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Abstract 

This thesis presents a novel modelling environment for large scale process systems prob-
lems. Traditional modelling environments attempt to provide maximal functionality 
within a fixed modelling language. The intention of such systems is to provide the 
user with a complete package that requires no further development or coding on their 
part. This approach limits the user to the functionality provided within the package 
but requires little or no programming experience on the part of the user. 

It is argued that for truly novel and complex model development the user must be 
capable of fully tailoring the environment to their requirements. The environment de-
veloped, JFMS (Java based Flexible Modelling System) consists of an object orientated 
model definition language and a three tier architecture comprising: 

. Model building routines; 

. Core data structures; 

• Application and Method server. 

The environment provides sufficient capability for the user to describe the model in 
terms of a variable set and a set of methods with which to manipulate the variables. 
Many of these methods will describe equations but there is no restriction limiting 
methods to representing equations. These methods can act as agents, linking the 
modelling environment to external systems such as physical property databanks and 
non-JFMS format models. 

Separating the description of the model from its processing allows the complexities 
to be dealt with in a full programming language (external functions are written in 
Fortran90 or C). The behaviour of the system is tailored by the user, the modelling 
environment existing solely to store the model structure and provide the interface layer 
between the external systems. 
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Chapter 1 

Introduction 

At this time, computers are commonly used in almost all areas of life; washing machines 

are 'intelligent', vehicle engines are controlled by on-board processors, offices are largely 

electronic and the Internet paradigm of distributed computing is becoming all pervasive. 

The area of computing of interest to this project is the modelling, simulation and 

optimisation field. Given the increase in processing power and reducing memory costs 

the models inevitably become larger and more complex. What should a modelling 

environment provide in order to be useful in such a dynamic domain? 

1.1 Background 

This work has been performed as part of the EPSRC funded Large Scale Optimisation 

Group (LSOG). This project was started in October 1996 as a collaboration between 

Edinburgh and Dundee Universities, involving staff from the Maths and Chemical En-

gineering departments. Many of the staff involved were previously working within the 

ECOSSE consortium and this project can be viewed as a continuation of the equa-

tion based modelling and solution method research performed under that project. The 

group has three main areas of interest: 

• Modelling environments for large process models; 

1 
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. Novel optimisation and solution methods; 

• Pre-processing steps to aid convergence. 

Given the background of the staff involved in the project, the models examined have 

inevitably had a chemical engineering basis. The concepts, methods and applications 

developed by the group are however equally applicable in the wider numerical modelling 

domain. This has been deliberate as a truly flexible and adaptable system will need 

to be capable of representing or manipulating a wide range of modelling problems. 

The assumption has been made that the domain will change over time and therefore 

simplifications that are currently valid would inevitably prove restrictive in the longer 

term. A concerted effort has been made to ensure that methods developed are truly 

generic. 

1.2 Aim 

The aim of this thesis is to present the work carried out within two of the above areas, 

in particular in the modelling environments and pre-processing areas. 

1.3 Objectives 

The main objective of this project was to provide the necessary modelling support 

to LSOG. This required identification of an equation based modelling tool sufficiently 

extensible in order to not restrict the applications and methods being developed else-

where in the group. As, at the time, it was not possible to find such an application it 

was decided to produce an in-house package to support the modelling work. 

A secondary objective was to review the current pre-processing methods available to 

assist in creation of good initial values for the variable set. If necessary, new methods 

were to be developed. 
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1.4 Scope 

Initially, the project was constrained to providing a modelling environment for use 

within the group. This implied a user type familiar with the concepts of equation 

based modelling, computer literate and used to command line driven applications. As 

the project developed it became clear that the application was useful for a wider range 

of users and, in particular, those at an undergraduate level. After feedback from the 

first undergraduate users, the project scope widened to produce an application capable 

of supporting complex development and modelling by expert users while remaining 

useful for new users, inexperienced in the subject area. 

1.5 Computer Based Modelling 

Computer modelling is becoming increasingly common in a highly diverse range of 

disciplines, including vehicle, electronic, structural and process engineering. Typical 

applications include the design, test and evaluation and simulation of the complex 

structures and processes found in these domains. Modelling such systems on computers 

provides a rapid and inexpensive method of satisfying requirements traditionally met 

by the construction of multiple prototypes or duplicate systems. These requirements 

include: 

• System design; 

• System optimisation; 

• System simulation. 

These models provide a numerical representation of the state and behaviour of the 

system in question. The models can be classified by intent into one of two classes; 

simulation or optimisation. These models can in turn be either steady state, where the 

system state does not change with time, or dynamic, allowing the user to investigate 

the behaviour of the system over time. 
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Simulation uses models of the process to investigate the effects of different operating 

conditions on the real life process. Two types of simulation exist, steady state and 

dynamic, each of which have different uses. Steady state models are used to study 

how the process operates in a given design state. Such models are typically used to 

validate designs, ensuring that the proposed design can achieve the required outputs, 

or to produce cost estimates for budget purposes. In contrast, dynamic models can be 

used to model the process as its operating conditions change, allowing users to analyse 

the effects of such changes on the plant. Optimisation is a branch of simulation used to 

determine the optimum input variables for a given process. The process can be steady 

state or dynamic. 

Frequently, models used for simulation or optimisation use the same underlying set of 

variables and equations, the difference being in the number of control parameters chosen 

and the addition (or selection) of an objective function in the optimisation case. In 

simulation, sufficient control parameters will be chosen such that, in combination with 

the equation set, the system state can be found. This is known as a 'square problem', 

the sum of the number of control parameters and the number of equations is equal to 

the number of variables. In optimisation, this sum is less than the number of variables, 

allowing the optimisation tool to determine the optimum state of the system within 

the boundaries specified by the control parameters and equation set. The system is 

evaluated on the basis of the objective function, frequently a total cost for the system 

as currently specified. 

Formal descriptions of computer modelling from a mathematical viewpoint tend to 

avoid the concept of control parameters. The system is represented by a set of vari-

ables and associated equations and any variable can be specified (chosen as a control 

parameter). When modelling real world entities however it is unrealistic and often 

inappropriate to choose many of the system variables as control parameters. The user 

requires certain behaviour from the system in terms of performance. This is most easily 

achieved by choosing system input or output variables as the parameters, allowing the 

model to handle the internal complexities. 
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One field that makes extensive use of such models is the chemical process industry. 

1.5.1 Computers in Chemical Engineering 

Computers are used throughout the process industries to support the design and oper-

ation of process plants. This is largely due to the increasing costs associated with these 

activities and the resulting need to maximise the efficiency of the processes involved. 

Chemical processes are generally well understood and therefore lend themselves to an 

equation based modelling approach. This makes them easily modelled by computers 

and allows a relatively high degree of confidence in the end results. Where processes 

are less well-understood, such as in biochemical engineering and complex reaction kin-

etics, equations can still be used to represent conservation laws and other areas of the 

process as understanding allows. 

Applications 

The five main applications of such models within the industry are: 

• Design of new plants (synthesis); 

• Upgrade of existing plants (retrofit); 

• Optimisation of operating parameters; 

• Plant control; 

• Operator training. 

Synthesis and Retrofit 

Computer Aided Design (CAD) methods are common within the process industries. 

As the underlying technologies become more complex and the economic and environ- 

mental operating conditions become more restrictive, optimal plant design becomes 
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increasingly vital. Synthesis and retrofit use a combination of simulation and optim-

isation tools to produce and evaluate plant designs without having to build small scale 

prototypes. Increasingly, the plant designs themselves are automatically generated in 

packages such as CHiPS (Fraga and McKinnon, 1994), allowing the designer to concen-

trate on the more abstract design requirements and direction. Knowledge management 

and decision support tools to support the design process are also under development 

(Banares-Alcantara et al., 1994). Frequently, these packages require access to modelling 

capabilities. 

Optimisation 

Chemical plants typically have life spans measured in decades. Factors such as raw 

material and utility costs and the value of the end product will change over this period. 

It is therefore often necessary to alter the operating parameters of the plant in order 

to maximise profits against a changing set of operating costs. Optimisation tools can 

be used to determine the best set of operating parameters. 

Plant Control 

Computers have replaced plant operators as the direct controllers of the chemical plant. 

Whereas operators used to have to watch gauges and adjust valves accordingly, com-

puters now monitor the state of the plant and alter the operating conditions to achieve 

the state dictated by the operators. In advanced control systems, the operating condi-

tions are optimised to fit the desired operating state, the current operating costs and, in 

some cases, even the current weather conditions. Such systems require accurate models 

of the plant and better than real time optimisation methods in order to be effective. 

Initial design and validation of these complex control systems is often performed using 

dynamic simulations. This allows the control system to be tested across the full range 

of operating conditions and emergencies that it could be exposed to. 
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Operator Training 

Dynamic simulations are also used to assist in operator training. This allows the 

examiners to test the operators reactions over a wide range of scenarios which might 

be too expensive or dangerous to perform on the real plant. Mistakes do not result in 

expensive and fatal accidents and there is no requirement to take the plant off normal, 

productive operation. Training is therefore safe, relatively inexpensive and easy to 

perform. 

1.6 Integrated Process Models 

Traditionally, equation based models have been constrained by the limitations of the 

solution and optimisation methods to look at relatively small models. Such models 

would typically involve either detailed modelling of sub-sections of a plant or more broad 

brush modelling of the plant as a whole. As the available methods have developed, there 

has been a move to produce more complete models of the process, sometimes modelling 

several plants and their connections within a single model. These integrated process 

models are extremely powerful, allowing much wider scope for optimisation, both at a 

design and an operational level. 

Modern process plants are frequently highly coupled to other plants. The output from 

one plant may be used in whole or in part as the feed-stock to another. Therefore, op-

timal operating conditions for both plants individually may not in fact be the optimum 

for the coupled system. Such interactions are generally too complex to handle mentally 

and the savings possible are only identifiable by use of such models. Utility systems, 

the systems that provide heating, cooling and electrical power around the plant tend 

to work on a site wide basis. The design of these systems is realistically only possible 

using optimisation based design methods and detailed, integrated process models. The 

development of such design methods is an active area of research, driven by the large 

savings achievable through effective energy integration. 
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1.7 Project Overview 

The project resulted in the development of a novel modelling environment, intended 

to support the development of complex models and the evaluation of novel solution, 

optimisation and processing methods. The requirements, existing systems and the 

environment are outlined below. 

1.7.1 Project Requirements 

The work of LSOG required an equation based modelling tool capable of: 

• Developing and building complex, large models; 

• Accessing and manipulating the resulting large variable and equation sets; 

• Easy addition of new solvers and other modelling tools; 

• Expansion to include new data structures as necessary; 

• Ability to run as a stand-alone package; 

• Ability to run under existing packages. 

1.8 Proposed Modelling Environment 

The environment provides sufficient capability for the user to describe the model in 

terms of a variable set and a set of methods with which to manipulate the variables. 

Some of these methods will describe equations but the handling of all processing is 

performed outwith the modelling environment by external functions. These functions 

act as agents, linking the modelling environment to external systems. Separating the 

description of the model from its processing allows the complexities to be dealt with in 

a full programming language (external functions are written in Fortran90 or C). The 

behaviour of the system is tailored by the user, the modelling environment existing 
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solely to store the model structure and provide the interface layer between the external 

systems. 

The proposed environment consists of a model description language and a three tier 

architecture providing; 

. Model building routines; 

. Core data structures; 

• Application and Method server. 

Model building routines provide the capability to read and parse input from either 

user written data files or interface routines within external packages, to construct a 

process model from this data and to manipulate the variable and equation set. The 

elemental model data, defining the variable and method set, and the current sub model 

library are stored within the core data structures. The application and method server 

stores the model data for the active model and interface routines to the application and 

method routines. Model data is passed from the core data structure to the application 

and method server using standard array formats. 

While the environment is currently operating on a single machine, the architecture 

allows the use of a thin client approach. Webopedia, the online computer encyclopedia 

defines a thin client as: 

In client/server applications, a client designed to be especially small so that 

the bulk of the data processing occurs on the server... 

Although the term thin client usually refers to software, it is increasingly 

used for computers, such as network computers and Net PCs, that are de-

signed to serve as the clients for client/server architectures. A thin client is 

• network computer without a hard disk drive, whereas a fat client includes 

• disk drive. 
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The client consists of the Java GUI, model building routines and the core data struc-

tures. This set requires very little memory or processing power in order to function and 

can therefore operate on a relatively low powered and inexpensive computer. Storing 

the application and method server on a remote machine allows access to a more power-

ful machine when required (typically during the numerical processing of the model) 

and spreads the costs of expensive software licenses across the user group. 

1.9 Chapter Summary 

The thesis is structured as follows: 

. This introduction; 

• Requirements for a modelling environment and review of current technology; 

• Overview of the Flexible Modelling System (FMS); 

• Development of the FMS and its data structures; 

• Using the FMS; modelling, extending the tool-set and language; 

• A proposal for an initialisation method for object based modelling languages; 

• Discussion; 

• Conclusions; 

• Appendices containing example models and user guide. 



Chapter 2 

Requirements of a Modelling 
Environment 

2.1 Requirements Engineering 

Requirements Engineering provides software developers with an abstract definition of 

the system. The first phase of the process, capture of the user requirements, involves 

detailed discussion with the intended end user(s) to determine what the system must 

provide. This should specify the environment (domain) in which the application is to 

work and the capabilities that the system should provide. This stage is followed by 

derivation of the system requirements. These provide a functional breakdown for the 

system, outlining the major processes, components and modules needed to satisfy the 

user requirements. 

If done properly, the user and system requirements provide a timeless, solution inde-

pendent statement of what the user needs (rather than wants) a system to be capable 

of and the major processes and components required to satisfy these needs. This allows 

future systems to be developed against this set of requirements, the solution arrived at 

reflecting the technology at the time and the users' priorities. 

The following chapter applies these principles to produce a set of key user require 

ments for a numerical modelling environment. These were derived through discussion 

11 
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with colleagues in both the LSOG and the wider modelling community, review of the 

literature and existing applications and the honours students who worked with the 

environment at different phases in its development. The approach taken has therefore 

been evolutionary; feedback from the user has been incorporated at each stage in the 

development and resulted in a new version being released. 

2.2 Problem Domain 

The application must be capable of supporting the development, processing and ana-

lysis of large, numerical models. Users will predominantly be research staff with some 

degree of computing background and a firm grounding in the principles of numer-

ical modelling and equation-based modelling in particular. Provision should be made 

however to support more routine use by undergraduate or less experienced users. 

As new numerical methods, databanks and analysis tools become available the system 

must be capable of being extended to incorporate these. 

Two terms that require definition are method and application. A method is a user 

written function that performs some processing step based on the current equation and 

variable set. An application is an external piece of software such as a NLAE solver or 

optimisation routine that is linked to the environment. 

2.3 User Requirements 

The user requirements are presented in Figure 2.1. 
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Requirement 
1 
1.1 
1.2 
1.3 
1.4 
1.5 
2 
2.1 
2.2 
2.3 
3 
3.1 
3.2 
3.3 
3.4 
3.5 
4 
4.1 
4.2 
4.3 
4.4 
5 
5.1 
5.2 
6 
6.1 
6.2 

Description 
Develop and build complex, large models 
Define new models 
Re-use existing models 
Combine models 
De-bug models 
Dynamic or steady state models 
Access and manipulate the model data 
Locate specific variables or groups of variables within the variable set 
Locate specific equations or groups of equations within the equation set 
Alter variable (value, bounds etc.) and equation properties 
Apply methods and applications to the model 
Extract subsets of the variable set and associated equations 
Select methods/tools to apply 
Apply the method/tool 
Interact with the method/tool as appropriate 
View the results 
Add new methods and applications 
Access the core model data 
Define an interface between the modelling environment and the method/tool 
Define a control routine to access the method/tool 
Call that interface when required 
Add new data structures 
Access and add to the core model data 
Add to the model definition language to incorporate the new data structures 
System Use 
As a stand-alone application 
As a modelling facility within a system 

Figure 2.1: High Level User Requirements for Modelling Environments 

2.4 Implications of the User Requirements 

2.4.1 Develop and Build Large, Complex Models 

Define New Models 

The ability to define new models requires a model definition language (MDL). This 

language must be capable of describing the variable set required to represent the model 

and the relationships between those variables (generally the equation set) (Westerberg 

and Benjamin, 1985) and (Marquardt, 1994). For each variable it must be possible to 

define: 
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o Initial Value; 

• Upper and Lower Bound; 

• Type of variable (integer or real) (Barton, 1992). 

In addition to defining the variable set, the user must be able to define the relationships 

between those variables. With the intention of supporting an equation based modelling 

approach, these relationships will typically be represented as equations of the form: 

A() = B() + D 	 (2.1) 

This relationship is translated into standard form, F(), as: 

F() = A() - (B() + D) = 0 	 (2.2) 

From this form, the system must be capable of deriving residual and first and second 

derivative values for the current variable set . Residual and derivative data is required 

in order to use Newton's Method for NLAE solution and optimisation methods. 

Given this structure it is possible to represent both real and integer variable problems 

and define algebraic and differential algebraic equations, specifications and objective 

functions. Languages such as Gproms (Barton, 1992) allow the direct representation of 

partial differential and algebraic equations within the language and recent extensions 

(Oh and Pantelides, 1996) have expanded this to incorporate integrals as well. The 

other approach, as adopted by the Engineering Design and Research Center at CMU 

during the development of ASCEND III (Piela, 1989) and ASCEND IV (Allan, 1998), 

is to represent the PDEs using algebraic equations. 

Many complex models contain sets of equations with the same form. Examples of this 

include component balances across a mixer model or, as illustrated below, pressure 

balances across a distillation column: 

= P(1) - DP; 	 (2.3) 

= P(2) - DP; 	 (2.4) 

P(NTRAYS) = P(NTRAYS —1) - DP; 	 (2.5) 



CHAPTER 2. REQUIREMENTS OF A MODELLING ENVIRONMENT 	15 

Where NTRAYS is the number of trays within the column, P(I) the tray pressure for 

tray I and DP is the inter-tray pressure drop. 

Specifying each of these equations and having to add or remove equations from the 

model to suit the number of trays within a specific column is time consuming and 

minimises reusability of the model. Use of a do loop structure with a variable end, and 

possibly start and step size, value combined with the ability to locate sets of variables 

through some search criteria allows the same set of equations to be declared much more 

efficiently as: 

FOR I = 1 , NTRAYS - 1 

P(I+1) = P(I) - DP; 

Complex models can incorporate discontinuous functions, as illustrated in Figure 2.2, 

such as the relationship between vapour fraction and steam quality for a single compon-

ent stream. Where the solution lies close to such a discontinuity, successive solution 

steps may iterate between states on either side of the discontinuity. Use of differ-

ent equations below, at and above the discontinuity can address this issue ((Zoppke-

Donaldson, 1995) and (Ricoramirez et al., 1999b)). The equation used at the discon-

tinuity provides an artificial bridge between the functions above and below it, creating 

an approximation to the original function that is continuous both as a function and 

across its derivatives. 

This requires the system to be capable of using a different equation depending on 

the current variable values and typically takes the form of a simple IF-THEN-ELSE 

structure. The ability to alter the equation state based on variable values is present 

within gPROMS and has recently been implemented in ASCEND IV (Ricoramirez 

et al., 1999a) as Conditional Blocks. 

This structure also supports the modelling of dynamic systems. In order to model a 

dynamic process it is necessary to solve the model at an initial state. This is achieved 

by replacing the differential equations with initial conditions at Time = 0. Use of a 
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Figure 2.2: Plot of Vapour Fraction vs Quality for a Single Component Stream 

conditional block within the equation declaration assists the modeller in constructing 

the appropriate set: 

IF ( Time = 0 ) Then 

Use intial conditions + AEs 

Else 

Use DAE form; 

END IF 

As models become more complex, advanced users of the environment may wish to em-

bed analysis, debugging or output functions within the generic model. These functions 

do not directly manipulate the variable or equation set but allow the user to automate 

standard tasks (such as output) or assist with traditionally time consuming tasks such 

as debugging or analysis. Since the function is embedded within a generic representa-

tion of the model the function must itself be generic. This leads to effective code reuse 

and a truly customisable modelling language. The functionality of the language is de-

veloped by the user community on a modular, task driven basis rather than provided 

by a separate development team. 

phi 
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Reuse / Combination of models 

There are two aspects to model reuse: 

. Reuse of a model that the user has written using the MDL; 

. Reuse of an external model. 

The first issue is trivial from a modelling langauge viewpoint. Users will generally 

wish to reuse a particular model that they have created within the system, using the 

MDL. This is achieved by storing the model description in a permanent file in a format 

in which it can be retrieved at a later date. The ability to reuse a given model is 

greatly enhanced if the modelling language allows the development of generic models. 

As an example, a generic model of a distillation column would allow the user to specify 

the number of trays within the column for each column in the process, rather than 

requiring different models for each possible column configuration. Reuse by subsequent 

users however relies on adequate documentation existing describing how the model was 

written, what it does and the assumptions made at the time (Allan, 1998). 

Reuse of external models is not trivial however. Equation based models have been 

used within the process industries for decades. Some of these models are huge, de-

scribing complex processes and involving proprietary physical property databases. The 

traditional approach to modelling environments has assumed that the user will use the 

environment to represent the entire model. In order to do this, the existing model must 

be analysed, decomposed and transferred into a new format. Due to staff turnover de-

scribed earlier it is unlikely that the knowledge to analyse and decompose the model 

will still be present in the organisation. Assuming the expertise is available, the effort 

required to transfer the model can often impose manpower requirements too expensive 

to justify and therefore the organisation continues to use the existing modelling tools. 

This limits the use of novel modelling environments within industry and therefore 

industry's access to novel processing and solution methods. It is difficult and time 

consuming for the users to link models in order to perform enterprise wide simulation 
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and optimisation. Frequently this would involve an iterative and manual transfer of 

data between stand alone models in order to achieve this scale of modelling. 

A truly flexible modelling environment must support the reuse of existing models 

(Marquardt, 1994) and must therefore be capable of supporting a mixed model format. 

The global model will consist of a number of sub models, some of which are written in 

the environments MDL and some of which may be external and accessed through an 

interface layer. The environment stores the model structure and current status, passing 

this data or subsets of it to different modules for processing. 

Debugging 

The remaining major factor in building large, complex models is that of debugging. 

As is common in large programmes, the larger the separable blocks of code to be de-

bugged become, the more difficult the task becomes. Programming languages initially 

developed modules, subroutines and functions to assist with this and code reuse. The 

development of object orientated languages has seen a move to even more efficient 

methods for reuse and debugging of code and, in common with modelling systems such 

as ASCEND (Piela, 1989) and gPROMS (Barton, 1992), an object orientated approach 

is proposed. This aids debugging (Piela et al., 1991) and reuse of smaller models which 

can be combined to represent much larger, complex processes. 

Starting from a blank model library, typical development would construct the following 

models, debugging each as they were developed: 

. Basic stream model; 

. Stream with enthalpy / pressure relationships; 

• Mixer unit; 

• Splitter unit; 

• Etc. 



CHAPTER 2. REQUIREMENTS OF A MODELLING ENVIRONMENT 	19 

As the models develop, the user describes the additional equations and variables re-

quired to model the new process but includes the already debugged, smaller models 

as necessary. This hierarchical approach is common in complex model development 

(Westerberg and Benjamin, 1985) and is especially applicable to the chemical process 

models under development. The hierarchical design method (Douglas, 1988) is equally 

applicable to design of process models as it is to design of chemical plants (Marquardt, 

1996). If there is a problem with the model, this will lie in the new variable and 

equation set and should therefore be easier to locate. 

To support development of large and complex models the MDL must allow the user to: 

• Declare scalar and vector variables; 

• Specify variables (both individually and by some search criteria); 

• Allow the user to create sets of equations from a single statement (Do Loops); 

• Allow the system to select the correct form of the equation given the current 

variable set or model state (Conditional Statements); 

• Develop new models from existing, generalised models of process units (hierarch-

ical development). 

2.4.2 Access and manipulate the model data 

As models become increasingly larger and more complex it becomes increasingly time 

consuming to locate the variables of interest. This is particularly the case in complex 

models where many variables are providing internal detail to the model, rather than be-

ing of direct interest to the user. Examples of this include component molar enthalpies 

and coefficients used to calculate thermodynamic and other physical properties. These 

values are essential in order to produce the desired level of accuracy of the results but 

are not of direct interest to the user who is more interested in the flow, composition, 

pressure and temperature characteristics of the process. 
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In addition to locating and viewing the required subset of the variable set it is necessary 

to be able to manipulate the properties of that set. Frequently, changes to bounds data 

or current values will need to be applied across the fiowsheet. Having to explicitly state 

that the upper bound for each fiowrate in the model is now 500 kmol/h individually 

can be time consuming. The ability to apply changes to groups of variables identified 

by a given search criteria is essential. This makes the difference between having to 

specify each variable individually or by use of a single command as illustrated below. 

F(1)upperbo'und = 500; 	 (2.6) 

F(2)upperbüund = 500; 	 (2.7) 

F(3)upperbound = 500; 	 (2.8) 

Etc. 	 (2.9) 

And: 

F(*)upperbound = 500 	 (2.10) 

The wild-card symbol (*) is commonly used to match strings. Use of such constructs 

allows the user to access and manipulate groups of variables rather than specifying 

each change individually. 

2.4.3 Apply methods and applications to the model 

The previous sections have discussed the requirements for defining models, but have 

not considered processing methods. Separation of the model description language from 

the methods, applications and equation handling routines is necessary (Westerberg and 

Benjamin, 1985), (Stephanopoulos et al., 1990a) and others in order to avoid the close 

coupling displayed by most existing environments. A language closely coupled to the 

end methods and applications becomes too specific, in effect tailored for describing 

models of a particular type, described in a particular way. This and the following 

section consider the requirements for applying and adding methods and applications 

within the environment. 

The concept of passing the model data to an application for analysis or other processing 
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is not new. The ability to pass subsets of the model data, as defined by some specified 

criteria, allows use of appropriate solution methods for different sub models within the 

global model. Such flexibility is not possible without the ability to identify and extract 

subsets of the equation and variable set. Without this ability the user must rewrite 

existing models in order to incorporate them into the new modelling environment. This 

requirement was initially identified by Westerberg (Westerberg and Benjamin, 1985) 

and a recent thesis from EDRC at CMU (Allan, 1998) included work in this area. 

User defined methods, written in a programming language such as C or Fortran allow 

the user to embed complex functionality within the model. Broadly proposed in a 

thesis from CMU, (Abbott, 1996) and within this work, (Mitchell and Morton, 1996), 

such methods can perform: 

• Analysis routines; 

• Initialisation routines; 

• Calls to external applications and libraries; 

• Description of equations; 

• Model specific output; 

• Calls to non-standard format models. 

The complexities inherent in such processes is hidden from subsequent users and from 

the model description language itself. This allows experienced users to develop models 

with exactly the desired behaviour while less experienced users can incorporate the 

methods and resulting functionality within their own models. The methods provide 

easy code re-use and debugging of what are traditionally considered complex routines. 

Hiding complexity from the model description language may initially seem to be an 

excuse for not developing a 'complete' language. It can be argued however that a 

language can never be truly complete and that as attempts are made to add new 

functionality to a language it becomes less coherent and more complex to use. This 
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can be referred to as language creep. Broadly, there are three approaches to developing 

languages: 

Early modelling languages followed a minimalist approach with the user being expected 

to be highly proficient in coding and numerical programming. The languages and 

applications developed were truly flexible but offered very little support to the model 

development process. Packages such as GAMS (General Algebraic Modelling System) 

(Brooke et al., 1988) and SPEEDUP (ASPEN, 1992) allowed the user to declare variable 

sets and define the relationships between them in problem-orientated languages, rather 

than FORTRAN as was previously the case. Such packages were typically created to 

act as an interface between the modeller and the complex input formats required by 

mathematical programming packages such as MINOS (Murtaugh and Saunders, 1985). 

While this approach was a great improvement over the traditionally hard-coded FOR-

TRAN models the languages themselves did not provide any structure to support the 

development process. This lack of a generalised type structure meant that each model 

was hard-coded in the modelling language and model reuse was therefore difficult. 

As programming methodologies, human-computer interface design and raw processing 

power have developed the modelling languages have developed in parallel. Current 

modelling languages can be broadly split into two categories (Marquardt, 1996): mod-

ular (block-orientated) or equation-orientated. 

Modular modelling languages represent the process as a number of blocks linked by 

input/output connectors. These connectors transfer information such as control signals, 

material and energy flows between the blocks with each block representing all, or part, 

of a process unit using a pre-defined template. Typically, the outputs from each block 

are determined using a sequential modular solution method, as used by packages such 

as ASPEN (ASPEN, 2000). 

This approach allows the rapid development of complex models but only within the 

functionality provided by the package. These languages require little, if any, program- 

ming ability, following the idea that advanced modelling capabilities should be available 
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immediately within a COTS (commercial, off the shelf) product to anyone who needs 

it. Development of models not included in the available libraries is time-consuming 

and expensive, due primarily to the need to involve a commercial development team 

with different priorities to the individual user. 

Equation-orientated languages allow the user to define their models at an equation level. 

This provides maximum flexibility in terms of the model behaviour but relies on the user 

having sufficent knowledge of equation-based modelling. General equation-orientated 

modelling languages such as ASCEND, gPROMS and DIVA (Croner et al., 1990) are 

purely equation based, representing the model as a set of equations and variables. While 

ASCEND does check for dimensional consistency within equations, general modelling 

languages can be defined as those that contain no application specific features. These 

languages are object-orientated and support the hierarchical decomposition of models 

aiding model reuse and modification. 

Process modelling languages aim to assist the developer by incorporating application 

specific knowledge in the model development process. MODEL.LA  (Stephanopoulos 

et al., 1990a) and (Stephanopoulos et al., 1990b) is an example of such a language. Mod-

els are developed in a hierarchical structure from building blocks describing entities such 

as components, mixtures, phases and streams. Other blocks define transport mechan-

isms for energy and material transfers between phases. This approach is often re-

ferred to as phenomenological modelling. The current implementation of MODEL.LA , 

(Bieszczad et al., 1999), produces gPROMS input files from the MODEL.LA  repres-

entation. The approach is similar to that behind GAMS in providing an alternative 

interface to an underlying modelling and solution/optimisation tool. This approach 

has been developed to investigate less structured modelling of complex processes where 

the number of phases can change (Perkins et al., 1996). 

As these modelling environments develop, they become increasingly powerful and cap-

able of representing more and more complex relationships and processes. Development 

of such systems to incorporate a new structure or form of relationship is usually a re-

search project in its own right - there is a need for an environment in which to rapidly 
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develop and evaluate novel applications and processing methods. 

In truly advanced modelling the user will require functionality not included in a stand-

ardised package. This leads to frustration while trying to implement a type of function 

or model in a language not designed to support it. The basis to the approach outlined 

in this thesis is that a user involved in modelling at such a level will be capable of 

programming and will have a reasonable background in the techniques involved. 

The assumption that the user will be capable of developing small functions (methods) 

in a traditional, high level programming language while representing the core model 

data in a standard and minimal model description language avoids the problem of 

language creep. This approach is reminiscent of that used in earlier packages such as 

MASSBAL (SACDA, 1993) and ASCEND II (Locke and Westerberg, 1983) but when 

combined with the hierarchical and object-orientated techniques discussed produces 

an extremely adaptable modelling environment. The environment develops to suit the 

users' needs, rather than the developers', while providing the necessary structure to 

support model development and reuse. 

Westerberg (Locke and Westerberg, 1983) states that the modelling environment should 

be usable by both the model developers and less experienced users. This opinion has 

recently been repeated in a review of current ecological modelling techniques (Lorek 

and Sonnenschein, 1999) but it is interesting to note their opinion that different tools 

are needed to satisfy different users. While Westerberg's statement represents the 

ideal, Lorek's requirement for tailored, application specific, modelling tools is probably 

realistic. 

2.4.4 Add new methods and applications 

Adding new methods and applications to a modelling environment requires access to the 

core model data in a format that is readily adaptable to the requirements of the specific 

function. The principal issue here is one of documentation; sufficient information must 

be available to allow the user to locate and add to the appropriate areas of code. 
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Many packages impose a standardised 'look and feel' across all applications. This re-

quires the user to have a thorough knowledge of the programming language and applic-

ation structure in order to add new applications. For complex applications this can be 

extremely time consuming, involving large changes to the model data and application 

window in an attempt to include most, possibly all, of the applications functionality. 

A better approach is to call the applications' driver routine directly and interact with 

it through its own interface rather than an environment standardised one. This allows 

the user access to all of the applications functionality, rather than the subset which 

has been mapped into the calling environment. Methods however should be accessible 

through a standardised interface from within a model definition. 

2.4.5 Add new data structures 

Addition of new data structures allows frequently used data types to be incorporated 

into the language as required. Again, the principal issue is one of documentation. In an 

open structure however, data can also be held in user defined external files. Typically 

used for control data for solvers and similar tools, such files can be used to store model 

specific data where the language does not currently support the functionality 

2.4.6 System Use 

Traditionally, modelling environments have been developed as stand-alone packages. 

Frequently however, users want to incorporate modelling capability within existing ap-

plications such as CAD, flow-sheeting and design support tools such as KBDS (Banares-

Alcantara et al., 1994), N-DIM (Westerberg, 1997), DESIGN-KIT (Stephanopoulos 

et al., 1996) and Epee (Ballinger et al., 1993). With a stand-alone modelling package, 

data must be manually exported between the two (or more) packages. This is inefficient 

and often introduces errors. As a result, the capabilities provided by the modelling tool 

are not fully exploited and the overall process suffers. 

It should be noted that the ASCEND modelling language is embedded within a wider 
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modelling environment comprising solution and analysis tools. ASCEND IV has re-

cently been incorporated within the N-DIM process design environment. gPROMS, 

as discussed earlier, provides the modelling capability for MODEL.LA  and is moving 

towards providing an embedded modelling capability. At the time of writing however, 

there are no truly open modelling environments supporting the use of mixed format 

models and allowing data transfer between peer applications. 

Modelling environments should be capable of both stand-alone and embedded use 

within another application. In order to run effectively within another application, 

the functions required to build, process and retrieve models must be accessible from 

the host application. These functions must be capable of running without user inter-

vention being required to select solution methods, start processes, etc. In this scenario, 

the model will typically be defined and initialised within the host application, the 

environments sole responsibility is to return a converged solution for the model as it is 

currently specified. 

2.5 Overview of Existing Systems 

2.5.1 Modelling Environments 

Traditionally, modelling applications, and associated methods, have been developed 

by individuals, be they academic institutes or corporations, without a perceived need 

to link to external systems. Sometimes this is a result of commercial considerations - 

the application may have commercially sensitive information regarding the processes 

involved in the plant within it but more often is a result of the technology available at 

the time. 

Common modelling environments include: 

• Bespoke programmes; 

• Spreadsheets; 
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• Flow-sheeting Packages (ASPEN, HYSYS(Hyprotech, 1995)); 

• Equation based modelling languages (GAMS, ASCEND, gPROMS) 

Many current process models are written as bespoke packages in languages such as 

Fortran. These have a number of advantages; the application is tailored precisely to 

the customer's needs and can easily access proprietary databases. Such models are 

however notoriously difficult to maintain due to staff turnover within the operating life 

of a plant or to update to reflect changes in the plant structure or conditions. The 

application is typically written as a stand-alone, complete modelling package. Access 

to external or new modelling tools is therefore extremely difficult, if not impossible. 

For simple models, spreadsheets often suffice. Packages such as MS Excel are increas-

ingly powerful and readily available, providing access to plotting, basic solution and 

optimisation methods and a degree of customisation through the use of macros. Truly 

complex models are however difficult to create or alter and such packages are still in-

herently stand-alone, minimising their access to external methods or their use by wider 

systems. 

Flow-sheeting packages such as ASPEN provide the user with large model and phys-

ical property libraries, accessed through powerful and flexible user interfaces. Process 

models are constructed from standard building blocks provided within the package 

The prime limitation of such systems is the inability to add models as required - 

if the model or method does not exist within the package then there is no way for 

the user to add it. Development of such packages is therefore incremental, driven 

by the commercial priorities of the developers. This limits their applicability in any 

environment where new models and methods are constantly being developed. 

The most flexible environments are provided by equation based modelling languages 

such as ASCEND and gPROMS. These allow the user to build new models as required, 

to reuse or adapt existing models and to connect new applications. They are however 

stand-alone packages which aim to provide a 'one stop shop' for a users' modelling 
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requirements and are not easily extended to include new data structures due to the 

close coupling between the modelling language, model storage and application set. 

2.5.2 Modelling Tools 

As described above, most existing modelling environments come with a fixed applica-

tion library. This allows a coherent user interface between the applications but often 

means that it is difficult, if not impossible, to add new applications into the library 

without a thorough knowledge of the environment, the language it is written in and 

the interactions with other systems. 

Particularly in a research environment, the tool set required changes rapidly. As new 

tools and methods become available, the type, size and complexity of viable problems 

increases. In order to perform timely work there is a requirement to incorporate and 

use these new methods as they are developed; integration must be as quick and simple 

as possible. This type of user is generally expert in their field and highly computer 

literate and therefore does not require the level of support that a common user of 

such packages needs. Accepting that the user will need to do some, albeit a minimum 

amount where possible, of coding allows the system to be much more powerful and 

easily extended at the expense of some 'usability'. 

Novel tools can require data structures and associated handling routines not found 

in existing environments. The environment must be adaptable to incorporate these 

changes where necessary. Given the continuous development of new methods and tools 

and the resulting changes in the modelling environment's data structures it can be 

argued that the existing trend to provide complete modelling environments (modelling 

language, model handling routines and application library) as a package, albeit with 

some ability to access external systems, is too restrictive. 
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2.6 Summary 

The key to a truly flexible modelling environment is the users' ability to tailor the 

system and add functionality as required. While this does require the user to be a 

reasonably competent programmer, familiar with the processes involved, the increase 

in flexibility far outweighs the additional skills required. A modelling environment, or 

any other application aimed at such a complex and developing area, that intends to 

provide a COTS solution for all user applications will fail. 

As no existing modelling environment completely satisfied the requirements outlined it 

was decided to develop an in-house solution. The following three chapters describe the 

functionality, structures and use of the environment developed, the Flexible Modelling 

System (FMS). 



Chapter 3 

JFMS Functionality 

3.1 Overview 

JFMS provides an extensible modelling environment based around a core model defin-

ition. It can operate both as a stand-alone package and as a modelling capability 

within a host application. Models are developed using an object orientated modelling 

language and can be linked to non JFMS format models. Functionality is provided by 

user written methods rather than being declared within fixed language constructs as 

is typical with other modelling approaches. This allows the environment to be tailored 

to suit the needs of the users, rather than the developers. 

3.2 Core Model Definition 

JFMS is intended to act as an interface between mixed format models, databanks and 

applications. In order to achieve this a core model definition has been developed. This 

represents the model structure, and current state and provides links to the methods 

required to analyse and process the model. 

The core model definition consists of: 

30 
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. A list of model components (units, streams and sections within a process model 

for example); 

. A variable vector (value,upper and lower bounds); 

A specification set; 

. A method set. 

This format is common to both the GUI and the application server. The behaviour 

of the model is controlled by the methods and it is possible to extract subsets of the 

variable and method sets from the global model for separate processing. The global 

model in effect controls the links between the different sub-models. 

3.3 Model Description Language 

The Model Description Language developed is an object orientated language declaring 

generic representations (ETYPEs) of component models that the user requires. Each 

ETYPE contiins sufficient information to create the variable and method set required 

to represent an instance of the generic model within a specific process. ETYPEs can: 

. Inherit information from existing ETYPEs; 

. Declare variables (variable name , type and size, if vector); 

. Declare methods; 

. Declare instances of other ETYPEs; 

. Link model components; 

. Alter variable values; 

. Declare initialisation methods (see Chapter 6). 
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3.3.1 Methods 

Methods are used to provide the model functionality and are declared within an ETYPE 

using a standard interface. Methods can be used to: 

. Provide model analysis; 

o Initialise models; 

. Call external applications and libraries; 

. Provide an interface to non JFMS format models; 

. Declare equations; 

. Perform model specific output. 

Each method is a user written subroutine in a high level programming language such as 

C or Fortran. The method takes a subset of the global model variable set and performs 

some processing on it. By writing methods in a standard programming language the 

user is not restricted to a set of functions or features that the developers have provided. 

3.3.2 Application Server 

While methods provide component level functionality, the application server acts as 

an interface between the model and the more general solution, optimisation and other 

processing applications. Each application is linked to the core model definition through 

an interface function that converts the core model definition to the format required by 

the application. Control then passes to the application and it's own interface. Once the 

processing is complete, the data is converted back to the core model definition format 

and control returns to JFMS. 
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3.4 Comparison with Existing Systems 

This section provides a comparison between JFMS and existing packages. This is 

represented in tabular form in Figure 3.1. The major contributions are: 

The ability to provide an embedded modelling capability within other tools, 

without user input during the creation or solution steps (as would be required 

with gPROMS); 

The ability to act as a broker, connecting existing non-JFMS models to JFMS 

(reuse of existing models); 

The ability to embed analysis, output and any other desired functionality that 

can be expressed in Fortran90 within a generic model (methods); 

The ability to call external functions from within the model; 

The ability to select and process subsets of the variable and equation set, decom- 

posing the model by unit or other criteria (see Appendix D). This allows pseudo 

sequential modular (block-wise) solution and multipurpose models to be defined. 

As an example, shortcut and rigorous models could be provided within a generic 

model. Selection of the required version is achieved by selecting which methods 

are active. This would support the use of shortcut methods to initialise or rapidly 

evaluate alternative models with the ability to switch, within the fiowsheet, to 

the rigorous version when desired. 

While JFMS may appear to be a variant of gPROMS and ASCEND, a similar level of 

functionality is provided through a much simpler modelling language. This language 

represents the model structure, public variable set and the methods required to generate 

equations, provide analysis functions etc. General model development however is sup-

ported by a structured, object-orientated language such as in gPROMS and ASCEND 

and connections between units are handled in a similar manner. 
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Capability JFMS ASCEND gPROMS ASPEN 
User defined models Y Y Y N 
Attach new solvers and applications Y Y Y N 
Equation-based, simultaneous solution Y Y Y N 
Sequential Modular solution Y N N Y 
Stand-alone modelling capability Y Y Y Y 
Provide embedded modelling 
capability to other tools 

Y N U/D N 

Connect existing non-JFMS models Y N N Y 
Symbolic differentiation of input files N Y Y N/A 
Embed analysis and other 
functionality in generic models 

Y N N N 

Large number of available tools N N Y Y 
No coding required N Y Y Y 
Dynamic modelling support N N Y (Tasks) N 
Use of section variables and wild-cards Y N N N 
Call external functions Y N Y N 

Figure 3.1: JFMS functionality against that of existing systems 

The gPROMS and ASCEND languages have also tried to represent the detailed math-

ematics in the model within the language. This has lead to the language being con-

tinually developed by the original research group in order to support additional func-

tionality. 

ASPEN in contrast provides a fixed model library which the user interacts with through 

a graphical user interface. This allows the user to select models, connect them together 

and provide values for the model parameters. The user has no control over the internals 

of the model; it is in effect a black box. 

A system such as JFMS derives all of its functionality from user written routines 

interacting through a standard interface. While this requires programming on the 

part of the user, the model is constrained by the limitations of a complete, high-level 

programming language such as Fortran90, rather than those imposed by the developers. 

The approach is therefore a hybrid between the highly tailored but inflexible FORTRAN 

based approach and the structured modelling capability provided by gPROMS and 

ASCEND. This provides the benefits of both approaches at the expense of some user 

programming. 



Chapter 4 

Flexible Modelling System 

4.1 Introduction 

There are many modelling languages in existence (see Chapter 2) and therefore the 

immediate question to answer is "Why develop another one?" The aim of the project 

was to produce large, equation based models, primarily based on industrial scale chem-

ical processes. These models would be used to test novel solution and optimisation 

methods developed in the first instance by researchers at the University of Dundee and 

allow comparison with existing benchmark methods. The principal requirements for 

the modelling environment used were therefore ease of adding new applications and the 

ability to alter the data structures used. This latter feature allows application specific 

data to be stored at the model building block level rather than the model level. This is 

necessary to improve the efficiency of the modelling process, a particular concern when 

building large models. 

There is therefore a need to have access to the source code for the package to alter the 

code to implement changes in the data structures used and the ability to add applica-

tions, not necessarily solution or optimisation methods, to the modelling environment. 

This requires a good knowledge of the code involved and the code being written in such 

a way that the desired changes are possible. Two possible directions were identified; 

use of an existing package or development of an in-house one. 

35 
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Existing packages come in two flavours, commercial and academic. Most commercial 

packages are monolithic in nature, improvements are made and new applications con-

nected through new versions of the package. Such changes are generally infrequent, 

are always profit driven and the software involved is usually proprietary. A commer-

cial package therefore does not allow the rapid development and testing environment 

required. Many of the academic packages are under continuous development but the 

direction of that development is dictated by the research interests of the people in-

volved. Again, there is an inability to alter the code to explore areas of individual 

interest, either through lack of familiarity or the sheer scale of changes required to 

implement the changes desired. Since there is no guarantee that the surrounding code 

is in a stable form there is no guarantee that changes made for one version will work 

in later versions of the package. 

As a result of these issues, it was decided to produce an in-house package. The Flexible 

Modelling System (FMS) developed as part of this project provides a powerful, user 

extendable application allowing rapid creation and manipulation of large, equation 

based models. This has been achieved by a combination of the modelling language, 

the graphical user interface and the data structures used within the application. The 

work has been performed in conjunction with Dr. Sven Leyffer of Dundee University 

Mathematics Department. 

The development and features of this application are discussed in the rest of the chapter. 

4.2 Development Path 

Originally intended to provide a quick way of producing equation based models of 

utility systems in order to test novel solution methods, FMS has developed into a full 

modelling language in its own right. Whereas early versions had hard coded routines 

storing modelling data for a set number of unit types, later versions added the ability to 

describe new unit types, allow dynamic modelling, link external packages and allow user 

interaction with the model. This latter feature was initially implemented as a command 
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line driven module; the latest version uses Java and the Java Abstract Windowing 

Toolkit (JAWT) to allow analysis and manipulation of the model through a graphical 

user interface. 

4.2.1 Utility System Modelling Package 

The earliest incarnation of FMS was the Utility System Modelling Package (USMP). 

This provided a set of routines to produce Jacobian, Hessian and residual data for a 

set of equations and variables. The package read the problem structure from a text 

file, built and attempted to solve the resulting model and then wrote the results to file. 

The set of equations was produced by a series of hard coded routines, one for each unit 

type, called in sequence from the plant unit list (PUL). Connections between units 

were represented as equalities between the relevant inlet and outlet stream variables. 

USMP Structures 

The structures used in USMP form the basis for the more flexible structures used in 

later versions of FMS. There are five areas of interest, these being: 

. Unit Type Routines 

• Plant Unit List 

• Variables 

• Connections, Specifications and Assignments 

• Derivative and Residual Storage 

Unit Type Routines 

Unit Type Routines (UTR) provide the information required to calculate Jacobian, 

Hessian and residual data for a given instance of a particular type of unit. In the case 
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of USMP, UTRs existed for a range of unit types typically found in utility systems. 

These included: 

. Stream (vapour, liquid and mixed phase, single component) 

. Mixer / Splitter 

• Pump / Turbine 

• Valve 

• Heat Exchanger (Condenser, Boiler variants) 

Figure 4.1 shows an example of a mixer unit with 2 input streams and 1 outlet. In 

order to allow models for a given unit type to work for all types of stream (water 

(liquid, vapour and mixed) and air) the model is written in such a way as to avoid 

needing to know which type of stream it is dealing with. In order to model the process 

completely, 3 stream instances must be created (Si, S2 and S3 in Figure 4.1). These 

instances provide the additional variables and equations required to calculate enthalpies 

etc. In.1, In.2 and Out are therefore simplified stream models created by the mixer 

model and contained within it. Given that the streams modelled in USMP are strictly 

Si 	In.1 

Out 

NHXER 

S2 	In.2 

Figure 4.1: A Simple Mixer Unit 

single component and the assumption that the mixer streams are at equal pressure, 
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• Flowrates for streams In.1, In.2 and Out (F) 

• Enthalpies for streams In.1, In.2 and Out (H) 

• Pressures for streams In.1, In.2 and Out (P) 

Figure 4.2: Variables in USMP Mixer Model 

the variable list for such a model resolves as shown in Figure 4.2. Note that specific 

variables are identified by combining the unit and variable names, separated by a 

period. In.1.F is therefore the fiowrate variable for stream In.1. For the purposes of 

the following discussion, mixers have 9 variables, full stream instances have 4 (F,T,P 

and H). The mixer equations are therefore: 

Out.F - In. 1.F - In.2.F = 0 (4.1) 

Out.H - In.l.H - In.2.H = 0 (4.2) 

Out.P - In. LP  = 0 (4.3) 

Iri.2.P - In.l.P = 0 (4.4) 

Each UTR is stored in a Fortran90 subroutine. Pseudo code for the mixer model 

described above is shown in Figure 4.3. The subroutine looks at the relevant subset 

of the variable set and adds the resulting Jacobian, Hessian and Residual data to the 

global vectors. Arguments to the routine are as follows: 

• VStart. Pointer into variable vector (x). Points to position in x one before the 

first variable belonging to this unit. 

• x. Vector of derived type (a Fortran90 data structure) representing the variable 

set. Contains bounds and current value. 

• Res. Real vector containing residual values for equation set. 

• Jac. Vector of derived type representing the Jacobian. Contains value,row and 

column. 

• Hess. Vector of derived type representing the Hessian. Contains value,row and 

column and equation. 
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row. The last equation number handled. 

. nJ. Last Jacobian element added. 

. nH. Last Hessian element added. 

Plant Unit List 

The Plant Unit List (PUL) is a catalogue of the units and streams required to represent 

the fiowsheet. For each entity (stream or unit), the PUL stores a name, unit type and 

pointer (VStart) into the variable vector (x). The PUL is created from the USMP 

input file and is used to set up the variable vector and equation data. An example for 

the simple fiowsheet in Figure 4.1 is shown in Figure 4.4. 

Variables 

Variables in USMP are stored in a vector of derived type. Each element in the vector 

stores a name, current value and upper and lower bounds for a specific variable. After 

the PUL is compiled the program runs down it, totalling up the number of variables 

required to model each entity in the fiowsheet. The number of variables for an instance 

of a particular type is hard-coded as part of the model library. The variable vector is 

then allocated to this size and its values initialised. 

Connections, Specifications and Assignments 

As previously mentioned, connections in USMP were handled by adding the relevant 

equalities to the equation set. For the model in Figure 4.1, equalities would be added 

to connect, for example, S1.F to MIXER.Inl.F and so on (see section 4.2.1) for the 

complete input file. This results in duplicate variables, 2 variables exist for what is in 

reality only one, and extra equations to tie them together. In USMP, the user had to 

calculate the position of each variable in the global variable set and the equality was 

specified by giving the 2 variable positions in the input file. In the example given (con-

necting S1.F to MIXER.Inl.F) since we know that the fiowrates are the first variables 

in both the stream and mixer models we can use the relevant VStart values from the 
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subroutine Mixer 

Declare variables 

Add mass balance equation 

Pointers into x vector for specific 
variables (makes code simpler to read) 

FOutP = VStart + 1 
FIn1P = VStart + 2 
FIn2P = VStart + 3 

Get current values for variables 

FOut = x(FOutP) °hval 
FIni = x(FIn1P)70va1 
F1n2 = x(FIn2P)'hval 

row = row + 1 

Jacobian elements for mass balance 
(dFout, dFInl, dFIn2) 

nJ = nJ + 1 

Jac(nj) °hval = 1.0 
Jac(nj)%row = row 
Jac(nj)'hcol = FOutP 

nJ = nJ + 1 

Jac(nj) °hval = -1.0 
Jac(nj)'/row = row 
Jac(nj)'hcol = FIn1P 

nJ = nJ + 1 

Jac(nj)%val = -1.0 
Jac(nj)%row = row 
Jac(nj)%col = FIn2P 

Res(row) = FOut - FIni - F1n2 

!Repeat for other equations 
end subroutine 

Figure 4.3: Source Code for USMP Mixer Model 



CHAPTER 4. FLEXIBLE MODELLING SYSTEM 
	

42 

NAME TYPE VStart 
Si Stream 0 
S2 Stream 4 
S3 Stream 8 
MIXER I Mixer 12 

Figure 4.4: PUL for USMP Mixer Flowsheet 

PUL (see Figure 4.4) to calculate that the variables to be equated are numbers 1 (0+1) 

and 13 (12+1) respectively. 

Specifications and assignments are represented by a manually calculated variable id 

number and a real number. In the case of assignments however there is the additional 

ability to specify the slot (value, lower bound or upper bound) that the number should 

be placed in. Specifications are stored in a vector of derived type and added to the 

Jacobian and residual vectors when required. Assignments are not stored within the 

package and are solely used to overwrite the default values applied on creation of the 

variable vector. 

Derivative and Residual Storage 

In combination with the storage of the variable set, it is the storage of the resulting 

derivative and residual data that determines how easy it is to connect external solvers 

and optimisation routines to the application. In the case of USMP, all the application 

was designed to do was to produce Jacobian, Hessian and residual data for a given 

variable and equation set and transfer these to other packages. In order to do this a 

standard representation was required that would be memory efficient and rapidly and 

simply converted into the exact form required. Jacobian and Hessian are stored in 

standard sparse format in vectors of derived type. One element in a vector contains 

all the information (row, column, equation and value) required to represent an element 

in the required array. See Figure 4.3 for examples of using the Jacobian and Residual 

vectors. 
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USMP Input File 

The following is a sample USMP Input File, setting up the model in Figure 4.1. In 

order to save space only one specification and two assignments have been given in order 

to demonstrate the relevant syntax. Only the Flowrate variables have been equated - in 

the complete model the pressures and enthalpies would be as well. The end of a given 

section of the file is indicated by the semi-colons, this was removed in later versions. 

Vectors were not supported. 

ENTITY (Note: entity name, unit type) 
Si Stream 
S2 Stream 
S3 Stream 
MIXER Mixer 

CONNECT (Note: var number, var number) 
1 13 
5 14 
9 15 

SPEC (Note: var number, real value) 
1 100.0 

ASSIGN (Note: var number, real value, slot) 
2 50.0 val 
2 50.0 lbd 

Figure 4.5: Input File for USMP Mixer Flowsheet 

Summary 

USMP was a useful tool and achieved what it was intended to do. However, as the 

project developed, the limited model library and overly user intensive modelling lan-

guage became seriously limiting. The work summarised above forms the basis of the 

FMS packages described in the rest of the chapter. 
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4.2.2 From USMP to JFMS 

After using USMP to construct larger models, a number of key improvements that were 

required were identified. These were: 

. A more flexible model library. 

. A more powerful language to remove all the manual calculation of connections 

etc. 

. Addition of a user interface to allow manipulation of the variable set. 

The ability to store a model and reuse it with different values or solution methods. 

As the user requirements developed, so did the language and interface that were needed 

to support their activities. FMS went through a number of key stages as outlined below. 

Command line driven, steady state modelling language 

Command line driven, steady state and dynamic modelling language 

. Java based GUT driven, steady state modelling language (JFMS) 

. Java based GUI driven, steady state modelling language with integer variable 

support. 

Dynamic modelling was removed in the change to the GUI driven version as it was 

not required to support any of the work being done at the time or being planned in 

the foreseeable future. For the purposes of this report, the data structures and other 

details described are those used in the current version of JFMS. These have developed 

incrementally as the package has changed. 
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4.3 JFMS 

JFMS is an extensible, generic, equation based modelling package that has been de-

veloped in conjunction with Dr. S.Leyffer of Dundee University. JFMS allows the user 

to add new entity types, basically generic representations of the objects the user wishes 

to model, be they mixers and streams or other, more application specific, objects. The 

current version of JFMS allows the user to quickly develop large and complex steady 

state models, to solve or optimise these using a variety of routines and to examine 

the results quickly, based on user defined search criteria. Subsets of the variable and 

equation sets can be extracted and passed to connected applications, allowing the pack-

age to act as a sequential modular simulator or examine blocks of the global problem. 

JFMS can be run either as a stand alone modelling package or as a set of routines 

within another application. When run as a stand alone package the user is supported 

by a simple to use graphical interface allowing easy manipulation and examination of 

the model data. 

This structure allows use of the application at a number of different levels: 

• By selecting already specified entities the user can build models in a manner 

similar to using a package such as ASPEN. 

• At the next level of complexity, the user can build new entity types from a list of 

typical equations such as mass and enthalpy balances and basic VLE and general 

physical property relationships. 

• The final level involves the user in adding new equations to the library to allow 

more complex or application specific entities to be built. At the moment, this 

requires some basic Fortran programming skills but this could be improved upon 

with the addition of an equation editor. 



CHAPTER 4. FLEXIBLE MODELLING SYSTEM 	 46 

4.3.1 JFMS Data Flow 

Figure 4.6 outlines the flow of data within JFMS. The data structures mentioned are 

described in more detail in section 4.3.2. 

New Entity or Var Types 

Select Entity Type 
and build model. 

FMST0p 

GOL 

Variable I Entity 
Types I Types 

createNGOL NGOL 

Entity List 
Group List 
Variable Set 
Equation Variable List 
Equation Table 
Objective Function 
Group IMTable 
Specification List 

FMSModHandler 
parser 

Application Server 

Var.vt 	Ent.et 

Figure 4.6: Data Flow in JFMS 
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4.3.2 JFMS Data Structures 

There are two distinct components of JFMS: the model builder and model interface 

written in Java and the application server written primarily in Fortran90. In the 

following discussion data structures belonging to the Java side are prefixed by 'J:', 

those that belong to the application server by 'A:', and those that are common to both 

by 'JA:'. A simple mixer model is used to illustrate the steps taken in converting the 

model from a set of text files to the JFMS data structures. The model is given in 

Figure 4.11, and is illustrated in Figure 4.1. In order to reduce the size of the model, 

streams contain only flow and composition data and not the additional thermodynamic 

data that would usually be included. The initialisation method declarations are also 

omitted. Development of FMS models is discussed in chapter 5. 

J: GOL - Generic Object Library 

The GOL is the Generic Object Library. Generic objects are used to store the building 

blocks for models as well as the structure data for the actual models themselves. There 

are two identifiable classes of generic object; the variable type (VTYPE) and entity 

type (ETYPE). These are described below. Generic objects are stored in user written 

text files. JFMS reads these files, parses the data contained and stores them in the 

GOL as shown in Figure 4.7. 

The GOL is dynamic, it can be added to or changes made to existing members during 

run time. VTYPEs and ETYPEs must have been declared, either within the GOL or in 

the current data file before they are used in other ETYPEs. Existing models continue 

to use the VTYPEs and ETYPEs as they were at the time the model was created. 

J: GOL: VTYPE 

Variable types are used to set default bounds and initial values for variables declared 

as being of that type. These values can be changed at a later date, either within an 

entity type declaration or through the GUI. A variable type is declared in a data file, 
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GOL 
	

GOL 

Variable Type List (VTL) 

V 
VType 1 

VType 2 

etc 

Entity Type List (ETh) 

"I 

EType 1 

ET  2 

'I, 
etc 

Variable Type List (VTL) 

integer 

fraction 

flow 

Entity Type List (ETL) 

stream 

1 
mixer 

test 

Figure 4.7: Structure of GOL and example for mixer problem 

VTYPE type name 
UBOUND upper bound 
LBOUND lower bound 
SCALE scale factor 
VALUE default value 
END 

Figure 4.8: VTYPE Template 

VTYPE flow 
UBOUND 100.0 
LBOUND 0.0 
SCALE 20.0 
VALUE 15.0 
END 

Figure 4.9: Example VTYPE: flow 

this declaration taking the form shown in Figure 4.8. An example of a VTYPE for flow 

is shown in Figure 4.9 and is used in the mixer example in Figure 4.11. 

J: GOL: ETYPE 

An entity type is a generic representation of an object that the user wishes to model. 

To date, types have been produced for a range of objects, including streams, mixers 

and distillation columns although there is no limitation in the system constraining the 
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models to be related to chemical engineering. The entity type therefore contains all 

the information that the system requires to represent a specific instance of the type - 

typically this will involve a list of variables and related equations required, along with 

other data as described below. 

Entity types have the following properties: 

• Can inherit information from existing entity types. 

• Declare variables (variable name , type and size, if vector). 

• Declare equations and the variables required in those equations (see Figure 5.8). 

• Declare other instances to be set up at the same time as the current entity ( ie 

input/output streams from a vessel could be declared here). 

• Create links between instances (for example to connect units). 

• Give initial values or specifications for variables if different from default. 

• Declare initialisation methods (see Chapter 6). 

A model is itself an entity type, made up of a network of entities. Each of these 

entities in turn can themselves contain other entities. In Figure 4.10 a small model 

called MiniPlant is created which contains instances of the Mixer, HEX and Stream 

ETYPEs. Mixer and Hex both contain instances of the Stream ETYPEs. This nesting 

allows complex models to be quickly assembled. See Figure 5.20 for a generalised 

ETYPE data file, use of this structure for modelling is covered in Chapter 5. 

It is important to make the distinction between building block (BB) ETYPEs and 

model (M) ETYPEs. BB ETYPEs are generalised representations of a process unit or 

stream. They will not contain general specifications, assignments or size data such as 

actual values for the number of components or trays in the process. M class ETYPEs 

are used to represent an actual process. Therefore, they are responsible for providing 

all the size data, connections between units and any general specifications the user 
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- 

EType MiniPlant 

In. 11 
-- I - - 

EType HEX 

rf 
I 	I 	1 1i.it 
I 	

Ml1Ij]IH 
FP I 	HI 

H 	I 
II 	r - 

I 	iHA'I LL'±J - 

----I 

LYJ'1 

Streams are all EType STREAM 

Figure 4.10: Entity Nesting in a Simple Flowsheet 

wishes to include as standard for the process. Figure 4.11 shows a sample mixer model 

data file. ETYPEs stream and mixer are BB class ETYPEs, test is an M class ETYPE. 

M class ETYPEs must be translated in order to become a usable model. In effect, an 

M class ETYPE provides a list of all the entities (units and streams) within the model 

and the necessary specifications and connections to satisfy the structural needs of the 

model. Typically, this latter point is satisfied by specifying values for variables such 

as the number of components, number of trays for a given column etc. These values 

define the structure of the specific model desired, replacing the generalised structure 

found in the BB class ETYPEs. 

As an example, stream ETYPEs typically declare a variable x, of type fraction and 

size ncomps. This declares a vector x of length ncomps, each value of which is of the 

declared VTYPE fraction. This generalised form is translated when converting the M 

class ETYPE to the model, ncomps being replaced by the the value of ncomps for this 

specific model. The model produced is stored as an object of class NGOL. 
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ETYPE 	stream 
VARS 

F 	flow 
x 	fraction - ncomps 

EQNS 
sumX 

-' 	ncomps 
• 	x• * 

END 

ETYPE 	mixer 
INSTANCE 

stream 
in 	2 
out 

EQNS 
massB 

in. 	F 
out 	F 

compB 
ncomps 
F 

in.* x. 
out F 
out x. 

END 
ETYPE test 
VARS 

ncomps integer 
INSTANCE 

stream 
feed 2 

mixer 
MX 

CONNECT 
feed.1 MX.in.1 
feed.2 MX.in.2 

FIXED 
• ncomps value 2.0 
feed.1 F value 10.0 
feed.2 F value 20.0 
feed.1 x.1 value 0.3 
feed.2 x.2 value 0.4 

< 

END W 	 2) 

Figure 4.11: Simple Mixer Model Data File 
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Model 1 

1 
Model 2 

\/ 
etc 

Name 

Entity List 

Group List 

Variable Set 

Equation Table 

Objective Function 

Group Initialisation Method Table 

Equation Variable List 

Specification List 

- 	Figure 4.12: Basic Structure of the NGOL Class 

J: NGOL - Non-Generic Objects 

Unlike early versions of FMS, JFMS allows multiple models to be built and accessed 

from the interface. These models are stored in a vector of class NGOL (Non-Generic 

Object Library), one model per element in the vector. An NGOL is therefore a complete 

model, as outlined in Figure 4.12. 

J: NGOL: Name 

Each model is given a name to aid the user in identifying particular models from the 

set of available ones. 

J: NGOL: Entity List 

The Entity List is the JFMS version of the USMP Plant Unit List (see Figure 4.4) and 

is built in the same way. Due to some changes in the way connections are represented 

the information contained is slightly different however. For each entity created the 

following information is stored: 
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. Name. 

• Group. Group number that this entity belongs to (Figure 4.13). 

• Parent. ID number of entity that created this one. 

• Type. ID number of ETYPE of this entity. 

JA: NGOL: Group List 

When a connection is made between entities in a model, USMP required a set of equality 

statements to link what was a duplicate set of variables. To avoid this effect, JFMS 

uses the Group List to store the unique entities found in the model. 

In USMP, a set of variables and related equations existed for every entity in the entity 

list. As a unit typically specifies both its inlet and outlet streams, unique variables 

and equations exist within the global equation and variable set for these streams. As a 

stand-alone unit this creates no duplication of data. When such a unit exists as part of 

a flowsheet however its associated streams are connected to streams belonging to other 

units. There is only one stream in the flowsheet but the entity list sees two: the outlet 

from the first unit and the inlet to the second. JFMS maintains the flexibility of being 

able to access the relevant data using either unit name through the entity list group 

number slot. The relevant member in the group list stores the required data for the 

model and therefore only the necessary information is stored. This removes the need 

for a set of equality statements as used in USMP by forcing both units to use the same 

data for their connecting stream. 

Reference to Figure 4.10 shows that M1.0ut (the mixer outlet stream) and H1.P1 (the 

inlet stream to the heat exchanger on the process side) are in fact the same stream. 

Both M1.0ut and 111.1`1 will appear in the Entity List however only one entry will exist 

in the Group List for the pair. This means that only one set of variables and equations 

exist for the stream in question but that, through the Entity List, this information can 

be accessed by both the mixer and heat exchanger, as illustrated in Figure 4.13. While 

this example is obviously simplified, the savings in terms of number of equations and 
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Figure 4.13: Derivation of Group List from Entity List 

variables is of the order of 50% over a large flowsheet. Five entities in the entity list are 

in fact four unique entities in the model, as reflected in the group list. Each element 

in the Group List stores the following information: 

. Name 

. Variable start and finish indices (links to Variable Set) 

• Equation start and finish indices (links to Equation Table) 

• Initialisation Method index (links to Group Initialisation Method Table) 

JA:NGOL:VariableSet 

All variables in the model are stored in the Variable Set. Each variable stores: 

• Name 

• ID number of entity the variable belongs to. 

• ID number of VTYPE. 
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. Status of the variable (specified, user assigned, default etc). 

. Whether variable is active or inactive (allows extraction of subsets of the model). 

. Whether the variable is continuous or integer. 

. Lower bound 

• Upper bound 

• Current value 

• Scale factor 

• Initial value 

JA: NGOL: Equation Variable List 

The Equation Variable List (EVL) stores the locations of each variable required by the 

Method calling structures and is an integer vector. For a given function call a particular 

subset of the Variable Set will be required. On parsing the input file, JFMS records 

the location of each of these variables in this list. Each of the EFCs contain pointers 

back into this list allowing rapid access to the appropriate variable subset. 

J: NGOL: METHOD CALLING STRUCTURES 

JA: NGOL: Equation Table 

JA: NGOL: Objective Function 

JA: NGOL: Group Initialisation Method Table 

• Equation Table is responsible for setting up all linear and non-linear equations but 

can also be used to perform other analysis or link to other models and packages; 

• Objective Function stores the data required to set up the objective function if 

- 	 needed; 

• Group Initialisation Method Table allows access to external initialisation routines. 
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These structures provide links to external functions. Each entry stores the data required 

to access the relevant function and pass it the appropriate variable set. In addition 

to this there is an active/inactive flag. In combination with the equivalent flag in the 

Variable Set this allows extraction of subsets of the model. This can be used to run 

the application in a sequential modular manner on a unit by unit basis or to extract 

sections of the model on a more mathematical based block wise basis. 

Data held is therefore: 

. Name 

. Pointer to variable start and finish in Equation Variable List (see above) 

. Whether function is active in current process. 

JA: NGOL: Specification List 

The final set of data required to represent a given model is the Specification List. As 

with USMP (see section 4.2.1), specifications in JFMS are stored using the following 

structure: 

. Variable ID number 

. Real value 

Unlike USMP however, JFMS uses an entity and variable name based method in the 

input file. This allows a more flexible and natural method of identifying a specification, 

allowing the ETYPE in question to be used in many different models. The earlier 

method was effectively the equivalent of hard coding the entity's position in the model. 

A: Derivative and Residual Storage 

The storage form used in USMP was found to be sufficiently flexible to be used in 

JFMS. Data is stored in a sparse format and routines exist to change between different, 

commonly used formats. 
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Derivation of NGOL for Mixer Model 

This section expands on the createNGOL method illustrated in Figure 4.6. This is 

a Java method that takes a M class ETYPE and converts this into a usable set of 

variables, equations and associated structures. The example used is that of the mixer 

process described in Figure 4.11. 

The first step is to compile the Entity List. Name, parent and type are set at this 

stage, group ID number is assigned after the group list has been compiled. The Entity 

List starts with the M class ETYPE and then adds any instances declared by this 

ETYPE. These are in turn checked for instance declarations and the process continued 

until all instances have been created. The Entity List for the Mixer model is shown in 

Figure 4.14. Parent is the ID number of the entity that created the current entity, type 

is the ID number of the ETYPE, as stored in the GOL Entity Type List (Figure 4.7), 

used to create the current entity. 

No. Name Group Parent Type 
1 test 1 0 3 
2 test.feed.1 2 1 1 
3 test.feed.2 3 1 1 
4 test.MX 0 1 2 
5 test.MX.in .1 2 4 1 
6 test.MX.in .2 3 4 1 
7 test.MX.out 5 4 1 

Figure 4.14: Entity List for Mixer Model 

Next, the fiowsheet must be connected. The Entity List stores a list of all the entities 

named in the process. When the units and streams are connected, some of these are 

found to be the same. These entities are assigned the same group ID number. The 

Group List stores the list of unique entities in the model and pointers to their variables, 

equations and initialisation methods. For ease of reference one of the entity names is 

copied into this list. The Group List for the mixer model is given in Figure 4.15. All 

other data structures are created from the Group List. 

The Variable Set (VS) is created next. Variables are added to the set in the order they 
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No Name VarStart VarFinish EqnStart EqnFinish IniMethod 
1 test 1 1 0 0 1 
2 test.feed.1 2 4 1 1 2 
3 test.feed.2 5 7 2 2 3 
4 test.MX 0 0 3 4 4 
5 test.MX.out 8 10 5 5 5 

Figure 4.15: Group List for Mixer Model 

are declared within the Group List. As variables are added they are assigned values, 

specifications if given or the default value for the relevant VTYPE. Stat indicates 

whether the variable is a specification (stat = 1), a user given initial guess (stat = 2) 

or a default value (stat = 4). Active and integer are flags (1 = true, 0 = false ) to 

indicate whether a variable is active in the current view or is an integer respectively. 

This is demonstrated in Figure 4.16. The Specification List is set up simultaneously. 

No. Name 	Entity VTYPE Integer Lbd Ubd value scale initial Stat Active 
1 ncomps 1 1 1 0.0 100.0 2.0 5.0 2.0 1 1 
2 F 2 3 0 0.0 100.0 10.0 20.0 10.0 1 1 
3 x.1 2 2 0 0.0 1.0 0.3 0.5 0.3 1 1 
4 x.2 2 2 0 0.0 1.0 0.5 0.5 0.5 4 1 
5 F 3 3 0 0.0 100.0 20.0 20.0 20.0 1 1 
6 x.1 3 2 0 0.0 1.0 0.5 0.5 0.5 4 1 
7 x.2 3 2 0 0.0 1.0 0.4 0.5 0.4 1 1 
8 F 5 3 0 0.0 100.0 15.0 20.0 15.0 4 1 
9 x.1 5 2 0 0.0 1.0 0.5 0.5 0.5 4 1 
10 x.2 5 2 0 0.0 1.0 0.5 0.5 0.5 4 1 

Figure 4.16: Variable Set for Mixer Model 

Once the Variable Set exists the Method Calls (MC) and Equation Variable List (EVL) 

are produced. Each MC table is set up in the same way. Figure 4.17 shows the first 

three equations set up by the model (sumX for the two feed streams and the mass 

balance around the mixer). The pointer variable 'iv' in the MC tables points to the 

location in the EVL one before the location of the first relevant variable. This allows 

easier referencing in later processes, iv+1 is the first variable, iv+2 the second and so 

on. Active acts in a similar fashion to the Active flag in the Variable Set, VEnd is 

used to mark the last variable in the EVL relevant to the current MFC call. The EVL 

is an integer vector, storing the required variable ID numbers (Value in Figure 4.18). 

For clarity, two columns have been added: No (position within the vector) and Name 



CHAPTER 4. FLEXIBLE MODELLING SYSTEM 	 59 

( entity and variable name). MC routines access the necessary variables in the VS 

through the iv pointer and the EVL data. 

No. Name Active VStart (iv) VEnd 
1 sumX 1 0 3 
2 surnX 1 3 6 
3 massBl 6 9 

Figure 4.17: Subset of Equation Table for Mixer Model 

No. Name Value 
1 test ncomps 1 
2 test.feed.1 x.1 3 
3 test.feed.1 x.2 4 
4 test ncomps 1 
5 test.feed.2 x.1 6 
6 test.feed.2 x.2 7 
7 test.feed.1 F 2 
8 test.feed.2 F 5 
9 test.MX.out F 8 

Figure 4.18: Subset of Equation Variable List for Mixer Model 

4.4 Methods 

JFMS provides the modelling data and structures required to represent and build equa-

tion based models. To actually produce the derivative and residual data needed by the 

attached solution and optimisation methods external functions are required. The three 

classes of methods have already been introduced and are equations, objectives and ini-

tialisation methods. These all work in essentially the same way, equation and objective 

functions will generally create derivative and residual data for a given set of variables 

while an initialisation method will perform some other manipulation on the variable 

set in order to derive a better starting guess. 

Equation and Objective Functions can be considered a refinement of the USMP UTR 

(see Figure 4.3). Whereas a UTR would produce derivative and residual data for an 

entire unit type, these functions typically work at an individual equation level and in a 

much more general and efficient manner. The inclusion of vectors within the variable 
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set allows a much greater degree of generalisation to exist within a given ETYPE 

and the equation handling routines must be capable of dealing with this. The level 

of flexibility required is achieved by the provision of wild cards (*) within entity and 

variable names in the equation declarations (see page 80) and the conditional and loop 

facilities provided by writing the functions in a high level programming language such as 

Fortran90. Efficiency gains are made within the equation by allowing JFMS to specify 

what is required from the function. Code will exist to produce Jacobian, Hessian and 

residual data but in many instances only a subset of this data will be required. Solvers 

for example will often not need Hessian data and only certain values may need to be 

updated at a given time (see Appendix B for a sample Equation Function). 

Initialisation methods are attached to ETYPEs in order to assist the initialisation 

process. These are covered in detail in Chapter 6. Using the same calling structure as 

equation and objective functions, these methods can be used to initialise anything from 

single entities within the model to collections of entities making up complex, interlinked 

structures. 

To all intents and purposes the methods in JFMS are mini packages in their own right, 

taking a subset of the variable set as input and returning the required information. 

This results in the modelling package being completely separated from the derivation 

of these values and gives the user a number of options: 

. Values can be obtained using a range of sources: external packages, exact or finite 

difference methods etc. 

• Internal calculations can be performed on the data (ie flash calculations). 

• One routine can be used to set up many equations. 

• Equations are written in Fortran 90. This allows conditionals to be included in 

the model; e.g. to avoid indeterminate limits as in the definition: 

zT 	
LThLTc 

1?71 	 (4.5) 
In  

Where 1Th -+ /T (Morton, 1996). This keeps the modelling language simple 

but provides the data handling capabilities of a high level language. 
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This facility in FMS allows different equation forms to be used to model the 

behavior of a set of variables over different ranges. Often, physical property 

correlations are only applicable over a relatively small temperature or pressure 

range. Just as the equation form can be changed to avoid division by zero it can 

also be altered to reflect a change in behaviour. 

It must be noted however that the equation form should be chosen and fixed 

the first time it is called. Changing the equation form mid solution will cause 

convergence problems. 

4.4.1 External Packages 

External packages are typically physical property data banks but can be other mod-

elling packages or data banks, assuming that an appropriate interface exists to them. 

Connection to such a package is relatively simple, being an extension of the standard 

equation function described above, and is outlined below: 

. Call JFMS external function with appropriate variable subset. 

• Convert JFMS structures to provide correct input to the external package inter-

face. 

• Call external package. 

• Take results from external package and convert back to JFMS structures. 

An example of this, showing connection to a physical property package is shown in 

Appendix B. 

4.4.2 Internal Calculations and Conditionals 

Internal calculations and conditionals in the function are methods of introducing com- 

plexity to the model without the modelling language having to be capable of expressing 
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it or the current user being faced with the full complexity of the model. Since JFMS is 

independent of the value generating process it is possible to produce the values in any 

way the user wishes. This can involve conditionals as illustrated earlier, changing the 

equation form used to avoid invalid or inappropriate equations based on given criteria 

(typically division by zero or different equations being used to represent the process in 

different conditions) or internal calculations. 

Internal calculations allow levels of processing to be hidden from the JFMS model; 

rigorous distillation column models can be run within the equation function in order 

to accurately model a complex distillation process while the JFMS model appears to 

the user to be a very simple one, concerned only with the column inputs and outputs. 

This is frequently the case where non-FMS format models are being used to provide 

some of the required data. 

The example given earlier, using internal calculations to perform flash calculations 

comes from work done in modelling utility systems. In such systems the streams 

involved are frequently water or air. In the case of water streams there will be three 

identifiable forms: liquid, vapour and mixed phase. Use of internal calculations allows a 

common model structure to be used in all cases with appropriate enthalpy calculations 

for the phase and an additional flash calculation being performed for the mixed phase 

case. 

4.4.3 Method Library 

Methods are accessed through a compiled library linked to the Application Server. This 

library takes the form of a CASE construct (see Appendix B for a simple example), 

calling connected external subroutines. Where a large number of functions are to be 

included it is common to split them into families and use a family prefix. Families 

are then stored in separate modules, allowing duplicate function names and faster 

compilation of new or updated code. The exact format used depends on whether the 

user is inheriting functions from an existing user or not. Entrance to the library is 

through a function called eqnhandler. After that it is up to the user to specify the 
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library structure. 

4.5 Application Server 

The Application Server (AS) provides access to all the attached preprocessing, analysis, 

solution and optimisation packages. As described in Section 4.3.2, many of the data 

structures used in the model builder are shared with the application server and so 

the specifics will not be covered here again. The sole aim of the AS is to pass the 

model structure and current variable and equation set to an application and to return 

the results to the model interface on termination of that process. JFMS uses the 

standard interface to the package wherever possible. As with external package calls 

in the equation functions, the JFMS data is converted into the appropriate format for 

the application, the application is run and the output from it converted back into the 

JFMS format. AS Model Routines provide the relevant links between the application 

and the JFMS equation handling routines. These routines return Jacobian, Hessian 

and residual data for the model in question. Figure 4.19 shows a simplified schematic 

diagram of the process. 

Applications currently attached include: 

• Linear and Non-Linear Solvers 

• SQP Optimisation Routines (Filter)(Fletcher and Leyffer, 1998) 

• Physical property library 

• Equation analysis tool (Morton and Collingwood, 1998) 

• Initialisation tool 

4.5.1 Adding Applications 

It is not intended or, indeed, desired to provide JFMS interfaces to applications. As 

stated earlier, applications are run through their own, existing interfaces. This mm- 
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Figure 4.19: Application Server Schematic 

imises the amount of work required to add new applications to the system and allows 

maximum reuse of existing code. JFMS provides routines to calculate residual, Jac-

obian and Hessian values for a given variable set and to convert between the JFMS 

formats (typically standard sparse matrix representations) and a number of other, com-

monly used formats. 

Currently, model structure and variable data are transferred from the JFMS core to the 

Application Server along with a flag informing the AS .which application is to be run 

on the model. While this works, it means that model structure data is transferred each 

time an application is run. Control returns to the JFMS GUI when the application 

terminates and the variable vector is updated. This guarantees that the AS contains 
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data relevant to the active model in the GUI but is obviously inefficient if the user 

wishes to perform multiple, consecutive operations on a single model. This could be 

avoided by adding a verification call to the data transfer to check that the AS model 

and the GUI active model were the same. Where the models were equivalent there 

would be no need to transfer the structure data again. 

In order to add an application to JFMS the following steps must be followed: 

. Add the application to the selection list (menu) in FMSModHandler.java and to 

the CASE construct in the handleEvent function in the same file. 

. Add call to FMS driver for the application to f9Oexec CASE construct. 

• The FMS driver for the application handles the conversion of the FMS format 

structure and variable data into the format required by the application. The 

driver then calls the application routine (typically a subroutine call), waits until 

this routine terminates and then updates the variable set. Control then passes 

back to the GUI with the return of the updated variable set. Structure data is 

not returned at the moment but this would be simple to implement and would 

allow the structure of the problem to change within the application. 

• Typically, the application will require access to derivative and residual data and 

will have routines within it to produce these values. These routines must be 

rewritten to call the relevant FMS function and appropriate conversions made 

between the application and FMS data structures. The FMS data structures are 

accessed through the jachess module. 

4.5.2 JFMS Equation Handling Routines 

The jachess module contains five routines of interest: 

• fms_objfunQ: return current objective function value. 

• fms_confunO: update residual data. 
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• fms_hessianQ: update hessian data. 

• fms_gradientQ: update first derivative data. 

• fms_build_jh ( ci , ch , cr , co , eval ) 

The final form is a generalised Call to the equation processing routines. It has four 

logical flags (ci, ch, cr and co) to specify whether first derivative, second derivative, 

residual or objective function evaluations are required and a real variable to allow 

access to the objective function evaluation. Three flags influence the behaviour of 

these routines and are: 

• fms.sys%recalc: if true, clears all current derivative etc data and rebuilds. Allows 

the problem to change structure if necessary or a completely new problem to be 

started. 

• fms..sys%sij: if true, specifications are represented as equations. Otherwise, specs 

are assumed to be given as tight bounds on the relevant variable or in some other, 

application specific, method. 

• fms..sys%specsFromlni: if true then the temporary specification list is used. This 

allows temporary specs to be introduced when trying to solve subsets of the 

model. The global specification list is used if this flag is false. 

Advanced Equation Handling Facilities 

The flags and routines provide a powerful interface to the equation set. Through use 

of the correct function, only the desired values will be calculated. This is particularly 

useful in more advanced solution or optimisation methods where frequently only sub-

sets of the equation data will be required at a given moment in the process and may be 

recalculated at slightly different points many times in a given iteration. Further per-

formance gains are achieved in the handling of linear equations. Unless the equation 

data is being reconstructed (as a result of fms.sys%recalc being true) derivative data 

is not recalculated for linear equations. 
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The flags, combined with the ability to extract subsets of the variable and equation 

sets allow the structure of the problem to change if so desired and for different rep-

resentations of specifications to be handled. Altering the structure of the problem on 

the fly allows efficient modelling of batch processes, given an appropriate driver, or of 

synthesis problems where the connections between units and indeed the active units 

may change as the solution develops. 



Chapter 5 

Modelling in FMS 

5.1 Introduction 

FMS provides an object based modelling language that can be easily extended to add 

new data types to the basic structure. The user constructs models using three data 

types: 

. Variable Type; 

• Entity Type; 

• Methods. 

These have been defined in Chapter 4, pages 47, 48 and 59 respectively. This chapter 

describes how to build models in FMS and how to extend the modelling language to 

allow new features. Variable Types and Entity Types are stored in standard text files 

with the extensions '.vt' and '.et' respectively. The only provision is that ETYPES 

must be declared before they are used in other ETYPES. 

FMS is intended to manipulate a set of variables by applying an attached set of external 

functions to the variable set. There is no requirement for these functions to represent 

traditional equations, returning Jacobian and residual data for example, but in the 
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process systems problems discussed this is usually the case. A brief discussion on 

equation based modelling is included to illustrate the process of developing such models. 

5.2 Equation Based Modelling 

Most processes found within a chemical plant can be represented by a set of variables 

and associated equations. There are a large number of ways that this data can be 

formulated, some of which are more robust than others, some of which simply do not 

work and others that are unnecessarily large. This section summarises the general 

concepts behind equation based modelling. 

In simulation problems, the number of variables must be equal to the number of equa-

tions plus the number of specifications in the model. When this criteria is met, the 

problem is classified as 'square' and is potentially solvable. Whether the model can be 

solved depends on two factors: whether the equation set is correètly formulated and 

the quality of the initial values for the variable set. Formulation of the equation set 

is dealt with here, initialisation is covered in chapter 6. In optimisation problems the 

number of variables exceeds the number of equations and specifications. The extra 

variables are known as 'free' variables and are manipulated by the optimisation routine 

in order to satisfy the given model. 

Use of an object based modelling language such as FMS allows the user to represent 

a process in any way that they wish. The modelling approach used to develop the 

current set of FMS models is described in the following sections. 

5.2.1 Modelling Streams 

There are two issues when modelling process streams: 

. Whether to model them as separate entities within the fiowsheet or as part of the 

unit models; 
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Figure 5.1: Stream Representation 

. What variables and equations should the stream model contain. 

Streams as Separate Entities 

Traditionally, streams have been contained within their associated unit models. This 

makes referencing the stream variables easier from within the unit and means that the 

entire model is contained within one routine, making the model easier to understand. 

However, access to the variables from outside the unit is more complex, relying on a 

series of pointers stored for each unit. Connecting units will require equality statements 

of the form found in USMP. There are therefore excess variables and equations and 

complex addressing issues. There is also no guarantee that any two units will use the 

same stream model. Models may have different variable and equation sets and could 

therefore be incompatible. 

Representing streams as separate entities in their own right answers most of these 

questions. Given a system such as FMS the addressing and the compatibility issues 

are solved and the excess variables removed. This is illustrated in Figure 5.1; items in 

dashed boxes are entities and each entity will produce a set of variables and equations. 
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Stream Models 

Representing streams as separate entities enforces the use of a standard stream model. 

There is therefore a need to determine an appropriate set of variables and equations that 

will hold the necessary information required to represent the stream and to determine 

any additional information required by the unit models. This set is illustrated in 

Figure 5.2 for the case of a multicomponent stream. 

Data 

No. of components 
Component IDs 
Component mole fractions 
Total Flowrate 
Temperature 
Pressure 
Enthalpy 

Variable 

Ncomps 
compiD (1 ,Ncomps) 
x( 1 ,Ncomps) 
F 
T 
P 
h 

Equation 

> NcomPs X .
- 1.0 = 0.0 

h—fn(T,P,) =0.0 

Figure 5.2: Stream model variables and equations 

A number of decisions have been made in the selection of this model. It is not a truly 

minimalist model in that T, P and h exist as variables. Two of these are required, the 

other could be derived from these and the composition and flow values. However, these 

are commonly used variables and so including them in the standard model reduces the 

overhead of having to continually calculate the third value when required and allows 

easy referencing of the variable by name. The variable set chosen is therefore a balance 

between size (the number of variables in the model) and ease of access to commonly 

used values. Mole fractions have been selected instead of component molar flows for 

several reasons: 

• Having mole fraction and component molar flows is redundant as one is easily 

calculated from the other and the total flow variable, F; 

• Component molar flows and total flow variables often lead to problems in the 

formulation of the material balance equation(s), as shown in section 5.2.3; 

• Mole fractions are required in most physical property and equilibrium equations. 
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They are arguably more commonly used than component molar flows which tend 

to only be needed for component balances. 

This structure allows all other likely stream variables such as vapour fraction, K values 

and liquid/vapour equilibria to be calculated where desired. Streams act as connections 

between units in the model as they do between units in the process. Given this, models 

for the units are then created. 

5.2.2 Modelling Process Units 

Unit models provide the additional variables and equations to determine the effect of 

the unit on its' inlet and outlet streams. Each model should contain the relevant subset 

of the following: 

. Material balance: Conservation of material across the unit; 

• Energy balance: Conservation of energy across the unit; 

• Momentum / Pressure relationships: Pressure change across the unit; 

o Performance Equations: Model what the unit actually does. A simple example 

of this would be the split fraction and associated equation in a splitter model. 

Derivation of a Mixer Model 

The equations for the mixer model in Figure 5.3 are given in Figure 5.4: 

The mixer model therefore provides Ncomps + 3 equations, introducing no new vari-

ables. Each stream provides 2 equations giving a combined total of Ncomps + 9 equa-

tions. Given that each stream has Ncomps + 4 variables the problem contains 3Ncomps 

+ 12 variables in total. In order to convert this into a square problem, 2Ncomps + 3 

specifications are needed. 
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Figure 5.3: Mixer Model 
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Leaving Pressure Out.P = In.1.P 
Out.P = In.2.P 

Enthalpy Balance Out.H - (In.1.H + In.2.H) = 0.0 

Figure 5.4: Mixer Model Equations 

5.2.3 Modelling Problems 

Equation based modelling provides a powerful and flexible approach to modelling pro-

cesses. However, there are a number of common problems that occur in the formulation 

and use of such models. These are summarised in the following paragraphs. 
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Specifications 

In order to solve a simulation problem there must be an equal number of variables to the 

combined number of equations and specifications. The variables that are specified must 

be chosen carefully in order to allow the problem to converge. A common mistake is to 

specify all the variables in an equation, resulting in the equation becoming redundant. 

While a degrees of freedom analysis will suggest that the model is square, there will in 

fact be a free variable remaining and the model will be under-specified. 

This is illustrated below for a system of 4 variables with 2 equations and therefore 2 

free variables. Specifying one of a and b and one of c and d produces a square system, 

specifying a and b or c and d leaves the system insolvable. 

a+b = 0 	 (5.1) 

c+d = 0 	 (5.2) 

Another problem is that of conflicting specifications. In these cases, specifications have 

been given that cannot be solved for. Assuming that the flowrates in the mixer model 

are forced to be positive an example of this would be specifying an outlet flowrate 

lower than the specified inlet fiowrate. In order to converge, the other inlet flowrate 

would have to be negative. Over-specified problems suffer from both of these problems. 

Equations will become redundant and, unless the specifications are correct they will 

contradict each other. 

Matrix Singularity 

A singular matrix is one in which at some point during the solution process a column 

or row of the matrix is filled with zeros. This results in the solution method being 

unable to solve for a particular variable or an equation becoming redundant and, as 

such, being unable to solve the overall problem. There are two causes of singularity: 

poor choice of initial values or a badly formulated equation set. Poor choice of initial 

values cannot totally be avoided but is usually easily sorted, incorrect equation sets 

can often be more difficult to fix. 
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Matrix singularity caused by the equation set itself is often a case of equations duplic-

ating the effect of another equation or set of equations. This results in a redundant 

equation although which equation it is will often not be immediately apparent. This is 

particularly the case with object based modelling language where a model is often built 

up from a set of locally declared variables and equations but also creates instances of 

other models. For example, the mixer model explicitly declares a series of equations 

to model its' effect on its' inlet and outlet streams. Instances of the stream model are 

also declared in the mixer model but their contents are not displayed. Without being 

careful to check the contents of the stream model, the user writing the mixer model 

may well specify an inappropriate equation set. 

Taking the models specified in Figures 5.2 and 5.4 the following should be noted: 

• Streams are responsible for ensuring that their component mole fractions sum to 

1; 

• The mixer model determines the composition of the leaving stream. 

An obvious step would be to have the mixer model specify leaving compositions for 

all components. Since the inlet streams ensure that their mole fractions sum to 1 and 

the mixer material balance ensures conservation of mass around the unit, the leaving 

compositions will be correct. However, this leaves a redundant equation in the outlet 

stream, its' mole fraction summation, which has in effect been duplicated by the mixer 

model solving for all the leaving components. The solution to this is to have the mixer 

solve for all but one of the leaving compositions (Ncomps -1) and allow the stream 

equation to solve for the remaining variable. The problem with this type of singularity 

is that the equation set will seem logical until the duplication is found, a process which 

can take considerable time in complex models. An equation analyser (Morton and 

Collingwood, 1998) has been developed which flags equations or variables likely to be 

the cause of the singularity. 
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Equation Representation 

Once a suitable equation set has been decided on, how the equations themselves are 

formulated has an effect on the solution process, particularly in terms of robustness 

and solution time. The two most common issues are division operations within the 

function and, given the equation structure of FMS, constant re-evaluation of a given 

term and these are outlined below. 

Division operations should be avoided wherever possible in the equation set. Functions 

containing division operations are subject to two main problems. Firstly, should the 

denominator evaluate to zero the function will return an infinite result. Secondly, 

where the denominator is extremely small the returned value will be subject to large 

rounding errors. Most equations can be rewritten to avoid division, as illustrated by 

equations (5.3) and (5.4). 

	

= 0 	 (5.3) 

	

(axe)—b = 0 
	

(5.4) 

Where a term within a model is being constantly re-evaluated inside different equations 

elsewhere in the fiowsheet it leads to a large number of unnecessary calculations. Often 

this can be resolved by explicitly including the term as a variable in the model although 

the computational savings must be weighed against the added size and complexity of 

the new model. Where the term is only needed for a particular equation it should 

be evaluated within that equation routine. Efficiency gains can be made by prior 

evaluation of as many of the common terms within the equation routine in general, 

resulting in fewer calculations being performed overall. These variables can either be 

included in the global variable set or declared locally within the equation method. 

5.3 Building Models in FMS 

In order to demonstrate the steps required in building a model in FMS, this section 

contains an outline of the development of a simple distillation column model. This 
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Figure 5.5: Components of a Distillation Column Model 

model uses most of the features of the language and is outlined in Figure 5.5. 

The column model itself is constructed from a number of other models, these being: 

• Liquid and Vapour Streams; 

• Condenser; 

• Partial Reboiler; 

• Distillation Tray; 

• Feed Tray (refinement of Distillation Tray); 

• Splitter; 

• Tray Stack. 
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5.3.1 The Basic Stream Model 

A basic stream model will contain fiowrate (F) and mole fraction (x) data. Typically, 

the number of components (ncomps) and some component identification (cid) will also 

be required. In order to complete the model a mole fraction summation would be 

added. This model could be represented in FMS as shown below: 

ETYPE basicStream 
VARS 

ncomps 	integer 
cid 	integer ncomps 
X 	 fraction ncomps 
F 	 fiowrate 

EQNS 
sumX 

END 

ncomps 
x .* 

Figure 5.6: ETYPE basicStream 

This declares a new ETYPE called basicStream which contains an integer variable 

called ncomps, an integer vector of size ncomps called cid, a vector of type fraction of 

size ncomps called x and a value of type fiowrate called F. Variables are declared using 

the structure: 

VARS 

var name var type [size of vector OR vector start value] [vector end value] 
etc 

Figure 5.7: Variable Declaration 

The variable type has been described on page 4.3.2 and is a way of assigning initial 

values and bounds data to the variable set in a way that reflects what the variable is 

intended to represent. An example of this is the flowrate type as shown: 
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VTYPE flowrate 

UBOUND 1000 

LBOUND 0 

SCALE 50 

VALUE 100 

END 

Variables are assumed to be scalar unless one or more of the optional slots are filled. 

These are indicated in Figure 5.7 as the entries surrounded by square brackets ([]). 

These values can either be integers or references to integer variables such as ncomps in 

Figure 5.6. If only one slot is given the vector is assumed to start at position 1 and run 

to the value given in the slot (ie x.1 to x.[ncomps]). Where both values are given, the 

values are starting and finishing positions for the vector. This allows vectors to start 

at values other than 1 should that be required. A particular value within a vector, is 

referenced by concatenating the variable name and the integer position, separated by 

a period (.). For example, x.3 is element 3 of a vector x. When referring to a vector, 

the full vector can be indicated by use of the wild-card symbol, . In this example, the 

variable name takes the form x.', which refers to x.1, x.2,..., x.[ncomps]. 

The basicStream ETYPE also declares an equation called sumX which takes as argu-

ments the local variable ncomps and the local vector x. These are specified as local by 

replacing the entity name slot with a period (.). Equations are declared as shown in 

Figure 5.8: 

EQNS 
eqn name 

entity name var name 
etc 

etc 

Figure 5.8: Equation Declaration 
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Section Variables 

The model given in Figure 5.6 is sufficient to describe a basic process stream. From a 

modelling perspective however it is rather clumsy, storing ncomps and cid data for every 

stream in the process results in a large number of effectively redundant variables in the 

flowsheet, unnecessarily increasing its size. FMS introduces the concept of section 

variables to avoid this. A section variable is one that applies to all entities (units, 

streams etc) within a given subsection of the model. Each entity stores the identities of 

its ancestors (the entities that created it or its parents and so on). Where a value for a 

section variable is required, the entity will search back up its family tree until it finds 

an entity holding the required data. Using section variables saves space and is a more 

realistic reflection of what is happening in the model. Section variables are identified 

by a hat symbol 
('). The model is therefore changed as shown in Figure 5.9. 

ETYPE basicStream 
VARS 

x 	 fraction 'ncomps 
F 	 fiowrate 

EQNS 
sumX 

END 

ncomps 
x .* 

Figure 5.9: ETYPE basicStream, using Section Variables 

Usage differs between the variable and equation declarations. In the variable declar-

ation the variable name is preceded by the hat symbol; in the case of the equation 

declaration the hat is given as the entity name. 

5.3.2 The Thermodynamic Stream Model 

For a column model we require the stream models to contain thermodynamic data as 

well. In particular, we wish to add enthalpy (h), pressure (P) and temperature (T) to 
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the model. Rather than rewriting the model from scratch we can reuse the code from 

the basic stream model using inheritance and add the required elements to this. The 

new model is shown in Figure 5.10. 

ETYPE 	thermStream 
CONTAINS 

basicStream 
VARS 

h 	 enthalpy 
T 	 temperature 
P 	 pressure 

END 

Figure 5.10: ETYPE thermStream, showing inheritance 

Inheritance copies all the data from the parent or parents to the new class. Any 

additional information required is then specified as normal. This is declared using the 

CONTAINS keyword in the form, as illustrated in Figure 5.11. 

CONTAINS 
parent name 
etc 

Figure 5.11: Inheritance Declaration 

In order to complete the stream model an equation must be given to calculate enthalpy. 

Using inheritance, the thermStream model is developed into liqStream and vapStream, 

each of which inherits all the data of thermStream and thus basicStream and add 

equations to calculate liquid and vapour enthalpies respectively. 

5.3.3 The Tray Model 

A column can be viewed as a collection of distillation trays connected together. A 

basic tray model is developed using the methods described above and is shown dia- 

grammatically in Figure 5.12. In order to maximise the reusability of the code no mass 
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or enthalpy balance equations are included in the basic model. The stream models used 

are as described earlier and each tray stores a local temperature and pressure along 

with K values to calculate the vapour/liquid equilibrium. Basic tray equations exist 

to: 

. calculate K values 

. calculate Vapour / liquid equilibrium 

set leaving stream pressures and temperatures 

vap_oul 

TRAY 

yap_in 

q_in 

q_out 

Figure 5.12: The Basic Tray 

A simplified FMS ETYPE for the basic tray is given in Figure 5.13. Each tray declares 

instances of vapStream and liqStream to represent its connections. This is done using 

the INSTANCE construct as given in Figure 5.14. 

In this case, each tray declares four streams; vapin, vapout, liqin and liqout. As 

with the variable declaration, a vector of instances can be declared. This is done 

by specifying the optional vector size shown in Figure 5.14, the value being either 

an integer number or a reference to an integer variable. This is illustrated in the 

ETYPE for the tray stack shown in Figure 5.16 as is the actual connection of the trays. 

Using inheritance, ETYPES for internal trays and trays with feed and/or side streams 
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ETYPE 	basicTray 
VARS 

K 
T 
P 

INSTANCE 

real 	"ncomps 
temperature 
pressure 

vapStream 
vapin 
vapout 

liqStream 
liqin 
liq_out 

EQNS 
yKx 

ncomps 
vapout 	x.' 

K.* 
liq.out 	x. 

etc 
MIK 

Figure 5.13: ETYPE basicTray, showing instance 

INSTANCE 
entity type 

instance name [vector size] 
etc 

etc 

Figure 5.14: Instance Declaration 

are easily developed by adding relevant mass and enthalpy balance equations and the 

necessary instances. 
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5.3.4 The Tray Stack Model 

The Tray Stack model is then simply a collection of internal trays (ETYPE intTray) 

connected together. In order to connect entities, the CONNECT construct is used. 

This is discussed in chapter 4, page 53 and is outlined in Figure 5.15. If the entities are 

of different type the entity highest in the Entity List (see page 52) is used to determine 

the final type of the group. 

Typically, the connection being made will be between two entities such as an outlet 

stream from a mixer and the inlet to a reactor. Entity 1 and entity 2 in Figure 5.15 

are therefore single instances. In the tray stack model however there is an unknown 

number of trays to be connected. In order to handle this, FMS allows evaluation of 

expressions within the entity name and list handling facilities. The first connection 

being declared in Figure 5.16 is: 

CONNECT 
tray. [*] .vapout tray.[* + 1.0] .vap_in 

When parsing the entity names, elements contained within square brackets ( [] ) are 

to be evaluated. The expression can contain integers (expressed as reals), reference to 

integer variables ( entity and variable name ) or wild card symbols ( * ). These can 

be linked with either + or - symbols, each element being separated by a space. In the 

case above, tray.[*]. vap.out finds all the vapout streams in the stack (tray.[1].vapout 

to tray.[ntrays].vap_out) and stores their positions. The second expression, tray.[* + 

1.0].vap_in, does the same for the vapin streams. Removing the '+ 1.0' from the 

second expression would result in tray.[ i ].vap.out being connected to tray.[ i ].vapin 

for i=1,ntrays. This is not the desired connection however and the '+ 1.0' gives the 

relevant offset ( tray.[ i ].vap_out connected to tray.[ i + 1 ].vapin, i=1,ntrays). 
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CONNECT 
entity 1 entity 2 
etc 

Figure 5.15: CONNECT Declaration 

ETYPE 	trayStack 
VARS 

ntrays 	integer 
INSTANCE 

intTray 
tray 	 ntrays 

CONNECT 
t ray.[*].vap_out tray.[* + 1.0].vap_in 
tray. [*] .liq_out 	tray.[* - 1.0] .liqin 

END 

Figure 5.16: ETYPE trayStack, showing connect 

5.3.5 The Column Model 

Models for the remaining ETYPES are produced in a similar fashion. The final column 

model is defined in Figure 5.17. Variables are included to specify feed stage position 

and the pressure drop across each stage. The addition of a pressure drop equation 

completes the generic description of a distillation column. 

When connecting the feed tray streams to the relevant streams in the column stack it 

is necessary to use the offset list form to get the correct connectivity. This is because 

the feed tray entity has a feed stream instance in front of the standard tray streams 

whereas the stack tray does not. 
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ETYPE 	column 
VARS 

f_pos real 
cdp real 

INSTANCE 
trayStack 

stack 

feedTray 
fTray 

condenser 
cond 

partialReboiler 
reb 

splitter 
split 

CONNECT 
fTray stack.tray.[. Lpos] 
fTray.[*] stack.tray.[. f_pos].[* - 1.0] 
cond.vapin stack. tray. [stack ntrays] .vapout 
reb.vapout stack. tray. 1.vapJn 
reb.liqin stack. tray. 1. liq-out  
split. liqin cond. liq_out 
split. liq_out.1 stack. tray. [stack ntrays] . liqin 

EQNS 
coLdp 

END 

stack 	 ntrays 
stack.tray.* 	 P 

cdp 

Figure 5.17: ETYPE column 

5.3.6 Using the Column Model 

As the column model stands it is a generic description of a column. In order to use the 

model an ETYPE must be created to represent the fiowsheet that the specific instance 
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of the column model belongs to. This introduces two more constructs to the modelling 

language: FIXED and ASSIGN. These are used to give specifications and initial values 

respectively for all slots in the variable class (value, upper and lower bounds and scale 

factor). The following form is used, KEYWORD being replaced by either FIXED or 

ASSIGN as appropriate. Variables can be specified or assigned initial values in any 

ETYPE although in order to maximise the flexibility of the code it is suggested that 

this is done in the flowsheet ETYPE. The structure used to fix or assign values is given 

in Figure 5.18. A cut down version of the flowsheet ETYPE is shown in Figure 5.19. 

KEYWORD 
entity name var name slot value 
etc 

Figure 5.18: Specification / Assignment Declaration 

ETYPE 	flowsheet 
VARS 

ncomps 	 integer 
cid 	 integer ncomps 

INSTANCE 
column 

do' 

FIXED 

ncomps value 3.0 
cid.1 value 2.0 

C101.stack ntrays value 10.0 
C101.fTray.feed F value 100.0 

ASSIGN 
C101 .split.liq..nut.2 F ibound 45.0 

END 

Figure 5.19: ETYPE flowsheet 
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5.3.7 Other Basic Language Features 

There are two other features of the language not included in the column model described 

above; objective function and initialisation method calls. These were introduced in 

Chapter 4, page 59 and take the same form as the EQN construct outlined in Figure 5.8, 

replacing the keyword EQN with OBJ or INIM respectively. 

Objective functions can be declared within any ETYPE. Where multiple objective 

functions are declared within a fiowsheet the function belonging to the entity highest 

in the Entity List will be used. 

Initialisation Methods are used to produce better starting values for the model. Usually 

this will require either a user written initialisation routine or a call to an external library 

or application. Where multiple initialisation methods exist within the inheritance tree 

of a given ETYPE, the most refined ETYPEs method is used. 

The structure of an ETYPE data file is shown in Figure 5.20. 

5.4 Object Orientated Modelling 

While FMS is not truly an object orientated language, many of the concepts used in 

its development come from the Object Orientated (00) methodology. Main features 

of an object orientated system are: 

• Classes data structure with attached methods to manipulate and access that 

data; 

• Instances - a specific member of a class; 

• Inheritance - subclasses can inherit features from its superclass; 

• Encapsulation - access to parts of the class can be restricted; 
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• Overloading - the ability to use the same name for a function with different 

arguments; 

• Polymorphism - the ability to handle types with common features. 

5.4.1 Classes and Instances 

ETYPES and Entities are the FMS equivalent of 00 classes and instances. External 

functions such as the equation routines and initialisation method calls provide the 

methods to handle the data in the object. 

5.4.2 Inheritance 

One of the most important features of an object based language is the idea of inherit-

ance. In order to use this feature to its full extent, care must be taken in developing the 

ETYPES used from the start. The column model is a good example of careful design 

allowing maximum reuse of code, this being particularly apparent in the design of the 

distillation tray and stream models. 

When developing a set of related ETYPES it is important to isolate the features that 

they have in common. In the example of the distillation tray, all trays, regardless of side 

streams, feeds or other conditions will need to store pressure, temperature and K values 

for the tray and be able to set leaving stream compositions, temperatures and pressures. 

This therefore forms the root ETYPE for the tray group, the other ETYPES being 

produced by extending this one. Many ETYPES produced are therefore not capable of 

being used in a fiowsheet. While this at first glance appears to cause an unnecessarily 

large library of ETYPES to be required, the savings made by reusing the code, both in 

terms of time taken to write the models and in the time taken to debug errors justify 

this. 

Wherever possible, the additions made at each stage should be as small as possible and 

unless absolutely required no specifications should be introduced in ETYPES that are 
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to be further developed. This allows maximum reusability and flexibility. If sufficient 

care is taken in isolating the common features of the group at each generation then 

there is no need to allow selective inheritance. Selective inheritance allows the user to 

choose which bits of the parent class are copied into the child directly and which are to 

be altered. This can be useful if altering existing ETYPES that have been constructed 

in a less flexible manner but this should be left to the individual. 

5.4.3 Polymorphism, Encapsulation and Overloading 

At the level that classes interact within FMS from a modelling perspective, there is 

a degree of polymorphism displayed. As surrounding entities are only concerned with 

the external connections from a given entity, any subclass that extends the original 

ETYPE used can be used in its place. Encapsulation and overloading do not occur 

within the FMS language but are used within the underlying code. 

5.5 Extending the Language 

An important feature of a modelling language is the ability for the user to add new 

functionality to it when required. FMS has been developed in a modular fashion in a 

commonly used language. This section provides an overview of the steps required to add 

new data structures to the language; it should be noted that new models are written in 

the model definition language and do not require this level of coding. Extending FMS 

is simplified by the fact that it is solely intended to read data from a text file, convert 

this into a simple representation and pass this on to the application server. The main 

steps are outlined below and covered in more detail afterwards, relevant filenames are 

given in italics. 

. ETYPES are stored in Java objects (EntT.java) and new data structures must 

be added here; 
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At run time, a GOL (Generic Object Library) object is created (GOL.java). This 

object reads the text file and stores it in the relevant EntT; 

. When a particular fiowsheet is built it is stored as a NGOL (Non-Generic Object 

Library) object (NGOL.java) by the method createNGOL (ModelBox.java). This 

completes the transfer of data from the original text file to JFMS; 

• The final step is the transfer of data to the application server. This is performed 

by the Java method sendData (FMSModHandler.java) and the F90 routines ad-

dreal, addint and addstririg. The data is transferred into the F90 variables in 

global.f90. Depending on the nature of the data, it may or may not be necessary 

to alter these structures. 

5.5.1 Entity Type Storage 

JFMS Entity Types are stored in a vector in the GOL. Each element in this vector is 

an object of class EntT and therefore this class is the starting point for any additions to 

the language. Any new data structures that the user wishes to include in their models 

must be reflected in this class along with the methods required to access and add data 

to them. The GOL also contains the method required to parse the input file. This 

method (readETF) reads the data from the input file line by line, working on a flag 

based parser. The following procedure is followed: 

• Check whether line is input code or comment, ignore if the latter; 

• If line contains a keyword then set relevant flag and read next line. Otherwise, 

process under existing flags; 

• Parse data according to flags and add to relevant structure in the current ETYPE. 

5.5.2 Model Storage 

JFMS models are stored in a vector of class NGOL - each model being a complete 

fiowsheet with associated variables and methods. This class must hold all the data 
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relating to the model and therefore all the data stored in a generic form in the ETYPES 

must be transferred to the specific instance of the model. The model is created by the 

createNGOL method and this must be adapted to reflect any changes in the basic 

ETYPE structure. Once the data is stored in the NGOL what is required depends on 

what the data is intended to do. Most data will need to be transferred to the Fortran90 

based application server and this is outlined below. 

5.5.3 Data Transfer to Application Server 

The Java method sendData is responsible for sending the data to the application server. 

In order to minimise the complexity of the transfer procedure the Java structures are 

broken down into their component real, integer and character vectors. Due to the differ-

ences in string handling between C and Fortran90 the string arrays are further broken 

down and transmitted as a series of separate strings. The functions addreal, addint 

and addstring receive the data and assign it to the appropriate Fortran90 structure. 
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ETYPE type name 
CONTAINS 

parent 1 
etc 

VARS 
variable name 	variable type 
etc 

EQNS 
equation name 

*ent ity  name 
etc 

[vector start] 	[vector end] 

*variable  name 

etc 
INIM 

equation name 
*entity  name 	*variable  name 
etc 

INSTANCE 
entity type 

instance name [size] 
etc 

etc 
FIXED 

*entity  name 	*variable  name 	slot 
etc 

ASSIGN 
*entity  name 	*variable  name 	slot 
etc 

CONNECT 
*ent ity  name 	*entity  name 
etc 

END 

{value} 

{value} 

• Entries in capitals are reserved key words; 

• Entries preceded by a star may contain wild cards or expressions requiring eval-
uation; 

• Entries in [] are integer values or refer to local integer variables by name, those 
in { } are real values. 

Figure 5.20: Generalised Structure of an ETYPE Data File 



Chapter 6 

Initialisation Methods 

6.1 Introduction 

State of the art models of chemical plants frequently involve upwards of 100,000 vari-

ables and equations. The resulting system is typically highly nonlinear and sensitive 

to small changes within the operating parameters. This results in a sharp increase in 

the difficulty of solution, both in terms of robustness, whether a solution is obtainable 

or not, and in the time taken to produce the solution if one is achievable. 

In order to maximise the chance of obtaining a converged solution some form of pre-

processing of the problem usually occurs. This can take several forms, as outlined 

below: 

• User given initial values for all variables; 

• 'Hot starts' - solving subsets of the problem and gradually combining these to 

produce the complete model; 

• Matrix Reordering; 

Within the chemical industry the user is generally aware of the approximate solution 

and has a good knowledge of the process being modelled. A package called REFORM 

94 
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(Amarger et al., 1992) was developed which aimed to capture this qualitative user 

knowledge and reformulate GAMS models on the basis of the resulting knowledge 

base. The reformulated model was found to be more robust and the efficiency of the 

optimisation algorithm is increased. 

To illustrate, 'Process systems' models are notoriously sensitive to both energy and 

material flow directions and often have well known behavioral patterns. An example 

of the latter is the temperature and pressure profile in a distillation column. We 

believe that while user participation is essential within the initialisation process a large 

amount of the basics can be automated. The user should be left to provide the essential 

direction, rather than actual values wherever possible. 

The method being proposed combines the mathematical and user driven approaches. 

The flowsheet is broken down into its component units and streams and a starting unit 

or stream for the initialisation identified. If this point is well specified or relatively 

simple to solve then an NLAE or optimisation method can be used. This is easily 

achieved in FMS due to the ability to extract sections of the equation and variable 

sets. Where the component is more complex, the generalised code for the unit will 

include an initialisation application to assist the user. 

The underlying structures and code to support this approach have been developed 

and are present within FMS. This chapter presents a number of possible initialisation 

methods and a potential implementation within FMS. It is hoped that this work will 

be continued with a view to validating the method proposed. 

6.2 Existing Techniques to Aid Convergence 

6.2.1 User Given Values 

Newton-based methods for solving highly non-linear problems are very sensitive to the 

initial values given. A poor set of initial values will often prevent the solution from 

converging; depending on the complexity and degree of non-linearity there is no need for 
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the model to be particularly large. Therefore, this level of initialisation will frequently 

be used on a unit by unit basis. There are several common options for initialising a 

variable set and these are outlined below. 

• Bounds based default value. The default value is set at the mid-point of the 

variables range, as defined by the upper and lower bounds. Can be off by several 

orders of magnitude from the final value. This is particularly the case for variables 

with no real physical limit where the allowable range must be almost infinite, e.g. 

heat exchanger areas. 

• User given default value. Still very general by its very nature but probably 

more accurate than the bounds based estimate. Usually applies across an entire 

fiowsheet, i.e. all flows are set to a default of 100 kmol/h. This has the advantage 

that the bounds can be kept relatively wide without affecting the initialisation. 

• User given local value. More specific again. This will generally apply to a single 

variable or possibly a sub-section of the flowsheet (i.e. all flows within the separ-

ation section are initialised at 75 kmol/h). Often it is at this level that the user 

must perform the bulk of the initialisation, frequently on a variable by variable 

basis. 

As with most current modelling packages, FMS works at the user given default and 

local value levels. This allows rapid allocation of non-vital default values with the 

ability to focus on and alter solution critical values. 

6.2.2 Hot Starts 

Process system models typically represent large sections of a chemical plant, if not 

the plant in its entirety. While a simple initialisation technique as described above is 

often sufficient for very small or simple problems it will often be defeated by larger, 

more complex ones. The traditional method in this case has been to solve subsets of 

the model, gradually adding new units to the model and building the desired model 
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in a piecewise fashion. This is often referred to as 'hot starting' a model - a large 

proportion of the model is already converged and only one or two units need to be 

solved for. Depending on the complexity of the new units it may be necessary to 

provide good initial values for their variables as well. 

6.2.3 Matrix Reordering and Decomposition 

It is sometimes possible to improve the robustness of a problem or to reduce solu-

tion times by reordering the equation matrix and decomposing the resulting matrix 

into blocks of equations and variables that can be solved independently. Traditional 

modelling techniques often result in a relatively random matrix and this can lead to 

problems in the Gaussian Elimination (GE) step. The most common of these is a result 

of a poorly formulated equation set known as singularity. In this instance, a row or 

column of the matrix is filled with zeros during the GE step and, as a result, it becomes 

impossible to calculate a value for the variable on which the row would otherwise pivot. 

Assuming that the model is well formulated, a random matrix often produces a large 

degree of fill-in during the GE step. This reduces the degree of sparsity within the 

matrix resulting in a reduction in the efficiency and robustness of the sparse solution 

methods. In the case of a random matrix, reordering is desirable in order to retain the 

sparsity of the matrix. 

There are two forms of decomposition: equation based and structural. Purely equa-

tion based methods (Stadtherr and Wood, 1984) involve decomposing the model into 

small subsets of equations. These subsets are either linear in their variables or can be 

reduced to solvable forms. Such methods work well where the model can be broken up 

into relatively small or easily solvable subsets. Frequently however, there are one or 

more large and complex irreducible blocks formed which retain much, if not all, of the 

solution's complexity. In these cases equation based decomposition methods are often 

of little or no assistance. 

The second form of decomposition is based upon the structure of the process that the 

model represents. One of the features of an object based modelling language such as 
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ASCEND (or FMS) is that the equation matrix is typically created on a unit by unit 

basis. This results in distinguishable blocks of variables and equations representing each 

unit and stream (Abbott et al., 1997). The work performed by Westerberg examined 

the reduction in solution times possible by exploiting the structure of such equation 

and variable sets. At the limit, such an approach tends towards a sequential modular 

solution method, the equations for each unit being solved simultaneously. This ap-

proach was initially implemented in ASCEND-TI (Locke and Westerberg, 1983). This 

however does not answer the problem of a large complex unit or section of plant which 

cannot be solved for even as an isolated model. 

It is proposed to add an initialisation method to the model description (EType in FMS) 

in order to capture the users knowledge of the unit in question and to automate the 

initialisation process. This should combine the benefits of the user's process knowledge 

(Amarger et al., 1992) and the structure of the model (Abbott et al., 1997). 

6.3 Project Outline 

The project proposes an automated initialisation package for use with the Flexible 

Modelling System (FMS) developed by the group. Two FMS related terms used within 

this report are Entity and EType. An entity is an identifiable object within the process 

such as a stream, reactor or distillation column with an associated set of equations and 

variables. An EType is a generalised description of an entity and is used to construct 

the model. 

The proposed solution imitates the decomposition of the fiowsheet into manageable sub-

components as typically performed by the user. This produces a list of entities, each 

of which is assigned a score based on how well described it is in the model formulation. 

Initialisation then starts at the best known entity which is then removed from the list 

and the remaining entities scores reevaluated. The process of initialising and re-scoring 

continues until the entity list is empty. 



CHAPTER 6. INITIALISATION METHODS 
	

99 

6.4 FMSJNIT 

FMSJNIT is the package developed to assist with the initialisation process. It contains 

a number of routines and data structures, each of which can communicate with the core 

FMS routines and through these any other attached packages. These are: 

. An active entity list; 

An entity scoring routine; 

A library of initialisation routines 

6.4.1 Active Entity List (AEL) 

An active entity is an entity which has not yet been initialised and is eligible for 

initialisation. The latter requirement removes entities representing objects such as 

distillation column trays or other unit internals from the list. These are removed from 

the AEL to allow, for example, the column to be initialised as a complete unit. In 

order to allow user written routines to initialise at a larger scale such as providing an 

initialisation routine for an entire plant section in order to handle a recycle, entities 

can be removed from the AEL by the user. Entities are removed from the AEL when 

they have been initialised and the process finishes when the list is empty. 

6.4.2 Scoring Routines 

In order to decide which entity to start the initialisation process at, the package requires 

some method of measuring how well 'known' an entity is. This measure is based on 

the total number of variables contained within the entity and then an analysis of the 

state of each of those variables. 

The states used within the package, in increasing order of confidence are: 
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. User given default value; 

. User given local value; 

. Value derived from FMSINIT; 

. Warm start derived from another solution; 

• Specification. 

Each state has a user given weight (Wi to W5) and each entity returns the numbers 

of variables of each state (Ni to N5) as well as the total number of variables (NT). 

The scoring routine produces a confidence ratio for the entity. This is the ratio between 

the actual score for the entity (S) and the highest possible score attainable. For the 

purposes of the package this is taken as being the score obtained if all the variables 

were specifications, i.e. NT * W4. 

S = N1W1 + N2W2 + N3W3 + N4W4 + N5W5 	(6.1) 

CR = S/(NTW5) 
	

(6.2) 

Once CRs have been obtained for all entities on the AEL, initialisation starts with the 

entity with the highest CR. Where two or more entities have the same CR the entity 

with the fewest variables is selected, unless the user wishes to override the choice. This 

maximises the chance that a higher fraction of the specified or otherwise non-default 

values are critical values and therefore increases the validity of the derived values. 

Some measure of ease of solution and likely accuracy of the solution is required in order 

to influence the choice of entity to initialise. Scoring as described above provides one 

such measure but others should be investigated. 

6.5 Initialisation Methods 

There are two methods used to initialise entities in FMSJNIT: sub-problem extraction 

and solution or user written application. Where the entity in question is small or 
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trivial to solve the user need not be involved in the initialisation process. In this case 

the former method is used. For complex structures ( e.g. distillation columns ) which 

require a large amount of initialisation the relevant EType will provide a link to an 

initialisation routine. This routine can perform a variety of tasks intended to assist 

the user. These can include short cut models of the unit, analysis of the results and 

iterative procedures for recycles. Where these methods fail or are not applicable a 

genetic algorithm approach has been implemented. 

6.5.1 Sub-problem Extraction and Solution 

The ability to extract sub-sets of the variable and equation sets allows extraction of 

the data for a particular unit. The application can use this to solve (or initialise) the 

model in a pseudo sequential modular manner, as is typically done manually. 

FMS extracts the equation and variable set for the given entity from the global lists and 

passes these to FMS-INIT. The specific function used is tailored for the application. 

JFMS provides a standard function (GrpVESubset in module jachess) to perform this 

function on a entity specific basis. 

In the simplest case the resulting system is square (number of equations is equal to 

the sum of the number of variables and specifications) and the system can be solved 

using one of the standard solvers. Assuming a solution is reached, the status of all 

non-specification variables is upgraded to that of an FMSJNIT variable and the entity 

removed from the AEL. Given the complexity of entities that will be initialised in this 

manner, being unable to reach a converged solution will almost definitely point to one 

of the following problems: 

• Conflicting specifications; 

• Too tight bounds; 

• Invalid equation set. 
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At that point the user is able to examine the variable and equation sets and alter any 

values that are causing problems. This process is repeated until a solution is obtained 

or the user exits the application. 

Where the problem is non-square the user must provide temporary specifications to 

allow solution (unless an optimisation method is used). These only take the status of a 

specification (state 4) for any calculations on the relevant entity, the rest of the process 

seeing them as user given local values (state 2) should the initialisation not produce 

output that the user accepts. FMSJNIT stores a list of these temporary specifications, 

allowing subsequent analysis by the user of decisions made during the initialisation in 

case they need to be changed. 

6.5.2 User Written Initialisation Routines 

As with the previous method, FMS extracts the relevant equation and variable set and 

passes these to FMS-INIT. The EType for the entity contains a slot for initialisation 

method and FMSJNIT passes the data to this method. Typically, this is an F90 

application, providing a range of short cut methods, analysis tools and access back 

to the core FMS routines and therefore any attached physical property packages or 

solvers. 

It is important to note however that since the routine is written in a standard pro-

gramming language there is no real limit on where the initial values are obtained from. 

Links exist between Fortran90 and a large number of modelling packages and standard 

physical property databanks and these can be called from within the routine. Hot 

starts can also be included from previously solved problems, one possibility being to 

build a library of 'standard' column profiles and to extrapolate a likely column profile 

for the specific column from the most similar process in the library. As with FMS, the 

intention has been to leave the application as general as possible. No restrictions are 

placed on how or where the user gets the values. 

As mentioned earlier, the entity in question need not be a single unit or stream. By 
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removing sub-components of, for example, the separation section of a plant from the 

AEL the initialisation could be performed at the level of the separation section. While 

the routine to do this would be more complicated than one for a single unit it has the 

advantage that it often promotes consistency within a larger area of the model and 

allows recycles to be included within the initialisation. A cautionary point that should 

be made is that the initialisation is intended to be a pre-processing step and not to 

produce a converged solution. This is especially important for sections or entities lower 

down in the AEL where their input values are based on many previous initialisations 

and therefore are only an approximation of their converged values. The aim here is to 

do as little work as possible before passing the problem to a standard solver and not 

to replace it. 

6.6 Optimisation Based Initialisation Methods 

Another possibility is to use an optimisation based method to perform the initialisation. 

Frequently this will involve the minimisation of a sum of absolute values of residuals, 

as illustrated in eqn 6.3 or a variation thereof. 

neq 
min.ConV 	= 	 c(x) 1 	 (6.3) 

subject to 

xlb1 <x1  <xub1  

Since optimisation methods can handle nonsquare problems, the user will not have 

to supply temporary specifications for the subproblem as with the methods described 

earlier. While this makes the system easier for the user, it removes the advantage of 

user knowledge to influence the initialisation. User knowledge could be represented by 

use of tighter bounds on the variables. 

Figure 6.1 illustrates this problem; where only the input is specified there are many 

solutions to the model, ranging from zero flow in stream B to zero flow in stream C. An 

optimisation based method would produce a valid answer but lacking the input from 

the user this may range from useful to useless with little to tell which. Suitable selection 
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Figure 6.1: Simple Mixer 

of termination criteria, in particular the acceptable values of ConV, are critical. Too 

low a value results in a converged solution being produced and is therefore too costly 

in terms of time; too high a value terminates the optimisation before the values are 

even close to where they should be. Such methods are therefore useful only where: 

. The user has no idea of what the system will do and any converged (or nearly 

converged) set of values are better than none at all; 

The sub-problem as it stands is numerically singular and no progress can be made 

using a deterministic approach. Partial or total optimisation using a stochastic 

optimisation method provides a possible way forward. 

Initial research focused on the use of stochastic methods as deterministic ones are in 

effect used as NLAE solvers once sufficient temporary specifications have been given to 

produce a sensible result. It would be possible to allow the user to set tighter bounds 

on certain values rather than specifications and then run such a method in order to 

obtain an initial state. This was not investigated but would allow a degree of user 

knowledge to influence the result. 
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6.6.1 Genetic Algorithms 

Genetic algorithms (Michalewicz, 1994) are a subclass of the stochastic optimisation 

methods available. They are based on the ideas of evolution and this section is intended 

to give a brief overview of the theory behind them. Evolution suggests that a species 

will change over time in response to external stimuli. Fitter members of the species, 

more suited to the environment, will be more likely to breed and pass on their genes to 

the next generation. The child gains a mixture of the parents' genes, hopefully leading 

to it being more adapted to the environment. Over time, members of the species die, 

either through old age or some other effect and this has the result of improving the 

species overall fitness. A basic genetic algorithm then works as follows: 

. Generate an initial population. 

. Assess the fitness of each member of the population in relation to some criteria. 

• Randomly select which members of the population breed, the probability of this 

happening being related to their fitness. 

• Generate the offspring. 

• Remove members of the population, the probability being inversely related to 

fitness, to keep the population at a given size. 

• Repeat from stage 2 until some termination criteria is met. 

The Population 

In the case of an equation based modelling system, each member of the population 

is a possible solution vector. In the initial population each individual is randomly 

generated while in later generations they will be produced as a combination of their 

parents' data. In order to reduce the memory and population size requirements the 

variables are generally discretized and their range reduced as far as possible. Population 

size is usually held constant over time rather than being allowed to vary randomly. This 
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prevents population explosions resulting in huge memory and processor requirements 

or population reductions leading to a loss of variation and poor quality results. The 

population size is critical to the quality of the result likely to be obtained however it 

is to be remembered that this is a stochastic method and therefore results are never 

guaranteed. 

Traditional GAs worked on a single population. Some research has investigated the 

use of multiple concurrent populations with limited transfer of individuals between 

populations. These are generally referred to as Island Hopping methods and attempt 

to reduce the tendency of populations to stagnate around a not particularly good 

solution. This is particularly common in relatively small populations or systems with 

a low mutation rate. Introduction of 'fresh blood' in the form of an individual or 

group from another population can provide the neccessary genetic variation to move 

the solution in a positive direction. It is not essential that the newcomers are fitter 

than the existing population per Se, merely that they are different. 

Fitness Criteria, Mating and Dying 

In order to select which members of the population breed and die within a given 

generation, GAs make use of fitness functions. These are a measure of how suitable 

an individual member of the population is to the current environment. Fitness could 

for example be assessed as how close to zero, and therefore converged, the sum of the 

absolute values of the constraint violations is. All members in the population can mate 

and /or die in a given time-step. Often, the number of children produced in a given 

generation will be fixed and therefore an equal number of individuals will die. Exactly 

which individuals mate or die is determined using a roulette wheel approach, based on 

their fitness. 
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Generating Offspring 

When the child is produced it inherits features (variable values) from both its parents. 

Most GAs will incorporate a small chance of mutation occurring, resulting in the child 

having data not held by either of its parents. Common methods of generating the child 

include either a random selection of values from the parent on a value by value basis 

or cross over of the values at a certain point. Some methods allow multiple crossover 

points or mixtures of the two methods. 

Pure GA based approaches rely entirely on the random generation of children. It would 

be possible to adapt this step, given knowledge of the equation set, to only alter values 

that cannot currently be solved for using the available solution methods. Variables 

whose values can be determined would be fixed and therefore not affected by the GA. 

6.6.2 EGG - Evolutionary Guess Generator 

Initial development of a GA based initialisation method produced some promising 

results for models with few free variables. As the number of free variables increased 

however it became increasingly difficult to produce acceptable results. This is due 

primarily to the immense size of the solution space present for even relatively small 

numbers of variables at a coarse level of discretisation. It is suggested that future 

research focus on stochastic optimisation methods such as SQP. 

6.7 Distillation Column Example 

This section presents a potential initialisation method for a distillation column. The 

following steps are proposed: 

• Perform an overall mass and energy balance; 

• Derive internal profiles from user chosen method; 
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. Allow user analysis of results; 

. Return values if acceptable. 

Frequently, the initialisation process chosen will depend on what is known about the 

entity. In the case of a standard distillation column there are three material connections 

to the rest of the plant: the feed, the tops and the bottoms. Different approaches are 

required depending on which of these three streams are well specified. At least one 

stream should have been initialised previously but preferably two or more before the 

column can be initialised. 

6.7.1 Overall Mass and Energy Balance 

Ideally, two streams have been previously initialised when the column comes to be ini-

tialised. In this case the mass balance around the column is simple: either a summation 

of the outlet flows to give the feed or a subtraction of one outlet flow from the feed 

to give the other. This produces values which will be consistent with the surrounding 

units and should be close to the final solution. 

Where only one stream is known, the user must supply sufficient extra information to 

perform the mass balance, supplying temporary specifications as in the sub-problem 

extraction method. One approach would be to: 

. Assume sharp separation and identify heavy and light key components; 

. Calculate resulting compositions and flows at top and bottom of the column; 

. Determine bubble point temperatures at top and bottom; 

. Calculate component enthalpy (hi) and Ki values at top and bottom; 

• Interpolate profile, e.g. linearly. 

This gives values which are consistent with the surrounding units and a valid mass 

balance for the column but will probably be at best a poor approximation to the final 
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result. This option is particularly sensitive to the user's knowledge of the process and 

is in effect a hot start for the column from a different process. The worst case is where 

all three streams have been initialised. The mass balance therefore becomes a check 

on the surrounding initialisations. In the unlikely event that the flows balance this is 

not a problem and the process continues. Where there is a mismatch the user must 

decide which stream or streams to alter in order to balance the column. Inevitably, 

this results in a break between the column and up or downstream units but at least 

produces a valid mass balance for the column. 

The overall energy balance can be performed at the same time. 

6.7.2 Column Internals 

The user would then be presented with a number of options for completing the rest 

of the initialisation. In the case of the rigorous, tray by tray column model this can 

involve a substantial amount of calculation. Possible options include: 

• Simple. All compositions and flows as feed; 

• Linear. Linear interpolation between feed stream and tops or bottoms as applic-

able; 

Lewis-Matheson (Lewis and Matheson, 1932). Standard L-M method, applied 

from tops to feed and then bottoms to feed; 

• Scaled Lewis-Matheson. As above but calculation stops at a tray where the liquid 

composition (probably defined as light key/heavy key ratio) is similar to the feed. 

The profile from the L-M method is then scaled to fit the actual number of trays 

in the column. 
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6.7.3 Analysis of Results 

Another advantage of having the initialisation routine connected to a specific EType is 

that the application can provide an analysis of the results. In the case of the column, 

the user may have supplied temporary specifications which result in trays running 

dry or which on viewing the results do not fit with the rest of the process. Because 

the application is column specific, it can be written to identify problems particular 

to columns (such as trays running dry) and can suggest alternative values for the 

temporary specifications. The user is free at this point to change any values they wish 

and to re-run the initialisation using any of the methods provided. 

Once they are satisfied with the results the values are returned to FMS and the initial-

isation process continues with the remaining units. 

6.8 Summary 

The core routines and structures required to implement FMSJNIT are present within 

JFMS and models have been written incorporating user written initialisation methods. 

Further work is required to validate the proposed approach. This should be considered 

a necessary piece of research as current methods are time consuming and frequently 

ineffective. 



Chapter 7 

Discussion and Future Work 

7.1 Evaluation of FMS 

7.1.1 Overview 

FMS provides a object-orientated modelling environment for rapid development and 

evaluation of modelling tools and processing techniques. It has been used extensively 

within the department for this purpose at both undergraduate and postgraduate level. 

In effect, it acts as an interface between applications, the core model data and the user 

written methods embedded in the model. 

FMS has adapted to incorporate the feedback from these other projects and has there-

fore developed beyond the initial, hard-coded utility system modelling package. The 

environment as it stands it truly generic and readily extensible both at a model defin-

ition level and in terms of functionality as provided by attached applications and in-

ternal methods. It satisfies the requirements for modelling environments as described 

in chapter 2, providing the ability to: 

• Develop and build large and complex models; 

• Access and manipulate model data; 

• Apply methods and applications to the model; 

111 
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. Add new methods and applications; 

. Add new data structures; 

• Operate as a stand-alone application or provide modelling capability within an 

existing system. 

7.1.2 Use of FMS 

Throughout the development of FMS it has been used by other researchers within 

the School of Chemical Engineering to satisfy their modelling or research needs. The 

most notable of these is a recently completed PhD thesis (Rodriguez-Toral, 1999). A 

number of final year honours research projects have also been carried out. These have 

evaluated FMS as a modelling language both in terms of functionality and usability 

and produced some novel applications and extensions to the language as well. An MSc 

project (Felton, 1996) used an early version of FMS to test models before developing 

hardcoded Fortrari90 routines to continue the work. This section outlines the work 

performed in these projects and the effect they have had on the development of the 

system. 

Synthesis and Optimisation of Utility Systems 

As this project's focus moved more towards the actual modelling language and envir-

onment rather than the modelling of utility systems a colleague took over this area of 

research. This project focussed on the modelling of combined heat and power systems, 

an area of increasing industrial interest as efficiency gains through heat integration 

become more and more important. Typically these systems involve complex networks 

of heat exchangers, compressors, turbines and associated units and so they are ideally 

suited to the equation based modelling approach. 

Two main areas were studied: the optimisation of fixed structures with in excess of 3000 

variables using Sequential Quadratic Programming (SQP) methods (Rodriguez-Toral 

et al., 1999a) and the synthesis of similar sized problems using an MINLP (Mixed 
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Integer Non-Linear Programming with Branch and Bound) solver (Rodriguez-Toral 

et al., 1999b). During the course of the project a large number of models were developed 

but the main area of interest as far as this report is concerned was the addition of integer 

variables to FMS to allow an MINLP solver to be connected by an independent user. 

This highlights the extensibility of the language and shows that the initial requirements 

of the project were met, namely that: 

• The system should allow easy addition of new applications. 

• It should be possible for the user to extend the functionality of the language, 

either through adding new keywords to the input language or allowing additional 

modelling information to be provided at the Application Server level. 

Current versions of FMS have the facility to handle integer variables. Use of data files 

or other input at the application server level is a useful method of satisfying highly 

application specific modelling requirements or to rapidly construct and test new data 

structures. This avoids having to alter the JFMS core, leaving the basic modelling and 

model manipulation routines untouched. It also allows users unfamiliar with Java or 

C programming to extend the language without having to either extend existing code 

or indeed produce new code in an unfamiliar language. 

Honours Research Projects 

The first FMS undergraduate project (Griffiths, 1997) concluded that FMS provided 

a useful modelling tool but required extensive changes to the user interface. This led 

to the development of the GUI used in JFMS and all subsequent projects have been 

based on this variant of the system. 

A problem that occurred frequently during this project and indeed in subsequent work 

was errors being made in the equation subroutines. Generally this would be incorrect 

calculations for first or second derivatives, either in the actual value of the derivative or 

in its position in the vector. Occasionally this was the result of incorrect differentiation 
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in the first place although more commonly it was simply a coding error. Traditionally, 

the data would have to be analysed manually and in a large model this is extremely 

time consuming. 

Two projects have looked at this problem (Farrell, 1998) and (lordanis, 1999), produ-

cing an equation routine verification package and an automated equation routine writer 

respectively. Work by Farrell produced an equation routine verification package called 

MICE (Model Information Checking Engine). This package verified the supplied first 

and second derivative information by performing finite difference style perturbations to 

the variable set and comparing the result to that predicted by the residual equation. A 

stand alone equation routine generator was produced in Maple by lordanidis. This uses 

Maple to find derivative information for a function 1(x) [in f(x) = 0] and produces the 

Fortran90 code for the methods required by JFMS. Some changes are needed within 

JFMS to fully implement the code produced. These applications are useful tools and 

have the potential to dramatically reduce the time required to produce working models. 

Other recent projects have evaluated the proposed initialisation methodology (Co-

chrane, 1999) and used JFMS to evaluate optimisation methods (Verbeek, 1999). FMS 

provides a useful tool, both to develop complex models of processes and to develop and 

test new applications. These projects have assisted in the development process and 

have proved that the initial aims of the work have been satisfied. 

Applicability of FMS 

The approach described in this thesis is appropriate for users familiar with the concepts 

of equation based modelling and with a reasonable level of mathematical programming 

ability. FMS has been successfully used in advanced projects at both PhD and MSc 

levels. These projects have required extensive user involvement, including: 

• Complex model development; 

• Development and addition of new methods and applications; 
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. Addition of new language constructs. 

Therefore, it has satisfied the primary requirement for the work: to support the de-

velopment of novel processing, solution and optimisation methods by researchers with 

post-graduate or more advanced experience in the field. 

While the system is usable by undergraduates, addition of new methods and applic-

ations has proven difficult. This is due mainly to the levels of abstraction required 

within the model definition and storage in order to guarantee true flexibility. This 

is further complicated by a lack of familiarity with scientific programming in general 

and, specifically, equation based modelling. However, feedback from undergraduate 

users has indicated that FMS can be used effectively to develop complex models with 

relatively little support. 

7.1.3 Use of Methods 

Methods have proven an extremely powerful and flexible way of embedding function-

ality within models, supporting the predictions made within the ASCEND project 

(Abbott, 1996). Providing a common interface to represent equations of any com-

plexity, access external applications and databases or call task specific user written 

subroutines from a generic model is both useful and novel. The ability to reuse ex-

isting, non-JFMS format models widens the scope for this approach immensely and 

answers the requirement identified by Westerberg (Westerberg and Benjamin, 1985) to 

reuse existing models, regardless of format. Given even a limited knowledge of Fortran 

or C it is possible for the user to customise the behaviour of their models within a 

standard language and gain access to existing models and applications. 

Once written, methods are easily re-used, providing a known and debugged capability 

to other, possibly less experienced, users. This must be balanced against the increased 

overhead in terms of development of specific methods when compared to the current 

standard packages supporting direct entry of equations assisted by equation parsers 

and automatic differentiation. 
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While most equation-based modelling environments such as ASCEND and gPROMS 

started out with relatively simple languages and a 'no-coding' philosophy, as their 

functionality increases so does their similarity to a high level programming language. 

The enhanced modelling support derived from such object-orientated, hierarchical ap-

proaches cannot be denied but it can also be argued that the aim of producing an 

'out of the box, no coding required' modelling language has produced a high level pro-

gramming language of its own, albeit one tailored to the description of equation-based 

models. It is interesting to see interfaces for such packages being incorporated into 

process design environments as this is typically intended to reduce the complexity of 

the modelling process from the user's perspective. 

Analysis of large equation sets produced by such hierarchical modelling languages (Al-

lan and Westerberg, 1999) suggests that for a system of 100,000 equations typically 

less than 100 unique equation forms will exist. The method proposed searches the 

model to determine the minimal set of equations required to represent the process and 

then compiles these into C code for use in ASCEND IV. This relates well to our own 

experience that suggested that after the initial work in writing methods is complete 

only very application specific methods were developed. 

In order to support the reuse of methods and models it is essential that users have 

access to properly documented libraries of existing code. This was done in an informal 

way within the department but it is clear that this aspect of modelling needs to be 

formalised (Allan, 1998). 

7.2 Future Work 

7.2.1 Modelling Environment 

Thin Client Architectures 

Modelling environments should take account of the developments being made in net- 

work computing and Internet based applications in general. FMS provides an initial 
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basis for developing a true thin client based modelling capability 

The rigid separation of the GUI and model definition modules from the processor 

intensive underlying analysis and solution methods allows use of cheap, low powered 

PCs to perform the user intensive model definition and manipulation. The processor 

intensive work can be performed on a remote, high powered computer with the required 

applications and licenses. Such an approach allows many users to share the costs of 

expensive items such a high-performance computers and licenses for advanced software 

applications whilst maintaining the ability to work in a distributed fashion. 

Equation Representation 

All equations within FMS are represented using methods. While this approach has been 

proven to be extremely effective at embedding complex functionality within models, it 

is arguably inappropriate for describing simple equations. 

Most existing modelling environments provide the user with the ability to define an 

equation directly within a model, supporting this functionality with underlying parsing 

and automatic differentiation routines. This reduces the time spent in initially defining 

the equation but looses the efficiencies gained in terms of code re-use and debugging. A 

hybrid approach is therefore recommended, allowing the user to define simple equations 

within the modelling language while retaining the ability to embed methods in order 

to represent more complex functionality. 

7.2.2 Initialisation Methods 

The initialisation methods outlined in chapter 6 are promising but, due to lack of time 

have not been properly investigated. Use of an object orientated modelling language 

such as FMS, ASCEND or gPROMS provides a structure to the resulting variable and 

equation sets that can be exploited. Decomposition of the model into its' component 

blocks allows solution or initialisation on a block by block basis, mimicking the processes 

currently used by modellers to derive initial values for their models. Automation of 
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this process is a logical starting point for computer based initialisation methods. 



Chapter 8 

Conclusions 

The approach adopted is suitable for users with a computing and equation based mod-

elling background and supports the development and evaluation of complex and novel 

modelling tools and model types. While it can be used by less experienced users to 

develop and manipulate existing models it is not really designed to be used in this 

style. FMS is best used to experiment with different model formulations or to rapidly 

develop, connect and test novel processing techniques requiring new data structures or 

language features not available in the more main stream modelling environments. 

This extensibility arises from the design of the application. FMS as the core, unex-

tended environment provides a means to represent only high level information about a 

model; the components in the model, the public variables and specifications, the ability 

to declare methods which interact with the model in some way and an interface to link 

external applications to. This is effectively the minimum set of data required to specify 

and manipulate a process model, with FMS acting as the interface between the model 

data, methods and applications. 

As has been demonstrated by other languages in the field, most real advances in model 

formulation, solution or optimisation methods require at least some modification of the 

modelling language. This is frequently time consuming, complex and best done by the 

original development team. In a situation where the changes to be made are rapidly 

changing as research develops such an approach is not realistic. It is envisaged that an 
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environment such as FMS be used to evaluate the changes during development with the 

main stream modelling environment only being updated once the changes are finalised. 

Research effort should focus on research, rather than on extending the tools 

The environment and language's functionality is determined by the available methods 

and attached applications. The functionality provided by the methods is that of a full 

featured, high level programming language such as FORTRAN90 or C rather than the 

subset (simple do loops and possibly conditional blocks) that are typically mapped 

into a modelling language. The FMS language itself is therefore extremely simple and 

stable but a user does require the ability to program in a high level inaguage. 

One of the key requirements identified by researchers in the field is the ability to reuse 

models. Given the number of existing applications, models and databanks any closed 

modelling environment that attempts to enforce a single model format will not be used. 

The expense of converting and debugging large models is simply too great and therefore 

the ability to handle mixed format models is critical. 

Methods provide a powerful way of embedding complex functionality within a simple 

language. This includes: 

• Analysis routines; 

• Initialisation routines; 

• Calls to external applications and libraries; 

• Description of equations; 

• Model specific output; 

• Calls to non-standard format models; 

• Internal solution steps. 

It is hoped that FMS will prove useful within the department and continue to be used 

to support the development of novel solution and processing tools. This thesis presents 
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the development of FMS, its data structures, modelling language and method and 

application interfaces with the intention that it be usable by future researchers. 



Appendix A 

JFMS User Guide 

A.1 Introduction 

This appendix contains the user guide for JFMS, the Java based Flexible Modelling 
System. Model building is discussed in chapter 5, further appendices detail method 
writing and the addition of new applications. 

JFMS can be used as both a stand-alone modelling package and to provide modelling 
capability within another application. The following sections outline the steps required 
to use JFMS in both modes. 

A.2 Software and Operating System Requirements 

JFMS runs under Solaris 2.5.1. It requires the following software: 

• Java 1.1 or newer; 

• Fortran90 compiler (currently epcf9O); 

• C / C++ compiler (currently gcc); 

• XEmacs. 

A.3 Installing the Software 

The current version of JFMS is stored in /home/dave/jfms_arch. 
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In order to assist with the installation process two batch files have been created. These 
are importFMS and compFMS and are stored in /home/dave/ FMS ..bits. The user 
should create a FMS directory within their own account and run first importFMS 
and then compFMS in their FMS directory. This will create the necessary directory 
structure for the basic installation of JFMS, copy across the relevant files and compile 
the package locally. 

The basic installation provides: 

• GUI; 

• Model building routines; 

• Application server; 

• NLAE Solver; 

• Equation Analyser; 

• Filter SQP; 

• NAG Sparse Linear Solver. 

A.4 JFMS as a Stand-alone Modelling Package 

A.4.1 Starting the Application 

Start JFMS by typing java FMSTop in the local FMS/GUI directory. It is recom-
mended that this be done through an XEmacs shell as this allows easier control of any 
text output from the package or attached applications. 

The Control Panel, as illustrated in figure A.1 is the window that appears. Initially 
all the lists (Variable Types, Entity Types and Models) will be empty apart from the 
[Add New] entries. 

A.4.2 VTypes and ETypes 

Adding to the GOL - Generic Object Library 

VTypes should be added before ETypes as some initial parsing is done when ETypes 
are entered into the system. 
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- JavaFMS: Control Panel 

variabe Types Entity Types 	 Models 
Read Type File ..•-. 

Iss_tray 	 R-101 
size sstest 	 0-102 

Build Model 
moles vss_tray 
molar—flow fss_tray_base 
fraction lf_lss_tray 
temperature If_vss_tray 

QUIT real vf_vss_tray 
energy vf_lss_tray 
pressure fsstest 

Delete Model enthalpy con denser 
entropy ed 

par—re boil 
tot-reboil 
me b_test 

II 	 I 

Figure A.1: JFMS Control Panel 

Typically, VTypes and ETypes will be defined in existing text files (.vt and .et respect-
ively). These can be added into the system through the File Handler window, opened 
by clicking on the Read Type File button on the Control Panel. File names can be 
entered directly into the text box or can be located using the Browse button. In the 
browser, the left column shows available .vt and .et files in the current directory while 
the right one shows the currently selected files. The user can navigate through the 
directory structure and select multiple .vt and .et files. Files are chosen by selecting 
the filename in the left hand list and clicking on the Add Selected button. When the 
selection is complete the user should click the OK buttons until focus returns to the 
Control Panel. 

VTypes and ETypes can also be added to the library by double-clicking on the [Add 
New] entry in the relevant list. This initiates the VType Editor (figure A.3) or EType 
Editor (figure A.4) as appropriate. 

Editing and Viewing VTypes and ETypes 

Double-clicking on an existing VType or EType initiates the appropriate Editor. These 
allow the user to view and edit existing types and create new ones. It is important 
that new types are given unique names. New types defined are saved in a .vt or .et file 
of the same name for later re-use. 
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Variable Type  

Name 
Far-r, 

Lower Bound 1.0 

Upper Bound 1'ii.O 

Initial Value I)0 
Scale Factor : 	 .o 

Update 	 Close 

Figure A.3: VType Editor 

71 	 Entity Type 

Name 	 Contains 

Variables Equations 	 Instances Connections 

F moldr _flovi surn_x 
x fraction 	1 A 	 ncomps 
h enthalpy 	1 . 

T temperatur' 
P pressure 	1 

riiTr: ri 	IIIiIL... JT T_ 
Assign Specs 	 Objective  

Li 74  
rTTTi 	- 	 r1 

Update 	Close 

W 	 . 	. 	. 

Figure A.4: EType Editor 
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Variables 	29 	
Model Items 

re b_test 

Variable Display Filters: 	Display Vars 	
reb_test.0 
reb_testC.vap_out. 
reb_test.C,liq_in 

	

Item Name 	
reb_test.C.liq_out 

Var Name 

Eqn Calls 	1 13 	 Eqns 

Specs 	10 	 Specs 	 CloseApply Method 

Method 	Equation Ar'i.lyser 

Figure A.5: Model Handler 

appears in the Models list. Multiple models can be held in the NGOL vector allowing 
the user to switch between models quickly. Double-clicking on a model name in the 
Models List opens the relevant Model Handler (figure A.5). 

Manipulating Models 

The Model Handler shows: 

• Number of variables; 

• Item and Variable Name filters to apply to the variable set; 

• Number of Equation (method) calls; 

• Number of Specifications; 

• Item List; 

• Pull down list of available applications. 

The Item List is a list of the component models within the global model. Double-
clicking on an item opens up the Variable Editor (figure A.6) and displays the variables 
for that component. This has the same effect as entering the item name in the Item 
Name text box and then clicking on the Display Vars button. Item and Var Names 
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Model Variables 

Output to File I 	File Name 

8 reb_test.C.vap_out:F 100 00 500 100 	 All 
S reb_testC.vap_out:x.1 0.5 0.0 1 0.5 	 , 	 Selected 
10 reb_test.C.vap_out:x.2 0.5 0.0 1 0.5 	 Fix 
1 1 reb_test.C.vap_out:x.3 0,5 0.0 1 0.5 	

" 	 Assiin 
12 reb_test.C.vap_out:h 2E+004 —10E+005 10E+005 5E+004 
13 reb,test.C.vapout:T 300 300 600 450 

t 	14 rebtest.C.vap_out:P 100 100 300 250 

Value 
Lower Bound 
UDDer Boun'i 
Scale Factr 

CIse 	Apply 	OK 	Reset All 	Value: 

Figure A.6: Model Variable Editor 

can be specific instances such as reb_test.0 and reb.test.C.liqin or wild-card based 
such as *.liqin  to find all components whose name ends in liqin. 

The Variable Editor allows the user to view and alter the variable set or to output 
the current view to a file. Variables are chosen from the list on the left and buttons 
on the right control what happens when the changes are applied. Changes can be 
made to either all the variables or just those currently selected, to value, upper and 
lower bound or scale factors. Specifications can also be declared through this editor 
or the Specifications Editor (figure A.7). The display shows: variable id number, item 
name, variable name, current value, lower bound, upper bound and scale factor for 
each variable. 

Calling Applications 

The current model can be passed to an application such as a solver or optimiser. The 
application is selected from the pull down list and then initiated by pressing the Apply 
Method button. The model data is then transferred to the Application Server and 
control passes to the applications own interface. When processing finishes, the focus 
returns to the Model Handler window. 



reb_test:ncornps 3.0 
reb_test:cid.1 10 
reb_test:cid.2 20 
re b_test:cid.3 30 
reb_test,C,liq_in:F 100,0 
reb.test.C,liq..Jn:x,1 0,15 
reb_testC.liqin:x,2 0.4 
reb_test,C,liq_in:T 400.0 
reb_test,C,liq_iri:P 180.0 
reb_test,CWq_outF 55.0 

I 
Specification s  

Spec Filters 

Item Name 	11 
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Variable Name 

Value 

Close 	Add from Filter 	Delete Selected 
	

Change Selected 

Figure A.7: Model Specifications Editor 

A.5 JFMS as an embedded Modelling Capability 

JFMS model building and processing routines can be called from within a host applic-
ation. The host application must have access to the local FMS directories and will call 
java methods from within the GUI directory. The embedded modelling capability can 
be provided in two forms: 

• Using the JFMS Model Building Routines and Application Server; 

• Using the Application Server alone. 

A.5.1 Using the JFMS Model Building Routines and Application 
Server 

Where the user wants to produce models using the JFMS MDL it is necessary to use 
both the JFMS Model Building routines and the Application Server. It is assumed 
that the .vt and .et files are already written or are produced by the host application. 
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toyBox = new ModelBoxO; 
toyBox.gO.readVTF ( ''{\em vtypes.vt}'' ); 
toyBox.gO.readETF ( ''{\em etypes.et}'' ); 
toyBox.createNGOL ( ''{\em R-1011'' , "{\em Reboiler}" ); 
toyBox.execProcess ( ''{\em R-1011" , ''{\em process}" , \newline ' < {\em results 

Figure A.8: Code Required to Execute JFMS Models from a Host Application 

The functions required to initialise and build a model are held within FMS/GUI. The 
function calls in figure A.8: 

• Initialise the model library as a structure called toyBox; 

• Read VTypes from a file vtypes.vt; 

• Read ETypes from a file etypes. et ; 

• Create a model called R-101 from the Reboiler EType; 

• Pass the model to the Application Server for processing by application process; 

• Output the results to a file results. dat. 

A.5.2 Running the Application Server Alone 

The data structures in the Application server are a mirror of those in the core model 
definition described in chapter 4. If so desired, these can be directly populated by the 
user, avoiding the need to produce JFMS .vt and .et files or use the provided model 
building routines. This allows the user access to all the applications and methods and 
allows JFMS to be used as a modelling capability within another modelling package. In 
this role, the user obtains Jacobian, hessian nad residual values from the JFMS model 
which are then integrated with the host modelling environment for solution. 



Appendix B 

Methods 

B.1 Method Library 

The user written methods are accessed through a Fortran90 subroutine called eqnhandler. 
This routine is held in the FMS/F90FMS local directory and is based around a case 
construct. Methods were originally used solely to represent equations, hence the sub-
routine name. Eqnhandler takes the form shown in figure B.1, new methods should 
be added in the same format as the equality and sumx methods shown in the figure. 

Where a large number of methods have been declared re-compilation becomes time 
consuming and, depending on the compiler used, the CASE structure may not be able 
to handle the number of options. This can be avoided by the use of prefixes identifying 
families of methods and altering the Method library as shown in figure B.2. The 
subroutines std-methods and m12-methods are themselves method libraries. 
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subroutine eqn_handler C jpt , eq_name , iv , rv , nj , nh , & 
r , rc , jc , hc , oc ) 

use add2jhl 
type C t_list ) :: jpt 
integer 	:: iv, nj , nh , r 
real 	:: rv 
character(100) :: eq_name 
logical 	: : rc , jc , hc , oc 

select case ( eq_name ) 

case ( 'equality' ) 

call equality ( jpt , iv , rv , nj , nh , r , rc , jc , hc , oc ) 

case ( 'sum-x' ) 

call sum_x ( jpt , iv , rv , nj , nh , r , rc , jc , hc , oc) 

case ( 'none' ) 
!! ignore no eqns declared 

case default 
print*,'No such method : ', eq_name 
stop 

end select 

end subroutine 

Variable Name 
jpt 
eq.name 
iv 
rv 
ni 
nh 
r 
rc 
ic 
hc 
oc 

Description 
Internal JFMS variable 
Method name 
Pointer to the variable list for the method within the fms_eqn vector 
Real value 
Current number of Jacobian elements 
Current number of Hessian elements 
Current number of equations declared 
Logical variable controlling whether residual is calculated 
Logical variable controlling whether Jacobian is calculated 
Logical variable controlling whether Hessian is calculated 
Logical variable controlling whether function value is calculated 

Figure B.1: Basic Method Library Format 

B.2 Writing Methods 

Methods are used to embed functionality within the ETypes and resulting component 
models. There are two classes of method, namely: 
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select case ( eq_name(1:3) ) 

case ( 'STD' ) 
call std-methods ( jpt , eq_name , iv , rv , nj , & 
nh,r,rc,jc,hc,oc) 

case ( 'ML2' ) 
call ML2_methods C jpt , eq_name , iv , rv , nj , & 

nh,r,rc,jc,hc,oc) 

case default 
print*,'No such method / family : ', eq_name 
stop 

end select 

Figure B.2: Large Method Library Format 

. Methods Representing Equations; 

. Methods as an Interface to External Packages and Models. 

B.2.1 Methods Representing Equations 

Many methods are used to define equations. This section provides a standard template 
for such methods and gives examples of equation methods. There are three core JFMS 
functions to handle Jacobian, Hessian and residual data. Each function adds a new 
element to the appropriate vector for the global model. Use of these functions is 
demonstrated in the following examples but for reference the calling statements are: 

. rhs_Iist ( jpt , r , val , sv) 

. jac_lists ( jpt , nj , r , col , val , elt ) 

o hess_lists (jpt , nh , row , col , r , val ) 

The logical flags jc, rc, hc and oc were initially intended to optimise the processing of 
large models in applications that did not always require all of the data to be recalcu-
lated. While this is still usually the application of these flags, it is possible to use them 
simply as control flags in methods not dealing with Jacobian and similar data. 

Equation Method Template 

subroutine template (jpt , iv , rv , nj , uh , r , rc , jc , hc , oc) 
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use add2jhl 
type C t_list ) :: jpt 
integer 	iv, nj , nh , r , elt , row 
real 	:: rv 
character 	eqt 
logical 	:: rc , jc , hc , cc 

!! Increment number of equations 

r = r + 1 

if ( rc ) then 

Calculate residual if rc = true 

val = [calculate residual] 
sv = [calculate eqn scale factor] 
call rhs_list ( jpt , r , val , sv) 

else 
end if 

if ( j  ) then 

Calculate Jacobian if jc = true 

!! Increment number of Jacobian elements 

nj = nj + 1 

col = [set variable number] 
val = [calculate derivative] 
elt = [set to 1 if fixed, 0 if variable] 
call jac_lists ( jpt , nj , r , col , val , elt ) 

else 
end if 

if ( hc ) then 

Calculate Hessian if hc = true 

Increment number of Hessian elements 

nh = nh + 1 
row = [set row number] 
col = [set column number] 
val = [calculate second derivative] 
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call hess_lists ( jpt , nh , row , col , r , val ) 

else 
end if 

if ( oc ) then 

!! Return value of x 

rv = [calculate function value] 

else 
end if 
end subroutine 

Equation Method: a - (b/c) = 0 

subroutine ainb_c (jpt , iv , rv , nj , nh , r , rc , jc , hc , oc) 
use add2jhl 
type ( t_list ) :: jpt 
integer 	:: iv, nj , nh , r , elt , row 
real 	:: rv 
character 	:: eqt 
logical 	: : rc , jc , hc , oc 

!! Declare extra variables as necessary 

real : : a , b , c , val , sv , as , bs , cs 
integer :: col , apos , bpos , cpos 

sv = 0.0 

Determine which variables are to be processed. 
!! Call for this routine within the EType takes the form: 

!! EQNS 
!! amb_c 

a 
!! 	.b 
!! 	. 	c 

!! These entries are parsed and the specific variable id number stored 
!! in fms_eqn. When a method is called, iv stores the index before the 
!! first of the relevant entries in fms_eqn. The first variable id number 
!! is therefore stored in fms_eqn ( iv + 1) and so on. 
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!! apos, bpos and cpos are declared and their values calculated for 
!! convenience. These are known as VARIABLE INDICES. 

apos = fms_eqn ( iv + 1 ) 
bpos = fms_eqn ( iv + 2 ) 
cpos = fms_eqn ( iv + 3 ) 

!! Each variable has a value and local variables a, b and c are declared to 
!! store the current values from the global variable set, fms_vars. This is 
!! referred to as UNPACKING 

a = fms_vars ( apos ) 	'I value 
b = fms_vars ( bpos ) % value 
c = fms.vars ( cpos ) 	'I, value 

If the fms_sys'hrecalc flag is true then the equation set is being rebuilt. 
Scale factors for the variables and the equation are determined the first 

!! time round. 

if ( fms_sys °hrecalc ) then 

as = fms_vars ( apos ) 	'I scale 
bs = fms_vars ( bpos ) 	'I. scale 
cs = fms_vars ( cpos ) 	°h scale 

if ( c 1= 0.0 ) then 
sv = max ( abs(fms_vars(apos) °hscale) , & 

abs ( fms_vars(bpos) °hscale / fms_vars(cpos)%scale ) ) 
else 
sv = abs(fms_vars(apos) °hscale) 

end if 

else 
end if 

!! Before an equation is added, the row counter r should be 
!! incremented. This applies when adding Jacobian and Hessian] 

elements as well (nj and nh). 

r = r + 1 

If jc is true then calculate the Jacobian elements 

if ( j  ) then 

!! This is the derivative of the function wrt variable a 
nj is the Jacobian element number; 
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!! col is the column in the Jacobian that the element belongs in; 
!! val is the derivative value; 

elt is set to 1 as the derivative is a fixed value 
(set to 0 if it is variable) 

!! This is repeated for each variable in the equation. 

nj = nj + 1 
col = apos 
val = 1.0 
elt = 1 

!! Each element needs to be added to the global Jacobian vector. 
This is done by calling jac_listsO. Similar functions exist for 
residual and Hessian elements. 

call jac_lists ( jpt , nj , r , col , val , elt ) 

nj = nj + 1 
col = bpos 
val = -1.0/c 
elt = 2 
call jac_lists ( jpt , nj , r , col , val , elt ) 

nj = nj + 1 
col = cpos 
val = b I C c*c  ) 
elt = 2 
call jac_lists ( jpt , nj , r , col , val , eli ) 

else 
end if 

if ( rc ) then 

!! If rc is true then calculate the residual 

val = a - b / c 
call rhs_list ( jpt , r , val , sv) 

else 
end if 

if ( hc ) then 

!! If hc is true then calculate Hessian contributions 

nh = nh + 1 
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row = bpos 
col = cpos 
val = 1.0 / ( c * c ) 

call hess_lists ( jpt , nh , row , col , r , val ) 

else 
end if 

end subroutine 

Equation Method: Equations involving vectors 

This example illustrates the recommended approach to dealing with equations involving 
vectors. The code has been simplified to concentrate on the vector handling. 

!! The equation is: F - sum ( molar flows ) = 0 and is declared as: 
EQNS 
mfsum 

ncomps 
!! 	.F 
!! 	.mI.* 

!! fms_eqn therefore holds indices for 
!! ncomps, F, mf.1, mf.2, ..., mf.ncomps 

H declare variables as before. 

integer :: ncomps, mf_base , F_base, comp , col 
real:: mf, F, sum ,val, sv 

!! ncomps does not appear in Jacobian etc and so only its value 
!! need be stored. 

ncomps = nint(fms_vars(fms_eqn(iv+l))'hvalue) 

!! F_base is the variable id number for the flowrate variable. 

F_base = fms_eqn(iv+2) 

I mi_base is set to the index before the 1st molar flow. The index for 
!! mf.1 is therefore mi_base + 1 and so on. 

mi_base = iv + 2 

!! Determine current value of F. 
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F = fms_vars(F_base)%value 

sv = 0.0 

r = r + 1 

if ( rc ) then 

!! Calculate residual 

sum = 0 

do comp = 1 , ncomps 

!! A value for a specific molar flow is determined using the 
!! format below: 

stE = fms_vars( fms_eqn ( stE_base + comp ) ) °hvalue 

sum = sum + mf 

sv = max ( sv , abs (fms_vars( fms_eqn ( m±-base + comp ) ) °hscale ) ) 

end do 

val = F - sum 
sv = max ( abs ( fms_vars(F_base) °hscale ) 	 , sv ) 

call rhs_list ( 	 jpt 	, r 	, 	val 	, 	sv ) 

else 
end if 

if ( j  ) then 

Calculate Jacobian 

nj = nj + 1 
col = F_base 
val = 1.0 
elt = 1 
call jac_lists ( jpt , nj , r , col , val , elt ) 

do comp = 1 , ncomps 

nj = nj + 1 
col = fms_eqn C mf_base + comp ) 

val = -1.0 
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elt = 1 
call jac_lists C jpt , nj , r , col , val , elt ) 

end do 
else 
end if 

end subroutine 

Equation Methods Summary 

JFMS provides the three core functions required to create Jacobian, Hessian and re-

sidual vectors for the global model. A method is called from a specific component in 

the global model with a pointer in to the fms_eqn vector which provides the indices for 

the specific variables. These indices can be used to locate the specific variables within 

the variable set, fins-vars. 

The structure used within the method subroutine is user defined, the previous examples 

demonstrate structure that has been used within the group and should therefore be 

considered as illustrative rather than prescriptive. Equation methods can therefore 

be written to suit the application that they are intended for - if Jacobian, Hessian or 

residual vectors are not required then there is no need to code them. 

B.2.2 Methods as an Interface to External Packages and Models 

Interface methods are called from components in the global model in exactly the same 

format as equation methods. In this instance however, processing is to be done by an 

external package or model rather than from within JFMS. This process is described at 

a high level below and then illustrated using an example method linking to an external 

physical property package. 

As with equation methods, the exact form and purpose of the interface method must 

be tailored to suit the users requirements. Assuming that the external package is being 

used to return Jacobian, Hessian and residual data the steps required are: 
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. Declare any temporary variables required; 

. Derive variable indices and unpack the variables as described in example 1; 

. Convert variables to the appropriate units used in the external package; 

. Translate variables from JFMS variable format to the format required in the 

external package; 

. Call the external package; 

. Translate results back to JFMS variable format; 

. Convert variables back to the units used by JFMS; 

. Store Jacobian, Hessian and residual values as before; 

. Delete any temporary variables. 

Calculation of Liquid Enthalpy Using an External Method 

subroutine liquid_enth ( jpt , iv , rv , nj , nh , & 
r , rc , jc , hc , oc) 

use add2jhl 
type ( t_list ) :: jpt 
integer 	:: iv, nj , nh , r , elt , row 
real 	:: rv 
character 	eqt 
logical 	:: rc , jc , hc , oc 

!! Declare temporary variables 

real , allocatable :: dhcalcdx(:) 
real , allocatable:: x(:) 
real :: hcalc, dhcalcdt, dhcalcdP, hl,T ,P ,real_val, val , sv 
integer :: ncomps, comp , col , hipos, Tpos 
integer :: Ppos, xpos , xbase , idbase 
integer , allocatable :: compindex(:) 
character :: phase 

sv = 0.0 

ncomps = nint(fms_vars(fms_eqn(iv+1))%value) 
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allocate C compindex ( ncomps ) ) 

compindex = 0.0 

allocate C x ( ncomps ) ) 

X = 0.0 

allocate ( dhcalcdx ( ncomps ) ) 

dhcalcdx = 0.0 

!! Determine variable indices and unpack 

hipos = iv + ncomps + 2 
Tpos 	= iv + ncomps + 3 
Ppos 	= iv + ncomps + 4 
xbase = iv + ncomps + 4 
idbase = iv + 1 

hi = fms_vars(fms_eqn(hlpos))hvalue 
T = fms_vars(fms_eqn(Tpos)) °hvalue 
P = fms_vars(fms_eqn(Ppos))hvalue 

!! Convert to format required by external package 

do comp = 1, ncomps 

compindex(comp) = nint(fms_vars(fms_eqn(idbase + comp))V 0vaiue) 
x(comp) = fms_vars(fms_eqn(xbase + comp)) °hvalue 

end do 

!liquid stream 

phase = 'L' 

subroutine written by Bill Morton called to calculate enthalpy of a 
liquid stream 

call enthphase( phase, ncomps, compindex, T, P, x, hcalc, & 
dhcalcdt, dhcalcdP, dhcalcdx) 

!! Transfer results to JFMS Jacobian etc 
!! storage (no need for unit conversion) 

r = r + 1 

if ( j  ) then 

!! derivative of liquid enthalpy function w.r.t T 
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nj = nj + 1 
col = fms_eqn(Tpos) 
val = -dhcalcdt 
elt = 2 
call jac...lists ( jpt , nj , r , col , val , elt ) 

!! derivative of liquid enthalpy function w.r.t P 

nj = nj + 1 
col = fms_eqn(Ppos) 
val = -dhcalcdP 
elt = 2 
call jac_lists ( jpt , nj , r , col , val , elt ) 

!! derivative of liquid enthalpy function w.r.t h 

nj = nj + 1 
col = fms_eqn(hlpos) 
val = 1.0 
elt = 1 
call jac_lists ( jpt , nj , r , col , val , elt ) 

do camp = 1, ncomps 

xpos = xbase + comp 

!! derivative of liquid enthalpy function w.r.t x 

nj = nj + 1 
col = fms_eqn(xpos) 
val = -dhcalcdx(comp) 
elt = 2 
call jac_lists ( jpt , nj , r , col , val , elt ) 

end do 

else 
end if 

if ( rc ) then 

val = hi - hcalc 
sv =abs C fms_vars(fms_eqn(hlpos)) °hscale ) 

call rhs_list ( jpt , r , val , sv ) 

else 
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end if 

if ( hc ) then 
else 
end if 

!! Deallocate temporary storage 

deallocate ( compindex ) 

deallocate C x ) 
deallocate ( dhcalcdx ) 

end subroutine liquid_enth 



Appendix C 

Adding Applications 

This chapter details the steps required to add applications to the environment. As 

currently set-up, changes must be made both in the Java and application server code. 

The chapter is set out as follows: 

. Data structures in the application server; 

• Adding an application to the Java client; 

• Adding an application to the Application Server; 

C.1 Data Structures in the Application Server 

Data structures in the application server mirror those in the core model definition as 

discussed in chapter 4. For clarity, the structures are repeated here in their application 

server format. Reference should be made to FMS/F90FMS/types.f90 for the imple-

mentation details, global structures are declared in FMS /F9OFMS/global.f90 and are 

as shown in figure C.1. 

145 
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MODULE global 
use types 

!! Vector storing variable data 
type ( var ) 	 ,allocatable 	:: fms_vars(:) 

!! Vector storing current Jacobian data 
type ( jacEl ) ,allocatable 	fms_jac C:) 

!! Vector storing current Hessian data 
type ( hessEl ),allocatable 	:: fms_hess C:) 

!! Vector storing current residual data 
type ( resEl ),allocatable 	:: fms_res(:) 

Vector storing equation allocation table 
type ( eat ) 	 ,allocatable 	:: fms_eat(:) 

!! Vectors storing current specifications and initial state 
type ( spec ) ,allocatable 	:: fms_spec(:) , iniTS(:) 

Objective function 
type ( eat ) 	 :: obj 

!! Vector declaring initialisation methods 
type ( eat ) , allocatable :: fms_ini(:) 

!! Vector storing group table 
type (grp ) , allocatable :: fms_grp(:) 

!! Vector storing current system variables 
type ( sys ) 	 :: fms_sys 

!! Vectors storing method variable indices and active variable flags 
integer 	,allocatable 	:: fms_eqn(:),fms_actV(:) 

!! Identifies which structure is being initialised 
!! (Internal FMS variable) 
integer 	 :: curArrayPos 

END MODULE 

Figure C.1: Data Structures within the Application Server 
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C.2 Adding an application to the Java client 

The application must be added to the Model Handler Window and to the execProcess 

in the model building routines (files /FMS/GUI/FMSModHandler.java and 

/FMS/GUI/ModelBox.java respectively). Both files use the same calling structure 

but FMSModhandler requires the name to be added to the pull down menu as well. 

These routines pass the model data to the application server and activate the relevant 

applications driver routine. The resulting variable set is returned and the client updated 

accordingly. 

Adding the Calling Structure 

The code in figure C.2 should be inserted in the conditional block marked //Add new 

applications here. In this instance, the code adds the call to FilterSQP which is the 

3rd application in the current installation, as indicated in the second line as the second 

argument of dOnt. exec. This id number should be unique for each application and 

mirrored in the calling routine in the application server. 

else if ( selected.equals ( "FilterSQP ) ) { 
temp = dOut.exec(temp.length , 3); 
for ( k = 0 ; k < temp.length ; k++ ) 
prob . getPVars 0 . elAt (k) . set Val (temp Ek]); 

} 

Figure C.2: Code required to add an application to the Java Client 

Adding the Application to the Model Handler Window Menu 

Within /FMS/GUI/FMSModHandler.java, the new application should also be added to 

the pull down menu. The code required takes the form menu.addltem ( "Application 

Name") and should be added to the existing block. 
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C.3 Adding an application to the Application Server 

An application is added to the calling routine in the application server by adding a call 

to its' driver routine under the appropriate application id number (as specified in the 

java client) in the file /FMS/Comms/f9Oexec.f90 case block and adding the required 

module(s) at the top of the file. The Makefile and work.pcl file in the Comms directory 

should also be amended to include the new files and their home directory. 

The application (or it's driver) should control which methods are to be executed. This is 

achieved by setting the active/inactive flag for the method within fins-eat, the equation 

allocation table. 

C.3.1 Application Drivers 

The application driver is used to convert the JFMS Application Server Data into the 

format required by the application itself. Once the data is correctly formatted it is 

passed to the application for processing and control passes to the applications' own 

interface and internal routines. Once the application terminates the output should be 

converted back to the JFMS format and the JFMS variable values updated to equal 

the output of the application. 

C.3.2 Accessing JFMS Methods from within the Application 

The module /FMS/F90FMS/jac_hess.f90 contains a routine called fms_build_jh. This 

routine processes the current active methods and updates the appropriate JFMS struc-

tures. It provides a wrapper to the method library defined in chapter B and takes the 

following form: 

call fms_build_jh ( cj , ch , cr , co , eval ) 

where: 
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• cj - logical variable controlling whether Jacobian is to be calculated; 

ch - logical variable controlling whether Hessian is to be calculated; 

cr - logical variable controlling whether residual is to be calculated; 

co - logical variable controlling whether objective is to be calculated; 

• eval - real value 

Before calling fms_build_jh it is important to update the JFMS variable set to the 

values currently held in the application. Assuming that the application stores current 

variable values in a real vector x of length n, n = number of variables, this is done 

using the following code: 

fmsvars ( 1 : n )%value = x ( 1 : n) 



Appendix D 

Extraction of Equation and 
Variable Subsets 

This section details the steps required to extract equation and variable subsets from 

the model for subsequent processing. This allows model decomposition against user 

specified criteria such as entity by entity. 

All data required is stored in the Fortran90 data structures. A standard routine 

(GrpVESubset in module jachess) is provided to extract the variables and equations 

belonging to a specific entity. This routine can be run several times in order to con-

struct a block of equations and variables from several entities. The user should call 

this function based on the selection criteria they have chosen to use. 

Should the user wish to extract other subsets of the model, not based on a unit by 

unit decomposition it would be necessary to produce a Fortran90 routine to achieve 

this. GrpVESubset should be referred to for details, but in essence the extraction is 

achieved by identifying the equations that are to be called and setting their active flag 

to 1 (the others should be 0). As illustrated in GrpVESubset, the active variable set 

can be derived from the Jacobian output from a test run. 

Care must be taken when linking applications to a model that will be decomposed using 

such a method. The variable set in the application must be linked to the fms_vars as 

150 
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do j = 1 , size ( fms_vars ) 

if C fms_vars(j)'hactive ) then 
fms_vars(j)°hvalue = x ( i ) 
i = i+ 1 

else 
end if 
if ( i > nvars ) exit 

end do 

Figure D.1: Mapping Active Variables to the Global Variable Set 

shown in Figure D.1 as the equation function calls are based on the variables id number 

in the global variable set rather than the local one. 

This is in effect the reverse of the process used to determine which variables are active. 
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