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Abstract

The ferroglectric phase transition in KD,PO 4 hee been studied using
coherent neutron inelastic scatiering, The low frequency phonon
dispereion relations were determined in the two principal symmetry
directions, The results were fitted to a central foree rigid ion model
which gave good agreement with the acoustic branches and the lowest
frequency optic branches, Gyroup theory was used to simplify all
calculations, None of the phonon modes was temperature dependent and
therefore the ferroelectric transition was not caused by a soft mode.
Quasi-elastic eritical scattering was observed, the intensity of which
increased as the transition temperature was approached, The scattering
extended throughout each Brillouin zone and was peaked at reciprocal
lattice points, The variation of the intensity in the scattering plane
showed that the displacements of the atoms in the ferroeleciric fluctuations
were similar to those relating the paraelectric and ferroeleciric phases.
The distribution of the intensity arcund each reciprocal laitice point showed
the effect of the macroscopie field asscciated with the ferroelectric
fluctuations, A simple Ising model with next nearest neighbour and
Coulomb interactions described the results well, A miecroscopic model
for KDP type crystals is proposed, 7The model neglectis all dynamic
effects, deseribes the experimental results and shows that the interaction

of the phonons with the ferrvelectric fluctuations is of more importance
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than previously thought. The model also predicts the shape of ferro-
electric eritical scatteriug in other ferroelectric and antiferroelectrie

KDP type erystals,
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1. Introduction

A ferroelectric transition is one of the phase transitions which may
occur in erystals. It is a transition in which a high temperature
paraelectric phase, having no eleetric polarisation, becomes, at lower
temperatures, a ferroelectriec phase, exhibiting a reversible spontaneous
polarisation, The temperature at which the transition oceurs is called

the Curie temperature,

Ferroelectric crystals are divided into the two types displacive and
order-disorder. The former class is characterised by small
displacements. That is to say, the difference between the crystal
structure of the two phases may be described by small displacements of
some or all of the atoms. Order-disorder ferroelectrics are charac-~
terised by large displacements of atoms or molecules, In displacive
ferroelectrice it is believed that the energy of a particular normal mode
of vibration in the paraelectric phase approaches zero as & fimetion of
temperature (Cochran, 1860), There is an unstable, or soft, normal
mode called in this case a ferroelectric mode. In order-disorder
ferroelectrics the atoms or molecules become ordered below the
transition temperature on only cne of the high temperature equilibrium
sites. It has been found that the formalism of the Ising model is suitable

for describing these ferroelectirice (Yamada and Yamada, 1867).

Crystals of potassium dihydrogen phosphate KH,PO 4 (abbreviated
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KDP) and some isomorphous erystals become ferroelectric, They
display the characieristics of both displacive and order-disorder types,
small displacements of the potassium and phosphorus atoms along the
ferroelectric axis and large displacements of the protons between the two
possible sites along a line almost perpendicular to the ferroelectric axis
(Bacon and Pease, 1953, 1855), Crystals of the isomorphous

NH_ H PO *(ADP) are however antiferroelectric. The erystal structure

4 2
below the transition temperature has not been determined,

The early theories of the phase-transition and the properties of KDP
type crystals have been adesquately reviewed by Megaw (1957) and Jona
and Shirane (1982), Some of the theoretical and recent experimental
work on these erystals which is of interest in introducing the present

research will be mentioned here,

Paraelectrie KDP crystals have the tetragonal piezoelectric non-polar
space group [42d, the tetrad axis becoming the ferroelectric axis in the
low temperature phase, whose space group is the polar Fdd2, The

structure and group theory of KDP are discussed in appendix 1.

The firet theories of KDP erystals considered the energies of possible
configurations of the four protons surrounding one PO 4 Eroup. Initially
only short range interactions between configurations with two protons

close to a PO 4 Sroup were considered (Slater, 19841), Later modifications
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(Takagi, 1848; Grindlay et al., 1959; Senko, 1961 Silsbee et al,, 1964)
considered the remaining configurations and in order to explain the isotope
effect on the transiticn, or Curie temperature, included long range
dipcle-dipole interactions., Farameters fitted to the isotope effect on

one property were used to predict that on another property, Upon
deuteration the Curie temperature T = 123°K (KDP) becomes 222°K

(KDZP() 4 ©F DXDP) (Sliker and Burlage, 1963).

Pirenne (1949, 1855) however, chose to think of the proten moving in an
anharmonic potential well in order to explain the isotope effaet quantum
mechanically, Silsbee et al (1964) using the Slater-Takagi theory
cescribed the isotope effect in terms of the distance of the preion or

deuteron from the centre of the bond,

A totally different approach was used by Cochran (1861)., In order to
account for the behaviour of the dielsetric constant in the same way as
for true displacive ferrcelectrics 2 low frequency ferroelestric phonon
mede in KDP type crystals was proposed. Unlike the other theories
this desceription could elegantly account qualitatively for the antiferro-
electric transition in ADP. The dielectric susceptibility measurements
of Hill and Ichiki (1963) however can only be described by a Caussian
distribution of relaxation times in a Debye formula rather than a single
relaxation time for a unique exeitation, The form of the dieleectric

susceptibility may be generalised to any distribution of relaxation times
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to deseribe other ferroelectrics (Matsubara and Yoshimitsu, 1967). The
distribution of relaxation times may, however, be specimen dependent
and it may therefore be valid to propose a single mode in order to

describe the dielectric susceptibility.

Infra-red spectra of hydrogen-bonded ferrcelectirics led Elinc (1960)
to use Pirenne's model for the case of a double minimum potential. He
developed the idea of protons tunnelling in the potential well, This
tunnelling deecription was devaloped (Elinc and Ribarie, 1863; Blinc and
Svetina, 18635, 1966; Tokunaga, 1968) to include short and long range
proton-proton interactions as well as proton-lattice interactions., These
latter interactions are cbviously necessery in any theory deseribing
principally the proton order-discorder, as the protons themselves

contribute very little to the spontaneous polarisation.

A more easy-to-see-what's-going-on fictitious spin § notation was
introduced by de Gennes (1963) who was then able to show the form of
the collective excitations in the system, De Gennes stated that his
model could produce an antiferroelectric transition, arising in the same
way as Cochran's transition. Xobayashi (1966) is the only recent author
who has mentioned this point but his reasoning is regarded as being
incorrect (chapter 6). De Cennes predicted that the neutron scattering
from DKDP would be quasielastic due to the low tunnelling frequency and

that from KDF a broad spectrum centred around zero frequency would be
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cbserved., Several authors (Brout et al., 1966; Villain and Stamenkovic,
1968; Tokunaga and Matsubara, 1866) then showed that the collective
excitations are soft modes in the samne sense as the ferroelectric phonon
modes, so (hat some low frequency excitation is expected near Tc in the
paraelectric phase. The effect of proton-lattice interaction on this
excitation has been discussed by Villain and Stamenkovic (1366),

Novakovie (1967) and recently by Kobayashi (1968).

Conclusive evidence on dynamic tunnelling has been hard to obtain.
The experimental pressure dependence of Tc (Samara, 1967; Umebayashi
et al., 1967) was claimed as evidence, but it could also be explained by
a shift of proten position (Silsbee et al., 1964). Magnetic resonance
experiments, however, indicated that the protons and deuterons do in
fact jump along the hydrogan bonds in the paraelectric phase at frequencies
greater than 10°Hz (for deuterons) (Schmidt and Uehling, 1962;
Bjorkstam, 1367; Blinc et al., 1867). The units of energy used here
will normally be THz (lolzc/s). Early calculations of tunnelling
frequencies (Baker, 1956; 1, 5THz, KDP; 0. 03THr, DEDP) indicated that
even the KDF excitations would not be accessible in the usual infra-red
frequency range. Martin and Stone (1963) however showed that there
was some very heavily damped excitation appearing in both KDP and ADP
below 50em™> (1. 5THz). More precise infra-red work (Barker and
Tinkham, 1983) showed that in EDP the low frequency excitation was

overdamped and that it accounted for the high c-axis dielectric constant,
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The a-axis measurements, however, did not show the low frequency

excitation necessary to explain the a-axis dielectric constant,

Neutron spectroscopic measurements on KDP have been of the
incoherent scattering using mainly time of flight techniques (Imry et al,,
1967; Bline et al,, 1987; Schenk et al,, 1968}, although Plesser and
Stiller (1968) used a triple axis instrument to investigate inecherent
elastic scattering. From these experiments the only firm conclusion
is that there is some temperature dependent inelastic scattering at

frequencies less than 1, 5THz for KDP,

The nature of the transition was determined to be second order for
KDP and first order for DKDP from gpecific heat measurements (Reese
and May 1967, 1968), in agreement with the conclusions from measurement
of the anomalous elastic constant (KDP, Brody and Cummins, 1968;

DKDP, Litov and Uehling, 1368), These latter measurements on DKDP
show that the transition is almost second order (measurements to 0, 05°K
below T e) rather than decidedly first order as implied by BEjorkstam's

(1987) more coarsely temperature controlled measurements (coexistence

of magnetic resonance spectra of both phases within T .2 0.5 K).

The present experimental work was designed to study the férroelectric
transition in K¥DDP and in particular to {ind the ferroelectric mode in KDP
and to determine its nature. It was decided to make use of eoherent

neutron scattering experiments and in order to avoid excessive
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incoherent geattering the crystal used was DKDP, Some later experiments

were performed on KDP,

The experimental work and resulis are described in the next chapter.
The work includes the measurement of the dispersion relations of several
low frequency phonon branches in the two principal symmetry directions,
as well as a study of the very low frequency (quasi-elastic) eritical
scattering nssociated with the t{ransition, Chapter three deals with the
models used to describe the phonon dispersion relations and with
associated caleulations to fit the experimental data, The greup theoretical
technigues used in the calculations are described in the first appendix,
Attempis at fitting the critical scattering to various models are discussed

in chapter four and chapter five presents a mieroscopic model of KDP

type crystals.

The final chapter includes & discussion of the model and how well it
applies to DKDP. It is shown that the model may also be used to describe
the recent resulis of Meister et al, (1989) on DADP and furthermore from
the dielectric constants of the erystal the model predicts the shape of

additional neutron scattering in DADP,

In the second appendix are described experiments performed in an
att empt to find a soft mode in a cuvbie displacive ferroelectric, work

which was performed before that on KDP,
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2. Experimental Resultls

2,1 Experimental details

Three single crystals supplied by Isomet Corp. U,8,A, were used in
the experiments. The 9.5 g, KﬁP erystal was approximately cubic with
a volume of 3,8 em.>. The first DKDP crystal obtained, weighing 17.8 g.,
was approximately cubic with a volume of 7.2 em. ? and the second DEKDP
crystal (63.5 g.) was a cylinder, § em, long and 2, 5 em, diameter whose
axie was the ¢-axis of the crysial. It was claimed that the DKDP crystals
were of high purity. The room femperature unit cell dimensions used
for the crystals were a = b = 7,453 &, ¢ = 6,975 & (KDP) and

4]
a=b=7.468 A, ¢ = 6.974 A (DKDP),

X-ray Laue photographs together with neutron elastic scatiering
experiments performed at A, ¥, R, E, Harwell showed the orientations of
the KI'P and gmall DKDF crystals. The crystal faces were approximately
perpendicular fo the unit cell axes, A comparison of the integrated
intenaities (I) of the 004 reflection from both crystals using the relation
(Bacon, 1962)

1¢ w® v
where the volumes of the crystals (V) were known and the structure
factors I had been calculated, indicated that the small DEDP erystal did
contain an unlnown percentage of deuterium. A calibration was not done

with a standard extinction free erystal and so the absolute values of the
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intensities could not be calculated, The effects of extinction were
therefore unlmown and it is surprising that the ratio of the stracture
factors agreed to within 6% of the caleulated value for a fully deuterated
DEDP erystal, The orientation of the large DKDP crystal was determined
at A, B, C, L, Chalk River. The Curie temperature for the larger DKDP
crystal (chapter 4) showed that it was fully deuterated (+ 5%). The
mosaic spreads of the three erysials were 0, 20 0.15° and ©,15° full

width at half maximum (FWHM) measured against the (111) planes of an

aluminium rmonochromator of mosale spread less than 0, AT

Preliminary investigations and alignment of the crystals were carried
out on three two-axis neutron spectrometers. All of the inelastic data
was obtained cn one triple axis speetrometer., The two axis spectrometers
were the Badger instruments on the DIDO reactor at A, E,R,E, Harwell
and one instrument on the NRX reactor at Chalk River. The angle between
the neutron beam emerging from the reactor and the beam diffracted by
the monochromator erystal (2 © M) was easily variable on the Chalk River
equipment, bui it was unnecessary to use this facility in the present work.
Two axis instruments have been adequately described by Bacon (1962),
The triple axis spectrometer used is at the C5 facility of the NRU reactor
at Chalk River, A detailed description of this instrument has been given

by Brockhouse (1961),

The constant energy and constant @ modes of operation of the



spectrometer were used in the experiments. The angle between the beam
scattered by the sample and the beam diffracted by the analyser crystal
(29 A) is not easily variable on the instrument and is therefore kept
constant for any series of measurements on one sample. Orientation of
the crystal speecimen is restricted to rotation about one (vertical) axis
(V') and therefore within the limits of the resolution of the spectrometer
the cbservable scatiering is confined to a plane. The momenta of the
neutrons which are incident on and scattered from the crystal, and then
observed,are therefore confined io one plane in the reciprocal space of
the crystal.  Coordinates in this plane are defined by (7, 7)) in
reciprocal lattice units, The angle between the incident and scattered
neutron beams is 05 . The constant energy mode involves variation of ¢
and ¥ only and gives the distribution of neutrons scattered with a fixed
energy transfor with a momentum transfer variable in any direction in
the scattering plane. The constant § mode requires variation of all
three angles 20, , ¢ and ¥ and gives the energy distribution of neutrons
scattered with a fixed momentuwrm transfer. The angular steps usually
selected are those which give constant energy step size, but in order to
keep within the resolution of the instrument on one hand, and not to do
unnecessary work on the other, steps of a constant 2 © wr value were used

in preliminary measurements over large energy ranges.

The resolution function of a triple axis spectrometer (Cooper and

Nathans, 1967) is particularly compliecated and must be taken into account
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when designing an experiment. The main factors which limit the
resclution obtainable are the time available for an experiment and
therefore the neutron flux of the reactor. With the limited time and
high flux available at the C5 faeility the experiment was designed to use
the (111) planes of both an aluminium monochromator erystal and a
squeezed germanium analyser erystal, The additional degreas of
freedom (2 6 A) and the collimation of the beams would enable the energy
resolution to be varied. The collimation was however, unaliered
throughout the measurements and is given in table 2,1, The design of
the spectrometer places a maximum limit on the ¢ angle (196°) and also

determines that 2 6, lies between 28° and 63°.

The low total neutron scaitering eross section of aluminium has led
to its general use as a material for encasing and mounting erystals in
neutron beams, All three crystals which required protection from
humidity were gealed in machined aluminium eylinders with narrow walls.
They were mounted on aluminium bases so that their orientations could
be adjusted by approximately five degrees about horizontal axes. The
crystals were mounted so thet (h0/) was the scattering plane, This
allowed measurement of phoncn dispersion relations in the two principal
symmetry directions (/\and > ) and also allowed observation of reciprocal
lattice points h0l with odd Miller indexes h and 4. (h +{ must be even),

The phase factors in the one phonon structure factor (Cochran and Cowley,
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1967) show that if the erystal were composed only of two simple body

to each other
centred tetragonal lattices relatsdlby ¢/ 2, then near these odd reciprocal
lattice points the optic modes would produce strong zeatiering,. These
points would not be seen in the (hh/) plane. The notation { ;" » 7 ) for the
scattering plane refers to the a* ( ;’ ) and ¢* (7 ) directions. The
reciprocal lattice points hk ! are written (h, £ ) in this notation where the

Miller indexes h, k and [ are integers.

Tor low temperature experiments the mounted and aligned erystals
were placed in 8" diameter aluminium crycstats designed for liquid
nitrogen use. The crystal was surrounded by an aluminium radiation
shield of approximately 5" diameter. Control and monitoring of the
temperature was arranged using three thermocouples, One sach was
attached to the radiation shield, the base and the crystal. The thermo-
couple on the base was used to control the temperature which eculd be
held constant to within 0, 2°K fos long periods. Liquid nitrogen was used
as the refrigerant for the KDP crysial but as the ligquid could not be
insulated from the crystal, dry ice (sclid (:02) was used as the refrigerant

for DKDP, which has a higher Curie temperature.

2.2 Phonon measurements

Prior to the neutron scattering experiments no work had been done
on the group theory of KDF al wave vectors other than zero or on a model

to predict phonon dispersion relations, Therefore apart from the simple
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rules of even / indexes for acoustic modes and odd £ indexes for optic
modes, derived from the one phonon structure factor, no information

was available which would assisi the planning of an experiment to observe
phonons in DKDP, It has been shown that group theory can by itself
predict the reciprocal lattice points around which it is best to look for a
phonon of particular symmetry (Elliott et al., 1967). In KDP this
information would have been useful to indicate where not to look for a
mode. There are, however, four different space groups sites occupied
by the atoms K, P, O and H and only a model of the lattice dynamics of
the crystal could produce useful predictions of structure factors for one
phonon seattering. As there are atoms on general positions in the unit
cell, the struecture zone which contains all the scattering information is
infinite in three directions, It is felt that the group thecretical techniques,
while worthwhile if the time is available before an experiment, provide
conly a little more information than the simple rules stated above. Group
theoretical techniques are, however, indispensible for the analysis of the

data.

The difference between the structures of paraelectric and ferroelectric
KDP gives displacements which may be interpreted as those of the ferro-
electric mode, Calculations (chapter 3) of the structure factors for this
mode were useful not for finding phonons but in interpreting the critical

scattering described in the next section.
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Preliminary measurements were made on the smaller DKDP erystal
of phonons propagating in the & and ¢ directions with frequencies up to
6THz, 26 ), Was chosen as 29, 58" so that the detected neutron energy
(El. momentwy k) was approximately 7THz., The incident neutron energy
(Eo) ranged from TTHz to 13THz corresponding to 2 Q‘M' angles of 42° 1o 29°
in the neutron energy loss experiments performed.

xw{g) - E -E, T U T e 7S
The resultant energy width of neutrons scattered incoherently and
elastically from a slab of vanadiurm was 2.5° in 2 BM or approximately
0. 75THe full width at half maxirum (FWHM). This width defines the
energy resolution available in the first series of experifnents. The
vanadium experiment serves as a check on the energy scale. The large
momentum transfers
Q * k-k TR SEIR R RS 1

available with these high incident energies enabled reciprocal lattice
vectors with § ’ = * less then approximately 45 to be reached for zero
energy transfer (a* and c* differ by only 7%). Measuremenis were taken
at 300°K around the reciprocal lattice points (¢) (002, 004, 105, 400, 402
and 501) in phenon momentum (g = Q - ) steps of 0. 2 reciprocal lattice
units in the ¢* (A ) and a* (3 } directions. While it is convenient to
describe T and q in reduced reciprocal lattice units hol and {( T, 7)

respectively, their units in any formulae are reciprocal length
o= (2:!" 0, E_E_&) and q = (2_1:.L. o 202,

(&
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The structure factor for one phonon coherent scattering includes a
term Q- E_K(gj), where gK(g) iz the g¢igenvector for the Kth atom in the
mode gj (Cochran and Cowley, 1967). Therefore, for the symmetry
directions /| and 3, when q is app.roximately perpend-icular to Q
transverse phonons scatter strongly and when q || Q longitudinal modes
gcatter strongly. This is certainly true when considering only the
motion of the ¥ and P atoms in the erystal, but as the oxygen atoms are
on general positions in the space group their motion is not restricted by
symmetry in any normal mode and s¢ the terms longitudinal and transverse
have no meaning for these atoms., For this reason scattering from the
longitudinal type modes may be geen in the transverse scatiering
configuration and vice versa. Also seattering from the transverse modes
with polarisation vectors for K and P restricted perpendicular to the
scattering plane may also be seen (figure 2. 7). For transverse acoustic
phonens (and for transverse optic phonons with a frequency gradient) the
resolution funetion of the spectrometer either focusses or defocusses the
energy distribution of the scattered neutrons (Cooper and Nathans, 1967),
An example of this focuseing is given in figure 2.1 where two of thé neutron

groups observed at (-0. 6, 4) are shown,

Neutron groups were observed in both transverse and longitudinal
configurations with some duplication, The experimental resulls are

summarised in figure 2, 2 which also shows the results of preliminary model
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calculations described in chapter 3. The larger DKDP erystal then
became available and it was used for h&gher resolution measurements of
the phonons. The structure factors caleulated from the above model were

found to be of no great value in assisting the experiment,

The resoclution for the second experimant was chosen with 26 5 * 43°

{El, 3. 9THz), For zeroc energy transfer 20 __ = 61, 6° and so only a very

M

limited range (0. 2THz) was available for energy gain experiments
(2 GM}mu = 83°). The width of the vanadium scattering was again 2. 5°

which at this 2°9__ corresponds to 0, 26THz (FWHM), The momentum

M
transfer, §, allowed corresponds to approximately g e 2 . less than 25,
Measurements were taken at 306°K in the zones around reciprocal lattice
points 002, 004, 103, 202, 204, 301, 400, 402 and 501. Results were
obtained at g intervals of 0.1 reciprocal lattice units in the \ and =
directions, Some measurements were alsc taken at wave vectors half
way between these values in attempts to clarify the results. The better
resolution of these measurements is indicated by showing again the neutron

groups at (-0, 6, 4) (figure 2. 3),

Not all of the neutron groups observed arise from one phonon coherent
scattering processes according to the conditions of equations 2,1 and 2, 2.
Several types of spurious processes give rise to neutron groups labelled
'spurions’., The absence of the {222) reflection from germanium single

crystals, due t{o space group rather than point group symmetry, prohibits
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gpurious seatiering processes with scattered wave vector 2k, For exarple
those pmeesm with momentum transfer 2Q = 25_ ~ 2{:0 and energy transfer
folg) = 48 _ - 4E, do not oceur, Other spurious processes were,
however cbeerved. One type of spurion was detected only a2t g = 0 with a
frequency of 1, §THz, These groups were the result of inccherent one
phonon seattering, the energy distribution of which is a weighted frequency
distribution of the normal medes of the crystal. The groups seen
correspond to scattering from the transverse acoustic branch, or sheet,
which is particularly flat near the zone boundary, Similar incoherent
scattering has been observed in partially deuterated hexamethylenetetra-
mine, where it was at first interpreted as a phonon branch (Powell, 1368).
The one phonon incoherent scattering depends on Q only through the
Debye-Waller factor and the . g;{(gi) term in the structure factor
(Cochran and Cowley, 1867). The scattering should therefore not vary
dramatically with @. Tt is thought that the incoherent scatiering observed
in DKDP at 1. 5THz, which was very weak, was masked by the longitudinal
acoustic modes at wave vectora greater than g = 0, This inecherent
scattering indicates that the erystal was not fully deuterated, No

quantitative measurements of the scattering were made.

Four cases of Q = 3k - 2§° =T, (82), (-3,9), (-3,8), (12, 2) spurious
scatiering were observed. At these reciprocal lattice points the energy

transfer 4E0 - 9E, = 0, and go the elastic scattering from a Bragg peak

1
falls within the resolution funetion, The spurion at 2 momentum transfer
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Q =§-§Othmhas mergyEo-E:lN‘lTHﬂ-

After removal of the spurions several phonon branches became clear
in the data. In the A\ direction both acoustic branches were cbserved as
well as one resolved optic branch and parts of other less clearly defined
optic brenches. In the 2 direction two acoustic branches were cbserved
as well as the zone boundary end of the second transverse acoustic branch.
Again parts of some less clearly defined optic branches were observed,
The experimental results are summarised in figure 2. 4 in which are also
shown the results of final caleulations to fit the dispersion relations
(chapter 3). The observed frequencies which were not correeted for
experimental resolution, theiyr estimated standard deviatione and the

calculated frequencies are given in table 2, 2,

The resulis show no low frequency phonon branch as in Sr’l‘los
(Cowley, 18684). The lowest frequency neutron groups at the zone

boundary (M atq = 0 ( rsianduome of the neighbouring groups ( /\34

34’
and 2 5} were measured at lower temperatures, but the distributions were
unaltered (figure 2. 5). The dispersion relations were clearly able to be
described by & simple lattice dynamical model. It could therefore be
concluded that the ferroelectric trangition in DKDP was not the result of

instability of 2 normal mode.

The high c¢-axig dielectric constant in DKDP indicated that there must



be some low frequency temperature dependent excitation in the crystal,

A set of constant Q scans at various Q values with energy transfers from
1THz to -0, 02THz (energy gain) was therefore carried out, No low
frequency excitation was found, but on ¢ooling the crystal to 253°K, the
intensity of the elastic scattering, which had the natural width of 0, 26THz
and which had been assumed to be due to incoherent elastic scattering,
increased in & q dependent manner. Incoherent elastic scattering is only
Q (and not q) dependent through the Debye-Waller factor and should not be
temperature dependent, sc that the elastic scattering observed was not

totally inccherent.

2.3 Critical scattering

The anomalous elastic scattering was investigated on the triple axis
spectrometer with the better resclution mentioned above, using constant
energy scans with zero energy transfer., The scans were in cne quadrant
of the ({', ) plane along lines parallel to a* and c*, 0.15 unite away from
reciprocal lattice points in order tc aveid first order Bragg secattering.

As the energy of the scattered neuirons was so low multiple crder (4th

and 5th) Bragg scattering could oceur and caused some spurious peaks,

The distribution of neutrons cbserved throughout the (7, 7) plane was
most prominent near reciprocal lattice points and was therefore not due

entirely to ineoherent elastic scattering of neutrons. The distribution
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around each reciprocal lattice point was elongated in the a* direction with
little scattering in the c¥ direction (figure 2.6). The intensity distribution
of the scattering as a function of g did not alter with temperature. 7The
intensity itself, however, was found to be temperature dependent, becom -
ing greater as the temperature approached the transgition temperature and
decreasing rapidly below thiz temperature., The scattering was therefore

called eritical scattering.

The intensity also differed from one reciprocal lattice point to another,
but where the scattering was strong the g-space distributions were always
similar., In order to provide data for a model which could predict the
intensity of the scattering at each reciprocal lattice point (chapter 4)
estimates of the intensity at ( £, /) were obtained by assuming that there
is little seattering at (4, £ + 0, 15) and subtracting this value from the
inteasity at (£ +0.15, £) (figure 2,10). The incoherent seattering is
assumed to be constant over this region and it is also assumed that there
is no other seattering present, that is to say, that all the anomalous
scattering arises from the c-axis ferroeleciric fluctuations, The
intensities were recorded at 254, 2°K and 233, 7°K. There were no
significant differences between the relative intensities. 7The measurements
were in gualitative agreement with the scattering expected from displace-

ments of the predicted ferrceleciric mode (chapter 3).

The strangest scattering was around the reciprocal lattice point (3, 3).
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Extensive measurements as a function of energy, q and temperature were
taken around this point. The energy distributions at three points along
the line ( 5’ » 3 ) are shown in figure 2. 7 as a function of temmperature. It
is seen that the energy width does not become greater than the instrumental
resolution (0, 26THz FWHM) either as a function of q er of temperature.
The scattering may therefore be termed quasielastic. The half width of
the resolution function is then certainly consistent with the inverse
relaxation time 1/ ‘L‘O = 0, 017THz derived from dielectric susceptibility
measurements by Hill and Ichiki (1963) for room temperature, The
results presented here give no evidence that the scattering ie due to
resonant excitations with a discrete energy. The scattering may arise
from excitations with a discrete energy, but they would not be resonant,
indeed they would be heavily damped. It may, however, be concluded
that the quasielastic nature of the critical scattering indicates that there
are fluctuations in the crystal associated with the ferroelecirie phase
transition which are on a very long time scale compared with the phonons,

except for the very long wavelength acoustic modes.

Figure 2.7 also shows the scattering from the two transverse acoustic
modes at (2, 85,3). The lower frequency mode is the one referred to in
the previous section from which the scattering observed is :nainly due to

oxygen and hydrogen displacements,

The distribution of the quasielastic scattering along the line ({, 3)
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near the reciprocal lattice peint {3, 3) is shown in figure 2.8, The Q-
space resolution of the results is good enough to enable the'ﬁragg peak
303, which ie shown in the left hand part of the figure, to be subtracted,
yielding the data shown on the right hand side. The distribution of the
quasielastic seattering along the line ( {, 3.1) is shown in figure 2, 9.

Some spurious scattering has been removed to give the results shown.

The distribution of the quasielastie critical scattering in reciproecal
space is shown for two temperatures in figure 2,10, The intensity
contour lines show that the shape is independent of temperature. The
most important characteristic of the scattering is its dumbbell shape
with little scattering in the c* direction. The critical scattering was

not studied in the a* - b* plane,

The inverse intensity at any peint near (3, 3) was found to be an
approximately linear function of inverse temperature, implying that the

intensity
5

Y B
o

1<

where To is some (q-dependent) conatant temperature. The temperature

dependence is discussed in chapter 4,

Following this work some measurements were repeated under con-
ditions of better collimation with the (111) planes of a germanium crystal

as monochromator (R. A, Cowley and W, J, L.. Buyers, privale
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communication), The coaly significant difference between the results is
that the better Q -space resolution ensbled the Bragg peak to be subtracted

more easily.

2.4 Critical scattering in KDP

With the EI'P crystal avaiiable an experiment was performed on the
triple exis speetrometer in order to look for inelastic incoherent
critical scattering. The resolution of the spectrometer was chosen with
the same collimation as previously and a 29A of 36° (E1 = 4,9THz).
The width of the vanadium scattering was 0, 43THz FWHM at 2 QM = 51.2°.

Infra-red scattering results indicated that any critical secattering
should be cbserved at frequeneies less than 1, 5THz, Constant energy
scans from 4THz to zero energy transfer were performed at four different
reciprocal lattice points (1, 8}, (2, 2), (3, 3), and (5, 1), to take advantage
of any Q dependence of the incoherent eritical scattering. The measure-

ments were performed 20°K and 10°K above T, at 143°K and 133°K.

There was no significant difference between the distributions recorded
at different temperatures and only slight differences between the intensity
of measurements at various momentum transfers (figure 2,11), The
latter differences could be qualitatively described by the @ dependence
of the structure factor for inccherent one phonon scattering. The

temperature dependence of the eritical scattering in DKDP implies that
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similar secattering in KDP should have doubled in intensity on the above
temperature change., The experiment therefore shows that the
incoherent scaitering from the acoustic modes is much stronger than any
critical scattering which may be preaent. The lack of Q dependence in
the shape of the scattering shows that the inelastic scattering arises from
modes which do not involve large displacements of the protons in one

direction, as would be expected from the ferroelectric displacements,

These preliminary investigations showed that a neutron inelastic
scattering investigation of the ferroelectric phase transition in KDP
would be more difficult than the study of DKDP described in this chapter.
The femeleétric mode scattering has recently been cbserved in KDP by
Raman scattering, but this unfortunately does not yield information on the

g-dependence of the mode (Kaminow and Damen, 1868).
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Table 2.1

C5 Spectrometer experimental settings

Full width at half maximum o_f_-the collimation and mosaic spreads

are given in degrees.

Horizontal Collimation

Before Monochromator
Monochromator - Specimen
Specimen - Analyser

Analyser - Detector

Vertical Collimation

Before Monochromator
Monochromator - Specimen

Specimen - Analyser

Analyser - Detector

Crystal Mosaie Spread

Monochromator Al(111)

Analyser Ge(111)

0.8
0,75
0,67

4.0

1.0
2,0
6.0

6.0

0,48

0.35
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Table 2.2

Observed and ealculated normal mode frequencies (THz) in DEDP at 300°K

Estirated standard deviations {s.d.) are given. The cbhaerved

frequency marked * was not included in the least squares fit.

A (0,7)
A! Az
i obs. s.d. ecale, cale. obs. s8.d. ecale., cale.
r:l r:l PB FS
0.0 - - 0 5,64 3.17 0.08 3,05 4,57
6.1 0.68 0.02 0,68 5,59 3.25 0,07 35,08 4,53
0.2 1.85 0.02 1,30 5.45 3.22 0,03 3,20 4.43
0.3 2,00 0,03 - - - - - ..
0.4 2,50 0.04 2.43 4.96 ~ - 3.35 4.26
0.5 2.98 0.03 - - - - - -
0. 55 3.07 0.04 - - - - - -
0.6 3.10 6.04 3,08 4,47 - - 2,90 4,51
0.7 2,93 0.04 - - 2.65 0,08 - -
0.75 2,82 0.03 - - - - - -
0.8 2,864 0,04 2,78 4,59 2.37 0.03 2,38 4.78
0.9 2.40 0,02 - - 2.24 0,04 - -
1.0 2.23 0,02 2,30 4,81 2.23 0,02 2,30 4,81

™M M, ™M M
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Table 2. 2 (continued)

A (0,7)
4 34
i "Z Ohl. 8. d. cﬂc. Ob’. 8. da CI].C‘.. cm. cﬁc.
r5 r,fi rﬁ FS'
0,0 - - 0 2,85 0.04 2,75 5,17 5.64
0.1 0.34 0,02 0©0.36 2,81 0,06 2.73 5.17 5,63

0.2 0.67 0.02 0,72 2,76 0.08 2.66 5.19 5,62

0.3 0.98 0.03 - 3.89 0,03 - . .
0.4 1.26 0.03 1,36 2.50 0.07 2.48 5.25 5.56
0.5 1.50 0,08 - 2,35 0,07 - . 3
0.6 1.68 0,03 1,65 2,40 0.05 2,50 5.26 5,49
0.7 1.58 0.04 - 2,55 0,04 - £ d
0.75 - - o UANE 0.0 . g
0.8 1.45 0,08 1,51 2,75 0.04 2.84 5.18 5,47
0.9 .40 0,08 .~ 5968 008 -~ - :
1.0 1.40 0.02 1,41 2,91 0,05 3.01 5,11 35,48
M M,, M,, M

“ 34 T8 e 712
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Table 2, 2 (econtinued)

2B 0y
21

{ obs. s.d. cale. obs, ©.d. eale. obs, e&.d. cale. cale. calc. cale.

FS I—lﬁ P3 r3 I—'5 rl5

0.0 - - 0 2,85 0,04 2,95 8.17 0.08 3,05 4,57 5.64 5.71

0.1 0.71 0,92 0.72 2,85 0.04 2,75 3.06 4.56 5.62 5.68

0.2 1,88 0,03 1,40 2,87 0,04 2,76 3.08 4,54 5.55 5.64

|}
1

0.3 2,06 0,9¢ - 2,85 0,06 - - - - - - -
0.35 2,40 6,05 - 2.89 0,06 - - - - - - -
0.4 2,556 0.06 2.34 2,84%0,08 2,78 - - 3.38 4.45 5.23 5.58
0.45 2.61 0,056 - 2.81 0.65 - - - - - - -
0.5 2,48 0,04 - 2,72 0,04 - - - - - - -
0.6 2,38 0,03 2,43 - - 2,8 - - 3,60 4,63 4.99 5,52
0.7 2,28 0,04 - - - - - - - - - “

0.8 2,14%0,02 2,34 2,77¢0,05 2,98 2,98%0,07 3,22 4,83 5.25 5.49
0.9 2,22 0,02 - 2,87 0,07 - 2.98 0,06 - - - -
1.0 2,23 0,02 2,30 2,91 0,056 3,01 2,91 0.05 35,01 4.81 35.48 5.48

Mg My Mya Mg My, M,



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.8

1.0

obs,

0,22
0, 486
0.65

0, 88

1,18
1,28
1.38
1.39

1,40

s,d, cale.

0,03
0, 02
0, 62

0, 92

0,83
0. 04
0,04
0,04

0,902

s

0

0.26

0. 50

0.89

1.18

1.35

1.41

34

- 239 «

Table 2, 2 (continued)

obs.

0.32
0. 82
0.82
1,22
1.50
1.74
1,958
1.74
1.46

1.40

=

0,02
0, 02
0,02
0, 02
0,02
0,02
0,02
0,05
0,04

0,02

(7.0
22
s.d, eale. obs, s.d., ecale,
F; Pﬁ
6 2,85 0.04 2,75
0,30 2,95 0,05 2,81
0,60 - - 2,97
1.1¢ - - 8.46
1. 57 b - 3. 41
1.0 - - 2,52
1.41 2.23 0,02 2,30
A
.&s‘ Eﬁs

cale,

5, 04
5. 04
5,05
4,868
4.30

4.65

4,81

Mg

cale.

5.17

5. 16

5.15

5.08

5.11

5.12

§.11

34

cale.

5.64

5. 57

5.39

5.16

5. 14

5.13

5.11

Mag
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Table 2, 2 (continued)

Unagsigned frequencies

N(8,¢)

obs, s8.d.

> (7,0

s.d, obs, s.d. obs, s.d. obs. s.d. obs. =s.d.

0.1
0.2
0.3
0.35
0.4
0.5

0. 55

o.0f

0.7

0. ?5
0.8
0.9

1.0

0,08
0. 06
0,05
¢, 08
0. 07

0. 04

6, 05
0,05
0, 06
0.05
0,04
0, 04
0. 05

0.04

5.08 0,09

4.56 0.06

4.54

3.56

3,82

3.32

4,09

4.28

4.40

0. 05

0.07 4.65

0.05 3,70

0.04 3,94

0.04 4,50

0.05 4.50

0. 05

0,05

0.03

0.04

0,04

8. 07

4.18

3.35

3.35

3.40

0.10
0.03

0.04

0. 03
0,04
0. 04

0. 07

0. 05

0. 04

0‘04

0. 04

4,30

4,40

4.27

3.938
4,23

4.40

2.10

2.10

0,65

0,08 4,12 0,10

0.08 4,27 0.05

0,08 4,35 0,06

0,05
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Figure 2.1
Scattering diagram in reciprocal space and the neutron groups

observed in the constant g mode at (-0, 6, 4) from the small DEKDP
crystal. The monitor count was 4x1 06 neutrons for each point,

The acoustic mode at 1, 8THz has been focussed by the resolution

function,
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Figure 2, 2
Preliminary recults for the dispersion relations of DEKDP at

300°K as measured on the smail DKDP crystal. The solid lines
represent a least squares fit to the acoustic modes only using a

simple lattice dynamical model described in chapter 3,



oL

JOL1D3A3IAVM a30NQA3y
w.

Oo

8-

W
Ol

o

=

™M

= =
(ZHL) ADN3INOD3Y4

w5

0




- 33 -

Figure 2,3
The neutron groups at (-0, 8, 4) from the large DKDF erystal.

The experimental resolution is different to that for the groups
shown in Figure 2.1, The moniter count was 1(}6 neutrons and

the large crystal is 3. 5 times the volume of the small erystal.
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Figure 2. 4
Phonon dispersion relations of DEDP at 300°K. The measured
values and the errors are given in table 2, 2. The solid lines
represent a best least squares fit to the data as described in chapter

3.
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F 2,5
Temperature dependence of normal modes in DKDF, The neutron

groups of lowest frequency, r'5 at (2,2) and M_, at (3, 2) are shown

34
at several temperatures. The distributione could not be elaimed to

be temperature dependent.
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Fgggre 2.6

Constant energy scans with zero energy transfer along the line
(5, S.2) near the reciprocal lattice point (3, 3). The monitor
count was 108 neutrons. The peakat T = 2,4 may be due to 5th
order Bragg scattering. The shape of the scattering indicates
that it is not incoherent and the temperature dependence shows that
it is associated with the ferrcelectric transition. The nearest

reciprocal laitice points along the line { 7, 3) are (1,3) and (8, 3).
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Figure 2.7
Energy distributions of the critical scattering at the points

(2. 85, 3), (2.7,8) and (2. 57, 3) at four temperatures. The monitor
count was !05 neutrons. The width of every distribution is that of
the instrumental resolution. 7The neutron groups correspoending to
the two transverse acoustic modes are seen in the (2, 85, 3) picture.

The scattering is stronger as ¢ approaches zero.
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¥ 2,8
The intensity of the quasielastic eritical scatiering along the line
(%,3). The width of the Bragg peak is shown in the left hand side
of the figure. The Bragg peak has been subtracted from the
distributions shown on the right hand side, which illustrate the

temperature dependence of the ¢ritical scattering.
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F 2.9
The intensity of the quasielastic eritical scattering along the line
( I;’ [ ] 3' 1,0
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Figure 2.10
Distribution of the quasielastic eritical scattering in the (¥, 7 )

plane around the reciprocal lattice point (3,3), The contours are

not equally spaced as can be seen by eomparing figure 2, 8.
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Figure 2.11
The energy distribution of neutrons scattered inccherently from

KDP at 123K with momentum transfers (3,3) and (2,2}, The

6

monitor count is 3x10° neutrons. The distribution at 143°K is not

significantly different.
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3. Caleculations

8.1 Preliminarx calculations

Eefore performing any experiments it was desirable to know around
which reciproecal lattice points the scattering from the ferrocleetric
displacements would be strongest. The displacements were calculated
from the difference between the structures of the ferroeleetric phases
with opposite polarisation. 7The z displacement? were caleulated by
assuming that the centre of mass of the crystal doee not move, The
atomic coordinates and the displacements are given in table 5,1, The
displacements between the structures of the paraelectric and ferroelectric
phases as determined by neutron diffraction (Bacon and Pease, 1955) do
not have the [ 4 Bymmetry expeeted of the ferroelectric displacements

(appendix 1), as the oxygen atom displacements are not exactly related

by symmetry.

The structure factor used was that for one phonon seattering (Cochran
and Cowley, 1967) at reciproeal lattice points ( T or hk /)

F(t)= > bk(g T. ulk) exp(it. R (k)
k

where the atoms k at R (k) have displacements u(k) and secaitering lengths

b (T) = by exp(-0.25 [B, (Wit *+x")/a” + B0 L7/ ])

including the Debye-Waller factors Ri(k) of Bacon and Pease (1953) for

the paraelectric phase. The Debye-Waller factors for the protons were
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divided by the deuterocn mass for eonversion. The error involved in

this assumption is not likely to effect any conclusion to be drawn from

the calculation, indeed the temperature factors could be omitted without
loss of confidence. In view of the relatively large displacements, however,
an expression involving sin(T, u) instead of T, u would have been better for
the deuterium atoms (chapter 4), 'The squared structure factors are

given in table 3,2, The structure factors at 002, 200 and 400 are zero

by symmetry. The difference between ¥ and F3 shows at which

2
reciprocal lattice poinis the seattering from motion along the hydrogen

bond is impoxrtant.

3.2 Phonon model calculations

All the maodels developed use the harmonic and adiabatie approximations
described by Cochran and Cowley (1867). The potential energy in the

crystal is written (omitting the constant term)
$ 2 LZL' gﬂ(u" u, (£8) ug (LK)

The frequencies «(qj) and displacements of the atoms e(kgj)/ mG
for each phonon qj and obtained from the dynamical matrix D

e R ()" 7 £, ) eis @02 R0

w g e tg) = S D, (i) e o W'a)

kl
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The desecription of the forces acting in the crystal was limited to short
range axially symmetric central forces and Coulomb forces between atoms,
Although Coulomb forces were included and it would not have been
difficult to eonstruct a shell model deseription of the lattice it was thought
that the final model was complicated enough without the introduction of

further parameters,

The Conlomb coefficients were calculated using the expressions given
by Born and Huang (1954) by & computer program written by Mrs. S.
Cowley of A, 2,C, L, The first caleulations were for four atoms (2KP)

and the second for twelve atoms (2KPO ‘The wave vectors used were

4
in 0, 2 reciprocal lattice unit steps in the /| and Z directions from the zone
centre to the zone boundary, plus the wave vector 0,1 in each direction,
For the zone ecentre the two wave vectors 343/2‘” and cq“/z T = 0, 00001
were used, as the Coulomb coefficients can only be calculated in the limit
q — 0. The sums in real and reciprocal space extended tc 4 and § lattice

units in each of the three orthogonal directions respectively,

The short range forces used were assumed to be derived from a
potential ¢(|' ¥1). They are therefore axially symmetric eentral forces

given by the expression (Lehman et al,, 1962)

- Y Aaae B
e ] kkl
- ¢‘p(l‘€ﬂl‘) = 'ﬁ-v- ( Ir!g r¢ l'ﬁ +B]I|J-dﬂ) LS A I O B A 301

where r = R (L'k") - R(Lk), v is the unit cell volume and ¢ iz the electron
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charge, so that Akk' and Bkk‘ are dimengionless, nearest neighbour force

congtants,

A every atom in the erystal is required to be in an equilibrium
position and the crystal is required to be stress free, the potential function
¢ must be a minimum with respeect to the coordinates of the atoms included
in the calculation and with reapect to the cell dimensions a and ¢ (Born
and Huang, 1954). For a crygial in which there are only short range
axially symmeiric central forces the equilibrium condition requires some
relations to exist between the force constants Braer When Coulomb forces
are involved, however, the derivative of the Madelung energy {Born and
Huang, 1854) is required. Although the Madelung constant ig independent
of the dimensions of the lattice it does depend on the atomie position,

The derivative of the Madelung constant with respect to the hydrogen and
oxygen coordinates is therefore required. This calculation was not
performed and so the two, five or eight possible relationships (depending
on the number of atoms in the model) between the products of the charges
taken two at & time and the force constants By Were not obiained. A
comparison of these conditions with the parameters fitied to the phonon
dispersion relations would indieate the validity of the axially symmetric
central force rigid ion model.,. The effect of omitting the eguilibrium
condition is that the acoustic gradients corresponding to the elastic

constants ¢ 44 in the A\ and Z directions do not have the correct ratio.
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The elastic constants for DEDP are (Shuvalov et al,, 1968} Cyqs €0

12
Cia0 Cage Caue Cop (0.693, ~0,078, 0,122, 0,545, 0,1265, 0,0594) x 10
dynes/em, . {(x0.1 TN/m.z). The corresponding acoustic gradients for
the /\ and deimtions Bre €., €,,; 866, 3.21THz and ¢, ,, €40 ggé

8,98, 2,98, 2, 04THz per reciprocal lattice unit respeetively(see 558 ).

The first model (2KP) was set up before the experimental work had
commenced and was intended to indicate the frequencies of the optic
modes by fitting the values of the elastic constants, The Inttice was
assumed to consist only of the potassium and pbﬁspham atomg, ‘The
oxygen atoms were completely disregarded, that is the PO‘E group’ was
not taken as & vigid body., With the 2X and 2P atoms there would be 12
phonons for each q and these lattice modes would not inelhude the expected
low frequency rotational modes of the PO 4 Sroup. Shert range forces to
nearest neighbours only were eonsgidered and the Coulomb forces were
included with a charge of + Z on each atom. The short range interactions

= : oy
were (Alc BI’P - K, g(P} . E(K) =0, eo ii (Aza BZ)P -, 00 E’; IetCon

: P |
(AS' Bs) P-EK, 7 O.IG‘tc.

The elastic constants are given by the expression
ey = )+ [ere] =[] #(ep o))

where the brackets are defined in ferms of the long wavelength expansion

of the dynamieal matrix in a Taylor series (BEorn and Huang, 1954). For

DEDP, using the symmetry relations and the relation imposed by the
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equilibrium condition on the square brackets,

e,, = [11,11] + (11,11)

11
e, = 2[12,12]- [11,22] + (11,22
Cq * 2 [13,18] - [11,33] + (11,33)
S,y * [33,33] + (33,33)
€ ® [22,33] + (283,2%)
ts * [11,22] + (12,12)

The square brackets involve only the second order term in the expansion
of the dynamieal matrix. The round brackets are a produet of three
terme, the inverse of the constant term and the first order term twice.
These latier brackets are therefore fairly complicated, but are zero by
symmetry for a crystal in which every atom is at a centre of symmetry.

Thie is not the case for DKDP so that they must be determined.

In order to find the form of the slastic constants the expressions for
the brackets were worked out omitting the force constants A3 and Ba.

The short range force parts of the square brackets were given by the

expressions
(12,12] = ©
2 2B
e 2
(11, 22] "—2';’- e
o2 2(4&2 Ag ‘e By )
(11,11] = .

c(dm2 +c3)

and other similar expressions, where a and ¢ are the unit cell dimensions,
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The Coulomb sums calculated &t reduced wavevectors 0, 00001, 0,02 and
0. 05 in the (100], [001], [110] and (101] directions enabled the Coulomb
contributions to the elastic constants to be determined using the
expressions given by Born and Huang (1954) for the long wavelength
expansion of the Coulomb part of the dynamical matrix minus the macro- |
scopie field term. The square brackets all contained a term proportional
to 2:2 which was added to the short range part and they were therefore
fairly simple., The round brackets, however, due to the inverse matrix
had a complicated form which meant that the elastic constants could not be
used to determine the parameters, The short range and Coulomb
contributions to the first order term in the Taylor series expansion of
the dynamical matrix on the present model showed that the brackets
(33,33), (12,12) and (11, 33) were zero, The elastic constants Cyg0 ©

33

and Ces therefore had simple expressions, but the three were not enough

to determine the four force constants and one charge.

Some expressions for the elastic constants in terms of only short
range force constants for K-O and P-O interactions were derived by
Evrard (1962)., Ile used the resultant force constants to calculate
the frequencies of the lattice vibrations of a rigid body PO 4 Eroup model
in the long wavelength limit. The ten frequencies obtained ( I"l, r‘z,

2 F'S, i & I"5) (plus the two acoustic modes) were all between 4. 2 and

8.4THz., These frequencies do not agree with the calculations on the
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model described later which includes the Coulomb furces in the lattice.

Attempts were made to fit the gimple model with force constants 1, 2
and 3 plus the ionic charge to the results of the preliminary phonon
measurements described in seetion 2,2, The charges on the phosphorus
and potasgium ions were set equal to -1 and +1 respectively and a poor
fit to the resulis was obtained by guessing values for the parameters to
fit the acoustie gradients. When all seven parameters were varied in a
least squares {it to the acoustic branches in the A and> direections, the
ionic charge dropped from 1 to 0, 2 (table 3,3). The results are shown
in figure 2,2, As the results before the least squares were only fitted
well at wave vectors less than 0, 6, the drastic change in the ionic charge
could be the result of an attempt to fit the zone boundary ends of the
branches. It is not chemically reasonable that the potassium ion has a
charge of 0, 2 and so it may be concluded that either the model needs

improving or that a false minimum was obtained in the least squares fit.

It seemed useful to consider a more realistic maodel in which all the
atoms except the hydrogen atoms were included. Short range forces of
the form equation 3.1 were included between (figure Al1.1) K-O in the
phosphate group + ¢/2 from K(AI. Bl,; 0-0 along the hydrogen bond
SN | & e :

5o 0, + ete. (As, 153). and P-O (A4, B“). The Coulomb

sums were calculated at the same reduced wavevectors as foy the ZKP

(AB’ Bz); K-,

model so that charges on the ¥, P and O atoms could be considered. The
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dynamical matrix for this model (2K PO 4) was 36 x 36 dimensional, but
with the help of group thecry this was reduced at most to 1€ x 18 (table

Al.5).

A model in which the long range Coulomb forces between ¥, P and O
ions as well as short range K-O and P-0O forces were included was used
in an attempt to describe the phaae-transition in KDP (Crindlay and ter
Haar, 1859), It was found that the parameters could not fit the data used,
the susceptibility, transition termperature and Curie constant., The
present model was designed to describe the phonon dispersion relations
in the lattice and, based on the resulis of the 2KP model, it seemed sure

of some succees, The phase trangition is considered in chapters 4 and 5.

The parameters A 4 and B 4 (P-0) eculd certainly not be fitted from the
low frequency phonon data alcne, It was intended to fit the parameters to
the high frequency Raman and infra-red spectroscopic data on K¥DP and
DEDP. The approximate freqﬁeneies of vibration of the free PO 4 ion
were used to assign irreducible representations to the spectra., The
irreducible representations to which the vibrations of a tetrahedron of four
atoms in the point group 45m belong are Pl’ P3 and ‘—-5. {The
character table may be found in any book cn group theory. I"s is two
dimensional and [ 5 is three dimensional.) The frequencies are labelled

Pt 2 and ) 4 When the tetrahedron is restricted to only 42m symmetry

1.

the representations are 2 FI( Yyt vg), Pa( vz), F,,c v4) and Ps( V,)
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(table Al,2), The rotations of the tetrahedron in 42m transform as r' 2
and |—15 and the translations as [ 4 and F 5 Now using the concept of
product gpaces discussed by Montgomery (1968), the vibration space for

one tetrahedron is S, and it may be decomposed as above. This space

Vl
corresponds to Montgomery's Euclidean space and is applied to the cell

space which contains one tetrahedron at the origin and ancther at (0, -12—. ;t-l

in the space group g_‘é‘zg. Thie cell space therefore transforms in the
same way as SP (table Al, 5}, F‘l + ['., and so the vibrations of the 4

oxygen atoms in KPO 4 transform as the product of the two spaces:
3 Tytw 4 vagmot) 3Tyt D) 4 ¥, yror), 3Tt v, 5 Ty 4 V),
g3 g3 VYghrot. §Ve 4 VY, 4 rot.) where
rot, is a rotational mode and v3 comes from the translation of the

oxygen atoms with respect to the rest of the lattice, V ; means that the

3PPy Vg4 V). ands T (v

two tetrazhedra are vibrating in antiphase with approximately the same

frequency as & free V i vibration,

For two later models the hydrogen atoms were also considered. The
hydrogen vibrations in the lattice are classified as either stretching (V)
or bending ( A » ¥ ) and each type of vibration occurs once in each

irreducible representation,

The spectroscopic data were obta.tncd-mahﬂy from Stekhanov and
Popova (1966), Barker and Tinkham (1963), Blinc and Hadzi (1958) and

Imry et al, (1865). The differences between the spectra of KDP and
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DEDP enabled the proton and deuteron vibrations to be detzcted.

Despite the closeness of other frequencies in the specira some of these
differences were surprisingly close to the 1/ Am factor required. The
assignments for DKDP of those frequencies selected from the spectroscopic
data as reasonable values are given in table 3. 4 together with the values
calculated in the model described below., Data for DADP including the

vibrations of the ND , tetrahedron are given in table 3, 5, also with values

4
calculated in snother model deseribed below,

The eigenvectors obtained from the early attempts to use the KPO 4
model showed that the oxygen atoms do indeed have displacements quite
different from the phosphorus atoms in their PO 4 Eroup. That this
should be g0 is seen from the closeness of the frequency of the v, type

vibration (11772) to the highest previously fitted 'lattice' mode (8THz).

Before the EPO 4 model was fitted to the phonon resulis two other

were investigated to see the effect of

meodels 2KD Pﬁ& and 2ND ,D_ PO

4 474 "4
the deutercns in DEKDF and DADP on the phonon spectrum, The ammon-
ium ion ND 4 replaces the potassium ion for DADP and in both models the
four other deuterium atoms are placed in the two equilibriwm positions in
each hydrogen bond, The coordinates for DADP were taken from the

data of Tenzer et al, (1958) on AP, The q,— 0 ealenlations only were
performed for the two models #o0 that the longitudinal |-'4 modes only

were obtained, The polarigation of the data was unknown, but it was
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assumed that this point was unimportant for the purpose of roughly
fitting the force constants. The Coulomb forces were included with all
deutercns having zero charge and short range forces of the form equation
3.1 were used between the deuterium atoms and their neighbours: short
and long O-D interactions in the hydrogen bond; and for DADF, one N-D

interaction and two D-0O terms corresponding to the two for K-O,

The parameters used in the caleulation were close to those which
gave a poor fit to the phonons for the ZKFPO 4 model, The remaining
parameters were fitted to the frequencies by noting the eigenvectors,
determining the derivatives of the frequencies with respect tc each
parameter and applying appropriate shifts. The ionic charges were
assumed tc be +5 and +1 for the phosphorus and potassium ions respectively,
making the oxygen atoms -1.5 units. This assumption gives reasonable
agreement with the spontaneocus polarisation (Jona and Shirane, 1962).
The parameters obtained are listed in table 3. 6 and the resulis are in
tables 3.4 and 3.5. The parameters (AG' Bs) describing the long C-D
contact in the hydrogen bond could not be fitted to the observations. A
value was assumed for each, although they could probably have been set
to zerc without effecting the results greatly. The benefit of group theory
was evident in the DADP model where the dynamical matrix 84 x 84 was

reduced to square matrixes of size 9,5,11,11 and 22, When the param-

eters were adjusted to give a poor fit to the low frequency modes, the
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eigenvectors for these modes showed that the deuterons in the hydrogen
bonds and those on the ND 4 ion do not have displacements very different
from their nearest O or N atoms. The deuterons cculd therefore be
neglected in any model caleculations. This implies that the low freguency
dispersion relations for KDP and DKDFP will be identical and will also be
very similar to the dispersion relations for ADP and DADP, The
eigenvectors also showed that the characters of the modes whose
frequencies are close (in one irreducible representation) are not well
defined, The assignments given in tables 3. 4 and 3. § are therefore not

unigque,

3.3 Least squaree fitting of phonon dispersion relations

Considerable difficulty was experienced in fitting the 2KPO 4 model
to the experimental results for the low frequency phonons in the /\ and
directions, Heasonable qualitative agreement with the phonons could be
obtained by altering the parameters to their apparent best values, The
least squares procedure to fit only the acoustic branches showed that the
parameter space was not at all regular, The main problem- in the fitting
procedure stemmed from the faet that for each frequency w(qgj) there is
an eigenvector e(kqj) defined for every atom k., Upon changing the
parameters from one set of values io another it was found that at any
wavevector the eigenvectors might alter dramatically (within the one

irreducible representation) while the frequency would remeain unchanged,



- 55 -
The least squares program was adapted from a general least squares
program which had been transiated by C.S. Pawley. The funection
minimised was the sum of the weighted squares of the differences between

the observed and calculated squared frequencies
2
2 2
% Wigihe @) - oo@) .

The weights W{qj) used were the inverse squares of the estimated standard

deviation of the squared frequency.
wig) = (2 ©_(a)) T(w (@M
where 0 { wo(gj}} is the estimated standard deviation of the observed

frequency.

Group theory was of considerable use in classifying the observed
frequencies., The calculations were performed at those wavevectors at
which the Coulowib coefficients were kmown, The calculated frequencies
were sortéd numerically within each irreducible representation and this
allowed unambiguous assignment of the frequencies of the acoustic

branches in both the /A and Z directions, as well as of the lowest

frequency Ag 4 optic branch,

The P-0 force congtant of the 2KD 4P0 4

attempts to fit only the acoustic branches by varying the other parameters,

model (table 3, 6) was used in

It was found that the derivatives of the frequencies with respect to some

parametiers changed sign when other parameters were varied, This
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implies that the parameters are correlated., It was algo found that the
elements of the correlation matrix could change sign with a change in

parameters,

The least squares minimum fit to the neutron inelastic scattering data
of table 2, 2 is shown in figure 2,4. The parameters, which were refined
in pairs in order to save time and in order to avoid correlations, are
given in table 3,7. The correlations found in the last cycles of least
squares were -0, 32 (AI:ASL -0, 33 (31:133). -0.28 (Aazﬁz), -0, 24 (A4:B4)
and 0, 47 (ZP:ZK). The final parameter shifts were all less than 20% of
the standard deviations, except for Ag and B2 whose final shifts were less
than 2% of the parameter values, The parameters therefore do define a
least squares minimum, The leue which is equal to the square root
of the minimised function divided by the number of chservations was 1,6
for both /A and 2 data, although the refinement showed that slightly better
fite could be cbtained for the data taken separately. 23 observations
were used in the /\ data from | to M, 17 observations were used in the
2 data between reduced wavevectors of 0.1 and 0.8, The significance
of the X value is that it is a measure of the reliability of the estimated

standard deviations,

The P-O force constants of the 2KD 4‘E’O 4 model had been fitted

assuming ionic charges of +5, +1 and -1. 5 for the P, ¥ and O atoms

respectively, but as the refinement progressed it became clear that the
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final ionic charges would be considerably less than these formal values.
The parameters A 4 and B 4 Were refined to their final values with the
ionic charges less than 0, 2 standard deviations from their final values.
The data used for the final refinement of these parameters was the same

as that for the 2KD PO . model and is shown with the calculated values in

4
table 3.8, The calculated values of the transverse K 4 and longitudinal

T 5 modes are also shown for comparison. The final’X value for the 18
data was 1. 8, using standard deviations of 1THz for all frequencies. The
four values marked * in table 3. 9 do not have the required symmetry at

[ . The modes transform as either Pl instead of [’ 4 °F F 9 instead of

[ 5 and vice versa. However, as the parameters A4 and 534 had been
refined from values close to these for the 2KD 4PO A model, the final
values represent the best values that can be reasonably obtained. Although
some of the low frequency O-D modes in the 2KD 4FO 3 model (table 3, 4)
are close to the phosphate group frequencies it is doubtful whether

exclusion of these atoms in the 2KPO4 model would effect the phosphate

group frequencies greatly,

It was obvicus throughout the fitting that the simple axially symmetric
central foree, rigid ion model being used could not fit even the low
frequency branches exactly. 7The cbservations at frequencies above 3,2
THz were therefore not included in the fitting, The branches included

in the fitting were all of the acoustic branches, /\1. /\34, 21. and 2 22’
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the lowest frequency /\3 4 branch and parts of the lowest frequency A 3
and 21 branches.

The final parameters give reasonable agreement between the acoustic
branch gradients as calculated at a reduced wavevector of 0,1 (6. 57, 2.63,
7.18, 3,01 and 2, 56THz) and the elastic constant values (6, 68, 3. 21, 6. 96,
2.98 and 2, 04THz) for the A ,, /., 2, and 2 Z, branches, or ¢,
C,4r €110 C4q W0 Cgo. except for the /\34 (ey,) and =, (e,,) values.

The ratio of the ¢ 44 branch gradients is 0. 83 which must be compared
with the ¢/a ratio of 0,93, The foree constants (Bl) and the ionic charges
given in table 3, 7 therefore do not yield a crystal in equilibrium. This

disagreement may be seen, to some extent, as a failing of the model.

The only major differences between the neutron inelastic scattering
data and the ealculations are for the 21 and higher Ez acoustie branches.
The cbservation at (0. 75, 0) of a neutren group whose frequency appeared
to be 2, 02THz must, in view of the symmetries of the branches in this
region, be interpreted as a superpesition of two neutron groups whose
energies lie between 1.9 and 2,1THz, The experimental results do
indicate, however, that the two 22 branches should have very similar
energies neay (0, 75, 0), implying that two branches with the same
symmetry but different characters wish to cross one another., Such a
situation was not obtained with the model. It is thought that short range

forces to other than nearest neighbours would not produce the desired
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crossing, but that a shell modlél might produce a better fit, One other
not unreasonable difference ig that the second lowest Ma 2 maode has too

high a caleulated frequency.

Of the remaining data in table 2, 2 to which irreducible representations
have not been assigned, it appears that the data near the zone boundary in
the /\ direciion at approximately 47Hz could be from a /\1 branch., This
then implies that the agreement of the flat El branch at approximately
4, 5THz with some data might not be meaningful. The neutron groups
observed at spproximately 3. 47THz in both /\ and = directions may be the
result of incoherent scattering from the sheet includipg the A2 and /\1
branches compatible with the Ps mode whose calculated frequency is

3.05TH=.

The differences between the loagitudinal (L) and transverse (T) [ .
and Ps modes are of some interest. The L and T Fs modes come from
El and Asc respectively, while the L. and T P4 modes come from /\1
and 22 (table Al, 4 for compatibilities). The frequencies are listed in
table 3.8, A longitudinal mode cannot have a lower frequency than iis
transverse pariner, and the difference between the squares of the
frequencies is pmﬁorﬁmal to the square of the electric polarisation
produced by the mode. It may therefore be said that there is very little
polarisation associated with the modes whose frequencies are ( [7,)

13, 30THz and ( Psi 2.75, 5.64, 13.15, 13,38, 14.64THz.



The 5.847THz L.and T P5 modes may be included here because their
eigenvectors show that they have the same character and that they
polarise the erystal very little, The eigenvectors also pair together

the L. and T 5,71 and 5,17TH= Fs maodes whose polarisation is five times
the magnitude of that for the 5, 64THz modes. The frequencies calculated
for the 5.647% s modes are, to one more significant figure, (L) 5.635 and
(T) 5.6387TH=z, These values do not follow the rule that & longitudinal
phonon must have a higher {requency than its transverse pariner. The
fact that the 5, 71 -5, 17THz mode has the same symmetry as the 5. 64THz
mode means, however, that this result iz allowed. When it is remembered
that the ferroeleciric displacements have I 4 symmetry, it is interesting
to note that the model associates a large electric polarisation with the

lowest frequency | 4 mode, (T) 5,04THz and (L) 5. 64THs.

The values of the short range force constants in table 3, 7 are of no
real significance. It should, however, be mentioned that if the para-
meters represent a repulsive potential |r | 'k, then the ratio A/B is
expected to be -(k-1), The forces described by the simple model used

are therefore not due to purely repulsive potentials.

The ionic charges (Zk) which were determined are of considerably
more interest, When the z-components of the ferroelectric displacements
(uz(k)) are conasidered, the spontanecus polarisation in the erystal may be

determined
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Ps -(v) %zk

u, (k)

For the charges of table 3,7, P_ = 1.684C/cm. °, while for the
formal ionic charges +5, +1, -2 and 41 for the P, K, O and I atoms,
P =5.42p C/em. 2 which compares well with Bantle's (1942) measurement
of 4.83 uCflem, 2, This discrepancy casts some doubt on the value of
the model, Further doubt is cast on the model by the result that some of
the sets of parameters, which were far from the least squares minimum
values, produced dispersion relations which were qualitatively acceptable
descriptions of the results. One of these sets of parameters had ionic
charges of 4.2, 0,6 and -1, 2 for the P, K and O atoms. The regions of
poor fit were for the second > 3 acoustic branch and for the zone boundary
ends of the lowest A, A, and 2 branches. Another set of parameters
with ionic charges of 5.2, 1.3 and -1,6 gave a better fit in the e

direction, However, it was from these values that the final least squares

minimumr resulis were obtained.

These points show the difficulty in using the least squares procedure
on a problem with highly correlated parameters, and of probably more
importance in this case, a problem which is not cnly non-linear, but
impossgible to linearise., It is not known whether the minimurm found in
the parameter space is unique, or whether ancther minirmurs exists with

more reasonable ionic charges, or indeed, with any other ionic charges,
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A conziderabla amount of work would dbe required to inveetigate this

point,

On the other hand the diseussion may be interpreted as indicating the
inadequacy of the maodel to deseribe the results. In this case it could be
suggested that a better model be used. It is not obvious that next nearest
neighbour forees would be of great assistance. Certainly the four protons
at each equilibrium site of both hydrogen bonds could be introduced, if
only to improve the O-O forece eonstant, but it is felt that major

improvement ¢ould only be obiained by introducing a shell model,

The resuiis presented may ba claimed to produce 2 least squares
minimum fit to the chserved data, It may therefore be stated that the
simple axially symmetric central foree, rigid ion model is able to

describe the phonon dispersion relations in DKDP,
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Table 3.1

Ferroeleetrie displacements

coordinate displacement x 1{}2 (fractional units)
x y z x y z
0 i 0 0 (4 -1,0
0 0 0.5 0 0 0.6
0.149 00,0827 0,126 -0.620 -0,089 0,1

0,147 0.250 0.125 0 -2,.605 0.25



Table 3.2

Squared structure factors for ferroelectric mode (h04) zone

reflection fFl[ . |7, . [Fg| ¥
004 175.78 70. 44 70. 44
101 30,30 26,17 2. 58
103 1,92 0. 07 45. 66
105 382, 86 299, 84 126. 23
202 0,03 0. 54 0. 54
204 4.68 27.23 27. 233
30 461,17 436.37 1.58
303 435, 44 509.19 12,83
402 6. 58 0.10 0.10

The struecture factor ¥, uses the displacements of table 3,1, T

1 2
has the deuterium z displacement set to zero and Fq has no deuterium

contribution,
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Table 3,3

2KFP model parameters

before after

parameter least squares least squares

Al 31 26,3
Bl -1 3.4
Az 13 18.1
1':’»2 13 4.8
As 46 34,2
BS 3.5 1.2
z 1,0 0.2
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Selected observed frequencies (THz), assignmenis and

Table 3,4

o 89 <

obs,

61.5
36,0
7.4
27.5
20,0

11.8

obs,

61.5
38,0
27.4
32,7
14,7

11.4

calculated values for DKDP

calc.

61.6
36.5
33.1
27.5
19.3

13.8

cale,

63.4
40.0
33.3
32.6
20.8

12.5

x|

rot

<|

s

obs,

61.5
86.0
27.4
27.5
20,0

11.8

obs,

55.7
53.1
41.1
41.1
28.5

28,5

cale.

63.4
36.1
23.2
27.7
14.7

11.2

cale,

63.4
61,7
38.0
37.2
34.1

33.2

o <l g |

obs,

61.5
36.0
27.4
33.8
17.1

11.8

uba.

33.5
1.4
21,3
15.6
15.0

15.5

o )

calc,

61.6
37.6
33.7
32.5
21.9

16.9

cale.

32,7
31.7
21,4
18,2
14,9

12.2
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Table 3,5

Selected cbserved frequencies (THz), assignments and

67.0
92,5
38.4
52,5
34.6
27.2
27.2
26.4
11.9

obs.

67.5
34.6
38.4
52.5
34.6
27, 2
33.0
18,1
11.9

cale,

65. 9
41.1
35.8
52,1
33.4
80,3
25.7
17.4
18.3

eale,

67.7
36.0
42.0
83.8
30.6
9.8
36.9
i9,0
11,9

calculated values for DADP

Va

e

rot

< | §

L
X

BN e

obe!
67.0
52.5
38.4
52.5
34.6
27.2
27.17
26.4
11,9

obs,

0.8
70.5
82,5
52.5
24.6
34,86
67.5
58,5
38,4

cllc.

65.9
41.2
85.7
53.8
32.9
30.4
25. 7
14.3
10.6

69.4
66.6
47.0
38.0
35.8
94,7
3.8
52,2
35.2

PR i s

A
[

{3

| §, §\#§ DR

N
W w

obs.

67.5
34.6
38.4
52.5
34.6
27.2
3.9
17.1
11,9

obs,

38.4
26.4
26. 4
33.0
33.0
26.4
26.4
18.1
18,1

cale,

67.7
42,0
36.2
52,2
30.9
29.7
34,7
19,7
15.7

cale.

34.3
31,3
30,4
29,9
28.3
18.9
16. 4
14,3
12,0
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Table 3.6

Parameters to fit high frequency modes

2KH)§IH3

&
A B
22 -1
2 8
33 3.5
1650 -50
570 125
160 80
3
1
-1. 8

2ND,D PO

44 "4
A B
22 -1
8 9
23 -3.5
1800 -50
520 140
100 &0
580 280
S
1
-1.5



Table 3.7

Best least squares parameters - 2KPO‘

A " B

K“'O 1 16. 5‘ : 0- 88 -.-0. “ : 0. 14
0-0 2 15,21 + 0.82 5.67 + 0,22
K-O0 3 43,0 + 2.6 -0.16 + 0.11
P-O 4 997 + 58 209 + 23

Z, 1.7 + 0.31

Z, 0.898 + 0,080

z -0.656 + 0,078
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Table 3, 8

Longitudinal and transverse frequencies at F {THz)

(ZKPO, model)
4

L T

5. 64 5. 04
13,30 13 30
17,34 17.07
34.01 33.48

"

L T
2,75 2.75
5. 64 5.17
5.71 5. 64

13.15 15.15
13.38 13.38
17. 01 16. 80
17. 58 17. 51
33, 86 33. 73

34, 28 33,88



L,

T% 3.9

Least squares values of high frequency modes (2KFO, model)

Compare with 2KD P04 model (table 3.4). The frequencies are in

4
THz. The transverse iz 4 and longitudinal I 5 calculated frequencies

are shown for comparison,

s [y e

obs, cale. cale, obs. cale,
11.4 13.3 18,38 11,8 18,0
11,8 13,3 11.8 13.6
14,7 14.0 17.1  14.4
20,¢ 17.3 17.1 20.0 17.5
17.5 25.2 27.5 25.1
32,7 34.0 38.8 33.8 83.5

" 34 s

obs, cale, cale.

13.5 13.2 13.2

15.0 13.4 13,4

18,6 16.8 17.0

21.3 17.5 17.6

31.4 33,7 33.9

33.5 83,9 34.3
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4, Amzlyuis of Critical Scattering

4.1 The Ising model

The scattering described in section 2, 3 is clearly comnected with the
ferroelectric transition in DKDP, It is similar in nature to the critical
scattering observed near both the order-disorder transition in g —bfau
(Als~-Nielsen and Dietrich, 1867) and the antiferrcelectric transitionsin
NaNOz (Yamada and Vamade, 1588). The trangitionsin both of these
crystals are describable by the order-disorder Ising model, FHowever
in NaNOz there is considerable dynamic character to the scaitering, as
shown by the dielectric constant (Yamada et al., 1968), and the dynamics
of the Ising model which is discussed by Suzuki and Kubo (1968) has to be
introduced, The dielectric susceptibility of DEDP has been measured
as a function of frequency (Hill and Ichiki, 1963). The imaginary part
of this susceptibility divided by the frequency (figure 4, 1) shows that the
neutron scaitering from the excitations responsible for the susceptibility
would be quasi-elastic, as found (figure 2.7). This relationship between
the susceptibilily and the power specirum (neutron scattering in this case)
which is derived from the fluctuation-dissipation theorem (Kubo, 1966) is
discussed by Cochran (1969). The results for DKDP are therefore |
like those of f -brass and a static Ising model will be used to describe

the results,
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in KDP type crystals there are four protons, each of which requiresan
order-disorder variable., The transition considered here is a ferroelec-
tric one and so a simple model may consider only one fictitious spin
variable (S(£} = + 1) for each primitive cell £ at R(£) which describes the
electric polarisation Ps‘ along the ¢-axis, associated with that cell,
The unit cells £ and L' interact with each other with an energy I(£ £')

and the Familtonian for the system may be written
=} 5, (L £4S(L)S(LY)

ok % 1(g)S(-9)S(q)

in terms of the Fourier transforms in the N cell system
s(0) = = és@ explig. R (£))

and therefore
Ig) = % I(LL") explig. (R (L") ~ RLLN).

The interaction matrix I(£ £') may be split into two parts, a short range
part and a long range part from the Coulomb field in the lattice of dipoles.
The Coulomb field itself is split inte two parts, the macroscopic field

and the inmer field (Born and Huang, 1954), only the latter being regular
as q -0, The interaction matrix I{g) ie then written in terms of a
regular part J{g) and a term coming from the energy of the dipoles in the
macroscople field. Only the electric polarisation along the c-axis is

considered 2o that the macroscopie field and the dipoles, which are in a
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medium of dielectric constant EL’ are restricted to the ¢-direction.
The macroscopie field term in i{g) for small wavevectors is

4 vPsg coazoc-j EL where < is the angle between q and the ¢* axis,

Then
Hg) = J{ )&4“1&’2 coszaf-/ €
L ! s L
= J{q) +V ec:ns2 oL
J{q) .
The eritical neutron scattering from this system arises {rom the
displacements u(qk)/ vmk' of tha atome k with apparent charges zk at

positions R (k) in the unit cell of the crystal. In the long wavelength

limit the dispiscements produce the polarisation
vP_* E Z, u(0k)/ V"

The mass factor is included here for consistency with the model in chapter
5 in which the neutron scattering function is discussed. For the simple

model of this chapter the scattering function
L1Q) = ¥ 7)1 <S(-g)s(@)> | o B N
where
F(Q) = %bk(g) exp(iT. R (k) sin(@. u((k)/Vm))  c.ovviiiinini. 402
summed over all atoms in the unit ¢ell, The correlation function

(@) = <s(-qs(@>
=(1+ g1(g)”



- D =

in the randorn phase approximation (Brout, 1965) with the inverse
temperature 8 =1 /kBT and kB is Boltzmann's constant, bk(g) is the
temperature factor modified scattering length for the k th atom and

T=Q + q iz a reciprocal lattice vector,

4,2 'The structure factor

The variation of the critical scattering intensity from one reciprocal
lattice point to another should be described by F(T) of equation 4. 2,
Estimates of the intensities were made by the method deseribed in
chapter 2 near ten reciprocal lattice points, at three of which (002, 200,
400) the experirrental estimates were zero agreeing with the expected

P4 symmetry of the displacements,

The ferroeleciric displacements only qualitatively fit the observations
at 233, 7°K ae can be seen from model 1, table 4.1, A model of the
eigenvectors to fit the seven intensities for the [ 4 mode must include x,
y and z displacements for the oxygen atoms, y and z displacements for
the hydrogen atoms and z displacements for the phosphorus and potassium
atoms, It was found that the oxygen x displacement could not be deter-
mined as it gave only very small contributions to the structure factors at
the points measured. The oxygen y displacement was found to be almost
as badly determined and so these parameters were omitted from the

calculations, 7The expression used for fitting the data wnas that given in
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section 3.1 rather then equation 4, 2, The difference between the

expressions did not exceed 8% for each of the parameters determined,

In table 4,1 the measured intensities and their standard deviations are
given. The ealeulated values 1 are from |F,)” in table 5. 2 sealed by a
factor of 11, 8 to the 303 reflection, Assuming that the ferroelectric
displacements do fit the intensities the displacements in the other models
may be defined in absclute terms, Calculated values 2, J and 4 are from
least squares fits to the data, With the standard deviationg from
counting statistics alone the X value for the difference between the
obgerved and ¢alculated structure factors squared was 5.1, 8.4 and 8.4

for calculations 2, 3 and 4.

The displacements determined in the calculations are listed in table
4, 2 with their standard deviations, The final shifts in the parameters
did not exceed 4% of their standard deviations, so that each model
represented a least squares minimum fit, The ferroeleciric displacem -
ents from table 3,1 are also inecluded for comparison, The oxygen atom
displacements are omitted completely in calculations 3 and 4, As the
displacements are defined in absolute terms, assuming that model 1
produces a reasonable fit, the spontaneous polarisation arising from each
model may be ealculated, The polarisation was calculated using the
formal charges +5, +1, -2 and +1 for the P, K, O and D atoms, P(:). and

also using the ionic charges deiermined in the least squares fit to the
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phonon dispersion relations, I-"f) The results are given in table 4. 2,
The least squares charges give unsatisfactory results, except for case 4.
The formal charges give unsatisfactory results altogether, exéept for the

ferroelectric displacements calculated from the cryetal structure,

An interesting feature of the analysis is that two different sets of
potassium and phosphorus displacements together with the one deuterium
displacement yield exactly the same calculated intensities (models 8 and
4). This implies that more data is required to find which is the true
least squares minimum. The resulis of calculation 2 in which all the z-
displacements are positive indicates again that more data is required,
it may, however, be concluded from table 4. 2 that the y displacement of
the deuterium atom (along the hydrogen bond) plays an important role

in the ferroelectric critical scattering.

An interesting alternative method of interpreting the intensities is

based on the Patterson synthesis of X.ray crystallography. The sum

Pr) = SIF()? eoslz. )

[

-

was computed, where |F(z) ,2 were taken as the observed intensities,
The eryctallographic Patterson funetion is a self convolution function of
the scattering density. The function P'(1) is & weighted self convelution
function of the scattering density (Cochran, 1968), in which the weights

are a function of the eigenvectors for the mode involved. h6/ data only
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were used and the resultant projection of P'(r) on the (010) plane is shown
in figure 4. 2, The coordinates marked on the map are delta functions in
the self convolution of the scattering density, disregarding oxygen atoms,
and placing deuterium atoms at the centre of their bonds. ‘The map is
obviously dominated by the 303 intensity. Even when the symmetry
information for the [ 4 mode was considered it was impossible to derive
any information from the map., Further measuremenis throughout
reciprocal space would be required before either this method or a fitting
procedure could produce meaningful eigenvectors. A similar lack of
data was alsc evident in the analysis of the quasielastic scattering from
DADP (Meister et al., 1969), although there were 29 h0/ ocbaervations
available, The symmetry of the M 34 antiferroelectric mode in this case
would be of some assistance, together with a knowledge of the superposit-

ions cecurring in the self convolution function,

4.3 g-space distribution and temperature dependence

The extensive measurements of the critical scattering near the
reciprocal lattice point 303 were deseribed in section 2,3, The g-space
distribution of the scattering arises from both terms in equation 4.1, the
correlation funetion [ (q) and the structure factor F(Q). As the critical
scattering arises from a ferroeleciric mode the eigenvectors u(gk) for
q — 0 are not independent of the direction of q as discussed in chapter 3.

This effect will be neglected here and no model will be put forward for the
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eigenvectors, [t therefore remains t{o fit the observed data to the

correlation function | (g) and to find I{g) and [F(Q)|” from the fitting.

The resolution of the data was good enough to enable the Firagg peak
to be subtracted. A Caussian resolution function was fitted to the Bragg
peak and this enabled the deconvolution of the data along the line (¢, 3).
The intensities most effected by the deconvolution were at wave vectors
greater than 9, 6, where errors due to counting statistics and background
were greatest, The instrumental resolution thus had ne great effect on
the data, This conclusion was confirmed by measurements at highe.
resolution which yielded data not significantly different from that analysed

here (R. A, Cowley and W. J. L., Buyers, private communication).

The background scattering was assumed to be constant over the whole
zone around (3,3), The incoherent elastic scattering is expected to be
almost ¢onstant within this region, There are, however, four protons in
the primitive cell and there are therefore four fictitious spin modes, as
described in chapter 5. Two of these modes at q = 0 will give rise to
a-axis ferrcelectric fluctuations. As there are no low frequency phonons
in DKDP, the moderately high dielectric constant (60) in the a-direction
(Kaminow, 18835) may have a large contribution from the two degenerate
fictitious spin modes which would scatier neutrons quasielastically.

This scattering, although not greatly temperature dependent may be

expected to have a dumbbell shape in the a* - ¢* plane near q = 0 similar
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to that cbserved for the c-axis eritical scattering, but with the axes
interchanged. The fourth mode alsc would be expected to scatter quasi-
elastically as there was no evidence of it at higher energies., Although
above 15°C the a-axis dielectric constant in DKDP is greater than that

of the c-axis (Kaminow, 1965), the critical neuiron scatiering at 340(3
retains the dumbbell shape observed at approximately -50°C. The neutron

scattering from the a-axis fluctuations must therefore be fairly weak,

It is desired to determine the function I(q), but the value of the back-
ground to be subtracted has a considerable effect on this funetion., The
scattered intensity S(q) is proportional to r'(g) and, with a background B
may be written

Sg)* st +B i 8

1+ ﬁl(g)

which may also be written
Al 5T . i
S(a)- +B‘ ;B—A-'-B) A:‘-AI(@}/‘(B LR B B A B A A 4-4
T+I{g)?kB

Equation 4, 4 describes the relation that the inverse intensity,
corrected for background B! iz proportional to temperature, while a2quation
4.3 says that the inverse corrected intensity (-B) is proportional to inverse
temperature 8. The normally selected background would be B' such that
it is the lowest intensity recorded in the Brillouin zone, assuming that the

structure factor is not a function of g, However the true background
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B =3B' - A, the difference arising from the fact that the high temperature
limit of the critical scattering is not zero, as assumed when choosing
B', but is A, This scattering ecorresponds to incoherent seaﬁering

from a completely uncorrelated order-disorder system,

For small wavevectors the correlation function [(q) has the

1

K2+q2

K2 L 1+ 8 I{0). The pair correlation function resulting in this form

Lorentzian form with an inverse correlation length K,

for the scattering is the Ornstein-Zernike correlation function a'Kr/

r
{Erout, 1965), The function r'(g) iz however not isotropic due both to

the Coulomb term in I(q) and to the anisotropy of the lattice. The pair
correlation function is then the Pourier transform of r'(g] and will

itself be anisctropic. Qualitatively, the dumbbell shape of the scattering
is then interpreted as showing larje. correlation along the z-axis
(corresponding to considerable scatiering in the a* - b* plane) and much
smaller correlation in the (001) plane, arisingfrem—thepolarisation-set
up=by-thewads (corresponding to the lack of scattering along ¢*). The
width of the scattering at 224, 7°K along the line (f , 3) was approximately
(¢ =)0.41 0r (g =) 0.37 A ! FWHM incressing to 0.52 £} at 307. 2°K.
The trangition temperature of the erystal was measured as 223, SOK. the
temperature at which the intensity of the scattering at the point (3. 15, 3)

was a maximum. It was found that & Lorentzian distribution would not

fit the scattering along the line ( f » 3). The inverse background corrected
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intensity at 224, 7°K was fitted to & quartic function
(s{q) - R)"l L K2 + q2 + (:":q“i

with K = 0,24 or 0.22 £  and € = 5.4 or 6.0 . This expression is
shown with the data in flgure 4.3. The extent of the correlation along
the c-axis in DKDP is made clearer when the results are compared with
the true Loventzian function found in @ -brass with K = 0,6 £ 9°K above
its transition temperature (Als-Nielsen and Dietrich, 1867). The pair
correlation function in DKDYF along the c-axis is therefore not of the
Ornstein-Zernike form and the order that does exist iz of much shorter

range than thati in P -brass.

The most extensive measurements of the critical scatiering as a
function of temperature were made at {3.15,3). Of the 109 observations
only 15 were more than 6°K above the transition temperature Ttr
(kB Ttr > = I{g}). The data were fitted to expressions 4.3 and 4. 4 and
it was found that B' = 620 + 50 and B = 460 + 70 with -I(g)/k, = 214.2 +
0.4%K, Attempts to fit the data with & ['(@) = (1 + Bi(@)7 (Brout, 1965)
vielded a y of 0.98, which eould not be distinguished from 1. The random
phase approximation for F@ is therefore adequate to describe the results.
In all the analyses the higher temperature data were not well described.

A smaller background value was required to fit these points.

Plots of inverse background corrected intensity against inverse
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temperature at wavevectors along the line ( {, 3) indicated that the data
for the highest temperature measured, 30701{, required a smaller back-
ground count (assuming, of course, that expression 4.1 does describe
the scattering). This disagreement could have been caused by a
temperature dependent background, or by a g-dependent background plus
inaccuracy in subtracting the Eragg peak. The latter reason would yield

large errors in the small intensity at the high temperature,

Provided that the background ie not temperature dependent it may be
eliminated aliogether from the analysis, together with any g-dependence
that it may have, by the choice of one set of intensities at a particular
temperature as the datum., The inverse of the difference between the
intensities when plotted against the inverse of the difference between the
temperatures at one particular wave vector should yield a straight line.

This arises from equation 4, 3, with T(q) = -1(q)/ kB,

y T, - T(a) (Tl - T(g) )
—— & P ——— D |
L -1, A T(q) T, - Ty

The two degrees of freedom of the straight line give T(g)(1{q)) and

AN IF(@)/%).  Unfortunately this method of analysis yielded results at
(3.15,3) of 213,3 + 0, 5°K and 573 + 50 with the standard intensity at
307. 2°K, and 217.8 + 0.7°K and 330 + 20 with the standard at 224, 7°K.
These values compare with an analysis of the same data using B' = 620

and equation 4, 3, yielding 215,2 + 1,0°K and 412 + 40. The errors



given here are estimated from the plots and are conservative, The
differences between the resulis indicate that the backgrouné may be
temperature dependent, although considerably more accurate data would
be required tc investigate this hypothesis. The differences also indicate
that the background value used is a cause for some concern, Using the
data from several wavevectors, the inverse intensity not corrected for
background was plotted as a funetion of inverse temperature., It was
found that the 307 K data still required some correction for a smaller
background. For the point (2.8, 3.15), the reciprocal intengity and
reciprocal intensity corrected for a background of 200 were plotted
against reciprocal temperature, The 307°Kk point was ignored in the
latter plot. The resultant straight lines produced values of 139 + 4°x
for T(q) from both analyses and 400 + 30 and 300 + 30 respectively for A,
The errors in the results are thus great enough to yield the same extra-
polated value of inverse temperature, requiring only a different slope, or
structure factor, for the different backgrounds., The background, within
this range, is therefore unimportant for the determination of i(q). The
main interest in this analysis is the function I{q) and, as the zero back-
ground enabled the 307°K data to be considered when attempting the linear

fits, the inverse intensities were plotted without correction for background.

The experimental results were recorded along the lines ( ( »7)in

0. 05 unit steps of { running from 2,05t0 5.7. The 7 values were 2.9
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and 3.0 in steps of 0.05 to 3.2, The data along the lines (7, 3), (2.4, 7),
(2.6, 72), (2.8, '?), (2.9, 7), (8.0, vz) were analysed to yield i{g) and

N IF(QHB. Some of the plots of inverse intensity against Inverse
temperature are shown in figure 4.4 The resultant values of I(q) and

N |7(Q)I* are shown in figures 4. 5 and 4. 6.

The structure factor remains constant throughout the region measured,
with the exception of a significant anomaly at small wave vectors along the
c*-axis near the centre of the Priliouin zone. This anomaly may be
predicted in a microscopic model (chapter §5) and is the result of the
variation of the eigenvectors of a ferroelectric mode with the direction of

the waveveector,

The short range part of the interaction i(g) may be writien to next

nearest neighbours in the body centred tetragonal cell

Q) =i, + 8, (1 -cos(q af2) cos(qy a/2) cos(q, ¢/2) +
+ 2J) 2(2 - ::ms(qll ) - coﬂ(qy a)) +

- 233(1 - cos(q, ¢)).

Using nearest neighbour (NN} interactions only the results along the line
(7, 3) were fitted quite well, although a significant improvement was
made by inecluding next nearest neighbours (NNN). The fits which are not
least squares ealculations are shown in figure 4. 5 and the parameters are

given in table 4,3, The errcors in the parameters represent the limit of
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reasonable fits to the data.

The results along the lines parsllel to ¢* involved the Coulomb
interaction Vc' Figure 4. 5 shows that the data along the line (3.0, 7)
must be affected by the resolution function of the instrument and also by
the subtraction of the Eragg peak. The accuracy of the daia along the
line (2.4, 7 ), where the observed intensities were of the order of 700
counts, is beiter judged by the fit tc the calculation rather than by the
error bars, The remaining data could only give a reasonable fit to the
nearest neighbour model parameters from the ( f. 3) fit with the parameter
Vc varying from one line to another. This variation was removed by
using the NNV model parameters determined from the ( f, 3) fit and using
as well the parameter J,. Both fits are shown in figures 4, 6 and table

4.3.

There is no structural reason for the parameter Ig to be greatly
different from J gr Itis required to be large to fit the wide variation of
Vc in the NN model., It might be thought that this variation of V & could be
reduced by introducing a background ecount, but the analysis of the (2. 8,

3.135) dats indicated that this would be of little assistance.

A next nearest neighbour model for the short range interaction can
therefore desecribe the quasielastic seattering results quite well,

Qualitatively the critical scattering itself indicates, and the analysis shows,
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a ferroelectric transition with a minimum in J(g) at ¢ = 0. The significance

and '_ can not be determined as no microscopic

of the parameters | 3¢ g 3

model has been proposed. The parameter ‘JIO (-222 + EOK), on the other
hand, represents the Curie temperature for the ferroelectric transition.
This value is very close to the measured transition temperature of the
crystal (223,6°K). The difference between the free and clamped Curie
temperatures and the transition temperature is discussed in chapter 6.
The value of the Curie temperature is in very good agreement with the
value 222 + 1“K determined from the low frequency dieleetric constant for
high purity DKDP by Sliker and Burlage (1963). The neutron scattering
results described in chapter 2 suggest that there may be some hydrogen in
the crystal, but the analysis here shows that the cry;ltnl is of high purity

and could be elaimed to be fully deuterated within an error of 3%.

The critical scattering results give no evidence of any temperature
dependent scatiering at the zone boundary M., This is the point at which
the critical scattering from DADP is strongest (Meister et al., 1969),
corresponding to an antiferroelectric phase transition in which the dis-
placements have Ma 4 symmetry. Tigure 5.1 shows the compatibilities,
implying that strong scattering would be expected along the line ( f »3) from

F (3,3) to M (2,3) if there were any tendency to antiferrcelectricity in

DEDP,
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4,4 Dislectric constant

As discussed in section 4, 1 the fluctuation-dissipation theorem may be
used to relate the dieleciric susceptibility and the power spectrum,
Integration over frequency then yields the static dielectric constant in
terms of the correlation funetion F’@ for the fictitious spin model

(Cochran, 18689)

€= € +am vPi 8T

This equation shows that the Curie temperature derived from the

static dielectric constant, Te s o] 0/ kB and the Curie constant

2
4'rrvPs

The expression for the dielectric constant shows again that the random phase

approximation for ['(q) is sufficient.

The valuez of the Curie constant and the dielectric constant due to the
lattice are 4040°K (Samara, 1967) and 7.1 or 8.9 for the c-or 2-axis,
estimated from the mode strengihs of Barker and Tinkham (1863), The
values of the high frequency dieleciric constant for the ¢-and a-directions
were assumed to be 3 (as for KDF) and zero. Taking EL for the c-axis,
v, * 568°K. The fact that the value determined from the analysis is too

low by a factor of four may mean that the model for the Coulomb inter-
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actions, which is only valid for small wavevectors, has been extended too

far. A more complete model such as that described in the next chapter

would be required to study this point,
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Table 4,1

Squared structure factors for the ferroelectric mode

reflection chserved calzulated
model
1 ¥ g
101 170 4 50 (13) 353 87 116
103 490 + 50 (22) 23 527 448
203 10 + 40 ( 3) 0.4 29 112
204 1800 + 60 (42) 55 1800 1800
301 1770 + 60 (42) 5420 1848 2056
303 5130 + 80 (71) 5130 5082 4679
402 480 + 50 (22) 77 451 524

The obseyved values are the measured intensities with their standard
deviations estimated from the counting statistics plus background, o7 ()

counting statistics alone,



atom
3
K =
O x
¥y
z
D ¥y
2
2
P‘;)(/ucfcm. )

¥ (see p70)

-91 -

Table 4, 2

Calculated ferroelectric displacements

-1,0
0.6
-0, 620
-0, 089
0.1
-2.606
0.25

5.42

1.68

x 10° fractional units

displacements
model

2 3
0.68 +0.12 0.52 + 0,17
-0.1210.18 -0.05 + 0, 26
0 0
0 0
0.16 + 0,08 0
1,27 +0.05 1.30 + 0,08

0.73 +0,10

-4, 16

-0, 86

2
P, experiment 4,83 uC/em,

0.85 + 0,10

-4, 30

“0. 98

4

-1.26 + 0,17
2,75 + 0, 26
0
0
0
1.30 + 0. 08
0.85 + 0,10

8,36

5.34
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Table 4.3

Ising model parameters (oK)

model

vV, (2.4,7 )

(2.8,7 )
(2.8,7 )
(2.9,7 )
(8.0,7 )

222 42

7.7+0.5
0
0
800 + 100
300 + 20
210 + 20
175 + 20

140 + 20

NNN

-222 + 2
9.9 +0.7
-3.5+1

28 + 10

140 + 20



Figure 4,1

Frequency width of the critical scattering, The imaginary part of
the susceptibility (('(w)) is from Hill and Ichiki (1963). The neutron
scattering is proportional to ('(w)/w. The energy resolution of the

spectrometer in the best experiments in chapter 2 was 0, 267THz (FWHM),
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F 4,2

Modified Patterson synthesis P'(r)

The (010) projection is shown, clearly dominated by the 303
intensity. The crosses mark peaks in the self convolution of the
scattering density, disregarding oxygen atoms and placing deuterium
atoms in the centre of their bonds, Negative contours are dashed,

zero contours dotted and the full lines are positive contours,
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Fiﬂm 4.3

Inverse intensity along the line (5, 3 ) at 224,7°K. The solid
line shows the expression KZ + ‘52 + Az S 4. The intensity I has

been corrected for a constant background,
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¥ e 4,4

Inverse intensity as a funetion of inverse temperature. The
accuracy of the data and the resultant linear fit are indicated ut several

wavevectors (3’ % oz |
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Figgre 4,5

The interaction j(q) and structure factor squared N ] :G‘(f}__}]3 along
the line ( 7,3 ). The sclid curve for J(q) uses only nearest neighbour
interactions, while the dotted curve uses next nearest neighbours as

well.
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Figures 4 6

The intevaction 1(g) and structure factor squared N | F(Q )}2 along
the lines (2.4,7 ), (2.6,% ), (2.8,%7 ), (2.9,7 ) and (3.0, 7). The
solid curves for 1(q) use only nearest neighbour interactions and a
separate Coulomb interaction, Vc. for each line, while the dotted
curves use next nearest neighbour interactions and one value for the

Coulomb interaction.
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5. Mieroscopic Model

5.1 The model

The most recent microscopic models for KDP, which are reviewed
by Tokunaga (1966) and Tokunaga and Matsubara (1966), use de Gemnes'’
(1963) fictitious spin formalism, The models are designed with a term
which deseribes the proton tunnelling and is able to account for the
isotope effect on the transition temperature. The quasielastic nature of
the critical scatiering described in chapter 2 shows that for DEDP the
dynamical tunnelling term is indeed very small. The tunnelling is
therefore congidered to occur on a very long time scale compared with
the displacemaents due to the phonons. The deuterons are thus regarded
as tunnelling, in order to allow a mechanism for their transfer from one
gite to another in a hydrogen bond, but the dynamical nature of the
tunnelling is disregarded. The model presented here is therefore
applicable to DEDF, and to any other XDP type crystal in which the
dynamical nature of the tunnelling may be disregarded. It iz likely that

all deuterium substituted KDF type crystals satisfy this condition,

The experimental results alsc indicate the importance of including
the whole lattize in any model of the ferroelectric transition. The
effects of the proton - lattice interaction on the excitations of the

system were described in detail by Villain and Stamenkovie (1866) who
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solved the equations of motion of the eoupled system in the molecular
field approximation. They considered the total system of four protons
and the complete lattice, every proton moving in the one molecular

field. The simplest case of their theory, an interaction between one
spin and one laitice mode per unit cell, yielded an excitation with the soft
mode temperature dependence., Ixactly the same result for the simple
case of one spin interacting with cne lattice mode was derived independ-
ently by Kobayashi (1968), who discusses the form of the exeitation in

greater detail,

Novakovic {1966) preferred to consider the tunnelling to be of such a
low frequency that the lattice vibrations are not effected by the proton-
lattice interaction. In this adiabatic approximation the non-hydrogen
atoms in the erystal are always in equilibrium sites relative to the
position (or fietitious spin) of the hydrogen atoms, Above the transition
temperature the equilibrium sites are those determined by Bacon and
Pease (1953), The lattice spectrum is therefore unchanged by the
presence of the protons. The excitations of the spin system (extended to
four spins per cell by Novakovie, 1987), when determined in the molecular
field approximation, have exaectly the same form as without the proton -
lattice interaction, but with & renormalised parameter. They therefore
have the soft mode characteristics mentioned in chapter 1. This
renormalisation of the proton-proton interaction was also realised by

Hline and Svetina (1966), who then discarded the term,
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In the model described here the dynamical nature of the tunnelling is
disregarded, It is then unnecessary to use the molecular field
approximation, but the adiabatic approximation is used to include the
proton-lattice interaction, An attempt is made to present a model which
will not only qnaﬁtatively deseribe the results, but which is simple enough

to enable reliable quantitative predictions to be made,

Each proton (or deuteron) (k) in the unit cell / has twe equilibrium
sites. The fietitious epin S{Lk) is +1 if the proton is at site 1 and -1 if at
site 2. The petential between the protons Lk and L'k’ at sites i and j
respectively is written ¢ i ﬁ:) , abbreviated fSij. The potential
between two protons is then

%(9511"_ #12 + ,‘521+ ¢22)+i_(¢11+ ¢12 o ¢21 3 ¢22)S(1k)

%Mu L ¢22’ka,)+%(¢u 12 g8 g agp i

The potential between a K, P, or O atom and a proton may be similarly

written
2o+ igl - Fsuw

These forms for the potential were suggested by R. A, Cowley
(private communication)., The model following from the potentials is
described by Paul et al, (1968) and corresponds, with some points of
different emphasis, to the discussion in this chapter from equation 5.7

onwards,
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The potentials may be expanded in Taylor series as § funetion of the
(small) displacements of the protons from their equilibrium positions at
sites 1 ‘o7 2 in the hydrogen bond, The proton-proton interaction in the
crystal, negiacﬁng the dynamical part becomes (to second order only)

{ 1
= 4, (ﬁ,)u‘,‘_(!k}uﬁ(l ety +9(¢(H,) u_ (LK)S(L ')
frass ,

+%Y(f‘k§.) s(LE)S(L k") Rt SRR IMR R R

The proton-proton interaction iz therefore composed of three parts, a

lattice part (;ei,cﬁg ), a spin-lattice part () ) and a spin-spin part ().

Equation §, 1 assumes that only two body interactions are important,
whereas Slater's (1941) theory includes four body interactions, The
microseopie model of Bline and Svetina (1966) includes the term ¥ for
2# 0', only for long range interactions. They introduced a short range
term {fourth erder in S({k)) into the description which takes sccount of
the energy of the Slater-Takagi configurations of the protons surrounding
one PO, group. The term Y for L= 1+ can however aceount for most
of the short range Slater-Takagi configurations because the fourth order
terms S(ZK)S(Lk)S(Lk")S(LKk") reduce to S(Lk')S(Lk"). The remaining
{fourth order term will be neglected here. This term has been included
in Novakovic's (19868) molecular field approximation model. Creens
function technigques, again using a molecular field approximation (Errey,

1968), show that with this fourth order term the correlation function seen
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by neutron scattering would not have the simple temperature dependence
observed and discussed in chapter 4, The present model therefore

includes only two body interactions.

The proton lattice interaction is written, again to second crder

ﬂ(—p(ﬁ') um(lk) np tf. k") 'l'&(ﬁ') u, (Zk)s(l.k').

L}

E"K. P,O
k'=H

as in equation 5.1, this expression contains both a lattice and & spin-

lattice part., The potential energy of the lattice is written

20! e
ﬁ% 4 ﬂp(w) u_ (LX) ug (LK)
kk'*K, P, O

The three Taylor series expansions for the proton-proton interaction,
the proton-lattice interaction and the potential energy of the lattice are
1
written omitting the constant term 2' ¢( ﬁ,) as it just defines the

kkl

energy zero, The term X _f' is missing because, by symmaetry

E’X(ﬁ:) . 12651 ﬁ:} - ¢ (ﬁﬁ:)) B e e TE B

k

In the paraelectric phase,

ﬁ.xd(ﬁﬁ:) 8(L'x) = 0 o v Lo B
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since the average value of S({'k') for each k', {(S> = 0,

The equilibriun condition

> 9’;(&:) s> &(ék:) S(L'KY) =0

At Lk

therefore gives

gﬁ(ﬂ) = 0, which means that the term %u,‘.:inminuinthe
Lot oc | !

Taylor series expansion is zero in the paraelectric phase,

Two further conditions may be established. Transltional invariance

of the potential and its derivative show that

1
z /X(££|> -0 sssas e esess s 5'4
Ixok,P,0,0 K
and

)
le=v:, P, 0, H ¢“‘(9 kk

Before developing the model it is useful to discuss the three
matrixes 55, X and 7 which appear in the description in srder to give
them some quantitative meaning., The matrixes F5,( 5 are the second
derivatives of the potentials ¢, ¢ ! and ¢5ij. The matrixes | _ are

defined in terms of the first devivatives of the potentials ¢ ! and 4 i

X ()¢ () - # (&)

and a similar definition for the term involving 5?5 ij, The matrizes 1/



- 105 -

are defined in terms of the potentials i themselves

V() He ) - ) o ()

The mairixes 5601{3 contain all the parameters required, for example,

ionic charges and short range axially symmetric central force parametors,
and these may be used in % « ¢ Shori range forces, however, are not
required in due to the large distance between protons, The Coulomb

potential is therefore the only eontribution to V.

It remains only to use some simple potential functions to give the
three unknown matrixes # a % and ’1& the quantitative meaning desired.
Following chapter 3 a short range axially symmetric eentral force, rigid
ion model may be proposed. The matrixes é‘(g are then determined in
the same way as in chapter 2, The short range contributions to )C o
are (Born and Huang, 1954)

' 2
/Xo{. (fé) 4 g; Bkk' 2
with the notation of equation 3,1, The calculation of the Coulomb
contributions to 55;‘1 and 55“ for the % ,, and ’}& matrixes would require
the use of expressions for the Coulomb sums which have been derived
from Forn and Huang (19564). The expressions will not be given here,
as they are fairly simply derived, rather long, and have not been used in

calculations, Although the ealculations have not been done, it can be



- 106 -
seen that this model does indeed give calculable meaning to the three
unknown matrixes. Calculations could therefore be performed, not only
for DEDP, but for all deuterated KDP type crystals, including DADP,

which are expected to have very low frejquency tunnelling modes.

In view of the uncertainty in the parameters of the model to fit the
phonon dispersion relations for DEDP it was decided not to proceed with
the full model ecalculation for the total system but to see whether any
simplifying approximations could give a workable model. “The approx-

imation is made in the expression for the potentials ¢ ana ¢4,

The position of the Lkth proton in the double minimum potential well
is either R (/k) + a(k) for sites 1 and 2 respectively. (R(Lk) = R(/) +
R (k) where R (L) is a vector to a point of the Bravais lattice.) The

potentials ¢ij and 95i may then be expanded in Taylor series

$i ﬁ:) L gi(u:) + g a, (k) ;ﬁd_(ﬁ:) + ¢ % 3, (kag (k')gp(ﬁ:) +...
and similarly for ?ij. ’)Q(ll:) and 7(&:) then have ¢d ‘6(&:)
as their lowest order terms and are composed of only even derivatives.
The potential energy of the crystal may then be split into three parts, the
lattice (including protons), the spin-lattice (including spin-proton) and the
spin-spin contributions, the leading terms of which are expressed in the

approximation for the potential
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T LL) w (LK) ug (LK)
kk's¥K,P,0,H
> L) w, (Lk) ag (k)S(L'K")
wah P ‘ip(kk) i
k=K, P, O, H
k=g
/) ' et
i % 2% ¢¢p(kk*) 8, (k) ag (KS(LWS(L'E eevernnn... 5.5
Kk'=H

These expressions have interesting implications for the Coulomb
parts of the matrixes £, (and Y. The Madelung energy, when split
into parts V‘(&:) and taken inio Fourler transformed form, has
components ¢orresponding to the maeroscopic electric field t=rm which
are proportional to 1/ lglz. These divergent terms swmmn to zero due to
charge ncutrality, but are required when the matrixes are divided into
interatomiec parts. The expressions J, 5 show that this divergent term
does not arise, but that the first term appearing in Y is the second
derivative of the potential, which reguires the normal Coulomb sums and

does not diverge at ¢ = 0, The second derivative is also the first term

appearing in %of., .

The fregquency of the O-H stretching vibrations in KDP (Lazarev et al.,
1961; ¥line et al., 1958) show that the protons move in & double minimum

potential well rather than a very flat bottomed potential well, The
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approximation expressed by equation §, § is therefore not only very poor,
but incorrect, having the wrong sign for the second derivative, and could
not be expected to provide a good model calculation, The higher order
terms in the Taylor series expansion are therefore required to give a good

model,

The general model is now develsped by intrcducing the Fourier

transformed operators u, (gk) and £(gk) in the N cell system.

uy (LK) = 32 u_ (gk) explig, R (LK)

Nmk

1

S(lk) = %S(gk)m(ig.g(lk)) SehduhREa e a Bi S

The Hamiltonian for the system, neglecting both the constant term: and

the kinetic term for the lattice may be written

H e R4 :H—SL+ H

J*L = > S Cupp (@HE) u, (-gihu (i)

d@3 q
kk!
AR s 3 G @) u (-gh) S(gk")
kkl
oot & %i(gkk’)sbgklstgk') Bk sineiui iurran BT
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with the summations over appropriate atome as given in the expression
3. 5. ‘From equation 5.1 and the following expressions, the Fourier
transformed matrixes are defined

Vg G (@) = 2 g (L)) explia @ (1) - BUW.

S8 8P BB PR ENSe e 5.8

The matrixes »;/mk' G (gkk') and I(gkk') are defined identically by

the Fourier transforms of ) d-(klé:) and ’yr( ,).

At this point the adiabatic approximation is introduced and equation
5.7 is minimised with respect to the atomic displacements., If is found

that

-1
u, (gk) = - C, 5 (qidk'}G ;5 (gk'k")S(gk")
g .?E'-K P,0,H PXIGp e *

k".}; ERC I A B B O B R R R R 509

Even though the matrix C is singular this equation has solutions by

condition 5, 4.

The cross terms in the Hamiltonian disappear in this approximation.
H I remains unchanged and yields the phonon frequencies w(qgj) and

eigenvectors o, (kqj)

e S .y (@10, (gl (K'g) DGO B e v L
op
kkl

The remainder of the Hamiltonian becomes an Ising model Hamiltonian

Ho ot %J(gm")st-gkmgm
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with a renormalised matrix

J(gkk') = I{gkk') - 2 G (= "k)eﬁik"gj)eﬁ (k" ~gj) G(g(ak"'k")
=8

K w %(g)
j

® 8 8 0880 s 0w s e 5.11

¥rom this equation it would appear that the frequency of the acoustie
modes as q—0 would make the interaction matrix J diverge., THHowever,
for the acoustic modes all g, (kqj)/ ﬁ;‘ are the same for each atom K
and so the sumsa of 5.11 include the term E,{r—n’; G, (0Okk') which, by

equation 5. 4 is zero,

By expanding equation 5. § in powers of q it can be shown thai

%Jm_k‘ G, (gik*) is proportional to g. The acoustic mode therefore
causes no ancrmalous interaction as g >0. However, more importantly,
equation 5.3 shows that the interaction tends to zero as ¢ — 0. This
peint is perhaps intuitive, as expressed by Kobayashi (1968), but it
should be stressed that there are two conditions required. The first
condition is that the crystal is in the paraelectiric phase, Nquation 5,3
is then true. Secondly the translational invariance condition is required.
The interaction of the fictitiovs spin with its own displacement must
therefore be eonsidered. Kobayashi's model, which does not include
this interaction, should then have an anomaly as ¢ — 0. [i is interesting
to note that the spin-lattice (one atom only)interaction for an Ising

ferromagnet (Matsudaira, 19€8) has only a 2% effect on the transition
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temperature, In KDP the main offeet of the interaction is expected to be
via the non-apin atoms K, P and O, As these are the atoms which give
the greatest c¢ontribution to the spontaneous polarisation, it is thought
that the spin-latiice interaction ¢causes considerably more than a 2%

effect on the transition parameaters in DKDP,

An Ising model Hamiltoninn has therefore been get up to describe the
fictitious spin systemn. The interaction matrix is defined Ly equation
5.11, Eigenvalues J(g)) and eigenvectors E(kg)) of the matrix J(gkk")
may be found and these are the values of J which apply to the four
tunnelling modes in KDP. The spin coordinates S(/ k) transform in the
same way under the space group operations as the tununelling vectors
described in appendix 1 and so the eigenvectors, which are written in
terms of the spin coordinates

S(gk)=§E(kg>\)S(g>s). R RO B T

lie in spaces irreducible undeyr the representations given in appendix 1,4,

The clearest deseription of what the fictitious spin S(/k) represents
has, perhaps, been given earlier, where it was stated that S{{k) = + 1
depending upon the occupation of a gite. The work of Elinc and Svetina
(1966) does not use the fictitious spin formalism, but it may be seen that
the operators 5(Lk) are the difference between their number operators on
gites 1 and 2

S(lk) = a{Lk1) - n(Lk2)
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This is the mathematical way of putting the above statement, It is
important to néta that while the fictitlous spin + 1 is discuseed, the model
really involves a spin # syster which has only two energy levels, or

states,

The degrees of freedom desecribed by the fictitious spin eoordinate are
additional to the translational degrees of freedom enjoyed by each pfoton
or deuteron, Hemembering that there is some finite dynamiec nature to
these extra degrees of freedom, even in DXDP, they are called tunnelling
modes, There are always four of them at any given wave veector in
addition to the phonons. The group theory of appendix 1 (table Al, 5)
shows that no matter what model for the potentials is chosen, the tunnelling
modes with syrmmetries F2+ P‘-c- P&‘ El +3 22, Al + /12 + /\34
and M, + M, can only interact with the lattice modes 5 [',, 7 [, 13 [,

4 8

23 21' 252, 1A, 11/, 13\, and 7V, ,, 11V, respectively, if

34°
anharmonie interaction is neglected. The group theory alsc shows that
the ferrcelectric (c-axis) tunnelling mode r“ can only interact with

6(optic) | , modes.

5.2 DNeutron scattering

The neutron scattering cross seection for the tunnelling modes may
be caleulated from the model, The seattering is quasi-eiastie for
DKDP and so only the scattering function 4 (Q) is required. The

derivation of the scattering properties for an uncoupled fictitious spin
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system has been given by Cochran (1969).

S Q,w) = f (Fg(-Q, OIF(Q, t) exp(-lwt)dt
where FS(Q, t} is the Fourier transform of the scattering dengity for the

spin system, which is written

1% ib, [(& - R(Lx) - fl) - (k1) - S(R - R(LK) + ak) -
u( Lk, 1)) S(Lx, 1.
b, 1is the scattering length of the i th proton with displacement u(Lk, t)
and S(Lk,t) is the fictitious spin of the [k th protor at time ¢, Then

Fg(@,t) =1 7 b exp(iQ. (R (LK) + u(/k, t))sin(Q. a(NS(/K, )

The time dependence of this equation may be split into two parts, that of
the displacements and that of the fictitious spins. In the adiabatic
approximation the displacements do not depend on the fictitious spin, the
operators commute, and so the average < FS(-Q A D)FS(Q. t)) may be
factorised into the sum of produets of iwo averages, one involving dis-
placements u( {k, t) and the other involving fictitious spins §(/k,t). The
former may be treated as in phonon theory (Cochran and Cowley, 1967)
and for the present purpose the constant term in the expansion of the
exponential is taken. The secattering lengths are then writien including a
Debye-Waller factor bk(g ). Using equation 5.6 the Fourvier trmsfoi-m of

S(Lk, t) may be defined and
Fo(@.1) = 1/ 2D, (Q) explic. R (k)sin(Q. a(k)s(gk, t)

whereT = Q + g is a reciprocal lattice vector, For DKDFP the quasi-
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elastic nature of the critical scattering means that the time dependence of
the fictitious spin and the structure factor is of no interest, zo that a

time lndependm_:t structure factor is defined

Fe(@) = 14T 2b, (Q) expliZ. R (k))sin(Q . a(k)S(gk).

The four tunnelling modes may now be separated using equation 5,12,

FglQ) = ng(gM

F (@ ) * 1NN 2b (Q) expliz. k) sin(Q. a(k)E(kg))S(gh)

The above structure factors are for the scattering from deuterons
only. The interaction of the laitice in the adiabatic approximation may

now be considered, The other atoms in the crystal have displacements

in the tunnelling modes governed by equation 5,9, The structure factor

for scattering from these atoms has the form

F (@)= iVN 2 kmﬁn;)m(r R (k))Q . u(gk)

Here again the time dependence is so slow that it has been neglected.

Rewriting equation 5.9 using 5,10 and 5,12

wlgds - > ’-‘“‘g"ﬁ“‘"&_” G o (gEK")E(K"g))S( )
g2 w “(gi)
k'K, P,0,H
k“-H

= - Z e (kqj) (kgj E(k'gN)S(g )
k' w(gi)

defining ¥, The structure factor is then written



- 115 -

F (@) =N > b, (Q (. Jexp(it. R ()Q . efisg)
: k*K,P,O0,H -
k'=H
} H(k'g)E(k'g \)S(g )
x e
ouz(gﬂ

- 5}, @2 saghseh

i w(gi)
k

defining ‘?—L, the structure factor for scattering by the phonons, As
equation 5, § does have solutions the acoustic mode causes no anomaly
in the structure factor. The total scattering function for the tunnelling

modes may then be written
AQ) -N% | F@)| % st-qhstgh) )

=N (2@ *r@gh
A

with 1@y = > (ib (Q)exp(iz: R (k))sin(Q. a(k))
B=r | X

w (gd)

H
- 27, @) —é—:ﬂu}man
j

The correlation function [' (g)) may be determined in the random
phase approximation (Brout, 1865)
Mghy = (1 +pa@in™

As discussed in chapter 4 this funetion deseribes the neutron scattering

in DKDP quite well so that a temperature Tc(gk) = -J(g_.\)[kg may be
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defined,

Equation 5,11 may now be written more neatly using the definition

H(Ag)) = § H(kg))E(kg))

A =gi)E{) gi)
wz(ﬂj)

L B O O 5-13

sgh =ugh -5

where j and A belong to the same irreducible representation,

The scattering function just devived has several interesiing features.
In the 'polar' rapresentations { A= T ., [., appendix 1) the values of
w(gi), Bligi), H{g)) as g © depand on the direction of ¢, The phonon
frequencies o {0j) always have a2 'longitudinal’' component at a higher
frequency than the transverse component. Thus for the branches
compatible with ;, w(0A,)> w(0S,) and for the doubly degenerate R
w(OElb w(nsza = m(0A34). A tetragonal crystal ig different to a
cubic crystal in which the zone centre polar representation is iriply
degenerate and the phonon frequeney w (0j) splits for any direction of q
into a longitudinal and two trangverse branches. In the tetragonal
crystal, as [, and [, modes must polarise the crystal either
perpendicular 1o or in the (001) plane respectively, the fregquencies may
be written in terms of the {requencies we(Oj) not involving the macrose-
opic electric field. The angle between the wave vector ¢ and either the

(001] direction or (001) plane iz defined as X . The squares of the
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required frequencies are then the eigenvalues of the matrix (Porn and

Huang, 1854)
"": (03) Sﬂ' + 4T v [P(0j) [P (05" cos’x

The polarisation P (0j) is set up by the mode j in the unit ¢ell of volume v,
From simple mathematical considerations it can be shown that the

eigenvalues of the matrix are of the form
wz {Cf) + w?(()j)coszoc

where wz {0§) is a linear combination (with positive coefficients) of the
wz (0§). The longitudinal modes must therefore have higher frequencies
than the corresponding transverse modes, Similarly it is expected that
() 0j) = 1 _(A0j) + H, (dojleos
HOA) = 1(0A) +1y(0 Aeos” o

and therefore from 5.13 2

(1, (A0) + K, (A 0j)eos X )

JOY) =1 (00) +1,(0Necos - S e
o 5 ol + < Foeos’

A g u(0 A} + Jl{o,k )00820(

It should be noted that with a large enough H1 the longitudinal rather
than transverse tunnelling mode would have the smaller J{#/)} and would
therefore cause a ferroelectrie iransition. The g-dependence of the
critieal seattering discussed in chaptser 4 showed that this was not the

case for DEDP, Assuming that J 1(0 M is positive for both 1_; and i‘g. the
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knowledge of the symmeiry of the tunnelling modes gives the form of J(qA)

as a function of q as shown in figure 5.1.

The neutron scatiering function is dependent on the direetion of q
through the correlation function F(g).) and as well through the interaction
part of the structure factor., The interaction matrix Hl(’\ qj) is expected

to be very small for the T; modes as the proton tunnelling vector is

almost perpendicular to the c-axis and therefore the dipole moment
prdduced along the c-axis would be very small. The matrix Hl for the

F; modes is on the other hand expected to be quite important, implying

that a large J'l(t) r 5) exists. As pointed out earlier there is always for

any q— 0 a transverse mode, so that the scattering from this mode

=
: 5
has a structure factor, including the spin part 7 g
Ho( F'50j)

-~ = ™~ . Z 3
Flz rge T T~ =7 (52 ,
vo2(03)

This scattering cannot be removed (s in a Raman scatiering experiment)

and will always be seen together with the scattering from the longitudinal

component, whose structure factor is
: e R
(H ( 70+, ( [ 503)::05 « )

s
o z(DjH wi‘(ﬂj)cm .

Fz M= 22 Mg - 3 7

which has its own [ (0 T“5) involving JI(D T”51.

The frequencies o (gj) are known from the analysis of the phonon
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diepersion relations in chapter 3, Ho estimates, however, have been
made of the xﬁatrixea J or H, although it was pointed out in seetion 5. 1
that the matrizes can be calculated, It is interesting to reecall two
results of the phonon calculations at this point. There were two low
frequency modes of || 4 and /; syﬁmetry with which a large electric
polarisation was associated, It could be reasonably expected that the
interaction matrixes H for these modes might dominate the spin - lattice

interaciion.

5.3 Dynarm ical model

The model described in this chapter is only applicable to a KDP type
crystal with a very low tunnelling frequency for the protons, If the
splitting between the two lowect proton energy levels in the double
minimum poetential well (2/1) is included in the Hamiltonian then the

additional term appearing is (de Cennes, 1963)
-20 ,ékxwk}
where X(/k) is the x-component of the fictitious spin £ system whose z-

component is S(/Zk)/2.

Neglecting the proton-lattice interaction, the molecular field
approximation shows that the resultant tunnelling modes have an energy

above the transition temperature (Brout et al,, 1966)
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112 0%(g)y= 4.0 + 1(g ) tamh 51 ) RSN ORI R
o (T = T (@A T for SR 1.

Applying the adiabatic approximation to the proton-lattice interaction
I(a \) becomes J(g,\} (Novakovie, 1967), Egquation 5. 14 is also obtained
when the adiabatic approximation iz applied to Kobayashi's (1968) one

phonon coupled equations of motion result.

The effect of the proton-lattice interaction on the phonons is to raise
their frequency (Kobayashi, 1868), but as (L— 0, the cliange also becomes
zero, as in the adiabatic approximation, This implies that for DKDP the

lattice dynamical calculations of chapter 3 are valid.

For a large 2 (2, however, it must be remembered that the protons
are in double minimum potential wells and it is therefore expected that
their motion might be considerably damped. The neutron scattering

function is

3(Q,0) = N%/‘?(QA){ % [{ St-g), 018(g5, 1) exp(-Lotiat
In the moleeular field and random phase approximations the integral in
this equation, rtg}. w), for a damped excitation is expected to be

(Cochran, 1969)
200 (gh)

Mgh,w) = S5 tanhAR ((e) +1) :
% e (le(g,l Youi T B 5’3(3,\)

where n{w) = {exp( s hw) -1)'1 and (g_)) is a damping constant,
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For an overdamped mode Y{q))>> 1.(q)) and for low frequencies

fhot, T (g}, w )} becomes Lorentzian in frequency

2 | 1
Mglieo) e h:zj;(gﬂ i (___f}f_cg_)_,_a)“ R S e b 5.15
oot (2y(q))
and using 5. 14
27(gA)

(g w) = 14.,93'(3,1) 14 ;(:2(&).) 5,16
with

ﬂs_iﬁ) 2y@h | ¥ rgh

Ay 2204 pagh)

and when integrated over frequency
Mah = M@hoo) § =+ pa@n™

which is the Ising model result, Fquations 5,15 and §, 16 are identical
with the integral [(q/, «w) describing the dynamical nature of the Ising
model (Suzuki and Kubo, 1968) as discussed by Cochran (1868), The
relaxation time ’t(g»\) for the tumnelling mode shows the ‘eritical slowing

down' form,

The resulie for DKDP may therefore be described either by the Ising

model formalism of by an overdamped tunnelling model with a definite
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tunnelling integral 2., However, as the effect of the transition on the
phonons is experimentally negligible {chapter 2), while the frequencies
should increase as the temperature is lowered (Kobayashi, 1868}, it may

be suggested that the tunnelling integral 20\ in DKDP is rather small.
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Figure 5.1
Interaction constants J(q )\ ) for DKDP

The splittings for | assume that the longitudinal tunnelling modes

have a greater J(O [") than the transverse modes. The [—12 and M&

modes involve four protons approaching one PO 4 Broup.
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§. Discussion

6.1 DEDP

In order to examine the implications of the model presented in the
last chapter when applied to the experimental results for DEKDP, it is
necessary to extend the expression for the dielectric properties of the
simple model of chapier 4 to the microscopic model. The formulae are
given by Cochran (1969). The expression for the c-axis transverse

dielectric constant is
E(@) =C ., +4Tv[P( PJ%F(G I'g)

In the same way as the structure factor for the neutron scattering is

split into fictitious spin and lattice parts, the siructure facter here

& Z(k)
2Ty Zk'!i 5 v

- 5 p(oj) B2 ’} E(k0 I',)
j o {04)

where the terms are defined in ¢hapter 5, and Z(k) is the apparent charge

for the deuterium atoms. The lattice dielectric constant is composed of

a high frequency part and a phoncen part
€ =€, +4Tv S|P0j)* w0
"€ v S|P (0j)"/ w(0f)
J a
The summations over j in both of these expressions involve only B 4

terms,
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A simple expression for the dieleciric constant may be obtained when
there is one dominant spin-lattice interaction and it is assumed that the
deuterons do not contribute to the polarisation, 7Then, retaining the index

j, and using equation 5,13

; Bop® -
£(0) éf)“”""i""‘f"{l +(10 T'y) - 3(0 T N AT (0 1“4)}
oo (03) ;

sl SRR Sl Y D TR
g T &0 1) =T (0 12)
& e T = O
[ 4
where TU(D B 4) = .10 F'4)/ kB' Now remembering that the Curie constant
C = 4040°K and €, - € = 4.1 (chapter 4), it is found that, in abbreviated
notation, Tc - '1"Q ~ SBBOK, and therefore To ~ - 760°K., 'This fact says
that the deuterium system is siable and that the transition is caused by

the interaction of the deuteron system with the lattice.

Using the adiabatic approximation to include the spin-lattice interaction
{(Novakovie, 1966), the transition temperature in the dynamic tunnelling

model with a tunnelling integral 2 Jlis given by
s (L
tanh p /30 )
The value for ) determined by Kaminow and Damen (1968) for KDP is
1. 5THz so that at Tc = 12301{,, Ho " 4) = 136°K. The dielectric suscep-
tibility of the dynamic tunnelling model may be reduced to the form given

above in the limit tanh A2~ fJL (Kobayeshi, 1968). Then, for KDP,

using C—I - €Ep = 5.7 from the results of Barker and Tinkham (1963),
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the difference ‘fc - To may be calculated as 570°K from C = 3250°K

(Jona and Shirane, 1962) so that T = -430°K. It should be mentioned
that the difference beiween the results for C " Ep for DKDP and KDP
seemsrather large. 1t is however clear that the difference between the
transition temperatures of KDF and DEDP is not described by the
tunnelling of the protons, and !‘urther,l that the proton-lattice interaction in

the crystals is of different magnitude,

The neutron scattering properties can not be simplified by considering
the interaction with only one mot.ie, as the deuterium atoms do contribute
to the scatiering, except possibly along ¢*, In the analysis of chapter 4
it has been shown that the structure factor may be separated from the
correlation function. The resulis not only gave a reasonable {fit to the
correlation function, but alsc indicated an anomaly in the structure factor,

as predicted by the spin-lattice interaction.

The Raman scattering results of Xaminow and Damen (1968) on KDP
show that the ferroelectric mode is a heavily damped excitation, They
were able to extract both a damping eonstant and a frequency from the
observations at each temperature, showing an excitation with the tempera-
ture dependence of equation 5. 14 and a temperature independent damping
constant. In view of the results of ¥ill and Ichiki (1963) on the dielectric
susceptibility of DKDP (figure 4, 1) it is reascnable to regard the Ising

model formation used throughout as a simplification. The execitation
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being discussed is really highly damped and the correlation function is

given in section 5. 3.

6.2 DADP

It is of interest to see what the mieroscopic model can predict when
applied to other KDP type crystels, The ammonium compounds in the
series, characterised by ADP have an antiferroelectric transition, The
structure of the lowest temperature phase has not been determined, but its
orthorhombic symmetry shows that its space group muet be P 21212!
resulting from a condensation of an M 34 mode rather than _Ifz symmetry
resulting from an M5 mode (figure Al,3), For a cerystal of DADP the
tunaelling modes should be overdamped as in DKDP and therefore quasi-
elastic critical scattering at the zone boundary point M would be expected.
No electric polarisation is created in the erystal by an Mg, mode 8o that
the critical seattering would have a regular profile with 42m symmetry.
The secattering results from a doubly degenerate mode so timt, as in
DKDP the pair correlation function can not be of the Ornstein-Zernike
type. This eonvolution function is isotropic and therefore mgy only occur
at [" (for a non polar mode), or at the zone boundary, in cubie drystals

with triply degenerate modes.

The critical scattering observed by Meister et al, (1968) for DADP

had the above characteristics, They were also able to detect inelasticity
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in the scattering and found that thg inverse relaxation time of equation 5. 16
was proportional to temperature, Section 5.3, however, shows that the
inverse relaxation time should be proportional to inverse temperature and
the results were found to fit this relation just as well with

2 lef;%lzf (9 Ma 4) = 1.4THz, It is interesting to compare this value with
the 1, 757z of Kaminow and Damen (1868), and a value less than 0. 07THz
from Hill and Ichiki (1963) for DEDP, It should be remembered that for
an overdamped excitation it is required that Y5> . R is generally
assumed thai the tunnelling is slower in deuterated crystals than in
hydrogenated ones, and with the value of 1, 5THz for [\ from the KDP
results (Kaminow and Damen, 19€8), this leads to an estimate of Y for
DADP of between 0. 7 and 3, 0TTiz, compared with the value 2, §THz for

KDP.

Apart from the scattering at the zone boundary, the model also
predicts scattering at the zone cenire. The s-axis dielectric constant of
ADP (Kaminow, 1965) has the Curie-Weiss behaviour with an extrapolated
Curie temperature of -55°K, well below the transition temperature of
the crystal., As there is no phonon in XDP with an anomalous temperature
dependence, this implies that the I 5 tunnelling modes in ADP should give
some neutron scattering. The same dieleciric constant in Xii 2ABO 4 is
anomalows implying that underneath the critical scattering for the [ 4

mode there is also critical seattering from the ferroeleciric 2 5 mode,
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It may also be seen that this chagge in dieleciric constant with replacement
of phosphorus by arsenic may only be explained by proton-lattice interaction,

which is qualitatively described by the model.

As described in section §, 2, the neutron scattering from these modes
has a contribution from one branch (iransverse) which has no anomaly near

", in a similar way to the M_, scattering, The other /' 5 branch has

34
the same type of anomaly as the f" branch, in this case due to the
electrie field set up in the adirection, and the scattering will be reduced

in the a* - b* plane, producing a dumbbell along the ¢c*-axis,

8.3 Elastie constants

Ags DEDP is a piezoelectric erystal in the paraelectiric phase, the

elastic constant ¢_ . is expected to have anomalous temperature dependence,

86
The effect arises through coupling of the acoustic modes and the polarisa-

tion in the erystal (Jona and Shirane, 1962).

The clastic constants may be measured with a plated or an unplated
cerystal, The former technigue allows no charges to build up on the surface
of the erystal so that the elastic constants are those at constant electric
field. It is this constant vhieh is anomalous, The difference between the
elastic constants or their inverses is proportional to the elamped or free

dielectric constants, which are measured by long wavelength excitations
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with high and low frequency. The constant electric field ¢lastic constants
are alsc measured by Brillouin seattering (KDP, Brody and Cummins,
1938). The non anomalous piezocelectric and other constants for the
crystal may be used to prediet that the free Curie temperature, which is
always greater than the clamped Curie temperature is 4’k higher in

KDP (Jona and Shirane, 1962), in agreement with the difference between
the experiments of Erody and Cumming (1968) and the free dielectric

Raman scattering measurements of Kaminow and Damen (1968),

The dielectric response of the DKDP erystal, as measured by neutron
scattering is at frequencies less than the acoustic wave energies so that
the elastic constants measured are the values at constant polarisation and
they should not have an anomaly, It is therefore interesting that the
intensity of the neutron group sorresponding to the Ces elastic constant

was temperature dependent, although its frequency remained constant.

This point also means that the free dielectric response of the crystal
is measured in the neutron experiments, so that the calculated
Tc = 222 + 2%k (chapter 4) is in good agreement with the transition
temperature of 223,6°K. The results of Hill and Ichiki (1963) on an
incompletely deuterated crystal showeti the free and clamped transition

temperatures as 218, 5°K and 211, BOK, a larger difference than in KDP.
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Appendix 1
M and Group ‘Theory of KDF

Al.1 Structure

The crystal structure of KDP was first determined by X-ray diffraction
{(West, 1830), Neutron diffraction studies by Bacon and Pease (1953,
1955) revealed that above the transition temperature the hydrogen atoms
in the ecrystal were either dynamically or statically disordered between
two sites in a hydrogen bond bstween PO 4 §roups. Below the transition
temperature the hydrogen atoms become ordered on one of the sites so
that HZPO 4 groups with dipole moments in the c-direction are formed and

the crystal becomes polarised in the ¢-direction.

The space group above the transition temperature is the body centred
tetragonal 142d. The crystal is piezoelectric, that is, it does not have
a centre of symmetry and it is also non polar. The body centred tetragonal
crystal may be described in terms of a face centred tetragonal cell of twice
the volume with space group gig_z. This cell is then more easily related
to that of the low temperature phase whose space group is the polar Fdd2,
There are four units of KHzI:"(')4 in the body centred cell g‘zg and therefore
only two units in the primitive cell, The origin chosen by the International
Tables, Vol, 1 (1965) for I_‘_Izg will be used here, The unit e¢ell dimensions

and coordinates of the atoms in the paraelectric and ferrcoeleciric phases

of KDP are given in table Al,1
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The paraelectric structure of XDFP is shown in figure A1.1 The
potassium and phosphorus atoms are on sites of 4 point syrmmetry, the
centres of the hydrogen bonds lie on two fold axes and the oxygen and
hydrogen atom sgites are in general positions of peint symmetry 1. The
almost regular PO, tetrahedra are linked by hydrogen bonds (which contain

4

only one hydrogen atom, but two possible sites) to four other PO 4
tetrahedra. The potassium atoms are placed ¢/2 from the phosphorus

atoms in this framework,

Al.2 CGCroup theory

High symmetry points in the Brillouin zone of KDP are shown in
figure A1.2 The zone corresponds to the body centred tetragonal
Bravais lattice of KDP which has a ¢/a ratio of 0. 93, An incorrect zone
had previously been used by Shur (1966). The point group of t!ie crystal
is 42m and there are eight point group elements: E, 4, 2. i , 2., my
2 y Pdr

The elements of a space group may be written ( )| vy +n) wherenis
a lattice vector and v ¥ is some non-primitive translation. In the non-
symmorphic space group 142d there is a non-primitive translation
v =(0, -lé-, %-) associated with the last four point group clements above.
The only elements which require definition are 4, which operating in a
fixed coordinate system, rotates and inverts the crystal so that what was

at (x, y, z) moves to (y, x,z), and m g Which is the (110) plane.
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Using the multiplier group techniques and notation deseribed by
Montgomery (19869) character tables for the multiplier group operators
may be obtained for all the points in the Brillouin zone, These are shown
in table Al, 2, Also shown is the time reversal type, At/’, the letters
R and I-R indicate whether lattice vibrations with certain symmetries are
Raman or infra-red active. The P& modes polarise the erystal in the

z-direction and the /'

5 modes polarise the erystal in the x-y plane,

The irreducible representations (IRs) for points inside the zone are
just those for the point group of that wave veetorq ([, /A,> ,4 , point
groups 42m, 2mm, 2,m). For points on the zone boundaries the
multiplication table for the operators was set up and attempts were made
to find one dimensional representations. For point groups of order 2
the matter is trivial (Y, N, peint groups m, 2) as the multipiier group
must be projective equivalent to the point group. The importance of
projective equivalence is that the IRs of the multiplier group are some
complex number (dependent cnly on Y ) times the IRs of the point group.
At X and W, point group 2mm, the multiplier group is not projective
equivalent and there exists only one two dimensional IR, so that a one
dimensicnal IR could not be found. At P and M (42m) some effort and
assistance were required to determine the representations, W is
projective eguivalent, while P ig not., Some matrixcs for the two

dimensional IRs which were found to be of use are given in table Al. 3.
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Time reversal symmetry has important effects on the Ifig, particularly
with regard to lattice vibrations, The star of q is defined as the set of
wave vectors cbtained by operating on q by each member of the point
group of the erystal. There are now three cases to discuse, If -qis
not in the star of g then time reversal makes each normal mode of wave
vector q degenerate with a normal mode at -q. When -q is in the star of
q some restrictions are placed on the basis vectors for lattice vibrations
in the space group 142d. Time reversal degeneracy then may or may not
exist, making two different IRz degenerate (the spaces which transform
as the IRs become degenerate), The case in which no time reversal
degeneracy exists is called type 1 and the other two cases are type 3
(Montgomery, 19689). The type and degeneracy of the IR's are given in
table Al. 2 with their labels. WMatrixes for these time reversal degenerate

IRs which were of some use are given in table Al. 3,

For wave vectors in the plane containing /A and A and the face containing
W and Y the IBs are those of A and ¥ respectively. The Iiis are not
degeneraie and are of type 3. The identity representation occurs for all
other wave vectors, being type 3 except in the a* - ¢* and a* - b* planes
where it is type 1. Some compatibility relations are given in table Al, 4,

It should be noied that time reversal types are not compatible,

Al.3 Lattice vibrations in KD¥

The projection operator techniques described by “ontgomery (1969)
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(whose notation will be used here) were used to determine the basis

vectors of the lattice vibrations for each representation., It is useful

first to decompose the vibration space SV for the crystal into its irreducible
subspaces in order to find the number of occurrences of each IR. SV is
regarded as the product of a cell space 5 c and a three dimensional

complex Fuclidear space SE {(Montgomery, 1968). The produce space
concept is a particularly clear way of describing the intuitive application

of projection operators to SV’

The IRs of SE are those of the point group of q and are therefore imown.

S_, must be decomposed by first separating it into invariant subspaces

C
corresponding to each atomie species, or more specifically, each
Wyekeff set, and then determining the character of each of these subspaces.

derived From
The IRs of S, are then&the produet of the IRs of S and S_..

In an initial analysis of KDF the protons may be omitted and the KPO 4
framework may be considered by itself., The oxygen atoms are all symme-
try related and so there are only three types of atoms in the primitive cell
which contains 2K, 2P and 8 oxygen atoms. SC is therefore composed of
SK' SP and SO which are 2, 2 and 8 dimensional, If the high frequency
lattice vibrations are of interest then the protons may be added to this
system by assuming that they are in general posilions, There are then

two protons in the hydrogen bond and eight in the crystal inastead of the

actual number of four, They are in this case regarded by the group
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theory in exactly the same manner as the oxygen atoms. A four dimensio-
nal space SH in which the protons are considered to be at the centres of

the hydrogen bonds may also be required. This space, however, is not
involved in the determination of the tunnelling motion of the hydrogen

atome which is discussed in the next section.

SO provides no problem as the atoms are on general pesitions (x,y, z).
Atl, S, transforms as the regular representation, which contains all

Iits and in which the number of cecurrences of each IR is its dimension-
ality. At other wave vectors SO transforms as the regular representation
times 8 (the number of oxygen atoms) divided by the order of the point
group of g. The oxygen coniribution to SV then transforma as an
integral number of regular representations (1, 2, 4 or g) times three
(from SE). For this reason, in any IR the motion of the oxygen atoms is
not restricted to any particular direction., This fact, whieh is probably
s0 obvious that it should not be stressed, is true for atome on general
positions in any space group. The laitice vibrations in KDP may
therefore only be classified as {ransverse and longitudinal with respect

to the motion of the phosphorus and potassium atoms. The characters of
SK‘ SP’ 80, SH and the resultant character of SV (excluding SH) are
given in table Al,5. The restrictions on the motion of the phosphorus
and potassium atoms are also given, The P and K atoms do not move in
lattice vibrations which transform as Fl and Fz. In every IR the

restrictions placed on their motion are identical except at P where z
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motion is not allowed for phospherus and potassium atoms in P1 and P2

modes respectively.

The effect of the projection operator QB). i for the /\/a th component

of the s th IR (Montgomery, 1989) on the vector ( k) ip) in S, may be
written

P, () L) Vi) ¥, )N(l o R R I L
where ( [Vk) 1) is a vector in8.; |k) and [Yk) are vectors inS,
in particular, vectors in an invariant subspace of S c i. e. they refer to
one type of atom only; andi , and )i , are vectors in S N is some

defined by Hoﬂfgcme7J(!4/2‘?) =k »

complex number\ This equation links the simplicity of the product epace
concept { [k 1 13) with the intuitive application of projection operators,

in which a set of three orthogonal vectors i i, is attached to an

l.i,i,
atom |k and for each Y the whole set is taken to [)k) (and becomes

( |¥%) Yi 4)) and is multiplied by & number N. When the atom (k) is
on a general position the picture built up by this process is the sum of
three normalised basis vectors for the A/« th component of the IR.

The orthogonality of the original set i p means that the basis vectors

projected out are orthogonal,

The nonsymmorphic nature of the space group (v Y ) does not enter
explicitly into the projection operator. The picture described above may
therefore be represented by the stereogram for the point group of the

crystal with a vector xi, 1 yi. g * z_i_s representing the set i 2 attached to
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each atomie site. The sterecgram plus vectors is shown in figure A1, 3

The numbers N for each IR associated with each atom |) k) are then

: .l_ppned to the vectors and the picture of a basis vector is constructed.

Each picture represents three basis vectors, corresponding to the three

coordinates i g The A th basis vector (the IR may be two dimensional)

ol’ the p th occeurrence (three for a one dimensional and six for a two

_dimensional IR) of the IR s at wave veetor g is written |pgsXy.

The complete story is only told when time reversal has been considered,

_ tf the rotational part of the space group operator A transforms q into -q
ﬁen the effect of the time reversal operator (!, which depends on the time

~ reversal type, may be written (Montgomery, 1969).

" Rlpasy) = A [pgel) (type 1) ciseanteseieei i
"z';"'ﬁfklps-b = A |pgs')) (type 3) OSBRIy | Tl
=I,_."?-ghmtlnthentarofgthm

Alpgs)) = [p-gs)) (type 3) sesserssennnai Al d

'.::'__'*:t-‘heu equations depend on the choice of unimportant phase factors, When
'-' Jf:-fhoso equations are applied to the pictures for the basis vectors it is easily
ucn that only certain linear combinations of the basis vectors are allowed.
m resultant basis vectors for |, | and S are shown in figure Al1,3,

The basis vectors for atoms on special positions may be obtained quite

ﬁmply from the basis vectors for atoms on general positions, In
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some cases the basis vectors may be obtained more easily (by some) by
inspection. Atoms at general positiuns will converge on a special
position if one, two or all of the atomic coordinates are restricted to a
special value, The projection cperator of equation Al,1 operates on

the veetor i , at (k). If |k ) is now an atom at a special position

B
then the projeciion operator will projeet out the same basis vector as
for an atom at a general position, but the atoms |Yk ) and their
asgociated vectors )i B will converge onto the special positions.
The vector addition of the ¥ i p 's may produce the zero vector,
implying that an atom does not move in a particular IR (e.g. [, and

¥ 2 for P and K atoms). This vector addition is also shown in figure

Al.3. The basis vectors for Pagru with those given by Shur {1966).

This group theory is of considerable use as the basis veetors block

diagonalise the dynamical matrix defined in chapter 8jand using Th¢ dyramial

operator &  (Monlgomenry,(969):

<pgs M D) | prgst ) D;p.(g) Sass S\ yp wrereenenenALS

where p runs over each basis vector of the A th component of the IR s
(Montgomery, 1968). The observation that the submatrixzes Dpp' are
real for type 1 and complex conjugate for two degenerate type 3 IRs has
been shown to be a completely general fact (H. Montgomery, private
communication), This means that for a type 1 IR the eigenvalues and
eigenvectors of a real matrix have to be found and this saves considerable

computing time over a complex matrix routine,



- 140 -

The dynamical matrix for the KPO 4 problem is 36x36 dimensional.
Group theory enables the matrix to be decomposed into submatrixes
whose dimensions are given in the row for SV in table Al.5. The
calculation of sigenvalues for both partners of degenerate and time
reversal degenerate IRs is avoided and also reai matrix routines may be
used in places, The Coulomb interaction part of the dynamical matrix
ie only calculated in the limit ¢ — 0. Therefore for Q> o,

g B ¢, the basis vectors for > must be used rather than those for
",  The electric field which ig set up in the crystal by the polar modes
[ 4 and [ ; eauses the frequencies of these modes to depend on the
direction of approach to g = §, Thig field is not taken into account by
the group theory which cannot therefore be expected to prediet splitting

of the polar modes.

Al.4 Tunmnelling of the protons in KDP

The two eguilibrium sites for a proton in its hydrogen bond are related
by a twofold axis (ax or 23’). The displacement of the proton which
tunnels from one site to another in the bond is thus limited io a direction
perpendicular to the two fold axis, There are four hydrogen bonds per
primitive cell and therefore four tunnelling degrees of freedom for the
proton. The four displacements or tunnelling vectors form & space and

it iz required to find the character of this space.

This problem cannot be solved by decomposing the space into S C and
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Sy, as the tummelling vectors depend on k) . The operators cf the

o

multiplier group must therefore be anplied directly to the tumelling

vectors, The character of the gpace may then be determined for each

q:
K Pz«» f"‘-!- f_’5
M M34+M5
P P‘!. +P2
X 3){1
N /\1 +/\2+ A34
> Big 8T .

1
and others determined by com patibility,

The projection operator applied to one tunnelling vector yields the
basis vectors of the irreducible subspaces. These basis veciors are
shown schematically in figure Al, 4 with the tunnelling vectors represented
by arrows. If should be noted that these vectors are not displacements
in lattice vibrations, but they represent a totally different degree of
freedom discussed in chapter §, The schematic pictures for q = 0 were
introduced by Kaminow (1965), Wovakovic (1967) also used the pictures

for g = 0, however, labelling the M, modes | .
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Table Al.1

The unit cells of paraelectric and ferroelectric KDP

Fractional coordinates are given (Bacon and Fease, 1955),

The paraelectric cell dimensions are from Sliker and Burlage (1963),

space group

cell dimensions

L= £

i

coordinates

paraelectric

42

{296°K)
7.453
7.453
8.975

(182°K)

x y z
0 0 0
0 0 0.5
0.0827 0,126

0.147 0,227 ¢,123

ferroelectric

Fdd?

(17°%)
10, 458
10, 54

6,518

(17°K)

0 0 0
0. 516

0.1158 -0,0339 0.139

0,033 0,1164 -0.117

0.187 0, 037 0.138
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Table Al,2

Character tables for the space group 142d

-1

-1

-1

-1

-1

-i

~i

-1

-1

-1

-1

-i

-1

-1

-1

-1

Time reversal

R
R,I-R(z)

R, I-R{x, y)



Y E R, 2 m 2, m,, Time reversal
z x d y d type
A 1 1 1
Ag 1 -1 1
X 1 i
X .08
Y, 1 -i
WX, 2 0 0 0 3,1
P, 2 (1-1) o0 -(1#) o 0 0 0 3
B 2 -(1-1) 0 -(1#) o0 0 0 o 3
1
¢ .
Ni N, 1 ,J?\(lﬂ) 3,1
Ny, N, 1 “F(1H) 3,1
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Table Al,3

Representations for the space group 142d.
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Table Al. 4
ComEtlbiuty relations
Ny 2y
A s
2 2
Mg s =y
A =
1° 2
=
Mgqs 2y +
34, 22,
34, 2z,
=
+ Az, 1 +
+ Ny v,
v By b
+ Cge LY
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 Figure Al.1

The crystal structure of KDP. Space group 1434,
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Figure Al.2
Points of high symmetry in the Brillouin zone of KDP,
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Fi&- Al.3
Basis veetors for [, A and S, For f_‘l the numbers

N in equation Al. 1 are all unity and so the picture for F’l is

the stereogram plus vectors to which the numbers N* 1 { Y. k)

are applied, The circles represent atoms. The filled vectors
and cireles denote +z and the open vectors and circles -z, The
numbers a are complex and the real and imaginary parts represent
separate basis vectors which must be normalised. The atoms in
special positions (P and K) dencted by x are separated by v. The
+ and - mean vectors + 2 and the other vectors are in the x-y plane,

For these vectors the components are either purely real or purely
imaginary.
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Basis veetors for tummelling inodes in KDP,
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Appendix 2
Experimental Study of (Ge, Sn)Te

A1.1 Introduection

Alloys in the pseudo-binary systsm C-exSn x‘I‘e. written (Ge, Sn)Te,

1
undergo a phase transition from a face centred cubic (NaCl) structure to
a face centred rhombohedral (I} structure at a temperature which is
nearly linearly dependent on the germanium content (Bierly 2t al,, 1963).
The transition temperature of a 30% GeTe, 70% SnTe erystal is
approximately 280°K and the extrapolated transition temperature for

SnTe is 0°K,

A study of the lattice dynamies of the pure SnTe crystal revealed that
the transverse optic (TO) braneh in the [001] direction is very temperature
dependent, The crystal almost hecomes ferroelectric, the lowest
temperature measured being 6°K (Pawley et al., 1966). A shell model
to deseribe the lattice dynamies, which also takes into account the
natural non-stoichiometriec character of the semiconducting (p-type)
crystals and the resultant screening of the 1.O (longitudinal) mode
(Cowiey et al,, 19569) shows that the erystal may possibly be regarded as
ionie. SaTe may therefore almost be a diatomie ionie ferroelectric the

possibility of which was discussed by Cochran (1960).

It is thought that the ferroelectric phase transition in the (Ce, Sn)Te
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alloys resulte from the instability of the TO mode at long wavelengths and
is therefore of the displacive type (Pawley et al,, 1966). Crystals with
a CeTe content of less than 30% are cubic at room temperature. They
may therefore be grown from the melt without going through a phase
transition and may be studied with ease above the transition temperature.
The simplicity of the experiment cn the ferroelectric mode in SnTe
indicated that it should not be too difficult to observe the goft roode in an
alloy erystal of (Ge, Sn)Te and this was the proposed experiment. The
research did not achieve any positive results, but the results which were

obtained are recorded in this appendix,

In the next section is a deseription of the attempts to grow a single
crystal and in the following sections the neutron inelastic scattering
experiments on the commercially obtained crystals are described and

discussed,

A2,2 Preptnﬂve experiments

It was planned to prepare single erystal specimens of composition

Ge Sn Te from the elements, The material was obtained from

0,2 *0.8
Koch-Light Laboratories. The furnace in which the erystals were to be
grown was designed for use up to 1600°C. It had a 12 em, long
cylindrical filament arranged to allow the vertical Bridgman technique
to be used to grow single crystals. The sample could be lowered at

rates down to 1 mm. per hour., The eapsules in which the erystals were
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to be grown were cylinders of fused silica, 1.8 em. internal diameter
and 1.4 em, in length, topped by a tube to allow the introduction of the
elements., For nucleation of the erysial a sealed extension was attached
to the botiom of the cyliader by & narrow neck so that growth of only one
crystal would proceed. The equilibrium diagram for (Ce, Sn)Te (Abrikosov
et al,, 1953) indicated that a homogeneous crystal would be difficult to
produce because of the large temperature differences between the
liguidus and solidus curves. The crystal formed in a Bridgman experi-
ment, in which a volume of meit is cooled slowly from one end, would
have a lower concentration of Ge near the nucleation end, In a crystal
pulled from a large volume of melt (Czokralski technigque) this imper-

fection would not be as great.

Three experiments were performed, in each of which & total of 20g.
of the elements in the desired proportions was added to the capsule.
The capsule was then heated, evacuated and sealed. In the first two
experiments the material became solid after the preliminary heating, and
upen reheating, shattered the eapsule, The third experiment was
performed with more care. 7The system was heated with a eonstant
current. The recorded temperature registered both the melting of
Sn (232°C) and, at the melting point of Te (450°C), an exothermal
reaction, presumably between Sn and Te. After the melting of SnTe
(805°C) 2 highly exothermal reaction on the melting of Ge (937°C) was

detected. This final reaction again shattered the capsule. The various
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transitions were recognised from the work of Weller (1966) on SnTe and
CeTe. In view of the disastrous effecis of capsule shatiering and as a
commercial erystal had been obtained it was decided to discontinue the

crystal growth experiments.

An 18g. crystal (called crystal A) was grown by Semi-elements Inc.
using the Bridgman technique., The composition was claimed as 20%
GeTe. Denzity measurements showed that it was 24 + 2% CeTe. The
crystal was & 1, 8 em, diameter 1.2 em. long cylinder chamnfered at one
end. The cut surfaces of the erystal indicated that it was not single and
this was confirmed by X-ray Laue photographs of these surfuces. The
unit cell length was determined using a small chip as 6,24 + 0,01 8 in
good agreement with the results of Bierly et al. (1963), Elastic neutron
diffraction experiments at AERE Harwell were used to determine the mass
of each part of the crystal (assuming equal extinction effects) and their
mosaic spreads, The crystal was composed of four parts., The
integrated intensity of the 220 reflection from each part showed that their
magses were 2,4, 4.5, 6.2 and 4.8 g. A stereogram of the orientations
of the components showed that the first three parts were similarly
oriented, their axes being from 2° to 5° apart. The fourth part was in
a totally different orientation, such that, with knowledge of the orientation
of the other erystallites, a neutron inelastic scattering experiment could
be performed eonsidering this part as the specimen. The mosaic spreads

of the erystals were respectively 0. 530, 0. 56°. 0. 720. and O, 870, FWHM
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measured ageinst the (111) planes of an unsqueezed germanium mono-

chromator erystal,

An X-ray scattering experiment was performed using a c¢hip from the
crystal to try to detect the ferroelectric phase transition in a single
crystal., An 800 reflection was cbserved on an vscillation camera at
room temperature and near liquid nitrogen temperature. The low
temperature was maintained for short periods by about 2 em. ° of liquid
nitrogen beneath the crystal, The time was long enough to obtain
observable intensity on a film by manual oscillation of the erystal so that
the desired reeciprocal lattice point erossed the sphere of reflection about
twenty times, Each reciproecal lattice point could be expected to split
into four, corresponding to the reeciprocal lattice points from the four
rhombohedral lattices derivable by compressing the cubic lattice along
each of the four [111] directions, With the crystal mounted about [001]
on an oscillation camera the spot from to the 800 reflection would be
expected to split into two spots with the same Bragg angle, These two
spots were cheerved and it was shown that they became one spot above
the transition point indicating that the transition is reversible and that at
least a small erystal does not chatter at the transition, The order of the

transition however could not be determined as this would reguire better

temperature control,

A second erystal (B) whose composition was claimed as 30% GeTe,
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weighing 7g. and grown by the Czokralski technique was supplied by Dr.
1. Lefkowitz, The unit cell dimension, using the data of Bierly et al.
(1963) was 6.23 £, The crystal was approximately eylindrical, 3 cm.
long and 0, § em. in diameter. X-roy Laue photographs of the uncut
surfaces of crystal B indicated that it was not a single erystal. This is
not a reliable conclusion .as the X-rays may not have penetrated the
amorphous surface due to the large absorption cross-section in this
material, A neutron elastic seattering experiment showed that the
crysial was single and that its mosaie spread was 1, 1° FWHM measured
against the (111) planes of an aluminium monochromator of wlnown
mosaic spread., This crystal eould therefore also be used in a neutron

inelastic scattering experiment,

A2.3 Neutron inelastic scmm‘ experiments

It was anticipated that the experiments would not be easy due both to
the small masg of the crystals and to their mosaic spreads and non-
uniform nature,

The experiments with both erystals at room temperature were carried
out on the triple axis spectrometers at the C4 and C5 facilities of the NRU
reactor at Chalk River. The method of operation of the C§ spectrometer
is discussed in chapter 2. The C4 spectrometer differs from the C5
spectrometer in its design and requires & different method of operation.

It was constructed with a fixed 2 eM (5403 so that Ea and !5_0 are fixed,
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The spectrometer may be used in both the constant Q and constant energy

modes of operation,

The resolution of the C4 spectrometer was chosen with the (111)
planes of an aluminium monochromator crystal and the (111 planes of a
squeezed germanium analyser erystal. The collimations < 1 and <y
(see table 2, 2) were 0.7°. The resultant width of the vanadium
scattering was 1. 8° in 2 GM or 0..4 THz FWHM at 2 ©p of 37.8°. The
resolution of the C5 spectrometer was chosen with the same eollimation

and crystals described in chapter 2 with 2 ©, of 43°. The vanadium

eA
scattering was then 0, 26 THz FWHM,

The (110) plane was the seattering plane for all the experiments.
This plane eontains the three principal symmetry directions [001], [110]
and [111] of the f.c.c. lattice. The reciprocal lattice points in the body
centred reciprocal cell have Miller indexes all even or all odd, The one
phonon structure factor shows that long wavelength optical branches are
best observed near odd points and acoustic branches near even points,
Previocus experiments on SnTe had demonstrated the effects of focussing
and were used to indicate the regions of strongest scattering (Pawley, G.S.,
private commwnication). One eomplication was that the almost equal
scattering lengths of Sn and Te produced very weak scattering around
optic reciproeal lattice points, An effective null matrix eould not be

formed, however, as the addilion of Ge increases the difference in
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2em. (8.4

scattering lengths. (Ge, Sn, Te, b = 0,84, 0.61, 0.56 x 10~
ete. fm.)). Experiments were not performed at wave vectors g along

the 111 direction in reciprocal space,

The experiment on the C4 spectrometer using crystal B showed the
TA branches in the [001] and [110] directions from the zone eentre to
reduced wave vectors of 0, 5 and 0, 3 respectively. The [170] polarised
transverse phonons propagating in the[110] direction cannot be seen in
the (170) seattering plane, The [110] transverse modes seen are
therefore polarised in the [001] direction. The TO hranch whose

detection was the object of the experiment was not seen in any direction,

In erystal A the TA branches in the [001] and [110] directions were
again observed and there were indications of a TO braneh in the [110]
direction at approximately the same energies as the room temperature
TO branch in SaTe (Cowley et al,, 1968),

The experiments on C5 were performed in order to make use of the
higher flux of this facility to find the TC branches. Two very poor
neutron groups were seen from crystal B at approximately the expected
frequencies. They were not, however, regarded as significant
observations, The experiments on erystal A were only slightly more
successful., The [001] TA branch was observed at wave vectors out to
the zone houndary and some badly defined neutron groups approximately

1THz wide were observed at frequencies 0, 2 THz less than the [001] TO
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branch in SnTe, These results together with those from the C4 spectro-

meter are shown uncorrected in figure A2.1.

A2.4 Digcussion

It could be elaimed that the TA branches were seen in the crystals,
It is probable that the higher fregquency branch seen in erysial A was the
TO branch, but its weakness and width, due in part to the crystal size,
mosaic spread and uniformity, indicated that it would be studied better

in a geod crystal,

It is possible that in crystal B (30% GeTe) the TO branch at room
temperature had a very low frequency at long wavelengths becsuse of
its composition, This fact combined with the nature of the erystal and
the proximity of the acoustic branches may have made the TO branch
difficult to find, Apart from these points there was a considerable amount
of incoherent background scattering from the crystal., This scattering
ariges from the disordered array of Ce and Sn atoms, An experiment
at higher terperatures may have yielded a resolved TO mode, but it was
decided to diseontinue the experiments.

Lefkowitz &t al. (1969) were also restricted to poor erystals and their
experiments gave no strong evidence for a TO branch, The temperature
dependence of a Bragg reflection in the 15% GeTe alloy, howaver,

indicated that a transition did oecur.
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Apart fromn their ferroelectric nature (Ce, Sn)Te erystals are interesting
to study experimentally as disordered erystals. For a dilute alloy,
perturbation theory led Cowley et al. (1968) to conclude that a localised
mode would not oceur in (Ge,Sn)Te. For a 33% GeTe alloy, however,
calculations on & digordered linear chain model of (Ge, Sn)Te (J. K. De by,
private commuuication) showed that broadened and shifted SaTe and GeTe
like modes would be observed, especially for long wavelength optic modes,
The broadening of the possible TO maode in the above experiments is more
likely due to the non-uniform nature of the crystal. The interesting
effects of disorder would also be studied better in good (Ge, 8n)Te

crystals,
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A2.1

Experimental results for (Ge, Sn)Te

The solid lines are from the experiments on SnTe (Cowley et al.,
1968). The neutron groups were particularly poor in some cases

giving large estimated errors,
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