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Abstract 

The need for asymmetric synthesis has been outlined and methods for generating 

asymmetry discussed. 	The chemistry of the well known 2,2'-disubstituted-1,1'- 

binaphthyl system was reviewed and a novel chiral auxiliary has been designed around 

this system. Modifications were implemented to introduce originality into the system and 

hopefully increase stereo selectivity. These included an increase in steric bulk and the 

introduction of different co-ordinating functionalities. 

A quick and efficient synthesis of a series of novel biphenanthryl compounds has been 

developed in four steps from commercially available starting material. Resolution was 

effected at an early stage in the synthesis. The resolution was confirmed by X-ray 

crystallography and circular dichroism. The absolute configuration of the series has also 

been assigned. 

Investigations into the possible synthesis of a BINAP analogue, the chiral modification of 

lithium aluminium hydride, use as a chiral auxiliary and the possible synthesis of a chiral 

dihydropyridine reagent are also discussed. 
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AcOH acetic acid 
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dppp 1 ,3-bis(diphenylphosphino)propane 

DQF-COSY double quantum filtered correlated spectroscopy 
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El electron impact 
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[tOH ethanol 

FAB fast atom bombardment 

HMPA hexamethylphosphoramide 

HPLC high performance liquid chromatography 
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NMR nuclear magnetic resonance 

NADH nicotinamide adenine dinucleotide 
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ppm parts per million 

R alkyl 

ROESY rotating frame Overhauser spectroscopy 

S singlet 

S-AMP (S)-(-)- 1- amino-2-(methoxymethyl)pyrrolidine 

t triplet 

Tbf tetrabenzo[a,cg,i]fluorene 

Tbfmoc tetrabenzo [a,c,g,i]fluorenyl- 1 7-methoxycarbonyl 

TFA trifluoroacetic acid 

Tf20 trifluoromethanesulfonic anhydride 
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X 	 heteroatom 



Introduction 

1. Introduction 

1.1. Asymmetric Synthesis 

The synthesis of new organic molecules and the improved synthesis of existing ones 

will always be a major task for the organic chemist. These molecules play an 

important part in modern life, not least in the area of pharmaceuticals, agrochemicals 

and other materials which possess useful biological activity. This activity arises 

through interaction with biomolecules such as enzymes and receptors which are chiral 

and are present as single enantiomers as they have been synthesised from enantiopure 

building blocks such as amino acids or carbohydrates. If the organic molecule itself is 

chiral then the two enantiomers are likely to interact differently with the biomolecule. 

Thus the enantiomers will probably possess different levels and/or types of activity. 

Using a racemate of a biologically active compound can be equivalent to using two 

different compounds. 

It is rare for enantiomers to have the same biological activity. In general, one 

enantiomer is responsible for the biological activity. The other enantiomer, at best, 

will have no activity but more often than not inhibits the desired effect or exhibits 

adverse side effects. The most dramatic example is the case of thalidomide, the K-

enantiomer is a good sedative but the S-enantiomer exhibits profound teratogenic 

activity.' Pharmacological studies on racemates also leads to unsound and misleading 

data. To combat this, there are more and more stringent guidelines in many countries 

for the registration of racemic clinical drugs. Furthermore, regulatory scrutiny has 

also turned on the agrochemical industry. Production of chiral agrochemicals as a 

single enantiomer is desirable so as to reduce the environmental impact of the 

compound. 
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Introduction 

The problem of synthesising enantiopure compounds can be solved in many ways. 

Resolution of racemates is the classical solution and is still the main method for 

industrial scale synthesis. However resolution is often expensive as a suitable 

resolving agent must be employed and the unwanted enantiomer disposed of (or 

racemised and recycled). Alternatively, enantiopure starting material may be 

employed, but this requires that such a molecule is available which possesses the 

desired absolute configuration and that a convenient and practical route be can 

developed. 

The ideal solution to the problem is asymmetric synthesis. This involves the 

enantio selective conversion of a prochiral substrate to an optically active product by 

reaction with a chiral appendage. From an economic viewpoint the chiral appendage 

(or auxiliary) should be present in catalytic amount. An array of synthetic methods 

would then be available to the organic chemist to carry out the desired transformation 

with control of the relative and absolute stereochemistry. 

In order to achieve asymmetric synthesis, at least one component of the reaction must 

be chiral and non racemic. In general, any feature of the reacting system leading to 

diastereotopic transition states and not enantiotopic transition states could lead to the 

formation of one diastereoisomer or enantiomer. This follows as the diastereotopic 

transition states need not be of equal energy. The reaction will then proceed through 

the lower energy transition state to give an excess of one enantiomer. For a schematic 

representation see Figure 1. 

Energy A  lo B 

X = Achiral reagent 

Enantiotopic transition state 

(S)-AX 	(R)-AX 

flAfl 

(S)-B 	 (R)-B  

X* 
Energy A 	B 

X = Chiral reagent 

Diastereotopic transition state 
(S)AX* (R)AX* 

r Afl 

(S)-B 	 (R)-B 

Figure 1. Diastereotopic Versus Enantiotopic Transition States. 
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Introduction 

Components that may be manipulated include the use of a chiral substrate, reagent, 

solvent or catalyst. In reality chiral solvents are not much used due to the expense of 

obtaining sufficient quantities of the solvent and the unpredictable and low levels of 

stereoselectivity. In principle, the use of a chiral reagent is an excellent approach. 

Unfortunately, the currently available reagents for this approach often lack the 

generality and level of stereospecificity required. Stoichiometric amounts are often 

needed and the reagents are expensive. Enantiomeric enrichment may be difficult due 

to the formation of the product as a mixture of enantiomers. 

One of the most attractive methods for asymmetric synthesis involves the use of a 

chiral catalyst. For a schematic representation see Figure 2. A small amount of 

catalyst produces stoichiometric amounts of enantiomerically enriched product. 

Significant advances have been made in this area in the last few years in academia and 

in industry. Both enzymes (nature's catalysts) and synthetic catalysts have been used 

to produce chiral compounds on a large scale economically and with good 

stereo selectivity. 

I Prochural 	I Chiral 	 I Prochiral 	LChiral
Substrate + 	Catalyst 	 Substrate 	st Complex 

Recycle 	
Reaction under control of 
the the chiral catalyst 

Modified 	I Chiral 	_______ Modified I 	Chiral I 
Substrate + 	I 	Substrater-  Catalyst 

Figure 2. Asymmetric Catalysis Cycle. 

Another general approach to asymmetric synthesis involves the use of a chiral 

auxiliary. The overall strategy is shown in Figure 3 and has clear similarities with the 

asymmetric catalysis cycle shown in Figure 2. In this approach, the prochiral 

substrate is attached to a chiral group or auxiliary prior to reaction. The products 

then become diastereotopic and one should be formed in excess. The major 
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diastereoisomer can then be isolated and the chiral auxiliary removed to give the chiral 

product. Stoichiometric amounts of the auxiliary are needed, but it can be recycled. 

Prochiral 	Chiral 	_ Prochiral 	Chiral + 	
ii Substrate 	Auxiliary 	Substrate 	Auxiliary 

Reaction at prochiral substrate 
to give chiral centres 

Modified + Chiral 	Modified 	Chiral 
Substrate 	Auxiliary 	 Substrate 	Auxiliary 

Figure 3. Asymmetric Synthesis Using A Chiral Auxiliary. 

Chiral auxiliaries can be used in two ways. Firstly they can be used directly as 

described in Figure 3. Alternatively they can be attached to a transition metal to 

produce a chiral catalyst and used as described in Figure 2. Such an auxiliary must be 

enantiomerically pure, cheap and easy to obtain in sufficient quantity. Control of the 

stereochemistry of the reaction must be high and predictable and the auxiliary easily 

separated from the product and recovered. Furthermore, for the auxiliary to be used 

directly as described in Figure 3, the auxiliary must be easily attached to the substrate 

and removed without loss of optical purity. It is also advantageous if the major 

diastereoisomer can be easily purified. At present there are relatively few auxiliaries 

which meet all these demands. 

One of the most successful class of auxiliaries to have been used are the 2,2'-

bisubstituted- 1,1'-binaphthyls (1) (Figure 4), which have shown excellent 

discriminating properties. It has been almost universally observed that auxiliaries with 

a C2  symmetry element direct the stereochemical outcome of a reaction with higher 

control than those auxiliaries which lack symmetry. This is due to the presence of the 

C2  symmetry axis which can serve the important role of dramatically reducing the 

number of possible competing diastereotopic transition states.2  
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1 

Figure 4. 2,2 '-Bisubstiluted-I , 1 '-binaphthy!. 

1.2. 2,2'-Dihydroxy-1,1'-binaphthy1 

When X equals hydroxyl in Figure 4 the resulting compound is called 2,2'-dihydroxy- 

1, l'-binaphthyl or binaphthol (2) (Figure 5). 	This is an axially disymmetric, 

bifunctional molecule and is an ideal chiral ligand. It is conformationally mobile and 

can accommodate a wide variety of transition metals and transition states through 

rotation about the C1 -C1  axis and the C-O bonds without introducing significant 

strain.3  

(R)-(+)-2 	 (S)-(-)-2 

Figure 5. (R)- and (S)-2,2 '-Dihydroxy-1,l '-binaph thy!. 

1.2.1. Synthesis of Binaphthol 

Binaphthol (2) is normally prepared by the oxidative coupling of 2-napthol (3) with 

ferric chloride  or manganese tris(acetylacetonate)5  to give racemic binaphthol (2) 

which can then be resolved by various methods. A stereoselective synthesis has also 

been reported using a chiral copper-amine complex in 85% yield and with up to 95% 

optical purity6  (Figure 6). The chiral amine, (S)-(+)-a-methylbenzeneethanamine (4) 
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(d-amphetamine) is recovered with no loss of optical purity. 	However d- 

amphetamine is a controlled substance and so can not be used on a large scale in most 

laboratories. 

OH d-amphetamine 4 Ca  Cu (NO3)2, PvOH 

3 

 

(S)-(-)-2 

Figure 6. Stereoselectii'e Synthesis of Bin aph thol. 

1.2.2. Resolution of Binaphthol 

There are various reported practical resolutions of binapthol (2). These include the 

enzymatic hydrolysis of the diester of binaphthol (2), resolution of the cyclic 

phosphate of binaphthol (2)8.9  and inclusion complexes with suitable compounds.'°" 

Until recently, the most attractive method for the resolution of both enantiomers of 

binaphthol (2) seems to be the formation of an inclusion complex with (R,R)- 1,2-

cyclohexanediamine,'°  but commercially available (RR)- 1 ,2-cyclohexanediamine is 

expensive. Other resolving reagents such as (R,R)-(+)-2,3 -dimethoxy-N,N,N',N'- 

tetramethylsuccinamide 	and 	(R)-(+)-N,N,N',N'-tetramethyl-2,2-dimethyl- 1 • 3- 

dioxolane-trans-4,5-dicarboxamide also form inclusion complexes with binaphthol (2) 

but they must be synthesised from tartaric acid and are difficult to remove." Toda et. 

al. have recently reported that N-benzylcinchonidium chloride (5) (Figure 7) readily 

forms an inclusion complex with one enantiomer of binaphthol (2). 12  This resolution 

has been optimised by Cai et. al. by changing the nature and volume of the solvent 

used for the resolution. 13  The resolution is outlined in Figure 8. Thus both 

enantiomers of binaphthol (2) can be easily obtained in greater than 95% yield and 

with greater than 99% optical purity. 



N-benzylcinchonidium 

chloride. acetonitrile 

Swish with hot methanol, 
extractive work up. 

if 

N-benzylcinchonidium 
chloride complex. 

Complex. 96% ee. 

Introduction 

H4
HO 	

+J 

I 
Ph 

Figure 7. N-Benzylcinchonidium Chloride. 

(R)-(+)2 
	

Mother liquor 
99.8% ee. 	 (S)-(-)-2, 99% ee. 

Figure 8. Resolution of Bin aph t/,oL 

1.2.3. Ena ntios elective Reduction of Prochiral Ketones 

Outstandingly high enantio selectivities have been reported for the reduction of 

prochiral ketones using a binaphthol (2) modified lithium aluminium hydride reagent 

(6)"' (BINAL-H) (6). This complex is shown in Figure 9. BINAL-H (6) is 

prepared in situ from lithium aluminium hydride, optically pure binaphthol (2) and a 

simple alcohol (R"OH). 	The simple alcohol is usually ethanol for high 

enantio selectivities. (R)-B1NAL-H (6) yields (R)-alcohols, while (S)-BINAL-H (6) 

yields (S)-alcohols. This hydride reagent has been efficiently employed for the 

asymmetric reduction of a wide variety of unsaturated carbonyl compounds such as 

aryl, alkenyl and alkynyl ketones. ' For some representative examples see Table 1. 

7 
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However, BINAL-H reagents (6) are not capable of reducing prochiral dialkyl 

ketones in high optical yield. 14 

II 	+ L 

ryLr0 
' "OR"  

iOH 
V 

R sR' 

(S)-6 

Figure 9. BII\TALH Reduction of a Prochiral Ketone. 

R R' Bin aphthol 

Config. 

% Yield % 

ex. 

Config. of 

product 

Ph Me R 61 95 R 

Ph Et S 61 98 S 

PhCH2  Me S / 13 S 

CHC nC5H1 , S 71 84 S 

(E)- nC5H,, R 91 91 R 

nC4H9CH=CH 

Table 1. Reduction of Selected Prochiral Ketones by BIIVAL-H. 

The stereochemical result of the reduction has been rationalised by a mechanism 

involving a six membered, chelating transition state (Figure 10). Using acetophenone 

as a model substrate, it was presumed that the transition state (7) was favoured over 

(8). This was due to the unfavourable interaction of the larger phenyl group with the 

binaphthyl system in (8), resulting in the formation of the alcohol with the desired R 

configuration.3  

It has also been proposed that electronic factors must be taken into account when 

discussing the enantio selectivity. This view has been supported by the fact that a high 



1 c I 

OiPr 
T 

0 1p 

(R)-9 	 (R)-10 

(R.R)-1 I 
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level of enantio selectivity can only be achieved with prochiral compounds containing 

sp or SP2 hybridised carbons. 14 

	

0 	 0 

	

0 ~ 	Me, 	 )1--0 

8 
Ne 

Figure 10. Possible Transition States for the Reduction of Acetophenone. 

1.2.4. Chiral Organotitanium Complexes 

Chiral organotitanium complexes have been prepared using binaphthol (2) as the 

chiral modifier and have been used as catalysts for various reactions. Three types of 

complex have been synthesised (9),1 6 (10)'11-18 and (11)18 (Figure 11). 

Figure 11. Organotitanium Complexes. 



Introduction 

Complexes (9) and (10) are prepared in situ, while complex (11) is a second 

generation complex. That is, it is formed by the complete hydrolysis of complex (10), 

followed by the azeotropic removal of 2-propanol.'8  The resulting complex is a 

moisture tolerable enantioselective catalyst. Similar treatment of complex (9) also 

results in the formation of (11).' 

These types of complex have been used to catalyse the glyoxylate-ene reaction with 

high enantioselectivity.'6  For example, complex (11) catalyses the ene reaction 

between a-methylstyrene (12) and methyl glyoxylate (13) in 98% e.e.'9  (Figure 12). 

+ 
0 

(R,R)-1 1 
N. 

OH 
98% ee 

12 
H 	Me CO2 

13 
DCM 

-30'C, 3h 
Ph 	CO2Me 

93% 

Figure 12. An Asymmetric Glyoxylate-Ene Reaction. 

Similar C-C bond forming reactions have also been carried out. These include the 

Mukaiyama aldol reaction of ketone silyl enol ethers with glyoxylate esters. 20  Ene 

type products are formed with control of the absolute and relative stereochemistry. 

For example, the reaction between the trimethylsilyl enol ether of 3-pentanone (14) 

and methylglyoxylate (13) in the presence of 5% (R)-9 proceeds in 58% yield to give 

(15) after careful work up. Hydrolysis of (15) gave the 3-hydroxyketone (16) as the 

sole stereoisomer (Figure 13). 

OSiMe3 
+ 	 (R)-9 

0 	 Me3SiO OH 

H CO2Me DCM 
°C 14 	 13 	 0 	

Me15 

0 OH 

CO-,Me 

Me 16 

Figure 13. An Asymmetric Mukaiyama Aldol Reaction. 
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Another process successfully undertaken asymmetrically is the Diels-Alder 

cycloaddition.2' 	Molecular sieve free (R)-9 gives good endo- selectivity and 

enantio selectivity in the hetero Diels-Alder cycloaddition of glyoxylates and dienes. 

For example, methyl gyloxylate (13) reacts with 1-methoxy-1,3-butadiene (17) in 

56% yield (Figure 14). 

	

OMe 	 OMe 
MeO 0 (R)-9 

+ HCO2Me DCM (aco2Me 	 CO 2Me 17 	 13 

	

2,6 cis 	 2,6 trans 
78% (94% ee) 	22% (>90% ee) 

Figure 14. An Asymmetric Die/s-Alder Cycloaddition. 

The synthesis of homo-allylic alcohols is also catalysed by organotitamum complexes 

of this type. Both complexes (9) and (10) have been used successfully to catalyse the 

reaction between aldehydes and allyl stannanes in good yield and with good 

enantio selectivity. '7'22 	For example, (R)-10 catalyses the reaction between 

benzaldehyde (18) and allyltributyltin (19) in 88% yield and with 99% e.e. (Figure 

15). It should be noted that in this reaction that diisopropoxytitanium dichloride alone 

gives no reaction22  and that complex (11) is not as effective" under the same 

conditions. The same reaction has also been catalysed by a chiral silver complex with 

(S)-binaphthol (2) as the chiral ligand, again with good yield (88%) and 

enantio selectivity (96% e.e.) to give the (S)-alcohol.23  

0 	1)10inoI%(R)-10 	HO H 

PhH 2) 	
Siu3 Ph 

18 	 19 

Figure 15. Aymmetric Synthesis of a Homo-Allylic Alcohol. 
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1.2.5. Binaphthol as a Chiral Auxiliary 

Until recently, little investigation into the potential use of binaphthol (2) as a chiral 

auxiliary has been undertaken. Tanaka et. al. have studied in detail the alkylation of 

the enolate generated from binaphthyl phenylacetate (20).24  The ester was easily 

prepared by the condensation of phenylacetic acid and binaphthol (2) in the presence 

of l- ethyl- 3-[3-(dimethylamino)propyl]carbodiimide. The alkylation was carried out 

using lithium diisopropylamide as the base and THF/I-IIVIPA as the solvent system 

giving (21) with good diastereoselectivity. The diastereo selectivity increases with the 

bulkiness of the alkylating agent (up to 92% d.e. for isobutyl iodide). Acidic or basic 

hydrolysis gave the corresponding acid (22) with no loss of optical purity (Figure 16). 

1) LDA, THY, HMPA 

2) RI 

OH R 

Ph 

(S.S)-21 
(S)-20 

 

OH 	 R 

OH + HOOCPh 

(S)-22 

(S)-2 

Figure 16. Alkylation of (S)-Binaphthyl Phenylacetate. 

Although good dia stereo selectivity was observed for bulky alkylating agents, poor 

selectivity was observed for small alkylating agents. In particular, an increase in the 

diastereo selectivity for methylation was important since 2-arylpropionic acids 

constitute an important class of non-steroidal anti-inflammatory drugs. Switching the 

base from lithium diisopropylamide to n-butyllithium achieved this. An increase in 

diastereo selectivity from 72% to 92% was obtained for this methylation. 

12 
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This was a surprising result as n-butyffithium is normally too nucleophulic a base to 

generate enolates from esters. This surprising reactivity was due to a complex 

induced proximity effect (CIPE) involving the phenolic hydroxyl group as a directing 

element. When racemic ester (23), which possesses a methoxy group was used, a 

mixture of diastereoisomers was obtained in lower yield than before, along with about 

20% of (24), arising from nucleophilic attack of n-butyliithium on the ester carbonyl 

group. This suggests that the hydroxyl group plays a crucial role in the successful 

generation of the enolate. When naphthyl ester (25), which lacks the upper naphthyl 

ring of binaphthol (2), was alkylated in the presence of I equivalent of 2-naphthol (3) 

(TI-IF, 2 equivalents of n-butyffithium), a 23% yield of (24) was formed confirming 

the necessity of an intramolecular hydroxyl group. 

c,çMe 
BXO H 

Ph 	
24 0 

23 

~=O~-~Ph 

25 

Figure 17. Structures of (23), (24), and (25). 

Trapping experiments on enolates derived from binaphthyl esters have shown the 

predominant formation of the (E)-enolate. The amount of (E)-enolate increases 

slightly with the use of n-butyffithium as the base instead of lithium diisopropylamide. 

Using esters with substituents other than a hydroxyl group at the C2 position, for 

example (23), there was no great difference in the E:Z ratio of the enolates formed. 

This indicates that the hydroxyl group plays a crucial role in the predominant 

formation of the (E)-enolate in THF under kinetic control. 

Figure 18 illustrates the plausible transition states leading to (E)- and (Z)-enolates, 

(26) and (27) from binaphthyl ester (20). In transition state (28), the CIPE of the 

phenolate provides a resident site for the second molecule of n-butyffithium which will 

abstract the pro-S hydrogen to give the (E)-enolate. The alternative transition state 

13 
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(29) suffers from considerable steric repulsion. The nucleophilic carbon of the (E)-

enolate is more open on the si-face than the re-face which is hindered by the attached 

naphthyl ring. Thus electrophilic attack takes place preferentially from the si-face of 

the (E)-enolate to give the observed (S,S) isomer (21). 

	

Lt— u 	
L9 

Li H 	 L

28 	 29 

 

o. 	 j. 

	

II 	 I II 

d 

	

(E)-Enolate 26 	 (Z)-Enolate 27 

Figure 18. Plausible Transition States 28 and 19 leading to E and  Enolates 

Respectively. 

This methodology has been used to synthesise (S).(+)-naproxen (30) and (S)-(+)-

suprofen (31) (Figure 19) which are part of an important class of nonsteroidal anti-

inflammatory drugs. 

CH3  

MeOO1' 
OOH 

30 

CH3  

COOH oYa 
0 31 

Figure 19. (S)-Naproxen and (S)-Suprofen. 
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Binaphthyl esters of a43 unsaturated carboxylic acids are also alkylated at the a 

position with accompanying double bond migration using lithium diisopropylamide in 

THF/HMPA. No alkylated product was observed without HMPA, probably due to 

internal proton return. This was confirmed by the isolation of the rearranged product 

in 67% yield. High diastereo selectivity was observed (9:1) regardless of the 

alkylating agent used. The alkylation of binaphthyl crotonate (32) is outlined in 

Figure 20. 

Figure 20. Alkylation of Binaph thy! Croton ate. 

Organometaffic reagents undergo a 1,4 addition onto binaphthyl esters of a,13  

unsaturated carboxylic acids followed by a 1,2 addition to the carbonyl group. For 

example, the reaction between (S)-33 and lithium dimethylcuprate gives (R)-4-phenyl-

2-pentanone (34) and proceeds in 84% yield and with 87% enantio selectivity (Figure 

21). This transformation constitutes a new one pot synthesis of optically active 

substituted 

3- 

substituted ketones in good yield and enantio selectivity. 
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Me2CuLi 
Do 

Me 0 

+ Ph  

(R)-34 

(S)-33 	 (S)-2 

Figure 21. Successive 1,4 and 1,2 Addition of Lithium Dimethyicuprate to (S)-33. 

1.2.6. Crown Ethers 

Many crown ethers containing the binaphthyl moiety have been synthesised.25  The 

binaphthyl moiety is chiral and the aryl rings are potential chiral barriers that should 

impart chiral recognition on the crown ether toward appropriate guest compounds. 

Additionally substituents on the binaphthyl ring can be manipulated so as to increase 

the chiral barrier, increase solubility or to bond the crown ether to a solid support.26  

Chiral barrier 

Complexation site 

(R.R)-35 

Figure 22. Binaphthyl Containing Crown Ethers. 

High chiral recognition by optically active hosts such as (RR)-35 (Figure 22) has 

been observed in the complexation of salts of primary amine racemates. Substances 

such as ct-phenylethylamine, amino esters and amino acids have been studied as guests 

in distribution experiments between an aqueous layer of lithium hexafluorophosphate 

and a chloroform layer containing the optically pure host. The hosts are insoluble in 

the aqueous layer and the guest salts are insoluble in the organic layer in the absence 
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of the host. When present, the host selectively complexes, lipophilises and draws into 

the organic layer one guest enantiomer more than the other. After equilibrium, the 

layers are separated and the optical purity determined. In this approach to resolution, 

(R,R)-35 is the most generally successful host developed thus far.27 

Complexes of crown ethers, (35) and (36) and the potassium bases, potassium amide 

or potassium tert-butoxide, catalyse asymmetric Michael addition reactions to give 

products with 60-99% e.e. •28 For example, the reaction between methyl- I-oxo-2-

indanecarboxylate (37) and methyl vinyl ketone (38) in the presence of (S,S)-35 and 

potassium tert-butoxide gives the corresponding Michael adduct (39) in 48% yield 

and with 99% e.e. (Figure 23). 

CO,Me 	 CO2Me 

02CO + 
4~y (S,S)-35 

10 
yMe 

o 	KOtBu 

37 	 38 	 (R)-39 

Figure 23. An Asymmetric Michael Addition Reaction. 

1.3. 2,2'-Bis(di phenyl phos phi no)- 1,1' -binaphthyL 

When, in Figure 1, X = diphenylphosphino the resulting compound is called 2,2'-

bis(diphenylphosphino)- 1,1 '-binaphthyl29 or B1NAP (40) (Figure 24). Since its 

introduction in the early 1980s BINAP has become one of the most successful chiral 

ligands for catalytic asymmetric synthesis.30 

(R)-(+)-40 	 (S)-(-)-40 

Figure 24. (R)- and (S)-Bis(diphenylphosphino)-1, 1 '-bin aphthy!. 
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BINAP is a fully arylated, symmetrical chiral C2  diphosphine ligand. Its full 

aromaticity imparts a higher stability than found for aliphatic phosphines. This also 

gives a greater steric influence, provides polarisability and enhances the Lewis acidity 

of the metal complex. BINAP (40) is a conformationally flexible molecule and so can 

accommodate a wide variety of transition metals by rotation about the C1-C1  pivot 

and C2  or C2 -P bonds without a serious increase in torsional strain. The chirality 

which was originally due to the binaphthyl skeleton is then passed on to the other 

transition metal co-ordination sites through phosphorus-metal interaction. 

1.3.1 Synthesis of BINAP 

The first reliable synthesis of BINAP (40) was reported in 1980,29  with the 

development of a more convenient route in l984.' This involved the resolution of 

the racemic diphosphine oxide (41) by camphorsulfonic acid or 2,3-0-dibenzoyl 

tartaric acid followed by reduction with trich1orosilane3233  (Figure 25). 

Ph 3PBr 2 	 Br 1)Mg 

Br 2)Ph 2P(0)C1 

)Ph 2  HSCI 3  

)Ph 2  NEt 3  

(S)- 41 and (R)- 41 

A = (+)-2,3-0-Dibetizoyl-D-tartanc  acid 
B = (-)-2,3-0-Dibenzoyl-L-tartaric acid 

x
")Ph2 + (R)-(+)-40 

(S)+)-40 

A or B 
IM 

Figure 25. Synthesis of BIT%JAP (Number 1). 
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This route is too inefficient for the synthesis of large quantities of BINAP (40). The 

high temperature bromination reaction (240-320°C) proceeds with the evolution of 

hot hydrogen bromide gas and the resolution is carried out at a late stage in the 

synthesis. These drawbacks make the chemistry dangerous and troublesome to carry 

out on a very large scale. 

Cai et. al. have developed a simple practical synthesis of B[NAP (40)34  starting from 

binaphthol (2) which has been resolved using N-benzylcinchonidium chloride (5) 

(Figure 8). Each enantiomer is converted to its triflate (42) which is then converted 

directly into optically active BINAP (40). This is achieved using a novel nickel 

catalysed diphenylphospliine coupling reaction (Figure 26). As a result of this 

methodology BINAP (40) is now readily available in a simple resolution and a two 

step synthesis from binaphthol (2) in 70% overall yield, greatly improving its 

availability and synthetic utility. 

H 	Tf20 

H Pyndme 

NiCl2(dppe) 
10 

DABCO 
PkPH 
DMF 

2 	 40 

Figure 26. Synthesis of BINAP (Number 2). 

BINAP (40) is normally used in conjunction with rhodium and ruthenium Some 

common complexes are shown in Figure 27. The scope of rhodium catalysed 

reactions are limited. 	On the other hand BINAP-ruthenium chemistry has 

unprecedented broad utility,30'35  especially the ruthenium dicarboxylate complexes 

(42). 
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tBU 

P"R
o11 
IO 

LJJ 	
\Bu 

(S)-42 
có

Ru 'Cl 
BF4 

(S)-43 

Ph, 

P~Rht~~ 
C104 	 P  

112 Ph2 
+ P-_ 

Rh 
- 

h2 Ph2 

do4- 

(R)-44 
	

(R.R)-45 

Figure 27. Common BIJYA P-Metal Complexes. 

1.3.2. Asymmetric Hydrogenation of Olefins 

Homogeneous asymmetric hydrogenation of olefins using a chiral phosphine-rhodium 

complex was first carried out in 1968.3637 This has been developed to include BINAP 

(40) as one of the possible chiral phosphine ligands. 

BINAP-ruthenium complexes of type (42) hydrogenate prochiral cL,j3- or 3,y-

unsaturated carboxylic acids to give optically active saturated carboxylic acids in 85-

97% e.e.38 (Figure 28). The reactive intermediates are thought to be chelate 

complexes in which the carboxylate and the olefinic double bond co-ordinate to a 

ruthenium metal centre. The sense and extent of the asymmetric induction are highly 

dependent on the substitution pattern and the reaction conditions. (S)-Naproxen (30) 

is obtainable in 97% e.e. by hydrogenation. 

R3 	COOH 	 42 	R3 
* 

COOH 

R2> <R1 	
+ H2 	

R2 	R, 

Figure 28. Asymmetric Hydrogenation of a,/3-Unsaturated Carboxylic Acids. 
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Neutral functionalities also exert a directing effect through heteroatom co-ordination 

to the ruthenium. Enamide (46) is hydrogenated enantioselectively to an amide in the 

presence of a (R)-B[NAP-ruthenium complex in 79-92% e.e. .39   With a (R)-BINAP-

rhodium complex the same enamide (46) is hydrogenated to give the opposite 

enantiomer in 92-100% e.e.31  even though the stereochemistry of the BINAP ligand is 

the same (Figure 29). Here the amide group is directing the reactivity and the 

selectivity. 

ZIIT'ICOR 	
+ H2  

COOR COOR 
(R)-BINAP-Ru - 

IN- 

E 	rcCOR 
46 

(R)-BrNAP-Rh 

COOR 

Ci 1 COR 

Figure 29. Asymmetric Hydrogenation of an Enamide. 

BITh4AP-ruthenium complexes of type (42) catalyse the highly enantio selective 

hydrogenation of N-acyl-(Z)- 1-alkylidene- 1,2,3,4-tetrahydroisoquinolines (47) as 

depicted in Figure 30. °  (R)-BINAP complexes give the (R)-isomers in 59-100% e. e. 

while the (S)-BINAP complexes give the opposite configuration and proceed with 

lower enantio selectivity. This enantio selective hydrogenation forms the basis of a 

general synthesis of the isoquinoline alkaloids. This hydrogenation, followed by a 

Grewe type annulation is a new route to optically active morphine (48) (Figure 31) 

and its analogues. 

(R 

42 
+ 	H2 	 IN 

R)n 

(R 

47 

Figure 30. Asymmetric Hydrogenation of N-Acyl-(Z)-1-alkylidene-1,2,3,4- 

tetrahydroisoquinolines. 
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48 

Figure 31. Morphine. 

Allylic alcohols are another class of substrates that can be hydrogenated 

enantioselectively.4' One example is the enantio selective hydrogenation of geraniol 

(49) to (S)-citronellol (50) in 96-99% e.e. (Figure 32). Either isomer is obtainable by 

changing the olefin geometry or the BINAP chirality. Homogeraniol (51) is also 

hydrogenated with high enantio selectivity while the bis-homologue (52) is inert to the 

hydrogenation. 

+ H2 (R)-42 

OH  
49 	 (S)-50 

n = 2  51 
(CH2)flOH  n=3 52 

Figure 32. Asymmetric Hydrogenation of GeranioL 

In the presence of a ruthenium-(R)-BINAP complex of type (42), the allylic alcohol 

(53), with the chiral azetidinone moiety at C2  is hydrogenated enantio selectively to 

give (54) and (55) in a 99.9:0.1 rati042  (Figure 33). This when compared to the (S)-

BIINAP complex which gives (54) and (55) in a 28:72 ratio shows that the high 

diastereoselectvity is due to the efficiency of the chirality transfer from the (R)-

BINAP complex to the olefinic face (catalyst control) and also the influence of the 

nearby chiral azetidinone backbone (substrate control) The dia stereo selective 

hydrogenation of this system provides a powerful tool for the creation of the 13-

methyl structure of the carbap enems. 
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TBDMSO 	 TBDMSO 	 TBDMSO 

	

OH 42 	 OH

FNH 	 7NH 	 NH 

OH  

Figure 33. Asymmetric Hydrogenation of a ChiralAilylic Alcohol. 

1.3.3. Asymmetric Hydrogenation of Ketones 

Homogeneous asymmetric hydrogenation using ruthenium-B[NAP complexes can be 

extended to ketones.43  A general scheme is given in Figure 34. In general halogen 

containing complexes (43) are better than the dicarboxylate complexes (42). A wide 

range of ketonic substrates can be hydrogenated and functionalities acting as directing 

groups include dialkylamino, hydroxyl, alkoxyl, sioxyl, keto, alkoxycarbonyl, 

thiocarbonyl, (dialkylamino)carbonyl and carboxyl. Neighbouring halogen atoms 

affect the rate and the stereochemical outcome of the reaction. 

OH 	 0 	 OH 
(R)-BINAP-RU ) 
	

X + H2 (S)-BINAP-Ru 	1 
X 	10  - 

	

R cj 	 R Cn 	 R Cn  
x 

 

X = Heteroatom 
C = sp2  or sp3  carbon 

n= 1-3 

Figure 34. Asymmetric Hydrogenation of Prochiral Ketones. 

OH 

R = Me, iPr, tBu, Ph 
93-96% ee 

OH 0 

OMe 

96% ee 

OH 

)OH 

92% ee 

OH 0 

96% ee 

OH 0 

R = Me, nBu, iPr 
R' =  Me, Et, iPr, tBu 

98-100% ee 

OH 0 

93% ee 

OH 0 	 OH OH 	 OH Br 

R}R 

R Me, Ph 	 98% ee 
90-100% ee 	 92% ee 

Figure 35. Examples of Products. 
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Examples of products formed are given in Figure 35. Thus a wide variety of ketonic 

substrates are hydrogenated in either asymmetric orientation with nearly 100% yield 

and upto 100%e.e.. 

The generality of Figure 34 suggests that the stereodifferentation is mainly due to the 

co-ordination of the carbonyl oxygen and the heteroatom X to a ruthenium atom 

giving a five to seven membered ring prior to hydrogen transfer. Thus in a 

biflinctional keto substrate only moderate stereo selectivities should be obtained due to 

the competing effects of 2 heteroatoms in the same molecule. For example, the y-

chloro-13-keto ester (56) is hydrogenated in the presence of a ruthenium-(S)-BINAP 

complex (S-42) under standard conditions to give (57) in less than 70% e.e. (Figure 

36). Suprisingly, the same hydrogenation, when carried out at 100°C is complete 
44 within five minutes and proceeds with 97% e.e. 

0 C) 	 (S)-42 	 OH 0 

CLJJJ1 	100 atm H2 ,EtOH 

56 	 57 

Temperature 	Time 	% 

e.e. 

Room Temperature 10-40 h. 	<70 

100°C 	5 mm. 	97 

Figure 36. Hydrogenation of a 7-Ch!oro-/3-keto Ester. 

Stereogenic centres installed in the ketonic substrate cause unique asymmetric 

induction. For example pentane-2,4-dione (58), a symmetrical 3-diketone, undergoes 

asymmetric hydrogenation with a ruthenium-BINAP complex as a catalyst. 43,45 This 

yields the (R,R)-diol (59) and the meso-diol (60) in a 99:1 ratio. The reaction 

proceeds via the (R)-hydroxy ketone (61) which is formed in 98.5% e.e.. The (S)-

hydroxy ketone is mostly removed by conversion to the meso-diol (60) (Figure 37). 
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O 0 	 OH OH 	OH OH 
2 

+ H (R)-BINAP-Ru 

58 	 59 	 60 

OH 0 
)61 

Figure 37. Asymmetric Hydrogenation of Pentane-2,4-dion e. 

1.3.4. Enantioselective Allylic Hydrogen Shift 

Enantioselective allylic hydrogen shift is possible when catalysed by cationic rhodium-

BD4AP complexes. One example is the asymmetric isomerisation of N,N-

diethylnerylamine (62) or N,N-diethylgeranylamine (63) to give citronellal-(E)- 

enamine (64) in 95% e.e.46  (Figure 38). This process is now working on a 7 ton scale 

and is a key step in the production of(-)-menthol (65) (Figure 39). 

[Rh-(S)-BIINAP] 

-- NEt2  
63 	 (R)-64 

[Rh-(R)-BINAPr 

[R1i-(S)-B1'4APJ 

62 
NEt2  (S)-64 

Figure 38. Enantioselective Ally/ic Hydrogen Shift 

Figure 39. Menthol. 
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The isomerisation of allylic amines is believed to occur by a nitrogen triggered 

mechanism47  (Figure 40). The cationic rhodium-BINAP complex differentiates 

efficiently the enantiotopic C1  hydrogens of the allylamine through interaction with the 

adjacent nitrogen atom. The initial complex (67) is generated by ligand exchange 

between the substrate and the bis-solvent complex (66). The square planar complex 

(67) then undergoes a four centred hydride elimination to give a transient iminium 

rhodium hydride complex (68). Hydride delivery from the rhodium to C3  of the ligand 

gives the T,3-enamine complex (69) which serves as the chain carrier in the actual 

catalytic cycle and has an aza allyl structure. Liberation of the enamine product from 

(70) is followed by immediate hydride elimination to give (68) and thus the catalytic 

cycle is finished. 

66 

All)4anine 

R2  
P 	 S 

IRh' 

67 

S = Solvent 
P-P = BINAP 

P NR 

69> 	
Ailae 

/ H 

	

68 	 P 	N 

Rh/ 

	

Enanine 	 70 R2 

Figure 40. Mechanism for the Isomerisation of Allylic Amines. 
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1.4. The 9,9'-Biphenanthryl Moiety 

A related system to the binaphthyl system is the biphenanthryl system A C2  axis of 

symmetry is also present in the molecule and so the system is chiral. The most 

researched biphenanthryl compound is 	10, 10'-dihydroxy-9,9'-biphenanthryl 

(biphenanthrol) (71), the dibenzo derivative of binaphthol (2) (Figure 41). 

(R)-(+)-71 (S)-(-)-71 

Figure 41. (R)- and (S)-1 0,10 '-Dihydroxy-9, 9 '-biph enanthryL 

1.4.1. Synthesis and Resolution of Biphenanthrol 

Racemic biphenanthrol (71) is usually prepared by the oxidative coupling of 9- 

phenanthrol (72) in the presence of manganese tris(acetylacetonate).48  Various 

resolutions have been reported in the literature including chiral HPLC48  and the 

formation of inclusion complexes with tartaric acid derivatives." 	Resolution has 

also been achieved using N-alkylcinchonidium halides °  however it was noted that N-

benzylcinchonidium chloride (5) which so efficiently resolved binaphthol (2) would 

not form an inclusion complex with (±)-biphenanthrol (71). In contrast, the resolution 

was achieved with N-butylcinchonidium bromide (73) (Figure 42). 
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73 

Figure 42. N-Butylcinchonidium Bromide. 

Optically active biphenanthrol (71) can be prepared directly from 9-phenanthrol (72). 

This is achieved by carrying out the oxidative coupling in the presence of (R)-(-)- 1,2-

diphenylethylamine-copper (II) complex" in 86% yield and 98% optical purity (Figure 

43). The reaction, however, is limited to small scale due to problems in obtaining the 

resolved amine. 

C19,OH 
72 

(R)-(-)- 1 ,2-diphenylethylamine 
30 

Cu (NO3)2.(H20)3  
MeOH 

  

(S)-(-)-71 

Figure 43. Asymmetric Synthesis of BiphenanthroL 

The 9,9'-biphenanthryl system has received less attention in the literature than the 

related 1, 1'-binaphthyl system. Correspondingly the uses of this system are not so 

wide-spread. Research into the possible uses of this system has been centred on 

10,10'-dihydroxy-9,9'-biphenanthryl(71) and has been carried out in three main areas. 
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1.4.2. Complex Formation 

The first of these areas is the use of biphenanthrol (71) to resolve compounds by the 

formation of inclusion compounds. Host-guest complexes form between optically 

active biphenanthrol (71) and various organic compounds. If the chiral recognition 

between the biphenanthrol (71) and the guest compound occurs efficiently, the guest 

compound will be resolved .52  For example, the resolution of propionic and butyric 

acid derivatives has been reported. These compounds do not form complexes with 

optically active binaphthol (2). 53  Binaphthol (2), however, efficiently resolves 

sulfoxides,54  selenoxides,55  phosphine oxides56  and phosphinates56  through complex 

formation. Contrarily, these compounds are not resolved with biphenanthrol (71), 

though complexation occurs. Thus biphenanthrol (71) only recognises chirality on 

carbon and binaphthol (2) on heteroatoms. 

Crystal structure studies on these types of complex have shown that hydrogen bonds 

form between the polarised hetero-atom group and the hydroxyl group of binaphthol 

(2). Thus the components get close enough to recognise each other. In the case of 

biphenanthrol (71), the relatively larger phenanthrol rings surround the guest molecule 

more efficiently than the naphthol group of binaphthol (2), This 'surrounding" makes 

it easier to accommodate the guest molecule in the crystal lattice of the complex.53  

1.4.3. Crown Ethers 

As with binaphthol (2), biphenanthrol (71) has been incorporated into crown 

ethers .57-48  Of the binaphthyl crown ethers, (FR)-35 was one of the most 

enantio selective in resolution experiments. Methyl (±)-phenylglycinate was obtained 

in 90% optical purity by differential transport using this crown ether. 8  
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(S)-(-)-74 	 (S)-(-)-75 

(R,R)-(-)-76 

Figure 44. Biphenanthro! Containing Crown Ethers. 

The crown ethers (74), (75) and (76), shown in Figure 44, containing the 

biphenanthryl moiety have been synthesised and their selectivity for various salts 

demonstrated by differential transport.48'57  See Table 2 for a summary of the results. 

From these results it can be seen that (74) and (75) exhibit the opposite 

enantioselectivity to (76), and that the selectivity is higher. (74) and (75) have high 

selectivity for 1 ,2-diphenylethylamine. 
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Host Guest Transport % Config. Optical Purity % 

74 a 1.4 R 21 

74 b 3.1 S 88 

74 c 3.5 S 49 

75 a 2.8 R 24 

75 b 3.8 S 78 

75 c 2.5 S 45 

76 a 2.6 S 19 

76 b 3.2 R 23 

76 c 3.2 R 21 

Table 2. Selectivity of Various Biphenanthryl Containing Crown Ethers. 

Methyl (±)-phenylglycin ate. HCI. 

(±)- 1,2-diphenylethylamine.HC1. 

(±)- 1 -phenylethylamine.HC1. 

1.4.4. Enanioselective Reduction of Prochiral Ketones 

The final reported use of biphenanthrol (71) is for the chiral modification of lithium 

aluminium hydride 51  (Figure 45). Like binaphthol (2), biphenanthrol (71) has been 

used successfully to modify lithium aluminium hydride for the enantio selective 

reduction of a variety of prochiral ketones. See Table 3 for some examples. 

The chiral hydride reagent exhibits good enantiomeric face selectivity for compounds 

having a phenyl group directly attached to the carbonyl centre. Rather low 

enantio selectivities are obtained with aliphatic ketones. This mirrors the results 

observed for BINAL-H (6). 
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RR' + Li Al H " 
OH 

R"R 

Figure 45. (S)-Biphenanthrol Modified Lithium Aluminium Hydride 

R R' % Yield % e.e. Config. of product 

Ph D 74 87 S 

Ph Me 75 97 S 

Ph Et 78 98 S 

CH2Ph Me 76 33 S 

Bu Me 73 21 S 

Table 3. Reduction of Selected Prochiral Ketones by (S)-Biphenanthrol Modified 

Lithium Aluminium Hydride. 

1.5. Unsymmetrically Substituted Binaphthyls 

The uses of symmetrically substituted biaryl compounds have been well documented, 

for example binaphthol (2) and biphenanthrol (40). Many organic transformations 

have been carried out asymmetrically using these biaryl molecules as chiral auxiliaries, 

for example reduction, hydrogenation, isomerisation and other reactions discussed 

earlier. However, unsymmetrically substituted biaryl compounds remain less well 

documented, though some have been prepared and their use in enantio selective 

reactions described. 
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1.5.1. Biaryl Monophosphines 

One class of these unsymmetrically substituted biaryls are the biaryl monophosphines. 

Asymmetric transformations catalysed by transition metal complexes containing 

optically active phosphine ligands has attracted much attention. Most ligands 

developed thus far have been biphosphines. Some reactions, however, can not be 

catalysed by these types of biphosphine-metal complexes due to low catalytic activity 

and/or low selectivity. Chiral monodentate phosphine ligands have been developed to 

hopeflilly overcome these problems. 

77 	 78 

Figure 46. Biaryl Monophosphines. 

The binaphthyl skeleton has been chosen by Hayashi et. al. for the formation of such 

monodentate phosphine ligands.59  One example is 2-(diphenylphosphino)-2'-alkoxy-

I, l'-binaphthyl (MOP) (77) (Figure 46). These compounds are synthesised from the 

ditriflate of binaphthol (2) which is phosphorylated to give the monophosphine oxide 

(79) using a palladium catalyst. The remaining triflate group is then hydrolysed in 

basic conditions and the resulting hydroxyl group alkylated with an alkyl halide. 

Reduction of the phosphine oxide with trichiorosilane and triethylamine yields the 

corresponding phosphine (77). Alkyl substituents have also been introduced at the 2' 

position by a nickel catalysed reaction on (79). The synthetic procedure is outlined in 

Figure 47. A biphenantliryl analogue (MOP-phen) (78) has also been synthesised 60 

(Figure 46). 
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Ph2POH 

Pd(OAc)2  
dppb 

aq. NaOH 
W. 

))Ph2  

79 

EtMgJ3r 	 RX 
NI2(dppe) 	 K2CO3 

HS, NEt3  HSiCI3, NEt3  

)Ph2  

'h2  

77 

Figure 47. Synthesis of Binaphthyl Mon ophosphines. 

Molecules of this type (77) and (78) have been complexed with palladium to 

enantio selectively catalyse various reactions .60.61-62  One of these is the asymmetric 

synthesis of 2-alcohols (80) via the hydrosilylation of 1-alkenes (81)61  The catalyst 

system for this reaction is a palladium complex with (S)-(-)-2-(diphenylphosphino)-2'-

methoxy-1,1'-binaphthyl ((S)-(-)-MOP-OMe). The reaction proceeds in good yield 

(90-100%) and with high enantio selectivity (94-97%) (Figure 48). The asymmetric 

hydrosilylation of styrenes (ArCH=CHR) with trichlorosilane in the presence of a 

palladium-( S)-(-)-2-(diphenylphosphino )- 1,1 '-binaphthyl ((S)-(- )-MOP-H) complex 

has also been reported. After oxidation, benzylic alcohols are formed with up to 96% 

e. 63 
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+ HSiCI3 
Pd-(S)-(-)-MOP-OMe 	5iC13 

81 	 '~R (+ 

R = nC4H9, nC6I-113, nC1 0H21 	 EOI-I, NEt3 
CH2CH2PFI, cC6H11 

(OE03 H202 OH 

80 

Figure 48. Asymmetric Synthesis of 2-Alcohols. 

1.5.2. 2-Amino-2'-hydroxy-1,1'-binaphthyl 

Another unsymmetrically substituted biaryl compound to have been synthesised and 

used successfully in asymmetric synthesis is 2-amino-2'-hydroxy- 1, l'-bmaphthyl (82) 

(Figure 49). The synthesis of this molecule has been recently reported by Kocovsky.64 

This proceeds in a single step via the oxidative coupling of 2-naphthol (3) and 2-

naphthylamine in the presence of copper-(II)-chloride and a chiral amine, d-

amphetamine (4). The reaction yields about 40% of each enantiomer, both with 46% 

e.e.. Two successive fractional recrystaffisations from benzene yields optically pure 

(82). 

82 

Figure 49. 2-Amino-2'-hydroxy-1,l '-binaphthyi and it's Titanium Complex. 
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This unsymmetrically substituted binaphthyl moiety (82) has been subsequently 

incorporated into a titanium complex (83) (Figure 49) to give an asymmetric catalyst 

	

for aldol reactions.6566 	Condensation of (82) with 3-bromo-5-tert- 

butylsalicylaldehyde affords a Schiff base. This is then treated with titanium 

tetraisoprop oxide and 3,5-di-tert-butylsalicylic acid to give (83) after the removal of 

the solvent in vacuo. 

This complex has been used to catalyse the Mukaiyama aldol reaction of methyl and 

ethyl acetate derived silyl enolates (84) with aldehydes. The silylated aldol products 

are isolated in excellent yield and enantio selectivity. The catalyst system is general in 

its scope, affording excellent levels of enantioinduction for both aliphatic and aromatic 

aldehydes. 

0 	 OSiMe3 1)83, Et20 	OH 0 

R'H 	
+ 	

-:"
I 

OR 	2) BNF, THF 	 OR 
R = Me, Et 

84 

Figure 50. Asymmetric Mukaiyama A Idol Reaction. 

1.5.3. 1,1'-Binaphthyl-Carboxylic Acids 

Another class of unsymmetrically substituted biaryl compounds to have been used are 

the 1, l'-binaphthyl-2-carboxylic acids (85) (Figure 51). The presence of a carboxylic 

acid lImctionality is desirable for use as a chiral derivatising agent for the 

discrimination of enantiomeric alcohols and amines by HPLC and/or 1H NMR 67  and 

for transformation into other fljnctionalities.68  

36 



Introduction 

R=H, Me, OMe 
85 

Figure 51. 1,1 '-Binaphthyl-2-Carboxylic Acids. 

Various syntheses of these molecules have been reported. Meyers69  and Cram7°  have 

reported a nucleophilic substitution of the 2-oxazoline-activated I -alkoxynaphthylene 

by a naphthyl Grignard or lithium reagent to give 2-(1, l'-binaphthyl-2-yl)oxazolines 

which are latent binaphthyl-2-carboxylic acids. Alternatively, Miyano has reported a 

three stage synthesis from 2-methyl- 1,1 '-binaphthyls involving a bromination by N-

bromosuccinimide to give a benzylic bromide which is treated with the sodium salt of 

2-nitropropane to give an aldehyde. Oxidation by potassium permanganate yields the 

carboxylic acid.68  Miyano has also reported a palladium catalysed carbonylation of a 

binaphthyl triflate to yield the carboxylic acid.7 ' 

1.6. Project Aims 

The development of new auxiliaries is an important issue for organic chemists. As 

outlined earlier, they are an essential tool for asymmetric synthesis. Of these, one of 

the most extensively studied areas is that of axially dissymmetric biaryl compounds 

and in particular, symmetrically substituted binaphthyls. Some work has also been 

carried out in other areas, namely that of the biphenanthryl system and 

unsymmetrically substituted binaphthyl systems. These areas have been discussed in 

detail earlier. 

The aim of this project was to develop a novel chiral auxiliary system. An effective 

synthesis and resolution of the system should be obtained and the potential use of the 
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compounds as chiral auxiliaries demonstrated. The starting point for the design of the 

new system was binaphthyl as this has been one of the most successful auxiliary 

systems to have been designed. However, there are many patents in this area and so it 

was desirable to develop a novel system. Two modifications have been made to the 

binaphthyl system to create a novel series of axially dissymmetric biaryl compounds. 

The modifications are shown in Figure 52. 

1 

Figure 52. Target System. 

The first of these modifications is the addition of two extra aromatic rings. This 

increases the steric bulk of the system and hopefully the asymmetric induction 

imparted to a reaction. Replacement of the binaphthyl system with the biphenanthryl 

system has been found to be beneficial in certain areas, for example, the modification 

of lithium aluminium hydride and for the resolution of certain compounds as described 

in Section 1.4.. 

The second modification that has been made is introduction of different functionalities 

X and Y. In binaphthol (2) and BINAP (40) X and Y were the same. In this system, 

X and Y are different and so there are now different co-ordinating groups in the same 

molecule. The advantages of such a modification were demonstrated in Section 1.5.2.. 

It should also be possible to manipulate one functional group, while leaving the other 

intact. 
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2. Results and Discussion 

2.1. Access to the System 

As outlined earlier in Section 1.6., the aim of the project was to synthesise a series of 

unsymmetrically substituted biphenanthryls. An appropriate starting point for this aim 

was tetrabenzo[a,c,g,i]fluorene (Thf) (86), a highly aromatic compound containing 

the biphenanthryl moiety (Figure 53). Thf has been developed by Ramage to aid 

peptide and protein purification. 12  This has been achieved by exploiting two 

important features of the Thf system. Firstly, it's strong fluorescent properties and 

secondly, it's affinity for porous graphitised carbon (PGC) and reverse phase HPLC 

supports. 

86 

Figure 53. Tetrabenzo[a, c,g,iJfluorene. 

Merrifleld's revolutionary solid phase synthesis of peptides is based on the sequential 

addition of N'-protected amino acids to an insoluble polymeric support.73  This has 

greatly simplified peptide and protein synthesis, and in particular eliminated the need 

for purification of intermediates. However, one of the main obstacles in the stepwise 

chemical synthesis of peptides is the difficulty in purification of the final product due 

to the accumulation of truncated peptides on the resin. Truncated peptides are 

formed when the coupling of an amino acid fails to go to completion. The N-termini 

of these truncations are routinely capped with acetic anhydride to ensure that they 

play no further part in the synthesis. 
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Ramage et al.72  have developed a base-labile N'-protecting group, 

tetrabenzo[a,c,g,i]fluorenyl- 17-methoxycarbonyl (Thfinoc) (87) (Figure 54), for the 

affinity purification of peptides and proteins on PGC. Tetrabenzo[a,c,g,i]fluorenyl-

17-methyl chloroformate is reacted with the N-terminus of the resin bound peptide. 

The Thfmoc peptides are then cleaved from the resin and the solution of the crude 

mixture added to PGC. The PGC is washed and the acylated truncated peptide 

impurities removed. Deprotection of the Thfmoc group and release of the purified 

peptide is then effected. Purification of the crude product by gel filtration or HPLC 

can be monitored by ultra violet absorbance of the Thfmoc group at 364iim. 

0 X 

87 

Figure 54. Tetrabenzofa,c,g,iJfluorenyl-  I 7-methoxycarbonyl. 

The parent Thf system can be synthesised in three steps74  (Figure 55). The Grignard 

reagent derived from two equivalents of 9-bromophenanthrene was generated in 

anhydrous THE One equivalent of methyl formate was added, resulting in the 

formation of bis-(phenanthryl-9-yl)methanol (88) in 42% yield. A cydisation reaction 

occurred on the addition of TFA to a DCM suspension of the alcohol (88). The 

highly fluorescent Thf was obtained in 96% yield. 

wah174  noticed that the cycised product showed subtle differences in it's 'H NIM1R to 

that expected for Thf (86). A more complex splitting pattern was obtained than 

would be normally expected for a symmetrically substituted structure such as (86). 

Additionally, only one proton signal at 6 5.42 ppm was observed, whereas Thf (86) 
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would require two. Slight differences were also observed in the ultra violet spectrum 

of the compound and the published spectrum 75  

Based on the 'H NMR data and analysis of the reaction mechanism, the initially 

formed product was the unsymmetrical 8b-H-tetrabenzo[a,c,g,i]fluorene (8b-H-Thf) 

(89). Base treatment of 8b-H-Thf (89) results in isomerisation to give 17-

tetrabenzo[a,c,g,i]fluorene (86). 

1) Mg, THF 

Br 2) HCOOMe 

TFA, DCM 

88 

Et3N, DCM 
IN 

89 	 86 

Figure 55. Synthesis of I 7-Tetrabenzofa,c,g,iJfluorene. 

The unsymmetrical derivative 8b-H-Thf (89) was the ideal candidate for 

transformation into unsymmetrical substituted biphenanthryl compounds. Many ways 

can be envisaged to cleave the central five membered ring of (89) to give such 

compounds. Here, only one of these possibilities has been selected: ozonolysis. 

Ozone gas was bubbled through a suspension of (89) in dry THF at -78°C. The 

resulting ozonide (90) was very stable and was isolated in 70% yield after trituration 

with ether (Figure 56). The stability of the ozonide was probably due to the presence 

of the large aromatic system. 

The ozonide was stirred in THE and reduced using zinc and acetic acid to give (±)-

1 0'-hydroxy-9,9'-biphenanthiyl- 1 0-carboxaldehyde (91) in 72% yield after 
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recrystallisation from DCM. Further reduction of the phenolic-aldehyde (91) with 

lithium aluminium hydride resulted in the formation of (±)- lO'-hydroxy- 10-

(hydroxymethyl)-9,9'-biphenanthryl (92) in 95% yield after trituration with ether 

(Figure 56). 

U 

 

03, THF 
so 

89 

 

90 

Zn, AcOH 
10 

THF 

LiAIH4, THF 
OH 

91 	 92 

Figure 56. Synthesis of ()- 10 '-Hydroxy-I O-(hydroxy,nefhyl)-9, 9 '-biph en anthryl. 

Alternatively, the phenolic-aldehyde (91) can be treated with 

hydroxylamine.hydrochloride 	to 	give 	(±)- 1 0'-hydroxy-9,9'-biphenanthryl- 10- 

carboxaldehyde oxime (93) in 64% yield. Reduction of this oxime (93) with lithium 

aluminium hydride gave (+)- lO-(aminomethyl)- l0'-hydroxy-9,9'-biphenanthiyl (94) in 

91% yield (Figure 57). 
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o NH20H.HC1 
0. 

NaOAc 
EtOH 

H 
LiAIH,THF _  

NH2  

91 
	

93 	 94 

Figure 57. Synthesis of (4-1 O-(Aminomethyl).-1 0 '-hydroxy-9, 9 '-biphenanthryl. 

2.2. Resolution of the System 

A route into unsymmetrically substituted biphenantliryl compounds was thus obtained, 

which made it possible to synthesise a series of compounds which include a phenolic-

aldehyde (91), a hydroxy-phenol (92), an oxime (93) and an amino-phenol (94). 

These compounds were formed as racemates and suitable resolution methodology was 

now investigated. The earliest point in the synthesis to effect the resolution was the 

phenolic-aldehyde (91). Resolution at this point would allow the isolation of all the 

members of the series as single enantiomers. 

Many optically active hydrazines and semicarbazides have been investigated in the 

search for a reagent which could resolve aldehydes and ketones by the formation of 

diastereomeric hydrazones or semicarbazones. Only two compounds have proven 

themselves to be generally useful .76 	One is l-menthyl-N- amino carbamate (1- 

menthyfflydrazide) (95) (Figure 58) described by Woodward et. al.. 	It is a 

commercially available, stable, crystalline compound which readily forms well defined 

crystalline derivatives with most carbonyl compounds. These derivatives, called 

menthylhydrazones, are usually decomposed to the optically active carbonyl 

compound by acid hydrolysis. 
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The second important reagent is tartramidic acid hydrazide (tartramazide) (96) 

(Figure 58) first described by Nerdel et al. 78  Tartramazide is not commercially 

available but can he synthesised in two steps from (+)-tartaric acid. It's derivatives 

with carbonyl compounds are called tartramazones and can be readily hydrolysed with 

acid to yield optically active aldehyde or ketone. 

I 

	

:tJo 	I  C 

	

H 	 HOH 

ONHNH2 	HOH 

CONH2  

95 	 96 

Figure 58. Resolving Agents for Carbonyl Compounds. 

A resolution of the phenolic-aldehyde (91) using 1-menthylhydrazide (95) was 

attempted. No recrystallisation occurred using the literature procedure involving 

ethanol. The diastereomeric 1-menthy1hydrazones were isolated and different solvents 

investigated. 	However, decomposition occurred before any diastereo selective 

recrystallisation could be achieved. 

Enders et at. have reported the use chiral hydrazones in asymmetric synthesis. These 

can be used to prepare cc-chiral aldehydes79  and chiral cc-substituted ketones.80  The 

chiral hydrazide used to direct these reactions is (S)-(-)-1-amino-2-

(methoxymethyl)pyrrolidine (S-AMP) (97) (Figure 59). S-AMP (97) also forms 

crystalline hydrazones with aldehydes and ketones and is commercially available. The 

resulting hydrazones can be regenerated to an aldehyde or ketone by hydrolysis of the 

methiodide of the hydrazone81  or by ozonolysis. The ozone cleavage permits recovery 

of the chiral hydrazide after reduction of the resulting N-nitroso compound .80 

C/1 CH2OMe  

97 

Figure 59. (S)-(-)-1-Amino-2-(methoxymetliyl)pyrrolidin e. 
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At this point it is worth mentioning the differences in mechanism between the two 

ozonolysis reactions that have been discussed. The first ozonolysis of 8b-H-Thf (89) 

to produce the stable ozonide (90) is that of a classical carbon-carbon double bond. 

The basic mechanism for this reaction is outlined in Figure 60.82  In the first step of 

the mechanism, a 1,3 dipolar addition of ozone to the substrate gives the initial 

ozomde or molozonide (98). However the molozonide (98) is highly unstable and 

cleaves to give an aldehyde or ketone and a zwitterion. This zwitterion then 

recombines with the aldehyde or ketone, again in a 1,3 dipolar addition, to give the 

more stable ozomde (99). 

d) ..- c (¼/ 
_ 	R2 C ,0  

0 /- R2C—O 

0CR2 
R2C=CR2 R2C—CR, CR2 oJ 

Molozonide 98 Ozonide 99 

Figure 60. Ozonolysis of a Carbon-Carbon Double Bond. 

The second ozonolysis to have been mentioned is that of a carbon-nitrogen double 

bond. The proposed mechanism for this reaction varies from that outlined in Figure 

60. Erickson et al. 83  have investigated the mechanism using dimethythydrazones of 

various ketones and aldehydes, for example acetophenone. Several observations were 

made about the ozonolysis which indicated a different mechanistic pathway. It was 

noted that two moles of ozone were required per mole of hydrazone. The products 

from the ozonolysis were isolated and relative rate experiments carried out. The data 

obtained indicated that the initial attack of the ozone on the carbon-nitrogen double 

bond is electrophilic and may be strongly assisted by an electron donating group on 

the nitrogen. The final hypothesis for the mechanism is outlined in Figure 61 and is 

consistent with all the data reported by Erickson. 
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Me 	Me 	 Me 	Me 
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Me \ 	 ,Me __ 
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Me 

Figure 61. Ozonolysis of a Carbon-Nitrogen Double Bond. 

The resolution of the phenolic-aldehyde (91) using S-AMP (97) was attempted. A 

diastereomeric mixture of S-A14iP hydrazones (100) (Figure 62) was obtained after 

two hours. The two diastereoisomers were distinguishable by tic, and so were 

separated by a combination of wet flash chromatography and recrystallisation. The 

resolution was confirmed using 'H NMR. The resonances for the hydroxyl protons of 

the phenol came in an uncrowded region of the spectrum and were separated by 0.27 

ppm. Approximately 70-80% of each diastereoisomer could be isolated in this way. 

Any unresolved diasteroisomers were put to one side and used in the next resolution. 

S-AMP 
(±)-91 

DCM 

JLN —Nfl 
L OH H'cH20Me + OH ; 'H2oMe 

(R,2'-S)-(+).100 	 (S,2 -S)-(-)-100 

Figure 62. Synthesis of the S-AMP Hydrazon es. 

The phenolic-aldehydes, (R)-91 and (S)-91, were regenerated using ozonolysis. 

Ozone gas was bubbled through a DCM solution of the S-AMP hydrazone (100) at - 

78°C. The resolved phenolic-aldehydes (91) were isolated in about 60% yield after 

wet flash chromatography. At this point it was noted that the optical rotations for 
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each enantiomer were not of equal value and of opposite sign as would normally be 

expected. Changing the concentration of the solution changed the optical rotation. 

This phenomenon was believed to be due to the formation of a hemi-acetal in solution 

(Figure 63). Indeed, the solution phase infra-red spectra of these enantiomers 

contained two OH stretches. One was for the phenolic hydroxyl group and the other 

was for the hemi-acetal hydroxyl group. The formation the hemi-acetal creates a new 

chiral centre in the molecule. Thus the two forms are now diastereomeric and not 

enantiomeric, and would not be expected to have equal and opposite values for their 

optical rotations. 

'OH + 

DH 

011 

(R)-91 

    

Figure 63. Hemi-Acetal Formation. 

On treatment of each of the two resolved phenolic-aldehydes (91) with lithium 

aluminium hydride both enantiomers of 1 O'-hydroxy- 1 O-(hydroxymethyl)-9,9'-

biphenanthryl (92) were formed. As expected for enantiomerically pure compounds, 

these had equal and opposite values for their optical rotations. Similarly, treatment of 

each of the two phenolic-aldehydes (91) with hydroxylamine. hydrochloride gave 

optically pure 10'-hydroxy-9,9'-biphenanthryl- 10-carboxaldehyde oxime (93). 

Reduction of (93) using lithium aluminium hydride gave optically pure 10-

(aminomethyl)- 1 0'-hydroxy-9,9'-biphenanthryl (94). 

A second resolution of the system was also carried out to confirm the above 

resolution using S-AMP (97). This resolution was accomplished via the formation 
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and separation of diastereomeric esters of 1 O'-hydroxy- 1 O-(hydroxymethyl)-9,9'-

biphenanthryl (92). The diastereomeric esters were prepared using (R)- or (S)-2-

phenyipropionic acid (101) in the presence of N,N-dicyclohexylcarbodiimide (DCC) 

and 4-dimethylaminopyridine (DMAP).84  The diastereoisomers were resolved by 

recrystaffisation from ethyl acetate. The resolution was again monitored by 'H NMR. 

The resonances for the methyl protons were separated by 0.05ppm and enabled the 

diastereoisomers to be distinguished. 

fy)*y) 

OH 
Me 

(+)-92 
DCC, DMAP 

DCM 

(S,2'-R)-(+)- 102 

Figure 64. Synthesis of the Diastereomeric Esters. 

Reduction of the ester using lithium aluminium hydride gave 10'-hydroxy-10-

(hydroxymethyl)-9,9'-biphenanthryl (92) in good yield. (S)-(+)-2-Phenylpropionic 

acid was used to obtain the (R)-(-)- isomer of the hydroxy-phenol (92) and (R)-(-)-2-

phenylpropionic acid was used to obtain the (S)-(+)- isomer (Figure 64). The optical 

rotations obtained by this method for the resolution matched those obtained by the S-

AMP (97) method. 
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Figure 65. (R,2"-S) -(-)-I  0-(Hydroxym ethyl) -9, 9 '-biphenan thryl-10'-(2'!- 

phenyl)propion ate (102). 

A further confirmation of the resolution was obtained by X-ray crystallography. 

Crystals 	of 	(R,2"-S)-(-)- I 0-(hydroxymethyl)-9,9'-biphenanthryl- 10 '-(2"- 

phenyl)propionate (102) were grown slowly in ethyl acetate and the crystal structure 

determined. The structure is given in Figure 65 and Table 4 (Appendix 1). From the 

crystal structure it was found that only one diastereoisomer was present and so the 

resolution had been successful. Other interesting features of this system were obvious 

from the structure. One was the presence of a hydrogen bond between the hydrogen 

of the hydroxyl group and the carbonyl oxygen. The second was a it-stacking 

interaction between the phenyl ring and the adjacent phenanthryl ring. The distance 

between the two rings was 3.599A, which is of the same order of magnitude as found 

in graphite (3.35A), and the angle between the plane of the two rings was 18.3°. 

From the crystal structure, using the ITJPAC rules outlined below, it was also possible 

to assign the absolute configuration of the biphenanthryl moiety as (R). 

BE 
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The [UPAC has defined rules for the assignment of (R)- or (S)- to molecules which 

are chiral due to the presence of a chiral axis. 85  The structure is regarded as an 

elongated tetrahedron and viewed along the axis; it is immaterial from which end it is 

viewed. The nearer pair of ligands receives the first two positions in the order of 

preference as shown in Figure 66. 

X 

: 

	

; 	

b  	

or d 	C  asb  

Viewed 	Viewed 
from X 	 from Y 

HC1 	H_____ Ci b 	a 	d 	c 

H1CI 	= H""  C1 d c 

or 

 b 	a 

(R) 	 (R) 

Figure 66. HJPAC Rules for the Assignment of Axial Chirality. 

The circular dichroism (CD) spectra of the two enantiomers of hydroxy-phenol (92) 

were measured. Enantiomeric compounds give mirror image curves, for example, 

(R)- and (S)-binaphthol (2) (Appendix 2a). Mirror image curves were obtained for 

the two enantiomers of hydroxy-phenol (92) indicating that the resolution had indeed 

been effective (Appendix 2b). 

An overall picture of the two resolution techniques is given in Figure 67. The 

absolute configurations have been assigned and the optical rotation values included. 
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Figure 67. Summary of the Resolutions. 
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2.3. Investigation Into Uses of the System 

In the previous Section, a route into unsymmetrically disubstituted biphenanthryl 

compounds was described. A series of compounds which includes a phenolic-aldehyde 

(91), a hydroxy-phenol (92), an oxime (93) and an amino-phenol (94) was synthesised. 

An effective resolution of the series was accomplished using S-AMP (97) as the resolving 

agent. It remained then to investigate the potential uses of these compounds. 

2.3.1. An Analogue of BINAP 

In Section 1.3. the importance of BINAP (40) as a chiral auxiliary for rhodium and 

ruthenium was discussed. The similarities of I0'-hydroxy- l0-(hydroxymethyl)-9,9'-

biphenanthryl (92) to binaphthol (2) make it an attractive proposition for conversion to an 

analogue of BINAP (40). Thus a novel enantio selective hydrogenation catalyst would be 

available, circumventing patents in this area. 

The synthesis of BINAP (40) developed by Noyori was investigated as a possible 

synthesis of the BINAP analogue.31,3233  This synthesis was outlined in Figure 25, in 

which the first step involved a high temperature bromination reaction using 

dibromotriphenylphosphorane. 	The temperature of the reaction between 

dibromotriphenylphosphorane and hydroxy-phenol (92) was raised slowly. At 230°C a 

homogeneous melt was observed. At 280°C, the reaction was stopped, the product 

analysed and found to (+)- 1 0-(bromomethyl)- 10' -hydroxy-9,9 '-biphenanthryl (103). 

Only monobromination had occurred at the benzylic position. The reaction was repeated, 

and the temperature raised above 280°C. However, decomposition occurred to give a 

black tar and isolation of the desired product was not possible (Figure 68). 
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Ph3PBr2 

280°C 

Br 
Ph3 PBr2  

Decomposition 
>280°C 

(+)-92 	 (+)-103 

Figure 68. High Temperature Bromin ation of 10 '-Hydroxy-1 0-(hydroxymethyl)-9, 9'- 

bipIenanthryI. 

The monobromo-phenol (103) could not be used in subsequent reactions to introduce the 

diphenyiphosphine moiety due to its base sensitivity. A rapid SN2 process occurred in 

base to give the exceptionally stable (±)-tetrabenzo [a' ,c ' ,g' ,i']-6H-dibenzo [b,d]pyran 

(104) (Figure 69), the structure of which was confirmed by x-ray crystallography (Table 

5. Appendix 1) (Figure 70). The molecule is twisted about the central six membered ring. 

The key torsion angles are C18b-01-C2-C2a: -53.4° and Cloa-Clob-Cloc-Clod: 37.9(4)°. 

2a 

Base 	 lOa 	 2 
Ob 

18b 

(±)-103 (+)-104 

Figure 69. Synthesis of (±)-Tetrabenzofa ',c ',g ', i '/-6H-dibenzofb,dJpyran. 
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0(4) 	 0 	
1) 	 (17) 

0(3) C(18b) 
0)16) 

0)5) 	 C(18a) 

C(2b) 	C(10b) 	 0(15) 
0(6) 	 0(1Cc) 

C(6a) 	C(61b) 	 C(14b) 
Cl 10 c) 

C(10d) 	
C(14a) 

0(10) 

0(7) 	 0(14) 

C(8) C(S) 	0)11) 
0(13) 

0(12) 

Figure 60. (i)-  Tetrabenzo[a ',c ',g ',i 'J-6H-dibenzofb, dJpyran (104). 

A second approach to the formation of BINAP (40) involves the use of metal catalysed 

coupling reactions to introduce the diphenyiphosphine moiety. Two methodologies have 

been developed using this approach, both of which involve the ditriflate of binaphthol (2). 

The first of these methodologies involves a nickel catalysed diphosphine coupling 

reaction to introduce both diphenyiphosphine groups directly.34  This method was 

outlined earlier in Figure 26. The second of these methodologies involves a palladium 

catalysed coupling of diphenyiphosphine oxide, resulting in the formation of a 

monophosphine oxide .59  This method was outlined in Figure 47. 

The formation of the ditriflate of hydroxy-phenol (92) was not possible. This was again 

due to its sensitivity to the base required to form the triflate. The SN2 process occurred 

in good yield to give (+)-tetrabenzo [a',c',g' .i']-6H-dibenzo [b,d]pyran (104). 
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These problems arose due to the functionality at the benzylic position. Thus, a possible 

solution to the problem would be to remove the functionality at the benzylic position. 

Subsequent phosphorylation at the phenolic position would yield a monophosphine oxide 

which also constitutes an important class of chiral molecule as outlined in Section 1.5.1.. 

A DCM solution of hydroxy-phenol (92) was treated with bromotrimethylsilane to give 

(±)- I 0-(bromomethyl)- 10 '-hydroxy-9, 9 '-biphenanthryl (103) in 61% yield. 16  Reduction 

of the benzylic bromide using lithium aluminium hydride gave (E)- l0'-hydroxy- 10-

methyl-9,9'-biphenanthryl (105) in 84 % yield 87  (Figure 6 1). 

TMSBr 

DCM 

LiAII-L1  

THF 

(+)-92 

 

(+)-103 

 

(±)-105 

Figure 61. Synthesis of (±)-1 0 '-Hydroxv- 1 O-metl,pI-9, 9 '-biph en an thryL 

With the methyl-phenol (105) in hand it was possible to synthesise the triflate. This was 

accomplished using trifluoromethanesulfonic anhydride and pyridine in DCM to give (±)-

10-methyl-9,9'-biphenanthryl- lO'-trifluoromethanesulfonate (106) in 67% yield.59  

However, neither of the metal catalysed coupling reactions were able to introduce the 

diphenyiphosphine moiety using the conditions which are outlined in Figure 62. It is 

believed that the loss of reactivity in these reactions was due to the lack of a second 

functionality to co-ordinate to the metal centre catalysing the reaction. Thus, the reaction 

did not proceed. 
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Tf20 
IN 

Pyridine 

(+)-104 

 

(±)-105 

NiC12(dppe), Ph2PH 
DABCO, DMF/"  

No Reaction 

Ph2POH. Pd(OAc)2  

EtN'Pr2, dppp 

DMSO 

No Reaction 

Figure 62. Attempted Phosphorylation Reactions. 

2.3.2. Enantioselective Reduction of Prochiral Ketones 

The possibility of using (±)- lO'-hydroxy- lO-(hydroxmethyl)-9,9'-biphenanthryl (92) as 

chiral modifier for lithium aluminium hydride was investigated. The use of binaphthol (2) 

and biphenanthrol (71) was described in Sections 1.2.3. and 1.4.2. respectively. (R)-(-)-

10'-Hydroxy-10-(hydroxmethyl)-9,9'-biphenanthryl (92) was used, and the reduction of 

acetophenone and hexanone studied. 

The modified lithium aluminium hydride reagent was prepared in situ at 0°C in THF from 

three equivalents of lithium aluminium hydride, three equivalents of ethanol and three 

equivalents of (R)-(- )- 10' -hydroxy- 1 0-(hydroxmethyl)-9.9 ' -biphenanthryl (92). 	The 

mixture was allowed to equilibrate for one hour at 0°C before being cooled to -78°C, at 

which point one equivalent of prochiral ketone (107) was added (Figure 63). After the 

work up, optically pure hydroxy-phenol (92) was recovered on trituration with ether. 

The product alcohol (108) was purified by Kugeirhor distillation.' The product alcohols 

(108) were converted to diastereomeric esters using (R)-(+)-cL-methoxy-a- 
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(trifluoromethyl)phenylacetic acid (Mosher' s acid). Thus the enantio selectivity of the 

reduction reaction could be measured using 19F NIMR. 88  

(R)-(-).92 

0°C LiAII-L ELOH 
THF 

0 	 --78°C HO  
+ 

R/'
II

R2 	 R2  R1

108 

Lt 

107  

Figure 63. Enantioselective Reduction of Prochiral Ketones. 

R2 	% e.e. (conlig.) 	% e.e. (conflg.) 	e.e. (conllg.) 

A 	 B 

Ph 	Me 	35 (K) 	 97(S) 	 95 (R) 

Bu 	Me 	5(R) 	 21(S) 	 \ 

A = (S)-(-)-Biphenantkrol (71)' 

B = (R)-(+)-Binaphthol (2 )3 
 

Table 6. Results for the Enantioselective Reduction of Selected Prochiral Ketones. 

Table 6 contains the results for the reduction of acetophenone and hexanone. The results 

for biphenanthrol (71) and binaphthol (2) are also given for comparison. From these 

results it is obvious that there has been a drop in enantio selectivity for the reduction using 

the modified lithium aluminium hydride reagent derived from (92). This must be due to 
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the presence of the extra methylene carbon at Cio  since biphenanthrol (71) gives good 

enantio selectivity. There are two possible explanations for the drop in enantio selectivity 

for the reduction. The first of these is the possible reduction of the steric strain in the six 

membered transition state outlined in Figure 10 due to the presence of the extra 

methylene carbon at C10. The second problem with the use of hydroxy-phenol (92) as 

opposed to binaphthol (2) or biphenanthrol (71) can be understood when the chelating 

structures (109-112) are considered (Figure 64) where R1 #R2. 

R1.j_OHa  

R2 	

0 
 'Hb 

109 

Ri 	
Ha 

R2 	
Hb 

111  

R1. 
R2 Y_O \Af  Ha 

"Hb 
110 

RI 
CO,,M.,,Ha 

112 

Figure 64. Chelating Structures 109-112. 

Ha and Fib  in such reagents are diastereotopic and behave differently in the 

enantio selective reduction. Only reagents of type (112), where R1 =R2, which possess a 

modifying ligand with a C2  axis, bear liomotopic Ha and H1, and can thereby halve the 

kinds of active hydrogen attached to the aluminium. Binaphthol (2) and biphenanthrol 

(71) are the ideal chiral ligands in this respect. However, the use of hydroxy-phenol (92) 

means that Ha and H1, are no longer homotopic due to the extra methylene carbon and the 

stereo selectivity of the reduction using such a species would be lower due to the presence 

of more reactive species.' 
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2.3.3. As a Chiral Auxiliary 

In Section 1.2.5. the use of binaphthol (2) as a chiral auxiliary to direct the stereoselective 

alkylation of phenylacetic acid esters (20) was discussed. A similar use for 10'-hydroxy-

l0-(hydroxymethyl)-biphenanthryl (92) was investigated. 

The 	esterification of (R)-(- )- 10 '-hydroxy- 1 O-(hydroxymethyl)-9, 9' -biphenanthryl (92) 

was carried out using phenylacetic acid in the presence of DCC and DMAP to give (R)-

(- )- I 0-(hydroxymethyl)-9,9 '-biphenanthryl 10' -phenylacetate (113) in 72% yield .84  The 

diastereo selective alkylation of this ester was attempted using lithium diisopropylamide as 

the base and methyl iodide as the alkylating agent (Figure 65).24  Two problems were 

encountered in this reaction. The first was the migration of the ester grouping from the 

phenolic position to the benzylic position and the second was over-alkykation. Alkylation 

of the enolate occurred, but there was also over-alkylation at the phenol in some cases. 

Thus, two products were formed, a monoalkylated, migration product (114) and an over-

alkylated, migration product (115). These were formed in a 1: 1 ratio and were 

inseparable. The migration of the ester can be explained in terms of the formation of the 

more stable phenolic anion in base. The over alkylation is more difficult to explain as this 

phenomenon has never been reported for the binaphthol case. 

OH 
1) LDA. THF 

ffPh 2) Mel 

Me 

OMe 

(R)-(-)-113 	 114 	 115 

Figure 65. Alkylation of (R)-(-)-1 0-(Hdroxymethyl)-9, 9 '-biph enan tit ryl 10'- 

ph enylacetate. 
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To study the effect of over-alkylation. two methyl ethers were prepared. The first of 

these was involved the introduction of the methyl ether at the benzylic position. This was 

achieved using methyl iodide and silver oxide89  to give (R)-(-)- lO-(methoxymethyl)-9,9'-

biphenanthryl 10'-phenylacetate (116) in 23% yield and with good recovery of unreacted 

starting material (Figure 67). Crystals of this compound were obtained from ethyl acetate 

and the X-ray structure determined (Figure 66) (Table 7, Appendix 1). In the solid state 

the oxygen of the ether is orientated in the opposite direction to that of the oxygen of the 

ester, suggesting that there may be no stabilisation of the enolate during the alkylation 

reaction. 

Figure 66. (R)-(-)-1 O-(Methoxymetlzyl)-9, 9 '-biph enanthryl 10 '-phenylacetate (116). 
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gO, Mel 
01 

THIF 

(R)-(-)413 

 

(R)-(-)416 

Figure 67. Synthesis of (R)-(-)-1 O-(meth oxvmethyl)-9, 9 '-biphen an thryl 10'- 

phenylacetate. 

The second methyl ether to be prepared was at the phenolic position. This involved a 

migration of the ester group from the initial phenolic position. Lithium diisopropyl amide 

was used to achieve this in 66% yield to give (R)-(-)-lO'-hydroxy-9,9'-biphenanthryl 10-

(methyl)phenylacetate (117). Alkylation using anhydrous potassium carbonate and 

methyl iodide gave (R)-(-)- I 0'-methoxy-9,9'-biphenanthryl 10-(methyl)phenylacetate 

(118) (Figure 68). Again crystals of this compound were obtained from ethyl acetate and 

the structure solved by X-ray crystallography (Figure 69) (Table 8, Appendix 1). From 

the structure it was observed that in this case the oxygen of the methyl ether was 

orientated in the same direction to that of the oxygen of the ester. This suggested that 

there might be the possibility of stabilisation of the enolate through chelation during the 

alkylation reaction. Another interesting feature of this structure was the edge on 

interaction of the phenyl ring with the adjacent biphenanthryl ring stabilising the structure. 
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OH 

c
LDA, THF 

Ph 

L) 
Ph 

OH 0 

(R)-(-)-113 	 (R)-(-)-117 

K2CO3. Mel 
Acetoi 

-OMe 0 

LL 
(R)-(-)-1 18 

Figure 68. Synthesis of (R)-(-)-1 0 '-Met/i oxy-9, 9 '-biph enant/iryl 10- 

(methy 1) ph enylacetate. 

Figure 69. (R)-(-)-1 0 '-Methoxy-9, 9 '-biphen an thryl 1 0-(m ethyl) ph en p/acetate (118). 

62 



Results and Discussion 

The 	alkylation reaction of (R)-(-)- l0-(methoxymethyl)-9,9'-biphenanthryl 10'- 

phenylacetate 	(116) 	and 	(S)-(+)- 1 0'-methoxy-9,9 '-biphenanthryl 	10- 

(methyl)phenylacetate (118) was investigated. Each was treated with one equivalent of 

lithium diisopropylamide in THF at -78°C followed by an excess of methyl iodide (Figure 

70). After an aqueous work up and purification by wet flash chromatography, the 

diastereoselectivity of the reaction was measured by 'H NIVIIR. The resonances for the 

split methyl protons at about ipprn were used to determine the dia stereo selectivity. 

Approximately 1: 1 ratios of diastereoisomers were obtained for both alkylation reactions. 

This mirrors the results observed for methyl ethers of binaphthol (2).24  Thus the oxygen 

atoms of the methyl ethers are not capable of chelating to the enolate and so direct the 

alkylation reaction. 

1) LDA, THF 

2) Mel 

1) LDA, THF 
(S)-(+)418 

2) Mel 

Figure 70. Attempted Diastereoselectii'e Alkylations. 
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Thus, in the original alkylation of (R)-(-)- 10-(hydroxymethyl)-9,9'-biphenanthryl (113) 

(Figure 65), if alkylation at the phenol occurred before alkylation at the enolate then 

chelation would not be possible. This would cause non- stereo selective alkylation of the 

enolate and the d.c. for the reaction would be lower. 

A possible solution to these problems is the use of nitrogen based compounds instead of 

oxygen based ones. This would solve the both the problems of migration and over-

alkylation. The nitrogen atom in the molecule would also co-ordinate to lithium forming 

a chelated transition state. Initial trials on the synthesis of such compounds was made 

using racemic material (Figure 71). 	Phenolic-aldehyde (91) was reacted with 

diethylamine to form an iminium salt which was reduced in situ with sodium 

cyanoborohydride to give (± )- I 0-(N,N-diethylaminomethylene)- 10 '-hydroxy-9,9 '-

biphenanthryl (119) in 91% yield.90  Esterilication of this tertiary amine was carried out, 

again using phenylacetic acid in the presence of DCC and DMAP. (±)- l0-(N,N-

Diethylaminomethylene)-9,9 '-biphenanthryl 10 '-phenylacetate (120) was formed in 52% 

yield after recrystallisation from ethyl acetate. Suitable crystals were again formed in 

ethyl acetate to allow the crystal structure to be determined (Figure 72) (Table 9, 

Appendix 1). From the crystal structure it was observed that one face of the ester 

grouping was blocked by the bulky (N.N-diethyl)amino grouping. This would hopefully 

be an advantage for the stereoselective alkylation reaction by directing the alkylation from 

one only face of the chelated enolate. 

HNEt2, TiC1 

NaCNBH3 

I) 

P 
HO 	

h 
 

DCC. DMAP 
DCM 

(+)-119 	 (±)-120 

Figure 71. Synthesis of (±)-1 O-(N,N-Diethylainin omethylen e)-9, 9 '-biph enan thry! 10'- 

ph enylacetate. 
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Figure 72. (±)-1 0-(N,N-Diethylamin omethylen e)-9,9 '-biph en an thryl 10'- 

phenylacetate (120). 

2.3.4. A Chiral Dihydropyridine 

Chemists have long been envious of the remarkable rate acceleration and high regio- and 

stereo selectivities obtained under the mild conditions of enzyme catalysed reactions. 

Among the many enzymes playing important physiological roles in vivo, the pyridine 

nucleotide-dependent oxidoreductases have attracted organic chemists to attempt to 

simulate enzyme efficacy in simplified non-enzymatic systems. These enzymes are 

extremely important as they supply energy to all living cells through oxidation and 

reduction reactions. They effect a reversible and stereospecific transfer of hydrogen 

between coenzyme and substrate. The detailed mechanism of action of alcohol 

dehydrogenases that require nicotinamide adenine dinucleotide (NADH) as a co-factor 
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has been extensively studied. However, it is still not clear whether the hydrogen transfer 

arises from a one step hydride transfer or an electron transfer before a hydrogen radical 

transfer. 

The stereo specificity of this system makes it very attractive to organic chemists. A 

number of studies have been made in the hope of shedding light on the in vivo hydrogen 

transfer. The potential for asymmetric reduction in organic synthesis using simplified 

NADH model compounds has also been investigated. 

The first example of a non-enzymatic asymmetric reduction using optically active 1,4-

dihydromeotinamide derivatives was reported in j9759192  1,4-Dihydropyridines (121) 

(Figure 73) with (R)-cc-methylbenzylamine at the 3-position were used as the chiral 

reductant. With these NAD derivatives, in the presence of magnesium perchiorate, 

methylbenzoyl formate and trifluoro a cetophen one were reduced in 11-20% e. e.. 

H 	 i?Ii 

CN 

CONH_C_CH3  

R = n-Propyl, Benzyl, 2,6-Dichlorobenzyl 

121 

Figure 73. A Chiral Dihydropyridine. 

It has been known for some time that only one of the two diastereotopic hydrogens at the 

4-position of the dihydropyridine nucleus in the natural coenzyme is transferred to and 

from substrates in the reactions catalysed by alcohol dehydrogenases.93  Some exclusively 

use the (pro-R) hydrogen whereas others use only the (pro-S) hydrogen. 
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Chiral dihydropyridine reductant (122) (Figure 74) was examined and proved to be highly 

stereospecific in the reduction of various substrates (Table 10).94 However, hydrogen 

transfer was attained at the expense of the chirality at C-4 of the dihydropyridine nucleus. 

H CH3 	Ph 

CONH—C--CH3 

CN~CH3 
Pr 

122 

Figure 74. A More Enantioselectii'e Chiral Dihydropyridine. 

Substrate Config of (122) % Conversion 

Reduction products 

% e.e. Config. 

Ph ,.COiMe KR 100 97.6 R 

S,R 100 96.5 S 

S,R 100 94.7 S 

)<CO2Me 
RR 95 99 R 

RR 60 70.3 R 
PhrCF3 

44 S,R 56 70.3 S 

Table JO. Enantioselective Reduction of Selected Substrates by (122). 

A unique situation is found in the 4-methyl-substituted dihydronicotinamide system of 

(122). Access of the substrate is permitted only to the face bearing the sole hydrogen 

available for transfer. Thus, the substrate is forced to experience only one of the two 
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possible chiral environments, i.e. there is specific blockage of one face of the 

dihydropyridine. 

123 

Figure 75. Chiral Dihydropyridine Containing the Biphenanthryl Moiety 

On the basis of this stereochemical concept, specific blockage of one face of the 

dihydropyridine intramolecularly would result in a greatly improved enantio selectivity for 

the reduction. A chiral dihydropryidine (123), based on the biphenanthryl moiety was 

designed (Figure 75). 

Figure 76a. Model of the Chiral Dihydropyridine (123). 
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Figure 76b. Model of the Chiral Dihydropyridine (123). 

Models (Figures 76a and 76b) of this compound have shown that one face of the 

dihydropyridine moiety is blocked by the biphenanthiyl moiety. Thus the substrate will 

only have access to one face of the dihydropyridine. Only the hydrogen on this face of 

the molecule will be transferred and thus the reduction will be enantio selective. Models 

also suggested that the structure may be stabilised by a hydrogen bond between the 

hydrogen of the hydroxyl group and the carbonyl oxygen. It was also observed from the 

model that bulky groups in the prochiral substrate would point away from the adjacent 

biphenanthryl ring. Thus it would be possible to control the approach of the substrate to 

the 1,4-dihydropyridine. This system also has a major advantage over dihydropyridine 

(122). On reduction, dihydropyridine (122) loses a chiral centre, thus only one cycle of 

reduction can occur. There is no loss of a chiral centre on reduction using 

dihydropyridine (123). Thus the system can be recycled by the oxidation of a second 

alcohol, for example ethanol,95  and only catalytic amounts of dihydropyridine (123) will 

be required. 
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Initial trials into the synthesis of such a system were again carried out on racemic 

material. (±)- l0-(Aminomethyl)- I O'-hydroxy-9,9'-biphenanthryl was reacted with the 

acid chloride of nicotinic acid in the presence of diisopropylethylamine. (±)- 10-

(Aminomethylene)- 10'-hydroxy-9,9'-biphenantlnyl-nicotinamide (124) was formed in 

60% yield after recrystaffisation from DCM.96  An attempt was made at the synthesis of 

the propyl bromide salt of this amide (124). However, the insolubility of the amide (124) 

and the relatively low boiling point of 1-bromopropane resulted in an unacceptably low 

yield of the salt even after 4 days at reflux.96  Instead, the butyl bromide salt was prepared 

using the higher boiling I -bromobutane and 1 ,4-dioxane as a solvent to increase the 

solubility of the amide (124). The butyl bromide salt of (±)- 1 0-( aminomethylene)- 10'-

hydroxy-9,9'-biphenanthryl-nicotinamide (125) was formed in 79% yield after reflux for 

only 24 hours (Figure 77). 

f.coU 

(±)-94 
'PrNEt2  
0CM 

1 -bromobutan 
0 	1 ,4-dioxane 

124 
	

125 

Figure 77. Synthesis of the Butyl Bromide Salt of(±)-1O-(Aminomethylene)-1O'- 

hydroxy-9,9 '-biph enanthryl-nicotin amide. 

2D NMR studies were carried out on the butyl bromide salt of (±)- 10-(aminomethyleue)-

10 '-hydroxy-9,9 '-biphenanthryl-nicotinamide (125). 2D DQF-COSY and 2D ROESY 

experiments were performed which allowed the 'H NMR to be assigned. The 

assignments are given in Appendix 3. The 2D ROESY experiment was used to show the 

through space interactions between the NH proton, Hi8a and H17  on the adjacent 
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phenanthryl ring (Figure 78). These interactions agree with those observed for the 

proposed conformation of the reduced dihydropyridine (123) suggesting that this 

conformation is indeed correct. 

125 

Figure 78. Through Space Interactions of the Butyl Bromide Salt of (±-1 0- 

(Amin omethylene)-1 0 '-hpdroxy- 9,9 '-biph enanthryl-n icotinamide. 

Attempts were made to reduce the butyl bromide salt (125) to the dihydropyridine (123), 

however, problems were encountered. Literature procedures for the reduction of 

pyridines to give 1,4-dihydropyridines involves the use of sodium dithionite and sodium 

bicarbonate 96  or sodium carbonate97  under an argon atmosphere. The rapid appearance 

of a yellow colour using either set of reaction conditions suggested the reaction had 

occurred. Any attempt, however, to isolate the product of the reaction led to 

decomposition. The reduction was also attempted using sodium borohydride in 

methanol. Again there was yellow colouration, but it was not possible to isolate the 

product. 

With the failure to accomplish the reaction chemically the process was studied 

electrochemically. The compound (125) was examined by means of cyclic voltammetry 

at a stationary platinum microdisk electrode in the aprotic solvent N,N-

dimethylformamide (DMF). Figure 79 shows a typical voltammogram for this 
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compound, plainly exhibiting a chemically irreversible reduction, for which the forward 

cathodic peak potential is, in this case - 1.28V vs. Ag/AgCI. Efforts to induce a degree of 

reversibility sufficient to observe a return anodic peak proved unsuccessful despite 

increasing the scan rates to 1000Vs' and lowering the temperature to 223K. 

4 

-2.00 	-1.75 	-1.50 	-1.25 	-1.00 	-0.75 	-0.50 	-0.25 	0 	0.25 	0.50 

EfV(vs. Ag/AgCl) 

Figure 79. Cyclic Voltammogram of (125) in DMF/TBABF.1  O.JM. 

Scan Rate = 1 OOrn Vs', Pt Disc Electrode. 

From the cyclic voltammogram it was observed that the desired reduction had occurred 

to give the 1,4-dihydropyridine (123). On its formation, the 1,4-dihydropyridine (123) 

then underwent a rapid chemical process to give the 1,6-dihydropyridine. As the 1,4-

dihydropyridine (123) was no longer present, it was not possible for the reverse oxidation 

process to occur and thus the return anodic peak was not observed. 

The rapid formation of the 1,6-dihydropyridine was believed to be due to steric hindrance 

in the molecule. The two hydrogens at the 4- position of the pyridine ring in 

dihydropyridine (123) are sterically hindered by the adjacent phenanthryl ring. This steric 

hindrance is relieved by the formation of the 1,6-dihydropyridine. To overcome this 

problem it has been suggested that the inclusion of a second methylene carbon would 

further distance the pyridine ring from the biphenanthryl moiety while still retaining the 

desirable features outlined earlier for dihydropyridine (123). The structure of this 

dihydropyridine is given in Figure 80. 
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Figure 80. A More Attractive Dihydropyridine. 

2.4. Conclusions and Future Work 

A novel series of chiral organic compounds has been designed. The design of these 

compounds has been based around the highly successful binaphthyl moiety (1). Several 

modifications to the original system have been implemented to introduce originality to the 

system. These modifications include the addition of steric bulk and different co-

ordinating fuinctionalities. Another desirable benefit from these modifications would be 

an increase in stereoselectivity imparted to a reaction using these compounds as chiral 

auxiliaries. 

A quick and efficient synthesis of these compounds was developed allowing access to 

unsymmetrically substituted biphenantliryl compounds in four steps from the 

commercially available 9-bromophenanthrene. A series of compounds have been 

synthesised. These include a phenolic-aldehyde (91), a hydroxy-phenol (92), an oxime 

(93) and an amino-phenol (94). Many other possibilities also exist including thiols and 

secondary amines. 

Resolution of these compounds was obtained at the earliest possible point in the 

synthesis. This involved the formation and separation of diastereomeric hydrazones (100) 
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of the phenolic-aldehydes (91). The hydrazones (100) were converted to the phenolic-

aldehyde (91) using ozonolysis. The resolving agent used was (S)-(-)-Il-amino-2-

(methoxymethyl)pyrrolidine (97). Resolution was confirmed by a second resolution 

involving the formation and separation of diastereomeric esters (102) of the hydroxy-

phenol (92). The resolving agent used was (K)- or (S)-2-phenylpropionic acid (101). A 

crystal structure was obtained allowing the absolute configuration of the biphenanthryl 

moiety to be assigned. 

Investigations into the possible uses of the system were carried out. The synthesis of a 

analogue of BIINAP (40) was examined however problems were encountered due to the 

extra methylene carbon causing different reactivity at each functional group. Removal of 

the functionality at the benzylic position gave a compound which was unreactive in the 

phosphorylation reaction. 

The chiral modification of lithium aluminium hydride was also examined. Lower 

enantio selectivities were obtained in comparison to the original binaphthol (2) or 

biphenanthrol (71). This was again believed to be due to the presence of the extra 

methylene carbon. 

The use of hydroxy-phenol (92) as a chiral auxiliary to direct alkylation reactions was 

examined and problems were again encountered due to the extra methylene carbon. 

Ester migration and over-alkylation were observed. Methyl ether formation resulted in 

no stereo selectivity for the alkylation reaction. A nitrogen based reagent was proposed 

to overcome these problems. 

A chiral dihydropyridine incorporating the biphenanthryl moiety was proposed and its 

synthesis investigated. 	The final step in the synthesis, reduction to yield the 

dihydropyridine, was not possible and a modified structure was proposed. 
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Thus, it is not possible to simply replace binaphthol (2) or biphenanthrol (71) with 

hydroxy-phenol (92). The extra methylene carbon in this compound caused vast 

differences in the chemistry of the system. This must be taken into account when 

designing future uses for the system. 

Future work in this area involves the synthesis of other unsymmetrically substituted 

biphenanthryl compounds. Of particular interest is the synthesis of thiols and thioethers 

(Figure 81). This would allow the incorporation of a hard and a soft centre in the same 

molecule for co-ordination to metals. 

X=HR 

Figure 81. A Sulfur Containing BiphenanthryL 

Due to time constraints it has not been possible to fully investigate the chemistry of all the 

novel compounds and much work remains to be done in this area. The chemistry of the 

amino-phenol (94) is of particular interest and many uses can be envisaged for this 

compound. Also of interest are the tertiary amines (119), and their possible use to direct 

ailcylation reactions. 
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3. Experimental 

3.1. Notes 

Chemicals were purchased from commercial sources such as Aldrich, Lancaster and 

Fluka and used without further purification. Melting points were determined in open 

capillaries using a Buchi 510 melting point apparatus. Optical rotations were 

measured on an AA1000 polarimeter (Optical Activity Limited) using a 1dm cell in 

the solvents indicated. Thin layer chromatography (tic) was performed on aluminium 

sheets precoated with silica gel (Kieselgel 60 F254) in the solvent system indicated. 

Wet flash chromatography was performed using silica gel 60 (230-400 mesh). 

Compounds were visualised using suitable combinations of ultra violet absorption at 

254 and 365mn, iodine vapour, methanolic sulfuric acid and ninhydrin. Infrared 

spectra were recorded on a Bio-Rad FTS-7 spectrometer in bromoform mull or DCM 

solution. Ultraviolet spectra were recorded on a Varian Cary 210 double beam 

spectrophotometer or on a Perkin Elmer Lamda 11 single beam spectrophotometer. 

CD spectra were recorded on a JASCO J600 spectropolarimeter in I ,4-dioxane. Fast 

atom bombardment mass spectra (FAB MS) were recorded on a Kratos MS50TC and 

electron impact mass spectra (El MS) on a Kratos 902MS. Elemental analyses were 

carried out on a Perkin Elmer 2400 instrument. Proton NTVIIR spectra were recorded 

on a AC 250 (250MHz) spectrometer in the solvent indicated relative to 

tetramethylsilane (TMS) as the internal standard. A Varian 600 Unity Plus 

Spectrometer was used to record NTvIIR spectra at 600MHz. Carbon- 13 NMR spectra 

were recorded on a AC250 (60MHz) instrument in the solvents indicated relative to 

TMS. Fluorine-19 NMR spectra were recorded on a AC 250 (235MHz) instrument 

relative to CFC13  as the external standard in the solvent indicated. X-ray structure 

determination was performed on a Stoe Stadi-4, four circle diffractometer equipped 

with an Oxford Cryosystem variable temperature device, graphite monochroimited 

(Cu-K{, radiation, 1=1.54184A). All solvents used were of analytical grade or were 
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distilled before use. The following were dried when required using the reagents 

indicated; dichioromethane (calcium hydride), diethyl ether (sodium wire), THE 

(sodium!benzophenone indicator). 

3.2. Elemental Analysis on Tetrabenzoa,c,g,i1fluorene Derivatives 

Elemental analysis results on tetrabenzo[a,c,g,i]fluorine derivatives have generally 

been unsatisfactory. This has been attributed to the large number of quaternary 

carbons in the system. Increased oxygen concentrations and the addition of vanadium 

pentoxide have given improved combustion. 	Elemental analysis was also 

unsatisfactory for 2-hexanol due to its volatile nature. 
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3.3. Synthetic Procedures 

Bis-(phenanthryi-9-yl)methanol (88). 

A solution of 9-bromophenanthrene (bOg, 39.Ommol) in dry THY (100m!) was 

slowly added to magnesium turnings (lOg, 42.Ommol) under an atmosphere of 

nitrogen. A crystal of iodine was added to initiate the exothermic reaction. After 2 

hours stirring at room temperature a thick green jelly formed and methyl formate 

(8.60rn1, 19.4rnmol) was added over a 20 minute period. After stirring for a further 2 

hours at room temperature the mixture was poured onto ice/2N HCI (500m1). A 

white solid precipitated which was filtered off, washed with water (2 x lOOm!) and 

ether (2xlOOml) to give the title compound as a white solid (35g. 42%). m.p. 238-

239°C, (lit.74238-239°C); tic Rf  (DCM) 0.49; C.H. Found C: 89.06%, H: 5.08%, 

C2914200 Requires C: 90.06%, H: 5.08%; VmaL  (CHBr3  mull) 3467 (-OH), 3078 (CH, 

aromatic), 1603, 1529 (aromatic rings) cm'; Xm (DCM) 358 (2885dm3mo1'!'), 340 

(3846), 299 (38942), 268 (77644)nm; 6H (250 M1-Iz, CDC13) 8.76 - 8.80 (m1  2H, 

aromatic), 8.68- 8.73 (in, 2H, aromatic), 8.10- 8.14 (111, 2H, aromatic), 7.80 (s, 1H, 

aromatic), 7.73 -7.76 (in, 2H, aromatic), 7.62 -7.70 (in, 4H, aromatic), 7.51 - 7.57 

(m, 414, aromatic) 7.31 (s, 1H, CHOH), 2.52 (s, 1H, OH) ppm; 6C (60 MIHz, CDC13) 

136 24, 131.23, 130.81, 130.31, 129.99 (quaternary aromatic C), 120.00, 126.88, 

126.64, 126.41, 125.10. 124.28, 123.19, 122.34 (aromatic CH), 69.73 (CHOH) ppm; 

mlz (FAB) 384 (M), 367 (Mt-OH); IERMS (FAB) Found: 384.15122, C29H200 

Requires 384.15142. 

8b-H-Tetrabenzoa,c,g,iIfluorene (89). 

Bis-(phenanthryl-9-yl)methanol (88) (6.0g, 16mmol) was suspended in DCM (20m1) 

and trifluoroacetic acid (20m1) added. The reaction was monitored by the brief 
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appearance of a blue coloration. After stirring for 30 minutes the resulting yellow 

material was evaporated to dryness. Excess trifluoroacetic acid was removed by 

repeated evaporation of DCM (3xlOOml). The resulting residue was triturated with 

ether to give the title compound as a yellow solid (5.5g, 96%). m.p. 280-282°C, 

(lit.742792800C);  tic Rf  (DCM) 0.82; C.H. Found C: 95.45%, H: 5.09%, C29H18  

Requires C: 95.05%, H: 4.95%; Vm  (CHBr3  mull) 3054 (CH, aromatic), 1606, 1562 

(aromatic rings) cm'; Xm (DCM) 374 (12593 dm3moF'cm'), 358 (11111), 300 

(34815), 254 (71111) urn; 6H (360 MHz, CDC13) 8.81 - 8.77 (in, 2H, aromatic), 

8.28 - 8.26 (in, 111, aromatic), 8.09 - 8.11 (m, 1H, aromatic), 7.99 - 7.97 (in, 1H, 

aromatic), 7.85 -7.83 (m, lH, aromatic), 7.74-7.72 (ni, lH aromatic) 7.71- 7.62 (in, 

4H, aromatic),7.48 - 7.45 (in, 2H, aromatic),7.43 - 7.37 (in, 2H, aromatic),7.35 - 7.30 

(in, 1H, aromatic), 7.13 -7.09 (iii, 1H, aromatic), 5.41 (s, IH CH) ppm; m/z (FAB) 

366 (M); HIRMS (FAB) Found 366. 14193 C291418  Requires 366.14085. 

Ozonolysis of 8b-H-Tetrabenzoa,c,g,iIfluorene (89). 

A suspension of 8b-H-tetrabenzo[a,c,g,i]fluorene (89) (2.0g, 5.5mmol) was stirred in 

dry THF (lOOm!) at -78°C. Ozone gas (130V) was bubbled through the suspension at 

1. 81min' for 40 minutes to give an orange solution. Nitrogen was bubbled through to 

remove any unreacted ozone and the solvent removed in vacuo. Trituration with 

ether gave the title compound as a pale yellow solid (1.6g, 70%). m.p. decomp. at 

177°C; tic Rf  (DCM) 0.76; Vm  (CHBr3  mull) 3067 (CH, aromatic), 1606 (aromatic 

rings) cm'; Xm (DCM) 309 (11579dm3mor1cm), 295 (14737), 270 (35789), 259 

(60000)nm; iH (250 MHz, CDC13) 8.76 - 8.80 (iii, 211, aromatic), 8.68 - 8.73 (in, 

2H, aromatic), 8.08 - 8.04 (m, 1H, aromatic), 7.94 -7.90 (in, 2H, aromatic), 7.781 - 

7.58 (in, 5H, aromatic), 7.53 -7.32 (in, 511, aromatic), 7.08 - 7.02 (in, 1H, aromatic) 

6,81 - 6.78 (in, 1H, aromatic), 5.49 (s, lH, C10H) ppm; 6C (60 MHz, CDC13) 

135.48, 134.58, 132.27, 130.55, 129.98, 129.81, 129.76, 128.16 (quaternary 

aromatic C), 130.85, 128.99, 128.35, 127.58, 127.30, 126.53, 126.44, 124.92, 
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124.19, 123.24, 123.12, 122.63, 122.06 (aromatic CH), 106.10 (quaternary C), 98.19 

(CH) ppm; m/z (FAB) 415 (M); ITRMS (FAB) Found: 415.13101, C29H2003  

Requires 415.13342. 

(±)-10'-Hydroxy-9,9'-biphenanthryl-10-carboxaldehyde (91). 

A suspension of the ozonide (90) (0.5g. 1.4mmol) in THY (25m1) was stirred at room 

temperature. A spatula of zinc powder followed by glacial acetic acid were added and 

the resulting mixture stirred for 20 minutes. The reaction was quenched by the 

addition of water (50m1). The mixture was extracted with DCM (3x30m1). The 

combined organics were washed with saturated NaCO3  solution (300m1), water 

(30m1), dried over MgSO4  and the solvent removed in vacuo. Recrystallisation from 

DCM gave the title compound as yellow crystals (0.35g,72%). m.p. 231-232'C; tIc 

Rf  (DCM) 0.46; C.H. Found C: 87. 10%,H: 4.69%, C29H1802  Requires C: 87.42%, 

H: 4.55%; Vm . (CHBr3  mull) 3484 (-OH), 3060 (CH, aromatic), 1672 (C=O 

stretch), 1593 (aromatic rings) cm'; ? m  (DCM) 354 (3889dm3m0l'cm), 306 

(14444), 286 (21111), 256 (63880)nm; 6H (250 Mil-Lz, CDC13) 10.15 (s, lI-I, CHO), 

9.35 - 9.31 (in, JH, aromatic), 8.88 - 8.73 (in, 4H, aromatic), 8.43 - 8.39 (in, IH, 

aromatic), 7.87 - 7.69 (in, SH, aromatic), 7.58 -7.49 (in, 211, aromatic), 7.44 -7.30 

(in, 2H, aromatic), 7.11 - 7.07 (m, 1H, aromatic) 5.18 (s, 111, -OH) ppm; öC (60 

MHz, CDC13) 194.68 (C=O), 147.53 (phenolic C)140.69, 133.20, 132.46, 132.62, 

130.93, 130.88, 130.04, 127.71, 126.34, 124.55 (quaternary aromatic C), 130.34, 

128.44, 128.11, 128.04, 127.98, 127.81, 127.55, 126.95, 126.82, 125.58, 124.70, 

123.10, 123.07, 122.72, 122.63 (aromatic CH) ppm; m/z (FAB) 399 (M), 382 (M-

OH); LERMS (FAB) Found 398. 13022, C29H1802  Requires 398. 13068. 
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(±)-1 O'-Hydroxy-1O-(hydroxymethyl)-9,9'-biphenanthryl (92). 

Lithium aluminium hydride (0.29g. 7.4mmol) in dry THE (20m1) was stirred at room 

temperature under nitrogen. A solution of (±)- l0'-hydroxy-9,9'-biphenanthryl- 10-

carboxaldehyde (91) (3.0g, 7.4mmol) in dry THF (lOOmi) was added slowly and 

stirring continued for 30 minutes. The reaction was quenched by the careful addition 

of 2N HCl (20m1) and the pH adjusted to 1. The mixture was extracted with DCM 

(3x50m1) and the combined organics washed with water (50m1). Drying over MgSO4, 

removal of the solvent in vacuo and trituration with ether gave the title compound as 

a white solid (2.9g, 95%) m.p. 155°C; tic Rf (DCM) 0.21; C.H. Found C: 85.18%, 

H: 6.16%, C291-12002  Requires C: 86.98%, H: 5.03%; v 	(CHBr3  mull) 3369 (-OH), 

3073 (CH, aromatic),1620, 1596, 1492 (aromatic rings) cm- ; ? maL (DCM) 359 

(2000dm3mo11 cm),342 (2000), 302 (15500), 278 (26500), 258 (77000)nm; 6H 

(250 MHz, CDC13) 8.87 - 8.72 (m, 411, aromatic), 8.42 - 8.36 (m, 2H, aromatic), 7.84 

- 7.60 (in, 5H, aromatic), 7.54 -7.46 (m., 11-1, aromatic), 7.38 -7.24 (in, 3H, aromatic), 

7.09 - 7.04 (in, 111, aromatic) 5.69 (s, IH, -OH), 4.96 (d, 1H, J=11.914z), 4.76 (d, 

IH, J=12.OHz), 1.90 (s,1H, CH20H) ppm; 6C (60 MT-lIz, CDCI3) 147.28 (phenolic C), 

135.68, 132.13, 131.33, 131.14, 131,06, 130.82, 130.55, 130.09, 126.55, 125.13 

(quaternary aromatic C), 127.50, 127.46, 127.44, 127.32, 127.28, 127.22, 126.71, 

125.58, 125.30, 124.38, 123.04, 122.71, 122.68, 122.52, (aromatic CH) 113.91 

(benzylic C), 60,68 (CI-12) ppm; mlz (FAB) 400 (M); HIRMS (FAB) Found 

400. 14774, C291712002  Requires 400.14633. 

(±)-1 0'-Hydroxy-9,9'-biphenanthryl-1O-carboxaldehyde-Oxime (93). 

A suspension of (±)- 10 '-hydroxy-9, 9 '-biphenanthryl- 1 0-carboxaldehyde (91) (1.0g, 

2.5mmol), hydroxylamine hydrochloride (2.0g, 28mmol) and sodium acetate (4.0g, 

48mmol) in ethanol (50m1) was stirred at room temperature overnight. The reaction 

was quenched by the addition of water (50m1) and extracted with DCM (3x50m1). 

The combined organics were dried over MgSO4  and the solvent removed in vacuo. 
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Purification by wet flash chromatography (100% DCM) and recrystallisation from 

DCM gave the title compound as a white solid (67g, 64%). m.p. Decomp. at 178°C; 

tic Rf  (DCM) 0.19; C.H.N. Found C: 83.23%, H: 4.60%, N: 3.17%, C291419NO2  

Requires C: 84.24%, H: 4.63%, N: 3.39%; v,,. (CHBr3  mull) 3523 (-OH), 3285 (N-

OH), 3070 (CH, aromatic), 1624, 1598, 1493 (aromatic rings) cm'; A.maL (DCM) 358 

(3540dm3mo1'11 ), 341 (4130), 301 (24189), 257 (101180)nm; SH (250 Mhz, 

CDCI3/DMSO) 10.46 (b, lH N-OH), 8.73 - 8.70 (m, 1H, aromatic), 8.58 - 8.39 (m., 

4H, aromatic), 8.19 - 8.13 (m, IH, aromatic), 7.93 (s, JH, NCH), 7.51 - 7.31 (m, 

SH, aromatic), 7.25 -6.90 (in, 4H, aromatic), 6.74 - 6.71 (in, IH, aromatic) ppm; 6C 

(60 MHz, CDCI3) 147.70 (CH=N), 147.32 (phenolic C), 133.01, 131.85, 130.52, 

130.45, 129.98, 129.01, 128.22, 125.91, 121.83 (quaternary aromatic C), 127.01, 

126.67, 126.41, 126.21, 126.16, 126.13, 126.07, 125.58, 125.22, 125.18, 124.43, 

123.01, 122.58, 121.76, 121.71, 121.60 (aromatic CH) 112.45 (benzylic C) ppm; 

m/z (FAB) 414 (MW), 396 (MW-OH); HIRMS (FAB) Found 414.15066, 

C29H19NO2  Requires 414. 14940. 

(±)- 1O-(Aminomethyl)-1 O'-hydroxy-9,9' biphenanthryl (94). 

Lithium aluminium hydride (33mg, 0.85mmol) in dry TFIF (5m1) was stirred at room 

temperature under nitrogen. A solution of (+)- 10'-hydroxy-9,9'-biphenanthryl- 10-

carboxaldehyde-oxime (93) (0.35g, 0.85mmol) in dry TI-IF (25m1) was added slowly 

and stirring continued for 30 minutes with heating at reflux. The mixture was cooled 

to room temperature, the reaction quenched by the careful addition of 2N NaOH 

(lOnil) and the pH adjusted to 14. The mixture was extracted with DCM (300m1) 

and the combined organics washed with water (30m1). Drying over MgSO4  and 

removal of the solvent in vacuo gave a yellow solid. Purification by wet flash 

chromatography (2% MeOHIDCM) gave the title compound as a pale yellow solid 

(0.31g. 91%) m.p. 184-5°C; tic Rf  (5% MeOH/DCM) 0.52; C.H.N. Found C: 

87.04%, H: 5.67%, N: 3.05%, C291-121NO Requires C: 87.19%, H: 5.30%, N: 3.51%; 

VmaL  (CHBr3  mull) 3517 (-OH), 3368 (NE-I2) 3070 (CH, aromatic), 1603, 1582, 1492 
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(aromatic rings) cm'; ?maL  (DCM) 359 (1 l947dm3mor'r'), 341 (12831), 301 

(64159), 262 (172124)nm; iH (250 MIHz, CDC13) 8.90 - 8.86 (m, in, aromatic), 

8.81 - 8.70 (nii, 3H, aromatic), 8.57 - 8.53 (m, 1I-1 aromatic), 8.24 - 8.20 (m, 11-1, 

aromatic), 7.80 - 7.66 (m., 4H, aromatic), 7.60 -7.54 (m, 11-1, aromatic), 7.50 - 7.43 

(in, 111, aromatic), 7.27 -7.15 (in, 3H aromatic), 7.03 - 7.00 (in, 1H, aromatic), 4.60 

(d, iF!, J=12.114z), 3.96 (d, 1H, J=12.2Hz), 3.70 (b, 2H, N}12) ppm; 8C (60 MHz. 

CDC13) 149.61 (phenolic C), 134.60, 133.05, 132.61, 131.64, 131.29, 131.08, 

130.36, 130.02, 128.74, 127.92 (quaternary aromatic C), 127.99, 127.26, 127.10, 

126.94, 126.71, 126.55, 126.04, 124.02, 123.92, 123.57, 123.52, 122.48, 122.36, 

122.36, 122.32 (aromatic CH) 117.35 (benzylic C), 65.75 (CH2) ppm; mlz (FAB) 

400 (NW); fiRMS (FAB) Found 399. 15972, C29H21N0 Requires 399.16231. 

(S)-(-)-1 -Amino-2-(methoxymethyl)pyrroiidifle Hydrazones of (±)- 1 0'-Hydroxy-

9,9'-biphenanthryl-lO-cai boxaldehyde (100). 

A suspension of (+)- 10 '-hydroxy-9,9 '-biphenanthryl- I 0-carboxaldehyde (91) (3.00g. 

7.50mmol) in dry DCM (lOOmI) was stirred at 0°C. 	(S)-(-)-1-Arnino-2- 

(methoxymethyi)pyrrolidine (97) (1.03g, 7.50mmol) was added and stirring continued 

for 2 hours at 0°C. Removal of the solvent in vacuo gave a yellow foam. The two 

diastereoisomers were separated by successive wet flash chromatography (100% 

DCM) and recrystallisation from ethyl acetate. 

Diastereoisomer A: (1.49g. 78% of available diastereoisomer). m.p. 123-4°C; tic &-

(DCM) 0.29; C.H.N. Found C: 82.14%, H: 5.87%, N: 5.17%, C35H31N202  Requires 

C: 82.33%, H: 5.92%, N: 5.49%; Vm (CHBr3  mull) 3615 (-OH), 3070 (CH, 

aromatic), 2975 (CH, aliphatic), 1616, 1590, (aromatic rings), 1572 (CN) cm'; 

Xmas. (DCM) 358 (14468dm3moF'F'), 342 (161701), 298 (30638), 256 (11702 1) nm; 

lH (250 MHz, CDC13) 8.95 - 8.70 (in, 5H, aromatic), 8.53 - 8.49 (in, IH, aromatic), 

7.82 - 7.67 (111, 4H, aromatic), 7.62 -7.56 (m, IH, aromatic),7.50 - 7.43 (rn, 2H, 

aromatic), 7.30 -7.23 (in, 3H, aromatic), 7.11 - 7.07 (in, 1H, aromatic),6.32 (s, IH, - 
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OH), 3.51 - 3.47 (m, 1H, N-CH), 3.44 - 3,28 (m., 21-, 0-CH2), 3.16 (s, 3H, -OMe), 

3.08 - 3.01 and 2.62 - 2.16 (2xm, 2xlH, N-CH2), 1.83 - 1.60 (111, 411, 2xCH2) ppm; 

C (60 MHz, CDC13) 147.47 (phenolic C), 132.73, 132.50, 131.20, 130.97, 1 330.3 1, 

130.08, 128.97, 127.45, 123.18 (quaternary aromatic C), 131.38 (HC=N), 127.12, 

127.06, 126.91, 126.82, 126.41, 125.86, 123.95, 123.33, 122.77, 122.51, 122.39 

(aromatic CH), 115.50 (benzylic C), 74.05 (0-CH2), 62.80 (N-CH), 58.83 (0-Me), 

48.83 (N-CH2), 26.42 (CH2), 21.95 (CH2) ppm; mlz (FAB) 511 (MT-It); HIRMS 

(FAB) Found 511.23857, C35H31N202  Requires 511.23855; (aID22=-240°,  c=0.10, 

DCM. 

Diastereoisomer B: (1.35g, 70% of available diastereoisomer) m.p. 192-4°C; tIc Rf  

(DCM) 0.20; C.H.N. Found C: 81.95%, H: 5.82%, N: 5.24%, C35H31N202  Requires 

C: 82.33%, H: 5.92%, N: 5.49%; v111 (CHBr3  mull) 3616 (-OH), 3067 (CH, 

aromatic), 2928 (CH, aliphatic), 1588, (aromatic rings), 1570 (C=N) cm; 

(DCM) 358 (17347dm3mo1 11-1), 342 (18878), 300 (40816), 256 (150570) n -n; SH 

(250 MHz, CDC13) 8.97 - 8.93 (m, 1H, aromatic), 8.87 - 8.70 (in, 4H, aromatic), 8.48 

- 8.44 (in, 1H, aromatic), 7.81 - 7.66 (m, 414, aromatic), 7.63 -7.56 (m, 1H, 

aromatic),7.52 - 7.44 (in, 1H, aromatic), 7.37 (s, IH, CHN), 7.30 -7.24 (in, 3H, 

aromatic), 7.13 - 7.09 (in, IH, aromatic),6.05 (s, 1H, -OH), 3.43 - 3.36 (in, 3H, N-

CH and 0-CH2), 3.27 (s, 3H, -OMe), 3.04 - 2.99 and 2.44 - 2.40 (2xm, 2xlH, N-

CH2), 1.78 - 1.57 (m, 4H, 2xCH2) ppm; 6C (60 MHz, CDC13) 147.37 (phenolic C), 

132.98, 132.32, 131.17, 131.06, 130.32, 130.08, 129.10, 125.87, 125.56, 123.95, 

123.33 (quaternary aromatic C), 131.38 (HC=N), 127.45, 127.12, 127.08, 126.92, 

126.89, 126.82, 126.44, 126.38, 125.77, 124.01, 123.18, 122.71, 122.53, 122.40 

(aromatic CH), 114.97 (benzylic C), 74.01 (0-CH2), 62.57 (N-CH), 58.98 (0-Me), 

48.69 (N-CH2), 26.21 (CH2), 21.76 (CH2) ppm; m/z (FAB) 511 (MW); fIRMS 

(FAB) Found 511.23939, C35H31N202  Requires 511.23855; [a]D—+97,  c0. 10, 

DCM. 
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(S)-10'-Hydroxy-9,9'-biphenanthryl-10-carboxaldehyde (91). 

A suspension of (S, S"-2)-(- )- 10 '-hydroxy-9, 9 '-biphenanthryl- 1 0-(methylideneamino )-

2"-(methoxymethyl)pyrrolidine (100) (diastereoisomer A) (1.4g, 2.7mmol) was stirred 

in dry DCM (75m1) at -78°C. Ozone gas (130V) was bubbled through the solution at 

I .4Imin for 10 minutes to give a dark brown solution. Nitrogen was bubbled 

through to remove any unreacted ozone and the solvent removed in vacuo. 

Purification by wet flash chromatography (100% DCM) gave the title compound as a 

yellow foam (0.50g, 49%). m.p. 229-30°C; tic Rf  (DCM) 0.49; C.H. Found C: 

87.53%, H: 4.88%, C29H1802  Requires C: 87.42%, H: 4.55%; VmaL  (CHBr3  mull) 

3536 (-OH), 3064 (CH, aromatic), 1676 (C=O stretch), 1597, 1491 (aromatic rings) 

Vmax (DCM solution) 3688 (OH of hemiacetal), 3536 (OH of phenol), 3080 

(CH, aromatic),1685 (C=O stretch), 1601 (aromatic rings) cm'; XmaL  (DCM) 372 

(4382dm3mo1'11), 355 (7171), 256 (87251)nm; 6H(250 MHz, CDC13) 10.15 (s, 1H, 

CHO), 9.35 - 9.31 (in. 1H, aromatic), 8.88 - 8.73 (m., 4H, aromatic), 8.43 - 8.39 (m, 

1H, aromatic), 7.87 - 7.69 (in, 514, aromatic), 7.58 -7.49 (m, 2H, aromatic), 7.44 - 

7.22 (m, 211, aromatic), 7.11 - 7.08 (in, IH, aromatic) 5.19 (s, 11-1, -OH) ppm; SC (60 

MJ-Iz, CDC13) 194 90 (C=O), 147.80 (phenolic C)140.73, 133.18, 132.44, 132.61, 

130.89, 130.85, 130.03, 127.88, 126.32 124.54 (quaternary aromatic C), 130.33, 

128.43, 128.10, 128.01, 127.79, 127.54, 127.47, 126.94, 126.80, 125.57, 124.69, 

123.09, 123.04, 122.71, 122.62 (aromatic CH), 110.59 (benzylic C) ppm; m/z (FAB) 

398 (M), 381 (M+-OH); LIRMS (FAB) Found 398.13102, C29H1802  Requires 

398.13068; Ia1D22=-78°,  c=0. 10, DCM, [a]u22=560,  c1.0, DCM, 

(S)-(+)-1 0'-Hydroxy-10-(hydroxymethyl)-9,9 '-biphenanthryl (92). 

Lithium aluminium hydride (10mg, 0.25mmol) in dry THF (2m1) was stirred at room 

temperature under nitrogen. A solution of (S)- 10'-hydroxy-9,9'-biphenanthryl- 10-

carboxaldehyde (91) (0.10g, 0.25mmoI) in dry THF (8m1) was added slowly and 

stirring continued for 30 minutes. The reaction was quenched by the careful addition 
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of 2N HCI (5m1) and the pH adjusted to 1. The mixture was extracted with DCM 

(3x10m1) and the combined organics washed with water (10m1). Drying over MgSO4, 

removal of the solvent in vacuo and trituration with ether gave the title compound as 

a white solid (96mg, 95%) m.p. 164-5°C; tic Rf  (DCM) 0.18; C.H. Found C: 

86.73%, H: 6.26%, C29H2002  Requires C: 86.98%, H: 5.03%; Vm  (CHBr3  mull) 

3524 (-OH), 3071 (CH, aromatic), 1620, 1597, 1491 (aromatic rings) cm'; ?mL 

(DCM) 358 (4464dm3mor'F'), 341 (5357), 300 (35268), 159 (166071) urn; 6H (250 

MHz, CDC13) 8.88 - 8.73 (in, 4H, aromatic), 8.44 - 8.40 (in, 2H, aromatic), 7.83 - 

7.62 (m., SH, aromatic), 7.54 -7.47 (in., 1H., aromatic), 7.38 -7.25 (m., 31-I, aromatic), 

7.09 - 7.05 (m., 111, aromatic), 5.61 (b, IH, -OH), 4.98 (dd, lB. J=1 1.8Hz and 

4.0Hz), 4.78 (d, IH, J=11.814z and 5.0Hz), 1.82 (b, IH, -OH) ppm; 5C (60 MIHz, 

CDCI3) 147.27 (phenolic C), 135.69, 132.56, 131.32, 131.14, 131.05, 130.79, 

130.53, 130.06, 126.53, 125.10 (quaternary aromatic C), 127.50, 127.47, 127.43, 

127.33, 127.27, 127.22, 126.71, 125.56, 125.30, 124.39, 123.23, 123.05, 122.72, 

122.68, 122.51, (aromatic CH) 113.90 (benzylic C), 60.69 (CH2) ppm; m/z (FAB) 

400 (Mt), 383(W-OH); IIIRMS (FAB) Found 400. 14649, C29H2002  Requires 

400.14633; 1a1o22=+500, c0. 10, DCM. 

(S,S"-2)-(-)- I 0'-Hydroxy-9,9'-biphenanthryl-1 0-(methyiideneamino)-2"-

(methoxymethyl)pyrroiidine (100). 

A suspension of (S)- 10' -hydroxy- 9,9 '-biphenanthryl- 1 0-carboxaldehyde (91) (50mg, 

0.13mmol) in dry DCM (lOml) was stirred at 0°C. 	(S)-(-)-1-Amino-2- 

(methoxymethyl)pyrrolidine (97) (18mg, 0. 14mmol) was added and stirring continued 

for 2 hours at 0°C. Removal of the solvent in vacuo gave a yellow foam. Purification 

by wet flash chromatography gave the title compound as a yellow foam (57mg, 89%). 

m.p. 253-5°C; tic Rf (DCM) 0.22; C.H.N. Found C: 82.77%, H: 5.98%, N: 4.95%, 

C35H31N202  Requires C: 82.33%, H: 5.92%, N: 5.49%; v. a., 	mull) 3517 (- 

OH), 3068 (CH, aromatic), 2973 (CH, aliphatic), 1618, 1597, 1489 (aromatic rings) 

cm-  1 ; Xm (DCM) 358 (14530dm3moF'F'), 342 (16239), 298 (30769), 256 (117521) 
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nm; 6H (250 MHz, CDC13) 8.92 - 8.68 (in, 5H, aromatic), 8.51 - 8.48 (in, IH, 

aromatic), 7.81 - 7.66 (in, 411, aromatic), 7.62 -7.55 (in, 1H, aromatic), 7.49 - 7.43 

(in., 211, aromatic), 7.28 -7.22 (in, 31-1, aromatic), 7.09 - 7.05 (in, IH, aromatic),6.29 

(s, IF!, -OH), 3.49- 3.46 (in, 1H, N-CH), 3.37- 3.27 (in, 21-1, O-CH2), 3.15 (s, 3H, - 

OMe)., 3.06 - 3.02 and 2.58 - 2.16 (2xm, 2xlH, N-CH2), 1.80 - 1.56 (in, 4H, 2xCH2) 

ppm; SC (60 MHz, CDC13) 147.48 (phenolic C), 132.74, 132.52, 131.20, 130.98, 

130.32, 130.09, 128.97, 127.45, 123.18 (quaternary aromatic C), 131.38 (HC=N), 

127.13, 127.07, 126.92, 126.85, 126.83, 126.45, 126.42, 125.88, 123.95, 123.34, 

122.77, 122.51, 122.40 (aromatic CH), 115.50 (benzylic C), 74.05 (O-C112), 62.80 

(N-CH), 58.83 (0-Me), 48.83 (N-CH2), 26.41 (Cl!2), 21.95 (CH2) ppm; nilz (FAB) 

511 (MW); HIRMS (FAB) Found 511.24320, C35H31N202  Requires 511.23855; 

laiD
22   =-240, c=0. 10, DCM. 

(S)-(-)-1O'-Hydroxy-9,9'-biphenanthryi-1 0-carboxaldehyde-oxime (93). 

A suspension of (S)- 10 '-hydroxy-9,9 '-biphenanthryl- 1 0-carboxaldehyde (91) (0. lOg, 

0.25mmol), hydroxylamine hydrochloride (0.20g. 3.Ommol) and sodium acetate 

(0.42g. 4.8mmol) in ethanol (20m1) was stirred at room temperature for 30 minutes. 

The reaction was quenched by the addition of water (20m1) and extracted with DCM 

(2x25m1). The combined organics were dried over MgSO4  and the solvent removed 

in vacuo. 	Purification by wet flash chromatography (100% DCM) and 

recrystallisation from DCM gave the title compound as a white solid (9 1mg, 88%). 

m.p. Decomp. at 158°C; tic Rf (DCM) 0.17; C.H.N. Found C: 83.62%, H: 4.5 1%, 

N: 3.14%, C29H19NO2  Requires C: 84.24%, H: 4.63%, N: 3.39%; Vm  (CFIBr3  mull) 

3526 (-OH), 3060 (CH, aromatic),1620, 1597, 1491 (aromatic rings) cm'; A,max. 

(DCM) 358 (2390dm3mo111 ), 341 (2789), 301 (18327), 259 (74502) BM; SH (250 

MHz, CDC13/DMSO) 10.50 (b, 1H,N-OH), 8.78 - 8.74 (in, 1H, aromatic), 8.64 - 

8.45 (in, 4H, aromatic), 8.25 - 8.18 (in, 1H, aromatic), 8.01 - 8.00 (m, IH, aromatic), 

7.57 - 7.37 (in, 5H, aromatic), 7.29 -6.95 (in, 511, aromatic), 6.88 - 6.77 (m, 111, 

aromatic) ppm; 6C (60 Mhz, CDC13/DMSO) 147.93 (C=N), 147.48 (phenolic C), 
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132.95, 	132.06, 	130.73, 	130.27, 130.22, 	129.30, 128.65, 	126.75, 125.58, 	125.51 

(quaternary aromatic C), 127.25, 126.96, 	126.65, 126.53, 126.47, 126.38, 	126.34, 

125.81, 	125.39, 	125.75, 	123.27, 122.86, 	122.08, 121.95, 	121.84, (aromatic CH) 

111.84 (benzylic C) ppm; 	m/z (FAB) 413 (M), 396 (M-OH); fiRMS (FAB) 

Found 414.14390, C29H19NO2  Requires 414.14940; Ia1D22=300, c0. 10, DCM. 

(S)-(-)-1 0-(Aminomethyl)-1 0'-hydroxy-9,9'-biphenanthryl (94). 

Lithium aluminium hydride (14mg, 0.36mmol) in dry THF (5m1) was stirred at room 

temperature under nitrogen. A solution of (S)-(- )- 10 '-hydroxy-9, 9 '-biphenanthryl- 10-

carboxaldehyde-oxime (93) (0. 15g, 0.36mmol) in dry THF (20m1) was added slowly 

and stirring continued for 30 minutes with heating at reflux. The mixture was cooled 

to room temperature, the reaction quenched by the careful addition of 2N NaOH 

(lOml) and the pH adjusted to 14. The mixture was extracted with DCM (3x15m1) 

and the combined organics washed with water (20m1). Drying over MgSO4  and 

removal of the solvent in vacuo gave a yellow solid. Purification by wet flash 

chromatography (2% MeOWDCM) gave the title compound as a pale yellow solid 

(0.1lg, 73%) m.p. 185-6°C; tIc Rf  (2% MeOH/DCM) 0.34; C.H.N. Found C: 

88.07%, H: 5.75%, N: 3.23%, C291-121N0 Requires C: 87.19%, H: 5.30%, N: 3.51%1  

(CHBr3  mull) 3515 (-OH), 3365 (NH2) 3067 (CH, aromatic), 1582, 1489 

(aromatic rings) cm'; Xm (DCM) 360 (2147dm3mol'l 1 ), 343 (2147), 303 (15644), 

259 (70859) nm; 6H (250 MIHz, CDC13) 8.83 - 8.62 (m, 4H, aromatic), 8.45 - 8.41 

(iii, 1H, aromatic), 8.16 - 8.12 (in, 1H, aromatic), 7.72 - 7.53 (in, 5H, aromatic), 7.49 

-7.42 (m, IH, aromatic), 7.26 -7.16 (in, 314, aromatic), 6.98 - 6.94 (in,, 1H, aromatic), 

4.60 (b, 2H, NH2), 4.48 (d, 1H, J=12.414.z), 3.88 (d, 111, J=12.6Hz) ppm; 6C (60 

MHz, CDC13) 149.19 (phenolic C), 133.19, 132.82, 131.43, 131.29, 130.96, 130.51, 

129.81, 126.54 (quaternary aromatic C), 127.94, 127.34, 127.12, 126.97, 126.91, 

126.79, 126.47, 125.83, 124.09, 123.73, 123.66, 123.41, 122.51, 122,40, 122.36 

(aromatic CH) 116.65 (benzylic C), 40.67 (CH2) ppm; m/z (FAB) 399 (M), 383 
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(M'-OH); fiRMS (FAB) Found 399.16077, C29H21N0 Requires 399.16231; 

laiD — i 40 , c=0.10, DCM. 

(R)-1 0'-Hydroxy-9,9'-biphenanthryl-1 0-carboxaldehyde (91). 

A 	suspension 	of 	(R, S"-2)-(+)- 10 '-hydroxy-9,9'-biphenanthryl- 10- 

(methylideneamino )-2"-(methoxymethyl)pyrrolidine (100) (diastereoisomer B) (1 . Og, 

2.Ommol) was stirred in dry DCM (50m1) at -78°C. Ozone gas (130V) was bubbled 

through the solution at I.41min' for 7 minutes to give a dark brown solution. 

Nitrogen was bubbled through to remove any unreacted ozone and the solvent 

removed in vacuo. Purification by wet flash chromatography (100% DCM) gave the 

title compound as a yellow foam (0.49g, 63%). m.p. 234-5°C; dc Rf  (DCM) 052; 

C.H. Found C: 87.15%, H: 4.50%, C29H1802  Requires C: 87.42%, H: 4.55%; Vmax. 

(CHBr3  mull) 3536 (-OH), 3067 (CH, aromatic), 1679 (C=O stretch), 1598, 1491 

(aromatic rings) cm'; Vm. (DCM solution) 3683 (OH of hemiacetal), 3536 (OH of 

phenol), 3081 (CH, aromatic), 1685 (C=O stretch), 1600 (aromatic rings); X 1  

(DCM) 372 (4636dm3mo1'l'), 355 (7285), 256 (80795) urn; lH (250 MHz, CDC13) 

10.14 (s, 1H, CHO), 9.34 - 9.30 (m, 1H, aromatic), 8.87 - 8.73 (m, 4H, aromatic), 

8.43 - 8.39 (in, 111, aromatic), 7.86 - 7.69 (rn, 5H aromatic), 7.58 -7.49 (m, 2H, 

aromatic), 7.43 -7.29 (iii, 211, aromatic), 7.11 - 7.07 (in, 111, aromatic) 5.23 (s, 1H, - 

OH) ppm; 6C (60 MHz, CDC13) 194 73 (C=O), 147.83 (phenolic C)140.79, 133.17, 

132.46, 132.61, 130.88, 130.85, 130.04, 128.01, 126.90, 126.32 (quaternary 

aromatic C), 130.32, 128.42, 128.09, 127.97, 127.79, 127.54, 127.48, 126.94, 

126.79, 125.57, 124.69, 124,56, 123.10, 123.04, 122.72, 122.62 (aromatic CH) ppm; 

mlz (FAB) 399 (M4 ), 382 (M -OH); HRMS (FAB) Found 398.13022, C29H1802  

Requires 398.13068; IaID22=+48°,  c=0. 10, DCM, IaIu—+71, c=1.0, DCM. 
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(R)-(-)-1 O'-Hydroxy-1 O-(hydroxymethyl)-9,9'-biphenanthryl (92). 

Lithium aluminium hydride (5.0mg, 0. 13mmol) in dry THF (2m1) was stirred at room 

temperature under nitrogen. A solution of (R)-10'-hydroxy-9,9'-biphenanthryl- 10-

carboxaldehyde (91) (50mg, 0. l9mmol) in dry THF (8m1) was added slowly and 

stirring continued for 30 minutes. The reaction was quenched by the careful addition 

of 2N HC1 (5m1) and the pH adjusted to 1. The mixture was extracted with DCM 

(3x5m1) and the combined organics washed with water (5m1). Drying over MgSO4, 

removal of the solvent in vacuo and trituration with ether gave the title compound as 

a white solid (38mg, 77%) m.p. 163-4°C; tic, Rf  (DCM) 0.23; C.H. Found C: 

85.04%, H: 6.20%, C29H2002  Requires C: 86.98%,H: 5.03%; VWaL  (CHBr3  mull) 

3230 (-OH), 3064 (Ca aromatic),1620, 1598, 1492 (aromatic rings) cm; Xm 

(DCM) 358 (4444dm3moF'r'), 341 (5333), 300 (35111), 259 (144889)nm; SB (250 

MHz, CDCI3) 8.88 - 8.73 (iii. 4H, aromatic), 8.44 - 8.40 (m 2FL aromatic), 7.83 - 

7.62 (m, 5H, aromatic), 7.54 -7.47 (m, 1H, aromatic), 7.39 -7.25 (m, 3H, aromatic), 

7.09 - 7.05 (in, 1H, aromatic), 5.60 (b, IH, -OH), 4.99 (d, 11-1, J11.8Hz), 4.78 (d, 

1H, J=11.5Hz), 1.83 (b, 1H, -OH) ppm; SC (60 MHz, CDC13) 147.27 (phenolic C), 

135.70, 132.55, 131.32, 131.14, 131.05, 130.79, 130.53, 130.06, 126.54, 125.10 

(quaternary aromatic C), 127.49, 127.47, 127.42, 127.33, 127.27, 127.22, 126.71, 

125.56, 125.29, 124.39, 123.22, 123.05, 122.71, 122.68, 122.51, (aromatic CH) 

113.90 (benzylic C), 60.70 (CH2) ppm; m/z (FAB) 400 (Md); ITRMS (FAB) Found 

400.14590, C29H2002  Requires 400.14633; IcLI D22=500, c0. 10, DCM. 

(R,2"-S)-(+)-1O'-Hydroxy-9,9'-biphenanthryi-1O-(methylideneamino)-2"-

(methoxymethyl)pyrroiidine (100). 

A suspension of (R)- 10 '-hydroxy- 9,9 '-biphenanthryl- I 0-carboxaldehyde (91) (50mg, 

0.13mmol) in dry DCM (lOml) was stirred at 0°C. 	(S)-(-)-1-Amino-2- 

(methoxyniethyl)pyrrolidine (97) (18mg, 0. 1 4mmol) was added and stirring continued 

for 2 hours at 0°C. Removal of the solvent in vacuo gave a yellow foam. Purification 
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by wet flash chromatography gave the title compound as a yellow foam (42mg, 66%). 

m.p. 180-2°C; tic Rf (DCM) 0.18; C.H.N. Found C: 82.75%, H: 5.92%, N: 4.89%, 

C35H31N202  Requires C: 82.33%, H: 5.92%, N: 5.49%; Vm (CHBr3  mull) 3514 (-

OH), 3068 (CH, aromatic), 2973 (CH, aliphatic), 1622, 1593, (aromatic rings) cm'; 

A.max. (DCM) 358 (175526dm3mo1't'), 342 (19072), 298 (37113), 259 (152062) nm; 

H (250 MHz, CDC13) 8.96 - 8.92 (in., 111, aromatic), 8.86 - 8.70 (m, 41-1, aromatic), 

8.47 - 8.43 (m, 111, aromatic), 7.81 - 7.65 (ni, 411, aromatic), 7.62 -7.56 (in, 111, 

aromatic), 7.50 - 7.44 (in, 1H, aromatic), 7.36 (s, 1H, CH=N), 7.29 -7.23 (iii, 3H, 

aromatic), 7.11 - 7.08 (m, 1H, aromatic),6.02 (s, 1H, -011), 3.43 - 3.35 (in, 311, N-

CH and O-CH2), 3.27 (s, 3H, -OMe), 3.04 - 2.99 and 2.43 - 2.39 (2xm, 2xlH, N-

C112), 1.77 - 1.57 (in, 4H, 2xCH2) ppm; 6C (60 MHz, CDC13) 147.37 (phenolic C), 

132.97, 132.32, 131.35, 131.18, 131.08, 130.33, 130.07, 129.09, 126.38, 125.56 

125.87, 125.56 (quaternary aromatic C), 131.39 (HC=N), 127.45, 127.08, 126.90, 

126.84, 126.45, 125.78, 124.01, 123.19, 122.72, 122.53, 122.41 (aromatic CH), 

114.97 (benzylic C), 74.00 (0-CH2), 62.59 (N-CH), 59.00 (0-Me), 48.70 (N-CH2), 

26.21 (CH2), 21.79 (CH2) ppm; m/z (FAB) 511 (MT{); HIRMS (FAB) Found 

511.23939, C351131N202  Requires 511.23855; [CC 
1n22=+97°, c=0. 10, DCM. 

(R)-(+)-1 0 '-llydroxy-9,9'-biphenanthryi- 1 0-carboxaidehyde-oxime (93). 

A suspension of (R)- 10 '-hydroxy-9,9 '-biphenanthryl- I 0-carboxaldehyde (91) (0. lOg, 

0.25nimol), hydroxylamine hydrochloride (0.20g, 3.Ommol) and sodium acetate 

(0.42g. 4.8mmol) in ethanol (20m1) was stirred at room temperature for 30 minutes. 

The reaction was quenched by the addition of water (20m1) and extracted with DCM 

(2x25m1). The combined organics were dried over MgSO4  and the solvent removed 

in vacuo. 	Purification by wet flash chromatography (100% DCM) and 

recrystaffisation from DCM gave the title compound as a white solid (63mg, 61%). 

m.p. Decomp. at 176°C; tic RI (DCM) 0.36; C.H.N. Found C: 84.47%, H: 4.65%, 

N: 2.83%, C291-119NO2  Requires C: 84.24%, H: 4.63%, N: 3,39%; 	(CJ-IBr3  mull) 

3529 (-OH), 3067 (CIT. aromatic),1620, 1596 (aromatic rings) cm'; ?maL (DCM) 
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358 (2479dm3mo1'r'), 341 (2893), 300 (19008), 258 (79339) nm; 6H (250 MHz, 

CDC13) 8.89 - 8.71 (in, 411, aromatic), 8.44 - 8.39 (m, 111, aromatic), 7.92 - 7.63 (m, 

5H, aromatic), 7.53 -7.25 (in, 514, aromatic), 7.07 - 7.03 (iii, IH, aromatic), 5.42 and 

5.90 (2xb, 2x0.5H, D20 exchange, N-OH) ppm; 6C (60 M1-Iz, CDC13) 149.24 (C=N), 

147.50 (phenolic C), 131.88, 131.52, 131.03, 130.97, 130.57, 130.49, 129.33, 

127.80, 126.96, 126.70 (quaternary aromatic C), 128.19, 127.63, 127.56, 127.49, 

127.54, 127.32, 127.20, 127.13, 126.60, 124.58, 123.25, 122.85, 122.74, 122.65, 

122.51, (aromatic CH) 112.69 (benzylic C) ppm; m/z (FAB) 413 (M), 396 (M+-

OH); 

Mt

OH); 	HRMS (FAB) Found 414.14949, C29H19NO2  Requires 414.14940; 

1a1n22 +30°, c=0. 10, DCM. 

(R)-(+)-1 0-(Aminomethyl)-1 0'-hydroxy-9,9'-biphenanthryl (94). 

Lithium aluminium hydride (5.0mg, 0. 12mmol) in dry THF (2m1) was stirred at room 

temperature under nitrogen. A solution of (R)-(+)- l0'-hydroxy-9,9'-biphenanthryl-

lO-carboxaldehyde-oxime (93) (50mg, 0. l2mmol) in dry TI-IF (8m1) was added 

slowly and stirring continued for 30 minutes with heating at reflux. The mixture was 

cooled to room temperature, the reaction quenched by the careful addition of 2N 

NaOH (5m1) and the pH adjusted to 14. The mixture was extracted with DCM 

(3x5m1) and the combined organics washed with water (5m1). Drying over MgSO4  

and removal of the solvent in vacuo gave a yellow solid. Purification by wet flash 

chromatography (2% MeOH/DCM) gave the title compound as a pale yellow solid 

(27mg, 56%) m.p. 184-5°C; tic Rf  (5% MeOHJDCM) 0.40; C.H.N. Found C: 

87.71%, H: 5.67%, N: 2.86%, C29H21N0 Requires C: 87.19%, H: 5.30%, N: 3.5 1%; 

VmaL  (CHBr3  mull) 3517 (-OH), 3367 (NTT2) 3068 (CH, aromatic), 1582 (aromatic 

rings) cm'; 	(DCM) 360 (3636dm3moF11-1), 343 (3636), 303 (22101), 257 

(95652) urn; SH (250 MII{z, CDC13) 8.89 - 8.71 (in, 414, aromatic), 8.54 - 8.50 (in, 

111, aromatic), 8.22 - 8.19 (in, 11-I, aromatic), 7.79 - 7.66 (in, 4H, aromatic), 7.63 - 

7.54 (iii, IH, aromatic), 7.50- 7.43 (in, IH, aromatic), 7.39 -7.17 (in, 314, aromatic), 

7.03 - 7.00 (in, 114, aromatic), 4.58 (d, 1H, J=12.21-1z), 4.26 (b, 211, NIH2), 3.94 (d, 
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lH J=12.314z) ppm; 6C (60 MHz, CDC13) 149.64 (phenolic C), 134.55, 133.03, 

132.64, 131.63, 131.26, 131.05, 130.33, 130.00, 127.92, 126.51 (quaternary 

aromatic C), 127.99, 127.24, 127.07, 126.92, 126.69, 126.45, 126.02, 123.99, 

123.92, 123.56, 123.49, 122.40, 122.35, 122.30 (aromatic CH) 117.32 (benzylic C), 

41.22 (CH2) ppm; mlz (FAB) 399 (M); fiRMS (FAB) Found 399.16073, 

C291-121N0 Requires 399.16231; 1a1u22=+1400,  c=0. 10, DCM. 

(R,S)-(-)-10-(Hydroxymethyl)-9,9'-biphenanthryl-1 0'-(2"-phenyl)propionate 

(102). 

To a solution of (±)- 10'-hydroxy- 10-(hydroxymethyl)-9,9'-biphenanthryl (92) (1.0g, 

2.5mmol), (S)-(+)-2-phenylpropionic acid (101) (0.35g. 2.5mmol) and a catalytic 

amount of DMAP in dry DCM (50m1) at 0°C was added N,N-

dicyclohexycarbodiimide (0.52g, 2.5mmol). The resulting mixture was stirred at 0°C 

for 30 minutes and at room temperature for 2 hours. 	The precipitated 

dicyclohexylurea was filtered off and the filtrate washed with 0.5N HC1 (20m1), 

saturated NaHCO3  solution (20m1) and water (20m1). Drying over MgSO4  followed 

by removal of the solvent in vacuo gave a white solid which was purified by wet flash 

chromatography (100% DCM). A single recrystaffisation from ethyl acetate yielded 

the title compound as a single diastereoisomer (0.32g, 48% of available 

diastereoisomer) m.p. 254-6°C; tIc Rf  (DCM) 0.44; C.H. Found C: 84.43%, H: 

5.35%, C381-12 03  Requires C: 85.69%, II: 5.30%; VmaL  (CHBr3  mull) 3526 (-OH), 

3064 (CH, aromatic), 1732 (C=O stretch), 1597, 1582, (aromatic rings) cm'; ?mL 

(DCM) 358 (3550dm3moF'F'), 341 (4734), 302 (42604), 256 (178107) nm; 611 (250 

MHz, CDC13) 8.85 - 8.69 (m 4H, aromatic), 8.47 - 8.43 (m 1FI., aromatic), 7.81 - 

7.54 (m., 7H, aromatic), 7.38 -7.20 (111, 4H, aromatic), 6.85 -6.83 (m, 1H, aromatic), 

6.65 (b, 4H, aromatic) 4.82 (d, 1H., J=12.4.I-Iz), 4.55 (d, 1H, J'12.8Hz), 3.62 (q, TH, 

J=6.OHz, -CH), 2.67 (b, 11-1, -OH), 1.09 (d, 3H, J=7.2Hz, -CII3) ppm; 6C (60 MHz, 

CDC13) 143.24 (phenolic C), 137.71, 134.53, 131.98, 131.71, 130.88, 130.80, 

130.47, 130.36, 129.01, 126.19, 126.01, (quaternary aromatic C), 127.98, 127.55, 
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127.45, 127.34, 126.85, 126.78, 126.68, 126.57, 126.51, 122.98, 122.83, 122.69, 

122.35, 121.92 (aromatic CH), 61.01 (CH2), 45.05 (CH), 17.14 (C113) ppm; m/z 

(FAB) 532 (M), 515 (Mt-OH); fiRMS (FAB) Found 532.20 140, C38H2803  Requires 

532.20385; IaID22=-  1440, c=0. 10, DCM. 

(R)-(-)-10'-Hydroxy-10-(hydroxymethyl)-9,9'-biphenanthryl (92). 

Lithium aluminium hydride (7.0mg, 0. 19mmol) in dry TIIF (2m1) was stirred at room 

temperature under nitrogen. A solution of (R,S)-(-)- I 0-(hydroxymethyl)-9,9'-

biphenanthryl- 10'-(2"-phenyl)propionate (102) (0. lOg, 0. 19mmol) in dry TI-IF (8m1) 

was added slowly and stirring continued for 30 minutes. The reaction was quenched 

by the careful addition of 2N HCI (5m1) and the pH adjusted to 1. The mixture was 

extracted with DCM (3x5m1) and the combined organics washed with water (5m1). 

Drying over MgSO4, remeval of the solvent in vacuo and trituration with ether gave 

the title compound as a white solid (65mg, 87%) m.p. 155°C; tIc R (DCM) 0.28; 

C.H. Found C: 84.94%, H: 6.24%, C29142002  Requires C: 86.98%, H: 5.03%; v,11  

(CI-lBr3  mull) 3476 (-OH), 3070 (CH, aromatic), 1624, 1606, 1492 (aromatic rings) 

cm'; ?WaL (DCM) 358 (4441dm3mot'l'), 341 (5333), 300 (35111), 259 (144889) 

nm; iH (250 MHz, CDC13) 8.88 - 8.73 (m, 4H, aromatic), 8.44 - 8.41 (in, 2H. 

aromatic), 7.83 - 7.61 (iii, 511, aromatic), 7.54 -7.47 (in, IH, aromatic), 7.39 -7.25 

(m, 31- aromatic), 7.09 - 7.06 (in, 1H, aromatic), 5.60 (b, 1H, -OH), 4.99 (d, 1H, 

J=1l.8Hz), 4.79 (d, lI-I, J=11.9Hz), 1.71 (b, IH, -OH) ppm; 6C (60 M1-Iz, CDC13) 

147.27 (phenolic C), 135.70, 132.55, 131.32, 131.14, 131.05, 130.79, 130.53, 

130.05, 126.54, 125.10 (quaternary aromatic C), 127.49, 127.47, 127.42, 127.33, 

127.27, 127.22, 126.71, 125.56, 125.29, 124.39, 123.23, 123.05, 122.71, 122.68, 

122.5 1, (aromatic CH) 113.90 (benzylic C), 60.70 (CH2) ppm; m/z (FAB) 400 (M); 

HRMS (FAB) Found C29H2002  Requires 400.14633; lab =-5O, c0. 10, DCM. 
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(S,R)-(+)-10-(Hydroxymethyl)-9,9'-biphenanthryl-lO '-(2"-phenyl)propionate 

(102). 

To a solution of(±)- 10'-hydroxy- l0-(hydroxymethyl)-9,9'-biphenantkryl (92) (0.30g, 

0.75mmol), (R)-(-)-2-phenylpropionic acid (101) (0.10g, 0.75mmol) and a catalytic 

amount of DMAP in dry DCM (5ml) at 0°C was added N,N-dicyclohexycarbodiimide 

(0. 14g, 0.75mmol). The resulting mixture was stirred at 0°C for 30 minutes and at 

room temperature for 2 hours. The precipitated dicyclohexylurea was filtered off and 

the filtrate washed with 0.5N HC1 (10m!), saturated NaHCO3  solution (lOml) and 

water (lOmi). Drying over MgSO4  followed by removal of the solvent in vacuo gave 

a white solid which was purified by wet flash chromatography (100% DCM). A 

single recrystallisation from ethyl acetate yielded the title compound as a single 

diastereoisomer (52mg, 26% of available diastereoisomer) m.p. 253-5°C; tIc Rf  

(DCM) 0.47; C.H. Found C: 85.11%, H: 5.29%, C38H2803  Requires C: 85.69%, H: 

5.30%; Vm . (CHBr3  mull) 3532 (-OH), 3067 (CH, aromatic), 1733 (C=O stretch), 

1601 (aromatic rings) ciii'; 	(DCM) 359 (2212dm3mor11 1 ), 341 (3540), 302 

(35841), 259 (142920) inn; SH (250 MHz, CDCI3) 8.85 - 8.69 (m, 4H, aromatic), 

8.47 - 8.43 (iii., 1H, aromatic), 7.82 - 7.56 (m, 711, aromatic), 7.38 -7.20 (m, 4H, 

aromatic). 6.86 -6.82 (in, 1H, aromatic), 6.65 (b, 4H, aromatic) 4.82 (d, IH, 

J=13.2.Hz), 4.55 (d, IH, J12.8Hz), 3.62 (q, IH, J7.31-Iz, -CH), 2.67 (b, 1H, -OH), 

1.09 (d, 3H, J=7.3Hz, -CU-j) ppm; SC (60 MHz, CDC13) 143.19 (phenolic C), 137.67, 

134.43, 131.91, 131.29, 130.82, 130.73, 130.40, 130.30, 128.94, 126.13, 125.95, 

(quaternary aromatic C), 127.91, 127.49, 127.38, 127.28, 126.78, 126.72, 126.63, 

126.58, 126.51, 126.44, 122.91, 122.77, 122.63, 122.29, 121.86 (aromatic CH), 

60.93 (CH2), 44.97 (CH), 17.08 (CH3) ppm; mlz (FAB) 532 (Md); fiRMS (FAB) 

Found 532.20452, C38H2803  Requires 532.203 15; laiD  —+144, c0. l0, DCM. 

Oil 
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(S)-(+)-1 0'-Hydroxy-1 0-(hydroxymethyl)-9,9'-biphenanthryl (92). 

Lithium aluminium hydride (4.7mg, 0. 12mmol) in dry TFIF (2m1) was stirred at room 

temperature under nitrogen. 	A solution of (S,R)-(-)- 10-(hydroxymethyl)-9,9'- 

biphenanthryl- l0'-(2"-phenyl)propionate (102) (65mg, 0. l2mmol) in dry THY (8m1) 

was added slowly and stirring continued for 30 minutes. The reaction was quenched 

by the careful addition of 2N HCI (Sml) and the pH adjusted to 1. The mixture was 

extracted with DCM (3x5m1) and the combined organics washed with water (5m1). 

Drying over MgSO4, removal of the solvent in vacuo and trituration with ether gave 

the title compound as a white solid (46mg, 94%) m.p. 164-5°C; tIc Rf  (DCM) 0.23; 

C.H. Found C: 84.87%, H: 6.20%, C29H2002  Requires C: 86.98%, H: 5.03%; VmaL  

(CHBr3  mull) 3484 (-OH), 3088 (CH, aromatic),1619, 1593, 1492 (aromatic rings) 

(DCM) 358 (5667dm3mo111 1 ), 341 (6667), 301 (10700), 262 (125000) 

nm; 6H (250 M1-Iz, CDC13) 8.87 - 8.73 (m, 4H, aromatic), 8.44 - 8.40 (m, 2H, 

aromatic), 7.83 - 7.61 (in, SI-I, aromatic), 7.53 -7.47 (m, 11-I, aromatic), 7.38 -7.25 

(in, 3H, aromatic), 7.09 - 7.05 (m, 111, aromatic), 4.98 (d, IH, J1 1.8Hz), 4.77 (d, 

1H, J=l I.8FIz) ppm; öC (60 MHz, CDCI3) 147.30 (phenolic C), 135.67, 132.58, 

131.33, 131.13, 131.04, 130.82, 130.55, 130.11, 126.54, 125.12 (quaternary 

aromatic C), 127.48, 127.44, 127.30, 127.24, 127.20, 126.69, 125.57, 125.31, 

124.37, 123.25, 123.03, 122.70, 122.65, 122.50, (aromatic CH) 113.96 (benzylic C), 

60.66 (CH2) ppm; m/z (FAB) 400 (M), 382 (M-OH); HIRMS (FAB) Found 

400.14436, C29112002  Requires 400.14633; [a]n22=+50°, c0. 10, DCM. 

(±)-10-(Bromomethyl)-10'-hydroxy-9,9'-biphenanthryl (103) (Method A). 

(±)- 10'-Hydroxy- 1 0-(hydroxymethyl)-9,9'-biphenanthryl (92) (0.50, 1. 3mmol) and 

dibromotriphenyiphosphorane (1.2g, 2.8mmol) were mechanically stirred under 

nitrogen. The temperature was raised slowly by the means of a graphite bath. At 

23 0°C a homogeneous melt was observed. At 280'C the flask was allowed to cool to 

room temperature and the mixture solidified. 	Purification by wet flash 
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chromatography (100% DCM) gave the title compound as a pale orange solid (0.28g, 

61%). m.p. 228°C; tic Rf  (DCM) 0.82; C.H. Found C: 76.01%, H: 4.20%, 

C29H19BrO Requires C: 75.17%, II: 4.13%; Vm (CHBr3  mull) 3521 (-OH), 3072 

(CH, aromatic), 1622, 1598, 1492, (aromatic rings) cm'; 	(DCM) 357 

(2308dm3mor'cm'),349 (3077), 306 (19231), 298 (21538), 274 (38462), 260 

(846 15)nm; 611 (250 MHz, CDC11) 8.91 - 8.74 (m., 4H, aromatic), 8.50 - 8.46 (m, 

1H, aromatic), 8.38 - 8.34 (m, 1H, aromatic), 7.86 - 7.65 (in, 5H, aromatic), 7.54 - 

7.48 (in, IH, aromatic), 7.40 -7.25 (in, 3H, aromatic), 7.07 - 7.03 (in, IH, aromatic) 

4.88 (d, 1H, J=n10.3Hz),  4.71 (d, 1H, J=10.31-1z) ppm; 6C (60 MHz, CDC13) 147.21 

(phenolic C), 133.55, 131.84, 131.48, 131.25, 131.15, 130.75, 129.38, 126.58, 

125.06 (quaternary aromatic C), 127.96, 127.65, 127.63, 127.59, 127.36, 127.26, 

127.16, 126.71, 125.24, 124.42, 123.34, 123.20, 122.74, 122.64, 122.51 (aromatic 

CH) 112.65 (quaternary C), 29.78 (CH213r) ppm; m/z (FAB) 462, 464 (Mt); FIRMS 

(FAB) Found 464.05147, C29H19BrO Requires 464.06001. 

Tetra benzo f a' ,c' ,g',i' 1-6H-dibenzolb,dl pyran (104) (Method A). 

A solution of (±)- 1 0-(bromomethyl)- 10 '-hydroxy-9,9 '-biphenanthryl (103) (0.40g. 

0.86mmol) in TI-IF (10m!) was stirred at room temperature. i.OM Potassium 

hydroxide solution (1. 7m!, 1. 7mmol) was added dropwise. A permanent yellow 

colouration was observed and stirring continued for 1 hour. The mixture was diluted 

with water (20m1) and extracted with DCM (300m1). The combined organics were 

washed with 2N HC1 (50m1), dried over MgSO4  and the solvent removed in vacuo. 

Trituration with ether gave the title compound as a yellow solid (0.22g, 67%). m.p. 

216-7°C; tic Rf (DCM) 0.89; C.H, Found C: 90.56%, H: 5.00%, C29H200 Requires 

C: 91.07%, H: 4.74%; 	(CHBr3  mull) 3056 (CH, aromatic), 1600, 1488 

(aromatic rings) cm'; Xm (DCM) 378 (14831dm3mo111-'), 360 (16949), 301 

(26271), 253 (79237) nm; 611 (250 MHz, CDCI3) 8.84 - 8.70 (m, 411, aromatic), 

8.49 - 8.46 (in, lI-I, aromatic), 8.04 - 8.00 (in, 1H, aromatic), 7.78 - 7.53 (m, 8H, 

aromatic),7.39 - 7.30 (in, 21-1, aromatic), 6.16 (d, 114, J=13.21-lz), 5.21 (d, 1H, 
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J=13.1) ppm; 6C (60 MHz, CDC13) 152.10 (phenolic C), 131.28, 130.66, 129.99, 

128.25, 128.00, 127.09, 125.78 (quaternary aromatic C), 129.73, 128.17, 127.48, 

127.42, 127.04, 126.66, 126.39, 126.21, 125.55, 125.37, 124.50, 123.21, 123.00, 

122.74, 122.60, 122.31 (aromatic CH) 115.39 (benzylic C) ppm; mlz (FAB) 382 

(M); HIRMS (FAB) Found 382.13562, C29141801  Requires 382.13577. 

Attempted Preparation of (±)-10'-(Methyl)trifluoromethylsulphonate-9,9'-

biphenanthryl-1 0-trifluoromethylsuiphonate. 

Tetra benzo Ia',c',g',i'1-6H-dibenzo Ib,dI pyran (104) (Method B). 

A solution of (±)- 10 '-hydroxy- I 0-(hydroxymethyl)- 9,9 '-biphenanthryl (92) (0.50g. 

1.3mmol) in dry 2,6-lutidine (lOml) was stirred under nitrogen at 0°C. 

Trifluoromethanesulphonic anhydride (1.8g, 6. 3mmol) was added and stirring 

continued overnight at room temperature. The gradual appearance of a yellow colour 

was noted. The mixture was concentrated to dryness and diluted with DCM (30m1). 

Washing with 2N HC1 (20m1), drying over MgSO4  and removal of the solvent in 

vacuo gave a yellow residue. Purification by wet flash chromatography (100% DCM) 

gave the title compound as a pale yellow solid (0.20 g, 48%). 

(±)-10-(Bromomethyl)-1 0'-Hydroxy-9,9'-biphenanthryl (103) (Method B). 

A solution of (±)- 10 '-hydroxy- 1 0-(hydroxymethyl)-9,9 '-biphenanthryl (92) (1.0g. 

2.5mmol) in dry DCM (50m1) was stirred under nitrogen at room temperature. 

Bromotrimethylsilane (1.5g, lOmmol) was added and the resulting mixture stirred 

overnight. The reaction was quenched by the addition of water (30m1), the organic 

layer separated and the aqueous layer washed with a further portion of DCM (30m1). 

The combined organics were dried over MgSO4. Removal of the solvent in vacuo and 

trituration with ether gave the title compound as a white solid (0.7 1g, 61%). 

Oil 
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(±)-10'-Ilydroxy-10-methyl-9,9'-biphenanthryl (105). 

Lithium aluminium hydride (52mg, 1.3mmol) in dry THF (lOmI) was stirred at room 

temperature under nitrogen. A solution of (±)-10-(bromomethyl)- l0'-hydroxy-9,9'-

biphenanthryl (103) (0.62g, 1.3mmol) in dry THF (lOmi) was added slowly and 

stirring continued for 30 minutes. The reaction was quenched by the careful addition 

of 2N HC1 (lOml) and the pH adjusted to I. The mixture was extracted with DCM 

(3x20m1) and the combined organics washed with water (30m1). Drying over MgSO4, 

removal of the solvent in vacuo and trituration with ether gave the title compound as 

a white solid (0.43g. 84%) m.p. 249-251°C; tic Rf  (DCM) 0.77; C.H. Found C: 

90.37%, H: 5.28%, C291-1200 Requires C: 90.60%, H: 5.25%; VmaL  (CHBr3  mull) 

3434 (-OH), 3065 (CH, aromatic), 1623, 1597, 1498 (aromatic rings) cm'; A. 

(DCM) 358 (2222dm3moF1 cm'),342 (2222), 300 (20000), 276 (37778), 258 

(108333)nm; 511 (250 MHz, CDC13) 8.90 - 8.75 (111, 4H, aromatic), 8.47 - 8.43 (m, 

11-1, aromatic), 8.27 - 8.24 (m 11-1, aromatic), 7.84 - 7.69 (m 4H, aromatic),7.64 - 

7.59 (m, 1H, aromatic), 7.55 -7.48 (mt, IH, aromatic), 7.40 -7.28 (m 3H, aromatic), 

7.16 - 7.12 (m 1H, aromatic) 5.26 (s, 1I-L -OH), 2.51 (s, 3H,-CH3) ppm; SC (60 

M1-Iz, CDC13) 146.70 (phenolic C), 134.81, 132.24, 131.71, 131.29, 131.25, 130.03, 

127.88, 124.90 (quaternary aromatic C), 127.24, 127.09, 126.66, 126.54, 126.47, 

125.33, 123.08, 123.00, 122.63, 122.60, 122.53 (aromatic CH) 114.51 (benzylic C), 

16.69 (Cl-I3) ppm; mJz(FAB)384(M); HRMS (FAB) Found 384.15354, C291J2001  

Requires 384.15142. 

(±)-10-Methyl-9,9'-biphenanthryl-101-trifluoromethanesulphonate (106) 

A solution of (±)- 10' -hydroxy- 1 0-methyl-9,9 '-biphenanthryl (105) (0.50g, 1.3 mmol) 

in dry DCM (20m1) was stirred under nitrogen at 0°C. Pyridine (0.15g, 2.Ommol) 

followed by trifluoromethanesuiphonic anhydride (0.44g, 1.6mmol) were added and 

stirring continued overnight at room temperature. The gradual appearance of a 

yellow colour was noted. The mixture was concentrated to dryness and diluted with 
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DCM (30m1). Washing with 2N HC1 (20m1), drying over MgSO4  and removal of the 

solvent in vacuo gave a white residue. Purification by wet flash chromatography 

(100% DCM) gave the title compound as a white solid (0.45g, 67%). m.p. 204-5°C; 

tic Rf  (DCM) 0.79; C.H. Found C: 70.79%, H: 3.80%, C30H19F303S Requires C: 

69.76%, H: 3.71%; Vm (CIIBr3  mull) 3072 (CH, aromatic), 1624, 1584 1489 

(aromatic rings) cm'; Xm. (DCM) 301 (19355dm3mo1'F'), 255 (116129) urn; SH 

(250 MHz, CDCI3) 8.90 - 8.77 (111, 4H, aromatic), 8.40 - 8.37 (in, 111, aromatic), 8.24 

- 8.20 (m., 1H, aromatic), 7.91 - 7.68 (in, 5ft aromatic),7.62 - 7.56 (in, 111, 

aromatic), 7.41 -7.39 (in, 211, aromatic), 7.36 - 7.29 (m 1H, aromatic), 7.25 - 7.20 

(in, 1H, aromatic) 2.44 (s, 3H,-CH3) ppm; 6C (60 MHz, CDCI3) 142.48 (phenolic C), 

133.74, 131.71, 131.13, 130.56, 129.73, 129.55, 129.51, 125.91 (quaternary 

aromatic C), 128.18, 128.02, 127.88, 127.95, 126.66, 126.52, 125.99, 125.13, 

122.95, 122.92, 122.85, 122.70, 122.40 (aromatic CH) 113.53 (benzylic C), 17.62 

(CH3) ppm; 6F (235MHz, CDC13) -73.98 (CF3): m/z (FAB) 516 (Mt); HRMS 

(FAB) Found 5 16.10070, C30H19 F303S Requires 516. 10070. 

Attempted Palladium Catalysed Phosphorylation of (±)-10-Methyl-9,9'-

biphenanthryi-10'-trifluoromethanesulphonate (106). 

A solution of(+)- 10-methyl-9,9'-biphenanthryl-lO'-trifluoromethanesulphonate (106) 

(0.20g, 0.40mmol), diphenyiphosphine oxide (0.16g, 0.80mmol), palladium acetate 

(4.5mg, 0. O2Ommol), 1,3-bis(piphenylphosphino)propane (8.2mg, 0. O2Ommol) and 

diisopropylethylamine (0.20g, 1.6mmol) in DMSO (20m1) was stirred overnight at 

100°C under nitrogen. The resulting mixture was cooled and the solvent removed in 

vacuo to give a pale brown residue. This was taken up DCM (20ml), washed with 

water (20)ml, dried over MgSO4  and the solvent removed in vacuo to give a pale 

yellow residue (0.18g). tic Rf (DCM) = 0.71; m/z(FAB) 516 (M) 
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Attempted Nickel Catalysed Phosphoylation of (±)-10-Methyl-9,9'-

biphenanthryl-10'-trifluoromethanesulphonate (106). 

A solution of [bis(diphenylphosphino)ethane]nickel dichloride (20mg, 0.40mmol) in 

dry DMF (imI) was stirred under nitrogen at room temperature, Diphenyipliosphine 

(0.40m1, 2.3mmol) was added and the mixture heated at 100°C for 30 minutes. A 

solution of (±)- 10-methyl-9,9'-biphenanthryl- l0'-trifluoromethanesulphonate (106) 

(0.20g, 0.39mmol) and 1,4-diazabicyclo[2,2,2]octane (0.17g, 1.6mmol) in dry DMF 

(2ml) were added at once and the mixture stirred at 100°C for 24 hours to 4 days. 

Three additional portions of diphenyiphosphine (0.40m1, 2.3mmol) were added 1,3 

and 7 hours later. The mixture was cooled and the solvent removed in vacuo to give 

a yellow liquid. m/z (FAB) 516 (M). 

Reduction of Acetophenone: 2-Phenethylalcohol. 

A suspension of lithium aluminium hydride (1. Og, 2. 5mmol) in dry TI-IF (2m1) under 

nitrogen was stirred at room temperature. Ethanol (0. 12g, 2.5mmol) was added with 

the evolution of hydrogen. The mixture was cooled to 0°C and a solution of (R)-(-)-

10 '-hydroxy- I 0-(hydroxymethyl)-9,9 '-biphenanthryl (92) (1. Og, 2. 5mmol) in dry THF 

(1 5m1) was added slowly, again with the evolution of hydrogen. Stirring was 

continued at 0°C for 1 hour and then the mixture was cooled to -78°C. A solution of 

acetophenone (1.0g, 0.83mmol) in dry THY (5m1) was added slowly. Stirring was 

continued at -78°C for 1 hour and overnight at room temperature. The reaction was 

quenched by the addition of 2N HC1 (lOmi) and extracted with DCM (3x20m1). The 

combined organic extracts were dried over MgSO4  and the solvent removed in vacuo 

to give a white oily solid. Trituration with ether (twice) gave quantitative recovery of 

(R)-(-)- 10 '-hydroxy- I 0-(hydroxymethyl)-9,9 '-biphenanthryl (92) (1a1n22=-5  0°, c=0. 1, 

DCM). The mother liquors from the trituration were purified by Kugelrhor 
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distillation in vacuo to give 2-phenethylalcohol (69mg, 68%). b.p. 202-3°C (lit.98  

204°C); tic Rf (DCM) 0.30; C.H. Found C: 78.62%, H: 8.27%, C8H 0O Requires C: 

78.65%,H: 8.25%; Vm . (neat) 3354 (OH), 2972 (CH stretch), 1493, 1451 (aromatic 

rings) cm'; Xm (DCM) 245 (488dm3mol'l'), 226 (585) nm; 6H (250 MIHz, 

CDC13) 7.39 - 7.23 (in, 5H, Ph), 4.88 (q, 1H, J6.4Hz, CH), 2.09 (b, IH, D20 

exchangeable, OH), 1.49 (d, 31-, J=6.4F1z, CH3), ppm; 6C (60 MHz, CDC13) 145.65 

(quaternary aromatic C), 128.33, 127.30, 125.23 (aromatic CH), 70.22 (CHOH), 

25.00(CH3) ppm; mlz (El) 122(M); LIRMS (El) Found 122.07272, C8H10O 

Requires 122.07317. 

(R)-(+)-a-Methoxy-a-(trifluoromethyl)-phenyiacetyl Chloride. 

A solution of (R)-(+)-a-methoxy-a-(trifluoromethyl)-phenylacetic acid (0.80g. 

3.4mrnol) in thionyl chloride (5m1) was heated at reflux for 24 hours and at room 

temperature for a further 36 hours. Excess thionyl chloride was removed in vacuo 

and the residue distilled in vacuo to give the title compound as a colourless oil (0.78g. 

90%). b.p. 212-2130C (lit.96  213-40C); v..-, (neat)2952 (CH stretch), 1790 (C0). 

Mosher Ester of 2-Phenethyiaicohoi. 

A solution of (R)-(+)-a-methoxy-a-(trifluoromethyl)phenylacetyl chloride (83mg, 

0.33mmol) in dry carbon tetrachloride (5m1) was stirred at room temperature. 2-

Phenethylalcohol (20mg, 0. l6mmol) was added followed by dry pyridine (5 drops). 

The mixture was stirred overnight at room temperature before being concentrated to 

dryness. The resulting residue was diluted with ether (1 Omi), washed with 2N HCJ 

(5m1), saturated NaCO3  solution (5ml) and water (5m1). Drying over MgSO4  and 
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removal of the solvent in vacuo gave a colourless oil. Purification by wet flash 

chromatography (100% DCM) gave the title compound as a colourless oil (19mg, 

35%). 6H (250 MHz, CDC13) 7.68 - 7.22 (in, 1011, aromatic), 3.49 - 3.46 (in, 31-I, 

OMe),1.65 - 1.56 (in, 3H, CH3) ppm; SC (60 MHz, CDC13) 165.80 (C=O), 147.73 

(quaternary aromatic C), 140.05 (quaternary aromatic C), 132.27 - 121.00 (aromatic 

CH), 74.88 (OMe), 55.51 (CH), 21.75 (CH3) ppm; SF (235M}Iz, CDC13) -71.73 

(intensity 18.25), -71.94 (intensity 8.70) ppm. 

Reduction of 2-Hexanone: 2-Hexanol. 

A suspension of lithium aluminium hydride (1.0g, 2. 5mmol) in dry THY (2 ml) under 

nitrogen was stirred at room temperature. Ethanol (0. 12g, 2.5mmol) was added with 

the evolution of hydrogen. The mixture was cooled to 0°C and a solution of(R)-(-)-

10 '-hydroxy- I 0-(hydroxymethyl)-9,9 '-biphenanthryl (92) (1. Og, 2. Smmol) in dry TI-IF 

(1 5m1) was added slowly, again with the evolution of hydrogen. Stirring was 

continued at 0°C for 1 hour and then the mixture was cooled to -78°C. A solution of 

2-hexanone (83mg, 0.83mmol) in dry THF (Sml) was added slowly. Stirring was 

continued at -78°C for 1 hour and overnight at room temperature. The reaction was 

quenched by the addition of 2N HC1 (lOml) and extracted with DCM (3x20m1). The 

combined organic extracts were dried over MgSO4  and the solvent removed in vacuo 

to give a white oily solid. Trituration with ether (twice) gave quantitative recovery of 

(R)-(-)- 10 '-hydroxy- 1 0-(hydroxymethyl)- 9, 9 '-biphenanthryl ([a] 22_  50°, 	c0. 1, 

DCM). The mother liquors from the trituration were purified by Kugelrhor 

distillation to give 2-hexanol (751ng, 88%). b.p. 135-60C (lit.98  1360C); tic Rf  (DCM) 

0.24; CH. Found C: 66.60%, H: 12.68%, C6H140 Requires C: 79.53%, H: 13.81%; 

VmaL  (neat) 3354 (OH), 2930 (CH stretch) cm'; SH (250 MT-Iz, CDC13)  3.80 - 3.73 

(in, IH, CH), 1.59 (b, 114, D20 exchangeable, OH), 1.43- 1.21 (in, 6H, 3xCH2), 1.16 

(d, 3H, J6.2Hz, CH3), 0.88 (t, 311, J=6.4Hz, R-CH3) ppm; SC (60 MHz, CDC13) 
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68.01 (CHOH), 38.90 (CH2), 27.82 (CH2),  23.32 (CH3), 22.57 (CH2), 13.93 (CH3) 

ppm; m/z (FAB) 102(W); H1RMS (FAB) Found 102.10477, C6H140 Requires 

102.10477. 

Mosher Ester of 2-Hexanol. 

A solution of (R)-(+)-a-methoxy-a-(trifluoromethyl)phenylacetyl chloride (25mg, 

0. 1 Ommol) in dry carbon tetrachloride (imi) was stirred at room temperature. 2-

Hexanol (5mg, 0.050mmol) was added followed by dry pyridine (2 drops). The 

mixture was stirred overnight at room temperature before being concentrated to 

dryness. The resulting residue was diluted with ether (5m1), washed with 2N FIC1 

(2m1), saturated NaCO3  solution (2m1) and water (2m1). Drying over MgSO4  and 

removal of the solvent in vacuo gave a colourless oil. Purification by wet flash 

chromatography (100% DCM) gave the title compound as a colourless oil (6mg, 

38%). iH (250 MHz, CDC13) 7.53 -7.33 (rn, 5H, Ph), 5.16- 5.09 (m, 1H, CH), 3.57 

-3.54 (m, 31-I, OMe), 1.34- 1.17 (111, 9H, 3xCH2  and CH3), 0.94- 0.61 (m., 3H, CH3) 

ppm; iF (235MHz, CDCI3) -71.72 (intensity 16.78), -71.77 (intensity 15.08) ppm. 

(R)-(-)- 1 O-(Hydroxymethyl)-9,9'-biphenanthryl 10'-phenylacetate (113). 

To a solution of (R)-(-)- 10'-hydroxy- l0-(hydroxymethyl)-9,9'-biphenanthryl (92) 

(0.50, 1.3mmol), phenylacetic acid (0.16g, 1.2mmol) and a catalytic amount of 

DMAP in dry DCM (25m1) at 0°C was added N,N-dicyclohexycarbodiimide (0.26g, 

1.2mmol). The resulting mixture was stirred at 0°C for 30 minutes and at room 

temperature for 2 hours. The precipitated dicyclohexylurea was filtered off and the 

filtrate washed with 0.5N HC1 (20m1), saturated NaHCO3  solution (20m1) and water 

(20m1). Drying over MgSO4  followed by removal of the solvent in vacuo gave a 

white solid. Purification by wet flash chromatography (100% DCM) and trituration 

with ether gave the title compound as a white solid (0.47g, 72%) m.p. 242-3°C; tic 
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Rf  (DCM) 0.30; C.H. Found C: 86.02%, H: 5.11%, C37112603  Requires C: 85.69%, 

H: 5.05%; 	(CHBr3 mull)  3394 (-OH), 3052 (CH, aromatic), 1750 (C=O 

stretch),1598, 1488 (aromatic rings) cm'; ?m  (DCM) 302 (20690c1m3mo1'F'), 290 

(20690), 257 (100000) urn; 6H (250 MT-lz, CDC13) 8.86 - 8.76 (m., 4H, aromatic), 

8.45 - 8.42 (111,, 11-I, aromatic), 7.83 - 7.60 (in, 711, aromatic), 7.38 -7.32 (m, 3H, 

aromatic), 7.25 - 7.22 (in, 1H aromatic), 6.92 -6.86 (111, 1H, aromatic), 6.75 - 6.69 

(m, 2H, aromatic) 6.55 - 6.52 (m, 211, aromatic), 4.81 (dd, IH, J=12.7FIz  and 9.9Hz), 

4.55 (dd, IH, J=12.7FIz and 3.9Hz), 3.43 (s, 2H, CH2), 2.50 (b, IH, -OH) ppm; 6C 

(60 MHz, CDC13) 143.46 (phenolic C), 131.93, 131.85, 131.38, 130.87, 138.80, 

130.46, 130.42, 129.04, 126.25, 125.95(quaternary aromatic C), 128.29, 128.09, 

127.60, 127.45, 127.33, 126.82, 126.77, 126.69, 126.58, 122.99, 122.84, 122.69, 

122.37, 122.09 (aromatic CH), 61.02 (Cl-I2), 40.87 (CH2  ) ppm; m/z (FAB) 518 

(M), 501 (M+-OH); FIRMS (FAB) Found 518.18793, C37H2603  Requires 

518.18819 1a1u22 -178°, c=0.10, DCM. 

Aikylation of (R)-(-)-10-(Hydroxyrnethyl)-9,9'-biphenanthryl 10'-phenyIacetate 

(113). 

A solution of lithium diisopropylamide (0.41 ml of a 2. OM solution, 0.81 mmol) in dry 

THF (lml) under nitrogen was stirred at -78°C. A solution of (R)-(-)-10-

(hydroxymethyl)-9,9'-biphenanthryl 10'-phenylacetate (113) (0.20g, 0.39mmol) in dry 

THF (4m1) was added slowly and the resulting yellow solution stirred at -78°C for lO 

minutes. Methyl iodide (2. ig, 15mmol) was added and stirring continued for 4 hours 

at -78°C. Water (lOml) was added and the mixture warmed to room temperature. 

Extraction with DCM (3xlOml), drying over MgSO4  and removal of the solvent in 

vacuo gave a pale yellow oil. Purification by wet flash chromatography (100% 

DCM) gave a white solid.(0.14g). tic Rf (DCM) = 0.65; Om  (CHBr3  mull) 3518 (- 

OH), 3054 (CH, aromatic), 1724 (C=O stretch), 1620, 1597, 1492 cm'; 	(H), 

(250MIHz, CDC13), 8.90 - 8.72 (in, aromatic), 8.48-- 8.36 (in, aromatic), 7.88 - 7.00 
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(in, aromatic), 5.58 - 5.48 (m, CH and OH), 5.26 - 5.16 (in, CH), 3.65 - 3.39 (in, 

CHPh and OMe), 1.38 - 1.34 (2xd, CH3) ppm; m/z (FAB) 546 (Mi ), 532 (M21 ). 

(R)-(-)-1 O-(Methoxymethyl)-9,9'-biphenanthryl 1 O'-phenytacetate (116). 

A 	suspension of (R)-(-)- 1 0-(hydroxymethyl)-9,9 '-biphenanthryl 10 '-phenylacetate 

(113) (0.20g. 0.39mmol), methyl iodide (0.56g. 3.9mmol) and silver oxide (0.72g, 

3.1mmol) in dry THF (lOmi) was heated at 35-40°C for 48 hours. After 24 hours a 

second aliquot of methyl iodide (0.56g, 3.9mmol) was added. The mixture was then 

cooled, filtered through celite and the solvent removed in vacuo. Purification by wet 

flash chromatography (100% DCM) gave recovered starting material and the title 

compound as a white solid (48mg, 23%). m.p. 112-3°C; tIc R1  (DCM) 0.56; C.H. 

Found C: 85.14%, H: 5.28%, C38H2803  Requires C: 85.69%, H: 5.30%; Vm 

(CHBr3  mull) 3063 (CH, aromatic), 1769 (C=O stretch), 1606, 1490 (aromatic rings) 

cm'; 	(DCM) 303 (30000dm3mol'11), 291 (30000), 258 (140667) nm; 6H (250 

MHz, CDCI3) 8.86 - 8.73 (in, 4H, aromatic), 8.28 - 8.25 (in, 1H, aromatic), 7.81 - 

7.57 (in, 7H, aromatic), 7.43 -7.30 (in, 4H aromatic), 6.93 -6.87 (iii, 1H, aromatic), 

6.78 - 6.72 (in, 2H, aromatic) 6.57 - 6.54 (in, 2H, aromatic), 4.63 (d, IH, J1 1.2Hz), 

4.35 (d, IH, J=11.2Hz), 3.36 (s, 2H, CH2), 2.98 (s, 3H, CH3) ppm; 6C (60 MHz, 

CDC13) 169.34 (C=O), 143.57 (phenolic C), 132.34, 132.08, 131.81, 131.34, 131.13, 

130.84, 130.77, 130.61, 130.46, 128.93, 126.44, 126.17 (quaternary aromatic C), 

128.43, 127.96, 127.62, 127.41, 127.16, 127.04, 126.82, 126.71, 126.14, 126.59, 

126.32, 122.95, 122.68, 122.44, 122.35, 122.28 (aromatic CH), 70.33 (CH2), 58.38 

(CH3), 40.73 (CH2  ) ppm; m/z (FAB) 532 (Md), 501 (MtOMe); ITRMS (FAB) 

Found 532.20482, C38H2803  Requires 532.20385; [a]D22 -90°, c0. 10, DCM. 
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Alkylation of (R)-(-)-10-(Methoxymethyl)-9,9'-biphenanthryl 1 0'-phenylacetate 

(116). 

A solution of lithium diisopropylamide (0.030m1 of a 2.OM solution, 0.062mmol) in 

dry TFIF (Imi) was stirred under nitrogen at -78°C. A solution of (R)-(-)- 10-

(methoxymethyl)-9,9'-biphenanthryl 1 0'-phenylacetate (116) (30mg, 0. O56mmol) in 

dry THF (2m1) was added slowly and the resulting yellow solution stirred at -78°C for 

10 minutes. Methyl iodide (0.33g. 2.2mmol) was added and stirring continued for 4 

hours at -78°C. Water (2nil) was added and the mixture warmed to room 

temperature. Extraction with DCM (3xlOml), drying over MgSO4  and removal of the 

solvent in vacuo gave a white residue. Purification by wet flash chromatography 

(100% DCM) gave a white solid (22mg). tIc Rf (DCM) 0.56; 6H (250 MHz, CDC13) 

8.88 - 8.72 (m, 411, aromatic), 8.58 - 8.22 (in, 1H, aromatic), 7.83 - 7.58 (in, 7H, 

aromatic), 7.38 -7.24 (m, 7H, aromatic), 6.90 -6.54 (m, 2H, aromatic), 4.76 (d, IH, 

J=l 1.01-k), 4.60 (d, 1H, J=l 1.0Hz), 3.27 (intensity 42.00)and 3.09 (intensity 37.69) 

(2xs, 3H, Ome), 1.04 (intensity 37.94) and 1.01 (intensity 40.95) (2xs, 311, CH3) ppm; 

m/z (FAB) 546 (M). 

(R)-(-)- 10 '-Hydroxy-9,9'-biphenanthryl 1 O-(methyl)phenylacetate (117). 

A solution of lithium diisopropylamide (0.20m1 of a 2.OM solution, 0.39mmol), in dry 

TI-IF (lml) at -78°C was stirred under nitrogen. A solution of (R)-(-)-10-

(hydroxymethyl)-9,9 '-biphenanthryl 10 '-phenylacetate (113) (0.20g, 0.3 9mmol) in dry 

T}IF (1 Omi) was added slowly. The resulting yellow solution was stirred for 10 

minutes at -78°C before water (lOml) was added. The mixture was extracted with 

DCM (3xlOml) and the combined organics washed with water (20m1). Drying over 

MgSO4  and removal of the solvent in vacuo gave a white residue. Purification by wet 

flash chromatography (100% DCM) gave the title compound as a white foam (0. 13g, 

66%). m.p. 122-3°C; dc Rf  (DCM) 0.64; C.H. Found C: 85.61%, H: 4.86%, 

C37H2603  Requires C: 85.69%, H: 5.05%; vm. (CFIBr3  mull) 3541 (011), 3077 
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(CH, aromatic), 1723 (C=O stretch), 1623, 1599, 1492 (aromatic rings) cm'; Xm 

(DCM) 358 (1036dm3moi'l'), 341 (1554), 301 (22798), 259 (116580) nm; 6H (250 

MII-Iz, CDC13) 8.90 - 8.72 (in, 4H, aromatic), 8.46 - 8.42 (111, 1H ,aromatic), 8.09 - 

8.06 (m., lH aromatic), 7.84 - 7.64 (ui, SH, aromatic), 7.53 - 7.46 (m, 1H, aromatic), 

7.42 -7.18 (in, 6H, aromatic), 7.11 -7.03 (in, 3H, aromatic), 5.55 (d, 111, J=12.OHz), 

5.50 (s, 1H, -OH), 5.24 (d, 11-1, J=12.OHz), 3.48 (s, 2H, CH2) ppm; 6C  (60 MHz, 

CDC13) 171.11(C=O), 141.37 (phenolic C), 133.47, 132.44, 132.36, 131.46, 131.40, 

131.27, 131.00, 130.70, 130.31, 126.50, 125.03 (quaternary aromatic C),129.08, 

128.36, 127.86, 127.53, 127.49, 127.32, 127.05, 126.89, 126.62, 125.32, 125.14, 

124.28, 123.26, 123.11, 122.66, 122.56 (aromatic CH), 113.04 (benzylic C), 62.70 

(CH2), 41.02 (CH2) ppm; mlz (FAB) 518 (M1); HRMS (FAB) Found 518. 19175, 

C37H2603  expect 518.18819; [a]D22r=68°, c=0. l0, DCM. 

(R)-(-)-1 0'-Methoxy-9,9'-biphenanthryl 1 0-(methyl)phenylacetate (118). 

A 	suspension of (R)-(-)- 10 '-hydroxy-9,9 '-biphenanthryl 1 0-(methyl)phenylacetate 

(117) (0.19g, 0.37mmol) anhydrous potassium carbonate (45mg, 0.37mmol) and 

methyl iodide (0.53g, 3.7mmol) in dry acetone (lOmi) was stirred overnight at 35°C. 

The mixture was filtered and the solid washed with dry acetone (20m1). The filtrate 

was concentrated to dryness and redissolved in DCM (20m1). Washing with 2N HCI 

(lOml), water (lOmI), drying over MgSO4  and removal of the solvent in vacuo gave a 

white residue. Purification by wet flash chromatography (100% DCM) gave the title 

compound as a white solid (0. 16g, 80%). m.p. 219-220°C; tic R1 (DCM) 0.64; C.H. 

Found C: 85.13%, H: 5.45%, C38H2803  Requires C: 85.69%, H: 5.30%; Vm  

(CHBr3  mull) 3070 (CH, aromatic), 1718 (C=O stretch), 1592, 1490 (aromatic rings) 

cnf 1; Xm (DCM) 303 (24155dm3mor'r'), 291 (27536), 259 (120290) nm; 6H (250 

MHz, CDC13) 8.91 - 8.75 (in, 4H, aromatic), 8.29 - 8.25 (ui, 1H ,aromatic), 8.06 - 

8.02 (m, 11-1, aromatic), 7.83 - 7.54 (in., 6H, aromatic), 7.43 -7.16 (in, 711, aromatic), 

7.08 -7.03 (in, 2H, aromatic), 5.44 (d, 1H, J=12.lHz), 5.36 (d, 1H, J=12.lFIz), 3.48 

(s, 3H, CH3), 3.41 (s, 2H, CH2) ppm; 6C  (60 MHz, CDC13) 171.06 (C=O), 151.96 
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(phenolic C), 134.84, 133.61, 132.49, 132.01, 131.32, 130.79, 130.65, 130.59, 

128.91, 128.36, 128.10, 123.70 (quaternary aromatic C), 129.06, 128.28, 127.84, 

127.50, 127.28, 127.24, 127.06, 126.92, 126.87, 126.80, 126.77, 127.57, 125.67, 

125.14, 123.32, 123.00, 122.94, 122.55 (aromatic CH), 62.85 (CH2), 60.98 (CH2), 

41.03 (CH3) ppm; mlz (FAB) 532 (Md); IIRMS (FAB) Found 532.20483, C38H2803  

expect 532.20385; [a]D22=-93°, c=0.10, DCM. 

(S)-(+)-1 O-(Hydroxymethyt)-9,9'-biphenanthryl 10'-phenylacetate (113). 

To a solution of (S)-(+)- l0'-hydroxy- l0-(hydroxymethyl)-9,9'-biphenanthryl (92) 

(0.46, 1. Immol), phenylacetic acid (0.20g. 1.5mmol) and a catalytic amount of 

DMAP in dry DCM (20m1) at 0°C was added N,N-dicyclohexycarbodiimide (0.3 Ig, 

1.5mmol). The resulting mixture was stirred at 0°C for 30 minutes and at room 

temperature for 2 hours. The precipitated dicyclohexylurea was filtered off and the 

filtrate washed with 0.5N HCl (20m1), saturated NaHCO3  solution (20m1) and water 

(20m1). Drying over MgSO4  followed by removal of the solvent in vacuo gave a 

white solid. Purification by wet flash chromatography (100% DCM) and trituration 

with ether gave the title compound as a white solid (0.41g, 68%) m.p. 239-40°C; tIc 

Rf  (DCM) 0.30; C.H. Found C: 86.19%, H: 5.22%, C37H2603  Requires C: 85.69%, 

H: 5.05%; 	(CHBr3  mull) 3430 (-OH), 3064 (CH, aromatic), 1748 (C=O 

stretch), 1629, 1600, 1490 (aromatic rings) cm t ; 	(DCM) 302 (25325dm3mof'r 

), 289 (25325), 257 (1123378) nm; 6H (250 MHz, CDC13) 8.86 - 8.75 (in, 4H, 

aromatic), 8.45 - 8.42 (in, 1H, aromatic), 7.83 - 7.60 (m, 7H, aromatic), 7.38 - 7.32 

(in, 3H, aromatic), 7.25 - 7.21 (in, 1H, aromatic), 6.91 - 6.85 (in, 1H, aromatic), 6.74 

- 6.68 (in, 2H, aromatic) 6.54 - 6.50 (in, 2H, aromatic), 4.81 (d, 1H, J12.8Hz), 4.54 

(d, IH, J=12.7), 3.42 (s, 2H, CH2), 1.61 (b, 1H, -OH) ppm; 6C (60 MHz, CDC13) 

143.47 (phenolic C), 134.52, 131.93, 131.86, 131.39, 130.88, 130.81, 130.45, 

129.91, 129.06, 125.96 (quaternary aromatic C), 128.29, 128.10, 127.61, 127.47, 

127.35, 126.79, 126.70, 126.59, 123.01, 122.85, 122.70, 122.38, 122.09 (aromatic 

CH), 61.03 (CH2), 40.89 (CH2  ) ppm; m/z (FAB) 518(M+), 501(M-OH); fiRMS 
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(FAB) Found 518.18664, C37112603  Requires 518.18819; laiD —+175, c0.10, 

DCM. 

(S)-(+)-10'-Hydroxy-9,9'-biphenanthryl 1 O-(methyl)phenyiacetate (117). 

A solution of lithium diisopropylamide (0.42 ml of a 2.OM solution, 0.85mmol), in dry 

TI-IF (2m1) at -78°C was stirred under nitrogen. A solution of (S)-(+)-10-

(hydroxymethyl)-9,9'-biphenanthryl 10 '-phenylacetate (113) (0.40g, 0.78 mmol) in 

dry TFIF (1 5m1) was added slowly. The resulting yellow solution was stirred for 10 

minutes at -78°C before water (lOml) was added. The mixture was extracted with 

DCM (3xlOml) and the combined organics washed with water (20m1). Drying over 

MgSO4  and removal of the solvent in vacuo gave a white residue. Purification by wet 

flash chromatography (100% DCM) gave the title compound as a white foam (0.24g. 

60%). m.p. 124-5°C; tIc Rf  (DCM) 0.64; C.H. Found C: 85.48%, H: 4.96%, 

C37H2603  Requires C: 85.69%, H: 5.05%; Vm (CHBr3  mull) 3625 (-OH), 3063 

(CH, aromatic), 1726 (C=O stretch), 1616, 1596, 1492 (aromatic rings) cm; Xm 

(DCM) 358 (3627dm3mo1'l'), 341 (4145), 301 (30052), 259 (140415) nm; 6H (250 

MHz, CDC13) 8.90 - 8.72 (in, 411, aromatic), 8.46 - 8.42 (m, 1H ,aromatic), 8.09 - 

8.06 (m, 1H, aromatic), 7.84 - 7.64 (in, 5H, aromatic), 7.53 - 7.47 (in, 1H, aromatic), 

7.42- 7.18 (in, 6H, aromatic). 7.12-7.03 (m, 3H, aromatic), 5.55 (d, 11-I, J=12.011z), 

5.51 (s, li-I, -OH), 5.24 (d, 1H, J=12.OHz), 3.48 (s, 21-I, CH2) ppm; 6C (60 MHz, 

CDC13) 171.11 (C=O), 147.38 (phenolic C), 133.46, 132.45, 132.36, 131.47, 131.40, 

131.27, 131.00, 130.71, 130.32, 126.51, 125.03 (quaternary aromatic C), 129.08, 

28.36, 127.86, 127.53, 127.49, 127.44, 127.39, 127.32, 127.05, 126.89, 126.62, 

125.32, 125.14, 124.28, 123.26, 123.11, 122.66, 122.56 (aromatic CH), 113.04 

(benzylic C), 62.79 (CH2), 41.02 (CH2) ppm; m/z (FAB) 518 (M); HRMS (FAB) 

Found 518. 18954, C37H2603  expect 518.18819; [a]D22 +74°, c0.10, DCM. 
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(S)-(+)-10'-Methoxy-9,9'-biphenanthryl 10-(methyl)phenylacetate (118). 

A suspension of (S)-(+)- 1 0'-hydroxy-9,9 '-bipherianthryl 1 0-(methyl)phenylacetate 

(117) (0.20 g, 0.39mmol) anhydrous potassium carbonate (60mg, 0.43mmol) and 

methyl iodide (0.56g, 3.9mmol) in dry acetone (lOmi) was stirred overnight at 35°C. 

The mixture was filtered and the solid washed with dry acetone (20m1). The filtrate 

was concentrated to dryness and redissolved in DCM (20ml). Washing with 2N HC1 

(lOml), water (lOmi), drying over MgSO4  and removal of the solvent in vacuo gave a 

white residue. Purification by wet flash chromatography (100% DCM) gave the title 

compound as a white solid (0.18g, 88%). m.p. 222-3°C; tic Rf  (DCM) 0.64; C.H. 

Found C: 86.19%, H: 5.32%, C381-12803  Requires C: 85.69%, H: 5.30%; VmaL  

(CI-lBr3  mull) 3056 (CH., aromatic), 1716 (C=O stretch), 1589, 1489 (aromatic rings) 

cm'; ?nIaL (DCM) 303 (28723dm3mo1 11 1 ), 256 (134574) nm; 5H (250 MII-Iz, 

CDC13) 8.91 - 8.75 (m, 4H, aromatic), 8.28 - 8.24 (m, lH ,aromatic), 8.05 - 8.01 (in, 

IH, aromatic), 7.82 - 7.54 (m, 6H, aromatic), 7.43 - 7.16 (in, 7H, aromatic), 7.08 - 

7.02 (in, 2H, aromatic), 5.43 (d, 1H, J=12.OHz), 5.36 (d, 11-1, J=12. 1Hz), 3.48 (s, 3H, 

CH3), 3.41 (s, 2H, CI-12) ppm; öC (60 MHz, CDC13) 171.09 (C=O), 151.95 (phenolic 

C), 134.84, 133.59, 132.48, 132.01, 131.31, 130.70, 130.65, 130.58, 128.89, 128.08, 

127.49, 123.70 (quaternary aromatic C), 129.07, 128.29, 127.83, 127.29, 127.24, 

127.07, 126.93, 126.87, 126.80, 126.77, 126.56, 125.68, 125.14, 123.32, 123.00, 

122.94, 122.55 (aromatic CH), 62.86 (CH2), 61.00 (CH2), 41.01 (CH3) ppm; m/z 

(FAB) 532 (M); HIRMS (FAB) Found 532.20200, C381-12803  expect 532.20385; 

[a]D22=+94°, c=0. 10, DCM. 

Atkylation of (S)-(+)-10'-Methoxy-9,9 '-biphenanthryl 1 O-(methyl)phenylacetate 

(118). 

A solution of lithium diisopropylamide (0.080m1 of a 2.OM solution, 0. I6mmol) in dry 

THY (imi) was stirred under nitrogen at -78°C. A solution of (S)-(+)- lO-methoxy-

9,9'-biphenanthryl- 10-(methyl)phenylacetate (118) (75mg, 0. l4mmol) in dry TI-IF 
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(4m1) was added slowly and the resulting yellow solution stirred at -78°C for 10 

minutes. Methyl iodide (0.81g. 5.6mmol) was added and stirring continued for 4 

hours at -78°C. Water (4m1) was added and the mixture warmed to room 

temperature. Extraction with DCM (3xlOml), drying over MgSO4  and removal of the 

solvent in vacuo gave a white residue. Purification by wet flash chromatography 

(100% DCM) gave a white solid (68mg, 88%). tic Rf  (DCM) 0.64; oH (250M1-Iz, 

CDC13) 8.90 - 8.74 (m 4H, aromatic), 8.32 - 8.23 (in, 111, aromatic), 7.93 - 7.88 (m, 

11-I, aromatic), 7.83 - 7.53 (in, 6H, aromatic), 7.42 - 7.18 (in, 711, aromatic), 7.14 - 

7.09 (in, 2H, aromatic), 5.45 - 5.29 (in, 2H, CH2Ar), 3.59 - 3.49 (in, 111, CH), 3.52 

(intensity 37.99) and 3.41 (intensity 43.29) (2xs, 3H, OMe), 1.38 (intensity 22.99) 

and 1.29 (intensity 24.36) (2xd, 3H, CH3, J7.2 and 7.2 Hz respectively) ppm; ms 

(FAB) 546 (M). 

(±)-1O-(N,N-Diethyiammomethylene)-1 O'-hydroxy-9,9'-biphenanthryl (119). 

To 	a suspension of (±)- 10'-hydroxy-9,9'-biphenanthryl- 10-carboxaldehyde (91) 

(0.50g, 1.3mrnol) in dry DCM (20m1) was added titanium tetrachloride (3.8ml of a 

1M solution in DCM, 3.8mmo1) followed by diethylamine (0.92g, 13mmol). The 

resulting dark red solution was stirred for 5 minutes under nitrogen before adding 

sodium cyanoborohydride (0.23g, 3.7mmol) followed by SN HCIJMeOH (3m1). The 

mixture was stirred for 1 hour before being diluted with water (1 Omi). The organic 

layer was separated and the aqueous layer washed with DCM (2x20m1). The 

combined organics dried over MgSO4  and the solvent removed in vacuo to give a 

yellow residue. Purification by wet flash chromatography (100% DCM, 2% 

MeOWDCM) gave the title compound as a yellow foam (0.52g, 91%). m.p. 224-

5°C; tic Rf (DCM) 0.11; C.H.N. Found C: 81.88%, H: 6.06%, N: 3.19%, C33H29N0 

Requires C: 87.00%, H: 6.42%, N: 3.07% Vm . (CHBr3  mull) 3526 (-OH), 3068 

(CH, aromatic), 1586, 1487 (aromatic rings) cm'; Xm. (DCM) 361 (2283dm3mo1 11 

5, 344 (2740), 305 (21005), 293 (23288), 259 (96804) nm; OH (250 MHz, CDC13 ) 

8.90 - 8.69 (in, 4H, aromatic), 8.58 - 8.54 (in, 1H ,aromatic), 8.34 - 8.27 (in, 111, 
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aromatic), 7.82- 7.13 (m, 1011, aromatic), 6.81 - 6.77 (in, 11-I, aromatic), 4.40(d, 1H, 

J=12.7Hz), 3.95 (d, 1H, J=12.9Hz), 2.78 - 2.50 (in, 411 ,2xCH2), 0.87 (t, 3H, 

J=7.2Hz, CH3) ppm; 6C (60 MHz, CDC13) 150.87 (phenolic C), 136.80, 133.06, 

131.73, 131.47, 131.35, 130.57, 130.48, 127.49, 127.39, 127.25 (quaternary 

aromatic C), 127.96, 127.06, 126.99, 126.61, 126.50, 126.44, 123,.36, 125.43, 

124.27, 124.08, 123.67, 123.37, 122.48, 122.27, 122.25 (aromatic CH), 117.86 

(benzylic C), 52.30 (CH2), 45.44 (2xCH2), 9.39 (2xCH3) ppm; m/z (FAB) 456 

(NH); FIRMS (FAB) Found 456.23268, C33H30N0 expect 45 6.23274. 

(±)-10-(N,N-Diethyiaminomethyiene)-9,9'-biphenanthryi 	10'-phenyiacetate 

(120). 

A solution of phenylacetic acid (66mg, 0.48mmol) in thionyl chloride was heated at 

reflux for 1 hour. Excess thionyl chloride was removed in vacuo and the residue 

dissolved in dry DCM (imI). This was added slowly to a solution of (+)- l0-(N,N-

diethylaminomethylene)- 10 '-hydroxy-9,9 '-biphenanthryl (119) (0.20g, 0. 44mmol) and 

diethylamine (48mg, 0.44mmol) in dry DCM (20m1) at 0°C. The mixture was stirred 

overnight. The mixture was then washed with 2N HCI (1 Oml), IN NaHCO3  (I Omi) 

and water (lOmi). Drying over MgSO4  and removal of the solvent in vacuo gave a 

yellow residue. Purification by wet flash chromatography (100% DCM, 5% MeOH) 

and recrystallisation from ethyl acetate gave the title compound as white crystals 

(0.13g, 52%).m.p. 138-9°C; tic Rf  (DCM) 0.18; C.H.N. Found C: 85.22%, H: 

5.96%, N: 2.03%, C41H35NO2  Requires C: 85.83%, H: 6.15%, N: 2.44%; 

(CHBr3  mull) 3068 (CH, aromatic), 2968 (CH, aliphatic), 1625, 1597, 1489 (aromatic 

rings) cm'; 	(DCM) 302 (17703), 258 (87081) nm; 5H (250 MHz, CDC13) 8.85 

- 8.73 (in, 511, aromatic), 7.77 - 7.58 (in., 7H, aromatic), 7.39 - 7.25 (in, 4H, 

aromatic), 6.94 - 6.91 (in, lii, aromatic), 6.84 - 6.75 (in. 2H, aromatic), 6.58 - 6.55 

(m, 2H, aromatic), 3.60 (b, 2H, CH2Ph), 3.45 (d, 1H, J=14.8Hz), 3.35 (d, 111, 

J=14.8Hz), 2.27 (b, 2H ,N-CH2), 2.11 (b, 211, N-C112), 0.62 (t, 3H, J=6.9Hz, CH3) 

ppm; 6C (60MHz, CDC13) 168.84 (C=O), 143.58 (phenolic C), 132.23, 131.21, 
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130.58, 128.96, 127.69, 127.14 (quaternary aromatic C), 128.38, 128.25, 128.05, 

126.68, 126.50, 126.19, 122.96, 122.63, 122.44, 122.37, 122.01 (aromatic CH), 

53.42 (ArCH2), 45.99 (2xNCH2), 40.90 (CH2Ph), 11.04 (2xCH3); m/z (FAB) 574 

(M); IIRMS (FAB) Found 574.27705, C41H35NO2  expect 574.27460. 

(±)-1 O-(Aminomethylene)-1 O'-hydroxy-9,9'-biphenanthryl-nicotinamide (124). 

A suspension of nicotinic acid (86mg, 0.70mmol) in thionyl chloride (2m1) was heated 

at reflux for 1 hour. Excess thionyl chloride was removed in vacuo. The residue was 

dissolved in dry DCM (imi) and slowly added to a solution (±)-10-(aminomethyl)-

10 '-hydroxy-9,9 '-biphenanthryl (94) (0.28g, 0. 7Ommol) and diisopropylethylamine 

(90mg, 0.70mmol) in dry DCM (lOml) at 0°C. The mixture was warmed slowly to 

room temperature and stirred for 4 hours. The mixture was then poured onto 

ice/water (20m1), rendered alkaline with 2N NaOH and extracted with DCM 

(3x20m1). The combined organic extracts were washed with 2N NaOH (20m1), water 

(20m1), and dried over MgSO4. Removal of the solvent in vacuo gave a 

yellow/brown residue. Purification by wet flash chromatography (5% MeOHIDCM) 

and recrystallisation from DCM gave the title compound as a white solid (0.21g, 

60%). m.p. 296-8°C; tic Rf (5% MeOHIDCM) 0,22; C.H.N. Found C: 80.27%, H: 

5.02%, H: 5.03%, C35H24N202  Requires C: 83.15%, H: 4.98%, N: 5.54%; Vm  

(CI-IBr3  mull) 3463 (-OH), 3357 (NH stretch) 3071 (CH, aromatic), 1621 (C=O 

stretch), 1594 (aromatic rings) cm'; A,, (DCM) 358 (2274dm3mol 1 F), 341 (2809), 

302 (23596), 259 (119101) nm; SH (250 MHz, CDC13/DMSO) 8.65 (b, IF!, 

aromatic), 8.52 - 8.29 (iii, 4L aromatic), 8.05 - 7.76 (in, SF!, aromatic), 7.39 - 7.25 

(m, 711, aromatic), 7.08 - 7.02 (in, 1H, aromatic), 6.96 -6.95 (in, 2H, aromatic), 6.89 

-6.83 (in, 31-1, aromatic), 6.64 - 6.61 (111, 1H, aromatic), 4.81 (dd, 11-1, J=13.9Hz and 

5.9Hz), 4.00 (d, iF!, J13.lHz) ppm; 6C (60 MHz, CDC13IDMSO) 163.47 (C=O), 

149.10 (C2 H), 148.07 (C6 H), 146.90 (C4 .H), 146.00 (C3"), 137.32 (C5 H), 132.91 

(phenolic C), 132.54, 132.51, 131.21, 131.06, 130.59, 130.54, 130.48, 126.13, 

125.86 (quaternary aromatic C), 127.26, 127.16, 127.06, 127.02, 126.87, 126.26, 

114 



Experimental 

125.06, 124.81, 123.86, 123.25, 122.73, 122.37, 123.24, 122.14 (aromatic CH) 

113.32 (benzylic C), 40.28 (CH2) ppm; m/z (FAB) 504 (M); HRMS (FAB) Found 

505. 19263, C35H25N202  Requires 505. 19160. 

N-Butyl Bromide Salt of (±)-1O-(Aminomethylene)-1O'-hydroxy-9,9'-

biphenanthryl-nicotinamide (125). 

A 	suspension 	of 	(±)- 1 0-(aminomethylene)- 10 '-hydroxy- 9,9' -biphenanthryl- 

nicotinamide (124) (0.15g, 0.30mmol), in 1-bromobutane (3m1) and 1,4-dioxane 

(15m1) was heated at 107°C for 24 hours. The mixture was cooled to room 

temperature, the resulting precipitate filtered off and washed with ether (2x20m1) to 

give the title compound as a white solid (0.15g. 79%). m.p. 211-2°C; tIc R (5% 

MeOHIDCM) 0.00; C.H.N. Found C: 71.26%, H: 5.25%, N: 4.00%, C39H33BrN202  

Requires C: 73.01%, H: 5.18%, N: 2.19%; Vm  (CI-IBr3  mull) 3171 (CH, aromatic), 

1655 (C=O stretch), 1598, 1491 (aromatic rings) cm'; A. 	(DCM) 359 

(6897dm3moF'l'), 342 (7882), 300 (30542), 278 (52217), 258 (129557) nm; SH 

(250 MHz, CDC13/DMSO) 9.16 - 9.07 (m, 3H, aromatic), 9.04 - 9.00 (in, IH, 

aromatic), 8.94 - 8.92 (in, 3H, aromatic), 8.89 - 8.74 (in, 11-1, aromatic), 8.55 - 8.52 

(in., 11-1, aromatic), 8.38 - 8.29 (m 1H aromatic), 8.19 - 8.13 (m, lH aromatic), 7.89 

- 7.67 (in, 111, aromatic), 7.42 - 7.31 (in, 2H, aromatic), 7.23 - 7.16 (in, 2H, 

aromatic), 7.06 - 7.03 (in, 1H, aromatic), 4.86 (dd, 111, J=14.OHz and 4.6Hz), 4.71 

(dd, 11-I., J=14.OHz and 2.6Hz), 4.57 (t, 2H, N+-CH2), 1,91 - 1.74 (in, 2H, C112), 1.40 

- 1.22 (m, 2H, CH2), 0.90 (t, 3H, CH3) ppm; 6C (60 MHz, CDC13/DMSO) 160.67 

(C=O), 147.95 (C2'.H), 146.32 (C6..H), 144.28 (C4 .H), 142.95 (C5..H), 141.93 (C3 ), 

133.43 phenolic C), 133.25 132.78, 131.80, 131.22, 131.15, 130.99, 130.66, 130.61, 

126.18, 125.95 (quaternary aromatic C), 127.70, 127.55, 127.37, 127.29, 127.00, 

126.82, 125.45, 125.26, 123.95, 123.66, 123.26, 123.16, 123.00 (aromatic CH) 

114.12 (benzylic C),66.47 (Ar-CH2), 60.98 (N+-CH2), 32.73 (CH2), 18.88 (CH2), 

13.47 (CH3) ppm; m/z (FAB) 561 (Mi); IIRMS (FAB) Found 561.25586, 

C39H33N202  Requires 56 1.25420. 
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Appendix 

Appendix 1 

Crystallographic Data 

Molecular formula C38H2803  
Formula weight 532.60 

Crystal dimensions (mm) 0.51x0.39x0.19 
Crystal system Orthorhombic 

Cell dimensions a (A) 9.1564(5) 
Cell dimensions 	(A) 9.38 17(6) 
Cell dimensions c (A) 31.268(2) 
Cell dimensions a (°) 90 
Cell dimensions 3 (°) 90 
Cell dimensions y °) 90 
Density caic.  (g/cm. ) 1.317 

Table 4. (R,2 "-S)-(-)-1 0-(Hydroxymethyl)-9, 9 '-biph enanthiyl-1 0 '-(2"- 

phenyl)propion ate (102). 

Molecular formula C29H180 
Formula weight 382.13 

Crystal dimensions (mm) 0.800.800.30 
Crystal system monoclinic 

Cell dimensions a (A) 19.607(15) 
Cell dimensions b (A) 5.079(5) 
Cell dimensions c (A) 29.157(16) 
Cell dimensions a (0)  90 
Cell dimensions 	(0) 114.84 
Cell dimensions y °) 90 
Density caic.  (g!cm) 1.39 

Table 5. (±)-Tetrabenzofa ',c ',g ',i 'J-6H-dibenzo[b,dJpyran (104). 
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Molecular formula C381-12803  
Formula weight 532.64 

Crystal dimensions (mm3) 0.70x0. 16x0. 12 
Crystal system orthorhombic 

Cell dimensions a (A) 9.2897(15) 
Cell dimensions b (A) 10.275(2) 
Cell dimensions c (A) 27.604(6) 
Cell dimensions cc 90 
Cell dimensions J3 (°) 90 
Cell dimensions y °) 90 
Density caic.  (g/cm') 1.34 

Table 7. (R)-(-)-1 O-(Meth oxymethyl)-9, 9 '-biph enanthryl 10 '-phenylacetate (116). 

Molecular formula C38142803  
Formula weight 532.64 

Crystal dimensions (mm3) 0.70x0.16x0.12 
Crystal system triclinic 

Cell dimensions a (A) 9.205(4) 
Cell dimensions b (A) 9.3804) 
Cell dimensions c (A) 10.006(5) 
Cell dimensions a (0)  91.74(2) 
Cell dimensions 13(0) 115.00(2) 
Cell dimensions? °) 117.61(1) 
Density caic.  (g!cm) 1.33 

Table 8. (R)-(-)- 10 '-Meth oxy-9, 9 '-biph en anthryl 1 0-('methyl)ph enylacetate (118). 

Molecular formula C41H3502  
Formula weight 573.70 

Crystal dimensions (mm3) 0.54x0.39x0. 19 
Crystal system Monoclinic 

Cell dimensions a (A) 10.4 133(8) 
Cell dimensions b (A) 16.7204(13) 
Cell dimensions c (A) 17.906(2) 
Cell dimensions a (0)  90 
Cell dimensions 13(0) 98.409(6) 
Cell dimensions? 0) 

90 
Density caic.  (g/cm ) 1.236 

Table 9. (±)-1 O-((N,N-Diethylamino)methyl)-9,9 '-biph enanthryl 10 '-phenylacet ate 

(120). 
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Appendix 2a 

Circular Dichroism Spectra of (R)- and (S)-Binaphthol (2) 
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Appendix 

Appendix 2b 

Circular Dichroism Spectra for (R)- and (S)-1 O'-Hydroxy-1 0-

(hydroxymethyl)-9,9'-biphenanthryl (92) 
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Appendix 3 

NMR 	Data 	for 	(±)-1 O'-Hydroxy-9,9' -biphenanthryL-1 0- 

(aminomethyI)N"-buIy1)nicotinamide Bromide (125) 

30 
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15 	 I 

14 	16 	27 	
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13 	 1 + 
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11 	
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NH 	

26 
9 	 Hff H ;~Q i8b 18a 
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Table 11.'HNMR Data. (ID and 2D DQF-COSY). 

It ppm in  

H22 8.64 s / 
H24 8.56 d 5.68 (J2425) 
H14 8.25 d 8.79 (J1415) 
H13 8.18 d 8.78 (13-12) 
NH 8.14 b / 
1-15 8.08 d 8.31 (J4 5) 

116 1126 8.00-7.97 m / 
OH 7.82 b / 
114 7.67-7.66 m / 
H17 7.53 d 8.30 (J1716) 
H25 7.43-7.41 m / 

H15orH16 7.12-7.09 m / 
H3,H15 orH16 7.06-7.02 In / 

H12,H2 6.98-6.92 m / 
117,1111 6.69-6.65 m / 
Hio 6.58 d 8.30 01011) 
118 6.50 M/ 
119 6.32 d 8.30 (J98) 

H18a 4.32 dd 4.88 (Ji8a-NE), 14.16 (J18a-18b) 

H27 3.95 t 7.32 (J2728) 
1118b 3.88 d 14.16 (J18b-18a) 

H28 1.20 tt 7.33 (J227), 7.81 (J2829) 
H29 0.64 tq 7.33 (J23o), 7.81 (J2928) 
Hin 0.25 t 7.33 (J) 

'HNMR (2D-ROES}): 7.53ppm (NK H18a). 
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