
Lattice Gauge Theories:

Dynamical Fermions and Parallel Computation

Thesis
submitted by

Clive Fraser Baillie

for the degree of

Doctor of Philosophy

Department of Physics
University of Edinburgh

August 1986

To Mum and Dad

Buddha ca 563-483 BC

All composite things decay. Strive diligently.

[His last words]

Acknowledgements

I would like to register my appreciation of the guidance and encouragement

given by supervisors Ken Bowler and David Wallace throughout my research.

have benefited from numerous discussions with Simon Carson and Richard

Kenway (concerning the work of Chapter 3), and Brian Pendleton. I have enjoyed

collaborating with Bryan Carpenter, Ian Barbour and Philip Gibbs. It is a pleasure

to thank all the staff and students in the Physics Department at Edinburgh for

their help and friendship, particularly my office-mates Catherine Chalmers and

Simon Hands.

The simulation reported in Chapter 3 was performed using the ICL DAPs at

Edinburgh which are maintained by Edinburgh Regional Computing Centre (ERCC)

and supported by SERC grants NG11849 and NG15908. The simulation reported

in Chapter 4 was performed using the Gould PN9080 which is also maintained by

ERCC. I am indebted to Bob Gray, Adam Hamilton, David Mercer and Jimmy

Stewart for their help in using this and other Unix machines. The translator

described in Chapter 5 was developed at GEC Hirst Research Centre and at ERCC.

I would like to thank Steve Pass, David Scott and Bryan Stephenson, of GEC, for

useful discussions.

Finally, I acknowledge the award of an SERC CASE (Co-operative Award in

Science and Engineering) studentship with GEC as the industrial partner.

Declaration

The 'ivork of Chapter 2.2 was done in collaboration with Bryan Carpenter; the

simulation reported in Chapter 4 was performed in collaboration with Ian Barbour

and Philip Gibbs. All other work is my own, except where otherwise stated.

Published work includes the following references:

Carpenter D. B. and Baillie C. F., 1985, NucI. Phys. B260 103

Baillie C. F., 1986, Proc. 6th Summer School on Computing Techniques

in Physics (to appear in Comput. Phys. Commun.)

2 q&

Abstract

The .inclusion of fermionic degrees of freedom into lattice gauge theory and

aspects of parallel computation are examined.

The problem of fermion doubling and the two most popular methods for

circumventing it - Wilson and Susskind fermions - are reviewed. Methods, both

approximate and exact, for introducing dynamical fermions into lattice gauge

theory are discussed. The chiral condensate <ij4.> is calculated for free Wilson

and Susskind fermions with periodic and antiperiodic boundary conditions.

Various "hadron" (fermion bilinear/trilinear) propagators are also calculated and

finite-size effects investigated. This indicates that the propagators for free

fermions are bounded above and below by periodic and antiperiodic boundary

conditions in the spatial directions respectively.

The pseudofermion method is used to perform a numerical simulation of the

Schwinger model (two dimensional QED) with massive Wilson fermions. This

method is efficiently implemented on a highly parallel S1MD computer (the ICL

DAP). The continuum Schwinger model is reviewed and the pure gauge theory,

free fermions, the quenched and the dynamical model are simulated. For the

quenched model the behaviour of <t4i>/g as m/g - 0 agrees with that

predicted by Carson and Kenway; for the dynamical model <> varies linearly

with mass for small mass.

The Lanczos algorithm is used to perform a numerical simulation of SU(2) at

finite density. Finite density, or non-zero chemical potential, in lattice gauge

theories is reviewed and the simulation performed in two regimes: fixed chemical

potential; varying fermion mass, and fixed fermion mass; varying chemical

potential. In the former, for a small chemical potential, the signal of a phase

transition is observed; in the latter, at strong coupling, chiral symmetry is

restored as a continuous phase transition, in agreement with a calculation by

Dagotto, Moreo and Wolff.

A general FORTRAN to C translator, primarily for parallel computation, has

been developed and is described in detail. This software automatically converts

DAP FORTRAN programs written for the ICL Distributed Array Processor (DAP)

into equivalent programs in GRID extended C which will run on the GEC

Rectangular Image and Data processor (GRID). It also translates standard

FORTRAN 77 into C.

Table of Contents

1 Introduction 	 1

1.1 Gauge theories 1

1.2 Lattice gauge theory 7

1.3 Fermions 15

1.3.1 Wilson fermions 17

1.3.2 Susskind fermions 18

1.3.3 Numerical simulations 21

1.3.4 Dynamical fermions 22

1.4 Monte Carlo 28
1.4.1 	Metropolis algorithm 29
1.4.2 Heat bath algorithm 30

2 Free Fermions 	 32

2.1 <1p> 32

2.1.1 Wilson fermions 32

2.1.2 Susskind fermions 35

2.2 Propagators 37

2.2.1 Calculation of fermion propagator 38

2.2.2 Meson-like propagators 41

2.2.3 Baryon-like propagators 43

2.2.4 Concluding remarks 44

3 Pseudo-Fermions 	
45

3.1 The method 	
45

3.2 Computational details 	 47

3.3 Schwinger model 	
52

3.3.1 Continuum Schwinger model 	 53

3.3.2 Pure gauge theory 	 57

3.3.3 Free fermions 	 58

3.3.4 The quenched model 	 59

3.3.5 Effective Lagrangian calculation 	 61

3.3.6 The dynamical model 	 65

3.3.7 Concluding remarks 	 66

4 Lanczos fermions 	
68

4.1 The method 	
68

4.2 Computational details 	
77

4.3 Finite density SU(2) 	 80

4.3.1 Fixed .i; varying m 	 85

4.3.2 Fixed m; varying -L 	 89

4.3.3 Concluding remarks 	 . 	 90

Table of Contents

5 A general FORTRAN to C translator 	 91

5.1 Prepass 93
5.1.1 	Declaration 95
5.1.2 COMMON 97
5.1.3 EQUIVALENCE 	 . 98
5.1.4 	Initialisation 102
5.1.5 PARAMETER 103
5.1.6 FORMAT 104

5.2 Translation pass 106
5.2.1 Control statements 108
5.2.2 I/O statements 109
5.2.3 Routines 110
5.2.4 Expressions 	 . 111
5.2.5 Intrinsic functions 118

5.3 Concluding remarks 124

A p p e n d i c e s

I The DAP 	 Ii

1.1 Hardware 	 I 1
1.1.1 Host [CL 2900 	 I 2

1.1.11 DAP unit 	 I 2

1.1.111 PE array 	 . 	I 3

Ill Software 	 15

1.11.1 Declarations 	 I 5

1.11.11 Expressions 	 16

1.11.111 Conditional execution 	 18

LIlly Intrinsic functions 	 18

II The GRID 	 . 	lii

11.1 Hardware I 	Ii

11.1.1 	PE 	array 112

11.1.11 	Controller I 	13

11.1.111 	Scalar 	processor 114

lIlly I/O buffer 114
Il.l.V Host computer 114

LII Software I 	15

11.11.1 	Declarations 115

11.11.11 	Expressions 116

11.11.111 	Conditional 	execution 116

Il.11.IV 	Intrinsic 	functions 117

Chapter 1

Introduction

This chapter provides an introduction to the physics in chapters 2, 3 and 4.

Chapter 5, concerning computing, has its own introduction. In Sec. 1 we

describe gauge theories, which are now ubiquitous in elementary particle physics,

with emphasis on QED and QCD. Then in Sec. 2 we explain how such theories

are discretised on a space-time lattice, a /a Wilson, giving lattice gauge theories.

In particular, we show how quark confinement arises naturally on the lattice and

investigate the renormalisation properties required in order to recover the

continuum limit. Fermions are introduced in Sec. 3 and we demonstrate the

fermion doubling problem with the naive lattice action before going on to explain

the two most popular methods for circumventing it: Wilson and Susskind

fermions. We describe what is involved in a numerical simulation of a lattice

gauge theory with so-called dynamical fermions and discuss methods for doing

this. These fall into two classes: approximate methods, like the hopping

parameter expansion and the pseudofermion method; and exact methods,

including Scalapino and Sugar's method, the block Lanczos algorithm, Weingarten

and Petcher's method, and equation of motion methods. Finally, in Sec. 4 we

detail the main technique used in numerical simulations of lattice gauge theories:

the Monte Carlo method, outlining both the Metropolis and the heat bath

versions of it.

1.1. Gauge theories

Gauge theories now dominate elementary particle physics: electromagnetic,

weak and strong interactions are all based on the gauge principle. A gauge

theory is a field theory whose dynamics arise from a local, or gauge, symmetry

requirement. The simplest gauge theory is quantum electrodynamics (QED) with

its Abelian U(1) local symmetry. The QED Lagrangian density can actually be

"derived" by requiring the free Dirac electron theory to be gauge invariant. The

Lagrangian density for a free electron field i(x) is

t 	For vov 	 / ç.a& 	 T 	P. &'vL F 1 	I 'I

-tL (c-

where y are the Dirac matrices satisfying {.t, } = 2g\J• This clearly has a

global U(1) symmetry under the phase change

/

> 	= e.
—/ 	 —

> 	(/) ()c) 	 (.)) 	 (1.2)

We gauge this symmetry, that is, make it local, by introducing a space-time

dependent phase change a(x). Then to keep (1.1) gauge invariant we must

introduce into the theory a new vector, or gauge, field A(x), which transforms as

> 4ic) =z A/ACc 	- 	3 £(i), 	(1.3)

and generalise the derivative to the so-called (gauge-)covariant derivative

• DU 	 +e-t. 14, , 	 (1.4)

where e is a free parameter which is identified with the charge on the electron.

Thus we now have (1.1) in the form

- rA

We make the gauge field a dynamical variable by adding a term involving its

derivatives. The simplest such term which is gauge invariant is (with conventional

normalisation)

IE

- 	

(1.6)

where

A 	- 	
(1.7)

Combining (1.5) and (1.6) we obtain the QED Lagrangian density

LFF 	
(1.8) cED 	

~

	

Note that the gauge field, or photon, is massless because an 	term is not

gauge invariant. There is no gauge field self-coupling term since the photon has

zero charge (U(1) quantum number). Thus without a matter field the theory is a

free field theory. This is not the case for non-Abelian gauge groups which we

now turn to, leaving further discussion of QED, albeit only in two space-time

dimensions, for Chap. 3.3.

Yang and Mills, 1954, extended the gauge principle to non-Abelian gauge

groups, for example, SU(N). In general, for a (non-Abelian) simple Lie group J

with generators Ga satisfying the Lie algebra

[CT- 0" 1/ 6-
b] 	= 	 C

	

, 	 (1.9)

where Cab c are the totally antisymmetric structure constants, we proceed as

follows. Let i belong to some representation of this algebra with r

representation matrices Ta (a = 1,...,r), then under a group transformation

3

lo 1.4
 42, 	 £L 	P(L) 	(1.10)

where the scalar product involves r-component vectors I and ct. We make this

local, as before, introducing r gauge fields A 1 ,...,A U r, which transform as

7. A(dc) 	> I' A:: (x 	=

l(

and defining the covariant derivative

D 	 - 	
p
	

(1.12)

and the second-rank tensor for the gauge fields

. 	 All - 	y CA4

where g is a coupling constant analogous to e in QED. Hence we obtain the

Yang-Mills action

=
' (1.14)

The pure Yang-Mills term _F 	F a/4 contains factors that are trilinear and

quadrilinear in

4

z.bc. - 	C 	 - 9 	A; A w A

these correspond to self-couplings of the non-Abelian (massless) gauge fields.

They are brought about by the non-linear terms in 	(1.13), because the

gauge fields All ll themselves transform non-trivially, like the generators, as

members of the adjoint representation. (Hence the number of gauge fields is

equal to the number of generators of the local symmetry.) It is these non-linear

terms which lead to the rich structure found in non-Abelian gauge theories.

Historically the first successful application of the Yang-Mills theory was the

unified description of the weak and electromagnetic interactions in terms of the

gauge theory SU(2)xU(1) (Glashow, 1961; Weinberg, 1967; Salam, 1968). This led

to the prediction and subsequent discovery, at CERN, of the W (Arnison et al;

1983a; Banner et a1 1983) and Z (Arnison at a/ 1983b; Bagnaia at al, 1983)

intermediate vector bosons.

The strong nuclear force is also believed to be a Yang-Mills gauge theory,

based on the group SU(3), known as quantum chromodynamics (QCD). QCD

arose from the idea that hadrons are bound states of fundamental constituents

called quarks (Gell-Mann, 1964). The notion of quarks followed from the

so-called eightfold way of Gell-Mann which predicted the low energy hadron

spectrum in terms of different flavours. Their existence was supported

experimentally by deep inelastic lepton-nucleon scattering experiments whose

cross-sections satisfied Bjorken scaling which could be interpreted using

Feynman's parton model (Feynman, 1972; Bjorken and Paschos, 1969) with the

partons being identified as quarks. The problem was: what binds the quarks

together? The solution comes from the observation that in order to satisfy the

generalised Pauli exclusion principle it is necessary to endow quarks with a

hidden quantum number, known as colour, which can have three possible values.

Since only colour-singlet hadrons are observed, the forces between the coloured

quarks must be colour-dependent. The colour symmetry of the quark model can

be gauged and we arrive at the SU(3) colour Yang-Mills theory of the strong

interaction, QCD, with Langrangian density

5

C_ D
= - 	r F F 	(k) 	(1.16)

where

= 	-) 	- , 	A]

A OL "All

with xa being the Gell-Mann matrices satisfying the SU(3) commutation relations

=
(1.18)

and the normalisation condition

(1.19)

The quanta associated with the 8 strongly interacting gauge fields A4a are called

gluons and q, k 	1flf, are fl f flavours of quark fields. Currently it is generally

thought that flf = 6 with the qk = (d,u,s,c,b,t}. QCD has the property of

"asymptotic freedom" (Gross and Wilczek, 1973; Politzer, 1973), that is, its

coupling strength decreases at short distances, which justifies the parton model

and allows reliable calculations of the short-distance behaviour of QCD using

perturbation theory. However, it is widely believed that QCD also has the property

of "quark confinement", that is, at long distances the coupling strength increases

keeping the quarks bound as hadrons, which should explain the hadron spectrum

but means that the long-distance behaviour is non-perturbative and must be

investigated using other techniques. Lattice gauge theory is such a

non-perturbative technique.

ii. Lattice gauge theory

Wilson, 1974, introduced lattice gauge theory in which the space-time

continuum is discretised to provide a cut-off that regulates ultraviolet

divergences by eliminating all wavelengths less than twice the lattice spacing.

This formulation of field theory emphasises the deep connection with statistical

mechanics: in Euclidean space the Feynman path integral formalism for a field

theory is identical to the partition function of an analogous statistical mechanics

ystem, the square of the field theoretic coupling constant being identified with

the statistical mechanical temperature. The method of high temperature series

expansion in statistical mechanics becomes the strong coupling expansion for

field theory. There are two popular methods for introducing the lattice in field

theory: the Euclidean lattice formulation (Wilson, 1974), in which both space and

time are discretised and the Hamiltonian formulation (Kogut and Susskind, 1975)

in which only the spatial dimensions are discretised. We shall use the Euclidean

lattice formulation. The connection with ordinary Minkowski space is made via a

Wick rotation (t + it). The simplest choice of lattice is a regular hypercubic

space-time lattice of spacing a with the points, or sites, labelled by a four-vector

n = (n1,n 2,n3,n 4). Then, four-dimensional integration is replaced by a sum:

r

ft. 	 (1.20)

Other choices of lattice are possible - as with any cut-off prescription, the

physics of the theory is independent of the details of the regulator.

Consider a field theory described by a Lagrangian density J?. Every field

configuration 	has a corresponding lattice action

c(ø)
	

0- 	
(1.21)

This is quantised using the Feynman path integral formalism (Feynman, 1948) in

which the expectation value of some operator 0 (representing a physical

observable) is given by

7

<8(0)> 	 0 	(ø) e
) (1.22)

where

(1.23)

On the lattice, there is no problem with the definition of the measure in these

integrals. The functional integral is defined simply as the product of the integrals

over the fields at every site of the lattice 4(n):

ø()], (1 .24)

With a finite lattice there are a finite number of integrals which means that it is

possible to investigate the field theory by numerical simulations (using, for

example, the Monte Carlo method - see Sec. 4) on a computer. Note also that

no gauge fixing term has been included in the path integral, as this procedure

(which is necessary in the continuum to control divergences resulting from

integration over all gauges) is not required in numerical simulations of lattice

gauge theory.

Now to construct a lattice gauge theory, we should keep the gauge symmetry

explicit in the lattice formulation so that in the continuum limit we recover the

Yang-Mills theory - this is what Wilson's formulation achieves. We associate

elements U(n) of a gauge group J (which we shall take as U(1) or SU(N)) with

with links on the lattice joining sites n and n+e, where e is a unit lattice vector

in the .1-direction. U(n) is a directed variable: in going from n+e~l to n we use

U(n). The elements for the groups we shall consider are

14

0)

c • 	 çCk z)

	
(1.25) 1 €

I
	
OL

	 fr g

where the generators of SU(3) Xa are defined in (1.18) and (1.19), and the

generators of SU(2) cT j are the usual Pauli matrices satisfying

[i 	
• 1

(1.26)

Local gauge symmetry corresponds to allowing an arbitrary group rotation Q(n) at

every lattice site, under which the link variables transform as

/

= 	(Lfra14AJlt+e,4)4 (1.27)

Thus c2(n) defines the orientation of a local colour frame of reference at each site

and U(n) tells us how this orientation changes in going from one frame to the

next in the direction 4. To construct an action with this local symmetry it is clear

that we require products of U matrices around closed paths, for this is gauge

invariant provided all SU(N) colour indices are locally contracted. The simplest

such action involves the most local interaction of four U matrices around an

elementary square of the lattice, called a plaquette:

s (u) 	(i - 	&r 	
(1.28)

0

with

where 	2N/92 for SU(N) in four dimensions, or B E 1/g 2a2 for U(1) in two

dimensions (Chap. 3). The additive constant in (1.28) ensures that the action

we

vanishes when the group elements approach the identity. N, the dimensionality of

the group matrices, is a normalisation. The trace may be performed in any

representation of, the group, though we will follow the usual practice and

consider only the fundamental representation. By Taylor expanding the gauge

field A(n) and using the Baker-Campbell-Hausdorff identity, it is easily shown

that this action reduces to the usual Yang-Mills action in the naive continuum

limit a - 0.

Equipped with a lattice gauge theory for QCD (SU(3)) we can now show that

quarks are confined at long distances, that is, in the strong coupling limit.

Consider the following thought experiment: i) adiabatically separate a heavy q-

pair to a distance R; ii) hold them apart there for a long time T; iii) bring them

together adiabatically and annihilate. This yields the world-line C shown in Fig.

1.1.

Fig. 1.1 Illustration for the thought experiment.

T

C

The Euclidean amplitude for this process is given by the matrix element

-HY I ~ >'O
	 (1.29)

where H is the Hamiltonian of the SU(3) gauge theory, and i and f label,

respectively, the initial and final states of the q-1 pair when they are a distance

R apart. This can be written as the following path integral:

oD 5A 	[-

	

c CD A,, 	
- S

where J 	is external current of the heavy quarks (and we have scaled the gauge

fields A 11 by the coupling g). J 	vanishes everywhere except on the world—line

of the quarks so (1.30) becomes

xP _SAI1
JA 	-S
	

(1.31)

As Ii> and If> are identical, and the process is static, (1.29) reduces to

-

(1.32)

with the heavy quark potential V(R) defined, from (1.31), as

00 - 	 (1.33)

where P denotes a path ordering of the operators. The argument of the

logarithm is the continuum analogue of the Wilson loop W(C) which is defined as

the expectation of the trace of a product of link variables around any closed path

C:

11

Cc) E 	7
(1.34)

In the strong coupling limit (g2 ~), the Wilson loop can be shown to be given

by

AIC 	 2- (~r-e_A_)
(i)

(1.35)
)

where NC is the minimum number of plaquettes required to tile the surface, of

area Area/a2, bounded by the contour C. With a rectangular contour of length I

and width R we therefore find, combining (1.33), (1.34) and (1.35),

V() 	 (1.36)

which defines the string tension at strong coupling:

L 2.

CT 	-9---- 4-
6L
Z

(1.37)

(Higher orders in the coupling constant may be obtained by tiling the surface in a

way that is not minimal - see Creutz, 1983.) Thus the potential increases linearly

with distance and confines the quarks. We note that this so-called area law

criterion for confinement loses its value when quarks are introduced as

dynamical variables - which is in itself a good reason why lattice gauge theories

should be investigated beyond the quenched approximation in which quarks are

ignored - because the widely separated sources may reduce their energy by

pair-production from the vacuum (the Wilson loop then measures the potential

between two mesons rather than bare quarks).

Finally, the lattice, considered as an ultraviolet cut-off, must be removed by

letting the lattice spacing go to zero and so recovering the continuum limit. As

when removing any cut-off, physical variables should approach their observable

12

values. For example, the mass of a particle, m, should be independent of the

lattice spacing:

I = 0.
(1.38)

Now (in four dimensions) from dimensional analysis

kVt = - L
 h) ,

(1.39)

where f is some dimensionless function of the gauge coupling only. Thus to

obtain a sensible continuum limit, as the lattice spacing a - 0, g - g, a critical

value of the coupling, such that f(g') = 0. Hence the coupling is a function of

lattice spacing. Moreover, the critical point g = g must have scaling properties,

that is, once the relationship between g and a has been established by fixing one

physical observable, this form for g(a) must make all other observables tend to

their physical values as a - 0. For non-Abelian gauge theories, perturbative

arguments have shown that g = 0 is such a scaling critical point. By combining

(1.38) and (1.39) we get

(1.40)

where

(1.41)

This 	function, which gives the relation between coupling and lattice spacing,

has been calculated in perturbation theory for small g (Politzer, 1973; Gross and

Wilczek, 1973) to be

13

(1.42)

where for an SU(N) gauge theory (without fermions)

= 3P (~-61;v z) (1.43)

Only the first two terms of the 	function are universal; higher order terms are

regularisation-dependent. We can now write down the relation between g and a

in the form

W 	
(1.44) A

where, from (1.40),

() 	= expf
'1

- 	

5 I 	(1.45)

Hence the physical mass A which sets the scale for all masses in the theory is

given in terms of 50 and 13 1 by

A
(1.46) (1.46) a-

It is clear from this expression that A does not have a perturbative expansion and

consequently mass generation is a non-perturbative effect. However, once the

scale is set, ratios of masses in the theory are determined (with no free

parameters) as pure numbers depending only on the gauge group. The regime in

which (1.46) holds is known as the asymptotic scaling region of the theory. It is

possible to relate lattice calculations to ones based on continuum regularisation

schemes by relating their A parameters (Hasenfratz and Hasenfratz, 1980).

14

Having established that the pure gauge theory is confining at strong coupling

and that the continuum limit is reached when g = 0, we must verify that there is

no phase transition in the intermediate coupling region for the phenomenon of

confinement to be present in the continuum. It is known analytically (Guth, 1980)

- and numerically by Monte Carlo simulation (Creutz, Jacobs and Rebbi, 1979;

Lautrup and Nauenberg, 1980) - that such a transition occurs for QED (in four

dimensions) and there is a critical point separating the charge confining phase

from the free charge phase. This is, of course, as it should be: continuum QED is

not a confining theory in four dimensions. For QCD such an analytical proof has

not been found; however, it has been demonstrated numerically by Monte Carlo

simulation (Creutz, 1979, 1980) that there is no phase transition in the

intermediate coupling region (neither for SU(3) nor for SU(2)) - the strong

coupling phase persists into the continuum and quarks are confined.

1.3. Fermions

We now have a pure gauge theory for QCD on the lattice. The next obvious

step is to introduce fermions which interact with the gauge fields to produce the

strongly interacting particle spectrum we see in nature. This will prove to be

rather difficult due to the problem of fermion doubling.

We start from the continuum free fermion action in Euclidean space

S 	(J) (øt) () 	
(1.47)

where X = y'(+ ieA) and the y matrices, satisfying CyM'y} = 26, are

chosen to be Hermitian: ypt = 	This is discretised on the lattice by

associating the fermion fields i with sites of the lattice n and making the

replacement

15

(1.50)

Y(el) 	
- 	 - 	 (1.48)

where e is the displacement vector by one site in the 4—direction (and therefore

has length a, the lattice spacing). We choose the central difference to preserve

the anti—Hermitian nature of X. Hence we obtain the so—called naive lattice action

for fermions

S =
I
 i cL

(1.49)

-I- 	Y Vvt1(kti'(pV .
It

From this action we can calculate the lattice momentum space propagator (in the

same way as we do in Chap. 2.1):

For massless free fermions, G(q) has poles for Esinq = 0, that is, for
'4'

(1.51)

Thus we find that is addition to the expected excitation about zero momentum,

there are 15 extra modes at the edge of the Brillouin zone. The fermions have

"doubled" in each dimension - so that, in general, on a d—dimensional lattice
2d

degenerate fermionic species survive in the continuum limit. To circumvent this

problem we must go beyond the naive lattice action.

16

Before doing this we should point out that the transition from this free

fermion theory to the interacting fermion and gauge theory is straightforward:

the replacement ip(n)iIJ(n+e) + n)U(n)1li(n+e) induces the correct

gauge-covariant coupling between fermion and gauge degrees of freedom.

1.3.1. Wilson fermions

Wilson, 1977, invented a method whereby the unwanted fermion species are

given a mass of order 1/a and so decouple from the theory in the continuum

limit. This is done by adding to the action a term corresponding to the lattice

version of the second derivative of the fermion field, multiplied by an arbitrary

parameter r. This term is allowable because it is of order the cut-off and so will

disappear in the continuum limit. The Wilson action is thus

+ rJ1) 	 + fry') q) 	
(1.52)

This gives the propagator (Chap. 2.1.1)

-I

(q) 	
= 	'i (X

L ,AL 	 (1.53)

which has the following values at the values of q in (1.51):

17

r)

(1.54)

(m)'

If we define ni = m0 + 4r/a, where m0 is the ground state mass, then only the

state corresponding to q = (0,0,0,0) retains a non-zero propagator as a - 0, giving

us the one fermion required. Note that there are two special cases: r = 0 (which

reduces to naive fermions) and r = 1 (for which yU±l act as projection

operators). In the continuum limit for r = 1, zero mass for the lowest (free

fermion) mode is given by m0 = 0, that is, m = 4/a; this is called the critical mass

and denoted rn. Wilson, 1977, has shown that in the strong coupling limit (g2 -

') for r = 1, the critical mass becomes m = 2/a. Hence in the interacting theory

(0 < g2 <), we assume that the critical mass, in lattice units, lies in the range

4 > rn > 2. The actual value it assumes must be found numerically, which is

one of the disadvantages of Wilson fermions. Another disadvantage is that the

r-dependent terms in the action explicitly break the chiral symmetry of the

massless theory. In the continuum, chiral symmetry is spontaneously broken at

m0 = 0 dynamically generating a Goldstone boson which is taken to be the pion.

Thus the use of Wilson's action relies on the observation that at some value of

mc the mass of the lowest pseudoscalar in the theory approaches zero,

suggesting that it is indeed the Goldstone boson.

1.32. Susskind fermions

Susskind, 1977, proposed reducing the fermion degeneracy by "thinning" the

degrees of freedom, distributing them on sub-lattices. To derive this we follow

Kawamoto and Smit, 1981, and spin-diagonalise the naive lattice action. Define a

field x(n) as follows:

with

PtL .S v-
T)

--I-
,; 	 1 (p1) =

7(vt) 	kt)

1•'
t) T 1 (1.55)

where the four-vector labelling lattice sites, 11 = (n1,n2,n 3,n 4). Rewriting the action

(1.49) in terms of x yields

~ 	h' £ -y- (M)
	 (156)

where the phase factor

(_)
	* Pt + 	PL, ..

-, 	 (1.57)

and the index ci labels the Dirac components of the original fermion fields,

running from 1 to 4. Thus the naive action has been diagonalised in spin space,

that is, it has completely decoupled into 4 identical spinor copies. All but one of

them is thrown away reducing the fermion degeneracy, in d dimensions, from 2d

to 22. This diagonalisation may, equivalently, be carried out in momentum space

(Sharatchandra, Thun and Weisz, 1981). Thus the Susskind action is

19

CL

+ m 	:t:t.i £i
bt

(1.58)

which yields the propagator (Chap. 2.1.2)

-I
Cr (q)

= 	i £ 	
~ 	 (1.59)

with the same poles as the naive propagator, the difference now being that there

are only 1/2d'2 times the number of degenerate fermions. We see from (1.59)

that translational invariance by one lattice spacing is lost but that translational

invariance by two lattice spacings in a given direction is retained. This is a

reflection of the fact that the physical fermion fields should now be identified

with combinations of the Susskind fields around a 2d hypercube (Kluberg-Stern,

Morel, Napoly and Petersson, 1983). Although having the disadvantage of more

than one fermion, Susskind fermions have the advantage of preserving some

chiral symmetry at finite lattice spacing.

Neither Wilson nor Susskind fermions fulfil our hope of obtaining a lattice

gauge theory with just one fermion and with the required chiral symmetry. This

is a consequence of the Nielsen-Ninomiya, 1981, no-go theorem which

essentially says that chiral symmetry must be (at least partly) broken if one

wants to avoid fermion doubling with a lattice action which is bilinear in the

fermion fields, has exact gauge invariance and has only finite range interactions.

Hence the only reasonable way to achieve our goal is to choose a non-local

action - this has been done by Drell, Weinstein and Yankielowicz, 1976, using the

so-called SLAC derivative, but being highly non-local is of no use in numerical

simulations and moreover appears to fail to recover locality, and Lorentz

invariance, in the continuum limit (Karsten and Smit, 1978, 1979). Hence in the

following we use only Wilson or Susskind fermions. We shall also henceforth take

the lattice spacing a = 1.

20

1.3.3. Numerical simulations

To summarise, we have derived the standard Euclidean action for a lattice

gauge theory with fermions:

(u1 	,) = 	(CIL) 4- c (' F,),
(1.60)

where SG is given by (1.28), and SF is taken to be either SW (1.52) or S (1.58)

(including gauge fields) - written generically as

(1.61)

where M(U)(n,m) 	(U)(nm) + m5(n,m), and 0 is the Dirac operator appropriate

to Wilson or Susskind fermions. Physical observables are obtained as before

from (1.22) and (1.23) but now with the full action (1.60). We wish to calculate

these observables from numerical simulations and must therefore eliminate the

fermionic variables , 4 which are anticommuting elements of a Grassmann

algebra rather than numbers. This can be done analytically using the standard

Matthews-Salam, 1954, 1955, formulae

S 700 	_S(td,) 	-,

00 	
r 	 N ()(,A) 	In{u)]

Hence

21

where

A> = - 	
çOD

u - I 	 _c4 c'L) Of 	ptl (i]€. 	(1.63)

I

E 	OD tt e
c (u) 	

(1.64)

with the effective action

yeft (U) E 	(U) - 	[M (u)] 	
(1.65)

OIu) represents the expectation value of the operator 0 in the background of the

fixed gauge field configuration (U}. Unfortunately, this purely bosonic action is

still no good for numerical simulations because it is highly non-local due to the

determinant of the Dirac operator. This determinant represents the contribution

to the action coming from closed fermion loops. The simplest way to proceed is

to ignore fermion loops and work in the so-called quenched approximation.

However, we wish to investigate the effects of fermions in lattice gauge theories

so we must retain the determinant and use the unquenched theory with

dynamical fermions. To deal with this non-local determinant many methods have

been developed, most of which use of the sparse nature of M (the Dirac operator

couples only to nearest neighbours so that M is essentially tridiagonal, although

periodic or antiperiodic boundary conditions on the fermion fields introduce

non-zero elements in the corners of the matrix). We shall briefly review some of

these methods before going on to describe how numerical simulations are

performed using the Monte Carlo method.

1.3.4. Dynamical fermions

In Monte Carlo numerical simulations what one requires to calculate is the

change in effective action

22

E 	ç4 (u ~ 	-

	(tL) 	(1.66)

which, from (1.65), is

=
	

[i+ M'(L) fr1(U)]
(1.67)

We shall firstly discuss two approximate methods for calculating this and then go

on to describe some exact methods.

In the hopping parameter expansion for Wilson fermions (Hasenfratz and

Hasenfratz, 1981; Lang and Nicolai, 1982; Stamatescu, 1982; Montvay, 1984) we

write M(U) = 1 - KB(U) so that

r 	 (1.68)

where the hopping parameter

J< 	
(

=
(1.69)

is small. 	The trace over Dirac and colour of B, giving the contribution from all

closed fermion 	paths of order j, is calculated 	on the lattice. 	This 	expansion is

analogous to the high temperature series 	expansion 	is statistical 	mechanics, in

many respects. The hopping parameter is proportional to the amplitude for

moving a fermion by one lattice spacing, and the order of the expansion is the

length of the fermion paths considered. As long as the maximum order of the

expansion is comparable with the size of a hadron in lattice units, the change in

the effective action should be fairly accurate. This method has been used to

calculate, to 32nd order, ground state meson and baryon masses in QCD on an

8 lattice with Wilson fermions (Langguth and Montvay, 1984). Kuti, 1982,

modified the hopping parameter expansion so that instead of summing all the

23

closed fermion paths order by order, they are generated stochastically. This

means that the ferniions perform random walks on the lattice. The advantage of

this is that, for a given statistical accuracy, the number of walks required does

not depend on the size of the lattice. The main problem is to correctly choose

the transition and stop probabilities of the walk - if they are not chosen correctly

then most of the time is spent generating irrelevant paths and the convergence

will be slow.

Another approximate method is the pseudofermion method (Fucito, Marinari,

Parisi and Rebbi, 1981) which has been widely used. This is described in detail in

Chap. 3.1. Essentially it involves using a Monte Carlo technique to calculate M 1

appearing in (1.67), the approximation being that 5U is taken to be small, the

effective action linearised and terms of order 6U neglected. The advantage of

this method is that the computer time required is independent of lattice size,

being proportional to the number of pseudofermion iterations, or sweeps, needed

to achieve a desired statistical accuracy. Moreover, as we shall see in Chap. 3.2,

the technique is ideally suited to implementation on a parallel computer. The

main problem is that the systematic error introduced by throwing away terms of

order 6U2 must be minimised by keeping SU small thus reducing the

convergence rate.

We now turn to the first exact method for calculating (1.67) which was

derived, and tested on a simple one-dimensional model, by Scalapino and Sugar,

1981. (This method was also obtained, and used for the massless Schwinger

model, by Duncan and Furman, 1981.) This requires an initial knowledge of the

entire fermion Green's function M' and then makes use of the fact that a

change in the gauge variable on a single link induces changes in M only for

those elements near the link. This means that 6M(U)(i,j) is non-zero only for a

small number L of values of I and j; hence the determinant in (1.67) is effectively

that of an LxL matrix only. The entire matrix M 1 is stored (which is a big

problem for large lattices as the size of this matrix is proportional to the square

of the lattice size) between iterations and updated according to the identity (rank

annihilation)

24

H (, k) H (k,
(M + 	

- 	+ 	(k, t) 	'(c') 	(1.70)

where the indices k and I are summed over the L non-vanishing values of 	SMkI.

(Rounding 	errors, which will cause M 1 to stray from its true value after many

iterations may be reduced by periodically carrying out the correction procedure

M 1
(1.71)

which effectively renormalises the product M_
1Mto unity.) Scalapino and Sugar,

1981, admit that their method is too slow to be used for large, multi-dimensional

lattices - it takes too long to update M 1, even using (1.70) - but go on to point

out that by dividing the lattice of N sites into P blocks with N/P sites per block,

only a (N/P)x(N/P) sub-matrix of M 1 need-be calculated within the block and this

would be quick to update. Moreover, the sub-matrix could be calculated using

an efficient method - for example, the Lanczos (or, equivalently, . conjugate

gradient) algorithm.

Combining these two ideas leads to the block Lanczos algorithm (Barbour et

a/ 1985b), discussed in detail in Chap. 4.1, in which the blocks correspond to

hypercubes of 2 sites. We perform the Monte Carlo simulation by visiting

hypercubes of the lattice in turn, iterating on each one a few times to bring it

into local equilibrium and then moving on to the next one. The main advantage

of the Lanczos algorithm is that it works well at small fermion mass, unlike the

pseudofermion method, for example, which has poor convergence for this. The

disadvantage of this algorithm is that its computation time increases dramatically

with lattice size.

Another exact method for evaluating M 1 is that due to Weingarten and

Petcher, 1981. They write M(U) = 1 - KB(U), where K is the hopping parameter,

and consider a system with two identical fermion flavours so that the fermion

contribution to the effective action may be written as

25

-/

(1.72)

The usefulness of this depends upon an efficient algorithm for calculating (1 -

KB)-'Q. Weingarten and Petcher, 1981, use Gauss-Seidel iteration: if x is defined

as (1 - KB)-'Q then by rearranging we have

x 	1(0= 	;L1 (1.73)

which may be iterated until a satisfactory value for x is obtained. Hamber, 1981,

similarly solves this equation for x but by using Gaussian iteration. In both

versions the natural initial vector for any iteration is the vector x that resulted

from the previous iteration. However, these iterations must be carried out many

times, in principle for every updating step - this rapidly becomes prohibitive for

larger lattices.

Finally, we shall mention, for completeness, the recent development of

so-called equation of motion methods which can be used for simulating lattice

gauge theories with dynamical fermions. In these methods the average over the

fields in (1.22) is replaced by an average over a fictitious time evolution. This

evolution can be stochastic or deterministic. In the stochastic method (Parisi and

Wu, 1981; Ukawa and Fukugita, 1985; Batrouni et al, 1985), one introduces a

Gaussian white noise function n(-T), normalised by <(t)(t')> = 25(t-t'), and

defines the time dependence of 	by the Langevin equation

= 	+ 	
(1.74)

so that

9.1

(1.75)

In the deterministic method, S() is interpreted as the potential energy (per unit

mass) for a classical dynamics governed by Newton's law:

(1.76)

The conjugate momentum TT = 	and Hamiltonian H(iT,) = .112/2 + S() are then

introduced so that for the microcanonical method (Callaway and Rahman, 1982,

1983; Polonyi and Wyld, 1983), the average (1.75) becomes

oD -Tr S(E—lq(T,, 0)) 	(-r

0(0) 	

5
øo- c(E-14 (i;)) 	 (1.77)

where the integrals are over the (2N-1)-dimensional hypersurface of constant

energy defined by H(1T,) = E. The microcanonical and Langevin methods

complement each other in that the former has a smooth trajectory through phase

space and therefore moves quickly but may be non-ergodic, whereas the latter is

ergodic but jumps around in phase space (following a random walk) advancing

slowly. This observation lead Duane, 1985, to construct a hybrid (canonical)

method which is essentially microcanonical most of the time but every now and

then has a Langevin "kick" to some other part of phase space. Thus we have the

advantage of microcanonical's speed in exploring phase space, made ergodic by

Langevin's "kicks". To conclude, the advantage of these equation of motion

methods is that one update, updates the whole system - thus avoiding the

slowing down with increasing system size found in other methods.

27

1.4. Monte Carlo

As we have already seen (in Sec. 2), the expectation value of an operator

representing a physical observable in a field theory is given by the functional

integral

çoø Ô() e-

j ø e-S 	 (1.78)

where 	denotes generically the dynamical field variables in the theory. The idea

of the Monte Carlo method is to replace this integral by an average over field

configurations C:

<A> 	

1ô(c:) 	/

0 	
I 	
-0

(1.79)

The mean value converges to <0> as N - 	with statistical errors which fall as

N 112. These field configurations should be configurations which significantly

contribute to the average, that is, they should be typical of thermal equilibrium in

the statistical analogy, distributed with the Boltzmann factor e. The Monte Carlo

method is designed to generate such a set of configurations. It begins with some

arbitrary initial configuration and from this generates a sequence of

configurations, such that, once statistical equilibrium is reached, the probability of

finding any configuration C, Peq(C) is proportional to 	The passage from

one configuration to the next is determined by the transition matrix P(C - C')

satisfying the constraints of a probability:

28

(1.80)

C,

If after n steps we have a configuration C with probability p(C) then

(1.81)
C

so we may write

C 	 (1.82)

An obvious condition on P is that it leaves an equilibrium configuration in

equilibrium, hence from (1.82) we have

p(c 	C) Pet (cJ — 	P')pe (c')
C 	 (1.83)

A sufficient (but not necessary) condition for (1.83) to hold is equality term by

term, that is, each step of the transition matrix satisfies detailed balance:

=
(1.84)

Then p(C) + Peq(C) as n - 	. The detailed balance condition does not uniquely

determine the transition probabilities; the two most popular choices lead to the

Metropolis and the heat bath algorithms.

1.4.1. Metropolis algorithm

The Metropolis algorithm (Metropolis et al 1953) is often used for updating

the gauge fields in the Monte Carlo simulation of a lattice gauge theory. Consider

29

a gauge field configuration (U). From this we wish to generate a new

configuration (U') by updating a single link U(n). This is done by selecting

arbitrarily a new variable U(n) giving a new configuration (U), and calculating

the change in action

-

If AS < 0, the change is accepted and we have U'(n) = U(n); (U') = (U). If AS

> 0, the new configuration is accepted with the probability e S. In practice this

is done by generating a pseudo-random number r in the interval [0,1] with

uniform probability distribution. If r . 	e S the change is accepted: CU') = (U);

otherwise it is rejected: (U') = (U). This means that

(I
E'i 	

e
	c(Euj)J 	

(1.86)

so detailed balance (1.84) is satisfied:

P(')
	

c(fu'J) -

P (13 	fu'j) 	 S
	

(1.87)

1.4.2. Heat bath algorithm

The heat bath algorithm (Yang, 1963) is also used for updating gauge fields

(Creutz, 1980b; Cabibbo and Marinari, 1982) but we shall use it for updating the

pseudofermion variables in the pseudofermion method. It simply replaces each

variable with a new one selected randomly with a probability given by the

exponential of minus the resulting action. Thus P(C 	C') is independent of C,

being proportional to the Boltzmann factor for C', so that detailed balance is

30

automatically satisfied.

Explicitly, for the pseudofermion method, this works as follows. The

pseudofermion action, which is discussed in detail in Chap. 3 - see (3.12) and

(3.14), is quadratic in both the real part R() and the imaginary part 	(r1) of the

complex pseudofermion variable (n), that is,

ci G)Olt (it) -- 2 	ç ()

) 	() 	
(1.88)

where a(n) comes from the part of the action coupling (n) to itself and b(n) =

bR(n) + 1b1(n) comes from the coupling of (n) to its nearest and next nearest

neighbours. Now at equilibrium the pseudofermion variables are distributed with

the Boltzmann factor exp(-S f) which means that real and imaginary parts of c(n)

are separately distributed according to the Gaussian distribution

ø(J7
	

(1.89)

with

(1.90)

The heat bath algorithm for the pseudofermions thus consists of generating two

pseudo-random numbers r1 and r2 with Gaussian distribution N(a2=1, 4=U), that

is, exp(-r122/2), and rescaling them to obtain new pseudofermion variables with

correct Boltzmann distribution:

)

	 -L? 	(1.91)

31

Chapter 2

Free Fermions

When performing numerical simulations of lattice gauge theories, it is

worthwhile looking at free fermions as a check on algorithms so in this chapter

we shall investigate some aspects of free fermions on a lattice. In Sec. 1 we

calculate <j.> for free fermions - both Wilson and Susskind with periodic and

antiperiodic boundary conditions - and see how it changes with lattice size. In

Sec. 2 we calculate various "hadron" (fermion bilinear/trilinear) propagators for

free fermions and investigate finite-size effects.

2.1. <V>

When calculating <> in numerical simulations of lattice gauge theories,

one usually subtracts out the free fermion chiral condensate, which we denote

We shall be investigating the Schwinger model with Wilson fermions (in

Chap. 3.3) and SU(2) with Susskind fermions (in Chap. 4.3) and will therefore

require <74.>0 for both Wilson fermions in two dimensions and Susskind

fermions in four dimensions. In this section we detail the calculation of this on a

lattice.

2.1.1. Wilson fermions

The lattice Green's function G(n;m) for free Wilson fermions (all gauge fields

set to unity) satisfies

32

- r(,* ; a)
- (*r 	(- e o)

(kt;o) 	(2.1)

where n denotes a site, 4 denotes a direction, e is a unit vector in the

ji-direction and y,, are the Dirac matrices. We shall work in d dimensions on a

lattice with N sites. If we define

(q)
(2.2) N 2

with

s-I

Al

then, the Fourier transform,

Cr () . = 	 - 	 . 	

o) 	
(2.3)

PL

and

IL 	
(2.4)

By substituting (2.2) and (2.4) into (2.1) we obtain

	

- 	 c M) +
Cr 	

Ak

2.
+ 	- . rco) 	' (2.5)

,44

where q~j 	q.e. Now <i>0 is the quark propagator at zero space-time

separation:

33

(2.6)

where Tr is trace over the Dirac and the colour indices, which from (2.2) with

(2.5) becomes (for NC colours of quark)

~

-

Al
(2.7)

/4

since Try = 0. This corresponds to periodic boundary conditions; for

antiperiodic boundary conditions we replace q ~j with q + 1T/N.

For r = 1, single colour (NC = 1) Wilson fermions in two dimensions on a

lattice with N = 64, we obtain Fig. 2.1 showing the behaviour of <ip>0 with

Wilson mass parameter. The zero mode in the propagator for the periodic case

gives the expected divergence in <Tip> 0 at the critical mass

,vlc
(2.8)

<P> obtained with antiperiodic boundary conditions at various values of the

mass are listed in Table 2.1.

34

c'J
r

Fig. 2.1 	<il4)>0 for r = 1 Wilson fermions on 642 lattice with periodic
(solid line) and antiperiodic (dotted line) boundary conditions.

CD LC) CD LC) 0 LI) 0
LI) C'J 0 0

14 114 1-4 0 0 0 0

a 	II

Table 2.1

<> at various masses for r = 1 Wilson fermions on 642 lattice

with antiperiodic boundary conditions.

M

1.0 0.5173
1.1 0.5341
1.2 0.5505
1.3 0.5667
1.4 0.5834
1.5 0.6009
1.6 0.6201
1.7 0.6420
1.8 0.6683
1.9 0.7032
2.0 0.7698
2.1 0.8167
2.2 0.8167
2.3 0.8033
2.4 0.7842
2.5 0.7626
2.6 0.7402
2.7 0.7179
2.8 0.6960
2.9 0.6749
3.0 0.6546

They will be used in Chap. 3.3 for the Schwinger model. We can vary N to see

how <4>0 changes with lattice size; the result is shown in Fig. 2.2 for the

more dramatic case of periodic boundary conditions. ft appears that lattice sizes

of 642 or more are close to the continuum, for free fermions at least.

2.1.2. Susskind fermions

The lattice Green's function for free Susskind fermions satisfies

35

Fig. 2.2 	<4.i> for r = 1 Wilson fermions on N2 lattices with periodic
boundary conditions.

CI)

C'J

In
(N E

(N

In
I

In
U

C 	In 	 In 	0 	In 	0v4
LO 	IN 	0 	 In 	(N 	C
14 	14 	14 	0 	d 	d

0 I I
<4\17\>

-

	

= 	
(2.8)

where the phase factors

I 	(°
Fourier transforming this in exactly the same way as for Wilson fermions yields

= ____________

/94

ck 2 f, 	-t- 	
(2.9)

so that

< Nc
(2.10)

since sinq = 0. Again for antiperiodic boundary conditions we replace q with

q.j + it/N. We notice that <> for Susskind fermions is precisely l/d times

<7P>0 for Wilson fermions with r = 0, as expected.

For single colour Susskind fermions in four dimensions on a lattice with N 	4

we obtain Fig. 2.3. Now the zero mode in the propagator occurs at m = 0.

<~,P> O obtained with antiperiodic boundary conditions at various values of the

mass are listed in Table 2.2.

CIR

Fig. 2.3 	<'4i> for Susskind fermions on 44 lattice with periodic
(solid line) and antiperiodic (dotted line) boundary conditions.

Cl,

10

\

N

'N

'N

Ln 	 10 	C 	U C

0

Table 2.2

<P4)> 0 at various masses for Susskind fermions on 44 lattice
with antiperiodic boundary conditions.

m f <i>0

0.1 0.1990
0.2 0.3922
0.3 0.5742
0.4 0.7407
0.5 0.8889
0.6 1.0169
0.7 1.1245
0.8 1.2121
0.9 1.2811
1.0 1.3333
1.1 1.3707
1.2 1.3953
1.3 1.4092
1.4 1.4141
1.5 1.4118
1.6 1.4035
1.7 1.3906
1.8 1.3740
1.9 1.3547
2.0 1.3333

Varying N to see how <j)V> O changes with lattice size for periodic boundary

conditions, results in Fig. 2.4. Again a lattice with N = 64 is close to the

continuum, but with N = 4 there are large finite-size effects.

2.2. Propagators

In this section we shall calculate various "hadron" (fermion bilinear/trilinear)

propagators for free lattice fermions and investigate finite-size effects. Periodic

and antiperiodic boundary conditions in the spatial directions appear to yield

upper and lower bounds respectively for both the meson-like and baryon-like

propagators.

We shall consider Wilson fermions in four dimensions on a Euclidean L3xL4

lattice (L4 is the time direction). By setting r = 0 we can obtain (four copies of)

Susskind fermions, via a Kawamoto-Smit transformation (Kawamoto and Smit,

1981). We write the free fermion propagator (Green's function) as follows:

37

CY)

- 	11111 	
I 	 I 	I 	II

I 	It 	I 	I 	I 	I 	I 	I 	I 0

IC) 	0 	Ln 	CD

0 0

r%I

IC)

0

E

Fig. 2.4 	<> for Susskind fermions on N4 lattices with periodic
boundary conditions.

0 	II

c) 	
(

()
(2.11)

with

_ +

Cr
r(l—cosq)~

+- c 	 c, 2 	, (2.12)

where

and

4- kK

The momentum sum is over q~j = 21T(n 	+ S)/L, 	n 	= 	0,1, ..., 1-11-1, where 	6 4 =

0 	for 	periodic 	boundary 	conditions and 6 ,, 	= 	1/2 	for antiperiodic 	boundary

conditions 	in 	the 	.1-direction. Note that we have used a different 	notation 	for

G(q) in (2.12) since it differs, by irrelevant terms, from 0(q) in 	(2.5).

2.2.1. Calculation of fermion propagator

0(n) can be evaluated on a computer from (2.12) as it stands. However, some

insight can be gained and computer time saved by performing the q4 sum

analytically. We shall consider the case L4 -* 	for which

~- .40) — — (q)

(2.13)

(The case of finite L4 is treated in Carpenter and Baillie, 1985.) This integral can

be evaluated as shown below; there are two cases.

1) 0 4 r < 1

The denominator in (2.12) can be written

— 	cr,+ 	 + 	(Y. 	

Z.

which shows that there are poles at

±U —r('r+fti)
=

I- r'
	

(2.14)

where

UZ.
 E (l+Mt

The right-hand side of (2.14) is . 1 with the positive sign and 	-1 with the

negative sign so the poles occur at q4 = iE1 and q4 = ±Tr + iE2, where

COSA. L I =
—
I- r2 	

(2.15a)

and

oçk E2 =
	u4- v'(r*/tl)

(2.15 b)

For t > 0 we employ the contour in Fig. 2.5.

Fig. 2.5 	Contour in the complex q4 plane for the integral of eq. (2.12).

s]

The contributions from the two legs of the contour parallel to the imaginary axis

cancel due to the periodicity of the integrand (t takes integer values) and the

piece at infinity parallel to the real axis is killed by the e
iq4t• Thus G(t,) is

given simply by the residues from the two poles inside the contour:

~_00 A14) 	
1.2

- /
-

e.
ULskE1 iyt_

X'K t; L 	 m~

)E 2• 16

+a .kE f_SkEL
_*r((osbE)Hj

For t < 0 the poles and the contour lie 	in 	the negative half-plane which results

in a change in 	sign 	of the 	'y' 4 terms in 	(2.16). Finally, for t = 0 we can do the

integral analytically and find that the 'T'4 terms in 	(2.16) disappear. Hence, for 	all

syt() 	 (EkE) M3
2Rsk E,

+

with the convention that sgn(0) = 0.

2) r = 1

The denominator in (2.12) reduces to

- 	2 ((/) 	 / + 	4- (1+ ,ii) '

which means that there is a pole at q4 = 1E1 with

MN

Q Z

	

cockE1 	=

(2.18)

and now U = (1 + M)2. For t > 0 we use the same contour as before (Fig. 2.5),

but without the poles at ± + iE2, to obtain

I 	fse1 —/ C os lb,
+
Mj e,

(2.19)

Again t < U gives a sign change for the Y4 term in (2.19). But now, for t = 0,

when we analytically evaluate the integral, we find that the Y4 term in (2.19) has

been replaced by 1/2(1 + M). Hence, for all t,

j
._E/W

j r, s -Q~' - N e
2U,hE,

~ 	b) o) _______ 	

(2.20)

2.2.2. Meson-like propagators

We will now consider the "meson" propagators in the free theory. If we

decompose

	

= 	 -f) +_ I (~,t (&1 f) 	(2.21)

then the time-slice propagator for a typical fermion bilinear ipr4i is given by

ru

- <'Q7p'(e2)

= 	rr[n () p 	*(b) YrJ
(2.22)

I

/44 	 J

where

and

For example, in the case of the pion-type propagator (F = y5), T1 = T2 = T3 = T4

= T = 4. For purposes of numerical evaluation we note that the number of

terms in the momentum sum (2.22) can be greatly reduced by exploiting the

reflection and permutation symmetries of the summand. In this way we can

reduce the range of the momentum sum to 0 	q3 	q2 	q1 	TT, with a little

care about the counting of terms on the edge of this domain.

The large-time behaviour of the propagator (2.22) is governed by the

lowest-lying intermediate quark-antiquark state. For periodic boundary conditions

this is the q = Q state with energy 2E1, irrespective of the lattice size. However,

for antiperiodic boundary conditions the lowest-lying quark momentum state is

= (ir/L, 71/L, /L) and the corresponding energy is, to a first approximation (the

exact result is given by (2.15a) or (2.18)), 2E1 - 2/(m2 	3ii2/L2). The

L-dependent correction is quite large even for fairly large lattices.

In Fig. 2.6 we plot the "pion" propagator (F = y) for various lattice sizes, with

periodic and antiperiodic boundary conditions, and with r = 1, m = 0.2 and L4 =

We observe that the finite-size effects can be at least as large for antiperiodic

boundary conditions as for periodic boundary conditions, contrary to some

expectations (Barbour et al, 1983). Antiperiodic boundary conditions usually win

out at small t, but at large t they give larger finite-size effects than periodic

boundary conditions. These two types of boundary conditions appear to bound

the propagator from below and above respectively.

42

-3

-6

-g

-12

-'5

-18

-21

-24

-30

Fig. 2.6 	Natural log, of the pion time-slice propagator, for r = 1,
m = 0.2. L4 = , various L3 and periodic/antiperiodic
boundary conditions.

bime

The other "meson" propagators behave in a very similar way to the "pion"

propagator. In fact the "rho" propagator is essentially degenerate with the "pion"

propagator at large t, because large-t behaviour for mesons is dictated by the

G4, G parts of the quark propagator (Gi = 0 for the 4 = D. intermediate quark

states), and the T4, I traces are identical for the pseudoscalar and vector meson

b II in ears.

2.2.3. Baryon-like propagators

The "baryon" propagators also display similar behaviour to the "pion"

propagator. As an example we look at the "proton" propagator in the free theory.

If a proton field is defined in terms of the quark field as

X. 	 (Tc -, /ç)

where C is the Dirac charge conjugation matrix, then the free-field expression for

the time-slice "proton" propagator is

(: 4) 3 	
(2.23)

* ,Ml

where

Jr
1- ' CrM() ; /12T.

4

Again computer time can be saved by exploiting the symmetries of the

propagators to reduce the range of summation in (2.23) to 0 < n3 < n2 	n1

L/2. The resulting "proton" propagator (actually the value of the upper

component of the diagonal matrix (2.23)) is plotted in Fig. 2.7, for the same

parameters as in Fig. 2.6. As before, we see lower and upper bounds on the

propagator from antiperiodic and periodic boundary conditions respectively.

43

-6

-12

-t8

-24

-30

-36

-42

-48

-54

-60

Fig. 2.7 	Natural log, of the"proton" time-slice propagator, parameters
as for Fig. 2.6.

bime

2.2.4. Concluding remarks

The free-fermion case corresponds to infinite inverse coupling constant, a, so

we expect this analysis to apply to QCD calculations at large B. This conclusion

is supported by Monte Carlo work on small lattices at B = 6.0 (Gupta and Patel,

1983; Bernard, Draper, Olynyk and Rushton, 1983; Bowler et al, 1984) which yields

degenerate pion and rho mass as we found in Sec. 2.2.

Chapter 3
Pseudo- Fermions

In this chapter we shall use the method of pseudofermions in a numerical

simulation of the Schwinger model with Wilson fermions. In Sec. 1 we describe

the method of pseudofermions and in Sec. 2 go on to discuss the details of

using it in performing numerical simulations on a highly parallel computer. In Sec.

3 we firstly review the continuum Schwinger model and then turn to the

numerical simulation, describing the pure gauge theory, free fermions, the

quenched model and the dynamical model. We also outline an effective

Lagrangian calculation of the meson propagators in U(N) and SU(N) lattice gauge

theories at strong coupling.

3.1. The method

We begin by rewriting the effective action (Chap. 1.3.3) in terms of the

Hermitian operator K = (0 + m)t(0 + m):

- 	 1< [(u)J

For nf flavours of Wilson fermions the effective action becomes

& [
	

u] c c 	
(3.2) €UL)= 	(LL)

Setting n f = 0 (that is, ignoring the fermionic determinant) yields the quenched

approximation, whereas nf = 1 gives the fully interacting unquenched or

dynamical theory with one flavour of fermion.

The problem with using this action directly for Monte Carlo calculations is the

non-local nature of the fermionic determinant. Consider updating the gauge field

45

variable on one link U(I), say, leading to the change in effective action

(3.3)

If the new link variable is chosen close to the old one, which is usually the case

when the Metropolis algorithm (discussed in Chap. 1.4.1) is used, then the change

in the effective action can be linearised

~4 ((~ 1)
- 	i? (ç) 	c rr (a') - c (ct)

	

k'C 	
44 () 	a 	 (3.4)

,4A

As only one gauge link is being changed, 6K/6U(l) is non-zero only for sites

neighbouring this link. Hence we only require the elements of K 1 for these sites,

rather than the entire Green function. These elements can be calculated in a

variety of ways, one of which is the pseudofermion method of Fucito, Marinari,

Parisi and Rebbi, 1981.

This uses the fact that the inverse of a Hermitian operator K can be written

I< 	

SO
=

. 	 (3.5)

where 	 <Ø*() ()>

(3.6)
All

Spf is the action for the so-called pseudofermions 	which are complex bosonic

fields. Now we can approximate K 1(m,n) for a given gauge configuration CU} by

performing another Monte Carlo calculation, this time using the heat bath

algorithm (discussed in Chap. 1.4.2) to improve convergence. If an ensemble of

N f pseudofermion configurations {} is generated then

'(04

- I
/t

)

f

0 	

'
0 (M)

E3 f 	(3.7)

This yields. the exact result (apart from errors of order 6U2) in the limit N f - '

(in practice one takes N2f as large as is required to produce reliable results)

which is then fed back into the effective action for the gauge fields as these are

updated, according to (3.4). Thus simulation of the dynamical theory using the

pseudofermion method requires two Monte Carlo simulations: the usual

Metropolis one for the gauge fields and, within this, a heat bath calculation for

the pseudofermions.

The above discussion has been for 1-component, i.e. Susskind, fermions

which we shall use in the simulation of SU(2) (Chap. 4.3). For the simulation of

the Schwinger model (Sec. 3) we shall require Wilson fermions in two space-time

dimensions, i.e. 2-component fermions. In this case the pseudofermion variables

will also have two components and K will be a 2x2 matrix. Hence (3.5) and (3.6)

respectively become

and

1~ —1 (M / ^

) > 	(3.8)

-I-
0

(3.9)

3.2. Computational details

The numerical simulation of the Schwinger model was carried out entirely on

the ICL Distributed Array Processor (DAP). This computer (described more fully in

Appendix I) has a highly parallel Single Instruction stream, Multiple Data stream

(SIMD) architecture consisting of a 64x64 array of bit-serial processing elements

(PEs), each with connections to the four nearest neighbours. (We note that the

47

simulation could also have been per-formed on the GRID (Appendix II), which has

a 	similar architecture to the DAP, in exactly the same manner. 	In fact, software

which will automatically translate a DAP program into an equivalent one for the

GRID 	is described 	in Chap. 	5.) Therefore 	the 	lattice 	size 	chosen 	for 	the

simulation was 64x64 so that one site of the lattice occupies one PE of the DAP.

Hence at each PE a pseudofermion variable and two gauge field variables (one

for each link in the positive coordinate directions) are stored. The SIMD

architecture of the DAP means that all the PEs can be updated simultaneously.

However, this would violate detailed balance - variables which interact must not

be modified simultaneously - therefore some of the PEs must be "masked oft".

Different masks are required for the gauge field and the pseudofermion variables.

The action for the gauge fields is

(3.10)

thus the gauge fields interact via plaquettes. This means that we can only update

half of the links in each direction simultaneously, as shown in Fig. 3.1.

Fig. 3.1 	Mask for updating gauge fields: links shown as arrows may be
updated simultaneously.

I

p1

EN

This holds in any dimension.

The pseudofermion actions for Susskind and Wilson fermions are as follows.

For Susskind fermions (Chap. 1.3.2)

ø() f 9)
(3.11) '

which is anti-Hermitian:

*

Hence

e

+ 	 +t) 14
1-'

14

e3t& &c6- 	e4-vd4é- frte5skbDLr t c-v 	
(3.12)

In the last term, flfl 	
= (_ 1)fl1 for .i # v, where n = (n1, n2). We notice that

there are no nearest neighbour interactions, that is, there is no term in the action

involving 4(n) and 4(n±e).

For Wilson fermions (Chap. 1.3.1)

49

(3.13)

If we write A = fi l - r$2 then 	is anti-Hermitian and $2 is Hermitian. Hence

Pf 	= 	
[(ir) +tvtZj

IL
+ 	 L)J

fr,,4A.

\ex& 1Lr'e$

)

~(i'vi(1i+r)

+

- 	+r)

(3.14)

k4A4-d.r tek0uy- 	ADM

For computational convenience, a representation of the ' matrices is chosen in

which 12 is diagonal:

We notice firstly that for r = 0 the Susskind case is recovered and secondly that

for r = 1 the straight next nearest neighbour interactions cancel (that is, there is

no (n) and j(n±2e) term).

Thus there are three possible cases depending on the Wilson r parameter.

Moreover, the masks also depend on the number of dimensions.

50

For two dimensions we have:

r = 0 (Wilson fermions reduce to two copies of Susskind fermions)

The nearest neighbour interactions vanish so we can update 1 in 4 sites, see

Fig. 3.2a.

r = 1 (Wilson fermions)

The straight next nearest neighbour interactions vanish so we can update 1 in

4 sites, see Fig. 3.2b.

0<r<1

All the interactions are present so the best we can do is to update 1 in 5

sites, see Fig. 3.2c, although because we are using a 64x64 lattice a 1 in 8 update

pattern such as Fig. 3.2d is easier to implement.

For numerical simulations of QCD the following update ratios (with appropriate

four-dimensional masks) are possible: for r = 0, only 1 in 16; for r = 1, 1 in 8; and

for 0 < r < 1, 1 in 9 or more practically 1 in 16.

We shall be concerned with calculating the chiral condensate <tTip> which is

the quark propagator at zero space-time spacing and is given by

< 	= & () 	(3.15)

For the Wilson fermions in the Schwinger model this can be written

<Lr > 	T 	
) 	 (3.16)

where Tr denotes trace over the two Dirac indices only (for single colour quarks).

In terms of Wilson pseudofermions this is, from (3.8),

01~1115 si

Fig. 3.2 	Masks for updating pseudofermions: sites shown with crosses may
be updated simultaneously. a) r = 0; b) r = 1; c) & d) 0 < r < 1.

a)
	

b)

Y> = Tr <%*) () 	(3.17)

For Susskind fermions, the 0 in (3.17) disappears because it connects nearest

neighbour sites which do not interact in (3.12), leaving

< 0 *kA
() 0 (h)>. 	

(3.18)

Finally we note that, computationally, Wilson fermions require twice as much

work as Susskind in two space-time dimensions: a Wilson fermion has 2

components at each site of a 2Nx2N lattice; a Susskind fermion begins with 1

component which species-doubles to 4 (on a NxN lattice) and is spread out over

the 2Nx2N lattice giving 1 component per site.

3.3. Schwinger model

Recently, the massive Schwinger model has been investigated numerically

(Carson and Kenway, 1986) using Susskind fermions (Susskind, 1977). The order

parameter for chiral symmetry breaking <5> and the low-lying meson masses

were calculated for both the model with two flavours and the model with one

flavour for the quenched case and for the unquenched or dynamical case. Here

we shall also investigate the massive Schwinger model numerically, but we will

calculate only <4r1.,> and will use Wilson fermions (Wilson, 1977). The

motivation for doing this is as follows. We wish to determine the behaviour of

<i4i> in both the quenched and the dynamical massive Schwinger model. In

particular, we would like to decide, on the basis of our results, which of two

analytical calculations of the behaviour of <i>/g as m/g - 0 for the quenched

case is correct. In addition, for the dynamical case there is an exact value of

<ii> for the massless model but how does <i.i> vary with mass? We use

Wilson fermions to avoid the problem of fermion-doubling which for Susskind

fermions must be overcome by introducing a one-link mass term which gives the

52

unwanted flavours a mass of order of the cut-off to decouple them (Burkitt,

Kenway and Kenway, 1983). Unfortunately, Wilson fermions change the mass

scale of the theory. We can find the critical mass from the exact massless value

of <pi> for the dynamical case but for the quenched case we must find it

numerically.

3.3.1. Continuum Schwinger model

The Schwinger model (Schwinger, 1962) is quantum electrodynamics of a

massless fermion with charge g in one space and one time dimension; it is

exactly soluble. The massive theory (Coleman, Jackiw and Susskind, 1975;

Coleman, 1976) is not exactly soluble but can be analysed by perturbation theory

at both strong and weak coupling. This model is used primarily for testing ideas

in quantum field theory and for checking algorithms in lattice gauge theory since

it contains many of the interesting features found in more physical models. In

particular it displays both the properties of asymptotic freedom and confinement

of the fundamental charges found in QCD. Hence the methods developed to

investigate the Schwinger model may also be of use for QCD.

The massive Schwinger model is described by the Lagrangian density (derived

in Chap. 1.1)

= --c- FF''
QED 	 ,ikV 	

(3.19)

where

(LX)
r) = (, V7.)c)) ,

and

-
The equations of motion are

53

= C

. 	 3.20

The coupling constant g has dimensions of mass; consequently the model is

super-renormalisable, and both g and m are finite (though bare) parameters. The

dimensionless parameter that measures the interaction strength is m/g. The limit

m/g + 0 is the exactly soluble massless Schwinger model and the limit m/g -

is the exactly soluble free theory. Since the model is exactly soluble in both

limits it is possible to do perturbative calculations. We shall discuss these

calculations after looking at the massless model.

Following Schwinger, alternative solutions of the massless model have been

given by Lowenstein and Swieca, 1971; Casher, Kogut and Susskind, 1974; and

Bander, 1976, amongst others. Schwinger, 1962, solves the model by computing

the Green's function (in the Lorentz gauge)

(p) 	
P a + __ - 	 (3.21)

a

TI

Lowenstein and Swieca, 1971, solve the model in terms of explicit operator

solutions and obtain the covariant solution

(3.22)

where a is a massive free scalar field and Tj is a massless field quantised with

indefinite metric. Casher, Kogut and Susskind, 1974, solve the model in terms of

the degrees of freedom of the Lagrangian density (3.19) and show that

54

= 	
-)/A)V) 	

F
(ML cLL (3.23)

where AF is the Feynman propagator. Bander, 1976, solves the model by making

the following identification with a boson theory:

(A) 	r
ad
	

R
[7TLc) ± 4

P
(3.24)

where R is a spatial cut-off (introduced to keep the integrals finite and set to

infinity at the end of the calculation), A is a momentum cut-off (also allowed to

go to infinity), y is Euler's constant and 4(x) is a boson field with canonical

momentum 11(x). Then, in the Coulomb gauge A1 = 0,

A0 =
(3.25)

so that the effective Lagrangian density for fermions is

- 	 V 	
(3.26) 2.

which expressed in terms of the corresponding bosons yields the action

Tha 0 ——
--

L- 0) 2 .2. (3.27)

where 42 = g2/ 1T. This correspondence between the fermion and boson theory

demonstrates explicitly that the fundamental fermion of the theory, i, is absent

from the physical space of states; all that is present is a free neutral

pseudoscalar meson 	with mass g//iT which can be thought of as a

fermion-antifermion bound state. Physically this fermion confinement is caused

by charge screening. If we attempt to separate a fermion-antifermion pair, when

55

the separation is 	sufficiently 	large 	it 	is energetically favourable for a new pair to

materialise 	from 	the 	vacuum. 	The 	new fermion is 	attracted 	to 	the 	original

antifermion 	and the 	new antifermion is 	attracted to 	the 	original 	fermion. 	This

both 	screens the 	long 	range 	Coulomb 	force 	and ensures 	that 	what we 	are

separating 	is not 	a 	fermion 	and 	an antifermion but two 	fermion-antifermion

bound 	states. (The same 	mechanism is 	believed to 	be 	responsible 	for 	quark

confinement in QCD.)

Finally we note that global chiral symmetry is broken and the vacuum is

infinitely degenerate. Different vacua may be labelled by an angle 8 6 [-1T,iTI;

global chiral transformations rotate one vacuum into another. Again no Goldstone

boson appears, this time because the axial current is afflicted with an anomaly.

The parameter 8 may be identified with a constant background electric field

(Coleman, 1976). This field could be introduced into four-dimensional QED but

there the vacuum would suffer dielectric breakdown since it is energetically

favourable for the vacuum to emit pairs until the background field is brought

down to zero. In one spatial dimension, however, the energetics of pair

production are different. It is not energetically favourable for the vacuum to

produce a pair if the background field F is such that Fl 4 e/2; if JFJ > e/2, pairs

will be produced until Fl < e/2. Thus physics is a periodic function of F with

period e, and B may be identified as

& 	
c27TF 	

(3.28)

We now resume our discussion of the massive Schwinger model. Giving the

fermions a mass changes the Lagrangian of the boson field to

(2 J; 	(3.29)
71—

The massive model is still dependent upon the parameter 8, labelling different

vacua. The mass term of course explicitly breaks the chiral invariance so that the

vacua are no longer degenerate. However, contrary to naive expectations, all the

vacua remain stable because of the absence of Goldstone bosons. We will

restrict ourselves to the case e = 0.

For m << g, the Lagrangian describes a heavy pseudoscalar meson with

weak self interactions. Thus the model always contains at least one particle: the

original pseudoscalar meson of mass

+ kVt 	4- 0(44
(3.30)

where '' is Euler's constant. If any other particles are present, they will be

weakly bound n-mesons of mass nM plus small corrections. In particular, the

next particle is a scalar meson of mass

7r L 	mZ.
e --- +.

(3.31)

As m - 	the fermion decouples and the model reduces to a pure U(1) gauge

theory (which may be solved by transfer matrix methods).

3.3.2. Pure gauge theory

In order to perform our simulations of the quenched and dynamical massive

Schwinger model we shall require equilibrated U(1) gauge configurations at

various values of the inverse coupling, . These will be used as fixed background

configurations for the quenched case and as starting configurations for the

dynamical case. We use six B values: 	(free fermions), 8, 3, 2.5, 0.25 and 0

(strong coupling limit). The gauge configuration for 	= 	correspands to an

ordered start i.e. all the gauge fields being set equal to 1; the gauge

configuration for B = 0 corresponds to a disordered start i.e. all the gauge fields

being set equal to e ', with r a pseudo-random number in [0,27i]. Gauge

configurations for the other l3 values are generated by the standard quenched

Monte Carlo Metropolis algorithm (Chap. 1.4.1) beginning from an ordered start

and doing 75,000 sweeps, with an update angle 5U = 0.2x27T (giving an

acceptance rate of 73%), to attain equilibrium. (On the ICL DAP, one sweep of

the 64x64 lattice takes approximately 0.04 seconds.) The resulting plaquette

energies

57

(3.32)

averaged over the last 1000 sweeps for each value of 5 are listed in Table 3.1.

Table 3.1

Average plaquette energies of gauge configurations at each 	value.

<Es,>

0.25 0.875 ± .039
2.5 0.235 ± .010
3.0 0.190 ± .009
8.0 0.065 ± .004

3.3.3. Free fermions

Before investigating the interacting theory, it is worthwhile looking at free

fermions, for which we know <iJ> analytically (Chap. 2.1), in order to see how

the pseudofermion method performs.

We choose N f = 100 in the pseudofermion method so that <ii> is obtained

by averaging over 100 pseudofermion configurations and pseudofermion sweeps

are carried Out in sets of 100. The update angle, SU, is chosen as 0.1x2. We

run two simulations - one from a disordered start (that is, all the pseudofermion

variables set to random numbers in [0,11) and one from an ordered start (all the

pseudofermions set to 0) - at each of four masses 2.1, 2.05, 2.025 and 2.01 with

periodic and antiperiodic boundary conditions. (On the ICL DAP, one set of 100

pseudofermion sweeps through the 64x64 lattice takes approximately 1.2

minutes.)

With antiperiodic boundary conditions <7p> converges to the analytical

answer, at 0.3% level of accuracy, within the first set of 100 pseudofermion

sweeps at all four masses.

With periodic boundary conditions <i> converges over the first few sets at

M.

the highest mass, m = 2.1, as shown in Fig. 3.3 but at the lowest mass, m = 2.01,

metastable states are encountered and even after 1000 sets <1J> has not fully

converged, Fig. 3.4. If we estimate the error in <Ti> by binning the data in

time and take the bin size which yields the maximum error as an indication of

the correlation time in the measurement of <7i4.i>, we obtain correlations of 5,

10, 20 and 90 sets of 100 sweeps respectively for the four masses in descending

order. Averaging the last 100 sets out of the 1000 for m = 2.01 and the last 180

out of the 200 for the other masses for each start with periodic boundary

conditions yields the values in Table 3.2.

Table 3.2

Average TIP for free fermions with periodic boundary conditions
obtained from ordered and disordered starts compared with the
value obtained analytically, at different masses.

m 	
I

<7> ordered I <7ip> disordered

2.1 .817 .817 ± .005 .817 ± .005
2.05 .808 .809 ± .008 .804 ± .005
2.025 .805 .805 ± .016 .803 ± .008
2.01 .825 .823 ± .033 .860 ± .041

Hence the pseudofermion method performs well for free fermions, except

near the zero mode at m = 2 caused by periodic boundary conditions (see Chap.

2.1).

3.3.4. The quenched model

First we review the two analytical calculations which have been performed for

the quenched massive Schwinger model. Carson and Kenway, 1986, use the

replica trick, which consists of generalising the model to one containing N

identical fermion species and taking the limit N - 0 at the end of the calculation,

in the strong coupling regime. This removes the fermionic determinant that arises

from the fermion integration in the partition function and works regardless of

whether the fermion has a niass. The result is that

59

Fig. 3.3 	<i> for free fermions at highest mass from ordered and
disordred starts.

16r

I 5

I. 4

1s 	 m = 2310

o Disordered sar

Ordered san
I.

0

0.71

I LLLLL_J J_.L
20 	40 	60 	80 	100

p s e u d 0 rim on
r, 4 r
IL1 140 	160 	180 	200 (.

(
I'J.\j\D) sweep

Fig. 3.4
	

<> for free fermions at lowest mass from ordered and
disordered starts,

I 2 	 .Disordered sar
O rdered sor

0.

0.8

0.71

QL 'i jj j 	 iz i V.L
 tOO 200 300 400 500 600 700 800 900 1000

pSPudoPerm on sweep - I n 0Os

-
where

/= 'Wc'tG-

Ito
It

2X
- (3.33)

= 	'1- ir
(3.34)

and y is Euler's constant. Guerin and Fried, 1984, perform a gauge-invariant

summation over soft photons exchanged across a fermion loop, by the method of

infrared extraction, to obtain for m/g << 1

L
aC 	

141J
"ii - 	_— +

JITL 	271- 	
O1(335)

where C is a real positive constant of order unity. Thus Carson and Keriway

predict a logarithmic divergence in (<Jip>-<7i(i>0)/g as m/g - 0, whereas

Guerin and Fried expect (<3>-<l1.Jlp>0)/g to have a finite, non-zero value in

this strong coupling limit.

To simulate the quenched model we equilibrate the pseudofermions in the

fixed background quenched gauge configuration at each value of B and then use

(3.17) to calculate <i4.i>. The average over the last set Out of a total of 15 sets

of 100 pseudofermion sweeps, with the free fermion part <i1.J>, subtracted out,

	

is plotted against the Wilson mass parameter mw in Fig. 3.5 for 	= 0.25, 2.5, 3

and 8. Scaling both axes by g yields Fig. 3.6 which strongly suggests that

(<Jip>-<ip>0)/g is diverging as the Wilson mass parameter mw approaches a

(s-dependent) critical mass m, that is, as the physical mass m = mw - m - 0.

Fitting the data with Carson and Kenway's prediction yields the critical masses

listed in Table 3.3.

M.

0.

[I!

0.

0.
C

A
eH 0.

V

0.

0.2

0.1

0.

Fig. 35 	<>-<4J>0 against mw at each B value for quenched model.

md

	

Fig. 3.6 	As Fig. 3.5 with axes scaled by g.

	

0.50 	 x = 0.25
+ 	2,5

	

0.45 	 = 3.0

0.40 	 8,0
cri

035
I

A 00.30

0.25

IT

0.20

0.15

N oe

0.10

	

X 	 Tr
0.05

X
X

O•Q 	1.0 	2.0 	3.0 	4.0 	5.0 	6.0 	7. 	8.0 	9.0 	10.0

Table 3.3

Critical masses for the quenched model at each 13 value.

m

0.25 1.4968 ± .0025
2.5 1.8870 ± .0011
3.0 1.9348 ± .0015
8.0 1.9792 ± .0045

By using these critical masses to shift the data in Fig. 3.6 we obtain Fig. 3.7

which also shows Carson and Kenway's prediction as a solid line. We see good

overall agreement with their prediction. It is best for the B = 8 data which

corresponds to the smallest lattice spacing and so is nearest the continuum (but

also suffers from the largest finite-size effects - since the correlation length

v 7T7 times the lattice spacing - which causes the more rounded peak). The

agreement is not perfect for a number of reasons: there is an error in

determining mc which could shift the data horizontally; <J71j>0 calculated by

Carson and Kenway is not exactly equal to <p1j>0 calculated above since the

former is for an infinite system and the latter is for a 64x64 lattice - this could

shift the data vertically; and finally the calculation by Carson and Kenway is

perturbative to one-loop order, whereas the lattice simulation is non-perturbative

and includes all loops.

Finally, the data obtained in the strong coupling limit 	= 0 is shown in Fig.

3.8. Despite being far from the continuum due to the large lattice spacing, there

is still a peak in <To>-<TP>0 at a critical mass of about /2. This value is

predicted by Kawamoto and SmUt, 1981, from an effective Lagrangian calculation

of meson propagators in U(N), as well as SU(N), lattice gauge theories; for any N

with Wilson fermions, in the strong coupling limit. This calculation, which is

outlined in the next section, applies here because there is a pseudoscalar in the

massive Schwinger model at strong coupling (Sec. 3.1 above).

3.3.5. Effective Lagrangian calculation

Kawamoto and Smit, 1981, 	derive an 	effective 	Lagrangian which describes

mesonic bound states in U(N), 	as well as SU(N), 	lattice 	gauge theory at strong

coupling. 	This 	is 	then expanded 	in terms 	of these 	bound states about 	the

61

0 0
A

V 0.

0.1

m/g

Fig. 3.7 	 / g against m / g at each B value for
quenched model with Carson and Kenway's prediction as a solid line.

110

0.72

0.64

0.56
0

A
H 0.48

V

0.40

A
0.32

v-

0.24

we

[I ,

al

Fig. 3.8 	<>-<1)>0 against mw at strong coupling for quenched model.

vacuum to yield their propagators and m is found from the pole in the pion

(lightest pseudoscalar bound state or stable particle) propagator. Kawamoto and

Smit only look at d = 4 dimensions; we shall keep d explicit so that it can be set

equal to 2 at the end of the calculation, which then goes as follows:

Firstly, the source term

if

= 	

(336)

where 	iV M() 	Y (Pt) Ta. OC &t) 	is the elementary Bose field

representation of a mesonic bound state (a is colour index and Ot, 	 are Dirac

indices), is added to the action in (3.1). The resulting partition function is

evaluated by first integrating over U and then integrating over ij, . (The U

integration is only possible analytically for U(N) with N large so the gauge fields

must be generalised to U(n) 6 U(N) and the fermions must be given N colours:

a = 1,...,N. In our case, for Wilson fermions with r = 1, the final result is

independent of N.) This yields the effective action

feO

~ + 	 r 	 £ () F

where for Wilson fermions

F(L) = I - 	 +

and

r) M (k1 fl (P 4-

Now, parameterising

(3.37)

62

+

where

(

(3.40)

V * N
(3.38)

with 	containing scalars, pseudoscalars and axial vectors:

0 	= 	
(3.39)

leads to

and 	
±

4A
=

at the stationary value of v which is given by

((-ri) v z

1+ [I— cl — V- 2.) V al 	 (3.41)

From this one easily obtains the pion propagator (from the pseudoscalar - axial

vector channel) and the following equation for its pole (at m = me):

63

(j r 2-)1 _ 	(I+r 2)r 	_(/)r7

~ +Ee _±(A/)(/+)7[2c ~ f(I /)(I_v2)J 	0 (3.42)

where

(3.43)

Solving (3.42) gives

which, with (3.43) and (3.41), yields

F2 I - (1- d)Z/i)1
-

v=

(3.44)

(3.45)

For Wilson ferrnions with r = 1 this reduces to

(3.46)

and (3.41) becomes

M C
(3.47)

hence the result that m = /2 for d = 2.

64

3.3.6. The dynamical model

In order to perform a fully interacting dynamical simulation we start from

some gauge configuration and some pseudofermion configuration and run the

complete pseudofermion method in which the pseudofermions act back on the

gauge fields as the system evolves. To check convergence we start from both

ordered (gauge variables set to 1 and pseudofermions set to 0) and disordered

(random gauge variables and pseudofermions) plotting the plaquette energy (3.32)

and the pseudofermion energy against gauge sweep in Fig. 3.9, for 	= 3 and m =

2.1. The pseudofermion energy has been defined in terms of (3.14) as

E 	
- 	N 	 (3.48)

where N is the number of lattice sites. We see that the energies have settled

down by 100 gauge sweeps and that it makes no difference whether we start

ordered or disordered. 	This is for N f = 1, that is, only 1 	pseudofermion sweep

between each gauge sweep. 	To show the effect of varying N f, we present Fig.

3.10 in which we do runs with N f = 	1, 10 and 100 from an ordered start for

3 and m = 2. We see clearly that N f = 1 gives a systematic error, whereas N f =

10 and 100 agree - in fact we use N f = 100 in the dynamical simulation to be

on 	the 	safe side. We 	also 	start 	from 	the 	corresponding 	quenched 	gauge

configuration instead of an ordered start since this shortens the number of gauge

sweeps required to reach equilibrium to less than 10. The other parameter in the

pseudofermion method, the update angle 6U, is chosen as 0.1x27. We run at B =

0.25, 2.5, 3 and 8 for several mass values averaging <4w> over the last 50 sets

out of 100 sets of 100 pseudofermion sweeps to obtain Fig. 3.11, the behaviour

of < P>-<1.P>0 with Wilson mass parameter in the dynamical model. From

the exact massless result of Marinari, Parisi and Rebbi, 1981, that

65

Fig. 3.9
	

Plaquette and pseudofermion energies for dynamical model from
ordered and disordered starts.

a. 	 Ru

3.2° P = 3
0.9

2. 1

x 2.8
0

0.8

L PseudoFermion,
a)2.4
C

D
° Di ° 	sordered sor

0.7w

a) 	
2.0 - Ordered sor

L
a)

C
0.6C

a)
o

1.6 Ploque ~~ e a-
J—

L
U

Disordered sor
1.2

o Ordered sor
0.4 :

0
0

0.8 o 0.3—
ft

.2

0. 0

_ñL1L" I I

20
	

40 	60 	80 	100 	120 	140 	160 	180
gouge sweep

Fig. 3.10
	

<i> for dynamical model with N f = 1, 10 and 100 from an
ordered start.

1 .00

0.95

x,

	

0.90 	 <x
:x

x xxx
0

	

0.85 	 0 	00 00 00
	

C

m
X 00 0 00

DO qp 13

0.80 x
X 113

A

0.75

V
0

0.

x N f = 100
N F = 10

. NPF = 1

p = j

rn2O

0.65

0.60

0.55

0.5 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

gouge sweep

[IW.II

0.72

0.64

0.56
0

A
0.48

IH

V

0.40

0.24

MIQ

1.2 	1.4 	1.6 	1.8 	2.0 2.2 	2. 1 	2.b

Fig. 3.11 	 >-i>0 against mw at each B value for dynamical model.

flt-,O 	 (3.49)

we obtain the critical masses listed in Table 3.4.

Table 3.4

Critical masses for the dynamical model at each 6 value.

6 	1 	m

0.25 1.162 ± .018
2.5 1.708 ± .021
3.0 1.789 ± .015
8.0 1.932 ± .006

(Note that there are two possible values for each critical mass but we know that

the actual value must be less than that for free fermions (6 =) i.e. 2 and

greater than that for strong coupling (6 = 0) i.e. /2, hence it is the smaller of the

two.) If we subtract these critical masses from the Wilson mass parameter to

yield the physical masses, normalise these by g and plot <p>-<ip1.>3

normalised by g against them, we obtain Fig. 3.12 (which also contains the exact

massless result marked as an asterisk). The fact that the data appears to lie on a

universal curve at low mass indicates that we have indeed found the correct

critical and hence physical masses. For m > 0 <Ti4i> appears to increase

linearly with m and at large m we know that there is no difference between the

dynamical and the quenched model where <i> decreases, so the turnover in

<jp> around m = 0.2 comes as no surprise. The discrepancies in the data for

different 6 values at m > 0.2 may be due to lattice artifacts since the lattice

approximation is only valid for ma << 1, that is, m/g << /6.

3.3.7. Concluding remarks

We have 	numerically simulated 	the massive Schwinger model on 	a 	lattice

with 	Wilson 	fermions and 	calculated the 	chiral 	condensate <jJi4.>. 	The

pseudofermion 	method performs 	well for 	both 	the 	quenched 	and 	dynamical

I1

0. 0

Fig. 3.12 	(<>-<ii>) / g against m / g at each 8 value for
dynamical model with exact massless result marked as an asterisk.

U.0 	0.2 	0.4 	0.6 	0.8 	1.0 	1.2 	1.4 	1.6 	1.8

m/9

theory as well as for free fermions, except near the zero mode caused by

periodic boundary conditions. For the quenched model, we found that the

behaviour for <>/g as m/g - 0 agrees with that predicted by Carson and

Kenway, namely a logarithmic divergence. For the dynamical model we

discovered that <ii> varies linearly with mass for small mass, after using the

exact massless result for <> to determine the critical mass. We notice that

despite the similar appearance of <.i4.'> with Wilson mass parameter for the

quenched (Fig. 3.5) and the dynamical (Fig. 3.11) models, the actual behaviour

with physical mass is very different (Figs. 3.7 and 3.12): in the quenched model

<3> diverges as the physical mass tends to zero, whereas in the dynamical

model it decreases.

67

Chapter 4
Lanczos fermions

In this chapter we shall use the Lanczos algorithm in a numerical simulation

of SU(2) at finite density. In Sec. 1 we describe the Lanczos algorithm for

tridiagonalising a Hermitian matrix (in order to obtain its eigenvalues) and we

describe the block Lanczos algorithm for inverting a matrix. In Sec. 2 we go on to

discuss application of this block Lanczos matrix inversion algorithm to the

fermion matrix (enabling dynamical fermion simulations). In Sec. 3 we firstly

review finite density in lattice gauge theories (showing how it is introduced as a

non-zero chemical potential ji and indicating the significance of the eigenvalue

distribution of the fermion matrix) and then turn to the numerical simulation

which is performed in two regimes: fixed i; varying m, and fixed m; varying ji.

4.1. The method

The Lanczos algorithm (Lanczos, 1950) reduces a Hermitian matrix H (of size

NxN) to tridiagonal form. It can be derived by seeking the unitary transformation

X such that

X__'_ H X = T
	

Xtx = I) (4.1)

where T is tridiagonal, real and symmetric:

I

Ply-
	 (4.2)

PN.JAI

We write X as a set of column vectors x, called the Lanczos vectors,

XL 	. . j jc_ /V)
	

(4.3)

which are orthonormal: xx = S. Hence (4.1) becomes

o,)C1 ~ /)C

.- 	R L, * /? Jc4.t

H XN 	= 	M-/ 	N X N

. 	 (4.4)

These are the Lanczos equations; they are used recursively to calculate all the

ct, B j and x1 as follows. Choose x1 to be any unit vector. Take the scalar product

of x1 with the first Lanczos equation and use the orthonormality of the Lanczos

vectors to obtain cc,:

(4.5)

(ct 1 is real because H is Hermitian.) Next calculate

A PO

? I 	-X 2 	 ~1 dc I 	
cl~ - 	 1 	1 	 (4.6)

and take the scalar product with x2, using x2 x2 = 1, to obtain 	and hence x2.

(We can take either sign for 	Continue in a similar fashion with all the other

Lanczos equations in turn:

(4.7)

	

- 	 .XC_1 	cx

(4.8)

When we calculate

I11
(4.9)

we are finished because the last equation is automatically satisfied:

	

- I-! 	- 	 (4.10)

is zero (as it is orthogonal to all the Lanczos vectors). In fact, a good check on

the accuracy of the calculations is that

_ 0 A' 	 (4.11)

In exact arithmetic, there is only one thing which could cause the algorithm to

fail: some B j might be zero. This will happen if the first Lanczos vector x1 was

chosen to be orthogonal to some eigenvector of H, and it is inevitable if H has a

degenerate eigenvalue. The solution would be to choose the next xi to be any

70

unit vector orthogonal to all the previous ones and continue - in practice this

may be difficult to implement but since it is extremely unlikely to occur (due to

rounding errors) we can ignore it.

The advantage of the Lanczos algorithm over other methods (such as

Gaussian elimination) is that it does not require the matrix H to be stored in a

large NxN array which is "filled in" by the calculation, even if H is sparse (that is,

has a large number of zero elements). We only require storage space for three

Lanczos vectors and a routine to multiply a vector by H. If H is sparse, the

multiplication can be done quickly and with a minimum of storage space. Once

H is in tridiagonal form, its eigenvalues can be obtained using standard methods,

for example, Sturm sequences.

Before we can use the Lanczos algorithm on large matrices, we must

overcome the problem of rounding errors which lead to N A 0. This is due to a

loss of orthogonality between the first few Lanczos vectors and the last ones.

These errors tend to build up exponentially so that no matter what precision is

used in the calculation we soon find an xi which is not orthogonal to x1 . The

obvious way to get around this is to reorthogonalise each new Lanczos vector x

with some or all of the previous ones x1 by the projection

Jci 	
(4.12)

Unfortunately, reorthogonalisation greatly slows down the calculation and

requires all the Lanczos vectors to be stored, so it is impractical for N , 1000.

However, it is possible to use the Lanczos algorithm without reorthogonalisation

and therefore deal with much larger matrices. This has been discussed by Cullum

and Willoughby, 1979; and Haydock, 1983. The procedure is to generate more
- -

than N Lanczos vectors, say N. We then have a NxN tridiagonal matrix T. Next, we
- 	 A

construct the (N-1)x(N-1) matrix T by deleting the first row and column of

T. From the two sets of eigenvalues (found by the standard method of Sturm
A A

sequences), {X1} of T and CX I) of T, we can obtain the N eigenvalues of T (and

therefore H) using the observations:

1. Some eigenvalues of H (mainly the ones which are relatively

well separated) converge very fast (and, in fact, can be

71

obtained from T when N is still much smaller than N). By the

IT time N is large enough for all the eigenvalues to have

converged (in practice, N = 2N is sufficient), the faster ones

will appear many times as eigenvalues of T. These duplicates

can be recognised and removed because we assume H to be

non-degenerate.

2. -f and I also contain spurious eigenvalues which are not

degenerate with the eigenvalues of H. However, these are
.- 	.4

different for T and T and so can also be eliminated.

Hence we are left with the N eigenvalues of our original NxN matrix H. As an

example to illustrate this, we apply the Lanczos algorithm to the Hermitian matrix

H = iØ, of size 16x16, which is i times the fermion matrix (Dirac operator) for

Susskind fermions in random U(1) gauge fields on a 4x4 lattice (this is just two

dimensional QED at strong coupling). The resulting eigenvalues for various N are

shown in Fig. 4.1. For this small system we can calculate the eigenvalues exactly

using a standard library routine. We find that the Lanczos algorithm gives these

eigenvalues to within 10 	for N = N = 16. From Fig. 4.1, we see that for N < N

the smallest eigenvalues converge first and for N > N we get duplicate and

spurious eigenvalues (which vary with N), as expected.

There is a useful simplification when the Lanczos algorithm is applied to the

fermion matrix for Susskind fermions. This is due to the fact that i 	has the

following block structure between odd and even sites:

(4.13)

This implies that the eigenvalues of 10 come in plus and minus pairs (as we see

in Fig. 4.1):

72

Fig. 4.1
	

Eigenvalues computed by the Lanczos algorithm, applied to a
random Hermitian matrix H with N = 16, for various N.

0
f)

0 cJ

C
*-1

-4

-Jo

SenTPAuebTe

RI
I = =

I
(4.14)

If we choose the initial Lanczos vector to be zero on all ,odd sites,

=

O) 	 (4.15)

then we find that all a i 	0, the odd Lanczos vectors take the form

/ .)1~

I
2~ 	 \ 0 	/ 	 (4.16)

and the even ones take the form

	

Y.4J 	 (4.17)

The Lanczos equations then reduce to

>,J (4.18)
+ /'?-*e)Lz+z..)

with the even vectors being mutually orthogonal and similarly for the odd ones.

The advantage of this is that we have halved the amount of computation, since

there is no need to compute ct i and each Lanczos vector is half zero, and we

have saved on storage space. Moreover, if we add in the mass term and consider

the massive fermion matrix, iM = io + im, we find the same odd-even splitting as

above, though with all cxi = im and with Lanczos equations

73

- 	 -.\

I J kvt)C 	+

-1 	 -'
* (-kit X2 Z + /?2 i N.2~j

(4.19)

)L 	4- 	 .+ Z) >

Thus the 3i and Lanczos vectors are independent of the mass and we can

simultaneously tridiagonalise the matrix at a number of different masses without

increased computation.

The Lanczos algorithm can also be used to invert a matrix column by column,

which is what we need for our dynamical fermion simulations (Chap. 1.3.4). We

shall aim to calculate H 1x1 as a series in the Lanczos vectors

H)C, 	C,)C, 	 + 	 (4.20)

by using the Lanczos equations iteratively. This is complicated algebraically and

explained in detail in Barbour et al 1985b, so we will just illustrate the method by

considering the simpler massless case ct i = 0. We use only every other Lanczos

equation, starting with the second:

-

(4.21)

in sequence eliminating the remainder term by substitution; this yields

H IX —1 	
/-?1

xz — 	_ 	

/ j1
~ 	-.

13 1 p 	f3I 3 	
)(

I3 	-

At first sight it seems unlikely that this will converge, since the Bi fluctuate

randomly about some constant value. However, in practice we find that although

the series proceeds for many iterations without any sign of convergence, it

eventually reaches a point (where the smallest eigenvalues of the tridiagonal

form are converging to the true eigenvalues of H) at which there is rapid

74

convergence. Instead of writing down the recurrence relations for this Lanczos

matrix inversion algorithm (which are given by Barbour et at 1985b, in any case),

we shall first generalise to the block Lanczos algorithm (Scott, 1981) which block

tridiagonalises a matrix so that the ct 1 and B i become small LxL matrices. The c

are Hermitian and the 3i can be chosen to be triangular, so that H, with N = ML,

is transformed into the following band matrix of width 2L+1:

71-
T

IP!

I'M -1 	 (4.23)

The M Lanczos vectors are NxL arrays and the Lanczos equations are

H , 	i(* /?,

' t H DL) 	L + jci f? ; 	
• (4.24)

The algorithm proceeds in a way analogous to the L = 1 case, with the Lanczos

vectors half zero for c = 0 or a i = im. At step i) 2, with U E HX1 - x_ 1 	-

x 1, we have

(4.25)

which we solve for B i as an upper triangular matrix, in order to compute

75

= 	
(4.26)

We can now apply block Lanczos to matrix inversion, calculating L rows of the

inverse at a time - this is more efficient than inverting the matrix one row at a

time because transforming a matrix to block tridiagonal form is less constraining

than tridiagonalising it. We obtain (by generalising the L = 1 case with Ot i = im)

the recurrence relations (Barbour et a/ 1985a)

1? 	0

= 	0

V I =0

(4.27a)

2V€.kL

= 	A 	-:
-(

_z &z

— 	Al 	(/-,) 	Zt 	I

= 	—A 1 A; 	(i,) 	'

+

vz Z = +). (
—1

+ 	L UZ .A I 	Z l) (
(4.27b)

76

Step: 	A 	I (g2t 	A2

g21 	 - (/2)2

4- 1 2+I

yz
(4.27c)

(L sEep:

-•1

2'+,) 	 - 	> 	HJc 	(4.27d)
(

The coefficients A, B, y and t are all LxL matrices, and U and V are NxL matrices.

However, if only a small part of the inverse is required, as is the case for fermion

updating (see next section), it is not necessary to compute the whole of U and V

but only some KxL block of them.

4.2. Computational details

Following Barbour at al 1985a, we use the block Lanczos algorithm (4.27) to

obtain the block of the inverse matrix M-1 (U)required to calculate the change in

effective action for Monte Carlo simulations with dynamical fermions (Chap.

1.3.4):

77

a 	 [.I + M '() c M
(~O].(4.28)

For a SU(N) gauge theory on a lattice of L sites, M(U) is a large sparse matrix of

size NIL dxNLd with only 2dN non-zero elements in each row. If one gauge field

link variable is changed then 6M(U) is non-zero only in the 2Nx2N block at the

intersection of the ZN •rows and 2N columns of M(U) corresponding to the two

end points of the link. Consequently the only elements of M 1(U) which

contribute are those in the same 2Nx2N block. If we write 6M and M 1 for these

blocks then

e 	
(4.29)

where the determinant is now only of a 2Nx2N matrix. The block Lanczos

algorithm can be used to calculate 2N columns of M 1(U). This is sufficient to

update the same link as many times as desired (in, for example, the multi-hit

Metropolis algorithm), since the ratio of determinants for two different changes is

- 	 (/+fl-'i2) 	
(4.30)

This idea can be extended to allow the updating of a number of links at once, for

example, in four dimensions we choose all 32 links of a hypercube. To calculate

the determinant for the change in effective action arising from any change o

these links we require the 16Nx16N block of M 1(U) corresponding to the 2 sites

of the hypercube. In fact, we need only calculate this block of M 1(U) once,

before changing any links, and then update it after each change by rank

annihilation, as follows. Consider a change to one link of the hypercube. This

causes the change 6M (as in (4.29)) which is a 2Nx2N sub-block of M'(U) with

(2N)2/2 non-zero elements (the other half are zero because they connect each

site to itself) which we separate into (2N)2/2 consecutive changes, each to just

one element,

78

cM
	

, /'1I + j1z -- ... -t- 	
(4.31)

We write

(4.32)

where a is the change to the element, and u and v are unit vectors which are

zero in all elements but one. Hence

—1
c 1 ~

= 	
—i 	 (/i) (vt N 	 (433)

/vtf'1 LA_

Theconvergence of the series is not relevant since the final result can be

verified by back substitution. It is obvious that (4.33) can be applied to update the

16Nx16N block of M 1(U) without knowing the rest of its elements. In practice, for

updating a hypercube, we calculate the initial 16Nx16N block of M 1 (U) in two

8Nx16N pieces (one to cover the odd sites and the other for the even sites) in

two separate inversions, using the block Lanczos algorithm with L = 16N and K =

8N.

To summarise, the Monte Carlo simulation is carried out as follows. To cover

all the links in one sweep we must visit 1/8 of all possible hypercubes which

touch each other at corners only, so that there are no links in common. We take

each of these hypercubes in turn, either in sequence or at random, and calculate

the 16Nx16N block of the inverse required to update its links. We then tour each

of the 32 links, in any order, extract the appropriate 2Nx2N sub-block from the

16Nx16N block and update the link using the Metropolis algorithm a large number

of times (multi-hit), which requires the calculation of only 2Nx2N determinants

each time. Before going on to the next link in the h'ipercube, we update the

79

16Nx16N block by rank annihilation (4.33) for the overall change to the link. It

proves worthwhile to go round each hypercube a few times until it is close to

equilibrium within itself before proceeding to the next, as this brings the whole

configuration into equilibrium two or three times faster.

Unfortunately, the block Lanczos algorithm (4.27) i& not highly parallel and

therefore inefficient on computers such as the IC DAP (Appendix I) or the GRID

(Appendix It). Most of the time is spent repeatedly updating a single link (which

involves multiplying LxL and KxL matrices together) and, in order not to violate

detailed balance, one can only update two links of a hypercube (and only 1/8 of

the hypercubes) simultaneously. Hence we performed the simulation of SU(2)

with Lanczos fermions, discussed below, on a conventional computer (the Gould

PN9080, in fact).

4.3. Finite density SU(2)

The properties of matter at high temperature and density are important in

heavy-ion collisions at high energies and in astrophysical phenomena such as

neutron stars (for a review see Cleymans, Gavai and Suhonen, 1986). This has

led to considerable interest in what QCD as a theory of strong interactions has

to say about these extreme conditions. Analytical calculations, however, are only

possible at very high temperatures and densities (where distances are short and

energies high enough for asymptotic freedom to make perturbation theory

applicable), or at strong coupling which is far from continuum physics. Hence we

perform numerical simulations to investigate these effects. QCD at zero

temperature and density, as discussed in Chap. 1, confines quarks and has a

spontaneously broken chiral symmetry. We shall see that at high temperature

and/or density there is a deconfinement transition, producing a quark-gluon

plasma, and a chiral symmetry restoration transition, rendering quarks massless.

The overall phase diagram is thought to be as depicted in Fig. 4.2.

To

Fig. 4.2 	Schematic phase diagram for QCD at finite temperature and density.

Quark
matter

Nuclear
matter

t

A great deal of work has been done on the effects of finite temperature in

both quenched and dynamical QCO (SU(3)) and SU(2) gauge theories. We will

investigate ihe effects of finite density for SU(2), on which relatively little work

has been done. (Why we do not look at SU(3) as well will be explained below.)

We introduce finite density, that is, non-zero chemical potential 4, into a

system with Hamiltonian H by constructing the conserved baryon number N. The

partition function is then given by

Z = 	
_[?CH -N)

(4.34)

On the lattice at finite density Hasenfratz and Karsch, 1983, showed that, in order

to obtain the correct continuum limit, this leads to the naive free fermion action

2-o-

/Ake- i 	 - 	 (435)

+
with similar modification for Wilson and Susskind actions. (Bilic and Gavai, 1984,

suggested an alternative formulation.) Unfortunately this leads to a complex

fermion determinant for SU(N), N # 2, lattice gauge theories (Gavai, 1985) -

whereas all methods known so far for performing numerical simulations with

dynamical fermions require a real determinant. Hence at this point in time, we

can only meaningfully investigate SU(2) with fermions. (Of course, we can still

look at quenched SU(N) for all N.)

The effect of finite density on SU(N) gauge theories with fermions has been

investigated analytically at strong coupling by van den Doel, 1984; by Damgaard,

Hochberg and Kawamoto, 1985; and by Dagotto, Moreo and Wolff, 1986. They

conclude that there is a chiral symmetry restoration transition, which is first

order for SU(3) and second order for SU(2), at some critical chemical potential ii

(in units of lattice spacing, Damgaard, Hochberg and Kawamoto, 1985, predict p

= 0.66 for SU(3) and 	= 1.04 for SU(2)). There should also be a deconfinement

transition which may occur at around the same temperature as the chiral

restoration transition. (This appears to be the case at finite temperature.) We can

picture this as follows. In the confining phase, any particles produced at finite

density will be baryons consisting of N (for SU(N)) quark world lines bound

together with an effective chemical potential Ni. As p is increased there will be

a value pc such that Np c equals the baryon mass. For i > 	it will be

favourable for long loops to wind right round the lattice in the time direction

yielding a finite density of baryons. Thus we expect lic to be equal to the mass

of the lowest baryonic state divided by its quark number, that is, one third the

mass of the nucleon in SU(3) and one half the mass of the pion in SU(2).

The first simulation of quenched QCD at finite density (Kogut at a/ 1983)

found, by extrapolation to zero quark mass, an abrupt restoration of chiral

symmetry at 	0.3. However, further investigation (Barbour at al 1986)

revealed that at zero quark mass chiral symmetry is restored for any i > 0.

Moreover, for non-zero quark mass 	was found to be m 7/2 rather than

NN

mnucjeon/3, which suggests that mnucleon = l.Sm.ff so that the lowest baryonic

state in QCD becomes massless (like the pion) at zero quark mass! In contrast,

the same result, 	= m/2, found for SU(2) is as expected. This seems to imply

that there is something wrong with finite density calculations in the quenched

approximation, for QCD at least. Gibbs, 1986, argues that the quenched

approximation actually becomes invalid for p > m./2. The obvious way to

proceed is to add quarks and simulate the full theory. Engels and Satz, 1985,

attempted this for QCD (using the leading term in the hopping parameter

expansion) by ignoring the imaginary part of the complex determinant - they find

that the temperature at which deconfinement occurs decreases as 11 increases, in

agreement with the expected phase diagram (Fig. 4.2). More work is required to

ascertain the validity of their approach and, of course, to discover better methods

for dealing with the complex determinant (see Gibbs, 1986, for a discussion of

the latter).

Turning to SU(2) we find the same story. Kogut et a/ 1983, also investigated

the chiral symmetry restoration transition in the quenched approximation for

SU(2), obtaining a smooth, presumably second order, transition around 	0.3 -

0.45. However, Dagotto, Karsch and Moreo, 1986, subsequently found that (as in

quenched QCD) chiral symmetry is restored for all non-zero .i in the massless

limit. The deconfinement transition was examined by Nakamura, 1984, but his

results were inconclusive. Again, what is required is a simulation including

quarks. This is possible and meaningful using standard Monte Carlo methods for

SU(2), as the determinant is real, so we shall undertake it. First, we will outline

the importance of eigenvalues (and hence the Lanczos algorithm) for such a finite

density simulation.

A clue to what is happening in finite density simulations is given by the

distribution of eigenvalues of the lattice Dirac operator in the background gauge

fields. The Dirac operator for Susskind fermions is anti-Hermitian (Chap. 3.2) and

has purely imaginary eigenvalues Xk, in terms of which the chiral symmetry order

parameter <i.n> is given by

83

36)

(The trace is over colour.) In the infinite volume limit the eigenvalues coalesce

to form a cut which provides the discontinuity in <i4> at m = 0:

<w - <' '
PK
) 	N TV 	(0) 	 (4.37)

where N is the number of colours and p(X) is the normalised eigenvalue density

on the imaginary axis. (This expression has been used to obtain strong evidence

for spontaneous chiral symmetry breaking in (quenched) QCD at zero density:

Barbour et at 1983; Barbour et at 1984; Barbour, Gibbs, Bowler and Roweth,

1985.) If we allow a non-zero value for j.i then the anti-Hermitian nature of 0 is

lost and the eigenvalues move off the imaginary axis, initially in a perpendicular

direction. In practice, evaluation of the eigenvalue distribution by use of the

Lanczos algorithm shows that (Barbour et a!, 1986), at all couplings, the

eigenvalues move off axis to form a roughly uniform strip whose width increases

monotonically with i. Eventually, for larger T.I, the eigenvalues form a band,

leaving the region around X = 0 empty of eigenvalues; this is shown

schematically (for SU(3) at strong coupling) in Fig. 4.3. We see that for all .i

there is a X max = max kiimX0' and for i > j.i (with .i0 = 0.5 ± 0.05 for this

case) there is a X min = min IXI,m X =O. These maximal and minimal eigenvalues on

the real axis are directly related to the behaviour of physical observables. For

quark masses m > Xmax all observables will agree with their i = ü values, while

for in < X m j fl they will have reached their limiting high density values. In

particular, <4.i> = 0 for all m < 	Thus in order to investigate the chiral

symmetry restoration transition we should discuss what happens for 11 < 40,

that is, when X m i n = 0. We should then find some effect on <4ii> as the quark

mass is brought inside the strip (from in > Xmax to m < 'max) since <it4.i> at

mass m is effectively determined by the small eigenvalues less than m.

Alternatively, if we vary i.' at a non-zero value of m then there is a critical value

pc where the width of the strip becomes equal to the quark mass. For i.' <

<> is independent of i' but at 	there is a transition and <i> drops

84

Fig. 4.3 	Elgenvalue distribution (for SU(3) at 8 = 0) for different
values of the chemical potential.

£1
i;i

Ei
	

WO]

Re 	 Re

tO 	 .

7,k
	

£1
IM

M

Re
	

Re

0.6

rapidly. We note in passing that the fact that the delta-function in eigenvalue

distribution for u = 0 becomes a uniform strip for .i > 0 explains why chiral

symmetry breaking disappears at any finite density. Barbour et a/ 1986, also find

that as the inverse coupling $ is increased the eigenvalues move away from the

real axis; this is the case for any p, with the eigenvalues still occupying the

appropriate strip or band about the imaginary axis. This is shown schematically

(for SU(3) at small bi) in Fig. 4.4. To conclude, in a simulation of dynamical finite

density SU(2) we expect to find the chiral symmetry restoration, and perhaps the

deconfinement, transition at around pc = m/2, signalled by <> dropping to

zero and the eigenvalues of the fermion matrix moving away from the real axis.

4.3.1. Fixed j.i; varying m

As this simulation is performed using a conventional computer (the Gould

PN9080), we study a small lattice of 44 sites. The full dynamical fermion Lanczos

algorithm then takes 2.65 hours for one sweep through the lattice, going round

each of the 32 hypercubes (touching at corners only) 4 times and performing the

multi-hit Metropolis algorithm with 10 hits on each of the links. (We note in

passing that a similar sweep of an 	lattice would take approximately 600

hours - over 3 weeks - on this computer!) This algorithm converges much

faster than the pseudofermion method so we need only carry out tens rather

than hundreds of sweeps to achieve statistical equilibrium.

We choose the number of fermion flavours n f = 4, set the inverse coupling $

= 1.7 and investigate fixed .i = 0.1; varying m. The history of the chiral

condensate <i> and the plaquette

Pa 	Ke- 	
(4.38)

(not the plaquette energy E. = 1 - PO used in Chap. 3.3.2) during the simulation

is given in Fig. 4.5. Firstly, we Oerformed 5 quenched sweeps (-4, -3, -2, -1 and

0) at $ = 2.1 to generate an appropriate start configuration for the dynamical

sweeps (1-75). The first 20 of these (1-20) were done at fermion mass m = 0.05,

the next 30 (21-50) at m = 0.0125 and the last 25 (51-75) at m = 0.00625. If we

average 	over the last 10 sweeps at each mass, that is, 11-20 at m = 0.05,

85

Fig. 4.4 	Elgenvalue distribution (for SU(3) at .i = 0.1) for different values of
the inverse coupling. (Scale of real axis is expanded relative to Fig. 4.3.)

Im

[I]

Re

f= Q

ri

i1
	

:ii

Re
	

Re

6,0

Fig. 4.5 	 and plaquette history of simulation at i = 0.1.

eenbcd
Ln 	C\J 	 C\J 	CD u) 	(Y) 	CJ

a 	 a 	 a 	
a

I 	 I 	 I

LO

(0
o
a

++
E

va 	++ 	x

+ 	 cr,O)

X 	 (I)
OX

+C\J

E > .

+ x

x x 	$. 	 UI)

0

II

E > +x 	><

L+ I 	
1+

Ln

	

I 	I 	 I 	I CD 	U)
çr

Q 	 d d d

31-50 at 0.0125 and 56-75 at 0.00625, then we get the values in Table 4.1.

Table 4.1

<4> for u = 0.1.

m

	

.05 	.169 ± .033

	

.0125 	.049 ± .018

	

.00625 	.014 ± .002

Thus <iji4.i> is consistent with extrapolating to zero at zero fermion mass as it

must orf a finite lattice.

We now look at the eigenvalue distributions (in the complex plane) which are

given for the three masses in Figs. 4.6a,b,c. We plot superimposed the

eigenvalues for the last 5 configurations, at each mass. As the eigenvalues occur

in complex conjugate pairs we only plot half of them (those with imaginary part

> 0) - the other half can be obtained by reflection in the real axis. We see that

the distributions for m = 0.05 and m = 0.0125 are very similar but the distribution

for the lowest mass m = 0.00625 appears to have a lower density of eigenvalues

around the real axis. We can investigate this further as follows. Write the

eigenvalues A = x + iy and use the fact that they occur in complex conjugate

pairs to rewrite the sum in (4.36) as a sum over half the eigenvalues

I - 	___
)(+

JL + 	 (4.39)

-k-- Oc+rris)+
I z *

z

(We have denoted the mass appearing in this sum m to distinguish it from the

fermion mass used in the simulation m.) Now if the eigenvalue density is

uniform across the strip and the width of the strip is constant then this sum is

independent of the real part x and therefore, for a given m, determined solely by

the imaginary part y which is the distance of the eigenvalues from the real axis.

(The width of the strip varies only for varying i; this case is discussed in the

next section.) Hence we can use (4.39) to discover if the eigenvalues are moving

MM

Fig. 4.6a 	
Eigenvalue distribution (5 configurations superimposed).

H-- O. I mOQ5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5 -

1.0

0.5
X

x

XX
X

XX >0<

	

X 	
xx X

Xx 	xX)

4xx

	

X 	

i:<

>k;a; x
X X 	 x)(

><)v
XXXX>)(

X

	

X X(X 	X%x)(X

X
I 	 x
 X
X

	

xx 	
XX

x X 	X 	ç iX X

	

XX
;;txl

)x 	 (x x %
O~F Z~

	

xe 	
x

	

XX 	x
XXXI

(>! X(; XX x X XX
XX 	 X

}; 	 XX x 	 XX
X X 	 X XX X

	

xX4 X, X<x 	4~z~~Sx
XXX

xx

X>(XXX

	

Xx XXX)(X/ 	

< 4X

> X XX xX

	

X XX.x X <
	

K Xx 	
X)Q< X XXX X

	

XXX >0< 	X X 	XX <XX X

	

X > 	
Xx4X(X
	

)¼x 	
>< X X X

	

xx 	XX 	
X XX

X
X X> 	 X)I?<X XX

	

WX 	XX X)<
X X 	 X*)%(x

X X XX x X 	 X 	X XX X
X 	 Xxx 	

x: 	
XX

X X X 	 X 	x

	

X X xxx 	 XXX 	XX* < <X 	 XX<
X 	XX

	

X x 	X><>< 	
>< XX x

x X
X

X 	 X
X 	 X 0 L 	

A 	
X

I 	I 	I 	 I 	
I

-0. 36-0.024-0.012 0.000 0.012 0.024 0-036-
P e

.036
Re

Fig. 4.6b 	Eigenvalue distribution (5 configurations superimposed).

p-0 I m-0 0 125

5.0-

4.5 -

4.0 -

3.5-

3.0-

2. 5

.0

4.5

4.0

3.5

3.0

2.5

2.0 -

1.5 -
x

.0

1.5
x

1.0

0.5

	

X 	X
X%x 	X(X
x > x 	xxw x X X

	

x_ 	 x
XK

X)(xx X) (x
<)X5<x X'(

x 	x xx x
XX)* 	c1VXX

	

*XX "! 0 k
*w 	 X5

x xx
XX x 	

x, 	
xx

x x
S< 	 x x

x

XX 	
x

x x x
NCI**

xx
X 	X
x W

x x >03~x x xx

x XX X 	 x XX x

'XS< 	Xx 	X 	*

X x X 	
:k?#x

xx 	
:<

	

X 	X 4 X~kx x 	 x

X 	Xx)< 	xx 	NX
x N

xx (x
X 	 x Xx x

xxt X
X X) ' X 	 X<X X

X >(
x XX x

)(XX 	

X<
X X

x x Xx
X X XXX 	XXX 	

XXX
XX 	XXX 	 XXX

x X S:
*XX x X *X

>< 	x x 	Xx X< <
XX 	 XX

X > KX X x 	 x X

X x
X(X x 	 XX Xx XK

	

XX 	x 	
* 	XX

	

X XX 	 XX X

	

Xx x 	 x xx XXX X 	 x XXX

x

X
	X

X

0 01
-0.036 -0.024 -0.012 0.000 0.012 0.024 0.036

Re

	

Fig. 4.6c 	Eigenvalue distribution (5 configurations superimposed).

O1M=OOO625

5.0

	

4,5 	
x x &

AK 	 X 4X AXK

ir
>x

XX
~))
	 Xx

	

4.0 	
X<X(X X)fr<X

xr 'X 4% 1 x

(
h 	x x

	

3.5) %x Xx x> x X
x

XX 	 x
X

	

30 	 X< 	 xx

X
)

x X ¼X
X,

X <
XXxx(X

E 	2.5 	
)00,:-"x

X XX
x

II
x x 	 X X ;s

x 	
(x

xx 	 x 	 X 	
x

IX

	

2.0 	 X

X

X 	
X) 	 X

xxX 	 x (
X 	XXX

	

1.5 	 Xxx. 	
XXXx 	XX> X 	%Xx 	XX 	X> 	 XX

XX 	
X < X X X r Xx

x X)('X X X x X 	 X

1 . 0 	x>< :X X x 	 X>
X X

X X 	(XX 	XX 	X
X 	X<X 	X> X X X 	X

X 	X
X x 	 X X x 	 x : X 	 x

OS 	 X 	
X 	 X x X
	x

Xxx x 	X 	X Xx x X
x x%x 	 X ,(x

x 	 x X XX x 	 x

OP O36 -0.024 -0.012 0.000 0.012 0.024 0.036

Re

away from the real axis as the fermion mass is reduced. In fact, we vary m and

calculate the sum for only those eigenvalues whose real part is such that x + m

0. In other words, we scan across the strip summing the eigenvalues to the

right of the line x = -me; effectively verifying that the eigenvalue density is

uniform. The resulting "sum 	0", averaged over the last S configurations at each

mass, is plotted in Fig. 4.7a. It is clear that the sum is smaller for the lowest

mass implying that y is larger and the eigenvalues are further from the real axis.

The sums for the two larger masses are indistinguishable within the errors, even

though these masses differ by a factor of four. To show that the behaviour of the

sum, that is, 	is determined mainly by the smallest eigenvalues we plot

the "sum 	0" calculated from the lowest 20 eigenvalues of each configuration in

Fig. 4.7b. The observation that the eigenvalues move away from the real axis

when the fermion mass is reduced by a factor of two from 0.0125 to 0.00625, as

well as <Tp> decreasing, supports the conjecture of a phase transition (chiral

symmetry restoration and/or deconfinement) induced by the fermion mass

moving inside the eigenvalue strip.

One could of course argue that the eigenvalue density falls near the real axis

because the Monte Carlo method used in the simulation simply does not

generate any configurations with eigenvalues there, since the weight involves

detM which is proportional to the smallest eigenvalue. In order to rule out this

possibility we repeated the simulation with a different weight in the Monte Carlo

method. Up to now we have been calculating

r

= 	c 	-I ___ 	- g (4.40)

which uses the weight detM exp(-S). Instead, we can write this as

87

CD 12

A 8

Cr) 4

I

Fig. 4.7a
	

Sum of elgenvalues, for each m (averaged over 5 configurations),

with real part x such that x + m

oPàoo 0.004 0.008 '0.012 '0.016 '0.020 0.024

M

Fig. 4.7b 	As Fig. 4.7a for lowest 20 eigenvalues only.

16

C) 4

xm = 0. 05

+ m = 0. 0125

Em = 0D00625

" F ?
M 	 -

00 	
I 	I 	I

0.00 0.004 0.008 0.012 0.016 0.020 0.024

M

(4.41)

where this new expectation value involves the weight trM 1detM exp(-SG). We

calculate trM 1 as the sum of the inverses of the eigenvalues of M, obtained

using the Lanczos algorithm. <> obtained from this new simulation at the

highest and lowest masses, m = 0.05 and m = 0.00625, is plotted in Fig. 4.8. As

each sweep now takes 4 hours we have not done as many sweeps as before so

the average of <7P>new over the last 8 sweeps at each mass, given in Table

4.2, is not as accurate as <p> in Table 4.1.

Table 4.2

<4i> for i = 0.1 with new weight.

m 	 <'PP>new

.05 	I 	.237 ± .028

.00625 	j 	.034 ± .011

Looking at the eigenvalue distributions of the last 4 configurations superimposed,

Figs. 4.9a,b, we see that they are now closer to the real axis - perhaps

confirming our suspicions about the usual Monte Carlo weight's inadequacies -

but there still appears to be a gap around the real axis at the lowest mass. This

shows up in the "sum . 0" plot (calculated from the last 8 configurations), Fig.

4.10, as before. Hence we conclude that the Monte Carlo methods are operating

well enough to signal the phase transition.

We also performed a simulation, with the usual Monte Carlo weight, at .i = 0.

The history of <5i> for this is shown in Fig. 4.11: we started from the same

quenched configuration as for p = 0.1, did 40 sweeps (1-40) at m = 0.05, 30

(41-70) at 0.0125 and 30 (71-100) at 0.00625. Averaging <7i4> over the last 20

sweeps at each mass yields the values in Table 4.3.

U) 	CD 	u)
-

d d

LO

d

U-)

cr;

CD

U)

d

<jii4.> history of simulation with new weight at .i = ui.

El
M8U

<~~>

Fig. 4.9a 	Eigenvalue distribution with new weight (4 configurations superimposed

E
I'

p-0 - 1 --m-0. 05

5.0

45- <x<x

xx 	
x

xX>5tXX x XX

Xx 4x> 	ZCX)Z< XX

4.0
-

x X

	
(

X X x 	 x

X 	X X 	 X x x
- 	 X x

3•5- X

X

)SC 	 v e4x >~
X 	X 	X

X X XX

X I .-X(3.0- 	
x

	

x A
x X0 	

X X
x

X) 	X< x 	
X X X 	 x

X 	XxX 	
X

YA
x
? x.

2.5- 	
)(

X 	 X

X 	xxx 	X 	 X XX
X X XXX

X)9(*

2.0 	 xx
XX(X

xx X 	 XXX 	% x 	 X% XX
x XX

xz x <XX) x

5-x
x 	X O(X 	 XX)I(I X 	 x

x X X 	 x X X X X
X X 	x XX

X 	X 	XXX 	x
xx

	

X X
	X

X

1.0 	X 	X %(X x 	x x 	X
X 	 Xxx yx 	 XX X)(' 	 X

XX x XXX
X)< X X 	X X 	 X

-' 	 X x 	 x X x)c,< X X). X
0.5- 	x 	x 	x 	 x 	x

x)xx x 	 x xx
x 	xx 	x 	x 	x

x 	x x 	 xxx
x 	 x x 	 x

0.0 036 -0.024-0.012 0.000 0.012 0.024

P e

x

x

Fig. 4.9b Eigenvalue distribution with new weight (4 configurations superimpose

1 mOOO525

	

X 	
Xx)(X X)(xx>,- X

	

X K 	

X
x 	 x

X 	X

	

)4 	 Q(

XPAX:X) x x)k $ X

r:~ ~& X

xX x X,(X

X 	 x X X)Q()o(X x x 	X

	

XxxX

&
	 ? 	X x

X 	X
'Pcx

X 	 XX* X 	X X

	

X X x
xxx 0t 	 <X x X

X
X

X > >X XX

X OX

X XXX X X x XX :x
X X>~Px" XX

XX X

X 	X X 	
X

X X (
X4 	 xx&X

X XS(XX
XX X XX

i~?
X 	

xX X)(X
>X%X)O< X,<XxX X 	 X

X 	
X

	

XX 	XX

	

X X 	 X
x X

X(X 	

X
)Q(X X 	

X)(X
X 	x XXX

XX 	 X>

	

X 	
X X)(

X

	

)X 	

X X 	 x

X Xx 	 xX

XX 	
x

x 	XX 	 XX 	X X X 	 X 	 X W X X
X X X 	 X X

	

X X 	 X X

0.0 036 -0.024 -0.012

5.0

4.5

4.0

3.5

3.0

2.5

2.0.-

1.5

X

1.0
X

0.5
X

X

X

0.000 0.012 0.024 0.036

Re

Fig. 4.10 Sum of lowest 20 eigenvalueS for each m (averaged over 8 configurations)
with new weight, with real part x such that x + m 	. 0.

0.0125
0.00625

24 24

CD

11 	18
A

z 12

U)
II

	

6
	

H

oPàoo O003 0.006 '0.0090.012 0.015

M s

Fig. 4.11

C

<7jJ> history of simulation at i.i = ü.

U) 	 Q.D 	 LI)

C
a 	 a 	 a

Table 4.3

<4> for .i = 0.

	

.05 	.210 ± .033

	

.0125 	.061 ± .015

	

.00625 	.031 ± .008

As expected, these values are larger than those for non-zero j.i (Table 4.1);

though they also appear to extrapolate to zero. The elgenvalues are all pure

imaginary since i = 0. The lowest 20 of them for the last 4 configurations, at the

highest and lowest masses, are superimposed in Figs. 4.12a,b. We notice that

there is a larger gap around the real axis for the lowest mass - but the scale of

the imaginary axis has been expanded by a factor of about 5 so that the gaps are

actually the same within error bars. This supports our conclusion that the

eigenvalues move away from the real axis as the fermion mass decreases due to

the finite density.

However, we cannot rule out the possibility that what we are seeing is due to

finite-size effects (which we know to be large on a 44 lattice for free fermions -

Chap. 2.1.2) - fermions with lower mass propagate further - without performing a

simulation on a larger lattice which would require a larger (i.e. super-) computer.

4.3.2. Fixed m; varying i

We now turn to the alternative regime in which to investigate the chiral

symmetry restoration transition at finite density: fixed m; varying P. In a recent

preprint Dagotto, Moreo and Wolff, 1986, calculate the behaviour of <il.np> in the

strong coupling limit of SU(N) at finite chemical potential using a dimer approach

and mean field techniques; they predict a first order phase transition for N 	3

and find a continuous transition for N = 2. We shall try to verify the latter using

Lanczos dynamical fermions. We simulate on a 44 lattice with n f = 4, rn = 0.2 and

Ti varying between 0 and 1 in steps of 0.1 (as do Dagotto, Moreo and Wolff), and

choose B = 0.5 to achieve strong coupling.

The history of <3> and the plaquette (4.38) as i is varied between 0.1 and

1 is shown in Fig. 4.13. (<i4.np> for ii = 0 was calculated separately.) We

EMO

Fig. 4.12a 	Eigenvalue distribution (4 configurations superimposed).

1.2 -0
1.0 mOO5

*
0.8-

x

E 06 .

x

x
0.4 -

x
*
x

0.2 x

PO 10 -0. 006 -0. 002 0.002 0.006 0.010

Re
Fig. 4.12b 	Eigenvalue distribution (4 configurations superimposed),

	

x 	 — 0x

mO OOE25
x

0.8-

x

_ 0.6
ii x

0.4-

x

O2, 	
X
x
x
x

cPoio -0.006 -0.002 0.002 0.006 0.010

Re

Fig. 	4.13 <in4> and plaquette history of simulation for $ = 0.5 at m = 0.2.

eenbo
CO
cr

d d
I 	

>
I 	I I 	I I 	I

+ x
+ x

- + x

a) Ln
+
+

> C

—I--- +
+

x
x•

+ x
a) +

x
A

00 +
+ X

_______________C
+ x

+ 	x
N + 	X

+ 	x
x+

+ 	x
1- Ln

Cr) x 	+
'0

•
X 	+

x 	+
x 	+

CD

x +
x

+
+ . (D

x +
x + c\JCc)
x +
x +
x
x •

+
+ CD

x ft +
x +
x +
x +

-i '1)
x + -
x
x •

+
+

x + C
x + -
x
x N +

+
x +
x +
x - +
x . +
x I +

C
I 	 I

CO 	LI) 	 Cr) 	 -
C

performed 5 sweeps at each i value (except for i = 0.4 where we did 10 to

ensure equilibrium had been attained) and averaged <ii4.,> over the last 4

sweeps to obtain Fig. 4.14 (the error bars are smaller than the crosses), in which

the line obtained by Dagotto, Moreo and Wolff, 1986, is also shown. We see very

good agreement, particularly near the phase transition which occurs at 4, = 0.6 ±

0.2. The discrepancy at small and zero i is probably due to the fact that we are

at finite coupling 6 = 0.5, whereas Dagotto, Moreo and Wolff are in the strong

coupling limit B = 0.

We plot the eigenvalue distributions (of the last 4 configurations

superimposed) at 3.1 = 0.3, 0.4.....1 in Figs. 4.15a,b.....h respectively. We find the

behaviour discussed earlier, and shown schematically in Fig. 4.3, as expected.

(Note that in Figs. 4.3 and 4.4 X with ReX > 0 is plotted, whereas in Figs.

4,15a,b.....h X with lmX > 0 is plotted.)

Finally, we calculate the "sum > 0" which was defined in the last section as

the sum in (4.39) for eigenvalues whose real part x is such that x + m 	0.

Now, of course, the width of the eigenvalue strip is varying (as 3.1 varies) so the

sum will depend on both x and y. However, the width is changing dramatically

while the length remains nearly constant so the dependence is mainly on x and

we should find that "sum 	0" decreases as p increases (widening the strip and

increasing x). That this is indeed the case is shown in Fig. 4.16.

4.3.3. Concluding remarks

We have performed simulations of SU(2) at finite density with dynamical

fermions using the Lanczos algorithm in the two regimes: fixed i; varying m, and

fixed m; varying 	In the former we find that, for a small chemical potential 4 =

0.1, 	is less than its j.i = o value and the eigenvalues of the fermion matrix

move away from the real axis as the fermion mass is reduced - presumably

because the fermion mass is moving inside the eigenvalue strip - this is probably

the signal of a (chiral symmetry restoration and/or deconfinement) phase

transition. In the latter we find that, at strong coupling, chiral symmetry is

restored in a continuous phase transition, around j.i = 0.6, in agreement with the

strong coupling limit calculation of Dagotto, Moreo and Wolff, 1986.

all

C

N

L) 	 C 	C

	

c•\J 	C 00 	(_o

	

S 	 S 	 a 	 I 	 S

C C C C

Fig. 4.14 	<7i4i> against .i for B = 0.5 at m = 0.2,- with line from
Dagotto, Moreo and Wolff, 1986.

-P.50 -1.00 -0.50 	0.00 	0.50

Re
1.00 1 . 50

b

0

3.0

E

2.0

b.0

4.0

1.0

Fig. 4.15
	

Eigenvaiue distributions for 	= 0.5 at m = 0.2 for various i-i.

a)

't. 50 -1.00 -0.50 	0.00 	0.50
	

1.00
	

1.50

Re

Q pI.50 -100 -0.50 	6.'oô 	0.50 	1.00 	1.50

p e

Fig. 4.15 continued

5.0

4.0

1.0

°-P.so '-i.'oo 1 -0 	 A-- 5ö 	o.so 	1.00 1.50

Re

5.0

4.0

3.0

E
H—H

2.0

1.0

an

Fig. 4.15

5.0-

4.0 -

3.0 -

2.0 -

1.0-

0
--!

.0

4.0

3.0

2.0

1.0

continued

X

X

(X

1.00 	1.50

5.0-

4.0 -

3.0 -

2.0 -

1.0-

0-!

.0

4.0

3.0

2.0

1.0

P.o

>d)Xx& 	f)
,

XCA
X 	 <x (
x 	x 	x 	 x x x

X4 	 X~ 	K

.. >l"T b. ISO* ,

X) x XX
	YA

x XX
xX%X x%xX,<x

X
	XX x 	

x

Z)< x

	XXX

X9,
(

x<
X 	

x X*
X 	

>71-4—

xx

XX 	 S< xx

Xxx x 	x x
X< x

xx x
rxi x

><

x tFA x XX 	 XX
X;r

X 	X X 	 X X
x %

xxxX

XX 	XX
X 	X XX 	

X X*xxX jyX; 	X1 	
I

1.00 -0.50 	0.00 	0.50 	1.00

Re
1.50

0.00 	0.50 	1.00 	1.50

Re '

h)

X X 	
X X X X 	X X 	X 	

- 1
)S xx 	X

%*?hXX 	X(AX X)XX

X X%)(XX XX Xx Y,*X 	(X X
x ZX I 	K~ X (<

X

x X X x Ax x X 	

X () X

	

XX 	
X

)XxX 	 X x XX
X >C x x XX 	 X x X

	

xX 	X*X
>OK X)*

)XXX X XX XX 	
XSX

	

%XX X
XK x XX

X.X 	 <XX 	
x

XX 	 X

	

X X 	X 	 X

	

X)(
x xx 	 x

~ $

" 	 X)XXX

ZFXXX XX 	 (XXXX x 1'6

XX 	X(AK

	

X 	 X> XX 	
X 	 x 	 X) *)(NK

xx
XX x XX X 	 X

	

X 	 X
XX ,X X X 	 X X

	

kvx 	X 	
X XX) *X w XX 	 X < X 	 X X)) X

I 	I
.50 -1.00 -0.50 	0.00 	0.50 	1.00 	1.50

Re

Op 	.00 -0.50

0.

5.0

4.0

3.0
E

2.

0

Fig. 4.15 	continued

5.0

4.0

3.0
E

2.0

1.0

g)
XX

f"XX'A

	

XX, 	<Xx
XX

	

X 	
X 	XXX X

	

xx 	 XXX

A ,

	

xX wri 	< X x Ax< Xx,(XXX
< *

x
xxx

	

X X 	X XXX):&(
X 	 X 	< X ' >

X X
XXX<

X < XXXX 	XX
xX Xx %

X 	 X
X X x 	< 	

< x x x x X X
> *X X X *X 	X% XX *

4 	XX X 	 XXX x fx
X X% X

	

Xxc X Xxx 	
XX

x 	
X X X%

)cXXX>

	

X 	 X 	(X x

CD

D

C

D

CD

F

Fig. 4.16
	

Sum of lowest 20 eigenvalues, for each i (averaged over 4 configurations)
for 	= 0.5 at m = 0.2, with real part x such that x + m 	. 0.

HN 	FEH 	101 	9

WLOhcCO)D

	

0 	0 	0 	 0 	 0 	 0 	0 	0

II 	II 	II 	II

1 X + E0 0

	

lxi 	FI 	IEI

H-Il

F<Il 	Xlii
I I

El B
Q

d
Ui

Chapter 5

A general FORTRAN to C translator

At Edinburgh University there are two ICL Distributed Array Processors (DAPs),

which are used to perform a variety of numerical simulations (Pawley and

Thomas, 1982; Bowler, 1983; Bowler and Pawley, 1984; Wallace, 1984), including

the simulation of the Schwinger model described in Chap. 3.3. The DAP, which is

more fully described in Appendix I, is a Single Instruction stream, Multiple Data

stream (SIMD) computer comprising a 64x64 square array of bit-serial processing

elements (PEs) each with 4Kbits of local memory and connections to the four

nearest neighbours. It forms a (2Mbyte) memory module of the host ICL 2900

series mainframe computer. Although each PE only deals with one bit of its own

store at a time, all 4096 of them perform the same operation in parallel, that is,

simultaneously; this yields a very powerful computer. As described in Appendix

1.11, programs consist of two parts: a serial part (written in FORTRAN (77)) which

executes on the host 2900 and a parallel part (in DAP FORTRAN) for the DAP,

communicating via shared COMMON blocks. A great deal of such FORTRAN/DAP

FORTRAN software now exists.

However, many of the next generation of array processors, in particular the

GEC Rectangular Image and Data processor (GRID), are programmed in parallel

extensions of C. The GRID, which is more fully described in Appendix II, is similar

to the DAP in that it contains a 64x64 square array of bit-serial PEs for parallel

code, but it also contains a scalar processor to deal with serial code and it is

hosted by a (mini-)computer. The GRID is programmed in GRID extended C (GEC),

which is described in Appendix 11.11.

Eventually one would hope to devise a Common Array Target Language

(CATL), that is, an intermediate machine-independent pseudo-code for SIMD

processor array computers (like DAP and GRID), into which both DAP FORTRAN

and GEC would be compiled. Initially, however, it is more convenient to develop

some software which automatically translates DAP FORTRAN into GEC, as well as

FORTRAN 77 into C of course. In this chapter we shall describe such a general

FORTRAN to C translator, which effectively enables DAP FORTRAN programs to

41

run on the GRID. A brief description of this software is to be published (Baillie,

1986a); detailed information can be found in a "Users Manual" (Baillie, 1986b) and

a "Maintainers Manual" (Baillie, 1986c).

Note that in the following: all FORTRAN is in upper case, C is in bold face and

names used in the translator software itself are enclosed in quotes.

The translator consists of two parts: a prepass and a translation pass. Before

going on to describe these, we give the reason for this. In C (Kernighan and

Ritchie, 1978) all symbolic names must be declared before they are used,

whereas in FORTRAN (DEC, 1982) some may not be (and are given implicit types).

This means that halfway through the translation of a typical FORTRAN program

we may come across a symbolic name X for a variable which has not been

declared (but has implicit type REAL) by which time it is too late to declare it in

C. The easiest way to deal with this is for the translator to consist of two

"passes": a prepass which makes up lists of symbolic names, that is, routines and

their associated variables and parameters, with their types (from declarations if

they are declared or implicit otherwise); and a translation pass which uses these

lists to declare the symbolic names before translating the statements in which

they are used.

We should also, at this point, describe the lexical analyser since it is common

to both the prepass and the translation pass. A FORTRAN program is made up

from lines which can be up to 72 characters long and have three fields: the

statement label, the continuation indicator and the statement. In C, however,

there is no concept of lines - lexemes are separated by blanks, tabs, newlines or

comments. Thus the lower level of the lexical analyser reads lines and combines

them into statements, making line continuations transparent to the higher level

and preserving labels. It also converts FORTRAN comments directly into C

comments. Then the higher level of the lexical analyser picks out the lexemes

from the statement. It can do this in two ways: with or without blank spaces

being significant. In standard FORTRAN, blanks are ignored, so by default the

lexical analyser collects characters from the statement until it recognises what it

has got. The alternative possibility - blanks being significant - is selected when

the user specifies a flag ("-s") to the translator and is useful for detecting

FORTRAN ambiguities like "DO 10 I = 1.5". (If blanks are ignored then this

statement will set an implicitly declared REAL variable "DOlOI" to "1.5", whereas if

Sl

blanks are significant, it will be spotted as a mis-typed DO-loop.) The lexemes

are classified as follows:

EOF
label
STRING
DIGIT
LEXNOT
SPECIAL
reserved character
reserved word
OTHER

where EOF (end of file) is the end of the FORTRAN program; label is a statement

label; STRING is a character string constant (for example, 'Fred'); DIGIT is an

integer, real, double or logical constant (for example, -123, 10.01, 6.3D5 or

TRUE.); LEX NOT is the unary operator NOT.; SPECIAL is a FORTRAN binary

operator (.GT 1T. GE. .LE. AND. .OR. .EQ. .NE. .EQV. .NEQV. .XOR.) or a binary

operator particular to DAP FORTRAN (.NAND, NOR. .LEQ. .LNEQ.); reserved

characters are newline = + - : , . () * /; reserved words are BLOCKDATA, DATA,

CONTINUE, FUNCTION, SUBROUTINE, IMPLICIT, INTEGER, LOGICAL, REAL, DOUBLE

PRECISION, COMPLEX, CHARACTER, DIMENSION, FORMAT, WRITE, PRINT, READ,

CALL, DO, IF, THEN, ELSE, ELSEIF, ENDIF, END, GOTO, PROGRAM, PARAMETER,

COMMON, EQUIVALENCE, STOP, ASSIGN, RETURN, SAVE, PAUSE, ENTRY,

INTRINSIC, EXTERNAL, BACKSPACE, CLOSE, ENDFILE, INQUIRE, OPEN, REWIND,

GEOMETRY, MATRIX and VECTOR; and OTHER is a symbolic name (routine,

variable, parameter or intrinsic function). (By routine we mean FUNCTION or

SUBROUTINE; variable includes array; and by parameter we mean a variable

passed into a routine as one of its arguments.) The lexical analysis of FORTRAN

is context sensitive, for example, given the reserved character /, the lexical

analyser checks for /1 which may be the string concatenation operator, a blank

COMMON block or two newlines in a FORMAT specification statement.

5.1.. Prepass

The prepass goes through the FORTRAN program making up a list 	of routines

and 	associated variables, 	parameters, 	PARAMETER 	definitions and FORMAT

specifiers, which it 	stores 	in 	an 	intermediate 	file. 	(The 	translation pass will 	use

93

this information to translate the FORTRAN into C, making the necessary

declarations and definitions.) In other words, the prepass deals with specification

statements, that is, non-executable statements which declare, initialise, make

common and equivalence, variables. We shall divide our discussion of the

prepass into the following sub-sections: declaration, COMMON, EQUIVALENCE,

initialisation, PARAMETER and FORMAT.

First of all, an outline of the data structures used to store the information

about symbolic names is useful. There is .a linked-list of routines with each

routine having its own linked-list of PARAMETER definitions, one of FORMAT

specifiers, one of parameters and one of variables. This structure is shown

diagramatically in Fig. 5.1, where 'etc' stands for the rest of the linked-list.

Fig. 5.1 Data structures used in the translator.

routine PARAMETER

I 	name PARAMs 	------------------> 	lbs 	I 	next
type FORMs 	I-------------+ 	I 	rhs 	I
chsize pars 	----------+

I 	function vars 	 + 	I
I 	tvcount 	I next 	I-

------ I 	I 	FORMAT

w 	 I next 	I --- >etc

etc<----+ 	I 	lab 	I
I 	I 	form 	str 	I ------------

variable

--------------------------+

variable parameter

I 	name I 	corn 	I 	-------- > 	name I 	corn 	I
I 	type I 	corn_pos 	I 	 I 	type com_pos 	I
I 	chsize corn—name 	I 	 I 	chsize corn_name

I 	function corn ptr 	I 	 I 	function corn_ptr 	I
I 	ext I 	equiv 	I 	 I 	ext I 	equiv 	I
I 	array I 	offset 	 I 	array I 	offset
I

	
dim 	start I 	parent 	I 	 dim 	start I 	parent

I 	dim 	finish 	I 	next 	I--->etc 	I 	dim 	finish I 	next 	I --->etc
I 	data I 	data I 	.
I 	value value

Each individual data structure contains a field 'next' which points to the next one

on the list, or points to null if at the end of the list. The routine data structure

also contains pointers to its PARAMETER definitions ('PARAMs'), FORMAT

specifiers ('FORMs'), parameters ('pars') and variables ('vars'). It has fields for the

name, type and character string size ('ch_size') - if appropriate - of the routine; a

field indicating when it is a FUNCTION ('function') - as opposed to a

SUBROUTINE; and a field giving the number of temporary variables required

('tvcount') - see Sec. 23. The same data structure is used for both variables

and parameters. It has fields for the name, type and character string size of the

variable or parameter; a field indicating when it is a FUNCTION and one

specifying if it is EXTERNAL as well ('ext'); some fields for when it is an array

('array', 'dim _start' and 'dim-finish'); two fields for when t is initialised ('data' and

'value'); and some for COMMON and EQUIVALENCE (which will be described later).

PARAMETER is straightforward having two fields: one for its left-hand side ('lhs')

and one for the right-hand side ('rhs'). FORMAT has fields for the label ('lab') and

the (translated) FORMAT specification string ('form str') as well as one to indicate

whether the format is being used in a WRITE statement ('w') - see Sec. 1.6.

5.1.1. Declaration

In FORTRAN, variables and arrays may or may not be declared explicitly.

Explicit declarations, for example,

REAL X, Y(5)
	

(5.1)

are easy to deal with: X is a real variable, Y is a real one-dimensional array of

dimension 5. Implicit declarations are a little harder. Firstly, the prepass must

keep track of what the implicit types are, as these may be changed by the

IMPLICIT statement. Then, it has to identify the lexeme of class OTHER (that is, a

symbolic name) as a variable, an array, a routine or an intrinsic function. Intrinsic

functions are known by the translator (this, incidentally, renders the INTRINSIC

statement redundant). Arrays, if they are not declared explicitly, as in (5.1), are

always declared implicitly by a DIMENSION statement, for example,

DIMENSION Y(5) 	 (5.2)

Routines are indicated either by EXTERNAL statements, or as lexemes of class

OTHER followed by opening brackets and not declared as arrays. (SUBROUTINEs

are also indicated by the preceding reserved word CALL, of course.) Variables are

then the remaining lexemes of class OTHER. There is, however, one

complication: character substrings like Y(1:3) are variables not routines. Hence to

distinguish between these, the prepass follows the logic:

if OTHER is EXTERNAL then
it is a function

else if it is not an array and yet is followed by '(' then
if ':' is found amongst the arguments then

it is a character substring i.e. variable
else

it is a routine.

The prepass also checks if the variable being (explicitly or implicitly) declared is

actually a parameter passed into the routine, since parameters are stored in a

separate list from variables - see Fig. 5.1 above.

FORTRAN data types are translated into the obvious C equivalents, or nearest

equivalents, as listed in Table 5.1.

Table 5.1

FORTRAN data types with corresponding C translations.

FORTRAN 	 I 	C

INTEGER mt
INTEGER*1, INTEGER*2 short int (WARNING)
INTEGER*3 int (WARNING)
INTEGER*4, INTEGER*I mt
INTEGER* long int (ERROR)
REAL float
DOUBLE PRECISION double
REAL*3 float (WARNING)
REAL*4, REAL*E float
REAL*8 double
REAL* double (ERROR)
COMPLEX COMPLEX (WARNING)
DOUBLE COMPLEX COMPLEX (WARNING)
CHARACTER ... char 	[1]
CHARACTER*N, CHARACTER*(N) ... char ...[N]
CHARACTER*O, CHARACTER*(*) ... char 	'b...

CHARACTER* 	... char 	(ERROR)
LOGICAL mt

where '' denotes anything else, '...' stands for a variable name list, and
(WARNING) or (ERROR) signify that a warning or error is given respectively.

Note that COMPLEX is left simply as COMPLEX, since C has no complex type. DAP

FORTRAN variables have the same types as the FORTRAN ones but they have

different modes (Appendix 1.11.1), whereas GRID extended C variables have different

types form the C ones (Appendix 11.11.1) - though the difference is simply the

parallel extension "array". Therefore DAP FORTRAN variables, that is, variables of

mode matrix or vector, have their types translated in the same way as FORTRAN

ones except that array is appended to int, short, long, float, double and char;

and LOGICAL becomes bool array.

5.1.2. COMMON

The COMMON statement defines a contiguous area (block) of storage

identified by a symbolic name, in which variables and arrays are stored in a

certain order. This block is accessible to any routine which refers to it explicitly.

In C global variables and arrays are declared at the beginning of the program

(outside the functions) and referred to as extern in functions that wish to use

them. So to mimic a COMMON block in C we declare an extern (one-dimensional)

array of the correct size, with the name of the COMMON block, and then declare

the variables and arrays in the COMMON block as pointers into this array

(counting their lengths in bytes to obtain the positions). This is fine for arrays

which are essentially pointers anyway, but for variables it implies that they must

always be preceded by the operator * (or have [0] appended) so that their value

is taken, that is, a FORTRAN variable A which is COMMON must be written *a in

C. For example (see Fig. 5.2 also)

char com[161;

INTEGER I,P(3) 	 main()
COMMON /COM/ l,P 	 {
I = 0 	 mt (*i) = (int(*))(&com[0]);

P(1) = 1 	 int (*p) = (int(*))(&com[4]);

END 	 *i=0.

P[1-11 = 1;

}

97

Fig. 5.2 The COMMON block COM.

memory 	0 	4 	8 	12 	16

variables I I I P(l) I P(2) I P(3)

There is a linked-list of COMMON block data structures, each one containing

fields for the name and length as well as a field to specify whether the COMMON

is DAP FORTRAN mode matrix or vector. Note that if any member of the

COMMON block is a matrix or a vector then they all must be. Each variable

added to the COMMON block has the fields in its variable data structure - 'corn',

'corn 	ptr', 'corn name' 	and 	'corn pos' - 	set 	to indicate its 	position 	in 	the

COMMON block. 	Finally 	we 	note 	that different routines may 	have 	different

versions of the same COMMON block - the actual amount of storage required is

the size of the longest version; for example,

Routine 1
	

Routine 2

INTEGER P1,P2
	

INTEGER P
COMMON /COM1/ P1,P2

	
COMMON /COM1/ P(2,3)

thus, COM1 has length 2x3x4 = 24 bytes. This means that at the end of the

prepass the linked-list of COMMON blocks is searched and all shorter duplicates

removed.

5.1.3. EQUIVALENCE

The EQUIVALENCE statement partially or totally associates two or more

variables with the same storage location. Variables can be character substrings or

array elements. When an element of one array is made equivalent to an element

of another, equivalences are introduced between the other elements of the two

arrays. This is dependent on how the arrays are stored - in FORTRAN they are

stored in column-order, that is, with the left-most subscripts varying fastest.

There is no concept of EQUIVALENCE in C but this can be achieved by means of

pointers. Given a collection of EQUIVALENCEd variables and arrays, we compute

the net (total minus overlap) amount of storage required for them and declare an

array this size, with the variables and arrays declared as pointers into it, as for

COMMON (see previous section). Typically we have

INTEGER X(2,3), Y(3)
EQUIVALENCE (X(2,2), Y)

resulting in the storage pattern depicted in Fig. 5.3, where X(2,2) is at the same

location as Y(1).

Fig. 5.3 Showing how dist is calculated.

a
V

I 11 I 21 I 12 1 22 1 13 1 23 1 	X

<-------------1 1 2 1 3 I

dist

To calculate dist we compute e, the offset of X(2,2) from X(1,1) in units of the

element size, and f, the distance of Y(1) from Y(1). In general, given an array

declared as P(L,M,N), the element P(I,J,K) is offset (I-i) + (J-1)L + (K-1)ML, in units

of the element size, from the first element P(1,1,1). Then the beginning of X is at

a distance a = -4e bytes from the point of equivalence; similarly for Y, b = -4f

bytes. (The 4's arise because an INTEGER is 4 bytes long.) Hence dist = a - b

bytes. This is shown in Fig. 5.3. Effectively now having

EQUIVALENCE X, Y + dist 	 (5.3)

means that we can use a simple equivalencing algorithm such as the one given

by Aho and Ullman, 1977 (in Sec. 10.3), to deal with a sequence of EQUIVALENCE

statements which groups variables into "equivalence sets". To compute these

equivalence sets we create a tree for each one. Each node of the tree is a

variable data structure which has a field ('offset') containing the offset in bytes of

that variable relative to the variable at the parent of this node and a field

('parent') containing a pointer to this parent node. The variable at the root of the

tree is called the leader; its offset is 0 and its parent pointer is null. The position

of any variable relative to the leader can be computed by following the path from

the node for that variable to the leader and adding offsets along the way. Now

consider equivalencing a variable p in the equivalence set tree with leader tp to a

variable q in tq's tree, with dist = a - b as before. We must equivalence one tree

to the other with the correct offset, that is, we either change the offset and

parent pointer of tp to make tq its parent or change tq.to point at tp. To do this

we follow the path from p to its leader tp summing the offsets along the way to

obtain c, then the location of tp which we shall denote mp is given by a = mp +

C; similarly b = mq + d, where d is the offset of q from tq. Hence the offset we

require for equivalencing tp to tq is

diff = mp - mq = (a - c) - (b - d) = dist - c + d. 	 (5.4)

A picture of this is given in Fig. 5.4.

Fig. 5.1 Showing how diff is calculated.

d i f f
< --------------------------
MP 	 I mq

V ------------

q leader

> -------------
d

lb

dist

For efficiency we make sure the trees grow squat by equivalencing the tree with

the smaller number of nodes to the other. (We could obtain maximum efficiency

by path compression as well.)

EQUIVALENCE/COMMON interaction: What happens if one of the variables in

an equivalence set is in a COMMON block? The entire equivalence set is put into

the COMMON block at the correct place, which means we must know the extent

of this set. To handle this we attach a header to each equivalence set which has

two fields: low and high, giving the offsets relative to the leader of the lowest

and highest locations used by any member of the equivalence set. This header

is also used for the other equivalence sets to tell how long an array of char to

declare in C to hold the whole set. Now when two members of different

equivalence sets are equivalenced, forcing the sets to be merged, we must

change the low and high of the resultant equivalence set appropriately: if we

merge tp to tq then the new fields for tq are given by

new lowq = min(Iowq, lowp 4 diff)
new highq = max(highq, highp + diff) 	 (5.5)

(if we merged tq to tp instead then would have had "- diff"). An example should

illustrate how this works:

INTEGER X(2,3), Y(3) 	 char c{241;
COMMON /0/ X 	 char *el = &c(O];
EQUIVALENCE (X(2,2), Y)

nt (*x)[2] = (int(*)[21)(& e1[01);
mt (*y) = (int(*))(& e 1 [121);

The COMMON and EQUIVALENCE are processed separately, where they occur, and

then at the end of the prepass variables which are both COMMON and

EQUIVALENCEd are looked for - it is then that X is noticed. The prepass transfers

the COMMON attribute of X to the header of its equivalence set. (Note that if the

header is already COMMON then we have an error - no two COMMONs can be

EQUIVALENCEd in FORTRAN.) Then it checks that low is not before the start of

the COMMON block - it is an error if it is - and if high is after the end of the

COMMON block, it extends the block (giving a warning). When we come to

declare the storage required (in the translation pass) for the equivalence set, we

find that it is COMMON and just declare a pointer to the required position in the

COMMON block. The position of the start of the equivalence set in the COMMON

block for the above example is given by

composE = com_posp - c + lowp 	 (5.6)

and the new length of the COMMON block is

new corn_len = composE + highp - lowp, 	 (5.7)

this is shown pictorially in Fig. 5.5.

101

Fig. 5.5 Showing how corn posE and new corn len are calculated.

lowp Imp 	 highp
<-- V ---------------------->

p header

p leader I

corn posE 	 > 	p 	I
C

I 	pCOMt4ON 	 I -----------------------------

	

--> 	 I new corn len
corn posp I a 	 I corn_len

5.1.4. Initialisation

In FORTRAN, the DATA statement assigns initial values to variables before

program execution In C this is also the case for static variables which are

initialised, but not for automatic ones - these are initialised where they are

declared by simply adding "= value" to the declaration. Only variables and arrays

which are COMMON or EQUIVALENCEd need be automatic (since they are

pointers) and we can take care of these by simply initialising them separately in

a special routine which is called at the beginning of the program. For example

char blank[4];

INTEGER l,J 	 DATA init()
COMMON]
DATA I,J/0,1/ 	 int (*1) = (int(*))(&blank{0]);

*1=0;

END 	 }

main()

nt (*j) = (int(*))(&blank[0J);

static int j = 1;
DATA_in itO;

}

There are some subtleties in the translation of declarations and initialisations

of character strings, because FORTRAN reserves space for strings whereas C

102

does not. For variable-length character strings, declared as CHARACTER*(*) in

FORTRAN 77, DATA should be used to initialise them to some string of maximum

length required in order to force C to reserve enough space, for example,

CHARACTER*() S 	 static char 	= "123";
DATA S /'123'/

otherwise they will be initialised to null strings, that is,

CHARACTER*(*) S 	 static char *s - "

Fixed length character strings, declared as CHARACTER*N in FORTRAN 77, which

are not initialised are set equal to a string of N blanks in C to reserve this

amount of space (plus one extra space for the end of string character), that is,

CHARACTER*5 S 	 static char s[5+1] = " 	"

5.15. PARAMETER

The PARAMETER statement assigns a symbolic name to a constant, for

example,

PARAMETER (P1 = 3.1415927)

In C, this can be done using a #define statement:

#define pi 3.1415927

Hence the prepass simply stores a linked-list of left- and right-hand sides of the

PARAMETER definitions for the translation pass to output at the beginning of

each routine (before the rest of the declarations, in case they make use of these

PARAMETER definitions).

103

5.1.6. FORMAT

FORMAT statements describe the format in which data is to be input or

output; each one is uniquely identified by a label. We translate them into #define

statements as follows:

label FORMAT(fspec)
	

#define I label Cfspec

where Cfspec is the translated FORMAT specifier, fspec. For example

1 FORMAT(3(' ',F6.3))
	

#define Ii %6.3f %6.3f %63f"

The FORMAT specifier is defined by the following regular expression grammar:

fspec 	 : primary
primary , fspec
primary / fspec
/ fspec

primary 	 : (fspec)
i (fspec)
fdes
i fdes

fdes 	 :c
c [w]
c2 [w[.p]]

c 	 : ci 	c2 I X I T I H

c 	 :AIIILIOIZ
c2 	 : F G E I D

w 	 : field width

P 	 : number of decimal places

and therefore parsed recursively. Each FORMAT descriptor, fdes, is translated as

shown in Table 5.2.

104

Table 5.2

FORTRAN FORMAT descriptors with corresponding C translations.

FORTRAN 	 I 	 C

IL %d

0 . 	 %o

Z %x

ciw %wcl

F- /0
0/

G %g
ED
c2 w.p %w.p c2

A %s

A W %.w s

X space

I \t

H * (see below)

/ \n

* Hollerith strings in format specifiers are restricted to be alphanumeric
with no spaces i.e. "4Habcd" is allowed but "4Ha Cd" is not.

Note that there are some restrictions in what can be translated:
fdes cannot be ':', BN, BZ, S, SP, SS, TL, TR or P

If an i precedes part of the specification then the translation of this part is

repeated i times (see last example). FORMAT specifiers should be given

completely since C will not use them more than once like FORTRAN does.

The prepass stores the translated FORMAT specifier, Cfspec, along with its

label, label, in the FORMAT data structure fields 'form str' and 'lab', respectively.

The other field, 'w', is necessary to surmount the following complication. At the

end of FORMAT specifiers there is an implicit newline character since FORTRAN

takes a new line after every READ and outputs a newline after every WRITE.

However, in C newlines are disregarded on input (as are blanks and tabs) and so

should be dropped. The field 'w' indicates whether the FORMAT specifier is used

in a WRITE statement. If it is then a newline character is appended to 'form str'.

Note that if the same FORMAT specifier is used for READ and WRITE, WRITE takes

priority and a newline character is appended - this means that a READ with this

FORMAT specifier will fail in C. Note also that anything at the end of a line of

input data which FORTRAN ignored by taking a new line will be read in by C and

could lead to unexpected results!

105

5.2. Translation pass

Once the prepass has discovered what all the routines, variables and

parameters are; sorted out the variables which are COMMON and/or

EQUIVALENCEd; and dealt with PARAMETER definitions and FORMAT specifiers,

the translation pass can proceed. The translation pass deals with control

statements, I/O statements, routines, expressions, end intrinsic functions. These

are discussed in turn in the sub-sections below and are summarised in Table 5.3.

Table 5.3

FORTRAN statements with corresponding C translations.

FORTRAN
	

C

ASSIGN S TO V #define Iv Is
BACKS PACE[(][U NIT=]u{,ERR=sI[)] if (fseek(f u,-1 Li) == NULL)

[goto 	Is];
BLOCKDATA En] used by prepass
CALL 	f(([n][,n] ...)]
CLOSE({UNIT=]u[,ERR=s]) if (fclose(f u) == NULL) [goto Is];
COMMON [/(cb]/]nlist[[,]/[cb]/Rlist]... used by prepass
CONTINUE ; (null 	statement)
DATA nlist/clistj[,]nlist/clist/]... used by prepass
DIMENSION 	a(d)[,a(d)]... used by prepass
DO s[,] n=e1,e2[,e3] for (n=e1;n<=e2;n+=[e3]I1) (
ELSE } else
ELSEIF (e) THEN } 	else 	if (e)
END } (terminates program unit)
ENDFILE not implemented
ENDIF } (terminates block IF)
ENTRY not implemented
EQUIVALENCE (nlist)[,(nlist)]... used by prepass
EXTERNAL f{,fJ... used by prepass
label FORMAT(fspec) fdefine I 	label Cfspec
[typ] 	FUNCTION f[([n[n] ...])] Otyp 	f([n[,n] ...])
GOTO s goto Is;
IF 	(e) 	St if (e) 	Cst;
IF (e) THEN if 	(e)
IMPLICIT 	typ(I{,I] ...){,typ(l[I]...)]... used by prepass
INQUIRE not implemented
INTRINSIC f[f]... used by prepass (actually ignored)
OPEN ([UNIT=]u[,FILE=n][,ERR=s]) if ((fufopen([n]default,'r"1"w"))

NULL) [goto Is];
PARAMETER (n=cLnc]...) 'define n c
PAUSE not implemented
PRINT not implemented
PROGRAM n /* n */

READ([UNIT=]u,[FMT=]labei[,END=s]) [nlist] if (fscanf(f 	u,I 	Iabel[,nlist]) 	== 	EOF)
[goto 	Is];

RETURN return[(f)];
RE'A'IND[(][UNIT=]u[,ERR=s][)] if (fseek(f u,OL,O) == NULL)

[goto 	Is];
SAVE nlist used by prepass (actually ignored)
STOP [disp] [fprintf(stderr,"%d\n 'j"%s\n'disp);

exitQ;
SUBROUTINE f[([n[,n].])] f([n[,n] ...]) 	(
iVRF1E([UNIT=}u.[FMT=]label) [nlist] fprintf(fullabel[,nlist]);

107

where

a(d) array declarator
c constant
clist list of constants separated by commas
cb common block name
default system dependent file name
disp integer or character constant
e logical expression
el,e2,e3 numeric expressions
f subprogram name
fspec format specifier
Cfspec equivalent C format specifier

single letter, or range of letters (I-I)
n symbolic name
nlist list of variable names separated by commas
S statement label
St statement
Cst equivalent C statement
typ type specifier
Ctyp equivalent C type specifier
u logical unit specifier
v integer variable name

and

indicates that the preceding item(s) can be
repeated one or more times

[1 	 implies optionality

I 	 denotes or

[II 	 means first thing if present, second otherwise

5.2.1. Control statements

First, 0010 is translated very easily into goto in C; CONTINUE is the null

statement ";" and a label like "123" becomes "1123" (since labels, like other

symbolic names in C, must begin with a letter). IF, THEN, ELSE, ELSEIF and ENDIF

obviously present no difficulties and DO can be translated into for. For example

DO 10 I = 1,100
IF (MOD(I,2) EQ. 0) THEN

ELSE
GOTO 10

ENDIF
10 CONTINUE

static int i;
for (i = 1; I <= 100; i += 1)

if (((i) % (2)) == 0)

C

}
else

C
goto 10;

}

110:

}

Note that we have not dealt with computed GOTO and arithmetic IF, as they are

essentially redundant in FORTRAN 77 (and will be "deprecated" in FORTRAN 8X).

STOP can also be translated easily - into exit. However, PAUSE can not be

translated as there is simply no analogous statement in C.

5.2.2. I/O statements

We have already discussed how FORMAT specification statements are

translated into #define statements in Sec. 1.6. Here we describe how READ and

WRITE are converted into fscanf and fprintf. In FORTRAN, READ and WRITE input

from and output to logical units which are connected to files in the outside

world. In C, file pointers perform essentially the same function - they are

declared using the special type FILE. Most logical units are assigned using the

OPEN statement, however, 5 and 6 are pre-defined as the default READ and

WRITE I/O units respectively. Similarly, most file pointers are set up by the

function fopen, however, stdin and stdout are automatically initialised. This

explains the following example translation:

WRITE(6,1) R1,R2,R3 	 #define Ii "%6.2f%6.2f%6.2f\n"
1 	FORMAT(3F6.2) 	 static FILE *f 5 = stdout;

fprintf(f_6, Ii, ri, r2, r3);

The logical unit can be given as ', in which case the translator will choose

the correct default (5 or 6). However, the FORMAT specifier may not be * because

the translator cannot cope with list-directed formats. Similarly, it cannot cope

with PRINT, or READ without brackets. (It would be trivial to modify the translator

so that these cases could be handled - one simply checks the types of the

variables in the READ, WRITE or PRINT and sets up the appropriate C format

specifier.) It will cope with an END transfer-of-control specifier in READ

statements.

The file manipulation statements OPEN, CLOSE, BACKSPACE and REWIND can

be translated into the functions fopen, fclose and fseek as shown in Table 5.3.

109

However, ENDFILE and INQUIRE have no analogy in C and so cannot be

translated.

5.2.3. Routines

Routines (FUNCTIONs and SUBROUTINEs) are on the whole easy to deal with,

but there are some complications. SUBROUTINE calls are preceded by the

reserved word CALL, this is simply dropped in C. FUNCTIONs return their result in

a variable of the same name so this is also done in the C. However, in FORTRAN,

one can also have a so-called "alternate return" from a routine which causes a

transfer-of-control in the calling program - this most certainly does not exist in

C. Similarly absent is the concept of an ENTRY statement which allows one to

jump into the middle of a routine in FORTRAN. The main complication stems

from the fact that routine arguments in FORTRAN are call-by-address but C's

function arguments are call-by-value. This means that if a variable X which has

value 1.0 is passed into a function F which sets its argument to 2.0, then in C X

will still be 1.0 after the function has returned but in FORTRAN it will be 2.0.

Fortunately we can coerce C into using call-by-address by means of pointers; in

fact, we use call-by-value but with the addresses of the values. Then, of course,

the arguments passed to a function are addresses so inside the function we

must precede references to them with * (or append (01). This is all well and

good for variables and arrays whose addresses can be taken but not for

constants and expressions - we cannot write &1 or &(x+0.5) to obtain their

addresses. To cope with this, we must assign arguments which are constants or

expressions to temporary variables and pass the addresses of those into the

function. Note, however, that this is not necessary for intrinsic function

arguments. For example

SUBROUTINE FRED(A,B,C)
A= B+ C
RETURN
END

CALL FRED(X,1.0,COS(0.0))
END

fred(a,b,c)
float *a;
float *b;
float *C;

{
(*a) = (*b) + (*C);

return;

}

main 0
{

float tvl, tv2;

110

static float x;
tvl = 1.0;
t v 2 	cos(0.0);
fred(&x, &tvl, &t-v-2);

}

This is done by the recursive expression parser which is described in the next

section.

5.2.4. Expressions

We shall firstly discuss the translation of FORTRAN expressions and then say

something about translation specific to DAP FORTRAN expressions. The

FORTRAN infix operators // (string concatenation) and '' (exponentiation)

correspond to the C functions concat and power which are effectively prefix.

Thus we must know and be able to change the structure of expressions - this is

done by a recursive expression parser which builds each expression into a tree

and generates C, in the correct order, from it. (Since all the types of the symbolic

names are known we can tell if have parallel expressions, that is, ones of mode

matrix or vector in DAP FORTRAN, and deal with them appropriately as well.) The

parser also takes care of the temporary variables required to ensure that routine

arguments remain call-by-address rather than become call-by-value, as

described in the previous section. However, the parser takes no account of the

differences in precedence and associativity of operators between FORTRAN and

C. As there are so few differences, it was felt not to be worthwhile introducing

operator-precedence parsing (Sec. 5.3 of Aho and Ullman, 1977).

The regular expression grammar which the recursive expression parser

follows is

expr 	 opand binop expr

opand 	 : (expr
unop opand
DIGIT
STRING
variable
parameter
routine
routine passed as parameter
intrinsic function

binop 	 : , = ~ - * / ** // SPECIAL

UflOp 	 : + - LEX NOT

DIGIT 	 : integer constant
real or double precision constant
logical constant (FALSE. TRUE.)

STRING 	 : character string constant
SPECIAL 	 : .GT. IT. GE. .LE. .AND. OR. EQ. NE.

.EQV. .NEQV. .XOR. NAND. NOR. .LEQ. .LNEQ.
LEX NOT 	 : NOT.

Note that '(' has been made a unary operator and ',' has been made a binary

operator for convenience.

We shall outline how the recursive expression parser actually works,

describing the data structure used in building the parse tree. In what follows,

"parameter" refers to the dummy arguments which are used inside a routine,

whereas "argument" refers to the actual arguments of a routine call which occur

outside the routine.

An expression consists of nodes which come in seven 'utypes' - UCONST,

UOP, UVAR, UPAR, UVFN, UPFN and UINTR - with a 'uvat' and a 'type' • (plus

'chsize' if the type is CHARACTER). UCONST means that the node is a DIGIT or

a STRING; UOP means that it is a binary or unary operator; UVAR is a variable;

UPAR is a parameter; UVFN is a routine; UPFN is a routine which is passed as a

parameter; and UINTR is an intrinsic function. The reason for the distinction

between a routine (UVFN) and a routine which is passed as a parameter (UPFN) is

that they are declared differently in C: the former would be, say, "mt ifnQ;",

whereas the latter would be "mt (*ifn)Q;". If the node is a unary operator then it

has a pointer to its operand, if it is a binary operator then it has pointers to its

'left' and 'right' operands. If it is a (variable or parameter) array then it has a

pointer to its dimensions; if it is a routine or a routine which is passed as a

parameter then this pointer (called 'args') points to its arguments. If it is a

character substring then it has pointers to its 'Isubstring' and 'rsubstring' indices.

If it is part of a list of array dimensions or routine arguments then it has a

pointer to the 'next' node on this list (null if it is the last one). If we denote

these pointers as indicated in Fig. 5.6a then the node data structure can be

represented as in Fig. 5.6b.

112

Fig. 5.6 Data structure node used by the recursive expression parser:

diagramatic representation of the pointers;

"left" and "right" operands: 	-1 	1—
V 	V

array dimensions: 	[I
V

routine arguments: 	El
V

"lsubstring" and "rsubstring" indices: 	 I'

	

V 	V

"next': 	-->

diagramatic representation of the whole thing.

I 	utype 	I 	uval 	type (chsize) 	-->

- 	[I or (I 	"I 	I"
V 	V 	V 	V 	V 	V

Then the parse tree for the expression

B(I) = F(SIN(A) 	I, A

where B is a REAL array, F is a REAL function, A is a REAL variable and I is an

INTEGER variable, can be drawn (dropping the pointers which are not being used)

as Fig. 5.7.

113

Fig. 5.7 Diagramatic representation of the parse tree for
B(I) = F(SIN(A) ** I, A).

tJOP I = I float

V

I UVAR I b I float 	 I tJVFN I f I float
-------------------- 	 --------------------

UVAR I i I mt I
	

I tJOP I ** I double I --> I UVAR I a I float

V
	

V

UINTP. I sin I double I
	

I UVAR I i I mt I

	

------------------------ 	------------------

I UVAR I a I float

The expression translates into

tv1 .d = power(sin(a), i); b[i-1] = f(&tvl .d, &a);

We notice that the infix operator '' has indeed, been translated into the prefix C

function power. Moreover, a temporary variable "tvl.d" has been declared so

that the address of the result from power can be passed into the function f, as is

done in FORTRAN.

This creation of temporary variables is by no means trivial and warrants an

explanation. To recap, arguments which are constants or expressions, that is,

arguments with 'utypes' UCONST, UOP, UVFN, UPFN or UINTR, are assigned to

temporary variables and arguments with 'utypes' UVAR or UPAR are preceded by

the & operator. Note that addresses of arguments to intrinsic functions must not

be taken; similarly addresses of arguments which are intrinsic functions (specified

by INTRINSIC) or EXTERNAL routines must not be taken (with the proviso that

these arguments do not themselves have arguments - for then they are being

called). In the translation pass there is a function 'get expr' which parses the

114

"expr" part of the grammar recursively. When it comes across a routine, routine

passed as a parameter or an intrinsic function, it calls 'get args' to parse the

arguments. It is 'get args' which outputs the temporary variables; it works as

follows. To get each argument, 'get _args' calls 'get expr' which will in turn call

'get args' again if the argument involves another routine, routine passed as a

parameter or intrinsic function. This mutual recursion continues until the

innermost argument (which must then be a constant, operator, variable or

parameter) is reached. It is on the way back up from this recursion that 'get_args'

outputs the appropriate temporary variables (and what they equal, by calling

'put_expr' - see below). The temporary variables are declared as follows:

typedef union C mt i; float f; double d; char *c; } tvdecl;
t v decl t v 1, t v 2.....

and so can hold any type. Hence they can be used sequentially - "tvl" can be

an INTEGER in one statement (referred to as "tvl.i") then a CHARACTER in the

next ("tvl.c"), for example. 'get args' keeps two counts of these temporary

variables: one for when they first appear on the left-hand side of the expressions

generated ('part v count') and one for their subsequent appearance on the

right-hand side of a later expression ('tvcount') - note that the latter only

happens once. 'party count' starts at 1 and is incremented after 'get_args' has

output a temporary variable; 'tvcount' starts at 0 and is incremented after the

argument that the temporary variable is set equal to is output (the first such will

always be something which involves no further arguments and so will not require

the non-existent zeroth temporary variable). The example translation of the

expression

K = l(J(1), 2

will perhaps make this clearer:

tvl.i = 1; 	 /* par _t_v_count 	1 for lhs /
/* tvcount = 0 for rhs */

tv2.i = j(&tvl.i); 	 1* party count = 2 for lhs /
/* tvcount = 1 for rhs */

tv3.i = 2; 	 /* party count = 3 for lhs 'V
/ tvcount = 2 for rhs */

115

Of course the "top-level" expression has still to be output but 'get args' cannot

do this because it began analysing the arguments to this expression not the

expression itself. In fact the "top-level" expression is output by a call of 'put expr'

immediately after 'get_expr' returns ('get expr' returns the pointer to the top, or

root, of the expression tree and 'put expr' picks this up). For the above example,

this results in

k = i(&tv2.i, &t_v_3.i);

and is done in the following way. 'put expr' recursively goes through the parse

tree of the expression outputting the translated version. When it comes to a

routine or a routine passed as a parameter (intrinsic functions and their

arguments are output by 'put_intr' - see Sec. 2.5), 'put expr' calls 'put args' which

outputs the arguments preceded by & or the appropriate temporary variables in

their place, depending on the 'utypes'. 'put_args' is called from two different

regimes: the first is from 'get args' when 'get expr' is parsing the expression and

the second is from 'put expr' when the "top-level" expression is being output. In

the first regime, 'put args' knows which temporary variable to use in an argument

replacement from the count 'tvcount'. In the second regime, on the other hand,

it must work this out for itself. This is a little tricky and must be done

recursively because as well as counting the "top-level" arguments which require

temporary variables, the arguments within these arguments requiring temporary

variables must also be counted.

We have mentioned the conversion of /1 and ** into prefix operators, that is,

C function calls - this is done by 'put_expr'. It also makes character string

assignments, the EQ. operator used with character strings and character

substrings into prefix C function calls:

SIR = 'Fred' 	 strass(str, "Fred", <length of str>

STR1 .EQ. STR2 	 !strcmp(stri, str2

STR(l:J) 	 strbit(str, i, j

(The functions strass and strbit are output by the translator when the flag "-c" is

specified; strcmp is an intrinsic function in C.)

The other difficult job 'put expr' (actually 'put-array-dimensions' which is

called by 'put expr') must do is the translation of array dimensions. In FORTRAN

116

77, array dimensions can begin from any integer, start, and go up to any (larger)

integer, finish, (though normally start is 1 so finish is equal to the dimension of

the array) whereas in C array dimensions range from zero to the dimension of

the array minus one, that is, from 0 to finish-start. This means that start must be

subtracted from array subscripts in the translation (as is done for b in the above

example parse tree, assuming that start is 1). The other alternative, for start = 1,

is to declare all arrays to be 1 bigger (in each dimension) then ignore the zeroth

element(s) so that 1 need not be subtracted from every array subscript - this is

done by the translator when run with the flag "-i". Furthermore, FORTRAN stores

its arrays in column-order, that is, the left-most subscript varies fastest, whereas

C (like everybody else) stores arrays in row-order, that is, the right-most

subscript varies fastest. This makes a difference (to the number of page faults

and hence program run time) when stepping sequentially through a large array so

the translator reverses the array dimensions thus rendering the storage patterns

identical. This is also essential for EQUIVALENCE statements to equivalence

properly. However, this reversing of array dimensions can be overridden by

specifying the flag "-r". There is also a difference in the way character strings

are stored: FORTRAN has strings ranging from 1 to the length, whereas C has

them ranging from 0 to the length with the last position containing an end of

string (EOS) character. Therefore, again, 1 must be subtracted from all substring

indices. (Note that the flag "-i" does not stop this happening.) Unfortunately, this

EOS character at the end means that character strings will not line up properly in

all translated EQUIVALENCE statements; and that special routines must be written

to handle strings in general - these are included in the translation by specifying

the flag '-c".

We now come to the translation specific to DAP FORTRAN expressions.

Following the above, we discuss array dimensions first. In DAP FORTRAN the

constrained dimensions of matrices and vectors come first, whereas in GRID

extended C (GEC) they come last. Therefore the translator moves them (even if

the flag "-r" has been specified; and, of course, the flag "-i" has no effect). In

declarations, it replaces the null dimensions with the size of the DAP for GEC.

Hence Appendix I (1.1) and (1.2) become Appendix II (11.2) and (11.1) respectively.

DAP FORTRAN matrices and vectors may also be indexed when they appear on

the right-hand side (Appendix 1.11.11) or left-hand side (Appendix 1.11.111) of

expressions. The former case is used for two purposes. Firstly, to select an

element from a matrix or vector (I.3a) - this is translated into the GEC intrinsic

117

function element (11.9) - or to select a row or column from a matrix (1.3b) - this is

translated into the functions row or cal (11.6). Secondly, to route or shift matrices

or vectors by one place only (1.4) - this is translated, like shifts of more than one

place, into the appropriate GEC shift functions (11.5). The latter case is used for

conditional execution (Appendix 1.11.111) which is done by the where construct in C

(Appendix 11.11.111), so that (1.5) becomes an instance of (11.3), namely,

where (L)
A = 0.0;

Finally there are four extra operators in DAP FORTRAN: NOR., .NAND., .LEQ. and

LNEQ. (Appendix 1.11.11). The latter two present no difficulty; the former two must

be translated as follows:

A ,NOR. B 	 !(a 11 b)
A. NAND. B 	 (a && b)

5.2.5. Intrinsic functions

C and GRID extended C have almost identical intrinsic functions as FORTRAN

and DAP FORTRAN, so the translation is mostly straightforward. We begin with

the FORTRAN to C intrinsic function translation, which is summarised in Table 5.4.

118

Table 5.4

FORTRAN intrinsic functions with corresponding C translations.

FORTRAN
	

C

SQRT, DSQRT sqrt
EXP, DEXP exp
LOG, DLOG, ALOG log
LOG10, DLOG1O, ALOG1O loglO
SIN, DSIN sin
COS, DCOS cos
TAN, DTAN tan
ASIN, DASIN asin
ACOS, DACOS acos
AlAN, DATAN atan
ATAN2, DATAN2 atan2
SINH, DSINH sinh
COSH, DCOSH cosh
TANH, DTANH tanh
AMOD, DM00 fmod
AINT, DINT fint
NINT, JNINT, IDNINT, ANINT, DNINT fnint
DBLE, DFLOAT (double)
DPROD (double)
REAL, SNGL, FLOAT (float)
ABS, lABS, DABS abs
MOD % 	+
ICHAR ichar
MIN, MINO, MINi, AMINO, AMIN1, DMIN1 minf
MAX, MAXO, MAX1, AMAXO, AMAX1, DMAX1 maxf
DIM, IDIM, DOIM dim
SIGN, ISIGN, DSIGN sign
INT, IFIX, IDINT (int)
LLT LLE LOT LGE strcmp
LEN strien
INDEX index
CHAR itoa

* i.e. 	 dprod(x,y) 	-> 	((double)(x*y))

+ i.e. 	 mod(i,j) 	- > 	((I) % (j))
# e.g. 	llt(a,b) 	-> 	(strcmp(a,b) < 0)

All the C functions listed there are intrinsic except for "fint", "fnint", "abs", "minf",

"maxf", "dim" and "sign" (these are defined as the following macros in C:

119

#define fint(A)
#define fnint(A)
#define abs(A)
#define minf(A,B)
#define maxf(A,B)
#define dim(A,B)
#define sign(A,B)

((A) < 0 ? ceil(A) : floor(A))
(fint(A + 	5 * sign(A)))
((A) < 0 ? -(A) 	A)
((A) < (B) ? (A) 	(B))
((A) > (B) ? 	(A) 	: 	(B))

 > (B) ? ((A)-(B)) 	0)
 < 0 ? ((A) < 0 ? A : -(A))

((A) < 0 ? -(A) 	A))

and output by the translator when the flag "-rn" is specified) and also "ichar",

"itoa" and "index" (which are functions to convert a character to an integer,

convert an integer to a character, and return the index of one string in another,

respectively; they are output by the translator with "-c"). There are three special

cases (indicated in Table 5.4):

FORTRAN type conversion intrinsic functions (DBLE ..., REAL ..., NT ... and

OPROD) translate into unary type casts in C ((double), (float), (int) and (double));

the prefix intrinsic function MOD translates into the infix operator %;

character string intrinsic functions (LLT, LLE, LGT and LGE) translate into C

intrinsic function calls to strcrnp.

Turning to the DAP FORTRAN to GRID extended C translation, we summarise

this in Table 5.5.

120

Table 5.5

DAP FORTRAN intrinsic functions with corresponding GRID extended C translations.

DAP FORTRAN
	

GEC

MERGE(M,-M,L) mergei(m, -m, I)

SHLC(V) vshftc(v, -1);
SHRP(V,33) vshftp(v, 33);
SHLC(M) m; ERROR:. shic 	cannot cope with longvectors

- shift ignored
SHRP(M,55) m; ERROR: shrp 	cannot cope with Iongvectors

- shift ignored
SHNC(M) shnc(m, 	1);
SHWP(M,55) shwp(m, 55);

SUMR(M) sumri(m);
SUMC(M) sumci(m);
ANDROWS(M) aIIr(m);
ANDCOLS(M) aIIc(m);
ORROWS(M) anyr(m);
ORCOLS(M) anyc(m);
MATR(V) matr(v);
MATC(V) matc(v);
SUM(M) sum(m);
MAXV(M) max(m);
MINV(M) min(m);
ALL(M) alI(m);
ANY(M) any(m);

MAT(31) WARNING: mat ignored - conversion automatic
VEC(32) WARNING: vec ignored - conversion automatic
CALL CONVFMt(F) stop(f);
CALL CONVMFt(M) ptos(m);
CALL CONVFVt(F) stop(f); WARNING: 2nd & 3rd arguments ignored in

vector mode conversion - only 1
vector with 64 cmpts converted

CALL CONVVFt(V) ptos(v); WARNING: 2nd & 3rd arguments ignored in
vector mode conversion 	only 1
vector with 64 cmpts converted

CALL CONVFSt(F) WARNING: scalar mode conversion redundant
CALL CONVSFt(F) WARNING: scalar mode conversion redundant
CALL CONVVMt(V) convvml(v);
CALL CONVMVt(M) . 	convmvl(m);

ALTR(12) rowset(64, 64, 12-1, 12, 	12);
ALTC(1 1) colset(64, 	64, 	11-1, 	11, 	11);
ALT(1O) vecset(64, 10-1, 10, 	10);
ROW(14) rowset(64, 64, 14-1, 1, 64);
COL(13) colset(64, 64, 	13-1, 	1, 64);
ROWS(22,6) rowset(64, 64, 22-1, 6-(22)+1, 64);
COLS(21,5) colset(64, 64, 21-1, 	5-(21)+1, 64);

121

Firstly, the intrinsic function MERGE, which is used for conditional execution, is

translated simply into a GEC version with the correct type (which is output by

the translator when the flag "-p" is specified). For example, to deal with (1.6) we

use

double array merged(a, b, I)[64,64] /* for double, float */
double-array a[64,64], b[64,64]; bool array l[64,641;

C
double array resE64,641;
where (I) res = a; else res = b;
return(res);

}

We will now go through the rest of the intrinsic functions in the order they are

dealt with in Appendices l.11.IV and ll.11.lV.

Routing

As the architectures of the DAP and GRID are basically the same, these

intrinsic functions are trivial to translate: (1.7) is changed directly into (11.4) and

(1.8) into a subset of (11.5), with the appropriate signs of count. However, there are

no longvectors on the GRID so (1.7) with these will fail to translate.

Matrix to vector

In the first implementation of GEC, there are not any intrinsic functions

analogous to those in (1.9) so they must be coded by hand. This is relatively easy:

for example, the intrinsic function SUMR with an argument of type INTEGER

becomes

mt array sumri(a)[64] 	 /* for int, short, long /
nt array a[64,64];

C
mt array res[64];
mt i;
res = 0;
for 0=0; <64; i++)

res += row(a, i);
return(res);

}

and the intrinsic function ANDCOLS becomes

122

booIarry allc(l)[64]
bool array [64,64];

{
bool array res[64];
mt i;
res = 0;
for (i0; <64; ++)

res = res && col(l, i);
return(res);

}

Vector to matrix

The intrinsic functions in (1.10) translate trivially into those in (11.7).

4) Array to scalar

The intrinsic functions in (1.11) translate directly into those in (11.8). Again,

there are no analogous functions in GEC to those in (1.12) but they can be easily

coded by hand; for example, ALL becomes

mt all(l)
bool array 1[64,64];

C
bool array intres[64];
mt res, I;
mt res = 0; res = 0;
for 0=0; i<64; i++)

int res = mt res && row(I, i);
for (1=0; i<64; i++)

res = res && element(int res, i);
return(res);

)

Conversion

The FORTRAN array to/from DAP FORTRAN matrix conversions (I.13a) translate

to (11.10); as do the FORTRAN array to/from DAP FORTRAN vector conversions

(I.13b) provided that e = 64 and V = 1. The FORTRAN scalar to/from DAP

FORTRAN scalar conversions (1.13c) become redundant in GEC; and the vector

to/from matrix conversions (1.13d) are not (yet) defined on the GRID.

6) Masking

123

The intrinsic functions in (1.14), (1.15) and (1.16) can all be done using those in

(11.11) as shown'in Table 5.5.

5.3. Concluding remarks

The translator software described above is all written in C. There are four

main sections of code: the lexical analyser, the prepass, the translation pass, and

the recursive expression parser. Altogether there is approximately 9800 lines, or

232Kbytes of code (including comments and white space). Both the prepass and

the translation pass deal with 40 lines of (serial or parallel) FORTRAN per second,

thus the over&ll translation speed is 20 lines/sec.

The translator has been used in practice to convert a 400 line FORTRAN

(molecular dynamics) program into C, in order to run it on a new parallel

computer, developed by Bolt, Beranek and Newman (BBN), called the Butterfly

Parallel Processor. Numerous DAP FORTRAN programs have also been converted

into GRID extended C as a check on the translator. Unfortunately, neither the

GRID nor a software simulator of it was completed in time to verify the correct

functionality of the translated GEC.

124

Appendix I
The DAP

The International Computers Limited (ICL) Distributed Array Processor (DAP)

was begun in 1972. By 1976 a pilot DAP (Reddaway, 1973; Flanders, Hunt,

Reddaway and Parkinson, 1977) with a 32x32 array of processing elements (PEs),

each with lKbit of memory, was completed. The first production model

(Reddaway, 1979; Parkinson, 1983) was installed at Queen Mary College London in

1980. It consists of a 64x64 array of PEs, each having 4Kbits of memory giving a

total of 2Mbytes, and is implemented in SSI on 256 PCBs (each containing 16

processors and associated memory) with a clock cycle of 200ns. It is intimately

connected to a host ICL 2900 series mainframe computer. A second generation

DAP, produced in 1986 and called the Mil-DAP, is a 32x32 PE array in LSI on 16

PCBs, with a clock cycle of 155ns and 2Mbytes of memory. In addition it has two

inbuilt fast I/O buffers each with a capacity of 16Kx32bits which can be

configured for both data input and output; maximum data transfer rate is

40Mbytes per second. Mil-DAP attaches to the ICL PERQ2 workstation. The third

generation DAP, to appear in 1987, will come in a range of PE array sizes from

8x8 (with 1Mbyte memory) to 64x64 (with 64Mbytes memory) and will be VLSI

(like the GRID - Appendix II). In this appendix we shall describe the hardware

and software of the first generation DAP.

1.1. Hardware

The DAP is a Single Instruction stream, Multiple Data stream (SIMD) computer

(Hockney and Jesshope, 1981) comprising a 64x64 square array of bit-serial

processing elements (PEs), each with 4Kbits of local memory and connections to

the four nearest neighbours. All 4096 PEs execute identical instructions, which

are broadcast by the master control unit (MCU), simultaneously, on their own

independent data. When it is not functioning autonomously under the control of

its MCU, the DAP can act as a (2Mbyte) memory module of the host ICL 2900

series mainframe computer.

1.1.1. Host lCL 2900

A typical ICL 2900 series system, illustrated in Fig. L1, consists of an order

code processor (OCP) and a store access controller (SAC) both cross-connected

to a number of memory modules.

Fig. 1.1 	Schematic diagram of an ICL 2900 series system containing a DAP
(SMAC, store multiple access controller; DAC, DAP access controller;
MCU, master control unit).

conventional
store

I SMAC 	I

conventional
store

ISMAC 	 I

-I

MCU

PE array
I store

DAC

DAP

SAC

One or more of these memory modules may be a DAP, which provides memory

in the conventional way and may also be instructed by the OCP to execute its

own DAP code. If the CAP is considered as the main processor in the system

then the other conventional stores can be considered as fast backing store to the

DAP and the OCP as a pre- and post-processor.

11.11. DAP unit

The major components and data highways of the DAP unit are shown in Fig.

.2.

12

Fig. 1.2
	

The major components and data highways of the DAP unit.

row 	
MCU highway
regist ers

DAC

highway

pits
column

to/ from

2900
I Instruction I

N
lnstrucfj on

W PE 	E 	 buffer
array H 	60x32bits

S

The DAP access controller (DAC) along with the 64bit-wide column highway

provide the interface to the rest of the 2900 system. One 2900 mainframe 64bit

word corresponds to a row across the DAP memory. The column highway also

provides a path between rows of the DAP PE array and registers in the MCU,

which can be used for data and/or instruction modification. Finally, the column

highway provides the path for the MCU to fetch DAP instructions from the DAP

store. DAP instructions are stored two per row and one row is fetched from

memory in one clock cycle. Instructions within a special hardware DO-loop

instruction are stored in the instruction buffer for repeated execution. There is

also a row highway which is used exclusively for transmitting data to and from

the MCU registers.

LI.HL PE array

The various components and data paths which comprise a processing

element are shown schematically in Fig. 1.3.

13

Fig. 1.3 	The main components and data paths of the DAP PE.

N E S W
row

highway

I input multiplexer I

A L U

ibit adder

Q 	C
column

	

output multiplexer 	
highway

MCU

store
	

I
	

neignoou rs

4Kxlbit 	 A

The PE array is connected two-dimensionally, each PE being connected to four

neighbours which may be defined by the points of the compass: N, S. E and

W. The connections at the edge of the array are defined by the geometry of the

instruction being executed. This may be planar, defining a zero input at the

edges, or cyclic, giving periodic connections, independently in the rows or

columns of the array. Within the processor, a 1 bit full adder along with the

accumulator (Q) and carry (C) registers make up the arithmetic and logic unit

(ALU). The adder adds Q, C and the input to the PE, giving the sum and the carry

outputs in the Q and C registers respectively, unless an "add to store" instruction

is being executed in which case the sum is written back to the location that the

operand came from - this saves half a clock cycle over an "accumulator add"

followed by an "accumulator store" and is used to speed up multi-bit arithmetic.

There is also an activity register (A) which provides programmable control over

14

the action of the PE since certain store instructions are enabled only if it is set.

1.11. Software

Programs for the DAP (and the rest of the 2900 system) consist of two parts:

a serial part (written in standard FORTRAN (77)) which executes on the host 2900

and a parallel part (written in a parallel extension of FORTRAN IV called DAP

FORTRAN) for the DAP. Communication between DAP FORTRAN and FORTRAN

routines is accomplished through the use of shared COMMON blocks, which are

held in the DAP store. (An array processor assembly language (APAL) is also

provided for the DAP with interfaces to both FORTRAN and DAP FORTRAN, but

when using the highly optimised floating-point arithmetic and system routines

there is little benefit to be gained from using APAL. It only comes into its own

for algorithms which exploit the bit-serial nature of the PEs when orders of

magnitude performance improvements may be achieved by coding at the

assembler level.) The parallel extensions found in DAP FORTRAN can be discussed

under four headings: declarations, expressions, conditional execution and intrinsic

functions.

LILI. Declarations

In DAP FORTRAN there are three kinds, or modes, of data item: scalar, vector

and matrix, which may be of any FORTRAN type (INTEGER, REAL, DOUBLE

PRECISION, LOGICAL or CHARACTER). Scalar variables and arrays correspond to

FORTRAN variables and arrays and are processed serially; vectors and matrices

consist of a number of component values, or elements, and are processed in

parallel. A vector is a one-dimensional set of 64 elements and a matrix is a

two-dimensional set of 64x64 elements. A vector is stored (right-justified)

horizontally along the rows of a single DAP store plane and a matrix is stored

vertically under the PEs as a contiguous set of n DAP planes, where n is the

number of bits in the internal representation of each matrix element. This is

illustrated in Fig. 1.4.

15

I

4 K bits
32 bits

mfl,fl 	N 	m('I,64)

,o4)

S
matrix m(,)

.-64 bits

vector v()

Fig. 1.4 	How vectors and matrices are stored in the DAP.

Vectors are declared with their first dimension null and matrices are declared

with their first two dimensions null, for example,

REAL*8 V() 	 (1.1)

INTEGER M(,) 	 (1.2)

These are the constrained dimensions which take on the DAP size of 64. A

matrix may also be regarded as a one—dimensional set of 4096 component

values, obtained by placing successive columns of the matrix end to end, called a

Iongvector (this feature is not present in the GRID - Appendix II).

1.11.11. Expressions

Simple assignment and expression evaluation in DAP FORTRAN are basically

the same as for FORTRAN, the only difference being that they may be vector or

rhatrix mode as well as scalar mode. Hence a vector (or matrix) may be assigned

U

to another vector (or matrix) in a single assignment. Operators act on entire

vectors (or matrices) combining corresponding elements. Four extra logical

operators are provided in DAP FORTRAN: NOR. and .NAND. (the logical converse

of OR. and AND.) and .LEQ. and .LNEQ. (logical equivalence and

non-equivalence). Scalars are automatically converted to the appropriate mode in

vector and matrix mode expressions; however vectors are not expanded to

matrices automatically since such an expansion can be made in two ways

(intrinsic functions are provided for this - Sec. liv),

Vectors and matrices may be indexed in expressions. If the vector or matrix

is on the right hand side of the expression then indexing selects a value; if on

the left hand side then indexing identifies one or more vector or matrix elements

to which the value of the right hand side is assigned. The latter case is a form of

conditional execution and will be discussed in the next section. In the former

case, selection is from constrained dimensions and is rank-reducing: selection

from a matrix yields either a vector or a scalar and selection from a vector

always gives a scalar. Examples are

V(l) 	 element I of vector V
M(l,J) 	 element l,J of matrix M 	 (I.3a)
M(l,) 	 row I of matrix M
M(,J) 	 column J of matrix M 	 (1.3b)

In addition, routing or shifts, by one place only, can also be applied as an

indexing operation, using '+' or '-' in either of the constrained dimensions. (What

happens at the edges depends on the geometry - planar or cyclic - set up by

the GEOMETRY statement.) Some examples for cyclic geometry, along with the

equivalent intrinsic function calls, are

V(+) 	SHLC(V) 	 shift vector left
M(+,) 	SHNC(M) 	shift matrix north
M(,-) 	SHEC(M) 	shift matrix east
M(-) 	SHRC(M) 	shift matrix, treated as longvector, right (1.4)

Shifts of greater than one place are performed by the intrinsic functions only, see

Sec. ll.lV. Note that null indices, like no indices, select the whole vector or

matrix.

17

1.11111. Conditional execution

Selection of which component values of a vector or matrix are affected by an

operation is achieved through the use of left hand side indexing or the intrinsic

function MERGE (the latter alternative is discussed in the next section). In left

hand side indexing, a logical vector (or matrix) L is used as the index for another

vector (or matrix) A so that wherever L is true the corresponding element of A is

assigned the value of the right hand side of the expression and wherever L is

false the element of A retains its original value. For example

A(L) = 0.0
	

(1.5)

liLly. Intrinsic functions

Firstly, we have the intrinsic function MERGE which is used for conditional

execution. MERGE returns a vector (or matrix) whose elements are selected from

elements of the first and second arguments depending on whether the

corresponding element of the third argument is true or false respectively. For

example

L = A .GT. 0.0
B = SQRT(MERGE(A, 0.0, L)) 	 (1.6)

will set B equal to the square root of A wherever A is greater than 0.0 and to 0.0

otherwise.

The other intrinsic functions include:

1) Routing

Shifts by one place only can be written as indexed expressions, as detailed in

Sec. 11.11, but more general shifts require the following intrinsic functions

SHLg(vector or matrix (Iongvector), count) 	shift left
SHRg(vector or matrix (longvector), count) shift right 	(1.7)

where g can be 'P' for planar edge connections or 'C' for cyclic edge connections.

The effect of SHLg is that element(i) := element(i + count) and the effect of SHRg

Im

is that element(i) := element(i - count).

SHNg(matrix, count) 	shift north
SHEg(matrix, count) 	shift east
SHSg(matrix, count) 	shift south
SHWg(matrix, count) 	shift west 	 (1.8)

Matrix to vector

SUMR(matrix) 	 sums rows of matrix into a vector
SUMC(matrix) 	 sums columns of matrix into a vector
ANDROWS(logical matrix) ANDs rows into a logical vector
ANDCOLS(logical matrix) ANDs columns into a logical vector
ORROWS(logical matrix) 	ORs rows into a logical vector
ORCOLS(logical matrix) 	ORs columns into a logical vector (1.9)

Vector to matrix

MATR(vector) 	 returns a matrix of identical rows
MATC(vector) 	 returns a matrix of identical columns (1.10)

Array to scalar

SUM(array) 	 returns sum of all elements
MAXV(array) 	 returns maximum element
MINV(array) 	 returns minimum element 	 (1.11)
ALL(logical array) 	 ANDs all the elements
ANY(logical array) 	ORs all the elements 	 (1.12)

Conversion

CONVFMt(matrix) FORTRAN array to DAP FORTRAN matrix
CONVMFt(matrix) DAP FORTRAN matrix to FORTRAN array (I. 13a)
CONVFVt(vector, e, v) FORTRAN array to DAP FORTRAN vector
CONVVFt(vector, e, v) DAP FORTRAN vector to FORTRAN array 	(1.13b)
CONVFSt(scalar, s) FORTRAN scalar to DAP FORTRAN scalar
CONVSFt(scalar, s) DAP FORTRAN scalar to FORTRAN scalar (1.13c)
CONVVMt(vector) vector to matrix
CONVMVt(matrix) matrix to vector (l.13d)

where t is the size of the element in bytes, e is the number of elements in each

vector to be converted, v is the number of vectors in the conversion and s is the

number of scalars in the conversion.

6) Masking

ALTR(I
ALTC(
ALT(i
	

(1.14)

ALTR (ALTC) returns a logical matrix which has its first i rows (columns) false, the

next i rows (columns) true and so on in alternation until all the elements of the

matrix have a value. (If i is zero then all the elements are false.) ALT does the

same for vectors.

ROW(i
COL(i
	

(1.15)

ROW (COL) returns a logical matrix with false values everywhere except for row

(column) i where they are true.

ROWS(i, j
COLS(I, j
	

(1.16)

ROWS (COLS) returns a logical matrix with elements in rows (columns) i to j

inclusive given the value true and all others set false.

Eno

Appendix II
The GRID

The General Electric Company (GEC) Rectangular Image and Data processor

(GRID) was begun in 1982. It is superficially like the DAP but differs both in

gross architecture (in particular, it does not form part of a host computer) and in

PE design and connectivity; moreover, it is implemented in very large scale

integration (VLSI) integrated circuit (chip) technology (Arvind, Robinson and

Parker, 1983; Pass, 1984). In this appendix we shall describe the hardware and

software of the GRID.

11.1. Hardware

The GEC Rectangular Image and Data processor (GRID) is a SIMD computer

with an architecture similar to that of the DAP - it contains a 64x64 square array

of bit-serial processing elements (PEs). Each PE has 81(bits of local memory and

connections to all eight neighbouring PEs. A central controller broadcasts a

sequence of instructions to the array so that each PE performs the same

operation simultaneously on its own local data. The instruction sequences are

supplied to the controller by a scalar processor via shared memory. On

completion of one sequence the controller interrupts the scalar processor to

request another. The scalar processor can also perform calculations while the

array is functioning. The scalar processor and controller are 16bit processors;

they, along with the PE array, form the GRID system which is hosted by a

multi-user, (niini-)computer. The general layout is shown in Fig. 11.1.

Fig. 11.1 	Schematic diagram of the GRID system.

source

b

destination

N

is

r e s s

11.1.1. PE array

The complete 64x64 array of PEs is composed of 128 VLSI GRID chips; each

GRID chip containing an 8x4 sub-array. The structure of the bit-serial PE is

shown schematically in Fig. 11.2.

Fig. 11.2 	The GRID PE.

It has a two-operand structure. The ALU can produce any of the sixteen possible

logical combinations L of its inputs A and B. It can also perform addition or

subtraction using the carry register (C): A, B and Ci are combined to yield the

sum or difference in S and the carry in CO, The multiply register (M) is gated

(ANDed) with whatever comes in on the source bus so that a multiply can be

performed by repeated addition, or a division by repeated subtraction. There is a

histogram register (H) which is used to form sums across the array, that is, count

the number of l's in a bit-plane. Each PE has 64bits of dual-ported (DP) on-chip

IMF

random access memory (RAM) which provides a cache for storing, for example,

partial results during multiplication and division. The 8Kbits of local memory is

off-chip and is accessed via the RAM register (R). The enable register (E) allows

the operation of the PE to be controlled independently (just like the activity

register does in the DAP - Appendix 1.1.111). E can be set either as the result of

some calculation or from the PE address bus - this gives a mechanism for

geometric control in which selected chips, rows, columns or single PEs can be

enabled. The PEs are interconnected (within and across GRID chips) by a nearest

neighbour switching network (NNS) which can connect a PE to any of the eight

PEs nearest to it. The orthogonal north, south, east and west connections are

made directly (forming the NN bus). Diagonal moves are achieved by routing

through the NNS of the intermediate orthogonal neighbour. For example, to

access data in the neighbouring PE to the north-east the NNS is set up to pass

local data south, to transfer input from the north to the west and to accept input

from the east as the neighbour's data. This compounded routing takes less time

than two orthogonal moves. The PEs are also connected by row (R) and column

(C) buses to form a square mesh. There is a single 64bit edge register which may

be connected to either of the buses and can be read and written by the

controller. This provides the means for the controller to broadcast data to, or

extract data from, the array.

11.1.11. Controller

The controller is a microprogrammed processor which provides the low-level

interface to the PE array. It reads GRID controller assembler (GCA) instructions

from the shared memory. These instructions may cause branching to occur, or

may perform scalar arithmetic, or may be broadcast in a decoded form to the PE

array. The latter possibility entails rather complex operations (given the bit-serial

nature of the array) such as arithmetic, comparison and routing. These are

implemented in microcode for maximum efficiency.

The controller also includes special hardware which supports the mapping of

larger data arrays onto a smaller PE array, using so-called pyramidal mapping

(see Pass, 1984 for a detailed description of this).

113

11.1.111. Scalar processor

The scalar processor is a standard MC68000 microprocessor. It executes the

high-level programming language for the GRID, called GRID extended C (GEC),

which is an extension of the language C to include parallel array operations in

addition to the usual serial operations (see Sec. II). Serial code executes on the

scalar processor whilst parallel sections of code run on the controller/PE array.

Instructions to the controller are placed in queues in the shared memory. When

the controller reaches the end of an instruction queue, it interrupts the scalar

processor to request another. This is a much better arrangement than that found

in the DAP where instructions are actually stored in the array memory, thus

wasting data space.

Il.I.IV. I/O buffer

Most real-time devices (for example, TV cameras and monitors) and

mass-storage units (for example, disks) handle data in bit-parallel, word-serial

form; whereas the PE array operates in a word-parallel, bit-serial fashion. The

transformation from one format to the other is effected by the "corner-turning"

I/O buffer which is capable of buffering lines of up to 512 iSbit words. The I/O

buffer works concurrently with the PE array - only interrupting it when a whole

line has been read in, or written out.

h.I.V. Host computer

The host computer provides a multi-user environment suitable for the

development and maintenance of programs for the GRID. It can be any

(mini-)computer running the Unix operating system, since it must only interface

to the scalar processor which is a standard microprocessor - not the specialized

controller.

IL

11.11. Software

As the GRID system contains three processors - PE array, controller and

scalar processor - it is programmed at three levels: microcode, assembler and

high-level language.

Instructions broadcast to the PE array by the controller are microcoded for

maximum efficiency. This is the very lowest software level and is in the realm of

the system implementer.

The controller is programmed in GRID controller assembler (GCA). Frequently

used functions for image, signal and numerical processing will be coded in GCA

to form part of the system software library. The specialist user will program at

this level when execution performance is critical.

The scalar processor is programmed in the high-level GRID extended C (GEC)

programming language which is essentially the language C with appropriate

parallel extensions. Serial code is compiled and executed on the scalar processor

as for Cl- parallel sections are complied into GCA and run on the controller/PE

array. The parallel extensions fall into four main categories, namely, declarations,

expressions, conditional execution and intrinsic functions.

11.11.1. Declarations

Type specifiers are provided in GEC for the declaration of parallel array types.

(This is simpler than in DAP FORTRAN where modes are introduced - Appendix

Most of these type specifiers are parallel extensions of the usual types

found in C, viz, char array, short array, mt array, long array, float-array and

double-array; but there is also a new ibit data type specified by bool array.

Two-dimensional parallel arrays, denoted by the term matrix, are declared as

follows

array-type-spec identifer [row-spec, col spec 1; 	 (11.1)

where row-spec and col spec are constant integer expressions defining

respectively the number of rows and columns in the matrix. These must be

115

power of two multiples of the corresponding GRID PE array dimensions.

One-dimensional parallel arrays, denoted by the term vector, are declared as

follows

array type spec identifer [dim-spec 1; 	 (11.2)

where dim-spec is the number of elements in the vector and a power of two

multiple of the GRID array row dimension. A vector can also be declared as

packed which advises the compiler to store the vector with several elements

packed into each GRID array row (rather than the default situation of only one

per row, as is done on the DAP - Appendix 1.11.1), saving on memory and

increasing performance through greater parallelism. For example, for

packed char-array x[1024];

on a 64x64 GRID it is possible to store eight elements of x in each row.

11.1111. Expressions

Parallel array expressions are written in a very similar manner to standard C

expressions. All of the binary operations (except the shift operators >>, <<,

>>=, <<= of course) can be used to combine either an array with an array, or

an array with a scalar. In the latter case the scalar is (conceptually) expanded into

an array of identical elements. Each operator is applied on a pointwise basis,

combining corresponding array elements. A parallel array expression may contain

mixed types but the arrays must have the same dimensionality. Arrays appear

without their dimension specifier(s) in expressions since all elements are dealt

with simultaneously. We note that there are no special indexing expressions like

those found in DAP FORTRAN - Appendix 1.11.11. Such operations are performed

solely by intrinsic functions in GEC, these are discussed in Sec. lIly.

11.11.111. Conditional execution

Control over the operations applied to the individual elements of a parallel

array is exercised with the where construct. Its format is as follows

where (parallel array expr
statement_i

else

	

	
(11.3)

statement 2

Statements 1 and 2 can be simple or compound and the else clause is optional,

as for standard C. The parallel array expression is evaluated to yield a true/false

parallel predicate (mask) which controls parallel operations within statements 1

and 2. Within statement-1, where the parallel array expression is true (that is,

non-zero) assignment to corresponding elements is enabled; within statement 2,

assignment is enabled where the mask is false.

ll.lI.IV. Intrinsic functions

A number of intrinsic functions are provided for manipulating parallel array

expressions (compare these with the intrinsic functions in DAP FORTRAN

Appendix l.lI.IV). They include:

1) Routing

vshftg(vector, count) 	vector shift 	 (11.4)

where g can be 'p' for planar edge connections or 'c' for cyclic edge connections.

The effect of this instruction is that element(i + count) := element(i).

shng(matrix, count) shift north
shneg(matrix, count) shift north-east
stieg(matrix, count) shift east
shseg(matrix, count) shift south-east
shsg(matrix, count) shift south
shswg(matrix, count) shift south-west
shwg(matrix, count) shift west
shnwg(matrix, count) shift north-west
shiftg(matrix, relrow, rel col) 	 (11.5)

where shiftg shifts the matrix by the relative row and column values, for example,

shnp(matrix, 2) 	shiftp(matrix, -2, 0
shsec(matrix, 1) 	shiftc(matrix, 1, 1

117

Matrix to vector 	 -

row(matrix, I) 	 returns row i of matrix as a vector
col(matrix, j) 	 returns column j of matrix as a vector (11.6)

Vector to matrix

matr(vector) 	 returns a matrix of identical rows
matc(vector) 	 returns a matrix of identical columns (11.7)

Array to scalar

sum(array) 	 returns sum of all elements
max(array) 	 returns maximum element
min(array) 	 returns minimum element 	 (11.8)
element(matrix, I, j) 	returns element at i,j
element(vector, i) 	returns element at i

Conversion

ptos(array, pointer) 	parallel array to scalar array
stop(pointer, array) 	scalar array to parallel array 	(11.10)

where pointer is assumed to be the address of a buffer in scalar processor

memory which is at least as large as the parallel array.

6) Masking

rowset(nrow, ncol, row, width, period
colset(nrow, ncol, col, width, period
vecset(ndim, dim, width, period

rowset returns a boot-array of nrow rows by ncol columns holding a pattern of

horizontal stripes (background has value zero; stripes have value one) starting at

row row (where the top of the array is row zero), being width elements wide and

repeated at intervals of period elements. colset operates similarly for columns,

creating vertical stripes. vecset does the same for vectors.

'U

7) Resampling

Since matrices can be any power of two multiple of the size of the GRID PE

array there is an intrinsic function

sample(matrix, i, j, ni, ni, Si, sj

which extracts a sub-array from the matrix and maps it across the PE array. (i,j)

specifies the top left hand corner of the sub-array, ni and ni specify the number

of rows and columns in the sub-array and si and sj specify the sample interval.

(This is not found in the DAP because matrices there are all the same size as the

PE array.)

8)1/0

Unlike the DAP, the GRID can communicate with its host via files using the

intrinsic functions

input(fd, word-length, array
output(fd, array
	

(11.13)

where fd is a file descriptor (returned by a call to open in C) and word-length is

the number of bits per element of the incoming data.

.w

References

Aho A. V. and Ullman J. D., 1977, Principles of Compiler Design (Addison-Wesley,

Massachusetts)

Arnison G. at at [UA1 collaboration], 1983a, Phys. Lett. 122B 103

Arnison G. at at [UA1 collaboration], 1983b, Phys. Lett. 126B 398

Arvind D. K., Robinson I. N. and Parker I. N., 1983, Int. Symp. on Circuits and

Systems (IEEE) 405

Bagnaia P. at at [UA2 collaboration], 1983, Phys. Lett. 129B 130

Baillie C. F., 1986a, Proc. 6th Summer School on Computing Techniques in Physics

(to appear in Comput. Phys. Commun.)

Baillie C. F., 1986b, (DAP) FORTRAN to (GRID extended) C translator: Users

Manual, Edinburgh Preprint 86/373

Baillie C. F., 1986c, (DAP) FORTRAN to (GRID extended) C translator: Maintainers

Manual, Edinburgh Preprint 86/374

Bander M., 1976, Phys. Rev. D13 1566

Banner M. eta! [UA2 collaboration], 1983, Phys. Lett. 122B 476

Barbour I. M., Behilil N.-E., Dagotto E., Karsch F., Moreo A., Stone M. and Wyld H. W.,

1986, Problems with Finite Density Simulations of Lattice QCD, Illinois Preprint

ILL-TH-86-23

Barbour I. M., Behilil N.-E., Gibbs P. E., Rafiq M., Moriarty K. J. M. and Schierholz G.,

1985a, Updating Fermions with the Lanczos Method, DESY Preprint 85-141

Barbour I. M., Behilil N.-E., Gibbs P. E., Schierholz G. and Teper M., 1985b,

in Lecture Notes in Physics, The Recursion Method and its Applications

(Springer-Verlag, Berlin, Heidelberg, New York, Tokyo)

Barbour I. M., Gibbs P., Bowler K. C. and Roweth D., 1985, Phys. Lett. 158B 61

Barbour I. M., Gibbs P., Gilchrist J. P., Schneider H., Schierholz G. and Teper M.,

1984, Phys. Lett. 1368 80

Barbour I. M., Gilchrist J. P., Schneider H., Schierholz G. and Teper M., 1983,

Phys. Lett. 127B 433

Batrouni G. G., Kutz G. R., Kronfeld A. S., Lepage G. P., Svetitsky B. and Wilson K. G.,

1985, Phys. Rev. D32 2736

Bernard C., Draper T., Olynyk K. and Rushton M., 1983, NucI. Phys. B220 [FS8] 508

Bilic N. and Gavai R. V., 1984, Z. Phys. C23 77

Bjorken J. D. and Paschos E. A., 1969, Phys. Rev. 185 1975

Bowler K. C., 1983, Three Day In-depth Review on the Impact of Specialized

Processors in Elementary Particle Physics (Padova) 119

Bowler K. C., Chalmers D. L., Kenway A., Kenway R. D., Pawley G. S. and Wallace D. J.,

1984, NucI. Phys. B240 [FS12] 213

Bowler K. C. and Pawley G. S., 1984, Proc. IEEE 72 42

Burkitt A. N., Kenway A. and Kenway R. D., 1983, Phys. Lett. 128B 83

Cabibbo N. and Marinari E., 1982, Phys. Lett. 1 19B 387

Callaway D. J. E. and Rahman A., 1982, Phys. Rev. Lett, 49 613

Callaway D. J. E. and Rahman A., 1983, Phys. Rev. D28 1506

Carpenter D. B. and Baillie C. F., 1985, NucI. Phys. B260 103

Carson S. R. and Kenway R. D., 1986, Ann. Phys. 166 364

Casher A., Kogut J. and Susskind L., 1974, Phys. Rev. D10 732

Cleymans J., Gavai R. V. and Suhonen E., 1986, Phys. Rep. 130 217

Coleman S., 1976, Ann. Phys. 101 239

Coleman S., Jackiw R. and Susskind L., 1975, Ann. Phys. 93 267

Creutz M., 1979, Phys. Rev. Lett. 43 553

Creutz M., 1980a, Phys. Rev. Lett. 45313

Creutz M., 1980b, Phys. Rev. D21 2308

Creutz M., 1983, Quarks, gluons and lattices (Cambridge University Press, Cambridge)

Creutz M., Jacobs L. and Rebbi C., 1979, Phys. Rev. D20 1915

Cullum J. and Willoughby R. A., 1979, in Sparse Matrix Proc. 1978, eds. I. Duff

and G. Stewart (SIAM Press)

Dagotto E., Karsch F. and Moreo A., 1986, Phys. Lett. 169B 421

Dagotto E., Moreo A. and Wolff U., 1986, Study of Lattice SU(N) QCD at Finite Baryon

Density, Illinois Preprint ILL-TH-86-12

Damgaard P. H., Hochberg D. and Kawamoto N., 1985, Phys. Lett. 158B 239

DEC, 1982, VAX-11 FORTRAN Language Reference Manual (Maynard, Massachusetts)

Drell S. D., Weinstein M. and Yankielowicz S., 1976, Phys. Rev. D14 1627

Duane 5., 1985, NucI. Phys. B257 {FS14] 652

Duncan A. and Furman M., 1981, Nucl. Phys. B190 [FS3I 767

Engels J. and Satz H., 1985, Phys. Lett. 159B 151

Feynman R. P., 1948, Rev. Mod. Phys. 20 367

Feynman R. P., 1972, Photon-Hadron Interaction (Benjamin, Reading, Massachusetts)

Flanders P. M., Hunt D. J., Reddaway S. F. and Parkinson D., 1977, High Speed

Computer and Algorithm Organisation (Academic Press, London) 113

Fucito F., Marinari E., Parisi G. and Rebbi C., 1981, NucI. Phys. B180 [FS2] 369

Gavai R. V., 1985, Phys. Rev. D32 519

Gell-Mann M., 1964, Phys. Lett. 8 214

Gibbs P. E., 1986, Understanding Finite Baryonic Density Simulations in Lattice QCD,

Glasgow Preprint 86-389

Glashow S. L., 1961, Nucl. Phys. 22 579

Gross D. and Wilczek F., 1973, Phys. Rev. Lett. 30 1343; Phys. Rev. D8 3633

Guerin F. and Fried H. M., 1986, Phys. Rev. D33 3039

Gupta R. and Patel A., 1983, Phys. Lett. 124B 94; Nucl. Phys. B226 152

Guth A. H., 1980, Phys. Rev. D21 2291

Hamber H. W., 1981, Phys. Rev. D24 951

Hasenfratz A. and Hasenfratz P., 1980, Phys. Lett. 93B 165

Hasenfratz A. and Hasenfratz P., 1981, Phys. Lett. 104B 489

Hasenfratz P. and Karsch F., 1983, Phys. Lett. 125B 308

Haydock R., 1983, Consequences of rounding errors in the recursion and Lanczos

methods, Cavendish Preprint

Hockney R. W. and Jesshope C. R., 1981, Parallel Computers (Adam HUger, Bristol)

Karsten L. H. and Smit J., 1978, Nucl. Phys. B144 536

Karsten L. H. and Smit J., 1979, Phys. Lett. 858 100

Kawarnoto N. and Smit J., 1981, Nucl. Phys. B192 100

Kernighan B. W. and Ritchie D. M., 1978, The C Programming Language (Prentice-Hall,

New Jersey)

Kluberg-Stern H., Morel A., Napoly 0. and Petersson B., 1983, Nucl. Phys. B220 [FS8] 447

Kogut J., Matsuoka H., Stone M., Wyld H. W., Shenker S., Shigemitsu J. and Sinclair D. K.,

1983, Nucl. Phys. B225 [FS9] 93

Kogut J. and Susskind L., 1975, Phys. Rev. Dli 395

Kuti J., 1982, Phys. Rev. Lett. 49 183

Lanczos C., 1950, J. Res. Nat. Bur. Stand. 45 255

Lang C. B. and Nicolai H., 1982, Nucl. Phys. B200 {FS4] 135

Langguth W. and Montvay I., 1984, Phys. Lett. 145B 261

Lautrup B. and Nauenberg M., 1980, Phys. Lett. 958 63

Lowenstein J. and Swieca A., 1971, Ann. Phys. 68 172

Marinari E., Parisi G. and Rebbi C., 1981, Nucl. Phys. B190 [FS3] 734

Matthews P. T. and Salam A., 1954, Nuovo Cim. 12 563

Matthews P. T. and Salam A., 1955, Nuovo Cim. 2 120

Metropolis N., Rosenbiuth A. W., Rosenbiuth M. N., Teller A. H. and Teller E., 1953,

J. Chem. Phys. 21 1087

Montvay I., 1984, Phys. Lett. 139B 70

Nakamura A., 1984, Phys. Lett. 149B 391

Nielsen H. B. and Ninomiya M., 1981, NucI. Phys. B185 20

Parisi G. and Wu Y.-S., 1981, Sci. Sin. 24 483

Parkinson D., 1983, Comput. Phys. Commun. 28 325

Pass S. D., 1984, The GRID Project, GEC Hirst Research Centre

Pawley G. S. and Thomas G. W., 1982, J. Camp. Phys. 47 165

Politzer H. D., 1973, Phys. Rev. Lett. 30 1346

Polonyi J. and Wyld H. W., 1983, Phys. Rev. Lett. 51 2257

Reddaway S. F., 1973, 1st Annual Symp. on Comput. Arch. (IEEE/ACM) 61

Reddaway S. F., 1979, Infotech State of the Art Report: Supercomputers 2 311

Salam A., 1968, in Elementary Particle Theory, ed. N. Svartholm (Almquist, Forlag AB,

Stockholm) 367

Scalapino D. J. and Sugar R. L., 1981, Phys. Rev. Lett. 46 519

Schwinger J., 1962, Phys. Rev. 128 2425

Scott D. S., 1981, in Sparse Matrices and Thier Uses, ed. I. S. Duff (Academic Press,

London)

Sharatchandra H. S., Thun H. J. and Weisz P., 1981, NucI. Phys. B192 205

Stamatescu I. 0., 1982, Phys. Rev. D25 1130

Susskind L., 1977, Phys. Rev. D16 3031

Ukawa A. and Fukugita M., 1985, Phys. Rev. Lett. 55 1854

van den Doel C. P., 1984, Phys. Lett. 143B 210

Wallace D. J., 1984, Phys. Rep. 103 191

Weinberg S., 1967, Phys. Rev. Lett. 19 1264

Weingarten D. H. and Petcher D. N., 1981, Phys. Lett. 99B 333

Wilson K. G., 1974, Phys. Rev. D10 2445

Wilson K. G., 1977, in New Phenomena in Subnuclear Physics, ed. A. Zichichi

(Plenum, New York) 69

Yang C.-P., 1963, Proc. Symposia in Applied Mathematics, Vol. XV (Amer. Math.

Soc., Providence, R. I.) 351

Yang C. N. and Mills R., 1954, Phys. Rev. 96 191

