

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Combining Vision Verification with

a High Level Robot Programming Language

YIN Baolin

Ph. D. Thesis

Department of Artificial Intelligence

University of Edinburgh

1984

Abstract

This thesis describes work on using vision verification within an

object level language for describing robot assembly (RAPT). The motiva-

tion for this thesis is provided by two problems. The first is how to

enhance a high level robot programming language so that it can encompass

vision commands to locate workpieces of an assembly. The second is how

to find a way of making full use of sensory information to update the

robot system's knowledge about the environment. The work described in

this thesis consists of three parts:

(1) adding vision commands into the RAPT input language so that

the user can specify vision verification tasks;

(2) implementing a symbolic geometrical reasoning system so that

vision data can be reasoned about symbolically at compile time

in order to speed up run time operations;

(3) providing a framework which enables the RAPT system to make

full use of the sensory information.

The vision commands allow partial information about positions to be

combined with sensory information in a general way, and the symbolic

reasoning system allows much of the reasoning work about vision informa-

tion to be done before the actual information is obtained. The frame-

work combines a verification vision facility with an object level

language in an intelligent way so that all ramifications of the effects

of sensory data are taken account of. The heart of the framework is the

modifying factor array. The position of each object is expressed as the

product of two parts: the planned position and the difference between

this and "he actual one. This difference, referred to as the modifying

factor of an object, is stored in the modifying factor array. The

-i-

planned position is described by the user in the usual way in a RAPT

program and its value is inferred by the RAPT reasoning system. Modify-

ing factors of objects whose positions are directly verified are defined

at compile time as symbolic expressions containing variables whose value

will become known at run time. The modifying factors of other objects

(not directly verified) may be dependent upon positions of objects which

are verified. At compile time the framework reasons about the influence

of the sensory information on the objects which are not verified
directly by the vision system, and establishes connections among modify-

ing factors of objects in each situation. This framework makes the

representation of the influence of vision information on the robot's
knowledge of the environment compact and simple.

All the programming has been done. It has been tested with simu-

lated data and works successfully.

Contents

Chapter 1. Introduction

1.1. The Development of the Industrial Robot

1.2. Applications, of the Robot

1.3. Robot Programming Languages

1.4. The Robot and Sensors

1 .5. The Motivation of the Thesis

1

1

3

4

5

7

1.5.1. Specifying Vision Tasks in a High Level Robot

Language

1.5.2. Intelligent Use of Vision Information

1.6. Structure of the Thesis

7

8

9

Chapter 2. Robot Programming Languages 11

2.1. Two Modes in Programming Robots 11

2.2. Teach Mode 12

2.3. Textual Programming 15

2.4. Classification of Robot Command Languages 17

2.5. Sensory Information in Robot Languages 20

2.5.1. Sensory Information as Binary Signals 21

2.5.2. Vision Information 23

2.5.3 Sensory Information in Describing Servo Process 25

2.5.4. Summary 26

Chapter 3. The Current RAPT System 28

3.1. Main Features of RAPT 28

3.2. The RAPT Input Language 29

3.2.1. RAPT Models
30

-iv-

3.2.1 .1 . Body Definition

3.2.1.2. Geometric Primitives

3.2.1.3. Feature Primitives

3.2.2. Relations

3.2.3. Actions

3.2.4. Ties

3.2.5. Subassemblies

3.2.6. Unmoved Bodies

3.3. The RAPT Inference System

3.3.1. Representations of Positions

3.3.2. The Equation Solving System

3.3.3 The Cycle Finding System

3.3.3.1. Relationships in the Cycle Finder

3.3.3.2 The Relational Network and Cycles

3.3.3.3. Reasoning Rules

31

32

34

38

42

45

46

48

48

49

52

54

55

57

58

Chapter 4. Computer Vision in Robotics 64

4.1. A Brief Survey of Computer Vision 65

4.1.1. Modelling in Computer Vision 66

4.1.2. Low Level and High Level Vision 68

4.1.2.1. Low Level Vision 69

4.1.2.2. Intermediate Level Vision and Intrinsic

Characteristics 70

4.1.2.3 High Level Vision 72

4.2. The Use of Vision in Industrial Robotics 73

4.2.1. Obtaining Descriptions of Parts 74

4.2.1.1. Training 75

4.2.1.2. Geometrical Models 76

4.2.2. Industrial Robot Vision Systems 77

-V-

4.2.2.1. Two-Dimensional Vision Systems 77

4.2.2.2. Three-Dimensional Vision Systems 79

4.3. Verification Vision 83

Chapter 5. New Vision Commands in RAPT 86

5.1. Vision Tasks in RAPT 86

5.2. The LOOK Statement 88

5.2.1. Forming the Symbolic Features and Relationships 89

5.2.2. Information Used by the Vision Facilities 91

5.2.3. Calling the Vision Facilities 92

5.3. The INVIOLATE Statement 92

5.3.1. Inviolate Relations in Vision Verification 93

5.3.2. Local and Global Vision Command Package 96

5.4. The TOLERANCE Statement 98

5.5. The COMBINE Statement 100

5.5.1. Checking the Statements 100

5.5.2. Restricting the Error Range Over the Nominal

Position 101

5.5.3. Creating a New Situation 103

5.6. The Camera Specification Statement 104

5.7. Vision Facilities 107

5.7.1. The Window Suggester 107

5.7.2. The Edge Finder 109

5.7.3. The Face Generator 111

Chapter 6. Symbolic Geometrical Reasoning About Vision Data 112

6.1. Symbolic Reasoning Facility in RAPT 112

6.2. Bottom Level Versus Top Level Symbolic Reasoning 115

6.3. The Bottom Level Symbolic Reasoning Facility 116

-vi-

6.3.1. The Implementation of the Bottom Level Reason-

ing Facility 117

6.3.2. Position Representations and Conditionals 119

6.3.3. Assessment of the Bottom Level Implementation 120

6.3.3.1. The Length of the Expressions 121

6.3.3.2. Ways of Alleviating the Problems 125

6.4. The Top Level Symbolic Reasoning Facility 127

6.4.1. The Implementation of the Top Level Reasoning

Facility 128

6.4.2. Assessment of the Top Level Implementation 129

6.5. The Reasoning Rules for Symbolic Reasoning 130

6.5.1. Combining an AGPP and an AGPC 133

6.5.2. Combining a LIN and an AGPC 139

6.5.3. Combining Other Relation Pairs 141

6.6. The Control of the Symbolic Reasoning 142

6.7. Merging 144

6.8. Summary 146

Chapter 7. A Framework for Handling Vision Information 147

7.1. Basic Requirements for the Framework 148

7.1.1. Making Full Use of Vision Information 148

7.1.2. Efficiency in Time and Space in Run Time 149

7.1.3. The Independence of the Framework 151

7.2. Frameworks for Using Vision Information 151

7.2.1. Symbolic Reasoning Method 1 52

7.2.2. Run Time Reasoning Method 153

7.2.3. The Use of Teach Mode 154

7.2.4. The Method Adopted 158

7.3. Relations Between Vision Information and Body

-vii-

Positions

7.3.1. Positions of Verified Body Instances

7.3.2. Positions of Body Instances Affected by Vision

Information

7.3.2.1. Unspecified Actions

7.3.2.2. Specified Actions

7.3.3. Body Instances for which the Vision Information

is Irrelevant

7.3.4. Actual Positions and Actions

7.3.5. The Modifying Factor as a Prefix and Postfix

7.3.5.1. Use of Postfix

7.3.5.2. Relationships Between Postfix and Prefix

Convention

7.4. The Run Time Data Structure

7.5. The Actual Action Control

7.5.1. One Step Control Strategy

7.5.2. Two Step Control Strategies

7.6. The Compile Time Work

7.6.1. The Initiation Phase

7.6.2. The Reasoning Phase

7.6.3. The Simplification Phase

7.7. Modifying Factors in Symbolic Reasoning and Vision

Commands

Chapter 8. Rules for Filling the Modifying Factor Array

8.1. Linking Rules for Actions

8.1.1. The Rule for Unspecified Actions

8.1.2. The Rule for Specified Actions

8.1.3. Summary

159

160

161

1 61

164

167

167

169

169

171

172

175

175

176

181

181

182

183

183

188

189

189

190

192

-viii-

8.2. Linking Rules for TIES

8.2.1. The Effect of Unspecified Actions

8.2.2. The Effect of Specified Actions

8.2.3. The Effect of Vision Commands

8.2.3.1. Global Vision Command Package

8.2.3.2. Local Vision Command Package

8.2.4. Termination of the Effect of a TIE on Linking

Rules

8.2.5. Tree Structure of the Super TIE

8.2.5.1. Specified Actions

8.2.5.2. Vision Commands

8.2.6. Summary of the Linking Rules for TIES

8.3. Linking Rules for Subassemblies

8.4. The Position of the Camera

8.5. Simplification Rules

8.5.1. The Simplification of a Pointer Triple

8.5.2. The Simplification of a Pointer

Chapter 9. Implementation and Test

9.1. Implementation of the Reasoning System

9.2. Implementation of a Run Time Program

9.3. Simulation with ROBMOD

9.4. Implementation of the Edge Finder

9.5. Refining Positions of Objects Using Vision Informa-

tion

Cnapter 10. Conclusions and Suggestions for Future Work

10.1. The Generality of the Framework

10.2. Suggestions for Future Work

193

194

196

199

200

201

201

203

2 05

206

207

212

218

220

221

223

226

226

2 27

229

230

230

234

234

236

-ix-

10.2.1. Selecting Suitable Features 236

10.2.2. Using Complete Models 238

10.2.2.1. Automatically Selecting Features to be

Verified 239

10.2.2.2. Image-Feature Matching 239

10.2.3. Combining Searching and Recognition with

Verification 241

10.2.4. More Types of Inviolate Relationships 243

10.2.5. Run Time System for Robot Control 244

10.3. Originality 245

10.4. Significance 247

References 248

Appendices

I. Tables of Reasoning Rules in the RAPT Reasoning System 265

II. Detailed Analysis of Combination Rules Likely to be

Used in the Symbolic Reasoning 269

III. A Sufficient Condition for Correct Modifying Factor

Determination when There Is More Than One Reference

Body

IV. A Sufficient Condition for Correct Modifying Factor

Determination when There Is More Than One Reference

Body in a TIE

V. An Example of Vision System Testing

VI. The Vision Experiment

271

273

2 75

299

List of Figures and Tables

Fig. 3.1. An example of a RAPT body model 39

Fig. 3.2. An example of a subassembly 39

Fig. 3.3. Positions of the body and the feature 51

Fig. 3.4. A situation in which creation rules can be applied 51

Fig. 3.5. An example of two-solution FIX 62

Fig. 5.1. The relationship between the world coordinate sys-

tem and the reference coordinate system of the

camera 106

Fig. 5.2. Window clipping 106

Fig. 6.1. Two situations which both satisfy AGPP+AGPC 134

Fig. 6.2. Three possible situations of the infinite number

which satisfy AGPP+AGPC+AGPC 134

Fig. 6.3. A situation in which the symbolic face feature is

parallel to the reference face feature 138

Fig. 6.4. Two situations in which LIN+AGPC produces a LIN 138

Fig. 7.1. The influence between body positions (I) 150

Fig. 7.2. The influence between body positions (II) 150

Fig. 7.3. Tree structures of body instances in inference

systems 156

Fig. 7.4. The one step strategy 156

Fig. 7.5. Method 1 of the two step strategy 178

Fig. 7.6. Method 2 of the two step strategy 178

Fig. 7.7. Data flow chart of the verification vision system

within RAPT 187

Fig. 8.1. Tree structures of the super TIE 204

Fig. 8.2. The effect of the specified action on linking

i

rules in a broken super TIE

Fig. 8.3. The effect of vision commands on linking rules in

a broken super TIE

Fig. 8.4. Positions of bodies in a subassembly affected by

an action

Fig. 8.5. The tree structure of a super subassembly

Fig. 9.1. The result of an edge finding process

Fig. 9.2. The vision station used in the experiment

Fig. A5.1. Wireframes of the bodies used in the example

testing program

Fig. A5.2. Some scenes of the ROBMOD simulation of a RAPT

program

Fig. A6.1. The vision station used in the experiment

Fig. A6.2. The body used in the experiment

204

208

213

216

231

231

276

294

300

300

Table 3.1. Spatial relationships in RAPT 42

Table 6.1. Combination rules relevant to symbolic reasoning 132

Table 6.2. Symbolic reasoning rules 132

Glossary

BODY: an object which is modelled by the user in RAPT.

POSITION: a transformation in 3-D space represented by a 4x4 matrix.

SITUATION: distinct state of the world in which body positions will be

specified.

ACTION: change of the world state from one situation to the next.

NOMINAL POSITION: the planned position of a body which is deduced by the

RAPT reasoning system. PNbi refers to the nominal position of

body b in situation i.

VERIFIED POSITION: the actual position of a body obtained by using

vision verification. PVbi refers to the verified position of body

b in situation i.
ACTUAL POSITION: in the thesis the term ACTUAL POSITION has the same

significance as verified position.

SPECIFIED POSITION: the destination of a body which is constrained by

certain spatial relationships between the body and another. The

relationships must be explicitly expressed by the user.

UNSPECIFIED POSITION: the destination of a body which is not constrained

by any explicitly expressed spatial relationships.

SPECIFIED ACTION: an action which moves a body to a specified position.

UNSPECIFIED ACTION: an action which moves a body to an unspecified posi-

tion.

ACTUAL ACTION: movement from an actual position to another actual posi-

tion.

MODIFYING FACTOR: a factor which indicates the discrepancy between the

nominal position of a body and its actual one. FMbi refers to the

modifying factor of body b in situation i using the prefix conven-

tion PVbi = FMbi * PNbi

-O-

Chapter 1. Introduction

The industrial robot has been in existence for some twenty years and

used in real applications for a decade. During this period of time it

has shown that it is an efficient automation device for performing a

variety of tasks: it can work in an environment which is harmful or

dangerous to people; it can work almost twenty four hours a day without

rest; it is reliable in that it does not make mistakes like human beings

when they are tired. The adoption of the industrial robot can raise

productivity significantly and therefore more and more industries are

trying to employ the robot. As robot techniques have been developing

rapidly, their numbers and their applications have also been increasing.

This introduces new areas of research, for example, in programming and

in the use of sensory information. This thesis is on the topic of

including sensory information into robot programming languages.

1.1. The Development of the Industrial Robot

The industrial robot is controlled by electronic equipment, usually

computers, and has developed from two sources: the tele-operator and the

numerically controlled machine tool.

The tele-operator, which is also sometimes referred to as a master-

slave manipulator, is a device which allows a human user to perform a

task at a distance. The first tele-operator was developed during the

second world war to handle radioactive materials. The user was

separated from a radioactive task by a concrete wall with one or more

viewing ports through which the task could be monitored. The user would

-1-

move a "master" hand in the safe environment while the "slave" hand

would copy the motion in the hostile environment. Feedback was pri-

marily done by the user's observation. in order to sense the force

which was applied to the "slave" arm, force feedback was introduced to

back-drive the "master" in some later models of the tele-operator

[PAU81J.

The numerically controlled (NC) machine tool is a piece of automatic

equipment which cuts metal under the control of digitized information.

The first NC machine tool was developed in the early 1950's and made use

of developing digital techniques to coordinate servo controlled axes

[PAU81].

The first industrial robot appeared in the 1960's [ENG80]. It was a

device which combined the articulated linkage of the tele-operator with

the servoed axes of the NC machine. The industrial robot could be

"taught" to perform simple jobs by driving it by hand through the

sequence of task positions. These positions were recorded in digital

memory. When the robot executed the specified task, the individual

joint axes of the robot replayed the recorded positions.

Since the appearance of the first industrial robot, many different

types of robot have been developed. They range from the simple ones

(with two degrees of freedom) to the sophisticated ones such as

Unimation's PUMA (with six degrees of freedom) [JAP82]. The increase of

the complexity of the robot enables it to perform complex tasks. As

more complex behaviour becomes possible, new techniques are required if

such benaviour is to be readily specified. In order to ease the job of

specifying the task for the robot, versatile programming methods have

-2-

been developed. A number of sensing techniques have also been intro-

duced to enable the robot to adapt its performance to a change of

environment.

1.2. Applications of the Robot

The computer controlled industrial robot is a general purpose auto-

mation device. It has been widely used in various tasks such as surface

coating, spot welding, arc welding, machine tool servicing, forging and

packaging. Some non-mechanical industries, such as the textile industry

[KEM83a] and the food industry [CR082], are also attempting to employ

robots.

The combination of the industrial robot with the problem of spot

welding automobile bodies was the first important application area which

allowed the versatility of the industrial robot to be properly exploited

[PUG82]. Robots have achieved an established role in paint spraying and

their use in sensor guided arc welding has achieved an advanced develop-

ment stage. In all these areas precise contact with the work piece is

not essential.

In marked contrast assembly is a real challenge to the robot. Com-

pared with the tasks mentioned above, the assembly task is more varied

and complex. The assembly task usually requires the robot to have at

least six degrees of freedom so that it can put workpieces at any posi-

tion and orientation within a certain range of space. It requires the

robot to have high accuracy so that the task can be performed with suf-

ficient precision. It also requires powerful robot programming tools to

-3-

be provided so that complex tasks can be described easily. The motiva-

tion of much of the current research in robot programming tools and

other related robotics problems is the requirement of the assembly task.

1.3. Robot Programming Languages

A robot programming language enables the user to describe an assem-

bly task in textual mode, thus avoiding the disadvantages of teach mode

discussed in Chapter 2. Robot languages are quite different from each

other in syntax, structure and capability. Some languages have stemmed

from NC machine tool control languages, some have evolved with the addi-

tion of robot control commands into conventional computer languages, and

some have been specially designed for describing assembly tasks. In the

most basic language, the user must specify the movement of each actuator

of the robot for each action. In an ideal high level language, the user

should only be required to indicate the starting state and the final

goal state of the assembly task, the structures of the robot, the sen-

sors available, etc; the language system should be able to decide the

correct robot action sequencing. Currently, in most robot languages,

the user must make a plan for an assembly task; determine a collision

free path between the origin and the destination of all motions; modify

assembly strategies to fit the particular geometric environment and

examine the strategies. When sensory information is to be used, the

language must also provide facilities for the user to describe a sensing

task. Typically, the user must be able to tell the robot system when

and how to obtain and use the information.

-4-

1.4. The Robot and Sensors

Theoreti.aliy speaking, a robot with many degrees of freedom can

perform yilany kind3of task within the physical limits set by its

dimensions, load capacity, mechanical tolerance and sensor resolution.

However, this potential capability of the robot may be limited by an

inadequate ability for sensing both the state of the environment and the

robot itself and by the interpretation of sensory data. Even if the

precision and repeatability of the robot is high enough to perform a

certain task, a specified task may still fail if there are some uncer-

tainties or unexpected disturbances in the environment. A remedy to

this problem is to use sensors to detect the changes in the environment

and in the performance of the robot.

The importance of the use of sensors was already recognized at an

early stage in the use of robots. In 1961, MIT [ERN61] developed a com-

puter controlled robot arm which was equipped with touch sensors. For

this robot, tasks were defined as a sequence of touch-defined goal

states. Since then more types of sensors have been introduced. These

sensors can be divided into two types: contact sensors and non-contact

sensors. Contact sensors include touch sensors, torque sensors, force

sensors, and skin-like or hand-like tactile sensors [HAR81]. Non-

contact sensors contain visual sensors and approximate range sensors.

Each type of sensor can be installed to monitor different tasks.

Vision sensors are examples of an important class of sensors which

provide information about the external environment of the robot. In

general, vision is suitable for acquiring and orienting workpieces while

contact sensors such as force sensors and touch sensors are especially

-5-

useful in detecting and removing small positional errors between parts

when they are being fitted together [KEM81]. Compared with contact sen-

sors, visual sensors work faster in locating objects since sensors (usu-

ally TV cameras) do not need to move during operation, while most con-

tact sensors need to grope around. Visual sensors do not introduce

additional disturbance to the environment since no contact between sen-

sors and parts is made. Thus, since the first robot arm cooperated with

a camera in 1970 [FEL71], vision has been used to help the robot in

recognizing and locating workpieces and in guiding the robot. Vision

works well in these areas although in most cases the control of the

vision system and the communication between vision and the robot are

performed in an inflexible way which does not permit account to be taken

of relevant knowledge about the workplace.

There are two classes of method for using sensors. Firstly, the

sensor is used in a closed loop which controls the state of a robot when

it is executing a specified action. Methods belonging to this class

usually fall into the domain of control theory and are outside the scope

of this thesis. Secondly, the sensor is used to examine the environment

in order to adjust the command or command sequence to be executed by the

robot. For example, if the sensory information shows that a "picking-

up" action has failed, then the robot can retry this action. In order

to make use of the sensory information, corresponding control facilities
:rust be provided in robot programming languages.

Accurate information is the basis of making good use of sensors.

This problem is more concerned with the sensor hardware. For example,

in order to acquire more accurate sensory information, touch sensors

must be more sensitive; visual sensors must have nigher resolution. The

-6-

pre-processing methods for the sensory information are also important.

The discussion of these is also outside the scope of this thesis. The

vision part of the research work is merely used as an experimental tool

and the major work of the thesis is concerned with how to specify vision

tasks and how to make full use of accurate vision data.

1.5. The Motivation of the Thesis

The motivation for this thesis is provided by two problems. The

first is how to enhance a high level robot programming language, such as

RAPT [AMB82], so that it can express vision commands to locate work-

pieces of an assembly. RAPT is an object level language in the sense

that it has an explicit representation of the objects in the robot's

world, and their disposition in space. The second problem that this

work covers is how to find a way of making full use of sensory informa-

tion to update the knowledge of the robot system about its environment.

1.5.1. Specifying Vision Tasks in a High Level Robot Language

Some robot language systems provide the facility to control the

acquisition and processing of sensory information. However, most of

them deal with simple sensory information like touch sensor or force

sensor information. The sensory information is used as a binary signal

to terminate or start an action. There are some languages such as VAL

ILUNI79] which can control the operation of a vision system and obtain

information from it, but the level of these languages is lower than

RAPT. There has been no development of a high level robot language like

-7-

insert the following paragraph at the end of Section 1.5.1. in p8

In this research work, vision data is used to deal with errors in

object positioning caused by feeders, inaccurate fixtures and delivery

systems. It is assumed that objects are accurately represented by their

models and that apart from an initial mounting error, the robot performs

perfectly.

RAPT with combined vision facilities. RAPT is an object level language

which has knowledge about the assembly task. The work to be described

here shows how such knowledge can be combined with sensory information

in an intelligent way.

This research work combines a special kind of vision, verification

vision [BOL77], with RAPT. Verification vision is used when there is

already expectation about the objects to be seen and their layout. In

order to specify vision tasks, a set of vision commands have been added

to the RAPT input language. These commands allow the user to describe

how he wants to start a vision task. They also allow the user partially

to predict how to interpret the information. Using the information pro-

vided by the associated assembly program, the vision system works out

details of vision tasks, such as which areas of the image should be

examined. Subsequently, the vision system reasons about the vision

information in order to find out the exact position of the object to be

verified. This reasoning is done at RAPT compile time in order to make

the run time system work fast. Since the vision information cannot be

obtained until run time, the reasoning is symbolic. At run time, when

relevant vision information is available, the symbolic result of the

reasoning can be evaluated and the actual position of the verified

object can be decided.

1.5.2. Intelligent Use of Vision Information

One of the most important problems with sensory information in pro-

gramming and controlling the robot is in planning how to use the

knowledge obtained from the information to adjust the subsequent actions

-8-

insert the following paragraph at the end of line 17 in p9:

As the work uses the robot language RAPT as its vehicle to achieve

its goal, the limitations of RAPT impose constraints on the work. For

example, the incompleteness of the RAPT modelling system restricts the

capability of the vision system so that the user has to specify the

vision tasks in greater detail than with a full solid modelling system.

The lack of a flow control facility in RAPT limits the method of using

vision information. For example, the vision system can only adjust the

planned actions and cannot choose between alternative actions. In spite

of all these constraints, the thesis work successfully combines a vision

facility with RAPT in a general way.

of the robot. For instance, if a touch sensor touches an object at an

unexpected position, what should the robot do? If the sensory informa-

tion shows that the position of an object is different from the planned

one, what could the robot system know about the effect of the position

discrepancy on the assembly task and how should the robot adjust the

following actions? At the moment, most strategies for using sensory

information are very simple. For example, the robot manipulator may

simply stop a specified movement when a touch signal is received.

Although vision can provide a lot of information about the environment,

in most current robot systems the positional information is used to

update the knowledge of the robot system in relation to the correspond-

ing object only. No consideration of the effect on other objects in the

same environment is made. In the work to be described in this thesis, a

new approach is introduced to make full use of the information obtained

from the verification vision so that the knowledge of the robot system

about the environment, rather than that of a single object only, can be

updated in the light of this information.

1.6. Structure of the Thesis

This thesis is structured as follows:

Chapter 2 reviews the two main modes of robot programming: the teach

mode and the textual mode, discusses the classification of robot pro-

gramming languages and the control facilities of sensory information in

these languages.

Chapter 3 discusses details of a high level robot language RAPT, on

which the research work of the thesis is based. These details include

the input language and the geometrical reasoning system of RAPT.

Chapter 4 surveys the development of computer vision systems and

their application in robotics.

Chapter 5 discusses the new vision commands which enable the user to

specify the vision verification task in RAPT.

Chapter 6 discusses a symbolic reasoning system which is used by the

verification vision.

Chapter 7 discusses the principle of the framework which handles

vision information and describes how the information influences the

knowledge of the robot about the actual positions of objects. This

chapter also discusses the possible ways of adjusting the actions of the

robot at run time taking account of the vision information.

Chapter 8 establishes the rules for making and simplifying the modi-

fying factor array which is the heart of the framework described in

Chapter 7.

Chapter 9 describes the implementation of the vision system and

discusses the experimental results, and concludes the research work.

Finally, Chapter 10 lists some work to be done in the future and

discusses the possible ways of realizing this.

-10-

Chapter 2. Robot Programming Languages

Robot programming is an important process in which the user speci-

fies the tasks that he wants the robot to do. During the programming

process, the user has to provide sufficient information for a robot exe-

cutable specification to be produced, which will cause the robot system

to perform the desired tasks. Various programming methods have been

developed to provide efficient programming tools. The power of a pro-

gramming tool is judged by a number of attributes. These attributes

include ease and economy of programming, facilities for interaction

between the user and the robot at programming time, facilities for

interaction between the robot and its working environment, etc. As

there is a trend to use robots to fulfil more and more complex tasks,

more advanced programming tools are needed: the formal robot command

language is an important one among them.

2.1. Two Modes in Programming Robots

There are two major approaches in programming robots. One is

referred to as teach mode programming. It is also known as programming

by showing or guiding [LOZ82]. Teach mode programming has been used in

programming industrial robots since their introduction in the early

1960s, and is well developed. Most commercial robots are equipped with

some facilities so that they can be programmed in teach mode. The other

approach is referred to as textual programming and this makes use of

some formal language. There is a lot of interest in the development of

textual programming both in academia and in industry because it adds to

the versatility of robot use.

-11-

2.2. Teach Mode

In teach mode programming the robot arm is positioned at various

places through which it must pass while performing the task. Small

manipulators with back drivable actuators are usually pushed and pulled

through moves. Medium manipulators are usually moved by the use of but-

tons, keyboards, etc. Large manipulators which are difficult or

dangerous for the programmer to control directly are often equipped with

"teaching arms" which can be used to learn the positions and motions

[KEM81]. Sometimes these techniques can be used together. This posi-

tion and/or motion information is recorded by the robot system. At exe-

cution time, the robot arm repeats the motions through the positions

which it has been taught. Therefore, this mode of programming is also

referred by some authors (e.g. [TAY761) to as tape recorder mode.

The information acquired in teach phase can be stored either on a

magnetic tape or in computer memory. The basic data is of the position.

However, information about velocity and trajectory can also be recorded.

When teaching a trajectory, the programmer leads the robot arm moving

through the specified trajectory at a real speed or a proportionally

ratioed speed. The positions of the robot arm are recorded as a func-

tion of time. At execution time, the robot arm moves under the control

of a clock so that the trajectory and velocity which have been taught

can be repeated. Changing the frequency of the clock can speed up or

slow down the execution of the robot arm.

The main advantage of teach mode programming is its simplicity. It

-1 2-

is easy to do and its results can be perceived directly during program-

ming. Also, it does not need powerful computational facilities. How-

ever, as Koutsou [KOU813 among others pointed out, its disadvantages

cannot be disregarded. This approach of programming makes the fundamen-

tal assumption that the task being programmed can be described ade-

quately by specifying a sequence of absolute positions. Therefore it
relies on a very high degree of repeatability of the manipulator and

usually needs to use some specially designed tools or feeders to guaran-

tee the accuracy of the positions of the workpieces to be manipulated.

It is difficult to use sensory data to interact with the world and

therefore the operation of the manipulator is not adaptive to changes in

the work station and the robot cannot deal with unanticipated events.

The most likely sensory data which can be used in teach mode programming

are some switch signals which can start or stop a sequence of operation.

This interaction can provide a degree of synchronization between the

robot and other machines. There are no flow control facilities such as

branches or loops available in this mode of programming so that the

"program" cannot express anticipated alternative operations. This

method of programming is error prone for complex tasks and difficult to

edit. It is inefficient in terms of human effort since programs pro-

duced in this way are not general: usually no programs or their parts

designed in this mode for one task can even be re-used for another simi-

lar task. For example, suppose the user wants the robot to pick up ten

bolts which are arranged in a row on a table with every adjacent pair

the same distance from each other. Although some systems have a limited

palleting ability, in most cases the user has to teach the robot the ten

similar actions with each action having only a small difference from the

previous one. This method is inefficient in terms of equipment utiliza-

tion since the method is on-line, and during the programming period, the

-13-

robot arm is used as an information collector and therefore cannot do

its real job. The lack of the capability of using sensory data prevents

this method from making available the full capabilities of the robot.

In order to overcome some of the problems of pure teach mode pro-

gramming several improved methods, such as the augmented teach mode

method [TAY76] and off-line guiding mode programming [L0Z82], have been

suggested and developed. For example, in augmented teach mode, a number

of "built-in" functions can be added into the system. These functions

provide the user with some commands to specify differential motions and

use some simple sensors. Thus the robot can be taught to use touch sen-

sors to determine the location of some object to be manipulated. After

the object is located, subsequent motions are made relative to the

object's coordinate frame. This behaviour can be referred to as a

"search" action. The built-in functions can also provide some primi-

tives for the user to specify some common tasks. Furthermore, some sys-

tems also provide simple control structures [L0Z82], although the capa-

bilities of the control structure are limited. The augmented teach mode

retains many of the advantages of pure teach mode. The principal new

advantages offered by the technique are:

1. More tasks can be performed.

2. Absolute accuracies need to be less, thus reducing fixturing

costs.

3. Programs may be shortened, since some of the special functions

may include several motions.

The main disadvantages of this mode in addition to those of pure teach

mode are:

-14-

1. Augmented mode needs a better programming understanding on the

part of the user.

2. It requires a more powerful run time system than pure teach

mode.

In off-line guiding mode, the CAD model or mockup of the task

together with a robot model can be used to define the program. The sys-

tem simulates the motions of the robot in response to a program or to

guiding input from a teach device. Since this mode is off-line, it is
efficient in terms of equipment utilization. It is also safer than pure

teach mode for both the user and the equipment.

Although the modes described above make some improvements to teach

mode programming, they are still teach mode. Therefore they retain the

main disadvantages of pure teach mode. For example, it is difficult to

use variables and adopt a complex control structure. These improvements

are rather limited and cannot solve most of the important problems which

are inherent in teach mode.

2.3. Textual Programming

Textual programming is usually referred to as off-line programming

though it does not necessarily preclude on-line use of the robot manipu-

lator during the programming phase. This mode of programming produces

programs as text written in formal languages. Like ordinary computer

language programs, these textual robot programs are easy to edit and

correct by the use of various programming support facilities. It makes

communication between robot programs and a CAD/CAM data base possible.

-15-

Some common parts of programs can be used in several different tasks

simply by means of editing or subroutine call. This style of program-

ming is therefore more efficient than teach mode in terms of human

effort. It is also more efficient in terms of robot utilization since

the robot is not involved in the programming phase and can therefore

remain in operation while a new program is being written. Ideally, the

user both writes and checks his programs in off-line mode. He can simu-

late robot operations in order to check the correctness of his programs

before running them. This mode of programming also makes it possible to

use sensory information so that changes in the environment can be

detected and the robot can adapt its operation to the new conditions.

This method of programming, therefore, has the capability of dealing

with more complex environments and tasks than can teach mode program-

ming. The main disadvantages of this approach are that it requires more

run time support and off-line computer power. It also requires the user

to have specialized programming knowledge. However, these problems are

becoming less important since progress in micro-electronics is bringing

about cheaper computing facilities and research on robotics is producing

languages more friendly to the human user. Meanwhile, the advantages of

the textual programming method are becoming more essential as the com-

plexity of the robot environments and tasks increases. Thus, the tex-

tual programming method has better prospects.

In some robot languages, such as VAL [UNI791, the robot may be used

on-line during the programming phase in order to obtain positional

information for textual programs. Theoretically speaking, this is not

indispensable for programming in these languages. On the other hand, it

increases the flexibility of the programming method and sometimes may be

convenient to the programmer.

-16-

2.4. Classification of Robot Command Languages

Robot programming languages can be classified into different levels

depending upon the subjects on which the programmer focuses his atten-

tion in describing tasks. Different schemes exist for the classifica-

tion. One of the most commonly used classification was first proposed

by Latombe [LAT79, KEM81, KOU81]. In this scheme, robot languages are

divided into four levels. They are

1) objective level,

2) object level,

3) end-effector level,

4) actuator level.

The objective level is the highest conceptual level. In languages

at this level the task would be described in terms of the final objec-

tive, and the programmer would only need to provide the robot system

with knowledge about workpieces and assemblies, and then tell the robot

system which kind of product he wants. The robot system would then be

able to plan the whole task, decide the sequence of operation, choose

proper tools, select a collision avoiding trajectory for the robot mani-

pulator, and so on in order to control the robot to achieve the final

objective. The realization of languages at this level needs more

research work done in areas such as problem solving and planning, and in

applying such concepts to the field of industrial robotics. There are

no languages at this level existing at the present time.

-17-

Object level languages are the next level down. At this level the

programmer concentrates his attention on operations on the objects. He

does not have to worry about the position and actions of the robot mani-

pulator and the details of the manipulation. What he needs to specify

is the state of objects to be manipulated at each step of an assembly

task. Objects and the environment are represented symbolically in pro-

grams. These symbolic representations are referred to as models. The

task is described by defining the positions and moves of the objects

which are to be handled by the robot. This information is then con-

verted by some computational system into run time commands that the

robot can obey. It is the user's duty, at this level, to plan the

sequence of the operations in the task, to take into account the neces-

sity for avoiding collisions and to specify some other details of the

task. However, all these can be done at the object level in a way which

is natural to the human user. Some robot languages which can be classi-

fied in this level have been developed. Some well known examples are

LAMA [LOZ76], AUTOPASS [LIE77], RAPT [POP78] and LAMA-S [FAL80]. Almost

all languages at this level are still in the laboratory development

stage.

End-effector level languages are also referred to as manipulator

level ones. In languages at end-effector level the task is described in

terms of the displacement and operation of the end-effector. At this

level, the robot system has little knowledge about the objects which it
handles and the environment in which it works, and therefore the user

has to plan the task in great detail, such as the routes of the moves of

the end-effector, opening and closing of the gripper and so on. The

robot system knows about the kinematic structure of the robot and so the

positional information of the end-effector can be transformed into

-18-

specifications of the actions of each joint and actuator of the robot.

Some languages at this level make use of the "frame" to represent posi-

tions of objects. The frame is a local coordinate system. It provides

a way for describing the positions of properties such as holes and some

special parts of an object in terms of relative positions and gives the

robot system limited knowledge of the objects. Knowing the position of

a frame and relative positions of properties, the robot system can

deduce the positions of the properties of the corresponding object in

terms of absolute coordinates. Sometimes the programming at this level

takes place on-line in order to use the manipulator to collect posi-

tional information for describing moves. A number of languages belong-

ing to this level have been built up, such as WAVE [PAU77], VAL [UNI791,

EMILY [WIL75], LM [LAT81], AL [FIN75] and MAPLE [DAR75]. Most current

commercial robot languages can be classified into this level.

In languages at actuator level, the programmer has to consider the

sequence of actions of each joint and actuator of the robot in order to

specify the operation of the robot. Languages at this level are

designed for instructing particular robots and usually used by higher

level language systems to generate robot executable commands.

Some authors (e.g. Kempf [KEM81]) classify the teach mode program-

ming as programming by the use of actuator level languages. However,

the author can not agree with this: his argument is that although most

teach mode programming produces records about the actions of the robot

actuators, it usually does not create any forms of textual results in

terms of formal languages, and the programmer's attention is mainly

focused on the position and operation of the end-effector of the robot

rather than of the actuators. Furthermore, in some teach mode

- 9-

programming systems the data to be recorded can be of the positions of

the end-effector of the robot rather than of the actions of actuators

[TAY761. In this case, there are no direct connections between teach

mode and the actuator level programming at all.

2.5. Sensory Information in Robot Languages

The versatility and adaptability of robots can be greatly increased

if they are able to make use of sensory information. In order to

inspect the performance of the robot and adapt the task specifications

to the environment when the robot executes the task, various kinds of

sensors must be used. Some authors [WAN76] think that in order to make

full use of the robot, for example, in order to perform an assembly task

in which the planned path of the manipulator may be cluttered, the fol-
lowing sensors could be usefully, if not necessarily, employed:

1. A gripping force sensor for controlling gripping force.

2. A multi-degree of freedom force sensor to resolve externally

applied forces and moments.

3. A whisker sensor to test if the gripper is touching anything.

4. An area tactile device to show the shapes of patterns produced

on gripping an object and to detect slippage of the parts.

5. A "range finder" or a "clear path ahead" sensor.

6. An optical surveillance sensor to analyse the assembly environ-

ment.

7. Safety sensors which trigger when any object interferes with a

certain space around the manipulator.

8. Position, velocity and acceleration sensors for position and

-20-

dynamic motion control of the manipulator system.

Of course, the list is endless. For example, vision recognition and

verification may also be needed. New requirements may emerge, and new

technologies may provide better solutions for each requirement, either

old or new.

In order to control these sensors in textual robot programming,

robot languages must provide suitable means for the user to specify when

and how to use these sensors, and how the behaviour of the robot should

be modified. However, the control of sensory information is still a

difficult problem in robot language design. No current robot

language has been able to specify systems to control so many kinds of

sensors successfully. Most languages which have the capability to use

sensory information control only one or two kinds of sensors in a rela-

tively simple way. They are not able to take full advantage of sensory

information to update the knowledge of the robot system about the

environment.

A number of robot programming languages have been reported using

sensory information. The languages concerned include those of both

end-effector level and object level. The sensor types which have been

dealt with involve force, torque, contact and vision.

2.5.1. Sensory Information as Binary Signals

The most commonly used sensory information is of force or torque

sensors. This kind of sensory information is analogue. However, sane

-21-

languages which handle this kind of information, such as AL [FIN75)1 LM

[LAT81), AUTOPASS [LIE77), use the information as a binary signal. In

these languages, the user can specify a threshold value for an expected

sensor data. This specified value can be used either as a termination

condition or as a constraint description of an action.

In contrast to this, WAVE [PAU77) uses binary type sensory informa-

tion in a more complex way. In the WAVE system, the user's programs are

expanded at planning time into position dependent coordinated motions.

Dynamic, configuration dependent effects are pre-computed since only

minor deviations from the plan are expected during execution. Sensory

information is adopted in order to detect the deviation and modify sub-

sequent sections of the plan to eliminate further differences. The

gripper of the robot which WAVE controls has a binary touch sensor on

the inside of each finger tip. When a command CENTER is used to adjust

the position of the gripper with respect to an object, the fingers start

closing, the status of the touch sensors being monitored. If one finger

sensor touches the object, then the gripper starts to translate towards

that side at such a rate as to keep that finger fixed in space while

still closing the fingers. When the second sensor touches the other

side of the object, the gripper stops translating and the fingers con-

tinue closing until the required force level is met. Hence the CENTER

command provides a method to perceive actual positions of objects. It

also provides the necessary compliance between the robot and the world.

The user can use other commands to specify the modification of the sub-

sequent plan of actions. Of course, the touch sensor information can

also be used as the condition to terminate some actions.

LAMA [LOZ76] also uses force or torque sensor data. The techniques

-22-

that LAMA adopts to deal with sensory information are distinct from the

other systems. In the LAMA system a feedback planner is used to expand

the user's program into manipulator programs. The feedback planner

simulates, incompletely and qualitatively, the assembly operations, con-

siders the effects of each operation such as whether a contact will hap-

pen and so on, and roughly decides what the force or torque sensory

value will be. The information provided by the simulation is necessary

in order to evaluate the feasibility of a proposed assembly operation

and simplify the interpretation of the feedback information obtained

during execution. The sensory data is used to detect whether a speci-

fied action terminates at a correct position or not. If not, an error

is reported.

2.5.2. Vision Information

Visual information can also be handled by some robot languages. For

example, WAVE can use visual feedback to detect the discrepancies

between a planned position and an actual one, and guide the gripper to

achieve the correct position. In the work reported by R. Goldman

[GOL77], a vision system cooperated with the AL system to fulfill the

verification task. Whenever the manipulator program needed visual feed-

back it signalled the verification vision system. The vision system

then took a picture and computed the needed information which was stored

into the appropriate variable in the manipulator code. This vision sys-

tem could be used to check whether a specified operation, e.g. picking

up a workpiece, had succeeded or not. In the case of failure of an

operation, the vision system could signal the manipulator and ask it to

re-do the operation. The vision system could also be used to determine

-23-

precise locations of some features, e.g. holes, of a workpiece.

Some vision commands have been added to the basic VAL language to

enable it to use a Unimation Inc. UNIVISION system. A UNIVISION system

consists of a Unimation VAL-controlled industrial robot and a Machine

Intelligence Corporation (MIC) VS-100 vision system. The vision system

uses a binary picture taken by a TV camera and produces a two-

dimensional interpretation of the picture in order to recognize objects

and locate them. Before the vision system can identify objects, it must

be trained by showing it prototypes and names of objects. During the

training stage, the system learns about features of prototypes of

objects, such as area, perimeter, minimum and maximum radii and so on.

The recognition is done by comparing the blobs in the picture with the

characteristics of the trained prototypes in an effort to find a match.

The location of objects is done by calculating the centroids of images

of the objects. The vision system determines the orientations of

objects via a user-selectable criterion such as the angle from the posi-

tive X-axis of the camera reference frame to the largest radius. This

location information is then used to update a position variable of the

user's program in order to control the movement of the manipulator.

MCL [BAU81] is an end-effector level language. It consists of sub-

stantial additions to the basic capabilities of the numerical control

language APT. These additions allow the user to direct the operation of

industrial robots and a variety of sensory devices as well as standard

NC machines. MCL can control two classes of sensors: "simple" sensors

and "complex" sensors. Simple sensors include contact sensors, tempera-

ture sensors and a variety of proximity sensors. The common charac-

teristic of these devices is that they all perform a simple monitoring

-24-

function for a single physical property and return a scalar value for

the property. Complex sensors, on the other hand, perform a relatively

large amount of local computation in order to detect features, recognize

patterns, and compare observed input with internal expectations. A vision

sensor is an important complex sensory device which can be controlled by

MCL. Control of a vision system in MCL involves two processes. The

first is to model the set of views of the part which may be seen by the

vision system. MCL uses image models which are defined as sets of two-

dimensional regions. Each region represents a basic component of the

part view such as a visible hole. A combination of regions defines a

complete model of a part. The second process is to use the model to

either locate a part or inspect a region in an image.

2.5.1 Sensory Information in Describing Servo Process

In RSS [GES83], sensory information is used to define servo

processes rather than to detect objects in the environment of the robot.

RSS is an end-effector level language. It is different from most other

robot languages in that it does not contain statements which command the

robot to perform some actions. Instead, the programmer must declare

servo processes which cause the robot to perform that action. RSS per-

mits servo processes to be defined for each of the four major aspects of

manipulation: position, orientation, force and torque. A condition mon-

itor accesses sensory information in order to inspect conditions defined

by the user program and to decide corresponding actions of the manipula-

tor. In the RSS system, data from external sensors are expressed as

dynamically changing functions, identical to functions which refer to

the robot state. The functions R$FORCE and R$TORQUE evaluate to vectors

-25-

which contain the external force and torque at the robot wrist, as

determined by an estimator by observing the joint velocity and knowing

the analog servo set-point. Positional data is obtained from a

separated vision system which, from the robot's point of view, is merely

a sensor which accepts simple commands and returns the three-dimensional

position of objects it sees. The RSS system is not concerned with how

objects or features are located. It requires the vision system to con-

tain all necessary algorithms to locate objects. The commands that can

be used to access the vision system are: the VISION statement, which

declares a vision function whose value is determined by the vision sys-

tem, the LOCATE statement, which asks the vision system to determine and

update the corresponding location of a declared vision function, and the

TRACK statement, which causes the vision system to continually update

the value of a declared vision function on the basis of the stream of

images it is processing.

2.5.4. Summary

The languages which have been investigated above represent different

kinds of robot programming languages. VAL, WAVE, AL, RSS, MCL and LM

can be classified as end-effector level languages, and LAMA and AUTOPASS

are at object level. Among these languages VAL is a well known commer-

cial language while others are still in laboratory stage. The methods

used by these languages to deal with sensory information are also typi-

cal. Except RSS in which sensory information is used to monitor the

inner state of the robot, all other languages use sensory information to

detect the environment of the robot. In these languages, the user has

to specify not only when but also how to use the sensory information.

-26-

The force and torque information is usually used as a condition in a

decision tree while the vision information is used to identify objects,

and instantiate and update some position variables. No languages have

tried to handle complex tactile sensors with a matrix of elements. In

most cases the sensory information is used strictly in the way the user

has explicitly pointed out, such as terminating an action or updating

the position of an object. No further explanations of the sensory

information are made. Vision information has only been handled by end-

effector level languages. Most vision systems used in these languages

only work in a way to compare two-dimensional images with two-

dimensional image models in order to locate an object or inspect a

region in an image. Languages at this level have very limited knowledge

about the robot environment so that they can not give vision systems

enough guidance of how they should work and how to interpret the vision

information. Object level languages, although having rich knowledge

about the environment, have not been combined with vision systems prop-

erly.

Chapter 3. The Current RAPT System

This chapter is devoted to RAPT, an object level robot language, on

which the main work of the thesis has been based. Since a knowledge of

RAPT is essential for understanding the major part of the research work

described in the thesis, the principal features of RAPT, its input

language, internal data structures and reasoning systems will be dis-

cussed in detail.

3.1. Main Features of RAPT

RAPT has been developed in the Artificial Intelligence Department of

Edinburgh University since the late 1970s by R. J. Popplestone, A. P.

Ambler and their group. It is a model-based object level robot command

language designed mainly for programming assembly operations. This

means that in RAPT programs the objects which are to be manipulated by

the robot are explicitly represented. Its syntax is quite similar to

that of APT, a widely used NC machine tool programming language, and the

name RAPT stands for Robot APT.

RAPT allows the user to specify a set of objects (bodies), spatial

relationships and movements. Objects are specified by the use of its
modelling system. Spatial relationships which are to hold between

features of the objects in each distinct state are specified by the use

of relationship specifications. Movements of the objects can be speci-

fied explicitly by the use of action statements or implicitly by the use

of relationship constraints imposed upon objects. All the information

is transformed by the RAPT system into specifications of the movements

-28-

of the robot which will bring about the desired states. The work of the

RAPT system is divided into two stages: compile time reasoning and run

time execution. Since RAPT is an off-line programming language, the

major part of the computational work is done at compile time, and it is
only this part which will be discussed in this chapter.

The compile time system of RAPT can be divided into two parts

according to their functions and implementation. The first part is the

input system which reads RAPT programs and transforms the information in

the programs into RAPT internal data structures. The second part is the

geometrical reasoning system which, making use of data structures

created by the input system, reasons about the positions of objects and

the actions of the robot. The output of normal RAPT is a series of

positions of objects (including the robot manipulator) in each situa-

tion. These positions can then be translated into a suitable form, usu-

ally a lower level robot command language, e.g. VAL commands and data,

which can then be executed by the robot.

A number of RAPT programs have been tested successfully (e.g.

[KEM81]). The RAPT work has shown that the use of spatial relationships

is a powerful tool for describing assembly tasks in an object level

robot language. It provides a natural way for the user to specify the

desired goal states in robot assembly tasks.

3.2. The RAPT Input Language

The RAPT input language is the interface between the programmer and

the RAPT geometric reasoning system. By the use of the input language,

-29-

the user can define three-dimensional objects, desired states, and the

actions between every two adjacent states of the assembly task. The

desired states are defined in terms of the spatial relationships holding

between objects rather than in terms of the absolute positions of
potentially

objects. This makes programming in RAPT/much easier than in other lower

level robot languages, since the tedious computational work will be done

by the computer rather than by the user himself. The information given

by the user about the assembly task is transformed into internal data

structures and then sent to the geometric reasoning system.

3.2.1. RAPT Models

RAPT provides a rudimentary three dimensional modelling system.

Objects to be handled by the manipulator, and the objects in the world

are modelled in this system in terms of their surface features. The

modelling system is capable of modelling complex objects with planar,

cylindrical and/or spherical surfaces. Each object in the RAPT environ-

ment is represented by those of its surface features which are to be

used in the associated RAPT program. The RAPT model is an incomplete

one. This means that only the features used by the associated program

need to be described in the model. The RAPT models are simply collec-

tions of related surface features of objects and therefore the RAPT sys-

tem has no knowledge about the space occupancy of the object modelled.

3.2.1.1. Body Definition

In RAPT, objects, tools and robot gripper parts are referred to as

bodies. Each body has its position and local coordinate system. The

positions of bodies within the RAPT system represent the positions of

the corresponding bodies in the actual work station and the local coor-

dinate system provides a reference frame for the positions of features.

Bodies are declared by body definition statements, possibly with some

feature descriptions of the bodies.

There is a special body in the RAPT environment called the "world".

Its coordinate system has fixed relations with that of the actual robot

working station and its position is fixed. The "world" is created

automatically at the beginning of each RAPT program, and is used to pro-

vide a frame of reference in which all actions take place.

A body description has the form

BODY/<body-name>;

<body-definition-statements>;

TERBOD;

where <body-name> is the logical name of the body being defined, and

<body-definition-statements> can be none, one or more RAPT modelling

primitive defining statements.

3.2.1.2. Geometric Primitives

There are two kinds of primitive in the RAPT modelling system:

geometric primitives and body features. Both of them are associated

with the body within whose definition they are declared. If a primitive

is defined outside any body declaration package then it belongs to the

world. The main difference between these two kinds of primitive is that

the geometric primitives are only used in the construction of models

whereas feature primitives are used in goal state specifications.

There are three sorts of geometric primitive. They are points,

lines and circles. Each geometric primitive is defined by a statement

specifying its name, type, position, and, where appropriate, dimensions.

A RAPT point is purely a geometric point defined by its X-, Y- and

Z-coordinates in a three dimensional space. The syntax of a point

definition statement is

<point-name>=POINT/<point specification;

where <point specification> specifies the coordinates of a point. For

example, the user can say:

p1 = POINT/20, 30, 40;

This specifies a point named p1 with its X-, Y- and Z-coordinates being

20, 30 and 40 respectively. There are four forms of specifying the

coordinates of a point. Detailed discussion about these and forms of

defining all other primitives can be seen in [AMB82].

-32-

A RAPT line is a geometric line segment determined by its start

point and end point. It therefore has a length and direction. The syn-

tax of a line definition statement is

<line-name>-LINE/<line specification>;

where <line specification> specifies the position, direction and length

of a line. There are seven forms of line specification. For example, a

statement:

line-1 - LINE/pl, p2;

through

defines a line "line 1" which passes/points p1 and p2 which have already

been defined.

A RAPT circle is defined by its centre and radius. It is limited,
(version l.la)

in the current version /of RAPT, to one which lies on a plane which is

parallel to the X-Y plane of the coordinate system of the associated

body. The syntax of a circle definition statement is

<circle-name>-CIRCLE/<circle specification>;

where <circle specification> specifies the centre and radius of a cir-

cle. There are two forms of circle specification. For example,

p1 = POINT/10, 20, 30;

c1 = CIRCLE/CENTER, p1 , RADIUS, 10;

-33-

defines a circle c1 which has radius of ten units at point p1.

3.2.1.3. Feature Primitives

There are six types of RAPT features. They are faces, holes,

shafts, edges, spherical faces and vertices. Each feature is defined by

a statement specifying its name, type, position, and, where appropriate,

dimensions. Some types of feature have a direction associated with

them. This direction is important in defining relations between

features. The positions of the features indicate their locations in the

local coordinate system of the body to which they belong. The general

form of the feature definition statement is as follows:

<feature-name> - <feature-type>/<feature definitio n>;

A RAPT face is defined by a point on the face and a direction vector

of the normal to the face. The direction of the normal is defined in

such a way that if the face is imagined to represent a surface of a

solid body, then the direction of the normal points outwards from the

solid body. A face definition does not include information about its

extent and therefore a RAPT face is an infinite plane feature. The syn-

tax of a face definition statement is

<face-name>-FACE/<face specification>;

where <face specification> specifies the position of a point on a face

and the direction of its normal. There are nine forms of face specifi-

cation. For example,

-34-

f1 - FACE/p1, p2, P3, xlarge;

defines a face f1 which the points p1, p2 and P3 lie on and whose normal

points in the direction with a positive X-component.

A RAPT shaft is a convex cylindrical surface represented by its axis

and radius. The direction of the axis points towards the end of the

shaft. The syntax of a shaft definition statement is

<shaft-name>-SHAFT/<shaft specification>;

where <shaft specification> specifies the axis and radius of a shaft.

There are two forms of shaft specification. For example,

11 - LINE/p1, p2;

bolt - SHAFT/AXIS, 11, RADIUS, 5, ylarge;

defines a bolt to be a shaft with radius 5. The axis of the shaft is

along the line 11 and points to the direction with a positive Y-

component.

A RAPT hole is very similar to a shaft. The only difference is

while a shaft is a convex cylindrical surface, a hole is a concave one.

A hole is represented by its axis and radius, just like a shaft. The

direction of its axis points out from the hole. The syntax of a hole

definition statement is

<hole-name>=HOLE/<hole specification;

-35-

where <hole specification> is the same as a shaft specification. There

are also two forms of hole specification. For example,

c1 - CIRCLE/CENTER, p1 , RADIUS, 15;

h1 - HOLE/c1, zlarge;

defines a hole hi with radius 15 at a point p1. The X-axis of the hole

points upwards.

A RAPT edge is considered as a special case of a shaft of zero

radius. Therefore, it could be defined by the use of a shaft definition

statement. For convenience, however, it has its own distinct definition

statements. The syntax of an edge definition statement is

<edge-name>-EDGE/<edge specification>;

where <edge specification> specifies the axis and direction of an edge.

There are two forms of edge specification. For example,

11 - LINE/pl, p2;

EDGE/11, xsmall;

defines an edge which matches the line 11. The X-axis of the edge

points to the direction with a negative X-component.

Although shafts, holes and edges are all dealt with by the RAPT rea-

soning system as infinite in extent, they may in fact represent finite

features, and the user may specify their lengths in some forms of

feature definition statements. Although this dimensional information is

-36-

ignored by the RAPT reasoning system, it can be used for other purposes,

e.g. in a sensory system.

A RAPT spherical face is a convex spherical surface like a ball. It
is a finite feature defined by a centre and a radius. There is no asso-

ciated direction. The syntax of a spherical face definition statement

is

<sphface-name>-SPHFACE/<centre>, <radius>;

where <sphface-name> is the name of a spherical face, and <centre> is

the position of the centre point of the spherical face, and <radius> is

a number indicating the radius of the spherical face. This is the only

form of spherical face specification.

p1 - POINT/0, 5, 10;

ball - SPHFACE/pl, 5;

defines a spherical face named "ball" which centers at the point p1 with

radius 5.

A RAPT vertex is a special case of a spherical face of zero radius.
O`v^ It approximates the corner of object . A vertex is defined by specify-

ing the point at which it lies. The syntax of a vertex definition

statement is

<vertex-name>=VERTEX/<point>;

This is the only form of vertex specification. The following statements

-37-

p2 - POINT/2, 3, u;

v1 = VERTEX/p2;

define a vertex at the point (2, 3, 4).

The following example shows a RAPT model of the object in Fig. 3.1.
The object is named as bodyl here. Notice that not all the features of
the actual object are modelled.

body/bodyl;
p1=point/0,0,0;
p2-point/20,0,0;

P3-point/20,-20,0;
p4-point/20,-20,30;

p5=point/20,0,30;
p6=point/0,0,30;
p7=point/0,-20,0;
p8=point/10,-10,0;
p9-point/10,-10,-20;

f1=face/pl,p2,p5,ylarge;
f2=face/p1,p2,P3,zsmall;
f3=face/pl,p6,p7,xsmall;
f4=face/p4,P5,p6,zlarge;
f5=face/P3,p2,p4,xlarge;

11 =line/p2,P3;
12 =line/p1, p6;
13 =line/p8,p9;

e1=edge/ll,ysmall;
e2=edge/12,zlarge;

s1=shaft/axis,13,radius,5,zsmall;
terbod;

3.2.2. Relations

In an assembly task, bodies are moved from place to place to bring

about desired goal states. Assembly operations can also be thought of

in this way, although there is the question of forces. In RAPT, each

- 38-

state of the whole environment between any two actions is referred to as

a situation. A situation can be described explicitly in terms of spa-

tial relationships which will hold between features of bodies in that

situation, or implicitly in terms of the action which occurred between

the situation and the previous one, or by a mixture of both explicit and

implicit information. The state of an individual body in a situation is

referred to as a body instance. Therefore, if there are M bodies and N

situations then there are MxN body instances. It is easy to see from

these definitions that spatial relationships hold between features of

body instances rather than of bodies. If there is no possibility of

confusion then the term "body" may sometimes be used instead of "body

instance" in the following discussion.

There are six types of spatial relationships available in the RAPT

input system to describe situations. They are called AGAINST, COPLANAR,

PARAX, PARALLEL, FITS and ALIGNED. The syntax of a relationship state-

ment is

<relation-type>/<feature-1>, <feature-2>;

where <feature-1> and <feature-2> specify the two features between which

the relationship holds in the current situation. There are two forms

which can be used to refer to a feature: either

<feature-name> of <body-name>

or, when there is no ambiguity, the feature name can be used. The fol-

lowing is an example of a relation specification:

-40-

AGAINST/bottom of block, work top;

The AGAINST relationship can hold between two faces, a face and a

shaft or an edge, a face and a spherical feature (a spherical face or a

vertex), or two spherical features. The general meaning of this rela-

tionship is that the surfaces of the two features share a common tangent

plane. A face is against another face when they lie in the same plane

with their normals in opposition. A face is against a convex cylindri-

cal feature (a shaft or an edge) when the X-axis of the cylindrical

feature lies in the plane parallel to the face, and removed away from

the face by a distance equal to the radius of the cylindrical feature.

A spherical feature (a spherical face or a vertex) is against a face

when the centre of the spherical feature lies in a plane parallel to the

face, and removed away from the face by a distance equal to the radius

of the spherical feature. Two spherical features are against each other

when the distance between their centres is equal to the sum of their

radius. COPLANAR holds only between two faces. It differs from the

AGAINST relationship between two faces only in that the face normals

point in the same direction.

FITS holds between two cylindrical features (shaft, holes or edges).

This relationship means that the axes are collinear but point in oppo-

site directions. ALIGNED is the same as FITS except that the axes point

in the same direction.

PARAX can hold between two faces or two cylindrical features. Its
general meaning is that the X-axes of the features must be parallel but

point in opposite directions. This relationship does not require the

two features between which the relationship holds to share a common

-41-

tangent plane, therefore it is the general case of AGAINST with a speci-

fied distance between the faces or cylindrical features. PARALLEL is

the same as PARAX except that the X-axes of the features point in the

same direction.

Table 3.1 lists all the RAPT relationships with valid types of the

associated features.

relations features

I
relations) features

AGAINST face face

face shaft
face edge
face vertex
face sphface
vertex vertex
sphface sphface
sphface vertex

COPLANARI face face

FITS shaft hole
& shaft edge

ALIGNED shaft shaft
hole edge
hole hole
edge edge

PAR AX

PARALLEL

shaft hole
shaft edge
shaft shaft
hole edge
hole hole
edge edge
face face --- -

Table 3.1. Spatial Relationships in RAPT

3.2.3. Actions

In RAPT, actions transform one situation into another. There is

always a single action between each pair of contiguous situations. The

action statements serve to identify which bodies may move between one

situation and the next, and can also be used to describe the change in

the position of bodies. Actions are described in terms of movements of

particular bodies --- this can be relative to features of other bodies,

and can also be restricted to pure translational movements or pine

-42-

rotational movements. It should be noticed that a movement of one body

can imply the movement of other bodies that are in some way connected to

it (see TIES and SUBASSEMBLIES). In RAPT, between one situation and the

next, all bodies are assumed to move unless it can be shown that they

have not (see Section 3.2.6). Similarly, it is assumed that spatial

relationships holding in one situation do not necessarily hold in any

subsequent ones. There are two action types allowed in RAPT: MOVE and

TURN, corresponding to translational and rotational actions respec-

tively. According to the detailed specification of the action, the

statements can be classified into three categories: explicit action

statements, implicit action statements and general move statements. The

explicit action statement serves to specify completely the absolute

motion of the body being moved. It takes the form:

<action type>/<body>,<relation>,<feature>,<amount>;

For example, a statement:

MOVE/ block, PERPTO, bottom of block, 20;

asks the robot to move the body "block" 20 units along the direction

which is perpendicular to the bottom of the block.

If <action type> is MOVE then <relation> can be either PERPTO (for

perpendicular to) or PARLEL (for parallel). If <action type> is TURN

then <relation> must be ABOUT. <amount> is a real number. The unit of

the movement depends upon the type of the action. Rotational actions

are measured in degrees while the unit of translational actions is

determined by a post-processor. This statement specifies completely the

-43-

motion of the body relative to its original position.

There is an exception in this kind of statement. When the action

type is NAVE and the action is said to be parallel to a face feature, it
is not a explicit one. Although the amount is specified, the direction

of the action cannot be determined. In order to determine the destina-

tion of the action, relations between the moving body and others must be

specified.

While the explicit statement completely specifies the displacement

of a body, two variants of action statement are allowed in RAPT which

specify the action incompletely. The first of these is the implicit

action statement, which gives incomplete information about the movement

relative to other bodies. It has the following syntax:

<action type>/<body>,<relation>,<feature>;

This version specifies only the type of the action and direction of the

movement or the rotation axis. The amount of action in this case is

determined by position constraints obtained from the spatial relation-

ships that must hold between this body and others in both the starting

and the destination position.

The other variant is the general move statement, which only identi-

fies which bodies are moved. It has the following syntax:

MOVE/<body>;

The general move does not make any connection between the positions of

-44-

the body being moved before and after the action. Position constraints

on the start point and destination of the body determine both the direc-

tion and amount of motion.

In RAPT, only some special bodies specified as "agents" can be the

source of an action. This means that a body to be moved must be either

an agent itself or connected in some way, such as TIE or SUBASSEMBLY

(both will be discussed later), to an agent. An agent is defined by the

statement

AGENT/<body>;

3.2.4. Ties

It often happens that bodies become fixed together so that they can-

not move relative to each other during some period in an assembly pro-

cess. For example, when two components are bolted together, they cannot

move relative to each other until they are unbolted. RAPT provides a

TIED statement to describe this kind of phenomenon.

In RAPT when two bodies are tied together this means that they main-

tain the same relative position before and after any actions. There-

fore, any descriptions of the motion of one body must apply to the

motions of any other bodies tied to it. TIEs are made and revoked by

the statements:

TIED/ <body 1>, <body 2>;

and

-45-

UNTIED/ <body 1>, <body 2>;

Once two bodies are tied in a situation description, they are

assumed to remain tied for all subsequent actions until the tie is bro-

ken by saying explicitly that they are UNTIED. Both TIED and UNTIED

statements have effect in the action which follows the situation in

which they have been declared. For example,

TIED/block, world;

ties the block with the world so that any attempt to move the block in

subsequent situations before the revocation of the tie is an error and

will be reported to the user.

3.2.5. Subassemblies

A subassembly is a set of bodies between whose features certain

specified relationships hold for the duration of the existence of the

subassembly. Subassemblies differ from ties in that there may be more

than two bodies within a subassembly and the components of a subassembly

can move with respect to each other during the existence of the

subassembly, provided that the relations remain valid. For example, a

gripper is usually defined as a subassembly whose two palms can move

relative to each other in a direction perpendicular to the palm faces.

A subassembly is declared by the statements

<subassembly-name>-SUBASS/<duration>;

-46-

<relationship definitions>;

TERSUB;

where <duration> indicates whether the subassembly is a permanent one or

a temporary one. A permanent subassembly exists throughout every situa-

tion while a temporary one is brought into effect by ISSUB and revoked

by NOTSUB statements. Their syntax is

ISSUB/<subass-name>;

NOSUB/<subass-name>;

The temporary subassembly is usually used to describe some intermediate

combination of workpieces which is partly assembled. For example,

link - SUBASS/temp;

FITS/axis of shaft, hole of pa;

FITS/axis of shaft, hole of pb;

AGAINST/fl of pa, f2 of pb;

TERSUB;

defines a temporary subassembly which is shown in Fig. 3.2. The per-

manent subassembly, on the other hand, is usually used to describe

instruments or tools such as the manipulator.

3.2.6. Unmoved Bodies

In RAPT, only one body can be moved directly by an action statement

between one situation and the next. Other bodies can be moved

indirectly by connections with the moved body via a tie or a subassem-

bly. The input system checks between every two contiguous situations to

see which bodies are moved by these connections. If a body has no way

to be affected by a moved body then it is considered to be unmoved, and

its name is recorded in a table, called the unmoved body table, which is

indexed by situations.

3.3. The RAPT Inference System

In order to decide how to move the robot in order to achieve the

assembly task, the relational specification given by the user must be

transformed into positional information. This is performed by the RAPT

reasoning system. There are two versions of the implementation of the

reasoning system. The first one is referred to as an equation solving

system which is described in full in [POP80]. In this system the rela-

tions between features of body instances are expressed by rewriting the

position of one body as an algebraic expression involving the position

of the other and so producing a set of simultaneous equations which can

be solved. The second reasoning system is referred to as a cycle find-

ing system and this is discussed in detail in [POP79, POP81, AMB83].

This works by applying a set of reasoning rules to the original rela-

tions given by the user, replacing them by new ones which are fewer and

more restricted. This rewriting is repeated until no further progress

can be made. The first version is more powerful than the second one in

-48-

solving some difficult relation pairs while the second one works about

100 times faster than the first. The current RAPT system employs the

second version of the implementation, i.e. the cycle finder. There is a

plan to combine these two methods in the future in such a way that

firstly the cycle finder will be used to solve easy relationship cycles

and then the equation solver will be applied to tackle the few remaining

hard relationship cycles.

3.3.1. Representations of Positions

In RAPT, a position is a product of a translation and a rotation.

It is represented by a homogeneous coordinate transformation [AMB75b].

In the homogeneous coordinate representation [FOR69], a point in N-

dimensional space is represented by an (N+1) dimensional vector. An N-

dimensional space transformation is represented by an (N+1) x (N+1)

matrix. For a three dimensional space, it is a 4x4 matrix of the form:

all a12 a13 : a14
a21 a22 a23 : a24
a31 a32 a33 : a34

................
a41 a42 a43 a44

Since it is easy to use the homogeneous coordinate form to describe

various kinds of transformation such as rotation, translation, scaling

etc., it is widely used in the fields of robot control [PAU81], image

analysis [DUD73] and computer graphics [FOR69, FOL82]. When the homo-

geneous coordinate representation is used as a transformation matrix in

a post multiplication system, the upper-left part represents scaling,

shear and rotation; a14, a24 and a34 specify the vanishing point in a

-49-

perspective projection; a41, a42 and a43 represent translational shift

in the direction of X-, Y- and Z- axes of its reference frame respec-

tively; a44 represents a general scaling. In RAPT, this matrix is used

to represent the position of a body or a feature, and therefore scaling,

shear and perspective projection have no significance. Thus the upper-

left part of the matrix represents rotation only; a41, a42 and a43

represent translational shift; a14, a24 and a34 are all zero, and a44 is

always equal to 1.

Both bodies and features have their own local coordinate systems

attached to them. The position of a body instance represents the posi-

tion and orientation of the local coordinate system with respect to that

of the world. In practice, the X-Y plane of the world coordinate system

is usually coplanar with the top of the work table. Its Z-axis points

vertically upwards. Similarly the position of a feature represents the

position and orientation of the local coordinate system of the feature

in the coordinate system of the body to which the feature belongs. For

example, in Fig. 3.3, f1 is the position of the cylindrical feature F1

of the body b1. Position transformation is defined by the post multi-

plication. Therefore the position of a feature with respect to the

world frame can be expressed by a transformation

f ** p

where ** denotes matrix multiplication, f is a feature position and p is

the position of the body to which the feature belongs.

For a face, the X-axis is along the direction of the normal of the

face and the origin lies in the face. For a cylindrical feature, the

-50-

pbl

Fig. 3.3 Positions of the body and the feature

Fig. 3.4 A situation in which creation rules can be applied

-51-

X-axis is along the direction of the axis of the feature and the origin

lies somewhere on that feature axis. For a spherical feature, the ori-

gin of its coordinate system is coincident with the centre of that

feature while the direction of the X-axis is assigned arbitrarily by the

RAPT system. The direction of the X-axis and the position of the origin

of a feature coordinate system are also usually determined systemati-

cally by the RAPT reasoning system during the inference processes. In

contrast to the X-axis, the direction of the Y- and Z-axes are usually

chosen arbitrarily by both the input and reasoning system provided they

constitute a Cartesian coordinate system.

3.3.2. The Equation Solving System

This is the first version of the RAPT inference system [POP80]. It

translates a collection of information about bodies, situations and

actions into a "tree of knowledge", and then controls the production and

solving of algebraic equations.

In this system, the relations are represented by equations. Each

equation has the form

f2 ** p2 - rel(v) ** f1 ** p1 (3.1)

where f1 and f2 are the positions of two features between which the

relation holds, p1 and p2 are positions of the bodies to which the

features belong respectively, v is a vector of n variables unique to a

given relation, and "re?" is an algebraic function depending upon the

type of the actual relation. For example, if the two features are faces

-52-

and they are against each other, then the equation is

f2 ** p2 - M ** twix(O) ** trans(O,y,z) ** fl ** p1 (3.2)

where M is a matrix representing a rotation about the Y-axis which

brings the positive X-axis to the negative X-axis, twix(O) is a rotation

transformation about X-axis by 0, and trans(a,b,c) is a translation

matrix with the measure of a, b and c along X-, Y- and Z-axes respec-

tively. By the use of this equation, the position p2 can be expressed

in terms of f1, f2 and p1 with the vector of three variables

p2 - f2-1 ** M ** twix(0) ** trans(O,y,z) ** fl ** p1 (3.3)

Similarly, action statements (excluding general move) also specify

relationships between positions of body instances and therefore can also

be expressed by algebraic equations with the form

f ** p2 - rel(v) ** f ** p1 (3.14)

where f is the position of the feature which the action is relative to,

p1 is the position of the body before the action, and p2 the position of

the body after the action.

The fundamental work of the equation solving system is to form pairs

of non-linear simultaneous equations connecting positions of two body

instances. The general form of a pair of equations is

p2 - expressionl(vl) ** p1 (3.5)

-53-

p2 - expression2(v2) ** p1 (3.6)

where each expression is the combination of one or more relation func-

tions and feature transformations, such as that in (3.3). The equation

solver combines this pair of equations and attempt to solve them so that

a new equation

p2 - expression3(v3) ** p1 (3.7)

is formed, where the number of variables contained in v3 is less than or

equal to the minimum of that of v1 and v2. Usually the new equation

created by the equation solver is a more restricted one and contains

fewer variables than both of the two original ones, and can be used by

the equation solver in the further inference in the same way as the ori-

ginal ones. If the complexity of the equations is not beyond the capa-

bility of the equation solver, then this inference process will continue

until all equations have been simplified as much as possible. If any

variables are left then this shows that the information given by the

situation and action descriptions is not enough to determine completely

the relative position of all bodies with respect to the world.

3.3.3. The Cycle Finding System

This is the reasoning system used in the current RAPT, and also the

one used in the work described in this thesis. The cycle finding system

performs the same function as the equation solving system but in a dif-

ferent way. Its main advantage over the equation solver is its speed

and compactness. The method used in this system comes from the

-54-

realization that in many cases there are commonly occurring standard

solution patterns to equation pairs. For example, if two face pairs of

two bodies are against each other, the resulting constraints usually

indicate that the relative position of one body with respect to the

other has only one translational degree of freedom. The cycle finding

system therefore looks at the relational network representing the

current state to see if it can find such standard patterns, and then

replaces them with standard solutions.

3.3.3.1. Relationships in the Cycle Finder

In the cycle finding system, each relation is represented by a 4-

tuple

(r, F1, F2, s)

Here r is the type of the relation, F1 and F2 are the body features

related by the relation, and s is an integer indicating the situation in

which the relationship must hold. The relations in the cycle finder can

also be considered to have the same form as (3.1):

f2 ** p2 - rel(v) ** f1 ** p1 (3.8)

except that here the algebraic function "rel" and the variable vector v

are implied by the type of the relation, and p1, p2, f1 and f2 are

implied by the features F1 and F2 and the situation s.

There are ten types of relationships used in the cycle finder.

-55-

Because of the way in which the cycle finder recognizes and treats stan-

dard pairs of relationships, the relationships used in this system are

more finely categorised than those used in the input language. Thus the

AGAINST relationship of the input system is divided into four sub-

categories depending upon the type of features involved. Also some new

types are introduced: for example, the LIN relationship has only one

degree of freedom, a translational one. This relationship is deduced by

the system when two pairs of faces of two bodies are AGAINST each other.

The cycle finder relationships are named as AGPP, AGPC, AGPS, AGSS,

FITS, PARAX, LIN, LINLIN, ROT and FIX. The AGAINST relationship of the

input system is replaced by four new relationships distinguished by the

types of the related features. This is because the mathematics of

AGAINST relationship differ fundamentally for different cases. Thus

AGPP holds between two faces, AGPS between a face and a spherical

feature, AGPC between a face and a convex cylindrical feature (a shaft

or an edge), AGSS between two spherical features. COPLANAR is

transformed into an AGPP by changing the direction of one of the related

faces. ALIGNED and PARALLEL are treated by the cycle finder as FITS and

PARAX respectively after their directions have been adjusted. LIN holds

between two cylindrical features and indicates that the X-axes of the

two features are collinear and their Y-axes are parallel. This rela-

tionship can either be created by a MOVE statement or be deduced as an

intermediate result by the cycle finder during reasoning. LINLIN holds

between two faces. It is similar to an AGPP except there is no relative

rotation allowed. This relationship can be deduced by the cycle finder

as an intermediate result. It can also be generated by the MOVE state-

ment which specifies a movement parallel to a face feature. ROT holds

between two cylindrical features indicating that the X-axes of the

features are collinear and their origins are coincident. This

-56-

relationship can be either created by a TURN statement or deduced by the

cycle finder during reasoning as an intermediate result. FIX holds

between any kind of feature and indicates that their local coordinate

systems coincide. This relationship is an important one since it
represents a completely determined position of one body instance rela-

tive to another

f2 ** p2 - f1 ** p1 (3.9)

It is the most restricted relationship. The purpose of the reasoning of

the cycle finder is to attempt to establish FIX relations between body

instances in place of the relations given by the user. If a body

instance is "fixed" to the world directly or indirectly (i.e. "fixed"

to another body instance which has been "fixed" to the world) then the

position of the body instance in the world can be completely determined.

3.3.3.2. The Relational Network and Cycles

In the cycle finder a relational network is built up from the input

data, in which body instances are nodes and relations constitute

undirected arcs. Cycles occurring in the network are used in the rea-

soning system. The size of the cycle is the number of nodes occurring

in it, and one of size n is referred to as an n-cycle. The fundamental

step of the cycle finder during reasoning is to find standard relation

cycles and then apply some standard solutions in the form of reasoning

rules to them according to their sizes and natures.

-57-

3.3.3.3. Reasoning Rules

Two sorts of reasoning rules are used in the cycle finder. The

first sort is referred to as the combination rule. This set of rules is
applied to 2-cycles and is listed in Table 1 in Appendix I. A 2-cycle

is a relation pair holding between two body instances like

f11 --- rell --- f21

p1 p2 (3.10) /
f12 --- re12 --- f22

Rules in Table 1 are indexed under types of pairs of relations. If
there is a suitable entry in the combination rule table for the two

relations in a 2-cycle then a new relation is produced to replace the

two original ones. For example, there is an entry in Table 1 for the

pair AGPP FITS and this rule will be applied whenever a 2-cycle is found

in which rell is AGPP and re12 is FITS. The rule defines how the two

spatial relationships constrain each other, and how they can be replaced

by a single relationship. This single relationship is usually more con-

strained than either of the originals. For example, two AGPPs together

can usually be replaced by a single LIN relationship. (If the plane

faces involved are parallel then they will be replaced by a single

AGPP). The introduction of the LIN relationship means that two new

(virtual) features have to be invented by the system for this relation-
ship to hold between. The rules in Table 1 include details of how to

construct these new features. The result of applying the combination

rule can be expressed in a general form as:

p1 -- f13 --- re13 --- f23 -- p2 (3.11)

-58-

The process of applying combination rules will continue until either

there are no 2-cycles existing in the relation network or there are no

suitable entries for those that do exist.

When a relationship pair is to be combined, the cycle finder will
examine relationships between the body features involved. The purpose

of this examination is twofold. Firstly, it will decide whether the two

relationships are compatible or not, i.e. whether the specified rela-

tionships really hold simultaneously for the given positions of the

features. Sometimes, the positions of the features given by the user

are not very accurate. The system itself introduces numerical errors.

The cycle finder will check whether this inaccuracy is within a range

which is pre-specified by the user. Secondly, the examination will
decide whether any special conditions hold between body features so that

the cycle finder can select the appropriate reasoning rules. For exam-

ple, when AGPP is combined with FITS, the general result is a FIX rela-

tionship. However, if the two X-axes of the features of one body are

parallel then the newly generated relationship is a ROT relationship.

If the X-axes are perpendicular to each other then the result is LIN.

The second sort of reasoning rules are the creation rules. This set

of rules is used for applying inference around the relation chains in

the cycles whose sizes are larger than two. They are listed in Table 2

The rules
in Appendix I. /' in Table 2 are also indexed under types of pairs of

relations. The relation chain has the form

p1 -- f1l --- rell --- f21 -- p2 -- f22 --- re12 --- f31 -- P3 (3.12)

If there is a suitable entry in the creation rule table for the two

-59-

relations in a relation chain, then the corresponding creation rule is

applied to create a new relation between p1 and P3. This new relation

holds between two newly created features.

p1 -- f12 --- rel --- f32 -- P3 (3.13)

For example, in Fig. 3.4, block 1 is on the top of block 2 while block 2

is on the top of the table. If the top and the bottom of block 2 are

parallel to each other then according to the creation rules a new vir-
tual face feature is generated which belongs to block 1 and is against

the top of the table. Thus a new relationship AGPP is created between

block 1 and the table. Creation rules are applied successively to a

large cycle until either the size of the newly created cycle becomes two

or there are no suitable entries for the existing relation chain in the

creation rule table. Once a 2-cycle has been produced the combination

rules can be applied.

During reasoning the cycle finder applies these two sorts of rules

alternately until there are no entries in any reasoning rule tables for

the existing relations in the relation network. Each time after the

application of the combination rules a special process called "merge"

takes place. In this process, each relation is checked to see whether

it is of FIX type or not. If it is so then the position of one related

body instance, say p2, is completely determined with respect to the

other, say p1. Thus the position p2 is removed from the set of unsolved

positions, and any relations involving p2 are transformed into ones

involving p1. If the position p1 is solved, it can be transformed to

produce the position p2.

-6o-

The size of the relational network decreases during the reasoning

process. Combination rules try to replace a pair of relationships by a

single relationship. Thus they decrease the size of the network by

reducing arcs in it. Creation rules generate new arcs in the network,

but only the relationships which can be deleted later by combination

rules are kept in the network. Thus creation rules do not increase the

size of the network. The merging process attempts to merge one body

instance into another one. It absorbs nodes in the relational network.

The final result of the network after the reasoning by the cycle finder

may contain only one node which is the world if every distinct situation

is fully specified by the user and solvable to the cycle finder. Other-

wise, it is still a network to which the cycle finder cannot do anything

further, i.e. some body instances have unresolved degrees of freedom.

The cycle finding system has its limitations. It is less powerful

than the equation solving system. The cycle finder needs the newly gen-

erated relationship to be of one of the ten relation types. Otherwise,

reasoning rules cannot be applied to the corresponding relationship

pair, and a "-" is marked in Table 1 to represent this case. For exam-

ple, the general result of combining a pair of two AGPC relationships is

not one of the ten types which are allowed in the cycle finder. Thus

there is no suitable entry in Table 1 for this pair. Sometimes, the

results which are produced by the cycle finder contain two solutions.

This kind of result has a mark (2) after the resulting relation type in

Table 1. This happens usually when cylindrical or spherical features

are involved in the relationships. For example, when ROT is combined

witn AGPS, the cycle finder produces two possible FIX relationships as

shown in Fig. 3.5. The cycle finder cannot decide which solution is

appropriate simply by the reasoning rules. Thus this makes difficulties

-51-

ALPS

Fig- 3.5. An example of two-solution FIX

Here b and b' are the same body in two different

positions which both satisfy the ROT;AGPS relations

for subsequent reasoning.

Chapter 4. Computer Vision in Robotics

Computer vision is a research field in which efforts are made to

enable the computational system to "see" a scene. The input is usually

received by visual sensors such as TV cameras in terms of large arrays

of digitized brightness information. The arrays of brightness values

represent projections of a three-dimensional scene. Several input

arrays may provide information in several spectral bands (colour) or

from multiple viewpoints (stereo or time sequence). The desired output

of a computer vision system varies: for instance, it may be a symbolic

description of the scene, or the specification of information relevant

to special goals of the system. The exact nature of the output depends

upon the task of the vision system. It could involve descriptions of

objects and their inter-relationships. It may also include such infor-

mation as the three-dimensional structure of surfaces, their physical

characteristics and so on.

Computer vision is a research field, which is considered to be the

enterprise of automating and integrating a wide range of processes and

representations used for vision perception [BAL82]. It includes as

parts many techniques that are useful by themselves, such as image pro-

cessing (which transforms, encodes and transmits images), statistical

pattern recognition (which applies statistical decision theory to gen-

eral patterns), and geometrical modelling (which represents the geometr-

ical aspect of objects in the scene). Research in cognitive psychology

and computer science is, of course, relevant to computer vision. The

principal purpose of the research in computer vision is to develop an

artificial vision system capable of high performance in a broad range of

visual domains.

-64-

In this chapter, the state of general purpose computer vision is

surveyed briefly, but more attention is paid to the computer vision in

robotics. In robotics, as in some other special areas, some special

conditions and constraints may be applied to the environment in which

the vision system works, and the requirement of vision performance may

be limited to some extent so that the vision task can be simplified.

Some of the descriptions given below are substantially based on the

abstracts and text of the original authors' descriptions of their

research.

4.1. A Brief Survey of Computer Vision

Computer vision systems are used in a number of domains [HAN78] such

as aerial image analysis [BRO81], astronomy, medical research, chemistry

and robotics [PER78, AGI80] in modes that are heavily dependent upon

domain-specific constraints and techniques. For example, the current

practical industrial vision systems usually require high contrast to

obtain binary images and use overhead cameras to minimize variations in

object appearance. Although these are special purpose systems, they do

provide practical tools for research work in certain areas. However, it

has proved exceedingly difficult to construct effective general purpose

computer vision systems which are capable of dealing with less predict-

able and less structured scenes [HA,N78, BAR81JJ. The research into spe-

cial purpose systems, together with the research in areas of cognitive

psycnology, image formation, knowledge representation, etc. provides new

insights into the computational nature of vision that could lead to

effective general purpose vision systems.

-65-

4.1.1. Modelling in Computer Vision

A major computational principle of vision is that competence depends

upon the models available. When a human is looking at the environment

around him, he has prior knowledge about the environment, and this

knowledge guides the interpretation of what he has seen. Similarly, a

computer vision system also requires knowledge about the perceived

objects, not only the general knowledge about the properties of objects

in the world like surface smoothness and reflectivity characteristics,

but also specific knowledge about the structure of objects, relation-

ships among primitives of objects and so on, if the vision system is

expected to understand the scene well. This is because an image encodes

much information about the scene, and the information is compounded in

the single brightness value at each point. Moreover, information about

the three-dimensional structure of the scene is lost in the projection

onto the two-dimensional image. On the other hand, the meaning conveyed

by an image usually is not derivable solely from the sensory data being

processed. It is dependent upon the goals of the vision system and

prior knowledge of various aspects of natural world and image domain.

In order to decode brightness and recover a scene description, prior

knowledge embodied in models of the scene domain, the illumination, and

the imaging process must be provided and exploited.

Scene models describe the three-dimension world in terms of surfaces

and objects. Surfaces can be described in terms of continuity, smooth-

ness, reflectivity, etc.. Objects can be described in terms of sur-

faces, boundaries, and other primitives. Objects may be specific or

-66-

generic, and their interrelationships are governed by some physical con-

straints.

Illumination models describe the primary light sources, their posi-

tions, spatial extents, intensities, colours, and so on. A complete (or

nearly complete) model of surface illumination must also take into

account secondary illumination caused by reflection and scattering of

light by nearby surfaces, and shadowing caused either by the surface

facing away from light sources or by an interposing body.

Sensor models describe the photometric and geometric properties of

the sensor, which determine how points in the three-dimensional world

map to points in the image and how the received light is numerically

encoded. They predict how a particular scene, observed from a particu-

lar viewpoint, and under particular illumination conditions, is

transformed into the two-dimensional array of brightness values that

constitutes the input.

Computer models usually only represent some aspects of corresponding

world models of objects. The first reason for this is that the space of

the computer memory is limited. The programmer must ignore some trivial

aspects of the world models so that his computer models can be accommo-

dated in a practical computer. On the other hand, ignoring some trivial

aspects makes the computer vision system work more efficiently. The

second reason is that we have not fully understood vision processes.

Our understanding and knowledge about world models, therefore, is incom-

plete. We may have neglected many aspects of world models, some of

wnicn may be very important to decoding an image. The incompleteness of

computer models restricts the performance of general purpose vision

-67-

systems. In many vision applications, however, the, incompleteness of

computer models may not be a big problem. The goals of a specific sys-

tem may be achieved by the use of a subset of the knowledge of the world

and the image, as well as a subset of the available techniques.

4.1.2. Low Level and High Level Vision

A vision system is naturally structured as a succession of levels of

representation [BAR81]. The initial levels are constrained by what can

be computed directly from the image, while higher levels are directed by

the information required to support the ultimate goals. In between, the

order of representations is constrained by what information is available

at the preceding level and what is required by succeeding ones. For

example, Kanade [KAN77] considers the representations in a vision system

to be of five levels. For a region-based vision system, these levels

are:

1) pixel, which is an image point;

2) patch, which is a group of contiguous pixels having similar

properties;

3) region, which is a meaningful group of patches corresponding to

a surface of an object;

4) subimages, which are parts of an image corresponding to an

object or a set of objects consisting of several regions;

5) object, which is a real entity.

For a line-based vision system, these levels are:

1) pixel;

2) line segment, which is a group of contiguous pixels separating

two contrasted patches;

-68-

3) line, which is a group of adjacent line segments with similar

directions;

4) subimage which is a set of lines corresponding to an object.

5) object, which is a real entity.

Processing in the pixel-to-patch level is often called low level pro-

cessing while the region-to-subimage level is high level. The patch-

to-region level may be called intermediate level. Sometimes the inter-

mediate level may also be considered as a part of the low level. Gen-

erally speaking, low level vision refers roughly to the study of those

processes which operate close to the numeric arrays of sensory data

which represent an image [HAN78]. High level vision refers to the study

of those systems necessary for interpreting the relevant components of

an image in the context of the goals and the prior knowledge of the sys-

t em.

4.1.2.1. Low Level Vision

The primary task of low level vision is to segment an image into

some basic features such as edges, regions and so on. For some vision

systems, these features can be used by the high level vision facility
directly. For others, these features must be reorganized into geometric

primitives such as surfaces or volumes, depending upon the requirement

of the high level vision facility.

The basic concept of segmentation can be viewed as building a

description of the patterns of intensity, colour, etc., in an image

[ZUC78]. Since these patterns can be described in two complementary

ways, i.e. as similarity patterns and as difference patterns, two

-69-

different classes of approach have evolved to compute the low level

descriptions. The first class is region growing, which has been

developed to take advantage of the similarity relationships over pat-

terns. The second class, which attempts to find the edge and the line

content in an image, is based upon local difference (e.g. [H0R73]).

Since these two classes of algorithms operate on data models which are

strongly complementary, many systems attempt to use one technique to

improve on the result of the other. For example, edge-based heuristic

rules can be used to enhance an ambiguous response from a region growing

algorithm, while region-based growing rules can be used to improve the

interpretation of responses from edge detection operators. As low level

vision has to deal with many sources of ambiguity and noise, relaxation

techniques are also used (e.g. [DAV78], [ZUC78]).

4.1.2.2. Intermediate Level Vision and Intrinsic Characteristics

Many current vision systems segment an image by the use of intensity

directly to establish pictorial features, such as regions of uniform

intensity or step changes in intensity as an initial level of descrip-

tion. They then jump directly to descriptions at the level of complete

objects. This approach is straightforward. However, it is not suitable

to general purpose vision or high performance special purpose vision.

The features obtained in this way are not reliable enough. Matching

these features to a large number of object models is difficult, and

there is no way to cope with objects which have no explicit models. In

order to overcome these problems, some authors suggest introducing

intermediate level representations of image data. For example, Barrow

and Tenenbaum [BAR78] suggest using intrinsic characteristics, rather

-70-

than intensity values, in segmentation.

Intrinsic characteristics such as colour, range, orientation,

reflectance, etc. give a more invariant and distinctive description of

surfaces than raw light intensities. Thus, they greatly simplify many

basic perceptional operations, and make some tasks possible. For exam-

ple, if an object is unknown to a vision system, then it can be

described in terms of invariant surface characteristics and subsequently

recognized from other viewpoints.

The main problem in recovering intrinsic scene characteristics is

that a single intensity value encodes all the intrinsic attributes of

the corresponding scene point. While the encoding is founded upon the

physics of imaging, it is not unique, and the measured light intensity

at a single point could result from any of an infinitude of combinations

of illumination, reflectance, surface orientation, and observer

viewpoint. In order to decode the compounded information, it is neces-

sary to make assumptions about the world and exploit the constraints

they imply. In images of three-dimensional scenes, the intensity values

are constrained by various physical phenomena. For example, surfaces

are continuous in space and often have approximately uniform reflec-

tance. Thus, distance and orientation are continuous. Incident illumi-

nation can also be assumed to vary smoothly except at shadow boundaries.

Therefore, step changes in intensity usually occur at shadow boundaries

or reflectance boundaries. Intrinsic surface characteristics are con-

tinuous through shadows. These kinds of physical phenomena and assump-

tions, together with interactions among fragments resulting from assumed

constraints, can potentially lead to a unique interpretation of the

whole image [BAR78]. Although individual components of intrinsic

-71-

characteristics have been investigated (e.g. [HOR751), there are no suc-

cessful integrations and there are no practical systems working on the

basis of this.

4.1.2.3. High Level Vision

The information provided by low level vision (or intermediate level

vision) describes the scene iconically in a viewer centered coordinate

frame. By the use of this information, high level vision produces a

more concise symbolic representation that captures global properties in

a viewpoint independent coordinate frame.

Given a description of a scene in terms of surface, volume or line
primitives, the system must be able to recognize instances of objects in

order to explain the scene or achieve other goals. Objects are modelled

by three-dimensional configurations of surface, volume or line primi-

tives either

appropriate

objects with

for

geometrically or symbolically. Geometric models are most

for describing specific objects, particularly man-made

regular structures; while symbolic models are appropriate

objects that are better defined in terms of generic charac- natural

teristics than

object model

object and its

precise shape. Object recognition involves matching an

to scene description to determine the identity of the

position in space. The nature of the recognition process

depends upon the form of the object model.

When descriptions of scenes and object models are represented sym-

bolically by graph structures, recognition can be formulated as a graph

matching problem. Since scene descriptions are fragmented and include

-72-

many partially obscured objects, It is necessary to match parts of the

scene graph with parts of object graphs. In order to minimize the com-

binatorics of such subgraph matching, techniques such as maximal cliques

finding algorithm [BAR76, BOL801, and filtering techniques [TEN77] have

been developed.

4.2. The Use of Vision in Industrial Robotics

For various reasons much uncertainty exists in the real world in

which the robot operates. For example, the real world is so complex

that it cannot be represented completely and adequately using currently

available techniques [KEM83]. Objects which the robot is to deal with

may not be exactly as designed because of design tolerances and manufac-

turing error. The objects may not be delivered exactly to the expected

place because of the inaccurate operation of the workpiece feeder. The

robot may not operate as precisely as required due to such things as

mechanical tolerance in its parts and imperfections in its feedback

transducers. Many robot tasks are so designed that the uncertainty in

the world is tolerable, such as in painting and spot welding tasks. For

tasks which require more precision, such as assembly tasks, some special

methods can be adopted. For example: the quality of workpieces can be

improved; workpiece positioning can be done with jigs and fixtures;

robot accuracy can be improved by building robots more along the lines

of NC machine tools. However, these are all expensive propositions,

especially since all these measures would be required in concert. The

alternative way is to use sensors to detect the differences between the

real world and the robot system's idea of the world and to correct the

robot's operation in subsequent actions. Vision, as an important kind

-73-

of noncontact sensor, has an important part to play in an intelligent

robot system.

Vision systems are used with the robot mainly for detecting, identi-

fying and locating objects in assembly tasks, inspecting situations, and

guiding the recovery from catastrophes. They can also be used in mani-

pulator servos in assembly [AGI77, SAR81, GES83J and in arc welding

[CLO82 J .

Generally speaking, vision tasks in industrial robotics are simpler

than those of general purpose systems. The objects that the vision sys-

tem needs to observe are usually man-made workpieces with regular

features and structures. The environment in which the vision system

operates can usually be controlled. The robot system usually has prior

knowledge about the appearance and expected location of objects in the

scene. All these make it possible and easier to adopt some engineering

methods to solve vision problems in robotics. As general purpose vision

techniques progress and the cost of the hardware declines, the trend is

to use more general vision techniques in industrial vision systems.

These techniques will enhance the capability of industrial vision sys-

tems, enabling it to solve some complex problems that the engineering

solutions cannot do.

4.2.1. Obtaining Descriptions of Parts

There are two ways for the vision system to acquire knowledge about

the geometry of the objects to be identified and located. The first is

training by showing prototypes of the objects, and the second is by

-7 4-

providing models of objects.

4.2.1.1. Training

In the training mode during the teaching phase the vision system is

shown the prototype of every object which is to be recognized by the

system. The named prototype is usually shown several times, each time

in slightly different positions. The system extracts special features

of the prototype, such as the length of the contour, the longest radius

from the center, the shortest radius, the angle between the radii, the

number of straight edges, corners, the number of holes. These features

can be further processed: for example, they may be clustered. The

knowledge obtained in this phase can be used at run time to recognize

and locate objects by matching taught features with observed features.

The training mode is straightforward and has been used in some com-

mercial vision systems (e.g. [UN180]). However, this mode has disadvan-

tages. The main disadvantage is that there is no ready way in which the

user can enhance the capabilities of such a system and all objects

likely to be encountered have to be taught. Due to the nature of the

information, this mode can only be used in two-dimensional vision sys-

tems, for in three-dimensional space, considering the infinitude of

appearances of an object, training is almost impossible. Furthermore,

the vision system cannot be used in any productive work while it is

being taught to recognize objects. Therefore, efficient use cannot be

made of the vision equipment.

-75-

4.2.1.2. Geometrical Models

Geometrical modelling is one way of modelling rigid bodies. It has

been widely used in computer aided design (CAD), computer aided manufac-

turing (CAM), robot programming and some other aspects of the modern

technology. In the specific context of computer vision and graphics,

geometrical modelling refers to the construction of computer representa-

tions of physical objects so that, together with knowledge about cam-

eras, the physics of the imaging process and light source, predictions

can be made about the images [BAU74]. Geometrical modelling can be

space oriented in which objects to be modelled are represented in terms

of space primitives such as elements of a three-dimensional space array,

three-dimensional density functions, or two-dimensional surface func-

tions. More convenient modelling systems are object oriented ones in

which objects are modelled in terms of geometrical properties of

objects. Since this kind of modelling is easier for the user to use and

more compact in computer representation, it is commonly used. Proper-

ties used in modelling may be surface primitives like polygons, volume

elements like generic cones, or others like skeletons.

Geometrical models usually provide more information about the

objects that the vision system is to deal with than that provided by the

training method and they can be used not only in two-dimensional vision

systems but also in three-dimensional systems. It is quite likely that

geometrical models of all objects to be observed by the vision system

will already have been constructed because they will have been required

elsewhere in the total manufacturing system (e.g. in their design,

machining, and in the robot programming). Using geometrical models in

vision systems in robotics, therefore, is efficient in terms of both the

-76-

human effort and the vision equipment.

4.2.2. Industrial Robot Vision Systems

For a computer vision system to be applied in industrial automation

with the robot it has to be cost-effective, which means that its speed

and reliability have to be high with respect to its cost [BOL81b]. The

industrial vision systems usually meet these criteria by taking advan-

tage of task-specific engineering for simplifying the scene to be

analyzed. For example, the lighting conditions can usually be con-

trolled so that shadows can be avoided. The contrast between the

objects and the background can be strong so that the geometric features

can be found more reliably by simple low level vision operators. Since

the robot system usually has a large store of prior knowledge about the

appearance and location of objects in the scene, the vision task can be

directed better. Simple and cheap instruments may also be adopted in

order to make the vision system cost-effective. For example, in

Taylor's system [TAY82a] a 32 x 32 bit light sensitive array is mounted

behind a 13 mm lens as a camera. This makes the system cheap both in

instrument cost and in computation time since the resolution is low.

The following section discusses some of the vision systems currently in

use.

4.2.2.1. Two-Dimensional Vision Systems

The performance of currently available vision systems in robotics is

still limited. Most current commercial vision systems such as VS-100

-77-

and AUTOVISION 1 are classified by Loughlin [LOU81] as of the first gen-

eration. Usually these systems can recognize and locate objects within

a second and are mainly suitable for circumstances where objects can be

identified by their silhouettes. The general characteristics of this

class of vision systems are:

1. The image that the system deals with is binary. This usually

means that the object must be in strong contrast to its back-

ground so that its silhouette image can be easily obtained.

2. The objects must be separated from their neighbours.

3. Each object must have a limited number of stable states in

which it can rest on a horizontal surface.

The restrictions on the scenes and lighting conditions are designed

to maximize processing speed by minimizing the data required and simpli-

fying the decision-making procedure. These restrictions may be expen-

sive in some cases and limit the use of the vision systems.

The constraint of working on binary images is largely a function of the

computation time available for recognition in the environment. Complex

segmentation (either line based or region based) based on grey level

images is currently capable of separating a component from realistic

backgrounds, but the computation time on serial computers is very long.

In order to reduce the computation time, parallel processing is neces-

sary.

The constraint of non-touching objects results partially from the

binary data of the image and partially from the requirement of the

recognition algorithms used. Any systems that can cope with touching or

overlapping objects must adopt more powerful algorithms than those used

-78-

by the first generation systems.

The constraint of the objects to be recognized having a limited

number of stable states is due to the techniques used in two-

dimensional vision systems. The thorough solution to this problem is

the three-dimensional vision system.

Some algorithms and systems have been designed to solve the problems

encountered by the first generation vision systems. For example, the

local-feature-focus method designed by Bolles [BOL82) can solve a high

percentage of instances of partially visible objects. Perkins' system

can determine the position and orientation of complex curved objects in

grey level noisy scenes [PER78].

Another type of vision system currently available is one that

transfers an input image into another domain, such as the Fourier

domain, computes a fixed set of features of the transformed image, and

like the other systems, applies some sort of pattern recognition pro-

cedure to make the final decision (e.g. [KAS771). Such systems can

recognize and locate isolated objects and can compare two images for

difference. It is dubious whether they can be extended to cope with the

analysis of complex scenes.

4.2.2.2. Three-Dimensional Vision Systems

Vision systems need to adopt quite different methods than those used

in two-dimensional systems in order to deal with three-dimensional

scenes. For example, it is

-79-

important to embed models and an understanding of the scene to image

transformation in an intelligent vision system. With these components,

a system can predict how an object will appear given its current beliefs

about the scene rather than having to rely on image models. Several

systems or algorithms have existed or have been suggested which can

recognize and locate three-dimensional objects. Among these systems

some are designed specifically for tasks in industrial automation. Oth-

ers are of more general purpose.

Luh et al. developed a syntactic method [LUH81]. The system accepts

the three-dimensional geometrical information of a given object and sys-

tematically generates structure descriptive sentences for all possible

topologically distinct two-dimensional views of the object. The pro-

cessing time for compiling a directory from the geometrical image is

long, but it is done off-line, and has to be done only once for each job

assignment. The on-line determination of the two-dimensional to three-

dimensional correspondence is achieved by means of directory look-up.

The IMAGINE system [FIS83] matches surface regions to object models

in order to recognize and locate projections of three-dimensional

objects in two-dimensional images. The approach is data driven with

three major stages. The first stage matches image regions to model sur-

faces with the goal of estimating the three-dimensional orientation

parameters for the image region. This information is used to make

hypotheses about specific object surfaces. The second stage relates the

hypotheses according to the structural relationships embodied in the

object models. The third stage verifies that the hypothesized objects

are consistent with real world constraints, such as boundary, adjacency

and surface ordering. Recognition is considered successful if a set of

_80-

data is found that adequately accounts for all features of a model. It
has been demonstrated that the system can recognize partially obscured

objects with arbitrary orientation and make reasonable estimation of

their location.

The ACRONYM system is a model driven image interpretation system.

It incorporates viewpoint-insensitive mechanisms. Its performance

depends upon domain-independent capabilities rather than upon special

domain-dependent tricks. The operation of ACRONYM can be divided into

four phases. Based on object models designed by humans, ACRONYM builds

an object graph and a restriction graph. The object graph is a geometr-

ical representation of the objects expected in the task domain in terms

of both the subobjects and the spatial relations holding between an

object and others. The restriction graph holds sets of constraints on

algebraic expressions over parameters which are used in the object graph

to specify the objects. During the prediction phase, the object graph

and the restriction graph are used to produce a prediction graph. The

nodes in the prediction graph are predictions of image features, and the

arcs represents the relations expected to hold over features in the

image. The prediction graph provides a coarse filter for hypothesizing

object-image feature matches and contains instructions concerning the

extraction from the image feature of three-dimensional information about

the object model to which the feature has been matched. During the

description phase, ACRONYM uses a "line finder", an "edge mapper" and

the prediction graph to produce a picture graph. The picture graph, the

prediction graph, the restriction graph, and the algebraic system for

reasoning over constraints are used to build the interpretation graph

during the interpretation phase. Image interpretation proceeds by

matching image features to predicted features. The manner in which the

-81-

matching is done and the manner in which the system represents its

knowledge allow ACRONYM to interpret partially obscured objects. The

ACRONYM capabilities for domain-independent, viewpoint-independent image

interpretation make it attractive for resolving real world uncertainty

in robotics [KEM83).

There are some other three-dimensional vision systems which take

advantage of the possibility of controlling the lighting conditions to

make use of special purpose instruments and techniques. Among these

special instruments the laser range finder is commonly used.

The laser range finder consists of a light source, a camera, and a

computer. There are two basically different techniques which can be

used to measure ranges [NIT76): triangulation and time of flight. In

one kind of triangulation range finder [POP77), the light source casts a

plane of light on the scene, and this, when viewed from a different

point of view by a TV camera, will appear as a broken curve, or a set of

straight line segments, depending upon the nature of the surface on

which the stripe is falling. One stripe gives the range of a cross sec-

tion of the scene. By scanning the stripe across the scene, a complete

range map of the scene can be built up. The information can then be

processed by the computer so that the objects in the scene can the

recognized and located, or an interpretation of the scene can be given.

In a time-of-flight range finder, range is determined from the time

needed for the light to travel from the light source to the target and

back. The tine of flight can be determined either directly by using a

pulsed laser and measuring elapsed time, or indirectly by using a modu-

lated beam and measuring the phase shift. A range image is obtained by

using a scanning system to sweep the beam over the scene.

-82-

Such range finders have been used for different purposes. For exam-

ple, they have been used to form three-dimensional models for objects

[POP77] and to locate three-dimensional objects [BOL81a]. It is also

considered that the laser range finder, together with other special pur-

pose instruments, can fit naturally into the general perceptual frame-

work [BAR81].

4.3. Verification Vision

The term verification vision is suggested by Bolles. It denotes a

special kind of vision system whose purpose is to verify and refine the

location of specific objects in the scene rather than to recognize them.

The concept of verification vision seems useful and suitable in

robotics because automatic assembly is not haphazard but carefully

planned. Most uncertainty in robotics is of the position rather than of

the appearance of the objects. The robot system usually needs to update

its knowledge about the location of the objects rather than to recognize

these objects. Also, the robot system usually has a great deal of prior

knowledge about the scene which can be used by the vision system to

estimate the appearance of the scene. For a verification vision system,

one needs some way of making the prior knowledge about the scene avail-

able to the system.

The verification vision system designed by Bolles [BOL77] uses

object models and image models. It is intended for inspection and

visual control in repetitive manufacturing tasks. The verification

-83-

vision system makes use of three-dimensional models, but it requires

that sensed images be very similar to image models, and therefore it is

necessary that the difference between the expected position and the

actual position of the object be within a certain range.

There are four stages in the operation of the system. At program-

ming time, the user states the goal of the task, calibrates the camera,

and chooses potential operator/feature pairs. At training time the sys-

tem applies the operators to several sample pictures and gather statist-

ical information about their effectiveness. At planning time the system

ranks operators according to their expected contribution, determines the

expected number of operators needed, and predicts the computational cost

of accomplishing the task. At execution time the system applies opera-

tors in their order of cost-effectiveness, combines the results into

confidences and precisions, and stops when the desired confidence has

been achieved, or cost limit exceeded. The system is restricted in

viewpoint since it primarily depends upon small correlation windows as

features [BIN82].

Bolles' system is a special case of verification vision in which he

uses taught image models. It is not necessary to use taught models.

Baumann [BAU81], for example, uses image models which are defined as

sets of two dimensional regions. Each region represents a basic com-

ponent of the expected image of the object. In the work which will be

described in this thesis, the system uses the knowledge about the

expected positions of the modelled objects to predict the expected posi-

tions of the edges in the image. Generally speaking, verification

vision has a great deal of prior knowledge about the scene. This

knowledge can be used to guide the interpretation of the visual

-84-

information. Thus, in order to refine the location of the objects to be

verified, the verification vision system needs only to know the posi-

tions of the images of certain selected features. The features which

can be used by verification vision can be edges, corners, holes or any

others which are easy to detect and locate.

Chapter 5. New Vision Commands in RAPT

The current RAPT system, as discussed in Chapter 3, has no commands

for using sensory information to perceive and interact with the sur-

rounding environment. This is inadequate if the language is to be used

for complex tasks in which unexpected events may happen, where antici-

pated changes cannot be determined exactly before the program is run, or

where tolerances are such that special accommodation is needed for each

part. The motive behind the research work which will be discussed in

this and succeeding chapters is to provide a set of vision commands and

associated facilities to overcome this. The semantics of these vision

commands and the functions of the associated facilities are determined

by the nature of the variabilities of the environment and the way in

which the RAPT system needs to use sensory information. In this

chapter, the author will discuss the role of the vision tasks in the

RAPT programming environment and define the vision commands which are

necessary in describing such vision tasks.

5.1. Vision Tasks in RAPT

RAPT is an object level language. It has some knowledge about the

surrounding environment in which the robot will perform assembly tasks.

The output of normal RAPT is a series of positions of bodies in each

situation. These positions are, however, only planned ones in as much

as they have been determined taking no account of the inaccuracies

inherent in the real world. These planned positions are referred to as

nominal positions. Discrepancies between nominal positions and actual

positions of bodies may be caused by inaccuracies of the mechanical

-86-

structure and performance of the robot, unexpected disturbance to the

bodies, tolerances in the parts and so on. Usually the discrepancies

are not too large. For some tasks, the program can be designed to

tolerate this amount of inaccuracy in the nominal position. However,

for some precise operations, inaccuracies which are inherent in the

robot and the environment may cause failures. Furthermore, if work-

pieces or subassemblies are delivered by a cheap belt conveyer, part

feeder or fast-moving robot with poor accuracy then the inaccuracies of

the positions of the bodies may be easily beyond the tolerance of the

program and the assembly robot. In these cases, some system is needed

to verify and refine the positions of the bodies whose nominal positions

are in doubt. A vision system can be used for this.

RAPT reasons about spatial relationships between body features. The

identification of an image feature with a feature of a RAPT body in

effect defines a relationship between that feature and an (imaginary)

feature of the camera. This relationship, in conjunction with others,

can be used to refine the estimate of the position of the body.

In order to specify vision verification tasks in RAPT programs a

number of vision commands have been added to the RAPT language. They

are the LOOK statement which is used to indicate the feature to be veri-

fied and to describe the vision environment, the INVIOLATE statement

which is used to specify the constraints on the actual position of the

body to be verified, the TOLERANCE statement which is used to specify

the maximum translational error along all the three axes of the body

coordinate system, and the COMBINE statement which provides a vision

command package and combines the information given by the LOOK,

INVIOLATE and TOLERANCE statements within the package.

-87-

Some auxiliary statements are also needed to specify cameras which

will be used by the vision system. These statements specify types and

parameters such as focal length and position of cameras. They are also

used to specify the default camera which will be used when the user does

not indicate the camera to be used in LOOK statements explicitly.

5.2. The LOOK Statement

The LOOK statement is used to indicate the feature to be verified

and to describe the vision environment. The syntax of the LAO K state-

ment is as follows:

LOOK/<feature of body> [,<camera name>];

where <feature of body> specifies the feature to be verified. This

feature will already have been defined by the RAPT modelling system.

The <camera name> specifies the camera to be used. The <camera name> is

optional. If it is omitted, the default camera name which has been

specified by the programmer will be used. For example, the statement

LOOK/edge 1 of block, camera a;

asks the vision system to use a camera called "camera a" to refine the

position of the body "block" using "edge-l".

In the current research, edges are chosen as the feature type to be

verified, since images of edges are easy to detect. However, there are

-88-

no theoretical obstacles to the use of other feature types in the verif-

ication vision system.

As mentioned in Chapter 3, the RAPT reasoning system treats edges as

infinite features although some edges can be represented in the RAPT

model as finite with a specified extent. The extent of the edge has no

significance to the reasoning system. However, as features to be veri-

fied, the edges must be finite since the verification vision system has

to know the approximate position and dimension of the physical edge to

be verified. Thus, only edges which have been defined with specified

length are allowed to appear in a LOOK statement as features to be veri-

fied.

The LOOK statement has three effects:

(1) formation of symbolic features and relationships in the RAPT

reasoning network.

(2) sending all necessary information to the vision facility for

it to decide where and how to find the expected edge.

(3) making the command to actually use the camera at run time.

These will be discussed in detail.

5.2.1. Forming the Symbolic Features and Relationships

Once a camera has been used to find a body feature in the scene, it
establishes a relationship between the camera and the body. It is

known, from projection transformation, that an edge in an image

-89-

corresponds to a plane in a 3-D space. If an edge feature is to be ver-

ified, an AGAINST relationship between a face which is relative to the

camera and the edge will be established. This relationship is denoted

as AGPE (AGAINST/FACE,EDGE), a special case of AGPC which is a standard

relationship in the current RAPT system. This AGPE is introduced in

order to simplify the symbolic reasoning rules and is the same as AGPC

except that the cylindrical feature involved is restricted to being an

edge. In the AGPE relation formed as a result of a vision command, the

edge feature has already been defined by the programmer through the RAPT

modelling system, while the imaginary face feature is to be created by

the LOOK statement. From the definition of the relationship AGAINST, it
is easy to see that the face feature is so located that both the edge

feature to be verified and the centre point of the camera lens to be

used must lie on the face. The position of the face feature can be so

determined that its origin coincides with the centre point of the camera

lens and its normal is perpendicular to any two rays which point from

the centre point of the camera towards different points on the edge

feature. The vectors of these rays can be calculated by the inverse

perspective projection transformation [DUD73] using measurements of the

positions of points on the image of the edge.

However, the vision data (that is, the position of the image of the

edge feature in the scene) is not available at compile time. Therefore,

the face feature only exists symbolically at compile time and its posi-

tion cannot be resolved until run time. The relation AGPE therefore

holds between a fully defined geometrical feature and one whose position

is not known at compile time. In order to do the geometric reasoning

about the position of the body at compile time, a name which is referred

to as a symbolic feature will be created for the face feature. This

-90-

symbolic feature has type "face" and an unknown position. At run time a

real position will be assigned to it. Relations which refer to symbolic

features are called symbolic relations and will be dealt with by the

symbolic reasoning system which will be discussed in detail in Chapter

6.

5.2.2. Information Used the Vision Facilities

In order to predict the position of the image of the edge, the fol-
lowing items of information must be available to the vision facilities.

(1) the feature to be verified,

(2) the model of the body,

(3) the nominal position of the body,

(4) the translational tolerance of the position of the body,

(5) the physical name, position and parameters of the camera to be

used.

The nominal position of the image of the edge feature of the body is

easy to work out from this information. It is done in the following

way. From the model the vision facilities know the exact position of

the feature in terms of the body's local coordinate system. The nominal

position of the body together with the body model, tells the vision

facilities the anticipated position of the edge feature in terms of the

world global coordinate system. The translational tolerance of the body

position restricts the discrepancies between the nominal and actual

positions of bodies. Therefore, the vision facilities are able to

decide the range in which the expected edge image is likely to appear in

-91-

the scene. Finally, by using the inverse perspective transformation the

range of possible image positions can be calculated.

5.2.3. Calling the Vision Facilities

The last effect of the LOOK statement is to create a run time com-

mand to use the camera. The run time command will specify the operation

of the vision facilities and indicate the symbolic feature to which the

vision data will be sent after being processed by the vision facilities.

5.3. The INVIOLATE Statement

The INVIOLATE statement specifies the constraints on the actual

position of the body to be verified. The syntax of the INVIOLATE state-

ment is

INVIOLATE/<relation>, <feature of body 1>, <feature of body 2>;

where the <relation> specifies a relationship which must hold between

<feature of body 1> and <feature of body 2>. Theoretically, it can be

any relationship allowed by the current RAPT input system. The <feature

of body 1> is a reference feature while <feature of body 2> is a feature

of the body to be verified by WOK statements in the same vision command

package as the INVIOLATE statement. The reference feature <feature of

body 1> must be either a feature of the world or a feature of a body

which nas been fixed with respect to the world. For example, the fol-

lowing statement

-92-

INVIOLATE/AGAINST, top of table, bottom of block;

specifies that the body "block" is on the table and its bottom is

against the top of the table.

5.3.1. Inviolate Relations in Vision Verification

The reasons for the introduction of the INVIOLATE statement are

two-fold. The first and the most important reason is that the verifica-

tion vision system needs an explicit declaration of the relations which

must hold whatever the actual position of the body to be verified. In

RAPT, the position of a body is defined in terms of relations holding

between features of the body and those of others. However, not all
these specified relations will actually be realized in physical situa-

tions. Some of the relations are vulnerable to inaccurate movement,

tolerance, etc. while others are guaranteed by certain physical con-

straints. For example, if a body is at rest on a flat table and not

supported by any other bodies, then its bottom must be against the table

top. On the other hand, the user may have intended its front surface to

be coplanar with some other surface. Whether it is actually coplanar

depends upon how the user asks the robot to put it there. The aim of

verification is to ascertain the actual positions of bodies, and these

may differ from nominal ones because some relations have not been prop-

erly achieved. If there are no explicit statements about which rela-

tions are inviolate (i.e. must hold whatever the history of the assem-

bly) then the symbolic reasoning system will explain, without any res-

triction, the vision data it has obtained about the positions of

-93-

verified features of the body. The explanation may conflict with the

physical constraints on the position of the body to be verified. For

example, suppose the vision system verifies the position of a block B

which lies on the top face of a work table, and the top face is parallel

to the X-Y plane of the world coordinate system. Six parameters are

needed to determine the position and orientation of a body in a Carte-

sian coordinate system: three for translation and three for rotation.

If the position of the block is to be verified without any restriction
over its actual position, then the six parameters are all subject to

modification and since it is almost certain that there will be some

errors in the vision system, there may be some peculiar results. For

example, the result may indicate that the bottom of the block was

beneath the top of the table though the block lies on the top of the

table. On the other hand, if an INVIOLATE statement is used to indicate

the fact that the bottom of the block must be "AGAINST" the top of the

table then the explanation of the vision data is constrained in such a

way that the parameters for translation along the Z-axis and rotation

about the X- and Y-axes are fixed and no matter what the vision data is,

the relationship "AGAINST" between the bottom of the block and the top

of the table must be kept. The INVIOLATE statement specifies a con-

straint on the position of the body to be verified in terms of a rela-

tionship that must hold between the body and another. From the view

point of geometric reasoning, it provides a reliable relationship in the

relationship network.

If the reference feature does not directly belong to the world then

it must belong to a body whose position has been determined completely

with respect to the world. This is so that the position of the refer-

ence feature can be expressed in terms of the world coordinate system.

-94-

The second reason for introducing the INVIOLATE statement is to do

with the capability of the reasoning system. If all the relations which

will be used to deduce the position of the body to be verified are of

the AGPC type then the cycle finding reasoning system cannot usually do

any inference. This is because the relationship AGPC or AGPE contains

four degrees of freedom: two translational ones and two rotational ones.

There are no specified relations holding between the coordinate axes of

the cylindrical feature and those of the face, except that the two X-

axes must be perpendicular to each other. This characteristic of the

relationship AGPC or AGPE brings about some ambiguities which can be

eliminated only when some special conditions hold. The combination of

relations consisting of AGPC or AGPE type alone is therefore possible

only for a few special cases [POP81]. The general case of combining two

or three AGPC relations gives a number of possible solutions and even

the equation solving system cannot disambiguate than. Of co u^se there

are no suitable entries in the reasoning rule table of the cycle finding

system. The INVIOLATE statement helps by providing other types of rela-

tions which enable the inference system to reach a solution.

In order to demonstrate the idea of using inviolate relationships in

reasoning about vision data, the relation type AGPP, i.e. an AGAINST

between two plane features, is employed in the INVIOLATE statement. The

relationship AGPP is used because it is the most common situation

encountered in a real assembly process, and the combination of an AGPP

and an AGPE is solvable under the verification condition. The necessary

reasoning facilities have been implemented in the current system. How-

ever, there is no theoretical restriction on the use of other kinds of

relationships. The only practical restriction to this is the capability

-95-

of the symbolic reasoning facility. The type of relationship used in

the statement can be any one allowed by the RAPT system, provided the

symbolic reasoning facility can deal with it.

5.3.2. Local and Global Vision Command Package

In a RAPT program some bodies may be "TIED" together throughout a

number of contiguous situations. This means that these bodies must keep

the same relative positions before and after each action. Usually the

relative positions of the TIED bodies stay the same before and after a

set of vision commands. Sometimes, however, the user needs the vision

system to verify and modify some relations between two bodies which have

been TIED together. For example, the programmer can specify an opera-

tion of picking up a shaft by saying that the gripper moves a certain

distance along a specified direction, and after this action is completed

the two face features of the gripper are against the shaft. He then

says that the gripper and the shaft are TIED together before the gripper

moves upwards. If at this step the programmer is not convinced of the

relative position of the shaft with respect to the gripper, for example,

because the position of the shaft on the table was uncertain, then he

can order the gripper to move to the front of a camera and ask the

vision system to refine the position of the shaft. The actual position

of the shaft in front of the camera may be quite different from the nom-

inal one, but the relations that the face features of the gripper are

against the shaft must hold provided the shaft has really been picked

up. The programmer can use INVIOLATE statements to indicate this res-

triction. In this case the result of the verification may change the

relative position of two bodies which have been TIED (e.g. the shaft

-96-

shifted along its axis) but the relations declared by INVIOLATE state-

ments will still hold.

In a future implementation, some new statements could be introduced

to indicate explicitly which TIES must be kept during vision verifica-

tion and which TIES are subject to modification. At the moment, the

status of a TIE during vision verification is deduced from the INVIOLATE

statements. If the reference body (BR) in an INVIOLATE statement in a

vision command package has been TIED in the associated RAPT program to

the body to be verified (BV) then the relative position of BV with

respect to BR is subject to modification. Otherwise the relative posi-

tions of the two bodies which have been TIED together will not be

changed.

Any INVIOLATE statement referring to two bodies which have been TIED

together is called a local INVIOLATE statement and, as discussed above,

it indicates that changes may occur in the relative positions. A simi-

lar treatment is also applicable to subassemblies. An INVIOLATE state-

ment in which BR belongs to the same subassembly as BV is also called a

local INVIOLATE statement. A vision command package which contains a

local INVIOLATE statement is referred to as a local vision command pack-

age and a vision command package which does not contain a local

INVIOLATE statement is referred to as a global one. The verified posi-

tion obtained from a local vision command package will only affect the

position of BV and therefore the relative position of 9V with respect to

any other body is subject to modification (but the constraints of the

INVIOLATE relationship are maintained). Detailed discussion of the

influence of these two kinds of vision command package over body posi-

tions can be seen in Chapter 8 where "linking rules" for TIE and

-97-

SUBASSEMBLY statements are discussed.

5.4. The TOLERANCE Statement

Verification vision works under the assumption that the position

error between the nominal position of the body to be verified and its

actual position is not very large. This assumption is important espe-

cially to the verification vision system working together with the

current RAPT system. As mentioned before, the modelling system used by

the current RAPT system is incomplete, and therefore it cannot provide

enough information for the verification vision system to judge whether a

mismatch is made between an image and an model feature. For example, an

image of a feature which is not represented by the body model may be

considered as that of a model feature whose real image is near by, and

this mismatch cannot be discovered by the system by consulting the model

of the body. In order to assure the correct match between the image and

the feature, the position error between the nominal position and the

actual one of the body should not be too large so that in the whole

range on the scene in which the expected feature may appear no other

features may appear. This needs the programmer to select the features

to be verified carefully and reckon the maximum possible positional

error correctly. The estimated error should not be so small that the

expected image may fall outside the range suggested by the error. It
also should not be so large so that image of other features may fall
into the range.

In order to express the maximum possible error in a nominal posi-

tion, a new statement TOLERANCE is introduced. This statement indicates

-98-

the possible translational error range of the nominal position of a body

along each coordinate of the world frame. It has two possible syntactic

forms. The first one is

TOLERANCE/<body>,TRAN, <no>;

where <body> is the name of the body for which the statement specifies

the maximum deviation from the nominal position, and <no> is a positive

real number. This form of the statement is referred to as a global

tolerance statement. It is used outside any vision command packages and

is valid throughout the associated RAPT program. The second form of the

statement is

TOLERANCE/TRAN, <no>;

where <no> is a positive real number. This form of the statement is

referred to as a local tolerance statement and can only be used within a

COMBINE command package. It specifies the tolerance of the nominal

position of the body which is to be verified by the package of vision

commands, and has no effects outside the package. If there is no toler-

ance statement given to a body then a default tolerance which has been

set by the vision system will be used to restrict its nominal position.

The rotation error tolerance will be discussed in Chapter 10 of this

thesis. There is no implementation of rotation error in the current

system. However, the restriction of the translation error should take

into account the effects of possible rotational errors on the nominal

position and indicate the range in which the feature is likely to be

found.

-99-

5.5. The COMBINE Statement

The COMBINE statement provides a package for the vision commands.

It invokes the symbolic reasoning facility to deduce the symbolic posi-

tion of the body by using all the information included in the package.

To this end, it must check whether the statements in the package are

compatible, and combine information given in the TOLERANCE and INVIOLATE

statements in order to deduce a more accurate translational error toler-

ance over the nominal position of the body to be verified. The COMBINE

statement is also used to declare a new situation in the assembly task.

5.5.1. Checking the Statements

There are two points that will be checked. Firstly, all the LOOK

and INVIOLATE statements in the package must create relationships

between one particular body and the world. This means that the features

to be looked for by the LOOK statements must belong to the same body and

this body must be the same as BV of the INVIOLATE statement. Also the

reference features specified in the INVIOLATE statements must either

belong to the world or belong to a body which has been fixed with

respect to the world. If the reference features do not belong to the

world directly but belong to bodies whose positions have been determined

in the world coordinate system then the positions of these features will
be transformed into the positions in the world coordinate system.

Secondly, if there is more than one INVIOLATE statement, they must not

conflict with each other.

-100-

5.5.2. Restricting the Error Range Over the Nominal Position

The TOLERANCE statement specifies the maximum translational error
along all three axes of the body coordinate system. This does not

necessarily mean that the actual position of the body can differ from

its nominal position by this amount in any of the three directions. In

fact, the range of positions is restricted by the constraints described

by the INVIOLATE statements. The information given by the TOLERANCE

statement should therefore be combined with the information obtained

from the INVIOLATE statement(s) and an actual error tolerance on the

nominal position of a body deduced. This actual tolerance gives the

vision facilities more accurate data to decide where to expect the image

of the feature. Because most of the cases that the current vision

verification system deals with are very simple, it does not need to use

sophisticated methods to deduce an estimate of the actual error toler-

ance. For example, consider a verification vision process in which the

bottom plane of the body to be verified is against the top plane of the

work table which is parallel to the Y-Z plane in the world coordinate

system. In this case the possible error of the nominal position of the

body along the direction of the X-axis of the world coordinate system is
zero. Occurrences of this kind are quite common in RAPT programs since

RAPT is used to describe assembly tasks and most workpieces have regular

and simple shapes. In order to deal with these simple cases efficiently

the COMBINE command uses some rules of thumb to calculate the actual

error range along each coordinate axis. These rules of thumb produce

exact results for the simple cases and approximate results for general

circumstances.

-101-

When working out the more accurate error range the system uses the

local tolerance statement, if one has been given. If not, it looks for

a global tolerance statement for the relevant body, and failing this,

uses the default value. Having decided on the tolerance, it can now use

the INVIOLATE statements and rules of thumb to determine the more accu-

rate error range. These rules of thumb depend upon the number of

INVIOLATE statements in the current COMBINE package.

When considering the case in which the INVIOLATE statements are all
AGPP ones, three different circumstances can be distinguished. In the

first there are three non-redundant INVIOLATE statements and the nominal

position of the body is accurate and the error range is zero along any

coordinate axis. If there are two non-redundant INVIOLATE statements

then the body can move in a direction which is perpendicular to the X-

axes of both reference faces in the INVIOLATE statements. This

corresponds to a LIN degree of freedom. The rule for two INVIOLATE

statements is as follows: suppose the cross vector of the X-axes of the

two reference faces in the INVIOLATE statements is (a, b, c), then the

combined tolerance will be a vector

(Id*al, Id*bl, Id*cl) (5.1)

where d is the nominal tolerance given by the corresponding TOLERANCE

statement. This rule gives an accurate result for the actual error

range along each coordinate axis when the direction in which the body is

movable is parallel to any coordinate axis of the world. In other cases

the result is approximate. When there is only one INVIOLATE statement,

or two with the reference faces parallel to each other, the position of

-102-

the body to be verified may deviate in any direction perpendicular to

the X-axis of the reference face. In this case the rule is as follows:
suppose the vector of the X-axis of the reference face in the INVIOLATE

statement is (a, b, c) then the combined tolerance is a vector

(d*(1-a*a), d*(1-b*b), d*(1-c*c)) (5.2)

Here d is the nominal tolerance. If the X-axis of the reference face is

parallel to any axis of the world coordinate system then the algorithm

produces an accurate result otherwise it produces an approximate result.

Precise algorithms for calculating the actual error range in general

situations may be considered in the future. These rules do, however,

depend upon the RAPT system having a knowledge of the space occupancy of

the objects, and of some physical laws. Since RAPT does not yet have

these, the precise algorithms cannot yet be implemented.

5.5.3. Creating a New Situation

Although the whole vision command package causes neither any actions

of the robot manipulator nor any changes of the nominal positions of the

bodies, it does change the knowledge of the robot system about the

actual positions of the bodies. It therefore changes the state and fol-

lowing actions of the robot. Thus it is necessary for a vision command

package to be considered to be a special action command and to create a

new situation to distinguish the states of the robot before and after

vision verification. Doing this is also a task of the COMBINE state-
ment.

-103-

An example of the use of the vision commands is as follows:

COMBINE;

INVIOLATE/ against, bottom of bodyl, top of table;

LOOK/ edgel of bodyl, cameral;

LOOK/ edge2 of bodyl, cameral;

TOLERANCE/TRAN, 6;

TERCOM;

where TERCOM terminates the COMBINE package.

5.6. The Camera Specification Statement

The basic camera model has eight degrees of freedom [BAU74], three

in location which indicate the position of the lens centre of the cam-

era, three in orientation which indicate the directions of the axes of

the camera coordinate system, and two in projection which indicate the

focal ratio and aspect ratio respectively. In the vision verification

system, the camera model has seven degrees of freedom. The parameter of

aspect ratio is embedded into the system for the currently used equip-

ment so that the user does not need to worry about it. A camera is

defined by a statement of the form:

<camera-name> - CAMERA/<name>, <body name>, <F>;

where <name> is the logical name of the physical camera to be used,

-104-

<body name> indicates an already defined body whose coordinate system is

used as that of the camera and <F> is the focal length of the lens. The

axis of the camera lens is assumed to be collinear with the X-axis of

the body coordinate system and the centre of the camera lens is assumed

to be coincident with the origin of the local coordinate system. This

type of statement is referred to as the general camera specification

statement, and cameras defined in this way can be moved by the robot.

For convenience, another type of camera specification statement has

been introduced. Its format is

<camera-name>-CAMERA/<name>,<centre>,THETA,<no 1>,PHI,<no 2>,

PSI,<no 3>,<F>;

Here <centre> is a point indicating the position of the centre of the

camera lens, and <no 1> - <no 3> indicate the rotation of the camera

about its coordinate axes in the order of the Z-, Y- and X-axes. The

amount is measured in degrees. The camera reference orientation is with

the X-axis of the camera coordinate system parallel to the Z-axis of the

world coordinate system, and the Z-axis of the camera parallel to the

X-axis of the world. This is illustrated in Fig. 5.1. Cameras defined

in this way cannot be moved or manipulated by the robot. This type of

the statement is therefore referred to as an immovable camera specifica-

tion statement.

When a LOOK statement does not specify explicitly the camera to be

used then a default camera is used. A default camera setting statement

has the format

-105-

I X

Z z

/The world coordinate system

Fig. 5.1 The relationship between the world coordinate system

and the reference coordinate system of the camera

Fig. 5.2 Window clipping

-106-

SETCAMERA / <camera-name>;

In the default case the camera set by the latest SETCAMERA statement

will be used.

5.7. Vision Facilities

The vision facilities used by the verification vision system include

a vision interface and a low level vision processor. They are used as

an experimental tool for obtaining real vision data for the use of the

verification vision system. At present, the vision facilities contain

three parts: a window suggester, an edge finder and a face generator.

The window suggester works under the control of the camera commands

created by LOOK statements. It tells the edge finder where to look for
the image of the edge feature. The vision data obtained by the edge

finder is used to determine the position of a new face of the world by

the face generator. The actual position of the face is then sent to the

RAPT run time system to take the place of the symbolic position of the

corresponding face feature created by the LOOK statement at compile

time. When positions of all relevant symbolic features have been

replaced by actual ones the symbolic position of a body being verified
can be evaluated to produce the actual verified position.

5.7.1. The Window Suggester

The window suggester needs the body model, the nominal position of

the body, the positional error tolerance and the position of the camera.

-107-

The position of any point in the world coordinate system can be

represented in terms of the camera coordinates by making use of the

position of the camera. Suppose that the position of a point is Pw in

the world frame and Pc in the camera frame and C is the position of the

camera, and that both Pw and Pc are represented in the form of a homo-

geneous row vector (x,y,z,1). Then the following equations stand

Pc ** C - Pw (5.3)

Pc - Pw ** C-1 (5.4)

Using the focal length F of the lens, the position of the image of the

point can be calculated. Suppose a point has a position Pc - (a,b,c,1).

The coordinates of the image of the point can be evaluated by the fol-
lowing equations.

y - b.a/F (5.5)

z - c.a/F (5.6)

Using equations (5.4), (5.5) and (5.6), the range of the image position

of the edge to be verified under the constraint of the position error

tolerance can be worked out in image coordinates and a window can be

created. However, before the window suggester creates the window, it
examines whether there is any part of the nominal edge image falling
within the range of the scene projection, given the current camera

parameters. This scene projection is determined by the vision equip-

ment. If the entire image of the edge to be verified is out of the

range of the scene projection then the window suggester will report an

error to the programmer, and no window will be created. Otherwise a

-108-

window will be suggested for the visible part of the image of the edge.

A window is a rectangle. It is defined in such a way that a part of the

edge image will definitely appear within the window, provided that the

position deviation of the body is within the tolerance. The image will
also be approximately aligned with the long side of the rectangle.

Before the window is sent to the edge finder, it will be clipped. The

clipping process first inspects whether any long side boundary of the

window is completely out of the image scene. If so this will be

reported to the programmer and the window will be abolished. Otherwise

the clipping process will clip the window so that only the area of the

window which is within the image scene will remain. The clipped window

is kept rectangular (Fig. 5.2).

5.7.2. The Edge Finder

The edge finder is a low level vision processor. Given a digitized

grey level image and a rectangular window, the edge finder will look for

an image of an edge in the window and report the coordinates of the end

points of the edge image. The edge finder works in the following way.

Firstly, it searches from two short sides of the window towards the cen-

tre in order to find some candidates for the end points of the expected

edge image. An end point is defined as a pixel whose "weight" (see

below) exceeds a specified threshold. If some end points have been

found then it calculates the average weight of the linking pixels

between each possible combination of end points. It then compares all
the average weights in order to decide which pair of end points gives

the line segment with the heaviest average weight, and reports the coor-

dinates of the pair. If a segment of a curve appears in the given

-109-

window then the edge finder will report the coordinates of the end

points of a single straight line which approximates to the curve seg-

ment. The main advantage of this method is that it is able to reduce

the effects of discontinuities in the image of an edge caused by noise

and imperfection of the camera and digitizer. The weight of a pixel is

evaluated by a high pass filter suggested by Wong [WON79J. The equation

of the high pass filter is

it - (a+b+c-d-e-f I + lc+h+f-a-g-d) (5.7)

This equation is applied to the window shown in Fig. 5.3 where i coin-

cides with the pixel to be processed. The threshold used for distin-

guishing the end points is set by the programmer before the vision

facilities begin the operation.

Fig. 5.3 The window of the high-pass filter

Other kinds of low level vision processing method could be used

instead of this edge finder, provided they can determine the end points

of the image of the expected edge correctly. Up to now, however, no

other methods have been tested since the current edge finder produces

satisfactory results as an experimental tool under controlled laboratory

conditions.

-110-

5.7.3. The Face Generator

The face generator receives vision data from the edge finder. It
uses the data to decide the position of the face feature which has been

created symbolically by the corresponding LOOK statement relating the

camera and the edge to be verified. Suppose the coordinates of the

image of a point is (y,z) and the focal length of the lens is F. The

vector of a ray which points from the centre of the lens to the point is

(F,y,z). Thus, knowing the positions of the images of two points of the

edge being verified, the vectors of the two rays which point from the

centre of the camera towards the points of the edge can be determined.

A position for the face feature is created with its normal perpendicular

to the vectors of both rays. The point which is used to decide the ori-

gin of the face is coincident with the origin of the camera coordinate

system. Using the knowledge of the position of the camera, the position

of the face feature is transformed from the camera coordinate system

into the world frame.

Chapter 6. Symbolic Geometrical Reasoning About Vision Data

Symbolic reasoning is an inference process in which reasoning rules

are applied to uninstantiated variables rather than instantiated ones.

The purpose of this inference process is to find out general relation-

ships among variables rather than to calculate special results for some

particular assignment of the variables of the reasoning. The results of

this kind of reasoning are usually of the form of symbolic equations.

The technique of symbolic reasoning has been applied in a number of

areas such as electronic circuit analysis [LIN737 and synthesis [KLE78],

image analysis [BR0811 and error constraints in robot operation planning

[BR0821. In the RAPT verification vision system, symbolic reasoning is

adopted to carry out geometrical reasoning among symbolic relations

created by vision commands.

6.1. Symbolic Reasoning Facility in RAPT

The RAPT system reasons about the spatial relations between body

features at compile time. For ordinary RAPT programs without vision

commands spatial relations are all actual ones with instantiated feature

positions, and the reasoning is done by the current implementation of

the inference system: the cycle finder. However, when vision commands

are introduced in the RAPT program, things are different. At compile

time, relations created by LOOK statements are symbolic ones with unin-

stantiated feature positions. The positions of face features have only

a symbolic form and cannot be instantiated until run time, when the

vision data is acquired. In this case, the reasoning system has to deal

with the symbolic form of the feature positions rather than their

-112-

actual values. The result of the process will be evaluated during run

time when the real feature positions have taken the places of the sym-

bolic ones. The requirement of reasoning about symbolic relations is

beyond the capability of the current cycle finder. A symbolic reasoning

facility is therefore essential for combining vision data with the RAPT

system.

The symbolic reasoning facility which has been added to the RAPT

system is not intended to take the place of the cycle finder: it is only

used for reasoning about relations created by vision commands (and in

the future possibly other sensors); the cycle finder is still used to

handle relations generated by ordinary RAPT statements. Thus the sym-

bolic reasoning facility needs only to deal with a subset of the rela-

tion types handled by the cycle finder.

The symbolic reasoning system discussed in this chapter does not

apply any special algorithms to deal with symbolic relations. Instead,

it provides a general symbolic operation facility so that the necessary

geometrical reasoning rules can be applied to symbolic relations. Since

relations created by a vision command package can all be represented as

holding between the world and the body to be verified, the size of sym-

bolic relation cycles can be limited to two.

The symbolic reasoning system works in a similar way to the current

RAPT cycle finder. Being given two relationship chains between two

bodies, it will produce a more constrained new relation between the

bodies by means of a set of combination rules. The main difference

between the symbolic reasoning system and the cycle finder is that the

features in both the input and output of the symbolic reasoning system

-113-

may be symbolic and their positions may be expressed by symbolic expres-

sions. However, when both the input relations are actual ones with

instantiated feature positions the symbolic reasoning system behaves

exactly the same as the cycle finder, and its output is also an actual

relation with instantiated feature positions. If any one or both of the

input relations are symbolic then the output of the symbolic reasoning

system is a symbolic relation with feature positions represented by sym-

bolic expressions.

A limitation of the symbolic reasoning facility is that it will not

handle conditionals which may change the subsequent reasoning route. In

the current RAPT system, a large number of conditionals are encountered

during geometric reasoning. The presence of the conditionals is usually

due to the possibility of special relationships holding between some

body features, and while some conditionals may only change the reasoning

rules being applied and the parameters of the consequent relationships

others may also change the nature of the new relationships resulting

from the reasoning, and therefore change the subsequent reasoning path.

The latter type of conditional is referred to as a top level condi-

tional. For example, in Table 1 in [POP811 when a LIN and an AGPC are

combined together, the general result will be a FIX. If the X-axis of

the face feature in the AGPC is parallel to that of the edge feature of

the same body in the LIN then the result is still a FIX but different

reasoning rules are applied. Since this conditional does not change the

nature of the resulting relation and hence does not change the subse-

quent reasoning route, it is not a top level one. However, in the same

reasoning process if the X-axis of the plane feature in the AGPC is per-

pendicular to that of the edge feature of the same body in the LIN, then

the result will be a LIN. This conditional is therefore a top level

-114-

one, since it changes the nature of the resulting relation and the sub-

sequent reasoning route.

In symbolic reasoning, if a conditional can be evaluated at compile

time, i.e. the logic value of its condition can be determined then it
can be handled at compile time no matter whether it is a top level one

or not. Otherwise the conditional must be kept in a symbolic form and

will be dealt with at run time. If a symbolic conditional is a top

level one then the nature of the resulting relation cannot be determined

at compile time and therefore the subsequent reasoning cannot be carried

out. Fortunately, most of the top level conditionals which may appear

in symbolic reasoning because of vision verification can be evaluated at

compile time since they involve questions of geometrical relationship of

features of known bodies. There are a few top level conditionals which

will inevitably have a symbolic form. In the current implementation the

user is expected to avoid them by carefully selecting the edge features

to be verified. There are two ways in which the problem can be solved

in the future. On the one hand, the capability of the symbolic reason-

ing facility may be expanded to handle all top level symbolic condition-

als. On the other hand, the capability of the whole verification vision

system may be expanded so that it will be able to use a complete model-

ling system to select automatically features to be verified in order to

avoid any potential top level symbolic conditionals.

6.2. Bottom Level Versus Top Level Symbolic Reasoning

There are two main ways to implement the symbolic reasoning facil-
ity. They can be referred to as the bottom level symbolic reasoning and

-115-

the top level symbolic reasoning respectively. In fact they are at the

two extremes of a range, and intermediate levels could be used. In an

inference system reasoning rules are encoded in a certain computer

language as functions or procedures, and a function may call other func-

tions or operations. The functions which do not apply other functions

can be referred to as bottom level functions while the functions which

apply other functions can be referred to as higher-level functions. The

functions which encode the top level performance of reasoning rules are

referred to as the top level functions. In bottom level symbolic rea-

soning, the higher-level functions are applied in the normal way, and

call other functions. It is only the bottom level functions which, when

applied to symbolic arguments, change their performance and produce

proper symbolic results. In top level symbolic reasoning, on the other

hand, the top level function tests its arguments, and if any of the

arguments is symbolic, then the function will not be applied, but an

expression will be formed containing a call to the function with its

to-be-instantiated arguments.

Both the bottom level and the top level reasoning facilities have

been implemented and tested. The results show that the bottom level

symbolic reasoning is not worth using in the verification vision system,

while the top level symbolic reasoning is suitable for this purpose.

The reasons will be discussed as follows.

6.3. The Bottom Level Symbolic Reasoning Facility

The basic concept of the bottom level implementation of symbolic

reasoning is that, during compile time, the reasoning facility will

-1 16-

expand the reasoning rules which have been applied into calls of bottom

level functions and basic operations, and do as much evaluation as it
can. If the positions of all the features in the relations given to the

reasoning facility are instantiated then the reasoning facility will
reason about the relations exactly as the cycle finder does and produce

an ordinary relation. If one or more features are symbolic then the

reasoning facility will instead produce a list of symbolic expressions

which contain only the bottom level functions (including basic opera-

tions such as addition and subtraction) and symbolic arguments, and may

be partially evaluated. In this implementation of a reasoning facility
only bottom level functions have the capability of dealing with symbolic

arguments.

6.3.1. The Implementation of the Bottom Level Reasoning Facility

The bottom level symbolic reasoning facility is implemented, like

RAPT, in Wonder-POP [RAE81], which is a Dec-10 version of POP-2 [BUR77].

In this implementation top level functions and other high-level func-

tions do not check the type of their arguments and have no capability of

dealing with symbolic arguments. They are defined in the exactly the

same way as ordinary functions. When a reasoning rule is applied the

corresponding top level function is evaluated as usual until bottom

level functions are called. It is the bottom level functions that check

the types of their arguments. If none of these are symbolic then the

function is evaluated and the results are returned to the higher-level

function which called the bottom level one. If one or more arguments of

a bottom level function are symbolic then the evaluation cannot be car-

ried out and so a list containing a symbolic expression (the function

-117-

call and its arguments) is returned. The following examples show the

basic performance of the bottom level symbolic operation. The items

following the "**" are outputs of the functions, and "->" is a Wonder-

POP print command.

vacs a b c d; 5->a; 6->b;

comment declares variables a b c d and assigns values

to a and b whilst c and d remain undefined;

a-b->

a+b-c-> ** [11 - c]

function fa e f; sqrt(abs(e*f))-f; end;

comment defines a function fa with two arguments and one output;

fa(b,d)-> ** [sgrt (abs (6 * d)) - d]

The bottom level symbolic reasoning facility has been implemented in

the existing RAPT system by re-assigning the Wonder-POP error trapping

facility. When a bottom level function tries to manipulate symbolic

arguments a Wonder-POP error is detected because of the mismatch of the

type of operands, and the error trapping facility is called. The re-

assigned error trapping facility uses the name of the bottom level func-

tion in which the error happens to construct a list which is textually a

call of the function applied to its arguments. Then the list is simpli-

fied by a set of simplification rules. These simplification rules

detect and simplify some expressions (for example, additions and sub-

tractions with an operand zero, multiplications with an operand zero or

one, subtractions with two operands having the same superficial

-118-

structure). The simplification rules are rather basic. They do not

rearrange a polynomial into a canonical form, and they do not extract
common factors. These operations would be time consuming and would not

be of much use in the polynomials resulting from the use of symbolic

reasoning in vision. The fact that all that is needed to implement the

symbolic operation is the re-assignment of the Wonder-POP system error
trapping facility means that the capability of handling symbolic argu-

ments can be added to the existing RAPT system with very little altera-

tion. The only modification needed is replacing some use of the syntax

word "if". This is because in Wonder-POP if the value of a condition is
"1" then it is considered as true, otherwise it is considered as false.
There is therefore no data type checking for the evaluated condition

expressions and therefore no occasion to call the system error trapping

facility. Thus, in order to invoke the error trapping facility when a

symbolic expression is met as the value of a condition some other word

must be employed instead of the standard syntax word "if". The result

of a conditional with a symbolic condition value is a list:

[if <expression> then close]

The expression may be expanded and partially evaluated.

6.3.2. Position Representations and Conditionals

In bottom level reasoning,, positions of bodies are usually

represented by matrices as in ordinary RAPT except that some elements of

the matrices may be symbolic expressions. Each element in the matrix

can be accessed and operated on by the reasoning facility. However,

-119-

when a position is produced by a conditional clause whose condition can-

not be evaluated at compile time then the representation of the position

is a list with the form:

[if <expression> then <position-l> else <position-2> close]

Here the positions in the list can be either ordinary ones or symbolic

ones. In this case the reasoning facility cannot access or operate on

any individual element of the position matrices in the list at compile

time, but must deal with the list as one inseparable entity. This means

that positions are either represented by matrices or lists, and this

spoils the harmony of the reasoning process.

6.3.3.Assessment of the Bottom Level Implementation

The main advantage of the bottom level implementation is that it

allows the use of symbolic reasoning in all existing programs automati-

cally via the Wonder-POP system error trapping facility. The only

modification needed is for conditionals. This method therefore makes

the symbolic reasoning facility implicitly available to all the existing

geometric reasoning rules, and the cycle finder can be used directly to

handle symbolic relations.

The second advantage is that it needs fewer geometric reasoning

facilities at run time than the top level implementation. This is

because all the reasoning rules and high-level functions are either

evaluated or expanded at compile time to expressions which only contain

-124-

basic operations. One matrix component selector is needed in addition

to basic arithmetical operation facilities. This makes the run time

system very compact.

The main disadvantage of the bottom level implementation is that it
needs a lot of time during both compilation and running. At compile

time, the symbolic reasoning creates long expressions to represent the

positions of objects. Due to the huge size of the expressions it takes

a lot of time to produce them. At run time, the evaluation of these

huge expressions also takes much time. The reasons for the length of

the expressions will be discussed below.

6.3.3.1. The Length of the Expressions

Theoretically speaking, if the majority of the arguments can be

instantiated before the reasoning takes place then a bottom level method

will be able to do most of the evaluation at compile time and the

results will be compact. In practice, for verification vision tasks,

very little evaluation can be done at compile time and the number of

uninstantiated arguments means that most reasoning rules are expanded

rather than evaluated. As mentioned before, a position in RAPT is

represented by a homogeneous matrix indicating the origin and three

coordinate axes of the local reference frame. If a position is symbolic

then it will introduce twelve uninstantiated arguments in the reasoning

process. Suppose a relation created by an INVIOLATE statement is to be

combined with that created by a LOOK statement. The INVIOLATE relation

contains two instantiated feature positions while the LOOK relation con-

tains an instantiated one and a symbolic one. In total there are three

-121-

instantiated positions and one symbolic one in this reasoning process

and the result is a relation containing two symbolic positions

represented by symbolic expressions. If this result is to be combined

with a relation created by another LOOK statement then there will be

three symbolic feature positions and only one instantiated one in this
reason process.

There are some complex sub-expressions which would normally have

been evaluated only once appearing several times in the symbolic expres-

sion, and these sub-expressions must be evaluated each time when they

appear at run time. When the same expression appears in different com-

ponents of a position matrix, the expression simplifier cannot do any-

thing with it. Even when the expression appears several times in a com-

ponent, it is still not easy to simplify the component further because

of the form of the component which contains the common sub-expression.

Other people have met similar problems in other systems in which sym-

bolic calculation was adopted. For example, in the electronic circuit
synthesis system SYN which was described by de Kleer and Sussman

[KLE78], most resources, including computing time and storage space,

were used in computing the greatest common divisors (gcd) of the polyno-

mials. When SYN failed to complete a problem, it was always because

just one gcd computation filled up the entire address space of the com-

puter. In the bottom level implementation of symbolic reasoning in the

vision system, the common sub-expression problem does not cause failure,
since the storage space of the computer being used (DEC-10) is large

enough, but a large amount of computing time is taken up.

The representation of the RAPT position is another factor which

makes the symbolic expressions very long. As mentioned above, all the

-122-

three coordinate axes of a local frame of a position are represented

explicitly in RAPT, and this is redundant. Since the local reference

frame is a Cartesian coordinate system, only two coordinate axes are

needed and the third one can be deduced by the right-hand rule. In

fact, in the reasoning process only the X- and Y-axes are used to deduce

the position of newly created features although the Z-axis is also

represented and calculated in each step of reasoning. The representa-

tion form of the position does not cause any problems in ordinary rea-

soning as the instantiated position is compact in configuration. The

redundancies only increase the position representation by the size of

three real numbers, and need a bit more time to calculate them. This

representation form is used in RAPT because it is convenient for doing

matrix multiplication. In symbolic reasoning, however, the redundancies

cost very much in terms of both computer time and storage space. In

symbolic position representation elements of the position matrix are

symbolic expressions which are usually quite long. Therefore, three

extra components may increase the size of the position expression con-

siderably. Furthermore, since the components of the Z-axis are calcu-

lated from those of the X- and Y-axes, they are usually longer than

those of the X- and Y-axes, and calculating the redundant components

needs more time than that for working out X- or Y-axis.

The symbolic conditional makes things worse. The results of sym-

bolic reasoning without conditionals have the same data type as that of

a real reasoning result, i.e. a position matrix, except that each com-

ponent is a symbolic expression rather than a number. In subsequent

symbolic reasoning operations only the relevant components will be used

to form the expressions of the components of new symbolic positions.

The result of a symbolic conditional, as mentioned above, is a list

-123-

containing an expanded conditional statement. When a reasoning rule

wants to access a component of the position matrix resulting from a con-

ditional, it has to deal with the whole conditional itself. The format

of the components of the position matrix which is created by a condi-

tional is like this:

subpos(2,[if <expression> then <posl> else <p032> close])

where SUBPOS is a component selector and 2 indicates the second com-

ponent. Thus the whole conditional statement must appear in each

relevant component of the new result which depends upon some components

of the position represented by the conditional. This is unacceptable

especially when the conditional statement is long. Unfortunately, all

the conditionals in the symbolic reasoning are very long, since the con-

dition expressions are expanded symbolic operations on symbolic feature

positions. Furthermore, an expression which contains this kind of

structure cannot be simplified further. Thus the expressions of the

final result containing conditionals are very long and require unneces-

sary repetitive calculations.

The following example shows the complexity of the symbolic expres-

sion which is generated by the bottom level symbolic reasoning facility.

Suppose there is one INVIOLATE statement and two LOOK statements in a

vision command package. The reasoning route is:

AGPP + AGPE + AGPE -> FIX

the final results of the reasoning before merging operation are the

positions of two new features of the two bodies in the relationship FIX.

-124-

They are referred to as Eat and Eb1 respectively. When the edge

features to be verified are not perpendicular to the plane feature of

the body, the expressions of Eat do not contain conditionals and are

about 330 lines long with 80 characters in each line when displayed on a

terminal. The expressions of Ebt do contain conditionals and are more

than 5,400 lines long. The evaluation of Eat takes about 30 seconds

while the evaluation of Eb1 takes more than 15 minutes. (The CPU time

included garbage collecting time and was measured by a Wonder-POP

library routine). Obviously, the requirement of both the storage space

for handling the results and the time for evaluating them are not

acceptable in a realistic robot control system.

6.3.3.2. Ways of Alleviating the Problems

In order to shorten the resulting position expressions and reduce

the time needed for evaluating them at run time, a staged bottom level

implementation of symbolic reasoning can be used. The staged method is

a way to deal with the sub-expression problem. In a staged bottom level

implementation some variables are declared to represent certain inter-

mediate results which are, of course, symbolic expressions. In the sub-

sequent reasoning these variables, rather than the intermediate results

themselves, are operated by the reasoning system. The final results are

position expressions which contain the variables which represent

corresponding intermediate expressions. Since the intermediate symbolic

expressions are represented by single identifiers the final results are

shortened. At run time, the intermediate results need to be evaluated

only once and then assigned to corresponding variables to enable subse-

quent position expressions being evaluated. This method was tested with

-1 25-

the same example as the pure bottom level implementation which has been

described above. The reasoning route

AGPP + AGPE + AGPE -> FIX

were divided into two stages:

AGPP + AGPE -> LIN

LIN + AGPE -> FIX

The intermediate results of the first rule were given new symbolic names

and the new names rather than the symbolic expressions obtained from the

first step of reasoning were used in the second step. At run time, each

of the symbolic expressions of the first rule were evaluated once and

the values assigned to the symbolic names which had been used in the

second rule before the final results were evaluated.

This technique improves the performance of the method dramatically.

The lengths of the expressions of the intermediate results obtained this

way are 111 lines and 250 lines respectively when being displayed while

those of the final results of Eat and Ebt are 57 lines and 148 lines

respectively. The execution requires a couple of seconds at both com-

pile time and run time including the time used by the garbage collector.

An example of the measurement of the time used at run time is 0.5 second

for calculation and 9 seconds for garbage collection. However, this is

still much slower than the top level method, and the size of the results

are still too large for a miniature system to handle.

-126-

The other thing that could be done to shorten the length of the

position expression is to change the position representation. However,

this means a lot of change in the current RAPT code. This is out of the

scope of the thesis research and therefore has not been done. The abil-
ity to introduce the symbolic reasoning facility into other programs via

the system error trapping facility causes another problem: system-

dependence. The method implemented this way only runs under Wonder-POP.

It can not even run under POP-2 on UNIX since there is no suitable error
trapping facility available in that system. The programming needed in

order to re-assign the error trapping facility is a bit complex because

many functions of the system error trapping have to be redefined in

order to produce symbolic expressions and simplify them.

6.4. The Top Level Symbolic Reasoning Facility

The principal concept of the top level implementation of symbolic

reasoning is that when the reasoning facility reasons among symbolic

relations it only does this at a meta level without any expansion of the

reasoning rules or partial evaluation at compile time. It only indi-

cates what the reasoning route is, which top level functions will be

applied and what type the resulting relation of each reasoning step is.

The positions of the newly created symbolic features are represented in

terms of top level functions rather than bottom level ones. When rea-

soning among instantiated relations the top level reasoning facility

behaves exactly the same as the ordinary cycle finder.

6.4.1. The Implementation of the Top Level Reasoning Facility

In the top level implementation of the symbolic reasoning facility
only the top level functions differ from those in the ordinary cycle

finder while the other functions and operations are exactly the same as

their counterparts in the cycle finder. When a top level function is

applied by a reasoning rule it checks the data types of its arguments.

If all the arguments are of the correct data type then the function is
evaluated as a normal one. If any of its arguments are of incorrect

data type then a list containing the name of the function with its argu-

ments is produced as its result. In this list if an argument of a func-

tion is either a symbolic expression or a non-symbolic data structure

then the argument is represented in the list by this expression or data

structure. If an argument is an identifier which has been instantiated

by either a symbolic expression or a non-symbolic data structure then

this argument is represented by the content of the identifier. If an

argument is an uninstantiated identifier then it is represented by the

name of the identifier, and the identifier needs to be instantiated at

run time.

Since the types of all the relations including symbolic relations

are instantiated and no top level conditionals appear during the sym-

bolic reasoning, the types of newly created features and relations, and

therefore the reasoning route, can be determined at compile time. As no

reasoning rule expansion occurs, there are no lower level symbolic con-

ditionals appearing in the symbolic reasoning results. Hence, the

results of the top level symbolic reasoning contain top level functions

only.

-128-

6.4.2. Assessment of the Top Level Implementation

The main advantages of the top level implementation are that:

(1) this method works faster at compile time than the bottom level
one;

(2) the results of this method are much more compact;

(3) the speed of evaluating them is much higher than those pro-

duced by the bottom level method.

When tested with the same example used for testing the bottom level

method (Section 6.2), both the symbolic reasoning at compile time and

evaluating the symbolic results at run time needed less than a tenth of

a second. The symbolic position expression of the body being verified

(this includes the merging operation) is eight lines long when displayed

on a terminal. Both the time and storage space requisites are realistic

for a practical robot control system. The top level symbolic reasoning

facility has therefore been employed in the verification vision system.

Compared to the bottom level method, the top level one has two

disadvantages. (1) The first is that the method cannot introduce the

symbolic reasoning capability into existing geometric reasoning rules

implicitly. In order to do this, some explicit statements have to be

added into each top level function of the reasoning rules. The symbolic

reasoning system therefore cannot apply the existing top level functions

of the cycle finder, but instead, it has to use ones which are defined

specifically. (2) The second disadvantage is that the method needs more

computational facilities at run time than those required by the bottom

level method. Generally speaking, in a symbolic reasoning system it can

be decided at compile time what computational facilities will be needed

at run time in order to evaluate the symbolic results, and the

-129-

definitions of the facilities must be sent to the run time system.

Since no reasoning rule expansion is done at compile time, in the top

level implementation all the facilities that are called by the top level

functions have to be available at run time. This makes the correspond-

Ing run time system larger than that needed by the bottom level method.

6.5. The Reasoning Rules for Symbolic Reasoning

Since the decision has been made to use top level symbolic reason-

ing, it is necessary to provide a new set of reasoning rules that can be

used with symbolic relations. Because of the way in which vision is

used in verification in the system described here, there are only a lim-

ited number of relations which can take symbolic form, and only a lim-

ited number of ways that these relations will need to be paired with

other relations. Therefore, there is only a limited number of reasoning

rules which have to be replaced. These reasoning rules are discussed

below.

The size of the relation cycle in vision verification is always two,

and so it is only combination rules that have to be rewritten, not crea-

tion rules (Section 3.3.3). As discussed in Section 5.2, the look

statement creates an AGAINST relation between an edge feature of the

body to be verified and a plane feature of the camera. Since the posi-

tion of the camera must be known when it looks for the edge to be veri-

fied, the plane feature of the camera can be considered as a feature of

the world. (in the cycle finder, the camera must be "merged" into the

world in this case since it is FIXED to the world directly or

indirectly.) Thus the AGPC relation holds between the world and the body

-130-

to be verified. The INVIOLATE statement creates an AGAINST relation
between plane features of a reference body and the body to be verified.
Since the reference body must be either the world or a body which has

been FIXED to the world (Section 5.3) this relation also holds between

the world and the body to be verified.

It is a RAPT convention that when two relationships are to be com-

bined together, the relations are described in such a way that the first
feature mentioned in each relation belongs to one body, and the second

feature mentioned in each relation belongs to the second body. In the

discussion which follows, these are referred to as body a and body b

respectively. Thus, if an AGPP and an AGPC are to be combined together

then body a has two face features while body b has a face feature and a

cylindrical feature. In the symbolic reasoning body a represents the

world while body b stands for the body to be verified. Features of the

body to be verified will be referred to as body features while those of

the reference body and the symbolic feature of the camera are referred

to as world features when convenient.

The only relation types that appear in the symbolic reasoning caused

by vision verification are AGPP, AGPC, LIN and FIX. The AGPP and AGPC

are input relations created by vision commands while the LIN and the FIX

are internal ones created by the reasoning system, and the FIX is the

final result that the reasoning system infers towards. The ordinary

reasoning rule table for instantiated relations which is relevant to the

symbolic reasoning is shown in Table 6.1.

No. I R1 R2 RR condition

12

1

AGPP AGPP
LIN general

- -- -- - - -- - - - I -- - - - - - -- - - - -- #

3
4

AGPP

AGPP

LIN

AGPC

FIX
LIN

AGPP
ROTYLIN

LIN(2)
LIN(2)

general
x a perpendicular ---------------------------
x a par al l e l
x_b_parallel
x b perpendicular
general

9 LIN AGPC LIN x_a_perpendicular
10 FIX x_a_parallel
11 FIX general

Note: (1) R1 and R2 indicate two relationships which
constitute a relational cycle.

(2) RR indicates the resulting relationship.
(3) xaparallel means X-axes of the two features of

body a are parallel to each other, etc.
(4) x a_ perpendicular means X-axes of the two features

of body a are perpendicular to each other, etc.
(5) "(2)" means the result is ambiguous.

Table 6.1. Combination Rules Relevant to Symbolic Reasoning

No. I R1 I R2 RR I condition
--

1

2

3
4

AGPP

AGPP

AGPP

AGPE

AGPP*
LIN *

LIN
LIN

x a parallel
general

x b perpendicular
general

5 1 LIN AGPE FIX (x_a parallel I

Note: "*" indicates the reasoning is not symbolic.
AGPE is a restricted case of AGPC

Table 6.2. Symbolic Reasoning Rule Table

-132-

6.5.1. Combining an AGPP and an AGPC

In the existing cycle finder the rules for combining the relation

pair AGPP and AGPC (lines 5-8 in Table 6.1) have not been implemented

because in most cases the result is ambiguous. The general result of

the combination of an AGPP and an AGPC is a LIN, which holds between two

newly created edge features. The new edge of body a is determined by

the two faces of body a while the new edge of body b is determined by

all the four features in the AGPP and AGPC. A LIN relationship indi-

cates that the X-axes of the edge features are collinear and in the same

direction and that the Y-axes are parallel to each other. However,

since the combination of an AGPP and an AGPC does not contain enough

information about how to choose the directions of the edge features in

the LIN, there are two LIN relationships which satisfy the constraints.

The two relationships differ from each other by a rotation of 180

degrees about an axis which is perpendicular to the face feature of body

b (Fig. 6.1). The existing cycle finding system has no way of choosing

between the two possible situations.

In symbolic reasoning the nature of the verification task pro-

vides the necessary constraint for choosing the unique correct answer.

When a body is to be verified the discrepancy between its nominal posi-

tion and actual one is assumed not to be too big. In practice it is

very unlikely that the actual position of the body to be verified

differs from the nominal one by more than 90 degrees of rotation. This

characteristic presents a basis for the symbolic reasoning system to

eliminate the ambiguity in the resultant LIN relation. The symbolic
the

reasoning system is able to selecticorrect LIN relationship in the fol-

lowing way. The reasoning system assigns the direction of the X-axes of

-133-

f

AGPP

(a)

AGPP

(b)

Fig. 6.1. Two situations which both satisfy AGPP+AGPC

Fig. 6.2. Three possible situations of the infinite number which satisfy AGPP+AGPC+AGPC when the X-axes of edges are all parallel to that of the face feature of the AGPP

-134-

the new edge features arbitrarily at first provided they are collinear,

and then tests the angle between the nominal body orientation of the

body to be verified and the verified orientation under this assignment.

(Notice, since a LIN has only one translational degree of freedom, it
indicates the orientation of a body). If the angle is less than 90

degrees than the directions which have been assigned are considered

correct. Otherwise the direction of the X-axis of the new edge feature

of body b is reversed.

As a result of this reasoning process, the position of the new edge

feature of body a in the LIN relation must be symbolic since it is

determined by the two face features of body a In the AGPP and AGPC rela-

tions and the position of the face feature in the AGPC relation will be

determined by vision data. The position of the new edge feature of body

b is also symbolic, since it is determined by all four feature positions

in the AGPP and AGPC relations. Therefore, the angle between the nomi-

nal orientation and the verified orientation of body b cannot be calcu-

lated until run time, and this means that the position of the new edge

feature of body b (the body to be verified) will be expressed by a sym-

bolic conditional. However, changing the direction of the edge feature

does not change the nature of the resulting relation, and so the condi-

tional is not a top level one. Therefore, in the top level symbolic

reasoning this conditional is not expressed explicitly at compile time.

(In the bottom level reasoning, if it were used, the symbolic expres-

sions would be significantly elongated.)

When the X-axis of the cylindrical feature in an AGPC relation is

parallel to that of the face feature of body b in an AGPP relation, com-

bining the AGPP and the AGPC will produce a special relation ROTYLIN

-'35-

(line 6 in Table 6.1). This relationship holds between two new edge

features, and means that the body with the cylindrical feature (body b)

can move along a line which is determined by the two face features of

body a, and can rotate about the axis of the cylinder. This is a diffi-
cult relation type for the geometrical reasoning system to deal with

since if it is to be combined with other relations in the subsequent

reasoning a large number of special conditions must be tested and the

results are usually ambiguous or cannot be simply expressed. For

instance, when a ROTYLIN is to be combined with an AGPC relation, eight

conditions must be examined. Among the nine possible results, five are

ambiguous and difficult to use in subsequent reasoning (see Appendix

II). For this reason ROTYLIN has not been implemented in the cycle

finder. For the same reason it has not been adopted in the symbolic

reasoning system either. In combining an AGPP with an AGPC, if the X-

axis of the edge feature is parallel to that of the face feature of body

b in the AGPP relation then the AGPC is sidestepped by the cycle finder

which attempts to find a more suitable pair of relations.

Discarding the relation type ROTYLIN does not cripple the capability

of the symbolic reasoning system. It is shown in Appendix II that even

if the ROTYLIN were to be implemented it would cause some top level con-

ditionals and increase the power of the symbolic reasoning system very

little. In the case of using one AGPP and two AGPC relations to reason

about the position of the body to be verified, if the X-axes of the two edge

features to be verified were all parallel to that of the face feature of

the body then the position of the body would not be completely deter-

mined. Instead, the body position would be a complex function of the

positions of the features given in the AGPP and AGPC relations. This is

illustrated in Fig. 6.2. The reasoning system would need at least

-136-

another relation between the body and the world to fix the body posi-

tion. In order to determine the body position completely by an AGPP and

two AGPC relations, there must be at least one edge feature whose X-axis

is not parallel to that of the face feature of the body to be verified.

Thus the relation which contains this edge feature can be combined with

the AGPP relation first to create a LIN relation, and then the LIN rela-

tion can - be combined with the other AGPC relation the X-axis of the

edge feature of which may be parallel to that of the face feature of the

body.

In combining an AGPP and an AGPC in the cycle finder, if the X-axes

of the two face features of body a are parallel to each other then the

AGPC is redundant and does not provide any new constraint on the rela-

tion between body a and body b which is fully expressed by the original

AGPP relationship (line 5 in Table 6.1). Similar things may also happen

in the symbolic reasoning. In vision verification the symbolic face

feature generated by the LOOK command may be parallel to the reference

face feature used in the inviolate AGPP relationship if the X-axis of

the edge feature of the body to be verified is perpendicular to that of

the face feature in the inviolate AGPP and the camera is at a certain

position (Fig 6.3). When this happens it causes a symbolic top level

conditional since the resultant relation is of different type from the

general result and examining the condition can only be calculated at run

time when the symbolic feature is instantiated. It should be avoided in

the symbolic reasoning; at present the user has to avoid the possibility

of this happening, in the future (see Chapter 10) the system will select

the feature to be verified in order to avoid this.

Fortunately, in most circumstances this type of top level

-137-

symbolic face feature

AGPP

camera

AGPC

reference face feature

Fig. 6.3. A situation in which the symbolic face feature is
parallel to the reference face feature

edge to be verified

edge to be verified

AGPP

(a) (b)

Fig. 6.4. Two situations in which LIN+AGPC produces a LIN

-138-

conditional can be avoided in verification vision tasks. In an assembly

station the assembly task is usually carried out on a work table, and

the inviolate relation which is most likely to be used is the one that

indicates a face feature of the body to be verified is against the top

of the work table. The camera is usually installed so that it is above

the work table and looking down on it. The symbolic face feature which

is determined by the positions of the camera and the end points of the

edge to be verified therefore cannot impossibly be parallel to the top

of the work table. For the few cases in which the symbolic face might

be parallel to the reference face in the AGPP, the user is asked to

select the position of the camera and the edge to be verified carefully.
Lines 5-8 in Table 6.1 can therefore be replaced by just two symbolic

reasoning rules (lines 3 and 4 in Table 6.2).

6.5.2. Combining a LIN and an AGPC

The rules for combining the relation pair LIN and AGPC have been

implemented in the cycle finder (line 9-11 in Table 6.1). In the sym-

bolic reasoning system that part of the rule which leads to a LIN has

not been adopted since it would cause a top level conditional. The

parts of the rule which produce a FIX have been implemented with some

modification so that they are more suitable for dealing with the AGPC

relations.

When the X-axis of the face feature of body a in the AGPC is perpen-

dicular to that of the edge feature of body a in the input LIN relation,

the AGPC is redundant and the cycle finding system combines the AGPC and

LIN to produce the original LIN as result. in the symbolic reasoning

-139-

caused by vision verification this condition may happen in various cir-
cumstances. Only a very limited number of the circumstances can be

anticipated or partially anticipated without knowing the relevant vision

data. The input LIN relation may have been derived in either of two

ways in the symbolic reasoning. It may result either from the combina-

tion of two AGPP relations or from the combination of an AGPP and an

AGPC relation. When the LIN is derived from two AGPP relations, the

condition which causes the combination of the LIN and an AGPC to be a

LIN arises if the X-axis of the edge to be verified is perpendicular to

faces of the body to be verified in both AGPP relations (Fig. 6.4 (a)),

or if the X-axis of the edge is perpendicular to the body face in one

AGPP relation and the camera is at a certain position (e.g. Fig. 6.4

(b)). When the LIN results from combining an AGPP and an AGPC, the only

partially predictable circumstance in which this condition arises is

that the X-axes of the two edges to be verified are parallel to each

other and perpendicular to the body face in the AGPP relation. If these

X-axes are also perpendicular to that of the camera then the X-axes of

the world edge feature in the derived LIN and the world plane feature in

the AGPC are perpendicular to each other, and so the AGPC cannot provide

any useful information, and so the resulting relation is the same LIN.

It is easy to see from the discussion above that a top level conditional

will be produced in most cases when the input is tested for perpendicu-

larity of the X-axes of symbolic world features involved in the LIN,

AGPC combination. However, since this case actually arises only when

the user has attempted to specify the use of the camera in an unsuitable

way, at present the symbolic reasoning system assumes that the special

case will never occur and so does not insert any test (and hence does

not insert a top level conditional). It therefore has to rely on the

user's common sense. In the future, the system will select the edges

-1 4O-

and cameras automatically so that the user can be released from the bur-

den of deciding what to look for. This will be discussed in detail in

Chapter 10. At the moment, if the user fails to choose correct edge

features and cameras then the symbolic reasoning system cannot com-

pletely determine the position of the body to be verified. It reports

the situation to the user at compile time and then declares that it will
ignore the relevant run time vision operation commands if the user does

not take any proper action.

In the symbolic reasoning, checking for the special condition in

which the X-axes of the world features in the LIN and AGPC are parallel

to each other also needs vision data which can only be obtained at run

time. However, since this condition does not change the type of the

resulting relationship, it does not cause a top level conditional. The

reasoning rule for this special case can be merged with that for the

general case. Lines 9-11 of Table 6.1 can therefore be replaced by line

5 of Table 6.2.

6.5.3. Combining Other Relation Pairs

In the symbolic reasoning system the AGPP relation is always created

by the INVIOLATE statement and all relevant positions in it are instan-

tiated. Thus reasoning among AGPP relations is not symbolic, and the

reasoning rules are exactly the same as those used in the cycle finder

(lines 1,2 in Table 6.1).

When there are two INVIOLATE statements in a vision command package,

the two AGPP relations are always combined first by the reasoning system

-1 41-

to produce either a LIN, in the general case, or an AGPP, in the redun-

dant case (lines 1,2 in Table 6.1). Thus, there is no possibility that

an AGPP will be combined with a symbolic LIN, and therefore there are no

rules needed in the symbolic reasoning system to deal with this.

The combination rules which are used by the symbolic reasoning sys-

tem are shown in Table 6.2. It is a subset of Table 6.1. As discussed

in Section 5.2, the AGPC relationships created by LOOK statements are of

special case. In order to simplify the symbolic reasoning, the special

AGPCs are denoted as AGPEs.

6.6. The Control of the Symbolic Reasoning

The control strategy used in the symbolic reasoning system is dif-

ferent from that used in the cycle finder in that the symbolic reasoning

system discriminates relation types and reasons among AGPP relations

first. This is because, unlike the cycle finder, different types of

relations in the symbolic reasoning system come from different sources

and have distinct reliabilities. In order to obtain more reliable

results, the reasoning system should take advantage of the more depend-

able relations when the specification is overconstrained.

All the types of relations that occur in the cycle finder are either

specified by the user's program or deduced from it. The cycle finder

searches through the network for relation pairs and tries to find a

suitable entry in the reasoning rule table. Every relation type is con-

sidered equal in reliability and importance to others and no relaaton

types are given priority. The order of using relation pairs in the

-142-

reasoning process is arbitrary and is partially determined by the inter-

mediate results of the reasoning. If the specification is overoon-

strained in the relation network then the user cannot predict which

relation will be actually used and which will be merely tested for con-

sistency by the reasoning system.

In the symbolic reasoning system, however, things are different.
There are only two types of input relations in the reasoning process:

the AGPP relation and the AGPE relation, but their reliability is dis-

tinct because they come from different sources. The AGPP relation

created by the INVIOLATE statement describes a relation which must hold

in the real world in a situation of the assembly task. It can therefore

be considered to be reliable. In contrast to the AGPP relation, the

AGPE relation arises from the LOOK statement, and its parameters will be

determined at run time by the vision data. Since the accuracy of the

vision facility is limited, the AGPE relation is less reliable than

AGPP.

In describing a verification vision task, the user is allowed to

make more statements than necessary. For instance, the user may make

one INVIOLATE statement and three LOOK statements in a vision command

package. This gives the reasoning system the opportunity to select

suitable LOOK statements from the given three in order to avoid top

level conditionals or some undesired combinations such as ROTYLIN. It
therefore reduces the burden on the user of selecting edges to be veri-

fied. The only case that the symbolic reasoning system can deal with at

present is avoiding the ROTYLIN that is produced when combining an AGPP

and an AGPE in the special case where the X-axes of the features of the

body to be verified are parallel to each other. Suppose, in the above

-1 43-

example, the edge in the first AGPE relation considered is parallel to

the body face in the inviolate AGPP relation, then the reasoning system

can detect this and can discard that AGPE relation temporarily and try

the next. If that failed then it can try the third. In the future, the

capability of the symbolic reasoning system will be strengthened so that

other cases can be dealt with and the user can give it more candidate

edges to be verified and rely on the system selecting proper ones in

order to avoid other kinds of the top level conditional in the reasoning

process.

When two INVIOLATE statements and more than necessary LOOK state-

ments are made in a vision command package, it is desirable to make use

of both the AGPP relations specified by the given INVIOLATE statements

and only one of the AGPE relations since AGPP relations are more reli-
able. To this end, the reasoning process is divided into two stages.

In the first stage, only the AGPP relations are fed to the reasoning

system. Thus, if there are any AGPP relation pairs then they are com-

bined together. In the second stage, the AGPE relations are appended to

the results obtained from the first stage and used.

6.7. Mer i

After the symbolic reasoning, the result for each vision command

package is checked to see whether the position of the body instance to

be verified has been "fixed" or not. The "fixed" body instances are

then "merged" (see Chapter 3) into the world. Since the FIX relation

deduced from the symbolic reasoning always holds between a feature of

the body to be verified and a feature of the world, the merging process

-144-

is straightforward. Suppose that fl is a feature of the world whose

position is p1 and f2 is a feature of the body to be verified whose

position is p2, and furthermore suppose that a FIX relation holds

between f1 and f2. The relationship FIX means that the coordinate sys-

tems of the two features are coincident under the world coordinate sys-

tem. Thus, the following equation stands:

f1 ** p1 - t2 ** p2 (6.1)

Since p1 here is the position of the world it is an identity matrix.

The position of the body to be verified, p2, can then be represented by

the equation:

p2 - f2-1 ** fi (6.2)

Of course, the merging operation is symbolic and the resulting symbolic

position expression will be evaluated at run time. This process does
the

not involve any extra rules. The modification of the functions ofinerg-

ing process of the current cycle finder ,t' enables them to handle sym-

bolic arguments.
merely

The reasoning system will report to the user about the body

instances which cannot be "fixed" by the symbolic reasoning. The user

then has the opportunity to take some action to deal with this, such as
the

re-specifying vision tasks. If he does not do any thing then the

numbers of the situations in which unsuccessful reasoning takes place

are recorded and will be passed to the run time system so that the

corresponding vision tasks will be considered invalid, and the relevant

camera operating commands will be ignored at run time.

-145-

6.8. Summary

In this chapter two approaches of implementing symbolic reasoning

capability, the bottom level symbolic reasoning, and the top level sym-

bolic reasoning, are discussed and compared. Because the top level

method is overwhelmingly better than the bottom level one, it is used in

the verification vision system. In order to handle the symbolic reason-

ing caused by vision verification, some reasoning rules are re-defined

and a new control strategy of reasoning is adopted.

Chapter 7. A Framework for Handling Vision Information

At run time, cameras operate under the control of the commands

created by LOOK statements, and symbolic position expressions which

result from the symbolic reasoning system are evaluated one by one in

corresponding situations after the relevant vision data has been

acquired. These evaluated position expressions define the actual posi-

tions of the bodies which have been verified by the vision system. Usu-

ally, the verified position is different from the corresponding nominal

one and the robot system needs to utilize the information in order to

update its knowledge about the environment and modify the planned

actions of the robot.

The modification of the planned actions is not explicitly described

in the user's program. Instead, it is done implicitly by a framework

which handles the vision information. This is partially because the

current RAPT has no flow control statements available. The more impor-

tant reason is that the implicit specification of the modification is

more natural and convenient to the user. When the user specifies a

vision verification task, he shows that he believes that the actual

working environment of the robot will in fact differ from that described

in the program. He wants to examine the actual environment and adapt

the planned actions to possible changes in the environment. If the sys-

tem can decide how to make use of the vision information automatically

in order to fulfill the planned task then the user does not need to

worry about how to do this by himself. In fact, it is rather complex to

work out how to make use of the vision information properly and com-

pletely as the relations between body instances are complex and impli-

cit. Thus, a carefully designed framework can do better than less

-147-

experienced users.

7.1. Basic Requirements for the Framework

There are three basic requirements that the framework must meet.

1) Firstly, the framework must be able to use the vision informa-

tion to update the knowledge of the robot system so that it can

find out not only what modification should be done on the

planned action directly related to the verified body instance,

but also what modification should be made to subsequent actions.

Modifications will be necessary for those actions which depend

upon other body instances in the following situations which are

affected indirectly by the vision information.

2) Secondly, the framework must work efficiently at run time.

3) Thirdly, the framework should be relatively independent of the

current RAPT system.

These will be discussed in detail below.

7.1.1. Making Full Use of Vision Information

It is commonly the case that vision data will verify not only the

position of the specified body at the current situation (body instance),

but also some other body instances whose positions are relevant to or

deduced from this body instance. From a given input program the RAPT

system produces the expected positions of bodies of the entire sequence

of situations in an assembly task. The use of vision data to verify a

position will indicate a discrepancy between the expected position and

-148-

an actual position and it will be necessary to modify the expectation

about subsequent positions in the light of this information. For exam-

ple, suppose a robot moved a block to a specified position and then

moved away a fixed amount waiting for the vision system to operate. If
the verified position shows that the block is not exactly at the speci-

fied position, then the system should know that the robot hand now is

also not at the position where the system supposed it to have been (Fig.

7.1). As another example suppose that the robot is asked to move

another body to a place in such a way as to satisfy a set of spatial

relationships between this body and the block mentioned above, then the

robot system should know that the new position of the body must be dif-

ferent from that expected before the verified position was known (Fig.

7.2); the planned action therefore has to be modified.

The examples given above are simple ones. In RAPT, the relations

between bodies are far more complex than those in these examples. The

effects of a verified position are not only implied by action statements

but also implied by TIE and subassembly statements. The framework needs

to use the verified position to update the system's idea of the posi-

tions of all relevant bodies in the world.

7.1.2. Efficiency in Time and Space in Run Time

The run time efficiency is an important requirement to a practical

robot system. It is desirable that a run time system works fast so that

visual information can be processed and utilized in real time. It is

also desired that a run time system is compact so that it can be accom-

modated in a small computer which controls the robot directly. Thus the

-1 49-

the planned position
of the hand

after release r-- -!,
of the block

j

actual position

I
of the hand

planned positions actual positions

Fig. 7.1 The influence between body positions (I)

D
1

planned positions

Fig. 7.2 The influence between body positions (II)

-150-

framework must do as much work as possible at compile time, especially

the work which needs powerful computing facilities, so that the run time

calculation is simple and straightforward.

7.1.3. The Independence of the Framework

Since RAPT is a language under development, it is necessary to keep

the verification vision system relatively independent of other parts of

the RAPT system. This requires two things. From the point of view of

the system realization, the implementation of the framework should not

need significant changes in the RAPT system. From the user's point of

view, the explanation of vision information should not influence the

syntax and semantics of the other RAPT statements. If the user wants to

use the vision system to verify positions of some body instances then

all he needs to do is simply to insert some suitable vision command

packages into the proper places in his ordinary RAPT program without any

changes or modifications in the program which has been proven to be

correct before vision commands are introduced.

7.2. Frameworks for Using Vision Information

There are several ways to establish the relations between a verified

position and others. Four ways will be discussed in the following.

7.2.1. Symbolic Reasoning Method

The relations can be set up by a symbolic reasoning system. Each

position which is relevant to a verified position is considered by the

symbolic reasoning system and expressed as a symbolic expression which

contains the verified position. Thus the dependence of other positions

on the verified position is worked out symbolically at compile time.

After evaluation of the verified position, the symbolic position expres-

sions can be evaluated. This method brings about some serious problems.

When a position is represented by a symbolic expression, the principal

part of the actual reasoning will be done by the evaluation at run time.

If a verified position is related to several other positions then the

expression of the verified position, or part of the expression, will
appear in a large number of places in the run time code, and the evalua-

tion of each of than will take much time. This will slow down the speed

of the run time system. Also, when the effect of a verified position

propagates through body instances, the expressions of positions of the

body instances become longer and longer and the evaluation of them needs

more and more time, since each position expression contains the expres-

sion of the position of the body instance from which the effect of the

verified position comes. As many positions are expressed symbolically,

the requirements on the storage space at both compile time and run time

will be enlarged. Furthermore, this method needs a very powerful sym-

bolic reasoning system. The proposed reasoning must be able to do

everything symbolically that the cycle finder can do. It must be able

to reason among not only 2-cycles but also large sized relation cycles.

Thus it must be able to use not only the combination rules but also the

creation rules. It must also be able to deal with a number of types of

symbolic top level conditionals. It will be seen that because of the

-152-

disadvantages in time and space efficiency and because of the very great

demands for a powerful run time inference system, this method is not

viable. It was therefore felt not worth serious development.

7.2.2. Run Time Reasoning Method

In this method the major part of the work will be done at run time.

The difference between this method and the symbolic reasoning method is

that the compile time inference system only reasons about the relation-

ships among body instances which are not dependent upon vision informa-

tion, and reasons symbolically about the positions of body instances

which are verified by vision directly. Thus the compile time reasoning

is faster than in the symbolic reasoning method. The positions of body

instances which are dependent upon vision information will be produced

at run time by geometrical reasoning after the associated vision data is

available and the relevant symbolic positions are evaluated. This

method needs a powerful run time system which must be as capable as the

compile time system in geometrical reasoning. This means that a power-

ful and usually expensive computing facility must be available at run

time. Even if the computing facility is available, the run time

geometrical reasoning will slow down the run time processing speed

dramatically, especially when the positions of a number of body

instances are dependent upon vision information. Thus this method is

out of the question.

7.2.3. The Use of Teach Mode

Another method is suggested by D. Corner [COR84]. This method makes

use of a modified reasoning system to establish the relations between a

position which needs to be determined at run time and other positions.

It is designed and implemented as an expansion of the RAPT system for

introducing a teach mode in which positions of some body instances can

be taught at run time.

In order to understand Corner's system it is necessary to understand

how the merging of two body instances which have a FIX relationship is

carried out. One body instance (the child) is merged into another (the

parent), and the position of the child is expressed relative to the

position of the parent. According to the merging rules applied in the

cycle finder, the body number of a parent is always smaller than or

equal to those of body instances merged into it. A body instance which

is a parent can itself be merged into another body instance. Therefore,

after the merging, body instances are grouped into trees, and the most

superior parent in each tree is the root node and is referred to as the

master of other body instances in that tree. (Fig. 7.3 (a)). The posi-

tions of body instances which have been merged can be represented in

terms of the coordinate system of the master body instance by repeated

position multiplications. Therefore, if a body instance is a node of

the tree whose root is the world (and since the body number of the world

is 1 it must always be the root node of a tree) then its position in the

world coordinate system can be determined.

In Corner's method a TEACH command creates a new situation in the

assembly task. In the relation network there will be no direct

-154-

relations holding between the body instance whose position needs to be

taught and the body instance for the same body in the previous situa-

tion. The reasoning process is divided into two phases. In the first
phase, the reasoning system works in the same way as the cycle finder

except that all the body instances whose positions will be taught at run

time are marked, and these marked body instances are never merged into

other body instances. Instead, other body instances which have a FIX

relationship with them are merged into them. Thus the "taught" body

instances are root nodes of individual trees. For example, Fig. 7.3 (b)

shows the relationship network produced by a program similar to that

which produces the relationship network shown in Fig. 7.3 (a). The only

difference between these two programs is that in the program associated

with Fig. 7.3 (b) the positions of body instances a and g is to be

taught at run time. In the second phase, a symbolic FIX relation is

inserted between the taught body instance and the body instance for the

same body in the previous situation. At run time, when the taught posi-

tion is known the symbolic FIX relation can be instantiated and all the

positions in the cluster can be computed and expressed in terms of the

world coordinate system.

The advantages of this method are that it makes full use of the

capability of the current RAFT reasoning system to establish the rela-

tions between positions of body instances and information obtained at

run time. If there are any symbolic expressions to be evaluated at run

time then these need to be done only once. However, there would be

several disadvantages in this method when it was used for dealing with

vision information. Three main ones are 'listed as follows.

1) Firstly, the implementation of this method would need a signi-

ficant modification on the current reasoning system and this is

-155-

world

masters

(a) in the current cycle finder

masters

world 4 Qd QK

d 0

(b) in Corner's TEACH mode

Fig. 7.3 Tree structures of body instances in inference systems

actual position

I

actual position

Fig. 7.4 The one step strategy

e

-156-

what the author wants to avoid.

2) Secondly, this method would influence the semantics of some

RAPT statements in some circumstances. Some programs which are

correct without vision commands would become incorrect when

vision commands were added, if this method was used to handle

vision information. For instance, consider the RAPT instruc-

tions to move object bl from a known position to some distant

place in relation to b2, whose position is to be verified. The

following RAPT codes would be invalid since the verified posi-

tion might not be identical to its nominal position so that the

MOVE statement between situations i+2 and i+3 could not guaran-

tee to bring about a specified FIX relation between bl and b2 in

situation i+3, although these codes would be a proper segment of

a program without the vision command package.

remark now in sit i, bodies hand, bl and b2 have been modelled;

move/hand;

fixed/hand, b1; remark sit i+1, fixed is abbreviation

of a set of relations which can

fix the two bodies;

tied/hand, bl;

verify/b2; remark abbreviation of a vision command

package;

remark now in sit i+2;

move/hand, perpto, f2 of hand, 55;

fixed/bl, b2; remark sit i+3;

7.2.4. The Method Adopted

The framework which was adopted by the verification vision system

for handling vision information avoids all the disadvantages of the

three methods which have been discussed above. It works efficiently at

both compile time and run time, does not need to take much extra storage

space, and does not change the semantics of RAPT statements. When

vision commands are added into a correct RAPT program, no modification

of the original program is needed. Furthermore, the implementation of

the framework does not need significant changes in the current RAPT sys-

tem.

The basic operational principle of the framework is that it decom-

poses the actual position of a body instance into two parts. One is the

nominal position which results from the inference system and has no

relation with the vision information. The other indicates the influence

of the vision information on knowledge of the actual position of a body

instance. This part is referred to as the modifying factor of the body

instance and work on determining its value is done both at compile time

(deciding what dependence it has on vision information) and at run time

(evaluation).

The remainder of Chapter 7 is used to describe the outline of the

framework and discuss its basic principles. Chapter 8 establishes and

explains rules for making and simplifying the modifying factor array

which is the heart of the framework. In discussions in these chapters

the following two assumptions will be employed:

1. The nominal position of a body is assumed to be accurate unless

-158-

there is some evidence (e.g. vision data) to the contrary.

2. The movement of the robot arm is assumed to be accurate

for each individual action.

Both these assumptions are reasonable. Firstly, if the nominal

positions are not accurate then either their actual positions are imma-

terial, or the programmer should have included some evidence-gathering

instructions in his program. Secondly, in present day robots the inac-

curacies of movement are due to inaccuracies of their mechanical parts

and imperfection in their feedback transducers.

7.3. Relations Between Vision Information and Body Positions

Positions of body instances can be classified into three sorts

according to their relations with the vision information:

1) the body instances which are verified directly by vision com-

mands and whose actual positions are determined by vision infor-
mation.

2) the body instances which are not verified by vision commands

but whose actual positions are influenced by vision information

in some indirect way. Their actual positions are determined

jointly by both the nominal positions and vision information.

3) the body instances whose positions have no relations with

vision information at all. Their nominal positions are con-

sidered to be identical with the actual ones.

-159-

For uniformity, the actual positions of all the three sorts are decom-

posed into two parts so that the framework can deal with them in the

same way.

7.3.1. Positions of Verified Body Instances

If the actual position of a verified body instance is to be deter-

mined completely by vision information, then it is treated in the fol-
lowing way. Suppose the nominal position of body b in situation i is

represented by the matrix PNbi and its verified position in the same

situation is PVbi. It can be considered that the body b makes a virtual

movement from PNbi to PVbi. The movement can be represented by a matrix

FMbi:

FMbi * PNbi PVbi (7.1)

and FMbi here is referred to as the prefix modifying factor of the nomi-

nal position of the body instance bi or simply the modifying factor.

It can be seen from (7.1) that the modifying factor FMbi is deter-

mined by the nominal position and the verified one:

FMbi a PVbi * PNbi-1 (7.2)

The actual position is represented in the reasoning system as PNbi and

FMbi.

-160-

7.3.2. Positions of Body Instances Affected by Vision Information

The position of a body instance can be influenced by vision informa-

tion indirectly in several circumstances. Since the way in which TIES

and subassemblies affect positions is fairly complex, discussion of this

is reserved for a separate chapter (Chapter 8). In this chapter the

relatively simple inference of actions is used to convey an idea of the

principles of the system.

Chapter 3 shows how actions can be described in RAPT as purely

translational (MOVE), purely rotational (TURN) and a mixture (general

MOVE). From the syntax of action statements we can distinguish three

classes: explicit action statements, implicit action statements, and

general move statements. However, for the purposes of making the modi-

fying factor array neither this classification nor the type of action

are important. What is important is the way in which action statements

and spatial relationship statements interact. Section 7.3.2.1 and sec-

tion 7.3.2.2 therefore describe a new classification which depends upon

such interactions, and discuss the corresponding effects on modifying

factors of bodies being moved.

7.3.2.1. Unspecified Actions

In RAPT, a body can be moved to a position where no specified spa-

tial relationships must be satisfied. The destination can either be

specified by an explicit action statement which describes an absolute

movement from an original position (see Example 1 below), or be deduced

by the geometrical reasoning system from statements about later

-161-

situations (see Example 2). This kind of destination can be referred to

as an unspecified position and the relevant action can be referred to as

an unspecified action. It is necessary to distinguish between specified

and unspecified actions. An unspecified action is iwwhish- 6,9 defined

as one which precedes an unspecified position. Whether or not it is an

explicit action is irrelevant.

Example 1:

move/bl, perpto, fl of b1, 50;

turn/bl, about,f2 of bl, 45;

Example 2:

move/b1, perpto, f1 of b1; remark This is an unspecified

action;

move/bl, perpto, f2 of bt; remark This is not an

against/fl of bl, fl of al; unspecified action because of

fits/f3 of bl, f5 of at; the special relations on the

destination of the action;

In the case of an unspecified action there is a RAPT command to move

a body by a certain amount after its position has been verified. Since

the verified position may be different from the nominal one, the actual

position of the body after some explicit actions may also be different

from the corresponding nominal position. The following discussion will

establish the relationship between a modifying factor of a body after an

unspecified action and that before that action. Suppose the nominal

-162-

position of body b in situation (1+1). PNb(i+1), is produced by an

unspecified action from PNbi

PNb(i+1) - PNbi * Tbi (7.3)

where Tbi is a transformation representing an action.

Then the actual position of the body in situation (i+1) (the actual

position is not a "verified position" since it has not been verified by

vision commands, but it can be considered equivalent to a verified posi-

tion in the discussion) is

PVb(i+1) - PVbi Tbi

FMbi PNbi * Tbi

- FMbi * PNb(1+1)

From (7.1)

PVb(i+1) - FMb(i+1) * PVb(i+1)

Therefore in this case

(7.4)

(7.5)

FMb(i+l) - FMbi (7.6)

and is referred to as the prefix modifying factor of the body instance

PN b(i+1). Thus if the modifying factor of a body before an unspecified

action is known then that of the body after the action is known, too.

-163-

7.3.2.2. Specified Actions

In RAPT, a body can also be moved to a position to satisfy certain

relationships with respect to other bodies. These spatial relationships

specify the destination of the body being moved in terms of the relative

position of the body with respect to others. This kind of destination

can be referred to as a specified position and the action which brings

the body to this position can be referred to as a specified action. For

example, the following segment of a program describes a specified

action. This action brings the body bl to a position to satisfy speci-

fied relationships holding between bodies bt and al.

move/bl, perpto, ft of b1;

against/f1 of bi , f1 of al;

against/f2 of bt, 0 of al;

Notice that the relevant relationship specifications may not follow

the associated specified action statement directly. There may be some

other action statements in between which do not change the position of

the body concerned. In the following example,

remark now in situation 1;

move/bt, perpto, fl of b1 ;

remark situation i+1;

move/b2, parallel, f2 of b2;

Pits/f3 of b2, f3 of a2;

remark situation 1+2;

-164-

turn/b3, about, fl of b3, 90;

remark situation 1+3;

fits/f2 of bt, f2 of al;

against/ft of bt, f1 of al;

If b1 is neither TIED to b2 or b3 nor in the same subassembly with them

then the MOVE statement which moves b1 is still a specified action

statement though the relevant relationship specifications are in situa-
tion i+3. This is because the body b1 is not moved through situation
i+1 to i+3, the spatial relationships specified in situation i+3 must be

satisfied in situation i+1 by that action.

It is the existence of direct or indirect relationship specifica-

tions which determines whether an action is specified or not. Thus even

if the action statement which is followed by a relationship specifica-

tion is explicit the action is still specified, since the destination is

a specified position.

In the case of a specified action a body is moved to a place which

is specified by a set of relations holding between the body being moved

(body a) and another body (body b). If body b has been verified then

the destination of body a may be different from its nominal one since

vision information may indicate that the actual position of body b to

which body a refers deviates from its nominal one, and in order to

satisfy the specified relations the destination needs to be adjusted.

The following discussion will establish the relationships between a

modifying factor of a body after a specified action and that of the

reference body. Suppose the nominal position of body a and body b in

-165-

situation i are PNai and PNbi respectively and these positions are such

that a set of specified relations hold between the bodies. Thus the

difference in position of body a with respect to body b is

RPab - PNai * PNbi-1 - PVai * PVbi-1

So if the actual position of body b in situation i is

(7.7)

PVbi - FMbi * PNbi (7.8)

then the actual position of body a in situation i must be

PVai - PNai * PNbi-1 * PVbi

- PNai * PNbi-1 * FMbi * PNbi (7.9)

if the specified relations are to hold. As for equation (7.5), equation

(7.9) can be re-written as:

PVai - PNai * PNbi-1 * FMbi * PNbi

- PNai * PNbi-1 * FMbi * PNbi * PNai-1 * PNai

- FMai * PNai (7.10)

where FMai - PNai * PNbi-1 * FMbi * PNbi * PNai-1 (7.11)

So here we get an expression for the modifying factor of body a in

situation i which depends upon the modifying factor of body b in situa-

tion i, and some constant transformations. If the modifying factor of

the reference body and the nominal positions of both the reference body

and the body being moved are known then the modifying factor of a body

after a specified action can be determined.

-166-

7.3.3. Body Instances for which the Vision Information is Irrelevant

There are some body instances for which the vision information has

no relevance. These bodies have neither been verified, nor moved to

some place to satisfy specified relations with respect to bodies which

have been verified. Nor are they members of TIES or subassemblies which

have members that have been verified. In this case the nominal posi-

tions of these body instances are assumed to be accurate at run time,

and the modifying factor of this kind of body instance is an identity

matrix. Whether the position of a body instance is dependent upon

vision information will be determined by the rules which will be dis-

cussed in Chapter 8.

7.3.4. Actual Positions and Actions

It can be seen from the discussion above that the actual position of

a body instance can be decomposed into two parts: the nominal position

and a modifying factor, and it is only the modifying factor that may be

affected by the vision data. When a body instance is verified, its
modifying factor is determined by the vision data and the nominal posi-

tion of the body instance. It has also been shown above that if the

actual position of a body instance (bi) is affected by that of a veri-

fied body instance and if the relative position of one body with respect

to the other is known then the modifying factor of the body instance bi

can be determined. As the nominal position for each body instance can

be obtained from the current RAPT cycle finding system, and the

-167-

influence of vision information can be deduced by analysing the user's

program, the modifying factor for every body instance can be determined.

It follows then that when the verification vision system is combined

with RAPT the inference system can deduce the nominal position of each

body instance as usual at compile time while the framework can evaluate

modifying factors at run time, and so get the actual positions of every

body instance by matrix multiplication.

Now, while the actual positions have been determined, at run time

what needs to be known is how the actions to be taken by the robot sys-

tem have to be modified. The introduction of modifying factors will
change the actions on bodies. The transition between two nominal posi-

tions can be referred to as a nominal action and the transition between

two actual positions can be referred to as an actual action. Suppose

body b is moved from nominal position PNbi to PNb(i+1) by a nominal

action TNbi. TNbi can be expressed as:

PNbi * TNbi - PNb(1+1)

TNbi - PNbi-1 * PNb(1+1) (T.12)

On introducing the modifying factor, the positions of both the starting

point and the destination of an action may be changed. Suppose body b

is moved from actual position PVbi to PVb(i+1) by an actual action TAbi,

then the actual action TAbi can be deduced as:

PVbi * TAbi - PVb(i+1)

TAbi - PVbi-1 * PVb(i+1)

- PNbi-1 * FMbi-1 * FMb(i+1) * PNb(1+1) (T.13)

-168-

It can seen from equation (7.13) that if FMbi - FMb(i+i) then the actual

action will be the same as the nominal action.

7.3.5. The Modifying Factor as a Prefix and Postfix

In the discussion above, the modifying factor is used as a prefix,
and left multiplies a nominal position. In fact, a modifying factor
which represents the discrepancy between a nominal position and an

actual one can also be represented as a postfix.

7.3.5.1. Use of Postfix

This section derives equations similar to (7.1) - (7.11) but with

the modifying factor used as a postfix and referred to as GM instead of

FM. Suppose that a body b in situation i makes a virtual movement from

its nominal position PNbi to its virtual position PVbi and the movement

is represented by a post multiplied matrix GMbi:

PNbi * GMbi - PVbi (7.1)

and GMbi here is referred to as the postfix modifying factor of the body

instance PNbi.

It can be seen from (7.1') that

GMbi - PNbi-1 * PVbi (7.2')

-169-

In order to establish the relationship between the modifying factor of a

body after an unspecified action and that before the action, let us sup-

pose the nominal position of body b in situation (i+1), PNb(i+1), is
produced by a fixed amount of unspecified movement from the nominal

position PNbi:

PNb(i+1) - PNbi * Tbi

then the actual position of the body instance is

PVb(i+1) - PVbi * Tbi

- PNbi * GMbi * Tbi

PNbi * Tbi * Tbi-1 * GMbi * Tbi

PVb(i+1) * Tbi-1 * GMbi * Tbi

PVb(i+1) * GMb(i+1)

where GMb(i+1) - Tbi-1 * GMbi * Tbi

- PNb(1+1)-1 * PNbi * GMbi * PNbi_1 * PNb(1+1) (7.6')

In order to determine the modifying factor of a body after a speci-

fied action let us consider a situation i in which body a has been moved

by a specified action so that a set of specified relations hold between

body a and body b. Suppose the nominal positions of body a and body b

in situation i are PNai and PNbi respectively. The relative position of

body a with respect to body b is

-170-

RPab - PNai * PNbi-1

- PVai * PVbi-1

If the actual position of body b is

PVbi - PNbi * GMbi

then the actual position of body a is

PVai - PNai * PNbi-1 * PVbi

- PNai * PNbi-1 * PNbi * GMbi

(7.8')

- PNai * GMbi (7.10')

It can be seen that in this case the modifying factor of body a is the

same as that of body b:

GMai - GMbi (7.11')

7.3.5.2. Relationships Between Postfix and Prefix Convention

Theoretically speaking, the prefix and postfix modifying factors are

alternative. Either form can be used to represent the difference

between a nominal position and an actual one, provided that different

expressions are used to express the effect of a modifying factor on

other body instances. In practice, the complexities of the equations of

the two forms which express the effect are different. A prefix modify-

ing factor represents a rotation and translation with respect to its
nominal position. Thus the expression of the effect of the modifying

factor over an unspecified position under this notation is simple. When

-171-

representing the effect of the modifying factor over a specified posi-

tion, however, the expression is rather complex. These have been shown

in equations (7.2) - (7.11). A postfix modifying factor, on the other

hand, represents a rotation and translation with respect to the world

coordinate system. Thus the expression of the effect of the modifying

factor over a specified position is simple while that for an unspecified

position is complex. These can be seen from equations (7.2') - (7.11').

As the framework has to deal with the effect of a modifying factor

over both an unspecified position and a specified position, neither

notation method is overwhelmingly better that the other. The author

selects the prefix notation in the following discussions since it makes

some rules of establishing and simplifying the effect of a modifying

factor a bit simpler. The term modifying factor will mean the prefix

one only in the remainder of the thesis. If the potential assembly task

needs the RAPT system to deal with a large number of subassemblies and

TIES then the postfix notation may be preferable since the subassembly

and the TIE will bring many implied specified positions and using the

postfix notation can simplify relevant expressions and reduce calcula-

tions at run time.

7.11. The Run Time Data Structure

At run time the system needs to access the nominal positions and

modifying factors since the actual actions of the robot and other dev-

ices are determined from the actual positions which are derived from the

nominal positions and the modifying factors. The modifying factors and

the nominal positions are both stored at run time in arrays indexed by

-172-

body instances.

The elements of the modifying factor array have three possible

forms.

1) The modifying factor will be an identity matrix symbol ("I") if
the actual position of the corresponding body instance is

independent of any vision information and can be assumed identi-

cal to its nominal position.

2) The modifying factor will be a position matrix if the

corresponding body instance has been verified by vision com-

mands. This matrix is the product of the verified position and

the inverse of the corresponding nominal position, as expressed

in equation (7.2). If the vision verification step has not been

reached then the modifying factor is still a symbolic expres-

sion.

3) The modifying factor will be a pointer or a set of pointers if
the position of the corresponding body instance is dependent

upon another body instance which has been verified in the

current situation or one of the preceding situations. Pointers

point to modifying factors in the same modifying factor array.

The modifying factors pointed to are themselves position

matrices, pointers or pointer sets. This linkage is made at

compile time according to the dependence of the actual position

of the body instance upon verified positions. Rules for deter-

mining pointers or pointer sets will be discussed in Chapter 8.

When evaluation occurs of a body instance actual position whose

modifying factor is a pointer or a set of pointers, the run time

system will interpret it by applying a set of rules and will

produce an actual modifying factor for evaluating the actual

-173-

insert the following sentences in line 7 in p174:

Note that at compile time, the elements which will contain the posi-

tion matrices at run time contain symbolic expressions of the verified

positions rather than symbolic expressions of the discrepancies between

the nominal positions and the verified ones. Detailed discussion can be

found in Section 7.6.

change line 10 in p174 to follows:

The RAPT geometrical reasoning system, therefore, ...

position of the body instance. The rules for the evaluation of

a pointer or a pointer set will also be discussed in detail in

Chapter 8.

The pointers and identity matrix symbols are assigned at compile time,

while the position matrices are assigned at run time after the vision

data have been obtained and the corresponding symbolic positions have

been evaluated.

The modifying factor array thus holds both vision information and

knowledge about how it affects other body instances whose actual posi-

tions are dependent upon verified positions. The reasoning system,

therefore, does not need to manipulate the symbolic form of the vision

information and so does not need to be altered to cope with vision

verification. This feature makes the compile time system work effi-
ciently. Since the effect of a verified position over actual positions

of other body instances is represented by pointers pointing among modi-

fying factors, the symbolic expression of each verified position needs

to be evaluated only once at run time. As pointers are established at

compile time, the run time system only needs to do simple work such as

tracing a pointer or multiplying a nominal position matrix with a modi-

fying factor which is a position matrix. Thus the run time system can

deal with vision information quickly. Furthermore, since the modifying

factor array handles discrepancies between actual positions and nominal

ones, nominal positions of body instances resulting directly from the

cycle finder are available to the run time system in their original

form. Thus, the run time system can work out nominal actions and

discrepancies between nominal actions and actual ones separately if
necessary. This increases the flexibility of the run time system in

making use of vision information.

-174-

7.5. The Actual Action Control

In order to bring about desired states the run time system which

controls actions of the robot must take account of discrepancies between

nominal positions and actual ones of body instances in order to adjust

planned movements of the robot. Knowing the modifying factor of each

body instance, the actual action which moves a body from an actual posi-

tion to the next can be calculated by equation (7.13) since nominal

positions are already known. An actual action differs from its nominal

one if the modifying factors for body instances before and after the

action are different.

There are two possible ways to control the robot to move under the

adjustment of modifying factors. One can be referred to as a one step

control strategy and the other can be referred to as a two step control

strategy.

7.5.1. One Step Control Strategy

If the nature of the route of the action which is specified by the

user's program is not important and the user is only concerned about the

destination of the body to be moved then the run time system can calcu-

late the amount of the actual action by using equation (7.13) directly

and order the robot to move accordingly in one step (Fig. 7.4). The

effect of this method is the same as that of Corner's method. The

advantage of this method is its simplicity and speed of the robot's

-175-

performance. It needs only three matrix multiplication operations to

calculate the actual action. Since the action is accomplished in one

step, it is faster than the two step method which will be discussed

below.

7.5.2. Two Step Control Strategies

Sometimes, however, the nature of the planned route does matter.

For instance, in order to avoid collision, a body must be moved along a

route which maintains a specified relationship with certain body in a

segment of its trajectory. In this case the one step control method is

no longer suitable. In order to control the trajectory of movements of

the robot, the expression of an actual action needs to be re-written in

two parts, and the corresponding action of the robot is divided into two

steps. The first part indicates the adjustment of the action which is

caused by errors in positions of end points of the motion while the

second part indicates the movement which maintains the constraints to

the movement implied by the user's program. These two parts control the

two steps of the action of the robot respecttively.

The decomposition of equation (7.13) can be done in several ways

depending upon the nature of the nominal action that the user or system

designer wants to keep in the second step of the actual action. When

the user wants the movement in the second step to keep the same direc-

tion in the world coordinate system as the planned action, equation

(7.13) can be re-written in the following way:

TAbi - PNbi-1 * FMbi-1 * FMb(i+1) * PNb(i+1)

-176-

- PNbi-1 * FMb1-1 * FMb(i+1) * PNbi *
PNbi-1 * PNbi+1)

- TCbi * TNbi (7.14)

Here TCbi - PNbi-1 * FMbi-1 * FMb(i+1) * PNbi (7.15)

It indicates the movement of the robot in the first step.

TNbi - PNbi-1 * PNb(i+1)

denotes the amount of movement in the second step of the action, and it
is exactly the same as the nominal action. This decomposition is useful

in cases such like that shown in Fig. 7.5 in which the discrepancies

between actual destinations and nominal ones contain translations and a

rotation about the axis which is parallel to the direction of the nomi-

nal action.

Sometimes it is necessary that the movement in the second step must

be such that the moving object maintains the same relations with its

destination as in the corresponding planned action. In this case the

decomposition of the action expressed by equation (7.14) is no longer

suitable and the action should be decomposed in another way.

Suppose the nominal positions of body b in situation I and (i+1) are

PNbi and PNb(i+1), and their modifying factors are FMbi and FMb(i+1)

respectively. The relative position of PNbi with respect to PNbi+1) Is

PNbi * PNb(i+1)-1. If the actual position of body b in situation (i+1)

is:

PVb(i+1) - FMb(i+1) * PNbi+1) (7.16)

-177-

nominal action

--------j
C a

Fig. 7.5. Method 1 of the two step strategy which keeps the

action in line with the world coordinate system

step 1

nominal action
0

Fig. 7.6. Method 2 of the two step strategy which keeps the
action in line with the destination coordinate system

step 2 of the actual action

-178-

and PNb' is the intermediate position which has the same relative posi-

tion with respect to PVb(i+1) as PNbi has to PNb(i+1), then

PNb' - PNbi * PNb(i+1)-1 * FMb(i+1) * PNb(i+1) (7.17)

The first step of the movement Tat must bring the body to this position.

The second step of the movement Ta2 which will move the body from this

position to PVb(i+1) can be expressed as:

Ta2 - PNb(i+1)-1 * FMb(i+1)-1 * PNb(i+1) * PNbi-1

* FMb(i+1) * PNb(i+1) (7.18)

The whole action of body b from PVbi to PVb(i+1) is re-written as:

TA - PNbi-1 * FMbi-1 * FMb(i+1) * PNb(i+1)

- PNbi-1 *FMbi-1 * PNbi * PNb(i+1)-1 * FMb(i+1) * PNb(1+1) *

* PNb(i+1)-1 * FMb(i+1)-1 * PNb(i+1) * PNbi-1 *

* FMb(i+1) * PNb(i+1)

- Ta1 * Ta2 (7.19)

The usefulness of this method of controlling the action can be seen

from the following example. Suppose the user wants to insert a shaft

into a hole, and has written a program fragment:

move/shaft;

move/shaft, perpto, fl of shaft, 20;

fixed/shaft, hole;

-179-

This program can be interpreted to mean that the user wants the route of

the last movement of the robot to be such that the shaft moves along the

axis of the hole, avoiding any collision between the shaft and the edge

of the hole. However, if the actual position of the hole is different

from its nominal one, then under the control strategy which is expressed

either by equation (7.13) or by equation (7.14) the route of the last

movement would be modified so that it may not be collinear with the axis

of the hole and the action may not succeed. If the system uses the

method specified by equation(7.19) to control the movement of the robot,

i.e. the system asks the robot to adjust its position first and then

move according to the nominal trajectory with respect to the hole, then

the shaft will be moved along the axis of the hole in the second step of

the movement (Fig. 7.6).

Alternative decompositions can also be made to the action specified

by equation (7.13) if other requirements of the action control must be

met. For example, the action can be decomposed into three or even more

steps if needed. Because the modifying factor array handles vision

information and its effects on actual positions of body instances

separately from the nominal position, it is possible to make use of the

variety of the control strategies.

The selection of the control strategy of the actual action is not a

burden on the user. At the moment, this will be done by the designer of

the run time system which controls the actual action of the robot. In

the future, if an automatic task planner and a collision avoidance con-

troller are added to the RAPT system then they can share the responsi-

bility of choosing the control strategy. The verification vision

-180-

system, therefore, does not need to provide commands to the user to do

this.

7.6. The Compile Time Work

The compile time modifying factor array is similar to that of the

run time except that the symbolic expressions have not been evaluated.

The framework needs some compile time work to be done in order to estab-

lish connections between vision information and dependent body

instances. The final result of the compile time work is a properly

assigned modifying factor array which is ready to be used by the run

time part of the framework. The compile time work can be divided into

three phases. They are the initiation phase, the reasoning phase and

the simplification phase.

7.6.1. The Initiation Phase

In the initiation phase, the modifying factors of all the body

instances in situation 1 are assigned an identity matrix symbol "I".

This is because in the first situation no body has been either moved or

verified, and therefore they can be assumed to be at their nominal posi-

tions. The modifying factors of the body instances of the world in all

situations are also assigned an identity matrix symbol since the world

represents the frame of the working station. It is the reference of the

positions of other body instances and must always be considered to be at

its nominal position.

-181-

7.6.2. The Reasoning Phase

In the reasoning phase, the modifying factors of body instances in

the following situations are assigned either the symbolic expression of

a verified position or a pointer or a set of pointers. This is done

using the information provided by two of the tables formed by the RAPT

system from the input program. One of the tables is the action table

which records the object and the nature of each action. In this verifi-

cation vision system the nature of the action can be vision verifica-
tion. The other is a TIE table which records which bodies are TIED

together or constitute a subassembly in each situation. This matter is

discussed in more detail in Chapter 8. If the position of a body

instance is verified then its modifying factor is assigned the symbolic

expression of the verified position. Otherwise a pointer or a set of

pointers will be assigned to the modifying factor. The assignment of a

pointer or a set of pointers depends upon the state of the body

instances indicated by the two table and corresponding rules. These

pointers denote the connections between modifying factors. If a pointer

points to a modifying factor whose content is a symbolic expression of a

verified position then it represents the route along which the effect of

the vision information propagates. If a pointer points to an identity

matrix symbol then it indicateA'that the position of the corresponding

body instance has no relation to any vision information. If a pointer

points to another pointer or a set of pointer then it means the modify-

ing factor depends upon others.

Sometimes a vision task may be specified incompletely, i.e. there

are not enough vision commands in the corresponding COMBINE package.

Thus the symbolic reasoning system cannot fix the body to be verified

-182-

with respect to the world. Instead, it produces a constrained symbolic

relationship between the body and the world. In this case, the system

reports the fact to the user and ignores the vision command (see Chapter

5), and therefore assigns a pointer to the modifying factor of the body

to be verified which points to the modifying factor of the same body in

the previous situation.

7.6.3. The Simplification Phase

In the simplification phase, each pointer or set of pointers in the

modifying factor array will be checked to see whether it can be substi-

tuted by an identity matrix symbol or by another pointer so that the

structure of the modifying factor array can be simplified. For example,

if a pointer points to an identity matrix symbol then the modifying fac-

tor which contains the pointer can be replaced by an identity matrix

symbol. The simplification rules will also be discussed in Chapter 8.

Notice that at compile time the symbolic expressions in the modifying

factor array are of the verified position PVbi rather than of the modi-

fying factor FMbi. The real modifying factors will be obtained at run

time when the symbolic positions are evaluated and multiplied by the

inverses of corresponding nominal positions.

7.7. Modifying Factors in Symbolic Reasoning and Vision Commands

As well as influencing the symbolic reasoning, the introduction of

modifying factors will also influence the way in which vision commands

create the symbolic feature and control the camera. Modifying factors

-183-

indicate the discrepancies between nominal positions of body instances

and their actual ones. This information can be used not only to adjust

the action of the robot but also to adjust the reasoning of the symbolic

expression of a verified position and provide the vision facilities a

better estimation of the place where the feature to be verified can be

found.

In a vision command package, the INVIOLATE statement is used to

indicate the most reliable relationships holding between the body to be

verified and a reference body. The modifying factor for the body

instances of this reference body may not be an identity matrix. This

means that it may not be at its nominal position, though the relation-

ship mentioned in the INVIOLATE statement still holds. The modifying

factors from previous vision verification enable the reasoning system to

make better predictions for positions of bodies in subsequent vision

verification. For example, if the vision system verifies the position

of body A and subsequently verifies a body B which has an inviolate

relationship with body A then the reasoning system should take account

of what it has learnt about the actual position of body A in the predic-

tion for body B.

As discussed in Chapter 5, if a reference feature does not belong to

the world directly then the INVIOLATE statement will transform the posi-

tion of the feature into its position in the world coordinate system and

consider it as a world feature. Before the introduction of modifying

factors the transformation can be done by a matrix multiplication

Pf * PNbi

-184-

where Pf is the position of the feature in the local coordinate system

of the reference body and PNbi is the nominal position of the reference

body in the situation directly preceding the vision verification. In

order to enable the inviolate relation to represent the actual cir-

cumstances, the symbolic reasoning system needs to use the symbolic

actual position of the reference body to take part in the symbolic rea-

soning, instead of the nominal one. Every time an INVIOLATE statement

is met, the symbolic reasoning system will multiply the nominal position

of the reference body by the corresponding modifying factor symboli-

cally, provided that the modifying factor is not an identity matrix.

Thus the transformation of the position of the reference feature from

its local frame into the world coordinate system can be expressed as:

Pf * FMbi * PNbi (7.20)

At run time, the corresponding modifying factor will have already been

evaluated in a previous situation before it is required and therefore

the symbolic expression of the position of the body to be verified can

be evaluated in the situation in which the vision verification takes

place.

The run time vision facilities need to use the information provided

by modifying factors of the body instances in order to estimate the

position of the expected feature more accurately at run time. Actual

positions of the camera to be used and the body instance to be verified

are needed to take the places of their nominal counterparts. Since the

vision facilities do not need to manipulate these actual positions at

compile time, no extra work is necessarily to be done in the symbolic

reasoning. The window suggester and the face generator will get access

-185-

to the modifying factor array directly at run time in order to multiply

the nominal positions of the camera and the body to be verified by their
modifying factors in the situation directly preceding the corresponding

vision verification.

The data flow chart of the RAPT system with the verification vision

is shown in Fig. T.T.

T
he

C

yc
le

F

in
de

r

T
he

M

od
ify

in
g

F
ac

to
r

A
rr

ay

T
he

S

ym
bo

lic

R
ea

so
ni

ng

S
ys

te
m

R
un

T

im
e

R
ob

ot

C
o
n
t
r
o
l

S
ys

te
m

R
un

T

im
e

V
i
s
i
o
n

F
a
c
i
l
i
t
i
e
s

F
ig

.
7.

7.

D
at

a
no

w
 c

ha
rt

 o
f

th
e

ve
rif

ic
at

io
n

vi
si

on
 s

ys
te

m

w

ith
in

 R
A

P
T

Chapter 8. Rules for Filling the Modifying Factor Array

Chapter 7 discussed the relationship between the vision information

and actual body positions and described the framework that is used to

handle the vision data. This involves the use of a modifying factor

array. The present chapter discusses in more detail the rules which are

used in assigning pointers in this array. During the reasoning phase

(see Section 7.6.2) all elements of the modifying factor array are

assigned pointers or sets of pointers except those which are initialized

or those which refer to body instances which are verified directly by

vision commands. The pointers represent the dependence of a modifying

factor upon others, and this dependence is determined by the state of

the associated body instances in the user's program, such as being

moved, TIED and so on. Pointers for a particular situation can point to

modifying factors in the same or previous situations. However, they can

never point to the modifying factors in later situations. This restric-

tion represents the fact that the actual position of a body instance can

only be dependent upon the past and present status of the environment,

and cannot be affected by any future events. The law of causality is

aise valid here.

In order to assign the pointers and then simplify the modifying fac-

tor array, a set of rules must be established. For convenience, the

rules for making the pointers will be referred to as linking rules in

the following discussion. These rules describe the connections between

modifying factors in the situation directly following each corresponding

action or vision command package.

-188-

8.1. Linking Rules for Actions

As discussed in Chapter 7, in order to make the modifying factor

array the action statements are classified into two sorts: specified and

unspecified action statements, depending upon the way in which action

statements and spatial relationship statements interact. The rules for

setting a pointer in an element of the modifying factor array distin-

guish these two sorts of action statement. The nature of pointers is

also different depending upon the type of the destination of the

corresponding body instance.

8.1.1. The Rule for Unspecified Actions

Suppose a body is moved by an unspecified action. The actual posi-

tion of the body after the action is only determined by the actual posi-

tion of the body before the action and the amount of the displacement.

This case has been discussed in Section 7.3.2.1 in detail. It can be

seen from equation (7.6) that the modifying factor of a body after an

unspecified action is Just the same as that before the action. There-

fore the pointer for the modifying factor of the body instance after the

action points to the modifying factor of the body instance before the

action. This kind of pointer means that the corresponding modifying

factor is equal to what is pointed at. An unmoved body can be con-

sidered as being moved by an unspecified action represented by an iden-

tity matrix. Its modifying factor is therefore also a pointer pointing

to that of the same body in the previous situation.

-189-

8.1.2. The Rule for Specified Actions

Suppose a body is moved by a specified action. The actual position
of the body after the action is determined by the specified relative
position of the body being moved with respect to the reference body and

the actual position of the reference body. This case has been discussed

in detail in Section 7.3.2.2. The modifying factor after the action of

the body being moved depends upon the modifying factor of the reference

body and the nominal positions of both the reference body and the body

being moved. Thus the pointer in the situation directly succeeding the

action for the modifying factor of the body being moved points to that

of the reference body after the action. The meaning of this kind of

pointer, however, is different from that assigned by an unspecified

action. This kind of pointer must be interpreted by equation (7.11).

Since the pointer which is assigned by a specified action points to the

modifying factor of another body while that which is assigned by an

unspecified action points to the modifying factor of the same body in

the previous situation, it is easy to distinguish them.

Sometimes the destination of a specified action refers to more than

one body. If the modifying factors of the reference bodies are not

identity matrices then whether the specified relationships can be real-

ized in the real environment depends upon the types and positions of the

features referred by the relationships and the modifying factors of the

reference bodies. To judge this needs a complex calculation, and some-

times this is impossible since some modifying factors which are depen-

dent upon vision information cannot be known until run time. In order

to solve this problem, a criterion is adopted: If a specified action

refers more than one reference body then the modifying factors of the

-190-

reference bodies b, c, ... must satisfy the condition that the actual
ratio between these reference bodies must be the same as the nominal

one:

FMbi * PNbi * (FMci *
PNci)-1 - PNbi *

PNc1-1

This condition covers the case that the modifying factors of all refer-
ence bodies are identity matrices. The proof of the sufficiency of this
condition is given in Appendix III for the case in which two bodies are

referred by the spatial relationships for convenience. The following
discussion will also restricted to the case of two reference bodies.

The condition

FMbi * PNbi * (FMci *
PNci)-1 - PNbi *

PNci-1

can be satisfied in two ways. In the first case both FMbi and FMci must

be the identity matrices. Otherwise the modifying factors must satisfy

the following equation

FMbi - PNbi *
PNci-1

* FMci * PNci * PNbi_1

This is the same as equation (7.11). Thus the condition can be examined

by whether the modifying factor of a reference body points to that of

the other. I f the condition

FMbi * PNbi * (FMci *
PNci)-1 - PNbi *

PNci-1

is not satisfied or cannot be examined in either way then the compile

time facility will report the case to the user and then refer the modi-

fying factor of the body being moved to that of the reference body in

the first associated relationship specification. This discussion also

stands for the case in which TIES and subassemblies are involved.

-191-

8.1.3. Summary

The following is the summary of the linking rules for actions:

Al. If a body is moved to an unspecified position or is unmoved

then the pointer of the body instance points to its modifying

factor in the previous situation.

A2. If a body is moved to a specified position then the pointer of

the body instance after the action points to the modifying fac-

tor of the body instance of the body to which the relationships

refer (reference body) after the action. It there are more than

one reference body appearing in the relationships, then the

modifying factors of the reference bodies must satisfy the con-

dition

FMbi * PNbi * (FMci * PNci)-1 - PNbi * PNci-1

otherwise an error is reported and the reference body in the

first relationship specification is used in determining the

pointer of the body to be moved.

Notice that the linking rules discussed are associated with indivi-

dual bodies only. These bodies are neither members of a subassembly nor

TIED to other bodies. The linking rules for bodies of TIES or subassem-

blies are discussed in following sections. The following example shows

how the rules Al and A2 work.

remark defined bodies bl b2;

remark now in situation i;

-192-

move/bl,perpto,fl of bl, 5;

remark sit i+l, rule Al;

verify/bl ; remark abbreviation for a set of vision

commands which verifies bl, sit 1+2;

move/b2, parlel, fl of b2;

remark sit 1+3, rule Al;

turn/b2, about, f2 of b2;

fixedlb2,b1;

remark abbreviation for a set of relations which completely

defines the position of b2 with bl, sit 1+4, rule A2;

verify/b2; remark sit 1+5;

terapt;

Ibody\si t I 1 I ... I i j i+1 j i+2 j i+3 j i+4 j i+5 j i+6 I

I b2 I I I 1 4 4 -4- 1 I P I I

8.2. Linkin Rules for TIES

In RAPT, when bodies are TIED together their nominal positions main-

tain the same ratio before and after any actions. In practice the nomi-

nal ratio may not hold. For instance, suppose the manipulator of the

-193-

robot grasps a body at a place which differs from the specified posi-
tion. The actual relative position of the body with respect to the

manipulator, therefore, is different from the nominal one. However, if
the body is TIED to the manipulator then the action of the manipulator

is also applied to the body and so if two bodies are really TIED

together then the actual positions of the bodies must keep the same

ratio both before and after any actions. The changing of the modifying

factor of one body must affect that of the other. The only exception

happens when local vision commands (see Section 5.3.2) are used to check

the actual relationships between the TIED bodies. In that case only the

modifying factor of the body instance which is verified by local com-

mands is subject to change.

8.2.1. The Effect of Unspecified Actions

The effect of the action on the modifying factor of the body being

moved directly has been discussed in Chapter 7 and Section 8.1. The

following will discuss the effect of the action on the modifying factor

of the body which is TIED to the body being moved by an unspecified

action. When a body is moved by an unspecified action, another body

which is TIED to it must be moved by the same amount of unspecified

action. Suppose that body b is TIED to body a and body a is moved by an

unspecified action Tai between situation i and (i+1). The actual posi-

tions of the bodies before the action are:

PVai = FMai * PNai (8.1)

and

-194-

PVbi - FMbi * PNbi t8.2)

respectively. The nominal position of the body a after the action is

PNa(i+1) - PNai * Tai (8.3)

Since body b is TIED to body a, it keeps the same relative position with

respect to body a. Thus

PNbi+1) - PNbi * PNai-1 * PNa(1+1)

- PNbi *
PNai-1

* PNai * Tai

- PNbi * Tai (8.11)

According to the discussion in Section 8.1, the modifying factor of body

a in situation (i+1) is

FMai+1) - FMai

and the actual position of body a in that situation is

PVa(i+1) - FMai * PNai * Tai (8.5)

Since it is assumed that body b is actually TIED to body a in the real

world, its actual position after the action must keep the same ratio
with respect to body a as that before the action. Thus the actual posi-

tion of body b in situation (i+1) is

PVb(i+1) - PYbi * PVai-1 * PVa(i+1)

- FMbi * PNbi * (FMai * PNai)-1 * FMai * PNai * Tai

- FMbi * PNbi * Tai

-195-

-F'Nbi *PNb(i+i)

- FMb(1+1) * PNb(1+1) (8.6)

and

FMb(i+1) - FMbi (8.7)

It can be seen that each member of a TIE keeps the same modifying factor
before and after an unspecified action. A pointer which points to the

modifying factor of the same body in the previous situation can be

assigned to each member of a TIE no matter whether it is moved directly
by an action statement or it is moved indirectly by the effect of the

TIE.

8.2.2. The Effect of Specified Actions

Now let us consider the effect of a specified action statement on

the modifying factor of the body being TIED to a body being moved. Sup-

pose body b is TIED to body a and body a is moved by a specified action

so that specified relationships between body a and body c are to be

satisfied. Positions of these bodies before the action are:

PVai - FMai * PNai

PVbi - FMbi * PNbi

PVci - FMci * PNci

respectively. As discussed in Section 8.1, the actual position of body

a after the action Is

PVa(i+1) - PNa(i+1) * PNc(i+1)-1 * FMc(i`1) * PNc(i+1)

-196-

- FMa(i+1) * PNa(i+l) (8.8)

where

FMa(i+1) - PNa(i+l) * PNc(i+1)-1 * FMc(i+l) * PNc(i+1) *

* PNa(i+1)-1 (8.9)

Exactly the same as the rule discussed in Section 8.1.3 and equation

(7.11), a pointer which points to body c in situation (i+1) is assigned

to the modifying factor of body a in situation (i+1).

Since body b is TIED to body a, it must keep the same relative posi-

tion with respect to body a both before and after the action. Thus the

actual position of body b in situation (i+1) is

PVb(i+1) - PVbi * PVai-1 * PVb(i+1)

- PVbi * PVai-1 * PVa(i+1) * PNb(i+1)-1 * PNb(i+1)

- FMb(i+1) * PNb(i+1) (8.10)

where

FMb(i+1) - PVbi * PVai-1 * PVb(i+1) * PNb(i+1)-1

- FMbi * PNbi * (FMai * PNai)-1 * FMa(i+1) *

* PNa(i+l) * PNb(i+1)-1 (8.11)

In order to respresent this expression, a pointer triple can be assigned

as the modifying factor of body b in situation (i+1). The triple has

the form:

Cpl. p2. P3)

where p1 points to the modifying factor FMbi, p2 points to FMai and P3

-197-

points to FMa(i;1). At run time, the triple will be evaluated according

to equation (8.11).

There are two bodies in a TIE and the relationships which specify

the destination of an action can refer to either of them. Since the

action applies equally to the two TIED bodies, in determining the modi-

fying factor, we can consider that the body being moved directly is the

one referred in the destination specification.

When both bodies in a TIE are referred by a specified action, the

situation is a bit complex. The introduction of the modifying factor

restricts the condition on which the spatial relationships are given in

this case. When the spatial relationships refer both bodies in the TIE,

it is uncertain whether the specified relationships can be realized in

the real environment when the modifying factors are taken into account.

To examine this in general needs a complex calculation and sometimes is

impossible since some information is dependent upon vision. In the work

discussed in this thesis, referring to both bodies in a TIE by spatial

relationships is only allowed when the spatial relationships refer to

the same reference body and the actual ratio between the bodies in a TIE

is the same as planned:

FMai * PNai * (FMbi *
PNbi)-1 - PNai *

PNbi-1

where a and b are the bodies in the TIE. This is a sufficient condition

which is easy to examine at compile time. The proof of the sufficiency

of this condition can be found in Appendix IV. The ratio between body a

and body b maintains the same after they are TIED. Thus examining the

condition in situation i can be done by examining the condition in the

-198-

situation in which the current effective TIE is declared. The method is

the same as that discussed in Section 8.1.2.

If the reference body is in the TIE then the above rule is not

applicable. If the rule were used, it would lead to an unsolvable

pointer circle. A relationship between a body being moved and a body

which is already TIED to it is used to describe the relationships

between the two bodies rather than to specify the destination of a move-

ment. Note that in RAPT, two bodies can be TIED together without neces-

sarily giving any relationship specifications between them. When bodies

are tied together, the action on one must be copied to the other body in

the TIE. Therefore a relationship specification between either of the

bodies in the TIE and another body serves to define the destination of

both bodies. If an action statement is followed by any relationship

specifications which hold between the body being moved or the body TIED

to it and a body which is not TIED with it then the action statement is

considered as a specified action statement. Otherwise it must be tack-

led as an unspecified action statement and the rule described in Section

8.2.1 must be applied.

8.2.3. The Effect of Vision Commands

Vision command packages are classified into two classes: global ones

and local ones. A local package is produced when the reference body in

the INVIOLATE statement is TIED to the body being verified or belongs to

the same subassembly as it. This has been discussed in Section 5.3.2.

The difference between these two classes is that a global vision command

package updates the actual positions of all bodies in the TIE or

-199-

subassembly by the use of vision information while a local one only

updates the actual position of the body being verified.

8.2.3.1. Global Vision Command Package

The linking rule for global vision commands is quite similar to that

for specified actions. Suppose body b has been TIED to body a which is

verified by a global vision command package between situation i and

U+1). The modifying factor of body a in situation (1+1) is determined

by its nominal position and vision information as discussed in Section

7.3.1. At compile time the symbolic equation of the verified position

is assigned to the corresponding element of the modifying factor array.

The actual modifying factor will be obtained at run time by the use of

equation (7.2). The actual position of body b in situation (i+1) is

PVb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMa(i+i) * PNa(i+1)

- (FMbi * PNbi) * (FMai * PNai)-1

* (FMa(i+1) * PNa(i+1)) * PNb(i+1)-1 * PNb(i+1)

- FMb(1+1) * PNb(1+1) (8.12)

where

FMb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMa(i+1) *

* PNa(i+1) *
PNb(i+1)-1 (8.13)

Equation (8.13) is the same as equation (8.11). Thus a pointer triple

can be assigned as the modifying factor of body b in situation (i+1).

The pointer triple is the same as that discussed in Section 8.2.2.

-200-

8.2.3.2. Local Vision Command Package

Local vision commands update the actual position of the body being

verified only. The body which is TIED to it Is assumed not moved and

therefore keeps the same modifying factor as in the previous situation.

Thus the modifying factor of the body being verified is assigned the

corresponding symbolic expression while that of the body being TIED to

it is assigned a pointer which points to its own modifying factor in the

previous situation. Note that if a vision command involves a body which

is TIED to the world then it will be treated as a local vision command.

8.2.4. Termination of the Effect of a TIE on Linkin Rules

The effect of the mutual influence between modifying factors of

members of a TIE does not necessarily disappear immediately after the

revocation of the TIE. It is more natural to keep this effect for a

period until certain conditions are met. For example, suppose the mani-

pulator is TIED to a block and moves the block to a place. The manipu-

lator is then UNTIED from the block and moves away waiting for the

vision system to verify the position of the block. If the user does not

ask the vision system to verify the new position of the manipulator then

the unspecified action which brings the manipulator to the new position

is assumed to be carried out accurately and the relative position of the

manipulator with respect to the block can be worked out. Thus it is

reasonable to use the vision information obtained by verifying the posi-

tron of the block to update the system's knowledge about the position of

the manipulator as well. On the other hand, if, in the above example,

the manipulator :roves to a place in order to satisfy specified

-201-

relationships with respect to another body after it is UNTIED from the

block then its new position will be restricted by the actual position of

that other body and the verified position of the block cannot be used to

update the actual position of the manipulator.

In order to make full use of vision information to update the

knowledge of the robot system about the environment, the compile time

part of the framework assumes that the effect of a TIE over linking

rules remains after the revocation of the TIE until one of the following

two circumstances are encountered. The first circumstance is that one

body in the revoked TIE is moved by a specified action. Since the des-

tination of the body being moved is determined by its nominal position

and the actual position of the reference body, a pointer which points to

the modifying factor of the reference body is assigned to the modifying

factor of the body being moved. The other body in the revoked TIE has

not been moved. Hence it keeps the same position as in the previous

situation, and a pointer which points to the modifying factor of the

same body in the previous situation is assigned as its modifying factor.

Thus the relationships between the actual positions of the two bodies

which were established by the TIE no longer exists and the further

change of the actual position of one body cannot be used to deduce the

change of the actual position of the other.

The second circumstance is that the two bodies in the revoked TIE

have each been verified. When the user asks the vision system to verify

actual positions of the two bodies individually it means that the rela-

tionship between the bodies which have been UNTIED is in doubt. In this

case the vision information provides more reliable evidence to show

where the bodies are than that implied by a revoked TIE statement. Thus

-202-

the effect of the mutual influence between the actual positions of the

bodies implied by the former TIE does not need to last.

8.2.5. Tree Structure of the Super TIE

Suppose n bodies bt, ..., bn are TIED together by n-1 TIE state-

ments. The action of one body in this group must be applied to every

other. For convenience, this group of TIED bodies is referred to as a

super TIE. The graph of a super TIE can be represented by a tree. For

example, the following codes:

TIED/b1, b2;

TIED/b3, b2;

TIED/b1, b4;

TIED/b4, b5;

TIED/b4, b6;

define a super TIE. Its graph is shown in Fig. 8.1(a). After the

declaration

UNTIED/b1, b4;

UNTIED/b2, b3;

the former super TIE is divided into three pieces. They are shown in

Fig. 8.1(b). For convenience, the pieces resulting from the revoking of

a super TIE are referred to as sub-super TIE. A sub-super TIE may be an

individual body, an ordinary TIE or a group of bodies which are TIED

together.

-203-

bS

(a) before being broken

b3 0

bS

7\b1I
b2

(b) after being broken

Fig. 8.1. Tree structures of the super TIE

"bi" represents a body instance

&---& --o---a
B1 B2 B3 B4

(a) before a body in B2 has been moved by a specified action

B1 B2 B3 B4

(b) after a body in B2 has been moved by a specified action

Fig. 8.2. The effect of the specified action on linking rules in

a broken super TIE. "Bi" represents a sub-super TIE,

dashed lines represent broken TIES

-24'-

The discussions in Section 8.2.1, 8.2.2 and 8.2.3 can be applied

directly to a super TIE structure. The discussion in Section 8.2.4

(termination of the effect of a TIE) needs to be expanded a bit when

being applied to a super TIE.

8.2.5.1. Specified Actions

Suppose a super TIE B has been broken into some sub-super TIES 81,

..., Bm. If a body in Bk is moved by a specified action then the effect

of the former super TIE on the linking rules between Bk and other sub-

super TIES terminates. This is because the specified action specifies

new actual positions of bodies in Bk with respect to a new reference

body. The relationships between bodies in Bk and those in other sub-

super TIES which are implied by a revoked TIE statement may no longer

exist.

The relationships between bodies in other sub-super TIES may still
be assumed to remain if necessary as there is no indication either to

support this assumption or to conflict with it. In order to implement

the rule more easily, the framework terminates the influence between

other sub-super TIES if the propagation of this influence passes through

Bk.

Fig. 8.2 shows an example of the operation of the rule. In this

example, a super TIE has been broken into four sub-super TIES B1, B2, B3

and 84. The influence between actual positions of bodies in sub-super

TIES B1, 82 and 83 terminates after a body in B2 is moved by a specified

-205-

action. However, the influence between B3 and 84 continues since this
effect does not propagate through 82.

8.2.5.2. Vision Commands

Suppose a super TIE B has been broken into some sub-super TIES B1,

... , Bm. If a body bj 1 in Bj has been verified by global vision command

then the effect of the former super TIE on the linking rules still
holds. If a second body bJ2 in Bj is verified by global vision commands

then the verification of bJ2 does not change the effect of the former

super TIE on the linking rules either. The reason is that both the

bodies belong to the same sub-super TIE which is still valid. The

second verification has the same effect as the first one. The vision

information obtained from these verifications does not show whether the

relative position of a body in this sub-super TIE with respect to a body

in another sub-super TIE is changed or not. Thus it is reasonable to

assume it still holds.

If a body in Bj is verified by global vision commands after some

bodies in another sub-super TIE Bk have been verified by global vision

commands then the effect of the former super TIE on the linking rules

between Bj and other sub-super TIES terminates. In this case the verif-

ication vision system provides enough information about new actual posi-

tions of bodies in these two sub-super TIES. This information indicates

the new ratios between these two groups of bodies which Is more reliable

than that implied by the revoked TIE statement. Thus the effect of that

revoked TIE must cease. However, the vision information gives no hint

about the relative positions of bodies in other sub-super TIES with

-206-

respect to either Bj and Bk. In order to avoid contradiction,

the framework must terminate the mutual influence between other

sub-super TIE which propagates via Bj.

Fig. 8.3 shows an example of this rule. A super TIE has been broken

into four sub-super TIES Bt, B2, B3 and B4. The influence between

actual positions of bodies in sub-super TIES B1, B2 and B3 terminates

after a body in both B2 and 83 has been verified by global vision com-

mands in this sequence. The influence between B3 and B4 continues.

8.2.6. Summary of the Linking Rules for TIES

The linking rules for TIE statements can be summarized as follows:

T1. In a super TIE B, if body bj is moved in situation i by a

specified action which brings about some relationships between

body bj and body C which is not a component of the super TIE,

then the pointer of body bj will point to the modifying factor

for body C in situation i while the modifying factors of other

bodies in the super TIE are pointer triples. The triples have

the form Cpl,p2,P3] where p1 points to the modifying factor for

the same body in situation (i-1), p2 to the modifying factor for

bj in situation (i-1) and P3 points to the modifying factor for

bj in situation I. If the reference body C is also a component

of the super TIE then rule (T4) is applied.

T2. In a super TIE B, if body bj is verified by a set of global

vision commands in situation i, then its modifying factor will

be assigned a symbolic position expression "P" while that of

-207-

o-- -o---a--o
BI 82 83 84

(a) before any body has been verified

BI B2 B3 B4

(b) after a body in 82 has been verified

0 0 0--- o
81 B2 83 94

(c) after a body in B3 has been verified

Fig. 8.3 The effect of vision cocuaands on linking rules in a broken super TIE

other bodies in the super TIE are pointer triples. The triples

have the same form and contents as in rule (Ti).

T3. In a super TIE 8, if body b3 is verified by a set of local

vision commands in situation i, then its modifying factor will

be assigned a symbolic position expression "P" while that of

other bodies in the super TIE will refer to their modifying fac-

tor in situation (i-i). Note that the influence of a super TIE

over the local/global decision will continue after the TIE is

broken until the termination.

T4. In a super TIE B, if none of the conditions mentioned in

(Ti)-(T3) are met, the modifying factors for the bodies in this

situation will point to their modifying factors in the previous

situation.

T5. After a super TIE B has been broken into sub-super TIES B1,

.... Bm, if no bodies in any of the B1, ..., Bm are either veri-

fied by global vision commands or moved by a specified action

then rule (T4) is applied.

T6. After a super TIE B has been broken into sub-super TIES Bt,

... , Bm, if a body bj in sub-super TIE Bj is moved by a speci-

fied action which brings about some relationships between body

bj and body C then rule (T1) is applied to the new super TIE Bj

while rule (T4) applied to other new super TIES, and the effect

of the former super TIE on the linking rules which is related to

Bj is terminated hereafter.

Ti. After a super TIE B has been broken into sub-super TIES 81,

Bm, if no bodies in any of the B1, ..., Bm have been either

verified or moved by a specified action since then and if a body

bj in Bj is to be verified by global vision commands then rule

(T2) is applied to all the components of the original super TIE.

-209-

T8. After a super TIE B has been broken into sub-super TIES B1,

..., Bm, if some bodies in Bj have been verified by global

vision commands and another body also in Bj is to be verified by

global vision commands then rule (T2) is applied to all the com-

ponents of the old super TIE. It some bodies in Bk have been

verified by global vision commands and a body in B,) is to be

verified by global vision commands then rule (T2) is applied to

Bj while rule (T4) is applied to all other components of the old

super TIE, and the effect of the former super TIE on the linking

rules which is related to B) is terminated hereafter.

T9. For a super TIE which has been TIED to the world, global

vision commands which attempt to verify the position of any com-

ponent of the super TIE will be dealt with as local vision com-

mands and rule (T3) is applied.

The following example shows the use of these linking rules.

remark bodies b1 b2 b3 have been defined;

remark now in situation i;

move/bl,parlel, fl of b1; remark sit i+1, rule A2;

fixed/bl, b2;

tied/bl,b2;

tied/bl,b3;

hove/bl,perpto, f1 of bl; remark sit i+2, rule T1;

-210-

fixed/bl, world;

untied/bl,b2;

move/bl,parlel,f6 of b1,30; remark sit i+3, rule T5;

verify/b2; remark sit 1+4, rule T7;

untied/bl,b3;

move/bl; remark sit 1+5, rule T6;

fixed/bl , b3;

tied/bl,b2;

tied/ bl,b3;

move/bl,perpto,fl of bl, 50; remark sit 1+6, rule T4;

verify/b3; remark sit 1+7, rule T2;

move/ b3; remark sit 1+8, rule Ti;

fixed/b3, world;

untied/b1b3;

untied/bl,b2;

verify/b1; remark sit 1+9, rule T7;

verify/b2; remark sit i+10, rule T8;

-211-

terapt;

Ibod\sit1 1 1 ... I i 1 1+11 1+21 1+31 1+41 1+51 1+61 i+7I 1+81 1+911+101

(_-b1---l--I-(----- ---- ----I- ----i--;I - ----I--1-I.- - - -------

- -*I- 1 i- ..{- I 1 I I P I I b2 I I I 1 -4- I

------------------------------- ---------

---- -------
+ P

I
o..}-_ I

I
05

I I I 1 ..+- I -t- 1 0-+- -4-
------------- ------------

world
I

I I
I

I I I I I I I I I II I1 I) I1 I1
------------------------- ----------

** o--> represents the pointer triple. A triple pointing
from ai to bi contains 3 pointers. One points to a(i-1),
one to b(i-1) and one to bi.

8.3. Linkin Rules for Subassemblies

The features of a body in a subassembly keep specified relationships

with those of other bodies of the same subassembly. The maintainence of

specified relationships between components of a subassembly after an

action (including global vision verification) can be considered as to be

performed in the following way. At first, the components of the

subassembly keep the same relative positions with respect to each other

before and after an action, just like the situation discussed for the

TIE. Then they possibly make actions along and about the remaining axes

of freedom. For instance, in Fig. 8.4 when the block of the subassembly

is moved, the shaft may move to any position provided that it still fits

the hole of the block. The new position of the shaft can be considered

as being obtained by translating and rotating the shaft along and about

its axis from the position in which the shaft has the same relative

position with respect to the block as before the action.

-212-

bl

(a) before a movement

subass/perp;
fits/shaft of at, hole of block;

tersub;

rove/block;
against/fl of block, fl of bi;
against/f2 of block, f2 of bl;

after the second conceptual step

before the second conceptual step

(b) after a movement

Pig. 8.4 Positions of bodies in a subassembly affected by an action

-213-

The nature and the amount of the second conceptual step are res-

tricted by the structure of the subassembly, modifying factors of

members of the subassembly and the reference bodies, and the relation-

ship statements which specify the destination of the action of the

subassembly. To determine the modifying factors of members of a

subassembly in the general case is very complex since there are many

degrees of freedom existing in the relationship between the members, and

sometimes it is impossible since some information is not available at

compile time. Thus in this thesis only two cases will be dealt with.

The first case is that the subassembly is moved by an unspecified

action. There is no relationship statement given which is relevant to

any member of the subassembly after the action. The second case is that

the subassembly is moved by a specified action and the relationship

statements are only relevant to the member which is moved directly by

the associated action statement. In these two cases no information is

given about the change of the relative positions among the members of

the subassembly so that they can be considered as unchanged, the same as

in the case of the TIE. Thus the influence between modifying factors of

bodies of a subassembly is the same as that between modifying factors of

bodies in a super TIE. When two bodies of a subassembly are TIED

together, the TIE does not affect the influence between modifying fac-

tors of these two bodies since the effect of the TIE on the influence

coincides with the effect implied by the subassembly.

Bodies in a subassembly can also be TIED to other bodies, or even to

other subassemblies. The result of this connection is referred to as a

super subassembly. For example, the following segment of a program

-21 ii-

defines a super subassembly the structure of which is shown in Fig. 8.5.

subass/perm;

against/fl of b1 , ft of b2;

fits/f2 of bl, f2 of b3;

tersub;

subass/temp;

parax/f2 of b5, f3 of b6;

fits/fl of b5, f1 of b4;

against/f3 of b5, f2 of b7;

tersub;

tied/bi, b5;

tied/b4, al;

Obviously, the influence between modifying factors of bodies of a super

subassembly is also the same as that between modifying factors of bodies

in a super TIE.

In a super subassembly, a permanent subassembly behaves like a per-

manent sub-super TIE while a temporary subassembly behaves just like an

ordinary sub-super TIE. The termination of a temporary subassembly is

treated by the framework the same as the revocation of a set of TIES.

Thus all the linking rules for the TIE can be applied to the subassembly

except one special case.

Bodies of a subassembly can move with respect to each other provided

-215-

Fig. 8.5. The tree structure of a super subassembly

(bi, b2, b3) is a subassembly.

(b1, b5, b6, b7) is another subassembly

that the specified relationships hold. Thus when a body of a subassem-

bly has been TIED to the world, other bodies can still be moved by

either an unspecified action or a specified action under the constraint

of the specified relationships. The linking rule for an unspecified

action in this case is simple. According to the discussion in Section

8.2.1, when an unspecified action is applied the modifying factor of

every body in the super subassembly needs to be the same as that in the

previous situation. So does the world. Since the modifying factor of

the world before the action is an identity matrix, its modifying factor

after the action is still an identity matrix. It is just what it should

be. Thus rule (Ti) which is suitable for a super subassembly which does

not oontain the world can still be used in this case.

However, when a specified action is applied to a body of a super

subassembly which contains the world, the corresponding rule which can

be used to deal with the case in which the super subassembly does not

contain the world is no longer suitable. If rule (Ti) was used and the

modifying factor of the reference body and that of the body being moved

were not identity matrices then the actual position of the world might

be changed from its nominal one as its modifying factor might not be an

identity matrix. This would mean that the world made a virtual motion

and would conflict with the definition of the world. If in this case

rule (Ti) was applied to every body of the super subassembly excluding

the world then the relationships between the world and other bodies of

the super subassembly which have been TIED would be violated. In order

to avoid both cases described above, rule (T4) needs to be applied. In

this case the specified relationships between the reference body and the

body being moved by the specified action may not be guaranteed if the

modifying factors of the two bodies are not the same.

-217-

The linking rules for the subassembly can be summarized as follows:

S1. Linking rules (Ti)-(T9) are applied to a super subassembly

except when the condition mentioned in (S2) is met.

S2. Once a component of a super subassembly has been TIED together

to the world and another component is to be moved by a specified

action, rule (T4) is applied to the super subassembly.

8.4. The Position of the Camera

A camera which is defined by a general camera specification state-

went (see Section 5.6) consists of a camera body and a specified focal

length. The camera body is an ordinary RAPT body. This means that the

general camera can be operated by the RAPT system, being moved, TIED and

so on, as any other body. In most cases the position of a camera body

can be modified by the modifying factor array according to the linking

rules. For example, the position of a general camera can be verified by

another camera. When a general camera is moved so that it is fixed to

another body, the position of the camera will be modified by the modify-

ing factor of that body.

However, there is one case in which general cameras differ from

other bodies. This happens when the user wants to use a general camera

to verify the relative position of the camera with respect to another

5ody. Consider the following example in which the user has installed a

general camera on the hand of the robot.

-218-

f i xed/camera, hand;

tied/camera,hand;

move/hand;

fixed/hand,bl;

tied/hand,bl;

move/bi;

fixed/bi,world;

untied/hand,bl;

move/hand,perpto,fl of hand, 50;

combine;

look/f2 of bl,camera;

ter cam;

According to the linking rules listed in Section 8.2, the position of

the camera is also subject to modification, since it was TIED,

indirectly, to the body to be verified and this TIE, although having

been broken, is still effective in determining the linking rules to be

applied. However, the verification system has been designed to verify

the absolute positions of the bodies in the world. It is obvious that

when a camera is used to verify the position of another body, its own

position must be certain and should not be changed by the verification.

In order to solve this problem, the following rule is applied:

-219-

Rt. It the result of a global vision command package will affect

the position of the camera to be used according to the linking

rules listed in Section 8.2, then the vision command package

will be dealt with as a local one. This means that only the

position of the body to be verified is subject to modification.

In fact, this rule is natural. Cameras are usually well installed

so that their positions are less likely to be disturbed than other

bodies. Recalling the assumption that the robot moves accurately over a

small distance, the example given above will be appropriate when the

user thinks that the object has been placed in an unstable position and

has possibly moved after it has been let go.

8.5. Simplification Rules

After the linking rules have been applied the modifying factor array

is full of pointers or pointer triples. All modifying factors are

either pointers or pointer triples except those of body instances of the

world, those of body instances in the Initial situation and those of

body instances which are to be verified. Among these pointers some can

be evaluated at compile time. Usually, the majority of body instances

in an assembly program have no relationships with vision information.

If the modifying factor of this kind of body instance can be found and

replaced by the identity matrix symbol at compile time then the struc-

ture of the modifying factor array will be simplified and the evaluation

of tre array at run time will be speeded up. Furthermore, the evalua-

tion equation of a pointer triple is rather complex. It is also desir-

able if a pointer triple can be replaced by a pointer. In order to

-220-

perform these desired replacements same simplification rules are applied

in the simplification phase.

8.5.1. The Simplification of a Pointer Triple

Pointer triples are assigned as modifying factors of body instances

by linking rules associated with the TIE and the subassembly. A pointer

triple in the modifying factor array represents equation (8.11):

FMb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMb(i+1)

* PNa(i+1) *
PNb(i+1)-1

Here the super TIE effect over the linking rules (see Section 8.2, 8.3)

between body a and body b is still valid and body a is either moved by a

specified action or verified by global vision commands between situation

i and (i+1). A pointer triple can be replaced by a pointer if one of

the following two conditions is met.

The first condition is

FMa(1+1) - FMai

In this case, equation (8.11) can be re-written as

FMb(1+1) = FMbi * PNbi * (FMai # PNai)i1 * FMa(i+1) *

* PNa(i+1) * PNb(1+1)-i

(8.14)

= FMbi * PNbi * PNai-1 * PNa(1+1) * PNb(1+1)-1 (8.15)

-221-

Since the relative position of body b with respect to body a is assumed

to be TIED between situation I and (1+1), the nominal position of body b

in situation (i+1) is

PNb(i+1) - PNbi * PNai_1 * PNa(i+1)

Thus

PNbi * PNai-1 * PNa(i+1) * PNb(i+1)-1 - I

and

(8.16)

(8.17)

FMb(i+1) - FMbi (8.18)

The pointer triple can therefore be replaced by a pointer which points

to FMbi. In the triple [p1, p2, P3] p1 points to FMbi. Thus p1 is

assigned as the modifying factor instead of the triple.

The second condition is

FMbi - FMai - I

In this case equation (8.11) can be re-written as

FMb(i+1) - FMbi * PNbi * (FMaI * PNai)_1 FMa(i+1) *

* PNa(i+1) * PNbi+1)-1

- PNbi * PNai-1 * FMa(i+1) * PNb(i+i) *

* PNbi+1)-1

(8.19)

(8.20)

-222-

It can be seen from equation (8.16) that

PNbi+1) * PNai+1)-1 - PNbi *
PNai-1

Equation (8.20) can therefore be re-written as

FMb(i+1) PNb(i+1) * PNa(i+1)-1 * FMai+1) *

* PNa(i+1) * PNb(i+1)-1

(8.21)

(8.22)

This equation has the same form as equations (7.11) and (8.9). Thus it

can be represented by pointer P3 in the triple which points to FMai+1).

8.5.2. The Simplification of a Pointer

A pointer can be replaced by an identity matrix symbol if it points

to such a symbol. This replacement is obvious for a pointer which

points to the modifying factor of the same body in the previous situa-

tion. As discussed in Section 8.1, this kind of pointer means the modi-

fying factor equals what the pointer points to. Thus this kind of

pointer can be substituted by any thing it points to.

If a pointer points to the modifying factor of another body in the

same situation then the pointer needs to be explained by equation (7.11)

FMai - PNai * PNbi-1 * FMbi * PNbi * PNai-1

It is easy to see that when FMbi is an identity matrix FMai is also an

identity matrix.

-223-

The simplification rules can be summarized as follows.

1. If a pointer points to an identity matrix symbol then this

pointer is replaced by the symbol.

2. If, in a pointer triple [p1, p2, p3], p1 and p2 point to iden-

tity matrix symbols then the pointer triple is replaced by

pointer P3.

3. In a pointer triple [p1, p2, Pal it p2 and P3 point to identity

matrix symbols or P3 points to p2 then the pointer triple can be

replaced by pointer p1.

The following example shows how the rules work. Suppose a modifying

factor array before simplification is as follows:

-- -----------------
I bod\sitl 1

1 2 l 3 l 4 l 5 l 6 l 7 l 8 9 l 10 l 11 l 12

-- - l b1 I--I --i- --!! -'}----I-- -i- ------I

l b2 l

I 4----1 --- 1__?-4- __-

l b3 l I-4 4
t

o 1.4.- l b,+ -4- t Q I
11 l a.4_ l

--------------------------1 -----------
lworld l I

I
I

I
I

I
I I I

I
I l' I

I
I

I
I

I
I

I I I I(
--

** o--> represents the pointer triple. A triple pointing
from ai to bi contains 3 pointers. One points to a(i-1),
one to b(i-1) and one to bi.

After the simplification rules have been applied, the array is as fol-
lows:

(bod\3it(1 2 (3 y 5 (6 (T (8 (9 (10 11 (12

i--bt---i--I-!-I--i-I--i-I--i-I--i-I--i-I-I-I--i- --l- --I- -}- --i
b2 I I I I I P o P

----------------------------------- ------------- -- --- -------
(b3 I 1 P (I(,I__ i

(world

1 1 1 1 1 1 1 1 1 1 1
I i I i I i I i I i I(I i

----------------------------------- ----------

Chapter 9. Implementation and Test

This chapter describes the implementation of the current work and

some tests which have been done. All the necessary parts of the system

(i.e. vision command input facility (Chapter 5), the symbolic reasoning

system (Chapter 6), the framework for handling vision data (Chapter 7

and 8), the window suggester (Section 5.7.1) and the face generator

(Section 5.7.3)) have been implemented on the DEC-10 system in Wonder-

POP. They are used in conjunction with a normal RAPT system. They have

been tested with simulated data and work successfully. The implementa-

tion and test procedure are described below.

9.1. Implementation of the Reasoning System

When a RAPT program containing vision commands is read in, the input

system parses the RAPT program and transforms the information in the

program into RAPT internal data structures. The internal data struc-

tures for vision commands are in the form of tables. The information

expressed by each type of vision command is stored in a special table

indexed by the sequence number of that vision command. The entry for

each line of each table includes the situation in which a vision command

appears, the body and/or the feature the vision command is concerned

with, and a special field for the Information which is associated with

that type of vision command. At this stage the syntax of vision com-

mands is checked, as well as other things like whether the body men-

tioned in the INVIOLATE statement is the same as that mentioned in the

LOOK statements in the current COMBINE package. The data structures are

then passed to the RAPT reasoning system. At first the reasoning system

-226-

uses the spatial relationships specified outwith the vision commands to

work out the nominal Positions of bodies in each situation. These nomi-

nal positions are held in the normal way as RAPT body data structures.

Then the symbolic reasoning facility is called to deal with the rela-

tionships described by the vision commands. This will result in the

creation of symbolic expressions which include some variables. The

variables represent the positions of the symbolic features created by

the WOK statements, and are indexed by sequence numbers. The symbolic

reasoning process also generates the run time commands necessary to

operate the cameras. These commands are stored in a list In the same

order as that of the corresponding LOOK statements. Each command indi-

cates the situation in which the command is active, the body and the

feature to be verified and their nominal positions, the camera to be

used and its position and focal length. The framework for handling

vision information is called in order to establish the modifying factor

array using the linking rules (see Chapter 8). This is the end of the

compile time reasoning.

9.2. Implementation of a Run Time Program

Currently, there is a run time program implemented on the DEC-10.

This program runs on simulated data and does not have access to a real

robot since there is no working robot available in the department at

present. The correctness of the symbolic reasoning has been demon-

strated with test programs by using this system. A run time system

which could be used to control a real robot will be discussed in Chapter

10.

This run time program steps through each camera command generated in

the symbolic reasoning. For each command, it uses the model of the cam-

era and the nominal position of the body being verified and its modify-

ing factor (cf Section 7.7) to determine the nominal position of the

image of the edge feature to be verified. It then calls the window sug-

gester to obtain a window within which the image of the edge feature

should appear. Then simulated data is typed in from the terminal and

the face generator is called to generate the face feature implied by the

vision data and the model of the camera in use, and the corresponding

variable is then instantiated by the position of the face feature. When

all the vision data relevant to the camera commands in a situation have

been obtained the associated symbolic position equation is evaluated and

the result, together with the nominal position of the object being veri-

fied, is displayed. Meanwhile, the modifying factor of the body

instance being verified is instantiated by a position matrix which indi-

cates the discrepancy between the nominal position and the verified one.

This apparatus has been tested for consistency by typing in data

which was the same as the nominal data predicted by the system. Con-

sistency was confirmed by the evaluated result of the symbolic position

being the same as the nominal position of the body. This checked the

correctness of the implementation of the symbolic reasoning facility,

the window suggester and the face generator. Appendix V contains a RAPT

program which was used in testing, a sequence of testing operations and

the resulting modifying factor array.

9.3. Simulation with ROBMOD

A program has also been written to allow the results of the symbolic

reasoning to be displayed. Since there was no working robot available

in the department it was decided to simulate the use of verification

vision on the ROBMOD system. ROBMDD is a solid modelling system

designed and implemented by S. Cameron [CAM84]. It runs under the UNIX

operating system and allows solid models of objects to be constructed

and their positions in the "world" to be specified. The scene can be

viewed from any point, and displayed on a graphics screen. The RAPT

system has a subroutine which allows it to produce a file of ROBMOD com-

mands to display the objects in the assembly in each situation. The

subroutine has been adapted so that the ROBMOD commands take account of

the modifying factors.

After all the simulated vision data had been given to the face gen-

erator, the framework instantiated all the elements of the modifying

factor array. By the use of the instantiated modifying factors and the

nominal positions, the actual position (simulated) of each body in each

situation could be generated. The actual positions were then

transformed into ROBMOD commands and transferred to the ROBMDD system

situation by situation, and ROBMOD displayed each situation on a graph-

ics terminal. The situations displayed show the verified positions of

bodies, and the positions which have been modified as a result of the

vision data. Observing the position of each body and relationships

between bodies in the simulation and comparing them with the RAPT pro-

demonstrated the correctness of the implementation of the frame-

work. Some situations of the simulation of the RAPT program included in

Appendix V are shown in figures in that Appendix.

-229-

9.4. Implementation of the Edge Finder

The edge finder (Section 5.7.2) has been implemented on a vision

system (the Vision Box) CMAT80J in Intel 8080 assembly language. It has

been tested with actual scenes and also works successfully. The test

procedure is as follows.

The Vision Box takes a picture from a real scene by using the

operating system IMAGE CFIS821. Then the coordinates of three vertices

of a window within which the image of an edge feature exists is given to

the edge finder which then searches within the window. In order to show

the result of the edge finding process, a line is drawn on the image

between the end points of the image of the edge feature found by the

edge finder. The processing time varies from a tenth of a second to

about a second, depending upon the size of the window and the quality of

the picture. Figure 9.1 shows an example of the result of the edge

finding process.

9.5. Refining Positions of Objects Using Vision Information

An experiment has also been done in order to test the incorporation

of the edge finder with all the other components of the verification

vision system, and to estimate the accuracy of the result of vision

verification. In this experiment a vision station was set up which

included a table with a turntable on it, a body on the turntable whose

position was to be verified, and a table top TV camera (see Fig. 9.2).

-230-

1P

A

1

Fig. 9.1. The result of an edge finding process
m

i
s

I

Fig. 9.2. The vision station used In the experiment

-231-

A RAPT program was written to describe this situation. This program was

processed by the RAPT system to produce the symbolic position equation

of the body to be verified and to suggest the windows to be used by the

edge finder. Since there was no hardware link between the Vision Box

containing the edge finder and the DEC-10 system containing the other

parts of the verification vision system and the RAPT system, the

interaction between the edge finder and other parts of the system was

done through a human. The human read the coordinates of vertices of a

window from a DEC-10 terminal and typed then into the Vision Box, and

then called the edge finder. He then read the coordinates of the end

points of the image of the edge found by the edge finder from the Vision

Box and typed them into the vision system on the DEC-10. After all the

required vision data had been typed into the vision system, the symbolic

position equation of the body to be verified was evaluated and the veri-

fied position displayed.

The experiment was successful in refining positions of the body when

it was placed at different positions within the tolerance range. The

accuracy of the refined positions is of the same order as that of the

calibration of the camera and the placed positions. This experiment

demonstrated that vision verification used in this way is useful in

updating the robot system's knowledge about the environment. The accu-

racy of the refined position based upon vision information is mainly

dependent upon the calibration of the camera and the resolution of the

image. In this experiment, although the accuracy of the calibration is

not very high, the accuracy of the refined position is acceptable. More

details of the experiment can be found in Appendix VI.

Because of the lack of equipment and time, the system has not been

-232-

linked with a real robot in order to control it with real vision data.

There will be, of course, some problems in ensuring the correctness of

match between the model features and their images, and in obtaining

accurate vision information in a complex environment. This problem will

be discussed further in Chapter 10. Nevertheless, the concepts and the

implementation of the concepts of combining vision verification with an

object level robot programming language which have been discussed in

this thesis have been shown to be correct.

Chapter 10. Conclusions and Suggestions for Future Work

This thesis has described the achievement of the research on the

integration of sensory information into a robot programming language for

automatic assembly. The research work contains three major parts. The

first is the development of a method to specify a sensory task in an

assembly environment in which some prior expectation of the environment

is available. The second is the implementation of a symbolic reasoning

system which reasons about spatial relationships implied by sensory

information off-line before the sensing operation has taken place. The

third is the development of a technique to make full use of the sensory

information in order to update the robot system's knowledge about the

environment. A complete system has been written which uses verification

vision information and works successfully in conjunction with the normal

RAPT system. In this chapter, the generality and originality of the

work and some suggestions of the future work are to be discussed.

10.1. The Generality of the Framework

In the body of the thesis, emphasis has been placed on vision verif-

ication. In fact the framework that has been developed has much gen-

erality since it is based on the idea of obtaining information about

relationships however they may be formed. Generally speaking, in RAPT,

when we use a sensor to detect a feature of an object, we create a new

relationship between that object and the sensor, and, since the absolute

position of the sensor in the world is usually known when the sensor is

used, we in effect create a new relationship between that object and the

world. The nature of the relationship depends entirely on the type of

-234-

the sensor. For example, suppose we use a touch sensor to detect a

plane feature pt of a body B. If we touch a point on p1, we create a

relationship AGSP between the world and the body, the "AGAINST" rela-

tionship between a sphere feature of the world (a vertex is considered

as a sphere with radius 0 in RAPT) and the plane pt. If we detect two

points on p1, then we create an AGCP, an against relationship between an

edge feature of the world and the plane pt. The position of the edge

feature of the world is determined by the positions of the touch sensor

when it touches the two points on the plane pt. If we detect three

points on the plane p1, then we create a new relationship AGPP between

the world and the plane p1 of the body B. The position of the plane is

determined by the positions of the touch sensor when it touches the

three points on the plane pt. Since sensor data only becomes available

at run time, we can only obtain symbolic relationships at compile time.

When the symbolic relationships are sufficient to "fix" the object sym-

bolically, we can use a suitable reasoning system to deduce the symbolic

position of the object, and then at run time when the corresponding sen-

sor data becomes available we can evaluate the symbolic position expres-

sion. In order to introduce a new kind of sensor, we need only to pro-

vide a set of new commands to specify how to use the new sensor, and a

new set of symbolic reasoning rules which are capable of dealing with

the new relationships created by the new sensor. The framework handles

new kinds of sensor information in the same way as it does vision data.

Some authors (e.g. [R05773) have suggested that vision sensors have

poor precision and therefore it is better to use both vision and contact

sensors. Vision sensors can be used for coarse sensing while contact

sensors can be used for fine resolution. For example, in fitting a

shaft in a hole, the information provided by vision can be used to guide

-235-

the shaft to a position at which a compliance operation can be executed,

and after the operation the robot system's knowledge about the positions

of the hole and the shaft can be updated by the more accurate informa-

tion obtained from this compliance operation. In this case, the gen-

erality of the framework to handle both kinds of sensory information is

very important.

10.2. Suggestions for Future Work

Although the verification vision system described in this thesis is

a complete one, there are some improvements which will make the system

more powerful and more convenient to use. These improvements have not

been done for two reasons. The first is that although some modification

would improve the practicality of the system, they are not theoretically

significant. The second reason is that the current state of RAPT (in

particular, the RAPT modelling system) makes some improvements impossi-

ble. In this section some important potential improvements are listed,

and the possible ways of making these improvements are discussed. How-

ever, the list is not comprehensive, and the approaches discussed here

are tentative rather than fully worked out.

10.2.1. Selecting Suitable Features

When describing a vision task, the programmer needs to select

features to be verified carefully so that top level conditionals (see

Chapter 6) will not result in special cases but instead the symbolic

reasoning system will always apply the general case. Sometimes it is

-2 -46-

not easy for a human user to judge whether the features chosen are

appropriate or not. This is especially the case when different cameras

are used in different LOOK statements in a vision command package. In

order to make it easier for the user, the capability of the symbolic

reasoning system can be expanded so that the programmer can provide more

candidate features to be verified and leave the system to select suit-

able ones automatically. The extensions needed to do this are discussed

below.

Currently the symbolic reasoning system can only recognize some of

the top level conditions which cause special cases (such as ROTYLIN) and

can then select proper features from any extra candidates that the pro-

grammer has provided (see Chapter 6). These recognizable conditions can

be examined by investigating relationships between some non-symbolic

features so that the symbolic reasoning system can determine the nature

of the reasoning at compile time and decide whether to keep the reason-

ing result or discard it. The current system cannot determine the

nature of the reasoning result at compile time for those top level con-

ditions which need to know parameters of symbolic features since the

symbolic features are vision information dependent.

However, although the system cannot exactly know the nature of a

vision dependent top level conditional, it is possible to estimate

whether the result may be out of the general case or not by making use

of the information given by the programmer. When the programmer speci-

fies a vision task, he tells the vision system the positions of the cam-

eras to be used, the nominal position of the object to be verified, and

the maximum range of the difference between the nominal position and the

actual one. The system should be able to use this information to

-2 37-

determine whether the result of a top level conditional might possibly

be a special case when the object was at a special position within the

range of the specified tolerance. If the answer is "yes" and the pro-

grammer has provided some provisional candidate features then the system

could examine other combinations of the features until one was found in

which no special result could possibly happen. This combination of

features would then be chosen as the features to be verified. In this

case the programmer would need only to consider whether a selected

feature was visible to a selected camera.

10.2.2. Using Complete Models

The current RAPT modelling system is an incomplete one and the user

needs only to define the features to be used in the associated RAPT pro-

gram. Although this modelling system is simple, it does not provide

complete information about the environment. Furthermore, the modelling

system is only able to describe the surface features of an object and

has no knowledge about volume occupancy. The lack of complete

information limits the further development of the RAPT system toward

higher automatic programming. It also restricts the capability of the

verification vision system.

In order to meet the requirement of collision detection and

avoidance [CAM82] and the requirement of the automatic planning of an

assembly task [KOU82], it is intended that a solid modelling system like

NONAME [P EN83] or ROBMOD [CAM84] be used in RAPT. The future verifica-

tion vision system, therefore, should also take advantage of complete

models, and this will enable various improvements to be made. These are

-238-

discussed below.

10.2.2.1. Automatically Selecting Features to be Verified

By the use of solid models, the vision system would be able to

select features completely automatically. From the solid models the

vision system could know how many edge features the object to be veri-

fied would have. Using an algorithm similar to the hidden line removal

algorithm used in computer graphics (e.g. [F0L82]) the system could

decide which feature is visible to a certain camera. Then the system

could reason about what combination of features and cameras could avoid

causing special cases of top level symbolic conditionals when the object

is located at any position within the expected range. Thus the program-

mer would not need to worry about any details of a vision task. What he

would need to do would be to tell the vision system which object would

be verified in which situation, and what the position tolerance would

be.

Implementation of the ideas talked about above needs much work done

on intelligent modules. In the short term, the user can be helped by

showing him the scene from the expected viewpoint so that he can select

the cameras to be used and the features to be verified more easily.

10.2.2.2. Image-Feature Matching

The information provided by solid models can also be used to detect

errors in vision data. It is known that errors may arise when vision

-239-

data is obtained and transfered, and these errors may cause the system

to malfunction. Some of these errors may come from imperfection of

vision hardware and low resolution of the camera. However, the most

important error is caused by a mismatch between an object feature and an

image. This kind of error is likely to happen especially when there are

some similar features near the expected one. Unfortunately, it is com-

monly the case in vision tasks where from some point the images of some

edges are parallel and are very near to each other. Unlike errors

caused by imperfection and low resolution of the image which introduce

small inaccuracies in the result of the vision verification, errors

caused by mismatches between features and images bring significant

misunderstanding of the world into the system. Thus this kind of error

should be avoided utterly.

The method used in the current vision system to prevent mismatch is

to introduce the TOLERANCE statement. It is expected that features to

be verified and the cameras to be used are so selected that within the

window suggested for the image of the anticipated feature, no images of

any other features may appear when the position of the object to be ver-

ified is located within the range limited by corresponding TOLERANCE

statement. However, this method may not work in some cases when the

range of the expected position of the object is too large or there are

similar features very near to the expected one.

By the use of solid modelling, an image-feature matching sub-system

could be designed to overcome this problem. From solid models, the

vision system could know whether there are any similar features whose

images may appear in the window when the object wanders under the con-

straint of the specified tolerance. If the answer was "no" then there

-240-

would be no posibility of mismatch for the expected image. If the

answer was "yes" then the image-feature matching sub-system would be

invoked at run time. The sub-system would make a hypothesis of each

possible match of the image and then verify it by investigating expected

features at the positions suggested by the hypothesis. If evidences

supported one hypothesis and rejected others then the hypothesis being

supported would be adopted and the position of the image of the expected

feature determined. It would be impossible that more than one

hypothesis would be supported simultaneously unless the images of the

edge features upon which the hypotheses were made were collinear. How-

ever, it would be possible that every hypothesis would be rejected

because of the imperfection of the image. In this case, the hypothesis

which was supported by most evidence would be considered as the correct

one.

10.2.3. Combining Searching and Recognition with Verification

Usually, positions of objects in an assembly task described in an

object level language like RAPT are known during operation. There may

be some disturbances to these objects in the real world so that the

planned position may not be exactly the same as the actual ones. The

task of the verification vision system is to detect discrepancies

between planned positions and actual ones. Since usually the discrepan-

cies are not too large, the planned positions tell the vision system

approximately where the objects may exist. On the basis of this infor-

mation the verification vision system can refine the position of the

object to be verified. However, in some assembly tasks, actual posi-

tions of some objects may be far from their actual ones or even unknown

-241-

in some cases- For example, when some objects are fed by a cheap belt

conveyor the range in which the desired object may be positioned can be

very large, much larger than that a verification vision system can

tolerate. Thus the capability of the verification vision system is not

enough for dealing with this kind of circumstance. A vision system

which can search for and locate a desired object in a large range is

needed. Furthermore, if different kinds of workpieces are delivered by

the same belt conveyor, or different kinds of workpieces are stored in a

bin, then the vision system to be used must be able to distinguish them.

By using the information provided by a solid modelling system, a

vision system which would be able to search for and recognize objects in

a large range could be combined with a verification vision system. In

order to deal with three dimensional objects in the real world rather

than their silhouette image, three dimensional vision techniques must be

used. Some candidates of the method to be used might be a syntactic

approach which has been discussed by Luh and Yam CLUH811, or a

hypothesis-verification approach described by Fisher [FIS83]. When the

position of an object which might be far from the planned place was to

be found, the vision system might be asked to search and locate it
first. If the accuracy of the position determined in this step was not

high enough then the vision system could determine inviolate relation-

ships between the object and the world by comparing the approximate

position with possible stable states of the objects, and select features

to be verified and cameras which could produce a more accurate result

automatically, and then invoke the verification function of the vision

system.

This powerful vision system would be easily connected with the RAPT

-242-

system via the framework discussed in Chapter 7. At compile time, the

corresponding modifying factor would be assigned a symbol to indicate

that a position would be assigned at run time. If the planned position

could not be determined then it could be assigned arbitrarily. For

example, it could be assigned an identity matrix. Since the modifying

factor indicates the difference between a planned position and the

actual one, if the vision system located the object correctly and accu-

rately, it would not matter what the planned object position was.

10.2.4. More Types of Inviolate Relationships

At the moment, there is only one type of relationship that can be

used in an INVIOLATE statement. It is enough to demonstrate the basic

idea and show the usefulness of the inviolate relationship in describing

a vision task. However, as a practical system, more types of inviolate

relationships may be desired in order specify a vision task con-

veniently. The types of new inviolate relationships which are worth

being considered are FITS and ROT. These two types of relationships

have been discussed in Chapter 3. They might be the second most common

types of inviolate relationships encountered in a vision task. FITS has

two degrees of freedom: a translational one and a rotational one while

ROT has one degree of rotational freedom. The approach to the introduc-

tion of these new types of inviolate relationships would be the same as

that of AGPP. It would only be necessary to add some new functions into

the symbolic reasoning system so that symbolic relationship cycles which

would contain these types of relationships could be inferred. As both

types of relationships contain one degree of rotational freedom, most

results of reasoning would be ambiguous. There would usually be two

-243-

possible solutions which could satisfy a relationship cycle. In order

to resolve the ambiguity, a method which would be similar to that used

in the current system for dealing with the ambiguity in reasoning among

AGPP and AGPE (see Chapter 6) could be adopted: the possible results

would be compared with the planned position and the one with less

discrepancy would be considered as the correct one.

There would be one difficulty in introducing these new types of

inviolate relationships. There would be more conditions which would

lead to special cases of top level symbolic conditionals (cf [POP813) so

that it would be more difficult for a human user to select features to

be verified and cameras to be used properly. Thus it would be better to

implement this work together with those suggested in Sections 10.2.1 and

10.2.2.

10.2.5. Run Time System for Robot Control

A run time system needs to be written which connects a vision system

directly to the robot operating system in order to instantiate the modi-

fying factor array by using vision data and then to control a real robot

using the output of the RAPT system and the instantiated modifying fac-

tor array. The run time system will work in a way similar to the run
will

time program described in Sections 9.2 and 9.3 except that ittcommuni-

cate with the vision system directly and control the robot rather than

a modelling system. During execution, the run time system commands

robot operations situation by situation by using nominal positions of

the robot arm in each situation and its modifying factor except in

situations in which vision commands need to be run. In situations in

-244-

which vision tasks are to be performed, the run time system sends vision

commands to operate the vision system, and then receives the vision data

from the vision system in order to evaluate symbolic position expres-

sions and to instantiate relevant modifying factors. To this end,

interfaces between the host machine on which the run time system resides

and the robot and the vision system need to be developed.

The reasoning facility which is needed in the run time system is

much less than that of the compile time reasoning system (the cycle

finder). The run time system only needs the code particularly involved

in evaluating the top level functions contained in the symbolic position

expressions and does not need the control of the reasoning which is a

major part of the compile time reasoning system.

10.3. Originality

Reasoning about spatial relationships is the main characteristic of

the RAPT system. The research work described in this thesis relied

heavily on this characteristic. The concept of verification vision for

programmable assembly was suggested by R. C. Bolles [BOL77]. The use of

sensory information in robot programming languages has already been

reported. The main originality of the research work discussed in this

thesis lies in the way in which the use of the sensory information is

incorporated with a high level robot command language intelligently.

As described in Chapter 2, some work on using vision data in robot

programming languages has already been reported, such as VAL [UN179,

UNI80] and AL [GOL77]. However, these systems combine vision facilities

-245-

with end-effector level languages only and the techniques used are of

the first generation [LOU811 in that they use a binary picture and only

provide a very restricted form of mapping from the two dimensional image

to the location of a three dimensional object. Vision is only used to

locate some individual objects or to check whether an operation has been

fulfilled or not, rather than to update the knowledge of the robot sys-

tem about the environment. There has been no report on combining vision

with an object level robot programming language. Some object level
languages have the ability to use some touch sensor information. For

example, in AUTOPASS [WIL79J and LAMA [LOZ76J force or torque sensor

information is used to provide special threshold values in order to con-

strain or terminate some actions, or to detect whether a specified

action terminates at a correct position or not. In both the systems,

sensory information is used as a condition in a decision tree and no

further explanation of the information is made.

In contrast to these systems, the work described in this thesis

allows the use of sensory data in a general way. It exploits the expec-

tation about spatial relationships in order to make the best use of the

sensory data without having to place restrictions upon the relative

positions of objects and sensors. A method is provided of specifying

vision tasks and reasoning about the vision data symbolically off-line.

It allows partial information about positions to be combined with sensor

information in a general way. When the vision data becomes available at

run time, the result of the symbolic reasoning is evaluated and is used

to improve the system's knowledge about the environment. This method

uses grey level pictures and produces a three dimensional interpretation

rather than a two dimensional one. The framework which is used by the

system for handling vision data makes it possible to use the vision

-246-

information to adapt the operation of the robot in a variety of flexible

ways. The method developed to handle vision data has some generality

and can also deal with some other kinds of sensory information, such as

that from tactile sensors. This has already been discussed in Section

10.1. All of these enhance the capability of normal RAPT which has so

far had no facilities to manipulate sensory information.

Bolles's work concentrated mainly on achieving sufficient confidence

of correct correspondence between object features and their image, ade-

quate precision of location, and sufficiently low cost of achieving

required confidence and precision in order to refine the position of the

object to be verified. In contrast to this, the work described in this

thesis combines verification vision with a high level robot programming

language which reasons about spatial relationships. It concentrates on

making intelligent use of vision information to update the robot

system's knowledge about the environment rather than to refine the posi-

tion of the object being verified only.

10.4. Significance

This thesis tackled two problems. The first was how to enhance a

high level robot programming language so that it can express vision com-

mands to locate workpieces of an assembly. The second was how to find a

way of making full use of sensory information to update the knowledge of

the robot system about its environment. The introduction of verifica-

tion vision into RAPT as described in this thesis has successfully

solved these two problems. This is the first instance of model-based

vision being used in an object level robot programming language to deal

with positional errors in the real environment.

-247-

References

CAGI77] G. J. Agin

Servoing with Visual Feedback

SRI International Technical Note 149, 1977.

[AGI8O] G. J. Agin

Computer Vison Systems for Industrial Inspection and Assem-

bly

Computer Vol. 13, No. 5, 1980, ppll-20.

[AMB75a] A. P. Ambler et al.

A Versatile System for Computer Controlled Assembly

Artificial Intelligence 6. 1975, pp129-156.

[AMB75b] A. P. Ambler, R. J. Popplestone

Inferring the Positions of Bodies From Specified Spatial

Relationships

Artificial Intelligence 6. 1975. ppl57-174.

[AMB82] A. P. Ambler, R. J. Beattie, D. F. Corner

RAPT1 User's Manual

Dept. of Artificial Intelligence, Univ. of Edinburgh, 1982.

[AMB83] Ambler,A.P., Corner, D.F. & Popplestone,R.J.

Reasoning About the Spatial Relationships Derived from a

-248-

RAPT Program for Describing AssemblX.PZ Robot

IJCAI-83, Karlsruhe, West Germany. 1983, pp842-844.

CBAL821 D. A. Ballard, C. M. Brown

Computer Vision

Prentice-Hall Inc. 1982.

[BAR76] H. G. Barrow, R. M. Burstall

Subgraph Isomorphism Matching Relational Structures and Max-

imal Cliques

Information Processing Lett. Vol. 4, No. 4, pp83-84, 1976

[BAR78] H. G. Barrow, J. M. Tenenbaum

Recovering Intrinsic Scene Characteristics From Images

Computer Vision Systems (edited by A. R. Hanson, E. M. Rise-

man), Academic Press, 1978, PP3-26.

[BAR81] H. G. Barrow, J. M. Tenenbaum

Computational Vision

Proceedings of the IEEE. Vol. 69, No. 5, 1981 pp572-595.

[BAU74] B. G. Baumgart

Geometric Modeling for Computer Vision

Stanford AI Lab. Memo. AIM-249, Computer Science Department,

Stanford University, 1974.

[BAU81] E. W. Baumann

Model-Based Vision and the MCL language

The 1981 International Conference on Cybernetics and Society,

-249-

Oct. 1981, Atlanta, Georgia, USA.

[BEA82] R. Beattie

Edge Detection for Semantically Based Early Visual Process-

ing

Proc. of 1982 European Conference on Artificial Intelligence,

Orsay, France, 1982, pp190-196.

[BEJ79] A. K. Bejczy

Manipulator Control Automation Using Smart Sensors

Electro/79 Convention, New York NY. April 24-26, 1979. p16.

[BIN82] T. 0. Binford

Survey of Model-Based Image Analysis System

The International Journal of Robotics Research, Vol. 1, No. 1,

1982, pp18-64.

[BOL75] R. C. Bolles

Verification Vision Within a Programmable Assembly System

Stanford AI. Lab Memo AIM-275 1975.

[BOL77] R.C. Bolles

Verification Vision for Programmable Assembly

5th IJCAI. 1977

[BOL80] R. C. Bolles

Robust Feature Matching Through Maximal Cliques

SRI International Tech. Notes 212, 1980.

-250-

[BOL81a] R. C. Bolles

Three-Dimensional Locating of Industrial Parts

SRI International Tech. Note 234, 1981.

[BOL81b] R. C. Bolles

An Overview of Applications of Image Understanding to Indus-

trial Automation

SRI International Tech. Notes 242, 1981

[BOL82] R. C. Bolles, R. A. Cain

Recognizing and Locating Partially Visible Objects: The

Local-Feature-Focus Method

Robotics Research Vol. 1, No. 3, 1982, pp57-82.

[BRO81] R.A. Brooks

Symbolic Reasoning Amon 3-D Models and 2-D Ima es

Artificial Intelligence Vol. 17. 1981

[BR082] R.A. Brooks

Symbolic Error Analysis and Robot Planning

Robotics Research. Vol. 1, No. 4, 1982, pp29-68.

[BUR77] R. M. Burstall et al.

Programming in POP-2

Edinburgh University Press. 1977.

[CAM82] S. Cameron

The Clash Detection Problem

DAI Working Paper 126, Dept. of Artificial Intelligence, Univ.

of Edinburgh, 1982.

-251-

[CAM84] S. Cameron

Modelling Solids in Motion

Ph.D Thesis, Department of Artificial Intelligence, University

of Edinburgh, 1984.

[CAN83] J. F. Canny

Finding Edges and Lines in Images

MIT AI Lab. Technical Report 720, 1983.

[CIA 82] W. F. Clocksin

Visually Guided Robot Arc-Welding of Thin Sheet Steel Press-

ing

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France, pp225-230.

[C0R84] D. F. Corner

A Simple Addition to the RAPT Inference Stem to Handle

Taught Positions

DAI Working Paper, University of Edinburgh, 1984.

[CR082] A. J. Cronshaw

Automatic Chocolate Decoration Robot Vision

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France, pp249-257.

[DAR75] J. A. Darringer, M. W. Blasgen

MAPLE: A High Level Language for Research in Mechanical

Assembly

IBM Research Report RC-5606, 1975.

-252-

[DAV75] L. S. Davis

A Survey of Edge Detection Techniques

Computer Graphics and Image Processing 4, 1975, pp248-270.

[DAV781 L. S. Davis, A. Rosenfeld

Hi erarchical Relaxation for Waveform Parsing

Computer Vision Systems (edited by A. R. Hanson, E. M. Rise-

man), Academic Press, 1978, pp101-109.

[DUD73] R.O. Duda, P.E. Hart

Pattern Classification and Scene Analysis

John Wiley & Sons, Inc. 1973

[ENG801 J. F. Engelberger

Robotics in Practice

IFS Publications Ltd. 1980.

[ERN611 H. A. Ernst

A Computer-Operated Mechanical Hand

Sc.D. Thesis, MIT, 1961.

[FAL801 D. Falek & M. Parent

An Evalutionary Language for an Intelligent Robot

The Industrial Robot, Vol. 7 No.3. pp168-171 (1980)

[FAN821 0. D. Fangeras, et al.

Toward a Flexible Vision System

Proc. of 12th International Symposium on Industrial Roboots,

June, 1982. Paris, France.

-253-

[FEL71] J. Feldman et al.

The Use of Vision and Manipulation to Solve the Instant

Insanity Puzzle

Proc. of 2nd IJCAI. London, England, 1971, PP395-364.

[FIN75] R. Finbel et al.

An Overview of AL: a Programming System for Automation

Proc. of the 4th IJCAI, Tabilisi, Georgia, USSR, 1975, pp758-

765

[FIS82] R. B. Fisher

IMAGE User's Guide

Department of Artificial Intelligence, University of Edinburgh,

1982.

[FIS83] R. B. Fisher

Using Surfaces and Object Models to Recognize Partially

Obscured Objects

Pro c. of the 8th IJCAI, Karlsruhe, West Germany, 1983, pp989-

995.

[FLE82] J. Fleck, et al.

The Development and Diffusion of Industrial Robots

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France.

[FOL82] J. D. Foley, A. ven Dam

Fundamentals of Interactive Computer Graphics

Addison-Wesley Publishing Company, 1982.

-254-

[FOR69] A. R. Forrest

Co-ordinates, Transformations and Visualisation Techniques

Cambridge Computer-Aided Design Group, 1969.

[GES83] C. C. Geschke

A System for Programming and Controlling Sensory-Based Robot

Manipulators

IEEE Trans. on Pattern Analysis & Machine Intelligence, Vol.

PAMI-5, No. 1, 1983, ppl-7.

[GOL77] R. Goldman

Recent Work with AL System

Proc. of the 5th IJCAI, MIT, USA. 1977, pp733-735.

[GRE70] R. L. Gregory

The Intelligent Eye

Weidenfeld & Nicolson Ltd. 1970.

[HAN783 A. R. Hanson, E. M. Riseman (ed)

Computer Vision Systems

Academic Press, New York, 1978, PPXV-XXVII.

CHAR803 L. D. Harmon

Touch-Sensing Technology

Dept. of Biomedical Engineering, Case Western Reserve Univer-

sity

Cleveland, Ohio 44106

[HAR81] J. F. Harris

-255-

An Overview of Robot Vision R and D in UK and Abroad

Image Analysis Group, University of Oxford, 1981.

[HIR82) G. Hirzinger

Force Feedback Problems in Robotics

Second LASTED DAVOS International Symposia, Davos, March 2-5,

1982.

[HOG83) D. Hogg

Model-Based Vision: a Program to See a Walking Person

Image and Vision Computing Vol. 1 No. 1, Feb. 1983, pp5-20.

[HOR73) B. K. P. Horn

The Binford-Horn Lind Finder

MIT. AI Memo. 285, 1973.

[HOR75) B. K. P. Horn

Obtaining Shape from Shading Information

The Psychology of Computer Vision, pp115-155, (ed. by Winston),

1975.

[IN074) H. Inoue

Force Feedback in Precise Assembly Tasks

MIT. AI Lab. Memo. 308, 1974.

[JAP82)

The Specifications and Applications of Industrial Robots in

Japan

Japan Industrial Robot Association, 1982.

-256-

[KAN77] Takeo Kanade

Model Representations and Control Structures in Image Under-

standing

Proc. of the 5th IJCAI, MIT, USA. 1977, ppl074-1082.

[KAS77] H. Kasdan

Pattern Recognition in Quality Assurance

Industrial Research, August, 1977, pp49-52.

[KEL81] R. B. Kelley

Recent Progress in Bin Picking

Combined Seminar & Poster Session on Pattern Recognition for

Robots, University College, London. March 1981.

[KEM81] K. G. Kempf

Robot Command Languages and Artificial Intelligence

AI Group, Electronics Research Laboratory, Hirst Research

Center, General Electric Company Ltd. Wembly, Middlesex, Eng-

land, 1981.

[KEM83] K. G. Kempf

Artificial Intelligence Applications in Robotics - a

Tutorial

IJCAI-83 Tutorial on Artificial Intelligence, Karlsruhe, West

Germany, 1983.

[KLE78] J. de Kleer, G. J. Sussman

Propagation of Constraints Applied to Circuit Synthesis

Memo AIM 485, MIT, Cambridge 1978.

-257-

[KOU81] A. Koutsou

A Survey of Model-Based Robot Programming Languages

DAI. Working Paper No. 108, University of Edinburgh, Dec. 1981.

[KOU821 A. Koutsou

Thesis Proposal: Planning Parts Matin Operations

DAI Working Paper 114, Dept. of Artificial Intelligence, Univ.

of Edinburgh, 1982.

CLAT793 J. C. Latombe

Une Analuse Structuree d'Outils de Programmation pour la

Robes Industrielle

Proc. of the International Seminar on Programming Methods and

Languages for Industrial Robots. IRIA, France, June, 1979

[LAT811 J. C. Latombe, E. Mazer

LM: A High-Level Programming Language for Controlling Assem-

bly Robots

Tripartite Robotics Seminar, Stuttgart, W. Germany, Feb. 1981.

(KE483a] D. R. Kemp et al.

A Sensory Grip per for Handling Textiles

Proc. of 13th International Symposium on Industrial Robots,

1983. Chicago, USA.

CLIE771 L. I. Lieberman, M. A. Wesley

AUTOPASS: An Automatic Programing System for Computer Con-

trolled Mechanical Assembly

IBM Journal of Research and Development, Vol. 21, No. 4, 1977,

-258-

PP321-323.

[LIN73] P. M. Lin

A Survey of Applications of Symbolic Network Functions

IEEE Trans. on Circuit Theory Vol. CT-20 No.6, 1973, PP732-737

[LOU81] C. Loughlin

Robot Vision Survey

Robotics Research Unit, Dept. of Electronic Eng. University of

Hull, 1981.

[LOZ76] T. Lozano-Perez

The Design of a Mechnical Assembly System

MIT AI. Lab. Technical Report 397. Dec. 1976.

CLOZ82] T. Lozano-Perez

Robot Programming

MIT AI. Lab. AI Memo. 698, Dec. 1982.

[LUH81] J. Y. S. Luh et al.

3-D Vision for Robotic Systems.

Proc. of the 1st International Conference on Robot Vision and

Sensory Controls, April 1-3, 1981, Stratford upon Avon, UK.

[MAT80]

RGB-256 Manual

Matrox Electronic Systems Ltd., 5800 Andover Ave., T.M.R. Qug.,

H4T 1H4, Canada, 1980.

-259-

[MCG78] D. McGhie, J. W. Hill

Vision-Controlled Subassembly Station

AI. Center, SRI International, Menlo Park, California 94025.

Oct. 1978.

[NIT76] D. Nitzan, A. E. Brain, R. 0. Duda

The Measurement and Use of Registered Reflectance and Range

Data in Scene Analysis

SRI International AI Center Technical Note 128. Menlo Park,

California 94025. 1976

[NIT79] D. Nitzan

Robotic Sensors in Programming Automation

SRI International Technical Note 183. Menlo Park, California

94025. 1979.

[PAU77] R. P. Paul

WAVE: A Model-Based Language for Manipulator Control

The Industrial Robot, Vol. 4, No. 1, 1977, pplO-17

[PAU81] R. P. Paul

Robot Manipulators: Mathematics, Programming and Control

MIT Press, 1981.

[PEN83] A. de Pennington, M. S. Bloor, M. Balila

Geometric Modelling: A Contribution Towards Intelligent

Robots

Proc. of 13th ISIR/Robots-7, Chicago, 1983, pp35-54.

-260-

[P ER7 8] W. A. Perkins

A Model-Based Vision for Industrial Parts

IEEE Trans. on Computers Vol C-27, No. 2 Feb. 1978.

[POP77] R. J. Popplestone, A. P. Ambler

Forming Body Models From Range Data

DAI. Research Paper, No.46, University of Edinburgh, 1977

[POP78] R. J. Popplestone, A. P. Ambler, I. Bellos

RAPT: A Language for Describing Assemblies

DAI. Research Paper, No.79, University of Edinburgh, 1978

[POP79] R. J. Popplestone

Specifying Manipulation in Terms of Spatial Relationships

DAI. Research Paper. No.117, University of Edinburgh, 1979

[POP80] R. J. Popplestone, A. P. Ambler, I. M. Bellos

An Interpreter for a Language for Describing Assemblies

DAI. Research Paper. No.125, University of Edinburgh, 1980

[POP81] R. J. Popplestone, A.P. Ambler

A Language for Specifying Robot Manipulations

DAI. Research Paper. No.1 61 , University of Edinburgh, 1981

[PUG82] A. Pugh

Second Generation Robotics

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France.

-261-

[RAE81] R. Rae

Wonder-POP: A Brief Guide to the Main Features of the New

POP-2 Implementation

DAI. University of Edinburgh. 1981.

[ROS69] A. Rosenfeld

Picture Processing Computer

Computing Surveys, Vol. 1, No. 3, Sept. 1969, ppl47-176.

CROS773 C. A. Rosen, D. Nitzan

Use of Sensors in Programmable Automation

Computer. Vol. 10, No. 12, Dec. 1977, p12-23.

[SAR81] P. Saraga, B. M. Jones

Parallel Projection Optics in Simple Assembly

Proc. of the 1st International Conference on Robot Vision and

Sensory Controls, April 1-3, 1981, Stratford upon Avon, UK,

pp99-112.

[TAY76] R. H. Taylor

A .Synthesis of Manipulator Control Program from Task-Level

Specifications

Stanford AI Lab. Memo. AIM-282, 1976.

[TAY82a] P. M. Taylor et al.

Closed Loop Control of an Industrial Robot Using Visual

Feedback From a Sensory Grip per

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France.

-262-

[TAY82b] G. E. Taylor et al.

Vision Applied to the Orientation of Embroidered Motifs in

the Textile Industry

Proc. of 2nd International Conference on Robot Vision and Sen-

sory Controls, Stuttgart, West Germany, Oct. 1982.

[TEN77] J. M. Tenenbaum, H. G. Barrow

Experiments in Interpretation-Guided segmentation

Artificial Intelligence Vol. 8, No. 3, 1977, pp241-274.

[UNI79] Unimation, Inc.

User's Guide to VAL: A Robot Programming and Control System

Unimation, Inc., Danbury, Connecticut, Feb. 1979.

[UMI80] Unimation, Inc.

Unimation Vision Manual

Unimation, Inc.. Danbury, Connecticut

[VIL82] P. Villers

Present Industrial Use of Vision Sensor of Robot Guidance

Proc. of 12th International Symposium on Industrial Robots,

June, 1982. Paris, France.

[WAN76] S. S. M. Wang, P. M. Will

Sensors for Computer Controlled Mechanical Assembly

Computer Sciences Department, IBM Thomas J. Watson Research

Center, Yorktown Heights, New York 10598, 1976.

[WIL75] P. M. Will, D. Grossman

-263-

An Experimental System for Computer Controlled Mechanical

Assembly

IEEE Trans. on Computers Vol. C-24, No. 9, 1975, pp879-888.

[WIL79] P. M. Will

Very High Level Languages for Robots

Proc. of the International Seminar on Programming Methods &

Languages for Industrial Robots, IRIA, Roaquencourt, France.

June, 1979.

[WON79] Wong

Computational Structures for Extracting Edge Features from

Digital Images for Real Time Control Applications

Ph.D Thesis, Col. Tech. 1979.

[YIN83] B. Yin

A Framework for Handling Vision Data in an Object Level

Robot Language --- RAPT

Proc. of the 8th IJCAI, Karlsruhe, West Germany, 1983, pp811-

820.

[ZUC78] W. Zucker

Vertical and Horizontal Processes in Low Level Vision

Computer Vision Systems (edited by A. R. Hanson, E. M. Rise-

man), Academic Press, 1978, pp187-198.

Appendix I

Tables of Reasoning Rules in the RAPT Reasoning System

Degrees of Freedom of the Relations in the Cycle Finder

Relations Feature Types Degrees of freedom ---
Spatial Rotational

AGPP Against plane plane 2 1

FITS Fits shaft hole 1 1

AGPC Against plane shaft 2 2
AGPS Against plane sphere 2 3

AGSS Against sphere sphere 0 3

PARAX Parallel plane plane 3 1

LIN Linear shaft shaft 1 0
LINLIN Planar plane plane 2 0
ROT Rotation shaft shaft 0 1

FIX Fixed any any 0 0

Table 1. Combination Rules

Relation I Relation 2 General Case Special Cases ---

LIN LIN FIX LIN
LINLIN LINLIN LIN LINLIN
LINLIN LIN FIX LIN
ROT ROT FIX ROT
ROT
ROT
FITS

LINLIN
LIN
FITS

FIX
FIX
FIX FITS,LIN

FITS ROT FIX ROT
FITS LINLIN FIX LIN
FITS LIN FIX LIN
AGPP AGPP LIN AGPP
AGPP FITS FIX LIN,ROT
AGPP ROT FIX ROT
AGPP LINLIN LIN LINLIN
AGPP LIN FIX LIN
AGPP AGPC LIN (2) AGPP,ROT+LIN
PARAX PARAX - PARAX
PARAX AGPP LINLIN AGPP
PARAX FITS LIN FITS
PARAX ROT FIX ROT

PARAX
PARAX

LINLIN
LIN

LINLIN
LIN

AGSS AGSS - ROT,AGSS
AGSS PARAX - ROT
AGSS AGPP - ROT

AGSS FITS - ROT,FIX
AGSS ROT FIX (2) ROT,FIX
AGSS LINLIN - FIX
AGSS LIN FIX (2) FIX
AGPS AGPS -
AGPS AGSS - ROT

AGPS PARAX - AGPP

AGPS AGPP - AGPP

AGPS FITS - ROT,LIN
AGPS ROT FIX (2) ROT,FIX
AGPS LINLIN LIN (2) LINLIN
AGPS LIN FIX LIN
AGPC AGPC - AGPP

AGPC AGPS - AGPP

AGPC AGSS - ROT

AGPC PARAX LINLIN (2) ROT,FIX
AGPC FITS FIX (2) FITS,ROT,LIN
AGPC ROT FIX (2) ROT,FIX
AGPC LINLIN LIN LINLIN
AGPC LIN FIX LIN

This table shows how pairs of relations (relation 1 and relation 2)

can be combined to produce a new relation. The resulting relation is

-266-

given for the general case and also for some special cases where the

resulting relations are more restricted. The special cases arise from

particular geometrical relationships between features involved. In this

table, "-" means the result is not included in the ten standard rela-
tions. "(2)" means the result is not unique.

Table 2. Creation Rules

Relation 1 Relation 2 General Relation Special Cases
--- ____

LIN LIN LINLIN LIN
LINLIN LINLIN PARAX* LINLIN
LINLIN LIN PARAX* LINLIN
ROT ROT - ROT
ROT LINLIN PARAX* AGPP
ROT LIN PARAX* FITS
FITS FITS - FITS,PARAX*
FITS ROT - FITS,AGPC,PARAX*
FITS LINLIN - PARAX
FITS LIN - FITS,PARAX*
AGPP AGPP - AGPP
AGPP FITS - PARAX,AGPC
AGPP ROT - AGPP
AGPP LINLIN PARAX AGPP
AGPP LIN PARAX AGPP
PARAX PARAX - PARAX
PARAX FITS - PARAX
PARAX ROT - PARAX
PARAX LINLIN PARAX
PARAX LIN PARAX
AGSS AGSS - AGSS

AGSS AGPP - AGPS
AGSS ROT - AGSS
AGPS AGSS - AGPS
AGPS AGPP - AGPS

AGPS ROT - AGPS

AGPS LINLIN - AGPS
AGPS LIN - AGPS
AGPC AGSS - AGPS
AGPC AGPP - AGPC

AGPC FITS - AGPC
AGPC ROT - AGPC

AGPC LIN - AGPC

Table 2 shows a chained pair of relations (relation 1 and relation

-267-

2) may be replaced by a new relation. The resulting relation is given

for the general case and also for some special cases where the resulting

relations are more restricted. The special cases arise from particular

geometrical relationships between features involved. Since the RAPT

reasoning system only applies Table 2 when it can obtain a useful

result, not all possible pairs of relations need to be included. In

this table, the relations marked with "*" are not the true combinations

for the input relations, because the true answers are not expressible in

our limited set of relations. A relation with additional degrees of

freedom is used instead.

Appendix II

Detailed Analysis of Combination Rules Likely to be Used

in the Symbolic Reasoning

The following table is an extract from a document produced by Tamio

Arai (personal communication). It shows all possible special cases in

combinations of relations under different conditions. The entries are

relevant to pairs of relationships occurring in the symbolic reasoning

described in the thesis.

R1 R2 RR Condition

AGPP

LIN

ROTYLIN

ROT

AGPC

AGPC

AGPC

AGPC

AGPP
ROTYLIN
LIN(2)
LIN(2)

LIN
FIX
FIX

ROTYLIN
ROTYLIN
ROT
LIN(2)
LIN(2)

LIN
function
FIX(2)
FIX(2)

ROT
ROT
FIX
FIX(2)

x arpar
x bpar
xbperp
general

xaperp
xapar
general

x-a-par
x b collinear & is-0-a12
xb_collinear

is 0 a12 & x a_perp & r_xal_pla2
i s_0_a12
x b_par
xbperp
general

x a -par
xbcollinear

general

NOTE: This table has not been completely implemented in the current

version of RAPT, because the current cycle finder is restricted

-269-

to standard relations and non-ambiguous result.

R1: the first relation

R2: the second relation

RR: the resultant relation

The order of the features in the relations between the two

bodies is different from that in TABLE 1 in [POP81]. Here

if we refer to the bodies involved in the relationships as

body A and body B, then the first feature in the relation-

ship always belongs to body A and the second to body B.

For example, the combination of AGPP AGPC means two planes

belong to the body A and one plane and a edge belong to

the body B.

"(2)" means there are two possible ways to create the new

feature, i.e., there is ambiguity.

Condition: the condition under which the rewrite rule can be

used

x a par: X-axes of features in body A are parallel

x b par: X-axes of features in body B are parallel

x a perp: X-axes of features in body A are perpendicular

x b perp: X-axes of features in body B are perpendicular

is 0 a12: the angle between x-vector of feature 2 of body A

and y-vector of feature 1 of body A is 90 degree

r xa1 p1a2: a complex function defined in Wonder-POP code.

Appendix III

A Sufficient Condition for Correct Modifying Factor Determination

when There Is More Than One Reference Body

When a body a is moved by an action statement to a specified posi-

tion to satisfy a set of spatial relationships between it and two refer-

ence bodies b and c, a sufficient condition under which the specified

relationships can be realized in the real environment when the modifying

factors are taken into account is

PVbi *
PVci-1

- PNbi *
PNci-1

where situation i is the situation following the specified action. This

can be proved as follows.

According to equation (7.11), the modifying factor of body a should

be

FMai - PNai * PNbi-1 * PVbi *
PNai-1

in order to realize the relationship between body a and body b. For the

same reason, the modifying factor of body a should also be

FMai' - PNai * PNci-1 * PVci * PNai-1

-271-

in order to realize the relationship between body a and body c.

When

PVbi * PVci-1 - PNbi * PNci-1

we have

PNci-1 * PVci - PNbi-1 * PVbi

Thus

FMai' - PNai * PNci-1 * PVci * PNai-1

- PNai * PNbi-1 * PVbi * PNai-1

- FMai

Therefore, the modifying factor of body a which guarantees the realiza-

tion of the relationship between body a and body b will also guarantee

the realization of the relationship between body a and body c.

Appendix IV

A Sufficient Condition for Correct Modifying Factor

Determination when There Is

More Than One Reference Body in a TIE

When the spatial relationships associated with a specified action

refer to both body a and body b in a TIE, a sufficient condition under

which the specified relationships can be realized in the real environ-

ment when the modifying factors are taken into account is

PVbi * PVai-1 - PNbi * PNai-1

where situation i is the situation preceding the specified action. This

can be proved as follows.

Since there is a relationship to hold between the reference body c

and both body a and body b, the modifying factors of both body a and

body b after the specified action can be determined individually by

equation (7.11):

FMa(i+1) - PNa(i+1) * PNc(i+1)-1 * PVc(i+1) * PNa(i+1)-1

FMb(i+1) - PNb(i+1) * PNc(i+1)-1 * PNc(i+1) * PNb(i+1)-1

On the other hand, since body a and body b are TIED together, from equa-

tion (8.11) the modifying factor of body b should also be

-273-

FMb(i+1)' - PVbi * PVai-1 * PVa(i+1) * PNb(i+1)-1

- PVbi *
PVai-1

* FMa(i+1) * PNa(i+1) *
PNb1+1)-1

- PVbi * PVai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) *

* PNa(i+1)-1 * PNa(i+1) * PNb(i+1)-1

PVbi * PVai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) *

* PNb(i+1)-1

If
PVbi * PVai-1 - PNbi * PNai-1

then

FMb(i+1)' - PNbi * PNai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) *

* PNb(i+1)-1

Since body a and body b are TIED together during the action,

PNbi * PNai-1 - PNb(i+1) * PNa(i+1)-1

Thus

FMb(i+1)' - PNb(i+1) * PNa(i+1)-1 * PNa(i+1) * PNc(i+1)-1
*

* PVc(i+1) * PNb(i+1)-1

- PNb(i+1) *
PNc(i+1)-1

* PVc(i+1) * PNb(i+1)-1

- FMb(i+1)

Therefore, the modifying factor of body b determined by equation

(8.11) will guarantee the realization of the relationships between body

b and the reference body c when the relationships between body a and the

reference body hold.

Appendix V

An Example of Vision System Testing

1. A RAPT Program Used in the Test

The following is a RAPT program used in testing the vision command

input system, the symbolic reasoning facility and the framework. The

coordinates are measured in millimeters and the angles measured in

degrees. For simplicity, cameras used in this program are all of simple

type (see Section 5.6). There are four bodies defined in this program.

They are the world, bi, b2 and b3, and their body sequence numbers are

1, 2, 3 and 4 respectively. Bodies b1, b2 and b3 are shown in Fig.

A5.1.

body/b1 ;

pl-point/0,0,0;

p2-point/20,0,0;

P3-point/20,-20,0;

p4-point/20,-20,30;

p5-point/20,0,30;

p6=point/0,0,30;

p7-point/0,-20,0;

p8=point/10,-10,0;

p9-point/10,-10,-25;

remark begins to define a body named "b1";

-275-

unlI MJ

body bl
body b2

body b3

Fig. A5.1. Wireframes of the bodies used in the example testing program

-276-

fl-face/pl,p2,p5,ylarge;

f2-face/pl,p2,P3,zsmall;

f3-face/pl,p6,P7,xsmall;

f4-face/p4,p5,P6,zlarge;

f5-face/p3,p2,p4,xlarge;

f6-face/horiz,25,zsmall;

11-line/p2,P3;

12-line/p1,p6;

13-line/p8,p9;

e1-edge/ll,ysmall;

e2-edge/12,zlarge;

s1-shaft/axis, 13,radius,5,zsmall;

terbod;

body/b2; remark begins to define a body named "b2";

p1-point/0,0,0;

p2-point/25,0,0;

P3-point/25,-30,0;

p4-point/0,0,50;

p5-point/25,0,50;

p6-point/25,-30,50;

P7-point/25,-15,25;

p8-point/0,-15,25;

fl-face/pl,p2,p5,ylarge;

f2-face/p4,p5, p6,zlarge;

f3-face/pl,p2,p3,zsmall;

f4-face/p2,P3,p6,xlarge;

f5-face/pl,p8,p4,xsmall;

11-line/p2,p5;

-277-

12-line/P2,P3;

13-line/pt,p4;

14-line/p7,p8;

el-edge/lt,zlarge;

e2-edge/12,ylarge;

e3-edge/13,ziarge;

hi-hole/axis,l4,radius, 5,xlarge;

terbod;

body/b3; remark begins to define a body named "b3";

p1-point/0,0,0;

p2-point/20,0,0;

P3-point/20,-15,25;

p4-point/20,0,50;

P5-point/60,0,50;

p6-point/60,-30,50;

p7-point/60,-30,90;

p8-point/60,0,90;

p9-point/20,-30,90;

p10-point/0,0,140;

p11-point/20,-30,140;

p12-Point/0,-30,140;

P13-Point/20,-15,115;

P14-point/O,-15#115;

p 15-point/ 0, -1 5,25;

f1-face/pi,p2,p10,ylarge;

f2-face/p7,p5,p6,xlarge;

f3-Pace/p4,p5,P6,zsmall;

f4=face/p2,p3,P4,xlarge;

-278-

f5-face/p7,p8,p9,zlarge;

f6-face/pl 1 , p13, P9,xlarge;

f7-face/p1 pl O,pl 2,xsmall;

f8-face/p10,p11,p12,zlarge;

11-line/p1,pl0;

12-line/p7, P8;

13-line/p3,pl5;

14-line/pl 3, p14;

el-edge/ll,zlarge;

e2-edge/12,ylarge;

hl-hole/axis, 13,radius,5,xlarge;

h2-hole/axis, 14,radius,5,xlarge;

terbod;

remarks the following statements define some features of the world;

pwl-point/0,0,0;

pw2-point/0,0,200;

pw3-point/0,-150,0;

pw4-point/200,0,200;

pw5-point/200,-150,200;

pw6-Point/200,-150,0;

pox-point/560,-20,50;

poy-point/260,50,120;

P03-Point/360,-50,-20;

fl-f ace/pwl,pw2,Pw3,xlarge;

f2-face/pwl,pw3,pw6,zlarge;

f3-face/pw5, pwb, Pw3, ylarge;

f4-face/pw2,pw4,pw5,zsmall;

-279-

f5-face/pw6,pw4,pw5,xlarge;

lwl-line/pw2,pwl;

lw2-line/pw4,pw5;

el-edge/lwl,zlarge;

e2-edge/lw2,ylarge;

remark all bodies & features are defined;

agent/bl; remark this is the body generating the movement;

remark sit 1;

against/f7 of b3, fl of world;

against/fl of b3, f3 of world;

against/f8 of b3, f2 of world;

remark these relations serve to fix b3 with respect to the world;

against/f5 of b2, fl of world;

against/f3 of b2, f2 of world;

aligned/e3 of b2, el of world;

remark these relations serve to fix b2 with respect to the world;

aligned/e2 of b1, e2 of world;

parallel/f3 of bl, fl of world;

coplanar/f4 of b1 , f3 of world;

remark these relations serve to fix bl with respect to the world;

caml-camera/position, pox, theta, 0, phi, 75,psi,0,focus, 75;

cam2-camera/position,poy,theta,90,phi,0,psi,0,focus,85;

-280-

cam3-camera/position,po3, theta,0,phi,10,psi,0,focus,185;

remark define cameras;

setcamera/caml;

remark sets the default camera to be carol;

po4-point/220,50,45;

po5-point/350,-5,25;

po6-point/250,5,5;

po7-point/350,0,110;

cam4-camera/position,po4,theta,-90,phi,3,psi,0,focus, 185;

cam5-camera/position,po5,theta,0,phi,90,psi,0,focus,185;

cam6-camera/position,po6,theta,0,phi,90,psi,0,focus,185;

cam7-camera/position,po7,theta,0,phi,90,psi,0,focus,125;

tolerance/b3,trans,5;

tolerance/b2,trans,15;

remark global tolerances;

REMARK END OF DEFINITIONS AND START OF ASSEMBLY TASK DESCRIPTION;

remark now define some movements and vision tasks;

move/bl;

remark sit 2;

combine;

remark sit 3, verification of position of b3;

remark two INVIOLATE statements and one redundant

LOOK statement in this COMBINE package;

inviolate/against,fl of world,f7 of b3;

inviolate/against,f2 of world,f8 of b3;

-281-

tolerance/trans,5; remark local tolerance;

look/el of b3; remark uses default camera;

look/e2 of b3;

ter com;

move/bi , perpto, f6 of bl , 200;

remark sit 4, here bl is moved to a particular position

with respect to b3,

fits/sl of bt, h2 of b3;

against/f2 of bl, f6 of b3;

parallel/el of bl, el of b3;

hence the need to verify b3 above;

tied/bl,b3; remark defines a TIE, i.e. bt grabs b3;

move/b3,perpto, f3 of b3, 150;

remark sit 5;

turn/b3, about,h2 of b3;

remark sit 6;

against/f8 of b3, f4 of world;

move/b3;

remark sit 7;

untied/b1, b3; remark bl lets go of b3;

move/b1 ,perpto, f4 of bl , 180;

remark sit 8;

move/bt, perpto, f5 of b1,50;

remark sit 9;

-282-

combine;

remark sit 10, verification of position of bl;

tolerance!trans,5;

inviolate/against,f5 of world,f2 of b1;

look/el of blcam5;

look/e2 of bl,cam4;

ter com;

combine;

remark sit 11, verification of position of b2;

tolerance/ trans,12;

inviolate/against,fl of world,f5 of b2;

look/e2 of b2, cam6;

look/el of b2,cam6;

ter com;

move/b1, perpto, f2 of bl, 175;

remark sit 12, bl now in particular relationship with b2;

fits/sl of bl , hl of b2;

against/f2 of bl,f4 of b2;

parax/el of bl, e2 of b2;

tied/bl,b2;

remark the following code is mainly to demonstrate the

effect of the modifying factor array over a super TIE.

move/b2;

remark sit 13;

aligned/hl of b2, h2 of b3;

against/f5 of b2, f5 of world;

-283-

parallel/el of b2, el of b3;

combine;

remark sit 14, verification of position of b3;

inviolate/against,fl of world,f7 of b3;

look/el of b3,cam7;

look/e2 of b3,cam7;

tercom;

move/b2;

remark sit 15;

aligned/hl of b2, h2 of b3;

against/f5 of b2, f6 of b3;

parallel/e1 of b2, el of b3;

tied/b2,b3; remark bl, b2 and b3 form a super TIE;

move/b3;

remark sit 16;

coplanar/fl of b3, f3 of world;

against/f3 of b3, f2 of world;

against/f7 of b3, f1 of world;

terapt;

2. The Modifying Factor Array of the Test Program

The following are the modifying factor arrays produced by the frame-

work for the RAPT program listed in Section 1. The first array is that

before simplification while the second is that after simplification. In

-284-

both arrays the sequence number of the world is 1, that of body b1 is 2,

that of body b2 is 3 while that of body b3 is 4.

The Modifying Factor Array Constructed by the Linking Rules

(BSS (1 2 3

I
4

I
5 6

1 I I I I I I I I

I I
I

I
I

2 I 2,1 2,2 4,4 2,4 I[4,6]I ---

I 3 I I 3,1 I 3.2 I 3.3 I 3,4 I 3,5 I

14 I I 4,1 P I 4,3 (4,4 1,6

IB\SI 7 8 9 10 11

I
12

(1(I (I { I I I I I I I

2 2,6 2,7 (2,8 (P 2,10 (3,12
----------- ---------

3 I 3,6 3,7 3,8 3,9 I P 3,11

I 4 I 4,6 4,7 4,8 I[2,10]I 4,10 4,11

BSS I 13 14 15 16

11 1 I I I I

2 [3,13]I 2,13 I[3,15]I[4,16]I

3 I 1,13 3,13 4,15 I[4,16]I

I 4 I 4,12 P I 4,14 1,16

* NOTE: 1) A number pair B,S represents a pointer pointing to the modi-
fying factor of body B in situation S.

2) A list CB,S] of a body A in situation'S represents a pointer
triple [pl,p2,P3] in which p1 is a pointer A,(S-1), p2 a
pointer B,(S-1) while P3 a pointer B,S. For example, the
list [4,6] of body number 2 in situation 6 represents a
pointer triple [pl,p2,P3] in which p1 is a pointer (2,5), p2
a pointer (4,5) while P3 a pointer (4,6).

3) I is an identity matrix symbol.
4) P is a symbolic position expression.

-285-

The Modifying Factor Array After Simplification

I B\S I

1 (2 3 } 4 5
I

6 }

11 I I I I I I (I I I (I I

2 I

I I I 4,4 } 2,4 I[4,6]I

1 3 1 I I I I I I I I I I I I

(4 I I I I I P 4,3 I 4,4 I I I ---

--
B\S I 7 8 9 10

I
11 12

1 1 I I I I I I I I I I I I

} 2 } 2,6 } 2,7 } 2,8 } P } 2,10 } 3,12 }

3 I I I P
I

3,11 I - - - - - - - - - - -

4 (I I I 2,10]I 4,10
I

4,11
(

B\S 13 14 15 16 I

.I

I 2 I[3,13]i 2,13 IC 3,15]IC 4,16]I

3
I I 4,15 IC 4,16]I

4 I 4,12 P 4,14 I I I

3. Testing the Run Time Program with Simulated Data

The following is a record of an operation sequence of testing the

run time program using simulated vision data. In order to show the con-

sistency of the implementation of the symbolic reasoning facility, the

-286-

window suggester and the face generator, some of the simulated data has

been made the same as that predicted by the system. Some are not: this
is to make the verified positions (simulated) different from the nominal

ones so that the modifications to the nominal positions can be shown by

the ROBMOD simulation.

The camera caml is working in situation 3

The edge to be verified may appear between

(-17.28073, 7.71058) and (-18.4667, 27.44932);

The window is

p1: (-19;10); p2: (-15;10); P3: (-20;25)

p1: -17 8
p2: -19 25

comment simulated data typed in by the author, in what follows
everything typed by the author has been underlined;

The camera carol is working in situation 3

The edge to be verified may appear between

(-15.52914, 20.09619) and (-20.18789, 20.09619);

The window is

p1 : (-16;18); p2: (-16;22); p3: (-19;18)

p1: -15 19

p2: -20 21

In situation 3 the nominal position of body b3 (4) is:

1.0 0.0 0.0
0.0 -1.0 0.0
0.0 0.0 -1.0
0.0 -150.0 140.0

-287-

The real position is:

1.0 0.0 0.0
0.0 -1.0 0.0
0:0 0.0 -1.0
0.0 -147.632 140,0

The camera cams is working in situation 10

The edge to be verified may appear between

(0, 12.33334) and (-24.66667, 12.33334);

The window is

P1: (-8;6); p2: (-8;19); P3: (-17;6)

p1: 0 12.33334 comment the data in this situation is the p2: -24.7 12.33334 same as that predicted by the system;

The camera cam4 is working in situation 10

The edge to be verified may appear between

(-33.05263, 56.50052) and (-34.00656, -43.74868);

The window is

p1: (-55;53); p2: (-11;52); p3: (-56;-40)

p1: -33.05263 56.50052
p2: -34.00656 -43.74868

In situation 10 the nominal position of body bl (2) is:

0.0 0.0 -1.0
0.0 1.0 0.0
1.0 0.0 0.0
200.0-5.0 35.0

The real position is:

-288-

0.0 0.0 -1.0
0.0 1.0 0.0
1.0-0.-0 0.0
200.0'-5.000019 35.0

The camera cam6 is working in situation 11

The edge to be verified may appear between

(-4.111111, 4.111114) and (20.55556, 4.111114);

The window is

p1: (6;-6); p2: (6;14); P3: (11;-6)

p1: -4 3

p2: 20 5

The camera cam6 is working in situation 11

The edge to be verified may appear between

(-4.111111, 4.111114) and (-4.111111, -37.0);

The window is

p1: (-14;-8); p2: (6;-8); P3: (-14;-25)

P1: -3 4

p2: -5 -36

In situation 11 the nominal position of body b2 (3) is:

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0

The real position is:

1.0 0.0 0.0
0.0 0.9965458 -0.08304549
0.0 0.08304549 0.9965458
0.0 1.290586 1.255067

-289-

The camera cam7 is working in situation 14

The edge to be verified may appear between

(35.71429, 7.142859) and (-14.28571, 7.142859);

The window is

P1: (32;5); p2: (32;9); P3: (-11;5)

p1: 34 6
p2: -14 8

The camera cam7 is working in situation 14

The edge to be verified may appear between

(4.310345, 21.55173) and (4.310345, 8.62069);

The window is

p1: (2;17); P2: (6;17); P3: (2;13)

p1: 3 21

p2: 5 8

In situation 14 the nominal position of body b3 (4) is:

1.0 0.0 0.0
0.0 0.0 1.0
0.0 -1.0 0.0
0.0 100.0 90.0

The real position is:

1.0 0.0 0.0
0.0 -0.04163054 0.9991331
0.0 -0.9991331 -0.04163054
0.0 97.92412 93.31351

4. The ROBMOD Command File Produced by the Run Time Program

The following is an extract from the ROBMOD command file for simu-

lating the RAPT program in Section 1 of this Appendix. This file is

generated by the run time program using the simulated vision data typed

in in the test procedure shown in Section 3. The first four statements

of the ROBMOD program indicate the files in which the wireframes of the

bodies are stored. The position of the wireframe of body bl in a situa-

tion is specified by parameters blx, bly and blz while its orientation

specified by parameters blt1, blt2 and blt3. So are those of bodies b2

and b3. The statement

"scene - "

commands ROBMOD to draw a scene on a graphics terminal. The name

"wworld" was used instead of "world" because it was a reserved word in

an early version of ROBMOD.

wworld - rbody "boxa3"

bl - rbody "blockl"

b2 - rbody "block2"

b3 - rbody "block3"

blx - 200.0000

bly - -180.0000

blz - 200.0000

blti - 90.0000

blt2 - 90.0000

blt3 - 90.0000

rbl - bl rotz b1ti roty blt2 rotz blt3 to blx bly blz

-291-

b2x - 0.0000

b2y - 0.0000

b2z - 0.0000

b2t1 - 0.0000

b2t2 - 0.0000

b2t3 - 0.0000

rb2 - b2 rotz b2t1 roty b2t2 rotz b2t3 to b2x b2y b2z

b3x - 0.0000

b3y - -150.0000

b3z - 1140.0000

b3tl - -180.0000

b3t2 - 180.0000

b3t3 - 0.0000

rb3 - b3 rotz b3tl roty b3t2 rotz b3t3 to b3x b3y b3z

scene - rb3 @ rb2 @ rbl @ wworld

wire scene

write 0.2 0.01 "situation 1"

value 0.0

shell "sleep 5"

b3Y - -147.6320

wire scene

write 0.2 0.01 "situation 3"

write 0.3 0.98 "body b3 is verified now"

value 0.0

shell "sleep 5"

5. Some Scenes Produced by ROBMOD

The following are some scenes of the simulation of the RAPT program

shown in Section 1. Each situation of the program is shown from two

different viewpoints so that a perspective projection and a projection

which is perpendicular to the Y-Z plane of the world can be observed.

The big box in the following pictures represents a notional world but

has no physical significance.

b2

b1

situation 1

situation 2

t

C)

O

situation 1

a
r

situation 2

III

Fig. A5.2. Some scenes of the ROHMOD simulation of a RAPT program

body b3 is verified body b3 is verified

situation 3 situation 3

Note the adtual position of b3 is now displayed and is different

from the nominal one displayed in situation 2 but the inviolate

relationship has been preserved

Note also bl is in an inappropriate position with respect to b3

0

situation 4 situation 4

Note the position of bl has been adjusted to

take account of the actual position of b3

-295-

body b2 is verified body b2 is verif ied

EI
situation 11 situation 11

Note the actual position of b2 and the

relative position between b1 and b2

O

O

situation 12 situation 12

-296-

r--:7

I o

situation 13

body b3 is verified body b3 is verified

O

situation 14 situation 14

Here b3 has to be verified because

the user wants to put b2 down on it

-297-

0

situation 15 situation 15

b2 is successfully placed in relation

to the actual position of b3

situation 16

U 0

situation 16

The super TIE (b1, b2 and b3) moves together

-298-

Appendix VI

The Vision Experiment

1. Vision Station

A vision station was set up in order to test the feasibility of

using vision to verify the position of the object in a robot environ-

ment. The vision station consisted of a plane board, a TV camera con-

nected with a digitizer and a micro-computer (the Vision Box), and a

turntable. The camera was supported by a tripod which together with the

turntable, was fixed on the top of the horizontal plane board. The

object whose position was to be verified was placed on the top of the

turntable which could rotate about a vertical axis. The vision station

was illuminated by the conventional indoor light sources and no special

lighting arrangement was used. The TV camera was connected with the

Vision Box and the picture was digitized and stored in the 256x256 image

memory of the Vision Box with 256 degrees of grey level. The edge

finder (Section 5.7.2) was loaded in the main memory of the Vision Box.

The vision station together with the body to be used is shown in Fig.

A6.1.

I

Fig. A6.1. The vision station used in the experiment

I

Fig. A6.2. The body used in the experiment

74

-300-

2. Calibration of the TV Camera

The position and the orientation of the camera was measured using

triangulation. The accuracy of the position is about 2 mm while that of

the orientation is within 1 degree. The non-linearity of the camera in

the imaging process was measured but not compensated. This is about 10%

in both horizontal and vertical directions.

3. The Testing Program

The following is the program used in the test with some statements

deleted which are not relevant to this test. It first specifies the

model of the camera and that of the body to be verified and its nominal

position, and then specifies the vision task. The body used in this

test was the outer case of the gripper being developed in this depart-

ment. It is shown in Fig. A6.2.

body/box; remark defines the body to be verified;

p0 - point/0,0,0;

p1 - point/0,27.5,-81.5;

p2 - point/72,27.5,-81.5;

P3 - point/72,27.5,81.5;

pu - point/72,-27.5,81.5;

p5 - point/0,-27.5,81.5;

p6 - point/0,-27.5,-81.5;

p7 - point/72,-27.5,-81.5;

p8 - point/0,27.5,81.5;

p9 - point/72,0,0;

-301-

f1 - facelpl,p2,p3,ylarge;

f5 - face/P1,P5,p6,xsmall;

11 - line/pl, p2;

12 - line/p4,P7;

15 - line/p0,p9;

el - edge/il,xlarge;

e2 - edge/12,zsmall;

e5 - edge/15,xlarge;

terbod;

remark the following defines some world features;

wpO - point/0,0,0;

wpl - point/0,27.5,-81.5;

wp2 - point/72,27.5,-81.5;

wP3 - point/72,27.5,81.5;

wp4 - point/72,-27.5,81.5;

wp5 - point/O,-27.5,81.5;

wp6 - point/ 0, -27.5,-81 .5;

wp7 - point/72,-27.5,-81.5;

wpb - point/0,27.5,81.5;

wp9 - point/72,0,0;

wfl - face/wpl,wp2,wP3,ylarge;

wf5 - Pace/wpl,wp5,wp6,xlarge;

15 - line/wpO,wp9;

e5 - edge/15,xlarge;

peami - point/503,595.0,159.4;

caml-camera/position,pcaml,theta,-105,ph1,37.2,psi,0,focus,33.1;

remark defines the camera;

-302-

setcamera/camt;

remark Now in situation 1;

coplanar/ft of box, wf1;

aligned/e5 of box, e5 of world;

against/f5 of box, wf5;

remark these relations define the nominal position of the body;

combine;

inviolate/against,wf5,f5 of box;

look/e1 of box; remark verifies a vertical edge of the body;

look/e2 of box; remark verifies a horizontal edge of the body;

ter com;

terapt;

4. The Test Procedure

The body to be verified was placed on the top of the turntable with

an accuracy of about 1 mm in position and 2 degrees in orientation. The

run time program which was described in Section 9.2 was called to sug-

gest the window to the edge finder on the Vision Box, and to receive and

process the vision information which was obtained by the edge finder.

The communication between the edge finder (on the Vision Box) and the

run time program (on the DEC-10) was done via a human. Every time the

body was placed at a new position or the turntable was rotated, the run

-303-

time program was called and the vision data obtained from the Vision Box

was typed in. The following is the record of a segment of the test pro-

cedure:

The camera caml is working in situation 2

The edge may appear between

(224.299,79.51659) and (51.14755,45.06556);

The window is

pl. (209;85); P2: (211;68); p3: (63;56)

p1: 209 78
p2: 65 46

The camera caml is working in situation 2

The edge may appear between

(36.00486,173.0825) and (30.64297,88.95519);

The window is

p1: (20;161); p2: (49;158); P3: (16;103)

p1: 39 158

p2: 35 100

In situation 2 the nominal position of body box (2) is:

1 .0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.0 0.0 0.0

The real position Is:

1.0 0.0 0.0
0.0 0.9995763 -0.02910785
0.0 0.02910785 0.9995763
0.0 -0.1896315 0.1235619

-304-

5. The Result of the Test

The result of the test is contained in the following table. The

table also shows the comparison of the setting positions of the body and

its verified positions obtained by using vision information. The posi-

tion is measured in millimetres while the orientation measured in

degrees. Since there is an INVIOLATE statement specified in the vision

task, the position of the body has only three degrees of freedom: two

translational and one rotational. In all cases the nominal position of

the body was the identity matrix.

setting position verified position comparison --------------------
Y I Z Itheta Y I Z Itheta

Y I Z I theta

s s ..= s s a s a.=... a .= s s! s s s. s s s MW s ..= sssss s s sssssssssssss
0191012I16 _0_19012I16

2 0 0 -15 -1.121 -2.161-17.3 -1.121 -2.161 -2.3

3 0 0 15 -1.291 3.981 12.8 -1.291 3.981 -2.2
-------------------- --------------------

4 -10 0 0 -11.651 3.691 -0.1 -1.651 3.691 -0.1

5 10 1 0 1 0 7.161 0.091 -0.1 -2.841 0.091 -0.1

6 0 1 -15 0 -3.771-19.391 -0.3 -3.771 -4.391 -0.3

7 0 1 10 0 -1.461 9.351 -0.2 -1.461 -0.651 -0.2
------------ --- --------------

8 -10 -10 0 -13.021-9.8151 -0.2 -3.021 0.1851 -0.2
------------- ------------

6. A Brief Analysis of the Accuracy

The accuracy of the verified positions is mainly dependent upon the

calibration of the camera and the resolution of the image. As mentioned

-305-

in Section 2 in this Appendix, the accuracy of the position of the cam-

era is about 2 mm while that of the orientation is within 1 degree. The

non-linearity of the camera imaging process is about 10%. Each pixel in

the image corresponds to about 1 mm distance on a plane which is perpen-

dicular to the X-axis of the camera and placed at the same distance as

that between the camera and the body to be verified. The accuracy of

setting the positions is about 1 mm and that of the orientation is

within 2 degrees. It can be seen from the result that the accuracy of

the verified position is of the same order as that of the calibration.

Because of the lack of proper equipment, it is difficult to increase

the accuracy of both the calibration and the setting. Under these con-

ditions the result obtained could be considered as satisfactory. With

better equipment and therefore better calibration, higher accuracy of

the result of the vision verification achieved this way could be

expected. Calibration is relatively infrequent compared with the use of

vision information. Making allowance for the temporary nature of the

vision station, this experiment has demonstrated the usefulness of the

vision verification in robot assembly.

	PhD coversheet April 2012
	EDI-INF-PHD-84-017.pdf

