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Abstract 

This thesis describes work on using vision verification within an 

object level language for describing robot assembly (RAPT). The motiva- 

tion for this thesis is provided by two problems. The first is how to 

enhance a high level robot programming language so that it can encompass 

vision commands to locate workpieces of an assembly. The second is how 

to find a way of making full use of sensory information to update the 

robot system's knowledge about the environment. The work described in 

this thesis consists of three parts: 

(1) adding vision commands into the RAPT input language so that 

the user can specify vision verification tasks; 

(2) implementing a symbolic geometrical reasoning system so that 

vision data can be reasoned about symbolically at compile time 

in order to speed up run time operations; 

(3) providing a framework which enables the RAPT system to make 

full use of the sensory information. 

The vision commands allow partial information about positions to be 

combined with sensory information in a general way, and the symbolic 

reasoning system allows much of the reasoning work about vision informa- 

tion to be done before the actual information is obtained. The frame- 

work combines a verification vision facility with an object level 

language in an intelligent way so that all ramifications of the effects 

of sensory data are taken account of. The heart of the framework is the 

modifying factor array. The position of each object is expressed as the 

product of two parts: the planned position and the difference between 

this and "he actual one. This difference, referred to as the modifying 

factor of an object, is stored in the modifying factor array. The 
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planned position is described by the user in the usual way in a RAPT 

program and its value is inferred by the RAPT reasoning system. Modify- 

ing factors of objects whose positions are directly verified are defined 

at compile time as symbolic expressions containing variables whose value 

will become known at run time. The modifying factors of other objects 

(not directly verified) may be dependent upon positions of objects which 

are verified. At compile time the framework reasons about the influence 

of the sensory information on the objects which are not verified 
directly by the vision system, and establishes connections among modify- 

ing factors of objects in each situation. This framework makes the 

representation of the influence of vision information on the robot's 
knowledge of the environment compact and simple. 

All the programming has been done. It has been tested with simu- 

lated data and works successfully. 
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Glossary 

BODY: an object which is modelled by the user in RAPT. 

POSITION: a transformation in 3-D space represented by a 4x4 matrix. 

SITUATION: distinct state of the world in which body positions will be 

specified. 

ACTION: change of the world state from one situation to the next. 

NOMINAL POSITION: the planned position of a body which is deduced by the 

RAPT reasoning system. PNbi refers to the nominal position of 

body b in situation i. 

VERIFIED POSITION: the actual position of a body obtained by using 

vision verification. PVbi refers to the verified position of body 

b in situation i. 
ACTUAL POSITION: in the thesis the term ACTUAL POSITION has the same 

significance as verified position. 

SPECIFIED POSITION: the destination of a body which is constrained by 

certain spatial relationships between the body and another. The 

relationships must be explicitly expressed by the user. 

UNSPECIFIED POSITION: the destination of a body which is not constrained 

by any explicitly expressed spatial relationships. 

SPECIFIED ACTION: an action which moves a body to a specified position. 

UNSPECIFIED ACTION: an action which moves a body to an unspecified posi- 

tion. 

ACTUAL ACTION: movement from an actual position to another actual posi- 

tion. 

MODIFYING FACTOR: a factor which indicates the discrepancy between the 

nominal position of a body and its actual one. FMbi refers to the 

modifying factor of body b in situation i using the prefix conven- 

tion PVbi = FMbi * PNbi 
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Chapter 1. Introduction 

The industrial robot has been in existence for some twenty years and 

used in real applications for a decade. During this period of time it 

has shown that it is an efficient automation device for performing a 

variety of tasks: it can work in an environment which is harmful or 

dangerous to people; it can work almost twenty four hours a day without 

rest; it is reliable in that it does not make mistakes like human beings 

when they are tired. The adoption of the industrial robot can raise 

productivity significantly and therefore more and more industries are 

trying to employ the robot. As robot techniques have been developing 

rapidly, their numbers and their applications have also been increasing. 

This introduces new areas of research, for example, in programming and 

in the use of sensory information. This thesis is on the topic of 

including sensory information into robot programming languages. 

1.1. The Development of the Industrial Robot 

The industrial robot is controlled by electronic equipment, usually 

computers, and has developed from two sources: the tele-operator and the 

numerically controlled machine tool. 

The tele-operator, which is also sometimes referred to as a master- 

slave manipulator, is a device which allows a human user to perform a 

task at a distance. The first tele-operator was developed during the 

second world war to handle radioactive materials. The user was 

separated from a radioactive task by a concrete wall with one or more 

viewing ports through which the task could be monitored. The user would 
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move a "master" hand in the safe environment while the "slave" hand 

would copy the motion in the hostile environment. Feedback was pri- 

marily done by the user's observation. in order to sense the force 

which was applied to the "slave" arm, force feedback was introduced to 

back-drive the "master" in some later models of the tele-operator 

[PAU81J. 

The numerically controlled (NC) machine tool is a piece of automatic 

equipment which cuts metal under the control of digitized information. 

The first NC machine tool was developed in the early 1950's and made use 

of developing digital techniques to coordinate servo controlled axes 

[PAU81]. 

The first industrial robot appeared in the 1960's [ENG80]. It was a 

device which combined the articulated linkage of the tele-operator with 

the servoed axes of the NC machine. The industrial robot could be 

"taught" to perform simple jobs by driving it by hand through the 

sequence of task positions. These positions were recorded in digital 

memory. When the robot executed the specified task, the individual 

joint axes of the robot replayed the recorded positions. 

Since the appearance of the first industrial robot, many different 

types of robot have been developed. They range from the simple ones 

(with two degrees of freedom) to the sophisticated ones such as 

Unimation's PUMA (with six degrees of freedom) [JAP82]. The increase of 

the complexity of the robot enables it to perform complex tasks. As 

more complex behaviour becomes possible, new techniques are required if 

such benaviour is to be readily specified. In order to ease the job of 

specifying the task for the robot, versatile programming methods have 

-2- 



been developed. A number of sensing techniques have also been intro- 

duced to enable the robot to adapt its performance to a change of 

environment. 

1.2. Applications of the Robot 

The computer controlled industrial robot is a general purpose auto- 

mation device. It has been widely used in various tasks such as surface 

coating, spot welding, arc welding, machine tool servicing, forging and 

packaging. Some non-mechanical industries, such as the textile industry 

[KEM83a] and the food industry [CR082], are also attempting to employ 

robots. 

The combination of the industrial robot with the problem of spot 

welding automobile bodies was the first important application area which 

allowed the versatility of the industrial robot to be properly exploited 

[PUG82]. Robots have achieved an established role in paint spraying and 

their use in sensor guided arc welding has achieved an advanced develop- 

ment stage. In all these areas precise contact with the work piece is 

not essential. 

In marked contrast assembly is a real challenge to the robot. Com- 

pared with the tasks mentioned above, the assembly task is more varied 

and complex. The assembly task usually requires the robot to have at 

least six degrees of freedom so that it can put workpieces at any posi- 

tion and orientation within a certain range of space. It requires the 

robot to have high accuracy so that the task can be performed with suf- 

ficient precision. It also requires powerful robot programming tools to 
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be provided so that complex tasks can be described easily. The motiva- 

tion of much of the current research in robot programming tools and 

other related robotics problems is the requirement of the assembly task. 

1.3. Robot Programming Languages 

A robot programming language enables the user to describe an assem- 

bly task in textual mode, thus avoiding the disadvantages of teach mode 

discussed in Chapter 2. Robot languages are quite different from each 

other in syntax, structure and capability. Some languages have stemmed 

from NC machine tool control languages, some have evolved with the addi- 

tion of robot control commands into conventional computer languages, and 

some have been specially designed for describing assembly tasks. In the 

most basic language, the user must specify the movement of each actuator 

of the robot for each action. In an ideal high level language, the user 

should only be required to indicate the starting state and the final 

goal state of the assembly task, the structures of the robot, the sen- 

sors available, etc; the language system should be able to decide the 

correct robot action sequencing. Currently, in most robot languages, 

the user must make a plan for an assembly task; determine a collision 

free path between the origin and the destination of all motions; modify 

assembly strategies to fit the particular geometric environment and 

examine the strategies. When sensory information is to be used, the 

language must also provide facilities for the user to describe a sensing 

task. Typically, the user must be able to tell the robot system when 

and how to obtain and use the information. 
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1.4. The Robot and Sensors 

Theoreti.aliy speaking, a robot with many degrees of freedom can 

perform yilany kind3of task within the physical limits set by its 

dimensions, load capacity, mechanical tolerance and sensor resolution. 

However, this potential capability of the robot may be limited by an 

inadequate ability for sensing both the state of the environment and the 

robot itself and by the interpretation of sensory data. Even if the 

precision and repeatability of the robot is high enough to perform a 

certain task, a specified task may still fail if there are some uncer- 

tainties or unexpected disturbances in the environment. A remedy to 

this problem is to use sensors to detect the changes in the environment 

and in the performance of the robot. 

The importance of the use of sensors was already recognized at an 

early stage in the use of robots. In 1961, MIT [ERN61] developed a com- 

puter controlled robot arm which was equipped with touch sensors. For 

this robot, tasks were defined as a sequence of touch-defined goal 

states. Since then more types of sensors have been introduced. These 

sensors can be divided into two types: contact sensors and non-contact 

sensors. Contact sensors include touch sensors, torque sensors, force 

sensors, and skin-like or hand-like tactile sensors [HAR81]. Non- 

contact sensors contain visual sensors and approximate range sensors. 

Each type of sensor can be installed to monitor different tasks. 

Vision sensors are examples of an important class of sensors which 

provide information about the external environment of the robot. In 

general, vision is suitable for acquiring and orienting workpieces while 

contact sensors such as force sensors and touch sensors are especially 
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useful in detecting and removing small positional errors between parts 

when they are being fitted together [KEM81]. Compared with contact sen- 

sors, visual sensors work faster in locating objects since sensors (usu- 

ally TV cameras) do not need to move during operation, while most con- 

tact sensors need to grope around. Visual sensors do not introduce 

additional disturbance to the environment since no contact between sen- 

sors and parts is made. Thus, since the first robot arm cooperated with 

a camera in 1970 [FEL71], vision has been used to help the robot in 

recognizing and locating workpieces and in guiding the robot. Vision 

works well in these areas although in most cases the control of the 

vision system and the communication between vision and the robot are 

performed in an inflexible way which does not permit account to be taken 

of relevant knowledge about the workplace. 

There are two classes of method for using sensors. Firstly, the 

sensor is used in a closed loop which controls the state of a robot when 

it is executing a specified action. Methods belonging to this class 

usually fall into the domain of control theory and are outside the scope 

of this thesis. Secondly, the sensor is used to examine the environment 

in order to adjust the command or command sequence to be executed by the 

robot. For example, if the sensory information shows that a "picking- 

up" action has failed, then the robot can retry this action. In order 

to make use of the sensory information, corresponding control facilities 
:rust be provided in robot programming languages. 

Accurate information is the basis of making good use of sensors. 

This problem is more concerned with the sensor hardware. For example, 

in order to acquire more accurate sensory information, touch sensors 

must be more sensitive; visual sensors must have nigher resolution. The 
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pre-processing methods for the sensory information are also important. 

The discussion of these is also outside the scope of this thesis. The 

vision part of the research work is merely used as an experimental tool 

and the major work of the thesis is concerned with how to specify vision 

tasks and how to make full use of accurate vision data. 

1.5. The Motivation of the Thesis 

The motivation for this thesis is provided by two problems. The 

first is how to enhance a high level robot programming language, such as 

RAPT [AMB82], so that it can express vision commands to locate work- 

pieces of an assembly. RAPT is an object level language in the sense 

that it has an explicit representation of the objects in the robot's 

world, and their disposition in space. The second problem that this 

work covers is how to find a way of making full use of sensory informa- 

tion to update the knowledge of the robot system about its environment. 

1.5.1. Specifying Vision Tasks in a High Level Robot Language 

Some robot language systems provide the facility to control the 

acquisition and processing of sensory information. However, most of 

them deal with simple sensory information like touch sensor or force 

sensor information. The sensory information is used as a binary signal 

to terminate or start an action. There are some languages such as VAL 

ILUNI79] which can control the operation of a vision system and obtain 

information from it, but the level of these languages is lower than 

RAPT. There has been no development of a high level robot language like 
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insert the following paragraph at the end of Section 1.5.1. in p8 

In this research work, vision data is used to deal with errors in 

object positioning caused by feeders, inaccurate fixtures and delivery 

systems. It is assumed that objects are accurately represented by their 

models and that apart from an initial mounting error, the robot performs 

perfectly. 



RAPT with combined vision facilities. RAPT is an object level language 

which has knowledge about the assembly task. The work to be described 

here shows how such knowledge can be combined with sensory information 

in an intelligent way. 

This research work combines a special kind of vision, verification 

vision [BOL77], with RAPT. Verification vision is used when there is 

already expectation about the objects to be seen and their layout. In 

order to specify vision tasks, a set of vision commands have been added 

to the RAPT input language. These commands allow the user to describe 

how he wants to start a vision task. They also allow the user partially 

to predict how to interpret the information. Using the information pro- 

vided by the associated assembly program, the vision system works out 

details of vision tasks, such as which areas of the image should be 

examined. Subsequently, the vision system reasons about the vision 

information in order to find out the exact position of the object to be 

verified. This reasoning is done at RAPT compile time in order to make 

the run time system work fast. Since the vision information cannot be 

obtained until run time, the reasoning is symbolic. At run time, when 

relevant vision information is available, the symbolic result of the 

reasoning can be evaluated and the actual position of the verified 

object can be decided. 

1.5.2. Intelligent Use of Vision Information 

One of the most important problems with sensory information in pro- 

gramming and controlling the robot is in planning how to use the 

knowledge obtained from the information to adjust the subsequent actions 
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insert the following paragraph at the end of line 17 in p9: 

As the work uses the robot language RAPT as its vehicle to achieve 

its goal, the limitations of RAPT impose constraints on the work. For 

example, the incompleteness of the RAPT modelling system restricts the 

capability of the vision system so that the user has to specify the 

vision tasks in greater detail than with a full solid modelling system. 

The lack of a flow control facility in RAPT limits the method of using 

vision information. For example, the vision system can only adjust the 

planned actions and cannot choose between alternative actions. In spite 

of all these constraints, the thesis work successfully combines a vision 

facility with RAPT in a general way. 



of the robot. For instance, if a touch sensor touches an object at an 

unexpected position, what should the robot do? If the sensory informa- 

tion shows that the position of an object is different from the planned 

one, what could the robot system know about the effect of the position 

discrepancy on the assembly task and how should the robot adjust the 

following actions? At the moment, most strategies for using sensory 

information are very simple. For example, the robot manipulator may 

simply stop a specified movement when a touch signal is received. 

Although vision can provide a lot of information about the environment, 

in most current robot systems the positional information is used to 

update the knowledge of the robot system in relation to the correspond- 

ing object only. No consideration of the effect on other objects in the 

same environment is made. In the work to be described in this thesis, a 

new approach is introduced to make full use of the information obtained 

from the verification vision so that the knowledge of the robot system 

about the environment, rather than that of a single object only, can be 

updated in the light of this information. 

1.6. Structure of the Thesis 

This thesis is structured as follows: 

Chapter 2 reviews the two main modes of robot programming: the teach 

mode and the textual mode, discusses the classification of robot pro- 

gramming languages and the control facilities of sensory information in 

these languages. 

Chapter 3 discusses details of a high level robot language RAPT, on 



which the research work of the thesis is based. These details include 

the input language and the geometrical reasoning system of RAPT. 

Chapter 4 surveys the development of computer vision systems and 

their application in robotics. 

Chapter 5 discusses the new vision commands which enable the user to 

specify the vision verification task in RAPT. 

Chapter 6 discusses a symbolic reasoning system which is used by the 

verification vision. 

Chapter 7 discusses the principle of the framework which handles 

vision information and describes how the information influences the 

knowledge of the robot about the actual positions of objects. This 

chapter also discusses the possible ways of adjusting the actions of the 

robot at run time taking account of the vision information. 

Chapter 8 establishes the rules for making and simplifying the modi- 

fying factor array which is the heart of the framework described in 

Chapter 7. 

Chapter 9 describes the implementation of the vision system and 

discusses the experimental results, and concludes the research work. 

Finally, Chapter 10 lists some work to be done in the future and 

discusses the possible ways of realizing this. 
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Chapter 2. Robot Programming Languages 

Robot programming is an important process in which the user speci- 

fies the tasks that he wants the robot to do. During the programming 

process, the user has to provide sufficient information for a robot exe- 

cutable specification to be produced, which will cause the robot system 

to perform the desired tasks. Various programming methods have been 

developed to provide efficient programming tools. The power of a pro- 

gramming tool is judged by a number of attributes. These attributes 

include ease and economy of programming, facilities for interaction 

between the user and the robot at programming time, facilities for 

interaction between the robot and its working environment, etc. As 

there is a trend to use robots to fulfil more and more complex tasks, 

more advanced programming tools are needed: the formal robot command 

language is an important one among them. 

2.1. Two Modes in Programming Robots 

There are two major approaches in programming robots. One is 

referred to as teach mode programming. It is also known as programming 

by showing or guiding [LOZ82]. Teach mode programming has been used in 

programming industrial robots since their introduction in the early 

1960s, and is well developed. Most commercial robots are equipped with 

some facilities so that they can be programmed in teach mode. The other 

approach is referred to as textual programming and this makes use of 

some formal language. There is a lot of interest in the development of 

textual programming both in academia and in industry because it adds to 

the versatility of robot use. 
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2.2. Teach Mode 

In teach mode programming the robot arm is positioned at various 

places through which it must pass while performing the task. Small 

manipulators with back drivable actuators are usually pushed and pulled 

through moves. Medium manipulators are usually moved by the use of but- 

tons, keyboards, etc. Large manipulators which are difficult or 

dangerous for the programmer to control directly are often equipped with 

"teaching arms" which can be used to learn the positions and motions 

[KEM81]. Sometimes these techniques can be used together. This posi- 

tion and/or motion information is recorded by the robot system. At exe- 

cution time, the robot arm repeats the motions through the positions 

which it has been taught. Therefore, this mode of programming is also 

referred by some authors (e.g. [TAY761) to as tape recorder mode. 

The information acquired in teach phase can be stored either on a 

magnetic tape or in computer memory. The basic data is of the position. 

However, information about velocity and trajectory can also be recorded. 

When teaching a trajectory, the programmer leads the robot arm moving 

through the specified trajectory at a real speed or a proportionally 

ratioed speed. The positions of the robot arm are recorded as a func- 

tion of time. At execution time, the robot arm moves under the control 

of a clock so that the trajectory and velocity which have been taught 

can be repeated. Changing the frequency of the clock can speed up or 

slow down the execution of the robot arm. 

The main advantage of teach mode programming is its simplicity. It 
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is easy to do and its results can be perceived directly during program- 

ming. Also, it does not need powerful computational facilities. How- 

ever, as Koutsou [KOU813 among others pointed out, its disadvantages 

cannot be disregarded. This approach of programming makes the fundamen- 

tal assumption that the task being programmed can be described ade- 

quately by specifying a sequence of absolute positions. Therefore it 
relies on a very high degree of repeatability of the manipulator and 

usually needs to use some specially designed tools or feeders to guaran- 

tee the accuracy of the positions of the workpieces to be manipulated. 

It is difficult to use sensory data to interact with the world and 

therefore the operation of the manipulator is not adaptive to changes in 

the work station and the robot cannot deal with unanticipated events. 

The most likely sensory data which can be used in teach mode programming 

are some switch signals which can start or stop a sequence of operation. 

This interaction can provide a degree of synchronization between the 

robot and other machines. There are no flow control facilities such as 

branches or loops available in this mode of programming so that the 

"program" cannot express anticipated alternative operations. This 

method of programming is error prone for complex tasks and difficult to 

edit. It is inefficient in terms of human effort since programs pro- 

duced in this way are not general: usually no programs or their parts 

designed in this mode for one task can even be re-used for another simi- 

lar task. For example, suppose the user wants the robot to pick up ten 

bolts which are arranged in a row on a table with every adjacent pair 

the same distance from each other. Although some systems have a limited 

palleting ability, in most cases the user has to teach the robot the ten 

similar actions with each action having only a small difference from the 

previous one. This method is inefficient in terms of equipment utiliza- 

tion since the method is on-line, and during the programming period, the 
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robot arm is used as an information collector and therefore cannot do 

its real job. The lack of the capability of using sensory data prevents 

this method from making available the full capabilities of the robot. 

In order to overcome some of the problems of pure teach mode pro- 

gramming several improved methods, such as the augmented teach mode 

method [TAY76] and off-line guiding mode programming [L0Z82], have been 

suggested and developed. For example, in augmented teach mode, a number 

of "built-in" functions can be added into the system. These functions 

provide the user with some commands to specify differential motions and 

use some simple sensors. Thus the robot can be taught to use touch sen- 

sors to determine the location of some object to be manipulated. After 

the object is located, subsequent motions are made relative to the 

object's coordinate frame. This behaviour can be referred to as a 

"search" action. The built-in functions can also provide some primi- 

tives for the user to specify some common tasks. Furthermore, some sys- 

tems also provide simple control structures [L0Z82], although the capa- 

bilities of the control structure are limited. The augmented teach mode 

retains many of the advantages of pure teach mode. The principal new 

advantages offered by the technique are: 

1. More tasks can be performed. 

2. Absolute accuracies need to be less, thus reducing fixturing 

costs. 

3. Programs may be shortened, since some of the special functions 

may include several motions. 

The main disadvantages of this mode in addition to those of pure teach 

mode are: 
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1. Augmented mode needs a better programming understanding on the 

part of the user. 

2. It requires a more powerful run time system than pure teach 

mode. 

In off-line guiding mode, the CAD model or mockup of the task 

together with a robot model can be used to define the program. The sys- 

tem simulates the motions of the robot in response to a program or to 

guiding input from a teach device. Since this mode is off-line, it is 
efficient in terms of equipment utilization. It is also safer than pure 

teach mode for both the user and the equipment. 

Although the modes described above make some improvements to teach 

mode programming, they are still teach mode. Therefore they retain the 

main disadvantages of pure teach mode. For example, it is difficult to 

use variables and adopt a complex control structure. These improvements 

are rather limited and cannot solve most of the important problems which 

are inherent in teach mode. 

2.3. Textual Programming 

Textual programming is usually referred to as off-line programming 

though it does not necessarily preclude on-line use of the robot manipu- 

lator during the programming phase. This mode of programming produces 

programs as text written in formal languages. Like ordinary computer 

language programs, these textual robot programs are easy to edit and 

correct by the use of various programming support facilities. It makes 

communication between robot programs and a CAD/CAM data base possible. 
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Some common parts of programs can be used in several different tasks 

simply by means of editing or subroutine call. This style of program- 

ming is therefore more efficient than teach mode in terms of human 

effort. It is also more efficient in terms of robot utilization since 

the robot is not involved in the programming phase and can therefore 

remain in operation while a new program is being written. Ideally, the 

user both writes and checks his programs in off-line mode. He can simu- 

late robot operations in order to check the correctness of his programs 

before running them. This mode of programming also makes it possible to 

use sensory information so that changes in the environment can be 

detected and the robot can adapt its operation to the new conditions. 

This method of programming, therefore, has the capability of dealing 

with more complex environments and tasks than can teach mode program- 

ming. The main disadvantages of this approach are that it requires more 

run time support and off-line computer power. It also requires the user 

to have specialized programming knowledge. However, these problems are 

becoming less important since progress in micro-electronics is bringing 

about cheaper computing facilities and research on robotics is producing 

languages more friendly to the human user. Meanwhile, the advantages of 

the textual programming method are becoming more essential as the com- 

plexity of the robot environments and tasks increases. Thus, the tex- 

tual programming method has better prospects. 

In some robot languages, such as VAL [UNI791, the robot may be used 

on-line during the programming phase in order to obtain positional 

information for textual programs. Theoretically speaking, this is not 

indispensable for programming in these languages. On the other hand, it 

increases the flexibility of the programming method and sometimes may be 

convenient to the programmer. 
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2.4. Classification of Robot Command Languages 

Robot programming languages can be classified into different levels 

depending upon the subjects on which the programmer focuses his atten- 

tion in describing tasks. Different schemes exist for the classifica- 

tion. One of the most commonly used classification was first proposed 

by Latombe [LAT79, KEM81, KOU81]. In this scheme, robot languages are 

divided into four levels. They are 

1) objective level, 

2) object level, 

3) end-effector level, 

4) actuator level. 

The objective level is the highest conceptual level. In languages 

at this level the task would be described in terms of the final objec- 

tive, and the programmer would only need to provide the robot system 

with knowledge about workpieces and assemblies, and then tell the robot 

system which kind of product he wants. The robot system would then be 

able to plan the whole task, decide the sequence of operation, choose 

proper tools, select a collision avoiding trajectory for the robot mani- 

pulator, and so on in order to control the robot to achieve the final 

objective. The realization of languages at this level needs more 

research work done in areas such as problem solving and planning, and in 

applying such concepts to the field of industrial robotics. There are 

no languages at this level existing at the present time. 
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Object level languages are the next level down. At this level the 

programmer concentrates his attention on operations on the objects. He 

does not have to worry about the position and actions of the robot mani- 

pulator and the details of the manipulation. What he needs to specify 

is the state of objects to be manipulated at each step of an assembly 

task. Objects and the environment are represented symbolically in pro- 

grams. These symbolic representations are referred to as models. The 

task is described by defining the positions and moves of the objects 

which are to be handled by the robot. This information is then con- 

verted by some computational system into run time commands that the 

robot can obey. It is the user's duty, at this level, to plan the 

sequence of the operations in the task, to take into account the neces- 

sity for avoiding collisions and to specify some other details of the 

task. However, all these can be done at the object level in a way which 

is natural to the human user. Some robot languages which can be classi- 

fied in this level have been developed. Some well known examples are 

LAMA [LOZ76], AUTOPASS [LIE77], RAPT [POP78] and LAMA-S [FAL80]. Almost 

all languages at this level are still in the laboratory development 

stage. 

End-effector level languages are also referred to as manipulator 

level ones. In languages at end-effector level the task is described in 

terms of the displacement and operation of the end-effector. At this 

level, the robot system has little knowledge about the objects which it 
handles and the environment in which it works, and therefore the user 

has to plan the task in great detail, such as the routes of the moves of 

the end-effector, opening and closing of the gripper and so on. The 

robot system knows about the kinematic structure of the robot and so the 

positional information of the end-effector can be transformed into 
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specifications of the actions of each joint and actuator of the robot. 

Some languages at this level make use of the "frame" to represent posi- 

tions of objects. The frame is a local coordinate system. It provides 

a way for describing the positions of properties such as holes and some 

special parts of an object in terms of relative positions and gives the 

robot system limited knowledge of the objects. Knowing the position of 

a frame and relative positions of properties, the robot system can 

deduce the positions of the properties of the corresponding object in 

terms of absolute coordinates. Sometimes the programming at this level 

takes place on-line in order to use the manipulator to collect posi- 

tional information for describing moves. A number of languages belong- 

ing to this level have been built up, such as WAVE [PAU77], VAL [UNI791, 

EMILY [WIL75], LM [LAT81], AL [FIN75] and MAPLE [DAR75]. Most current 

commercial robot languages can be classified into this level. 

In languages at actuator level, the programmer has to consider the 

sequence of actions of each joint and actuator of the robot in order to 

specify the operation of the robot. Languages at this level are 

designed for instructing particular robots and usually used by higher 

level language systems to generate robot executable commands. 

Some authors (e.g. Kempf [KEM81]) classify the teach mode program- 

ming as programming by the use of actuator level languages. However, 

the author can not agree with this: his argument is that although most 

teach mode programming produces records about the actions of the robot 

actuators, it usually does not create any forms of textual results in 

terms of formal languages, and the programmer's attention is mainly 

focused on the position and operation of the end-effector of the robot 

rather than of the actuators. Furthermore, in some teach mode 
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programming systems the data to be recorded can be of the positions of 

the end-effector of the robot rather than of the actions of actuators 

[TAY761. In this case, there are no direct connections between teach 

mode and the actuator level programming at all. 

2.5. Sensory Information in Robot Languages 

The versatility and adaptability of robots can be greatly increased 

if they are able to make use of sensory information. In order to 

inspect the performance of the robot and adapt the task specifications 

to the environment when the robot executes the task, various kinds of 

sensors must be used. Some authors [WAN76] think that in order to make 

full use of the robot, for example, in order to perform an assembly task 

in which the planned path of the manipulator may be cluttered, the fol- 
lowing sensors could be usefully, if not necessarily, employed: 

1. A gripping force sensor for controlling gripping force. 

2. A multi-degree of freedom force sensor to resolve externally 

applied forces and moments. 

3. A whisker sensor to test if the gripper is touching anything. 

4. An area tactile device to show the shapes of patterns produced 

on gripping an object and to detect slippage of the parts. 

5. A "range finder" or a "clear path ahead" sensor. 

6. An optical surveillance sensor to analyse the assembly environ- 

ment. 

7. Safety sensors which trigger when any object interferes with a 

certain space around the manipulator. 

8. Position, velocity and acceleration sensors for position and 
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dynamic motion control of the manipulator system. 

Of course, the list is endless. For example, vision recognition and 

verification may also be needed. New requirements may emerge, and new 

technologies may provide better solutions for each requirement, either 

old or new. 

In order to control these sensors in textual robot programming, 

robot languages must provide suitable means for the user to specify when 

and how to use these sensors, and how the behaviour of the robot should 

be modified. However, the control of sensory information is still a 

difficult problem in robot language design. No current robot 

language has been able to specify systems to control so many kinds of 

sensors successfully. Most languages which have the capability to use 

sensory information control only one or two kinds of sensors in a rela- 

tively simple way. They are not able to take full advantage of sensory 

information to update the knowledge of the robot system about the 

environment. 

A number of robot programming languages have been reported using 

sensory information. The languages concerned include those of both 

end-effector level and object level. The sensor types which have been 

dealt with involve force, torque, contact and vision. 

2.5.1. Sensory Information as Binary Signals 

The most commonly used sensory information is of force or torque 

sensors. This kind of sensory information is analogue. However, sane 
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languages which handle this kind of information, such as AL [FIN75)1 LM 

[LAT81), AUTOPASS [LIE77), use the information as a binary signal. In 

these languages, the user can specify a threshold value for an expected 

sensor data. This specified value can be used either as a termination 

condition or as a constraint description of an action. 

In contrast to this, WAVE [PAU77) uses binary type sensory informa- 

tion in a more complex way. In the WAVE system, the user's programs are 

expanded at planning time into position dependent coordinated motions. 

Dynamic, configuration dependent effects are pre-computed since only 

minor deviations from the plan are expected during execution. Sensory 

information is adopted in order to detect the deviation and modify sub- 

sequent sections of the plan to eliminate further differences. The 

gripper of the robot which WAVE controls has a binary touch sensor on 

the inside of each finger tip. When a command CENTER is used to adjust 

the position of the gripper with respect to an object, the fingers start 

closing, the status of the touch sensors being monitored. If one finger 

sensor touches the object, then the gripper starts to translate towards 

that side at such a rate as to keep that finger fixed in space while 

still closing the fingers. When the second sensor touches the other 

side of the object, the gripper stops translating and the fingers con- 

tinue closing until the required force level is met. Hence the CENTER 

command provides a method to perceive actual positions of objects. It 

also provides the necessary compliance between the robot and the world. 

The user can use other commands to specify the modification of the sub- 

sequent plan of actions. Of course, the touch sensor information can 

also be used as the condition to terminate some actions. 

LAMA [LOZ76] also uses force or torque sensor data. The techniques 

-22- 



that LAMA adopts to deal with sensory information are distinct from the 

other systems. In the LAMA system a feedback planner is used to expand 

the user's program into manipulator programs. The feedback planner 

simulates, incompletely and qualitatively, the assembly operations, con- 

siders the effects of each operation such as whether a contact will hap- 

pen and so on, and roughly decides what the force or torque sensory 

value will be. The information provided by the simulation is necessary 

in order to evaluate the feasibility of a proposed assembly operation 

and simplify the interpretation of the feedback information obtained 

during execution. The sensory data is used to detect whether a speci- 

fied action terminates at a correct position or not. If not, an error 

is reported. 

2.5.2. Vision Information 

Visual information can also be handled by some robot languages. For 

example, WAVE can use visual feedback to detect the discrepancies 

between a planned position and an actual one, and guide the gripper to 

achieve the correct position. In the work reported by R. Goldman 

[GOL77], a vision system cooperated with the AL system to fulfill the 

verification task. Whenever the manipulator program needed visual feed- 

back it signalled the verification vision system. The vision system 

then took a picture and computed the needed information which was stored 

into the appropriate variable in the manipulator code. This vision sys- 

tem could be used to check whether a specified operation, e.g. picking 

up a workpiece, had succeeded or not. In the case of failure of an 

operation, the vision system could signal the manipulator and ask it to 

re-do the operation. The vision system could also be used to determine 
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precise locations of some features, e.g. holes, of a workpiece. 

Some vision commands have been added to the basic VAL language to 

enable it to use a Unimation Inc. UNIVISION system. A UNIVISION system 

consists of a Unimation VAL-controlled industrial robot and a Machine 

Intelligence Corporation (MIC) VS-100 vision system. The vision system 

uses a binary picture taken by a TV camera and produces a two- 

dimensional interpretation of the picture in order to recognize objects 

and locate them. Before the vision system can identify objects, it must 

be trained by showing it prototypes and names of objects. During the 

training stage, the system learns about features of prototypes of 

objects, such as area, perimeter, minimum and maximum radii and so on. 

The recognition is done by comparing the blobs in the picture with the 

characteristics of the trained prototypes in an effort to find a match. 

The location of objects is done by calculating the centroids of images 

of the objects. The vision system determines the orientations of 

objects via a user-selectable criterion such as the angle from the posi- 

tive X-axis of the camera reference frame to the largest radius. This 

location information is then used to update a position variable of the 

user's program in order to control the movement of the manipulator. 

MCL [BAU81] is an end-effector level language. It consists of sub- 

stantial additions to the basic capabilities of the numerical control 

language APT. These additions allow the user to direct the operation of 

industrial robots and a variety of sensory devices as well as standard 

NC machines. MCL can control two classes of sensors: "simple" sensors 

and "complex" sensors. Simple sensors include contact sensors, tempera- 

ture sensors and a variety of proximity sensors. The common charac- 

teristic of these devices is that they all perform a simple monitoring 
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function for a single physical property and return a scalar value for 

the property. Complex sensors, on the other hand, perform a relatively 

large amount of local computation in order to detect features, recognize 

patterns, and compare observed input with internal expectations. A vision 

sensor is an important complex sensory device which can be controlled by 

MCL. Control of a vision system in MCL involves two processes. The 

first is to model the set of views of the part which may be seen by the 

vision system. MCL uses image models which are defined as sets of two- 

dimensional regions. Each region represents a basic component of the 

part view such as a visible hole. A combination of regions defines a 

complete model of a part. The second process is to use the model to 

either locate a part or inspect a region in an image. 

2.5.1 Sensory Information in Describing Servo Process 

In RSS [GES83], sensory information is used to define servo 

processes rather than to detect objects in the environment of the robot. 

RSS is an end-effector level language. It is different from most other 

robot languages in that it does not contain statements which command the 

robot to perform some actions. Instead, the programmer must declare 

servo processes which cause the robot to perform that action. RSS per- 

mits servo processes to be defined for each of the four major aspects of 

manipulation: position, orientation, force and torque. A condition mon- 

itor accesses sensory information in order to inspect conditions defined 

by the user program and to decide corresponding actions of the manipula- 

tor. In the RSS system, data from external sensors are expressed as 

dynamically changing functions, identical to functions which refer to 

the robot state. The functions R$FORCE and R$TORQUE evaluate to vectors 
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which contain the external force and torque at the robot wrist, as 

determined by an estimator by observing the joint velocity and knowing 

the analog servo set-point. Positional data is obtained from a 

separated vision system which, from the robot's point of view, is merely 

a sensor which accepts simple commands and returns the three-dimensional 

position of objects it sees. The RSS system is not concerned with how 

objects or features are located. It requires the vision system to con- 

tain all necessary algorithms to locate objects. The commands that can 

be used to access the vision system are: the VISION statement, which 

declares a vision function whose value is determined by the vision sys- 

tem, the LOCATE statement, which asks the vision system to determine and 

update the corresponding location of a declared vision function, and the 

TRACK statement, which causes the vision system to continually update 

the value of a declared vision function on the basis of the stream of 

images it is processing. 

2.5.4. Summary 

The languages which have been investigated above represent different 

kinds of robot programming languages. VAL, WAVE, AL, RSS, MCL and LM 

can be classified as end-effector level languages, and LAMA and AUTOPASS 

are at object level. Among these languages VAL is a well known commer- 

cial language while others are still in laboratory stage. The methods 

used by these languages to deal with sensory information are also typi- 

cal. Except RSS in which sensory information is used to monitor the 

inner state of the robot, all other languages use sensory information to 

detect the environment of the robot. In these languages, the user has 

to specify not only when but also how to use the sensory information. 
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The force and torque information is usually used as a condition in a 

decision tree while the vision information is used to identify objects, 

and instantiate and update some position variables. No languages have 

tried to handle complex tactile sensors with a matrix of elements. In 

most cases the sensory information is used strictly in the way the user 

has explicitly pointed out, such as terminating an action or updating 

the position of an object. No further explanations of the sensory 

information are made. Vision information has only been handled by end- 

effector level languages. Most vision systems used in these languages 

only work in a way to compare two-dimensional images with two- 

dimensional image models in order to locate an object or inspect a 

region in an image. Languages at this level have very limited knowledge 

about the robot environment so that they can not give vision systems 

enough guidance of how they should work and how to interpret the vision 

information. Object level languages, although having rich knowledge 

about the environment, have not been combined with vision systems prop- 

erly. 



Chapter 3. The Current RAPT System 

This chapter is devoted to RAPT, an object level robot language, on 

which the main work of the thesis has been based. Since a knowledge of 

RAPT is essential for understanding the major part of the research work 

described in the thesis, the principal features of RAPT, its input 

language, internal data structures and reasoning systems will be dis- 

cussed in detail. 

3.1. Main Features of RAPT 

RAPT has been developed in the Artificial Intelligence Department of 

Edinburgh University since the late 1970s by R. J. Popplestone, A. P. 

Ambler and their group. It is a model-based object level robot command 

language designed mainly for programming assembly operations. This 

means that in RAPT programs the objects which are to be manipulated by 

the robot are explicitly represented. Its syntax is quite similar to 

that of APT, a widely used NC machine tool programming language, and the 

name RAPT stands for Robot APT. 

RAPT allows the user to specify a set of objects (bodies), spatial 

relationships and movements. Objects are specified by the use of its 
modelling system. Spatial relationships which are to hold between 

features of the objects in each distinct state are specified by the use 

of relationship specifications. Movements of the objects can be speci- 

fied explicitly by the use of action statements or implicitly by the use 

of relationship constraints imposed upon objects. All the information 

is transformed by the RAPT system into specifications of the movements 
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of the robot which will bring about the desired states. The work of the 

RAPT system is divided into two stages: compile time reasoning and run 

time execution. Since RAPT is an off-line programming language, the 

major part of the computational work is done at compile time, and it is 
only this part which will be discussed in this chapter. 

The compile time system of RAPT can be divided into two parts 

according to their functions and implementation. The first part is the 

input system which reads RAPT programs and transforms the information in 

the programs into RAPT internal data structures. The second part is the 

geometrical reasoning system which, making use of data structures 

created by the input system, reasons about the positions of objects and 

the actions of the robot. The output of normal RAPT is a series of 

positions of objects (including the robot manipulator) in each situa- 

tion. These positions can then be translated into a suitable form, usu- 

ally a lower level robot command language, e.g. VAL commands and data, 

which can then be executed by the robot. 

A number of RAPT programs have been tested successfully (e.g. 

[KEM81]). The RAPT work has shown that the use of spatial relationships 

is a powerful tool for describing assembly tasks in an object level 

robot language. It provides a natural way for the user to specify the 

desired goal states in robot assembly tasks. 

3.2. The RAPT Input Language 

The RAPT input language is the interface between the programmer and 

the RAPT geometric reasoning system. By the use of the input language, 
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the user can define three-dimensional objects, desired states, and the 

actions between every two adjacent states of the assembly task. The 

desired states are defined in terms of the spatial relationships holding 

between objects rather than in terms of the absolute positions of 
potentially 

objects. This makes programming in RAPT/much easier than in other lower 

level robot languages, since the tedious computational work will be done 

by the computer rather than by the user himself. The information given 

by the user about the assembly task is transformed into internal data 

structures and then sent to the geometric reasoning system. 

3.2.1. RAPT Models 

RAPT provides a rudimentary three dimensional modelling system. 

Objects to be handled by the manipulator, and the objects in the world 

are modelled in this system in terms of their surface features. The 

modelling system is capable of modelling complex objects with planar, 

cylindrical and/or spherical surfaces. Each object in the RAPT environ- 

ment is represented by those of its surface features which are to be 

used in the associated RAPT program. The RAPT model is an incomplete 

one. This means that only the features used by the associated program 

need to be described in the model. The RAPT models are simply collec- 

tions of related surface features of objects and therefore the RAPT sys- 

tem has no knowledge about the space occupancy of the object modelled. 



3.2.1.1. Body Definition 

In RAPT, objects, tools and robot gripper parts are referred to as 

bodies. Each body has its position and local coordinate system. The 

positions of bodies within the RAPT system represent the positions of 

the corresponding bodies in the actual work station and the local coor- 

dinate system provides a reference frame for the positions of features. 

Bodies are declared by body definition statements, possibly with some 

feature descriptions of the bodies. 

There is a special body in the RAPT environment called the "world". 

Its coordinate system has fixed relations with that of the actual robot 

working station and its position is fixed. The "world" is created 

automatically at the beginning of each RAPT program, and is used to pro- 

vide a frame of reference in which all actions take place. 

A body description has the form 

BODY/<body-name>; 

<body-definition-statements>; 

TERBOD; 

where <body-name> is the logical name of the body being defined, and 

<body-definition-statements> can be none, one or more RAPT modelling 

primitive defining statements. 



3.2.1.2. Geometric Primitives 

There are two kinds of primitive in the RAPT modelling system: 

geometric primitives and body features. Both of them are associated 

with the body within whose definition they are declared. If a primitive 

is defined outside any body declaration package then it belongs to the 

world. The main difference between these two kinds of primitive is that 

the geometric primitives are only used in the construction of models 

whereas feature primitives are used in goal state specifications. 

There are three sorts of geometric primitive. They are points, 

lines and circles. Each geometric primitive is defined by a statement 

specifying its name, type, position, and, where appropriate, dimensions. 

A RAPT point is purely a geometric point defined by its X-, Y- and 

Z-coordinates in a three dimensional space. The syntax of a point 

definition statement is 

<point-name>=POINT/<point specification; 

where <point specification> specifies the coordinates of a point. For 

example, the user can say: 

p1 = POINT/20, 30, 40; 

This specifies a point named p1 with its X-, Y- and Z-coordinates being 

20, 30 and 40 respectively. There are four forms of specifying the 

coordinates of a point. Detailed discussion about these and forms of 

defining all other primitives can be seen in [AMB82]. 
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A RAPT line is a geometric line segment determined by its start 

point and end point. It therefore has a length and direction. The syn- 

tax of a line definition statement is 

<line-name>-LINE/<line specification>; 

where <line specification> specifies the position, direction and length 

of a line. There are seven forms of line specification. For example, a 

statement: 

line-1 - LINE/pl, p2; 

through 

defines a line "line 1" which passes/points p1 and p2 which have already 

been defined. 

A RAPT circle is defined by its centre and radius. It is limited, 
(version l.la) 

in the current version /of RAPT, to one which lies on a plane which is 

parallel to the X-Y plane of the coordinate system of the associated 

body. The syntax of a circle definition statement is 

<circle-name>-CIRCLE/<circle specification>; 

where <circle specification> specifies the centre and radius of a cir- 

cle. There are two forms of circle specification. For example, 

p1 = POINT/10, 20, 30; 

c1 = CIRCLE/CENTER, p1 , RADIUS, 10; 
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defines a circle c1 which has radius of ten units at point p1. 

3.2.1.3. Feature Primitives 

There are six types of RAPT features. They are faces, holes, 

shafts, edges, spherical faces and vertices. Each feature is defined by 

a statement specifying its name, type, position, and, where appropriate, 

dimensions. Some types of feature have a direction associated with 

them. This direction is important in defining relations between 

features. The positions of the features indicate their locations in the 

local coordinate system of the body to which they belong. The general 

form of the feature definition statement is as follows: 

<feature-name> - <feature-type>/<feature definitio n>; 

A RAPT face is defined by a point on the face and a direction vector 

of the normal to the face. The direction of the normal is defined in 

such a way that if the face is imagined to represent a surface of a 

solid body, then the direction of the normal points outwards from the 

solid body. A face definition does not include information about its 

extent and therefore a RAPT face is an infinite plane feature. The syn- 

tax of a face definition statement is 

<face-name>-FACE/<face specification>; 

where <face specification> specifies the position of a point on a face 

and the direction of its normal. There are nine forms of face specifi- 

cation. For example, 
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f1 - FACE/p1, p2, P3, xlarge; 

defines a face f1 which the points p1, p2 and P3 lie on and whose normal 

points in the direction with a positive X-component. 

A RAPT shaft is a convex cylindrical surface represented by its axis 

and radius. The direction of the axis points towards the end of the 

shaft. The syntax of a shaft definition statement is 

<shaft-name>-SHAFT/<shaft specification>; 

where <shaft specification> specifies the axis and radius of a shaft. 

There are two forms of shaft specification. For example, 

11 - LINE/p1, p2; 

bolt - SHAFT/AXIS, 11, RADIUS, 5, ylarge; 

defines a bolt to be a shaft with radius 5. The axis of the shaft is 

along the line 11 and points to the direction with a positive Y- 

component. 

A RAPT hole is very similar to a shaft. The only difference is 

while a shaft is a convex cylindrical surface, a hole is a concave one. 

A hole is represented by its axis and radius, just like a shaft. The 

direction of its axis points out from the hole. The syntax of a hole 

definition statement is 

<hole-name>=HOLE/<hole specification; 
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where <hole specification> is the same as a shaft specification. There 

are also two forms of hole specification. For example, 

c1 - CIRCLE/CENTER, p1 , RADIUS, 15; 

h1 - HOLE/c1, zlarge; 

defines a hole hi with radius 15 at a point p1. The X-axis of the hole 

points upwards. 

A RAPT edge is considered as a special case of a shaft of zero 

radius. Therefore, it could be defined by the use of a shaft definition 

statement. For convenience, however, it has its own distinct definition 

statements. The syntax of an edge definition statement is 

<edge-name>-EDGE/<edge specification>; 

where <edge specification> specifies the axis and direction of an edge. 

There are two forms of edge specification. For example, 

11 - LINE/pl, p2; 

EDGE/11, xsmall; 

defines an edge which matches the line 11. The X-axis of the edge 

points to the direction with a negative X-component. 

Although shafts, holes and edges are all dealt with by the RAPT rea- 

soning system as infinite in extent, they may in fact represent finite 

features, and the user may specify their lengths in some forms of 

feature definition statements. Although this dimensional information is 
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ignored by the RAPT reasoning system, it can be used for other purposes, 

e.g. in a sensory system. 

A RAPT spherical face is a convex spherical surface like a ball. It 
is a finite feature defined by a centre and a radius. There is no asso- 

ciated direction. The syntax of a spherical face definition statement 

is 

<sphface-name>-SPHFACE/<centre>, <radius>; 

where <sphface-name> is the name of a spherical face, and <centre> is 

the position of the centre point of the spherical face, and <radius> is 

a number indicating the radius of the spherical face. This is the only 

form of spherical face specification. 

p1 - POINT/0, 5, 10; 

ball - SPHFACE/pl, 5; 

defines a spherical face named "ball" which centers at the point p1 with 

radius 5. 

A RAPT vertex is a special case of a spherical face of zero radius. 
O`v^ It approximates the corner of object . A vertex is defined by specify- 

ing the point at which it lies. The syntax of a vertex definition 

statement is 

<vertex-name>=VERTEX/<point>; 

This is the only form of vertex specification. The following statements 
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p2 - POINT/2, 3, u; 

v1 = VERTEX/p2; 

define a vertex at the point (2, 3, 4). 

The following example shows a RAPT model of the object in Fig. 3.1. 
The object is named as bodyl here. Notice that not all the features of 
the actual object are modelled. 

body/bodyl; 
p1=point/0,0,0; 
p2-point/20,0,0; 

P3-point/20,-20,0; 
p4-point/20,-20,30; 

p5=point/20,0,30; 
p6=point/0,0,30; 
p7=point/0,-20,0; 
p8=point/10,-10,0; 
p9-point/10,-10,-20; 

f1=face/pl,p2,p5,ylarge; 
f2=face/p1,p2,P3,zsmall; 
f3=face/pl,p6,p7,xsmall; 
f4=face/p4,P5,p6,zlarge; 
f5=face/P3,p2,p4,xlarge; 

11 =line/p2,P3; 
12 =line/p1, p6; 
13 =line/p8,p9; 

e1=edge/ll,ysmall; 
e2=edge/12,zlarge; 

s1=shaft/axis,13,radius,5,zsmall; 
terbod; 

3.2.2. Relations 

In an assembly task, bodies are moved from place to place to bring 

about desired goal states. Assembly operations can also be thought of 

in this way, although there is the question of forces. In RAPT, each 
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state of the whole environment between any two actions is referred to as 

a situation. A situation can be described explicitly in terms of spa- 

tial relationships which will hold between features of bodies in that 

situation, or implicitly in terms of the action which occurred between 

the situation and the previous one, or by a mixture of both explicit and 

implicit information. The state of an individual body in a situation is 

referred to as a body instance. Therefore, if there are M bodies and N 

situations then there are MxN body instances. It is easy to see from 

these definitions that spatial relationships hold between features of 

body instances rather than of bodies. If there is no possibility of 

confusion then the term "body" may sometimes be used instead of "body 

instance" in the following discussion. 

There are six types of spatial relationships available in the RAPT 

input system to describe situations. They are called AGAINST, COPLANAR, 

PARAX, PARALLEL, FITS and ALIGNED. The syntax of a relationship state- 

ment is 

<relation-type>/<feature-1>, <feature-2>; 

where <feature-1> and <feature-2> specify the two features between which 

the relationship holds in the current situation. There are two forms 

which can be used to refer to a feature: either 

<feature-name> of <body-name> 

or, when there is no ambiguity, the feature name can be used. The fol- 

lowing is an example of a relation specification: 
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AGAINST/bottom of block, work top; 

The AGAINST relationship can hold between two faces, a face and a 

shaft or an edge, a face and a spherical feature (a spherical face or a 

vertex), or two spherical features. The general meaning of this rela- 

tionship is that the surfaces of the two features share a common tangent 

plane. A face is against another face when they lie in the same plane 

with their normals in opposition. A face is against a convex cylindri- 

cal feature (a shaft or an edge) when the X-axis of the cylindrical 

feature lies in the plane parallel to the face, and removed away from 

the face by a distance equal to the radius of the cylindrical feature. 

A spherical feature (a spherical face or a vertex) is against a face 

when the centre of the spherical feature lies in a plane parallel to the 

face, and removed away from the face by a distance equal to the radius 

of the spherical feature. Two spherical features are against each other 

when the distance between their centres is equal to the sum of their 

radius. COPLANAR holds only between two faces. It differs from the 

AGAINST relationship between two faces only in that the face normals 

point in the same direction. 

FITS holds between two cylindrical features (shaft, holes or edges). 

This relationship means that the axes are collinear but point in oppo- 

site directions. ALIGNED is the same as FITS except that the axes point 

in the same direction. 

PARAX can hold between two faces or two cylindrical features. Its 
general meaning is that the X-axes of the features must be parallel but 

point in opposite directions. This relationship does not require the 

two features between which the relationship holds to share a common 
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tangent plane, therefore it is the general case of AGAINST with a speci- 

fied distance between the faces or cylindrical features. PARALLEL is 

the same as PARAX except that the X-axes of the features point in the 

same direction. 

Table 3.1 lists all the RAPT relationships with valid types of the 

associated features. 

----------------------------------------------------------------------- 
relations features 

I 
relations) features 

--------------------------------------------------------------------- 
AGAINST face face 

face shaft 
face edge 
face vertex 
face sphface 
vertex vertex 
sphface sphface 
sphface vertex 

------------------------------------ 

COPLANARI face face 

FITS shaft hole 
& shaft edge 

ALIGNED shaft shaft 
hole edge 
hole hole 
edge edge 

-------------------------------- 

PAR AX 

PARALLEL 

shaft hole 
shaft edge 
shaft shaft 
hole edge 
hole hole 
edge edge 
face face --------------------------------------------------------------------- - 

Table 3.1. Spatial Relationships in RAPT 

3.2.3. Actions 

In RAPT, actions transform one situation into another. There is 

always a single action between each pair of contiguous situations. The 

action statements serve to identify which bodies may move between one 

situation and the next, and can also be used to describe the change in 

the position of bodies. Actions are described in terms of movements of 

particular bodies --- this can be relative to features of other bodies, 

and can also be restricted to pure translational movements or pine 
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rotational movements. It should be noticed that a movement of one body 

can imply the movement of other bodies that are in some way connected to 

it (see TIES and SUBASSEMBLIES). In RAPT, between one situation and the 

next, all bodies are assumed to move unless it can be shown that they 

have not (see Section 3.2.6). Similarly, it is assumed that spatial 

relationships holding in one situation do not necessarily hold in any 

subsequent ones. There are two action types allowed in RAPT: MOVE and 

TURN, corresponding to translational and rotational actions respec- 

tively. According to the detailed specification of the action, the 

statements can be classified into three categories: explicit action 

statements, implicit action statements and general move statements. The 

explicit action statement serves to specify completely the absolute 

motion of the body being moved. It takes the form: 

<action type>/<body>,<relation>,<feature>,<amount>; 

For example, a statement: 

MOVE/ block, PERPTO, bottom of block, 20; 

asks the robot to move the body "block" 20 units along the direction 

which is perpendicular to the bottom of the block. 

If <action type> is MOVE then <relation> can be either PERPTO (for 

perpendicular to) or PARLEL (for parallel). If <action type> is TURN 

then <relation> must be ABOUT. <amount> is a real number. The unit of 

the movement depends upon the type of the action. Rotational actions 

are measured in degrees while the unit of translational actions is 

determined by a post-processor. This statement specifies completely the 
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motion of the body relative to its original position. 

There is an exception in this kind of statement. When the action 

type is NAVE and the action is said to be parallel to a face feature, it 
is not a explicit one. Although the amount is specified, the direction 

of the action cannot be determined. In order to determine the destina- 

tion of the action, relations between the moving body and others must be 

specified. 

While the explicit statement completely specifies the displacement 

of a body, two variants of action statement are allowed in RAPT which 

specify the action incompletely. The first of these is the implicit 

action statement, which gives incomplete information about the movement 

relative to other bodies. It has the following syntax: 

<action type>/<body>,<relation>,<feature>; 

This version specifies only the type of the action and direction of the 

movement or the rotation axis. The amount of action in this case is 

determined by position constraints obtained from the spatial relation- 

ships that must hold between this body and others in both the starting 

and the destination position. 

The other variant is the general move statement, which only identi- 

fies which bodies are moved. It has the following syntax: 

MOVE/<body>; 

The general move does not make any connection between the positions of 
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the body being moved before and after the action. Position constraints 

on the start point and destination of the body determine both the direc- 

tion and amount of motion. 

In RAPT, only some special bodies specified as "agents" can be the 

source of an action. This means that a body to be moved must be either 

an agent itself or connected in some way, such as TIE or SUBASSEMBLY 

(both will be discussed later), to an agent. An agent is defined by the 

statement 

AGENT/<body>; 

3.2.4. Ties 

It often happens that bodies become fixed together so that they can- 

not move relative to each other during some period in an assembly pro- 

cess. For example, when two components are bolted together, they cannot 

move relative to each other until they are unbolted. RAPT provides a 

TIED statement to describe this kind of phenomenon. 

In RAPT when two bodies are tied together this means that they main- 

tain the same relative position before and after any actions. There- 

fore, any descriptions of the motion of one body must apply to the 

motions of any other bodies tied to it. TIEs are made and revoked by 

the statements: 

TIED/ <body 1>, <body 2>; 

and 
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UNTIED/ <body 1>, <body 2>; 

Once two bodies are tied in a situation description, they are 

assumed to remain tied for all subsequent actions until the tie is bro- 

ken by saying explicitly that they are UNTIED. Both TIED and UNTIED 

statements have effect in the action which follows the situation in 

which they have been declared. For example, 

TIED/block, world; 

ties the block with the world so that any attempt to move the block in 

subsequent situations before the revocation of the tie is an error and 

will be reported to the user. 

3.2.5. Subassemblies 

A subassembly is a set of bodies between whose features certain 

specified relationships hold for the duration of the existence of the 

subassembly. Subassemblies differ from ties in that there may be more 

than two bodies within a subassembly and the components of a subassembly 

can move with respect to each other during the existence of the 

subassembly, provided that the relations remain valid. For example, a 

gripper is usually defined as a subassembly whose two palms can move 

relative to each other in a direction perpendicular to the palm faces. 

A subassembly is declared by the statements 

<subassembly-name>-SUBASS/<duration>; 
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<relationship definitions>; 

TERSUB; 

where <duration> indicates whether the subassembly is a permanent one or 

a temporary one. A permanent subassembly exists throughout every situa- 

tion while a temporary one is brought into effect by ISSUB and revoked 

by NOTSUB statements. Their syntax is 

ISSUB/<subass-name>; 

NOSUB/<subass-name>; 

The temporary subassembly is usually used to describe some intermediate 

combination of workpieces which is partly assembled. For example, 

link - SUBASS/temp; 

FITS/axis of shaft, hole of pa; 

FITS/axis of shaft, hole of pb; 

AGAINST/fl of pa, f2 of pb; 

TERSUB; 

defines a temporary subassembly which is shown in Fig. 3.2. The per- 

manent subassembly, on the other hand, is usually used to describe 

instruments or tools such as the manipulator. 



3.2.6. Unmoved Bodies 

In RAPT, only one body can be moved directly by an action statement 

between one situation and the next. Other bodies can be moved 

indirectly by connections with the moved body via a tie or a subassem- 

bly. The input system checks between every two contiguous situations to 

see which bodies are moved by these connections. If a body has no way 

to be affected by a moved body then it is considered to be unmoved, and 

its name is recorded in a table, called the unmoved body table, which is 

indexed by situations. 

3.3. The RAPT Inference System 

In order to decide how to move the robot in order to achieve the 

assembly task, the relational specification given by the user must be 

transformed into positional information. This is performed by the RAPT 

reasoning system. There are two versions of the implementation of the 

reasoning system. The first one is referred to as an equation solving 

system which is described in full in [POP80]. In this system the rela- 

tions between features of body instances are expressed by rewriting the 

position of one body as an algebraic expression involving the position 

of the other and so producing a set of simultaneous equations which can 

be solved. The second reasoning system is referred to as a cycle find- 

ing system and this is discussed in detail in [POP79, POP81, AMB83]. 

This works by applying a set of reasoning rules to the original rela- 

tions given by the user, replacing them by new ones which are fewer and 

more restricted. This rewriting is repeated until no further progress 

can be made. The first version is more powerful than the second one in 
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solving some difficult relation pairs while the second one works about 

100 times faster than the first. The current RAPT system employs the 

second version of the implementation, i.e. the cycle finder. There is a 

plan to combine these two methods in the future in such a way that 

firstly the cycle finder will be used to solve easy relationship cycles 

and then the equation solver will be applied to tackle the few remaining 

hard relationship cycles. 

3.3.1. Representations of Positions 

In RAPT, a position is a product of a translation and a rotation. 

It is represented by a homogeneous coordinate transformation [AMB75b]. 

In the homogeneous coordinate representation [FOR69], a point in N- 

dimensional space is represented by an (N+1) dimensional vector. An N- 

dimensional space transformation is represented by an (N+1) x (N+1) 

matrix. For a three dimensional space, it is a 4x4 matrix of the form: 

all a12 a13 : a14 
a21 a22 a23 : a24 
a31 a32 a33 : a34 

................ 
a41 a42 a43 a44 

Since it is easy to use the homogeneous coordinate form to describe 

various kinds of transformation such as rotation, translation, scaling 

etc., it is widely used in the fields of robot control [PAU81], image 

analysis [DUD73] and computer graphics [FOR69, FOL82]. When the homo- 

geneous coordinate representation is used as a transformation matrix in 

a post multiplication system, the upper-left part represents scaling, 

shear and rotation; a14, a24 and a34 specify the vanishing point in a 
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perspective projection; a41, a42 and a43 represent translational shift 

in the direction of X-, Y- and Z- axes of its reference frame respec- 

tively; a44 represents a general scaling. In RAPT, this matrix is used 

to represent the position of a body or a feature, and therefore scaling, 

shear and perspective projection have no significance. Thus the upper- 

left part of the matrix represents rotation only; a41, a42 and a43 

represent translational shift; a14, a24 and a34 are all zero, and a44 is 

always equal to 1. 

Both bodies and features have their own local coordinate systems 

attached to them. The position of a body instance represents the posi- 

tion and orientation of the local coordinate system with respect to that 

of the world. In practice, the X-Y plane of the world coordinate system 

is usually coplanar with the top of the work table. Its Z-axis points 

vertically upwards. Similarly the position of a feature represents the 

position and orientation of the local coordinate system of the feature 

in the coordinate system of the body to which the feature belongs. For 

example, in Fig. 3.3, f1 is the position of the cylindrical feature F1 

of the body b1. Position transformation is defined by the post multi- 

plication. Therefore the position of a feature with respect to the 

world frame can be expressed by a transformation 

f ** p 

where ** denotes matrix multiplication, f is a feature position and p is 

the position of the body to which the feature belongs. 

For a face, the X-axis is along the direction of the normal of the 

face and the origin lies in the face. For a cylindrical feature, the 
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Fig. 3.3 Positions of the body and the feature 

Fig. 3.4 A situation in which creation rules can be applied 
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X-axis is along the direction of the axis of the feature and the origin 

lies somewhere on that feature axis. For a spherical feature, the ori- 

gin of its coordinate system is coincident with the centre of that 

feature while the direction of the X-axis is assigned arbitrarily by the 

RAPT system. The direction of the X-axis and the position of the origin 

of a feature coordinate system are also usually determined systemati- 

cally by the RAPT reasoning system during the inference processes. In 

contrast to the X-axis, the direction of the Y- and Z-axes are usually 

chosen arbitrarily by both the input and reasoning system provided they 

constitute a Cartesian coordinate system. 

3.3.2. The Equation Solving System 

This is the first version of the RAPT inference system [POP80]. It 

translates a collection of information about bodies, situations and 

actions into a "tree of knowledge", and then controls the production and 

solving of algebraic equations. 

In this system, the relations are represented by equations. Each 

equation has the form 

f2 ** p2 - rel(v) ** f1 ** p1 (3.1) 

where f1 and f2 are the positions of two features between which the 

relation holds, p1 and p2 are positions of the bodies to which the 

features belong respectively, v is a vector of n variables unique to a 

given relation, and "re?" is an algebraic function depending upon the 

type of the actual relation. For example, if the two features are faces 
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and they are against each other, then the equation is 

f2 ** p2 - M ** twix(O) ** trans(O,y,z) ** fl ** p1 (3.2) 

where M is a matrix representing a rotation about the Y-axis which 

brings the positive X-axis to the negative X-axis, twix(O) is a rotation 

transformation about X-axis by 0, and trans(a,b,c) is a translation 

matrix with the measure of a, b and c along X-, Y- and Z-axes respec- 

tively. By the use of this equation, the position p2 can be expressed 

in terms of f1, f2 and p1 with the vector of three variables 

p2 - f2-1 ** M ** twix(0) ** trans(O,y,z) ** fl ** p1 (3.3) 

Similarly, action statements (excluding general move) also specify 

relationships between positions of body instances and therefore can also 

be expressed by algebraic equations with the form 

f ** p2 - rel(v) ** f ** p1 (3.14) 

where f is the position of the feature which the action is relative to, 

p1 is the position of the body before the action, and p2 the position of 

the body after the action. 

The fundamental work of the equation solving system is to form pairs 

of non-linear simultaneous equations connecting positions of two body 

instances. The general form of a pair of equations is 

p2 - expressionl(vl) ** p1 (3.5) 
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p2 - expression2(v2) ** p1 (3.6) 

where each expression is the combination of one or more relation func- 

tions and feature transformations, such as that in (3.3). The equation 

solver combines this pair of equations and attempt to solve them so that 

a new equation 

p2 - expression3(v3) ** p1 (3.7) 

is formed, where the number of variables contained in v3 is less than or 

equal to the minimum of that of v1 and v2. Usually the new equation 

created by the equation solver is a more restricted one and contains 

fewer variables than both of the two original ones, and can be used by 

the equation solver in the further inference in the same way as the ori- 

ginal ones. If the complexity of the equations is not beyond the capa- 

bility of the equation solver, then this inference process will continue 

until all equations have been simplified as much as possible. If any 

variables are left then this shows that the information given by the 

situation and action descriptions is not enough to determine completely 

the relative position of all bodies with respect to the world. 

3.3.3. The Cycle Finding System 

This is the reasoning system used in the current RAPT, and also the 

one used in the work described in this thesis. The cycle finding system 

performs the same function as the equation solving system but in a dif- 

ferent way. Its main advantage over the equation solver is its speed 

and compactness. The method used in this system comes from the 
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realization that in many cases there are commonly occurring standard 

solution patterns to equation pairs. For example, if two face pairs of 

two bodies are against each other, the resulting constraints usually 

indicate that the relative position of one body with respect to the 

other has only one translational degree of freedom. The cycle finding 

system therefore looks at the relational network representing the 

current state to see if it can find such standard patterns, and then 

replaces them with standard solutions. 

3.3.3.1. Relationships in the Cycle Finder 

In the cycle finding system, each relation is represented by a 4- 

tuple 

(r, F1, F2, s) 

Here r is the type of the relation, F1 and F2 are the body features 

related by the relation, and s is an integer indicating the situation in 

which the relationship must hold. The relations in the cycle finder can 

also be considered to have the same form as (3.1): 

f2 ** p2 - rel(v) ** f1 ** p1 (3.8) 

except that here the algebraic function "rel" and the variable vector v 

are implied by the type of the relation, and p1, p2, f1 and f2 are 

implied by the features F1 and F2 and the situation s. 

There are ten types of relationships used in the cycle finder. 
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Because of the way in which the cycle finder recognizes and treats stan- 

dard pairs of relationships, the relationships used in this system are 

more finely categorised than those used in the input language. Thus the 

AGAINST relationship of the input system is divided into four sub- 

categories depending upon the type of features involved. Also some new 

types are introduced: for example, the LIN relationship has only one 

degree of freedom, a translational one. This relationship is deduced by 

the system when two pairs of faces of two bodies are AGAINST each other. 

The cycle finder relationships are named as AGPP, AGPC, AGPS, AGSS, 

FITS, PARAX, LIN, LINLIN, ROT and FIX. The AGAINST relationship of the 

input system is replaced by four new relationships distinguished by the 

types of the related features. This is because the mathematics of 

AGAINST relationship differ fundamentally for different cases. Thus 

AGPP holds between two faces, AGPS between a face and a spherical 

feature, AGPC between a face and a convex cylindrical feature (a shaft 

or an edge), AGSS between two spherical features. COPLANAR is 

transformed into an AGPP by changing the direction of one of the related 

faces. ALIGNED and PARALLEL are treated by the cycle finder as FITS and 

PARAX respectively after their directions have been adjusted. LIN holds 

between two cylindrical features and indicates that the X-axes of the 

two features are collinear and their Y-axes are parallel. This rela- 

tionship can either be created by a MOVE statement or be deduced as an 

intermediate result by the cycle finder during reasoning. LINLIN holds 

between two faces. It is similar to an AGPP except there is no relative 

rotation allowed. This relationship can be deduced by the cycle finder 

as an intermediate result. It can also be generated by the MOVE state- 

ment which specifies a movement parallel to a face feature. ROT holds 

between two cylindrical features indicating that the X-axes of the 

features are collinear and their origins are coincident. This 
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relationship can be either created by a TURN statement or deduced by the 

cycle finder during reasoning as an intermediate result. FIX holds 

between any kind of feature and indicates that their local coordinate 

systems coincide. This relationship is an important one since it 
represents a completely determined position of one body instance rela- 

tive to another 

f2 ** p2 - f1 ** p1 (3.9) 

It is the most restricted relationship. The purpose of the reasoning of 

the cycle finder is to attempt to establish FIX relations between body 

instances in place of the relations given by the user. If a body 

instance is "fixed" to the world directly or indirectly (i.e. "fixed" 

to another body instance which has been "fixed" to the world) then the 

position of the body instance in the world can be completely determined. 

3.3.3.2. The Relational Network and Cycles 

In the cycle finder a relational network is built up from the input 

data, in which body instances are nodes and relations constitute 

undirected arcs. Cycles occurring in the network are used in the rea- 

soning system. The size of the cycle is the number of nodes occurring 

in it, and one of size n is referred to as an n-cycle. The fundamental 

step of the cycle finder during reasoning is to find standard relation 

cycles and then apply some standard solutions in the form of reasoning 

rules to them according to their sizes and natures. 
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3.3.3.3. Reasoning Rules 

Two sorts of reasoning rules are used in the cycle finder. The 

first sort is referred to as the combination rule. This set of rules is 
applied to 2-cycles and is listed in Table 1 in Appendix I. A 2-cycle 

is a relation pair holding between two body instances like 

f11 --- rell --- f21 

p1 p2 (3.10) / 
f12 --- re12 --- f22 

Rules in Table 1 are indexed under types of pairs of relations. If 
there is a suitable entry in the combination rule table for the two 

relations in a 2-cycle then a new relation is produced to replace the 

two original ones. For example, there is an entry in Table 1 for the 

pair AGPP FITS and this rule will be applied whenever a 2-cycle is found 

in which rell is AGPP and re12 is FITS. The rule defines how the two 

spatial relationships constrain each other, and how they can be replaced 

by a single relationship. This single relationship is usually more con- 

strained than either of the originals. For example, two AGPPs together 

can usually be replaced by a single LIN relationship. (If the plane 

faces involved are parallel then they will be replaced by a single 

AGPP). The introduction of the LIN relationship means that two new 

(virtual) features have to be invented by the system for this relation- 
ship to hold between. The rules in Table 1 include details of how to 

construct these new features. The result of applying the combination 

rule can be expressed in a general form as: 

p1 -- f13 --- re13 --- f23 -- p2 (3.11) 
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The process of applying combination rules will continue until either 

there are no 2-cycles existing in the relation network or there are no 

suitable entries for those that do exist. 

When a relationship pair is to be combined, the cycle finder will 
examine relationships between the body features involved. The purpose 

of this examination is twofold. Firstly, it will decide whether the two 

relationships are compatible or not, i.e. whether the specified rela- 

tionships really hold simultaneously for the given positions of the 

features. Sometimes, the positions of the features given by the user 

are not very accurate. The system itself introduces numerical errors. 

The cycle finder will check whether this inaccuracy is within a range 

which is pre-specified by the user. Secondly, the examination will 
decide whether any special conditions hold between body features so that 

the cycle finder can select the appropriate reasoning rules. For exam- 

ple, when AGPP is combined with FITS, the general result is a FIX rela- 

tionship. However, if the two X-axes of the features of one body are 

parallel then the newly generated relationship is a ROT relationship. 

If the X-axes are perpendicular to each other then the result is LIN. 

The second sort of reasoning rules are the creation rules. This set 

of rules is used for applying inference around the relation chains in 

the cycles whose sizes are larger than two. They are listed in Table 2 

The rules 
in Appendix I. /' in Table 2 are also indexed under types of pairs of 

relations. The relation chain has the form 

p1 -- f1l --- rell --- f21 -- p2 -- f22 --- re12 --- f31 -- P3 (3.12) 

If there is a suitable entry in the creation rule table for the two 
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relations in a relation chain, then the corresponding creation rule is 

applied to create a new relation between p1 and P3. This new relation 

holds between two newly created features. 

p1 -- f12 --- rel --- f32 -- P3 (3.13) 

For example, in Fig. 3.4, block 1 is on the top of block 2 while block 2 

is on the top of the table. If the top and the bottom of block 2 are 

parallel to each other then according to the creation rules a new vir- 
tual face feature is generated which belongs to block 1 and is against 

the top of the table. Thus a new relationship AGPP is created between 

block 1 and the table. Creation rules are applied successively to a 

large cycle until either the size of the newly created cycle becomes two 

or there are no suitable entries for the existing relation chain in the 

creation rule table. Once a 2-cycle has been produced the combination 

rules can be applied. 

During reasoning the cycle finder applies these two sorts of rules 

alternately until there are no entries in any reasoning rule tables for 

the existing relations in the relation network. Each time after the 

application of the combination rules a special process called "merge" 

takes place. In this process, each relation is checked to see whether 

it is of FIX type or not. If it is so then the position of one related 

body instance, say p2, is completely determined with respect to the 

other, say p1. Thus the position p2 is removed from the set of unsolved 

positions, and any relations involving p2 are transformed into ones 

involving p1. If the position p1 is solved, it can be transformed to 

produce the position p2. 
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The size of the relational network decreases during the reasoning 

process. Combination rules try to replace a pair of relationships by a 

single relationship. Thus they decrease the size of the network by 

reducing arcs in it. Creation rules generate new arcs in the network, 

but only the relationships which can be deleted later by combination 

rules are kept in the network. Thus creation rules do not increase the 

size of the network. The merging process attempts to merge one body 

instance into another one. It absorbs nodes in the relational network. 

The final result of the network after the reasoning by the cycle finder 

may contain only one node which is the world if every distinct situation 

is fully specified by the user and solvable to the cycle finder. Other- 

wise, it is still a network to which the cycle finder cannot do anything 

further, i.e. some body instances have unresolved degrees of freedom. 

The cycle finding system has its limitations. It is less powerful 

than the equation solving system. The cycle finder needs the newly gen- 

erated relationship to be of one of the ten relation types. Otherwise, 

reasoning rules cannot be applied to the corresponding relationship 

pair, and a "-" is marked in Table 1 to represent this case. For exam- 

ple, the general result of combining a pair of two AGPC relationships is 

not one of the ten types which are allowed in the cycle finder. Thus 

there is no suitable entry in Table 1 for this pair. Sometimes, the 

results which are produced by the cycle finder contain two solutions. 

This kind of result has a mark (2) after the resulting relation type in 

Table 1. This happens usually when cylindrical or spherical features 

are involved in the relationships. For example, when ROT is combined 

witn AGPS, the cycle finder produces two possible FIX relationships as 

shown in Fig. 3.5. The cycle finder cannot decide which solution is 

appropriate simply by the reasoning rules. Thus this makes difficulties 
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ALPS 

Fig- 3.5. An example of two-solution FIX 

Here b and b' are the same body in two different 

positions which both satisfy the ROT;AGPS relations 



for subsequent reasoning. 



Chapter 4. Computer Vision in Robotics 

Computer vision is a research field in which efforts are made to 

enable the computational system to "see" a scene. The input is usually 

received by visual sensors such as TV cameras in terms of large arrays 

of digitized brightness information. The arrays of brightness values 

represent projections of a three-dimensional scene. Several input 

arrays may provide information in several spectral bands (colour) or 

from multiple viewpoints (stereo or time sequence). The desired output 

of a computer vision system varies: for instance, it may be a symbolic 

description of the scene, or the specification of information relevant 

to special goals of the system. The exact nature of the output depends 

upon the task of the vision system. It could involve descriptions of 

objects and their inter-relationships. It may also include such infor- 

mation as the three-dimensional structure of surfaces, their physical 

characteristics and so on. 

Computer vision is a research field, which is considered to be the 

enterprise of automating and integrating a wide range of processes and 

representations used for vision perception [BAL82]. It includes as 

parts many techniques that are useful by themselves, such as image pro- 

cessing (which transforms, encodes and transmits images), statistical 

pattern recognition (which applies statistical decision theory to gen- 

eral patterns), and geometrical modelling (which represents the geometr- 

ical aspect of objects in the scene). Research in cognitive psychology 

and computer science is, of course, relevant to computer vision. The 

principal purpose of the research in computer vision is to develop an 

artificial vision system capable of high performance in a broad range of 

visual domains. 
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In this chapter, the state of general purpose computer vision is 

surveyed briefly, but more attention is paid to the computer vision in 

robotics. In robotics, as in some other special areas, some special 

conditions and constraints may be applied to the environment in which 

the vision system works, and the requirement of vision performance may 

be limited to some extent so that the vision task can be simplified. 

Some of the descriptions given below are substantially based on the 

abstracts and text of the original authors' descriptions of their 

research. 

4.1. A Brief Survey of Computer Vision 

Computer vision systems are used in a number of domains [HAN78] such 

as aerial image analysis [BRO81], astronomy, medical research, chemistry 

and robotics [PER78, AGI80] in modes that are heavily dependent upon 

domain-specific constraints and techniques. For example, the current 

practical industrial vision systems usually require high contrast to 

obtain binary images and use overhead cameras to minimize variations in 

object appearance. Although these are special purpose systems, they do 

provide practical tools for research work in certain areas. However, it 

has proved exceedingly difficult to construct effective general purpose 

computer vision systems which are capable of dealing with less predict- 

able and less structured scenes [HA,N78, BAR81JJ. The research into spe- 

cial purpose systems, together with the research in areas of cognitive 

psycnology, image formation, knowledge representation, etc. provides new 

insights into the computational nature of vision that could lead to 

effective general purpose vision systems. 
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4.1.1. Modelling in Computer Vision 

A major computational principle of vision is that competence depends 

upon the models available. When a human is looking at the environment 

around him, he has prior knowledge about the environment, and this 

knowledge guides the interpretation of what he has seen. Similarly, a 

computer vision system also requires knowledge about the perceived 

objects, not only the general knowledge about the properties of objects 

in the world like surface smoothness and reflectivity characteristics, 

but also specific knowledge about the structure of objects, relation- 

ships among primitives of objects and so on, if the vision system is 

expected to understand the scene well. This is because an image encodes 

much information about the scene, and the information is compounded in 

the single brightness value at each point. Moreover, information about 

the three-dimensional structure of the scene is lost in the projection 

onto the two-dimensional image. On the other hand, the meaning conveyed 

by an image usually is not derivable solely from the sensory data being 

processed. It is dependent upon the goals of the vision system and 

prior knowledge of various aspects of natural world and image domain. 

In order to decode brightness and recover a scene description, prior 

knowledge embodied in models of the scene domain, the illumination, and 

the imaging process must be provided and exploited. 

Scene models describe the three-dimension world in terms of surfaces 

and objects. Surfaces can be described in terms of continuity, smooth- 

ness, reflectivity, etc.. Objects can be described in terms of sur- 

faces, boundaries, and other primitives. Objects may be specific or 
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generic, and their interrelationships are governed by some physical con- 

straints. 

Illumination models describe the primary light sources, their posi- 

tions, spatial extents, intensities, colours, and so on. A complete (or 

nearly complete) model of surface illumination must also take into 

account secondary illumination caused by reflection and scattering of 

light by nearby surfaces, and shadowing caused either by the surface 

facing away from light sources or by an interposing body. 

Sensor models describe the photometric and geometric properties of 

the sensor, which determine how points in the three-dimensional world 

map to points in the image and how the received light is numerically 

encoded. They predict how a particular scene, observed from a particu- 

lar viewpoint, and under particular illumination conditions, is 

transformed into the two-dimensional array of brightness values that 

constitutes the input. 

Computer models usually only represent some aspects of corresponding 

world models of objects. The first reason for this is that the space of 

the computer memory is limited. The programmer must ignore some trivial 

aspects of the world models so that his computer models can be accommo- 

dated in a practical computer. On the other hand, ignoring some trivial 

aspects makes the computer vision system work more efficiently. The 

second reason is that we have not fully understood vision processes. 

Our understanding and knowledge about world models, therefore, is incom- 

plete. We may have neglected many aspects of world models, some of 

wnicn may be very important to decoding an image. The incompleteness of 

computer models restricts the performance of general purpose vision 
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systems. In many vision applications, however, the, incompleteness of 

computer models may not be a big problem. The goals of a specific sys- 

tem may be achieved by the use of a subset of the knowledge of the world 

and the image, as well as a subset of the available techniques. 

4.1.2. Low Level and High Level Vision 

A vision system is naturally structured as a succession of levels of 

representation [BAR81]. The initial levels are constrained by what can 

be computed directly from the image, while higher levels are directed by 

the information required to support the ultimate goals. In between, the 

order of representations is constrained by what information is available 

at the preceding level and what is required by succeeding ones. For 

example, Kanade [KAN77] considers the representations in a vision system 

to be of five levels. For a region-based vision system, these levels 

are: 

1) pixel, which is an image point; 

2) patch, which is a group of contiguous pixels having similar 

properties; 

3) region, which is a meaningful group of patches corresponding to 

a surface of an object; 

4) subimages, which are parts of an image corresponding to an 

object or a set of objects consisting of several regions; 

5) object, which is a real entity. 

For a line-based vision system, these levels are: 

1) pixel; 

2) line segment, which is a group of contiguous pixels separating 

two contrasted patches; 
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3) line, which is a group of adjacent line segments with similar 

directions; 

4) subimage which is a set of lines corresponding to an object. 

5) object, which is a real entity. 

Processing in the pixel-to-patch level is often called low level pro- 

cessing while the region-to-subimage level is high level. The patch- 

to-region level may be called intermediate level. Sometimes the inter- 

mediate level may also be considered as a part of the low level. Gen- 

erally speaking, low level vision refers roughly to the study of those 

processes which operate close to the numeric arrays of sensory data 

which represent an image [HAN78]. High level vision refers to the study 

of those systems necessary for interpreting the relevant components of 

an image in the context of the goals and the prior knowledge of the sys- 

t em. 

4.1.2.1. Low Level Vision 

The primary task of low level vision is to segment an image into 

some basic features such as edges, regions and so on. For some vision 

systems, these features can be used by the high level vision facility 
directly. For others, these features must be reorganized into geometric 

primitives such as surfaces or volumes, depending upon the requirement 

of the high level vision facility. 

The basic concept of segmentation can be viewed as building a 

description of the patterns of intensity, colour, etc., in an image 

[ZUC78]. Since these patterns can be described in two complementary 

ways, i.e. as similarity patterns and as difference patterns, two 
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different classes of approach have evolved to compute the low level 

descriptions. The first class is region growing, which has been 

developed to take advantage of the similarity relationships over pat- 

terns. The second class, which attempts to find the edge and the line 

content in an image, is based upon local difference (e.g. [H0R73]). 

Since these two classes of algorithms operate on data models which are 

strongly complementary, many systems attempt to use one technique to 

improve on the result of the other. For example, edge-based heuristic 

rules can be used to enhance an ambiguous response from a region growing 

algorithm, while region-based growing rules can be used to improve the 

interpretation of responses from edge detection operators. As low level 

vision has to deal with many sources of ambiguity and noise, relaxation 

techniques are also used (e.g. [DAV78], [ZUC78]). 

4.1.2.2. Intermediate Level Vision and Intrinsic Characteristics 

Many current vision systems segment an image by the use of intensity 

directly to establish pictorial features, such as regions of uniform 

intensity or step changes in intensity as an initial level of descrip- 

tion. They then jump directly to descriptions at the level of complete 

objects. This approach is straightforward. However, it is not suitable 

to general purpose vision or high performance special purpose vision. 

The features obtained in this way are not reliable enough. Matching 

these features to a large number of object models is difficult, and 

there is no way to cope with objects which have no explicit models. In 

order to overcome these problems, some authors suggest introducing 

intermediate level representations of image data. For example, Barrow 

and Tenenbaum [BAR78] suggest using intrinsic characteristics, rather 
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than intensity values, in segmentation. 

Intrinsic characteristics such as colour, range, orientation, 

reflectance, etc. give a more invariant and distinctive description of 

surfaces than raw light intensities. Thus, they greatly simplify many 

basic perceptional operations, and make some tasks possible. For exam- 

ple, if an object is unknown to a vision system, then it can be 

described in terms of invariant surface characteristics and subsequently 

recognized from other viewpoints. 

The main problem in recovering intrinsic scene characteristics is 

that a single intensity value encodes all the intrinsic attributes of 

the corresponding scene point. While the encoding is founded upon the 

physics of imaging, it is not unique, and the measured light intensity 

at a single point could result from any of an infinitude of combinations 

of illumination, reflectance, surface orientation, and observer 

viewpoint. In order to decode the compounded information, it is neces- 

sary to make assumptions about the world and exploit the constraints 

they imply. In images of three-dimensional scenes, the intensity values 

are constrained by various physical phenomena. For example, surfaces 

are continuous in space and often have approximately uniform reflec- 

tance. Thus, distance and orientation are continuous. Incident illumi- 

nation can also be assumed to vary smoothly except at shadow boundaries. 

Therefore, step changes in intensity usually occur at shadow boundaries 

or reflectance boundaries. Intrinsic surface characteristics are con- 

tinuous through shadows. These kinds of physical phenomena and assump- 

tions, together with interactions among fragments resulting from assumed 

constraints, can potentially lead to a unique interpretation of the 

whole image [BAR78]. Although individual components of intrinsic 
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characteristics have been investigated (e.g. [HOR751), there are no suc- 

cessful integrations and there are no practical systems working on the 

basis of this. 

4.1.2.3. High Level Vision 

The information provided by low level vision (or intermediate level 

vision) describes the scene iconically in a viewer centered coordinate 

frame. By the use of this information, high level vision produces a 

more concise symbolic representation that captures global properties in 

a viewpoint independent coordinate frame. 

Given a description of a scene in terms of surface, volume or line 
primitives, the system must be able to recognize instances of objects in 

order to explain the scene or achieve other goals. Objects are modelled 

by three-dimensional configurations of surface, volume or line primi- 

tives either 

appropriate 

objects with 

for 

geometrically or symbolically. Geometric models are most 

for describing specific objects, particularly man-made 

regular structures; while symbolic models are appropriate 

objects that are better defined in terms of generic charac- natural 

teristics than 

object model 

object and its 

precise shape. Object recognition involves matching an 

to scene description to determine the identity of the 

position in space. The nature of the recognition process 

depends upon the form of the object model. 

When descriptions of scenes and object models are represented sym- 

bolically by graph structures, recognition can be formulated as a graph 

matching problem. Since scene descriptions are fragmented and include 
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many partially obscured objects, It is necessary to match parts of the 

scene graph with parts of object graphs. In order to minimize the com- 

binatorics of such subgraph matching, techniques such as maximal cliques 

finding algorithm [BAR76, BOL801, and filtering techniques [TEN77] have 

been developed. 

4.2. The Use of Vision in Industrial Robotics 

For various reasons much uncertainty exists in the real world in 

which the robot operates. For example, the real world is so complex 

that it cannot be represented completely and adequately using currently 

available techniques [KEM83]. Objects which the robot is to deal with 

may not be exactly as designed because of design tolerances and manufac- 

turing error. The objects may not be delivered exactly to the expected 

place because of the inaccurate operation of the workpiece feeder. The 

robot may not operate as precisely as required due to such things as 

mechanical tolerance in its parts and imperfections in its feedback 

transducers. Many robot tasks are so designed that the uncertainty in 

the world is tolerable, such as in painting and spot welding tasks. For 

tasks which require more precision, such as assembly tasks, some special 

methods can be adopted. For example: the quality of workpieces can be 

improved; workpiece positioning can be done with jigs and fixtures; 

robot accuracy can be improved by building robots more along the lines 

of NC machine tools. However, these are all expensive propositions, 

especially since all these measures would be required in concert. The 

alternative way is to use sensors to detect the differences between the 

real world and the robot system's idea of the world and to correct the 

robot's operation in subsequent actions. Vision, as an important kind 
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of noncontact sensor, has an important part to play in an intelligent 

robot system. 

Vision systems are used with the robot mainly for detecting, identi- 

fying and locating objects in assembly tasks, inspecting situations, and 

guiding the recovery from catastrophes. They can also be used in mani- 

pulator servos in assembly [AGI77, SAR81, GES83J and in arc welding 

[CLO82 J . 

Generally speaking, vision tasks in industrial robotics are simpler 

than those of general purpose systems. The objects that the vision sys- 

tem needs to observe are usually man-made workpieces with regular 

features and structures. The environment in which the vision system 

operates can usually be controlled. The robot system usually has prior 

knowledge about the appearance and expected location of objects in the 

scene. All these make it possible and easier to adopt some engineering 

methods to solve vision problems in robotics. As general purpose vision 

techniques progress and the cost of the hardware declines, the trend is 

to use more general vision techniques in industrial vision systems. 

These techniques will enhance the capability of industrial vision sys- 

tems, enabling it to solve some complex problems that the engineering 

solutions cannot do. 

4.2.1. Obtaining Descriptions of Parts 

There are two ways for the vision system to acquire knowledge about 

the geometry of the objects to be identified and located. The first is 

training by showing prototypes of the objects, and the second is by 
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providing models of objects. 

4.2.1.1. Training 

In the training mode during the teaching phase the vision system is 

shown the prototype of every object which is to be recognized by the 

system. The named prototype is usually shown several times, each time 

in slightly different positions. The system extracts special features 

of the prototype, such as the length of the contour, the longest radius 

from the center, the shortest radius, the angle between the radii, the 

number of straight edges, corners, the number of holes. These features 

can be further processed: for example, they may be clustered. The 

knowledge obtained in this phase can be used at run time to recognize 

and locate objects by matching taught features with observed features. 

The training mode is straightforward and has been used in some com- 

mercial vision systems (e.g. [UN180]). However, this mode has disadvan- 

tages. The main disadvantage is that there is no ready way in which the 

user can enhance the capabilities of such a system and all objects 

likely to be encountered have to be taught. Due to the nature of the 

information, this mode can only be used in two-dimensional vision sys- 

tems, for in three-dimensional space, considering the infinitude of 

appearances of an object, training is almost impossible. Furthermore, 

the vision system cannot be used in any productive work while it is 

being taught to recognize objects. Therefore, efficient use cannot be 

made of the vision equipment. 
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4.2.1.2. Geometrical Models 

Geometrical modelling is one way of modelling rigid bodies. It has 

been widely used in computer aided design (CAD), computer aided manufac- 

turing (CAM), robot programming and some other aspects of the modern 

technology. In the specific context of computer vision and graphics, 

geometrical modelling refers to the construction of computer representa- 

tions of physical objects so that, together with knowledge about cam- 

eras, the physics of the imaging process and light source, predictions 

can be made about the images [BAU74]. Geometrical modelling can be 

space oriented in which objects to be modelled are represented in terms 

of space primitives such as elements of a three-dimensional space array, 

three-dimensional density functions, or two-dimensional surface func- 

tions. More convenient modelling systems are object oriented ones in 

which objects are modelled in terms of geometrical properties of 

objects. Since this kind of modelling is easier for the user to use and 

more compact in computer representation, it is commonly used. Proper- 

ties used in modelling may be surface primitives like polygons, volume 

elements like generic cones, or others like skeletons. 

Geometrical models usually provide more information about the 

objects that the vision system is to deal with than that provided by the 

training method and they can be used not only in two-dimensional vision 

systems but also in three-dimensional systems. It is quite likely that 

geometrical models of all objects to be observed by the vision system 

will already have been constructed because they will have been required 

elsewhere in the total manufacturing system (e.g. in their design, 

machining, and in the robot programming). Using geometrical models in 

vision systems in robotics, therefore, is efficient in terms of both the 
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human effort and the vision equipment. 

4.2.2. Industrial Robot Vision Systems 

For a computer vision system to be applied in industrial automation 

with the robot it has to be cost-effective, which means that its speed 

and reliability have to be high with respect to its cost [BOL81b]. The 

industrial vision systems usually meet these criteria by taking advan- 

tage of task-specific engineering for simplifying the scene to be 

analyzed. For example, the lighting conditions can usually be con- 

trolled so that shadows can be avoided. The contrast between the 

objects and the background can be strong so that the geometric features 

can be found more reliably by simple low level vision operators. Since 

the robot system usually has a large store of prior knowledge about the 

appearance and location of objects in the scene, the vision task can be 

directed better. Simple and cheap instruments may also be adopted in 

order to make the vision system cost-effective. For example, in 

Taylor's system [TAY82a] a 32 x 32 bit light sensitive array is mounted 

behind a 13 mm lens as a camera. This makes the system cheap both in 

instrument cost and in computation time since the resolution is low. 

The following section discusses some of the vision systems currently in 

use. 

4.2.2.1. Two-Dimensional Vision Systems 

The performance of currently available vision systems in robotics is 

still limited. Most current commercial vision systems such as VS-100 
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and AUTOVISION 1 are classified by Loughlin [LOU81] as of the first gen- 

eration. Usually these systems can recognize and locate objects within 

a second and are mainly suitable for circumstances where objects can be 

identified by their silhouettes. The general characteristics of this 

class of vision systems are: 

1. The image that the system deals with is binary. This usually 

means that the object must be in strong contrast to its back- 

ground so that its silhouette image can be easily obtained. 

2. The objects must be separated from their neighbours. 

3. Each object must have a limited number of stable states in 

which it can rest on a horizontal surface. 

The restrictions on the scenes and lighting conditions are designed 

to maximize processing speed by minimizing the data required and simpli- 

fying the decision-making procedure. These restrictions may be expen- 

sive in some cases and limit the use of the vision systems. 

The constraint of working on binary images is largely a function of the 

computation time available for recognition in the environment. Complex 

segmentation (either line based or region based) based on grey level 

images is currently capable of separating a component from realistic 

backgrounds, but the computation time on serial computers is very long. 

In order to reduce the computation time, parallel processing is neces- 

sary. 

The constraint of non-touching objects results partially from the 

binary data of the image and partially from the requirement of the 

recognition algorithms used. Any systems that can cope with touching or 

overlapping objects must adopt more powerful algorithms than those used 
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by the first generation systems. 

The constraint of the objects to be recognized having a limited 

number of stable states is due to the techniques used in two- 

dimensional vision systems. The thorough solution to this problem is 

the three-dimensional vision system. 

Some algorithms and systems have been designed to solve the problems 

encountered by the first generation vision systems. For example, the 

local-feature-focus method designed by Bolles [BOL82) can solve a high 

percentage of instances of partially visible objects. Perkins' system 

can determine the position and orientation of complex curved objects in 

grey level noisy scenes [PER78]. 

Another type of vision system currently available is one that 

transfers an input image into another domain, such as the Fourier 

domain, computes a fixed set of features of the transformed image, and 

like the other systems, applies some sort of pattern recognition pro- 

cedure to make the final decision (e.g. [KAS771). Such systems can 

recognize and locate isolated objects and can compare two images for 

difference. It is dubious whether they can be extended to cope with the 

analysis of complex scenes. 

4.2.2.2. Three-Dimensional Vision Systems 

Vision systems need to adopt quite different methods than those used 

in two-dimensional systems in order to deal with three-dimensional 

scenes. For example, it is 
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important to embed models and an understanding of the scene to image 

transformation in an intelligent vision system. With these components, 

a system can predict how an object will appear given its current beliefs 

about the scene rather than having to rely on image models. Several 

systems or algorithms have existed or have been suggested which can 

recognize and locate three-dimensional objects. Among these systems 

some are designed specifically for tasks in industrial automation. Oth- 

ers are of more general purpose. 

Luh et al. developed a syntactic method [LUH81]. The system accepts 

the three-dimensional geometrical information of a given object and sys- 

tematically generates structure descriptive sentences for all possible 

topologically distinct two-dimensional views of the object. The pro- 

cessing time for compiling a directory from the geometrical image is 

long, but it is done off-line, and has to be done only once for each job 

assignment. The on-line determination of the two-dimensional to three- 

dimensional correspondence is achieved by means of directory look-up. 

The IMAGINE system [FIS83] matches surface regions to object models 

in order to recognize and locate projections of three-dimensional 

objects in two-dimensional images. The approach is data driven with 

three major stages. The first stage matches image regions to model sur- 

faces with the goal of estimating the three-dimensional orientation 

parameters for the image region. This information is used to make 

hypotheses about specific object surfaces. The second stage relates the 

hypotheses according to the structural relationships embodied in the 

object models. The third stage verifies that the hypothesized objects 

are consistent with real world constraints, such as boundary, adjacency 

and surface ordering. Recognition is considered successful if a set of 
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data is found that adequately accounts for all features of a model. It 
has been demonstrated that the system can recognize partially obscured 

objects with arbitrary orientation and make reasonable estimation of 

their location. 

The ACRONYM system is a model driven image interpretation system. 

It incorporates viewpoint-insensitive mechanisms. Its performance 

depends upon domain-independent capabilities rather than upon special 

domain-dependent tricks. The operation of ACRONYM can be divided into 

four phases. Based on object models designed by humans, ACRONYM builds 

an object graph and a restriction graph. The object graph is a geometr- 

ical representation of the objects expected in the task domain in terms 

of both the subobjects and the spatial relations holding between an 

object and others. The restriction graph holds sets of constraints on 

algebraic expressions over parameters which are used in the object graph 

to specify the objects. During the prediction phase, the object graph 

and the restriction graph are used to produce a prediction graph. The 

nodes in the prediction graph are predictions of image features, and the 

arcs represents the relations expected to hold over features in the 

image. The prediction graph provides a coarse filter for hypothesizing 

object-image feature matches and contains instructions concerning the 

extraction from the image feature of three-dimensional information about 

the object model to which the feature has been matched. During the 

description phase, ACRONYM uses a "line finder", an "edge mapper" and 

the prediction graph to produce a picture graph. The picture graph, the 

prediction graph, the restriction graph, and the algebraic system for 

reasoning over constraints are used to build the interpretation graph 

during the interpretation phase. Image interpretation proceeds by 

matching image features to predicted features. The manner in which the 
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matching is done and the manner in which the system represents its 

knowledge allow ACRONYM to interpret partially obscured objects. The 

ACRONYM capabilities for domain-independent, viewpoint-independent image 

interpretation make it attractive for resolving real world uncertainty 

in robotics [KEM83). 

There are some other three-dimensional vision systems which take 

advantage of the possibility of controlling the lighting conditions to 

make use of special purpose instruments and techniques. Among these 

special instruments the laser range finder is commonly used. 

The laser range finder consists of a light source, a camera, and a 

computer. There are two basically different techniques which can be 

used to measure ranges [NIT76): triangulation and time of flight. In 

one kind of triangulation range finder [POP77), the light source casts a 

plane of light on the scene, and this, when viewed from a different 

point of view by a TV camera, will appear as a broken curve, or a set of 

straight line segments, depending upon the nature of the surface on 

which the stripe is falling. One stripe gives the range of a cross sec- 

tion of the scene. By scanning the stripe across the scene, a complete 

range map of the scene can be built up. The information can then be 

processed by the computer so that the objects in the scene can the 

recognized and located, or an interpretation of the scene can be given. 

In a time-of-flight range finder, range is determined from the time 

needed for the light to travel from the light source to the target and 

back. The tine of flight can be determined either directly by using a 

pulsed laser and measuring elapsed time, or indirectly by using a modu- 

lated beam and measuring the phase shift. A range image is obtained by 

using a scanning system to sweep the beam over the scene. 
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Such range finders have been used for different purposes. For exam- 

ple, they have been used to form three-dimensional models for objects 

[POP77] and to locate three-dimensional objects [BOL81a]. It is also 

considered that the laser range finder, together with other special pur- 

pose instruments, can fit naturally into the general perceptual frame- 

work [BAR81]. 

4.3. Verification Vision 

The term verification vision is suggested by Bolles. It denotes a 

special kind of vision system whose purpose is to verify and refine the 

location of specific objects in the scene rather than to recognize them. 

The concept of verification vision seems useful and suitable in 

robotics because automatic assembly is not haphazard but carefully 

planned. Most uncertainty in robotics is of the position rather than of 

the appearance of the objects. The robot system usually needs to update 

its knowledge about the location of the objects rather than to recognize 

these objects. Also, the robot system usually has a great deal of prior 

knowledge about the scene which can be used by the vision system to 

estimate the appearance of the scene. For a verification vision system, 

one needs some way of making the prior knowledge about the scene avail- 

able to the system. 

The verification vision system designed by Bolles [BOL77] uses 

object models and image models. It is intended for inspection and 

visual control in repetitive manufacturing tasks. The verification 
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vision system makes use of three-dimensional models, but it requires 

that sensed images be very similar to image models, and therefore it is 

necessary that the difference between the expected position and the 

actual position of the object be within a certain range. 

There are four stages in the operation of the system. At program- 

ming time, the user states the goal of the task, calibrates the camera, 

and chooses potential operator/feature pairs. At training time the sys- 

tem applies the operators to several sample pictures and gather statist- 

ical information about their effectiveness. At planning time the system 

ranks operators according to their expected contribution, determines the 

expected number of operators needed, and predicts the computational cost 

of accomplishing the task. At execution time the system applies opera- 

tors in their order of cost-effectiveness, combines the results into 

confidences and precisions, and stops when the desired confidence has 

been achieved, or cost limit exceeded. The system is restricted in 

viewpoint since it primarily depends upon small correlation windows as 

features [BIN82]. 

Bolles' system is a special case of verification vision in which he 

uses taught image models. It is not necessary to use taught models. 

Baumann [BAU81], for example, uses image models which are defined as 

sets of two dimensional regions. Each region represents a basic com- 

ponent of the expected image of the object. In the work which will be 

described in this thesis, the system uses the knowledge about the 

expected positions of the modelled objects to predict the expected posi- 

tions of the edges in the image. Generally speaking, verification 

vision has a great deal of prior knowledge about the scene. This 

knowledge can be used to guide the interpretation of the visual 
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information. Thus, in order to refine the location of the objects to be 

verified, the verification vision system needs only to know the posi- 

tions of the images of certain selected features. The features which 

can be used by verification vision can be edges, corners, holes or any 

others which are easy to detect and locate. 



Chapter 5. New Vision Commands in RAPT 

The current RAPT system, as discussed in Chapter 3, has no commands 

for using sensory information to perceive and interact with the sur- 

rounding environment. This is inadequate if the language is to be used 

for complex tasks in which unexpected events may happen, where antici- 

pated changes cannot be determined exactly before the program is run, or 

where tolerances are such that special accommodation is needed for each 

part. The motive behind the research work which will be discussed in 

this and succeeding chapters is to provide a set of vision commands and 

associated facilities to overcome this. The semantics of these vision 

commands and the functions of the associated facilities are determined 

by the nature of the variabilities of the environment and the way in 

which the RAPT system needs to use sensory information. In this 

chapter, the author will discuss the role of the vision tasks in the 

RAPT programming environment and define the vision commands which are 

necessary in describing such vision tasks. 

5.1. Vision Tasks in RAPT 

RAPT is an object level language. It has some knowledge about the 

surrounding environment in which the robot will perform assembly tasks. 

The output of normal RAPT is a series of positions of bodies in each 

situation. These positions are, however, only planned ones in as much 

as they have been determined taking no account of the inaccuracies 

inherent in the real world. These planned positions are referred to as 

nominal positions. Discrepancies between nominal positions and actual 

positions of bodies may be caused by inaccuracies of the mechanical 
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structure and performance of the robot, unexpected disturbance to the 

bodies, tolerances in the parts and so on. Usually the discrepancies 

are not too large. For some tasks, the program can be designed to 

tolerate this amount of inaccuracy in the nominal position. However, 

for some precise operations, inaccuracies which are inherent in the 

robot and the environment may cause failures. Furthermore, if work- 

pieces or subassemblies are delivered by a cheap belt conveyer, part 

feeder or fast-moving robot with poor accuracy then the inaccuracies of 

the positions of the bodies may be easily beyond the tolerance of the 

program and the assembly robot. In these cases, some system is needed 

to verify and refine the positions of the bodies whose nominal positions 

are in doubt. A vision system can be used for this. 

RAPT reasons about spatial relationships between body features. The 

identification of an image feature with a feature of a RAPT body in 

effect defines a relationship between that feature and an (imaginary) 

feature of the camera. This relationship, in conjunction with others, 

can be used to refine the estimate of the position of the body. 

In order to specify vision verification tasks in RAPT programs a 

number of vision commands have been added to the RAPT language. They 

are the LOOK statement which is used to indicate the feature to be veri- 

fied and to describe the vision environment, the INVIOLATE statement 

which is used to specify the constraints on the actual position of the 

body to be verified, the TOLERANCE statement which is used to specify 

the maximum translational error along all the three axes of the body 

coordinate system, and the COMBINE statement which provides a vision 

command package and combines the information given by the LOOK, 

INVIOLATE and TOLERANCE statements within the package. 
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Some auxiliary statements are also needed to specify cameras which 

will be used by the vision system. These statements specify types and 

parameters such as focal length and position of cameras. They are also 

used to specify the default camera which will be used when the user does 

not indicate the camera to be used in LOOK statements explicitly. 

5.2. The LOOK Statement 

The LOOK statement is used to indicate the feature to be verified 

and to describe the vision environment. The syntax of the LAO K state- 

ment is as follows: 

LOOK/<feature of body> [,<camera name>]; 

where <feature of body> specifies the feature to be verified. This 

feature will already have been defined by the RAPT modelling system. 

The <camera name> specifies the camera to be used. The <camera name> is 

optional. If it is omitted, the default camera name which has been 

specified by the programmer will be used. For example, the statement 

LOOK/edge 1 of block, camera a; 

asks the vision system to use a camera called "camera a" to refine the 

position of the body "block" using "edge-l". 

In the current research, edges are chosen as the feature type to be 

verified, since images of edges are easy to detect. However, there are 
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no theoretical obstacles to the use of other feature types in the verif- 

ication vision system. 

As mentioned in Chapter 3, the RAPT reasoning system treats edges as 

infinite features although some edges can be represented in the RAPT 

model as finite with a specified extent. The extent of the edge has no 

significance to the reasoning system. However, as features to be veri- 

fied, the edges must be finite since the verification vision system has 

to know the approximate position and dimension of the physical edge to 

be verified. Thus, only edges which have been defined with specified 

length are allowed to appear in a LOOK statement as features to be veri- 

fied. 

The LOOK statement has three effects: 

(1) formation of symbolic features and relationships in the RAPT 

reasoning network. 

(2) sending all necessary information to the vision facility for 

it to decide where and how to find the expected edge. 

(3) making the command to actually use the camera at run time. 

These will be discussed in detail. 

5.2.1. Forming the Symbolic Features and Relationships 

Once a camera has been used to find a body feature in the scene, it 
establishes a relationship between the camera and the body. It is 

known, from projection transformation, that an edge in an image 
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corresponds to a plane in a 3-D space. If an edge feature is to be ver- 

ified, an AGAINST relationship between a face which is relative to the 

camera and the edge will be established. This relationship is denoted 

as AGPE (AGAINST/FACE,EDGE), a special case of AGPC which is a standard 

relationship in the current RAPT system. This AGPE is introduced in 

order to simplify the symbolic reasoning rules and is the same as AGPC 

except that the cylindrical feature involved is restricted to being an 

edge. In the AGPE relation formed as a result of a vision command, the 

edge feature has already been defined by the programmer through the RAPT 

modelling system, while the imaginary face feature is to be created by 

the LOOK statement. From the definition of the relationship AGAINST, it 
is easy to see that the face feature is so located that both the edge 

feature to be verified and the centre point of the camera lens to be 

used must lie on the face. The position of the face feature can be so 

determined that its origin coincides with the centre point of the camera 

lens and its normal is perpendicular to any two rays which point from 

the centre point of the camera towards different points on the edge 

feature. The vectors of these rays can be calculated by the inverse 

perspective projection transformation [DUD73] using measurements of the 

positions of points on the image of the edge. 

However, the vision data (that is, the position of the image of the 

edge feature in the scene) is not available at compile time. Therefore, 

the face feature only exists symbolically at compile time and its posi- 

tion cannot be resolved until run time. The relation AGPE therefore 

holds between a fully defined geometrical feature and one whose position 

is not known at compile time. In order to do the geometric reasoning 

about the position of the body at compile time, a name which is referred 

to as a symbolic feature will be created for the face feature. This 
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symbolic feature has type "face" and an unknown position. At run time a 

real position will be assigned to it. Relations which refer to symbolic 

features are called symbolic relations and will be dealt with by the 

symbolic reasoning system which will be discussed in detail in Chapter 

6. 

5.2.2. Information Used the Vision Facilities 

In order to predict the position of the image of the edge, the fol- 
lowing items of information must be available to the vision facilities. 

(1) the feature to be verified, 

(2) the model of the body, 

(3) the nominal position of the body, 

(4) the translational tolerance of the position of the body, 

(5) the physical name, position and parameters of the camera to be 

used. 

The nominal position of the image of the edge feature of the body is 

easy to work out from this information. It is done in the following 

way. From the model the vision facilities know the exact position of 

the feature in terms of the body's local coordinate system. The nominal 

position of the body together with the body model, tells the vision 

facilities the anticipated position of the edge feature in terms of the 

world global coordinate system. The translational tolerance of the body 

position restricts the discrepancies between the nominal and actual 

positions of bodies. Therefore, the vision facilities are able to 

decide the range in which the expected edge image is likely to appear in 
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the scene. Finally, by using the inverse perspective transformation the 

range of possible image positions can be calculated. 

5.2.3. Calling the Vision Facilities 

The last effect of the LOOK statement is to create a run time com- 

mand to use the camera. The run time command will specify the operation 

of the vision facilities and indicate the symbolic feature to which the 

vision data will be sent after being processed by the vision facilities. 

5.3. The INVIOLATE Statement 

The INVIOLATE statement specifies the constraints on the actual 

position of the body to be verified. The syntax of the INVIOLATE state- 

ment is 

INVIOLATE/<relation>, <feature of body 1>, <feature of body 2>; 

where the <relation> specifies a relationship which must hold between 

<feature of body 1> and <feature of body 2>. Theoretically, it can be 

any relationship allowed by the current RAPT input system. The <feature 

of body 1> is a reference feature while <feature of body 2> is a feature 

of the body to be verified by WOK statements in the same vision command 

package as the INVIOLATE statement. The reference feature <feature of 

body 1> must be either a feature of the world or a feature of a body 

which nas been fixed with respect to the world. For example, the fol- 

lowing statement 
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INVIOLATE/AGAINST, top of table, bottom of block; 

specifies that the body "block" is on the table and its bottom is 

against the top of the table. 

5.3.1. Inviolate Relations in Vision Verification 

The reasons for the introduction of the INVIOLATE statement are 

two-fold. The first and the most important reason is that the verifica- 

tion vision system needs an explicit declaration of the relations which 

must hold whatever the actual position of the body to be verified. In 

RAPT, the position of a body is defined in terms of relations holding 

between features of the body and those of others. However, not all 
these specified relations will actually be realized in physical situa- 

tions. Some of the relations are vulnerable to inaccurate movement, 

tolerance, etc. while others are guaranteed by certain physical con- 

straints. For example, if a body is at rest on a flat table and not 

supported by any other bodies, then its bottom must be against the table 

top. On the other hand, the user may have intended its front surface to 

be coplanar with some other surface. Whether it is actually coplanar 

depends upon how the user asks the robot to put it there. The aim of 

verification is to ascertain the actual positions of bodies, and these 

may differ from nominal ones because some relations have not been prop- 

erly achieved. If there are no explicit statements about which rela- 

tions are inviolate (i.e. must hold whatever the history of the assem- 

bly) then the symbolic reasoning system will explain, without any res- 

triction, the vision data it has obtained about the positions of 
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verified features of the body. The explanation may conflict with the 

physical constraints on the position of the body to be verified. For 

example, suppose the vision system verifies the position of a block B 

which lies on the top face of a work table, and the top face is parallel 

to the X-Y plane of the world coordinate system. Six parameters are 

needed to determine the position and orientation of a body in a Carte- 

sian coordinate system: three for translation and three for rotation. 

If the position of the block is to be verified without any restriction 
over its actual position, then the six parameters are all subject to 

modification and since it is almost certain that there will be some 

errors in the vision system, there may be some peculiar results. For 

example, the result may indicate that the bottom of the block was 

beneath the top of the table though the block lies on the top of the 

table. On the other hand, if an INVIOLATE statement is used to indicate 

the fact that the bottom of the block must be "AGAINST" the top of the 

table then the explanation of the vision data is constrained in such a 

way that the parameters for translation along the Z-axis and rotation 

about the X- and Y-axes are fixed and no matter what the vision data is, 

the relationship "AGAINST" between the bottom of the block and the top 

of the table must be kept. The INVIOLATE statement specifies a con- 

straint on the position of the body to be verified in terms of a rela- 

tionship that must hold between the body and another. From the view 

point of geometric reasoning, it provides a reliable relationship in the 

relationship network. 

If the reference feature does not directly belong to the world then 

it must belong to a body whose position has been determined completely 

with respect to the world. This is so that the position of the refer- 

ence feature can be expressed in terms of the world coordinate system. 
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The second reason for introducing the INVIOLATE statement is to do 

with the capability of the reasoning system. If all the relations which 

will be used to deduce the position of the body to be verified are of 

the AGPC type then the cycle finding reasoning system cannot usually do 

any inference. This is because the relationship AGPC or AGPE contains 

four degrees of freedom: two translational ones and two rotational ones. 

There are no specified relations holding between the coordinate axes of 

the cylindrical feature and those of the face, except that the two X- 

axes must be perpendicular to each other. This characteristic of the 

relationship AGPC or AGPE brings about some ambiguities which can be 

eliminated only when some special conditions hold. The combination of 

relations consisting of AGPC or AGPE type alone is therefore possible 

only for a few special cases [POP81]. The general case of combining two 

or three AGPC relations gives a number of possible solutions and even 

the equation solving system cannot disambiguate than. Of co u^se there 

are no suitable entries in the reasoning rule table of the cycle finding 

system. The INVIOLATE statement helps by providing other types of rela- 

tions which enable the inference system to reach a solution. 

In order to demonstrate the idea of using inviolate relationships in 

reasoning about vision data, the relation type AGPP, i.e. an AGAINST 

between two plane features, is employed in the INVIOLATE statement. The 

relationship AGPP is used because it is the most common situation 

encountered in a real assembly process, and the combination of an AGPP 

and an AGPE is solvable under the verification condition. The necessary 

reasoning facilities have been implemented in the current system. How- 

ever, there is no theoretical restriction on the use of other kinds of 

relationships. The only practical restriction to this is the capability 
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of the symbolic reasoning facility. The type of relationship used in 

the statement can be any one allowed by the RAPT system, provided the 

symbolic reasoning facility can deal with it. 

5.3.2. Local and Global Vision Command Package 

In a RAPT program some bodies may be "TIED" together throughout a 

number of contiguous situations. This means that these bodies must keep 

the same relative positions before and after each action. Usually the 

relative positions of the TIED bodies stay the same before and after a 

set of vision commands. Sometimes, however, the user needs the vision 

system to verify and modify some relations between two bodies which have 

been TIED together. For example, the programmer can specify an opera- 

tion of picking up a shaft by saying that the gripper moves a certain 

distance along a specified direction, and after this action is completed 

the two face features of the gripper are against the shaft. He then 

says that the gripper and the shaft are TIED together before the gripper 

moves upwards. If at this step the programmer is not convinced of the 

relative position of the shaft with respect to the gripper, for example, 

because the position of the shaft on the table was uncertain, then he 

can order the gripper to move to the front of a camera and ask the 

vision system to refine the position of the shaft. The actual position 

of the shaft in front of the camera may be quite different from the nom- 

inal one, but the relations that the face features of the gripper are 

against the shaft must hold provided the shaft has really been picked 

up. The programmer can use INVIOLATE statements to indicate this res- 

triction. In this case the result of the verification may change the 

relative position of two bodies which have been TIED (e.g. the shaft 
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shifted along its axis) but the relations declared by INVIOLATE state- 

ments will still hold. 

In a future implementation, some new statements could be introduced 

to indicate explicitly which TIES must be kept during vision verifica- 

tion and which TIES are subject to modification. At the moment, the 

status of a TIE during vision verification is deduced from the INVIOLATE 

statements. If the reference body (BR) in an INVIOLATE statement in a 

vision command package has been TIED in the associated RAPT program to 

the body to be verified (BV) then the relative position of BV with 

respect to BR is subject to modification. Otherwise the relative posi- 

tions of the two bodies which have been TIED together will not be 

changed. 

Any INVIOLATE statement referring to two bodies which have been TIED 

together is called a local INVIOLATE statement and, as discussed above, 

it indicates that changes may occur in the relative positions. A simi- 

lar treatment is also applicable to subassemblies. An INVIOLATE state- 

ment in which BR belongs to the same subassembly as BV is also called a 

local INVIOLATE statement. A vision command package which contains a 

local INVIOLATE statement is referred to as a local vision command pack- 

age and a vision command package which does not contain a local 

INVIOLATE statement is referred to as a global one. The verified posi- 

tion obtained from a local vision command package will only affect the 

position of BV and therefore the relative position of 9V with respect to 

any other body is subject to modification (but the constraints of the 

INVIOLATE relationship are maintained). Detailed discussion of the 

influence of these two kinds of vision command package over body posi- 

tions can be seen in Chapter 8 where "linking rules" for TIE and 
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SUBASSEMBLY statements are discussed. 

5.4. The TOLERANCE Statement 

Verification vision works under the assumption that the position 

error between the nominal position of the body to be verified and its 

actual position is not very large. This assumption is important espe- 

cially to the verification vision system working together with the 

current RAPT system. As mentioned before, the modelling system used by 

the current RAPT system is incomplete, and therefore it cannot provide 

enough information for the verification vision system to judge whether a 

mismatch is made between an image and an model feature. For example, an 

image of a feature which is not represented by the body model may be 

considered as that of a model feature whose real image is near by, and 

this mismatch cannot be discovered by the system by consulting the model 

of the body. In order to assure the correct match between the image and 

the feature, the position error between the nominal position and the 

actual one of the body should not be too large so that in the whole 

range on the scene in which the expected feature may appear no other 

features may appear. This needs the programmer to select the features 

to be verified carefully and reckon the maximum possible positional 

error correctly. The estimated error should not be so small that the 

expected image may fall outside the range suggested by the error. It 
also should not be so large so that image of other features may fall 
into the range. 

In order to express the maximum possible error in a nominal posi- 

tion, a new statement TOLERANCE is introduced. This statement indicates 
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the possible translational error range of the nominal position of a body 

along each coordinate of the world frame. It has two possible syntactic 

forms. The first one is 

TOLERANCE/<body>,TRAN, <no>; 

where <body> is the name of the body for which the statement specifies 

the maximum deviation from the nominal position, and <no> is a positive 

real number. This form of the statement is referred to as a global 

tolerance statement. It is used outside any vision command packages and 

is valid throughout the associated RAPT program. The second form of the 

statement is 

TOLERANCE/TRAN, <no>; 

where <no> is a positive real number. This form of the statement is 

referred to as a local tolerance statement and can only be used within a 

COMBINE command package. It specifies the tolerance of the nominal 

position of the body which is to be verified by the package of vision 

commands, and has no effects outside the package. If there is no toler- 

ance statement given to a body then a default tolerance which has been 

set by the vision system will be used to restrict its nominal position. 

The rotation error tolerance will be discussed in Chapter 10 of this 

thesis. There is no implementation of rotation error in the current 

system. However, the restriction of the translation error should take 

into account the effects of possible rotational errors on the nominal 

position and indicate the range in which the feature is likely to be 

found. 
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5.5. The COMBINE Statement 

The COMBINE statement provides a package for the vision commands. 

It invokes the symbolic reasoning facility to deduce the symbolic posi- 

tion of the body by using all the information included in the package. 

To this end, it must check whether the statements in the package are 

compatible, and combine information given in the TOLERANCE and INVIOLATE 

statements in order to deduce a more accurate translational error toler- 

ance over the nominal position of the body to be verified. The COMBINE 

statement is also used to declare a new situation in the assembly task. 

5.5.1. Checking the Statements 

There are two points that will be checked. Firstly, all the LOOK 

and INVIOLATE statements in the package must create relationships 

between one particular body and the world. This means that the features 

to be looked for by the LOOK statements must belong to the same body and 

this body must be the same as BV of the INVIOLATE statement. Also the 

reference features specified in the INVIOLATE statements must either 

belong to the world or belong to a body which has been fixed with 

respect to the world. If the reference features do not belong to the 

world directly but belong to bodies whose positions have been determined 

in the world coordinate system then the positions of these features will 
be transformed into the positions in the world coordinate system. 

Secondly, if there is more than one INVIOLATE statement, they must not 

conflict with each other. 
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5.5.2. Restricting the Error Range Over the Nominal Position 

The TOLERANCE statement specifies the maximum translational error 
along all three axes of the body coordinate system. This does not 

necessarily mean that the actual position of the body can differ from 

its nominal position by this amount in any of the three directions. In 

fact, the range of positions is restricted by the constraints described 

by the INVIOLATE statements. The information given by the TOLERANCE 

statement should therefore be combined with the information obtained 

from the INVIOLATE statement(s) and an actual error tolerance on the 

nominal position of a body deduced. This actual tolerance gives the 

vision facilities more accurate data to decide where to expect the image 

of the feature. Because most of the cases that the current vision 

verification system deals with are very simple, it does not need to use 

sophisticated methods to deduce an estimate of the actual error toler- 

ance. For example, consider a verification vision process in which the 

bottom plane of the body to be verified is against the top plane of the 

work table which is parallel to the Y-Z plane in the world coordinate 

system. In this case the possible error of the nominal position of the 

body along the direction of the X-axis of the world coordinate system is 
zero. Occurrences of this kind are quite common in RAPT programs since 

RAPT is used to describe assembly tasks and most workpieces have regular 

and simple shapes. In order to deal with these simple cases efficiently 

the COMBINE command uses some rules of thumb to calculate the actual 

error range along each coordinate axis. These rules of thumb produce 

exact results for the simple cases and approximate results for general 

circumstances. 
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When working out the more accurate error range the system uses the 

local tolerance statement, if one has been given. If not, it looks for 

a global tolerance statement for the relevant body, and failing this, 

uses the default value. Having decided on the tolerance, it can now use 

the INVIOLATE statements and rules of thumb to determine the more accu- 

rate error range. These rules of thumb depend upon the number of 

INVIOLATE statements in the current COMBINE package. 

When considering the case in which the INVIOLATE statements are all 
AGPP ones, three different circumstances can be distinguished. In the 

first there are three non-redundant INVIOLATE statements and the nominal 

position of the body is accurate and the error range is zero along any 

coordinate axis. If there are two non-redundant INVIOLATE statements 

then the body can move in a direction which is perpendicular to the X- 

axes of both reference faces in the INVIOLATE statements. This 

corresponds to a LIN degree of freedom. The rule for two INVIOLATE 

statements is as follows: suppose the cross vector of the X-axes of the 

two reference faces in the INVIOLATE statements is (a, b, c), then the 

combined tolerance will be a vector 

(Id*al, Id*bl, Id*cl) (5.1) 

where d is the nominal tolerance given by the corresponding TOLERANCE 

statement. This rule gives an accurate result for the actual error 

range along each coordinate axis when the direction in which the body is 

movable is parallel to any coordinate axis of the world. In other cases 

the result is approximate. When there is only one INVIOLATE statement, 

or two with the reference faces parallel to each other, the position of 
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the body to be verified may deviate in any direction perpendicular to 

the X-axis of the reference face. In this case the rule is as follows: 
suppose the vector of the X-axis of the reference face in the INVIOLATE 

statement is (a, b, c) then the combined tolerance is a vector 

(d*(1-a*a), d*(1-b*b), d*(1-c*c)) (5.2) 

Here d is the nominal tolerance. If the X-axis of the reference face is 

parallel to any axis of the world coordinate system then the algorithm 

produces an accurate result otherwise it produces an approximate result. 

Precise algorithms for calculating the actual error range in general 

situations may be considered in the future. These rules do, however, 

depend upon the RAPT system having a knowledge of the space occupancy of 

the objects, and of some physical laws. Since RAPT does not yet have 

these, the precise algorithms cannot yet be implemented. 

5.5.3. Creating a New Situation 

Although the whole vision command package causes neither any actions 

of the robot manipulator nor any changes of the nominal positions of the 

bodies, it does change the knowledge of the robot system about the 

actual positions of the bodies. It therefore changes the state and fol- 

lowing actions of the robot. Thus it is necessary for a vision command 

package to be considered to be a special action command and to create a 

new situation to distinguish the states of the robot before and after 

vision verification. Doing this is also a task of the COMBINE state- 
ment. 
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An example of the use of the vision commands is as follows: 

COMBINE; 

INVIOLATE/ against, bottom of bodyl, top of table; 

LOOK/ edgel of bodyl, cameral; 

LOOK/ edge2 of bodyl, cameral; 

TOLERANCE/TRAN, 6; 

TERCOM; 

where TERCOM terminates the COMBINE package. 

5.6. The Camera Specification Statement 

The basic camera model has eight degrees of freedom [BAU74], three 

in location which indicate the position of the lens centre of the cam- 

era, three in orientation which indicate the directions of the axes of 

the camera coordinate system, and two in projection which indicate the 

focal ratio and aspect ratio respectively. In the vision verification 

system, the camera model has seven degrees of freedom. The parameter of 

aspect ratio is embedded into the system for the currently used equip- 

ment so that the user does not need to worry about it. A camera is 

defined by a statement of the form: 

<camera-name> - CAMERA/<name>, <body name>, <F>; 

where <name> is the logical name of the physical camera to be used, 
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<body name> indicates an already defined body whose coordinate system is 

used as that of the camera and <F> is the focal length of the lens. The 

axis of the camera lens is assumed to be collinear with the X-axis of 

the body coordinate system and the centre of the camera lens is assumed 

to be coincident with the origin of the local coordinate system. This 

type of statement is referred to as the general camera specification 

statement, and cameras defined in this way can be moved by the robot. 

For convenience, another type of camera specification statement has 

been introduced. Its format is 

<camera-name>-CAMERA/<name>,<centre>,THETA,<no 1>,PHI,<no 2>, 

PSI,<no 3>,<F>; 

Here <centre> is a point indicating the position of the centre of the 

camera lens, and <no 1> - <no 3> indicate the rotation of the camera 

about its coordinate axes in the order of the Z-, Y- and X-axes. The 

amount is measured in degrees. The camera reference orientation is with 

the X-axis of the camera coordinate system parallel to the Z-axis of the 

world coordinate system, and the Z-axis of the camera parallel to the 

X-axis of the world. This is illustrated in Fig. 5.1. Cameras defined 

in this way cannot be moved or manipulated by the robot. This type of 

the statement is therefore referred to as an immovable camera specifica- 

tion statement. 

When a LOOK statement does not specify explicitly the camera to be 

used then a default camera is used. A default camera setting statement 

has the format 
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Z z 

/The world coordinate system 

Fig. 5.1 The relationship between the world coordinate system 

and the reference coordinate system of the camera 

Fig. 5.2 Window clipping 
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SETCAMERA / <camera-name>; 

In the default case the camera set by the latest SETCAMERA statement 

will be used. 

5.7. Vision Facilities 

The vision facilities used by the verification vision system include 

a vision interface and a low level vision processor. They are used as 

an experimental tool for obtaining real vision data for the use of the 

verification vision system. At present, the vision facilities contain 

three parts: a window suggester, an edge finder and a face generator. 

The window suggester works under the control of the camera commands 

created by LOOK statements. It tells the edge finder where to look for 
the image of the edge feature. The vision data obtained by the edge 

finder is used to determine the position of a new face of the world by 

the face generator. The actual position of the face is then sent to the 

RAPT run time system to take the place of the symbolic position of the 

corresponding face feature created by the LOOK statement at compile 

time. When positions of all relevant symbolic features have been 

replaced by actual ones the symbolic position of a body being verified 
can be evaluated to produce the actual verified position. 

5.7.1. The Window Suggester 

The window suggester needs the body model, the nominal position of 

the body, the positional error tolerance and the position of the camera. 
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The position of any point in the world coordinate system can be 

represented in terms of the camera coordinates by making use of the 

position of the camera. Suppose that the position of a point is Pw in 

the world frame and Pc in the camera frame and C is the position of the 

camera, and that both Pw and Pc are represented in the form of a homo- 

geneous row vector (x,y,z,1). Then the following equations stand 

Pc ** C - Pw (5.3) 

Pc - Pw ** C-1 (5.4) 

Using the focal length F of the lens, the position of the image of the 

point can be calculated. Suppose a point has a position Pc - (a,b,c,1). 

The coordinates of the image of the point can be evaluated by the fol- 
lowing equations. 

y - b.a/F (5.5) 

z - c.a/F (5.6) 

Using equations (5.4), (5.5) and (5.6), the range of the image position 

of the edge to be verified under the constraint of the position error 

tolerance can be worked out in image coordinates and a window can be 

created. However, before the window suggester creates the window, it 
examines whether there is any part of the nominal edge image falling 
within the range of the scene projection, given the current camera 

parameters. This scene projection is determined by the vision equip- 

ment. If the entire image of the edge to be verified is out of the 

range of the scene projection then the window suggester will report an 

error to the programmer, and no window will be created. Otherwise a 
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window will be suggested for the visible part of the image of the edge. 

A window is a rectangle. It is defined in such a way that a part of the 

edge image will definitely appear within the window, provided that the 

position deviation of the body is within the tolerance. The image will 
also be approximately aligned with the long side of the rectangle. 

Before the window is sent to the edge finder, it will be clipped. The 

clipping process first inspects whether any long side boundary of the 

window is completely out of the image scene. If so this will be 

reported to the programmer and the window will be abolished. Otherwise 

the clipping process will clip the window so that only the area of the 

window which is within the image scene will remain. The clipped window 

is kept rectangular (Fig. 5.2). 

5.7.2. The Edge Finder 

The edge finder is a low level vision processor. Given a digitized 

grey level image and a rectangular window, the edge finder will look for 

an image of an edge in the window and report the coordinates of the end 

points of the edge image. The edge finder works in the following way. 

Firstly, it searches from two short sides of the window towards the cen- 

tre in order to find some candidates for the end points of the expected 

edge image. An end point is defined as a pixel whose "weight" (see 

below) exceeds a specified threshold. If some end points have been 

found then it calculates the average weight of the linking pixels 

between each possible combination of end points. It then compares all 
the average weights in order to decide which pair of end points gives 

the line segment with the heaviest average weight, and reports the coor- 

dinates of the pair. If a segment of a curve appears in the given 
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window then the edge finder will report the coordinates of the end 

points of a single straight line which approximates to the curve seg- 

ment. The main advantage of this method is that it is able to reduce 

the effects of discontinuities in the image of an edge caused by noise 

and imperfection of the camera and digitizer. The weight of a pixel is 

evaluated by a high pass filter suggested by Wong [WON79J. The equation 

of the high pass filter is 

it - ( a+b+c-d-e-f I + lc+h+f-a-g-d) (5.7) 

This equation is applied to the window shown in Fig. 5.3 where i coin- 

cides with the pixel to be processed. The threshold used for distin- 

guishing the end points is set by the programmer before the vision 

facilities begin the operation. 

Fig. 5.3 The window of the high-pass filter 

Other kinds of low level vision processing method could be used 

instead of this edge finder, provided they can determine the end points 

of the image of the expected edge correctly. Up to now, however, no 

other methods have been tested since the current edge finder produces 

satisfactory results as an experimental tool under controlled laboratory 

conditions. 
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5.7.3. The Face Generator 

The face generator receives vision data from the edge finder. It 
uses the data to decide the position of the face feature which has been 

created symbolically by the corresponding LOOK statement relating the 

camera and the edge to be verified. Suppose the coordinates of the 

image of a point is (y,z) and the focal length of the lens is F. The 

vector of a ray which points from the centre of the lens to the point is 

(F,y,z). Thus, knowing the positions of the images of two points of the 

edge being verified, the vectors of the two rays which point from the 

centre of the camera towards the points of the edge can be determined. 

A position for the face feature is created with its normal perpendicular 

to the vectors of both rays. The point which is used to decide the ori- 

gin of the face is coincident with the origin of the camera coordinate 

system. Using the knowledge of the position of the camera, the position 

of the face feature is transformed from the camera coordinate system 

into the world frame. 



Chapter 6. Symbolic Geometrical Reasoning About Vision Data 

Symbolic reasoning is an inference process in which reasoning rules 

are applied to uninstantiated variables rather than instantiated ones. 

The purpose of this inference process is to find out general relation- 

ships among variables rather than to calculate special results for some 

particular assignment of the variables of the reasoning. The results of 

this kind of reasoning are usually of the form of symbolic equations. 

The technique of symbolic reasoning has been applied in a number of 

areas such as electronic circuit analysis [LIN737 and synthesis [KLE78], 

image analysis [BR0811 and error constraints in robot operation planning 

[BR0821. In the RAPT verification vision system, symbolic reasoning is 

adopted to carry out geometrical reasoning among symbolic relations 

created by vision commands. 

6.1. Symbolic Reasoning Facility in RAPT 

The RAPT system reasons about the spatial relations between body 

features at compile time. For ordinary RAPT programs without vision 

commands spatial relations are all actual ones with instantiated feature 

positions, and the reasoning is done by the current implementation of 

the inference system: the cycle finder. However, when vision commands 

are introduced in the RAPT program, things are different. At compile 

time, relations created by LOOK statements are symbolic ones with unin- 

stantiated feature positions. The positions of face features have only 

a symbolic form and cannot be instantiated until run time, when the 

vision data is acquired. In this case, the reasoning system has to deal 

with the symbolic form of the feature positions rather than their 
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actual values. The result of the process will be evaluated during run 

time when the real feature positions have taken the places of the sym- 

bolic ones. The requirement of reasoning about symbolic relations is 

beyond the capability of the current cycle finder. A symbolic reasoning 

facility is therefore essential for combining vision data with the RAPT 

system. 

The symbolic reasoning facility which has been added to the RAPT 

system is not intended to take the place of the cycle finder: it is only 

used for reasoning about relations created by vision commands (and in 

the future possibly other sensors); the cycle finder is still used to 

handle relations generated by ordinary RAPT statements. Thus the sym- 

bolic reasoning facility needs only to deal with a subset of the rela- 

tion types handled by the cycle finder. 

The symbolic reasoning system discussed in this chapter does not 

apply any special algorithms to deal with symbolic relations. Instead, 

it provides a general symbolic operation facility so that the necessary 

geometrical reasoning rules can be applied to symbolic relations. Since 

relations created by a vision command package can all be represented as 

holding between the world and the body to be verified, the size of sym- 

bolic relation cycles can be limited to two. 

The symbolic reasoning system works in a similar way to the current 

RAPT cycle finder. Being given two relationship chains between two 

bodies, it will produce a more constrained new relation between the 

bodies by means of a set of combination rules. The main difference 

between the symbolic reasoning system and the cycle finder is that the 

features in both the input and output of the symbolic reasoning system 
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may be symbolic and their positions may be expressed by symbolic expres- 

sions. However, when both the input relations are actual ones with 

instantiated feature positions the symbolic reasoning system behaves 

exactly the same as the cycle finder, and its output is also an actual 

relation with instantiated feature positions. If any one or both of the 

input relations are symbolic then the output of the symbolic reasoning 

system is a symbolic relation with feature positions represented by sym- 

bolic expressions. 

A limitation of the symbolic reasoning facility is that it will not 

handle conditionals which may change the subsequent reasoning route. In 

the current RAPT system, a large number of conditionals are encountered 

during geometric reasoning. The presence of the conditionals is usually 

due to the possibility of special relationships holding between some 

body features, and while some conditionals may only change the reasoning 

rules being applied and the parameters of the consequent relationships 

others may also change the nature of the new relationships resulting 

from the reasoning, and therefore change the subsequent reasoning path. 

The latter type of conditional is referred to as a top level condi- 

tional. For example, in Table 1 in [POP811 when a LIN and an AGPC are 

combined together, the general result will be a FIX. If the X-axis of 

the face feature in the AGPC is parallel to that of the edge feature of 

the same body in the LIN then the result is still a FIX but different 

reasoning rules are applied. Since this conditional does not change the 

nature of the resulting relation and hence does not change the subse- 

quent reasoning route, it is not a top level one. However, in the same 

reasoning process if the X-axis of the plane feature in the AGPC is per- 

pendicular to that of the edge feature of the same body in the LIN, then 

the result will be a LIN. This conditional is therefore a top level 
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one, since it changes the nature of the resulting relation and the sub- 

sequent reasoning route. 

In symbolic reasoning, if a conditional can be evaluated at compile 

time, i.e. the logic value of its condition can be determined then it 
can be handled at compile time no matter whether it is a top level one 

or not. Otherwise the conditional must be kept in a symbolic form and 

will be dealt with at run time. If a symbolic conditional is a top 

level one then the nature of the resulting relation cannot be determined 

at compile time and therefore the subsequent reasoning cannot be carried 

out. Fortunately, most of the top level conditionals which may appear 

in symbolic reasoning because of vision verification can be evaluated at 

compile time since they involve questions of geometrical relationship of 

features of known bodies. There are a few top level conditionals which 

will inevitably have a symbolic form. In the current implementation the 

user is expected to avoid them by carefully selecting the edge features 

to be verified. There are two ways in which the problem can be solved 

in the future. On the one hand, the capability of the symbolic reason- 

ing facility may be expanded to handle all top level symbolic condition- 

als. On the other hand, the capability of the whole verification vision 

system may be expanded so that it will be able to use a complete model- 

ling system to select automatically features to be verified in order to 

avoid any potential top level symbolic conditionals. 

6.2. Bottom Level Versus Top Level Symbolic Reasoning 

There are two main ways to implement the symbolic reasoning facil- 
ity. They can be referred to as the bottom level symbolic reasoning and 
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the top level symbolic reasoning respectively. In fact they are at the 

two extremes of a range, and intermediate levels could be used. In an 

inference system reasoning rules are encoded in a certain computer 

language as functions or procedures, and a function may call other func- 

tions or operations. The functions which do not apply other functions 

can be referred to as bottom level functions while the functions which 

apply other functions can be referred to as higher-level functions. The 

functions which encode the top level performance of reasoning rules are 

referred to as the top level functions. In bottom level symbolic rea- 

soning, the higher-level functions are applied in the normal way, and 

call other functions. It is only the bottom level functions which, when 

applied to symbolic arguments, change their performance and produce 

proper symbolic results. In top level symbolic reasoning, on the other 

hand, the top level function tests its arguments, and if any of the 

arguments is symbolic, then the function will not be applied, but an 

expression will be formed containing a call to the function with its 

to-be-instantiated arguments. 

Both the bottom level and the top level reasoning facilities have 

been implemented and tested. The results show that the bottom level 

symbolic reasoning is not worth using in the verification vision system, 

while the top level symbolic reasoning is suitable for this purpose. 

The reasons will be discussed as follows. 

6.3. The Bottom Level Symbolic Reasoning Facility 

The basic concept of the bottom level implementation of symbolic 

reasoning is that, during compile time, the reasoning facility will 
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expand the reasoning rules which have been applied into calls of bottom 

level functions and basic operations, and do as much evaluation as it 
can. If the positions of all the features in the relations given to the 

reasoning facility are instantiated then the reasoning facility will 
reason about the relations exactly as the cycle finder does and produce 

an ordinary relation. If one or more features are symbolic then the 

reasoning facility will instead produce a list of symbolic expressions 

which contain only the bottom level functions (including basic opera- 

tions such as addition and subtraction) and symbolic arguments, and may 

be partially evaluated. In this implementation of a reasoning facility 
only bottom level functions have the capability of dealing with symbolic 

arguments. 

6.3.1. The Implementation of the Bottom Level Reasoning Facility 

The bottom level symbolic reasoning facility is implemented, like 

RAPT, in Wonder-POP [RAE81], which is a Dec-10 version of POP-2 [BUR77]. 

In this implementation top level functions and other high-level func- 

tions do not check the type of their arguments and have no capability of 

dealing with symbolic arguments. They are defined in the exactly the 

same way as ordinary functions. When a reasoning rule is applied the 

corresponding top level function is evaluated as usual until bottom 

level functions are called. It is the bottom level functions that check 

the types of their arguments. If none of these are symbolic then the 

function is evaluated and the results are returned to the higher-level 

function which called the bottom level one. If one or more arguments of 

a bottom level function are symbolic then the evaluation cannot be car- 

ried out and so a list containing a symbolic expression (the function 
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call and its arguments) is returned. The following examples show the 

basic performance of the bottom level symbolic operation. The items 

following the "**" are outputs of the functions, and "->" is a Wonder- 

POP print command. 

vacs a b c d; 5->a; 6->b; 

comment declares variables a b c d and assigns values 

to a and b whilst c and d remain undefined; 

a-b-> 

a+b-c-> ** [ 11 - c ] 

function fa e f; sqrt(abs(e*f))-f; end; 

comment defines a function fa with two arguments and one output; 

fa(b,d)-> ** [sgrt ( abs ( 6 * d ) ) - d ] 

The bottom level symbolic reasoning facility has been implemented in 

the existing RAPT system by re-assigning the Wonder-POP error trapping 

facility. When a bottom level function tries to manipulate symbolic 

arguments a Wonder-POP error is detected because of the mismatch of the 

type of operands, and the error trapping facility is called. The re- 

assigned error trapping facility uses the name of the bottom level func- 

tion in which the error happens to construct a list which is textually a 

call of the function applied to its arguments. Then the list is simpli- 

fied by a set of simplification rules. These simplification rules 

detect and simplify some expressions (for example, additions and sub- 

tractions with an operand zero, multiplications with an operand zero or 

one, subtractions with two operands having the same superficial 
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structure). The simplification rules are rather basic. They do not 

rearrange a polynomial into a canonical form, and they do not extract 
common factors. These operations would be time consuming and would not 

be of much use in the polynomials resulting from the use of symbolic 

reasoning in vision. The fact that all that is needed to implement the 

symbolic operation is the re-assignment of the Wonder-POP system error 
trapping facility means that the capability of handling symbolic argu- 

ments can be added to the existing RAPT system with very little altera- 

tion. The only modification needed is replacing some use of the syntax 

word "if". This is because in Wonder-POP if the value of a condition is 
"1" then it is considered as true, otherwise it is considered as false. 
There is therefore no data type checking for the evaluated condition 

expressions and therefore no occasion to call the system error trapping 

facility. Thus, in order to invoke the error trapping facility when a 

symbolic expression is met as the value of a condition some other word 

must be employed instead of the standard syntax word "if". The result 

of a conditional with a symbolic condition value is a list: 

[if <expression> then ... ... close] 

The expression may be expanded and partially evaluated. 

6.3.2. Position Representations and Conditionals 

In bottom level reasoning,, positions of bodies are usually 

represented by matrices as in ordinary RAPT except that some elements of 

the matrices may be symbolic expressions. Each element in the matrix 

can be accessed and operated on by the reasoning facility. However, 
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when a position is produced by a conditional clause whose condition can- 

not be evaluated at compile time then the representation of the position 

is a list with the form: 

[if <expression> then <position-l> else <position-2> close] 

Here the positions in the list can be either ordinary ones or symbolic 

ones. In this case the reasoning facility cannot access or operate on 

any individual element of the position matrices in the list at compile 

time, but must deal with the list as one inseparable entity. This means 

that positions are either represented by matrices or lists, and this 

spoils the harmony of the reasoning process. 

6.3.3.Assessment of the Bottom Level Implementation 

The main advantage of the bottom level implementation is that it 

allows the use of symbolic reasoning in all existing programs automati- 

cally via the Wonder-POP system error trapping facility. The only 

modification needed is for conditionals. This method therefore makes 

the symbolic reasoning facility implicitly available to all the existing 

geometric reasoning rules, and the cycle finder can be used directly to 

handle symbolic relations. 

The second advantage is that it needs fewer geometric reasoning 

facilities at run time than the top level implementation. This is 

because all the reasoning rules and high-level functions are either 

evaluated or expanded at compile time to expressions which only contain 
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basic operations. One matrix component selector is needed in addition 

to basic arithmetical operation facilities. This makes the run time 

system very compact. 

The main disadvantage of the bottom level implementation is that it 
needs a lot of time during both compilation and running. At compile 

time, the symbolic reasoning creates long expressions to represent the 

positions of objects. Due to the huge size of the expressions it takes 

a lot of time to produce them. At run time, the evaluation of these 

huge expressions also takes much time. The reasons for the length of 

the expressions will be discussed below. 

6.3.3.1. The Length of the Expressions 

Theoretically speaking, if the majority of the arguments can be 

instantiated before the reasoning takes place then a bottom level method 

will be able to do most of the evaluation at compile time and the 

results will be compact. In practice, for verification vision tasks, 

very little evaluation can be done at compile time and the number of 

uninstantiated arguments means that most reasoning rules are expanded 

rather than evaluated. As mentioned before, a position in RAPT is 

represented by a homogeneous matrix indicating the origin and three 

coordinate axes of the local reference frame. If a position is symbolic 

then it will introduce twelve uninstantiated arguments in the reasoning 

process. Suppose a relation created by an INVIOLATE statement is to be 

combined with that created by a LOOK statement. The INVIOLATE relation 

contains two instantiated feature positions while the LOOK relation con- 

tains an instantiated one and a symbolic one. In total there are three 
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instantiated positions and one symbolic one in this reasoning process 

and the result is a relation containing two symbolic positions 

represented by symbolic expressions. If this result is to be combined 

with a relation created by another LOOK statement then there will be 

three symbolic feature positions and only one instantiated one in this 
reason process. 

There are some complex sub-expressions which would normally have 

been evaluated only once appearing several times in the symbolic expres- 

sion, and these sub-expressions must be evaluated each time when they 

appear at run time. When the same expression appears in different com- 

ponents of a position matrix, the expression simplifier cannot do any- 

thing with it. Even when the expression appears several times in a com- 

ponent, it is still not easy to simplify the component further because 

of the form of the component which contains the common sub-expression. 

Other people have met similar problems in other systems in which sym- 

bolic calculation was adopted. For example, in the electronic circuit 
synthesis system SYN which was described by de Kleer and Sussman 

[KLE78], most resources, including computing time and storage space, 

were used in computing the greatest common divisors (gcd) of the polyno- 

mials. When SYN failed to complete a problem, it was always because 

just one gcd computation filled up the entire address space of the com- 

puter. In the bottom level implementation of symbolic reasoning in the 

vision system, the common sub-expression problem does not cause failure, 
since the storage space of the computer being used (DEC-10) is large 

enough, but a large amount of computing time is taken up. 

The representation of the RAPT position is another factor which 

makes the symbolic expressions very long. As mentioned above, all the 
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three coordinate axes of a local frame of a position are represented 

explicitly in RAPT, and this is redundant. Since the local reference 

frame is a Cartesian coordinate system, only two coordinate axes are 

needed and the third one can be deduced by the right-hand rule. In 

fact, in the reasoning process only the X- and Y-axes are used to deduce 

the position of newly created features although the Z-axis is also 

represented and calculated in each step of reasoning. The representa- 

tion form of the position does not cause any problems in ordinary rea- 

soning as the instantiated position is compact in configuration. The 

redundancies only increase the position representation by the size of 

three real numbers, and need a bit more time to calculate them. This 

representation form is used in RAPT because it is convenient for doing 

matrix multiplication. In symbolic reasoning, however, the redundancies 

cost very much in terms of both computer time and storage space. In 

symbolic position representation elements of the position matrix are 

symbolic expressions which are usually quite long. Therefore, three 

extra components may increase the size of the position expression con- 

siderably. Furthermore, since the components of the Z-axis are calcu- 

lated from those of the X- and Y-axes, they are usually longer than 

those of the X- and Y-axes, and calculating the redundant components 

needs more time than that for working out X- or Y-axis. 

The symbolic conditional makes things worse. The results of sym- 

bolic reasoning without conditionals have the same data type as that of 

a real reasoning result, i.e. a position matrix, except that each com- 

ponent is a symbolic expression rather than a number. In subsequent 

symbolic reasoning operations only the relevant components will be used 

to form the expressions of the components of new symbolic positions. 

The result of a symbolic conditional, as mentioned above, is a list 
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containing an expanded conditional statement. When a reasoning rule 

wants to access a component of the position matrix resulting from a con- 

ditional, it has to deal with the whole conditional itself. The format 

of the components of the position matrix which is created by a condi- 

tional is like this: 

subpos(2,[if <expression> then <posl> else <p032> close]) 

where SUBPOS is a component selector and 2 indicates the second com- 

ponent. Thus the whole conditional statement must appear in each 

relevant component of the new result which depends upon some components 

of the position represented by the conditional. This is unacceptable 

especially when the conditional statement is long. Unfortunately, all 

the conditionals in the symbolic reasoning are very long, since the con- 

dition expressions are expanded symbolic operations on symbolic feature 

positions. Furthermore, an expression which contains this kind of 

structure cannot be simplified further. Thus the expressions of the 

final result containing conditionals are very long and require unneces- 

sary repetitive calculations. 

The following example shows the complexity of the symbolic expres- 

sion which is generated by the bottom level symbolic reasoning facility. 

Suppose there is one INVIOLATE statement and two LOOK statements in a 

vision command package. The reasoning route is: 

AGPP + AGPE + AGPE -> FIX 

the final results of the reasoning before merging operation are the 

positions of two new features of the two bodies in the relationship FIX. 
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They are referred to as Eat and Eb1 respectively. When the edge 

features to be verified are not perpendicular to the plane feature of 

the body, the expressions of Eat do not contain conditionals and are 

about 330 lines long with 80 characters in each line when displayed on a 

terminal. The expressions of Ebt do contain conditionals and are more 

than 5,400 lines long. The evaluation of Eat takes about 30 seconds 

while the evaluation of Eb1 takes more than 15 minutes. (The CPU time 

included garbage collecting time and was measured by a Wonder-POP 

library routine). Obviously, the requirement of both the storage space 

for handling the results and the time for evaluating them are not 

acceptable in a realistic robot control system. 

6.3.3.2. Ways of Alleviating the Problems 

In order to shorten the resulting position expressions and reduce 

the time needed for evaluating them at run time, a staged bottom level 

implementation of symbolic reasoning can be used. The staged method is 

a way to deal with the sub-expression problem. In a staged bottom level 

implementation some variables are declared to represent certain inter- 

mediate results which are, of course, symbolic expressions. In the sub- 

sequent reasoning these variables, rather than the intermediate results 

themselves, are operated by the reasoning system. The final results are 

position expressions which contain the variables which represent 

corresponding intermediate expressions. Since the intermediate symbolic 

expressions are represented by single identifiers the final results are 

shortened. At run time, the intermediate results need to be evaluated 

only once and then assigned to corresponding variables to enable subse- 

quent position expressions being evaluated. This method was tested with 
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the same example as the pure bottom level implementation which has been 

described above. The reasoning route 

AGPP + AGPE + AGPE -> FIX 

were divided into two stages: 

AGPP + AGPE -> LIN 

LIN + AGPE -> FIX 

The intermediate results of the first rule were given new symbolic names 

and the new names rather than the symbolic expressions obtained from the 

first step of reasoning were used in the second step. At run time, each 

of the symbolic expressions of the first rule were evaluated once and 

the values assigned to the symbolic names which had been used in the 

second rule before the final results were evaluated. 

This technique improves the performance of the method dramatically. 

The lengths of the expressions of the intermediate results obtained this 

way are 111 lines and 250 lines respectively when being displayed while 

those of the final results of Eat and Ebt are 57 lines and 148 lines 

respectively. The execution requires a couple of seconds at both com- 

pile time and run time including the time used by the garbage collector. 

An example of the measurement of the time used at run time is 0.5 second 

for calculation and 9 seconds for garbage collection. However, this is 

still much slower than the top level method, and the size of the results 

are still too large for a miniature system to handle. 
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The other thing that could be done to shorten the length of the 

position expression is to change the position representation. However, 

this means a lot of change in the current RAPT code. This is out of the 

scope of the thesis research and therefore has not been done. The abil- 
ity to introduce the symbolic reasoning facility into other programs via 

the system error trapping facility causes another problem: system- 

dependence. The method implemented this way only runs under Wonder-POP. 

It can not even run under POP-2 on UNIX since there is no suitable error 
trapping facility available in that system. The programming needed in 

order to re-assign the error trapping facility is a bit complex because 

many functions of the system error trapping have to be redefined in 

order to produce symbolic expressions and simplify them. 

6.4. The Top Level Symbolic Reasoning Facility 

The principal concept of the top level implementation of symbolic 

reasoning is that when the reasoning facility reasons among symbolic 

relations it only does this at a meta level without any expansion of the 

reasoning rules or partial evaluation at compile time. It only indi- 

cates what the reasoning route is, which top level functions will be 

applied and what type the resulting relation of each reasoning step is. 

The positions of the newly created symbolic features are represented in 

terms of top level functions rather than bottom level ones. When rea- 

soning among instantiated relations the top level reasoning facility 

behaves exactly the same as the ordinary cycle finder. 



6.4.1. The Implementation of the Top Level Reasoning Facility 

In the top level implementation of the symbolic reasoning facility 
only the top level functions differ from those in the ordinary cycle 

finder while the other functions and operations are exactly the same as 

their counterparts in the cycle finder. When a top level function is 

applied by a reasoning rule it checks the data types of its arguments. 

If all the arguments are of the correct data type then the function is 
evaluated as a normal one. If any of its arguments are of incorrect 

data type then a list containing the name of the function with its argu- 

ments is produced as its result. In this list if an argument of a func- 

tion is either a symbolic expression or a non-symbolic data structure 

then the argument is represented in the list by this expression or data 

structure. If an argument is an identifier which has been instantiated 

by either a symbolic expression or a non-symbolic data structure then 

this argument is represented by the content of the identifier. If an 

argument is an uninstantiated identifier then it is represented by the 

name of the identifier, and the identifier needs to be instantiated at 

run time. 

Since the types of all the relations including symbolic relations 

are instantiated and no top level conditionals appear during the sym- 

bolic reasoning, the types of newly created features and relations, and 

therefore the reasoning route, can be determined at compile time. As no 

reasoning rule expansion occurs, there are no lower level symbolic con- 

ditionals appearing in the symbolic reasoning results. Hence, the 

results of the top level symbolic reasoning contain top level functions 

only. 
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6.4.2. Assessment of the Top Level Implementation 

The main advantages of the top level implementation are that: 

(1) this method works faster at compile time than the bottom level 
one; 

(2) the results of this method are much more compact; 

(3) the speed of evaluating them is much higher than those pro- 

duced by the bottom level method. 

When tested with the same example used for testing the bottom level 

method (Section 6.2), both the symbolic reasoning at compile time and 

evaluating the symbolic results at run time needed less than a tenth of 

a second. The symbolic position expression of the body being verified 

(this includes the merging operation) is eight lines long when displayed 

on a terminal. Both the time and storage space requisites are realistic 

for a practical robot control system. The top level symbolic reasoning 

facility has therefore been employed in the verification vision system. 

Compared to the bottom level method, the top level one has two 

disadvantages. (1) The first is that the method cannot introduce the 

symbolic reasoning capability into existing geometric reasoning rules 

implicitly. In order to do this, some explicit statements have to be 

added into each top level function of the reasoning rules. The symbolic 

reasoning system therefore cannot apply the existing top level functions 

of the cycle finder, but instead, it has to use ones which are defined 

specifically. (2) The second disadvantage is that the method needs more 

computational facilities at run time than those required by the bottom 

level method. Generally speaking, in a symbolic reasoning system it can 

be decided at compile time what computational facilities will be needed 

at run time in order to evaluate the symbolic results, and the 
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definitions of the facilities must be sent to the run time system. 

Since no reasoning rule expansion is done at compile time, in the top 

level implementation all the facilities that are called by the top level 

functions have to be available at run time. This makes the correspond- 

Ing run time system larger than that needed by the bottom level method. 

6.5. The Reasoning Rules for Symbolic Reasoning 

Since the decision has been made to use top level symbolic reason- 

ing, it is necessary to provide a new set of reasoning rules that can be 

used with symbolic relations. Because of the way in which vision is 

used in verification in the system described here, there are only a lim- 

ited number of relations which can take symbolic form, and only a lim- 

ited number of ways that these relations will need to be paired with 

other relations. Therefore, there is only a limited number of reasoning 

rules which have to be replaced. These reasoning rules are discussed 

below. 

The size of the relation cycle in vision verification is always two, 

and so it is only combination rules that have to be rewritten, not crea- 

tion rules (Section 3.3.3). As discussed in Section 5.2, the look 

statement creates an AGAINST relation between an edge feature of the 

body to be verified and a plane feature of the camera. Since the posi- 

tion of the camera must be known when it looks for the edge to be veri- 

fied, the plane feature of the camera can be considered as a feature of 

the world. (in the cycle finder, the camera must be "merged" into the 

world in this case since it is FIXED to the world directly or 

indirectly.) Thus the AGPC relation holds between the world and the body 
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to be verified. The INVIOLATE statement creates an AGAINST relation 
between plane features of a reference body and the body to be verified. 
Since the reference body must be either the world or a body which has 

been FIXED to the world (Section 5.3) this relation also holds between 

the world and the body to be verified. 

It is a RAPT convention that when two relationships are to be com- 

bined together, the relations are described in such a way that the first 
feature mentioned in each relation belongs to one body, and the second 

feature mentioned in each relation belongs to the second body. In the 

discussion which follows, these are referred to as body a and body b 

respectively. Thus, if an AGPP and an AGPC are to be combined together 

then body a has two face features while body b has a face feature and a 

cylindrical feature. In the symbolic reasoning body a represents the 

world while body b stands for the body to be verified. Features of the 

body to be verified will be referred to as body features while those of 

the reference body and the symbolic feature of the camera are referred 

to as world features when convenient. 

The only relation types that appear in the symbolic reasoning caused 

by vision verification are AGPP, AGPC, LIN and FIX. The AGPP and AGPC 

are input relations created by vision commands while the LIN and the FIX 

are internal ones created by the reasoning system, and the FIX is the 

final result that the reasoning system infers towards. The ordinary 

reasoning rule table for instantiated relations which is relevant to the 

symbolic reasoning is shown in Table 6.1. 



----------------------------------------------------------- 
No. I R1 R2 RR condition 
--------------------------------------------------------- 

12 

1 

AGPP AGPP 
LIN general 

- -- -- - - -- - - - I -- - - - - - -- - - - -- # 
--------------------------- 

3 
4 

AGPP 

AGPP 

LIN 

AGPC 

FIX 
LIN 

AGPP 
ROTYLIN 

LIN(2) 
LIN(2) 

general 
x a perpendicular --------------------------- 
x a par al l e l 
x_b_parallel 
x b perpendicular 
general 
--------------------------- 

9 LIN AGPC LIN x_a_perpendicular 
10 FIX x_a_parallel 
11 FIX general 

----------------------------------------------------------- 

Note: (1) R1 and R2 indicate two relationships which 
constitute a relational cycle. 

(2) RR indicates the resulting relationship. 
(3) xaparallel means X-axes of the two features of 

body a are parallel to each other, etc. 
(4) x a_ perpendicular means X-axes of the two features 

of body a are perpendicular to each other, etc. 
(5) "(2)" means the result is ambiguous. 

Table 6.1. Combination Rules Relevant to Symbolic Reasoning 

--------------------------------------------------------- 
No. I R1 I R2 RR I condition 
------------------------------------------------------ 

1 

2 

3 
4 

AGPP 

AGPP 

AGPP 

AGPE 

AGPP* 
LIN * 

LIN 
LIN 

x a parallel 
general 

x b perpendicular 
general 

5 1 LIN AGPE FIX ( x_a parallel I 
------------------------------------------------------- 

Note: "*" indicates the reasoning is not symbolic. 
AGPE is a restricted case of AGPC 

Table 6.2. Symbolic Reasoning Rule Table 
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6.5.1. Combining an AGPP and an AGPC 

In the existing cycle finder the rules for combining the relation 

pair AGPP and AGPC (lines 5-8 in Table 6.1) have not been implemented 

because in most cases the result is ambiguous. The general result of 

the combination of an AGPP and an AGPC is a LIN, which holds between two 

newly created edge features. The new edge of body a is determined by 

the two faces of body a while the new edge of body b is determined by 

all the four features in the AGPP and AGPC. A LIN relationship indi- 

cates that the X-axes of the edge features are collinear and in the same 

direction and that the Y-axes are parallel to each other. However, 

since the combination of an AGPP and an AGPC does not contain enough 

information about how to choose the directions of the edge features in 

the LIN, there are two LIN relationships which satisfy the constraints. 

The two relationships differ from each other by a rotation of 180 

degrees about an axis which is perpendicular to the face feature of body 

b (Fig. 6.1). The existing cycle finding system has no way of choosing 

between the two possible situations. 

In symbolic reasoning the nature of the verification task pro- 

vides the necessary constraint for choosing the unique correct answer. 

When a body is to be verified the discrepancy between its nominal posi- 

tion and actual one is assumed not to be too big. In practice it is 

very unlikely that the actual position of the body to be verified 

differs from the nominal one by more than 90 degrees of rotation. This 

characteristic presents a basis for the symbolic reasoning system to 

eliminate the ambiguity in the resultant LIN relation. The symbolic 
the 

reasoning system is able to selecticorrect LIN relationship in the fol- 

lowing way. The reasoning system assigns the direction of the X-axes of 
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f 

AGPP 

(a) 

AGPP 

(b) 

Fig. 6.1. Two situations which both satisfy AGPP+AGPC 

Fig. 6.2. Three possible situations of the infinite number which satisfy AGPP+AGPC+AGPC when the X-axes of edges are all parallel to that of the face feature of the AGPP 

-134- 



the new edge features arbitrarily at first provided they are collinear, 

and then tests the angle between the nominal body orientation of the 

body to be verified and the verified orientation under this assignment. 

(Notice, since a LIN has only one translational degree of freedom, it 
indicates the orientation of a body). If the angle is less than 90 

degrees than the directions which have been assigned are considered 

correct. Otherwise the direction of the X-axis of the new edge feature 

of body b is reversed. 

As a result of this reasoning process, the position of the new edge 

feature of body a in the LIN relation must be symbolic since it is 

determined by the two face features of body a In the AGPP and AGPC rela- 

tions and the position of the face feature in the AGPC relation will be 

determined by vision data. The position of the new edge feature of body 

b is also symbolic, since it is determined by all four feature positions 

in the AGPP and AGPC relations. Therefore, the angle between the nomi- 

nal orientation and the verified orientation of body b cannot be calcu- 

lated until run time, and this means that the position of the new edge 

feature of body b (the body to be verified) will be expressed by a sym- 

bolic conditional. However, changing the direction of the edge feature 

does not change the nature of the resulting relation, and so the condi- 

tional is not a top level one. Therefore, in the top level symbolic 

reasoning this conditional is not expressed explicitly at compile time. 

(In the bottom level reasoning, if it were used, the symbolic expres- 

sions would be significantly elongated.) 

When the X-axis of the cylindrical feature in an AGPC relation is 

parallel to that of the face feature of body b in an AGPP relation, com- 

bining the AGPP and the AGPC will produce a special relation ROTYLIN 
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(line 6 in Table 6.1). This relationship holds between two new edge 

features, and means that the body with the cylindrical feature (body b) 

can move along a line which is determined by the two face features of 

body a, and can rotate about the axis of the cylinder. This is a diffi- 
cult relation type for the geometrical reasoning system to deal with 

since if it is to be combined with other relations in the subsequent 

reasoning a large number of special conditions must be tested and the 

results are usually ambiguous or cannot be simply expressed. For 

instance, when a ROTYLIN is to be combined with an AGPC relation, eight 

conditions must be examined. Among the nine possible results, five are 

ambiguous and difficult to use in subsequent reasoning (see Appendix 

II). For this reason ROTYLIN has not been implemented in the cycle 

finder. For the same reason it has not been adopted in the symbolic 

reasoning system either. In combining an AGPP with an AGPC, if the X- 

axis of the edge feature is parallel to that of the face feature of body 

b in the AGPP relation then the AGPC is sidestepped by the cycle finder 

which attempts to find a more suitable pair of relations. 

Discarding the relation type ROTYLIN does not cripple the capability 

of the symbolic reasoning system. It is shown in Appendix II that even 

if the ROTYLIN were to be implemented it would cause some top level con- 

ditionals and increase the power of the symbolic reasoning system very 

little. In the case of using one AGPP and two AGPC relations to reason 

about the position of the body to be verified, if the X-axes of the two edge 

features to be verified were all parallel to that of the face feature of 

the body then the position of the body would not be completely deter- 

mined. Instead, the body position would be a complex function of the 

positions of the features given in the AGPP and AGPC relations. This is 

illustrated in Fig. 6.2. The reasoning system would need at least 
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another relation between the body and the world to fix the body posi- 

tion. In order to determine the body position completely by an AGPP and 

two AGPC relations, there must be at least one edge feature whose X-axis 

is not parallel to that of the face feature of the body to be verified. 

Thus the relation which contains this edge feature can be combined with 

the AGPP relation first to create a LIN relation, and then the LIN rela- 

tion can - be combined with the other AGPC relation the X-axis of the 

edge feature of which may be parallel to that of the face feature of the 

body. 

In combining an AGPP and an AGPC in the cycle finder, if the X-axes 

of the two face features of body a are parallel to each other then the 

AGPC is redundant and does not provide any new constraint on the rela- 

tion between body a and body b which is fully expressed by the original 

AGPP relationship (line 5 in Table 6.1). Similar things may also happen 

in the symbolic reasoning. In vision verification the symbolic face 

feature generated by the LOOK command may be parallel to the reference 

face feature used in the inviolate AGPP relationship if the X-axis of 

the edge feature of the body to be verified is perpendicular to that of 

the face feature in the inviolate AGPP and the camera is at a certain 

position (Fig 6.3). When this happens it causes a symbolic top level 

conditional since the resultant relation is of different type from the 

general result and examining the condition can only be calculated at run 

time when the symbolic feature is instantiated. It should be avoided in 

the symbolic reasoning; at present the user has to avoid the possibility 

of this happening, in the future (see Chapter 10) the system will select 

the feature to be verified in order to avoid this. 

Fortunately, in most circumstances this type of top level 
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symbolic face feature 

AGPP 

camera 

AGPC 

reference face feature 

Fig. 6.3. A situation in which the symbolic face feature is 
parallel to the reference face feature 

edge to be verified 

edge to be verified 

AGPP 

(a) (b) 

Fig. 6.4. Two situations in which LIN+AGPC produces a LIN 
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conditional can be avoided in verification vision tasks. In an assembly 

station the assembly task is usually carried out on a work table, and 

the inviolate relation which is most likely to be used is the one that 

indicates a face feature of the body to be verified is against the top 

of the work table. The camera is usually installed so that it is above 

the work table and looking down on it. The symbolic face feature which 

is determined by the positions of the camera and the end points of the 

edge to be verified therefore cannot impossibly be parallel to the top 

of the work table. For the few cases in which the symbolic face might 

be parallel to the reference face in the AGPP, the user is asked to 

select the position of the camera and the edge to be verified carefully. 
Lines 5-8 in Table 6.1 can therefore be replaced by just two symbolic 

reasoning rules (lines 3 and 4 in Table 6.2). 

6.5.2. Combining a LIN and an AGPC 

The rules for combining the relation pair LIN and AGPC have been 

implemented in the cycle finder (line 9-11 in Table 6.1). In the sym- 

bolic reasoning system that part of the rule which leads to a LIN has 

not been adopted since it would cause a top level conditional. The 

parts of the rule which produce a FIX have been implemented with some 

modification so that they are more suitable for dealing with the AGPC 

relations. 

When the X-axis of the face feature of body a in the AGPC is perpen- 

dicular to that of the edge feature of body a in the input LIN relation, 

the AGPC is redundant and the cycle finding system combines the AGPC and 

LIN to produce the original LIN as result. in the symbolic reasoning 
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caused by vision verification this condition may happen in various cir- 
cumstances. Only a very limited number of the circumstances can be 

anticipated or partially anticipated without knowing the relevant vision 

data. The input LIN relation may have been derived in either of two 

ways in the symbolic reasoning. It may result either from the combina- 

tion of two AGPP relations or from the combination of an AGPP and an 

AGPC relation. When the LIN is derived from two AGPP relations, the 

condition which causes the combination of the LIN and an AGPC to be a 

LIN arises if the X-axis of the edge to be verified is perpendicular to 

faces of the body to be verified in both AGPP relations (Fig. 6.4 (a)), 

or if the X-axis of the edge is perpendicular to the body face in one 

AGPP relation and the camera is at a certain position (e.g. Fig. 6.4 

(b)). When the LIN results from combining an AGPP and an AGPC, the only 

partially predictable circumstance in which this condition arises is 

that the X-axes of the two edges to be verified are parallel to each 

other and perpendicular to the body face in the AGPP relation. If these 

X-axes are also perpendicular to that of the camera then the X-axes of 

the world edge feature in the derived LIN and the world plane feature in 

the AGPC are perpendicular to each other, and so the AGPC cannot provide 

any useful information, and so the resulting relation is the same LIN. 

It is easy to see from the discussion above that a top level conditional 

will be produced in most cases when the input is tested for perpendicu- 

larity of the X-axes of symbolic world features involved in the LIN, 

AGPC combination. However, since this case actually arises only when 

the user has attempted to specify the use of the camera in an unsuitable 

way, at present the symbolic reasoning system assumes that the special 

case will never occur and so does not insert any test (and hence does 

not insert a top level conditional). It therefore has to rely on the 

user's common sense. In the future, the system will select the edges 
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and cameras automatically so that the user can be released from the bur- 

den of deciding what to look for. This will be discussed in detail in 

Chapter 10. At the moment, if the user fails to choose correct edge 

features and cameras then the symbolic reasoning system cannot com- 

pletely determine the position of the body to be verified. It reports 

the situation to the user at compile time and then declares that it will 
ignore the relevant run time vision operation commands if the user does 

not take any proper action. 

In the symbolic reasoning, checking for the special condition in 

which the X-axes of the world features in the LIN and AGPC are parallel 

to each other also needs vision data which can only be obtained at run 

time. However, since this condition does not change the type of the 

resulting relationship, it does not cause a top level conditional. The 

reasoning rule for this special case can be merged with that for the 

general case. Lines 9-11 of Table 6.1 can therefore be replaced by line 

5 of Table 6.2. 

6.5.3. Combining Other Relation Pairs 

In the symbolic reasoning system the AGPP relation is always created 

by the INVIOLATE statement and all relevant positions in it are instan- 

tiated. Thus reasoning among AGPP relations is not symbolic, and the 

reasoning rules are exactly the same as those used in the cycle finder 

(lines 1,2 in Table 6.1). 

When there are two INVIOLATE statements in a vision command package, 

the two AGPP relations are always combined first by the reasoning system 
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to produce either a LIN, in the general case, or an AGPP, in the redun- 

dant case (lines 1,2 in Table 6.1). Thus, there is no possibility that 

an AGPP will be combined with a symbolic LIN, and therefore there are no 

rules needed in the symbolic reasoning system to deal with this. 

The combination rules which are used by the symbolic reasoning sys- 

tem are shown in Table 6.2. It is a subset of Table 6.1. As discussed 

in Section 5.2, the AGPC relationships created by LOOK statements are of 

special case. In order to simplify the symbolic reasoning, the special 

AGPCs are denoted as AGPEs. 

6.6. The Control of the Symbolic Reasoning 

The control strategy used in the symbolic reasoning system is dif- 

ferent from that used in the cycle finder in that the symbolic reasoning 

system discriminates relation types and reasons among AGPP relations 

first. This is because, unlike the cycle finder, different types of 

relations in the symbolic reasoning system come from different sources 

and have distinct reliabilities. In order to obtain more reliable 

results, the reasoning system should take advantage of the more depend- 

able relations when the specification is overconstrained. 

All the types of relations that occur in the cycle finder are either 

specified by the user's program or deduced from it. The cycle finder 

searches through the network for relation pairs and tries to find a 

suitable entry in the reasoning rule table. Every relation type is con- 

sidered equal in reliability and importance to others and no relaaton 

types are given priority. The order of using relation pairs in the 
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reasoning process is arbitrary and is partially determined by the inter- 

mediate results of the reasoning. If the specification is overoon- 

strained in the relation network then the user cannot predict which 

relation will be actually used and which will be merely tested for con- 

sistency by the reasoning system. 

In the symbolic reasoning system, however, things are different. 
There are only two types of input relations in the reasoning process: 

the AGPP relation and the AGPE relation, but their reliability is dis- 

tinct because they come from different sources. The AGPP relation 

created by the INVIOLATE statement describes a relation which must hold 

in the real world in a situation of the assembly task. It can therefore 

be considered to be reliable. In contrast to the AGPP relation, the 

AGPE relation arises from the LOOK statement, and its parameters will be 

determined at run time by the vision data. Since the accuracy of the 

vision facility is limited, the AGPE relation is less reliable than 

AGPP. 

In describing a verification vision task, the user is allowed to 

make more statements than necessary. For instance, the user may make 

one INVIOLATE statement and three LOOK statements in a vision command 

package. This gives the reasoning system the opportunity to select 

suitable LOOK statements from the given three in order to avoid top 

level conditionals or some undesired combinations such as ROTYLIN. It 
therefore reduces the burden on the user of selecting edges to be veri- 

fied. The only case that the symbolic reasoning system can deal with at 

present is avoiding the ROTYLIN that is produced when combining an AGPP 

and an AGPE in the special case where the X-axes of the features of the 

body to be verified are parallel to each other. Suppose, in the above 
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example, the edge in the first AGPE relation considered is parallel to 

the body face in the inviolate AGPP relation, then the reasoning system 

can detect this and can discard that AGPE relation temporarily and try 

the next. If that failed then it can try the third. In the future, the 

capability of the symbolic reasoning system will be strengthened so that 

other cases can be dealt with and the user can give it more candidate 

edges to be verified and rely on the system selecting proper ones in 

order to avoid other kinds of the top level conditional in the reasoning 

process. 

When two INVIOLATE statements and more than necessary LOOK state- 

ments are made in a vision command package, it is desirable to make use 

of both the AGPP relations specified by the given INVIOLATE statements 

and only one of the AGPE relations since AGPP relations are more reli- 
able. To this end, the reasoning process is divided into two stages. 

In the first stage, only the AGPP relations are fed to the reasoning 

system. Thus, if there are any AGPP relation pairs then they are com- 

bined together. In the second stage, the AGPE relations are appended to 

the results obtained from the first stage and used. 

6.7. Mer i 

After the symbolic reasoning, the result for each vision command 

package is checked to see whether the position of the body instance to 

be verified has been "fixed" or not. The "fixed" body instances are 

then "merged" (see Chapter 3) into the world. Since the FIX relation 

deduced from the symbolic reasoning always holds between a feature of 

the body to be verified and a feature of the world, the merging process 
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is straightforward. Suppose that fl is a feature of the world whose 

position is p1 and f2 is a feature of the body to be verified whose 

position is p2, and furthermore suppose that a FIX relation holds 

between f1 and f2. The relationship FIX means that the coordinate sys- 

tems of the two features are coincident under the world coordinate sys- 

tem. Thus, the following equation stands: 

f1 ** p1 - t2 ** p2 (6.1) 

Since p1 here is the position of the world it is an identity matrix. 

The position of the body to be verified, p2, can then be represented by 

the equation: 

p2 - f2-1 ** fi (6.2) 

Of course, the merging operation is symbolic and the resulting symbolic 

position expression will be evaluated at run time. This process does 
the 

not involve any extra rules. The modification of the functions ofinerg- 

ing process of the current cycle finder ,t' enables them to handle sym- 

bolic arguments. 
merely 

The reasoning system will report to the user about the body 

instances which cannot be "fixed" by the symbolic reasoning. The user 

then has the opportunity to take some action to deal with this, such as 
the 

re-specifying vision tasks. If he does not do any thing then the 

numbers of the situations in which unsuccessful reasoning takes place 

are recorded and will be passed to the run time system so that the 

corresponding vision tasks will be considered invalid, and the relevant 

camera operating commands will be ignored at run time. 
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6.8. Summary 

In this chapter two approaches of implementing symbolic reasoning 

capability, the bottom level symbolic reasoning, and the top level sym- 

bolic reasoning, are discussed and compared. Because the top level 

method is overwhelmingly better than the bottom level one, it is used in 

the verification vision system. In order to handle the symbolic reason- 

ing caused by vision verification, some reasoning rules are re-defined 

and a new control strategy of reasoning is adopted. 



Chapter 7. A Framework for Handling Vision Information 

At run time, cameras operate under the control of the commands 

created by LOOK statements, and symbolic position expressions which 

result from the symbolic reasoning system are evaluated one by one in 

corresponding situations after the relevant vision data has been 

acquired. These evaluated position expressions define the actual posi- 

tions of the bodies which have been verified by the vision system. Usu- 

ally, the verified position is different from the corresponding nominal 

one and the robot system needs to utilize the information in order to 

update its knowledge about the environment and modify the planned 

actions of the robot. 

The modification of the planned actions is not explicitly described 

in the user's program. Instead, it is done implicitly by a framework 

which handles the vision information. This is partially because the 

current RAPT has no flow control statements available. The more impor- 

tant reason is that the implicit specification of the modification is 

more natural and convenient to the user. When the user specifies a 

vision verification task, he shows that he believes that the actual 

working environment of the robot will in fact differ from that described 

in the program. He wants to examine the actual environment and adapt 

the planned actions to possible changes in the environment. If the sys- 

tem can decide how to make use of the vision information automatically 

in order to fulfill the planned task then the user does not need to 

worry about how to do this by himself. In fact, it is rather complex to 

work out how to make use of the vision information properly and com- 

pletely as the relations between body instances are complex and impli- 

cit. Thus, a carefully designed framework can do better than less 
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experienced users. 

7.1. Basic Requirements for the Framework 

There are three basic requirements that the framework must meet. 

1) Firstly, the framework must be able to use the vision informa- 

tion to update the knowledge of the robot system so that it can 

find out not only what modification should be done on the 

planned action directly related to the verified body instance, 

but also what modification should be made to subsequent actions. 

Modifications will be necessary for those actions which depend 

upon other body instances in the following situations which are 

affected indirectly by the vision information. 

2) Secondly, the framework must work efficiently at run time. 

3) Thirdly, the framework should be relatively independent of the 

current RAPT system. 

These will be discussed in detail below. 

7.1.1. Making Full Use of Vision Information 

It is commonly the case that vision data will verify not only the 

position of the specified body at the current situation (body instance), 

but also some other body instances whose positions are relevant to or 

deduced from this body instance. From a given input program the RAPT 

system produces the expected positions of bodies of the entire sequence 

of situations in an assembly task. The use of vision data to verify a 

position will indicate a discrepancy between the expected position and 
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an actual position and it will be necessary to modify the expectation 

about subsequent positions in the light of this information. For exam- 

ple, suppose a robot moved a block to a specified position and then 

moved away a fixed amount waiting for the vision system to operate. If 
the verified position shows that the block is not exactly at the speci- 

fied position, then the system should know that the robot hand now is 

also not at the position where the system supposed it to have been (Fig. 

7.1). As another example suppose that the robot is asked to move 

another body to a place in such a way as to satisfy a set of spatial 

relationships between this body and the block mentioned above, then the 

robot system should know that the new position of the body must be dif- 

ferent from that expected before the verified position was known (Fig. 

7.2); the planned action therefore has to be modified. 

The examples given above are simple ones. In RAPT, the relations 

between bodies are far more complex than those in these examples. The 

effects of a verified position are not only implied by action statements 

but also implied by TIE and subassembly statements. The framework needs 

to use the verified position to update the system's idea of the posi- 

tions of all relevant bodies in the world. 

7.1.2. Efficiency in Time and Space in Run Time 

The run time efficiency is an important requirement to a practical 

robot system. It is desirable that a run time system works fast so that 

visual information can be processed and utilized in real time. It is 

also desired that a run time system is compact so that it can be accom- 

modated in a small computer which controls the robot directly. Thus the 
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framework must do as much work as possible at compile time, especially 

the work which needs powerful computing facilities, so that the run time 

calculation is simple and straightforward. 

7.1.3. The Independence of the Framework 

Since RAPT is a language under development, it is necessary to keep 

the verification vision system relatively independent of other parts of 

the RAPT system. This requires two things. From the point of view of 

the system realization, the implementation of the framework should not 

need significant changes in the RAPT system. From the user's point of 

view, the explanation of vision information should not influence the 

syntax and semantics of the other RAPT statements. If the user wants to 

use the vision system to verify positions of some body instances then 

all he needs to do is simply to insert some suitable vision command 

packages into the proper places in his ordinary RAPT program without any 

changes or modifications in the program which has been proven to be 

correct before vision commands are introduced. 

7.2. Frameworks for Using Vision Information 

There are several ways to establish the relations between a verified 

position and others. Four ways will be discussed in the following. 



7.2.1. Symbolic Reasoning Method 

The relations can be set up by a symbolic reasoning system. Each 

position which is relevant to a verified position is considered by the 

symbolic reasoning system and expressed as a symbolic expression which 

contains the verified position. Thus the dependence of other positions 

on the verified position is worked out symbolically at compile time. 

After evaluation of the verified position, the symbolic position expres- 

sions can be evaluated. This method brings about some serious problems. 

When a position is represented by a symbolic expression, the principal 

part of the actual reasoning will be done by the evaluation at run time. 

If a verified position is related to several other positions then the 

expression of the verified position, or part of the expression, will 
appear in a large number of places in the run time code, and the evalua- 

tion of each of than will take much time. This will slow down the speed 

of the run time system. Also, when the effect of a verified position 

propagates through body instances, the expressions of positions of the 

body instances become longer and longer and the evaluation of them needs 

more and more time, since each position expression contains the expres- 

sion of the position of the body instance from which the effect of the 

verified position comes. As many positions are expressed symbolically, 

the requirements on the storage space at both compile time and run time 

will be enlarged. Furthermore, this method needs a very powerful sym- 

bolic reasoning system. The proposed reasoning must be able to do 

everything symbolically that the cycle finder can do. It must be able 

to reason among not only 2-cycles but also large sized relation cycles. 

Thus it must be able to use not only the combination rules but also the 

creation rules. It must also be able to deal with a number of types of 

symbolic top level conditionals. It will be seen that because of the 
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disadvantages in time and space efficiency and because of the very great 

demands for a powerful run time inference system, this method is not 

viable. It was therefore felt not worth serious development. 

7.2.2. Run Time Reasoning Method 

In this method the major part of the work will be done at run time. 

The difference between this method and the symbolic reasoning method is 

that the compile time inference system only reasons about the relation- 

ships among body instances which are not dependent upon vision informa- 

tion, and reasons symbolically about the positions of body instances 

which are verified by vision directly. Thus the compile time reasoning 

is faster than in the symbolic reasoning method. The positions of body 

instances which are dependent upon vision information will be produced 

at run time by geometrical reasoning after the associated vision data is 

available and the relevant symbolic positions are evaluated. This 

method needs a powerful run time system which must be as capable as the 

compile time system in geometrical reasoning. This means that a power- 

ful and usually expensive computing facility must be available at run 

time. Even if the computing facility is available, the run time 

geometrical reasoning will slow down the run time processing speed 

dramatically, especially when the positions of a number of body 

instances are dependent upon vision information. Thus this method is 

out of the question. 



7.2.3. The Use of Teach Mode 

Another method is suggested by D. Corner [COR84]. This method makes 

use of a modified reasoning system to establish the relations between a 

position which needs to be determined at run time and other positions. 

It is designed and implemented as an expansion of the RAPT system for 

introducing a teach mode in which positions of some body instances can 

be taught at run time. 

In order to understand Corner's system it is necessary to understand 

how the merging of two body instances which have a FIX relationship is 

carried out. One body instance (the child) is merged into another (the 

parent), and the position of the child is expressed relative to the 

position of the parent. According to the merging rules applied in the 

cycle finder, the body number of a parent is always smaller than or 

equal to those of body instances merged into it. A body instance which 

is a parent can itself be merged into another body instance. Therefore, 

after the merging, body instances are grouped into trees, and the most 

superior parent in each tree is the root node and is referred to as the 

master of other body instances in that tree. (Fig. 7.3 (a)). The posi- 

tions of body instances which have been merged can be represented in 

terms of the coordinate system of the master body instance by repeated 

position multiplications. Therefore, if a body instance is a node of 

the tree whose root is the world (and since the body number of the world 

is 1 it must always be the root node of a tree) then its position in the 

world coordinate system can be determined. 

In Corner's method a TEACH command creates a new situation in the 

assembly task. In the relation network there will be no direct 
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relations holding between the body instance whose position needs to be 

taught and the body instance for the same body in the previous situa- 

tion. The reasoning process is divided into two phases. In the first 
phase, the reasoning system works in the same way as the cycle finder 

except that all the body instances whose positions will be taught at run 

time are marked, and these marked body instances are never merged into 

other body instances. Instead, other body instances which have a FIX 

relationship with them are merged into them. Thus the "taught" body 

instances are root nodes of individual trees. For example, Fig. 7.3 (b) 

shows the relationship network produced by a program similar to that 

which produces the relationship network shown in Fig. 7.3 (a). The only 

difference between these two programs is that in the program associated 

with Fig. 7.3 (b) the positions of body instances a and g is to be 

taught at run time. In the second phase, a symbolic FIX relation is 

inserted between the taught body instance and the body instance for the 

same body in the previous situation. At run time, when the taught posi- 

tion is known the symbolic FIX relation can be instantiated and all the 

positions in the cluster can be computed and expressed in terms of the 

world coordinate system. 

The advantages of this method are that it makes full use of the 

capability of the current RAFT reasoning system to establish the rela- 

tions between positions of body instances and information obtained at 

run time. If there are any symbolic expressions to be evaluated at run 

time then these need to be done only once. However, there would be 

several disadvantages in this method when it was used for dealing with 

vision information. Three main ones are 'listed as follows. 

1) Firstly, the implementation of this method would need a signi- 

ficant modification on the current reasoning system and this is 
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what the author wants to avoid. 

2) Secondly, this method would influence the semantics of some 

RAPT statements in some circumstances. Some programs which are 

correct without vision commands would become incorrect when 

vision commands were added, if this method was used to handle 

vision information. For instance, consider the RAPT instruc- 

tions to move object bl from a known position to some distant 

place in relation to b2, whose position is to be verified. The 

following RAPT codes would be invalid since the verified posi- 

tion might not be identical to its nominal position so that the 

MOVE statement between situations i+2 and i+3 could not guaran- 

tee to bring about a specified FIX relation between bl and b2 in 

situation i+3, although these codes would be a proper segment of 

a program without the vision command package. 

remark now in sit i, bodies hand, bl and b2 have been modelled; 

move/hand; 

fixed/hand, b1; remark sit i+1, fixed is abbreviation 

of a set of relations which can 

fix the two bodies; 

tied/hand, bl; 

verify/b2; remark abbreviation of a vision command 

package; 

remark now in sit i+2; 

move/hand, perpto, f2 of hand, 55; 

fixed/bl, b2; remark sit i+3; 



7.2.4. The Method Adopted 

The framework which was adopted by the verification vision system 

for handling vision information avoids all the disadvantages of the 

three methods which have been discussed above. It works efficiently at 

both compile time and run time, does not need to take much extra storage 

space, and does not change the semantics of RAPT statements. When 

vision commands are added into a correct RAPT program, no modification 

of the original program is needed. Furthermore, the implementation of 

the framework does not need significant changes in the current RAPT sys- 

tem. 

The basic operational principle of the framework is that it decom- 

poses the actual position of a body instance into two parts. One is the 

nominal position which results from the inference system and has no 

relation with the vision information. The other indicates the influence 

of the vision information on knowledge of the actual position of a body 

instance. This part is referred to as the modifying factor of the body 

instance and work on determining its value is done both at compile time 

(deciding what dependence it has on vision information) and at run time 

(evaluation). 

The remainder of Chapter 7 is used to describe the outline of the 

framework and discuss its basic principles. Chapter 8 establishes and 

explains rules for making and simplifying the modifying factor array 

which is the heart of the framework. In discussions in these chapters 

the following two assumptions will be employed: 

1. The nominal position of a body is assumed to be accurate unless 
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there is some evidence (e.g. vision data) to the contrary. 

2. The movement of the robot arm is assumed to be accurate 

for each individual action. 

Both these assumptions are reasonable. Firstly, if the nominal 

positions are not accurate then either their actual positions are imma- 

terial, or the programmer should have included some evidence-gathering 

instructions in his program. Secondly, in present day robots the inac- 

curacies of movement are due to inaccuracies of their mechanical parts 

and imperfection in their feedback transducers. 

7.3. Relations Between Vision Information and Body Positions 

Positions of body instances can be classified into three sorts 

according to their relations with the vision information: 

1) the body instances which are verified directly by vision com- 

mands and whose actual positions are determined by vision infor- 
mation. 

2) the body instances which are not verified by vision commands 

but whose actual positions are influenced by vision information 

in some indirect way. Their actual positions are determined 

jointly by both the nominal positions and vision information. 

3) the body instances whose positions have no relations with 

vision information at all. Their nominal positions are con- 

sidered to be identical with the actual ones. 
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For uniformity, the actual positions of all the three sorts are decom- 

posed into two parts so that the framework can deal with them in the 

same way. 

7.3.1. Positions of Verified Body Instances 

If the actual position of a verified body instance is to be deter- 

mined completely by vision information, then it is treated in the fol- 
lowing way. Suppose the nominal position of body b in situation i is 

represented by the matrix PNbi and its verified position in the same 

situation is PVbi. It can be considered that the body b makes a virtual 

movement from PNbi to PVbi. The movement can be represented by a matrix 

FMbi: 

FMbi * PNbi PVbi (7.1) 

and FMbi here is referred to as the prefix modifying factor of the nomi- 

nal position of the body instance bi or simply the modifying factor. 

It can be seen from (7.1) that the modifying factor FMbi is deter- 

mined by the nominal position and the verified one: 

FMbi a PVbi * PNbi-1 (7.2) 

The actual position is represented in the reasoning system as PNbi and 

FMbi. 
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7.3.2. Positions of Body Instances Affected by Vision Information 

The position of a body instance can be influenced by vision informa- 

tion indirectly in several circumstances. Since the way in which TIES 

and subassemblies affect positions is fairly complex, discussion of this 

is reserved for a separate chapter (Chapter 8). In this chapter the 

relatively simple inference of actions is used to convey an idea of the 

principles of the system. 

Chapter 3 shows how actions can be described in RAPT as purely 

translational (MOVE), purely rotational (TURN) and a mixture (general 

MOVE). From the syntax of action statements we can distinguish three 

classes: explicit action statements, implicit action statements, and 

general move statements. However, for the purposes of making the modi- 

fying factor array neither this classification nor the type of action 

are important. What is important is the way in which action statements 

and spatial relationship statements interact. Section 7.3.2.1 and sec- 

tion 7.3.2.2 therefore describe a new classification which depends upon 

such interactions, and discuss the corresponding effects on modifying 

factors of bodies being moved. 

7.3.2.1. Unspecified Actions 

In RAPT, a body can be moved to a position where no specified spa- 

tial relationships must be satisfied. The destination can either be 

specified by an explicit action statement which describes an absolute 

movement from an original position (see Example 1 below), or be deduced 

by the geometrical reasoning system from statements about later 
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situations (see Example 2). This kind of destination can be referred to 

as an unspecified position and the relevant action can be referred to as 

an unspecified action. It is necessary to distinguish between specified 

and unspecified actions. An unspecified action is iwwhish- 6,9 defined 

as one which precedes an unspecified position. Whether or not it is an 

explicit action is irrelevant. 

Example 1: 

move/bl, perpto, fl of b1, 50; 

turn/bl, about,f2 of bl, 45; 

Example 2: 

move/b1, perpto, f1 of b1; remark This is an unspecified 

action; 

move/bl, perpto, f2 of bt; remark This is not an 

against/fl of bl, fl of al; unspecified action because of 

fits/f3 of bl, f5 of at; the special relations on the 

destination of the action; 

In the case of an unspecified action there is a RAPT command to move 

a body by a certain amount after its position has been verified. Since 

the verified position may be different from the nominal one, the actual 

position of the body after some explicit actions may also be different 

from the corresponding nominal position. The following discussion will 

establish the relationship between a modifying factor of a body after an 

unspecified action and that before that action. Suppose the nominal 
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position of body b in situation (1+1). PNb(i+1), is produced by an 

unspecified action from PNbi 

PNb(i+1) - PNbi * Tbi (7.3) 

where Tbi is a transformation representing an action. 

Then the actual position of the body in situation (i+1) (the actual 

position is not a "verified position" since it has not been verified by 

vision commands, but it can be considered equivalent to a verified posi- 

tion in the discussion) is 

PVb(i+1) - PVbi Tbi 

FMbi PNbi * Tbi 

- FMbi * PNb(1+1) 

From (7.1) 

PVb(i+1) - FMb(i+1) * PVb(i+1) 

Therefore in this case 

(7.4) 

(7.5) 

FMb(i+l) - FMbi (7.6) 

and is referred to as the prefix modifying factor of the body instance 

PN b(i+1). Thus if the modifying factor of a body before an unspecified 

action is known then that of the body after the action is known, too. 
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7.3.2.2. Specified Actions 

In RAPT, a body can also be moved to a position to satisfy certain 

relationships with respect to other bodies. These spatial relationships 

specify the destination of the body being moved in terms of the relative 

position of the body with respect to others. This kind of destination 

can be referred to as a specified position and the action which brings 

the body to this position can be referred to as a specified action. For 

example, the following segment of a program describes a specified 

action. This action brings the body bl to a position to satisfy speci- 

fied relationships holding between bodies bt and al. 

move/bl, perpto, ft of b1; 

against/f1 of bi , f1 of al; 

against/f2 of bt, 0 of al; 

Notice that the relevant relationship specifications may not follow 

the associated specified action statement directly. There may be some 

other action statements in between which do not change the position of 

the body concerned. In the following example, 

remark now in situation 1; 

move/bt, perpto, fl of b1 ; 

remark situation i+1; 

move/b2, parallel, f2 of b2; 

Pits/f3 of b2, f3 of a2; 

remark situation 1+2; 
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turn/b3, about, fl of b3, 90; 

remark situation 1+3; 

fits/f2 of bt, f2 of al; 

against/ft of bt, f1 of al; 

If b1 is neither TIED to b2 or b3 nor in the same subassembly with them 

then the MOVE statement which moves b1 is still a specified action 

statement though the relevant relationship specifications are in situa- 
tion i+3. This is because the body b1 is not moved through situation 
i+1 to i+3, the spatial relationships specified in situation i+3 must be 

satisfied in situation i+1 by that action. 

It is the existence of direct or indirect relationship specifica- 

tions which determines whether an action is specified or not. Thus even 

if the action statement which is followed by a relationship specifica- 

tion is explicit the action is still specified, since the destination is 

a specified position. 

In the case of a specified action a body is moved to a place which 

is specified by a set of relations holding between the body being moved 

(body a) and another body (body b). If body b has been verified then 

the destination of body a may be different from its nominal one since 

vision information may indicate that the actual position of body b to 

which body a refers deviates from its nominal one, and in order to 

satisfy the specified relations the destination needs to be adjusted. 

The following discussion will establish the relationships between a 

modifying factor of a body after a specified action and that of the 

reference body. Suppose the nominal position of body a and body b in 
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situation i are PNai and PNbi respectively and these positions are such 

that a set of specified relations hold between the bodies. Thus the 

difference in position of body a with respect to body b is 

RPab - PNai * PNbi-1 - PVai * PVbi-1 

So if the actual position of body b in situation i is 

(7.7) 

PVbi - FMbi * PNbi (7.8) 

then the actual position of body a in situation i must be 

PVai - PNai * PNbi-1 * PVbi 

- PNai * PNbi-1 * FMbi * PNbi (7.9) 

if the specified relations are to hold. As for equation (7.5), equation 

(7.9) can be re-written as: 

PVai - PNai * PNbi-1 * FMbi * PNbi 

- PNai * PNbi-1 * FMbi * PNbi * PNai-1 * PNai 

- FMai * PNai (7.10) 

where FMai - PNai * PNbi-1 * FMbi * PNbi * PNai-1 (7.11) 

So here we get an expression for the modifying factor of body a in 

situation i which depends upon the modifying factor of body b in situa- 

tion i, and some constant transformations. If the modifying factor of 

the reference body and the nominal positions of both the reference body 

and the body being moved are known then the modifying factor of a body 

after a specified action can be determined. 
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7.3.3. Body Instances for which the Vision Information is Irrelevant 

There are some body instances for which the vision information has 

no relevance. These bodies have neither been verified, nor moved to 

some place to satisfy specified relations with respect to bodies which 

have been verified. Nor are they members of TIES or subassemblies which 

have members that have been verified. In this case the nominal posi- 

tions of these body instances are assumed to be accurate at run time, 

and the modifying factor of this kind of body instance is an identity 

matrix. Whether the position of a body instance is dependent upon 

vision information will be determined by the rules which will be dis- 

cussed in Chapter 8. 

7.3.4. Actual Positions and Actions 

It can be seen from the discussion above that the actual position of 

a body instance can be decomposed into two parts: the nominal position 

and a modifying factor, and it is only the modifying factor that may be 

affected by the vision data. When a body instance is verified, its 
modifying factor is determined by the vision data and the nominal posi- 

tion of the body instance. It has also been shown above that if the 

actual position of a body instance (bi) is affected by that of a veri- 

fied body instance and if the relative position of one body with respect 

to the other is known then the modifying factor of the body instance bi 

can be determined. As the nominal position for each body instance can 

be obtained from the current RAPT cycle finding system, and the 
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influence of vision information can be deduced by analysing the user's 

program, the modifying factor for every body instance can be determined. 

It follows then that when the verification vision system is combined 

with RAPT the inference system can deduce the nominal position of each 

body instance as usual at compile time while the framework can evaluate 

modifying factors at run time, and so get the actual positions of every 

body instance by matrix multiplication. 

Now, while the actual positions have been determined, at run time 

what needs to be known is how the actions to be taken by the robot sys- 

tem have to be modified. The introduction of modifying factors will 
change the actions on bodies. The transition between two nominal posi- 

tions can be referred to as a nominal action and the transition between 

two actual positions can be referred to as an actual action. Suppose 

body b is moved from nominal position PNbi to PNb(i+1) by a nominal 

action TNbi. TNbi can be expressed as: 

PNbi * TNbi - PNb(1+1) 

TNbi - PNbi-1 * PNb(1+1) (T.12) 

On introducing the modifying factor, the positions of both the starting 

point and the destination of an action may be changed. Suppose body b 

is moved from actual position PVbi to PVb(i+1) by an actual action TAbi, 

then the actual action TAbi can be deduced as: 

PVbi * TAbi - PVb(i+1) 

TAbi - PVbi-1 * PVb(i+1) 

- PNbi-1 * FMbi-1 * FMb(i+1) * PNb(1+1) (T.13) 
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It can seen from equation (7.13) that if FMbi - FMb(i+i) then the actual 

action will be the same as the nominal action. 

7.3.5. The Modifying Factor as a Prefix and Postfix 

In the discussion above, the modifying factor is used as a prefix, 
and left multiplies a nominal position. In fact, a modifying factor 
which represents the discrepancy between a nominal position and an 

actual one can also be represented as a postfix. 

7.3.5.1. Use of Postfix 

This section derives equations similar to (7.1) - (7.11) but with 

the modifying factor used as a postfix and referred to as GM instead of 

FM. Suppose that a body b in situation i makes a virtual movement from 

its nominal position PNbi to its virtual position PVbi and the movement 

is represented by a post multiplied matrix GMbi: 

PNbi * GMbi - PVbi (7.1) 

and GMbi here is referred to as the postfix modifying factor of the body 

instance PNbi. 

It can be seen from (7.1') that 

GMbi - PNbi-1 * PVbi (7.2') 
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In order to establish the relationship between the modifying factor of a 

body after an unspecified action and that before the action, let us sup- 

pose the nominal position of body b in situation (i+1), PNb(i+1), is 
produced by a fixed amount of unspecified movement from the nominal 

position PNbi: 

PNb(i+1) - PNbi * Tbi 

then the actual position of the body instance is 

PVb(i+1) - PVbi * Tbi 

- PNbi * GMbi * Tbi 

PNbi * Tbi * Tbi-1 * GMbi * Tbi 

PVb(i+1) * Tbi-1 * GMbi * Tbi 

PVb(i+1) * GMb(i+1) 

where GMb(i+1) - Tbi-1 * GMbi * Tbi 

- PNb(1+1)-1 * PNbi * GMbi * PNbi_1 * PNb(1+1) (7.6') 

In order to determine the modifying factor of a body after a speci- 

fied action let us consider a situation i in which body a has been moved 

by a specified action so that a set of specified relations hold between 

body a and body b. Suppose the nominal positions of body a and body b 

in situation i are PNai and PNbi respectively. The relative position of 

body a with respect to body b is 
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RPab - PNai * PNbi-1 

- PVai * PVbi-1 

If the actual position of body b is 

PVbi - PNbi * GMbi 

then the actual position of body a is 

PVai - PNai * PNbi-1 * PVbi 

- PNai * PNbi-1 * PNbi * GMbi 

(7.8') 

- PNai * GMbi (7.10') 

It can be seen that in this case the modifying factor of body a is the 

same as that of body b: 

GMai - GMbi (7.11') 

7.3.5.2. Relationships Between Postfix and Prefix Convention 

Theoretically speaking, the prefix and postfix modifying factors are 

alternative. Either form can be used to represent the difference 

between a nominal position and an actual one, provided that different 

expressions are used to express the effect of a modifying factor on 

other body instances. In practice, the complexities of the equations of 

the two forms which express the effect are different. A prefix modify- 

ing factor represents a rotation and translation with respect to its 
nominal position. Thus the expression of the effect of the modifying 

factor over an unspecified position under this notation is simple. When 
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representing the effect of the modifying factor over a specified posi- 

tion, however, the expression is rather complex. These have been shown 

in equations (7.2) - (7.11). A postfix modifying factor, on the other 

hand, represents a rotation and translation with respect to the world 

coordinate system. Thus the expression of the effect of the modifying 

factor over a specified position is simple while that for an unspecified 

position is complex. These can be seen from equations (7.2') - (7.11'). 

As the framework has to deal with the effect of a modifying factor 

over both an unspecified position and a specified position, neither 

notation method is overwhelmingly better that the other. The author 

selects the prefix notation in the following discussions since it makes 

some rules of establishing and simplifying the effect of a modifying 

factor a bit simpler. The term modifying factor will mean the prefix 

one only in the remainder of the thesis. If the potential assembly task 

needs the RAPT system to deal with a large number of subassemblies and 

TIES then the postfix notation may be preferable since the subassembly 

and the TIE will bring many implied specified positions and using the 

postfix notation can simplify relevant expressions and reduce calcula- 

tions at run time. 

7.11. The Run Time Data Structure 

At run time the system needs to access the nominal positions and 

modifying factors since the actual actions of the robot and other dev- 

ices are determined from the actual positions which are derived from the 

nominal positions and the modifying factors. The modifying factors and 

the nominal positions are both stored at run time in arrays indexed by 
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body instances. 

The elements of the modifying factor array have three possible 

forms. 

1) The modifying factor will be an identity matrix symbol ("I") if 
the actual position of the corresponding body instance is 

independent of any vision information and can be assumed identi- 

cal to its nominal position. 

2) The modifying factor will be a position matrix if the 

corresponding body instance has been verified by vision com- 

mands. This matrix is the product of the verified position and 

the inverse of the corresponding nominal position, as expressed 

in equation (7.2). If the vision verification step has not been 

reached then the modifying factor is still a symbolic expres- 

sion. 

3) The modifying factor will be a pointer or a set of pointers if 
the position of the corresponding body instance is dependent 

upon another body instance which has been verified in the 

current situation or one of the preceding situations. Pointers 

point to modifying factors in the same modifying factor array. 

The modifying factors pointed to are themselves position 

matrices, pointers or pointer sets. This linkage is made at 

compile time according to the dependence of the actual position 

of the body instance upon verified positions. Rules for deter- 

mining pointers or pointer sets will be discussed in Chapter 8. 

When evaluation occurs of a body instance actual position whose 

modifying factor is a pointer or a set of pointers, the run time 

system will interpret it by applying a set of rules and will 

produce an actual modifying factor for evaluating the actual 
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insert the following sentences in line 7 in p174: 

Note that at compile time, the elements which will contain the posi- 

tion matrices at run time contain symbolic expressions of the verified 

positions rather than symbolic expressions of the discrepancies between 

the nominal positions and the verified ones. Detailed discussion can be 

found in Section 7.6. 

change line 10 in p174 to follows: 

The RAPT geometrical reasoning system, therefore, ... 



position of the body instance. The rules for the evaluation of 

a pointer or a pointer set will also be discussed in detail in 

Chapter 8. 

The pointers and identity matrix symbols are assigned at compile time, 

while the position matrices are assigned at run time after the vision 

data have been obtained and the corresponding symbolic positions have 

been evaluated. 

The modifying factor array thus holds both vision information and 

knowledge about how it affects other body instances whose actual posi- 

tions are dependent upon verified positions. The reasoning system, 

therefore, does not need to manipulate the symbolic form of the vision 

information and so does not need to be altered to cope with vision 

verification. This feature makes the compile time system work effi- 
ciently. Since the effect of a verified position over actual positions 

of other body instances is represented by pointers pointing among modi- 

fying factors, the symbolic expression of each verified position needs 

to be evaluated only once at run time. As pointers are established at 

compile time, the run time system only needs to do simple work such as 

tracing a pointer or multiplying a nominal position matrix with a modi- 

fying factor which is a position matrix. Thus the run time system can 

deal with vision information quickly. Furthermore, since the modifying 

factor array handles discrepancies between actual positions and nominal 

ones, nominal positions of body instances resulting directly from the 

cycle finder are available to the run time system in their original 

form. Thus, the run time system can work out nominal actions and 

discrepancies between nominal actions and actual ones separately if 
necessary. This increases the flexibility of the run time system in 

making use of vision information. 
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7.5. The Actual Action Control 

In order to bring about desired states the run time system which 

controls actions of the robot must take account of discrepancies between 

nominal positions and actual ones of body instances in order to adjust 

planned movements of the robot. Knowing the modifying factor of each 

body instance, the actual action which moves a body from an actual posi- 

tion to the next can be calculated by equation (7.13) since nominal 

positions are already known. An actual action differs from its nominal 

one if the modifying factors for body instances before and after the 

action are different. 

There are two possible ways to control the robot to move under the 

adjustment of modifying factors. One can be referred to as a one step 

control strategy and the other can be referred to as a two step control 

strategy. 

7.5.1. One Step Control Strategy 

If the nature of the route of the action which is specified by the 

user's program is not important and the user is only concerned about the 

destination of the body to be moved then the run time system can calcu- 

late the amount of the actual action by using equation (7.13) directly 

and order the robot to move accordingly in one step (Fig. 7.4). The 

effect of this method is the same as that of Corner's method. The 

advantage of this method is its simplicity and speed of the robot's 
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performance. It needs only three matrix multiplication operations to 

calculate the actual action. Since the action is accomplished in one 

step, it is faster than the two step method which will be discussed 

below. 

7.5.2. Two Step Control Strategies 

Sometimes, however, the nature of the planned route does matter. 

For instance, in order to avoid collision, a body must be moved along a 

route which maintains a specified relationship with certain body in a 

segment of its trajectory. In this case the one step control method is 

no longer suitable. In order to control the trajectory of movements of 

the robot, the expression of an actual action needs to be re-written in 

two parts, and the corresponding action of the robot is divided into two 

steps. The first part indicates the adjustment of the action which is 

caused by errors in positions of end points of the motion while the 

second part indicates the movement which maintains the constraints to 

the movement implied by the user's program. These two parts control the 

two steps of the action of the robot respecttively. 

The decomposition of equation (7.13) can be done in several ways 

depending upon the nature of the nominal action that the user or system 

designer wants to keep in the second step of the actual action. When 

the user wants the movement in the second step to keep the same direc- 

tion in the world coordinate system as the planned action, equation 

(7.13) can be re-written in the following way: 

TAbi - PNbi-1 * FMbi-1 * FMb(i+1) * PNb(i+1) 
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- PNbi-1 * FMb1-1 * FMb(i+1) * PNbi * 
PNbi-1 * PNbi+1) 

- TCbi * TNbi (7.14) 

Here TCbi - PNbi-1 * FMbi-1 * FMb(i+1) * PNbi (7.15) 

It indicates the movement of the robot in the first step. 

TNbi - PNbi-1 * PNb(i+1) 

denotes the amount of movement in the second step of the action, and it 
is exactly the same as the nominal action. This decomposition is useful 

in cases such like that shown in Fig. 7.5 in which the discrepancies 

between actual destinations and nominal ones contain translations and a 

rotation about the axis which is parallel to the direction of the nomi- 

nal action. 

Sometimes it is necessary that the movement in the second step must 

be such that the moving object maintains the same relations with its 

destination as in the corresponding planned action. In this case the 

decomposition of the action expressed by equation (7.14) is no longer 

suitable and the action should be decomposed in another way. 

Suppose the nominal positions of body b in situation I and (i+1) are 

PNbi and PNb(i+1), and their modifying factors are FMbi and FMb(i+1) 

respectively. The relative position of PNbi with respect to PNbi+1) Is 

PNbi * PNb(i+1)-1. If the actual position of body b in situation (i+1) 

is: 

PVb(i+1) - FMb(i+1) * PNbi+1) (7.16) 

-177- 



nominal action 

--------j 
C a 

Fig. 7.5. Method 1 of the two step strategy which keeps the 

action in line with the world coordinate system 

step 1 

nominal action 
0 

Fig. 7.6. Method 2 of the two step strategy which keeps the 
action in line with the destination coordinate system 

step 2 of the actual action 
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and PNb' is the intermediate position which has the same relative posi- 

tion with respect to PVb(i+1) as PNbi has to PNb(i+1), then 

PNb' - PNbi * PNb(i+1)-1 * FMb(i+1) * PNb(i+1) (7.17) 

The first step of the movement Tat must bring the body to this position. 

The second step of the movement Ta2 which will move the body from this 

position to PVb(i+1) can be expressed as: 

Ta2 - PNb(i+1)-1 * FMb(i+1)-1 * PNb(i+1) * PNbi-1 

* FMb(i+1) * PNb(i+1) (7.18) 

The whole action of body b from PVbi to PVb(i+1) is re-written as: 

TA - PNbi-1 * FMbi-1 * FMb(i+1) * PNb(i+1) 

- PNbi-1 *FMbi-1 * PNbi * PNb(i+1)-1 * FMb(i+1) * PNb(1+1) * 

* PNb(i+1)-1 * FMb(i+1)-1 * PNb(i+1) * PNbi-1 * 

* FMb(i+1) * PNb(i+1) 

- Ta1 * Ta2 (7.19) 

The usefulness of this method of controlling the action can be seen 

from the following example. Suppose the user wants to insert a shaft 

into a hole, and has written a program fragment: 

move/shaft; 

move/shaft, perpto, fl of shaft, 20; 

fixed/shaft, hole; 
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This program can be interpreted to mean that the user wants the route of 

the last movement of the robot to be such that the shaft moves along the 

axis of the hole, avoiding any collision between the shaft and the edge 

of the hole. However, if the actual position of the hole is different 

from its nominal one, then under the control strategy which is expressed 

either by equation (7.13) or by equation (7.14) the route of the last 

movement would be modified so that it may not be collinear with the axis 

of the hole and the action may not succeed. If the system uses the 

method specified by equation(7.19) to control the movement of the robot, 

i.e. the system asks the robot to adjust its position first and then 

move according to the nominal trajectory with respect to the hole, then 

the shaft will be moved along the axis of the hole in the second step of 

the movement (Fig. 7.6). 

Alternative decompositions can also be made to the action specified 

by equation (7.13) if other requirements of the action control must be 

met. For example, the action can be decomposed into three or even more 

steps if needed. Because the modifying factor array handles vision 

information and its effects on actual positions of body instances 

separately from the nominal position, it is possible to make use of the 

variety of the control strategies. 

The selection of the control strategy of the actual action is not a 

burden on the user. At the moment, this will be done by the designer of 

the run time system which controls the actual action of the robot. In 

the future, if an automatic task planner and a collision avoidance con- 

troller are added to the RAPT system then they can share the responsi- 

bility of choosing the control strategy. The verification vision 
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system, therefore, does not need to provide commands to the user to do 

this. 

7.6. The Compile Time Work 

The compile time modifying factor array is similar to that of the 

run time except that the symbolic expressions have not been evaluated. 

The framework needs some compile time work to be done in order to estab- 

lish connections between vision information and dependent body 

instances. The final result of the compile time work is a properly 

assigned modifying factor array which is ready to be used by the run 

time part of the framework. The compile time work can be divided into 

three phases. They are the initiation phase, the reasoning phase and 

the simplification phase. 

7.6.1. The Initiation Phase 

In the initiation phase, the modifying factors of all the body 

instances in situation 1 are assigned an identity matrix symbol "I". 

This is because in the first situation no body has been either moved or 

verified, and therefore they can be assumed to be at their nominal posi- 

tions. The modifying factors of the body instances of the world in all 

situations are also assigned an identity matrix symbol since the world 

represents the frame of the working station. It is the reference of the 

positions of other body instances and must always be considered to be at 

its nominal position. 
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7.6.2. The Reasoning Phase 

In the reasoning phase, the modifying factors of body instances in 

the following situations are assigned either the symbolic expression of 

a verified position or a pointer or a set of pointers. This is done 

using the information provided by two of the tables formed by the RAPT 

system from the input program. One of the tables is the action table 

which records the object and the nature of each action. In this verifi- 

cation vision system the nature of the action can be vision verifica- 
tion. The other is a TIE table which records which bodies are TIED 

together or constitute a subassembly in each situation. This matter is 

discussed in more detail in Chapter 8. If the position of a body 

instance is verified then its modifying factor is assigned the symbolic 

expression of the verified position. Otherwise a pointer or a set of 

pointers will be assigned to the modifying factor. The assignment of a 

pointer or a set of pointers depends upon the state of the body 

instances indicated by the two table and corresponding rules. These 

pointers denote the connections between modifying factors. If a pointer 

points to a modifying factor whose content is a symbolic expression of a 

verified position then it represents the route along which the effect of 

the vision information propagates. If a pointer points to an identity 

matrix symbol then it indicateA'that the position of the corresponding 

body instance has no relation to any vision information. If a pointer 

points to another pointer or a set of pointer then it means the modify- 

ing factor depends upon others. 

Sometimes a vision task may be specified incompletely, i.e. there 

are not enough vision commands in the corresponding COMBINE package. 

Thus the symbolic reasoning system cannot fix the body to be verified 
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with respect to the world. Instead, it produces a constrained symbolic 

relationship between the body and the world. In this case, the system 

reports the fact to the user and ignores the vision command (see Chapter 

5), and therefore assigns a pointer to the modifying factor of the body 

to be verified which points to the modifying factor of the same body in 

the previous situation. 

7.6.3. The Simplification Phase 

In the simplification phase, each pointer or set of pointers in the 

modifying factor array will be checked to see whether it can be substi- 

tuted by an identity matrix symbol or by another pointer so that the 

structure of the modifying factor array can be simplified. For example, 

if a pointer points to an identity matrix symbol then the modifying fac- 

tor which contains the pointer can be replaced by an identity matrix 

symbol. The simplification rules will also be discussed in Chapter 8. 

Notice that at compile time the symbolic expressions in the modifying 

factor array are of the verified position PVbi rather than of the modi- 

fying factor FMbi. The real modifying factors will be obtained at run 

time when the symbolic positions are evaluated and multiplied by the 

inverses of corresponding nominal positions. 

7.7. Modifying Factors in Symbolic Reasoning and Vision Commands 

As well as influencing the symbolic reasoning, the introduction of 

modifying factors will also influence the way in which vision commands 

create the symbolic feature and control the camera. Modifying factors 
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indicate the discrepancies between nominal positions of body instances 

and their actual ones. This information can be used not only to adjust 

the action of the robot but also to adjust the reasoning of the symbolic 

expression of a verified position and provide the vision facilities a 

better estimation of the place where the feature to be verified can be 

found. 

In a vision command package, the INVIOLATE statement is used to 

indicate the most reliable relationships holding between the body to be 

verified and a reference body. The modifying factor for the body 

instances of this reference body may not be an identity matrix. This 

means that it may not be at its nominal position, though the relation- 

ship mentioned in the INVIOLATE statement still holds. The modifying 

factors from previous vision verification enable the reasoning system to 

make better predictions for positions of bodies in subsequent vision 

verification. For example, if the vision system verifies the position 

of body A and subsequently verifies a body B which has an inviolate 

relationship with body A then the reasoning system should take account 

of what it has learnt about the actual position of body A in the predic- 

tion for body B. 

As discussed in Chapter 5, if a reference feature does not belong to 

the world directly then the INVIOLATE statement will transform the posi- 

tion of the feature into its position in the world coordinate system and 

consider it as a world feature. Before the introduction of modifying 

factors the transformation can be done by a matrix multiplication 

Pf * PNbi 
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where Pf is the position of the feature in the local coordinate system 

of the reference body and PNbi is the nominal position of the reference 

body in the situation directly preceding the vision verification. In 

order to enable the inviolate relation to represent the actual cir- 

cumstances, the symbolic reasoning system needs to use the symbolic 

actual position of the reference body to take part in the symbolic rea- 

soning, instead of the nominal one. Every time an INVIOLATE statement 

is met, the symbolic reasoning system will multiply the nominal position 

of the reference body by the corresponding modifying factor symboli- 

cally, provided that the modifying factor is not an identity matrix. 

Thus the transformation of the position of the reference feature from 

its local frame into the world coordinate system can be expressed as: 

Pf * FMbi * PNbi (7.20) 

At run time, the corresponding modifying factor will have already been 

evaluated in a previous situation before it is required and therefore 

the symbolic expression of the position of the body to be verified can 

be evaluated in the situation in which the vision verification takes 

place. 

The run time vision facilities need to use the information provided 

by modifying factors of the body instances in order to estimate the 

position of the expected feature more accurately at run time. Actual 

positions of the camera to be used and the body instance to be verified 

are needed to take the places of their nominal counterparts. Since the 

vision facilities do not need to manipulate these actual positions at 

compile time, no extra work is necessarily to be done in the symbolic 

reasoning. The window suggester and the face generator will get access 
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to the modifying factor array directly at run time in order to multiply 

the nominal positions of the camera and the body to be verified by their 
modifying factors in the situation directly preceding the corresponding 

vision verification. 

The data flow chart of the RAPT system with the verification vision 

is shown in Fig. T.T. 
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Chapter 8. Rules for Filling the Modifying Factor Array 

Chapter 7 discussed the relationship between the vision information 

and actual body positions and described the framework that is used to 

handle the vision data. This involves the use of a modifying factor 

array. The present chapter discusses in more detail the rules which are 

used in assigning pointers in this array. During the reasoning phase 

(see Section 7.6.2) all elements of the modifying factor array are 

assigned pointers or sets of pointers except those which are initialized 

or those which refer to body instances which are verified directly by 

vision commands. The pointers represent the dependence of a modifying 

factor upon others, and this dependence is determined by the state of 

the associated body instances in the user's program, such as being 

moved, TIED and so on. Pointers for a particular situation can point to 

modifying factors in the same or previous situations. However, they can 

never point to the modifying factors in later situations. This restric- 

tion represents the fact that the actual position of a body instance can 

only be dependent upon the past and present status of the environment, 

and cannot be affected by any future events. The law of causality is 

aise valid here. 

In order to assign the pointers and then simplify the modifying fac- 

tor array, a set of rules must be established. For convenience, the 

rules for making the pointers will be referred to as linking rules in 

the following discussion. These rules describe the connections between 

modifying factors in the situation directly following each corresponding 

action or vision command package. 
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8.1. Linking Rules for Actions 

As discussed in Chapter 7, in order to make the modifying factor 

array the action statements are classified into two sorts: specified and 

unspecified action statements, depending upon the way in which action 

statements and spatial relationship statements interact. The rules for 

setting a pointer in an element of the modifying factor array distin- 

guish these two sorts of action statement. The nature of pointers is 

also different depending upon the type of the destination of the 

corresponding body instance. 

8.1.1. The Rule for Unspecified Actions 

Suppose a body is moved by an unspecified action. The actual posi- 

tion of the body after the action is only determined by the actual posi- 

tion of the body before the action and the amount of the displacement. 

This case has been discussed in Section 7.3.2.1 in detail. It can be 

seen from equation (7.6) that the modifying factor of a body after an 

unspecified action is Just the same as that before the action. There- 

fore the pointer for the modifying factor of the body instance after the 

action points to the modifying factor of the body instance before the 

action. This kind of pointer means that the corresponding modifying 

factor is equal to what is pointed at. An unmoved body can be con- 

sidered as being moved by an unspecified action represented by an iden- 

tity matrix. Its modifying factor is therefore also a pointer pointing 

to that of the same body in the previous situation. 

-189- 



8.1.2. The Rule for Specified Actions 

Suppose a body is moved by a specified action. The actual position 
of the body after the action is determined by the specified relative 
position of the body being moved with respect to the reference body and 

the actual position of the reference body. This case has been discussed 

in detail in Section 7.3.2.2. The modifying factor after the action of 

the body being moved depends upon the modifying factor of the reference 

body and the nominal positions of both the reference body and the body 

being moved. Thus the pointer in the situation directly succeeding the 

action for the modifying factor of the body being moved points to that 

of the reference body after the action. The meaning of this kind of 

pointer, however, is different from that assigned by an unspecified 

action. This kind of pointer must be interpreted by equation (7.11). 

Since the pointer which is assigned by a specified action points to the 

modifying factor of another body while that which is assigned by an 

unspecified action points to the modifying factor of the same body in 

the previous situation, it is easy to distinguish them. 

Sometimes the destination of a specified action refers to more than 

one body. If the modifying factors of the reference bodies are not 

identity matrices then whether the specified relationships can be real- 

ized in the real environment depends upon the types and positions of the 

features referred by the relationships and the modifying factors of the 

reference bodies. To judge this needs a complex calculation, and some- 

times this is impossible since some modifying factors which are depen- 

dent upon vision information cannot be known until run time. In order 

to solve this problem, a criterion is adopted: If a specified action 

refers more than one reference body then the modifying factors of the 
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reference bodies b, c, ... must satisfy the condition that the actual 
ratio between these reference bodies must be the same as the nominal 

one: 

FMbi * PNbi * (FMci * 
PNci)-1 - PNbi * 

PNc1-1 

This condition covers the case that the modifying factors of all refer- 
ence bodies are identity matrices. The proof of the sufficiency of this 
condition is given in Appendix III for the case in which two bodies are 

referred by the spatial relationships for convenience. The following 
discussion will also restricted to the case of two reference bodies. 

The condition 

FMbi * PNbi * (FMci * 
PNci)-1 - PNbi * 

PNci-1 

can be satisfied in two ways. In the first case both FMbi and FMci must 

be the identity matrices. Otherwise the modifying factors must satisfy 

the following equation 

FMbi - PNbi * 
PNci-1 

* FMci * PNci * PNbi_1 

This is the same as equation (7.11). Thus the condition can be examined 

by whether the modifying factor of a reference body points to that of 

the other. I f the condition 

FMbi * PNbi * (FMci * 
PNci)-1 - PNbi * 

PNci-1 

is not satisfied or cannot be examined in either way then the compile 

time facility will report the case to the user and then refer the modi- 

fying factor of the body being moved to that of the reference body in 

the first associated relationship specification. This discussion also 

stands for the case in which TIES and subassemblies are involved. 
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8.1.3. Summary 

The following is the summary of the linking rules for actions: 

Al. If a body is moved to an unspecified position or is unmoved 

then the pointer of the body instance points to its modifying 

factor in the previous situation. 

A2. If a body is moved to a specified position then the pointer of 

the body instance after the action points to the modifying fac- 

tor of the body instance of the body to which the relationships 

refer (reference body) after the action. It there are more than 

one reference body appearing in the relationships, then the 

modifying factors of the reference bodies must satisfy the con- 

dition 

FMbi * PNbi * (FMci * PNci)-1 - PNbi * PNci-1 

otherwise an error is reported and the reference body in the 

first relationship specification is used in determining the 

pointer of the body to be moved. 

Notice that the linking rules discussed are associated with indivi- 

dual bodies only. These bodies are neither members of a subassembly nor 

TIED to other bodies. The linking rules for bodies of TIES or subassem- 

blies are discussed in following sections. The following example shows 

how the rules Al and A2 work. 

remark defined bodies bl b2; 

remark now in situation i; 
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move/bl,perpto,fl of bl, 5; 

remark sit i+l, rule Al; 

verify/bl ; remark abbreviation for a set of vision 

commands which verifies bl, sit 1+2; 

move/b2, parlel, fl of b2; 

remark sit 1+3, rule Al; 

turn/b2, about, f2 of b2; 

fixedlb2,b1; 

remark abbreviation for a set of relations which completely 

defines the position of b2 with bl, sit 1+4, rule A2; 

verify/b2; remark sit 1+5; 

terapt; 

------------------------------------------------------------- 
Ibody\si t I 1 I ... I i j i+1 j i+2 j i+3 j i+4 j i+5 j i+6 I 
------------------------------------------------------------- 

I b2 I I I 1 4 4 -4- 1 I P I I 
------------------------------------------------------------- 

8.2. Linkin Rules for TIES 

In RAPT, when bodies are TIED together their nominal positions main- 

tain the same ratio before and after any actions. In practice the nomi- 

nal ratio may not hold. For instance, suppose the manipulator of the 

-193- 



robot grasps a body at a place which differs from the specified posi- 
tion. The actual relative position of the body with respect to the 

manipulator, therefore, is different from the nominal one. However, if 
the body is TIED to the manipulator then the action of the manipulator 

is also applied to the body and so if two bodies are really TIED 

together then the actual positions of the bodies must keep the same 

ratio both before and after any actions. The changing of the modifying 

factor of one body must affect that of the other. The only exception 

happens when local vision commands (see Section 5.3.2) are used to check 

the actual relationships between the TIED bodies. In that case only the 

modifying factor of the body instance which is verified by local com- 

mands is subject to change. 

8.2.1. The Effect of Unspecified Actions 

The effect of the action on the modifying factor of the body being 

moved directly has been discussed in Chapter 7 and Section 8.1. The 

following will discuss the effect of the action on the modifying factor 

of the body which is TIED to the body being moved by an unspecified 

action. When a body is moved by an unspecified action, another body 

which is TIED to it must be moved by the same amount of unspecified 

action. Suppose that body b is TIED to body a and body a is moved by an 

unspecified action Tai between situation i and (i+1). The actual posi- 

tions of the bodies before the action are: 

PVai = FMai * PNai (8.1) 

and 
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PVbi - FMbi * PNbi t8.2) 

respectively. The nominal position of the body a after the action is 

PNa(i+1) - PNai * Tai (8.3) 

Since body b is TIED to body a, it keeps the same relative position with 

respect to body a. Thus 

PNbi+1) - PNbi * PNai-1 * PNa(1+1) 

- PNbi * 
PNai-1 

* PNai * Tai 

- PNbi * Tai (8.11) 

According to the discussion in Section 8.1, the modifying factor of body 

a in situation (i+1) is 

FMai+1) - FMai 

and the actual position of body a in that situation is 

PVa(i+1) - FMai * PNai * Tai (8.5) 

Since it is assumed that body b is actually TIED to body a in the real 

world, its actual position after the action must keep the same ratio 
with respect to body a as that before the action. Thus the actual posi- 

tion of body b in situation (i+1) is 

PVb(i+1) - PYbi * PVai-1 * PVa(i+1) 

- FMbi * PNbi * (FMai * PNai)-1 * FMai * PNai * Tai 

- FMbi * PNbi * Tai 
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-F'Nbi *PNb(i+i) 

- FMb(1+1) * PNb(1+1) (8.6) 

and 

FMb(i+1) - FMbi (8.7) 

It can be seen that each member of a TIE keeps the same modifying factor 
before and after an unspecified action. A pointer which points to the 

modifying factor of the same body in the previous situation can be 

assigned to each member of a TIE no matter whether it is moved directly 
by an action statement or it is moved indirectly by the effect of the 

TIE. 

8.2.2. The Effect of Specified Actions 

Now let us consider the effect of a specified action statement on 

the modifying factor of the body being TIED to a body being moved. Sup- 

pose body b is TIED to body a and body a is moved by a specified action 

so that specified relationships between body a and body c are to be 

satisfied. Positions of these bodies before the action are: 

PVai - FMai * PNai 

PVbi - FMbi * PNbi 

PVci - FMci * PNci 

respectively. As discussed in Section 8.1, the actual position of body 

a after the action Is 

PVa(i+1) - PNa(i+1) * PNc(i+1)-1 * FMc(i`1) * PNc(i+1) 
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- FMa(i+1) * PNa(i+l) (8.8) 

where 

FMa(i+1) - PNa(i+l) * PNc(i+1)-1 * FMc(i+l) * PNc(i+1) * 

* PNa(i+1)-1 (8.9) 

Exactly the same as the rule discussed in Section 8.1.3 and equation 

(7.11), a pointer which points to body c in situation (i+1) is assigned 

to the modifying factor of body a in situation (i+1). 

Since body b is TIED to body a, it must keep the same relative posi- 

tion with respect to body a both before and after the action. Thus the 

actual position of body b in situation (i+1) is 

PVb(i+1) - PVbi * PVai-1 * PVb(i+1) 

- PVbi * PVai-1 * PVa(i+1) * PNb(i+1)-1 * PNb(i+1) 

- FMb(i+1) * PNb(i+1) ( 8.10) 

where 

FMb(i+1) - PVbi * PVai-1 * PVb(i+1) * PNb(i+1)-1 

- FMbi * PNbi * (FMai * PNai)-1 * FMa(i+1) * 

* PNa(i+l) * PNb(i+1)-1 (8.11) 

In order to respresent this expression, a pointer triple can be assigned 

as the modifying factor of body b in situation (i+1). The triple has 

the form: 

Cpl. p2. P3) 

where p1 points to the modifying factor FMbi, p2 points to FMai and P3 
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points to FMa(i;1). At run time, the triple will be evaluated according 

to equation (8.11). 

There are two bodies in a TIE and the relationships which specify 

the destination of an action can refer to either of them. Since the 

action applies equally to the two TIED bodies, in determining the modi- 

fying factor, we can consider that the body being moved directly is the 

one referred in the destination specification. 

When both bodies in a TIE are referred by a specified action, the 

situation is a bit complex. The introduction of the modifying factor 

restricts the condition on which the spatial relationships are given in 

this case. When the spatial relationships refer both bodies in the TIE, 

it is uncertain whether the specified relationships can be realized in 

the real environment when the modifying factors are taken into account. 

To examine this in general needs a complex calculation and sometimes is 

impossible since some information is dependent upon vision. In the work 

discussed in this thesis, referring to both bodies in a TIE by spatial 

relationships is only allowed when the spatial relationships refer to 

the same reference body and the actual ratio between the bodies in a TIE 

is the same as planned: 

FMai * PNai * (FMbi * 
PNbi)-1 - PNai * 

PNbi-1 

where a and b are the bodies in the TIE. This is a sufficient condition 

which is easy to examine at compile time. The proof of the sufficiency 

of this condition can be found in Appendix IV. The ratio between body a 

and body b maintains the same after they are TIED. Thus examining the 

condition in situation i can be done by examining the condition in the 
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situation in which the current effective TIE is declared. The method is 

the same as that discussed in Section 8.1.2. 

If the reference body is in the TIE then the above rule is not 

applicable. If the rule were used, it would lead to an unsolvable 

pointer circle. A relationship between a body being moved and a body 

which is already TIED to it is used to describe the relationships 

between the two bodies rather than to specify the destination of a move- 

ment. Note that in RAPT, two bodies can be TIED together without neces- 

sarily giving any relationship specifications between them. When bodies 

are tied together, the action on one must be copied to the other body in 

the TIE. Therefore a relationship specification between either of the 

bodies in the TIE and another body serves to define the destination of 

both bodies. If an action statement is followed by any relationship 

specifications which hold between the body being moved or the body TIED 

to it and a body which is not TIED with it then the action statement is 

considered as a specified action statement. Otherwise it must be tack- 

led as an unspecified action statement and the rule described in Section 

8.2.1 must be applied. 

8.2.3. The Effect of Vision Commands 

Vision command packages are classified into two classes: global ones 

and local ones. A local package is produced when the reference body in 

the INVIOLATE statement is TIED to the body being verified or belongs to 

the same subassembly as it. This has been discussed in Section 5.3.2. 

The difference between these two classes is that a global vision command 

package updates the actual positions of all bodies in the TIE or 
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subassembly by the use of vision information while a local one only 

updates the actual position of the body being verified. 

8.2.3.1. Global Vision Command Package 

The linking rule for global vision commands is quite similar to that 

for specified actions. Suppose body b has been TIED to body a which is 

verified by a global vision command package between situation i and 

U+1). The modifying factor of body a in situation (1+1) is determined 

by its nominal position and vision information as discussed in Section 

7.3.1. At compile time the symbolic equation of the verified position 

is assigned to the corresponding element of the modifying factor array. 

The actual modifying factor will be obtained at run time by the use of 

equation (7.2). The actual position of body b in situation (i+1) is 

PVb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMa(i+i) * PNa(i+1) 

- (FMbi * PNbi) * (FMai * PNai)-1 

* (FMa(i+1) * PNa(i+1)) * PNb(i+1)-1 * PNb(i+1) 

- FMb(1+1) * PNb(1+1) (8.12) 

where 

FMb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMa(i+1) * 

* PNa(i+1) * 
PNb(i+1)-1 (8.13) 

Equation (8.13) is the same as equation (8.11). Thus a pointer triple 

can be assigned as the modifying factor of body b in situation (i+1). 

The pointer triple is the same as that discussed in Section 8.2.2. 
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8.2.3.2. Local Vision Command Package 

Local vision commands update the actual position of the body being 

verified only. The body which is TIED to it Is assumed not moved and 

therefore keeps the same modifying factor as in the previous situation. 

Thus the modifying factor of the body being verified is assigned the 

corresponding symbolic expression while that of the body being TIED to 

it is assigned a pointer which points to its own modifying factor in the 

previous situation. Note that if a vision command involves a body which 

is TIED to the world then it will be treated as a local vision command. 

8.2.4. Termination of the Effect of a TIE on Linkin Rules 

The effect of the mutual influence between modifying factors of 

members of a TIE does not necessarily disappear immediately after the 

revocation of the TIE. It is more natural to keep this effect for a 

period until certain conditions are met. For example, suppose the mani- 

pulator is TIED to a block and moves the block to a place. The manipu- 

lator is then UNTIED from the block and moves away waiting for the 

vision system to verify the position of the block. If the user does not 

ask the vision system to verify the new position of the manipulator then 

the unspecified action which brings the manipulator to the new position 

is assumed to be carried out accurately and the relative position of the 

manipulator with respect to the block can be worked out. Thus it is 

reasonable to use the vision information obtained by verifying the posi- 

tron of the block to update the system's knowledge about the position of 

the manipulator as well. On the other hand, if, in the above example, 

the manipulator :roves to a place in order to satisfy specified 
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relationships with respect to another body after it is UNTIED from the 

block then its new position will be restricted by the actual position of 

that other body and the verified position of the block cannot be used to 

update the actual position of the manipulator. 

In order to make full use of vision information to update the 

knowledge of the robot system about the environment, the compile time 

part of the framework assumes that the effect of a TIE over linking 

rules remains after the revocation of the TIE until one of the following 

two circumstances are encountered. The first circumstance is that one 

body in the revoked TIE is moved by a specified action. Since the des- 

tination of the body being moved is determined by its nominal position 

and the actual position of the reference body, a pointer which points to 

the modifying factor of the reference body is assigned to the modifying 

factor of the body being moved. The other body in the revoked TIE has 

not been moved. Hence it keeps the same position as in the previous 

situation, and a pointer which points to the modifying factor of the 

same body in the previous situation is assigned as its modifying factor. 

Thus the relationships between the actual positions of the two bodies 

which were established by the TIE no longer exists and the further 

change of the actual position of one body cannot be used to deduce the 

change of the actual position of the other. 

The second circumstance is that the two bodies in the revoked TIE 

have each been verified. When the user asks the vision system to verify 

actual positions of the two bodies individually it means that the rela- 

tionship between the bodies which have been UNTIED is in doubt. In this 

case the vision information provides more reliable evidence to show 

where the bodies are than that implied by a revoked TIE statement. Thus 
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the effect of the mutual influence between the actual positions of the 

bodies implied by the former TIE does not need to last. 

8.2.5. Tree Structure of the Super TIE 

Suppose n bodies bt, ..., bn are TIED together by n-1 TIE state- 

ments. The action of one body in this group must be applied to every 

other. For convenience, this group of TIED bodies is referred to as a 

super TIE. The graph of a super TIE can be represented by a tree. For 

example, the following codes: 

TIED/b1, b2; 

TIED/b3, b2; 

TIED/b1, b4; 

TIED/b4, b5; 

TIED/b4, b6; 

define a super TIE. Its graph is shown in Fig. 8.1(a). After the 

declaration 

UNTIED/b1, b4; 

UNTIED/b2, b3; 

the former super TIE is divided into three pieces. They are shown in 

Fig. 8.1(b). For convenience, the pieces resulting from the revoking of 

a super TIE are referred to as sub-super TIE. A sub-super TIE may be an 

individual body, an ordinary TIE or a group of bodies which are TIED 

together. 
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bS 

(a) before being broken 

b3 0 

bS 

7\b1I 
b2 

(b) after being broken 

Fig. 8.1. Tree structures of the super TIE 

"bi" represents a body instance 

&---& --o---a 
B1 B2 B3 B4 

(a) before a body in B2 has been moved by a specified action 

B1 B2 B3 B4 

(b) after a body in B2 has been moved by a specified action 

Fig. 8.2. The effect of the specified action on linking rules in 

a broken super TIE. "Bi" represents a sub-super TIE, 

dashed lines represent broken TIES 
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The discussions in Section 8.2.1, 8.2.2 and 8.2.3 can be applied 

directly to a super TIE structure. The discussion in Section 8.2.4 

(termination of the effect of a TIE) needs to be expanded a bit when 

being applied to a super TIE. 

8.2.5.1. Specified Actions 

Suppose a super TIE B has been broken into some sub-super TIES 81, 

..., Bm. If a body in Bk is moved by a specified action then the effect 

of the former super TIE on the linking rules between Bk and other sub- 

super TIES terminates. This is because the specified action specifies 

new actual positions of bodies in Bk with respect to a new reference 

body. The relationships between bodies in Bk and those in other sub- 

super TIES which are implied by a revoked TIE statement may no longer 

exist. 

The relationships between bodies in other sub-super TIES may still 
be assumed to remain if necessary as there is no indication either to 

support this assumption or to conflict with it. In order to implement 

the rule more easily, the framework terminates the influence between 

other sub-super TIES if the propagation of this influence passes through 

Bk. 

Fig. 8.2 shows an example of the operation of the rule. In this 

example, a super TIE has been broken into four sub-super TIES B1, B2, B3 

and 84. The influence between actual positions of bodies in sub-super 

TIES B1, 82 and 83 terminates after a body in B2 is moved by a specified 
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action. However, the influence between B3 and 84 continues since this 
effect does not propagate through 82. 

8.2.5.2. Vision Commands 

Suppose a super TIE B has been broken into some sub-super TIES B1, 

... , Bm. If a body bj 1 in Bj has been verified by global vision command 

then the effect of the former super TIE on the linking rules still 
holds. If a second body bJ2 in Bj is verified by global vision commands 

then the verification of bJ2 does not change the effect of the former 

super TIE on the linking rules either. The reason is that both the 

bodies belong to the same sub-super TIE which is still valid. The 

second verification has the same effect as the first one. The vision 

information obtained from these verifications does not show whether the 

relative position of a body in this sub-super TIE with respect to a body 

in another sub-super TIE is changed or not. Thus it is reasonable to 

assume it still holds. 

If a body in Bj is verified by global vision commands after some 

bodies in another sub-super TIE Bk have been verified by global vision 

commands then the effect of the former super TIE on the linking rules 

between Bj and other sub-super TIES terminates. In this case the verif- 

ication vision system provides enough information about new actual posi- 

tions of bodies in these two sub-super TIES. This information indicates 

the new ratios between these two groups of bodies which Is more reliable 

than that implied by the revoked TIE statement. Thus the effect of that 

revoked TIE must cease. However, the vision information gives no hint 

about the relative positions of bodies in other sub-super TIES with 
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respect to either Bj and Bk. In order to avoid contradiction, 

the framework must terminate the mutual influence between other 

sub-super TIE which propagates via Bj. 

Fig. 8.3 shows an example of this rule. A super TIE has been broken 

into four sub-super TIES Bt, B2, B3 and B4. The influence between 

actual positions of bodies in sub-super TIES B1, B2 and B3 terminates 

after a body in both B2 and 83 has been verified by global vision com- 

mands in this sequence. The influence between B3 and B4 continues. 

8.2.6. Summary of the Linking Rules for TIES 

The linking rules for TIE statements can be summarized as follows: 

T1. In a super TIE B, if body bj is moved in situation i by a 

specified action which brings about some relationships between 

body bj and body C which is not a component of the super TIE, 

then the pointer of body bj will point to the modifying factor 

for body C in situation i while the modifying factors of other 

bodies in the super TIE are pointer triples. The triples have 

the form Cpl,p2,P3] where p1 points to the modifying factor for 

the same body in situation (i-1), p2 to the modifying factor for 

bj in situation (i-1) and P3 points to the modifying factor for 

bj in situation I. If the reference body C is also a component 

of the super TIE then rule (T4) is applied. 

T2. In a super TIE B, if body bj is verified by a set of global 

vision commands in situation i, then its modifying factor will 

be assigned a symbolic position expression "P" while that of 
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BI 82 83 84 

(a) before any body has been verified 

BI B2 B3 B4 

(b) after a body in 82 has been verified 

0 0 0--- o 
81 B2 83 94 

(c) after a body in B3 has been verified 

Fig. 8.3 The effect of vision cocuaands on linking rules in a broken super TIE 



other bodies in the super TIE are pointer triples. The triples 

have the same form and contents as in rule (Ti). 

T3. In a super TIE 8, if body b3 is verified by a set of local 

vision commands in situation i, then its modifying factor will 

be assigned a symbolic position expression "P" while that of 

other bodies in the super TIE will refer to their modifying fac- 

tor in situation (i-i). Note that the influence of a super TIE 

over the local/global decision will continue after the TIE is 

broken until the termination. 

T4. In a super TIE B, if none of the conditions mentioned in 

(Ti)-(T3) are met, the modifying factors for the bodies in this 

situation will point to their modifying factors in the previous 

situation. 

T5. After a super TIE B has been broken into sub-super TIES B1, 

.... Bm, if no bodies in any of the B1, ..., Bm are either veri- 

fied by global vision commands or moved by a specified action 

then rule (T4) is applied. 

T6. After a super TIE B has been broken into sub-super TIES Bt, 

... , Bm, if a body bj in sub-super TIE Bj is moved by a speci- 

fied action which brings about some relationships between body 

bj and body C then rule (T1) is applied to the new super TIE Bj 

while rule (T4) applied to other new super TIES, and the effect 

of the former super TIE on the linking rules which is related to 

Bj is terminated hereafter. 

Ti. After a super TIE B has been broken into sub-super TIES 81, 

Bm, if no bodies in any of the B1, ..., Bm have been either 

verified or moved by a specified action since then and if a body 

bj in Bj is to be verified by global vision commands then rule 

(T2) is applied to all the components of the original super TIE. 
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T8. After a super TIE B has been broken into sub-super TIES B1, 

..., Bm, if some bodies in Bj have been verified by global 

vision commands and another body also in Bj is to be verified by 

global vision commands then rule (T2) is applied to all the com- 

ponents of the old super TIE. It some bodies in Bk have been 

verified by global vision commands and a body in B,) is to be 

verified by global vision commands then rule (T2) is applied to 

Bj while rule (T4) is applied to all other components of the old 

super TIE, and the effect of the former super TIE on the linking 

rules which is related to B) is terminated hereafter. 

T9. For a super TIE which has been TIED to the world, global 

vision commands which attempt to verify the position of any com- 

ponent of the super TIE will be dealt with as local vision com- 

mands and rule (T3) is applied. 

The following example shows the use of these linking rules. 

remark bodies b1 b2 b3 have been defined; 

remark now in situation i; 

move/bl,parlel, fl of b1; remark sit i+1, rule A2; 

fixed/bl, b2; 

tied/bl,b2; 

tied/bl,b3; 

hove/bl,perpto, f1 of bl; remark sit i+2, rule T1; 
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fixed/bl, world; 

untied/bl,b2; 

move/bl,parlel,f6 of b1,30; remark sit i+3, rule T5; 

verify/b2; remark sit 1+4, rule T7; 

untied/bl,b3; 

move/bl; remark sit 1+5, rule T6; 

fixed/bl , b3; 

tied/bl,b2; 

tied/ bl,b3; 

move/bl,perpto,fl of bl, 50; remark sit 1+6, rule T4; 

verify/b3; remark sit 1+7, rule T2; 

move/ b3; remark sit 1+8, rule Ti; 

fixed/b3, world; 

untied/b1b3; 

untied/bl,b2; 

verify/b1; remark sit 1+9, rule T7; 

verify/b2; remark sit i+10, rule T8; 
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terapt; 
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Ibod\sit1 1 1 ... I i 1 1+11 1+21 1+31 1+41 1+51 1+61 i+7I 1+81 1+911+101 

(_-b1---l--I-(----- ---- ----I- ----i--;I - ----I--1-I.- - - ------- 

- -*I- 1 i- ..{- I 1 I I P I I b2 I I I 1 -4- I 

------------------------------- --------- 
--------- 

---- ------- 
+ P 

I 
o..}-_ I 

I 
05 

I I I 1 ..+- I -t- 1 0-+- -4- 
------------- ------------ 

world 
I 

I I 
I 

I I I I I I I I I II I1 I) I1 I1 
------------------------- ---------- 

** o--> represents the pointer triple. A triple pointing 
from ai to bi contains 3 pointers. One points to a(i-1), 
one to b(i-1) and one to bi. 

8.3. Linkin Rules for Subassemblies 

The features of a body in a subassembly keep specified relationships 

with those of other bodies of the same subassembly. The maintainence of 

specified relationships between components of a subassembly after an 

action (including global vision verification) can be considered as to be 

performed in the following way. At first, the components of the 

subassembly keep the same relative positions with respect to each other 

before and after an action, just like the situation discussed for the 

TIE. Then they possibly make actions along and about the remaining axes 

of freedom. For instance, in Fig. 8.4 when the block of the subassembly 

is moved, the shaft may move to any position provided that it still fits 

the hole of the block. The new position of the shaft can be considered 

as being obtained by translating and rotating the shaft along and about 

its axis from the position in which the shaft has the same relative 

position with respect to the block as before the action. 
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bl 

(a) before a movement 

subass/perp; 
fits/shaft of at, hole of block; 

tersub; 

rove/block; 
against/fl of block, fl of bi; 
against/f2 of block, f2 of bl; 

after the second conceptual step 

before the second conceptual step 

(b) after a movement 

Pig. 8.4 Positions of bodies in a subassembly affected by an action 
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The nature and the amount of the second conceptual step are res- 

tricted by the structure of the subassembly, modifying factors of 

members of the subassembly and the reference bodies, and the relation- 

ship statements which specify the destination of the action of the 

subassembly. To determine the modifying factors of members of a 

subassembly in the general case is very complex since there are many 

degrees of freedom existing in the relationship between the members, and 

sometimes it is impossible since some information is not available at 

compile time. Thus in this thesis only two cases will be dealt with. 

The first case is that the subassembly is moved by an unspecified 

action. There is no relationship statement given which is relevant to 

any member of the subassembly after the action. The second case is that 

the subassembly is moved by a specified action and the relationship 

statements are only relevant to the member which is moved directly by 

the associated action statement. In these two cases no information is 

given about the change of the relative positions among the members of 

the subassembly so that they can be considered as unchanged, the same as 

in the case of the TIE. Thus the influence between modifying factors of 

bodies of a subassembly is the same as that between modifying factors of 

bodies in a super TIE. When two bodies of a subassembly are TIED 

together, the TIE does not affect the influence between modifying fac- 

tors of these two bodies since the effect of the TIE on the influence 

coincides with the effect implied by the subassembly. 

Bodies in a subassembly can also be TIED to other bodies, or even to 

other subassemblies. The result of this connection is referred to as a 

super subassembly. For example, the following segment of a program 
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defines a super subassembly the structure of which is shown in Fig. 8.5. 

subass/perm; 

against/fl of b1 , ft of b2; 

fits/f2 of bl, f2 of b3; 

tersub; 

subass/temp; 

parax/f2 of b5, f3 of b6; 

fits/fl of b5, f1 of b4; 

against/f3 of b5, f2 of b7; 

tersub; 

tied/bi, b5; 

tied/b4, al; 

Obviously, the influence between modifying factors of bodies of a super 

subassembly is also the same as that between modifying factors of bodies 

in a super TIE. 

In a super subassembly, a permanent subassembly behaves like a per- 

manent sub-super TIE while a temporary subassembly behaves just like an 

ordinary sub-super TIE. The termination of a temporary subassembly is 

treated by the framework the same as the revocation of a set of TIES. 

Thus all the linking rules for the TIE can be applied to the subassembly 

except one special case. 

Bodies of a subassembly can move with respect to each other provided 
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Fig. 8.5. The tree structure of a super subassembly 

(bi, b2, b3) is a subassembly. 

(b1, b5, b6, b7) is another subassembly 



that the specified relationships hold. Thus when a body of a subassem- 

bly has been TIED to the world, other bodies can still be moved by 

either an unspecified action or a specified action under the constraint 

of the specified relationships. The linking rule for an unspecified 

action in this case is simple. According to the discussion in Section 

8.2.1, when an unspecified action is applied the modifying factor of 

every body in the super subassembly needs to be the same as that in the 

previous situation. So does the world. Since the modifying factor of 

the world before the action is an identity matrix, its modifying factor 

after the action is still an identity matrix. It is just what it should 

be. Thus rule (Ti) which is suitable for a super subassembly which does 

not oontain the world can still be used in this case. 

However, when a specified action is applied to a body of a super 

subassembly which contains the world, the corresponding rule which can 

be used to deal with the case in which the super subassembly does not 

contain the world is no longer suitable. If rule (Ti) was used and the 

modifying factor of the reference body and that of the body being moved 

were not identity matrices then the actual position of the world might 

be changed from its nominal one as its modifying factor might not be an 

identity matrix. This would mean that the world made a virtual motion 

and would conflict with the definition of the world. If in this case 

rule (Ti) was applied to every body of the super subassembly excluding 

the world then the relationships between the world and other bodies of 

the super subassembly which have been TIED would be violated. In order 

to avoid both cases described above, rule (T4) needs to be applied. In 

this case the specified relationships between the reference body and the 

body being moved by the specified action may not be guaranteed if the 

modifying factors of the two bodies are not the same. 
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The linking rules for the subassembly can be summarized as follows: 

S1. Linking rules (Ti)-(T9) are applied to a super subassembly 

except when the condition mentioned in (S2) is met. 

S2. Once a component of a super subassembly has been TIED together 

to the world and another component is to be moved by a specified 

action, rule (T4) is applied to the super subassembly. 

8.4. The Position of the Camera 

A camera which is defined by a general camera specification state- 

went (see Section 5.6) consists of a camera body and a specified focal 

length. The camera body is an ordinary RAPT body. This means that the 

general camera can be operated by the RAPT system, being moved, TIED and 

so on, as any other body. In most cases the position of a camera body 

can be modified by the modifying factor array according to the linking 

rules. For example, the position of a general camera can be verified by 

another camera. When a general camera is moved so that it is fixed to 

another body, the position of the camera will be modified by the modify- 

ing factor of that body. 

However, there is one case in which general cameras differ from 

other bodies. This happens when the user wants to use a general camera 

to verify the relative position of the camera with respect to another 

5ody. Consider the following example in which the user has installed a 

general camera on the hand of the robot. 
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f i xed/camera, hand; 

tied/camera,hand; 

move/hand; 

fixed/hand,bl; 

tied/hand,bl; 

move/bi; 

fixed/bi,world; 

untied/hand,bl; 

move/hand,perpto,fl of hand, 50; 

combine; 

look/f2 of bl,camera; 

ter cam; 

According to the linking rules listed in Section 8.2, the position of 

the camera is also subject to modification, since it was TIED, 

indirectly, to the body to be verified and this TIE, although having 

been broken, is still effective in determining the linking rules to be 

applied. However, the verification system has been designed to verify 

the absolute positions of the bodies in the world. It is obvious that 

when a camera is used to verify the position of another body, its own 

position must be certain and should not be changed by the verification. 

In order to solve this problem, the following rule is applied: 

-219- 



Rt. It the result of a global vision command package will affect 

the position of the camera to be used according to the linking 

rules listed in Section 8.2, then the vision command package 

will be dealt with as a local one. This means that only the 

position of the body to be verified is subject to modification. 

In fact, this rule is natural. Cameras are usually well installed 

so that their positions are less likely to be disturbed than other 

bodies. Recalling the assumption that the robot moves accurately over a 

small distance, the example given above will be appropriate when the 

user thinks that the object has been placed in an unstable position and 

has possibly moved after it has been let go. 

8.5. Simplification Rules 

After the linking rules have been applied the modifying factor array 

is full of pointers or pointer triples. All modifying factors are 

either pointers or pointer triples except those of body instances of the 

world, those of body instances in the Initial situation and those of 

body instances which are to be verified. Among these pointers some can 

be evaluated at compile time. Usually, the majority of body instances 

in an assembly program have no relationships with vision information. 

If the modifying factor of this kind of body instance can be found and 

replaced by the identity matrix symbol at compile time then the struc- 

ture of the modifying factor array will be simplified and the evaluation 

of tre array at run time will be speeded up. Furthermore, the evalua- 

tion equation of a pointer triple is rather complex. It is also desir- 

able if a pointer triple can be replaced by a pointer. In order to 
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perform these desired replacements same simplification rules are applied 

in the simplification phase. 

8.5.1. The Simplification of a Pointer Triple 

Pointer triples are assigned as modifying factors of body instances 

by linking rules associated with the TIE and the subassembly. A pointer 

triple in the modifying factor array represents equation (8.11): 

FMb(i+1) - FMbi * PNbi * (FMai * PNai)-1 * FMb(i+1) 

* PNa(i+1) * 
PNb(i+1)-1 

Here the super TIE effect over the linking rules (see Section 8.2, 8.3) 

between body a and body b is still valid and body a is either moved by a 

specified action or verified by global vision commands between situation 

i and (i+1). A pointer triple can be replaced by a pointer if one of 

the following two conditions is met. 

The first condition is 

FMa(1+1) - FMai 

In this case, equation (8.11) can be re-written as 

FMb(1+1) = FMbi * PNbi * (FMai # PNai)i1 * FMa(i+1) * 

* PNa(i+1) * PNb(1+1)-i 

(8.14) 

= FMbi * PNbi * PNai-1 * PNa(1+1) * PNb(1+1)-1 (8.15) 
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Since the relative position of body b with respect to body a is assumed 

to be TIED between situation I and (1+1), the nominal position of body b 

in situation (i+1) is 

PNb(i+1) - PNbi * PNai_1 * PNa(i+1) 

Thus 

PNbi * PNai-1 * PNa(i+1) * PNb(i+1)-1 - I 

and 

(8.16) 

(8.17) 

FMb(i+1) - FMbi (8.18) 

The pointer triple can therefore be replaced by a pointer which points 

to FMbi. In the triple [p1, p2, P3] p1 points to FMbi. Thus p1 is 

assigned as the modifying factor instead of the triple. 

The second condition is 

FMbi - FMai - I 

In this case equation (8.11) can be re-written as 

FMb(i+1) - FMbi * PNbi * (FMaI * PNai)_1 FMa(i+1) * 

* PNa(i+1) * PNbi+1)-1 

- PNbi * PNai-1 * FMa(i+1) * PNb(i+i) * 

* PNbi+1)-1 

(8.19) 

(8.20) 
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It can be seen from equation (8.16) that 

PNbi+1) * PNai+1)-1 - PNbi * 
PNai-1 

Equation (8.20) can therefore be re-written as 

FMb(i+1) PNb(i+1) * PNa(i+1)-1 * FMai+1) * 

* PNa(i+1) * PNb(i+1)-1 

(8.21) 

(8.22) 

This equation has the same form as equations (7.11) and (8.9). Thus it 

can be represented by pointer P3 in the triple which points to FMai+1). 

8.5.2. The Simplification of a Pointer 

A pointer can be replaced by an identity matrix symbol if it points 

to such a symbol. This replacement is obvious for a pointer which 

points to the modifying factor of the same body in the previous situa- 

tion. As discussed in Section 8.1, this kind of pointer means the modi- 

fying factor equals what the pointer points to. Thus this kind of 

pointer can be substituted by any thing it points to. 

If a pointer points to the modifying factor of another body in the 

same situation then the pointer needs to be explained by equation (7.11) 

FMai - PNai * PNbi-1 * FMbi * PNbi * PNai-1 

It is easy to see that when FMbi is an identity matrix FMai is also an 

identity matrix. 
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The simplification rules can be summarized as follows. 

1. If a pointer points to an identity matrix symbol then this 

pointer is replaced by the symbol. 

2. If, in a pointer triple [p1, p2, p3], p1 and p2 point to iden- 

tity matrix symbols then the pointer triple is replaced by 

pointer P3. 

3. In a pointer triple [p1, p2, Pal it p2 and P3 point to identity 

matrix symbols or P3 points to p2 then the pointer triple can be 

replaced by pointer p1. 

The following example shows how the rules work. Suppose a modifying 

factor array before simplification is as follows: 

-------------------------------------------------- ----------------- 
I bod\sitl 1 

1 2 l 3 l 4 l 5 l 6 l 7 l 8 9 l 10 l 11 l 12 
--------------------------------------------------------------------- 

-- - l b1 I--I --i- --!! -'}----I-- -i- ------I 

l b2 l 

I 4----1 --- 1__?-4- __- 

l b3 l I-4 4 
t 

o 1.4.- l b,+ -4- t Q I 
11 l a.4_ l 

--------------------------1 ----------- 
lworld l I 

I 
I 

I 
I 

I 
I I I 

I 
I l' I 

I 
I 

I 
I 

I 
I 

I I I I( 
-------------------------------------------------------------------- 

** o--> represents the pointer triple. A triple pointing 
from ai to bi contains 3 pointers. One points to a(i-1), 
one to b(i-1) and one to bi. 

After the simplification rules have been applied, the array is as fol- 
lows: 



--------------------------------------------------------------------- 
(bod\3it( 1 2 ( 3 y 5 ( 6 ( T ( 8 ( 9 ( 10 11 ( 12 

i--bt---i--I-!-I--i-I--i-I--i-I--i-I--i-I-I-I--i- --l- --I- -}- --i 
b2 I I I I I P o P 

----------------------------------- ------------- -- --- ------- 
( b3 I 1 P ( I( ,I__ i 

--------------------------------------------------------------------- 
(world 

1 1 1 1 1 1 1 1 1 1 1 
I i I i I i I i I i I( I i 

----------------------------------- ---------- 



Chapter 9. Implementation and Test 

This chapter describes the implementation of the current work and 

some tests which have been done. All the necessary parts of the system 

(i.e. vision command input facility (Chapter 5), the symbolic reasoning 

system (Chapter 6), the framework for handling vision data (Chapter 7 

and 8), the window suggester (Section 5.7.1) and the face generator 

(Section 5.7.3)) have been implemented on the DEC-10 system in Wonder- 

POP. They are used in conjunction with a normal RAPT system. They have 

been tested with simulated data and work successfully. The implementa- 

tion and test procedure are described below. 

9.1. Implementation of the Reasoning System 

When a RAPT program containing vision commands is read in, the input 

system parses the RAPT program and transforms the information in the 

program into RAPT internal data structures. The internal data struc- 

tures for vision commands are in the form of tables. The information 

expressed by each type of vision command is stored in a special table 

indexed by the sequence number of that vision command. The entry for 

each line of each table includes the situation in which a vision command 

appears, the body and/or the feature the vision command is concerned 

with, and a special field for the Information which is associated with 

that type of vision command. At this stage the syntax of vision com- 

mands is checked, as well as other things like whether the body men- 

tioned in the INVIOLATE statement is the same as that mentioned in the 

LOOK statements in the current COMBINE package. The data structures are 

then passed to the RAPT reasoning system. At first the reasoning system 
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uses the spatial relationships specified outwith the vision commands to 

work out the nominal Positions of bodies in each situation. These nomi- 

nal positions are held in the normal way as RAPT body data structures. 

Then the symbolic reasoning facility is called to deal with the rela- 

tionships described by the vision commands. This will result in the 

creation of symbolic expressions which include some variables. The 

variables represent the positions of the symbolic features created by 

the WOK statements, and are indexed by sequence numbers. The symbolic 

reasoning process also generates the run time commands necessary to 

operate the cameras. These commands are stored in a list In the same 

order as that of the corresponding LOOK statements. Each command indi- 

cates the situation in which the command is active, the body and the 

feature to be verified and their nominal positions, the camera to be 

used and its position and focal length. The framework for handling 

vision information is called in order to establish the modifying factor 

array using the linking rules (see Chapter 8). This is the end of the 

compile time reasoning. 

9.2. Implementation of a Run Time Program 

Currently, there is a run time program implemented on the DEC-10. 

This program runs on simulated data and does not have access to a real 

robot since there is no working robot available in the department at 

present. The correctness of the symbolic reasoning has been demon- 

strated with test programs by using this system. A run time system 

which could be used to control a real robot will be discussed in Chapter 

10. 



This run time program steps through each camera command generated in 

the symbolic reasoning. For each command, it uses the model of the cam- 

era and the nominal position of the body being verified and its modify- 

ing factor (cf Section 7.7) to determine the nominal position of the 

image of the edge feature to be verified. It then calls the window sug- 

gester to obtain a window within which the image of the edge feature 

should appear. Then simulated data is typed in from the terminal and 

the face generator is called to generate the face feature implied by the 

vision data and the model of the camera in use, and the corresponding 

variable is then instantiated by the position of the face feature. When 

all the vision data relevant to the camera commands in a situation have 

been obtained the associated symbolic position equation is evaluated and 

the result, together with the nominal position of the object being veri- 

fied, is displayed. Meanwhile, the modifying factor of the body 

instance being verified is instantiated by a position matrix which indi- 

cates the discrepancy between the nominal position and the verified one. 

This apparatus has been tested for consistency by typing in data 

which was the same as the nominal data predicted by the system. Con- 

sistency was confirmed by the evaluated result of the symbolic position 

being the same as the nominal position of the body. This checked the 

correctness of the implementation of the symbolic reasoning facility, 

the window suggester and the face generator. Appendix V contains a RAPT 

program which was used in testing, a sequence of testing operations and 

the resulting modifying factor array. 



9.3. Simulation with ROBMOD 

A program has also been written to allow the results of the symbolic 

reasoning to be displayed. Since there was no working robot available 

in the department it was decided to simulate the use of verification 

vision on the ROBMOD system. ROBMDD is a solid modelling system 

designed and implemented by S. Cameron [CAM84]. It runs under the UNIX 

operating system and allows solid models of objects to be constructed 

and their positions in the "world" to be specified. The scene can be 

viewed from any point, and displayed on a graphics screen. The RAPT 

system has a subroutine which allows it to produce a file of ROBMOD com- 

mands to display the objects in the assembly in each situation. The 

subroutine has been adapted so that the ROBMOD commands take account of 

the modifying factors. 

After all the simulated vision data had been given to the face gen- 

erator, the framework instantiated all the elements of the modifying 

factor array. By the use of the instantiated modifying factors and the 

nominal positions, the actual position (simulated) of each body in each 

situation could be generated. The actual positions were then 

transformed into ROBMOD commands and transferred to the ROBMDD system 

situation by situation, and ROBMOD displayed each situation on a graph- 

ics terminal. The situations displayed show the verified positions of 

bodies, and the positions which have been modified as a result of the 

vision data. Observing the position of each body and relationships 

between bodies in the simulation and comparing them with the RAPT pro- 

demonstrated the correctness of the implementation of the frame- 

work. Some situations of the simulation of the RAPT program included in 

Appendix V are shown in figures in that Appendix. 
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9.4. Implementation of the Edge Finder 

The edge finder (Section 5.7.2) has been implemented on a vision 

system (the Vision Box) CMAT80J in Intel 8080 assembly language. It has 

been tested with actual scenes and also works successfully. The test 

procedure is as follows. 

The Vision Box takes a picture from a real scene by using the 

operating system IMAGE CFIS821. Then the coordinates of three vertices 

of a window within which the image of an edge feature exists is given to 

the edge finder which then searches within the window. In order to show 

the result of the edge finding process, a line is drawn on the image 

between the end points of the image of the edge feature found by the 

edge finder. The processing time varies from a tenth of a second to 

about a second, depending upon the size of the window and the quality of 

the picture. Figure 9.1 shows an example of the result of the edge 

finding process. 

9.5. Refining Positions of Objects Using Vision Information 

An experiment has also been done in order to test the incorporation 

of the edge finder with all the other components of the verification 

vision system, and to estimate the accuracy of the result of vision 

verification. In this experiment a vision station was set up which 

included a table with a turntable on it, a body on the turntable whose 

position was to be verified, and a table top TV camera (see Fig. 9.2). 
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Fig. 9.2. The vision station used In the experiment 
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A RAPT program was written to describe this situation. This program was 

processed by the RAPT system to produce the symbolic position equation 

of the body to be verified and to suggest the windows to be used by the 

edge finder. Since there was no hardware link between the Vision Box 

containing the edge finder and the DEC-10 system containing the other 

parts of the verification vision system and the RAPT system, the 

interaction between the edge finder and other parts of the system was 

done through a human. The human read the coordinates of vertices of a 

window from a DEC-10 terminal and typed then into the Vision Box, and 

then called the edge finder. He then read the coordinates of the end 

points of the image of the edge found by the edge finder from the Vision 

Box and typed them into the vision system on the DEC-10. After all the 

required vision data had been typed into the vision system, the symbolic 

position equation of the body to be verified was evaluated and the veri- 

fied position displayed. 

The experiment was successful in refining positions of the body when 

it was placed at different positions within the tolerance range. The 

accuracy of the refined positions is of the same order as that of the 

calibration of the camera and the placed positions. This experiment 

demonstrated that vision verification used in this way is useful in 

updating the robot system's knowledge about the environment. The accu- 

racy of the refined position based upon vision information is mainly 

dependent upon the calibration of the camera and the resolution of the 

image. In this experiment, although the accuracy of the calibration is 

not very high, the accuracy of the refined position is acceptable. More 

details of the experiment can be found in Appendix VI. 

Because of the lack of equipment and time, the system has not been 
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linked with a real robot in order to control it with real vision data. 

There will be, of course, some problems in ensuring the correctness of 

match between the model features and their images, and in obtaining 

accurate vision information in a complex environment. This problem will 

be discussed further in Chapter 10. Nevertheless, the concepts and the 

implementation of the concepts of combining vision verification with an 

object level robot programming language which have been discussed in 

this thesis have been shown to be correct. 



Chapter 10. Conclusions and Suggestions for Future Work 

This thesis has described the achievement of the research on the 

integration of sensory information into a robot programming language for 

automatic assembly. The research work contains three major parts. The 

first is the development of a method to specify a sensory task in an 

assembly environment in which some prior expectation of the environment 

is available. The second is the implementation of a symbolic reasoning 

system which reasons about spatial relationships implied by sensory 

information off-line before the sensing operation has taken place. The 

third is the development of a technique to make full use of the sensory 

information in order to update the robot system's knowledge about the 

environment. A complete system has been written which uses verification 

vision information and works successfully in conjunction with the normal 

RAPT system. In this chapter, the generality and originality of the 

work and some suggestions of the future work are to be discussed. 

10.1. The Generality of the Framework 

In the body of the thesis, emphasis has been placed on vision verif- 

ication. In fact the framework that has been developed has much gen- 

erality since it is based on the idea of obtaining information about 

relationships however they may be formed. Generally speaking, in RAPT, 

when we use a sensor to detect a feature of an object, we create a new 

relationship between that object and the sensor, and, since the absolute 

position of the sensor in the world is usually known when the sensor is 

used, we in effect create a new relationship between that object and the 

world. The nature of the relationship depends entirely on the type of 
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the sensor. For example, suppose we use a touch sensor to detect a 

plane feature pt of a body B. If we touch a point on p1, we create a 

relationship AGSP between the world and the body, the "AGAINST" rela- 

tionship between a sphere feature of the world (a vertex is considered 

as a sphere with radius 0 in RAPT) and the plane pt. If we detect two 

points on p1, then we create an AGCP, an against relationship between an 

edge feature of the world and the plane pt. The position of the edge 

feature of the world is determined by the positions of the touch sensor 

when it touches the two points on the plane pt. If we detect three 

points on the plane p1, then we create a new relationship AGPP between 

the world and the plane p1 of the body B. The position of the plane is 

determined by the positions of the touch sensor when it touches the 

three points on the plane pt. Since sensor data only becomes available 

at run time, we can only obtain symbolic relationships at compile time. 

When the symbolic relationships are sufficient to "fix" the object sym- 

bolically, we can use a suitable reasoning system to deduce the symbolic 

position of the object, and then at run time when the corresponding sen- 

sor data becomes available we can evaluate the symbolic position expres- 

sion. In order to introduce a new kind of sensor, we need only to pro- 

vide a set of new commands to specify how to use the new sensor, and a 

new set of symbolic reasoning rules which are capable of dealing with 

the new relationships created by the new sensor. The framework handles 

new kinds of sensor information in the same way as it does vision data. 

Some authors (e.g. [R05773) have suggested that vision sensors have 

poor precision and therefore it is better to use both vision and contact 

sensors. Vision sensors can be used for coarse sensing while contact 

sensors can be used for fine resolution. For example, in fitting a 

shaft in a hole, the information provided by vision can be used to guide 
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the shaft to a position at which a compliance operation can be executed, 

and after the operation the robot system's knowledge about the positions 

of the hole and the shaft can be updated by the more accurate informa- 

tion obtained from this compliance operation. In this case, the gen- 

erality of the framework to handle both kinds of sensory information is 

very important. 

10.2. Suggestions for Future Work 

Although the verification vision system described in this thesis is 

a complete one, there are some improvements which will make the system 

more powerful and more convenient to use. These improvements have not 

been done for two reasons. The first is that although some modification 

would improve the practicality of the system, they are not theoretically 

significant. The second reason is that the current state of RAPT (in 

particular, the RAPT modelling system) makes some improvements impossi- 

ble. In this section some important potential improvements are listed, 

and the possible ways of making these improvements are discussed. How- 

ever, the list is not comprehensive, and the approaches discussed here 

are tentative rather than fully worked out. 

10.2.1. Selecting Suitable Features 

When describing a vision task, the programmer needs to select 

features to be verified carefully so that top level conditionals (see 

Chapter 6) will not result in special cases but instead the symbolic 

reasoning system will always apply the general case. Sometimes it is 
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not easy for a human user to judge whether the features chosen are 

appropriate or not. This is especially the case when different cameras 

are used in different LOOK statements in a vision command package. In 

order to make it easier for the user, the capability of the symbolic 

reasoning system can be expanded so that the programmer can provide more 

candidate features to be verified and leave the system to select suit- 

able ones automatically. The extensions needed to do this are discussed 

below. 

Currently the symbolic reasoning system can only recognize some of 

the top level conditions which cause special cases (such as ROTYLIN) and 

can then select proper features from any extra candidates that the pro- 

grammer has provided (see Chapter 6). These recognizable conditions can 

be examined by investigating relationships between some non-symbolic 

features so that the symbolic reasoning system can determine the nature 

of the reasoning at compile time and decide whether to keep the reason- 

ing result or discard it. The current system cannot determine the 

nature of the reasoning result at compile time for those top level con- 

ditions which need to know parameters of symbolic features since the 

symbolic features are vision information dependent. 

However, although the system cannot exactly know the nature of a 

vision dependent top level conditional, it is possible to estimate 

whether the result may be out of the general case or not by making use 

of the information given by the programmer. When the programmer speci- 

fies a vision task, he tells the vision system the positions of the cam- 

eras to be used, the nominal position of the object to be verified, and 

the maximum range of the difference between the nominal position and the 

actual one. The system should be able to use this information to 
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determine whether the result of a top level conditional might possibly 

be a special case when the object was at a special position within the 

range of the specified tolerance. If the answer is "yes" and the pro- 

grammer has provided some provisional candidate features then the system 

could examine other combinations of the features until one was found in 

which no special result could possibly happen. This combination of 

features would then be chosen as the features to be verified. In this 

case the programmer would need only to consider whether a selected 

feature was visible to a selected camera. 

10.2.2. Using Complete Models 

The current RAPT modelling system is an incomplete one and the user 

needs only to define the features to be used in the associated RAPT pro- 

gram. Although this modelling system is simple, it does not provide 

complete information about the environment. Furthermore, the modelling 

system is only able to describe the surface features of an object and 

has no knowledge about volume occupancy. The lack of complete 

information limits the further development of the RAPT system toward 

higher automatic programming. It also restricts the capability of the 

verification vision system. 

In order to meet the requirement of collision detection and 

avoidance [CAM82] and the requirement of the automatic planning of an 

assembly task [KOU82], it is intended that a solid modelling system like 

NONAME [P EN83] or ROBMOD [CAM84] be used in RAPT. The future verifica- 

tion vision system, therefore, should also take advantage of complete 

models, and this will enable various improvements to be made. These are 
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discussed below. 

10.2.2.1. Automatically Selecting Features to be Verified 

By the use of solid models, the vision system would be able to 

select features completely automatically. From the solid models the 

vision system could know how many edge features the object to be veri- 

fied would have. Using an algorithm similar to the hidden line removal 

algorithm used in computer graphics (e.g. [F0L82]) the system could 

decide which feature is visible to a certain camera. Then the system 

could reason about what combination of features and cameras could avoid 

causing special cases of top level symbolic conditionals when the object 

is located at any position within the expected range. Thus the program- 

mer would not need to worry about any details of a vision task. What he 

would need to do would be to tell the vision system which object would 

be verified in which situation, and what the position tolerance would 

be. 

Implementation of the ideas talked about above needs much work done 

on intelligent modules. In the short term, the user can be helped by 

showing him the scene from the expected viewpoint so that he can select 

the cameras to be used and the features to be verified more easily. 

10.2.2.2. Image-Feature Matching 

The information provided by solid models can also be used to detect 

errors in vision data. It is known that errors may arise when vision 
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data is obtained and transfered, and these errors may cause the system 

to malfunction. Some of these errors may come from imperfection of 

vision hardware and low resolution of the camera. However, the most 

important error is caused by a mismatch between an object feature and an 

image. This kind of error is likely to happen especially when there are 

some similar features near the expected one. Unfortunately, it is com- 

monly the case in vision tasks where from some point the images of some 

edges are parallel and are very near to each other. Unlike errors 

caused by imperfection and low resolution of the image which introduce 

small inaccuracies in the result of the vision verification, errors 

caused by mismatches between features and images bring significant 

misunderstanding of the world into the system. Thus this kind of error 

should be avoided utterly. 

The method used in the current vision system to prevent mismatch is 

to introduce the TOLERANCE statement. It is expected that features to 

be verified and the cameras to be used are so selected that within the 

window suggested for the image of the anticipated feature, no images of 

any other features may appear when the position of the object to be ver- 

ified is located within the range limited by corresponding TOLERANCE 

statement. However, this method may not work in some cases when the 

range of the expected position of the object is too large or there are 

similar features very near to the expected one. 

By the use of solid modelling, an image-feature matching sub-system 

could be designed to overcome this problem. From solid models, the 

vision system could know whether there are any similar features whose 

images may appear in the window when the object wanders under the con- 

straint of the specified tolerance. If the answer was "no" then there 
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would be no posibility of mismatch for the expected image. If the 

answer was "yes" then the image-feature matching sub-system would be 

invoked at run time. The sub-system would make a hypothesis of each 

possible match of the image and then verify it by investigating expected 

features at the positions suggested by the hypothesis. If evidences 

supported one hypothesis and rejected others then the hypothesis being 

supported would be adopted and the position of the image of the expected 

feature determined. It would be impossible that more than one 

hypothesis would be supported simultaneously unless the images of the 

edge features upon which the hypotheses were made were collinear. How- 

ever, it would be possible that every hypothesis would be rejected 

because of the imperfection of the image. In this case, the hypothesis 

which was supported by most evidence would be considered as the correct 

one. 

10.2.3. Combining Searching and Recognition with Verification 

Usually, positions of objects in an assembly task described in an 

object level language like RAPT are known during operation. There may 

be some disturbances to these objects in the real world so that the 

planned position may not be exactly the same as the actual ones. The 

task of the verification vision system is to detect discrepancies 

between planned positions and actual ones. Since usually the discrepan- 

cies are not too large, the planned positions tell the vision system 

approximately where the objects may exist. On the basis of this infor- 

mation the verification vision system can refine the position of the 

object to be verified. However, in some assembly tasks, actual posi- 

tions of some objects may be far from their actual ones or even unknown 
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in some cases- For example, when some objects are fed by a cheap belt 

conveyor the range in which the desired object may be positioned can be 

very large, much larger than that a verification vision system can 

tolerate. Thus the capability of the verification vision system is not 

enough for dealing with this kind of circumstance. A vision system 

which can search for and locate a desired object in a large range is 

needed. Furthermore, if different kinds of workpieces are delivered by 

the same belt conveyor, or different kinds of workpieces are stored in a 

bin, then the vision system to be used must be able to distinguish them. 

By using the information provided by a solid modelling system, a 

vision system which would be able to search for and recognize objects in 

a large range could be combined with a verification vision system. In 

order to deal with three dimensional objects in the real world rather 

than their silhouette image, three dimensional vision techniques must be 

used. Some candidates of the method to be used might be a syntactic 

approach which has been discussed by Luh and Yam CLUH811, or a 

hypothesis-verification approach described by Fisher [FIS83]. When the 

position of an object which might be far from the planned place was to 

be found, the vision system might be asked to search and locate it 
first. If the accuracy of the position determined in this step was not 

high enough then the vision system could determine inviolate relation- 

ships between the object and the world by comparing the approximate 

position with possible stable states of the objects, and select features 

to be verified and cameras which could produce a more accurate result 

automatically, and then invoke the verification function of the vision 

system. 

This powerful vision system would be easily connected with the RAPT 
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system via the framework discussed in Chapter 7. At compile time, the 

corresponding modifying factor would be assigned a symbol to indicate 

that a position would be assigned at run time. If the planned position 

could not be determined then it could be assigned arbitrarily. For 

example, it could be assigned an identity matrix. Since the modifying 

factor indicates the difference between a planned position and the 

actual one, if the vision system located the object correctly and accu- 

rately, it would not matter what the planned object position was. 

10.2.4. More Types of Inviolate Relationships 

At the moment, there is only one type of relationship that can be 

used in an INVIOLATE statement. It is enough to demonstrate the basic 

idea and show the usefulness of the inviolate relationship in describing 

a vision task. However, as a practical system, more types of inviolate 

relationships may be desired in order specify a vision task con- 

veniently. The types of new inviolate relationships which are worth 

being considered are FITS and ROT. These two types of relationships 

have been discussed in Chapter 3. They might be the second most common 

types of inviolate relationships encountered in a vision task. FITS has 

two degrees of freedom: a translational one and a rotational one while 

ROT has one degree of rotational freedom. The approach to the introduc- 

tion of these new types of inviolate relationships would be the same as 

that of AGPP. It would only be necessary to add some new functions into 

the symbolic reasoning system so that symbolic relationship cycles which 

would contain these types of relationships could be inferred. As both 

types of relationships contain one degree of rotational freedom, most 

results of reasoning would be ambiguous. There would usually be two 
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possible solutions which could satisfy a relationship cycle. In order 

to resolve the ambiguity, a method which would be similar to that used 

in the current system for dealing with the ambiguity in reasoning among 

AGPP and AGPE (see Chapter 6) could be adopted: the possible results 

would be compared with the planned position and the one with less 

discrepancy would be considered as the correct one. 

There would be one difficulty in introducing these new types of 

inviolate relationships. There would be more conditions which would 

lead to special cases of top level symbolic conditionals (cf [POP813) so 

that it would be more difficult for a human user to select features to 

be verified and cameras to be used properly. Thus it would be better to 

implement this work together with those suggested in Sections 10.2.1 and 

10.2.2. 

10.2.5. Run Time System for Robot Control 

A run time system needs to be written which connects a vision system 

directly to the robot operating system in order to instantiate the modi- 

fying factor array by using vision data and then to control a real robot 

using the output of the RAPT system and the instantiated modifying fac- 

tor array. The run time system will work in a way similar to the run 
will 

time program described in Sections 9.2 and 9.3 except that ittcommuni- 

cate with the vision system directly and control the robot rather than 

a modelling system. During execution, the run time system commands 

robot operations situation by situation by using nominal positions of 

the robot arm in each situation and its modifying factor except in 

situations in which vision commands need to be run. In situations in 
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which vision tasks are to be performed, the run time system sends vision 

commands to operate the vision system, and then receives the vision data 

from the vision system in order to evaluate symbolic position expres- 

sions and to instantiate relevant modifying factors. To this end, 

interfaces between the host machine on which the run time system resides 

and the robot and the vision system need to be developed. 

The reasoning facility which is needed in the run time system is 

much less than that of the compile time reasoning system (the cycle 

finder). The run time system only needs the code particularly involved 

in evaluating the top level functions contained in the symbolic position 

expressions and does not need the control of the reasoning which is a 

major part of the compile time reasoning system. 

10.3. Originality 

Reasoning about spatial relationships is the main characteristic of 

the RAPT system. The research work described in this thesis relied 

heavily on this characteristic. The concept of verification vision for 

programmable assembly was suggested by R. C. Bolles [BOL77]. The use of 

sensory information in robot programming languages has already been 

reported. The main originality of the research work discussed in this 

thesis lies in the way in which the use of the sensory information is 

incorporated with a high level robot command language intelligently. 

As described in Chapter 2, some work on using vision data in robot 

programming languages has already been reported, such as VAL [UN179, 

UNI80] and AL [GOL77]. However, these systems combine vision facilities 
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with end-effector level languages only and the techniques used are of 

the first generation [LOU811 in that they use a binary picture and only 

provide a very restricted form of mapping from the two dimensional image 

to the location of a three dimensional object. Vision is only used to 

locate some individual objects or to check whether an operation has been 

fulfilled or not, rather than to update the knowledge of the robot sys- 

tem about the environment. There has been no report on combining vision 

with an object level robot programming language. Some object level 
languages have the ability to use some touch sensor information. For 

example, in AUTOPASS [WIL79J and LAMA [LOZ76J force or torque sensor 

information is used to provide special threshold values in order to con- 

strain or terminate some actions, or to detect whether a specified 

action terminates at a correct position or not. In both the systems, 

sensory information is used as a condition in a decision tree and no 

further explanation of the information is made. 

In contrast to these systems, the work described in this thesis 

allows the use of sensory data in a general way. It exploits the expec- 

tation about spatial relationships in order to make the best use of the 

sensory data without having to place restrictions upon the relative 

positions of objects and sensors. A method is provided of specifying 

vision tasks and reasoning about the vision data symbolically off-line. 

It allows partial information about positions to be combined with sensor 

information in a general way. When the vision data becomes available at 

run time, the result of the symbolic reasoning is evaluated and is used 

to improve the system's knowledge about the environment. This method 

uses grey level pictures and produces a three dimensional interpretation 

rather than a two dimensional one. The framework which is used by the 

system for handling vision data makes it possible to use the vision 

-246- 



information to adapt the operation of the robot in a variety of flexible 

ways. The method developed to handle vision data has some generality 

and can also deal with some other kinds of sensory information, such as 

that from tactile sensors. This has already been discussed in Section 

10.1. All of these enhance the capability of normal RAPT which has so 

far had no facilities to manipulate sensory information. 

Bolles's work concentrated mainly on achieving sufficient confidence 

of correct correspondence between object features and their image, ade- 

quate precision of location, and sufficiently low cost of achieving 

required confidence and precision in order to refine the position of the 

object to be verified. In contrast to this, the work described in this 

thesis combines verification vision with a high level robot programming 

language which reasons about spatial relationships. It concentrates on 

making intelligent use of vision information to update the robot 

system's knowledge about the environment rather than to refine the posi- 

tion of the object being verified only. 

10.4. Significance 

This thesis tackled two problems. The first was how to enhance a 

high level robot programming language so that it can express vision com- 

mands to locate workpieces of an assembly. The second was how to find a 

way of making full use of sensory information to update the knowledge of 

the robot system about its environment. The introduction of verifica- 

tion vision into RAPT as described in this thesis has successfully 

solved these two problems. This is the first instance of model-based 

vision being used in an object level robot programming language to deal 

with positional errors in the real environment. 
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Appendix I 

Tables of Reasoning Rules in the RAPT Reasoning System 

Degrees of Freedom of the Relations in the Cycle Finder 

Relations Feature Types Degrees of freedom ----------------------------------------------------------- 
Spatial Rotational 

AGPP Against plane plane 2 1 

FITS Fits shaft hole 1 1 

AGPC Against plane shaft 2 2 
AGPS Against plane sphere 2 3 

AGSS Against sphere sphere 0 3 

PARAX Parallel plane plane 3 1 

LIN Linear shaft shaft 1 0 
LINLIN Planar plane plane 2 0 
ROT Rotation shaft shaft 0 1 

FIX Fixed any any 0 0 



Table 1. Combination Rules 

Relation I Relation 2 General Case Special Cases --------------------------------------------------------------------- 

LIN LIN FIX LIN 
LINLIN LINLIN LIN LINLIN 
LINLIN LIN FIX LIN 
ROT ROT FIX ROT 
ROT 
ROT 
FITS 

LINLIN 
LIN 
FITS 

FIX 
FIX 
FIX FITS,LIN 

FITS ROT FIX ROT 
FITS LINLIN FIX LIN 
FITS LIN FIX LIN 
AGPP AGPP LIN AGPP 
AGPP FITS FIX LIN,ROT 
AGPP ROT FIX ROT 
AGPP LINLIN LIN LINLIN 
AGPP LIN FIX LIN 
AGPP AGPC LIN (2) AGPP,ROT+LIN 
PARAX PARAX - PARAX 
PARAX AGPP LINLIN AGPP 
PARAX FITS LIN FITS 
PARAX ROT FIX ROT 

PARAX 
PARAX 

LINLIN 
LIN 

LINLIN 
LIN 

AGSS AGSS - ROT,AGSS 
AGSS PARAX - ROT 
AGSS AGPP - ROT 

AGSS FITS - ROT,FIX 
AGSS ROT FIX (2) ROT,FIX 
AGSS LINLIN - FIX 
AGSS LIN FIX (2) FIX 
AGPS AGPS - 
AGPS AGSS - ROT 

AGPS PARAX - AGPP 

AGPS AGPP - AGPP 

AGPS FITS - ROT,LIN 
AGPS ROT FIX (2) ROT,FIX 
AGPS LINLIN LIN (2) LINLIN 
AGPS LIN FIX LIN 
AGPC AGPC - AGPP 

AGPC AGPS - AGPP 

AGPC AGSS - ROT 

AGPC PARAX LINLIN (2) ROT,FIX 
AGPC FITS FIX (2) FITS,ROT,LIN 
AGPC ROT FIX (2) ROT,FIX 
AGPC LINLIN LIN LINLIN 
AGPC LIN FIX LIN 

This table shows how pairs of relations (relation 1 and relation 2) 

can be combined to produce a new relation. The resulting relation is 
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given for the general case and also for some special cases where the 

resulting relations are more restricted. The special cases arise from 

particular geometrical relationships between features involved. In this 

table, "-" means the result is not included in the ten standard rela- 
tions. "(2)" means the result is not unique. 

Table 2. Creation Rules 

Relation 1 Relation 2 General Relation Special Cases 
--------------------------------------------------------- ____ 

LIN LIN LINLIN LIN 
LINLIN LINLIN PARAX* LINLIN 
LINLIN LIN PARAX* LINLIN 
ROT ROT - ROT 
ROT LINLIN PARAX* AGPP 
ROT LIN PARAX* FITS 
FITS FITS - FITS,PARAX* 
FITS ROT - FITS,AGPC,PARAX* 
FITS LINLIN - PARAX 
FITS LIN - FITS,PARAX* 
AGPP AGPP - AGPP 
AGPP FITS - PARAX,AGPC 
AGPP ROT - AGPP 
AGPP LINLIN PARAX AGPP 
AGPP LIN PARAX AGPP 
PARAX PARAX - PARAX 
PARAX FITS - PARAX 
PARAX ROT - PARAX 
PARAX LINLIN PARAX 
PARAX LIN PARAX 
AGSS AGSS - AGSS 

AGSS AGPP - AGPS 
AGSS ROT - AGSS 
AGPS AGSS - AGPS 
AGPS AGPP - AGPS 

AGPS ROT - AGPS 

AGPS LINLIN - AGPS 
AGPS LIN - AGPS 
AGPC AGSS - AGPS 
AGPC AGPP - AGPC 

AGPC FITS - AGPC 
AGPC ROT - AGPC 

AGPC LIN - AGPC 

Table 2 shows a chained pair of relations (relation 1 and relation 
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2) may be replaced by a new relation. The resulting relation is given 

for the general case and also for some special cases where the resulting 

relations are more restricted. The special cases arise from particular 

geometrical relationships between features involved. Since the RAPT 

reasoning system only applies Table 2 when it can obtain a useful 

result, not all possible pairs of relations need to be included. In 

this table, the relations marked with "*" are not the true combinations 

for the input relations, because the true answers are not expressible in 

our limited set of relations. A relation with additional degrees of 

freedom is used instead. 



Appendix II 

Detailed Analysis of Combination Rules Likely to be Used 

in the Symbolic Reasoning 

The following table is an extract from a document produced by Tamio 

Arai (personal communication). It shows all possible special cases in 

combinations of relations under different conditions. The entries are 

relevant to pairs of relationships occurring in the symbolic reasoning 

described in the thesis. 

R1 R2 RR Condition 

AGPP 

LIN 

ROTYLIN 

ROT 

AGPC 

AGPC 

AGPC 

AGPC 

AGPP 
ROTYLIN 
LIN(2) 
LIN(2) 

LIN 
FIX 
FIX 

ROTYLIN 
ROTYLIN 
ROT 
LIN(2) 
LIN(2) 

LIN 
function 
FIX(2) 
FIX(2) 

ROT 
ROT 
FIX 
FIX(2) 

x arpar 
x bpar 
xbperp 
general 

xaperp 
xapar 
general 

x-a-par 
x b collinear & is-0-a12 
xb_collinear 

is 0 a12 & x a_perp & r_xal_pla2 
i s_0_a12 
x b_par 
xbperp 
general 

x a -par 
xbcollinear 

general 

NOTE: This table has not been completely implemented in the current 

version of RAPT, because the current cycle finder is restricted 
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to standard relations and non-ambiguous result. 

R1: the first relation 

R2: the second relation 

RR: the resultant relation 

The order of the features in the relations between the two 

bodies is different from that in TABLE 1 in [POP81]. Here 

if we refer to the bodies involved in the relationships as 

body A and body B, then the first feature in the relation- 

ship always belongs to body A and the second to body B. 

For example, the combination of AGPP AGPC means two planes 

belong to the body A and one plane and a edge belong to 

the body B. 

"(2)" means there are two possible ways to create the new 

feature, i.e., there is ambiguity. 

Condition: the condition under which the rewrite rule can be 

used 

x a par: X-axes of features in body A are parallel 

x b par: X-axes of features in body B are parallel 

x a perp: X-axes of features in body A are perpendicular 

x b perp: X-axes of features in body B are perpendicular 

is 0 a12: the angle between x-vector of feature 2 of body A 

and y-vector of feature 1 of body A is 90 degree 

r xa1 p1a2: a complex function defined in Wonder-POP code. 



Appendix III 

A Sufficient Condition for Correct Modifying Factor Determination 

when There Is More Than One Reference Body 

When a body a is moved by an action statement to a specified posi- 

tion to satisfy a set of spatial relationships between it and two refer- 

ence bodies b and c, a sufficient condition under which the specified 

relationships can be realized in the real environment when the modifying 

factors are taken into account is 

PVbi * 
PVci-1 

- PNbi * 
PNci-1 

where situation i is the situation following the specified action. This 

can be proved as follows. 

According to equation (7.11), the modifying factor of body a should 

be 

FMai - PNai * PNbi-1 * PVbi * 
PNai-1 

in order to realize the relationship between body a and body b. For the 

same reason, the modifying factor of body a should also be 

FMai' - PNai * PNci-1 * PVci * PNai-1 
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in order to realize the relationship between body a and body c. 

When 

PVbi * PVci-1 - PNbi * PNci-1 

we have 

PNci-1 * PVci - PNbi-1 * PVbi 

Thus 

FMai' - PNai * PNci-1 * PVci * PNai-1 

- PNai * PNbi-1 * PVbi * PNai-1 

- FMai 

Therefore, the modifying factor of body a which guarantees the realiza- 

tion of the relationship between body a and body b will also guarantee 

the realization of the relationship between body a and body c. 



Appendix IV 

A Sufficient Condition for Correct Modifying Factor 

Determination when There Is 

More Than One Reference Body in a TIE 

When the spatial relationships associated with a specified action 

refer to both body a and body b in a TIE, a sufficient condition under 

which the specified relationships can be realized in the real environ- 

ment when the modifying factors are taken into account is 

PVbi * PVai-1 - PNbi * PNai-1 

where situation i is the situation preceding the specified action. This 

can be proved as follows. 

Since there is a relationship to hold between the reference body c 

and both body a and body b, the modifying factors of both body a and 

body b after the specified action can be determined individually by 

equation (7.11): 

FMa(i+1) - PNa(i+1) * PNc(i+1)-1 * PVc(i+1) * PNa(i+1)-1 

FMb(i+1) - PNb(i+1) * PNc(i+1)-1 * PNc(i+1) * PNb(i+1)-1 

On the other hand, since body a and body b are TIED together, from equa- 

tion (8.11) the modifying factor of body b should also be 
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FMb(i+1)' - PVbi * PVai-1 * PVa(i+1) * PNb(i+1)-1 

- PVbi * 
PVai-1 

* FMa(i+1) * PNa(i+1) * 
PNb1+1)-1 

- PVbi * PVai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) * 

* PNa(i+1)-1 * PNa(i+1) * PNb(i+1)-1 

PVbi * PVai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) * 

* PNb(i+1)-1 

If 
PVbi * PVai-1 - PNbi * PNai-1 

then 

FMb(i+1)' - PNbi * PNai-1 * PNa(i+1) * PNc(i+1)-1 * PVc(i+1) * 

* PNb(i+1)-1 

Since body a and body b are TIED together during the action, 

PNbi * PNai-1 - PNb(i+1) * PNa(i+1)-1 

Thus 

FMb(i+1)' - PNb(i+1) * PNa(i+1)-1 * PNa(i+1) * PNc(i+1)-1 
* 

* PVc(i+1) * PNb(i+1)-1 

- PNb(i+1) * 
PNc(i+1)-1 

* PVc(i+1) * PNb(i+1)-1 

- FMb(i+1) 

Therefore, the modifying factor of body b determined by equation 

(8.11) will guarantee the realization of the relationships between body 

b and the reference body c when the relationships between body a and the 

reference body hold. 



Appendix V 

An Example of Vision System Testing 

1. A RAPT Program Used in the Test 

The following is a RAPT program used in testing the vision command 

input system, the symbolic reasoning facility and the framework. The 

coordinates are measured in millimeters and the angles measured in 

degrees. For simplicity, cameras used in this program are all of simple 

type (see Section 5.6). There are four bodies defined in this program. 

They are the world, bi, b2 and b3, and their body sequence numbers are 

1, 2, 3 and 4 respectively. Bodies b1, b2 and b3 are shown in Fig. 

A5.1. 

body/b1 ; 

pl-point/0,0,0; 

p2-point/20,0,0; 

P3-point/20,-20,0; 

p4-point/20,-20,30; 

p5-point/20,0,30; 

p6=point/0,0,30; 

p7-point/0,-20,0; 

p8=point/10,-10,0; 

p9-point/10,-10,-25; 

remark begins to define a body named "b1"; 
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unlI MJ 

body bl 
body b2 

body b3 

Fig. A5.1. Wireframes of the bodies used in the example testing program 
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fl-face/pl,p2,p5,ylarge; 

f2-face/pl,p2,P3,zsmall; 

f3-face/pl,p6,P7,xsmall; 

f4-face/p4,p5,P6,zlarge; 

f5-face/p3,p2,p4,xlarge; 

f6-face/horiz,25,zsmall; 

11-line/p2,P3; 

12-line/p1,p6; 

13-line/p8,p9; 

e1-edge/ll,ysmall; 

e2-edge/12,zlarge; 

s1-shaft/axis, 13,radius,5,zsmall; 

terbod; 

body/b2; remark begins to define a body named "b2"; 

p1-point/0,0,0; 

p2-point/25,0,0; 

P3-point/25,-30,0; 

p4-point/0,0,50; 

p5-point/25,0,50; 

p6-point/25,-30,50; 

P7-point/25,-15,25; 

p8-point/0,-15,25; 

fl-face/pl,p2,p5,ylarge; 

f2-face/p4,p5, p6,zlarge; 

f3-face/pl,p2,p3,zsmall; 

f4-face/p2,P3,p6,xlarge; 

f5-face/pl,p8,p4,xsmall; 

11-line/p2,p5; 
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12-line/P2,P3; 

13-line/pt,p4; 

14-line/p7,p8; 

el-edge/lt,zlarge; 

e2-edge/12,ylarge; 

e3-edge/13,ziarge; 

hi-hole/axis,l4,radius, 5,xlarge; 

terbod; 

body/b3; remark begins to define a body named "b3"; 

p1-point/0,0,0; 

p2-point/20,0,0; 

P3-point/20,-15,25; 

p4-point/20,0,50; 

P5-point/60,0,50; 

p6-point/60,-30,50; 

p7-point/60,-30,90; 

p8-point/60,0,90; 

p9-point/20,-30,90; 

p10-point/0,0,140; 

p11-point/20,-30,140; 

p12-Point/0,-30,140; 

P13-Point/20,-15,115; 

P14-point/O,-15#115; 

p 15-point/ 0, -1 5,25; 

f1-face/pi,p2,p10,ylarge; 

f2-face/p7,p5,p6,xlarge; 

f3-Pace/p4,p5,P6,zsmall; 

f4=face/p2,p3,P4,xlarge; 
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f5-face/p7,p8,p9,zlarge; 

f6-face/pl 1 , p13, P9,xlarge; 

f7-face/p1 pl O,pl 2,xsmall; 

f8-face/p10,p11,p12,zlarge; 

11-line/p1,pl0; 

12-line/p7, P8; 

13-line/p3,pl5; 

14-line/pl 3, p14; 

el-edge/ll,zlarge; 

e2-edge/12,ylarge; 

hl-hole/axis, 13,radius,5,xlarge; 

h2-hole/axis, 14,radius,5,xlarge; 

terbod; 

remarks the following statements define some features of the world; 

pwl-point/0,0,0; 

pw2-point/0,0,200; 

pw3-point/0,-150,0; 

pw4-point/200,0,200; 

pw5-point/200,-150,200; 

pw6-Point/200,-150,0; 

pox-point/560,-20,50; 

poy-point/260,50,120; 

P03-Point/360,-50,-20; 

fl-f ace/pwl,pw2,Pw3,xlarge; 

f2-face/pwl,pw3,pw6,zlarge; 

f3-face/pw5, pwb, Pw3, ylarge; 

f4-face/pw2,pw4,pw5,zsmall; 
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f5-face/pw6,pw4,pw5,xlarge; 

lwl-line/pw2,pwl; 

lw2-line/pw4,pw5; 

el-edge/lwl,zlarge; 

e2-edge/lw2,ylarge; 

remark all bodies & features are defined; 

agent/bl; remark this is the body generating the movement; 

remark sit 1; 

against/f7 of b3, fl of world; 

against/fl of b3, f3 of world; 

against/f8 of b3, f2 of world; 

remark these relations serve to fix b3 with respect to the world; 

against/f5 of b2, fl of world; 

against/f3 of b2, f2 of world; 

aligned/e3 of b2, el of world; 

remark these relations serve to fix b2 with respect to the world; 

aligned/e2 of b1, e2 of world; 

parallel/f3 of bl, fl of world; 

coplanar/f4 of b1 , f3 of world; 

remark these relations serve to fix bl with respect to the world; 

caml-camera/position, pox, theta, 0, phi, 75,psi,0,focus, 75; 

cam2-camera/position,poy,theta,90,phi,0,psi,0,focus,85; 
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cam3-camera/position,po3, theta,0,phi,10,psi,0,focus,185; 

remark define cameras; 

setcamera/caml; 

remark sets the default camera to be carol; 

po4-point/220,50,45; 

po5-point/350,-5,25; 

po6-point/250,5,5; 

po7-point/350,0,110; 

cam4-camera/position,po4,theta,-90,phi,3,psi,0,focus, 185; 

cam5-camera/position,po5,theta,0,phi,90,psi,0,focus,185; 

cam6-camera/position,po6,theta,0,phi,90,psi,0,focus,185; 

cam7-camera/position,po7,theta,0,phi,90,psi,0,focus,125; 

tolerance/b3,trans,5; 

tolerance/b2,trans,15; 

remark global tolerances; 

REMARK END OF DEFINITIONS AND START OF ASSEMBLY TASK DESCRIPTION; 

remark now define some movements and vision tasks; 

move/bl; 

remark sit 2; 

combine; 

remark sit 3, verification of position of b3; 

remark two INVIOLATE statements and one redundant 

LOOK statement in this COMBINE package; 

inviolate/against,fl of world,f7 of b3; 

inviolate/against,f2 of world,f8 of b3; 
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tolerance/trans,5; remark local tolerance; 

look/el of b3; remark uses default camera; 

look/e2 of b3; 

ter com; 

move/bi , perpto, f6 of bl , 200; 

remark sit 4, here bl is moved to a particular position 

with respect to b3, 

fits/sl of bt, h2 of b3; 

against/f2 of bl, f6 of b3; 

parallel/el of bl, el of b3; 

hence the need to verify b3 above; 

tied/bl,b3; remark defines a TIE, i.e. bt grabs b3; 

move/b3,perpto, f3 of b3, 150; 

remark sit 5; 

turn/b3, about,h2 of b3; 

remark sit 6; 

against/f8 of b3, f4 of world; 

move/b3; 

remark sit 7; 

untied/b1, b3; remark bl lets go of b3; 

move/b1 ,perpto, f4 of bl , 180; 

remark sit 8; 

move/bt, perpto, f5 of b1,50; 

remark sit 9; 
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combine; 

remark sit 10, verification of position of bl; 

tolerance!trans,5; 

inviolate/against,f5 of world,f2 of b1; 

look/el of blcam5; 

look/e2 of bl,cam4; 

ter com; 

combine; 

remark sit 11, verification of position of b2; 

tolerance/ trans,12; 

inviolate/against,fl of world,f5 of b2; 

look/e2 of b2, cam6; 

look/el of b2,cam6; 

ter com; 

move/b1, perpto, f2 of bl, 175; 

remark sit 12, bl now in particular relationship with b2; 

fits/sl of bl , hl of b2; 

against/f2 of bl,f4 of b2; 

parax/el of bl, e2 of b2; 

tied/bl,b2; 

remark the following code is mainly to demonstrate the 

effect of the modifying factor array over a super TIE. 

move/b2; 

remark sit 13; 

aligned/hl of b2, h2 of b3; 

against/f5 of b2, f5 of world; 
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parallel/el of b2, el of b3; 

combine; 

remark sit 14, verification of position of b3; 

inviolate/against,fl of world,f7 of b3; 

look/el of b3,cam7; 

look/e2 of b3,cam7; 

tercom; 

move/b2; 

remark sit 15; 

aligned/hl of b2, h2 of b3; 

against/f5 of b2, f6 of b3; 

parallel/e1 of b2, el of b3; 

tied/b2,b3; remark bl, b2 and b3 form a super TIE; 

move/b3; 

remark sit 16; 

coplanar/fl of b3, f3 of world; 

against/f3 of b3, f2 of world; 

against/f7 of b3, f1 of world; 

terapt; 

2. The Modifying Factor Array of the Test Program 

The following are the modifying factor arrays produced by the frame- 

work for the RAPT program listed in Section 1. The first array is that 

before simplification while the second is that after simplification. In 
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both arrays the sequence number of the world is 1, that of body b1 is 2, 

that of body b2 is 3 while that of body b3 is 4. 

The Modifying Factor Array Constructed by the Linking Rules 

------------------------------------------------------------------- 
( BSS ( 1 2 3 

I 
4 

I 
5 6 

------------------------------------------------------------------- 
1 I I I I I I I I 

I I 
I 

I 
I 

------------------------------------------------------------------- 
2 I 2,1 2,2 4,4 2,4 I[ 4,6 ]I ------------------------------------------------------------------- 

I 3 I I 3,1 I 3.2 I 3.3 I 3,4 I 3,5 I 

------------------------------------------------------------------- 

14 I I 4,1 P I 4,3 ( 4,4 1,6 
------------------------------------------------------------------- 

------------------------------------------------------------------- 
IB\SI 7 8 9 10 11 

I 
12 

------------------------------------------------------------------- 
( 1( I ( I { I I I I I I I 

------------------------------------------------------------------- 

2 2,6 2,7 ( 2,8 ( P 2,10 ( 3,12 
----------- --------- 

3 I 3,6 3,7 3,8 3,9 I P 3,11 
------------------------------------------------------------------- 
I 4 I 4,6 4,7 4,8 I[ 2,10 ]I 4,10 4,11 
------------------------------------------------------------------- 

----------------------------------------------- 
BSS I 13 14 15 16 

----------------------------------------------- 
11 1 I I I I 

2 [ 3,13 ]I 2,13 I[ 3,15 ]I[ 4,16 ]I 
----------------------------------------------- 

3 I 1,13 3,13 4,15 I[ 4,16 ]I 
----------------------------------------------- 
I 4 I 4,12 P I 4,14 1,16 

* NOTE: 1) A number pair B,S represents a pointer pointing to the modi- 
fying factor of body B in situation S. 

2) A list CB,S] of a body A in situation'S represents a pointer 
triple [pl,p2,P3] in which p1 is a pointer A,(S-1), p2 a 
pointer B,(S-1) while P3 a pointer B,S. For example, the 
list [4,6] of body number 2 in situation 6 represents a 
pointer triple [pl,p2,P3] in which p1 is a pointer (2,5), p2 
a pointer (4,5) while P3 a pointer (4,6). 

3) I is an identity matrix symbol. 
4) P is a symbolic position expression. 
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The Modifying Factor Array After Simplification 

------------------------------------------------------------------- 
I B\S I 

1 ( 2 3 } 4 5 
I 

6 } 

11 I I I I I I ( I I I ( I I 

------------------------------------------------------------------- 
2 I 

I I I 4,4 } 2,4 I[ 4,6 ]I 

1 3 1 I I I I I I I I I I I I 

( 4 I I I I I P 4,3 I 4,4 I I I ------------------------------------------------------------------- 

------------------------------------------------------------------ 
B\S I 7 8 9 10 

I 
11 12 

1 1 I I I I I I I I I I I I 

} 2 } 2,6 } 2,7 } 2,8 } P } 2,10 } 3,12 } 

3 I I I P 
I 

3,11 I - - - - - - - - - - - 

4 ( I I I 2,10 ]I 4,10 
I 

4,11 
( 

------------------------------------------------------------------- 

----------------------------------------------- 
B\S 13 14 15 16 I 

.I 

I 2 I[ 3,13 ]i 2,13 IC 3,15 ]IC 4,16 ]I 

3 
I I 4,15 IC 4,16 ]I 

----------------------------------------------- 
4 I 4,12 P 4,14 I I I 

------------------------ 

3. Testing the Run Time Program with Simulated Data 

The following is a record of an operation sequence of testing the 

run time program using simulated vision data. In order to show the con- 

sistency of the implementation of the symbolic reasoning facility, the 
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window suggester and the face generator, some of the simulated data has 

been made the same as that predicted by the system. Some are not: this 
is to make the verified positions (simulated) different from the nominal 

ones so that the modifications to the nominal positions can be shown by 

the ROBMOD simulation. 

The camera caml is working in situation 3 

The edge to be verified may appear between 

(-17.28073, 7.71058) and (-18.4667, 27.44932); 

The window is 

p1: (-19;10); p2: (-15;10); P3: (-20;25) 

p1: -17 8 
p2: -19 25 

comment simulated data typed in by the author, in what follows 
everything typed by the author has been underlined; 

The camera carol is working in situation 3 

The edge to be verified may appear between 

(-15.52914, 20.09619) and (-20.18789, 20.09619); 

The window is 

p1 : (-16;18); p2: (-16;22); p3: (-19;18) 

p1: -15 19 

p2: -20 21 

In situation 3 the nominal position of body b3 (4) is: 

1.0 0.0 0.0 
0.0 -1.0 0.0 
0.0 0.0 -1.0 
0.0 -150.0 140.0 
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The real position is: 

1.0 0.0 0.0 
0.0 -1.0 0.0 
0:0 0.0 -1.0 
0.0 -147.632 140,0 

The camera cams is working in situation 10 

The edge to be verified may appear between 

(0, 12.33334) and (-24.66667, 12.33334); 

The window is 

P1: (-8;6); p2: (-8;19); P3: (-17;6) 

p1: 0 12.33334 comment the data in this situation is the p2: -24.7 12.33334 same as that predicted by the system; 

The camera cam4 is working in situation 10 

The edge to be verified may appear between 

(-33.05263, 56.50052) and (-34.00656, -43.74868); 

The window is 

p1: (-55;53); p2: (-11;52); p3: (-56;-40) 

p1: -33.05263 56.50052 
p2: -34.00656 -43.74868 

In situation 10 the nominal position of body bl (2) is: 

0.0 0.0 -1.0 
0.0 1.0 0.0 
1.0 0.0 0.0 
200.0-5.0 35.0 

The real position is: 
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0.0 0.0 -1.0 
0.0 1.0 0.0 
1.0-0.-0 0.0 
200.0'-5.000019 35.0 

The camera cam6 is working in situation 11 

The edge to be verified may appear between 

(-4.111111, 4.111114) and (20.55556, 4.111114); 

The window is 

p1: (6;-6); p2: (6;14); P3: (11;-6) 

p1: -4 3 

p2: 20 5 

The camera cam6 is working in situation 11 

The edge to be verified may appear between 

(-4.111111, 4.111114) and (-4.111111, -37.0); 

The window is 

p1: (-14;-8); p2: (6;-8); P3: (-14;-25) 

P1: -3 4 

p2: -5 -36 

In situation 11 the nominal position of body b2 (3) is: 

1.0 0.0 0.0 
0.0 1.0 0.0 
0.0 0.0 1.0 
0.0 0.0 0.0 

The real position is: 

1.0 0.0 0.0 
0.0 0.9965458 -0.08304549 
0.0 0.08304549 0.9965458 
0.0 1.290586 1.255067 
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The camera cam7 is working in situation 14 

The edge to be verified may appear between 

(35.71429, 7.142859) and (-14.28571, 7.142859); 

The window is 

P1: (32;5); p2: (32;9); P3: (-11;5) 

p1: 34 6 
p2: -14 8 

The camera cam7 is working in situation 14 

The edge to be verified may appear between 

(4.310345, 21.55173) and (4.310345, 8.62069); 

The window is 

p1: (2;17); P2: (6;17); P3: (2;13) 

p1: 3 21 

p2: 5 8 

In situation 14 the nominal position of body b3 (4) is: 

1.0 0.0 0.0 
0.0 0.0 1.0 
0.0 -1.0 0.0 
0.0 100.0 90.0 

The real position is: 

1.0 0.0 0.0 
0.0 -0.04163054 0.9991331 
0.0 -0.9991331 -0.04163054 
0.0 97.92412 93.31351 



4. The ROBMOD Command File Produced by the Run Time Program 

The following is an extract from the ROBMOD command file for simu- 

lating the RAPT program in Section 1 of this Appendix. This file is 

generated by the run time program using the simulated vision data typed 

in in the test procedure shown in Section 3. The first four statements 

of the ROBMOD program indicate the files in which the wireframes of the 

bodies are stored. The position of the wireframe of body bl in a situa- 

tion is specified by parameters blx, bly and blz while its orientation 

specified by parameters blt1, blt2 and blt3. So are those of bodies b2 

and b3. The statement 

"scene - ... ... " 

commands ROBMOD to draw a scene on a graphics terminal. The name 

"wworld" was used instead of "world" because it was a reserved word in 

an early version of ROBMOD. 

wworld - rbody "boxa3" 

bl - rbody "blockl" 

b2 - rbody "block2" 

b3 - rbody "block3" 

blx - 200.0000 

bly - -180.0000 

blz - 200.0000 

blti - 90.0000 

blt2 - 90.0000 

blt3 - 90.0000 

rbl - bl rotz b1ti roty blt2 rotz blt3 to blx bly blz 
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b2x - 0.0000 

b2y - 0.0000 

b2z - 0.0000 

b2t1 - 0.0000 

b2t2 - 0.0000 

b2t3 - 0.0000 

rb2 - b2 rotz b2t1 roty b2t2 rotz b2t3 to b2x b2y b2z 

b3x - 0.0000 

b3y - -150.0000 

b3z - 1140.0000 

b3tl - -180.0000 

b3t2 - 180.0000 

b3t3 - 0.0000 

rb3 - b3 rotz b3tl roty b3t2 rotz b3t3 to b3x b3y b3z 

scene - rb3 @ rb2 @ rbl @ wworld 

wire scene 

write 0.2 0.01 "situation 1" 

value 0.0 

shell "sleep 5" 

b3Y - -147.6320 

wire scene 

write 0.2 0.01 "situation 3" 

write 0.3 0.98 "body b3 is verified now" 

value 0.0 

shell "sleep 5" 



5. Some Scenes Produced by ROBMOD 

The following are some scenes of the simulation of the RAPT program 

shown in Section 1. Each situation of the program is shown from two 

different viewpoints so that a perspective projection and a projection 

which is perpendicular to the Y-Z plane of the world can be observed. 

The big box in the following pictures represents a notional world but 

has no physical significance. 



b2 

b1 

situation 1 

situation 2 

t 

C) 

O 

situation 1 

a 
r 

situation 2 

III 

Fig. A5.2. Some scenes of the ROHMOD simulation of a RAPT program 



body b3 is verified body b3 is verified 

situation 3 situation 3 

Note the adtual position of b3 is now displayed and is different 

from the nominal one displayed in situation 2 but the inviolate 

relationship has been preserved 

Note also bl is in an inappropriate position with respect to b3 

0 

situation 4 situation 4 

Note the position of bl has been adjusted to 

take account of the actual position of b3 
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body b2 is verified body b2 is verif ied 

EI 
situation 11 situation 11 

Note the actual position of b2 and the 

relative position between b1 and b2 

O 

O 

situation 12 situation 12 
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r--:7 

I o 

situation 13 

body b3 is verified body b3 is verified 

O 

situation 14 situation 14 

Here b3 has to be verified because 

the user wants to put b2 down on it 
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0 

situation 15 situation 15 

b2 is successfully placed in relation 

to the actual position of b3 

situation 16 

U 0 

situation 16 

The super TIE (b1, b2 and b3) moves together 
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Appendix VI 

The Vision Experiment 

1. Vision Station 

A vision station was set up in order to test the feasibility of 

using vision to verify the position of the object in a robot environ- 

ment. The vision station consisted of a plane board, a TV camera con- 

nected with a digitizer and a micro-computer (the Vision Box), and a 

turntable. The camera was supported by a tripod which together with the 

turntable, was fixed on the top of the horizontal plane board. The 

object whose position was to be verified was placed on the top of the 

turntable which could rotate about a vertical axis. The vision station 

was illuminated by the conventional indoor light sources and no special 

lighting arrangement was used. The TV camera was connected with the 

Vision Box and the picture was digitized and stored in the 256x256 image 

memory of the Vision Box with 256 degrees of grey level. The edge 

finder (Section 5.7.2) was loaded in the main memory of the Vision Box. 

The vision station together with the body to be used is shown in Fig. 

A6.1. 



I 

Fig. A6.1. The vision station used in the experiment 

I 

Fig. A6.2. The body used in the experiment 

74 
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2. Calibration of the TV Camera 

The position and the orientation of the camera was measured using 

triangulation. The accuracy of the position is about 2 mm while that of 

the orientation is within 1 degree. The non-linearity of the camera in 

the imaging process was measured but not compensated. This is about 10% 

in both horizontal and vertical directions. 

3. The Testing Program 

The following is the program used in the test with some statements 

deleted which are not relevant to this test. It first specifies the 

model of the camera and that of the body to be verified and its nominal 

position, and then specifies the vision task. The body used in this 

test was the outer case of the gripper being developed in this depart- 

ment. It is shown in Fig. A6.2. 

body/box; remark defines the body to be verified; 

p0 - point/0,0,0; 

p1 - point/0,27.5,-81.5; 

p2 - point/72,27.5,-81.5; 

P3 - point/72,27.5,81.5; 

pu - point/72,-27.5,81.5; 

p5 - point/0,-27.5,81.5; 

p6 - point/0,-27.5,-81.5; 

p7 - point/72,-27.5,-81.5; 

p8 - point/0,27.5,81.5; 

p9 - point/72,0,0; 
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f1 - facelpl,p2,p3,ylarge; 

f5 - face/P1,P5,p6,xsmall; 

11 - line/pl, p2; 

12 - line/p4,P7; 

15 - line/p0,p9; 

el - edge/il,xlarge; 

e2 - edge/12,zsmall; 

e5 - edge/15,xlarge; 

terbod; 

remark the following defines some world features; 

wpO - point/0,0,0; 

wpl - point/0,27.5,-81.5; 

wp2 - point/72,27.5,-81.5; 

wP3 - point/72,27.5,81.5; 

wp4 - point/72,-27.5,81.5; 

wp5 - point/O,-27.5,81.5; 

wp6 - point/ 0, -27.5,-81 .5; 

wp7 - point/72,-27.5,-81.5; 

wpb - point/0,27.5,81.5; 

wp9 - point/72,0,0; 

wfl - face/wpl,wp2,wP3,ylarge; 

wf5 - Pace/wpl,wp5,wp6,xlarge; 

15 - line/wpO,wp9; 

e5 - edge/15,xlarge; 

peami - point/503,595.0,159.4; 

caml-camera/position,pcaml,theta,-105,ph1,37.2,psi,0,focus,33.1; 

remark defines the camera; 
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setcamera/camt; 

remark Now in situation 1; 

coplanar/ft of box, wf1; 

aligned/e5 of box, e5 of world; 

against/f5 of box, wf5; 

remark these relations define the nominal position of the body; 

combine; 

inviolate/against,wf5,f5 of box; 

look/e1 of box; remark verifies a vertical edge of the body; 

look/e2 of box; remark verifies a horizontal edge of the body; 

ter com; 

terapt; 

4. The Test Procedure 

The body to be verified was placed on the top of the turntable with 

an accuracy of about 1 mm in position and 2 degrees in orientation. The 

run time program which was described in Section 9.2 was called to sug- 

gest the window to the edge finder on the Vision Box, and to receive and 

process the vision information which was obtained by the edge finder. 

The communication between the edge finder (on the Vision Box) and the 

run time program (on the DEC-10) was done via a human. Every time the 

body was placed at a new position or the turntable was rotated, the run 
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time program was called and the vision data obtained from the Vision Box 

was typed in. The following is the record of a segment of the test pro- 

cedure: 

The camera caml is working in situation 2 

The edge may appear between 

(224.299,79.51659) and (51.14755,45.06556); 

The window is 

pl. (209;85); P2: (211;68); p3: (63;56) 

p1: 209 78 
p2: 65 46 

The camera caml is working in situation 2 

The edge may appear between 

(36.00486,173.0825) and (30.64297,88.95519); 

The window is 

p1: (20;161); p2: (49;158); P3: (16;103) 

p1: 39 158 

p2: 35 100 

In situation 2 the nominal position of body box (2) is: 

1 .0 0.0 0.0 
0.0 1.0 0.0 
0.0 0.0 1.0 
0.0 0.0 0.0 

The real position Is: 

1.0 0.0 0.0 
0.0 0.9995763 -0.02910785 
0.0 0.02910785 0.9995763 
0.0 -0.1896315 0.1235619 
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5. The Result of the Test 

The result of the test is contained in the following table. The 

table also shows the comparison of the setting positions of the body and 

its verified positions obtained by using vision information. The posi- 

tion is measured in millimetres while the orientation measured in 

degrees. Since there is an INVIOLATE statement specified in the vision 

task, the position of the body has only three degrees of freedom: two 

translational and one rotational. In all cases the nominal position of 

the body was the identity matrix. 

setting position verified position comparison -------------------- 
Y I Z Itheta Y I Z Itheta 

-------------------- 
Y I Z I theta 

s s ..= s .... s a s a.=... a .= s s! s s .... s. s s s MW s ..= sssss s s sssssssssssss 
0191012I16 _0_19012I16 

2 0 0 -15 -1.121 -2.161-17.3 -1.121 -2.161 -2.3 

3 0 0 15 -1.291 3.981 12.8 -1.291 3.981 -2.2 
-------------------- -------------------- 

4 -10 0 0 -11.651 3.691 -0.1 -1.651 3.691 -0.1 
------------ 

5 10 1 0 1 0 7.161 0.091 -0.1 -2.841 0.091 -0.1 

6 0 1 -15 0 -3.771-19.391 -0.3 -3.771 -4.391 -0.3 

7 0 1 10 0 -1.461 9.351 -0.2 -1.461 -0.651 -0.2 
------------ --- -------------- 

8 -10 -10 0 -13.021-9.8151 -0.2 -3.021 0.1851 -0.2 
------------- ------------ 

6. A Brief Analysis of the Accuracy 

The accuracy of the verified positions is mainly dependent upon the 

calibration of the camera and the resolution of the image. As mentioned 
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in Section 2 in this Appendix, the accuracy of the position of the cam- 

era is about 2 mm while that of the orientation is within 1 degree. The 

non-linearity of the camera imaging process is about 10%. Each pixel in 

the image corresponds to about 1 mm distance on a plane which is perpen- 

dicular to the X-axis of the camera and placed at the same distance as 

that between the camera and the body to be verified. The accuracy of 

setting the positions is about 1 mm and that of the orientation is 

within 2 degrees. It can be seen from the result that the accuracy of 

the verified position is of the same order as that of the calibration. 

Because of the lack of proper equipment, it is difficult to increase 

the accuracy of both the calibration and the setting. Under these con- 

ditions the result obtained could be considered as satisfactory. With 

better equipment and therefore better calibration, higher accuracy of 

the result of the vision verification achieved this way could be 

expected. Calibration is relatively infrequent compared with the use of 

vision information. Making allowance for the temporary nature of the 

vision station, this experiment has demonstrated the usefulness of the 

vision verification in robot assembly. 
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