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Abstract 

This thesis presents a Renormalization Group approach for the modelling of ho-

mogeneous, isotropic and statistically stationary turbulence. The general prob-

lem is described arid, following a discussion of various alternative approaches, it 

is outlined in general how the Renormalization Group may be used to reduce the 

number of degrees of freedom needed to accurately describe turbulence. 

A critical discussion of the various Renormalization Group theories is then made 

before the new approach is introduced. This is based upon the two-field theory 

of McComb and Watt [Phys. Rev. A 46, 4797 (1992)], and in particular the idea 

of a formal conditional average [W.D. McComb, W. Roberts & A.G. Watt, Phys. 

Rev A 45, 3507 (1992)]. First, the formalism of the conditional average is rede-

fined in terms of an ensemble of time-independent realizations. This resolves one 

problem, present in the two-field theory, regarding the order in which operations 

are performed. Second, a hypothesis which enables us to split conditional aver-

ages into low and high wavenumber velocity modes is introduced and discussed. 

It is then shown how the conditional average and hypothesis may be used together 

to eliminate from the system a finite band of high wavenumber modes, the effects 

of the eliminated modes being represented by an enhanced viscosity acting upon 

the remaining scales. 

The mode elimination procedure is then used as the basis for a Renormalization 

Group calculation. This calculation is found to reach a fixed point, that is a point 

at which the equation of motion exhibits form-invariance under the Renormal- 



ization Group transformation. Using the effective viscosity at this fixed point, a 

value for the Ko1mo,urov constant of a 1.62 is obtained. 

A discussion and justification of the approximations used in the Renormaliza-

tion Group calculation is then made. The basis for this is the introduction of 

a similarity solution for the velocity field, from which an expression for a local 

Reynolds number may be inferred. This local Reynolds number is shown to have 

a magnitude of less than 0.4. Using this approach, the approximations are all 

found to be equivalent to truncating at lowest non-trivial order an expansion in 

the local Reynolds number. Using the local Reynolds number, it is then shown 

that the fixed point of the Renormalization Group calculation corresponds to the 

onset of Kolmogorov scaling. As an aside, it is also shown how the similarity 

solution enables us to obtain an analytic model for the energy spectrum. 

Finally, the fixed point effective viscosity was tested as the viscosity model in a 

32 spectral large-eddy simulation. The results obtained are found to compare 

well with those obtained using an alternative analytic model, the test-field model 

of Kraichnan [J. Atmos. Sci 33, 1521 (1976)], those obtained using an empirical 

viscosity model and those obtained in a 256 direct numerical simulation with 

identical parameters. 

11 



Acknowledgements 

I'd like to thank my supervisor, David McComb, for his advice, guidance and 

support throughout my time in Edinburgh. I'd also like to thank all the members 

of the turbulence group, Alistair Young, Adrian Hunter, Anthony Quinn and Gary 

Fullerton, for their help, discussions and, more recently, for reading various draft 

chapters of this thesis and various papers. Special thanks must also go to Alistair 

for all the computing help and Gary for being such a good travelling companion 

when in and en-route to Santa Barbara. 

I'd also like to thank all the members of the fluids group (I'd name you all mdi 

vidually, but I'd be bound to offend somebody by forgetting them!) for creating 

such a relaxed environment to work in and around. 

Outside of the department, I'd like to thank my flatmates Esther, Tim and Owen, 

for always being there to talk to / moan at, and simply for being friends. Also, 

thanks to all the other friends who've supported me during the past few years, 

Dan, Dave, Jules, John, Owen, Leo, Simon H., Nick, Suzy, Tern, Rob, Simon V. 

and Sara. Finally, thanks to Liz simply for being there. 

That leaves just my parents, who I'd like to thank for their continued support in 

everything I've chosen to do. I couldn't have done it without you. 

111 



Declaration 

I declare that this thesis was composed by myself and that, except where explicitly 

stated otherwise in the text, the work contained therein is my own or was carried 

out in collaboration with Professor W.D. McComb. In addition to Professor 

McComb, the work in Chapter 7 was carried out in collaboration with Dr A.J. 

Young and A. Hunter. 

Details of the work in Chapter 4 have been published in the Journal of Physics 

A: Mathematical and General [J. Phys. A: Math. Gen. 33, L15 (2000)], and in 

the proceedings of the symposium 'Turbulence Structure and Vortex Dynamics', 

held at the Isaac Newton Institute, Cambridge, UK, 15-19 March 1999. 

Aspects of the work in Chapters 6 and 7 were presented at the First International 

Symposium on Turbulence and Shear Flow Phenomena, Santa Barbara, USA, 

September 12-15, 1999, and are contained in the proceedings of this conference. 

iv 



Table of Contents 

Abstract 	 j 

Acknowledgements  

Declaration 	 iv 

List of Figures 	 x 

List of Tables 	 xii 

Chapter 1 Introduction 	 1 

1.1 The equations of fluid motion ....................1 

1.2 The solenoidal Navier-Stokes equation ...............5 

1.3 The Navier-Stokes equation in Fourier space ............8 

1.4 Homogeneous and isotropic turbulence ...............11 

	

1.5 	The isotropic spectrum tensor ....................14 

	

1.6 	The energy balance equation .....................15 

1.7 The Richardson cascade and Kolmogorov's 1941 theory ......19 

1.8 Numerical simulation of turbulence .................23 

	

1.9 	Overview of the thesis 	........................25 

LVA 



Chapter 2 Modelling turbulence using the Renormalizat ion Group 26 

2.1 Theoretical approaches to turbulence ................26 

2.2 The Renormalization Group .....................29 

2.3 Wilson's formulation of the Renormalization Group ........31 

2.4 Description of Turbulence using the Renormalization Group . . . 32 

	

2.4.1 	Forster, Nelson and Stephen .................34 

	

2.4.2 	Yakhot and Orszag ......................38 

	

2.4.3 	McComb et al . 	. . . . . . . . . . . . . . . . . . . . . . . . 	41 

	

2.4.4 	Zhou and Vahala .......................47 

	

2.4.5 	Eyink 	.............................50 

Chapter 3 Formulation of the conditional average 	 53 

3.1 The conditional average and its problems ..............53 

3.2 Definition of the turbulence ensemble ................61 

3.3 Definition of the biased subensemble and conditional average . . . 63 

3.4 Evaluation of simple conditional averages ..............64 

3.5 Evaluation of conditional averages involving time derivatives . . . 65 

3.6 A simplified notation for the conditional average ..........68 

3.7 Evaluation of the (u,+6  (j, t)u(k -j, t)) term in the McComb et al. 

theory.................................68 

vi 



Chapter 4 Elimination of turbulent modes using a conditional av- 

erage with asymptotic freedom 	 71 

4.1 	The hypothesis of local chaos ....................71 

4.2 The conditional projector in function space .............73 

4.3 Elimination of a band of high wavenumber modes .........74 

4.3.1 The equations of motion for the system ...........74 

4.3.2 Iterative solution for the high wavenumber modes .....75 

4.3.3 Two approximations .....................78 

Chapter 5 The Renormalization Group calculation 	 83 

5.1 	Importance of the error term .....................83 

	

5.1.1 	The explicit scales equation of motion ............83 

5.1.2 The explicit scales energy balance equation .........84 

	

5.1.3 	Neglect of the Z(k) term ..................87 

5.2 Inductive treatment of the nth shell .................88 

5.2.1 Energy equation for the retained modes ...........90 

5.2.2 Rescaling the equations ....................91 

5.3 The Renormalization Group calculation ...............93 

5.4 	Results and Discussion ........................95 

vii 



Chapter 6 Formal justification of the approximations 	 103 

6.1 The dimensionless Navier-Stokes equation .............103 

6.2 The Renormalization Group rescaling ................105 

6.3 	Mode elimination ...........................107 

6.4 	The approximations ..........................110 

6.4.1 Truncation of the moment expansion ............110 

6.4.2 Neglect of the non-linear term in performing the time integral llO 

6.5 The recursion relation ........................113 

6.6 Magnitude of the local Reynolds number ..............114 

6.7 Evolution of the local Reynolds number as the Renormalization 

Group calculation proceeds ......................117 

Chapter 7 Large-eddy simulation using the Renormalization Group 

sub-grid model 	 120 

7.1 	Introduction ...............................120 

7.2 	Large-eddy simulations ........................120 

7.2.1 The Smagorinsky model for the subgrid stress .......122 

7.2.2 The Leonard stress ......................123 

7.3 The large-eddy simulation code ...................125 

7.4 Comparison of the eddy-viscosity models ..............126 

7.5 Results and Discussion ........................127 

Chapter 8 Conclusions 	 137 

viii 



Appendix A Properties of Fourier transforms 	 140 

A.1 General properties 	..........................140 

A.2 The Fourier transform of G(x, x') ..................142 

Appendix B Analytic calculation of the energy spectrum 	143 

13.1 An integral equation for the energy spectrum ............143 

13.2 Forster, Nelson and Stephen type forcing in the k --~ 0 limit . . . 146 

13.3 Solution of the integral equation ...................147 

13.4 Validity of the obtained energy spectrum ..............149 

Appendix C Published papers 	 152 

Bibliography 
	 159 

lx 



List of Figures 

1.1 Reynolds' dye experiment 	 . 	3 

1.2 Schematic illustration of the energy cascade ............21 

1.3 Division of k-space for a large-eddy simulation ...........24 

2.1 	Selection of the biased subensemble .................42 

3.1 Relationship between the ensembles W, X and )) .........59 

3.2 The relationship between u(k,t) and u(k,t + Lit) ..........66 

5.1 Schematic illustration of the double summation in equation (5.12) 89 

5.2 Convergence of the scaled effective viscosity to the fixed point . . 96 

5.3 Convergence of the scaled effective viscosity to the fixed point . . 96 

5.4 Dependence of the fixed point scaled eddy viscosity upon wavenum- 

her...................................97 

5.5 Evolution of the unscaled eddy viscosity ..............98 

5.6 Eddy viscosities computed from DNS data .............99 

5.7 The Kolmogorov constant obtained from the RG calculation . . . 100 

5.8 Variation of the scaled fixed point eddy-viscosity with bandwidth 101 

x 



6.1 Variation of local Reynolds number with k 1  for various spectrum 

models .................................116 

6.2 Evolution of the local Reynolds number during an RG calculation 118 

6.3 The variation of the fixed point wavenumber with bandwidth . . . 119 

7.1 Filters used in real space large-eddy simulations ..........124 

7.2 The eddy-viscosities used in the large-eddy simulation .......127 

7.3 Time evolution of the total energy and dissipation rate in our sim-

ulations 	................................128 

7.4 Time averaged energy spectra from our simulations ........129 

7.5 Time evolution of the velocity derivative skewness in our numerical 

simulations 	..............................130 

7.6 Time evolution of the integral Reynolds number in our numerical 

simulations 	..............................131 

7.7 Time evolution of the microscale Reynolds number in our numeri- 

cal simulations 	............................132 

7.8 Vorticity iso-surfaces obtained from numerical simulations . . . . 134 

B.1 Comparison of the energy spectra from various models ......150 

xi 



List of Tables 

6.1 Value of the local Reynolds number for various k 1  ......... 116 

7.1 Time averaged values of outputs from numerical simulations . . . 135 

7.2 Comparison of the LES models to the Kolmogorov Spectrum . . . 135 

7.3 Comparison of the LES models to the 256 DNS spectrum . . . . 136 

xii 



Chapter 1 

Introduction 

1.1 The equations of fluid motion 

The phenomenon of turbulence is perhaps the most easily visualized and yet 

least understood aspect of fluid dynamics, having both inspired and confounded 

generations of artists and scientists, from Leonardo da Vinci to Werner Heisen-

berg. Despite being of immense practical importance, and having been subject 

to intense study throughout the 20th century, there is relatively little consensus, 

and there exist a diverse variety of theoretical approaches, ranging from simple 

semi-empirical models, for instance the mixing-length model of Prandtl (see, for 

example, Hinze [1]) through to highly elaborate statistical models, for example 

the work of Canuto and Dubovikov [2,3]. 

The first scientific study of turbulence is generally taken to be that of Reynolds [4] 

in 1883, in which he studied the flow through long straight pipes of constant 

diameter and circular cross section by introducing coloured dye to the water. 

Using this method of 'colour bands', he found that for flow speeds below some 

critical value the flow was ordered (or laminar). However, once this critical speed 

was exceeded the flow then abruptly became turbulent, the dye being dispersed 

across the entire diameter of the pipe. The results of these experiments are 

illustrated in Figure 1.1, the pictures in which were obtained using Reynolds' 
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Chapter 1 - Introduction 

original apparatus. Reynolds found that the criterion for this transition from 

laminar to turbulent flow could be simply expressed in terms of a dimensionless 

parameter, which we now refer to as the Reynolds number Re, 

Re = 
Ud
- , 	 (1.1) 

V 

where U and d are representative velocity and length scales, in this instance the 

(bulk) mean velocity and the diameter of the pipe, whilst t-' is the kinematic 

viscosity of the fluid flow. In the case of the pipe flow described, the transition 

from stable laminar to unstable turbulent flow occurs at a Reynolds number of 

approximately 2000. 

This result has been amply verified. That is, for any fluid flow there is a critical 

Reynolds number above which the flow becomes turbulent. However, as with all 

empirical results, this knowledge does not address the fundamental questions of 

why the flow becomes turbulent, and what physics is occurring in a turbulent flow. 

The answers to these questions are almost certainly contained in the fundamental 

equations of fluid motion, the Navier-Stokes equation, which has been known 

since 1823 [6] and is essentially Newton's second law of motion (i.e. force (x rate 

of change of momentum), along with the continuity equation, which expresses ? 

the conservation of mass. 

Throughout this thesis we shall consider only incompressible fluids, that is fluids 

in which the density p is constant. In this case the continuity equation takes the 

form 
aU(x,t) 

= 0 1 
	 (1.2) 

where U(x, t) is the velocity field at position x and time t, whilst the conservation 

of momentum is expressed by 

+ 	(U( t)U(t)) 
= 1ÔP(x,t) 	1 ôs(x,t) 

+ -(1.3) 
a  

where P(x,t) is the pressure field and .s a13(x,t) is the deviatoric stress tensor. 

Note that throughout the thesis well shall employ both Cartesian tensor notation 

2 



Chapter 1 - Introduction 
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Figure 1.1: Illustration of Reynolds' dye experiment showing the onset of turbulence 

in the fluid as the Reynolds number is increased (Photographs taken from Van Dyke, An 
Album of Fluid Motion [5]). 
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Chapter 1 - Introduction 

and the Einstein summation convention that repeated indices are summed over. 

For a Newtonian fluid, s(x, t) is given by 

= pv 
/ôu(x,t) ôU(x,t)\ 

	

+ 	
ôXa ) 	

(1.4) 
 ax e 

and hence by substituting (1.4), with the use of (1.2) equation (1.3) reduces to 

the Navier-Stokes equation (NSE), 

+ 	 (Uc(X,t)U(X,t)) 
= 	P(x,t) 	ô2U(,t) 

(1.5) 
,9 

This equation enables us to gain an intuitive feel for the physical meaning of the 

Reynolds number. To see this we need only consider the ratio of the non-linear 

a 	 . 	 a2 U(xt) term, -(U(x,t)U1 (x,t)), to the viscous term, v 	. From a dimensional 

viewpoint, the non-linear term may be though of as the square of a velocity scale 

divided by a length scale, whilst the viscous term may be viewed as a viscosity 

multiplying a velocity scale divided by a length scale squared. Hence the ratio of 

these terms gives, using the notation of (1.1), 

	

non-linear term 	U2  Id 	Ud 
=—=Re. 

viscous term 

Thus, the Reynolds number is simply a measure of the relative importance of 

the non-linear and viscous terms in the equation of motion. If Re is large then 

the non-linear term dominates, while if Re is small the viscous term is the more 

important. 

The aim of this thesis is to devise an approach by which we may obtain a de-

scription of the statistical properties of turbulent flow, but given equation (1.5) 

the fundamental difficulty in achieving this is immediately apparent. We start 

by rearranging (1.5) to give 

a2 	'\ 

- 	
U(x,t) = 	(Ua(X,t)U(,t)) 

- öP(x,t)

axo(5t- P ox0, 	
(1.7) 

which may be written in a highly symbolic manner as 

L O U = L 1 UU + L2 P, 	 (1.8) 

vU/d 2 	ii 
(1.6) 
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where L 0 , L 1  and L 2  represent the respective (linear) differential operators. If we 

then denote the general operation of performing an average' by (.), then averaging 

each term of (1.8) we find 

L 0 (U) = LOU) + L2 (P). 	 (1.9) 

As we shall shortly see, the pressure field P can be related to the velocity U 

using the continuity equation, (1.2), and hence this implies that a solution for 

(U) depends in principle only upon the second order moment (UU). 

By multiplying each term of (1.8) by U and then averaging we readily obtain an 

equation for (UU) 

L0(UU) = L 1 (UUU) + L 2 (UP), 	 (1.10) 

and likewise, multiplying in turn by UU, UUU,..., we may generate the hierarchy 

of moment equations 

LO(UUU) = L,(UUUU) + L2 (UUP), 	 (1.11) 

L O (UUUU) = Li (UUUUU) + L2 '(UUUP) 	 (1.12) 

and so on. Thus we have an open set of n equations for n + 1 moments. The 

problem of closing this moment hierarchy is referred to as the 'closure problem' 

and is the underlying problem of turbulence theory. 

1.2 The solenoidal Navier-Stokes equation 

To see that the pressure field may be written in terms of the velocity field we 

simply take the divergence (D/Dx) of equation (1.7). Doing this we obtain 

1 a2 	 a2 
P(x, t) = - ôöUa(X, t)U(x, t), 	(1.13)

xUxO 

'We shall give a more detailed discussion of what we mean by various types of averaging 
procedure in Chapter 3. 
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Chapter .1 - Introduction 

the terms linear in U vanishing according to (1.2). This is simply a form of 

Poisson's equation. Using (1.13) we can then obtain a form of the NSE in which 

there is no explicit dependence upon the pressure. 

We start by considering the fluid to occupy a volume V bounded by a surface S, 

and apply the boundary condition 

U(x,t) = 0 for x on S. 	 (1.14) 

Applying this boundary condition to the NSE, equation (1.5), we obtain 

iaP(x,t) 
	Ucy (X,t) for x on S.  

	

a. 	= 9X,619XP  

This can be re-expressed in terms of the normal derivatives 

a 	a 	a2 	92 
- = fl13-  and 	= n13n 
an 	ax 	49n 2 x x' 	

(1.16) 

where n,() is the unit inward normal at x on 5, to give 

iaP(x,t) 	a2  
= vnO  

	

t)  for x on S. 	 (1.17) 

	

a n 	an2  

Subject to the boundary condition (1.17), we can solve (1.13) for the pressure 

in terms of the Green function G(x, x') which satisfies Laplace's equation in the 

form 

V 2 G(x,x') = S(x - x'), 	 (1.18) 

subject to the condition 

ac(x, x') 
an 	

=O for xonS. 	 (1.19) 

Doing this, the formal solution of (1.13) is found to be [7] 

P(x,t) = —P f ax,  OX 

+pvf d2 x 	) np 'G(x,x' 	
02u(x 1 ,t) 

	

an2 	
(1.20) 
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Performing two partial integrations, using the boundary conditions and the sym-

metry of G(x, x') under interchange of x and x' we obtain our final expression 

for the pressure 

a 	
iv d3x'G(x,x')U(x',t)U(x',t) P(x,t) 

= 	axax  

+pvis 
d2xlG(x,x!)fl t). 

an2 	
(1.21) 

This is then substituted into the NSE (in the form given by equation (1.7)) to 

give 

(- 

 

 ) 
U(x,t) = —D(V)[U(x,t)U(x,t)] -XOaXO

X13 

(1.22) 

where the operators D(V) and L(V) are defined in terms of their effect on 

an arbitrary function f(x) as 

- D (V)[fx)] = 8 f 	
a 	

d 3x'C(x,x')f(x') 	(1.23) (x)  
axaax fV 

and 
a 

fS L(V)[f(  W)] = I'
axa 	 an  	

(1.24) 

Equation (1.22) can be written in a more symmetric form by introducing the 

operator 

Ma (V) = 	D., (V) + a  D.0 (V) , 	( 1.25) 
2 ax 

which relies on the fact that the non-linear term in (1.22) must be unchanged 

under the interchange of the dummy indices 3 and y.  We can also extend the 

formulation to include flows subject to an external pressure gradient (i.e. a driving 

force). In this case, the external pressure would be such that 

aPext (x, 1) 
= constant, 	 (1.26) 

ax, 

and hence it would satisfy Laplace's equation 

02Pext(x,t) 
= 0. 	 (1.27) 

ax,ax ci  

7 



Chapter 1 - Introduction 

Referring back to equation (1.13) we can thus see that Pext (X,t) maybe simply 

added to P(x,t) as given by (1.21) without affecting the solution of Poisson's 

equation. 

Making these two modifications leaves us with the final equation 

(  a 

 52 \ 
- v 55 ) U(x,t) - M(V)[U(x, t)U(x, t)} 

1 SP xt (X, t) 
- L (V)[U 	, t)] + 	

e 
 (1.28) 
P 	DXc 

the solenoidal (or divergenceless) NSE. 

1.3 The Navier-Stokes equation in Fourier space 

In general, in theoretical approaches to studying turbulence we prefer to work 

in Fourier wavenumber (k) space. This has the dual benefits of converting dif-

ferential operators into multipliers and giving us a comparatively simpler picture 

of the physics. To do this we must first Fourier transform (1.2) and (1.28) to 

obtain our equations of motion. However, before performing these Fourier trans-

formations we shall first make some simplifying assumptions. We shall restrict 

ourselves to a system in which the surface S is at infinity, hence meaning there 

is no flow across 5, which has zero mean velocity and in which there are no 

externally applied pressure gradients. We shall however introduce an arbitrary 

(divergenceless) forcing term f(x, t) to the right hand side of equation (1.28), so 

that we may add energy to the system in order to counter viscous dissipation. 

We also choose to use units in which the density p is unity, rewriting the viscosity 

as i-'o  to signify this change, and to rewrite (1.28) in terms of the fluctuation 

about its mean value. Following the procedure of Reynolds [8], the velocity field 

Ua(,t) may be decomposed as the sum of its mean value (U(,t)) and the 

fluctuation from the mean t), that is 

Uc (,t) = (Ua (X,t)) +Ua(X,t). 	 (1.29) 
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From this, given our restriction to flows which have zero mean velocity it can 

be seen that the equations of motion may be rewritten in terms of the fluctu-

ation simply by making the substitution Ua (X,t) —+ Ua (X,t). Applying these 

modifications and restrictions, equations (1.2) and (1.28) thus reduce to 

3u(x,t) 
=0 	 (1.30) 

axa  

and 

	

/3 	32 \ 
— VO 	 u,(x, t) = fa (, t) + Mp(V)[u(x,t)u(x,t)]. 	(1.31) 

	

at 	axoaxo ) 

The Fourier space analogues of (1.30) and (1.31) may be found by introducing 

the transform pair 

u(x,t) = f d3 k u, (k,t)e 	 (1.32) 

and 
7 

u(k,t) = 
	

1 
\3 f d 3 X U" (X,  t)e 	, 	 ( 1.33) 

which relate u(x, t) to its Fourier transform ,,(k, t), and applying the results 

detailed in Appendix A. 

From equation (1.32), equation (1.30) may be re-expressed as 

fd
3k(jk a ) a (k,t) 	= 0, 	 (1.34) 

and since this must hold for arbitrary 	the continuity equation becomes 

kaucx (k,t) = 0. 	 (1.35) 

This indicates that k and u(k, t) must be orthogonal to one another. 

Obtaining the Fourier transform of equation (1.31) in not quite as simple a pro-

cedure. Equation (1.32) may again be used in re-expressing the left hand side of 

(1.31) as 

LHS of (1.31) = fd3k ( —   v0(ik)2) ua(k,t)e 

= fd3 k (+vok2)u(k,t)e1kx, 	( 1.36) 
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and the Fourier transform of the forcing term f(k, t) may be simply introduced 

using 

f(x,t) = f d 3  k f,, (k, t)eik.x ) 	 (1.37) 

but we still need to re-express the non-linear term. 

From the form of equation (1.25) we can easily see that this reduces to the question 

of how can we re-express the term 

Na(,t) = 	D(V)[up(x,t)u(x,t)]. 	 (1.38) 
ax 13  

Using the definition of a Fourier transform and the convolution theorem, equation 

(A.10), we can rewrite this as 

N(x,t) = 	D(V) 
V 

 d 3  k {fd3iu13(j,t)u(k_i,t)}eth], 	(1.39) 
axp 

and substituting equation (1.23) we then have 

Na(,t) = f d3k(ik13) 
if 

 d 3 U'3 J, t) u-y  (k _j,t)}ei 

a3 
- axax 13ax ff dx'd3 k G(x, x') if d3j up J, t)u(k - j, t)} 

(1.40) 

Since G(x, x') can depend only upon r = x - x' (see the discussion in Appendix 

A) we make this replacement for x' in the second term on the right hand side of 

(1.40), and making the further substitution 

f dr G(r)e_r = (2)3 G(k), 	 (1.41) 

we obtain 

N, (x, t) = f d 3  k 	(ik13) ff d3j u13(j, t)u(k - j, t)} eikj 

193 	

f d 3  k (2)3G(k) {f d3j u13(j, t)u(k - j, t)} eikx. 
- axaax13ax 

(1.42) 

10 
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From equation (A.19) we know 

" 1 \3  1 \ 
C(k) = - () (j) 	 (1.43) 

27r 	V 

and hence substituting for G(k) and performing the remaining derivatives, we are 

left with the final expression for N, (x, t) 

N,t) = Jd3k(ik) (a - 
	

) {f d3ju(j,t)u(k _j,t)}eik.  (1.44) 

This means we may re-express the non-linear term in (1.31) as 

Mp(V)[u(x, t)u(x, t)] = f d 3k M(k) {f d 3j up(j, t)u(k - j, t)} e, 

(1.45) 

where 

Map(k) = 
I 
 7[kOD._y (k) + kDp(k)] 	 (1.46) 

21 

and 
k,,,k 

D(k) = cxf3 - k2 	
(1.47) 

Re-expressing equation (1.31) in terms of equations (1.36), (1.37) and (1.45) and 

noting again that this expression must hold for arbitrary e, we are then left 

with the NSE in k-space 

(+
vo k 2 ) ua(k,t) = f(k,t) + Ma(k)f d 3jua(j,t)u(k —j,t). (1.48) 

1.4 Homogeneous and isotropic turbulence 

To further simplify the problem we are considering, we also choose to restrict our 

attention to flows which are both (spatially) homogeneous and isotropic. These 

are both statistical concepts and imply respectively that mean values of the flow 

do not change under either translation or rotation of the axes. 

The implications of these restrictions are most easily seen in terms of the (X_ 

space)two point, two time velocity moment 

Qp(x,x';t,t') = (Ua(,t)Up(X',t')). 	 (1.49) 

11 



Chapter 1 
	

Introduction 

If we introduce 

7' = x - 	 (1.50) 

then the assumption of homogeneity implies that Qp(x, x'; t, t') depends only 

upon the relative position r, that is 

Q(x, x'; t, t') = (u c (x' + r)u(x', t') 

= (u(O + r)u 13(O, t')) 

= Qp(r;t,t'), 	 (1.51) 

and that it must be unaffected by interchange of x and x', meaning 

Q c (r;t,t') = Q c r(—r;t,t'). 	 (1.52) 

The additional assumption of isotropy then implies the further symmetry require-

ment that 

Q(r;,t') = Q(r;t,t'). 	 (1.53) 

Since we are choosing to work in Fourier space, we clearly need Fourier space forms 

for these relations. To obtain these results, we start by defining, in analogue to 

equations (1.32) and (1.33), the Fourier transform pair 

Q(r;t,t') = f d 3  r Q ,# (k; t'  tl),i 	 (1.54) 

and 

Qa (k; t, t') = 
() f d3   Q(r; t, t/)e_ikr. 	 (1.55) 

It is also useful to here recall equation (1.33), 

ua(k,t) 
=-27r ) f d 3 X  U' ( X' t ) e -ik*x 

Now since the velocity field in x-space is real valued, this implies that 

u(x,t) = u(x,t), 	 (1.56) 

12 
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where the asterisk denotes the operation of complex conjugation. Hence from 

equation (1.33) we have 

u(k,t) = (_) 3 fd 3xu ( x, t) eik 
217r  

= u(—k,t). 	 (1.57) 

Similarly, Qa,(x; t, t') must also be real valued, and hence from equation (1.55) 

Q 3  (k; t, t') = Q(—k; t, i'). 	 (1.58) 

This is the k-space analogue to equation (1.52). 

The analogue to equation (1.53) is easily found, using equations (1.53) and (1.54), 

to be 

= Q(k;t,t').  

That is, the k-space symmetry requirement for isotropy is identical to that in x-

space. There still remains, however, the question of how we express Q(k; t, t') 

in terms of velocity modes. 

We start by using equation (1.33) to write u c (k,t)u(k',t')) as 

(u, (k, t)u fl (k' , t')) = () ff dx d3 x' (U"'
(x, t)u(x', t/))e_ik_ik'.  (1.60) 

Making the replacement x' = x - r and invoking homogeneity in the form of 

equation (1.51), this may be rewritten as 

u ,,, (k, t)u(k', t')) = (
i)6ff 

d3   d3r Q,,, (r t, t)e_t'e'r, 	(1.61) 

and using equation (A.5) to perform the integral with respect to x, we are left 

with 
3 

(,(k, t)u(k', t')) = () f   d 3  r Q(r; t, t)eik'r8(k + k'). 	(1.62) 
217r

Comparison with equation (1.55) then implies 

(ua (k, t)u(k', t')) = Q j (k'; t, t')S(k + k'), 	 (1.63) 

and integrating this over k' gives the final expression 

Q(k;t,t') = fd 3k'(u(k,t)u(k',t')). 	 (1.64) 

13 



Chapter 1 	Introduction 

1.5 The isotropic spectrum tensor 

The restriction to isotropic turbulence also allows us to express the correlation 

tensor Q(k; t, 1') in a simpler manner than for the general case. In general, 

this tensor is described by nine scalar functions (in the 3-dimensional case), but 

following the approach of Robertson [9] we may reduce this number to one. The 

method for doing this is based on the idea that an isotropic tensor can be ex-

pressed in terms of the invariants of the rotation group. Using these arguments 

we find 

Q(k;t,t') = Q(k;t,t')-+A(k;t,t')1ckp, 	 ( 1.65) 

where Q(k;t,t') and A(k;t,t') are arbitrary even functions of k = I k. 

One of these scalar functions may be eliminated using the continuity equation 

(1.35). If we multiply both sides of equation (1.65) by k c, and sum the repeated 

indices, then it follows that 

kQ c,(k; t, t') = 0 = Q(k; t, t')k + A(k; t, t')k2 k, 	(1.66) 

and as this must hold for arbitrary k, we have the relationship 

Q(k;t,t') = —k 2 A(k;t,t'). 	 (1.67) 

Using this to substitute for A(k;t,t') in equation (1.65), we thus have 

Q(k;t,t') = Q(k;t,t')8a  - Q(k;t,tF)k 	= D(k)Q(k;t,i'), 	(1.68) 

where D(k) is the projection operator defined in equation (1.47). 

The scalar function Q(k; t, t') may also be related to the spectrum of the energy 

contained within the system. In real space, the total energy of the system is given 

by 

E(t) = 
1
—(u(x,i)u(x,t)) 
2 
1 

- — trQ(r = O;t,t) 
2 
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1 
=—tr 2 f d 3  k Q,,6  (k; t, t) 

= 	trfd3kDp(k)Q(k,t), 	 ( 1.69) 

where the penultimate line comes from equation (1.54), and where we have in-

troduced the shorthand that Q(k;t,t) = Q(k,t). Noting that 

k Q  ka  

	

trD(k) = J,, - k2 = 3 - 1 = 2, 	 (1.70) 

and performing the integral over k in spherical polar co-ordinates, this then 

reduces to 

E(t) = 
fOOO 

dk47r k 2  Q (k, t) 

=  f000 

dkE(k,i) 	 ( 1.71) 

where the energy spectrum is given by 

E(k,t) = 47rk2 Q(k,t). 	 (1.72) 

Q(k, i) is thus interpreted as the spectral energy density. 

1.6 The energy balance equation 

Using the NSE, equation (1.48), we may obtain an expression which describes the 

transport of turbulent energy within wavenumber space. We start by forming a 

dynamical equation for (u,, (k, t)u&(, t)) as follows: 

Multiply both sides of equation (1.48) by u&(,t). 

Use equation (1.48) to write a dynamic equation for u(, t) and then mul-

tiply both sides of this by ua (k, t). 

3. Add the equations formed by steps 1 and 2 and then take the average. 

15 
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Doing this gives the result 

( at 
+ vo 2  + p0 1 2  ) (u,, (k, t)us(, t)) = (f(k, t)u&(1, t)) + (u,, (k, t)f8(, 

+ Ma(k) f d 3j (up (j, t)u(k - j, t)u 5 (1, t)) 

+M(l)fd3i (up  (i,t)u(l _j,t) a(k,t)). 

(1.73) 

Using similar arguments to those by which we obtain equation (1.63), we may 

obtain both the analogous result for the third order moment 

= Qcj3-y (j,1;t,t',t")8(k +j +1), 	(1.74) 

and also an expression for (fa(k,  t)u(j, 1')), 

(f(k,t)u(j,t')) = W a (j;t,t')8(k + j), 	 (1.75) 

where W(k; t, t') is the Fourier transform of 

W(r;t,t') = (f(x+r,t)u(x,t')) 

= (fc (0+7',t)(O,t')), 	 (1.76) 

and is subject to the same symmetry requirements as Q c p(k; t, t'). 

Substituting equations (1.63), (1.74) and (1.75) into equation (1.73) and integrat-

ing with respect to I we are thus left with 

(

a + 2vok Q(—k, t) = Wa8(k,t) + 
at 

+ M(k) f d3j Q8 (k - j, —k, t) + Msoy 	
f 

d3j Q(—k - j, k, t). 

(1.77) 

Using the same argument as used in Section 1.5 to obtain equation (1.68) we find 

Wcx (k;t,t') = D(k)W(k;t,t'), 	 (1.78) 
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where W(k; t, t') is a scalar function. Hence, recalling that trDa (k) = 2, if we 

take the trace of equatn (1.77) and multiply the result by 27rk 2  we obtain 

(

a 
+ 21,0k2)  E(k, t) = W(k, t) + T(k, t), 	 (1.79) 

at 

where E(k,t) is as defined in equation (1.72), 

W(k,t) = 87rk 2 W(k;t,t), 	 (1.80) 

and 

T(k,t)= 2k2M(k)fd3j  {Q(k —j,—k,t) - Q(—k —j,k,t)}. 

(1.81) 

Equation (1.79) is known as the energy balance equation. 

The physical interpretation of each term in the energy balance equation is rel-

atively obvious, and can be seen if we integrate each term over k. We start by 

considering the terms on the left hand side. Clearly, 

J 	
aE(k,t) 	d dE(t) 

dk  = 	TO dkE(k,t) = 
dt 	

(1.82) 

represents the rate of change of energy contained within the system, while 

foc'o 
dk2t'o k 2 E(k,t) = Ed(t) 	 (1.83) 

represents the rate at which energy is lost from the system due to viscous dissi-

pation. Similarly, 

JO 00 

dk W(k, t) = E(t) 
	

(1.84) 

describes the rate at which energy is input by forcing. This leaves just the integral 

of T(/c, t) to be considered. We start by rewriting the one-dimensional integral 

over k as a three-dimensional integral over k 

00 

f dk2T(k, t) = f
o" 

dk4i-k2M(k) f d3j Q0,,, (k -  j, k, t) 

- Q(—k—j,k,t)} 

= ff d 3  k d 33' M(k) {Q(k - j, —k, t) 

- Q(—k—j,k,t)}. 	 (1.85) 
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Next, we note that from the definition of D(k), equation (1.47), and the con-

tinuity equation we have 

D(k)u a(k,t) = u13 (k,t), 	 (1.86) 

which further implies that 

Dc (k)Q y t a(j,k;t,t',t") = Qr,(j,k;t,t',t"). 	(1.87) 

From equation (1.46), we also note, since M-(k) is symmetric under the inter-

change 3 -+ -y, that we may rewrite M(k) in the non-symmetric form 

M(k) = —ik.D(k). 	 (1.88) 

Using these two results, we are hence able to rewrite equation (1.85) as 

fo"O 
dk 2T(k, t) 

= ff  dk d3{kQ(k 
- 

j, —k, t) - kQ(—k 
- j, k, t)}. 

(1.89) 

Again using the continuity equation we may see that 

(k - j)u(k - j) = 0, 	 (1.90) 

meaning 

- j) = ju(k - j). 	 (1.91) 

This enables us to replace the first k-, on the right hand side of equation (1.89) 

by j, to give 

0 
 CIO d 2T(k, t) 

= ff dk d33*(—i) {jQ(k 
- 

j, —k, t) - kQ(—k 
- 

j, k, t)}. 

(1.92) 

Since each triple moment is symmetric under the interchange of k and j it hence 

follows that the integrand is antisymmetric under the same interchange, and 

therefore it vanishes when integrated over all space with respect to these variables. 

Thus we may conclude that 

fo"O 
dk T(k, t) = 0. 	 (1.93) 
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That is, T(k, t) neither adds nor removes energy from the system. Instead, it 

redistributes energy between the modes, which leads its description as the energy 

transfer spectrum. This means we have the intuitive result for the integrated 

energy balance equation that the rate of change of energy in the system equals 

the input rate minus the dissipation rate, 

dE(t)  

dt 	
= E(t) - (t). 	 (1.94) 

To simplify our future calculations, from this point onwards we shall also restrict 

ourselves to considering only stationary turbulence, that is turbulence in which 

the total energy contained within the system is constant. As can be seen from 

equation (1.94), this implies that E(t) = Ed(t) E- 

1.7 The Richardson cascade and Kolmogorov's 
1941 theory 

The usual interpretation of the energy balance equation is that energy is input 

to the system at large scales (small k) by the W(k, t) term, transferred to small 

scales (high k) by the non-linear T(k, t) term, and then dissipated at these small 

scales by the 2vo k2 E(k, t) term. A characteristic waveriumber, representative of 

the scales at which dissipation occurs, may be introduced if we note that the only 

relevant physical parameters available are the viscosity u 0  and the dissipation 

rate Ed E. On dimensional grounds we can then introduce the Kolmogorov 

wavenumber 
/ ) 1/4  

kd=(- ( 1.95) 
\'o 

If we then similarly define an associated velocity scale 

V = (vo)V' 
	

(1.96) 

and form a local (in wavenumber) Reynolds number based on these scales, we 

find 
k —1 

R(kd) 
= V d 	

= 1, 	 (1.97) 
'Jo 
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which implies that for k - kd, dissipation processes are indeed dominant. 

This description of turbulence as a process in which energy is input at the large 

scales and then cascades through intermediate scales to the smallest scales where 

it is dissipated, has long been viewed in experiments [10] and owes its origins to 

Richardson [11]. For this reason the process is often referred to as the Richardson 

cascade, or alternatively simply as the energy cascade. The experiments also 

show that the regions where energy is input and dissipated do not overlap with 

one another, even at relatively low Reynolds number, and further that their 

separation increases with increasing Reynolds number. Thus it follows that the 

region in which energy is transferred, the so-called inertial range, can be made to 

dominate over as large a range of wavenumbers as we like, simply by increasing 

the Reynolds number. 

An understanding of physical processes occurring in the inertial range is not easily 

gained, since such processes are described by the non-linear term in the NSE. A 

simple and plausible description, which illustrates all the important points, has 

however been given by Frisch [12] and is illustrated in Figure 1.2. In this picture 

we assume that energy is input to the system at an upper scale L, which is 

representative of the physical size of the system, and then cascades down through 

successive generations of eddies with scales £,, = Lr (n=1,2,3,...), where 0 < r < 

1, until it reaches the scale of the smallest eddies ('-.. kr). If we then further 

assume that the number of eddies per unit volume grows with n as r 3 , which 

ensures that small eddies are as space filling as large eddies, we find that the 

cascade displays scale invariance within the inertial.range. Secondly, we also 

find that interactions within the cascade are predominantly local in scale'. The 

physical argument behind this statement follows from the decomposition of the 

interaction between two eddies into (a) the convection of one by the other, and 

(b) the shearing of one by the other. In the first of these interactions there is no 

2 1n turbulence, 'local' is conventionally taken to refer to localness of scale, or, more partic-
ularly, localness in k-space. Unless explicitly stated otherwise, we shall follow this convention. 
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L  0C:)0  Injection of 

energy Ew 

rL  000000 
r 2  L 00 ö 0000 DO 0 	Transfer of 

energy 

k 1  d 	000000000000000000000000000000 	
Dissipation of 

energy Ed 

Figure 1.2: A schematic illustration of the transfer of energy within the Richard-
son cascade. Note that at each step the eddies are space filling. 

energy transfer between the eddies, merely a phase change in the related Fourier 

coefficients, but in the second the internal distortion of the eddies will transfer 

energy to a smaller scale of disturbance. For eddies which differ vastly in size 

it would seem reasonable that interaction (a) is by far the most likely, meaning 

that the energy transfers are to some degree local in wavenumber space. 

The assumptions of scale invariance within the inertial range and localness of 

energy transfer are encapsulated in arguably the most important theory regarding 

turbulence, that put forward by Kolmogorov in 1941 [13,14]. The two hypotheses 

he suggested are essentially similarity principles for the energy spectrum and can 

be expressed in k-space as follows. Firstly, if we assume that all energy is input 

to the system at a wavenumbers ' -i  k, where kf  = L 1  and L is the physical size 

of the system, then it is argued that for k >> kf  the spectrum can only depend 

upon the viscosity and dissipation rate. On dimensional grounds this implies that 

we may write the energy spectrum as 

E(k) =
5146 1/4  

1J  
	

f(k/kd), 	 (1.98) 
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where f is an unknown function of universal form. 

The second similarity hypothesis is that E(k) should become independent of the 

viscosity as the Reynolds number tends to infinity. This implies that f must take 

the form 

f(k/kd) = cx(k/kd) 513 	 (1.99) 

where a is the Kolmogorov constant. Substituting this back into equation (1.98) 

we thus obtain the energy spectrum 

E(k) = a6213 k 513 , 	 ( 1.100) 

a result which is referred to as the Kolmogorov spectrum. 

In reality an infinite Reynolds number is, of course, unobtainable and it is hence 

of interest to find a similar result for large but finite Reynolds numbers. To obtain 

such a result we adapt the above arguments as follows. First we postulate that for 

sufficiently large Reynolds numbers there exists an inertial range of wavenumbers 

such that 

k1 << k << kd, 	 (1.101) 

within which the energy spectrum is independent of the viscosity. Equation (1.99) 

is then modified to take the form 

f(k/kd) = a(k/kd) 513F(k/kd) 	 (1.102) 

where F is another universal function, which satisfies F(0) = 1. Substituting this 

into equation (1.98) we then obtain the energy spectrum 

E(k) = a6213 k 513 F(k/kd) 	 (1.103) 

for k >> k1, a result which tends asymptotically to the Kolmogorov spectrum 

within the inertial range. 
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1.8 Numerical simulation of turbulence 

The NSE, equation (1.48), also enables us to view the turbulence problem in 

an alternative manner - namely as a mode coupling problem involving many 

degrees of freedom, the integral on the right hand side implying that in principle 

each mode depends upon every other mode. This approach to the problem is of 

particular relevance in the context of numerically simulating turbulent flows. 

In a so-called direct numerical simulation (DNS) we attempt to simulate a tur-

bulent flow by numerically evolving forward a discretized form of the NSE. If 

we view each discrete Fourier mode as a degree of freedom, then the difficulties 

inherent in this type of approach rapidly become apparent. For such simulations 

we clearly need to include all scales up to and including those of order kd, and if 

we also note that we must resolve scales down to k f  then we may estimate the 

number of degrees of freedom of the system as 

N(kf

3  
. 	 (1.104) 

) 

Noting then that kd increases with increasing Reynolds number, and that for 

any numerical calculation we are restricted by the available computer memory, 

there is hence an upper limit on the Reynolds number achievable in any given 

simulation. Indeed, it may be shown [15] that the number of degrees of freedom 

in a simulation may be related to the Reynolds number via 

NR 914 
	

(1.105) 

At the present time, this restricts such numerical simulations to a maximum 

Reynolds number  of around 250 [16]. At such Reynolds numbers the inertial 

range is restricted to a very small range of wavenumbers, although despite this 

3Note that in numerical simulations, the Reynolds number referred to is usually taken to be 
the so-called Taylor-Reynolds number, whose definition is based upon the Taylor length scale 
(see [7]). This enables us to make a systematic comparison between different simulations. The 
Taylor-Reynolds number will be discussed further in Chapter 7. 
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k 	 kd 	k 

Figure 1.3: Wavenumber space divided up into resolved scales (k < k) and 
sub-grid scales (k > lc) for the purposes of a large-eddy simulation. 

the simulations obtain a value for the Kolmogorov constant of around 1.62, which 

is within the accepted experimental range of 1.6 to 2.5 [17]. 

Clearly however, a simulation with higher Reynolds number is desirable. Such an 

end by be achieved by either of two routes. Firstly we may simply wait until we 

have a more powerful computer at our disposal. Alternatively we may attempt to 

systematically reduce the number of degrees of freedom included in the simulation. 

One way in which this may be achieved is by performing a large-eddy simulation 

(LES). The basic idea of an LES is illustrated in Figure 1.3. Rather than simulate 

all the modes up to those of order k d , as we would do in a DNS, we instead 

simulate only those wavenumbers below an arbitrarily chosen cutoff wavenumber 

lc (k << kd). Following the ideas of Boussinesq [18] and Heisenberg [19,20], the 

effect of the discarded, or sub-grid, modes upon the remaining resolved modes is 

then represented by an increased, wavenumber dependent, viscosity. That is, we 

assume that the dynamic properties of the resolved scales may be described by a 
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truncated NSE in which we have made the substitution 

i-'0 -+ "o + 8v(kk), 	 (1.106) 

where the notation Sv(kIk) indicates that this is the wavenumber dependent 

increment to the viscosity given the cutoff wavenumber Ic e . Of course obtaining 

Sv(kk) is not a simple procedure, but as we shall see in future chapters, our work 

provides one approach to obtaining such an eddy-viscosity. It would however also 

appear that the eddy-viscosity thus obtained is alone unlikely to be sufficient to 

describe the dynamics of the system as a whole. 

1.9 Overview of the thesis 

In the remainder of this thesis we shall put forward and test a new model for 

turbulent fluids. We shall begin in Chapter 2 by giving a critical overview of the 

general class of Renormalization Group approaches to the turbulence problem. 

In Chapters 3, 4 and 5 we shall then develop and carry out our RG calculation, 

the results we obtain being considered at the end of Chapter 5. In Chapter 6 we 

shall then consider two of the approximations made in our RG calculation, their 

justification being deferred until this point. Finally, in Chapter 7 we shall use the 

eddy-viscosity found in our calculation as the basis for a large-eddy simulation, 

comparing the results obtained to those of alternative models and a DNS, before 

bringing together our conclusions in Chapter 8. 
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Chapter 2 

Modelling turbulence using the 
Renormalization Group 

2.1 Theoretical approaches to turbulence 

Over the years there have been many different attempts to theoretically describe 

turbulence. These start with the previously mentioned effective viscosity theory 

of Heisenberg [19,20] and the quasi-normality hypothesis [21, 22] in which the 

moment hierarchy is closed by assuming that the fourth order moments may 

be related to second order moments as if for a normal distribution. However, 

these simple approaches have some fundamental problems, the Heisenberg theory 

giving rise to the incorrect spectrum in the dissipation region [23] (k 7  as opposed 

to exponential decay), whilst when solved numerically and integrated forward 

in time [24-26] the quasi-normality hypothesis gives an energy spectrum which 

becomes negative for certain values of Ic. Thus, it is immediately apparent that in 

order to accurately describe turbulence we will need more sophisticated models. 

The earliest such models were based upon a perturbation expansion of the NSE 

in which we introduce the book-keeping parameter A (A = 1) as a factor in the 

non-linear term. This gives 

(+v0k2) ua(k,t) = f(k,t) +AM(k)fd 3ju(j,t)u(k j, t), (2.1) 
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along with the perturbation series 

ua (k,t) = . 	(2.2) 

Substituting (2.2) into (2.1) and equating coefficients of ) we then obtain the 

hierarchy of equations 

+ vok) u °) (k,t) 
at 

19 
 + vo k) U(1 )  (k, t) 

at 	ce 

+ vok) u(k, t) 

(k, t), 	 (2.3) 

() 
M(k)fd 3iu o  (3,t)u ° (k —j,t), 	(2.4) 

M(k) f d3 0j 	
(0)  (j,t)u' ) (k - j, t), 	(2.5) 

The formal solutions of these equations may then be substituted back into the 

RHS of (2.2) to give an exact expression for the velocity field in terms of the 

zero order field. If ) were small we could then truncate this expression at some 

appropriate order, as in a conventional perturbation theory. However since in fact 

= 1 the expansion is highly divergent, meaning we can only view the expansion 

as being in orders of complexity of the mode coupling. Hence there can be 110 

simple justification for truncating the expansion at low order. To deal with this 

fact we need to introduce a renormalization scheme. 

Such renormalized perturbation theories (RPT) fall into two distinct classes; those 

which obtain the Kolmogorov energy spectrum and those which do not. Into the 

first of these groups fall the well known direct-interaction approximation (DIA) of 

Kraichnan [27], the Edwards-Fokker-Planck (EFP) theory [28] and the self consis-

tent field (SCF) theory of Herring [29,30]. Although being based upon different 

principles, the DIA, say, using the idea that we may introduce an infinitesimal 

response tensor Ga (k; t, t') such that a fluctuation in the velocity field 8u(k, t) 

may be related to a fluctuation in the forcing Sfa(k, t) by 

Su, (k, t) = 
TOO 

dt' G(k; t, t')f(k, t'), 	 (2.6) 
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while the EFP theory is based upon an adaptation of Brownian motion theory 

and uses the probability distribution of fluctuations, connections between these 

theories can be made [31]. Indeed the SCF theory, which is in many ways similar 

to that of Edwards, yields the DIA equations in its later time-dependent for-

mulation. However all these theories have a major flaw in that they predict an 

energy spectrum which differs significantly from that of Kolmogorov. In order to 

consider how we may rectify this problem we have to study the theories from the 

second group. 

The first such theory, Kraichnan's Lagrangian history theory [32] is essentially 

just a re-formulation of the DIA theory, but in terms of quasi- Lagrangian co-

ordinates rather than the Eulerian coordinates used in the earlier theory. This 

however leads to a theory which is considerably more complex than the previous 

approach, although it does now yield the Kolmogorov spectrum. Based upon 

this theory Kraichnan [33] reported the first theoretical prediction for the Kol-

mogorov constant, which at a value of a = 1.77 lies within the current range of 

experimental values. 

Similarly, attempts have also been made to modify the EFP theory in such a 

way that the Kolmogorov spectrum is obtained. The first of these attempts 

was made by Edwards and McComb [34] who used the idea of maximizing the 

turbulent entropy. This was later followed by the local energy transfer (LET) 

theory [35-38], the basic ansatz of which is that the velocity field is connected to 

itself at later times by an exact propagator. 

The first of these approaches predicted a somewhat high value for the Kolmogorov 

constant of a = 3.6, but this theory involves a potentially large uncontrolled 

approximation, where in order to facilitate a practical calculation Edwards and 

McComb simply drop a term from their equations without any real justification. 

In contrast the LET theory gives a value of a = 2.5 which is at the upper end 

of the experimental range. This theory is still the subject of ongoing research 
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[39], as are several of the approaches just discussed. In the remainder of this 

thesis however we shall consider a different class of approaches to the turbulence 

problem, those which utilize the Renormalization Group. 

2.2 The Renormalization Group 

The origins of the Renormalization Group (RG) method lie within quantum field 

theory, where it was originally developed to investigate the uniqueness of renor-

malization procedures. As is well known, when applying perturbation theory to 

problems within quantum field theory we obtain results displaying divergences, 

which in reriormalizable theories appear as an infinite correction to the bare pa-

rameters of the problem, for instance the mass or charge. The idea behind renor-

malization is that the physically observable value of any such parameter may be 

represented as a sum of the bare parameter plus a field correction calculated using 

perturbation theory, the only constraint being that this sum is finite. Individual 

quantities can however be infinite, and it is here where problems potentially lie 

since the operation of subtracting one infinity from another is not unique. To 

eliminate this non-uniqueness the normalization conditions must also be given 

and subjected to the requirement of renormalization invariance. 

Within the perturbation theory, renormalization may be viewed as replacing the 

bare parameters in the equations for the unperturbed system by the renormalized 

parameters and adding counterterms to the perturbing part to compensate for 

these changes. Given this viewpoint, the normalization condition then consists of 

the requirement that at a given normalization point - namely for prescribed val-

ues of the coordinates, times, wavenumbers etc. - the field theoretic corrections 

exactly compensate the counterterm. Renormalization invariance then requires 

that the solution of the complete equation, as described by the infinite perturba-

tion series, must not depend upon the method used for partitioning the equation 

into the perturbed and unperturbed parts. Since the choice of the normalization 
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point is usually associated with the introduction of a new scale, for instance the 

cutoff wavenumber in diverging integrals, the condition of renormalization invari-

ance reduces to the requirement that there be no dependence upon the choice of 

this scale. 

However, although renormalization invariance must apply to the perturbation 

series as a whole, individual terms within the series will vary with changes in the 

normalization conditions. These changes will occur according to laws determined 

by renormalization invariance, and it is found that the transformations describing 

the transition from one normalization point to another obey a group composition 

law. According to this, two successive transformations are also a transformation 

corresponding to a change in the normalization conditions and hence the set of 

these transformations forms a continuous group, the renormalization group. 

In the RG transformations, the simplest case requires us to deal with scale trans-

formations of the form r -+ r' = r/A, with a corresponding transformation of 

the numerical parameters g -4 g' = (A, g). From the group composition law, it 

follows that the transformation 

g -+ g" = (AA , g) 	 (2.7) 

is identical to the two consecutive transformations 

g -4 g'= . (A,g) 

-4 g"=(A',g'), 	 (2.8) 

and hence we have the result 

(x, g) = (x/A,(A,g)). 	 (2.9) 

Differentiating this expression with respect to A and then setting A = 1 we ob-

tain, noting the identity condition (1,g)  = g, the differential equation of the 

renormalization group 

{  x 
	+/(g) 
a 	

}(x) = 0, 	 (2.10) —-- 
ax 	ag 
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where the RG function /3(g) = ô(x,g)/Dxj i  is determined by the behaviour 

of a physical quantity near to the normalization point. Having calculated the 

RG function using perturbation theory, the solution of the resulting differential 

equation will then satisfy renormalization invariance in its entire range and re-

produce the results of the lowest order perturbation approximations near the 

normalization point. 

This field theoretic approach to RG is not however that which we shall apply 

within the context of this thesis. Instead, we shall follow a somewhat different, 

but equivalent, approach due to Wilson, for which he was subsequently awarded 

the 1982 Nobel prize. 

2.3 Wilson's formulation of the Renormaliza-
tion Group 

In Wilson's approach [40-42], RG provides an approach for investigating prob-

lems involving many, equally important, length or time scales, and was originally 

applied to problems in critical phenomena, for instance the Kondo problem [41]. 

Relying upon the physical idea that interactions between modes are predomi-

nantly local, the essential idea of Wilson's approach is to deal with the problem 

in steps, each step representing a particular length scale. This enables us to 

systematically reduce the number of modes involved in the problem. To obtain 

this reduction we start by averaging over a narrow band of small scale modes 

(that is, high wavenumber modes), the average effect of these small scale modes 

being retained in the new equations for the remaining larger scales. These new 

equations are then rescaled so that they are defined on the original interval and 

the entire process, with the elimination of the small scales followed by rescaling, 

is performed repeatedly over narrow bands of increasing scale. In doing this the 

average effect of the small scale modes upon the large scales reduces to a change 

(or renormalization) of the transport parameters in the problem. 
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This procedure is iterated upon until the so-called fixed point of the RG transfor-

mation is reached. If we describe the RG transformation, that is the averaging 

out of a range of modes plus the accompanied rescaling, with the notation 

= 	 (2.11) 

where g is a general transport parameter, g' is its value after the RG transfor-

mation, and i is a general functional representing the transformation, then the 

fixed point of the RG transformation is defined to be the particular set g*  which 

is invariant under the transformation, that is, which satisfies the expression 

= 4y*] 	 (2.12) 

The physical explanation of the fixed point is relatively simple. At the fixed point, 

the system has become independent of the details at the largest scales and displays 

universal behaviour. This enables an explanation of the universality of various 

types of critical behaviour and allows us to obtain the critical exponents involved 

in scaling laws. As has been shown many times since, RC provides arguably the 

best technique for obtaining such values in a range of scaling problems. 

2.4 Description of Turbulence using the Renor-
malization Group 

The obvious analogies between the assumptions of universality and localness of 

the turbulent cascade, and the assumptions made in Wilson's theory immediately 

suggest that RG could be used to describe fully developed turbulence. This 

has given rise to several different theories, all of which fall under the banner 

'renormalization group theories of turbulence'. 

The first attempt to study a problem involving fluid motion using RG was that of 

Forster, Nelson and Stephen [43,44], which although not strictly describing tur- 

bulence is of relevance. Indeed, it was arguably extended to describe turbulence 
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in the later work of Yakhot and Orszag [45, 46]. In addition to these theories 

there is also the work of McComb et al. [47-51], which has analogues with Rose's 

earlier work on passive scalar convection [52] and which pre-dates the work of 

Yakhot and Orszag, Zhou and Vahala [53-55] and Eyink [56]. We shall shortly 

discuss in chronological order, save for the theory of Yakhot and Orszag which is 

implicitly connected to that of Forster, Nelson and Stephen, the specific details 

and criticisms of each of these theories (for greater detail see the reviews con-

tained in [7, 57-59]), but all such attempts to apply RG to the NSE follow the 

same basic algorithm. 

We start by introducing an upper (ultra-violet) cutoff wavenumber k0 , and then 

decompose the velocity field at a wavenumber k 1  (k 1  < k0 ) such that 

ua(k,t) - { u(k,t) 
for 0< k < k1 	

(2.13) 
- u(k,t)fork i <k<ko . 

Cz 

We further assume that the force term may also be decomposed in an identical 

manner, and given this decomposition the NSE may be re-written as two coupled 

equations 

(+v0k2) u(k,t) f(k,t)+M(k)fd 3j{u(j,t)u(k — j,t) 
at 	

+ 2n(j, t)u(k - j, t) + u(j, t)4(k - j, t)} (2.14) 

and 

(

+ vo k 2) u(k,t) = 	 (k, t) + M(k)f d 3j{u(j,t)u(k — j,t) 
at 

+2u(j,t)u(k —j,t)+u(j,t)u(k _j,t)}.(2.15) 

Given equations (2.14) and (2.15), the RG procedure then involves two stages 

1. Solve equation (2.15) on k1  < k < k0  and then substitute this solution for 

the mean effect of the high-k modes into equation (2.14). We find that this 

results in an increment to the viscosity v 0  -+ i-'i = v0  + Sv0 . 
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2. Rescale the basic variables so that the new NSE on 0 < k < k1  looks like 

the original NSE, equation (1.48), on 0 < Ic < k0 . 

These steps are then repeated until a fixed point is obtained. The differences 

between the various RG theories lie in how we go about performing these steps. 

2.4.1 Forster, Nelson and Stephen 

We consider first the theory of Forster, Nelson and Stephen (FNS) [43,44]. In 

this theory we start by restricting our system to the range k < A, where A << kd, 

and defining the stirring forces via their autocorrelation (in d dimensions)' 

= 2W(k)(2)D(k)S(k + k')8(w +w'). 	(2.16) 

The system is then further simplified by assuming W(k) takes the form of a power 

law, 

W(k) = W 0k, 	 (2.17) 

and assuming that the stirring forces are multivariate normal with zero mean. 

FNS then define Ic0  A and relate this value to k, using the definition, the choice 

of which simplifies later results, k, = Aexp(—t), with £ being such that 0 < 

exp(—) <1. u may then be eliminated from (2.14) by use of the perturbation 

series 

u(k,w) = u °) (k,w) + Au ) (k,w) + \2u2)  +..., 	(2.18) 

where the strength parameter A(= 1) indicates the order of the expansion. 

In this approach it is assumed that the non-linear term gives rise to a perturbation 

about the solution which would be obtained if only the forcing term was present 

on the right hand side of the NSE. Hence, we introduce ) as a factor in the non-

linear term. Having done this, by substituting the perturbation series into (2.15) 

'Note also that in this theory we work with a form of the NSE in which the time variable 
has been Fourier transformed along with the spatial variables. This gives rise to the w variables 
in the subsequent equations. 
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and equating coefficients of .A, FNS obtain the hierarchy of equations 

u (°) (k,w) = G0 (k, w)f(k, w), 	 (2.19) ct 

u')(k,w) = Go(k,w)Mp.(k)fd3j 
f 

dI {u(j, 1)tç(k - j, - ci) 

+2u(j,ci)u ° (k — j,w - ci) 

+ u O)(j,ci) u 0)(k —j,w - ci)}, (2.20) 

u 2) (k,w) = Go(k,w)M(k)f d3jfd1{2 u (j , ci) u 1)(k — j,w - ci) 
3<A 

+2u o)(j,ci) u 1 )(k —j,w - ci)} (2.21) 

and so on, where Go (k,w) = [iw + vok2]'. Clearly all higher order terms in 

the perturbation series may be expressed in terms of u(°) (k, w), and since G0  

is statistically sharp we may thus average out the effects of the high frequencies 

using our earlier defined statistics of the forcing term. These imply, amongst 

others, the properties 

= 0, 	 —j,w - 11) = 0. 	(2.22) 

Substituting (2.18) into the version of (2.14) in which the time variable has also 

been Fourier transformed, FNS then obtained 

(iw + 0k2) u(k,w) M(k)f d3jfdci x 

x {u(j,cl)ç(k — j,w - ci) 

+2u(j,ci)u ° (k — j,w - ci) 

+ u O)(j,ci) u 0)(k —j,w - ci)} 

+
2M(k)fj<A 

d3j 
 f 

dci { 2u —  (j, ci)u 1 (k - §,w - ci)  
+ 2u7 ° (j, ci)u'(k - j,w - ci)} + 0 (f), (2.23) 

where we may substitute for u+(1)  from (2.20). 

The next step is to average out the effects of the high-k modes upon the low 

wavenumber modes. However this averaging cannot be achieved using the usual 
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ensemble average since, for example, (tç (k, w)) = 0 and hence taking the ensem-

ble average of (2.23) gives a trivial result. To get around this problem FNS instead 

apply a filtered ensemble average (.) j , in which (f -)f = f and (u) j  = u whilst 

the filtered ensemble average of a term involving solely high-k modes is identical 

to the ordinary ensemble average. Substituting from (2.20) and applying such an 

average to (2.23), FNS then obtain the result, in very abbreviated notation 2 , 

(iw + iiok2)u = f + AM {u_} — 2 v0k 2 u 

+ 2A2MM'iG0(k - j)u1uu__, 	(2.24) 

with the viscosity increment Lv0 being given by 

VO— ) 2 W0  A(d)Sd (I—  expfr?)) 
(2.25) 

— uA (2 7r )d 

where 

= 4 +y — d, 	 (2.26) 

d2  — d — 
A(d) 

2d(d + 2)' 	
(2.27) 

27r d/2 
Sd = 

F(d/2)' 	
(2.28) 

F(x) being the usual Gamma function. 

In the limit k —+ 0 FNS show that the last term on the right hand side of (2.24) 

(i.e. the triple non-linearity in u) is, as the RG operation proceeds, an irrelevant 

variable and so this leaves us with the final equation 

(iw + (UO + v0)k2)  f(k, Lo) +M(k) f d3j j d u(j, )u(k—j,w—Q). 

(2.29) 

Thus FNS obtain an expression which is of identical form to that with which they 

originally start, save for the fact that it has an increased viscosity '-'i = vo + Avo , 

but which is defined on the range 0 < k <Aexp(—). 

2Thjs abbreviated notation, in which we drop all integrals, tensor labels and time variables 
shall be used throughout the remaining chapters. It is hoped that the actual form of the 
individual terms should be readily apparent. 
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As is required by the RG procedure, FNS then rescale this result onto the original 

range and subsequently iterate upon the complete operation until they reach the 

fixed point for a renormalized form of the strength parameter A, an infinitesimal 

wavenumber band being eliminated at each step. Finally, they extended their 

theory to obtain the energy spectrum 

E(k) 	 (2.30) 

As it stands, the FNS theory provides a relatively rigorous approach for applying 

RG to the NSE, but due to the requirements that A is below the inertial range and 

k -+ 0 it does not actually describe turbulence. Instead, as acknowledged by the 

authors themselves, it is a theory which describes the long wavelength properties 

of stirred hydrodynamics. The theory is however open to some criticisms. Firstly, 

as pointed out by McComb [7], there is no consideration of the fact that the non-

linear term will still transfer energy to values of k > A despite the fact that 

the theory only includes smaller wavenumbers. This energy transfer will have an 

effect on the dissipation wavenumber, which is determined only by the rate of 

energy transfer and the viscosity, and consequently it is not immediately obvious 

that the condition A << kd will be satisfied in practice. There is also a more 

serious criticism due to Eyink [56], who in discussing the FNS theory stated 

"The equation for u+  is solved perturbatively in the non-linearity 
in terms of u and f+ This solution is then used to eliminate u+ 

everywhere in the equation for u and subsequently this equation is 
averaged over the known statistics of f+, assuming independence 
from tr, [Eyirik's emphasis] to give the effective dynamics of the 
variables u. However, this is an uncontrolled approximation, since 
the u variables get a statistical dependence on the forces f+ through 
their coupling to the u+  variables and a conditional average over the 
f forces with u fixed will change the distribution of the forces f 
in an unknown way." 

This criticism has, however, been addressed by Hunter [60] and the other points 

are addressed in the theory of Yakhot and Orszag, which extends the FNS ap-

proach to actual turbulence. 
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2.4.2 Yakhot and Orszag 

The theory of Yakhot and Orszag (YO) [45,46] is essentially an extension of that 

of FNS, in its initial stages using virtually identical assumptions and mathematics 

as the earlier theory. YO differ however from FNS in that they claim their theory 

describes inertial range turbulence. This claim is based upon their so-called 

correspondence principle, according to which they consider the FNS forcing terms 

to be equivalent, in a statistical sense, to the boundary and initial conditions of a 

freely cascading turbulent flow, provided only that the forcing is chosen correctly. 

Beyond introducing the correspondence principle, YO make two other additional 

assumptions. First they assume that the upper cutoff A is defined such that 

A = 0 (k4, hence meaning that the system they consider contains the inertial 

range. Second, it is assumed, with no mathematical justification, that the triple 

u moment, which FNS show to be irrelevant in the limit k - 0, is also irrelevant 

for scales within the inertial range. As a consequence of making such assumptions, 

YO obtain identical expression to FNS for quantities such as the energy spectrum, 

equation (2.30), but it is now claimed that they are also applicable to the inertial 

range. Using these results YO then proceed to extend the theory, in particular 

obtaining a value for the Kolmogorov constant. 

From equation (2.30), we can see that when y = d, E(k) 's-' k 5 "3 , a result which 

provides their starting point. In this case however the triple non-linearity in u 

doesn't tend exponentially to zero as the RG iteration proceeds, but instead gives 

rise to logarithmic corrections to the spectrum. YO circumvent this problem 

simply by assuming that such contributions are small, although there is very 

little evidence to justify this assumption. Assuming however that this approach 

is legitimate, the Kolmogorov constant is obtained by first modifying the RG 

approach to eliminate a finite band of modes in the range A(s) = Ae < k <A. 



Chapter 2 	Modelling turbulence using the Renormalization Group 

Doing this they obtain a renormalized viscosity v(), 

1 1/3 

V(f) = VO [i + 	S2(e41 - 1)] 	, 	 (2.31) 
4 (27r)' 

where A(d) and Sd are as defined in equations (2.27) and (2.28) respectively, and, 

for modes with k <A(s), the wavenumber dependent eddy-viscosity 

3 	1/2 

v(k) = (A dwo) 	k 413 . 	 ( 2.32) 

In order to obtain a value for the Kolmogorov constant we next need to relate Wo  

to the mean energy dissipation 6. YO achieved this by introducing an equation for 

the energy balance obtained from rellormalized perturbation theory [61]. Substi-

tuting the Kolmogorov spectrum along with equation (2.32) into this expression 

then gives 
1/6 

a=1.496() 	, 	 (2.33) 

from which they proceed to obtain the final expression for the energy spectrum 

E(k) = 1.617E213 Ar 513 . 	 ( 2.34) 

That is, the Kolmogorov spectrum with constant a = 1.617. 

Despite the fact that the approach of YO is in many respects identical to that 

of FNS, due to the additional assumptions needed to allow its extension to the 

inertial range the theory is open to considerably more criticism. Indeed the main 

justification for many of the assumptions seems simply to be that the results thus 

obtained are in apparently good agreement with experimental values. 

One of the first and most major criticisms the YO theory is usually subjected to 

regards an arithmetical inconsistency in their calculation of a. This is the fact 

that they use two different values for c, c = 0 and c = 4, at different points in 

the same calculation. However it has relatively recently been shown by Wang 

and Wu [62] that the need to do this arises from an error made by YO, when 

in changing an integration variable the region of integration was mistakenly left 
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unchanged'. Once this error is corrected it is found that the final result is the same 

as that given by YO, but a term which YO drop by setting c = 0 now disappears 

naturally. This means we can use a value of € = 4 consistently throughout the 

calculation. There do however remain several criticisms of the theory. 

The correspondence principle, by which YO assume that the turbulent cascade 

can be described by carefully choosing the random forcing, is a particularly bold 

assumption, and allied to this is the fact that in order to have a Kolmogorov 

type k -513  spectrum we require E = 4. Eyink argues [56] that there is no RG 

fixed point for E > 3 (although he also admits that this may not be the case if 

the theory is reformulated in terms of Lagrangian histories) and if true this casts 

doubt upon whether or not the RG theory can be extended to the necessary value 

of c. Further to this, Eyink also shows that the triple non-linearity in u, which 

YO hope is irrelevant, remains finite as the iteration proceeds, only becoming 

irrelevant in the k —+ 0 limit as used by FNS. This clearly brings into question 

the assumption that this term is negligible. Similarly there is also the question 

of whether the logarithmic corrections arising from setting y = d are negligible. 

Again there is no justification for this, YO merely hope that they are! 

Finally there is the question of whether use of a result from renormalized per-

turbation theory is legitimate. As discussed by McComb [7], use of the energy 

balance equation obtained from RPT requires, using conservation of energy, that 

the stirring forces are confined to a band such that km ax/kmin = 1.007. This could 

clearly give problems with application of the correspondence principle. The fact 

that the result is also reliant upon a different class of theory (with unknown 

convergence properties) also raises doubts about whether the results can even be 

described as arising from an RG theory. Indeed as a final comment it is worth 

noting that Kraichnan [63] has obtained essentially the same results as YO merely 

3The same error was also made by FNS, but in their case it did not lead to any arithmetical 
inconsistency in their later calculations. Consequently, we should also make the same correction 
to their theory. 
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by using a simple perturbation model and making the same assumptions. 

2.4.3 McComb et al. 

An alternative to the RG approaches discussed thus far is provided by the work 

of McComb et at. [48,50,51,64]. In particular, rather than eliminate infinitesimal 

bands of wavenumbers they instead eliminate finite blocks of modes. 

As in the previous theories, McComb et at. start from the forced NSE and perform 

the usual decomposition into u and u+  modes. However, rather than prescribe 

the statistics of the forcing they instead assume that the forcing is purely to 

maintain stationarity and deal with the fact that the u and u terms are not 

statistically independent of one another by introducing a so-called conditional 

average [65]. We shall discuss this conditional average (CA) in far greater detail 

in Chapter 3, but the basic idea is relatively simple to understand. Essentially, 

from the complete ensemble of turbulent realizations we select a biased, or condi-

tional, subensemble, the members of which are selected to have their low-k modes 

differing from u by less than a small amount . The CA is then defined to be 

the (sub)ensemble average over this subset of realizations. 

The slight uncertainty in the low-k modes is required since if we chose the mem-

bers of the biased subensemble to have identical low wavenumber modes to u 

then the deterministic nature of the NSE means that all the members of the 

subensemble would be identical. However given our ideas about the chaotic na-

ture of the NSE, see for instance [66], and the localness of energy transfer in 

the turbulent cascade, it would seem reasonable to assume that outside the con-

strained low-k region the members of the biased subensemble are, to some extent 

at least, unconstrained. These ideas are illustrated schematically in Figure 2.1, 

which shows how members of the biased subensemble are selected from the full 

ensemble along with the results we would expect to obtain after averaging over 

both sets of realizations. As we show here, only those realizations which lie within 
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Full Ensemble 	 Conditional Subensemble 

fj 

/ 

1w 

So 

Ensemble Averages 

Figure 2.1: Schematic illustration of the way in which we select members of the biased 

subensemble, and the results we would expect if we perform an ensemble average over each 

of these sets of realizations. The dotted lines indicate the limits of the range u + . Note 

that since (u) = 0, the average lies along the ordinate in the case of the full ensemble. 
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the dotted lines, that is within ± of u, for the entire low-k region are included 

in the biased subensemble. Given this selection it would seem reasonable that 

the CA of u, (u) will satisfy 

(u- (k,t)) 	u(k,t). 	 (2.35)Ce  

As illustrated in the figure, we cannot however be certain as to what the CA 

of U + (k, t) is, although it seems realistic to assume, provided k0  and k 1  are well 

separated, that 

lim (U +  (k, t)) c  = (u+ (k o , t)), 	 (2.36) 
1k —+k,, 

where k 0 	kk 0  and k = k/k. We shall refer to this condition as asymptotic 

freedom. 

In practice each member of the biased subensemble, y(m)(k,t),  may be written 

in terms of u as 

	

u(k,t) + Icm)(k,t), 	 (2.37) 

where the label rn indicates each particular member of the subensemble. Given 

this selection McComb et al. further require the members of the subensemble to 

satisfy 

= 0, 	 (2.38) 

so that 

	

= u(k,t). 	 (2.39)Ce  

The subensemble is also assumed to satisfy 

(u(k,t)u(j,t)) = tç(k,t)u(j,t), 	 (2.40) 

a result which can only hold as an approximation, requiring 

	

0, 	 (2.41) 

and given these properties the only remaining question is how to relate a CA 

involving u+  to the full ensemble average. 
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McComb et al. considered the coupling of the u and u modes by introducing 

the two field decomposition 

u(k,t) = v + (k,t) + /.1(k,t), 	 (2.42)ce  

where v+  is any other realization of the turbulent ensemble, that is it has the same 

statistical properties as u+  but no phase relationship to u, and L\+  is the phase 

difference between the two realizations u+  and v+.  It can then be shown [65] that 

(u(k,t)) 	= (v(k,t)) + (A(k,t))Ci  

= 	(k,t)). 	 (2.43) 

By introducing the ansatz, based upon the idea of local energy transfer, that v+ 

and u+  are related by 

v(k,t) = u+ (k o ,t) + (k - k0) . Vku(k,t)kk , 	(2.44) 

equation (2.43) then reduces to 

(U+(k,t)) = L(k,t)) = 0 (2) 	 (2.45) 

where ij is the bandwidth of the u region. Hence, providing i is sufficiently 

small, terms involving this average may be deemed negligible. 

In a similar way, the CA (u(k,t)u(j,t)) may also be deemed negligible, and 

given these results McComb et al. are then able to proceed to an RO calcula-

tion. Applying the CA to equations (2.14) and (2.15) they obtain, dropping the 

negligible terms, 

(+vOk2) u- (k,t) = M;p (k)fd 3j {u(j,t)u(k _j,t)+ 

+(u(j,t)u(k —j,t))} (2.46) 

and 

(+ v0k2) u(k,t) = M(k)fd 3j {2u(j,t)u(k —j,t)+ 

+u(j,t)u(k _j,t)} + Ha(k,t),(2.47) 
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where H, (k, t) is an error term given by 

H, (k, t) = (+ uok2) (u(k, t)) - M(k) {(u(j, t)u(k - j, t)), 1 (2.48) 
19t

and, for simplicity, the forcing terms have been dropped from the equations since 

McComb et al. assume that its purpose is merely to maintain stationarity. Equa-

tion (2.47) is then used to obtain a dynamical equation for the CA in equation 

(2.46), the terms in this expression involving Hc (k,t) being negligible. 

By making the further boundary layer type approximations that (i) velocity com-

ponents in the high-k band are much smaller than those in the retained modes, 

which allows them to neglect a u+u+u+  term in comparison to a uu+u+  term, 

and (ii) the velocity components in the retained modes evolve very slowly on the 

time scales of the u modes, McComb et al. then find that the CA in (2.46) can be 

re-expressed in terms of an expression linear in u. Hence it may be interpreted as 

a viscosity increment Svo (k), leaving an equation, defined on 0 < k < k1 , which is 

of identical form to the original NSE but which has viscosity ill  (k) = "o + 8v0 (k). 

This approach can then be extended iteratively to eliminate further shells of 

wavenumbers. For the nth shell, k = (1 - )k0 , this gives a viscosity recursion 

relation 

= v(k) + 8v(k) 	 (2.49) 

which relates the viscosity on subsequent iterations, the value for the viscosity 

increment being given by 

kJ 	
, 	(2.50) 

where L(k,j) = 	 By rewriting these expressions in 

terms of dimensionless variables, an RG calculation, which reached a fixed point, 

could then be performed. As with all the alternative RG approaches, the work 

of McComb et al. is however open to criticism. 

One concern lies with the fact that in principle we should get the same result 

when we evaluate the (u+u+),  term in equation (2.46), regardless of whether we 

A11 (L 	[3 
L(k,j) [Q(1)11=k,  + (1— k) 1  

1 Ilkn] 
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substitute directly for each u+  or else form a dynamical equation for u+u+,  as is 

actually done. It appears that this is not the case as McComb et al. obtain un-

controlled expansions if they use direct substitution, but the only real argument 

for using one approach over the other is that forming a dynamical equation gives 

rise to a viscosity increment involving two inverse lifetimes in the denominator, 

that is terms of the form v ok 2 , whereas direct substitution gives rise to an expres-

sion with just one. As was pointed out by Edwards [67], who drew an analogy 

with the Peierls-Boltzmann equation for phonon transport in solids, a full per-

turbation solution of the NSE would involve 'cross-sections' with three lifetimes. 

For the kind of mode elimination we are considering here, one of these lifetimes is 

associated with the explicit scales and so cannot appear in the expression for the 

eliminated modes, but this still means that we would expect two inverse lifetimes. 

This requirement appears to be the main justification for the approach taken. Al-

lied to this, there is also an ambiguity in that if the two-field decomposition is 

made at an earlier stage, that is in the low-k equation rather than the high-k 

equation, then the term which gives rise to the viscosity increment appears to be 

of a lower order and hence, for consistency, should be neglected. 

Thirdly, criticism can also be levelled regarding the way in which the v field is 

related to u+  by means of a first order Taylor series expansion about k = k0 . 

As discussed by Yang [64], this type of procedure, in which a Taylor series is 

used in connection with a chaotic system, has been criticized in other areas of 

mathematical physics. Most important however is the question of whether or 

not the conditional averaging procedure is valid. Recent work [68,69], although 

somewhat preliminary in nature, would appear to indicate that the approach is 

not without foundation, but as we shall discuss in the following chapter there 

is a question regarding the time-dependent nature of members of the turbulent 

ensemble, in particular regarding the way in which we select members of the 

biased subensemble. 
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Finally, it is also worth noting that an attempt to extend the theory presented 

here has been recently made by Yang [64], who, by the introduction of a model 

field with carefully prescribed characteristics, enabled a two-field type approach 

which also included a perturbation expansion. The model field has however been 

subject to question by Young [70], whose numerical simulations imply that some 

of the assumptions may be inconsistent with one another. Since the theory is 

of little bearing to the later chapters we shall not discuss this approach further. 

Indeed this alternative theory is still subject to most of the same criticisms as that 

detailed. We shall attempt to resolve these criticisms in the remaining chapters 

of the thesis, but first we complete our discussion of the application of RG to 

turbulence by considering the theory of Zhou and Vahala and that of Eyink. 

2.4.4 Zhou and Vahala 

The work of Zhou and Vahala [53-55] falls into the same category of approaches 

as that of McComb et at. in that it eliminates finite bands of wavenumbers. 

However it differs in several important aspects, in particular with the fact that 

they perform averages in a similar manner to FNS. 

Again, Zhou and Vahala (ZV) start from the forced NSE and perform the usual 

decomposition into u and regions. Having done this they then proceed to 

consider both forced and freely decaying (i.e. fa(k,t) = 0) turbulence, these two 

situations requiring different approaches. In the case of forced turbulence they 

proceed in the same way as FNS and YO by expanding u+  as a perturbation 

series, where the zeroth order term is given by 

u ° (k, t) 
= f dr Go  (k; t, r)f(k, t), 	 (2.51) 

and all higher order terms can be expressed in terms of u+(0).  The random forcing 

is then defined such that (f;) = f; and  (ft) = 0, and hence using (2.51) we can 

easily obtain the properties of the velocity field under the same average. 
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In contrast, for freely decaying turbulence ZV claim that it is no longer appropri-

ate to expand u in a perturbation series. Instead they decompose it according 

to 

U+(k,t) = u+ ( ' ) (k,t) + u(k,t), 	 (2.52) 

where +() corresponds to the "base" subgrid turbulence, which is described by 

the dynamical equation for u+  with the terms involving u set equal to zero, that 

is 

(

19 	2 	 +(b) 
at 

+ vo) u 	(k, ) = AM(k) f dj u(j, t)u)(k - j, t), 	(2.53) 

and 	describes the effects of the large scale field on the base subgrid tur- 

bulence. Equation (2.53) is simple to solve in a formal manner and from the 

solution ZV are subsequently able to obtain the results for the base subgrid field 

that ()) = 0 and (u ) i4) = 0, along with an expression for the correction 

Affd 3i drGo(k;t,)M(k) x 

x{u(j,r)u(k —j,r)+u +(b)  (3,7)u(k_j,7)}.(2.54) 

For both forced and freely decaying turbulence, performing the average over the 

u+ field then gives us, to order A, results of the form 

(u+ (k,t)) = AM(k)ff d 3j dT Go (k;t,r)u(j,r)u(k — j, 7), 	(2.55) 

and 

(u(j,t)u(k—j,t) = 4AM(j)ffd 3pdr Go (k;t,r) x 

x( u 0)(
p,  )u+(0 ) (k — j,)u(j —  

The only difference between the equations given above and those in the freely 

decaying case is that in equation (2.56) we replace the factor 4 by 2 and make 

the replacement +(0)  + u+(b).  These results can then be substituted into the 
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averaged dynamical equation for the u modes to give 

fa 
at 	

(+ok2)u(k,t)+f 
/ 	 °o M=O 

[f 
d3j up  (j, t)u(k - j, t) + 2A N d3j d3pdr Mps(j)Go (j; t, r)x 

xuT(p,T)u(j —p,T)u(k —j,t)], 

(2.57) 

where qo  denotes the eddy damping due to the elimination of the subgrid scales. 

It should be noted here that the triple non-linearity violates form-invariance of the 

original NSE. Form-invariance with respect to (2.57) is however obtained after 

the second and subsequent iterations, ZV arguing that the triple non-linearity 

describes the strong coupling between the u and u+  modes near to the crossover 

between these regimes. 

From this calculation, ZV obtain an identical eddy-viscosity recursion relation to 

McComb e t al. (i.e. equation (2.49)), but in this case the value for the viscosity 

increment ii(k) is found to differ between the forced and decaying instances, 

being 

v(k) = 2f d3j 	)Q(ik - il) (2.58) 

	

i=O 	 ii(j)j2k2 

for freely decaying turbulence and 

 WO 
 n 

td _
L(k,j)k—j3 

= -j - J 3  j)j2v(k - i)Ik -j2 	
(2.59) 

i=O 

for forced turbulence where the forcing spectrum has y = 3. By rewriting the 

viscosity and wavenumbers in terms of dimensionless variables, ZV were then able 

to obtain a renormalized recursion relation and an eddy-viscosity which reached 

a fixed point under the RG iteration. 

A possible criticism of the ZV approach is that the dynamical equation for the 

retained modes is only form-invariant after the second and subsequent iterations, 

the resulting equation containing an additional triple non-linearity uuu which 

breaks form invariance when compared to the original NSE. However the ftct that 

IJ 
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the final equation, including the triple non-linearity, is form invariant and reaches 

a fixed point would appear to indicate that the approach is legitimate. 

It is also worth commenting on the fact that the expression for the freely decaying 

viscosity increment involves only one inverse lifetime in the denominator. As 

discussed in the previous section we would expect two inverse lifetimes, and this 

could bring into question the results for the freely decaying situation. In addition 

to this, it has also been found by Carati [71] that in the case of external power law 

forcing the ZV theory gives rise to the unphysical result of a negative viscosity 

for small bandwidths (k 1 /k0  > 0.8). 

More important than any of these points however, a major criticism can be lev-

elled regarding the manner in which the averages are performed. In taking av-

erages in the manner of ZV, it has to be implicitly assumed that the u and u 

modes are statistically independent of one another. This is required in order that 

we may have, for instance, (u+u_) = ( u+)u  and (u) = u. As discussed in 

the Eyink criticism of FNS, in reality this cannot be the case since the NSE is 

in principle deterministic and the u and u are part of the same velocity field. 

Hence, some sort of conditional averaging procedure is needed. 

2.4.5 Eyink 

In the same paper as he put forward his criticisms of the FNS and YO theories [56], 

Eyink also set out an alternative approach to applying RG to turbulence. The 

Eyink RG formulation differs significantly from the approaches of FNS and YO 

in being based upon the more general field theory formulation for stochastic 

mechanics due to Martin, Siggia and Rose (MSR) [72] and also in working in 

configuration space. In this approach, a randomly forced NSE, in which the 

forcing has zero mean and is defined by its covariance, is again used. Here however 

the dynamics of the subgrid modes are described in terms of a path integral 

representation for the probability generating functionals, using a so-called MSR 
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action. This takes the form 

Z[q, M = f VuVü 6S[u,+i(7j,)+j(,) 	 (2.60) 

the action S[u, ] being given by 

S[u, it] = -if dt f ddr  i• [
at

u — v0 V2u + (u V)u] 

— f dtfddrfddrl(r,t)F(r — r')(r',t) (2.61) 

which is well defined if the fields are Fourier truncated at a wavenumber A and 

the time integrals are approximated by a discretization. It should also be noted 

that we obtain the statistical correlation and response functions by functional 

differentiation of (2.60) with respect to ij, . 

Having decomposed the velocity field u(r,t) into u and u terms (the real 

space equivalents to the u and u+  modes in Fourier space) the effects of the 

high wavenumber modes are then simply dealt with, merely by integrating out 

the u+  modes in (2.60). This gives an equation for the low wavenumber modes of 

identical form to (2.60) but with the substitutions u —+ u -  —+ , ij —+ q, 

7/ --~ i and S['it,ü] —4 S[u,ii], where the only major difference is that 

effective action Seff  now contains infinitely many higher order non-linear terms, 

as opposed to the original cubic non-linearity. This result can then be rescaled 

onto the original interval and the process iterated upon as an RG calculation. 

This approach has an advantage over both FNS and YO in that it is formally 

exact and not restricted to a weak coupling regime, as is required for the per-

turbation expansions of the earlier theories. As such it provides an impressively 

rigorous approach to the problem. However it is still open to some criticisms if 

we consider its practical application, as in order to perform any practical calcu-

lation we have to introduce approximations to deal with the infinite number of 

terms in 8eff .  It should therefore be questioned whether in fact this approach is 

different in application to the earlier approaches of FNS and YO. That is, are 

the approximations needed to actually calculate anything any different from the 
,4TUN/N 
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arbitrary truncation of the perturbation series for u used in the earlier theories? 

In principle, the perturbation series has an infinite number of terms, all of which 

could be evaluated to give an exact result, so choosing to truncate at a certain 

power of ,\ is surely no different than truncating the expansion of S. Indeed, 

as Eyink shows, if we perform the mode elimination procedure perturbatively to 

second order, we obtain essentially the same results as with the FNS and YO 

approaches. 
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Chapter 3 

Formulation of the conditional 

3.1 The conditional average and its problems 

The first problem we shall consider is that arising from the time-dependent nature 

of members of the turbulent ensemble. To do this we need first to have a thorough 

understanding of the nature of the averaging procedures used and the current 

theory. Hence we start by reviewing in detail the current formulation. 

The current form of the CA is described in the paper of McComb, Roberts and 

Watt [65] (MRW) and as is normal in theoretical work on turbulence relies upon 

the assumption of ergodicity, namely that time averages, as would normally be 

measured in a experiment, and ensemble averages are equivalent to one another. 

Hence they work with an ensemble of realizations, which they define formally as 

the set )'V, where 

)'V={ W(k,t)Ia=l,2,3;o<k<ko ;n=1,...,N}, (3.1) Ce 

and each W)(k, t) is a particular solution of the NSE. Since each member of 

the set would be identical if they were subject to the same initial conditions, a 

so-called deterministic ensemble, the initial conditions also have to be defined 

carefully in order that they vary randomly from one realization to another, so 
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generating a chaotic ensemble. This is done by setting, at some starting time t0 , 

say, 

W(k,t 0) = w(-)(k), 	 (3.2)01  

where the initial fields are all defined to have the same total kinetic energy. 

This ensures that although each member of the ensemble has the same overall 

excitation there is no dynamical connection between the individual members. 

It thus follows that the only difference between any two members of the ensemble, 

denoted by superscripts p and q, is a phase difference Lf)(k,  t), which is defined 

as 

TA/(P)(k, t) - VV) (k, t) = A) (k, t), 	 (3.3) 

such that 	' ) ( k,t) = 0 and ce 

= 0. 	 (3.4) 

It also follows that different realizations are uncorrelated, thus in analogue to 

equation (1.63) we have 

(l4/ )  (k, t)l7(k', t')) = àpq Q c( k' ; 1, t')(k + k'), 	(3.5)16  

where pq  is the Kronecker delta. 

Having defined the ensemble in this manner, a formal ensemble average may then 

be defined. This is done by considering an arbitrary functional of the velocity 

field, F(u(k, t)). For any such functional, its ensemble average is just 

(F(u(k,t))) = 
	

F(W(k,t)), 	 (3.6) 

although there is clearly a fundamental requirement that N is sufficiently large 

for the average given by (3.6) to be independent of N. 

In addition to the complete ensemble )'V, we also need to introduce the concept of 

a representative subensemble. We start by defining a general subensemble X C W, 
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which is a subset of the whole ensemble with M (where M < N) members. In 

analogue to (3.1) we can formally define this subensemble as 

x={xm ) (k,t)Ia=l,2,3;o<k<ko ;m=1,...,MI, 	(3.7) 

where for each m, 1 < m < M, there exists some n, 1 < n < N, such that 

Xm)(k ,  t) = W)(k, t), and we may further define a subensemble average in the Ce 

obvious manner as 

(F(u(k, t))) = 	F(X () (k, t)). 	 (3.8) 

If, for sufficiently large M, this subensemble average is indistinguishable from 

the average of the full ensemble, as given by equation (3.6), then the subensem-

ble is representative. We shall subsequently assume all subensembles labelled by 

X(m) to be representative, and for clarity of our later arguments it is also worth 

noting that for any particular full ensemble there may be more than one repre-

sentative subensemble, each of which consists of different members of W. There 

may however be some overlap between the members included in two different 

sub ensembles. 

The next step is to define the biased subensemble and hence the conditional 

average. As described in the previous chapter, the CA (), is defined as the 

subensemble average over the biased subensemble and has the ideal properties 

(u(k,t)) = u.(k,t) 	 (3.9) 

and 

(u (k, t)u(k', i')) = u(k, t)u(k', t'), 	 (3.10)Oz  

although, as we have already noted, the second of these properties can only hold 

as an approximation. As we also alluded to, this biased subensemble, )) say, is 

chosen by selecting from the complete ensemble W all those members whose low-k 

modes lie very close to a particular member which we have chosen as our reference. 

To put these ideas into more formal terms, we start by choosing our reference 
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field u(k,t), where clearly ua (k,t) E W, and then selecting the members of the 

biased ensemble )) C W, which is a subset of W with M (M < N) members, 

such that each member Y,( - ) (k, t) satisfies the criterion 

max O_(k)Yjm)(k , t)_ u (k , t) <, 	 (3.11) 

where is some bounding value and 0(k) is a step function such that 

o-(k)—{ l 

for O<k<k1  
- 0 for k 1  <k < k0. 	

(3.12) 

For later convenience, we also define another step function O+(k),  where 

O+(k){ Ofor0<k<k1 
- 	l for k1<k<k0. 	

(3.13) 

Given equation (3.11), the points made in Figure 2.1 should become immediately 

apparent, namely that the dotted lines represent u(k,t) + and u(k,t) - 

respectively, any member of W which lies within these bounds for the entire low-k 

region being selected as a member of Y.  This gives us the biased subensemble 

Y = {Y.'-) (k, t) 	1,2,3;0 <k < ko ;m = 1,...,M}, 	(3.14) 

in which each member satisfies (3.11) and where for each rn, 1 < m < M, there 

exists some n, 1 < n < N, such that y(m)(k,t) = W)(k,t). It is also worth 

re-iterating the fact that we cannot simply choose the subensemble to consist 

of those members of W which satisfy O(k)W)(k,t) = ç(k,t), that is those 

members whose low-k modes are identical to ua (k,t). This would give us a 

deterministic ensemble for the low wavenumber modes, and the determinism of 

the NSE would then ensure that the subensemble was deterministic for the high 

wavenumber modes, thus leading to the unhelpful result (u+ (k,t) = u(k,t).Ce  

As with the members of the full ensemble, the members of the subensemble can 

be related to one another in terms of their phase differences. In particular we may 

relate each member to the reference field. If we index this preferred realization 

u(k,t) by the label N , that is u , (k,t) W)(k,t), then from (3.3) we have 

O_(k)yjm)(k,t) - ç(k,t) = ( m )(kt) 	 (3.15)Ge 
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The specification of the subensemble ) is then completed by requiring its mem-

bers to be such that the conditional average of the phase differences vanishes in 

the low-k region, that is 

= 0 for 0 < k < k1 , 
	 (3.16) 

and by an obvious extension of (3.8), the conditional average of an arbitrary 

functional is then defined as 

(F(u(k,t))) y  = 	F(y(m)(k , t)) . 	( 3.17) 
m=1 

Following MRW we introduce 

(m)(k t) = 	t), 	 (3.18)Ce  

and seeing that we may then write any member of the biased subensemble as 

O_(k)ym)(k , t) = u(k,i) + O_(k)m)(k , t) , 	( 3.19) 

we are now in a position to consider the properties of conditional averages in-

volving low-k and high-k modes. Using equations (3.17) and (3.19), for the terms 

relevant in our calculations these properties may be found to be 

= 	O_(k)yjm)(k , t) 
m=1 

= u(k,t) + i 	O(k)(k,t) 
m=1 

= u(k,t), 	 (3.20) 

(U+ (k, t)) 	= 	O+(k)Yjm)(k ,  t), 	 (3.21) 

(u (k, t)u (k', t') 	= 	O_(k)ym)(k ,  t)0 (k') Y ),3(-)  (k', t') 

= u(k,t)u(k',t') + 2u(k,t) 	o_(k)4m)(k,t1) 
m=1 
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+ 	O(k)(k,t)O(k')cbr(k',t') 
m=1 

= u(k,t)u(k',t') + K(k,t)q(k',t')), 	(3.22)Ce  C. 

(u (k, t)u(k', t')) 	= 	o (k)y () (k t)O (k/)yjm)  (k', t') 

= u(k,t)-y> 0+(k1)ym)(kF,t) 

+ 	O (k)q () (k, t)O+(k/)y(m)  (k' t') 
M=1 

= u(k, t)(u(k', i')) + (0- (k, i)u(k', t')), 	(3.23)13 

and 

(u(k, t)u(k', t')) = 	9+(k)y(m) (k, t)O+ (kl)ym) (k' t'), 	(3.24) 

where results (3.20) and (3.22) follow from the fact that equations (3.16) and 

(3.18) imply 

= ((k,t)) = 0. 	 (3.25)01  

As an approximation, in order to satisfy (3.10) it is also assumed that the CA in 

(3.22) may be treated as a negligible error term. 

As noted in the previous chapter, MRW then relate conditional averages involving 

u to the full ensemble average by introducing a two field decomposition. To do 

this they write the high-k modes of each member of 3) as the sum of the high-

k modes of a corresponding member of a representative subensemble X plus a 

correction term. That is, 

O+(k)Ym)(k , t) = 0+(k)X(- )(k,  t) + O+(k)Am)(k,t), 	(3.26)
CV 

where A(m) is shorthand for the phase difference between y(m)  and X(m).  From 

equation (3.21) we can then write 

i O+(k)xm)(k,t) + Fyi i: O+(k)m)(k,t) 
m=1 	 m=1 	

Oz 



Chapter 3 - Formulation of the conditional average 

W 
	

W 

0  
x  

(3 6 1,01) 
(a)XflY=O 	 (b)XnYcX 	 (c)XflYX 

Figure 3.1: A schematic illustration of the relationship in the high-k region between the 
sets W, X and Y. In principle, having selected the subensembles X and 3)  their relationship 
can be as illustrated as being either (a) or (b), that is there can be either no intersection 
between these sets, or else there may be some members common to both sets. If we choose 
X to be the representative subensemble for which any such overlap is greatest, that is if we 
select from all possible representative subensembles that which shares the greatest number 
of members with 3),  then (c) illustrates our fundamental assumption that the members of 
3) form an ensemble approximately equivalent to a representative subensemble. 

= (u(k,t))x  + (z(k,t)) 

= (u(k,t)) + (\(k,t)) 

= (z(k, 	 (3.27) 

where the third equality comes from the fact that the set X is representative, and 

the fourth comes from the velocity field having zero mean. To proceed from here 

we then require a set of conditions such the conditionally averaged error term 

(,A + (k, t)) may be deemed small. This requires us to introduce our fundamental 

assumption regarding the nature of the conditional average, namely that although 

the low-k modes of the members of the biased subensemble are constrained, it 

is assumed that the chaotic nature of the NSE is such that the Ym)(k,t)  will 

approximate to a representative subensemble in the high-k region. This point 

is illustrated schematically and expanded upon in Figure 3.1, but it also worth 

noting the vitally important point that if we cannot make this assumption then 

it is impossible to define any non-trivial conditional averaging procedure. 

An estimate for the magnitude of the error term can however be calculated, as 

was done by MRW. To do this they assume that in the high-k region each member 
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of)) can be written in terms of a Taylor series expansion about k 0 . This gives 

	

y(m)(kj) = Ya( m ) (k 0 ,t) + (k - k0 ) VkY (m) (k,t) kk  + 0 (772), 	(3.28) 

where 71 is the width of the high-k region, defined by 

k i  = (1 - i7)/co, 	 (3.29) 

the error term being of order 77 2  since the maximum value of I k - koI is 77k o . This 

result can then be substituted into (3.21) in order to evaluate (u(k,t)), giving 

	

= (u+ (k o ,t)) + (k - k0). ( Vku(k,t) kk )c + 0 (2) 	(3.30) 

Assuming that (i) the condition of asymptotic freedom holds, that is 

lim (u(k, t)) = (u+ (ko , t)), 	 (3.31) 

holds, and (ii) that the operations of taking the divergence and the conditional 

average commute with one another, equation (3.30) then reduces to 

= o (p2) 	 (3.32) 

and hence by comparison with (3.27) we may see that 

=0 (2) 	 (3.33) 

Now the condition of asymptotic freedom requires that the bandwidth is suffi-

ciently large that the high-k modes of the members of )) are effectively uncon-

strained at k 0 , but result (3.32) requires that i is sufficiently small that terms of 

order q 2  may be neglected. Hence we have both upper and lower bounds on the 

allowed range of 77. Given that rl lies in this range, the CA as defined was then 

sufficient to allow MRW to carry out an RG calculation. However, as we shall 

now discuss, there is a potential difficulty with the formalism described thus far. 

The difficulty is most clearly seen in the equation which defines the biased 

subensemble, equation (3.11), 

maxO_(k)Ym)(k,t) —u(k,t) <. 

Me 
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This defining equation states that the biased subensemble consists of all the 

members of the full ensemble whose low-k modes are very close to those of our 

reference solution of the NSE, u-  (k, t), for all times. However, the NSE displays ce 

chaotic behaviour [66], one of the defining principles being that two solutions 

which are virtually identical at a given time will rapidly diverge from one another 

as the system evolves. Hence it is extremely unlikely that any member of the 

ensemble will satisfy equation (3.11) for all times. This means that the biased 

subensemble will be either a very sparse or, most likely, an empty set. If this is 

the case then all the subsequent analysis is invalid. 

On a more practical side, there has also been recent work concerned with studying 

RG using the results of numerical simulations [69,70]. If we wish to investigate the 

theory in this manner then we are restricted by the limitations of these numerical 

calculations. In particular, we need to recognize the fact that time restrictions 

mean we cannot perform the huge number of runs necessary to generate an ensem-

ble of solutions as used in the theory. Instead we can only generate an ensemble of 

time-independent velocity fields, obtained by performing a single run for a large 

number of time steps and then sampling periodically in time. 

Coupled together, these two points provide us with the motivation to re-formulate 

the conditional average in terms of time-independent realizations, mainly in order 

to resolve the theoretical difficulty described above, but also in order to make more 

transparent the way in which the resulting theory may be tested using DNS. 

3.2 Definition of the turbulence ensemble 

In order to reformulate the CA in terms of time-independent realizations, we 

first need to consider how we obtain the turbulence ensemble. We start from 

a particular solution of the NSE, u,, (k, t), defined for all time and wavevectors. 

Unlike MRW, who define their ensemble as a set of such time-dependent solutions, 
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we have to time sample this particular solution in order to obtain the N members, 

W (70  (k), of our ensemble' VV. In principle we could sample u(k, t) using a Dirac 
01 

delta function, according to 

00 W (n) (k) = I 	dt' a (k,t')8(t n  — t'), 	 (3.34) 
i-co 

where each t 1, denotes a different time. However, this instantaneous sample in 

time leads to some difficulty when we later need to consider the time derivative 

of functionals involving members of the ensemble. Clearly such an operation is 

meaningless for a function which has no time dependence and hence we need to 

find someway to circumvent this problem. To do this we instead define W) (k) to 
OZ 

be such that it has a slight dependence on time. This is done by using a function 

which is sharply peaked about a desired time and which tends to a Dirac delta 

function if we take a particular limit. We start by introducing a filtering function 

P(t), which in our calculation we choose to take the form 

— 	2o,  - P(t) 	
{ -- for 	tI<(7 

— 	0 otherwise 	
(3.35) 

with a small value for a. Clearly with this definition we have the result that 

FOO 

cIt P(t) = 1, 	 (3.36) 

and if we consider taking the limit a —+ 0 we see that 

{ 

lim P(t) — 	
oo t=0 
 . 	 (3.37) 

o, -+O 	 0 	t 

Hence, in the limit a —+ 0 the function P(t) provides a delta function as desired. 

We then obtain W) (k) using the definition 
Ci 

00 

W(k) = lim] dt'u,(k,t')P(t — t'). 	 (3.38) 
o, -+O  

With this expression we are also able to obtain the time derivative of a member 

of the ensemble, provided only that we perform this operation prior to taking the 

limit on a. 

'From now, we shall assume all realizations to be time-independent. 
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3.3 Definition of the biased subensemble and 
conditional average 

Having defined our ensemble W, we next have to introduce a new criterion for 

the biased subensemble in order that we may define the conditional average. 

However, in introducing the new biased subensemble we also need to recall that 

we are now working with time independent realizations. Thus if we define two 

biased subensembles with respect our reference solution u, (k, t) at two different 

times, t o  and t 1  say, then these two subensembles will contain different members of 

the full ensemble W, although there may be some overlap in their members. This 

implies that we may only perform a CA involving products of u(k, t) when each 

velocity field is defined at the same instant of time. That is, using this formalism 

we cannot perform a CA involving multiple time moments. The method by 

which we select such a subensemble is however identical, regardless of our choice 

of reference time, and is simply a modification of the approach used by MRW. 

Given the reference solution of the NSE, ua(k, t), we choose the members of the 

biased subensemble)) by the criterion 

O_(k)Ym)(k) —u(k,T) 	, 	 (3.39) 

where 6 is a small bounding value and ua(k, T) is the velocity field (time snapshot 

of ,(k, t) at t = T) we define our subensemble with respect to. Clearly this 

selection of the members of)) with reference to a time-independent velocity field, 

rather than to a time-dependent solution of the NSE, removes the problem of the 

MRW theory regarding the fact that the members of their subensemble need to 

be close for all times. 

We also modify the theory of MRW by writing, in direct analogue to (3.19), the 

low-k modes of each member of Y in terms of ua(k, T), to give 

O_(k)yjm)(k) = u(k,T) + O_(k)m)(k), 	 (3.40) 
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where çbm)(k)  represents the difference between the velocity field of the 

member of )) and the reference velocity field. Again in analogue to the work 

of MRW, the CA of an arbitrary functional of ua (k, t) evaluated at time t = T 

may then be defined as 

j t= = 	T F(y(m)(k)) . 	 (3.41) 
m=1 

3.4 Evaluation of simple conditional averages 

As was the case in the theory of MRW, we complete our definition of the biased 

subensemble by requiring it to be such that 

(cb(k) 	= 	O_(k) q m)(k) = 0. 	 (3.42) 

Using this along with equations (3.40) and (3.41) we may then obtain the ana-

logues to equations (3.20) and (3.22): 

I 	= 
/clt=T 	M 

= u(k,T) + 

= u(k,T), 	- 	 (3.43) 

and 

(u. (k, t)u(j, t)\ I 	= 
/clt=T 	M 

= u(k,T)u(j,T) +2u(k,T) 	O(j)4(j) 
m=1 

+ 	E O(k)(k)O(j)(j) 
7n=1  

= u(k,T)u(j,T) + ° (()
i=T)' 	

(3.44) 

where it is again assumed that (0- (k, t)(j, t)) 	may be deemed negligible. 

Conditional averages involving high-k modes are also evaluated by following MRW 
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and writing the members of Y as a member of a representative ensemble X plus 

an correction term to give 

O+(k)Ym)(k) = O+(k)Xm)(k) + O(k)L Jj (k), 	(3.45) 

where there is a one-to-one correspondence between the members of X and Y. 

From equation (3.41) it then follows that 

= 	O+(k)Ym)(k) 

= 	> O+(k)Xm)(k) + 	E O+(k)Am)(k) 

= (U+ (k,i)) + 

= 	O+(k)Am)(k) 
m=1 

= ((k)), 	 (3.46) 

and given the same assumptions as used by MRW, namely that each member of 

3) may be written as a Taylor series about k 0  and the condition of asymptotic 

freedom holds, we will again find that 

(u(k, t)\ 	= 0 () 	 (3.47) 
/c

I
t=T 

and hence may be deemed negligible. However, performing a CA involving time 

derivatives requires a little more thought. 

3.5 Evaluation of conditional averages involving 
time derivatives 

The difficulties in evaluating conditional averages which involve time derivatives 

arise from the fact that we are now dealing with an ensemble of time-independent 

(in the limit o-  —+ 0) velocity fields. However, provided we perform the operation 

of differentiation prior to taking the limit ci - 0 in (3.38) we may calculate such a 

65 



Chapter 3 	Formulation of the conditional average 

u1 2  

I 	/ 

I,. 

I 	I 
I 	I 
I 	I 
I 	I 

—.'. 	u(k,t+At) 

%_ 	•%. —.-- 

u(k,t) 

At 	 T—At T T±zi 	 I 

Figure 3.2: A schematic illustration of the relationship between v(k,t) and v(k,t+At), 
as needed in obtaining a conditional average involving a time derivative. 

CA. To do this we first need to recall the formal definition for the time derivative 

of a general functional F(u(k,t)): 

DF(u(k, t))= 
lm 

 F(u(k, t + At)) - F(u(k, t)) 	
(3.48) at 	

i 
At 

If we take the conditional average of this we find, assuming that the operations 

lim,0 and Oct=T commute, 

/ aF(u(k, t))  

\
= lirn 

( F(u(k t + At)) - F(u(k, t))\ 

 At 	 /cL=T 

lim 
(F(u(k, t + At)))Ct.T - (F(u(k, t)))CtT = 

At 

(3.49) 

where the second step comes from the fact that the conditional average is a linear 

operator. The second CA on the right hand side of (3.49) is easily evaluated 

since this is just the usual CA, leaving only the question of how do we evaluate 

the first CA, (F(u(k,t + zt)))CtT? To perform this conditional average, we 

first consider the relationship between u(k, t) and 'u(k, t + At), as illustrated 

schematically in Figure 3.2. As can be easily seen from this figure, at any given 

time T, say, the two fields are related to one another in such a way that 

u(k,t) tT  = u(k,t+ At) LT-At 
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= u(k,t + At) +Lt T, 	 (3.50) 

and consequently we can see that the members of a biased subensemble chosen 

with reference to ua (k, t) at time t = T will be identical to the members of a 

biased subensemble chosen with reference to u, (k, t + At) at time t = T - At. 

Hence, 

(F(u(k, t + At)) ) c I  t=T = (F(u(k, t + At)))clt+t_T+t 

= 
	

(3.51) 

meaning that we may rewrite equation (3.49) as 

K 8F(u(k, t)) 	= u 
. 	 t)))CtT+z.t - KF(u(k, t)))CItT 
rn at 	) Jt=T 	t-+O 	 At 

- ö 
- 	

(3.52) 
aT 

 

Thus we see that the operations of performing a time derivative and conditional 

averaging commute with one another, although it should also be noted that this 

is only the case if Attends to zero at least as fast as the a in the definition of 

members of the ensemble. That is, we require a > At as we perform the two 

necessary limits. Given however that this is the case, the fact that these two 

operators commute makes performing conditional averages on time derivatives 

a simple procedure, requiring only knowledge of our earlier results, equations 

(3.43), (3.44) and (3.47). For example, using (3.52) along with (3.43) and (3.47) 

we find 

 

K at 	)C ~ t=T 

- D(u(k,t) C I tT  
- 	 aT 

- 

 
au; (k,T) 

- 	

(3.53) 
DT 

 

and 

 

 

/ ôu(k, t) 

\ 	at ) C ~ t=T  OT 

= a (A(k,t)) C l T  
aT 

= o (p2) 	 (3.54) 
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3.6 A simplified notation for the conditional av-
erage 

In practice, the notation we have used to indicate the CA evaluated with respect 

to a particular reference time, namely ()c't—T  proves to be somewhat unwieldy. 

Hence we desire a simpler notation. This is found by noting that we may obtain 

a final expression dependent upon the label t by the following steps: 

Start by taking the CA of a general functional of u(k, t) at a reference time 

T, say, that is (F(u(k, 1)))CIt_T. 

Next note, from equations (3.43), (3.44), (3.47), (3.53) and (3.54), that after 

performing this CA the result will always be either a functional of u(k, T) 

or else negligible. 

Since the choice of  is arbitrary, it is effectively a dummy variable, meaning 

it may be re-labelled T —+ t. 

Consequently, we shall subsequently revert to our earlier notation for the CA of 

but with the added implicit requirement that the above 3 steps are carried 

out, meaning that the biased subensemble is chosen with respect to u(k, t) at 

some arbitrary instant of time. 

3.7 Evaluation of the ('i4(j,t)'i4(k - j, t)), term 
in the McComb et al. theory 

One immediate benefit of our new formalism for the conditional average is that 

it resolves the criticism of the McComb et al. theory regarding the fact that we 

obtain differing results depending upon whether we substitute directly for each 

or else form a dynamical equation for u+u+.  To see this we start by rewriting 

the right hand side of equation (2.47) as the functional e(u(k, t)), to obtain the 
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simplified expression 

(
+ vo k2) u(k,t) = e 0 (u(k,t)). 	 (3.55) 

 
ce 

We first consider forming a dynamical equation for (u+u+)c . We obtain this by 

following the 3 steps: 

Rewrite (3.55) in terms of u(j,i) and then multiply this expression by 

ui(k 

Rewrite (3.55) in terms of u+ (k - j, t) and then multiply this expression 

by t4(j,t). 

Add the expressions from steps 1 and 2 and then take the CA. 

Doing this we find 

( + 
voj 2  + oIk - 

j2) (u(j, t)u(k - j, t) = 2e(u(j, t))u(k - §, 

(3.56) 

By introducing the integrating factor e(hb0j20IuI2)t,  this may then be formally 

solved as a first order differential equation to give 

(u(j, t)u4(k - j, t)) = 2] dt' e _(v0 2  oIk_ 2 )(t_t')(e( u(j ,  t'))u(k - j, ')), 
—00 

(3.57) 

and as may be easily seen from this expression the conditional averages on the 

RHS involve only one time. This however is not the case if we substitute directly 

for u+. 

If we formally solve equation (3.55) we obtain 

u(j, t) 	
00 

	e  oi2(tt')e(u(j, 
i')), 	 (3.58) 

and hence multiplying by u(k - j, t) and taking the CA we have 

t 
u+ (j, t)u(k - j, t)) = f dt' e 	i2 (t')(e(u (j ,  t'))u(k - j, t)). 	(3.59) 

00 

Wj 



Chapter 3 - Formulation of the conditional average 

However, as we note in Section 3.3, the time independent nature of our realizations 

means that we can only perform a conditional average for products of velocity 

modes in which all the modes are defined at the same instant of time. Hence we 

cannot perform the conditional average on the right hand side of (3.59). Thus we 

are left with no ambiguity as to why we should choose one approach to finding 

(u+u+), namely that of forming a dynamical equation, over the other, and can 

verify that the approach taken by MRW is indeed the correct one. This fact 

is also likely to have implications for the work of Rose [52] and ZV [53, 54], 

which if reformulated in terms of our new ensemble would be subject to the same 

constraint, but we shall not here consider any such implications. 
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Elimination of turbulent modes 
using a conditional average with 
asymptotic freedom 

4.1 The hypothesis of local chaos 

Having defined the CA we are now almost in a position to be able to eliminate 

a band of wavenumber modes. However, before we can do this we need first to 

consider how we may take the conditional average of mixed moments, that is 

moments which involve products of both u and u+  modes. In Chapter 3 we 

obtained the general results that 

= u(k,t), 	 (4.1) 

= 0 
	

(4.2) 

and 

= u(k,t)u(j,t) + ((k,t)I(j,t)), 	(4.3) 

where (qr) is assumed negligible, but as is easily seen from equation (2.14), if 

we take the conditional average of the low-pass filtered NSE then in addition to 

these results we also need to know (u_u+)c  and (u+u+)c . In fact, using the high-

pass filtered NSE, equation (2.15), we can always write a product of u+  modes 
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in terms of a higher order mixed mode product. Hence we need only consider 

the general manner in which we may perform the conditional average of a mixed 

moment. Based upon this fact and the idea of asymptotic freedom, we introduce 

the Hypothesis of Local Chaos. This forms the basic ansatz for all the following 

theory and is stated as follows: 

For sufficiently large Reynolds number and corresponding k0 , there exists a cut-off 

wavenumber Ic 1  < ko  such that a mixed conditional moment involving p low wavenum-

ber and r high wavenumber modes takes the limiting form 

lim(u (k 1 , t)a (k 2 , t). u (kr, t)ut(kp+i,  t)u(k +2 , i) . . . U,+( k p+r , t)) - 

u(ki , t)u(k 2 , t) . . . u(k p , t) lim ut(k+1,  t)u(k 2 , t) . . . u +  (kp+,, t)), 

(4.4) 

where lim{.} k0  means take the limit for all wavevector arguments of the u+  modes 

within the average, with the condition that (r) 	0 satisfied as a corollary. 

Given this hypothesis we are then able to evaluate all conditional averages in-

volving a mixed product of u and u+  modes. For instance 

iim(u(j,t)u(k —j,t)). = u(j,t) lim (u(k —j,t)) = 0, 	(4.5) 
1k—i I—*ko 

since (u(k, t)) = 0 by definition, and similarly 

lim(u(p,t)u(j —p,t)u(k —j,t)) 

= 2u(p,t)u(j - p,t) lim (u(k —j,t)) 
1k—i I—+ko 

= 0. 	 (4.6) 

It should however also be noted that the hypothesis as defined is considerably 

more general that absolutely necessary, since we shall only need to consider prod-

ucts containing at most two u modes. 
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4.2 The conditional projector in function space 

The reasoning behind the hypothesis of local chaos, can be clarified if we consider 

the Hilbert space projection of products of the u+  modes onto the u modes. We 

start by introducing the exact probability functional P[u(k, t)] such that the 

expectation value of any well behaved functional F is given by 

KF[u(k, t)]) 
= f Du (k, t)P[u(k, t)]F[u(k, t) ], 	 (4.7) 

where the functional integration is indicated symbolically. This operation is un-

affected by our filtering the modes, and hence 

(F[u(k, 1)]) 
= f Du (k, t)P[u(k, t)]F[u(k, t)]. 	(4.8) 

In order to extract a conditional projection on the u modes, we then construct 

a projection operator P [73], such that its action on an arbitrary functional is 

given by 

P.-  F[u(k, t)] 
= f dj  f ds u-  J, s) f Du(k, t)P[u(k, 

t)] SF[u(k, t)] 	
(4.9) 

Su -  J 3) , 

where S/eu denotes functional differentiation. If we assume the proper normal-

ization 

f Vu(k,t)P[u(k,t)] = 1, 	 (4.10) 

and take F[u(k,t)] = u(k,i) then we can easily see that 

= f d3j  f ds u-  (j, .5)(k - j)8(t - s) = u-  (k, t), 	(4.11) 

as required. 

In general, of course, we wish to project out products of u with functionals of 

the u+  modes. Hence, we require, for example 

Pu(k, t)f[u(k, t)] 
= f d3j  f ds u -  J, s) f Vu(k, t)P[u(k, t)] 

6u-  (k, t)f[u(k, t)] 
x 

8u(j,$) 
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= f d 3  f ds u -  (j, s) f Du(k, t)P[u(k, t)] 

	

X {(k - j)6(t - s)f[u(k, t)] + u(k t) 
8f[u(k, t)

, 
	j. 	

(4.12) 

The second term in the curly brackets is intractable, and is simply another way 

of expressing the turbulence problem, but if we are able to find a limit in which 

u+ becomes independent of u, then this term vanishes and we are left with 

T,-,
u- (k, t)f[u(k, t)] = u-  (k, t)(f[u(k, t)]). (4.13) 

In making the hypothesis of local chaos, we postulate that such a limit exists 

under the defined conditions. 

4.3 Elimination of a band of high wavenumber 
modes 

4.3.1 The equations of motion for the system 

Given the hypothesis of local chaos, we may now begin our mode elimination 

calculation. We start by introducing the assumption that all forcing is at very 

low wavenumbers and is applied purely to maintain stationarity. To indicate this 

fact we introduce the notation for the forcing term .F<(k, t), where the forcing is 

now assumed to be a Dirac delta function located at the origin. It is also assumed 

that 

	

= T<(k,t), 	 (4.14) 

and given this definition for the forcing, we may rewrite equations (2.14) and 

(2.15) as 

(

+ o k 2 ) u(k,1) = 	<(k,t)+ M(k)fd 3j {u(j,t)u(k — j,t) 
at 

+2u(j,t)u(k — j,t) +u(j,t)u(k _j,t)} (4.15) 

and 

(

+vO k 2) u(k,t) = M(k)fd 3J {u(j,t)u(k — j,t) 
at 
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+2u(j,t)4(k —j,t) + u(j,t)u(k _j,t)} (4.16) 

respectively. 

Taking the CA of the low-pass filtered NSE, equation (4.15), we obtain 

(+
vo k2) u; (k,t) = F < (k,t) + M(k)fd 3j {(u(j,t)u;(k_j,t)) 

+ 2(u(j, t)u(k - j, t)) + (u(j, t)u(k — j, t))} ,(4.17) 

where the conditional averages of u and the forcing are evaluated using equations 

(4.1), (4.2) and (4.14). This expression may then be rewritten as 

( 
+ vok) u(k, t) = 	< (k, t) + M;(k) f d3j u-(j, t)u(k — j, 

+S(kk 1 ) + M(k)f d 3  lim(u(j,t)u(k —j,t)), 

(4.18) 

where 

S(kk 1 ) = M(k)fd 3j {((j,t)(k —j,t)+2(u(j,t)u(k —j,t)) 

+(u(j,t)4(k —j,t))—lim(u(j,t)u(k _i,t))} 	(4.19) 

is viewed as an error term, the CA on the right hand side of (4.18) being written 

in terms of the limit 6 —+ 0 in order to make it tractable using the hypothesis. 

However the hypothesis does not explicitly tell us how to evaluate the CA in 

(4.18). Instead we must first use the high-pass filtered NSE, equation (4.16), in 

order to form a governing equation for this quantity. 

4.3.2 Iterative solution for the high wavenumber modes 

To obtain an expression for lim.+o(u+u+)c , we first use (4.16) to write dynamical 

equations for u+ (j, t) and u+ (k — §, t). We then multiply these equations by 

U+ (k — j, t) and 4(j,t) respectively, add the resulting equations together, and 
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take the CA. After some re-arrangement of dummy variables, this gives us 

(8 
at 

2M(j)fd 3p{(u(p,t)u(j —p,t)u(k _j,t)) 

+ 2(u (p, t)u(j — p, t)u(k - j, t)) 

+ (u(p, t)u(j — p, t)u(k - j, t))}. 	 (4.20) 

Taking the limit 6 —+ 0 and applying the hypothesis of local chaos, that is equation 

(4.4), it is easily seen that the first term on the right hand side of this expression 

is zero, since in the limit it involves the ensemble average of u+ (k, t), and that 
01 

the second term gives rise to a term linear in u. This leaves just the third term, 

which we may evaluate by iterating the above procedure to form a dynamical 

equation for (u(p,t)u(j —p,t)u(k —j,t)). 

Doing this yields, in the abbreviated notation introduced in Chapter 2, 

( + 
vop 2  vo j — p 2  + yolk — i1 2 ) (UUU) = 

= 2M {(u q up _ qu_pu_j ) c  + 	 + (uq up _ q u_pu_j ) c }. 

(4.21) 

Again applying the hypothesis of local chaos, the first CA on the right hand side 

of this expression is also found to be zero. This can be seen if we note that 

(4.4) implies that in evaluating this term we will need to calculate the ensemble 

average (u+ (j — p, t)u(k — j, t)). From equation (1.63) this is given by 

— p, t)u(k — j, t) = Q(k - j, t)8(k - p) 	(4.22) 

and hence can only give a contribution if k = p. However by definition k lies 

in the low wavenumber range, whilst from (4.21) p  lies in the high wavenumber 

region. Thus this term gives no contribution, meaning we are again left with a 

term which is linear in u and a term involving only u+  modes for which we can 

obtain a yet higher order moment expansion. 
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In general we find that a similar pattern occurs for all higher order moments 

involving only products of u+.  That is, each such moment gives rise to a term 

involving a moment of two u+  modes, which has to be zero for consistency in 

its wavevector arguments, a term linear in u and a moment involving only u+ 

modes of next higher order. Hence by inverting the differential operators in 

equations (4.20), (4.21) and in the expressions for the higher order moments we 

are ultimately able to obtain a general expression for the CA on the right hand 

side of (4.18). 

We invert the differential operators by following the same approach as used in 

Section 3.7, namely we introduce an integrating factor and then formally solve the 

equation as a first order differential equation. Doing this gives us the sequence 

of equations, for successively higher order moments, 

(4(j, t)u(k - j, t)) = 	ds e_ i2 + 1,0 Ik_ 2 t_s)2M (j) f 00 

x f d 3  p { 2(u(p, s)u(j - p, s)u(k - j, .$)) 

+ (u(p, s)u(j - p, )u(k - j, s))}, (4.23) 

(U+ (p, t) u+ 	- p, t) u' 	- j, t) 	
t 

= 	
ds' _2 	Ij,2+tjI2)(ts1) x 

x3M(p) f dq {2(u(q, s')u(p - q, s')u(j - p, s')u(k - j, s')) 

+ (u(q, s')u(p - q, .s')u(j - p, s')u(k - j, s')}, 	(4.24) 

and so on. Using this hierarchy of moments, we then find that the CA in equation 

(4.18) may be written as the moment expansion 

1im('4(j,i)u(k —j,t)) = 

= f t 
ds e 032 0Ik_3I2)(t_s)M(j) f d3p x 

x 14u-(p, s) urn D(k—j)Q(k—j(k—p) 
k—j I—*ko 

+ f—' ds' e _ 	i2'oIkil2ss') 12M 0.(p) ><
c  
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xfd3qu(q,sl) urn 
{.}-*k0 

(4.25) 

where the first and second terms in the curly brackets follow from equations (1.63) 

and (1.74) respectively. 

4.3.3 Two approximations 

In principle, (4.25) can be simply substituted into the right hand side of (4.18) 

to give our final result. However, because of the time integrations and the fact 

that the moment expansion is infinite, this leaves us with an expression which is 

of little use in practical calculations. To obtain a usable expression we introduce 

two approximations, leaving their justification until Chapter 6. 

First we truncate the moment expansion at lowest non-trivial order. This leaves 

M(k)fd 3i lim(u(j,t)u(k —j,t)) = 

I d = 3j 4M(k)M(j) lim D+(L)Q) 
f '65 ds e_w2(3,tt_3)u 	(k, s), 

(4.26) 

where w 2 (k,) = v03 2  +i-'o 2  and £ = k—j, and where we have also performed the 

integral over p. Next we have to perform the time integral. We start by rewriting 

the right hand side as 

RHS = ft ds e_w2 	t) Ba8(k)U(k, s), 	 (4.27) 

where 

B(k) = 4f d3j M(k)M(j) lim D ()Q(), 	(4.28) 'esc 

and if we then change the integration variable to T = t - s this becomes 

RHS = f' dT e  2(3)TB8(k)u(k, t - r). 	 (4.29) 
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For an isotropic field we find [74] that 

Ba5(k)U(k,t - T) = B(k)D as(k)us(k,t - T) 	 (4.30) 

= B(k)u(k,t—T), 	 (4.31) 
Ci 

where 

B(k) 
= d 

1 

 1 
Tr(Ba&(k)) 	 (4.32) 

— 

for a d-dimensional system, and hence in 3 dimensions we have 

Bs(k)u(k,t—r) = B 55 (k)u(k,t-7). 	 (4.33) 

Thus we find 

M(k) f d3j lim(u(j, t)u(k - j, t)) = 

= d3j urn J dr e 	)Q()u(k, t— T) I £-+k0 o 	 2 

= - / d 3j urn J dYc_w2(3TL(k,j)Q+(c(k,t - T), 	 (4.34) 
j 	£-+k0 o 

where 

L(k,j) = —2M(k)M(j)D(k -j), 	 (4.35) 

which we rewrite as 

M(k)fd 3j 1im(u(j,i)u(k —j,t)) = 

= _fd3  urn L(k , j)Q+()f d7 e_w2Tu(k,t —7 - ). 	(4.36) 
o 

This still however leaves us with the question of how to perform the actual time 

integral. 

In the work of McComb ci at. [47-51, 65], the equivalent of this time integral 

was performed using a Markovian type approximation based upon the physical 

argument that the u+  modes evolve upon much faster timescales than the u. 

Using this argument, u(k, t - r) was expanded as a Taylor series about r = 0 and 

then truncated at lowest order, leaving simply u; (k, I). Given this approximation 
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It is then a simple matter to perform the integral. Although still using the Taylor 

series expansion we shall not perform this truncation at zero order but shall 

instead introduce an alternative approximation. This approximation is somewhat 

more consistent than simply dropping terms in an ad-hoc manner. Again we shall 

leave its justification until Chapter 6. 

Assuming the approach is applicable, writing ?ç (k, t - r) as a Taylor series about 

T = 0 we have 
0  (— 1) 

u(k,i - T) = 	A(k,t)T Th , 	 (4.37) 
! n=O n  

where A(k, t) is defined as 

An(k,t) - ôn
u-(k, $ )I 

- 	I 	 (4.38) asn 	
Is=t 

If we then define 

	

f
00

I(k, t) = d7- e_2(3tu(k,  t - r), 	 (4.39) 

then by comparison to (4.37) we see that it may be re-written as 

00 

 
I(k,t) = >I(k,t), 	 (4.40) 

n=O 

with 

In (k, t) = 
	

An(k, t)
f000

dr rne_w2(3,T. 	 (4.41) 

Now a general result is that 

I ds 	= (-1) 
an 

f ds e_Bs, 	 (4.42) 
 aBn 

and hence (4.41) may be re-expressed as 

- A n  (k, t) an 
j0° 

dye_w2T 	 (4.43) I (k, t) - 
	n! 	aw o 

- An(k,t) an 
[w2(j, 	 (4.44) 

- 

= (-1)mA(k, t) w2(j,) 1) , 	 (4.45) 

where the final line follows from the further general result 

an 
—(

-1  x ) = (- 1)Thn! 	(tm+1) 	 (4.46) 
ax 
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Hence we have 
00 	(—i) 

I(k,t) = 
n=O 

au;(k,$) 
Osn 	ls=t 

(4.47) 

To proceed from here we introduce our second approximation, first noting that 

the time derivative in (4.47) may be rewritten using the NSE as 

au;  (k, s)

Lt 
 

= —v o k 2 u(k,t) + NLT, 	 (4.48)ot  

where 'NLT' refers to the non-linear term in the NSE and where we have ne-

glected the forcing term in (4.15) on the grounds that, with the Dirac delta form 

we are assuming, it is only defined at the origin. Our second approximation is 

then simply that we may neglect the non-linear term in (4.48). Differentiating 

the resulting equation with respect to time we fluid, assuming all higher order 

derivatives exist, that 

anu;(k, x) 
= (_1)n(uok 2 )h1 u (k ,  t), 	 (4.49) asn 	Lt 	Ce 

and hence substituting into (4.47) we have 

I(k,t) = 
	 (k, t) 	vok In. 

	
(4.50) 

W2(j,) n=O Lw2(j,) 

Now provided Ix I < 1, we have the general result [75] that 

00 1 
(4.51) 

n=O 

and if we note that 

v0 k 2 v0 k 2 	 k 2 	1 

w 2 (j,) = vo 2 +vok — j 2  = j2 + k—il2 	
<' 	(4.52) 

since 0 < k < k1  whilst k 1  < j, I k — il < k 0 , we can then easily see that 

(k u,t) 	1 	1 	1 I(k,t) = 
V0j 2  + polk - i1 2  Li k2/(j2  +1k - i1 2 )] 

tç(k,t) 	1(k2/2)+i2-kjitl 	
(4.53) 

= 
 

Vol 2+volk_il2L 	j2—kjt 

EJI 
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where is the cosine of the angle between the k and j wavevectors. Consequently 

we have 

Ma (k) f dj lim(u(j, t)u(k - j, t)) = 

jd 3j lim 
L(k,j)Q(Ik — ii) 	 u(k,t). 

1(k 2 /2) +j2 - kj1 

=— Ik—jIko v0j 2  + i'oIk - j2 L 	j2 - kj 	]
Ce 

(4.54) 

Substituting (4.54) back into (4.18) we are then left with the final result 

(

a + 
at 	

) 

Ce 
= JT < (k,t) + S;(kIk1) 

+ M(k) f d' 	(j, t)u(k - j, t),(4.55) 

for 0 <k < k, where 

vi (k) = ho + Jvo (k) 	 (4.56) 

and 

L(k,)Q(k —iI) 1(k2/2)  +j2  —kjpi 
vo (k) = 	f d3  j urn 

Ik—jIko voj 2  + yolk -  i1 2  L 	2 - 	]. 	
( 4.57) 

Hence we have achieved our first aim, namely that of eliminating a band of high 

wavenumber modes. Next we need to iterate upon this procedure to perform the 

RG calculation. 
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Chapter 5 

The Renormalization Group 
calculation 

5.1 Importance of the error term 

5.1.1 The explicit scales equation of motion 

In principle, extending the procedure of the previous chapter in order to form an 

RG calculation is relatively simple, requiring us to carry out the following steps: 

Re-label tç(k,t) -+ u(k,t) in equation (4.55), so that we now have a new 

NSE with effective viscosity vi ( k) for modes on the interval 0 < k < k1 . 

Rescale the variables in this new equation so that it becomes defined on the 

original interval 0 < k <ko . 

Decompose again into explicit modes and modes to be eliminated. 

Repeat the procedures used in Chapter 4 to eliminate the high wavenumber 

modes. 

These steps may then be repeated, eliminating successive wavenumber shells until 

the fixed point of the RG calculation is reached. However before we can do this we 
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need first to consider the error term S;(kIk1) in equation (4.55). This apparently 

breaks the required form-invariance when compared to the original NSE. 

If we consider the explicit form of this term, as given by equation (4.19), then 

it is immediately apparent that we cannot simply neglect this term in equation 

(4.18), nor at any stage shall we make such a supposition. Indeed it is likely that 

S;(kk 1 ) cannot be neglected in equation (4.18), which, it should be noted, is 

an exact expression governing the dynamics of the low wavenumber modes. As 

has been shown by Young [70], a point which is given further support by Gong 

et al. [76], near the cutoff between the low and high wavenumber regions the 

uu term in (4.15) has a significant effect upon the dynamics of the system. 

Thus any neglect of this term would be at best an uncontrolled approximation. 

However in obtaining an expression for the energy spectrum, and the values of 

the terms in this expression, we need to consider the renormalized energy balance 

equation obtained from (4.55), that is the analogue of equation (1.79), rather than 

equation (4.55) itself. In this instance it would appear to be a valid approximation 

to neglect the terms which arise from S(kk 1 ). 

5.1.2 The explicit scales energy balance equation 

To obtain the explicit scales energy balance equation from (4.55) we need to follow 

essentially the same procedure as in Section 1.6. That is we multiply (4.55) by 

u (, t), then use (4.55) to write a dynamic equation for u (, t) and multiply 

this by u; (k, t). We then add these two expressions together, average over the 

full turbulent ensemble, and integrate with respect to £. This leaves us with 

(

+ vi (k)k 2  + v1(2) (tç(k,t)u,t)) = 
at 

(.F, < (k, t)u(, t)) + (u. (k, t),F <(, t)) 

+M;(k)fd3j(u(j,t)u(k —j,t)u,t)) 

+ M() f 3
3d (u(j, t)u 	- j, t)u(k, t)) 
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+(S(kIk i )u(1,t)) + Kc(k,t)S(.elk1)). 	(5.1) 

Applying the same approach by which we obtain equations (1.63) and (1.68), we 

next write 

(S,,-,, ( kIk i )u(L, t)) = D 5  ()Z(, t)(k + 1), 	 (5.2)Ce  

which defines Z -  ( e, t). If we then integrate equation (5.1) with respect to £ we 

find, using equations (1.63), (1.74) and (1.75) along with (5.2), 

(

+ 	Q 8 (—k,t) = W(—, s 	+ 
at 

+ M(k) f dj Q(k - j,-)+   k, t  M(—k) f dj Q(—k - j, k, t) 

+ D 5(—k)Z(k, t) + D(k)Z(k, t), (5.3) 

where the superscript '--' on the triple moments indicates that both wavevectors 

which are explicitly written lie within the low wavenumber region. Finally we take 

the trace of (5.3) and multiply by 27rk 2  to obtain our analogue to (1.79), 
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 (

+ 2v(k)k2) E - (k,t) = w - (k,t) + T(h,t) + 8k2 z(k,t), 	(5.4) 
at 

and if we further note that 
ôE(k,t) - 

at 	-, 
(5.5) 

since the system is stationary, we are left with 

2v1 (k)k 2 E(k,t) = W(k,t) + T(k,t) + 87rk 2 Z(k,t). 	(5.6) 

As was done with equation (1.79), we may integrate each term in (5.6) with 

respect to k, but here we shall integrate over the range 0 to k 1  rather than up to 

infinity. If we do this we have 

pk 1  

J dkW(k,t) = (t), 	 (5.7) 
0 

due to our having defined the forcing to only act at very low wavenumbers, and 

we also find, using the same symmetry property as applied in Section 1.6, that the 

[.1 
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transfer term T(k,t) disappears when integrated over this range. This leaves 

us with 
ki  

E(t) = j dk2ii1(k)k2E(k) - 
0ki 

J dk87rk 2 Z(k). 	(5.8) 
0  

This expression may be interpreted as stating that there are two contributions to 

energy dissipation in the system, one due to the RG eddy viscosity (which in turn 

incorporates the molecular viscosity), i.e. vi (k), and one arising from the error 

term. The fact that the error term should act in a dissipative manner is relatively 

obvious. If we re-examine equation (4.19) it is apparent that one effect of this 

term is to transfer energy to high wavenumbers, that is remove energy from the 

low wavenumber region, and hence it may be viewed as dissipating energy from 

our low wavenumber system. Indeed, we may rewrite the integrand of the second 

term on the right hand side of (5.8) as 

87rk 2 Z(k) = —211(k)k 2 E(k), 	 (5.9) 

where vs (k) denotes a contribution to the sub-grid viscosity, additional to that 

described by ii1 (k), arising from the transfer of energy to modes outside the low 

wavenumber region by the terms contained in S(kk 1 ). Re-arranging (5.9), this 

may be found as 

vs(k)=47r. 	 (5.10) 

Making such a substitution would have parallels with the work of Zhou and 

Vahala [54], who introduce a drain-eddy viscosity' to represent the loss of energy 

from the low wavenumber region caused by the triple non-linearity in their theory. 

This function is then added to their RG eddy viscosity in order to give a total 

eddy viscosity. It should however be noted that the expression from which our 

additional dissipative term arises is not the same as the triple non-linearity of 

Zhou and Vahala, and, as we shall now discuss, we feel that in our case the 

Z(k) term (and hence the vs(k) term) is likely to be negligible in comparison 

to the RG eddy viscosity when considering energy, as opposed to momentum, 

transfers. 
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5.1.3 Neglect of the Z- (k) term 

If we consider the ensemble average from which the Z(k) term arises, that is 

(S(kJk i )u(t, t)), 

then from the form of S; (kjk j ), as given in equation (4.19), we can easily see 

that each of the terms which make up Z(k) involve a conditional average mul-

tiplied by t). In evaluating the ensemble average of such a product we need 

to perform a double summation. That is, there is one summation due to the 

ensemble average and one due to the conditional average. To see the form of 

this double summation we need only consider the ensemble average of the more 

general functional 

H[u(k, t)] = (h[u(k, t)])u(k,  t), 	 (5.11) 

where h[u(k, L] denotes a functional of which we take the conditional average. 

Using the formal definition for the ensemble average, equation (3.6), the average 

of (5.11) is given by 

(H[u(k, t)]) = 	H[W(k, t)] 

= - 	(h 	(k, t)])14 T(Th)  (k, t) 

1N 1M 
= w () (k,t), 	(5.12) 

N n=1  (M "'=1  

where the notation y(mn)(k)  is used for the biased subensemble to indicate that 

for each value of n used in calculating the ensemble average we need to define a 

new biased subensemble with reference to W() (k, t). That is, the members of 

y(mn)(k) are defined by the criterion (c.f. equation (3.39)) 

	

O_(k)Ymn)(k) - O(k)W ) (k,t) < , 	 (5.13)Ce  

and hence in performing the double summation we first sum over all members 

of the full ensemble with low wavenumber mode close to a particular member 
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of the ensemble and then repeat this summation for every member of the entire 

ensemble. This summation is illustrated schematically in Figure 5.1. From this 

we may see that the effect of performing the requisite double summation could 

alternatively be viewed as performing a single summation over a set consisting of 

all the members of our turbulent ensemble W but in which some of the members 

of W are counted more than once. That is, we average over a new larger set, 

which contains all the members of W, but in which some members have multiple 

entries. Now the initial turbulent ensemble was constructed according to the 

principle of equal a priori probabilities, but with the composite ensemble we 

are now considering this is no longer true. If it were true, then all the terms 

in this average involving S;(kk 1 ) would vanish identically for all k 1 . That is, 

the operation of performing an ordinary ensemble average would effectively lift 

the constraint imposed by the conditional averaging procedure. However, even 

though this cannot be strictly true, it would seem reasonable to assume, to a 

good approximation, that such a relaxation of the constraint does occur. For the 

remainder of the thesis we shall assume this to be the case. 

5.2 Inductive treatment of the n th  shell 

Given the assumption that the constraint imposed by the conditional averaging 

procedure may be relaxed by taking the ensemble average, we can simplify our 

calculation by dropping the S,,-, (k1k i ) term from equation (4.55), on the basis 

that the terms it ultimately gives rise to are negligible when calculating the 

values involved in the energy spectrum, as will be those arising from the error 

terms generated upon subsequent iterations. Making this simplification, (4.55) 

reduces to 

( 

+ v1 (k)k 2) u(k, t) = 	< (k, t) + M(k) f d3j u-(j, t)u(k - j, 

(5.14) 

['IS] 
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Sum over n 	 Sum over m 

Double sum over m and n 

Figure 5.1: Schematic illustration of the double summation in equation (5.12). The 

diagrams on the left hand side illustrate the summation over n which is performed in 

evaluating the full ensemble average, whilst the diagrams on the right hand side illustrate 
the m conditionally sampled members corresponding to each n. The double sum itself is 
the sum over all the individual diagrams on the right hand side, as indicated in the bottom 
illustration. 
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and it is then a simple matter to extend the mode elimination procedure to further 

shells and hence form an RG calculation. We do this as follows: 

Set tç(k,t) = U(k,t) in the equation for the explicit modes, so that we 

have a new NSE with effective viscosity vi ( k), but which is now defined on 

the interval 0 < k < k 1 . 

Make the decomposition into u and u modes, but this time at k = k2 , 

where k2  = (1 - 	= (1 - 7) 2 k0 , so that u ,+,, (k, t) is now defined in the 

range k2  <k < k. 

Repeat the mode elimination procedure to remove the new u+  modes. 

Repeat steps 1-3 for successive shells, where the n th  shell in the procedure 

is defined by 

k=(1—i)Thko for0<<1. 	 (5.15) 

By induction, equation (4.56) for the effective viscosity then generalizes to 

v,1+1 (k) = v(k) + Sil(k), 	 (5.16) 

and similarly (4.57) becomes 

- 
— Jdi 

lim 	
L(k,j)Q(lk — il) 	I(k2 /2) +j2 - kj1a 

- 	k_jk n  vn (j)j 2  + v(Ik - jk - j 12 L 	3 2 - kil-t 	1  
(5.17) 

where, of course, the superscript on Q+(lk - ii) now means 1k - jj lies in the 

range k 1  < Ik — il <ku . 

5.2.1 Energy equation for the retained modes 

Likewise, equation (5.14) has the iterated form 

(
+(k)k 2) u(k,t) = 	<(k,t) + M(k)fd3ju(j,t)u(k 

(5.18) 

all 
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for wavenumbers 0 < k,3, 1k j  < k,, and if we follow the calculation of Section 

5.1.2 using this expression rather than equation (4.55), we obtain the analogue 

to (5.6) 

21/(k)k 2 E(k) = W(k) + T-- (k) 7 
	 (5.19) 

defined on 0 < k < k, where we have again assumed that the flow is stationary. 

Integrating (5.19) with respect to k from 0 to k we then find 

	

f0 kn 
dk2v(k)k 2 E(k), 	 (5.20) 

where the T(k) term again disappears due to symmetry. This is just the renor-

malized version of the usual dissipation integral, equation (1.83), the increased 

effective viscosity compensating for the reduced upper limit on the region of in-

tegration. 

5.2.2 Rescaling the equations 

In order to satisfy the RG algorithm, we also need to rescale the expression for the 

th  cycle increment, the NSE and the recursion relation, so that we are considering 

expressions defined on the same interval. To do this we start by introducing the 

assumption that the energy spectrum in the high wavenumber band is described 

by a power law of the form 

	

E(k) = aE2 '3k 5 "3F(k/kd), 	 (5.21) 

that is by equation (1.103), along with the scaling transformation 

k = kk', 	 (5.22) 

where k' is non-dimensional. To simplify the calculation, we also introduce the 

definition 

	

h = (1 - j), 	 (5.23) 

and hence have the additional expression 

	

= hk. 	 (5.24) 
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Rewriting (5.17) in terms of (5.22) we find 

- ae2"3k;813 
1 d 

• • L(w,')e' -"3 F(kfl e'/kd) k' 2 /2 +j'2 -  k'j' 
v( ) 

- 	4k'2 	1 	£'1 u(k3')3 12 + v(k')t'2 	j2 - kI 3"Y 
(5.25) 

where £ = k—j, and if we impose the obvious consistency requirement that V" (k) 

and Sv(k) must scale in the same way, then from this expression and (5.16) we 

have 

v(kk') = a1 "2 E 1 "31ç4"3i'(k'), 	 (5.26) 

where I'(k') is a dimensionless function. With this expression we can scale all 

the relevant equations. Firstly, equation (5.26) can be extended to the (n + l)th 

iteration as 

1/2 	3 -4/3- 
= 	

i 

fl+i i'+i(k'), 	 (5.27) 

and in making this statement we implicitly rescale the space variable. That is, in 

equation (5.26) we have Ic = kIc', whereas in (5.27) we have k = k+1k', which is 

equivalent to the rescaling k' -+ hW. In terms of this rescaled variable, equation 

(5.26) may be re-expressed as 

v(k) = a"2e"3 k 413 i2(hk'), 	 (5.28) 

and if we rewrite (5.25) in terms of k = Ic 1 k', rather than (5.22), we find 

ah/2Eh/3k3 
[d3' lim 	

L(k',j')Q' 	Ik'2 /2 +j'2  - k'j'1 
8v(k) =  

47r k/2 k413 J 	£'h 1 	(hj')j'2  + 	(h')'2 L 	i'2 - k'j'j 
(5.29) 

where we have substituted from (5.28) for v(k), and 

= £' 1113 F(e/kd). 	 (5.30) 

Substituting equations (5.27), (5.28) and (5.29) into (5.17), we then find 

al/2 	_4/3 	 " 6 1 /3  k 1  L/n+l (1c') = a 2e 1 i3 k 4i3 i2(hk') + a112E' 13  (b 413 h 8138i'(k'), (5.31) fl  

where 

1 
	

3' lim 
(j

L

')

(k',j')Q' 	

L

k'2 /2 +1
j   	

2 -jk'j' 

= 	
d 

 
 (5.32)

4k'2 f 	£'h-1 	j12  + 	(h)'2 	'2-k''It 	

1  

92 



Chapter 5 - The Renormalization Group calculation 

gives the explicit form for the scaled viscosity increment, the system being defined 

for the wavenumber bands 0 < k' < 1; 1 < j',' < h'. From equations (5.24) 

and (5.31) we can then obtain the scaled recursion relation 

= h4 / 3i(hk') + h-4 /3 8i;(k'). 	 (5.33) 

5.3 The Renormalization Group calculation 

Equations (5.32) and (5.33), which, it must be noted, are of identical form to the 

expressions obtained by McComb and Watt for the same quantities [51], describe 

the essential RG calculation, that is the elimination of a range of modes followed 

by a rescaling of the system. Thus we may now perform such a calculation, 

iterating until we reach the fixed point, which we define by the condition 

= i(V) 	N(k '), 	 ( 5.34) 

where N denotes the iteration upon which the fixed point is reached. 

Following McComb and Watt [51], the Kolmogorov constant may then be ob-

tained using the renormalized dissipation integral. At the fixed point equation 

(5.20) becomes 

	

= 
fkN 

dk2uN (k)k 2 E(k). 	 (5.35) 

If we then note that the fixed point should indicate that the RG calculation 

has reached the high wavenumber end of the inertial range, that is we expect the 

energy spectrum below kN to have Kolmogorov form, we may substitute equation 

(1.100) along with equations (5.22) and (5.27), in which we have set n N and 

n + 1 N respectively, to obtain 

1 
1 = 2a312  fo dk'iN(k')k" 3.( 5.36) 

Rearranging this, we are then left with the final expression for the Kolmogorov 

constant 
1 	1 	 -2/3 

a = ) 2 f dk' VN(k)kh/3} 	. 	 ( 5.37) 
I..  
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Given these expressions, the RG calculation can then be carried out numerically 

to obtain values for both the eddy viscosities and the Kolmogorov constant for a 

wide range of bandwidths i. In fact these calculations are performed using 

w(k) = v(k)k 2, (5.38) 

rather than v(k), in order to counter problems caused by the factor 1/k 2  in 

equation (5.17). Making this definition, we simply modify equations (5.28), (5.32) 

and (5.33) to obtain the expressions actually used, that is the scaling relation 

w,, (k) = a112E"3 k7/3w(hk'), 	 (5.39) 

the recursion relation 

= h-2 /3c(hk') + h2 /3&(k') 	 (5.40) 

and the scaled increment 

=--- I d33*' lim 	
L(k', j')Q' 	I k'2 12+3   '2 - kj' 

(5.41) 
47r J 	£'-h- ' 	( hj') + 	(h') L 	3 '2 - k'j'/ 	j 

which can be rewritten in terms of the spherical polar coordinates actually used 

in the calculation, where the vector k' is chosen to be coincident with the z axis, 

as 

 di' di lim 
j'2 L(v', j', i)Q' Ik' 2 12+ 3    2 - 

	(5.42)ff
£'h- ' &(h3- ') +(h') L 	j'2 - k'j't 	I . 

In addition we also need to model the form of Q' and take the limit on V. To 

do this we first note that once the inertial range is reached, that is once we have 

Kolmogorov scaling, we would expect Q' to take the form Q' = £11/3, which in 

the limit gives Q' = h1113 . To obtain an approximation for the rest of the band, 

we extrapolate back to lower wavenumbers using a Taylor series expansion about 

fl = h 1 , assuming that the spectral energy density Q(k) has Kolmogorov form 

at this point, to obtain 

	

 11  
Q' = 	- 	h14/3( - h'). 	 (5.43) 
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Although on the first few iterations of the RG calculation such an approximation 

is likely to be rather poor, as the calculation progresses its quality should improve, 

giving an accurate description once the fixed point is reached. 

In order to perform the actual numerical calculation, the k', j' and P ranges are 

first discretized, and then given an input scaled viscosity, i 0 (k'), which is easily 

converted to D0 (k') using (5.38). The viscosity increment is calculated by quadra-

ture, using Simpson's rule to perform each of the integrations, repeatedly halving 

the width of the intervals until a specified fractional accuracy with respect to 

the value calculated at the previous width, in our case 106,  is achieved. The 

recursion relation is then used to iterate the calculation until the fixed point is 

reached, this being defined to be the iteration upon which the value of (k') 

differs from the value of &(k') by less than 0.1% for each mesh point. The inter-

polation to values between our discrete mesh points, necessary for the rescaling, 

is achieved using a cubic spline fit. The form of the scaled effective viscosity 

is obtained on each step of this calculation, to ensure that the code is working 

properly and enable comparison with the earlier work of McComb and Watt [51]. 

Having reached the fixed point, this is then used to calculate a value for the 

Kolmogorov constant by substituting into (5.37). 

5.4 Results and Discussion 

The first results we shall present are those illustrated in Figures 5.2 and 5.3. 

These figures clearly illustrate that for given values of k' and i the RG calculation 

reaches the same fixed point regardless of the initial choice for i2 0 (k'). The same 

result is also found for alternative choices of Ic' and 77, provided only that 77 lies 

within the so-called 'plateau' range of bandwidths, in which the calculated value 

of the Kolmogorov constant is insensitive to the choice of i. We shall shortly 

see that the illustrated bandwidth of 77 = 0.4 lies within this plateau region. As 

discussed by McComb and Watt [51], this result illustrates the principle of univer- 
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Figure 5.2: Convergence of the scaled effective viscosity to the fixed point for several 

values of initial viscosity. Values are plotted for i2(P) at k' = 0.01 and a bandwidth of 

'ii = 0.4. 
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Figure 5.3: Convergence of the scaled effective viscosity to the fixed point for several 

values of initial viscosity. Values are plotted for 1(k') at k' = 1.0 and a bandwidth of 

= 0.4. 
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Figure 5.4: Dependence of the fixed point scaled eddy viscosity upon wavenumber k' 
for various bandwidths, i = 0.2 (-), q  = 0.4 (-----), i = 0.6 (----) and i = 0.8 (-). 

i o (k') = 1.0 for all of the plotted bandwidths. 

sality, whereby the values obtained are independent of the details of the system, 

depending only upon the dynamics of the inertial range. The eddy viscosity thus 

obtained is valid for any Reynolds number which is sufficiently high for there to 

be an inertial range. 

Next we consider the effect of varying the bandwidth upon the fixed point scaled 

eddy viscosity UN(k'). This is illustrated in Figure 5.4. Clearly there is a sig-

nificant dependence upon the choice of bandwidth, with the narrow bandwidths 

showing a much greater dependence upon k' than the wider band. That this 

should be so is relatively easily explained, the dependence upon wavenumber be-

ing large for narrow bands but small for wide bands due to the conditional average 

becoming more deterministic for small choices of 77, greater scale separation also 

being possible with increasing bandwidth. We shall consider both these points 

further when discussing our results for the Kolmogorov constant. 

The form of the eddy viscosity is also considered in Figure 5.5, in which we illus- 

trate the evolution of the unscaled eddy viscosity as the RO calculation progresses 

through its iterations. This shows the expected result that the eddy viscosity rises 
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Figure 5.5: Evolution of the unscaled (dimensional) eddy viscosity during the RG calcu-

lation. Evaluated for i = 0.4. n = 7 corresponds to the fixed point. 

as more modes are eliminated, this increase being necessary to compensate for 

the dissipation that would normally occur at the scales of the eliminated modes. 

Also clear is the characteristic result, also seen in Figure 5.4, that the effective 

viscosity shows an asymptotic trend to a constant value as k becomes small com-

pared to the cutoff wavenumber, a result which reflects the increasing validity of 

the concept of an eddy viscosity as the retained and eliminated modes become 

more widely separated. In fact, that this must be so can be seen if we note that 

our equation (5.32) is essentially the same as that used by McComb and Watt, 

save for the extra factor 
k'2 /2 + j'2 - k'j' 

j2 — 

in the integrand. As was shown by Storkey [77], the expression of McComb and 

Watt must analytically tend to a constant as k' —+ 0, and since in this limit we 

have 
k'2/2 + —— 

lim 	 — 1 	 (5.44) 
k'—*O 	 — 	 — 	— 

given that j' is restricted to being non-zero, our eddy viscosity must also tend to 

the same constant value, the value of the integrand in the limit k' - 0 being the 

same for both approaches. 

7 

n=5 
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Figure 5.6: Eddy viscosities computed from DNS data, scaled on the molecular viscosity, 

for k = 16,24, 32,48,64,80,96,112. (Figure reproduced from Young [70].) 

There is however a question regarding the form of the fixed point eddy viscosity, 

that is the n = 7 case, illustrated in Figure 5.5, in particular regarding the 

question of whether the eddy viscosity may be used in a spectral LES. We shall 

consider this question in more detail in Chapter 7, but it is worth noting here that 

the observed downturn as k increases is at odds with the results of, for example, 

Young [70], who used a DNS to calculate the effect of the subgrid modes upon 

the explicit scales and hence obtained an eddy viscosity which exactly represents 

the effects of the subgrid modes. These results are reproduced in Figure 5.6 (his 

Figure 6.4) and clearly show an upturn at the largest wavenumbers, regardless of 

the choice of cutoff k. That these results differ from our eddy viscosity should, 

perhaps, be no surprise since the S(kk) term, which we have neglected in our 

calculation of the eddy viscosity, will give a contribution. This contribution will 

be greatest near the cutoff between the resolved and subgrid modes, that is in 

the region where the form of our eddy viscosity differs from that of Young, and it 

would thus seem reasonable to suppose that if the S(kIk) term was accounted 

for in our calculation, then this could give rise to an upturn in the eddy viscosity. 

As is discussed earlier, we would however expect the absence of the S(kIk) term 
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Figure 5.7: The variation with bandwidth i of the Kolmogorov constant a obtained from 

the RG calculation (-) in comparison to the Kolmogorov constant obtained from the 

RG calculation of McComb and Watt [51] (-----). The value for the Kolmogorov constant 

obtained in the DNS of Young [70], a = 1.624, (-) is also plotted. 

to have no effect upon the calculation of the Kolmogorov constant. 

The calculation of the Kolmogorov constant for various bandwidths is illustrated 

in Figure 5.7. Immediately apparent from this figure is that our calculation gives 

good results, an approximate plateau region giving a value of a roughly equal 

to 1.6, in good agreement with both numerical simulations and experiment. The 

results also compare well to those obtained using the equations of McComb and 

Watt, our new theory giving essentially very similar predictions, but with an 

increased plateau region, although admittedly the increase in range is relatively 

small. We also note a good comparison with the DNS of Young [70], the result 

from which is explicitly plotted. At the ends of the range of bandwidths, our 

results move significantly away from their plateau values, but a good estimate for 

the value of a can be found by restricting ourselves to the range 0.2 < ij < 0.6, 

in which instance the Kolmogorov constant lies in the range a = 1.62 + 0.05. 

We should also comment on the increase in the predicted value of a as ij tends to 

both 0 and 1. As we alluded to when considering the dependence of ITIN(k') with 
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Figure 5.8: Variation of the scaled fixed point eddy-viscosity with bandwidth i for 

wavenumbers near the origin, k' = 0.01 (-), and near the cutoff, k' = 1.00 ( ----- 
). 

i, such a breakdown in the theory as we approach these two limits is exactly what 

we would expect. As i - 0, the conditional average becomes more deterministic, 

with the effect of the S(kJk 1 ) term becoming significant, hence meaning that our 

assumptions are no longer valid. Likewise, as 77 -+ 1 the bandwidth will become 

so large that the Taylor series expansion used to approximate Q' will break down, 

as will our assumption that a result defined in the limit k -+ k can be used, as an 

approximation, to describe the entire band. This point is given further support 

by the results plotted in Figure 5.8, which show that for a wide band (ij = 0.8, 

say) the scaled fixed point eddy viscosity has relatively little dependence upon 

k' when compared to a narrow band (q  = 0.2, say), for which there is a large 

variation depending upon whether or not we are near the cutoff. With a narrow 

band, in which all wavenumbers are comparatively close to the cutoff, the errors 

introduced by the neglect of the S(kk 1 ) term will clearly be far more significant 

than in the case of a wide band, where the errors are only likely to be significant 

for a relatively small range of the included wavenumbers. The large variation 

in 1JN(k) for the narrow band would tend to support this point. The fact that 

there is a reasonably wide plateau in the plot for the Kolmogorov constant would 
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however tend to suggest that, regarding the energy equation, the approximation 

of dropping the S(kk 1 ) term from our calculation is valid, in a heuristic sense, 

within the range 0.2 <i <0.6. 

Finally we should note that even in the plateau region the value of a is not totally 

independent of ij. As discussed by McComb and Watt [51] this is likely to be due 

to the fact that the graph is the result of a numerical calculation, in which the 

fixed point is only calculated to a finite accuracy. The uncertainty in a reflects 

this. 
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Chapter 6 

Formal justification of the 
approximations 

6.1 The dimensionless Navier-Stokes equation 

In the previous two chapters we have shown both how we may eliminate a band of 

high wavenumber modes and then extend this procedure to provide the basis for 

a renormalization group calculation. However, as noted in Section 4.3.3, we have 

left until now the justification of two essential approximations, the truncation of 

the moment expansion at lowest order and the neglect of the non-linear term in 

performing the time integral. Both of these approximations may be justified by 

rescaling the equations of motion prior to the mode elimination calculation. 

Our first step is to rewrite the NSE in its well known dimensionless form, defined 

on the interval 0 to 1. To do this we introduce the wavenumber transformation 

	

k/k 0 , 	 (6.1) 

along with corresponding time and velocity transformations 

	

= t/r(ko ) 	 ( 6.2) 

and 

u(k,t) = V(k 0)(k,I), 	 (6.3) 
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where r(ko ) is an, as yet, undetermined timescale and V(k 0 ) is the r.m.s. value 

of a velocity mode with Iki = k0 , defined for any k by 

v2(k) = 	f d 3 3 (u,,, (k, t) u, J, t) , 	 (6.4) 

where the factor of 1/0 ensures the correct dimensions (recall that both d 33 and 

k 3  have dimensions L -3 ). 

Substituting (6.1), (6.2) and (6.3) into the NSE, equation (1.48), and multiplying 

through by r(ko )/V(ko ) we obtain' 

(~
tx + v0(k)r(kO)kk2) 	(k,) = 

(6.5) 

defined on 0 < k < 1, where we have pre-supposed the wavenumber dependence of 

the eddy-viscosity on later iterations by writing 1/ 0  = vo (k) = uo (ko k). Equation 

(6.5) can then be rewritten as 

( at
+(2) ft, (k,I) = Ro (ko)M()fd 33(3 	-3,), 	(6.6) 

on 0 < <1, where 

R0 (k0 ) = r(ko )V(k o )k 	 (6.7) 

and 

= r(k0 )kzi 0 (k0 ic). 	 (6.8) 

Equation (6.6) is a dimensionless form of the NSE. If we consider the dimensions 

of the terms in (6.7), it can also be easily seen that R0 (k0 ) takes the form of a 

Reynolds number defined at the scale of k0 . That is, it may be viewed as the local 

Reynolds number at k 1 . As we shall subsequently show, this parameter helps to 

provide the basis for justifying our approximations, the RG calculation in this 

chapter being based upon (6.6) rather than (1.48). 

'Note that, for clarity, in this chapter we shall neglect the forcing term present in equation 
(1.48). If desired, this term may be simply included in our calculation. 
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6.2 The Renormalization Group rescaling 

As we discussed previously, the formal RG approach involves implementing the 

algorithm: 

Start with the dynamic equation defined on the interval 0 < k < kmax. 

Decompose the system into low and high wavenumber modes at a cutoff 

defined by 	= (1 - ci)knax  = hkmax, where kmax  is the width of the high 

wavenumber band. 

Average out the effects of the high wavenumber modes to obtain a dynamic 

equation for the interval 0 < k < kc t . 

Rescale this expression so that the system on 0 < k < 	becomes rede- 

fined on the original interval. 

Repeat steps 2 to 4 until the fixed point of the RG calculation is achieved. 

It is this algorithm which we followed in Chapters 4 and 5. However there is no 

reason to suppose that we cannot interchange the order of steps 3 and 4, and in 

this chapter we propose to make such an interchange. Doing this enables us to 

formally justify our approximations. 

In order to perform the rescaling prior to the mode elimination, all we need to 

ensure is that after both steps the system we are left with is defined on the original 

interval. Considering (6.6), it can be easily seen that this condition is achieved 

if we start by rescaling the original system onto the interval 0 to h', the cutoff 

for the mode elimination in this instance being at h.h' = 1, as required. This 

rescaling is described by the transformation 

= 	 (6.9) 

105 



Chapter 6 	Formal justification of the approximations 

along with the transformations of the dimensionless time and velocity variables, 

= /'I (h) 	 (6.10) 

and 

(6.11) 

Substituting these transformations into (6.6) and multiplying through by 

we are then left with 

(a 
+ o(k')k ' ) 	(k', t') = A 1 (h, k0)M(k') f dj' (j', t')(k' - f 

(6.12) 

on 0 <k' <h, where 

) i (1i, k 0 ) = ( h)1'(h)hR0 (k 0 ) 	 ( 6.13) 

and 

i'0  (k') = i(h)h2 Vol  (hkI). 	 (6.14) 

However if we consider equations (6.1) and (6.9) together, we find 

k' = A/h = k/hk 0  = k1k1 , 	 ( 6.15) 

and hence it can be easily seen that scaling the dimensionless NSE by a factor h 

must give an identical result to scaling the original NSE by a factor k 1 . Similarly, 

it must also follow that 

t' = /(h) = t/(h)r(ko ) = t/r(k1 ) 	 ( 6.16)' 

and 

(k', t') = fL, M/'(h) = u(k,t)/'(h)V(k o ) = u(k,t)/V(k i ), 	(6.17) 

which may be viewed as a similarity solution for the velocity field about k 1 , the 

last equality in each of these expressions coming from scaling the NSE on k 1 . 

Hence, 

= r(ki ) 	 (6.18) 
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and 

T/(h)V(k 0 ) = V(k 1 ). 	 (6.19) 

Substituting (6.7) and (6.8) for R 0 (k0 ) and v(hk') respectively, we can then use 

these relations to re-express (6.13) and (6.14) as 

A 1 (h,k 0 ) = ) 1 (k 1 ) = r(ki )V(k i )k 	 (6.20) 

and 

	

C'0  (k') = r(ki  )kiio (k i k'). 	 (6.21) 

We should also comment here on the fact that we have now chosen to use ) 1 (k 1 ) 
to represent the term equivalent to R0 (k0 ) in (6.6). Again this term is simply 

the local Reynolds number (at k 1 ), but as we shall next see it is also in effect the 

expansion parameter which describes the order of terms in our mode elimination 

calculation. We make the replacement R 1 (k 1 ) -+ \ i(ki) in order to emphasise 

this fact. 

6.3 Mode elimination 

Given that the form of (6.12) is essentially the same as the original NSE, we may 

thus go about eliminating a band of (dimensionless) high wavenumber modes in 

much the same way as before. Our first step is to divide up the system into low 

and high wavenumber regions. Making this decomposition, (6.12) reduces to two 

coupled equations 

( 	
+ o (k')k 2  ç (k',t') =(k1)Mk3' 	', t') 	(k' - §',  ) 	 f j 	j  

+2b(j',t')b(k' - i f , t') + b(j',t')b(k' - j',t')}, (6.22) 

for 0 < k' < 1, and 

(a 
+ O(k 1 )k ' ) i(k', t') = A (k 1  )M(k') f d3j' {(i', t')ç(k' - it, t')+ 

+ 2 	(j', t')J(k' - j', t')  + b(j', t')(k' - f, t')}, (6.23) 
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for 1 <k' < hL. 

Following the procedure of Section 4.3.1, if we re-define the conditional average 

in terms of an ensemble of k', i') fields, take the CA of (6.22) and rearrange, 

we obtain 

/3 
at/ +o(k')k/ ) 	(k', i') = 1(k1)M(k') f d3j'(j', t')(k' — j', t') + 

+ S(k'l1) + A1(k1)M(k') f d3j' lim(j', t')(k' — j', t')), 

(6.24) 

where, in analogue to (4.19), 

	

S(k'1) = i (ki )M(k')f d3j' ( 00 	— j',t')) + 

+ 2(L'(j', t')'(k' - j', t'))  + (,(j', t')'(k' — j', t'). - 

	

— i',t'))} 	(6.25) 

the Of being analogous to the 0 in equation (3.40). 

As before, in order to evaluate the CA in (6.24) we need first to form a dynamical 

equation for (+0+) using (6.23). Doing this we obtain 

/3 

	

+ i' (i )j'2  + o(k' — j')k' — j 1 1 2 ) 	t')(k'  

= 2i(ki)M(j') f d3p' {((p',t')(j' — p',t)(k' - j',t')) 

+ 2(t(p', t')b(j' — p', t') 0+ 	
- 

j', t')) 

+ (bt (PI  , t')(j' - p' , t')4(k' — j', t'))}. 	(6.26) 

Using identical arguments to those given in Section 4.3.2, if we take the limit 

e —+ 0 and apply the hypothesis of local chaos then the first term on the right 

hand side is zero, the second term is linear in r and the third may be evaluated 

by iterating the above procedure to form a dynamical equation for (0+5++). 

As was the case with the velocity field (see Section 4.3.2), performing this iterative 

procedure leaves us with the sequence of equations for successively higher order 
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moments 2  

((j', t')b(k' - j', t')) C. 

t ,  

= 	
dsFc_03'20Ik'uhI2)(t'_3') 2A 1  (ki)M(j') x 

x f d3p' {2((p', s')i(j' - p', s')(k' - j', s')) 

+ 	(p', s')(j' - p', s1)4(k' - j', s'))}, (6.27) 

- p', t')(k'  
t i  

= 	dsIe_(0P'2+0I3'_p'I2+0IIc'_3'I2)(t'_s') 3) (k i )1t4(p') x 
f oo 

x f d3q' {2((q', s')(p' - q', s')(j' 
- p', s')(k' - j', s')) 

(6.28) 

and so on. 

If we then define, in direct analogue to equations (1.63) and (1.74), 

(0. (k', i')'t/(j', t')) = D(k')(k')S(k' + j'), 	(6.29) 

and 

(0. 	t' )(j', t')b', t')) = O(j', £')(k' +Y  + ,f/), 	(6.30) 

where we have assumed to field to be stationary, we find that the CA in (6.24) 

can be written as the moment expansion 

1im(L(j', t')4i.(k' - j', t')) = 

= f ds' e_03'20Ik'_uuI2)(t'_ 	i(ki)M(j') f d3p' x 

X 40- (p' s') 	lim 	D (k' - j')(k' - j'6(k' - p') 

8' 

+ 	
12)(k i )M

J  

x fd3ql(qF,rI)  lim 	(j' —p',k' —j')(k' -j') + 
0 4h- 

(6.31) 

2 For clarity, in the following equations we drop the explicit dependence of i' o  upon k' when 1'o 
occurs as an exponent. The dependence upon (dimensionless) wavenumber is however implicitly 
assumed. 
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6.4 The approximations 

6.4.1 Truncation of the moment expansion 

Given equation (6.31), we are now in a position to start to justify the approxi-

mations we introduced in Section 4.3.3. As can be seen from this expression, the 

first of these approximations, namely the truncation of the moment expansion, is 

equivalent to neglecting the terms of order A(k 1 ) and greater in this expansion. 

Clearly the validity of this approximation depends upon the magnitude of A 1  (k 1 ) 

being less than unity, but as we shall subsequently show, for our calculation to 

be self consistent this must be the case. In addition, given the definition of ib in 

(6.3) it can also be seen that we must have 

çb(k', i')Irrns < 1, 	 (6.32) ce 

since the average magnitude of the velocity modes decreases with increasing 

wavenumber. Thus in a formal perturbation expansion of the /,+ modes, the 

high order terms would indeed be of lesser effect when compared to the lower 

orders. This gives further support to the approximation, which we shall hence 

assume to be valid. Next we need to consider the second approximation, the 

neglect of the non-linear term in performing the time integral. 

6.4.2 Neglect of the non-linear term in performing the 
time integral 

Given that we may justify truncating the moment expansion in (6.31), this leaves 

us with the expression for the CA term in (6.24) 

A 1 (k 1  )M;(k') dj '  liin((j',  

= f d 3j  ' 4 A  2 
( k, ) M,,-, 	)36 (j') lim  

J- 

 ds' e_w2(3')(t'_8b(kF,  s ' ), (6.33) 
00 
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where ' = k' - j', 2 (7- ',I?') = i'o (k')j 12  + fi0 (k')'2 , and where we have also 

performed the integral over p'. Following the approach of Section 4.3.3, the right 

hand side of this expression may be rewritten as 

t i  

	

RHS = L ds / e -1212(' ,t t'_ S Ba (k F )b8_(k l , s'), 	 (6.34) 
00 

where 

Ba5(W) = 4fd 3i'M(k')M(i') urn D+ (V)(+(f). 	(6.35) 

We may then change the variable of integration to r' = t' - .s', and, invoking 

isotropy, rewrite 

	

Ba (k')(k', t' - r') = B55(k')(k', t' - T '), 	 ( 6.36) 

to leave us with 

1(k1)M(k') 
f d

3j' 1im((j', t' )(k' -  

f000  —A 1  2(kl) I d3j' urn L(k',j')Q) 	 dT' e_ 	a b_(kl, t' - 

(6.37) 

where 

	

L(k',j') = — 2M (k')M(j')D(k' - j'). 	 (6.38) 

As with (4.36), we are however still left with the question of how to perform the 

time integral 
P00 

I(k', t') = J .dT' e12')T'tb 
0 	 a (k', t' - r'). 	 (6.39) 

If we again follow the procedure of Section 4.3.3 this reduces to 

00 	(_1)n 	8ç(k', s') L =t/ 

I(k',t') = n=0 2,l)n+1 	05' 	 ' 	
(6.40) 

where the derivative with respect to s' may be rewritten using (6.22) as 

th;(k', s') 	
= — 0 (k')k' 2 (k', t') + NLT, 	(6.41) 
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where 'NLT' refers to the non-linear term in this expression. The second approx-

imation we made in Chapter 4 was that the non-linear term in this expression 

could be neglected. If we again make this assumption, we find 

" 	[(k'2  '2 j_ 12 - k' 
I(k' t' 	

k'
) - 	 ' 

i 

' 	
/ 	1 	

(6.42) 
- 1,O  (J 	+ i1o(f?')e'2 	J t2 - k' j' 

where z is the cosine of the angle between k' and j', but we are now able to 

justify this approximation. To see this we first need to note that the non-linear 

term on the right hand side of (6.41) is of order \ 1 (k 1 ), thus meaning the term 

we have dropped from (6.42) is also of order ) 1 (k 1 ). If we don't neglect the non-

linear term, but instead retain it as a term of order ) 1 (k 1 ), then substituting for 

I(k',t') in (6.37) we have 

	

A 1 (k 1)M(k') I dj' im( op 	t/ )0,+(k' - j', t')) J 

2 	1  
J 
 d3 	lim 
	L(k',j)Q') 	(k'2 /2 ) + i'2 - k'j't 	- 

k
, 

t 
£'—h- A(i')i' 2  + £ o (')'2 	j.

2  - k'J'j. 

	

+0 (x(k1 )), 	 (6.43) 

where the order AT term arises from the non-linear term in (6.41). However in our 

previous truncation of the moment expansion we have dropped the terms that 

would be of order ) 3  in (6.33), and thus for consistency we must do the same 

again. Hence, substituting (6.43) into (6.24) and neglecting terms of order ) 3  and 

greater, we are left with 

( 	
+ (k)k'2) 	(k', t') 	1 (k1 )M 8,(k') 3j'j  f   

+S(k'J1), 	 (6.44) ce 

for 0 < Ic' < 1, where 

	

= £'0 (k') + 8i o (k'), 	 (6.45) 

and 

	

L(k',j')Q+(e') 	I (lc'2/2) +j'2 - k'j'1 
j' = 	(k1) 	f d3 

£'h  
lim 

' 0(j')j'2  + o(1)/2 I 	j'2 - k'j' 

+ 0 (A 3  (k,)) , 	 (6.46) 

for 1 < k',i' < h 1 . 
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6.5 The recursion relation 

Given these expressions it can be easily shown that this approach gives an identi- 

cal result to our earlier RG calculation. To see this we first note that from (6.29) 

and (B.8) we have 

Q(P) 
= Q(k) 

kV 2 (k 1 ) 
(6.47) 

If we then take the energy spectrum to be described by equation (1.103), that is 

E(k) = ae213 k 513 F(k/k d ), 

this may be rewritten as 

QVI)
1 	ae213 

-11/3F_11/3F(k//k) 	 ( 6.48) 
= kV2(k1) 	

k 

1 	_ k_20/3Q, 	 (6.49) 
- V 2 (k 1 ) 471 1 

where Q' = £'-1113 F(k1e'1kd), and substituting this into (6.46) along with (6.20) 

we thus find 

	

7 2 aE2 /3k/ 3  

471k' 2 	£ 	
L(k',j')Q') 	1(k'2 /2 ) +j'2 - k'j'jil = 

Id33, 
lim 

h1 o(j ')j '2  + o(/)/2 L 	i'2 - k'j'. 
(6.50) 

where for simplicity we now drop the terms of order ) 3  and greater from our 

expression. Substituting from (6.45) we then have 

i'1  (k') = Lo  (k') + 
r2cE2/3k4/3 	 L(k',j')O(') 	F(k'2 /2) +j'2 - k'j'1 

+ 	
Id3j, 

urn 

	

471k'2 	£'-*h-' zo(i ')j '2  + o(i')12 I 	i'2 - k'j' 	] 
(6.51) 

and if we further note that both terms on the right hand side of this expression 

must scale in the same manner since £/O is a dimensionless function, this implies 

r(ki ) = 	
1

(6.52) 
al/ 2 E 1 /3 k 2/3  
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From (6.21) we then find 

. 	/ 
vo (k i k') = a"2E" 4/3 3 kj 	,o  (k) 	 (6.53) 

However, in this expression i)0 (k') is defined on the interval 0 < k' < h' whereas 

i i  (k') in (6.51) is defined on 0 < k' < 1. In order that we have a recursion relation 

in which both sides are defined on the same interval we would prefer to rewrite 

the right hand side of (6.53) in terms of a new variable defined on 0 < k' < 1, 

and in addition we would prefer the expression to depend on k0  rather than k1  

as this would make our labelling more consistent. If we note that k1  = hk0 , this 

is achieved by introducing a new variable 1'0  defined by 

= h-4/3 1'0 (k/h), 	 (6.54) 

where k is a dummy variable defined on 0 < k < 1. Re-expressing (6.53), we then 

have 

vo(kok) = a1/2E1/3k_4/3 I/O  () 	 (6.55) 

By an obvious analogue we also have 

i'i(kik') = ah/2E1/3k4'3i2l(k/) 	 (6.56) 

where it should be noted that i'i  and £'l are identical since they are defined on 

the same interval. Thus from (6.51), (6.52) and (6.55) we have the final recursion 

relation 

i 1 (k') = h413 i20 (hk') + h 4/3 SI'0 (k'), 	 (6.57) 

where 8i20 (k') is as defined in (5.32) for the case n = 0. As can be easily seen, we 

have thus regained the same results as our earlier calculation. 

6.6 Magnitude of the local Reynolds number 

As we noted in Section 6.4.1, for our two approximations to be valid we require 

the magnitude of A 1  (k 1 ) to be less than unity. Thus far we have simply assumed 
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this to be the case, but given (6.52) we are now in a position to show this to be 

true. To see this, we start by substituting (6.52) into (6.20) to obtain 

1O/3 

)'1(kl) - 
-  

	

 112113 V(k 1 ). 	 (6.58) 

If we then note that from (B.23) we have 

	

E(k 1 ) = 27rkV 2 (k i ), 	 ( 6.59) 

this implies that 
- k 6 E(k 1 )h/ 2  

	

- (27r)1/2E1/3 	 (6.60) 

An initial estimate for the magnitude of (k 1 ) can be found if we take the 

Kolmogorov spectrum as providing an upper bound on the energy spectrum for 

all wavenumbers. Doing this we find 

()

1 1/2 

	

0.4, 	 (6.61) 

regardless of the value of k 1 , and since this value is less than unity it would thus 

appear that our neglect of higher order terms in the moment expansion is valid. 

In the worst case scenario, that is if we have the Kolmogorov spectrum for all k, 

we are neglecting terms of order 0.16 with respect to terms of order 0.4. However 

in reality the value of energy spectrum at k 1  is likely to be far smaller than that 

suggested by the Kolmogorov spectrum. This point is illustrated in Figure 6.1, 

which was obtained by substituting into (6.60) the energy spectrum obtained in 

the DNS of Young [70], the model spectra of Pao [78] and Qian [79], and the 

model spectrum obtained in Appendix B. In interpreting this figure it has to 

be remembered that k 1  is in fact a dependent variable, its value depending upon 

both k0  and the choice of bandwidth 77, but as can be readily seen here, for any 

k 1  in the vicinity of kd the local Reynolds number is far less than 0.4. We amplify 

this point in Table 6. 1, where explicit values for A 1  (k 1 ) are given at various k 1  for 

each of the energy spectrum models. 
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DNS spectrum 
Model spectrum of Appendix B 
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k 1  I k 

Figure 6.1: Variation of the local Reynolds number with the value of k1 , calculated 
for various model energy spectra: The DNS spectrum of Young [70], the model spectrum 

derived in Appendix B, and the model spectra of Pao [78] and Qian [79]. It should be 
noted that the upturn in the result obtained from the DNS spectrum is due to numerical 

errors brought about by truncating the system and should not be viewed as having any 

physical significance. Similarly the low wavenumber peaks in the values obtained using 

both DNS and Qian's model, which take a value greater than 0.4 and hence indicate a 
value of E(k) greater than that predicted by the Kolmogorov spectrum, are most likely due 

to the numerical forcing, Qian's model being an empirical fit to DNS data. 

k _ 

0.01 0.25 10.50 0.75 1.00 

DNS 0.32 0.39 0.22 0.12 0.08 

M 0 d I e 
Appendix B model 0.40 0.35 0.27 0.18 0.08 

Pao's model 0.40 0.33 0.25 0.18 0.12 
Qian's model 0.38 0.39 0.24 0.13 0.06 

Table 6.1: The value of the local Reynolds number at various values of k1  for the energy 
spectrum obtained in the DNS of Young, and for the model spectra of Pao, Qian and 
Appendix B. For example, if the choices of ii  and k 0  are such that kl/kd = 0.5, then 
Qian's model gives ) 1 (k 1 ) = 0.24. 
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Given that we expect our RG calculation to fail in both the narrow (ij -~ 0) and 

wide (i —+ 1) bandwidth limits, if we follow Young and assume k0  1.2kd , then 

the lowest value of k 1  we would encounter in our calculations would be roughly 

0.5kd, corresponding to a bandwidth of 0.6. At this wavenumber, .A 1  (k 1 ) will 

take a value of approximately 0.25, and hence in making our approximation we 

will be neglecting terms of order 0.06. This situation will improve yet further as 

the bandwidth is decreased, that is as k 1  becomes larger. Hence, in truncating 

the moment expansion at lowest order, we are neglecting terms approximately 

one order of magnitude smaller than those which we include. Given this fact, it 

does indeed seem reasonable to conclude that our truncation is legitimate. 

6.7 Evolution of the local Reynolds number as 
the Renormalization Group calculation pro-
ceeds 

Following the same approach as we have already carried out, it is a simple task 

to extend our calculation to rescale and eliminate further shells, and hence form 

an RG calculation. In doing this we will obtain identical expressions to those 

found in Chapter 5 for both the dimensionless recursion relation and the viscosity 

increment, namely equations (5.32) and (5.33), and also an identical expression for 

the Kolmogorov constant, Equation (5.37). Hence, we will also be able to regain 

all of Chapter 5's figures. However in addition we also find a generalisation of 

(6.60) for the local Reynolds number, that is the expansion parameter, on the th  

iteration: 
— ____________ 

- (27ra)1/2E1/3 	
(6.62) 

If we numerically calculate the value of the local Reynolds number on each iter- 

ation using the model of Pao [78] discussed in Appendix B, 3  we find the results 

31t was decided to use Pao's model for the energy spectrum since this is the better known 
of the two analytical spectrum models we consider in this thesis, the DNS and Qian's model 
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Figure 6.2: Evolution for various bandwidths of the local Reynolds number during the 

RG calculation as calculated using Pao's model [78] to represent the energy spectrum. 
Values were calculated assuming that ce = 1.6 and k 0  = 1.2kd. 

illustrated in Figure 6.2. Regarding the actual RG calculation, with a bandwidth 

of 97 = 0.3 the fixed point is reached after 11 iterations, while i = 0.4 and ij = 0.5 

reach the fixed point after 7 and 6 iterations respectively. As can be seen in the 

figure, after these number of iterations the local Reynolds number reaches a fixed 

point (within a tolerance of +1%) regardless of the choice of bandwidth. Thus 

at the fixed point of the RG calculation we have 

= +1 (k +1 ) = .AN(kN), 	 (6.63) 

and hence from (6.62) it follows that 

k1E(k+1) - '- 5 /3 E(k), 	 (6.64) - tb fl  

meaning that at the fixed point we have 

E(kN) cx k 5', 	 (6.65) 

that is the same dependence on wavenumber as the Kolmogorov spectrum. If 

we further note that the magnitude of AN(kN) is approximately 0.4, then from 

not being used due to the likely influence of the artificial forcing at the low wavenumbers we 
achieve after several iterations of the RG algorithm. 
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Figure 6.3: The variation of the fixed point wavenumber kN = ( 1 - 71)Nk0 with band-
width i, along with the value of the cutoff wavenumber on the previous iteration kN_ 1 . 

(6.61) it follows that at the fixed point we have indeed obtained the Kolmogorov 

spectrum. 

A further check regarding the consistency of this statement can be made if we 

consider the results illustrated in Figure 6.3, which were calculated using the 

number of iterations taken to reach the fixed point for each bandwidth j. The 

values for kN_ l  are also plotted since we would expect the top of the inertial 

range to lie somewhere between kNl and kN, kN merely denoting the first cutoff 

wavenumber that actually lies within this scaling region, and given this figure it 

would seem reasonable that the top of the inertial range occurs at a wavenumber 

of around 0.02k0 . If we then assume that ho 1.2k d , this implies a wavenumber 

of approximately 0.03kd. This value compares well to that found in the DNS 

of Young [70, Section 5.3.2], where the inertial range was found to lie about a 

wavenumber of approximately 0.04k d , and would thus appear to give further sup-

port to our conclusion that the fixed point corresponds to the onset of Kolmogorov 

scaling. 
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Chapter 7 

Large-eddy simulation using the 
Renormalization Group sub-grid 
model 

7.1 Introduction 

As we first alluded to in Section 1.8, the RG calculation we have carried out 

provides us with one approach to obtaining the eddy-viscosity required in a large 

eddy simulation (LES). In this chapter we shall consider how we actually perform 

such a simulation and the results of some preliminary calculations, comparing 

the results obtained using our RG eddy-viscosity with those obtained using al-

ternative eddy-viscosity models, that found using the test-field model (TFM) of 

Kraichnan [80], which is a modified version of the direct interaction approxima-

tion (DIA), and that generated from a 256 DNS velocity field, along with the 

results obtained in a 256 DNS with identical parameters. 

7.2 Large-eddy simulations 

The idea of a large-eddy simulation was first put forward by Smagorinsky [81], 

who modelled the general circulation of the atmosphere on a finite-difference grid 
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(in configuration space) and represented the drain of energy to scales smaller than 

the grid spacing using a subgrid model based upon a Heisenberg-type effective 

viscosity. The term 'large-eddy simulation' itself was, however, first coined by 

Leonard [82], who also introduced the idea of filtering as a formal convolution 

operation. 

Given a (real space) simulation taking place on a grid with mesh spacing Ax, we 

first define the subgrid scales to be those scales with wavelength less than Ax. 

We then define the large (resolved) scales by the general filtering operation 

ü(x,t) = f d 3  y G(x — y)u , (y, t) 

= f d 3  y G(y)u , (x — y, t), 	 (7.1) 

which we write in contracted form as 

	

ft, (,t) = (G*u)(x,t) 	 (7.2) 

The subgrid velocity field u(x, t) can then be defined to satisfy 

uc(x,t) = ft, (x,t)+u'(x,t). 	 (7.3) Ce 

Using integration by parts it can be shown [82] , provided only that u, vanishes 

on the boundaries, that the filtering operation defined in equation (7.1) commutes 

with both spatial and temporal derivatives. Accordingly, if we apply the filtering 

to the continuity equation, equation (1.30), we find 

	

G*= ô{G*ua} 
=0 	 (7.4) 

ax cr 	öX c  

and hence we have 
öÜc.(X, t) 

	

= 0. 	 (7.5) 
ôX c. 

Similarly, if we apply the filter to the NSE we find 

9Üa(X,t) + öA(x,t) - a13(x,t) 
+ 0 V2 a (,t), 	(7.6) 

- ax at 	ox 1 9x,  
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where 

	

A.,3 (x, t) = (C * {uu,3 })(x, i) 	 (7.7) 

denotes the effect of the filter upon the non-linear term. Using (7.3), this can be 

rewritten as 

A(z,t) 	(G * {üüp + u'u + üu + u'u})(x,t) 

(7.8) 

where the subgrid stress tensor 

Tap(, t) = (C * {u'ü,3 + ÜaU' + u'u})(x, t) 	 (7.9) 

contains all the effects of the subgrid scales. Since only the terms involving 

Üa (X, t) alone are explicitly simulated, it is this latter term which we must model 

in a large-eddy simulation. There does however also remain the technical question 

of how to compute C * { ÜaÜ,3 }. To do this, Leonard re-wrote the expression as 

(C * { üü0 })(x,t) = ü(x,t)ü, 3 (a,t) + L(x,t), 	(7.10) 

where 

L(x,t) = (C * {Ü aÜp})(X,t) - ü(x,t)üp(,t) 	(7.11) 

is referred to as the Leonard stress tensor. 

Substituting (7.8) and (7.10) into (7.6) we are then left with 

ôÜc. D(ÜcyÜp) - 	- ôL,3 - 	
+ v0 V 2ü. 	(7.12) + 

a,3 	a, 	a 	axp  at 

The only question now remaining is how to deal with the two stress terms in a 

practical simulation. 

7.2.1 The Smagorinsky model for the subgrid stress 

One way in which we may deal with the subgrid stress in real space (and the only 

approach which we shall consider here) is to introduce the model of Smagorinsky 
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[81]. This relies upon the traditional analogy between turbulence effects and 

molecular properties. Accordingly, by analogy with equation (1.4) we write the 

subgrid stress tensor in terms of the explicit scales as 

( 	

) 

DÜ cy (X,t) 	8u(x,t)\ 
' Tap(,t) = _Lis I 

\ 	 ô cx  

	

+ 	X 	 (7.13) 

where, on dimensional grounds, the subgrid effective viscosity takes the form 

	

'Is = (czx)21/2, 	 (7.14) 

where c is a constant and 

(7.15) 
auc, (ôUc. 	au,3 \ 

S = - - 
+ -).  

As was shown by Lilly [83], an approximate value for the constant may then be 

obtained by assuming that k -- 1/Lx lies in a region with Kolmogorov scaling 

for the energy spectrum (i.e. E(k) x k -5 ! 3 ). If this is the case, then if we adjust 

c so that the subgrid dissipation rate is equal to e, we find 

1/2 3/4 

—i 
7t \. _)3a 	

, 	 ( 7.16) 

where a is the Kolmogorov constant. 

7.2.2 The Leonard stress 

The Leonard stress is somewhat easier to consider than the subgrid stress, since 

this only depends upon the choice of filter function. In particular, L can vanish 

identically if we make the appropriate choice of G. This requires (c.f. (7.11)) 

(G * { ii . üp})(x, t) = fl, (X, t)ü(x, t), 	 (7.17) 

which may be alternatively written as 

G*F& =G*{G*Fap}=frc p 	 ( 7.18) 
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Figure 7.1: Two filter functions used to define the resolved scales in real space large-eddy 

simulations: (a) the 'top-hat' function, and (b) the sinc function G = 2(7rr)' sin(7rr/x). 

if we make the replacement Ü c (X,t)Ü 13(X,t) = F(x,t). To obtain a suitable 

form for G, we then Fourier transform G into g(k) and F into f(k). From the 

convolution theorem (see Appendix A) we then have 

gfcrf3 = 	fcx, 	 (7.19) 

and hence we require G to be such that g 2  = g = 0 or 1. 

We can satisfy this condition using one of the two filter functions illustrated in 

Figure 7.1. If we chose to use the first of these filters, Figure 7.1(a), and let Ax 

tend to infinity, then g (that is the Fourier transform of C) becomes a Dirac delta 

function and the condition is satisfied, a result which is unsurprising since in this 

instance (7.1) becomes a spatial average. If however we use the filter in Figure 

7.1(b), we obtain a far more interesting result since the Fourier transform of this 

function (i.e. g(k)) is the unit top-hat function (in k-space rather than x-space), 

which clearly must satisfy the condition g(k) = 0 or 1. It is this 'spectrally sharp 
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filter' which we have been using in our earlier decompositions of the (k-space) 

NSE into low and high wavenumber regions, and it hence this which we use in 

our (spectral) large-eddy simulation. 

7.3 The large-eddy simulation code 

Our LES is based 011 the earlier DNS of Young [70]. The original DNS code was 

written to run on the Cray T31) supercomputer administered by the Edinburgh 

Parallel Computing Centre and has been well validated [70], yielding results in 

good agreement with alternative simulations, for instance those of Vincent and 

Meneguzzi [84], Yeung and Zhou [16] and Sreenivasan [85]. Given this, we shall 

not consider the technical aspects of the program, save to note that the original 

DNS is a standard pseudospectral simulation and uses a second order Runge-

Kutta scheme to integrate the non-linear term, whilst the viscous term is treated 

analytically using an integrating factor. Partial dealiasing is achieved through 

the use of a random shifting method [86]. For further technical details, we refer 

the reader to the thesis of Young [70]. 

The modifications required to turn enable this code to be used in an LES were 

minimal, we simply needed to add an additional subprogram to account for the 

fact that the viscosity in an LES is a non-constant function of wavenumber, that is 

a subprogram which returned a value for l/N(k) given k. Calling this subprogram 

wherever the DNS uses the molecular viscosity, we then have a functioning (spec-

tral) LES program. Preliminary calculations were run for the three eddy-viscosity 

models mentioned in Section 7.1, that obtained using our RG calculation, that 

obtained by Kraichllan using the TFM [80] and that generated empirically from a 

DNS. These calculations were performed on a 32 grid using the same parameters 

as would be used in a 256 DNS (i.e. E = 0.149 and v0  = 10) and hence the 

results should be comparable to those of the DNS. 
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7.4 Comparison of the eddy-viscosity models 

Prior to running the LES code, the eddy-viscosities first had to be generated. 

This was simplest in the case of the RG eddy-viscosity, which was generated using 

equation (5.28) along with a scaled eddy-viscosity and corresponding value of a. 

Both of these are output by the RG program. The only question regarding the 

generation of this eddy-viscosity was what bandwidth the scaled eddy-viscosity 

should correspond to. Since it was found to lie well within the plateau region of 

Figure 5.7, we chose to use a value of 77 = 0.4. 

The TFM eddy-viscosity was found by numerically integrating the expression [80] 

1/3  

 ( 	) 

1 	
3 	j) 

	1/3 	

[k
-  1 113 - 	11/3  

v(kJk)= 
	

dL(k,j 
 

2/3]'k 13 k 	j2/3  +k - j- 	+  
(7.20) 

for k < k, where /E1 = 0.19a 2 . In this case we assumed a value for the Kolmogorov 

constant of a = 1.6, and it should also be noted that to obtain (7.20) we need to 

assume a Kolmogorov spectrum for all wavenumbers. 

In contrast to these analytic approaches, the final eddy-viscosity, which was com-

puted on our behalf by Alistair Young, was obtained by truncating a 256 3  DNS 

velocity field and then calculating the eddy viscosity which modelled the effect 

of the subgrid terms (for details see [70], Section 6.3.1.). To obtain a smooth 

function for the eddy-viscosity, this numerical data was then fitted to the curve, 

which is a slightly modified form of that given by Lesieur and Rogallo [87], 

v(kk) = a0  + a1  exp 
(_a2 {}), 

(7.21) 

the parameters a0 , a 1  and a2  being found using a least-squares method. This 

empirical function was used as the eddy-viscosity model. 

The eddy-viscosities are illustrated in Figure 7.2, which, as in Section 5.4, shows 

that the value of the RG eddy-viscosity decreases with increasing wavenumber, 

unlike the alternative two models. As we discussed in Section 5.4, this downturn 
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Figure 7.2: The eddy-viscosities used in our 32 LES: (a) The RG model (—), (b) 
The Kraichnan TFM model (-----), and (c) The eddy-viscosity generated from a 256 DNS 
velocity field ( --- ). 

near the cutoff is almost certainly due to our neglect of the S(kIk) term. If 

included this would most likely lead to us obtaining an eddy-viscosity with the 

same cusp as displayed by the alternatives. Here we are instead interested in 

how well the RG eddy-viscosity compares, as it stands, when used in our LES to 

obtain, for instance, the energy spectrum. 

7.5 Results and Discussion 

The results we obtained from our large-eddy simulations are illustrated in Figures 

7.3 to 7.8. The first set of results, Figure 7.3, illustrates the time evolution of 

both the total energy in the system E 0 (t) and the dissipation rate E(t). This 

clearly illustrates that all four simulations reach a stationary state after around 5-

10 eddy-turnover times', with both the total energy and dissipation rate tending 

to mean values about which they only fluctuate slightly. It is also found, as 

'Note that in all the following figures we scale time axes in terms of the eddy-turnover time 
TE. This value, which we shall discuss further later in this section, is a measure of the typical 
time taken for a large scale structure in the system to undergo significant distortion due to the 
relative motion of its components [12] 
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Figure 7.3: Time evolution of the total energy E 0 (t) (top group of lines) and dissipation 
rate s(t) (bottom group of lines) in our numerical simulations. Results are plotted for the 
32 3  large-eddy simulations: (a) The RG model (-), (b) The Kraichnan TFM model 

(-----), and (c) The eddy-viscosity generated from a 256 3  DNS velocity field (----), along 
with (d) The results from the 256 DNS (-). All these simulations used € = 0.149 and 
i-'0 = 10 -3 . 

expected, that the dissipation rate takes a value approximately identical to the 

rate at which is input to the system, that is 6 0.149, for all four simulations. 

These results thus indicate that all the simulations are working correctly, giving 

us, after an initial transition period, a statistically stationary system in which 

energy is both put in and dissipated at the same rate, the amount of energy 

in the system being constant. We should also note that the evolved values for 

both the DNS and all the LES models are essentially the same. This most likely 

indicates that the system being modelled by the LES is identical to that modelled 

by the DNS, as we hoped. It is however worth commenting briefly on the different 

initial behaviour when the LES are compared to the DNS. 

The differences between the simulations are entirely due to differences in the 

starting fields and have no physical significance. Instead, they are purely artifacts 

of the way the velocity fields are initially generated (for details of how this is done 

see Young [70]). The initially increasing value of, say, the total energy in the DNS 
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Figure 7.4: Time averaged energy spectra obtained from our simulations. Results are 

plotted for the 32 3  large-eddy simulations: (a) The RG model (-), (b) The Kraichnan 

TFM model (-----), and (c) The eddy-viscosity generated from a 256 3  DNS velocity field 

(---), along with (d) The results from the 256 3 
 DNS (-). 

as opposed to the initial decrease exhibited by the LES, indicates only that the 

initial DNS velocity field had too low an energy for stationarity, whereas the 

initial LES velocity field had too high an energy. It is only once a stationary 

state has been reached that the results are physically meaningful. The same is 

true of all our following figures. 

Our next figure, Figure 7.4, shows the time averaged energy spectra  obtained 

from the various simulations. Here it can be seen that all the LES models yield an 

energy spectrum which corresponds reasonably well with that of the 256 3  DNS. 

Again this indicates that the LES provide a reasonable model for the system 

simulated in the DNS. When compared to the other two LES models, it will 

however be noticed that there is a turn-up in the RG-model spectrum at the high 

wavenumber end. This is almost certainly due to the fact that the RG eddy-

viscosity dissipates a smaller percentage of the total energy at high wavenumbers 

than is the case with the alternative models. Inspection of the single-time spectra 

2 Note that the initial transitional period of the simulation is not contained in this or any 
subsequent time averages. 
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Figure 7.5: Time evolution of the velocity derivative skewness S(t) in our numerical 

simulations. Results are plotted for the 32 large-eddy simulations: (a) The RG model 

(-), (b) The Kraichnan TFM model (-----), and (c) The eddy-viscosity generated from 

a 256 3  DNS velocity field (---), along with (d) The results from the 256 DNS (-). 

for the RG model does, however, show no evidence that the energy in this region 

accumulates over time. 

Figure 7.5 shows the time evolution of the (longitudinal) velocity derivative skew-

ness S. This is defined in real space by 

S(t) - 
(( au1 (x, t)/öx i ) 3 ) 

(7.22) 
- ((au1 (x, t)/ôx i ) 2 ) 31 2 ' 

and is regarded as being one of the most sensitive turbulence parameters [7]. Here 

it is immediately apparent that the behaviour of the DNS differs significantly from 

that of the LES, the LES results (regardless of the model) both fluctuating more 

and having a smaller magnitude. The increased fluctuation of the LES models 

is probably a reflection of the sensitivity of skewness as a measure, the DNS 

being more stable due to the increased number of data points included in the 

averaging. Indeed, it has been found that a 128 LES using the same programs 

yields a skewness with a far smoother time evolution [88]. Likewise, the fact that 

the LES models all give a skewness of around —0.2 to —0.3, as opposed to the 

value of —0.5 given by this and other (see, for example, [89]) direct numerical 
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Figure 7.6: Time evolution of the integral Reynolds number RL(t) in our numerical 

simulations. Results are plotted for the 32 3  large-eddy simulations: (a) The RG model 

(-), (b) The Kraichnan TFM model (-----), and (c) The eddy-viscosity generated from 

a 256 DNS velocity field (---), along with (d) The results from the 256 DNS (-). 

simulations, is easily accounted for. This is purely due to the fact that in an 

LES one loses the detail of the smallest scales, that is the subgrid scales. These 

scales give rise to a large proportion of the skewness [90] and thus it is only to 

be expected that an LES will return a skewness with lower magnitude than will 

a DNS in which they are included. 

In Figures 7.6 and 7.7 we show the time evolution of the integral and microscale 

Reynolds numbers, RL(t) and R(t). These Reynolds numbers are based, re-

spectively, upon the integral length scale 

37r oo 

	

L(t) = LTJ0 dkk 1 E(k , t)] /E(k), 	 (7.23) 

which is taken to be representative of the large scales, and the Taylor microscale 

	

= 15E(t)/ 
fo"O 

dk k 2 E(k, t)] 
1/2 

 , 	 ( 7.24) 

which is taken to be intermediate between the energy input and dissipation scales 

(that is, representative of the inertial range) [91]. If we additionally introduce an 
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Figure 7.7: Time evolution of the microscale Reynolds number R(t) in our numerical 

simulations. Results are plotted for the 323  large-eddy simulations: (a) The RG model 

(-), (b) The Kraichnan TFM model (-----), and (c) The eddy-viscosity generated from 
a 256 3  DNS velocity field (---), along with (d) The results from the 256 DNS (-). 

r.m.s. velocity, u(t) defined by 

U (t) = 	 (7.25) 

then the integral and microscale Reynolds numbers are defined as 

R1, (t) = L(t)u(t) 	
(7.26) 

1/0 

and 
A(t)u(t) 

R(t) = 	. 	 (7.27) 
110 

In addition, we are now also in a position to define the previously mentioned 

eddy-turnover time TE,  which is a measure of the typical time for a structure 

of size L(t) to undergo significant distortion due to the relative motion of its 

components. This is defined by 

- 	
(7.28) 

As can be seen in Figures 7.6 and 7.7, once the system reaches stationarity the 

values given by the large-eddy simulations again compare well with those given 
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by the DNS, with RL 1000 and R 	200. It is however worth commenting on 

the fact that the integral Reynolds number appears to take a significantly longer 

time to reach its stationary state than does the microscale Reynolds number, 

taking around '°E as opposed to the 57E taken by R. This is most likely due 

to the fact [7] that the small (physical) scales evolve on much faster timescales 

than the large scales. Since RL depends upon larger scales than does R, we 

should expect it to take a longer period to reach its stationary state. 

Finally, on a more qualitative level, in Figure 7.8 we plot vorticity iso-surfaces for 

both the RG and TFM LES models in comparison to that of a 256 DNS truncated 

to 32g. This truncation is made in order to remove the small scale structure that 

would otherwise be present, and hence provide a better comparison to the large-

eddy simulations. As can be seen here, there is little qualitative difference between 

the simulations, both large-eddy simulations giving rise to similar amounts and 

types of structures as seen in the truncated DNS. 

Aside from the figures we have just discussed, we may also obtain a more quanti-

tative idea of how well the various LES models perform by considering the mean 

values of these quantities along with an estimate of the error. If we assume the 

error to be twice the standard deviation of the averaged data set, we obtain the 

results in Table 7.1. Save for the skewness values, all the LES models yield results 

which lie within the error bands of the DNS results, which would again confirm 

our belief that all the tested LES models perform well in comparison to the DNS. 

In order to attempt to distinguish between the quality of the LES models, we 

finally compared their energy spectra to both the Kolmogorov spectrum and the 

time-averaged DNS spectrum using the x2  statistic for goodness of fit. This 

simply involves calculating the sum 

(model" 2 

x2  = 	

- yi 	) 	 (7.29) 
2 

o.i 

where y,  is the observed value (E(k) from our LES), model  is the predicted value 
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Figure 7.8: Vorticity iso-surfaces obtained from numerical simulations for (a) the RG 

eddy-viscosity, (b) the TFM eddy-viscosity and (c) the 256 DNS truncated onto a 32 

grid. The plotted iso-surfaces are for a value of 55% of the maximum vorticity. 
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Model RG model TFM model DNS model 256 	DNS 

0.147 + 0.027 0.147 + 0.034 0.150 + 0.029 0.149 + 0.039 

E 0  0.832 + 0.072 0.867 + 0.100 0.854 + 0.085 0.865 + 0.083 

—S 0.241 + 0.128 0.346 + 0.137 0.215 ± 0.088 0.533 ± 0.025 

RL 1060.6 ± 149.3 1031.7 + 197.5 1023.1 + 165.3 934.4 + 185.5 

RA  177.8 + 23.8 185.7 ± 31.9 180.8 ± 24.6 184.1 + 27.8 

Table 7.1: Time averaged values for the dissipation rate , total energy Et. t , skewness 

8, integral length scale Reynolds number RL and microscale Reynolds number RA.  Values 

are given for 32 large-eddy simulations using the RG eddy-viscosity, Kraichnan's TFM and 

the eddy-viscosity generated from a 256 DNS, along with results obtained from the 256 

DNS of Young [70]. The quoted errors are for two standard deviations about the mean 

value. 

Model = 
RG model 48.6 

TFM model 77.3 

DNS model 88.21 

Table 7.2: Goodness of fit (computed using the x2  statistic) of the LES models when 

compared to the Kolmogorov spectrum. A Kolmogorov constant of Ce = 1.6 was assumed, 

whilst S was taken to be the same as that used in the simulations, that is s = 0.149. 

we are comparing yi to (E(k) from the Kolmogorov spectrum or 256 DNS), and 

o is the error on y 2 . The smaller the value of x 2  the better the data set fits the 

model'. 

Performing this calculation we find the results in Table 7.2, for the comparison to 

the Kolmogorov spectrum, and Table 7.3 for the comparison to the DNS energy 

spectrum. The third column in Table 7.3 is obtained from a modified form of 

(7.29), in which the square of the error on the DNS value is also added to the 

denominator in order to account for the fact that this value is also subject to 

uncertainty. 

3Note that this statement assumes that the same number of data points are used in each 
calculation, as clearly an increase in this number will potentially lead to a corresponding increase 
in x 2 . All our calculations used 15 pairs (i.e. k and E(k)) of data points. 
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Model x 2  I Modified x2  
RG model 205.9 144.9 

TFM model 276.3 215.2 

DNS model 35.9 32.5 

Table 7.3: Goodness of fit (computed using the x2  statistic) of the LES models when 

compared to the spectrum from the 256 3  DNS. 

Since the TFM eddy-viscosity is calculated assuming the Kolmogorov spectrum, 

whilst the fixed point of the RG calculation corresponds to the onset of Kol-

mogorov scaling, we would expect both these models to compare favourably to 

the Kolmogorov spectrum. This is borne out by the results in Table 7.2, which 

show that both models provide a closer relation than the eddy-viscosity derived 

from the DNS, the RG model providing a slightly better fit. Similarly, we would 

expect the eddy-viscosity derived from the DNS to compare better to the DNS 

spectrum than either of the two analytic models, as indeed is the case. Of the 

analytic models, it would again appear that the RG eddy-viscosity compares bet-

ter to the DNS spectrum than does the TFM model. The differences in the x2  

values are however too insignificant to infer any superiority of one model over the 

other. We leave this question open for future study. We can however conclude 

that the RG eddy-viscosity we have obtained does give acceptable results when 

used in an LES. 
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Chapter 8 

Conclusions 

In this thesis we have developed and tested a Renormalization Group method for 

modelling turbulence in the context of homogeneous, isotropic and statistically 

stationary flows in incompressible fluids. This approach is based upon the earlier 

work of McComb et al. [50,51], and in particular upon the conditional averaging 

idea first introduced by McComb, Roberts and Watt in 1992 [65], the aim being 

to both improve upon this earlier theory and address the criticisms made of it. 

Following an overview of the general theory of fluid turbulence, Chapter 1, in 

Chapter 2 we review more sophisticated theories of turbulence, starting with 

renormalized perturbation theories before moving onto the class of theories in 

which our work falls, those based upon use of the Renormalization Group. Here 

we critically discuss the relative merits of each of the alternative theories prior to 

the start of our own calculation. 

We start in Chapter 3 by redefining the conditional average in terms of time-

independent realizations as opposed to the time-dependent realizations used in 

the original theory. As discussed in the chapter itself, this redefinition is made 

since the ensemble as defined in the original reference [65] is likely to be either very 

sparse or else empty. Redefining in terms of time-independent realizations resolves 

this problem and has an additional immediate benefit in that it further resolves 
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a criticism of the earlier theory. As we discuss in Section 3.7, this redefinition of 

the ensemble means that the (u,+6  (j, t)u(k - j, t)), term, which in the McComb 

et al. theory can be considered in two ways, each of which gives a different result, 

can instead only be evaluated in one, well defined, manner. 

Given the basic definition of the conditional average, in Chapter 4 we extend the 

idea in order to deal with conditional averages involving mixed products of low 

and high wavenumber modes. This is done by introducing the hypothesis of local 

chaos, which, under prescribed conditions, allows us to split such mixed moments 

into a product of low wavenumber modes multiplying the ordinary ensemble av-

erage of a product of high wavenumber modes. Using this hypothesis, we then 

proceeded to eliminate a band of high wavenumber modes, before showing in 

Chapter 5 how this procedure may be extended to form an RG calculation. 

In performing this RG calculation, we do however have to make two approxima-

tions, one regarding the neglect of higher order terms in the moment expansion 

and one regarding the manner in which we perform a time integral. Both of these 

are unsubstantiated, save for simple physical arguments, in the theory of McComb 

et al. In Chapter 6 we justify these assumptions by introducing a similarity solu-

tion for u(k, t). This allows us to rewrite the NSE in a dimensionless form and 

justify both assumptions as being equivalent to the neglect of higher order terms 

in an expansion based upon the local Reynolds number ) 1 (k 1 ). Performing the 

calculation in this manner leads us to a slightly different result for the viscosity 

increment than that obtained by McComb et al. We show that .\ 1 (k 1 ) must take 

a value less than 0.4, and hence this truncation would seem reasonable. As an 

aside, in Appendix B we also show that the introduced similarity solution enables 

us to obtain analytically a model energy spectrum which, if subject to the same 

forcing and assumptions, is identical to the result derived in the RG theory of 

Forster, Nelson and Stephen [44]. 

As is discussed in Section 5.4, this RG calculation gives good results, in particular 
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giving a value for the Kolmogorov constant of a 	1.62 over a wide range of 

bandwidths, in good agreement with both experiment and numerical simulations. 

From the RG calculation we also obtain an eddy-viscosity, which in Chapter 7 we 

use in a 32 large-eddy simulation, comparing the results obtained with this eddy-

viscosity to those obtained using two alternative models, the TFM of Kraichnan 

and that derived from a 256 DNS. As can be seen in this chapter, each of these 

models gives results comparable to one another and to the results of a 256 DNS. 

Indeed with the simulations we have carried out it is impossible to say that any 

of the models considered performs significantly better than the alternatives. The 

question of why these considerably different eddy-viscosities should all perform 

in a virtually identical manner is clearly worthy of future investigation. 
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Appendix A 

Properties of Fourier transforms 

Ad General properties 

The Fourier transform of a general function f(x, t) is defined by introducing the 

Fourier transform pair 

= f d 3  k f,, (k, t), 	 (A.1) 

and 
3 

f(k, t) = (
2 ) f d3  f"  (X, 
	 (A.2) 

With this definition, fa (k,t) is the Fourier transform (FT) of f(x,t) and vice 

versa. Given equations (A.1) and (A.2) we can simply obtain several important 

results. 

First we relate equations (A.1) and (A.2) to the Dirac delta function. To do this 

we substitute (A.1) into (A.2) to obtain 

(k, t) = 	) ' f d 3X If d 3  k'  f, (k1' t 
 )e 

 ik'I 	 (A.3) 
27r  

= 	)3if  d3 x d3 k' f(k', t ) e_i(k_k'. 	 (A.4) 
27r  

It can then be easily seen that this statement can only hold true for arbitrary 

values of k provided 

f d3x e_i_k' 	= (27r) 38(k - k'). 	 (A.5) 
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Given equation (A.5) we can then obtain an expression for the FT of the product 

defined by 

pp(x,t) = f(x,t)g(x,t). 	 (A.6) 

From (A.2), the FT of the left hand side may be written as 

p(k,t) = 	 ( A.7) 

which may be rewritten using (A.1) and (A.6) as 

(k, t) = ()
3 

f 
d 3 

{f d
3k' fa (kl,t) eik'x} 

x {f d
3 k" g(k", t)ei"x I 	 (A.8) 

= ()3 

N d3 x d3k' d3 k" f(k', t)gp(k", t) 
2,7r

xe 	 (A.9) 

If we then use equation (A.5) in order to perform the integrals with respect to x 

and k" we obtain the final result 

p(k,t) = f d 3k'fa (k',t)g(k - k', t), 	 (A. 10) 

which is known as the convolution theorem. That is, a product in x-space becomes 

a convolution in k-space. 

Finally we consider the effect of taking a derivative of f(x, t). From (A.1) it can 

be easily seen that 

= fd 3k(ik)f(k,t)e, 	 (A. 11) 

and this can be extended to any order of derivative to give 

f,  (X, t) 
= f d3k (ik)mf(k, t)e. 	 (A.12) 

Further details regarding the general definition and properties of the Fourier 

transform may be found in either Lighthill [92] or Wong [93]. 
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A.2 The Fourier transform of G(x, x') 

In Section 1.3 we need to know the FT of the Green's function G(x, x') which 

satisfies Poisson's equation 

V 2 G(x, x') = 8(x - x'). 	 (A.13) 

By definition of the Dirac delta function, if (A.13) is defined over the entire three 

dimensional space then the right hand side of it must satisfy 

f dx'8(x - x') = 1. 	 (A.14) 

Hence its solution must be spherically symmetric in 

r = x - 	 (A.15) 

since nothing will be changed by putting x' at the origin. Thus, G(x, x') must 

be a function of r only. 

From equation (A.1), G(r) is related to its Fourier transform G(k) by 

G(r) = f d'k G(k ),ik,r, (A.16) 

and hence substituting this into the left hand side of equation (A.13) and using 

(A.5) to re-express the delta function, we are left with 

8r 	f dk G(k)e 	
= ()3 

f d 3  k 	 (A.17) 
Dra   

that is, 

- f d3 k k2G(k)e 	
= ()3 

f d 3  k 	 (A.18) 
27r  

This must hold for arbitrary euIr  and thus we find that the FT of G(r) is 

/ 1 3 \ 
/ 1 " 

G(k) = 
- (

a-) () 	
(A.19) 
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Analytic calculation of the 
energy spectrum 

B.1 An integral equation for the energy spec-
trum 

In order to use the similarity solution of Chapter 6 to obtain an expression de-

scribing the energy spectrum, we start by recalling that for a homogeneous and 

stationary velocity field we have, from equations (1.63) and (1.74), 

(
u. (k, t)u(j, t)) = Q c (k)8(k + j) 	 (B.1) 

and 

= Q(k,j)(k+j +1). 	(B.2) 

Under the further assumption of isotropy (B.1) reduces to (see equation (1.68)) 

(
u . (k, t)u(j, t)) = Q(k)D cr (k)S(k + j). 	 (B.3) 

In addition, we rewrite equations (6.15) and (6.17) in terms of an arbitrary 

wavenumber t, say, as 

= k/k, 	 (B.4) 

and 

ua (k,t) = V(ic)cbc (k',t'), 	 (13.5) 
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in order to emphasise that the calculation in this appendix is independent of the 

choice of this wavenumber. Using all these expressions along with (6.4), we can 

then obtain a relationship between Q(k) and V(k) thus: 

Substitute equations (B.4) and (B.5) into equation (6.4) to obtain 

V2 (k) - 
V2(K)

f d3j' ((k', t') 	J', t')). 	(B.6) 
- 

Substitute equations (B.4) and (13.5) into equation (B.3) 

3 v 2 ()(/(k', t')(j', t')) = Q(k)D(k')8(k' + j'). 	(B.7) 

Take the trace of equation (B.7) and rearrange 

	

-
2Q(k) 8(k'+j'). 	(B.8) K c (k', ')b c (j', t')) - 

k 3 V 2() 

Substitute this into equation (13.6) to obtain 

- 2Q(k) - 2Q(k) 
(B.9) 

- k'3 i 3  - 

As desired this gives us a relationship between V(k) and Q(k), namely 

Q(k) = k3 V2 (k) . 	 ( B.10) 

To proceed further, we first need to recall the energy balance equation, (1.79), 

(

a + 
at 

 2vo k) E(k,t) = W(k,t) + T(k,t), 

where the transfer spectrum T(k) is given by 

T(k) = 2nk2M(k)fd3j {Q(j,k — j, — k) - Qa(j,k j,k)}. 

(B.12) 

If we then return to (13.2) we may substitute (13.5) for ,,(k, t) to obtain 

Qay (k, j)S(k + j + 1) = V 3 (K)(0 a(k', t')b(j', t')V).(l',  t')), 	(B.13) 
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and if we integrate this with respect to I we find 

Q(k, j, —k 
- j) = V3()k3 f d3 1' (0 ,, (k', t')(j', t')(l', t')) (B.14) 

= V 3 (,c)k 3H(k',j') 1 	 (B.15) 

where 

H(k',j') 
= f d31' i(k', t')(j', t')(1', t')). 	(B.16) 

Along with (B.4), equation (B.15) can then be substituted into (B.12) to obtain 

T(k) = 29V3(i)k12Ma(k') f d 3j' {H a  (j', k' 
- 

j') - Ha (j', —k' - 

(B.17) 

If we integrate the energy balance equation with respect to k from 0 to i, we 

have 

fo 6 dk 21/ok2E(k) 
=  fo dk W(k) + fo dk T(k), 	(B.18) 

where it has been assumed that the energy spectrum is stationary, and we may 

obtain the integral of the transfer spectrum using equation (B.17): 

f 6 
dk T(k) = 210V3(k)  fo dk' M Oy 	f d3j' {.} 	(B.19) 

= 	1OV3(,c)k'I~1 d3k' M(k') f d3j' {.} 	(B.20) 

= —Ak 10V 3 (k), 	 (B.21) 

where {•} represents the terms in curly brackets in (B.17), the second line follows 

from isotropy and the last line, where A is a constant, comes from the fact that 

the integrals will be the same regardless of the choice of ic, since they only depend 

upon the dimensionless variable W. If we then substitute equation (B.21) into 

(B.18) and rearrange, we have a final expression for V(t): 

	

V(k) = A113E1131013 (f d,- W(j) - f dj 2vOj2E(j)). 	(B.22) 

Recalling equations (1.72) and ,(B.10) we find 

E(K) = 27rt 5 V 2 (ic), 	 (B.23) 
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and hence substituting from (B.22) we have our analytic integral equation for the 

energy spectrum, as desired: 

E() = a62/3 K-5/3 
( 	 f dj W(j) - 	f di 	 E(j

)) 2/3 
(13.24) 

where a = 27rA 213 . 	Clearly, if we restrict ourselves to wavenumbers above 

those at which the energy is input and below those at which energy dissipation 

occurs, that is the inertial range, this result reduces to the Kolmogorov spectrum 

E(is) = aE2/3,c5/3 where a may now be identified as the Kolmogorov constant. 

B.2 Forster, Nelson and Stephen type forcing in 
the k —+ 0 limit 

To proceed from equation (13.24) we shall follow our earlier assumptions in con-

sidering all the forcing to occur at very low wavenumbers and restricting our 

attention to wavenumbers above this region. However, before doing this it is of 

interest to first consider the effect of substituting into (B.24) forcing of the type 

used by FNS and YO. Such a forcing has an input spectrum of power law form, 

see Section 2.4.1, 

Wf S (k) = W0k', 	 (B.25) 

Our definition of W(k) does however differ slightly from that used by FNS, and 

in our case the equivalent statement to (B.25) is 

W(k) = 47rk 2 WfS (k) 

= 47rW0 k 2 '. 	 (B.26) 

If we then proceed to substitute (B.26) into (13.24) we find 

 2/3 

	

E(k) =aE2/3k5/3 (i 
1 

dj4Woj2 	
f k 

dj 2v0j2E(j)
'EJO  

2/3 
B 

E 3 	- fo 
di20i2E(i)) (.27) = aE2/3k5/3 47rw0  k 3 	1 k

—y 6  
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where we have re-labelled c —+ Ic and assume that y 3. 

In their RG calculation, FNS restrict themselves to the limit k -+ 0. If we also 

make this restriction we may assume that the viscous term in (B.27) is negligible, 

enabling us to rewrite this expression as 

u rn E(k) 
— a(4Wo)2/3 k

-5132313 . 	 (B.28) 
k—O 	— ( 3 — y) 2 /3  

That is, we obtain an energy spectrum which has an identical dependence upon 

wavenumber as that obtained by FNS and YO. 

Similarly, if we consider the situation y = 3, assume that no forcing occurs below 

a lower limit km j n  and apply the same approximations as previously, we obtain 

the result 

E(k) = a(47)2/3W2/3k_5/3ln 
(_-_), 	

(B.29) 
mi n 

which displays the expected logarithmic divergence. The results of YO have also 

be re-obtained by Kraichnan [63] using a perturbative approximation (the so-

called 'distant-interaction algorithm'), but the question of why our simple, non-

perturbative, calculation also yields the same expressions for the energy spectrum 

would clearly be worth pursuing. 

B.3 Solution of the integral equation 

Rather than assume a form for the forcing, in this section we shall instead assume 

all forcing to be constrained to very low wavenumbers and restrict our attention 

to wavenumbers above this region. Assuming the upper limit of this forcing region 

to be defined by Icf , say, then from equation (1.84) we have 

rk 
E I djW(j) 

Jo 
(B.30) 

for any choice of k > k. Given that this is the case we may then rewrite (B.24) 

as 
2/3 

E(k) = ae213 k 513  (i — 1 
fk 

dj 2v0j2E(j)) 	, 	(B.31) 
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where we have again re-labelled ic —+ k. 

We can obtain a simplified, non integral, form of equation (B.31) as follows: 

Raise equation (B.31) to the power 3/2 and multiply through by a-3 / 2  k 5 / 2  

to obtain 

c 312 k 512 E312 (k) = 6— fo 
dj2iioj2E(j)( B.32) 

 k 

Differentiate with respect to k 

3a_3/2k5/2E1/2(k)dE(IC) 	5 

dk 
+ 	312 k 312 E312 (k) = — 2ii0 k 2 E(k). 	(B.33) 

Rearranging this we have 

dE ( k)k_ 1 E(k) = 4a3/2vok_1/2E1/2(k) 	(B.34) 
dk + 

In order to solve this non-linear ODE we note that it has the form of a Bernoulli 

ODE [75] 
dy (x) 

dx +p(x)y(x) =g(x)y(x)a, (B.35) 

with a = 1/2. Such an equation can by transformed to a linear first order ODE 

by making the substitution 

U(X) = y ( x )l_a , 	 ( B.36) 

and so we make the replacement 

u(k) = E'12 (k) 	 (B.37) 

which implies 
dE(k) 

=2u(k). 	 (B.38) 

Hence, substituting into equation (B.34) and rearranging we have 

du(k) + k_ 1 u(k) = _a3/2ijok_2. 	 (B.39) 

This can be solved by multiplying through by the integrating factor k 516  to obtain 

2 3  (k 5 /6 Eh/2 (k)) = —a ' 2 v0k" 3 , 	 ( B.40) 
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and then integrating with respect to k which gives 

	

k 51'6u(k) = C — a3/ 2 vo k 4I3 , 	 (B.41) 

where C is the constant of integration. Re-introducing E(k) and rearranging, 

this gives the final result 

/ 	C 	1 	413 
2

E(k) = E213k513 1/21/3 - a (_t) , 	( B.42) 

where k d  is the Kolmogorov dissipation wavenumber. 

If we then apply the approximate boundary condition that at k = kf we have the 

Kolmogorov spectrum, that is E(k 1 ) = aE213k1 5/3  we find that C is given by 

C = al/2&1/3 (i + 1a  
(L  

 ), 	
(B.43) 

and hence 

E(k) = 213 k -513  (i - 
i(k 413  - kY 3)) 2  

	

2 	4/3 	 (B.44) 
ci 

B.4 Validity of the obtained energy spectrum 

Prior to assessing the validity of the spectrum described in (B.44) we first note 

that it can be simplified slightly if we assume that k f  -+ 0. In this instance it is 

reasonable to neglect the k f  term, meaning we obtain the simplified result 

E(k) =a 1 E2/3k5/3 i - ()
4/3 2

). (B.45) 

This expression is compared to the DNS spectrum of Young and the spectra 

obtained using the models of Pao [78] and Qian [79] in Figure B.I. Pao's model 

spectrum is obtained by assuming that the rate at which energy is transferred 

through wavenumber space has the same dependence on viscosity as the energy 

spectrum, and has the form 

4/3 
E(k) = ae213k13exp 

/ 

_ (

3a

---) (-) ) 
	

(B.46) 
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10 2  

10,  

DNS spectrum 

I 	 Equation (C.44) 
- - - Pao's model spectrum 
- - - Qian's model spectrum 

10_6 	
2 

	

10- 	 10- 	 10 	 1C 

k/kd  

Figure B.1: Comparison of the compensated energy spectra given by equation (B.45), 

the models of Pao [78] and Qian [79], and that obtained in the DNS of Young [70]. All the 

model spectra were calculated using the same values for c, E and v0 as used in the DNS 

(o 1.624, E = 0.149 and v0  = 10-3 
). 

whilst Qian's model is obtained by fitting the results of numerical experiments 

to an assumed spectrum with adjustable parameters, and has the form 

\ 
E(k) = 1.19E 213k' 3  1+53 ( 

( 	

/ k )2/3 ) \

xP 	
/ k 

4/3
_5.4 	

)
(B.47) 

\,k 

As can be seen in the figure, the spectrum described by (B.45) fits the results of 

the DNS better than the spectrum of Pao's model, and although the spectrum of 

Qian does give a better fit that either of the alternatives it has to be remembered 

that this result is purely empirical, with values chosen exactly so that it does 

match the results of numerical simulations. It would thus seem reasonable to 

conclude that the model spectrum we have obtained provides at least as good 

an approximation as the analytic theory of Pao, whilst using fewer restrictive 

assumptions. However, we should point out that the spectrum described by 

(B.45) has a significant flaw in that it predicts the spectrum will equal zero at 

k = kroot  = (2/a)3/4 kd  1.18kd, assuming a = 1.6, and then increase again as 

the wavenumber increases. We believe that this behaviour occurs as a result of 
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the approximations we make in solving the integral equation, in particular the 

boundary condition used, as equation (13.31) indicates the expected behaviour of 

E(k) decreasing for all k and tending to zero only as k —+ oo. We do not however 

believe that this problem should invalidate the use of (13.45) as a model in most 

situations of interest. Indeed, it should be noted that if we include the forcing 

term, that is use (B.44) instead of (B.45), we find that the zero in the energy 

spectrum occurs at 

k root  = () 314 kd (i + %)
3/4. 	

(B.48) 
0Z 	 2 

That is, including forcing up to a defined wavenumber has the effect of increasing 

the value of kroot , the value of which could be used to provide an estimate of the 

maximum relevant wavenumber in our system. 
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LETTER TO THE EDITOR 

Elimination of turbulence modes using a conditional average 
with asymptotic freedom 

W D McComb and C Johnston 
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK 

E-mail: W.D.McCombQed. ac. uk  

Received 1 November 1999 

Abstract. The part of the nonlinear term in the Navier—Stokes equation which represents coupling 
to the small-scale modes may be averaged out by introducing a weak conditional average with 
asymptotic freedom in wavenumber. A residual deterministic part, while important for individual 
realizations, makes a negligible contribution to the renormalization of the dissipation rate. This is 
because the full ensemble average, needed to establish the energy balance, relaxes the constraint 
on the conditional average. 

The application of renormalization group methods to dynamical problems in microscopic 
physics requires an average over small scales in which large scales are held fixed [1]. 
Unfortunately, the corresponding procedure for classical nonlinear systems, such as Navier-
Stokes turbulence, is impossible, in principle, because of the deterministic nature of such 
systems. Recently, it has been proposed that the chaotic nature of turbulence may justify the 
use of an approximate conditional average [2].  In this paper we argue that the conditional 
elimination of a band of high-wavenumber modes may be accomplished in terms of a 
deterministic part, which has a coherent phase relation with the retained modes, and a random 
part, which is asymptotically free and may be averaged out with the introduction of an effective 
viscosity. The reduction of the number of modes takes place at a constant rate of energy 
dissipation, and it is further argued that the renormalization of this quantity can be adequately 
represented by the incoherent part only. This is because the full ensemble average, needed for 
the spectral energy balance, tends to 'lift' the constraint on the conditional average. 

We consider incompressible fluid turbulence, as governed by the solenoidal Navier—Stokes 
equation (NSE) 

(a + V0k 2)Ua(k, t) = M.,6 , (k) f d3 j up (j, t)u(k - j, 1) 	 (1) 

where v0  is the kinematic viscosity of the fluid, 

Mcx t y (k) = (2i) -1  [k,D 5 (k) + k y Dap(k)] 	 (2) 

and the projector D5fl (k) is expressed in terms of the Kronecker delta 	as 

Dafi(k) = 	kekplkl 2 . 	 (3) 

0305-4470/001010015+06$30.00 © 2000 lop Publishing Ltd 	 L15 
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In order to pose a specific problem, we restrict our attention to stationary, isotropic, 
homogeneous turbulence, with dissipation rate s and zero mean velocity. We also introduce 
an upper cutoff wavenumber Km , which is defined through the dissipation integral 

100 

	fo

Kmx 

e 
=J 

 2uok2 E(k)dk 	 2vok2 E(k)dk 	 (4) 
0  

where E(k) is the energy spectrum, so ensuring that Kma,, is of the same order of magnitude 
as the Kolmogorov dissipation wavenumber. 

We then filter the velocity field at Iki k = K, where 0 < K < Km , according to 

	

1u(k,t) 	for 0<k<K 
Ua(k, t) = 
	

(5) 

	

u(k, t) 	for K <k < K.  
Ce 

The NSE may be decomposed using (5), to give 

(8, + vok2)u = M(u7u_ 	+ 2uJ4_ + uu_) 	 (6) 

(a, + uok 2)u = M(u7u_ + 2uJu_ + u- u_) 	 (7) 

where, for simplicity, all vector indices and independent variables are contracted into a single 
subscript. 

In order to obtain an expression for the average effect of the high-wavenumber modes 
upon a particular low-wavenumber mode, we need to average out the u whilst holding the u - 
constant. This requires a conditional average (•), such that 

(u(k, t)) = u(k, t). 	 (8)
of 

This is the only rigorous property we can attribute to the conditional average, and it should 
also be noted that it is vital to distinguish between this operation and that of a filtered ensemble 
average. 

To establish the statistical properties of ua (k, t) we consider an ensemble W consisting 
of the set of M time-independent realizations ( W,,(, )  (k)), each realizationf being labelled by 
an integer i. Subject to certain weak conditions, the ensemble average is 

M 

(u (k, t)) = urn --  V' W.',' )  (k) = 0. (k) (9) M'.
M L_1 

1=1 

where U,, (k) is the time average of u (k, t). This procedure can then be extended to any well 
behaved functional, F[Ua  (k, t)], thus: 

(F[Ua (k, t)]) = urn - 	F{W(k)]. 	 (10) 
M—+oo M i=1 

Now we consider how to perform a conditional average. To do this, we first select a 
subensemble, y = (Y' (k) } C W, and choose the members of this biased subensemble to be 
those N (N M) members of W satisfying the criterion 

lim(max O(k)W'(k) - u-(k, ti)I 8) 	 (11) 
5—* 0 

where t1 is some fixed time and 0 - (k) = 1 for 0 < k < K, and zero otherwise. The 
conditional average is then obtained by generalizing ( 9) and (10) to the biased subensemble, 
namely, 

N 

(U a (k, t)) c  = lim 	E Y'(k) 	 (12) 
N—soo N i=l 

t Note that this differs from the formulation in [2, where each realization was time-dependent. 
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and 

(F[ua (k, t)]) = urn - 	F[Y(k)]. 	 (13) 
N-+oo N i=1 

It follows by construction that (8) holds, since from (11) and (12) 

(u (k, t)) = urn 
1

—[Nu(k, t)] = u(k, t). 	 (14) 
N-oo N Ct 

The difficulty now facing us lies in the nature of the subensemble, which is an example 
of deterministic chaos. This can be seen if we consider two extreme scenarios for the 
behaviour of u under the conditional average. Firstly, if we assume that the subensemble 
is strictly deterministic, then in this instance u is fully determined by prescribing u. 
Accordingly, equation (8) implies that (uJu_) = u7u_3 , (uJu_) = and 

=Thus, the low-pass filtered NSE, equation (6), reduces back to itself 
under the conditional average. Secondly, if we assume that the subensemble is purely random, 
it follows that in this case, u is independent of u. Hence, applying the conditional average 
to the low-pass filtered NSE, we find 

( + vok)u = MI UJU_J  

the uJu term being zero since the ensemble average of u is zero, whilst the uu 	term k-j
is zero due to homogeneity. Thus in this scenario it appears that there is no effect of nonlinear 
coupling. 

In reality we are faced with a situation somewhere between these two extremes, and so we 
replace our criterion for members of the biased subensemble, equation (11), which is equivalent 
to the first of these situations if 8 = 0, by the less precise criterion 

max 1 0 (k)W'(k) - u- (k, t1)1 	 (15) 
CL 

where, in general, is of the order of the turbulent velocities involved. 
To obtain a non-trivial conditional average we must now identify those circumstances in 

which may be neglected as being, in some sense, small. A measure of the 'smallness of ' 
can be identified by constructing the subensemble as 

W(k) =u(k,t i )+b(k,ti ) 	 ( 16) 

where i is any label satisfying (15). If we then further restrict the subensemble to be such that 
the set {j(k, t1)} satisfies (8), we find that 

= uJuj + (bJøk-J)c. 	 (17) 

Thus in order to maintain form invariance of the NSE under conditional averaging, we require 

+ 0 	 (18) 

in some limit. This is our criterion for the smallness of . 
If we further suppose that chaos and unpredictability are local characteristics of turbulence, 

and there is support for such a view [3,4], then if Kc  and Km are sufficiently far apart we 
might expect, due to the development of unpredictability as k is increased above K, that the 
effect of the constraint given in equation (15) would die away, such that 

lirn (u ,' , (k, t)) c  -> (u(Km ,, t)). 	 (19) 

We refer to this property as asymptotic freedom. In order to extend this concept to higher-order 
moments, we introduce the following hypothesis of local chaos: 
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'For sufficiently large Reynolds' number and corresponding K, there exists a cut-
off wavenumber K < K, such that a mixed conditional moment involving p 
low-wavenumber and r high-wavenumber modes takes the limiting form: 

lim(u(k 1 , t)u(k 2 , t) .. 	 t)u(k +1 , t)u(k ~2 , t). u + (kp+r, t)) 
0 CL 

—~ u(k i ,t)u(k 2,t) ... u(k,t) 

x tim (U(kp+i,t)U(kp ~2,t)...U(kp+ r ,t)) 	 (20) 
{) Km, or  

where lim(.), Km,  means take the limit for all wavevector arguments of the u modes, 
with the condition of equation (18) satisfied as a corollary'. 

This provides our definition of an asymptotic conditional average and we should emphasize that 
the numerical simulations of Machiels [4] provide independent verification of this behaviour. 
It may be used to evaluate all terms involving mixed products of u with u. For example, 

lim(u7u_) = uJ l im (u_) = 0 (21) 

since (u+ (k, t)) = 0. Note also, that the hypothesis as stated is more general than is necessary, 
since we shall only need to consider products containing at most two u modes. 

If we then take the conditional average of the low-pass filtered NSE, equation (6), we 
obtain 

(d1  + vok 2 )u = M((uJu _) +2(uJu_)+ (uiur_)} 	 (22) 

where the conditional average of u on the left-hand side has been evaluated using (8). This 
equation may be further rewritten as 

(, + i'ok)u = MUJU_ J  + S(kIK) + M lim(uu_) 	 (23) 

where 

s(kIK) = M! (øI)c+ 2 (ujt4 j)c + (uu) - lim(uu j )}. 	 (24) 

It should also be noted that the hypothesis must hold for Kc 	0, as in this instance 
equation (22) reduces to the Reynolds equation, with ut,, (k, t) --> U, (k) as given by (9). 

Our hypothesis does not explicitly tell us how evaluate the conditional average in (23), 
which involves a non-trivial projection of a product of u modes in the Hilbert space of the 
u modes, but we may use the high-pass filtered NSE, equation (7), to obtain a governing 
equation for this quantity. To do this, we use (7) to write equations for ut and 	multiply 
these equations by u_ and u, respectively, add the resulting equations together, and then 
take the conditional average. After some rearrangement of dummy variables, this gives 

lim(8t  + VOJ 2  + yolk - jl2)(uu_)c = lim 2M 

X { 	 + 	 + 	 (25) 

Applying the hypothesis as given by equation (20), it is easily seen that the first term on the 
right-hand side of (25) is zero, since in the limit it involves the ensemble average of u, while 
the second term gives rise to a term linear in u. The third term may be evaluated by iterating 
the above procedure to form a dynamical equation for which in turn gives rise 
to higher-order moments. 

In general, we can show that a similar pattern occurs for all higher-order moments involving 
only products of That is, each such moment gives rise to a moment involving two u modes, 
which in general, has to be zero for consistency in its wavevector arguments, a term linear in 
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u, and a moment involving only u modes of next higher order. Hence we may write the 
general result 

M(k)fd 3 J lim(u(j,t)u(k —j,t)) = f dsA(k,t —s)u(k,$) 	 (26)
oo  

'6 Y

where A(k, t - s) has the form 

A(k,t—s) =fd 3jexp[_(v0 j2 + vo Ik_j1)(t_s)] 

x 14MM lim (uj_u_) 
() K 

+24MML'M {) ( P_q f_p  _j) +... 	
(27) 03 P

L 03  8, + 	+ vj 
- 	

+ yolk — j1 2 , and where higher-order terms are easily found by 
induction. Thus, in all, equation (23) for the low-wavenumber modes may be written as 

(8, + vok2 )u — fdsA(k, t - s)u_ (k,$)=M~ u-u k—i   + S(kIK). (28) 

In order to test the hypothesis, we make two approximations. First, we truncate the 
expansion of A (k, t) at lowest non-trivial order. This can be justified by the introduction of a 
local Reynolds number based on a length scale Kg', the moment expansion being re-expressed 
as a power series in this parameter. Making the truncation in (26) and (27) leaves us with the 
expression 

limM(k) (u(j,t)u
f 

+ (k—j,t)) c = 	ds exp[ — (voj2 + yolk —i1 2)(t —s)]
oo  

x 4M;(k)M(i)fd 3 P lim (u(j - p, s)u (k — j, s))u(k, s). 

(29) 

For stationary, homogeneous, and isotropic turbulence we may write 

(uij—p,$)u(k—j,$)) = Q(lk — jl)D(k — j)6 (k — p) 	(30) 

where Q(k) is the spectral density and 8 is the Dirac delta function. This leaves the question 
of how to perform the time integral 

j
00

ds exp[—(voj 2  + yolk — jl 2)(t — s)]u(k, s). 	 (31) 

To do this we change the variable of integration from s to T = t - s, expand the resultant 
u (k, t — T) as a Taylor series about T = 0, and then truncate the expansion at zero order, 
this approach being based upon the physical idea that the u modes are slowly evolving on 
timescales defined by the inverse of u0j 2  + yolk — j1 2 . 

We have investigated the validity of these two approximations using results from direct 
numerical simulations performed on a 256 3  grid, with Taylor—Reynolds number R,. = 190. At 
this resolution the simulations have a very limited inertial range (see [5,61),  but nevertheless 
they indicate that there is a range of K (K 0.5K m ) where both approximations give rise 
to error terms of less than unity, and that the magnitude of these errors will decrease as we 
increase R to the large values where we may reasonably expect our hypothesis to hold. 

With these approximations, the right-hand side of (26) is simple to evaluate, and we are 
left with the final expression for the conditional average on the right-hand side of (23): 

,, Y  (k) 1lirt(u (j, t)U; (k — j' t)) 

= 4M (k) M ,-68,  (j) lim 
Ikjt*Km 

Q(Ik — iI)DEY(k -i) 
voj 2  + yolk — j1 2  

(32) 
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which is linear in u, meaning that it may be interpreted in terms of an increment to the 
viscosity. 

In order to evaluate the limit, we make a first-order truncation of a Taylor series expansion 
in wavenumber of Q about Km . In this way, we re-obtain the results previously obtained 
using the two-field theory of McComb and Watt [7].  As they showed, a renormalization group 
calculation based upon these equations gives a prediction for the Kolmogorov constant of 
1.60 ± 0.01, in good agreement with experiment, for 0.55K. K c  < 0.75Kmax . This 
calculation obtained the Kolmogorov exponent and pre-factor by assuming that the effective 
viscosity and its increment scale in the same way (which is true at the fixed point) and that 
the rate of energy transfer is renormalized. This latter assumption amounted, in our present 
terminology, to the neglect of S (k I K) in equation (23). 

A new justification of this step can now be offered as follows. The equation for the energy 
spectrum is obtained by multiplying the dynamical equation for u;(k, t) by u:(—k, t) and 
then performing an average over the full ensemble. Thus the effect of S(k I K) is just 

(S(kIK)u(—k, t)). of 

If we consider the form of S(kIK) we see that each of the terms in the above expression 
involves a conditional average. In evaluating such terms we perform a double summation, 
firstly summing over all members with low-wavenumber modes close to a particular member 
of the ensemble, and then repeating this summation for every member of the ensemble. Now, 
the initial ensemble was constructed according to the principle of equal a priori probabilities 
but this is no longer necessarily true of the composite ensemble which we are now considering. 
If it were true, then the terms making up S(k I K) would vanish identically for all K. However, 
in view of the results of the renormalization group calculations [7],  it seems likely that the 
contribution from S(kI K) is small for K in the range 0.55Km K 0.75K. Thus, for 
this range of cut-off wavenumbers, it would appear that the renormalization group calculation 
of the effective viscosity [7] is valid in a heuristic sense. 

Finally, it should be noted that this work does not suggest that S(k I K) can be neglected in 
equation (23), which is the governing equation for a single realization. However, it does suggest 
that, having averaged out the chaotic part to yield an effective viscosity, one should consider 
modelling the relationship of S(k I K) to the u modes as predominantly deterministic. Work 
along these lines will be the subject of a separate communication. 

Both authors acknowledge the support and facilities provided by the Isaac Newton Institute. 
We also wish to thank Alistair Young for providing results from numerical simulations. CJ 
acknowledges the financial support of the Engineering and Physical Sciences Research Council. 

References 

Wilson K G 1975 Rev. Mod. Phys. 47 773 
McComb W D, Roberts W and Watt A G 1992 Phys. Rev. A 45 3507 

[3 1 Deissler R G 1986 Phys. Fluids 29 1453 
Machiels L 1997 Phys. Rev. Lea. 79 3411 
Brasseur I Ci and Wei C H 1994 Phys. Fluids 6 842 
Yeung P K and Zhou Y 1997 Phys. Rev. E 56 1746 
McComb W D and Watt A G 1992 Phys. Rev. A 464797 

158 



Bibliography 

J. 0. Hinze, Turbulence, McGraw-Hill, New York, 1959. 

V. M. Canuto and M. S. Dubovikov, Phys. Fluids 8, 571 (1996). 

V. M. Canuto and M. S. Dubovikov, Phys. Fluids 8, 587 (1996). 

0. Reynolds, Phil. Trans. R. Soc. A 175, 935 (1883). 

M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford, 

California, 1982. 

C. L. M. H. Navier, Mém. Acad. Roy. Sci. 6, 389 (1823). 

W. D. McComb, The Physics of Fluid Turbulence, Oxford University Press, 

Oxford, 1990. 

0. Reynolds, Phil. Trans. R. Soc. A 186, 123 (1895). 

H. P. Robertson, Proc. Camb. Phil. Soc. 36, 209 (1940). 

G. I. Taylor, Proc. R. Soc. Lond. A 164, 421 (1938). 

L. F. Richardson, Weather Prediction by Numerical Process, Cambridge 

University Press, Cambridge, 1922. 

U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge Univer-

sity Press, Cambridge, 1995. 

A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941). 

159 



Bibliography 

A. N. Kolmogorov, Doki. Akad. Nauk SSSR 32, 16 (1941). 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics: Landau and Lifshitz 

Course of Theoretical Physics, Pergamon Press, London, 1982. 

P. K. Yeung and Y. Zhou, Phys. Rev. E 56, 1746 (1997). 

A. Praskovsky and S. Oncley, Phys. Fluids 6, 2886 (1994). 

J. Boussinesq, Mém. prés. par div. savants a l'Acad. Sci 23, 1 (1877). 

W. Heisenberg, Z. Phys. 124, 628 (1948). 

W. Heisenberg, Proc. R. Soc. A 195, 402 (1948). 

I. Proudmall and W. H. Reid, Phil. Trans. R. Soc. Lond. 247, 163 (1954). 

T. Tatsumi, Proc. R. Soc. A 239, 16 (1957). 

G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge Uni- 

versity Press, Cambridge, 2nd edition, 1971. 

E. E. O'Brien and G. C. Francis, J. Fluid Mech 13, 369 (1962). 

Y. Ogura, J. Fluid Mech 16, 33 (1963). 

S. A. Orszag, J. Fluid Mech. 41, 363 (1970). 

R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959). 

S. F. Edwards, J. Fluid Mech. 18, 239 (1964). 

J. R. Herring, Phys. Fluids 8, 2219 (1965). 

J. R. Herring, Phys. Fluids 9, 2106 (1966). 

R. H. Kraichnan, Phys. Fluids 7, 1163 (1964). 

R. H. Kraichnan, Phys. Fluids 8, 575 (1965). 

160 



Bibliography 

R. H. Kraichnan, Phys. Fluids 9, 1728 (1966). 

S. F. Edwards and W. D. McComb, J. Phys. A 2, 157 (1969). 

W. D. McComb, J. Phys. A: Math. Nuci. Gen 7, 632 (1974). 

W. D. McComb, J. Phys A: Math Gen 9, 179 (1976). 

W. D. McComb, J. Phys. A: Math Gen 11, 613 (1978). 

W. D. McComb, M. J. Filipiak, and V. Shanmugasundaram, J. Fluid Mech. 

245, 279 (1992). 

A. P. Quinn, Private communication. 

K. G. Wilson, Adv. Math. 16, 170 (1975). 

K. G. Wilson, Rev. Mod. Phys 47, 773 (1975). 

K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983). 

D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. Lett. 36, 867 

(1976). 

D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977). 

V. Yakhot and S. A. Orszag, J. Sci. Comp. 1, 3 (1986). 

V. Yakhot and S. Orszag, Phys. Rev. Lett. 57, 1722 (1986). 

W. D. McComb, Phys. Rev. A 26,1078 (1982). 

W. McComb and V. Shanmugasundaram, Phys. Rev. A 28, 2588 (1983). 

W. P. McComb and V. Shanmugasundaram, J. Phys. A 18, 2191 (1985). 

W. P. McComb and A. G. Watt, Phys. Rev. Lett. 65, 3281 (1990). 

W. P. McComb and A. G. Watt, Phys. Rev. A 46, 4797 (1992). 

161 



Bibliography 

H. A. Rose, J. Fluid Mech. 81, 719 (1977). 

Y. Zhou and G. Vahala, Physics Letters A 174, 258 (1993). 

Y. Zhou and G. Vahala, Phys. Rev. E 47, 2503 (1993). 

Y. Zhou, G. Vahala, and S. Thangam, Phys. Rev. E. 49, 5195 (1994). 

G. L. Eyink, Phys. Fluids 6, 3063 (1994). 

E. V. Teodorovich, Izvestiya, Atmospheric and Oceanic Physics 29, 135 

(1993). 

W. D. McComb, Rep. Prog. Phys. 58, 1117 (1995). 

L. M. Smith and S. L. Woodruff, Annu. Rev. Fluid Mech. 30, 275 (1998). 

A. Hunter, Private communication. 

R. H. Kraichnan, J. Fluid. Mech. 47, 525 (1971). 

X.-H. Wang and F. Wu, Phys. Rev. E 48, R37 (1993). 

R. H. Kraichnan, Phys. Fluids 30, 2400 (1987). 

T.-J. Yang, A Study of Renormalization Group Methods Applied to Fluid 

Turbulence, PhD thesis, University of Edinburgh, 1998. 

W. D. McComb, W. Roberts, and A. G. Watt, Phys. Rev. A 45, 3507 (1992). 

R. G. Deissler, Phys. Fluids 29, 1453 (1986). 

S. F. Edwards, in mt. Conf. on Plasma Physics, Trieste, page 595, IAEA, 

Vienna, 1965. 

W. D. McComb, T.-J. Yang, A. Young, and L. Machiels, Investigation 

of renormalization group methods for the numerical simulation of isotropic 

turbulence, in Proc. Eleventh Symposium on Turbulent Shear Flows, 1997. 

162 



Bibliography 

L. Machiels, Phys. Rev. Lett. 79, 3411 (1997). 

A. J. Young, Investigation of Renormalization Group Methods for the Nu-

merical Simulation of Isotropic Turbulence, PhD thesis, University of Edin-

burgh, 1999. 

D. Carati, Phys. Rev. A 44, 6932 (1991). 

P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973). 

W. D. McComb, Private communication. 

A. G. Watt, A Study of Isotropic Turbulence, PhD thesis, University of 

Edinburgh, 1991. 

E. Kreyszig, Advanced Engineering Mathematics, Wiley, New York, 6th 

edition, 1988. 

H. Gong, S. Chen, and G. W. He, Acta Mechanica Sinica 15, 108 (1999). 

D. Storkey, A Study of Reno rmalization-Group Formulations for Turbulence, 

PhD thesis, University of Edinburgh, 1997. 

Y.-H. Pao, Phys. Fluids 8, 1063 (1965). 

J. Qian, Phys. Fluids 27, 2229 (1984). 

R. H. Kraichnan, J. Atmos. Sci 33, 1521 (1976). 

J. Smagorinsky, Mon. Weath. Rev. 91, 99 (1963). 

A. Leonard, Adv. Geophys. A 18, 237 (1974). 

D. K. Lilly, in Proc. IBM Science and Computing Symp. on Environmental 

Science, page 195, Thomas J. Watson Research Center, Yorktown Heights, 

1967. 

A. Vincent and M. Meneguzzi, J. Fluid Mech. 225, 1 (1991). 

163 



Bibliography 

K. R. Sreenivasan, Phys. Fluids 10, 528 (1998). 

R. Rogallo, NASA TM-81315 (1981). 

M. Lesieur and R. Rogallo, Phys. Fluids A 1, 718 (1989). 

A. Hunter, C. Johnston, D. McComb, and A. Young, Investigation of the 

renormalization group using numerical simulations of turbulence, in Turbu-

lence and Shear Flow - 1. First International Symposium, edited by S. Baner-

jee and J. K. Eaton, pages 353-358, New York, 1999, Begell House Inc. 

L.-P. Wang, S. Chen, J. G. Brasseur, and J. C. Wyngaard, J. Fluid Mech. 

309, 113 (1996). 

T. Dubois, F. Jauberteau, and Y. Zhou, Physica D 100, 390 (1997). 

D. C. Leslie, Developments in the Theory of Turbulence, Oxford University 

Press, 1973. 

M. J. Lighthill, An introduction to Fourier analysis and generalised func-

tions, Cambridge University Press, Cambridge, 1980. 

C. W. Wong, Introduction to Mathematical Physics, Oxford University Press, 

New York, 1991. 

164 


