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Thesis Abstract 

 

Dissolved organic matter (DOM) in the oceans stores as much carbon as the 

atmosphere for thousands of years. However, our understanding of production, 

transformation and removal processes of DOM is still incomplete. At the West 

Antarctic Peninsula (WAP), rapid warming led to increased atmospheric and oceanic 

temperatures during the second half of the 20th century with reduced sea-ice cover 

and increased glacial melting. The WAP supports a productive ecosystem with 

intense primary production during the austral spring and summer when solar radiation 

is high and sea ice cover is reduced. Research on dissolved organic matter in this 

region is scarce. Concentrations of DOM here are low compared to lower latitudes 

but reasons for this remain unclear and the cycling of DOM is not fully understood. 

Because of the recent climate change in this region, its geographical distance from 

anthropogenic sources and the distinct seasonality of the ecosystem’s productivity, 

the WAP represents an ideal location to study processes involved in autochthonous 

DOM dynamics.  

This thesis integrates a suite of biogeochemical and physical data to develop an 

understanding of dissolved organic carbon (DOC) and nitrogen (DON) cycling at the 

WAP. Samples have been collected for spatial analysis with the U.S. led Palmer 

Longterm Ecological Research Program (PAL LTER) cruise team in 2017 and 

samples for temporal analysis are available from the UK’s Rothera Research Station 

as part of the Rothera Time Series (RaTS) from 2013 to 2016. In combination with 

other available physical, biogeochemical and biological data, processes driving the 

distribution and cycling of DOM over a range of spatial and temporal timescales are 

investigated.  
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The temporal analysis from the RaTS data found DOC production occurring alongside 

particulate organic carbon production contrasting earlier studies where DOM 

production was found to occur later with a time lag of a few days to weeks. This thesis 

shows that DOC is produced and released directly by phytoplankton while DON 

shows more variable results. This might be due to high rates of DON cycling by both 

bacteria and phytoplankton.  

The spatial analysis (PAL LTER) confirmed earlier studies showing low 

concentrations of dissolved organic carbon and nitrogen. There is more variability and 

slightly higher concentrations of DOM in coastal waters compared to offshore regions. 

This is potentially due to higher primary production and bacterial responses but could 

also be affected by the introduction of glacial meltwater. DON correlates well with 

bacterial activity while DOC can be related to either bacterial or phytoplankton activity 

showing the different mechanisms affecting both DOC and DON production and 

removal. At stations with high bacterial activity in the surface waters, DOC and DON 

concentrations were found to be high but decrease rapidly with increasing depth. Due 

to a temporal offset in the retreat of sea ice from the open ocean towards the shore, 

the sampled stations are found to be at different stages of the phytoplankton bloom 

which is reflected in the biogeochemical data including DOC and DON concentrations.  

Particulate and dissolved organic matter cycling is coupled to some extent. DOC 

appears to be produced during the development of the first phytoplankton bloom of 

each season but is decoupled from direct production of POC thereafter, possibly due 

to bacterial removal and production processes. DOC and DON are highly decoupled 

throughout the investigated seasons and across the WAP shelf. The C and N isotopic 

compositions of particulate organic matter in both the spatial and the temporal data 

sets confirm intense upper-ocean recycling of organic matter with little export to 

greater depths. Further, the N-isotopic composition shows that nitrification plays an 
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important role in the upper ocean at the WAP with nitrified nitrate and potentially 

ammonium being produced and taken up by phytoplankton at the later stage of 

phytoplankton activity. 

Ammonium measurements were only available for the RaTS data sets but show that 

the seasonal variability is intense. Increased production of ammonium in the upper 

ocean is related to lowered DON concentrations showing rapid ammonification.  

The contribution by meltwater from both glaciers and sea ice was analysed. While 

direct contributions of DOM from these sources are likely, they are suggested to be 

minor due to intense dilution with seawater. However, indirectly, DOM dynamics are 

likely affected intensely by the addition of sea-ice algae, bacteria, particulate organic 

matter and nutrients and effects on the physical structure of the water column, all of 

which can affect the production, transformation and removal of DOM.  

This thesis shows that processes driving DOC and DON dynamics are complex in the 

ocean of the WAP. There are different processes acting on DOM compounds in 

different regions of the WAP at different timescales. DOM produced at the WAP 

seems to be of a highly labile nature, supported by low DOC:DON ratios overall. High 

surface DOM concentrations decreased rapidly with depth which shows high rates of 

bacterial degradation. These findings suggest that if DOM production increases in this 

region, as projected by various studies due to a warming climate and increased 

meltwater addition, upper-ocean cycling of carbon and nitrogen might increase while 

carbon export decreases.  

This thesis contributes to our understanding of carbon and nitrogen cycling in high-

productivity Southern Ocean shelf environments with implications for the functioning 

of the regional biological carbon pump. 
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CHAPTER 1 INTRODUCTION 

  

Thesis Overview 

 

This Ph.D. thesis investigates the role of dissolved organic matter (DOM) in the ocean 

west of the Antarctic Peninsula. Dissolved organic matter plays a vital role in the 

global carbon cycle, yet processes driving the cycling of DOM are still poorly 

understood. DOM is produced, transformed, and removed within the ocean by a 

series of biotic and abiotic mechanisms. Marine DOM can originate from three distinct 

sources: allochthonous such as terrestrial DOM derived from plants, anthropogenic 

or autochthonous, i.e. produced in situ by primary producers. Within the study region 

of this thesis, the west Antarctic Peninsula (WAP), the dynamics of DOM are clearly 

distinguished from those found in other continental shelf seas. Here, allochthonous 

and anthropogenic sources are negligible due to minimum terrestrial river runoff or 

human impact so that the only source remaining is in situ production. The Southern 

Ocean is subject to considerable seasonality, clearly delineating periods of low and 

high productivity which provides ideal conditions to study cycling of autochthonous 

DOM. Understanding this cycling and the role different processes play will enhance 

our ability to quantify this part of the global carbon cycle.  

Furthermore, during the second half of the 20th century, the WAP underwent rapid 

warming. Studying the dynamics of this region may provide insight into possible future 

course of ocean dynamics and improve our understanding of high-latitude climate 

change. The first chapter of this thesis will introduce the reader to the existing 

research and understanding related to dissolved organic matter cycling in marine 

systems. It will then focus on the study region at hand by giving an introduction to the 

Southern Ocean, and its physical and biogeochemical importance in the world’s 

oceans and climate. This is followed by a review of the west Antarctic Peninsula itself, 
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discussing the physical settings, the recent climate change of the region, and its 

responses to this climate change in the context of dissolved organic matter cycling. 

These brief introductions will provide the basis and context for the key objectives of 

this thesis which are outlined at the end of the introductory chapter.  
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1.1 Dissolved organic matter 

1.1.1 Definition of dissolved organic matter 

Dissolved organic matter (DOM) is defined as the fraction of organic matter passing 

through 0.1-0.7 µM glass fibre filters (Mostofa et al., 2013). 

Residence times of DOM are highly variable and range from minutes-to-days, months-

to-years, or centuries-to-millennia, and are referred to as labile, semi-labile, or 

refractory, respectively (Carlson & Ducklow 1995; Carlson 2002). Refractory DOM 

holds about 642 Pg C in the deep ocean over long timescales (> 4,000 years) which 

is equivalent in size to the atmospheric CO2 reservoir (Hansell, 2013). The division of 

DOM into these pools is controlled by various biotic and abiotic factors, such as 

microbial composition and degradation rates, metabolic capacity, or abiotic 

transformation by solar irradiance, among others (Koch et al., 2014).  

In surface waters, multiple processes can affect DOM, for instance, solar radiation, 

uptake by phytoplankton, or bacterial degradation (figure 1.1). In the deep sea, 

microbial activity dominates processes affecting DOM.  

From a chemical perspective, DOM compounds may consist of a wide range of 

organic molecular structures from simple biochemicals such as simple sugars, 

vitamins, fatty and amino acids to more complex compounds such as proteins and 

polysaccharides. The characterisation of these compounds is methodologically 

difficult and depends on the progress of compound isolation from seawater. It is 

estimated that less than 10% of DOM have been characterised (Repeta, 2015).  



Dittrich, 2019  

4 
 

 

Figure 1.1: Production and Consumption processes of DOM in marine systems. The blue 
boxes show biological contributors, the white boxes are abiotic contributors. The green arrows 
represent DOM production, the red arrows DOM consumption with the big red arrow for 
bacteria depicting the dominant biogenic removal process. *UV oxidation can transform DOM 
compounds into inorganic forms but also refractory DOM into labile DOM compounds.  
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1.1.2 Sources of dissolved organic matter 

The composition of DOM is highly variable due to different organisms and their varying 

strategies and pathways for DOM production and release.  

In the open ocean, most DOM is produced in the euphotic zone. However, the amount 

of DOM production depends on various biotic and abiotic factors so that the proportion 

of DOM in the total organic carbon pool can range from less than 11% (Ross Sea; 

Tang et al. 2008) to more than 86% (e.g. Sargasso Sea; Carlson et al. 1998). 

Phytoplankton represent a direct source of DOM via a number of processes, such as 

extracellular release. Stress, including nutrient limitation, may cause increased 

extracelluar DOM release and autocatalytic cell death in which altered biochemical 

pathways lead to morphological changes and eventually the dissolution of the cell.  

DOM can also be released as a result of sloppy feeding by grazers, excretion and 

egestion, viral lysis, solubilisation, bacterial transformation and release, and 

chemoautotrophic production and release (Sherr and Sherr 1988; Calbet 2001).  

Microzooplankton graze on bacteria and release significant amounts of DOM (Nagata 

& Kirchman, 1999). Bacterial cell growth and metabolism, and viral lysis also release 

bacterial DOM (Kawasaki & Benner, 2006). As bacteria are smaller than 

phytoplankton and therefore have a larger surface-to-volume ratio, extracellular 

release is greater (Kawasaki & Benner, 2006) and is estimated to range from 14-31% 

of assimilated carbon (in comparison to 2-10% for phytoplankton; Nagata 2000). 

Viruses themselves, due to their small size, are considered a part of the DOM pool 

(Bronk, 2002; Karl & Björkman, 2015; Wilhelm et al., 1999). Viruses exceed bacterial 

abundance in seawater by 3-5 orders of magnitude with 109 - 1011 particles L-1 

(Carlson, 2002). They are estimated to be responsible for approximately 10-50 % of 

bacterial mortality (Carlson, 2002). Viral lysis of bacterial and phytoplankton cells is 
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considered to release highly labile DOM compounds due to the nature of the DOM 

released originating from a recently healthy organism.  

The transformation of POM to DOM via hydrolysis by bacteria is referred to as particle 

solubilisation. Bacteria attach to aggregations of organic material which tend to have 

low C:N ratios with increasing molecular size (Alldredge, 1998; Müller‐Niklas et al., 

1994). These attached bacterial assemblages produce extracellular enzymes and the 

concurrent solubilisation of POM can result in intense DOM release (Kiørboe & 

Jackson, 2001) which, in turn, increases the activity of free-living bacteria in the 

surrounding water (Azam, 1998; Long & Azam, 2001; Reinthaler et al., 2006).  

 

1.1.3 Sinks of dissolved organic matter 

Marine heterotrophic bacteria are responsible for most of the labile DOM degradation 

in surface and subsurface waters. They are present with approximately 106 cells L-1 

(Carlson & Hansell, 2015) and are also responsible for the transformation of POM to 

DOM and for the regeneration of nutrients (Caron et al. 1985; Goldman & Dennett 

2000; Pomeroy et al. 2007; Jiao et al. 2010, 2011). Due to their small size, bacteria 

are limited in their capability of taking in DOM to low-molecular weight (LMW) 

compounds. The degradation of high-molecular weight (HMW) compounds requires 

hydrolysis. Bacteria are controlled by a series of external factors such as nutrient 

limitation, UV radiation, temperature, pH, grazing pressure, and viral lysis. All of which 

affect the role of bacteria in the biogeochemical cycling of nutrients and DOM. 

Labile HMW DOM compounds can be ingested by phytoplankton as an additional 

nitrogen source. This process has  been observed predominantly in situations of light 

or nutrient limitation (First & Hollibaugh, 2009; Sherr & Sherr, 1988; Tranvik, 1993). 
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Abiotic processes that remove DOM from surface waters are the vertical export to the 

deep ocean, and sorption onto particles (which is estimated to account for ~ 1.4 - 2.8 

nmol C kg-1 yr-1) with subsequent export to the deep ocean (Carlson & Hansell, 2015). 

UV radiation can photo-oxidise refractory DOM compounds in surface waters to CO2 

and CO but also to labile DOM compounds which are then available for bacteria and 

phytoplankton (Carlson & Hansell, 2015; Mopper & Kieber, 2002; Stubbins et al., 

2012). From these processes, nitrogen-rich compounds such as ammonium or amino 

acids can also be released fuelling microbial activity (Moran & Zepp, 2000). 

Sorption processes by which DOM compounds attach to sinking POM compounds 

have been estimated to remove a small but substantial amount of DOM from surface 

waters and can affect refractory compounds as much as labile compounds. Studies 

on this process are limited but a δ14C study shows that about 14% of suspended POC 

in the deep sea might originate from the sorption of old DOC compounds (Druffel & 

Williams, 1990). Ionic and polyionic DOM compounds assemble to form marine 

microgels which can form particles of such high density that they sink rapidly 

(Verdugo, 2011).  

 

1.1.4 Global distributions of dissolved organic matter 

Global marine DOC concentrations vary from deep-ocean lows of approximately 34 

µmol C L-1 to surface maxima of > 90 µmol C L-1 (Hansell, 2002). Global mean DON 

concentrations range from 2 to 7 µM N with a mean of 4.4 ± 0.5 µM N (Sipler & Bronk, 

2015). The C:N:P ratio of DOM in surface samples is 300:22:1 indicating a depletion 

of N and P relative to average marine plankton C:N:P.  

The distribution of refractory DOM, particularly in the deep ocean, is relatively uniform 

across the world’s oceans with ~ 38 µmol C L-1  (Lechtenfeld et al., 2014) with a slight 
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decrease following the thermohaline circulation. Highest deep-ocean DOC 

concentrations are found in the Eurasian Basin of the Arctic with  > 50 µmol C L-1  

which likely originates from refractory terrestrial DOC (Opsahl et al., 1999; Wheeler 

et al., 1997). 

Highest surface [DOC] are generally found in low to mid latitudes of the Indian and 

Pacific Ocean. Highest [DOC] with > 70 µM C are found in the surface water of the 

Western Pacific Warm Pool (Hansell, 2002).  

[DOC] generally decreases vertically from surface to the deep ocean as well as with 

decreasing temperature poleward. Upwelling sites tend to show low surface [DOC] 

even though primary production may be high, e.g. along the northwest African coast 

and the Oman coast (Hansell & Peltzer, 1998) due to the upwelling of and dilution 

with low deep-sea [DOC]. Oligotrophic systems, as well as subtropical and tropical 

regions show minimal seasonal variability in both DOC and DON (Hansell, 2002). 

Most seasonal influence can be observed in coastal, estuarine, and high-latitude 

systems.  

 

 

1.2 The Southern Ocean 

1.2.1 Physical oceanography 

The Southern Ocean (SO) comprises the oceanic region south of ~ 44 ° S, varying 

with longitude (Lenton et al., 2013). It is the only ocean with free boundaries to the 

North connecting it to the Atlantic, Pacific and Indian Ocean. 

The two major ocean current systems of the SO are the Antarctic Circumpolar Current 

(ACC) flowing clockwise and the Antarctic Coastal Current flowing anticlockwise 
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(Cochlan, 2008). The ACC plays an important role as part of the global thermohaline 

circulation transporting heat, nutrients and gases. The narrowest passage is the 

Drake Passage between the Antarctic Peninsula and Chile where the full-depth 

transport of the ACC is estimated to be 154 ± 38 Sverdrup (Firing et al., 2011). The 

major sites of deep and bottom water formation through sea-ice formation in the SO 

are the Weddell Sea and the Ross Sea (figure 1.1) from where the cold Antarctic 

Bottom Water (AABW) moves North (Carlson et al., 1998; Convey et al., 2014). In the 

Atlantic sector, warm and saline North Atlantic Deep Water (NADW) flows southward, 

mixing with the Antarctic water masses and contributing to the properties of the ACC 

(Foldvik & Gammelsrød 1988; Carlson et al. 1998). Antarctic surface water (AASW) 

reaches depths of about 100 m and extends from the continental shelf to the Polar 

Front. It is relatively fresh (salinity of 34.0-34.3 on the practical salinity scale) and 

close to freezing temperature except near the Front, where temperatures can be as 

high as 2.5 °C (Emery & Meincke, 1986).  

Circumpolar Deep Water (CDW) is the most voluminous water mass in the SO. CDW 

is a mixture of NADW and deep and bottom water from the Weddell Sea, the Indian 

and Pacific Oceans (Santoso et al., 2006). It can extend to depths between 

approximately 1,400 and 3,500 m in the open Southern Ocean. The temperature of 

CDW ranges between 1 and 2 °C and salinity between 34.57 and 34.75 (Emery & 

Meincke, 1986; Martinson & McKee, 2012). CDW comprises Lower CDW and Upper 

CDW. LCDW reflects the input of NADW with salinity ranging from 34.70-34.75 

(Carter et al., 2008) while UCDW salinity ranges from 34.57 to 34.69 (Martinson et 

al., 2008).  

Typical UCDW signatures are elevated nutrient concentrations and an oxygen 

minimum reflecting the contribution of Indian and Pacific water (Carter et al. 2008). 

Upwelling of CDW by coastal Ekman circulation or mixing of CDW with overlying water 
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masses introduces high nutrient concentrations to the surface waters of the SO 

(Pollard et al. 2006; Sigman et al. 1999). Through this upwelling, an important 

connection between deep water and atmosphere is created. Because of both major 

upwelling and downwelling mechanisms, the SO represents a vital link between 

surface and deep ocean as well as high and low latitude regions in terms of heat and 

gas exchange but also transport of nutrients and carbon cycling.  

 

1.2.2 Sea ice in the Southern Ocean 

During austral winter, when there is no to little solar radiation, the area of Antarctic 

winter sea ice can expand to up to 15.2 x 106 km2 (Comiso et al., 2016) which is 

approximately equivalent to the size of the Antarctic continent itself (Convey et al., 

2014). With the onset of summer, Antarctic sea ice mostly disappears (approximately 

~ 3 x 106  km2 sea ice; Comiso et al. 2016). This highly dynamic seasonal cycling 

drives the productivity in Antarctic marine systems.  

High and long sea-ice cover in winter preconditions the water column so that the 

melting of sea ice leads to stratification which shallows the mixed layer in 

spring/summer. The stability and depth of the mixed layer are important for successful 

primary production. In a stable and shallow mixed layer, phytoplankton are kept in the 

well-lit upper ocean and can photosynthesise more efficiently. Further, melting of sea 

ice supplies potential nutrients and sea-ice algae to water column phytoplankton and 

thus increase water column productivity (Lizotte, 2006; Selz et al., 2018). Low winter 

sea-ice cover, on the other hand, allows for early mixing of the water column by winds 

and introduces less freshwater so that stratification is less stable and the mixed layer 

is usually deeper causing deeper mixing of phytoplankton reducing overall primary 

production efficiency (Rozema et al., 2016; Venables, et al.,  2013).  
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During sea-ice formation, nutrients are expelled from the ice. However, organisms 

living in the sea ice contribute to organic-matter formation and thus to sea ice being 

an overall nutrient sink. It is still uncertain whether this sea-ice derived organic matter 

is degraded completely within the sea ice or whether it contributes to export 

production in the Southern Ocean (Fripiat et al., 2017). Ice algae, ice-associated 

bacteria and organic and inorganic nutrients seed the upper ocean during sea-ice 

decay periods and initiate or enhance productivity.  

 

1.2.3 Carbon in the Southern Ocean 

Even though the SO only covers 20 % of the world oceans, it is estimated to be 

responsible for 30% of the annual carbon uptake (Ducklow, 2009; Gruber et al., 2009; 

Lenton et al., 2013; Takahashi et al., 2009). Dissolved Inorganic Carbon (DIC) uptake 

estimations in the SO are complicated due to the highly complex hydrography, 

disparate behaviour in the different regions of the SO, and because it remains one of 

the most poorly sampled regions in the world. Estimates range from 270 ± 130 Tg C 

yr-1 to 420 ± 70 Tg C yr-1 (Lenton et al., 2013).  

The vertical mixing of water masses in the Southern Ocean allow for ventilation of 

deep-ocean CO2 creating a net source of CO2 to the atmosphere which dominates 

during the austral winter. However, the uptake of atmospheric CO2 by summer 

primary production is estimated to be higher than the net SO source so that overall, 

the Southern Ocean is considered a CO2 sink. However, it is proposed that the SO’s 

potential as a net CO2 sink will decrease due to increasing atmospheric CO2 

concentrations, ocean temperatures, changes in wind pattern and strength, as well 

as an overall reduction in biological uptake and export. In addition to this, it is also 

proposed that the SO will become more acidic with severe effects on CaCO3 forming 
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organisms and, as such, whole food webs (Constable et al., 2014; Hauri et al., 2015). 

Recent models can reconstruct DIC fluxes in the subpolar regions, however, the 

reconstruction of high-latitude DIC fluxes and biogeochemical cycles remains 

challenging and inaccurate, highlighting our incomplete understanding of local 

biogeochemical and physical processes (Sallée et al., 2012). 

The contribution to biological productivity in the Southern Ocean varies greatly 

between SO sectors. Most of the open-ocean SO is considered a low productivity 

system despite high nutrient concentrations (High Nutrient Low Chlorophyll regions, 

HNLC). Several studies have shown growth limitation by iron, in combination with 

effects of deep mixing (e.g. Tagliabue et al. 2014; Coale 2004; Bowie et al. 2001; 

Boyd et al. 2007; Boyd & Ellwood 2010). Intense upwelling of macronutrient-rich 

waters dilute iron concentrations in the surface waters. Iron is essential for 

photosynthesis. Iron fertilisation experiments in the SO could confirm the hypothesis 

of iron limitation in HNLC regions (Bowie et al., 2001; Oliver et al., 2004). The limited 

primary production has major impacts on the system’s biological pump with limited 

organic matter formation and hence, minimum carbon export to the deep sea, transfer 

to higher trophic levels or utilisation through the microbial loop. An increase in nutrient 

uptake in the SO has been shown to drive a strong decline in atmospheric ρCO2 so 

that studies suggest that the productivity of the SO, possibly due to changes in iron 

availability, has been a major control on atmospheric ρCO2 variations over past 

glacial-interglacial cycles (Sigman et al. 2010, Martin 1990). Iron is supplied to the 

Southern Ocean by a multitude of processes such as glacial meltwater influx, 

resuspended sediments, atmospheric dust, or interactions with bathymetry and 

hydrothermal vents, all of which make iron more available in the shelf waters of the 

Antarctic continent or around islands like Kerguelen (Annett et al., 2015; Blain et al., 

2007; Duce & Tindale, 1991; Trull et al., 2008).  



Dittrich, 2019  

13 
 

Primary production in the Southern Ocean is limited in time but can exceed lower 

latitude phytoplankton blooms in magnitude, particularly in shelf waters where macro- 

and micro-nutrients are plentifully available. Intense phytoplankton blooms occur 

during spring and summer. Particulate organic matter (POM) produced during these 

blooms is generally of high quality (low C:N ratio) and represents the base of the food 

web in the system. High grazing rates of zooplankton, in particular Antarctic krill, on 

this organic matter is thought to be responsible for high carbon export in some regions 

of the SO while in naturally Fe-fertilised regions, efficient upper-ocean cycling tends 

to reduce the carbon export (Tremblay et al., 2015). Highest productivity is found in 

sea-ice zones and continental shelf regions. However, because these regions are 

small in size, the pelagic SO is overall more productive at 3912 Tg C yr-1 (Arrigo, 

1999).  

 

1.2.4 Dissolved organic matter in the Southern Ocean 

Due to negligible terrestrial input, DOM in the open SO is exclusively of autochthonous 

nature. In contrast to lower-latitude DOM, concentrations in the SO make up a 

relatively small proportion of the total in situ organic matter pool (Billen & Becquevort, 

1991).   

Deep-water [DOC] range between 34 and 40 µmol C L-1 (Kähler et al., 1997; Ogawa 

et al., 1999) and mostly represent the refractory background concentrations which are 

introduced to the surface waters by upwelling. However, DON surface minima point 

to the breakdown of upwelled DOM so that it is suggested that the deep-water 

refractory DOM is not necessarily stable under surface conditions where high solar 

radiation can lead to photo-oxidation (Kähler et al., 1997).  
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Globally, Southern Ocean [DOM] are the lowest despite highly productive blooms in 

the austral summer (Lechtenfeld et al., 2014). In the Australian Sector, summer DOC 

concentrations range from 45 to 55 µmol C L-1 and highest values coincide with low 

nitrate concentrations indicating newly produced OM (Ogawa et al. 1999). DON 

values in these waters are 12 ± 4 % of total dissolved nitrogen which varies between 

24 and 42 µmol N L-1 in the surface waters and show larger horizontal and vertical 

variation than DOC (Ogawa et al., 1999). This can be due to either large analytical 

errors arising from high nitrate concentrations or to biological effects.  

It has been hypothesised that more OM of the total pool is partitioned into the 

particulate pool rather than the DOM pool and that efficient grazing by zooplankton 

leaves only little DOM in the water column (Kirchman et al. 2009; Carlson et al. 1998; 

Kähler et al. 1997). DOC:DON ratios are lower in the SO surface waters (5-15) than 

in other oceanic sites (20-25) which indicates either selective degradation or nitrogen-

rich DOM production in these waters (Ogawa et al., 1999).  

Over the last decade, focus has been on the bacterial activity in Antarctic waters in 

response to DOM. Bacterial production is hypothesised to be limited by DOM 

availability and quality and a possible co-limitation by iron (Church et al., 2000; 

Ducklow et al., 2001; Hall & Safi, 2001). In bacterial-response experiments in the 

HNLC regions of the Southern Ocean, bacterial production was highest with the 

addition of glucose + iron which indicates co-limitation by iron (Church et al., 2000). 

Similar results are shown in the SOFeX experiment: Bacterial abundance increased 

by 60 to 110% as a response to phytoplankton fertilisation with iron with a significant 

correlation with available POC (Oliver et al., 2004). Kähler et al. (1997) analysed 

bacterial production in SO surface waters vs. SO deep water and showed a strong 

correlation between the amount of initial DOC and bacterial growth in surface waters 

while in deep water, bacterial growth was minimal.  
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1.3 The West Antarctic Peninsula 

1.3.1 Physical oceanography 

The shelf west of the Antarctic Peninsula extends approximately 200 km offshore with 

complex bathymetry, a steep continental slope and deep, glacially scoured canyons. 

On average, it is 430 m deep (Ducklow et al. 2007).  

The ACC lies directly adjacent to the WAP. The Southern boundary of the ACC is 

located on the upper continental slope between 750 and 1000 m depth. This leads to 

regular and persistent onshelf intrusions of UCDW introducing heat (~1.7°C; 

 

Figure 1.1: Sectors of the Southern Ocean showing the west Antarctic Peninsula in the red 
box. Source: Post et al. (2014). 
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Martinson & McKee 2012) and high nutrient concentrations (NO3
- = 32-34 μmol N L-

1, Si(OH)4
- = 100-105 μmol Si L-1; Klinck et al. 2004; Prezelin et al. 2000).  

UCDW is usually found at depths between 200 and 400 m along the WAP shelves 

(figure 1.2). It intrudes the shelf along deep canyons and by eddies. Once on the shelf, 

it mixes with Antarctic Surface Water (AASW) forming a modified version of UCDW 

(Smith et al., 1999). Effective vertical mixing provides the WAP surface waters with 

heat, salinity and nutrients (Meredith et al., 2013). LCDW is present in the outer shelf 

regions and depressions of the WAP, such as the Marguerite Trough, and is an 

important source of silicic acid to WAP shelf waters (Klinck et al., 2004).  

The AASW overlying the CDW has a deep mixed layer in winter and is comparatively 

saline and cold due to winter cooling and sea-ice formation. During spring and 

summer, the surface waters become fresher and warmer - due to sea-ice melting and 

solar radiation - so that the winter AASW, also known as Winter Water (WW), 

becomes separated and exists as a remnant WW layer usually between 50 and 150 

m depth (Meredith et al., 2013). There is a permanent pycnocline between WW and 

UCDW (Martinson & McKee, 2012).  

The Antarctic Peninsula Coastal Current (APCC) flows southwestwards along the 

coast. This current is buoyancy and wind forced and is only present seasonally during 

summer and autumn (Moffat et al., 2008).   

Like other Antarctic regions, the WAP experiences extreme seasonality with 

pronounced changes in solar irradiance; sea-ice cover, extent and duration; primary 

production; and vertical mixing. Unlike other regions of Antarctica, the WAP rarely 

experiences cold, katabatic winds from the continent (Meredith et al., 2013). Wind 

stresses mostly from North/Northwest so that the atmospheric temperature is rarely 

influenced by the continental temperatures and wind patterns (Meredith et al., 2013).  
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Figure 1.2 Simplified version of West Antarctic Peninsula hydrography (bottom left) and the 
PAL LTER annual sampling grid (upper left). Source: Ducklow et al. 2015; Martinson & 
McKee 2012 

 

 

1.3.2 Climate change at the WAP in the second half of the 20th century 

During the second half of the 20th century, the WAP experienced pronounced 

warming. Winter atmospheric temperatures have risen by 6 °C (> 5 times the global 

average) with the upper and deep ocean showing significant warming (Meredith & 

King, 2005; Smith et al., 1996; Van Wessem et al., 2015; Vaughan et al., 2003). The 

sea-ice extent decreased by 30% and the duration of sea-ice cover has declined by 

about 85 days since 1978 (Stammerjohn et al., 2008). 90% of the WAP glaciers are 

in retreat (Cook et al. 2005, 2016) which is the reason for significant freshening of the 

surface waters in coastal regions (Meredith & King, 2005).  
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The trends of regional warming slowed down since the late 1990’s and have since 

been plateauing with increasing sea-ice cover since the late 1990’s (Figure 1.3; 

Stammerjohn et al., 2008; 2008 (a); Turner et al., 2016). These reversals in climatic 

trends are likely short-termed and reflect natural internal variability (Hobbs et al., 

2016).  

The climatic trends at the WAP are controlled by large-scale atmospheric circulation 

patterns. Changes in the Amundsen Sea Low (ASL) in particular, which is a persistent 

low-pressure system located between the WAP and the Ross Sea, affect wind 

strength and patterns over the WAP which are the primary control on sea-ice 

dynamics (Turner et al., 2013). During the second half of the 20th century, the ASL 

deepened, forcing stronger north-to-northwesterly winds advecting warm and moist 

air towards the WAP and pushing sea ice further south. The ASL is influenced by 

changes in the Southern Annular Mode (SAM) and the El Nino Southern Oscillation 

(ENSO) (Lachlan-Cope et al., 2001; Raphael et al., 2016; Turner et al., 2013). A 

deepening of the ASL is associated with more positive SAM phases while more 

negative SAM phases force more cold east-to-southeasterly winds from the Antarctic 

continent over the WAP which has been observed since the 1990’s. 

The intense climatic variability with its effects on sea-ice cover, glacial melt and local 

winds has a strong impact on the local ecosystem with high interannual variability in 

primary production and community composition.  
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Figure 1.3: Stacked-normalised temperature anomalies for 1979 – 2014 at the WAP showing 
a warming trend until the late 1990’s after which temperatures decreased slightly. Figure from 
Turner et al. (2016). 

 

 

1.3.3 Phytoplankton and primary production at the WAP 

The cycling of organic carbon is closely linked to the observed high-latitude 

seasonality with particulate C fluxes up to four orders of magnitude higher during the 

summer (Karl et al. 1991; 1996) than during the ice-covered and dark winter 

(Buesseler et al. 2010). Phytoplankton blooms and subsequent particle flux peak 

shortly after ice retreat in the summer. Primary production at the WAP is controlled by 

upper-ocean physics, light, and the supply of macro and micronutrients. A strong 

gradient in primary productivity can be observed from coastal regions ( ~ 1,000 mg C 

m-2 d-1) to the open ocean (~ 100 mg C m-2 d-1) (Vernet et al., 2008) with production 

starting first in the open and following sea-ice retreat towards the coast (Arrigo et al., 

2017). The primary control on primary production is exerted by sea-ice dynamics. 

High-ice years lead to decreased wind-induced mixing over winter and the higher 

amounts of meltwater upon warming lead to a more stable water column supporting 

high rates of primary production in favourable light conditions. In years of low sea-ice 

cover, the upper water column experiences intense wind-induced mixing and the 

smaller meltwater input leads to a deeper mixed layer which leads to phytoplankton 
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being mixed to greater depths out of ideal photosynthetic conditions (Moline, 1998; 

Vernet et al., 2008).  

Since the 1970s, phytoplankton biomass has experienced an overall decrease with 

differing magnitudes in the Northern and Southern parts of the WAP (Fraser et al., 

2013). In the North, an increase in cloud cover and spring and summer winds plus 

decreasing sea-ice cover and duration has led to increased upward mixing of nutrients 

on the one hand, but also to an increased mixed layer depth so that phytoplankton 

are mixed out of the euphotic zone - where photosynthetically active radiation is 

highest - which ultimately leads to less phytoplankton biomass overall (Montes-Hugo 

et al., 2009; Saba et al., 2014).  

In the Southern part of the WAP, however, a decrease in sea-ice cover, cloudiness 

and winds led to more open water with less stratification but no intense deepening of 

the mixed layer so that in total, there is more time, space and irradiance for 

phytoplankton, primarily diatoms, to reproduce (Montes-Hugo et al., 2009). 

Phytoplankton blooms occur earlier in the North than in the South. The decrease in 

Northern WAP phytoplankton biomass is postulated to be the reason for decreases 

in krill abundance and biomass (Montes-Hugo et al., 2009). 

WAP phytoplankton blooms are mostly dominated by diatoms but other taxa are 

increasingly recognised as important components of the phytoplankton species 

composition (Saba et al., 2014). Low-ice years are often associated with a dominance 

of cryptophytes and haptophytes in the WAP ecosystem with haptophytes being more 

prominent particularly in the South (Rozema et al., 2016). Cryptophytes utilise less 

CO2 per unit chlorophyll than diatoms so that it is hypothesised that an increase in 

cryptophytes could lead to reduced carbon uptake (Schofield et al., 2017). 

Phaeocystis, a haptophyte genus, are well-known for producing mucus-like layers of 

carbon-rich exopolymeric substances (EPS) (Nichols et al., 2005). EPS plays an 
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important role in carbon cycling, both particulate and dissolved carbon, due to its gel-

like and usually poly-anionic structure binding trace metals and serving as a nutritious 

substrate for bacterial growth (Meiners & Michel, 2016; Riedel et al., 2006). In 

Marguerite Bay, Phaeocystis antarctica are more prominent than cryptophytes 

(Garibotti et al., 2003; Kozlowski et al., 2011; Rozema et al., 2016; Stefels et al., 

2018).  

Primary production in sea ice is highly variable and an important carbon source in 

winter for species such as juvenile krill. Algae from sea ice can seed pelagic primary 

production with high seasonal variability. Release in early spring leads to early under-

ice phytoplankton blooms (Lizotte, 2006; Selz et al., 2018) while later in the season, 

release of sea-ice algae is more likely consumed by higher trophic levels (Riebesell 

et al., 1991). Sea-ice associated release of organic carbon is highly related to the 

dynamics of sea-ice retreat and the composition of the organic matter (Norkko et al., 

2007; Wing et al., 2012).  

 

1.3.4 Nutrient dynamics at the WAP 

The CDW is the primary source of macronutrients to the WAP shelf region. CDW 

intrudes the WAP shelf from the ACC and introduces nutrients and heat which is 

mixed upwards by the bathymetry and eddies (Klinck et al., 2004; Prézelin et al., 

2000). Phytoplankton biomass is found to be higher in the surface waters above 

deeply scoured canyons due to increased supply with cross-shelf CDW transport in 

these regions. Typical CDW nitrate and silicate concentrations are 32-34 μmol N L-1 

and 100-105 μmol Si L-1, respectively (Klinck et al., 2004; Prézelin et al., 2000). Even 

though nutrient concentrations in the WAP are usually replete, intense phytoplankton 

blooms can drive nutrient levels towards depletion over short periods of time 
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especially in coastal areas where higher rates of primary production control the 

surface nutrient availability in summer (Pedulli et al., 2014). N:P uptake ratios cover 

a range of approximately 13 to 21 indicating diatom and non-diatom dominated areas, 

respectively (Clarke et al., 2008; Henley et al., 2017). A Si:N uptake ratio of 1 or lower 

indicates diatom dominance in the Southern part of the WAP (Henley et al., 2017). 

Nutrient uptake and uptake ratios vary intensely across the shelf and throughout the 

season due to sea-ice conditions and changes in the phytoplankton communities. 

Nitrification occurs in the deeper layers of the water column (Henley et al., 2018). 

Regenerated nitrate and phosphate can account to up to one third of the surface-

available nutrients in the summer (Henley et al., 2018).  

 

1.3.4.1 Dynamics of carbon and nitrogen stable isotopes 

Stable isotopes of carbon and nitrogen are a useful tool for tracing and quantifying 

processes involved in nutrient and organic matter cycling. Nitrate introduced to the 

WAP surface from CDW carries a specific δ15NNO3 composition of 4.8-5.3 ‰ (e.g. 

Henley 2013; Henley et al. 2018; Sigman et al. 2000). Upon nitrate assimilation by 

phytoplankton, δ15NNO3 increases due to the preferential uptake of the lighter 14N 

isotope by phytoplankton. Consequently, the N-isotopic composition of organic matter 

(δ15NPN) is lighter than δ15NNO3. This process is known as kinetic fractionation. The 

WAP nitrogen cycle can be considered a closed system (Rayleigh) as nutrients are 

replenished in winter but the nutrient pool is depleted over the austral summer growing 

season. The isotope effect (ℇ) is defined by the difference in rate constants of the 14N 

and 15N isotopes from the reactant to the product: 

𝜀(‰) =  ( 𝑘14 𝑘 − 1) 𝑥 100015  ⁄  
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where 14k and 15k are the rate coefficients of 14N and 15N, respectively. ℇ is between 4 

and 5 ‰ at the WAP (Henley et al., 2018, 2017; Rafter et al., 2013; Sigman et al., 

2000; Smart et al., 2015). This means that organic matter produced instantaneously 

from a specific nitrate pool of δ15NNO3 = x ‰ will be x-4 ‰ to x-5 ‰ lighter than δ15NNO3 

(figure 1.3.4.1). The nitrate pool itself will become depleted and therefore isotopically 

enriched over time as the lighter isotope is removed. With complete consumption of 

the nitrate pool, uptake and remineralisation leave no net effect on subsurface 

δ15NNO3. However, in waters with incomplete nitrate consumption such as the 

Southern Ocean, δ15NNO3 and δ15NPN and deviations from the modelled values are 

indicative of physical or biogeochemical processes at work (Figure 1.3.4.1). PN is 

being degraded with a currently unknown isotope effect in WAP waters, with DON 

and DIN being formed. Due to these mechanisms, nitrate resulting from nitrification 

processes in the subsurface, thus being the product of PN degradation, carries a 

lighter δ15N. Ammonification and nitrification of organic nitrogen closes the cycle of 

nitrogen in the system, however, these parts of the nitrogen cycle are not quantified 

in terms of their N-isotopic composition yet.  

At the WAP, there has been a strong focus on the δ15NNO3 in order to understand the 

cycling of nitrogen in the upper ocean. Regenerated nitrate can make up to 30% of 

the nitrate in WAP surface waters being utilised by phytoplankton during a 

phytoplankton bloom which has important implications for the net CO2 uptake and 

carbon export (Henley et al., 2018). Isotope studies of Antarctic sea ice show intense 

cycling of nitrogen within sea ice indicating high microbial activity (Fripiat et al., 2015). 
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Figure 1.3.4.1: Simplified systematic model of N isotope effects (ℇ) and isotopic ratios 
(δ15N) of the nitrogen cycling in the WAP marine environment. Upper Circumpolar Deep 
Water introduces NO3

- to the WAP with a specific δ15N of ~5 ‰. During primary production, 
nitrate is assimilated with a ℇ of 4-5 ‰ which leaves particulate organic nitrogen (PN) of a 
modified δ15N. Remineralisation, rapid export and grazing by zooplankton affect δ15N.  

 
 

The biological fractionation of carbon is driven by different mechanisms than nitrogen. 

C fractionation consists of three major steps which determine the C-isotopic 

composition of POC (δ13CPOC): (i) the intracellular diffusion of CO2, (ii) fractionation 

through the carboxylation reaction as one of the first chemical steps of photosynthesis 

and (iii) the translocation of C isotopes within the cell. Consequently, C fractionation 

can be used to identify carbon concentration mechanisms (CCMs) employed by 

different phytoplankton species (Henley et al. 2012). These different fractionation 

mechanisms represent useful tools to assess POM formation and remineralisation 

processes.  

 

1.3.5 Microbial processes at the WAP 

Bacterioplankton across the WAP shelf is coupled to phytoplankton dynamics and 

highly influenced by physical and biogeochemical controls (Ducklow et al., 2012; 
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Morán et al., 2001; Ortega-Retuerta et al., 2008). The abundance of bacterial cells 

increases from North to South and from the open ocean to the coast, broadly 

replicating phytoplankton distributions (Ducklow et al., 2012a; Henley et al., 2019). 

Despite high primary production rates, bacterial abundance is up to one order of 

magnitude lower than in temperate regions. The ratio of bacterial to phytoplankton 

production is low with approximately 4% which is unique to the Southern Ocean 

(Ducklow et al., 2012a). Low DOM availability has been argued to be the reason for 

low bacterial production in the region. Low temperatures in high-latitude systems have 

been suggested to limit bacterial productivity (Pomeroy & Wiebe, 2001), however, 

there is no significant relationship between temperature and bacterial activity found in 

WAP waters. However, temperature might play an indirect role influencing other 

bacteria-controlling processes such as viral infection and microzooplankton activity. 

Striking differences between summer and winter assemblages of bacteria and 

archaea were found in surface as well as deep waters pointing out different metabolic 

and energy transfer pathways. While summer assemblages showed pathways for 

oxygenic phototrophy, chemolithoautotrophy was supported in the winter months 

(Williams et al., 2012). The summer remnant of WW at 50-150 m depth showed a 

similar composition of bacteria and archaea as winter surface water (Bowman & 

Ducklow, 2015; Church et al., 2003; Luria et al., 2014). Bacterial diversity seems to 

be higher in the winter and decreases with the onset of summer (Luria et al., 2014). 

While the relative success of bacteria in summer surface waters may be due to labile 

OM availability, high abundance of archaea in deeper water shows adaption to 

environments of restricted OM and light and increased nutrient concentrations 

(Church et al., 2003). Summer surface archaeal abundance is low showing the 

inability of chemolithoautotrophs to successfully compete under conditions favourable 



Dittrich, 2019  

26 
 

for heterotrophy (Luria et al., 2014). Because archaea are not analysed as part of this 

study, the term “bacteria” will be used to encompass both bacteria and archaea.  

 

1.3.6 Dissolved organic matter at the WAP 

Summer [DOC] at the WAP is elevated compared to winter [DOC] which represents 

the refractory DOC from the deep sea (Williams et al., 2012). While there are not 

many reliable measurements, surface [DON] is slightly elevated from background 

concentrations at 5-6 µmol N L-1 in this region (Ducklow et al. 2011 and references 

therein). 

Even when primary production is high with chlorophyll a levels exceeding 20 mg m-3 

in WAP waters, the proportion of DOM to the total OM pool is lower than in comparable 

lower latitude regions. Studies show that it might not be unique to the Antarctic ocean 

but to Polar regions, with similarly low BP:PP ratios and [DOM] in the Arctic Chukchi 

Sea (Wheeler et al., 1997). Another factor playing a role in the low proportion of DOM 

may be the negligible fraction of zooplankton other than krill grazing on phytoplankton. 

Krill ingest whole diatom cells and there is only little grazing by other zooplankton 

which could result in sloppy feeding and the subsequent release of DOM (Bird & Karl, 

1999). Even in highly productive regions, such as the Gerlache Strait in the WAP, the 

absence or minimal abundance of grazers during phytoplankton blooms coincide with 

a lack of microbial activity (Bird & Karl, 1999).  

Ducklow et al. (2011) suggest the quantity of released DOM to be a reason for the 

time lag between the onset of primary and bacterial production as labile [DOC] remain 

low until early December and only thereafter increase to concentrations utilisable for 

bacteria.  
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Karl et al. (1996) suggested that Antarctic diatoms are adapted to the high seasonality 

of Polar Regions by the capability to assimilate amino acids rapidly as an energy 

source. This would make DON an important source of nutrition for Antarctic 

phytoplankton. Further, the recycling of DON compounds would reduce the export of 

OM out of the euphotic zone (Karl et al., 1991).  

The most recent warming trend at the WAP led to impacts on the WAP ecosystem 

structure with a shift to phytoplankton blooms dominated by smaller phytoplankton 

cells. Smaller phytoplankton cells take up less carbon during primary production, thus 

potentially reducing the overall carbon uptake during primary production. 

Furthermore, krill are less adapted to ingesting small phytoplankton cells so that there 

has already been an observable shift to an increasing number of salps with cascading 

effects on higher trophic levels as salps are not being eaten readily by penguins, 

seals, or whales. However, at the same time, microzooplankton could increase in 

numbers grazing on the smaller phytoplankton cells and adding a trophic level 

between phytoplankton and krill. This could increase carbon export by the production 

of faecal pellets which can sink rapidly or are ingested by larger zooplankton and 

repacked into larger faecal pellets.  

On the other hand, a shift to an ecosystem dominated by smaller cells potentially 

increases the microbial response as there will likely be more DOM production at the 

same time. Future projections estimate that such a shift on a long-term scale can lead 

to 40-65 % less carbon being transferred to higher trophic levels with a subsequent 

higher DOM flux and an increase in microbial activity (Moline et al. 2004). Ultimately, 

intense microbial recycling of in situ produced DOM compounds will likely enhance 

upper-ocean carbon cycling and as such reduce carbon export.  

For a better quantification of the carbon cycled in the form of DOM, it is critical to 

understand processes that control the production, transformation, and loss of DOM, 
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as well as the organisms involved. This knowledge will contribute to a better 

understanding and quantification of Southern Ocean carbon and nutrient 

biogeochemical cycling. 

 

1.4 Key objectives and hypotheses of this thesis 

This Ph.D. project is intended to augment our understanding of organic carbon and 

nitrogen cycling in the upper ocean along the West Antarctic Peninsula. As such, it is 

the first project to collect DON data to complement the PAL LTER data library. By 

resolving the cycling of DOC and DON, we will enhance our understanding of regional 

dissolved organic matter cycling. As DOM in these waters is mostly produced 

autochthonously and is likely recycled by marine heterotrophic bacteria, it is important 

to quantify how much carbon and nitrogen in the dissolved organic form is taken up 

by bacteria and possibly regenerated in the surface waters.  

Based on the existing literature, this thesis will test the following four hypotheses.  

1) Firstly, it is hypothesised that little to no DOM is produced and released by in 

situ phytoplankton production. In support of this hypothesis are the generally 

low DOM concentrations in the surface waters during phytoplankton blooms 

with high POM concentrations.  

2) Furthermore, it is hypothesised that most DOM results from the bacterial 

degradation of particulate organic matter in the surface waters. Therefore, 

DOM production occurs with a temporal offset of a few days to weeks after 

primary production peaks due to the bacterial response. 

3) Because of the generally low concentrations of DOM in Southern Ocean 

waters with low C:N ratios, it is further hypothesised that the bioavailable DOM 

is rapidly degraded and recycled in the upper ocean. For this hypothesis to be 
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true, DOC and DON concentrations were to decrease rapidly after DOM 

production, particularly when C:N ratios are lower.   

4) Changing physical (e.g. temperature, salinity, meltwater contribution) and 

biogeochemical (e.g. phytoplankton composition, nutrient availability) 

parameters are hypothesised to influence DOC and DON concentrations, 

distribution and cycling.  

In order to test these hypotheses, DOC and DON data were collected and analysed 

over three consecutive austral summer seasons at the UK Rothera research station 

and spatially along the U.S. PAL LTER WAP sampling region during one research 

cruise. Additionally, other biogeochemical and physical data were collected which will 

be used in this thesis to establish relationships between DOM and other 

biogeochemical parameters at the WAP. 

The UK Rothera research station is located at the South-Eastern tip of the PAL LTER 

sampling grid (see figure 1.4 for a map and Chapter 2: Methodology for a site 

description). All available physical and biogeochemical data are involved to identify 

production and removal processes of both DOC and DON. Biogeochemical data 

include phytoplankton parameters such as chlorophyll-a, primary production (PAL 

LTER only), pigmentation data (RaTS only); inorganic nutrients (NO3
-, PO4

3-, SO4
3-), 

the N-isotopic composition of nitrate, microbial data (PAL LTER only) such as 

bacterial activity, bacterial abundance, HNA and LNA abundance, particulate organic 

carbon and nitrogen and their stable isotopic compositions. Physical data collected 

include salinity, temperature, density, oxygen, sea-ice cover in % (PAL LTER) and 

sea-ice scores (Rothera), and δ18O-H2O. The δ18O composition of water is a useful 

and effective tool to separate the contribution of different water masses, particularly 

meltwater, in a water column. With this, seawater can be distinguished from sea-ice 
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meltwater and meteoric or glacial meltwater (see Chapter 2: Methodology for more 

detail). 

The following three chapters discuss and interpret the four available data sets by first 

looking at the temporal data from Rothera in order to understand the seasonal 

development of DOC and DON in the coastal surface waters of the WAP. Following 

this chapter, the spatial data are analysed and put into context with the data from the 

previous chapter. Chapter 5 investigates the coupling processes between POM and 

DOM as well as between DOC and DON and POC and PN of both temporal and 

spatial data. Further, C and N stable isotopic data are introduced to pinpoint 

processes directly involved in the cycling of organic carbon and nitrogen.   
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Figure 1.4: The sampling grid of the U.S. PAL LTER programme along the West Antarctic 
Peninsula on a zoomed-in map. Sampling stations (red dots) are along pre-defined lines 
orthogonal to the coast. The UK Rothera research station is located at the south-eastern tip of 
the sampling grid in Marguerite Bay (red star). 
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CHAPTER 2 

Methodology 

Samples were collected from the PAL LTER cruise 2017 and the UK Rothera 

Research Station and analysed for dissolved organic carbon and total dissolved 

nitrogen (2.2), particulate organic carbon, nitrogen and the C- and N-isotopic 

composition (2.3) and the N-isotopic composition of nitrate (2.4). All other data were 

analysed by colleagues from both the PAL LTER and RaTS programmes. A list of the 

laboratories and researchers involved is in appendix I. The sampling and the analyses 

conducted for each programme (PAL LTER and RaTS) follow the protocols 

established at the sites.  

 

2.1 Field work 

Field work for this Ph.D. project was conducted both ship and research-station based. 

For temporal analysis, samples were collected by Dr Sian Henley during three austral 

summer seasons at the UK Rothera research station as part of the British Antarctic 

Survey Rothera Oceanographic and Biolocial Time Series (RaTS) in 2013/14, 

2014/15 and 2015/16. For spatial analysis, samples were collected during an austral 

summer research cruise (January 2017) as part of the U.S. Palmer Long Term 

Ecological Research project (PAL LTER).  

 

2.1.1 Sample Collection at the UK Rothera Research Station on Adelaide Island 

2013-2016 

At the RaTS site, seawater samples were collected in Ryder Bay at a fixed location 

(67° 35' 8" S, 68° 7' 59" W). Ryder Bay is a small bay within the larger Marguerite Bay 
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south of Adelaide Island, west of the Antarctic Peninsula. The sampling location is 

approximately 4 km offshore with a water depth of approximately 520 m. Marguerite 

Trough is a glacially-scoured canyon within the WAP shelf system which is highly 

effective in transporting UCDW from the ACC into the inshore regions such as 

Marguerite Bay. Samples were collected twice a week from a small boat. If sea-ice or 

weather conditions would not allow access to this site, sampling was conducted at an 

alternative site which has been shown to represent similar conditions with the same 

water masses (Clarke et al. 2008).  

Samples at the RaTS site were collected at fixed depths (surface, 5 m, 15 m, 25 m, 

and 40 m and if possible, at 75 and 100 m) using Niskin bottles. The 15-m depth 

interval represents the long-term mean depth for the fluorescence maximum so that 

this depth is sampled more frequently and samples for phytoplankton composition 

(HPLC) and δ18OH2O are collected at this depth. On a few sampling days, samples 

were also taken at greater depths (100 or 130 m) to establish background nutrient 

concentrations.  

The sampling procedures follow the protocol established by RaTS research staff. 

Samples at the surface were collected with a 12-V electric bilge pump into acid-

cleaned polyethylene containers for processing at the Rothera laboratories. All other 

sample depths were collected using 5-L Niskin bottles and a hand-operated winch.  

DOC/TDN samples were filtered through pre-combusted GF/F filters (nominal pore 

size 0.7 µm) into acid-cleaned and combusted glass conical flasks under a gentle 

vacuum. On land, samples were transferred to acid-clean HDPE bottles and frozen at 

– 20 °C until analysis.  

Sea-ice cores were collected from landfast sea ice in Hangar Cove to the north of 

Rothera for inorganic and organic nutrient analysis in 2014/15. The cores were 

collected using a 90-mm diameter rotary ice corer. After collection, the cores were 
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sectioned into slices between 5 and 15 cm thickness with a clean steel hand saw 

which were thawed in the dark at + 4 °C. 

Inorganic macronutrient samples were filtered through Acrodisc PF syringe filters with 

0.2 µm Supor membranes and immediately stored at – 80 °C for 12 hours after which 

they were stored at – 20 °C until analysis.  

Ammonium samples were sealed immediately and kept at + 4 °C until processing.  

 

Phytoplankton pigmentation samples were collected at 15 m depth in 2 to 10 L Niskin 

bottles. Particles were collected on GF/F filters (Whatman 47mm ∅) by vacuum-

filtering 1 L of collected seawater. Filters were snap-frozen in liquid nitrogen and 

stored at – 80 °C. 

δ18OH2O samples were collected at the surface and 15 m depth in 150-ml medical flat 

bottles, sealed with rubber bands and parafilm until analysis. 

 

2.1.2 Sampling sites and sample collection – U.S. Palmer Long Term Ecological 

Research Program Annual Cruise 2017 

The PAL LTER samples for this thesis were collected on-board the ARSV Laurence 

M Gould (LMG) during research cruise LMG1701 from January 6th to February 1st 

2017. Samples were collected with a SeaBird 911 Plus Conductivity-Temperature-

Depth instrument attached to a rosette containing 24 Niskin bottles of which two were 

fired at each depth to provide enough seawater for all research conducted. Seawater 

was collected for the analysis of particulate organic carbon and nitrogen and their 

isotopic compositions, dissolved inorganic nutrients, dissolved organic carbon and 

nitrogen, primary production and chlorophyll a, microbial measurements such as 

bacterial cell count and activity. Sea-ice data are derived from satellite observations 

of NASA’s Scanning Multichannel Microwave Radiometer and the Defense 
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Meteorological Satellite Program’s Special Sensor Microwave/Imager. Data of all PAL 

LTER cruises since 1990 are available at http://pal.lternet.edu.  

Samples for DOC/TDN and inorganic nutrient analysis were collected following the 

Joint Global Ocean Flux Study protocols (JGOFS, Knap et al. 1996). 60-ml HDPE 

bottles were acid-washed (24 hours in 10% HCl) and rinsed three times with deionised 

water. Nitrile gloves were worn for the sampling. Before collecting the sample, the 

sample bottles and lids were rinsed with the sample water three times. Sample 

seawater was directly gravity-filtered from the Niskin bottles through pre-combusted 

GF/F filters (Whatman 0.7 μm 47 mm Ø; combustion at 450 °C for 5 hours in 

methanol-cleaned tin foil) and the sample bottles were filled just below the bottle neck. 

The samples were immediately transferred to a – 80 °C freezer before being stored 

at – 20 °C. The majority of samples collected during the 2017 PAL LTER research 

cruise were delivered to the UK Rothera research station from where they were 

transported to the UK on a research vessel ensuring constant storage at -20 °C. 

Samples collected after delivery to the UK research station were transported in a 

Styrofoam box surrounded by dry ice with a temperature probe to ensure no major 

temperature change. 

Samples for POCN analysis were collected on pre-combusted (450 °C for 5 hours) 

GF/F filters (Whatman 0.7 μm GF/F 25mm Ø). 4 L of seawater were collected directly 

from the Niskin bottles into acid-cleaned (24 hours in 10% HCl and 3x DIW-rinsed) 

brown HDPE bottles and filtered. Filters were transferred into cryovials and frozen at 

– 80 °C before being stored at – 20 °C. The amount of water filtered was noted in 

those cases the filter was clogged prior to a complete 4-L filtration.  

Samples for inorganic nutrient (NO3
-, PO4

-, Si(OH)4
-) were collected into acid-cleaned 

60-ml HDPE bottles following the PAL LTER protocol which samples with the same 

procedure as DOC/TDN sample collection. 
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Samples for δ18OH2O were collected during the PAL LTER research cruises at every 

sampling depth in 50-ml glass bottles which were crimp-sealed. 

 

2.2 Dissolved Organic Matter - Sample Analysis 

DOC/TDN analysis was conducted at the School of GeoSciences at the University of 

Edinburgh (see table 1 in the appendix for an overview of all conducted analyses and 

analysts) via high temperature combustion on a Shimadzu TOC-V analyser with an 

attached TNM1 Total Nitrogen Measuring unit. Samples were thawed for 

approximately 3 hours before analysis. 10 ml of each sample was transferred into 

acid-cleaned and combusted glass vials using an acid-cleaned 5 ml pipette for 

analysis. Between samples, the pipette was rinsed with sample water of the following 

sample. The vials were closed with Teflon-coated screw caps. Milli-Q blanks and 

replicates were analysed throughout each run. Certified Reference Material (CRM; 

Hansell Deep Sea Reference Batch #15 Lot 1-15; Florida Strait 750 m DOC 42.00-

45.00 μmol C L-1, TDN 31.00-33.00 μmol N L-1) was analysed before and after each 

batch of samples. The instrument automatically analyses each sample 3-5 times 

depending on in-run reproducibility. Deep-sea samples were re-analysed with Deep 

Sea Reference Batch #18 Lot 08-18 (DOC 41.0 – 45.8 μmol C L-1, TDN 31.6 – 35.0 

μmol N L-1). CRMs were intercompared to ensure linearity of the instrument 

throughout the period of analysis. The CRM DOC values were checked to lie within 

5% of the consensus value prior to each sample run. If this was not the case, more 

CRMs were analysed until the results were within the range. Detection limits are 0.04 

μmol C L-1 for DOC and 0.36 μmol N L-1 for TDN and analytical precision for DOC was 

± 1.09 μmol C L-1and for TDN ± 0.51 μmol N L-1.  
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While dissolved inorganic carbon can be removed efficiently through acid treatment 

prior to high temperature combustion, there is no such method currently available for 

the removal of dissolved inorganic nitrogen compounds (nitrate NO3
-, nitrite NO2

-, 

ammonium NH4
+). In order to determine the concentration of dissolved organic 

nitrogen in a sample, all inorganic compounds have to be analysed and subtracted 

from the measured total dissolved nitrogen concentration. Due to logistical 

constraints, the PAL LTER program does not measure NH4
+ concentrations so that 

all DON concentrations stated in chapter 4 are a combination of DON and NH4
+. NH4

+ 

concentrations across WAP surface waters have been shown to be minimal, however, 

when NH4
+ concentrations might be of importance, they will be mentioned in the 

discussion. At the RaTS study site, NH4
+ is analysed in the upper 25 m so that in 

chapter 3, stated DON concentrations are DON only unless stated otherwise.  

 

2.3 Particulate Organic Carbon and Nitrogen 

Particulate organic carbon and nitrogen and their specific C- and N-isotopic 

composition have been analysed at the School of GeoSciences at the University of 

Edinburgh (appendix table 1). Filters for POCN analysis were removed from freezing 

conditions and dried overnight in acid-cleaned and pre-combusted glass vials (24 

hours in 10 % HCl, combusted at 450 °C for 5 hours) in a drying oven at 60 °C. To 

remove inorganic carbon, the filters were moistened carefully by pipetting DI water 

onto them and stored in a borosilicate glass vacuum desiccator with concentrated HCl 

overnight. After another overnight drying period in the drying oven at 60°C, filters were 

folded and transferred into tin capsules ready for analysis.    

Samples were analysed on a CE Instruments NA2500 Elemental Analyser connected 

to a Thermo Electron Delta+ Advantage stable isotope ratio mass spectrometer. Both 
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instrument are linked through a Finnigan ConFlo III Universal Interface to allow for 

simultaneous carbon and nitrogen analysis. 12-14 mg of the sediment standard 

PACS-2 (δ15N 5.215 ‰, δ13C -22.228 ‰) were analysed as isotopic CRM along each 

sample run. Acetanilide standard is used for the determination of the elemental 

composition (71.09 % C, 10.36 % N).  

The C- and N-isotopic compositions are stated as the ratio of relative difference in 

isotopic abundance in a sample compared to a standard with the general formula 

𝛿 𝑖𝑛 ‰ = 
𝑅(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
∗ 1000 

 where R represents the isotopic ratio of each element. Carbon isotopic values are 

compared to the standard Pee Dee Belemnite with an accepted 13C/12C ratio of 

11,237.2 ± 2.9 (Craig, 1957). The nitrogen standard is atmospheric N2 with an 

accepted 15N/14N ratio of 3676.5 ± 8.1 (Junk & Svec, 1958). 

 

2.4 The N-isotopic composition of nitrate 

The N-isotopic composition of nitrate was analysed at the School of GeoSciences at 

the University of Edinburgh using the denitrifier method developed by Sigman et al. 

(2001), Casciotti et al. (2002) and Tuerena et al. (2015).  The denitrifier method makes 

use of denitrifying bacteria (Pseudomonas aureofaciens) which lack N2O reductase. 

These bacteria convert nitrate to nitrous oxide gas (N2O) which can be analysed in an 

isotope ratio mass spectrometer (IRMS). Pseudomonas aureofaciens utilises a 

copper-type nitrite reductase which, unlike other denitrifying bacteria, does not 

incorporate oxygen from water but from nitrate into the N2O molecules so that both 

nitrogen and oxygen can be analysed isotopically. Cultures of the bacterium are 

grown on tryptic soy agar plates from single colonies between 24 and 48 hours. A 
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single colony is selected and added to 120 ml of tryptic soy broth with 10 mM KNO3, 

2 mM (NH4)2SO4 and 36 mM KH2PO4 to be grown in 160-ml butyl rubber-stopper 

bottles on a reciprocal shaker table in the dark at room temperature for approximately 

7 days. After seven days, the media is tested for its nirate content using Griess 

reagents. Once all nitrate is consumed by the bacteria, the bacterial cultures are 

concentrated by centrifugation and resuspended in nitrate-free media. After 

resuspension, 3 ml of the bacterial medium is injected into 20 ml headspace vials 

which are crimp-sealed and purged with N2 gas for three hours on a custom-built 

manifold. After purging, the sample is injected with an acid-cleaned and gas-tight 

syringe. Each sample volume is adjusted to contain 30 nmol nitrate. Samples are 

stored overnight in an overhead position to prevent atmospheric gases from entering. 

On the following day, 0.2 ml of 10 M NaOH is added to each sample and standard to 

lyse the bacteria.  

In the IRMS, He acts as the carrier stream. After removing water vapour by sending 

the stream through an ethanol trap at - 60 °C, the sample travels through a stainless 

steel loop immersed in liquid N2 to condense N2O gas. Gas chromatography 

separates the sample into distinct N2O and CO2 streams before the sample is led into 

the Thermo Fisher Scientific Delta+ Advantage stable IRMS. Raw δ15N data are 

corrected to atmospheric N2 gas and precision and accuracy are measured with 

isotopic CRM as stated in table 2.1. Detection limits of the IRMS are better than 0.5 

‰ and the methodological analytical precision is 0.2 ‰ for δ15NNO3. The N-isotopic 

composition is stated as the ratio of relative difference in isotopic abundance in a 

sample compared to a standard with the general formula 

𝛿 𝑖𝑛 ‰ = 
𝑅(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
∗ 1000 
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 where R represents the isotopic ratio of each element. The nitrogen standard is 

atmospheric N2 with an accepted 15N/14N ratio of 3676.5 ± 8.1 (Junk & Svec, 1958). 

 

Table 2.1: Isotopic values for reference materials used with the denitrifier method.  

Reference 
material 

Chemical formula ‰ air N2 Standard deviation 

IAEA-NO3 KNO3 +4.7 0.2 

USGS-32 KNO3 +180 1.0 

USGS-34 KNO3 -1.8 0.2 

 

2.5 Auxiliary data – laboratory analysis 

2.5.1  PAL LTER Dissolved Inorganic Nutrient analysis 

PAL LTER dissolved inorganic nutrients (Nitrate+nitrite, Silicate and Phosphate) were 

analysed using a Seal Analytical segmented flow autoanalyser (Mequon, WI, Seal 

AutoAnalyzer AA3). Methods for each analysis followed the protocols recommended 

in the Seal Customer Support Manual. Nitrate analysis was conducted via reduction 

to nitrite in a copper-cadmium column and a further reaction with N-1-

naphthylethylene diamine dihydrochloride to form a purple azo dye which is then 

analysed colorimetrically. Phosphate analysis follows the Murphy and Riley method 

(Murphy & Riley, 1962). The determination of silicate is based on the reaction between 

silico-molybdate to molybdenum blue by ascorbic acid. Standards for each analysis 

were sodium nitrite and potassium nitrate, potassium dihydrogen phosphate and 

sodium meta-silicate nonahydrate. A deep-sea sample collected during each year’s 

cruise at 3,000 m was analysed as an internal reference standard. Detection limits for 

nitrate+nitrite were 0.015 μmol N L-1, for phosphate 0.0021 μmol P L-1 and for silicate 

0.03 μmol Si L-1.  
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2.5.2 RaTS Dissolved Inorganic Nutrient Analysis 

RaTS inorganic nutrient samples were analysed at the Plymouth Marine Laboratory, 

UK. Samples were thawed for 48 hours to allow for complete dissolution of silicate 

precipitates to silicic acid. A Technicon AAII segmented flow autoanalyser was used 

for the analysis of nitrate+nitrite, nitrite, phosphate and silicate concentrations. Raw 

data were corrected to certified reference material (KANSO Ltd. Japan), ambient 

ocean salinity and pH. Analytical reproducibility was usually better than 0.2 µmol N l-

1 for nitrate+nitrite, 0.01 µmol N L-1 for nitrite, 0.02 µmol P L-1 for phosphate and 0.6 

µmol Si L-1 for silicate.  

Ammonium concentrations were analysed with a fluorometric method using 

orthophthaldialdehyde (OPA) following Holmes et al. (1999). Samples were 

processed within 4 hours of sample collection. The working reagent was made from 

OPA, sodium sulphite and borate buffer and the samples were incubated along with 

the working reagent overnight. The combination of OPA and sodium sulphite creates 

coloured polymers with an intensity according to NH4
+ concentrations which can be 

analysed via fluorescence. The fluorescence was measured within 24 hours on a 

Turner Designs 700 fluorometer. Ammonium chloride was used as calibration 

standard and the instrument was calibrated before and after analysis of every batch 

of samples using the low value of green fluorescence 7000-922. The detection limit 

of this method was 0.01 µmol L−1.  
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2.5.3 Phytoplankton primary production (PAL LTER) and phytoplankton 

pigmentation (RaTS) 

Primary production rates and chlorophyll-a concentrations have been gathered 

throughout the PAL LTER cruise by the research group of Oscar Schofield.  

Primary production rates, measured as daily carbon uptake in mg C m-3 day-1, are 

measured with incubation experiments. 100 ml of seawater sample were inoculated 

with 1 μCi of 14C-radio-labelled NaHCO3 in borosilicate bottles. The bottles were 

incubated for 24 hours at in situ light levels and ambient temperatures. After the 24-

hour incubation period, the seawater samples were filtered through GF/F filters, the 

filters were washed with 10 % HCl, dried and counted in a scintillation counter.  

Chlorophyll a samples were filtered onto GF/F filters and kept frozen at – 80 °C stored 

in cryovials. Analysis was conducted at Palmer Station through acetone extraction 

and measurement of the extract on a Turner 10AU Fluorometer. 

Chlorophyll-a concentrations at the RaTS site were determined by fluorometry as part 

of the CTD deployments. Phytoplankton-pigmentation samples from the RaTS site 

were analysed at the University of Groningen using high-performance liquid 

chromatography (HPLC). Prior to analysis, the filters were freeze-dried for 48 hours 

in the dark and incubated in 90% acetone for pigment extraction at 4 °C. Pigment 

separation was conducted on a Waters 2695 HPLC system with a Zorbax Eclipse 

XDB-C8 column (3.5 μm particle size) following van Heukelem & Thomas, (2001) and 

Perl (2009). Retention time and diode array spectroscopy type 996 (Waters) were 

used for the manual identification of pigments. Standards (DHI Lab Products) of the 

following compounds were run alongside for calibration purposes: chlorophyll c3, c2, 

peridin, 19’-butanoyloxyfucoxanthin, fucoxanthin, neoxanthin, prasinoxanthin, 19’-

hexanoyloxyfucoxanthin, alloxanthin, lutein, chlorophyll b and chlorophyll a1. The 

CHEMTAX v1.95 (Mackey et al., 1996) programme was used to calculate the varying 
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abundance of phytoplankton groups. The pigment data were separated into the 6 

most represented phytoplankton classes in the Southern Ocean (Rozema et al., 2016; 

Wright et al., 2010): prasinophytes, chlorophytes, dinoflagellates, cryptophytes, 

haptophytes and diatoms. The detection limit is 0.25 μg L-1 Chl a. Pigment data is 

stated as % of total pigments measured.  

 

2.5.4 PAL LTER Microbial data 

Bacterial abundance, production and HNA/LNA (high nucleic and low nucleic acid 

content) were analysed onboard the LMG. Bacterial abundance and HNA and LNA 

were analysed within two hours after collection via flow cytometry with SYBR-Green 

staining following Gasol & Del Giorgio (2000). Total abundance was counted by 

adding 1 μm microspheres and 5 μm of SYBR-Green to 0.5 mL of a seawater sample. 

After a 30-minute dark incubation, bacterial cells were analysed for 2 minutes at a 

slow flow rate. Numbers were determined in cytograms of green fluorescence 

recorded at 530 ± 30 nm versus side angle light scatter. HNA and LNA subgroups 

were separated by gating the cytogram and discriminating by their respective green 

fluorescence. 

 

Bacterial production rates were determined via incorporation of 3H-radio-labelled 

leucine following a modified protocol by Smith & Azam (1992). Samples were treated 

in triplication. Control samples were spiked immediately after sampling with 200 μL 

formalin in order to stop any biological activity. Each 1.5 mL sample was spiked with 

3H-leucine (MP Biomedical, Santa Ana, CA; >100 Ci/mmol, 20-25 nM final 

concentration) and incubated for 3 hours at 0.5 °C. At the end of the incubation period, 

200 μL formalin was added to the samples. After concentration by centrifugation, the 
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samples were rinsed with 5 % trichloroacetic acid and 70 % ethanol and air-dried 

overnight before analysis by liquid scintillation counting in an Ultima Gold cocktail.  

 

2.5.5 δ18OH2O analysis 

The samples for the δ18OH2O composition were analysed at the Natural Environmental 

Research Council Isotope Geosciences Laboratory at the British Geological Survey. 

Samples were analysed on a VG Isoprep 18 and SIRA 10 mass spectrometer with 

random samples analysed in duplication for precision which is usually better than ± 

0.02 ‰. The oxygen isotopic composition of seawater (δ18OH2O) is determined by the 

comparison of the ratio of 18O/16O of a sample to that of a standard. For oxygen 

isotope measurements, this standard is Vienna-Standard mean ocean water (V-

SMOW). The δ18OH2O is expressed as  

𝛿18𝑂(𝑠𝑎𝑚𝑝𝑙𝑒) =  [
(
18𝑂
16𝑂) 𝑠𝑎𝑚𝑝𝑙𝑒

(
18𝑂
16𝑂)𝑉𝑆𝑀𝑂𝑊

− 1] 𝑥 1000‰ 

 

The method followed the equilibrium method for carbon dioxide established by 

Epstein & Mayeda (1953).  

 

2.5.6 PAL LTER Dissolved Inorganic Carbon 

Dissolved inorganic carbon (DIC) samples were collected from the surface and the 

deepest niskin bottles and preserved with 200 uL saturated HgCl2 before being sealed 

and transported to the Ducklow laboratory at the Lamont-Doherty Earth Observatory 

for analysis. Analysis followed the WOCE-JGOFS recommendations (Dickson & 
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Goyet, 1992; Knap et al., 1996). The average standard deviation for replicate samples 

was 0.15%. 

2.6 Calculations and statistical analysis 

2.6.1 Depth-integrated standing stocks and nutrient uptake 

Organic matter standing stocks and nutrient uptake were integrated over the upper 

50 m for samples from the PAL LTER sampling grid, in agreement with other studies 

finding that most biogeochemical parameters fall back to background levels or show 

only little variability below 50 m in the WAP region (Ducklow et al., 2012) and most 

activity happening within the mixed layer which for all stations is within this range. 

Further, most biological and biogeochemical measurements, such as primary 

production, chlorophyll a and POC and PN are only collected at the uppermost 6 

depths at each station during the PAL LTER cruise.  

For RaTS data, the upper 40 m were depth-integrated as data density was best and 

highest in all seasons in the upper 40 m and samples were collected less frequently 

at deeper depths.  

Depth-integrated standing stocks of particulate and dissolved organic carbon, 

nitrogen, inorganic nutrients, chlorophyll-a and rates of primary production and 

bacterial production were calculated by trapezoidal integration. At stations with no 50 

m (40 m) measurement, the 50 m (40 m) value was interpolated. Results are listed in 

the appendix table 8. 

 

2.6.2 δ18OH2O fractions of CDW, sea ice and meteoric origin 

The contributions of sea ice and glacial meltwater to the surface waters of the WAP 

PAL LTER grid were calculated from δ18OH2O measurements. A three-endmember 
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mass balance developed by Östlund & Hut (1984) and adapted to WAP conditions is 

used to separate the freshwater contribution from sea-ice and meteoric meltwater 

from CDW seawater:  

(

 
 
 
 

𝑠𝑖𝑚 + 𝑓𝑚𝑒𝑡 + 𝑓𝑐𝑑𝑤 = 1

𝑓𝑠𝑖𝑚 . 𝑓𝑠𝑖𝑚 + 𝑆𝑚𝑒𝑡 . 𝑓𝑚𝑒𝑡 + 𝑆𝑐𝑑𝑤 . 𝑓𝑐𝑑𝑤 = 𝑆

𝛿𝑠𝑖𝑚 . 𝑓𝑠𝑖𝑚 +  𝛿𝑚𝑒𝑡 . 𝑓𝑚𝑒𝑡 +  𝛿𝑐𝑑𝑤 . 𝑓𝑐𝑑𝑤 =  𝛿
)

 
 
 
 

 

Where fsim, fmet and fcdw are the fractions of sea ice, meteoric water and CDW, 

respectively; Ssim, Smet and Scdw are the salinities of sea ice, meteoric water and 

CDW and δsim, δmet, δcdw their corresponding δ18O values.  The δ18O and salinity 

endmember values, respectively, are + 0.1 ‰ and 34.73 for CDW, + 2.1 ‰ and 7 for 

sea ice and – 16 ‰ and 0 for meteoric water (Meredith et al., 2008, 2010). 

 

2.6.3 Mixed layer depth 

The mixed layer depth (MLD) is defined as the depth at which σt > 0.05 kg m-3 from 

surface measurements of the CTD downcast data in agreement with other Southern 

Ocean studies (Long et al., 2012; Mitchell & Holm-Hansen, 1991; Venables et al., 

2013). 

 

2.6.4 Statistical analyses 

Statistical analyses were conducted in the statistical software R version 3.4.3 (R Core 

Team, 2017). Surface and depth contour plots were drawn in Ocean Data View 4 

(Schlitzer, 2017) using weighted-average gridding. Statistical differences were 

calculated using two-sample t-tests (α = 0.05). Relationships between variables were 
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established through linear regression analysis. Further, stepwise regression was 

conducted to establish temporal and spatial trends. The temporal datasets were 

statistically analysed with lags in time and depth in order to investigate potential 

offsets in time and space. The significance of established relationships was evaluated 

at p < 0.05. 
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CHAPTER 3 

Temporal Variability and Physical and Biological Controls of Dissolved 

Organic Carbon and Nitrogen West of the Antarctic Peninsula 

 

3.1 Introduction 

Dissolved organic matter (DOM) represents a large pool of oceanic carbon which is 

potentially exportable to deep waters. Identifying processes involved in DOM cycling 

is important to fully understand the global marine carbon cycle. Processes driving the 

production and removal of dissolved organic carbon (DOC) and dissolved organic 

nitrogen (DON) at the West Antarctic Peninsula (WAP) on seasonal and inter-annual 

time scales have not been investigated to this date. DOC concentrations are stated 

in several Southern Ocean studies (e.g. Carlson et al., 1998; Doval et al., 2002; Kähler 

et al. 1997; Wedborg et al. 1998; Wiebinga et al., 1998), however, there is little 

research on  the production and recycling of DOC or DON in the WAP upper ocean.  

There is a general agreement that only little DOM is being produced in the Southern 

Ocean (Carlson et al., 1998; Kähler et al., 1997, Doval et al., 2002;  Ducklow et al., 

2012; Wang et al., 2010). However, temporarily high accumulation of DOC during 

phytoplankton blooms in the Southern Ocean could be shown in some of those 

mentioned studies.  

The WAP represents a shelf region different from other regions in Antarctica for two 

main reasons: Firstly, it is in close proximity of the Antarctic Circumpolar Current 

(Hofmann et al., 1996; Martinson et al., 2008) which allows for intrusions of relatively 

warm and nutrient-rich Upper Circumpolar Deep Water (UCDW) nourishing the shelf 

waters with nutrients essential for primary production.  
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Secondly, during the second half of the 20th century, the WAP underwent rapid 

warming with increases in atmospheric and oceanic temperatures along with 

increased glacial melting and decreases in sea-ice coverage and duration (Marshall 

et al., 2006; Meredith & King, 2005; Vaughan et al., 2003).  

At the UK Rothera Research Station, located on Adelaide Island in the Southern part 

of the WAP shelf (67°35'8"S, 68°7'59"W, Figure 3.1.1), the local marine ecosystem 

has been studied since 1997 with year-round quasi-weekly sample collection in Ryder 

Bay. Due to its proximity to the glaciated coast, there is frequent and high influx of 

glacial meltwater influencing the local ecosystem. During spring, light availability and 

sea-ice melt increase which allow for phytoplankton growth with high rates of primary 

production. The ecosystem at the RaTS site highly depends on climatic changes with 

the greatest influence being sea-ice cover and duration as well as wind patterns (e.g. 

Smith & Comiso, 2008; Vernet et al., 2008). In the North of the WAP, recent climate 

change led to a combination of increased cloud cover and winds with a decrease in 

sea-ice cover and duration which causes a deepening of the mixed layer with the 

effect of decreased phytoplankton biomass. In the South, a decrease in sea-ice cover 

led to decreased stratification, which ultimately caused a decrease in primary 

production in the coastal region of the South. At the same time, in the open ocean 

areas, decreasing cloud cover and winds caused less mixing so that there is more 

space, radiation and time available for phytoplankton primary production (Montes-

Hugo et al., 2009; Saba et al., 2014). Despite these striking difference within the WAP 

region, major biogeochemical processes have been found to be relatively uniform in 

the North and the South (Ducklow et al., 2015). Glacial meltwater supports 

stratification in coastal regions, such as Ryder Bay, and has been shown to introduce 

micronutrients to the surface waters enhancing primary production (Annett et al., 

2015; Eveleth et al., 2017). The effect of sea-ice melt and glacial meltwater on 

stratification has cascading effects on primary production: Diatoms, dominating WAP 
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phytoplankton blooms, have been shown to grow more efficiently in shallower mixed 

layers due to enhanced irradiance while haptophytes are often associated with areas 

of strongly mixed surface waters (Arrigo, 1999) and cryptophytes occur with high 

glacial meltwater input (Moline et al. 2004). While particulate organic matter (POM) is 

a direct product of primary production, DOM is not only the product of primary 

production. Many physical and biogeochemical processes affect DOM production and 

removal on different timescales. Quantitative estimates for direct DOM excretion by 

phytoplankton are difficult to establish. However, multiple studies show direct DOC 

release ranging from 2 to 60% of photosynthetic carbon assimilation with varying 

effects from nutrient limitation, phytoplankton species composition and the stage of 

the phytoplankton bloom (Fisher & Rochelle-Newall, 2002; Myklestad, 2001; Van den 

Meersche et al., 2004; Wetz & Wheeler, 2003). Further, some phytoplankton species 

utilise dissolved organic nitrogen as a nutrient source (Bradley et al., 2010; Bronk et 

al., 2007; Zhang et al., 2015), complicating the scenario of DOM production and 

removal processes. Due to above mentioned regional differences in warming and 

varying degrees of freshwater influx, phytoplankton community composition and 

biomass vary in space and time along the WAP (Garibotti et al., 2003,  2005; Prézelin 

et al., 2000; Saba et al., 2014).  

DOC measurements have been collected at the RaTS site since 1997 (Clarke et al., 

2008). However, neither these nor DON measurements have yet been the main focus 

of research. For this study, samples have been collected over three consecutive 

austral summer seasons at the RaTS site (2013/14, 2014/15, 2015/16) in order to 

establish an understanding of the seasonal cycling of DOC and DON as well as 

interannual variability.  

In this study, it is hypothesised that DOC and DON are not being released directly 

from phytoplankton during a phytoplankton bloom but with a temporal offset which is 
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due to bacterial degradation of particulate organic matter. Further, it is tested whether 

DOC and DON concentrations change in response to physical (e.g. salinity, 

temperature, meltwater fraction) and biological changes (e.g. phytoplankton 

community and bacterial composition). It is additionally hypothesised that the major 

driver of bioavailable DOM accumulation in the WAP surface waters ultimately is the 

phytoplankton community composition and the timing of phytoplankton blooms.  

DOM measurements are available for the complete austral summer season of 

2013/14. 2014/15 samples cover the onset of spring/summer conditions up to the first 

phytoplankton bloom maximum and 2015/16 data collection started in early-bloom 

conditions in January. The focus of this study will therefore be on the 2013/14 season 

and the data of the other two seasons will be used to investigate differences in DOM 

dynamics and possible reasons behind those and to establish an understanding of 

interannual variability.  

Figure 3.1.1: Location of RaTS sampling site in Ryder Bay and Hangar Cove (sea-ice 
sampling) in northern Marguerite Bay, Adelaide Island at the West Antarctic Peninsula (map 
adapted from Bown et al., 2016). 
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3.2 Methods 

3.2.1 Sampling site and sample collection 

Seawater samples were collected at the Rothera Time Series (RaTS) site in Ryder 

Bay, a small bay within the larger Marguerite Bay south of Adelaide Island, west of 

the Antarctic Peninsula (Figure 3.1.1). The sampling location is approximately 4 km 

offshore with a water depth of approximately 520 m. Marguerite Trough is a glacially-

scoured canyon within the WAP shelf system which is highly effective in transporting 

UCDW from the ACC into the inshore regions such as Marguerite Bay.  

Samples were collected twice a week from a small boat. If sea-ice or weather 

conditions would not allow access to this site, sampling was conducted at an 

alternative site which has been shown to represent similar conditions with the same 

water masses (Clarke et al., 2008). Samples were collected at fixed depths (surface, 

5m, 15m, 25, and 40m and if possible, at 75, and 100m) using Niskin bottles. For 

DOC/TDN, samples were filtered through pre-combusted GF/F filters (nominal pore 

size 0.7 µm) into acid-cleaned and combusted glass conical flasks under a gentle 

vacuum. Samples were transferred to acid-clean HDPE bottles and frozen at -20°C 

until analysis. In 2013/14, samples were collected from mid-November 2013 to the 

end of February 2014. The 2014/15 season was sampled from mid-November 2014 

until the end of December 2014 with additional samples collected mid-January 2015. 

The 2015/16 season was sampled from early January 2016 to the end of March 2016. 

During all sampling events, a conductivity-temperature-depth instrument was 

deployed for measurements of temperature, pressure, salinity, photosynthetically 

active radiation (PAR) and fluorescence. The data were logged at 1m-resolution. The 

mixed layer depth (MLD) was defined as the depth at which σt is 0.05 kg m-3 greater 

than σt at the surface. 
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Sea-ice cores were collected from landfast sea ice in Hangar Cove to the north of 

Rothera (Figure 3.1.1) for inorganic and organic nutrient analysis in 2014/15. The 

cores were collected using a 90-mm Ø rotary ice corer. After collection, the cores 

were sectioned into slices between 5 and 15cm thickness with a clean steel hand saw 

and thawed in the dark at + 4 °C. Samples for organic nutrient analysis were filtered 

through pre-combusted Whatman GF/F filters and stored at -20 °C for further analysis. 

Samples for inorganic nutrient analysis were filtered through 0.2 μm nucleopore filters, 

snap frozen at -80 ° C and stored at -20 °C until analysis. The sea-ice core samples 

were then analysed along seawater samples. 

Table 1 in the appendix lists all relevant data analyses, the methodologies applied 

and the institute at which these analyses were conducted. 

 

3.2.2 Analysis of dissolved organic carbon and total dissolved nitrogen 

DOC/TDN analysis was conducted at the School of GeoSciences at the University of 

Edinburgh via high-temperature combustion on a Shimadzu TOC-V analyser with an 

attached TNM1 Total Nitrogen Measuring unit. Samples were thawed for 

approximately 3 hours before analysis. 10 ml of each sample was transferred into 

acid-cleaned and combusted glass vials using an acid-cleaned 5 ml pipette for 

analysis.  

Sample replicates were analysed in each run for precision. Certified Reference 

Material (CRM; Hansell Deep Sea Reference Batch #15 Lot 1-15; Florida Strait 750 

m DOC 42.00-45.00 μmol C L-1, TDN 31.00-33.00 μmol N L-1) was analysed before 

and after each batch of samples for accuracy. Deep-sea samples were re-analysed 

with Deep Sea Reference Batch #18 Lot 08-18 (DOC 41.0 – 45.8 μmol C L-1, TDN 

31.6 – 35.0 μmol N L-1). CRMs were intercompared to ensure linearity of the 
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instrument throughout the period of analysis. The CRM DOC values was checked to 

lie within 5% of the consensus value. If this was not the case, more CRMs were 

analysed until the results were within the range before each sample run. Detection 

limits are 0.04 μmol C L-1 for DOC and 0.36 μmol N L-1 for TDN and analytical precision 

for DOC was ± 1.09 μmol C L-1and for TDN ± 0.51 μmol N L-1. 

 

3.2.3 Analysis of particulate organic carbon and nitrogen 

Particulate organic carbon and nitrogen concentrations were analysed at the School 

of GeoSciences at the University of Edinburgh. Filters for POC:N analysis were 

prepared following a method adapted from Lourey et al. (2004). In brief, filters were 

decarbonated by wetting them with Milli-Q and fumed with 70% HCl overnight before 

drying and carefully folding them into clean tin capsules. Samples were analysed on 

a CE Instruments NA2500 Elemental Analyser connected to a Thermo Finnigan 

Delta+ Advantage stable isotope ratio mass spectrometer. Both instruments are 

linked through a Finnigan ConFlo III Universal Interface to allow for simultaneous 

carbon and nitrogen analysis. The CRMs PACS-2 and acetanilide were analysed for 

the isotopic composition and carbon and nitrogen concentrations, respectively. The 

analytical reproducibility was better than 1.0% for POC and better than 1.1% for PN. 

 

3.2.4 Analysis of auxiliary samples 

3.2.4.1 Inorganic nutrients 

Inorganic macronutrient samples were filtered through Acrodisc PF syringe filters with 

0.2 µm Supor membranes and immediately stored at – 80 °C for 12 hours after which 

they were stored at – 20 °C until analysis (except for ammonium samples). In the 

Plymouth Marine Laboratory, UK, samples were thawed for 48 hours to allow for 
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complete redissolution of silicate precipitates to silicic acid. A Technicon AAII 

segmented flow autoanalyser was used for the analysis of nitrate+nitrite, nitrite, 

phosphate and silicate concentrations. Raw data were corrected to certified reference 

material (KANSO Ltd. Japan), ambient ocean salinity and pH. Analytical precision was 

usually better than 0.2 µmol N L-1 for nitrate+nitrite, 0.01 µmol N L-1 for nitrite, 0.02 

µmol P L-1 for phosphate and 0.6 µmol Si L-1 for silicate.   

Ammonium concentrations were analysed at the Rothera laboratories by reaction with 

orthophthal-dialdehyde (OPA) overnight and analysis by fluorometry following Holmes 

et al (1999). Ammonium samples were incubated overnight with the working reagent 

(OPA, sodium sulphite and borate buffer). The fluorescence was measured within 24 

hours of incubation using a Turner Designs 700 fluorometer. Ammonium chloride was 

used as a standard. The fluorometer was calibrated at the beginning and the end of 

each batch using the low value of green fluorescence standard 7000-922. The 

detection limit is 0.01 µmol N L−1. Sample processing was carried out within four hours 

after sample collection to minimise changes to ammonium concentrations during 

sample storage. 

 

3.2.4.2 Phytoplankton pigment analysis 

Phytoplankton pigmentation analysis was conducted at the University of Groningen 

using high-performance liquid chromatography. Samples were collected in 2 to 10 L 

Niskin bottles at 15m depth since this depth is the overall long-term fluorescence 

maximum. Particles were collected on GF/F filters (Whatman 47mm Ø) by vacuum-

filtering 1 L of collected seawater. Filters were snap-frozen in liquid nitrogen and 

stored at – 80 °C. Prior to analysis, the filters were freeze-dried for 48 hours in the 

dark and incubated in 90% acetone for pigment extraction at 4 ̊ C. Pigment separation 

was conducted on a Waters 2695 HPLC system with a Zorbax Eclipse XDB-C8 
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column (3.5 μm particle size) following van Heukelem & Thomas (2001) and Perl 

(2009). Pigment data is stated as % of total pigments measured. 

 

3.2.4.3 The δ18O composition of seawater 

Samples for δ18OH2O were collected from the surface and 15 m depth in 150-ml 

medical flat bottles, sealed with rubber bands and parafilm. The samples were 

analysed at the Natural Environmental Research Council Isotope Geosciences 

Laboratory at the British Geological Survey. Samples were analysed on a VG Isoprep 

18 and SIRA 10 mass spectrometer with random samples analysed in duplicate which 

showed an average precision better than ± 0.02‰. The method followed the 

equilibrium method for carbon dioxide established by Epstein & Mayeda (1953). The 

contribution of sea ice and glacial meltwater were calculated using a three end-

member mass balance approach following Meredith et al. (2016) who adopted the 

method from (Östlund & Hut, 1984).  

 

3.2.4.4 Sea-ice observations 

At the RaTS site, sea ice cover was observed visually, and a weighting scheme is 

employed for conversion to an overall sea-ice score ranging from 0 to 10. A score of 

0 marks ice-free conditions while a score of 10 represents full ice cover. 

 

3.2.4.5 Statistical analysis and data integration and interpolation 

Statistical analyses were conducted in the statistical software R version 3.4.3 (R Core 

Team, 2017). Depth contour plots were drawn in Ocean Data View 4 (Schlitzer, 2017) 

using weighted-average gridding. Statistical differences were calculated using two-
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sample t-tests (α = 0.05). Relationships between variables were established through 

linear regression analysis. Further, stepwise regression was conducted to establish 

temporal and spatial trends. All RaTS datasets were statistically analysed with lags in 

time and depth in order to investigate potential offsets in time and space. The 

significance of established relationships was evaluated at a p < 0.05. 
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3.3 Results 

The available data vary greatly between seasons. While the 2013/14 dataset is the 

most complete and covers the entire season from November until the end of February, 

both 2014/15 and 2015/16 are limited: The 2014/15 data set captures pre-bloom 

conditions and the build-up phase of the first phytoplankton bloom. 2015/16 covers 

the period from mid-January until mid-March. Other biogeochemical parameters have 

been measured throughout the 2015/16 season showing that phytoplankton did not 

start forming blooms until early January so that the first phytoplankton bloom 

maximum is captured in the data available. All contour plots are drawn with Ocean 

Data View (Schlitzer, 2017). Tables with all data presented here are listed in the 

appendix of the thesis. 

 

3.3.1 Oceanographic setting 

All three seasons were preceded by winters of full sea-ice cover (> ice score 7) lasting 

between 3 (2013) and 4.5 months (2015) (Figure 3.3.1). Sea ice retreated earliest in 

2013 on November 21st, and in 2014 on December 18th. The 2015/16 season shows 

more variability in sea-ice cover. Based on Stammerjohn et al. (2008), sea-ice retreat 

days are defined as the number of days since the first day that sea-ice cover is < 15 

% for more than 5 consecutive days prior to sampling. For this study, a threshold of 

20 % is applied due to the different approach of sea-ice observations at the RaTS site 

where a sea-ice score of 2 accounts for 20% sea-ice cover. In October 2015, there is 

at first a longer duration of sea-ice free conditions, but sea ice then returns to the area 

again with >20% until early January 2016.  
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Figure 3.3.1: 8-day moving average of sea-ice coverage at the RaTS sampling site in 
Ryder Bay for September to April for the three investigated seasons 2013/14 (blue), 
2014/15 (orange) and 2015/16 (grey). The green area depicts the spring/summer 
period.  

 

The mixed layer was shallowest and most stable in 2013/14 remaining shallower than 

10 m throughout the sampling period (Figure 3.3.2). In 2014/15, salinity starts to 

decrease during December with a concurrent increase in temperature leading to a 

shallowing of the mixed layer which, prior to this point, was variable between 2 and 

40 m (Figure 3.3.3). In 2015/16, the situation is similar with a strong decrease in 

salinity in early January which promotes formation of a shallow mixed layer (Figure 

3.3.4).  
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Figure 3.3.2: Distribution of physical and biogeochemical parameters at the RaTS sampling 
site from November 2013 to February 2014 in the upper 40 meters. In a) the salinity distribution 
is overlaid by the mixed layer depth (MLD, black line). b) shows the temperature, c)-f) 
chlorophyll a concentrations and inorganic nutrient concentrations. g)-l) particulate and 
dissolved organic matter and their molecular ratios, respectively.  
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Figure 3.3.3: Distribution of physical and biogeochemical parameters at the RaTS sampling 
side from November 2014 to February 2015 in the upper 40 meters. In a) the salinity 
distribution is overlaid by the mixed layer depth (MLD, black line). b) shows the temperature, 
c)-f) chlorophyll a concentrations and inorganic nutrients. g)-l) particulate and dissolved 
organic matter and their molecular ratios, respectively.  
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Figure 3.3.4: Distribution of physical and biogeochemical parameters at the RaTS sampling 
site from November 2015-March 2016 in the upper 40 meters. In a) the salinity distribution is 
overlaid by the mixed layer depth (MLD, black line). b) shows the temperature, c)-f) chlorophyll 
a concentrations and inorganic nutrients. g)-l) particulate and dissolved organic matter and 
their molecular ratios, respectively.  

 

 



Dittrich, 2019  

64 
 

3.3.2 Phytoplankton, POM and nutrient dynamics 

In all three investigated seasons, and in agreement with other studies (Baker et al., 

1996; Ducklow et al., 2007; Martinson et al., 2008; Smith et al., 1995), the retreating 

sea ice in spring leads to a shallowing and stabilisation of the mixed layer at the RaTS 

site. In addition to increasing solar radiation, conditions for phytoplankton-bloom 

development are created. The phytoplankton blooms build up to a maximum of 

chlorophyll a (2013/14 14.92 mg Chl-a m-3, 2014/15 19.86 mg Chl-a m-3, 2015/16 5.15 

mg Chl-a m-3) and POM concentrations (2013/14 166.77 µmol C L-1, 18.79  µmol N L-

1; 2014/15 71.42 µmol C L-1, 12.12 µmol N L-1; 2015/16 43.40 µmol C L-1, 8.12 µmol N 

L-1) after which POM concentrations decrease rapidly (Figures 3.3.2, 3.3.3, 3.3.4). 

POM and chlorophyll-a concentrations overall remain at elevated concentrations after 

the onset of the first phytoplankton bloom with distinct peaks of strongly increased 

chlorophyll-a in all three seasons.  

Daily depth-integrated (40m) chlorophyll-a concentrations are maximal 481 mg m-2 in 

2013/14 (Figure 3.3.5). In 2014/15, maximum depth-integrated chlorophyll a is 

measured on January 3rd 2015 with 484.6 mg m-2 and in 2015/16, maximum 

chlorophyll concentration was 180 mg m-2. The phytoplankton peak in 2014/15 

occurred during the period of no sample collection as shown in the chlorophyll-a data. 

For 2015/16, chlorophyll-a data are available for the entire spring/summer and no 

increased chlorophyll-a values are observed prior to the measured blooms. Whilst 

depth-integrated chlorophyll-a stocks vary intensely between years, depth-integrated 

POM standing stocks show less variability with a range of maximum values from 1478 

mmol C m-2 (2015/16) to 1890 mmol C m-2 (2013/14) and 275 mmol N m-2 (2014/15) 

to 290 mmol N L-2 (2013/14). In 2013/14, highest depth-integrated POC occurs during 

the first phytoplankton bloom while PN is higher in the second peak at the end of 

January. The integrated POC:N ratio is higher than the Redfield ratio during the 1st 
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bloom (7.6) and lower than Redfield in the second bloom (5.2). In 2014/15, all OM 

concentrations peak at the same time on January 13th (Figure 3.3.5 and 3.3.6).  

In 2015/16, the second peak in primary production brings highest depth-integrated 

POC and PN concentrations. Depth-integrated chlorophyll-a maxima appear to be 

less stable and occur only over short periods of times with a rapid build-up and rapid 

degradation afterwards. However, chlorophyll-a concentrations remain elevated in the 

upper 15 m after the first increase for the entire sampling period with maxima lower 

than in the previous two seasons (Figure 3.3.4).  
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Figure 3.3.5: Depth-integrated (upper 40m) nitrate uptake*, chlorophyll a and organic carbon 
and nitrogen for all three RaTS seasons in comparison. Data are most complete for 2013/14. 
The data collected show strongest phytoplankton blooms with highest POM concentrations in 
2013/14 and lowest in 2015/16. The grey dashed line in the organic nitrogen plot shows 
integrated deep-sea DON (calculated from the deepest measurements which are considered 
CDW background over 50m). Calculated values above the line indicate DON production and 
values below DON consumption. 
* Nitrate uptake is calculated as the difference of the deepest measured nitrate concentrations 
and the subsequent upper ocean depth. 
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Figure 3.3.6: Salinity, temperature, nitrate and chlorophyll a concentrations and POM and 
DOM in a time series plot from November to March for all three seasons 2013/14, 2014/15, 
2015/16 measured at 15m at the RaTS sampling site in Ryder Bay, Adelaide Island,west of 
the Antarctic Peninsula. In the lower panel, particulate organic carbon is shown with a dashed 
blue line and particulate organic nitrogen with a dashed yellow line. Please note the varying 
time periods on the x axis per season.  

 

The HPLC analyses show that in all three seasons, the peaks of phytoplankton 

blooms are dominated by > 80% diatoms (Figure 3.3.7). There is a seasonal 

progression of the phytoplankton community with other phytoplankton groups such as 

haptophytes and cryptophytes showing higher contributions to the phytoplankton 

community composition during the bloom-development phase or during degradation. 

In the late stage of the second bloom of 2013/14, the phytoplankton assemblage 

consists of approximately 35% cryptophytes, 29% haptophytes and 29% diatoms with 

the remaining 7% being a mixed assemblage of prasinophytes, chlorophytes and 

dinoflagellates. In 2014/15, during pre- and early bloom conditions, haptophytes, and 
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to some extent prasinophytes contribute significantly to the phytoplankton 

assemblage with up to 32 and 15%, respectively. In late 2015/16 bloom conditions, 

cryptophytes dominate with 40-60% of the total phytoplankton assemblage. 

 

Figure 3.3.7: Phytoplankton species contribution to total chlorophyll calculated as percentage 
contribution. The total represents chlorophyll a measurements. All data measured at 15m at 
the RaTS sampling site 2013-2016. Please take note of the different scales on y axes due to 
large differences between seasons. 
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During the first phytoplankton peak from late December 2013 to early January 2014 

(Figure 3.3.2), nitrate concentrations in the surface are near depletion (< 0.05 µmol N 

L-1) which occurs again down to 5 m depth during the second phytoplankton 

production maximum during January. Si(OH)4
- concentrations approach depletion 

during the first bloom but not during the second.  

NH4
+ concentrations are highly variable between years (figure 3.3.2f, 3.3.3f, 3.3.4f). 

In 2013/14 maximum concentrations do not exceed 3 μmol N L-1, in 2014/15, 

maximum concentrations are 1.4 μmol N L-1 and in 2015/16, maximum concentrations 

are 6.56 μmol N L-1. Ammonium concentrations are higher than in the other two 

seasons throughout the water column in 2015/16. Due to the high interannual and 

seasonal variability, [NH4
+] for 40 m in 2013/14 have not been interpolated. However, 

both 2013/14 and 2014/15 data show a trend of NH4
+ accumulation over time at all 

depths. Therefore, DON concentrations at 40 m in January 2014 can be expected to 

comprise between 1 and 2 μmol N L-1 from NH4
+ and in February, the NH4

+ contribution 

to DON might have increased to approximately 2-3 μmol N L-1. In 2015/16, NH4
+ 

concentrations are < 1.00 μmol N L-1 at the beginning of the phytoplankton bloom in 

early January and are elevated throughout thereafter. Both 2013/14 and 2014/15 only 

show increased values (> 1 μmol N L-1) later in the season (late January to early 

February). In 2014/15, these high concentrations only occur at the 40 m sampling 

interval.   

  

 

3.3.3 Dissolved Organic Matter 

In 2013/14, both DOC and DON concentrations tend to follow POC and PN 

concentrations to some extent with accumulation and maximum concentrations (DOC 

88.65 µmol C L-1, DON 8.46 µmol N L-1) either with or shortly after the POC and PN 



Dittrich, 2019  

70 
 

maxima of the first phytoplankton bloom. Both show large variability thereafter (Figure 

3.3.5 and 3.3.6).  

At 15 m, DOC concentrations remain elevated (> 51 µmol C L-1) after the second 

bloom, but with strong variability over time. At the surface and at 5 m, [DOC] increases 

with the build-up of the first phytoplankton bloom and quickly decreases after. There 

is no net accumulation at these depth during the second bloom. Elevated DOC 

concentrations coincide with the peak of the first phytoplankton bloom at the surface 

and occur after the second POC maximum at 15 and 40 m depth. Concentrations > 

60 µmol C L-1 are generally found in the upper 40m only. DON concentrations range 

from 3.38 to 10.13 µmol N L-1.  

The DOC:DON ratio shows large variability over a range from 4.16 to 18.09. Highest 

ratios occur at the surface and at 15m depth towards the end of the season. 

The deepest DOC measurements available in 2013/14 were collected at 100m and 

have a mean of 42.63 ± 1.17 µmol C L-1. The lowest DOC concentration of 40.54 µmol 

C L-1 is found at the end of November in the surface waters and is likely upwelled 

refractory DOC. DOC concentrations remain low through the entire season below 75 

m. Deep DON concentrations in 2013/14 are 5.65 ± 0.74 µmol N L-1 (100m) and 5.61 

µmol N L-1 (130m).  

2014/15 DOC measurements for > 40 m are available for 50 and 75 m with 2 samples 

taken at each depth. The mean DOC concentration here is 44.94 ± 6.22 µmol C L-1 

and for DON 6.24 ± 0.83 µmol N L-1. 

In 2013/14, highest depth-integrated DOC concentrations occur with the second 

phytoplankton peak at the end of January while depth-integrated DON peaks after the 

second peak in February (Figure 3.3.5). Both depth-integrated DOC and DON peak 

at the same time as POM in the 2014/15 data set. In 2015/16, the second primary 
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production peak is higher in depth-integrated POM while both DOC and DON peak 

later. Highest depth-integrated DON is found 8 days after the POM peak and DOC 

peaks 14 days after the DON maximum. This DOC maximum co-occurs with elevated 

depth-integrated POC and PN which is, however, not as high as the first peak.   

 

 

3.3.4 Sea-ice core dissolved organic matter, nitrate and ammonium 

concentrations 

The sea-ice cores collected in 2014/15 cover the period from November 4th 2014 to 

December 22nd 2014. They show high spatial and temporal variability in DOC and 

DON concentrations with ranges for DOC from 29 µmol C L-1 to 1.04 mmol C L-1 

(median = 70.49 µmol C L-1) and for DON 1.9 to 159.0 µmol N L-1 (median = 4.75 µmol 

N L-1), Figure 3.3.8. The DOC:DON ratio lies between 7.5 and 56.8 with a median of 

14.7.  Highest DOC and DON concentrations are found on December 22nd in the 

bottom 5 cm slice with DOC being approximately 11 times higher and DON being 24 

times higher than the early-to-mid-November mean (DOC mean from Nov 4th – Nov 

18th = 93.52 ± 22.56 μmol C L-1 and DON mean = 6.59 ± 1.09 μmol N L-1).  

Except for two ice-core slices, nitrate concentrations are very low (35 out of 42 

samples < 1.0 μmol N L-1, data in the appendix). Highest NO3
- concentrations (9.13 – 

13.61 μmol N L-1) are most commonly found in the bottom 5 cm of each ice core 

except for two cores in November in which they are in the section 20-35 cm from the 

ice-water interface (0.58 and 2.77 μmol N L-1). 

Ammonium concentrations in the analysed sea-ice cores is consistently below 2 μmol 

N L-1. Highest concentrations (> 1 μmol N L-1), except for one ice core, are only found 

in those sea-ice core slices in which both DOC and DON concentrations are elevated 

compared to the other slices.  



Dittrich, 2019  

72 
 

 

Figure 3.3.8: Concentrations of DOC and DON and the DOC:DON ratio in the 2014/15 sea-
ice cores collected at Hangar Cove. 0cm depth represents the interface between seawater 
and sea ice. 
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3.4 Discussion 

In all three seasons, phytoplankton biomass increases shortly after the decline of sea 

ice, an increase in light availability and a shallowing of the mixed layer. Nutrient 

concentrations are well-mixed throughout the water column at the beginning of each 

season. POM concentrations increase with the onset of phytoplankton bloom activity 

shown by increasing chlorophyll-a concentrations and nutrient drawdown in the upper 

ocean. There are two distinct blooms in the 2013/14 season with varying intensity. 

POC and PN concentrations are highest in the upper 5m during the first bloom and at 

15m during the second. At the surface, the POC:N ratio increases rapidly during the 

first bloom to a peak of 11.8 while at 15m, it remains mostly below Redfield and varies 

between 4.7 and 6.7 with a mean of 5.77 ± 1.12. During the second bloom, primary 

production at the surface is much lower than during the first which indicates a shift in 

phytoplankton species composition. Even though diatoms are still dominant during 

the second bloom, their contribution decreases from >95% to 85-90% and 

cryptophytes increase in numbers. The C:N ratio of POM remains mostly below 

Redfield ranging from 4.7 to 6.7 in the upper 15m. These low C:N ratios show that 

phytoplankton are not limited by nitrogen in these waters. However, nitrate 

concentrations come close to depletion levels during both blooms in the upper 15 m. 

The following discussion will focus on the role of DOC and DON in these conditions 

in the WAP shelf biogeochemical cycling over an austral summer season.  

 

3.4.1 Distribution of DOC and DON in 2013/14, 2014/15 and 2015/16 

DOM concentrations in the analysed seasons makes up only a small fraction of in situ 

total organic matter concentrations compared to lower-latitude systems where DOC 

makes up > 80% of TOC (Carlson et al., 1998; Osterholz et al., 2016): With 
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background levels of approximately 40 µmol C L-1 and 3 - 4 µmol N L-1 DOC and DON, 

respectively, freshly produced DOM in all three seasons covers a range from 0.3 µmol 

C L-1 to maxima between 30 and 45 µmol C L-1 and 0.05 to 6.75 µmol N L-1. High DOC 

and DON concentrations in 2013/14 and 2014/15 occur in the surface at the same 

time of POC maxima. DON concentrations in 2013/14 are highest with the start of 

observations in November (10.13 µmol N L-1). However, it is unclear what caused 

these increased concentrations due to no preceding available data. A possible reason 

is direct release from melting sea ice which showed 100% cover between November 

8th and 11th and decreased to 50% within a few days before sampling. On January 

15th 2014, a mixing event introduced water of higher salinity, lower temperature, and 

higher nutrients to the surface. Chlorophyll a and POM concentrations are diluted 

minimally or mixed downwards. DOC concentrations show a slight increase in the 

surface while there is no observable effect on DON.  

The vertical distribution of DOC and DON is variable in all seasons. Overall, the upper 

25 m show most variability in every season which is likely due to processes of both 

production and removal taking place in the upper ocean. In 2015/16, DOC 

concentrations decrease with depth throughout all sample days. DON shows more 

variability and will be discussed in section 3.4.3.   

When data are available below 40 m, DOC concentrations mostly decrease back to 

approximately background levels. However, there are only seven measurements 

below 40 m available for the entire 2013/14 season, four for 2014/15 and none for 

2015/16 so that deeper processes cannot be inferred. DON concentrations are 

elevated throughout the 2013/14 season at depths below 40 m. There are no 

measurements available below 130 m so that it is unclear whether concentrations 

remain elevated with depth or where they decrease to known background 

concentrations. The 75-m measurements for 2014/15 show similar results to 2013/14: 
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DOC concentrations are close to deep-sea background concentrations while DON 

concentrations are slightly elevated below 40 m. The higher DON concentrations at 

depth are likely the result of bacterial degradation of PN or grazing by zooplankton 

with high production of NH4
+ which, at this depth, are included in the DON 

measurements and are discussed in the following section. 

 

3.4.2 The role of NH4
+ in WAP waters 

Previous studies showed that ammonium accumulation in WAP shelf waters occurs 

in late summer/early autumn and, thus, concentrations would remain low during the 

austral spring and summer months during the most productive season due to rapid 

cycling during primary production (Henley et al., 2018; Serebrennikova, 2005; 

Serebrennikova & Fanning, 2004). The available RaTS data show that NH4
+ 

concentrations can increase intensely during phases of high rates of primary 

production. 2015/16 shows NH4
+ concentrations higher than DON concentrations with 

[NH4
+] ranging from 0.25 to 6.56 µmol N L-1. High concentrations (>2 µmol N L-1) occur 

already at the beginning of the phytoplankton bloom in January and remain high until 

the end of measurements. These high concentrations are found at all sampled depths, 

however, at the surface, high concentrations only occur at a later stage. The other 

two seasons show lower concentrations (2014/15: 0.18 - 1.4 µmol N L-1; 2013/14: 0.1 

- 2.82 µmol N L-1). The high variability between depths and in the other two seasons 

does not allow for interpolation at the 40m-interval in 2013/14. Increased upper ocean 

NH4
+ concentrations in 2013/14 mostly occur towards the end of the bloom. In 

2014/15, concentrations remain low and full-depth measurements end with the onset 

of the second phytoplankton bloom. These two seasons, in contrast to 2015/16, 

support the findings of above-mentioned previous studies of NH4
+ accumulation 

towards the end of the phytoplankton growing season. In February 2014, DON 
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concentrations at 40m range from 6.00 to 7.63 µmol N L-1. It is likely that these DON 

concentrations are increased due to contributions from ammonium of 2-3 μmol N L-1 

which has not been measured at this depth. Bacteria degrade DON to NH4
+ 

(ammonification, e.g. Berman et al., 1999) which occurs before nitrification 

(conversion of ammonium to nitrate via nitrite). This conversion occurs rapidly over 

short time scales. Hence, even though the fraction of NH4
+ in DON cannot be 

quantified based on the available data, DON+NH4
+ concentrations can still be used in 

order to determine processes within the nitrogen cycle of the system.  

The full available data set for 2015/16 shows a strong correlation between DON and 

NH4
+ (r= -0.87, p = 1.74*10-6), indicating intense ammonification taking place. Further, 

it shows that DON in Ryder Bay is cycled rapidly to inorganic compounds with little to 

no DON being exported. The correlation between DON and NH4
+ is not as strong in 

2014/15 which is probably due to the stage in time of the growing season. All seasons 

show a decrease in NH4
+ concentrations during the time of high chlorophyll-a 

suggesting preferential NH4
+ consumption over NO3

-. This rapid NH4
+ consumption 

leads to accumulation only after peak production periods but also to a less strong and 

less straightforward relationship between NH4
+ and DON in 2013/14 and 2014/15. For 

2013/14, there are not enough data available after the peak of the second 

phytoplankton bloom (3 data points at 15m), so that this relationship cannot be 

established.   
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3.4.3 DOC as a direct product of WAP primary production 

Multiple studies show a time lag between phytoplankton and bacterioplankton blooms 

along the WAP which can last from a few days to weeks (Billen & Becquevort, 1991; 

Kim & Ducklow, 2016; Lancelot et al., 1991). One hypothesis for this lag was argued 

to be caused by insufficient dissolved organic matter being produced directly by 

phytoplankton and thereby limiting bacterial growth (Billen & Becquevort, 1991; 

Ducklow et al., 2012; Ghiglione & Murray, 2012; Piquet et al., 2011; Rozema et al., 

2016). This study confirms that the amount of labile DOM being produced is low and 

that production occurs only over a short period of time, during phytoplankton bloom 

activity. However, it does show intensive in situ release during phytoplankton bloom 

conditions with DOC concentrations higher than reported in previous studies. 

The focus in the following is on the 2013/14 season. The strong correlations between 

DOC, inorganic nutrients, POM and chlorophyll-a suggest in situ DOC production and 

release by phytoplankton alongside POC production (table 3.4.3.1). Diatoms are 

thought to produce small amounts of DOM directly (Norrman et al., 1995) with smaller 

phytoplankton producing and releasing DOM at higher rates than diatoms (Malinsky-

Rushansky & Legrand, 1996). Even though the fraction of smaller phytoplankton 

seems to be minor in the 2013/14 season, they might contribute significant amounts 

of DOM. A negative correlation between DOC and the Si:N uptake ratio (r = - 0.75, p 

= 8.96*10-6) supports this suggestion. Lower Si:N ratios are associated with less 

diatom-dominated phytoplankton blooms which, in this case, correlate with an 

increased release of DOC. Haptophytes, especially Phaeocystis, produce and release 

large amounts of exopolymeric substances (EPS) which can be in a dissolved or 

particulate form. EPS compounds are rich in DOC (Arrigo, 1999; DiTullio et al., 2000; 

Schoemann et al., 2005). Haptophytes do not dominate the blooms in 2013/14, but 

they show an important contribution throughout the season.  
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Step-wise regression analyses show that DOC correlates best with other 

biogeochemical and physical parameters measured contemporaneously (table 

3.4.3.1). Further, DOC correlates mostly with biogeochemical parameters in the upper 

25 m and other processes appear to be influencing DOC dynamics at greater depths.  

At each sampling depth of the upper 25 m (surface, 5 m, 15 m, 25 m), DOC correlates 

negatively with all inorganic nutrients, and positively with both POC and PN. These 

correlations are strongest at 15m depth, table 3.4.3.1.  

Table 3.4.3.1: Statistical correlation results for both DOC and DON vs. various parameters 
divided by depth intervals for 2013/14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contradicting previous studies (Billen & Becquevort, 1991; Ducklow et al., 2012; 

Ghiglione & Murray, 2012; Piquet et al., 2011; Rozema et al., 2016), it appears here 

  DOC DON 

  r p r p 

0
m

 

NO3
- -0.55 0.018 0.10 0.696 

PO4
- -0.56 0.015 0.14 0.583 

Si(OH)4
- -0.49 0.037 0.17 0.510 

POC 0.85 8.44*10-6 0.26 0.291 

PN 0.82 2.89*10-5 0.16 0.534 

POC:N 0.63 0.005 0.25 0.323 

5
m

 

NO3
- -0.73 0.0005 -0.15 0.546 

PO4
- -0.72 0.0005 -0.07 0.767 

Si(OH)4
- -0.63 0.004 -0.21 0.377 

POC 0.62 0.004 -0.17 0.479 

PN 0.67 0.003 -0.33 0.183 

POC:N 0.28 0.256 -0.10 0.697 

1
5
m

 

NO3
- -0.80 1.05*10-6 0.01 0.951 

PO4
- -0.77 3.82*10-6 0.04 0.851 

Si(OH)4
- -0.75 1.07*10-5 0.01 0.956 

POC 0.53 0.005 0.07 0.760 

PN 0.57 0.002 0.08 0.730 

POC:N -0.002 0.990 0.41 0.060 
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that DOC is directly produced along with POM during phytoplankton blooms within 

the upper ocean. DOC and DON are decoupled. While DON concentrations show a 

similar development over time until the first phytoplankton bloom peak, there are no 

good correlations with any biogeochemical parameters (Table 3.4.3.1) without the 

consideration of time or depth offsets. DON concentrations tend to show the best fit 

with a time lag of 12 - 22 days (4 sampling days). The decoupled processes indicate 

that DON undergoes different mechanisms of production and removal than DOC, 

possibly also representing a nutrient source for both bacteria and phytoplankton and 

is likely being rapidly cycled in the surface waters at the RaTS site. DON has been 

shown to be taken up by some phytoplankton species as a preferred nitrogen source 

in the Arctic (Bradley et al., 2010) and other environments (Bronk et al., 2007; Zhang 

et al., 2015) with comparable phytoplankton compositions. Some phytoplankton 

species can switch between inorganic and organic nitrogen sources in order to 

maintain their nitrogen levels (Bronk et al., 2007; Mulholland et al., 1998, 2003). Once 

nitrate approaches depletion levels, phytoplankton in Ryder Bay might start utilising 

available DON compounds in the surrounding water. 

  

The proposed time offset between bacterial and phytoplankton bloom discussed 

earlier is likely the reason for neither DOC nor DON closely following POM 

concentrations during the second bloom. During the first bloom, which builds up from 

November to its peak between December 13th 2013 and January 6th 2014, DOC 

appears to be driven by the same mechanisms as POM production with strong 

relationships to physical and biogeochemical parameters (Figure 3.4.1). After splitting 

the bloom into phases of build-up (start of the bloom until peak) and degradation (after 

peak until end) (table 3.4.3.2), it becomes clear that these correlations are established 

within the build-up phase. There are no significant relationships with any of those 

parameters after the peak of the phytoplankton bloom. This explains temporal 
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processes throughout the season: The seasonal onset of primary production, and 

therefore nutrient drawdown and organic matter production, is ultimately driven by 

light availability, sea-ice melt and co-occurring changes in the system’s physical state, 

the later bloom is not initiated by these physical changes but by nutrient replenishment 

through mixing events and nutrient recycling.  

 

Figure 3.4.1: Correlations of organic carbon (DOC and POC) at 15 m with physical parameters 
in 2013/14. (A) glacial meltwater fraction, and (B) salinity and biological parameters (C) 
chlorophyll a and (D) nitrate showing that DOC is likely co-produced during POC formation as 
a result of physical changes of the water column which allow for primary production. 
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Multiple studies show that during the growth phase of a phytoplankton bloom and 

particularly towards the end of it, DOC production and release tend to occur at higher 

rates and synchronously with POC synthesis (Biddanda & Benner, 1997; 

Soendergaard et al., 2000; Zlotnik & Dubinsky, 1989). A likely scenario for the 

2013/14 season is that DOC accumulated during the first bloom while bacteria 

increased in abundance and activity. For the duration of the second bloom, bacteria 

degrade available “first-bloom” DOC along with freshly produced DOM from the 

second bloom while at the same time, more DOC is being produced. In support of this 

are the linear regression results in table 3.4.3.2. First of all, DOC correlates 

significantly with inorganic nutrients as well as POC during the first bloom. Even more, 

DOC correlates well with physical parameters such as salinity and δ18OH2O-seaice. DON 

does not correlate with any parameters in this bloom. The second bloom shows only 

weak correlations between DOC and inorganic nutrients. Further, there are no 

correlations with any physical parameters and weak correlations with POC, 

supporting the three scenarios discussed: (i) physical changes prime the conditions 

for POM and co-occurring DOM production during the first bloom, (ii) DOC is an in 

situ product of primary production, and (iii) bioavailable DOC is degraded during and 

after the second bloom. The lack of significant correlations during the degradation 

phase supports the idea of direct production of DOC during phytoplankton blooms 

with emphasis on the build-up phase and subsequent degradation by bacteria and 

possibly other micro grazers in the system.  
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Table 3.4.3.2: Linear regression results for subdivisions of the 2013/14 data into phytoplankton 
bloom, the bloom build-up phase and the degradation phase. Correlations between DOC and 
biogeochemical and physical parameters are good in the first bloom but show improvement 
after separating the build-up phase from the degradation phase of both blooms. fsim = fraction 
of sea-ice melt determined by the δ18OH2O. 

  DOC DON    DOC DON 

  r2 P r2 p    r2 p r2 p 

F
ir
s
t 

b
lo

o
m

 

NO3
- 0.49 1.7*10-5 0.00 0.887 

 

B
lo

o
m

 b
u

ild
-u

p
 

NO3
- 0.69 8.8*10-8 0.00 0.844 

Si(OH)4
- 0.35 5.8*10-4 0.00 0.870  Si(OH)4

- 0.70 5.0*10-8 0.00 0.853 

POC 0.79 6.8*10-11 0.00 0.920  POC 0.69 7.8*10-8 0.01 0.733 

Chla 0.12 0.077 0.00 0.855  Chla 0.45 0.001 0.06 0.290 

Salinity 0.59 1.6*10-6 0.05 0.264  Salinity 0.60 2.2*10-5 0.05 0.333 

Temp.  0.25 0.007 0.11 0.088  Temp.  0.35 0.004 0.05 0.322 

fsim 0.49 0.001 0.01 0.681  fsim 0.64 1.9*10-4 0.04 0.484 

S
e
c
o
n
d
 b

lo
o
m

 

NO3
- 0.14 0.033 0.03 0.333  

B
lo

o
m

 d
e
g
ra

d
a
ti
o

n
 NO3

- 0.01 0.636 0.00 0.943 

Si(OH)4
- 0.12 0.048 0.04 0.271  Si(OH)4

- 0.00 0.933 0.00 0.975 

POC 0.22 0.006 0.00 0.919  POC 0.03 0.411 0.17 0.055 

Chla 0.08 0.181 0.02 0.564  Chla 0.01 0.720 0.01 0.656 

Salinity 0.03 0.378 0.01 0.616  Salinity 0.04 0.438 0.00 0.851 

Temp.  0.03 0.429 0.03 0.444  Temp.  0.00 0.919 0.01 0.742 

fsim 0.00 0.981 0.24 0.075  fsim 0.03 0.588 0.05 0.491 

 

There are good correlations between DON and inorganic nutrients (NO3
-, PO4

-, 

Si(OH)4
-) all r < -0.85, p < 0.05 and PN (r = 0.76, p = 0.005) when time-lagged by 4 

sampling days and with a depth offset between 25 and 40m, which do not exist with 

any shorter time lags. Even though the number of data points is small (n = 8) due to 

the lag imposed, the relationships are strong. Because these relationships do not exist 

for contemporaneous measurements or with any other lag in depth or time, it is likely 

that PN was produced at shallower depths and degradation processes by zooplankton 

and bacteria lead to decreasing PN concentrations with depth while at the same time 

DON is released.  
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3.4.4 Comparison to 2014/15 and 2015/16 

The dynamics of DOM in 2014/15 are similar to 2013/14. Even though no overall 

conclusion about DOM dynamics in this season can be drawn, some of the reported 

observations in 2013/14 can be supported here: Both DOC and DON concentrations 

increase with increasing POM concentrations and show highest values in January 

during the recorded phytoplankton bloom maximum. Surface DOC appears to be 

driven by the same factors as POM production correlating well with nutrient uptake 

(DOC ~ NO3
- r = -0.98, p = 0.0004) and POC concentrations (DOC ~ POC r = 0.92, p 

= 0.01). In this season, DON also seems to be directly produced by phytoplankton 

shown by surface DON concentrations strongly correlating with PN (r = 0.92, p = 

0.009) and a negative correlation between DON and NO3
- in the upper 15m (r = -0.54, 

p = 0.009). In 2014/15, nutrients do not approach depletion levels to the same extent 

as in 2013/14.  

The 2015/16 data show a dissimilar pattern with differences in both POM and DOM 

dynamics. As in the other two investigated seasons, the DOC maximum 

concentrations in 2015/16 occur in the surface but approximately two weeks after 

POM starts to decline. Surface DOC concentrations are elevated from background 

concentrations from the start of observations indicating a previous elevation in organic 

matter production which can be seen in slightly increased POC production a week 

before DOM observations are available. This early period of POM production despite 

low chlorophyll-a levels is potentially due to the release of DOM and POM from sea-

ice melting (see section 3.4.6).  

Surface DON concentrations follow PN concentrations closely for the duration of the 

first POM peak after which they decline until late March. Compared to the elevated 

DOC concentrations, DON surface concentrations remain low which is reflected in 

comparatively high DOC:DON ratios ranging from 9.7 to 17.7 in the surface waters. 
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Highest DON concentrations are found at the start of the phytoplankton bloom early 

January. On some dates, DON concentrations at 15m and 40m are below background 

DON concentrations. High NH4
+ concentrations at the same time point towards 

ammonification of semi-labile or even refractory DON compounds at these depths. A 

priming process like this has been suggested by Bianchi (2011) and Tremblay et al. 

(2015): High concentrations of labile DOM stimulate the activity of bacteria to such 

extent that they become capable of degrading refractory organic matter. The 

degradation of organic matter leads to the eventual release of refractory DOM of 

highly diverse molecules which accumulate in the ocean and are not degraded any 

further. This refractory DOM can only be further degraded or transformed under 

suitable environmental conditions such as UV radiation or priming by highly 

bioavailable DOM but also through well-adapted clades of bacteria in microhabitats 

(Shen & Benner, 2018).  

Because POM is a direct product of phytoplankton production, there is generally a 

good correlation between nutrient uptake and POM concentrations (Figure 3.4.2). In 

2015/16, with the onset of the first phytoplankton bloom, however, nitrate does not 

appear to be drawn down linearly with POM formation. Both nitrate and PN 

concentrations are elevated which leads to an insignificant relationship (p > 0.05). 

Without this short period of simultaneous high nitrate and high PN concentrations, the 

relationship between these two remains as strong as expected (Figure 3.4.2). These 

dates coincide with increased meltwater input by sea ice after a short period of net 

sea-ice formation. It is likely that algae and POM are being released from sea ice 

which would explain the high POM concentrations prior to increasing primary 

production and nutrient drawdown.  
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Figure 3.4.2: (A) shows strong correlations between NO3

- and POC concentrations for the 
seasons 2013/14 and 2014/15, however, not for 2015/16. As shown in (B), the non-correlation 
in 2015/16 is due to a period of high nitrate and POC concentrations at the same time without 
which the correlation between NO3

- and POC remains strong.  
 

 

Minimum DON concentrations are lower than typical background levels measuring 

only 1.14 µmol N L-1 in post-bloom conditions. This is surprising because background 

DOM is considered refractory. UV light is known to being able to transform refractory 

into labile compounds and vice versa (Kähler et al., 1997; Ortega-Retuerta et al., 

2010). However, measured PAR is not particularly high on this date or on any of the 

preceding sampling days. Even though DOC concentrations also decrease on this 

date, the decrease is not comparable to that of DON. The DOC:DON ratio increases 

to 43 showing highly N-depleted DOM. This is the highest ratio measured throughout 

all three investigated seasons. Overall, DOC:DON ratios range from 5 to 15 but are 

mostly close around the Redfield C:N ratio.  

Only in 2015/16 there is a strong negative correlation between NH4
+ and DON (r = - 

0.87, p = 1.74*10-6) in the upper 15m throughout the sampling period. This negative 

relationship in combination with the simultaneous decrease of both PN and DON 
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indicates remineralisation and ammonification. However, it has been shown that along 

the WAP, the accumulation of NH4
+ occurs mostly after the productive spring and 

summer (Henley et al., 2017). A possible explanation for elevated NH4
+ 

concentrations throughout the sampling period is high grazing by zooplankton. 

Antarctic krill have been associated with high release rates of ammonium in Antarctic 

waters (Whitehouse et al., 2011). But also other zooplankton have been shown to be 

responsible for high ammonium production rates (Molina et al., 2012). Zooplankton 

research along the WAP has mostly focused on macro-species such as krill and salps. 

Microzooplankton, such as ciliates, heterotrophic dinoflagellates, and larval stages of 

larger zooplankton are understudied in this region. In lower latitude regions, these 

represent the major grazers of phytoplankton blooms. Garzio et al. (2013) show high 

microzooplankton biomass particularly in the Southern part of the WAP in 2010/11, 

with higher abundance in high-chlorophyll a hotspots such as Marguerite Bay. These 

findings plus the simultaneous decrease of PN and DON with increasing ammonium 

concentrations in this study and the higher contribution of other phytoplankton than 

diatoms in this season support the idea of high abundance and grazing by 

microzooplankton and bacteria which can explain both the increase in ammonium and 

the decrease in organic nitrogen concentrations.  

The rapid cycling of organic matter by microzooplankton creates an important link in 

the Antarctic food web: If there is going to be a shift to an ecosystem dominated by 

smaller cells, as suggested in multiple studies (e.g. Moline et al., 2004; Montes-Hugo 

et al., 2009; Schofield et al., 2017), microzooplankton will potentially be dominating 

the grazing level on phytoplankton. However, they will also be able to package organic 

matter into such form that krill and salps could potentially be able to feed on, thus 

creating rapidly sinking faecal pellets and supporting export (Ducklow et al., 2015). At 

the same time, with the increase of smaller cells, it is likely that the production of labile 

DOM will increase which, on the one hand, as shown here, can create an additional 
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nutrient source for phytoplankton and bacterioplankton. But on the other hand, it might 

also support higher bacterial respiration in the upper ocean of the WAP leading to 

increasing in situ production of CO2 and reduced carbon export.  

 

3.4.5 DOM as a product of phytoplankton stress 

 

Direct release of DOM by phytoplankton can be increased by stress, e.g. nutrient 

limitation or sudden environmental changes (Carlson & Hansell, 2015; Conan et al., 

2007; Goldberg et al., 2009; Wear et al., 2015; Williams, 1995). Physical stress on 

phytoplankton cells can be caused by rapid changes in salinity or temperature. 

Hernando et al. (2015) show that rapid salinity changes increase respiration rates and 

inhibit photosynthetic activity for a short period of time in Antarctic diatoms. In order 

to reduce the osmotic stress on the cell, diatoms respond with increased extracellular 

release of dissolved organic matter (Rijstenbil et al., 1989). In all three seasons, there 

are surface freshwater influx events during which salinity and temperature change 

rapidly. These events are used here to investigate physical stress situations such as 

osmotic cell stress. In 2013/14, rapid freshening and warming of the water on January 

18th and the following days coincide with highest DOC concentrations. Overall, there 

is increasing DOC with decreasing salinity and increasing temperature (DOC ~ 

Salinity r = - 0.75, p = 4.95*10-5, DOC ~ Temperature r = 0.77, p = 2.375*10-5). In 

2014/15, there is also a negative correlation between DOC and salinity (r = -0.61, p = 

0.036). Interestingly, it is not the freshest waters of the season coinciding with highest 

DOC concentrations but the water after a rapid freshening and warming event so that 

a stress-related DOC release is possible here. While there is no significant 

relationship between DOC and temperature in the 2014/15 data (p= 0.2), the trend 

follows this pattern and highest DOC concentrations are found after temperatures 

increased rapidly. For 2015/16, rapid freshening occurs just before samples were 
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collected so that this observation cannot be confirmed for the third season. However, 

there is a trend of increasing DOC concentrations with decreasing salinities.  

 

Along the WAP, nutrient depletion does not occur often or over long periods of time, 

however, high nutrient drawdown close to depletion occurred in 2013/14 and 2014/15. 

In combination with the 2015/16 season which does not show nutrient depletion, these 

situations were used to test whether there is increased DOM production during 

situations that could cause stress to phytoplankton (Figure 3.4.3). In all three seasons, 

lowest NO3
- concentrations coincide with highest DOC concentrations. The 

relationship between NO3
- uptake and DOC production is strongest in 2013/14 (r = 

0.80, p = 1.043*10-6) when low NO3
- concentrations were observed most often and for 

the longest period of all three investigated seasons. The strength of the correlation is 

weaker in 2014/15 (r = - 0.69, p = 0.014) and, while the same trend shows in 2015/16, 

the correlation between NO3
- and DOC concentrations is statistically insignificant (p = 

0.08). All three seasons combined show a correlation of r = - 0.63 and p = 2.2*10-16. 

While stress related to nutrient-depletion potentially occurred in 2013/14 and 2014/15, 

these data do not exclusively show that nutrient limitation can cause phytoplankton to 

release more DOM. However, previous studies have shown increased release of 

DOM by phytoplankton when nutrient limited and also during the late growth phase of 

phytoplankton (Biddanda & Benner, 1997; Soendergaard et al., 2000) both of which 

cause high DOC concentrations coinciding with the nutrient minimum.  

 

Increased DOC concentrations can be the result of a multitude of reasons in addition 

to a phytoplankton-stress response, e.g. a shift in phytoplankton community structure 

with freshening of surface waters. In 2013/14, the presence of haptophytes is growing 

with the freshening event. However, their contribution to the phytoplankton community 

is much higher later when there is no increased DOC release observed. These data 



Dittrich, 2019  

89 
 

suggest that stress-related release by phytoplankton is a more likely source of 

enhanced DOM release.  

While nutrient-depletion scenarios are less likely to occur frequently in the WAP 

region, these data show that short-lived nutrient depletion scenarios are related to 

increased in situ DOC release. Stress situations of rapid freshening or warming of 

water masses are more likely to occur more frequently with a warming climate 

particularly in the WAP coastal regions in proximity of the glaciated coast and an 

overall decrease in sea-ice duration and cover. Both glaciers and sea ice are sources 

of freshwater which can enter the surface ocean in rapid impulses and thus cause 

rapid changes of the physical state of the surface ocean including rapid freshening 

and strong stratification. As shown here, freshening events can potentially cause 

stress situations for phytoplankton which can lead to increased DOM production. 

 

 
 
Figure 3.4.3: DOC correlates well with both nitrate and salinity in the upper 15m showing 
highest DOC concentrations with highest nitrate uptake and lowest salinities in all three 
seasons. In 2013/14 and 2014/15, those events can be considered stress situations as nitrate 
is close to depletion and the freshening of the water column occurred suddenly.  
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3.4.6 Effect of glacial or sea-ice melt 

Even though there are good relationships between DOC and both the fraction of sea 

ice and glacial melt in 2013/14, the separation into blooms shows that this effect is 

only true for the first bloom. Correlations with the meltwater fractions for all other 

biogeochemical parameters such as nutrients and POM are either just as strong as 

or stronger than those for DOC, so that the relationship between DOM and meltwater 

is more likely an indirect effect on DOM caused by a combination of other factors.  

In 2014/15, DOC correlates well with the sea-ice melt fraction and salinity. These 

correlations still exist after salinity-normalising DOC concentrations which excludes 

conservative mixing of DOC. Considering the apparent rapid DON cycling in both 

2013/14 and 2014/15, direct labile DOM release from sea ice is possible which is also 

rapidly cycled in the upper ocean. 

Sea-ice samples were collected in the 2014/15 season and analysed for nutrients and 

DOM. Overall, nitrate is depleted in all cores except for the lower 5 cm. DOC and 

DON concentrations are higher than water column DOM concentrations with an 

average C:N ratio >15. The highest concentrations for DOC and DON are found in 

the lower 5cm of every core. Even though these high concentrations of DOC and DON 

would be introduced to the upper ocean upon sea-ice melting, the contribution of sea-

ice derived freshwater in the surface in 2014/15 is small due to net sea-ice formation 

(more formation than melting), shown by negative δ18OH2Oseaice, for most of the 

overlapping sampling period for sea ice and organic matter. 

Considering the only two dates of net sea-ice melt within the sampling period 

(November 25th and December 9th 2014), the contribution of sea-ice meltwater to the 

surface is 0.02 and 0.79 %, respectively. From a simple mass-balance equation based 
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on the ice cores sampled just before those dates, DOC and DON concentrations in 

the surface waters would be diluted to such levels that they would lie within the error 

of DOC and DON measurements (DOC < 48 nmol C L-1, DON < 5.4 nmol N L-1) with 

a similar C:N ratio (8.74) to that found in the surface waters at these dates. However, 

the DOC and DON concentrations in sea ice show high variability among sampling 

dates and vertical position within a single core. Taking the highest sea-ice derived 

freshwater contribution of the 2014/15 season (2.94%) and highest average DOM 

concentrations from the sea-ice cores (372.54 μmol C L-1 and 46.98 μmol N L-1), this 

would translate to a maximum additional 10.95 μmol C L-1 and 1.38 μmol N L-1 to the 

surface waters from sea ice (DOC:DON ratio 7.93) which would show in surface water 

DOC and DON concentrations.  

In a study on Antarctic sea-ice DOM, Stedmon et al. (2011) characterised three 

distinct pools of DOM in sea ice. For DOC:DON ratios <30, the majority of DOM was 

characterised as amino acids which would represent a highly bioavailable pool of 

DOM. Based on these findings, the majority of DOM from the analysed ice cores of 

2014/15 would fall into this category and would represent a highly labile DOM pool 

which potentially presents an early trigger mechanism for bacterial activity and also a 

source of (sea ice) bacteria. However, the quality of sea-ice DOM highly depends on 

formation processes and ambient water characteristics (Stedmon et al., 2011). The 

surface waters in the 2014/15 season show constant fluctuations of net sea-ice 

formation and melt with varying effects on the melting process at the ice-ocean 

interface. Further, strong winds control the movement and the amount of sea ice in a 

specific location with intense variability between days. While overall, the high 

concentrations of DOC and DON suggest high contribution to the surface waters upon 

sea-ice melt, the rate of melt and the motion of the ice ultimately control how much 

organic matter is released by sea ice within a given period at a specific location.  
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In the 2015/16 data set, there is no apparent direct effect from sea-ice or glacial melt 

on DOM concentrations. This is surprising because it is the season with the highest 

influx of both sea ice and glacial melt fractions with maxima of 3.15 and 5.09%, 

respectively. However, the lack of data in the early season might be the reason why 

a direct impact cannot be observed.  

 

3.5 Summary and future implications 

The three seasons investigated show high seasonal and interannual variability 

agreeing with previous studies with high variability between years mostly depending 

on climatic conditions and subsequent development of phytoplankton activity. It 

appears that DOM dynamics in Ryder Bay are mostly driven by biological and 

biogeochemical interactions which, in turn, are controlled by physical changes. 

2013/14 and 2014/15 show relatively similar behaviour. It was shown that DOC is very 

likely a direct product of primary production and is released at the same time as POC, 

disproving the first hypothesis of this study. This hypothesis was based on previous 

studies showing negligible in situ release of DOM during primary production. 

However, production of DOC is decoupled from POC after the first phytoplankton 

bloom which is likely due to the onset of high bacterial degradation and possibly 

grazing by zooplankton.  

The release of DOM as a stress response by phytoplankton has not been tested in 

WAP waters before. However, the results of this chapter show that stress-related 

release of DOC potentially plays an important role in the WAP waters. Highest 

concentrations of DOC were found at or shortly after events that can potentially put 

phytoplankton under stress, such as sudden changes in salinity and temperature or 

nutrient limitation.  



Dittrich, 2019  

93 
 

The lack of relationships between DON and other biogeochemical parameters lead to 

the suggestion of DON having another source and/or being rapidly cycled in Ryder 

Bay and potentially also playing a role as N source for phytoplankton. 2015/16 showed 

a dissimilar pattern for DOC and DON with maximum concentrations not coinciding 

with POM maxima and DON concentrations being more depleted at shallower depths 

while higher concentrations are found at the greatest measured depth.  

In all investigated seasons, DOC concentrations decrease back to background 

concentrations with depth. However, DON concentrations remain slightly elevated. 

Mesopelagic processes cannot be inferred from the available data as no 

measurements are available below 130m. However, the available NH4
+ data indicate 

that the measured increased DON concentrations contain a substantial contribution 

from NH4
+ at depth particularly towards the later stage of the phytoplankton bloom. 

The fact that overall, DOC:DON ratios are low at the RaTS study site suggests DOM 

of high lability which supports the hypothesis of active and efficient upper-ocean DOM 

cycling. The dissimilar pattern of DOM in 2015/16 shows high interannual variability 

in DOM dynamics.  

DOM contribution from meltwater was shown to be likely but small. Even though sea-

ice cores collected in 2014/15 show high DOM content of increased DOC:DON ratios 

throughout the season, a rapid melting event would be necessary to introduce all this 

DOM to the surface waters. The measured minor fractions of sea-ice meltwater 

present in the surface waters in 2014/15 would not affect seawater DOM 

concentrations. However, the high vertical variability of DOM in sea ice infers that high 

amounts of DOM can be released at any given melting event. This DOM would be 

highly labile and possibly lead to high bacterial activity. 

 

Previous studies suggested high partitioning of organic matter into the particulate pool 

during primary production and negligible direct release of DOM from phytoplankton. 
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This study shows direct and sporadically high release of DOC by phytoplankton during 

primary production adding complexity to our understanding of the DOM dynamics in 

the WAP ecosystem.  

The importance of carbon in the dissolved pool has only been recognised relatively 

recently with the dissolved organic nitrogen being even less investigated. Focussed 

studies on specific DOM compounds, the microbes responsible for the cycling of 

specific compounds and physical conditions and their effects on DOC and DON are 

rare, particularly in the remote regions of Antarctica. A combination of long-term field 

and laboratory studies on DOC and DON concentrations, specific DOM compounds, 

release and consumption mechanisms under ambient and stress conditions is 

required to improve our understanding of the processes involved in DOC and DON 

cycling in the upper ocean of the WAP shelf. 

Under current projection scenarios of ongoing climate change in the WAP region, 

above described patterns and behaviour of DOM cycling will likely be highly affected. 

This study shows that shifts in phytoplankton species composition, decreases in 

surface salinity due to increased melting, shifts in the specialised bacterial clades and 

possibly in ambient zooplankton species will all affect both the production and the 

cycling of carbon and nitrogen at the WAP in the dissolved form. 
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CHAPTER 4 

Spatial Variability and Physical and Biological Controls of Dissolved Organic 

Carbon and Nitrogen West of the Antarctic Peninsula 

 

4.1 Introduction 

The role of dissolved organic carbon (DOC) in the global marine carbon cycle is still 

not entirely understood. Processes such as DOC production, transformation and 

removal all involve a variety of different mechanisms which makes resolving the 

cycling of dissolved organic matter in the oceans difficult. Production of marine DOM 

occurs through different mechanisms such as in situ production and release during 

phytoplankton blooms (Carlson, 2002; López-Sandoval et al., 2011; Marañón et al., 

2005; Nagata, 2000), sloppy feeding by zooplankton, excretion and egestion 

processes(Carlson, 2002; Møller, 2005; Saba et al., 2009, 2011; Steinberg & Saba, 

2008). Marine heterotrophic microbes are the primary consumers of DOM and are 

responsible for most of the transformation and removal processes (e.g. Azam et al., 

1983; Ducklow et al., 1986; Goldman & Dennett, 2000; Jiao et al., 2011; Pomeroy et 

al., 2007). Further, inactive, such as gravity-driven sinking of particles, and active 

vertical transport processes, e.g. from vertically migrating zooplankton releasing OM 

at depth, can act as sinks exporting DOM from the surface waters. However, it has 

also been shown that DOM can act as an organic nutrient source for primary 

producers and other trophic levels (Granéli et al., 1999; Karl et al., 1996). Bacterial 

processing of labile DOM leaves refractory DOM compounds which are not readily 

degraded creating a carbon reservoir similar in size to the atmospheric carbon 

reservoir. The microbial cycling of organic matter is referred to as the microbial carbon 

pump and was first described as such by Jiao et al., (2010).  The oceanic refractory 
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carbon reservoir stores carbon  up to millennia (e.g. Hansell, 2013;  Hansell et al., 

2009).  

While in lower latitude open-ocean systems, DOM is produced directly during 

phytoplankton blooms and makes up the majority of the total organic matter stock 

(particulate plus dissolved), high-latitude systems tend to show much lower 

concentrations of DOM in surface waters with little direct contribution by 

phytoplankton (Bird & Karl, 1999; Ducklow et al., 2011; Straza et al., 2010). Further, 

several studies at the West Antarctic Peninsula (WAP) have shown that the ratio of 

bacterial production (BP) to primary production (PP) is low and BP often does not 

exceed 4% of primary production indicating insufficient supply of bioavailable material 

for BP (Bird & Karl, 1999; Kim & Ducklow, 2016). Low temperatures were suggested 

to hamper bacterial production (Pomeroy & Wiebe, 2001), however, Straza et al. 

(2010) found that temperature alone does not control bacterial activity. Seawater 

collected in the shelf waters of the west Antarctic Peninsula enriched with glucose 

increased bacterial production supporting the idea of limited bioavailable DOM being 

responsible for low BP in Antarctic waters (Ducklow et al. 2011). BP shows a better 

relationship to chlorophyll-a than to PP suggesting that bacteria feed on organic 

matter originating from PP but which has already undergone degradation processes 

such as grazing by higher trophic levels (Kim & Ducklow, 2016). However, at present, 

there is no study looking into the fate of DOM in the WAP shelf waters directly. It 

remains unclear how much DOM is being produced, recycled in the upper ocean and 

how much or if any is exported to the deep ocean. In Antarctic open water, the primary 

source of DOM is primary production as there is no riverine runoff high in DOM and 

the Southern Ocean is far away from any anthropogenic sources.  

While there has been some research on the interaction between bacteria and 

dissolved organic matter in the Southern Ocean (Church et al., 2000; Ducklow, 2003; 
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Ducklow et al., 2012; Kähler et al., 1997), the questions as to why DOM 

concentrations are lower than in low latitudes and how DOM is processed in the 

Southern Ocean remain unanswered. Further, most studies focus on dissolved 

organic carbon. The analysis of dissolved organic nitrogen (DON) is more challenging 

and therefore often disregarded. DON is measured by analysing total dissolved 

nitrogen (TDN), which contains organic and inorganic nitrogen species (NO3
-, NO2

-, 

NH4
+). The concentrations of the inorganic species are subtracted from TDN to gain 

DON concentrations so that these carry the error of the analyses of inorganic nutrients 

plus the TDN analysis itself. Nonetheless, to fully understand processes involved, 

DON is a useful measure as C:N ratios might indicate lability of DOM which is 

suggested to play a more important role in bacterial growth efficiency than the quantity 

of the substrate itself (Church et al., 2000; Goldman et al., 1987; Goldman & Dennett, 

1991). Even though the DOC:DON ratio, unlike the POC:N ratio, should not be used 

to draw conclusions of source or fate and cannot be used as a proxy for either DOC 

or DON (Kähler & Koeve, 2001), it is a useful tool to investigate N-enriched and 

therefore likely more labile DOM in the region. Because DON contains both carbon 

and nitrogen, DON compounds tend to be sites of high bacterial activity as they 

represent a source for both required elements. Concentrations of DOC, DON and the 

C:N ratio are used in combination with microbial parameters such as bacterial 

abundance and activity in order to understand processes involved in DOM cycling. 

Both bacterial activity and cell counts have long been a standard measurement of the 

PAL LTER program.  

Particulate organic matter (POM) in the WAP shelf waters is produced during primary 

production by phytoplankton in the surface. Intense POM accumulation during the 

short period of productivity forms the base of the local food web. New production 

estimates in the WAP region are larger than export which is likely the result of passive 
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transport like diffusion and advection (Stukel et al., 2015; Stukel & Ducklow, 2017) 

but also indicates intense recycling in surface waters. The ratio of C:N in POM highly 

depends on the phytoplankton species composition in each bloom but generally, C:N 

ratios in high-latitude regions are lower than in lower latitudes which has been 

attributed to a dominance by diatoms (e.g. Annett et al. 2010) and low temperatures 

which lead to a higher enzyme expression (Young et al., 2015). High abundance of 

krill and other zooplankton and bacterial degradation lead to rapid degradation of 

POM with depth.  

The WAP is a pelagic marine ecosystem which was subject to rapid warming in the 

second half of the 20th century with increases in atmospheric and oceanic 

temperatures; changes in precipitation; a decline in sea-ice extent and duration; and 

increasing glacial melting in the area (Marshall et al., 2006; Smith et al., 1996; Van 

Wessem et al., 2015; Vaughan et al., 2003). All ecological processes in the area 

ultimately depend on sea-ice dynamics so that the WAP ecosystem is subject to large 

inter- and intra-annual variability. Sea-ice cover and duration in the WAP are 

controlled by climatic variability, in particular by the Amundsen Sea Low (ASL), a low-

pressure system between the Ross Sea and the WAP. The ASL is controlled by a 

combination of two large-scale climate modes, the El Niño-Southern Oscillation 

(ENSO) and the Southern Annular Mode (SAM). In brief, changes in the ASL affect 

wind strength and patterns at the WAP which is the primary control on sea ice (Saba 

et al., 2014; Stammerjohn et al., 2008; Vaughan et al., 2003). A deepening of the ASL 

has been observed in the second half of the 20th century leading to warmer and more 

moisture-laden air being steered towards the WAP while more recently, this warming 

period has plateaued which is likely due to natural internal variability.  

This study focusses on the continental shelf west of the Antarctic Peninsula studied 

by the U.S. Palmer Antarctic Long-Term Ecological Research (PAL LTER) program 
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since 1990 (see map in figure 4.2.1). Each year in January, the PAL LTER cruise 

covers a defined sampling grid to study spatial and inter-annual physical, ecological 

and biogeochemical processes of the region.  

It is hypothesised that DOC and DON concentrations are low throughout the study 

region and that DOM is being produced with a temporal offset after the start of a 

phytoplankton bloom. Further, it is hypothesised that increased DOM concentrations, 

particularly those of low C:N ratios, occur in regions of high bacterial productivity. In 

addition, this study investigates the effect of freshwater contribution from sea-ice and 

glacial meltwater on DOM concentrations and the response by phytoplankton and 

bacteria.  

In order to address the above hypotheses, DOC and DON concentrations were 

measured along with other biogeochemical parameters as part of the 2017 PAL LTER 

cruise. This is the first time any PAL LTER samples have been analysed for DON. 

Spatial patterns and variations of DOC and DON distributions are brought into context 

by comparing those to physical, biological and biogeochemical changes throughout 

the sampled area. By comparing the open ocean to the shelf area of the WAP, 

different mechanisms responsible for spatial variability in DOM cycling are identified. 

This study will investigate potential DOM sources other than primary production and 

the efficiency of bacterial degradation of bioavailable DOM along the WAP. 
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4.2 Methods 

4.2.1 Sample site 

The sample region west of the Antarctic Peninsula covers an area of 900 x 200 km. 

The sampling locations are the same for each annual cruise and follow a pattern of 

lines orthogonal to the coast approximately 100 km apart (see figure 4.2.1). The 

number of lines and stations sampled highly depends on accessibility due to sea-ice 

cover. For this study, samples were collected along lines 200 to 600 from January 6th 

to January 31st 2017 on board the ARSV Laurence M. Gould (LMG).  

The sampling scheme on each annual cruise involves deployments of a SeaBird 911+ 

conductivity-temperature-depth instrument attached to a rosette with 24 niskin bottles. 

Samples are collected from niskin bottles closed at specific depths in the water 

column for particulate organic carbon and nitrogen and their isotopic compositions, 

dissolved inorganic nutrients, dissolved organic carbon (and nitrogen), primary 

production, chlorophyll-a, and bacterial measurements. Sea-ice data are derived from 

satellite observations from NASA’s Scanning Multichannel Microwave Radiometer 

and the Defense Meteorological Satellite Program’s Special Sensor 

Microwave/Imager.  

Table 1 in the appendix lists all relevant data analyses, the methodologies applied 

and the institutes involved. 
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Figure 4.2.1: Map of the west Antarctic Peninsula and zoom on PAL LTER sampling grid west 
of the Antarctic Peninsula showing all stations sampled in 2017. 

 

 

4.2.2 Sample Collection 

Samples for DOC and TDN analysis were collected in acid-cleaned (24 hours in 10 

% HCl, 3x DIW-rinsed and baked for 5 hours at 450 °C) 60-ml HDPE bottles. Prior to 

sample collection, each bottle and lid were rinsed three times with the sampled 

seawater. Sample seawater was gravity-filtered directly from the niskin bottles 

through pre-combusted GF/F filters (Whatman 0.7 μm 47 mm Ø; precombusted at 

450 °C for 5 hours in methanol-cleaned tin foil) and immediately transferred to a -80 

°C freezer.  

POM samples were collected by filtering up to 4 L of collected seawater through pre-

combusted GF/F filters (Whatman 0.7 μm GF/F 25 mm Ø). The filters were stored in 

cryovials at -80 °C. 
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4.2.3 Analysis of DOC and TDN 

DOC/TDN analysis was conducted via high-temperature combustion on a Shimadzu 

TOC-V analyser with an attached TNM1 Total Nitrogen Measuring unit. Samples were 

thawed for approximately 3 hours before analysis. 10 ml of each sample was 

transferred into acid-cleaned and combusted glass vials using an acid-cleaned 5 ml 

pipette for analysis.  

Sample replicates were analysed in each run for precision. Certified Reference 

Material (CRM; Hansell Deep Sea Reference Batch #15 Lot 1-15; Florida Strait 750 

m DOC 42.00-45.00 μmol C L-1, TDN 31.00-33.00 μmol N L-1) was analysed before 

and after each batch of samples for accuracy. The instrument automatically analyses 

each sample 3-5 times depending on in-run reproducibility. Deep-sea samples were 

re-analysed with Deep Sea Reference Batch #18 Lot 08-18 (DOC 41.0 – 45.8 μmol 

C L-1, TDN 31.6 – 35.0 μmol N L-1). CRMs were intercompared to ensure linearity of 

the instrument throughout the period of analysis. The CRM DOC values was checked 

to lie within 5% of the consensus value before each sample run. If this was not the 

case, more CRMs were analysed until the results were within the range. Detection 

limits are 0.04 μmol C L-1 for DOC and 0.36 μmol N L-1 for TDN and analytical precision 

for DOC was ± 1.09 μmol C L-1and for TDN ± 0.51 μmol N L-1. 

Due to logistical constrains, only the inorganic nitrogen species NO2
- and NO3

- were 

analysed so that DON concentrations stated contain NH4
+. NH4

+ concentrations 

across WAP surface waters have been shown to be minimal, however, when NH4
+ 

concentrations might be of importance, they will be mentioned in the discussion.  
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4.2.4 Analysis of particulate organic carbon and nitrogen 

Particulate organic carbon and nitrogen were analysed at the School of GeoSciences 

at the University of Edinburgh. Filters for POC:N analysis were prepared following a 

method adapted from Lourey et al. (2004). In brief, filters were decarbonated by 

wetting them with Milli-Q and fumed with 70% HCl overnight before drying and 

carefully folding them into clean tin capsules. Samples were analysed on a CE 

Instruments NA2500 Elemental Analyser connected to a Thermo Finnigan Delta+ 

Advantage stable isotope ratio mass spectrometer. Both instruments are linked 

through a Finnigan ConFlo III Universal Interface to allow for simultaneous carbon 

and nitrogen analysis. The CRMs PACS-2 and acetanilide were analysed for the 

isotopic composition and carbon and nitrogen concentrations, respectively. The 

analytical reproducibility was better than 1.0% for POC and better than 1.1% for PN. 

 

4.2.5 Analysis of inorganic nutrients 

Dissolved inorganic nutrients (Nitrate+nitrite, Silicate and Phosphate) were analysed 

using a Seal Analytical segmented flow autoanalyser (Mequon, WI, Seal 

AutoAnalyzer AA3). Methods for each analysis followed the protocols recommended 

in the Seal Customer Support Manual. Nitrate analysis was conducted via reduction 

to nitrite in a copper-cadmium column and a further reaction with N-1-

naphthylethylene diamine dihydrochloride to form a purple azo dye which is then 

analysed colorimetrically. Phosphate analysis follows the Murphy and Riley method 

(Murphy & Riley, 1962). The determination of silicate is based on the reaction between 

silico-molybdate to molybdenum blue by ascorbic acid. Standards for each analysis 

were sodium nitrite and potassium nitrate, potassium dihydrogen phosphate and 

sodium meta-silicate nonahydrate. A deep-sea sample collected during each year’s 
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cruise at 3,000 m is analysed as an internal reference standard. Detection limits for 

nitrate+nitrite were 0.015 μmol N L-1, for phosphate 0.0021 μmol P L-1 and for silicate 

0.03 μmol Si L-1.  

 

4.2.6 Analysis of bacterial data 

Bacterial abundance, production and HNA/LNA (high nucleic and low nucleic acid 

content) were analysed onboard the LMG. Bacterial abundance and HNA and LNA 

were analysed within two hours after collection via flow cytometry following Gasol & 

Del Giorgio (2000) with SYBR-Green staining. Total abundance was counted by 

adding 1 μm microspheres and 5 μm of SYBR-Green to 0.5 mL of a seawater sample. 

After a 30-minute dark incubation, bacterial cells were analysed for 2 minutes at a 

slow flow rate. Numbers were determined in cytograms of green fluorescence 

recorded at 530 ± 30 nm versus side angle light scatter. HNA and LNA subgroups 

were separated by gating the cytogram and discriminating by their respective green 

fluorescence. 

Bacterial production rates were determined via incorporation of 3H-radio-labelled 

leucine following a modified protocol by Smith & Azam (1992). Samples were treated 

in triplication. Control samples were spiked immediately after sampling with 200 μL 

formalin in order to stop any biological activity. Each 1.5 mL sample was spiked with 

3H-leucine (MP Biomedical, Santa Ana, CA; >100 Ci/mmol, 20-25 nM final 

concentration) and incubated for 3 hours at 0.5 °C. At the end of the incubation period, 

200 μL formalin was added to the samples. After concentration by centrifugation, the 

samples were rinsed with 5 % trichloroacetic acid and 70 % ethanol and air-dried 

overnight before analysis by liquid scintillation counting in an Ultima Gold cocktail.  
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4.2.7 Analysis of other auxiliary data 

4.2.7.1 Primary production and chlorophyll-a 

Primary production rates and chlorophyll-a concentrations have been gathered 

throughout the PAL LTER cruise by the research group of Oscar Schofield.  

Primary production rates, measured as daily carbon uptake in mg C m-3 day-1, are 

measured with incubation experiments. 100 ml of seawater sample were inoculated 

with 1 μCi of 14C-radio-labelled NaHCO3 in borosilicate bottles. The bottles were 

incubated for 24 hours at in situ light levels and ambient temperatures. After the 24-

hour incubation period, the seawater samples were filtered through GF/F filters, the 

filters were washed with 10 % HCl, dried and counted in a scintillation counter.  

Chlorophyll a samples were filtered onto GF/F filters and kept frozen at – 80 °C stored 

in cryovials. Analysis was conducted at Palmer Station through acetone extraction 

and measurement of the extract on a Turner 10AU Fluorometer. 

 

4.2.7.2 δ18OH2O analysis 

The samples for the δ18OH2O composition were analysed at the Natural Environmental 

Research Council Isotope Geosciences Laboratory at the British Geological Survey. 

Samples were analysed on a VG Isoprep 18 and SIRA 10 mass spectrometer with 

random samples analysed in duplication for precision which is usually better than ± 

0.02 ‰. The oxygen isotopic composition of seawater (δ18OH2O) is determined by the 

comparison of the ratio of 18O/16O of a sample to that of a standard. For oxygen 

isotope measurements, this standard is Vienna-Standard mean ocean water (V-

SMOW). The δ18OH2O is expressed as  
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𝛿18𝑂(𝑠𝑎𝑚𝑝𝑙𝑒) =  [
(
18𝑂
16𝑂

) 𝑠𝑎𝑚𝑝𝑙𝑒

(
18𝑂
16𝑂

)𝑉𝑆𝑀𝑂𝑊
− 1] 𝑥 1000‰ 

 

The method followed the equilibrium method for carbon dioxide established by 

Epstein & Mayeda (1953).  

 

4.2.7.3 PAL LTER Dissolved Inorganic Carbon 

Samples were collected from the surface and the deepest niskin bottles and 

preserved with 200 uL saturated HgCl2 before being sealed and transported to the 

Ducklow laboratory at the Lamont-Doherty Earth Observatory for analysis. Analysis 

followed the WOCE-JGOFS recommendations (Dickson & Goyet, 1992; Knap et al., 

1996). The average standard deviation for replicate samples was 0.15%. 

 

4.2.8 Calculations 

4.2.8.1 Depth-integrated standing stocks and nutrient uptake 

Organic matter standing stocks and nutrient uptake were integrated over the upper 

50 m, in agreement with other studies finding that most biogeochemical parameters 

fall back to background levels or show only little variability below 50 m in the WAP 

region (Ducklow et al., 2012) and most activity happening within the mixed layer which 

for all stations is within this range. Further, most biological and biogeochemical 

measurements, such as primary production, chlorophyll-a and POC and PN are only 

collected at the uppermost 6 depths at each station during the PAL LTER cruises.  
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Standing stocks of particulate and dissolved organic carbon, nitrogen and inorganic 

nutrients were calculated by trapezoidal integration. At stations with no 50-m 

measurement, the 50 m value was interpolated. Results are listed in table 8 in the 

appendix. 

 

4.2.8.2 δ18OH2O fractions of CDW, sea ice and meteoric origin 

Samples for δ18OH2O were collected during the PAL LTER research cruises at every 

sampling station in 50-ml glass bottles which were crimp-sealed. The samples were 

analysed at the Natural Environmental Research Council Isotope Geosciences 

Laboratory at the British Geological Survey. Samples were analysed on a VG Isoprep 

18 and SIRA 10 mass spectrometer with random samples analysed in duplicate which 

showed an average precision better than ± 0.02‰. The method followed the 

equilibrium method for CO2 established by Epstein & Mayeda (1953). The contribution 

of sea ice and glacial meltwater were calculated using simultaneous equations 

following Meredith et al. (2016) who adopted the method from (Östlund & Hut, 1984). 

A description is given in Chapter 2: Methods.  

 

4.2.8.3 Mixed layer depth 

The mixed layer depth (MLD) is defined as the depth at which σt is 0.05 kg m-3 greater 

than σt at the surface from CTD downcast data in agreement with other Southern 

Ocean studies (Long et al., 2012; Mitchell & Holm-Hansen, 1991; Venables et al., 

2013). 
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4.2.8.4 Nutrient Uptake Ratio Calculations 

The nutrient uptake ratios were calculated as the ratio of the difference of the nutrient 

concentrations measured from deep UCDW measurements (which represent 

background nutrient concentrations) of each station and the subsequent upper ocean 

depth. 
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4.3 Results 

From the observations of the data presented here, the depth profiles and later 

discussions are divided into open ocean and shelf+coast stations. Open ocean 

stations describe stations 200.200, 300.200, 400.200, 500.200 and 600.200 and are 

those off the shelf region of the WAP (see Figure 4.2.1). Shelf and coast stations show 

a similar behaviour to each other with more variability along the coast. All surface 

contour plots are drawn with Ocean Data View (Schlitzer, 2017). Tables with all data 

presented here are listed in the appendix of the thesis. 

 

4.3.1 Sea ice and hydrography 

The study area is characterised by highly variable sea-ice coverage and glacial 

meltwater influence. All physical parameters are shown in figure 4.3.1 a and b. Salinity 

in the sampling grid ranges from 32.64 at the surface to 34.73 at depth. Most variation 

in salinity is found in the upper 100m with sharp decreases in surface salinity and 

higher variability at the stations closer to the shore. Temperature ranges from -1.71 

°C to 2.93 °C. Winter water is present at all stations between 10 and 200m with a 

temperature range from -1.71 °C to 0.00 °C. Surface waters are warmest at the 

coastal station 500.060 (2.9 °C) and coldest at 200.040 (1.07 °C) while the rest of the 

surface sampling grid ranges from 1.32 to 2.68 °C. 

The MLD is shallow but highly variable along the sampled stations varying from 8 m 

at 600.040 to 38 m at 400.200. The MLD correlates strongly with the number of days 

since sea-ice retreat (r = 0.68, p = 0.005), i.e. the longer a station has been sea-ice 

free, the deeper the MLD. Sea-ice retreat days (SIRD) are defined as the number of 

days between the first day of sea-ice concentration <15% for at least 5 consecutive 

days and the sampling day (Stammerjohn et al., 2008). As shown in figure 4.3.1a, sea 
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ice retreated earliest in the region off shelf (125 days at 200.200) and persisted 

longest towards the shore (6 days since sea-ice retreat at 200.000) except for station 

600.200 which was still sea-ice covered on the day of sampling. 

The δ18OH2O data show the contribution of freshwater, which along the WAP consists 

mostly of sea-ice and meteoric water, which are isotopically lighter than seawater. 

Meteoric water mainly consists of glacial meltwater, but a small fraction originates 

from precipitation. While the open-ocean stations are less influenced by freshwater, 

the coastal stations and, to some extent, the shelf stations show the influence of 

meteoric water in the surface. The South-eastern part of the sampling grid (including 

stations 400.040, 300.040, 300.100, 200.100, 200.040 and 200.000) shows highest 

freshwater contributions with its minimum δ18OH2O value at 300.040.  
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Figure 4.3.1a: Surface physical conditions along the WAP during PAL LTER 2017 showing 
high variability along the sampling grid with a distinct onshore-to-offshore trend in all 
parameters. 
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Figure 4.3.1b: Depth profiles of physical parameters over the upper 150m during PAL 
LTER cruise 2017. The data are divided into Open Ocean stations on the top row and 
shelf+coast at the bottom. The colours represent each sampled station according to the 
legend. 
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4.3.2 The distribution of inorganic nutrients along the WAP 

The surface distribution of nutrients across the sampling grid reflects the above 

described physical conditions (figure 4.3.2a, b). At depths > 200 m, NO3
-  

concentrations have a mean of 33.15 ± 1.21 μmol N L-1 representing NO3
- 

concentrations in CDW being transported across the WAP shelf. Above 100 m, NO3
- 

concentrations decrease towards the surface. Surface NO3
- concentrations range 

from 0.77 μmol N L-1 at 300.040 to 25.45 μmol N L-1 at 200.200. The open ocean 

stations show higher surface concentrations (24.52 ± 1.26 μmol N L-1) in comparison 

to shelf waters (19.34 ± 1.86 μmol N L-1) and coastal stations (12.85 ± 6.6 μmol N L-

1). The higher standard deviation at the coastal stations shows more variable NO3
- 

uptake in these waters with more depleted surface waters at the southernmost 

stations. Figure 4.3.2b shows the depth distribution of nutrients. Surface PO4
3- and 

DIC concentrations follow the NO3
- distribution closely. The N:P uptake ratio in the 

surface waters ranges from 11.5 to 16.0 with an average 14.2 ± 1.5 (table 4.3.1) being 

slightly below Redfield conditions in agreement with other studies (Pedulli et al. 2014; 

Henley et al. 2017). Si:N uptake ratios also vary strongly between open and coastal 

conditions: In the open, the Si:N uptake ratios range between 2.1 and 3.8 with a mean 

of 2.9 ± 0.7, along the shelf 1.4 ± 0.3 and across the coastal stations 0.9 ± 0.2 (table 

4.3.1). DIC measurements are only taken at the surface so that uptake and ratios 

cannot be calculated.  
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Figure 4.3.2a: Surface distribution of inorganic nutrient concentrations, phytoplankton and 
microbial parameters during the PAL LTER cruise 2017.  
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Figure 4.3.2b: Depth profiles of nutrients over the upper 100m during PAL LTER cruise 
2017. The data are divided into shelf+coastal stations (top) and open ocean stations 
(bottom) and coloured by station number as per legend. 
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4.3.3 The distribution of phytoplankton parameters along the WAP 

Primary production and chlorophyll-a show strong variability across the sampling grid 

(Figure 4.3.2a). Primary production is mostly low except for the coastal region with a 

peak of 102 mg C m-3 day-1 at 500.060. Primary production peaks are found at the 

surface and in the subsurface down to 70 m (see figure 4.3.3).  

Chlorophyll-a concentrations range from 0.1 to 2.0 mg m-3 except for station 300.040 

(surface chlorophyll-a concentration = 17.0 mg m-3). Among the other 15 stations, 

mean surface chlorophyll-a was 1.0 ± 0.6 mg m-3.  

Depth-integrated primary production and chlorophyll-a concentrations are stated in 

table 4.3.1 along with nutrient uptake ratios. Highest variability and values are found 

along the coast, generally decreasing towards the open ocean.  
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Table 4.3.1: Si:N and N:P uptake ratios for integrated nutrient uptake of the top 50m, maximum 
primary production rates and integrated Chlorophyll-a concentrations. Stations listed North to 
South and subdivided into coast, shelf and open ocean. 
 

 

Station 
Si:N 

uptake 
N:P 

uptake 

PP Chla 

 (mg m-3 

day-1) 
(mg m-3) 

C
o
a
s
t 

600.040 0.64 18.17 46.76 17.22 

500.060 1.53 14.88 101.95 69.97 

400.040 1.76 15.24 61.3 35.3 

300.040 1.23 15.35 17.19 331.67 

200.040 1.82 14.45 45.43 19.24 

200.000 0.95 14.94 66.72 29.81 

S
h
e
lf
 

600.100 1.08 14.91 17.83 61.93 

500.100 1.80 15.28 16.67 41.49 

400.100 1.65 15.33 55.14 57.18 

300.100 1.66 12.63 50.09 62.66 

200.100 1.40 14.71 53.31 43.6 

O
p
e
n
 

600.200 3.47 11.72 11.74 19.78 

500.200 2.45 11.56 18.08 26.62 

400.200 1.48 11.84 41.84 46.32 

300.200 2.69 15.11 16.56 6.86 

200.200 1.76 15.79 12.3 9.71 
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Figure 4.3.3: Depth profiles of phytoplankton parameters over the upper 60m during PAL 
LTER cruise 2017. The data are divided into Open Ocean stations and shelf+coast stations. 
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4.3.4 The distribution of microbial parameters along the WAP 

As with the aforementioned physical and biogeochemical parameters, both bacterial 

abundance and bacterial activity reflect similar patterns with highest leucine 

incorporation rates (bacterial activity) at the coastal stations and rates decreasing 

towards the open ocean and North (figure 4.3.2a). Bacterial abundance peaks at 

200.000 and 300.040 while bacterial activity peaks at 400.040 and 200.000. In relation 

to the rest of the sampling grid, the bacterial activity maxima at these stations are 

extremely high at > 400 pmol leu hr -1 L -1. The rest of the surface values shows high 

variability ranging from leucine incorporation rates as low as 3.65 pmol leu hr -1 L -1 at 

200.200 to 168.3 pmol leu hr -1 L -1 at 300.040. Bacterial abundance ranges from 

4.4x108 cells L-1 at 500.100 to 3.1x109 cells L-1 at 200.000. Bacterial activity at the 

open-ocean stations is 10 to 100 times lower than coastal bacterial activity. All open-

ocean stations show bacterial activity maxima at depths between 25 and 30 m while, 

except for 300.040, at all coastal stations, maxima are found at the surface. Bacterial 

abundance maxima are found mostly between 15m and 60m with a few exceptions of 

surface maxima (figure 4.3.4).  
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Figure 4.3.4: Depth profiles of microbial parameters over the upper 60m during PAL LTER 
cruise 2017. The data are divided into Open Ocean stations and shelf+coast at the bottom. 
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4.3.5 The distribution of organic matter along the WAP 

4.3.5.1 Particulate organic matter 

Particulate organic matter is a direct product of primary production, and thus, agrees 

well with the observations of chlorophyll-a. Both POC and PN peak at station 300.040 

along with chlorophyll-a. Lowest concentrations are found at the open-ocean stations 

200.200 and 300.200 and elevated surface concentrations are seen along stations 

600.100 and 500.060 (see surface plots in figure 4.3.5a). In general, highest 

concentrations are found at the surface for both POC and PN. However, at some 

stations, POC and PN maxima are between 10 and 30m in agreement with 

chlorophyll-a peaks (figure 4.3.5b).  

Surface POC:N ratios averages 7.34 ± 1.98. Stations 600.100 and 600.200 show 

elevated ratios of 13.0 and 10.3 in surface waters, respectively. Excluding these two 

stations, the shelf mean POC:N ratio is 6.34 ±0.42 and the open stations 6.49 ±0.56. 

The coastal station mean POC:N ratio is 7.10 ± 1.38. With depth, both POC and PN 

concentrations decrease along with increasing POC:N ratios. 
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Figure 4.3.5a: Surface distribution of particulate and dissolved organic matter and their C:N 
ratios, respectively, during PAL LTER cruise 2017. 
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Figure 4.3.5b: Depth profiles of particulate organic carbon, nitrogen, and the POC:N ratio 
over the upper 60m during PAL LTER cruise 2017. The data are divided into Open Ocean 
stations and shelf+coast at the bottom. 
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4.3.5.2 Dissolved organic matter 

Dissolved organic matter concentrations show high variability but are low overall and 

cover a small range compared to lower latitudes. Highest variability of DOC 

concentrations is found in the upper 80 m ranging from 38.13 μmol C L-1 to 60.47 

μmol C L-1. Below 500 m, the range narrows down to 38.87 – 43.50 μmol C L-1.   

DON shows a similar behaviour with highest concentrations in the top 100 m ranging 

from 1.70 μmol N L-1 to 10.52 μmol N L-1. Highest concentrations (> 8.5 μmol N L-1) 

are exclusively found in the upper 50 m. Below 500 m, [DON] have a mean of 4.25 ± 

0.78 μmol N L-1. See figure 4.3.5a for surface distributions of DOC and DON. 

In the upper 50 m of the open-ocean stations, [DOC] range from 42.99 μmol C L-1 to 

60.22 μmol C L-1. DON in this region ranges from 2.9 μmol N L-1 to 7.12 μmol N L-1 

(figure 4.3.6). 

In the shelf waters, [DOC] range from 44.33 μmol C L-1 to 58.45 μmol C L-1. [DON] is 

more heterogeneously distributed than DOC and ranges from 3.65 μmol N L-1 to 8.12 

μmol N L-1. Compared to [DOC], [DON] is more variable both horizontally and 

vertically in this area. 

Coastal waters have surface DOC concentrations averaging 54.23 ± 4.28 μmol C L-1 

with a range from 42.51 μmol C L-1 to 60.41 μmol C L-1. Most elevated concentrations 

are found in the upper 10 m of 200.000 (57.64 and 58.28 μmol C L-1). Upper ocean 

[DON] ranges from 1.7 μmol N L-1 at 500.060 to 10.52 μmol N L-1 at 200.000 which is 

the highest [DON] in the entire sampling grid. [DON] decreases with depth but shows 

high variability in the upper 50-80 m.  
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Figure 4.3.6: Full depth profiles of dissolved organic carbon, nitrogen and the DOC:DON ratio 
with expansion of the upper 60m PAL LTER cruise 2017. A = Open Ocean, B = Shelf+Coast. 
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4.4 Discussion 

4.4.1 Oceanographic and biogeochemical setting of WAP conditions during 

PAL LTER cruise 2017 

The data in this study represent a snapshot in time of the biogeochemical dynamics 

at the West Antarctic Peninsula. Sea-ice retreat varies from 5 to 126 days setting the 

scene for the whole area. Stratification in the WAP region has been shown to be 

largely driven by sea-ice conditions (e.g. Kim et al., 2016; Venables et al., 2013) and 

is also reflected in this study with a positive correlation between MLD and sea-ice 

retreat days (SIRD; r = 0.68, p = 0.005). While in the open ocean, sea ice retreated > 

100 days prior to sampling and conditions for phytoplankton blooms were initiated 

shortly after, the conditions on shelf are at a different stage in time. Here, sea ice 

retreated between a few days to weeks prior to sampling so that primary production 

rates are higher and more variable. In the coastal region, the addition of glacial 

meltwater plays a supplementary role and increases stratification, which allows for 

increased biological production due to favourable conditions for phytoplankton 

species. A highly stratified water column hinders phytoplankton cells from sinking 

below the well-lit zone of the upper ocean (Garibotti et al., 2005) and glacial meltwater 

introduces micronutrients to the upper ocean (Annett et al., 2015; Eveleth et al., 2017). 

As described above, the addition of meltwater is indicated by a low δ18OH2O isotopic 

composition in water and is most prominent in coastal areas. These physical 

characteristics of the WAP region control biological processes of the water column 

which is reflected in the biogeochemical parameters shown in this study: Primary 

production is higher closer to the shore and correlates with SIRD (PPmax ~ SIRD r = -

0.558, p = 0.02). The negative correlation between PP and SIRD shows that PP is 

strongest where sea-ice retreated the latest and has declined already in areas of 

higher SIRD which agrees with previous studies (Kim et al. 2016, 2018; Schofield et 
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al. 2018) and can further be supported by correlations between nutrients uptake 

concentrations with SIRD (r = -0.58 and -0.53, p < 0.05 for NO3
- and PO4

-, 

respectively).  

Bacterial activity correlates negatively with SIRD and is highest where sea ice 

retreated only recently (r = -0.58, p = 0.02). This is surprising because previous 

studies show a significant time lag of several days to 3-4 weeks between 

phytoplankton and microbial blooms (Billen & Becquevort, 1991; Kim & Ducklow, 

2016; Lancelot et al., 1991). These lags in time have been shown to be the result of 

varying degrees of DOM production and quality which, in turn, appear to be a function 

of phytoplankton assemblages and the responding bacterial clades (Kim & Ducklow,  

2016; Straza et al., 2009; Nikrad et al., 2014). There are no phytoplankton 

pigmentation data for the 2017 PAL LTER cruise available, however, the Si:N uptake 

ratio is a useful tool for identifying diatom-dominated phytoplankton blooms. Diatoms 

are thought to produce small amounts of DOM which has been shown experimentally 

(Norrman et al., 1995). A Si:N ratio > 1.5 is considered to represent diatom-dominated 

phytoplankton blooms but also Fe-deplete conditions in which diatoms accumulate 

more silicic acid than NO3
- (Hutchins, 1998). Open-ocean stations generally show 

higher Si:N ratios than coastal stations indicating a higher contribution of diatoms but 

also likely limitation by iron. Nutrient uptake ratios, primary production and chlorophyll-

a maxima are shown in table 4.3.1. Possible reasons for high bacterial activity at the 

southernmost and most recently sea-ice free stations will be discussed in more detail 

in section 4.4.3.  
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4.4.2 Dynamics of dissolved organic matter with regard to biogeochemical 

and biophysical properties 

Overall, dissolved organic carbon and nitrogen distributions show intense spatial 

heterogeneity. Deep-sea background levels of DOC (refractory DOC) average 41.5 ± 

2.2 μmol C L-1 and surface concentrations do not exceed 61 μmol C L-1 agreeing well 

with Southern Ocean deep-sea and surface values measured in other studies (e.g. 

Carlson et al., 2000; Hansell & Carlson, 1998; Lechtenfeld et al., 2014; Nikrad et al., 

2014; Ogawa et al., 1999; Wang et al., 2010). For DON, deep-sea background values 

average 4.26 μmol N L-1  with a range from 2.92 to 5.59 μmol N L-1 which also agrees 

with other Southern Ocean studies (Hubberten et al., 1995; Sanders & Jickells, 2000).  

Over the whole PAL LTER grid, DON correlates significantly with DIC (r = -0.77, p = 

0.0008) and shows a weak yet significant positive correlation with bacterial activity (r 

= 0.48, p = 1.6 * 10-5) (figure 4.4.1). DOC correlates positively with POC (r = 0.52, p 

= 4.3*10-6) and bacterial activity (r = 0.53, p = 1.02*10-6), and negatively with NO3
- (r 

= -0.55, p = 3.8 * 10-7), and DIC (r = -0.65, p = 0.009), figure 4.4.1 and 4.4.2. The 

positive correlation of DOC with POC in conjunction with the negative correlation with 

both NO3
- and DIC strongly suggests that DOC is to some extent produced directly by 

phytoplankton. However, the relative weakness of these relationships also suggests 

that other processes are at work leading to production and simultaneous consumption 

of DOM. The lacking correlation of DON with chlorophyll-a, primary production, NO3
- 

or PN, in conjunction with a positive correlation with bacterial activity might be due to 

rapid removal processes of the generally more labile DON as well as an indication for 

DON being a product of bacterial activity rather than primary production.  

Different mechanisms appear to be involved in DOM cycling, particularly DON, which 

lead to high variability even though concentrations are low, particularly along the coast 

with additional influence from increased primary production, bacterial activity and 
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freshwater. These mechanisms might influence DON concentrations to such extent 

that relationships between DON and other biogeochemical parameters are difficult to 

distinguish. Figure 4.4.2 shows the correlations between POC, PN, DOC, DON and 

NO3
- and the lacking correlation between DON and NO3

- uptake indicating several 

processes influencing DON production and removal which likely act at much shorter 

time scales than those influencing POM or DOC.  

 

 

 

Figure 4.4.1: DOC and DON correlate significantly with bacterial activity (DON ~ BA r = 0.48, 
p = 1.6 * 10-5; DOC ~ BA r = 0.53, p = 1.02*10-6) and DIC surface concentrations (DON ~ 
DIC r = -0.77, p = 0.0008, DOC ~ DIC r = -0.65, p = 0.009) in the entire PAL LTER sampling 
area.  
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Figure 4.4.2: Upper 50 m particulate organic carbon and nitrogen show a strong negative 
correlation with NO3

- concentrations indicating POM formation during phytoplankton blooms. 
DOC correlates with NO3

- at a significant but weaker level (r = -0.55, p = 3.8 * 10-7) while DON 
does not show a statistically significant relationship to NO3

-  (p > 0.05) indicating processes 
other than PP being responsible for DON production and removal. 

 

Depth-integrated PN (PNint50) and DON (DONint50) show a good relationship along the 

open ocean stations (r = 0.91, p = 0.02) which does not exist for the shelf+coast 

stations. However, in the shelf+coast region, DONint50 correlates strongly with 

bacterial activityint50 (r = 0.84, p = 0.001). DOC also correlates with POC and bacterial 

activity. However, for carbon, these correlations are weaker suggesting a preferential 

breakdown of N-enriched POM by bacteria. In the shelf+coastal waters, physical 

parameters play a more important role for DOM dynamics. For example, DOC 

correlates strongly with maximum temperatures (r = 0.86 and p = 0.0006) and the 

integrated DOC:DON ratio correlates well with the fraction of meteoric water 

(DOC:DON ~ fglac r = - 0.60, p = 0.05) indicating N-enriched DOM with increasing 

meteoric influx.  

Even though previous studies have found profound differences between the North 

and South of the WAP in biological and biogeochemical properties, those differences 

are minor and insignificant for DOM dynamics, possibly because of the small amounts 
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of DOM concentrations overall. However, a clear difference between the open and 

the shelf region and an offshore-to-coast trend is shown in all available data.  

 

4.4.2.1 Dissolved organic matter dynamics in the open ocean 

Dissolved organic carbon and nitrogen concentrations remain within a low range in 

the open ocean. [DON] correlates significantly but weakly with chlorophyll-a, (r = -

0.46, p = 0.03), [PN] (r= - 0.51, p = 0.02), and leucine incorporation (r = -0.46, p = 

0.03) in the open ocean. There is no correlation between [DOC] and any of the above 

parameters. Interestingly, all these correlations are negative across the open-ocean 

stations which could indicate a different stage of timing in the phytoplankton bloom 

and bacterial activity than elsewhere in the PAL LTER area: As shown above, sea ice 

retreated between 114 and 125 days prior to sampling at the open ocean stations 

(except 600.200 which was ice-covered at the time of sampling) meaning 

phytoplankton activity has likely peaked a first time a relatively long time ago giving 

bacteria time to react and form enough active biomass to break down the biologically 

available organic matter. In this instance, the negative correlation might show a stage 

at which most PN has been degraded and bacteria are now breaking down DON 

compounds, hence the negative relationship, also shown in the negative correlation 

between DON and PN. Because it is in the late stage of the bacterial bloom, bacterial 

abundance and activity as well as organic matter concentrations are in decline. The 

shelf waters, on the other hand, have just experienced the phytoplankton bloom peak 

so that here, bacteria have had time to form bacterial blooms starting to break down 

POM to DOM. Even though in this context, a spatial pattern is established, it shows 

the temporal development of DOM concentrations in the surface waters over the 

austral summer phytoplankton concentrations at the same time (see conceptual 

model in Figure 4.4.3).     
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4.4.2.2 Dissolved organic matter dynamics in the shelf and coastal region 

Along the coast, DON concentrations show a good relationship with bacterial activity 

(r = 0.65, p = 2.0*10-4). While the correlation in the open ocean is negative, i.e. [DON] 

decreases with increasing leucine incorporation, it is positive in the coastal waters, 

showing increasing bacterial activity with increasing [DON] (see conceptual model in 

figure 4.4.3).  

 

Figure 4.4.3: Conceptual model of the timing of phytoplankton and bacterial production in the 
PAL LTER grid: Light green = Primary production, dark green = particulate organic matter 
concentration; orange = bacterial activity; blue = dissolved organic matter concentration. 
Particulate organic matter accumulates in the surface waters during a phytoplankton bloom. 
Bacteria react to the available organic matter with a time lag of a few days to 3-4 weeks and 
break the particulate organic matter down to dissolved organic matter (note that DOM is to 
some extent likely also being directly produced by phytoplankton and zooplankton grazing). 
The yellow rectangle shows the suggested stage in time for the shelf region while the red 
rectangle represents the state in the open ocean explaining the negative relationship between 
bacterial activity and DON. This illustration does not represent actual dimensions of 
biogeochemical parameters.  
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There is a negative correlation between DOC and NO3
- (r = -0.58, p = 1.6*10-5) and a 

positive correlation between DOC and PP in the shelf+coast region (r = 0.64, p = 

0.01). The positive correlations of both DON and DOC with bacterial activity (BA ~ 

DOC r = 0.54, p = 2.98*10-5, BA ~ DON r = 0.60, p = 2.61*10-6) show bacteria actively 

breaking down organic matter and releasing DOM. While there is no direct link 

between DON and in situ production by phytoplankton, the correlations between 

DOC, NO3
- and primary production indicate that DOC is a product of in situ production 

by phytoplankton.  

 

There are several possible reasons for DON only correlating well with bacterial activity 

while DOC also correlates well with chlorophyll-a and NO3
-. Firstly, the presence of 

NH4
+ which might be high enough at some depths to interfere. Because NH4

+ is a 

direct product of organic matter degradation (Dugdale & Goering, 1967; Eppley & 

Peterson, 1979; Harrison, 1980), it does support the correlation between DON and 

bacterial activity, i.e. there is likely more NH4
+ in areas of high bacterial activity. 

Further, studies have shown that phytoplankton can compete with bacteria for DON 

as a nitrogen source in both inorganic N replete and depleted conditions so that rapid 

cycling of DON might be taking place (Bradley et al., 2010; Bronk et al., 2007; Zhang 

et al., 2015). 

Along the coast, where glacial contribution is greatest, both DON and DOC correlate 

positively with the meltwater fraction of both glacial and sea-ice derived meltwater 

(fmet+seaice) (DOC ~ fmet+seaice r = 0.56, p = 0.002; DON ~ fmet+seaice r = 0.46, p = 0.01) 

which will be discussed in section 4.4.3.  

DOM concentrations drop back to background concentrations within the top 50-150 

m. Even though single-point measurements of DOC and DON show high variability in 

the upper 50m, upper-50-m DOC and DON standing stocks show little variability. In 
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combination with the significant relationship with bacterial activity, this little variability 

suggests that DOM cycling in the upper ocean is taking place efficiently to such extent 

that there is no or little export to deeper depth. After dividing the water column into 50 

m bins to allow for direct comparison with the depth-integrated upper ocean standing 

stocks (DOCint50 mean = 2326.3 ± 242.43 µmol C L-1, DONint50 mean = 259.7 ± 45.45 

µmol N L-1), the average standing stock for DOC and DON below 50 m are 2117 ± 

87.1 mmol C m-2 50m-1 and 277 ± 26.1 mmol N m-2 50m-1. These findings support 

previous studies hypothesising the WAP to be a productive ecosystem but being 

inefficient in organic matter export (Ducklow et al., 2018; Stukel et al., 2015; Stukel & 

Ducklow, 2017). Instead, upper-ocean carbon and nitrogen remineralisation appears 

to be efficient.  

 

4.4.2.3 Station-specific variability along the coastal stations of the 2017 

PAL LTER cruise 

While most of the PAL LTER sampling grid seems to be past the major phytoplankton 

bloom of austral spring and bacteria have started the degradation process of the 

available POM, the coastal stations show high variability among each other with 

varying stages and degrees of phytoplankton-bloom conditions:  

Station 500.060 shows highest primary-production rates in the entire sampling grid. 

Bacterial abundance and production are lowest at this station among all coastal 

stations (Bacterial abundance = 5.4 * 108 cells L-1, bacterial activity = 50.96 pmol leu 

L-1 hr-1) indicating that the existing phytoplankton bloom is likely the first one of the 

season in this area. Of all coastal stations, this station is least influenced by meteoric 

water (3.38%) which might explain the relatively deep mixed layer (23m) despite 

recent sea-ice retreat (14 days).       
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Highest chlorophyll-a concentrations of this study are found at station 300.040 (Chla 

= 16.97 mg m-3) in agreement with high nutrient uptake (NO3
- uptake = 33.62 µmol N 

L-1) and particulate organic matter production (POC = 98.62 µmol C L-1; PN = 16.84 

µmol N L-1). It is also the station with lowest surface salinity (32.64) and highest 

influence of meteoric water (5.59%) all of which likely contribute to high biological 

activity. The high meteoric-water input is reflected in low-salinity surface waters and 

increased stratification. Additionally, a likely supply of micronutrients from glacial 

sources promotes intense phytoplankton blooms. DOC concentrations are elevated 

in the subsurface while DON concentrations stay at relatively low levels. DON has 

been shown to be a suitable source of nitrogen for phytoplankton (Berman & Bronk, 

2003; Treger & Jaques, 1992). Since NO3
- is almost completely depleted at this 

station, the low DON concentrations might suggest a shift in nitrogen source by the 

prevailing phytoplankton species.     

Station 600.040, the northernmost coastal station, shows highest contribution of sea-

ice melt in the surface waters (1.75%) among all stations but did not seem to exert 

any biological activity to a greater extent than any of other stations. The contribution 

of glacial meltwater is lower than at the other coastal stations (3.6%). The surface 

waters of 600.040, in comparison to other stations, show slightly elevated levels of 

DOC (54.97 µmol C L-1) and DON (5.87 µmol N L-1) with a comparatively high 

DOC:DON ratio which could be the result of DOM release from sea-ice melt. Sea-ice 

cores collected in 2014 at the UK Rothera Research Station support elevated sea-ice 

derived DOC:DON ratios (see chapter 3).  

At station 200.000, sea ice had retreated shortly before the day of sampling (6 days). 

This station shows highest concentrations of DON (10.52 µmol N L-1) in the whole 

sampling grid and high bacterial activity (414.83 pmol leu L-1 hr-1) which is surprising 

considering bacteria have been shown to respond to primary production with a time 
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lag of up to several weeks in the WAP region. Primary production rates do not vary 

greatly from other coastal stations (66.72 mg C m-3 d-1). 200.000 is strongly influenced 

by glacial water (4.6%) and by sea-ice melt (0.9%) in a similar manner to 400.040 

(discussed below). While DOC and DON concentrations are highest in the surface 

waters at this station, POC and PN concentrations are comparatively low (20.41 µmol 

C L-1, 3.78 µmol N L-1). Thus, there is one of two mechanisms suggested to take place 

here: Firstly, an ice-edge bloom dominated by a phytoplankton species, such as 

Phaeocystis spp., which produces and releases DOM directly to the surrounding 

water. Phaeocystis is a genus of haptophytes which produces high amounts of high-

carbon dissolved organic matter in the form of exopolymeric substances (EPS). In 

Antarctic waters, they can occur in high density and dominate phytoplankton blooms 

temporarily (Arrigo, 1999; DiTullio et al., 2000; Schoemann et al., 2005). In support of 

this idea are the development of nutrient concentrations with depth which are depleted 

only in the upper 10m within the shallow mixed layer at this station. Below the MLD, 

nutrient concentrations quickly increase back to CDW values.   

Secondly, the release of active bacteria, DOM and potentially other macro- and 

micronutrients from both sea ice and glacial water. The surface water at this station 

is comparatively warm, likely due to strong stratification and solar radiation heating up 

the surface, which might support higher bacterial activity (Kirchman et al., 2009; 

Pomeroy & Wiebe, 2001). Even though it has been shown that temperature per se 

does not control bacterial growth, these data show that in combination with other 

factors, i.e. increased stratification and external influences from meteoric water, 

bacterial activity can be increased at higher temperatures.  

Highest bacterial activity is found at station 400.040 (426.50 pmol leu L-1 hr-1) 

accompanied by high DON concentrations (7.88 µmol N L-1). Even though sea ice 

was < 15% for 20 days prior to sampling, the influence of sea ice is still comparatively 
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high at 0.97%. Glacial meltwater makes up 4.7% of the sampled surface waters. 

Highest phytoplankton and bacterial activities take place within the mixed layer which 

is in the top 13 m and rapidly drop back to levels comparable to other coastal stations.  

Considering the high bacterial activity and DON concentrations at 200.000 and 

400.040 – both with higher influence by glacial and sea-ice meltwater than the other 

stations – it is likely that the bacterial response at these stations is controlled by a 

combination of a shallow mixed layer and an extra supply of labile dissolved organic 

matter from glacial and/or sea-ice sources which will be discussed in more detail in 

section 4.4.3. 

 

4.4.3 Glacial and sea-ice DOM as possible source of (semi) labile DOM to 

WAP surface waters 

DOC, DON as well as bacterial production all correlate well with δ18OH2O in the coastal 

region of the WAP despite only recent sea-ice retreat (figure 4.4.4). For that reason, 

the possibility of both DOM and bacteria directly originating from glaciers and/or sea 

ice is investigated here.  

Glacial DOM is characterised by high N content and thus lower C:N ratios which 

makes it more readily available in downstream environments (Hood et al., 2009; 

McKnight et al., 1994).  

Sea-ice cores from the UK Rothera research station (see chapter 3) show high 

concentrations of both DOC and DON with slightly elevated DOC:DON ratios.  

Low DOC:DON ratios can be shown at the surface of two out of three most glacially 

influenced stations: 200.000 (7.8) and 400.040 (8.42), coinciding with high bacterial 

activity. The low C:N ratios at these stations suggest higher influence on DOM quality 

by glacial meltwater than by sea ice with higher C:N ratios. This leads to the 
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suggestion of a combination of different mechanisms which are not necessarily the 

same for both stations. As suggested above, a combination of recent sea-ice retreat 

and concurrent release of sea-ice derived organic and inorganic nutrients, 

phytoplankton and bacterial clades as well as meteoric water influence are likely the 

reason for both high DON and high bacterial activity at 200.000. At 400.040, sea-ice 

retreat is not as recent. Therefore, high DOM concentrations could result from high 

glacial influx and relatively high primary production leading to high bacterial activity 

and high levels of DOM. While bacterial production is similar at both 200.000 and 

400.040, bacterial abundance is 1.9 times higher at 200.000. This further supports 

the potential fresh addition of bacteria and DOM from both sea ice and glaciers. The 

most prominent biological difference between the two stations is a clear difference in 

the bacterial structure with 200.000 showing a ratio of high nucleic acid bacteria cells 

(HNA) to low nucleic acid cells (LNA) of 14.6 while at 400.040 the HNA:LNA ratio is 

6.6. Even though there is much debate about what qualitative information can be 

drawn from HNA and LNA analyses (Gasol et al, 1999; Gomes et al., 2015; Sherr et 

al., 2006; Vila-Costa et al., 2012; Zubkov et al., 2001), it is clear that there is a 

difference between these two stations which might indicate a shift in taxonomy or 

physiology of the present bacterial clades (Luria et al., 2017). Bowman et al. (2017) 

suggest that HNA may represent community physiology which might have an effect 

on DOM cycling. Compared to the other coastal stations, both 200.000 and 400.040 

show elevated HNA numbers and might thus express a different physiological 

preference for specific DOM compounds. Only 300.040 shows a similarly high 

HNA:LNA ratio of 10.7. As it is these three stations with highest HNA:LNA ratios and 

highest glacial meltwater influx, it is likely that the bacterial community composition is 

influenced by glacial meltwater. While both stations 200.000 and 400.040 are 

influenced by glacial meltwater input, it is likely that 200.000 gains its high DON and 

bacterial activity from these inputs plus recent sea-ice melt. At 400.040, bacteria might 
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have reacted to the ongoing primary production due to early triggering by glacial 

meltwater input and further, as DOM is released directly by phytoplankton due to the 

bloom being at a later stage. Hence, while different mechanisms play a role at both 

stations, the result is similar: High bacterial production accompanies, and is potentially 

triggered by, high DOM availability. DOC concentrations are also elevated at both 

stations but not as substantially as DON concentrations indicating glacially derived 

DOM. At both stations, DON and DOC concentrations decrease close to background 

levels within the top 50 m suggesting labile DOM being rapidly cycle by bacteria in 

the upper ocean.   

 

Figure 4.4.4: Bacterial activity, DOC and DON correlate well with the fraction of freshwater, 
here the sum of sea ice and glacial meltwater, in the shelf (o) and coast (+). All r- and p-values 
are stated in section 4.4.3. 

 

 

Several studies show that supraglacial meltwater contains low concentrations of DOC 

(approximately 10-40 μmol L-1 C) while subglacial and basal sources can carry 

between 60 μmol C L-1 and 4 mmol C L-1 (Barker et al., 2006; Bhatia et al., 2010; 

Christner et al., 2014; Lafrenière & Sharp, 2004; Lyons et al., 2007) with varying 

degrees of lability. Supraglacial DOM has been found to be mainly of microbial origin 

while subglacial DOM originates from subglacial vegetation erosion and microbial 
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degradation. Bacterial abundance and activity are high in glacial environments so that 

glacial meltwater could not only be a source of DOM but also of active bacteria.  

Sea-ice cores collected at the UK Rothera Research Station (chapter 3) show a wide 

range of DOC and DON concentrations but overall high DOC concentrations (29.88 

– 1037.00 μmol C L-1, mean = 145.15 ± 196.41 μmol C L-1) and elevated DON 

concentrations (1.90 – 160.55 μmol N L-1, mean = 12.95 ± 28.85 μmol N L-1) with 

DOC:DON ratios ranging from 7.53 – 56.83 (mean = 19.26 ± 12.23).  

Considering the dilution effect with CDW, glacial addition at station 200.000 and 

400.040 with their respective meteoric water content of 4.58 and 4.71% would carry 

a diluted DOC signature between 2.75 and 188.4 μmol C L-1. For the sea-ice fraction, 

which makes up 0.9% at both stations, there would be an additional DOC 

concentration of 0.27 – 9.33 μmol C L-1 and DON concentrations of 0.02 to 1.44 μmol 

N L-1. These concentration ranges highly depend on the composition and source of 

the glacial flow and/or sea ice. There has not been a major phytoplankton bloom at 

200.000 so that all DOM additional to the background levels of CDW could potentially 

come from glacial runoff and sea ice only. (Semi) labile concentrations of DOC and 

DON are determined by subtracting background CDW DOC (or DON) concentrations 

from measured surface concentrations. In order to meet the measured bioavailable 

DOC and DON surface concentrations at 200.000 (18.68 μmol C L-1 and 6.76 μmol N 

L-1), the introduced freshwater (from both sea ice and glacial melt), when undiluted, 

would have to carry a signature of 340.88 μmol C L-1 and 123.36 μmol N L-1 (figure 

4.4.5). These concentrations are within the range of subglacial DOC concentrations 

from literature and agree with the findings from the WAP sea-ice cores. However, 

given that there may be an additional contribution from in situ phytoplankton 

production or degradation, these estimates represent upper bounds on meltwater 

DOM concentrations.   
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Employing the same calculations for 400.040, the glacially-derived DOM component 

would be accounting for 271.12 μmol C L-1 and 69.34 μmol N L-1 which is less than 

200.000 but still, it is within the range of known glacial and sea-ice DOM 

concentrations. Reasons for this difference even though concentrations of DOC and 

DON are similarly high might be different glacial sources plus potentially an increased 

contribution of phytoplankton-derived DOM at 400.040.  

Even though the shelf stations show minor glacial influence still, these calculations 

cannot be expanded onto these stations. Phytoplankton blooms likely occurred at 

these stations already, making the assumption of no phytoplankton-derived DOM 

invalid and the labile nature of the glacially derived DOM leads to probably continued 

degradation with distance travelled.   

 

 

Figure 4.4.5: Meltwater contribution at station 200.000: The top shows the theoretical effect of 
glacial and sea-ice meltwater to surface DOC concentrations from literature values and RaTS 
sea-ice cores after dilution of meltwater with CDW. The bottom shows these calculations 
reversed: Assuming all surface bioavailable DOC measured comes from meltwater only, the 
glacial and sea-ice sources would have the stated DOC concentrations. 
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4.4.4 Additional mechanisms potentially affecting dissolved organic matter 

dynamics 

Viral lysis plays a significant role in controlling bacterial abundance and activity. It 

leads to the release of fresh DOM from both phytoplankton and bacteria to the 

ambient water which, in turn, can be recycled quickly. During this process, known as 

the viral shunt, viruses infect a host cell, grow and lyse these, leading to the release 

of highly labile DOM with important effects on the biological pump (Malits et al., 2014; 

Weitz & Wilhelm, 2012) as more bioavailable DOM hypothetically triggers an increase 

in bacterial respiration and hence a reduction in organic carbon export to depth. Even 

though there is only little research on Southern Ocean viruses, two studies at the 

Kerguelen Plateau and at the WAP, respectively, have shown that viral production is 

particularly high during intense phytoplankton blooms and represent a reason for high 

bacterial mortality (Brum et al., 2015; Malits et al, 2014). While there are no viral data 

available for this study, viruses are likely to play an important role in regulating DOM 

availability and bacterial abundance and activity.  

A general differentiation between (semi) labile and refractory DOM is made by 

subtracting deep-sea measurements from surface values which results in net 

production (or loss) of DOC and DON. Refractory DOM is introduced to the WAP 

surface waters with the intrusions of CDW. These background levels are thought to 

be refractory in the deep sea, however, it has been shown that UV radiation can have 

destructive effects on refractory DOM compounds. While a previous study by Ortega-

Retuerta et al. (2010) showed a high correlation between chromophoric DOM and 

salinity, Chlorophyll-a and bacterial activity in glacially influenced waters, Kaehler et 

al. ( 1997) concluded that if UV radiation affects surface DOM in the Southern Ocean, 

such changes are likely undetectable due to the overall small concentrations in 

Southern Ocean surface waters.  
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4.5 Summary   

The spatial distribution of DOC and DON in the upper ocean of the WAP 

and production and removal mechanisms 

Numerous studies on physical, biological and biogeochemical processes along the 

WAP have shown intense interannual variability mostly dependent on climatic 

conditions with effects on sea ice in the region. The data presented in this study show 

high variability within the region west of the Antarctic Peninsula which is likely due to 

both sea-ice conditions and proximity to the shore of the peninsula from where 

meteoric water introduces micronutrients and enhanced stratification which often is in 

favour of increased primary production. Ducklow et al. (2018) conclude that processes 

such as vertical mixing, active transport by migrating zooplankton and removal by 

whales and birds play an important role within the WAP ecosystem and its production-

export imbalance observed in numerous WAP POM export studies (Ducklow et al., 

2018; Stukel et al., 2015; Stukel & Ducklow, 2017). The degradation of POM with 

depth is a well-established process and the increasing POC:N ratio with depth shows 

the preferential removal of N from POM compounds. The variability of DOM is much 

more complex. This study shows that there are many co-existing processes driving 

production and removal of DOM: This study finds generally more bioavailable DOM 

available in shore proximity, with likely external DOM sources being glacially and sea-

ice derived DOM. This hypothesis is emphasised by significant correlations of DOC 

and DON as well as bacterial activity with the δ18OH2O composition and an absent 

correlation between DOM and POM in the coastal regions suggesting another DOM 

source than phytoplankton.  

Overall, DOC and DON concentrations remain within a low range, as hypothesised, 

with highest concentrations in regions of increased phytoplankton (DOC) or bacterial 

activity (DON). 
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In the open ocean, sea ice retreated much earlier than in the coastal regions and 

meteoric water is negligible. Further, likely co-limitation by micronutrients such as iron 

(Annett et al., 2015) potentially leads to the blooms in this area being weaker than 

those occurring in the shelf waters. Here, correlations between DOM and POM and 

DOM and bacterial activity support the hypothesis of a preferential breakdown of N-

rich POM by bacteria into DOM compounds and further utilisation of N-rich DOM. The 

degradation process of POM can be observed in the correlation between PNint50 and 

DONint50 being strongest in the open ocean and decreasing towards the coast. The 

negative relationships between DON and PN, and DON and bacterial activity in the 

open ocean suggest that the microbial bloom is already approaching declining 

conditions.  

Due to the timing of phytoplankton blooms in the different regions, DOM production 

from POM might dominate relevant DOM production mechanisms in the coastal 

regions at a later stage. As sea ice just retreated in this area and primary production 

likely just started, the previously proposed direct release of DOM by phytoplankton or 

POM degradation at a later stage of a phytoplankton bloom is likely to occur in this 

area, too, and might even exceed the suggested fraction of glacial and sea-ice DOM 

contribution over the course of the growing season. DON concentrations were shown 

to be highest along the coast and could be shown to occur along high bacterial activity. 

At the same time, DOC concentrations were not increased so that this DOM is of low 

C:N ratios, supporting one of the tested hypotheses of this study. From the available 

data, it cannot be shown whether DON concentrations are increased due to bacterial 

release of DON or whether bacteria increased in number and activity due to 

bioavailable DON. Considering the data and likely DON sources in chapter 3, it is 

more likely that bacteria are the dominant source of DON along the WAP.  

Overall, the following sources are suggested for bioavailable DOM along the WAP: 
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(i) Direct and indirect release by phytoplankton via e.g. sloppy feeding by 

zooplankton. This source scenario is supported by strong correlations 

between primary production and DON (r = 0.81, p = 0.009) and NO3
- (r = -

0.85, p = 0.002) in the surface waters. 

(ii) DOM produced and released by bacteria. This has been shown with the 

negative correlation between DONint50 and PNint50 and DONmax and Leumax 

in the open. Highest [DON] are accompanied by highest bacterial activity 

(r = 0.92, p = 0.0002) in the shelf+coast. However, there is no correlation 

between surface DON and PN concentrations so that it remains uncertain 

whether this DON was produced by bacteria or the bacteria are reacting 

to it being made available from another source. Ultimately, bacterially 

produced DOM derives from POM degradation. 

(iii) Allochthonous material from glacial and sea-ice melt at coastal stations. 

Surface DON, DOC and bacterial activity correlate significantly with the 

meteoric water fraction δ18OH2O while, at the same time, neither DON or 

DOC show a significant correlation with phytoplankton parameters such 

as PP, chlorophyll-a or POC and PN. There is a decreasing trend in the 

DOC:DON ratio with increasing glacial contribution pointing towards more 

labile material with increasing glacial influence.  

From the above discussion, it becomes clear that processes ultimately linked to DOM 

production, such as phytoplankton and microbial production, vary substantially 

between stations which is potentially the result of physical differences and varying 

macro- and micronutrient inputs, time since sea-ice retreat and therefore the timing 

and conditions of major phytoplankton blooms. In pre-bloom conditions such as at 

station 200.000, the influence of sea ice and/or glacial meltwater can lead to direct 

addition of DOM from those sources; but the freshening of the surface layer and 
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addition of micronutrients, and potentially phytoplankton and bacteria, can further 

facilitate increased DOM production. Lacking correlations of DOC and DON with POC 

or PN in the shelf+coastal area emphasise the different source scenarios. The good 

correlations with bacterial activity, on the other hand, show active and efficient 

bacterial breakdown of surface POM and production of DOM independent of the 

source.  

The apparent relationships between DOC and DON and other biogeochemical 

parameters show complex dynamics for DOM cycling in the region likely with multiple 

processes occurring simultaneously driving DOM production, transformation and 

consumption. 

The ecosystem west of the Antarctic Peninsula has been hypothesised to change to 

an ecosystem dominated by smaller plankton species due to the warming observed 

in the second half of the 20th century. Not only does this study show intense bacterial 

cycling of freshly produced DOM in the upper ocean of the WAP region with unknown 

fate of the respired carbon in these waters but also it becomes clear that possible 

additional DOM delivered to the surface waters from glacial or sea-ice sources 

undergoes the same mechanisms of degradation representing additional carbon 

entering the system and being respired in the upper ocean. This carbon has not been 

initially fixed by primary producers in the ocean and has not been considered in WAP 

carbon budget studies.  

With the hypothesised prediction of continued warming, DOM will gain a more 

prominent role in the regional organic matter cycling. This study shows that the 

majority of DOM is being cycled efficiently in the upper ocean and that additional DOM 

from sea ice or glacial sources tends to be of high bioavailability and therefore is likely 

to undergo the same mechanisms of respiration representing an additional source of 

inorganic carbon to the surface waters. The results from the study show a great 
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likelihood of reduced carbon export and increased upper ocean respiration. Further 

research, considering ammonium production and uptake, and possibly incubation 

experiments to investigate DOM sources and sinks, are required to fully understand 

the cycling of DOM in this region. In addition, winter measurements are necessary to 

investigate chemoautotrophic production of DOM and cycling in the winter waters 

which have been shown to hold a higher diversity of bacterial and archaeal clades 

(Bowman & Ducklow, 2015; Church et al., 2003; Luria et al., 2014) which would 

indicate highly specialised mechanisms of carbon and nitrogen cycling through the 

microbial loop. 
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CHAPTER 5  

Spatiotemporal Coupling of Organic Carbon and Nitrogen and their C- and N- 

isotopic composition at the West Antarctic Peninsula 

 

5.1 Introduction 

Globally, most organic matter in the open ocean originates from primary producers 

and can be differentiated by size into particulate and dissolved forms. As part of the 

local ecosystem at the western Antarctic Peninsula (WAP), particulate organic matter 

(POM) dynamics are ultimately controlled by light availability and climatic variations 

which exert control on the sea-ice dynamics of the region (Saba et al. 2014). With 

increasing light availability and the start of sea-ice melt in the austral spring, 

phytoplankton blooms high in biomass develop over the summer season (Moline and 

Prezelin 1996) with an increasing trend from offshore to onshore following the 

advance of sea-ice retreat (Arrigo et al., 2017; Li et al., 2016). The phytoplankton 

community at the WAP is dominated by diatoms but other phytoplankton, such as 

cryptophytes, can dominate the phytoplankton species assemblage with a changing 

climate (Moline et al., 2004; Montes-Hugo et al., 2009) and previous studies 

acknowledge the presence and importance of smaller phytoplankton in the WAP 

ecosystem (Montes-Hugo et al., 2009; Schofield et al., 2017). At the global scale, 

phytoplankton incorporate inorganic nutrients at a relatively constant ratio of 

106C:16N (Redfield, 1958). However, there are strong latitudinal and species-driven 

patterns controlling this ratio at the regional scale (Li & Peng, 2002; Martiny et al., 

2013). In the Southern Ocean, the C:N ratio of POM is often found to be lower than 

the Redfield ratio. With depth, POM concentrations decrease because of grazing by 
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zooplankton and bacterial remineralisation with an increase in the C:N ratio due to the 

preferential uptake of nitrogen by bacteria.  

The cycling of dissolved organic matter (DOM) is not understood as well as the cycling 

of POM. Reasons for this are numerous processes being involved in every step of the 

production, transformation and removal of DOM which vary in time and space. 

DOC:DON ratios have been found to differ from the Redfield ratio due to high 

molecular restructuring of DOM and N-removal during bacterial degradation 

processes but also due to various sources of DOM which are not only from in situ 

phytoplankton production. In the Arctic, for example, most DOM is introduced via river 

runoff (Letscher et al., 2011; Raymond et al., 2007). Riverine DOM has a more 

refractory nature than marine DOM with a higher C:N ratio (Amon, 2004). In the 

Southern Ocean, on the other hand, terrestrial sources are scarce and distant. Here, 

DOM originates from phytoplankton and might have undergone transformation 

processes by bacteria or zooplankton. In a model study, DeVries et al. (2018) show 

that DOC export in subtropical gyre regions can make up to 50% of carbon export and 

DOC:DON ratios tend to be 2-3 times higher than the Redfield ratio. Contrastingly, 

Southern Ocean DOM shows low C:N ratios which is potentially due to the high 

contribution of diatoms (DeVries et al. 2018). Diatoms tend to produce low C:N 

organic matter in cold waters. Globally, reported upper-ocean DOC:N ratios range 

from 4.0 to 26.0 (Gobler & Sañudo-Wilhelmy, 2003; Hopkinson Jr. & Vallino, 2005; 

Kähler et al., 1997; Letscher et al., 2015, Ogawa et al. 1999) with the lower end of the 

range from Southern Ocean studies (Kähler et al. 1997; Ogawa et al., 1999). 

Further, less DOM is being produced in Southern Ocean surface waters compared to 

lower latitudes (Carlson et al., 1998; Doval et al., 2002; Kähler et al., 1997; Wang et 

al., 2010). Reasons for these relatively small amounts remain unclear. Primary 

production in Antarctic shelf waters, even though short-lived, can occur at higher rates 
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than in lower latitudes. Primary producers have been suggested to partition most 

organic matter into the particulate pool (Carlson et al. 1998) and grazing by 

zooplankton is thought to be efficient so that only little DOM is being released by 

sloppy feeding (Kirchman et al., 2009). The Southern Ocean is mostly nitrate replete 

and only very rarely reaches conditions of nitrate depletion so that organic nitrogen 

should not represent a required pool of bioavailable nitrogen to phytoplankton. Future 

projections for the WAP show a possible shift to a food web in which microbial 

processing of organic matter plays a more important role, which would lead to higher 

DOM production (Saba et al., 2014). While an increase in DOM production can 

potentially lead to an increase in carbon export, it can also create a positive feedback 

mechanism by increasing upper-ocean respiration if this fresh DOM is of high 

bioavailability. To determine how much DOC is potentially being exported in this 

region and how these estimates vary and may change in the future, it is essential to 

understand how POC and PN, and DOC and DON are coupled in the ocean’s surface 

waters and how they are produced and removed from the upper ocean. 

To establish an understanding of the coupling processes in POM and DOM, this study 

addresses the following questions: 1) What are the key processes governing the 

cycling of (i) POM and (ii) DOM 2) To what extent do C and N decouple spatially or 

temporally in (i) POM and (ii) DOM?  3) How does organic matter cycling affect the C- 

and N-isotopic composition of POM? 

To address these questions, samples for the analyses for DOC, DON, POC, PN and 

the C- and N-isotopic composition of POM and the N-isotopic composition of NO3
- 

were collected during the PAL LTER cruise in January 2017 and at the UK Rothera 

research station through three consecutive austral summer seasons (2013/14, 

2014/15, 2015/16). These data are investigated for spatial and temporal variability 
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along with other physical and biogeochemical data to put them into the wider context 

of the WAP ecosystem. 

The isotopic compositions of carbon and nitrogen are used to examine upper ocean 

processes involved in the cycling of inorganic and organic compounds. By looking into 

the isotopic composition of nitrogen (δ15N), processes such as nutrient uptake, 

remineralisation, export, ammonium uptake or nitrification can be determined and 

quantified.  

The uptake of the different isotopes of carbon and nitrogen underlies the principle of 

kinetic fractionation. For the phytoplankton cell enzymes responsible for transferring 

inorganic compounds into the cell interior, the uptake of the lighter isotope is 

energetically preferable. The fractionation of carbon in phytoplankton amongst other 

factors depends on the availability of pCO2 and HCO3
- as well as carbon concentration 

mechanisms (CCM) which most phytoplankton species express for a more efficient 

way of DIC consumption (Cassar et al., 2004).  

The N-isotopic composition of POM reflects nitrogen availability, sources and 

remineralisation processes. With nitrate being the primary nitrogen source in WAP 

waters, and the assumption of Rayleigh fractionation (closed system) in the surface 

waters, the N-isotopic composition of surface POM would gradually become heavier 

with the progression of a phytoplankton bloom due to the depletion of the available 

14N pool as nitrate uptake proceeds. Replenishment with nutrient-rich CDW water, 

sea-ice melt, nitrification and remineralisation can cause deviations from this 

relationship.  

The δ15N of instantaneously produced PN, when exported efficiently without 

accumulating in the surface waters, is defined by the instantaneous product (Owens, 

1988; Sigman et al., 2009a): 
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𝛿15𝑁𝑃𝑁𝑖𝑛𝑠𝑡 = 𝛿
15𝑁𝑁𝑂3− −  𝜀 

where δ15NPNinst describes the instantaneous product, δ15NNO3- the measured δ15NNO3- 

composition and ε the kinetic isotope effect.  

The accumulated product considers the integrated δ15N of organic matter 

accumulation over the growing season assuming accumulation of PN in the surface 

waters rather than rapid export (Owens, 1988; Sigman et al., 2009a): 

𝛿15𝑁𝑃𝑁𝑎𝑐𝑐 = 𝛿
15𝑁𝑁𝑂3−𝑖𝑛𝑖 +  𝜀 ∗  (

[𝑁𝑂3
−]

[𝑁𝑂3
−]𝑖𝑛𝑖 − [𝑁𝑂3

−]
) ∗ ln (

[𝑁𝑂3
−]

[𝑁𝑂3
−]𝑖𝑛𝑖

)  

where δ15NPNacc is the δ15NPN composition of the accumulated product, δ15NNO3-ini the 

initial δ15NNO3- and [NO3
-] and [NO3

-]ini the in situ and initial NO3
- concentrations, 

respectively. Deviations from these modelled values give us an insight into 

mechanisms other than nitrate uptake and POM formation being in place. 

The PAL LTER covers the area west of the Antarctic Peninsula from the coast to 

open-ocean regions. The UK Rothera time series sampling site (RaTS) lies at the 

Southern tip of this sampling grid in Ryder Bay off Adelaide Island (see figure 5.2.1).  

Chapter 3 and 4 of this thesis are concerned with the distribution of dissolved organic 

matter and processes that potentially drive differences on varying temporal and 

spatial scales. This chapter will concentrate on processes that are involved in organic 

matter cycling, including both particulate and dissolved fractions, how organic matter 

is partitioned and how carbon and nitrogen are coupled or decoupled among those 

fractions. 
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5.2 Methods 

5.2.1 Sample Site and Collection 

5.2.1.1 PAL LTER cruise 2017 

The sampled area west of the Antarctic Peninsula covers an area of 900 x 200 km. 

The sampling locations are fixed and follow a pattern of lines orthogonal to the coast 

approximately 100 km apart (figure 5.2.1). For this study, samples were collected from 

January 6th to January 31st 2017 on board the ARSV Laurence M. Gould. The 

sampling scheme on each annual cruise involves deployments of a SeaBird 911+ 

conductivity-temperature-depth instrument attached to a rosette with 24 niskin bottles. 

Samples are collected from Niskin bottles closed at specific depths in the water 

column for particulate organic carbon and nitrogen and their isotopic compositions, 

dissolved inorganic nutrients, dissolved organic carbon, primary production, 

chlorophyll-a, and bacterial measurements. Sea-ice data are derived from satellite 

observations from NASA’s Scanning Multichannel Microwave Radiometer and the 

Defense Meteorological Satellite Program’s Special Sensor Microwave/Imager. 

Samples for DOC/TDN were collected in acid-cleaned (24 hours in 10 % HCl and 

DIW, 3x DIW-rinsed and baked for 5 hours at 450 °C) 60-ml HDPE bottles. Prior to 

sample collection, each bottle and lid were rinsed three times with the sampled 

seawater. Sample seawater was gravity-filtered directly from the niskin bottles 

through pre-combusted GF/F filters (Whatman 0.7 μm 47 mm Ø; precombusted at 

450 °C for 5 hours in methanol-cleaned tin foil) and immediately transferred to a -80 

°C freezer. POM samples were collected by filtering up to 4 L of collected seawater 

through pre-combusted GF/F filters (Whatman 0.7 μm GF/F 25 mm Ø). The filters 

were stored in cryovials at -80 °C. 

Table 1 in the appendix lists all relevant data analysis, the methodologies applied and 

the institute at which these analyses were conducted. 
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5.2.1.2 RaTS site in Ryder Bay 

Seawater samples were collected at the Rothera Time Series (RaTS) site in Ryder 

Bay (figure 5.2.1), a small bay within the larger Marguerite Bay south of Adelaide 

Island, west of the Antarctic Peninsula. The sampling location is approximately 4 km 

offshore with a water depth of approximately 520 m. Marguerite Trough is a glacially-

scoured canyon within the WAP shelf system which is highly effective in transporting 

UCDW from the ACC into the inshore regions like Marguerite Bay. Samples were 

collected twice a week from a small boat. If sea-ice conditions would not allow access 

to this site, sampling was conducted at an alternative site which has been shown to 

represent similar conditions with the same water masses (Clarke et al., 2008). 

Samples were collected at fixed depths (surface, 5m, 15m, 25, 40m and if possible, 

at 75 and 100m) using Niskin bottles. For DOC/TDN, samples were filtered through 

pre-combusted GF/F filters (nominal pore size 0.7 µm) into acid-cleaned and 

combusted glass conical flasks under a gentle vacuum. Samples were transferred to 

HCl-clean 60 ml HDPE bottles and frozen at -20°C until analysis. In 2013/14, samples 

were collected from mid-November 2013 to the end of February 2014. The 2014/15 

season was sampled from mid-November 2014 until the end of December 2014 with 

a few additional samples mid-January 2015. The 2015/16 season was sampled from 

early January 2016 to the end of March 2016. During all sampling events, a 

conductivity-temperature-depth instrument was deployed for measurements of 

temperature, pressure, salinity and fluorescence. Data were logged at 1m-resolution.  
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Figure 5.2.1: Map of the west Antarctic Peninsula showing the sampling grid of the PAL LTER 
research cruise and the sampling lines with stations. The black arrow points at Ryder Bay 
where samples were collected from the RaTS sampling site.  

 

 

5.2.2 Particulate Organic Matter 

Particulate organic carbon and nitrogen and their C- and N-isotopic composition were 

analysed at the School of GeoSciences at the University of Edinburgh. Filters for 

POC:N analysis were prepared following a method adapted from Lourey et al. (2004). 

In brief, filters were decarbonated by wetting them with Milli-Q and fumed with 70% 

HCl overnight before drying and carefully folding them into clean tin capsules. 

Samples were analysed on a CE Instruments NA2500 Elemental Analyser connected 

to a Thermo Finnigan Delta+ Advantage stable isotope ratio mass spectrometer. Both 
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instruments are linked through a Finnigan ConFlo III Universal Interface to allow for 

simultaneous carbon and nitrogen analysis. The CRMs PACS-2 and acetanilide were 

analysed for the isotopic composition and carbon and nitrogen concentrations, 

respectively. The analytical reproducibility was better than 1.0% for POC and better 

than 1.1% for PN. 

 

5.2.3 Dissolved Organic Matter 

DOC/TDN analysis was conducted via high-temperature combustion on a Shimadzu 

TOC-V analyser with an attached TNM1 Total Nitrogen Measuring unit. Samples were 

thawed for approximately 3 hours before analysis. 10 ml of each sample was 

transferred into acid-cleaned and combusted glass vials using an acid-cleaned 5 ml 

pipette for analysis.  

Sample replicates were analysed in each run for precision. Certified Reference 

Material (CRM; Hansell Deep Sea Reference Batch #15 Lot 1-15; Florida Strait 750 

m DOC 42.00-45.00 μmol C L-1, TDN 31.00-33.00 μmol N L-1) was analysed before 

and after each batch of samples for accuracy. The instrument automatically analyses 

each sample 3-5 times depending on in-run reproducibility. Deep-sea samples were 

re-analysed with Deep Sea Reference Batch #18 Lot 08-18 (DOC 41.0 – 45.8 μmol 

C L-1, TDN 31.6 – 35.0 μmol N L-1). CRMs were intercompared to ensure linearity of 

the instrument throughout the period of analysis. The CRM DOC values was checked 

to lie within 5% of the consensus value before each sample run. If this was not the 

case, more CRMs were analysed until the results were within the range. Detection 

limits are 0.04 μmol C L-1 for DOC and 0.36 μmol N L-1 for TDN and analytical precision 

for DOC was ± 1.09 μmol C L-1and for TDN ± 0.51 μmol N L-1. 
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Due to logistical constrains, samples from the PAL LTER cruise were only analysed 

for the inorganic nitrogen species NO2
- and NO3

- so that all PAL LTER DON 

concentrations stated contain NH4
+. NH4

+ concentrations across WAP surface waters 

have been shown to be minimal, however, when NH4
+ concentrations might be of 

importance, they will be mentioned in the discussion.  

 

5.2.4 N-isotopic composition of NO3
- via the denitrifier method 

In order to determine the N-isotopic composition of nitrate, all nitrate is converted to 

N2O by denitrifying bacteria lacking N2O reductase. After cultivating bacteria on agar 

plates, the bacteria are starved and purged with N2 gas. The sample is then injected 

into bacterial media aliquots with the sample volume calculated from the sample NO3
- 

concentration, in order to yield a nitrate content of each sample of 20 nmol N to avoid 

potential linearity issues with the IRMS. After one day, the bacteria are lysed by 

injection of NaOH. Samples are analysed by headspace analysis using a Combi PAL 

auto-sampler linked through a Thermo Fisher Scientific GasBench II to a Thermo 

Fisher Scientific Delta+ Advantage stable isotope ratio mass spectrometer (IRMS). 

Detection limits of the IRMS are better than 0.5 ‰ and the methodological analytical 

precision is 0.2 ‰ for δ15NNO3. This method is based on the method development by 

Sigman et al. (2001), Casciotti et al. (2002) and Tuerena et al. (2015). The N-isotopic 

composition is stated as the ratio of relative difference in isotopic abundance in a 

sample compared to a standard with the general formula 

𝛿 𝑖𝑛 ‰ = 
𝑅(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

𝑅(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
∗ 1000 

 where R represents the isotopic ratio of each element. The nitrogen standard is 

atmospheric N2 with an accepted 15N/14N ratio of 3676.5 ± 8.1 (Junk & Svec, 1958). 
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5.2.5 Inorganic Nutrient Analysis 

PAL LTER dissolved inorganic nutrients (Nitrate+nitrite, Silicate and Phosphate) were 

analysed using a Seal Analytical segmented flow autoanalyser (Mequon, WI, Seal 

AutoAnalyzer AA3). Methods for each analysis followed the protocols recommended 

in the Seal Customer Support Manual. Nitrate analysis was conducted via reduction 

to nitrite in a copper-cadmium column and a further reaction with N-1-

naphthylethylene diamine dihydrochloride to form a purple azo dye which is then 

analysed colorimetrically. Phosphate analysis follows the Murphy and Riley method 

(Murphy & Riley, 1962). The determination of silicate is based on the reaction between 

silico-molybdate to molybdenum blue by ascorbic acid. Standards for each analysis 

were sodium nitrite and potassium nitrate, potassium dihydrogen phosphate and 

sodium meta-silicate nonahydrate. A deep-sea sample collected during each year’s 

cruise at 3,000 m was analysed as an internal reference standard. Detection limits for 

nitrate+nitrite were 0.015 μmol N L-1, for phosphate 0.0021 μmol P L-1 and for silicate 

0.03 μmol Si L-1.  

 

The inorganic macronutrient samples from the RaTS site were filtered through 

Acrodisc PF syringe filters with 0.2 µm Supor membranes and immediately stored at 

– 80 °C for 12 hours after which they were stored at – 20 °C until analysis (except for 

ammonium samples). In the Plymouth Marine Laboratory, UK, samples were thawed 

for 48 hours to allow for complete redissolution of silicate precipitates to silicic acid. A 

Technicon AAII segmented flow autoanalyser was used for the analysis of 

nitrate+nitrite, nitrite, phosphate and silicate concentrations. Raw data were corrected 

to certified reference material (KANSO Ltd. Japan), ambient ocean salinity and pH. 

Analytical precision was usually better than 0.2 µmol N L-1 for nitrate+nitrite, 0.01 µmol 

N L-1 for nitrite, 0.02 µmol P L-1 for phosphate and 0.6 µmol Si L-1 for silicate.   
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Ammonium concentrations were analysed by reaction with orthophthal-dialdehyde 

(OPA) overnight and analysis by fluorometry following Holmes et al (1999). 

Ammonium samples were incubated overnight with the working reagent (OPA, 

sodium sulphite and borate buffer). The fluorescence was measured within 24 hours 

of incubation using a Turner Designs 700 fluorometer. Ammonium chloride was used 

as a standard. The fluorometer was calibrated at the beginning and the end of each 

batch using the low value of green fluorescence standard 7000-922. The detection 

limit is 0.01 µmol N L−1. Sample processing was carried out within four hours after 

sample collection to minimise changes to ammonium concentrations during sample 

storage. 

 

5.2.6 Primary production and chlorophyll-a 

Primary production rates and chlorophyll-a concentrations have been gathered 

throughout the PAL LTER cruise by the research group of Oscar Schofield.  

Primary production rates, measured as daily carbon uptake in mg C m-3 day-1, are 

measured with incubation experiments. 100 ml of seawater sample were inoculated 

with 1 μCi of 14C-radio-labelled NaHCO3 in borosilicate bottles. The bottles were 

incubated for 24 hours at in situ light levels and ambient temperatures. After the 24-

hour incubation period, the seawater samples were filtered through GF/F filters, the 

filters were washed with 10 % HCl, dried and counted in a scintillation counter.  

Chlorophyll a samples have been filtered onto GF/F filters and kept frozen at – 80 °C 

stored in cryovials. Analysis was conducted at Palmer Station through acetone 

extraction and measurement of the extract on a Turner 10AU Fluorometer. 

RaTS chlorophyll-a concentrations were determined by fluorometry as part of the CTD 

deployments. 
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5.2.7 Phytoplankton pigment analysis 

Phytoplankton pigmentation was analysed at the University of Groningen using high-

performance liquid chromatography. Samples were collected at the RaTS site at 15m 

depth in 2 to 10 L Niskin bottles since this depth is the overall long-term fluorescence 

maximum. Particles were collected on GF/F filters (Whatman 47mm Ø) by vacuum-

filtering 1 L of collected seawater. Filters were snap-frozen in liquid nitrogen and 

stored at – 80 °C. Prior to analysis, the filters were freeze-dried for 48 hours in the 

dark and incubated in 90% acetone for pigment extraction at 4 ̊ C. Pigment separation 

was conducted on a Waters 2695 HPLC system with a Zorbax Eclipse XDB-C8 

column (3.5 μm particle size) following van Heukelem & Thomas (2001) and Perl 

(2009).  

  

5.2.8 The δ18O composition of seawater 

Samples for δ18OH2O were collected during the PAL LTER research cruises at every 

sampling station in 50-ml glass bottles which were crimp-sealed. RaTS samples for 

δ18OH2O were collected at the surface and 15 m depth in 150-ml medical flat bottles, 

sealed with rubber bands and parafilm. The samples were analysed at the Natural 

Environmental Research Council Isotope Geosciences Laboratory at the British 

Geological Survey. Samples were analysed on a VG Isoprep 18 and SIRA 10 mass 

spectrometer with random samples analysed in duplicate which showed an average 

precision better than ± 0.02‰. The method followed the equilibrium method for CO2 

established by Epstein & Mayeda (1953). The contribution of sea ice and glacial 

meltwater were calculated using simultaneous equations following Meredith et al. 

(2016) who adopted the method from (Östlund & Hut, 1984).  
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5.3 Results 

5.3.1 Sea ice 

Sea-ice cover shows high variability along the WAP as well as throughout the 

investigated years. All four data sets show variable but high sea-ice coverage in the 

winter preceding the growing season with sea ice retreating to different extents and 

at different times. With 90 days of > 70 % sea-ice coverage, 2013/14 shows the lowest 

sea-ice coverage of all three RaTS seasons which increases to 114 days in 2014/15 

and to 142 days in 2015/16. On average, sea-ice cover remains below 30 % in 

January and February of each season (figure 5.3.1). However, December sea-ice 

cover is more variable with 9 days of > 70 % sea-ice in 2013/14 and 2015/16 while in 

2014/15 there is only one day with more than 70 % sea-ice. 

For the PAL LTER region in 2017, there is a clear trend of sea ice having retreated 

from the open-ocean area earliest (> 100 days prior to sampling) and latest in the 

coastal regions (5 to 54 days) (figure 5.3.2). Days since sea-ice retreat are defined as 

the number of days since sea-ice cover < 15 % for at least 5 consecutive days, 

following Stammerjohn et al. (2008). For the RaTS data, a sea-ice score threshold of 

2 was applied which corresponds to 20% sea-ice coverage. 
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Figure 5.3.1: Moving average (8-day period) of sea-ice coverage at the RaTS sampling site in 
Ryder Bay for September to April for the three investigated seasons 2013/14 (blue), 2014/15 
(orange) and 2015/16 (grey). The green area depicts the austral spring/summer period.  

 

 

5.3.2 Hydrography 

Sea-surface temperatures (SST) in the LTER grid range from 1.08 to 2.90°C with a 

mean of 2.10 ± 0.46°C (figure 5.3.2). Warmest SSTs are found in the North (stations 

500.060 and 500.100) and coldest in the coastal South (300.040 and 200.040). Winter 

water is present at all stations between 10 and 200m varying in layer thickness with 

temperatures between -1.71 and 0.00°C. 

Salinity ranges from 32.64 to 34.73 with most variability in the upper 100m where sea-

ice melt and glacial meltwater influence surface water salinity. This influence is also 

shown by the δ18OH2O composition (figure 5.3.2) of the surface water. The mixed layer 

depth (defined as the depth at which σt is 0.05 kg m-3 greater than σt at the surface) 
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shows high variability but is shallow with a range from 8 to 40 m with deepest MLD in 

the offshelf northern stations and shallowest along the coast.  

 

Figure 5.3.2: Surface distribution of physical parameters across the PAL LTER sampling grid 
in January 2017. All parameters show a general trend of freshening (a salinity), increasing 
meteoric water influence (b δ18OH2O), cooling (c temperature) and shallowing of the mixed layer 
depth (d) from North to South and from the offshelf to coastal region.  

 

 



Dittrich, 2019  

165 
 

The RaTS site shows a freshening of the surface waters in all three seasons starting 

between early December and January in the surface and developing to greater depths 

over time (figure 5.3.3). At the same time, temperatures increase in a similar manner. 

All three years show short intervals of fresher and warmer water for a short period of 

time which coincide with a higher contribution of the sea-ice meltwater fraction 

(δ18Oseaice) which is calculated from the δ18O composition of the ambient water. On 

average, 2015/16 surface waters are colder than the other two seasons, figure 5.3.3.  

Figure 5.3.3: Contour plots of salinity and temperature development over time at the RaTS 
sampling site in (a) 2013/14, (b) 2014/15 and (c) 2015/16. The salinity plots show the mixed 
layer depth in meters. 
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5.3.3 Inorganic Nutrients and Phytoplankton. 

Nitrate concentrations in the PAL LTER region average 33.21 ± 1.00 μmol N L-1 at 

depth > 200m. In the upper 100m, nitrate concentrations are more variable ranging 

from 0.77 to 33.88 μmol N L-1. Highest nutrient uptake occurs in the coastal region 

decreasing with distance from the shore (figure 5.3.4). Among the coastal stations, 

nitrate is more depleted in the South than the North. The distribution of phosphate in 

the surface waters is similar. N:P uptake ratios in the surface waters range from 11.2 

to 16.0 with less variation and ratios closer to the Redfield ratio in the South than the 

North. Lowest Si:N uptake ratios are found in the coastal region (0.7 – 1.0) and highest 

in the open ocean region (1.5 – 3.8).  

The RaTS data show well-mixed water prior to the onset of freshening and sea-ice 

melt in all three seasons which is reflected in vertically uniform nutrient concentrations 

(Figure 5.3.6). In 2013/14, November nitrate averages 28.24 ± 1.71 μmol N L-1, and 

26.50 ± 0.70 μmol N L-1 in 2014/15. Nitrate is drawn down close to depletion in 

2013/14 during the first phytoplankton bloom in the surface waters. During the second 

phytoplankton bloom, the drawdown of nitrate continues to greater depths (25m) than 

during the first bloom. NO3
- concentrations recover after the second bloom in late 

February but remain below 20 μmol N L-1. 2014/15 data show NO3
- drawdown in the 

upper 15m between late December and mid-January during which surface 

concentrations approach depletion. In 2015/16, nitrate concentrations do not reach 

depletion, lowest concentrations are around 10 μmol N L-1. The whole water column 

shows a decrease in NO3
- concentrations to values around 15 μmol N L-1 with the 

onset of the phytoplankton bloom mid-January which remain until the end of March. 

NH4
+ concentrations are highly variable between years in the RaTS data set (figure 

5.3.6). In 2013/14 maximum concentrations of NH4
+ in the upper 15 m do not exceed 

3 μmol N L-1, in 2014/15, maximum concentrations are 1.4 μmol N L-1 (at 40 m) and 
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in 2015/16, maximum concentrations are 6.56 μmol N L-1 (at 15 m but data are 

available for upper 40 m). Ammonium concentrations are higher throughout the water 

column in 2015/16. Due to the high interannual and seasonal variability, [NH4
+] for 40 

m in 2013/14 have not been interpolated. However, both 2013/14 and 2014/15 data 

show a trend of NH4
+ accumulation over time at all depths so that [NH4

+] at 40m in 

2013/14 can be expected to show a similar trend. Therefore, DON concentrations at 

40m in January can be expected to comprise between 1 and 2 μmol N L-1 from NH4
+ 

and in February, the NH4
+ contribution to DON might have increased to approximately 

2-3 μmol N L-1. In 2015/16, NH4
+ concentrations are < 1.00 μmol N L-1 at the beginning 

of the phytoplankton bloom in early January and remain high thereafter. Both 2013/14 

and 2014/15 only show increased values (> 1 μmol N L-1) later in the season (late 

January to early February). In 2014/15, these high concentrations only occur at the 

40 m sampling interval.   

HPLC analysis shows diatom dominance (> 80 %) for all three seasons with other 

species being present (figure 5.3.5). Haptophytes are the second-largest contributor 

in the pigment assemblage followed by cryptophytes. In the late 2015/16 bloom, 

cryptophytes dominate the phytoplankton species composition with a contribution of 

40-60 %.  There are no HPLC data available for the PAL LTER data set.  
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Figure 5.3.4: Biogeochemical parameters of two example sampling stations from the PAL 
LTER 2017 research cruise to show spatial heterogeneity. “North-Open” is station 500.200 
and “South-Coast” station 200.000. (a) POC concentrations, (b) DOC concentrations, (c) 
nitrate concentrations. (d) PN concentrations, (e) DON concentrations and (f) C- and N-
isotopic composition of POM. Solid lines show δ13CPOC, dashed lines indicate δ15NPN. Error 
bars show the standard errors for all Northern / Southern stations, respectively. 
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Figure 5.3.5: Phytoplankton pigmentation data from HPLC analysis as % of chlorophyll a 
concentration for the RaTS seasons measured at 15m depth. Please note the different 
scales along the y-axes. 
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Figure 5.3.6: a-d nitrate and ammonium concentrations, δ13CPOC and δ15NPN isotopic 

composition for 2013/14. e-h nitrate and ammonium concentrations, δ13CPOC and 

δ15NPN isotopic composition for 2014/15. I-l nitrate and ammonium concentrations, 

δ13CPOC and δ15NPN isotopic composition for 2015/16.  
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5.3.4 Particulate organic matter at the WAP 

POC and PN concentrations show similar patterns at all LTER sampling grid stations 

with highest concentrations at the surface and an overall decrease with depth (figure 

5.3.4). Except for stations 500.200, 600.200 and 600.100, stations that are 

northernmost and furthest from the coast, C:N ratios of POM in the upper 15 m are 

mostly below Redfield with a mean of 6.47 ± 0.37. Maximum POC and PN 

concentrations are always found at high chlorophyll-a concentrations, however, they 

are not always at the same depth as the maximum chlorophyll-a concentration. See 

table 5.3.1 for a summary of POC and PN concentrations and the POC:N ratios for 

the PAL LTER and RaTS data. 

The RaTS POM data show a clear seasonal development with low POC and PN 

concentrations at the beginning of the season which start to increase with the onset 

of primary production. There is a short phase during the first phytoplankton bloom in 

2013/14 in the upper 15m during which the POC:N ratio shows an increase to 11.8. 

Except for this short phase, POC:N ratios remain within a small range from 4.96 to 

6.71.  

In 2014/15, there is tight coupling between POC and PN throughout the pre-bloom 

and peak-bloom phase. The POC:N ratio remains within a small range below the 

Redfield ratio (5.10-6.48) throughout the observational period in the upper 15m. 

Maximum concentrations of POC and PN consistently occur at the same depth. 

In 2015/16, the pre-bloom phase was not captured but organic matter samples are 

available from the first phytoplankton bloom onwards. The overall range of the POC:N 

ratio in the upper 15m is lower than in the previous two seasons ranging from 4.5 to 

6.2. POC and PN maxima are consistently at the same depth.   
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Table 5.3.1: Maximum, mean and standard deviation for POC and PN concentration and the 
range, mean and standard deviation for the POC:N ratio for the PAL LTER 2017 data and the 
RaTS seasons 2013/14, 2014/15, 2015/16.  

  

 

5.3.5  δ13C and δ15N in POM and δ15N in nitrate 

Figure 5.3.7 shows surface δ15NNO3, δ15NPN, δ13CPOC and nitrate concentrations during 

the PAL LTER 2017 cruise. Lowest nitrate concentrations are found along the coast 

with nitrate almost being depleted at 300.040. This pattern is reflected in the isotopic 

data for both C and N with highest isotopic enrichment of nitrate and POM at the coast 

and particularly at station 300.040.  

RaTS surface δ13CPOC and δ15NPN increase with the onset of phytoplankton production 

in all three seasons. δ13CPOC reflects the extent of POM production more closely than 

δ15NPN. The N-isotopic composition of PN shows higher variability before and during 

the phytoplankton blooms than δ13CPOC (Figure 5.3.8, 5.3.9, and 5.3.10).  

δ13CPOC in Ryder Bay covers a range from -30.3 ‰ to -18.9 ‰ in all three seasons 

with 2013/14 showing the greatest variability. With the onset of POM accumulation, 

δ13CPOC in the surface quickly increases from values around -28 ‰ to values between 

-18.9 and -22.5 ‰. With the onset of the second bloom, δ13CPOC values drop back to 

values between -27.6 and -29.3‰. A similar pattern occurs at 15m depth while 

δ13CPOC increases to values between -22.2 and -23.6‰ and the C-isotopic 

  POC (µmol C L-1) PN (µmol N L-1) POC:N 

  Max Mean SD Max Mean SD Range Mean SD 

LTER 98.62 11.87 15.2 16.8 1.83 2.64 5.91 – 38.09 9.37 4.59 

2013/14 166.26 24.25 27.2 18.8 3.83 3.6 4.67 – 11.76 5.93 1.16 

2014/15 71.42 16.54 16.7 12.1 2.96 2.94 4.60  – 7.64 5.73 0.54 

2015/16 43.39 20.84 10.1 8.12 4.01 1.98 4.42  – 7.22 5.27 0.52 
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composition decreases later during the second bloom. The same pattern of an 

increase in δ13CPOC with increasing POC concentrations and a drop towards the end 

of phytoplankton bloom conditions is also observable in 2014/15 and 2015/16 data.  

δ15NPN and δ13CPOC in all three seasons show similar trends over time, however, 

δ15NPN shows more variability. While δ15NPN also starts to increase with increasing 

POM concentrations from values between 0.50 and 1.50 to 3.00 - 5.40 ‰ in the 

surface during the first phytoplankton bloom in 2013/14, it shows some excursions 

prior to the bloom and also during the peak bloom. In the second bloom, δ15NPN values 

are slightly higher than in the first but drop quickly in mid-February to values between 

-0.40 and +0.70‰. First measurements in the 2014/15 season show high δ15NPN 

(10.2‰) which decrease until early December (0.7‰). δ15NPN increases again with 

the onset of primary production and decreases after the bloom. In 2015/16, δ15NPN 

closely follows the trend of PN concentrations with only minor deviations.  

In the upper 40m of the PAL LTER data set, variability of both δ13CPOC and δ15NPN is 

highly heterogeneous (figure 5.3.4 f). Only at deeper depths, POC and PN become 

isotopically heavier. The depths below which the C- and N-isotopic compositions 

become heavier, decrease from open to shore. Among the open ocean stations, the 

mean depth for δ15NPN is 60 m which decreases to 25m along the coast whereas 

δ13CPOC starts to become heavier at depths of 60 m in the open and 45m at the coastal 

stations.   
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Figure 5.3.7: Surface water C and N isotopic composition of POM, nitrate concentrations 
(plotted in reversed colour pattern) and the N-isotopic composition of nitrate from PAL LTER 
cruise 2017. 

 

In order to understand biogeochemical processes shown in the N-isotopic data, 

δ15NPN and δ15NNO3 (only available for 2013/14), their respective concentrations and 

δ13CPOC and [POC] were averaged in the upper 15 m of the water column in Ryder 

Bay (figure 5.3.8, 5.3.9, and 5.3.10). δ15NNO3 increases with the drawdown of NO3
- in 

the upper ocean and responds to changes in nitrate concentrations throughout the 

season. At the beginning of the sampling period in 2013/14, δ15NNO3 is 5.29 ‰. δ15NNO3 

ranges from 5.29 to 8.57 ‰ over the entire sampling season and decreases towards 

the end when nitrate concentrations start to increase.  
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Figure 5.3.8: 2013/14 Upper 15m mean values for (a) [NO3

-] and δ15NNO3 and (b) [PN] (blue 
line), δ15NPN and δ13CPOC.  
 
 
 

 
Figure 5.3.9: 2014/15 Upper 15m mean values for (a) [POC] and δ13CPOC and (b) [PN] and 
δ15NPN.  
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Figure 5.3.10: 2015/16 Upper 15m mean values for (a) [POC] and δ13CPOC and (b) [PN] and 
δ15NPN  
 

 

 

5.3.6 Dissolved organic matter at the WAP 

Ranges for DOC and DON concentrations and the DOC:DON ratio across the LTER 

grid and throughout the three sampled seasons at RaTS are stated in table 5.3.2. 

Highest DOC concentrations are usually found in the upper 20 m while DON maxima 

are distributed more variably and can occur at any sampled depth within the LTER 

sampling grid. The coastal stations 200.000, 300.040 and 400.040 show high DON 

concentrations in the surface waters.  

At the RaTS site, DON concentrations are highly variable. Comparing the three RaTS 

seasons with the LTER grid, the RaTS site shows higher concentrations of DOC, 

however, the mean concentrations do not vary greatly between the seasons. 

Contrastingly, highest DON concentrations are found within the LTER area but again, 
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mean concentrations are within a narrow range. The DOC:DON ratios span a large 

range with the mean lying between 8.23 and 12.85 which is relatively low for DOM 

but ratios similar to this have been reported before for Antarctic regions (Kähler et al. 

1997; Thomas et al. 2001, 2001 (b); Carlson et al. 2000). 

Lowest DOC concentrations are mostly found at depths > 50 m and cover a narrow 

range from 38.13 to 42.27 μmol C L-1. DON minima are mostly found at depths > 60m 

with the exceptions of stations 500.200 and 600.200 in the LTER sampling grid where 

DON minima are found in the upper 25m and DON maxima at 40 and 60m, 

respectively. All data presented here are listed in the appendix of the thesis. 

 

Table 5.3.2: Range of DOC and DON concentrations and the DOC:DON ratio in direct 
comparison for PAL LTER and all three RaTS seasons. 

  DOC (µmol C L-1) DON (µmol N L-1) DOC:DON   

  Range range Range   

LTER 38.13 - 60.47 1.70 - 10.52 5.34 - 37.90   

2013/14 40.36 - 88.65 3.38 - 10.13 4.16 - 18.09   

2014/15 40.88 - 79.66 4.39 - 7.26 6.07 - 11.69   

2015/16 42.27 - 71.00 1.14 - 6.56 4.99 - 43.16   
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5.4 Discussion 

The WAP encompasses a physically complex and environmentally dynamic 

ecosystem which is reflected in the data presented here and has been discussed in 

previous studies (e.g. Moreau et al. 2015; Trimborn et al. 2015; Arrigo et al. 2017; 

Ducklow et al. 2013). Increasing available solar radiation and retreating sea ice in 

spring lead to the onset of primary production as shown in the RaTS seasonal data. 

The PAL LTER data show the variability of biogeochemical dynamics across the entire 

sampling region west of the Antarctic Peninsula. The WAP hydrography is strongly 

influenced by freshwater input from glacial sources and sea ice so that freshest 

surface waters and consequently shallowest mixed layers are found in the coastal 

regions. In agreement with this spatial development are the RaTS temporal data 

showing a freshening and warming of the surface waters between early and late 

December each year which leads to a shallowing of the mixed layer and the onset of 

primary production. Increasing nutrient drawdown, chlorophyll-a and organic matter 

concentrations are the result.  

The focus of the following discussion will be on the dynamics of particulate and 

dissolved organic carbon and nitrogen on varying spatial and temporal scales. 

  

5.4.1 Dynamics of particulate organic carbon and nitrogen in the PAL 

LTER sampling grid and at RaTS 2013-2016 

Within the PAL LTER sampling grid, primary production started earlier in the open 

ocean due to the earlier sea-ice retreat here. Growth limitation by micronutrients in 

the open-ocean regions (Annett et al., 2015; Arrigo et al., 2017) and shallower mixed 

layer depths along the coast lead to rates of primary production and organic matter 

production being higher along the coast. Highest concentrations of POC and PN along 
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the WAP are found in the surface waters of station 300.040 where freshwater input 

from glacial sources is greatest which leads to fresher and cooler surface waters with 

a shallow mixed layer. Here, nitrate concentrations are close to depletion and 

chlorophyll-a concentrations are highest among all sampled stations.  

POC and PN decrease with depth at every station. However, all open-ocean stations 

and the northernmost shelf stations show a small increase in POM at depths > 30 m. 

Elevated chlorophyll-a concentrations, primary production rates and lower POC:N 

ratios indicate active phytoplankton blooms at depths > 30 m.  

Gradients for NO3
- and PN flux over the upper 50m were calculated to determine the 

amount of nitrate converted to PN: 

Δ𝑃𝑁 =  
𝛿𝑃𝑁

𝛿𝑧
   and   Δ𝑁𝑂3

−  =  
𝛿𝑁𝑂3

−

𝛿𝑧
 

The arithmetic mean of the ratio of ΔPN:ΔNO3
- in the entire sampling region is -0.38 

± 0.22 which shows that on average 38% of nitrate drawdown is due to PN formation 

in the upper 50m. It is important to keep in mind that the calculated PN gradient does 

not only show PN formation in the upper 50m but also includes the terms of 

remineralisation processes (DON formation, nitrification), and grazing so that the PN 

gradient includes terms of PN formation, recycling and export in the upper 50m.  The 

ratios range from -0.02 to -0.70 demonstrating the high variability of the WAP system 

(table 5.4.1). Highest ΔPN:ΔNO3
 ratios are generally found in the North, and lowest in 

the South with an overall decrease from coastal stations to the open. A strong 

correlation of the vertical gradients of nitrate and PN shows that the combination of 

accumulation and loss of biomass is accompanied by increased NO3
- drawdown as 

expected (figure 5.4.1). As the ΔPN:ΔNO3
 ratio indicates and as figure 5.4.1 shows, 

NO3
- drawdown is not perfectly balanced by POM accumulation. This correlation and 

the above mentioned relatively low contribution of PN to nitrogen export show that 
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other processes such as transfer to higher trophic levels, export and conversion to 

DON with subsequent ammonification play important roles in the WAP nitrogen cycle.   

 

Figure 5.4.1: The good correlation between the gradients over the upper 50m for NO3
- and PN 

shows that high NO3
- drawdown is accompanied by high PN accumulation. Data along the 1:1 

line would indicate high export production while the data points shown here indicate other 
processes such as high recycling and PN uptake in the upper ocean. 

 

 

POC:N ratios in the upper 30 meters of the PAL LTER grid are close to the Redfield 

C:N ratio of 6.625 with a decreasing trend southward. Among almost all stations of 

the Southern part of the sampling grid, POC:N ratios are lower than the Redfield C:N 

ratio. The low ratios close to Redfield indicate direct production of POM by 

phytoplankton. This is also supported by the strong correlation between chlorophyll-a 

and POC and PN in the surface waters (POC ~ chlorophyll-a r = 0.91, p = 2.19*10-6, 

PN ~ chlorophyll-a r = 0.94, p = 3.01*10-7). Reasons for decreasing C:N ratios with an 

increase in latitude have been suggested to be changing physical conditions such as 

surface water temperatures and nutrient availability which results in changing 

phytoplankton compositions with varying nutrient demands. Young et al. (2015) 
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showed that in order to maintain high rates of photosynthesis in colder waters, 

diatoms have to produce more RuBisCO, the central enzyme necessary for 

photosynthesis, because water temperatures in high latitudes are often below optimal 

conditions for enzyme activity. This leads to a substantially increased protein content 

in Antarctic diatoms which, due to the high nitrogen content of proteins, leads to a 

decrease in the C:N ratio. The physical parameters available for the LTER 2017 

research cruise (temperature, salinity, δ18O) show a latitudinal trend of decreasing 

temperature and increasing influence of glacial meltwater from North to South and 

open ocean to coast (figure 5.3.2) which supports the hypotheses for decreasing 

POC:N ratios with decreasing temperatures.  

Table 5.4.1: vertical gradients of NO3
- and PN in µmol N m-1between the surface and 50 m 

depth and the ratio of ∂PN/∂NO3
-.  

 

 

 

 

 

 

 

 

 

 

 

         

 Station ΔNO3 ΔPN ΔPN:ΔNO3
    

 600.200 0.05 -0.01 -0.12  

 600.100 0.12 -0.05 -0.43  

 600.040 0.27 -0.10 -0.36  

 500.200 0.04 -0.02 -0.60  

 500.100 0.21 -0.09 -0.46  

 500.060 0.19 -0.14 -0.70  

 400.200 0.11 -0.07 -0.67  

 400.100 0.16 -0.08 -0.51  

 300.200 0.08 0.00 -0.02  

 300.100 0.12 -0.05 -0.40  

 300.040 0.50 -0.32 -0.65  

 200.200 0.05 -0.01 -0.12  

 200.100 0.33 -0.07 -0.23  

 200.040 0.22 -0.05 -0.21  

 200.000 0.28 -0.07 -0.24  
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The RaTS data agree with the observations from the PAL LTER data set. Because 

the seasons 2014/15 and 2015/16 do not cover the entire spring/summer season, 

which might skew the mean POC:N ratio, POC:N ratios were compared only where 

chlorophyll-a concentrations > 1 mg m-3 in the upper 15 m. Through all three 

investigated seasons, the seasonal POC:N ratio arithmetic means in the upper 15 m 

are 7.52 in 2013/14, 5.70 in 2014/15 and 4.65 in 2015/16. The 2013/14 ratio is only 

higher than the Redfield ratio due to a short period of high ratios in the surface waters 

during the first phytoplankton bloom peak.  

POC and PN are tightly coupled in all three seasons. There is a trend of decreasing 

ratios between the seasons which agrees with a trend of decreasing mean water 

temperature. While the C:N ratios in 2013/14 and 2014/15 are not significantly 

different (T-Test, t = 1.487, p > 0.05), 2015/16 is significantly different from 2013/14 

(T-Test t = 4.067, p = 1.07*10-4) and 2014/15 (T-Test, t = 4.221, p = 9.38*10-5). This 

agrees with the observed temperature differences between the seasons in the upper 

15m with no significant difference between 2013/14 and 2014/15 (p > 0.05) while both 

of those seasons differ significantly from 2015/16 (2013/14 vs. 2015/16 T-test, t = 

3.07, p = 0.003; 2014/15 vs. 2015/16 T-test t = 3.04, p = 0.003). This decrease in C:N 

ratios can be caused by aforementioned increased RuBisCO production with 

decreasing temperatures, a change in phytoplankton species composition or a 

combination of both. The phytoplankton species composition between years varies 

slightly with 2015/16 again being the season which is significantly different from 

2013/14 and 2014/15 (diatom fraction 2013/14 vs. 2014/15 p > 0.05, 2013/14 vs. 

2015/16, t = 2.38, p = 0.024; 2014/15 vs 2015/16 t = 2.46, p = 0.019). Even though 

Young et al.’s study focused on diatom RuBisCO production, this enzyme is produced 

by all photosynthesising organisms so that a combination of these two factors is 

suggested to play a role in the changing C:N ratios found in these three seasons.     
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In 2013/14, POC and PN maxima are at the same depth most of the time. DOC 

maxima consistently coincide with POC maxima when POC and PN are decoupled 

which does not occur as often when POC and PN show good coupling. This could be 

an indication that POM is the major source for DOM which would lead to observed 

decoupling processes. Due to the preferred breakdown of nitrogen over carbon, the 

maximum concentrations of PN are found at shallower depths than POC as PN is 

being degraded at shallower depth with subsequent dissolved organic matter 

production.   

During all three seasons, only a few samples were collected at depth > 40 m. All those 

samples show an increased POC:N ratio compared to the ratios at the shallower 

depths, however, most of them remain below Redfield at depth of 75 or 100 m. While 

those samples are not representative for all seasons, the C:N ratio close to the 

Redfield ratio suggests fresh POM sinking quickly to greater depths. 

 

5.4.1.1 Nutrient utilisation and POM cycling shown by δ13C of POC and 

δ15N of PN and NO3
- 

The N-isotopic composition of NO3
- and PN show high variability. In Figure 5.4.2 the 

modelled values for both the instantaneous and the accumulated product are 

calculated with two different isotope effects (4 and 5 ‰). There is a clear difference 

in the PAL LTER data set between the open, shelf and coastal stations in the N-

isotopic signatures for both NO3
- and PN (figure 5.4.2).  

The PN signal along the coast shows highest variability. δ15NPN slightly below 

modelled accumulated values and generally below 3 ‰ are found for the 

southernmost stations 200.000 and 200.040 as well as the northernmost station 

600.040. At all these stations, the phytoplankton signal is relatively low which is 

represented in high fractionation of nitrogen. Stations 300.040 and 500.060 show 
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δ15NPN closely around the modelled instantaneous product. Both stations show high 

rates of chlorophyll-a and primary production, respectively, which rapidly decrease 

with depth. The ΔPN:ΔNO3
- calculations (section 5.4.1) showed most intense 

conversion of nitrate to PN at these two stations (65 and 70% for 300.040 and 

500.060, respectively) with the most intense PN gradient in the upper 50m (0.32 and 

0.14 for 300.040 and 500.060, respectively). The comparatively high N-isotopic 

composition of PN closely following the instantaneous product confirms intense 

nitrogen cycling at these stations with remineralisation removing 14N preferentially and 

leaving PN with a heavier δ15N signature. δ15NPN at the shelf and open-ocean stations 

are mostly around and below values of the accumulated product and clustered 

together more closely than the coastal stations pointing out the high variability along 

the coast in this year and potentially in general. These open ocean stations are past 

the peak of the phytoplankton bloom which is reflected in low-productivity δ15NPN. The 

N-isotopic composition of PN is likely decreased at these stations because they are 

at a later stage during the progression of the phytoplankton bloom which allows for 

higher rates of ammonium consumption. Ammonium is a product of remineralisation 

of ambient PN, so that δ15NNH4+ can be assumed to be equal or lower than that of PN. 

Ammonium is incorporated by phytoplankton with a kinetic isotope effect between 4 

and 20 ‰ (Waser et al. 1998; Sigman and Casciotti 2001; Sigman et al., 2009). A 

late-bloom progression in the phytoplankton species composition to a dominant 

smaller species which is more efficient in ammonium uptake could further this 

fractionation effect.  

Among all available PAL LTER surface isotopic N data, there is a clear trend of an 

increase in the apparent fractionation factor (or kinetic isotope effect) ε from the coast 

(2.12 ‰) to the open (5.49 ‰). The lower fractionation factor along the coast indicates 
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more intense nitrification occurring in these waters which likely leads to these low 

values. 

The RaTS data show a similar pattern in all three seasons with δ15NPN closely following 

Rayleigh PN accumulation. The δ15NPN shows accumulation and remineralisation of 

PN in surface waters indicating only little export of PN from the surface waters of 

Ryder Bay. These data agree with the interpretation of the calculated PAL LTER 

ΔPN:ΔNO3
- ratios in section 5.4.1 and show that the majority of PN is recycled in the 

upper ocean with little direct export. High recycling and nitrification have been shown 

to be a substantial source of recycled nutrients in the surface waters of the WAP 

(Henley et al., 2018) resupplying the surface waters with nutrients during the austral 

summer. Henley et al.’s study is based on inorganic nutrient stoichiometry and 

inorganic nitrate isotopic data only. This study confirms those findings utilising the 

isotopic composition of both inorganic nitrate and organic nitrogen.  

The RaTS δ15NNO3 values lying along the modelled values of closed-system nitrate 

dynamics are all in pre-bloom conditions in which nitrate concentrations are high and 

PN production at a minimum (Figures 5.3.8, 5.3.9, 5.4.2b). With the onset of the 

phytoplankton bloom, δ15NNO3 shows only little variation even though fractionation 

would be expected with a fractionation factor of 4-5 ‰. The lower-than-modelled 

δ15NNO3 composition indicates high rates of NH4
+ uptake and nitrification in Ryder Bay. 

Nitrified nitrate is the product of remineralisation of organic matter. Because δ15NPN 

formed from CDW-nitrate is lower due to the kinetic fractionation, nitrified nitrate, 

which ultimately originates from low δ15NPN will undergo additional kinetic fractionation 

and show δ15N equal to or less than that of its source PN. Nitrification was previously 

shown to play a significant role for upper-ocean biogeochemical cycling in Marguerite 

Bay (Henley et al., 2018, 2017). This new study indicates nitrification occurring and 
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affecting N cycling during phytoplankton blooms. Rapid ammonification of DON 

(section 5.4.2) in combination with these isotopic data strongly support these findings.  

In Ryder Bay in 2013/14, N-rich surface water is present at the beginning of the 

growing season with [NO3
-] > 25 μmol N L-1. In these waters, δ15NPN reflects the result 

of minor nitrate assimilation during minimal primary production with lowest values in 

surface waters which increase with depth mirroring PN concentrations. Nitrate 

assimilation over time drives the temporal increase in δ15NPN throughout the season 

while the nitrate pool is becoming depleted (figure 5.4.3 A). Lower δ15NPN coincide 

with increased nitrate concentrations indicating replenishment of nitrate from mixing 

(figure 5.4.3 i and ii). Simultaneous sudden changes in salinity and temperature also 

suggest nitrate replenishment through vertical mixing. With the end of the 

phytoplankton growing season and the recovery of surface nitrate stocks, both PN 

concentrations and δ15NPN recover back to values similar to values prior to the growing 

season (figure 5.4.3 iii).  
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Figure 5.4.2: The N isotopic composition of particulate nitrogen and nitrate of the surface 
waters of a) the PAL LTER sampling grid and b) the RaTS seasons. RaTS nitrate data only 
available for 2013/14. The lines in both a) and b) represent the fractionation of the residual 
nitrate (δ15N reactant), of the instantaneous product with an isotope effect of 4 and 5, 
respectively (δ15N instantaneous) and of the accumulated product with an isotope effect of 4 
and 5, respectively (δ15N accumulated) following closed-system dynamics (Rayleigh). 
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Isotopic data for 2014/15 are scarce. The available δ15NPN at the start of the sampling 

period is high despite negligible primary production (Figure 5.3.9). Sea-ice cover is 

still high at this point (sea-ice scores between 5 and 8). The elevated δ15NPN could 

indicate PN being formed from sea-ice derived nitrate which usually carries a higher 

δ15N. POM being produced in sea ice, just as in the water column, preferentially 

incorporates the lighter 14N leaving nitrate high in δ15N. However, in sea ice, the 

residual isotopically heavy NO3
- is expelled from the sea ice through brine convection 

and enters the surface waters leaving.  

δ13CPOC does not show increased values reflecting the different turnover times of 

carbon and nitrogen and the different processes involved for each element in sea ice. 

The phytoplankton-species assemblage and the preferred CCM of the dominant 

species is indicative of changes in the C-isotopic composition (Henley et al., 2012). 

With the onset of the phytoplankton bloom, δ13CPOC increases by 8 ‰ and only 

decreases again during the second bloom. Diatoms dominate the entire duration of 

bloom conditions, however, a shift in the dominating diatom species can be the reason 

for the substantial decrease in δ13CPOC in mid-bloom conditions (Henley et al., 2012; 

Sinninghe Damsté et al., 2003). There are no specific species data available for the 

investigated seasons at the RaTS site, however, the diatom species Proboscia 

inermis has been shown to make up >90% of the late-season phytoplankton bloom in 

Ryder Bay between 2004 and 2007 (Annett et al., 2010). P. inermis are known for 

their production of 13C-depleted alkanoates (Sinninghe Damsté et al., 2003) which 

could explain the substantial decrease in δ13CPOC in mid-bloom conditions.  

The short sampling period in 2015/16 shows an increase in δ15NPN along NO3
- 

drawdown during the phytoplankton bloom indicating that the main driver of δ15NPN 

variability is nitrate utilisation. At the beginning of the growing season, there is a 

decrease in sea-ice cover and an increase in sea-ice melt which coincide with a shift 
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in δ15NPN which also occurs at the end of the growing season (figure 5.4.3 iv and v).  

The cycling of POM in sea ice is spatially restricted. Previous studies showed high 

variability of δ15NPN in sea ice but generally it is lowered (0 to 6‰.) compared to 

δ15NNO3 (Fripiat et al., 2015). Above described expel and replacement of nitrate in sea 

ice with seawater nitrate of a lower δ15N leads to a continuous decrease of sea ice 

δ15NPN. 
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Figure 5.4.3: Surface measurements of [NO3
-], δ15NPN (blue triangles), the POC:N ratio (light blue dots), 

sea-ice scores and the fraction of sea-ice melt, and temperature and salinity throughout the sampling 
seasons 2013/14 (A) and 2015/16 (B). 2014/15 is not shown here because of the restricted sampling 
period and gaps in measurements. The black boxes i-v are discussed in section 5.4.1. 
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The high variability in δ15NPN present in all four data sets (PAL LTER, RaTS 2013/14, 

2014/15 and 2015/16) during phytoplankton bloom conditions shows the high 

variability of the system on spatial and temporal scales. While surface waters can be 

affected by sea-ice derived POM, shifts in δ15NPN at greater depths show the effect of 

preferential loss of the lighter isotope during remineralisation of organic matter with 

an offset in time. Both δ15NPN and δ13CPOC show high variability in the upper 40m in all 

four data sets. While there is a limited number of data points for the RaTS site at 

depths > 40m, the PAL LTER data show that both δ15NPN and δ13CPOC increase with 

increasing depths. At all PAL LTER stations, δ15NPN starts to increase at shallower 

depths than δ13CPOC with an overall trend of decreasing depths from open-ocean to 

coast but no clear North-to-South trend. The earlier increase of δ15NPN plus the 

simultaneous decrease in PN concentrations are indicative of remineralisation 

processes with the preferential removal of (the isotopically lighter) nitrogen and is 

referred to as remineralisation depth intervals. The open-to-coast trend of decreasing 

depth of nitrate remineralisation from POM is likely due to increasing primary 

production and therefore bacterial activity towards the coast which leads to high rates 

of bacterial degradation of PN especially in the surface waters.  

 

5.4.2 Dissolved organic carbon and nitrogen dynamics  

The concentrations for both DOC and DON cover a small range in agreement with 

previous literature (Carlson et al., 1998; Kähler et al., 1997, Doval et al., 2002;  

Ducklow et al., 2012;  Wang et al., 2010). Peak DOC concentrations occur alongside 

peak POC concentrations in two of the RaTS seasons. DOC:DON ratios in 2013/14 

cover a wide range but are mostly close to the Redfield C:N ratio before the peak of 

the first phytoplankton bloom. After the first peak, there is an increase in both the 

DOC:DON ratios and their variability. In 2014/15, surface DOC:DON ratios are close 
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to the Redfield ratio while at 15 m, C:N ratios have a mean of 9.43. The DOC:DON 

ratios in 2015/16 are substantially higher in comparison with an arithmetic mean of 

15.2 over the upper 40m. These high ratios are mostly due to consumption and rapid 

ammonification of DON which leads to concentrations below background.  

Refractory dissolved organic matter remains in the deep ocean for thousands of years 

with relatively stable concentrations among all ocean basins. At the WAP, along with 

nutrients in the CDW, this refractory DOM is being upwelled and introduced into the 

surface waters so that there is a constant background of DOM concentrations. The 

measured deep-sea DOC and DON concentrations in the data sets analysed in this 

study are within a range of 38.13 to 40.88 µmol C L-1, and 3.38 to 4.44 µmol N L-1, 

respectively, and agree with previous DOM studies in the Southern Ocean (Carlson 

et al., 2000; Hansell & Carlson, 1998; Hubberten et al., 1995; Lechtenfeld et al., 2014; 

Nikrad et al., 2014; Sanders & Jickells, 2000; Wang et al., 2010, Ogawa et al., 1999).  

It is interesting to note that the DOC distribution across the entire LTER grid, covering 

coastal, shelf and open-ocean stations in the North and the South of the WAP, does 

not show much variation (p > 0.05 for DOC concentrations compared between open, 

shelf and coastal stations) even though physical, phytoplankton and bacterial 

dynamics are extremely variable. However, DON shows significant variability between 

coast and open ocean stations (t-test t = 2.161, p = 0.035) with higher DON at the 

coastal stations than at the open-ocean stations.  

While there are no significant relationships between DON and phytoplankton 

parameters (PN, chlorophyll a, PP), surface [DON] show correlations with both 

bacterial abundance (r = 0.62, p = 2.1*10-4) and activity (r = 0.78, p = 2.46*10-7). 

Carbon is not limiting in the ocean while nitrogen can become a limiting nutrient for 

phytoplankton. Hence, the direct release of N-containing DOM compounds by a 

healthy phytoplankton cell during a photosynthetic production period is accompanied 
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by high energetic costs which is the reason for higher DOC than DON release by 

active phytoplankton (Ward & Bronk, 2001). In a DOM model study based on 13C 

tracer experiments in a Danish fjord, Van den Meersche et al. (2004) estimated that 

60 % of DOC is being released directly by phytoplankton and 40 % by bacterial 

processes. However, > 99 % of DON is suggested to be the product of bacteria. The 

PAL LTER data show that DON maxima often coincide with high bacterial activity 

and/or abundance and DOC maxima often coincide with either of those but more often 

with chlorophyll a. With labile DOC concentrations > 10 µmol C L-1, DOC is 

consistently highest at the same depth as either the chlorophyll-a or bacterial-activity 

maximum which is not the case for high DON concentrations. These findings support 

Van der Meersche et al.’s estimations corroborating the suggestion that both 

phytoplankton and bacteria are involved in DOM production and consumption which 

affects how DOC and DON as well as DOM and POM are coupled within the water 

column. For DON cycling, three different scenarios can be suggested from the 

available data: (i) DON is released by phytoplankton directly but decoupled from POM 

production, e.g. at a later stage as described in chapter 4, (ii) DON is produced by 

either phytoplankton or bacteria and ammonified rapidly which leads to decoupling of 

POM and DOM, (iii) DON is a bacterial product resulting from the PN breakdown and 

the incorporation of inorganic nitrogen compounds into bacterial organic material.  

Even though DOM exists at a continuum of different sizes, compositions and grades 

of lability, freshly released DOM (DOClab, DONlab) can be differentiated from refractory 

DOM by subtracting the background DOC and DON concentrations from the 

measured concentrations. RaTS data were only taken into account when NH4
+ 

measurements were available. The DOC:DON ratio of labile DOM (DOC:DONlab) 

ratios give useful insights into sites of DOM and high DON production. The 

DOC:DONlab for all four data sets cover a wide range but are mostly lower than 
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Redfield showing high nitrogen content. Abiotic factors such as UV radiation, which is 

particularly high in the summer in high-latitude regions, can transform and decompose 

refractory DOM into both inorganic forms of carbon and nitrogen but also into labile 

forms of DOM. Unless processes like this decouple organic carbon and nitrogen by 

producing more inorganic forms of carbon than nitrogen, there would be no reason to 

assume that this could lead to decreased DOC:DON ratios.  

Lowest surface DOC:DONlab ratios are found at coastal stations at 200.000 and 

400.040 which are both associated with the highest rates of bacterial activity of the 

2017 PAL LTER cruise. The low DOC:DON ratios coinciding with high bacterial 

activity support the aforementioned argument of bacterial activity representing the 

major source for DON. 

Studies have shown increased phytoplankton and bacterial activity in the coastal 

waters due to replete macro and micronutrient concentrations and increased 

stratification from glacial and sea-ice melt (Ducklow et al. 2012). Micronutrients such 

as iron are delivered by glaciers and through upwelling (Annett et al., 2015) so that 

the waters close to the coast can support primary production at high rates while the 

region off the shelf resembles the HNLC regions of the Southern Ocean where 

primary production is limited by micronutrients and deeper mixed-layer depths. 

Hence, DOM dynamics are regulated by higher phytoplankton and bacterial activity 

in the coastal regions. Increased production of labile POM leads to high bacterial 

activity which, in turn, produces vast amounts of labile DOM and allows for increased 

bacterial growth efficiency which might allow bacteria to consume less labile forms of 

DOM as suggested by Tremblay et al. (2015). Additional DOM from sea ice or glacial 

meltwater could represent another source of DOM. Glacial meltwater at the WAP has 

been suggested to be a negligible source of DOM, however, the areas of most glacial 

influence also show highest DON concentrations. These increased concentrations 

could be the product of increased bacterial activity, which can be shown at some of 
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those stations. It could also come from phytoplankton of a different species 

composition than at the stations of less glacial influence, or which could be in a 

situation of osmotic stress due to the potentially rapid decrease in salinity, which could 

trigger increased DON release. DOM release through osmotic stress is discussed in 

depth in chapter 3 of this thesis and glacial influx of DOM in chapter 4. 

Vertical concentrations of both DOC and DON are not clearly distributed. Maximum 

DOC and DON concentrations per depth profile are almost never at the same depth 

with DON usually being deeper. Because there are no NH4
+ measurements available 

for the PAL LTER region, it is likely that DON maxima are found at depths > 40m due 

to increased NH4
+ release at those depths. The available NH4

+ data from the RaTS 

data show that generally there is an increase in NH4
+ concentrations later in the 

season with [NH4
+] > 2 μmol N L-1. However, 2015/16 data show [NH4

+] > 6 μmol N L-

1 from the beginning of the phytoplankton bloom. These data clearly show that NH4
+ 

can approach concentrations higher than [DON] in coastal WAP waters throughout 

the growing season. High rates of NH4
+ release might be the result of high grazing 

activity which would also lead to increased production of DOM at those depths through 

sloppy feeding. The PAL LTER data do not show an increase in DOC which would be 

expected from DOM release by unselective sloppy feeding. Hence, increased DON 

concentrations at depth are likely the result of a combination of zooplankton grazing 

activity, NH4
+ release by zooplankton and bacteria, and rapid cycling of labile DOM 

by bacteria.   

The RaTS site lies in the Southern part of the LTER sampling area. Studies with 

different focusses have shown that Ryder Bay in Marguerite Bay is among the most 

productive regions at the West Antarctic Peninsula with high primary production rates, 

chlorophyll-a and POM concentrations observed in the summer seasons with strong 

interannual variability. The three investigated seasons show that nutrient 
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concentrations in Ryder Bay can come close to depletion during high rates of primary 

production. In these phases, DON can make up > 99% of the total dissolved nitrogen 

pool so that it represents the major constituent of bioavailable nitrogen which can 

potentially be taken up by phytoplankton cells. Additionally, bacteria consume and 

produce DOC and DON at the same time. The simultaneous occurrence of these 

mechanisms – DOM release by phytoplankton during photosynthesis, potential DON 

consumption by phytoplankton, DOC and DON consumption and release by bacteria 

– lead to decoupled dynamics of DOC and DON in Ryder Bay and potentially across 

the entire WAP shelf area. Vertical variation in bacterioplankton composition likely 

influences different rates and amounts of DOC and DON being produced and 

consumed. A striking difference in the bacterial community composition existed 

between surface waters and waters > 100m in the PAL LTER sampling grid in 2008 

(Luria et al. 2014). Genetic analyses show high functional diversity among bacterial 

groups in WAP waters (Williams et al., 2012). These functionally diverse clades of 

bacteria will likely affect the preferential cycling of different DOM compounds at 

different depths of the water column over the seasonal cycle.  

 

5.4.3 Coupling between particulate and dissolved organic matter phases 

Total organic carbon (TOC) and total organic nitrogen (TON), the sum of particulate 

and dissolved organic carbon and nitrogen, respectively, and the % contribution of 

DOC and DON are found in table 5.4.2. Labile DOC and DON concentrations were 

applied in this context so that only freshly produced organic matter is considered. The 

majority of TOC is partitioned into the POC pool in the upper ocean which is in 

agreement with other Southern Ocean studies (Carlson et al. 2000; 1998; Ogawa et 

al., 1999). In these mentioned studies, DOC made up <30% of TOC usually during 

high phytoplankton production. In the four data sets available, the DOC contribution 
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is mostly increased during phases of low chlorophyll-a concentrations, so outside 

periods of high primary production. (figures 5.4.4).  

Table 5.4.2: Total organic carbon and nitrogen and the contribution of DOC and DON, 
respectively. The LTER sampling area is divided into open, shelf and coast. Only the ranges 
are stated due to the high variability of DOM to TOM contribution. 

  TOC TON   

  Range 
%DOC 
range Range 

%DON 
range   

L
T

E
R

 Open 1.3 - 33.7 0.0 - 79.7 0.1 - 4.9 2.5 - 82.6   

Shelf 1.5 - 59.2 0.0 - 72.1 0.3 - 7.7 10.5 - 81.9   

Coast 1.4 - 104.8 3.7 - 80.1 0.2 - 17.3 4.1 - 93.9   

              

R
a
T

S
 2013/14 3.3 - 214.6 1.1 - 87.9 1.9 - 23.9 2.3 - 96.3   

2014/15 2.2 - 95.5 2.8 - 80.1 1.2 - 15.4 10.8 – 91.8   

2015/16 2.9 - 54.2 19.9 - 62.5 3.3 - 9.0 1.4 - 42.8   

 

By comparing the LTER data to the RaTS data, the coastal LTER stations agree well 

with RaTS seasons 2013/14 and 2014/15 with maximum DOC contributions to TOC 

being in a small range between 80 and 87.90% and maximum DON contribution to 

TON between 91.8 and 93.3 %. However, the ranges of TOC and TON show high 

variability between years and areas with the RaTS season 2013/14 showing 

maximum TOC concentrations approximately twice as high as in the LTER coastal 

data or the 2014/15 season. Highest TOC concentrations across the LTER area are 

always found in the upper 15m. TOC concentrations < 5 μmol C L-1 are only found at 

depths > 75m except for station 200.000 where these low values are already reached 

at 45m. Here, DOC contributes 48% to the TOC pool. This station shows high 

bacterial activity in surface waters. High bacterial turnover of TOC is likely the reason 

for the rapid decrease with depth. The high DOC contribution supports this suggestion 

as this would likely trigger or increase bacterial activity. 
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Figure 5.4.4: Upper 50m TOC (POC + labile DOC) vs. the DOC contribution in %. The 
chlorophyll colour-coding indicates that with increasing chlorophyll concentrations, organic 
carbon tends to be partitioned more into the particulate than the dissolved pool which holds 
true for all four data sets.(a)-(c) RaTS seasons 2013/14, 2014/15 and 2015/16, (d) PAL LTER 
2017 

 

TON shows high concentrations at almost all coastal stations, however, only at 

200.000, the % of DON is between 55 and 74.3% while at stations 500.060 and 

300.040, it is < 5% indicating different processes affecting DON production at 200.000 
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than at 300.040 or 500.060. In fact, station 200.000 shows bacterial activity much 

higher than any other station while stations 300.040 and 500.060 are both stations 

with high phytoplankton activity which indicates rapid turnover of PN with rapid DON 

production at station 200.000. 

Strongest coupling between POC and DOC in the PAL LTER sampling area is 

observed in the Southern region (POC ~ DOC r = 0.81, p = 1.14*10-9) and along the 

coast (POC ~ DOC r = 0.65 p = 6.68*10-4). While the North also shows significant but 

less strong coupling (r = 0.36, p = 0.02), the division from coast to open only shows a 

significant relationship in the coastal region (figure 5.4.5). Possibly similar processes 

affect DOC and POC concentrations in the coastal and Southern stations while in the 

North and open ocean, POC and DOC appear to be decoupled and affected 

differently. On the one hand, this clearly shows spatial variability of organic matter 

distribution and cycling. On the other hand, however, due to the progressing sea-ice 

decline from open to the coast and different climatic conditions between North and 

South, it more likely indicates different stages of timing within the LTER sampling grid. 

Primary production in the open-ocean area occurred earlier than along the coast 

which could be the reason for the observed trends in DOC and POC. This can be 

supported by the RaTS data. As described above, the contribution of DOC to TOC 

generally decreases with increasing POC concentrations which is true for every 

season: Both DOC and POC concentrations increase with the onset of the first 

phytoplankton bloom, but at the same time, the contribution of DOC to the TOC pool 

decreases as more organic material is partitioned into the particulate pool. Hence, 

while the coastal stations and possibly the Southern station of the PAL LTER data 

show stages of pre- or peak bloom conditions during which POC and DOC both 

accumulate simultaneously but to varying extents, the open ocean and Northern 

stations might already be past that stage and removal processes such as zooplankton 
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grazing, or bacterial remineralisation could be the reason for a decoupled relationship 

between POC and DOC. 

 

 

Figure 5.4.5: POC vs. DOC concentrations from PAL LTER 2017 show strongest coupling 
between dissolved and particulate organic carbon in the South and the coastal region of the 
WAP.  
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5.5 Summary  

This study investigated the coupling of dissolved and particulate organic carbon and 

nitrogen at the west Antarctic Peninsula. Over a spatial sampling area and through 

three consecutive summer seasons, concentrations of DOC, DON, POC and PN were 

put in context with other biogeochemical and physical data. C- and N-isotopic data of 

POM and nitrate were considered to understand the cycling of carbon and nitrogen 

between the sources and sinks.  

DOM and POM concentrations show high spatial and temporal variability in the WAP 

region. POM concentrations in the upper ocean are strongly correlated with 

chlorophyll-a concentrations, decrease with depth due to grazing and bacterial 

degradation, and PN is removed at higher rates than POC. POM concentrations are 

generally higher in the coastal regions than in the open and the RaTS data show a 

clear seasonal trend.  

The spatial or temporal distribution of DOC and DON is not as clear. The PAL LTER 

data show a snapshot in time covering an area in which biogeochemical ecosystem 

dynamics are driven by different processes with a clear North-to-South and coast-to-

open-ocean trends in most parameters. Overall, DOC concentrations along the WAP 

do not show great spatial variability and remain within a relatively narrow range with 

background concentrations of approximately 40 μmol C L-1. Increased concentrations 

are found in the upper ocean and these are often in good agreement with 

phytoplankton or bacterial parameters. DON concentrations show more variability, 

especially along the coast. DON maxima co-occur with maxima of bacterial 

parameters and DON concentrations show better correlations with bacterial 

parameters than phytoplankton. This leads to the suggestion that DOC is being 

controlled by both phytoplankton and bacteria while DON seems to be regulated by 

bacteria mostly. The coinciding high DOM concentrations in surface waters of high 



Dittrich, 2019  

202 
 

glacial influence could be due to glacial DOM addition, osmotic stress in 

phytoplankton cells which leads to additional release of N-rich DOM or a different 

composition of the phytoplankton and bacterial communities.  

The RaTS data show the development of DOM concentrations throughout the austral 

spring and summer which is the period of high productivity in the region. The three 

consecutive seasons confirm that background (deep-sea) DOM is being upwelled with 

CDW water with surface concentrations reflecting those measured at deeper depths 

at the beginning and the end of the seasons (except for 2015/16 DON concentrations 

at 15m as discussed above). Moreover, they show a clear seasonal signal of DOM 

development with a simultaneous increase of DOC and POC concentrations and DON 

showing more variability. These data confirm previous findings of only small 

concentrations of DOC and DON being produced.  

The good correlation between DOC and POC and the temporal development during 

the growing phase of phytoplankton blooms lead to the overall suggestion of direct 

DOC release by phytoplankton at least in the beginning of phytoplankton bloom 

development. DON concentrations do not follow the trend which points to either 

different mechanisms controlling DON or rapid cycling of DON in the upper ocean. 

Bacteria appear to be more involved in DON production than phytoplankton and 

possibly also in the consumption of DON. However, at times, DON can make up >99% 

of total dissolved nitrogen in the surface waters. At these times, it is likely that 

phytoplankton switch to mechanisms allowing for DON uptake instead of DIN.  

The isotopic data from both the PAL LTER and the RaTS site show intense cycling of 

organic matter in the upper ocean. The N-isotopic data support the findings from 

chapter 3 and 4 of intense upper ocean remineralisation with little export and clearly 

show the high variability of biogeochemical processes particularly along the coast of 

the WAP. Further, the RaTS N- and C-isotopic data of PN and NO3
- show the potential 
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addition of sea-ice derived POM and replenishment of nutrients through vertical 

mixing.    

This study expands our knowledge of the dynamics of DOC and DON over time and 

space. It shows a high seasonality for DOC and co-production during phytoplankton 

production which contrasts with previous findings. DON concentrations respond 

differently and are controlled primarily by bacteria.  

Further, the data presented in this chapter and in chapter 3 of this thesis show the 

importance of ammonium measurements. Ammonium measurements are essential to 

precisely calculate DON concentrations but more importantly, the high concentrations 

of NH4
+ during the growth phase in 2015/16 are unexpected. While these findings 

agree with the high spatial and temporal variability of the WAP ecosystem, it also 

shows that previously suggested dynamics of NH4
+ accumulation in late summer / 

early autumn cannot be generally assumed.   

The data available for this study allow for suggestions of mechanisms involved but 

cannot define exclusively the mechanisms controlling DOM dynamics with certainty. 

Further research is necessary to investigate the contribution of glacial meltwater to 

DOM dynamics in terms of glacially-sourced DOM but more importantly of 

phytoplankton and bacterial response to a changing climate. A changing climate will 

affect the physics (temperature, salinity, sea-ice cover, glacial discharge, 

stratification) of the WAP ecosystem with subsequent effects on primary production, 

the bacterial response and the response of higher trophic levels. All these factors 

affect organic matter cycling in the WAP ecosystem, as shown in this study. 

 

 

 



Dittrich, 2019  

204 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dittrich, 2019  

205 
 

CHAPTER 6 

Conclusion 

6.1 Major Findings of This Thesis 

In this doctoral thesis, the role and the dynamics of organic matter cycling at the west 

Antarctic Peninsula were investigated. DOC studies along the WAP are scarce and 

the cycling of both DOC and DON has not been investigated before. Based on these 

few previous studies, this thesis hypothesised that (1) no or only very little DOM is 

produced and released by in situ phytoplankton production with a temporal offset 

between POM and DOM. (2) This DOM has been hypothesised to be of high 

bioavailability due to low C:N ratios so that DOM cycling in the upper ocean is efficient 

and hence export is minimal. At last, it was hypothesised that (3) changing physical 

and biogeochemical conditions will influence DOC and DON concentrations, e.g. with 

allochthonous contribution of DOM from sea ice or meteoric water being negligible. 

Four different data sets were investigated for spatial and temporal variability in DOM 

dynamics to investigate these hypotheses. The data for spatial analysis were 

collected during an annual research cruise covering a sampling grid west of the 

Antarctic Peninsula as part of the US PAL LTER programme. The data for the 

temporal analysis were collected over three consecutive austral summer seasons 

(2013-2015) at the UK Rothera Research Station. The hypotheses were tested with 

these data sets and the following has been found: 

 

(1) No / little DOM production and in situ release by phytoplankton 

In conclusion, it was shown that DOC and DON concentrations spatially remain low 

(DOC 38.13 – 88.65 µmol C L-1; DON 1.70 – 10.52 µmol N L-1). The majority of in situ 
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produced organic matter is partitioned into the particulate organic matter pool during 

phytoplankton blooms. However, on a temporal scale, DOC and DON showed high 

concentrations for short periods of time which are comparable to lower-latitude 

systems. Even though in situ DOM release by phytoplankton cannot be shown with 

the data available, highest DOC concentrations co-occur with peaks in POC 

concentrations in all three temporal datasets from the UK RaTS site suggesting the 

same mechanisms responsible for DOC release which partially disproves this 

hypothesis. Significant correlations between DOC, POC, nutrient uptake and 

chlorophyll a (all r2 > 0.45, p < 0.05) as well as C:N ratios close to the Redfield C:N 

ratio indicate in situ production and release of DOC during phytoplankton production. 

However, this only holds true for the build-up phase of the bloom. After the first 

primary production peak, DOC concentrations are not aligned with POC any longer 

and other mechanisms must be responsible for DOC cycling with bacterial 

degradation likely dominating production and removal. DON concentrations do not 

agree well with phytoplankton dynamics (p > 0.05). Therefore, it is suggested that 

production and removal mechanisms for DON are different from those for DOC and 

are likely more driven by bacteria than phytoplankton. However, periods of nutrient 

depletion leave DON as the predominant nitrogen species in the waters which might 

change the preferred nutrient source for phytoplankton from DIN to DON. These 

findings, however, only represent the situation of a coastal location in the Southern 

part of the WAP shelf sea and might not be representable for the entire WAP shelf. 

 

(2) High bioavailability / rapid degradation of DOM in the upper ocean 

In chapter 4, the PAL LTER data showed that bacterial abundance and activity are 

increased in the Southern coastal region of the WAP even though the first peak of 

primary production was not fully developed. Previous studies showed a temporal 
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offset between primary and bacterial production (Billen & Becquevort, 1991; Kim & 

Ducklow, 2016; Lancelot et al., 1991) with the hypothesised reason being low 

availability of bioavailable DOM for bacteria to break down. In this study, DOM of high 

bioavailability (low C:N) is shown to exist in areas of high bacterial activity which often 

coincide with regions of increased freshwater influx and stratification. 

The spatial analysis of DOM variability showed that both DOC and DON 

concentrations decrease with depth to values of refractory DOM found in CDW which 

can also be shown in upper ocean depth-integrated DOC and DON data indicating 

efficient recycling of DOM in the upper water column. Further, bacterial activity is 

highest where DOM of low DOC:DON ratios is highest. This supports the hypothesis 

of effective DOM cycling by bacteria in the upper ocean. 

The isotopic data in chapter 5 support the suggestion of different stages in timing of 

the progressing phytoplankton growing season in the PAL LTER sampling grid: Open-

ocean and shelf stations show higher rates of nitrification and remineralisation than 

the coastal stations which puts these stations into a later stage of the phytoplankton 

bloom. δ15NPN at the coastal stations, on the other hand, show freshly produced PN 

with recent sea-ice retreat. Further, the isotopic data along with gradients of PN 

accumulation and nutrient drawdown in the upper ocean support this thesis’ findings 

of intense and efficient upper ocean cycling of both particulate organic matter and 

labile dissolved organic matter so that only little OM is being exported to greater 

depths. 
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(3) Effects of changing physical and biogeochemical conditions tested based on 

changes in (i) meltwater contribution, (ii) salinity and temperature, (iii) 

inorganic nutrient concentrations, (iv) phytoplankton composition or (v) 

bacterial activity 

Rapid freshening events in the surface and nitrate depletion events at the RaTS site 

were used to test for stress-related release of DOM by phytoplankton. It is shown that 

DOC concentrations are increased during and shortly after rapid freshening events 

which might be due to osmotic cell stress causing the cell to expel DOM (Rijstenbil et 

al. 1989). DOM concentrations are increased with nitrate depletion, but this might be 

due to increased organic matter production in general. Stress-related DOM release 

cannot be shown for nutrient depletion but is a possible additionally occurring 

mechanism.  

By investigating the relationship of DOC and DON concentrations along the coast with 

the contribution of sea-ice or meteoric meltwater input and by using mass balance 

equations to calculate the theoretical DOM contributions from these sources, it was 

argued that the direct contribution from both sea ice and glaciers is minor. For glacial 

sources, even though DOC and DON concentrations might be high in the source 

material, the dilution with CDW leads to only minor contribution to the surface waters. 

Sea-ice melt, on the other hand, contains much higher DOC and DON concentrations 

which is potentially highly labile. However, due to the highly dynamic patterns of sea-

ice movement and sea-ice melt vs. formation processes, the contribution of sea ice is 

locally minimal unless all ice melts in a limited area over a short period of time. The 

2014-15 sea ice data show high concentrations of DOM in parts of the analysed sea-

ice cores which could potentially be introduced to the surface ocean upon melting. 

However, release of high concentrations would only occur if a rapid melting event 

occurred with most ice melting in one location which is unlikely.  
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Nonetheless, surface-water seeding from sea ice, or even glacial meltwater, with 

DOM, POM, algae and bacteria, in addition to physical changes such as increased 

stratification, changes in temperature and salinity, are likely to indirectly affect upper-

water column processes and DOM cycling. Both sea-ice and glacial DOM are 

suggested to be highly labile (Hood et al., 2009; McKnight et al., 1994) so that upon 

release, they could trigger an increase in bacterial activity.  

DOC and DON have been shown to be decoupled spatially and temporally. While 

DOC is in good agreement with phytoplankton parameters such as primary 

production, chlorophyll-a and POC concentrations, DON shows different dynamics. 

DON shows relationships with bacterial activity so that it was assumed to that most 

labile DON in WAP waters is a product of bacterial production.  

Ammonium concentrations measured at the RaTS site show an anti-correlation with 

DON supporting the idea of effective ammonification by bacteria. The ammonium 

released from these processes is rapidly cycled in the upper ocean as shown by the 

N-isotopic composition of both nitrate and PN indicating nitrification and 

remineralisation processes.  

 

6.2 Implications of this study 

The results of this thesis build upon the foundation of our understanding of DOC and 

DON dynamics at the WAP. This thesis underlines the close functional interactions 

between phytoplankton and bacterioplankton on a biogeochemical level with 

implications for the cycling of carbon and nitrogen along the WAP. Even though 

concentrations of DOM produced and cycled in these shelf waters are small compared 

to other regions, the results imply important findings for the regional carbon cycling. 

DOM has not been considered quantitatively in carbon budget calculations in this 
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region. The findings of this thesis show that a small but substantial fraction of primary 

production is funnelled into the DOM pool and is cycled within the upper ocean which 

has direct effects on the budget of carbon export and net production estimates. The 

overall carbon budget of the WAP cannot be completed with the data gained from this 

thesis. However, the findings of this thesis underline factors contributing and 

influencing the partitioning of organic matter into the DOM pool and what potential 

factors can feedback on DOC and DON cycling positively and negatively, such as 

changes in the physical state of the upper ocean (e.g. salinity and temperature) or 

biogeochemical changes (e.g. nutrient availability, phytoplankton and 

bacterioplankton composition). These changes are most likely to occur along the 

WAP with changing climatic conditions. From these findings, further research can be 

targeted at specific parts of the DOM cycle (see Recommendations for future 

research). To complete the WAP carbon budget, additional research into inorganic 

and organic carbon cycling, particularly with increasing ocean acidification and rising 

temperatures, is needed as well as data coverage throughout the winter season. 

Only a few previous studies actively looked into dissolved organic matter along the 

West Antarctic Peninsula. These previous studies have found generally low 

concentrations of DOC in surface waters of the WAP, even during high primary 

production, which is reasoned with various hypotheses of which few have been tested 

(e.g. Ducklow et al., 2011). From these findings, other hypotheses were generated 

stating e.g. only small in situ production and release of DOC from primary producers. 

Further, a time lag between primary and bacterial production was argued to play an 

important role in DOC production and release. DON concentrations were not 

measured in any of these studies. There have not been any WAP studies, as of yet, 

quantifying how much DOM is released directly by primary producers during primary 

production or by bacteria during the degradation of particulate organic matter. In many 
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studies, allochthonous supply of DOM from e.g. glacial runoff, is stated to be 

negligible. However, along the WAP, concentrations of DOM in glacial runoff have not 

been analysed. Other studies from both the Arctic and Antarctica show that DOM 

concentrations in glacial meltwater can be high (Barker et al., 2006; Bhatia et al., 

2010; Christner et al., 2014; Lafrenière & Sharp, 2004; Lyons et al., 2007). Even 

though this study shows only small in situ contribution of DOM from sea ice and 

glaciers, increasing freshwater input from e.g. increasing meltwater influx can have 

direct and indirect effects on DOM concentrations and cycling in the surface waters. 

First, the fraction of freshwater flux is projected to increase which will increase the 

fraction of DOM being introduced. But more importantly, increasing freshwater 

introduction to the WAP shelf sea will increase stratification and change the physical 

characteristics of the upper ocean with likely shifts in phytoplankton and bacterial 

species compositions.  

This study shows immediately increased bacterial activity with increasing 

concentrations of low C:N DOM. If future projections hold true, the predicted shift in 

phytoplankton composition dominance to cryptophytes or haptophytes likely involves 

increased DOM production. Additionally, the overall carbon fixation might decrease 

due to lower carbon uptake by smaller phytoplankton cells. At the same time, the 

increasing proportion of DOM to TOM will potentially trigger increased bacterial 

activity and microzooplankton grazing, opposed to macrozooplankton grazing, on 

POM. This, in turn, could enhance upper-ocean carbon cycling and reduce carbon 

export. 

Another important finding of this thesis are that partially DOC and DON concentrations 

can be lower than background concentrations indicating another important 

mechanism taking place in the upper ocean which requires further research: The 

potential breakdown of refractory DOM which has either been triggered abiotically by 
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UV radiation or biotically by the priming of bacteria (chapter 3). Both mechanisms are 

understudied in WAP waters and require further research. Considering the intense 

UV radiation in the Southern Ocean and the Southern Ocean being a major region of 

upwelling, hence, direct introduction of refractory organic matter to the surface waters, 

these two mechanisms stand out as an urgent area of future research.   

The ammonium measurements collected at the RaTS site show that ammonium 

concentrations can reach concentrations higher than ambient DON concentrations 

early in the growing season which contradicts previous findings. Ammonium is often 

preferred over nitrate by phytoplankton so that these findings represent important 

considerations for understanding the local nitrogen cycle. The high inter-annual 

variability in combination with the projected continuation of a warming local climate 

underline the importance of implementing efforts to fully understand the WAP 

ecosystem. 

 

6.3 Limitations of this study 

This study gives a first insight into the dynamic and complex cycling of DOM at the 

WAP from bulk DOC and DON concentrations. While the methodological advances 

and the analytical precision for DOC measurements have improved considerably over 

the last few decades, DON measurements are always accompanied with a large error 

(see chapter 2: Methodology). Additionally, the samples collected during the PAL 

LTER cruise lack the ammonium component. Even though ammonium concentrations 

have been shown to be minor in the upper ocean during the productive season of the 

WAP in previous studies, the RaTS data of this thesis show that interannual variability 

is high and ammonium can be present at high concentrations throughout the 

phytoplankton growing season. DON concentrations only cover a narrow range of 
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mostly low concentrations so that elevated ammonium concentrations at a specific 

date or location can impact the results significantly.  

Bulk concentrations of DOC and DON give a good first impression of cycling 

processes, particularly in order to quantify carbon and nitrogen being partitioned into 

the dissolved organic pool. Despite its common use in previous studies and this one, 

the simple separation of labile and semilabile fractions of DOM by subtracting the 

background values does not represent a precise measure of bioavailable DOM in the 

upper ocean. Particularly in the Southern Ocean where UV radiation during the 

summer months is more penetrating than elsewhere, refractory DOM upwelled from 

CDW might undergo abiotic transformation processes with the possible breakdown of 

refractory DOM to DOM compounds of higher lability or to inorganic compounds. 

Concentrations below background are indicative of such processes but could also be 

the result of highly active bacteria being able to degrade refractory material from 

depths. Quantitative studies on the destructive characteristics of UV radiation on 

refractory DOM in the region are needed to assess this effect (e.g. Medeiros et al., 

2015).  

This study shows that DOC and DON are undergoing different cycling processes. 

DOC is more likely controlled by phytoplankton and only partially by bacteria while 

DON is mostly controlled by bacteria. The PAL LTER and RaTS data sets 

complement each other by contributing microbial parameters (PAL LTER) and 

phytoplankton species assemblage data (RaTS). However, the patchiness of 

biological activity in the WAP shelf waters, especially along the coast, requires station-

wise information of all these factors in order to draw more conclusive findings. 

Additionally, because of the high spatial and interannual variability of the system, the 

findings of this study cannot account for long-term changes and shifts in the 
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ecosystem. This is shown in the different dynamics of DOC and DON in the RaTS 

2015/16 data compared to 2013/14 and 2014/15. 

While there is a vast suite of analytical methods available in order to characterise the 

chemical composition of DOM compounds, the development and advancement of two 

methodological approaches need some extra attention: 

First, a direct measure of DON concentrations would decrease the error that comes 

with TDN measurements and would increase the confidence in stating DON 

concentrations. In terms of the measurements conducted at the WAP, ammonium 

measurements should be an integrated part of the PAL LTER and RaTS research 

programme and cover full depth profiles.  

Second, the N-isotopic composition of DON (δ15NDON) would further our knowledge 

and understanding of the cycling of N within the system. Even though this study shows 

significant relationships between DON and bacterial parameters, the cycling of DON, 

including sources and sinks, cannot be reproduced. By analysing the N-isotopic 

compositions of all N-containing compounds present in the system (DIN, DON, PN), 

pathways, sinks and sources can be distinguished with more certainty and precision 

than with the data currently available. While there is a method available for the 

determination of the δ15NDON, it suffers from the same restrictions as the analysis of 

bulk DON concentrations as there is no direct method for DON only. These limitations 

restrict the δ15NDON analysis to water masses in which DON concentrations are high 

and nitrate concentrations are low or depleted. High-nitrate low-DON waters, such as 

found in the Southern Ocean, represent a methodological challenge.  

The development of such method was a major objective of this doctoral project. 

Multiple experiments were conducted in order to adapt the existing method developed 

by Knapp et al. (2005) for Southern Ocean water samples. The applied method is a 

combination of the commonly used persulfate oxidation and the denitrifier method. 
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Persulfate oxidation converts dissolved organic nitrogen compounds into nitrate. The 

denitrifier method utilises denitrifying bacteria which convert nitrate to N2O gas which 

can then be analysed for its N-isotopic composition. Samples have to be treated for 

TDN and for nitrate separately in order to calculate the contribution of nitrate to the 

TDN pool. Problems already associated with the well-developed method are mainly 

contamination issues. Persulfate is produced under nitrogen-enriched conditions so 

that even low-nitrogen persulfate batches can contain concentrations of nitrogen too 

high for this analysis. One way to reduce contamination is the recrystallization of the 

persulfate reagent by boiling persulfate in DI water and recrystallizing at low 

temperatures multiple times. However, multiple vigilant tests have shown that 

contamination could be reduced but not avoided due to the multitude of analytical 

steps involved in the whole process from sample preparation to analysis. Further, the 

presence of high nitrate concentrations in combination with low DON concentrations 

in the waters led to results in which the error of the measurements would exceed the 

results and blank measurements. As long as there is no method to successfully 

separate DON from the TDN pool, the N-isotopic composition of DON in high-nutrient 

waters remains unresolvable.   

 

6.4 Recommendations for future research 

The fact that some of the results of this thesis contradict previous studies and/or 

deliver new findings underlines the necessity of further research in this field. This 

study shows that DOM cycling might be responsible for a small but substantial part of 

the carbon budget at the WAP. In order to fully understand the implications of DOM 

cycling, I recommend establishing DOM measurements as baseline measurements 

along with inorganic macronutrients, phytoplankton parameters such as chlorophyll 

concentrations, primary production rates and phytoplankton species assemblages 



Dittrich, 2019  

216 
 

and microbial parameters, the least abundance and activity rates, as part of the 

regular sampling schemes of both the PAL LTER and the RaTS programme.  

Even though DOM concentrations are low, sampling and analysing the seasonal 

progression in the chemical composition of DOM compounds can show major 

sources, sinks and transformation processes of DOM compounds. In combination 

with microbial genomic analysis, adaptations of bacteria to the availability of certain 

DOM compounds can be established and pathways of organic and inorganic nutrients 

can be followed in more detail. Winter measurements will show production and 

removal processes by bacteria and archaea with minimal phytoplankton contribution. 

For example, through the application of metagenomics, Bowman & Ducklow (2015) 

discovered that metabolic pathways of bacteria at the WAP are inherently different at 

surface and deeper waters and that there is a significant difference between summer 

and winter. Targeting the metabolic gene expressions of bacteria at the WAP will 

enhance our understanding of which specific DOM compounds are being rapidly 

cycled and which compounds might represent refractory DOM. 

A separation and chemical characterisation of dissolved primary production, the 

photosynthates directly released during primary production by phytoplankton, could 

give insight into the molecular structure of these commonly highly labile compounds 

and could potentially indicate the paths of these compounds through the microbial 

loop. 

In order to further our understanding of mechanisms involved in the cycling of DOC 

and DON along the WAP, advanced experiments and long-term observations will be 

helpful. Incubation experiments to establish a baseline for DOM production by local 

phytoplankton (e.g. Romera-Castillo et al., 2010; Sarmento et al., 2013) and bacteria 

and bacterial DOM consumption (e.g. Kujawinski et al., 2016) can be set up in a 

simple manner. These incubation experiments can be set up to also investigate 
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changes in DOM dynamics with rising temperatures and ocean acidification – both of 

which are observable changes in the Southern Ocean and both of which have been 

suggested to increase the bacterial degradation of DOM (Endres et al., 2014; Engel 

et al., 2014) but also to reduce the formation of microgels from DOM compounds 

(Chen et al., 2015). The contribution of sea ice and glacial meltwater can be 

addressed by sampling at the ice-ocean interface. Further, winter observations are 

urgently needed to understand if and how DOM is being cycled when there is 

negligible primary production. Winter sampling along the WAP certainly represents 

one of the biggest challenges due to high sea-ice cover, darkness and strong storms 

so that sampling can only occur from research stations and not from research vessels. 

The challenge of winter sampling is currently being faced by the development and 

deployment of autonomous gliders which can navigate under sea ice (e.g. Couto, 

2017; Couto et al., 2017, 2016; Kohut et al., 2018; Schofield et al., 2015). 

Fluorescence sensors are being developed for the detection of chromophoric and 

fluorescent DOM and some studies show promising results (Fichot & Benner, 2012; 

Loginova et al., 2015; 2016). However, sensors like the MiniFluo UV (Cyr et al. 2017) 

are restricted to the detection of tryptophan-like and phenanthrene-like fluorophores. 

Tryptophan is naturally occurring but detectable concentrations are mostly found in 

locations of waste water entering the ocean. Phenanthrene is an anthropogenically 

introduced low-molecular-weight compound resulting from incomplete combustion of 

carbonaceous materials. Neither of these compounds are likely to be found at 

detectable levels in Antarctic waters. More progress has been made with the 

development of a sensor for the detection of chromophoric DOM (Jiang et al. 2019) 

so that in the near future, autonomous measurements of DOM in winter and 

underneath sea ice might be possible.  
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These advances will enhance our understanding of the cycling of carbon in the 

dissolved organic form at the WAP but also generally in cold regions. As such, 

contributions to Earth System Models may be available soon for which Southern 

Ocean data is still scarce. These models enhance our understanding of the global 

cycling of oceanic carbon (e.g. Letscher et al. 2015) which is most important in order 

to understand the current climate and our impacts on it.  
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8. Appendix 

 

 

Table 1: List of all analyses included in this thesis, the method and where the analyses were 

conducted. Analysis in bold font were conducted by the author Ribanna Dittrich. 

Parameter Method Institute of Analysis 

DOC / TDN High Temperature Combustion School of GeoSciences 
University of Edinburgh 

POC:N, δ13C-
POC, δ15N -PN    

High temperature combustion 
with isotope mass spectrometry 

School of GeoSciences, 
University of Edinburgh 

δ15N-NO3
- Denitrifier method, IRMS School of GeoSciences, 

University of Edinburgh 

PAL LTER  
NO3

-, PO4
-, 

SiOH4
- 

Segmented flow injection analysis Ducklow laboratory, Lamont 
Doherty Earth Observatory 
 

RaTS 
NO3

-, PO4
-, 

SiOH4
- 

Segmented flow injection analysis Plymouth Marine Laboratory 
 

Primary 
production 

In situ 14C incubation Schofield Group, on-board 
Laurence M. Gould 

Bacterial 
Abundance 

Flow Cytometry following Gasol 
and del Giorgio 2000 

Ducklow group, on-board 
Laurence M. Gould 

Bacterial 
Production 

3H-leucine incorporation modified 
from Smith and Azam 1992 

Ducklow group, on-board 
Laurence M. Gould 

δ18OH2O Equilibration method following 
Epstein and Mayeda (1953) / mass 
spectrometry 

NERC Isotope Geosciences 
Laboratory at the British 
Geological Survey 

Dissolved 
Inorganic Carbon 

Coulometry following Knap et al., 
(1996) 

Ducklow laboratory, Lamont-
Doherty Earth Observatory 

Phytoplankton 
pigmentation  

High-performance liquid 
chromatography 

Faculty of Science and 
Engineering, University of 
Groningen 
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Table 2.1: Full-depth profiles of all parameters used in analyses of chapter 3 from RaTS 

season 2013/14. DOM, POM and inorganic nutrients are stated in μmol x L-1, chlorophyll a in 

mg m-3. 

 

 

 

 

Date Depth DOC DON DOCDONPOC PON POCPONChla NO3
- NO2

- NH4
+ PO4

- SI(OH)4
-

16/11/2013 5 49.15 4.97 9.89 4.34 0.63 6.89 0.15 26.81 0.11  - 1.87 70.03

16/11/2013 15 42.16 10.13 4.16 4.25 0.65 6.54 0.14 26.69 0.08 0.72 1.91 70.74

16/11/2013 40 41.92  -  - 2.51 0.42 5.98 0.22 29.15 0.04  - 2.04 74.52

19/11/2013 5 47.36 7.23 6.55 3.54 0.51 6.94 0.14 27.75 0.11 0.25 1.93 72.13

19/11/2013 15 44.95 6.67 6.74 3.80 0.65 5.85 0.14 28.00 0.09  - 1.96 73.18

19/11/2013 40 47.42 6.09 7.79 2.44 0.36 6.78 0.31 29.48 0.04  - 2.05 75.88

19/11/2013 100 42.91 6.50 6.60 1.10 0.12 9.17 0.11 31.78 0.01  - 2.27 86.99

25/11/2013 0 51.28 6.92 7.41 4.55 0.71 6.41 0.07 28.22 0.08 0.25 1.95 72.97

25/11/2013 5 48.56 5.16 9.40 4.25 0.69 6.16 0.11 28.43 0.10  - 1.96 74.60

25/11/2013 15 42.10 4.80 8.76 4.29 0.75 5.72 0.12 28.95 0.07 0.23 2.02 77.72

25/11/2013 25 40.36 5.38 7.50 4.08 0.68 6.00 0.24 29.06 0.07  - 2.04 76.19

25/11/2013 40 62.44 4.80 13.01 3.73 0.62 6.02 0.39 29.55 0.07  - 2.05 80.44

28/11/2013 0 40.54 7.18 5.65 4.87 0.84 5.80 0.09 24.53 0.08 0.28 1.75 68.36

28/11/2013 15 40.42 6.72 6.01 5.66 1.02 5.55 0.16 26.99 0.09 0.24 1.93 73.40

02/12/2013 0 44.83 4.93 9.09 5.74 1.07 5.36 0.13 27.02 0.12 0.39 1.87 72.21

02/12/2013 5 41.98 7.90 5.31 5.49 1.05 5.23 0.15 25.57 0.12  - 1.79 71.29

02/12/2013 15 45.83 4.09 11.21 6.70 1.21 5.54 0.14 27.61 0.11 0.44 1.89 73.60

02/12/2013 25 42.40 7.09 5.98 6.29 1.17 5.38 0.20 26.10 0.10  - 1.85 73.53

02/12/2013 40 42.94 6.64 6.47 5.86 1.03 5.69 0.47 28.31 0.06  - 1.97 76.24

05/12/2013 0 43.12 5.65 7.63 7.14 1.35 5.29 0.14 26.19 0.18 0.19 1.77 71.48

05/12/2013 15 42.73 4.71 9.07 8.65 1.73 5.00 0.20 26.41 0.12 0.16 1.80 73.10

09/12/2013 0 45.97 5.14 8.94 19.77 3.86 5.12 0.29 23.17 0.20 0.66 1.56 68.75

09/12/2013 5 48.21 5.60 8.61 24.47 4.81 5.09 0.29 23.17 0.20  - 1.56 68.75

09/12/2013 25 45.56 5.43 8.39 14.82 2.76 5.37 1.41 23.93 0.08  - 1.63 70.49

09/12/2013 40 41.16 7.15 5.76 11.93 2.21 5.40 1.09 25.98 0.06  - 1.80 73.23

13/12/2013 5 53.86 3.68 14.64 68.42 12.55 5.45 5.62 13.14 0.21  - 0.80 60.77

13/12/2013 15 48.51  -  - 21.49 4.18 5.14 2.85 23.15 0.09 0.27 1.50 68.16

13/12/2013 25 43.09 4.96 8.69 12.19 2.17 5.62 1.36 26.02 0.06  - 1.73 71.29

13/12/2013 40 43.93 5.17 8.50 5.92 1.04 5.69 0.78 28.03 0.06  - 1.91 75.43

19/12/2013 0 88.65 8.46 10.48 166.26 18.79 8.85  - 0.04 0.01  - 0.03 28.63

24/12/2013 0 76.09 5.83 13.06 119.72 10.18 11.76 1.77 0.05 0.00  - 0.03 0.56

24/12/2013 5 55.08 6.41 8.59 117.22 14.86 7.89 13.02 2.85 0.07  - 0.11 2.37

24/12/2013 15 50.27 8.02 6.27 50.95 7.77 6.56 9.23 16.14 0.11  - 1.15 41.88

24/12/2013 25 60.02 5.87 10.22 12.21 2.03 6.01 3.27 25.48 0.09  - 1.80 69.51

24/12/2013 40 55.03 5.73 9.60 6.54 0.94 6.96 0.26 29.14 0.08  - 2.06 78.98

28/12/2013 0 54.35 4.52 12.02 78.95 10.53 7.50 1.16 0.96 0.06  - 0.01 9.90

28/12/2013 5 57.69 6.59 8.75 51.55 7.89 6.53 6.56 11.77 0.12  - 0.66 39.00

28/12/2013 15 48.01 5.72 8.39 45.55 7.45 6.11 3.26 16.44 0.12  - 0.96 47.26

28/12/2013 25 41.09 5.15 7.98  -  -  - 1.37 26.93 0.10  - 1.83 69.38

28/12/2013 40 53.87 5.56 9.69 6.29 0.79 7.96 0.26 29.47 0.10  - 2.04 77.39

30/12/2013 15 45.04 4.24 10.62 24.16 3.61 6.69 4.87 24.50 0.10 1.11 1.67 63.42

30/12/2013 100 42.78  -  - 1.64 0.23 7.13 0.11 38.33 0.09  - 2.78 103.12

06/01/2014 0 52.40 4.76 11.01 48.41 5.78 8.38 0.40 0.05 0.00 0.24 0.01 3.07

06/01/2014 5 50.33 5.74 8.77 50.55 8.10 6.24 1.99 6.25 0.12  - 0.26 16.73

06/01/2014 15 43.85 4.76 9.21 27.94 4.89 5.71 4.61 18.62 0.12 1.26 1.29 43.07

06/01/2014 25 48.36 7.00 6.91 19.69 3.36 5.86 2.45 22.47 0.11  - 1.62 56.28

06/01/2014 40 40.97  -  - 8.10 1.24 6.53 0.83 27.45 0.12  - 2.02 73.29

08/01/2014 5 51.43 5.84 8.81 37.46 6.26 5.98  - 0.48 0.03  - 0.04 6.89

15/01/2014 0 66.28 4.63 14.32 9.78 1.97 4.96 0.14 22.21 0.14 1.38 1.56 59.02

15/01/2014 5 45.94 5.72 8.03 9.43 1.96 4.81 0.12 23.35 0.14  - 1.65 62.66

15/01/2014 15 54.39 4.52 12.03 6.03 1.29 4.67 0.13 25.83 0.15 1.81 1.91 70.66

15/01/2014 25 56.85 7.52 7.56 6.84 1.44 4.75 0.17 24.66 0.14  - 1.78 65.98

15/01/2014 40 45.06 6.28 7.18 5.02 1.05 4.78 0.30 28.40 0.15  - 2.07 75.51
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Table 2.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 3 from 

RaTS season 2013/14. Temperature in °C, density in kg m-3, MLD in meters, sea-ice cover 

in scores from 1 to 10 with 10 – 100% sea-ice cover. %sim=%sea ice meltwater, %met = 

%meteoric meltwater (glacial), %cdw = % circumpolar deepwater 

 

 

 

Date Depth

Temper-

ature Density Salinity MLD SeaIce %sim %met %cdw

16/11/2013 5 -1.58 27.08 33.65 8 8  -  -  -

16/11/2013 15 -1.54 27.24 33.84  -  - -0.14 2.37 97.77

16/11/2013 40 -1.39 27.31 33.94  -  -  -  -  -

19/11/2013 5 -1.49 27.20 33.80 23 4  -  -  -

19/11/2013 15 -1.53 27.22 33.82  -  - -0.22 2.48 97.74

19/11/2013 40 -1.43 27.29 33.91  -  -  -  -  -

19/11/2013 100 -0.57 27.45 34.14  -  -  -  -  -

25/11/2013 0 -1.24 27.23 33.85 53 1 -0.23 2.42 97.81

25/11/2013 5 -1.26 27.24 33.85  -  -  -  -  -

25/11/2013 15 -1.18 27.25 33.88  -  - -0.06 2.19 97.87

25/11/2013 25 -1.11 27.26 33.89  -  -  -  -  -

25/11/2013 40 -1.04 27.27 33.91  -  -  -  -  -

28/11/2013 0 -1.16 27.13 33.72 10 2 -0.24 2.79 97.44

28/11/2013 15 -0.93 27.19 33.81 -0.17 2.49 97.68

02/12/2013 0 -0.76 27.05 33.65 11 4 -0.08 2.88 97.21

02/12/2013 5 -0.68 27.09 33.69  -  -  -  -  -

02/12/2013 15 -0.80 27.13 33.74  -  - 0.16 2.41 97.44

02/12/2013 25 -1.04 27.18 33.79  -  -  -  -  -

02/12/2013 40 -1.15 27.24 33.87  -  -  -  -  -

05/12/2013 0 0.03 26.87 33.47 2 5 -0.55 3.76 96.79

05/12/2013 15 -0.73 27.10 33.70 -0.19 2.80 97.39

09/12/2013 0 0.51 26.78 33.38 8 6  -  -  -

09/12/2013 5 0.51 26.78 33.38  -  -  -  -  -

09/12/2013 25 -0.75 27.13 33.75  -  -  -  -  -

09/12/2013 40 -1.15 27.22 33.84  -  -  -  -  -

13/12/2013 5 0.38 26.87 33.49 1 6  -  -  -

13/12/2013 15 -0.72 27.08 33.68  -  - -0.13 2.81 97.32

13/12/2013 25 -1.04 27.16 33.77  -  -  -  -  -

13/12/2013 40 -1.14 27.24 33.86  -  -  -  -  -

19/12/2013 0  -  -  -  - 1  -  -  -

24/12/2013 0 0.69 26.09 32.54 2 3 1.46 4.85 93.70

24/12/2013 5 0.13 26.46 32.97  -  -  -  -  -

24/12/2013 15 -0.39 26.91 33.49  -  - -0.26 3.48 96.78

24/12/2013 25 -0.84 27.08 33.68  -  -  -  -  -

24/12/2013 40 -1.14 27.24 33.87  -  -  -  -  -

28/12/2013 0 1.19 26.32 32.86 2 3 0.66 4.55 94.79

28/12/2013 5 0.32 26.81 33.41  -  -  -  -  -

28/12/2013 15 -0.96 27.01 33.59  -  - -0.03 3.01 97.02

28/12/2013 25 -1.25 27.16 33.76  -  -  -  -  -

28/12/2013 40 -1.15 27.28 33.91  -  -  -  -  -

30/12/2013 15 -0.95 27.07 33.66 1 3 -0.45 3.14 97.31

30/12/2013 100 -0.21 27.49 34.21  -  -  -  -  -

06/01/2014 0 2.48 26.25 32.89 1 4 -0.85 5.66 95.19

06/01/2014 5 1.03 26.70 33.33  -  -  -  -  -

06/01/2014 15 -0.42 26.95 33.54  -  - 0.24 2.92 96.84

06/01/2014 25 -0.74 27.05 33.64  -  -  -  -  -

06/01/2014 40 -1.11 27.21 33.83  -  -  -  -  -

08/01/2014 5  -  -  -  - 3  -  -  -

15/01/2014 0 -0.50 27.00 33.59 5 3  -  -  -

15/01/2014 5 -0.63 27.04 33.64  -  -  -  -  -

15/01/2014 15 -0.82 27.10 33.71  -  - 0.21 2.48 97.32

15/01/2014 25 -0.92 27.15 33.76  -  -  -  -  -

15/01/2014 40 -1.07 27.26 33.89  -  -  -  -  -
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Table 2.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 3 from 

RaTS season 2013/14. DOM, POM and inorganic nutrients are stated in μmol x L-1, 

chlorophyll a in mg m-3. 

 

 

 

 

 

 

Date Depth DOC DON DOCDONPOC PON POCPONChla NO3
- NO2

- NH4
+ PO4

- SI(OH)4
-

18/01/2014 15 53.05 4.44 11.95 30.18 5.49 5.50 14.85 10.51 0.08 0.62 0.64 33.27

18/01/2014 100 43.82 5.20 8.43  -  -  - 1.08 32.63 0.16  - 2.31 90.85

21/01/2014 0 52.97 4.56 11.62 28.71 5.38 5.34 0.63 0.36 0.04 0.49 0.09 21.20

21/01/2014 5 58.22 5.91 9.85 46.81 8.63 5.42 3.70 0.09 0.03  - 0.10 22.36

21/01/2014 15 49.43  -  - 46.33 8.14 5.69 12.34 7.67 0.06 0.60 0.42 29.75

21/01/2014 25 55.05 8.26 6.66 37.74 6.56 5.75 10.30 9.22 0.07  - 0.55 33.10

21/01/2014 40 56.13 5.17 10.86 14.36 2.49 5.77 2.65 22.17 0.12  - 1.53 61.41

24/01/2014 15 62.96 4.98 12.64 36.19 7.29 4.96 12.24 5.94 0.05 1.42 0.39 26.32

27/01/2014 0 56.14 5.52 10.17 28.15 5.01 5.62 1.03 0.20 0.02 2.05 0.20 18.43

27/01/2014 5 59.32 8.13 7.30 35.72 6.42 5.56 2.50 0.32 0.03  - 0.18 18.80

27/01/2014 15 72.57 5.77 12.58 48.08 8.80 5.46 14.92 1.78 0.05 0.58 0.16 22.36

27/01/2014 25 50.50 6.19 8.16 45.24 9.37 4.83 12.66 4.06 0.06  - 0.29 25.44

27/01/2014 40 71.67  -  - 17.41 3.20 5.44 3.48 14.72 0.11  - 1.05 48.98

30/01/2014 15 56.00 7.61 7.36 60.56 10.77 5.62  - 1.99 0.05 0.48 0.12 19.94

03/02/2014 0 55.47 5.74 9.66 35.37 5.27 6.71  - 0.07 0.01 0.21 0.04 14.94

03/02/2014 5 61.72 7.83 7.88 55.23  -  -  - 0.06 0.03  - 0.06 13.66

03/02/2014 15 57.70 4.84 11.92 53.86 5.04 10.69  - 1.64 0.05 0.87 0.13 18.56

03/02/2014 25 61.54 6.93 8.88 33.83 6.14 5.51  - 5.99 0.07  - 0.47 29.08

03/02/2014 40 60.16 6.99 8.61 8.85 1.57 5.64  - 18.75 0.11  - 1.48 54.86

03/02/2014 75 59.18  -  - 2.59 0.43 6.02  - 38.67 0.18  - 2.95 121.52

06/02/2014 15 67.34 5.82 11.57 59.63 9.96 5.99  - 0.64 0.03  - 0.06 16.47

10/02/2014 0 63.14 4.70 13.43 45.36 7.00 6.48 1.50 1.54 0.05 0.23 0.09 17.48

10/02/2014 5 51.14 5.09 10.05 49.10 8.09 6.07 5.37 3.05 0.06  - 0.15 21.10

10/02/2014 15 52.68  -  - 22.69 3.97 5.72 8.01 13.50 0.09 2.10 0.98 44.93

14/02/2014 0 61.16 3.38 18.09 45.43 8.10 5.61 5.39 9.52 0.11 1.41 0.51 36.92

14/02/2014 5 48.69 5.67 8.59 31.80 5.98 5.32 13.30 10.76 0.10  - 0.69 39.43

14/02/2014 15 63.17 4.92 12.84 31.27 5.64 5.54 12.28 10.74 0.10 0.84 0.68 38.99

14/02/2014 25 57.48 6.01 9.56 28.87  -  - 13.45 12.23 0.10  - 0.81 42.81

14/02/2014 40 55.93 6.00 9.32 28.14 5.33 5.28 10.25 14.24 0.10  - 0.93 47.65

17/02/2014 0 53.36 4.58 11.65 9.15 1.65 5.55 0.22 12.44 0.09 2.82 1.01 38.20

17/02/2014 5 49.52 7.95 6.23 9.42 1.83 5.15 0.25 12.51 0.09  - 1.02 38.72

17/02/2014 15 52.59 5.03 10.46 10.35 2.05 5.05 0.69 12.59 0.09 2.62 1.01 39.01

17/02/2014 25 46.95 8.01 5.86 9.74 1.79 5.44 2.28 12.69 0.09  - 1.03 38.45

17/02/2014 40 51.70 7.60 6.80 9.63 1.89 5.10 2.63 13.72 0.09  - 1.07 41.02

19/02/2014 0 47.45 7.94 5.98 8.45 1.55 5.45  - 12.54 0.10  - 1.02 38.82

19/02/2014 5 49.76 6.65 7.48 9.34 1.91 4.89  - 12.50 0.10  - 1.03 39.15

19/02/2014 15 60.12 7.16 8.40 11.80 2.35 5.02  - 12.55 0.09  - 1.02 39.34

19/02/2014 25 55.48 7.05 7.87 8.00 1.53 5.23  - 12.99 0.10  - 1.04 39.02

19/02/2014 40 48.67 7.63 6.38 6.43 1.22 5.27  - 14.10 0.10  - 1.15 44.11

19/02/2014 75 44.38  -  - 4.20 0.86 4.88  - 30.16 0.12  - 2.27 84.59

19/02/2014 130 50.15 5.61 8.94  -  -  -  - 34.91 0.11  - 2.50 96.00

21/02/2014 15 49.92 5.42 9.21 9.49 1.83 5.19 1.43 12.93 0.10 2.45 1.02 38.82

25/02/2014 15 51.21 6.26 8.18 11.65 2.22 5.25 1.79 16.82 0.11  - 1.27 50.88

25/02/2014 100 41.01 5.24 7.83 2.63 0.41 6.41 0.09 34.35 0.10  - 2.48 99.82

27/02/2014 0 52.59 4.72 11.14 11.96 2.36 5.07 0.40 15.00 0.12 2.10 1.11 44.81

27/02/2014 5 44.68 6.59 6.78 16.97 3.09 5.49 0.51 14.96 0.12  - 1.08 44.18

27/02/2014 15 61.66 4.48 13.76 14.45 2.74 5.27 2.05 15.05 0.12 2.20 1.08 45.06

27/02/2014 25 49.42 8.17 6.05 16.91 3.31 5.11 4.22 15.22 0.12  - 1.09 44.57
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Table 2.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 3 and 5 

from RaTS season 2013/14. Temperature in °C, density in kg m-3, MLD in meters, sea-ice 

cover in scores from 1 to 10 with 10 – 100% sea-ice cover. %sim = % sea ice meltwater, 

%met = %meteoric meltwater, %cdw = %circumpolar deepwater. 

 

 

 

 

Date Depth

Temper-

ature Density Salinity MLD SeaIce %sim %met %cdw

18/01/2014 15 -0.55 26.40 32.85 8 2  -  -  -

18/01/2014 100 -0.52 27.41 34.10  -  -  -  -  -

21/01/2014 0 2.01 26.12 32.68 3 2 2.761 3.393 93.846

21/01/2014 5 0.84 26.23 32.72  -  -  -  -  -

21/01/2014 15 -0.35 26.43 32.90  -  - 2.282 3.139 94.579

21/01/2014 25 -0.37 26.52 33.01  -  -  -  -  -

21/01/2014 40 -0.71 27.00 33.58  -  -  -  -  -

24/01/2014 15 -0.39 26.40 32.86 4 1 2.673 2.941 94.386

27/01/2014 0 1.12 26.18 32.69 3 1 1.935 4.034 94.031

27/01/2014 5 0.75 26.25 32.75  -  -  -  -  -

27/01/2014 15 0.63 26.31 32.81  -  - 2.385 3.342 94.273

27/01/2014 25 0.60 26.32 32.83  -  -  -  -  -

27/01/2014 40 -0.40 26.78 33.32  -  -  -  -  -

30/01/2014 15  -  -  -  - 4 2.399 3.218 94.383

03/02/2014 0  -  -  -  - 5  -  -  -

03/02/2014 5  -  -  -  - 5  -  -  -

03/02/2014 15  -  -  -  - 5  -  -  -

03/02/2014 25  -  -  -  -  -  -  -  -

03/02/2014 40  -  -  -  -  -  -  -  -

03/02/2014 75  -  -  -  -  -  -  -  -

06/02/2014 15  -  -  -  - 1  -  -  -

10/02/2014 0 -0.20 25.97 32.33 1 6 1.292 5.579 93.129

10/02/2014 5 0.11 26.35 32.82  -  -  -  -  -

10/02/2014 15 -0.21 26.62 33.14  -  - 1.08 3.414 95.506

14/02/2014 0 -0.15 26.51 33.01 30 1 1.146 3.737 95.117

14/02/2014 5 -0.09 26.52 33.02  -  -  -  -  -

14/02/2014 15 -0.11 26.53 33.03  -  - 1.343 3.513 95.144

14/02/2014 25 -0.12 26.54 33.05  -  -  -  -  -

14/02/2014 40 -0.33 26.68 33.21  -  -  -  -  -

17/02/2014 0 -0.15 26.38 32.85 13 1 1.837 3.644 94.519

17/02/2014 5 -0.15 26.38 32.85  -  -  -  -  -

17/02/2014 15 -0.20 26.46 32.94  -  - 1.823 3.39 94.787

17/02/2014 25 -0.20 26.52 33.01  -  -  -  -  -

17/02/2014 40 -0.25 26.57 33.08  -  -  -  -  -

19/02/2014 0  -  -  -  - 2  -  -  -

19/02/2014 5  -  -  -  - 2  -  -  -

19/02/2014 15  -  -  -  - 2  -  -  -

19/02/2014 25  -  -  -  -  -  -  -  -

19/02/2014 40  -  -  -  -  -  -  -  -

19/02/2014 75  -  -  -  -  -  -  -  -

19/02/2014 130  -  -  -  -  -  -  -  -

21/02/2014 15 -0.12 26.44 32.92 8 1 2.446 2.973 94.581

25/02/2014 15 -0.50 26.78 33.32 8 1  -  -  -

25/02/2014 100 -0.04 27.49 34.23  -  -  -  -

27/02/2014 0 -0.16 26.53 33.03 39 2 1.358 3.515 95.127

27/02/2014 5 -0.17 26.54 33.04  -  -  -  -  -

27/02/2014 15 -0.16 26.55 33.05  -  - 1.293 3.506 95.201

27/02/2014 25 -0.16 26.55 33.05  -  -  -  -  -



Dittrich, 2019  

248 
 

Table 3.1: Full-depth profiles of all parameters used in analyses of chapter 3 from RaTS 

season 2014/15. DOM, POM and inorganic nutrients are stated in μmol x L-1, chlorophyll a in 

mg m-3. 

 

 

 

 

Date Depth DOC DON DOC:DONPOC PON POC:PN Chla NO3
- NO2

- NH4
+ PO4

- SI(OH)4
-

10/11/2014 15 43.46 4.85 8.96 2.77 0.47 5.89 0.110 26.25 0.18 0.28 1.83 70.12

10/11/2014 50 42.87 5.04 8.51 1.87 0.28 6.68 0.342 27.07 0.16  - 1.88 71.23

14/11/2014 0 41.63 5.55 7.50 3.10 0.45 6.89 0.101 25.58 0.09 0.18 1.78 65.89

14/11/2014 15 54.24 4.64 11.69 3.21 0.50 6.42 0.169 26.27 0.08 0.32 1.80 66.92

14/11/2014 50 41.82 6.66 6.28 1.68 0.22 7.64 0.292 27.20 0.06  - 1.88 69.82

18/11/2014 5 43.46 4.80 9.05  -  -  - 0.050 26.64 0.15  - 1.84 67.82

18/11/2014 15 55.90 6.38 8.76 4.01 0.64 6.27 0.058 26.64 0.13 0.29 1.84 67.21

18/11/2014 30 45.82 4.65 9.85  -  -  - 0.070 27.84 0.03  - 1.92 71.38

22/11/2014 15 43.54 5.57 7.82 3.79 0.68 5.57 0.131 25.94 0.09  - 1.80 69.99

25/11/2014 0 42.59 5.60 7.61 4.28 0.68 6.29 0.054 25.45 0.15 0.30 1.80 69.77

25/11/2014 15 41.46 5.68 7.30 3.89 0.68 5.72 0.135 26.14 0.10 0.35 1.83 68.87

25/11/2014 40 41.26 5.46 7.56 2.98 0.54 5.52 0.412 26.97 0.08  - 1.89 72.11

04/12/2014 0 43.26 6.70 6.46 11.42 2.01 5.68 0.237 23.16 0.13 0.46 1.64 66.92

04/12/2014 15 48.20 4.44 10.86 12.02 2.16 5.56 0.784 23.58 0.11 0.96 1.67 65.80

09/12/2014 0 44.47 6.37 6.98 7.75 1.43 5.42 0.210 19.81 0.16  - 1.39 60.53

09/12/2014 5 44.05 5.45 8.09 9.15 1.70 5.38 0.342 22.55 0.14  - 1.57 63.97

09/12/2014 15 44.23 4.83 9.16 9.89 1.94 5.10 1.055 22.64 0.11  - 1.58 64.92

09/12/2014 40 42.86 7.05 6.08 4.66 0.85 5.48 1.185 23.76 0.08  - 1.66 62.55

12/12/2014 15 47.50 5.14 9.24 11.77 2.22 5.30 0.544 22.29 0.10 0.59 1.54 65.94

16/12/2014 0 44.99 5.92 7.60 4.66 0.79 5.90 0.164 24.65 0.11  - 1.73 69.31

16/12/2014 5 45.57 6.75 6.76 5.52 1.00 5.52 0.179 24.22 0.10  - 1.71 67.54

16/12/2014 15 42.44 5.49 7.73 6.35 1.15 5.52 0.265 24.63 0.10  - 1.71 68.80

16/12/2014 30 42.76 7.04 6.07 6.09 1.08 5.64 0.764 24.62 0.10  - 1.75 68.82

19/12/2014 15 44.31 5.78 7.67 24.10 4.34 5.55 3.583 20.67 0.12  - 1.36 64.78

22/12/2014 15 48.46 4.75 10.20 34.40 6.54 5.26 5.676 17.63 0.13 0.45 1.16 61.03

13/01/2015 0 79.66 7.08 11.26 22.54 4.24 5.32 0.870 0.18 0.02 0.34 0.10 37.86

13/01/2015 5 53.81 6.08 8.85 36.65 6.23 5.88 6.146 0.51 0.02  - 0.06 38.31

13/01/2015 15 65.39 7.26 9.01 71.42 12.12 5.89 17.703 0.63 0.03 0.28 0.14 39.86

13/01/2015 40 56.78 7.23 7.85 15.04 2.57 5.85 4.151 19.29 0.15  - 1.44 60.33

13/01/2015 75 40.88 6.91 5.92 3.59 0.56 6.41 0.707 27.58 0.21  - 1.99 77.82

17/01/2015 0  -  -  -  -  -  - 0.386 1.02 0.04  - 0.19 47.52

17/01/2015 5  -  -  -  -  -  - 0.716  -  -  -  -  -

17/01/2015 15  -  -  -  -  -  - 10.296 16.54 0.06  - 1.22 63.70

17/01/2015 40  -  -  -  -  -  - 2.075 26.03 0.17  - 1.89 72.71

20/01/2015 0  -  -  -  -  -  - 1.803  -  -  -  -  -

20/01/2015 5  -  -  - 65.90 11.23 5.87 7.091 5.33 0.08  - 0.40 45.74

20/01/2015 15  -  -  - 44.03 7.81 5.64 9.224 9.04 0.10 0.89 0.66 49.66

20/01/2015 40  -  -  - 13.87 2.30 6.03 2.012 24.52 0.20  - 1.81 69.33

24/01/2015 0  -  -  - 31.74 5.75 5.52 4.220 9.94 0.15 0.19 0.56 51.89

24/01/2015 5  -  -  -  -  -  - 10.671  -  -  -  -  -

24/01/2015 15  -  -  - 42.40 8.04 5.27 6.454 12.30 0.14 0.55 0.83 54.88

24/01/2015 40  -  -  - 24.35 4.53 5.38 3.823 15.35 0.14  - 1.12 58.78

02/02/2015 0  -  -  - 12.24 1.89 6.48 0.279 18.70 0.16 0.38 1.22 53.83

02/02/2015 5  -  -  - 14.54 2.66 5.47 0.414 19.17 0.16  - 1.23 52.66

02/02/2015 15  -  -  - 16.04 2.99 5.36 2.032 19.61 0.16 0.59 1.24 53.32

02/02/2015 40  -  -  - 10.00 1.88 5.32 1.763 20.97 0.16  - 1.44 55.63

02/02/2015 75 54.19 6.36 8.52 7.31 1.59 4.60 1.662 21.63 0.18  - 1.57 61.53

07/02/2015 0  -  -  -  -  -  - 0.829  -  -  -  -  -

07/02/2015 5  -  -  - 33.55 6.13 5.47 3.056 16.32 0.18  - 0.96 52.79

07/02/2015 15  -  -  - 30.90 5.68 5.44 4.997 17.51 0.17 0.44 1.06 53.45

07/02/2015 40  -  -  - 19.41 3.66 5.30 3.547 19.23 0.17  - 1.27 55.61
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Table 3.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 4 from 

RaTS season 2014/15. Temperature in °C, density in kg m-3, MLD in meters, sea-ice cover 

in scores from 1 to 10 with 10 – 100% sea-ice cover. %sim = % sea ice meltwater, %met = 

%meteoric meltwater, %cdw = %circumpolar deepwater. 

 

Date Depth

Temper-

ature Density Salinity MLD Sea ice %sim %met %cdw

10/11/2014 15 -1.57 27.08 33.65 28 6 -0.272 3.041 97.231

10/11/2014 50 -1.57 27.15 33.73  -  -  -  -

14/11/2014 0 -1.62 27.03 33.59 33 8 -0.215 3.174 97.041

14/11/2014 15 -1.62 27.05 33.60  -  - -0.058 3.007 97.051

14/11/2014 50 -1.57 27.10 33.67  -  -  -  -  -

18/11/2014 5 -1.55 27.06 33.63 28 5  -  -  -

18/11/2014 15 -1.58 27.07 33.63  -  - 0.182 2.726 97.092

18/11/2014 30 -1.55 27.11 33.69  -  -  -  -  -

22/11/2014 15 -1.60 27.08 33.65 23 5 -0.127 2.935 97.192

25/11/2014 0 -1.51 26.99 33.53 6 5 0.022 3.144 96.834

25/11/2014 15 -1.55 27.08 33.65  -  - -0.334 3.095 97.239

25/11/2014 40 -1.42 27.15 33.74  -  -  -  -  -

04/12/2014 0 -0.84 26.99 33.57 18 4 -0.954 3.827 97.127

04/12/2014 15 -1.03 27.04 33.61 4 0.044 2.895 97.061

09/12/2014 0 -1.10 26.58 33.05 2 4 0.793 3.94 95.267

09/12/2014 5 -0.87 26.77 33.29  -  -  -  -  -

09/12/2014 15 -0.76 26.97 33.54  -  - -0.267 3.355 96.912

09/12/2014 40 -1.31 27.06 33.63  -  -  -  -  -

12/12/2014 15 -0.85 26.91 33.47 5 6 -0.048 3.385 96.663

16/12/2014 0 -1.02 27.02 33.59 35 1 -1.977 4.566 97.411

16/12/2014 5 -1.06 27.03 33.60  -  -  -  -  -

16/12/2014 15 -1.06 27.03 33.61  -  - 0.061 2.898 97.041

16/12/2014 30 -1.11 27.05 33.63  -  -  -  -  -

19/12/2014 15 -0.80 26.89 33.44 14 1 -0.099 3.504 96.595

22/12/2014 15 -0.87 26.89 33.44 1 3 0.041 3.398 96.561

13/01/2015 0 1.34 25.86 32.31 1 3 2.947 4.361 92.692

13/01/2015 5 0.73 26.40 32.93  -  -  -  -  -

13/01/2015 15 -0.13 26.69 33.23  -  - 0.366 3.756 95.878

13/01/2015 40 -0.99 26.95 33.52  -  -  -  -  -

13/01/2015 75 -1.26 27.18 33.78  -  -  -  -  -

17/01/2015 0 1.71 26.07 32.60 4 2 -2.45 7.83 94.62

17/01/2015 5 1.16 26.16 32.66  -  -  -  -  -

17/01/2015 15 -0.50 26.78 33.32  -  -  -  -  -

17/01/2015 40 -1.23 27.03 33.60  -  -  -  -  -

20/01/2015 0 0.13 26.52 33.04 6 2  -  -  -

20/01/2015 5 0.00 26.56 33.08  -  -  -  -  -

20/01/2015 15 -0.36 26.71 33.24  -  - 0.322 3.75 95.928

20/01/2015 40 -1.35 27.07 33.64  -  -  -  -  -

24/01/2015 0 -0.22 26.57 33.08 6 1 0.22 4.301 95.479

24/01/2015 5 -0.12 26.61 33.14  -  -  -  -  -

24/01/2015 15 -0.36 26.70 33.24  -  - 0.48 3.646 95.874

24/01/2015 40 -0.65 26.83 33.38  -  -  -  -  -

02/02/2015 0 0.04 26.61 33.14 16 2 -0.831 4.974 95.857

02/02/2015 5 0.04 26.64 33.18  -  -  -  -  -

02/02/2015 15 -0.07 26.65 33.19  -  - 1.223 3.183 95.594

02/02/2015 40 -0.35 26.78 33.33  -  -  -  -  -

02/02/2015 75 -0.66 26.89 33.46  -  -  -  -  -

07/02/2015 0 -0.16 26.51 33.01 2 4 1.259 3.69 95.051

07/02/2015 5 -0.05 26.60 33.12  -  -  -  -  -

07/02/2015 15 -0.08 26.63 33.16  -  - 1.376 3.141 95.483

07/02/2015 40 -0.21 26.68 33.22  -  -  -  -  -
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Table 4.1: Full-depth profiles of all parameters used in analyses of chapter 4 from RaTS 

season 2015/16. DOM, POM and inorganic nutrients are stated in μmol x L-1, chlorophyll a in 

mg m-3. 

 

 

 

 

 

 

Date Depth DOC DON

DOM

C:N POC PON

POM

C:N Chla NO3
- NO2

- NH4
+ PO4

-SI(OH)4
-

10/11/2015 0  -  -  -  -  -  - 0.04  -  -  -  -  -

10/11/2015 5  -  -  -  -  -  - 0.06  -  -  -  -  -

10/11/2015 15  -  -  -  -  -  - 0.08 22.94 0.21  - 1.90 62.55

10/11/2015 40  -  -  -  -  -  - 0.18  -  -  -  -  -

12/11/2015 0  -  -  -  -  -  - 0.06  -  -  -  -  -

12/11/2015 5  -  -  -  -  -  - 0.06  -  -  -  -  -

12/11/2015 15  -  -  -  -  -  - 0.08 29.37 0.10  - 2.06 86.19

12/11/2015 40  -  -  -  -  -  - 0.10  -  -  -  -  -

18/11/2015 0  -  -  -  -  -  - 0.04  -  -  -  -  -

18/11/2015 5  -  -  -  -  -  - 0.05  -  -  -  -  -

18/11/2015 15  -  -  -  -  -  - 0.05 28.06 0.08  - 1.94 82.20

18/11/2015 40  -  -  -  -  -  - 0.15  -  -  -  -  -

26/11/2015 0  -  -  -  -  -  - 0.04  -  -  -  -  -

26/11/2015 5  -  -  -  -  -  - 0.04  -  -  -  -  -

26/11/2015 15  -  -  -  -  -  - 0.06  -  -  -  -  -

26/11/2015 40  -  -  -  -  -  - 0.22  -  -  -  -  -

01/12/2015 0  -  -  -  -  -  - 0.04  -  -  -  -  -

01/12/2015 5  -  -  -  -  -  - 0.04 28.67 0.09  - 1.94 84.23

01/12/2015 15  -  -  -  -  -  - 0.05 28.19 0.11  - 1.94 84.47

01/12/2015 40  -  -  -  -  -  - 0.08  -  -  -  -  -

13/12/2015 0  -  -  -  -  -  - 0.06  -  -  -  -  -

13/12/2015 5  -  -  -  -  -  - 0.06  -  -  -  -  -

13/12/2015 15  -  -  -  -  -  - 0.09 28.46 0.12  - 1.93 85.98

13/12/2015 40  -  -  -  -  -  - 0.26  -  -  -  -  -

17/12/2015 0  -  -  -  -  -  - 0.09  -  -  -  -  -

17/12/2015 5  -  -  -  -  -  - 0.13 26.95 0.14  - 1.84 84.35

17/12/2015 15  -  -  -  -  -  - 0.26 27.02 0.11  - 1.86 84.88

17/12/2015 30  -  -  -  -  -  - 0.78 28.01 0.09  - 1.91 83.55

17/12/2015 40  -  -  -  -  -  - 1.07  -  -  -  -  -

21/12/2015 0  -  -  -  -  -  - 0.14  -  -  -  -  -

21/12/2015 5  -  -  -  -  -  - 0.22  -  -  -  -  -

21/12/2015 15  -  -  -  -  -  - 0.30 27.26 0.10  - 1.88 86.42

21/12/2015 40  -  -  -  -  -  - 1.16  -  -  -  -  -

02/01/2016 0  -  -  -  -  -  - 0.59  -  -  -  -  -

02/01/2016 5  -  -  -  -  -  - 0.74  -  -  -  -  -

02/01/2016 15  -  -  -  -  -  - 1.01 27.57 0.10  - 1.81 80.36

02/01/2016 40  -  -  -  -  -  - 0.85  -  -  -  -  -

05/01/2016 0  -  -  - 19.11 3.84 4.98 0.51 22.57 0.08 0.51 1.51 74.16

05/01/2016 5  -  -  - 23.95 4.94 4.85 0.87 21.82 0.08  - 1.48 74.13

05/01/2016 15  -  -  - 27.65 6.09 4.54 4.55 22.91 0.08 0.27 1.53 75.94

05/01/2016 25  -  -  - 16.08 3.41 4.72 3.39 23.48 0.08  - 1.59 75.61

05/01/2016 40  -  -  - 9.11 2.06 4.42 1.75 24.26 0.08  - 1.69 75.56

05/01/2016 70  -  -  - 7.90 1.48 5.34 1.25 25.93 0.09  - 1.80 79.05
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Table 4.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 4 from 

RaTS season 2015/16. Temperature in °C, density in kg m-3, MLD in meters, sea-ice cover 

in scores from 1 to 10 with 10 – 100% sea-ice cover. %sim = % sea ice meltwater, %met = 

%meteoric meltwater, %cdw = %circumpolar deepwater. 

 

 

 

 

 

 

Date Depth

Temper-

ature Density Salinity MLD seaice %sim %met %cdw

10/11/2015 0 -1.46 27.00 33.55 5 3 0.07 3.03 96.90

10/11/2015 5 -1.54 27.04 33.60  -  -  -  -  -

10/11/2015 15 -1.46 27.12 33.70  -  - -0.72 3.23 97.49

10/11/2015 40 -1.21 27.31 33.94  -  -  -  -  -

12/11/2015 0  - 27.14 33.72 21 3 -0.25 2.79 97.46

12/11/2015 5  - 27.14 33.73  -  -  -  -  -

12/11/2015 15  - 27.15 33.74  -  - -0.04 2.57 97.47

12/11/2015 40  - 27.36 34.01  -  -  -  -  -

18/11/2015 0 -1.41 27.02 33.58 23 8 -0.36 3.28 97.08

18/11/2015 5 -1.62 27.06 33.62  -  -  -  -  -

18/11/2015 15 -1.55 27.07 33.63  -  - -0.58 3.31 97.27

18/11/2015 40 -1.40 27.16 33.75  -  -  -  -  -

26/11/2015 0 -0.93 27.09 33.68 31 7 -0.73 3.29 97.43

26/11/2015 5 -0.95 27.09 33.68  -  -  -  -  -

26/11/2015 15 -0.98 27.09 33.69  -  - -0.28 2.91 97.37

26/11/2015 40 -1.14 27.16 33.76  -  -  -  -  -

01/12/2015 0 -0.97 27.08 33.67 17 7 -1.17 3.67 97.50

01/12/2015 5 -0.94 27.12 33.72  -  -  -  -  -

01/12/2015 15 -1.00 27.12 33.72  -  - -0.39 2.90 97.49

01/12/2015 40 -1.40 27.26 33.88  -  -  -  -  -

13/12/2015 0 -0.70 26.96 33.54 6 1  -  -  -

13/12/2015 5 -0.74 27.01 33.59  -  -  -  -  -

13/12/2015 15 -0.92 27.05 33.63  -  -  -  -  -

13/12/2015 40 -1.13 27.24 33.86  -  -  -  -  -

17/12/2015 0 -0.74 26.67 33.18 2 1  -  -  -

17/12/2015 5 -0.76 26.79 33.33  -  -  -  -  -

17/12/2015 15 -0.68 26.96 33.54  -  -  -  -  -

17/12/2015 30 -0.89 27.07 33.66  -  -  -  -  -

17/12/2015 40 -1.05 27.15 33.75  -  -  -  -  -

21/12/2015 0 0.47 26.75 33.35 3 8 -0.30 3.92 96.38

21/12/2015 5 -0.30 26.87 33.45  -  -  -  -  -

21/12/2015 15 -0.86 27.04 33.62  -  - -0.55 3.32 97.23

21/12/2015 40 -1.03 27.23 33.86  -  -  -  -  -

02/01/2016 0 -0.82 26.98 33.55 11 0  -  -  -

02/01/2016 5 -0.84 26.98 33.56  -  -  -  -  -

02/01/2016 15 -0.75 27.12 33.73  -  - -0.96 3.32 97.63

02/01/2016 40 -0.84 27.20 33.83  -  -  -  -  -

05/01/2016 0 -0.59 26.62 33.12 4 6 0.28 4.12 95.60

05/01/2016 5 -0.55 26.68 33.20  -  -  -  -  -

05/01/2016 15 -0.63 26.80 33.35  -  - 0.04 3.65 96.32

05/01/2016 25 -0.67 26.90 33.46  -  -  -  -  -

05/01/2016 40 -0.72 26.94 33.52  -  -  -  -  -

05/01/2016 70 -0.78 27.02 33.60  -  -  -  -  -
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Table 4.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 4 from 

RaTS season 2015/16. DOM, POM and inorganic nutrients are stated in μmol x L-1, 

chlorophyll a in mg m-3. 

 

 

 

 

 

 

 

 

 

Date Depth DOC DON

DOM

C:N POC PON

POM

C:N Chla NO3
- NO2

- NH4
+ PO4

-SI(OH)4
-

07/01/2016 0  -  -  - 33.73 7.03 4.80 0.64 20.06 0.09 0.13 1.29 74.65

07/01/2016 5  -  -  -  -  -  - 0.85  -  -  -  -  -

07/01/2016 15 48.45 6.29 7.70 23.67 5.11 4.63  - 21.77 0.08 0.25 1.45 75.30

07/01/2016 40  -  -  - 6.13 1.37 4.47 1.05 25.60 0.09 0.18 1.80 80.25

11/01/2016 0  -  -  - 29.01 6.39 4.54 0.28 16.20 0.14  - 1.06 71.14

11/01/2016 5  -  -  - 36.47 7.76 4.70 0.62 16.28 0.13 0.47 1.05 71.67

11/01/2016 15  -  -  - 25.45 5.42 4.70 2.20 20.42 0.08  - 1.34 74.91

11/01/2016 25  -  -  - 9.86 2.09 4.72 1.32 22.65 0.08  - 1.65 75.42

11/01/2016 40  -  -  - 4.69 0.87 5.39 0.75 25.65 0.09  - 1.82 77.09

11/01/2016 70  -  -  - 6.66 1.32 5.05 0.24 31.39 0.14  - 2.17 88.32

14/01/2016 0 56.90 4.60 12.37 19.45 3.62 5.37 3.75 13.93 0.14 0.68 0.86 68.69

14/01/2016 15 51.29 2.27 22.59 19.35 3.11 6.22 4.76 16.44 0.12 4.14 1.07 70.21

14/01/2016 40 44.51 5.66 7.86 2.48 0.41 6.05 0.46 29.03 0.10  - 2.02 88.74

21/01/2016 0 55.46 5.85 9.48 33.66 6.56 5.13 2.52 7.40 0.15 0.58 0.38 65.23

21/01/2016 15 50.29 4.75 10.59 28.54 5.35 5.33 2.12 22.72 0.07 0.97 1.48 78.12

21/01/2016 40 42.27 4.73 8.94 1.95 0.27 7.22 0.23 30.49 0.12  - 2.11 90.91

01/02/2016 0 56.33 5.82 9.68 32.85 6.13 5.36  - 10.00 0.11 1.15 0.68 64.67

01/02/2016 15 52.16 4.87 10.71 43.39 8.12 5.34  - 11.29 0.11 1.25 0.77 65.36

01/02/2016 40 50.52 6.46 7.82 29.10 5.49 5.30  - 15.55 0.11  - 1.11 71.29

09/02/2016 0 51.30 4.55 11.27 26.40 4.79 5.51 1.66 11.73 0.11 2.21 0.92 66.91

09/02/2016 15 57.55 6.21 9.27 33.76 6.02 5.61 5.15 12.30 0.11 2.02 1.00 67.09

09/02/2016 40 55.98 7.38 7.59 33.93 6.08 5.58 5.16 13.47 0.12  - 1.09 68.69

15/02/2016 0 55.70 3.39 16.43 31.05 5.78 5.37 1.92 11.60 0.11 3.65 0.88 66.83

15/02/2016 15 48.61 2.47 19.68 17.88 3.36 5.32 1.15 14.59 0.12 3.96 1.13 70.02

15/02/2016 40 48.58 8.36 5.81 15.52 2.93 5.30 2.12 17.88 0.12  - 1.40 73.74

25/02/2016 0 52.55 3.37 15.59 28.27 4.93 5.73 1.11 11.07 0.12 2.10 0.92 65.09

25/02/2016 15 62.69 4.96 12.64 32.47 5.72 5.68 3.08 11.59 0.12 2.58 0.97 63.69

25/02/2016 40 54.26 8.01 6.77 17.79 3.21 5.54 1.25 14.52 0.12  - 1.24 70.12

01/03/2016 0 51.09 2.87 17.80 21.82 3.91 5.58  - 16.40 0.13 5.47 1.33 70.93

01/03/2016 15 49.20 1.14 43.16 20.95 3.55 5.90  - 16.43 0.13 6.56 1.34 69.71

01/03/2016 40 46.99 6.32 7.44 15.38 2.75 5.59  - 18.88 0.13  - 1.49 75.47

04/03/2016 15 58.37  -  - 20.31 3.66 5.55 1.72 14.39 0.13 3.00 1.19 66.45

10/03/2016 0 71.00 4.01 17.71 17.77 3.52 5.05 1.48 15.24 0.13 3.88 1.24 66.85

10/03/2016 15 48.69 2.74 17.77 14.38 2.76 5.21 1.50 15.50 0.13 4.09 1.27 68.24

10/03/2016 40 46.14 6.29 7.34 13.14 2.58 5.09 1.51 15.65 0.13  - 1.28 69.06

18/03/2016 0 50.93 4.02 12.67 18.64 3.57 5.22 1.20 14.78 0.12 3.07 1.18 69.49

18/03/2016 15 60.07 3.32 18.09 16.24 3.13 5.19 1.63 15.23 0.12 2.97 1.23 68.86

18/03/2016 40 45.85 9.18 4.99 10.36 1.95 5.31 0.78 16.61 0.13  - 1.37 69.02
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Table 4.1 cont’d: Full-depth profiles of all parameters used in analyses of chapter 4 from 

RaTS season 2015/16. Temperature in °C, density in kg m-3, MLD in meters, sea-ice cover 

in scores from 1 to 10 with 10 – 100% sea-ice cover. %sim = % sea ice meltwater, %met = 

%meteoric meltwater, %cdw = %circumpolar deepwater. 

 

 

 

 

 

 

 

 

Date Depth

Temper-

ature Density Salinity MLD seaice %sim %met %cdw

07/01/2016 0 -0.30 26.64 33.16 13 2 -0.74 4.80 95.95

07/01/2016 5 -0.42 26.66 33.17  -  -  -  -  -

07/01/2016 15  -  -  -  -  - -0.13 3.88 96.25

07/01/2016 40 -0.75 26.99 33.57  -  -  -  -  -

11/01/2016 0 1.10 26.36 32.91 3 1 0.72 4.37 94.91

11/01/2016 5 0.20 26.49 33.01  -  -  -  -  -

11/01/2016 15 -0.64 26.74 33.27  -  - 0.22 3.74 96.05

11/01/2016 25 -0.67 26.87 33.42  -  -  -  -  -

11/01/2016 40 -0.78 26.98 33.55  -  -  -  -  -

11/01/2016 70 -0.87 27.32 33.97  -  -  -  -  -

14/01/2016 0 0.54 26.26 32.74 4 3 0.45 5.09 94.47

14/01/2016 15 -0.11 26.58 33.09  -  - 0.55 3.97 95.48

14/01/2016 40 -1.03 27.12 33.72  -  -  -  -  -

21/01/2016 0 0.22 25.79 32.14 1 5 3.15 4.64 92.21

21/01/2016 15 -1.00 26.84 33.38  -  - 0.35 3.32 96.33

21/01/2016 40 -0.97 27.23 33.86  -  -  -  -  -

01/02/2016 0  -  -  -  - 2  -  -  -

01/02/2016 15  -  -  -  -  -  -  -  -

01/02/2016 40  -  -  -  -  -  -  -  -

09/02/2016 0 -0.26 26.52 33.02 31 2 0.79 4.00 95.21

09/02/2016 15 -0.38 26.55 33.05  -  - 0.96 3.78 95.26

09/02/2016 40 -0.44 26.57 33.07  -  -  -  -  -

15/02/2016 0 -0.15 26.23 32.66 6 2 1.22 4.69 94.10

15/02/2016 15 -0.35 26.50 32.99  -  - 0.62 4.23 95.15

15/02/2016 40 -0.63 26.68 33.20  -  -  -  -  -

25/02/2016 0 -0.42 26.35 32.79 18 3 1.28 4.26 94.46

25/02/2016 15 -0.52 26.39 32.84  -  - 1.48 3.97 94.55

25/02/2016 40 -0.41 26.52 33.00  -  -  -  -  -

01/03/2016 0  -  -  -  - 0  -  -  -

01/03/2016 15  -  -  -  -  -  -  -  -

01/03/2016 40  -  -  -  -  -  -  -  -

04/03/2016 15 -0.70 26.51 32.98 30 1 1.10 3.86 95.05

10/03/2016 0 -0.67 26.50 32.96 46 2 1.15 3.86 94.98

10/03/2016 15 -0.64 26.51 32.98  -  - 1.03 3.91 95.07

10/03/2016 40 -0.64 26.53 33.00  -  -  -  -  -

18/03/2016 0 -0.86 26.38 32.81 20 0  -  -  -

18/03/2016 15 -0.90 26.40 32.84  -  -  -  -  -

18/03/2016 40 -0.82 26.51 32.98  -  -  -  -  -



Dittrich, 2019  

254 
 

Table 5: HPLC phytoplankton-pigmentation contribution to total phytoplankton biomass in % 

for all three RaTS seasons. 

 

 

 

Date

Prasino-

phytes

Chloro-

phytes

Dinofla-

gellates

Crypto-

phytes

Hapto-

phytes Diatoms

19/11/2013 15.65 4.71 0.03 0.73 27.30 51.58

25/11/2013 4.96 0.00 0.01 0.07 22.70 72.26

28/11/2013 0.00 0.55 0.01 7.43 17.00 75.00

02/12/2013 1.34 1.98 0.01 9.31 16.17 71.18

05/12/2013 0.48 2.78 0.00 3.53 17.07 76.15

13/12/2013 1.67 0.72 0.13 0.58 5.10 91.79

24/12/2013 0.21 0.00 0.00 0.00 1.03 98.76

28/12/2013 0.32 0.00 0.00 0.00 1.54 98.14

30/12/2013 0.01 0.00 0.12 0.00 1.16 98.71

06/01/2014 0.47 0.00 0.00 0.00 1.14 98.39

15/01/2014 3.01 0.04 0.00 0.62 10.28 86.05

18/01/2014 1.17 0.00 0.31 1.92 13.07 83.53

21/01/2014 1.10 0.00 0.43 0.83 12.01 85.63

24/01/2014 1.68 0.00 0.46 1.31 12.53 84.02

27/01/2014 2.99 0.00 0.99 2.59 10.99 82.44

30/01/2014 1.24 0.00 0.60 0.84 6.23 91.10

03/02/2014 1.42 0.19 0.70 0.05 3.85 93.79

06/02/2014 1.28 0.53 0.91 6.84 6.20 84.24

10/02/2014 1.05 0.30 0.33 3.98 4.01 90.33

14/02/2014 0.77 0.12 0.31 4.69 5.09 89.03

17/02/2014 2.28 3.70 0.74 32.09 27.90 33.29

19/02/2014 3.91 2.66 0.94 38.74 29.34 24.41

21/02/2014 7.78 4.76 1.35 8.11 39.80 38.19

25/02/2014 1.51 0.47 0.32 6.94 15.22 75.55

27/02/2014 3.06 1.26 0.78 4.66 5.95 84.29

Date

Prasino-

phytes

Chloro-

phytes

Dinofla-

gellates

Crypto-

phytes

Hapto-

phytes Diatoms

10/11/2014 18.40 2.54 0.81 3.94 46.65 27.66

14/11/2014 9.43 3.88 0.78 2.67 30.56 52.67

18/11/2014 15.34 3.51 0.74 2.85 32.63 44.92

22/11/2014 6.25 2.04 0.02 0.38 21.15 70.16

25/11/2014 4.76 1.95 0.32 0.00 17.78 75.20

04/12/2014 4.71 2.08 0.59 2.01 16.28 74.34

09/12/2014 2.93 1.48 0.32 0.03 22.71 72.53

12/12/2014 1.37 1.17 0.53 1.11 21.10 74.72

16/12/2014 3.94 1.08 0.00 0.00 10.41 84.56

19/12/2014 0.92 0.00 0.42 0.01 2.78 95.87

13/01/2015 6.82 0.00 0.02 4.91 4.69 83.56

17/01/2015 0.29 0.00 0.00 0.07 5.49 94.15

20/01/2015 2.30 0.01 0.00 11.71 3.23 82.75

24/01/2015 1.14 0.00 0.00 3.99 1.86 93.02

02/02/2015 6.36 2.25 0.66 4.39 5.14 81.20

07/02/2015 2.57 0.61 0.26 0.57 1.58 94.41

11/02/2015 1.27 0.00 0.40 5.24 1.57 91.51

17/02/2015 0.49 0.11 0.24 1.40 1.14 96.62

21/02/2015 1.22 0.04 0.37 1.05 1.64 95.68

27/02/2015 0.60 0.00 0.27 2.34 0.80 95.99
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Table 5 cont’d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date

Prasino-

phytes

Chloro-

phytes

Dinofla-

gellates

Crypto-

phytes

Hapto-

phytes Diatoms

10/11/2015 1.84 8.03 0.40 0.01 51.30 38.42

12/11/2015 1.24 5.36 0.00 0.00 53.23 40.17

18/11/2015 4.37 11.26 0.00 0.04 38.42 45.91

26/11/2015 5.54 19.64 0.01 0.16 35.98 38.66

01/12/2015 2.11 17.06 0.00 0.05 39.19 41.59

13/12/2015 3.94 26.64 0.82 0.04 26.65 41.91

17/12/2015 2.10 30.06 0.03 1.89 24.77 41.15

21/12/2015 2.25 27.19 0.01 2.61 21.28 46.66

02/01/2016 3.34 13.41 0.00 1.63 11.61 70.01

05/01/2016 2.59 13.00 0.07 1.67 4.44 78.23

07/01/2016 1.61 1.86 0.10 0.54 2.07 93.82

11/01/2016 0.39 1.36 0.01 1.62 2.49 94.13

14/01/2016 1.74 0.00 0.07 3.67 2.15 92.36

21/01/2016 0.10 2.92 0.00 0.41 3.71 92.87

01/02/2016 0.36 3.61 0.40 2.46 5.01 88.16

09/02/2016 0.34 3.81 1.23 2.49 2.58 89.55

15/02/2016 0.84 1.62 0.00 63.84 2.51 31.18

25/02/2016 1.58 10.37 1.44 44.97 2.58 39.06



Dittrich, 2019  

256 
 

Table 6: DOM and inorganic nutrients measured in sea-ice cores collected at the RaTS site 

in 2014. All concentrations stated in μmol x L-1 

 

 

 

 

 

 

 

 

Date Site Depth DON DOC DOC:DON NO3
- Si(OH)4

- PO4
- NO2

-

04/11/2014 HC1 5-20cm 3.75 37.00 11.49 0.14 0.69 0.11 0.03

04/11/2014 HC1 20-35cm 4.46 55.14 14.42 0.14 1.14 0.23 0.02

04/11/2014 HC1 35-49cm 8.75 165.20 22.01 0.12 4.89 0.36 0.03

08/11/2014 HC1 5-20cm 3.38 43.40 14.99 1.11 1.37 0.17 0.03

08/11/2014 HC1 20-35cm 4.76 36.98 9.06 2.77 6.20 0.39 0.04

08/11/2014 HC1 35-50cm 9.95 94.42 11.07 1.45 8.89 0.88 0.03

08/11/2014 HC1 50-76cm 4.07 85.75 24.59 0.02 3.71 0.07 0.02

12/11/2014 HC2 0-5cm 25.40 197.10 9.05 9.13 5.35 1.86 0.07

12/11/2014 HC2 5-15cm 1.90 42.26 25.88 0.09 0.14 0.08 0.02

12/11/2014 HC2 15-30cm 4.35 33.47 8.97 0.06 0.41 0.11 0.02

12/11/2014 HC2 30-48cm 4.15 133.90 37.59 -0.01 1.62 0.20 0.02

12/11/2014 HC2 48-74cm 5.19 70.62 15.86 0.02 1.96 0.06 0.02

18/11/2014 HC2 5-20cm 3.36 29.88 10.36 0.41 1.36 0.16 0.03

18/11/2014 HC2 20-35cm 7.69 100.75 15.29 0.58 2.85 0.49 0.04

18/11/2014 HC2 35-53cm 13.77 326.90 27.69 0.03 2.38 1.20 0.02

18/11/2014 HC2 53-80cm 3.07 53.17 20.20 0.00 5.65 0.06 0.02

24/11/2014 HC3 0-5cm 107.99 771.70 8.33 13.61 13.80 6.52 0.09

24/11/2014 HC3 5-15cm 4.42 48.79 12.89 0.35 1.08 0.11 0.04

24/11/2014 HC3 15-30cm 3.18 42.57 15.60 0.23 1.62 0.10 0.03

24/11/2014 HC3 30-45cm 3.65 120.10 38.38 0.03 3.45 0.09 0.03

24/11/2014 HC3 45-70cm 4.23 93.37 25.73 0.05 2.66 0.08 0.04

29/11/2014 HC3 0-9cm 41.15 308.20 8.73 9.35 8.25 2.84 0.06

29/11/2014 HC3 9-24cm 3.44 37.11 12.57 0.38 1.31 0.12 0.04

29/11/2014 HC3 24-39cm 5.76 70.35 14.25 0.49 2.68 0.27 0.05

29/11/2014 HC3 39-54cm 7.99 389.40 56.83 0.05 7.86 0.44 0.05

29/11/2014 HC3 54-75cm 4.17 63.41 17.72 0.00 4.69 0.05 0.03

03/12/2014 HC4 35-50cm 6.70 294.30 51.26 0.03 5.05 0.42 0.04

06/12/2014 HC4 5-20cm 4.74 45.23 11.13 0.22 1.90 0.12 0.04

06/12/2014 HC4 20-35cm 6.38 72.97 13.34 0.13 1.56 0.16 0.05

06/12/2014 HC4 35-50cm 4.59 129.70 32.95 0.02 4.51 0.12 0.04

06/12/2014 HC4 50-75cm 3.05 66.04 25.22 0.02 3.34 0.04 0.04

12/12/2014 HC4 5-20cm 5.80 71.26 14.32 0.24 2.12 0.22 0.03

12/12/2014 HC4 20-35cm 3.39 60.52 20.82 0.05 1.87 0.12 0.03

12/12/2014 HC4 35-50cm 5.69 239.70 49.17 0.02 4.85 0.27 0.03

12/12/2014 HC4 50-76cm 4.47 54.27 14.16 0.04 2.86 0.05 0.03

18/12/2014 HC4 5-20cm 6.42 42.13 7.65 0.18 1.04 0.11 0.03

18/12/2014 HC4 20-35cm 4.90 37.19 8.86 0.09 1.01 0.10 0.02

18/12/2014 HC4 35-50cm 5.72 41.76 8.51 0.08 1.24 0.06 0.03

22/12/2014 HC4 0-5cm 160.55 1037.00 7.53 1.30 8.12 1.06 0.07

22/12/2014 HC4 20-35cm 12.30 178.30 16.90 0.06 2.29 0.70 0.04

22/12/2014 HC4 35-50cm 10.45 226.53 25.28 0.03 2.96 0.48 0.03

22/12/2014 HC4 50-65cm 4.62 48.32 12.20 0.09 0.89 0.06 0.03
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Table 7.1: Full-depth profiles of all parameters used in analyses of chapter 4 from PAL LTER 

research cruise LMG1701. DOM, POM are stated in μmol x L-1, chlorophyll-a concentrations 

in mg m-3, PP (primary production) in mg C m-3 d-1, bacterial abundance, HNA, LNA in cells 

L-1 and bacterial activity in pmol leu L-1 hr-1. Depth in meters. 
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Table 7.2: Full-depth profiles of all parameters used in analyses of chapter 4 from PAL LTER 

research cruise LMG1701. Inorganic nutrients are stated in μmol x L-1, Temperature in °C, 

Density anomaly in kg m-3, Depth and MLD in meters. SIRD (sea ice retreat days) in days, 

%SIM = % of sea ice meltwater, %MET= % of meteoric meltwater (glacial), %CDW=% of 

Circumpolar Deepwater 

 

 

 

 

 

 

 

 

 

Station Depth NO3
- PO4

- Si(OH)4
- Salinity

Temper

ature

Density

anomaly MLD

SIRD 

< 15 % % SIM % MET % CDW

600.040 1300 31.83 2.16 88.29 34.69 1.40 27.78 8 22 -0.2 0.3 99.9

600.040 700 33.16 2.19 88.73 34.68 1.33 27.77 8 22 -0.3 0.4 99.9

600.040 320 33.12 2.19 86.97 34.63 1.06 27.74 8 22 -0.3 0.5 99.8

600.040 200 33.02 2.15 82.49 34.58 0.89 27.71 8 22 -0.3 0.7 99.6

600.040 125 32.73 2.15 78 34.47 0.41 27.64 8 22 -0.7 1.3 99.4

600.040 100 32.73 2.13 79.36 34.39 0.25 27.59 8 22 -0.5 1.4 99.1

600.040 75 30.36 2.02 74.24 34.22 -0.19 27.46 8 22 -0.6 2.0 98.7

600.040 50 30.37 2.03 74.95 34.05 -0.26 27.31 8 22 -0.4 2.3 98.1

600.040 40 32.07 2.15 78.66 33.89 -0.66 27.20 8 22 -0.5 2.8 97.7

600.040 30 30.26 2.08 79.06 33.75 -0.83 27.02 8 22 0.0 2.8 97.2

600.040 5 19.55 1.39 70.58 33.14 2.44 26.41 8 22 1.5 3.4 95.1

600.040 0 16.8 1.17 68.87 32.98 1.95 26.40 8 22 1.7 3.6 94.6

600.100 593 33.46 2.25 95.13 34.70 1.40 27.78 29 48 -0.3 0.3 100

600.100 500 33.05 2.18 91.13 34.70 1.39 27.78 29 48 0.2 0.0 99.9

600.100 400 33.38 2.19 89.64 34.69 1.34 27.77 29 48 -0.5 0.5 100

600.100 300 33.11 2.18 83.36 34.65 1.18 27.75 29 48 -0.4 0.6 99.9

600.100 200 33.4 2.18 83 34.60 0.90 27.73 29 48 -0.5 0.8 99.7

600.100 100 32.6 2.11 77.53 34.32 -0.08 27.56 29 48 -0.3 1.4 98.9

600.100 65 27.94 1.88 69.15 34.02 0.00 27.32 29 48 -0.2 2.2 98.0

600.100 50 26.03 1.78 67.91 33.88 0.43 27.21 29 48 -0.1 2.5 97.6

600.100 40 22.93 1.57 65.64 33.85 1.06 27.14 29 48 0.2 2.4 97.4

600.100 30 21.92 1.43 63.16 33.78 1.34 26.95 29 48 0.3 2.5 97.2

600.100 10 19.93 1.25 65.6 33.65 2.31 26.87 29 48 0.3 2.9 96.8

600.100 0 19.92 1.26 64.71 33.65 2.31 26.87 29 48 0.1 3.0 96.9

600.200 3040 33.3 2.2 119.53 34.70 0.45 27.84 34 -38 -0.9 0.8 100

600.200 2500 33.21 2.19 113.89 34.71 0.49 27.84 34 -38 -1.0 0.9 100

600.200 1500 32.81 2.12 100.98 34.72 0.94 27.82 34 -38 -0.5 0.4 100

600.200 500 33.1 2.1 80.13 34.72 1.77 27.76 34 -38 -0.1 0.1 100

600.200 250 34.43 2.21 74.72 34.64 1.87 27.69 34 -38 0.2 0.1 99.7

600.200 100 32.96 2.12 63.39 34.22 -0.34 27.49 34 -38 -0.3 1.7 98.6

600.200 70 30.15 1.99 57.63 34.06 -0.82 27.38 34 -38 -0.6 2.4 98.2

600.200 50 27.66 1.72 46.52 33.97 -0.15 27.28 34 -38 -0.1 2.3 97.8

600.200 40 26.17 1.6 42.08 33.91 0.95 27.17 34 -38 -0.5 2.7 97.7

600.200 25 25.57 1.49 37.45 33.88 1.92 27.08 34 -38 -0.3 2.7 97.6

600.200 10 25.38 1.5 33.72 33.87 2.20 27.05 34 -38 -0.1 2.5 97.5

600.200 0 25.35 1.52 34.28 33.87 2.21 27.05 34 -38 -0.1 2.6 97.6
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Table 7.2 cont’d 

 

 

 

 

 

 

 

 

 

 

Station Depth NO3
- PO4

- Si(OH)4
- Salinity

Temper

ature

Density

anomaly MLD

SIRD 

< 15 % % SIM % MET % CDW

500.200 2672 33.19 2.18 115.91 34.70 0.42 27.85 35 114 -0.9 0.8 100

500.200 2000 32.95 2.16 110.25 34.71 0.54 27.85 35 114 -0.7 0.6 100

500.200 1000 32.63 2.13 95.1 34.73 1.17 27.82 35 114 -0.3 0.2 100

500.200 500 32.73 2.12 83.72 34.73 1.65 27.78 35 114 0.0 0.0 100

500.200 200 34.3 2.21 75.93 34.56 1.21 27.69 35 114 0.1 0.4 99.5

500.200 90 29.17 1.95 58.77 34.09 -0.97 27.44 35 114 -0.9 2.6 98.3

500.200 75 28.52 1.92 58.39 34.07 -0.89 27.41 35 114 -0.8 2.5 98.3

500.200 60 27.53 1.8 51.51 34.03 -0.51 27.35 35 114 -0.7 2.6 98.1

500.200 45 26.47 1.65 47.86 33.97 0.37 27.25 35 114 -0.5 2.6 97.9

500.200 25 25.58 1.45 37.14 33.90 1.77 27.11 35 114 -0.4 2.7 97.7

500.200 10 25.25 1.45 37.03 33.90 1.81 27.11 35 114 -0.1 2.5 97.6

500.200 0 25.24 1.45 36.85 33.91 1.80 27.11 35 114 -0.4 2.7 97.7

500.100 424 32.97 2.18 91.3 34.71 1.42 27.79 13 51 -0.4 0.4 100

500.100 375 33.05 2.17 90.31 34.71 1.43 27.78 13 51 -0.2 0.2 100

500.100 280 33.36 2.18 89.51 34.70 1.45 27.77 13 51 0.0 0.1 99.9

500.100 200 33.53 2.18 88.24 34.64 1.29 27.74 13 51 -0.1 0.4 99.8

500.100 150 33.19 2.21 83.19 34.53 0.85 27.69 13 51 0.0 0.6 99.4

500.100 100 33.45 2.2 81.47 34.26 -0.37 27.51 13 51 0.0 1.4 98.7

500.100 70 31.69 2.11 78.31 34.05 -0.61 27.36 13 51 0.2 1.8 98.0

500.100 50 28.4 1.89 69.87 33.93 -0.49 27.23 13 51 0.1 2.2 97.7

500.100 30 25.45 1.73 67.67 33.79 -0.04 27.12 13 51 -0.2 2.9 97.4

500.100 20 23.61 1.58 63.9 33.76 0.47 26.98 13 51 0.4 2.5 97.1

500.100 10 18.81 1.16 62.7 33.59 2.70 26.83 13 51 -0.1 3.3 96.7

500.100 0 18.13 1.1 62.84 33.61 2.68 26.83 13 51 0.1 3.1 96.8

500.060 290 33.38 2.18 89.41 34.67 1.23 27.76 23 14 -0.4 0.5 99.9

500.060 200 33.55 2.22 89.56 34.61 1.01 27.73 23 14 -0.4 0.7 99.8

500.060 150 33.29 2.2 83.53 34.51 0.54 27.66 23 14 -0.2 0.8 99.4

500.060 125 33.31 2.21 83.17 34.40 0.16 27.61 23 14 -0.5 1.3 99.1

500.060 100 33.14 2.21 80.59 34.25 0.01 27.50 23 14 -0.7 2.0 98.8

500.060 80 32.01 2.11 75.93 34.09 0.00 27.37 23 14 -1.0 2.6 98.4

500.060 50 25.56 1.71 58.23 33.91 0.00 27.20 23 14 -1.0 3.2 97.8

500.060 45 24.15 1.57 56.13 33.85 0.54 27.17 23 14 -1.0 3.3 97.7

500.060 35 24.6 1.65 63.34 33.76 0.14 27.06 23 14 -0.4 3.1 97.3

500.060 25 18.15 1.21 53.88 33.69 1.56 26.85 23 14 -0.1 3.1 97.0

500.060 10 15.99 0.99 64.05 33.49 2.90 26.69 23 14 0.2 3.4 96.4

500.060 0 15.83 0.98 65.93 33.49 2.90 26.69 23 14 0.5 3.2 96.3
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Station Depth NO3
- PO4

- Si(OH)4
- Salinity

Temper

ature

Density

anomaly MLD

SIRD 

< 15 % % SIM % MET % CDW

400.040 270 33.35 2.21 89.62 34.70 1.41 27.78 13 20 0.0 0.1 99.9

400.040 225 27.69 2.04 71.15 34.64 1.24 27.74 13 20 0.0 0.3 99.7

400.040 200 34.09 2.23 86.77 34.61 1.14 27.72 13 20 -0.8 1.0 99.8

400.040 150 33.69 2.24 85.73 34.54 0.84 27.66 13 20 -0.9 1.3 99.6

400.040 125 34.22 2.28 85.77 34.46 0.55 27.61 13 20 -1.0 1.6 99.4

400.040 100 33.8 2.22 83.77 34.33 0.05 27.54 13 20 -1.0 1.9 99.1

400.040 80 33.21 2.18 78.66 34.16 -0.48 27.45 13 20 -0.8 2.3 98.5

400.040 50 31.09 2.09 76.56 33.95 -0.78 27.20 13 20 -0.7 2.8 97.9

400.040 35 30.41 2.03 71.81 33.67 -0.77 27.04 13 20 -0.1 3.2 97.0

400.040 20 23.24 1.59 67.73 33.54 0.32 26.75 13 20 0.2 3.3 96.5

400.040 10 19.44 1.36 67.5 33.20 1.18 25.97 13 20 0.7 3.8 95.5

400.040 0 10.75 0.8 61.82 32.83 1.80 25.97 13 20 0.9 4.7 94.3

400.100 337 33.51 2.22 93.1 34.71 1.52 27.78 30 50 -0.6 0.5 100

400.100 320 33.28 2.22 95.27 34.71 1.52 27.78 30 50 0.2 -0.1 99.9

400.100 265 33.68 2.17 85.93 34.70 1.56 27.76 30 50 0.0 0.1 99.9

400.100 175 33.95 2.21 84.37 34.61 1.23 27.71 30 50 -0.3 0.6 99.7

400.100 140 34.42 2.21 81.38 34.50 0.69 27.66 30 50 -0.5 1.1 99.4

400.100 100 33.31 2.2 82.32 34.29 -0.17 27.52 30 50 -0.8 1.9 98.9

400.100 70 29.94 2 69.16 33.95 -1.03 27.31 30 50 -0.7 2.8 97.9

400.100 50 26.64 1.79 60.97 33.84 -0.54 27.19 30 50 -0.6 3.0 97.5

400.100 30 24.36 1.64 64.79 33.66 0.04 26.85 30 50 0.1 3.0 96.9

400.100 20 19.14 1.2 62.04 33.49 2.01 26.76 30 50 0.2 3.4 96.4

400.100 10 18.79 1.18 63.1 33.49 2.15 26.76 30 50 0.4 3.3 96.3

400.100 0 18.8 1.19 63.97 33.49 2.15 26.76 30 50 0.1 3.5 96.4

400.200 2700 33.28 2.18 108.52 34.70 0.41 27.85 38 117 -0.9 0.8 100

400.200 2000 33.14 2.2 109.77 34.71 0.58 27.84 38 117 -0.7 0.6 100

400.200 800 32.66 2.12 91.35 34.73 1.33 27.81 38 117 -0.3 0.2 100

400.200 350 33.22 2.14 77.67 34.71 1.84 27.75 38 117 0.1 0.0 99.9

400.200 200 34.19 2.2 77.51 34.57 1.19 27.69 38 117 -0.1 0.5 99.6

400.200 100 30.91 2.08 64.03 34.15 -1.03 27.45 38 117 -0.9 2.4 98.5

400.200 75 29.81 1.98 61.56 34.10 -1.04 27.40 38 117 -0.4 2.2 98.3

400.200 60 29.4 1.94 61.16 34.08 -0.95 27.38 38 117 -1.3 2.9 98.4

400.200 40 26.76 1.74 54.66 33.98 0.22 27.20 38 117 -0.7 2.7 98.0

400.200 30 23.12 1.25 47.41 33.92 1.61 27.13 38 117 -0.8 3.0 97.8

400.200 10 22.57 1.22 48.49 33.92 2.14 27.10 38 117 -0.8 2.9 97.8

400.200 0 22.51 1.21 48.1 33.92 2.15 27.09 38 117 -0.8 3.0 97.8
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Station Depth NO3
- PO4

- Si(OH)4
- Salinity

Temper

ature

Density

anomaly MLD

SIRD 

< 15 % % SIM % MET % CDW

300.200 3023 33.55 2.22 120 34.71 0.40 27.86 19 116 -1.0 0.9 100

300.200 1500 33.01 2.14 98.22 34.72 1.01 27.83 19 116 -0.5 0.4 100

300.200 750 32.74 2.1 82.42 34.73 1.62 27.79 19 116 -0.1 0.1 100

300.200 500 32.82 2.11 78.05 34.72 1.92 27.75 19 116 0.2 -0.1 99.9

300.200 275 34.52 2.21 73.85 34.65 2.02 27.69 19 116 0.2 0.1 99.7

300.200 100 31.6 2.05 60.32 34.17 -0.92 27.49 19 116 -0.5 2.0 98.5

300.200 85 30.17 1.99 58.52 34.12 -1.05 27.44 19 116 -0.5 2.1 98.3

300.200 70 29.31 1.94 57.79 34.09 -0.97 27.39 19 116 -1.0 2.6 98.4

300.200 50 28.01 1.81 50.14 34.04 -0.51 27.33 19 116 -1.1 2.8 98.2

300.200 30 25.36 1.61 38.84 33.92 0.54 27.19 19 116 -0.2 2.5 97.7

300.200 10 24.15 1.56 33.6 33.83 2.03 27.05 19 116 -0.1 2.7 97.4

300.200 0 24.03 1.57 33.19 33.83 2.11 27.04 19 116 0.0 2.6 97.4

300.100 470 32.81 2.18 95.52 34.73 1.31 27.80 25 54 -0.4 0.3 100

300.100 425 32.85 2.15 88.79 34.72 1.51 27.79 25 54 -0.3 0.3 100

300.100 350 32.83 2.12 83.07 34.72 1.61 27.77 25 54 -0.3 0.3 100

300.100 270 33.45 2.17 80.78 34.70 1.77 27.75 25 54 -0.3 0.3 100

300.100 200 34.01 2.18 79.37 34.64 1.61 27.71 25 54 -0.3 0.5 99.8

300.100 100 32.45 2.11 70.66 34.21 -0.88 27.49 25 54 -1.2 2.5 98.7

300.100 80 30.72 2.06 68.88 34.07 -1.06 27.42 25 54 -0.9 2.6 98.3

300.100 50 28.34 1.86 60.42 33.98 -0.32 27.32 25 54 -0.8 2.8 98.0

300.100 40 23.67 1.31 52.78 33.89 1.37 27.21 25 54 -0.3 2.7 97.7

300.100 30 22.29 1.26 53.23 33.87 1.63 27.13 25 54 -0.5 2.9 97.6

300.100 15 22.39 1.35 53.42 33.81 1.83 27.04 25 54 -0.4 3.0 97.4

300.100 0 22.27 1.34 54.07 33.81 1.83 27.03 25 54 -1.0 3.5 97.5

300.040 523 32.64 2.16 94.62 34.72 1.36 27.80 14 51 -0.6 0.5 100

300.040 400 33.31 2.2 94.6 34.71 1.41 27.78 14 51 -0.5 0.4 100

300.040 300 33.33 2.19 88.35 34.68 1.46 27.76 14 51 -0.5 0.5 100

300.040 200 34.39 2.27 87.79 34.57 0.99 27.71 14 51 -0.3 0.7 99.6

300.040 150 33.51 2.2 83.41 34.42 0.33 27.62 14 51 -0.5 1.3 99.2

300.040 110 32.69 2.11 70.19 34.17 -0.81 27.48 14 51 -0.8 2.3 98.6

300.040 80 27.47 1.84 66.73 33.87 -0.29 27.21 14 51 -0.5 2.9 97.6

300.040 50 25.73 1.75 64.23 33.67 -0.37 27.05 14 51 -0.2 3.2 97.0

300.040 30 21.83 1.5 63.51 33.40 1.43 26.73 14 51 0.4 3.5 96.1

300.040 15 6.21 0.32 57.92 32.86 1.34 26.30 14 51 0.3 5.2 94.6

300.040 10 3.32 0.19 56.13 32.80 1.37 26.25 14 51 0.2 5.4 94.4

300.040 0 0.77 0.1 52.02 32.64 1.32 26.13 14 51 0.5 5.6 93.9
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200.040 730 33.11 2.21 99.84 34.72 1.22 27.81 14 5 -0.6 0.5 100

200.040 600 33.45 2.23 99.76 34.72 1.32 27.80 14 5 -0.3 0.3 100

200.040 450 33.19 2.19 91.11 34.71 1.39 27.78 14 5 -0.3 0.3 100

200.040 360 33.81 2.23 92.6 34.69 1.40 27.77 14 5 -0.2 0.3 99.9

200.040 200 34.32 2.24 86.13 34.57 0.98 27.70 14 5 -0.8 1.1 99.7

200.040 100 33.1 2.2 84.21 34.03 -0.72 27.34 14 5 -0.6 2.5 98.1

200.040 75 32.03 2.13 84.1 33.80 -1.19 27.19 14 5 -1.0 3.5 97.5

200.040 60 30.73 2 79.81 33.69 -1.52 27.11 14 5 -1.5 4.2 97.3

200.040 40 30.14 1.99 77.08 33.60 -1.70 27.04 14 5 -1.6 4.5 97.1

200.040 25 29.65 1.94 74.71 33.54 -1.71 26.97 14 5 -1.3 4.5 96.8

200.040 15 29.05 1.92 73.76 33.52 -1.71 26.63 14 5 -1.4 4.6 96.8

200.040 0 19.33 1.23 66.65 32.96 1.08 26.40 14 5 0.8 4.4 94.8

200.000 662 33.08 2.18 94.03 34.72 1.33 27.80 9 6 -0.3 0.3 100

200.000 500 33.21 2.19 95.26 34.72 1.38 27.79 9 6 -0.3 0.3 100

200.000 400 33.5 2.21 91.67 34.71 1.41 27.78 9 6 -0.4 0.4 100

200.000 300 33.56 2.16 87.71 34.69 1.45 27.77 9 6 -0.3 0.3 99.9

200.000 250 33.68 2.2 86.59 34.67 1.43 27.75 9 6 0.1 0.1 99.8

200.000 100 33.19 2.16 77.96 34.17 -0.75 27.48 9 6 -0.8 2.3 98.6

200.000 75 30.18 2.01 72.7 33.88 -1.20 27.26 9 6 -0.9 3.2 97.7

200.000 45 27.88 1.86 71.03 33.62 -1.08 27.04 9 6 -1.0 4.0 97.0

200.000 30 27.61 1.87 72.62 33.63 -1.12 26.98 9 6 -1.1 4.0 97.0

200.000 20 25.52 1.78 69.38 33.46 -0.92 26.91 9 6 -0.5 4.1 96.4

200.000 10 13.65 0.84 61.97 32.89 2.38 26.25 9 6 0.9 4.6 94.5

200.000 0 13.61 0.85 61.99 32.89 2.43 26.25 9 6 0.9 4.6 94.5

200.100 415 33.81 2.27 100.71 34.71 1.39 27.79 11 56 -0.4 0.4 100

200.100 360 33.89 2.23 92.78 34.70 1.40 27.78 11 56 -0.7 0.7 100

200.100 270 26.16 1.77 56.66 34.68 1.39 27.76 11 56 -0.4 0.4 99.9

200.100 175 35.02 2.28 86.35 34.56 0.96 27.68 11 56 -0.4 0.8 99.6

200.100 125 34.24 2.24 84.55 34.40 0.30 27.59 11 56 -0.6 1.4 99.2

200.100 100 34.14 2.24 88.25 34.23 -0.09 27.49 11 56 -0.3 1.7 98.6

200.100 85 31.22 2.04 68.32 34.13 -0.87 27.40 11 56 -0.9 2.4 98.4

200.100 50 33.88 2.24 91.31 33.86 -0.19 27.20 11 56 -0.5 2.9 97.6

200.100 30 22.17 1.49 62.21 33.71 1.15 26.99 11 56 -0.5 3.4 97.2

200.100 17 18.55 1.17 62.71 33.51 2.93 26.83 11 56 -0.2 3.7 96.6

200.100 10 17.95 1.15 63.16 33.20 2.57 26.53 11 56 0.5 4.0 95.5

200.100 0 17.57 1.11 62.11 33.20 2.57 26.50 11 56 0.3 4.1 95.5

200.200 3643 33.66 2.24 123.94 34.70 0.41 27.86 32 125 -1.0 0.9 100

200.200 3000 33.47 2.21 115.07 34.70 0.50 27.85 32 125 -0.9 0.8 100

200.200 1500 32.73 2.13 93.05 34.73 1.22 27.82 32 125 -0.5 0.4 100

200.200 700 33.08 2.12 79.59 34.72 1.88 27.76 32 125 0.1 0.0 99.9

200.200 370 34.39 2.23 72.42 34.64 2.05 27.68 32 125 0.1 0.1 99.7

200.200 170 35.78 2.28 60.71 34.43 1.86 27.53 32 125 0.5 0.5 99.1

200.200 100 32.86 2.11 49.79 34.11 0.00 27.40 32 125 0.4 1.5 98.1

200.200 70 29.99 1.96 43.91 33.98 -0.96 27.33 32 125 -0.1 2.3 97.9

200.200 60 29.27 1.94 43.13 33.95 -1.11 27.31 32 125 0.2 2.1 97.7

200.200 30 25.7 1.69 37.31 33.83 0.41 27.07 32 125 -0.3 2.8 97.5

200.200 10 25.14 1.63 31.84 33.82 1.90 27.03 32 125 -0.3 2.9 97.5

200.200 0 25.45 1.64 32.26 33.82 1.91 27.03 32 125 -0.1 2.7 97.4



Dittrich, 2019  

268 
 

Table 8: PAL LTER (chapter 4) depth-integrated standing stocks of organic carbon and 

nitrogen, Chla and bacterial abundance. Maximum rates of primary production (PP) and 

leucine incorporation. All values are calculated for the top 50m. Stations in italics are 

interpolated as there was no sample collected at 50m depth. 

 




