide was used. A small amount of 

(F2P)3N + HX —k- (F2P)2NH + PF2X (4) 

(X = Cl, Br, or I) 

white solid was formed, indicating that further reaction 
does occur to a limited extent. However, as reaction of 
the primary amine with halogen acids is fast, no other 
volatile products were observed. This rather surprising 
behaviour, with primary and tertiary amines being 
reactive and secondary amine unreactive, is similar to 
that observed for the analogous series of bis(trifluoro-
methyl)phosphino-compounds.3  

Group 6 hydrides reacted in a similar manner, but the 
presumed intermediates PF2-Y--H rearrange rapidly to 
the phosphorus(v) forms, Y=PF2H. The remaining 
hydrogen is no longer acidic and further reaction did not 
occur. For selenium, the reaction was clean and gave 

(F2P)3N + H2Y —*. (F2P)2NH + Y=PF2H (5) 

(Y = 0, S, Se, or Te) 

just the two expected products. For sulphur, the 
secondary amine was obtained in high yield, but SPF2H 
decomposed. For oxygen, both products decomposed 
and trifluorophosphine was the main volatile product. 
For tellurium, the secondary difluorophosphinoamine 
remained intact, but the other observed products were 
phosphine, trifluorophosphine, and elemental tellurium. 
We were unable to observe TePF2H. 

Spectroscopic Properties—In compounds such as the 
difluorophosphinoamines there is the possibility that the 
nitrogen atoms have a planar arrangement of ligands. 
The spectroscopic studies were therefore intended to give 
some indication of whether this is in fact so, as well as to 
assist in the routine characterisation of the new com-
pounds. N.m.r. parameters are listed in Table 1, to-
gether with those for F2PNH2. These were mainly 
obtained by direct observation of 1H, 19F, and 31P spectra; 
information about the 15N spectra and signs of coupling 
constants were obtained by heteronuclear double-
resonance experiments. 

The 1H spectrum of (F2P)215NH appeared to be of the 
first order, the resonance being split by 15N, 31P, and 19F 
into a doublet of triplets of quintets; the 15N spectrum 
similarly seemed to be of the first order. The 19F and 
31P spectra, however, were of the second order and showed 
long-range PF and FF couplings. The spectra were 
analysed in terms of an [A[X]2]2MQ spin system,5  
assuming that M and Q caused only first-order splittings 
of the A and X spectra. On cooling, the 19F spectrum 
became more complex, mainly due to changes in the long 
range FF couplings which were no longer equal. No 

R. K. Harris, J. R. Woplin, R. E. Dunmur, M. Murray, and 
R. Schmutzler, Bey. Bunsengesellschafzf Phys. Chem., 1972, 76, 44. 

6 D. W. W. Anderson, J. E. Bentham, and D. W. H. Rankin, 
J.C.S. Dalton, 1973, 1215. 

other coupling constants appeared to change significantly. 
The 19F and alp spectra of (F2P)315N were complex, and 
full analysis for the [A[X]2J3M spin system was impossible. 
However, it would appear that 2J(PP) in this molecule is 
less than 80 Hz and may be considerably smaller than 
this, and that the long range (four-bond) FF couplings 
are significant (probably of the same order of magnitude 
as in the secondary amine). 

TABLE I 
N.m.r. parameters of difluoropliosphino-amines a 

	

F2P15NH2 	(F2P) 615NH 	(F2P)316N 

	

+677 (2) 	+562 (2) 

	

—58.1(2) 	—620 (1) 	—632 (3) 

	

(31P) c 	 +147.5 (1) 	+ 144-4 (1) 	+150-3 (1) 

	

8(16N) d 	 +21.4(2) 	+86-3 (3) 	+139-0(1) 

	

'J(PF) 	—1200(l) 	—1253 (1) 	(—)1224 (1) 

	

'J(PN) 	+72-5 (3) 	+78-9 (3) 	+87-0(3) 

	

1J(NH) 	—80-4(4) 	—74-7 (2) 

	

2J(PH) 	+188 (2) 	+13-6(2) 

	

2f(NF) 	—6.4(4) 	—3-6(2) 	±2.5(4) 

	

2J(PP') 	 ±164 (1) 	 f 

	

3f(FH) 	+12.8 (4) 	4-11-2  (2) 

	

3f(PF') 	 +21.0 (5) 	f 

	

'f(FF') 	 5-4 (5) 	f 

	

4f(FF") 	 ±54 (5) 	f 
Values off are given in Hz, 8 in ppm.; estimated standard 

deviations are quoted in parentheses. 

Solutions in C.D.: Me4Si ratio 1: 1, at 308 K. 6  To high 
frequency of external CC13F. c To high frequency of external 
85% H3PO4. d To high frequency of external [Me4N]I. 

j'J(PF) + 2 3f(PF') 1. / Not determined due to complexity 
of spectra (see text). 

Most of the observed parameters are as expected, an 
exception being 31P chemical shifts which differ by small 
but significant amounts, the order being (F2P)2NH < 
F2PNH2  < (F2P)3N. The 15N resonance was shifted to 
high frequency on replacement of hydrogen atoms by 
PF2  groups. This probably reflects the electronegative 
character of the groups, rather than any it-bonding in-
volving the nitrogen lone-pair,electrons, as replacement 
of hydrogen atoms by SiH3  groups results in a small low-
frequency shift .6 

The smaller absolute value of 1J(15N1H) in (F2P)2NH 
than in F2PNH2  is surprising as this is normally 
associated with a smaller s-orbital contribution to the 
nitrogen-hydrogen bond .7  Increasing the number of 
PF2  groups should, if anything, increase the s contribu-
tion to the remaining N-H bonds. However, J(NH) 
may also be affected by other factors such as the presence 
nearby of electronegative atoms. The magnitudes and 
signs of the 1J(31P15N) couplings are consistent with the 
few that have been determined previously.6'8  The small 
value of 2J(PP) in (F2P)2NH, and the probably smaller 
value in (F2P)3N, are perhaps the most unexpected 
parameters. A number of alkyl- and aryl-bis(difluoro-
phosphino)amines have been studied and the values of 
2J(PP) in these all lie between 370 and 450 Hz.9  It 
seems possible that this coupling constant is very sensi-
tive to the conformation adopted by the PF2  groups, per- 

G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, 
J. Amer. Chem. Soc., 1964, 86, 5564. 

S A. H. Cowley, J. R. Schweigcr, and S. L. Manatt, Chem. 
Comm., 1970, 1491. 

J. F. Nixon, J. Chem. Soc. (A), 1969, 1087. 
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liaps being related to the extent to which the phosphorus 
lone pairs interact. The small value found for (F2P)20 10 
could therefore be related to the very wide angle at 
oxygen in this molecule,11  while the much smaller angles 

TABLE 2 
Vibrational spectra (cm') of (F,,P)3N 

Raman 

I.r. (gas) liquid CC1,,F solution Assignment 
1880vw 2><939 
I 750vw 939 + 816, 

912 + 838 
1 167w 816 + 363 
1 075w 2 )< 542 
1 045w 816 + 234 
1 004mw 542 + 488 

939vs 936w, dp 937m 
912vs 905w, p 907m }(PN) 
878w (sh) 

874m, p 869s 8631 	P 
858 VSQ 

843 	P 
838vsQ 837s, p * 
833J 	R 
816vs 805m, dp Ca. 805m 
708w 363 + 345 

558vs, p 557vs }(PN) 542m 537vs, p * 
509vw 363 + 142 
503vw 
468ni 467m, 466m 
450m 447m, dp 442m }P12) and 	(P,,N) 421ms, p 422ms 

404ms, p 
366 	P 
363.msQ 389vw, p * 
359) 	R }(PF2  
345s 347vs, ? * 
295m 295vw, p 293w p(PF2) 

251s, p * 
} 1(P3N) 234v.s, p 231s 

142m, ? 145s r(PF,,) 
s = Strong, In = medium, w = weak, v = very, sh = 

shoulder, p = polarised, and clp = depolarised. 
* Obscured by CCI,,F. 

TABLE 3 
Vibrational spectra (cm-1) of (F,P),,M-I and  

I.r. (gas) 	 Raman 

H 	 D 	H (liquid) 	H (solid) 	Assignment  
3 373m 2 502w 
3 3331n 2 472w 3 322w 3 313w } (NH) 
1 248ms 1 066m 
I 210ms 1 044m ô(NH) 

941vs 
919s 914w 920w Ca. 930w 
863s 888s 880vs 885s's 
830vs 838vs 830m 838s I 
823's 832vs (sh) L (PF) 
816 .vs 816vs 797.s 792s 
810) 
747m 741m 743m 775s v,ym(PNP) 

669m 
566m 571vw 593w 

542w 
SOSvw 508w MOm 2 x 264 

470vw 
444m 449w 430s 430w (PF,,) 
427w (sh) 
361m 360m (sh) 
323w 350m 325m }cPF) 
291w 296w 296w 380w p(PF2) 

264vs 265m 8(PNP) 
240vw 
150m 170w V(PF2) 

likely in (F2P)2S and (F2P)2Se would account for the large 
and temperature-dependent 2J(PP) values in these 
compounds.12'13  

Jr. and Raman data for (F2P)3N and (F2P)2NH are 
presented in Tables 2 and 3. Possible point groups for 
(F2P)3N are C3h, C35, C3, C,,, or C1. Any of these could 
be consistent with a planar P3N skeleton, and in the case 
of C31, this is essential. The C3h structure would give rise 
to 12 Raman-active fundamentals, four of which would 
be polarised, and nine i.r.-active fundamentals: it is 
immediately obvious from Table 2 that this is not con- 
sistent with the observed spectra. Similarly, on the 
basis of the number of polarised Raman bands, the C3,, 
and C3  structures can be eliminated. This only leaves 
C,, and C1, or possibly a mixture of conformers. Any 
conclusion about which of these possibilities is correct 
depends on assignment of the skeletal vibrations. These 
may, of course, be mixed with the vibrations of the PF2  
groups, but as bands occur in the regions normally 
expected for difluorophosphines it is likely that the con-
cept of skeletal vibrations is a useful one. 

After assignment of P172  group vibrations three sets of 
bands remain unassigned, in the regions 1000-900, ca. 
550, and Ca. 250 cm-1. A planar P3N skeleton could well 
have stretching vibrations in the two higher-frequency 
regions, and a deformation in the lowest region, by 
analogy with trisilylamine.14  The effect of the PF2  
groups would be to lower the skeletal symmetry from 
D31. An overall C,, structure would allow the asym- 
metric skeletal stretch to be split into a' and a" compo- 
nents, both Raman active, one polarised and one de-
polarised. The symmetric stretch would remain as a 
single fundamental, but would become i. r. -allowed. The 
Raman spectrum of the liquid phase, however, showed 
bands at both 558 and 537 cm. These wavenumbers 
are rather too high for PF2  deformations, the only other 
reasonable assignment. Neither band can be accounted 
for in terms of Fermi resonance, as there was just one 
corresponding band in the i.r. spectrum (admittedly of 
the gas phase) and also the two Raman bands had dis-
tinctly different widths and degrees of polarisation. We 
therefore tentatively suggest that these vibrations, and 
those at 251 and 234 cm 1, are skeletal vibrations of 
different conformers of (172P)3N, one probably of C,, sym- 
metry, and one of another symmetry, possibly C3. The 
bands at 905 and 936 cm-1  are also assigned as skeletal 
modes, but these could both arise from a single con-
former. Use of models of the molecule shows that the 
structures likely to minimise fluorine-fluorine interactions 
are those with C,, and C3  or C3h symmetry (Figure 1). 

10 R. W. Rudolph, R. C. Taylot, and R. W. Parry, J. Amer. 
C/ze,,n. Soc., 1966, 88, 3729. 

11 D. E. J. Arnold and D. W. H. Rankin, J. Fluorine Chem., 
1973, 2, 405. 

12 R. W. Rudolph and R. A. Newmark, J. Amer. Chem. Soc., 
1970, 92, 1195. 

" D. E. J. Arnold,  J. S. Dryburgh, E. A. V. Ebsworth, and 
D. W. H. Rankin, J.C.S. Dalton, 1972, 2518. 

14 E. A. V. Ebsworth, J. R. Hall, M. J. Mackillop, D. C. 
McKean, N. Sheppard, and L. A. Woodward, Spectrochim. Acta, 
1958, 13, 202. 



We therefore assigned the spectra in terms of these struc-
tures. We would emphasise that conclusions about con-
formations are of necessity Only tentative, and represent 

S--- 	): L  
C3 	 C3h 	 CS  

FIGURE 1 Possible structures for (F2P)3N 

our opinion as to the most probable arrangement: an 
investigation of the molecular structure by electron 
diffraction is currently being undertaken with a view to 
settling the matter with more certainty. 

The conformation of the PF2  groups also affects the 
point group of (F2P)2NH. Our studies of H ... F inter-
actions of this type of molecule 15  leads us to anticipate 
the most stable conformations to have C and C2  sym-
metry, with two H . . F interactions in each case (Figure 
2). Observation of two N-H deformation frequencies 

rs 	 C2  
FIGURE 2 Possible structures for (F2P)2NH. The broken 

lines represent possible H 	F interactions 

near 1 200 cm' in the gas-phase jr. spectrum suggests 
strongly that two conformers are indeed present in the 
gas phase. As with (172P)3N, a number of bands can 
readily be assigned to vibrations of the PF2  groups. The 
three bands between 790 and 890 cm will include P-F 
stretching modes, but the remaining NH deformations 
(presumably two bands, one for each conformer) may 
also lie in this region. Bands at Ca. 920, 745, and 265 
cm' have been assigned to skeletal modes, although 
these may be strongly coupled with PF2  vibrations. 
Frequencies observed for (F2P)2ND are generally con-
sistent with this assignment, although a strong band 
rather surprisingly appeared at 941 cm-1. This may be a 
P-F or P-N stretching mode raised in frequency by 
coupling with an ND deformation. 

Details of the mass spectra of (F2P)3N and (F2P)2NH 
are presented in Tables 4 and 5. It seems that the most 
important breakdown path for the tertiary amine in-
volves the following reactions (6) and (7). Other reac- 

	

[(F2P)3N] —3- [(F2P)NPF]+ + PP3 	(6) 

[(F2P)NPF]+ —*- [PF3] + PN 	(7) 

J.C.S. Dalton 
tions involve loss of PF2  or F, and in one case a rearrange- 
ment must occur giving rise to the ion [(F2P)2NF], 
which must contain either an N-F bond or a four- 
co-ordinate phosphorus atom. 	The ion [(F2P)NPF]+ 

TABLE 4 
Mass spectrum of (F2P)3N 

rn/s Intensity Assignment 
221 32 [(F2P)3N]+ 
202 12 [(F2P) 2N(PF)]+ 
171 03 [(F2P) 2NF]+ 
152 4 [(F2P) 2N]+ 
133 53 [(F2P)N(PF)]+ 
114 27 [(FP)N(PF)]+ 
107 6 [PF4J+ and [P3N]+ 

95 05 [(FP)NP]+ 
88 46 [PF3]+ 
69 100 [PF2]+ 
665 <01 [(F2P)N(PF)]2+ 
50 9 [PF] 
47.5 <01 [(FP)NP]2+ 
45 10 [PN]+ 
345 05 [PF2]2  
31 13 P+ 

Metastable 
581 Weak [(F3P)N(PF)]+ 

[PF3]+ + PN 
800 Strong [(F2P)3N]+ 

[(F2P)N(PF)]+ + PF3  

TABLE 5 
Mass spectrum of (F2P)2NH 

	

rn/s 	Intensity 	 Assignment 

	

153 	 90 	[(F2P)2NH]+ 

	

152 	 53 	[(F2P)2N]+ 

	

134 	 7 	[(F2P)NH(PF)]+ 

	

133 	 21 	[(F2P)N(PF)]+ 

	

114 	 2 	[(F2P)NP]+ 

	

88 	 10 	[PF3]+ 

	

81 	 5 	[P2F]+ 

	

69 	100 	[PF2]± 

	

65 	 70 	[(FP)NH]+ 

	

50 	 6 	[PF]- 

	

47.5 	01 [(FP)NP]2+ 

	

46 	 48 	[PNH]+ 

	

34.5 	<01 	[PF2]24- 

	

325 	<0.1 [(FP)NH]2+ 

	

31 	 1 	P 

	

20 	 2 	[HF]+ 
Metastable 

	

1154 	Weak 	[(F2P)2NH]+ 
[(F2P)N(PF)j+ + HF 

	

1510 	Medium [(F2P)2NHJ+ 	ip. [(F2P)2N]+ + H 

was also formed by loss of HF from the parent ion of 
(F2P)2NH [equation (8)]. However, in this case there 

[(F2P)2NH] —*- [(F2P)NPF]+ + HF 	(8) 

are probably at least three other routes, (9)—(11), by 

[(P2P)2NH] —b- [(F2P)2N] + H 	(9) 

[(F2P)2NH] —.- [(P2P)NH(PF)] + F (10) 

[(F2P)2NH] —b- [(FP)NH] ± PP3 	(11) 

which the parent ion can dissociate. The last of these 
routes yields the ion [(FP)NH], one which has been 
observed previously to be particularly readily formed) 

Some details of the He (I) photoelectron spectra of the 
D. E. J. Arnold, E. A. V. Ebsworth, H. F. Jessep, and D. W. 

H. Rankin, J.C.S. Dalton, 1972, 1681. 
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three difluorophosphinoamines are given in Table 6. 
There is a general increase in binding energies with in- 
creasing replacement of hydrogen atoms by PP2  groups. 

TABLE 6 

Photoelectron spectra 

F1PNH6  (F2P)5NH (F1P)SN Assignment 
109 11•3 112 N2p, 
11.5 119 122 1P 3p, 123 125 
154 15'6 158 * }PN 160 a, NH a 

167 l68 
174 17'4 F2p, 

179 185 187 PF c 
Vertical ionisation potentials in eV 	01 eV. 
* Intense broad band. 

The fact that the nitrogen 2p level in the tertiary amine 
is slightly lower than that in the secondary amine prob-
ably reflects a change in the amount of interaction of this 
level with the phosphorus lone-pair levels. This inter-
action in turn depends on the orientations of the phos-
phorus groups: 16  these are unknown at the present time. 
However, the C3A  structure for (F2P)3N would probably 
have the smallest such interactions, and so what evidence 
there is is against this structure. 

EXPERIMENTAL 

Volatile compounds were handled in Pyrex-glass vacuum 
systems, fitted with Sovirel' polytetrafluoroethylene taps 
and joints greased with Apiezon N. Chiorodifluorophos-
phine was prepared from hydrogen chloride and dimethyl-
aminodifluorophosphine,'7  and aminodifluorophosphine by 
reaction of chiorodifluorophosphine and ammonia.' Purities 
were checked by i.r. spectroscopy. 

I.r spectra were recorded on a Perkin-Elmer 225 grating 
spectrometer, using cells equipped with caesium iodide or 
potassium bromide windows. Raman spectra were ob-
tained using a Cary 83 spectrophotometer with argon-ion 
488 nm laser excitation, mass spectra using an A.E.I. 
MS902 spectrometer operating at 70 0\T  ionising voltage, and 
u.v. photoelectron spectra using a Perkin-Elmer PS16 
spectrometer with He(I) (21.22 eV) excitation.*  'H, '°F, 
and 31  N.m.r. spectra were recorded on Varian Associates 
HA100 and XL100 spectrometers, operating at 100, 94.1, 
and 405 MHz respectively. Irradiation of 'H, 19F, 31p,  or 
15N nuclei for heteronuclear double-resonance experiments 
was carried out using either a Schlumberger FS30 frequency 
synthesiser (for the HA 100) or the standard double-resonance 
equipment of the XL 100 spectrometer. 

Preparation of Tris (difluorophosphino) amine. —The com-
pound was prepared in an apparatus consisting of two bulbs, 
of Ca. 2 1 and 100 cm3  capacity, linked by a' Sovirel ' grease-
less tap. The reaction took place in three stages, the 
apparatus being cleaned and dried between the stages with 
final drying being achieved by allowing silyl chloride or 
bromide to stand in the bulbs for a few minutes. In the 
first stage, the small bulb was filled with trimethylamine 
(4.5 mmol) and the large one with a mixture of amino-
difluorophosphine (2.0 mmol) and chlorodifluorophosphine 
(5.0 mmol). The connecting tap was opened to allow the 

* I eV 	160 x 10-11  J. 
16 S. Cradock and D. W. H. Rankin, J.C.S. Faraday II, 1972, 

940. 

pressures to equalise (admitting Ca. 4 mmol of Me3N) and 
closed again. Clouds of white solid trirnethylammonium 
chloride were formed. After 40 min the volatile products 
were removed and fractionated. The fraction retained 
at 195 K but passing 209 K consisted of 1'6 mmol [80% 
based on PF2(NH2) used] of a mixture of F2PNH,, 
(F,P)ONH, and (F,P),N. Secondly, trimethylamine (1.05 
mmol) was added from the small bulb to chlorodifluorophos-
phine (3.2 mmol) and the mixed amines (1.6 mmol) in the 
large bulb. After 45 min the volatile products were col-
lected and fractionated, yielding Ca. 14 mmol of tertiary 
amine containing some secondary amine (Ca. 90% based on 
the amines used). Finally, the second step was repeated 
so that the ratios of phosphorus amines chlorodifluorophos-
phine trimethylamine was again 10: 20: 05. This time 
the fraction retained at 195 K but passing 209 K was essen-
tially pure tertiary difluorophosphinoamine. The overall 
yield (over the three stages) was 65% based on F2PNH, 
used. 

The molecular weight of the product was found to be 
221 + 3 (calc. 221), and the vapour pressure is given by the 
equation, log p(mm) = —(1 625/T) + 7'911; 	 = 
3120 kJ mo1 1, 	= 994 J K' mol, and the extra- 
polated b.p. was 314 K. 

Preparation of Bis (difluorophosphino) amine.—Hydrogen 
bromide (02 mmol) was added from a 200 cm3  bulb to 
(F2P)3N (0.2 mmol) in a 2 1 bulb. A small amount of white 
solid was formed. Volatile products, separated by frac-
tional condensation, were (F2P),NH (0.1 mmol, 50%, re-
tained at 195 K) and PF,Br (0.16 mmol, 80%, retained at 
143 K). The secondary amine decomposed readily, and 
could only be handled in apparatus that had been first dried 
by allowing silyl chloride or bromide to stand in it for a time. 
Determinations of vapour pressures were not possible, but 
the molecular weight was found to be 158 ± 5 (calc. 153). 

Reactions.—(F,i') 3N with HX (X = Cl, Br, or I). Reac-
tions were carried out in the liquid phase, by condensing 
reagents together and allowing them to warm slowly to room 
temperature, or in the gas phase, using a two-bulb apparatus 
as described above. In a typical reaction, (F2P)3N (0.2 
mmol) and hydrogen iodide (0.4 mmol) were condensed 
together and allowed to warm to room temperature. A 
small amount of white solid was formed. The volatile 
products, separated by fractional condensation, were 
(F2P)2NH (0.15 mmol, 75%), PF,I (011 mmol, 55%), and 
excess of HI. In general, yields of (F,P),NH were higher 
for gas-phase reactions than for liquid-phase ones, and use 
of excess of hydrogen halide reduced the yield of secondary 
amine. The compound F2PNH2  was not observed in any 
of these reactions. 

(F,P)2NH with HCI. When (F2P),NH and HCI were 
condensed together (ratio 1: 1 or 1 2) and allowed to warm 
to room temperature no white solid was formed and the 
reagents were recovered unchanged. 

(F2P)3N with H2O. The amine and water (02 mmol of 
each) were mixed in the gas phase and allowed to stand for 
10 mm. No solid material was formed. The volatile 
products were removed and on condensation and warming 
again decomposed, giving a white solid, (F2P),NH (0.07 
mmol, 35%), and PF3  (0.11 mmol). 

(F,P)3N with H,S. The amine and hydrogen sulphide 
reacted slowly (10 min or longer) in the gas phase giving 
(F2P),NH in high yield (ca. 85%) and a trace of PF3  as the 

" J. G. Morse, K. Cohn, R. W. Rudolph, and R. W. Parry, 
Inorg. Synth., 1967, 10, 147. 



894 
	

J.C.S. Dalton 

only volatile products. The involatile residue was a colour-
less liquid or film of solid. 

(F2P)3N with H2Se. The amine (0.2 mmol) and H2Se 
(0.6 mmol) were condensed together and allowed to warm to 
room temperature. The volatile products were (F2P)2NH 
(0.12 mmol, 60%), SePF2H (0.06 mmol), PF3  (005 mmol), 
and unchanged H2Se. 

(F2P)3N with H2Te. The amine (0.2 mmol) and H2Te  

(0.25 mmol) were allowed to react together in an n.m.r. tube 
with benzene—tetramethylsilane solvent at ca. 200 K. The 
products observed were (F2P)2NH, PH3, PF3, and elemental 
tellurium. 

We thank Dr. S. Cradock for his assistance in running and 
interpreting the photoelectron spectra. 

14/2111 Received, 14th October, 1974] 
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SUMMARY 

Gas-phase electron-diffraction methods have been used to determine the 
molecular structure of bis(difluorophosphino)ether, F2POPF2. Most of the geo-
metrical parameters are strongly correlated due to overlapping peaks in the radial 
distribution curve. In the structure that fits the experimental data most closely, 
the P—F and P—O bond lengths are 159.7 + 0.4 and 153.3 + 0.6 pm respectively, 
and the POP angle is 2.53 ± 0.02 rad (145°). The conformation is such that the 
molecule has no symmetry elements other than I (point group C1). In other 
refinements somewhat longer P—O and shorter P—F distances were obtained. 

INTRODUCTION 

As part of a study of the bonding in substituted fluorophosphines, we have 
determined the structures of a number of compounds in which difluorophosphino 
groups are bound to elements of the first series14. The similarity of observed 
structures to those of analogous silyl or germyl compounds 	has led us to 
suppose that phosphorus d-orbital participation in the bonding profoundly 
influences the shapes of the fluorophosphines. 

The compounds studied so far have not included any compounds containing 
phosphorus—oxygen bonds, but the wide angles at oxygen in disilyl ether 8  and 
digermyl ether 9  led us to expect a similar wide angle in bis(difluorophosphino)-
ether. We now report the determination of the molecular structure of this com-
pound in the gas phase. 

Also of interest is the conformation of the fluorophosphine groups. Our 
earlier work on phosphorus—nitrogen derivatives has shown that the preferred 
orientations of these groups are determined by intramolecular hydrogen—fluorine 

J. Fluorine Chem., 2 (1972/73) 
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contact, where these are possible, and otherwise by lone-pair—lone-pair inter-
actions 4'10. The results presented here provide further evidence for the stereo-
chemical importance of lone pairs of electrons in these molecules. 

EXPERIMENTAL 

Samples of bis(difluorophosphino)ether were prepared by the reaction of 
bromodifluorophosphine with bis(tributyltin)etherli, and purified by fractional 
condensation in vacuo. The purity of each sample was checked by JR spectroscopy. 

Electron-diffraction data were collected photographically on Ilford N60 
plates, using a Baizers' KD.G2 gas-diffraction apparatus (with rotating sector)12, 
and were converted to digital form using a Joyce—Loebl automatic microdensito-
meter. Data from two plates, exposed with nozzle-to-plate distances of 250 and 
500 mm, were used, giving data over the range 32 <s <292 nm-1. The nozzle was 
maintained at 295K and the sample of compound at 195K during the exposures, 
and the gas temperature may be taken to be near the mean of these. The electron 
wavelength used was determined from the diffraction pattern of powdered thallous 
chloride and by direct measurement of the accelerating voltage to be 5.659 ± 
0.003 pm. 

All calculations were carried out on an IBM 360/50 computer at the Edin-
burgh Regional Computing Centre, using established data reduction and least-
squares refinement programmes1"3. The scattering factors of Cox and Bonham14  
were used throughout. The weighting points (defined as in Ref. 1) used in setting 
up the off-diagonal weight matrix are given in Table I, together with scale factors 
and correlation parameters15. 

All interatomic distances quoted in this work are ra values16. 

TABLE I 

WEIGHTING FUNCTIONS, CORRELATION PARAMETERS AND SCALE FACTORS* 

Camera 	
As 	Smin 	SI 	 S2 	 5max 	P/h 	Scale factor 

height (mm) 

250 	 4 	52 	80 	250 	292 	0.4719 	1.286 ± 0.028 
500 	 2 	32 	48 	128 	156 	0.4489 	1.262 + 0.022 

* S units in nm-1. 

MOLECULAR MODEL 

As electron diffraction is not a good method for distinguishing between 
almost identical groups, it was necessary to assume that the two F2P0— units 
within the molecules were identical and, moreover, that these groups had a plane 
of symmetry. Thus the structures of these groups were defined by the F—P- and 

J. Fluorine Chem., 2 (1972/73) 
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P-0-bonded distances and the FPF and FPO angles. The overall structure 
depends also on the POP angle and on the conformations of the F2PO groups. 
Two dihedral angles were defined, one for each F2PO group, to describe the rota-
tions about the P—O bonds. In each case, the angle was taken to be zero when the 
FPF bisector was trans with respect to the further P—O bond. The relative direc-
tions of the rotations were such that if the dihedral angles were equal, the molecule 
had overall C2  symmetry; Cs  symmetry was therefore represented by equal and 
opposite dihedral angles. The parameters that could be included in the refinements 
were therefore the two bond lengths, five angles, two scale factors and amplitudes 
of vibration for all the different interatomic distances. 

REFINEMENT AND RESULTS 

Refinement of the structure of bis(difluorophosphino)ether proved to be 
unusually difficult. The difficulties arose from the similarities of the phosphorus—
fluorine and phosphorus—oxygen bond lengths and of the FPF and FPO angles: 
these made it necessary for some of the amplitudes of vibration for the closest 
atom pairs to be fixed. In addition, there has been some uncertainty about the 
relative lengths of the phosphorus—fluorine and phosphorus—oxygen bonds: in 
some refinements, one type was the longer, and in others, the reverse was true. 
We therefore quote (in Table 2) the results of three separate refinements, obtained 
under very different conditions. 

In refinement A, most of the different interatomic distances in the molecule 
were allowed to refine independently, without any overall structural constraints. 
In this case, the lowest R factor (0.137) was obtained when the P—F distance was 
less than that for P—O. 

Refinements B and C are the best with P—F <P—O and with P—F> P—O 
respectively. Some of the parameters of refinement C are rather different from 
those in other fluorophosphines or phosphorus—oxygen compounds, although not 
impossible. However, the R factors for the refinements are 0.150 and 0.119. 
Using the R factor ratio test'7, refinement B can be rejected at the 99.5% 
confidence level. 

Because of strong correlations between angles FPF, FPO, POP and the 
dihedral angles, it was not possible to refine more than two or three of these at any 
one time. They were therefore refined in turn, until a self-consistent solution was 
obtained. Such a procedure must lead to unrealistically low estimated standard 
deviations, and so the errors quoted in Table 2 have been increased to allow for 
the correlation. The least-squares correlation matrix (Table 3) corresponds to 
refinement C of Table 2. 

Final molecular scattering intensity and difference curves are shown in 
Figure 1. The intensity data or uphill curves may be obtained from the authors on 
request. 

J. Fluorine Chem., 2 (1972/73) 



336.5 (14) 
390.6 (16) 
308.6 (16) 
363.9 (17) 
294.4 (15) 
301.2 (fixed) 
459.1 (fixed) 
447.2 (fixed) 
443.9 (fixed) 

157.0 (5) 
159.7 (9) 
239.0 (12) 
240.1 (7) 

Refinement B 
Distance 

I 
I- 

2 
C 

z 

341.9 (15) 
399.6 (17) 
305.4 (14) 
370.0 (16) 
297.8 (16) 
316.0 (15) 
461.7 (18) 
448.2 (15) 
446.5 (19) 

	

1.73 (2) 	[ 99.21 
1.72 (fixed)** [ 98.6] 

	

2.40 (2) 	[137.5] 
0.98 (fixed) ** [56.2] 
2.13 (fixed)**  [122.0] 

* All distances and amplitudes are in pm. Angles are given in radians and (in square brackets) in degrees. 
** Refined earlier. 

Refinement A 
Distance 

' 	r 1 (P-F) 156.2 (5) 
r 2 (P-U) 161.6 (9) 
r 3 (F ... F) 238.5 (11) 
r 4 (F ... 0) 240.4 (fixed) 

r 5 (P ... F) 
r 6 (P ... F) 
r 7 (P ... F) 
r 8 (P ... F) 
r 9 (P ... P) 
HO (F ... F) 
ru I (F ... F) 
H2 (F ... F) 
r13 (F ... F) 

1 (F-P-F) 
2 (F-P-0) 
3 (P-0-P) 
4 (dihedral) 
5 (dihedral) 

Amplitude 

4.5 (fixed) 
4.7 (fixed) 
7.4 (6) 
8.7 (tied to u 3) 

4.9 (14) 
5.6 (14) 
7.0 (fixed) 
6.4 (15) 

10.0 (fixed) 
28.0 (fixed) 
28.0 (fixed) 
22.5 (40) 
22.5 (tied to 02) 

Amplitude 
Refinement C 
Distance Amplitude 

4.5 (fixed) 159.7 	(4) 4.5 (fixed) 
4.7 (fixed) 153.3 	(6) 4.7 (fixed) 
6.9 (6) 242.0 	(5) 7.2 (6) 
8.1 	(tied 237.8 	(5) 8.5 (tied to u 3) 

to it 3) 
7.0 (fixed) 389.7 	(10) 4.9 (18) 
7.0 (fixed) 338.7 	(10) 4.9 (18) 
7.0 (fixed) 311.9 	(9) 5.0 (fixed) 
7.0 (fixed) 364.2 	(10) 5.0 (18) 

23.0 (50) 292.5 	(13) 9.8 (14) 
28.0 (fixed) 453.3 	(9) 22.8 (35) 
28.0 (fixed) 429.9 	(8) 24.0 (fixed) 
18.5 (fixed) 318.5 	(8) 18.5 (fixed) 
18.5 (fixed) 459.5 	(10) 22.8 (tied to ulO) 

1.719 (fixed)** [ 98.5] 
1.725 	(5) [ 98.8] 
2.533 (fixed)**  [145.1] 

-1.07 	(fixed)**  [-61.3] 
2.16 	(fixed)**  [123.5] 

TABLE 2 
ITI 	

MOLECULAR PARAMETERS * 
	 00 

I 
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TABLE 3 

LEAST-SQUARES CORRELATION MATRIX (x 1000) 

409 

r1 	r2 	<2 	u3 	u 	u6 u8 u9 u 	1 k  k2 

1000 	--574 	121 	63 	111 	53 28 40 17 443 300 r 	1 
1000 	—688 	—95 	—129 	—83 —29 —33 —31 —557 —334 r 2 

1000 	76 	2 	103 1 —126 28 345 166 <2 
1000 	35 	15 20 —156 18 307 205 u 3 

1000 	—141 —34 19 —82 136 69 it 	5 
1000 —41 —107 35 85 24 it 	6 

1000 45 —1 62 7 i,8 
1000 —6 16 45 it 	9 

1000 41 45 zilO 
1000 248 k 	I 

1000 k2 

DISCUSSION 

The difficulties encountered in the present study illustrate well the limitations 
of electron diffraction as a method of structural determination for molecules that 
have low symmetry, or several sets of interatomic distances that are so similar as 
to be unresolvable. The number of peaks above 250 pm in the radial distribution 
curve for bis(difluorophosphino)ether (Fig. 2) indicates that a CS  or C2  structure 

is impossible. In addition, the P—F and P—O distances appear as a single peak at 
about 155 pm, as do the F ... F and F ... O distances, at 240 pm. But if the molecule 
has no symmetry at all, then there are no grounds for assuming that the two 
F2PO— groups are equivalent and have planes of symmetry. Thus the structure of 
each such group depends on six parameters (three bond lengths and three angles), 
giving 12 in all, compared with four in our idealised model. It may be, therefore, 
that although refinement C fits the experimental data much better than refinement B, 
the latter could be improved by applying one or more of the eight possible distor-
tions to the F2PO— groups, while keeping the mean values of the P—F, P—O, F... F 
and F... 0 distances unchanged. 

However, despite the uncertainties outlined above, certain features of the 
structure are quite clear. In particular, the phosphorus—oxygen bond length is 
short compared with the value of 171 pm predicted by the Schomaker—Stevenson 
rule18, and with most experimental values19' 2O This shortness, and the wide POP 

angle (2.53 rad, 145°) suggest that, as in disilyl ether, which has an SiOSi angle 
of 2.51 rad (144°), the bonds to oxygen are not simple single bonds. It thus seems 
probable that in both molecules, the bonds are strengthened by delocalisation of 
lone-pair electrons from oxygen into low-lying vacant phosphorus or silicon 
orbitals. 

The conformation of the F2P— groups is interesting. The very small amplitudes 
of vibration found for three of the P... F atom pairs suggest that the amplitudes of 
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the torsional vibrations are not very great and the distinct peaks in the radial dis-
tribution curve show clearly that one conformation is preferred. These amplitudes 
may also reflect to some extent the quality of the intensity data in the region of 

(a) 

1 

40 

 

(b) 

20 

Fig. 1. Observed and final weighted difference molecular scattering intensities for bis(difluoro-
phosphino)ether for nozzle-to-plate distances of (a) 250 mm and (b) 500 mm. 
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s = 200 nm-1, and too much significance should not be attached to the values 
given. But the conformation adopted cannot be attributed solely to fluorine-
fluorine interactions, for the shortest such distance observed is over 310 pm, 
compared with 270 pm for twice the van der Waal's radius of fluorine. Thus the 
structure must be determined by the interactions of the lone pairs of electrons on 
the phosphorus and oxygen atoms, both with each other and with the fluorine 
atoms. 

Fig. 2. Observed and difference radial distribution curves, P(r)/r, for bis(difluorophosphino)ether. 
Before Fourier inversion, the data were multiplied by s exp(-0.0015s2)/(zp--fp) (ZF fe). 

Our understanding of the conformation-determining forces in this type of 
molecule may well be helped by a study of the structure of bis(difluorophosphino)-
sulphide. An NMR study of this molecule 21  has indicated that there must be 
considerable interaction between the two F2P- groups. With a probable PSP angle 
of about 1.7 to 1.8 rad, the P ... F and F ... F distances should on average be much 
shorter than in the ether, and the freedom of rotation or torsion should be even 
more restricted than in the present case. 

It should be pointed out that, in the absence of a full vibrational analysis 
for bis(difluorophosphino)ether, no shrinkage corrections have been applied in 
the refinements. As a consequence, the observed POP angle will probably be 
somewhat smaller than the true average angle, and the dihedral angles may also 
differ from those in the average structure. However, the observed amplitudes of 
vibration suggest that the torsional vibrations have small amplitudes, and so the 
corresponding shrinkage corrections will be small. 
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