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Abstract 

The .inclusion of fermionic degrees of freedom into lattice gauge theory and 

aspects of parallel computation are examined. 

The problem of fermion doubling and the two most popular methods for 

circumventing it - Wilson and Susskind fermions - are reviewed. Methods, both 

approximate and exact, for introducing dynamical fermions into lattice gauge 

theory are discussed. The chiral condensate <ij4.> is calculated for free Wilson 

and Susskind fermions with periodic and antiperiodic boundary conditions. 

Various "hadron" (fermion bilinear/trilinear) propagators are also calculated and 

finite-size effects investigated. This indicates that the propagators for free 

fermions are bounded above and below by periodic and antiperiodic boundary 

conditions in the spatial directions respectively. 

The pseudofermion method is used to perform a numerical simulation of the 

Schwinger model (two dimensional QED) with massive Wilson fermions. This 

method is efficiently implemented on a highly parallel S1MD computer (the ICL 

DAP). The continuum Schwinger model is reviewed and the pure gauge theory, 

free fermions, the quenched and the dynamical model are simulated. For the 

quenched model the behaviour of <t4i>/g as m/g - 0 agrees with that 

predicted by Carson and Kenway; for the dynamical model <> varies linearly 

with mass for small mass. 

The Lanczos algorithm is used to perform a numerical simulation of SU(2) at 

finite density. Finite density, or non-zero chemical potential, in lattice gauge 

theories is reviewed and the simulation performed in two regimes: fixed chemical 

potential; varying fermion mass, and fixed fermion mass; varying chemical 

potential. In the former, for a small chemical potential, the signal of a phase 

transition is observed; in the latter, at strong coupling, chiral symmetry is 

restored as a continuous phase transition, in agreement with a calculation by 

Dagotto, Moreo and Wolff. 

A general FORTRAN to C translator, primarily for parallel computation, has 

been developed and is described in detail. This software automatically converts 

DAP FORTRAN programs written for the ICL Distributed Array Processor (DAP) 

into equivalent programs in GRID extended C which will run on the GEC 

Rectangular Image and Data processor (GRID). It also translates standard 

FORTRAN 77 into C. 
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Chapter 1 

Introduction 

This chapter provides an introduction to the physics in chapters 2, 3 and 4. 

Chapter 5, concerning computing, has its own introduction. In Sec. 1 we 

describe gauge theories, which are now ubiquitous in elementary particle physics, 

with emphasis on QED and QCD. Then in Sec. 2 we explain how such theories 

are discretised on a space-time lattice, a /a Wilson, giving lattice gauge theories. 

In particular, we show how quark confinement arises naturally on the lattice and 

investigate the renormalisation properties required in order to recover the 

continuum limit. Fermions are introduced in Sec. 3 and we demonstrate the 

fermion doubling problem with the naive lattice action before going on to explain 

the two most popular methods for circumventing it: Wilson and Susskind 

fermions. We describe what is involved in a numerical simulation of a lattice 

gauge theory with so-called dynamical fermions and discuss methods for doing 

this. These fall into two classes: approximate methods, like the hopping 

parameter expansion and the pseudofermion method; and exact methods, 

including Scalapino and Sugar's method, the block Lanczos algorithm, Weingarten 

and Petcher's method, and equation of motion methods. Finally, in Sec. 4 we 

detail the main technique used in numerical simulations of lattice gauge theories: 

the Monte Carlo method, outlining both the Metropolis and the heat bath 

versions of it. 

1.1. Gauge theories 

Gauge theories now dominate elementary particle physics: electromagnetic, 

weak and strong interactions are all based on the gauge principle. A gauge 

theory is a field theory whose dynamics arise from a local, or gauge, symmetry 

requirement. The simplest gauge theory is quantum electrodynamics (QED) with 

its Abelian U(1) local symmetry. The QED Lagrangian density can actually be 

"derived" by requiring the free Dirac electron theory to be gauge invariant. The 

Lagrangian density for a free electron field i(x) is 

t 	For vov 	 / ç.a& 	 T 	P. &'vL F 1 	I 'I 

-tL (c- 



where y are the Dirac matrices satisfying {.t, } = 2g\J• This clearly has a 

global U(1) symmetry under the phase change 

/ 

> 	= e. 
—/ 	 — 

> 	(/) ()c) 	 (.)) 	 (1.2) 

We gauge this symmetry, that is, make it local, by introducing a space-time 

dependent phase change a(x). Then to keep (1.1) gauge invariant we must 

introduce into the theory a new vector, or gauge, field A(x), which transforms as 

> 4ic) =z A/ACc 	- 	3 £(i), 	(1.3) 

and generalise the derivative to the so-called (gauge-)covariant derivative 

• DU 	 +e-t. 14,  , 	 ( 1.4) 

where e is a free parameter which is identified with the charge on the electron. 

Thus we now have (1.1) in the form 

- rA 

We make the gauge field a dynamical variable by adding a term involving its 

derivatives. The simplest such term which is gauge invariant is (with conventional 

normalisation) 

IE 



- 	

(1.6) 

where 

A 	- 	
(1.7) 

Combining (1.5) and (1.6) we obtain the QED Lagrangian density 

LFF 	
(1.8) cED 	

~ 

	

Note that the gauge field, or photon, is massless because an 	term is not 

gauge invariant. There is no gauge field self-coupling term since the photon has 

zero charge (U(1) quantum number). Thus without a matter field the theory is a 

free field theory. This is not the case for non-Abelian gauge groups which we 

now turn to, leaving further discussion of QED, albeit only in two space-time 

dimensions, for Chap. 3.3. 

Yang and Mills, 1954, extended the gauge principle to non-Abelian gauge 

groups, for example, SU(N). In general, for a (non-Abelian) simple Lie group J 

with generators Ga satisfying the Lie algebra 

[CT- 0" 1/ 6-
b] 	= 	 C 

	

, 	 (1.9) 

where Cab c are the totally antisymmetric structure constants, we proceed as 

follows. Let i belong to some representation of this algebra with r 

representation matrices Ta (a = 1,...,r), then under a group transformation 
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lo 1.4 
 42, 	 £L 	P(L) 	(1.10) 

where the scalar product involves r-component vectors I and ct. We make this 

local, as before, introducing r gauge fields A 1  ,...,A U r, which transform as 

7.  A(dc) 	> I' A:: (x 	= 

l(  

and defining the covariant derivative 

D 	 - 	
p 
	

(1.12) 

and the second-rank tensor for the gauge fields 

. 	 All - 	y CA4  

where g is a coupling constant analogous to e in QED. Hence we obtain the 

Yang-Mills action 

= 
' (1.14) 

The pure Yang-Mills term _F 	F a/4  contains factors that are trilinear and 

quadrilinear in 
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z.bc. - 	C 	 - 9 	A; A w A 

these correspond to self-couplings of the non-Abelian (massless) gauge fields. 

They are brought about by the non-linear terms in 	(1.13), because the 

gauge fields All ll  themselves transform non-trivially, like the generators, as 

members of the adjoint representation. (Hence the number of gauge fields is 

equal to the number of generators of the local symmetry.) It is these non-linear 

terms which lead to the rich structure found in non-Abelian gauge theories. 

Historically the first successful application of the Yang-Mills theory was the 

unified description of the weak and electromagnetic interactions in terms of the 

gauge theory SU(2)xU(1) (Glashow, 1961; Weinberg, 1967; Salam, 1968). This led 

to the prediction and subsequent discovery, at CERN, of the W (Arnison et al; 

1983a; Banner et a1 1983) and Z (Arnison at a/ 1983b; Bagnaia at al, 1983) 

intermediate vector bosons. 

The strong nuclear force is also believed to be a Yang-Mills gauge theory, 

based on the group SU(3), known as quantum chromodynamics (QCD). QCD 

arose from the idea that hadrons are bound states of fundamental constituents 

called quarks (Gell-Mann, 1964). The notion of quarks followed from the 

so-called eightfold way of Gell-Mann which predicted the low energy hadron 

spectrum in terms of different flavours. Their existence was supported 

experimentally by deep inelastic lepton-nucleon scattering experiments whose 

cross-sections satisfied Bjorken scaling which could be interpreted using 

Feynman's parton model (Feynman, 1972; Bjorken and Paschos, 1969) with the 

partons being identified as quarks. The problem was: what binds the quarks 

together? The solution comes from the observation that in order to satisfy the 

generalised Pauli exclusion principle it is necessary to endow quarks with a 

hidden quantum number, known as colour, which can have three possible values. 

Since only colour-singlet hadrons are observed, the forces between the coloured 

quarks must be colour-dependent. The colour symmetry of the quark model can 

be gauged and we arrive at the SU(3) colour Yang-Mills theory of the strong 

interaction, QCD, with Langrangian density 

5 
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= - 	r F F  	( 	k) 	(1.16) 

where 

= 	- ) 	- , 	A ] 

A OL  "All 
 

with xa  being the Gell-Mann matrices satisfying the SU(3) commutation relations 

= 
(1.18) 

and the normalisation condition 

(1.19) 

The quanta associated with the 8 strongly interacting gauge fields A4a are called 

gluons and q, k 	1 .....flf, are fl f  flavours of quark fields. Currently it is generally 

thought that flf = 6 with the qk  = (d,u,s,c,b,t}. QCD has the property of 

"asymptotic freedom" (Gross and Wilczek, 1973; Politzer, 1973), that is, its 

coupling strength decreases at short distances, which justifies the parton model 

and allows reliable calculations of the short-distance behaviour of QCD using 

perturbation theory. However, it is widely believed that QCD also has the property 

of "quark confinement", that is, at long distances the coupling strength increases 

keeping the quarks bound as hadrons, which should explain the hadron spectrum 

but means that the long-distance behaviour is non-perturbative and must be 

investigated using other techniques. Lattice gauge theory is such a 

non-perturbative technique. 



ii. Lattice gauge theory 

Wilson, 1974, introduced lattice gauge theory in which the space-time 

continuum is discretised to provide a cut-off that regulates ultraviolet 

divergences by eliminating all wavelengths less than twice the lattice spacing. 

This formulation of field theory emphasises the deep connection with statistical 

mechanics: in Euclidean space the Feynman path integral formalism for a field 

theory is identical to the partition function of an analogous statistical mechanics 

ystem, the square of the field theoretic coupling constant being identified with 

the statistical mechanical temperature. The method of high temperature series 

expansion in statistical mechanics becomes the strong coupling expansion for 

field theory. There are two popular methods for introducing the lattice in field 

theory: the Euclidean lattice formulation (Wilson, 1974), in which both space and 

time are discretised and the Hamiltonian formulation (Kogut and Susskind, 1975) 

in which only the spatial dimensions are discretised. We shall use the Euclidean 

lattice formulation. The connection with ordinary Minkowski space is made via a 

Wick rotation (t + it). The simplest choice of lattice is a regular hypercubic 

space-time lattice of spacing a with the points, or sites, labelled by a four-vector 

n = (n1,n 2,n3,n 4). Then, four-dimensional integration is replaced by a sum: 

r 

ft. 	 (1.20) 

Other choices of lattice are possible - as with any cut-off prescription, the 

physics of the theory is independent of the details of the regulator. 

Consider a field theory described by a Lagrangian density J?. Every field 

configuration 	has a corresponding lattice action 

c(ø) 
	

0- 	
(1.21) 

This is quantised using the Feynman path integral formalism (Feynman, 1948) in 

which the expectation value of some operator 0 (representing a physical 

observable) is given by 
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<8(0)> 	 0 	(ø) e 
) (1.22) 

where 

(1.23) 

On the lattice, there is no problem with the definition of the measure in these 

integrals. The functional integral is defined simply as the product of the integrals 

over the fields at every site of the lattice 4(n): 

ø()], (1 .24) 

With a finite lattice there are a finite number of integrals which means that it is 

possible to investigate the field theory by numerical simulations (using, for 

example, the Monte Carlo method - see Sec. 4) on a computer. Note also that 

no gauge fixing term has been included in the path integral, as this procedure 

(which is necessary in the continuum to control divergences resulting from 

integration over all gauges) is not required in numerical simulations of lattice 

gauge theory. 

Now to construct a lattice gauge theory, we should keep the gauge symmetry 

explicit in the lattice formulation so that in the continuum limit we recover the 

Yang-Mills theory - this is what Wilson's formulation achieves. We associate 

elements U(n) of a gauge group J (which we shall take as U(1) or SU(N)) with 

with links on the lattice joining sites n and n+e, where e is a unit lattice vector 

in the .1-direction. U(n) is a directed variable: in going from n+e~l to n we use 

U(n). The elements for the groups we shall consider are 

14 
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where the generators of SU(3) Xa are defined in (1.18) and (1.19), and the 

generators of SU(2) cT j  are the usual Pauli matrices satisfying 

[i 	
• 1 

 

(1.26) 

Local gauge symmetry corresponds to allowing an arbitrary group rotation Q(n) at 

every lattice site, under which the link variables transform as 

/ 

= 	(Lfra14AJlt+e,4)4 (1.27) 

Thus c2(n) defines the orientation of a local colour frame of reference at each site 

and U(n) tells us how this orientation changes in going from one frame to the 

next in the direction 4. To construct an action with this local symmetry it is clear 

that we require products of U matrices around closed paths, for this is gauge 

invariant provided all SU(N) colour indices are locally contracted. The simplest 

such action involves the most local interaction of four U matrices around an 

elementary square of the lattice, called a plaquette: 

s (u) 	(i - 	&r 	
(1.28) 

0 

with 

where 	2N/92  for SU(N) in four dimensions, or B E 1/g 2a2 for U(1) in two 

dimensions (Chap. 3). The additive constant in (1.28) ensures that the action 

we 



vanishes when the group elements approach the identity. N, the dimensionality of 

the group matrices, is a normalisation. The trace may be performed in any 

representation of, the group, though we will follow the usual practice and 

consider only the fundamental representation. By Taylor expanding the gauge 

field A(n) and using the Baker-Campbell-Hausdorff identity, it is easily shown 

that this action reduces to the usual Yang-Mills action in the naive continuum 

limit a - 0. 

Equipped with a lattice gauge theory for QCD (SU(3)) we can now show that 

quarks are confined at long distances, that is, in the strong coupling limit. 

Consider the following thought experiment: i) adiabatically separate a heavy q-

pair to a distance R; ii) hold them apart there for a long time T; iii) bring them 

together adiabatically and annihilate. This yields the world-line C shown in Fig. 

1.1. 

Fig. 1.1 Illustration for the thought experiment. 

T 

C 

The Euclidean amplitude for this process is given by the matrix element 



-HY I ~ >'O 
	 (1.29) 

where H is the Hamiltonian of the SU(3) gauge theory, and i and f label, 

respectively, the initial and final states of the q-1 pair when they are a distance 

R apart. This can be written as the following path integral: 

oD 5A 	[- 

	

c CD A,, 	
- S 

where J 	is external current of the heavy quarks (and we have scaled the gauge 

fields A 11 by the coupling g). J 	vanishes everywhere except on the world—line 

of the quarks so (1.30) becomes 

xP _SAI1 
JA 	-S 
	

(1.31) 

As Ii> and If> are identical, and the process is static, (1.29) reduces to 

- 

(1.32) 

with the heavy quark potential V(R) defined, from (1.31), as 

00 - 	 (1.33) 

where P denotes a path ordering of the operators. The argument of the 

logarithm is the continuum analogue of the Wilson loop W(C) which is defined as 

the expectation of the trace of a product of link variables around any closed path 

C: 

11 



Cc) E 	7 
(1.34) 

In the strong coupling limit (g2 ~ 	), the Wilson loop can be shown to be given 

by 

AIC 	 2- (~r-e_A_) 
(i ) 

(1.35) 
) 

where NC is the minimum number of plaquettes required to tile the surface, of 

area Area/a2, bounded by the contour C. With a rectangular contour of length I 

and width R we therefore find, combining (1.33), (1.34) and (1.35), 

V() 	 (1.36) 

which defines the string tension at strong coupling: 

L 2. 

CT 	-9---- 4- 
6L 
Z 

(1.37) 

(Higher orders in the coupling constant may be obtained by tiling the surface in a 

way that is not minimal - see Creutz, 1983.) Thus the potential increases linearly 

with distance and confines the quarks. We note that this so-called area law 

criterion for confinement loses its value when quarks are introduced as 

dynamical variables - which is in itself a good reason why lattice gauge theories 

should be investigated beyond the quenched approximation in which quarks are 

ignored - because the widely separated sources may reduce their energy by 

pair-production from the vacuum (the Wilson loop then measures the potential 

between two mesons rather than bare quarks). 

Finally, the lattice, considered as an ultraviolet cut-off, must be removed by 

letting the lattice spacing go to zero and so recovering the continuum limit. As 

when removing any cut-off, physical variables should approach their observable 

12 



values. For example, the mass of a particle, m, should be independent of the 

lattice spacing: 

I = 0. 
(1.38) 

Now (in four dimensions) from dimensional analysis 

kVt = - L 
 h) , 

(1.39) 

where f is some dimensionless function of the gauge coupling only. Thus to 

obtain a sensible continuum limit, as the lattice spacing a - 0, g - g, a critical 

value of the coupling, such that f(g') = 0. Hence the coupling is a function of 

lattice spacing. Moreover, the critical point g = g must have scaling properties, 

that is, once the relationship between g and a has been established by fixing one 

physical observable, this form for g(a) must make all other observables tend to 

their physical values as a - 0. For non-Abelian gauge theories, perturbative 

arguments have shown that g = 0 is such a scaling critical point. By combining 

(1.38) and (1.39) we get 

(1.40) 

where 

(1.41) 

This 	function, which gives the relation between coupling and lattice spacing, 

has been calculated in perturbation theory for small g (Politzer, 1973; Gross and 

Wilczek, 1973) to be 

13 



(1.42) 

where for an SU(N) gauge theory (without fermions) 

= 3P (~-61;v z ) (1.43) 

Only the first two terms of the 	function are universal; higher order terms are 

regularisation-dependent. We can now write down the relation between g and a 

in the form 

W 	
(1.44) A 

where, from (1.40), 

() 	= expf
'1 

- 	

5 I 	(1.45) 

Hence the physical mass A which sets the scale for all masses in the theory is 

given in terms of 50 and 13 1 by 

A
(1.46)  (1.46) a- 

It is clear from this expression that A does not have a perturbative expansion and 

consequently mass generation is a non-perturbative effect. However, once the 

scale is set, ratios of masses in the theory are determined (with no free 

parameters) as pure numbers depending only on the gauge group. The regime in 

which (1.46) holds is known as the asymptotic scaling region of the theory. It is 

possible to relate lattice calculations to ones based on continuum regularisation 

schemes by relating their A parameters (Hasenfratz and Hasenfratz, 1980). 

14 



Having established that the pure gauge theory is confining at strong coupling 

and that the continuum limit is reached when g = 0, we must verify that there is 

no phase transition in the intermediate coupling region for the phenomenon of 

confinement to be present in the continuum. It is known analytically (Guth, 1980) 

- and numerically by Monte Carlo simulation (Creutz, Jacobs and Rebbi, 1979; 

Lautrup and Nauenberg, 1980) - that such a transition occurs for QED (in four 

dimensions) and there is a critical point separating the charge confining phase 

from the free charge phase. This is, of course, as it should be: continuum QED is 

not a confining theory in four dimensions. For QCD such an analytical proof has 

not been found; however, it has been demonstrated numerically by Monte Carlo 

simulation (Creutz, 1979, 1980) that there is no phase transition in the 

intermediate coupling region (neither for SU(3) nor for SU(2)) - the strong 

coupling phase persists into the continuum and quarks are confined. 

1.3. Fermions 

We now have a pure gauge theory for QCD on the lattice. The next obvious 

step is to introduce fermions which interact with the gauge fields to produce the 

strongly interacting particle spectrum we see in nature. This will prove to be 

rather difficult due to the problem of fermion doubling. 

We start from the continuum free fermion action in Euclidean space 

S 	(J) (øt) () 	
(1.47) 

where X = y'( 	+ ieA) and the y  matrices, satisfying CyM'y} = 26, are 

chosen to be Hermitian: ypt = 	This is discretised on the lattice by 

associating the fermion fields i with sites of the lattice n and making the 

replacement 

15 



(1.50) 

Y(el) 	
- 	 - 	 ( 1.48) 

where e is the displacement vector by one site in the 4—direction (and therefore 

has length a, the lattice spacing). We choose the central difference to preserve 

the anti—Hermitian nature of X. Hence we obtain the so—called naive lattice action 

for fermions 

S = 
I 
 i cL 

(1.49) 

-I- 	Y Vvt1(kti'(pV . 
It 

From this action we can calculate the lattice momentum space propagator (in the 

same way as we do in Chap. 2.1): 

For massless free fermions, G(q) has poles for Esinq = 0, that is, for 
'4' 

(1.51) 

Thus we find that is addition to the expected excitation about zero momentum, 

there are 15 extra modes at the edge of the Brillouin zone. The fermions have 

"doubled" in each dimension - so that, in general, on a d—dimensional lattice 
2d 

degenerate fermionic species survive in the continuum limit. To circumvent this 

problem we must go beyond the naive lattice action. 

16 



Before doing this we should point out that the transition from this free 

fermion theory to the interacting fermion and gauge theory is straightforward: 

the replacement ip(n)iIJ(n+e) + n)U(n)1li(n+e) induces the correct 

gauge-covariant coupling between fermion and gauge degrees of freedom. 

1.3.1. Wilson fermions 

Wilson, 1977, invented a method whereby the unwanted fermion species are 

given a mass of order 1/a and so decouple from the theory in the continuum 

limit. This is done by adding to the action a term corresponding to the lattice 

version of the second derivative of the fermion field, multiplied by an arbitrary 

parameter r. This term is allowable because it is of order the cut-off and so will 

disappear in the continuum limit. The Wilson action is thus 

+ rJ1) 	 + fry' 	) q) 	
(1.52) 

This gives the propagator (Chap. 2.1.1) 

-I 

(q) 	
= 	'i ( X 

L ,AL 	 (1.53) 

which has the following values at the values of q in (1.51): 
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r) 

(1.54) 

(m)'  

If we define ni = m0  + 4r/a, where m0  is the ground state mass, then only the 

state corresponding to q = (0,0,0,0) retains a non-zero propagator as a - 0, giving 

us the one fermion required. Note that there are two special cases: r = 0 (which 

reduces to naive fermions) and r = 1 (for which yU±l  act as projection 

operators). In the continuum limit for r = 1, zero mass for the lowest (free 

fermion) mode is given by m0  = 0, that is, m = 4/a; this is called the critical mass 

and denoted rn.  Wilson, 1977, has shown that in the strong coupling limit (g2  - 

') for r = 1, the critical mass becomes m = 2/a. Hence in the interacting theory 

(0 < g2  < ), we assume that the critical mass, in lattice units, lies in the range 

4 > rn > 2. The actual value it assumes must be found numerically, which is 

one of the disadvantages of Wilson fermions. Another disadvantage is that the 

r-dependent terms in the action explicitly break the chiral symmetry of the 

massless theory. In the continuum, chiral symmetry is spontaneously broken at 

m0  = 0 dynamically generating a Goldstone boson which is taken to be the pion. 

Thus the use of Wilson's action relies on the observation that at some value of 

mc  the mass of the lowest pseudoscalar in the theory approaches zero, 

suggesting that it is indeed the Goldstone boson. 

1.32. Susskind fermions 

Susskind, 1977, proposed reducing the fermion degeneracy by "thinning" the 

degrees of freedom, distributing them on sub-lattices. To derive this we follow 

Kawamoto and Smit, 1981, and spin-diagonalise the naive lattice action. Define a 

field x(n) as follows: 



with 

PtL .S v- 
T) 

--I- 
,; 	 1 (p1) = 

7(vt) 	kt) 

1•' 
t) T 1 (1.55) 

where the four-vector labelling lattice sites, 11 = (n1,n2,n 3,n 4). Rewriting the action 

(1.49) in terms of x yields 

~ 	h' £ -y- (M) 
	 (156) 

where the phase factor 

(_) 
	* Pt + 	PL, .. 

-, 	 (1.57) 

and the index ci labels the Dirac components of the original fermion fields, 

running from 1 to 4. Thus the naive action has been diagonalised in spin space, 

that is, it has completely decoupled into 4 identical spinor copies. All but one of 

them is thrown away reducing the fermion degeneracy, in d dimensions, from 2d 

to 22. This diagonalisation may, equivalently, be carried out in momentum space 

(Sharatchandra, Thun and Weisz, 1981). Thus the Susskind action is 
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bt 

(1.58) 

which yields the propagator (Chap. 2.1.2) 

-I 
Cr (q) 

= 	i £ 	
~ 	 (1.59) 

with the same poles as the naive propagator, the difference now being that there 

are only 1/2d'2 times the number of degenerate fermions. We see from (1.59) 

that translational invariance by one lattice spacing is lost but that translational 

invariance by two lattice spacings in a given direction is retained. This is a 

reflection of the fact that the physical fermion fields should now be identified 

with combinations of the Susskind fields around a 2d hypercube (Kluberg-Stern, 

Morel, Napoly and Petersson, 1983). Although having the disadvantage of more 

than one fermion, Susskind fermions have the advantage of preserving some 

chiral symmetry at finite lattice spacing. 

Neither Wilson nor Susskind fermions fulfil our hope of obtaining a lattice 

gauge theory with just one fermion and with the required chiral symmetry. This 

is a consequence of the Nielsen-Ninomiya, 1981, no-go theorem which 

essentially says that chiral symmetry must be (at least partly) broken if one 

wants to avoid fermion doubling with a lattice action which is bilinear in the 

fermion fields, has exact gauge invariance and has only finite range interactions. 

Hence the only reasonable way to achieve our goal is to choose a non-local 

action - this has been done by Drell, Weinstein and Yankielowicz, 1976, using the 

so-called SLAC derivative, but being highly non-local is of no use in numerical 

simulations and moreover appears to fail to recover locality, and Lorentz 

invariance, in the continuum limit (Karsten and Smit, 1978, 1979). Hence in the 

following we use only Wilson or Susskind fermions. We shall also henceforth take 

the lattice spacing a = 1. 
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1.3.3. Numerical simulations 

To summarise, we have derived the standard Euclidean action for a lattice 

gauge theory with fermions: 

(u1 	, ) = 	( CIL  ) 4- c (' F, ), 
(1.60) 

where SG  is given by (1.28), and SF  is taken to be either SW  (1.52) or S (1.58) 

(including gauge fields) - written generically as 

(1.61) 

where M(U)(n,m) 	(U)(nm) + m5(n,m), and 0 is the Dirac operator appropriate 

to Wilson or Susskind fermions. Physical observables are obtained as before 

from (1.22) and (1.23) but now with the full action (1.60). We wish to calculate 

these observables from numerical simulations and must therefore eliminate the 

fermionic variables , 4 which are anticommuting elements of a Grassmann 

algebra rather than numbers. This can be done analytically using the standard 

Matthews-Salam, 1954, 1955, formulae 

S 700 	_S(td,) 	-, 

00 	
r 	 N ()(,A) 	In{u)] 

Hence 
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where 

A>  = - 	
çOD 

u - I 	 _c4 c'L) Of 	ptl (i]€. 	(1.63) 

I 

E 	OD tt e 
c (u) 	

(1.64) 

with the effective action 

yeft (U) E 	(U) - 	[ M (u)] 	
(1.65) 

OIu) represents the expectation value of the operator 0 in the background of the 

fixed gauge field configuration (U}. Unfortunately, this purely bosonic action is 

still no good for numerical simulations because it is highly non-local due to the 

determinant of the Dirac operator. This determinant represents the contribution 

to the action coming from closed fermion loops. The simplest way to proceed is 

to ignore fermion loops and work in the so-called quenched approximation. 

However, we wish to investigate the effects of fermions in lattice gauge theories 

so we must retain the determinant and use the unquenched theory with 

dynamical fermions. To deal with this non-local determinant many methods have 

been developed, most of which use of the sparse nature of M (the Dirac operator 

couples only to nearest neighbours so that M is essentially tridiagonal, although 

periodic or antiperiodic boundary conditions on the fermion fields introduce 

non-zero elements in the corners of the matrix). We shall briefly review some of 

these methods before going on to describe how numerical simulations are 

performed using the Monte Carlo method. 

1.3.4. Dynamical fermions 

In Monte Carlo numerical simulations what one requires to calculate is the 

change in effective action 
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E 	ç4 (u ~ 	- 

	(tL) 	(1.66) 

which, from (1.65), is 

= 
	

[i+ M'(L) fr1(U)] 
(1.67) 

We shall firstly discuss two approximate methods for calculating this and then go 

on to describe some exact methods. 

In the hopping parameter expansion for Wilson fermions (Hasenfratz and 

Hasenfratz, 1981; Lang and Nicolai, 1982; Stamatescu, 1982; Montvay, 1984) we 

write M(U) = 1 - KB(U) so that 

r 	 (1.68) 

where the hopping parameter 

J< 	
( 

= 
(1.69) 

is small. 	The trace over Dirac and colour of B, giving the contribution from all 

closed fermion 	paths of order j, is calculated 	on the lattice. 	This 	expansion is 

analogous to the high temperature series 	expansion 	is statistical 	mechanics, in 

many respects. The hopping parameter is proportional to the amplitude for 

moving a fermion by one lattice spacing, and the order of the expansion is the 

length of the fermion paths considered. As long as the maximum order of the 

expansion is comparable with the size of a hadron in lattice units, the change in 

the effective action should be fairly accurate. This method has been used to 

calculate, to 32nd order, ground state meson and baryon masses in QCD on an 

8 lattice with Wilson fermions (Langguth and Montvay, 1984). Kuti, 1982, 

modified the hopping parameter expansion so that instead of summing all the 
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closed fermion paths order by order, they are generated stochastically. This 

means that the ferniions perform random walks on the lattice. The advantage of 

this is that, for a given statistical accuracy, the number of walks required does 

not depend on the size of the lattice. The main problem is to correctly choose 

the transition and stop probabilities of the walk - if they are not chosen correctly 

then most of the time is spent generating irrelevant paths and the convergence 

will be slow. 

Another approximate method is the pseudofermion method (Fucito, Marinari, 

Parisi and Rebbi, 1981) which has been widely used. This is described in detail in 

Chap. 3.1. Essentially it involves using a Monte Carlo technique to calculate M 1  

appearing in (1.67), the approximation being that 5U is taken to be small, the 

effective action linearised and terms of order 6U  neglected. The advantage of 

this method is that the computer time required is independent of lattice size, 

being proportional to the number of pseudofermion iterations, or sweeps, needed 

to achieve a desired statistical accuracy. Moreover, as we shall see in Chap. 3.2, 

the technique is ideally suited to implementation on a parallel computer. The 

main problem is that the systematic error introduced by throwing away terms of 

order 6U2  must be minimised by keeping SU small thus reducing the 

convergence rate. 

We now turn to the first exact method for calculating (1.67) which was 

derived, and tested on a simple one-dimensional model, by Scalapino and Sugar, 

1981. (This method was also obtained, and used for the massless Schwinger 

model, by Duncan and Furman, 1981.) This requires an initial knowledge of the 

entire fermion Green's function M' and then makes use of the fact that a 

change in the gauge variable on a single link induces changes in M only for 

those elements near the link. This means that 6M(U)(i,j) is non-zero only for a 

small number L of values of I and j; hence the determinant in (1.67) is effectively 

that of an LxL matrix only. The entire matrix M 1  is stored (which is a big 

problem for large lattices as the size of this matrix is proportional to the square 

of the lattice size) between iterations and updated according to the identity (rank 

annihilation) 
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H (, k) H (k,  
(M + 	

- 	+ 	(k, t) 	'(c') 	(1.70) 

where the indices k and I are summed over the L non-vanishing values of 	SMkI. 

(Rounding 	errors, which will cause M 1  to stray from its true value after many 

iterations may be reduced by periodically carrying out the correction procedure 

M 1  
(1.71) 

which effectively renormalises the product M_ 
1Mto unity.) Scalapino and Sugar, 

1981, admit that their method is too slow to be used for large, multi-dimensional 

lattices - it takes too long to update M 1, even using (1.70) - but go on to point 

out that by dividing the lattice of N sites into P blocks with N/P sites per block, 

only a (N/P)x(N/P) sub-matrix of M 1  need-be calculated within the block and this 

would be quick to update. Moreover, the sub-matrix could be calculated using 

an efficient method - for example, the Lanczos (or, equivalently, . conjugate 

gradient) algorithm. 

Combining these two ideas leads to the block Lanczos algorithm (Barbour et 

a/ 1985b), discussed in detail in Chap. 4.1, in which the blocks correspond to 

hypercubes of 2 sites. We perform the Monte Carlo simulation by visiting 

hypercubes of the lattice in turn, iterating on each one a few times to bring it 

into local equilibrium and then moving on to the next one. The main advantage 

of the Lanczos algorithm is that it works well at small fermion mass, unlike the 

pseudofermion method, for example, which has poor convergence for this. The 

disadvantage of this algorithm is that its computation time increases dramatically 

with lattice size. 

Another exact method for evaluating M 1  is that due to Weingarten and 

Petcher, 1981. They write M(U) = 1 - KB(U), where K is the hopping parameter, 

and consider a system with two identical fermion flavours so that the fermion 

contribution to the effective action may be written as 
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-/ 

(1.72) 

The usefulness of this depends upon an efficient algorithm for calculating (1 - 

KB)-'Q. Weingarten and Petcher, 1981, use Gauss-Seidel iteration: if x is defined 

as (1 - KB)-'Q then by rearranging we have 

x 	1(0= 	;L1 (1.73) 

which may be iterated until a satisfactory value for x is obtained. Hamber, 1981, 

similarly solves this equation for x but by using Gaussian iteration. In both 

versions the natural initial vector for any iteration is the vector x that resulted 

from the previous iteration. However, these iterations must be carried out many 

times, in principle for every updating step - this rapidly becomes prohibitive for 

larger lattices. 

Finally, we shall mention, for completeness, the recent development of 

so-called equation of motion methods which can be used for simulating lattice 

gauge theories with dynamical fermions. In these methods the average over the 

fields in (1.22) is replaced by an average over a fictitious time evolution. This 

evolution can be stochastic or deterministic. In the stochastic method (Parisi and 

Wu, 1981; Ukawa and Fukugita, 1985; Batrouni et al, 1985), one introduces a 

Gaussian white noise function n( -T), normalised by <(t)(t')> = 25(t-t'), and 

defines the time dependence of 	by the Langevin equation 

= 	+ 	
(1.74) 

so that 
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(1.75) 

In the deterministic method, S() is interpreted as the potential energy (per unit 

mass) for a classical dynamics governed by Newton's law: 

(1.76) 

The conjugate momentum TT = 	and Hamiltonian H(iT,) = .112/2 + S() are then 

introduced so that for the microcanonical method (Callaway and Rahman, 1982, 

1983; Polonyi and Wyld, 1983), the average (1.75) becomes 

oD -Tr S(E—lq(T,, 0 )) 	(-r 

0(0) 	

5 
øo- c(E-14 (i;)) 	 (1.77) 

where the integrals are over the (2N-1)-dimensional hypersurface of constant 

energy defined by H(1T,) = E. The microcanonical and Langevin methods 

complement each other in that the former has a smooth trajectory through phase 

space and therefore moves quickly but may be non-ergodic, whereas the latter is 

ergodic but jumps around in phase space (following a random walk) advancing 

slowly. This observation lead Duane, 1985, to construct a hybrid (canonical) 

method which is essentially microcanonical most of the time but every now and 

then has a Langevin "kick" to some other part of phase space. Thus we have the 

advantage of microcanonical's speed in exploring phase space, made ergodic by 

Langevin's "kicks". To conclude, the advantage of these equation of motion 

methods is that one update, updates the whole system - thus avoiding the 

slowing down with increasing system size found in other methods. 
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1.4. Monte Carlo 

As we have already seen (in Sec. 2), the expectation value of an operator 

representing a physical observable in a field theory is given by the functional 

integral 

çoø Ô() e- 

j ø e-S 	 (1.78) 

where 	denotes generically the dynamical field variables in the theory. The idea 

of the Monte Carlo method is to replace this integral by an average over field 

configurations C: 

<A> 	

1ô(c:) 	/ 

0 	
I 	
-0 

(1.79) 

The mean value converges to <0> as N - 	with statistical errors which fall as 

N 112. These field configurations should be configurations which significantly 

contribute to the average, that is, they should be typical of thermal equilibrium in 

the statistical analogy, distributed with the Boltzmann factor e. The Monte Carlo 

method is designed to generate such a set of configurations. It begins with some 

arbitrary initial configuration and from this generates a sequence of 

configurations, such that, once statistical equilibrium is reached, the probability of 

finding any configuration C, Peq(C) is proportional to 	The passage from 

one configuration to the next is determined by the transition matrix P(C - C') 

satisfying the constraints of a probability: 
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(1.80) 

C,  

If after n steps we have a configuration C with probability p(C) then 

(1.81) 
C 

so we may write 

C 	 (1.82) 

An obvious condition on P is that it leaves an equilibrium configuration in 

equilibrium, hence from (1.82) we have 

p(c 	C) Pet  (cJ — 	P')pe (c') 
C 	 (1.83) 

A sufficient (but not necessary) condition for (1.83) to hold is equality term by 

term, that is, each step of the transition matrix satisfies detailed balance: 

= 
(1.84) 

Then p(C) + Peq(C) as n - 	. The detailed balance condition does not uniquely 

determine the transition probabilities; the two most popular choices lead to the 

Metropolis and the heat bath algorithms. 

1.4.1. Metropolis algorithm 

The Metropolis algorithm (Metropolis et al 1953) is often used for updating 

the gauge fields in the Monte Carlo simulation of a lattice gauge theory. Consider 
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a gauge field configuration (U). From this we wish to generate a new 

configuration (U') by updating a single link U(n). This is done by selecting 

arbitrarily a new variable U(n) giving a new configuration (U), and calculating 

the change in action 

- 

If AS < 0, the change is accepted and we have U'(n) = U(n); (U') = (U). If AS 

> 0, the new configuration is accepted with the probability e S.  In practice this 

is done by generating a pseudo-random number r in the interval [0,1] with 

uniform probability distribution. If r . 	e S the change is accepted: CU') = (U); 

otherwise it is rejected: (U') = (U). This means that 

( I 
E'i 	

e 
	c(Euj)J 	

(1.86) 

so detailed balance (1.84) is satisfied: 

P(' 	) 
	

c(fu'J) - 

P ( 13 	fu'j ) 	 S 
	

(1.87) 

1.4.2. Heat bath algorithm 

The heat bath algorithm (Yang, 1963) is also used for updating gauge fields 

(Creutz, 1980b; Cabibbo and Marinari, 1982) but we shall use it for updating the 

pseudofermion variables in the pseudofermion method. It simply replaces each 

variable with a new one selected randomly with a probability given by the 

exponential of minus the resulting action. Thus P(C 	C') is independent of C, 

being proportional to the Boltzmann factor for C', so that detailed balance is 

30 



automatically satisfied. 

Explicitly, for the pseudofermion method, this works as follows. The 

pseudofermion action, which is discussed in detail in Chap. 3 - see (3.12) and 

(3.14), is quadratic in both the real part R()  and the imaginary part 	(r1)  of the 

complex pseudofermion variable (n), that is, 

ci G)Olt (it) -- 2 	ç () 

) 	() 	
(1.88) 

where a(n) comes from the part of the action coupling (n) to itself and b(n) = 

bR(n) + 1b1(n) comes from the coupling of (n) to its nearest and next nearest 

neighbours. Now at equilibrium the pseudofermion variables are distributed with 

the Boltzmann factor exp(-S f) which means that real and imaginary parts of c(n) 

are separately distributed according to the Gaussian distribution 

ø( J7 
	

(1.89) 

with 

(1.90) 

The heat bath algorithm for the pseudofermions thus consists of generating two 

pseudo-random numbers r1  and r2  with Gaussian distribution N(a2=1, 4=U), that 

is, exp(-r122/2), and rescaling them to obtain new pseudofermion variables with 

correct Boltzmann distribution: 

) 

	 -L? 	(1.91) 
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Chapter 2 

Free Fermions 

When performing numerical simulations of lattice gauge theories, it is 

worthwhile looking at free fermions as a check on algorithms so in this chapter 

we shall investigate some aspects of free fermions on a lattice. In Sec. 1 we 

calculate <j.> for free fermions - both Wilson and Susskind with periodic and 

antiperiodic boundary conditions - and see how it changes with lattice size. In 

Sec. 2 we calculate various "hadron" (fermion bilinear/trilinear) propagators for 

free fermions and investigate finite-size effects. 

2.1. <V> 

When calculating <> in numerical simulations of lattice gauge theories, 

one usually subtracts out the free fermion chiral condensate, which we denote 

We shall be investigating the Schwinger model with Wilson fermions (in 

Chap. 3.3) and SU(2) with Susskind fermions (in Chap. 4.3) and will therefore 

require <74.>0  for both Wilson fermions in two dimensions and Susskind 

fermions in four dimensions. In this section we detail the calculation of this on a 

lattice. 

2.1.1. Wilson fermions 

The lattice Green's function G(n;m) for free Wilson fermions (all gauge fields 

set to unity) satisfies 
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- r(,* ; a) 
- ( *r 	(- e o) 

(kt;o) 	(2.1) 

where n denotes a site, 4 denotes a direction, e is a unit vector in the 

ji-direction and y,, are the Dirac matrices. We shall work in d dimensions on a 

lattice with N  sites. If we define 

(q) 
(2.2) N 2 

with 

s-I 

Al 

then, the Fourier transform, 

Cr () . = 	 - 	 . 	

o) 	
(2.3) 

PL 

and 

IL 	
(2.4) 

By substituting (2.2) and (2.4) into (2.1) we obtain 

	

- 	 c M ) + 
Cr 	

Ak 

2. 
+ 	- . rco) 	' (2.5) 

,44 

where q~j 	q.e. Now <i>0 is the quark propagator at zero space-time 

separation: 
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(2.6) 

where Tr is trace over the Dirac and the colour indices, which from (2.2) with 

(2.5) becomes (for NC colours of quark) 

~ 

-

Al 
(2.7) 

/4 

since Try = 0. This corresponds to periodic boundary conditions; for 

antiperiodic boundary conditions we replace q ~j with q + 1T/N. 

For r = 1, single colour (NC = 1) Wilson fermions in two dimensions on a 

lattice with N = 64, we obtain Fig. 2.1 showing the behaviour of <ip>0 with 

Wilson mass parameter. The zero mode in the propagator for the periodic case 

gives the expected divergence in <Tip> 0 at the critical mass 

,vlc 
(2.8) 

<P> obtained with antiperiodic boundary conditions at various values of the 

mass are listed in Table 2.1. 
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Fig. 2.1 	<il4)>0  for r = 1 Wilson fermions on 642  lattice with periodic 
(solid line) and antiperiodic (dotted line) boundary conditions. 
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Table 2.1 

<> at various masses for r = 1 Wilson fermions on 642  lattice 

with antiperiodic boundary conditions. 

M 

1.0 0.5173 
1.1 0.5341 
1.2 0.5505 
1.3 0.5667 
1.4 0.5834 
1.5 0.6009 
1.6 0.6201 
1.7 0.6420 
1.8 0.6683 
1.9 0.7032 
2.0 0.7698 
2.1 0.8167 
2.2 0.8167 
2.3 0.8033 
2.4 0.7842 
2.5 0.7626 
2.6 0.7402 
2.7 0.7179 
2.8 0.6960 
2.9 0.6749 
3.0 0.6546 

They will be used in Chap. 3.3 for the Schwinger model. We can vary N to see 

how <4>0  changes with lattice size; the result is shown in Fig. 2.2 for the 

more dramatic case of periodic boundary conditions. ft appears that lattice sizes 

of 642  or more are close to the continuum, for free fermions at least. 

2.1.2. Susskind fermions 

The lattice Green's function for free Susskind fermions satisfies 
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Fig. 2.2 	<4.i> for r = 1 Wilson fermions on N2  lattices with periodic 
boundary conditions. 
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= 	
(2.8) 

where the phase factors 

I 	(° 
Fourier transforming this in exactly the same way as for Wilson fermions yields 

= ____________ 

/94 

ck 2 f, 	-t- 	
(2.9) 

so that 

< Nc
(2.10) 

since sinq = 0. Again for antiperiodic boundary conditions we replace q with 

q.j + it/N. We notice that <> for Susskind fermions is precisely l/d times 

<7P>0 for Wilson fermions with r = 0, as expected. 

For single colour Susskind fermions in four dimensions on a lattice with N 	4 

we obtain Fig. 2.3. Now the zero mode in the propagator occurs at m = 0. 

<~,P> O obtained with antiperiodic boundary conditions at various values of the 

mass are listed in Table 2.2. 
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Fig. 2.3 	<'4i> for Susskind fermions on 44  lattice with periodic 
(solid line) and antiperiodic (dotted line) boundary conditions. 

Cl, 

10 

\ 

N 

'N 

'N 

Ln 	 10 	C 	U C 

0 



Table 2.2 

<P4)> 0  at various masses for Susskind fermions on 44  lattice 
with antiperiodic boundary conditions. 

m f <i>0 

0.1 0.1990 
0.2 0.3922 
0.3 0.5742 
0.4 0.7407 
0.5 0.8889 
0.6 1.0169 
0.7 1.1245 
0.8 1.2121 
0.9 1.2811 
1.0 1.3333 
1.1 1.3707 
1.2 1.3953 
1.3 1.4092 
1.4 1.4141 
1.5 1.4118 
1.6 1.4035 
1.7 1.3906 
1.8 1.3740 
1.9 1.3547 
2.0 1.3333 

Varying N to see how <j)V> O  changes with lattice size for periodic boundary 

conditions, results in Fig. 2.4. Again a lattice with N = 64 is close to the 

continuum, but with N = 4 there are large finite-size effects. 

2.2. Propagators 

In this section we shall calculate various "hadron" (fermion bilinear/trilinear) 

propagators for free lattice fermions and investigate finite-size effects. Periodic 

and antiperiodic boundary conditions in the spatial directions appear to yield 

upper and lower bounds respectively for both the meson-like and baryon-like 

propagators. 

We shall consider Wilson fermions in four dimensions on a Euclidean L3xL4  

lattice (L4  is the time direction). By setting r = 0 we can obtain (four copies of) 

Susskind fermions, via a Kawamoto-Smit transformation (Kawamoto and Smit, 

1981). We write the free fermion propagator (Green's function) as follows: 
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Fig. 2.4 	<> for Susskind fermions on N4  lattices with periodic 
boundary conditions. 
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c) 	
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() 
(2.11) 

with 

_ +

Cr 
r(l—cosq)~ 

+- c 	 c, 2 	, (2.12) 

where 

and 

4- kK 

The momentum sum is over q~j = 21T(n 	+ S)/L, 	n 	= 	0,1, ..., 1-11-1, where 	6 4 = 

0 	for 	periodic 	boundary 	conditions and 6 ,, 	= 	1/2 	for antiperiodic 	boundary 

conditions 	in 	the 	.1-direction. Note that we have used a different 	notation 	for 

G(q) in (2.12) since it differs, by irrelevant terms, from 0(q) in 	(2.5). 

2.2.1. Calculation of fermion propagator 

0(n) can be evaluated on a computer from (2.12) as it stands. However, some 

insight can be gained and computer time saved by performing the q4 sum 

analytically. We shall consider the case L4 -* 	for which 

~- .40 ) — — (q) 

(2.13) 

(The case of finite L4 is treated in Carpenter and Baillie, 1985.) This integral can 

be evaluated as shown below; there are two cases. 

1) 0 4 r < 1 

The denominator in (2.12) can be written 



— 	cr,+ 	 + 	(Y. 	

Z. 

which shows that there are poles at 

±U —r('r+fti) 
= 

I- r' 
	

(2.14) 

where 

UZ. 
 E (l+Mt 

The right-hand side of (2.14) is . 1 with the positive sign and 	-1 with the 

negative sign so the poles occur at q4  = iE1  and q4  = ±Tr + iE2, where 

COSA. L I =  
— 
I- r2 	

(2.15a) 

and 

oçk E2  = 
	u4- v'(r*/tl) 

(2.15 b) 

For t > 0 we employ the contour in Fig. 2.5. 

Fig. 2.5 	Contour in the complex q4  plane for the integral of eq. (2.12). 
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The contributions from the two legs of the contour parallel to the imaginary axis 

cancel due to the periodicity of the integrand (t takes integer values) and the 

piece at infinity parallel to the real axis is killed by the e 
iq4t• Thus G(t,) is 

given simply by the residues from the two poles inside the contour: 

~_00 A14) 	
1.2 

- / 
- 

e. 
ULskE1 iyt_ 

X'K t; L 	 m~ 

)E 2• 16 

+a .kE f_SkEL 
_*r((osbE)Hj 

For t < 0 the poles and the contour lie 	in 	the negative half-plane which results 

in a change in 	sign 	of the 	'y' 4 terms in 	(2.16). Finally, for t = 0 we can do the 

integral analytically and find that the 'T'4 terms in 	(2.16) disappear. Hence, for 	all 

syt() 	 (EkE) M3 
2Rsk E, 

+ 

with the convention that sgn(0) = 0. 

2) r = 1 

The denominator in (2.12) reduces to 

- 	2 ( (/) 	 / + 	4- (1+ ,ii) ' 

which means that there is a pole at q4 = 1E1 with 

MN 



Q Z 

	

cockE1 	=  

(2.18) 

and now U = (1 + M)2. For t > 0 we use the same contour as before (Fig. 2.5), 

but without the poles at ± + iE2, to obtain 

I 	fse1 —/ C os lb,
+ 
Mj e, 

(2.19) 

Again t < U gives a sign change for the Y4 term in (2.19). But now, for t = 0, 

when we analytically evaluate the integral, we find that the Y4 term in (2.19) has 

been replaced by 1/2(1 + M). Hence, for all t, 

j 
._E/W 

j r, s -Q~' - N e 
2U,hE, 

~ 	b ) o) _______ 	

(2.20) 

2.2.2. Meson-like propagators 

We will now consider the "meson" propagators in the free theory. If we 

decompose 

	

= 	 -f ) +_ I (~,t (&1 f ) 	(2.21) 

then the time-slice propagator for a typical fermion bilinear ipr4i is given by 

ru 



- <'Q7p'(e2)  

= 	rr[n () p 	*( b) YrJ 
(2.22) 

I 

/44 	 J 

where 

and 

For example, in the case of the pion-type propagator (F = y5), T1  = T2  = T3  = T4  

= T = 4. For purposes of numerical evaluation we note that the number of 

terms in the momentum sum (2.22) can be greatly reduced by exploiting the 

reflection and permutation symmetries of the summand. In this way we can 

reduce the range of the momentum sum to 0 	q3 	q2 	q1 	TT, with a little 

care about the counting of terms on the edge of this domain. 

The large-time behaviour of the propagator (2.22) is governed by the 

lowest-lying intermediate quark-antiquark state. For periodic boundary conditions 

this is the q = Q state with energy 2E1, irrespective of the lattice size. However, 

for antiperiodic boundary conditions the lowest-lying quark momentum state is 

= (ir/L, 71/L, /L) and the corresponding energy is, to a first approximation (the 

exact result is given by (2.15a) or (2.18)), 2E1  - 2/(m2 	3ii2/L2). The 

L-dependent correction is quite large even for fairly large lattices. 

In Fig. 2.6 we plot the "pion" propagator (F = y) for various lattice sizes, with 

periodic and antiperiodic boundary conditions, and with r = 1, m = 0.2 and L4  = 

We observe that the finite-size effects can be at least as large for antiperiodic 

boundary conditions as for periodic boundary conditions, contrary to some 

expectations (Barbour et al, 1983). Antiperiodic boundary conditions usually win 

out at small t, but at large t they give larger finite-size effects than periodic 

boundary conditions. These two types of boundary conditions appear to bound 

the propagator from below and above respectively. 
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Fig. 2.6 	Natural log, of the pion time-slice propagator, for r = 1, 
m = 0.2. L4  = , various L3  and periodic/antiperiodic 
boundary conditions. 
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The other "meson" propagators behave in a very similar way to the "pion" 

propagator. In fact the "rho" propagator is essentially degenerate with the "pion" 

propagator at large t, because large-t behaviour for mesons is dictated by the 

G4, G  parts of the quark propagator (Gi  = 0 for the 4 = D. intermediate quark 

states), and the T4, I traces are identical for the pseudoscalar and vector meson 

b II in ears. 

2.2.3. Baryon-like propagators 

The "baryon" propagators also display similar behaviour to the "pion" 

propagator. As an example we look at the "proton" propagator in the free theory. 

If a proton field is defined in terms of the quark field as 

X. 	 (Tc -, /ç ) 

where C is the Dirac charge conjugation matrix, then the free-field expression for 

the time-slice "proton" propagator is 

(: 4 ) 3 	
(2.23) 

*  ,Ml 

where 

Jr  
1- ' CrM() ; /12T. 

4 

Again computer time can be saved by exploiting the symmetries of the 

propagators to reduce the range of summation in (2.23) to 0 < n3  < n2 	n1  

L/2. The resulting "proton" propagator (actually the value of the upper 

component of the diagonal matrix (2.23)) is plotted in Fig. 2.7, for the same 

parameters as in Fig. 2.6. As before, we see lower and upper bounds on the 

propagator from antiperiodic and periodic boundary conditions respectively. 
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Fig. 2.7 	Natural log, of the"proton" time-slice propagator, parameters 
as for Fig. 2.6. 
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2.2.4. Concluding remarks 

The free-fermion case corresponds to infinite inverse coupling constant, a, so 

we expect this analysis to apply to QCD calculations at large B. This conclusion 

is supported by Monte Carlo work on small lattices at B = 6.0 (Gupta and Patel, 

1983; Bernard, Draper, Olynyk and Rushton, 1983; Bowler et al, 1984) which yields 

degenerate pion and rho mass as we found in Sec. 2.2. 



Chapter 3 
Pseudo- Fermions 

In this chapter we shall use the method of pseudofermions in a numerical 

simulation of the Schwinger model with Wilson fermions. In Sec. 1 we describe 

the method of pseudofermions and in Sec. 2 go on to discuss the details of 

using it in performing numerical simulations on a highly parallel computer. In Sec. 

3 we firstly review the continuum Schwinger model and then turn to the 

numerical simulation, describing the pure gauge theory, free fermions, the 

quenched model and the dynamical model. We also outline an effective 

Lagrangian calculation of the meson propagators in U(N) and SU(N) lattice gauge 

theories at strong coupling. 

3.1. The method 

We begin by rewriting the effective action (Chap. 1.3.3) in terms of the 

Hermitian operator K = (0 + m)t(0 + m): 

- 	 1< [(u)J 

For nf flavours of Wilson fermions the effective action becomes 

& [ 
	

u] c c 	
(3.2) €UL)= 	(LL) 

Setting n f  = 0 (that is, ignoring the fermionic determinant) yields the quenched 

approximation, whereas nf  = 1 gives the fully interacting unquenched or 

dynamical theory with one flavour of fermion. 

The problem with using this action directly for Monte Carlo calculations is the 

non-local nature of the fermionic determinant. Consider updating the gauge field 
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variable on one link U(I), say, leading to the change in effective action 

(3.3) 

If the new link variable is chosen close to the old one, which is usually the case 

when the Metropolis algorithm (discussed in Chap. 1.4.1) is used, then the change 

in the effective action can be linearised 

~4 ((~ 1) 
- 	i? (ç) 	c rr (a') - c (ct) 

	

k'C 	
44 () 	a 	 (3.4) 

,4A 

As only one gauge link is being changed, 6K/6U(l) is non-zero only for sites 

neighbouring this link. Hence we only require the elements of K 1 for these sites, 

rather than the entire Green function. These elements can be calculated in a 

variety of ways, one of which is the pseudofermion method of Fucito, Marinari, 

Parisi and Rebbi, 1981. 

This uses the fact that the inverse of a Hermitian operator K can be written 

I< 	

SO  
= 

. 	 (3.5) 

where 	 <Ø*() ()> 

(3.6) 
All 

Spf is the action for the so-called pseudofermions 	which are complex bosonic 

fields. Now we can approximate K 1(m,n) for a given gauge configuration CU} by 

performing another Monte Carlo calculation, this time using the heat bath 

algorithm (discussed in Chap. 1.4.2) to improve convergence. If an ensemble of 

N f pseudofermion configurations {} is generated then 



'(04 

- I 
/t 

) 

f 

0 	

' 
0 (M) 

E3 f 	(3.7) 

This yields. the exact result (apart from errors of order 6U2) in the limit N f - ' 

(in practice one takes N2f as large as is required to produce reliable results) 

which is then fed back into the effective action for the gauge fields as these are 

updated, according to (3.4). Thus simulation of the dynamical theory using the 

pseudofermion method requires two Monte Carlo simulations: the usual 

Metropolis one for the gauge fields and, within this, a heat bath calculation for 

the pseudofermions. 

The above discussion has been for 1-component, i.e. Susskind, fermions 

which we shall use in the simulation of SU(2) (Chap. 4.3). For the simulation of 

the Schwinger model (Sec. 3) we shall require Wilson fermions in two space-time 

dimensions, i.e. 2-component fermions. In this case the pseudofermion variables 

will also have two components and K will be a 2x2 matrix. Hence (3.5) and (3.6) 

respectively become 

and 

1~ —1 ( M / ^ 

) > 	(3.8) 

-I- 
0 

(3.9) 

 

3.2. Computational details 

The numerical simulation of the Schwinger model was carried out entirely on 

the ICL Distributed Array Processor (DAP). This computer (described more fully in 

Appendix I) has a highly parallel Single Instruction stream, Multiple Data stream 

(SIMD) architecture consisting of a 64x64 array of bit-serial processing elements 

(PEs), each with connections to the four nearest neighbours. (We note that the 
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simulation could also have been per-formed on the GRID (Appendix II), which has 

a 	similar architecture to the DAP, in exactly the same manner. 	In fact, software 

which will automatically translate a DAP program into an equivalent one for the 

GRID 	is described 	in Chap. 	5.) Therefore 	the 	lattice 	size 	chosen 	for 	the 

simulation was 64x64 so that one site of the lattice occupies one PE of the DAP. 

Hence at each PE a pseudofermion variable and two gauge field variables (one 

for each link in the positive coordinate directions) are stored. The SIMD 

architecture of the DAP means that all the PEs can be updated simultaneously. 

However, this would violate detailed balance - variables which interact must not 

be modified simultaneously - therefore some of the PEs must be "masked oft". 

Different masks are required for the gauge field and the pseudofermion variables. 

The action for the gauge fields is 

(3.10) 

thus the gauge fields interact via plaquettes. This means that we can only update 

half of the links in each direction simultaneously, as shown in Fig. 3.1. 

Fig. 3.1 	Mask for updating gauge fields: links shown as arrows may be 
updated simultaneously. 
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This holds in any dimension. 

The pseudofermion actions for Susskind and Wilson fermions are as follows. 

For Susskind fermions (Chap. 1.3.2) 

ø() f 9 ) 
(3.11) ' 

which is anti-Hermitian: 

* 

Hence 

e 

+ 	 +t) 14 
1-' 

14 

e3t& &c6- 	e4-vd4é-  frte5skbDLr t c-v 	
(3.12) 

In the last term, flfl 	
= (_ 1)fl1 for .i # v, where n = (n1, n2). We notice that 

there are no nearest neighbour interactions, that is, there is no term in the action 

involving 4(n) and 4(n±e). 

For Wilson fermions (Chap. 1.3.1) 
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(3.13) 

If we write A = fi l - r$2 then 	is anti-Hermitian and $2 is Hermitian. Hence 

Pf 	= 	
[(ir) +tvtZj  

IL 
+ 	 L )J 

fr,,4A. 

\ex& 1Lr'e$ 

) 

~(i'vi(1i+r)  

+ 

- 	+r)  

(3.14) 

k4A4-d.r tek0uy- 	ADM 

For computational convenience, a representation of the ' matrices is chosen in 

which 12 is diagonal: 

We notice firstly that for r = 0 the Susskind case is recovered and secondly that 

for r = 1 the straight next nearest neighbour interactions cancel (that is, there is 

no (n) and j(n±2e) term). 

Thus there are three possible cases depending on the Wilson r parameter. 

Moreover, the masks also depend on the number of dimensions. 
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For two dimensions we have: 

r = 0 (Wilson fermions reduce to two copies of Susskind fermions) 

The nearest neighbour interactions vanish so we can update 1 in 4 sites, see 

Fig. 3.2a. 

r = 1 (Wilson fermions) 

The straight next nearest neighbour interactions vanish so we can update 1 in 

4 sites, see Fig. 3.2b. 

0<r<1 

All the interactions are present so the best we can do is to update 1 in 5 

sites, see Fig. 3.2c, although because we are using a 64x64 lattice a 1 in 8 update 

pattern such as Fig. 3.2d is easier to implement. 

For numerical simulations of QCD the following update ratios (with appropriate 

four-dimensional masks) are possible: for r = 0, only 1 in 16; for r = 1, 1 in 8; and 

for 0 < r < 1, 1 in 9 or more practically 1 in 16. 

We shall be concerned with calculating the chiral condensate <tTip> which is 

the quark propagator at zero space-time spacing and is given by 

< 	= & () 	(3.15) 

For the Wilson fermions in the Schwinger model this can be written 

<Lr > 	T 	
) 	 (3.16) 

where Tr denotes trace over the two Dirac indices only (for single colour quarks). 

In terms of Wilson pseudofermions this is, from (3.8), 

01~1115 si  



Fig. 3.2 	Masks for updating pseudofermions: sites shown with crosses may 
be updated simultaneously. a) r = 0; b) r = 1; c) & d) 0 < r < 1. 

a) 
	

b) 



Y> = Tr <%*) () 	(3.17) 

For Susskind fermions, the 0 in (3.17) disappears because it connects nearest 

neighbour sites which do not interact in (3.12), leaving 

< 0 *kA 
() 0 (h)>. 	

(3.18) 

Finally we note that, computationally, Wilson fermions require twice as much 

work as Susskind in two space-time dimensions: a Wilson fermion has 2 

components at each site of a 2Nx2N lattice; a Susskind fermion begins with 1 

component which species-doubles to 4 (on a NxN lattice) and is spread out over 

the 2Nx2N lattice giving 1 component per site. 

3.3. Schwinger model 

Recently, the massive Schwinger model has been investigated numerically 

(Carson and Kenway, 1986) using Susskind fermions (Susskind, 1977). The order 

parameter for chiral symmetry breaking <5> and the low-lying meson masses 

were calculated for both the model with two flavours and the model with one 

flavour for the quenched case and for the unquenched or dynamical case. Here 

we shall also investigate the massive Schwinger model numerically, but we will 

calculate only <4r1.,> and will use Wilson fermions (Wilson, 1977). The 

motivation for doing this is as follows. We wish to determine the behaviour of 

<i4i> in both the quenched and the dynamical massive Schwinger model. In 

particular, we would like to decide, on the basis of our results, which of two 

analytical calculations of the behaviour of <i>/g as m/g - 0 for the quenched 

case is correct. In addition, for the dynamical case there is an exact value of 

<ii> for the massless model but how does <i.i> vary with mass? We use 

Wilson fermions to avoid the problem of fermion-doubling which for Susskind 

fermions must be overcome by introducing a one-link mass term which gives the 
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unwanted flavours a mass of order of the cut-off to decouple them (Burkitt, 

Kenway and Kenway, 1983). Unfortunately, Wilson fermions change the mass 

scale of the theory. We can find the critical mass from the exact massless value 

of <pi> for the dynamical case but for the quenched case we must find it 

numerically. 

3.3.1. Continuum Schwinger model 

The Schwinger model (Schwinger, 1962) is quantum electrodynamics of a 

massless fermion with charge g in one space and one time dimension; it is 

exactly soluble. The massive theory (Coleman, Jackiw and Susskind, 1975; 

Coleman, 1976) is not exactly soluble but can be analysed by perturbation theory 

at both strong and weak coupling. This model is used primarily for testing ideas 

in quantum field theory and for checking algorithms in lattice gauge theory since 

it contains many of the interesting features found in more physical models. In 

particular it displays both the properties of asymptotic freedom and confinement 

of the fundamental charges found in QCD. Hence the methods developed to 

investigate the Schwinger model may also be of use for QCD. 

The massive Schwinger model is described by the Lagrangian density (derived 

in Chap. 1.1) 

= --c- FF'' 
QED 	 ,ikV 	

(3.19) 

where 

(LX) 
r) = (, V7. )c)) ,  

and 

- 
The equations of motion are 
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= C 

. 	 3.20 

The coupling constant g has dimensions of mass; consequently the model is 

super-renormalisable, and both g and m are finite (though bare) parameters. The 

dimensionless parameter that measures the interaction strength is m/g. The limit 

m/g + 0 is the exactly soluble massless Schwinger model and the limit m/g - 

is the exactly soluble free theory. Since the model is exactly soluble in both 

limits it is possible to do perturbative calculations. We shall discuss these 

calculations after looking at the massless model. 

Following Schwinger, alternative solutions of the massless model have been 

given by Lowenstein and Swieca, 1971; Casher, Kogut and Susskind, 1974; and 

Bander, 1976, amongst others. Schwinger, 1962, solves the model by computing 

the Green's function (in the Lorentz gauge) 

(p) 	
P a + __ - 	 (3.21) 

a 

TI 

Lowenstein and Swieca, 1971, solve the model in terms of explicit operator 

solutions and obtain the covariant solution 

(3.22) 

where a is a massive free scalar field and Tj is a massless field quantised with 

indefinite metric. Casher, Kogut and Susskind, 1974, solve the model in terms of 

the degrees of freedom of the Lagrangian density (3.19) and show that 
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= 	
- )/A)V) 	

F 
(ML cLL (3.23) 

where AF  is the Feynman propagator. Bander, 1976, solves the model by making 

the following identification with a boson theory: 

(A) 	r
ad 
	

R 
[7TLc ) ± 4 

P 
(3.24) 

where R is a spatial cut-off (introduced to keep the integrals finite and set to 

infinity at the end of the calculation), A is a momentum cut-off (also allowed to 

go to infinity), y is Euler's constant and 4(x) is a boson field with canonical 

momentum 11(x). Then, in the Coulomb gauge A1  = 0, 

A0 = 
(3.25) 

so that the effective Lagrangian density for fermions is 

- 	 V 	
(3.26) 2. 

which expressed in terms of the corresponding bosons yields the action 

Tha 0 —— 
-- 

L- 0) 2 .2. (3.27) 

where 42  = g2/ 1T. This correspondence between the fermion and boson theory 

demonstrates explicitly that the fundamental fermion of the theory, i, is absent 

from the physical space of states; all that is present is a free neutral 

pseudoscalar meson 	with mass g//iT which can be thought of as a 

fermion-antifermion bound state. Physically this fermion confinement is caused 

by charge screening. If we attempt to separate a fermion-antifermion pair, when 
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the separation is 	sufficiently 	large 	it 	is energetically favourable for a new pair to 

materialise 	from 	the 	vacuum. 	The 	new fermion is 	attracted 	to 	the 	original 

antifermion 	and the 	new antifermion is 	attracted to 	the 	original 	fermion. 	This 

both 	screens the 	long 	range 	Coulomb 	force 	and ensures 	that 	what we 	are 

separating 	is not 	a 	fermion 	and 	an antifermion but two 	fermion-antifermion 

bound 	states. (The same 	mechanism is 	believed to 	be 	responsible 	for 	quark 

confinement in QCD.) 

Finally we note that global chiral symmetry is broken and the vacuum is 

infinitely degenerate. Different vacua may be labelled by an angle 8 6 [-1T,iTI; 

global chiral transformations rotate one vacuum into another. Again no Goldstone 

boson appears, this time because the axial current is afflicted with an anomaly. 

The parameter 8 may be identified with a constant background electric field 

(Coleman, 1976). This field could be introduced into four-dimensional QED but 

there the vacuum would suffer dielectric breakdown since it is energetically 

favourable for the vacuum to emit pairs until the background field is brought 

down to zero. In one spatial dimension, however, the energetics of pair 

production are different. It is not energetically favourable for the vacuum to 

produce a pair if the background field F is such that Fl 4 e/2; if JFJ > e/2, pairs 

will be produced until Fl < e/2. Thus physics is a periodic function of F with 

period e, and B may be identified as 

& 	
c27TF 	

(3.28) 

We now resume our discussion of the massive Schwinger model. Giving the 

fermions a mass changes the Lagrangian of the boson field to 

(2 J; 	(3.29) 
71—  

The massive model is still dependent upon the parameter 8, labelling different 

vacua. The mass term of course explicitly breaks the chiral invariance so that the 

vacua are no longer degenerate. However, contrary to naive expectations, all the 

vacua remain stable because of the absence of Goldstone bosons. We will 



restrict ourselves to the case e = 0. 

For m << g, the Lagrangian describes a heavy pseudoscalar meson with 

weak self interactions. Thus the model always contains at least one particle: the 

original pseudoscalar meson of mass 

+ kVt 	4- 0(44 
(3.30) 

where '' is Euler's constant. If any other particles are present, they will be 

weakly bound n-mesons of mass nM plus small corrections. In particular, the 

next particle is a scalar meson of mass 

7r L 	mZ. 
e --- +. 

(3.31) 

As m - 	the fermion decouples and the model reduces to a pure U(1) gauge 

theory (which may be solved by transfer matrix methods). 

3.3.2. Pure gauge theory 

In order to perform our simulations of the quenched and dynamical massive 

Schwinger model we shall require equilibrated U(1) gauge configurations at 

various values of the inverse coupling, . These will be used as fixed background 

configurations for the quenched case and as starting configurations for the 

dynamical case. We use six B values: 	(free fermions), 8, 3, 2.5, 0.25 and 0 

(strong coupling limit). The gauge configuration for 	= 	correspands to an 

ordered start i.e. all the gauge fields being set equal to 1; the gauge 

configuration for B = 0 corresponds to a disordered start i.e. all the gauge fields 

being set equal to e ', with r a pseudo-random number in [0,27i]. Gauge 

configurations for the other l3 values are generated by the standard quenched 

Monte Carlo Metropolis algorithm (Chap. 1.4.1) beginning from an ordered start 

and doing 75,000 sweeps, with an update angle 5U = 0.2x27T (giving an 

acceptance rate of 73%), to attain equilibrium. (On the ICL DAP, one sweep of 

the 64x64 lattice takes approximately 0.04 seconds.) The resulting plaquette 

energies 
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(3.32) 

averaged over the last 1000 sweeps for each value of 5 are listed in Table 3.1. 

Table 3.1 

Average plaquette energies of gauge configurations at each 	value. 

<Es,> 

0.25 0.875 ± .039 
2.5 0.235 ± .010 
3.0 0.190 ± .009 
8.0 0.065 ± .004 

3.3.3. Free fermions 

Before investigating the interacting theory, it is worthwhile looking at free 

fermions, for which we know <iJ> analytically (Chap. 2.1), in order to see how 

the pseudofermion method performs. 

We choose N f  = 100 in the pseudofermion method so that <ii> is obtained 

by averaging over 100 pseudofermion configurations and pseudofermion sweeps 

are carried Out in sets of 100. The update angle, SU, is chosen as 0.1x2. We 

run two simulations - one from a disordered start (that is, all the pseudofermion 

variables set to random numbers in [0,11) and one from an ordered start (all the 

pseudofermions set to 0) - at each of four masses 2.1, 2.05, 2.025 and 2.01 with 

periodic and antiperiodic boundary conditions. (On the ICL DAP, one set of 100 

pseudofermion sweeps through the 64x64 lattice takes approximately 1.2 

minutes.) 

With antiperiodic boundary conditions <7p> converges to the analytical 

answer, at 0.3% level of accuracy, within the first set of 100 pseudofermion 

sweeps at all four masses. 

With periodic boundary conditions <i> converges over the first few sets at 

M. 



the highest mass, m = 2.1, as shown in Fig. 3.3 but at the lowest mass, m = 2.01, 

metastable states are encountered and even after 1000 sets <1J> has not fully 

converged, Fig. 3.4. If we estimate the error in <Ti> by binning the data in 

time and take the bin size which yields the maximum error as an indication of 

the correlation time in the measurement of <7i4.i>, we obtain correlations of 5, 

10, 20 and 90 sets of 100 sweeps respectively for the four masses in descending 

order. Averaging the last 100 sets out of the 1000 for m = 2.01 and the last 180 

out of the 200 for the other masses for each start with periodic boundary 

conditions yields the values in Table 3.2. 

Table 3.2 

Average TIP for free fermions with periodic boundary conditions 
obtained from ordered and disordered starts compared with the 
value obtained analytically, at different masses. 

m 	
I 

<7> ordered I <7ip> disordered 

2.1 .817 .817 ± .005 .817 ± .005 
2.05 .808 .809 ± .008 .804 ± .005 
2.025 .805 .805 ± .016 .803 ± .008 
2.01 .825 .823 ± .033 .860 ± .041 

Hence the pseudofermion method performs well for free fermions, except 

near the zero mode at m = 2 caused by periodic boundary conditions (see Chap. 

2.1). 

3.3.4. The quenched model 

First we review the two analytical calculations which have been performed for 

the quenched massive Schwinger model. Carson and Kenway, 1986, use the 

replica trick, which consists of generalising the model to one containing N 

identical fermion species and taking the limit N - 0 at the end of the calculation, 

in the strong coupling regime. This removes the fermionic determinant that arises 

from the fermion integration in the partition function and works regardless of 

whether the fermion has a niass. The result is that 
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Fig. 3.3 	<i> for free fermions at highest mass from ordered and 
disordred starts. 
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<> for free fermions at lowest mass from ordered and 
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- 
where 

/= 'Wc'tG- 

Ito 
It 

2X 
- (3.33) 

= 	'1- ir 
(3.34) 

and y is Euler's constant. Guerin and Fried, 1984, perform a gauge-invariant 

summation over soft photons exchanged across a fermion loop, by the method of 

infrared extraction, to obtain for m/g << 1 

L
aC 	

141J 
"ii - 	_— + 

JITL 	271- 	
O1(335) 

where C is a real positive constant of order unity. Thus Carson and Keriway 

predict a logarithmic divergence in (<Jip>-<7i(i>0)/g as m/g - 0, whereas 

Guerin and Fried expect (<3>-<l1.Jlp>0)/g to have a finite, non-zero value in 

this strong coupling limit. 

To simulate the quenched model we equilibrate the pseudofermions in the 

fixed background quenched gauge configuration at each value of B and then use 

(3.17) to calculate <i4.i>. The average over the last set Out of a total of 15 sets 

of 100 pseudofermion sweeps, with the free fermion part <i1.J>,  subtracted out, 

	

is plotted against the Wilson mass parameter mw  in Fig. 3.5 for 	= 0.25, 2.5, 3 

and 8. Scaling both axes by g yields Fig. 3.6 which strongly suggests that 

(<Jip>-<ip>0)/g is diverging as the Wilson mass parameter mw  approaches a 

(s-dependent) critical mass m,  that is, as the physical mass m = mw  - m - 0. 

Fitting the data with Carson and Kenway's prediction yields the critical masses 

listed in Table 3.3. 
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Fig. 3.6 	As Fig. 3.5 with axes scaled by g. 
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Table 3.3 

Critical masses for the quenched model at each 13 value. 

m 

0.25 1.4968 ± .0025 
2.5 1.8870 ± .0011 
3.0 1.9348 ± .0015 
8.0 1.9792 ± .0045 

By using these critical masses to shift the data in Fig. 3.6 we obtain Fig. 3.7 

which also shows Carson and Kenway's prediction as a solid line. We see good 

overall agreement with their prediction. It is best for the B = 8 data which 

corresponds to the smallest lattice spacing and so is nearest the continuum (but 

also suffers from the largest finite-size effects - since the correlation length 

v 7T7 times the lattice spacing - which causes the more rounded peak). The 

agreement is not perfect for a number of reasons: there is an error in 

determining mc  which could shift the data horizontally; <J71j>0 calculated by 

Carson and Kenway is not exactly equal to <p1j>0  calculated above since the 

former is for an infinite system and the latter is for a 64x64 lattice - this could 

shift the data vertically; and finally the calculation by Carson and Kenway is 

perturbative to one-loop order, whereas the lattice simulation is non-perturbative 

and includes all loops. 

Finally, the data obtained in the strong coupling limit 	= 0 is shown in Fig. 

3.8. Despite being far from the continuum due to the large lattice spacing, there 

is still a peak in <To>-<TP>0  at a critical mass of about /2. This value is 

predicted by Kawamoto and SmUt, 1981, from an effective Lagrangian calculation 

of meson propagators in U(N), as well as SU(N), lattice gauge theories; for any N 

with Wilson fermions, in the strong coupling limit. This calculation, which is 

outlined in the next section, applies here because there is a pseudoscalar in the 

massive Schwinger model at strong coupling (Sec. 3.1 above). 

3.3.5. Effective Lagrangian calculation 

Kawamoto and Smit, 1981, 	derive an 	effective 	Lagrangian which describes 

mesonic bound states in U(N), 	as well as SU(N), 	lattice 	gauge theory at strong 

coupling. 	This 	is 	then expanded 	in terms 	of these 	bound states about 	the 
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vacuum to yield their propagators and m is found from the pole in the pion 

(lightest pseudoscalar bound state or stable particle) propagator. Kawamoto and 

Smit only look at d = 4 dimensions; we shall keep d explicit so that it can be set 

equal to 2 at the end of the calculation, which then goes as follows: 

Firstly, the source term 

if 
___  

	

= 	

(336) 

where 	iV M() 	Y (Pt) Ta. OC &t) 	is the elementary Bose field 

representation of a mesonic bound state (a is colour index and Ot, 	 are Dirac 

indices), is added to the action in (3.1). The resulting partition function is 

evaluated by first integrating over U and then integrating over ij, . (The U 

integration is only possible analytically for U(N) with N large so the gauge fields 

must be generalised to U(n) 6 U(N) and the fermions must be given N colours: 

a = 1,...,N. In our case, for Wilson fermions with r = 1, the final result is 

independent of N.) This yields the effective action 

feO 

~ + 	 r 	 £ ()  F 

where for Wilson fermions 

F(L) = I - 	 + 

and 

r ) M (k1 fl (P 4- 

Now, parameterising 

(3.37) 

62 



+ 

where 

( 

(3.40) 

V * N 
(3.38) 

with 	containing scalars, pseudoscalars and axial vectors: 

0 	= 	
(3.39) 

leads to 

and 	
± 

4A 
= 

at the stationary value of v which is given by 

((-ri) v z 

1+ [I— cl — V- 2.) V al 	 (3.41) 

From this one easily obtains the pion propagator (from the pseudoscalar - axial 

vector channel) and the following equation for its pole (at m = me): 
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(j r 2-)1 _ 	(I+r 2)r 	_(/)r7 

~ +Ee _±(A/)(/+)7[2c ~ f(I /)(I_v2 )J 	0 (3.42) 

where 

(3.43) 

Solving (3.42) gives 

which, with (3.43) and (3.41), yields 

F2 I - (1- d)Z/i)1 
- 

v= 

(3.44) 

(3.45) 

For Wilson ferrnions with r = 1 this reduces to 

(3.46) 

and (3.41) becomes 

M C 
(3.47) 

hence the result that m = /2 for d = 2. 
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3.3.6. The dynamical model 

In order to perform a fully interacting dynamical simulation we start from 

some gauge configuration and some pseudofermion configuration and run the 

complete pseudofermion method in which the pseudofermions act back on the 

gauge fields as the system evolves. To check convergence we start from both 

ordered (gauge variables set to 1 and pseudofermions set to 0) and disordered 

(random gauge variables and pseudofermions) plotting the plaquette energy (3.32) 

and the pseudofermion energy against gauge sweep in Fig. 3.9, for 	= 3 and m = 

2.1. The pseudofermion energy has been defined in terms of (3.14) as 

E 	
- 	N 	 (3.48) 

where N is the number of lattice sites. We see that the energies have settled 

down by 100 gauge sweeps and that it makes no difference whether we start 

ordered or disordered. 	This is for N f  = 1, that is, only 1 	pseudofermion sweep 

between each gauge sweep. 	To show the effect of varying N f, we present Fig. 

3.10 in which we do runs with N f  = 	1, 10 and 100 from an ordered start for 

3 and m = 2. We see clearly that N f  = 1 gives a systematic error, whereas N f  = 

10 and 100 agree - in fact we use N f  = 100 in the dynamical simulation to be 

on 	the 	safe side. We 	also 	start 	from 	the 	corresponding 	quenched 	gauge 

configuration instead of an ordered start since this shortens the number of gauge 

sweeps required to reach equilibrium to less than 10. The other parameter in the 

pseudofermion method, the update angle 6U, is chosen as 0.1x27. We run at B = 

0.25, 2.5, 3 and 8 for several mass values averaging <4w> over the last 50 sets 

out of 100 sets of 100 pseudofermion sweeps to obtain Fig. 3.11, the behaviour 

of < P>-<1.P>0  with Wilson mass parameter in the dynamical model. From 

the exact massless result of Marinari, Parisi and Rebbi, 1981, that 
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Fig. 3.9 
	

Plaquette and pseudofermion energies for dynamical model from 
ordered and disordered starts. 
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<i> for dynamical model with N f  = 1, 10 and 100 from an 
ordered start. 
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flt-,O 	 (3.49) 

we obtain the critical masses listed in Table 3.4. 

Table 3.4 

Critical masses for the dynamical model at each 6 value. 

6 	1 	m 

0.25 1.162 ± .018 
2.5 1.708 ± .021 
3.0 1.789 ± .015 
8.0 1.932 ± .006 

(Note that there are two possible values for each critical mass but we know that 

the actual value must be less than that for free fermions (6 = 	) i.e. 2 and 

greater than that for strong coupling (6 = 0) i.e. /2, hence it is the smaller of the 

two.) If we subtract these critical masses from the Wilson mass parameter to 

yield the physical masses, normalise these by g and plot <p>-<ip1.>3  

normalised by g against them, we obtain Fig. 3.12 (which also contains the exact 

massless result marked as an asterisk). The fact that the data appears to lie on a 

universal curve at low mass indicates that we have indeed found the correct 

critical and hence physical masses. For m > 0 <Ti4i> appears to increase 

linearly with m and at large m we know that there is no difference between the 

dynamical and the quenched model where <i> decreases, so the turnover in 

<jp> around m = 0.2 comes as no surprise. The discrepancies in the data for 

different 6 values at m > 0.2 may be due to lattice artifacts since the lattice 

approximation is only valid for ma << 1, that is, m/g << /6. 

3.3.7. Concluding remarks 

We have 	numerically simulated 	the massive Schwinger model on 	a 	lattice 

with 	Wilson 	fermions and 	calculated the 	chiral 	condensate <jJi4.>. 	The 

pseudofermion 	method performs 	well for 	both 	the 	quenched 	and 	dynamical 
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theory as well as for free fermions, except near the zero mode caused by 

periodic boundary conditions. For the quenched model, we found that the 

behaviour for <>/g as m/g - 0 agrees with that predicted by Carson and 

Kenway, namely a logarithmic divergence. For the dynamical model we 

discovered that <ii> varies linearly with mass for small mass, after using the 

exact massless result for <> to determine the critical mass. We notice that 

despite the similar appearance of <.i4.'> with Wilson mass parameter for the 

quenched (Fig. 3.5) and the dynamical (Fig. 3.11) models, the actual behaviour 

with physical mass is very different (Figs. 3.7 and 3.12): in the quenched model 

<3> diverges as the physical mass tends to zero, whereas in the dynamical 

model it decreases. 
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Chapter 4 
Lanczos fermions 

In this chapter we shall use the Lanczos algorithm in a numerical simulation 

of SU(2) at finite density. In Sec. 1 we describe the Lanczos algorithm for 

tridiagonalising a Hermitian matrix (in order to obtain its eigenvalues) and we 

describe the block Lanczos algorithm for inverting a matrix. In Sec. 2 we go on to 

discuss application of this block Lanczos matrix inversion algorithm to the 

fermion matrix (enabling dynamical fermion simulations). In Sec. 3 we firstly 

review finite density in lattice gauge theories (showing how it is introduced as a 

non-zero chemical potential ji and indicating the significance of the eigenvalue 

distribution of the fermion matrix) and then turn to the numerical simulation 

which is performed in two regimes: fixed i; varying m, and fixed m; varying ji. 

4.1. The method 

The Lanczos algorithm (Lanczos, 1950) reduces a Hermitian matrix H (of size 

NxN) to tridiagonal form. It can be derived by seeking the unitary transformation 

X such that 

X__'_ H X = T 
	

Xtx = I )  (4.1) 

where T is tridiagonal, real and symmetric: 



I 

Ply- 
	 (4.2) 

PN.JAI 

We write X as a set of column vectors x, called the Lanczos vectors, 

XL 	. . j jc_ /V) 
	

(4.3) 

which are orthonormal: xx = S. Hence (4.1) becomes 

o, )C1 ~ / 	)C 

.- 	R L, * /? Jc4.t  

H XN 	= 	M-/  	N X N 

. 	 (4.4) 

These are the Lanczos equations; they are used recursively to calculate all the 

ct, B j and x1 as follows. Choose x1 to be any unit vector. Take the scalar product 

of x1 with the first Lanczos equation and use the orthonormality of the Lanczos 

vectors to obtain cc,: 

(4.5) 

(ct 1 is real because H is Hermitian.) Next calculate 

A PO 



? I 	-X 2 	 ~1 dc I 	
cl~  - 	 1 	1 	 (4.6) 

and take the scalar product with x2, using x2 x2 = 1, to obtain 	and hence x2. 

(We can take either sign for 	Continue in a similar fashion with all the other 

Lanczos equations in turn: 

(4.7) 

	

- 	 .XC_1 	cx 

(4.8) 

When we calculate 

I11 
(4.9) 

we are finished because the last equation is automatically satisfied: 

	

- I-! 	- 	 (4.10) 

is zero (as it is orthogonal to all the Lanczos vectors). In fact, a good check on 

the accuracy of the calculations is that 

_ 0 A' 	 (4.11) 

In exact arithmetic, there is only one thing which could cause the algorithm to 

fail: some B j might be zero. This will happen if the first Lanczos vector x1 was 

chosen to be orthogonal to some eigenvector of H, and it is inevitable if H has a 

degenerate eigenvalue. The solution would be to choose the next xi to be any 
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unit vector orthogonal to all the previous ones and continue - in practice this 

may be difficult to implement but since it is extremely unlikely to occur (due to 

rounding errors) we can ignore it. 

The advantage of the Lanczos algorithm over other methods (such as 

Gaussian elimination) is that it does not require the matrix H to be stored in a 

large NxN array which is "filled in" by the calculation, even if H is sparse (that is, 

has a large number of zero elements). We only require storage space for three 

Lanczos vectors and a routine to multiply a vector by H. If H is sparse, the 

multiplication can be done quickly and with a minimum of storage space. Once 

H is in tridiagonal form, its eigenvalues can be obtained using standard methods, 

for example, Sturm sequences. 

Before we can use the Lanczos algorithm on large matrices, we must 

overcome the problem of rounding errors which lead to N  A 0. This is due to a 

loss of orthogonality between the first few Lanczos vectors and the last ones. 

These errors tend to build up exponentially so that no matter what precision is 

used in the calculation we soon find an xi  which is not orthogonal to x1 . The 

obvious way to get around this is to reorthogonalise each new Lanczos vector x 

with some or all of the previous ones x1  by the projection 

Jci 	
(4.12) 

Unfortunately, reorthogonalisation greatly slows down the calculation and 

requires all the Lanczos vectors to be stored, so it is impractical for N , 1000. 

However, it is possible to use the Lanczos algorithm without reorthogonalisation 

and therefore deal with much larger matrices. This has been discussed by Cullum 

and Willoughby, 1979; and Haydock, 1983. The procedure is to generate more 
- - 

than N Lanczos vectors, say N. We then have a NxN tridiagonal matrix T. Next, we 
- 	 A 

construct the (N-1)x(N-1) matrix T by deleting the first row and column of 

T. From the two sets of eigenvalues (found by the standard method of Sturm 
A A 

sequences), {X1} of T and CX I) of T, we can obtain the N eigenvalues of T (and 

therefore H) using the observations: 

1. Some eigenvalues of H (mainly the ones which are relatively 

well separated) converge very fast (and, in fact, can be 
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obtained from T when N is still much smaller than N). By the 

IT  time N is large enough for all the eigenvalues to have 

converged (in practice, N = 2N is sufficient), the faster ones 

will appear many times as eigenvalues of T. These duplicates 

can be recognised and removed because we assume H to be 

non-degenerate. 

2. -f and I also contain spurious eigenvalues which are not 

degenerate with the eigenvalues of H. However, these are 
.- 	.4 

different for T and T and so can also be eliminated. 

Hence we are left with the N eigenvalues of our original NxN matrix H. As an 

example to illustrate this, we apply the Lanczos algorithm to the Hermitian matrix 

H = iØ, of size 16x16, which is i times the fermion matrix (Dirac operator) for 

Susskind fermions in random U(1) gauge fields on a 4x4 lattice (this is just two 

dimensional QED at strong coupling). The resulting eigenvalues for various N are 

shown in Fig. 4.1. For this small system we can calculate the eigenvalues exactly 

using a standard library routine. We find that the Lanczos algorithm gives these 

eigenvalues to within 10 	for N = N = 16. From Fig. 4.1, we see that for N < N 

the smallest eigenvalues converge first and for N > N we get duplicate and 

spurious eigenvalues (which vary with N), as expected. 

There is a useful simplification when the Lanczos algorithm is applied to the 

fermion matrix for Susskind fermions. This is due to the fact that i 	has the 

following block structure between odd and even sites: 

(4.13) 

This implies that the eigenvalues of 10 come in plus and minus pairs (as we see 

in Fig. 4.1): 
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Fig. 4.1 
	

Eigenvalues computed by the Lanczos algorithm, applied  to a 
random Hermitian matrix H with N = 16, for various N. 
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RI 
I = = 

I 
(4.14) 

If we choose the initial Lanczos vector to be zero on all ,odd sites, 

= 

O) 	 (4.15) 

then we find that all a i 	0, the odd Lanczos vectors take the form 

/ .)1~ 

I 
2~ 	 \ 0 	/ 	 (4.16) 

and the even ones take the form 

	

Y.4J 	 (4.17) 

The Lanczos equations then reduce to 

>,J (4.18) 
+ /'?-*e )Lz+z.. ) 

with the even vectors being mutually orthogonal and similarly for the odd ones. 

The advantage of this is that we have halved the amount of computation, since 

there is no need to compute ct i and each Lanczos vector is half zero, and we 

have saved on storage space. Moreover, if we add in the mass term and consider 

the massive fermion matrix, iM = io + im, we find the same odd-even splitting as 

above, though with all cxi = im and with Lanczos equations 
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- 	 -.\ 

I J kvt )C 	+  

-1 	 -' 
* (-kit X2 Z + /?2 i N.2~j 

(4.19) 

)L 	4- 	 .+ Z ) > 

Thus the 3i and Lanczos vectors are independent of the mass and we can 

simultaneously tridiagonalise the matrix at a number of different masses without 

increased computation. 

The Lanczos algorithm can also be used to invert a matrix column by column, 

which is what we need for our dynamical fermion simulations (Chap. 1.3.4). We 

shall aim to calculate H 1x1 as a series in the Lanczos vectors 

H )C, 	C, )C, 	 + 	 (4.20) 

by using the Lanczos equations iteratively. This is complicated algebraically and 

explained in detail in Barbour et al 1985b, so we will just illustrate the method by 

considering the simpler massless case ct i = 0. We use only every other Lanczos 

equation, starting with the second: 

- 

(4.21) 

in sequence eliminating the remainder term by substitution; this yields 

H IX —1 	
/-?1

xz — 	_ 	

/ j1 
~ 	-. 

13 1 p 	f3I 3 	
)(

I3 	- 

At first sight it seems unlikely that this will converge, since the Bi fluctuate 

randomly about some constant value. However, in practice we find that although 

the series proceeds for many iterations without any sign of convergence, it 

eventually reaches a point (where the smallest eigenvalues of the tridiagonal 

form are converging to the true eigenvalues of H) at which there is rapid 
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convergence. Instead of writing down the recurrence relations for this Lanczos 

matrix inversion algorithm (which are given by Barbour et at 1985b, in any case), 

we shall first generalise to the block Lanczos algorithm (Scott, 1981) which block 

tridiagonalises a matrix so that the ct 1  and B i  become small LxL matrices. The c 

are Hermitian and the 3i  can be chosen to be triangular, so that H, with N = ML, 

is transformed into the following band matrix of width 2L+1: 

71- 
T 

IP! 

I'M -1 	 (4.23) 

The M Lanczos vectors are NxL arrays and the Lanczos equations are 

H , 	i( 	*   /?, 

' t H DL 	 ) 	L + jci f? ; 	
• (4.24) 

The algorithm proceeds in a way analogous to the L = 1 case, with the Lanczos 

vectors half zero for c = 0 or a i  = im. At step i ) 2, with U E HX1  - x_ 1 	- 

x 1, we have 

(4.25) 

which we solve for B i  as an upper triangular matrix, in order to compute 
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= 	
(4.26) 

We can now apply block Lanczos to matrix inversion, calculating L rows of the 

inverse at a time - this is more efficient than inverting the matrix one row at a 

time because transforming a matrix to block tridiagonal form is less constraining 

than tridiagonalising it. We obtain (by generalising the L = 1 case with Ot i  = im) 

the recurrence relations (Barbour et a/ 1985a) 

1? 	0 

= 	0 

V I =0 

(4.27a) 

2V€.kL 

= 	A 	-:  
-( 

_z &z 

— 	Al 	(/-,) 	Zt 	I 

= 	—A 1  A; 	(i,) 	' 

+  

vz Z = + 	). ( 	
—1 

+ 	L UZ .A I 	Z l) ( 
(4.27b) 
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Step: 	A 	I (g2t 	A2  

g21 	 - (/2 )2 

4- 1 2+I 

yz  
(4.27c) 

(L sEep: 

-•1 

2'+,) 	 - 	> 	HJc 	(4.27d) 
( 

The coefficients A, B, y and t are all LxL matrices, and U and V are NxL matrices. 

However, if only a small part of the inverse is required, as is the case for fermion 

updating (see next section), it is not necessary to compute the whole of U and V 

but only some KxL block of them. 

4.2. Computational details 

Following Barbour at al 1985a, we use the block Lanczos algorithm (4.27) to 

obtain the block of the inverse matrix M-1  (U)required to calculate the change in 

effective action for Monte Carlo simulations with dynamical fermions (Chap. 

1.3.4): 
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a 	 [.I + M '() c M 
(~O ].(4.28) 

For a SU(N) gauge theory on a lattice of L  sites, M(U) is a large sparse matrix of 

size NIL dxNLd with only 2dN non-zero elements in each row. If one gauge field 

link variable is changed then 6M(U) is non-zero only in the 2Nx2N block at the 

intersection of the ZN •rows and 2N columns of M(U) corresponding to the two 

end points of the link. Consequently the only elements of M 1(U) which 

contribute are those in the same 2Nx2N block. If we write 6M and M 1 for these 

blocks then 

e 	
(4.29) 

where the determinant is now only of a 2Nx2N matrix. The block Lanczos 

algorithm can be used to calculate 2N columns of M 1(U). This is sufficient to 

update the same link as many times as desired (in, for example, the multi-hit 

Metropolis algorithm), since the ratio of determinants for two different changes is 

- 	 (/+fl-'i2) 	
(4.30) 

This idea can be extended to allow the updating of a number of links at once, for 

example, in four dimensions we choose all 32 links of a hypercube. To calculate 

the determinant for the change in effective action arising from any change o 

these links we require the 16Nx16N block of M 1(U) corresponding to the 2 sites 

of the hypercube. In fact, we need only calculate this block of M 1(U) once, 

before changing any links, and then update it after each change by rank 

annihilation, as follows. Consider a change to one link of the hypercube. This 

causes the change 6M (as in (4.29)) which is a 2Nx2N sub-block of M'(U) with 

(2N)2/2 non-zero elements (the other half are zero because they connect each 

site to itself) which we separate into (2N)2/2 consecutive changes, each to just 

one element, 
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cM 
	

, /'1I + j1z -- ... -t- 	
(4.31) 

We write 

(4.32) 

where a is the change to the element, and u and v are unit vectors which are 

zero in all elements but one. Hence 

—1 
c 1 ~ 

= 	
—i 	 (/i 	) (vt N 	 (433) 

/vtf'1 LA_ 

Theconvergence of the series is not relevant since the final result can be 

verified by back substitution. It is obvious that (4.33) can be applied to update the 

16Nx16N block of M 1(U) without knowing the rest of its elements. In practice, for 

updating a hypercube, we calculate the initial 16Nx16N block of M 1 (U) in two 

8Nx16N pieces (one to cover the odd sites and the other for the even sites) in 

two separate inversions, using the block Lanczos algorithm with L = 16N and K = 

8N. 

To summarise, the Monte Carlo simulation is carried out as follows. To cover 

all the links in one sweep we must visit 1/8 of all possible hypercubes which 

touch each other at corners only, so that there are no links in common. We take 

each of these hypercubes in turn, either in sequence or at random, and calculate 

the 16Nx16N block of the inverse required to update its links. We then tour each 

of the 32 links, in any order, extract the appropriate 2Nx2N sub-block from the 

16Nx16N block and update the link using the Metropolis algorithm a large number 

of times (multi-hit), which requires the calculation of only 2Nx2N determinants 

each time. Before going on to the next link in the h'ipercube, we update the 
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16Nx16N block by rank annihilation (4.33) for the overall change to the link. It 

proves worthwhile to go round each hypercube a few times until it is close to 

equilibrium within itself before proceeding to the next, as this brings the whole 

configuration into equilibrium two or three times faster. 

Unfortunately, the block Lanczos algorithm (4.27) i& not highly parallel and 

therefore inefficient on computers such as the IC  DAP (Appendix I) or the GRID 

(Appendix It). Most of the time is spent repeatedly updating a single link (which 

involves multiplying LxL and KxL matrices together) and, in order not to violate 

detailed balance, one can only update two links of a hypercube (and only 1/8 of 

the hypercubes) simultaneously. Hence we performed the simulation of SU(2) 

with Lanczos fermions, discussed below, on a conventional computer (the Gould 

PN9080, in fact). 

4.3. Finite density SU(2) 

The properties of matter at high temperature and density are important in 

heavy-ion collisions at high energies and in astrophysical phenomena such as 

neutron stars (for a review see Cleymans, Gavai and Suhonen, 1986). This has 

led to considerable interest in what QCD as a theory of strong interactions has 

to say about these extreme conditions. Analytical calculations, however, are only 

possible at very high temperatures and densities (where distances are short and 

energies high enough for asymptotic freedom to make perturbation theory 

applicable), or at strong coupling which is far from continuum physics. Hence we 

perform numerical simulations to investigate these effects. QCD at zero 

temperature and density, as discussed in Chap. 1, confines quarks and has a 

spontaneously broken chiral symmetry. We shall see that at high temperature 

and/or density there is a deconfinement transition, producing a quark-gluon 

plasma, and a chiral symmetry restoration transition, rendering quarks massless. 

The overall phase diagram is thought to be as depicted in Fig. 4.2. 
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Fig. 4.2 	Schematic phase diagram for QCD at finite temperature and density. 
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A great deal of work has been done on the effects of finite temperature in 

both quenched and dynamical QCO (SU(3)) and SU(2) gauge theories. We will 

investigate ihe effects of finite density for SU(2), on which relatively little work 

has been done. (Why we do not look at SU(3) as well will be explained below.) 

We introduce finite density, that is, non-zero chemical potential 4, into a 

system with Hamiltonian H by constructing the conserved baryon number N. The 

partition function is then given by 

Z = 	
_[?CH -N) 

(4.34) 

On the lattice at finite density Hasenfratz and Karsch, 1983, showed that, in order 

to obtain the correct continuum limit, this leads to the naive free fermion action 



2-o- 

/Ake-  i 	 - 	 (435) 

+ 
with similar modification for Wilson and Susskind actions. (Bilic and Gavai, 1984, 

suggested an alternative formulation.) Unfortunately this leads to a complex 

fermion determinant for SU(N), N # 2, lattice gauge theories (Gavai, 1985) - 

whereas all methods known so far for performing numerical simulations with 

dynamical fermions require a real determinant. Hence at this point in time, we 

can only meaningfully investigate SU(2) with fermions. (Of course, we can still 

look at quenched SU(N) for all N.) 

The effect of finite density on SU(N) gauge theories with fermions has been 

investigated analytically at strong coupling by van den Doel, 1984; by Damgaard, 

Hochberg and Kawamoto, 1985; and by Dagotto, Moreo and Wolff, 1986. They 

conclude that there is a chiral symmetry restoration transition, which is first 

order for SU(3) and second order for SU(2), at some critical chemical potential ii 

(in units of lattice spacing, Damgaard, Hochberg and Kawamoto, 1985, predict p 

= 0.66 for SU(3) and 	= 1.04 for SU(2)). There should also be a deconfinement 

transition which may occur at around the same temperature as the chiral 

restoration transition. (This appears to be the case at finite temperature.) We can 

picture this as follows. In the confining phase, any particles produced at finite 

density will be baryons consisting of N (for SU(N)) quark world lines bound 

together with an effective chemical potential Ni. As p is increased there will be 

a value pc  such that Np c  equals the baryon mass. For i > 	it will be 

favourable for long loops to wind right round the lattice in the time direction 

yielding a finite density of baryons. Thus we expect lic  to be equal to the mass 

of the lowest baryonic state divided by its quark number, that is, one third the 

mass of the nucleon in SU(3) and one half the mass of the pion in SU(2). 

The first simulation of quenched QCD at finite density (Kogut at a/ 1983) 

found, by extrapolation to zero quark mass, an abrupt restoration of chiral 

symmetry at 	0.3. However, further investigation (Barbour at al 1986) 

revealed that at zero quark mass chiral symmetry is restored for any i > 0. 

Moreover, for non-zero quark mass 	was found to be m 7/2 rather than 
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mnucjeon/3, which suggests that mnucleon = l.Sm.ff  so that the lowest baryonic 

state in QCD becomes massless (like the pion) at zero quark mass! In contrast, 

the same result, 	= m/2, found for SU(2) is as expected. This seems to imply 

that there is something wrong with finite density calculations in the quenched 

approximation, for QCD at least. Gibbs, 1986, argues that the quenched 

approximation actually becomes invalid for p > m./2. The obvious way to 

proceed is to add quarks and simulate the full theory. Engels and Satz, 1985, 

attempted this for QCD (using the leading term in the hopping parameter 

expansion) by ignoring the imaginary part of the complex determinant - they find 

that the temperature at which deconfinement occurs decreases as 11 increases, in 

agreement with the expected phase diagram (Fig. 4.2). More work is required to 

ascertain the validity of their approach and, of course, to discover better methods 

for dealing with the complex determinant (see Gibbs, 1986, for a discussion of 

the latter). 

Turning to SU(2) we find the same story. Kogut et a/ 1983, also investigated 

the chiral symmetry restoration transition in the quenched approximation for 

SU(2), obtaining a smooth, presumably second order, transition around 	0.3 - 

0.45. However, Dagotto, Karsch and Moreo, 1986, subsequently found that (as in 

quenched QCD) chiral symmetry is restored for all non-zero .i in the massless 

limit. The deconfinement transition was examined by Nakamura, 1984, but his 

results were inconclusive. Again, what is required is a simulation including 

quarks. This is possible and meaningful using standard Monte Carlo methods for 

SU(2), as the determinant is real, so we shall undertake it. First, we will outline 

the importance of eigenvalues (and hence the Lanczos algorithm) for such a finite 

density simulation. 

A clue to what is happening in finite density simulations is given by the 

distribution of eigenvalues of the lattice Dirac operator in the background gauge 

fields. The Dirac operator for Susskind fermions is anti-Hermitian (Chap. 3.2) and 

has purely imaginary eigenvalues Xk,  in terms of which the chiral symmetry order 

parameter <i.n> is given by 
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36) 

(The trace is over colour.) In the infinite volume limit the eigenvalues coalesce 

to form a cut which provides the discontinuity in <i4> at m = 0: 

<w -  <' '
PK 
) 	N TV 	(0) 	 (4.37) 

where N is the number of colours and p(X) is the normalised eigenvalue density 

on the imaginary axis. (This expression has been used to obtain strong evidence 

for spontaneous chiral symmetry breaking in (quenched) QCD at zero density: 

Barbour et at 1983; Barbour et at 1984; Barbour, Gibbs, Bowler and Roweth, 

1985.) If we allow a non-zero value for j.i then the anti-Hermitian nature of 0 is 

lost and the eigenvalues move off the imaginary axis, initially in a perpendicular 

direction. In practice, evaluation of the eigenvalue distribution by use of the 

Lanczos algorithm shows that (Barbour et a!, 1986), at all couplings, the 

eigenvalues move off axis to form a roughly uniform strip whose width increases 

monotonically with i. Eventually, for larger T.I,  the eigenvalues form a band, 

leaving the region around X = 0 empty of eigenvalues; this is shown 

schematically (for SU(3) at strong coupling) in Fig. 4.3. We see that for all .i 

there is a X max  = max kiimX0'  and for i > j.i (with .i0  = 0.5 ± 0.05 for this 

case) there is a X min  = min IXI,m X =O. These maximal and minimal eigenvalues on 

the real axis are directly related to the behaviour of physical observables. For 

quark masses m > Xmax all observables will agree with their i = ü values, while 

for in < X m j fl  they will have reached their limiting high density values. In 

particular, <4.i> = 0 for all m < 	Thus in order to investigate the chiral 

symmetry restoration transition we should discuss what happens for 11 < 40, 

that is, when X m i n  = 0. We should then find some effect on <4ii> as the quark 

mass is brought inside the strip (from in > Xmax  to m < 'max) since <it4.i> at 

mass m is effectively determined by the small eigenvalues less than m. 

Alternatively, if we vary i.'  at a non-zero value of m then there is a critical value 

pc  where the width of the strip becomes equal to the quark mass. For i.' < 

<> is independent of i'  but at 	there is a transition and <i> drops 
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Fig. 4.3 	Elgenvalue distribution (for SU(3) at 8 = 0) for different 
values of the chemical potential. 
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rapidly. We note in passing that the fact that the delta-function in eigenvalue 

distribution for u = 0 becomes a uniform strip for .i > 0 explains why chiral 

symmetry breaking disappears at any finite density. Barbour et a/ 1986, also find 

that as the inverse coupling $ is increased the eigenvalues move away from the 

real axis; this is the case for any p, with the eigenvalues still occupying the 

appropriate strip or band about the imaginary axis. This is shown schematically 

(for SU(3) at small bi) in Fig. 4.4. To conclude, in a simulation of dynamical finite 

density SU(2) we expect to find the chiral symmetry restoration, and perhaps the 

deconfinement, transition at around pc  = m/2, signalled by <> dropping to 

zero and the eigenvalues of the fermion matrix moving away from the real axis. 

4.3.1. Fixed j.i; varying m 

As this simulation is performed using a conventional computer (the Gould 

PN9080), we study a small lattice of 44  sites. The full dynamical fermion Lanczos 

algorithm then takes 2.65 hours for one sweep through the lattice, going round 

each of the 32 hypercubes (touching at corners only) 4 times and performing the 

multi-hit Metropolis algorithm with 10 hits on each of the links. (We note in 

passing that a similar sweep of an 	lattice would take approximately 600 

hours - over 3 weeks - on this computer!) This algorithm converges much 

faster than the pseudofermion method so we need only carry out tens rather 

than hundreds of sweeps to achieve statistical equilibrium. 

We choose the number of fermion flavours n f  = 4, set the inverse coupling $ 

= 1.7 and investigate fixed .i = 0.1; varying m. The history of the chiral 

condensate <i> and the plaquette 

Pa 	Ke- 	
(4.38) 

(not the plaquette energy E. = 1 - PO  used in Chap. 3.3.2) during the simulation 

is given in Fig. 4.5. Firstly, we Oerformed 5 quenched sweeps (-4, -3, -2, -1 and 

0) at $ = 2.1 to generate an appropriate start configuration for the dynamical 

sweeps (1-75). The first 20 of these (1-20) were done at fermion mass m = 0.05, 

the next 30 (21-50) at m = 0.0125 and the last 25 (51-75) at m = 0.00625. If we 

average 	over the last 10 sweeps at each mass, that is, 11-20 at m = 0.05, 
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Fig. 4.4 	Elgenvalue distribution (for SU(3) at .i = 0.1) for different values of 
the inverse coupling. (Scale of real axis is expanded relative to Fig. 4.3.) 
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Fig. 4.5 	 and plaquette history of simulation at i = 0.1. 
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31-50 at 0.0125 and 56-75 at 0.00625, then we get the values in Table 4.1. 

Table 4.1 

<4> for u = 0.1. 

m 

	

.05 	.169 ± .033 

	

.0125 	.049 ± .018 

	

.00625 	.014 ± .002 

Thus <iji4.i>  is consistent with extrapolating to zero at zero fermion mass as it 

must orf a finite lattice. 

We now look at the eigenvalue distributions (in the complex plane) which are 

given for the three masses in Figs. 4.6a,b,c. We plot superimposed the 

eigenvalues for the last 5 configurations, at each mass. As the eigenvalues occur 

in complex conjugate pairs we only plot half of them (those with imaginary part 

> 0) - the other half can be obtained by reflection in the real axis. We see that 

the distributions for m = 0.05 and m = 0.0125 are very similar but the distribution 

for the lowest mass m = 0.00625 appears to have a lower density of eigenvalues 

around the real axis. We can investigate this further as follows. Write the 

eigenvalues A = x + iy and use the fact that they occur in complex conjugate 

pairs to rewrite the sum in (4.36) as a sum over half the eigenvalues 

I - 	___ 
)( +  

JL + 	 (4.39) 

-k--  Oc+rris)+ 
I z * 

z 

(We have denoted the mass appearing in this sum m to distinguish it from the 

fermion mass used in the simulation m.) Now if the eigenvalue density is 

uniform across the strip and the width of the strip is constant then this sum is 

independent of the real part x and therefore, for a given m,  determined solely by 

the imaginary part y which is the distance of the eigenvalues from the real axis. 

(The width of the strip varies only for varying i; this case is discussed in the 

next section.) Hence we can use (4.39) to discover if the eigenvalues are moving 
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Fig. 4.6a 	
Eigenvalue distribution (5 configurations superimposed). 
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Fig. 4.6b 	Eigenvalue distribution (5 configurations superimposed). 
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Fig. 4.6c 	Eigenvalue distribution (5 configurations superimposed). 
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away from the real axis as the fermion mass is reduced. In fact, we vary m  and 

calculate the sum for only those eigenvalues whose real part is such that x + m 

0. In other words, we scan across the strip summing the eigenvalues to the 

right of the line x = -me; effectively verifying that the eigenvalue density is 

uniform. The resulting "sum 	0", averaged over the last S configurations at each 

mass, is plotted in Fig. 4.7a. It is clear that the sum is smaller for the lowest 

mass implying that y is larger and the eigenvalues are further from the real axis. 

The sums for the two larger masses are indistinguishable within the errors, even 

though these masses differ by a factor of four. To show that the behaviour of the 

sum, that is, 	is determined mainly by the smallest eigenvalues we plot 

the "sum 	0" calculated from the lowest 20 eigenvalues of each configuration in 

Fig. 4.7b. The observation that the eigenvalues move away from the real axis 

when the fermion mass is reduced by a factor of two from 0.0125 to 0.00625, as 

well as <Tp> decreasing, supports the conjecture of a phase transition (chiral 

symmetry restoration and/or deconfinement) induced by the fermion mass 

moving inside the eigenvalue strip. 

One could of course argue that the eigenvalue density falls near the real axis 

because the Monte Carlo method used in the simulation simply does not 

generate any configurations with eigenvalues there, since the weight involves 

detM which is proportional to the smallest eigenvalue. In order to rule out this 

possibility we repeated the simulation with a different weight in the Monte Carlo 

method. Up to now we have been calculating 

r 

= 	c 	-I  ___ 	- g (4.40) 

which uses the weight detM exp(-S).  Instead, we can write this as 
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M 

(4.41) 

where this new expectation value involves the weight trM 1detM exp(-SG).  We 

calculate trM 1  as the sum of the inverses of the eigenvalues of M, obtained 

using the Lanczos algorithm. <> obtained from this new simulation at the 

highest and lowest masses, m = 0.05 and m = 0.00625, is plotted in Fig. 4.8. As 

each sweep now takes 4 hours we have not done as many sweeps as before so 

the average of <7P>new  over the last 8 sweeps at each mass, given in Table 

4.2, is not as accurate as <p> in Table 4.1. 

Table 4.2 

<4i> for i = 0.1 with new weight. 

m 	 <'PP>new 

.05 	I 	.237 ± .028 

.00625 	j 	.034 ± .011 

Looking at the eigenvalue distributions of the last 4 configurations superimposed, 

Figs. 4.9a,b, we see that they are now closer to the real axis - perhaps 

confirming our suspicions about the usual Monte Carlo weight's inadequacies - 

but there still appears to be a gap around the real axis at the lowest mass. This 

shows up in the "sum . 0" plot (calculated from the last 8 configurations), Fig. 

4.10, as before. Hence we conclude that the Monte Carlo methods are operating 

well enough to signal the phase transition. 

We also performed a simulation, with the usual Monte Carlo weight, at .i = 0. 

The history of <5i> for this is shown in Fig. 4.11: we started from the same 

quenched configuration as for p = 0.1, did 40 sweeps (1-40) at m = 0.05, 30 

(41-70) at 0.0125 and 30 (71-100) at 0.00625. Averaging <7i4> over the last 20 

sweeps at each mass yields the values in Table 4.3. 
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Fig. 4.9a 	Eigenvalue distribution with new weight (4 configurations superimposed 
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Fig. 4.9b Eigenvalue distribution with new weight (4 configurations superimpose 
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Fig. 4.10 Sum of lowest 20 eigenvalueS for each m (averaged over 8 configurations) 
with new weight, with real part x such that x + m 	. 0. 
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Table 4.3 

<4> for .i = 0. 

	

.05 	.210 ± .033 

	

.0125 	.061 ± .015 

	

.00625 	.031 ± .008 

As expected, these values are larger than those for non-zero j.i (Table 4.1); 

though they also appear to extrapolate to zero. The elgenvalues are all pure 

imaginary since i = 0. The lowest 20 of them for the last 4 configurations, at the 

highest and lowest masses, are superimposed in Figs. 4.12a,b. We notice that 

there is a larger gap around the real axis for the lowest mass - but the scale of 

the imaginary axis has been expanded by a factor of about 5 so that the gaps are 

actually the same within error bars. This supports our conclusion that the 

eigenvalues move away from the real axis as the fermion mass decreases due to 

the finite density. 

However, we cannot rule out the possibility that what we are seeing is due to 

finite-size effects (which we know to be large on a 44  lattice for free fermions - 

Chap. 2.1.2) - fermions with lower mass propagate further - without performing a 

simulation on a larger lattice which would require a larger (i.e. super-) computer. 

4.3.2. Fixed m; varying i 

We now turn to the alternative regime in which to investigate the chiral 

symmetry restoration transition at finite density: fixed m; varying P. In a recent 

preprint Dagotto, Moreo and Wolff, 1986, calculate the behaviour of <il.np> in the 

strong coupling limit of SU(N) at finite chemical potential using a dimer approach 

and mean field techniques; they predict a first order phase transition for N 	3 

and find a continuous transition for N = 2. We shall try to verify the latter using 

Lanczos dynamical fermions. We simulate on a 44  lattice with n f  = 4, rn = 0.2 and 

Ti varying between 0 and 1 in steps of 0.1 (as do Dagotto, Moreo and Wolff), and 

choose B = 0.5 to achieve strong coupling. 

The history of <3> and the plaquette (4.38) as i is varied between 0.1 and 

1 is shown in Fig. 4.13. (<i4.np> for ii = 0 was calculated separately.) We 
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Fig. 4.12a 	Eigenvalue distribution (4 configurations superimposed). 
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Fig. 	4.13 <in4> and plaquette history of simulation for $ = 0.5 at m = 0.2. 
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performed 5 sweeps at each i value (except for i = 0.4 where we did 10 to 

ensure equilibrium had been attained) and averaged <ii4.,> over the last 4 

sweeps to obtain Fig. 4.14 (the error bars are smaller than the crosses), in which 

the line obtained by Dagotto, Moreo and Wolff, 1986, is also shown. We see very 

good agreement, particularly near the phase transition which occurs at 4, = 0.6 ± 

0.2. The discrepancy at small and zero i is probably due to the fact that we are 

at finite coupling 6 = 0.5, whereas Dagotto, Moreo and Wolff are in the strong 

coupling limit B = 0. 

We plot the eigenvalue distributions (of the last 4 configurations 

superimposed) at 3.1 = 0.3, 0.4.....1 in Figs. 4.15a,b.....h respectively. We find the 

behaviour discussed earlier, and shown schematically in Fig. 4.3, as expected. 

(Note that in Figs. 4.3 and 4.4 X with ReX > 0 is plotted, whereas in Figs. 

4,15a,b.....h X with lmX > 0 is plotted.) 

Finally, we calculate the "sum > 0" which was defined in the last section as 

the sum in (4.39) for eigenvalues whose real part x is such that x + m 	0. 

Now, of course, the width of the eigenvalue strip is varying (as 3.1 varies) so the 

sum will depend on both x and y. However, the width is changing dramatically 

while the length remains nearly constant so the dependence is mainly on x and 

we should find that "sum 	0" decreases as p increases (widening the strip and 

increasing x). That this is indeed the case is shown in Fig. 4.16. 

4.3.3. Concluding remarks 

We have performed simulations of SU(2) at finite density with dynamical 

fermions using the Lanczos algorithm in the two regimes: fixed i; varying m, and 

fixed m; varying 	In the former we find that, for a small chemical potential 4 = 

0.1, 	is less than its j.i = o value and the eigenvalues of the fermion matrix 

move away from the real axis as the fermion mass is reduced - presumably 

because the fermion mass is moving inside the eigenvalue strip - this is probably 

the signal of a (chiral symmetry restoration and/or deconfinement) phase 

transition. In the latter we find that, at strong coupling, chiral symmetry is 

restored in a continuous phase transition, around j.i = 0.6, in agreement with the 

strong coupling limit calculation of Dagotto, Moreo and Wolff, 1986. 
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Chapter 5 

A general FORTRAN to C translator 

At Edinburgh University there are two ICL Distributed Array Processors (DAPs), 

which are used to perform a variety of numerical simulations (Pawley and 

Thomas, 1982; Bowler, 1983; Bowler and Pawley, 1984; Wallace, 1984), including 

the simulation of the Schwinger model described in Chap. 3.3. The DAP, which is 

more fully described in Appendix I, is a Single Instruction stream, Multiple Data 

stream (SIMD) computer comprising a 64x64 square array of bit-serial processing 

elements (PEs) each with 4Kbits of local memory and connections to the four 

nearest neighbours. It forms a (2Mbyte) memory module of the host ICL 2900 

series mainframe computer. Although each PE only deals with one bit of its own 

store at a time, all 4096 of them perform the same operation in parallel, that is, 

simultaneously; this yields a very powerful computer. As described in Appendix 

1.11, programs consist of two parts: a serial part (written in FORTRAN (77)) which 

executes on the host 2900 and a parallel part (in DAP FORTRAN) for the DAP, 

communicating via shared COMMON blocks. A great deal of such FORTRAN/DAP 

FORTRAN software now exists. 

However, many of the next generation of array processors, in particular the 

GEC Rectangular Image and Data processor (GRID), are programmed in parallel 

extensions of C. The GRID, which is more fully described in Appendix II, is similar 

to the DAP in that it contains a 64x64 square array of bit-serial PEs for parallel 

code, but it also contains a scalar processor to deal with serial code and it is 

hosted by a (mini-)computer. The GRID is programmed in GRID extended C (GEC), 

which is described in Appendix 11.11. 

Eventually one would hope to devise a Common Array Target Language 

(CATL), that is, an intermediate machine-independent pseudo-code for SIMD 

processor array computers (like DAP and GRID), into which both DAP FORTRAN 

and GEC would be compiled. Initially, however, it is more convenient to develop 

some software which automatically translates DAP FORTRAN into GEC, as well as 

FORTRAN 77 into C of course. In this chapter we shall describe such a general 

FORTRAN to C translator, which effectively enables DAP FORTRAN programs to 
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run on the GRID. A brief description of this software is to be published (Baillie, 

1986a); detailed information can be found in a "Users Manual" (Baillie, 1986b) and 

a "Maintainers Manual" (Baillie, 1986c). 

Note that in the following: all FORTRAN is in upper case, C is in bold face and 

names used in the translator software itself are enclosed in quotes. 

The translator consists of two parts: a prepass and a translation pass. Before 

going on to describe these, we give the reason for this. In C (Kernighan and 

Ritchie, 1978) all symbolic names must be declared before they are used, 

whereas in FORTRAN (DEC, 1982) some may not be (and are given implicit types). 

This means that halfway through the translation of a typical FORTRAN program 

we may come across a symbolic name X for a variable which has not been 

declared (but has implicit type REAL) by which time it is too late to declare it in 

C. The easiest way to deal with this is for the translator to consist of two 

"passes": a prepass which makes up lists of symbolic names, that is, routines and 

their associated variables and parameters, with their types (from declarations if 

they are declared or implicit otherwise); and a translation pass which uses these 

lists to declare the symbolic names before translating the statements in which 

they are used. 

We should also, at this point, describe the lexical analyser since it is common 

to both the prepass and the translation pass. A FORTRAN program is made up 

from lines which can be up to 72 characters long and have three fields: the 

statement label, the continuation indicator and the statement. In C, however, 

there is no concept of lines - lexemes are separated by blanks, tabs, newlines or 

comments. Thus the lower level of the lexical analyser reads lines and combines 

them into statements, making line continuations transparent to the higher level 

and preserving labels. It also converts FORTRAN comments directly into C 

comments. Then the higher level of the lexical analyser picks out the lexemes 

from the statement. It can do this in two ways: with or without blank spaces 

being significant. In standard FORTRAN, blanks are ignored, so by default the 

lexical analyser collects characters from the statement until it recognises what it 

has got. The alternative possibility - blanks being significant - is selected when 

the user specifies a flag ("-s") to the translator and is useful for detecting 

FORTRAN ambiguities like "DO 10 I = 1.5". (If blanks are ignored then this 

statement will set an implicitly declared REAL variable "DOlOI" to "1.5", whereas if 
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blanks are significant, it will be spotted as a mis-typed DO-loop.) The lexemes 

are classified as follows: 

EOF 
label 
STRING 
DIGIT 
LEXNOT 
SPECIAL 
reserved character 
reserved word 
OTHER 

where EOF (end of file) is the end of the FORTRAN program; label is a statement 

label; STRING is a character string constant (for example, 'Fred'); DIGIT is an 

integer, real, double or logical constant (for example, -123, 10.01, 6.3D5 or 

TRUE.); LEX NOT is the unary operator NOT.; SPECIAL is a FORTRAN binary 

operator (.GT 1T. GE. .LE. AND. .OR. .EQ. .NE. .EQV. .NEQV. .XOR.) or a binary 

operator particular to DAP FORTRAN (.NAND, NOR. .LEQ. .LNEQ.); reserved 

characters are newline = + - : , . ( ) * /; reserved words are BLOCKDATA, DATA, 

CONTINUE, FUNCTION, SUBROUTINE, IMPLICIT, INTEGER, LOGICAL, REAL, DOUBLE 

PRECISION, COMPLEX, CHARACTER, DIMENSION, FORMAT, WRITE, PRINT, READ, 

CALL, DO, IF, THEN, ELSE, ELSEIF, ENDIF, END, GOTO, PROGRAM, PARAMETER, 

COMMON, EQUIVALENCE, STOP, ASSIGN, RETURN, SAVE, PAUSE, ENTRY, 

INTRINSIC, EXTERNAL, BACKSPACE, CLOSE, ENDFILE, INQUIRE, OPEN, REWIND, 

GEOMETRY, MATRIX and VECTOR; and OTHER is a symbolic name (routine, 

variable, parameter or intrinsic function). (By routine we mean FUNCTION or 

SUBROUTINE; variable includes array; and by parameter we mean a variable 

passed into a routine as one of its arguments.) The lexical analysis of FORTRAN 

is context sensitive, for example, given the reserved character /, the lexical 

analyser checks for /1 which may be the string concatenation operator, a blank 

COMMON block or two newlines in a FORMAT specification statement. 

5.1.. Prepass 

The prepass goes through the FORTRAN program making up a list 	of routines 

and 	associated variables, 	parameters, 	PARAMETER 	definitions and FORMAT 

specifiers, which it 	stores 	in 	an 	intermediate 	file. 	(The 	translation pass will 	use 
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this information to translate the FORTRAN into C, making the necessary 

declarations and definitions.) In other words, the prepass deals with specification 

statements, that is, non-executable statements which declare, initialise, make 

common and equivalence, variables. We shall divide our discussion of the 

prepass into the following sub-sections: declaration, COMMON, EQUIVALENCE, 

initialisation, PARAMETER and FORMAT. 

First of all, an outline of the data structures used to store the information 

about symbolic names is useful. There is .a linked-list of routines with each 

routine having its own linked-list of PARAMETER definitions, one of FORMAT 

specifiers, one of parameters and one of variables. This structure is shown 

diagramatically in Fig. 5.1, where 'etc' stands for the rest of the linked-list. 

Fig. 5.1 Data structures used in the translator. 

routine PARAMETER 

I 	name PARAMs 	------------------> 	lbs 	I 	next 
type FORMs 	I-------------+ 	I 	rhs 	I 
chsize pars 	----------+ 

I 	function vars 	 + 	I 
I 	tvcount 	I next 	I- 

------ I 	I 	FORMAT 

------------------- 
w 	 I next 	I --- >etc 

etc<----+ 	I 	lab 	I 
I 	I 	form 	str 	I ------------ 

---------------------------- 

variable 

--------------------------+

variable parameter 

I 	name I 	corn 	I 	-------- > 	name I 	corn 	I 
I 	type I 	corn_pos 	I 	 I 	type com_pos 	I 
I 	chsize corn—name 	I 	 I 	chsize corn_name 

I 	function corn ptr 	I 	 I 	function corn_ptr 	I 
I 	ext I 	equiv 	I 	 I 	ext I 	equiv 	I 
I 	array I 	offset 	 I 	array I 	offset 
I 

	
dim 	start I 	parent 	I 	 dim 	start I 	parent 

I 	dim 	finish 	I 	next 	I--->etc 	I 	dim 	finish I 	next 	I --->etc 
I 	data I 	data I 	. 
I 	value value 

Each individual data structure contains a field 'next' which points to the next one 

on the list, or points to null if at the end of the list. The routine data structure 



also contains pointers to its PARAMETER definitions ('PARAMs'), FORMAT 

specifiers ('FORMs'), parameters ('pars') and variables ('vars'). It has fields for the 

name, type and character string size ('ch_size') - if appropriate - of the routine; a 

field indicating when it is a FUNCTION ('function') - as opposed to a 

SUBROUTINE; and a field giving the number of temporary variables required 

('tvcount') - see Sec. 23. The same data structure is used for both variables 

and parameters. It has fields for the name, type and character string size of the 

variable or parameter; a field indicating when it is a FUNCTION and one 

specifying if it is EXTERNAL as well ('ext'); some fields for when it is an array 

('array', 'dim _start' and 'dim-finish'); two fields for when t is initialised ('data' and 

'value'); and some for COMMON and EQUIVALENCE (which will be described later). 

PARAMETER is straightforward having two fields: one for its left-hand side ('lhs') 

and one for the right-hand side ('rhs'). FORMAT has fields for the label ('lab') and 

the (translated) FORMAT specification string ('form str') as well as one to indicate 

whether the format is being used in a WRITE statement ('w') - see Sec. 1.6. 

5.1.1. Declaration 

In FORTRAN, variables and arrays may or may not be declared explicitly. 

Explicit declarations, for example, 

REAL X, Y(5) 
	

(5.1) 

are easy to deal with: X is a real variable, Y is a real one-dimensional array of 

dimension 5. Implicit declarations are a little harder. Firstly, the prepass must 

keep track of what the implicit types are, as these may be changed by the 

IMPLICIT statement. Then, it has to identify the lexeme of class OTHER (that is, a 

symbolic name) as a variable, an array, a routine or an intrinsic function. Intrinsic 

functions are known by the translator (this, incidentally, renders the INTRINSIC 

statement redundant). Arrays, if they are not declared explicitly, as in (5.1), are 

always declared implicitly by a DIMENSION statement, for example, 

DIMENSION Y(5) 	 (5.2) 

Routines are indicated either by EXTERNAL statements, or as lexemes of class 

OTHER followed by opening brackets and not declared as arrays. (SUBROUTINEs 



are also indicated by the preceding reserved word CALL, of course.) Variables are 

then the remaining lexemes of class OTHER. There is, however, one 

complication: character substrings like Y(1:3) are variables not routines. Hence to 

distinguish between these, the prepass follows the logic: 

if OTHER is EXTERNAL then 
it is a function 

else if it is not an array and yet is followed by '(' then 
if ':' is found amongst the arguments then 

it is a character substring i.e. variable 
else 

it is a routine. 

The prepass also checks if the variable being (explicitly or implicitly) declared is 

actually a parameter passed into the routine, since parameters are stored in a 

separate list from variables - see Fig. 5.1 above. 

FORTRAN data types are translated into the obvious C equivalents, or nearest 

equivalents, as listed in Table 5.1. 

Table 5.1 

FORTRAN data types with corresponding C translations. 

FORTRAN 	 I 	C 

INTEGER mt 
INTEGER*1, INTEGER*2 short int (WARNING) 
INTEGER*3 int (WARNING) 
INTEGER*4, INTEGER*I mt 
INTEGER* long int (ERROR) 
REAL float 
DOUBLE PRECISION double 
REAL*3 float (WARNING) 
REAL*4, REAL*E float 
REAL*8 double 
REAL* double (ERROR) 
COMPLEX COMPLEX (WARNING) 
DOUBLE COMPLEX COMPLEX (WARNING) 
CHARACTER ... char 	[1] 
CHARACTER*N, CHARACTER*(N) ... char ...[N] 
CHARACTER*O, CHARACTER*(*) ... char 	'b... 

CHARACTER* 	... char 	(ERROR) 
LOGICAL mt 

where '' denotes anything else, '...' stands for a variable name list, and 
(WARNING) or (ERROR) signify that a warning or error is given respectively. 



Note that COMPLEX is left simply as COMPLEX, since C has no complex type. DAP 

FORTRAN variables have the same types as the FORTRAN ones but they have 

different modes (Appendix 1.11.1), whereas GRID extended C variables have different 

types form the C ones (Appendix 11.11.1) - though the difference is simply the 

parallel extension "array". Therefore DAP FORTRAN variables, that is, variables of 

mode matrix or vector, have their types translated in the same way as FORTRAN 

ones except that array is appended to int, short, long, float, double and char; 

and LOGICAL becomes bool array. 

5.1.2. COMMON 

The COMMON statement defines a contiguous area (block) of storage 

identified by a symbolic name, in which variables and arrays are stored in a 

certain order. This block is accessible to any routine which refers to it explicitly. 

In C global variables and arrays are declared at the beginning of the program 

(outside the functions) and referred to as extern in functions that wish to use 

them. So to mimic a COMMON block in C we declare an extern (one-dimensional) 

array of the correct size, with the name of the COMMON block, and then declare 

the variables and arrays in the COMMON block as pointers into this array 

(counting their lengths in bytes to obtain the positions). This is fine for arrays 

which are essentially pointers anyway, but for variables it implies that they must 

always be preceded by the operator * (or have [0] appended) so that their value 

is taken, that is, a FORTRAN variable A which is COMMON must be written *a  in 

C. For example (see Fig. 5.2 also) 

char com[161; 

INTEGER I,P(3) 	 main() 
COMMON /COM/ l,P 	 { 
I = 0 	 mt (*i) = (int(*))(&com[0]); 

P(1) = 1 	 int (*p) = (int(*))(&com[4]); 

END 	 *i=0. 

P[1-11 = 1; 

} 
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Fig. 5.2 The COMMON block COM. 

memory 	0 	4 	8 	12 	16 
------------------------------------ 

variables I I I P(l) I P(2)  I P(3) 
------------------------------------ 

There is a linked-list of COMMON block data structures, each one containing 

fields for the name and length as well as a field to specify whether the COMMON 

is DAP FORTRAN mode matrix or vector. Note that if any member of the 

COMMON block is a matrix or a vector then they all must be. Each variable 

added to the COMMON block has the fields in its variable data structure - 'corn', 

'corn 	ptr', 'corn name' 	and 	'corn pos' - 	set 	to indicate its 	position 	in 	the 

COMMON block. 	Finally 	we 	note 	that different routines may 	have 	different 

versions of the same COMMON block - the actual amount of storage required is 

the size of the longest version; for example, 

Routine 1 
	

Routine 2 

INTEGER P1,P2 
	

INTEGER P 
COMMON /COM1/ P1,P2 

	
COMMON /COM1/ P(2,3) 

thus, COM1 has length 2x3x4 = 24 bytes. This means that at the end of the 

prepass the linked-list of COMMON blocks is searched and all shorter duplicates 

removed. 

5.1.3. EQUIVALENCE 

The EQUIVALENCE statement partially or totally associates two or more 

variables with the same storage location. Variables can be character substrings or 

array elements. When an element of one array is made equivalent to an element 

of another, equivalences are introduced between the other elements of the two 

arrays. This is dependent on how the arrays are stored - in FORTRAN they are 

stored in column-order, that is, with the left-most subscripts varying fastest. 

There is no concept of EQUIVALENCE in C but this can be achieved by means of 

pointers. Given a collection of EQUIVALENCEd variables and arrays, we compute 

the net (total minus overlap) amount of storage required for them and declare an 

array this size, with the variables and arrays declared as pointers into it, as for 

COMMON (see previous section). Typically we have 



INTEGER X(2,3), Y(3) 
EQUIVALENCE (X(2,2), Y) 

resulting in the storage pattern depicted in Fig. 5.3, where X(2,2) is at the same 

location as Y(1). 

Fig. 5.3 Showing how dist is calculated. 

a 
V 

------------------------------- 
I 11  I 21  I 12 1 22 1 13 1 23 1 	X 
------------------------------- 
<-------------1 1 2 1 3 I 

dist 

To calculate dist we compute e, the offset of X(2,2) from X(1,1) in units of the 

element size, and f, the distance of Y(1) from Y(1). In general, given an array 

declared as P(L,M,N), the element P(I,J,K) is offset (I-i) + (J-1)L + (K-1)ML, in units 

of the element size, from the first element P(1,1,1). Then the beginning of X is at 

a distance a = -4e bytes from the point of equivalence; similarly for Y, b = -4f 

bytes. (The 4's arise because an INTEGER is 4 bytes long.) Hence dist = a - b 

bytes. This is shown in Fig. 5.3. Effectively now having 

EQUIVALENCE X, Y + dist 	 (5.3) 

means that we can use a simple equivalencing algorithm such as the one given 

by Aho and Ullman, 1977 (in Sec. 10.3), to deal with a sequence of EQUIVALENCE 

statements which groups variables into "equivalence sets". To compute these 

equivalence sets we create a tree for each one. Each node of the tree is a 

variable data structure which has a field ('offset') containing the offset in bytes of 

that variable relative to the variable at the parent of this node and a field 

('parent') containing a pointer to this parent node. The variable at the root of the 

tree is called the leader; its offset is 0 and its parent pointer is null. The position 

of any variable relative to the leader can be computed by following the path from 

the node for that variable to the leader and adding offsets along the way. Now 

consider equivalencing a variable p in the equivalence set tree with leader tp to a 

variable q in tq's tree, with dist = a - b as before. We must equivalence one tree 



to the other with the correct offset, that is, we either change the offset and 

parent pointer of tp to make tq its parent or change tq.to point at tp. To do this 

we follow the path from p to its leader tp summing the offsets along the way to 

obtain c, then the location of tp which we shall denote mp is given by a = mp + 

C; similarly b = mq + d, where d is the offset of q from tq. Hence the offset we 

require for equivalencing tp to tq is 

diff = mp - mq = (a - c) - (b - d) = dist - c + d. 	 (5.4) 

A picture of this is given in Fig. 5.4. 

Fig. 5.1 Showing how diff is calculated. 

d i f f 
< -------------------------- 
MP 	 I mq 

V ------------

q leader 
-------------------- 

> ------------- 
d 

lb 
-----------------------

dist 

For efficiency we make sure the trees grow squat by equivalencing the tree with 

the smaller number of nodes to the other. (We could obtain maximum efficiency 

by path compression as well.) 

EQUIVALENCE/COMMON interaction: What happens if one of the variables in 

an equivalence set is in a COMMON block? The entire equivalence set is put into 

the COMMON block at the correct place, which means we must know the extent 

of this set. To handle this we attach a header to each equivalence set which has 

two fields: low and high, giving the offsets relative to the leader of the lowest 

and highest locations used by any member of the equivalence set. This header 

is also used for the other equivalence sets to tell how long an array of char to 

declare in C to hold the whole set. Now when two members of different 

equivalence sets are equivalenced, forcing the sets to be merged, we must 

change the low and high of the resultant equivalence set appropriately: if we 



merge tp to tq then the new fields for tq are given by 

new lowq = min( Iowq, lowp 4  diff) 
new highq = max( highq, highp + diff) 	 (5.5) 

(if we merged tq to tp instead then would have had "- diff"). An example should 

illustrate how this works: 

INTEGER X(2,3), Y(3) 	 char c{241; 
COMMON /0/ X 	 char *el = &c(O]; 
EQUIVALENCE (X(2,2), Y) 

nt (*x)[2] = (int(*)[21)(& e1[01); 
mt (*y) = (int(*))(& e 1 [121); 

The COMMON and EQUIVALENCE are processed separately, where they occur, and 

then at the end of the prepass variables which are both COMMON and 

EQUIVALENCEd are looked for - it is then that X is noticed. The prepass transfers 

the COMMON attribute of X to the header of its equivalence set. (Note that if the 

header is already COMMON then we have an error - no two COMMONs can be 

EQUIVALENCEd in FORTRAN.) Then it checks that low is not before the start of 

the COMMON block - it is an error if it is - and if high is after the end of the 

COMMON block, it extends the block (giving a warning). When we come to 

declare the storage required (in the translation pass) for the equivalence set, we 

find that it is COMMON and just declare a pointer to the required position in the 

COMMON block. The position of the start of the equivalence set in the COMMON 

block for the above example is given by 

composE = com_posp - c + lowp 	 (5.6) 

and the new length of the COMMON block is 

new corn_len = composE + highp - lowp, 	 (5.7) 

this is shown pictorially in Fig. 5.5. 
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Fig. 5.5 Showing how corn posE and new corn len are calculated. 

lowp Imp 	 highp 
<-- V ----------------------> 
----------------------------- 

p header 
----------------------------- 

p leader I 
-------------------- 

corn posE 	 > 	p 	I 
C 

----------------------------- 
I 	pCOMt4ON 	 I ----------------------------- 

	

--> 	 I new corn len 
corn posp I a 	 I corn_len 

5.1.4. Initialisation 

In FORTRAN, the DATA statement assigns initial values to variables before 

program execution In C this is also the case for static variables which are 

initialised, but not for automatic ones - these are initialised where they are 

declared by simply adding "= value" to the declaration. Only variables and arrays 

which are COMMON or EQUIVALENCEd need be automatic (since they are 

pointers) and we can take care of these by simply initialising them separately in 

a special routine which is called at the beginning of the program. For example 

char blank[4]; 

INTEGER l,J 	 DATA init() 
COMMON] 
DATA I,J/0,1/ 	 int (*1) = (int(*))(&blank{0]); 

*1=0; 

END 	 } 

main() 

nt (*j) = (int(*))(&blank[0J); 

static int j = 1; 
DATA_in itO; 

} 

There are some subtleties in the translation of declarations and initialisations 

of character strings, because FORTRAN reserves space for strings whereas C 
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does not. For variable-length character strings, declared as CHARACTER*(*)  in 

FORTRAN 77, DATA should be used to initialise them to some string of maximum 

length required in order to force C to reserve enough space, for example, 

CHARACTER*() S 	 static char 	= "123"; 
DATA S /'123'/ 

otherwise they will be initialised to null strings, that is, 

CHARACTER*(*) S 	 static char *s - " 

Fixed length character strings, declared as CHARACTER*N  in FORTRAN 77, which 

are not initialised are set equal to a string of N blanks in C to reserve this 

amount of space (plus one extra space for the end of string character), that is, 

CHARACTER*5 S 	 static char s[5+1] = " 	" 

5.15. PARAMETER 

The PARAMETER statement assigns a symbolic name to a constant, for 

example, 

PARAMETER (P1 = 3.1415927) 

In C, this can be done using a #define statement: 

#define pi 3.1415927 

Hence the prepass simply stores a linked-list of left- and right-hand sides of the 

PARAMETER definitions for the translation pass to output at the beginning of 

each routine (before the rest of the declarations, in case they make use of these 

PARAMETER definitions). 
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5.1.6. FORMAT 

FORMAT statements describe the format in which data is to be input or 

output; each one is uniquely identified by a label. We translate them into #define 

statements as follows: 

label FORMAT(fspec) 
	

#define I label Cfspec 

where Cfspec is the translated FORMAT specifier, fspec. For example 

1 FORMAT(3(' ',F6.3)) 
	

#define Ii %6.3f %6.3f %63f" 

The FORMAT specifier is defined by the following regular expression grammar: 

fspec 	 : primary 
primary , fspec 
primary / fspec 
/ fspec 

primary 	 : (fspec) 
i (fspec) 
fdes 
i fdes 

fdes 	 :c 
c  [w] 
c2 [w[.p]] 

c 	 : ci 	c2 I X  I T I H 

c 	 :AIIILIOIZ 
c2 	 : F G E I D 

w 	 : field width 

P 	 : number of decimal places 

and therefore parsed recursively. Each FORMAT descriptor, fdes, is translated as 

shown in Table 5.2. 
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Table 5.2 

FORTRAN FORMAT descriptors with corresponding C translations. 

FORTRAN 	 I 	 C 

IL %d 

0 . 	 %o 

Z %x 

ciw %wcl 

F-  /0 
0/ 

G %g 
ED 
c2 w.p %w.p c2 

A %s 

A W %.w s 

X space 

I \t 

H * (see below) 

/ \n 

* Hollerith strings in format specifiers are restricted to be alphanumeric 
with no spaces i.e. "4Habcd" is allowed but "4Ha Cd" is not. 

Note that there are some restrictions in what can be translated: 
fdes cannot be ':', BN, BZ, S, SP, SS, TL, TR or P 

If an i precedes part of the specification then the translation of this part is 

repeated i times (see last example). FORMAT specifiers should be given 

completely since C will not use them more than once like FORTRAN does. 

The prepass stores the translated FORMAT specifier, Cfspec, along with its 

label, label, in the FORMAT data structure fields 'form str' and 'lab', respectively. 

The other field, 'w', is necessary to surmount the following complication. At the 

end of FORMAT specifiers there is an implicit newline character since FORTRAN 

takes a new line after every READ and outputs a newline after every WRITE. 

However, in C newlines are disregarded on input (as are blanks and tabs) and so 

should be dropped. The field 'w' indicates whether the FORMAT specifier is used 

in a WRITE statement. If it is then a newline character is appended to 'form str'. 

Note that if the same FORMAT specifier is used for READ and WRITE, WRITE takes 

priority and a newline character is appended - this means that a READ with this 

FORMAT specifier will fail in C. Note also that anything at the end of a line of 

input data which FORTRAN ignored by taking a new line will be read in by C and 

could lead to unexpected results! 
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5.2. Translation pass 

Once the prepass has discovered what all the routines, variables and 

parameters are; sorted out the variables which are COMMON and/or 

EQUIVALENCEd; and dealt with PARAMETER definitions and FORMAT specifiers, 

the translation pass can proceed. The translation pass deals with control 

statements, I/O statements, routines, expressions, end intrinsic functions. These 

are discussed in turn in the sub-sections below and are summarised in Table 5.3. 



Table 5.3 

FORTRAN statements with corresponding C translations. 

FORTRAN 
	

C 

ASSIGN S TO V #define Iv Is 
BACKS PACE[(][U NIT= ]u{,ERR=sI[)] if (fseek(f u,-1 Li) == NULL) 

[goto 	Is]; 
BLOCKDATA En] used by prepass 
CALL 	f(([n][,n]  ... )] 
CLOSE({UNIT=]u[,ERR=s]) if (fclose(f u) == NULL) [goto Is]; 
COMMON [/(cb]/]nlist[[,]/[cb]/Rlist]... used by prepass 
CONTINUE ; (null 	statement) 
DATA nlist/clistj[,]nlist/clist/]... used by prepass 
DIMENSION 	a(d)[,a(d)]... used by prepass 
DO s[,] n=e1,e2[,e3] for (n=e1;n<=e2;n+=[e3]I1) ( 
ELSE } else 
ELSEIF (e) THEN } 	else 	if (e) 
END } (terminates program unit) 
ENDFILE not implemented 
ENDIF } (terminates block IF) 
ENTRY not implemented 
EQUIVALENCE (nlist)[,(nlist)]... used by prepass 
EXTERNAL f{,fJ... used by prepass 
label FORMAT(fspec) fdefine I 	label Cfspec 
[typ] 	FUNCTION f[([n[n]  ... ])] Otyp 	f([n[,n] ... ]) 
GOTO s goto Is; 
IF 	(e) 	St if (e) 	Cst; 
IF (e) THEN if 	(e) 
IMPLICIT 	typ(I{,I] ... ){,typ(l[I]...)]... used by prepass 
INQUIRE not implemented 
INTRINSIC f[f]... used by prepass (actually ignored) 
OPEN ([UNIT=]u[,FILE=n][,ERR=s]) if ((fufopen([n]default,'r"1"w")) 

NULL) [goto Is]; 
PARAMETER (n=cLnc]...) 'define n c 
PAUSE not implemented 
PRINT not implemented 
PROGRAM n /* n */ 

READ([UNIT=]u,[FMT=]labei[,END=s]) [nlist] if (fscanf(f 	u,I 	Iabel[,nlist]) 	== 	EOF) 
[goto 	Is]; 

RETURN return[(f)]; 
RE'A'IND[(][UNIT=]u[,ERR=s][)] if (fseek(f u,OL,O) == NULL) 

[goto 	Is]; 
SAVE nlist used by prepass (actually ignored) 
STOP [disp] [fprintf(stderr,"%d\n 'j"%s\n'disp); 

exitQ; 
SUBROUTINE f[([n[,n].])] f([n[,n] ... ]) 	( 
iVRF1E([UNIT=}u.[FMT=]label) [nlist] fprintf(fullabel[,nlist]); 
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where 

a(d) array declarator 
c constant 
clist list of constants separated by commas 
cb common block name 
default system dependent file name 
disp integer or character constant 
e logical expression 
el,e2,e3 numeric expressions 
f subprogram name 
fspec format specifier 
Cfspec equivalent C format specifier 

single letter, or range of letters (I-I) 
n symbolic name 
nlist list of variable names separated by commas 
S statement label 
St statement 
Cst equivalent C statement 
typ type specifier 
Ctyp equivalent C type specifier 
u logical unit specifier 
v integer variable name 

and 

indicates that the preceding item(s) can be 
repeated one or more times 

[1 	 implies optionality 

I 	 denotes or 

[II 	 means first thing if present, second otherwise 

5.2.1. Control statements 

First, 0010 is translated very easily into goto in C; CONTINUE is the null 

statement ";" and a label like "123" becomes "1123" (since labels, like other 

symbolic names in C, must begin with a letter). IF, THEN, ELSE, ELSEIF and ENDIF 

obviously present no difficulties and DO can be translated into for. For example 

DO 10 I = 1,100 
IF (MOD(I,2) EQ. 0) THEN 

ELSE 
GOTO 10 

ENDIF 
10 CONTINUE 

static int i; 
for (i = 1; I <= 100; i += 1) 

if (((i) % (2)) == 0) 

C 

} 
else 

C 
goto 10; 

} 
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} 

Note that we have not dealt with computed GOTO and arithmetic IF, as they are 

essentially redundant in FORTRAN 77 (and will be "deprecated" in FORTRAN 8X). 

STOP can also be translated easily - into exit. However, PAUSE can not be 

translated as there is simply no analogous statement in C. 

5.2.2. I/O statements 

We have already discussed how FORMAT specification statements are 

translated into #define statements in Sec. 1.6. Here we describe how READ and 

WRITE are converted into fscanf and fprintf. In FORTRAN, READ and WRITE input 

from and output to logical units which are connected to files in the outside 

world. In C, file pointers perform essentially the same function - they are 

declared using the special type FILE. Most logical units are assigned using the 

OPEN statement, however, 5 and 6 are pre-defined as the default READ and 

WRITE I/O units respectively. Similarly, most file pointers are set up by the 

function fopen, however, stdin and stdout are automatically initialised. This 

explains the following example translation: 

WRITE(6,1) R1,R2,R3 	 #define Ii "%6.2f%6.2f%6.2f\n" 
1 	FORMAT(3F6.2) 	 static FILE *f  5 = stdout; 

fprintf(f_6, Ii, ri, r2, r3); 

The logical unit can be given as ', in which case the translator will choose 

the correct default (5 or 6). However, the FORMAT specifier may not be * because 

the translator cannot cope with list-directed formats. Similarly, it cannot cope 

with PRINT, or READ without brackets. (It would be trivial to modify the translator 

so that these cases could be handled - one simply checks the types of the 

variables in the READ, WRITE or PRINT and sets up the appropriate C format 

specifier.) It will cope with an END transfer-of-control specifier in READ 

statements. 

The file manipulation statements OPEN, CLOSE, BACKSPACE and REWIND can 

be translated into the functions fopen, fclose and fseek as shown in Table 5.3. 
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However, ENDFILE and INQUIRE have no analogy in C and so cannot be 

translated. 

5.2.3. Routines 

Routines (FUNCTIONs and SUBROUTINEs) are on the whole easy to deal with, 

but there are some complications. SUBROUTINE calls are preceded by the 

reserved word CALL, this is simply dropped in C. FUNCTIONs return their result in 

a variable of the same name so this is also done in the C. However, in FORTRAN, 

one can also have a so-called "alternate return" from a routine which causes a 

transfer-of-control in the calling program - this most certainly does not exist in 

C. Similarly absent is the concept of an ENTRY statement which allows one to 

jump into the middle of a routine in FORTRAN. The main complication stems 

from the fact that routine arguments in FORTRAN are call-by-address but C's 

function arguments are call-by-value. This means that if a variable X which has 

value 1.0 is passed into a function F which sets its argument to 2.0, then in C X 

will still be 1.0 after the function has returned but in FORTRAN it will be 2.0. 

Fortunately we can coerce C into using call-by-address by means of pointers; in 

fact, we use call-by-value but with the addresses of the values. Then, of course, 

the arguments passed to a function are addresses so inside the function we 

must precede references to them with * (or append (01). This is all well and 

good for variables and arrays whose addresses can be taken but not for 

constants and expressions - we cannot write &1 or &(x+0.5) to obtain their 

addresses. To cope with this, we must assign arguments which are constants or 

expressions to temporary variables and pass the addresses of those into the 

function. Note, however, that this is not necessary for intrinsic function 

arguments. For example 

SUBROUTINE FRED(A,B,C) 
A= B+ C 
RETURN 
END 

CALL FRED(X,1.0,COS(0.0)) 
END 

fred(a,b,c) 
float *a; 
float *b; 
float *C; 

{ 
(*a) = (*b) + (*C); 

return; 

} 

main 0 
{ 

float tvl, tv2; 
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static float x; 
tvl = 1.0; 
t v 2 	cos(0.0); 
fred(&x, &tvl, &t-v-2); 

} 

This is done by the recursive expression parser which is described in the next 

section. 

5.2.4. Expressions 

We shall firstly discuss the translation of FORTRAN expressions and then say 

something about translation specific to DAP FORTRAN expressions. The 

FORTRAN infix operators // (string concatenation) and '' (exponentiation) 

correspond to the C functions concat and power which are effectively prefix. 

Thus we must know and be able to change the structure of expressions - this is 

done by a recursive expression parser which builds each expression into a tree 

and generates C, in the correct order, from it. (Since all the types of the symbolic 

names are known we can tell if have parallel expressions, that is, ones of mode 

matrix or vector in DAP FORTRAN, and deal with them appropriately as well.) The 

parser also takes care of the temporary variables required to ensure that routine 

arguments remain call-by-address rather than become call-by-value, as 

described in the previous section. However, the parser takes no account of the 

differences in precedence and associativity of operators between FORTRAN and 

C. As there are so few differences, it was felt not to be worthwhile introducing 

operator-precedence parsing (Sec. 5.3 of Aho and Ullman, 1977). 

The regular expression grammar which the recursive expression parser 

follows is 

expr 	 opand binop expr 

opand 	 : ( expr 
unop opand 
DIGIT 
STRING 
variable 
parameter 
routine 
routine passed as parameter 
intrinsic function 



binop 	 : , = ~ - * / ** // SPECIAL 

UflOp 	 : + - LEX NOT 

DIGIT 	 : integer constant 
real or double precision constant 
logical constant (FALSE. TRUE.) 

STRING 	 : character string constant 
SPECIAL 	 : .GT. IT. GE. .LE. .AND. OR. EQ. NE. 

.EQV. .NEQV. .XOR. NAND. NOR. .LEQ. .LNEQ. 
LEX NOT 	 : NOT. 

Note that '(' has been made a unary operator and ',' has been made a binary 

operator for convenience. 

We shall outline how the recursive expression parser actually works, 

describing the data structure used in building the parse tree. In what follows, 

"parameter" refers to the dummy arguments which are used inside a routine, 

whereas "argument" refers to the actual arguments of a routine call which occur 

outside the routine. 

An expression consists of nodes which come in seven 'utypes' - UCONST, 

UOP, UVAR, UPAR, UVFN, UPFN and UINTR - with a 'uvat' and a 'type' • (plus 

'chsize' if the type is CHARACTER). UCONST means that the node is a DIGIT or 

a STRING; UOP means that it is a binary or unary operator; UVAR is a variable; 

UPAR is a parameter; UVFN is a routine; UPFN is a routine which is passed as a 

parameter; and UINTR is an intrinsic function. The reason for the distinction 

between a routine (UVFN) and a routine which is passed as a parameter (UPFN) is 

that they are declared differently in C: the former would be, say, "mt ifnQ;", 

whereas the latter would be "mt (*ifn)Q;". If the node is a unary operator then it 

has a pointer to its operand, if it is a binary operator then it has pointers to its 

'left' and 'right' operands. If it is a (variable or parameter) array then it has a 

pointer to its dimensions; if it is a routine or a routine which is passed as a 

parameter then this pointer (called 'args') points to its arguments. If it is a 

character substring then it has pointers to its 'Isubstring' and 'rsubstring' indices. 

If it is part of a list of array dimensions or routine arguments then it has a 

pointer to the 'next' node on this list (null if it is the last one). If we denote 

these pointers as indicated in Fig. 5.6a then the node data structure can be 

represented as in Fig. 5.6b. 
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Fig. 5.6 Data structure node used by the recursive expression parser: 

diagramatic representation of the pointers; 

"left" and "right" operands: 	-1 	1— 
V 	V 

array dimensions: 	[I 
V 

routine arguments: 	El 
V 

"lsubstring" and "rsubstring" indices: 	 I' 

	

V 	V 

"next': 	--> 

diagramatic representation of the whole thing. 

--------------------------------------------- 
I 	utype 	I 	uval 	type (chsize) 	--> 
--------------------------------------------- 

- 	[I or (I 	"I 	I" 
V 	V 	V 	V 	V 	V 

Then the parse tree for the expression 

B(I) = F( SIN(A) 	I, A 

where B is a REAL array, F is a REAL function, A is a REAL variable and I is an 

INTEGER variable, can be drawn (dropping the pointers which are not being used) 

as Fig. 5.7. 
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Fig. 5.7 Diagramatic representation of the parse tree for 
B(I) = F( SIN(A) ** I, A). 

------------------- 

tJOP I = I float 
------------------- 

V 
-------------------- 	

-------------------- 

I UVAR  I b  I float 	 I tJVFN I f I float 
-------------------- 	 -------------------- 

------------------ 

UVAR I i I mt I 
	

I tJOP I ** I double I --> I UVAR I a I float 
------------------ 

V 
	

V 

	

------------------------ 	
------------------ 

	

UINTP. I sin I double I 
	

I UVAR I i I mt I 

	

------------------------ 	------------------ 

-------------------- 

I UVAR I a I float 
-------------------- 

The expression translates into 

tv1 .d = power(sin(a), i); b[i-1] = f(&tvl .d, &a); 

We notice that the infix operator '' has indeed, been translated into the prefix C 

function power. Moreover, a temporary variable "tvl.d" has been declared so 

that the address of the result from power can be passed into the function f, as is 

done in FORTRAN. 

This creation of temporary variables is by no means trivial and warrants an 

explanation. To recap, arguments which are constants or expressions, that is, 

arguments with 'utypes' UCONST, UOP, UVFN, UPFN or UINTR, are assigned to 

temporary variables and arguments with 'utypes' UVAR or UPAR are preceded by 

the & operator. Note that addresses of arguments to intrinsic functions must not 

be taken; similarly addresses of arguments which are intrinsic functions (specified 

by INTRINSIC) or EXTERNAL routines must not be taken (with the proviso that 

these arguments do not themselves have arguments - for then they are being 

called). In the translation pass there is a function 'get expr' which parses the 
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"expr" part of the grammar recursively. When it comes across a routine, routine 

passed as a parameter or an intrinsic function, it calls 'get args' to parse the 

arguments. It is 'get args' which outputs the temporary variables; it works as 

follows. To get each argument, 'get _args' calls 'get expr' which will in turn call 

'get args' again if the argument involves another routine, routine passed as a 

parameter or intrinsic function. This mutual recursion continues until the 

innermost argument (which must then be a constant, operator, variable or 

parameter) is reached. It is on the way back up from this recursion that 'get_args' 

outputs the appropriate temporary variables (and what they equal, by calling 

'put_expr' - see below). The temporary variables are declared as follows: 

typedef union C mt i; float f; double d; char *c; } tvdecl; 
t v decl t v 1, t v 2..... 

and so can hold any type. Hence they can be used sequentially - "tvl" can be 

an INTEGER in one statement (referred to as "tvl.i") then a CHARACTER in the 

next ("tvl.c"), for example. 'get args' keeps two counts of these temporary 

variables: one for when they first appear on the left-hand side of the expressions 

generated ('part v count') and one for their subsequent appearance on the 

right-hand side of a later expression ('tvcount') - note that the latter only 

happens once. 'party count' starts at 1 and is incremented after 'get_args' has 

output a temporary variable; 'tvcount' starts at 0 and is incremented after the 

argument that the temporary variable is set equal to is output (the first such will 

always be something which involves no further arguments and so will not require 

the non-existent zeroth temporary variable). The example translation of the 

expression 

K = l( J(1), 2 

will perhaps make this clearer: 

tvl.i = 1; 	 /* par _t_v_count 	1 for lhs / 
/* tvcount = 0 for rhs */ 

tv2.i = j(&tvl.i); 	 1* party count = 2 for lhs / 
/* tvcount = 1 for rhs */ 

tv3.i = 2; 	 /* party count = 3 for lhs 'V 
/ tvcount = 2 for rhs */ 

115 



Of course the "top-level" expression has still to be output but 'get args' cannot 

do this because it began analysing the arguments to this expression not the 

expression itself. In fact the "top-level" expression is output by a call of 'put expr' 

immediately after 'get_expr' returns ('get expr' returns the pointer to the top, or 

root, of the expression tree and 'put expr' picks this up). For the above example, 

this results in 

k = i( &tv2.i, &t_v_3.i ); 

and is done in the following way. 'put expr' recursively goes through the parse 

tree of the expression outputting the translated version. When it comes to a 

routine or a routine passed as a parameter (intrinsic functions and their 

arguments are output by 'put_intr' - see Sec. 2.5), 'put expr' calls 'put args' which 

outputs the arguments preceded by & or the appropriate temporary variables in 

their place, depending on the 'utypes'. 'put_args' is called from two different 

regimes: the first is from 'get args' when 'get expr' is parsing the expression and 

the second is from 'put expr' when the "top-level" expression is being output. In 

the first regime, 'put args' knows which temporary variable to use in an argument 

replacement from the count 'tvcount'. In the second regime, on the other hand, 

it must work this out for itself. This is a little tricky and must be done 

recursively because as well as counting the "top-level" arguments which require 

temporary variables, the arguments within these arguments requiring temporary 

variables must also be counted. 

We have mentioned the conversion of /1 and ** into prefix operators, that is, 

C function calls - this is done by 'put_expr'. It also makes character string 

assignments, the EQ. operator used with character strings and character 

substrings into prefix C function calls: 

SIR = 'Fred' 	 strass( str, "Fred", <length of str> 

STR1 .EQ. STR2 	 !strcmp( stri, str2 

STR(l:J) 	 strbit( str, i, j 

(The functions strass and strbit are output by the translator when the flag "-c" is 

specified; strcmp is an intrinsic function in C.) 

The other difficult job 'put expr' (actually 'put-array-dimensions' which is 

called by 'put expr') must do is the translation of array dimensions. In FORTRAN 
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77, array dimensions can begin from any integer, start, and go up to any (larger) 

integer, finish, (though normally start is 1 so finish is equal to the dimension of 

the array) whereas in C array dimensions range from zero to the dimension of 

the array minus one, that is, from 0 to finish-start. This means that start must be 

subtracted from array subscripts in the translation (as is done for b in the above 

example parse tree, assuming that start is 1). The other alternative, for start = 1, 

is to declare all arrays to be 1 bigger (in each dimension) then ignore the zeroth 

element(s) so that 1 need not be subtracted from every array subscript - this is 

done by the translator when run with the flag "-i". Furthermore, FORTRAN stores 

its arrays in column-order, that is, the left-most subscript varies fastest, whereas 

C (like everybody else) stores arrays in row-order, that is, the right-most 

subscript varies fastest. This makes a difference (to the number of page faults 

and hence program run time) when stepping sequentially through a large array so 

the translator reverses the array dimensions thus rendering the storage patterns 

identical. This is also essential for EQUIVALENCE statements to equivalence 

properly. However, this reversing of array dimensions can be overridden by 

specifying the flag "-r". There is also a difference in the way character strings 

are stored: FORTRAN has strings ranging from 1 to the length, whereas C has 

them ranging from 0 to the length with the last position containing an end of 

string (EOS) character. Therefore, again, 1 must be subtracted from all substring 

indices. (Note that the flag "-i" does not stop this happening.) Unfortunately, this 

EOS character at the end means that character strings will not line up properly in 

all translated EQUIVALENCE statements; and that special routines must be written 

to handle strings in general - these are included in the translation by specifying 

the flag '-c". 

We now come to the translation specific to DAP FORTRAN expressions. 

Following the above, we discuss array dimensions first. In DAP FORTRAN the 

constrained dimensions of matrices and vectors come first, whereas in GRID 

extended C (GEC) they come last. Therefore the translator moves them (even if 

the flag "-r" has been specified; and, of course, the flag "-i" has no effect). In 

declarations, it replaces the null dimensions with the size of the DAP for GEC. 

Hence Appendix I (1.1) and (1.2) become Appendix II (11.2) and (11.1) respectively. 

DAP FORTRAN matrices and vectors may also be indexed when they appear on 

the right-hand side (Appendix 1.11.11) or left-hand side (Appendix 1.11.111) of 

expressions. The former case is used for two purposes. Firstly, to select an 

element from a matrix or vector (I.3a) - this is translated into the GEC intrinsic 
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function element (11.9) - or to select a row or column from a matrix (1.3b) - this is 

translated into the functions row or cal (11.6). Secondly, to route or shift matrices 

or vectors by one place only (1.4) - this is translated, like shifts of more than one 

place, into the appropriate GEC shift functions (11.5). The latter case is used for 

conditional execution (Appendix 1.11.111) which is done by the where construct in C 

(Appendix 11.11.111), so that (1.5) becomes an instance of (11.3), namely, 

where (L) 
A = 0.0; 

Finally there are four extra operators in DAP FORTRAN: NOR., .NAND., .LEQ. and 

LNEQ. (Appendix 1.11.11). The latter two present no difficulty; the former two must 

be translated as follows: 

A ,NOR. B 	 !(a 11 b) 
A. NAND. B 	 (a && b) 

5.2.5. Intrinsic functions 

C and GRID extended C have almost identical intrinsic functions as FORTRAN 

and DAP FORTRAN, so the translation is mostly straightforward. We begin with 

the FORTRAN to C intrinsic function translation, which is summarised in Table 5.4. 
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Table 5.4 

FORTRAN intrinsic functions with corresponding C translations. 

FORTRAN 
	

C 

SQRT, DSQRT sqrt 
EXP, DEXP exp 
LOG, DLOG, ALOG log 
LOG10, DLOG1O, ALOG1O loglO 
SIN, DSIN sin 
COS, DCOS cos 
TAN, DTAN tan 
ASIN, DASIN asin 
ACOS, DACOS acos 
AlAN, DATAN atan 
ATAN2, DATAN2 atan2 
SINH, DSINH sinh 
COSH, DCOSH cosh 
TANH, DTANH tanh 
AMOD, DM00 fmod 
AINT, DINT fint 
NINT, JNINT, IDNINT, ANINT, DNINT fnint 
DBLE, DFLOAT (double) 
DPROD (double) 
REAL, SNGL, FLOAT (float) 
ABS, lABS, DABS abs 
MOD % 	+ 
ICHAR ichar 
MIN, MINO, MINi, AMINO, AMIN1, DMIN1 minf 
MAX, MAXO, MAX1, AMAXO, AMAX1, DMAX1 maxf 
DIM, IDIM, DOIM dim 
SIGN, ISIGN, DSIGN sign 
INT, IFIX, IDINT (int) 
LLT LLE LOT LGE strcmp 
LEN strien 
INDEX index 
CHAR itoa 

* i.e. 	 dprod(x,y) 	-> 	((double)(x*y)) 

+ i.e. 	 mod(i,j) 	- > 	((I) % (j)) 
# e.g. 	llt(a,b) 	-> 	(strcmp(a,b) < 0) 

All the C functions listed there are intrinsic except for "fint", "fnint", "abs", "minf", 

"maxf", "dim" and "sign" (these are defined as the following macros in C: 

119 



#define fint(A) 
#define fnint(A) 
#define abs(A) 
#define minf(A,B) 
#define maxf(A,B) 
#define dim(A,B) 
#define sign(A,B) 

((A) < 0 ? ceil(A) : floor(A)) 
(fint(A + 	5 * sign(A))) 
((A) < 0 ? -(A) 	A) 
((A) < (B) ? (A) 	(B)) 
((A) > (B) ? 	(A) 	: 	(B)) 

 > (B) ? ((A)-(B)) 	0) 
 < 0 ? ((A) < 0 ? A : -(A)) 

((A) < 0 ? -(A) 	A)) 

and output by the translator when the flag "-rn" is specified) and also "ichar", 

"itoa" and "index" (which are functions to convert a character to an integer, 

convert an integer to a character, and return the index of one string in another, 

respectively; they are output by the translator with "-c"). There are three special 

cases (indicated in Table 5.4): 

FORTRAN type conversion intrinsic functions (DBLE ..., REAL ..., NT ... and 

OPROD) translate into unary type casts in C ((double), (float), (int) and (double)); 

the prefix intrinsic function MOD translates into the infix operator %; 

character string intrinsic functions (LLT, LLE, LGT and LGE) translate into C 

intrinsic function calls to strcrnp. 

Turning to the DAP FORTRAN to GRID extended C translation, we summarise 

this in Table 5.5. 

120 



Table 5.5 

DAP FORTRAN intrinsic functions with corresponding GRID extended C translations. 

DAP FORTRAN 
	

GEC 

MERGE(M,-M,L) mergei(m, -m, I) 

SHLC(V) vshftc(v, -1); 
SHRP(V,33) vshftp(v, 33); 
SHLC(M) m; ERROR:. shic 	cannot cope with longvectors 

- shift ignored 
SHRP(M,55) m; ERROR: shrp 	cannot cope with Iongvectors 

- shift ignored 
SHNC(M) shnc(m, 	1); 
SHWP(M,55) shwp(m, 55); 

SUMR(M) sumri(m); 
SUMC(M) sumci(m); 
ANDROWS(M) aIIr(m); 
ANDCOLS(M) aIIc(m); 
ORROWS(M) anyr(m); 
ORCOLS(M) anyc(m); 
MATR(V) matr(v); 
MATC(V) matc(v); 
SUM(M) sum(m); 
MAXV(M) max(m); 
MINV(M) min(m); 
ALL(M) alI(m); 
ANY(M) any(m); 

MAT(31) WARNING: mat ignored - conversion automatic 
VEC(32) WARNING: vec ignored - conversion automatic 
CALL CONVFMt(F) stop(f); 
CALL CONVMFt(M) ptos(m); 
CALL CONVFVt(F) stop(f); WARNING: 2nd & 3rd arguments ignored in 

vector mode conversion - only 1 
vector with 64 cmpts converted 

CALL CONVVFt(V) ptos(v); WARNING: 2nd & 3rd arguments ignored in 
vector mode conversion 	only 1 
vector with 64 cmpts converted 

CALL CONVFSt(F) WARNING: scalar mode conversion redundant 
CALL CONVSFt(F) WARNING: scalar mode conversion redundant 
CALL CONVVMt(V) convvml(v); 
CALL CONVMVt(M) . 	convmvl(m); 

ALTR(12) rowset(64, 64, 12-1, 12, 	12); 
ALTC(1 1) colset(64, 	64, 	11-1, 	11, 	11); 
ALT(1O) vecset(64, 10-1, 10, 	10); 
ROW(14) rowset(64, 64, 14-1, 1, 64); 
COL(13) colset(64, 64, 	13-1, 	1, 64); 
ROWS(22,6) rowset(64, 64, 22-1, 6-(22)+1, 64); 
COLS(21,5) colset(64, 64, 21-1, 	5-(21)+1, 64); 

121 



Firstly, the intrinsic function MERGE, which is used for conditional execution, is 

translated simply into a GEC version with the correct type (which is output by 

the translator when the flag "-p" is specified). For example, to deal with (1.6) we 

use 

double array merged(a, b, I)[64,64] /* for double, float */ 
double-array a[64,64], b[64,64]; bool array l[64,641; 

C 
double array resE64,641; 
where (I) res = a; else res = b; 
return(res); 

} 

We will now go through the rest of the intrinsic functions in the order they are 

dealt with in Appendices l.11.IV and ll.11.lV. 

Routing 

As the architectures of the DAP and GRID are basically the same, these 

intrinsic functions are trivial to translate: (1.7) is changed directly into (11.4) and 

(1.8) into a subset of (11.5), with the appropriate signs of count. However, there are 

no longvectors on the GRID so (1.7) with these will fail to translate. 

Matrix to vector 

In the first implementation of GEC, there are not any intrinsic functions 

analogous to those in (1.9) so they must be coded by hand. This is relatively easy: 

for example, the intrinsic function SUMR with an argument of type INTEGER 

becomes 

mt array sumri(a)[64] 	 /* for int, short, long / 
nt array a[64,64]; 

C 
mt array res[64]; 
mt i; 
res = 0; 
for 0=0; <64; i++) 

res += row(a, i); 
return(res); 

} 

and the intrinsic function ANDCOLS becomes 
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booIarry allc(l)[64] 
bool array [64,64]; 

{ 
bool array res[64]; 
mt i; 
res = 0; 
for (i0; <64; ++) 

res = res && col(l, i); 
return(res); 

} 

Vector to matrix 

The intrinsic functions in (1.10) translate trivially into those in (11.7). 

4) Array to scalar 

The intrinsic functions in (1.11) translate directly into those in (11.8). Again, 

there are no analogous functions in GEC to those in (1.12) but they can be easily 

coded by hand; for example, ALL becomes 

mt all(l) 
bool array 1[64,64]; 

C 
bool array intres[64]; 
mt res, I; 
mt res = 0; res = 0; 
for 0=0; i<64; i++) 

int res = mt res && row(I, i); 
for (1=0; i<64; i++) 

res = res && element(int res, i); 
return(res); 

) 

Conversion 

The FORTRAN array to/from DAP FORTRAN matrix conversions (I.13a) translate 

to (11.10); as do the FORTRAN array to/from DAP FORTRAN vector conversions 

(I.13b) provided that e = 64 and V = 1. The FORTRAN scalar to/from DAP 

FORTRAN scalar conversions (1.13c) become redundant in GEC; and the vector 

to/from matrix conversions (1.13d) are not (yet) defined on the GRID. 

6) Masking 
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The intrinsic functions in (1.14), (1.15) and (1.16) can all be done using those in 

(11.11) as shown'in Table 5.5. 

5.3. Concluding remarks 

The translator software described above is all written in C. There are four 

main sections of code: the lexical analyser, the prepass, the translation pass, and 

the recursive expression parser. Altogether there is approximately 9800 lines, or 

232Kbytes of code (including comments and white space). Both the prepass and 

the translation pass deal with 40 lines of (serial or parallel) FORTRAN per second, 

thus the over&ll translation speed is 20 lines/sec. 

The translator has been used in practice to convert a 400 line FORTRAN 

(molecular dynamics) program into C, in order to run it on a new parallel 

computer, developed by Bolt, Beranek and Newman (BBN), called the Butterfly 

Parallel Processor. Numerous DAP FORTRAN programs have also been converted 

into GRID extended C as a check on the translator. Unfortunately, neither the 

GRID nor a software simulator of it was completed in time to verify the correct 

functionality of the translated GEC. 
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Appendix I 
The DAP 

The International Computers Limited (ICL) Distributed Array Processor (DAP) 

was begun in 1972. By 1976 a pilot DAP (Reddaway, 1973; Flanders, Hunt, 

Reddaway and Parkinson, 1977) with a 32x32 array of processing elements (PEs), 

each with lKbit of memory, was completed. The first production model 

(Reddaway, 1979; Parkinson, 1983) was installed at Queen Mary College London in 

1980. It consists of a 64x64 array of PEs, each having 4Kbits of memory giving a 

total of 2Mbytes, and is implemented in SSI on 256 PCBs (each containing 16 

processors and associated memory) with a clock cycle of 200ns. It is intimately 

connected to a host ICL 2900 series mainframe computer. A second generation 

DAP, produced in 1986 and called the Mil-DAP, is a 32x32 PE array in LSI on 16 

PCBs, with a clock cycle of 155ns and 2Mbytes of memory. In addition it has two 

inbuilt fast I/O buffers each with a capacity of 16Kx32bits which can be 

configured for both data input and output; maximum data transfer rate is 

40Mbytes per second. Mil-DAP attaches to the ICL PERQ2 workstation. The third 

generation DAP, to appear in 1987, will come in a range of PE array sizes from 

8x8 (with 1Mbyte memory) to 64x64 (with 64Mbytes memory) and will be VLSI 

(like the GRID - Appendix II). In this appendix we shall describe the hardware 

and software of the first generation DAP. 

1.1. Hardware 

The DAP is a Single Instruction stream, Multiple Data stream (SIMD) computer 

(Hockney and Jesshope, 1981) comprising a 64x64 square array of bit-serial 

processing elements (PEs), each with 4Kbits of local memory and connections to 

the four nearest neighbours. All 4096 PEs execute identical instructions, which 

are broadcast by the master control unit (MCU), simultaneously, on their own 

independent data. When it is not functioning autonomously under the control of 

its MCU, the DAP can act as a (2Mbyte) memory module of the host ICL 2900 

series mainframe computer. 



1.1.1. Host lCL 2900 

A typical ICL 2900 series system, illustrated in Fig. L1, consists of an order 

code processor (OCP) and a store access controller (SAC) both cross-connected 

to a number of memory modules. 

Fig. 1.1 	Schematic diagram of an ICL 2900 series system containing a DAP 
(SMAC, store multiple access controller; DAC, DAP access controller; 
MCU, master control unit). 

conventional 
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One or more of these memory modules may be a DAP, which provides memory 

in the conventional way and may also be instructed by the OCP to execute its 

own DAP code. If the CAP is considered as the main processor in the system 

then the other conventional stores can be considered as fast backing store to the 

DAP and the OCP as a pre- and post-processor. 

11.11. DAP unit 

The major components and data highways of the DAP unit are shown in Fig. 

.2. 
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Fig. 1.2 
	

The major components and data highways of the DAP unit. 
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The DAP access controller (DAC) along with the 64bit-wide column highway 

provide the interface to the rest of the 2900 system. One 2900 mainframe 64bit 

word corresponds to a row across the DAP memory. The column highway also 

provides a path between rows of the DAP PE array and registers in the MCU, 

which can be used for data and/or instruction modification. Finally, the column 

highway provides the path for the MCU to fetch DAP instructions from the DAP 

store. DAP instructions are stored two per row and one row is fetched from 

memory in one clock cycle. Instructions within a special hardware DO-loop 

instruction are stored in the instruction buffer for repeated execution. There is 

also a row highway which is used exclusively for transmitting data to and from 

the MCU registers. 

LI.HL PE array 

The various components and data paths which comprise a processing 

element are shown schematically in Fig. 1.3. 
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Fig. 1.3 	The main components and data paths of the DAP PE. 
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The PE array is connected two-dimensionally, each PE being connected to four 

neighbours which may be defined by the points of the compass: N, S. E and 

W. The connections at the edge of the array are defined by the geometry of the 

instruction being executed. This may be planar, defining a zero input at the 

edges, or cyclic, giving periodic connections, independently in the rows or 

columns of the array. Within the processor, a 1 bit full adder along with the 

accumulator (Q) and carry (C) registers make up the arithmetic and logic unit 

(ALU). The adder adds Q, C and the input to the PE, giving the sum and the carry 

outputs in the Q and C registers respectively, unless an "add to store" instruction 

is being executed in which case the sum is written back to the location that the 

operand came from - this saves half a clock cycle over an "accumulator add" 

followed by an "accumulator store" and is used to speed up multi-bit arithmetic. 

There is also an activity register (A) which provides programmable control over 
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the action of the PE since certain store instructions are enabled only if it is set. 

1.11. Software 

Programs for the DAP (and the rest of the 2900 system) consist of two parts: 

a serial part (written in standard FORTRAN (77)) which executes on the host 2900 

and a parallel part (written in a parallel extension of FORTRAN IV called DAP 

FORTRAN) for the DAP. Communication between DAP FORTRAN and FORTRAN 

routines is accomplished through the use of shared COMMON blocks, which are 

held in the DAP store. (An array processor assembly language (APAL) is also 

provided for the DAP with interfaces to both FORTRAN and DAP FORTRAN, but 

when using the highly optimised floating-point arithmetic and system routines 

there is little benefit to be gained from using APAL. It only comes into its own 

for algorithms which exploit the bit-serial nature of the PEs when orders of 

magnitude performance improvements may be achieved by coding at the 

assembler level.) The parallel extensions found in DAP FORTRAN can be discussed 

under four headings: declarations, expressions, conditional execution and intrinsic 

functions. 

LILI. Declarations 

In DAP FORTRAN there are three kinds, or modes, of data item: scalar, vector 

and matrix, which may be of any FORTRAN type (INTEGER, REAL, DOUBLE 

PRECISION, LOGICAL or CHARACTER). Scalar variables and arrays correspond to 

FORTRAN variables and arrays and are processed serially; vectors and matrices 

consist of a number of component values, or elements, and are processed in 

parallel. A vector is a one-dimensional set of 64 elements and a matrix is a 

two-dimensional set of 64x64 elements. A vector is stored (right-justified) 

horizontally along the rows of a single DAP store plane and a matrix is stored 

vertically under the PEs as a contiguous set of n DAP planes, where n is the 

number of bits in the internal representation of each matrix element. This is 

illustrated in Fig. 1.4. 
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Fig. 1.4 	How vectors and matrices are stored in the DAP. 

Vectors are declared with their first dimension null and matrices are declared 

with their first two dimensions null, for example, 

REAL*8 V() 	 (1.1) 

INTEGER M(,) 	 (1.2) 

These are the constrained dimensions which take on the DAP size of 64. A 

matrix may also be regarded as a one—dimensional set of 4096 component 

values, obtained by placing successive columns of the matrix end to end, called a 

Iongvector (this feature is not present in the GRID - Appendix II). 

1.11.11. Expressions 

Simple assignment and expression evaluation in DAP FORTRAN are basically 

the same as for FORTRAN, the only difference being that they may be vector or 

rhatrix mode as well as scalar mode. Hence a vector (or matrix) may be assigned 

U 



to another vector (or matrix) in a single assignment. Operators act on entire 

vectors (or matrices) combining corresponding elements. Four extra logical 

operators are provided in DAP FORTRAN: NOR. and .NAND. (the logical converse 

of OR. and AND.) and .LEQ. and .LNEQ. (logical equivalence and 

non-equivalence). Scalars are automatically converted to the appropriate mode in 

vector and matrix mode expressions; however vectors are not expanded to 

matrices automatically since such an expansion can be made in two ways 

(intrinsic functions are provided for this - Sec. liv), 

Vectors and matrices may be indexed in expressions. If the vector or matrix 

is on the right hand side of the expression then indexing selects a value; if on 

the left hand side then indexing identifies one or more vector or matrix elements 

to which the value of the right hand side is assigned. The latter case is a form of 

conditional execution and will be discussed in the next section. In the former 

case, selection is from constrained dimensions and is rank-reducing: selection 

from a matrix yields either a vector or a scalar and selection from a vector 

always gives a scalar. Examples are 

V(l) 	 element I of vector V 
M(l,J) 	 element l,J of matrix M 	 (I.3a) 
M(l, ) 	 row I of matrix M 
M(,J) 	 column J of matrix M 	 (1.3b) 

In addition, routing or shifts, by one place only, can also be applied as an 

indexing operation, using '+' or '-' in either of the constrained dimensions. (What 

happens at the edges depends on the geometry - planar or cyclic - set up by 

the GEOMETRY statement.) Some examples for cyclic geometry, along with the 

equivalent intrinsic function calls, are 

V(+) 	SHLC(V) 	 shift vector left 
M(+,) 	SHNC(M) 	shift matrix north 
M(,-) 	SHEC(M) 	shift matrix east 
M(-) 	SHRC(M) 	shift matrix, treated as longvector, right (1.4) 

Shifts of greater than one place are performed by the intrinsic functions only, see 

Sec. ll.lV. Note that null indices, like no indices, select the whole vector or 

matrix. 
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1.11111. Conditional execution 

Selection of which component values of a vector or matrix are affected by an 

operation is achieved through the use of left hand side indexing or the intrinsic 

function MERGE (the latter alternative is discussed in the next section). In left 

hand side indexing, a logical vector (or matrix) L is used as the index for another 

vector (or matrix) A so that wherever L is true the corresponding element of A is 

assigned the value of the right hand side of the expression and wherever L is 

false the element of A retains its original value. For example 

A(L) = 0.0 
	

(1.5) 

liLly. Intrinsic functions 

Firstly, we have the intrinsic function MERGE which is used for conditional 

execution. MERGE returns a vector (or matrix) whose elements are selected from 

elements of the first and second arguments depending on whether the 

corresponding element of the third argument is true or false respectively. For 

example 

L = A .GT. 0.0 
B = SQRT( MERGE(A, 0.0, L) ) 	 (1.6) 

will set B equal to the square root of A wherever A is greater than 0.0 and to 0.0 

otherwise. 

The other intrinsic functions include: 

1) Routing 

Shifts by one place only can be written as indexed expressions, as detailed in 

Sec. 11.11, but more general shifts require the following intrinsic functions 

SHLg( vector or matrix (Iongvector), count ) 	shift left 
SHRg( vector or matrix (longvector), count ) shift right 	(1.7) 

where g can be 'P' for planar edge connections or 'C' for cyclic edge connections. 

The effect of SHLg is that element(i) := element(i + count) and the effect of SHRg 
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is that element(i) := element(i - count). 

SHNg( matrix, count ) 	shift north 
SHEg( matrix, count ) 	shift east 
SHSg( matrix, count ) 	shift south 
SHWg( matrix, count ) 	shift west 	 (1.8) 

Matrix to vector 

SUMR( matrix ) 	 sums rows of matrix into a vector 
SUMC( matrix ) 	 sums columns of matrix into a vector 
ANDROWS( logical matrix ) ANDs rows into a logical vector 
ANDCOLS( logical matrix ) ANDs columns into a logical vector 
ORROWS( logical matrix ) 	ORs rows into a logical vector 
ORCOLS( logical matrix ) 	ORs columns into a logical vector (1.9) 

Vector to matrix 

MATR( vector ) 	 returns a matrix of identical rows 
MATC( vector ) 	 returns a matrix of identical columns (1.10) 

Array to scalar 

SUM( array ) 	 returns sum of all elements 
MAXV( array ) 	 returns maximum element 
MINV( array ) 	 returns minimum element 	 (1.11) 
ALL( logical array ) 	 ANDs all the elements 
ANY( logical array ) 	ORs all the elements 	 (1.12) 

Conversion 

CONVFMt( matrix ) FORTRAN array to DAP FORTRAN matrix 
CONVMFt( matrix ) DAP FORTRAN matrix to FORTRAN array (I. 13a) 
CONVFVt( vector, e, v ) FORTRAN array to DAP FORTRAN vector 
CONVVFt( vector, e, v ) DAP FORTRAN vector to FORTRAN array 	(1.13b) 
CONVFSt( scalar, s ) FORTRAN scalar to DAP FORTRAN scalar 
CONVSFt( scalar, s ) DAP FORTRAN scalar to FORTRAN scalar (1.13c) 
CONVVMt( vector ) vector to matrix 
CONVMVt( matrix ) matrix to vector (l.13d) 



where t is the size of the element in bytes, e is the number of elements in each 

vector to be converted, v is the number of vectors in the conversion and s is the 

number of scalars in the conversion. 

6) Masking 

ALTR( I 
ALTC( 
ALT( i 
	

(1.14) 

ALTR (ALTC) returns a logical matrix which has its first i rows (columns) false, the 

next i rows (columns) true and so on in alternation until all the elements of the 

matrix have a value. (If i is zero then all the elements are false.) ALT does the 

same for vectors. 

ROW( i 
COL( i 
	

(1.15) 

ROW (COL) returns a logical matrix with false values everywhere except for row 

(column) i where they are true. 

ROWS( i, j 
COLS( I, j 
	

(1.16) 

ROWS (COLS) returns a logical matrix with elements in rows (columns) i to j 

inclusive given the value true and all others set false. 
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Appendix II 
The GRID 

The General Electric Company (GEC) Rectangular Image and Data processor 

(GRID) was begun in 1982. It is superficially like the DAP but differs both in 

gross architecture (in particular, it does not form part of a host computer) and in 

PE design and connectivity; moreover, it is implemented in very large scale 

integration (VLSI) integrated circuit (chip) technology (Arvind, Robinson and 

Parker, 1983; Pass, 1984). In this appendix we shall describe the hardware and 

software of the GRID. 

11.1. Hardware 

The GEC Rectangular Image and Data processor (GRID) is a SIMD computer 

with an architecture similar to that of the DAP - it contains a 64x64 square array 

of bit-serial processing elements (PEs). Each PE has 81(bits of local memory and 

connections to all eight neighbouring PEs. A central controller broadcasts a 

sequence of instructions to the array so that each PE performs the same 

operation simultaneously on its own local data. The instruction sequences are 

supplied to the controller by a scalar processor via shared memory. On 

completion of one sequence the controller interrupts the scalar processor to 

request another. The scalar processor can also perform calculations while the 

array is functioning. The scalar processor and controller are 16bit processors; 

they, along with the PE array, form the GRID system which is hosted by a 

multi-user, (niini-)computer. The general layout is shown in Fig. 11.1. 

Fig. 11.1 	Schematic diagram of the GRID system. 
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11.1.1. PE array 

The complete 64x64 array of PEs is composed of 128 VLSI GRID chips; each 

GRID chip containing an 8x4 sub-array. The structure of the bit-serial PE is 

shown schematically in Fig. 11.2. 

Fig. 11.2 	The GRID PE. 

It has a two-operand structure. The ALU can produce any of the sixteen possible 

logical combinations L of its inputs A and B. It can also perform addition or 

subtraction using the carry register (C): A, B and Ci  are combined to yield the 

sum or difference in S and the carry in CO, The multiply register (M) is gated 

(ANDed) with whatever comes in on the source bus so that a multiply can be 

performed by repeated addition, or a division by repeated subtraction. There is a 

histogram register (H) which is used to form sums across the array, that is, count 

the number of l's in a bit-plane. Each PE has 64bits of dual-ported (DP) on-chip 
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random access memory (RAM) which provides a cache for storing, for example, 

partial results during multiplication and division. The 8Kbits of local memory is 

off-chip and is accessed via the RAM register (R). The enable register (E) allows 

the operation of the PE to be controlled independently (just like the activity 

register does in the DAP - Appendix 1.1.111). E can be set either as the result of 

some calculation or from the PE address bus - this gives a mechanism for 

geometric control in which selected chips, rows, columns or single PEs can be 

enabled. The PEs are interconnected (within and across GRID chips) by a nearest 

neighbour switching network (NNS) which can connect a PE to any of the eight 

PEs nearest to it. The orthogonal north, south, east and west connections are 

made directly (forming the NN bus). Diagonal moves are achieved by routing 

through the NNS of the intermediate orthogonal neighbour. For example, to 

access data in the neighbouring PE to the north-east the NNS is set up to pass 

local data south, to transfer input from the north to the west and to accept input 

from the east as the neighbour's data. This compounded routing takes less time 

than two orthogonal moves. The PEs are also connected by row (R) and column 

(C) buses to form a square mesh. There is a single 64bit edge register which may 

be connected to either of the buses and can be read and written by the 

controller. This provides the means for the controller to broadcast data to, or 

extract data from, the array. 

11.1.11. Controller 

The controller is a microprogrammed processor which provides the low-level 

interface to the PE array. It reads GRID controller assembler (GCA) instructions 

from the shared memory. These instructions may cause branching to occur, or 

may perform scalar arithmetic, or may be broadcast in a decoded form to the PE 

array. The latter possibility entails rather complex operations (given the bit-serial 

nature of the array) such as arithmetic, comparison and routing. These are 

implemented in microcode for maximum efficiency. 

The controller also includes special hardware which supports the mapping of 

larger data arrays onto a smaller PE array, using so-called pyramidal mapping 

(see Pass, 1984 for a detailed description of this). 
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11.1.111. Scalar processor 

The scalar processor is a standard MC68000 microprocessor. It executes the 

high-level programming language for the GRID, called GRID extended C (GEC), 

which is an extension of the language C to include parallel array operations in 

addition to the usual serial operations (see Sec. II). Serial code executes on the 

scalar processor whilst parallel sections of code run on the controller/PE array. 

Instructions to the controller are placed in queues in the shared memory. When 

the controller reaches the end of an instruction queue, it interrupts the scalar 

processor to request another. This is a much better arrangement than that found 

in the DAP where instructions are actually stored in the array memory, thus 

wasting data space. 

Il.I.IV. I/O buffer 

Most real-time devices (for example, TV cameras and monitors) and 

mass-storage units (for example, disks) handle data in bit-parallel, word-serial 

form; whereas the PE array operates in a word-parallel, bit-serial fashion. The 

transformation from one format to the other is effected by the "corner-turning" 

I/O buffer which is capable of buffering lines of up to 512 iSbit words. The I/O 

buffer works concurrently with the PE array - only interrupting it when a whole 

line has been read in, or written out. 

h.I.V. Host computer 

The host computer provides a multi-user environment suitable for the 

development and maintenance of programs for the GRID. It can be any 

(mini-)computer running the Unix operating system, since it must only interface 

to the scalar processor which is a standard microprocessor - not the specialized 

controller. 
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11.11. Software 

As the GRID system contains three processors - PE array, controller and 

scalar processor - it is programmed at three levels: microcode, assembler and 

high-level language. 

Instructions broadcast to the PE array by the controller are microcoded for 

maximum efficiency. This is the very lowest software level and is in the realm of 

the system implementer. 

The controller is programmed in GRID controller assembler (GCA). Frequently 

used functions for image, signal and numerical processing will be coded in GCA 

to form part of the system software library. The specialist user will program at 

this level when execution performance is critical. 

The scalar processor is programmed in the high-level GRID extended C (GEC) 

programming language which is essentially the language C with appropriate 

parallel extensions. Serial code is compiled and executed on the scalar processor 

as for Cl-  parallel sections are complied into GCA and run on the controller/PE 

array. The parallel extensions fall into four main categories, namely, declarations, 

expressions, conditional execution and intrinsic functions. 

11.11.1. Declarations 

Type specifiers are provided in GEC for the declaration of parallel array types. 

(This is simpler than in DAP FORTRAN where modes are introduced - Appendix 

Most of these type specifiers are parallel extensions of the usual types 

found in C, viz, char array, short array, mt array, long array, float-array and 

double-array; but there is also a new ibit data type specified by bool array. 

Two-dimensional parallel arrays, denoted by the term matrix, are declared as 

follows 

array-type-spec identifer [ row-spec, col spec 1; 	 (11.1) 

where row-spec and col spec are constant integer expressions defining 

respectively the number of rows and columns in the matrix. These must be 
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power of two multiples of the corresponding GRID PE array dimensions. 

One-dimensional parallel arrays, denoted by the term vector, are declared as 

follows 

array type spec identifer [ dim-spec 1; 	 (11.2) 

where dim-spec is the number of elements in the vector and a power of two 

multiple of the GRID array row dimension. A vector can also be declared as 

packed which advises the compiler to store the vector with several elements 

packed into each GRID array row (rather than the default situation of only one 

per row, as is done on the DAP - Appendix 1.11.1), saving on memory and 

increasing performance through greater parallelism. For example, for 

packed char-array x[1024]; 

on a 64x64 GRID it is possible to store eight elements of x in each row. 

11.1111. Expressions 

Parallel array expressions are written in a very similar manner to standard C 

expressions. All of the binary operations (except the shift operators >>, <<, 

>>=, <<= of course) can be used to combine either an array with an array, or 

an array with a scalar. In the latter case the scalar is (conceptually) expanded into 

an array of identical elements. Each operator is applied on a pointwise basis, 

combining corresponding array elements. A parallel array expression may contain 

mixed types but the arrays must have the same dimensionality. Arrays appear 

without their dimension specifier(s) in expressions since all elements are dealt 

with simultaneously. We note that there are no special indexing expressions like 

those found in DAP FORTRAN - Appendix 1.11.11. Such operations are performed 

solely by intrinsic functions in GEC, these are discussed in Sec. lIly. 

11.11.111. Conditional execution 

Control over the operations applied to the individual elements of a parallel 

array is exercised with the where construct. Its format is as follows 



where ( parallel array expr 
statement_i 

else 

	

	
(11.3) 

statement 2 

Statements 1 and 2 can be simple or compound and the else clause is optional, 

as for standard C. The parallel array expression is evaluated to yield a true/false 

parallel predicate (mask) which controls parallel operations within statements 1 

and 2. Within statement-1, where the parallel array expression is true (that is, 

non-zero) assignment to corresponding elements is enabled; within statement 2, 

assignment is enabled where the mask is false. 

ll.lI.IV. Intrinsic functions 

A number of intrinsic functions are provided for manipulating parallel array 

expressions (compare these with the intrinsic functions in DAP FORTRAN 

Appendix l.lI.IV). They include: 

1) Routing 

vshftg( vector, count ) 	vector shift 	 (11.4) 

where g can be 'p' for planar edge connections or 'c' for cyclic edge connections. 

The effect of this instruction is that element(i + count) := element(i). 

shng( matrix, count ) shift north 
shneg( matrix, count ) shift north-east 
stieg( matrix, count ) shift east 
shseg( matrix, count ) shift south-east 
shsg( matrix, count ) shift south 
shswg( matrix, count ) shift south-west 
shwg( matrix, count ) shift west 
shnwg( matrix, count ) shift north-west 
shiftg( matrix, relrow, rel col 	) 	 (11.5) 

where shiftg shifts the matrix by the relative row and column values, for example, 

shnp( matrix, 2) 	shiftp( matrix, -2, 0 
shsec( matrix, 1 ) 	shiftc( matrix, 1, 1 
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Matrix to vector 	 - 

row( matrix, I ) 	 returns row i of matrix as a vector 
col( matrix, j ) 	 returns column j of matrix as a vector (11.6) 

Vector to matrix 

matr( vector ) 	 returns a matrix of identical rows 
matc( vector ) 	 returns a matrix of identical columns (11.7) 

Array to scalar 

sum( array ) 	 returns sum of all elements 
max( array ) 	 returns maximum element 
min( array ) 	 returns minimum element 	 (11.8) 
element( matrix, I, j ) 	returns element at i,j 
element( vector, i ) 	returns element at i  

Conversion 

ptos( array, pointer ) 	parallel array to scalar array 
stop( pointer, array) 	scalar array to parallel array 	(11.10) 

where pointer is assumed to be the address of a buffer in scalar processor 

memory which is at least as large as the parallel array. 

6) Masking 

rowset( nrow, ncol, row, width, period 
colset( nrow, ncol, col, width, period 
vecset( ndim, dim, width, period 

rowset returns a boot-array of nrow rows by ncol columns holding a pattern of 

horizontal stripes (background has value zero; stripes have value one) starting at 

row row (where the top of the array is row zero), being width elements wide and 

repeated at intervals of period elements. colset operates similarly for columns, 

creating vertical stripes. vecset does the same for vectors. 
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7) Resampling 

Since matrices can be any power of two multiple of the size of the GRID PE 

array there is an intrinsic function 

sample( matrix, i, j, ni, ni, Si, sj 

which extracts a sub-array from the matrix and maps it across the PE array. (i,j) 

specifies the top left hand corner of the sub-array, ni and ni specify the number 

of rows and columns in the sub-array and si and sj specify the sample interval. 

(This is not found in the DAP because matrices there are all the same size as the 

PE array.) 

8)1/0 

Unlike the DAP, the GRID can communicate with its host via files using the 

intrinsic functions 

input( fd, word-length, array 
output( fd, array 
	

(11.13) 

where fd is a file descriptor (returned by a call to open in C) and word-length is 

the number of bits per element of the incoming data. 
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