
Proof Planning CoindutionLouise Dennis

Ph.D.Department of Arti�ial IntelligeneUniversity of Edinburgh1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429704619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstratCoindution is a proof rule whih is the dual of indution. It allows reasoning aboutnon{well{founded sets and is of partiular use for reasoning about equivalenes.In this thesis I present an automation of oindutive theorem proving. Thisautomation is based on the ideas of proof planning [Bundy 88℄. Proof planningas the name suggests, plans the higher level steps in a proof without performingthe formal heking whih is also required for a veri�ation. The automation hasfoused on the use of oindution to prove the equivalene of programs in a smalllazy funtional language whih is similar to Haskell.One of the hardest parts in a oindutive proof is the hoie of a relation, alleda bisimulation. The automation here desribed makes an initial simpli�ed guess ata bisimulation and then uses ritis, revisions based on failure, and generalisationtehniques to re�ne this guess.The proof plan for oindution and the riti have been implemented in CLAM[Bundy et al 90b℄ with enouraging results. The planner has been suessfullytested on a number of theorems. Comparison of the proof planner for oindu-tion with the proof plan for indution implemented in CLAM [Bundy et al 91℄ hashighlighted a number of equivalenes and dualities in the proess of these proofsand has also suggested improvements to both systems.This work has demonstrated not only the possibility of fully automated theoremprovers for oindution but has also demonstrated the uses of proof planning foromparison of proof tehniques.

i

I delare that this thesis has been omposed by myself and thatthe work desribed is my own.
Louise A. Dennis

ii
AknowledgementsFirst and foremost I should like to thank my supervisors Alan Bundy and IanGreen without whose help at every stage of the proess this PhD would never havebeen ompleted.Thanks to the members of the Dream group in Edinburgh and the Languagesand Programming group in Nottingham for help, omments and general support.In partiular thanks to Colin Taylor for reading through the proofs in hapter 10and Mark Jones for being a superb mentor during my year at Nottingham.Thanks also to Andy Gordon, Graham Collins, Marello Fiore, Jaob Frostand Larry Paulson all of whom have answered various queries I have had. AndyGordon deserves a speial mention here for reading parts of the thesis in advane,ommenting on them and giving me a lot of help in understanding operationalsemantis.Lastly my family and espeially Bill.

Table of Contents
1. Introdution 11.1 Overview . 11.2 Motivation . 21.3 Contribution . 31.4 The Organisation of this Thesis . 42. Bakground 62.1 Introdution . 62.2 Constrution versus Observation . 72.3 The Theory of Coindution and Reursive Datatypes 82.3.1 Least Fixed Points and Indution 82.3.2 Greatest Fixed Points and Coindution 92.4 Bakground and Development . 102.4.1 Communiating Systems . 102.4.2 Non-Well-Founded Sets . 152.4.3 The Lazy �{Calulus . 172.5 Coindution Priniples . 192.5.1 Congruene Proofs . 202.6 Towards a General Theory . 202.6.1 Category Theory . 212.6.2 Bisimulations . 222.7 Coindutive De�nitions . 252.7.1 Coindutive Datatypes . 252.7.2 Coindutively De�ned Funtions 262.7.3 Coreursion and Unfold . 29iii

iv 2.8 Coindution in Theorem Provers . 302.8.1 Isabelle . 302.8.2 HOL . 312.8.3 Coq . 312.8.4 PVS . 312.8.5 The Conurreny Workbenh 322.9 Conlusion . 323. Coindution Spei� to Funtional Languages 333.1 Introdution . 333.2 Operational Semantis . 333.2.1 Stati Semantis . 353.2.2 Dynami Semantis . 363.3 Labelled Transition Systems . 373.4 Operational Semantis . 393.5 An Example of a Coindutive Proof in an LTS for a FuntionalLanguage . 403.5.1 An Aside: The Same Example Using llistD fun 453.6 Examples of Coindution . 483.7 Type{Cheking . 553.7.1 Adapting Type Cheking to Labelled Transition Systems . . 563.8 Conlusion . 584. Proof Planning 594.1 Introdution . 594.2 Proof Planning . 594.2.1 Proof Tatis . 604.2.2 Proof Methods . 604.2.3 The Planning Mehanism 604.2.4 Proof Critis . 614.3 Proof Planning Indution . 614.4 The Wave Method . 624.4.1 Annotations and Di�erene Mathing 63

Table of Contents v4.4.2 Annotated Rewrite Rules . 654.4.3 Rippling . 654.4.4 The Wave Rule Measure . 684.4.5 Wave Rules . 704.5 Proof Critis . 714.5.1 Middle{out Reasoning . 724.5.2 The Indution Revision Criti 724.6 Conlusion . 755. A Proof Strategy for Coindution 765.1 Introdution . 765.2 The Sope of the Proof Strategy . 765.3 Worked Examples of Coindution 785.3.1 Bisimilarity . 785.3.2 Type Cheking . 805.4 A Proof Strategy for Coindution 825.5 Proof Methods . 835.5.1 Coindution . 835.5.2 Gfp Membership . 835.5.3 Evaluation . 845.5.4 Transitions . 875.5.5 Rippling . 885.5.6 Fertilization and Other Methods 905.6 Conlusion . 916. Critis For Coindution 926.1 Introdution . 926.2 The Trial Bisimulation . 926.3 Transition Sequenes . 936.4 The Coindution Method Heuristi 976.5 The Revise Bisimulation Criti . 986.5.1 The Divergene Chek . 1006.6 Limitations of the Divergene Chek 104

vi 6.6.1 The Chek doesn't Fire even though the Sequene is In�nite 1046.6.2 The Criti Extends the Bisimulation by elements not in B . 1076.6.3 Termination . 1086.7 Conlusion . 1087. Experimental Results and Evaluation 1107.1 Introdution . 1107.2 Aim . 1107.3 Soure of Examples . 1117.4 Results . 1127.5 Analysis of Results . 1137.6 Failure Analysis . 1137.6.1 Proof Strategy Errors . 1137.6.2 Implementational Errors . 1177.7 Potential Problems with the Proof Strategy 1197.7.1 Choosing Sinks . 1197.7.2 The Need for Additional Lemmata 1217.7.3 Choosing an Appropriate Hypothesis for Di�erene Mathing 1217.8 Non{theorems . 1227.8.1 A Disproof Method . 1227.9 Quality of the Examples . 1237.10 Type Cheking . 1237.10.1 Causes of Failure . 1247.11 Conlusion . 1248. Related Work 1258.1 Introdution . 1258.2 HOL . 1258.2.1 Coindution . 1258.2.2 Non{terminating Programs 1278.2.3 Reported Results . 1278.3 Isabelle . 1288.3.1 Coindution . 128

Table of Contents vii8.4 CoCLAM Compared to HOL and Isabelle 1328.5 Coindution in Proess Algebras . 1328.5.1 The Modal Mu{Calulus . 1338.5.2 Tableaux Proofs . 1338.5.3 Games . 1348.5.4 Bisimulation Bases . 1358.6 Indutive Inferene . 1368.6.1 Indutive Logi Programming 1388.7 Divergene . 1408.7.1 Overoming Divergene . 1418.7.2 Repeated Funtion Appliation 1428.7.3 Reurrene Terms . 1438.8 Walsh's Divergene Criti . 1458.8.1 Lemma Speulation vs. Generalisation 1478.9 Conlusion . 1489. Further Work 1499.1 Introdution . 1499.2 Lemma Speulation and Divergene Analysis 1499.2.1 Lemma Speulation . 1509.2.2 A New Criti . 1519.2.3 Divergene Analysis . 1529.3 Inter{onstrution . 1539.4 Other Labelled Transition Systems 1539.4.1 Transition Rules with Non{empty Premises 1549.4.2 Extending the Evaluate Method 1559.4.3 Internal Ations . 1569.4.4 Nondeterminism . 1569.5 Verifying the Proof Plans . 1579.6 Conlusion . 158

viii10.Comparing the Proess of Proof in Indution and Coindution 15910.1 Introdution . 15910.2 Comparing Individual Proofs . 16010.2.1 Restriting Theorems to Strit Lists: The Assoiativity ofAppend . 16110.2.2 Using Indution on the Number of Transitions 16410.2.3 Using nth: The Mapiterates Theorem 16610.3 Comparison of Proof Methods . 16910.4 Standardizing the Representations 17110.5 Choie of Indution Sheme and Choie of Bisimulation 17410.5.1 Interhangeability in Indution 17510.5.2 Interhangeability in Coindution 18310.6 Choie of Indution Sheme and Evaluation 18810.7 Rewriting and Transitions . 18810.8 Generalisation . 18910.9 Summary of Proof Comparison . 19010.10Transferring CLAM Proof Methods 19110.10.1 Indution Sheme/Set and Bisimulation Choie 19110.10.2Ripple and Evaluate . 19510.11Conlusion . 19611.Conlusion 19811.1 Introdution . 19811.2 Generation of Bisimulations . 19911.3 Theoretial Results about the Smallest Bisimulation 19911.4 Heuristis for Bisimulation Formation 20011.5 The Proof Strategy for Coindution 20011.6 Rippling and Coindution . 20111.7 Contribution of Proof Planning to Coindutive Proof 20111.8 Contribution of Indutive Proof Tehniques to Coindutive Proof . 20211.9 Theoretial Results about the Link between Indution Sheme andBisimulation hoie . 20211.10General Conlusions . 203

Table of Contents ixAppendies 213A. Glossary of Terms 214B. Results 225B.1 Introdution . 225B.2 Funtion De�nitions . 225B.3 Theorems . 228B.3.1 Development Set . 228B.3.2 Test Set . 230B.4 Type Cheking Theorems . 232B.4.1 Development Set . 232B.4.2 Test Set . 232B.5 Lemmata . 232B.5.1 Standard Lemmata . 232B.5.2 Other Lemmata . 233C. Program Traes 234C.1 Introdution . 234C.2 Traes and Plans . 234C.2.1 mapiter . 234C.2.2 hiterates . 235D. Various Theorems with Proofs 238D.1 Derived Inferene Rule for � . 238D.2 Derived Inferene Rule for LlistD fun 238D.3 Derived Inferene Rule for list fun 239D.4 Derived Rule for Indution . 239E. Verifying the Proof Plans in a Tati{based Theorem Prover 240E.1 Introdution . 240E.2 Isabelle . 240E.2.1 Tatis and Tatials . 240E.3 Linking CoCLAM to Isabelle . 241

x E.3.1 Translating Objet Level Terms and Rules 242E.3.2 Implementation: Providing Tatis for the Methods 242E.4 Conlusion . 245F. Proof Comparisons 246F.1 Introdution . 246F.2 Comparisons Using Type Changes 246F.2.1 Pattern 1 . 246F.2.2 Pattern 2 . 247F.2.3 Pattern 3 . 248F.2.4 Pattern 4 . 249F.2.5 Pattern 5 . 249F.2.6 Canellation of + . 250F.3 Comparisons Using nth . 250F.3.1 Pattern 1 . 250F.3.2 Pattern 2 . 250F.3.3 Pattern 3 . 251F.3.4 Pattern 4 . 251F.3.5 Pattern 5 . 252

List of Figures
2{1 A Simple Communiating System 122{2 (AjB)nfg . 132{3 The Transition Graph for AjB . 142{4 The Natural Numbers Represented as Trees 152{5 2 and 3 Represented as Graphs . 162{6
 represented as a Graph . 163{1 Notational Conventions . 333{2 Stati Semantis . 413{3 Dynami Semantis . 423{4 Transition Rules . 433{5 Observations on List Types . 574{1 A Proof Plan for Mathematial Indution 624{2 f(h(s(0); g(f(x)))) Represented as a Tree 694{3 The Wave Method . 714{4 Wave Criti: Indution Revision . 755{1 A Proof Strategy for Coindution 825{2 The Coindution(R) Method . 845{3 The Gfp Membership(h� � �i) Method 845{4 The Evaluate Method . 885{5 The Transition(transitions) Method 895{6 The Reexivity of � Method . 906{1 The Revise Bisimulation Criti . 986{2 The Divergene Chek . 101xi

xii 7{1 Transition Rules . 1128{1 Walsh's Divergene Criti . 1479{1 Transition Rules for Synhronised{stream I/O 15510{1 Transition Rules for T 0 . 16010{2 The Proof Plan for Indution . 16910{3 The Proof Plan for Coindution . 17010{4 The Proof Plans Superposed . 17010{5 N0 . 18310{6 N1 . 18310{7 L0 . 18410{8 L1 . 185

Chapter 1
Introdution

1.1 OverviewThis thesis desribes a proof strategy for oindution. This strategy is based onthe idea of proof planning [Bundy 88℄ and determines the high{level steps requiredin a oindutive proof.This proposed strategy has been implemented as a program, CoCLAM , thatwill automatially generate a plan of the objet{level inferene steps required bya oindutive proof of the equivalene of two funtional programs.The program has been tested on examples using the operational semantisof a small funtional language whih is similar to ones proposed by Gordon[Gordon 95a℄.The strategy draws upon ideas from theorem proving for indution. It takesthe idea of proof planning, together with the assoiated idea of a proof riti. Italso borrows the proof method rippling. It uses a generalisation riti, based onwork by Walsh [Walsh 96℄ for an impliit indution prover, to re�ne the hoie ofbisimulation.The thesis also ompares the proess of indutive and oindutive proof in thelight of the proof strategies developed for eah tehnique.

1

2 Chapter 1. Introdution1.2 MotivationThis thesis attempts a �rst step towards the provision of a fully automated theoremprover for oindution.The past ten years have witnessed an inreased interest in tehniques for de-sribing and proving the properties of in�nite strutures and proesses. Among theforemost of these are bisimulation relations and bisimilarity (a form of equality onin�nite objets). This has promoted interest in the proof priniple of oindution(proving objets to be bisimilar). Coindution is a dual to indution. Duals areof great interest, partiularly in ategory theory. Other duals related to oindu-tion are oalgebras (a ategorial desription of in�nite objets) and oreursion(a de�nition priniple for funtions on in�nite objets).In�nite proesses arise naturally in omputer siene. They were �rst inves-tigated seriously in the �eld of onurreny (e.g. [Park 70℄) where looping �nitestate mahines are ommonplae. However, they are also potentially present inany looping program and are useful when onsidering Input/Output issues. For in-stane, a lazy or all{by{need evaluation proedure only evaluates funtions whenthey are required and may not fully evaluate1 them, being ontent to evaluate,for instane, only the �rst element of a list, leaving the rest unevaluated untilit is needed. In this way a potentially in�nite proess may be present in a pro-gram without foring the entire program to be non{terminating. Programminglanguages whih exploit these ideas are often referred to as lazy languages. Theirsemantis are generally expressed in an operational style. This thesis onen-trates on the use of oindution with the operational semantis of lazy funtionallanguages.The interest in what an broadly be desribed as oalgebrai methods in om-puter siene and spei�ally in oindution has lead to the development of variousproof tools to aid in their use. These tools are a part of the general growth oftheorem proving tools. The need for rigorous proof in formal methods has longbeen reognised. The problem has always been that suh proofs are long, tediousand (when done by hand) partiularly suseptible to error (for these reasons).These problems have been partly responsible for the development of a number ofproof tools whih range from proof hekers (whih verify the orretness of eahstep) to tools whih attempt to perform some or all of the required proof stepsautomatially thus removing muh of the tedium for the user.The �rst and most widely used of the proof tools for oindution is the Edin-burgh Conurreny Workbenh (CWB) [Cleaveland et al 89℄ whih was developedfor use with CCS [Milner 89℄, but there has also been an e�ort to inorporate1This assertion is not stritly aurate sine lazy languages use a di�erent notionof a value from strit languages. \Fully evaluate" is used here as it is used in stritlanguages.

1.3. Contribution 3tools for oindution in several large theorem proving environments inluding HOL[Gordon & Melham 93℄, Isabelle [Paulson 94a℄ and PVS [Owre et al 96℄. CWB isan automated tool but only deals with ground terms and �nite bisimulations.None of the others make any attempt at full automation and rely on user input.At the very least they require the user to supply a bisimulation and they oftenrequire the user to guide other steps in the proof as well.One of the inspirations for this work is the observation that not only is oin-dution the theoretial dual of indution but there are observed similarities ordualities in the proof proess. This suggests that inspiration an be drawn fromindutive theorem provers when attempting to provide heuristis for oindutiveproof. There are several theorem provers whih attempt to fully automate indu-tive proof. The �rst and most well{known of these is the Boyer{Moore theoremprover, [Boyer & Moore 90℄. This prover is essentially a blak box and the teh-niques it uses for guiding proof attempts are not visible to the user. It also usesa powerful hints mehanism for many proofs. CLAM [Bundy et al 90b℄ is in someways a suessor of the Boyer{Moore theorem prover sine it employs a power-ful heuristi, alled rippling [Bundy et al 93℄, whih was developed as a rationalreonstrution of the tehniques used in Boyer{Moore. CLAM also represents a de-parture from previous provers, suh as Boyer{Moore, whih attempted to ombinethe rigorous objet{level proof steps with the searh for a proof. CLAM expli-itly separates these proesses, �rst of all planning the proof using desriptions ofthe e�ets of hains of objet level rules and subsequently passing the plan to anobjet{level theorem prover. This proess is alled proof planning. CLAM washosen as the basis for the work presented here sine the tehniques are learlydesribed, unlike the tehniques employed by Boyer{Moore (and in its desendantNQTHM) whih are hidden from the user, and it provides an environment in whihnew tehniques may be developed. The work desribed is intended to be generalenough for use in any proof planning system, however the implementation was alldone in CLAM .1.3 ContributionThe main ontribution of this work an be found in hapters 5 and 6. Thesedesribe a proess by whih a bisimulation for oindution an be found and bywhih the various phases of a oindutive proof an be automatially performed.The entral ontributions an be summarised as follows:� The most important part of the work is demonstrating that the hoie ofbisimulation relation in oindutive proof an, in many ases, be performedautomatially; I have provided a model of how to do this and implementedit in CLAM3.� I have developed a number of new heuristis for forming suh bisimulations,one of whih draws on work on generalisation in the �elds of term rewritingand impliit indution and so provides another appliation for suh teh-niques.

4 Chapter 1. Introdution� In the ourse of developing this model, I have also developed a proof strategyfor oindution whih allows many oindutive proofs to be performed fullyautomatially.Chapters 5 and 6 also ontain some other ontributions one of whih is theo-retial and two others whih add support to the proof planning methodology.� I have provided some new theoretial results about the smallest bisimulationrequired to prove a given theorem.� I have shown that the rippling heuristi, whih was developed for indution,is also of use for oindution. I've also used the idea of di�erene mathingthat underlies rippling in forming bisimulations. This supports the beliefthat identi�ation and manipulation of di�erenes between expressions is animportant part of theorem proving.� I've shown that the ideas listed as major ontributions an be implementednaturally in a proof planning system whih provides support for that method-ology of automating poof.In hapter 10 I disuss a further program of work evolving from a omparison ofindution and oindution. This gives rise to a ouple of additional ontributionswhih are outside of the main thrust of the thesis.� I've postulated that not only are the proof priniples of indution and oin-dution theoretially linked, but that there are also links in the pratialproess of suh proofs. I have attempted to draw out these links in thelight of the proposed proof strategies. In the ourse of this I believe I haveontributed to the general understanding of the nature of oindutive proof.� I have provided theoretial results about the links between the hoie ofindution sheme and the hoie of an appropriate labelled transition systemwhen performing indution on programs in lazy funtional languages.1.4 The Organisation of this ThesisThe rest of this thesis is organised as follows:� In the next hapter, hapter 2, I disuss oindution and the mathemati-al theory behind it. I also briey survey some of the urrent proof toolsavailable for oindution.� Chapter 3 disusses the use of oindution in the operational semantis offuntional languages and presents several examples of oindutive proof inthis setting in order to motivate the heuristis proposed in hapters 5 and 6.

1.4. The Organisation of this Thesis 5� Chapter 4 introdues proof planning.� Chapters 5 and 6 present a generi proof plan or proof strategy for oindu-tion.� Chapter 7 reports the result of experimental testing of this proof strategy.� Chapter 8 examines related work in both the provision of proof tools foroindution and in generalisation tehniques.� Chapter 9 disusses proposed modi�ations and extensions to the proof strat-egy.� Chapter 10 ompares the new proof strategy for oindution and the proofstrategy for indution and examines the observed similarities between thetwo proof proesses.� Chapter 11 evaluates the ahievements and ontribution of the work herereported.� There are 6 appendies: A glossary of terms; A detailed breakdown of thetheorems proved by the system; Transripts of runs of the implementation;some meta{theorems are proved whih are used in the ourse of oindutiveproofs; a disussion of work linking CoCLAM to an objet level theoremprover, Isabelle and lastly a omparison of the proofs of several theoremsusing indution and oindution.

Chapter 2
Bakground

2.1 IntrodutionThe purpose of this hapter is to provide a general survey of work on oindution.It starts with a very general disussion of the areas where oindution is used.This is followed by a disussion of �xedpoints and a statement of the oindutionrule.It then looks at the three areas of Communiating Systems, Non{Well{FoundedSets and Funtional Programming, all of whih use the idea of bisimulation, whihis entral to oindution. Eah setion aims to desribe the sort of objets oindu-tion is used to reason about and provide the statement of the oindution priniplefor that area. Some of the disussion is illustrated with examples.x2.5, 2.6 and 2.7 are more general and look at oindution proof priniples, therelationship of oindution to ongruene, reent attempts to unify the variousdevelopments of oindutive priniples within ategory theory and oindutivede�nitions.Lastly the use of oindution, and the development of tools to support oin-dution in various theorem provers is examined.

6

2.2. Constrution versus Observation 72.2 Constrution versus ObservationJaobs and Rutten [Jaobs & Rutten 97℄ identify a pervasive distintion in om-puter siene between onstrution and observation. This is similar to the distin-tion between indution and oindution.Indutive datatypes exploit the idea that every element of the type an beonstruted from some set of base elements. Indution rules ome in many forms,but all of them hinge on the fat that the set of objets under onsideration ispartially ordered by some well{founded order. An order is said to be well{foundedif there are no in�nite desending hains. Indution is a natural proof prinipleto use for \onstruted" datatypes sine the proess of onstrution supplies awell{founded relation on the type1.However, it is not the ase that all datatypes naturally ourring in omputersiene onform to this onstrution style of de�nition. Consider a tiket mahinewhih has a roll of printed tikets and a button. Pressing the button auses themahine dispense a tiket. If the mahine runs out of tikets, it stops (some�nal state is reahed). It is far more natural to disuss this mahine in termsof observing what the tiket is, and observing the state of the mahine after ithas dispensed a tiket, than in terms of how one tiket or state of the mahineis formed from the previous tiket and state. The problem with trying to proveany formal properties for the mahine desribed in terms of observation is thatthe natural order imposed by the desription isn't neessarily well{founded. Itis theoretially possible to have mahines that never reah their �nal state (forinstane, in the example, the roll of tikets might be re�lled regularly before theprevious roll runs out). In fat, omputer programs fail to terminate often enoughfor it to be a ommon part of omputing. This sort of non{termination need notbe \buggy", for instane, it is undesirable behaviour in the tiket mahine if itruns out of tikets.Similarly, in funtional languages with lazy evaluation it beomes possible tode�ne funtions that won't terminate in a non{atastrophi way sine instead oftrying to evaluate the whole funtion the program will only evaluate those partsit atually needs, e.g. the heads of lists.Coindution as a proof priniple handles non{well{founded datatypes and sohas ome to be the preferred method of proof in ertain domains. It is possibleto present oindutive problems in suh a way that indution an be used in theproess of proof. This is done by providing an order in whih one state is lessthan another by being loser to the start state, rather than the �nal state (whihis how indution is more ommonly used, but whih, of ourse, may not exist in1Though the relation imposed by type onstrutors may not be the one used to justifyany partiular indutive proof involving the datatype.

8 Chapter 2. Bakgrounda lazy setting). Coindution, nevertheless, is inreasingly felt to be more elegantand simple as a proof priniple for ertain lasses of problem.2.3 The Theory of Coindution and ReursiveDatatypesThe �rst approah to modelling the sort of in�nite proesses desribed in x2.2was based on the theory of �xedpoints. The study of �xedpoints grew up out ofTarksi's work [Tarski 55℄.De�nition 2.1 A �xedpoint of a funtion F is an element, D, of its domainsuh that F(D) = DDe�nition 2.2 A funtion, f , on sets is monotone if8A;B:A � B) f(A) � f(B)De�nition 2.3 A lattie is a partially ordered set in whih for all pairs of ele-ments, s and t in the lattie, there exist elements sup and inf in the lattie suhthat s � sup, t � sup, inf � s and inf � t. Moreover for any element z in thelattie if s � z and t � z then sup � z and if z � s and z � t then z � inf .Tarksi showed that a monotone funtion has a lattie of �xedpoints whih hasa greatest and least element. The least �xed point is assoiated with the indutionrule, the greatest �xed point with the oindution rule.2.3.1 Least Fixed Points and IndutionThe least �xed point is de�ned as [Paulson 93℄lfp(F) = \fA j F(A) � Ag (2.1)Indution ats as an elimination rule for least �xed points. Indutive domains(e.g. the natural numbers) an be regarded as the least �xed points of monotonefuntions. A general form of the indution rule is [Frost 95℄F(A) � Alfp(F) � A (2.2)A more usual form of the rule omes from �rst expressing A in terms of someproperty P . F(fxjP (x)g) � fxjP (x)glfp(F) � fxj P (x)g (2.3)then expanding the de�nition of F in F(fxjP (x)g) � fxjP (x)g and performingsome inferene on the resulting term.

2.3. The Theory of Coindution and Reursive Datatypes 9Example 2.1 Let F(R) def= f?g [ff(x)jx 2 Rg.In this ase an arbitrary element of F(fxjP (x)g) is of the form ? or f(x); x 2fxjP (x)g. If F(fxjP (x)g) � fxjP (x)g then ? 2 fxjP (x)g, i.e. P (?) and f(x) 2fxjP (x)g when x 2 fxjP (x)g (i.e. P (x)) P (f(x))). This gives the expressionP (?) ^ P (x)) P (f(x)) (the base and step ase of an indution).To speialise still further, if ? � 0 and f � s then F(S) def= f0g[fs(x)jx 2 Sg.Similarly if ? � nil and f �:: then F(S) def= fnilg [fh :: tjt 2 Sg these givestandard indution shemes assoiated with natural numbers and strit lists.2.3.2 Greatest Fixed Points and CoindutionThe greatest �xed point is de�ned as [Paulson 93℄gfp(F) = [fA j A � F(A)g (2.4)Coindution ats as an elimination rule for greatest �xed points. Coindutive do-mains are the greatest �xed points of monotone funtions. The general oindutionrule is [Frost 95℄ A � F(A)A � gfp(F) (2.5)A more usual form is [Paulson 93℄a 2 A A � F(A)a 2 gfp(F) (2.6)The premise A � F(A) is the dual of F(A) � A in the indution rule, whih wasspeialised to give some ommon indution rules. This proess an also be appliedhere.Example 2.2 Take the de�nition of F from example 2.1. Let x be an arbitraryelement of A. A � F(A) if x is also in F(A). So either it is ? or there is somey 2 A suh that x = f�1(y) (always assuming, of ourse, that f has a well{de�nedinverse).Thus the expression 8x 2 A:x = ? _ 9y 2 A:x = f�1(y) ould replae thepremise, A � F(A), in the oindution rule e�etively speialising it to one par-tiular F .It is unusual to see the oindution rule tailored in this way (unlike the in-dution rule) and so I have hosen to keep the format of (2:6) when disussingthe oindution rule simply instantiating F and gfp(F) where appropriate ratherthan unpaking the proof onditions for eah F as a variety of oindution rules.The term \oindution" is generally believed to have �rst been used by Milnerand Tofte [Milner & Tofte 91℄. They de�ned a greatest �xedpoint that relates thevalues and types of a small funtional language and used oindution in part ofthe proof of the onsisteny of its stati and dynami semantis. However, beforeit was so named, the oindution rule was already being used in a number of guisesin mathematis and omputer siene.

10 Chapter 2. Bakground2.4 Bakground and DevelopmentThe eariest appearane of bisimulations, a ommon type of objet that arises outof oindution, was in the �eld of automata. These ideas were piked up on byworkers in other �elds and adapted to their use. The most notable of these werethe �elds of onurreny and funtional programming. Early work was also donein set theory. This setion will examine the early development of bisimulations inall three of these �elds.2.4.1 Communiating SystemsPark [Park 80,Park 81℄ �rst suggested the use of bisimulations to represent anidea of equality between onurrent systems. He de�nes simulations, <� , andbisimulations, �, as follows. Let M and M0 be �nite automata over a set, �,represented by strutures of the formM = hS; s0;M; F i;M0 = hS 0; s00;M 0; F 0iWhere S; S 0 are the state sets ofM andM0, s0 2 S and s00 2 S 0 the start states,F � S and F 0 � S 0 the aept states and M : S � (� [f�g) ! P(S) andM 0 : S 0� (�[f�g)! P(S 0) are transition funtions, where P(S) is the power setof S and � is the null string.M simulatesM0 via R (writtenM<�RM0) if R � S � S 0 and1. hs0; s00i 2 R2. s 2 F; hs; s0i 2 R) s0 2 F 03. � 2 � [f�g; hs1; s01i 2 R; s2 2 M(s1; �)) hs2; s02i 2 R for some s02 2M 0(s01; �)M bisimulatesM0 via R (writtenM�RM0) ifM<�RM0 andM0 <�RM.In essene one automaton bisimulates another via some R if for all aept orstart states s inM, s is related to some aept or start state s0 inM0 and all pairsof states obtained by transitions from related pairs of states in R are also in R.CCS and the Bisimulation Proof MethodMilner built on these foundations [Milner 89℄ to provide a semantis for his Calu-lus for Communiating Systems (CCS) and used it to prove that various onurrentsystems mathed their spei�ations.Milner's alulus onsists of a set of states (or agents), Q, a set of labels (orations), L, and a transition relation between states. States are represented by

2.4. Bakground and Development 11apital letters and labels (or ations) by lower ase letters. Any label, a, has ao{label, �a 2 L, suh that ��a = a.Example 2.3 Consider a ell with two ports a and �. It an hold one data item.When the ell is empty it is in state A and when it holds a data item it is instate A0. Data may be plaed in the ell through port a (by ation a) and removed2through port � (by ation �). Hene the ell an be represented by the two equations:A def= a:A0 (2.7)A0 def= �:A (2.8)The expressions, a:A0 and �:A are agent expressions. An agent expression ofthe form a:A is interpreted as meaning \perform a then proeed aording to thede�nition of A". The transitions between states are aomplished by ations. Theset of labelled arrows �! where � is an ation form the transition relation. So inexample 2.3, A a! A0.De�nition 2.4 [Milner 89℄ If for some ation � 2 L and some states P1; P2 2 QP1 �! P2, then P2 is said to be a derivative of P1.In the example A0 is a derivative of A and A is a derivative of A0De�nition 2.5 [Milner 89℄ The set, E, of agent expressions is the smallest setwhih inludes the agent variables and onstants (states) and ontains the followingexpressions, where E, Ei are already in E1. �:E, a Pre�x (� is an ation)2. �i2IEi, a Summation (I is some indexing set). If I = f1; 2g then this iswritten E1 +E2. The \inative agent", apable of no ation, is �i2;Ei. Thisis usually represented by the symbol 0.3. E1jE2, a Composition4. EnL, a Restrition where L is a set of ations5. E[f ℄, a RelabellingThe Summation ombinator ombines two agents expressions as alternatives. TheComposition ombinator represents parallelism and is probably best desribedthrough an example2\output" ports are, by onvention, represented by o{labels of input ports. Thepurpose of the Calulus is to model ommuniating systems, hene it is reasonable toassume that an output from one agent will often be mathed by an input to another.

12 Chapter 2. BakgroundExample 2.4 [Milner 89℄ Consider linking two agents, A and B together whereA and B are de�ned by A def= a:A0 B def= :B0A0 def= �:A B0 def= �b:BThese are shown in �gure 2{1.
bca c BAFigure 2{1: A Simple Communiating SystemThis represents a system of two ells. The �rst ell is empty and may inputa data item (ation a) one it is holding a data item it an output it (ation �).Similarly the seond ell may also either input a data item (ation) or outputone (ation �b). The other ations an our in either ell at any timeThis is represented as the omposition AjB. If A an do an ation then itan also do it in AjB, leaving B undisturbed (i.e. sine A a! A0 AjB a! A0jB).Similarly AjB0 �b! AjB.Consider joining the ations and � so they an not be performed alone Thissituation of o{ourring ations may be written as the distinguished ation � . �ations an not be a�eted or observed by any user sine they our internallywithin the system. A � ation is a omplementary pair (e.g. (; �)). A � transitionon a omposed pair of states leads to the omposed pair of the derivatives of thosestates. In this ase A0jB �! AjB0. � ations are an important onept in thealulus.The Restrition ombinator internalises a set of ports determined by a set ofnames. Ports may be joined to more than one other port; if they are restrited,however, they are not available any more. If a port's name or o{name appears inthe set then the label for this port is removed in any representation of the system.For instane the desription of the system in example 2.4 states that an onlyour if � also ours. This implies that there is nowhere else that the output fromthe ell an go exept as input to the next ell. Hene no more ports an be linkedwith otherwise there would be a hoie of where the data might go. Hene thesystem desribed is (AjB)nfg whih is illustrated by �gure 2{2. Cruially thesystem in �gure 2{2 performs the pair of ations (; �) as a � ation.Sometimes it may be neessary to hange the names of ports in a system.This is represented by the use of the Relabelling ombinator whih requires thepresene of a relabelling funtion whih spei�es how the names are to be hanged

2.4. Bakground and Development 13
ba BA Figure 2{2: (AjB)nfg(e.g. [a=input℄ is a relabelling funtion that relabels the ations a in an agentexpression as input).De�nition 2.6 [Milner 89℄ A binary relation S � P �P over agents is a strongbisimulation if (P;Q) 2 S implies, for all � 2 At,1. Whenever P �! P 0 then, for some Q0; Q �! Q0 and (P 0; Q0) 2 S2. Whenever Q �! Q0 then, for some P 0; P �! P 0 and (P 0; Q0) 2 SDe�nition 2.7 [Milner 89℄ P and Q are strongly equivalent, written P � Q,if (P;Q) 2 S for some strong bisimulation S.Theorem 2.1 [Milner 89℄1. � is the largest strong bisimulation.2. � is an equivalene relation.Example 2.5 [Milner 89℄ To show an example of a oindutive proof in CCSonsider the system omprising two ells A and B eah with two ports joinedtogether as the system (AjB)nfg desribed in �gure 2{2. Reall this is representedby the equations. A def= a:A0 B def= :B0A0 def= �:A B0 def= �b:BProve that (AjB)nfg is equivalent to the transition graph in �gure 2{3.This graph an be desribed by the equationsC0 def= �b:C1 + a:C2C1 def= a:C3C2 def= �b:C3C3 def= �:C0Proof: The proof of this proeeds by �nding a strong bisimulation whih on-tains the pair h(AjB)nfg; C1i. This is generally alled the bisimulation proofmethod.

14 Chapter 2. Bakground
a

a
3C

τC 2

b

C 0
b

C 1

start

Figure 2{3: The Transition Graph for AjBLet the relation S be S = fh(AjB)nfg; C1i;h(A0jB)nfg; C3i;h(AjB0)nfg; C0i;h(A0jB0)nfg; C2igBy inspetion it an be seen that the derivatives of eah pair of states in S arealso in S, i.e. (AjB)nfg a! (A0jB)nfgC1 a! C3(A0jB)nfg �! (AjB0)nfgC3 �! C0(AjB0)nfg �b! (AjB)nfgC0 �b! C1(AjB0)nfg a! (A0jB0)nfgC0 a! C2(A0jB0)nfg �b! (A0jB)nfgC2 �b! C3hene that S is a bisimulation and the two systems are bisimilar.This proof method is a form of oindution, though the term was not used byMilner at the time.Milner uses oindution to derive a number of laws that an be used to provebisimilarity. Hene many suh proofs don't involve the method diretly.The proof method seems intuitively reasonable sine, if you an �nd a suitablebisimulation it says that if you start at the same \point" in either representationequivalent ations will take you to orresponding points for an arbitrarily large(though) �nite sequene of ations.

2.4. Bakground and Development 152.4.2 Non-Well-Founded SetsThe notions of bisimulation originated in onurreny theory, however Azel liftedthe idea and transported it into set theory in order to study non-well-founded setsformulated within a version of ZF [Azel 88℄. These are sets ontaining in�nitesequenes of nested subsets. For instane the set
 � f
gThese had been lassi�ed as extraordinary by mathematiians and exluded fromset theory. Azel developed what he alled the Anti-Foundation Axiom (AFA),whih asserts the existene of non-well-founded sets.Azel's formulation represents sets as graphs. For instane, onsider the stan-dard ZF onstrution of the natural numbers0 = ;1 = f;g2 = f;; f;gg3 = f;; f;; f;ggg...These are normally represented as trees grown downwards as in �gure 2{4.
30 1 2

Figure 2{4: The Natural Numbers Represented as TreesHowever Azel advoates representing them as direted graphs or aessiblepointed graphs (apgs) (�gure 2{5). The \top" node of the graphs is the \objet"under onsideration. Arrows indiate the subset relationship. For instane 2 has 0and 1 as subsets whih is indiated in the graph by arrows from the node labelled\2" to the nodes labelled \1" and \0" (2 ! 1 and 2 ! 0). However \1" alsoontains \0" as a subset so there is an arrow from the node labelled \1" to thenode labelled \0" as well (1! 0). Hene
 an be represented with one node andone arrow leading from and to that node as in �gure 2{6.The anti-foundation axiom states:

16 Chapter 2. Bakground
1

2

0 1 0

2

3

Figure 2{5: 2 and 3 Represented as Graphs
Figure 2{6:
 represented as a GraphEvery apg has a unique labelling (up to isomorphism).Azel proved that ZF + AFA has a model.Azel uses bisimulations to prove equality between graphs. He introdues anequivalene � suh that for sets a and b, a � b if and only if there is an apg thatis a piture of both of them. It is possible to show from this de�nition that theanti foundation axioms implies a � b) a = bAzel de�nes a bisimulation as follows:Notation: aM = f 2 M : a! g. e.g. Let N be the natural numbers, then0N = ;, 1N = f0g, 2N = f0; 1g and
N =
 et.De�nition 2.8 [Azel 88℄ A binary relation R on the system M is a bisimula-tion on M if R � R+, where R+is de�ned for a; b 2M byaR+b , (8x 2 aM :9y 2 bM : xRy) &(8y 2 bM :9x 2 aM xRy) (2.9)Theorem 2.2 [Azel 88℄ If R is a bisimulation then aRb) a � bThis is the oindution priniple for non well{founded sets.

2.4. Bakground and Development 172.4.3 The Lazy �{CalulusAbramsky [Abramsky 90℄ noted the di�erene between the pratie and the-ory of programming languages. The theory was represented by the �{alulus[Barendregt 84℄, a entral part of whih involved the evaluation of expressions tohead normal form.De�nition 2.9 [Barendregt 84℄ A �-term, M , is a head normal form(HNF) ifM is of the form�x1 � � �xn:xM1 � � �Mm; n;m � 0. Where x is a variable (possibly one of the xi,i � n and the Mj are �{terms (not neessarily in HNF)).De�nition 2.10 [Barendregt 84℄ If M is of the formM � �x1 � � �xn:(�x:M0)M1 � � �Mm; n � 0; m � 1then (�x:M0)M1 is alled the head redex of M .Informally a �{term is in head normal form when the term doesn't have a headredex.The meaning of a �{term depends upon its head normal form. Abramskynoted, however, that most programming languages did not take evaluation ofterms to head normal form, but to weak head normal form:De�nition 2.11 (Adapted from [Peyton Jones 87℄) A �-termM is a weak headnormal form(WHNF) if M is of the form�x:M 0 or xM1 � � �Mm; n;m � 0.This mismath between theory and pratie was motivated by eÆieny on-siderations (in partiular to avoid problems of name{apture of free variables[Peyton Jones 87℄).Example 2.6 [Abramsky 90℄The lassi unsolvable term (i.e. a term that has no head normal form) is? � (�x:(xx)x)(�x:(xx)x). In the standard theory [Barendregt 84℄�x:? = ?sine �x:? is also unsolvable. However �x:? is in weak head normal form and sowas distinguished from ? in many funtional languages.Abramsky's development of the lazy �{alulus used appliative bisimulationto de�ne equivalene between �{terms.De�nition 2.12 [Abramsky 90℄

18 Chapter 2. Bakground1. The relation M + N (M onverges to prinipal weak head normal form N)is de�ned indutively over losed lambda terms, �0, as follows:� �x:M + �x:M� M+�x:P P [N=x℄+QMN+Q2. M onverges, M +, if 9N:M + N3. M diverges, M *, if :(M +)This transition system, (�0;+), an be generalised to the onept of a quasi{appliative transition system.De�nition 2.13 [Abramsky 90℄ A quasi{appliative transition system(quasi{ats) is a struture (A; ev) where ev : A * (A! A) (ev is a partial funtionfrom A to funtions from A to A).Notation: a +qats b � a 2 dom(ev) ^ ev(a) = ba +qats � a 2 dom(ev)a *qats � a 62 dom(ev)Rel(A) � the set of relations on ADe�nition 2.14 [Abramsky 90℄ Let (A; ev) be a quasi-ats. De�ne:F (R) def= fha; bi : 9f:a +qats f) (9g:b +qats g ^ 8 2 A:f()R g())gR 2 Rel(A) is an appliative bisimulation i� R � F (R).De�ne <� by:a <� b � aRb for some appliative bisimulation RDe�nition 2.15 [Abramsky 90℄a � b def= a <� b ^ b <� aIt is a fairly simple matter to prove that � is an equivalene relation.De�nition 2.16 [Abramsky 90℄ An appliative transition system (ats) is aquasi-ats (A; ev) satisfying8a; b; 2 A:a +qats a0 ^ b <�) a0(b) <� a0()

2.5. Coindution Priniples 19Sine � is an equivalene relation this de�nition fores it to be a ongruene in anappliative transition system.Going bak to the �{alulus if l = (�0; ev) whereev(M) = (P 7! N [P=x℄ M + �x:Nunde�ned otherwisethen l an be shown to be an ats and + is +qats. Hene � an at as an equalityrelation between losed �{terms with + ating as an evaluation relation.Although Abramsky doesn't state a oindution priniple as suh, an appro-priate one is:Theorem 2.3 [Abramsky 90℄ If (A; ev) is an ats then for a; b 2 A, a = b if thereis an appliative bisimulation R suh that aRb and bRa.2.5 Coindution PriniplesA Coindution Priniple is a statement of the appliability of oindution. Theform the priniple takes varies, for instane it depends upon whether bisimulationis a ongruene or not. Within the theory of lazy lists developed by Paulson forHOL [Paulson 93℄, equality between lazy lists is based on work by Bird and Wadler[Bird & Wadler 88℄ and is de�ned asDe�nition 2.17 Two lazy lists l1 and l2 are equal if for any �nite k the �rst kelements of l1 and l2 viewed as a �nite list are equal.This an be shown to be equivalent to the greatest �xedpoint of the funtionllistD fun:llistD fun(R) def= fhx :: l1; x :: l2i j hl1; l2i 2 Rg [fhnil; niligHene the oindution priniple he employs is:Theorem 2.4 [Paulson 93℄ If l1 and l2 are lazy lists l1 � l2 if and only if hl1; l2i 2gfp(llistD fun)Using the more ommon terminology of bisimulations the theorem might be re-onstruted asTheorem 2.5 If l1 and l2 are lazy lists l1 � l2 if and only if there is some bisim-ulation R suh that l1Rl2Theorems 2.1, 2.2 and 2.3 are all examples of oindution priniples.Coindution priniples have been developed for reursively de�ned domains[Pitts 92℄, datatypes [Fiore 93℄, I/O in funtional languages [Gordon 93℄, the op-erational semantis of lazy funtional languages [Gordon 95a℄ and the semantisof objet oriented languages [Gordon 96℄.

20 Chapter 2. Bakground2.5.1 Congruene ProofsThe usefulness of bisimulation equivalenes is that they an at as ongruenes.Sometimes they are straightforward ongruenes e.g. in many funtional lan-guages, and sometimes they have to be extended with some additional notion.For instane Milner has three bisimulation{like strutures. His CCS ontainsboth external ations, whih are ways external observers may interat with asystem, and internal � ations, whih annot be interfered with from outside. Inhis alulus there are several forms of bisimulation. Strong bisimulations are thosewhih onsider � ations and insist that these must be mathed on both sidesof the relations. Weak bisimulations allow � ations to be ignored to an extent,but lose ongruene as a result. His �nal relation { observation ongruene is amodi�ation of weak bisimulation to restore the ongruene.There is always a need for anyone proposing to use oindution to prove on-gruene in a given domain to show that bisimilarity will at as a ongruene aswell as an equivalene. Howe [Howe 89℄ developed a general proedure for provingthe ongruene of bisimilarity in funtional languages.2.6 Towards a General TheoryAlthough I shall not be disussing ategory theory elsewhere in this thesis, muhof the reent theoretial work involving oindution has used ategory theory. Thetheory presented in the following setion is not required for an understanding ofthe work in this thesis, however it helps to explain what all the various oindutionpriniples have in ommon. In this way it ontributes to an understanding of theextent to whih the proof strategy presented is general and to what extent it isspei� to the operational semantis of lazy funtional languages.Rutten [Rutten 96℄ noted that\indution priniples are well{known and muh used. The oindutivede�nition and proof priniples for oalgebras are less well{known byfar, and often even not very learly formulated. . . .many families ofsystems look rather di�erent from the outside, and so do the orre-sponding notions of bisimulation."For this reason he has worked on developing a Universal Coalgebra to at as anabstration of all suh systems. In hapter 3, I disuss two oindution rules.Both of these work on the theory of oindution as an elimination rule for greatest�xedpoints but otherwise appear dissimilar. This serves as an illustration of theproblem outlined by Rutten.I intend to outline this general theory here in order to provide some idea ofhow the various presentations relate to eah other. It is outside the sope of thisthesis to present in full Rutten's work. What is being attempted is to put forwardthe entral de�nitions and theorems.

2.6. Towards a General Theory 212.6.1 Category TheoryBefore embarking upon Rutten's work it is neessary to outline a few oneptsfrom ategory theory. The intention here is to provide only suh de�nitions asare atually needed in the disussion; for a fuller disussion of ategory theory see[Ma Lane 71℄.Informally a ategory is a olletion of objets with arrows between them.These arrows at a bit like funtions, in fat the objets that the arrows mapbetween are often referred to as the domain and odomain of the arrow. Arrowsmay be omposed together like funtions and eah objet has an identity arrow.For example, in the ategory of sets, the objets are sets, and the arrows arefuntions between sets. Formal de�nitions follow:De�nition 2.18 [Azel 97℄ A ategory onsists of objets and arrows. Anarrow, f , between two objets A and B is written f : A ! B. A ategory alsoomes with two operations1. If f : A ! B and g : B ! C then (g; f) is alled a omposable pairand the omposite arrow g Æ f : A! C. Furthermore for omposable pairs(g; f) and (h; g), (h Æ g) Æ f = h Æ (g Æ f).2. An assignment of an arrow idA to eah objet A, alled the identity on A,suh that for f : A! B, f Æ idA = idB Æ f = f .De�nition 2.19 [Azel 97℄ An objet, A, is an initial objet in a ategory iffor every other objet, B, there is a unique arrow f : A! B.For example, in the ategory of sets the empty set, ;, is the unique initial objetsine for any set, S, the empty funtion is the unique funtion f : ; 7! S.De�nition 2.20 [Azel 97℄ An objet, A, is a �nal objet in a ategory if forevery other objet, B, there is a unique arrow f : B ! A.In the ategory of sets all one point sets, fag, are �nal objets, with the onstantfuntion as the unique arrow f : S ! fag where 8x 2 S:f(x) = a.Categories themselves an be grouped into ategories. Among the arrows thatmay exist between them are a lass of arrows alled funtors whih preserve theidentity and omposition operations.De�nition 2.21 [Azel 97℄ If C1 and C2 are ategories, a funtor, F , from C1to C2, written F : C1 ! C2, onsists of:1. An assignment of an objet F (A) of C2 to eah objet A of C1.2. An assignment of an arrow F (f) : F (A) ! F (B) of C2 to eah arrow f :A! B of C1.

22 Chapter 2. BakgroundThese assignments have the following properties:� For eah objet, A, in C1, F (idA) = idF (A).� For eah omposable pair (g; f) in C1, (F (g); F (f)) is omposable in C2 andF (g Æ f) = F (g) Æ F (f)De�nition 2.22 [Azel 97℄ A funtor from a ategory C to itself is alled anendofuntor on C.De�nition 2.23 [Azel 97℄ If F is an endofuntor then an F -algebra is a pair,(A; �), where A is an objet of the ategory and � : F (A)! A.De�nition 2.24 [Azel 97℄ If F is an endofuntor then an F -oalgebra is apair, (A; �), where A is an objet of the ategory and � : A! F (A).De�nition 2.25 [Rutten 96℄ If (S; �S) and (T; �T) are F{oalgebras for somearbitrary endofuntor, F . f : S ! T is an F{homomorphism if F (f) Æ �S =�T Æ f .F{algebras and F{oalgebras themselves an be formed into ategories with F{homomorphisms providing the arrows between them and initial and �nal objetsmay be found. It has been shown [Smyth & Plotkin 82℄ that initial F{algebrasgeneralise the idea of the least �xedpoint of F , similarly �nal F{oalgebras gen-eralise the idea of greatest �xedpoints [Azel & Mendler 89℄.Sine the ideas of initial algebras and �nal oalgebras are more general thanthose of �xedpoints they provide a wider theory in whih to embed programminglanguage semantis that make use of those notions. Initial algebras have tradition-ally been used to model strit datatypes. Final oalgebras are inreasingly beingused to model in�nite datatypes and ertain types of in�nite automata et.2.6.2 BisimulationsIn this setion the notion of a bisimulation whih is entral to many oindutiveproofs is presented formally for the �rst time. This work is taken from Rutten[Rutten 96℄. Rutten is examining oalgebras in general, not just �nal ones, andshowing how they an be used to model various sorts of system.De�nition 2.26 [Rutten 96℄ Let Set be the ategory of sets and let F : Set !Set be a funtor. If (S; �S) and (T; �T) are both F{oalgebras (not neessarily�nal) and R � S � T . Then R is an F{bisimulation if there exists an arrow�R : R ! F (R) suh that the �i in the diagram below are F{homomorphismssuh that �S and �T are the projetions from R onto S and T respetively, andF (�i) Æ �R = �i Æ �i

2.6. Towards a General Theory 23
αS αTαR

F(S) F(T)F(R)

πS T TRS

πT

π

SπF() F()De�nition 2.27 [Rutten 96℄A bisimulation equivalene is a bisimulation whih is also an equivalenerelation.The following three theorems are o�ered without proof; versions of these the-orems with proofs an be found in [Rutten 96℄.Theorem 2.6 The diagonal �S def= fhs; sijs 2 Sg of an F{oalgebra is a bisimu-lationTheorem 2.7 �hS; T idef= SfRjR is a bisimulation between S and T g is a bisim-ulation. Moreover �hS; Si is a bisimulation equivalene.Theorem 2.8 If (A; �) is a �nal F{oalgebra then �A is the only bisimulationequivalene on A and for every bisimulation R on A, R � �A.This last is the entral theorem and is a oindution priniple. In fat it is aspeialisation of Rutten's theorem, whih deals with simple systems of whih �nalF{oalgebras are only an example. However, it should be lear that theorem 2.8is telling us muh the same as the oindution rule in x2.3, speialised to showmembership of �A. Bisimilarity is the most ommon property that is proved usingoindution. It is the relation �hS; Si. However, within any partiular area it isoften presented quite di�erently.Example 2.7 (Based on work in [Rutten 96℄) Take lists as an example; two lists,l1 and l2, are said to be bisimilar if there exists some R suh that hl1; l2i 2 R andfor all l01 and l02 in R hd(l01) = hd(l02) and htl(l01); tl(l02)i 2 R or l01 = l02 = nil.Theorem 2.9 If R is a relation on lazy lists, A! (streams of elements of A), andfor all l01 and l02 in R, hd(l01) = hd(l02) and htl(l01); tl(l02)i 2 R or l01 = l02 = nil thenR is an F{bisimulation for some F and hene hl1; l2i 2 �A! .

24 Chapter 2. BakgroundProof. Let F (S) = 1 + (A � S), suh that for any arrow f : S1 ! S2.F (f) = id1 + (idA � f). F is an endofuntor on the ategory of sets where � and+ are artesian produt and union respetively and 1 is a 1 element set ontainingjust the distinguished symbol 1.(A!; 1 + hhd; tli) is an F{oalgebra, where 1 + hhd; tli (written �A!) is thearrow that takes the stream l to hhd(l); tl(l)i if l = h :: t or to 1 if l = nil.Lemma 2.1 [Rutten 96℄ (A!; �A!) is �nal.Proof. (Based on a sketh of the proof in [Rutten 96℄) Let(S; 1 + hv; ni) be an arbitrary F{oalgebra where 1 + hv; ni takessome element s of S to hv(s); n(s)i if v(s) and n(s) exist and to 1otherwise.Let fS : S ! A! be the arrow suh that for any s 2 S if v(s) and n(s)exist fS(s) = v(s) :: fS(n(s)) and fS(s) = nil otherwise.Let f � fS + f1 + hv; ni 7! �A!g. f : (S; 1 + hv; ni)! (A!; �A!).If f(s) = h :: t for some s 2 S then hd(f(s)) = v(s) and tl(f(s)) =fS(n(s)) = f(n(s)).� (�A! Æ f)(s) = hv(s); tl(f(s))i = hv(s); f(n(s))i.� F (f) = id1+(idA� f) by de�nition, so (F (f)Æ (1+ hv; ni))(s) =hv(s); f(n(s))i.So if f(s) = h :: t then (�A! Æ f)(s) = (F (f) Æ (1 + hv; ni))(s).If f(s) = nil for some s 2 S then(�A! Æ f)(s) = 1 = (F (f) Æ (1 + hv; ni))(s)Hene f is an F{homomorphism.Let g be an arbitrary F{homomorphism from (S; 1 + hv; ni) to(A!; �A!). This means that g must equal gS+f(1+hv; ni) 7! �A!g forsome gS suh that F (gS)Æ (1+ hv; ni) = �A! ÆgS. So (�A! ÆgS)(s) = 1or hv(s); gS(n(s))i = hhd(gS(s)); tl(gS(s))i.If (�A! ÆgS)(s) = 1 then gS(s) = nil (by de�nition of �A!). This meansthat (F (gS)Æ (1+ hv; ni)) = 1 whih in turn implies that v(s) and n(s)don't exist (by de�nition of 1 + hv; ni). So if (�A! Æ gS)(s) = 1 thenv(s) and n(s) don't exist and gS(s) = nil.If hv(s); gS(n(s))i = hhd(gS(s)); tl(gS(s))i then hd(gS(s)) = v(s) andtl(gS(s)) = gS(n(s)). This means that v(s) and n(s) exist and gS(s) =v(s) :: gS(n(s)).Hene if v(s) and n(s) exist gS(s) = v(s) :: gS(n(s)), gS(s) = nilotherwise. This is the de�nition of fS .Thus f is the unique F{homomorphism from (S; 1+hv; ni) to (A!; �A!)so (A!; �A!) is �nal. 2

2.7. Coindutive De�nitions 25For R to be an F{bisimulation on A! there must be an arrow �R : R ! F (R),suh that the �i are F{homomorphisms (from the de�nition of F{bisimulation).Note that:� �R : hl1; l2i ! 1 + ha; hl01; l02ii where a 2 A and hl01; l02i 2 R (bythe de�nition of F)� �i is an F{homomorphism i�{ If �R(hl1; l2i) = 1 thenF (�i) Æ �R(hl1; l2i) = 1 (2.10)= 1 + hhd; tli Æ �i (2.11){ If �R(hl1; l2i) = ha; hl01; l02iiF (�i) Æ �R(hl1; l2i) = ha; lii (2.12)= hhd(li); tl(li)i (2.13)= 1 + hhd; tli Æ �i (2.14)We want�R : hl1; l2i ! (hhd(l1); htl(l1); tl(l2)ii if l1 = h1 :: t1 and l2 = h2 :: t21 if l1 = l2 = nil (2.15)Clearly �R : R! 1 + (A� R). Moreover if for all hl1; l2i 2 R, hd(l1) = hd(l2) orl1 = l2 = nil then F (�i) Æ �R(hl1; l2i) = hhd(li); tl(li)i _ 1 whih means that �i isan F{homomorphism. Hene R is an F{bisimulation. 22.7 Coindutive De�nitionsThe term oindutive de�nition is used to refer to both the de�nition of datatypesand the de�nition of funtions.2.7.1 Coindutive DatatypesIt is usual for reursive datatypes to be de�ned indutively, essentially as the least�xedpoint of a funtion. However, this will exlude some objets that may bedesired, suh as [M;M; � � �℄, the in�nite list of Ms. In this ase the dual may beused and the datatype an be de�ned oindutively as the greatest �xedpoint ofthe funtion.For example, the funtion list fun on sets of lists:list fun(�;S) def= fh :: tjh : �; t 2 Sg [fnilg (2.16)

26 Chapter 2. Bakgroundgives strit or �nite lists as its least �xed point and lazy lists, or streams as itsgreatest �xedpoint.Interestingly, if the funtion had been de�ned without the [fnilg then thegreatest �xedpoint would have been in�nite lists only (without ontaining any�nite lists) and the least �xedpoint would have been the empty set.2.7.2 Coindutively De�ned FuntionsAn extension of the onstrution versus observation distintion is to talk abouthaving funtion de�nitions that are based on observations rather than onstru-tors. These are also alled oindutive or oreursive de�nitions.Say head; tail and nil are being treated as observations. Then a oindutivede�nition of the map funtion would de�ne the values of head(map(F; L)) andtail(map(F; L)). L = nil) map(F; L) = nil (2.17)L 6= nil) head(map(F; L)) = F (head(L)) (2.18)L 6= nil) tail(map(F; L)) = map(F; tail(L)) (2.19)The oindutive de�nitions may assume that the datatype is purely in�nite, i.e.ontaining no �nite objets, so for in�nite streams the oindutive de�nition ofmap(F) is: head(map(F; L)) = F (head(L)) (2.20)tail(map(F; L)) = map(F; tail(L)) (2.21)The �rst of these de�nitions of map(F) an be seen to give the same informationas the more usual de�nition of map(F), however, suh oindutive de�nitions arenot always diretly equivalent. As an example onsider the append funtion, <>.The usual de�nition is: nil <> L = L (2.22)(H :: T) <> L = H :: (T <> L) (2.23)while the oindutive de�nition isL1 = nil ^ L2 = nil! L1 <> L2 = nil (2.24)L1 = nil ^ L2 = H :: T ! head(L1 <> L2) = head(L2) (2.25)L1 = nil ^ L2 = H :: T ! tail(L1 <> L2) = nil <> tail(L2) (2.26)L1 = H :: T ! head(L1 <> L2) = head(L1) (2.27)L1 = H :: T ! tail(L1 <> L2) = tail(L1) <> L2 (2.28)

2.7. Coindutive De�nitions 27This an be written in terms of onstrutors, by ombining the head and tail ofequivalent terms as ons ells and rewriting various subterms using the equalitiesin the onditions. This gives three equations:nil <> nil = nil (2.29)nil <> (H :: T) = H :: (nil <> T) (2.30)(H :: T) <> L = H :: (T <> L) (2.31)These are not the same as the equations normally used to de�ne <>.Paulson [Paulson 93℄ formalises this by introduing the funtion llist ore asa dual to the more normal list re (or fold) whose introdution rules are:list re(nil; ; f) = list re(h :: t; ; f) = f(h; list re(t; ; f))in order to de�ne oreursive funtions. llist ore takes an objet a and a funtionf from some set, A, ontaining a to some set fhig [(B � A) where hi is the solevalue of the nullary produt type, unit, in Isabelle's Higher Order Logi theory(Isabelle/HOL). llist ore is de�ned as:llist ore(a; f) = (nil if f(a) = hix :: llist ore(b; f) if f(a) = hx; billist ore is used to de�ne funtions and Paulson has shown that for all a andf , funtions de�ned with llist ore are lazy lists on B and are unique. From ade�nition phrased in terms of llist ore the more usual introdution rules an bederived, sometimes automatially [Paulson 93℄.Example 2.8 Using llist ore map(F) is de�ned asmap(F; L) def= llist ore(L; �l:list ase(l; Inr(hi); �x:l0:Inr(hF (x); l00i))) (2.32)where list ase(nil; ; d) = (2.33)list ase(H :: T; ; d) = d(H; T) (2.34)Rutten [Rutten 96℄ is able to generalise this disussion to oindutive de�ni-tions within ategory theory. This is based on the de�nitions of a transition systemspei�ation from [Groote & Vaandrager 92℄.V and A are two sets of variables and ations respetively.De�nition 2.28 [vanGlabbeek 96℄ A funtion delaration is a pair (f; n) of afuntion symbol f 62 V and an arity n 2 nat. A funtion delaration (; 0) is alsoalled a onstant delaration. A signature is a set of funtion delarations.The set T (�) of terms over a signature � is de�ned reursively by:

28 Chapter 2. Bakground� V � T (�).� if (f; n) 2 � and t1; � � � ; tn 2 T (�) then f(t1; � � � ; tn) 2 T (�).De�nition 2.29 [vanGlabbeek 96℄ Let � be a signature. A positive �{literal isan expression t a! t0 and a negative �-literal an expression t 6 a! or t 6 a! t0 witht; t0 2 T (�) and a 2 A. A transition rule over � is an expression of the form H�with H a set of �{literals and � a �{literal. An ation rule is a transition rulewith a positive onlusion. A transition system spei�ation (TSS) is a pair(�; R) with � a signature and R a set of ation rules over �.The de�nition of a \meaningful" TSS is an open question of researh.[vanGlabbeek 96℄ onsiders a number of possible meanings for TSS. The notionof a transition system spei�ation, however, allows Rutten to give the followingde�nition.De�nition 2.30 [Rutten 96℄ Let S be a set and (P; �) a �nal F{oalgebra. Givena transition struture � : S ! F (S) there exists, by the �nality of P , a uniquehomomorphism f� : S ! P . Thus, speifying a transition struture on S uniquelyde�nes a funtion f� : S ! P whih is onsistent with that spei�ation in that itis a homomorphism. f� is said to be de�ned by oindution from (the spei�ationof) �. f� is sometimes alled the oindutive extension of �.Example 2.9 Let's return to the example of the de�nitions of map in order toillustrate this de�nition. S is the domain of the funtion, i.e. (� ! �) � A!.(P; �) is (A!; �A!) as disussed in x2.6.2.So to de�ne map oindutively it is neessary to speify a transition struture�map : ((� ! �)� A!)! (1 + (A� ((� ! �)� A!)))De�ne the transition struture �map byhF; nili �map! 1 (2.35)hF; H :: T i �map! hF (H); hF; T ii (2.36)This gives rise to a unique funtion fmap from (� ! �) � A! to A! suhthat �A! Æ fmap = F (fmap) Æ �map. If hF; Li �map! 1 then L = nil and F (fmap) Æ�map(hF; Li) = 1 hene �A! Æ fmap(hF; Li) = 1 whih implies thatfmap(hF; nili) = nilSimilarly if hF; Li �map! ha; hF; T ii then a = F (H) and and L = H :: T , more-over F (fmap) Æ �map(hF; Li) = hF (H); fmap(hF; T i)i hene �A! Æ fmap(hF; Li) =hF (H); fmap(hF; T i)i whih implies thatfmap(hF; H :: T i) = F (H) :: fmap(F; T)

2.7. Coindutive De�nitions 29The Problem with FlattenPaulson omments that oreursion raises some interesting problems. For instanethe funtion flatten is usually de�ned using the rules:flatten(nil) = nil (2.37)flatten(H :: T) = H <> flatten(T) (2.38)An attempt to de�ne something similar oindutively requires a transition stru-ture �flatten : (A!)! ! 1 + (A� (A!)!nil �flatten! nil (2.39)nil :: T �flatten! ? (2.40)(H :: T) :: T 0 �flatten! hH; T :: T 0i (2.41)(2.40) is problemati, in fat it isn't possible to de�ne the observations from nil :: Tto 1 + (A � (A!)!) without knowing fats about T , namely whether a non nilelement of T exists and if so, what the �rst non nil element is.It is easy to grasp that flatten(nil :: T) = flatten(T) is problemati, espe-ially if you onsider the impliations of trying to atten an in�nite list of emptylists whih will result in a non{terminating proess. This is formalised by the diÆ-ulty in de�ning an appropriate transition struture. However, this is an informalargument as to why this an't be done; I'm not aware of a formal proof of theimpossibility of this de�nition.2.7.3 Coreursion and UnfoldRutten's de�nition of oindutive extension an be illustrated by the diagram
F(f)ααf

S F(S)

P F(P)

α

πCoindutive extension has a dual [Hutton 98℄ illustrated by the diagram where(P; �) is an initial G-algebra, and � : G(S) ! S is known as fold. fold is a well

30 Chapter 2. Bakground
βgG(g)

β

G(S) S

G(P) P

β

ρ

known funtion and expresses a generality in reursive de�nitions, for instane forlists: fold(op; a; nil) = a (2.42)fold(op; a; h :: t) = op(h; fold(op; a; t)) (2.43)Similarly � is alled unfold. The problem with flatten illustrates the fat thatnot all funtions into greatest �xedpoints an be expressed using unfold. Someauthors have referred to flatten as \having no oreursive de�nition". I haveadopted this onvention in the rest of thesis, but readers should be aware that \nooreursive de�nition" is being used here in a restrited sense meaning that thefuntion an not be expressed using unfold.2.8 Coindution in Theorem ProversSeveral standard theorem provers have apabilities for oindutive proof.2.8.1 IsabellePerhaps the earliest of this work was done in Isabelle [Paulson 94a℄ for whih aspeial pakage has been developed for oindutive de�nitions [Paulson 94b℄. Thispakage is designed around �xedpoint theory and allows indutive and oindutivedatatypes to be de�ned together with their elimination rules (i.e. indution andoindution) from the introdution rules.Example 2.10 Take the introdution rules for lists:nil 2 list(A) a 2 A l 2 list(A)a :: l 2 list(A)These an be translated into two �xedpoint datatype de�nitions of the indutiveand oindutive datatypes respetively.

2.8. Coindution in Theorem Provers 31list(A) = lfp(�X:fa :: lja 2 A; l 2 Xg [fnilg)llist(A) = gfp(�X:fa :: lja 2 A; l 2 Xg [fnilg)The indutive de�nition spei�es the least losed sets under the given rules anda oindutive de�nition spei�es the greatest losed set. From these de�nitionsIsabelle an derive the indution and oindution rules:fa :: lj a 2 A; l 2 Xg � X nil 2 Xlist(A) � Xa 2 X X � fa :: lj a 2 A; l 2 Xg [fnilga 2 llist(A)Milner and Tofte's work has been reprodued in Isabelle [Frost 95℄. Theironsisteny result has been proved both in Isabelle's HOL and ZF theories. The�rst of these used Paulson's development of oindution in HOL [Paulson 93℄ theseond used the oindutive de�nition pakage for ZF.2.8.2 HOLThe work on oindution in the HOL system [Gordon 88℄, has perhaps been arriedfurthest with the provision of tatis for oindution. This is part of a projet toprovide a proof tool for reasoning about a small, lazy funtional language. Atheory for the lazy funtional semantis has been developed in HOL [Collins 96℄.Equivalene is de�ned by Abramsky's appliative bisimulation and so oindutionhas been identi�ed as a entral proess. A number of tatis have been developed tosupport reasoning with this language. One applies the oindution rule, given theprovision of a bisimulation by the user. It an even speulate simple bisimulationsautomatially. There are also a number of tatis for proving relations to bebisimulations. Both this and Isabelle's oindutive de�nition pakage are disussedin greater detail in hapter 8.2.8.3 CoqWork has also been done in Coq [Paulin-Mohring 95℄ where streams (lazy lists),a oindutive datatype, have been used in the spei�ations of a sequential mul-tiplier and the sieve of Eratosthenes. Although oindutive datatypes were used,the oindution proof rule itself was not employed in the veri�ation of thesespei�ations.2.8.4 PVSHensel and Jaobs [Hensel & Jaobs 97℄ have axiomatised a theory of (possibly)in�nite sequenes in PVS [Owre et al 92℄, using �nal oalgebras. This an be usedfor oindutive proofs although no speial tools exist to aid the proof.

32 Chapter 2. Bakground2.8.5 The Conurreny WorkbenhAs might be expeted, given that the use of oindution originated in onurrenysome of the most impressive proof tools appear there. The Conurreny Work-benh (CWB)[Cleaveland et al 89℄ allows a user to de�ne systems in the syntaxof CCS and analyse their state spae, hek for equivalenes and verify proesseswithin a modal logi. At present the CWB an only deal with �nite state proessesand it doesn't ope with value{passing CCS, however work is underway in boththese areas [Brad�eld & Stirling 90℄, [Bruns 91℄, [Monroy et al 95℄.The CWB uses oindution (as the bisimulation proof method) to hek forequivalenes.2.9 ConlusionThis hapter has attempted to give an overview of work in oindution. It splitsroughly into three parts.The �rst, in setions x2.3 and x2.4, dealt with the notion of bisimulation andthree areas in whih it is used, desribing its formulation in those areas in somedetails.The seond setion dealt with more theoretial aspets of oindution in parti-ular the development of oindution priniples (x2.5), the theory of �nal oalgebras(x2.6) and oindutive de�nitions (x2.7).The last setion (x2.8) looked at various implementations of oindution andproof tools for oindution.The overall impression should be that a great deal of work has been done onproviding in theoretial bases for oindution in ertain spei� areas, but thatthe understanding of any sort of general presentation is only in its infany. Forinstane the de�nition of bisimulation learly has some ommon elements whereverit appears: it is the greatest �xedpoint of some funtion F on relations and somemembers of F (R) for some relation R depend upon the values of a pair in Rin some way. However the spei�s of that dependene vary greatly: they havederivatives in R (CCS), their tails are in R (lazy lists) et. Thus although someaspets of a oindutive proof are the same wherever oindution ours, e.g. theappliation of some sort of oindution rule, some aspets vary greatly from domainto domain, e.g. the proof requirements needed to demonstrate bisimilarity.Furthermore although some attempt has been made to provide tools to aidoindutive proofs, the only area where these are regularly used on a wide rangeof problems and where oindution is a standard proof method is in the �eld ofConurreny. However, this is likely to hange in the future with the inreaseduse of formal methods for lazy funtional languages and the reent developmentof oindution priniples for the semantis of objet{oriented languages.

Chapter 3
Coindution Spei� to FuntionalLanguages

3.1 IntrodutionThis hapter aims to give an overview of the operational semantis of funtionallanguages and at the same time to present a number of examples of oindutiveproofs in this setting in order to examine similarities and di�erenes aross a setof proofs.3.2 Operational SemantisOperational semantis desribe how programs in some language funtion on someabstrat mahine; this is in ontrast to denotational semantis that desribe whatobjet a program denotes. This objet is usually mathematial but it an be aprogram in another language.The operational semantis of lazy funtional languages are based on Abram-sky's work [Abramsky 90℄ and use his notion of appliative bisimulation to buildup an equational theory. v ranges over valuesa, b and range over programse ranges over expressionsFigure 3{1: Notational Conventions33

34 Chapter 3. Coindution Spei� to Funtional LanguagesReall that in the lazy �{alulus the \meaning" of a term is its weak headnormal form (in the ase of the \pure" alulus desribed in hapter 2 the WHNFis a �{abstration). WHNFs are often referred to as values and this onventionis adopted here. The alulus also ontains two relations, big and small stepredution.De�nition 3.1 [Gordon 95b℄ Big step evaluation is spei�ed indutively by thetwo rules: �x:e + �x:e (3.1)a + �x:e e[b=x℄ + va b + v (3.2)Big step evaluation orresponds to the notion of the whole evaluation proess ofa program to disover its outome.An important faet of reasoning about programs is knowing when two programsare interhangeable. This is formalised by Morris{style Contextual Equivalene[Morris 68℄.De�nition 3.2 [Gordon 95b℄ Let a ontext C, be an expression suh that thereare no free variables in C, exept for f�g. This variable is a hole that will be�lled in.De�nition 3.3 [Gordon 95b℄Let C be a ontext, de�ne the relation ', ontextual equivalene, as follows:C[a℄ def= C[a=�℄ (3.3)a + def= 9v:(a + v) (3.4)a<� b def= 8C(C[a℄ +) C[b℄ +) (3.5)a ' b def= a<� b&b<� a (3.6)De�nition 3.4 [Gordon 95b℄ An experiment, E , is a ontext of the form �a,where a is a program. If �E = E1; � � � ; En, �E [b℄ means E1[� � � En[b℄ � � �℄.Notie that the experiments are a speial ase of ontexts.Lemma 3.1 (Context Lemma) [Milner 77℄(and more reently [Berry et al 86℄)a<� b i� 8 �E(�E[a℄ +) �E[b℄ + = (�E[a℄ = �E[b℄)).

3.2. Operational Semantis 35De�nition 3.5 [Gordon 95b℄ Small step redution, a red; b, is spei�ed indu-tively by the rules: (�x:e)b red; e[b=x℄ (3.7)a red; a0E [a℄ red; E [a0℄ (3.8)Small step redution orresponds to a notion of one step in a step by step proessof program evaluation.3.2.1 Stati SemantisThe lazy �{alulus is extended to typed languages by extending the syntax andsemantis.Types are de�ned indutively (although later in this hapter I will disussde�ning the types oindutively). The following basi typing rules are added foronstants and variables, �{abstrations and funtion appliation (i.e. the elementsof the untyped alulus). � is an environment, a �nite map from variables to types,of form x1 : A1; � � � ; xn : An. Dom(�), the domain of � is the set of variablesx1; � � � ; xn. �; x : �;�0 ` x : ��; x : � ` e : � x 62 Dom(�)� ` �x : �:e : � ! �� ` e1 : � ! � � ` e2 : �� ` e1(e2) : �These are a part of the stati semantis (semantis used at ompile time, e.g.for type heking) of the language whih provides rules for building up typedexpressions:Example 3.1 In the ase of the type of lists the stati semantis would assoiatethe list onstrutors with types:� ` nil : list(�) � ` e1 : � � ` e2 : list(�)� ` e1 :: e2 : list(�)They would probably also (though not neessarily) provide typing rules for somesort of ase analysis funtion to be used in funtion de�nition:� ` e1 : list(�) � ` e2 : � � ` e3 : � ! list(�)! �� ` list ase(e1; e2; e3) : �

36 Chapter 3. Coindution Spei� to Funtional Languages3.2.2 Dynami SemantisThe de�nition of big step evaluation is also extended to a typed language byexpliit linking to small step redution:De�nition 3.6 [Gordon 95b℄ Let red;� denote the reexive transitive losure of red;.a red; def= 9b:(a red; b) (3.9)a + b def= a red;� b ^ :(b red;) (3.10)a + def= 9b:a + b (3.11)a * def= a red;� b) b red; (3.12)If a + b then a evaluates to b. If a + then a onverges. If a * then a diverges.The dynami semantis of the language (semantis used at run time, e.g. forevaluation) extends the set of values (in the untyped alulus onsisting only of�{abstrations), small step redution rules and experiments.So in example 3.1 the set of values would be extended to inludev ::= nil j e1 :: e2The small step redution rules would be extended to inludelist ase(nil; b;) red; blist ase(e1 :: e2; b;) red; (e1)(e2)Lastly the experiments would be extended to inludeE ::= list ase(�; e1; e2)

3.3. Labelled Transition Systems 373.3 Labelled Transition SystemsThe last omponent of the operational semantis involves the use of labelled tran-sition systems. In its most basi form a labelled transition system is a binaryrelation on terms or proesses indexed by a set of labels. Within the semantis oflazy languages the labels tend to be type destrutors and the RHS of the relationis the e�et of applying that type destrutor to the LHS. Often the labels (ortransitions) are onsidered to be things you an \observe" about the program.In hapter 2 a de�nition of a transition system spei�ation was given. Itis important to note that a transition system spei�ation is not neessarily thesame as a labelled transition system, sine a TSS requires that the hypotheses of alltransition rules are also �{literals. However, it is often possible to turn a labelledtransition system into a TSS. For instane, most of the systems examined in thisthesis have either �{literals as hypotheses or a redution relation (e.g. a red; a0).It is possible to regard red; as a transition and hene make these systems intoTSSs. This approah is not adopted here, however Gordon [Gordon 95a℄ extendshis ongruene proofs to apply to his Haskell-like language where red; is treated asa transition.The transition relation between two terms a and a0 labelled by � is generallywritten as a �! a0 (as in CCS) and this notation will be used throughout thisthesis. There are some general de�nitions of bisimilarity whih apply to all labelledtransition systems.The intuition behind equivalene in labelled transition systems is that twoexpressions are equivalent if they always make mathing transitions to two moreequivalent expressions. This relation is built up �rst as an order using [�℄, afuntion on relations. This funtion takes one relation and produes another.Every transition from an expression on the left or a pair in the resulting relation ismathed by a transition from the expression on the right and the results of thesetransitions are in the original relation. [�℄ doesn't guarantee that all transitionsfrom the seond member of a pair an be mathed by transitions from the �rst.This required symmetry is obtained by interseting with various omplementsSop1, where aSopb i� bSa.[S℄ def= fha; bijFor all � if a �! a0 there is a b0 with b �! b0 and a0Sb0ghSi def= ([S℄ \ [Sop℄)opNotie that h�i depends upon the underlying transition system. The systempresented here will be referred to as T and so h�iT is the most ommonly used1Taking the notation from Gordon

38 Chapter 3. Coindution Spei� to Funtional Languagesfuntion in this thesis. Where there is no onfusion about the transition systemunder onsideration the subsript is dropped.The greatest �xedpoint of h�i is written �. Two objets, a and b, in a labelledtransition system are said to be bisimilar i� a � b.Theorem 3.1 [Gordon 95a℄ a � b i�1. For all � if a �! a0 there is a b0 with b �! b0 and a0 � b02. For all � if b �! b0 there is a a0 with a �! a0 and a0 � b0This means that any transition one objet an perform an be mathed by atransition by the other objet and the resulting objets are also bisimilar.Informally, � onsists of all equivalent \hains" that an be onsumed usingthe language's transitions (e.g. if tail and nil are transitions then � will ontain allobservationally equivalent �nite and in�nite lists) and all equivalent abstrationsof terms (e.g. h�x:f(x); �x:g(x)i if 8x:f(x) = g(x)).Theorem 3.2 [Gordon 95a℄ � is an equivalene relation.De�nition 3.7 [Gordon 95℄ A set is F{dense i� X � F (X)De�nition 3.8 A bisimulation is a h�i-dense relationTheorem 3.3 [Gordon 95a℄ R is a bisimulation if R � hR[�i.This means thatR � fha; bij whenever a �! a0 and b �! b0; a0Rb0 or a0 � b0 and vie versa gTheorem 3.3 is useful sine it allows properties of �, most notably its reexivityto be used during the ourse of a oindutive proof.The oindution rule for � (based on (2.6)) isha; bi 2 R R � hRia � b (3.13)Extended using theorem 3.3 this beomesha; bi 2 R R � hR[�ia � b (3.14)this is the standard oindution rule for a labelled transition system.So far these de�nitions are not dependent upon any one given labelled tran-sition system. Generally, however, we want bisimilarity to be a ongruene re-lation on the language that an at as a form of equality. A good deal of work

3.4. Operational Semantis 39has gone into showing that observational equivalene is observation ongruenefor various languages and domains [Howe 89℄, [Pitts 92℄, [Fiore 93℄, [Gordon 95a℄,[Gordon 96℄. However this thesis is interested in produing proofs of bisimilarity(the equivalene of two expressions) not ongruene (the ability of both expressionsto behave interhangeably when replaing a hole in a ontext). Although the de-sired �nal result is probably a proof of ongruene sine that implies a useful formof equality between two objets, proofs that � is a ongruene for some partiularlabelled transition sequene are frequently ompliated and none are o�ered here.If � has been established as a ongruene then the bisimulation proofs are alsoproofs of ongruene.3.4 Operational SemantisThe operational semantis of the language desribes a labelled transition systemin whih � will be equivalent to Abramsky's appliative bisimulation. In this waya � b if they both evaluate to the same weak head normal form. This is done byspeifying a set of observations (or transitions) whih desribe something that anbe observed about a value. For lists the standard transitions are nil, hd (head)and tl (tail). So the transition rules given in the semantis would benil nil! ? (3.15)a :: b : list(�)a :: b hd! a a :: b : list(�)a :: b tl! b (3.16)? is de�ned to be some arbitrary divergent program (with no transitions).Lastly there is a lemma about observations whih states that if some expressionredues to another then the observations from both expressions are the same.This is important sine observations are generally only de�ned for values, so todetermine the observations from an expression it is �rst neessary evaluate ita : � � 6� �1 ! �2 a red; b b �! a �! (3.17)Note. If a �! b then � is said to apply to a. b is said to be the result of the transition.The ondition � 6� �1 ! �2 is to ensure that only redution whih is atually neededis undertaken sine transitions from expressions of type �1 ! �2 are unonditionalwhereas transitions from other types are ontingent upon onvergene.Examples of suh languages an be found in the literature, for instane in[Gordon 95a℄ and [Collins 96℄.

40 Chapter 3. Coindution Spei� to Funtional Languages3.5 An Example of a Coindutive Proof in anLTS for a Funtional LanguageI'm going to provide the stati and dynami semantis together with transitionrules for a small funtional language. These are in �gures 3{2, 3{3 and 3{4. Thislanguage is based on Gordon's [Gordon 95a℄ whih, in turn was based on HaskellDe�nition 3.9 The syntax of types, A, and expressions, e, is as follows:A ::= bool j nat j A! A j list(A) j treebin(A) j tree(A)e ::= x j �(x : A)e j e(e) j re(f : A! B; x : A)e (3.18)j 0 j s(e) j num ase(e; e; e)j bv(bv 2 ftrue; falseg) j if e then e else ej nil j e :: e j list ase(e; e; e) (3.19)j leafbin(e) j nodebin(e; e; e) j treebin ase(e; e; e) (3.20)j node(e; e) j tree ase(e; e; e) (3.21)num ase and list ase are speialisations of the funtion fold from hapter 2 fornumbers and lists respetively. re is similar to fold, but ignoring the possibilityof any kind of base ase.The following de�nition is useful for disussing oindutive proofsDe�nition 3.10 A set syntatially represented by one related pair of expressionsontaining free or universally quanti�ed variables is a pair sheme.If R is the pair sheme, fhe1; e2ig, and e1 red; e01 then he01; e2i 2 R. Similarlyif e2 red; e02 then he1; e02i 2 R,If x is a universally quanti�ed variable appearing in R and v a value then ife1[v=x℄ red; e01 then he01; e2i 2 R. Similarly if e2[v=x℄ red; e02 then he1; e02i 2 R.For every pair of expressions he1; e2i if there exists e10 and e20 suh that e1 red; e10and e2 red; e20 and he10; e20i 2 R then he1; e2i 2 R.Bisimulations in funtional languages are invariably the unions of one or more pairshema.The derived inferene rule (3.22) is also needed for most oindutive proofs, itsproof an be found in appendix D8R:81 � i � n: Vni=1hai; bii 2 R)8�:((ai �! a0i _ bi �! b0i))((ai �! a0i ^ bi �! b0i)^ha0i; b0ii 2 R[�))Sni=1hai; bii � hSni=1hai; bii[�i (3.22)

3.5. An Example of a Coindutive Proof in an LTS for a Funtional Language41
�; f : � ! �; x : � ` e : �� ` re(f : � ! �; x : �)e : � ! �� ` bv : bool� ` e1 : bool � ` e2 : � � ` e3 : �� ` if e1 then e2 else e3 : �� ` 0 : nat � ` n : nat� ` s(n) : nat� ` e1 : nat � ` e2 : � � ` e3 : nat! �� ` num ase(e1; e2; e3) : �� ` nil : list(�) e1 : � � ` e2 : list(�)� ` e1 :: e2 : list(�)� ` e1 : list(�) � ` e2 : � � ` e3 : � ! list(�)! �� ` list ase(e1; e2; e3) : �� ` e : �� ` leaf(e) : list(�) e1 : � � ` e2 : treebin(�) � ` e3 : treebin(�)� ` nodebin(e1; e2; e3) : treebin(�)� ` e1 : treebin(�) � ` e2 : � ! � � ` e3 : � ! treebin(�)! treebin(�)! �� ` treebin ase(e1; e2; e3) : �e1 : � � ` e2 : list(tree(�))� ` node(e1; e2) : tree(�)� ` e1 : tree(�) � ` e2 : � ! � � ` e3 : � ! list(tree(�))! �� ` tree ase(e1; e2; e3) : �Figure 3{2: Stati Semantis

42 Chapter 3. Coindution Spei� to Funtional Languages

v is a value if it is of the form:v ::= bv j 0 j s(n) j nil j a :: as j leafbin(e)j nodebin(e; l; r) j node(e; f) j �x; e:re(f; x)eRedution Rules:if bv then atrue else afalse red; abvnum ase(0; b;) red; bnum ase(s(n); b;) red; (n)list ase(nil; b;) red; blist ase(h :: t; b;) red; (h)(t)treebin ase(leaf(a); b;) red; b(a)treebin ase(node(a; l; r); b;) red; (a)(l)(r)tree ase(node(a; l); b;) red; list ase(l; b(a); (a))(�x : �:e)(a) red; e[a=x℄(re(f; x)e)(a) red; e[(re(f; x)e)=f; a=x℄E is an experiment if it is of the form:�(a) j if � then a else a j num ase(�; a; a) j list ase(�; a; a)j treebin ase(�; a; a) j tree ase(;a; a)
Figure 3{3: Dynami Semantis

3.5. An Example of a Coindutive Proof in an LTS for a Funtional Language43
a : �1 ! �2 b : �1a ap(b)! a(b)bv bv! ?0 0! ? s(n) p! nnil nil! ?a :: b hd! a a :: b tl! bleafbin(a) label! anodebin(a; l; r) label! anodebin(a; l; r) left! l nodebin(a; l; r) right! rnode(a; f) label! a node(a; f) forest! fa : � � 6= �1 ! �2 a red; b b �! a �! Figure 3{4: Transition Rules

44 Chapter 3. Coindution Spei� to Funtional LanguagesExample 3.2 is an example of a oindutive proof in this language.Example 3.2 8f; x: map(f; iterates(f; x)) � iterates(f; f(x))where the funtions, map and iterates are de�ned asmap(f; l) � �m:list ase(l; nil; re(m; h; t)(f(h) :: m(f; t)))iterates(f; x) � �i:re(i; x)(x :: i(f; f(x)))These give rise to the redution rules:map(F; nil) red; nilmap(F;H :: T) red; H :: map(F; T)iterates(F;M) red; M :: iterates(F; F (M))Proof. Let R0 = fhmap(F; iterates(F;X)); iterates(F; F (X))ig.Using (3.14) this gives two goals. The �rsthmap(F; iterates(F;X)); iterates(F; F (X))i 2 R0is trivial leavingfhmap(F 0; iterates(F 0; X 0)); iterates(F 0; F 0(X 0))ig �hfhmap(F; iterates(F;X)); iterates(F; F (X))ig [�i (3.23)To prove this we need to show that any transition, �, that applies tomap(F 0; iterates(F 0; X 0)) also applies to iterates(F 0; F 0(X 0)) and vie versa.Moreover, that the results of these transitions lie in R[�. These onditionsarise out of the de�nition of h�i. This is enapsulated by (3.22) whih in this aseleads to the subgoal:8R:hmap(F; iterates(F;X)); iterates(F; F (X))i 2 R)8�:((map(F 0; iterates(F 0; X 0)) �! � _ iterates(F 0; F 0(X 0)) �!))((map(F 0; iterates(F 0; X 0)) �! � ^ iterates(F 0; F 0(X 0)) �!) (3.24)^h�; i 2 R[�))This is a bit like a goal in an indutive proof and hene the expression to theleft of the �rst impliation is alled the oindution hypothesis and the expression

3.5. An Example of a Coindutive Proof in an LTS for a Funtional Language45to the right is alled the oindution onlusion. This distintion makes disussionof the subgoal easier.Breaking this goal down, the next step is to evaluate map(F 0; iterates(F 0; X 0))and iterates(F 0; F 0(X 0)) using the redution rules for map and iterates to valuesso that �, � and an be determined.map(F 0; iterates(F 0; X 0)) + F 0(X 0) :: map(F 0; iterates(F 0; F 0(X 0)))iterates(F 0; F 0(X 0)) + F 0(X 0) :: iterates(F 0; F 0(F 0(X 0)))The possible transitions/observations from these two terms are hd! and tl! thesetransitions apply to both terms:F 0(X 0) :: map(F 0; iterates(F 0; F 0(X 0))) hd! F 0(X 0)F 0(X 0) :: iterates(F 0; F 0(F 0(X 0))) hd! F 0(X 0)F 0(X 0) :: map(F 0; iterates(F 0; F 0(X 0))) tl! map(F 0; iterates(F 0; F 0(X 0)))F 0(X 0) :: iterates(F 0; F 0(F 0(X 0))) tl! iterates(F 0; F 0(F 0(X 0)))Simplifying the goal by instantiating �, � and for eah value of � and remov-ing all the onjunts and disjunts ontaining �! sine these have beome triviallytrue, leaves two new goals:8R:hmap(F; iterates(F;X)); iterates(F; F (X))i 2 R)hF 0(X 0); F 0(X 0)i 2 R[� (3.25)8R:hmap(F; iterates(F;X)); iterates(F; F (X))i 2 R)hmap(F 0; iterates(F 0; F 0(X 0))); iterates(F 0; F 0(F 0(X 0)))i 2 R[� (3.26)hF 0(X 0); F 0(X 0)i 2� by reexivity of � andhmap(F 0; iterates(F 0; F 0(X 0))); iterates(F 0; F 0(F 0(X 0)))i 2 Rby appeal to the hypothesis. 23.5.1 An Aside: The Same Example Using llistD funAnother funtion used to supply greatest �xedpoints for lists is llistD fun, this isnot used expliitly in funtional languages but proofs involving it are very similarto those involving h�i.Equality on lazy lists, �, as de�ned by Paulson [Paulson 93℄, is a property ofthe greatest �xedpoint of the funtionllistD fun(R) def= fhh :: t1; h :: t2ijht1; t2i 2 Rg [fhnil; nilig (3.27)

46 Chapter 3. Coindution Spei� to Funtional LanguagesIn this ase the oindution rule (2.6) an be speialised toha; bi 2 R R � llistD fun(R)a � b (3.28)Paulson show that � ats as an equality for lazy lists, by whih he means thatfor �nite k the �rst k elements of eah list are the same. This is based on Bird andWadler's take lemma [Bird & Wadler 88℄. This arises out of his treatment of lazylists, whih makes the equality relation an instane of set equality. This equalityisn't really omparable to � sine it applies only to one type, lists, and is treatingthem as built upon set theory, while � assumes they are de�ned using some formof operational semantis. However the higher level objets are similar and thereare similarities in the form of the proofs, whih helps to abstrat the general formof a oindutive proof away from the spei� domain of the proof, de�nition ofequivalene et. that is being used.Redoing the Example Using llistD funTheorem 3.2 beomes8f;m: map(f; iterates(f;m)) � iterates(f; f(m))As mentioned above equality over lazy lists is a property of gfp(llistD fun).Proof.Let R0 def= fhmap(f; iterates(f;m)); iterates(f; f(m))ijm : �; f : � ! �gAording to the premises of (3.28) it is neessary to show thathmap(f; iterates(f;m)); iterates(f; f(m))i 2 R0and R0 � llistD fun(R0).The �rst premise is trivially disharged.The seond premise gives the goal:fhmap(F; iterates(F;M)); iterates(F; F (M))ig �llistD fun(fhmap(F 0; iterates(F 0;M 0)); iterates(F 0; F 0(M 0))ig) (3.29)To prove this, it is neessary to show thatR0 � fhh :: t1; h :: t2i j ht1; t2i 2 R0g [fhnil; niliThat is that any two lists in R0 either have equal heads and tails that arerelated by R0 or that they are both nil. As in example 3.2 this is enapsulated bya derived rule (3.30) whose proof is in appendix D

3.5. An Example of a Coindutive Proof in an LTS for a Funtional Language478R:81 � i � n:Vni=1hai; bii 2 R)hd(ai) = hd(bi) 8R:81 � i � n:Vni=1hai; bii 2 R)htl(ai); tl(bi)i 2 RSni=1hai; bii � llistD fun(Sni=1hai; bii) (3.30)(3.30) is used to produe the subgoals (3.31) and (3.32).8R:hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R)htl(map(F 0; iterates(F 0;M 0))); tl(iterates(F 0; F 0(M 0)))i 2 R (3.31)Everything before the impliation is the oindution hypothesis and everythingafter the impliation the oindution onlusion.The oindution hypothesis states the de�nition of R0 sine it is de�ned pre-isely to be the set of pairs hmap(F; iterates(F;M)); iterates(F; F (M))i. Theoindution onlusion asks that given the de�nition of R0 are the tails of an ar-bitrary pair in R0 also in R0. To do this it is neessary to perform some rewritingon the onlusion to lear away the tl symbols and attempt to math with thehypothesis. After rewriting aording to the de�nitions of map and iterates thegoal beomes.8R:hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R)hmap(F 0; iterates(F 0; F 0(M 0))); iterates(F 0; F 0(F 0(M 0)))i 2 RThe onlusion mathes the hypothesis (instantiating F 0 to F and F 0(M 0) toF (M)).The proof is ompleted by following a similar rewriting proess to show thatthe heads are equal.hd(map(F; iterates(F;M))) = hd(iterates(F; F (M))) (3.32)F (M) = F (M)2 llistD fun deals only with lazy lists. It is possible to reate similar funtionsfor trees et., but eah has di�erent proof obligations for R � F(R) (i.e. for liststhe onditions are that the heads are equal and the tails are in the relation. Fortrees the labels must be equal (if it is a labelled tree) and the subtrees with thedaughters of the top node as top nodes must be in the relation).The appealing feature of the labelled transition system (LTS) presentation isthat it allows you to tell a general story for observational equivalene. Instead ofhaving a number of funtions whih may have a number of onditions, you haveone funtion h�i whih requires a searh for all observations, meanwhile it is thede�nition of the language whih determines what those observations an be.However oindution an be used for both proofs of bisimilarity and type hek-ing (see x3.7 below). A labelled transition system framework has only been devel-oped for the �rst of these.

48 Chapter 3. Coindution Spei� to Funtional Languages3.6 Examples of CoindutionThe purpose of this setion is to o�er a number of proofs by oindution in thefuntional language de�ned in x3.5. This serves a dual purpose of familiarising thereader with oindutive proofs and allowing similarities and di�erenes betweenvarious proofs to be demonstrated.All these proofs assume the small funtional programming language whosesyntax and semantis was set out in setion 3.5. This means that (3.14) is theoindution rule.Example 3.3 8f; g; l:map(f;map(g; l)) � map(f Æ g; l)Proof. Let R0 = fhmap(F;map(G;L)); map(F ÆG;L)igThe �rst premise of (3.14) is trivial. The seond premise is, R0 � hR0[�i.(3.22) introdues the following subgoal:8R:hmap(F;map(G;L)); map(F ÆG;L)i 2 R)8�: ((map(F 0; map(G0; L0)) �! � _map(F 0 ÆG0; L0) �!))((map(F 0; map(G0; L0)) �! � ^map(F 0 ÆG0; L0) �!) ^h�; i 2 R[�)) (3.33)To determine the proof of this it is neessary to �nd all possible values of �,� and . In example 3.2 this was a simple proess of reduing the expressions.This ase is slightly more ompliated sine the expressions map(F 0; map(G0; L0))and map(F 0 ÆG0; L0) an't be redued until the value of L0 is known. Sine L0 is auniversally quanti�ed variable of list type its value is either nil or H :: T for someH and T .If L0 = nil then map(F 0; map(G0; L0)) + nil and map(F 0 ÆG0; L0) + nil. Hene� = nil and � = = ? hene h�; i 2�.If L0 = H :: T then map(F 0; map(G0; L0)) + F 0(G0(H 0)) :: map(F 0; map(G0; T))and map(F 0 ÆG0; L0) + F 0 ÆG0(H) :: map(F 0 ÆG0; T). So � an be hd or tl. Thisgives two goals 8R:hmap(F;map(G;L)); map(F ÆG;L)i 2 R)hF 0(G0(H)); F 0 ÆG0(H)i 2 R[� (3.34)whih is true by the de�nition of Æ and the reexivity of �.8R:hmap(F;map(G;L)); map(F ÆG;L)i 2 R)hmap(F 0; map(G0; T)); map(F 0 ÆG0; T)i 2 R[� (3.35)

3.6. Examples of Coindution 49whih is true by appeal to the hypothesis.Hene R0 is a bisimulation. 2.This proof is in many ways similar to that of example 3.2. It followed aproess in whih a relation R0 was formed from the onstituents of the originalgoal. This relation allowed the �rst premise of the oindution rule (3.14) tobe trivially disharged, leaving only the seond premise to be worked on. Thispremise, a bisimilarity ondition, was phrased in terms of subset inlusion. (3.22)then introdued a new subgoal whih was an impliation involving a oindutionhypothesis and onlusion whih ontained various uninstantiated variables fortransition labels and the resulting transitions. These variables would need to beinstantiated before the proof ould go through. This was done using redutionrules and in the example above also asesplitting L. The resulting goals weredisharged by appeal to the hypothesis or the reexivity of �.In this next example the hoie for R0 is more omplex than in the examplespreviously shown.Example 3.4 8a; b:lswap(a; b) � merge(lonst(a); lonst(b))where: lswap(A;B) red; A :: lswap(B;A) (3.36)lonst(A) red; A :: lonst(A) (3.37)merge(nil; L) red; L (3.38)merge(L; nil) red; L (3.39)merge(H1 :: T1; H2 :: T2) red; H1 :: H2 :: merge(T1; T2) (3.40)Proof.Let R0 = fhlswap(A;B); merge(lonst(A); lonst(B))ig[fhlswap(B;A); B :: merge(lonst(A); lonst(B))igOne again the �rst premise of (3.14) is trivially disharged leaving the seondpremise, R0 � hR0[�i.(3.22) allows new subgoals to be introdued. The fat that the relation ontainstwo separate pair shema results in two subgoals, (3.41) and (3.42).8Rhlswap(A;B); merge(lonst(A); lonst(B))i 2 R^hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i 2 R)8�: ((lswap(A00; B00) �! � _merge(lonst(A00); lonst(B00)) �!))((lswap(A00; B00) �! � ^merge(lonst(A00); lonst(B00)) �!) ^h�; i 2 R[�)) (3.41)

50 Chapter 3. Coindution Spei� to Funtional Languageslswap(A00; B00) evaluates toA00 :: lswap(A00; B00). merge(lonst(A00); lonst(B00))evaluates to A00 :: B00 :: merge(lonst(A00); lonst(B00)). These are values and thetransitions from them are hd and tl.lswap(A00; B00) hd! A00merge(lonst(A00); lonst(B00)) hd! A00lswap(A00; B00) tl! lswap(B00; A00)merge(lonst(A00); lonst(B00)) tl! B00 :: merge(lonst(A00); lonst(B00))hA00; A00i 2� by the reexivity of �.hlswap(B00; A00); B00 :: merge(lonst(A00); lonst(B00))i 2 R by appeal to theseond hypothesis.hlswap(A;B); merge(lonst(A); lonst(B))i 2 R^hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i 2 R)8�: (lswap(B00; A00) �! � _B00 :: merge(lonst(A00); lonst(B00)) �!))(lswap(B00; A00) �! � ^ B00 :: merge(lonst(A00); lonst(B00)) �! ^h�; i 2 R[�) (3.42)B00 :: merge(lonst(A00); lonst(B00)) is already a value. lswap(B00; A00) evalu-ates to B00 :: lswap(A00; B00). The possible instantiations of � are hd and tl.lswap(B00; A00) hd! B00B00 :: merge(lonst(A00); lonst(B00)) hd! B00lswap(B00; A00) tl! lswap(A00; B00)B00 :;merge(lonst(A00); lonst(B00)) tl! merge(lonst(A00); lonst(B00))hB00; B00i 2� by the reexivity of �.hlswap(A00; B00); merge(lonst(A00); lonst(B00))i 2 R by appeal to the �rsthypothesis.Hene R0 is a bisimulation. 2.In this example a more ompliated bisimulation was needed onsisting of twopair shema as opposed to one. The tail transitions from eah of these shemagave pairs in the other sheme and the proess of redution and instantiation oftransitions had to be performed twie, one for eah sheme in the bisimulation.This next example requires rather more omplex reasoning than previouslyused in order to determine instantiations for transitions, variables et.

3.6. Examples of Coindution 51Example 3.5 For all funtions, g, whih have well{de�ned inverses8a; l: delete(a;map(g; l)) � map(g; delete(g�1(a); l))delete(A; nil) red; nil (3.43)H = A! delete(A;H :: T) red; delete(A; T) (3.44)H 6= A! delete(A;H :: T) red; H :: delete(A; T) (3.45)Proof. Let R0 = fhdelete(A;map(G;L)); map(G; delete(G�1(A); L))igThe �rst premise of (3.14) is trivially disharged leaving the seond premise,R0 � hR0[�i.Using (3.22) produes the following subgoal:8R:hdelete(A;map(G;L)); map(G; delete(G�1(A); L))i 2 R)8�: ((delete(A0; map(G0; L0)) �! � _map(G0; delete(G0�1(A0); L0)) �!))((delete(A0; map(G0; L0)) �! � ^map(G0; delete(G0�1(A0); L0)) �!) ^h�; i 2 R[�)) (3.46)As in example 3.3 redution an't take plae until the value of L0 is known.Sine L0 is a universally quanti�ed variable of list type it's value is either nil orH :: T for some H and T . However the situation is more ompliated than this.Consider the following 3 ases1. There is an element E of L0 suh that G0(E) 6= A. Let H 0 bethe �rst suh element appearing in L0. Let T 0 be the list ofthe remaining elements of L0 that appear after H 0 in the orderthat they appear. In this ase delete(A0; map(G0; L0)) evaluates toG0(H 0) :: delete(A0; map(G0; T 0) andmap(G0; delete(G0�1(A0); L0))evaluates to G0(H 0) :: map(G0; delete(G0�1(A0); T 0)). These areboth values and the transitions are hd and tl.delete(A0; map(G0; L0)) hd! G0(H 0)delete(G0�1(A0); L0)) hd! G0(H 0)delete(A0; map(G0; L0)) tl! delete(A0; map(G0; T 0)delete(G0�1(A0); L0)) tl! map(G0; delete(G0�1(A0); T 0))hG0(H 0); G0(H 0)i 2� by the reexivity of � andhdelete(A0; map(G0; T 0)); map(G0; delete(G0�1(A0); T 0))i 2 R byappeal to the hypothesis.

52 Chapter 3. Coindution Spei� to Funtional Languages2. There is no element E in L0 suh that G0(E) 6= A and L0 is�nite. delete(A0; map(G0; L0)) and map(G0; delete(G0�1(A0); L0))will both evaluate to nil. The transition from nil is nil so � = = ? and h�; i 2� by the reexivity of �.3. There is no element E in L0 suh that G0(E) 6= A and L0 is in�nite.delete(A0; map(G0; L0)) and map(G0; delete(G0�1(A0); L0)) have novalue. delete will ontinue to onsume the head of L0 forever. Ine�et this is a non{terminating program. In this ase there areno possible transitions that apply to either side of the relationsand (3.46) is trivially true.Hene R0 is a bisimulation. 2.This proof required fairly omplex reasoning and relied on some ability toreognise that redution was non{terminating in the third ase. This sort ofreasoning is rather ill{de�ned and proofs whih require it have been omitted fromthe sope of the automation desribed later in this thesis.This next proof is fairly straightforward and is inluded to show oindutionbeing used with a non{list type.Example 3.6 8x; y:x+ y � y + x+ has its usual reursive de�nition:0 + Y red; Y (3.47)s(X) + Y red; s(X + Y) (3.48)The following are standard lemmata about + whih will be used in the proof:Y + 0 red; Y (3.49)X + s(Y) red; s(X + Y) (3.50)Proof. Let R0 = fhX + Y ; Y +XigThe �rst premise of (3.14) is trivially disharged leaving the seond premise,R0 � hR0[�i.Using (3.22) produes the following subgoal:8R:hX + Y ; Y +Xi 2 R)8�: ((X 0 + Y 0 �! � _ Y 0 +X 0 �!))((X 0 + Y 0 �! � ^ Y 0 +X 0 �!) ^h�; i 2 R[�)) (3.51)One again X 0 + Y 0 and Y 0 +X 0 an't be redued without knowing the valuesof X 0 and Y 0. Reall that the values of natural numbers are 0 and s(N). Thereare three ases:

3.6. Examples of Coindution 53� If X 0 = 0 and Y 0 = 0 then � = 0 and � = = ?, hene h�; i 2�by the reexivity of �.� If X 0 = 0 and Y 0 = s(N) then X 0+Y 0 and Y 0+X 0 both evaluateto s(N). � = p and � = = N hene h�; i 2�.� If X 0 = s(N) then X 0 + Y 0 evaluates to s(N + Y 0) and Y 0 + X 0evaluates to s(Y 0 +N), again � = p andX 0 + Y 0 p! N + Y 0Y 0 +X 0 p! Y 0 +N (3.52)hN + Y 0; Y 0 +Ni 2 R by appeal to the hypothesis.Hene R0 is a bisimulation. 2.The last example is one where the bisimulation involves a pair sheme that isa generalisation of the expressions appearing in the statement of the theorem.Example 3.7 8f; x:h(f; x) � iterates(f; x) (3.53)
h(F;X) red; X :: map(F; h(F;X)) (3.54)Proof. Let R0 = fhmap(F)N(h(F;X)); iterates(F; FN(X))igWhere (� � �)N is de�ned to be:F 0(X) red; X (3.55)F s(N)(X) red; F (FN(X)) (3.56)and the following lemmata about (� � �)N are assumed:FN(F (X)) red; F (FN(X)) (3.57)(map(F)N)(H :: T) red; FN(H) :: (map(F)N)(T) (3.58)The �rst premise of (3.14) applied to (3.53) gives the subgoalhh(F;X); iterates(F;X)i 2 fh(map(F))N(h(F;X)); iterates(F; FN(X))ig(3.59)We know that h(map(F))0(h(F;X)); iterates(F; F 0(X))i 2 R0 by the de�ni-tion of R0.

54 Chapter 3. Coindution Spei� to Funtional Languages
(map(F))0(h(F;X)) red; h(F;X) (3.60)iterates(F; F 0(X)) red; iterates(F;X) (3.61)Hene hh(F;X); iterates(F;X)i 2 fh(map(F))N(h(F;X)); iterates(F; FN(X))igby de�nition 3.10.The seond premise of (3.14) is R0 � hR0[�i.Using (3.22) produes the following goal subgoal:8R:hmap(F)N (h(F;X)); iterates(F; FN(X))i 2 R)8�: (map(F 0)N 0(h(F 0; X 0)) �! � _ iterates(F 0; F 0N 0(X 0)) �!))(map(F 0)N 0(h(F 0; X 0)) �! � ^ iterates(F 0; F 0N 0(X 0)) �! ^h�; i 2 R[�) (3.62)

map(F 0)N 0(h(F 0; X 0)) evaluates to F 0N 0(X 0) :: map(F 0)s(N 0)(h(F 0; X 0)) anditerates(F 0; F 0N 0(X 0)) evaluates to F 0N 0(X 0) :: iterates(F 0; F 0s(N 0)(X 0)).The possible transitions are hd and tlF 0N 0(X 0) :: map(F 0)s(N 0)(h(F 0; X 0)) hd! F 0N 0(X 0)F 0N 0(X 0) :: iterates(F 0; F 0s(N 0)(X 0)) hd! F 0N 0(X 0)F 0N 0(X 0) :: map(F 0)s(N 0)(h(F 0; X 0)) tl! map(F 0)s(N 0)(h(F 0; X 0))F 0N 0(X 0) :: iterates(F 0; F 0s(N 0)(X 0)) tl! iterates(F 0; F 0s(N 0)(X 0))Hene R0 is a bisimulation. 2NB. Example 3.6 ould also have been proved using a generalised bisimulation,R0 def= fhX + sN(Y); Y + sN (X)igg, without the need for the additional lemmata.

3.7. Type{Cheking 553.7 Type{ChekingIn the �nal setion of this hapter I'm going to examine the use of oindutionfor type{heking The only instane I've ome aross where oindution is usedfor this is due to Paulson [Paulson 93℄ and so isn't framed by the operationalsemantis of a funtional language. However in setion 3.7.1 I hope to show howit an be plaed in suh a framework and provides another LTS. Paulson has afuntion on sets of lists of type list(�) alled list funlist fun(S; U) def= fh :: tjh 2 U ^ t 2 Sg (3.63)The least �xedpoint of list fun is the set of strit or �nite lists. The greatest�xedpoint is the set of lazy lists of elements of some set U , llist(U). The oindu-tion rule an thus be used to show that some list, l is of type gfp(list fun).Example 3.8 M 2 U) lonst(M) 2 llist(U)Where lonst(M) red;M :: lonst(M)Proof.The oindution rule is:a 2 S 0 S 0 � list fun(S; U)a 2 llist(U) (3.64)Let S 0 def= flonst(M) jM 2 Ug (3.65)Clearly lonst(M) 2 S whih leaves us with the goal:flonst(M) jM 2 Ug � list fun(flonst(M) jM 2 Ug; U) (3.66)Rewriting this aording to (3.63) givesflonst(M) jM 2 Ug � fh :: t j h 2 U ^ t 2 flonst(M) jM 2 Ugg (3.67)An inferene rule like (3.22) is needed here:8S:81 � i � n:Vni=1 ai 2 S) hd(ai) 2 U 8S:81 � i � n:Vni=1 ai 2 S) tl(ai) 2 SSni=1faig � llist fun(Sni=1faig; U) (3.68)

56 Chapter 3. Coindution Spei� to Funtional Languages(Again this is justi�ed in appendix D).This produes the subgoals8S:(M 2 U) lonst(M) 2 S)) (M 0 2 U) hd(lonst(M 0)) 2 U)8S:(M 2 U) lonst(M) 2 S)) (M 0 2 U) tl(lonst(M 0)) 2 S) (3.69)Rewriting lonst(M 0) to M 0 :: lonst(M 0) and then rewriting the oindutiononlusions using hd(H :: T) = H and tl(H :: T) = T proves the theorem sineM 0 2 U by assumption and lonst(M 0) 2 S by appeal to the hypothesis. 2One again the proess of this proof was very similar to that of the previousproofs. A set (this time not a relation) was introdued by the oindution rule.Proving this set was a member of the greatest �xedpoint involved redution andthen appeal to the hypothesis.3.7.1 Adapting Type Cheking to Labelled Transition Sys-temsSine oindution is usually used with referene to labelled transition systems it isinteresting to see whether the above example an be plaed in suh a system andhow that e�ets the proess of proof.Paulson de�nes types as greatest �xedpoints; however in most presentations oflabelled transition systems types are de�ned by an indutively given relation2 {for a typial example see [Gordon 95a℄.If we're looking for a \oindutive de�nition" of types then we have to talk notabout how one element of the type is onstruted out of previous elements of thetype, but what the types are of elements reahed by observing an element of thetype. We would be replaing the stati semantis of the language (see x3.2.1), bysome operational type semantis.So in a language ontaining only list types we would have a type semantis thatlooked something like �gure 3{5 where the transition system is extended by typeobservations whih at on pairs of expressions and types. ? is an arbitrary diver-gent program of some funtion type, � ! �. There are no observable transitionsfrom ?. This new type relation : is de�ned as:a : � def= a � ha; �i (3.75)Under this formulation the proof of example 3.8 is as follows.2Andy Gordon, private ommuniation.

3.7. Type{Cheking 57
b : �he1; � ! �i b! he1(b); �i (3.70)hnil; llist(�)i nil! h?; � ! �i (3.71)he1 :: e2; llist(�)i hd! he1; �i (3.72)he1 :: e2; llist(�)i tl! he2; llist(�)i (3.73)ha; �i a red; a0 ha0; �i �! hb; �iha; �i �! hb; �i (3.74)Figure 3{5: Observations on List TypesProof. Let R def= fhlonst(M); hlonst(M); llist(�)iijM : �g. The �rstpremise of the oindution rule is trivial whih leaves the goal.fhlonst(M); hlonst(M); llist(�)iijM : �g �hfhlonst(M); hlonst(M); llist(�)iijM : �g[�i) (3.76)(3.22) produes the subgoal:M : �) hlonst(M); hlonst(M); llist(�)ii 2 R)8�:M 0 : �) ((lonst(M 0) �! � _ hlonst(M 0); llist(�)i �! h�; ��i))((lonst(M 0) �! � ^ hlonst(M 0); llist(�)i �! h�; ��i^)h�; ��i 2 R[�))Redution and analysis of the possible transitions gives two goals:(M : �) hlonst(M); hlonst(M); llist(�)ii 2 R))(M 0 : �) hlonst(M 0); hlonst(M 0); llist(�)ii 2 R[�g) (3.77)(M : �) hlonst(M); hlonst(M); llist(�)ii 2 R))(M 0 : �) hM 0; hM 0; �ii 2 R[�) (3.78)(3.77) is true by appeal to the hypothesis and 3.78 is true sine M 0 : � isassumed and is equivalent to M 0 � hM 0; �i. 2

58 Chapter 3. Coindution Spei� to Funtional Languages3.8 ConlusionThe use of labelled transition systems is beoming more widespread and the mostommon use of oindution is with list datatypes. As a result this hapter hasfoused on the operational semantis of lazy funtional languages and on examplesof oindution this setting. It also looked briey at an alternative formation forlist examples involving the funtion llistD fun.A general pattern for the mehanis of a oindutive proof has emerged whihhas involved providing some relation R in terms of pair shema, analysing theredution behaviour of these pair shema in order to �nd the Weak Head NormalForms of eah member of the sheme (if they exist), as a result transition labelsare instantiated and the de�nition of R or the reexivity of � is appealed to inorder to omplete the proof. It is this sort of general pattern for a family of proofsthat forms the basis for proof plans (disussed in hapter 4) and this partiularpattern that forms the basis for the proof strategy for oindution proposed inhapter 5.Although the fous of the examples was on one partiular language, the useof oindutive proof for type{heking was also examined and a similar patternemerges here as well.

Chapter 4
Proof Planning

4.1 IntrodutionThis hapter disusses proof planning.It uses the proof plan for indution, in partiular the Rippling heuristi andassoiated Wave method, as an example throughout the hapter to illustrate thevarious ideas assoiated with proof planning.It starts with a general disussion of proof planning and then looks in moredetail at proof methods and proof ritis.4.2 Proof PlanningProof plans were �rst proposed by Bundy [Bundy 88℄ and have been suessfullyapplied to indutive theorem proving and other domains. Proof plans have twobasi omponents, proofmethods and proof tatis. The tatis are ombinations oflow-level inferene rule appliations. Methods haraterise the tatis by speifyingpre{onditions and outputs of their appliation. The idea is to make a plan of thetatis needed to ondut a given proof in advane of applying those tatis. Aompleted proof plan is exeuted by exeuting the tati part of the plan by givingit to a tati based theorem prover whih will provide a formal veri�ation of thetheorem. The objet is to separate proof disovery from proof heking. A generalobservation is that proof methods often embody various heuristis for navigatingthe searh spae, whereas tatis do not.Proof planning has been implemented in CLAM [Bundy et al 90b℄ and Omega[Benzm�uller et al 97℄. The disussion in this hapter is based on the implementa-tion in CLAM although it is intended to be general.Coindutive proof disovery, espeially the disovery of an appropriate bisim-ulation, is a signi�ant task and this makes proof planning an attrative option inany attempt to automate or provide proof tools to support oindution.59

60 Chapter 4. Proof Planning4.2.1 Proof TatisThe proof rules for many logis are very low level. Proofs onstruted from justthe basi rules of inferene in these logis are often long and hard to understand,moreover many strethes of suh a proof will appear to be trivial. The idea behindtatis is to ombine sequenes of the basi inferene rules together. In partiularto ombine sequenes whih frequently our and orrespond to some high leveltask. Often tatis require ertain parameters to be passed to them by the user,for instane the theorem prover Isabelle [Paulson 94a℄ has a tati res_inst_tadesribed in the manual as:res_inst_ta insts thm i instantiates the rule thm with the instantia-tion insts, as desribed above, and then performs resolution on subgoali. Resolution typially auses further instantiations, you need not giveexpliit instantiations for every variable in the rule.insts, thm and i all have to be provided by the user.4.2.2 Proof MethodsProof methods are often desribed as partial spei�ations of proof tatis. Theyonsist of 3 slots:Preonditions Conditions whih must hold for the method to applyOutputs Subgoals generated by the method, a list of meta{levelsequentsTati The name of the tati that onstruts the piee ofobjet{level proof orresponding to the methodThe last slot, the tati slot, depends upon the objet level theorem proverto whih the plans are to be passed. In nearly all CLAM methods this is Oyster[Horn 88℄ [Horn & Smaill 90℄. The work in this thesis hasn't been linked to anobjet level prover although linking it to Isabelle has been investigated (appendixE).4.2.3 The Planning MehanismA proof planning system links together methods by mathing the pre{onditionsof one method to the outputs of another. This sequene of tatis is alled theproof plan for that theorem. It not only spei�es whih tatis to apply, but whereappropriate it should also supply any parameters the tatis require.The proess of linking methods in CLAM is generally performed in a simpledepth �rst manner. If more than one method applies to a given goal CLAM willapply the �rst in some (possibly user de�ned) list, only trying the others if itfails to �nd a proof plan and is fored to baktrak. It is also possible to plan

4.3. Proof Planning Indution 61proofs breadth �rst or with iterative deepening. The relative merits of these var-ious searh strategies have been extensively doumented in Arti�ial Intelligenetexts (suh as [Luger & Stubble�eld 93℄). More sophistiated searh tehniqueshave also been proposed, suh as best �rst searh and depth{bounded disrep-any searh [Walsh 97℄, and in some ases implemented [Manning et al 93℄. Inthis thesis it is assumed that a depth �rst strategy is being employed.4.2.4 Proof CritisThe proof strategy provides a guide as to whih proof methods should be hosenat any given stage of the proof. Knowing whih method is expeted to applygives additional information should the system generating the plan fail to applyit. Sine heuristis are employed in the generation of proof plans it is possiblefor a proof planning system to fail to �nd a plan even when one exists. To thisend proof ritis an be employed to analyse the reasons for failure and proposealternative hoies or even suggest �nding new information in order to ompletethe proof plan.4.3 Proof Planning IndutionThe most widely explored appliation of proof planning has been proof by indu-tion. This has the bene�t of being more generally familiar than oindution, so Iintend to use this as an illustration of the proof planning proess.Most people who have performed an indutive proof will have some sort of proofplan in their head. Figure 4{1 shows suh a proof plan. To perform indution youstart out by hoosing an indution sheme or rule, for instane:P (0) P (n) ` P (s(n))8n:P (n) (4.1)This splits the proof into one or more base ases and step ases. These then haveto be proved in turn. The base ase may be trivial, or require further indution.The step ase proof revolves around rewriting the indution onlusion so that theindution hypothesismay be used to omplete the proof (this is alled fertilization).Figure 4{1 is a general proof plan for indution; however any given indutiveproof will have a spei� proof plan, whih will inlude details of the indutionsheme to be used and the spei� rewrite rules required. Following Rihardson[Rihardson 95℄ I shall all the general proof plan the proof strategy and reservethe term proof plan for spei� instanes of proof strategies.

62 Chapter 4. Proof Planning
BASE CASE

Appeal to Induction
Hypothesis

Choose Induction Scheme

Manipulate

STEP CASE

Figure 4{1: A Proof Plan for Mathematial Indution4.4 The Wave MethodI'm going to use the Wave method as an example of a proof method. It is animportant proof method for indution and ontrols the rewriting of the step asegoals. It relies on a number of formal de�nitions whih are stated here, howeverit is only neessary for the reader to grasp the intuition behind rippling. Theformal de�nitions are not required in the rest of this thesis and an be omitted ifso wished.De�nition 4.1 [Thomas & Jantke 89℄ A rewrite rule is an ordered pair of termsof the form l ; r.De�nition 4.2 [Thomas & Jantke 89℄ A term rewriting system onsists of aset of rewrite rules.This means that ; forms a relation in a term rewriting system.Rewrite rules are applied by the rewrite rule of inferene, (4.2) [Bundy 83℄:exp[sub℄ lhs; rhsexp[rhs �℄ (4.2)where � is a most general substitution suh that lhs � � sub.

4.4. The Wave Method 63Let ;� denote the reexive transitive losure of ;. Term rewriting systemsare used to implement equational theories (among other things). The intention isto have a deision proedure for equality: terms u, v are equal in the equationaltheory if there is some w suh that u;� w and v ;� w. In general rewrite rulesembody some onept of similarity or equality between expressions.De�nition 4.3 [Bundy 83℄ If, by ignoring the order of the pairs and allowingrewriting with rhs ; lhs as well as lhs ; rhs, one expression an be rewritteninto another then the two expression are said to be similar with respet to the setof rules.Sine rewrite rules tend to embody some notion of equality it would be naturalto expet reexivity, symmetry, transitivity and ongruene losure to be impor-tant properties onneted with them. However symmetry, in partiular, introduestermination problems for the use of the rule of inferene.One response to this is, while allowing red; to be an equivalene relation, to dis-allow unrestrited appliation of (4.2) and guide it instead by heuristis. Anotherapproah is to exploit ideas of normal forms and onuene (rewriting to identialnormal forms) [Huet & Oppen 80℄.Rippling is a heuristi for guiding rewriting to prevent non{termination andit is embodied in the Wave method in CLAM . It is a heuristi that is spei�allytailored for use with indution. It guides the appliation of (4.2) by a proessof meta{level annotation of the objet{level terms. Rippling requires a mathbetween the annotations on the expression and the LHS of the rule as well as be-tween the expression and the LHS themselves. This e�etively restrits a (possiblysymmetri) relation, ;, to a well{founded order. I shall use ; for both orders(i.e. the order on unannotated terms and the order on annotated terms). In anysituation it should be lear from the ontext whih is being used.The Wave method is motivated by the intuition that the step ase of an indu-tive proof involves an indution hypothesis whih is embedded within the indutiononlusion. Rippling aims to eliminate the di�erene between the onlusion andthe hypothesis. The meta{level annotations that ontrol the rewriting make thesedi�erenes expliit.4.4.1 Annotations and Di�erene MathingThe annotations are desribed as meta{level beause they do not add any infor-mation on the objet level, instead they are intended to provide information aboutwhere the rewriting proess is heading. The annotations are determined by di�er-ene mathing [Basin & Walsh 92℄ the indution hypothesis and onlusion. Muhof the following disussion is based on [Basin & Walsh 96℄.De�nition 4.4 [Walsh 96℄ A wave annotation onsists of a wave front, a box,with one or more wave holes, distint proper subterms of the wave front whihare underlined.

64 Chapter 4. Proof PlanningThe intention is that the wave front (exluding the wave hole) is the di�erenebetween the indution hypothesis and onlusion. This gives some sort of speialstatus to everything in the expression that is not in the wave front (exluding thewave hole). This is alled the skeleton.De�nition 4.5 [Basin & Walsh 96℄ The skeleton of an expression, exp, is de-�ned indutively as the set, skel(exp).1. If exp is a variable then skel(exp) = fexpg.2. If exp = f(t1; � � � ; tn) then the skel(exp) = fs j 9i:ti = t0i ^ s 2 skel(t0i)g3. If exp = f(t1; � � � ; tn) then skel(exp) = ff(s1; � � � ; sn) j 8i:si 2 skel(ti)gDe�nition 4.6 [Basin & Walsh 96℄ The erasure is the unannotated term orre-sponding to the annotated one. It is also de�ned indutively using the funtionerase.1. If exp is a variable then erase(exp) = exp;2. If exp = f(t1; � � � ; tn) then erase(exp) = f(s1; � � � ; sn) where if ti = t0i thensi = erase(t0i) else si = erase(ti);3. If exp = f(t1; � � � ; tn) then erase(exp) = f(s1; � � � ; sn) where si = erase(ti).De�nition 4.7 [Walsh 96℄ Di�erene mathing is a proess whih annotatesa term s with respet to a term, t suh that s0 is a di�erene math of s and ti� skeleton(s0) = t and erase(s0) = s.Example 4.1 (An Example of A Meta{Level Annotation) Consider the the-orem 8f : �! �:g : � ! �:l : list(�): map(f Æ g; l) = map(f;map(g; l))An indutive proof of this theorem will lead to the step ase goal:map(F ÆG; l) = map(F;map(G; l)))map(F 0 ÆG0; h :: l) = map(F 0; map(G0; h :: l)) (4.3)Di�erene mathing the indution onlusion and hypothesis gives the anno-tated goal map(F ÆG; l) = map(F;map(G; l)))map(F 0 ÆG0; h :: l) = map(F 0; map(G0; h :: l)) (4.4)Basin and Walsh present an algorithm to perform di�erene mathing[Basin & Walsh 92℄.

4.4. The Wave Method 654.4.2 Annotated Rewrite RulesRewrite rules are annotated for rippling. They are not annotated by di�erenemathing, but by nominating a skeleton on eah side of the rewrite. A rewriterule may be annotated in di�erent ways for a number of di�erent skeletons, andso give rise to several annotated rules.Consider the rewrite rulemap(F;H :: T); F (H) :: map(F; T) (4.5)Annotating this with fmap(F; T)g as the skeleton on both sides gives the anno-tated rewrite rule map(F; H :: T); F (H) :: map(F; T) (4.6)De�nition 4.8 (Annotated Rewrite Rule Appliation) An annotated re-write rule, lhs ; rhs, may be applied to an annotated term, T , to yield anannotated term, T 0 if:1. S is a subterm of T ,2. there is a substitution � suh that:(a) erase(S) = erase(lhs)�(b) skeleton(S) = skeleton(lhs)�() T 0 = T [rhs=S℄�Wave rules are a speial ase of annotated rules. They are formally de�nedin de�nition 4.18. Informally they are annotated rewrite rules whih are skeletonpreserving and measure dereasing under an appropriate ordering on annotatedterms.De�nition 4.9 [Basin & Walsh 96℄ An annotated rule is skeleton preservingif some of the skeletons on the LHS also appear on the RHS and no new skeletonsare introdued, i.e. skel(LHS) � skel(RHS)4.4.3 RipplingThe following disussion of rippling in and rippling out is intended to motivate thede�nition of the measure on annotated terms in x4.4.4. Annotations are extendedwith an orientation indiated by either " for an outward wave front or # for aninward wave front. The previous de�nitions are extended in the obvious way toinlude these extra annotations. These oriented wave fronts are used to eitherripple out or to ripple in.

66 Chapter 4. Proof PlanningRippling OutThe most simple form of rippling, rippling out, onstrains wave front to move\outwards" in the term struture. Informally, a wave rule is an outward wave ruleif more of the skeleton appears in the wave holes on the RHS than appears inthem on the LHS. Hene (4.6) is an outward wave rule and so is annotated withoutward wave fronts as shown in (4.7).map(F; H :: T "); F (H) :: map(F; T) " (4.7)The purpose of the heuristi is to drive the di�erenes between the indutionhypothesis and onlusion right to the outside of the term struture. It is theexperiene of people doing indutive proof that this proess tends to allow thedi�erenes to be aneled away, or for the indution hypothesis to be applied as arewrite rule to the wave hole. The proess of applying wave rules is alled rippling,sine, in this outward form, the wave rules \ripple" out like waves in a pool intowhih something has been dropped.In example 4.1, (4.7) is applied to the indution onlusion as follows:map(F ÆG; h :: l ") = map(F;map(G; h :: l ")) (4.8)F ÆG(h) :: map(F ÆG; l) " = map(F; G(h) :: map(G; l) ") (4.9)F ÆG(h) :: map(F ÆG; l) " = F (G(h)) :: map(F;map(G; l)) " (4.10)At this point the indution hypothesis an be used to rewrite one side of theequation to produe an expression that is idential to that on the other side ofthe equation, providing F Æ G(h) is de�ned as F (G(h)). As a result the goal istrivially true.Rippling InIt is also possible to ripple in. An inward wave rule is the opposite of an outwardwave rule. Less of the skeleton appears in wave holes on the RHS of an inwardwave rule than appears inside the wave fronts on the LHS.Thus the objet{level rewrite rule system may be symmetri, but the meta{level system won't be beause the orientation of the wave fronts will be di�erent.For instane the following pair of rules would form a non{terminating rewriterule system at the objet level, but the meta{level annotations don't math so nolooping ours. map(F; H :: T ") ; F (H) :: map(F; T) " (4.11)F (H) :: map(F; T) # ; map(F; H :: T #) (4.12)

4.4. The Wave Method 67An outward wave front on the left of a wave rule may \beome"1 an inwardwave front on the right, but an inward wave front may not beome an outward one.This is the entral intuition in the wave rule measure. This imposes a heuristi ofrippling out then rippling in.The intention of rippling out was to move di�erenes to the top of the termtree. If we start rippling in and moreover forbid inward wave fronts to beomeoutward ones we preserve the di�erenes between the indution hypothesis andonlusion somewhere in the middle of the term struture. Rippling in is of use intheorems where universally quanti�ed variables appear in the indution onlusion.These variables an absorb the di�erenes, provided the same di�erene strutureis absorbed wherever the variable ours (see example 4.2).De�nition 4.10 [Bundy et al 93℄ A sink is a subterm of an annotated term thatorresponds to a universally quanti�ed variable in the hypothesis.De�nition 4.11 A wave front is said to be sinkable if its skeleton ontains asink.Wave fronts may only be rippled in if they are sinkable2.Sometimes the wave{fronts simply an't be annotated inwards or outwards,sine the di�erenes are moving \sideways" . Take the de�nition of qrev as anexample. qrev(nil; L) ; L (4.13)qrev(H :: T; L) ; qrev(T;H :: L) (4.14)If fqrev(T; L)g is treated as the skeleton in (4.14) then it an be preserved onboth sides of the rewrite. On the left T will appear inside the wave front whileon the right L will. In this ase the rule is annotated outwards on the left andinwards on the right.qrev(H :: T ";M); qrev(T; H ::M #) (4.15)1Wave fronts are not atually paired o� expliitly on either side of a wave rule so itis a bit misleading to talk about a wave front on the left beoming a wave front on theright, however it serves to onvey the intuition behind the heuristi.2The ommon annotation for a sink is b� � � plaed around a skolem onstant. Inindution it is unusual to have more than one sink in the indution onlusion; howeverin oindution there are usually a great many and I felt that apitalisation provideda less fussy annotation, this di�erene is purely syntati. b� � � an be expanded toindiate that term struture is being absorbed by the sink.

68 Chapter 4. Proof PlanningExample 4.2 (Rippling In) Consider the theorem8l; m : list(�): rev(l) <> m = qrev(l; m) (4.16)The step ase goal is rev(l) <> M = qrev(l;M))rev(h :: l ") <> M 0 = qrev(h :: l ";M 0) (4.17)(4.15) is available as an annotated rule as are the following:rev(X :: Y "); rev(Y) <> X :: nil " (4.18)(U <> V ") <> W ; U <> (V <> W #) (4.19)Using these the onlusion an be rippled as follows:rev(t) <> h :: nil " <> M 0 = qrev(h :: t ";M 0) (4.20)rev(t) <> h :: nil " <> M 0 = qrev(t; h ::M 0 #) (4.21)rev(t) <> (h :: nil <> M 0 #) = qrev(t; h ::M 0 #) (4.22)h :: nil <> M 0 an be simpli�ed to h ::M 0 making the onlusionrev(t) <> (h ::M 0 #) = qrev(t; h ::M 0 #) (4.23)h ::M 0 is a sink and the goal an be proved by appeal to the indution hypothesis.The last simpli�ation step is not a rippling step sine h :: nil and h are bothunannotated subterms of the annotated terms. At this point rippling is said tobe bloked, that is no further rippling an our, but fertilization isn't possible.There are a number of normalisation tehniques whih an perform the neessarysimpli�ation to unblok rippling. A number of these have been transformed intoproof methods. These tehniques vary from one version of CLAM to another.4.4.4 The Wave Rule MeasureRippling out and rippling in, as disussed above, form the basis of the ripplingheuristi. Termination of rippling has been proved via the provision of a wave rulemeasure [Basin & Walsh 96℄ whih embodies the onstraints outlined above.

4.4. The Wave Method 69De�nition 4.12 [Basin & Walsh 96℄ The position of a subterm of an expressionis a path address represented by a string (onatenated by :). The subterm of aterm t at position p is written t=p where:t=nil = tt=i:p = si=pIf s is a subterm of t at position p, its depth is the length of p. The heightof t, written jtj, is the maximal depth of any subterm of t.
f

h g

f

x0

S

Figure 4{2: f(h(s(0); g(f(x)))) Represented as a TreeFor instane, in the �gure, h(s(0)) is at position 1, f(x) is at position 2.1.Annotated terms are regarded as deorated trees where the tree is the skeletonand the wave fronts are boxes deorating the nodes. The funtion symbols in theskeleton an be abstrated away (sine wave rules are skeleton preserving). Thefuntion symbols in wave fronts an also be ignored and replaed by their width:The number of nested funtion symbols between the root of the wave front andthe wave hole. This is the weight of the wave front.If an annotated expression has a wave front with more than one wave hole thenit is weakened to a set of expressions whose wave fronts ontain only a single hole.This is done by erasing all but one wave hole. A wave hole ti is erased by removingthe underline and erasing any further annotation in ti. A wave front is maximallyweak when it has exatly one wave hole. A term is maximally weak when all itswave fronts are maximally weak. weakenings(s) is the set of maximal weakeningsof a term s.De�nition 4.13 [Basin & Walsh 96℄ The out{measure,MO(t), of a maximallyweak annotated term t is a list of length jskel(t)j+1 whose i{th element is the sumof the weights of all outward wave fronts at depth i. The in{measure, MI(t), is alist whose i{th element is the sum of the weights of all inward wave fronts at depthi. The measure of an annotated term, M(t) is the pair of out and in{measures,hMO(t); MI(t)i.

70 Chapter 4. Proof PlanningDe�nition 4.14 Let >lex be the lexiographi order on lists of naturals de�nedby: h1 > h2) h1 :: t1 >lex h2 :: t2 (4.24)t1 >lex t2) h :: t1 >lex h :: t2 (4.25)>revlex is the reversed lexiographi order on list and l1 >revlex l2 ifrev(l1) >lex rev(l2).De�nition 4.15 [Basin & Walsh 96℄ The order on maximally weak annotatedterms, �, is de�ned as: t � s i� skel(s) = skel(t) and either MO(t) >revlexMO(s) or MO(t) =MO(s) and MI(t) >lex MI(s).De�nition 4.16 [Basin & Walsh 96℄ Amulti{set ordering >> is indued froma given ordering > whereby M >> N i� N an be obtained from M by replaingone or more elements in M by any �nite number of elements eah of whih issmaller (under >) than one of the replaed elements.De�nition 4.17 [Basin & Walsh 96℄ For l and r annotated terms, l �� r i�weakenings(l) �� weakenings(r) where �� is the multi{set extension of theorder for maximally weak terms.No proof of the well{foundedness of this measure is o�ered, the interestedreader is referred to [Basin & Walsh 96℄.4.4.5 Wave RulesFrom this work we are now in a position to o�er a formal de�nition of a wave rule.De�nition 4.18 [Basin & Walsh 96℄ An annotated rewrite rule, l; r, is a waverule if it is skeleton preserving and l �� r.CLAM embodies rippling as the Wave method whih is presented in �gure 4{3.

4.5. Proof Critis 71
Preonditions1. There is an annotated term at Position in the Goal.2. There is a wave rule that applies to that term and rewrites it toNewterm.3. Any onditions on the appliation of the rule are satis�edOutputsReplae the term at Position with Newterm.Figure 4{3: The Wave Method4.5 Proof CritisNo laims for ompleteness are made for the proof methods used by CLAM . Anaknowledged step in the theorem proving proess is the onjeture of new infor-mation (for instane witnesses for existential quanti�ers), this proess has oftenbeen referred to as a eureka step. Two proesses for handling eureka steps auto-matially have been implemented in CLAM . These are proof ritis andmiddle{outreasoning, both of whih are disussed below.Ireland [Ireland 92℄ observed that failed proof attempts often provided impor-tant information that ould be exploited to lead to a omplete proof. In partiularsuh failed attempts an be used to re�ne \guesses" previously made at unknowninformation. They an also be used to identify the fat that some information (e.g.a lemma) was missing. Proof ritis exploit failed proof attempts in this way.Critis are expressed in terms of preonditions and pathes. The preonditionsexamine the reasons why the method has failed to apply; ideally they do thiswith referene to the preonditions of the proof method (in the implementation ofCLAM3 some simple ritis whih deal with merging or splitting wave fronts donot refer to the methods' preonditions expliitly) although they may also inludeextra information. The proposed path suggests some hange to the proof plan.It may hoose to propagate this hange bak through the plan and then ontinuefrom the urrent point, or it may hoose to jump bak to a previous point in theproof plan.Typially, if a proof method fails to apply, a riti will analyse that failure tosee if spei� onditions ould have been altered whih would have allowed themethod to apply. It is not neessary to have ritis attahed to every method, infat, the proof plan for indution only attahes ritis to the Wave method. The

72 Chapter 4. Proof Planningritis path the proof in di�erent ways depending upon whih of the method'spreonditions failed.I am going to disuss one suh riti, the Indution Revision riti (x4.5.2), asan example. The indution method uses heuristis to hoose an indution sheme,hene it is possible that the sheme hosen may be inappropriate. The inorrethoie of sheme won't show itself until some point in the rewriting proess whenthe Wave method will fail to apply but fertilization an't our (as it shouldaording to the proof strategy).4.5.1 Middle{out ReasoningThe Indution Revision riti also utilises middle{out reasoning. Middle{out rea-soning was �rst desribed by Bundy et al [Bundy et al 90a℄. Middle{out reasoningpostpones making eureka steps for as long as possible in the proof proess, adapt-ing methods to ope with partial information where neessary. In this way moreinformation about the nature of the eureka step an be determined.A partiularly important tool in middle{out reasoning is the use of meta{variables to mark partially instantiated terms. This is potentially very explo-sive sine there may be numerous potential instantiations for the meta{variable.Middle{out reasoning often employs a strategy of gradual instantiation of meta{variables whih will probably need higher order uni�ation. Higher order uni�-ation is undeidable and so tehniques for ontrolling the instantiation of themeta{variables are vital for middle{out reasoning.Hesketh [Hesketh 91℄ advoates the use of a uni�ability algorithm based onthat of Huet [Huet 75℄. This algorithm, as well as testing for uni�ability, gen-erates substitution sets whih in many ases are omplete. She further suggeststhat the meta{level ontrol information represented by the wave fronts an beused to further restrit the uni�ation proess to a mathing proess. Irelandextended this idea further to exploit the diretionality of the wave fronts as well[Ireland & Bundy 96℄.The meta{level language is extended in the light of this to inlude potentialwave fronts, � � � . These indiate positions at whih wave fronts might appear,the ontents of the wave front is indiated by a higher order meta{variable. Forinstane the expressions F1(x) " indiates that there ould be an outward wavefront around x. These potential wave fronts an be mathed against annotatedterms, so F1(x) " ould be mathed by x (no wave front), s(x) ", z + x " andmany other expresions. In partiular, expressions with potential wave fronts areoften mathed against the LHS of wave rules.4.5.2 The Indution Revision CritiExample 4.38l1; l2 : list(�):even(length(l1 <> l2)), even(length(l2 <> l1)) (4.26)

4.5. Proof Critis 73The available wave rules from the de�nitions of even, <> and length inludeeven(s(s(X)) ") ; even(X) (4.27)length(X :: Y ") ; s(length(Y)) " (4.28)X :: Y " <> Z ; X :: (Y <> Z) " (4.29)The system also has aess to the following lemma:length(X <> Y :: Z "); s(length(X <> Z)) " (4.30)The heuristis for suggesting an indution sheme have led to the system hoos-ing the indution rule P (nil) 8h; t:P (t)) P (h :: t)8l:P (l) (4.31)l1 in (4.26) has also been hosen as a suitable variable to apply this rule towhih makes P (t) the equation 8l:even(length(t <> l)), even(length(l <> t)),hene the subgoal takes the form:8h; t; (8l:even(length(t <> l)), even(length(l <> t))))(8l0:even(length(h :: t " <> l0)), even(length(l0 <> h :: t "))) (4.32)The universal 8l has been standardized apart in the indution hypothesis andonlusion. For the rest of this disussion the various quanti�ers will be omitted,h and t are universal variables whose sope is the indution hypothesis and onlu-sion. The sope of l is the indution hypothesis and the sope of l0 the indutiononlusion { this makes l0 a sink.Using the wave rules (4.29), (4.27) and (4.28) the onlusion rewrites toeven(s(length(t <> L0)) "), even(s(length(L0 <> t)) ") (4.33)Rippling on both sides of the arrow is bloked. This orresponds to failure of theseond preondition of the wave method. Fertilization also doesn't apply, so thisis a failed proof attempt.33The failure of fertilization is not a preondition of the Wave method but, in CLAM3,it is impliit in its failure (sine CLAM3 orders the methods and tries eah in order. IfCLAM3 is attempting to use the Wave method then fertilization has already failed).Sine it is an important assumption for the use of a Wave riti that fertilization hasfailed, it is oneivable that in a planner that used some other strategy for hoosingmethods the Wave method or riti would have to be extended.

74 Chapter 4. Proof PlanningThere are several possible reasons why the proof is failing at this point: itmight be a non{theorem; the hoie of indution sheme might be wrong or theremight be a missing lemma or both. Heuristis are provided to distinguish betweenthese situations. It is only pro�table to look for a new indution sheme if thereis some wave rule that would apply if this sheme had been in plae, in partiulara wave rule that would have applied if there had been some extra struture in thewave fronts. This extra struture is indiated by inserting meta variables wrappedaround eah wave hole in the bloked term and then using middle{out reasoningto searh for an appropriate instantiation. Potential wave fronts show where waveannotations might appear given this new struture. The system then attempts tounify this expression with the LHS of a wave rule. In the example this involveslooking for the LHS of a wave rule that will unify witheven(s(F1(length(Y <> F2(Z) ")) ") "); : : : (4.34)where F1 and F2 are seond order meta variables. The LHS of (4.27) uni�es with(4.34) using a higher order uni�ation algorithm, instantiating F1 to �x:s(x) andF2 to �x:x. If suh a partial wave rule math is found then the extra strutureneeded an be rippled bak in (temporarily treating the indution variable as theonly sink present) to determine the form of the revised indution sheme. In theexample this suggests the need for an additional wave front of the form s(� � �) "whih, in turn, suggests a two step indution using the sheme (4.35)P (nil) P (h :: nil) P (t)) P (h1 :: h2 :: t)P (l) (4.35)This sheme suessfully leads to a proof plan. The Indution Revision riti justdesribed is shown in �gure 4{4.Indution ritis have been developed to perform indution revision,lemma disovery, generalisation and ase{splitting. These are disussed in[Ireland & Bundy 96℄ and the above example is taken from there. That paper alsoontains disussion of the higher order uni�ation required by the ritis. Critishave also been used elsewhere by Walsh [Walsh 96℄ in an impliit indution prover(this is disussed in hapters 6 and 8).

4.6. Conlusion 75Preonditions:1. Preondition 1 of the wave method holds. (i.e. thereare wave annotations present)2. Preondition 2 of the wave method fails (i.e. there isno appliable wave rule)3. There is a wave rule, that partially mathes, i.e. uni-�es with the urrent term when extra meta variablesfor funtions and potential wave fronts are insertedinto the wave front. Path1. Revise the indution sheme by rippling in the newstruture.2. Propagate the new sheme throughout the plan gen-erated so far (e.g. add the extra base ase goal)Figure 4{4: Wave Criti: Indution Revision4.6 ConlusionThis hapter outlined the major onepts of proof planning, whih is the proposedtehnique for the automation of oindution. These onepts were illustrated withtwo examples. One was the Wave proof method and this involved a disussion ofrippling, the main ideas in rippling were explained but some of the details wereomitted, these are overed in full in [Bundy et al 93℄ and [Basin & Walsh 96℄. Theother was the Indution Revision Criti.Sine oindution is a dual to indution it might be appropriate to attempt toapply proof planning to it. The fat that all oindution proofs involve a eurekastep, the hoie of bisimulation, suggests that proof ritis or middle{out reasoningmay be partiularly important in the development of suh a proof strategy.This disussion was intended to over the onepts that will be needed tounderstand the proof strategy for oindution presented in hapters 5 and 6.

Chapter 5
A Proof Strategy for Coindution

5.1 IntrodutionThis hapter is going to desribe in detail the proof methods developed for oindu-tion. These methods have been implemented in lam.v3.2 using Prolog to forma system alled CoCLAM . However sine proof plans are intended to be generaldesriptions of the higher level steps in the proof proess the tati and methodspei�ations have been desribed in a natural language format, as in hapter 4,whih should stand alone from any partiular implementation of proof planning.The hapter starts with two worked examples of oindution (one using it todetermine bisimilarity and the other using it for type{heking). They are analysedin some detail in order to distinguish the individual steps in a oindutive proofwhih will orrespond to proof methods in the �nal proof strategy.In the light of this analysis a proof strategy is proposed along with severalproof methods designed spei�ally for use with oindution and labelled transitionsystems.The use of rewriting within oindution is also onsidered and methods forperforming it are disussed.5.2 The Sope of the Proof StrategyFor pratial reasons it proved desirable to limit the sope of the problems forwhih the proof strategy was devised. It is assumed in everything that follows thatthe proof is taking plae within some pre{de�ned deterministi labelled transitionsystem.De�nition 5.1 A labelled transition system T is deterministi if for all a andfor all transitions � in T if a �! a0 and a �! a00 then a0 = a00.76

5.2. The Sope of the Proof Strategy 77There are several reasons for this hoie. Firstly, the bulk of the work usingoindution outside of CCS is presented in this format and it was felt a proofstrategy for this sort of problem would have the widest appliability. Seondlywork by Rutten [Rutten 96℄ suggests that many oindutive datatypes may, atsome level, be treated as restritions of labelled transitions systems and so it wasfelt that this approah had some measure of generality.A number of spei� assumptions are made about the relationship of transitionsand values, where the values are some set of distinguished expressions in thelanguage (e.g. the end results of redution). It is assumed that the transitionrules for the language apply transitions only to values and that all values havetransitions. It is also assumed that expressions an be redued to values by theuse of an order, red;, and that the only ground expressions whih an not be reduedare values.Lastly a ouple of assumptions are made about the form of the transition rulesspei�ed by the language. They are assumed to be of the form a �! b without theappearane of any onditional statements. There is one exeption to this:a red;+ a0 a0 �! ba �! b (5.1)where a0 is a value.These assumptions are all met by standard transition systems representing theoperational semantis of funtional languages (as desribed in hapter 3). Theassumptions about transitions, values and redution are the most restritive as-sumptions that are made and are needed by the Evaluate method (x5.5.3). Chapter9 disusses how these assumptions ould be broadened.The seond hoie made was not to pursue problems whih ontained termswith no weak head normal form. These problems are haraterised by example 3.5in hapter 3 in whih additional analysis was required to show that evaluating thehead of eah side of the relation would either diverge or terminate with the samevalue. No riteria are presented for determining whih theorems may involve thissort of divergene.Lastly only proofs involving bisimilarity of some sort are onsidered, again thishoie was motivated by the observation that nearly all the literature is on�nedto proofs in this ategory. Hene the proof strategy assumes that a proof ofequivalene (of some sort) between two objets is being sought, not a proof ofmembership of any other greatest �xedpoint.

78 Chapter 5. A Proof Strategy for Coindution5.3 Worked Examples of CoindutionI intend to work through two examples of oindution, arefully breaking down anddisussing eah step, sine it is this level of understanding that will allow proofmethods to be disussed. The disussion is intended to draw out the ommonfeatures of oindutive proofs. These features should seem reasonable in the lightof the examples in hapter 3. In partiular, they are intended to illustrate theprinipal steps involved in a oindutive proof. These steps are highlighted by theindividual setion headings in the example. The aim is to translate these stepsinto nodes in the proof strategy, i.e. proof methods. The two proofs in questionare examples 3.2 and 3.8 from hapter 3. Justi�ation of the hoie of these nodesis o�ered on a less anedotal level in x5.4. The main purpose of these workedexamples is to refresh the reader's memory of the form of a oindutive proof.5.3.1 BisimilarityThis is example 3.2 from hapter 3.Example 5.18f : �1 ! �2; m : �1: map(f; iterates(f;m)) � iterates(f; f(m))Redution Rulesmap(F; nil) red; nil (5.2)map(F;H :: T) red; F (H) :: map(F; T) (5.3)iterates(F;M) red; M :: iterates(F; F (M)) (5.4)Apply Coindution RuleThe �rst step is to use the oindution rule:ha; bi 2 R R � hR[�ia � b (5.5)in order to proeed it is neessary to hoose a suitable andidate for the bisimula-tion, R.Let R = fhmap(F; iterates(F;M)); iterates(F; F (M))ig.Clearly hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R whih leaves us withone remaining goal R � hR[�i

5.3. Worked Examples of Coindution 79Show R is a Bisimulation.Using the de�nitions of � from hapter 3 we need to show that every transition,�, that applies to either map(F; iterates(F;M)) or iterates(F; F (M)) applies toboth and that the results are in R[�. This is expressed by the inferene rule3.22 whih gives us the subgoal:8R:hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R)8�:((map(F 0; iterates(F 0;M 0)) �! � _ iterates(F 0; F 0(M 0)) �!))((map(F 0; iterates(F 0;M 0)) �! � ^ iterates(F 0; F 0(M 0)) �!) ^h�; i 2 R[�)) (5.6)
In what follows the LHS of the �rst) will be referred to as the oindutionhypothesis and the RHS as the oindution onlusion.The variables are named di�erently in the hypothesis and onlusion beauseeah is separately universally quanti�ed (sine the hypothesis is essentially tryingto desribe all members of a relation, and the onlusion is then trying to provesomething about all the members). The universal quanti�ers have been dropped,as in hapter 3.RewriteIn order to prove goal, (5.6), we are �rst going to have determine all the possibleinstantiations of �, � and . To do this we will perform redution. Spei�allywe want to redue the expressions to values (as de�ned in hapter 3 { so valuesinlude expressions suh as H :: T):map(F 0; iterates(F 0;M 0)) red; map(F 0;M 0 :: iterates(F 0; F 0(M 0))): : : red; F 0(M 0) :: map(F 0; iterates(F 0; F 0(M 0)))iterates(F 0; F 0(M 0)) red; F 0(M 0) :: iterates(F 0; F 0(F 0(M 0)))Take the TransitionsAt this point we an determine the appropriate transitions and instantiate thevariables � and in the goal. This means setting up several new goals, one foreah possible transition. The transitions are found by inspeting the transitionrules assoiated with the value under onsideration. In this ase the possibletransitions are hd and tl. So there are two new goals.

80 Chapter 5. A Proof Strategy for Coindution8R: hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R)hF 0(M 0); F 0(M 0)i 2 R[�8R: hmap(F; iterates(F;M)); iterates(F; F (M))i 2 R)hmap(F 0; iterates(F 0; F 0(M 0))); iterates(F 0; F 0(F 0(M 0)))i 2 R[�More Rewriting and FertilizationThe �rst of these new goals is true sine hF 0(M 0); F 0(M 0)i 2� by the reexivityof �. The seond is true sine the oindution hypothesis implies the onlusion.Appealing to the hypothesis is alled fertilization and is a method also used inindution (hapter 4).Although, in this example, fertilization and appeal to the reexivity of � weresuÆient to prove the �nal goals, it is possible that further rewriting might havebeen required to enable it to take plae, e.g. example 3.7 in hapter 3.5.3.2 Type ChekingThe seond example (example 3.8 from hapter 3) is for type heking.Example 5.2 8m : �) lonst(m) : llist(�)
Redution Rule lonst(M) red;M :: lonst(M)Applying the Coindution RuleThe �rst step is to use the oindution rule (5.7) from hapter 3:hl; hl; �ii 2 R R � hR[�il : � (5.7)To proeed we need to hoose a suitable andidate for the rela-tion, R. Let R = fhlonst(M); hlonst(M); llist(�)iig. Clearlyhlonst(M); hlonst(M); llist(�)ii 2 R whih leaves us with the new goalR � hR[�i

5.4. A Proof Strategy for Coindution 81Show R is a BisimulationUsing the de�nition of type fun from hapter 3 we an express the goal asR � fhl; hl; �iij8�:l �! l0; hl; �i �! hl0; � 0ihl0; hl0; � 0ii 2 R [�gUsing rule (3.22) from hapter 3 we get the subgoal:8R: (M : �) hlonst(M); hlonst(M); llist(�)ii 2 R))8�:((((M 0 : �) lonst(M 0) �! �) _ (M 0 : �) hlonst(M 0); llist(�)i �!))(((M 0 : �) lonst(M 0) �! �) ^ (M 0 : �) hlonst(M 0); llist(�)i �!))^h�; i 2 R[�)))RewriteIn order to prove this next goal we are �rst going to have instantiate � and �. Todo this we need to evaluate lonst(M 0) to a value.lonst(M 0) red; M 0 :: lonst(M 0)Take the TransitionsAt this point we an determine the appropriate transitions and set up several newgoals, one for eah possible transition. In this ase the transitions are hd and tl.So there are two new goals.8R: (M : �) hlonst(M); hlonst(M); llist(�)ii 2 R))(M 0 : �) hM 0; hM 0; �ii 2 R[�)8R: (M : �) hlonst(M); hlonst(M); llist(�)ii 2 R))(M 0 : �) hlonst(M 0); hlonst(M 0); llist(�)ii 2 R[�)More Rewriting and FertilizationThe �rst of these new goals is true sineM 0 : �) hM 0; hM 0; �ii 2�. The seondis true sine the oindution hypothesis implies the onlusion.

82 Chapter 5. A Proof Strategy for Coindution
Choose Bisimulation

Transition

Evaluate

Transition

Fertilize

PROVE BISIMULATION

RewriteRewriteRewrite

Reflexivity Reflexivity

Figure 5{1: A Proof Strategy for Coindution5.4 A Proof Strategy for CoindutionThe various examples suggested the strategy outlined in �gure 5{1 for oindution.The strategy embodies the following analysis of the proess of oindutive proofwithin the limits spei�ed in x5.2.1. A oindutive proof starts with the appliation of the oindutionrule whih produes two subgoals. To produe these subgoalssome relation has to be introdued. The relation is hosen sothat the �rst of these new subgoals should be trivial.2. The seond subgoal is more ompliated. First it is onvertedinto some goal of the form oindution hypothesis) oindutiononlusion. This transformation is based on a derived inferenerule that depends heavily on the partiular greatest �xedpointunder onsideration, a few suh inferene rules were disussed inhapter 3 and justi�ations for them appear in Appendix D. Sinethis investigation is restrited purely to proofs within labelledtransition systems only one suh inferene rule is onsidered here,that assoiated with h� � �i.3. The subgoals produed by these inferene rules an only be dis-harged by determining transitions from one or more terms. Thisrequires the evaluation of those terms to a value.

5.5. Proof Methods 834. Transitions an then be determined by referene to the transitionrules of the system.5. After that further rewriting should lead to trivial goals. e.g. ex-ample 3.7 in hapter 3.One the general strategy has been determined it is neessary to providemethod and tati desriptions. The tatis will not be desribed sine they havenot been implemented and will depend upon the partiular objet logi.5.5 Proof MethodsThis setion will disuss the proof methods required by the proof strategy foroindution.5.5.1 CoindutionThis method starts out a oindutive proof by applying the oindution rule. Byinspetion of the general rule (2.6) the oindution method applies if the goal isof the form a 2 gfp(F). Given the domain to whih the proof plans have beenrestrited this orresponds to a 2�. The method's outputs, or the new goals, willbe a 2 R and R � hR[�i, for some R. These onditions are all legal ratherthan heuristi in nature. They are derived from the statement of the oindutionrule.The hard part of any oindutive proof is the hoie of R. The proof methodproposed uses a heuristi to onstrut this if it isn't supplied in some other way.If R isn't supplied then the obvious heuristi for hoosing a set is the smallestpossible set that disharges the �rst preondition of (2.6). If we're trying to provethat f(�X) � g(�X) then the �rst preondition is hf(�X); g(�X)i 2 R hene thesmallest set that disharges this is fhf(�X); g(�X)ig. Sine a heuristi has beenemployed to make this hoie (and a fairly simple heuristi at that) there is apossibility that R may need to be revised. The hoie of R is defeasible in thatits de�nition an be hanged in the event of the proof failing to go through: weuse proof ritis to identify suh situations. The ritis for revising the hoie aredisussed in hapter 6.The oindution method is desribed in �gure 5{2.5.5.2 Gfp MembershipThe seond stage of a oindutive proof involves showing that R is a member ofthe greatest �xedpoint. The Gfp Membership method performs some infereneon the goal R � hR[�i, expanding the de�nition of � using an inferene rule,(3.22), disussed in hapter 3. It is desribed in �gure 5{3.

84 Chapter 5. A Proof Strategy for CoindutionPreonditionThe urrent goal is f(�X) � g(�X) (where, in the ase of type{heking, g(�X)may be a pair of an expression and a type).Output1. If no andidate for R has been supplied the output is:fhf(�X); g(�X)ig � hfhf(�X); g(�X)ig[�i2. If a andidate relation, R = Sni=1fhfi(�Xi); gi(�Xi)ig, has been suppliedthen the output is:n[i=1fhfi(�Xi); gi(�Xi)ig � h n[i=1fhfi(�Xi); gi(�Xi)ig [�i
Figure 5{2: The Coindution(R) MethodPreondition1. The urrent goal is: R � hR[�i2. R = Sni=1fhfi(�Xi); gi(�Xi)igOutputsFor eah i form the goal:8R;Vni=1hfi(�Xi); gi(�Xi)i 2 R)8�:((fi(�X 0i) �! � _ gi(�X 0i) �!))((fi(�X 0i) �! � ^ gi(�X 0i) �!) ^ h�; i 2 R[�))Figure 5{3: The Gfp Membership(h� � �i) Method5.5.3 EvaluationRewriting ours twie in the oindution proof strategy. Eah time it ours it isused to ahieve a di�erent end result. The �rst time it is used to �nd instantiationsfor the transitions. The seond time it is used to allow fertilization. Di�erentmethods are employed to ahieve these two di�erent ends. In this setion only the�rst ourrene of rewriting will be disussed, the seond is disussed in x5.5.5.

5.5. Proof Methods 85In hapter 4, rippling, a heuristi for guiding rewriting in indution was dis-ussed. Rippling was onsidered as a method to apply at those stages in the proofproess where some form of rewriting is required. The objetive at this stage isto use redution to �nd a value, rippling has a wider sope than this (for instanethere would be a risk, with rippling, that onstrutors would be rippled into sinks,rather than rippled out to provide transitions), although it is oneivable that itould be limited to perform redution alone.Non{Strit(Lazy) EvaluationThe assumption of a redution order with values as the least elements of desend-ing hains (if least elements exist) suggests that various well known redutionstrategies might be appropriate. These are all non{terminating in various situa-tions, whih is undesirable in any automated proess. It was not the purpose ofthis researh, however, to improve upon redution tehniques and given the spei-�ation of the domain of inquiry, adopting an existing redution strategy appearedappropriate. The most obvious hoie was non{strit evaluation, where terms areonly redued if needed. This is often referred to as lazy evaluation, however lazyevaluation generally also implies that any expression is only evaluated one, whihis not done here.De�nition 5.2 A term, M , is a redex (reduible expression) if it mathes theLHS of a redution rule.De�nition 5.3 Non{strit evaluation proeeds by always reduing a redex thatis ontained in no other redex, until the entire term is a value.Non{strit evaluation was hosen beause in all funtional languages values arede�ned as weak head normal forms and non{strit evaluation always terminatesin a weak head normal form if one exists. In a domain where values are not weakhead normal forms then a di�erent strategy might have to be employed.Extending Non{Strit (Lazy) EvaluationUnfortunately non{strit evaluation alone is not suÆient. Reall that the �rstrewriting method is applied to goals of the formHY P)8�:((l1 �! � _ l2 �!))((l1 �! � ^ l2 �!)^h�; i 2 R [gfp(F))) (5.8)The expressions, l1 and l2 are the ones that have to be rewritten. They are ofthe form 8�x:exp(�x) where the �x are variables ourring free in exp. Redution is

86 Chapter 5. A Proof Strategy for Coindutionapplied to exp(�x). This is beause we want to know the possible values of exp(�x)given arbitrary values of �x.The problem is that redution is only guaranteed to terminate in a value if theoriginal expression ontains no free variables. Hene exp(�x) may be irreduibleeven though it is not a value.If exp(�x) is not a value then it may be possible to redue it by substitutingvalues for the free variables (sine we want to know the value of exp(�x) on allvalues of its arguments). This suggests an extension to the non{strit evaluationstrategy whih replaes the variables in exp(�x) with values. Sine most types willhave more than one value assoiated with them (e.g. lists have nil and H :: Tas values) a ase split will have to be performed on the goal in order to ensurethat all possible values have been investigated. Notie that this proess may wellintrodue new free variables (e.g. H and T in H :: T). This is beause values arenot onstrained to be ground expressions.Case SplittingWe extend non{strit evaluation with ontrolled ase splitting of free variables.The intuition is that this will allow further redution whih will terminate invalues if they exist.Unfortunately, this a�ets the termination of the evaluation. This is illustratedin example 5.3.Example 5.3 Consider the term map(F)N (L) (5.9)where (� � �)n is de�ned by: F 0(X) red; X (5.10)F s(N)(X) red; F (FN(X)) (5.11)Non{strit evaluation with ase{splitting where appropriate reduesmap(F)N (L) to L (if N = 0) andmap(F;map(F)N1(L)) (if N = s(N1)), neither ofthese are values. L an be made a value by asesplitting but map(F;map(F)N1(L))an not. If N1 is asesplit further then map(F;map(F)N1(L)) an be reduedto map(F; L) if (N1 = 0) and map(F;map(F;map(FN2(L)))) if (N1 = s(N2)).One again map(F; L) an be redued to a value by now asesplitting L butmap(F;map(F;map(FN2(L)))) an not. Further evaluation of the term in thisfashion produes a potentially in�nite sequene as N2 is asesplit and then N3 andso on. If N were a value, rather than a universally quanti�ed variable this proesswould bottom out at some point with N = 0, but as it stands it fails to terminate.The lemmata (5.12) and (5.13)

5.5. Proof Methods 87map(F)N(nil) red; nil (5.12)map(F)N(H :: T) red; FN(H) :: map(F)N (T) (5.13)allow map(F)N(L) to be evaluated to weak head normal forms nil andFN(H) :: map(F)N(T) (by ase{splitting L).(5.12) and (5.13) have to be supplied as lemmata to the system. This is equivalentto supplying a oreursive de�nition of the funtion map(F)N (see hapter 2).This observation suggests strongly that the existene of oreursive de�nitions offuntions is somehow losely linked to issues of termination.A Redution StrategyThe redution strategy on a term is1. Perform non{strit evaluation (without ase{splitting) on term until it ter-minates (this is guaranteed) in some new term, t.2. If t is a value we are done.3. If t is not a value, ase{split a free variable, v, appearing in t, replaing itwith eah possible value in the type of v and restart the proess.There are often a number of possible variables to ase{split as was illustrated bythe example. A breadth �rst searh of all the variables is performed to �nd theappropriate ones. The resulting method, the Evaluate Method, is shown in �gure5{4.An alternative suggestion, given that breadth �rst searh is omputationallyexpensive, is to perform some analysis on potential redution rules and lemmataand prefer ase splits whih lead to the appliation of a redution rule or lemmathat rewrites to a value. This is based on the observation that the patterns requiredfor small{step redution rules are often values. So suh a ase split is likely toenable further redution.5.5.4 TransitionsThe Transition Method is used if there are terms of the form a �! � in the goalwhere � and � are uninstantiated, but where a is a value, so � and � an now beinstantiated by inspeting the transition rules. This will arise when the expressionson the LHS of transitions that appeared in the output of the Gfp Membershipmethod have been redued to values. The objet is to remove all mention oftransitions and get to the point of proving something about the result of thetransitions (whih is the entral proof obligation to show that the hosen set is abisimulation).

88 Chapter 5. A Proof Strategy for Coindution
Pre{Conditions1. The urrent goal is of the formHY P)8�:((l1 �! � _ l2 �!))((l1 �! � ^ l2 �!)^h�; i 2 R [gfp(F)))2. For some i, li (i = 1; 2) rewrites to vi, a value, using the redutionstrategy with the redution rules, rules, and ase{splitting someset of variables V.Note that, the expression vi depends upon some partiular om-bination, V , of ases of the variables in V.Outputs� Form goals for every ombination of asesplits in V by replaingthe variables in V with one of their ases everywhere they appearin the goal.� For the ombination of ases V also replae li with vi.Figure 5{4: The Evaluate MethodThis situation is slightly ompliated in proofs of bisimilarity by the require-ment that if a transition applies to one side of a relation it applies to both. How-ever the method remains a fairly straightforward proess of applying the transitionrules for the language and tidying up the expressions a �! � whih have beometrivially true.Lastly di�erene mathing is performed to allow the rippling used in the nextpart of the proof strategy. Sometimes more than one di�erene math may bepossible, however the proof strategy doesn't expliitly prefer any one to another.This method is shown in �gure 5{55.5.5 RipplingReall example 3.7 from hapter 3. The andidate bisimulation isfhmap(F)N(h(F;X)); iterates(F; FN (X))igThe expressions map(F 0)N 0(h(F 0; X 0)) and iterates(F 0; F 0N 0(X 0)) redue toFN 0(X 0) :: map(F 0)N 0(map(F 0; h(F 0; X 0))) and F 0N 0(X 0) :: iterates(F 0; F 0(F 0N 0(X 0))){ these are values allowing transitions to be taken. The tail transitions leave thegoal:

5.5. Proof Methods 89
Preonditions1. The expression a �! � appears in the goal.2. The set of transitions that apply to a is transitions3. transitions is non{empty and ontains all possible transitions from the set oftransition rules that apply to the value, a.4. If the onjuntion a �! � ^ b �! appears in the goal then all the transitionsin transitions also apply to b and there is no transition that applies to b thatisn't in transitions. OutputsForm a new goal for eah �k 2 transitions, by the following proess:1. Replae a �! � with true wherever it appears in the goal.2. Replae all remaining ourrenes of � with a0 where a �k! a0.3. If the expression b �! appears in the goal also replae this with true andinstantiate any remaining ourrene of with b0 where b �k! b0.4. Remove all the ourrenes of true using the rules(true) P); P (true ^ P); P (true _ P); true5. If the resulting expression di�erenes mathes against one of the hypothesesthen annotate the expression aordingly.

Figure 5{5: The Transition(transitions) Method8Rhmap(F)N (h(F;X)); iterates(F; FN (X))i 2 R)hmap(F 0)N 0(map(F 0; h(F 0; X 0))); iterates(F 0; F 0(F 0N 0(X 0)))i 2 RThis won't fertilize immediately beause of the map(F 0) around h(F 0; X 0) andthe extra F 0 around F 0N 0(X 0). However, it is lear that the expression is equiva-lent to hmap(F 0)s(N 0)(h(F 0; X 0)); iterates(F 0; F 0s(N 0)(X 0)))i using the rewrite rulesF (FN(X)); F s(N)(X) and FN(F (X)); F (FN(X)). We an then fertilize sineN 0 is a sink. However the �rst of these rewrite rules is the reverse of the redutionrule we have already used to evaluate the expression. So we an't use redutionfor this step.This is muh more like the purpose for whih rippling is designed, in fat itorresponds to \rippling into a sink" sine the aim is to sink the di�erenes between

90 Chapter 5. A Proof Strategy for Coindutionthe hypothesis and onlusion. It is still neessary to provide annotations fromsomewhere. Sine the aim is to fertilize using one of the oindution hypothesesthe obvious approah is to di�erene math against a hypothesis. This di�erenemathing is performed by the Transition Method when forming the output in theantiipation, based on the proof strategy, that rippling is the next method to beapplied.5.5.6 Fertilization and Other MethodsThe fertilization method had to be extended slightly for use with oindution(this is disussed in hapter 7). The only other method required is desribed as\Reexivity of �" in the proof strategy. This is shown in �gure 5{6 and is a basisimpli�ation method. PreonditionThe urrent goal is hX; Xi 2 R[� orX : �) hX; hX; �ii 2 R[�.OutputNo new goals.Figure 5{6: The Reexivity of � MethodIn several of the proof plans another simpli�ation method available withCLAM3 was used. This was Eval def, evaluation by de�nition. Eval def unfoldsde�nition equations in unannotated terms and wave fronts. In CoCLAM Eval definterated with Evaluate to take some of the burden for redution. This happenedbeause Evaluate deals with one side of the relation at a time - this frequentlyintrodued suÆient ase splits for the other side of the relation to be redued toa value. Eval def is more eÆient than Evaluate sine it doesn't have to searh forappropriate ase splits et. However it e�etively funtioned as a restrited formof the Evaluate method.Simpli�ation steps take a number of forms in numerous di�erene theoremprovers and proof planners. Fertilization, appeal to the reexivity of � (andde�nition of :) and the simpli�ed rewriting supplied by Eval def proved suÆientto handle the various trivial steps required by oindution. However there is noreason to suppose that these are the only simpli�ation methods that ould havebeen used.

5.6. Conlusion 915.6 ConlusionThis hapter has dealt in some detail with the proof methods for oindution. Ithas tried to disuss them in a fairly general way using English in the hope that thiswill aid omprehension and in the belief that the methods themselves shouldn'tbe tied to one partiular implementation or one partiular language.The Coindution, Gfp Membership and Transition methods were all introduedfor the �rst time and desribed in some detail.The rewriting involved in oindutive proofs was also disussed and non{stritevaluation was extended by provision for ase splitting universal variables to opewith a stage in the proof strategy for whih the standard ripple method appearedinappropriate.The entral oindution methods, i.e. the Coindution Method and Gfp Mem-bership Method, proved relatively simple to speify and present. Provision of aseletion of methods to ontrol the rewriting proess in order to enable the deter-mination of transitions turned out to be a more omplex. The Evaluate Method isa �rst step towards this, but it remains ineÆient and unwieldy. It also is heavilydependent on a set of assumptions about the relationship of redution, transitionsand values in the domain under onsideration.In general oindution �ts well into the proof planning framework. It presentsfairly obvious steps in a proof proess, the hoie of a bisimulation, taking tran-sitions and fertilization whih are relatively easy to desribe. These are linked inthe proof strategy by Evaluation and rippling whih appear to be more loselyassoiated with ideas from funtional programming settings. Rippling is a stan-dard proof planning method and has been extensively investigated. However, theEvaluate method is new.

Chapter 6
Critis For Coindution

6.1 IntrodutionThis hapter introdues the Revise Bisimulation Criti. In order to do this therequirements for a relation ontaining some pair hE; F i to be a bisimulation areexamined. This involves the introdution of the idea of a transition sequene andsome theoretial results are proved about the nature of the spae of transitionsequenes.A strategy is proposed for exploring the spae of transitions sequenes and inthe light of this strategy the Revise Bisimulation riti for the Wave method isproposed to implement it. Some de�ienies of the proposed riti in embodyingthe strategy are then disussed.6.2 The Trial BisimulationAs mentioned in hapter 5 the Coindution Method uses a heuristi to hoose aandidate bisimulation. It was noted that this heuristi was fairly simple and thatit was possible for the hosen relation not to be a bisimulation. This is illustratedby example 6.1.Example 6.1 Consider example 3.7 from hapter 3.8x; f: h(f; x) � x :: map(f; h(f; x))) 8x; f: h(f; x) � iterates(f; x)The Coindution method hooses the trial bisimulationfhh(F;X); iterates(F;X)i)g (6.1)The Gfp Membership and Evaluate Methods will provide the subgoal92

6.3. Transition Sequenes 938Rhh(F;X); iterates(F;X)i 2 R)(X 0 :: map(F 0; h(F 0; X 0)) �! � _X 0 :: iterates(F 0); F 0(X 0) �!))X 0 :: map(F 0; h(F 0; X 0)) �! � ^X 0 :: iterates(F 0); F 0(X 0) �! ^h�; i 2 R[� (6.2)There are two possible values for �, hd and tl. I am only going to onsiderthe subgoal produed using tl here sine the hd transition subgoal is trivial byappeal to the reexivity of �.The tl transition produes the subgoal8Rhh(F;X); iterates(F;X)i 2 R)h map(F 0; h(F 0; X 0)) "; iterates(F 0; F 0(X 0) ")i 2 R (6.3)The proof attempt fails beause hmap(F 0; h(F 0; X 0)); iterates(F 0; F 0(X 0))i 62R. There are two possible solutions to this problem; either the heuristi is im-proved (for instane with the use of middle{out reasoning) or proof ritis (asdesribed in hapter 4) are employed to modify the hoie.The trial bisimulation hosen by the Coindution method was the smallestpossible relation that disharged the �rst ondition of the oindution rule. If thisrelation is not a bisimulation but the problem under onsideration is genuinelya theorem, then the relation was not large enough. The proof attempt will failat the fertilization stage beause the pair of expressions provided by the Transi-tion method are not in the trial bisimulation. This failure provides useful extrainformation (the new pair of expressions) to guide an extension of the relation.This is an ideal situation for the appliation of a proof riti, sine the failure hasprovided more information than was available when the earlier deision was made.6.3 Transition SequenesIn order to understand better the proess undertaken by the Revise Bisimulationriti it is important to introdue the notion of the smallest possible bisimulationthat ontains a pair of objets and establish some fats about it. The entraltheorem (6.2) in this setion shows that this smallest bisimulation is the least setgenerated by exploring all possible results of applying transitions to the originalpair.First we need to establish what is meant by \exploring all possible results oftransitions to the original pair". To do this we establish the existene of hains ofexpressions linked by transitions a1 �1! a2 �2! � � �. Furthermore sine oindutionrequires the same transitions to hold from two expressions we establish a de�nitionfor \mathed" sequenes of transitions.

94 Chapter 6. Critis For CoindutionDe�nition 6.1 Let E be some expression in a labelled transition system. If E �!E 0 for some transition � then E 0 is a suessor state of E.Let hE; F i be a pair of expressions. If E 0 is a suessor state of E and F 0 isa suessor state for F then hE 0; F 0i is a suessor state of hE; F i.If E 0 is a suessor state of E and F has no suessor states then hE 0; F i is asuessor state for hE; F i.If E has no suessor state and F 0 is an suessor state for F then hE; F 0i isa suessor state for hE; F i.NB. Suessor states are not neessarily unique.De�nition 6.2 If hE 0; F 0i is a suessor state of hE; F i and moreover there issome transition �! suh that E �! E 0 and F �! F 0 then hE 0; F 0i is a mathedsuessor state of hE; F i.De�nition 6.3 If fE1; E2; � � �g is some sequene of expressions or pairs of expres-sions in a deterministi labelled transition system (possibly in�nite) suh that Ei+1is a suessor state of Ei then fE1; E2; � � �g is a transition sequene for E1.De�nition 6.4 If fE1; E2; � � �g is a transition sequene of pairs of expressionssuh that for all i Ei+1 is a mathed suessor state of Ei then fE1; E2; � � �g is amathed transition sequene for E1.If E � F then we would expet to be able to �nd a mathed transition sequenefrom hE; F i. In fat we would expet to be able to �nd a number of mathedtransition sequenes if there is more than one possible transition fromE and F . Wewant to selet some set of \interesting" transition sequenes, in partiular we wantthe set that desribes all the expressions visited by the transition sequene beforebisimilarity an be established. We are, therefore, not interested in sequenes afterthey have returned to the original pair of expressions, or started to loop in someother way. Therefore we only want to onsider sequenes up to the �rst dupliation.We are also not interested in syntatially idential pairs of expressions sine theyare bisimilar by the reexivity of �.De�nition 6.5 A hopped transition sequene (CTS) for E is any one ofthe following:1. A �nite transition sequene for E whih ontains no dupliate elements ex-ept for its last element whih is a dupliate of a previous one. Moreover itontains no pairs whih are syntatially idential.2. A �nite transition sequene for E whih ontains no dupliate elements andno syntatially idential pairs, exept for its last pair whih are syntatiallyidential.

6.3. Transition Sequenes 953. A �nite transition sequene for E whih ontains no dupliate elements andno syntatially idential pairs and there are no suessor states for its lastelement.4. An in�nite transition sequene for E whih ontains no dupliates and nosyntatially idential pairs.1. 2. and 3. are alled Finite Chopped Transition Sequenes. 4. is alledan In�nite Chopped Transition SequeneThe main theorem (6.2) in what follows is that the union of hopped transitionsequenes from some pair hE; F i in a deterministi transition sequene is thesmallest bisimulation that ontains hE; F i.To establish this it is �rst shown (theorem 6.1) that if some pair hE 0; F 0i isin a mathed transition sequene for hE; F i then they are in a mathed CTS forhE; F i. This fat is used to show that the set of mathed CTS's is a bisimulation,by showing that every mathed suessor of some pair is in a mathed CTS. Allthat is then required is to show that any other bisimulation ontaining hE; F i alsoontains the set of mathed CTS's, this is proved by indution on the number ofmathed suessor states.Lemma 6.1 If E and F are syntatially idential then all mathed suessorstates of E and F in a deterministi labelled transition system are syntatiallyidential.ProofThe proof follows from the determinay of the labelled transitionsystem. 2Theorem 6.1 If hE 0; F 0i is a member of some mathed transition sequene forhE; F i in some deterministi LTS suh that E 0 and F 0 are not syntatially iden-tial then hE 0; F 0i is a member of some hopped transition sequene for hE; F i.Proof by Indution on i, the length of some mathed transition se-quene from hE; F i to hE 0; F 0iBase Case hE; F i is the 1st member of all transition sequenes from hE; F i, sohE 0; F 0i = hE; F i. Clearly hE; F i is also a member of all CTS's for hE; F i.Step Case Assume that for all n � i if hE 00; F 00i is the nth member of somemathed transition sequene for hE; F i then it is the member of some CTSfor hE; F i (This is the indution hypothesis and is used to prove ase 3(a)below { the other ases don't require it). Let hE 0; F 0i be the i+1th memberof some mathed transition sequene, T , for hE; F i.Let Ti+1 be the sequene of the �rst i+ 1 elements of T then:1. If Ti+1 is hopped then hE 0; F 0i is in a CTS for hE; F i.

96 Chapter 6. Critis For Coindution2. If Ti+1 is not hopped but it an be extended to a CTS by adding some(possibly in�nite) sequene of suessor states to hE 0; F 0i then hE 0; F 0iis in a CTS for hE; F i.3. If Ti+1 is not hopped and an't be extended then there is at least onepair hEj; Fji suh that either Ej and Fj are syntatially idential orhEj; Fji appears in both the jth and kth positions of Ti+1 suh thatj < k � i+ 1.(a) If there is a pair hEj; Fji that appears in both the jth and kthpositions of Ti+1 suh that j < k � i + 1 then the sequenehE1; F1i; � � � ; hEj; Fji; hEk+1; Fk+1i; � � � ; hE 0; F 0i is also a mathedtransition sequene for hE; F i. In this sequene hE 0; F 0i is the nthelement for some n � i (sine at least one element has been removedfrom the sequene) hene by the indution hypothesis hE 0; F 0i isin some CTS for hE; F i.(b) If Ej and Fj are syntatially idential then (sine Ti+1 is mathed)all their suessor states are syntatially idential (by lemma 6.1)hene E 0 and F 0 are syntatially idential whih ontradits theinitial assumption.2We now ome to the main theorem.Theorem 6.2 The union of mathed hopped transition sequenes for a bisimilarpair, hE; F i in a deterministi LTS, (written MCTS(hE; F i)) is a bisimulationand is ontained in all other bisimulations, whih ontain hE; F i. i.e. it is thesmallest bisimulation that ontains hE; F i.Proof. Sine E � F there exists (at least one) bisimulation R suh thathE; F i 2 R and R � hR[�i.The proof will proeed in two parts, �rst showing that MCTS(hE; F i)is a bisimulation and then that for any bisimulation, R, ontaining hE; F i,MCTS(hE; F i) � R hene that MCTS(hE; F i) is the smallest bisimulationontaining hE; F i.1. MCTS(hE; F i) is a bisimulation.Let hE 0; F 0i be an arbitrary member of MCTS(hE; F i). Then hE 0; F 0i isthe ith member of some mathed CTS. To show that MCTS(hE; F i) is abisimulation then it is neessary to show that for all �, E 0 �! E 0� i� F 0 �! F 0�and hE 0�; F 0�i 2MCTS(hE; F i). hE 0�; F 0�i is a mathed suessor state forhE 0; F 0i so hE 0�; F 0�i must be in a mathed transition sequene for hE; F iso by theorem 6.1 hE 0�; F 0�i must be in a mathed CTS for hE; F i.HeneMCTS(hE; F i) is a h�i{dense relation and thereforeMCTS(hE; F i)is a bisimulation.

6.4. The Coindution Method Heuristi 972. If R is a bisimulation ontaining hE; F i, MCTS(hE; F i) � RLet hEi; Fii be the ith member of some mathed CTS, T .Proof that hEi; Fii 2 R by indution on i.Base Case hE; F i 2 R by hypothesis.Step Case Assume that hEn; Fni 2 R. Sine R is a bisimulationall the mathed suessor states of hEn; Fni are in R. Soif hEn+1; Fn+1i is an arbitrary mathed suessor state forhEn; Fni then hEn+1; Fn+1i 2 R.Hene MCTS(hE; F i) � R.2. This means that analysis of the mathed hopped transition sequenes of anypair of objets is entral to determining their bisimilarity.6.4 The Coindution Method HeuristiThe preeding analysis might suggest that a sensible hoie of trial bisimulationfor some pair hE; F i would beB def= fhE 0; F 0ij9S:S is a mathed CTS for hE; F i; hE 0; F 0i 2 Sg (6.4)If this set is to qualify as a bisimulation then for any pair in the bisimulationhE 0; F 0i and any transition �, E 0 �! E 00 , F 0 �! F 00. To prove this it has to bepossible to determine the transitions for an arbitrary pair in the relation and thedesription of B in (6.4) simply fails to supply that information.One method for determining the transitions from arbitrary members of B is toexplore the spae of the transitions from hE; F i. The suggestion here is that aproof riti be used to ondut that exploration.The heuristi employed by the oindution method assumes that all hoppedtransition sequenes are of length no more than two.If the hoie of fhE; F ig made by the Coindution method is inorret then ithas to be extended somehow beause for some transition �, E �! E 0 and F �! F 0hE 0; F 0i 62 fhE; F ig. If the proof is to go through, the trial bisimulation has tobe extended so that at the very least it inludes hE 0; F 0i.We know the transition spae an be explored by exploring all hopped transi-tion sequenes. If these transition sequenes are �nite then this is a deterministiproess. However some hopped transition sequenes are in�nite. In this ase a�nite desription for B may still be possible if there is some sort of identi�ablepattern in the sequene (more of this in x6.5.1).

98 Chapter 6. Critis For Coindution6.5 The Revise Bisimulation CritiA riti is added to the proof strategy for oindution whih extends the urrenttrial bisimulation by adding in any new suessor states that are reahed that arenot already in the bisimulation. At the same time it seeks for patterns that willallow in�nite hopped transition sequenes to be �nitely desribed. The riti isshown in �gure 6{1.Although this is a very general desription, it should be lear that the oin-dution proof strategy together with this riti provides a method for exploringall the hopped transition sequenes in an attempt to disover B.Preonditions1. The oindution method has been used in this branh of theproof.2. The urrent goal is 8Rhf1; g1i 2 R ^ : : : ^ hfn; gni 2 R)h�; i 2 R. Where � and are both instantiated and h�; i arenot already known to be in R.PathIfA pattern has been spotted (see later for details) in the some sub-sequene of the pairs used to desribe R (i.e. the trial bisimulation)and h�; i. A new desription has been proposed replaing this sub-sequene with h�1; 1i [� � � [h�n; ni Start the proof again fromthe most reent all of the oindution method, supplying the revisedrelation as the new trial bisimulation.ElseChange the trial bisimulation by adding the set fh�; ig to it and startthe proof again from the most reent all of the oindution method,supplying the revised relation as the new trial bisimulation.Figure 6{1: The Revise Bisimulation CritiAs an example of the riti in ation onsider example 3.4 from hapter 3.Example 6.2 8a; b: lswap(a; b) � merge(lonst(a); lonst(b))

6.5. The Revise Bisimulation Criti 99where: lswap(A;B) red; A :: lswap(B;A) (6.5)lonst(A) red; A :: lonst(A) (6.6)merge(nil; L) red; L (6.7)merge(L; nil) red; L (6.8)merge(H1 :: T1; H2 :: T2) red; H1 :: H2 :: merge(T1; T2) (6.9)The Coindution method hooses the trial bisimulationfhlswap(A;B); merge(lonst(A); lonst(B))igThe Gfp Membership method provides the subgoal8R: hlswap(A;B); merge(lonst(A); lonst(B))i 2 R)((lswap(A0; B0) �! � _merge(lonst(A0); lonst(B0)) �!))lswap(A0; B0) �! � ^merge(lonst(A0); lonst(B0)) �! ^h�; i 2 R[�) (6.10)and Evaluate method makes this8R: hlswap(A;B); merge(lonst(A); lonst(B))i 2 R)((A0 :: lswap(B0; A0) �! � _ A0 :: B0 :: merge(lonst(A0); lonst(B0)) �!))A0 :: lswap(B0; A0) �! � ^ A0 :: B0 :: merge(lonst(A0); lonst(B0)) �! ^h�; i 2 R[�) (6.11)There are two possible values for �, hd and tl. I am only going to onsiderthe subgoal produed using tl here sine the hd transition subgoal is trivial byappeal to the reexivity of �.The tl transition produes the subgoal8R: hlswap(A;B); merge(lonst(A); lonst(B))i 2 R)hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i 2 RThe proof attempt fails at this point, beauseit isn't possible to math hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i andhlswap(A;B); merge(lonst(A); lonst(B))i.Assuming that no pattern indiating an in�nite sequene has been detetedbetween this new pair and the hypothesis (more of this in x6.5.1) the riti suggestsadding the set fhlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))ig to the trialbisimulation and starting again.

100 Chapter 6. Critis For CoindutionThe proess of forming the proof plans proeeds one more with the Gfp Mem-bership method produing two subgoals eah with two hypotheses instead of one:8R: hlswap(A;B); merge(lonst(A); lonst(B))i 2 R^hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i 2 R)((lswap(A00; B00) �! � _merge(lonst(A00); lonst(B00)) �!))lswap(A00; B00) �! � ^merge(lonst(A00); lonst(B00)) �! ^h�; i 2 R[�) (6.12)
8Rhlswap(A;B); merge(lonst(A); lonst(B))i 2 R^hlswap(B0; A0); B0 :: merge(lonst(A0); lonst(B0))i 2 R)((lswap(B00; A00) �! � _ B00 :: merge(lonst(A00); lonst(B00)) �!))lswap(B00; A00) �! � ^B00 :: merge(lonst(A00); lonst(B00)) �! ^h�; i 2 R[�) (6.13)after Evaluation and the taking of transitions these are both solved: the subgoalsresulting from the hd transitions by appeal to the reexivity of � and those fromthe tl transitions by appeal to one of the two hypotheses. This �nal proof planis very similar to the proof shown in hapter 3.6.5.1 The Divergene ChekUp until now I have been vague about the proess of deteting in�nite transitionsequenes whih is the �nal part of the Revise Bisimulation riti.The \spotting of patterns" mentioned in �gure 6{1 is performed using a diver-gene hek based on work by Walsh [Walsh 96℄. The hek attempts to �nd someterm struture introdued by the revisions whih is aumulating in the sequeneof equations whih desribe the trial bisimulation. It is this struture whih ispreventing fertilization solving the goals (i.e. proving the pair is an element of thetrial bisimulation). The riti identi�es the aumulating struture using di�erenemathing [Basin & Walsh 92℄. It is desribed in �gure 6{2.The use of the divergene hek an be seen more learly with an example.Example 6.3 Consider example 3.7 from hapter 3.8x; f: h(f; x) � x :: map(f; h(f; x))) 8x; f: h(f; x) � iterates(f; x)The Coindution method hooses the trial bisimulationfhh(F;X); iterates(F;X)i)g (6.14)The Gfp Membership and Evaluate Methods will provide the subgoal

6.5. The Revise Bisimulation Criti 101Conditions1. There is a sequene of sets within the trial bisimulation, fhli; riig,whih have been generated by the revise bisimulation riti.2. There exist Gl, Gr, Hl, Hr (at least one Hi (i = l; r) non trivial)suh that for eah j di�erene mathing gives:fhlj; rjig = fhGl(Ulj); Gr(Urj)ig,fhlj+1; rj+1ig = fhGl(Hl(Ulj)); Gr(Hr(Urj))igNew Trial BisimulationhGl((Hl)n(Ul0)); Gr((Hr)n(Ur0))i
Figure 6{2: The Divergene Chek

8Rhh(F;X); iterates(F;X)i 2 R)((X 0 :: map(F 0; h(F 0; X 0)) �! � _X 0 :: iterates(F 0); F 0(X 0) �!)^X 0 :: map(F 0; h(F 0; X 0)) �! � ^X 0 :: iterates(F 0); F 0(X 0) �! ^h�; i 2 R[�) (6.15)
There are two possible values for �, hd and tl. I am only going to onsiderthe subgoal produed using tl here sine the hd transition subgoal is trivial byappeal to the reexivity of �.The tl transition produes the subgoal8Rhh(F;X); iterates(F;X)i 2 R)h map(F 0; h(F 0; X 0)) "; iterates(F 0; F 0(X 0) ")i 2 R (6.16)The proof attempt fails beause hmap(F 0; h(F 0; X 0)); iterates(F 0; F 0(X 0))i 62R. Aording to the riti (�gure 6{1) this new pair is added into the trial bisim-ulation.The proess of forming the proof plans proeeds one more produing twosubgoals. The �rst subgoal is similar to (6.15) but with an additional hypothesis.This extra hypothesis an be used to fertilize at the point where the proof attempt

102 Chapter 6. Critis For Coindutionfrom (6.15) beame bloked. The seond new subgoal is1:8Rhh(F;X); iterates(F;X)i 2 R^hmap(F 0; h(F 0; X 0)); iterates(F 0; F 0(X 0))i 2 R)((F 00(X 00) :: map(F 00; map(F 00; h(F 00; X 00))) �! �_F 00(X 00) :: iterates(F 00; F 00(F 00(X 00))) �!))F 00(X 00) :: map(F 00; map(F 00; h(F 00; X 00))) �! �^F 00(X 00) :: iterates(F 00; F 00(F 00(X 00))) �! ^h�; i 2 R[�) (6.17)
Taking tl transitions leads to the subgoalhh(F;X); iterates(F;X)i 2 R^hmap(F 0; h(F 0; X 0)); iterates(F 0; F 0(X 0))i 2 R)hmap(F 00; map(F 00; h(F 00; X 00)) "); iterates(F 00; F 00(F 00(X 00)) ")i 2 R (6.18)One again the Revise Bisimulation riti will intervene and suggest addingfhmap(F 00; map(F 00; h(F 00; X 00))); iterates(F 00; F 00(F 00(X 00)))i) to R.A human an tell that this proess an be in�nitely repeated, i.e. the transitionsequene of tl{suessors is in�nite. At this point di�erene mathing an be usedto try and spot a pattern.The �rst three elements of the sequene are:s0 = hh(F;X); iterates(F;X)i 2 Rs1 = hmap(F 0; h(F 0; X 0)); iterates(F 0; F 0(X 0))i 2 Rs2 = hmap(F 00; map(F 00; h(F 00; X 00))); iterates(F 00; F 00(F 00(X 00)))i 2 RDi�erene mathing suessive pairs of these2, produes the sequene:s00 = hh(F;X); iterates(F;X)i 2 Rs01 = h map(F 0; h(F 0; X 0)) ; iterates(F 0; F 0(X 0))i 2 Rs02 = h map(F 00; map(F 00; h(F 00; X 00))) ; iterates(F 00; F 00(F 00(X 00)))i 2 RIt should be lear from viewing the above sequene that the aumulating termstruture is being marked out by the wave fronts. This shouldn't be surprising1Clearly it would be more eÆient to proeed without repeating the transitionanalysis for hh(F;X); iterates(F;X)i 2 R and move straight to the analysis ofhmap(F 0; h(F 0;X 0)); iterates(F 0; F 0(X 0))i 2 R however this hasn't been implemented.2This di�erene mathing should not be onfused with the di�erene mathing afterthe Transition method whih resulted in the annotations on goals 6.16 and 6.18 whihwas intended to motivate rippling if possible. Here the di�erene mathing is being usedto identify a ommon pattern of di�erenes

6.5. The Revise Bisimulation Criti 103sine the di�erene mathing singles out di�erenes between two equations and itis preisely these di�erenes whih are preventing fertilization ourring betweenthem.One divergene is spotted it is neessary to �nd an appropriate path. Walsh'sdivergene riti pathed the proofs he was attempting by speulating and provingadditional lemmata. In oindutive proofs a generalisation, using (� � �)n, replaesthe subsequene of the trial bisimulation sine the divergene is being aused bythe repeated addition of H i (as de�ned by the divergene hek) every time thetail of the latest addition to the trial bisimulation is examined.The riti instantiates Gl; Gr; Hl; Hr and Ul0 and Ur0 (from �gure 6{2) as id(the identity funtion), iterates(F), map(F), F , h(F;X) and X respetively soR = fhmap(F)N(h(F;X)); iterates(F; FN(X))ig. This new relation is given tothe oindution method whih produes the goal:fhmap(F)N(h(F;X)); iterates(F; FN(X))ig �hfhmap(F 0)N 0(h(F 0; X 0)); iterates(F 0; F 0N 0(X 0))ig[�i (6.19)The Gfp Membership method's preonditions speify that the urrent goal isa subset goal of this form. In onjuntion with Evaluation this produes the goal8Rhmap(F)N (h(F;X)); iterates(F; FN(X))i 2 R)((F 0N 0(X 0) :: map(F 0)N 0(map(F 0; h(F 0; X 0))) �! �_F 0N 0(X 0) :: iterates(F 0; F 0(F 0N 0(X 0))) �!))F 0N 0(X 0) :: map(F 0)N 0(map(F 0; h(F 0; X 0))) �! �^F 0N 0(X 0) :: iterates(F 0; F 0(F 0N 0(X 0))) �! ^h�; i 2 R[�) (6.20)
The Transition method then produes the subgoal:� � �) hmap(F 0)N 0(map(F 0; h(F 0; X 0)) "); iterates(F 0; F 0(F 0N 0(X 0)) ")i 2 R[�(6.21)whih ripples to:� � �) hmap(F 0) s(N 0) #h(F 0; X 0)); iterates(F 0; F 0 s(N 0) #(X 0))i 2 R (6.22)whih an be solved by fertilization3.
3Sine all the variables, inluding N 0, are sinks

104 Chapter 6. Critis For Coindution6.6 Limitations of the Divergene ChekIdeally a divergene hek for the Revise Bisimulation riti:1. Fires if the proof strategy was in the proess of exploring an in�nite hoppedtransition sequene;2. Only extends the trial bisimulation by elements in B. In partiular it only�res if the proof strategy was in the proess of exploring an in�nite hoppedtransition sequene.Neither of these is the ase with the divergene hek proposed here (in fatsine the problem is probably equivalent to the halting problem, no riti is goingto be perfet).6.6.1 The Chek doesn't Fire even though the Sequene isIn�niteReall the onditions of the divergene hek. It will fail to �re if it fails to �nd asequene of terms that di�erene math to produe idential wave fronts.Di�erene Mathing FailsThis will happen if one member of the sequene is not embedded in some way inthe next member.Example 6.4 Consider divergene that is hidden within funtion de�nitions:f1(nil) red; nil (6.23)f1(H :: T) red; (H + 1) :: f2(T) (6.24)f2(nil) red; nil (6.25)f2(H :: T) red; (H + 2) :: f3(T) (6.26)f3(nil) red; nil (6.27)f3(H :: T) red; (H + 3) :: f4(T) (6.28)...This transition sequene has no �nite desription unless the funtion de�nitionsthemselves follow a pattern. In either ase the divergene riti is inapable of

6.6. Limitations of the Divergene Chek 105spotting that it may be exploring some kind of in�nite hopped transition sequenewhose ith member is the term fi(L) wherefi(nil) red; nil (6.29)fi(H :: T) red; (H + i) :: fi+1(T) (6.30)These funtions might be generalised byf(N; nil) red; nil (6.31)f(N;H :: T) red; (H +N) :: f(s(N); T) (6.32)but without information on how they are being generated it is impossible to beertain that this is valid.Wave Fronts exist but are not IdentialThis partiular example was suggested by Collins4.Example 6.5 Take the funtion de�nitions:g(N; nil) red; nil (6.33)g(N;H :: T) red; H :: g(s(N); g(N; T)) (6.34)lonst(M) red; M :: lonst(M) (6.35)Note that g itself is learly a version of id (the identity funtion). The followingis the hopped transition sequene from hlonst(M); g(N; lonst(M))i generatedby exploring suessive tl! transitions.hlonst(M); g(N; lonst(M))i 2 Rhlonst(M); g(s(N); g(N; lonst(M)))i 2 Rhlonst(M); g(s(s(N)); g(s(N); g(s(N); g(N; lonst(M)))))i 2 R... (6.36)There are a number of di�erent ways to di�erene math this sequene, someof whih are shown below:4Private Communiation

106 Chapter 6. Critis For Coindutionhlonst(M); g(N; lonst(M))i 2 Rhlonst(M); g(s(N) ; g(N; lonst(M)))i 2 Rhlonst(M); g(s(s(N)) ; g(s(N); g(s(N); g(N; lonst(M)))))i 2 R... (6.37)
hlonst(M); g(N; lonst(M))i 2 Rhlonst(M); g(s(N); g(N; lonst(M))) i 2 Rhlonst(M); g(s(s(N)) ; g(s(N); g(s(N); g(N; lonst(M)))))i 2 R... (6.38)
hlonst(M); g(N; lonst(M))i 2 Rhlonst(M); g(s(N) ; g(N; lonst(M)))i 2 Rhlonst(M); g(s(s(N)); g(s(N); g(s(N); g(N; lonst(M))))) i 2 R... (6.39)
hlonst(M); g(N; lonst(M))i 2 Rhlonst(M); g(s(N); g(N; lonst(M))) i 2 Rhlonst(M); g(s(s(N)); g(s(N); g(s(N); g(N; lonst(M))))) i 2 R... (6.40)

There is learly divergene going on here, but it won't be spotted by the diver-gene riti sine the wave fronts in all possible di�erene mathes hange fromdi�erene math to di�erene math. Moreover, even applying di�erene mathingto the sequene of wave{fronts still fails to �nd a sequene of mathing wave fronts.The bisimulation needed here is:fhlonst(M); hN (lonst(M))igWhere h is de�ned by (6.41) and (6.42) and the lemma (6.43) is known.h0(X) red; X (6.41)hs(N)(X) red; g(s(N); g(N; hN(X))) (6.42)hN(H :: T) red; H :: hs(s(N))(T) (6.43)It is learly beyond the sope of the riti to either spot this divergene or �ndthe appropriate path.

6.6. Limitations of the Divergene Chek 107This situation is distinguished from the previous one, by the fat that wavefronts are generated, even though they do not math eah other. This suggeststhat if some member of a transition sequene is embedded in a subsequent one(i.e. it is possible to di�erene math the two expressions) then there is a risk ofdivergene.This suggests a number of possible extensions to the riti, inluding moresophistiated analysis of the wave fronts or the addition of an interative aspetwhih, on detetion of a di�erene math indiative of the presene of some sortof pattern, appeals to the user to supply a generalisation.6.6.2 The Criti Extends the Bisimulation by elements notin BThis will our if the generalisation proposed by the riti lies outside B.A Reset is LostThe obvious situation where this ours is when the proposed generalisation isfN(K) when B only ontains fM(K);M 2 S where S is some subset of thenatural numbers. This will happen if B may ontain 1; 2; 3; � � �, but not n forsome natural number, n.For instane suppose I have two funtions: s10(X) def= s(X) mod 10 and s0:N 6= 9 ! s0(N;X) red; s(X) (6.44)N = 9 ! s0(N;X) red; 0 (6.45)NB. For X � 10 s0(X;X) = s10(X).iterates(s10; 0) (iterates is de�ned as in equation (5.4)) anditerates(�k:s0(k; k); 0) are bisimilar. They have the following transition sequeneof tail transitions.hiterates(s10; 0); iterates(�k:s0(k; k); 0)i 2 Rhiterates(s10; 1); iterates(�k:s0(k; k); 1)i 2 Rhiterates(s10; 2); iterates(�k:s0(k; k); 2)i 2 R... (6.46)This hopped transition sequene is �nite sine s10(9) = s0(9; 9) = 0.Unfortunately the proposed Revise Bisimulation riti will generalise tohiterates(s10; sn10(0)); iterates(�k:s0(k; k); sn(0)i 2 R where the required gener-alisation is either hiterates(s10; sn10(0)); iterates(�k:s0(k; k); sn(0)mod 10)i 2 Ror the set ontaining hiterates(s10; m); iterates(�k:s0(k; k); m)i 2 R for m 2f1; � � � ; 9g, in order to preserve the �nite transition sequene.

108 Chapter 6. Critis For CoindutionTrivially this ould have been avoided by extending the sequene far enoughbefore looking for a pattern, however given any arbitrary ut{o� of sequene lengthit would be possible to devise an example like (6.46) whih wouldn't be apturedby that ut{o�.A more sophistiated �x would involve reognising that one of the funtionsemployed a reset (e.g. s0).6.6.3 TerminationOne other problem with the Revise Bisimulation riti is that it always appliesif rippling and fertilization are both bloked (its preonditions simply require fer-tilization to be impossible). This means that the revising proess is potentiallynon{terminating.As a result, an attempt at a oindutive proof fails only if the analysis oftransitions reveals an inonsisteny. Thus in those situations where the riti failsto reognise that it is exploring an in�nite hopped transition sequene the proessof extending the trial bisimulation is non{terminating.6.7 ConlusionThis hapter has looked at ritis for oindutive proofs.Most importantly it has introdued the Revise Bisimulation riti whih ex-tends the proof methods to deal with a muh large lass of oindutive problems.This hapter, together with hapter 5 forms the ore disussion on proof plan-ning for oindution. Without fousing on the spei�s of implementation theyare intended as a desription and disussion of the methods and ritis requiredto proof plan oindutive proof.The important point is that the most obvious strategy for attempting to dis-over B for some pair of expressions or some bisimulation ontaining this pair isvia an exploration of the transition sequenes from that pair. This an be ahievedby the inremental approah suggested here. Although this was disussed withinan expliit proof planning framework it seems lear that any implementation ofthis strategy would employ a \look ahead" proess and a \revise" proess. This\revise" is learly an example of the use of a proof riti.Although a look ahead ould be implemented as part of an objet{level prooftati, a higher level (e.g. proof method) view will often be more oneptuallyeÆient sine it will allow the potential problem to be identi�ed without havingto work through muh of the trivial language spei� detail of the proof. Anyimplementation of this sort of strategy will employ elements assoiated with proofplanning. A revision proess is entral to the strategy and hene a proof methodproess is desirable from an eÆieny point of view. Even if not adopted univer-sally in a system, the proof planning (and partiularly the proof riti) paradigm

6.7. Conlusion 109has a lear ontribution to make to the disovery of bisimulations for oindutiveproof.

Chapter 7
Experimental Results and Evaluation

7.1 IntrodutionThis hapter reports the results of empirial testing of the proof strategy on twolabelled transition systems. It starts with a desription of the aims and design ofthe experiment and a brief report of the results. Complete listings of the resultsappear in appendix B.It then examines the reasons for failed proof attempts in more detail and theimpliations of these failures and other observations arising out of the testing ofthe proof strategy.It also onsiders the representativeness of the hosen set of the test theorems.7.2 AimThe proof methods and ritis outlined in hapters 5 and 6 are heuristis. Theoret-ial evaluation of their e�etiveness is diÆult. They are not guaranteed to �nd aproof plan in all ases where one exists. The assertion instead is that they are use-ful heuristis. The de�nition of a useful heuristi is, itself, vague. The ontentionhere is that heuristis will lead to proof plans for most ommon problems.The aim of the experiments reported here, was to attempt to proof plan a rep-resentative seletion of theorems using the methods and ritis already desribedand determine how many theorems they suessfully proof planned.This serves a double purpose of evaluating the e�etiveness of the proposedstrategy and highlighting areas of the strategy that need improvement.
110

7.3. Soure of Examples 1117.3 Soure of ExamplesThe proof plans make no laim to deal with ases where divergene analysis of thesort demonstrated in example 3.5 in hapter 3 is required and so theorems whihinvolved suh divergene were exluded from onsideration. These theorems wereidenti�ed by inspetion.Examples of oindution were drawn from the literature in partiular[Paulson 93℄, [Fiore 93℄, [Rutten 96℄ and [Jaobs & Rutten 97℄.CLAM itself has a orpus of theorems used for testing indutive proof plans.Those that were not exluded beause of divergene problems were also used.Many of these were over natural numbers and so a labelled transition systeminvolving p! as a transition was employed. Treating predeessor as a transitionis probably not partiularly useful for funtional semantis, but it allowed thestrategy to be tried on a wider lass of theorems.The theorems were planned for the small funtional language desribed in somedetail in hapter 3 (its transition rules are reprodued here for ease of referene(Figure 7{1)). However CoCLAM was designed with the intention that a numberof di�ering labelled transitions ould be supplied to allow a user to \plug andplay". Limited testing of this was undertaken by performing some type hekingproofs, the results of whih are disussed in x7.10.Examples of oindution are relatively rare, the same one or two theoremsappearing in almost every paper on the subjet. Reent researh is beginning toprodue a larger orpus but this has tended to onentrate on problems outsidethe domain hosen for onsideration (i.e. lazy funtional programs). To ounteratthis, the proposed orpus was extended by a number of theorems taken from theCLAM orpus and some designed by myself, in order to provide a reasonably sizeddatabase.It was neessary to use some theorems to test CoCLAM as it was being devel-oped. This raised a onern that the proof strategy would be tailored spei�allyto prove this one set of theorems. In order to o�set this the theorems were dividedinto two distint groups, a development set and a test set. The test set was notused until the system was deemed �nished.

112 Chapter 7. Experimental Results and Evaluationa : �1 ! �2 b : �1a ap(b)! a(b) (7.1)
bv bv! ? (7.2)0 0! ? s(n) p! n (7.3)
nil nil! ? (7.4)a :: b hd! a a :: b tl! b (7.5)leafbin(a) label! a (7.6)nodebin(a; l; r) label! a (7.7)nodebin(a; l; r) left! l nodebin(a; l; r) right! r (7.8)

node(a; f) label! a node(a; f) forest! f (7.9)a : � � 6= (�1 ! �2) a red; b b �! a �! (7.10)Figure 7{1: Transition Rules
7.4 ResultsFull tables listing the theorems in eah set and detailing whih were proved andwhih were not an be found in appendix B.The following table is a summary. It details the number of theorems in eah setalongside the number that were proved. There is a third olumn, \implementationfailures". This is the number of theorems that failed beause of pereived problemswith the implementation, as opposed to the proof strategy.

7.5. Analysis of Results 113Number of Theorems ImplementationTheorems Proved FailuresDevelopment Set 56 48 1Test Set 55 42 57.5 Analysis of ResultsIt is reassuring to note that the similarity between the �gures indiates that themethods and riti were not developed in suh a way that they were spei�allytuned to the development set, but they had a general appliability aross thetheorems and were apable of providing proof plans for somewhere around 80%of problems. This result also broadly supports the assertion that the heuristisemployed were suÆient to proof plan ommon problems.The setions that follow examine the various auses of failure in detail, butthey are also listed here, for referene, together with the number of theorems thatfailed as a result of them. These are split into two groups, those failures that arethought to have arisen out of shortomings in the proof strategy and those out ofshortomings in the implementation. For ease of referene these are termed proofstrategy errors and implementation errors.Error Type Error Development Set Test SetProof Bisimulation Explosion 4 6Strategy False Hypothesis not Reognised 1Errors Memory Error 1 1Mathing of (� � �)N 2Inorret Generalisation 1 2Implementation Initial De�nition of Bisimulation 1Errors Substitution Error 1Error in �nding Transitions 1Attempts were made to orret the Implementation Errors after the experi-ment, and subsequently 4 of the theorems in the test set that had failed beauseof implementational errors were planned. The �fth ran into the problem of bisim-ulation explosion. The problem ausing inorret generalisation for the theoremin the development set was not resolved.7.6 Failure Analysis7.6.1 Proof Strategy ErrorsDisussion of the proof strategy errors follows:

114 Chapter 7. Experimental Results and EvaluationBisimulation Explosion5 of the theorems in the development set and 6 in the test set failed beause ofa phenomenon we will all bisimulation explosion. Bisimulation explosion ourswhen the number of pair shema involved in the bisimulation slow the proof plan-ning proess down unaeptably (in the ase of the experiments reported here, noproof plan was found in 12 hours).Consider example 10 in hapter 3 (the ommutativity of plus). This was provedwith the aid of two lemmata about plus:X + 0 = X (7.11)X + s(Y) = s(X + Y) (7.12)At the time it was ommented that an alternative to employing these lemmata wasto use fhX + sN(Y); Y + sN(X)ig as the bisimulation. This bisimulation givesrise to the goal: 8RhX + sN(Y); Y + sN(X)i 2 R)(8�:((X + sN(Y) �! � _ Y + sN(X) �!))((X + sN(Y) �! � ^ Y + sN(X) �!)^h�; i 2 R[�)))In order to �nd the transitions from X + sN(Y) and Y + sN(X) several ases forvarious ombinations of values for X, Y and N have to be onsidered, as disussedin x5.5.3, where the Evaluate method was �rst presented.Take the ase where X = N = 0 and Y = s(Y1), X + sN(Y) evaluates to s(Y1)to whih the transition p applies resulting in Y1 while s(Y1 + 0) p! Y1 + 0, in theabsene of the lemma (7.11) the expressionhX + sN(Y); Y + sN(X)i 2 R) hY1; Y1 + 0i 2 Ris unprovable and the bisimulation has to be extended to inlude hY1; Y1 + 0i.The �nal bisimulation (assuming that no additional lemmata about plus havebeen provided) used by this proof is:fhV0 + sN(V1); V1 + sN(V0)ig[fhV0 + 0; V0ig[fhV0; V0 + 0ig[fhss(N)(V1); V1 + ss(N)(0)ig[fhV0 + ss(N)(0); ss(N)(V0)igThis bisimulation appears large and inelegant. However without the inlu-sion of additional lemmata there does not appear to be a smaller one. Al-though CoCLAM found this bisimulation, for more ompliated theorems suh as,

7.6. Failure Analysis 115(z � x) � y � (z � y) � x the size of the bisimulation beame so large that thesystem slowed down unaeptably. This slow down appears to be exponential andis partiularly severe beause of ineÆienies in the implementation of CLAM3'sWave method (other versions of CLAM have more eÆient algorithms for Rippling,but do not support ritis). At present the ineÆienies in the Wave method ob-sure any other ineÆienies that may exist in the rest of the system. Howeverfor large R it is not unreasonable to suppose that goals suh asR � hR[�iould remain a problem even if more eÆient implementations of Rippling wereused.There is some further work that is needed to investigate this problem. A moreeÆient implementation of Rippling needs to be employed to see whether the slowdown ontinues to be exponential. If this is the ase there are several approahesthat an be taken. One would be to investigate lemma speulation ritis in or-der to �nd the additional lemmata that would redue the bisimulation and this isdisussed in hapter 10. Another would be to investigate more \eÆient" repre-sentations of R.False Hypothesis not ReognisedNo additional methods were supplied to CoCLAM to enable it to disharge hy-potheses. These were regarded as general proof methods, not methods that werepeuliar to oindution in any way.In the ourse of the investigation it transpired that CLAM3's and heneCoCLAM 's ability to evaluate hypotheses was very limited.The theorem in whih this limitation aused failure wasX = 0 _ Y = 0) X � Y � 0In planning this theorem CoCLAM examined a number of possible ase splits onX and Y . If X and Y are both non zero then the transitions from X � Y and 0are di�erent. However this situation is disallowed sine the hypothesis is false if Xand Y are both non zero. CoCLAM failed to reognise the falsity of the hypothesis.Memory Error During EvaluationIn two theorems the Evaluate method failed with a memory error. For boththese theorems the searh spae for transitions was large, requiring in one asetwo separate lists to be split twie and in the seond four times. This meantthat solutions appeared relatively deep in the searh tree (i.e. at depth 4 or 8respetively). To illustrate this onsider the theorem:

116 Chapter 7. Experimental Results and Evaluationmerge(merge(odd list(A); odd list(B)); merge(even list(A); even list(B))) =zig zag(nil; A :: nil; B :: nil)(7.13)where merge(nil; A) ; A (7.14)merge(A; nil) ; A (7.15)merge(H1 :: T1; H2 :: T2) ; H1 :: H2 :: merge(T1; T2) (7.16)odd list(nil) ; nil (7.17)odd list(H :: nil) ; H :: nil (7.18)odd list(H1 :: H2 :: T) ; H1 :: odd list(T) (7.19)even list(nil) ; nil (7.20)even list(H :: nil) ; nil (7.21)even list(H1 :: H2 :: T) ; H2 :: even list(T) (7.22)zig zag(nil; nil; nil) ; nil (7.23)zig zag(nil; nil; H :: T) ; zig zag(nil; H :: T; nil) (7.24)zig zag(nil :: T; nil; L) ; zig zag(T; L; nil) (7.25)zig zag((H1 :: T1) :: T; nil; L) ; H1 :: zig zag(T; L; T1 :: nil) (7.26)zig zag(L1; nil :: T; L2) ; zig zag(L1; T; L2) (7.27)zig zag(L1; (H1 :: T1) :: T; L2) ; H1 :: zig zag(L1; T; T1 :: L2) (7.28)In order to �nd a value formerge(merge(odd list(A); odd list(B)); merge(even list(A); even list(B)))It is neessary to split both A and B into H1A :: H2A :: TA andH1B :: H2B :: TB. This solution is going to appear at depth 4 in any searh tree ofpossible ombinations of asesplits on the variables whih, with the breadth{�rstmethod that was being used, proved too omputationally expensive.The memory failure indiated ineÆieny in the implementation of the Eval-uate method (for instane a depth{�rst with iterative deepening strategy wouldhave been more robust). But also suggested that the sort of brute fore searhthrough all possible ase splits on all variables that is used by the Evaluate methodmay always ause problems where a large number of these is required. This wouldsuggest that for larger problems it is foreseeable that heuristis would be neessaryto guide this searh.Mathing of (� � �)N[Thomas & Watson 93℄ observed that, in our setting, (� � �)N is somehow di�erent inharater from many other funtions. This is also highlighted by [Chen et al 90℄'s

7.6. Failure Analysis 117need to provide a speial mathing algorithm to math \normal" terms with theirreurrene terms, expressions representing repeated funtion appliation.In the proof method for oindution this task is undertaken by the Fertilizemethod. In its original state (as for indution) the Fertilize method looks for auniform instantiation of variables in the indution hypothesis and the onlusion.The addition of expressions involving (� � �)N ompliates this sine an instane ofsuh an expression may not itself expliitly ontain (� � �)N . The Fertilize methodwas extended during the developmental phase so that it ould reognise f(x) asan instane of fn(x). However it proved inapable of reognising that s(s(y)),for instane, was an instane of ssn(x)y. In a ouple of proofs this failure led tounneessary revisions of the trial bisimulation whih in turn led to bisimulationexplosion. This lak of generality in the method learly needs to be addressed.The Fertilize method needs to be expanded in a systemati way to ope with themathing of terms involving repeated funtion appliation, or a new method needsto be developed to do this task. The �rst of these options is preferable sine theobjet of the mathing is still to exploit the oindution hypothesis.7.6.2 Implementational ErrorsThe remaining errors arose out of de�ienies in the implementation. They aredetailed briey here for the sake of ompleteness.Inorret Generalisation CoCLAM inorretly generalisedH1 :: H2 :: T to (:: (H2 :: T))N(H1) instead of (:: H)N(T). Thisourred sine it failed to keep trak of the types of variables inthe generalisation step.A similar problem ourred in one of the development theoremsbut wasn't originally reognised as suh, it being thought that thetheorem failed beause the bisimulation required would need thesynthesis of a new funtion as in example 6.5 in hapter 6.The third proof attempt whih generalised inorretly produedthe trial bisimulationfhM + sX(N); N + sX(N)igwhere N appears twie on the RHS of the relation instead offhM + sX(N); N + sX(M)igwhen the ommutativity of plus appeared as a subgoal of theproof.This ourred beause the variables in the various pair shemadesribing the trial bisimulation were not standardised apart andthis aused substitution to our inorretly in the Revise Bisim-ulation Criti.

118 Chapter 7. Experimental Results and EvaluationInitial De�nition of Bisimulation Consider the theoremeven(N)) parity(true; L) � numparity(N;L)1The trial bisimulation should befhparity(true; L); numparity(N;L)i j even(N)gThe original implementation of the Coindution method didn'tallow for this style of representation with anything exept typingonditions appearing after j as quali�ations on pair shema. Itwas extended hurriedly towards the end of the development phasein an unsatisfatory way that represented suh a set aseven(N)) fhparity(true; L); numparity(N;L)igAlthough this was suÆient for simple theorems, in this ase it in-terfered with the representation of types and lost the informationonerning the types of L.Substitution Error Consider the theoremtik = map(flip01; tok)where tik red; s(0) :: tok (7.29)tok red; 0 :: tik (7.30)flip01(s(0)) red; 0 (7.31)flip01(0) red; s(0) (7.32)During proof planning CoCLAM generated the subgoal8Rhtik; map(flip01; tok)i 2 R)htok; map(flip01; tik)i 2 R (7.33)Unfortunately the Revise Bisimulation Criti treated tik andtok as variables, rather than funtions. It found a trivial dif-ferene math and proposed a new trial bisimulationfhtik; map(flip01; tok)igThis meant that the proof plan diverged alternating be-tween the trial bisimulations fhtok; map(flip01; tik)ig andfhtik; map(flip01; tok)ig.1The de�nitions of parity and numparity are unimportant to this disussion but anbe found in appendix B

7.7. Potential Problems with the Proof Strategy 119Error in �nding Transitions Consider the theoremrepl(A;B; lswap(A;B)) � lonst(A)where repl(A;B; nil) red; nil (7.34)B 6= H) repl(A;B;H :: T) red; H :: repl(A;B; T) (7.35)B = H) repl(A;B;H :: T) red; A :: repl(A;B; T) (7.36)and lonst and lswap are de�ned as in hapter 3.The Evaluate method kept adding the ase B 6= A as a new aseto be explored by redution (having found a transition for B = A)and failed to reognise (after the �rst addition) that the onditionwas already in plae.7.7 Potential Problems with the Proof StrategyWhile analysis of failures is important for the seond aim of the experiment, someweakness in the proof strategy emerged whih did not prove fatal on any of thedevelopment or test examples. These areas were nevertheless highlighted by theexperimental proess as requiring further study. In some ases overoming theseweaknesses ould lead to greater eÆieny in �nding a plan.7.7.1 Choosing SinksThe experiment highlighted some weaknesses in rippling. Hitherto, no ase hadbeen reported where not only was there a hoie of wave rules but also a hoieof sinks for a wave front to ripple into. When a wave front ripples into a sink therippling heuristi will not let it ripple out again sine this would be a measureinreasing step. Hene if a wave front ripples into an inappropriate sink there is arisk that this ould prove fatal to the proof strategy.In ontrast to indutive proofs where there are generally very few sinks, in aoindutive proof all variables at as sinks. Moreover in ases where a generalisedtrial bisimulation was being used the hoie of sinks meant there was always ahoie of wave rules.Example 7.1 The following three wave rules are available to CoCLAMsN(s(Y) ") red; s(sN(Y)) " (7.37)s(sN(Y)) " red; sN (s(Y) #) (7.38)s(sN(Y)) " red; s s(N) #(Y) (7.39)

120 Chapter 7. Experimental Results and EvaluationConsider the expression X + sN(s(Y) ")appearing on one side of a pair sheme in a trail bisimulation. (7.37) ripples thisto X + s(sN(Y)) "Then there is a hoie of (7.38) or (7.39) to ripple to eitherX + s s(N) #(Y) (7.40)or X + sN(s(Y) #) (7.41)In either of these ases rippling has terminated beause an inward wave front annot be turned outwards again.This hoie frequently ours in situations involving (� � �)N sine one wave rule,rippling di�erenes intoN , arises out of the de�nition of (� � �)N . The other, ripplingdi�erenes into X, arises out of the lemma FN(F (X)); F (FN(X)) this lemma,or a version of it, is often required in order to �nd the value of the expression.This is disussed in x7.7.2.This hoie auses two problems. Firstly fertilization may apply to one ofthe expressions but not the other. Baktraking is against the ethos of proofplanning with ritis, but a riti ould be written to hek for alternative wave ruleappliations in the proof. Suh a riti would have a similar e�et to baktrakingaross the possible wave rules in searh of one that lead to fertilization.The seond problem is that if neither ase leads to fertilization then the trialbisimulation needs to be modi�ed and one modi�ation may lead diretly to aproof while the other may prompt further revisions. If a \Wave Revision" Critiwere to be inluded alongside the Revise Bisimulation Criti, then are would haveto be taken that the Revise Bisimulation Criti was alled on a \good" terminalrewrite. This strongly suggests the need for some notion of a normal form forgeneralised expressions appearing in pair shema to guide this hoie of terminalrewrite.In general, wave rules like (7.40) are preferable to ones like (7.41) sine theymove the di�erene away from a variable that has already been generalised one.Y in (7.40) has almost ertainly been generalised already beause of the sN (� � �)term around it { we would rather explore all other possibilities before returningto a seond generalisation of Y .

7.7. Potential Problems with the Proof Strategy 121At present CoCLAM relies on the wave rules being ordered in suh a way asto avoid this problem. A heuristi was hosen during the developmental phasefor this ordering. This heuristi always preferred wave rules that rippled into Nin the expression FN(X) over those that rippled into X. This heuristi made anappropriate hoie of sink in all the development and test examples.7.7.2 The Need for Additional LemmataDespite the fat that CLAM aims to be fully automated, the provision of additionallemmata beyond funtion de�nitions is a widespread pratie. The Lemma Speu-lation riti proposed by [Ireland & Bundy 96℄ was motivated by this observationand was an attempt to provide a way of automatially deriving suh lemmatashould they appear to be neessary.It was hoped that the Revise Bisimulation Criti would remove the need foradditional lemmata in CoCLAM , though at the ost of longer proofs (e.g. theproof of the ommutativity of plus disussed in x7.6.1). However this proved notto be the ase. Lemmata were found to be neessary in order to deal with (� � �)Nduring the Evaluate method. There was some disussion of this point in hapter5. Reall that the proof of example 3.7 in hapter 3 required the lemmata:(map(F))N(nil) red; nil (7.42)(map(F))N(H :: T) red; FN(H) :: (map(F))N(T) (7.43)These were needed in order to determine the transitions (i.e. by the Evaluatemethod).The development and testing periods revealed that lemmata suh as these wererequired for most proofs where a generalisation ourred. In x5.5.3 in hapter 5 itwas observed that these lemmata orresponded to oreursive de�nitions for FN forsome spei� value of F . In general (� � �)N doesn't have a oreursive de�nitionand this would appear to be the ause of the problem. It is unsatisfatory tohave this need for additional lemmata inherent in the proof strategy. There is adisussion about possible ways round this in hapter 97.7.3 Choosing an Appropriate Hypothesis for Di�ereneMathingIn a theorem that requires a bisimulation ontaining a lot of pair shema there anarise a hoie of whih pair shema to di�erene math the urrent oindutiononlusion against at the ripple phase.Although this didn't prevent any of the development or test theorems frombeing planned, it is antiipated that this might be a potential ause of failure infuture.

122 Chapter 7. Experimental Results and Evaluation7.8 Non{theoremsIt is important to establish that, even though CoCLAM omes with no guaranteeof soundness (this would be supplied by the objet{level theorem prover) it is notknown to be unsound. In partiular, it does not �nd plans for all input onjetures.To test this a ouple of non theorems were inluded at the developmentalstages: 8x; y : nat: x � y and 8l1; l2 : list(nat): l1 � l2 whih CoCLAM failed toprove. CoCLAM also failed to prove two non{theorems that had been devised bymyself, under the mistaken impression they were theorems, and inluded in thetest set. These were (7.44) and (7.45).lswap(0; 1) � inf list(0; f lip01; id) (7.44)inf list(0; f lip01; id) � inf list(1; id; f lip01) (7.45)where lswap and flip01 are de�ned as before, id is the identity funtion andinf list is de�ned as:inf list(N;H; T) red; H(N) :: inf list(T (N); H; T) (7.46)This failure allowed the hypotheses to be identi�ed as non{theorems when thetrae was inspeted. (7.44) was altered to lswap(0; 1) � inf list(0; id; f lip01) andso beame a theorem. (7.45) didn't appear to be modi�able in this way.7.8.1 A Disproof MethodBoth these theorems and the two theorems used initially to hek that CoCLAMdidn't assign theorem{hood to every statement failed during the heking of tran-sitions. That is, di�erent transitions were found to apply to the two sides of therelation. This ontradits the onditions for bisimilarity. It also suggests that itmight be possible to write a Disproof method that ould determine ertain onje-tures to be non{theorems beause of a mismath between transitions. CoCLAMurrently does not detet non{theorems expliitly: it simply fails to �nd a proofplan. A Disproof method would mean CoCLAM reahed a stronger onlusionthat the statement was a non{theorem.Care would have to be taken in those situations in whih a generalisation hadourred (beause of the Revise Bisimulation riti) before a transition mismathwas disovered in ase this mismath were the result of over{generalisation.

7.9. Quality of the Examples 1237.9 Quality of the ExamplesThe major onern with the testing of the proof strategy was the nature of theexamples used. While they are representative of the examples available in theliterature (for proofs of the equivalene of funtional programs), they remain es-sentially simple problems. The ability of CoCLAM to sale up to more realistiproblems is an important onsideration. The previous omments on its shortom-ings relate to this.The memory problems enountered by the Evaluate method and the problem ofbisimulation explosion ast doubts on the ability of CoCLAM to sale up to largerproblems although there may be simple �xes suh as (in the ase of the Evaluatemethod) hanging the searh strategy to depth �rst with iterative deepening and(in the ase of bisimulation explosion) improving CoCLAM 's Wave method.Perhaps more worryingly, anedotal evidene from attempts to use oindu-tion for hardware veri�ation [Collins & Hogg 97℄ indiates that those ases wherenew funtions have to be synthesised in order to �nd a bisimulation may be moreprevalent than originally thought. This would indiate a real need for more so-phistiated generalisation tehniques to be developed possibly drawing inspirationfrom tehniques used in Indutive Logi Programming (disussed in hapter 8).The strategy ould be tested more thoroughly by adapting the labelled transi-tion system to that of some of the reently developed semantis for objet orientedprogramming [Jaobs 97℄ or the ryptographi Spi alulus [Abadi & Gordon 97℄.However, it seems unlikely that a signi�ant set of \real" examples will beomeavailable until the use of oindution as a proof tehnique is more widespread.
7.10 Type ChekingAn experiment in extending the system to allow type heking proofs was un-dertaken. This used the labelled transition system desribed in x3.7 of hapter3. It was heked in a very limited way with the following resultsNumber of Theorems Number of Theorems ProvedDevelopment Set 3 3Test Set 8 5This labelled transition system is very similar in harater to the one imple-mented for operational semantis with indutively de�ned types, in partiular thetransition rules tend not to have premises and depend upon the expression beingreduible to a value in some redution system. Not muh an be drawn from theseresults, exept that it was at least possible to input a new transition system.

124 Chapter 7. Experimental Results and Evaluation7.10.1 Causes of FailureOf the three theorems that failed one ran into the sort of memory error desribedin x7.6.1, the other two failed to prove(X : nat ^ F : (nat! nat))) hF (X); hF (X); natii 2 R[�This is beause the hypothesis states that X � hX; nati and F �hF; nat! nati from whih it an be inferred that F (X) � hF (X); nati. CoCLAMhas no mehanism for obtaining this inferene. One again this arises out of short-omings in the way CoCLAM deals with hypotheses. It seems likely that theseshortomings ould well a�et more theorems in this domain, where informationabout the types of the terms making up an expression is very important.7.11 ConlusionThe number of theorems proved was enouraging, espeially onsidering the num-ber that failed for purely implementational reasons. However the lak of \real"examples for testing means that these results, while enouraging, an not be takenas inontrovertible evidene of the eÆay of the proof strategy. This also raisesthe question of whether a oindutive theorem prover is of any use. Further devel-opment and evaluation is needed but the general approah nevertheless appearsvery promising.The experiment revealed a number of shortomings with the Wave and Eval-uate methods. The searh strategy adopted by the Evaluate method needs to behanged to a more eÆient one and thought has to be given to the ontrol of rip-pling when there are several sinks. It is also neessary to improve the CoCLAMseÆieny when dealing with large expressions.The handling of additional lemmata also needs to be onsidered. It may wellbe neessary to try and provide some pre{proof planning method whih looks atthe funtions involved in the problem and tries to generate lemmata for (� � �)N inadvane.The proposed strategy from hapter 6 was one of exploration of the transi-tion spae and revision using failure information. This is only hallenged by theproblem of bisimulation explosion. It is impossible to e�etively evaluate the seri-ousness of this problem until a version of CLAM whih ombines a more eÆientwave rule mehanism with support for ritis is produed.The experiment also revealed a number of shortomings with the implemen-tation of the proposed proof strategy, espeially with the treatment of variablesand substitutions. However, in priniple, these were not problems for the strategyitself and in all but one ase they were easily orreted.

Chapter 8
Related Work

8.1 IntrodutionThis hapter disusses work that is related to the development of a proof strategyfor oindution.This falls into two areas, work on automating oindution in other theoremproving environments and work on tehniques for deteting divergene and spe-ulating generalisations.8.2 HOLThe HOL system [Gordon 88℄ [Gordon & Melham 93℄ is a mehanised proof{assistant for onduting proofs in a version of lassial Higher Order Logi[Gordon 85℄. This logi is based on Churh's formulation of the simple theoryof types [Churh 40℄, adapted to allow type variables. Higher order funtions areallowed (funtions that take funtions as arguments or return a funtions as theirresult). It is also possible to quantify over funtions.HOL is a diret desendant of LCF [Gordon et al 79℄. It supports seure inter-ative theorem proving by representing its logi in the strongly{typed funtionalprogramming language ML [Milner et al 90℄.8.2.1 CoindutionCollins [Collins 96℄ has reated a system to support reasoning about lazy fun-tional languages within HOL. This system de�nes the semantis of the languagein an operational style using a labelled transition system and uses appliativebisimulation [Abramsky 90℄ to de�ne equivalene of programs.125

126 Chapter 8. Related WorkEmbedding a Funtional Programming Language in HOLThe syntax and semantis of funtional languages are embedded in HOL using aframework that is very similar to that disussed in hapter 3, in fat the theoriesare both based on the work of Gordon [Gordon 95a℄.Stati semantis are formalised by an indutively de�ned relation Type as wasshown in hapter 3, where Type C e � means that expression e has type � in theontext C. For instane the rule for funtion appliation isType C e1 (�1 ! �2) Type C e2 �1Type C (e1 e2) �2 (8.1)A seond relation, Prog, is also introdued to represent programs that arewell{typed aording to Type. Thus, Prog e t holds only if e has type t in theempty ontext.Small and Large step redution (red; and + from hapter 3) are similarly de�nedas the relations �! and Eval. Eval is de�ned in terms of �! as + was de�nedin terms of red;.The operational semantis are de�ned using the relation LTS whih imple-ments labelled transition systems. LTS is a ternary relation and the expressionLTS e1 e2 a means that the expression e1 an make a transition to e2 with label a.Bisimilarity is represented by the equivalene relation, ==, whih is introduedas the greatest �xedpoint of the funtion F :8S a b: (F S) a b =(9t:Prog t a ^Prog t b)^(8a0 at:LTS a a0 at � (9b0:(LTS b b0 at) ^ S a0 b0)) ^(8b0 at:LTS b b0 at � (9a0:(LTS a a0 at) ^ S a0 b0)) (8.2)Collins has produed mehanised proofs in HOL that == is an equivalene andongruene. These mirror those in [Gordon 95a℄.Basi ToolsType Cheking and Evaluation are prevalent, though low level, tasks in proofsabout lazy funtional programs and Collins identi�es the provision of tools toautomate these tasks as a strong requirement. As has been seen in hapters 3 and5, evaluation to Weak Head Normal Form plays an important role in oindutiveproofs. Type and Eval embody spei�ations of how to type or evaluate anexpression on an abstrat mahine. Sine HOL is built on ML, it is possible towrite ML programs that implement these spei�ations and essentially at as anautomati type heker or evaluator.

8.2. HOL 127Tatis for CoindutionCollins provides limited support for forming bisimulations and the goals requiredto prove bisimilarity. The basi oindution tati when supplied with a relationR by the user, proves the �rst premise of the oindution rule and forms goalsequivalent to those formed by the Gfp Membership method.This tati has an assoiated more speialised tati GUESS_CO_INDUCT_TACthat supplies a simple guess at a bisimulation to the program. This tati performsthe guess in the same way that the Coindution Method makes its �rst guess.There are no tatis supplied to perform more sophistiated guesses. If the simpleguess is inorret then the user has to supply a bisimulation by hand.When forming the Evaluate method as disussed in hapter 5. It was foundthat two proesses had to be ombined, redution and ase{splitting. The sameexperiene was enountered when providing tatis for oindution in HOL. Twotatis are provided LTS_EVAL_CONV and LTS_CASE_CONV. The �rst of these per-forms redution and the seond ase splits variables. The user has to guide thesetatis speifying when to ase split and when to redue. The tatis perform allthe neessary reasoning about types and evaluation.8.2.2 Non{terminating ProgramsCollins' work, like the work reported here, is not equipped to deal with expres-sions that do not terminate. Assumptions are made that programs will evaluateand hene variables appearing in strit positions are also fored to evaluate byassumption.8.2.3 Reported ResultsCollins reports that the level of interation required by these tools is similar to aproof on paper.The tools have been used to investigate hardware veri�ation in Ruby[Sheeran & Jones 90℄, a relational hardware desription language. Ruby doesn'tmake any assumption about the diretion in whih data ows through iruits.This is problemati for many formalisations whih assume some sort of diretion-ality in order to obtain well{foundedness. Ruby was translated into Haskell so thatRuby spei�ations ould be exeuted. The lazy properties of Haskell and the as-soiated formal tools supplied by Collins allowed this translation to be performedwithout foring any determination of the diretion of the data ow. This workprovided an enouraging test ase for the implementation [Collins & Hogg 97℄.

128 Chapter 8. Related Work8.3 IsabelleOne of the �rst theorem provers to o�er any support for oindution was Isabelle[Paulson 94a℄. Isabelle is an interative theorem prover whih has been used toprodue several oindutive proofs. It is a Generi Theorem Prover. The intentionis that proofs in Isabelle are not tied to any one logi or formal system, but thatthe user may de�ne his own logis as they may be appropriate, via the use oftheory �les. Isabelle omes with several di�erent logis and pakages ontainingde�nitions, objet{level inferene rules and lemmata. The di�erent objet{logisare de�ned in the Pure Isabelle meta{logi and objet{level proofs are built upusing meta{level rules.8.3.1 CoindutionAs mentioned in hapter 2 oindutive de�nition pakages have been implementedin two of Isabelle's objet logis, ZF (Zermelo{Fraenkal Set Theory) [Paulson 94b℄and HOL [Paulson 93℄, [Nipkow & Paulson 94℄. In both ases the pakage is om-bined with a pakage for indutive de�nitions based around �xedpoint theory. TheHOL implementation is examined here.The Fixedpoint Types in HOLBefore developing a pakage, Paulson �rst had to implement a theory of lazyreursive strutures in Isabelle/HOL. Paulson uses a single type, to formalise allreursive data struture de�nitions (both well{founded and non{well{founded).Reursive datatypes are viewed as sets of (in�nite) trees. These trees an berepresented as lists of the elements in the tree paired with their position (a numerilist desription of the path to that node). The pair of an element and a position isformally de�ned as a type, � node, whih is a omplex type onstruted as follows.First it is neessary to de�ne the list type that will represent the tree. Let thelist [k0; � � � ; kn�1℄ denote some funtion f : nat! nat suh thatf(i) = (s(ki) if 0 � i < n;0 if i = n: (8.3)`Consing' an element, a, onto the front of the list f is done by the funtionpush(a; f) whih is de�ned in terms of nat ase (whih is a similar to num asede�ned in hapter 3). push(a; f) � �i:nat ase(i; s(a); f)The elements of these lists are the labelled nodes of the tree. A labelled nodein a tree is represented by a pair hf; xi where f stands for a list (as desribed

8.3. Isabelle 129above) indiating the position of the node in the tree and x : � + nat is a label,where + is artesian sum. The set of all nodes is de�ned as:N ode � fp j 9f; x; n: p = hf; xi ^ f(n) = 0gN ode is of type ((nat ! nat) � (� + nat))set. The type � node is the type ofnodes taking labels from �. Possibly in�nite binary trees represent all the datastrutures in the theory. The nodes of these trees are of type � node. The primitiveonstrutors for these binary trees are atom and (�).atom(a) � fh[℄; aigM �N � fhpush(0; f); xighf; xi2M [fhpush(1; f); xighf; xi2NHaving de�ned a type to represent general reursive data strutures. It is thenneessary to re�ne it to spei� reursive types. The prinipal suh type is lazylists. In order to desribe the type of lists it beomes neessary to de�ne produtand sum types on binary trees. Beause of the omplexity of the type the normalartesian produt and sum an't be used.
 and � (similar to artesian produtand disjoint sum), are de�ned instead:A
B � [x2A � [y2B :fx � ygThe sum type is derived from the normal artesian sum type (with onstrutorsinl and inr). atom has type (�+nat)! (�)node set this allows two onstrutorsleaf : �! � node set and numb : nat! � node setleaf(a) � atom(inl(a))numb(k) � atom(inr(k))The \new" disjoint sum an then be derived as follows:in0(M) � numb(0) �M (8.4)in1(N) � numb(s(n)) �N (8.5)A�B � fy j 9x 2 A:y = in0(x)g [fy j 9x 2 B:y = in1(x)g (8.6)Type assignment is equivalent to set membership (so muh so that the two aresometimes used interhangeably).

130 Chapter 8. Related WorkLazy ListsPaulson onentrates exlusively upon list types and de�nes them in terms of thefuntion list fun: list fun(A) � �Z:1 � (A
 Z)1list(A) � lfp(list fun(A))llist(A) � gfp(list fun(A))nil and :: are de�ned from this in terms of membership of 1 or A
 Z.nil � in0(1)M :: N � in1(hM; Ni)These de�nitions supply all the properties ommonly assoiated with the on-strutors.Bisimulations over Lazy Lists� and
 are extended, in the obvious way, to �D and
D to at upon relations.diag(A) � [x2Afhx; xigllistD fun(r) � �Z:diag(1)�D (r
D Z)llistD(r) � gfp(llistD fun(r))The theorem that expresses list equality (or bisimilarity) is:llistD(diag(A)) = diag(llist(A))Like llist(A), llistD(diag(A)) is also treated as a type in Isabelle proofs.11 is used here to denote a singleton set of one distinguished element.

8.3. Isabelle 131CoreursionJust as de�nitions of indutive funtions are given in terms of strutural reursionspeialised to list{reursion (or whatever) as required so, too, oindutive de�ni-tions are given in terms of oreursion using the funtion llist ore. This wasdisussed in hapter 2.Support for Coindution in IsabelleWith the preeding theory in plae it is possible to perform sound oindutiveproofs in Isabelle. The Isabelle{94 release omes with two �les supporting oin-dution, LList.thy and LList.ML. LList.thy sets up the theory of lazy listsalong with oreursive de�nitions of map, iterates, append and lonst. From this�le Isabelle's oindutive de�nitions pakage derives the oindution rule for llistand llistD(diag). a 2 X X � list fun(A;X)a 2 llist(A)ha; bi 2 X X � llistD fun(diag(A); X)a � bLList.ML loads a series of standard theorems into Isabelle along with their proofsso that they may be used as derived rules in the proof proess. This inludes thestandard introdution rules for map et. and a theorem, llist_fun_equalityI:f(nil) = g(nil) 8x; l: hf(x :: l); g(x :: l)i �llistD fun(rng(�u:hf(u); g(u)i) [rng(�x:hx; xi))f(l) = g(l) (8.7)whih behaves similarly to Collins' GUESS_CO_INDUCT_TAC and the �rst heuristiused by the Coindution method when it is ombined with a resolution tati, inthat it speulates an instantiation for R.

132 Chapter 8. Related Work8.4 CoCLAM Compared to HOL and IsabelleBoth HOL and Isabelle are tati based theorem provers. They are designedmainly as proof hekers with a user guiding the proof searh. Tatis are algo-rithms for building up strings of inferene rules. As a result HOL and Isabelleguarantee a sound proof in the partiular logi that is being used. Tatis an bevery sophistiated and tati-based theorem provers an begin to blur into fullyautomated theorem provers. However it should be stressed that the work on oin-dution in HOL and Isabelle was intended to provide tools for a user to performoindutive proof interatively, whereas the work in CoCLAM was always with aview to full automation.Unlike HOL and Isabelle, CoCLAM is not intended to provide soundness and itsmethods are not strings of inferene rules, but spei�ations of tatis expressed aspreonditions and results of their appliation. CoCLAM provides a greater degreeof automation than the orresponding versions of HOL and Isabelle. HOL andIsabelle an only provide the simplest of bisimulations automatially and theyalso require a degree of guidane through the rewriting proess. On the otherhand CoCLAM only provides plans of proofs, it does not provide a reord of theinferene rules required.CoCLAM should be regarded as an addition rather than a rival to the workdone in tati based theorem provers suh as HOL and Isabelle. Proof planners areintended to link up with tati based theorem provers, to do the guidane workotherwise done by a user. CoCLAM , while not linked up to any spei� tatibased theorem prover has been developed with this in mind and is, as far as I'maware, the only system of this kind.
8.5 Coindution in Proess AlgebrasCCS is an example of a Proess algebra. Proess algebras desribe systems om-prised of states and the interations between them. Theorems about systemsexpressed in proess algebras fall into two groups, those whih involve express-ing the equivalene between two proesses (and so are analogous to the problemsonsidered in this thesis) and those whih involve proving properties about someproess (the property being expressed in some modal/temporal logi). Solvingsuh problems for �nite state proesses is largely regarded as a solved problem(although there is still work on improving the eÆieny of suh algorithms). Al-gorithms for this are generally eÆient tehniques for exploring the entire statespae of the proess. Algorithms for proving properties of in�nite state systemsare still a major researh searh area. Large lasses of suh problems have beenshown to be deidable. The general ase, however, is undeidable.

8.5. Coindution in Proess Algebras 1338.5.1 The Modal Mu{CalulusMost reent attempts at automating proofs about proesses have entred aroundthe use of the Modal Mu-Calulus. The syntax of the alulus is:� ::= Z j :� j �1 ^ �2 j [K℄� j �Z:�where Z ranges over propositional variables, and K over subsets of a label set L.The intended meaning of most of the expressions should be obvious. E `� [K℄�means that � holds for all states reahable from states in E by a transition in K.� is the greatest �xpoint operator and �Z:� an be interpreted as meaning that\always" � holds, i.e. it is true of this node/state and for all its suessors. Inthe formula �Z:�, �Z. binds free ourrenes of Z in �. Sequents are of the formE `� � whih an be interepreted as meaning that the nodes in E satisfy theformula � given the de�nitions in the list �.8.5.2 Tableaux ProofsA ommon approah to proving statements in the modal mu{alulus is to use atableaux based proof system. Tableaux proof systems are generalisations of model{heking or equivalene heking algorithms. The tableaux rules are roughly bak-wards natural dedution style rules. A proof tree is built up with terminal nodesindiating either proof or ontradition. Proof rules inlude, for instane:E `� [K℄�E 0 `� � E 0 = fe0j9e 2 E:e K! e0g (8.8)E `� �Z:�E `�0 U U 62 � ^�0 = � � (U = �Z:�) (8.9)where � stands for the greatest �xpoint operator, �, or its least �xpoint equivalent,�. An algorithm for tableaux proof builds up a proof tree using the tableaux rules.Nodes are labelled terminal if the suess or failure of that node an be determinedwithout extending the tree further.For instane, a node, n = E `� �, is terminal if � = U , �(U) = �Z:	 and nhas an anestor node, n0 = E 0 `�0 U , suh that E � E 0. The node is suessful if� = �. This orresponds to the situation in oindution where a loop is deteted(We have assumed that U is true for all nodes in E 0 and for all their suessors.Sine E � E 0, U is learly true for all nodes in S and all their suessors). Itis more diÆult in tableaux proofs to assess the truth of � terminals (whih areanalogous to indution proofs) sine they involve establishing well{foundednessonditions. Automated methods based on tableaux proof have been implementedin the CWB and in a prover disussed in a [Brad�eld & Stirling 90℄.

134 Chapter 8. Related Work8.5.3 GamesAnother approah to proofs in Proess Algebras is through game theory. Gametheory represents the proess of proof as a game played between two players,Abelard and Eloise (or Player and Opponent, Player 1 and Player 2, 8 and 9).Abelard attempts to �nd a ontradition to the assertion while Eloise tries to �nda proof. In our ase they are playing a bisimulation game. In the bisimulationgame they take turns, Abelard starting. Abelard proposes a transition from oneof the pairs in the bisimulation. This move is followed by Eloise mathing thattransition for the other pair. Abelard wins if Eloise an't move. Eloise wins if theplay ontinues in�nitely. The objetive of provers using game theory is to showthat either Abelard or Eloise has a winning strategy.Example 8.1 For example, onsider games intended to establish whether the CCSproesses in B = in(x): �out(x):B and C = in(x):out(x):C are bisimilar. ObviouslyAbelard has a winning strategy. For example, from the initial position hB; Ci heould pik the transition B in(7)! out(7):B meaning that Eloise must pik a in(7)transition. This gives the position hout(7):B; out(5):Ci. Whihever transitionAbelard hooses now, Eloise will be unable to math, so Abelard will win. Ofourse, had Abelard made the mistake of piking B in(5)! out(5):B, Eloise wouldhave been able to math his move.There are an in�nite number of games here but Abelard has a winning strategyproviding that the �rst number he selets isn't 5. However it isn't be possible todetermine that Abelard has a winning strategy simply by searhing through allpossible games.In [Stevens 98℄ Stevens desribes how to de�ne, given a \onrete" game, anassoiated set game, suh that there is a orrespondene between winning strate-gies for the two games. The paper presents an algorithm whih, when instantiatedwith some funtions desribing the onrete game, an searh for a winning strat-egy of the set game. The implementation of this algorithm in CWB is reported toperform better than the tableaux based algorithms implemented in it.Essentially the set game abstrats away some of the details of the onretegame in a disiplined way whih preserves winning strategies. If the algorithmterminates then the set game is a �nite desription of the in�nite onrete game.This an be seen as similar to the way bisimulation generalisation abstrats in�nitetransition sequenes.Example 8.2 The set game orresponding to the abstrat game in example 8.1allows the players to postpone deisions about exatly whih of a set of plays isbeing followed. When a player hooses a move, s/he is permitted to restrit the setof plays whih should be onsidered from here on, provided that this set remainsnon{empty. So Abelard ould start with a move B in(v)! out(v):B simply restritingv 6= 5.

8.5. Coindution in Proess Algebras 135In this example this one move by Abelard enompasses all his winning plays,representing them in a �nite manner.The algorithm requires the user to provide notions of shape for proesses (e.g.fout(v):B j v 6= 5g) and to assign winners to loops of shapes. The algorithm thensearhes for suh loops in an attempts to deide bisimilarity. The idea behind thisis similar in motivation to the ideas behind bisimulation generalisation. Shapesharaterise an in�nite set of proesses in a �nite manner muh as the use of (� � �)Nharaters an in�nite set of expressions in a �nite manner.8.5.4 Bisimulation BasesThere are a number of other approahes to proof in Proess Algebras for thedeidable subsets of in�nite state mahines.Burkhart et. al. [Burkhart et al 95℄ provide an algorithm for deiding bisim-ulations of ontext{free proesses based upon alulating a bisimulation base, arewriting relation whih an then be used to deide bisimilarity if two proessesrewrite to the same expression.Their work is based on Basi Proess Algebra systems de�ned as quadruples(V;L;�; X1) where V is a �nite ordered set of variables, fX1; � � � ; Xng, L is a setof labels or ations, � a �nite set of reursive proess equations � = fXi def= Ei j1 � i � ng where eah Ei is an expression of form E ::= a j X j E+E j E �E suhthat a ranges over L and X over V , + is the hoie operator and � is sequentialomposition (� is generally omitted when writing expressions down). Xn is alledthe root.Expressions in BPA systems an be expressed in K-GNF (Greibah normalform) as a sum of sequenes. The norm of a proess is the shortest sequene ofations that take it to the empty sequene �. A variable is said to be normed ifits norm is �nite and V an be partitioned into VN , normed variables, and VU ,unormed ones. A seminorm of a sequene �X (where � is a sequene of variablesin V �N [V �NVU and X is a variable in V) is the norm of �X if X has a �nite normotherwise the seminorm of �X equals the norm of �. Seminorms an be used tode�ne a well{founded ordering, v, on V �N [V �NVU � V �N [V �NVU .� A base is a binary relation onsisting of pairs hXi�; Xj�i with i � j, whereXi and Xj are variables in V and � and � are sequenes of variables.� A base B is alled bisimulation{omplete i� whether Xi� � Xj� with i � jthen one of the following onditions hold:1. hXi�; Xj�i is deomposable, i.e. we have in partiular Xi � Xj forsome , and hXi0; Xji 2 B for some 0 � .2. hXi�; Xj�i is not deomposable and hXi�0; Xj� 0i 2 B for some �0 � �and some �` � � suh that (�0; � 0) v (�; �).

136 Chapter 8. Related Work� The relation �B is de�ned reursively by:1. � �B � and2. Xi� �B Xj� i�(a) hXi; Xji 2 B and � �B � or(b) hXi�0; Xj� 0i 2 B, �0 �B � and � 0 �B ����B but � an be reahed from B by omputing subbases. Given a base Bthe subbase R(B) by: h�; �i 2 R(B) i� h�; �i 2 B and1. � a! �0 implies 9� 0:� a! � 0 ^ �0 �B � 02. � a! � 0 implies 9�0:� a! �0 ^ �0 �B � 0Burkhart et. al. present an algorithm for onstruting an initial base from athe set of de�nitions � for an in�nite state mahine. A sequene of subbases anthen be onstruted from this until a �xedpoint is reahed giving a bisimulationbase. After this the bisimilarity of proesses in the system an be determined byrewriting.One again the Bisimulation Base provides a �nite desription of an in�niterelation by abstrating away details to a rewrite rule that an apply to more thanone onrete proess.8.6 Indutive InfereneThe general problem takled by the Revise Bisimulation Criti is one of inferringa generalisation from examples. This is a problem from the �eld of indutivereasoning (indutive used here in the sense of reasoning from experiene ratherthan as a mathematial proof tehnique).A typial (though simple) example of an indutive inferene problem is pre-sented by Muggleton and De Raedt in their review of indutive logi programmingtehniques [Muggleton & De Raedt 94℄.Example 8.3 The example is one of indutively inferring (or synthesising) thede�nition of parent from the following information:B = 8>>><>>>: father(X;Z) ^ parent(Z; Y)) grandfather(X; Y)father(henry; jane)mother(jane; john)mother(jane; alie)Positive and negative examples, E+ and E� respetively, onerning the rela-tionship are also supplied:

8.6. Indutive Inferene 137E+ = (grandfather(henry; john)grandfather(henry; alie)E� = (:grandfather(john; henry):grandfather(alie; john)Believing B, and faed with the new fats E+ and E� it would be reasonableto guess: H = mother(X; Y)) parent(X; Y)Muggleton and De Raedt observe three things about H1. H is not a onsequene of B and E�2. E+ is a onsequene of B and H3. B and H are onsistent with E�The objet of indutive inferene (indutive logi programming (ILP) in thisase) is to develop tehniques that will derive (even tentatively) a hypothesis, suhas H, from the information given whih onforms with the three properties noted.Muggleton and De Raedt distinguish between two proesses involved in indu-tive inferene, hypothesis formation (abdution) and justi�ation. It is hypothesisformation that is of partiular interest to the problem of generalisation formation.In indutive inferene as whole the problem of generalisation formation anbe framed as one of searh [Mithell 82℄ through a variety of rules. Mihalski[Mihalski 83℄ identi�es a number of suh rules, these inlude:The Climbing Generalisation Tree Rule When the domain alreadyontains some sort of generalisation tree and the examples areidential exept for a onjunt L = ai, where L is some expressionand the ai are all desendants of some node s in the generalisationtree.This an be generalised by replaing the instanes ai with s.In this way if triangle and square are de�ned as instanes ofpolygon, then the examples:E+ = (shape(P) = triangleshape(P) = squarean be generalised by shape(P) = polygon.The Turning Constants into Variables Rule If the examples dif-fer only by the appearane of onstants in some subterm, then ageneralisation an be formed by replaing the onstants with avariable.

138 Chapter 8. Related WorkIndutive Resolution This involves the use of the dedutive reso-lution rule bakwards to form expressions that will imply (de-dutively) the examples. It is disussed in more detail in whatfollows.The sort of generalisation that is sought by the Revise Bisimulation riti is similarto use of the limbing generalisation tree rule with the bakground assumption thatFN(X) is more general than the appliation of any spei� number of F s to X.8.6.1 Indutive Logi ProgrammingThe problem faed by the Revise Bisimulation Criti is also similar to that ofinduing a reursive logi program.Logi Programming as a �eld studies programming languages in whih the pro-gram is a spei�ation written in logi. There are a number of logi programminglanguages (whih inlude Prolog) whih embody this ideal to a greater or lesser ex-tent. In this setion no spei� language is assumed. Programs are represented bylogial expressions where (is impliation and ; is onjuntion (as opposed to themore ommon ^ or &). Universally quanti�ed variables are represented by upperase letters unless stated otherwise (as in the absorption and inter{onstrutionrules).De�nition 8.1 A literal is a proposition or a negated proposition.A lause is a formula in prediate logi of the formL1 _ � � � _ Lm (Ln; � � � ; Lswhere the Li are literals.Logi programs are sets of lauses. Most logi programs perform dedutions basedon the information ontained in the lauses to reah a solution. This area is de-dutive logi programming. Indutive Logi Programming (ILP) studies languagesin whih programs an be synthesized from examples and de�nitions as in anindutive inferene problem.As stated above indutive inferene is regarded as a searh problem. Thereis a spae of andidate solutions (i.e. the set of \well{formed" hypotheses) andan aeptane riterion. Based on this, the �rst approahes to ILP were generateand test algorithms, however, as might be expeted this rapidly proved to betoo omputationally expensive to pursue. As an alternative ILP programs nowhave a number of generalisation and/or speialisation rules. Muggleton and DeRaedt present what they term a generi ILP algorithm on a queue of andidatehypotheses:QH := Initialize

8.6. Indutive Inferene 139repeatDelete H from QHChoose the inferene rules r1; � � � ; rk 2 R to be applied to H.Apply the rules r1; � � � ; rk to H to yield H1; H2; � � � ; HnAdd H1; H2; � � � ; Hn to QHPrune QHuntil stop-riterion(QH) satis�edThis algorithm repeatedly deletes a hypothesis H from the queue, expands it usinginferene rules and then adds the expanded hypotheses bak to the queue.They identify \spei�{to{general" and \general{to{spei�" ILP systems.The �rst of these start from the bakground knowledge and the examples andhave rules whih generalise these, while the \general{to{spei�" systems startwith the most general hypothesis (the inonsistent lause) and repeatedly spe-ialise. By these riterion CoCLAM an be viewed as a very speialised example ofa spei�{to{general indutive system. Most spei�{to{general systems employindutive or inverted resolution.Indutive inferene an be viewed as the inverse of dedution. Resolution (8.10)is a omplete rule for dedution and as a result is a fundamental tool in dedutivelogi programming. P1 _ � � � _ Pn (Q1; � � � ; Qm;R1 _ � � � _Rk (S1; � � � ; Sl(P1 _ � � � _ Pn _R1 � � � _Ri�1 _ Rj+1 _ � � �RK (Q1; � � � ; Qg�1; Qh+1; � � � ; Qm; S1; � � � ; Sl)� (8.10)where � is the most general uni�er of Qg; � � � ; Qh and Ri; � � �Rj.Dedutive logi programming works in a similar way to bakwards proof intheorem proving by setting up a goal whih it subsequently attempts to breakdown to axioms. The general resolution rule given above an be speialised into anumber of rules depending on the domain (e.g. Horn lauses { lauses with onlyone disjunt on the left).ILP systems use inverted resolution (i.e. with the premises in plae of the on-lusion and vie versa) to reate statements out of axioms and examples. Alterna-tively this an be viewed as forward haining with the rule rather than bakwardhaining. An example of an inverted resolution rule is (8.11), Absorption:q (A p(A;Bq (A p(q; B (8.11)where lower ase letters represent single literals and upper ase letters onjuntionsof literals. The absorption rule ould be used to form the sorts of generalisationprodued by the Revise Bisimulation riti. Sine B an be found by di�erenemathing A and A;B.

140 Chapter 8. Related WorkThe absorption rule is limited in similar ways to the Revise Bisimulation Criti.Absorption an't �nd a suÆiently general desription for example 6.5 in hapter6, for instane, whih required the invention of a new funtion. However, there areinverted resolution rules whih do allow the invention of new prediates. Inter{onstrution, (8.12) is one of these.p(A;B q (A;Cp(r; A;B r(A q (r; A; C (8.12)where lower ase letter denote single literals and upper ase letters onjuntionsof literals.Notie that Inter{onstrution introdues a new prediate r. However whileabsorption simply required a math of the body of one prediate into the body ofanother. Inter{onstrution requires a math between some subset of the literalsin the prediate bodies. This will inrease the number of possible instantiationsof the rule's premises and hene introdue a onsiderable element of searh.Sine it is possible to view the Revise Bisimulation Criti as the absorptionrule with di�erene mathing used to determine the mathes between lauses. Itit possible that inter{onstrution ould be adapted for use in a divergene hekfor oindution (see hapter 9).8.7 DivergeneThe Revise Bisimulation riti used in this thesis is based on one developed for im-pliit indution. Impliit indution attempts to reate onuent rewriting systemsfrom the theorem and de�nitions. A major tehnique for reating suh onuentsystems is Knuth{Bendix Completion [Knuth & Bendix 70℄. The Knuth{Bendixompletion proedure generates a onuent set of rewrite rules by repeatedly su-perposing left hand sides of rewrite rules and adding any generated ritial pairsas new rewrite rules. This proess may fail to terminate. In e�et it is produingan in�nite (or divergent) set of rewrite rules.The algorithm takes a set of rules, R, and within ertain restritions generatesnew rules of the form l ; r, where l = r in some equational theory. These rulesare added to R and the proess iterates. The objet is to produe a onuent termrewriting system. There are three possible outomes of the algorithm:� The algorithm terminates with suess, in whih ase a �nite,onuent and terminating set of rules is output.� The algorithm terminates with failure.� The algorithm diverges, i.e. it fails to terminate, in whih asethe set of rules being derived is in�nite.Several generalisation tehniques have also been developed to overome theproblem of in�nite rule sets.

8.7. Divergene 1418.7.1 Overoming DivergeneThomas and Jantke [Thomas & Jantke 89℄ present two generalisation algorithms(or more spei�ally an algorithm and a semi{algorithm), whih they desribe asstandard algorithms from indutive inferene. The aim is to replae the in�nitesequene of rewrite rules by a �nite sequene of rules that are equivalent in somesense. This is an enrihment of the term rewriting system, R. This enrihmentneeds to be onuent and terminating and preserve the equational theory of R. Itmay be based on a larger signature (ontaining more operators or sorts).The algorithms seeks out \smallest distint terms". This is equivalent to iden-tifying a witness for B in the absorption rule:q (A p(A;Bq (A p(q; BSmallest distint terms are identi�ed by their position in the expression viewedas a term tree (as disussed in hapter 4). One found, the �rst algorithm replaesthe subterms at these positions with a variable.Example 8.4 Assume the Knuth{Bendix proedure has generated the sequene ofrewrites f(h(s(0); g(f(x)))) ; f(h(s(s(0)); x)) (8.13)f(h(s(s(0)); g(f(x)))) ; f(h(s(s(s(0))); x)) (8.14)f(h(s(s(s(0))); g(f(x)))) ; f(h(s(s(s(s(0)))); x)) (8.15)The algorithm looks at the LHS of eah rewrite to determine the �rst positionwhere distint terms appear.The �rst distint terms on the LHS of (8.13) and (8.14) our at position 1.1.1and are the subterms 0 and s(0) respetively. The algorithm replaes these by avariable y, ourrenes of the subterms are then searhed for on the RHS and wherethey our in the same position in both terms they are again replaed by y. Thisreates a generalisation of the terms. This generalisation is Plotkin's least generalgeneralisation [Plotkin 71℄.This gives a �nal rulef(h(s(y); g(f(x)))); f(h(s(s(y)); x)) (8.16)The seond (semi{)algorithm, alled only if the �rst fails, searhes the lexio-graphi order of terms in the language involving the variables used in the rewrites,for a term that rewrites to the distint subterms.

142 Chapter 8. Related WorkExample 8.5 Assume the proedure has generated the following set of rulesf(h(s(0); g(h(y; x)))) ; f(h(s(s(y)); x)) (8.17)f(h(s(s(0)); g(h(y; x)))) ; f(h(s(s(s(y))); x)) (8.18)f(h(s(s(s(0))); g(h(y; x)))) ; f(h(s(s(s(s(y)))); x)) (8.19)Following the same proess on the LHS of the rewrites as the �rst algorithm, theseond algorithm generates the term f(h(s(z); g(h(y; x)))). However the algorithmfails to �nd the subterms reappearing on the right sine they do not involve 0, theonstant that has been generalised, and no analysis of distint terms is performedfor the expressions on the right. Hene the RHS of the rewrites remain the same.The seond algorithm then searhes through the lexiographi ordering of termsin the language involving the variables x, y and z for some term, t for whiht[0=z℄ ; f(h(s(s(y)); x)) and t[s(0)=z℄ ; f(h(s(s(s(y))); x)). This searh pro-dues the solution f(h(s(s(z + y)); x)) and so the generated rewrite rule isf(h(s(z); g(h(y; x)))); f(h(s(s(z + y)); x)) (8.20)The �rst of these algorithms generalises only a subset of the sort of expres-sions the Revise Bisimulation Criti an handle (i.e. those where terms an begeneralised by a variable). Both of Thomas and Jantke's algorithms are operatingwithin a prede�ned sorted language and so don't allow new funtions (i.e. (� � �)N)to be introdued, so for instane they would be unable to �nd the generalisationrequired for example 3.7. The �rst is restrited to ases where divergene an beavoided by replaing a onstant with a variable.The seond has the ability to examine the set of pre{de�ned funtions and thismay be of use in ases where a new funtion needs to be introdued, althoughit doesn't have the ability to synthesize suh a funtion. The seond algorithmmay also fail to terminate sine there are in�nite terms in the language and apre{de�ned funtion whih an provide a solution may not exist. As a result somesort of heuristi would be required to bound the searh if it were to be used aspart of a suite of generalisation tehniques.8.7.2 Repeated Funtion AppliationThomas and Watson [Thomas & Watson 93℄ improved upon the Thomas/Jantkemethod to introdue generalisations involving repeated funtion appliation. Newsorts are introdued into the language whih ontain preisely terms of the formgn(f(x)) (for instane). Expressions whih ontain instanes of this sort e.g.g(g(g(f(x)))) an then be generalised by replaing the sort instane with a vari-able y of that new sort. The subterms that need to be generalised are identi�edone again by omparing rules and determining the positions of distint subterms.These positions are alled varying positions. There are a number of restritionsplaed on the hoie of subterms,

8.7. Divergene 143� The same subterm must appear at all the identi�ed positions insome rule.� All the divergent sets of rules are idential exept at or belowvarying positions.� No variable ourring at or below a varying position an ourelsewhere in the rule.� Any variable ourring at or below a varying position may ourat most one below that position.These restritions limit the generalised rewrites that may be produed sineat most one variable of at most one new sort may be introdued. Any rewriterequiring more than one new variable or sort would be exluded. It would alsoexlude rewrites where a variable needed to be generalised at one position but leftungeneralised at another.8.7.3 Reurrene TermsChen et al. [Chen et al 90℄ develop an alternative method for deteting and rep-resenting the kind of generalisation employed by the Revise Bisimulation riti,whih they all reurrene terms.Note that in what follows t=p denotes the subterm at position p of t and t[p s℄denotes the term after replaing t=p by s.De�nition 8.2 The set of reurrene terms is de�ned as the indutive losureof the following:1. Every variable in V (the set of variables in the signature) is a reurrene{term.2. If a funtion f is of arity n and t1; : : : ; tn are reurrene terms, thenf(t1; � � � ; tn) is a reurrene{term.3. If h is a term, p is a non{root position of h, N is a natural number (alledthe degree variable) and l is a reurrene{term, then �(h[p �℄; N; l) is areurrene{term, where � is a speial symbol serving as a plae holder.The unfolding of the reurrene terms ontaining plae holders is as follows:�(h[p �℄; 0; l) def= l (8.21)�(h[p �℄; n+ 1; l) def= h�[p �(h[p �℄; n; l)℄ (8.22)where � renames the variables in h[p �℄ into new variables. Hene reurreneterms are a way of oding (� � �)N in a �rst order fashion (fn() � �(f(x)[1 �℄; n;))

144 Chapter 8. Related WorkDe�nition 8.3 A binary relation on T� is a homeomorphi embedding re-lation, �h if: s = f(s1; � � � ; sn)�h g(t1; � � � ; tm) = tif and only if� f = g and s1 �h tji, 8i; 1 � i � n, where 1 � j1 < j2 < � � � < jn � m, or� s�h tj for some j; 1 � j � m.De�nition 8.4 The extension of �h to T�(V), alled homeomorphi variableembedding relation, �hv, is de�ned as s �hv t if and only if s �h t when thevariables in s, V(s), and t, V(t) are assumed to be new onstants, this will de�nea new sort, �0, and �h is de�ned on T�0 .Examples: f(a; b) �h g(f(g(a); b)), f(a; b) 6�hf(g(b); a), f(x) �hv f(f(x)),f(x) 6�hvf(f(y)). These relations allow reurrene terms to be generated from twoterms s and t in a nondeterministi way. Notie that if s�h t then there is a dif-ferene math (hapter 4) that annotates s with respet to t [Smaill & Green 96℄.The operation gen(s; t; N) is the equivalent of the Revise Bisimulation riti inthis situation. It generates reurrene terms and ombines the proess of di�erenemathing and generalisation formation into one.De�nition 8.5 The operation gen(s; t; N) is equal to� t if s = t, or� f(gen(s1; t1; N); � � � ; gen(sm; tm; N)) if s = f(s1; � � � ; sm) and t =f(t1; � � � ; tm), or� �(t[p �℄; N; gen(s; t=p;N)) if s�hv t=pSometimes no reurrene{term an be generated from two terms, in partiular ifevery f 2 F has a unique arity then gen(s; t; N) if and only if s�hv t.Chen et. al point out that their reurrene{terms are limited sine their �rstargument an not be a proper reurrene{term and the degree variable is linear,i.e. they annot aurately shematize the sequene:f(x)h(h(f(x)))h(h(h(h(f(x)))))...they suggest a solution to this seond problem of allowing N to be an expression(e.g. 2N making the above sequene �(h(x)[1 �℄; 2N; f(x)), but provide no al-gorithm for how this extended form ould be generated. The Revise Bisimulationriti an ope with these sorts of sequenes by using (h Æ h)N as the generalised

8.8. Walsh's Divergene Criti 145term. It might be interesting to see, however, whether some method of transform-ing this to h2N made any di�erene to the performane of CoCLAM .They also supply a reurrene mathing algorithm whih mathes a term witha reurrene{term. This is important for deteting when some expression is aninstane of a reurrene term. Similarly for the oindution proof strategy theFertilize method had to be extended to reognise and math instanes of (� � �)N(as disussed in hapter 7). Sine this extension of the Fertilize method was notentirely satisfatory Chen et. al's algorithm might be adapted to replae it.8.8 Walsh's Divergene CritiWalsh's [Walsh 96℄ divergene riti, on whih the divergene hek in the ReviseBisimulation method is based, was designed to work with an impliit indutiontheorem prover alled SPIKE [Bouhoula & Rusinowith 93℄.Indution is performed in SPIKE by means of test sets (�nite desriptionsof the initial model). SPIKE attempts to instantiate indution variables in theonjeture to be proved with members of the test set and then to use rewriting tosimplify the resulting expressions. The idea is to show that the expressions forma onuent set of rewrite rules. The proess of generate and simplify is basiallyKnuth{Bendix ompletion and so often produes a divergent set of equations. Ithas been observed that this happens if an appropriate generalisation or lemmaisn't present.Example 8.6 Walsh reports on SPIKE's attempts to prove the theoremlength(append(a; b)) = length(append(b; a)) (8.23)where length and append are de�ned by the equations:length(nil) = nil (8.24)length(H :: T) = s(length(T)) (8.25)append(nil; L) = L (8.26)append(H :: T; L) = H :: append(T; L) (8.27)SPIKE applies a generate rule that instantiates the indution variables, a,b, with members of the test set fnil; h :: tg. This produes 3 distint equationswhih are rewritten by simplify rules using the de�nitions of length and append.These give a simple identity and the following two equations:length(append(b; nil)) = s(length(b))

146 Chapter 8. Related Worklength(append(a; d :: b)) = length(append(b; :: a))SPIKE then repeats the proess generating the equations:length(append(b; :: nil)) = s(s(length(b)))length(append(a; f :: d :: b)) = length(append(b; e :: :: a))This proess is repeated and the proof attempt diverges.Walsh's riti partitions the equations using a parentage heuristi into twosequenes and then applies di�erene mathing to the sequenes as desribed inhapter 6. length(append(b; nil)) = s(length(b))length(append(b; :: nil)) = s(s(length(b)))length(append(a; b)) = length(append(b; a))length(append(a; d :: b)) = length(append(b; :: a))length(append(a; f :: d :: b)) = length(append(b; e :: :: a))Note that the �rst of these sequenes is generated from a base ase, while theseond is generated from a step ase.Instead of speulating generalisations, however, Walsh's riti, at this pointspeulates a lemma, in this ase:length(append(a; d :: b)) = s(length(append(a; b)))These lemmata are speulated using the pattern formed by the di�erene mathingon the LHS of the equations and two heuristis, anellation and petering out toinstantiate the variable F in �gure 8{1 (whih gives the riti).Canellation uses di�erene mathing to identify term struture aumulatingon the RHS of the sequene whih would allow anellation to our. Failing that,it looks for suitable term struture to anel against in a new sequene (e.g. thesequene generated by the base ase).In the example, the riti is attempting to generate a lemma from the seondsequene. To do this it refers to the RHS of the �rst sequene to provide theadditional struture. The suessor funtions aumulating at the top of thissequene suggest that F be instantiated to �x:s(x). Thus the anellation heuristisuggests the lemma,length(append(a; f :: b)) = s(length(append(a; b)))The petering out heuristi uses regular mathing to identify ases where thethe di�erenes on one side of the sequene have disappeared. In these ases F isinstantiated to �x:x.

8.8. Walsh's Divergene Criti 147
Preonditions:1. There is a sequene of equations si = ti to whih the generaterule is applied (i = 0; 1; � � �).2. There exists (non trivial) G;H suh that for eah j, di�erenemathing gives sj = G(Uj) and sj+1 = G(H(Uj)).Postonditions:1. The riti proposes a lemma of the form,G(H(U0)) = G(U0; F (G(U0)))2. F is instantiated by the anellation or petering out heuristis;3. Lemmas are �ltered through a onjeture disprover;4. If several lemmas are suggested, the riti deletes any that aresubsumed.Figure 8{1: Walsh's Divergene CritiWalsh notes that the proof of an insuÆiently general lemma an also divergeand his riti attempts to generalise the lemma whilst �ltering it through a on-jeture disprover in an attempt to prevent over{generalisation.Walsh has similar heuristis to speulate lemmata representing transverse waverules and these are potentially more relevant to oindution sine they speulatelemmas that e�etively move the di�erene around within the term.8.8.1 Lemma Speulation vs. GeneralisationWalsh's riti onentrates on di�erenes reated on the RHS of an equality ex-pression only using the di�erene mathing on the left to instantiate some funtion,F , in a speulated lemma.In some ases of oindutive proof the speulation of a lemma would lead toshorter and more elegant proofs (e.g. example 10 in hapter 3 used lemmata).However the heuristis supplied by Walsh for this speulation would not be suf-�ient, sine, for instane, anellation isn't always a valid simpli�ation methodin oindution.More importantly, lemma speulation will not always be suÆient sine some-times generalisations are genuinely required. If lemma speulation were to be in-luded as a riti for oindution then heuristis of some sort would be required to

148 Chapter 8. Related Workdistinguish between situations where lemma speulation is appropriate and thosewhere generalisation is appropriate.8.9 ConlusionThis hapter overed two distint topis. The implementation of oindution inother theorem provers and generalisation proedures.A number of theorem provers support oindution. The use of oindution inIsabelle and HOL was examined in some detail here. Neither of these supportfully automated proofs. In HOL the fous has been on providing support for theoperational semantis of funtional languages, using appliative bisimulation asa notion of equality. Even though speial tatis have been developed in HOLthey are able to �nd only the simplest of bisimulations automatially. They alsoneed to be guided through the simpli�ation proess for many proofs. This is alsothe ase for Isabelle. CoCLAM has a di�erent approah to both these systems,sine it attempts to plan rather than prove a theorem. As suh it doesn't o�er theguarantees of soundness given by HOL and Isabelle, however this wasn't the objetof the work that has been done. Proof planning is intended to provide guidane totati based theorem provers, suh as HOL and Isabelle. CoCLAM , if onnetedto one of these systems should be able to provide the user with onsiderably moreautomation than is o�ered at present. In many ways the work on CoCLAM isomplementary to the work on HOL and Isabelle.Work on proving bisimilarity (and other properties of in�nite systems) in pro-ess algebras was also surveyed. While proess algebras provide a di�erent settingfrom that presented in this thesis it ould be seen that ideas similar to bisimulationextension and generalisation existed there. In partiular they demonstrated thatthe provision and disovery of �nite representations for in�nite sets/sequenes ofstates is a major requirement.Generalisation proedures an be seen as speial ases of indutive inferene.The absorption rule (8.11) involves the exploitation of di�erenes between terms,and the idea that one term is somehow embedded in another. The same ideas areused in Thomas and Jantke's \smallest distint positions" and Thomas and Wat-son's \varying positions". The homeomorphi embeddings and reurrene termgenerator of Chen et. al. also seem to involve these ideas although they don't ex-pliitly draw their inspiration from the �eld of indutive inferene. Walsh linkedthe detetion of distint terms to di�erene mathing and was able to use the infor-mation given by the detetion of wave fronts and holes in forming generalisations.The work in this thesis is an adaptation of Walsh's work. The Revise Bisimu-lation riti uses the same preonditions as Walsh's Divergene Criti. Howeverthe post{onditions are new. It's generalisation tehnique, given the informationreeived from di�erene mathing is also new. Although it has many similaritieswith the tehniques used by Thomas and Watson it an deal with a wider lassof problems. As far as I'm aware this is the �rst time suh tehniques have beensuggested for use in the automation of oindution.

Chapter 9
Further Work

9.1 IntrodutionSeveral extensions to the work presented in this thesis have already been disussedin previous hapters. Chapter 7 suggested:� Improving the mathing in the Fertilize method.� Investigating a normal form for pair shema.� Introduing lemma speulation for oreursive de�nitions.� Improving the eÆieny of dealing with large bisimulations.Chapter 8 suggested:� Using tehniques, partiularly inter{onstrution, from indutivelogi programming to improve the Revise Bisimulation Criti.This hapter will look at the speulation of oreursive de�nitions and the useof inter{onstrution in more detail and at extending CoCLAM to a wider varietyof labelled transition systems and linking it to an objet{level theorem prover.9.2 Lemma Speulation and Divergene Analy-sisChapter 7 highlighted some de�ienies in the proof strategy. These were disussedat the time and improvements suggested. One of these improvements was toprovide some automati method of generating oreursive equivalents for funtionde�nitions (heneforth alled oreursive lemmata). This is linked to the issue offuntions whose evaluation diverges without the provision of additional lemmata.149

150 Chapter 9. Further Work9.2.1 Lemma SpeulationGiven any reursively de�ned funtion, it is desirable to have lemmata availablethat will at like a oreursive de�nition of that funtion, i.e. lemmata that allowthe funtion to be evaluated to a value for any given input. We want all expressionsto be values in order to determine transitions. This is di�erent from the situationin indution where theorems an be proved by \sinking" the di�erenes betweenthe indution hypothesis and onlusion and then using the indution hypothesisas a rewrite rule to omplete the proof by rewriting the onlusion to an identity.In these ases anellation (whih would appear to be the equivalent proess totaking transitions (see hapter 10)) may not have taken plae.Example 9.1 Consider <>, append. The usual de�nition of append is:nil <> L red; L (9.1)H :: T <> L red; H :: (T <> L) (9.2)The oreursive de�nition isnil <> nil red; nil (9.3)nil <> H :: T red; H :: (nil <> T) (9.4)H :: T <> L red; H :: (T <> L) (9.5)In pratie it is possible to evaluate M <> N to a value using either de�nition, soin this ase the provision of oreursive lemmata isn't neessary. However they aremore suitable, in a general sense, for oindution sine, for instane, they speifymore aurately the number of asesplits that will be required to �nd a value.Suh lemmata beome neessary in situations where a funtion has no oreur-sive de�nition (or, more aurately, annot be expressed with unfold). FN wasone suh funtion. However given partiular instantiations of F (e.g. (map(F))N)it is possible to supply a oreursive de�nition provided that N is assumed to be�nite1. Sine FN is fundamental to the Revise Bisimulation Criti, lemmata for�nite N should learly be alulated for FN for all possible F in the funtion spaeotherwise evaluation will diverge (as was disussed in hapter 5).The Lemma Speulation Criti of Ireland and Bundy [Ireland & Bundy 96℄,generates new lemmata when rippling beomes bloked. It is possible that some-thing similar ould be developed for CoCLAM to be used either before it hasstarted attempting to plan a proof, or as a riti on the Evaluate method. Thatis, if the Evaluate method has failed or is diverging then the riti ould be usedto speulate a new lemma.1Reall that integers are treated in a lazy (in�nite) fashion elsewhere in this thesis.

9.2. Lemma Speulation and Divergene Analysis 151Ireland and Bundy's Criti uses middle{out reasoning (desribed in hapter 4)for this task. The riti divides into two proesses, lemma alulation and lemmaspeulation. Both these proesses work by examining the skeleton of an expressionin whih rippling is bloked and using that skeleton and, in the ase of lemmaspeulation, middle{out reasoning to �nd a new wave rule.9.2.2 A New CritiGiven a funtion F : � ! � we want to provide oreursive lemmata (if they donot already exist) suh that: F (v�); v�FN(v�); v�where v� and v� are values of type � and � respetively2.It may be possible to annotate suh lemmata as outward Wave rules. Gen-erating the LHS using meta{variables and potential wave fronts as done by[Ireland & Bundy 96℄. So, for instane given map(F) the riti might generatethe following:map(F)N(H :: T "); F1(F;H; T) :: F2(map(F)N (T))) " "However it isn't lear how instantiation of the meta{variables, F1 and F2, in thisexpression is to take plae.If this were done during the Evaluation proess more information would beavailable. In this way attempts to �nd the lemma ould be joined with attemptsto prove the theorem. Spei�ally the results of the transitions on the other side ofthe relation ould be inspeted. If the results of transitions are assumed to maththen they an be used to oere the instantiation of the meta{variables.Ideally though, sine \Problemati" funtions (those whose supplied de�nitionis not oreursive) an be identi�ed at the start of the proess it is tempting totry and speulate lemmata in advane as this would save interrupting the proofproess with the use of a riti. It might be possible to reate suh lemmataby exploitation of the funtion's reursive de�nition (whih we are assuming isthe de�nition supplied to CoCLAM) or examining the values of the funtion forspei� inputs and attempting to generalise from that. This whole area would needto be investigated further to deide on appropriate tehniques for speulating theselemmata and the appropriate points in the proofs at whih to attempt it.2Reall that in the systems we are onsidering values are more like patterns than isusual.

152 Chapter 9. Further WorkA further problem would be trying to identify funtions (like flatten) whihapparently do not have a oreursive de�nition or time will be wasted searhing forone. It might be possible to inlude some variation of stritness analysis tehniquesinto the riti in order to identify the possibility of divergene.9.2.3 Divergene AnalysisThis leads on to a seond extension of CoCLAM whih would be to implementproedures to reognise that evaluation is diverging and that there are no transi-tions from the expression. It seems likely that divergene reognition tehniqueswill be relevant here. In the literature examples whih involve divergene, suh asexample 3.5 in hapter 3, have a distintive pattern of ase splits. CoCLAM wouldbe required to reognise suh a pattern and that divergene ourred for the sameinputs on both sides of the relations.Divergene an be aused by a missing oreursive lemma. Reall example 3.7from hapter 3. In that example evaluation of the expression(map(F))N(h(F;X))diverges unless the lemmamap(F)N(H :: T); FN(H) :: map(F)N (T)is present. This was disussed in hapter 5. This suggests that divergene analysisand lemma speulation may well go hand in hand. Either there are ertain valuesfor whih a funtion diverges or a oreursive de�nition is possible. It might bepossible to develop a proess whih attempts to �nd the set of values for whih afuntion diverges and whih in the proess would develop a oreursive de�nitionif suh values didn't exist. This would involve a proess like the Evaluate methodwhih would replae variables with values e.g.(map(F))s(N)(L)and then redue them: map(F; (map(F))N(L)If the redued expression were not a value then attempts would be made to ases-plit other variables in the hope that this would redue to a value. If the originalvariable has to be split further then divergene patterns an be sought and thevalues that ause these patterns spei�ed. In the example above the expressiondiverges if N is in�nite3. If N is �nite then evaluation will eventually terminateand a lemma ould be speulated from observing this proess in some way. Clearlythis is only a vague outline of the proess and further work would be needed tospeify it more exatly and evaluate its e�etiveness.3As it ould e�etively be, if integers are being treated in a lazy fashion

9.3. Inter{onstrution 1539.3 Inter{onstrutionIn hapter 8 a similarity was drawn between the absorption inverted resolutionrule and the riti urrently being used in CoCLAM . Another inverted resolutionrule, inter{onstrution, was also looked at:p(A;B q (A;Cp(r; A;B r (A q (r; A; C (9.6)where lower ase letter denote single literals and upper ase letters onjuntionsof literals.This is of interest beause it introdues a new literal r, suh that r(A. Oneof the desirable extensions for the revise bisimulation riti would be an ability tosynthesize new funtions (this was disussed in hapter 6). It is possible that theinter{onstrution rule ould be adapted to an algorithm for performing this taskwithin the ritis setting.An important onsideration would be the identi�ation of A. In the absorptionrule: q (A p(A;Bq (A p(q; B (9.7)A is fairly easy to identify q (A and then B is identi�ed by being the di�erenebetween A and A;B. One transported into the funtional setting this is performedby di�erene mathing.In inter{onstrution A is some set of literals shared by the RHSs of p(A;Band q (A;C; however A;B is not neessarily embedded in A;C. Instead ofdi�erene mathing we will need to di�erene unify the two expressions. Just asnormal uni�ation has a larger searh spae than mathing so di�erene uni�ationan be expeted to have a large searh spae than di�erene mathing. At presentin CoCLAM the Revise Bisimulation riti doesn't really have a problem withthe possibility of there being several di�erene mathes sine this ours rarely {however if it were to be extended to di�erene uni�ation as part of a proess ofallowing the synthesis of new funtion then it is possible that this would beomea more serious problem.9.4 Other Labelled Transition SystemsIt is desirable that a user of CoCLAM should be able to \plug and play" withvarious labelled transition systems. At present only a very limited number of suhsystems an be used beause of the assumptions made about the transition ruleset. There are a number of extensions that ould be made that would allow awider range of labelled transition systems.

154 Chapter 9. Further Work9.4.1 Transition Rules with Non{empty PremisesGordon presents a fairly simple system in [Gordon 93℄ whih CoCLAM would nev-ertheless be unable to use beause the transition rules have extra premises. Gordonused the notions of bisimilarity and labelled transition systems to prove the seman-ti equivalene of three teletype input/output mehanisms: Synhronised{stream,Continuation{passing and Landin{stream.I shall briey examine Synhronised{stream I/O here in order to set out thesort of issues raised for CoCLAM . These issues would also be present in adaptingCoCLAM to several other domains.Stream TransformersStream transformers are funtions from lists of input type to lists of output type.There are three important ombinators on stream transformers, getST, putST andnilST getST(k; h :: t) red; k(h; t)putST(x; f; l) red; x :: (f; l)nilST(l) red; nilThese an be used to form the stream transformers giveST, nextST and skipST.nextST requires the formation of a new datatype, Maybe(�), desribed below.Maybe(�) ::= Y es(�) j NogiveST(; f; l) red; f(:: l)f(?) red; nil) nextST(f) red; Nof(?) red; h :: t) nextST(f) red; Y es(h)skipST(f; l) red; tail(f(l))where ? is a dummy argument used to test whether a stream transformer is readyto produe output. The use of ? may at �rst seem onfusing, but it represents\unknown", whih ommonly implies divergene and is assumed to imply suh inthe rest of this thesis.Synhronised{stream I/OIn synhronised{stream I/O, stream transformers produe streams of requests andonsume streams of aknowledgements. The requests and aknowledgements are

9.4. Other Labelled Transition Systems 155in one{to{one orrespondene: the omputing devie spei�ed by a stream trans-former alternates between produing output requests and onsuming input a-knowledgements. The values of requests, Req, and aknowledgements, Ak, are:Req ::= Get j Put(Char)Ak ::= Got(Char) j DidThe transition rules embodying the semantis are shown in �gure 9{1.
nextST(f) red; Y es(r) r red; Getf n! giveST(Got(n); skipST(f)) (9.8)nextST(f) red; Y es(r) r red; Put(v) v red; nf �n! giveST(Did; skipST(f)) (9.9)

Figure 9{1: Transition Rules for Synhronised{stream I/O9.4.2 Extending the Evaluate MethodIn order to determine the transitions from a synhronised{stream program theEvaluate method would need to be extended. Take for instane the transition rule(9.8) in �gure (9{1). This rule has several premises that various expressions anredue to some value unlike the transition rules in T whih, with one exeption,have no premises. It was ommented when the Evaluate method was �rst proposedthat it was very spei�. For the Evaluate method to be more general it wouldhave to be able to bakward hain and searh through the premises of transitionrules.Redution rules are a speial sort of transition rule and labelled transition sys-tems, espeially those involving operational semantis will often inlude redutionrules. The Evaluate method inorporated a redution strategy with the rulea red; b b �! a �! (9.10)This was the only transition rule with premises and was essentially hardwired intothe method. A more general method would searh the transition rules for onethat applied to the goal. In many ases (9.10) will be the only suh rule. One

156 Chapter 9. Further Workpossibility at this point would be to arry on treating the premises in the sameway (i.e. to redue a one and then look for a transition from all resulting bs)an alternative would be to inorporate a redution strategy in the method whihould guide the eureka step of hoosing a b.Redution may not be the only well-known proess that frequently ours intransition systems so it may be possible to reate a method that an ombine abrute{fore searh through the transition rules with heuristis for guiding ertainspeial sorts of rule.There may be some heuristi for guiding the general searh, but it seems un-likely and a more probable senario is that the general situation will require brute{fore searh and heuristis will only be available for spei� domains.9.4.3 Internal AtionsReall that in Milner's CCS (desribed in hapter 2) it is possible to have internal�{ations that are e�etively invisible to the observer. These are a useful tehniquenot only in CCS but also in other domains where we may wish to \ignore" ertainations. For instane if we wish to prove that a program meets a spei�ation,the program is likely to be more detailed and may ontain low{level ations thatare not of interest to the spei�ation. Currently CoCLAM has no faility to allowthis sort of invisible ation.The solution might seem to be to simply ignore �{ations and repeatedly applytransitions until a non �{ation is enountered. However this isn't possible:Example 9.2 If P � a:0+ b:0 and Q � a:0+ �:b:0, then P and Q do not exhibitthe same behaviour sine Q �! b:0. b:0 is not equivalent to P sine it an notmake an a ation. So without making any ation observable to a user Q has nowbeome a state where its possible behaviours are di�erent from P 's.Even though the only observable ations for P and Q were a and b. Q anperform an unobserved � ation whih makes its behaviour di�erent to P .The interation of � ations with objets that have more than one transition wouldhave to be handled arefully.9.4.4 NondeterminismA last extension to the system would be to handle nondeterministi labelled tran-sition systems. Again, perhaps the best known of these is CCS. This allows atransition to have arbitrarily many results, e.g. the expression a:C + a:D a! Cand a:C+a:D a! D for this to be bisimilar to some other expression, that expres-sion would also have to be able to make an a transition to either C or D.This inreases the searh spae sine it would introdue disjuntive goals intoit. Consider showing the equivalene of A and B where:

9.5. Verifying the Proof Plans 157
A = a:nil + a:A0 (9.11)A0 = a:A (9.12)B = a:nil + a:A0 (9.13)The possible ombinations of mathing transitions from A and B areHY P)((hnil; nili 2 R[�) ^ (hA0; A0i 2 R[�))_((hA0; nili 2 R[�) ^ (hnil; A0i 2 R[�))Obviously this goal is fairly simple (the �rst disjunt is easily shown to be true)but more omplex problems an lead to a large tree of disjuntions whih have tobe searhed.9.5 Verifying the Proof PlansFor CoCLAM to be a useful system in pratie, it must not only generate proofplans but also exeute them to produe formal proofs. This requires the develop-ment of proof tatis to math the proof methods in some objet{level theoremprover. This remains to be done. A partial investigation was undertaken intolinking CoCLAM to Isabelle, the results of whih are reported in appendix E.The whole implementation, if it is to be pursued, needs to be made more robustand a problem with the naming of variables in rewriting needs to be solved, ei-ther by providing an Isabelle tati that rewrites a named subterm or by adaptingCoCLAM 's rewriting methods to provide suÆient information about instantia-tions for Isabelle to be able to identify the appropriate variables.It then needs to be tested properly on the orpus of theorems planned byCoCLAM . At present what testing has been undertaken has involved only a smallpart of that orpus and has required some user intervention to get around thevariable naming problem.The other option is to attempt to link CoCLAM to HOL and use the tatisreated by Collins for oindutive proof in HOL. This linkage will fae the sameproblems of variable naming as is faed by the CoCLAM{Isabelle link. An \email"link has been attempted by whih the bisimulations suggested by CoCLAM aresupplied (by hand) to HOL. Again the testing has been fairly minimal thoughenouraging.

158 Chapter 9. Further Work9.6 ConlusionFour major areas of further work have been onsidered in detail by this hapter.� Improve the urrent implementation by providing automatedways of disovering missing lemmata and introduing divergeneanalysis to reognise expressions with no transitions. This wouldextend CoCLAM 's ability to prove theorems within the kind ofoperational semantis systems examined in this thesis.� Investigate the use of inter{onstrution to expand the sope ofthe Revise Bisimulation Criti.� Provide better support for \plug and play" by reating a moregeneral Evaluate method and support for � ations and non{deterministi transition systems.� Link CoCLAM with an objet{level prover.These are all important beause they would extend the range of the system awayfrom the urrent \toy" problems and would hopefully allow larger examples, lesseasily performed by hand, to be not only automatially planned but also formallyveri�ed.There are also a number of other improvements that have been mentionedelsewhere. Several improvements to the implementation were suggested in hapter7 where the results of testing the system were reported and improvements tothe Revise Bisimulation Criti were onsidered in hapter 8 where generalisationtehniques were surveyed.In the next hapter I shall onsider improvements that an be made to CoCLAMthrough a omparison with indutive proof in CLAM .

Chapter 10
Comparing the Proess of Proof inIndution and Coindution

10.1 IntrodutionThis hapter overs a programme of further work extending the proof methodsfor both oindution and indution with referene to eah other. As suh it alsoovers some related work from the area of proof planning for indution.There has been a lot of work on omparing indution and oindution as proofpriniples and de�nition priniples but little or no work omparing the proessesof proof.One of the original aims of the researh reported in this thesis was to tryand adapt the methods developed for indution to oindution. In the end newmethods were developed for oindution and most of the methods developed forindution were not used. However there remain lear similarities between theproesses of proof for the two priniples and an examination of this in the light ofthe proposed proof plans seemed to be a pro�table undertaking.The disussion that follows attempts to draw out the observed similarities andthen see if these observations an be justi�ed by referene to the theory behindthe proof priniples. There are two aims:1. To show how the theory supports the observed similarities be-tween the proofs.2. By learly setting down the points of rossover to signpost theplaes where tehniques an be transferred from one domain tothe other.
159

160 Chapter 10. Comparing the Proess of Proof in Indution and Coindution
10.2 Comparing Individual ProofsThe �rst step is to ompare \anedotally" the two proof styles by inspeting proofsdone using them. This omparison is aided by the fat that many theorems anbe proved either by Indution or Coindution or have similar equivalents (exeptthat in one theorem some variable is of strit type whih is of lazy type in theother) whih an be proved either way.There are two ways of onverting theorems about lazy lists into ones that anbe proved indutively, either the type of some variable(s) of lazy type an bealtered to an equivalent strit type or indution an be performed on the numberof transitions from the objets.Both of these are onsidered here and two examples are examined one usingeah of these forms of omparison. The oindutive proofs use the transitionsystem, T 0, shown in �gure 10{1. This transition system di�ers from the onea : �1 ! �2 b : �1a ap(b)! a(b) (10.1)

bv bv! ? n n! ? (10.2)
nil nil! ? (10.3)a :: b hd! a a :: b tl! b (10.4)a : � � 6= �1 ! �2 a red; b b �! a �! (10.5)Figure 10{1: Transition Rules for T 0presented in hapter 3, T , sine the transitions from natural numbers are thenumerals not zero and predeessor and there are no tree datatypes.Proof planning will be a signi�ant tool and omparisons will be made at theproof method level.

10.2. Comparing Individual Proofs 16110.2.1 Restriting Theorems to Strit Lists: The Assoia-tivity of AppendOne way to ompare the two proof proesses is to onsider the oindutive prooffor a theorem (taking lazy lists as an argument) and the indutive proof (takingstrit lists).Take, for instane the assoiativity of append. I shall present �rst an indutiveproof and then a oindutive proof in turn highlighting the proof methods. Thisomparison shouldn't hinge on spei� heuristis, suh as rippling too muh, sosome abstration has been performed in the proofs { using \Rewriting" as a proofmethod as opposed to \Rippling" or \Evaluate" or any of the more speialisedrewriting methods that have been developed. The lists of proof methods will thenbe plaed side by side in a tabular format in the hope that this will draw out somesimilarities.Reall the de�nition of <>:nil <> L red; L (10.6)H :: T <> L red; H :: (T <> L) (10.7)Indutive ProofTheorem 10.1 8l1; l2; l3: (l1 <> l2) <> l3 = l1 <> (l2 <> l3)Proof.Indution on l1 with h :: t as the Indution Sheme This gives twonew goals, a base ase:(nil <> L2) <> L3 = nil <> (L2 <> L3)and a step ase:(t <> L2) <> L3 = t <> (L2 <> L3))(h :: t <> L2) <> L3 = h :: t <> (L2 <> L3)We shall examine the step ase �rst.Rewrite using (10.7) on LHS This rewrites the indution onlu-sion to:� � �) h :: (t <> L2) <> L3 = h :: t <> (L2 <> L3)Rewrite using (10.7) on LHS� � �) h :: ((t <> L2) <> L3) = h :: t <> (L2 <> L3)

162 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionRewrite using (10.7) on RHS� � �) h :: ((t <> L2) <> L3) = h :: (t <> (L2 <> L3))Canel h � � �) (t <> L2) <> L3 = t <> (L2 <> L3)Fertilize This onludes the step ase proof. The Base ase remains.Rewrite using (10.6) on the LHSL2 <> L3 = nil <> (L2 <> L3)Rewrite using (10.6) on the RHSL2 <> L3 = L2 <> L3Reexivity 2Coindutive ProofTheorem 10.2 8l1; l2; l3: ((l1 <> l2) <> l3) � (l1 <> (l2 <> l3))Proof.Coindution with fh(L1 <> L2) <> L3; L1 <> (L2 <> L3)ig as Bisim-ulationThis gives two new goals: h(L1 <> L2) <> L3; L1 <> (L2 <> L3)i 2R and R � hR[�i. Consider these in turn.Set Membership The �rst goal is trivially true from the de�nitionof RCasesplit L1. This gives two goals:fh(nil <> L2) <> L3; nil <> (L2 <> L3)ig � hR[�i (10.8)fh(H :: T <> L2) <> L3; H :: T <> (L2 <> L3)ig � hR[�i(10.9)Consider the seond of these �rst.Rewrite using (10.7) on LHSfhH :: (T <> L2) <> L3; H :: T <> (L2 <> L3)ig � hR[�iRewrite using (10.7) on LHSfhH :: ((T <> L2) <> L3); H :: T <> (L2 <> L3)ig � hR[�i

10.2. Comparing Individual Proofs 163Rewrite using (10.7) on RHSfhH :: ((T <> L2) <> L3); H :: (T <> (L2 <> L3))ig � hR[�iTake Transitions: hd! and tl! This produes two goals:fh(T <> L2) <> L3; T <> (L2 <> L3)ig � R[� (10.10)fhH; Hig � R[� (10.11)Fertilize This disharges (10.10).Reexivity of � This disharges (10.11).This leaves only (10.8)Rewrite using (10.6) on the LHSfhL2 <> L3; nil <> (L2 <> L3)ig � hR[�iRewrite using (10.6) on the RHSfhL2 <> L3; L2 <> L3ig � hR[�iDeterminay of Transition System and Reexivity of � The de-terminay of the transition system means that the results of alltransitions from L1 <> L3 are the same and hene are in �. 2Comparing the Proofs of the Assoiativity of AppendIf the above proofs are regarded as proof plans then a omparison of the methodalls an be plaed side by side as in the following table1.Indution on l1 using h :: t Coindution Method RStep Case Set MembershipCasesplit l1Rewrite using (10.7) on LHSRewrite using (10.7) on LHSRewrite using (10.7) on RHSCanel h Take Transitions hd! and tl!FertilizeBase Case Reexivity of �Rewrite using (10.6) on LHSRewrite using (10.6) on RHSReexivity Determinay of Transitionsystem and Reexivity of �1Canellation is not neessarily a part of indutive proof, but is inluded here beauseit is proofs involving anellation that give rise to many of the apparent similarities (moreof this later).

164 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionThe important parts of this pattern (i.e. those features that were observed overa number of proofs) are that the hoie of indution sheme and bisimulation plusthe asesplit of some variable our at the same point; the sequene of rewrites isidential and that anellation and reexivity orrespond to the use of transitions.This omparison proess was arried out all the appliable theorems CoCLAMsuessfully proved. This provided a total of 46 theorems. A number of patternsof proof like the above emerged, all of whih ontained the features mentioned.These patterns are shown in appendix F together with the theorems assoiatedwith eah pattern. Only 1 proof didn't have this sort of pattern. In that proof +was anelled in the indutive proof (i.e. a funtion that was not a onstrutor)while the oindutive proof required a generalisation.10.2.2 Using Indution on the Number of TransitionsNot all theorems provable by oindution have an equivalent that an be proved byindution just by hanging the type of some variable. In suh ases, if the overalltype of the expressions is lazy lists, the funtion, nth, an be used to performindution on lazy lists by examining eah element of the list. In fat nth anbe used as an alternative to hanging the type of the variable in all ases. Thistehnique was suggested by MAllester2. In this ase I am assuming that only listswhose elements are of strit type are being onsidered but it would seem plausiblethat this tehnique ould be extended to other datatypes.nth(0; H :: T) ; H (10.12)nth(s(N); H :: T) ; nth(N; T) (10.13)Theorem 10.3 (This theorem utilizes the assumption that the lists in questionare lists of naturals). If L1 and L2 are both lazy lists of elements of strit type,� , in a labelled transition system in whih the only in�nite data type is lists(so 8n1; n2 : �: n1 � n2 , n1 = n2) then8l1; l2: l1 � l2 , 8n:(nth(n; l1) = nth(n; l2) _ (l1 = l2 ^ length(l1) � n))where length(nil) = 0 (10.14)length(h :: t) = s(length(t)) (10.15)and = is equality on �nite lists.Proof.2Private Communiation

10.2. Comparing Individual Proofs 1651. 8l1; l2: l1 � l2) 8n:nth(n; l1) = nth(n; l2)_(l1 = l2^ length(l1) �n))Proof by Indution on n.(a) n = 0.If l1 nil! ? then by bisimilarity of l1 and l2, l2 nil! ?.The transition rules imply that l1 = l2 = nil whihmeans that for all n, length(l1) � n.Otherwise 9h1; t1: l1 hd! h1 ^ l1 tl! t1. By bisimilarityof l1 and l2, 9h2; t2: l2 hd! h2 ^ l2 tl! t2. Furthermoreh1 � h2 and t1 � t2. Hene l1 = h1 :: t1, l2 = h2 :: t2,nth(0; l1) = h1 and nth(0; l2) = h2. We know thath1 = h2 sine they are natural numbers and h1 � h2.So nth(0; l1) = nth(0; l2).(b) n = s(n1)Assume that 8l1; l2:l1 � l2) nth(n1; l1) = nth(n1; l2)_(l1 = l2 ^ length(l1) � n1). We want to show that8l1; l2: l1 � l2) nth(s(n1); l1) = nth(s(n1); l2).If l1 = l2 = nil then for all n, length(l1) � n.Otherwise l1 = h1 :: t1 and l2 = h2 :: t2 and� � �) nth(s(n1); h1 :: t1) = nth(s(n1); h2 :: t2)� � �) nth(n1; t1) = nth(n1; t2)t1 � t2 sine l1 � l2 so nth(n; t1) = nth(n; t2) is trueby appeal to the hypothesis.2. 8l1; l2: (8n:nth(n; l1) = nth(n; l2) _ (l1 = l2 ^ length(l1) � n)))l1 � l2.Proof by oindution.Let R = fhL1; L2i j 8n:nth(n; L1) = nth(n; L2) _ (L1 = L2 ^length(L1) � n)gIf hl1; l2i 2 R. The possible transitions from l1 and l2 are nil orhd and tl.(a) If l1 nil! ? then l1 = nil so 8n:length(l1) � n. Sinehl1; l2i 2 R and nth(n; l1) has no solution (by inspe-tion of the de�nition of nth) l1 = l2. Hene l2 = niland l2 nil! ?. ? � ? by the reexivity of �.(b) If 9h1; t1 suh that l1 hd! h1 and l1 tl! t1 then l1 =h1 :: t1. So nth(0; l1) = h1, learly length(l1) > 0 sonth(0; l2) = h2 = h1 so 9t2: l2 = h1 :: t2 and l2 hd! h1.h1 � h1 by reexivity of �.Also l2 tl! t2 and 8n:nth(n; t2) = nth(s(n); l2) =nth(s(n); l1) = nth(n; t1) or l1 = l2 and lenght(l1) �s(n) so t1 = t2 and length(t1) � n hene ht1; t2i 2 Rby de�nition of R.

166 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionIn whih ase R is a bisimulation and by oindution for all l1and l2 if hl1; l2i 2 R then l1 � l2. 210.2.3 Using nth: The Mapiterates TheoremReall the following de�nitions:map(F; nil) ; nil (10.16)map(F;H :: T) ; F (H) :: map(F; T) (10.17)iterates(F;X) ; X :: iterates(F; F (X)) (10.18)Indutive ProofTheorem 10.48f;m; n: nth(n;map(f; iterates(f;m))) = nth(n; iterates(f; f(m))ProofIndution on n using s(n) This gives two new goalsnth(0; map(F; iterates(F;M))) = nth(0; iterates(F; F (M)))andnth(n;map(F; iterates(F;M))) = nth(n; iterates(F; F (M))))nth(s(n); map(F; iterates(F;M))) = nth(s(n); iterates(F; F (M)))Consider the step ase �rst.Rewrite using (10.18) on the LHS The indution onlusion be-omes � � �)nth(s(n); map(F;M :: (iterates(F; F (M))))) =nth(s(n); iterates(F; F (M)))Rewrite using (10.17) on the LHS� � �)nth(s(n); F (M) :: map(F; iterates(F; F (M)))) =nth(s(n); iterates(F; F (M)))Rewrite using (10.18) on the RHS� � �)nth(s(n); F (M) :: map(F; iterates(F; F (M)))) =nth(s(n); F (M) :: iterates(F; F (F (M))))

10.2. Comparing Individual Proofs 167Rewrite using (10.13) on both sides� � �) nth(n;map(F; iterates(F; F (M)))) =nth(n; iterates(F; F (F (M))))Fertilize This leaves the base ase.Rewrite using (10.18) on the LHSnth(0; map(F;M :: (iterates(F; F (M))))) =nth(0; iterates(F; F (M)))Rewrite using (10.17) on the LHSnth(0; F (M) :: map(F; iterates(F; F (M)))) =nth(0; iterates(F; F (M)))Rewrite using (10.18) on the RHSnth(0; F (M) :: map(F; iterates(F; F (M)))) =nth(0; F (M) :: iterates(F; F (F (M))))Rewrite using (10.12) on both sidesF (M) = F (M)Reexivity 2Coindutive ProofTheorem 10.58f;m: map(f; iterates(f;m)) � iterates(f; f(m))ProofCoindution using fhmap(F; iterates(F;M)); iterates(F; F (M))igThis gives two goalshmap(F; iterates(F;M)); iterates(F; F (M))i 2 RR � hR[�iRewrite using (10.18) on the LHSfhmap(F;M :: (iterates(F; F (M))));iterates(F; F (M))ig � hR[�i

168 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionRewrite using (10.17) on the LHSfhF (M) :: map(F; iterates(F; F (M)));iterates(F; F (M))ig � hR[�iRewrite using (10.18) on the RHSfhF (M) :: map(F; iterates(F; F (M)));F (M) :: iterates(F; F (F (M)))ig� hR[�iTake Head and Tail Transitions This gives two goals:hF (M); F (M)i 2 R (10.19)hmap(F; iterates(F; F (M))); iterates(F; F (F (M)))i 2 R(10.20)Fertilize This disharges (10.20) leaving (10.19) to be proved.Reexivity of � 2Comparing the Proofs of MapiteratesIndution on n using s(n) Coindution RBase Case Step CaseRewrite using (10.18) on the LHSRewrite using (10.17) on the LHSRewrite using (10.18) on the RHSRewrite using (10.12) Rewrite using (10.13) Take Transitionson both sides on both sides FertilizeReexivity Reexivity of �In these proofs a slightly di�erent pattern emerges sine the rewriting workneeded for the base ase and step ase in the indutive proof is the same and isdone only one in the oindutive proof sine it doesn't separate out the two asesuntil transitions. However broadly speaking the same observations apply exeptthat hoie of indution sheme and bisimulation are at the same point and if anyasesplitting is required then it is needed in both proofs and is idential in bothproofs.One again this proess was attempted on all the appliable theorems thatCoCLAM proved, it applied to 43 theorems all of whih exhibited the harateris-tis desribed above. One again the results are reported in appendix F.

10.3. Comparison of Proof Methods 169

Reflexivity Fertilize

Rewrite

Choose Scheme

STEP CASEBASE CASE

Figure 10{2: The Proof Plan for Indution10.3 Comparison of Proof MethodsThe tabular representation of the proof methods used in eah proof suggest equiv-alenes between ertain steps in the proofs, e.g. The Choie of Indution Shemeand Bisimulation and the various rewriting steps. These similarities an be rep-resented diagrammatially, superposing the proof strategies as shown in �gures10{2, 10{3 and 10{4. This plaes proof methods that appear to be performingsimilar tasks in the same general areas of the diagram.Both these proof plan diagrams are for the proofs of theorems suh asmap(f;map(g; l)) = map(f Æ g; l) where there is one base ase and one step asein the indutive proof. In the base ase both the expressions in the equation eval-uate to nil and in the step ase there is a asesplit after rewriting (indued by thetransitions in the oindutive plan) in order to onsider the heads and tails of thelists separately. The heads are shown to be equal and the reexivity of = or � isused in the \head" ase while the tail ase requires fertilization.Obviously these diagrams have been drawn so that they overlap in a ertainway, however it is interesting to note that the general \shape" of the proof strate-gies has not had to be altered to do this. Methods have not had to be movedaround the proof strategies in relation to other methods (although in the indutionplan the method boxes have been enlarged). This provides supporting evideneof the omparable natures of those stages of the proof. It also suggests that proofstrategy diagrams ould well be a useful tool for the high level representation anddisussion of proofs.

170 Chapter 10. Comparing the Proess of Proof in Indution and Coindution
Choose Bisimulation

Transition

Evaluate

Transition

Fertilize

PROVE BISIMULATION

RewriteRewriteRewrite

Reflexivity Reflexivity

Figure 10{3: The Proof Plan for Coindution
Choose Bisimulation

Transition

Evaluate

Transition

Reflexivity Fertilize

Rewrite

Choose Scheme

STEP CASEBASE CASE

RewriteRewrite

Fertilize

PROVE BISIMULATION

Rewrite

Reflexivity Reflexivity

Figure 10{4: The Proof Plans Superposed

10.4. Standardizing the Representations 171These diagrams further reinfore the suggestion that links should be soughtbetween the hoie of Bisimulation and indution sheme, and between Ripplingand the Evaluate, Transition, Ripple sequene.10.4 Standardizing the RepresentationsThere are learly similarities and dualities involved in the two proof proesses.However, aepted methods for presenting the proofs tend to obsure the underly-ing auses of these similarities. I'm not neessarily advoating any hange in therepresentations exept for the purposes of omparison. The relative merits of thevarious proposed presentations are disussed further in x10.9.For the purposes of omparison the proess of indutive proof will be repre-sented in a non{standard way that is loser to the representation for oindution.There were two reasons for singling out the indution method for hange ratherthan the oindution method. Firstly oindution is expressed in terms that areloser to the language of �xedpoints whih is the theory that underlies indutionand oindution. Seondly indutive proof is better understood and therefore it iseasier to alter the indutive proof and it still remain relatively omprehensible.Reall the indution and oindution rules as presented in hapter 2:F(S) � Slfp(F) � S S � F(S)S � gfp(F)This presentation makes the dualities between the two proesses lear { howeverin the proess of any spei� proof this lear duality tends to get obsured, sinethe rules are not used in this form but speialised, for example as:P (nil) P (t)) P (h :: t)8l: P (l) hx; yi 2 R hR[�ix � yTwo rules that do not appear to have a lot in ommon.Consider the presentation of the oindution rule. h�i is used for F in manyoindutive proofs sine it expresses some generality through the use of labelledtransition systems. It is also ommon pratie to insert an intermediate set intothe premise to make the rule S � R � hRiS � gfp(h�i)Lastly the goal is written as x � y rather than fhx; yig � gfp(h�i). As a resultthe oindution rule is presented asfhx; yig � R � hRi3x � y (10.21)

172 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionI here present a new funtion d�e whih looks at transitions from one objetin a similar way that h�i looks at transitions from two in order to formulate theindution rule in a similar fashion to (10.21)dSe = faj8�:(8a0: a �! a0) (a0 2 S _ a0 � ?))gI shall use d�e to provide a least �xedpoint for the indution rule in the sameway that h�i provides a greatest �xedpoint for the oindution rule4. Notie, forinstane, that if the transition system ontains p and 0 then the least �xedpointof d�e will ontain the natural numbers.If d�e is substituted for F in the indution rule it beomes:dSe � Slfp(d�e) � SIntroduing the sort of intermediate haining of sets seen in the oindution rulemakes this: dS 0e � S 0 � Slfp(d�e) � SSine the indution rule is used to prove that some set of objets have someproperty, P , (i.e. it is a subset of fxjP (x)g). The �nal version of the indutionrule is dS 0e � S 0 � fx j P (x)g8x 2 lfp(d�e):P (x) (10.22)This still appears unfamiliar as a formulation of the indution rule, but I hope touse this to draw out the similarities.As an example of a proof utilising this indution rule, onsider again the asso-iativity of append using the LTS T 0.Example 10.1 8l1; l2; l3: (l1 <> l2) <> l3 = l1 <> (l2 <> l3)3This is slightly di�erent from the presentation used elsewhere in the thesis. Inpartiular the hain has been left expliit not split into hx; yi 2 R R � hRi andthe extension of hRi to hR[�i has been omitted sine this made no di�erene to thetheorems that ould be proved, it simply made that proof simpler in some ases.4NB. d�e is monotoni. If R � S then if x 2 dRe it follows that 8�:(8a0: x �! a0)(a0 2 R_a0 � ?)) (by de�nition of d�e) and hene that 8�:(8a0:x �! a0) (a0 2 S_a0 �?)) (sine R � S) therefore x 2 dSe and dRe � dSe.

10.4. Standardizing the Representations 173Partial ProofTo use the indution rule a distinguished variable (the indution variable) mustbe hosen. Let this variable be l1.Let S = fl j l : list(�)) (l <> L2) <> L3 = l <> (L2 <> L3)g.(10.22)'s premise provides two new goals:dSe � S (10.23)S � fx j P (x)g (10.24)Using an inferene rule similar to (3.22) (see Appendix D) we get the subgoall �! �)((� <> L1) <> L3 = � <> (L2 <> L3))(l <> L02) <> L03 = l <> (L02 <> L03))Objets whih aren't of type list(�) are trivially members of S. This meansthe only transitions of interest are those whih result in objets of this type. Infat stritly speaking we are interested in funtions onto lists.The possible transitions, �, from l whih result in objets of list type are nil!and tl! (nil! is inluded sine ? is of arbitrary funtion type).1. � = nil ? <> (L2 <> L3) = (? <> L2) <> L3)nil <> (L2 <> L3) = (nil <> L2) <> L3Stritness analysis evaluates the indution hypothesis to ? = ?whih is trivially true, hene we get the goalnil <> (L2 <> L3) = (nil <> L2) <> L3This should be familiar as a base ase goal and the proof proeedsas in x10.2.12. � = tll = h :: t the goal beomest <> (L2 <> L3) = (t <> L2) <> L3)h :: t <> (L2 <> L3) = (h :: t <> L2) <> L3whih again should be familiar as a standard step ase goal andthe proof proeeds as normal.

174 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionClearly if l 2 S then (l <> L2) <> L3 = l <> (L2 <> L3). This disharges(10.24). 2The \new" formulation of the indution rule has e�etively plaed an inter-mediate step into the proof proess whih uses transitions to deide upon theasesplitting of the indution variable.10.5 Choie of Indution Sheme and Choie ofBisimulationInspetion of the tables of proof methods for indution and oindution and thesuperposed proof plans suggest a relationship between the hoie of indutionsheme and the hoie of bisimulation. The new representation replaes the hoieof indution sheme with the hoie of a set (as the oindution rule requires thehoie of a relation). I ontend that hanging the hoie of indution sheme isequivalent to altering the labelled transition system in this new representation andthat both alteration of transition sheme and alteration of the set are valid waysto proeed.In standard indution theorem proving we are free to use any suitable indutionsheme, for example the shemesP (nil) P (t)! P (h :: t)8l: P (l) P (nil) P (h :: nil) P (t)! P (h1 :: h2 :: t)8l: P (l)an both be used to prove 8l: P (l). However, if we view indution in terms oflabelled transition systems, as suggested above, then these shemes arise out ofdi�erent transition systems. For the �rst we need the standard transitions nil, hdand tl, while for the seond we need transitions that are \hained" in some way(e.g. to give nil, hd, tl.nil, tl.hd and tl.tl).What follows is some theoretial work to establish that transition systems thatare \well{hained" an be used interhangeably like the indution shemes theygive rise to.First it is neessary to formalise the notion of \well{hained":Notation� a �:�! b is understood to mean that 9: a �! �! b.� �2 represents the transition �:� similarly �3 represents �:�:� and�i represents a transition onsisting of i � transitions.De�nition 10.1 A list of transition systems fT0; : : : ; Tng is �{well{hained ifAT0, the set of transitions for T0, ontains � and for all 0 < k � n ATk is omposedof the following transitions:1. All transitions in AT0 � f�g

10.5. Choie of Indution Sheme and Choie of Bisimulation 1752. All transitions of the form �i:� where 0 < i � k and � 2 A��T0 � f�g.A��T is the set of transitions in AT whose domain is of the same type as theodomain of �3. �k+110.5.1 Interhangeability in IndutionThe interhangeability of indution shemes hinges on well{foundedness resultsso it should be no surprise that the interhangeability of the transition systemssimilarly depends upon well{foundedness. As a result, it is neessary to establishthat the least �xedpoints of d�e are well{founded aording to some order. Thisorder will be the one imposed by sequenes of transitions.Lemma 10.1 ? 2 lfp(d�e) for all transition systemsProof. By the de�nition of a �xedpoint lfp(d�e) = dlfp(d�e)edlfp(d�e)e = fa j 8�:8a0: a �! a0) (a0 2 lfp(d�e) _ a0 � ?)gSine there are no transitions from ?, ? trivially satis�es the formula8�:8a0: ? �! a0) (a0 2 lfp(d�e) _ a0 � ?). Hene ? 2 dlfp(d�e)e and so? 2 lfp(d�e). 2De�nition 10.2 Let a � b i� 9�:a �! b. � is the transition order on a domain.Theorem 10.6 For all transition systems the transition order on lfp(d�e) iswell{founded.Proof. Let S ontain all the members of lfp(d�e) whih are only involved in�nite hains in lfp(d�e). S is non{empty sine it will ontain ?. We shall showthat S is a �xedpoint for d�e and hene that S = lfp(d�e).dSe = fa j 8�:8a0: a �! a0) (a0 2 S _ a0 � ?)gIf a 2 dSe then all the transitions result in members of �nite hains in lfp(d�e)and sine lfp(d�e) is a �xedpoint a 2 lfp(d�e) so a 2 S.If a 2 S then either all the transitions from a result in members of S or a hasno transitions (i.e. a � ?) in both ases a 2 dSe.Hene dSe = S so S is a �xedpoint for d�e sine S � lfp(d�e), S = lfp(d�e).So lfp(d�e) ontains no in�nite hains of transitions and the transition order iswell{founded in lfp(d�e). 2

176 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionIf we want to show that two transition systems in an �{well{hained list are in-terhangeable then we need to show that for any �{well{hained list of transitions,fT0; � � � ; Tng, lfp(d�eT0) = lfp(d�eTk) for all k � n. We shall break this down intoproving the two inlusions lfp(d�eT0) � lfp(d�eTk) and lfp(d�eTk) � lfp(d�eT0).To prove eah of these we shall use the general form of the indution ruledSe � Slfp(d�e) � Sto give us dlfp(d�eTk)eT0 � lfp(d�eTk)lfp(d�eT0) � lfp(d�eTk)and dlfp(d�eT0)eTk � lfp(d�eT0)lfp(d�eTk) � lfp(d�eT0)This gives us two lemmata to prove namely that dlfp(d�eTk)eT0 � lfp(d�eTk)and dlfp(d�eT0)eTk � lfp(d�eT0).In the following proofs transitions are annotated with a subsript indiatingwhih transition system they are ouring in. This is to aid the reader sine themuh of the proof depends upon using transitions made in one system to showthat transitions an be made in another.Lemma 10.2 dlfp(d�eTk)eT0 � lfp(d�eTk)Proof. We are going to show that for some expression, a 2 dlfp(d�eTk)eT0 ,a 2 lfp(d�eTk). We do this by showing that all transitions from a in ATk resultin members of lfp(d�eTk). In the ourse of this we will frequently exploit thefat that we know that the result of any transition in AT0 from a is a member oflfp(d�eTk).Sine lfp(d�eTk) is well{founded this means that its members are only part of�nite hains of transitions in lfp(d�eTk). We shall ondut the proof by indu-tion on the maximum length of the transition hains in lfp(d�eTk) from b wherea �!T0 b.Base Case. Assume that if a �!T0 a1 then the maximum length of a hain inlfp(d�eTk) from a1 is 0. This means that a1 � ?TkWe shall examine eah possible transition in ATk from a, following the break-down of the transitions in de�nition 10.1. We hek that the results of thesetransitions are all in lfp(d�eTk) so that a 2 lfp(d�eTk). The possible transitionsare: � 2 AT0 � f�g, �i:� where � 2 AT0 � f�g and 0 < i � k and �k+1.No Transitions If a an't make any transition in ATk then a � ?Tk 2lfp(d�eTk) and we are done.

10.5. Choie of Indution Sheme and Choie of Bisimulation 177a �!Tk b where � 2 AT0 � f�g Sine � 2 AT0 then a �!T0 b. So b 2lfp(d�eTk) sine a 2 dlfp(d�eTk)eT0 .a �i:�! Tk where � 2 AT0 � f�g and 0 < i � k If a �i:�! Tk b then thereis a hain of transitions from a:a �!T0 a1 �!T0 � � � �!T0 ai �!T0 bSine a 2 dlfp(d�eTk)eT0 , a1 2 lfp(d�eTk).Now for 0 < i � k, �i�1:� is also in ATk by de�nition 10.1 so sinea1 2 lfp(d�eTk) and a1 �i�1:�! Tk b, b 2 lfp(d�eTk).a �k+1! Tk b If a �k+1! Tk b then there is a hain of transitions from a:a �! a1 �! � � � �! ak �! bSine a 2 dlfp(d�eTk)eT0 , a1 2 lfp(d�eTk).Reall that, by the base ase assumption, the maximum possiblelength of a hain in lfp(d�eTk) from a1 is 0 (i.e. a1 � ?Tk).Notie also that a1 �k!Tk�1 b. We use these observations to showthat b � ?TkIf b an make a transition in ATk to some expression, , then thattransition an be � 2 A��T0 �f�g, �i:� (0 < i � k, � 2 A��T0 �f�g)or �k+1.b �!Tk where � 2 A��T0 � f�g In this ase a1 �k:�! Tk .This is a ontradiation beause a1 � ?Tk .b �i:�! Tk (0 < i � k, � 2 A��T0 � f�g) or b �k+1! Tk This im-plies there is some expression 0 suh that b �!T0 0.In this ase a1 ak+1! Tk 0 and one again we have aontradition.This exludes all possible transitions from b in ATk sob � ?Tk 2 lfp(d�eTk).So 8� 2 ATk if a �!Tk b then b 2 lfp(d�eTk). Hene a 2 lfp(d�eTk).Step Case. Assume that if a 2 dlfp(d�eTk)eT0 and if a �!T0 b implies thelongest hain from b is of length n or less then a 2 lfp(d�eTk)Let a 2 dlfp(d�eTk)eT0 be an expression suh that for all a1 where a �!T0 a1the longest hain from a1 is of length n+ 1 or less.Again we examine eah possible � 2 ATk in turn to hek that if a �!Tk b thenb 2 lfp(d�eTk)No transitions If a an't make any transition in ATk then a � ?Tk 2lfp(d�eTk) and we are done.

178 Chapter 10. Comparing the Proess of Proof in Indution and Coindutiona �!Tk b where � 2 AT0 � f�g Sine � 2 AT0 , a �!T0 b so b 2 lfp(d�eTk)sine a 2 dlfp(d�eTk)eT0 .a �i:�! Tk where � 2 AT0 � f�g and 0 < i � k If a �i:�! Tk b then thereis a hain of transitions from a:a �!T0 a1 �!T0 � � � �!T0 ai �!T0 bSine a 2 dlfp(d�eTk)eT0 , a1 2 lfp(d�eTk).Now for 0 < i � k, �i�1:� is also in ATk by de�nition 10.1 so sinea1 2 lfp(d�eTk) and a1 �i�1:�! Tk b, b 2 lfp(d�eTk).a �k+1! Tk b If a �k+1! Tk b then there is a hain of transitions from a suhthat a �!T0 a1 �!T0 � � � �!T0 ak �! bSine a 2 dlfp(d�eTk)eT0 , a1 2 lfp(d�eTk).We are interested in the transitions, b �!Tk , to hek that andhene b is in lfp(d�eTk). One again we will break these downand use the step ase assumption to show that b 2 lfp(d�eTk).No transitions If b an't make any transition in ATkthen b � ?Tk 2 lfp(d�eTk) and we are done.b �!Tk where � 2 AT0 � f�g We have the following hainof transitions:a �!T0 a1 �!T0 � � � �!T0 ak �!T0 b �!T0 Reall that a1 2 lfp(d�eTk). a1 �k:�! Tk so 2lfp(d�eTk)b �i:�! where � 2 AT0 � f�g and 0 < i � k We have thefollowing hain of transitionsa �!T0 a1 �!T0 � � � �!T0 ak �!T0 b �!T0 b1 �!T0 � � � �!T0 bi �!T0 This means that a1 �k+1! Tk b1 so b1 2 lfp(d�eTk) sinea1 2 lfp(d�eTk).By the step ase assumption the maximum length ofthe transition hains in lfp(d�eTk) from a1 an ben+1 so maximum length for suh hains from b1 anbe n. We know that b �!T0 b1.To exploit the indution hypothesis we want to showthat b 2 dlfp(d�eTk)eT0 and that for all � if b �! b0then the maximum length of any transition from b0is n.We already know that if � = � then b0 = b1 2lfp(d�eTk) and the maximum length of any hain

10.5. Choie of Indution Sheme and Choie of Bisimulation 179from b1 is n. We need to hek what happens if � 2AT0�f�g. We know from the previous setion that ifb an make a transition from AT0�f�g, b �!T0 b0, theresult is in lfp(d�eTk) so b 2 dlfp(d�eTk)eT0 . Fur-thermore if b �!T0 b0 then a1 �k:�! T0 b0 whih meansthat the maximum length for hains from b0 an ben.By the indution hypothesis b 2 lfp(d�eTk).�k+1 We have the following hain of transitionsa �!T0 a1 �!T0 � � � �!T0 ak �!T0 b �!T0 b1 �!T0 � � � �!T0 bk �!T0 This means that a1 �k+1! Tk b1 so b1 2 lfp(d�eTk) sinea1 2 lfp(d�eTk).By the step ase assumption the maximum lengthof the transition hains in lfp(d�eTk) from a1 anbe n + 1 so maximum length for suh hains fromb1 an be n hene by similar arguments, involvingthe indution hypothesis, as used in the last setionb 2 lfp(d�eTk).Hene all the possible transitions from a in ATk are to members of lfp(d�eTk)so by de�nition a 2 lfp(d�eTk). Sine a 2 dlfp(d�eTk)eT0 this means thatdlfp(d�eTk)eT0 � lfp(d�eTk). 2Lemma 10.3 dlfp(d�eT0)eTk � lfp(d�eT0)Proof. We ondut the proof by indution on k.Base Case. If k = 0 then Tk = T0 so learly dlfp(d�eT0)eTk � lfp(d�eT0)Step Case. Assume that for all j < k dlfp(d�eT0)eTj � lfp(d�eT0).We are going to show that for some expression, a 2 dlfp(d�eT0)eTk (wherek 6= 0), a 2 lfp(d�eT0). We do this by showing that all transitions from a in AT0result in members of lfp(d�eT0). In the ourse of this we will exploit the fat thatwe know that the result of any transition in ATk from a is a member of lfp(d�eT0).As in the last proof we examine eah possible � 2 AT0 in turn to hek that ifa �!T0 b then b 2 lfp(d�eT0). The transitions in this ase are � 2 AT0 � f�g and�. No Transitions If no transitions apply to a then a � ?T0 2 lfp(d�eT0).a �!T0 b where � 2 AT0 � f�g If � 2 AT0�f�g then � 2 ATk , a �!Tk bso b is in lfp(d�eT0) sine a 2 dlfp(d�eT0)eTk

180 Chapter 10. Comparing the Proess of Proof in Indution and Coindutiona �!T0 b We will show that b 2 dlfp(d�eT0)eTk�1 and hene, by theindution hypothesis, that b 2 lfp(d�eT0)We need to show that for every transition, �, in ATk�1 if b �!Tk�1 then 2 lfp(d�eT0). We shall break the transitions down slightlydi�erently from in the previous proof. Instead of � 2 AT0 � f�g,�i:� (0 < i � k�1, � 2 AT0�f�g) and �k we shall examine �i:�(0 � i < k � 1, � 2 AT0 � f�g) { so this transition now inludes� 2 AT0 � f�g alone as well as a hain of �s followed by � { and�k�1:� (where it is possible that � = �).No Transitions If b an make no transitions in ATk�1then it is trivially in dlfp(d�eT0)eTk�1b �i:�! Tk�1 where 0 � i < k � 1 and � 2 AT0 � f�g In thisase we have the following hain of transitions:a �!T0 b �!T0 b1 �!T0 � � � �!T0 bi �!T0 Let j = i + 1. Sine 0 � i < k � 1 this meansthat 0 < j < k so �j:� 2 ATk and a �j :�! Tk . Sinea 2 dlfp(d�eT0)eTk this means 2 lfp(d�eT0).b �k�1:�! Tk�1 (where it is possible that � = �) In thisase we have the following hain of transitions:a �!T0 b �!T0 b1 �!T0 � � � �!T0 bk�1 �!T0 Clearly a �k:�! Tk (if � = � this means a �k+1! Tk).Sine a 2 dlfp(d�eT0)eTk this means 2 lfp(d�eT0).So b 2 dlfp(d�eT0)eTk�1 beause all possible transitions ATk�1from b result in 2 lfp(d�eT0). Hene b 2 lfp(d�eT0) by theindution hypothesis.Sine all the possible transitions in AT0 from a result in members of lfp(d�eT0)a 2 lfp(d�eT0). So dlfp(d�eT0)eTk � lfp(d�eT0). 2Theorem 10.7 If fT0; � � � ; Tng is �{well{hained then for all k � nlfp(d�eT0) = lfp(d�eTk)Proof. By 10.2 dlfp(d�eTk)eT0 � lfp(d�eTk so by oindution lfp(d�eT0) �lfp(d�eTk).This result allows us to modify labelled transition systems by haining to allowa proof to go through without a�eting the theorem. Consider the two proofs givenfor the following example. This should be familiar as the example used to disussthe Indution Revision Criti in hapter 4.

10.5. Choie of Indution Sheme and Choie of Bisimulation 181Example 10.2 8l1 : list(�); l2 : list(�):even(length(l1 <> l2)), even(length(l1)+length(l2))I shall present two partial proofs of this theorem one with an extended tran-sition system to T and one using T but a larger set than is used in the �rstproof.Partial Proof 1Let T � be a labelled transition system ontaining the transitions of T withtl.nil, tl.hd and tl.tl in plae of tl. fT ; T �g is tl{well{hained . Thereforelfp(d�eT) = lfp(d�eT �).Let S = fl1 j l1 : list(�)) even(length(l1 <> l2)) , even(length(l1) +length(l2))gUsing rule (10.22) we get two goals:l �! �) (� 2 S) l 2 S)S � fl j l1 : list(�)) even(length(l <> l2)), even(length(l) + length(l2))gConsider the �rst of these. We want to onsider all possible transitions in thesystem to objets of list type. These are nil! , tl.nil! and tl.tl! therefore thereare three subgoals, one for eah of these transitions.1. � = nil) l = nileven(length(nil <> l2)), even(length(nil) + length(l2))2. � = tl.nil) l = h :: nileven(length(h :: nil <> l2)), even(length(h :: nil)+length(l2))3. � = tl.tl) l = h1 :: h2 :: teven(length(t <> l2)), even(length(t) + length(l2)))even(length(h1 :: h2 :: t <> l2)),even(length(h1 :: h2 :: t) + length(l2))These should be the familiar goals expeted for the use of the indution sheme(10.25).The seond goal follows trivially from the de�nition of S. 2This orresponds to the hoie of the indution shemeP (nil) P (h :: nil) P (t) ` P (h1 :: h2 :: t)8x:P (x) (10.25)

182 Chapter 10. Comparing the Proess of Proof in Indution and Coindutionbeause of the struture that the transitions imply for l.Partial Proof 2An alternative suggested by the ommon pratie in oindutive proofs wouldbe to hose the setS = fl1 j l1 : list(�)) even(length(l1 <> l2)), even(length(l1) + length(l2))g \fl1 j l1 : list(�)) even(s(length(l1 <> l2))), even(s(length(l1) + length(l2))))gNotie that the [whih appears in similar situations in oindutive proofs hashere hanged to the dual \.Using this set we get two goals:l �! �) (� 2 S)) l 2 S (10.26)S � fl j l : list(�)) even(length(l <> l2)), even(length(l) + length(l2))g(10.27)If l1 is a list then there are two possible list to list transitions, � = nil or tl.1. If � = nil then even(length(? <> l2)) and even(length(?) +length(l2)) both diverge. The hypothesis is trivially true leavingthe goaleven(length(nil <> l2)), even(length(nil) + length(l2))^even(s(length(nil <> l2))), even(s(length(nil) + length(l2)))both of whih onjunts evaluate to true like the two base asesused in the �rst proof.2. If � = tl, we an reate two step ases (for eah of the shemain S)even(length(t <> l2)), even(length(t) + length(l2))^even(s(length(t) <> l2)), even(s(length(t) + length(l2))))even(length(h :: t <> l2)), even(length(h :: t) + length(l2))(10.28)even(length(t <> l2)), even(length(t) + length(l2))^even(s(length(t) <> l2)), even(s(length(t) + length(l2))))even(s(length(h :: t) <> l2)), even(s(length(h :: t) + length(l2)))(10.29)both of whih are provable beause of the onjuntion in the hy-pothesis.This leaves (10.27) whih is trivial sine S � fl j l : list(�)) even(length(l <>l2)), even(length(l) + length(l2))g. 2By 10.3 dlfp(d�eT0)eTk � lfp(d�eT0 so by oindution lfp(d�eTk) � lfp(d�eT0).Hene lfp(d�eTk) = lfp(d�eT0). 2

10.5. Choie of Indution Sheme and Choie of Bisimulation 18310.5.2 Interhangeability in CoindutionThe result about the equivalene of least �xedpoints of well{hained transitionsystems an be extended in a modi�ed form to greatest �xedpoints. It turns outthat �{well{hainedness alone is not suÆient in greatest �xedpoints to guaranteeequivalene. This is illustrated in example 10.3.Example 10.3 Consider the transitions systems N0 and N1 shown in �gures 10{5 and 10{6. fN0;N1g is p{well{hained. However gfp(h�iN0) is not equivalent
0 0! ?s(n) p! na : � � 6� �1 ! �2 a red; a0 a0 �! ba �! bFigure 10{5: N0
0 0! ?s(0) p.0! ?s(s(n)) p.p! na : � � 6� �1 ! �2 a red; a0 a0 �! ba �! b

Figure 10{6: N1to gfp(h�iN1). Consider hp(?); ?i this pair is not in gfp(h�iN0) sine p(?) anmake a p transition whilst ? an not make any transitions. However the pair isin gfp(h�iN1) sine neither p(?) nor ? an make a transition in AN1.

184 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionHowever, it is possible to add a new notion of guardedness whih will giveequivalene.De�nition 10.3 A transition � is guarded in a transition system T if9�g:8a:9a1: a �! a1 , 9a2: a �g! a2.Example 10.4 Consider the transitions systems L0 and L1 shown in �gures 10{7and 10{8. fL0;L1g is tl{well{hained. What is more tl is guarded by hd in L0.
nil nil! ?h :: t hd! hh :: t tl! ta : � � 6� �1 ! �2 a red; a0 a0 �! ba �! bFigure 10{7: L0Say we try to onstrut a similar ounterexample as that in example 10.3. So weonsider the pair hh :: ?; ?i. As in example 10.3 this pair in not in gfp(h�iL0)sine h :: ? an make a tl transition whilst ? an not make any transitions.However the pair isn't in gfp(h�iL1) either sine although neither h :: ? nor ?an make a tl.nil, tl.hd or tl.tl transition h :: ? an make a hd transitionwhih ? an not.We show that if � is guarded in T0 then the greatest �xedpoints of the transitionsystems in any �{well{hained list from T0 are equivalent.The general shape of the proofs here follows that of the proofs for the equiv-alene of the least �xedpoints of d�e. We use the oindution rule and try toshow that if fT0; � � � ; Tng is �{well{hained then for all 0 � k � n, gfp(h�iTk) �hgfp(h�iTk)iT0 and gfp(h�iT0) � hgfp(h�iT0)iTk . This is done mainly by theanalysis of the transitions aording to de�nition 10.1. But in one plae it in-volves an intermediate oindution. We shall also exploit a lemma (10.4) aboutguardedness.Lemma 10.4 Suppose fT0; � � � ; Tng is �{well{hained and � is guarded by �g inT0. If, for some k, ha; bi 2 gfp(h�iTk) then a �!T0 a0 implies 9b0:b �!T0 b0 (andvie versa).

10.5. Choie of Indution Sheme and Choie of Bisimulation 185
0 nil! ?h :: nil tl.nil! ?h :: t hd! hh1 :: h2 :: t tl.tl! th1 :: h2 :: t tl.hd! h2a : � � 6� �1 ! �2 a red; a0 a0 �! ba �! bFigure 10{8: L1Proof. Guardedness implies that if a �!T0 a0 there is some a00 suh that a �g!T0 a00.Sine �g 2 AT0 � f�g this means that a �g!Tk a00. Sine ha; bi 2 gfp(h�iTk) then9b00:b �g!Tk b00 and hene b �g!T0 b00. Sine �g is guarded by � in T0 then 9b0:b �!T0 b0.Exatly the same argument an be used to show that if b �!T0 b0 then 9a0:a �!T0 a0.2Lemma 10.5 If � is guarded by �g in T0 thengfp(h�iTk) � hgfp(h�iTk)iT0Proof. Let ha; bi 2 gfp(h�iTk).We shall onsider all the possible transitions in AT0 that a an make to en-sure that they are mathed by a transition from b and the resulting pair are ingfp(h�iTk) and similarly that if b an make a transition it is mathed by one froma. a �!T0 a0 where � 2 AT0 � f�g We know that � 2 ATk so a �!Tk a0.Sine ha; bi 2 gfp(h�iTk) there is some b0 suh that b �!Tk b0 andha0; b0i 2 gfp(h�iTk). Similarly we an show that if b �!Tk b0 then9a0:a �!Tk a0 and ha0; b0i 2 gfp(h�iTk).a �!T0 a0 By lemma 10.4 we know 9b0:b �!T0 b0.

186 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionIt now remains to show that ha0; b0i 2 gfp(h�iTk). This is doneby oindution. LetR = fha1; b1i j 9a; b:ha; bi 2 gfp(h�iTk) ^ a �!T0 a1 ^ b �!T0 b1g[gfp(h�iTk)Clearly ha0; b0i 2 R. We want to show that R is a h�iTk{bisimulation. Clearly gfp(h�iTk) is a h�iTk{bisimulation so weonly need to onsider the transitions from pairs infha1; b1i j 9a; b:ha; bi 2 gfp(h�iTk) ^ a �!T0 a1 ^ b �!T0 b1gThis is done by analysis of the transitions from some arbitrarypair, ha1; b1i 2 R. We split these transitions as �i:� where � 2AT0 �f�g and 0 � i < k and �k:� where � 2 AT0 (possibly equalto �).a1 �i:�! Tk a01 where � 2 AT0 � f�g and 0 � i < k This meansthat �i+1:� 2 ATk . We know there are ha; bi 2gfp(h�iTk) suh that a �!T0 a1 and b �!T0 b1. Thisimplies that a �i+1:�! Tk a01 whih in turn implies thereis some b01 suh that b �i+1:�! Tk b01 and ha01; b01i 2gfp(h�iTk). So 9b01:b1 �i:�! Tk b01 and ha01; b01i 2 gfp(h�iTk),hene ha01; b01i 2 R.a1 �k:�! a01 where � 2 AT0 (so � ould equal �) We knowthere are ha; bi 2 gfp(h�iTk) suh that a �!T0 a1 andb �!T0 b1. Consider the hains of transitions:a �!T0 a1 �!T0 � � � �!T0 ak+1 �!T0 a01b �!T0 b1 ?!T0 � � �?Clearly a �k+1! Tk ak+1 this means there is some bk+1suh that b �k+1! Tk bk+1 and that hak+1; bk+1i 2 gfp(h�iTk).If � 2 AT0 � f�g then � 2 ATk so there is some b01suh that bk+1 �!Tk b01 and ha01; b01i 2 gfp(h�iTk)hene ha01; b01i 2 R.Else � = �, by lemma 10.4 we know that there issome b01 suh that bk+1 �!T0 b01. ha01; b01i 2 R by thede�nition of R.Similarly if 9b2:b1 �!Tk b2 then 9a2:a1 �!Tk a2 and ha2; b2i 2 R.Hene R is a h�iTk{bisimulation. This means that R �gfp(h�iTk) so sine ha0; b0i 2 R, ha0; b0i 2 gfp(h�iTk).Similarly if 9b0:b �!Tk b0 then 9a0:a �!Tk a0 and ha0; b0i 2 R so ha0; b0i 2gfp(h�iTk).Hene gfp(h�iT0) � hgfp(h�iT0)iTk . 2

10.5. Choie of Indution Sheme and Choie of Bisimulation 187Lemma 10.6 If � is guarded by �g in T0 thengfp(h�iT0) � hgfp(h�iT0)iTkProof. Let ha; bi 2 gfp(h�iT0).We onsider all the possible transitions in ATk that a an make to ensure thatthey are mathed by a transition from b and the resulting pair are in gfp(h�iT0)All the transitions in ATk are of the form a �i:�! a0 where 0 � i � k and � 2 AT0(so � ould equal �) This means there is a hain of transitions in AT0 suh thata �!T0 a1 �!T0 � � � �!T0 ai �!T0 a0It is a simple matter to show by indution that there must be a similar sequeneof transitions b �!T0 b1 �!T0 � � � �!T0 bi �!T0 b0Base Case. If i = 0 then a �!T0 a0, sine ha; bi 2 gfp(h�iT0) there must be ab0 suh that b �!T0 b0 and ha0; b0i 2 gfp(h�iT0)Step Case. Assume that for all i < j if a �i:�! Tk a0 then there is some b0 suhthat b �i:�! Tk b0 and ha0; b0i 2 gfp(h�iT0). Suppose a �j :�! Tk a0 this means there is asequene of transitions a �!T0 a1 �!T0 � � � �!T0 aj �!T0 a0Now a �j�1:�! Tk aj so by the indution hypothesis there must be some bj suh thatb �j�1:�! Tk bj and haj; bji 2 gfp(h�iT0). Sine aj �!T0 a0 there must be some b0 suhthat bj �!T0 b0 and ha0; b0i 2 gfp(h�iT0).This same analysis works to show that any transition in ATk whih b an makean be mathed by a transition from a and that the resulting pair are in gfp(h�iT0).Hene gfp(h�iT0) � hgfp(h�iT0)iTk . 2Theorem 10.8 If fT0; � � � ; Tng is �{well{hained and � is guarded in T0 then forall k � n gfp(h�iT0) = gfp(h�iTk)Proof. By 10.5 gfp(h�iTk) � hgfp(h�iTk)iT0 so by oindution gfp(h�iTk) �gfp(h�iT0).By 10.6 gfp(h�iT0) � hgfp(h�iT0)iTk so by oindution gfp(h�iT0) �gfp(h�iTk).Hene gfp(h�iTk) = gfp(h�iT0). 2

188 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionIt seems that both proof priniples require a eureka step at the point wherethe proof rule is applied. There is a hoie in both situations between hoosinga set and hoosing a funtion (labelled transition system). In Coindution wewant to hoose a set that ontains the set we are interested in (from the premisefhx; yig � R where R is the hosen set). In indution we want to hoose a setthat is ontained in the set we're interested in (from the premise S 0 � fx j P (x)gwhere S 0 is the hosen set).10.6 Choie of Indution Sheme and EvaluationThere also seems to be a omparison between the hoie of indution sheme andevaluation. The indution sheme always involves ase analysis between one ormore base ases and a step ase. Evaluation often hooses to ase split a variable.Moreover the proof omparisions suggest that if the proof goes through given aasesplit on some variable x using one proof priniple then it will go through, givena ase split on x using the other proof priniple and the proess of the proofs afterthese asesplits are related in some way.Sine transitions only at on values it is easy to see (using d�e) that theindution rule will indue a asesplit on a over set of values. Evaluate on theother hand seeks to �nd the values of the expression for all values of its arguments.This will also sometimes introdue a asesplit over a over set of the values of thosearguments. The reasons for the apparent equivalene of the subsequent proofs isargued in the next setion.10.7 Rewriting and TransitionsOne startling fat to be observed in the tabular omparison of the proofs is thatthe same sequene of rewrite rules is used in both the indutive and oindutiveproofs. This strongly suggests some link between these proesses.Consider the two examples whih started this hapter. In the �rst, rewritingmoved the onstrutor outwards until it was lost due to anellation. In the seondexample, rewriting terminated with the loss of the suessor onstrutor in the �rstargument of nth. The rewrite rules used before anellation/nth were the sameas those used before taking transitions in oindution. In proofs where rewritingtakes plae after transitions are taken (none of whih were inluded in the examplesat the start of this hapter, however the patterns an be seen in appendix F) therules are also the same as those after anellation/nth.Looking bak to the uni�ed presentation it is lear that in oindution, rewrit-ing is used to determine transitions whereas in indution the transitions are as-sumed to start with and all the rewriting proess is onentrated on fertilization.The apparent link between the proesses of anellation, the nth rules and takingtransitions omes about beause, in the transition systems we are examining, the

10.8. Generalisation 189transitions orrespond to the use of destrutors5. Canellation rules that stripaway onstrutor funtions are doing something similar and nth is expliitly ex-amining suessive destrutor steps.Hene indutive proofs that involve the anellation of onstrutors or nthwill ontain the same set of rewriting steps to bring those onstrutors to thetop of the expressions as oindutive proofs. Indutive proofs that rely on weakfertilization or the sinking of di�erenes (without the use of anellation) do noteasily translate into oindutive proofs sine they involve onsidering divergene(as no transitions an be found) or generalisations. Similarly indutive proofsin whih non{onstrutors are anelled proeed di�erently from the oindutiveproofs.This also explains why the hoie of indution variable(s) and ase split vari-able(s) in the two proof styles are the same sine these introdue onstrutors tobe moved outwards by rewriting. If Rippling were to be used instead of Evaluatethen this outward movement would be more obvious.10.8 GeneralisationTo extend the proess of omparison it is worth onsidering that the use of largerbisimulations is not always equivalent to the use of a more omplex indutionsheme. The only alternative form of bisimulation that has been onsidered inthis thesis has been using generalised expressions in the bisimulation. This isequivalent to generalising the goal in indution.Example 10.5 Reall example 3.7 from hapter 3 that was used to motivate theRevise Bisimulation Criti in hapter 6.8f; x: h(f; x) � iterates(f; x)where h(F;X) red; map(F; h(F;X))iterates(F;X) red; X :: iterates(F; F (X))5It would also be possible to ompare oindution to destrutor{style indution, how-ever this would really require some form of destrutor{style oindution in whih destru-tors/transitions were involved in the funtion de�nitions, e.g. L 6= nil) map(F;L) tl!map(F; T); L tl! T so that the rewrite rules employed in the proofs ould be orretlyompared. Sine this thesis has onentrated on oindution presented in a onstrutorstyle a omparison with destrutor{style indution has not been attempted

190 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionTo prove this oindutively it is suÆient to use the bisimulationfhmap(F)N(h(F;X)); iterates(F; FN(X))iTo prove this indutively using nth it is also suÆient to generalise the onjetureto nth(M;map(F)N (h(F;X))) = nth(M; iterates(F; FN (X)))If this isn't done then the proof gets bloked at the step ase with the goalnth(n; h(F;X)) = nth(n; iterates(F;X)))nth(n;map(F; h(F;X))) = nth(n; iterates(F; F (X)))This �ts into the story of extension/restrition of sets.For generalisations gen(f) and gen(g) of the funtions f and g thenfhf(x); g(x)ig � fhgen(f)(x); gen(g)(x)ig. So fhgen(f)(x); gen(g)(x)ig is anextension of fhf(x); g(x)ig. However there are fewer values of x that willsatisfy gen(f)(x) = gen(g)(x) or in the more general ase P (gen(f)(x)) sofx j P (gen(f)(x))g � fx j P (f(x))g so fx j P (gen(f)(x))g is a restrition offx j P (f(x))g.10.9 Summary of Proof ComparisonThe presentation developed in the last setion was more abstrat than the moreusual representation of indution rules. The hange has highlighted two di�er-ent approahes to indutive proof whih I shall all sheme indution and setindution. The �rst of these relies on the orret hoie of indution sheme (orfuntion/labelled transition system) whilst the seond relies on the orret hoieof set. The results about the equivalene of the least �xedpoints of ertain well{hained LTSs also have duals for greatest �xedpoints. This means that shemeoindution also exists, as well as the more ommon set oindution used in thisthesis. It isn't lear at the time of writing if one approah has any bene�ts overthe other.The analysis allowed us to provide theoretial justi�ations for the omparisonsthat were drawn between the various proof methods. The set indution rule allowsus to see the relationship between indution shemes and trial bisimulations whilstthe link between transitions and anellation of onstrutors allows the observedsimilarities in the rewriting proesses to be explained. The duality between in-dution and oindution introdues, unsurprisingly, dualities throughout the proofproess.

10.10. Transferring CLAM Proof Methods 19110.10 Transferring CLAM Proof MethodsAs stated at the beginning of this hapter, the identi�ed equivalenes will now beused to look more losely at the CLAM and CoCLAM methods and see whetherthese an be transfered between the two systems.10.10.1 Indution Sheme/Set and Bisimulation ChoieThe previous analysis showed a duality between the indution sheme and thetrial bisimulation. If the original goal is used to provide a set and this fails thenit has to be restrited or enlarged depending upon whih type of proof is beingattempted. Furthermore as the rewriting proesses are expeted to be very similarwe an reasonably expet them to fail at the same point.All this suggests omparing the ritis and methods whih perform these tasksin CLAM and CoCLAM . Lemma Speulation and Indution Sheme Revision aretriggered by the sameWave preondition failing (there is no Wave Rule math) thisis also the main preondition that will trigger Bisimulation Revision in oindution.If Bisimulation Revision is divided into two parts, Bisimulation Extension (addingnew pair shema into the relation) and Bisimulation Generalisation (generalisingthe expressions in the relation) then eah priniple an be seen to have two ritisattahed to this Wave rule preondition.CLAM deides whether to use Lemma Speulation or Indution Sheme Re-vision depending upon whether any partial wave rule mathes are present in theexpression. CoCLAM deides whether to use Bisimulation Extension or Bisimu-lation Generalisation depending upon whether it an observe di�erene mathesamong subexpressions. A major thread running through the following disussionwill be a omparison of these two heuristis.Bisimulation Extension vs. Indution Sheme RevisionConsider proving theorem 3.4 from hapter 3 indutively using nth. Reall thatthis theorem requires bisimulation extension. For simpliity onsider only the LHSof the equation, Rippling beomes bloked with the goal:Indution Hypothesis) nth(n; B :: lswap(A;B) ")| {z }bloked = � � �Annotating this with potential wave fronts (as for Indution Revision) gives:nth(F1(n) "; B :: F2(lswap(A;B)) ") = � � �

192 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionThere is a partial wave rule math here with (10.13) so in the indutive proofthe Indution Sheme Revision riti would �re at this point. Returning to theoindutive proof, this suggests that it might be appropriate to use the preseneof a partial wave rule math as a ondition for bisimulation extension. Although,in oindutive proofs there is no nth funtion to provide a wave rule math itshould be possible to introdue the idea of potential transitions instead whihwould be an equivalent onept given that nth has been shown to be related totaking transitions.Care needs to be taken if partial wave rule mathing is to be inorporated intooindution in ases where mutual reursion is employed. Consider the funtionstik and tok: tik red; 0 :: toktok red; 1 :: tikflip(0) = 1flip(1) = 0and the theoremExample 10.6 tik � map(flip; tok)This requires the bisimulation fhtik; map(flip; tok)ig [fhtok; map(flip; tik)ig in the proof (i.e. the original pair sheme has beenextended). If only the �rst of these pair shema is provided (as is done by theCoindution method) the rippling will beome bloked at:� � �) htok; map(flip; tik)iwhih has no potential transition or partial wave rule math.Mutual reursion is pereived as a hard problem for indution in general andpartiularly for the theory of Rippling sine it doesn't onform to ideas of skeletonpreservation. It is standard pratie when using CLAM to attempt to transformmutually reursive funtions into funtions that do not require mutuality. e.g.tok ould beome tok ; 1 :: 0 :: tok with this sort of de�nition there would be apartial wave rule math.There is ertainly a strong suggestion that the idea of a partial math of somesort ould be useful for oindution ritis though, as the above example shows,more work would be required before it ould be introdued with on�dene. Thefat that these ritis are not diretly transferable may well be beause one appliesto set oindution while the other applies to sheme indution.

10.10. Transferring CLAM Proof Methods 193Generalisation vs. Lemma SpeulationIt is interesting to note that Ireland and Bundy [Ireland & Bundy 96℄ observesimilar divergene patterns to those that our in oindution with the use ofthe Indution Revision Criti. The Lemma Speulation Criti was developed tooverome this. This suggests that Lemma Speulation might be an alternative toBisimulation Generalisation in oindution.Looking at the proof of example 10.5 the �rst naive attempt (using a �rst guessat trial bisimulation) beomes stuk athh(F;X); iterates(F;X)i 2 R)h map(F; h(F;X)) "; iterates(F; F (X) ")i 2 R[�Should we be looking for some lemma to rewrite one side of the relation ? Takingthe ue from the Ireland and Bundy's [Ireland & Bundy 96℄ Lemma SpeulationCriti this would suggest the lemmaiterates(F; F (X) "); map(F; iterates(F;X)) " (10.30)whih is the theorem in example 5.1 so the lemma is true.Using (10.30) the goal rewrites tohh(F;X); iterates(F;X)i 2 R)h map(F; h(F;X)) "; map(F; iterates(F;X)) "i 2 R[�We would need to be able to make a map(F) transition (or anel the map(F)s) toprove the theorem and suh rules are not available. So Lemma Speulation an'tsimply replae Bisimulation Generalisation.Inluding Lemma Speulation in Coindutive ProofsJust beause lemma speulation annot replae generalisation does not mean itshould be exluded altogether. Reall the bisimulation for the ommutativity ofplus disussed in hapter 7:fhV0 + sN(V1); V1 + sN(V0)ig[fhV0 + 0; V0ig[fhV0; V0 + 0ig[fhss(N)(V1); V1 + ss(N)(0)ig[fhV0 + ss(N)(0); ss(N)(V0)igThe additional pair shema do not, in this bisimulation, give rise to partial waverule mathes even though Bisimulation Extension was used to path the proofs.However, it should also be realled that the omplexity of this bisimulation ould

194 Chapter 10. Comparing the Proess of Proof in Indution and Coindutionhave been avoided if the additional lemmataX+0; X and X+s(Y); s(X+Y)had been present in whih ase hX + Y ; Y +Xi would have been provably abisimulation. As a result, we wouldn't neessarily expet partial wave rule matheshere. Moreover it suggests that it would de�nitely be desirable to have a LemmaSpeulation riti for oindution whih ould be used in situations like this and,if nothing else, ould help ontain the problem of bisimulation explosion.Inluding a new Generalisation Criti in Indutive ProofsSimilarly a Generalisation riti like CoCLAM 's ould be of use in CLAM .If we examine the indutive proof of example 10.5 using nth it beomes learthat Lemma Speulation isn't suÆient even in indution to prove this theorem.The step ase beomes bloked at:nth(n; h(F;X)) = nth(n; iterates(F;X)))nth(n; map(F; h(F;X)) ")| {z }bloked = nth(n; iterates(F; F (X) ")| {z }bloked)Rippling is bloked on both sides so it is possible to speulate two lemmata:nth(n; map(F; h(F;X)) "); nth(F1(n) "; h(F; F2(X) #)) (10.31)nth(n; iterates(F; F (X) ")); nth(F1(n) "; F2(iterates(F;X)) ") (10.32)(10.32) would lead to the speulation of the indutive version of mapiterates(theorem 10.4) but would fail to prove the theorem sine map(F; � � �) " an't berippled through nth as was disussed above. (10.31) would suggest the lemma:nth(n; map(F; h(F;X)) "); nth(n; h(F; F (X) #))whih would allow fertilization by sinking the di�erenes in X.However attempts at proving this lemma fail beoming bloked at the step asegoal: nth(n;map(F; h(F;X))) = nth(n; h(F; F (X))))nth(n; map(F;map(F; h(F;X))) ")| {z }bloked = nth(n; h(F; F (F (X)) ")| {z }bloked)This would in turn speulate the lemmanth(N; map(F;map(F; h(F;X))) "); nth(n; h(F; F (F (X)) #))and a divergent proess of lemma speulation would have been embarked upon.

10.10. Transferring CLAM Proof Methods 195This last observation suggests a possible strategy of using generalisation ifthe lemma sequene appears to be divergent with the generalisation formed bydi�erene mathing between di�erent elements in that sequene.A simple alternative would be to apply lemma speulation in situations whereno partial wave rule mathes existed but some divergene hek had not identi�edany divergene patterns. This strategy would apply to oindution and ouldpossibly apply to indution if an appropriate \divergene hek" ould be devised.10.10.2 Ripple and EvaluateRipple Analysis is the proess used by CLAM to determine the indution shemeand indution variable. These hoies are related to the hoie of variables toasesplit in the Evaluate method in CoCLAM . If this asesplitting ould be per-formed aurately then it would no longer be neessary to have a separate Evaluatemethod but instead it might be possible to use ripple analysis and then ripplingtowards anellation/transitions, followed by more rippling to fertilize.Ripple analysis relies on a proess alled \lookahead". This examines eahvariable in turn, asesplitting it to see if the struture this would introdue wouldallow a wave rule to apply involving that variable. Variables are sored aordingto their suitability as indution variable. If wave rules apply to all instanes of avariable then it sores highly and is likely to be hosen as an indution variable.In oindution the situation is often more omplex than it is in indution due tothe presene of funtions that \generate" lists without asesplitting any variables(e.g. iterates).Consider proofs involving nth. Indution on n will not automatially introdueany annotation into the 2nd argument. However an outward wave front is neededthere before nth an be used. Suh a wave front may not ome from a revisedindution sheme (further asesplitting) but from a funtion suh as iterates (ora ombination of both !).Where these \list generators" do not appear there would seem to be a strongase for using CLAM 's lookahead methods and a version of the Indution Revisionriti in CoCLAM . It would be useful if lookahead ould be extended to over listgenerators as well.The problem would seem to be identifying and using \list generators". Atpresent I'm unaware of an adequate formal de�nition of what onstitutes a \listgenerator" although a �rst attempt isDe�nition 10.4 A list generator is a funtion, f , whih is ompletely de�nedby the one rule 8�x: f(�x); �(�x) :: �(�x; f(�x))for some funtions � and �.

196 Chapter 10. Comparing the Proess of Proof in Indution and CoindutionThis de�nition is unsatisfatory beause it doesn't aount for list generators whihhave more than one rule but whih an nevertheless be \in�nitely applied" tosome expressions they apply to one. However, it may well be suÆient for manysituations. The lookahead proess would have to be extended to identify listgenerators and sore them for unfolding as well soring variables for asesplitting.It would also be neessary to extend the onept of generators to other datatypes.As with generalisation the fat that these funtions an appear in indutive proofs(via the use of nth) suggests that strategies for list generators also need to bedeveloped in CLAM .The Evaluate method works (whether extended with a lookahead or not) forthe problems onsidered by this thesis but it is heavily dependent on the spei�sof T . Middle-Out Reasoning might prove more appropriate for this proof step inthe general ase. Work would have to be done to extend the MOR approah totransition systems where redution/rewriting of an expression was not the onlyrequirement for determining the transitions from it. In these ase MOR wouldhave to be adapted to guide searh through general inferene rules.10.11 ConlusionThis hapter has examined the links between indutive and oindutive proof. Itis lear that the dualities that exist theoretially have impliations on the pratialproess of proof providing dualities throughout the proof proess. This observationsuggests strongly that anyone intending to implement support for oindution ina theorem prover should look at the support they have for indution and drawfrom that. It also suggests a major ourse of further work in the development ofCoCLAM to integrate these observations and suggestions. However, the urrentimplementation should not be regarded as a wasted e�ort sine it was the formationof the methods for oindution and their testing in CoCLAM that enabled muhof this disussion whih entred upon the omparison of those methods.These observations also apply the other way around. Although, at present, itseems unlikely that there are any oindutive theorem provers that do not alsosupport indution, the observations have suggested improvements to the imple-mentation of proof planning for indution in CLAM suh as suggestions for ex-tending the ritis with a seond generalisation riti. So far as I'm aware noomparison of this nature has been undertaken before, though those working inthe �eld are no doubt aware of the pratial links between the two methods.CoCLAM is basially a set oindution theorem prover whilst CLAM is a shemeindution theorem prover6. An interesting investigation would be to implement setindution and sheme oindution theorem provers and see how well these perform6CLAM has generalisation apabilities but its main paradigm is learly that of shemeindution.

10.11. Conlusion 197ompared to the urrent systems. For instane, at present CLAM has to store aset of well{founded orders from whih it hooses indution shemes. The use ofset restrition to path proofs may avoid some of the need for this and providemore exibility.The above analysis was intended to show in detail where these similarities anddualities reside in the proof proess and hene to give guidane for method transfer.It is worth noting that the disussion above was framed by proof planning whihallowed the high{level proof steps to be parelled together intuitively and alloweda disussion of orresponding parts in the proofs in terms of proof methods. Itshould be lear from this that proof planning is not only a useful tool for guidingproofs, but it also has uses in the disussion, understanding and omparison ofproofs.

Chapter 11
Conlusion

11.1 IntrodutionIn hapter 1 I listed the ontributions of this thesis as:� Demonstrating that the hoie of bisimulation relation in oin-dutive proof an, in many ases, be performed automatially.� Providing some theoretial results about the smallest bisimulationrequired to prove a given theorem.� Developing a number of heuristis for forming suh bisimulations.� Providing a proof strategy for oindution whih allows manyoindutive proofs to be performed ompletely automatially.� Showing that Rippling whih was developed for indution is alsoof use for oindution and that the idea of di�erene mathingthat underlies Rippling an be used to form bisimulations.� Showing that these ideas an be implemented naturally in a proofplanning system.� Drawing out the links between indution and oindution in thelight of the proposed proof strategy.� Providing theoretial results about the links between the hoieof indution sheme and the hoie of an appropriate labelledtransition system when performing indution on programs in lazyfuntional languages and in partiular how transition systems anbe reated from eah other by \haining" transitions and howsome of these systems an be used interhangeably in indution.In this last hapter I shall disuss these ontributions in more depth.
198

11.2. Generation of Bisimulations 19911.2 Generation of BisimulationsIn hapter 6 I observed that there was a least relation whih ould disharge the�rst premise of the oindution rule. I also showed that the minimum bisimulationrequired to prove a theorem was the set of hopped transition sequenes from thisrelation. These sequenes are the sequene of pairs formed by repeated use oftransitions. From these observations I advoated a strategy, based on the ideaof proof ritis, of gradual extension of the least relation with pairs obtained bytaking transitions. These pairs naturally arise when attempting a oindutiveproof with a relation that is too small, hene they are the failure information thatinforms the riti. I have suessfully demonstrated two methods of extending thisbisimulation, bisimulation extension and generalisation (used when the transitionsequene is in�nite), using this paradigm.The fat that suh a minimal starting point exists strongly suggests thatthis strategy together with heuristis for expressing in�nite hopped transitionsequenes provides a good framework for the generation of bisimulations. Theassoiated heuristis disussed in this thesis have drawn muh of their inspira-tion from proof planning tehniques. However, there is no reason to suppose thatother tehniques ould not be used for alternative versions of this strategy andone suh alternative, inverse resolution, as used in indutive logi programming,was onsidered.
11.3 Theoretial Results about the Smallest Bisim-ulationAlthough the general strategy I've propounded is known in the �eld it is notlear who originated it. It has been desribed as folklore by [Barwise & Moss 96℄.However, I'm not aware of the existene of any theoretial results about minimumbisimulations justifying the strategy suh as have been used to justify it here.Even the strategy as it appears in the \folklore" so far as I'm aware only onernsitself with the proess I've termed bisimulation extension, and does not onsiderthe possible need for generalisations.

200 Chapter 11. Conlusion11.4 Heuristis for Bisimulation FormationThe heuristis adopted for bisimulation formation involve the gradual extension ofthe \least" relation with additional pair shema whilst at the same time lookingfor patterns in this sequene that may be generalised. There are a large number ofgeneralisation heuristis available, many of whih would probably be suitable forthis task. The partiular heuristi desribed here relies on di�erene mathing toidentify divergent patterns and is based on one used to perform a similar task inan impliit indution prover [Walsh 96℄. This heuristi has allowed bisimulationsto be found for many of the theorems that appear in the literature.The language of di�erene mathing provides a more abstrat view of thegeneralisation proess and enables us to onsider extensions and alternatives tothe strategy depending on the observed patterns of di�erenes. It may well bethat in future the riti an be extended to ope with more ompliated di�erenepatterns (e.g. those situations where a new funtion needs to be synthesized). Theframework di�erene mathing provides for examining di�erenes appears to beboth general and useful and so a good basis for further work in this area.11.5 The Proof Strategy for CoindutionA proof strategy for oindution as a whole has been developed whih inorporatesthe strategies for bisimulation disovery already disussed. This strategy has beenused to generate proof plans in a fully automated fashion for a large number oftheorems. There are still a number of ases where the proof strategy fails andimprovements and modi�ations were disussed in hapters 7, 9 and 10. Theproblems do not, at present, seem to indiate fundamental aws in the strategy.The strategy has been tailored for a partiular avour of operational semantis.However the proof strategy does express a more abstrat notion of oindutiveproof. Most of the tailoring ours in one method, the Evaluate method, whihmakes spei� assumptions about the rules in the labelled transition system. Moregeneral forms of this method were disussed in hapter 9. The assertion that theproof strategy expresses some generality is also supported by the following fourfats. � An earlier version of the proof strategy was used to performoindutive proofs in a framework that didn't use transitions[Dennis et al 96℄.� In hapter 10 where the proof strategy was used to make ompar-isons with indution, these omparisons were justi�ed.� Isabelle tati sequenes were hosen with relative ease to or-respond to the CoCLAM methods (even if the methods didn'talways present the preise information required by Isabelle { seeappendix E).

11.6. Rippling and Coindution 201� In hapter 9 I briey examined some ommon features of labelledtransition systems whih CoCLAM annot handle at present. Noneof these features required a radial hange to the proof plan.I believe the proof strategy to be a good representation of oindutive proof andthat muh of the detail that makes it spei� to the operational semantis of lazyfuntional programming languages lies in the spei�s of the methods (partiularlythe evaluation method) and not in the overall strategy.11.6 Rippling and CoindutionRippling plays an apparently minor role in the oindutive proof strategy presentedhere, that of guiding rewriting after the determination of transitions. However itshould be realled that it is this step that attempts to rewrite towards fertilizationand so it is the failure of this step that auses the Revise Bisimulation riti to bealled and this is entral to the proess of forming bisimulations. Sine this stageof the proof when it ours, often involves using rewrites in the opposite diretionto that imposed by the redution order, it is important to have a more exiblerewriting method to hand.Chapter 10 looked at bringing the two proof strategies (for indution and oin-dution) loser together and its suggestions inluded replaing evaluation withrippling. Among other things, attempts to speulate oreursive lemmata (as dis-ussed in hapter 9) ould well bene�t from the addition of di�erene annotationsat this point in the proof proess.Chapter 10 also suggested inluding a general Lemma Speulation riti inoindution whih would exploit bloked wave fronts produed at the ripplingstage and exploit the ideas of partial wave rule mathes when hoosing ritis.Rippling embodies important onepts about manipulating di�erenes betweenexpressions and it should ome as no surprise that these ideas appear in oindu-tion sine a major part of the proof is an attempt to prove two sets equal, one ofwhih has been formed from the other.11.7 Contribution of Proof Planning to Coin-dutive ProofThere are two levels of ontribution of proof planning to oindution.At one level proof methods for indutive proof have been used to inspire proofmethods for oindutive proof. Furthermore, suggestions have been made for fur-ther proof methods and ritis to be used in this way. At this level of ontributionthe fat that proof planning has been used for automating indutive proofs is anaid in the automation of oindutive proof.

202 Chapter 11. ConlusionAt the other level, the formation of a proof strategy for oindution and theideas of interating proof methods and ritis are of themselves useful tools inautomating oindutive proof. Heuristially guided searh is learly needed foroindutive proof and proof planning provides an eÆient way to undertake suhsearh. This served as an illustration of how proof strategies an allow spei�theorem proving tasks to be identi�ed and examined and how the proess of linkingthem together to produe proofs an be guided.11.8 Contribution of Indutive Proof Tehniquesto Coindutive ProofIndutive proof tehniques have lear relevane to oindution grounded in the du-ality of the two proof methods. The natural orrespondene between anellationand transitions further reinfores this.It was disappointing that more of this orrespondene wasn't used in the �nalproof strategy proposed for oindution. However the formation of the proof strat-egy made the links between the proof proesses learer and allowed them to beompared again suggesting several points at whih tehniques ould be transferredfrom one proof strategy to the other.It should be noted, however, that although many new methods were reated,rippling, a heuristi originally developed for indution, was used in the proof pro-ess and that one suggestion for further work is that it should be adapted for usein the Evaluation method. Eval def, a redution method implemented in CLAM3was also used. The idea of using a riti to revise the bisimulation also originatedin the use of a riti to revise the indution sheme and furthermore that ritiwas based on one developed for impliit indution.On a more general level the omparison indiated points at whih similar the-orem proving tasks are required in the two methods and so provided guidane fortheir transfer in other theorem proving environments.11.9 Theoretial Results about the Link betweenIndution Sheme and Bisimulation hoieIn hapter 10 the indution and oindution rules were examined in some detail totry and asertain how partiular speialisations of the rules related to one another.This resulted in a formulation of the indution rule in whih the hoie of someset was the eureka step in the proof, not the hoie of indution sheme.I showed that using this rule the hoie ould be plaed bak on some sortof sheme if the labelled transition system was modi�ed by haining some of thetransitions together. I then de�ned a property of �{well{hained and showed

11.10. General Conlusions 203that the least �xedpoints of my indution funtion, d�e, were the same given twosystems in an �{well{hained list.As far as I'm aware, no one has previously suggested performing indution inthis way and as a result the theorems about the equivalene of least �xedpoints arenew (although unsurprising given that the equivalent proess an be undertakenin \normal" indution).I showed that these results an be extended to oindution, so that instead ofhoosing a bisimulation it is possible to hoose a transition system.11.10 General ConlusionsCoindution is a method of inreasing interest in omputer siene. It an bepartially automated using proof planning and for many proofs it an be fullyautomated. The key elements of the proof strategy are the use of ritis andgeneralisation tehniques to �nd a bisimulation for use in the proof.This proof strategy was very suessful on the examples that are urrentlyavailable. This suggests that the proof strategy and implementation based uponit would be of pratial use to people attempting to prove theorems oindutively.The development of a lear proof strategy for oindution allowed the proofpriniple to be ompared with indution on a pratial level to examine pointswhere the tehniques used for one an be adapted to the other.Proof planning learly has a ontribution to make to both the automation ofoindutive proof and in a more general way to the understanding, omparisonand reuseability of theorem proving tehniques.

Bibliography
[Abadi & Gordon 97℄ M. Abadi and A. D. Gordon. A alulus for ryp-tographi protools: The spi alulus. In Proeed-ings of the Fourth ACM Conferene on Computerand Communiations Seurity, pages 36 { 47. ACMPress, April 1997.[Abramsky 90℄ S. Abramsky. The lazy lambda alulus. InD. Turner, editor, Researh Topis in FuntionalProgramming, pages 65{117. Addison Wesley, 1990.[Azel & Mendler 89℄ P. Azel and N. Mendler. A �nal oalgebra the-orem. In D. H. Pitt, D. E. Ryeheard, P. Dybjer,A. M. Pitts, and A. Poigne, editors, ProeedingsCategory Theory and Computer Siene, pages 357{365. Springer{Verlag, 1989. Leture Notes in Com-puter Siene No. 389.[Azel 88℄ P. Azel. Non{Well{Founded Sets. CSLI LetureNotes, Number 14. LSCI/Stanford, 1988.[Azel 97℄ P. Azel. Letures on semantis: The initial algebraand �nal oalgebra perspetives. In H. Shwihten-berg, editor, Logi of Computation, number 157 inSeries F: Computer and Systems Sienes, pages 1{34. Springer-Verlag, 1997.[Barendregt 84℄ H. P. Barendregt. The Lambda Calulus: Its Syn-tax and Semantis. North{Holland, 1984. revisededition.[Barwise & Moss 96℄ J. Barwise and L. Moss. Viious Cirles. CSLI Le-ture Notes Number 59. CSLI Publiations, Stan-ford, 1996.[Basin & Walsh 92℄ D. Basin and T. Walsh. Di�erene mathing. InDeepak Kapur, editor, 11th Conferene on Auto-mated Dedution, pages 295{309, Saratoga Springs,NY, USA, June 1992. Published as Springer Le-ture Notes in Arti�ial Intelligene, No 607.204

Bibliography 205[Basin & Walsh 96℄ David Basin and Toby Walsh. Annotated rewrit-ing in indutive theorem proving. Journal of Auto-mated Reasoning, 16(1{2):147{180, 1996.[Benzm�uller et al 97℄ C. Benzm�uller, L. Cheikhrouhou, D Fehrer,A. Fiedler, X. Huang, M. Kerber, K. Kohlhase,A Meirer, W. Melis, E. aand Shaarshmidt,J. Siekmann, and V. Sorge.
mega: Towards amathematial assistant. In W. MCune, editor,14th Conferene on Automated Dedution, pages252{255. Springer-Verlag, 1997.[Berry et al 86℄ G. Berry, P.-L. Curien, and J.-J. L�evy. Full ab-stration for sequential languages: the state of theart. In M. Nivat and J. Reynodls, editors, Alge-brai Semantis, pages 89{132. Cambridge Univer-sity Press, 1986.[Bird & Wadler 88℄ Rihard S. Bird and Philip Wadler. Introdution toFuntional Programming. Prentie-Hall, 1988.[Bouhoula & Rusinowith 93℄ A. Bouhoula and M. Rusinowith. Automati aseanalysis in proof by indution. In Proeedings ofthe 13th IJCAI. International Joint Conferene onArti�ial Intelligene, 1993.[Boyer & Moore 90℄ R. S. Boyer and J S. Moore. A theorem prover fora omputational logi. In Proeedings of the TenthInternational Conferene on Automated Dedution,1990. Kaiserlauten, Germany.[Brad�eld & Stirling 90℄ J. Brad�eld and C. Stirling. Verifying Tempo-ral Properties of Proesses. In Leture Notes inConputer Siene, v.458, pages 115{125. Springer-Verlag, 1990.[Bruns 91℄ G. Bruns. A language for value-passing CCS.LFCS Report Series ECS-LFCS-91-175, Depart-ment of Computer Siene, University of Edin-burgh, 1991.[Bundy 83℄ Alan Bundy. The Computer Modelling of Mathe-matial Reasoning. Aademi Press, 1983. SeondEdition.[Bundy 88℄ Alan Bundy. The use of expliit plans to guideindutive proofs. In R. Lusk and R. Overbeek,editors, 9th Conferene on Automated Dedution,

206 Chapter 11. Conlusionpages 111{120. Springer-Verlag, 1988. Longer ver-sion available from Edinburgh as DAI Researh Pa-per No. 349.[Bundy et al 90a℄ A. Bundy, A. Smaill, and J. Hesketh. Turning eu-reka steps into alulations in automati programsynthesis. In S. L.H. Clarke, editor, Proeedings ofUK IT 90, pages 221{6, 1990. Also available fromEdinburgh as DAI Researh Paper 448.[Bundy et al 90b℄ A. Bundy, F. van Harmelen, C. Horn, andA. Smaill. The Oyster-Clam system. In M. E.Stikel, editor, 10th International Conferene onAutomated Dedution, pages 647{648. Springer-Verlag, 1990. Leture Notes in Arti�ial Intelli-gene No. 449. Also available from Edinburgh asDAI Researh Paper 507.[Bundy et al 91℄ Alan Bundy, Frank van Harmelen, Jane Hesketh,and Alan Smaill. Experiments with proof plans forindution. Journal of Automated Reasoning, 7:303{324, 1991. Earlier version available from Edinburghas DAI Researh Paper No 413.[Bundy et al 93℄ A. Bundy, A. Stevens, F. van Harmelen, A. Ireland,and A. Smaill. Rippling: A heuristi for guiding in-dutive proofs. Arti�ial Intelligene, 62:185{253,1993. Also available from Edinburgh as DAI Re-searh Paper No. 567.[Burkhart et al 95℄ O. Burkhart, D. Caual, and B. Ste�en. An elemen-tary deision proedure for arbitrary ontext{freeproesses. In MFCS'95, LNCS. Springer{Verlag,1995.[Chen et al 90℄ H. Chen, J. Hsiang, and H.-C. Kong. On �niterepresentations of in�nite sequenes of terms. InM. Okada, editor, Proeedings of the 2nd Interna-tional Workshop of Conditional and Typed Rewrit-ing Systems, Leture Notes in Computer Siene, v.516, pages 100{114, Berlin, 1990. Springer-Verlag.[Churh 40℄ A. Churh. A formulation of the simple theory oftypes. Symboli Logi, 5(1):56{68, 1940.[Cleaveland et al 89℄ R. Cleaveland, Parrow J., and B. Ste�en. The on-urreny workbenh: A semantis-based veri�a-tion tool for �nite-state systems. In Proeedings ofthe Workshop on Automated Veri�ation Methodsfor Finite-State Systems. Springer-Verlag, 1989.

Bibliography 207[Collins & Hogg 97℄ G. Collins and J. Hogg. The iruit that was toolazy to fail. Unpublished Paper, 1997.[Collins 96℄ G. Collins. A proof tool for reasoning about fun-tional programs. In J. von Wright, J. Grundy, andJ Harrison, editors, 9th International Conferene ofTheorem Proving in Higher Order Logis, volume1125 of Leture Notes in Computer Siene, pages109{124. Springer, 1996.[Dennis et al 96℄ L. Dennis, A. Bundy, and I. Green. Using a gener-alisation riti to �nd bisimulations for oindutiveproofs. In W. MCune, editor, 14th Conferene onAutomated Dedution, Leture Notes in Arti�ialIntelligene, Vol. 1249, pages 276{290, Townsville,Australia, 1996. Springer-Verlag.[Fiore 93℄ M. Fiore. A oindution priniple for reursive datatypes based on bisimulation. In Proeedings of theEight IEEE Symposium on Logi in Computer Si-ene, pages 110{119, 1993.[Frost 95℄ J. Frost. A ase study of o-indution in isabelle.Forthoming tehnial report, University of Cam-bridge, Computer Laboratory, 1995.[Gordon & Melham 93℄ M. J. C. Gordon and T. F. Melham, editors. In-trodution to HOL: A theorem proving environmentfor higher order logi. Cambridge University Press,1993.[Gordon 85℄ M. Gordon. Hol: A mahine oriented formulationof higher order logi. Tehnial Report 68, Com-puter Laboratory, University of Cambridge, July1985. revised version.[Gordon 88℄ M. Gordon. HOL: A proof generating system forhigher-order logi. In G. Birtwistle and P. A. Sub-rahmanyam, editors, VLSI Spei�ation, Veri�a-tion and Synthesis. Kluwer, 1988.[Gordon 93℄ A. D. Gordon. Funtional programming and in-put/output. Tehnial Report 285, University ofCambridge, Computer Laboratory, 1993.[Gordon 95a℄ A. D. Gordon. Bisimilarity as a theory of funtionalprogramming. In Proeedings of 11th Confereneon the Mathematial Foundations of ProgrammingSemantis, Eletroni Notes in Computer Siene,v.1, New Orleans, 1995. Elsevier.

208 Chapter 11. Conlusion[Gordon 95b℄ A. D. Gordon. Operational methods. Leture notesfor a ourse at the University of Cambridge, 1995.[Gordon 95℄ A. D. Gordon. A tutorial on o{indution andfuntional programming. In Proeedings of the1994 Glasgow Workshop on Funtional Program-ming, Springer Workshops in Computing, 1995.[Gordon 96℄ A. D. Gordon. Bisimilarity for a �rst-order al-ulus of objets with subtyping. In Proeed-ings, 23rd Symposium on Priniples of Program-ming Languages, pages 386{395, St. PetersburgBeah, Florida, USA, 21{24 January 1996. ACMSIGPLAN-SIGACT.[Gordon et al 79℄ M. J. Gordon, A. J. Milner, and C. P. Wadsworth.Edinburgh LCF - A mehanised logi of omputa-tion, volume 78 of Leture Notes in Computer Si-ene. Springer Verlag, 1979.[Groote & Vaandrager 92℄ J.F Groote and F.W. Vaandrager. Strutured op-erartional semantis and bisimulation as ongru-ene. Information and Computation, 100(2):202{260, 1992.[Hensel & Jaobs 97℄ U. Hensel and B. Jaobs. Coalgebrai theories ofsequenes in PVS. Tehnial Report CSI-R9708,Computing Siene Institute, University of Ni-jmegen, 1997.[Hesketh 91℄ J. T. Hesketh. Using Middle-Out Reasoning toGuide Indutive Theorem Proving. UnpublishedPhD thesis, University of Edinburgh, 1991.[Horn & Smaill 90℄ C. Horn and A. Smaill. Theorem proving andprogram synthesis with Oyster. In Proeedings ofthe IMA Uni�ed Computation Laboratory, Stirling,1990.[Horn 88℄ C. Horn. The Nurprl proof development system.Working paper 214, Dept. of Arti�ial Intelligene,University of Edinburgh, 1988. The Edinburgh ver-sion of Nurprl has been renamed Oyster.[Howe 89℄ Douglas J. Howe. Equality in lazy omputationsystems. In Proeedings, Fourth Annual Sympo-sium on Logi in Computer Siene, pages 198{203,Asilomar Conferene Center, Pai� Grove, Califor-nia, 5{8 June 1989. IEEE Computer Soiety Press.

Bibliography 209[Huet & Oppen 80℄ G. Huet and D. C. Oppen. Equations and rewriterules: a survey. In R. Book, editor, Formal lan-guages: perspetives and open problems. AademiPress, 1980. Presented at the onferene on formallanguage theory, Santa Barbara, 1979. Availablefrom SRI International as tehnial report CSL-111.[Huet 75℄ G. Huet. A uni�ation algorithm for lambda alu-lus. Theoretial Computer Siene, 1:27{57, 1975.[Hutton 98℄ G. Hutton. Fold and unfold for program seman-tis. Tehnial report, Department of ComputerSiene, University of Nottingham, 1998. Submit-ted to ICFP'98.[Ireland & Bundy 96℄ A. Ireland and A. Bundy. Produtive use of failurein indutive proof. Journal of Automated Reason-ing, 16(1{2):79{111, 1996. Also available as DAIResearh Paper No 716, Dept. of Arti�ial Intelli-gene, Edinburgh.[Ireland 92℄ A. Ireland. The Use of Planning Critis in Meha-nizing Indutive Proofs. In A. Voronkov, editor, In-ternational Conferene on Logi Programming andAutomated Reasoning { LPAR 92, St. Petersburg,Leture Notes in Arti�ial Intelligene No. 624,pages 178{189. Springer-Verlag, 1992. Also avail-able from Edinburgh as DAI Researh Paper 592.[Jaobs & Rutten 97℄ B. Jaobs and J. Rutten. A tutorial on (o)algebrasand (o)indution. EATCS Bulletin, 1997. to ap-pear.[Jaobs 97℄ B. Jaobs. Invariants, bisimulations and the or-retness of oalgebrai re�nements. Tehnial Re-port CSI{R9704, Computing Siene Institute, Uni-versity of Nijmegen, 1997.[Knuth & Bendix 70℄ D. E. Knuth and P. B. Bendix. Simple word prob-lems in universal algebra. In J. Leeh, editor, Com-putational problems in abstrat algebra, pages 263{297. Pergamon Press, 1970.[Luger & Stubble�eld 93℄ G. F. Luger and W. A Stubble�eld. Arti�ial In-telligene: Strutures and Strategies for ComplexProblem Solving. Benjamin/Cummings PublishingCompany, 1993.[Ma Lane 71℄ S. Ma Lane. Categories for the Working Mathe-matiian. Springer-Verlag, New York, 1971.

210 Chapter 11. Conlusion[Manning et al 93℄ A. Manning, A. Ireland, and A. Bundy. Inreasingthe versatility of heuristi based theorem provers.In A. Voronkov, editor, International Confereneon Logi Programming and Automated Reasoning {LPAR 93, St. Petersburg, number 698 in LetureNotes in Arti�ial Intelligene, pages pp 194{204.Springer-Verlag, 1993.[Mihalski 83℄ R. S. Mihalski. A theory and methodology ofindutive learning. Arti�ial Intelligene, 20:111{161, 1983.[Milner & Tofte 91℄ Robin Milner and Mads Tofte. Co-indution in re-lational semantis. Theoretial Computer Siene,87:209{220, 1991.[Milner 77℄ R. Milner. Fully abstrat models of typed lambda{aluli. Theoretial Computer Siene, 4:1{23,1977.[Milner 89℄ R. Milner. Communiation and Conurreny.Prentie Hall, London, 1989.[Milner et al 90℄ R. Milner, M. Tofte, and R. Harper. The De�nitionof Standard ML. MIT Press, 1990.[Mithell 82℄ T. M. Mithell. Generalization as searh. Arti�ialIntelligene, 18:203{226, 1982.[Monroy et al 95℄ R. Monroy, A. Bundy, A. Ireland, and J. Hesketh.Proof Planning the Veri�ation of CCS Programs.Researh Paper 781, Dept. of Arti�ial Intelligene,University of Edinburgh, 1995.[Morris 68℄ J. H. Morris. Lambda{Calulus Models of Program-mins Languages. Unpublished PhD thesis, MIT,Deember 1968.[Muggleton & De Raedt 94℄ S. Muggleton and L. De Raedt. Indutive logi pro-gramming: Theory and methods. Journal of LogiProgramming, 19, 20:629{679, 1994.[Nipkow & Paulson 94℄ T. Nipkow and L. Paulson. Datatypes and(o)indutive de�nitions in isabelle/hol, 1994. Se-tions of [Paulson 96℄ that ould not be inluded in[Paulson 94a℄.[Owre et al 92℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: Anintegrated approah to spei�ation and veri�a-tion. Forthoming, SRI International, 1992.

Bibliography 211[Owre et al 96℄ S. Owre, S. Rajan, J. M. Rushby, N. Shankar,and M. K. Srivas. PVS: Combining spei�ation,proof heking, and model heking. In Rajeev Alurand Thomas A. Henzinger, editors, Proeedings ofthe 1996 Conferene on Computer-Aided Veri�a-tion, number 1102 in LNCS, pages 411{414, NewBrunswik, New Jersey, U. S. A., 1996. Springer-Verlag.[Park 70℄ D. Park. Fixpoint Indution and Proofs of ProgramProperties. Mahine Intelligene, 5:59{78, 1970.[Park 80℄ D. Park. On the Semantis of Fair Parallelism. InD. Bj�rner, editor, Proeedings 1979 CopenhagenWinter Shool, pages 504{526, 1980. LNCS 86.[Park 81℄ D. Park. Conurreny and Automata on In�niteSequenes. In P. Deussen, editor, Proeedings of the5th GI-Conferene on Theoretial Computer Si-ene, pages 167{183, 1981. LNCS 104.[Paulin-Mohring 95℄ Christine Paulin-Mohring. Ciruits as streams inCoq veri�ation of a sequential multiplier. Tehni-al Report RR95{16, Laboratoire de l'Informatiquedu Parallelisme, 1995.[Paulson 93℄ L. C. Paulson. Co-indution and Co-reursion inHigher-order Logi. Tehnial Report 304, Univer-sity of Cambridge, Computer Laboratory, 1993.[Paulson 94a℄ L. C. Paulson. Isabelle: A generi theorem prover.Springer-Verlag, 1994.[Paulson 94b℄ Lawrene C. Paulson. A �xedpoint approah toimplementing (o)indutive de�nitions. In AlanBundy, editor, 12th Conferene on Automated De-dution, Leture Notes in Arti�ial Intelligene,Vol. 814, pages 148{161, Nany, Frane, 1994.Springer-Verlag.[Paulson 96℄ L. C. Paulson. Isabelle'sobjet logis. Doumentation for Isabelle availableonline ftp://ftp.l.am.a.uk/ml/index.html,1996. Inluded in [Paulson 94a℄.[Peyton Jones 87℄ Simon L. Peyton Jones. The Implementation ofFuntional Programming Languages. Prentie-Hall,1987.

212 Chapter 11. Conlusion[Pitts 92℄ A. M. Pitts. A Co-Indution Priniple for Re-ursively De�ned Domains. Tehnial Report 252,University of Cambridge, Computer Laboratory,April 1992.[Plotkin 71℄ G. D. Plotkin. Automati Methods of Indutive In-ferene. Unpublished PhD thesis, University of Ed-inburgh, 1971.[Rihardson 95℄ J. D. C. Rihardson. Proof planning data typehanges in pure funtional programs. UnpublishedPhD thesis, Department of Arti�ial Intelligene,University of Edinburgh, September 1995.[Rutten 96℄ J.J.M.M. Rutten. Universal oalgebra: A theory ofsystems. Tehnial Report CS{R9652, CWI, Ams-terdam, 1996.[Sheeran & Jones 90℄ M. Sheeran and G. Jones. Ciruit Design in Ruby.North Holland, 1990.[Smaill & Green 96℄ A. Smaill and I. Green. Higher-order annotatedterms for proof searh. volume 1125 of Le-ture Notes in Computer Siene, pages 399{414.Springer, 1996. Also available as DAI Researh Pa-per 799.[Smyth & Plotkin 82℄ M.B. Smyth and G.D. Plotkin. The ategory{theoreti solution of reursive domain equations.SIAM Journal of Computing, 11(4):761{783, 1982.[Stevens 98℄ P. Stevens. Abstrat games for ini�nite state pro-esses. In CONCUR'98. Springer-Verlag, 1998.[Tarski 55℄ A. Tarski. A lattie-theoretial �xpoint theoremand its appliations. Pai� Journal of Mathemat-is, 5:285{309, 1955.[Thomas & Jantke 89℄ M. Thomas and K. P. Jantke. Indutive inferenefor solving divergane in Knuth-Bendix. In K. P.Jantke, editor, Analogial and Indutive Inferene,Pros. of AII'89, pages 288{303. Springer-Verlag,1989.[Thomas & Watson 93℄ M. Thomas and P. Watson. Solving divergene inKnuth-Bendix ompletion by enrihing signatures.Theoretial Computer Siene, 112:145{185, 1993.

Bibliography 213[vanGlabbeek 96℄ R. van Glabbeek. The meaning of negativepremises in transition system spei�ations ii.Tehnial Report STAN{CS{TN{95{16, Depart-ment of Computer Siene, Stanford University,1996. Extended Abstrat in: ICALP-96.[Walsh 96℄ Toby Walsh. A divergene riti for indutive proof.Journal of Arti�ial Intelligene Researh, 4:209{235, 1996.[Walsh 97℄ T. Walsh. Depth{bounded disrepany searh. InM.E. Pollak, editor, Proeedings of the 15th In-ternational Joint Conferene on Arti�ial Intelli-gene, volume 1, pages 528{533. International JointConferene on Arti�ial Intelligene, Morgan Kauf-mann Publishers, 1997.

Appendix A
Glossary of Terms

Ation A term originating in CCS indiating an ation taking plaeon a state, e.g. the input or output of a data item. If a state,A, beomes the state A0 as a result of the ation a this is writtenA a! A0. Transitions are sometimes referred to as ations.Algebra [Azel 97℄ If F is an endofuntor then an F -algebra is a pair,(A; �), where A is an objet of the ategory and � : F (A)! A.Appliative Bisimulation [Abramsky 90℄ A quasi{appliativetransition system (quasi{ats) is a struture (A; ev) where:ev : A * (A ! A) (ev is a partial funtion from A to funtionsfrom A to A).Notation: a +qats b � a 2 dom(ev) ^ ev(a) = ba +qats � a 2 dom(ev)a *qats � a 62 dom(ev)Rel(A) � the set of relations on ALet (A; ev) be a quasi-ats. De�ne:F (R) def= fha; bi : 9f:a +qats f) (9g:b +qats g^8 2 A:f()Rg())gR 2 Rel(A) is an appliative bisimulation i� R � F (R).Big Step Evaluation [Gordon 95b℄ Big step evaluation is spei-�ed indutively by the two rules:�x:e +u �x:e (A.1)a +u �x:e e[b=x℄ +u va b +u v (A.2)Bisimilar Two expressions are said to be bisimilar if they are relatedby some equivalene � whih is the greatest �xedpoint of a fun-tion on relations. In partiular� has the property that all pairs ofexpression obtained from some pair in � by the use of transitionsor destrutors are also in �.214

215Bisimulation If F is a monotone funtion on relations then a bisim-ulation is a relation R suh that R � F(R). A bisimulation is asubset of the greatest �xedpoint of F .Bisimulation Explosion An e�et enountered when runningCoCLAM . The size of the representation of the bisimulation be-omes so large that the program an no longer proess it in rea-sonable time.Bisimulation Extension The proess by whih a trial bisimulationis extended by a new pair sheme taken from a failed goal.Bisimulation Generalisation The proess by whih a trial bisim-ulation is amended by replaing one or more pair shema by ageneralisation.Bisimulation Proof Method A term from CCS. The BisimulationProof method is used to show the equivalene of two CCS states.It is essentially the same as oindution.Call{By{Need Evaluation An evaluation strategy for funtionalprogramming languages by whih funtions are only evaluatedif their results are needed by another funtion and are only eval-uated as far as they are required by that funtion.Category [Azel 97℄ A ategory onsists of objets and arrows.An arrow, f , between two objets A and B is written f : A! B.A ategory also omes with two operations1. If f : A ! B and g : B ! C then (g; f) is alleda omposable pair and the omposite arrow isg Æ f : A ! C. Furthermore for omposable pairs(g; f) and (h; g), (h Æ g) Æ f = h Æ (g Æ f).2. An assignment of an arrow idA to eah objet A,alled the identity on A, suh that for f : A ! B,f Æ idA = idB Æ f = f .Category Theory Category theory is a formalism that desribes thepassage from one type of mathematial objet to another.CCS An abbreviation for the Calulus of Communiation Systemsoriginated by Milner [Milner 89℄. CCS represents states and om-muniations between states as labelled transition systems. More-over, oindution, as the Bisimulation Proof method, and greatest�xedpoints are a entral part of the Calulus.CLAM CLAM is a proof planning system intended primarily for plan-ning indutive proofs whih has been developed by the EdinburghMathematial Reasoning Group.Coalgebra [Azel 97℄ If F is an endofuntor then an F -oalgebra isa pair, (A; �), where A is an objet of the ategory and � : A!F (A).CoCLAM CoCLAM is a proof planning system built from CLAM forperforming oindutive proofs.

216 Appendix A. Glossary of TermsCoindution Coindution is a proof priniple. It is the dual of in-dution and is used to prove the equivalene of lazy or in�niteobjets.Coindution Conlusion That part of the statement of a subgoalin a oindutive proof that requires us to prove that some pair ofexpressions is in the trial bisimulation.Coindution Hypothesis That part of the statement of a subgoalin a oindutive proof that states what pairs of expressions are inthe trial bisimulation.Coindutive Datatype It is usual for reursive datatypes to be de-�ned indutively, essentially as the least �xedpoint of a funtion.However, this will exlude some objets that may be desired, suhas [M;M; � � �℄, the in�nite list of Ms. Hene a datatype may bede�ned oindutively as the greatest �xedpoint of the funtion.Coindutive De�nition This term an be applied both to funtionsand datatypes. When applied to datatypes it means that themembers of that type are de�ned as being the members of somegreatest �xedpoint. When applied to a funtion it is sometimesreferred to as oreursion. It de�nes a funtions in terms of theoutome of transitions applied to the values of that funtion, orthe e�et of destrutors upon that funtion or the weak headnormal form of the funtion. It is related to unfold.Conuene [Bundy 83℄ A set of rules is onuent if whenever an ex-pression, exp, an be rewritten in two di�erent ways, say to int1and to int2, then int1 and int2 an both be rewritten to someommon rewriting, omm.Congruene A relation, R, is a ongruene relation if it is an equiv-alene relation and if when aR b then for any experiment E(�)E(a)R E(b)Construtor A onstrutor is an operator on objets of some type.A onstrutor builds a new objet of that type. Construtors areused to de�ne types in terms of how the elements of the type anbe built from eah other.Context [Gordon 95b℄ Let a ontext C, be an expression suh thatthere are no free variables in C, exept for f�g. This variable isa hole that will be �lled in.Contextual Equivalene [Gordon 95b℄ Let C be a ontext, de�nethe relation ', ontextual equivalene, as follows:C[a℄ def= C[a=�℄ (A.3)a + def= 9v:(a + v) (A.4)a<� b def= 8C(C[a℄ +) C[b℄ +) (A.5)a ' b def= a<� b&b<� a (A.6)

217Conurreny Workbenh (CWB) The Conurreny Workbenh isan automated environment for reasoning about �nite automata inCCS. It inludes oindution, as the Bisimulation Proof Method,as a proof priniple.Coreursion See Coindutive De�nition.Denotational Semantis Denotational semantis desribes the ob-jets and proesses in a programming language in terms of ob-jets and proesses in some other language (often the language ofmathematis). Denotational semantis are ompositional that is,given some expression in the language it doesn't matter whetherthe expression is evaluated or exeuted in the language and thenthe result translated to the other language or whether the on-stituent parts of the expression are translated �rst and the resultdetermined in the new language.Destrutor Destrutors are generally linked to onstrutors. If a on-strutor spei�es that (t) is a member of a type onstruted fromt then the appropriate destrutor applied to (t) brings you bakto t. Destrutors have been used to desribe types as onstrutorsdo.Di�erene Mathing If one expression is embedded in another thendi�erene mathing is a proess whih annotates the expressionit is embedded in to identify the additional struture in this newexpression.Divergene Chek The Divergene hek is the proess used by theRevise Bisimulation riti in CoCLAM to hek a sequene of ex-pressions to see if they are diverging.Dynami Semantis The dynami semantis of a program are de-termined at run{time. In funtional languages the dynami se-mantis desribe its evaluation behaviour.Endofuntor [Azel 97℄ A funtor from a ategory C to itself is alledan endofuntor on C.Environment An environment is a �nite map from variables to types.Erasure The erasure of a term annotated by di�erene mathing isthe term without any of the annotations present.Eureka Step A Eureka step in a proof is one that requires more thanjust the blind following of some rules. It usually involves the intro-dution of some new information, suh as an existential witness.Experiment An experiment, E , is a ontext of the form �a, where ais a program.F{Dense [Gordon 95℄ A set is F{dense i� X � F (X)Fertilization Fertilization is the term given to the proess by whiha hypothesis (usually an indution hypothesis) is utilised to provesome goal. Either the hypothesis is used diretly (strong fertil-ization) or it may be used as a rewrite rule (weak fertilization).

218 Appendix A. Glossary of TermsF{Homomorphism [Rutten 96℄ If (S; �S) and (T; �T) are F{oalgebras for some arbitrary endofuntor, F then f : S ! Tis an F{homomorphism if F (f) Æ �S = �T Æ f .Final Coalgebra A oalgebra, A, is a �nal oalgebra if for every otheroalgebra, B, in the ategory there is a unique arrow f : B ! A.Fixedpoint A �xedpoint of a funtion F is a domain D suh thatF(D) = DFold A program transformation. A single fold step rewrites an ex-pression by mathing it with the left{hand side of an equationor funtion de�nition and replaing it with the RHS. fold, thefuntion, an be used to generalise reursive/indutive de�ni-tions. It is also an arrow in ategory theory. Given an initialF{algebra � : F (P) ! P and an arrow � : F (P) ! F (S) thenfold : F (S)! S.Funtional Programming Programming in a funtional languageonsists of building de�nitions and using the omputer to evaluateexpressions. The primary role of the programmer is to onstruta funtion to solve a given problem. This funtion, whih mayinvolve a number of subsidiary funtions, is expressed in notationthat obeys normal mathematial priniples. The primary role ofthe omputer is to at as an evaluator or alulator: its job is toevaluate expressions and print the results.A harateristi feature of funtional programming is that if anexpression possesses a well{de�ned value, then the order in whiha omputer may arry out the evaluation does not a�et the out-ome. In other words, the meaning of an expression is its valueand the task of the omputer is simply to obtain it. It followsthat expressions in a funtional language an be onstruted,manipulated and reasoned about, like any other kind of math-ematial expression, using more or less familiar algebrai laws.[Bird & Wadler 88℄Funtor [Azel 97℄ If C1 and C2 are ategories, a funtor, F , fromC1 to C2, written F : C1 ! C2, onsists of:1. An assignment of an objet F (A) of C2 to eah objetA of C1.2. An assignment of an arrow F (f) : F (A) ! F (B) ofC2 to eah arrow f : A! B of C1.These assignments have the following properties:� For eah objet, A, in C1, F (idA) = idF (A).� For eah omposable pair (g; f) in C1, (F (g); F (f))is omposable in C2 and F (g Æ f) = F (g) Æ F (f)

219Greatest Fixedpoint The greatest �xedpoint of a funtion F is de-�ned as [Paulson 93℄gfp(F) =[fA j A � F(A)gHead Normal Form [Barendregt 84℄ A �-termM is a head normalform(HNF) if M is of the form�x1 � � �xn:xM1 � � �Mm; n;m � 0. Where x is a variable (possiblyone of the xi, i � n and the Mj are �{terms (not neessarily inHNF).Haskell In the mid-1980s, there was no \standard" non-strit, purely-funtional programming language. A language-design ommitteewas set up in 1987, and the Haskell language is the result. At thetime of writing, version 1.4 is the latest version of the language(from the omp.lang.funtional FAQ).HOL The HOL system is a powerful and widely used omputer pro-gram for onstruting formal spei�ations and proofs in higherorder logi. The system is used in both industry and aademiato support formal reasoning in many di�erent areas, inludinghardware design and veri�ation, reasoning about seurity, proofsabout real-time systems, semantis of hardware desription lan-guages, ompiler veri�ation, program orretness, modelling on-urreny, and program re�nement. HOL is also used as an openplatform for general theorem-proving researh.(http://www.ds.gla.a.uk/~tfm/fmt/hol.html)Impliit Indution In impliit indution the onjeture to be provedis added to the axioms. A Knuth{Bendix ompletion proedure isthen applied to the whole system. If no inonsisteny is derivedby the proedure, the the onjeture is an indutive theorem.[Bouhoula & Rusinowith 93℄Indution A logial inferene rule. Appliation of indution usuallyprodues one or more base ases together with one or more stepases (impliations in whih assuming the theorem to be true forone (or more ases) allows its truth to be inferred for other ases).In the proof plan for indution, the former subgoals ontain wavefronts whih mark the di�erenes between the indution hypoth-esis and the indution onlusion, and they are proved by rip-pling these di�erenes away until fertilisation an be performed.[Rihardson 95℄Indution Hypothesis That part of the step ase goal in indutionin whih the theorem is assumed to be true for some value, orall values less than one partiular value (aording to the well{founded order).Indution Conlusion That part of the step ase goal in indutionwhih is a subgoal requiring the proof that the theorem is true for

220 Appendix A. Glossary of Termssome partiular expression. In strutural onstrutor style indu-tion, as used in this thesis, this value is generally onstruted fromthe expression in the indution hypothesis using onstrutors.Indution Sheme An instane of the indution priniple or ruleused in a proof gives rise to an indution sheme whih deter-mines the expression used in the indution onlusion.Indutive Datatype An indutive datatype is a datatype that on-tains members of a least �xedpoint. It is generally desribed interms of how members of the datatype may be onstruted fromother members.Indutive Inferene Indutive inferene is an area of arti�ial intel-ligene whih examines how rules may be generalised from exam-ples.Indutive Logi Programming Indutive logi programming exam-ines tehniques by whih logi programs an be synthesized fromexamples of their intended truth values for given inputs.Initial Algebra An algebra, A, is an initial algebra if for every otheralgebra, B, in the ategory there is a unique arrow f : A! B.Isabelle Isabelle is a generi theorem prover. New logis are intro-dued by speifying their syntax and rules of inferene. Proof pro-edures an be expressed using tatis and tatials.(http://www.l.am.a.uk/Researh/HVG/Isabelle/).Knuth{Bendix Completion The Knuth{Bendix ompletion proe-dure generates a onuent set of rewrite rules by repeatedly su-perposing left hand sides of rewrite rules and adding any gener-ated ritial pairs as new rewrite rules. This proess may fail toterminate, produing a divergent set of rewrites.Labelled Transition System In its most basi form a labelled tran-sition system is a binary relation on terms or proesses indexedby a set of labels. Within the semantis of lazy languages thelabels tend to be type destrutors and the RHS of the relationis the e�et of applying that type destrutor to the LHS. Oftenthe labels (or transitions) are onsidered to be things you an\observe" about the program.�{Calulus The �{alulus is a model of omputation developed byAlonzo Churh. It is one of the most widely used models andmost funtional languages are elaborated forms of the �{alulus.It's most distintive feature is the use of �{abstrations to formfuntions from objet. �x:t indiates that x is some variable in t,a funtion expression, to whih an argument may be supplied.Lazy Evaluation Lazy Evaluation is an evaluation tehnique whihonly evaluates funtion alls when they are needed and as far asthey are needed. It is also ommonly used to mean that any givenfuntion all is only evaluated one and it's results saved to bere{used later should that all be made again.

221Lazy List A lazy list is a list that may be either �nite or in�nite inlength.LCF Edinburgh LCF is a programmable proof heker. Users anwrite proof proedures in ML, proof tatis, rather than typingrepetitive ommands. LCF has an abstrat type of theoremswhih ensures that eah inferene rule is a funtion from theoremsto theorems by type{heking. LCF was the �rst theorem{proverto do this. The widely used funtional programming language,ML, was designed for LCF.Least Fixedpoint The least �xed point of a funtion F is de�ned as[Paulson 93℄ lfp(F) = \fA j F(A) � Ag (A.7)Lemma Calulation Lemma alulation is part of the lemma spe-ulation riti in CLAM . It is used to hypothesize new lemmatain the ase of a failed proof attempt. It does not require the useof any middle{out reasoning or higher order uni�ation. It is astraightforward alulation proedure.Lemma Speulation Lemma speulation is part of a riti in CLAM .It is used to hypothesize new lemmata in the ase of a failedproof attempt. Lemma speulation uses middle{out reasoningand higher order uni�ation in the proess of hypothesizing lem-mata.LTS An abbreviation for labelled transition system.Meta{Level Meta{level terms are an abstration of objet{level termsin whih hypotheses and type information may be missing. Cer-tain information may be added in the form of annotations, eitherannotating objet{level terms to give wave terms or marking er-tain hypotheses as indution hypotheses, amongst other things.[Rihardson 95℄The axioms and expressions of some logi are often desribed asthe objet{level terms and the rules of inferene of that logi allowobjet{level reasoning about the axioms and expressions. At themeta{level reasoning is about the inferene rules.Middle{Out Reasoning Middle{out reasoning was �rst desribedby Bundy et al [Bundy et al 90a℄. Middle{out reasoning post-pones making eureka steps for a long as possible in the proof pro-ess, adapting methods to ope with partial information whereneessary. In this way more information about the nature of theeureka step an be determined.Non{Strit Evaluation Non{Strit Evaluation is an evaluation pro-edure that does not require all expressions in a funtion all to beevaluated only those that are needed to determine the result andthen these need only be evaluated as far as is required. It is often

222 Appendix A. Glossary of Termsreferred to as all{by{need or lazy evaluation, although the lat-ter of these often implies that any funtion all is only evaluatedone.Non{Well{Founded Sets Non{well{founded sets are sets ontain-ing in�nite sequenes of nested subsets. They were studied �rstby Azel [Azel 88℄.Objet{Level Well{formed terms, proofs and inferene steps of thelogi in use. [Rihardson 95℄Operational Semantis Operational semantis desribe the idealisedbehaviour of a programming language on some abstrat mahine.It is often expressed with the use of labelled transition systems.Oyster A Prolog implementation of a variant of Martin{L�of's TypeTheory. Originally Oyster was based on NuPRL. Both Oys-ter and NuPRL are tati{based, goal{direted theorem provers.[Rihardson 95℄Pair Sheme A set onsisting of one related pair of objets ontainingfree or universally quanti�ed variables is a pair sheme.Bisimulations in funtional languages are invariably the unions ofone or more pair shema.Partial Wave Rule Math A partial wave rule math ours whenan expression an be embedded into the LHS of a wave rule, butwould need to have some extra struture present before the twoexpressions ould be uni�ed.Potential Wave Front Potential wave fronts are used in middle{outreasoning and indiate a possible position for a wave front.Proof Criti A proof riti desribes a proess for pathing a failedproof attempt. Generally a proof riti analyses failed methodpre{onditions.Proof Method A proof method is a partial spei�ation of a tati.It is omposed of several slots. When a method applies to a goal,it generates a list of subgoals to be proved. Assoiated with eahmethod is the tati whih onstruts the part of the objet{level proof whih orresponds to the part of the meta{level proofonstruted by the method. [Rihardson 95℄Proof Planning Proof planning is a tehnique for guiding the searhfor a proof in automated theorem proving. A proof plan is anoutline or plan of a proof. To prove a onjeture, proof planning�rst onstruts the proof plan for a proof and then uses it to guidethe onstrution of the proof itself. (Proof planning FAQ)Proof Strategy A sequene of methods and submethods in themethod database whih generates proof plans of a partiular form[Rihardson 95℄. Extended in this thesis to inlude the preseneof ritis.

223Proof Tati A proof tati is a sequene of inferene rules in someproof heking system. It is a program whih when exeutedperforms part of a proof.PVS PVS is a veri�ation system: that is, a spei�ation language in-tegrated with support tools and a theorem prover. It is intendedto apture the state-of-the-art in mehanized formal methods andto be suÆiently rugged that it an be used for signi�ant appli-ations. (http://www.sl.sri.om/pvs.html).Redution Rule A redution rule is a measure dereasing rewriterule. They are used in the evaluation of funtional programs andare generally derived from funtion de�nitions.Rewrite Rule [Thomas & Jantke 89℄ A rewrite rule is an orderedpair of terms of the form, l; r.Ripple Analysis Ripple analysis is the proess by whih an indu-tion variable is hosen by CLAM . It uses a proess of lookaheadthrough possible appliations of wave rules.Rippling The suessive appliation of wave rules [Rihardson 95℄Set Indution Set indution is the proess of using indution withthe general indution rule: dSe�S�S0lfp(d�e)�S0 . In set indution the eurekastep is the hoie of the set S.Sheme Indution Sheme indution is the proess of using indu-tion with a speialised indution sheme. In this form of indutionthe orret hoie of indution sheme is a eureka step.Skeleton In the ase of a single wave hole, the skeleton of a wave termis the part of the wave term whih is either ompletely outside thewave fronts, or is inside a wave front and underlined. The wavehole is the set of the underlined expressions. When a wave ruleis applied to a wave term, the skeleton of the result is a subset ofthe skeleton before wave rule appliation. [Rihardson 95℄Small Step Redution [Gordon 95b℄ Small step redution, a red;b, is spei�ed indutively by the rules:(�x:e)b red; e[b=x℄ (A.8)a red; a0E [a℄ red; E [a0℄ (A.9)Stati Semantis A program's stati semantis is determined at om-pile time. The stati semantis of a typed funtional programminglanguage desribe the typing rules for the language.Strit List A strit list is of �nite length.� Ation In CCS a �{ation is an internal ation on two states thatis unobserved by the user.

224 Appendix A. Glossary of TermsTransition A transition is a label on the transition relation in a la-belled transition system.Trial Bisimulation A trial bisimulation is a relation used in theourse of a oindutive proof. The objet of the part of the proofwhere the relation appears will be to prove that it is a bisimula-tion.Unfold A program transformation. A single unfold step rewrites anexpression by mathing it with the right{hand side of an equa-tion or funtion de�nition. unfold, the funtion, an be used togeneralise oreursive/oindutive de�nitions. It is also an arrowin ategory theory. Given a �nal F{oalgebra � : P ! F (P) andan arrow � : S ! P then unfold : S ! F (S).Value In funtional languages values are a distinguished set of expres-sions whih indiate a satisfatory end to an evaluation proess.Wave Front A wave front is represented by a box surrounding a term,some of whose subterms are underlined. The underlined subtermsare the wave holes. A wave front has a diretion whih is indiatedby an arrow attahed to the box. [Rihardson 95℄Wave Hole See wave frontWave Measure A measure on annotated terms, i.e. a mapping fromannotated terms to some well{founded order. [Rihardson 95℄Wave Rule A rewrite rule whih has been annotated suh that theskeleton of the left hand side is a superset of the skeleton of theright hand side, and the wave measure of the right and side isstritly less than the wave measure of the left hand side. Theskeleton preserving and measure{dereasing properties allow aproof of the termination of rippling. [Rihardson 95℄Weak Head Normal Form (Adapted from [Peyton Jones 87℄) A�{term M is a weak head normal form(WHNF) if M is ofthe form�x:M 0 or xM1 � � �Mm; m � 0.Well{Founded Order An order, �, is well{founded if there are noin�nite desending hains a � a0 � � � �.

Appendix B
Results

B.1 IntrodutionThis appendix lists the funtion de�nitions, lemmata and theorems used in theexperimental evaluation of CoCLAM disussed in hapter 7.B.2 Funtion De�nitionsaddl addl(L; nil) = Laddl(nil; L) = Laddl(H1 :: T1; H2 :: T2) = (H1 +H2) :: addl(T1; T2)ap ap(ap(<>;X); Y) = X <> Y<> (append) nil <> L = LH :: T <> L = H :: (T <> L)p<>l (append{lazy) nil <>l nil = nilnil <>l H :: T = H :: (nil <>l T)H :: T <>l L = H :: (T <>l L)atend atend(X; nil) = X :: nilatend(X; Y :: Z) = Y :: atend(X;Z)brsearh brsearh(node(A; nil); nil) = A :: nilbrsearh(node(A; nil); H :: T) = A :: brsearh(H; T)brsearh(node(A;H :: T); nil) = A :: brsearh(H; T)brsearh(node(A;L); H :: T) = A :: brsearh(H; T <> L)brswap brswap(leaf(X)) = leaf(X)brswap(node(A;L;R)) = node(A; brswap(R); brswap(L))del del(N; nil) = nilX = Y) del(X; Y :: Z) = del(X;Z)X 6= Y) del(A; Y :: Z) = Y :: del(X;Z)double double(0) = 0double(s(N)) = s(s(double(N)))225

226 Appendix B. Resultsdpsearh dpsearh(node(A; nil); nil) = A :: nildpsearh(node(A; nil); H :: T) = A :: dpsearh(H; T)dpsearh(node(A;H :: T); L) = A :: dpsearh(H; T <> L)drop drop(0; L) = Ldrop(N; nil) = nildrop(s(N); H :: T) = drop(N; T)dup dup(X; 0) = nildup(N; s(M)) = N :: dup(N;M)evenl evenl(nil) = nilevenl(H :: nil) = nilevenl(H1 :: H2 :: T) = H2 :: evenl(T)exp exp(N; 0) = s(0)exp(0; s(I)) = 0exp(s(0); s(I)) = s(0)exp(s(s(N)); s(I)) = s(N + (s(s(N)) � exp(s(s(N)); I)))explode explode(nil) = nilexplode(H :: T) = (H :: nil) :: explode(T)ip flip(0) = s(0)flip(s(0)) = 0ipbv flipbv(?) = Tflipbv(T) = ?attenA flattenA(nil) = nilf lattenA(H :: T) = H <> flattenA(T)foldr foldr(F; nil; E) = Efoldr(F;H :: T;E) = F (H; foldr(F; T; E))from from(N) = N :: from(s(N))h h(F;X) = X :: map(F; h(F;X))half half(0) = 0half(s(0)) = 0half(s(s(N))) = s(half(N))idlist idlist(nil) = nilidlist(H :: T) = H :: idlist(T)idnat idnat(0) = 0idnat(s(N)) = s(idnat(N))1 (in�nity) 1 = s(1)inist inflist(X;F;G) = F (X) :: inflist(G(X); F; G)iterates iterates(F;M) =M :: iterates(F; F (M))jump jump(N;M) = N :: jump(N +M;M)lonst lonst(M) =M :: lonst(M)length length(nil) = 0length(H :: T) = s(length(T))loop loop(F;A;B) = map(F;merge2(A :: loop(F;A;B); B))loop2 loop2(F;A; nil) = nilloop2(F;A;H :: T) = F (A;H) :: loop2(F; F (A;H); T)lswap lswap(A;B) = A :: lswap(B;A)map map(F; nil) = nilmap(F;H :: T) = F (H) :: map(F; T)

B.2. Funtion De�nitions 227map2 map2(F; nil) = nilmap2(F;H :: T) = map(F;H) :: map2(F; T)map3 map3(F; nil) = nilmap3(F;H :: T) = ap(F;H) :: map(F; T)merge merge(nil; A) = Amerge(A; nil) = Amerge(H1 :: T1; H2 :: T2) = H1 :: H2 :: merge(T1; T2)merge2 merge2(nil; A) = nilmerge2(A; nil) = nilmerge2(H1 :: A;H2 :: B) = (H1; H2) :: merge2(A;B)�l (minus{lazy) 0�l 0 = 00�l N = s(0�l s(N))s(N)�l Y = s(N �l Y)numparity numparity(X; nil) = nilnumparity(X;? :: L) = evenl(X) :: numparity(s(X); L)numparity(X; T :: L) = oddl(X) :: numparity(s(X); L)oddl oddl(nil) = niloddl(H :: nil) = H :: niloddl(H1 :: H2 :: T) = H1 :: oddl(T)ones ones = 1 :: onesparity parity(B; nil) = nilparity(B;? :: L) = B :: parity(B;L)parity(B; T :: L) = flipbv(B) :: parity(flipbv(B); L)+ (plus) 0 +X = Xs(N) +X = s(N +X)+l (plus{lazy) 0 +l 0 = 00 +l s(N) = s(0 +l N)s(N) +l X = s(N +l X)pred-l pred� l(0) = 0pred� l(s(0)) = 0pred� l(s(s(N))) = s(N)(� � �)N (repeat apply) F 0(X) = XF s(N)(X) = F (FN(X))replae replae(A;B; nil) = nilB 6= H) replae(A;B;H :: T) = H :: replae(A;B; T)B = H) replae(A;B;H :: T) = A :: replae(A;B; T)tonst tonst(M) = node(M; tonst(M); tonst(M))tonstinf tonstinf(M) = node(M; tonstinf(M) :: nil)tik tik = s(0) :: tok� (times) 0 � Y = 0Y � 0 = 0s(N) � Y = Y +X � Y�l (times{lazy) 0 �l Y = 0Y �l 0 = 0s(N) �l s(Y) = s(X +l s(X) �l Y)tok tok = 0 :: tiktswap tswap(A;B) = node(A; tswap(A;B); tswap(B;A))

228 Appendix B. Resultstswap2 tswap2(A;B) = node(B; tswap2(B;A); tswap2(A;B))zigzag zigzag(nil; nil; nil) = nilzigzag(nil; nil; H :: T) = zigzag(nil; H :: T; nil)zigzag(nil :: T; nil; L) = zigzag(T; L; nil)zigzag((HH :: TH) :: T; nil; L) = HH :: zigzag(T; L; TH :: nil)zigzag(L1; nil :: T; L2) = zigzag(L1; T; L2)zigzag(L1; (HH :: TH) :: T; L2) = HH :: zigzag(L1; T; TH :: L2)B.3 TheoremsIn order to proof plan any theorem it is neessary to have at least the relevantfuntion de�nitions available. A standard set of lemmata shown in xB.5.1 werealso made available to all proof plan attempts. If any additional lemmata wererequired by the attempt to prove a theorem then they are listed with the theorembelow.The result olumn indiates the result of the proof plan attempt. The the-orem is either proved or is subjet to one of the errors disussed in hapter 7,i.e. bisimulation explosion, false hypothesis not reognised, memory error dur-ing evaluation, mathing of (� � �)n, inorret generalisation, initial de�nition ofbisimulation, substitution error or transition error.B.3.1 Development SetName Theorem Lemmata Resultapp1right X <> nil = X Provedappntonst �l:node(A;L; L)1(nil) = tonst(A) Provedassapp L <> (M <> N) = (L <> M) <> N Provedasslapp (X <>l Y) <>l Z = X <>l (Y <>l Z) Provedasslplus (M +l N) +l L =M +l (N +l L) Provedassp X + (Y + Z) = (X + Y) + Z Provedomapp length(X <> Y) = length(Y <> X) Provedommthree (Z �l X) �l Y = (Z �l Y) �l X disttwo Bisimulationtimes2right Explosionomp A+B = B + A ssid Proveddoublehalf double(half(N)) = N Proveddpbrtonst dpsearh(tonstinf(M); nil) = Provedbrsearh(tonstinf(M); nil)everylonst lonst(M) = evenl(lonst(M)) Provedeverylswap lonst(M) = evenl(lswap(M;N)) Provedexpplus exp(N; I + J) = exp(N; I) � exp(N; J) disttwo Bisimulationdist Explosiontimes1righttimes2rightexptimes exp(X;N �M) = exp(exp(X;N);M) expplus Bisimulationdist Explosion

B.3. Theorems 229Name Theorem Lemmata Resultattenexplode flattenA(explode(L)) = L Provedgrahamsthm loop2(F;A;B) = loop(F;A;B) Gen.Errorhalfplus1 half(X +X) = X Provedhiterates h(F;X) = iterates(F;X) Provedin1iter iterates(�y:A+ y; B) = Bisimulationinflist(0; �x:(x � A) +B; s) Explosionin1lonst lonst(N) = inflist(M; idnat; idnat) Provedin1nat inflist(A; idnat; s) = jump(A; 1) Provediteratesl lonst(M) = iterates(idnat;M) Provedjumpfrom jump(N; 1) = from(N) Provedlappnilr L <>l nil = L Provedlendouble length(X <> X) = double(length(X)) Provedlenlonst length(M :: lonst(M)) =1 Provedlenplus length(X <> Y) = length(X) + length(Y) Provedlplus0l 0 +l N = N Provedlminus{plus (Z +X)�l (Z + Y) = X �l Y Mathingof (� � �)Nlminus{su X �l Y = s(X)�l s(Y) Provedlswaplonst A 6= B Proved) del(B; lonst(A)) = del(B; lswap(A;B))lswaplmerge merge(lonst(A); lonst(B)) = lswap(A;B) Provedmap3iter map(�(s(s(s(0)))); jump(0; s(0))) = Mathingiterates(+(s(s(s(0)))); 0) of (� � �)Nmapapp map3(W;X <> Y :: Z) = Provedmap3(W;X) <> map3(W;Y :: nil <> Z)mapidnat lonst(M) = map(idnat; lonst(M)) Provedmapdouble map(double; L) = map(�X +X;L) Provedmap�n1 map(H; iterates(T;A)) = inflist(A;H; T) Provedmapip map(flipbv; map(flipbv; L)) = L Provedmapfold map(F; L) = Provedfoldr(�x:�t:F (x) :: t; L; nil)mapid map(L; idnat) = L Provedmapiter iterates(F; F (M)) = Provedmap(F; iterates(F;M))mapiter2 iterates(F;X) = ProvedX :: map(F; iterates(F;X))mapjump map(lonst; jump(0; 1)) = Provediterates(map(s); lonst(0))mapthm map(F;map(G;L)) = map(F ÆG;L) ompfun Provedmergezigzag merge(merge(oddl(A); oddl(B)); Memorymerge(evenl(A); evenl(B))) = Errorzigzag(nil; A :: nil; B :: nil)nat1 iterates(s; s(s(0))) = jump(s(s(0)); s(0)) Provednat2 jump(0; s(0)) = Provedmerge(jump(0; s(s(0))); jump(s(0); s(s(0)))) Provedoneslonst ones = lonst(s(0)) Proved

230 Appendix B. ResultsName Theorem Lemmata ResultparityT0 parity(T; L) = numparity(0; T) evenlem Provedoddlemevenlem2oddlem2plus2right X + s(Y) = s(X + Y) Provedpluslem2 X + s(0) = s(X) Provedplusxx X + s(X) = s(X +X) ssid Provedtbrswap tswap(A;B) = brswap(tswap2(B;A)) Provedzeroplus X = 0 ^ Y = 0) X + Y = 0 ProvedB.3.2 Test SetName Theorem Lemmata Resultappatend X <> Y :: Z = atend(Y;X) <> Z Provedappiterates iterates(F;X) <> N = iterates(F;X) Provedapplapp L1 <> L2 = L1 <>l L2 Provedappnlonst :: (N)1(nil) = lonst(N) Provedassonsapp P <> V0 :: L = (P <> V0 :: nil) <> L Provedassm A � (B � C) = (A �B) � C BisimulationExplosionbrswap T = brswap(brswap(T)) Provedomaddl addl(M;N) = addl(N;M) GeneralisationErroromlplus M +l N = N +l M Provedomm X � Y = Y �X BisimulationExplosiondist A � (B + C) = A �B + A � C BisimulationExplosiondisttwo (B + C) � A = (B � A) + (C � A) BisimulationExplosiondoubleplus double(X) = X +X Proveddoubletimes1 double(N) = s(s(0)) �N Proveddoubletimes2 double(N) = N � s(s(0)) Proveddpsearhl dpsearh(node(M; lonst(node(M;nil))); nil) Proved= lonst(M)dptonst dpsearh(tonstinf(M); nil) = lonst(M) Proveddupinf dup(M;1) = lonst(M) Provedattenfold flattenA(map(�a:map(�b:a :: b :: nil); Bisimulationiterates(F;N); lonst(M))) = Explosionfoldr(�x:�p:foldr(�y:�l:(x :: y :: nil) :: l;iterates(F;N); p); lonst(M); nil)gordon1 map(�x:idnat(x); Y) = idlist(Y) Provedhalfdouble half(double(N)) = N Provedhalenapp1 half(length(A <> B)) = ssid Generalisationhalf(length(B <> A)) Errorhalfplus2 half(X + Y) = half(Y +X) ssid Proved

B.3. Theorems 231Name Theorem Lemmata Resultidentrm X � s(0) = X Provedin1lswap lswap(0; 1) = inflist(0; idnat; f lip) Provedlappnill nil <>l L = L Provedlonsta map(F; lonst(M)) = lonst(F (M)) Provedlonstaddl addl(lonst(M); lonst(N)) = Provedlonst(M +N)lonstapp lonst(M) = lonst(M) <> L Provedlonsteven lonst(T) = map(even; jump(0; s(s(0)))) evenlem Provedlonstiter lonst(iterates(F; F (M))) = Provedlonst(map(F; iterates(F;M)))lonstzigzag lonst(N) = zigzag(lonst(N) :: nil; nil; nil) Provedlenlit length(lonst(M)) = length(iterates(F;N)) Provedlenlonst 1 = length(lonst(M)) Provedlenmapar length(map(F; L)) = length(L) Provedlplus0r N +l 0 = N Provedltimes2right X �l s(Y) = X +l X �l Y Provedmergedrop merge(merge(evenl(A); evenl(B)); Memorydrop(s(s(0)); merge(oddl(A); oddl(B)))) = Errordrop(s(s(0)); zigzag(A :: B :: nil; nil; nil))mergeolel merge(oddl(L); evenl(L)) = L Provedminus{pred pred(X �l Y) = pred(X)�l Y Provedmap2thm map2(F;map2(G;L)) = map2(F ÆG;L) Provedmapaddl addl(L; L) = map(double; L) Provedmaparapp map(F; L1 <> L2) = Provedmap(F; L1) <> map(F; L2)maplonst map(�m:L <> m; lonst(M)) = Provedlonst(L <> M)natmap jump(0; s(0)) = 0 :: map(s; jump(0; s(0))) ProvedparityTeven even(N)) parity(T; L) = numparity(N;L) Def. ofBisimulationpluslplus A+l B = B + A Provedplus1right X + 0 = X Provedreplaelswap replae(A;B; lswap(A;B)) = lonst(A) FindingTransitionstonsttswap tonst(M) = tswap(M;M) Provedtiktok tik = map(flip; tok) SubstitutionErrortimes2right X � s(Y) = X +X � Y Provedtimesltimes X � Y = X �l Y BisimulationExplosionzerotimes2 X = 0 _ Y = 0) X � Y = 0 HypothesisHandling

232 Appendix B. ResultsB.4 Type Cheking TheoremsB.4.1 Development SetName Theorem Lemmata Resultbrsearh T : int) brsearh(T; nil) : list(int) Provedlswap M : int ^N : int) lswap(M;N) : list(int) Provedtonst N : inttonst(N) : binarytree(int) ProvedB.4.2 Test SetName Theorem Lemmata Resultapp{type M : int ^N : int)M <> N : list(int) Proveddpsearh T : tree(int)) dpsearh(T; nil) : list(int) MemoryErrorin1typ A : int ^H : (int! int) ^ T : (int! int)) Failedinflist(A;H; T) : list(int)iterates M : int ^ F : (int! int)) Provediterates(F;M) : list(int)lonst M : int) lonst(M) : list(int) Provedmap{type F : (int! int) ^ L : list(int)) Provedmap(F; L) : list(int) Failedones{type ones : list(int)tswap M : int ^N : int) Provedtswap(M;N) : binarytree(int)B.5 LemmataB.5.1 Standard LemmataThese are all speial ases of the rules:f 0(X) = Xf s(N)(X) = f(fN(X))fN((X)) = g(fN(X))where is a onstrutor and f and g are funtions.

B.5. Lemmata 233onapn (:: (H))0(X) = X(:: (H))s(N)(X) = H :: ((:: (H))N(X))onslem1 (:: (X))N(H :: T) = X :: ((:: (X))N(T))hitlem1 (map(F))N(map(F;X)) = map(F; (map(F))N(X))idnatapn idnatN (0) = 0idnatN (s(X)) = s(idnatN (X))mapapn (map(F))N(nil) = nil(map(F))N(H :: T) = FN(H) :: (map(F))N(T)plusapn (+A)N(0) = N � A(+A)N(s(X)) = s((+A)N(X))plusapn2thm (+X)N(X + Y) = X + ((+X)N(Y))(� � �)N (repeat apply) F 0(X) = XF s(N)(X) = F (FN(X))sapn s0(X) = Xss(N)(X) = s(sN (X))sapn2thm sN(s(X)) = s(sN(X))ssapn (s Æ s)0(X) = X(s Æ s)s(N)(X) = s(s((s Æ s)N(X))ssapn2thm (s Æ s)N(s(s(X))) = s(s((s Æ s)N(X)))timesapn (�0)N(X) = 0(�(s(X)))N(Y) = ((+Y)N(X � Y)) + ((�X)N(Y))timesapn2thm (�X)s(N)(Y) = X � ((�X)N(Y))It should be noted that some of these lemmata are not atually theorems(e.g. onslem1). These were only used when the list was ontained by a lengthfuntion so the atual value of the head was not important. This simplifyingassumption was used to avoid having to provide a large number of suh lemmatafor, say, length(L), length(map(F; L)) et. However this does highlight the needfor a lemma speulation riti where suh lemmata ould be speulated as neededrather than having to be supplied by hand.B.5.2 Other Lemmataompfun hF (G(X)); F ÆG(X)i 2�evenlem hT; even((s Æ s)N(0))i 2�evenlem2 h?; even(s((s Æ s)N(0)))i 2�oddlem h?; odd((s Æ s)N(0))i 2�oddlem2 hT; odd(s((s Æ s)N (0)))i 2�ssid s(s(X)) = s(s(X))

Appendix C
Program Traes

C.1 IntrodutionCoCLAM is built on top of the SICStus Prolog version of CLAM3 an implementa-tion of CLAM that inorporated the ritis mehanism developed by Ireland andBundy [Ireland & Bundy 96℄. This partiular version of CLAM has never beenmade generally available, although other versions (whih do not support ritis) areavailable from file://dream.dai.ed.a.uk/pub/oyster-lam/. Anyone wish-ing to obtain the ore ode for CLAM3 should ontat dream�dai.ed.a.uk.The additional ode for CoCLAM an be obtained fromhttp://dream.dai.ed.a.uk/systems/olam.This appendix shows traes of CoCLAM in operation, planning the proofs ofmap(F; iterates(F;X)) = iterates(F; F (X)) and h(F;X) = iterates(F;X) { boththese examples were disussed in hapter 3.C.2 Traes and PlansC.2.1 mapiter| ?- plan(iteratesa).loading thm(iteratesa)...doneiteratesa([℄)==>m:int=>f:(int=>int)=>iterates(f,f of m)=mapar(iterates(f,m),f)in int listSELECTED METHOD at depth 0: oindution_lts(union([range(int list-lam(m-int,lam\(f-(int=>int),related(iterates(f,f of m),mapar(iterates(f,m),f)))))℄),[℄)|iteratesa([1℄)|==>subset(union([range(int list-lam(m-int,lam(f-(int=>int),related(iterates(f,\f of m),mapar(iterates(f,m),f)))))℄),obs_fun of union([range(int list-lam(m-in\t,lam(f-(int=>int),related(iterates(f,f of m),mapar(iterates(f,m),f)))))℄))in \set(int list)|SELECTED METHOD at depth 1: gfp_membership(obs_fun)||iteratesa([1,1℄)||v0:ih(m:int=>f:(int=>int)=>related(iterates(f,f of m),mapar(iterates(f,m),f)\234

C.2. Traes and Plans 235)in int list)||==>m:int=>f:(int=>int)=>(at(iterates(f,f of m))and at(mapar(iterates(f,m),\f)))in int list||SELECTED METHOD at depth 2: intro1([iterates1-[1,1℄℄,[℄)|||iteratesa([1,1,1℄)|||v0:ih(m:int=>f:(int=>int)=>related(iterates(f,f(m)),mapar(iterates(f,m),f))\in int list)|||==>m:int=>f:(int=>int)=>(at(f(m)::iterates(f,f(f(m))))and at(mapar(iterat\es(f,m),f)))in int list|||SELECTED METHOD at depth 3: intro1([iterates1-[1,1,2℄,mapar2-[1,2℄℄,[℄)||||iteratesa([1,1,1,1℄)||||v0:ih(m:int=>f:(int=>int)=>related(iterates(f,f(m)),mapar(iterates(f,m),f)\)in int list)||||==>m:int=>f:(int=>int)=>(at(f(m)::iterates(f,f(f(m))))and at(f(m)::mapar\(iterates(f,f(m)),f)))in int list||||SELECTED METHOD at depth 4: transition([hd,tl℄)|||||iteratesa([2,1,1,1,1℄)|||||v0:ih(m:int=>f:(int=>int)=>related(iterates(f,f(m)),mapar(iterates(f,m),f\))in int list)|||||==>m:int=>f:(int=>int)=>related(iterates(\f/,f(``f({\m/})''<out>)),mapar(\iterates(\f/,``f({\m/})''<out>),\f/))in int list|||||TERMINATING METHOD at depth 5: fertilize(strong(v0))|||||iteratesa([1,1,1,1,1℄)|||||v0:ih(m:int=>f:(int=>int)=>related(iterates(f,f(m)),mapar(iterates(f,m),f\))in int list)|||||==>m:int=>f:(int=>int)=>related(f(\m/),f(\m/))in int|||||TERMINATING METHOD at depth 5: strong(f(\m/))Planning omplete for iteratesa--iteratesa:[m:int,f:int=>int℄|- iterates(f,f of m)=mapar(iterates(f,m),f)in int listoindution_lts(union([range(int list-lam(m-int,lam(f-(int=>int),related(iterat\es(f,f of m),mapar(iterates(f,m),f)))))℄),[℄) thengfp_membership(obs_fun) thenintro1([iterates1-[1,1℄℄,[℄) thenintro1([iterates1-[1,1,2℄,mapar2-[1,2℄℄,[℄) thentransition([hd,tl℄) then[strong(f(\m/)),fertilize(strong(v0))℄yes| ?-C.2.2 hiterates| ?- plan(hiterates).loading thm(hiterates)...donehiterates([℄)==>f:(int=>int)=>x:int=>h(f,x)=iterates(f,x)in int listSELECTED METHOD at depth 0: oindution_lts(union([range(int list-lam(f-(int=>i\nt),lam(x-int,related(h(f,x),iterates(f,x)))))℄),[℄)|hiterates([1℄)|==>subset(union([range(int list-lam(f-(int=>int),lam(x-int,related(h(f,x),iter\ates(f,x)))))℄),obs_fun of union([range(int list-lam(f-(int=>int),lam(x-int,rel\ated(h(f,x),iterates(f,x)))))℄))in set(int list)|SELECTED METHOD at depth 1: gfp_membership(obs_fun)||hiterates([1,1℄)||v0:ih(f:(int=>int)=>x:int=>related(h(f,x),iterates(f,x))in int list)

236 Appendix C. Program Traes||==>f:(int=>int)=>x:int=>(at(h(f,x))and at(iterates(f,x)))in int list||SELECTED METHOD at depth 2: intro1([h1-[1,1℄℄,[℄)|||hiterates([1,1,1℄)|||v0:ih(f:(int=>int)=>x:int=>related(h(f,x),iterates(f,x))in int list)|||==>f:(int=>int)=>x:int=>(at(x::mapar(h(f,x),f))and at(iterates(f,x)))in i\nt list|||SELECTED METHOD at depth 3: intro1([iterates1-[1,2℄℄,[℄)||||hiterates([1,1,1,1℄)||||v0:ih(f:(int=>int)=>x:int=>related(h(f,x),iterates(f,x))in int list)||||==>f:(int=>int)=>x:int=>(at(x::mapar(h(f,x),f))and at(x::iterates(f,f(x)\)))in int list||||SELECTED METHOD at depth 4: transition([hd,tl℄)|||||hiterates([2,1,1,1,1℄)|||||v0:ih(f:(int=>int)=>x:int=>related(h(f,x),iterates(f,x))in int list)|||||==>f:(int=>int)=>x:int=>related(``mapar({h(\f/,\x/)},\f/)''<out>,iterates\(\f/,``f({\x/})''<out>))in int list|||||SELECTED METHOD at depth 5: wave(sinkexp,[f:(int=>int)=>x:int=>related(``m\apar({h(\f/,\x/)},\f/)''<out>,iterates(\f/,\``f({x})''<out>/))in int list,b℄)||||||hiterates([1,2,1,1,1,1℄)||||||v0:ih(f:(int=>int)=>x:int=>related(h(f,x),iterates(f,x))in int list)||||||==>f:(int=>int)=>x:int=>related(``mapar({h(\f/,\x/)},\f/)''<out>,iterate\s(\f/,\``f({x})''<out>/))in int list>>>>> INVOKING revise-bisimulation CRITIC <<<<<SELECTED METHOD at depth 0: oindution_lts(union([range(int list-lam(v0-pnat,l\am(f-(int=>int),lam(x-int,related(appn(v0,mapar of f,h(f,x)),iterates(f,appn(v\0,f,x)))))))℄),[℄)|hiterates([1℄)|==>subset(union([range(int list-lam(v0-pnat,lam(f-(int=>int),lam(x-int,related\(appn(v0,mapar of f,h(f,x)),iterates(f,appn(v0,f,x)))))))℄),obs_fun of union([\range(int list-lam(v0-pnat,lam(f-(int=>int),lam(x-int,related(appn(v0,mapar of\f,h(f,x)),iterates(f,appn(v0,f,x)))))))℄))in set(int list)|SELECTED METHOD at depth 1: gfp_membership(obs_fun)||hiterates([1,1℄)||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar of f,h(f,x)),itera\tes(f,appn(v0,f,x)))in int list)||==>v0:pnat=>f:(int=>int)=>x:int=>(at(appn(v0,mapar of f,h(f,x)))and at(ite\rates(f,appn(v0,f,x))))in int list||SELECTED METHOD at depth 2: intro1([h1-[3,1,1℄,mapapn2-[1,1℄℄,[℄)|||hiterates([1,1,1℄)|||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar(f),h(f,x)),iterat\es(f,appn(v0,f,x)))in int list)|||==>v0:pnat=>f:(int=>int)=>x:int=>(at(appn(v0,f,x)::appn(v0,mapar(f),mapar\(h(f,x),f)))and at(iterates(f,appn(v0,f,x))))in int list|||SELECTED METHOD at depth 3: intro1([iterates1-[1,2℄℄,[℄)||||hiterates([1,1,1,1℄)||||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar(f),h(f,x)),itera\tes(f,appn(v0,f,x)))in int list)||||==>v0:pnat=>f:(int=>int)=>x:int=>(at(appn(v0,f,x)::appn(v0,mapar(f),mapa\r(h(f,x),f)))and at(appn(v0,f,x)::iterates(f,f(appn(v0,f,x)))))in int list||||SELECTED METHOD at depth 4: transition([hd,tl℄)|||||hiterates([2,1,1,1,1℄)|||||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar(f),h(f,x)),iter\ates(f,appn(v0,f,x)))in int list)|||||==>v0:pnat=>f:(int=>int)=>x:int=>related(appn(\v0/,mapar(\f/),``mapar({h\(\f/,\x/)},\f/)''<out>),iterates(\f/,``f({appn(\v0/,\f/,\x/)})''<out>))in int l\ist|||||SELECTED METHOD at depth 5: wave([1,1,2,2,2,2,2,2℄,[hitlem1,equ(left)℄)||||||hiterates([1,2,1,1,1,1℄)||||||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar(f),h(f,x)),ite\rates(f,appn(v0,f,x)))in int list)||||||==>v0:pnat=>f:(int=>int)=>x:int=>related(``mapar(\f/,{appn(\v0/,mapar(\\f/),h(\f/,\x/))})''<out>,iterates(\f/,``f({appn(\v0/,\f/,\x/)})''<out>))in int \list||||||TERMINATING METHOD at depth 6: fertilize(strong(v1))

C.2. Traes and Plans 237|||||hiterates([1,1,1,1,1℄)|||||v1:ih(v0:pnat=>f:(int=>int)=>x:int=>related(appn(v0,mapar(f),h(f,x)),iter\ates(f,appn(v0,f,x)))in int list)|||||==>v0:pnat=>f:(int=>int)=>x:int=>related(appn(\v0/,\f/,\x/),appn(\v0/,\f/,\\x/))in int|||||TERMINATING METHOD at depth 5: strong(appn(\v0/,\f/,\x/))Planning omplete for hiterates--hiterates:[f:int=>int,x:int℄|- h(f,x)=iterates(f,x)in int listoindution_lts(union([range(int list-lam(v0-pnat,lam(f-(int=>int),lam(x-int,re\lated(appn(v0,mapar of f,h(f,x)),iterates(f,appn(v0,f,x)))))))℄),[℄) thengfp_membership(obs_fun) thenintro1([h1-[3,1,1℄,mapapn2-[1,1℄℄,[℄) thenintro1([iterates1-[1,2℄℄,[℄) thentransition([hd,tl℄) then[strong(appn(\v0/,\f/,\x/)),wave([1,1,2,2,2,2,2,2℄,[hitlem1,equ(left)℄) thenfertilize(strong(v1))℄yes| ?-

Appendix DVarious Theorems with Proofs
D.1 Derived Inferene Rule for �Theorem D.1 81 � i � n: Vni=1hai; bii 2 R)8�:((ai �! a0i _ bi �! b0i))((ai �! a0i ^ bi �! b0i)^ha0i; b0ii 2 R[�))Sni=1hai; bii � hSni=1hai; bii[�i (D.1)Proof. The preonditions imply that for all ha; bi 2 Sni=1hai; bii and for all �if a �! a0 there is a b0 with b �! b0 and ha0; b0i 2 Sni=1hai; bii[�. This implies thatSni=1hai; bii � [Sni=1hai; bii[�℄ (by the de�nition of [� � �℄ from hapter 3).Similarly for all ha; bi 2 Sni=1hai; bii and for all � if b �! b0 there is a a0 witha �! a0 and ha0; b0i 2 Sni=1hai; bii[�,so hb0; a0i 2 (Sni=1hai; bii[�)op. This impliesthat hb; ai 2 [(Sni=1hai; bii[�)op℄ so Sni=1hai; bii � [(Sni=1hai; bii[�)op℄op.Hene R � [R[�℄ [[(R[�)op℄op, i.e. R � hR[�i (by de�nition of h� � �i).2D.2 Derived Inferene Rule for LlistD funTheorem D.281 � i � n:Vni=1hai; bii 2 R) hd(ai) = hd(bi) 81 � i � n:Vni=1hai; bii 2 R) htl(ai); tl(bi)i 2 RSni=1hai; bii � LlistD fun(Sni=1hai; bii) (D.2)Proof. The preonditions imply that for all ha; bi 2 Sni=1hai; bii hd(a) =hd(b) so ha; bi = hhd(a) :: tl(a); hd(a) :: tl(b)i and htl(a); tl(b)i 2 Sni=1hai; bii soha; bi 2 LlistD fun(Sni=1hai; bii) (by de�nition of LlistD fun) so Sni=1hai; bii �LlistD fun(Sni=1hai; bii). 238

D.3. Derived Inferene Rule for list fun 239D.3 Derived Inferene Rule for list funTheorem D.3 81 � i � n:Vni=1 ai 2 S) hd(ai) 2 U 81 � i � n:Vni=1 ai 2 S) tl(ai) 2 SSni=1faig � list fun(Sni=1faig; U) (D.3)Proof. The preonditions imply that for all a 2 Sni=1faig hd(a) 2 U andtl(a) 2 S so hd(a) :: tl(a) 2 list fun(Sni=1faig; U) (by de�nition of list fun) soS � list fun(S; U).2D.4 Derived Rule for IndutionTheorem D.4 l �! �) Vni=1((Pi(�)! Pi(l)))dTni=1fx j Pi(x)ge � Tni=1fx j Pi(x)g (D.4)Proof. Let a 2 dTni=1fx j Pi(x)ge then there is some � and a0 suh thata �! a0 and a0 2 Tni=1fx j Pi(x)g or a � ?. So if a �! a0, then Pi(a0) is true (forall i). By the above premises this implies that Pi(a) is true whih implies thata 2 Tni=1fx j Pi(x)g so dTni=1fx j Pi(x)ge 2 Tni=1fx j Pi(x)g.2

Appendix E
Verifying the Proof Plans in aTati{based Theorem Prover

E.1 IntrodutionThe objet of this appendix is to overview the work done towards linking CoCLAMwith the objet{level theorem prover Isabelle, in order to make use of the supportfor oindution present in Isabelle. This work is very preliminary.E.2 IsabelleIsabelle is a Generi Theorem Prover [Paulson 94a℄. The intention is that proofsin Isabelle are not tied to any one logi or formal system, but that the user mayde�ne their own logis as they may be appropriate, via the use of theory �les.Isabelle omes with several di�erent logis and pakages ontaining de�nitions,objet{level inferene rules and lemmas.The di�erent objet{logis are de�ned in the Isabelle meta{logi and objet{level proofs are built up using meta{level rules. Proof onstrution in Isabelle isbased on resolution and uses proof tatis.Eah use of a meta{level axiom orresponds to the appliation of an objet{level rule. The meta{logi is de�ned by a olletion of inferene rules, inludingequational rules for the �{alulus and logial rules. Proofs performed using theprimitive meta{rules would be lengthy so Isabelle often uses derived rules e.g.resolution.E.2.1 Tatis and TatialsThe proess of proof in Isabelle an be forwards or bakwards as in HOL. Coin-dutive proofs as planned by CoCLAM are bakwards. Eah resolution step is a240

E.3. Linking CoCLAM to Isabelle 241ase of resolving one of the objet level inferene rules with the urrent proof state,to produe a new proof state analogous to appliation of that rule at the objetlevel.Tatis are built up out of sets of rules. In Isabelle they at diretly on theproof state, or the set of subgoals rather than upon theorems. An Isabelle tatiis a funtion that takes a proof state and returns a sequene of possible suessorstates. Isabelle represents proof states as theorems. Some of these tatis areextremely powerful and allow theorems to be proved with minimal interation.Most proofs make heavy use of resolution and oindutive proofs are no exep-tion. As a result one of the entral tatis is resolve_ta:\resolve_ta thms i is the basi resolution tati, used for most proofsteps. The thms represent objet{rules, whih are resolved againstsubgoal i of the proof state. For eah rule, resolution forms next statesby unifying the onlusion with the subgoal and inserting instantiatedpremises in its plae. A rule an admit many higher{order uni�ers. Thetati fails if none of the rules generates next states." [Paulson 94a℄An example of a partiularly powerful tati is the simpli�ation tati whihperforms numerous proesses suh as redution et. The tati simp_ta ss isimpli�es subgoal i using the rules in ss. ss is a simpset. A simpset onsists ofsets of rewrite rules, ongruene rules, a subgoaler, solver and looper. These omeas defaults with Isabelle's supplied logis, although further equivalenes an beadded using the ommand addsimps. simp_ta is very powerful and an solve alarge number of omplex goals.Isabelle doesn't supply the user with any trae of the proof proess, beyond thetatis supplied by the user and this an sometimes be a disadvantage. There area number of tatis that break down simp_ta into smaller steps so the proessan be viewed in more detail.An overview of Isabelle's oindution pakage was presented in hapter 8.E.3 Linking CoCLAM to IsabelleA prototype translator was developed whih took sequenes of CoCLAM proofmethod alls and translated them into sequenes of Isabelle tati alls. Consider-able further work needs to be done for this link to work without user interventionon a wide range of theorems.Ideally a full link up between the two systems would allow a user to speify aproblem in Isabelle whih would then all CoCLAM to make a proof plan whihould then be re{applied to the Isabelle problem. A more modest approah wasadopted of taking a CoCLAM proof plan for a goal spei�ed in CoCLAM andtranslating both the goal and the plan into Isabelle syntax (i.e. the translationonly goes one way fromCoCLAM to Isabelle). This translation mehanism requiredthree basi omponents.

242 Appendix E. Verifying the Proof Plans in a Tati{based Theorem Prover1. A translation of objet level CoCLAM terms to objet level Isabelle terms.2. A translation ofCoCLAM rule/theorem names to Isabelle rule/theorem names3. Provision of Isabelle tatis orresponding to the CoCLAM methods (inthe basi implementation desribed here these tatis were omposed of se-quenes of tatis already present in Isabelle).E.3.1 Translating Objet Level Terms and RulesMost of the basi translation was fairly simple. A database of equivalent funtionnames were supplied (e.g. CoCLAM 's map funtion has the same introdutionrules as Isabelle's lmap), variable names were preserved and the term struturehanged from an unurried to a urried format. An extension of this, of ourse,would be for CoCLAM 's funtions to be rede�ned in Isabelle automatially ratherthan relying upon a pre{spei�ed set of equivalenes.The only translation that was at all ompliated was between the representa-tions of bisimulations. CoCLAM uses a fairly ompliated representation partlybeause of the diÆulties of dealing with higher order information.Free VariablesVariable naming onventions are di�erent in CoCLAM and Isabelle. More sig-ni�antly the two systems hoose to rename and standardise apart variables atdi�erent points in the proof proess. This remains the biggest hurdle in providinga fully automated link. It is hard to provide appropriate substitution instanesfor higher{order uni�ation to those tatis that require them.E.3.2 Implementation: Providing Tatis for the MethodsThe Isabelle tatis developed for CoCLAM methods are summarised by the fol-lowing table.Method TatiCoindution(R) by (res_inst_ta [("r", " tran(R) ")℄llist_equalityI i);by (REPEAT (resolve_ta [UN1_I, rangeI, UnI1℄ i));Gfp Membership by (safe_ta set_s);Transition([nil℄) No tatiTransition([hd, tl℄) by (rta llistD_Fun_LCons_Case_I i);Fertilize by (REPEAT(resolve_ta [UN1_I RS UnI1, UN1_I, rangeI℄ i));Reexivity by ((rta llistD_Fun_range_I i)ORELSE (Simp_ta i);Eval def(Rule) by (rta Rule i);

E.3. Linking CoCLAM to Isabelle 243Method TatiWave(Rule) by (res_inst_ta Insts Rule i); with UserIntervention providing the set of variableinstantiations, InstsEval(Rules, Cases) by (res_inst_ta Insts Rule i); with UserIntervention suppling the set of variableinstantiations, Insts,and Rule 2 RulesIf ase splits are involved addby (res_inst_ta Insts llistE i); with UserIntervention suppling the set of variableinstantiations, Instsby (eta ssubst i);by (eta ssubst (i+1));Note that most of the rules ontain information on whih subgoal they are tobe applied, (i, (i+1), et.). tran(R) represents the translation of R in CLAMsyntax into Isabelle syntax. The need for a user to intervene in the Wave and Evaltatis and supply Insts is beause CLAM identi�es redexes by position in theterm while the built{in Isabelle tatis used identify them by pattern mathing.This is not a requirement of the translation just an implementation detail of theone undertaken.The rest of this setion disusses some of the methods with their tatis andfurther work needed for their implementation.The Coindution MethodReall that the Coindution Method applies the rulehl1; l2i 2 R R � hR[�il1 � l2supplying an instantiation for R and assuming that the �rst premise is automati-ally disharged.The oindution rule for bisimilarity in Isabelle/HOL is alled llist_equalityIand is the rule: hl1; l2i : R R � llistD fun(R[rng(�x:hx; xi))l1 = l2 (E.1)These two rules an be shown to be equivalent for lazy lists.An instantiation for R is provided by the proof method (one translated intoan Isabelle Objet Term). So the tati res_inst_ta is used whih appliesresolution with substitution information supplied by the user.As stated in hapter 5, the oindution method also assumes that the �rstpremise of the oindution rule will be disharged. This involves showing that some

244 Appendix E. Verifying the Proof Plans in a Tati{based Theorem Proverpair, hl1; l2i, is an element of some set fh�1(�x); 1(�x)ig[� � �[fh�n(�x); n(�x)ig. Thisan be done by resolution with standard set theoreti axioms already implementedin Isabelle/HOL.The Gfp Membership MethodThe translation from R � LlistD fun(R) an be handled automatially by thesafe_ta tati, using the set of de�nitions and derived rules in Isabelle's set_s.safe_ta is a deterministi tati, with at most one outome. It applies \safesteps" to the goal. Safe steps are a loosely de�ned lass of rules that may beperformed blindly. They inlude proof by assumption and Modus Ponens. No safestep instantiates unknowns. set_s is a olletion of rules for the propositionaland higher order logis extended with rules for bounded quanti�ers, subsets, om-prehensions, unions and intersetions, omplements, �nite sets, images and ranges.RewritingThere are several rewriting methods implemented in CoCLAM . Coindution usesthree: Evaluate, Wave and Eval def. Although Isabelle ontains a rewriting tati,rewrite_ta, this attempts to unfold all ourrenes of a funtion and so annotope with de�nitions that an be in�nitely unfolded (e.g. lonst and iterates).To apply just one rewrite (in the way the Wave and Eval def methods do) it isneessary to use resolution. Sometimes there is a hoie, however, of where arewrite rule may apply. For instane, in the goalhiterates(F; F (M)); map(F; iterates(F;M))i :llistD fun(fhiterates(F 0; F 0(M 0)); map(F 0; iterates(F 0;M 0))ig [rng(�x:hx; xi))(E.2)the de�nition of iterates:iterates(F;M);M :: iterates(F; F (M)) (E.3)an apply to either iterates(F 0; F 0(M 0)) or iterates(F 0;M 0). Moreover one ap-plied to one of these expressions it an be applied to a sub{expression of therewritten expression. Hene resolution, applied blindly, an be non{terminating.This means the res_inst_ta tati needs to be used to guide the appliationof (E.3) by nominating variable instantiations, whih, in turn, means that thetranslator has to supply substitution information.This raised several problems. The various rewriting methods implemented inCoCLAM speify the position of a sub{term to be rewritten rather than providingany substitution information. Moreover, even if they were modi�ed to providesuh information there would remain problems in translating CoCLAM objet{level term names to Isabelle objet{level term names beause of the inonsistentrenaming of variables.

E.4. Conlusion 245The desirable solution would be to implement a new tati in Isabelle thatperformed rewriting based on position information rather than substitution infor-mation. This wasn't ahieved and would be the next task to be undertaken inproviding a link.Case SplitsThe Eval method may also require ase-splitting to be performed. This was doneusing resolution with the rule, llistE:l = nil) P l = x :: l0) PP (E.4)As with the rewriting tati additional substitution information frequently has tobe supplied by the user.by (eta ssubst 1) was used to replae l = nil) � and l = x :: l0) �with �[l=nil℄ and �[l=x :: l0℄. ssubst is a substitution rule. eta performs Elim{resolution. Elim{resolution seeks to eliminate a premise (by assumption). Thisan be used to guide the hoie of instantiations.TransitionsSine only lazy lists were being onsidered only three transitions were possiblenil! , hd! and tl!. Of these hd! and tl! always our together. Sine the atualformalisation being used by Isabelle isn't that of labelled transitions systems, noexpliit analysis transitions was involved. However Isabelle had to be providedwith a new rule llistD_Fun_LCons_Case_I whih asserts thath1 = h2 ht1; t2i : Rhh1 :: t1; h2 :: t2i : llistD Fun(R) (E.5)This proved simple to derive in Isabelle.E.4 ConlusionThis is the extent of the urrent work on linking CoCLAM to an objet{leveltheorem prover. Obviously a great deal more work needs to be done before this isa suÆiently robust system to test the proof plans CoCLAM has generated.

Appendix F
Proof Comparisons

F.1 IntrodutionThis appendix lists the omparison patterns that were disussed in hapter 10.It does this by the use of tables (like abstrated versions of those shown in thathapter) whih attempt to list the sequene proof methods without giving anyof the details. The intention is simply to present the raw data from whih theonlusions in hapter 10 were drawn.The theorems were drawn from those that CoCLAM suessfully planned, how-ever the plans shown here are not neessarily those produed by CLAM andCoCLAM . This is for a number of reasons. CLAM annot handle several of thetheorems proved using nth sine it an't ope with \list generators". In severalases additional lemmata (suh as 0 + X ; X) have been used in the proofs toavoid the need to disuss ritis et. when the objet of the exerise was to lookat the shape of the proofs in a general way, not in a CLAM spei� way. Thishas made some plans simpler than those produed by CoCLAM . In all ases, ifa lemma was available to one proof (e.g. the indutive proof) then it was alsoavailable for the oindutive proof.F.2 Comparisons Using Type ChangesF.2.1 Pattern 1In the �rst pattern the indutive base ase is assoiated with the oindutive \basease" produed by the asesplit. The pattern has been abstrated over all threelazy types, this aused diÆulties when trying to represent parts of the patternthat involved ases and transitions. The ases aused by heads of lists are plaedin brakets and do not appear in proof plans involving natural numbers.246

F.2. Comparisons Using Type Changes 247Indution CoindutionCasesplitBase Case Nil/0 CaseRewrite(Head Transition) Destrutor TransitionRewriteReexivityStep Case Construtor CaseRewriteCanel Construtor (Head Transition) Destrutor TransitionRewrite(Reexivity) Fertilize (Reexivity) Fertilize
The theorems that displayed this pattern are listed below. They are referredto by the names used in appendix B.app1right appatendassonsapp attenexplodehalfdouble lappnilllappnilr lendoublelenmapar lplus0llplus0r mapipmapfold mapthmparityT0 plus1rightpluslem2 plusxxtimes2right

F.2.2 Pattern 2The seond pattern is very similar to the �rst exept that here in the \base ase"transitions are not taken but arguments about the determinay of the transitionsystem. This is used when the base ase has redued to a ase whih isn't avalue. e.g. map(f; nil <> l) = map(f; nil) <> map(f; l) redues to map(f; l) =map(f; l) this is proved in indution by the reexivity of equals, but in oindutionthe goal is map(f; l) �! �^map(f; l) �! ^ h�; i 2 R. CoCLAM would performfurther asesplits on l and use redution to determine transitions, however it isalso possible to argue, from the determinay of the transition system that all theresults of transitions from map(f; l) will be related by �. It is this ourse that hasbeen taken here.

248 Appendix F. Proof ComparisonsIndution CoindutionCasesplitBase Case Nil/0 CaseRewriteReexivity Determinay ArgumentsStep Case Construtor CaseRewriteCanel Construtor (Head Transition) Destrutor TransitionRewrite(Reexivity) Fertilize (Reexivity) FertilizeThe theorems exhibiting this proof pattern were:assapp asspomapp ompomp2 halfplus2lenplus maparappmapapp plus2rightF.2.3 Pattern 3In pattern 3, oindution is using two pair shema (indiated by the twoolumns under oindution in the pattern), however the seond pair shemais idential to the �rst exept that there is an extra outer onstrutor (e.g.fhdouble(N); N +Nig [fhs(double(N)); s(N +N)ig). No rewriting is requiredon this seond pair sheme to determine the transitions and one determined itfertilizes immediately. In the indutive ase the onstrutor is anelled twie.Indution CoindutionCasesplitBase Case Nil/0 CaseRewrite Nil/0 transitionReexivityStep Case Construtor CaseRewriteCanel Constr. Twie (Hd Trans.) Dest. Trans. (Hd Trans.) Dest. Trans.Rewrite(Reexivity) Fertilize (Reexivity) Fertilize (Reexivity) FertilizeThe theorems exhibiting this proof pattern were:doublehalfdoubleplusdoubletimes1doubletimes2mergeolel

F.2. Comparisons Using Type Changes 249F.2.4 Pattern 4Pattern 4 links two other patterns together by extra pair shema (in Coindution)and a seondary indution in the step ase (in indution). The two patternsare referred to as Pattern A and Pattern B below, however the last few steps(involving the step/onstrutor ases) of pattern A are shown to illustrate wherea new indution ours in plae of a fertilize step.Indution CoindutionCasesplitPattern AStep Case Construtor CaseRewriteCanel Construtor (Head Transition) Destrutor TransitionRewrite(Reexivity) Indution (Reexivity) FertilizePattern B Pattern BThe theorems exhibiting this proof pattern were:gordon1map2thmmapaddlmapdoublemapidF.2.5 Pattern 5Pattern 5 links two other patterns together by a seond asesplit (in Coindution)and a seondary indution in the base ase (in indution). In this ase only thestep/onstrutor ase part of one of the patterns is used.Indution CoindutionCasesplitBase Case Nil/0 CaseIndution 2 Casesplit 2Pattern AStep Case Construtor CaseStep/Construtor Case Pattern BThe theorems exhibiting this proof pattern were:applappasslappasslplusomlpluspluslplus

250 Appendix F. Proof ComparisonsF.2.6 Canellation of +times2right was the only theorem that didn't �t into any of these patterns. Hereindution used anellation with + while oindution was fored to perform gen-eralisations to enable the proof to go through.F.3 Comparisons Using nthF.3.1 Pattern 1This ase is very similar to Pattern 1 for type hanges.Indution CoindutionBase Case Step Case CasesplitNil CaseRewritenth(0) nth(s) Head Transition Tail TransitionReexivityConstrutor CaseRewritenth(0) nth(s) Head Transition Tail TransitionRewriteReexivity Fertilize Reexivity FertilizeThe theorems exhibiting this proof pattern were:app1right appatendassonsapp asslappattenexplode lappnilllappnilr mapfoldmapip mapthmF.3.2 Pattern 2Pattern 2 is the ase for those theorems involving list generators, so no asesplittingis involved in the proof.Indution CoindutionBase Case Step Case Rewritenth(0) nth(s) Head Transition Tail TransitionRewriteReexivity Fertilize Reexivity Fertilize

F.3. Comparisons Using nth 251The theorems exhibiting this proof pattern were:appiterates dpbrtonstdptonst everylswaplonsta lonstaddllonstapp map�n1mapiter oneslonstF.3.3 Pattern 3Pattern 3 is similar to Pattern 2 for type hanges.Indution CoindutionBase Case Step Case CasesplitNil CaseRewriteReexivity Reexivity Determinay ArgumentsConstrutor CaseRewritenth(0) nth(s) Head Transition Tail TransitionRewriteReexivity Fertilize Reexivity FertilizeThe theorems exhibiting this proof pattern were:assappomaddlgordon1mapaddlmaparappmaplonstF.3.4 Pattern 4Pattern 4 joins two patterns together muh as Pattern 3 in type heking does.Indution CoindutionPattern Anth(0) nth(s) Head Transition Tail TransitionRewriteReexivity Indution 2 Reexivity FertilizePattern B Pattern BThe theorems exhibiting this proof pattern were:

252 Appendix F. Proof Comparisonsdpsearhl in1lswapin1nat lonstzigzaglswaplonst lswaplmergemapdouble mapidnatmapiter2 mergeolelF.3.5 Pattern 5Pattern 5 generalises the onjeture �rst for indution and uses a generalisationin the pair shema it then proeeds aording to one of the other patternsGeneraliseIndution Coindution GeneralisedPatternThe theorems exhibiting this proof pattern were:applapplonstevenhiteratesin1lonstnat1natmap

