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Abstract
In the 2010 Blizzard Challenge, we focused on improving steps
relating to feature extraction and labeling in the procedures
for training HMM-based speech synthesis systems. New au-
ditory scales were used for spectral features and F0 representa-
tion. We have also adopted finer frequency bands motivated by
an auditory-scale for aperiodicity measures, which determine
the level of noise in each band for mixed excitation. Further
for tighter coupling of the HMM training and automatic label-
ing processes, we have studied methods for stepwise bootstrap
training. The listeners’ evaluation scores were much better than
those of HTS-benchmark systems. More importantly, we can
see some improvements even in speaker similarity, which was
known to be the acknowledged weakness of this method. In
fact, speaker similarity is not a weak point of this method on the
tasks using smaller databases. In terms of naturalness, the new
systems outperformed or competed with unit selection systems
regardless of the size of speech databases used and moreover
competed with hybrid systems on smaller databases.
Index Terms: speech synthesis, HMM, average voice, speaker
adaptation

1. Introduction
Statistical parametric speech synthesis based on hidden Markov
models (HMMs) [1] has become a mainstream method for
speech synthesis because of its natural-sounding synthetic
speech and its flexibility. It has the potential to go far beyond
conventional unit-selection type methods because the speech is
generated from a parametric model, which can be modified in
various ways. Since HMM-based speech synthesis now has a
history of more than 10 years, it is worth briefly summaris-
ing progress to date. Research on HMM-based speech syn-
thesis started with the development of algorithms for gener-
ating smooth and natural parameter trajectories from HMMs
[2]. Next, to simultaneously model the excitation parameters
of speech as well as spectral parameters, the multi-space prob-
ability distribution (MSD) HMM [3] was developed. To si-
multaneously model the duration for the spectral and excita-
tion components of the model, the MSD hidden semi-Markov
model (MSD-HSMM) [4] was developed. These basic systems
employed a mel-cepstral vocoder with simple pulse or noise ex-
citation, resulting in synthetic speech with a “buzzy” quality.
To reduce buzziness, a more sophisticated excitation technique,
called mixed excitation was integrated into the basic system
to replace the simple pulse or noise excitation [5]. A high-
quality speech vocoding method called STRAIGHT (Speech
Transformation and Representation using Adaptive Interpola-
tion of weiGHTed spectrum) [6] was also used, in conjunction
with mixed excitation [7]. STRAIGHT explicitly uses F0 in-
formation to remove periodic components from the estimated

spectrum, i.e., it interpolates missing frequency components
considering neighboring harmonic components based on an F0

adaptive smoothing process over a time-frequency region. This
enables the generation of better spectral parameters and conse-
quently more natural synthetic speech. Still, all these basic sys-
tems had a serious shortcoming: the trajectories generated from
the HMMs were excessively smooth due to statistical process-
ing; over-smooth spectral parameters result in synthetic speech
with a “muffled” quality which lacks the “sharpness” or “trans-
parency” so easily achieved by concatenative methods. To alle-
viate this problem, a parameter generation algorithm that con-
siders the global variance (GV) of the trajectory being generated
was proposed [8]. In order to reflect within-frame correlations
and optimize all the acoustic feature dimensions together, semi-
tied covariance (STC) modeling [9] was employed to enable the
use of full-covariance Gaussians in the HSMMs [10]. Taken to-
gether, these modest incremental improvements have had a cu-
mulative effect. Compared with early buzzy and muffled HMM-
based speech synthesis, the latest systems have a dramatically
improved quality. They have exhibited good performance in the
Blizzard Challenges [11, 12, 13, 14].

The systems mentioned above are speaker-dependent. In
parallel, we have also been developing a speaker-adaptive ap-
proach in which “average voice models” are created using data
from several speakers. The average voice models may then
be adapted using speech from a target speaker (e.g. [15]). To
adapt spectral, excitation and duration parameters within the
same framework, an extended MLLR adaptation algorithm for
the MSD-HSMM has recently been proposed [16]. A more
robust and advanced adaptation algorithm called constrained
structural maximum a posteriori linear regression (CSMAPLR)
has been proposed [15]. We have also developed several tech-
niques for training the average voice model, such as a speaker-
adaptive training (SAT) algorithm [17]. To further explore the
potential of HMM-based speech synthesis, for the 2007 Bliz-
zard Challenge we combined these advances in the speaker-
adaptive approach with our current speaker-dependent system
that employs STRAIGHT, mixed excitation, HSMMs, GV, and
full-covariance modeling [18]. In the 2008 Blizzard Challenge
the same speaker-adaptive approach was used, but the model
was trained on more data using a more efficient algorithm and a
higher order cepstral analysis was employed [19]. In the 2009
Blizzard Challenge unsupervised and noise-robust versions of
the 2008 systems were investigated [20].

In the Blizzard 2010 challenge we adopted a speaker-
dependent approach for task EH1 where 4 hours of speech data
were to be used and a speaker-adaptive approach for tasks EH2
and ES1 where 1 hour and 100 utterances of speech data re-
spectively were to be used. Systems entered in the 2006 and
2008 Challenges were adopted as the basis for speaker depen-
dent and speaker adaptive systems respectively, and the follow-
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ing new improvements to feature extraction and labelling were
incorporated into each system:

• New auditory scales for spectral features and F0
• Fine frequency bands motivated by an auditory scale for

aperiodicity measures
• Tighter coupling of the HMM training and automatic la-

beling processes
In the following sections, we explain the details of these tech-
niques and analyse the results in the 2010 challenge.

2. New acoustic features for CSTR
HMM-based Speech Synthesis Systems

Our previous HMM-based speech synthesis system models
three kinds of parameters for the STRAIGHT (Speech Trans-
formation and Representation by Adaptive Interpolation of
weiGHTed spectrogram [6]) mel-cepstral vocoder with mixed
excitation, that is, the mel-cepstrum, log F0 and a set of band-
limited aperiodicity measures, as static feature vectors for the
HMMs.

2.1. From mel-cepstrum to Bark cepstrum

In mel-cepstral analysis using all-pass filter [21], the vocal tract
transfer function H(z) is modelled by M -th order mel-cepstral
coefficients c = [c(0), . . . , c(M)]> as follows:

H(z) = exp c>z̃ = exp

MX
m=0

c(m)z̃−m, (1)

where z̃ = [1, z̃−1, . . . , z̃−M ]>. z̃−1 is defined by a first-order
all-pass (bilinear) function

z̃−1 =
z−1 − α

1 − αz−1
, |α| < 1 (2)

and the warped frequency scale β(ω) is given as its phase re-
sponse:

β(ω) = tan−1 (1 − α2) sin ω

(1 + α2) cos ω − 2α
. (3)

The phase response β(ω) gives a good approximation to an au-
ditory frequency scale with an appropriate choice of α.

In general, as the sampling frequency increases, the differ-
ences between different auditory frequency scales such as the
Mel and Bark scales [22] implemented using a first-order all-
pass function become greater. Therefore we tested Bark scale
in this challenge. In [23], Smith and Abel define the optimal α
(in a least-squares sense) for Bark scale as follows:

αBark = 0.8517
p

arctan(0.06583 fs) − 0.1916 (4)

where fs is the waveform sampling frequency.

2.2. From log F0 to pitch in mel

Recently we proposed a generalised logarithmic transform of
fundamental frequency [24]. In this challenge, we test a differ-
ent psycho-acoustic transform of fundamental frequency. Ra-
biner and Schafer define pitch and fundamental frequency as
follows [25]:

Pitch is a subjective attribute of sound that is re-
lated to the fundamental frequency of the sound,
which is a physical attribute of the acoustic wave-
form.

Stevens and Volkmann [26] show that the relation pitch
measures on the mel-scale and frequency (of a pure tone) is
approximated by

Pitch [mel] = 1127 log

„
1 +

f

700

«
. (5)

We use the pitch in mel scale and its delta and delta-delta as
observation vectors for F0 modeling.

2.3. Auditory-scale motivated frequency-bands for aperi-
odicity measures

In the conventional systems, five frequency sub-bands (0-1, 1-
2, 2-4, 4-6, and 6-8 kHz) [7] were used for aperiodicity mea-
sures in a similar way to MELP coding [27]. In this challenge,
we tested frequency-bands for aperiodicity measures motivated
by an auditory scale instead of the five frequency-bands. The
Bark critical band ratio can be converted from frequency ap-
proximately as follows [28]:

Critical band rate [bark] =
26.81f

1960 + f
− 0.53. (6)

As in the original paper on the Bark scale [22], we directly
used the critical bands as frequency-bands for aperiodicity mea-
sures (i.e. regard the integers of critical band ratio as edge of
frequency bands). This results in 25 frequency bands with non-
linear varying bandwidth for speech sampled at 48 kHz sam-
pling frequency. Alternatively it is also possible to warp fre-
quency non-linearly for aperiodicity measures using the equa-
tion above and to use equalized frequency bands.

3. Stepwise bootstrap training including
regeneration of rich context-dependent

labels
Performing automatic labelling of contexts requires well-
trained HMMs, whereas training HMMs completely automat-
ically from scratch also requires automatically annotated con-
textual labels including not only the phoneme sequence but also
some additional information such as vowel reduction. There-
fore we should couple the labeling process and HMM training
process more tightly and should optimise both processes at the
same time.

Oura et. al. proposed a training method to use N-best con-
textual labels for a single utterance in HMM-based speech syn-
thesis [29]. In this challenge, we adopted a simpler and more
practical solution, that is, stepwise bootstrap training. First we
perform the initial labelling and train HMMs. Then using the
trained HMMs, we perform automatic labelling of time align-
ment information, vowel reduction, and pause detection. The
labelling results in a new set of HTS full-context labels having
refined time alignment information which enables us to train
new HMMs from scratch in a bootstrap manner.

From the speech database and labels that include an initial
phoneme segmentation, we first train a set of speaker-dependent
context-dependent multi-stream left-to-right MSD-HSMMs [7].
To begin with, monophone MSD-HSMMs are trained from
the initial segmentation, converted to context-dependent MSD-
HSMMs and re-estimated. Then, decision-tree-based context
clustering is applied to the HSMMs and the model parame-
ters of the HSMMs are thus tied. The clustered HSMMs are
re-estimated again. The clustering processes are repeated un-
til convergence of likelihood improvements. Then we per-



form automatic labelling using weighted finite-state transduc-
ers (WFST). The whole process is further repeated using re-
generated labels refined with the trained models in a bootstrap
fashion. The inner loop for iterative clustering was followed 10
times and the outer loop for refinement of the automatic labels
using WFST was followed 10 times. The same procedures can
be used for speaker-adaptive systems.

Note that the final labels differ from the initial labels in
terms of not only time alignment but also contexts. For instance,
the final contextual labels had only half the number of pauses of
the initial labels.

4. The Blizzard Challenge 2010

The Blizzard Challenge is an annual evaluation of corpus-based
speech synthesis systems, in which each participating team
builds a synthetic voice from common training data, then syn-
thesizes a set of test sentences. Listening tests are adopted to
evaluate the systems in term of naturalness, similarity to origi-
nal speaker and intelligibility. In the Blizzard Challenge 2010,
two English speech databases consisting of 4 hours of speech
uttered by a British male speaker RJS and 1 hour of speech data
uttered by a different British male speaker ROGER, and a Man-
darin speech database consisting of about 9.5 hours of speech
uttered by a Beijing female speaker were released. We entered
only the English evaluation this year.

The initial contextual labels for the data were automatically
generated using Unilex [30] and Festival’s Multisyn module,
with no further modification. The English phonetic, linguistic
and prosodic context factors used were similar to those in [31].
To investigate the effect of corpus size, three systems were built:
one built using 4 hours of speech data from the RJS database
(EH1 task), the second one built using 1 hour of speech data
from the ROGER database (EH2 task), and the third one built
using the first 100 sentences (corresponding to 6 minutes) of the
ROGER database (ES1 task). Note that the ROGER voices were
adapted from the RJS model instead of an average voice model
since there was not enough speech data sampled at 48kHz for
training an average voice model. All the feature analysis steps
were carried out using the 48 kHz speech data and downsam-
pled only after vocoding speech. The use of higher sampling
frequency and details of its use in training have been reported
in [24, 32].

4.1. Listening Tests

English synthetic speech was generated for a set of 468 test
sentences, including 368 sentences from broadcast, news, and
novel genres (used to evaluate naturalness and similarity) and
100 semantically unpredictable sentences (used to evaluate in-
telligibility). To evaluate naturalness and similarity, 5-point
mean opinion score (MOS) and comparison category rating
(CCR) tests were conducted. The scale for the MOS test was 5
for “completely natural” and 1 for “completely unnatural”. The
scale for the CCR tests was 5 for “sounds like exactly the same
person” and 1 for “sounds like a totally different person” com-
pared to a few natural example sentences from the reference
speaker. To evaluate intelligibility, the subjects were asked to
transcribe semantically unpredictable sentences and the average
word error rates (WER) were calculated from these transcripts.
The evaluations were conducted over a six week period via the
internet.

4.2. Experimental Results

Figures 1–3 show the evaluation results on naturalness in the
EH1 (4 hours), EH2 (1 hour) and ES1 tasks (6 min), respec-
tively. Figures 4–6 show the evaluation results on speaker simi-
larity in EH1 task (4 hours), EH2 task (1 hour) and ES1 task (6
min), respectively. In these figures, systems “V” corresponds
to the 2010 CSTR/EMIME HTS system. “A”, “B” and “C”
correspond to real speech, the Festival “Multisyn” benchmark
speech synthesis system [33] and the HTS benchmark system
[7], respectively. The Festival system uses a conventional unit-
selection method. The HTS Benchmark system is a standard
statistical parametric system using speaker-dependent HMMs,
which can be trained from scratch by using HTS toolkit version
2.1 and STRAIGHT. This system was highly rated in terms of
naturalness and intelligibility in the 2005 Blizzard Challenge.
Further “M”, “J”, and “T” are hybrid systems of unit selection
and HTS methods.

4.3. Naturalness

We note several interesting findings and system improvements
in the results:

EH1 task (Figure 1)
Our new HTS system “V” was not as good as the hy-
brid type systems “M”, “J”, and “T”. However, there
was no significant difference between the Festival bench-
mark unit selection system “B” and our new HTS sys-
tem. Moreover the new HTS system was found to be
significantly better than the HTS benchmark system “C”.

EH2 task, (Figure 2)
Our new HTS system “V” was the second best in the
EH2 takes where a hybrid system “M” was the best. The
new HTS system was found to be significantly better
than both the benchmark systems “B” and “C”.

ES1 task (Figure 3)
In the ES1 task, our new HTS system “V” and system
“M” were the equal best.

4.4. Speaker similarity

We can see several improvements in speaker similarity, which
was the acknowledged weakness of the HMM-based speech
synthesis method [19]:

EH1 task (Figure 4)
Our new HTS system “V” was rated as the average: The
Festival benchmark unit selection system “B” was better
than our new HTS system “V”. However, the new HTS
system was found to be significantly better than the HTS
benchmark system “C”.

EH2 task, (Figure 5)
Our new HTS system “V”, and hybrid systems “M” and
“J” were the equal best in the EH2 takes. The new HTS
system was found to be significantly better than both the
benchmark systems “B” and “C”.

ES1 task (Figure 6)
In the ES1 task, our new HTS system “V” was the best.

Since lower speaker similarity of HMM-based speech syn-
thesis was known to be its acknowledged weakness, this is an
important achievement for us. In fact, speaker similarity is no
longer a weak point of this method in tasks EH2 and ES1.



4.5. Comparison by speech synthesis methods

We can summarise the results above by speech synthesis meth-
ods below:

Comparison with the HTS benchmark system
The new HTS system “V” got significant improvements
compared to HTS benchmark systems “C” in terms of
both naturalness and similarity in all tasks (EH1, EH2,
and ES1).

Comparison with the Festival benchmark system
Compared to Festival unit-selection benchmark system
“B”, the new HTS system “V” are found to be equally
good in terms of naturalness and to be worse only in
terms of speaker similarity in the EH1 task. On the other
hand, in the EH2 task, the new system was rated as sig-
nificantly better then the Festival benchmark system in
terms of both naturalness and similarity.

Comparison with the hybrid systems “M” and “J”
Compared to hybrid speech synthesis systems “M” and
“J”, the new HTS system “V” are found to be worse in
terms of both naturalness and similarity in the EH1 task.
In the EH2 task, the new system was rated as good as the
hybrid systems in terms of speaker similarity. However,
its naturalness was found to be worse than system “M”,
but as good as system “J”.

5. Conclusions
In the 2010 Blizzard Challenge, we experimented with im-
provements to feature extraction and labeling steps in the train-
ing of HMM-based speech synthesisers. New auditory scales
were used for spectral features and F0. We also adopted finer
frequency bands motivated by an auditory-scale for aperiodic-
ity measures. In addition, to tighter couple the HMM train-
ing and automatic labelling processes, we tried a method of
stepwise bootstrap training. Listeners’ evaluation scores were
much better than those of the HTS-benchmark systems. More
importantly, we can see some improvements even in speaker
similarity, which was this method’s acknowledged weakness.
In fact, speaker similarity is not a weak point of this method
in smaller tasks such as EH2 any more and its score was as
good as those of hybrid systems. This is an important achieve-
ment for us. In terms of naturalness, the new systems outper-
formed or competed with unit selection systems regardless of
the size of speech databases used and moreover competed with
hybrid systems on smaller databases. However, on larger speech
databases, ratings for speaker similarity of the voices do not
reach high enough levels and thus we need to improve this as-
pect of their performance.
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Figure 1: MOS on naturalness in EH1 task.
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Figure 2: MOS on naturalness in EH2 task.
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Figure 3: MOS on naturalness in ES1 task.
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Figure 4: CCR on speaker similarity in EH1 task.
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Figure 5: CCR on speaker similarity in EH2 task.
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Figure 6: CCR on speaker similarity in ES1 task.


